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Abstract

Thanks to their ever improving resolution and accessibility, Light Detection And
Ranging (LiDAR) sensors are increasingly used for mapping cities. Indeed, these sen-
sors are able to efficiently capture high-density scans, which can then be used to pro-
duce geometrically detailed reconstructions of complex scenes. However, such recon-
struction requires organizing the scan with a fitting data structure, such as point clouds
or meshes. Point clouds provide such a representation in a compact way, but their dis-
crete nature prevents some applications such as visualization or simulation. Meshes
allow for a continuous representation of surfaces, but are not well suited for represent-
ing complex objects, whose level of detail can exceed the resolution. To address these
limitations, we propose to reconstruct a continuous geometry of the acquisition where
sufficient geometric information is available only. This leads us to create a reconstruc-
tion mixing triangles, edges and points. We call such collection of objects a simplicial
complex.

In this thesis, we study the creation of geometrically detailed 3-dimensional (3D)
models of urban scenes, based on simplicial complexes. We show that simplicial com-
plexes are a suitable alternative to such meshes. Indeed, they are fast to compute, and
can be simplified while maintaining high geometric geometric fidelity with respect to
the input scan. We argue that simplicial complexes convey valuable geometric infor-
mation which can in turn be used for the semantization of 3D point clouds. We also
think that they can serve as input for multi-scale reconstructions of urban scenes.

We first present an efficient algorithm for computing simplicial complexes from
LiDAR scans of urban scenes. Since the reconstructed simplicial complexes can be
very large, they can be difficult to process on a standard computer. To handle this
challenge, we investigate different approaches for their spatial generalization by ap-
proximating large and geometrically simple areas with elementary primitives. To this
end, we propose a new algorithm to compute piecewise-planar approximations of 3D
point clouds, based on a global optimization approach. Next, we propose two differ-
ent applications of simplicial complexes. The first one is a polygonalization method
improving the creation of light yet geometrically accurate 3D models. The second one
is a weakly-supervised classification method using 3D local and global descriptors.

Keywords: Point Cloud, Surface Reconstruction, Classification, Segmentation, Sim-
plicial Complexes, LiDAR.
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Résumé

Grâce à leur résolution et à leur accessibilité toujours meilleures, les capteurs Li-
DAR sont de plus en plus utilisés pour cartographier les villes. En effet, ces capteurs
sont capables de réaliser efficacement des acquisitions à haut résolution, qui peuvent
ensuite être utilisées pour produire des reconstructions géométriquement détaillées de
scènes complexes. Cependant, une telle reconstruction nécessite d’organiser les don-
nées avec une structure de données adaptée, comme des nuages de points ou des
maillages. Les nuages de points fournissent une représentation compacte des données,
mais leur nature discrète empêche certaines applications telles que la visualisation ou
la simulation. Les maillages permettent une représentation continue des surfaces, mais
ne sont pas bien adaptés à la représentation d’objets complexes, dont le niveau de dé-
tail peut dépasser la résolution de l’acquisition. Pour remédier à ces limitations, nous
proposons de reconstruire une géométrie continue uniquement lorsque suffisamment
d’informations géométriques sont disponibles. Cela nous amène à créer une recons-
truction mêlant triangles, arêtes et points. Nous appelons une telle collection d’objets
un complexe simplicial.

Dans cette thèse, nous étudions la création de modèles 3D de scènes urbaines géo-
métriquement détaillés, basés sur des complexes simpliciaux. Nous montrons que les
complexes simpliciaux sont une alternative appropriée aux maillages. En effet, ils sont
rapides à calculer et peuvent être simplifiés tout en conservant une grande fidélité
géométrique par rapport aux données d’entrée. Nous soutenons que les complexes
simples transmettent de précieuses informations géométriques qui peuvent à leur tour
être utilisées pour la sémantisation des nuages de points 3D. Nous pensons également
qu’ils peuvent servir de base pour des reconstructions multi-échelles de scènes ur-
baines.

Nous présentons d’abord un algorithme efficace pour le calcul de complexes sim-
pliciaux à partir d’acquisitions LiDAR de scènes urbaines. Comme les complexes sim-
pliciaux reconstruits peuvent être très lourds, ils peuvent être difficiles à traiter sur un
ordinateur standard. Pour relever ce défi, nous étudions différentes approches pour les
généraliser spatialement, en approximant de grandes zones géométriquement simples
par des primitives simples. À cette fin, nous proposons un nouvel algorithme pour
calculer des approximations planaires par morceaux de nuages de points 3D, basé sur
une approche d’optimisation globale. Ensuite, nous proposons deux applications dif-
férentes des complexes simpliciaux. La première est une méthode de polygonalisation
améliorant la création de modèles 3D légers mais géométriquement précis. La seconde
est une méthode de classification faiblement supervisée utilisant des descripteurs 3D
locaux et globaux.

Mots clés : nuages de points, reconstruction de surface, classification, segmentation,
complexes simpliciaux, LiDAR.
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0.1 Introduction

Le but de la télédétection est d’extraire des informations de scènes, sans contact
physique, en utilisant des capteurs dédiés. Cela peut se faire par propagation d’ondes,
soit dans le spectre de la lumière visible avec des caméras ou des LiDARs, soit à
d’autres longueurs d’onde, comme pour les capteurs RaDAR. Cependant, ces cap-
teurs fournissent des informations spatiales incomplètes, en particulier dans le cas des
scènes urbaines, qui sont géométriquement complexes. Cela peut être dû à des occlu-
sions, ou à la configuration géométrique de la scène. Par conséquent, un défi majeur
de la communauté de la télédétection est de traiter les données manquantes ou in-
complètes. La façon la plus simple de remédier à ces lacunes est d’effectuer plusieurs
acquisitions de la même scène, avec des capteurs différents ou à des moments diffé-
rents. Cependant, cela peut s’avérer coûteux, tant en terme de temps que d’argent. En
outre, toutes les acquisitions doivent alors être enregistrées conjointement.

Une des applications de la recherche en télédétection est de fournir des modèles 3D
de scènes réelles. Cela est particulièrement important dans les zones urbaines, dont la
croissance rapide doit être surveillée par les acteurs étatiques, mais aussi pour effectuer
des simulations de risques liés à l’environnement. Afin de réaliser cette tâche de mo-
délisation, plusieurs méthodes ont été développées pour reconstruire des villes en 3D,
à des échelles variant d’un seul bâtiment à une ville entière et avec des modélisations
finales de qualité différente. Cependant, la reconstruction de scènes urbaines reste un
défi, car elles sont composées de nombreux objets de formes et de tailles variées. Ces
objets vont des routes, qui ont une grande étendue spatiale, aux poteaux, qui sont fins
et ont une empreinte plus petite. De plus, lorsqu’il s’agit de grandes scènes, les mé-
thodes de reconstruction 3D doivent souvent faire face à des données échantillonnées
de manière irrégulière et à de nombreux petits détails géométriques. Les algorithmes
de reconstruction doivent tenir compte de ces deux contraintes, ce qui complique la
tâche de reconstruction. De plus, en raison des limites de la mémoire et des calculs, les
ordinateurs standards actuels ne peuvent pas traiter des reconstructions 3D complètes
de villes entières. Cependant, les scènes urbaines présentent généralement une certaine
régularité géométrique pour des objets géométriquement simples, tels que les routes
ou les façades. Cela a conduit les chercheurs à étudier les possibilités de simplifier ces
modèles 3D afin de diminuer leur empreinte mémoire, tout en préservant la qualité
géométrique du modèle. Toutefois, ce processus de simplification s’accompagne géné-
ralement d’une perte de la qualité géométrique de la reconstruction d’entrée.

Dans cette thèse, nous étudions la reconstruction de scènes urbaines, en restant le
plus proche possible de la géométrie de l’acquisition, sans toutefois combiner plusieurs
capteurs ou acquisitions. Nous soutenons que l’utilisation de toutes les informations
disponibles d’un capteur LiDAR est suffisante pour une reconstruction géométrique-
ment précise d’une scène. Nous souhaitons que notre approche reste aussi simple que
possible, de sorte que nous n’inférions aucune information supplémentaire par rap-
port l’acquisition (pas de nouveaux points ou de points dupliqués) et nous voulons
atteindre un compromis satisfaisant entre la taille de la mémoire du modèle 3D et sa
fidélité géométrique à la scène réelle.

Nous commençons par présenter les différents types de capteurs utilisés pour l’ac-
quisition de scènes urbaines et nous expliquons pourquoi nous avons choisi de nous
concentrer sur les données LiDAR. Ensuite, nous expliquons certains choix faits pour
concevoir notre méthode de reconstruction. Après cela, nous présentons quelques spé-
cifications de nos reconstructions, en termes de remplissage des trous et de qualité
géométrique. Enfin, nous présentons l’organisation de cette thèse.
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0.1.1 Extraction de géométrie de scènes urbaines
L’extraction de géométrie dans des scènes urbaines se fait essentiellement à partir

de trois types de capteurs différents : les appareils photos, les LiDARs et les RaDARs.
Les appareils photos sont des capteurs passifs, peu chers et capables d’acquérir des
scènes urbaines avec précision. Cependant, ils sont sensibles aux variations d’environ-
nement, comme les changements de luminosité. De plus, des étapes de pré-traitement
sont nécessaires afin de pouvoir utiliser les images pour reconstruire une scène en 3D.

Les capteurs LiDAR sont des capteurs actifs, contenant un laser émettant de la lu-
mière à intervalles réguliers et enregistrant la lumière renvoyée par la scène. Ces cap-
teurs sont onéreux mais sont capables d’acquérir des scènes urbaines avec une grande
précision, tout en s’affranchissant des problèmes rencontrés par les appareils photos.

Le troisième type de capteur existant est le RaDAR. Ces capteurs sont aussi des cap-
teurs actifs. Cependant, ils sont en général utilisés pour cartographier de très grandes
scènes et produisent ainsi des acquisitions moins denses que les deux premiers cap-
teurs. Pour toutes ces raisons, nous décidons de focaliser notre étude sur les données
LiDAR.

0.1.2 Niveau de détail

Nous appelons reconstruction 3D la création d’une continuité géométrique dans une
scène d’intérêt. Une reconstruction 3D doit respecter deux critères :

— compacité : la reconstruction doit être légère en termes de stockage informatique.
— fidélité géométrique : l’écart entre la surface reconstruite et la scène réelle doit

être le plus petit possible.

Nous proposons aussi de caractériser le niveau de détail de nos reconstructions par
la taille du plus petit objet géométrique reconstruit. Nous souhaitons utiliser la qualité
géométrique de l’acquisition afin de reconstruire tous les objets possibles, tels <ue les
arbres ou les poteaux.

0.1.3 Reconstruction 3D de données LiDAR
Le procédé d’acquisition LiDAR implique généralement la présence de trous dans

les données. Ceux-ci sont dûs aux occlusions et à la grande variation de densité au sein
même d’une acquisition LiDAR. Il s’agit d’une conséquence directe du théorême de
Shannon-Nyquist 1.

Dans cette thèse, nous avons choisi de ne pas combler ces trous afin de ne pas
ajouter trop d’informations qui pourraient significativement modifier la reconstruction
finale. Cela signifie que nous ne pourrons donc pas créer une continuité géométrique
dans toute la scène. Contrairement aux méthodes classiques de reconstruction 3D qui
produisent des maillages, nous proposons de reconstruire des ensembles de points,
arêtes et segments en fonction de la complexité géométrique locale de la scène. L’objet
ainsi reconstruit s’appelle un complexe simplicial.

0.1.4 Organisation de la thèse
Dans cette thèse, nous étudions l’utilité des complexes simpliciaux pour représenter

des scènes urbaines. Nous nous intéressons aussi aux possibilités d’utilisation desdits

1. Si la fréquence géométrique d’une scène est supérieure à la moitié de la fréquence d’acquisition,
alors une partie de l’information est perdue.
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complexes simpliciaux afin de généraliser et sémantiser des nuages de points.
Tout d’abord, nous présentons la composition et les principaux usages des capteurs

LiDARs. Ensuite, nous proposons une nouvelle méthode pour la reconstruction de
complexes simpliciaux à partir d’acquisitions LiDAR. Étant donné que nous travaillons
sur des zones urbaines, composées majoritairement d’objets planaires, nous proposons
donc un algorithme nommé `0-plane pursuit permettant de réaliser des simplifications
planaires par morceaux des parties triangulées de nos complexes simpliciaux. Après
cela, nous évaluons la qualité de reconstructions 3D basées sur les maillages simplifiés
obtenus précédemment. Enfin, nous évaluons l’influence des complexes simpliciaux
en tant que descripteurs pour la classification de nuages de points.

0.2 Capteurs et données LiDAR

0.2.1 Capteurs LiDAR

0.2.1.1 Composition

Les capteurs LiDAR sont des capteurs actifs : ils émettent de la lumière et détectent
la quantité de lumière réfléchie vers le capteur. Afin d’émettre de la lumière, un capteur
LiDAR utilise un laser. Cet outil est capable de produire de la lumière cohérente, ce qui
signifie que tous les photons émis ainsi sont identiques (HAKEN, 1985). Cela permet
d’obtenir un faisceau qui se diffracte peu, même sur de longues distances. La lumière
émise est en général comprise entre 500 nm (vert) et 1550 nm (infrarouge). Nous appe-
lons chaque émission de lumière par le laser un pulse. Chaque pulse dure de quelques
nanosecondes à quelques microsecondes.

Le laser d’un capteur LiDAR pointe en direction d’un miroir. Ce miroir tourne sur
un axe avec un ou deux degrés de liberté. Cela permet d’assurer un échantillonnage
régulier et en trois dimensions de la scène.

L’autre composante essentielle d’un capteur LiDAR est le photodétecteur. En effet,
il s’agit d’un appareil capable de générer un courant électrique lorsque stimulé par
de la lumière. Cela permet de quantifier la quantité de lumière réfléchie et d’évaluer le
temps écoulé entre l’émission et la réception. La figure 1 montre un exemple de capteur
LiDAR.

Les capteurs LiDAR sont souvent équipés de capteurs complémentaires, afin de
compléter l’acquisition ou de faciliter le recalage des données. Ainsi, les LiDARs mo-
biles, comme les MLS, sont équipés d’un GPS et d’une centrale inertielle, qui facilitent
ce recalage. De plus, les capteurs LiDAR sont en général équipés d’un appareil photo,
qui permet d’associer les deux moyens d’acquisition et facilite la texturisation du scan.

0.2.1.2 Création d’un nuage de points à partir d’un scan LiDAR

0.2.1.2.1 Cas d’écho unique Nous appelons écho le point créé à partir de la lumière
réfléchie liée à une émission du laser. Afin de trouver la position dans l’espace de ce
point, il nous suffit de connaître la position du laser au moment de l’émission, l’angle
du miroir et la distance entre le laser et l’objet rencontré. Cette dernière est obtenue
à partir de la vitesse de la lumière et du temps écoulé entre émission et réception de
lumière. Ainsi, pour chaque émission de lumière, nous pouvons créer un point en 3D
là où un objet physique a réfléchi la lumière.
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Laser

Objet scanné

Mirroir

Lumière émise

Lumière réfléchiePhotodétecteur

FIGURE 1 – Illustration d’un capteur LiDAR.

0.2.1.2.2 Cas d’échos multiples Cependant, la complexité géométrique des scènes
urbaines fait que dans certains cas, seule une partie de la lumière est réfléchie au
contact d’un objet et le reste continue de se propager. C’est notamment le cas lorsque
le faisceau lumineux arrive au bord d’un objet, ou rencontre un objet qui transmet par-
tiellement la lumière. Cela signifie que pour une seule émission de lumière, il peut
y avoir plusieurs faisceaux réfléchis vers le LiDAR (correspondant à des objets dif-
férents). Dans ces cas-là, les LiDARs modernes sont capables de créer un point pour
chaque faisceau réfléchi pour une unique émission de lumière.

0.2.2 Applications

Le domaine d’application historique du LiDAR est celui de la météorologie, no-
tamment afin de suivre des objets tels les nuages. Ceci permet d’aider la cartographie
des courants aériens et de prévoir des événements météorologiques, tels les tempêtes
(SUOMI et al., 2017). Cela permet aussi d’estimer l’énergie éolienne (GOIT, SHIMADA
et KOGAKI, 2019).

Les capteurs LiDARs sont aussi très utilisés pour la cartographie d’environnements
forestiers. En effet, contrairement aux appareils photos, les acquisitions LiDAR peuvent
traverser la végétation, ce qui permet de produire une acquisition plus rapide et com-
plète des milieux forestiers. Cela permet entre autres d’estimer la quantité de biomasse
(LUO et al., 2017 ; HOLM, NELSON et STÅHL, 2017) et de réaliser des MNT (BIGDELI,
AMIRKOLAEE et PAHLAVANI, 2018) de ces milieux. Les LiDARs peuvent aussi être utili-
sés pour suivre les catastrophes naturelles, telles que les incendies de forêt (MCCARLEY
et al., 2017 ; DELONG et al., 2018), les inondations (DE ALMEIDA et al., 2016), l’activité
volcanique (BEHNCKE et al., 2016) et les tremblements de terre (ISHIMURA et al., 2019).
À plus grance échelle, les capteurs LiDAR permettent aussi de suivre les mouvements
des glaciers (PUTKINEN et al., 2017) et des plaques tectoniques (MEIGS, 2013).

Le fait de produire rapidement des acquisitions géométriquement détaillées et de
pouvoir passer à travers la végétation rend les capteurs LiDARs particulièrement utiles
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pour le suivi et l’entretien du patrimoine culturel. En effet, ces capteurs ont prouvé
leur efficacité pour retrouver d’anciennes cités et routes aujourd’hui recouvertes par la
végétation (RODRÍGUEZ-GONZÁLVEZ et al., 2017 ; INOMATA et al., 2018).

Enfin, les capteurs LiDAR sont tout particulièrement utiles pour scanner et suivre
l’évolution de villes entières (WANG et al., 2019). C’est ainsi qu’a vu le concept de
jumeau numérique : le fait de pouvoir représenter, suivre l’évolution et réaliser des si-
mulations à l’échelle d’une ville entière est tout particulièrement utile dans le domaine
de l’urbanisme (LIU et al., 2017 ; GOODING, CROOK et TOMLIN, 2015). De même, en
milieu urbain, les capteurs LiDAR permettent d’aider à la conduite des voitures au-
tonomes, en permettant une analyse géométrique précise et rapide de leur environne-
ment (GHALLABI et al., 2018 ; MATTI, EKENEL et THIRAN, 2017).

0.3 Reconstruction de complexes simpliciaux

La première contribution technique de cette thèse est la mise en place d’une nou-
velle méthode pour la reconstruction de complexes simpliciaux à partir d’acquisitions
LiDAR de scènes urbaines.

0.3.1 Complexes simpliciaux

Pour i ∈ [0, . . . , n], nous appelons i-simplexe de Rn l’enveloppe convexe de i + 1
points indépendants de Rn. Une face d’un i-simplexe de Rn est définie par l’enveloppe
convexe de j points indépendants (j ∈ [1, . . . , i]).Des exemples de simplexes sont af-
fichés dans la figure 2. Dans cette thèse, nous nous intéressons à la reconstruction de
la surface visible de la scène et non pas à la reconstruction entière de la scène. Cela si-
gnifie que nous nous concentrons uniquement sur la reconstruction de 0− 2-simplexes
(points, arêtes et triangles).

•
(a) Simplexe de di-
mension 0.

•

•

(b) Simplexe de di-
mension 1

•

•

•
(c) Simplexe de di-
mension 2

••

•

•

(d) Simplexe de di-
mension 3

FIGURE 2 – Exemples de simplexes en faible dimension.

Pour i ∈ [0, . . . , n], nous définissons un i-complexe simplicial de Rn comme un
ensemble de simplexes de dimension inférieure à i. Tous les simplexes composant un
complexe simplicial n’ont par forcément la même dimension Un i-complexe simplicial
doit respecter les conditions suivantes :

— toutes les faces d’un i-complexe simplicial doivent lui appartenir.

— l’intersection de deux simplexes d’un i-complexe simplicial doit soit être une face
partagée par ces deux simplexes, soit ∅.

La dimension d’un complexe simplicial est la dimension maximale des simplexes
lui appartenant. Des exemples de complexes simpliciaux sont présentés dans la figure
3. Remarquons qu’un simplexe est aussi un complexe simplicial. Dans cette thèse,
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nous nous intéressons uniquement à des complexes simpliciaux composés de 0 − 2-
simplexes.

•

•

•

(a) Complexe simpli-
cial de dimension 0.

•

•

•

•

•

(b) Complexe sim-
plicial de dimension
1.

•

•

•

•
•
•

(c) Complexe simpli-
cial de dimension 2.

••

•

•

•
•
•

•

•

•

(d) Complexe sim-
plicial de dimension
3.

FIGURE 3 – Exemples de complexes simpliciaux dans des espaces à faible dimension.

0.3.2 Reconstruction de complexes simpliciaux à partir de scans Li-
DAR 3D

0.3.2.1 Topologie capteur

Un des premiers problèmes qui apparaît lorsque l’on veut traiter des données Li-
DAR est leur absence de structure interne : contrairement à une image, pour laquelle
les pixels sont reliés entre eux suivant un 4- ou 8-voisinage (TOFFOLI et MARGOLUS,
1987, Section 7.2), il n’existe pas d’équivalent pour les nuages de points LiDAR. La
plupart des travaux de l’état de l’art utilisent les k-plus proches voisins (WEINMANN
et al., 2015b) ou une triangulation de Delaunay (BOISSONAT, 1984 ; ROMANONI et al.,
2016). Cependant, ces méthodes ne sont pas capables de s’adapter aux variations de
densité dans le scan et ont tendance à relier entre eux des points qui n’appartiennent
pas aux mêmes objets dans la réalité (comme c’est le cas entre un poteau et la route, ou
entre les différentes branches d’un arbre).

Nous remarquons que les capteurs LiDAR possèdent une topologie propre. En ef-
fet, chaque impulsion du laser peut être représentée dans un espace en deux dimen-
sions, en fonction de la direction de la lumière émise et de l’instant d’émission. Ainsi,
nous proposons d’associer à chaque impulsion, ses six voisins en topologie capteur. Ce-
pendant, comme évoqué précédemment, les capteurs LiDAR modernes sont capables
d’enregistrer plusieurs échos pour une unique impulsion. C’est pourquoi nous déci-
dons d’associer à chaque point / écho, tous les échos des impulsions voisines en topo-
logie capteur. Ceci est illustré sur la figure 4. Notons qu’il existe peu de travaux dans
la littérature qui utilisent la topologie capteur (XIAO, VALLET et PAPARODITIS, 2013 ;
VALLET et al., 2015) et ceci vient essentiellement du fait que l’information brute venant
du capteur est souvent perdue.

0.3.3 Reconstruction d’arêtes

Étant donné que les nuages de points peuvent être vus comme un complexe sim-
plicial, composé uniquement de 0-simplexes, nous proposons d’ajouter en premier des
1-simplexes (arêtes), afin de reconnecter les points entre eux. Ensuite, nous ajoutons
les 2-simplexes (triangles), à partir des arêtes créées. Ceci est illustré sur la figure 5.

Nous décidons de traiter chaque paire de points séparément. L’objectif est de déter-
miner dans quels cas une arête doit être créée entre deux points adjacents. Pour cela,
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(a) Représentation du 6-voisinage induit
par la topologie capteur pour les émissions
lumineuses du laser. Chaque point corres-
pond à une impulsion.
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(b) Représentation de la topologie capteur
dans le cas où chaque impulsion du laser
peut amener à plusieurs faisceaux réflé-
chis. Chaque point représente un écho.

FIGURE 4 – Réprésentation de la topologie capteur et du voisinage qu’elle induit pour
les émissions lumineuses (4a) et pour les échos reçus (4b).
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FIGURE 5 – À partir d’un ensemble de points (à gauche), nous ajoutons des arêtes entre
chaque paire de points appartenant à un même objet dans la scène acquise. Ensuite
nous ajoutons des triangles à partir des arêtes créées. Cela nous permet d’obtenir un
complexe simplicial adapté à la géométrie locale de la scène. La scène représente un
panneau de signalisation. Les points sont affichés en noir, les arêtes en vert et les tri-
angles en rouge.

nous nous basons sur la différence de profondeur entre les deux points, par rapport
à la position du capteur. Nous prenons aussi en compte la colinéarité de triplets de
points adjacents. Ainsi, nous distinguons trois situations différentes représentées sur
la figure 6 :

— le premier cas (figure 6a représente le cas où deux échos adjacents ont une grande
différence de profondeur. Dans ce cas, nous considérons qu’ils n’appartiennent
pas au même objet et les laissons séparés.

— le second cas (figure 6b représente la même acquisition que précédemment, mais
dans ce cas, les deux échos font partie du même objet. Ici, la complexité géomé-
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(a) Séparation (b) Cas limite (c) Non-séparation

FIGURE 6 – Représentation des trois différents cas abordés pour la reconstruction
d’arêtes. Les échos considérés sont affichés en rouge.

trique de la scène est supérieure à la densité de l’acquisition et nous ne pouvons
pas différencier ce cas du précédent, il est donc traité de la même manière.

— le dernier cas (figure 6c représente un cas ou trois échos ou plus sont presque
alignés. Dans ce cas, nous pensons qu’ils appartiennent au même objet et souhai-
tons les reconnecter.

Afin d’encoder ces choix, nous mettons en place les deux critères suivants :
— C0 régularité : nous empêchons la création d’arêtes entre deux échos avec une

différence de profondeur trop importante.

— C1 régularité : nous favorisons la création d’arêtes lorsque trois échos ou plus
sont alignés.

Soient e1 et e2, deux impulsions du laser. Soient Ep et Ep+1, deux échos liés respec-
tivement aux impulsions e1 et e2. Nous calculons les C0 et C1 régularités de la manière
suivante :

C0(p, e1, e2) = un− ~ep(e1, e2) · ~lp , (1)

avec ~ep(e1, e2) =
−−−−−−→
E

e1
p E

e2
p+1

||
−−−−−−→
E

e1
p E

e2
p+1||

et ~lp la direction de l’impulsion laser. Remarquons que

C0 est proche de 0 pour des surfaces orthogonales et proche de 1 pour des surfaces
parallèles à la direction de l’impulsion laser.

La régularité C1 est calculée comme suit :

C1(p, e1, e2) = min
Np−1

e=1 |1−~ep−1(e, e1) ·~ep(e1, e2)| ·minNp+2

e=1 |1−~ep(e1, e2) ·~ep+1(e2, e)| , (2)

avec Np le nombre de pulses par ligne d’acquisitions 2 Nous décidons de créer une
arête si et seulement si : 

C0 < αm ,

or

C1 < λ·αm·C0

αm−C0
,

(3)

avec λ un paramètre servant de compromis entre les deux régularités.

2. Une ligne d’acquisition correspond à l’ensemble des impulsions effectuées dans le cadre d’une
rotation de 2π radians du miroir.
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E1
p E1

p+1

E2
p+1

E2
p−1

E1
p−1

E1
p+2

E2
p+2

E3
p+2

~ep(e1, e2)
~ep−1(e, e1) ~ep+1(e2, e)

~lp

Échos adjacents utilisés pour calculer les C0 et C1 régularités
Échos adjacents
Impulsions laser

• Écho
Échos liés à l’impulsion p− 1 et adjacence avec les échos de l’impulsion p
Échos liés à l’impulsion p+ 2 et adjacence avec les échos de l’impulsion p+ 1

FIGURE 7 – Représentation desC0 etC1 régularités. Pour les échos bleus et rouges, nous
sélectionnons les échos les plus proches de la ligne portée par ~ep(e1, e2). Les échos ainsi
sélectionnés sont utilisés pour calculer les deux régularités.

1

2

3

4

FIGURE 8 – Représentation d’une wedge (en rouge) et de ses wedges adjacentes. Les
deux triangles formant une wedge sont séparés par une ligne en pointillé. Les lignes
en tiret représentent les trois directions qui apparaissent dans le voisinage en topologie
capteur. Les wedges adjacententes à la wedge rouge sont numérotées de un à 4.

0.3.4 Reconstruction de triangles

Maintenant que nous avons défini une méthode pour reconstruire des arêtes à par-
tir d’ensembles de points et en utilisant la topologie capteur, nous devons nous inté-
resser à la création de triangles à partir de nos ensembles de points et d’arêtes.

La méthode la plus intuitive pour recréer des triangles est de considérer tous les
triplets d’arêtes connectées entre elles et de reconstruire un triangle entre les trois échos
qu’elles connectent. Cependant, avec cette méthode, l’absence d’une seule arête peut
empêcher la création de deux triangles.

Nous décidons donc de procéder à la création des triangles dans les zones pla-
naires du scan, indépendamment du fait que toutes les arêtes possibles aient été recons-
truites ou non. Nous proposons d’étendre la notion de C1 régularité pour les triangles.
Ainsi, nous considérons non pas des triplets d’arêtes connectées, mais des quadruplets
d’arêtes connectées, que nous appelons wedge. Lorsqu’une wedge est coplanaire avec
au moins deux autres wedges, qui lui sont adjacentes, dans deux directions différentes,
nous décidons de reconstruire les deux triangles formant la wedge. Ceci est illustré sur
la figure 8.
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0.3.5 Expériences

Les expériences réalisées pour évaluer cette contribution se basent sur une acqui-
sition du véhicule de cartographie mobile Stéréopolis (PAPARODITIS et al., 2012). L’ac-
quisition a eu lieu dans Paris. Nous avons comparé trois méthodes de reconstruction
de complexes simpliciaux :

— Méthode naïve : dans cette méthode, toutes les arêtes reliant des points adjacents
en topologie capteur dont la longueur est inférieure à un seuil sont reconstruites.
Les triangles correspondent à des triplets d’arêtes connectés.

— Méthode avec arêtes filtrées : les arêtes sont créées à partir de la méthode décrite
dans la section 0.3.3. Les triangles correspondent à des triplets d’arêtes connectés.

— Méthode avec triangles filtrés : les arêtes sont créées à partir de la méthode dé-
crite dans la section 0.3.3. Les triangles sont créés à partir de notre approche basée
sur des wedges.

(a) Image de la scène dans GOOGLE (View of the
Mabillon street next to the corner of Lobineau street
(Paris))

(b) Méthode naı̈ve

(c) Méthode avec filtrage d’arêtes (d) Méthode avec filtrage de triangles

FIGURE 9 – Résultats sur une scène urbaine comprenant routes, façades, poteaux et
piétons.

Nous observons que notre méthode, filtrant les arêtes et les triangles, nous permet
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(a) Méthode naı̈ve

(b) Méthode avec filtrage d’arêtes

(c) Méthode avec filtrage de triangles

FIGURE 10 – Comparaison de trois méthodes de reconstruction de complexes simpli-
ciaux : la méthode naı̈ve, la méthode avec filtrage d’arêtes et la méthode avec filtrage
de triangles. De gauche à droite, les scènes représentent : une fenêtre, un mannequin,
un arbre et une barrière sur un trottoir.

de reconstruire des complexes simpliciaux préservant la géométrie locale de l’acquisi-
tion. Ainsi, des objets souvent agrégés par des méthodes classiques de reconstruction
sont séparés par notre méthode. C’est notamment le cas pour la base des poteaux, qui
est ici séparée de la route. Nous remarquons aussi que notre méthode montre son effi-
cacité pour la reconstruction d’arbres : le tronc et les branches principales sont compo-
sés de triangles, les branches plus fines sont visibles sous forme d’arêtes et les feuilles
sont représentées comme un ensemble de points séparés les uns des autres.

Notons néanmoins que notre méthode est purement locale et que cela induit une
reconstruction généralement bruitée. De plus, les zones géométriquement simples des
scènes urbaines, telles que les routes ou certaines façades sont ici composées de plu-
sieurs milliers de simplexes. Nous pensons que pour respecter l’objectif de compacité
des méthodes de reconstruction, il nous faut simplifier nos reconstructions dans les
régions géométriquement simples.
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0.4 Généralisation planaire par morceaux de nuages de
points

0.4.1 Simplification des complexes simpliciaux

Le processus de généralisation des complexes simpliciaux peut être divisé en trois
sous problèmes :

— généralisation des points, basée sur un échantillonnage aléatoire ou un octree.

— généralisation des arêtes, basée sur des techniques bottom-up (Douglas-Peucker)
ou top-down (edge collapse).

— généralisation des triangles.

Nous nous focalisons ici sur ce dernier problème, qui est le plus complexe des
trois. Pour cela, nous nous intéressons aux méthodes de simplification de maillages.
En particulier, nous observons que les scènes urbaines sont majoritairement compo-
sées d’objets planaires par morceaux. De plus, comme nous ne nous intéressons ici,
qu’à la partie triangulée de nos complexes simpliciaux, nous pouvons supposer que
les zones les plus géométriquement complexes de l’acquisition ne font pas partie du
maillage. Nous proposons dans un premier temps de réaliser une segmentation pla-
naire par morceaux de nos maillages, pour servir d’initialisation à un algorithme de
décimation de maillages.

0.4.2 Représentations géométriques de scènes urbaines

La plupart des méthodes de l’état de l’art concernant la segmentation planaire par
morceaux de maillages sont basées sur trois types d’algorithmes différents :

— RANSAC : cet algorithme permet d’extraire des primitives géométriques, telles
que des plans, sphères ou cylindres,

— croissance de régions : cette méthode permet de préserver la géométrie locale des
données mais est souvent plus lente et peine à passer à l’échelle,

— découpe de graphes : cette méthode est rapide, mais peut être moins adaptée à la
géométrie locale des données.

Ici, nous proposons de combiner RANSAC et une méthode de découpe de graphes,
afin de réaliser une segmentation rapide de nos maillages, tout en préservant la géo-
métrie locale.

0.4.3 Approximations planaires par morceaux

0.4.3.1 Représentation de maillages sous forme de graphes

Nous représentons le maillage d’entrée sous forme d’un graphe G = (V,E,w). V
est l’ensemble des nœuds et chaque nœud correspond à un point 3D de notre maillage.
E est l’ensemble des arêtes du graphe, ces arêtes se basent sur la structure du maillage.
Enfin, chaque arête est pondérée en fonction de sa longueur par rapport à la longueur
moyenne des arêtes du graphe, de telle sorte que les arêtes reliant deux points éloignés
aient un plus faible poids que les arêtes reliant des points proches.
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(a) Représentation du terme d’attache aux
données dont le but est de minimiser la dis-
tance entre chaque point et le plan qui lui est
associé (représenté ici par une ligne verte).
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(b) Illustration du terme de régularisation pé-
nalisant les régions avec des formes com-
plexes. Les points verts et rouges appar-
tiennent à deux régions différentes. La ligne
jaune montre la frontière entre les deux ré-
gions.

FIGURE 11 – Représentation de notre modèle : nous voulons minimiser la distance entre
chaque point et le plan qui lui est associé, tout en préservant des régions avec des
formes simples.

0.4.3.2 Formulation du problème

SoitP l’ensemble des plans de R3. Soit d(v, π) la distance euclidienne entre un nœud
v et un plan π ∈ P . Nous associons un plan πv à chaque nœud v et notons Π ∈ PV
l’ensemble des plans ainsi définis. Ainsi, nous définissons une approximation de V
par la projection de chaque nœud sur le plan qui lui est associé.

Nous proposons donc de minimiser l’énergie suivante E : PV → R afin d’obtenir
une approximation simple de V , tout en préservant la géométrie locale du maillage.
Pour Π ∈ PV , l’énergie peut s’écrire de la façon suivante :

E(Π) =
∑
v∈V

d ( v, πv ) 2

︸ ︷︷ ︸
Data term

+ µ
∑

(u,v)∈E

wu,v [ πu 6= πv ]︸ ︷︷ ︸
Regularizer

, (4)

où [π 6= π′] est la fonction de P2 7→ {0, 1} valant 0 quand π et π′ sont identiques et
1 sinon. Le paramètre µ ∈ R+ sert de compromis entre le terme d’attache aux données
et la régularisation. Le premier terme de l’équation 4.2 correspond à l’éttache aux don-
nées, servant à minimiser la distance entre chaque point et son plan associé. Le second
terme de l’équation 4 favorise les interfaces simples entre régions, favorisant ainsi les
régions avec des formes simples. Le rôle de chaque terme est illustré sur la figure 11.

0.4.3.3 Algorithme `0-plane pursuit

Notre problème est similaire au Generalized Minimal Partition Problem présenté dans
LANDRIEU et OBOZINSKI (2017). Ainsi, nous décidons de proposer un algorithme si-
milaire à l’algorithme `0-cut pursuit introduit par LANDRIEU et OBOZINSKI (2017), afin
de résoudre notre problème. Ainsi nous proposons l’algorithme `0-plane pursuit, qui
diffère de `0-cut pursuit sur les points suivants :

— Initialisation : afin d’aider l’algorithme dans les premières itérations, nous pro-
posons d’utiliser un RANSAC pour trouver les plans principaux de la scène.

— Raffinement : l’étape de raffinement de `0-cut pursuit est adaptée dans notre
contexte : nous souhaitons trouver la partition binaire optimale (Bi,Ai\Bi) d’une
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région Ai ∈ P. Cela revient à trouver :

arg min
Bi⊂Ai,(π,π′)∈P2

∑
v∈Bi

d(v, π) +
∑

v∈Ai\Bi

d(v, π′) + µ
∑

(i,j)∈EBi

wi,j , (5)

avec EBi
= E ∩ (Bi × Ai \ Bi ∪ Ai \ Bi × Bi) l’ensemble des arêtes connectant Bi

et Ai \Bi.

— Fusion : l’étape complémentaire au raffinement est la fusion de régions adja-
centes. Pour cela, nous calculons un plan commun aux deux régions et compa-
rons l’énergie d’une région unifiée par rapport à celle des deux régions existantes
avec leur frontière.

0.4.4 Expériences

0.4.4.1 Données, baseline et métrique

Nous avons testé l’algorithme `0-plane pursuit sur trois jeux de données différents,
nommés :

— Paris : acquisition par un véhicule de cartographie mobile dans les rues de Paris,

— Chapelle : acquisition par LiDAR terrestre dans une chapelle,

— Barcelone : acquisition par LiDAR aérien au-dessus de la ville de Barcelone.

Les caractéristiques des trois acquisitions utilisées pour valider notre algorithme
sont présentées dans le tableau 1.

Nom Paris Chapelle Barcelone
Moyen d’acquisition MLS TLS ALS

Capteur RIEGL VQ-250 Leica ScanStation
P40 Leica ALS50-II

Vitesse de rotation (Hz) 100 50 35
Multi-écho < 8 Non < 4
Densité (pts/m2 ) élevée : > 100 très élevée : > 1000 faible : quatre
Nombre de points 218,546 1,263,321 500,000
Nombre de triangles 418,254 7,313,760 872,372

Structure
Triangles de
(GUINARD et

VALLET, 2018a)

Triangles de
(GUINARD et

VALLET, 2018a)

Triangulatio de
Delaunay

TABLE 1 – Caractéristiques des trois acquisitions utilisées pour tester l’algorithme `0-
plane pursuit.

Nous avons comparé notre méthode à une méthode de segmentation planaire par
morceaux basée sur une croissance de régions. Plus particulièrement, nous avons choisi
la méthode introduite par COHEN-STEINER, ALLIEZ et DESBRUN (2004).

Nous avons choisi d’utiliser comme métrique la somme des distances euclidiennes
au carré entre chaque point et le plan qui lui est associé. Cela nous permet de pénaliser
fortement les points trop éloignés de leur plan respectif.
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0.4.4.2 Résultats

Les résultats sur Paris sont présentés dans les figures 12 et 13. Nous remarquons
que notre méthode est capable de s’adapter à la géométrie locale des données en pro-
duisant un faible nombre de régions pour les zones géométriquement simples et plus
de régions pour les zones complexes de la scène. Ainsi, notre méthode produit des
segmentations avec une faible erreur géométrique, mais est aussi plus rapide que les
méthodes de type croissance de régions.

Nous observons aussi l’importance de l’étape de fusion de régions : elle permet
diminuer le nombre de régions, tout en préservant la qualité géométrique de la seg-
mentation. Ceci permet, à nombre de régions constant, d’obtenir de meilleures seg-
mentations.

Des résultats plus détaillés sur ce jeu de données et sur les deux autres jeux de
données sont présentés dans la section 4.3.3.

0.5 Polygonalisation

Maintenant que nous avons obtenu des segmentations planaires par morceaux de
nos données, l’étape suivante pour la méthode de généralisation que nous mettons en
place est de simplifier le maillage en un ensemble réduit de triangles, afin de retirer les
données redondantes. Par exemple, les routes sont géométriquement simples et nous
pensons qu’un bon algorithme de simplification de maillages devrait être capable de
de représenter une telle zone de la scène par un faible nombre de triangles. Ce n’est
pas le cas pour les parties maillées de nos complexes simpliciaux, mais nous comptons
utiliser nos segmentations planaires par morceaux pour guider un algorithme de dé-
cimation de maillages, afin de décimer en priorité les zones géométriquement simples
de la scène.

0.5.1 Projections planaires par morceaux de nuages de points 3D

Afin de pouvoir simplifier nos maillages, nous commençons par utiliser nos seg-
mentations planaires par morceaux pour obtenir un maillage planaire par morceaux.
La méthode la plus directe pour faire ceci est de projeter chaque point directement
sur le plan qui lui est associé. Cependant, nous souhaitons préserver la qualité géomé-
trique de l’acquisition dans les zones géométriquement complexes. Ainsi, si un point
est trop éloigné de son projeté, nous choisissons de garder le point original. De plus,
en ne prenant en compte que le plan associé à chaque point, des trous peuvent vite
apparaître dans la reconstruction finale, au niveau des interfaces entre régions.

Pour résoudre ce problème, nous choisissons donc de considérer pour chaque point,
l’ensemble de régions auquel appartient son voisinage. Ainsi, nous décidons de proje-
ter un point, tant que la distance entre le point et son projeté est suffisamment faible,
selon les règles suivantes :

i) si tous les points dans le voisinage du point considéré appartiennent à une même
région : le point est projeté sur cette région,

ii) si le voisinage direct d’un point est réparti entre deux régions différentes : le point
est projeté sur l’intersection des deux plans. Si l’intersection n’est pas définie, ou
si elle est trop loin du point d’origine, alors le point considéré est projeté sur le
plan le plus proche.
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(a) Croissance de régions
492 régions
5 itérations
erreur : 18.3 · 103

(b) Croissance de régions
492 régions
15 itérations
erreur : 17.5 · 103

(c) `0-plane pursuit
pas de fusion de régions
514 régions
erreur : 1.6 · 103

(d) `0-plane pursuit
avec fusion de régions
492 régions
erreur : 1.6 · 103

FIGURE 12 – Comparaison de notre méthode de la baseline. Chaque couleur représente
une région différente Les points sont projetés sur leur plan respectif. Notre méthode
créée de grandes régions dans les zones géométriquement simples de la scène et de
plus petites régions dans les zones géométriquement complexes.
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500 1,000 1,500 2,000 2,500 3,000

103

104

# of regions

error (m2)

`0-plane pursuit
`0-plane pursuit-no-merge

Region-growing (5 iter.)
Region-growing (15 iter.)

500 1,000 1,500 2,000 2,500 3,000

102

103

# of regions

time (s)

FIGURE 13 – Comparaison de l’erreur entre notre méthode et la méthode basée crois-
sance de région. À nombre de régions fixé, notre méthode est capable de produire des
segmentations ayant une plus grande fidélité géométrique, tout en étant plus rapide
en termes de temps de calcul.
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iii) si le voisinage direct d’un point appartient à trois régions différentes : le point est
projeté sur l’intersection des trois plans supports. Cette intersection peut ne pas
être définie 3. Si l’intersection n’existe pas, on se rabat alors sur les trois paires de
plans supports possibles et on projette le point sur la ligne d’intersection la plus
proche. S’il n’existe aucune ligne d’intersection, on projette le point sur le plan le
plus proche.

iv) si le voisinage direct d’un point appartient à quatre régions ou plus : nous choisis-
sons de traiter tous les triplets de plans supports associés à des régions adjacentes
et appliquons le même traitement qu’au point précédent.

0.5.2 Simplification de maillages 3D

Nous appelons simplification de nuages de points 3D, le fait de diminuer la quantité
d’information utilisée pour représenter le nuage, tout en préservant sa géométrie. Le
but est ainsi d’obtenir un nuage de points plus facile à manipuler, tout en étant le plus
fidèle à la géométrie du nuage de points initial.

Dans la littérature, les méthodes les plus courantes pour simplifier des nuages de
points ou des maillages se basent la suppression / fusion de points et la suppression
d’arêtes dans les zones géométriquement simples. Nous pensons ici que l’algorithme
`0-plane pursuit peut aider à identifier les régions géométriquement simples et servir
à l’initialisation d’un algorithme de décimation de nuages de points. Nous avons sé-
lectionné l’algorithme Edge Collapse tel que présenté dans LINDSTROM et TURK (1998).

0.5.3 Évaluation

Afin d’évaluer la qualité de nos approximations, nous proposons de les évaluer
selon deux critères :

— Quantité d’information utilisée pour représenter la donnée. Cela est évalué en
calculcant la longueur de description minimale permettant de stocker la donnée.
Pour un maillage triangulaire, elle s’obtient de la manière suivante :

MDLpolygons = sizeof( float )× (3 · |V | − (
∑
p∈P

|p| − 3)) . (6)

— Écart entre l’acquisition initiale et l’approximation finale. Pour cela, nous calcu-
lons la somme des distances euclidiennes au carré entre les points de l’acquisition
initiale et le maillage simplifié.

0.5.4 Expériences

Nous avons choisi de comparer notre méthode de simplification de maillages basée
sur les algorithmes `0-plane pursuit et Edge Collapse à différentes méthodes de sim-
plification de maillages, nommément : VSA (COHEN-STEINER, ALLIEZ et DESBRUN,
2004), Polyfit (NAN et WONKA, 2017) et Poisson (KAZHDAN et HOPPE, 2013). Nous
avons aussi évalué l’influence de l’initialisation d’Edge Collapse avec une segmentation
produite par `0-plane pursuit. Les résultats sont visibles dans la figure 14.

3. Voir http://geomalgorithms.com/a05-_intersect-1.html pour une illustration des
différents cas possibles.
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101.2 101.3 101.4 101.5 101.6 101.7 101.8 101.9 102 102.1 102.2 102.3 102.4

101

102

103

104

Longueur de description minimale (kbytes)

erreur (m2)

Edge Collapse - `0-plane pursuit init. avec 4041 régions
Edge Collapse - `0-plane pursuit init. avec 1624 régions
Edge Collapse - `0-plane pursuit init. avec 672 régions
Edge Collapse - `0-plane pursuit init. avec 205 régions

Edge Collapse
VSA

Polyfit
Poisson

FIGURE 14 – Comparaison de notre méthode de simplification de maillages avec des
méthodes de simplification de maillages de l’état de l’art. Lorsque l’algorithme `0-
plane pursuit a été utilisé pour l’initialisation d’Edge Collapse, nous avons précisé le
nombre de régions composant la segmentation.
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0.6. PRÉ-SEGMENTATION POUR LA CLASSIFICATION FAIBLEMENT
SUPERVISÉE DE NUAGES DE POINTS 3D

Nos expériences montrent que notre méthode de simplification de maillage permet
de respecter la donnée d’origine, tout en diminuant grandement la quantité d’informa-
tion nécessaire pour représenter la donnée. De plus, nos résultats sont comparables à
ceux produits par des méthodes de l’état de l’art.

Nous reconnaissons cependant qu’en l’état, notre méthode peut au mieux produire
des résultats de la même qualité que ceux d’Edge Collapse. Cependant, nous pensons
qu’une adaptation de notre méthode permettant de produire un ensemble de poly-
gones et non un maillage permettrait d’obtenir de meilleurs résultats, en diminuant la
longueur minimale de description.

0.6 Pré-segmentation pour la classification faiblement su-
pervisée de nuages de points 3D

Dans cette dernière partie technique, nous nous intéressons à la généralisation sé-
mantique des complexes simpliciaux. Pour cela, nous souhaitons évaluer leurs perfor-
mances pour la classification de nuages de points 3D.

Cependant, nous remarquons que les classifications points par points de nuages de
points 3D sont souvent bruitées. De plus, il est long et couteux de créer une vérité ter-
rain suffisamment importante pour entraîner un algorithme de classification de nuages
de points. Nous remarquons aussi que les scènes urbaines traitées dans cette thèse sont
majoritairement composées d’objets avec des formes simples. Ainsi, nous proposons
de capturer la géométrie sous-jacente d’une scène urbaine grâce à un algorithme de
segmentation de nuages de points en régions géométriquement homogènes. Ensuite,
nous proposons de régulariser une classification points par points bruitée, obtenue
après avoir entraîné un algorithme de classification sur un nombre réduit d’exemples.

Nous nous intéressons dans un premier temps à la recherche de descripteurs per-
mettant de décrire la géométrie de la scène. Ensuite, nous présentons l’algorithme de
segmentation utilisé pour régulariser nos classifications bruitées. Enfin, nous détaille-
rons le processus de régularisation en lui-même.

0.6.1 Calcul de descripteurs

Afin de décrire la géométrie locale du nuage, nous proposons quatre descripteurs
locaux. Ces descripteurs sont calculés à partir des valeurs propres et vecteurs propres
de la matrice de covariance créée à partir de la position des voisins d’un point. Il s’agit
de la linéarité, la planarité, la dispersion et la verticalité. La taille de voisinage choisie
est le voisinage optimal tel que présenté dans WEINMANN et al. (2015b).

Nous proposons aussi deux descripteurs globaux : l’élévation et la position par
rapport à la route. Ce dernier descripteur est calculé à partir de la projection du point
sur l’α-shape (AKKIRAJU et al., 1995) des points classés en route. Cette classification
est une classification binaire en route / non-route calculée à partir des quatre premiers
descripteurs locaux.

À cela, nous ajoutons les complexes simpliciaux, calculés sur le nuage de point en
entrée et convertis en un ensemble de trois descripteurs grâce à la technique du one-hot
encoding.

L’ensemble de ces descritpeurs peut être utilisé pour entraîner un classifieur de type
forêts aléatoires (BREIMAN, 2001).
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route

bâtiment

végétation

aménagements urbains

FIGURE 15 – Illustration de la classification des segments, basée sur l’aggrégation des
probabilités de classification par points à l’intérieur de chaque segment. Chaque dia-
gramme montre un segment différent. Chaque couleur représente une classe diffé-
rente.

0.6.2 Segmentation en régions homogènes

Soit G = (V,E) le graphe représentant les données d’entrée et encodant leur adja-
cence. Afin de réaliser une segmentation en régions géométriquement homogènes de
la scène, nous avons décidé d’associer à chaque point le vecteur contenant les quatre
descripteurs locaux fi ∈ R4. Nous cherchons ensuite à obtenir une approximation
constante par morceaux du signal f ∈ RV×4, en minimisant l’énergie suivante :

g? = arg min
g∈R4×V

∑
i∈V

‖gi − fi‖2 + ρ
∑

(i,j)∈E

δ(gi − gj 6= 0) , (7)

avec δ(· 6= 0) la fonction de R4 : 7→ {0, 1} valant 0 en 0 et 1 partout ailleurs. La première
partie de cette énergie correspond au terme d’attache aux données et la seconde partie,
à la régularisation, permettant de s’assurer que les régions ont des formes simples.

Remarquons que cette formulation du problème ne comporte aucun prérequis sur
la taille des régions ou leur forme. Cela nous permet d’obtenir une segmentation adap-
tative à la géométrie locale des données. Afin de résoudre ce problème d’optimisation,
nous proposons d’utiliser l’algorithme `0-cut pursuit, proposé par LANDRIEU et OBO-
ZINSKI (2017).

0.6.3 Classification des segments

Afin de régulariser une classification par points bruitée à l’échelle des régions de
notre segmentation, nous proposons d’agréger les probabilités de classification par
classe et par points à l’échelle des segments. Le label associé à la classe ayant la plus
forte probabilité à l’échelle du segment est ainsi attribué à tous les points composant le
segment. Ceci est illustré sur la figure 15.

0.6.4 Expériences

Nous avons mené des expériences sur trois jeux de données différents. Le premier
est déjà utilisé dans cette thèse et correspond à une acquisition dans les rues de Paris.
Le deux autres jeux de données sont publics, il s’agit d’Oakland (MUNOZ et al., 2009)
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et Semantic3D (HACKEL, WEGNER et SCHINDLER, 2016) (et plus particulièrement la
scène Domfountain).

Dans une premirère expérience, nous avons évalué les performances des descrip-
teurs locaux, globaux et des complexes simpliciaux pour la classification points par
points des données. Ensuite, nous avons comparé une classification par points brui-
tée avec sa version régularisée par un CRF (NIEMEYER, ROTTENSTEINER et SOERGEL,
2014) et sa version régularisée par notre segmentation.

Les expériences sont évaluées avec les métriques suivantes : précision, rappel et
FScore, par classe et globaux.

Pour la premirère expérience, la comparaison des descripteurs a montré que les
complexes simpliciaux étaient trop bruités pour réllement améliorer les performances
d’un algorithme de classification de nuages de points, en particulier dans un contexte
faiblement supervisé. Les résultats détaillés pour cette expérience sont présentés dans
le tableau 6.2. Ainsi, nous avons décidé de ne garder que les descripteurs locaux et
globaux pour les expériences suivantes.

Nous avons ensuite comparé trois classifications différentes sur les jeux de données
publics présentés précédemment. Les résultats pour Oakland sont présentés dans le
tableau 6.3 et ceux pour Domnfountain dans le tableau 6.4. De plus, une illustration
de notre méthode est visible dans la figure 16. Nous remarquons que même si notre
méthode n’améliore le FScore global que de quelques pourcents par rapport à la régu-
larisation basée sur un CRF, le FScore des classes difficiles à repérer (poteaux, voiture,
. . .) est nettement meilleur.

0.7 Conclusion

0.7.1 Résumé des principales contributions

Dans cette thèse, nous avons étudié l’utilisation de complexes simplistes pour la
reconstruction de scènes urbaines en 3D acquises avec un capteur LiDAR. Nous avons
présenté les contraintes associées au traitement des données LiDAR et notamment les
problèmes de données manquantes et le manque de structure interne reliant les points
3D. Dans les scènes urbaines, il existe différents cas dans lesquels un objet cache une
partie de la scène. Cela peut entraîner des trous et des occlusions dans les scans Li-
DAR. Afin de récupérer la géométrie manquante, il existe certaines techniques, telles
que l’inpainting ou la reconstruction continue, qui permettent de déduire la géomé-
trie manquante et d’ajouter des informations plausibles à l’acquisition d’entrée. Dans
cette thèse, nous avons choisi de ne pas ajouter d’informations aux données originales.
L’objet résultant est une collection de points, d’arêtes et de triangles et est appelé un
complexe simpliste. La reconstruction de complexes simpliciaux nous permet de pré-
server de petits détails géométriques et donne des informations significatives sur la
géométrie locale de la scène. Nous reconnaissons que les complexes simpliciaux ne
permettent pas une reconstruction étanche et que leur localisation élevée les rend plus
difficiles à interpréter pour la visualisation.

De plus, les complexes simpliciaux des scènes urbaines sont composés de centaines
de milliers de simplexes. Les objets géométriquement simples, tels que les routes ou les
façades, sont composés de milliers de triangles coplanaires. Nous soutenons que cette
géométrie peut être approchée avec précision par un petit nombre de primitives. C’est
pourquoi nous avons décidé d’ajouter une généralisation axée sur les éléments simples
de dimension deux (c’est-à-dire les triangles). Nous avons conçu une approche globale
qui prend comme entrée un ensemble de points ayant une relation de contiguïté (tels
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(a) Dimensionality (b) Verticality

(c) Elevation (d) Position with respect to the road

FIGURE 16 – Représentation des quatre descripteurs locaux et des deux descripteurs
globaux. Pour (a), le vecteur dimensionnalité [linéarité, planarité, dispersion] est repré-
senté par le vecteur de couleurs [rouge, vert, bleu]. Pour (b), la valeur de la verticalité
est représentée avec un code couleur allant du bleu (faible verticalité - routes) au vert
/ jaune (verticalié moyenne - tois et façades) et au rouge (verticalité élevée - poteaux).
L’élévation est représentée dans (c). La figure (d), illustre la position par rapport à la
route, avec le code couleur suivant : intérieur de l’α-shape de la route en rouge, bordure
en vert et extérieur en bleu.

que les triangles de nos complexes simplistes) et divise itérativement une scène en
un ensemble de régions planes. Notre approche, appelée `0-plane pursuit, segmente
itérativement un nuage de points d’entrée dans un ensemble de régions planes. Cette
méthode s’adapte à la géométrie du nuage, préservant ainsi la géométrie hautement ré-
solue en affinant localement la segmentation, tout en agrégeant des milliers de simples
pour des zones géométriquement simples telles que les routes ou les façades. Notre
méthode a donné des résultats prometteurs, tant en termes de vitesse de calcul que de
qualité géométrique de l’approximation.

Sur la base des résultats de l’algorithme de segmentation `0-plane pursuit, nous
avons proposé une approche pour fusionner les triangles coplanaires avec l’algorithme
d’effondrement des bords. Nous avons évalué la qualité de l’approximation en proje-
tant chaque point du nuage original sur le modèle simplifié. Nous avons également
évalué le degré de généralisation de nos modèles en calculant leur MDL, qui correspond
à la quantité d’informations nécessaires pour représenter les données. Notre approche
a donné de meilleurs résultats que les approches classiques de modélisation 3D. Cela
signifie que l’agrégation de simples 2D au sein de complexes simplistes est une mé-
thode valable pour généraliser les nuages de points 3D des scènes urbaines.

Enfin, nous avons étudié les performances des complexes simpliciaux en tant que
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structure de données. Plus spécifiquement, nous avons évalué les performances des
algorithmes de classification opérant sur des nuages de points 3D. Nous avons mon-
tré comment les complexes simpliciaux pouvaient être utilisés comme descripteurs
géométriques 3D. Conformément à notre objectif de nous appuyer sur le moins d’in-
formations étrangères possible, nous avons formé une forêt aléatoire avec seulement
quelques échantillons pour chaque classe sémantique. Nous avons fait valoir qu’une
classification ponctuelle des nuages de points 3D n’est généralement pas de grande
qualité, mais qu’ils peuvent être régularisés dans l’espace à l’aide d’un algorithme de
segmentation, comme `0-plane pursuit. Cependant, nos expériences ont montré que les
complexes simplistes étaient trop dépendants de la géométrie locale de la scène pour
améliorer de manière significative une telle classification ponctuelle.

Au final, nous avons proposé une méthode simple et légère pour reconstruire les
complexes simpliciaux à partir d’acquisitions de données LiDAR 3D de scènes ur-
baines. Nous avons fait valoir que les complexes simpliciaux sont une alternative pour
les maillages qui permet de préserver toutes les informations géométriques sans mo-
difier les données. Nous avons montré que les complexes simpliciaux peuvent être
généralisés avec un nombre limité de primitives également et que des approches glo-
bales peuvent être utilisées pour produire des modèles géométriquement précis, mais
compacts, de scènes urbaines en 3D.

0.7.2 Perspectives

0.7.2.1 Généralisation des complexes simpliciaux

Comme vue au chapitre 6, les complexes simpliciaux reconstruits dans cette thèse
sont encore trop bruités pour réellement améliorer des algorithmes de classification.
Nous pensons qu’une analyse incorporant plus de connaissances globales des données
(dans la même veine que celle présentée dans la section 3.2.3) serait à même de générer
des complexes simpliciaux plus géométriquement homogènes. De plus, nous pensons
qu’une telle approche pourrait aussi être utilisée afin de combler les occlusions et les
trous qui apparaissent dans les données.

0.7.2.2 Approximations multi-primitives

Dans cette thèse, nous nous sommes uniquement focalisés sur la généralisation pla-
naire par morceaux des parties triangulées de nos complexes simpliciaux. Cependant,
certains objets dans les scènes urbaines sont suffisamment grands pour être triangu-
lés, mais n’ont pas une géométrie localement planaire. C’est le cas notamment des
troncs d’arbres, qui sont plutôt cylindriques. Ainsi, nous pensons que l’algorithme `0-
plane pursuit, présenté dans le chapitre 4 devrait être adapté afin de prendre en compte
d’autres types de primitives (cylindres, sphères, tores, . . ..).

De même, dans cette thèse, nous ne nous sommes pas intéressés à la généralisa-
tion des points et segments de nos complexes simpliciaux. Cependant, nous pensons
qu’une approche similaire à celle présentée ici peut être adaptée pour traiter ces cas.

0.7.2.3 Reconstruction de villes

Les travaux présentés dans ce manuscrit visent à reconstruire des scènes urbaines,
tout en préservant la qualité géométrique de l’acquisition. Nous pensons qu’une ap-
proche à la VERDIE, LAFARGE et ALLIEZ (2015) peut être adaptée afin de générer des
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reconstructions adaptées à la géométrie locale de nos complexes simpliciaux. Cette ap-
proche se baserait ainsi sur une classification directe des simplexes, avec une méthode
similaire à celle présentée au chapitre 6.

Un autre problème à traiter est celui de l’absence d’information dans certaines
zones de la scène, due aux occlusions. Nous pensons ainsi qu’une méthode d’inpain-
ting à la DAI, DILLER et NIESSNER (2019) serait à même de recouvrer la géométrie
manquante.

Enfin, une reconstruction à au niveau de détail LoD-3 de scènes urbaines avec une
méthode capable de préserver la qualité géométrique de l’acquisition serait tout par-
ticulièrement utile afin de créer des modèles 3D de villes entières. Cela faciliterait le
calcul de simulations (inondation, tremblement de terre, etc.), ou de rendu pour les
films et jeux vidéos (PIEPEREIT et al., 2019 ; GABELLONE et al., 2017).

0.7.2.4 Traitements temps réel

Enfin, les reconstructions de complexes simpliciaux, telles que présentées dans la
section 3.2.2.2 sont très rapides à calculer (environ 5 secondes sans la régularisation
basée wedge pour un bloc d’une seconde d’acquisition) et permettent d’envisager des
applications temps-réel, comme le positionnement de véhicules équipés de LiDAR, ou
la détection de changement, par exemple sur des infrastructures ferroviaires (ARAS-
TOUNIA, 2015).
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CHAPTER 1. INTRODUCTION

The purpose of remote sensing is to extract information from scenes using sensors
without physical contact. This can be done through wave propagation, either in the
visible light spectrum with cameras or LiDAR or at other wavelengths, as for Radar
sensors. However, such sensors provide incomplete spatial information, especially in
urban scenes, which are geometrically complex. This can be due to occlusions, or the
geometric configuration of the scene. Hence, a major challenge of the remote sensing
community is dealing with missing or incomplete data. The most straightforward way
to overcome missing data is to perform several acquisitions of the same scene, with
different sensors or at different times. However, this can be costly, both in terms of time
and money. Furthermore, all the different acquisitions have then to be co-registered.

One of the applications of remote sensing research is to provide 3D models of real
scenes. This is especially important in urban areas, whose rapid growth must be moni-
tored by state actors, but also to perform simulations for environmentally-related haz-
ards. In order to achieve this modeling task, several methods have been developed
for reconstructing 3D cities at scales varying from a single building to a whole city,
and with different final quality modelisations. However, reconstruting urban scenes
remains a challenge, as they are composed of many different objects with varying
shapes and sizes. These objects range from roads, which have a large spatial extent,
to poles, which are short and have a smaller footprint. Moreover, when dealing with
large scenes, 3D reconstruction methods often have to cope with irregularly sampled
data and many small geometric details. Reconstruction algorithms have to take both
of these constraints into account, which complicates the reconstruction task. Further-
more, due to memory and computational limitations, current desktop devices cannot
display the full 3D reconstruction of a whole city. However, urban scenes usually ex-
hibit some geometric regularity for geometrically simple objects, such as roads or fa-
cades. This has lead researchers to investigate the possibilities of simplifying such 3D
models in order to decrease their memory footprints, while preserving the geometric
quality of the model. However, this simplification process is typically accompanied by
a loss of the geometrical quality of the input reconstruction.

In this thesis we investigate the reconstruction of urban scenes, with the smallest
possible loss on the geometrical quality of the acquisition, without combining mul-
tiple sensors or acquisitions. We argue that using all the available informations of a
sensor is enough for a geometrically accurate reconstruction of a scene. We want our
approach to stay as simple as possible, so we do not infer any additional information to
the acquisition (no new / duplicated points) and we want to achieve the compromise
between the memory size of the 3D model and its fidelity to the real scene.

We start by presenting the different types of sensors used for the acquisition of ur-
ban scenes, and explain why we chose to focus on LiDAR data. Next, we explain some
choices made to design our reconstruction method. Then, we present some specifica-
tions of our reconstructions, in terms of hole filling and geometric quality. Finally, we
present the organisation of this thesis.
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1.1 Extracting Informations from Urban Scenes

In the remote sensing community, acquisitions of urban scenes are most commonly
performed with three different types of sensors: cameras, LiDARs, and Radar. Cam-
eras are cheap sensors capturing images, which can be used to produce 3D reconstruc-
tions but lack robustness. LiDAR sensors are more expensive than cameras, and also
perform geometrically accurate acquisitions, with a particular sensor topology. Radar
sensors are also expensive and perform acquisitions with a low density. In this section
we present each of these sensors, show their respectives strengths and weaknesses and
present some applications.

1.1.1 Camera

1.1.1.1 RGB sensors

A camera is an optical sensor able to capture light through a small hole (called aper-
ture) and to create an image. The ancestor of our modern camera is the so-called camera
obscura. A camera obscura is a natural optical phenomenon which occurs when a scene
faces a screen and is projected on the screen via a small hole. For a better quality of
image, the room usually has to be darkened. It is hard to know when the first exper-
iments involving this process were done; Schramm (1961) suggests that Anthemius of
Tralles, a Greek mathematician of the 6th century already understood the principle of
camera obscura. Throughout the centuries, many scientists studied the camera obscura.
Some famous works were done by Leonardo Da Vinci (Keele, 1955) or Johannes Kepler
(Dupré, 2008), describing this natural optical phenomenon and showing how to create
a camera obscura. The first attempt at taking a physical picture was done by Joseph
Nicéphore Niépce in 1816, the process is explained in Gernsheim (1986). Niépce im-
proved the process in the 1820’s. With Charles and Vincent Chevalier, they designed a
wooden box with a surface coated with Bitumen of Judea (Davenport, 1999). The light
penetrating in the box hardens the bitumen (the more light, the more bitumen hard-
ens). At the end of exposition time (in hours for the first experiments), the remaining
soft bitumen is removed. An example of image acquired with this process is shown on
Figure 1.1. Modern photography is divided in two different types: analog and digital
photography.

Analog photographies (also called argentic) designate the presence of a physical
film in the camera. In such camera, the surface opposed to the aperture is covered
with silver halides 4. Analog photography was popularised by the introduction of a
film band in cameras by George Eastman (Curme and Rand, 1997). This type of pho-
tography is still actively used nowadays, especially because the film sensitivity allow
for high quality images with a large dynamic range. Also, analog images can remain
of high quality even after a few decades. It is also important to note that most of pho-
togrammetric techniques and algorithms were first developed for processing analog
images (Thompson et al., 1966; Wasil and Merchant, 1964). Analog images can serve
as input for orthophotography generation (Otepka and Loitsch, 1979). Recent works
using analog images usually focus on processing historical images for 3D modeling.

4. Silver halide’s chemical notation is AgX. Photons absorbed by AgX stimulate the electrons of AgX,
resulting in a crystallizing effect, forming silver metal atoms. These metallic atoms forms the latent im-
age which is then made visible and insensitive to light thanks to the photographic development process.
The photographic development consists in soaking the latent image in water in order to remove non-
crystallized AgX. Then, the image is immersed in a specific acid to stop the chemical reactions, and a
fixer is added to prevent the image to react again to light.
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Maiwald et al. (2018) used the images of the Saxon State and University Library Dres-
den for modeling the city of Dresden (Saxony, Germany). Analog images are also used
for monitoring events at a large time scale (usually several decades), for instance Mölg
and Bolch (2017) monitor the movement of a glacier using the earliest available images,
which were produced with an argentic camera.

Figure 1.1 – View from the window at Le Gras, Joseph Nicéphore Niépce (1826-1827)

Unlike analog cameras, digital cameras use an array of photodetectors to capture
the light and create an image. The first digital image was produced by Russel Kirsch in
1957 5. The first applications for digital images are for TV broadcasting and space ob-
servation: unlike analog images, digital images could be taken from a satellite far from
Earth, automatically encoded and sent back to Earth (O’Handley and Green, 1972).
For instance, the Mars Viking Lander captured images of the planet that were then
processed on Earth (Ruiz et al., 1977). These images greatly improved our knowledge
of Mars’ surface. Digital cameras became more and more used since the 1990’s. They
have the advantage of allowing people to take their own photographies, without any
technical knowledge and without waiting for the photographic development. Also
they allow to take many more photos in a single survey than analog cameras. Mod-
ern digital cameras allow to directly pre-process images in the camera. This kind of
pre-processing step became possible due to the fact that digital images are entirely
numerical. However, digital images suffer from aliasing and usually have a smaller
dynamic range than analog cameras. Nowadays, digital images are used for nearly
all photogrammetric processes (Rupnik, Daakir, and Deseilligny, 2017). For instance,
Balsa-Barreiro and Fritsch (2018) used digital images for creating 3D city models. Dig-
ital images are also easily combined with LiDAR data (Yastikli, 2007), and some plat-
forms (e.g. TLS) can combine both sensors (Paparoditis et al., 2012). Leberl and Thur-
good (2004) reviewed the differences between analog-vased photogrammetry and dig-
ital photogrammetry.

1.1.1.2 Digital Images

Images can be viewed as a 2-dimensional (2D) array, where each cell of the array is
a pixel. In this case, each cell contains:

— Panoptic image: an intensity information corresponding to the quantity of light
acquired in the whole visible range RGB information if the image is in color,

— RGB image: a quantity of red, green and blue light acquired by each pixel,

5. https://www.nist.gov/news-events/news/2007/05/fiftieth-anniversary-fir
st-digital-image-marked
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— Depth image: an image can be used to represent the geometry of a scene by stor-
ing the depth of the scene in the direction corresponding to each pixel. Some
devices such as the Kinect (Zhang, 2012) can produce directly such depth images
while dense matching allows to produce such depth maps from tuples of images
(which is called stereovision in the case of 2 images).

As images can be viewed as 2D arrays, a natural topology arises, where each cell
is connected to its direct neighbors vertically and horizontally (Von Neumann’s neigh-
borhood) or even in diagonal (Moore’s neighborhood) as explained in Toffoli and Mar-
golus (1987, Section 7.2). This topology is illustrated on Figure 3.3.

1.1.1.3 Applications

The remote sensing community use image processing techniques for various appli-
cations. Image processing has been researched since the 1960’s for image enhancing
(Rosenfeld, 1969). The improving quality of images, in particular with digital cameras,
allowed for using image-based data for various purposes, including photogrammetry
and computer vision (Jain, 1989). The computer vision community used images for
investigating various challenges, such as object recognition (Radovic, Adarkwa, and
Wang, 2017), semantisation (Badrinarayanan, Kendall, and Cipolla, 2017; Chen et al.,
2018) and navigation for autonomous driving or blind persons (Martinez et al., 2017).

In this section we focus on 3D reconstruction from images. This process usually
relies on the stereophotogrammetry technique to extract 3D informations from a set of
images (typically two) (Thompson, 1908; Hotine, 1930). In fact, when a scene has been
acquired by two or more images, it is possible to reconstruct the scene in 3D using the
stereo-matching technique, as shown on Figure 1.2. Stereo-matching consists in com-
puting a disparity map, encoding the horizontal difference of corresponding image
points. This allow to compute the relative depth variation of the considered pixels.
Also, stereo-matching requires the following pre-processing steps: the images must be
projected on the same plane and the distorsion due to the camera should be corrected.
Stereophotogrammetry lead to the production of orthoimages, 3D point clouds and
Digital Surface Model (DSM) (Hallert, 1960; Mikhail, Bethel, and McGlone, 2001). In
order to perform the stereo-matching in an urban scene, stereophotogrammetry usu-
ally requires dozens of images, notably for 3D information extraction and object iden-
tification from several point of views. This is due to the limited portion of a scene that
a single image is able to capture. Recently, many researchers focused on extracting
3D information from a single image using Neural Networks (NN) (Ledig et al., 2017;
Groueix et al., 2018). Such methods give promising results. However, NN requires
millions of paired image and point clouds for training, as opposed to stereophotogram-
metry, which does not rely on learning attributes. Also, NN may not be able to perform
well on scenes not represented in the training set.

In the end, we want to emphasize on the fact that stereophotogrammetry usually
requires dozens images for reconstructing a single 3D scene. These images have to be
co-registered, which is time-consuming. Also, images taken from cameras suffer from
distorsion and saturation due to irregular quantities of light throughout the image.
These flaws have to be corrected before processing images. We think that all of the
above constraints can lead to 3D reconstructions of lower quality. In this thesis, we
will focus on sensors that produce data which can be processed directly. Hence, we
investigate the 3D reconstruction of scenes acquired with active sensors such as LiDAR
and Radar.
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Figure 1.2 – Illustration of an acquisition of a 3D scene using cameras. The hatched
area is viewed from two images, taken from different places. This allows for a depth
estimation in this area.

1.1.2 LiDAR

Another type of sensor for extracting informations on real scenes is LiDAR scan-
ners.

1.1.2.1 LiDAR Sensors

LiDAR sensors are active sensors relying on light emitted by a Light Amplification
by Stimulated Emission of Radiation (LASER) and recording the light reflection on
real objects. It is then possible to find the 3D position of the object that reflected the
LASER beam by considering the direction of the sensor at the emission time and the
elapsed time between light emission and reception. The sensor itself is described on
Section 2.1.3. As the emitted light reaches an object, part of the light is reflected, but in
some situations (semi-transparent object, or light reaching the edge of an object) that
part of the light reaches further objects. This situation gives an important information
that two objects are in front of each other.

LiDAR sensors can be mounted on various platforms, from trolleys to aircrafts.
They are often combined with a GPS and a Inertial Measurement Unit (IMU) for geo-
referencing purposes. Last, LiDAR sensors can be coupled to a camera in order to
produce a simultaneous acquisition of a scene with both sensors.

1.1.2.2 LiDAR Data

LiDAR data is usually processed as a set of 3D points with no connectivity relation-
ship. Also the sampling density varies with the distance between the sensor and the
scanned objects. Processing LiDAR data leads to a first problem: there is no straight-
forward approach for connecting points. In order to add an adjacency relationship
between points, most of the works in the litterature focus on Delaunay Triangulation or
Nearest Neighbors approaches. These approaches are purely geometric and based only
on the 3D point cloud. In the litterature, the raw sensor data (comprising the time and
angle of each light emission and the number of physical objects encountered) is often
lost. We argue that this information can be used for representing LiDAR point cloud
in a two-dimensionnal space that we call the Sensor Topology. Also, using these infor-
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mations, one can divide the data in acquisition lines. One acquisition line correspond
to all the LASER beams and their returned echoes for a 2π rotation of the sensor. This
particular topology is further explained and illustrated in Section 3.2.1.

1.1.2.3 Applications

LiDAR sensors are increasingly used in more and more diverse applications. Li-
DAR-based applications range from 3D modeling (Caraffa, Brédif, and Vallet, 2016;
Hoppe, 1996; Nan and Wonka, 2017) to dam or tunnel monitoring (Han, Guo, and
Jiang, 2013). LiDAR sensors are also commonly used in forestry, with applications to
biomass estimation or tree inventory (Hyyppä et al., 2017). Some autonomous cars are
also equipped with LiDAR sensors (Ibisch et al., 2013). A detailed state-of-the-art for
LiDAR applications is presented in Section 2.2.

1.1.3 Radar

Kirscht and Rinke (1998) showed that 3D building reconstruction could be done us-
ing Radar data. Hence, we now present Radar sensors and their different applications.

1.1.3.1 Radar Sensors

A radar is a system using radio waves 6 to compute the range, the angle and the
velocity of objects. A Radar system is composed of a trasmitter, a waveguide, and a
receiver. The role of the transmitter is to emit radio waves. The waveguide transfers the
radio waves to the antenna. When these radio waves reach an object, part of them are
reflected in the Radar direction. This reflected signal is then captured by the receiver
and can be interpreted in the same way as the received light for a LiDAR for detecting
objects. In the case where the same antenna is used for emission and reception, Radar
systems use a duplexer to redirect, either the emitted signal to the antenna or redirect
the received signal to the receiver.

First experiments using Radar-like systems were done at the beginning of the 20th

century, by Christian Hülsmeyer 7. In 1904 he showed that it was possible to detect
the presence of a metallic object using radio waves, though he was unable to find its
position. Experiments in the 1930’s showed that it was possible to detect ships, but
also planes using radio waves (Taylor, Young, and Hyland, 1934; Blanchard, 2016).
Radars were first developed for military purposes in the WWII context. Most of the
involved countries tried to develop their own system, using radio waves, to detect dis-
tant or moving objects such as ships. Radar prototypes include the American (Colton,
1945), Soviet (Kostenko, Nosich, and Tishchenko, 2001), Japanese (Sato, 1991) or New
Zealander ones (Unwin, 1992).

Modern Radar sensors include Airport Surveillance Radar (ASR) (Radar sensors
for tracking airplanes close to airports) or imaging Radars such as SAR or Inverse
Synthetic-Aperture Radar (ISAR). SAR is a mobile Radar that uses the Dopller effect
to create 2D images and 3D reconstructions of large scenes (Ramakrishnan et al., 2002).
ISAR is the opposite of SAR: it is a fixed Radar designed to detect moving objects based
on the Dopller effect (Chen and Martorella, 2014). An scheme showing the acquisition
process of an imaging SAR is presented in Figure 1.3.

6. Radio waves vary between 30 Hz and 30 GHz.
7. http://www.radarworld.org/huelsmeyer.html
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Azimuth

Mouvement of the sensor while acquiring the image

Figure 1.3 – Representation of the process used by a SAR for creating an image.

1.1.3.2 Radar Data

Radar sensors provide two distinct informations: a dephasing information and an
amplitude information. The first one gives an information on the type of material
encountered 8. The latter is related to the signal quantity received by the sensor, which
gives an information on the object rugosity 9. For more details on Radar raw data
processing, we refer the reader to the work of Emery and Camps (2017).

1.1.3.3 Applications

As said in Section 1.1.3.1, Radar sensors were first developed for military purposes:
it was supposed to help the detection of ships and planes in bad weather conditions
(Guerlac and Boas, 1950; Crisp, 2004). For instance, Marthaler and Heighway (1979)
used a Side Looking Airborne Radar for detecting icebergs and ships. An exemple of
ship detection based on Radar images is shown on Figure 1.4. Radar are also used for
detecting smaller objects than ships, such as aircrafts (Khan and Power, 1995). This
lead to the development of ASR that allow the tracking of planes along most current
airports (Taylor and Brunins, 1985; Galati et al., 2010).

However, Radar applications are not limited to ship or plane detection. Graber and
Hassler (1962) suggests to use an airborne Radar for bird detection. In Dokter et al.
(2011), the authors use a set of Radar to monitor bird migrations. At a larger scale,
Radar are used for ocean monitoring (Barrick, Evans, and Weber, 1977), from current
mapping (Goldstein and Zebker, 1987) to phytoplankton estimation (Esaias, 1980).

At an even larger scales, Radar are used for analysing the structure of outer planets
(Hapke, 1990). For instance, the Magellan mission 10 consisted in sending a Radar or-
bitting Venus in order to study the surface of the planet (Johnson, 1991). More recent
studies focus on icy satellites, such as Europa (Aglyamov, Schroeder, and Vance, 2017)
thanks to the RIME sensor (Bruzzone et al., 2013) and the CLIPPER mission (Phillips

8. Each type of material has a different penetration rate given a fixed wavelength.
9. https://planet-terre.ens-lyon.fr/article/interferometrie-radar.xml (in

French)
10. https://nssdc.gsfc.nasa.gov/planetary/magellan.html

66

https://planet-terre.ens-lyon.fr/article/interferometrie-radar.xml
https://nssdc.gsfc.nasa.gov/planetary/magellan.html


1.2. LEVEL OF DETAIL

Figure 1.4 – Optical image (left) and Radar image (right) used for ship detection in the
Gibraltar straight. The geometric complexity of ships makes them easily identifiable
from a Radar point of view. Courtesy of Anatol Garioud (IGN-LaSTIG-STRUDEL).

and Pappalardo, 2014).

1.1.4 Sensor Choice

We choose to study LiDAR sensors as they allow for a geometrically accurate rep-
resentation of a continuous reality. Unlike cameras, LiDAR sensors are robust to light
changes and do not require any pre-processing step. Also, the density of the acquisition
is higher for LiDAR-based acquisitions than for Radar-based ones. LiDAR also provide
an inherent topology, based on the time of pulse emission and angle of the LASER, that
we can use in order to improve the reconstruction of 3D point clouds based on the local
geometry of the data. We argue that an approach based on the local geometry of the
cloud and the sensor topology will result in an accurate geometric representation of
the scene. Also, urban scenes usually display a local geometric regularity. This is due
to the fact that most objects in such scenes are designed by humans. We think that a 3D
reconstruction of an urban scene should display this geometric regularity. This means
that such reconstructions can be approximated with a limited number of primitives.

1.2 Level of Detail

We now focus on the geometric quality that our reconstruction should achieve. In
order to contextualise our observations, we first introduce some definitions, and then
explain the choices made to design our reconstruction method.

1.2.1 3D Reconstruction

We call 3D reconstruction the creation of a geometric continuity in a scene of interest.
The 3D reconstruction aims at respecting two priors: compacity and geometric fidelity:

— Compacity: the compacity corresponds to the amount of information needed to
represent the data. In computer science, this can translates by the number of
bytes used to store the data.
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— Geometric fidelity: this translates by the gap between the original scene and the
resulting 3D model. This geometric fidelity is dependent of the chosen evalua-
tion metric.

To our knowledge, there exists no standard representation for all the objects in
an urban scene. However, there exists some standard representation for buildings
(Biljecki, Ledoux, and Stoter, 2016; Löwner et al., 2013), one of the most used being
CityGML (Kolbe, Gröger, and Plümer, 2005), but we do not review them, as they have
not been generalized for all objects composing 3D urban scenes.

1.2.2 Positioning of our Study

In this thesis, we propose to characterize the Level of Detail (LoD) of our recon-
structions as the size of the smallest geometrical details reconstructed. We do not use
the CityGML or other building-based LoD definitions because urban areas comprises
objects for which LoD are not defined, such as trees or cars. We aim at reconstruct-
ing all the geometrical details of the acquisition. This includes small objects like tree
branches and traffic signs. We acknowledge that due to missing data, it is not possible
to reconstruct full objects without adding meaningful information. However, we do
not want to worsen the quality of the data. Thus, we will not focus on full object /
building reconstruction, but on reconstructing surface only where enough information
is available. Our goal is to exploit all the informations acquired by a sensor. This means
that we do not want to restrain ourself to the reconstruction of building footprints or
3D shapes like Cheng et al. (2011). Instead, we study the reconstruction of more global
shapes than just buildings. We want to retrieve the geometrical details up to building
interiors if available.

In the next section, we investigate the 3D reconstruction from LiDAR data in urban
scenes, and show how such data can be used to reconstruct a surface when not enough
geometric information is available.

1.3 3D Scene Reconstruction from LiDAR Data

There exists two main possible representations of LiDAR data:
— point clouds: they have a high geometric accuracy but have a very low compacity

and do not display the continuous reality.

— meshes: they have a higher compacity and represent a continuous surface be-
tween points.

Point clouds do not fill our needs, hence, in the remaining of this section, we focus
on mesh-based reconstructions. In urban scenes, from a sensor point of view, there
are various objects on different levels. This means that it is possible that an object is
hiding part of another object. When acquiring such objects, LiDAR sensors will miss
the geometric information behind the foreground objects. Hence, a typical LiDAR scan
in an urban scene will show some holes behind foreground objects. In order to design
our reconstructions from LiDAR data, we first investigate the hole problem in LiDAR
data. Then, we study the LoD that we want our reconstructions to display.
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1.3.1 Processing Holes

One of the main problems when processing LiDAR data is the presence of holes
where geometric information is missing. Such holes can appear for various reasons.
First of all, LiDAR sensors perform a discrete acquisition of the world. Also, for some
platforms (such as MLS) the sampling density can be highly irregular due to the speed
variations and the rotations of the platform. Then, there are many occlusions caused
by the fact that LASER beams cannot cross physical objects: if the light reaches a non-
transparent object (such as a pedestrian in front of a building), it is reflected and we
will have no information on what is behind the object. In order to perform a 3D recon-
struction of LiDAR data in urban scenes, we have to tak into account the holes that can
appear in the scan.

In the litterature, there exists two main methods for overcoming holes related prob-
lems in LiDAR scans: creating a continuous representation of the data or filling identi-
fied holes.

1.3.1.1 Creating Continuous Information

3D reconstruction from point clouds can be viewed as finding the interface between
interior and exterior of objects. In this case, the reconstruction itself is supposed to
represent this interface. In computer science, this interface is usually represented as a
surface mesh. The reconstruction is said watertight if it contains no hole: this means
that every part of the considered space can be labelled as either interior or exterior.

When reconstructing 3D urban scenes, some work focus on creating watertight re-
construction by interpolating a continuous reconstruction between the points of the
cloud. For instance, Caraffa, Brédif, and Vallet (2016) proposed an algorithm for in-
terpolating the global minimal surface between adjacent points. The minimal surface
between two points is a line, and between three or more points, it is a plane. As they
can not ensure the presence of a surface between adjacent points in some cases, they
use the Dempster-Shafer theory (Shafer, 1992) for associating a level of confidence on
the occupancy of the scene (occupied, empty or unknown). There approach allow for
reconnecting points that belong to a same object but are separated with holes due to
occlusions.

1.3.1.2 Hole-Based Filling

Another approach used in the litterature is to add geometric information in places
where data may be missing. This process is called inpainting. It consists in identifying
missing data and fill this data according to the existing data in its neighborhood. In this
section, we focus on point cloud inpainting, which consists in adding a set of points with
a regular density to fill such areas. This technique originally comes from the image-
processing community (Bertalmio et al., 2000). Doria and Radke (2012) propose to use
depth-gradient to adapt image-based inpainting algorithms to 3D LiDAR point clouds.
Recently, Biasutti et al. (2019) proposed a patch-based method to improve the density
of point clouds and fill holes.

We want our reconstruction method not to use any pre-processing step, as we think
that they can decrease the geomtric quality of the final reconstruction. This means that
we do not add any information that is not already present in the scan and we will
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only consider LiDAR data at a local scale. Hence, in this thesis, we will not focus on
recovering missing data or producing watertight surface reconstructions.

1.3.2 Reconstruction at different LODs from LiDAR point clouds

Several work focused on the 3D reconstruction task from LiDAR point cloud based
on the LoD definitions (Arefi, 2009). For instance, Malambo and Hahn (2010) proposed
a new method for reconstructing LoD-1 and LoD-2 buildings from LiDAR point cloud.
Bauchet and Lafarge (2019) propose an approach, based on LiDAR point cloud classi-
fication for identifying buildings and reconstruct them at a city-scale at LoD-1.

The task of reconstructing buildings from a LiDAR acquisition is still a challenge
in the remote sensing community. This is mainly due to the fact that LiDAR sensors
provide incomplete informations of the building shape, as seen on Figure 1.5. In most
cases, roofs are missing from the acquisition. Also, we have nearly no information
on the building shape when it is not directly visible by the sensor. However, some
information may be available on the interior of the building thanks to windows and
openings. All of this contraints makes it hard to find the precise 3D shape of the build-
ing and reconstruct it.

Some researchers decided to focus only on the facade part of the building (Becker
and Haala, 2009), which makes sense as it is the part of the building on which we have
the most information. Other works propose to combine different point of views (MLS
and ALS for instance) for reconstructing full buildings (Caraffa, Brédif, and Vallet,
2016).

Recent works also focus on reconstructing 3D models in a 4-dimensional (4D) space.
Ohori et al. (2015) explains that 3D models can be represented at various LoDs along
a 4th perpendicular direction. This allows them to handle at the same time different
reconstructions with various LoDs at the same time.

Figure 1.5 – LiDAR acquisition of a building (green) compared to the original building
(light grey). Notice that due to openings (in white), a MLS or a TLS is able to retrieve
parts of the interior of the building (background wall and roof portions, in orange).

1.3.3 Shannon-Nyquist Theorem

In this thesis, we want to solve the reconstruction problem from LiDAR point clouds,
which have an irregular sampling density and for urban scenes, which are typically
composed of many objects of varying sizes and shapes. One problem occuring in our
case is the presence of small or thin objects such as poles or tree leaves. Such objects
have a geometric complexity that is close to or higher than the sampling density of
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the scan. This means that the resolution of the scan is not sufficient for reconstructing
triangles, which is what traditionnal reconstruction methods aim at. This is illustrated
on Figure 3.9. Traditionnal methods tend to either add information (new points in this
case) or reconnect thin and geomtrically complex objects to nearby other objects (for
instance by creating triangles between the road and a pole).

This problem is a direct consequence of the Shannon-Nyquist Sampling Theorem.
This theorem translates in our context as the following statement: if the geometric
frequency of the scene is higher than half the sampling frequency, then some signal
will be lost. This is exactly what happens for thin objects such as poles: these objects
usually appear on a single line of acquisition (see Section 1.1.2.2) of the sensor and it is
not possible to interpolate a 3D shape.

In this thesis, as stated in Section 1.2.2, we do not want to add any additionnal
information that do not belong to the reality, so we will not use inpainting techniques.
We also want to keep the geometric quality and the high accuracy of LiDAR point
clouds. In this context, unlike traditionnal reconstruction methods, we choose not to
add any triangles between two different unrelated objects (except in areas of contact).
This means that there are some cases where we will not be able to reconstruct triangles
and that our final reconstruction will not map the whole scene, but only areas where
enough information is available, hence the reconstruction will not be watertight.

1.3.4 Topological Reconnections

We now focus on the sensor topology that will be leveraged in this thesis. The goal
of this section is to find a workaround for reconstructing physical objects when there
is not enough information to derive a 3D shape os such object.

1.3.4.1 Simplicial Complexes

The Shannon-Nyquist Sampling Theorem can be interpreted, as the fact that, due
to the resolution of the sensors, there may be parts of the data where we do not have
enough information to perform a 3D reconstruction. Thus, in this thesis we propose
to reconstruct edges in areas where enough geometric information is available, and
triangles when enough edges have been reconstructed. This means that, we aim at re-
constructing triangles only when the Shannon condition is met in two dimensions. We
will reconstruct only edges when the geometric frequency is too high in 1 dimension
and points when the geometric frequency is too high in the 2 dimensions.

As a result, we obtain an object that is composed of points, edges, and triangles.
Such object is called a simplicial complex (see Section 3.1 for a mathematical definition).
Note that simplicial complexes are not watertight and that is coherent with the fact that
we do not try to fill holes or add new information, as stated in Section 1.2.2.

1.3.4.2 Vietoris-Rips Complexes

Simplicial complexes are highly based on the local topology of the data. In the
LiDAR topology, we say that two pulses are adjacent if they belong to consecutives
LASER beams in the same acquisition line, or if they have been emitted in two con-
secutive acquisition lines, and at a similar LASER angle. Two adjacent pulses can be
associated to points far from one another. For instance, one of them can land on a thin
foreground object, while the other reached a further object. In this case, we may try
to reconnect points that are not connected via a real surface in the scene. Hence, we
have to set constraints preventing the connection of such points. An approach to solve
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the issue can be to set a maximum diameter for reconstructing a given simplex. Such
simplicial complexes are called Vietoris-Rips complexes.

A Vietoris-Rips complex is a simplicial complex in which all finite subset of points
whose diameter is lower than a given threshold forms a simplex (Gromov, 1987; Haus-
mann, 1995). The diameter of a set of 2 points is the length of the edge connecting
them. The diameter of a set of 3 points is the maximum edge length in the triangle con-
necting them. This can be generalized for simplices of higher dimension. An example
of Vietoris-Rips complex is shown on Figure 1.6. Vietoris-Rips complexes have been
used as a topological structure for representing 3D point cloud (Chazal et al., 2009;
Chambers et al., 2010). They can improve clustering algorithms or reconstruction of
point clouds (Beksi and Papanikolopoulos, 2016). For instance, Upadhyay, Wang, and
Ekenna (2019) use Vietoris-Rips complexes for reconstructing 3D scenes and automat-
ically finding paths to let a robot exit a maze.

•

•

•

••

•

•

•

•

•

•
•

•

Figure 1.6 – Illustration of a Vietoris-Rips complex. 0D simplices colored are in black,
1D simplices in green, 2D simplices in red and 3D simplices in blue.

Vietoris-Rips complexes are can be employed as a structure for efficiently repre-
senting and processing 3D point clouds. However, we argue that they are not adapted
when it comes to process LiDAR data. This is mainly due to the highly varying density
of LiDAR data: point density is more important for areas close to the sensor than for
distant areas. This means that if we set an absolute area threshold for reconstructing
Vietoris-Rips complexes, all the points close enough to the sensor will be connected,
whereas points in distant areas will remain unconnected. This is why we will use sim-
plicial complexes but not Vietoris-Rips complexes.

1.4 Overview of this Thesis

1.4.1 Problematic

In this thesis, we want to evaluate the suitability of simplicial complexes for rep-
resenting 3D point clouds. We also investigate their performance as data structure for
point cloud generalisation and semantisation.
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1.4.2 Organisation of the Thesis
We start by presenting LiDAR sensors, the challenges related to LiDAR data pro-

cessing and the various applications in which LiDAR sensors are involved in Chap-
ter 2.

The first technical part of this thesis will focus on the reconstruction of simplicial
complexes from a local point of view. To achieve this, we use the sensor topology of
LiDAR sensors and reconstruct simplicial complexes, first by creating edges between
adjacent points, and then by creating triangles when enough edges have been recon-
structed. This work is developed in Chapter 3.

As simplicial complexes are created from a very local perspective, they are sensi-
tive to the noise of the acquisition. Thus, we propose an approach for generalising
simplicial complexes, separating points, edges and triangles. We then focus on the tri-
angles of our simplicial complexes, as we think that urban scenes are mostly composed
of piecewise-planar objects, which can be approximated with a few planar primitives.
We propose a global approach for simplifying the representation of large sets of 2D-
simplices. This approach is presented in Chapter 4.

We then investigated the use of simplicial complexes as a data structure for 3D
reconstructions. We evaluated the influence and the biais introduced by simplicial
complexes when reconstructing and simplifying 3D point clouds. We compared our
approach to state-of-the-art reconstruction methods and proved that simplicial com-
plexes provide useful information for the 3D reconstruction of urban scenes. This work
is detailed in Chapter 5.

In Chapter 6, we propose to improve the classification task by regularizing descrip-
tors at object scale thanks to a pre-segmentation step. We also investigated the influ-
ence of simplicial complexes for point cloud classification. We investigate whether the
geometric information they provide can help the classification task by providing an
additional information to standard 3D decriptors.
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CHAPTER 2. LIDARS: SENSORS AND APPLICATIONS

In this Chapter, we present the LiDAR sensor and its usages. First, we discuss the
origin of the sensor and its composition. Then, we present different types of LiDAR
sensors and platforms. Finally, we show various applications for LiDAR data, ranging
from forest mapping to autonomous driving.

2.1 LiDAR sensors

2.1.1 History

The first occurence of the word “lidar” appears in Middleton and Spilhaus (1953). In
their paper, the authors use the term Light Detection and Ranging to refer to a ceilometer.
A ceilometer 11 is a device that can be used for cloud height estimation. The ceilometer
uses light emissions to perform measurments. The light emission can be performed
using a LASER, but other sensors can be used as well. In fact, modern ceilometers are
a kind of LiDAR sensors.

LiDARs were first designed for satellite tracking. This system is able to compute
distances measurements by emitting a signal and measuring the elapsed time between
the emission and the returned time of the signal (Stitch, 1961).

The pinciple of the LiDAR sensor has been described by Schawlow and Townes
(1958) and Maiman (1960). The LiDAR sensor relies on a LASER. The LASER is a de-
vice which emits light, by stimulating the emission of electromagnetic radiations. The
light is obtained after a photon stimulation (Einstein, 1917) and is then sent as a beam
outside the sensor. First experiments were performed using stimulated microwaves 12

rather than visible light, and they lead to the creation of the Microwave Amplification
by Stimulated Emission of Radiation (MASER).

2.1.2 First LiDARs

The first LiDARs were only built at the end of the 1960’s (Northend, Honey, and
Evans, 1966; Collis, 1969). In the meantime, there were already some works focusing
on the usability of LiDAR data in a meteorological context (Fiocco and Smullin, 1963;
Fiocco and Grams, 1964). Goyer and Watson (1963) reviews the possible applications
of LiDAR data for meteorology, such as studying the internal structure of clouds or for
stratospheric measurements (McCormick, 1977). Barrett and Ben-Dov (1967) focused
on the evaluation of air pollution in Chicago.

2.1.3 Composition

In this section, we detail the different components of a LiDAR sensor. A simplified
scheme of a LiDAR is presented on Figure 2.1.

2.1.3.1 Laser

The LiDAR is an active sensor: it produces and emits the light that is recorded. The
light used by the LiDAR comes from a LASER. The LASER technology has been de-
veloped after experiments with the MASER (Weber, 1953; Basov and Prokhorov, 1954).
The difference between a MASER and a laser is that the first one uses photons from at
microwave frequency, whereas the latter uses photons from light (visible or infrared).

11. https://www.weather.gov/asos/
12. Microwaves have wavelengths ranging from about one meter to one millimeter.
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The first MASER was built by Gordon, Zeiger, and Townes (1954). MASERs have been
used in atomic clocks (Ramsey, 1983) and radio telescopes (Jelley and Cooper, 1961;
Levy et al., 1986).

The light emitted by the LASER is a coherent light. This means that all photons are
identical: they have the same level of energy and the same direction (Haken, 1985).
The fact that every photon has the same level of energy leads to a monocolor light.
The physical coherence of the emitted light allows a laser beam to stay narrow, even at
great distances. This makes LASERs suitable for performing distance measurements.
The frequency of the emitted light usually varies between 500 nm (green) and 1550 nm
(infrared, eye-safe), depending on the application and the zone of acquisition. We call
pulse one emission of light from the laser. This emission usually last a few nanoseconds
to a few microseconds. For instance, the laser of the RIEGL VQ-250 13 has a pulse rate
up to 300 kHz, which corresponds to a pulse every 3.33 µs.

2.1.3.2 Mirror

The LASER points toward a rotating mirror. This mirror is used to redirect the
emitted light in different directions, thus allowing the sampling of a scene. Between
every pulse, the mirror rotates, hence orienting the next pulse to a new direction. The
scheme presented in Figure 2.1 shows a sensor with one flat mirror. If the mirror can
rotate in the 3 dimensions, then a full scene can be scanned. In fact, most LiDARs are
built with a single mirror.

In order to acquire a whole 3D scene, most sensors usually include a mirror driven
to rotate along different axis (Koganov, Shuker, and Gordov, 2005; Nguyen et al., 2017;
Dong, Anderson, and Barfoot, 2013). Some sensors, such as the RIEGL VQ-250 use a
mirror rotating on one axis, while other sensors use mirrors rotating along two orthog-
onal directions. Another possibility is to use an optical lens, coupled to a polygonal
mirror (Niclass et al., 2015). Last, the sampling of a 3D scene can be done by coupling
two (or more) lasers and using a single mirror (Muhammad and Lacroix, 2010).

2.1.3.3 Photodetector

The photodetector is a crucial component of a LiDAR sensor. The photodetector is
a sensor able to convert light into current (Morrison et al., 1998; Berman et al., 2006).
When receiving current from the photodetector, the sensor can acknowledge that the
latest pulse reached a physical object that returned the emitted pulse. The most com-
mon types of photodetectors used in LiDAR sensors are the photodiodes and the pho-
tomultipliers.

2.1.3.4 Other Sensors

2.1.3.4.1 GPS and IMU LiDAR sensors can be coupled to other sensors for comple-
mentary informations. For instance, coupling a LiDAR to a GPS will help the regis-
tration of the scan (Teo and Huang, 2014; Zheng et al., 2019). Also, for mobile sensors
(such as MLSs), the use of a IMU will help the registration as well (Gao et al., 2015;
Meng, Wang, and Liu, 2017; Caltagirone et al., 2017).

2.1.3.4.2 Camera Most modern LiDAR sensors do not only include a LASER, but
also a RGB-camera (Mirzaei, Kottas, and Roumeliotis, 2012; Gong, Lin, and Liu, 2013),

13. http://www.riegl.com/uploads/tx_pxpriegldownloads/10_DataSheet_VQ-250_r
und_25-09-2012.pdf - Accessed on 14/01/2020
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Laser

Object scanned

Mirror

Emitted light

Reflected lightPhotodetector

Figure 2.1 – Illustration of a LiDAR sensor.

which provides a useful complementary information to the LASER. The full sensor is
usually named a multi-sensor platform. The fusion of camera and lidar data has been
widely investigated (Zhang, Clarke, and Knoll, 2014; Caltagirone et al., 2019), espe-
cially in the context of autonomus driving (Premebida et al., 2014; Cho et al., 2014)
where the detection of other cars or pedestrians is overriding. Last, the famous KITTI
dataset combine image and laser data (Geiger, Lenz, and Urtasun, 2012).

2.1.4 Retrieved Pulses

We now present how a LiDAR is able to produce a 3D point cloud, based on the time
of light emission, the angle of the mirror(s) and the time of activation of photodetectors.

2.1.4.1 Single Echo

To obtain the position where the emitted light reached a physical object, one needs
to know: the distance between the sensor and the physical object, and the angle of the
laser at the pulse time. The angle can be derived from the current orientation of the
mirror. Let c be the speed of light and δt the elapsed time between the light emission
and the signal from the photodetector. The distance d between the sensor and the
scanned object can be derived via the following equation:

d =
c · δt

2
. (2.1)

We call echo the point created when, for a single pulse, the emitted light reached a
physical object and was reflected back to the photodetector.

2.1.4.2 Multi Echo

In the previous section, we showed how a single light pulse can be used to create
a 3D point. However, when the emitted light reaches an object reflecting only part of
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the light (e.g. water), or the edge of an object (e.g. a leaf), part of the emitted light
beam is reflected in the sensor direction and the rest of the light beam can continue to
propagate until it reaches another object. This is illustrated on figure 2.2. In this case,
we observe that a single pulse can have several echoes.

Figure 2.2 – Illustration of the multiple echoes returned for a single light emission.
The LiDAR sensor is represented as the orange box, the emitted light in green , the
reflected light is in red . First, the emitted light reaches an object that reflects only
part of the light: . Then, the light that crossed the first object reaches another object:

, before being reflected in the sensor direction.

Following the method introduced in Section 2.1.4.1, we can create several 3D points
for a single pulse. To achieve this, for a single pulse, we consider the full returned sig-
nal that triggered the photodetector. This returned signal is called a waveform. If more
than one peak is observed, as shown in Figure 2.3, each separate peak can be consid-
ered as a distinct echo. All the points created this way are aligned on the LASER beam
trajectory. Taking into account multiple echoes can be crucial, as it gives an information
on the scene geometry behind the first echo. This is especially useful in geometrically
complex areas such as forests or urban scenes, and help reducing the number of occlu-
sions. However, there is not a single method for interpreting the returned waveform.

Historically, most LiDAR constructors did not reveal the peak detection method
they used. However, the peak detection method chosen can greatly influence the qual-
ity of the study (Wagner et al., 2004; Jutzi and Stilla, 2005). Hence, it is interesting
to focus on the processing of the returned wavelength itself (Mallet and Bretar, 2009;
Chauve et al., 2008). We now focus on two different types of methods for retrieving
echoes for LiDAR sensors: full waveform LiDAR and single photon LiDAR.

2.1.4.3 Full waveform

Full waveform LiDARs have been developped at the end of the 1980s (Guenther
and Mesick, 1988). However, studying the full waveform became popular only 15
years later (Jutzi and Stilla, 2003; Jutzi and Stilla, 2006). Two different approaches exist
for processing the wavelength. The first one consists in decomposing the signal as a
sum of echoes (one for each object reached). This method’s goal is to detect as much
relevant peaks as possible in the waveform. Each peak is used to generate a 3D point.
In the end, a dense 3D point cloud is created. The second approach consists in per-
forming a ”spatio-temporal analysis to extract features within a 3D waveform space“ (Mallet
and Bretar, 2009). The authors argue that this method is more suitable for processing
complex areas such as urban scenes. Mallet and Bretar (2009) show that it is possible to
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Intensity

Time (ns)

(a) The blue lines show the timestamps of peak responses taken for creating points based
on the full waveform. If a peak is too close to another one, or if it is not high enough, it can be
ignored.

Intensity

Time (ns)

(b) The brown lines . show the timestamps of peak responses taken for creating points based
on the full waveform. The dotted line illustrates the detection treshold.

Intensity

Time (ns)
τ

(c) The green lines . shows the timestamps of peak responses used with a single photon
LiDAR. τ is the minimal time between two echoes of a single pulse.

Figure 2.3 – From the same wavelength, displayed in red , different methods can
lead to different echoes created. On Figure a, selected echoes correspond to the highest
peaks of the wavelength. On Figure b, selected echoes are obtained after reaching a
detection threshold. On Figure c, an echo is created everytime a photon is returned, with
an elapsed time due to mechanical constraints.

extract weak pulses 14 and to improve the distance estimation between physical objects
and the sensor by processing the full waveform. For a complete description of both
methods and a comparison of their strengths and weaknesses, we refer the reader to
Mallet and Bretar (2009).

Full waveform LiDARs have historically been used for mapping large areas such as
forests thanks to the precise extraction of multiple echoes for each pulse, as described

14. Weak pulses are pulses originating from object edges or objects that reflects only a small part of
the light.
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in the previous paragraph. Reitberger et al. (2009) and Heinzel and Koch (2011) used
a full waveform ALS for individual tree segmentation and classification. At a larger
scale, full waveform LiDARs are suitable for canopy height estimation (Nie et al., 2017;
Shen et al., 2018). The study of the full waveform, as described by Mallet and Bretar
(2009) strengthen the performances of such sensors in urban areas (Mallet et al., 2011).
For instance Azadbakht, Fraser, and Khoshelham (2018) used the L-Curve method in-
troduced by Azadbakht, Fraser, and Zhang (2015) to extract their own echoes from
the waveform and compute 3D descriptors on them, at different scales. These descrip-
tors are in turn used as input for a Random Forest classifier (Breiman, 2001), which is
trained for the pointwise classification of urban scenes.

Figure 2.4 – Illustration of the returned wavelength for a scan of trees. The scanned area
is displayed in red . The waveform associated to the scanned area is represented on
the graph on the left. The first peak of this graph correspond to tree foliage. If the
first peak is used to create an echo, as with methods processing the full waveform, the
resulting 3D point will be placed a few centimeter below the actual top of the foliage.
This shows the interest of detecting the very first returned photons. This image is taken
from Mallet and Bretar (2009).

Lastly, a LiDAR sensor can be equipped with several LASERs. In this case, we
call it a multiple wavelength LiDAR. Multiple wavelengths LiDARs are interesting for
scanning areas where objects have a different response depending on the wavelength
of the beam (Sasano and Browell, 1989; Althausen et al., 2000). In this case a 3D point
cloud can be built from the peaks of each waveform. In this case, the information that a
given peak obtained for a given wavelength shows that the target have some particular
physical properties (Woodhouse et al., 2011; Vauhkonen et al., 2013). For instance,
(Hakala et al., 2012) built an hyperspectral LiDAR for analysing trees. Multispectral
LiDARs have also been used for air-quality analysis: Wirth et al. (2009) investigated
the water vapor absorption whereas Murayama et al. (2004) detected dust over Tokyo.
This approach was also adopted by the NavVis company for the NavVis M6 indoor
mapping sensor 15: a trolley comprising 6 LASERs which can be used for mapping
interiors of buildings as well as small urban scenes.

15. https://www.navvis.com/m6 - Accessed on 14/01/2020
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2.1.4.4 Single Photon

Single photon LiDARs (Aull et al., 2004; Clifton et al., 2015) work differently from
full waveform LiDARs. In fact, standard LiDAR systems need approximately 1000
photons to trigger the photodetector. A single photon LiDAR, on the other side, com-
prises several photodetectors, that can be triggered by a single photon (Priedhorsky,
Smith, and Ho, 1996; Degnan et al., 2007). This allows for a higher density of acquisi-
tion, which is especially useful in dense and noisy areas such as forests. At the time of
writing this thesis, recent single photon LiDARs are able to record several echoes for
each photodetector.

Single photon LiDARs are still recent, and most work based on such LiDARs fo-
cuses on vegetation processing (Wästlund et al., 2018). In fact, the estimation of canopy
height and coverage is of higher quality when using Single photon LiDARs (Swatantran
et al., 2016; Tang et al., 2016). This is due to the fact that Single photon LiDARs capture
the very moment when the laser beam hits an object. In the case of a forest, this will
correspond to the leaf at the top of a tree. This allows for retrieving the full canopy of
the forest with a better precision than when using full waveform LiDAR as shown on
Figure 2.4.

Single photon LiDARs have also been used for bathymetry. In fact, for the same
reason as for the canopy height estimation, Single photon LiDARs can be used for
water surface mapping (Mandlburger and Jutzi, 2019; Degnan, 2016).

A few studies evaluated the performances of Single photon LiDARs, compared to
full waveform LiDAR (Li et al., 2016; Bernard et al., 2019; Mandlburger, Lehner, and
Pfeifer, 2019). Theses studies tend to favor full waveform LiDARs for most applications,
while acknowledging the performances of Single photon LiDARs for forestry related
purposes. However, the large amount of noise due to the recording technique can be a
limiting factor for using Single photon LiDARs.

2.1.5 Different Platforms for LiDAR Sensors

LiDAR sensors can be mounted on different platforms, depending on the usage.
The platforms range from a trolley to a plane or a satellite. We present here the main
platforms used in the research area and in the industry.

2.1.5.1 Terrestrial Lidar

We start by presenting one of the most used platforms: the TLS. It consists of LiDAR
sensor fixed on a tripod. The LASER can be coupled with a camera and a GPS as shown
on Figure 2.5. Usually, TLSs are used for scanning a small scene, such as a room or a
building. The acquired data can then be used for 3D reconstruction, texturation (if
camera acquisition is performed as well) or semantic segmentation (Qi et al., 2017;
Landrieu and Simonovsky, 2018). The Semantic3D benchmark (Hackel, Wegner, and
Schindler, 2016) and the S3DIS benchmark (Armeni et al., 2016) provide TLS data too.

2.1.5.2 Mobile Lidar

MLSs are used for larger zones than TLSs, and usually in an urban environment.
MLS platforms include cars and trolleys (Chung et al., 2017). Usually a GPS and an
IMU are coupled to the LiDAR in this case (Toth, 2009; Vlaminck et al., 2016). This
allows for simplifying the registration process, which can possibly be done in real time
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Figure 2.5 – Illustrattion of a TLS coupled to a GPS. Courtesy of Wikipedia Commons.

(Chen and Cho, 2016; Kim, Chen, and Cho, 2018). For an extensive review of regis-
tration algorithms for MLS platforms, we refer the reader to the work of Pomerleau,
Colas, and Siegwart (2015).

A few mobile mapping systems were built for research purposes (Kukko et al., 2012;
Glennie et al., 2013). The emergence of mobile mapping systems lead to breakthroughs
in various domains such as 3D reconstruction and autonomous driving (Tao and Li,
2007; Becker and Haala, 2009; Monnier, Vallet, and Soheilian, 2012). Following these
advances, Institut National de l’Information Géographique et Forestière (IGN) built its
own mobile mapping system, called Stereopolis (Tournaire, Soheilian, and Paparoditis,
2006; Paparoditis et al., 2012). Stereopolis is a mobile multiplatform sensor. It contains:
16 cameras (10 for a panoramic head and two triplets of cameras, one at the front and
one at the back of the vehicle), 3 LiDARs (1 on each side for facade acquisition and
another one for the bottom part of the scene) and a set of navigation devices (two GPSs
and an IMU). Stereopolis has successfully been used in an urban context for pedestrian
detection (Paparoditis et al., 2012) or road side detection (Hervieu and Soheilian, 2013).
Last, some studies focused on inpainting for completing missing data in Stereopolis
acquisitions (Biasutti et al., 2017). This sensor’s acquisitions are used throughout this
whole thesis for various experiments.

2.1.5.3 Aerial Lidar

When it comes to mapping vast areas, ALSs are the best solution: they allow to per-
form fast acquisitions of large areas, with a sampling ratio of several points per square
meters, enabling various applications, from Digital Elevation Model (DEM) genera-
tion (Fissore and Pirotti, 2019) to forest inventory (Hyyppä et al., 2017). Alamús et al.
(2018) used an ALS over the city of Barcelona for evaluating the light pollution and
investigation solar panels installastion.

Aerial platforms are also used for underwater analysis. In this case, a special LiDAR
is equipped: a bathymetric LiDAR (Quadros, Collier, and Fraser, 2008; Kim et al.,
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2016). In this context, a bathymetric LiDAR allows to detect the bottom of water. This
has been used for mapping riverbeds (Wang and Philpot, 2007; Lague et al., 2016).
Collin et al. (2018) focused on coral detection and extraction. However, bathymetric
LiDARs have not been tested in this thesis, and we refer the reader to the work of Kim
et al. (2019) for more details on this technology.

Figure 2.6 – Illustration of an ALS and a MLS acquisition on an urban scene. Courtesy
of Imane Fikri (IGN-LaSTIG-ACTE).

2.1.5.4 UAV-based Lidar

ALSs are one of the most used sensors for mapping large areas or when a top-down
point of view is needed. However it can be rather expensive and time-consuming to
set-up a full ALS system. ALSs also suffer from occlusions (due to height differences in
the scene). Hence, there has been a need to develop a simpler and lighter system that
could be used to map areas unaccessible for classic TLS and MLS systems while having
the possibility to map an entire complex scene. In this context UAV-based LiDARs
systems have been developed (Lin, Hyyppa, and Jaakkola, 2010; Wallace et al., 2012).

UAV-based LiDARs have been used to map forests below the canopy (Chisholm
et al., 2013; Wallace, Lucieer, and Watson, 2014). In fact, UAVs are especially inter-
esting to use in forested areas due to the accessibility difficulties and the complexity
of the scenes. They have been used in various forests, from the Amazon rainforest
(Khan, Aragão, and Iriarte, 2017) to Chinese forests (Guo et al., 2017). As for many
other LiDAR-based systems, UAV-based LiDAR surveys can be completed by imagery
(Sankey et al., 2017; Sankey et al., 2018).

Although we presented various platforms in this section, this list is not compre-
hensive, as there exists many very specific LiDAR-based platforms have been created
for a limited number of applications. In this thesis, we will mostly focus on MLS sen-
sors. However, some experiments were done on ALS and TLS too, for generalization
purposes.
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Figure 2.7 – Illustrattion of a UAV-based LiDAR sensor. Courtesy of Wikipedia Com-
mons.

2.2 Applications

We now present some applications of LiDAR data. We first focus on meteorology
as it is the historical field of interest for processing LiDAR data. Next, we demonstrate
that LiDAR devices have been useful for environmentally-related challenges, such as
biomass estimation (see Section 2.2.2) or glacier monitoring (see Section 2.2.3). We
then present some applications in cultural heritage, a fast-growing area of research at
the time of writing this thesis. Lastly, we present a brief state-of-the-art on applications
relating to autonomous driving and city mapping, two areas of interest related to this
thesis in Sections 2.2.5 and 2.2.6.

2.2.1 Meteorology and Space-Based Observations

The first application we present in this section is the historical area of interest for
LiDARs: meteorology and space-based observations. One of the main challenges in
meteorology is tracking moving objects (such as clouds) and estimating their speed
and direction. This allows for predicting wind-related events such as tornadoes. To this
end, a special type of LiDAR has been developped: the Doppler LiDAR (Chanin et al.,
1989; Grund et al., 2001). The development of this sensor is motivated by the fact that
moving objects add a Doppler shift to the photons of the LASER beam 16 (Blaugrund,
1966; Takeda, 1986). This shift depends on the speed and the direction of the moving
object. A Doppler LiDAR is able to analyse this shift and compute the direction and
shift of moving objects such as clouds. Such sensor can then been used to compute
wind gusts (Suomi et al., 2017) and evaluate wind energy (Goit, Shimada, and Kogaki,
2019; Henderson and Jacob, 2018). LiDAR sensors have also been used for studying
water vapor (Wulfmeyer and Bösenberg, 1998), cloud radiative effects (Guélis et al.,
2017), and cosmic dust influx in the atmosphere (Gardner et al., 2014), improving our
knowledge of the different atmospheric layers of the Earth.

The second historical field of interest for LiDAR sensor is space-based observa-
tions. To this end, a few sensors have been developed, especially by NASA’s teams
(McCormick et al., 1993; Winker, Couch, and McCormick, 1996). One of the most re-
cent ones is the CALIOP sensor (Winker et al., 2009). This sensor has been mounted
on the CALIPSO satellite 17. Its goal is to perform vertical measurements (in Earth di-

16. It is possible to measure this Doppler shift because the light emitted by a LASER is coherent.
17. This satellite was built by French and American space agencies. It comprises a LiDAR, a camera

and a radiometer. CALIPSO was launched in 2006 and is still active. For more informations about the
project, see: https://www-calipso.larc.nasa.gov/
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rection) to study aerosols and clouds. Space-based LiDAR studies include wind mea-
surements (Baker et al., 1995; Marseille and Stoffelen, 2003) or sea surface estimation
(Hu et al., 2008). Space-borne LiDARs have also been used for phytoplankton biomass
estimation (Behrenfeld et al., 2017; Hostetler et al., 2018). In the following sections, we
present environment-based applications using LiDAR data.

2.2.2 Forestry

LiDAR sensors are increasingly used for the study of forests. This comes from the
fact that, unlike for cameras, LiDARs are able to penetrate through vegetation (Lim
et al., 2003; Simard et al., 2011). Hence, LiDARs have been used for biomass estima-
tion (Zolkos, Goetz, and Dubayah, 2013; Luo et al., 2017; Holm, Nelson, and Ståhl,
2017) in various types of forest, ranging from boreal (Askne, Soja, and Ulander, 2017)
to tropical forests (Lau et al., 2019). These sensors are also suitable for forest inventory
(Bauwens et al., 2016; Hyyppä et al., 2017). Some works also focus on terrain detec-
tion in forests, for Digital Terrain Model (DTM) estimation (Bigdeli, Amirkolaee, and
Pahlavani, 2018; Maguya, Junttila, and Kauranne, 2014) or thalweg detection (Guilbert,
Jutras, and Badard, 2018).

Most works using LiDAR data on forest areas rely on acquisitions from ALS sensors
(Richardson and Moskal, 2011; Bock et al., 2017). ALS is preferred in this context as
it allows for performing a fast acquisition of the forest. Moreover, it can be used to
scan unaccessible or remote areas. However, most of the emitted pulses cannot cross
the canopy, which results in an incomplete acquisition of the forest’s structure below
the canopy. Hence, some researchers recently proposed to use UAV-based LiDAR for
mapping forests (Wallace et al., 2012; Liu et al., 2018). In this context, UAVs can be
used to scan the interior of the forest, below the canopy, providing complementary
information to ALS.

Last, an interesting application of LiDAR sensors in a forestry context is for the
evaluation of natural disasters, such as wildfires or floodings. In fact, LiDARs have
been used during the fires in the Amazon rainforest in 2019, 18 and might see an in-
creasing use in areas where such disasters are frequent. 19 In this context, an increasing
number of scientists are working on fire detection and evolution on forested areas (De
Almeida et al., 2016; McCarley et al., 2017; DeLong et al., 2018), using a LiDAR to sur-
vey burning areas. Similar works have been conducted for flooded areas (Malinowski
et al., 2016).

2.2.3 Geology

Another environment-related application for LiDAR data is geology (Hartzell et al.,
2014; Buckley et al., 2008). In fact, LiDAR sensors can be used to monitor large objects
such as glaciers (Fischer et al., 2015; Putkinen et al., 2017) or even tectonic plates (Bruhn
et al., 2006; Meigs, 2013). LiDAR sensors have been useful for mapping and monitoring
volcanoes (Csatho et al., 2008; Kereszturi et al., 2018). In this context, Behncke et al.
(2016) used LiDAR data to estimate the eruptive activity of Mt. Etna (Italy) by regularly
producing DEMs of the volcano’s slopes. They use this data to compute the volumetric
evolution of the volcano and estimate the quantity of lava at the summit of the volcano.

18. https://news.mongabay.com/2019/12/2019-the-year-rainforests-burned/ -
Accessed on 15/01/2020

19. https://magviral.com/more-than-600-new-jobs-for-firefighters-proposed-
for-california-the-ukiah-daily-journal/ - Accessed on 15/01/2020
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At a larger scale, LiDAR sensors have been used to monitor natural disasters (Dun-
ham et al., 2017) such as earthquakes. Nissen et al. (2017) studies the coastal deforma-
tion attributed to Kaikōura earthquake (New Zealand). Ishimura et al. (2019) used a Li-
DAR to evaluate the surface rupture traces created by the Nagano earthquake (Japan).
Last, Bose et al. (2016) evaluate building damages after an earthquake in Nepal. This
shows that even in the case of a natural disaster, LiDAR sensors can be used promptly
and at both local and global scales to monitor and evaluate the disaster. They can
also be used for monitoring the Earth and prepare to future disasters such as volcanic
eruptions.

2.2.4 Cultural Heritage

Another application for LiDAR data developped here, is cultural heritage. In fact,
LiDAR sensors have been used to survey large areas in order to find ancient cities or
roads (Rodríguez-Gonzálvez et al., 2017; Cheng et al., 2016; Chase, Chase, and Chase,
2017). For instance, Inomata et al. (2018) used an ALS for identifying Mayan cities
and evaluate their evolution through time in the Seibal region in Guatemala. This
study was part of the ”Uxul Archaeological Project“ (Grube et al., 2012; Vincent et al.,
2015), a project aiming to studying the Mayan civilization by using photogrammetric
and lasergrammetic means. Johnson and Ouimet (2014) used LiDAR data to detect
archaeological sites in New England, a region in the northeastern part of the USA. The
authors were able to retrieve old habitations and crops from Native Americans.

LiDAR data can be used to recreate full 3D ancient cities, which in turns can be used
for interactive visualization (Abdelmonem, 2017). Such information can be used in a
historical map, displaying the changes through centuries of a geographical region. This
is, for instance, the scope of the European Time Machine 20 project: a European project
for creating a historical map of all Europe. A first experiment was done in the single
city of Venice 21. In the following sections we focus on applications more related to the
topic of this thesis.

2.2.5 City Mapping

The ability to acquire large areas in a relatively short period of time, while main-
taining a high geometrical precision implies that LiDAR sensors are suited for city-
scale analysis (Zhou, 2012; Wang et al., 2019). This comprises urban planning, or city
visualization. In this context Digital City Twins have been developed (Knight, Rampi,
and Host, 2017). A Digital City Twin is a digital model of a city. Examples of Digital
City Twins include Singapore. 22 This model is based on a large-scale LiDAR acquisi-
tion, completed with a collaborative platform. Digital City Twins often include various
and complementary data sources: MLSs are good for street and facade reconstructions,
while aerial sensors are better for roof extraction (Javanmardi et al., 2017). Moreover,
the combination of images and LiDAR point clouds is important for the texturation
of 3D models (Boussaha et al., 2018; Meinhardt-Llopis and d’Autume, 2019). Digital
City Twins allow for various applications, from flood simulations to wind energy esti-
mation (Millward-Hopkins et al., 2013; Adam et al., 2016). In this case, LiDAR data is
used as input for reconstructing urban corridors favorable for wind movements.

20. https://www.timemachine.eu/discover/ - Accessed on 15/01/2020
21. https://www.epfl.ch/research/domains/venice-time-machine/inbrief/ -

Accessed on 07/04/2020.
22. https://www.nrf.gov.sg/programmes/virtual-singapore - Accessed on 16/01/2020
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LiDAR sensors have been used for tree identification and management at city scale
(Alonzo, Bookhagen, and Roberts, 2014; Liu et al., 2017). For instance, the city of Wash-
ington D.C. used a LiDAR to count the trees in the city. 23 In this context, a LiDAR can
be combined with hyperspectral imagery for better accuracy (Alonzo et al., 2016). For
this application, most works used an ALS, as it allows a rapid acquisition and can eas-
ily be coupled with aerial and satellite imagery (Guo et al., 2011; Dogon-Yaro et al.,
2016).

ALSs have also been used for roof extraction in urban areas. The extracted roofs
can in turn be used for DEM production (Fissore and Pirotti, 2019) or investigation of
solar panels installation (Lee and Zlatanova, 2009; Gooding, Crook, and Tomlin, 2015).
LiDARs data help the cadastral mapping at a city-scale, by identifying the footprints of
buildings and the number of floors (Giannaka, Dimopoulou, and Georgopoulos, 2014).
For instance, Ribeiro et al. (2019) used an ALS over Sao Paulo City (Brazil) to identify
favelas and estimate their size. Cadastral mapping relies on single building extraction.
Building extraction can be performed by detecting the edges of each building (Wei,
2008) or by facade detection (Dorninger and Pfeifer, 2008).

City mapping often requires to identify each object of the city, as typical objects,
such as roads or buildings, will not be reconstructed in the same way. Hence, some
works focus on the semantic segmentation of LiDAR data at city-scale (Dohan, Mate-
jek, and Funkhouser, 2015; Landrieu and Simonovsky, 2018; Tchapmi et al., 2017).
These segmentations can be used as input for 3D reconstruction algorithms (Lin et
al., 2013).

2.2.6 Autonomous Driving

One of the growing challenges in urban areas is autonomous driving (Wei et al.,
2013). Indeed, self-driving cars could increase the safety for drivers, pedestrians, or
cyclists. Moreover, it could improve the global traffic and reduce traffic jams (Franke
et al., 1998; Schellekens, 2015). Self-driving cars would be useful for disabled or old
people (Yang and Coughlin, 2014), unable to drive, by offering them a higher indepen-
dence. Last, driverless trucks could be used to reduce transportation costs and delivery
times.

Self-driving cars can include (among many sensors) a LiDAR. This LiDAR is used
for real-time analysis of the car environment. Its goal is to detect objects defining driv-
ing rules comprising traffic signs (Gargoum et al., 2017) and road lanes (Zhang, 2010;
Zhu et al., 2012; Ghallabi et al., 2018). Autonomous cars should also be able to de-
tect moving objects such as cyclists or pedestrians (Kidono et al., 2011; Matti, Ekenel,
and Thiran, 2017). Futhermore, driverless cars have to detect and avoid potential ac-
cidents. This implies that the car must know the place and speed of other cars on the
road (Ibisch et al., 2013; Asvadi et al., 2017). All these expectations shows how crucial
is fast and accurate interpretation of the urban environment. The large quantity of in-
formation acquired by a LiDAR device compared to the processing efficiency required
in this context shows that being able to simplify the acquired scene while losing as little
geometric information as possible is an important subject.

23. https://www.govtech.com/fs/news/Lidar-Data-Is-Becoming-an-Increasingly
-Valuable-Tool-for-Cities.html - Accessed on 16/01/2020
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2.3 Conclusion

In this chapter, we presented an overview of the LiDAR technology. This sensor
relies on the LASER technology to emit a signal whose return triggers a photodetec-
tor. This produces a return wave which can be used to derive the position of physical
objects encountered by a single emitted signal. LiDAR sensors can be combined with
cameras and other sensors such as a GPS or an IMU to complete the acquisition and
help the global registration of a scan. LiDARs can be mounted on various platforms,
from planes to trolleys, allowing the use of such sensor in nearly all environments.

We then presented different applications of this technology and showed that LiDAR
sensors were used at many different scales (from a local building to entire geographic
region) and for various usages, such as fire monitoring or autonomous driving. This
shows that LiDAR sensors are more and more used and help face many technological
challenges, from archaeological studies to wind measurements. We want to emphasize
on the fact that there is not a single LiDAR type or a single platform that outperforms all
others. The choice of the sensor and the platform is highly dependent on the applica-
tion and the budget (it is cheaper to use a single TLS than to launch a satellite equipped
with a LiDAR into space).

For the remaining of this thesis, we will mostly use data from MLSs, but will also
evaluate some of our algorithms on ALS and TLS data. In the next chapter, we will
show how raw data from a MLS can be used for the reconstruction of simplicial com-
plexes.

89



CHAPTER 2. LIDARS: SENSORS AND APPLICATIONS

90



3 Simplicial Complexes Reconstruction
from 3D LiDAR Data

Contents
3.1 Simplicial Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.1.2 Early Uses with 3D Data . . . . . . . . . . . . . . . . . . . . . . . 93

3.2 Simplicial Complex Reconstruction from 3D LiDAR Data . . . . . . . 93
3.2.1 Structure of 3D LiDAR Data . . . . . . . . . . . . . . . . . . . . . 94
3.2.2 Edge Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.2.3 Local Hole Filling . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.3.2 Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.4 Weighted Simplicial Complexes Reconstruction . . . . . . . . . . . . 109
3.4.1 Weighted Reconstruction . . . . . . . . . . . . . . . . . . . . . . 109
3.4.2 Parameterization of κ . . . . . . . . . . . . . . . . . . . . . . . . . 110
3.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

91



CHAPTER 3. SIMPLICIAL COMPLEXES RECONSTRUCTION FROM 3D LIDAR
DATA

In this chapter we introduce the notion of simplicial complexes and explain why
they are an approximate structure to represent the continuous nature of a scene scanned
by a LiDAR. Then, we design a method for simplicial complexe reconstruction from a
LiDAR point cloud and demonstrate its versatility by applying it to MLS and TLS
datasets. We argue that the use of simplicial complexes allow us to be more adaptive
than triangulated mesh reconstructions, especially on complex parts of the scene, such
as trees or urban furniture.

3.1 Simplicial Complexes

In this section, we first introduce the notion of simplex, on which simplicial com-
plexes are built. We then present some works on 3D geometry processing based on
simplicial complexes.

3.1.1 Definition

3.1.1.1 Simplex

For i ∈ [0, . . . , n], we define a i-simplex of Rn as the convex hull of i+1 independent
points of Rn. We define a face of a i-simplex of Rn as the convexhull of j independent
points (j ∈ [1, . . . , i]) from the original i-simplex. Examples of simplices are shown on
figure 3.1. In this thesis, we focus on reconstructing the exposed surface of the scene
and not the full 3D scene. Thus we will focus on 0-, 1- and 2D-simplices (points, line
segments and triangles).

•
(a) Simplex of di-
mension 0.

•

•

(b) Simplex of di-
mension 1

•

•

•
(c) Simplex of di-
mension 2

••

•

•

(d) Simplex of di-
mension 3

Figure 3.1 – Examples of simplices in low-dimensional spaces

3.1.1.2 Simplicial Complex

For i ∈ [0, . . . , n], we define a i-simplicial complex of Rn as a set of simplices which
dimension is lower than i. All the simplices composing a simplicial complex do not
necessarily have the same dimension. A i-simplicial complex satisfies the following:

— all the faces of a i-simplicial complex belong to itself,

— the intersection of two simplices of a i-simplicial complex is either a shared face
of each simplex, or ∅.

The dimension of a simplicial complex is the maximum dimension of its simplices.
Examples of simplicial complexes are shown of figure 3.2. Note that a simplex is a
simplicial complex too. For the same reason as mentionned in the previous paragraph,
we will only consider simplicial complexes comprised of 0− 2-simplices.
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•

•

•

(a) Simplicial com-
plex of dimension 0.

•

•

•

•

•

(b) Simplicial com-
plex of dimension 1.

•

•

•

•
•
•

(c) Simplicial com-
plex of dimension 2.

••

•

•

•
•
•

•

•

•

(d) Simplicial com-
plex of dimension 3.

Figure 3.2 – Examples of simplicial complexes in low-dimensional spaces

3.1.2 Early Uses with 3D Data

The use of simplicial complexes for 3D point cloud reconstruction has been ex-
pressed by Popović and Hoppe (1997) as a generalization manner to simplify 3D meshes.
In this paper, the authors use an alternative set of vertex unifications and splits to gen-
eralize an input mesh. The core idea of their approach has been introduced in an earlier
paper (Hoppe, 1996). In this work, they introduced a method for simplifying meshes
with the edge-collapse technique. They extended the principle to simplicial complexes,
by arguing that the generalization process may require some topological changes: in
some cases the simplicification process of a surface mesh can be stopped due to the lack
of triangles in the final output; however, one can allow the collapse of triangles in such
case and keep only an edge instead of the triangle, or even just a point. This produces
a simplicial complex. Guibas and Oudot (2008) used witness complexes (a simplicial
complex whose faces are “witnessed" by a set of points) to generalize meshes.

Simplicial complexes are also used to simplify defect-laden point sets as a way to be
robust to noise and outliers using optimal transport (De Goes et al., 2011; Digne et al.,
2014) or alpha-shapes (Bernardini and Bajaj, 1997). Applications of simplicial complex
reconstruction include forest canopy reconstruction Vauhkonen (2015) or road network
reconstruction from GPS traces (Ahmed and Wenk, 2012; Dey, Wang, and Wang, 2017).
Simplicial complexes have also been used for computing trajectory to help robots move
from one place to another (Pokorny, Hawasly, and Ramamoorthy, 2016).

In this thesis, we are looking for a 3D structure that is adaptive to the geometry
of the scene, while being independent from the sampling or any other additional in-
formation. Simplicial complexes can fill this role: planar surfaces (roads, facades, . . .)
will be represented with sets of triangles, while linear structures (poles, wires, small
branches) will be displayed as sets of edges. Lastly, geometry will not be interpolated
in complex areas of the scene, such as tree foliage. In this case, the input points will
simply be preserved in the output simplicial complex.

3.2 Simplicial Complex Reconstruction from 3D LiDAR
Data

In this section, we introduce the reconstruction approach that we used. We want
our approach to connect points that belong to a same object in the original scene. This
will allow us to select, at the point scale, which simplex should be added to the recon-
struction. Ideally, each edge will encode the existence of an object between the two
echoes it connects. This principle can be extended to triangles as well.

We first present the different structures for 3D LiDAR point cloud and explain why
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simplicial complexes fit our need. Then we show the rconstruction process for each
dimension: we start by adding simplices of dimension 1 to our reconstruction and
then add simplices of dimension 2. Lastly, we present a quick hole filling process to
recover missing simplices.

3.2.1 Structure of 3D LiDAR Data
Unlike images, one of the biggest problems of 3D point clouds is the absence of a

trivial connectivity structure. Images rely on pixel adjacency to derive the Von Neu-
mann’s or Moore’s neighborhood (Toffoli and Margolus, 1987, Section 7.2) as shown on
Figure 3.3. These 2D neighborhood definitions can be extended to 3D by connecting a
point to the closest points in the 3 dimensions (Monica and Aleotti, 2018). Point clouds
are highly irregular and noisy. Point clouds don’t have the array structure of images.
This implies that we cannot directly apply the same neighborhood than for images.

Figure 3.3 – Illustration of Von Neumann’s and Moore’s neighborhoods (respectively
red and green) on an image. Each cell represents a pixel.

We now present the different kinds of structures that can be applied to 3D data,
from depth images to LiDAR data.

3.2.1.1 RGB-D images

A first step toward the structuration of 3D point clouds is to add a third dimension
to an image: a depth information is added to each pixel. This structure has been used
for camera pose estimation (Shotton et al., 2013; Cavallari et al., 2019) or 3D scene
reconstruction (Zollhöfer et al., 2014; Steinbrucker, Kerl, and Cremers, 2013). However,
LiDAR data usually has a highly varying density which makes it hard to sample as an
image. Moreover, for a single laser pulse, several echoes can be returned (e.g. when
the emitted ligth encounters a window, part of the light is refracted, but the rest crosses
the window and can hit an object behind, resulting in two returned echoes for a single
emitted pulse as shown on Figure 2.2). The fact that LiDAR data can comprise several
echoes for a single pulse means, if interpreted as an RGB-D image, that there can be
several points with a significant depth difference on the same pixel.

3.2.1.2 Projection on 2D images

One can derive images from 3D point clouds by taking artificial photos of the scene
(Boulch, Le Saux, and Audebert, 2017). This way, we can directly apply images-based
structure and algorithms. This is useful for images relocalization in point clouds, with
applications in historical images positioning (Russell et al., 2011; Aubry, Russell, and
Sivic, 2014). However, this method suffers from the same problems than RGB-D im-
ages. Boulch, Le Saux, and Audebert (2017) try to overcome this drawback by using
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different point-of-views for generating images, but without strong knowledge on the
data, we have no guarantee to process all the points of the cloud.

3.2.1.3 k-nearest neighbors

A naive extension of the image structure to 3D point clouds is to look, for each
point, to its k-nearest neighbors. This way, we consider a fixed number of neighbors
for each point. However, this structure is highly dependent of the density of the scan. If
there are some strong density differences in different directions (like for MLS or ALS),
this structure will be heavily biaised, as showned on figure 3.4. Moreover, it is not easy
to find the optimal neighboring size. Some works (Gressin et al., 2013; Weinmann,
Jutzi, and Mallet, 2014; Weinmann et al., 2015b) suggest to use an adaptive threshold,
related to the local geometry of the neighborhood.

Void between the
two acquisition lines

Figure 3.4 – Illustration of the biais induced by a KNN on a point cloud from MLS.
The scene is a zoom on the corner of a facade. The red points is connected to its 7
nearest neighbors. The closest neighbors of the red point are nearly aligned. This lead
the neighborhood to be mostly linear, even if the point cloud shown here is part of a
planar facade.

3.2.1.4 Geometric neighborhoods

One can look for neighborhoods with fixed geometrical shapes (usually spheres or
cylinder) to create a neighborhood relationship (Demantke et al., 2011; Blomley and
Weinmann, 2017). An example of a spherical neighborhood on a point is displayed on
Figure 3.5. Nevertheless, like for KNN, it is hard to parameterize and can be sensitive
to highly varying point density as shown on Figure 3.4.

3.2.1.5 Delaunay triangulation

In order to avoid the problems of highly varying sampling density, we can structure
point clouds with a 3D Delaunay triangulation (Delaunay, 1934). It was first defined
for 2D point clouds. Given a set of points, its Delaunay Triangualtion tries to maximize
the minimum angle of each triangle. A Delaunay triangulation ensures that there are
no points in the circumcircle of any triangle of the triangulation. Such triangulation
is very useful when processing data with irregular density. Boissonat (1984) adapted
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Figure 3.5 – Illustration of the geometric neighborhood. Here we represent a point
cloud with the spherical neighborhood of a single point (in red).

the original 2D algorithm for 3D triangulations. It has been extensively used in the
literature (Golias and Dutton, 1997; Du and Wang, 2006; Romanoni et al., 2016). Some
work also focused on Delaunay tetrahedrization to reconstruct 3D simplices (Si, 2015).
This tetrahedrization works similarly to the Delaunay triangulation, but generalized
to tetrahedrons and spheres. Even if this structure is computationally efficient with
geometrically simple areas, such as buildings or roads, it is not precise enough on
more complicated areas, like tree foliage, as shown on Figure 3.6b. On this figure,
representing the top of a tree with a few branches, we can remark that points at the
end of the branches are linked to points of the trunk, even if we know that they cannot
be directly connected in the real scene. Another example of a reconstruction of a tree
that do not respect our criterion is shown on Figure 3.7. In this thesis, we do not want
to reconstruct such triangles. Instead we want to create simplices between points only
when they are directly connected in the original scene.
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(a) Scan of the top of a tree.
For simplicity we removed
the foliage and only kept the
top of the trunk and some
branches.
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(b) Illustration of a Delaunay
triangulation on the scan of
the top of a tree. The red trian-
gles show an examples of tri-
angles that we want to avoid
because they connect points
that are not directly connected
in the original tree.
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(c) Illustration of the neigh-
borhood we want to build: the
main branches are separated
and when there is not enough
points to add triangles, we
only add edges.

Figure 3.6 – Illustration of the differences between a Delaunay triangulation and the
neighborhood definition we want to build.
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Figure 3.7 – A zoom on Google Maps’ reconstruction of a tree. In this reconstruction,
the different branches of the tree are connected together in order to form a simpler
polygon which do not represent the original geometry of the scene.

3.2.1.6 Sensor topology

The sensors used for MLS or TLS often have an inherent topology. These sensors
sample a regular grid in (θ,t), where θ is the rotation angle of the laser beam and t
the time of acquisition. In general, the number Np of pulses for a 2π rotation in θ is
not an integer, so a pulse Pi has six neighbors: Pi−1, Pi+1, Pi−n, Pi−n−1, Pi+n, Pi+n+1,
where n = bNpc the integer part of the number of pulses per line. This illustrated
on Figure 3.8a. However, this topology concerns emitted pulses, not recorded echoes.
One pulse might have 0 echo (no target hit) or up to 8 as most modern scanners can
record multiple echoes for one pulse if the laser beam intersected several targets, which
is very frequent in the vegetation or transparent objects for instance. We chose to tackle
this issue by connecting an echo to each echoes of its pulses’ neighbors as illustrated
in Figure 3.8b because we should keep all possible edge hypotheses before filtering
them. There is little work in the litterature that uses this structure (Xiao, Vallet, and
Paparoditis, 2013; Vallet et al., 2015). This mainly comes from the fact that the raw data
of a MLS is often lost during pre-processing steps. However, we think that this data
can provide useful information, and that the sensor topology build with it is the most
efficient structure for our work.
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(a) Representation of the 6-neighborhood
induced by the sensor topology. Each
point correspond to a laser pulse.
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(b) Representation of the adaptation of the
6-neighborhood to a laser recording mul-
tiple echoes. Each point correspond to a
returned echo.

Figure 3.8 – Illustration of the sensor topology-based neighbohood for pulses (3.8a) and
returned echoes (3.8b).
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3.2.2 Edge Reconstruction
As a point cloud can be interpreted as a set of 0D-simplices in a 3D space, we decide

to add 1D-simplices (edges) between all points that must be connected in the real scene.
This way we have a first hint of the local geometry of the scene: its dimensionality is at
least 1. Then we add 2D-simplices (triangles) for all triplets of points that are in a local
2-dimensional neighborhood. The pipeline is illustrated on figure 3.9.
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Figure 3.9 – From a set of points (left), we want to find all real edges (center), in order
to obtain a final simplicial complex (right), that is adaptive to the local geometry of the
scene. The scene represents a traffic sign. Initial points are shown in black, edges in
green and triangles in red.

First, we start by presenting the edge reconstruction process in the case where each
LiDAR pulse receives exactly one echo back. Then we extend the principle the muliple
echo case.

3.2.2.1 Single Echo Case

We first present the pipeline in the case where each pulse of the laser receives
only one echo. This means that the nieghborhood considered in this case is the 6-
neighborhood defined on Figure 3.8a.

We process each pair of neighboring echoes separately. The goal now, is to decide
whether we should build an edge between two adjacent echoes or not. Our main crite-
ria for creating an edge will be the depth difference between the two considered echoes.
This depth difference is computed from a sensor viewpoint. If their depth difference is
small, this means that both points were approximately at the same distance from the
sensor. In this case, we assume that they are part of a same object and we create an
edge between them.

On the other side, when two adjacent echoes have a huge depth difference, this
means that the points are far one from another. To help the edge filtering process, we
distinguished three different situations for this case. They are shown on Figure 3.10:

— in the first case (3.10a), we have two echoes with a huge depth difference falling
on two different objects. In this case, we want to separate them.

— the second case (3.10b) shows two echoes falling on the same object. In this case,
the geometry of the object is too complex compared to the density of acquisition
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(a) Separation (b) Limit case (c) Non-separation

Figure 3.10 – Illustration of the 3 different cases considered for the edge reconstruction
process. The 2 considered echoes are showned in red.

and we can’t decide if we should connect the points or not. By default they will
remain disconnected.

— the third case (3.10c) displays a particular case where we have three or more con-
secutive echoes with a huge depth difference that are nearly aligned. In this case,
the laser pulses probabilby landed on a grazing surface, and we want to link the
three echoes.

To achieve the edge filtering step, we propose the two following criterion:
— C0 regularity: we want to prevent the reconstruction of an edge when the euclid-

ian distance between its source and target is too high.

— C1 regularity: we want to favor the reconstruction of an edge when three or more
echoes are nearly aligned.

In order to be independent from the sampling density, we propose to express the
regularities in an angular manner. Moreover, the sensor topology has an hexagonal
structure, and we propose to treat each line in the 3 directions of the structure inde-
pendently. We then express the regularities as:

— C0 regularity: for an edge (Ep, Ep+1) between two neighboring pulses e1 and e2:

C0(p, e1, e2) = 1− ~ep(e1, e2) · ~lp , (3.1)

where ~ep(e1, e2) =
−−−−−→
EpEp+1

||
−−−−−→
EpEp+1||

and ~lp is the direction of the laser beam of pulse p
(cf. Figure 3.11). C0 is close to 0 for surfaces orthogonal to the LiDAR ray and
close to 1 for grazing surfaces, almost parallel to the ray.

— C1 regularity, for an edge (Ep, Ep+1) between two neighboring pulses:

C1(p, e1, e2) = |1− ~ep−1(e, e1) · ~ep(e1, e2)| · |1− ~ep(e1, e2) · ~ep+1(e2, e)| . (3.2)

C1 is close to 0 is the edge is aligned with at least one of its neighboring edges,
and close to 1 if it is orthogonal to all neighboring edges.

Given two adjacent echoes, we consider that if the C0 regularity is high enough, we
can ensure the real existence of the edge, and don’t have to compute the C1 regularity.
We denote this threshold αm. For all the other cases, we compute the C1 regularity
and filter the edges according to the C0 and αm. To summarize, we add an edge in the
reconstruction if and only if: 

C0 < αm ,

or

C1 < λ·αm·C0

αm−C0
,

(3.3)
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• • •• Ep Ep+1
Ep−1 Ep+2

~ep(e1, e2)
~ep−1(e, e1) ~ep+1(e2, e)

~lp

Adjacent echoes used for computing C0 and C1 regularities
Laser pulses

• Echo
Echo of laser pulse p− 1 and its adjacency to echo of pulse p
Echo of laser pulse p+ 2 and its adjacency to echo of pulse p+ 1

Figure 3.11 – Illustration of the computed regularities C0 and C1.
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αm

Edges kept
Threshold on C0

Threshold on C1

Figure 3.12 – Filtering of edges knowing C0 and C1.

where λ sets how much C1 regularity can compensate for C0 discontinuity. A high
value of λ allows more edges to be kept. This criteria is illustrated on figure 3.12. The
red line represent the αm threshold and the blue line corresponds to the limit cases
between removing and keeping the edges depending on C0 and C1.

We also want to filter edges that would remain unconnected to any other edge in the
cloud, or just connected to one other edge but with different directions. Actually this
often occurs on noisy areas where an edge can pass the regularity criteria "by chance".
However, it is very improbable for this to happen for two neighboring edges. Hence,
we propose an additional criterion to favor a reconstruction which keeps only points
instead of isolated or unaligned edges.

Let e be an edge and {e1, . . . , en} its adjacent edges. We consider that if we find an
edge ei ∈ {e1, . . . , en} such that:

1− ~e · ~ei < ε , (3.4)

where ε is the tolerance on edge reconstruction, e is not alone or unaligned and we
keep it in the simplicial complex.
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~ep(e1, e2)
~ep−1(e, e1) ~ep+1(e2, e)

~lp

Adjacent echoes used for computing C0 and C1 regularities
Adjacent echoes
Laser pulses

• Echo
Echoes of laser pulse p− 1 and their adjacency to echoes of pulse p
Echoes of laser pulse p+ 2 and their adjacency to echoes of pulse p+ 1

Figure 3.13 – Illustration of the computed regularities C0 and C1. From the blue and
red echoes, we selected the closest echoes to the line based on ~ep(e1, e2). The selected
echoes are used to compute the C0 and C1 regularities.

3.2.2.2 Multi Echo Case

In this case, we consider that each LiDAR pulse can have 0 or several returned
echoes. This means we use the neighborhood presented on Figure 3.8b.

We generalize the approach presented in the previous section in the multiple echo
case. This means that the regularities are expressed in an angular manner, and that each
direction in the sensor topology in process independently as well. For the reminder of
this thesis, and because a single pulse can have multiple echoes, we will express, for
a pulse p, its echoes as: Ee

p where e ∈ 1 . . . Np, with Np the number of echoes of p. We
then express the regularities as:

— C0 regularity: for an edge (Ee1
p , E

e2
p+1) between two echoes of two neighboring

pulses:

C0(p, e1, e2) = 1− ~ep(e1, e2) · ~lp , (3.5)

where ~ep(e1, e2) =
−−−−−−→
E

e1
p E

e2
p+1

||
−−−−−−→
E

e1
p E

e2
p+1||

and ~lp is the direction of the laser beam of pulse p (cf

Figure 3.13). C0 is close to 0 for surfaces orthogonal to the LiDAR ray and close
to 1 for grazing surfaces, almost parallel to the ray.

— C1 regularity, for an edge (Ee1
p , E

e2
p+1) between two echoes of two neighboring

pulses:

C1(p, e1, e2) = min
Np−1

e=1 |1−~ep−1(e, e1) ·~ep(e1, e2)| ·minNp+2

e=1 |1−~ep(e1, e2) ·~ep+1(e2, e)| ,
(3.6)

where the minima are given a value of 1 if the pulse is empty. C1 is close to 0 is
the edge is aligned with at least one of its neighboring edges, and close to 1 if it
is orthogonal to all neighboring edges.
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From these regularities, we propose a simple filtering based on the computed an-
gles. Figure 3.13 illustrates theC0 andC1 regularities. Considering two adjacent echoes
Ee1
p and Ee2

p+1, the C0 regularity can be interpreted as the cosine of the angle between
the laser beam direction in p and ~ep(e1, e2). We want to favor low values of the C0

as it corresponds to echoes with a low depth difference. On the other hand, to com-
pute the C1 regularity, we have to process all the echoes of the preceding and follow-
ing pulses along the 3 directions of our structure. For the preceding and following
pulses, we select the echo which minimizes | 1 − ~ep−1(e, e1) · ~ep(e1, e2) | (respectively
| 1 − ~ep+1(e2, e) · ~ep(e1, e2) |). This gives us an information about the tendency of the
considered edge to be collinear with at least one of its adjacent edges. We will favor
the most collinear cases.

We decide to add an edge in the reconstruction if and only if it satisfies the crite-
rion of Equation 3.3. The pseudo-code for the edge reconstruction is presented in Algo-
rithm 1.

Algorithm 1 Edge reconstruction
SC ← V
for Ei

p ∈ V do
for Ej

q ∈ Neighborhood(V , Ei
p) do

if C0(p, Ei
p, E

j
q) < αm then

SC ← Edge(Ei
p, E

j
q)

else if C1(p, Ei
p, E

j
q) <

λ·αm·C0(p,Ei
p,E

j
q)

αm−C0(p,Ei
p,E

j
q)

then

SC ← Edge(Ei
p, E

j
q)

end if
end for

end for
return SC

We also filter out unconnected edges, or edges not aligned with any other simplex,
in the same way as in the single echo case.

3.2.2.3 Y-junctions

When processing LiDAR point clouds with multiple echoes per pulse and using the
sensor topology, there can be some edges added between two different echoes of a
same pulse and the same echo of the next pulse. This is what we call a Y-junction. We
do not want to keep such junctions in our simplicial complex as it is highly improbable
that an object, when acquired by a laser that has the shape of a Y-junction. The different
junctions are presented on Figure 3.14.

Y-junctions can be penalized by adding a cost for edges sharing an echo and whose
other echo belong to an identical pulse. However, we did not observe such configura-
tions in our experiments so we did not implement a penality for Y-junctions.

3.2.3 Local Hole Filling

Once we obtained a set of edges in our point cloud, a simple approach to filter trian-
gles is to only keep the triangles for which three edges have passed the edge filtering
described above. This means that every triplet of self-connected edges will create a
triangle. Even if this method is an easy way to retrieve most triangles of the scene, it
prevents recovering triangles in areas where edges are close to the threshold presented
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(d) 2 edges recon-
structed: invalid.
This is the Y-junction
case.

Adjacency
Laser pulses

• Echo

Figure 3.14 – Illustration of the different ways of adding edges between neighborhing
echoes in the multiple echo case. Figure d shows the Y-junction which is invalid.

1

2

3

4

Figure 3.15 – Representation of a wedge (red) and its adjacent wedges. The limit be-
tween the triangles of each wedge is represented with a dotted line. The dashed lines
stand for the directions of our structure. Wedges adjacent to the red one are numbered
from 1 to 4.

in previous section, in which case triangles will often have some edges just below and
some just above the threshold so most triangles would be filtered out.

In order to regularize the computed triangulation, we want to favor triangles that
are coplanar to other adjacent triangles, in the same way we favored edges aligned
with at least one neighboring edge. This is motivated by the fact that we want to en-
sure spatial regularity in our scene. In fact, if a single triangle is created, this usually
means that a larger, locally planar, object is present in the scene at this place, and other
triangles close to the first one should be reconstructed as well. If this is not the case
and we can’t find any other coplanar structure close to the reconstructed triangle, this
usually means that the triangle was created by error as we find very unlikely the cases
where a single triangle is left alone in the reconstruction. Moreover, we want to re-
move all the triangles that may be formed by edges in noisy parts of the cloud as we
cannot ensure the existence of such simplex in the original scene. However we decide
to keep the edges as they passed the edge reconstruction step and they provide useful
information (pairs of points are connected).

As triangles are 2D objects, we want to define a 2D C1 regularity by separating
between C1 regularity along two directions. Unfortunately, a triangle has 3 neighbors.
We solve this problem by filtering pairs of adjacent triangles (that we will call wedges)
which have four adjacent wedges in 2 separate directions as illustrated on figure 3.15.

The filtering we propose is to keep wedges that are C1 regular with neighboring
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wedges in the two directions different, where C1 regularity is defined as the criterion:

1− |WN ·WN
i | < ω , (3.7)

where W is a wedge whose normal is WN and {W1, . . . ,Wn} are its adjacent wedges
whose normals are

{
WN

1 , . . . ,W
N
n

}
respectively. This means, on figure 3.15, that if the

red wedge is only C1 regular with the wedges 1 and 3, it will be discarded, while it
will be kept if it is regular with only 1 and 2. ω is the tolerance on the co-planarity of
the two wedges to define regularity. The rationale behind this choice is the same as
for the edges: being irregular with both neighbors in one direction means that we are
on a depth discontinuity in that direction that cannot be distinguished from a grazing
surface, while regularity with at least one neighbor in both directions means that the
wedge is part of a (potentially grazing) planar surface.

The pseudo-code for the full reconstruction is presented in Algorithm 2.

Algorithm 2 Full reconstruction

SC ← EdgeReconstruction(V)
for W ∈ Wedges(SC) do

for Wi ∈ NeighborhingWegdes(W,SC) do
if 1− |WN ·WN

i | < ω then
SC ← TriangleFromWedge(W ) % Add the two triangles forming the wedge

end if
end for

end for
return SC

3.3 Experiments

We now present some results using our method, to reconstruct MLS data as a sim-
plicial complex. In this part, every simplicial complex will be represented as follow:

— triangles in red,
— edges in green,
— points in black.

Note that following its mathematical definition, the endpoints of an edge of a sim-
plicial complex also belong to the complex, and similarly for the edges of a triangle,
but we do not display them for clarity.

We implemented the pipeline presented before, first with only the edge filtering
and the simple triangle reconstruction from edge effectively forming a triangle. Then
we added the triangle filtering step. We compared our results with a naive filtering
on edge length where triangles in the simplicial complex correspond to all triplets of
edges forming a triangle.

3.3.1 Dataset

For all the following tests, we used data from the Stereopolis vehicle (Paparoditis
et al., 2012). The scenes have been acquired in an urban environment (Paris) and are
mostly composed of roads, facades of Hausmannian buildings, trees, and urban plan-
ning. In order to facilitate the process, the entire acquisition has been cut in blocks,
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(a) αm= 0.01 (b) αm= 0.05 (c) αm= 0.1 (d) αm= 0.5

Figure 3.16 – Influence of αm. λ is fixed to 10−4. The scene represents a traffic light on
the road. The best result here is the one shown on Figure 3.16b. Lower values of αm
connect points that are not part of a same object and highest values of αm prevent the
creation of most edges and triangles.

corresponding to 1 second of scan. Each block is processed independently. We do not
look for edges nor triangles across adjacent blocks. This causes the apparition of small
gaps on some results, they correspond to the limit of each block.

3.3.2 Parameterization

The parameterization step was conducted in two experiments. In the first set of
experiments, the impact of parameters αm and λ were studied. αm and λ parameters
condition the edge filtering step. For the remaining parameters ω and ε, their influence
was tested in a second set of experiments. The last two parameters correspond to the
homogenization part. Because all our criteria depend on trigonometric functions (the
dot products of normalized vectors is the cosine of their angle), all these parameters
are chosen in [0, 1]. Lastly, we compare both methods with the naive filtering on edge
length.

3.3.2.1 Parameterization of αm and λ

We first study the influence of αm. A high value will discard many edges and pre-
vent the formation of triangles, whereas a low value will preserve too many edges on
actual discontinuities. The results are presented in figure 3.16. We see on the left ex-
ample that on the one hand, low values of αm allow the formation of edges between
the bottom of the traffic sign and the road. On the other hand, high values of αm show
that fewer triangle are present in the reconstruction, even on the road as shown on
Figure 3.16d.

The second parameter of this method, λ is a trade off between the creation of elon-
gated edges (which are part of the scene in the grazing surface case) and the removal
of edges connecting points far from one another. With this paramter, we favor sets of
collinear edges (which can be found in the grazing surface case). Figure 3.17 illustrates
the tuning of this λ parameter. On the one hand, for high values of λ (right), edges be-
tween window bars and walls or insides of buildings are created. On the other hand,
when λ is too low (left), most of the edges are not retrieved. For these cases, the num-
ber of remaining edges is low (hundreds of edges for millions of points), and lowering
λ removes edges that may be useful for human interpretation of the reconstruction.
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(a) λ = 10−6 (b) λ = 10−4 (c) λ = 10−2 (d) λ = 0.1

Figure 3.17 – Influence of λ. αm is fixed to 0,05. The scene represents a facade in the
grazing surface case.

(a) No triangle filter-
ing

(b) ω = 10−5 (c) ω = 10−4 (d) ω = 10−3

Figure 3.18 – Parametrization of ω. ε is fixed to 5 · 10−3. The scene represents a road in
the grazing surface case. Increasing ω higher than 10 · 10−3 do not significantly change
the results.

3.3.2.2 Parameterization of ω and ε

For this set of experiments, αm and λ were fixed respectively to 0.05 and 10−4. The
influence of the last two parameters is especially visible on noisy areas and grazing
surfaces, where the level of detail of the scene is close to the acquisition density. We
first studied the effect of parameter ω on triangles. For high values of ω, we expect
that many triangles will be retrieved, especially in the grazing surface case, where
sometimes our algorithm can struggle to retrieve edges in the 3 directions of the neigh-
borhood presented on Figure 3.8b (but performs well on two directions). The results
are shown on figure 3.18 and illustrate our problem in the grazing surface case. Fig-
ure 3.18a is the baseline computed previously. As expected, the number of triangles
increases for high values of ω and the reconstruction of the road is less holed and noisy
than without the triangle filtering part. The main drawback of the homogenization
based on wedges is its propensity to let a few triangles in noisy areas like tree’s foliage.

The second parameter ε is a regularization term on the edges. Low values of ε will
decrease the number of edges, thus leaving many points not linked to others. Results
are presented in figure 3.19. As previously, the figure on the left shows the output of the
first filtering step. Figures corresponding to lowest values of ε respect our previsions:
the number of edges keeps decreasing whereas the number of points increase. A side
effect of using an edge regularization based as defined in Equation 3.4 can be seen on
figure 3.19b, as there is nearly no edge in the tree’s foliage.
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(a) No triangle filter-
ing

(b) ε = 10−5 (c) ε=5 · 10−3 (d) ε = 10−2

Figure 3.19 – Parametrization of ε. ω is fixed to 10−3. The scene represents a tree with
its foliage. In the bottom right corner we can see a facade

3.3.3 Results

In this section we present some results computed on the dataset presented earlier.
We compare a simplicial complex reconstruction without a geometric homogenization
(which we denote edge filtering) and a reconstruction with a geometric homogenization
(which will be refered to as triangle filtering). We compare the edge filtering and the
triangle filtering to a naive baseline introduced in the following paragraph.

3.3.3.1 Baseline

We implemented a naive filtering baseline. This method first filters edges according
to their length: we consider that two adjacent points that are too far from one another
are not part of the same object. This means that the only criterion for deciding the
reconstruction of an edge is its length. Then, we reconstruct a triangle for every triplet
of self-connected edges. The final reconstruction is a simplicial complex too. We name
this method the naive filtering.

3.3.3.2 Results

In this part, we compare our two methods (edge filtering and triangle filtering) to the
baseline presented before. The naive filtering is based on a 0.5 meters threshold. For
both methods, αm and λ are respectively fixed to 0.05 and 10−4. Furthermore, for the
triangle filtering, ω and ε are fixed to 10−3 and 5 · 10−3 respectively. A video of the re-
sults is available on Youtube (Sensor-Topology based simplicial complex reconstruction from
mobile laser scanning). To our knowledge, there exist no benchmark for the evaluation
of simplicial complexes reconstruction, nor any dedicated metric. As the quality of the
reconstruction may be hard to evaluate, we validate our results visually. Regarding
the processing times, the baseline and the edge filtering method run in approximately 5
seconds for a 1 second acquisition block. The triangle filtering method, due to its design,
is a bit longer and run in approximately 1.5 minutes for a 1 second acquisition block.

Figure 3.20 presents a reconstruction in a complex urban scene. Unlike the naive
filtering, our methods are able to retrieve thin objects such as poles or windows bars
without merging them to the closest objects. This is illustrated on figure 3.20. The top
right image of this figure is an extract from Google Streetview to help interpretation.

Figure 3.21 focus more on specific areas of the scan. The first row shows the naive
filtering method, whereas the second and third rows present respectively the edge
filtering method and its extension: the triangle filtering. We remark that the naive fil-
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tering method fails to retrieve limits between objects (e.g. between poles and road, or
people and buildings), whereas both of our methods are able to separate these objects.
The main advantage of the triangle filtering over the edge filtering that can be seen
here, is that the triangle filtering method helps to reduce the noise that occurs in com-
plex areas such as tree foliage or grazing surfaces. We assume that in complex areas we
cannot ensure the existence of connections between some points and will favor a re-
construction that remains careful on such areas. This is why the second method, which
produces a simplicial complex less noisy than the reconstruction of the edge filtering
method, is considered a more appropriate baseline for further developments, even if
the triangle filtering discards some edges or triangles that had been well retrieved by
the edge filtering method on grazing surfaces.

(a) Image of the scene from Google (View of the
Mabillon street next to the corner of Lobineau street
(Paris))

(b) Naive method

(c) Edge filtering method. The visual artifacts
seen on the road and the pavement are due to
rendering issues that did not appear for sim-
plicial complexes produced by other methods.

(d) Triangle filtering method.

Figure 3.20 – Results on a complete urban scene, with road, facades, poles and pedes-
trians.
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(a) Naive filtering

(b) Edge filtering

(c) Triangle Filtering

Figure 3.21 – Comparison of the three methods: the naive filtering, the edge filtering
and its extension with the triangle filtering. From left to right, the scenes represent: a
window, a model in a showcase, a tree and barriers on a pavement.

3.4 Weighted Simplicial Complexes Reconstruction

We noticed that our reconstruction method was less accurate in part of the data that
are far from the sensor. In remote areas, acquired points tend to be further from one
another. Thus, the regularities as defined in Section 3.2 discard edges more frequently.
Hence, we decided to take into account the distance of the points to the sensor. To
achieve this, we modify the C0 regularity introduced in Section 3.2.

3.4.1 Weighted Reconstruction
From the C0 regularity, we derive the following weighted Cw

0 regularity:

Cw
0 (p, e1, e2) = C0(p, e1, e2) + κ · lp

lmax
, (3.8)

where lp is the distance from the sensor to the point, lmax is the maximum distance be-
tween a position of a laser and one of its recorded echoes and κ is the parameter con-
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(a) κ= 0 (b) κ= 0.1 (c) κ= 0.2 (d) κ= 0.3

Figure 3.22 – Influence of κ. The scene represents a road far from the laser, with a
facade in the background. The main differences can be seen on the road, which is
filled as κ increases; and on the edges between facades and small objects. The black
circles show areas with the most differences.

ditioning the influence of the weighting term. Cw
0 is no longer independent from the

sampling and varies between 0 and 1 + κ. This formulation allows for our reconstruc-
tion to stay consistent in areas close to the sensor, while favoring the reconstruction of
edges in more distant areas.

The influence of this parameter can also be improved by adding a threshold on
edge length. This way, we prevent the apparition of long edges between objects far
away from one another (e.g., with a depth difference of several meters). We propose
this approach since it is very unlikely that an edge of several meters long links two
adjacent echoes. Such a configuration would mean that there is an object in the scene
big enough to have a side of several meters, and that this object is close to parallel to
the laser beam. Intuitively, this description could correspond to a building. However
in our data, there are very few points behind the main facade of a building and they
are too sparse to let the algorithm find a possible shape.

3.4.2 Parameterization of κ

In this section, we investigate the influence of the weighting parameter κ on the
reconstruction. We conducted two different experiments: the first one shows the in-
fluence of κ if we do not threshold edge length. The second one corresponds to the
case where we limit the maximum length of edges, thus enabling the reconstruction of
many more triangles and edges.

For this set of experiments, the values of αm, λ, ω and ε where respectively fixed
to: 5 · 10−2, 10−3, 10−3 and 5 · 10−3. We expect the Cw

0 regularity to improve the recon-
structions using only the C0 regularity. Indeed, this would allow the creation of more
edges in the simplicial complex, in remote areas, where they are more easily discarded.
These edges should also encourage the creation of triangles on places that contained
holes, and in the farthest places of the scene. The results are shown on figure 3.22. The
top left figure is the output produced using the triangle filtering method introduced in
Section 3.2. We see that weighting the C0 regularity helps our algorithm to retrieve
edges and triangles that were lost before. Low values of κ fill some holes in the road,
whereas high values of κ tends to create edges between distant objects. The number
of points, edges and triangles for each simplicial complex is shown in table 3.1. There
is a significant decrease of the number of points and egdes when κ rises, whereas the
number of triangles increases a bit.
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Triangles Edges Points
κ = 0 737,596 364,730 12,090
κ = 0.1 744,702 353,968 10,944
κ = 0.2 752,726 333,926 10,331
κ = 0.3 758,714 348,742 9076

Table 3.1 – Number of triangles, edges and points per simplicial complex.

(a) κ = 0 and no edge
length filtering

(b) κ = 0.03 and no
edge length filtering

(c) κ = 0.2 and edge
length filtering of 10
meters

(d) κ = 0.5 and edge
length filtering of 10
meters

Figure 3.23 – Influence of κ. The scene represents a facade far from the laser. The
influence of κ is mostly visible on the top left corner of the facade.

The results of the second set of experiments are shown on figure 3.23. Here, we
wanted to study the influence of κ when we prevent the reconstruction of too long
edges. We fixed a maximum length for all edges to 10 meters. The figure on the left
corresponds to a reconstruction without any weighting. Next, the weighting without
any thresholding is done for κ = 0.03. Last, we show two examples in which we set a
threshold on the edge length. This threshold is set to 10 meters. κ is fixed respectively
to 0.2 and 0.5. Using this threshold while increasing the value of κ allow the creation of
a reconstruction containing less holes while preventing the creation elongated edges.
The influence of κ and the threshold on edge length is especially visible in figure 3.23c.
However, a too high value of κ creates edges between objects which we do not want to
connect.

3.4.3 Results

In this part, we compare the weighted reconstruction to the triangle filtering method
presented in Section 3.2. For these methods, αm , λ, ω, ε and κ are respectively fixed to
0.05, 10−4 , 0.1, 5 × 10−3 and 0.4. As for the previous set of experiments, we visually
validated the results. Figure 3.24 presents a reconstruction in a complex urban scene
with facades, roads, trees . . .. The figure on the left shows the results of the unweighted
method (see Section 3.2) and the right one shows the weighted reconsturction. There
is nearly no difference on small objects like poles or pedestrians. However, we can see
that the weighted method is able to retrieve more triangles in the limits of laser’s scope.
This is showned by filled facades in the top of the image, and also by a smoother re-
construction of the road, even if reconstructing the whole road would recquire a higher
value of κ that would perform very poorly on the remaining parts of the reconstruc-
tion.

A zoom on specific areas of the scene (windows, fences . . .) is visible on Figure 3.25.
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(a) Unweighted reconstruction (Guinard and
Vallet, 2018a)

(b) Weighted reconstruction (Guinard and Val-
let, 2018b)

Figure 3.24 – Results on a complete urban scene, with road, facades, poles and pedes-
trians. The black circles show areas with the most difference.

(a) Unweighted reconstruction (Guinard and Vallet, 2018a)

(b) Weighted reconstruction (Guinard and Vallet, 2018b)

Figure 3.25 – Comparison of the two methods: the unweighted and the weighted meth-
ods. From left to right, the scenes represent: a window, a road in the grazing surface
case and fences.

We note that the weighting of the edge reconstruction process does not harm the
final reconstruction in areas where the unweighted reconstruction performed well.
Most differences between both reconstructions happen on grazing surfaces, where the
weighted method is more efficient. The number of triangles, edges and points are pro-
vided in Table 3.2. Again, the number of points and edges dicreases and the number
of triangles rises a bit. This is mainly due to the fact that by authorizing more edges in
the first step of the reconstruction, the weighted method can produce more triangles
later, thus dicreasing the number of remaining edges and points.
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Triangles Edges Points
Unweighted 1,143,482 755,582 13,757

Weighted 1,153,932 713,064 11,942

Table 3.2 – Number of triangles, edges and points per simplicial complex in Figure 3.24.

In conclusion, the add of the weighting parameter let us improve the results in re-
mote parts of the scene, but it forces the user to have some knowledge on the scene
organization to parameterize this method. Moreover, the reconstruction is still not per-
fect (portions of road are not reconstructed as triangles), hence we will use the results
from the unweighted method for the remaining of this thesis.

3.5 Conclusion

3D-simplicial complexes are composed of points, edges and triangles. This allow
us to build a representation of a scene that is adaptive to the local geometry. Unlike
for meshes, we choose here to reconstruct every simplex for every dimension, and
this prevents all the problems that can appear when reconstruting meshes on object
whose level of detail is too close to the geometric resolution of the acquisition, like
over-simplification. This occurs, for exemple, when acquiring the foliage part of a tree.
In our case, we can just add edges, or let points unconnected. For a tree, the trunk and
the main branches will be reconstructed as a set of triangles, whereas the twigs will be
represented with edges and the foliage as a set of points.

Moreover, we used the sensor topology to create an adjacency relationship between
points. This adjancency is independent from the sampling of the scene and help us
take into account all the small details of the scene. We also want to emphasize on the
fact that this method does not recquire any assumption on the scene geometry; it only
needs points’ coordinates and the sensor position and acquisition time for each point.

However, this reconstruction suffers from its high locality: it is still noisy and con-
tains thousands of simplices for regions that could be represented with just a few ones
(e.g. the road). Also, this reconstruction can be harmed by occlusions: the part of a
building behind a trafic sign will not be reconstructed. Furthermore, the reconstruc-
tion contains mainy holes, especially in areas far from the sensor. We showed that the
use of wedges and the weighting of the reconstruction could overcome part of this
drawback, but it is not sufficient to recover from big occlusions. A more global hole
filling process (Chauve, Labatut, and Pons, 2010; Harary, Tal, and Grinspun, 2014; Van
Sinh, Ha, and Thanh, 2016) should improve the reconstruction on such parts of the
scene.

Last, this method gives strong hints on the local geometry of each part of the scene.
Thus, it can serve as a baseline for a generalization method (Hoppe, 1996; Popović
and Hoppe, 1997; Nan and Wonka, 2017), or a semantic segmentation method (Rusu
et al., 2009; Jeong, Yoon, and Park, 2018). In the following chapter, we will use this
reconstruction as a baseline to detect planar parts of the scenes.
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This chapter focuses on the generalization of 3D-simplicial complexes. We call gen-
eralization of 3D-simplicial complexes the process of aggregating simplices of identical di-
mensions in order to obtain a more compact, yet geometrically accurate representation
of the data. We expect that this representation can be used for guiding 3D reconstruc-
tion algorithms. In particular, we study the generalization of the 2D simplices (i.e. the
triangles) of our simplicial complexes. We first investigate different ways of represent-
ing the geometry of urban areas. Then, we present our work on the piecewise-planar
approximation of 3D point clouds, including the `0-plane pursuit algorithm. The mo-
tivation behind this algorithm is that each triangle of our simplicial complex-based re-
construction is part of a larger planar structure. Thus, we simplify the reconstructed
meshes of our reconstructions as a set of planar regions. We evaluate this approach on
MLS, TLS and ALS data.

4.1 Geometric Representation of Urban Areas

This section investigates different techniques used for the geometric representation
of urban areas. Urban scenes have specificities, as they combine large and simple ob-
jects, such as roads or facades, with small and intricate objects like traffic signs. This
means that, in order to approximate an urban scene with a high geometric fidelity, one
should be able to adapt the degree of simplification to the geometric regularity of the
objects considered.

We distinguish three different types of approach: procedural approaches (Haala
and Kada, 2010), plane-fitting approaches, and segmentation-based approaches. For a
more extensive review of current approaches for representing the geometry of urban
scenes, we refer the reader to Dore and Murphy (2017).

4.1.1 Procedural Approaches

A first approach to the reconstruction of urban areas is to set rules to charactetize
dominant or repetitive features in the data (Milde et al., 2008; Becker and Haala, 2009;
Lafarge et al., 2008; Toshev, Mordohai, and Taskar, 2010). These rules are especially
useful in the context of building reconstruction: a building can be seen as a main facade
with a set of doors and windows. The doors must touch the floor and cannot exceed
a certain size. The windows are usually regularly spaced out and have similar sizes,
especially when they lay on the same floor. Using these simple rules, one can easily
represent a geometrically simple building. Vanegas, Aliaga, and Beneš (2010) used
Manhattan rules to reconstruct buildings: the authors state that the majority of objects
in urban scenes are structured along three main orthogonal directions. Tutzauer and
Haala (2015) combined the geometry and radiometry of a scene to reconstruct facades.
Ponciano, Trémeau, and Boochs (2019) showed that reinforcement learning techniques
could be used to improve a procedural classification approach. Probabilistic grammars
can also be used for texturing buildings (Li et al., 2018).

4.1.1.1 Grammar-Based Approaches

The split grammars (Wonka et al., 2003) are a first simple grammar. It consists
of a set of rules splitting the data along a single feature dimension at a time. This
approach has been used for building reconstruction based on footprints (Larive and
Gaildrat, 2006) or LiDAR scans (Wan and Sharf, 2012). Martinovic and Van Gool (2013)
convert a set of input images to lattices in order to decrease the complexity of the
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problem. They then define and learn an optimal 2D split grammar and demonstrate
that the generated grammar is as good as human-generated grammars. Some work
even proposed interactive tools to edit the proposed reconstruction (Demir, Aliaga,
and Benes, 2016). Teboul et al. (2011) extended this concept to binary split grammars,
where a rule used to split walls and floors is represented as a set of smaller, simpler
rules that split the data in two parts. This allow the grammar to be more adaptive.

4.1.1.2 Sampling-Based Approaches

Markov Chain Monte Carlo (MCMC) have been used for shape analysis (Talton
et al., 2011), leading to new reconstruction algorithms (Dick, Torr, and Cipolla, 2002;
Huang, Brenner, and Sester, 2013). Tran and Khoshelham (2019) uses reversible jump
Markov Chain Monte Carlo (rjMCMC) to reconstruct interiors of buildings as a way to
find the configuration of 3D scenes using planar primitives extracted by a RANSAC.
Their algorithm rely on probabilities that each cell defined by primitive extraction is
part of the building or not. rjMCMC has also been useful for building facade recon-
struction (Brenner and Ripperda, 2006; Ripperda and Brenner, 2009).

4.1.1.3 Classification-Based Approaches

Support Vector Machine (SVM) have been used to generate a grammar (Tsochan-
taridis et al., 2004). Dehbi et al. (2017) used a SVM to generate a weighted context-free
grammar which is then used with a Markov Logic Network to recreate buildings from
combined images and point clouds.

4.1.1.4 Neural Networks

Recently, some work started using NN to learn grammars and reconstruct buildings
(Zeng, Wu, and Furukawa, 2018) or smaller objects (Sharma et al., 2018). Nishida et
al. (2016) proposed a method for generating 3D buildings from sketches. Kelly et al.
(2017) used a CNN to extract windows, doors, and facades corners and use a global
data fusion step to re-create a full city.

In our case, we consider large sets of 3D points, without semantic information.
We also want our method to be completely agnostic to external informations or user-
based knowledge, as we believe it is better for scalability and adaptivity to different /
unkown data. For these reasons, we operate directly on the points’ coordinates and do
not use grammar-based methods in this thesis.

4.1.2 Primitive-Based Approaches

4.1.2.1 Least Square-Fitting

The least squares method is the standard approach for fitting parametric models
on 3D data. It consists in selecting the models for which the sum of square distance
between the points and the model is minimal. This method has been used extensively
to find relevant primitives to approximate 3D point clouds as set of planes (Xie et al.,
2003; Dzitsiuk et al., 2017). Tatavarti, Papadakis, and Willis (2017) partition their data
into cubical regions and use a least square algorithm to fit a plane in each cell. This
approach has also been used to reconstruct facades from 3D point clouds (Martinovic
et al., 2015).
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4.1.2.2 RANSAC

The RANSAC algorithm (Fischler and Bolles, 1981; Schnabel, Wahl, and Klein,
2007) is one of the most popular method for extracting planes in 3D point clouds.
Given a dataset composed of points, this method works by iteratively fitting a model to
a random subset of the data. Points that are well-approximated by the model are called
inliers, while those who are not are labeled as outliers. After each iteration, the inliers are
removed from the data and the algorithm continues to process the outliers. In the case
of piecewise-planar approximation of 3D data, the model is simply a plane equation.
This approach has been thoroughly investigated in the literature (Asvadi et al., 2016;
Dzitsiuk et al., 2017). Holzmann et al., 2017 used a RANSAC-based approach for plane
extraction in point clouds, and a reconstruction algorithm based on extracted planes
to build a Manhattan-like structure. Moreover, Xu et al., 2015 introduced a weighted
RANSAC approach with a soft threshold voting function. It allows them to lower the
number of spurious planes and improve segmentation quality.

4.1.2.3 Local Geometry-Based

Another way of finding planes in 3D data is to use the planarity feature as detailed
in Demantke et al. (2011). The planarity of a point is determined with the eigenvalues
of the co-variance matrix of the point’s neighbors coordinates. Chauve, Labatut, and
Pons (2010) use a planarity feature to detect planes. Boulch, La Gorce, and Marlet, 2014
order points according to their local planarity to seed a region growing algorithm. In
Ma et al. (2013), the authors find planes’ normals by selecting points with the lowest
curvature, and iteratively growing regions from these points.

4.1.2.4 Line-Based Approaches

Planes can be interpreted as sets of non-parallel lines: two lines that are not parallel
form the basis of a plane. Holzmann et al. (2018) propose to find planes using sets of
orthogonal lines that are close enough to be considered part of a same object. Their
method allows them to detect less spurious planes in urban areas.

4.1.2.5 Neural Networks

Finally, recent work proposed to train a neural network to fit primitives, either from
an unsupervized (Sharma et al., 2018; Tulsiani et al., 2017) or a supervized method (Zou
et al., 2017). Li et al. (2019) introduced SPFN, a neural network able to detect various
primitives in point clouds. Their network first find pointwise properties and use a
differential model estimator to generate primitives.

4.1.3 Segmentation Approaches

One of the main challenges after extracting planes in a 3D point cloud, is to find
the limits of the region in the data supported by the considered plane. For some ap-
proaches, like the RANSAC algorithm, the 3D shape of each region can be easily re-
trieved thanks to the set of inliers and outliers. However, this is not the case for all plane
extraction methods. Some methods propose to compute large planar arrangements to
find the the limits of each planar regions (Nan and Wonka, 2017). However, such
planar arrangements are usually computationally heavy if the number of primitives
exceeds a few dozens. In order to limit the computational complexity of the problem,
it can be interesting to combine plane extraction with point cloud segmentation.
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We now focus on segmentation approaches for 3D point clouds by presenting dif-
ferent methods either from a local point of view, such as region growing, or from a
more global point of view.

4.1.3.1 Region Growing

Region growing is one of the most prevalent segmentation approaches for the seg-
mentation of 3D data (Cohen-Steiner, Alliez, and Desbrun, 2004; Whelan et al., 2015;
Fang, Lafarge, and Desbrun, 2018). Vo et al. (2015) use an adaptive octree on which
they grow regions, based on each voxel’s geometric features. They argue that their
approach is more robust than standard region-growing-based segmentations, and that
it improves segmentation results. The RAPter algorithm (Monszpart et al., 2015), a
reconstruction algorithm based on regular arrangements of planes, is initialized using
a region growing-based over-segmentation of the input point cloud. This algorithm
takes into account plane primitives and inter-plane relations. Whelan et al., 2015 ar-
gue that a local curvature-based region growing algorithm can outperform RANSAC-
based approaches for segmenting point clouds. Region-growing has also been coupled
with a regularization step based on simple relationships between extracted primitives
(coplanarity, parallelism and orthogonality) in Oesau, Lafarge, and Alliez (2016).

4.1.3.2 Mean-Shift

One of the main other approaches for segmenting 3D data is the Mean-shift algo-
rithm (Fukunaga and Hostetler, 1975; Cheng, 1995). It seeks maxima of a density func-
tion, given discrete data samples. Thus it is appropriate for LiDAR data processing.
This method has the advantage of being non-parametric. Dai et al. (2018) and Ferraz
et al. (2012) use a mean-shift method for individual tree segmentation from airborne
LiDAR point clouds.

4.1.3.3 Voxel-Based Approaches

LiDAR data are usually large and hard to process: a single building can contain
more than 100,000 points. Hence, it is relevant to propose to arrange points along a
3D grid structure (Douillard et al., 2011; Maturana and Scherer, 2015a), where each cell
is called a voxel. We can then process each voxel separately. The main advantage of
using voxels is to decrease computation time. This allows to compute computationally
expensive features at a more global scale, directly on voxels (Boerner, Hoegner, and
Stilla, 2017; Plaza-Leiva et al., 2017). These features can then be used for solving seg-
mentation (Xu et al., 2017) or semantic segmentation (Maturana and Scherer, 2015b;
Tchapmi et al., 2017) problems. Zhou and Tuzel (2018) learned the features and object
bouding boxes to improve semantic segmentation results. Poux and Billen (2019) use
a voxel-based approach for the semantic segmentation of 3D point clouds, in which
per-voxel descriptors are computed to identify geometric continuity between adjacent
voxels.

The main drawback when using voxels is that all the geometric details smaller than
1 voxel are lost. This means that there is a trade-off between computationnal efficiency
and geometric fidelity that is usually dependent on the scene.

4.1.3.4 Graph-Based Approaches

Point clouds can be structured by the adjacency relationship between points, such
as the relationship defined by nearest neighbors, a triangulated mesh, or a 3D Delau-
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nay triangulation (Boissonnat, 1984). This allows us to represent the cloud as a graph,
of which the vertices are the 3D points. As a benefit, efficient graph-structured clus-
tering methods can be used, typically relying on graph-cuts (Klasing, Wollherr, and
Buss, 2008; Strom, Richardson, and Olson, 2010). Landrieu and Obozinski (2017) in-
troduced the `0-cut pursuit algorithm, a greedy working-set method for computing
piecewise constant approximation of signals on such graphs, and proved its efficiency
on point clouds in Landrieu et al. (2017). Dutta, Engels, and Hahn, 2018 adapted the
Normalized Cut algorithm (Shi and Malik, 2000), an algorithm originally designed for
perceptual grouping in raster images, to segment 3D LiDAR point clouds.

One of the main dangers when clustering point clouds is to either lose information
on areas with high geometric complexity, or to over-segment the cloud. Thus, some
work focus on over-segmentation techniques to then merge the smaller segments and
generate different models at different LoDs (Attene and Patanè, 2010; Lejemble et al.,
2018). Nan and Wonka (2017) construct an arrangement of planes from which a mani-
fold polyhedral surface model without boundary is extracted, which can be seen as a
piecewise planar approximation.

For a more complete state-of-the-art on primitive extraction and segmentation, es-
pecially in a 3D reconstruction context, we refer the reader to Berger et al., 2017.

4.1.4 Evaluation of 3D Models of Urban Scenes

Last, evaluating the performances of such method is not a straightforward task.
Historically, the evaluation has often been visual (Durupt and Taillandier, 2006). Some
work focused on a voxel-based evaluation (McKeown et al., 2000; Schuster and Wei-
dner, 2003). By contrast, Yu, Helmholz, and Belton (2016) evaluated grammar-based
methods directly in 3D, by comparing it to a manual reconstruction of the processed
scene. Recently, Ennafii et al. (2019) proprosed to train a classifier to detect modelling
errors. To this end they compute various geometric and optical features. In this chap-
ter, we focus only on the segmentation process, and the final reconstruction will be
evaluated in Chapter 5.

4.2 Piecewise-Planar Approximations

In this section, we present the `0-plane pursuit algorithm developed during this the-
sis. This algorithm is used for the piecewise-planar approximation of 3D point clouds,
and is an adaptation of the `0-cut pursuit algorithm (Landrieu and Obozinski, 2017).

4.2.1 Graph Structure

We denote V the set of 3D points in the input data, characterized by their position
pv ∈ R3. We consider that a good planar approximation of our data should contain
as few planes as possible, while remaining geometrically faithful to the original data.
As we are working with urban areas containing many man-made objects—which of-
ten have simple shapes—and that we are seeking compact representations, we favor
simple interfaces between planes as well.
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• •
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(a) Illustration of the data term: minimiza-
tion of the distance between each point (black
circles) and its associated plane (shown as a
green line).

•

•

•

•

•

•

•

•

•
•
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•

•

•

•

•
•

•

(b) Illustration of the regularization term: cre-
ating regions with simple shapes. Green
points and red points belong to two different
regions. The yellow line shows the boundary
between these regions.

Figure 4.1 – Representation of our model: we aim at minimizing the distance between
points and their associated plane, while favoring simple interfaces between regions
associated with the same planes..

4.2.1.1 Weighted Adjacency Graph

We use a weighted oriented graph structure G = (V,E,w) to represent our data,
where E ⊂ V × V characterizes the adjacency between each point and w ∈ RE

+ stands
for the edge weight, encoding the proximity between points.

If the input 3D data already has a graph structure (for instance if it is a mesh),
we can directly use this structure as adjacency graph. If the data is an unstructured
point cloud, there are several possibilities for building an adjacency graph structure i.e.
defining which points are neighbors: k-nearest neighbors, triangulated meshing, 3D
Delaunay triangulation, among others. We propose to use the same graph adjacency
as the one introduced in Chapter 3, which exploits sensor topology to connect scanned
points with edges and triangles and leaves isolated points unconnected. We create an
edge in G if and only if the two vertices belong to at least one shared triangle. Indeed,
isolated points and edges of the simplicial complex correspond to parts of the scene
where the geometry is not even locally surfacic. In such areas, the geometry is too
complex relative to scanning resolution to define a local tangent plane. These areas
include tree foliage or linear structures for which planar approximation would not be
appropriate. This acts as a prefiltering step in combination to providing the adjacency
structure.

We choose edge weights which decrease with the distance between points:

wu,v =
1

α + d(u,v)
d0

, (4.1)

where d0 is the mean length of edges in the adjacency graph, and α a non-negative
constant taken here as 2.

4.2.2 Problem Formulation

We denote the set of all planes of R3 as P . We denote by d(v, π) the euclidian dis-
tance between a vertex v and a plane π ∈ P . We associate to each vertex v a plane πv
and denote by Π ∈ PV the set of planes thus defined. Such plane set defines an ap-
proximation of V characterized by the projection of each vertex to its associated plane.
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We propose an energy E : PV → R whose minimization gives a precise yet simple
piecewise-planar approximation of V . For Π ∈ PV , the energy writes as follows:

E(Π) =
∑
v∈V

d ( v, πv ) 2

︸ ︷︷ ︸
Data term

+ µ
∑

(u,v)∈E

wu,v [ πu 6= πv ]︸ ︷︷ ︸
Regularizer

, (4.2)

where [π 6= π′] is the function of P2 7→ {0, 1} equal to 0 when π and π′ are iden-
tical planes, and 1 otherwise. The parameter µ ∈ R+ is the regularization strength
defining the trade off between data fidelity and regularization. The first term of Equa-
tion 4.2 corresponds to the fidelity term. This term ensures that each point is well
approximated by its corresponding plane. The second part of Equation 4.2 encourages
adjacent vertices to share the same planes. It also forces the interface between adjacent
planes to have simple shapes by penalizing cuts, i.e. edges between adjacent vertices
with different planes. Therefore, a set of planes with low energy should achieve a
tradeoff between shape complexity and precision of their approximation of the input
point cloud. Note that our choice of w (see Equation (4.1)) favors cuts between distant
points, insuring that vertices associated to the same plane are generally close from one
another. The data term and regularization term are illustrated on figure 4.1.

We define the set of approximating planes as the result of the following optimiza-
tion problem:

Π? = arg min
Π∈PV

E(Π) . (4.3)

The energy E is non-convex, non-continuous, and non-differentiable, and hence
is hard to minimize. However, it has a similar structure than the energy defined by
the generalized minimal partition problem introduced by Landrieu and Obozinski (2017)
to compute piecewise constant approximation of multidimensional signals on graphs.
This working set algorithm iteratively splits a partition V of the graph G into disjoint
constant connected components. It also keeps track of the adjacency structure of the
components.

We first present the generalized minimal partition problem before explaining the prin-
ciple of the `0-cut pursuit algorithm.

4.2.3 Generalized Minimal Partition Problem

Let G = (V,E,w) be a graph structure, similarly to the one defined in the previous
section. Now, instead of planes, we associate a multidimensional signal fv ∈ Rd to each
node V . A signal-homogeneous partition of V is defined as the constant connected
components of the solution of the following optimization problem: 24

g? = arg min
g∈Rd×V

∑
v∈V

‖gv − fv‖2 + µ
∑

(u,v)∈E

wu,v[gu − gv] 6= 0 , (4.4)

where [x−y] is the function of Rd×2 7→ {0, 1} equal to 0 when x = y, and 1 otherwise.
The problem defined here is called the generalized minimal partition problem.

This problem is similar to the one presented in Equation 4.2. Regarding the data-
fitting term, Equation 4.2 aims at minimizing the squared distances between each point

24. The Generalized Minimal Partition Problem is actually defined with an arbitrary fidelity function
as long as it is separable with respect to V . For simplicity’s sake, and to reinforce the analogy with our
plane-approxiamtion problem, we write the Generalized Minimal Partition Problem with the square
difference.
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and their associated plane, whereas in Equation 4.4, the goal is to mimimize the sum
of squared differences between an approximated signal g and an original signal f . In
the case where f is the positions of 3D points, then the data-fitting term of the gener-
alized minimal partition problem can be viewed as a geometric fidelity between points.
For the regularizing term, both problems aim at enforcing small and simple interfaces
between adjacent regions. This is done by summing edges weights at the interface be-
tween adjacent regions. In Equation 4.4, this is done by comparing adjacent point’s
approximated vector of descriptors: this vector is identical for points in a same region.
In Equation 4.2, this is done by comparing the supporting planes of the neighborhing
points: if the two points have identical supporting planes, then they belong to the same
region.

The functional considered in Equation 4.4 is non-convex and non-continuous, hence
hard to minimize for large 3D point clouds. However, Landrieu et al. (2017) argue that
the `0-cut pursuit algorithm is able to find an approximate solution with only a few
graph-cuts. Due to the similarity between the generalized minimal partition problem and
ours, we investigated how to adapt the `0-cut pursuit algorithm to our setting.

4.2.4 `0-cut pursuit Algorithm

The `0-cut pursuit algorithm (Landrieu and Obozinski, 2017, Section 3.1.4 ) pro-
ceeds in a top-down manner, iteratively splitting a current partition P = {A1, . . . , Ak}
in finer components. This partition is initialized with the trivial partition {V } com-
prised for which all points are in the same region. At each iteration, a refining step
splits each component into smaller parts through a graph-cut formulation. Then, a
backward step computes a new approximation of f with respect to the updated com-
ponent, and proceed to merge pairs of adjacent components for which this fusion de-
creases the objective energy, in the manner of Soussen et al. (2011). The algorithm stops
when no components can be further refined nor merged. While this algorithm does not
guarantee to find a global optimum of the generalized minimal partition problem, it is
in practice able to find good approximate solutions in a few iterations only.

4.2.4.1 Split Step

In this step, each region Ai ∈ P is divided in two sub-regions Bi ⊂ Ai and Ai \ Bi.
For each region Ai, Landrieu and Obozinski (2017) propose the following formulation:

min
Bi⊂Ai

min
(hj ,h′j)

∑
v∈Bi

‖hj − fv‖2 +
∑

v∈Ai\Bi

‖h′j − fv‖2 + λ
∑

(i,j)∈EBi

wi,j , (4.5)

with EBi
= (Bi × Ai \ Bi ∪ Ai \ Bi × Bi) ∩ E the set of edges between two regions Bi

and Ai \Bi of V .
The first part of Equation 4.5 corresponds to a data fidelity term. The second part

of Equation 4.5 is a regularization term. It corresponds to the value of the cut between
Bi and Ai \Bi. The authors show that this formulation can be generalized to V thanks
to the separability of the problem with respect to P.

This optimization problem, defined with respect to both continuous and set vari-
ables, is hard to solve exactly. Hence, Landrieu and Obozinski (2017, Section E.1.1)
propose an alternated minimization scheme alternating between (h, h′) and Bi. They
first initialize the values of h and h′ with the 2-means algorithm set to approximately
solve the following problem:
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arg min
B⊂Ai,h,h′

∑
v∈Bi

fv(h) +
∑

v∈Ai\Bi

fv(h
′) . (4.6)

With these values set, the authors now solve Equation 4.5 with respect to Bi:

arg min
B⊂Ai

∑
v∈Bi

‖hj − fv‖2 +
∑

v∈Ai\Bi

‖h′j − fv‖2 + λ
∑

(i,j)∈EBi

wi,j . (4.7)

This problem can be solved using an efficient MinCut / MaxFlow solver, such as
the one of Boykov, Veksler, and Zabih (2001). Figure 4.2a shows an illustration of this
step.

After minimizing Equation 4.7, the values of h and h′ can be re-estimated:{
h← arg minx

∑
v∈Bi
‖x− fv‖2 ,

h′ ← arg minx
∑

v∈Ai\Bi
‖x− fv‖2 ,

(4.8)

The authors argue that this alternating minimization scheme converges to a lo-
cal minima in a finite number of iterations (see Landrieu and Obozinski (2017, Sec-
tion E.1.2) for a complete proof).

In some cases, this alternating minimization scheme can lead to some trivial cut,
where Bi = Ai or Bi = ∅. In this case, splitting Ai results in no modification of the
partition P. Hence, this component is not updated.

4.2.4.2 Backward Step

In their paper, Landrieu and Obozinski argue that their method can be improved
by allowing the mergeing of adjacent components when it decreases the functional
defined in Equation 4.4. In fact, when iteratively splitting the original data, one may
obtain a final partition composed of numerous small regions, with similar values of f .
In this case, it may be benefical to merge some of these regions. A simple merge step
consist in merging two adjacent components, while associating to each the optimal
constant approximation of f of the merged region:

gm ← arg min
h

∑
v∈∪(Bi,Bj)

fv . (4.9)

Landrieu and Obozinski (2017) consider that two adjacent subregions should be
merged if and only if the increase of the fidelity of term associated to mergeing all the
vertices of the considered is smaller than the cut between them:

∑
v∈∪(Bi,Bj)

‖hm − fv‖2 <
∑
v∈Bi

‖hi − fv‖2 +
∑
v∈Bj

‖hj − fv‖2 + λ
∑

(i,j)∈EBi,j

wi,j , (4.10)

with EBi,j
= (Bi×Bj ∪Bj ×Bi)∩E the set of edges between Bi and Bj . The merge

step is showned on Figure 4.2b.
This strategy can be further improved by using a merge-resplit strategy. This consists

in re-estimating the boundary between two adjacent subregions. It is dones by merging
the two subregions and splitting them again as defined in Section 4.2.4.1. This step is
represented on Figure 4.2c.
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Ai
Bi

Ai\Bi
(a) Illustration of the split step of `0-cut pursuit algorithm.

Bm
Bi

Bj

(b) Illustration of the merge step of `0-cut pursuit algorithm.

B′i
B′j

Bi
Bj

(c) Illustration of the merge-resplit step of `0-cut pursuit algorithm.

Figure 4.2 – Illustration of the different steps of the `0-cut pursuit algorithm. The color
corresponds to the value of the signal f to approximate. The signal is represented as
an image, and the graph structure is the 4-adjacency between pixels (not represented
for clarity). The area in green, blue, and red are different values of the signal on this
graph. Dotted lines show the boundaries between adjacent regions.

4.2.4.3 Applications

`0-cut pursuit has been used for segmenting point clouds, as a way to regularize
a pointwise classification (Landrieu et al., 2017). This is described in Chapter 6. This
algorithm has also been used for point cloud sparsification (Tenbrinck, Gaede, and
Burger, 2019) or piecewise horizontal roof segmentation (Namouchi et al., 2019). This
algorithm is also used for the geometric partition of SuperPoint Graph (Landrieu and
Simonovsky, 2018; Landrieu and Boussaha, 2019).

4.2.5 `0-plane pursuit Algorithm

Our problem differs from the generalized minimal partition problem since the vari-
ables associated with each vertex are planes instead of multidimensional signals. How-
ever, we can follow a very similar scheme to the `0-cut pursuit algorithm to minimize
E. We added an adapted initialisation step and modified the split and merge steps of
the `0-cut pursuit algorithm, but retained to a similar approach. These contributions
are listed hereafter:

— Initialization: to minimize the effect of a bad initialization, we start by extracting
planes using the RANSAC algorithm. Let ER(k) be the error associated to the
RANSAC-based segmentation after drawing Πk, a set of k planes such that |Πk| =
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k. We have:
ER(k) =

∑
v∈V

min
π∈Πk

d(v, π)2 . (4.11)

We stop the RANSAC algorithm after k0 iteration, when the decrease in error
provided by adding an extra plane, relative to the error after drawing a single
plane, is under a given threshold τR (chosen here to 0.005):

ER(k − 1)− ER(k)

ER(1)
< τR . (4.12)

— Refining: in the `0-cut pursuit algorithm, components are split according to the
optimal binary partition criterion (see Equation 4.7). Adapted to our setting, this
amounts to finding the binary partition (Bi,Ai \ Bi) of a component Ai ∈ P
defined as follow:

arg min
Bi⊂Ai,(π,π′)∈P2

∑
v∈Bi

d(v, π) +
∑

v∈Ai\Bi

d(v, π′) + µ
∑

(i,j)∈EBi

wi,j , (4.13)

withEBi
= E∩(Bi×Ai\Bi∪Ai\Bi×Bi) the set of edges linkingBi andAi\Bi. This

step can be approximately solved by an alternated minimization scheme adapted
from the original `0-cut pursuit algorithm. We replace the initialization step from
2-means to a 2-plane extraction step using the RANSAC algorithm. The optimiza-
tion with respect to Bi can be performed efficiently through a graph-cut formula-
tion, while the optimization with respect to π and π′ is done through least square
minimization. The scheme of this algorithm is detailed in Algorithm 3. We ac-
knowledge that this optimization scheme may need many iterations to converge
to a local minimum. In practice, we observe that ite_split = 3 iterations of
this scheme are sufficient.

— Backward step: as explained in Section 4.2.4.2, the `0-cut pursuit algorithm ben-
efits from allowing the mergeing of adjacent components as long as it decreases
the global energy. This can be easily adapted to our setting: to estimate if two
adjacent components should be merged, a common plane is computed through a
least square minimization, and the resulting increase in fidelity error is compared
to the decrease in penalty.

To summarize our algorithmic scheme, we introduce the following subroutines:
— (π1, · · · , πk) ← RANSAC(U, k): takes U ⊂ V a set of vertices and k a number of

planes as input, and returns a set of k planes extracted by the RANSAC algo-
rithm.

— (π1, · · · , πk) ← fit(U): takes a set of k disjoint components U = {U1, · · · , Uk} as
input and returns (π1, · · · , πk) a set of k planes fitting each vertex set Ui according
to the least square criterion.

— V ← associate(π1, · · · , πk): takes a set of k planes as input and return a parti-
tion V = {U1, · · · , Uk} of V such that each component Ui contains all the points
for which the plane πi is the closest according to the euclidian distance.

— U ′ ← connected_components(U): takes U a set of disjoint components as in-
put and and returns the union of their connected components with respect to
graph G.
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Algorithm 3 U ← split(U)

(π, π′)← RANSAC(U, 2)
for ite_split iterations do
B ← arg min

B⊂U

∑
v∈B

d(v, π) +
∑
v∈U\B

d(v, π′) + µ
∑

(i,j)∈EB

wi,j

(π, π′)← fit({B,U \B})
end for
U ← connected_components({B,U \B))
return U

— U ← merge(U,U ′): takes two components U and U ′ adjacent in G and returns
U ∪U ′ if mergeing them is profitable with respect to the energy E, or {U,U ′} oth-
erwise.

We summarize our method in Algorithm 4. The first for-loop corresponds to the
split step and the second one to the merge step. We draw attention on the fact that the
merge step is optional, but helps reducing the number of regions in the partition as
well as decreasing the global energy.

Note that our implementation of `0-plane pursuit do not use the merge-resplit strat-
egy. If we want to add this step, we can replace the merge step in Algorithm 4 by the
merge-resplit function.

Algorithm 4 `0-plane pursuit

(π1, · · · , πk0)← RANSAC(V, k0) % Initialization
V ← associate(π1, · · · , πk0)
V ← connected_components(V)
while not_converged do

for U ∈ V do
U ← split(U) % Component splitting
V ← V \ U ∪ U

end for
for U,U ′ adjacent in G do
U ← merge(U,U ′) % Component merging
V ← V \ {U,U ′} ∪ U

end for
end while
return V , fit(V)

The `0-plane pursuit algorithm presented in Algorithm 4 returns a partition V =
(U1, · · · , Uk) of V as well as a set of planes (π1, · · · , πk). The vertices in Ui are approxi-
mated by their projection in the plane πi. The plane set Π, such that πv = πi if and only
if v is in Ui, is an approximate minimizer of the energy E.

We want to draw attention on the fact that our formulation doesn’t have any as-
sumption on the planes’ orientation and number, nor on the number of vertices per
region. This allows us to produce a segmentation that is adaptive to the local geome-
try of the cloud, by creating more regions in complex parts of the scene while keeping
a simple approximation with a small number of planes for large planar parts, such as
roads or facades.
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4.3 Experiments

In this section, we test the `0-plane pursuit algorithm on data from MLS, TLS and
ALS. We compare this method to a classic region growing-based baseline as in Cohen-
Steiner, Alliez, and Desbrun (2004).

For our experiments, we used two different graph structures. When the sensor
topology is available, we used the weighted adjacency graph as defined in Chapter 3.
This is motivated by the fact that we can filter out all the 0- and 1-simplices of the
simplicial complex-based reconstructions, and only keep the triangles from them. For the
other cases, we decided to use a 3D Delaunay Triangulation, and more specifically, the
implementation proposed in the CGAL library (Devillers, Hornus, and Jamin, 2019),
as it gives a representation independent from the sampling.

4.3.1 Datasets

We used 3 different datasets. The Paris dataset is from MLS, the chapel dataset
has been acquired with TLS and the Barcelona one has been acquired with ALS. Some
technical informations about each sensor is provided in table 4.1.

4.3.1.1 Paris Dataset

This dataset has been acquired with the
Stereopolis vehicle (Paparoditis et al.,
2012) in the streets of Paris. It is the same
dataset than the one used in Chapter 3.
We limited the dataset to a small por-
tion corresponding to a 1 second acqui-
sition and just kept the triangles created
by our simplicial complexes. This limita-
tion is due to the fact that the data was
cut in small pieces for our simplicial com-
plexes reconstruction, for computing sim-
plicity. However, this implies that each
zone has a different reconstruction that is
not necessarily consistent with the others.
Thus, we decided to restrain our tests on
a single block of data. It is composed of
218, 546 points and 418, 254 triangles. The
scene is mostly composed of a street and
large facades of Hausmannian buildings.

Figure 4.3 – View of Paris dataset. For
vizualisation purposes, we displayed the
height for each point.
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4.3.1.2 Chapel Dataset

This dataset has been acquired by the
Centre de formation ENSG-Forcalquier
with a TLS inside a chapel. We just kept
the triangles created by our simplicial
complexes. It is composed of 1, 263, 321
points and 7, 313, 760 triangles. The scene
is the inside of chapel. It is especially in-
teresting as the chapel contains vault por-
tions and we wanted to test our algorithm
on vaults to see how it performs. The
scene has also a higher density than the
previous one.

Figure 4.4 – View of Chapel dataset. For
vizualisation purposes, we displayed the
height for each point.

4.3.1.3 Barcelona Dataset

This dataset has been acquired by the In-
stitut Cartogràfic i Geològic de Catalunya 25

with an ALS above Barcelona. The data
is the concatenation of several flights
above the city, with different directions
and densities. Thus we could not ap-
ply our simplicial complex-based recon-
struciotn. That’s why we decided to
structure it with a 3D Delaunay triangula-
tion. More preciselly, we used the CGAL
implementation (Devillers, Hornus, and
Jamin, 2019). Due to the unability to fil-
ter out linear and volumetric regions, we
kept a very noisy point cloud. It contains
500, 000 points and 872, 372 triangles. The
scene has been acquired above Barcelona
and is composed of streets, roofs and a
bit of vegetation. The experiments with
this dataset are part of a Volta second-
ment 26at Institut Cartogràfic i Geològic de
Catalunya. The results are visible on Fig-
ure 4.12.

Figure 4.5 – View of Barcelona dataset.
For vizualisation purposes, we displayed
the height for each point.

26. Catalonia’s mapping agency (https://www.icgc.cat/en/)
26. https://volta.fbk.eu/index.php/about/
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Dataset Paris Chapel Barcelona
Mean of acquisition MLS TLS ALS

Sensor RIEGL VQ-250 Leica ScanStation
P40 Leica ALS50-II

Rotation speed (Hz) 100 50 35
Multi-echo up to 8 No up to 4
Density (pts/m2 ) high: > 100 very high: > 1000 low: 4
Number of points 218,546 1,263,321 500,000
Number of triangles 418,254 7,313,760 872,372

Structure Triangles of (Guinard
and Vallet, 2018a)

Triangles of (Guinard
and Vallet, 2018a)

Delaunay
Triangulation

Table 4.1 – Characteristics of each processed scene.

4.3.2 Baseline

We compare our results to our own implementation of the region-growing-based
method of Cohen-Steiner, Alliez, and Desbrun (2004), which will serve as baseline.
This method takes an input mesh and tries to segment it in planar regions. 27

To achieve this,N triangles are chosen at random. The number of triangles has to be
set by the user. Then, the algorithm grows a region for each triangle, noted r1, . . . , rN .
This operations starts by sorting all triangles adjacent to the seeds, based their copla-
narity with the corresponding adjacent seed. This is used to create a sorted list Ladj of
triangles which contains all the triangles of the mesh adjacent to a region. The triangle
which is the most coplanar to its neighborhing region ri is added to this region, and is
removed from Ladj . Then, its neighbors which have not been yet considered are added
to Ladj and the list is sorted again. This continues until a region has been associated to
all triangles. Then, the best fitting plane for each region is computed, and a new seed
per region is chosen. This seed is the triangle (of the corresponding region) that is the
most coplanar to the new estimated plane. Then, all the triangles except the seeds are
unassigned and a new growing process starts. This method is illustrated on figure 4.6.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Figure 4.6 – Illustration of the first iteration region growing baseline. We select at
random 2 triangles from the input mesh (red and blue triangles) and grow regions
around them.

27. At the moment when this experiment was done, the CGAL package (Alliez, Cohen-Steiner, and
Zhu, 2019) re-implementing this algorithm had not been released. However, we chose to keep the com-
parison to our implementation as it seems more fair to compare code written by the same person with
the same level of optimisation.
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4.3.3 Numerical Results

We also compare the baseline approach with our method on the outdoor scene. The
baseline algorithm is run twice, for 5 and 15 iterations respectively. More iterations do
not significantly improve the results. In order to be able to fairly compare our method
to the baseline, we evaluate both methods with the same number of planes. Therefore,
we first run our method with a given regularization strength producing a number of
clusters. We then then parameterize the region growing baseline such that it produces
the same number of clusters. We also decided to measure the influence of the merge
step in our method by evaluating the performance of our algorithm with and without
this step.

4.3.3.1 Metric

We want to measure the geometric precision of the reconstruction. To this end,
we measure the distance between each point v ∈ V and its supporting plane πv ∈ P .
Therefore we set our error metric as the sum of distances between each point and its
plane. We decided to use the L2 norm over the L1 norm as we want to heavily penalize
points that are very far from their associated plane:

E =
∑
v∈V

d(v, πv)
2. (4.14)

4.3.3.2 Results on Paris Dataset

We represent the results on Figure 4.7. We see that the region-growing baseline
forms regions of homogeneous size. This implies that simple and regular parts of
the cloud, such as the road, will be clustered in several regions while a single plane
would have made a good approximation. In contrast, our method adapts the size of
the planes according to the geometric complexity of the scene, resulting in a smaller
number of planes necessary to reach the same level of precision. This is the main reason
for the large difference in terms of performance between the region-growing baseline
and our method. This phenomenon can especially be seen on figure 4.8, which shows
a geometrically simple part of the scene (a road portion) and a more complex part
of the scene (the top of a facade). The detailed results for the error metric and the
computation times are plotted in Figure 4.9. We see that our method is 10 times more
geometrically accurate than the region growing baseline, but it is also 5 to 10 times
faster. This is due to the global formulation of the problem, allowing us to run one
single optimization for the whole cloud.

4.3.3.3 Results on Chapel Dataset

While we tried to compare our method with the baseline on the chapel dataset, we
could not achieve convergence with the baseline in reasonable time due to the dataset’s
size. The results of our method on the chapel dataset are shown on Figure 4.10. Our
expectations here, are that the vaults should be divided into small planar pieces elon-
gated in the direction of minimum curvature. We observe that this is indeed what hap-
pens on Figure4.10. Our method is able to create large regions for large planar parts of
the scene (e.g. walls) and its high adaptability allows it to create smaller regions to fit
rounded parts of the scan. The detailed results are displayed on Figure 4.11. We can
see that the use of the merge step decreases the number of regions, while improving
the global approximation.
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(a) Region Growing
492 components
5 iterations
error: 18.3 · 103

(b) Region Growing
492 components
15 iterations
error: 17.5 · 103

(c) `0-plane pursuit
no merge step
514 components
error: 1.6 · 103

(d) `0-plane pursuit
with merge step
492 components
error: 1.6 · 103

Figure 4.7 – Comparison of our method and the baseline. Each color represents a dif-
ferent region. Points are projected on the plane supporting their region. Our method
creates large regions on simple parts of the cloud, in order to be more adaptive on
complex parts.

132



4.3. EXPERIMENTS

(a) Region Growing
492 components
5 iterations
error: 18.3 · 103

(b) Region Growing
492 components
15 iterations
error: 17.5 · 103

(c) `0-plane pursuit
no merge step
514 components
error: 1.6 · 103

(d) `0-plane pursuit
with merge stepd
492 components
error: 1.6 · 103

(e) Region Growing
492 components
5 iterations
error: 18.3 · 103

(f) Region Growing
492 components
15 iterations
error: 17.5 · 103

(g) `0-plane pursuit
no merge step
514 components
error: 1.6 · 103

(h) `0-plane pursuit
with merge stepd
492 components
error: 1.6 · 103

Figure 4.8 – Comparison of our method and the baseline. Each color represents a dif-
ferent region. Points are projected on the plane supporting their region. The first row
shows some results on a road portion, while the second one shows the top of a build-
ing. Our method creates large regions on simple parts of the cloud and more regions on
geometrically complex parts. This allows for limiting the number of primitives while
preserving the geometric accuracy of the input scan.
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500 1,000 1,500 2,000 2,500 3,000

103

104

# of regions

error (m2)

`0-plane pursuit
`0-plane pursuit-no-merge

Region-growing (5 iter.)
Region-growing (15 iter.)

500 1,000 1,500 2,000 2,500 3,000

102

103

# of regions

time (s)

Figure 4.9 – Comparison of the error between our method and the region-growing
baseline on the Paris dataset. For a given number of regions, our method has a higher
geometric fidelity than the region growing baseline. Also, the graph-cut formulation
shows improvments in terms of computation time, compared to the baseline.
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(a) Original point cloud
(b) RANSAC-based segmenta-
tion

(c) `0-plane pursuit segmenta-
tion without merge step
Regularization strength: 0.1
error: 27 · 103

(d) `0-plane pursuit segmenta-
tion without merge step
Regularization strength: 0.01
error: 8 · 103

(e) `0-plane pursuit segmenta-
tion without merge step
Regularization strength: 0.001
error: 5 · 103

(f) `0-plane pursuit segmenta-
tion with merge step
Regularization strength: 0.1
error: 20 · 103

(g) `0-plane pursuit segmenta-
tion with merge step
Regularization strength: 0.01
error: 9.8 · 103

(h) `0-plane pursuit segmenta-
tion with merge step
Regularization strength: 0.001
error: 5 · 103

Figure 4.10 – Scan of the inside of the chapel cloud, composed of walls and vaults. Each
color corresponds to a different region. The first row shows the raw point cloud and
the RANSAC initialization. The second row is the `0-plane pursuit algorithm without
the merge step and the last one is with the merge step. We remark that the use of
the merge step decreases the number of regions without affecting the quality of the
reconstruction.
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·104

# of regions
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`0-plane pursuit
`0-plane pursuit-no-merge

Figure 4.11 – Comparison of the error between our method with and without the merge
step on the chapel dataset.

4.3.3.4 Results on Barcelona Dataset

Last, we tested our method on the Barcelona dataset. This dataset is the resulting
merge of several flights above the city of Barcelona, so it was not possible to reproduce
our simplicial complexes reconstructions, as close points in the cloud may have been
acquired by two different flights. We can see that the data is geometrically noisy. In or-
der to limit the approximation error, we had to let our method oversegment the cloud,
especially on vegetation areas. This large number of regions also highly increases the
computation time. However, when we take a look on planar areas, such as road por-
tions or roofs, we see that our algorithm performs well. Each roof is part of one or
two regions, even small roofs that contain a few dozens of points, which is really small
compared to the initial size of the data. This shows the adaptability of our method and
its scalability.

The use of a semantic information (e.g. a classification), or simplicial complexes
reconstruction would be useful to filter out non planar areas in this point cloud.
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(a) Full results (b) Full results using reflectance

(c) Zoom on a road portion (d) Zoom on a road portion, using reflectance

(e) Zoom on some roof portions (f) Zoom on some roof portions, using re-
flectance

Figure 4.12 – Results on the Barcelona dataset. The first column shows results of the
`0-plane pursuit algorithm. The second column shows results of a modified version of
the algorithm where we used the Reflectance values of the scan too. The comparison
between both methods is studied in Section 4.3.6. Each color represents a different
region. The results are particularly noisy due to the presence of vegetation (which
can’t be simply approximated with a set of planes).
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4.3.4 Influence of the Initialization
The goal of this part is to evaluate the influence of the initialization step, to see

whethter the algorithm struggles to make the first split steps, or if it can achieve similar
results without the initialization. We also want to see if the segmentation is good even
if the initialization is voluntarily inaccurate.

Let E(n) be the error related to the RANSAC-based segmentation at the nth itera-
tion. The criterion used to stop the RANSAC is the following:

E(n− 1)− E(n)

E(0)
> ε, (4.15)

with ε a threshold set by the user. This threshold is used as an indirect way of selecting
the number of primitives retrieved by the RANSAC.

We fixed the regularisation strength of the optimisation process at 5× 10−3. We
tested the influence of the initialisation on the Paris dataset, with ε varying between
0.5 and 5× 10−4. We also tested our algorithm with no initialisation and with a volun-
tarily bad initialisation: we divide the Paris dataset in ten parts regarding the points’
acquisition order. A different labl is attributed to each region. This bad initialisation can
be visualised on Figure 4.14m.

In this experiment, we expect our algorithm to recover from a bad initialisation and
create output an accurate segmentation of the input point cloud thanks to the algo-
rithm’s strategy (alternating between split and merge steps). Some results are shown
on Figure 4.14. Detailed results are available on Figure 4.13.

500 1,000 1,500 2,000

103

104

# of regions

error (m2)

RANSAC threshold = 0.5
RANSAC threshold = 0.05

RANSAC threshold = 0.0005
No initialisation
Bad initialisation

Figure 4.13 – Comparison of the error of our method depending of the quality of the
initialisation on the Paris dataset.

We observe that our algorithm’s performances are not directly correlated to the
number of primitives retrieved by the RANSAC. Moreover, when we run the `0-plane
pursuit algorithm with no initialisation, the results are still similar to the ones obtained
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(a) RANSAC-based initiali-
sation
Stopping criterion: 5 · e−2

(b) RANSAC: 5 · e−2

λ = 10−3

165 regions
error: 3314.59 m2

(c) RANSAC: 5 · e−2

λ = 10−4

448 regions
error: 1517.3 m2

(d) RANSAC: 5 · e−2

λ = 10−5

1681 regions
error: 845.70 m2

(e) RANSAC-based initiali-
sation
Stopping criterion: 5 · e−4

(f) RANSAC: 5 · e−4

λ = 10−3

166 regions
error: 3186.87 m2

(g) RANSAC: 5 · e−4

λ = 10−4

448 regions
error: 1496.38 m2

(h) RANSAC: 5 · e−4

λ = 10−5

1678 regions
error: 864.85 m2

(i) No initialisation (j) No init. λ = 10−3

171 regions
error: 3306.24 m2

(k) No init., λ = 10−4

445 regions
error: 1508.45 m2

(l) No init., λ = 10−5

1618 regions
error: 829.81 m2

(m) Bad initialisation with
10 regions

(n) Bad init., λ = 10−3

215 regions
error: 7224.64 m2

(o) Bad init., λ = 10−4

536 regions
error: 1654.59 m2

(p) Bad init., λ = 10−5

1794 regions
error: 820.60 m2

Figure 4.14 – Comparison of the results of `− 0-plane pursuit algorithm on the Paris dataset using different
initialisations. The two first rows shows the results using a RANSAC-based initialisation with a stopping
criterion of respectively: 5 · e−2 and 5 · e−4. The thirs row present results without any initialisation and the
last one present the influence of a voluntarily bad initialisation. The first column is for a regularization
strength of 10−3, the second one for 10−4 and the last one for 10−5. Each color represents a different region.
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500 1,000 1,500 2,000 2,500 3,000

103

104

# of regions

error (m2)

Simplicial complexes
Delaunay Triangulation (max. edge length: 0.1m)
Delaunay Triangulation (max. edge length: 0.3m)
Delaunay Triangulation (max. edge length: 0.5m)
Delaunay Triangulation (max. edge length: 1m)

Figure 4.15 – Comparison of the error of our method structured with simplicial com-
plexes and a Delaunay triangulation on the Paris dataset.

using an initialisation. This may sound counter-intuitive, as we are optimising on a
non-convex energy that may have local minimas in which the algorithm could get
stuck. But these performances shows the advantage of using an alternate optimisation
scheme. Furthermore, even if the segmentation created by our algorithm, using a bad
initialisation on purpose, may look worse than segmentations using a correct initialisa-
tion for low values of λ, our method is able to produce segmentations of similar quality
for higher values of λ.

4.3.5 Influence of the Supporting Graph

In this part we discuss the influence of the supporting graph of the input point
cloud. The idea is to see wether the sensor topology, when available, gives better re-
sults than oher classic graph structures, such as the Delaunay triangulation.

We compared our algorithm’s performances using our simplicial complexes and a
Delaunay triangulation using a filter based on edge length to remove faces between
objects far from one another (like two facades on both sides ot the road). We chose
four different filters: 1m, 0.5m, 0.3m and 0.1m. The RANSAC parameter has been
fixed to 5× 10−2.

For the following experiments, we denote the simplicial complexes graph as Simpli-
cial complexes (SC) and the Delaunay triangulation graph as Delaunay triangulation
(DT).

In this experiment, we expect our algorithm to create segmentations of similar qual-
ity of the best DT-based segmentations. Some results are shown on Figure 4.16. De-
tailed results are available on Figure 4.15.

140



(a) Simplicial complexes
mesh

(b) SC mesh, λ = 10−4

448 regions
error: 1517.3 m2

(c) SC mesh, λ = 10−5

1681 regions
error: 845.70 m2

(d) SC mesh, λ = 10−6

4084 regions
error: 447.61 m2

(e) Delaunay mesh, with a
maximum edge length of
0.1 m

(f) DT mesh, λ = 10−4

612 regions
error: 3135.33 m2

(g) DT mesh, λ = 10−5

1017 regions
error: 1847.15 m2

(h) DT mesh, λ = 10−6

2017 regions
error: 1105.72 m2

(i) Delaunay mesh, with a
maximum edge length of
0.3 m

(j) DT mesh, λ = 10−4

132 regions
error: 3582.08 m2

(k) DT mesh, λ = 10−5

342 regions
error: 1812.53 m2

(l) DT mesh, λ = 10−6

1306 regions
error: 788.92 m2

(m) Delaunay mesh, with a
maximum edge length of 1
m

(n) DT mesh, λ = 10−4

117 regions
error: 3135.33 m2

(o) DT mesh, λ = 10−5

349 regions
error: 2021.41 m2

(p) DT mesh, λ = 10−6

1153 regions
error: 826.676 m2

Figure 4.16 – Comparison of the results of `− 0-plane pursuit algorithm on the Paris dataset using different
graph structures. The first row shows results using our simplicial complexes. The second to fourth one
shows the results using a Delaunay triangulation with a filter based on edge length of respectively: 0.1m,
0.3m and 1m. The first column is for a regularization strength of 10−4, the second one for 10−5 and the last
one for 10−6. Each color represents a different region.
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We observe that the use of simplicial complexes allow our method to compete with
the best results obtained using a Delaunay triangulation for low values of λ. For higher
values of λ, the use of simplicial complexes can produce slightly worse results according
to our metric. However, if the Delaunay triangulation is not well parameterized (see the
results for a filter based on a maximum edge length of 0.1m), the resulting segmen-
tation can give poor results. The main advantage of simplicial complexes here is that
they do not need user knowledge of the scene to allow the creation of accurate seg-
mentations. Also, they are fatser to compute than a Delaunay triangulation at a scene
scale.

4.3.6 Utilisation of the Reflectance for Segmenting Point Clouds with
`0-plane pursuit

LiDAR sensors often acquire more than XYZ-coordinates. They usually add some
Reflectance information. In this case, reflectance can give some useful insight on the
texture of the real object behind each acquired point. LiDAR sensors such as TLS may
be equipped with a camera as well. In this case, after the end of the laser scan, the
camera acquires pictures of the whole scene. Then a color can be added to each point
based on a visibility map of the scan.

Moreover, 3D descriptors can be computed for each point (Demantke et al., 2011;
Weinmann et al., 2015a). These descriptors add strong insights on the local geome-
try of the data. They have been used for point cloud classification and segmentation
(Guinard and Landrieu, 2017).

In this section we investigated the use of the reflectance acquired by an ALS for the
piecewise-planar segmentation of LiDAR point clouds. For this purpose we modified
the energy presented in equation 4.2 and tested the new algorithm on the Barcelona
dataset.

4.3.6.1 Reflectance from LiDAR sensors

LiDAR sensors are not able to compute any color measurement. However, a com-
plentary information is often available: the intensity. The intensity is computed as
the ratio between the quantity of emitted light and the quantity of returned light for
a given echo. This gives a first information on the encountered object structure and
orientation: a planar object, perpendicular to the emitted light beam will reflect more
light than an object nearly parallel to the beam and with a granular structure.

The intensity, has an important drawback: in the multi-echo case (as defined in
Section 2.1.4.2), the intensity of echoes beyond the first one are greatly decreased. This
is due to the fact that most of the light is reflected by the first echo, thus, following
echoes of the same pulse receive very little light and reflect even less light.
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If we consider that the object reflecting has a lambertian surface, we can compute its
geometric reflectance using the Bidirectional Reflectance Distribution Function (BRDF)
as defined by Nicodemus et al. (1977). We refer the reader to Kavaya et al. (1983) for
an extensive explanation of the BRDF formulation. The BRDF is a function used to
define how the light is reflected on an opaque surface based on the light direction (the
laser beam in our case) and the normal of the surface. Real world surfaces reflects the
light in a diffuse manner. To know how the reflected light is diffused, one has to use a
diffusion model.

There exists several diffusion models, depending on the structure of the material.
In computer graphics, most works assume that every material is locally lambertian
(Oren and Nayar, 1994). A surface is lambertian when it reflects equally the light in
every direction, independently of the source light direction.

Using reflectance information allow us to overcome the natural decrease in inten-
sity in the multi-echo case. The use of reflectance information is especially useful for
detecting vegetation (Wei et al., 2012) and mapping seafloor (Chust et al., 2010). In
the case of roof segmentation, we argue that a given roof should be composed of the
same material, thus having an homogeneous reflectance over its surface. We want to
investigate the influence of this reflectance information for segmenting roofs.

4.3.6.2 Energy for `0-plane pursuit Segmentation Using Reflectance Values

Let i : V → R be the function associating for each point of the cloud its reflectance.
We denote i(πv) the mean value of points’ intensities inside the region to which v be-
longs. We modified the data term of equation 4.2 to minimize the reflectance variation
inside a single region:

Ei(Π) =
∑
v∈V

(d ( v, πv ) 2 + ‖i(v)− i(πv)‖2)︸ ︷︷ ︸
Data term

+ µ
∑

(u,v)∈E

wu,v [ πu 6= πv ]︸ ︷︷ ︸
Regularizer

. (4.16)

Like for the original energy of `0-plane pursuit algorithm, we want to minimize
this new energy. The `0-plane pursuit algorithm can be adapted in a straightforward
manner to account for this change.

4.3.6.3 Experiment

We tested this method on the Barcelona dataset. The RANSAC stopping criterion
has been fixed to 0.05 and the regularization strength has been set to 5× 10−3. The
results are shown on Figure 4.12. The standard `0-plane pursuit algorithm produces
a segmentation composed of 44,000 regions and an error of 91,280 m2. The modified
version of the algorithm, using the reflectance, produces a segmentation composed of
42,000 regions and a geometric error of 105,609 m2.

The reflectance provides a complementary information to the geometric criteria that
we use for segmenting urban scenes. The computed segmentation is thus homoge-
neous in geometry and in reflectance. The evaluation metric we propose is purely
geometric, thus, a method optimising both the geometry and the homogeneity of the
reflectance should perform less than a segmentation method based only on geometric
criteria. Our experiment shows that combining geometric and reflectance information
in `0-plane pursuit allow the creation of segments homogeneous in reflectance without
decreasing the geometric quality of the segmentation.
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4.4 Conclusion

In this chapter, we introduced a new method for the piecewise-planar approxima-
tion of 3D data based on an adjacency structure. This method is adaptive to the local
geometric complexity of the cloud and is suitable for large datasets (i.e. millions of
points). Our algorithm only requires a point cloud as input but can benefit from an
existing adjacency information such as the one provided by a triangulated mesh.

We acknowledge that our method could be improved by implementing an adapta-
tion of the merge-resplit strategy presented in Landrieu and Obozinski, 2017. Indeed,
the merge step doesn’t seem able to remove all the small artifacts occasioned by early
segmentation steps.

However, the main drawback of our method is its tendency to lose the topological
connection between adjacent regions. Instead, we obtain a set of planar regions that
are not topologically connected. A reconstruction method such as the one presented
by Ochmann et al., 2016 could overcome this drawback.

An interesting contribution to improve this method would be the use of multi-
primitives suggested by Vidal, Wolf, and Dupont (2014) and Li and Feng (2019) in
our RANSAC (such as spheres or cylinders) that are better approximations of some of
the objects found in urban areas, such as trunks or poles. Another interesting perspec-
tive would be to use the proposed segmentation as part of a polyhedral reconstruction
algorithm.

Last, we tested our algorithm with more than geometric features. This experiment
demonstrated the ability of our method to combine geometric and reflectance infor-
mation to produce segments which are both planar and homogeneous in reflectance.
We think that the reflectance is useful in our context as it can help detecting texture
variations in piecewise-planar objects, such as bricks in a stone wall or solar panels
in a roof. Further experiments could focus on testing radiometric features (e.g. color
information acquired by a camera coupled to the LiDAR).
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In this chapter, we investigate the possible approaches for the simplification of 3D
meshes in order to produce light yet geometrically accurate 3D models of urban scenes.
We consider that we have built a simplicial complexe as explained in Chapter 3 and
extracted planar regions from its 2D part (the surface mesh) as detailed in Chapter 4.
We observe that only a few regions contain most of the triangles of the input surface
mesh (e.g. the road may contain more than 50% of the triangles). This means that many
triangles are close to being coplanar. Hence, we argue that it is possible to merge some
of these nearly coplanar triangles into planar 3D polygons in order to produce a lighter
reconstruction while preserving the geometric accuracy of the input mesh.

The simplification process is done in three steps. First, we project points on the
least squares supporting planes computed during the segmentation process. Then we
remove redundant data. Last, we measure the influence of the `0-plane pursuit algo-
rithm for point cloud simplification.

5.1 Simplification of Simplicial Complexes

The simplicial complexes, as built in Chapter 3, contain points, edges and triangles.
The problem of the simplification of simplicial complexes can be decomposed as three
distinct problems: the simplification of points, of eges and of triangles. In this chapter,
we only investigate the simplification of triangles, which is more complex than the first
two problems. We choose to dedicate the remaining of this section for introducing the
simplification of points and edges problems, but no experiment will be done on these
problems.

5.1.1 Simplification of Point Clouds

The simplification of 3D point clouds, also called point cloud decimation, is mostly
based on two different approaches: voxel-based methods and random sampling.

5.1.1.1 Voxel-based approaches

These approaches divide the input point cloud in a subset of regions of similar size.
For each region, all the points are discarded except one. This allows to fix a maximal
point density in the cloud, and remove more points in dense areas. The subdivision of
the cloud in voxels can be based on an octree (Shekhar et al., 1996) or a kd-tree (Xiao
and Huang, 2009). Voxels can also be obtained with a previous segmentation step, for
instance using the K-Means algorithm (Shi, Liang, and Liu, 2011). In order to select the
remaining point for each voxel, researchers usually focus on geometric priors, such as
normals or curvature (Han et al., 2015). For an extensive comparison of point cloud
decimation algorithms, we refer the reader to the work of Pauly, Gross, and Kobbelt
(2002).

5.1.1.2 Random sampling

These methods are based on the random selection of points in the cloud (Winkel-
bach et al., 2004). These methods allow to fix the final number of points in the cloud,
but cannot ensure that the resulting point cloud has a similar density everywhere.
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The random-based methods are easy to implement, but usually cannot fit geomet-
ric or density-based priors. On the ohter side, voxel-based methods are able to respect
geometric or density-based constraints but require to carefully choose the voxel gener-
ation method in order to adapt to the geometry of the cloud.

5.1.2 Simplification of Edges

The simplification of edges process is divided between top-down approaches, such
as Edge-Collapse (Garland and Heckbert, 1997), and bottom-up approaches, as in Vis-
valingam and Whyatt (1990).

5.1.2.1 Top-Down Approaches

Simplification of edges can be done by considering the whole point clouds with its
edges and collapsing edges (Hoppe et al., 1993; Garland and Heckbert, 1997). This is
usually done by computing a removing cost for all edges of the graph, based on geomet-
ric fidelity and volume preservation (Lindstrom and Turk, 1998). The same approach
has been used for simplifying 3D meshes as well. The edge-collapse algorithm is de-
tailed in Section 5.3.3.

Top-down approaches are usually hard to implement but are fast and able to pre-
serve the geometry of the input set of edges.

5.1.2.2 Bottom-Up approaches

Bottom-up approaches are based on the fusion of adjacent edges. The most fa-
mous algorithm for line simplification is the Douglas-Peucker algorithm (Douglas and
Peucker, 1973; Visvalingam and Whyatt, 1990). This algorithm is based on Lang (1969),
and simplifies a polyline in a single line if the maximum distance of a node of the poly-
line to the simplified line is lower than a given threshold. Line simplification can also
be performed by iteratively removing triplets of connected points with the lowest areas
(Visvalingam and Whyatt, 1993).

Theses approaches perform well in cartography, for instance for road network gen-
eralization. However, they do not necessarily respect the non-self-intersections con-
straints (Wu and Marquez, 2003).

Top-down approaches allow for fast and geometrically accurate simplifications but
are usually harder to implement than bottom-up approaches. Also, top-down meth-
ods, as they process the whole graph, are able to simplify geometrically simple areas
while preserving the geometry of complex areas.

The remaining of this chapter focuses on mesh simplification. Our approach takes
as input a mesh, segmented as in Chapter 4. We start by converting our segmented
mesh in a piecewise-planar mesh.

5.2 Piecewise-planar Projection of 3D Point Clouds

In this section, we focus on the segmented meshes obtained in Chapter 4. From the
segmentation, we want to obtain a piecewise-planar point cloud without losing most
of the geometric details. One of the main drawbacks of the `0-plane pursuit algorithm
is that we loose the topological connections between adjacent regions. In fact, if we
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project the points directly on the supporting plane of their associated region, we ob-
serve that gaps appear in the reconstructed mesh. These gaps appear at the interface
between adjacent regions. Some examples are shown on Figure 5.1.

(a) Illustration of a gap appearing in a road
due to the segmentation.

(b) Illustration of the gap appearing in a fa-
cade due to the segmentation.

Figure 5.1 – Illustration of different gaps appearing between adjacent regions. Each
color represents a different region. Points are projected on their respective supporting
plane.

In order to overcome the topological errors (gaps between adjacent regions) to ap-
pear in the final reconstruction, we decide to project each single point based on their
neighborhood. This neighborhood is the same as used for the segmentation method
proposed in Chapter 4. If all the neighbors of a point do not belong to the same region,
we decide to project the point on the intersection of all the supporting planes of regions
present in the neighborhood. This means that:

i) if a point’s direct neighborhood belongs to a single region: the point is projected
on its associated plane,

ii) if a point’s direct neighborhood belongs to two regions: the point is projected to
the intersection of the two planes. This intersection may not be defined (this is
the case if the supporting planes are parallel). If this intersection does not exists,
the point is projected on the closest plane according to the squared euclidian
distance.

iii) if a point’s direct neighborhood belongs to three regions: the point is projected to
the intersection of the three planes. The intersection of three planes is not always
defined 28. If this intersection does not exist, we consider each pair of planes and
project the point on the closest intersection line. If no intersection line exists, we
project the point on its closest plane.

iv) if a point’s direct neighborhood belongs to four or more regions: we are in a case
where all the planes may not have a defined intersection. In this case, we decide
to consider all triplets of adjacent regions and find the best possible projection as
defined in previous entry.

We stated at the beginning of this section that we want to keep as much the geo-
metric details of the scene as possible. However, the segmentation algorithm defined

28. See http://geomalgorithms.com/a05-_intersect-1.html for an illustration of the
different possible configurations.
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(a) When a point and its neighbors belong to
a single region, the point is projected on this
plane.
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(b) When the neighborhood of a point be-
longs to two different regions, the point is
projected on the intersection line of the two
planes.
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(c) When the neighborhood of a point belongs
to 3 different regions, the point is projected to
the intersection point of the 3 planes.

Figure 5.2 – Illustration of the projection applied for each point according to its neigh-
borhood and the segmentation produced in Chapter 4. Here we represent a set of
points segmented in 3 regions. The supporting planes and their intersections with
other planes are displayed. The black edges represent the adjacency relationship
around the considered point (in red). The red arrow links the considered point to
the primitive (plane, line, point) on which it is projected.

in Chapter 4 can associate a point to a region, even if the distance between this point
and the supporting plane of the region is high. This is due to the formulation of the
energy minimized by this algorithm (cf. Equation 4.2). So, we modify the previous cri-
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teria to project a point if and only if the distance between the point and its projection
is lower than a given threshold.

For all the experiments done in this chapter, we fix the threshold between a point
and its projection to 1 m. We chose this value to show that we think that our segmen-
tation algorithm preserved most of the geometry of the input mesh, and that we only
want points not to be projected really far from the input mesh (which can happen when
a point is at the edge between two nearly coplanar regions).

5.3 Simplification of 3D Meshes

5.3.1 Definition
We call simplification of 3D point clouds the process of decreasing the quantity of

information used to represent the cloud (e.g. decreasing the number of points) while
preserving its geometrical shape. The goal of the simplification of 3D meshes is to obtain
a point cloud that is easier to process than the input cloud while being geometrically
similar to the input cloud.

The simplification of 3D meshes is still a complex challenge in the remote sensing
community (Heo et al., 2013; Zhu et al., 2018). Point cloud simplification often relies
on two different principles: contour extraction (usually performed with the α-shape
algorithm (Akkiraju et al., 1995)) and merging points, edges or triangles (Garland and
Heckbert, 1997). Well known algorithms for point cloud simplification include Polyfit
(Nan and Wonka, 2017) or Variational Shape Approximation (VSA) (Cohen-Steiner, Al-
liez, and Desbrun, 2004). Li, Wonka, and Nan (2016) argue that the simplification pro-
cess can be driven by Manhattan-world assumptions even if orthogonlism and paral-
lelism should be favored. We think that urban scenes (especially in historical European
cities) are more complex and their modeling can not be limited to Manhattan-world as-
sumptions. The simplification itself can be driven by the necessity of producing digital
models of the same area at different scales. For instance, Zhu et al. (2017) builds a
detailed reconstruction of an urban scene, and propose to use Markov Random Field
(MRF) to extract facade and roof contours and generate simplified models with differ-
ent LoDs (see Section 1.2.2 for a definition).

In this section, we focus on removing all the redundant data. Ideally, to represent a
planar region we only need the contour points of the region. This means that we want
to remove all the points and edges inside a single region that do not bring any useful
information to the input point cloud.

5.3.2 Contour Extraction
A first approach for removing all the data inside a single region is to compute the

contour of each region. When processing a mesh, these contours can be easily iden-
tified. However, they can be very detailed and noisy, and one may want to obtain
simplified contours. In order to achieve this, we use a contour extraction algorithm:
we extracted the precise shape of each region by computing their α-shapes 29 (Edels-
brunner, Kirkpatrick, and Seidel, 1983; Akkiraju et al., 1995). The idea here is that
the most intuitive way to simplify a piecewise-planar point cloud is to keep only the
shape of each planar region. Also, as each planar region can be not convex, we should
consider α-shapes and not convex hulls.

29. A clear presentation of α-shapes can be found at: https://en.wikipedia.org/wiki/Alph
a_shape
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(a) Projection of the points of two adjacent re-
gions of the road on their supporting plane.
We observe that there is a gap between the
two regions.

(b) Visualisation of the α-shape for each re-
gion. We can observe that the gap is still
present between the two adjacent regions.

Figure 5.3 – Illustration of an α-shape-based simplification. Each color represents a
single region. The scene is a zoom on a road portion at the interface between two
adjacent regions.

5.3.2.1 Definition

Let V ∈ Rn×3 be a set of points and α ∈ R a number. We first introduce the notion
of generalized disk on which α-shapes rely.

Generalized disk: Let 1
α

be the radius of the generalized disk. Depending on α, the
generalized disk is either:

— a disk of radius 1
α

if α > 0 ,

— a halfplane if α = 0 ,

— the complement of a disk of radius 1
α

if α < 0 .

α-shape: Let {vi, vj} ∈ V 2 be two distinct points of V . An edge is constructed
between vi and vj if and only if there exists a generalized disk of radius 1

α
containing V

and which has the property that vi and vj lie on its boundary. We call α-shape of V the
polygon defined by the set of such constructed edges.

An α-shape is neither necessarily convex nor necessarily connected. For large val-
ues of α, the α-shape is identical to the convex hull of V .

5.3.2.2 Experiment

We computed the α-shape for each region of our piecewise-planar approximations
of meshes. We used the implementation provided by the CGAL library (Da, 2019). This
approach allows us to keep the global shape of each region, while discarding unneces-
sary points and edges inside each region. However, this approach do not overcome the
topological problems presented in Section 5.2 as seen on Figure 5.3. In fact the interface
between adjacent regions is not necessarily reconstructed, which leads to holes in the
final mesh. Moreover, the discontinuities shown on figure 5.1 still appear.

5.3.3 Mesh Decimation

The core idea of mesh decimation is to produce a simpler mesh than the input mesh
(with less vertices, edges and faces) that is a geometrically accurate approximation of
the input mesh.
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In the litterature, this is usually done by means of vertex removal and egde collapse
techniques (Garland and Heckbert, 1997). We now describe these techniques, and then
present various works of the litterature based on such algorithms.

5.3.3.1 Principles

The most known mesh decimation techniques, such as vertex removal or edge
collapse, were proposed by Hoppe et al. (1993), Garland and Heckbert (1997), and
Kobbelt, Campagna, and Seidel (1998). Mesh decimation algorithms are based on the
following principles:

— vertex decimation: consists in selecting a vertex and removing it from the recon-
struction. A first approach has been proposed by Schroeder, Zarge, and Lorensen
(1992). Their algorithm selects a vertex, removes it and all its adjacent faces. Then
the resulting hole is triangulated. A similar approach was proposed by Soucy and
Laurendeau (1996). Vertex decimation is illustrated on Figure 5.4.

— vertex clustering: it consists in merging a set of close vertices in a single one and
to re-triangulate the mesh around this vertex. The clustered vertex obtained is not
necessarily a vertex of the initial set. For instance, Rossignac and Borrel (1993)
divide the scene according to a regular grid, and all the vertices of a single cell
are clustered in a single vertex. The grid can be replaced by an octree, or even
by a hierarchical set of octrees, where all the vertices inside a single cell are clus-
tered and each hierarchical level leads to more or less simplified reconstruction
(Schaefer and Warren, 2003).

— edge collapse: edge collapse consists in greedily collapsing edges, starting with
the collapses that minimize a certain error (Hoppe, 1996; Cignoni et al., 2000).
Because it is the approch that we have chosen, we will detail the algorithm in
Section 5.3.3.2.

— non edge collapse: following the edge collapse approaches, the algorithm of Gar-
land and Heckbert (1997) proposes not to collapse an edge, but to collapse a pair
of vertices. The main difference with classic edge collapse techniques is that their
algorithm do not consider an existing edge but just a pair of vertices. This allows
for reconnecting close parts of the mesh that were unconnected. the non-edge col-
lapse technique, after choosing a pair of vertices, proceeds in a similar way as the
edge collapse technique described in the previous point.

5.3.3.2 Edge Collapse Algorithm and Cost-Strategy

There exists various ways to collapse an existing edge linking a source and a target
vertices (vs, vt). They are listed hereafter:

1. Collapse the edge on the source vertex vs (half-edge collapse) (Figure 5.5b). All
the edges connected to the target vertex vt are now connected to the source vertex
vs.

2. Collapse the edge on the target vertex vt (half-edge collapse) (Figure 5.5c). All the
edges connected to the source vertex vs are now connected to the target vertex vt.

3. Create a new point between the source and the target vertices of the edge (Fig-
ure 5.5d). This new point can be chosen as the barycenter of the former points.
All the edges connected to either the source vs or the target vt of the former edge
are now connected to the newly created vertex.
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In our case, we don’t process non-manifold meshes, and we already reconnected
adjacent regions, hence we will not use the edge collapse algorithm of Garland and
Heckbert (1997), but the algorithm of Lindstrom and Turk (1998). This algorithm is
an appropriate algorithm for simplifying our data while preserving the topology. Let v
be a vertex and e = {ve0, ve1} an edge. Let (e0, . . . , en) | ei = {vei0 , v

ei
1 } be the set of edges

affected by the collapse of e. We now present an overview of the algorithm:
1. Compute cost for collapsing each individual edge of the mesh. They are then

ordered in a priority queue according to their associated cost. The cost is com-
posed of three different terms: a shape, a volume and a boundary preservation
terms. Each term is explained hereafter:

— Volume preservation: collapsing edges usually induces a modification of the
global shape of the mesh 30. In order to preserve the geometry of the input
mesh and to prevent over-simplifications, Lindstrom and Turk (1998) added
a volume preservation term in the cost of each edge. This volume preserva-
tion term is based on the volume change affecting the triangles connected
to the removed edge. Let t = (vei , v

t
1, v

t
2) be a triangle, connected with the

collapsed edge by vertex vei . Let t′ = (v, vt1, v
t
2) be the triangle created after

collapsing e, leading vei to be shifted to v. The volume difference is described
as the volume of the tetahedron p = (v, vei , v

t
1, v

t
2). The authors say that the

volume difference is positive if v is above 31 the supporting plane of t; the
counterpart is that the volume difference is negative if v is below the support-
ing plane of t. They argue that collapsing an edge should induce a small
volume difference in the model. Lindstrom and Turk (1998) show that, if the
mesh is locally manifold, the volume difference due to an edge collapse can
be computed as the sum of volume differences per triangle:

fV (e, v) =
∑
i

V ((v, vti0 , v
ti
1 , v

ti
2 ))2 . (5.1)

— Boundary preservation: this is the 2D equivalent of the volume preservation.
In other words, the boundary preservation aims at minimizing the squared
sum of areas impacted by the collapse of a given edge. In the case of a planar
mesh, the surface area change is set to be null:∑

i

A((v, vei0 , v
ei
1 ))2 = 0 . (5.2)

However, surface boundaries are usually not planar. Hence, Equation 5.2
has to be adapted. This is done by relaxing the requirement that all im-
pacted edges are coplanar. Instead, each surface change is expressed with
a direction, and Equation 5.2 is reformulated so as to minimize the magni-
tude of the sum of directed area vectors. This magnitude is correlated to
the fidelity of the change in each direction. Hence, the authors propose the
following reformulation:∑

i

A((v, vei0 , v
ei
1 ))2 =

1

4
‖v × e1 + e2‖2 , (5.3)

with e1i = vei1 − v
ei
0 , and e2i = vei1 × v

ei
0 . The final goal is to have the small-

est possible surface change in the graph while collapsing an edge. Hence,

30. Except in the case where all the adjacent points are coplanar.
31. In this context, above means outside of the model.
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Lindstrom and Turk (1998) propose to minimize the following:

fB(e, v) = L(e)2
∑
i

A((v, vei0 , v
ei
1 ))2 , (5.4)

with L(e)2 the squared length of the considered edge. This favors the col-
lapse of short edges.

— Shape optimization: when the set of points that should be re-triangulated is
coplanar, there is not a unique way to triangulate it. In this case, the algo-
rithm favors equilateral triangles over elongated ones, as the authors argue
that elongated triangles may “introduce unwanted shading discontinuities and
may slow down some rendering methods”. Hence, they want to minimize the
sum of squared lengths of edges between the vertices of the collapsed edge
and the newly created vertex v:

fS(e, v) =
∑
i

L((v, vi))
2 (5.5)

The overall cost for collapsing an edge is computed as a weighted sum of the
costs associated to the constraints: volume and boundary preservation:

c(e, v) = cV fV (e, v) + cBfB(e, v) , (5.6)

with cV and cB some constants used to weight the volume and boundary preser-
vation terms. Note that the shape preservation term is not present here. In fact,
this term is added only when fV and fB are close to zero, in order to solve place-
ment ambiguities. For more details about the energy associated to each con-
straint, we refer the reader to Lindstrom and Turk (1998) and Lindstrom and
Turk (1999).
Also, when collapsing an edge, the new vertex has to be carefully chosen. If the
vertex on which the edge is collapsed is not carefully chosen, large shape varia-
tions can appear. For instance, if we consider a mesh shaped like a sphere, and
if we collapse all its edges on the middle of each edges, the resulting simplified
mesh will be a tetahedron. In the end, the 3D position of vertex v is chosen as:

v? = arg min
v

c(e, v) . (5.7)

2. Collapse an edge. At this point of the algorithm, all edges are sorted in a priority
queue, according to the three constraints presented in the previous point. The
edge with the lowest overall cost is selected, and if there exists a point (not neces-
sarilly member of the 3D mesh) that allows to collapse the edge while preserving
the topology of the mesh, the edge is collapsed. If there exists no such point,
then the edge is considered as non-collapsable and receives an infinite weight. In
this case, the next edge with the lowest cost is considered, and so on until there
exists an edge with a finite cost that can be collapsed. If no such edge exists, the
algorithm stops.

3. Recompute the costs of edges that have been affected. The authors consider
that an edge is affected if it belongs to a triangle from which at least one vertex
has been modified. Once an edge has been collapsed, a new priority queue is
created based on the remaining edges.
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4. Run iteratively until:

— No edge with a small enough cost can be collapsed: this means that further
collapses will highly increase the geometric error,

— The sum of all the collapses is equal to or higher than a given threshold, as
advocated by Kobbelt et al. (1998),

— The remaining number of edges or triangles is lower than or equal to a given
treshold. We are choosing this last stopping criterion, as we think that a fair
comparison between two simplified 3D models should require that the mod-
els are composed of the same number of primitives. Garland and Heckbert
(1997) similarly propose to perform a given number of collapses.

• •

•

• •

•

•

(a) A graph with a point to remove (in red)

• •

•

• •

•
(b) The red point and its associated edges
have been removed, creating the new red
edges.

Figure 5.4 – Illustration of a vertex removal.

5.3.3.3 Edge Collapse in the Litterature

Edge collapse is one of the leading algorithms when it comes to simplifying 3D
meshes (Kaick and Pedrini, 2006; Salinas, Lafarge, and Alliez, 2015; Maggiori et al.,
2017). In fact, edge collapse have been used for various applications, such as skeleton
extraction (Au et al., 2008). Collapsing edges can be performed in parallel when the
different collapses do not impact the same edges (Lee and Kyung, 2016). Pan, Zhou,
and Shi (2001) propose to merge three vertices at once (i.e. a triangle), leading to multi-
ple edge collapsing in a single operation. Their method has been extended to polygons
with more than three sides by Chen, Luo, and Ling (2007). Odaker, Kranzlmueller, and
Volkert (2015) use this technique to perform a real time simplification of 3D meshes on
the visible part of the model. This can be used for rendering applications. Barmak and
Minian (2012) and Boissonnat and Pritam (2019) extended the edge collapse approach
to simplicial complexes.

5.3.3.4 Experiment

We decided to use the edge collapase algorithm of Lindstrom and Turk (1998) to solve
our problem. We used the implementation provided by the CGAL library (Cacciola,
2019). Results are visible on Figure 5.6. As expected, edge collapse approaches allow
to reduce the number of triangles by several orders of magnitude. Also, the approxi-
mation seems to preserve the complex geometry of the data. However, we need to find
a suitable way of assessing the real quality of the approximation.
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• •• •

•

• •

•
(a) A graph with an edge to remove (in red)

•• •

•

• •

•
(b) The edge has been col-
lapsed on the the vertex of the
left.

•• •

•

• •

•
(c) The edge has been col-
lapsed on the vertex of the
right.

•• •

•

• •

•
(d) The edge has been col-
lapsed and new point was cre-
ated at the middle between
the source and the target of
the former edge.

•• •

•

• •

•
(e) The edge has been col-
lapsed and new point was cre-
ated at an optimal place be-
tween the source and the tar-
get of the former edge.

Figure 5.5 – Illustration of an edge collapse.

(a) Input mesh for edge collapse (b) Output mesh produced by the edge col-
lapse algorithm

Figure 5.6 – Illustration of the edge collapse algorithm on a geometrically complex
facade.
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5.4 Evaluation

We want to measure the quality of the of the mesh generalization process. The more
we generalize a mesh, the geometrically worse the approximation is. Thus, we decide
to evaluate the quality of approximation by computing the degree of generalization —that
can be measured by the complexity or description length of the geometric structure—
and the geometric error introduced by the simplification process. Here, this degree of
generalization can be interpreted as the number of points and triangles used to represent
the final mesh.

One of the main principles in information theory is based on the law of parsimony 32

and states that “Entities should not be multiplied without necessity” (Jeffreys, 1939; Jef-
ferys and Berger, 1991). In computer science, the law of parsimony can be verified by
making sure that only the required information is stored, using as little bytes as possi-
ble. The number of bytes used to store the information stored is called the Description
Length (DL). This description length metric is discussed first, and Section 5.4.2 present
the main geometric evaluation metrics.

5.4.1 Minimum Description Length

5.4.1.1 Definition

We call DL the number of bytes used to encode an information. For instance, 1 B is
neccessary to encode a boolean, which means its DL is 1.

A description length is not a metric in itself as the same information can be encoded
with different techniques resulting in different DLs. For instance, a non degrading
compression algorithm can reduce the DL without altering the information. As a result,
the appropriate metric to measure a quantity of information is the Minimal Description
Length (MDL) which was introduced by Rissanen (1978).

The MDL principle has been used with LiDAR data mostly for two applications:
digital model generation and point cloud segmentation. The digital model generation
(which comprises DTM and DSM) relies on the MDL for ensuring that the extracted
ground has a simple shape (Zhou et al., 2004; Sohn and Dowman, 2007). Along the
same line, MDL can also be used to ensure that each segment of a point cloud segmen-
tation has a simple shape (Matei et al., 2008; Jung, Jwa, and Sohn, 2017).

5.4.1.2 Minimum Description Length for a Triangular Polyhedron

In this chapter, the information that we are interested in is a continuous surface
representation such as a mesh or a polyhedron. It is composed of 3D points and tri-
angles. Each single point has 3 coordinates. We store them using float numbers. Each
triangle contains the index of its 3 vertices. We store these indices using a number of
bytes equal to the binary logarithm of the number of vertices.

Let V be the set of points and T be the final set of triangles. We compute the MDL
for a mesh as the following:

MDLmeshes = 3 · sizeof( float ) · |V |+ 3 · log2(|V |) · |T | , (5.8)

where sizeof( float ) represents the number of bytes allocated to a float number. All the
code of this section was written in C++. In this programming language, the size of a

32. http://math.ucr.edu/home/baez/physics/General/occam.html (accessed on 24th
February 2020)
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float number is: 4 bytes 33.

5.4.1.3 Description Length for a Polyhedron

Ultimately, a mesh may not be the best structure for storing simplified meshes.
In the case where we have two or more adjacent triangles that are coplanar, storing a
polygon (e.g. the convex hull of the set of coplanar triangles) allows to save a few bytes
without losing any information on the data (Miller and Stout, 1988; Olariu, Schwing,
and Zhang, 1993).

Let P be the set of polygons composing the final reconstruction of an urban scene.
The MDL for a set of polygons is defined as:

MDLpolygons = sizeof( float )× (3 · |V | −

(∑
p∈P

|p| − 3)

)
. (5.9)

This metric takes advantage of the fact that polygons are planar, and that if a single
polygon contains more than three points, the remaining points can be stored only by
using only 2 coordinates that locates them in the polygon’s supporting plane.

In our case, we chose to restrain to evaluating meshes and not polygons. This is
due to the fact that we compare our simplified reconstructions to methods producing
meshes, and it would not be fair to compare quantity of information required to store
a set of polygons to the one of a set of triangles.

5.4.2 Geometric Error Metrics

In this section, we present the three main types of geometric evaluation metrics:
Hausdorff-distance based metrics, sum-of-distances based metrics and quadric based
metrics.

5.4.2.1 Hausdorff Distance Based Metrics

Let X and Y be two sets of points. Let d(x, y) be the euclidean distance between
a point x ∈ X and a point y ∈ Y . The euclidean distance between x and Y is then
defined as:

d(x, Y ) = inf
y∈Y

d(x, y) . (5.10)

From this, the Hausdorff distance between the two sets X and Y is defined as the
maximum euclidian distance between a point x ∈ X and Y :

dH(X, Y ) = sup
x∈X

d(x, Y ) . (5.11)

This distance is non-symetric, which means that:

dH(X, Y ) 6= dH(Y,X) . (5.12)

However, a symetric distance can be defined from the Hausdorff distance, as ex-
plained by Klein, Liebich, and Straßer (1996):

dHsym = max(dH(X, Y ), dH(Y,X)) . (5.13)

33. https://docs.microsoft.com/en-us/cpp/cpp/fundamental-types-cpp?view=vs
-2019 (accessed on 12th December 2019)
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They argue that this distance is more intuitive for comparing meshes. They propose a
mesh-simplification algorithm in which a vertex is removed if and only if the symetric
Hausdorff distance between the original mesh and the simplified one is smaller than
a given threshold. The METRO software (Cignoni, Rocchini, and Scopigno, 1998), a
software for comparing meshes, also uses a variation of the Hausdorff distance for
computing signed distances between surfaces.

Borouchaki and Frey (2005) proposed to define a Hausdorff-based envelope for
simplifying meshes. They define a global envelope around the surface and a cone
tolerance for each node. They simplify an input mesh if and only if the resulting mesh
preserves the geometry of the initial mesh (this is verified using the global envelope),
and if the local shape of the new mesh is close to the previous local shape (this point is
enforced by the tolerance cone around each point).

The Hausdorff distance is usually hard to compute, even if some techniques exists
to fasten its computation. For instance, Guthe, Borodin, and Klein (2005) propose an
algorithm able to quickly determine the regions of highest geometric distance between
two meshes, and use it compute the Hausdorff distance only between such areas.

5.4.2.2 Sum of Distances Based Metrics

As Hausdorff distances usually remains hard to compute, some works proposed
to directly compute the euclidian distances between the approximated model and the
original one (Hoppe et al., 1993). These metrics are usually computed as the squared
sum of distances between every point of the approximated model to the initial model:

d(X, Y ) =
∑
x∈X

d(x, Y )2 (5.14)

Cohen-Steiner, Alliez, and Desbrun (2004) proposed to extend this metric to take
into account normals. They argue that unlike Hausdorff-based metrics, which are
meant to compares triangulated surfaces, sum of distances-based metrics could be
used to evaluate the quality of geometric primitives 34 used to simplify a mesh. In this
contex, the comparison of normals between geometric primitives and points’ neigh-
borhood ones can ensure that the shape of the input surface is preserved. However,
neither Hausdorff-based nor sum of distances-based metrics take into account the lo-
cal shape of the surface.

5.4.2.3 Quadric Based Metrics

Garland and Heckbert (1997) proposed a new type of error metric: quadric-based
metrics. They argue that such metric is both fast to compute and provide a geometri-
cally accurate evaluation. Their approach relies on the squared distance of each point
to the plane supporting a considered face. LetQ be a quadric, f a face of the mesh and
v ∈ R3 a vertex. We note Qf the quadric associated to the face f . This quadric is built
from the supporting plane of the facet. Then, the per-face quadrics are used to define
a per-point quadric, encoding the local shape of the surface. This quadric is noted Qv
for a given point v. Qv is defined as the sum of the quadrics of the faces containing v.
Garland and Heckbert (1997) then define a per-vertex error, where the error of a vertex
on the input mesh is equal to the sum of the quadrics of its adjacent faces, weighted by
their respective area:

Qv(v) =
∑
f3v

A(f)Qf (v) . (5.15)

34. These geometric primitives area called ‘proxies’ in the paper.
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When collapsing an edge (v0, v1), the new vertex v is found by minimizing the follow-
ing:

Qv(v) = Qv0(v) +Qv1(v) (5.16)

The quadric metric defined by Garland and Heckbert (1997) is purely geometric.
However, Hoppe (1999) propose to extend this metric in order to take into account
other attributes such as color, normals or texture. They define the error associated
to a face as the sum of its vertices geometric error (as in Equation 5.15) and a sum
of attributes error, which are computed as the standard deviation between per-points
attributes and the interpolation of points created from the edge collapses attributes.

Using quadrics, encoding the local shape of the surface, favors the decimation pro-
cess in geometrically simple areas, and help the preservation of the geometric quality
of the input surface. Also, it is possible to take into account other attributes, such as
normals or texture information in quadric metrics.

There exists few studies comparing evaluation metrics for mesh decimation. Two
interesting works on the subjects are the works of Cignoni, Montani, and Scopigno
(1998) and Maglo et al. (2015). The mesh visual quality is often not taken into account
in the previously mentionned metrics. Recently, some works proposed to evaluate
a simplified model both in terms of geometric fidelity and visual quality in order to
correlate with human perception (Maglo et al., 2015, Section 7). However, the approach
of this thesis is purely geometric, so we do not investigate such metrics.

The geometric simplifications created using the `0-plane pursuit algorithm (see
Chapter 4) were evaluated with a sum-of-distances based metric. Hence, we decide
to use the same geometric metric for evaulating the simplification work done in this
chapter.

5.5 Experiments

5.5.1 Compared Methods

We used the segmentations produced in the previous chapter and projected points
according to the criteria defined in Section 5.2. Then, we performed an edge collapse in
order to simplify the meshes. We compare our results with an edge collapse simplifica-
tion based on the raw point cloud, the VSA (Cohen-Steiner, Alliez, and Desbrun, 2004)
algorithm 35 and the Polyfit algorithm (Nan and Wonka, 2017). Note that the Polyfit al-
gorithm does not necessarily produce a mesh. In fact, Polyfit produces a set of planar
3D polygons. In order to compute the MDL for Polyfit results, we consider each inde-
pendent polygon and compute its Constrained Delaunay Triangulation (CDT) (Chew,
1989). We decided to use a CDT in order to preserve the shape of the original polygon.
We used the implementation proposed by Yvinec (2020). We also did some experiments
with Poisson reconstruction (Kazhdan and Hoppe, 2013) which can then be simplified
using an edge-collapse algorithm. However, the first results were not satisfying and it
seems that even after a simplification process, the algorithm will not be able to compete
with the other tested methods, so we stopped these experiments. However, we still de-
cided to report the results of the raw Poisson reconstruction in Figure 5.7 for comparison
purposes.

35. For this experiment, we used the implementation of the CGAL library (Alliez, Cohen-Steiner, and
Zhu, 2019)
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5.5.2 Results
Detailed results for all methods are available on Figure 5.7. Visual results for edge

collapse simplification of our segmentations are displayed on Figure 5.8. The results for
VSA are shown on Figure 5.9. Polyfit and Poisson results are displayed on Figure 5.10
and Figure 5.11 respectively.

We observe that the results of the edge collapse algorithm is bounded by the initial
quality of the segmentation. It should be noted that, when using our segmentations as
input for the simplification, the error is almost not decreasing for a MDL higher than
30 kB. This number corresponds approximately to the minimum information needed
to represent our urban scene.

We noticed that the VSA algorithm was not performing as well as our method,
even if VSA used the raw mesh as input. This is due to the fact that VSA is a bottom-
up method, that is not able to handle large geometrically consistent areas in a mesh
while preserving small geometric details.

In addition it is interesting to note that the simplification is nearly always accurate
on the road, as observed on Figure 5.8. However, complex areas of the scene such as
tops of buildings are easily over-simplified by the edge collapse algorithm.

Last, it seems obvious that using an already simplified data (see Section 5.2) as
input for the edge collapse algorithm will lead to worse results than just feeding the
edge collapse with the raw mesh. However, we see that for over-segmented meshes the
results obtained when hugely simplifying the mesh are as good as the results obtained
with the raw mesh. This proves that the segmentations computed in Chapter 4 are able
to preserve nearly all the geometric information of the scene.
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Minimal Description Length (kbytes)

error (m2)

Edge Collapse - `0-plane pursuit input with 4041 regions
Edge Collapse - `0-plane pursuit input with 1624 regions
Edge Collapse - `0-plane pursuit input with 672 regions
Edge Collapse - `0-plane pursuit input with 205 regions

Edge Collapse
VSA

Polyfit
Poisson

Figure 5.7 – Results of the edge collapse algorithm. For experiments based on `0-plane
pursuit segmentations, we added the number of regions of the final segmentation in
the legend. The dashed lines are for experiments based on our segmentations. The
plain line represents the Edge Collapse algorithm with the raw point cloud as input, this
shows the theoretical best results that can be obtained by using the edge collapse algo-
rithm. The densely dotted lines stand for the state-of-the-art methods against which
we compare our results. This figure is best viewed in color.

162



(a) Segmentation, 205 rg (b) 10,000 eg, ε =2631.92 m2

MDLmeshes =50,880.1 B
(c) 5000 eg, ε =2661.24 m2

MDLmeshes =24,441 B
(d) 4000 eg, ε =3007.83 m2

MDLmeshes =19,075.9 B

(e) Segmentation, 672 rg (f) 10,000 eg, ε =1125.18 m2

MDLmeshes =51,888.2 B
(g) 5000 eg, ε =1136.08 m2

MDLmeshes =25,149.1 B
(h) 4000 eg, ε =1188.18 m2

MDLmeshes =19,616 B

(i) Segmentation, 1624 rg (j) 10,000 eg, ε =739.09 m2

MDLmeshes =51,288.2 B
(k) 5000 eg, ε =758.15 m2

MDLmeshes =24,633 B
(l) 4000 eg, ε =862.11 m2

MDLmeshes =19,015.9 B

(m) Segmentation, 4041 rg (n) 10,000 eg, ε =366.67 m2

MDLmeshes =51,444.2 B
(o) 5000 eg, ε =380.25 m2

MDLmeshes =25,413.1 B
(p) 4000 eg, ε =400.83 m2

MDLmeshes =19,892.1 B

Figure 5.8 – Illustration of the simplification results. Each row shows results for a different input segmenta-
tion. Each color shows results for a different number of edges in the final mesh. For the first column, each
color represent a different region. rg means region, eg means edges and ε means error.



CHAPTER 5. POLYGONALIZATION

The VSA algorithm was able to perform an accurate simplification on large and
planar areas such as the road. However, VSA has a tendency to over-simplify the
facades, leading to sets of points incorrectly agglomerated in a single region. This
happens for example between walls and shutters. Results of this algorithm can be seen
on Figure 5.9.

(a) VSA simplification with
200 planar primitives.

(b) VSA simplification with
800 planar primitives.

(c) VSA simplification with
2000 planar primitives.

Figure 5.9 – Examples of reconstructions performed by VSA. The simplification per-
forms well on large planar areas such as the road, but is unable to cope with complex
areas. This can be seen on the top of facades.

The Polyfit algorithm was unable to perform a geometrically accurate reconstruc-
tion as shown on Figure 5.10. This is due to the fact that Polyfit tries to reconstruct
closed objects, such as houses, which is hard to perform using MLS acquisitions as
they usually are not able to acquire the full geometry of the scene. In fact, we do not
have enough information here to reconstruct the whole building and it is not the scope
of this thesis. However, we can tune the algorithm to detect more planes on each fa-
cade (e.g. one plane at the front and one for all the points acquired inside the building).
This allows for Polyfit to reconstruct some facades. However, this tuning cannot work
for the reconstruction of the road and this prevents Polyfit from reconstructing the full
scene.

(a) Raw point cloud (b) Polyfit reconstruction for a
fitness of 0.8, a complexity of
0.15 and a coverage of 0.05.

(c) Polyfit reconstruction for a
fitness of 0.5, a complexity of
0.4 and a coverage of 0.1.

Figure 5.10 – Examples of reconstructions performed by Polyfit. We see that the road is
not reconstructed and that parts of the facades are not reconstructed as well.

Unlike for Polyfit, the Poisson algorithm is able to perform a full reconstruction of
the scene. However, the Poisson algorithm smooths the reconstruction, which prevents
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it from being geometrically close the original data, especially in complex areas of the
scene. The reconstructions with the smoothing effect can be seen on Figure 5.11. We
notice that, even when increasing the point’s weight to a high value of 1000 (default is
2), the final reconstruction is over-simplified.

(a) Raw point cloud (b) Poisson reconstruction
with a depth of 8.

(c) Poisson reconstruction
with a depth of 12 and point
weight to 1000.

Figure 5.11 – Examples of reconstructions performed by Poisson reconstruction. We see
that this method smooths too much to fit the original data.

5.6 Conclusion

In this chapter, we addressed the problem of mesh simplification and argued that an
accurate simplification should both preserve the geometry and produce a light model.
We presented an approach for generalizing 3D meshes. Our approach is done in three
steps, first by constructing simplicial complexes, then by segmenting the surface part
of the simplicial complex in piecewise-planar components, and last, we simplify our
mesh by means of edge-collapse technique. We evaluate the quality of the simplifica-
tion by comparing different simplified meshes according to their geometric error and
their MDL.

We acknowledge that in the present state, our method can, at best, be as good as an
edge collapse on the full non-segmented mesh. However, we think that producing a
set of polygons and not a mesh, as in Cohen-Steiner, Alliez, and Desbrun (2004) or Nan
and Wonka (2017) and evaluating our approach using the MDL defined in 5.9 would
lead to better results, especially by taking advantage of the large planar structures
retrieved by `0-plane pursuit.

Last, the simplification method we used consists in giving already approximated
data to the edge collapse algorithm (see Section 5.2). This only gives an indirect control
on the simplification process. Moreover, the energy of the edge collapse implementation
is the Lindstrom-Turk cost (Lindstrom and Turk, 1998) defined in Section 5.3.3.2, which
is different from the metric we used to evaluate the final simplifciation. This means
that the simplification process could be improved by computing a removal cost for
each edge based on the squared distance between each removed /shifted point and
the input mesh.
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CHAPTER 6. WEAKLY SUPERVISED SEGMENTATION-AIDED CLASSIFICATION
OF LIDAR POINT CLOUDS

In this chapter, we present a method for point cloud classification, which relies on
local and global per point descriptors. In this context we studied the influence of sim-
plicial complexes as 3D descritpors for classifying point clouds. We also investigated
the use of a pre-segmentation step to improve classification results. We performed
some experiments on the Paris dataset introduced in Chapter 3, but also on two public
benchmarks: the Oakland (Munoz et al., 2009) and the semantic3D (Hackel, Wegner,
and Schindler, 2016) benchmarks.

6.1 Introduction

Automatic interpretation of large 3D point clouds acquired from terrestrial and mo-
bile LiDAR scanning systems has become an important topic in the remote sensing
community (Munoz et al., 2009; Weinmann et al., 2015a; Xu et al., 2019), yet it presents
numerous challenges. Indeed, the high volume and the irregular structure of LiDAR
point clouds make assigning a semantic label to each point a difficult endeavor. Fur-
thermore, producing a precise ground truth is particularly difficult, time-consuming
and can prove to be expensive. However, LiDAR scans of urban scenes display some
form of regularity which can be exploited to improve the accuracy of a noisy semantic
labeling.

Foremost, the high precision of LiDAR acquisitions implies that the number of
points far exceeds the number of objects in a scene. Consequently, the sought semantic
labeling can be expected to display high spatial regularity. In order to take into account
the expected spatial regularity, Weinmann et al. (2015a) propose to classify a point
cloud using descriptors computed on a local neighborhood for each point. However,
the resulting classification is not regular in general, as observed in Figure 6.1b. The
regularity prior has been incorporated into context-based graphical models (Anguelov
et al., 2005; Shapovalov, Velizhev, and Barinova, 2010; Niemeyer, Rottensteiner, and
Soergel, 2014) and a structured regularization framework (Landrieu et al., 2017), sig-
nificantly increasing the accuracy of input pointwise classifications.

Pre-segmentations of point clouds have been used to model long-range interac-
tions and to decrease the computational burden of the regularization (Rutzinger et al.,
2008; Vosselman, Coenen, and Rottensteiner, 2017). The segments thus obtained can be
incorporated into multi-scale graphical models to ensure a spatially-regular classifica-
tion. However, the existing models require setting some constraints on the segments
in advance, such as a maximum radius (Niemeyer et al., 2016; Golovinskiy, Kim, and
Funkhouser, 2009), a maximum number of points in each segment (Lim and Suter,
2009), or the total number of segments (Shapovalov, Velizhev, and Barinova, 2010).

The aim of the work presented in this chapter is to leverage the underlying structure
of the point cloud to improve a weak classification—obtained from very few annotated
points—with a segmentation that requires no preset size parameters. We observe that
the structure of urban scenes is mostly shaped by man-made objects (roads, façades,
cars...), which are geometrically simple in general. Consequently, well-chosen geomet-
ric features associated to their respective points can be expected to be spatially regu-
lar. Also, the extent and number of points of the segments can vary a lot depending
on the nature of the corresponding objects. Hence, we propose a formulation of the
segmentation as a structured optimization problem in order to retrieve geometrically
simple super-voxels. Unlike other presegmentation approaches, our method allows
the segments’ size to adapt to the complexity of the local geometry, as illustrated in
Figure 6.1c.
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Following the machine-learning principle that an ensemble of weak classifiers can
perform better than a strong one (Opitz and Maclin, 1999), a consensus prediction is
obtained from the segmentation by aggregating over each segment the noisy predic-
tions of its points obtained from a classifier trained with only a few samples. The
structure induced by the segmentation and the consensus prediction can be combined
into a conditional random field formulation to directly classify the segments, and reach
competitive performances from a very small number of hand-annotated points.

(a) Ground truth (b) Pointwise classification

(c) Geometrically homogeneous segmentation (d) Segmentation-aided regularization

Figure 6.1 – Illustration of the different steps of our method: the pointwise, irregular
classification 6.1b is combined with the geometrically homogeneous segmentation 6.1c
to obtain a smooth, objects-aware classification 6.1d. In Figures 6.1a, 6.1b , 6.1d, the
semantic classes are represented with the following color code: vegetation, façades,
hardscape, acquisition artifacts, cars, roads. In Figure 6.1c, each segment is represented
by a random color.

6.1.1 Related Work

In this section we present works in the litterature related to our method. First,
we focus on pointwise classification algorithms, then we present some context-based
graphical models. Last, we investigate the pre-segmentation approaches.

6.1.1.1 Point-Wise Classification

Weinmann et al. (2015a) propose a classification framework based on 3D geometric
features which are derived from local neighborhood of optimal size. This framework
is the most common approach for point cloud classification (Vicari et al., 2019; Xing et
al., 2019). These 3D geometric features can be combined with more specific descriptors
such as the vegetation index (Chen et al., 2017).
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6.1.1.2 Context-Based Graphical Models

The spatial regularity of a semantic labeling can be enforced by graphical models
such as MRF (Anguelov et al., 2005; Shapovalov, Velizhev, and Barinova, 2010), and its
discriminative counterpart, the Conditional Random Field (CRF) (Niemeyer, Rotten-
steiner, and Soergel, 2014; Landrieu, Weinmann, and Mallet, 2017). The unary terms,
encoding data fidelity, are computed by a point-wise classification with a random for-
est classifier (Breiman, 2001), while the pairwise terms, inducing spatial regularity, en-
code the probability of transition between the semantic classes.

6.1.1.3 Pre-Segmentation Approaches

A pre-segmentation of the point cloud can be leveraged to improve the classifica-
tion. Lim and Suter (2009) propose to define each segment as a node in a multi-scale
CRF. The super-voxels are defined by a growing region method based on a prede-
fined number of points in each pixel, and a color homogeneity prior. In Niemeyer et al.
(2016), the segments are determined using a prior pointwise-classification. A multi-tier
CRF is then constructed containing both points and voxels nodes. An iterative scheme
is then performed, which alternates between inference in the multi-tier CRF and the
computation of the semantically homogeneous segments with a maximum radius con-
straint. In Shapovalov, Velizhev, and Barinova (2010), the presegmentation is obtained
through the k-means algorithm, which requires defining the number of clusters in the
scene in advance. Furthermore k-means produces isotropic clusters whose size doesn’t
adapt to the geometrical complexity of the scene. In Dohan, Matejek, and Funkhouser
(2015), a hierarchical segmentation is computed using the foreground/background
segmentation of Golovinskiy, Kim, and Funkhouser (2009), which uses a preset hori-
zontal and vertical radius as parameters. The segments are then hierarchically merged
then classified.

6.1.1.4 Deep-Learning-based Approaches

Deep-Learning methods are also used for the pointwise classification of point clouds
(Qi et al., 2017; Soilán Rodríguez et al., 2019). These methods perform better than clas-
sical appraoches based on Random Forests or SVMs (Raczko and Zagajewski, 2017). In
order to improve a pointwise classification, some works propose to segment the point
cloud and learn to classify the segments (Landrieu and Simonovsky, 2018; Hua, Tran,
and Yeung, 2018; Tchapmi et al., 2017). However, training a NN requires a large set
of annotations and is time-consuming. In this chapter, we focus on data-efficiency, by
training a classifier with a few annotated points and NN are not suited for this task.

6.1.2 Problem Formulation

We consider a 3D point cloud V corresponding to a LiDAR acquisition in an urban
scene. Our objective is to obtain a classification of the points in V between a finite
set of semantic classes K. We consider that we only have a small number of hand-
annotated points as a ground truth from a similar urban scene. This number must be
small enough that it can be produced by an operator in a reasonable time, i.e. no more
than a few dozen per class.

We present the consituent elements of our approach in this section, in the order in
which they are called.
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Feature and graph computation: For each point, we compute a vector of geometrical
features, described in Sections 6.2.1, 6.2.2 and 6.2.3. In Section 6.2.4 we present how the
adjacency relationship between points is encoded into a weighted graph.

Segmentation in geometrically homogeneous segments: The segmentation prob-
lem is formulated as a structured optimization problem presented in Section 6.3.1, and
whose solution can be approximated by a greedy algorithm. In section 6.3.2, we de-
scribe how the higher-level structure of the scene can be captured by a graph obtained
from the segmentation.

Contextual classification of the segments: In Section 6.4, we present a CRF which
derived its structure from the segmentation, and its unary parameter from the aggre-
gation of the noisy prediction of a weakly supervised classifier. Finally, we associate
the label of the corresponding segment to each point in the point cloud.

6.2 Features and Graph Computation

In this section, we present the descriptors chosen to represent the local geometry of
3D points, and the adjacency graph capturing the spatial structure of point clouds.

With a view that the training set is small, and to keep the computational burden of
the segmentation to a minimum, we voluntarily limit the number of descriptors used
in our pointwise classification. We insist on the fact that the segmentation and the
classification do not necessarily use the same descriptors.

We first present some local descriptors computed for the local neighborhood of each
point, then some global descritors computed with a knowledge of the whole data, and
finally we encode the simplicial complexes as created in Chapter 3. We argue that the
combination of such descriptors is able to improve the performances of a pointwise
classification compared to using only local or global descriptors.

6.2.1 Local Descriptors

In order to describe the local geometry of each point we define four descriptors:
linearity, planarity, scattering and verticality, which we represent in Figure 6.5.

The features are defined from the local neighborhood of each point of the cloud.
For each neighborhood, we compute the eigenvalues λ1 ≥ λ2 ≥ λ3 of the covariance
matrix of the positions of the neighbors. The neighborhood size is chosen such that it

minimizes the eigentropy E of the vector

λ1/Λ
λ2/Λ
λ3/Λ

with Λ =
∑3

i=1 λi, in accordance with

the optimal neighborhood principle advocated in Weinmann et al. (2015a):

E = −
3∑
i=1

λi
Λ

log(
λi
Λ

). (6.1)

As presented in Demantke et al. (2011), these eigenvalues allow us to qualify the shape
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of the local neighborhood by deriving the following vectors:

Linearity =
λ1 − λ2

λ1

(6.2)

Planarity =
λ2 − λ3

λ1

(6.3)

Scattering =
λ3

λ1

. (6.4)

The linearity describes how elongated the neighborhood is, while the planarity as-
sesses how well it is fitted by a plane. Finally, high-scattering values correspond to an
isotropic and spherical neighborhood. The combination of these three features is called
dimensionality.

In our experiments, the vertical extent of the optimal neighborhood proved crucial
for discriminating roads and façades, and between poles and electric wires, as they
share similar dimensionality. To discriminate this class, we introduce a novel descrip-
tor called verticality also obtained from the eigen vectors and values defined above.
Let u1, u2, u3 be the three eigenvectors associated with λ1, λ2, λ3 respectively. We define
the unary vector of principal direction in R3

+ as the sum of the absolute values of the
coordinate of the eigenvectors weighted by their eigenvalues:

[û]i ∝
3∑
j=1

λj |[uj]i|, for i = 1, 2, 3 and ‖û‖ = 1 (6.5)

We argue that the vertical component of this vector characterizes the verticality of the
neighborhood of a point. Indeed it reaches its minimum (equal to zero) for a horizontal
neighborhood, and its maximum (equal to 1) for a linear vertical neighborhood. A ver-
tical planar neighborhood, such as a façade, will have an intermediary value (around
0.7). This behavior is illustrated at Figure in Figure 6.5.

To illustrate the expressiveness of the selected features, we represent their respec-
tive value and range in Figure 6.2.

6.2.2 Non-Local Descriptors

Although the neighborhoods’ shape of 3D points determine their local geometry,
and allows us to compute a geometrically homogeneous segmentation, this is not suf-
ficient for classification as we can’t distinguish all the classes using only the local de-
scriptors. Consequently, we use two descriptors of the global position of points in the
point cloud: elevation and position with respect to the road.

Computing those descriptors first requires determining the extent of the road with
a high precision. A binary road/non-road classification is performed using only the
local geometry descriptors and a random forest classifier, which achieves very high
accuracy and a F-score over 99.5%. This very high score can be explained by the fact
that our local descriptors are able to efficiently discriminate the road from other classes,
as shown on Figure 6.2. From this classification, a simple elevation model is computed,
allowing us to associate a normalized height with respect to the road to each 3D point.

To estimate the position with respect to the road we compute the two-dimensional
α-shape (Akkiraju et al., 1995) of the points of the road projected on the zero elevation
level, as represented in Figure 6.4. This allows us to compute the position with respect
to the road descriptor, equal to 1 if a point is outside the extent of the road and −1
otherwise. However, we think that this method does not allow to recover an error of
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Figure 6.2 – Means and standard deviations of the local descriptors in the Oakland
dataset for the following classes: wires, poles, façades, roads, vegetation.

the α-shape algorithm. Thus, for points close to the border (in pratice we chose a 1 m
threshold), we chose to set the descriptor not to 1 or −1, but to the distance between
the point and the border of the road. Figure 6.3 represents the value of the descriptor
position with respect to the road compared to the signed euclidian distance between a
point on the road boundary.
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Figure 6.3 – Position with respect to the road, compared to the euclidian distance be-
tween a point and road boundary. Points inside the extent to the road have a negative
distance to the boundary.
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Figure 6.4 – α-shape of the road on our Semantic3D example. In red, the horizontal
extent of the road; in yellow, the extent of the non-road class.

(a) Dimensionality (b) Verticality

(c) Elevation (d) Position with respect to the road

Figure 6.5 – Representation of the four local geometric descriptors as well as the two
global descriptors. In (a), the dimensionality vector [linearity, planarity, scattering] is
color-coded by a proportional [red, green, blue] vector. In (b), the value of the ver-
ticality is represented with a color map going from blue (low verticality - roads) to
green/yellow (average verticality - roofs and façades) to red (high verticality - poles).
In (c), is represented the elevation with respect to the road. In (d), the position with re-
spect to the road is represented with the following color-code: inside the road α-shape
in red, bordering in green, and outside in blue.

6.2.3 Simplicial Complexes as Descriptors

We now focus on the influence of simplicial complexes for point cloud classifica-
tion. The rational is that simplicial complexes could provide some useful geometric
information: for instance, roads are composed of triangles and wires are composed of
edges (Beksi and Papanikolopoulos, 2016). We now present how a 3D structure such
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as simplicial complexes can be converted as a set of 3D descriptors.

6.2.3.1 From Simplicial Complexes to 3D Descriptors

Simplicial complexes are used in this thesis as a 3D structure for point clouds, but
it is not straightforward to find a suitable way to encode them as a 3D descriptor for
point cloud classification. We chose to represent simplicial complexes based on the
dimension of simplices connected to a single point. This means that a single point can
be associated to three different informations:

— the point is left alone (simplex of dimension 0),

— the point is connected to at least an edge (simplex of dimension 1),

— the point is connected to at least a triangle (simplex of dimension 2).

In fact, as shown on Figure 6.6, a single point can be connected to simplices of
different sizes. Intuitively, one could associate to a point the mean dimension of all
simplices to which the point belong. Figure 6.6 shows a point with 5 neighbors. This
point is connected with a triangle to 2 of its neighbors, it is connected with edges to 2
other neighbors and it is unconnected to the last neighbor. Here, we define the mean
of the dimension of the simplices associated to the a point as the sum of connected
simplices’ dimensions divided by the number of neighbors. Also, for a triangle, we
do not take into account its edges. For the red point of Figure 6.6, this number is 0.8
(1 point unconnected + 2 edges of dimension one + 1 triangle of dimension 2, divided
by 5 neighbors). This number is very close to the dimension of an edge. However, in
the case of Figure 6.6, we want to let the simplex of higher dimension prevail as this
simplex is the one giving the most discriminating information among all the simpleces
connected to a single point. In this case, it is a triangle. This means that, for a single
point we associate the following codes:

— 2 if the point is connected to at least one triangle,

— 1 if the point is connected to 0 triangles and at least one edge,

— 0 if the point is not connected to any other simplex.

•

•

•

•

•

•

Figure 6.6 – Illustration of a simplicial complex at a point scale. We consider the red
point: it is connected to 1 triangle and 2 edges. All the black points are neighbors of
the red point.

6.2.3.2 Encoding of Descriptors

The main problem with the encoding presented in the previous section, is that it
induces an inaccurate relationship between the different simplices: an edge could be
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interpreted as a mean between a point and a triangle. Here, we want to distinguish the
three possible cases and give them an equal importance. Hence, we used the one-hot
encoding method to represent them.

One-hot encoding 36: One-hot encoding is based on the one-hot principle (Huff-
man, 1954). For a single group of bits, we call them one-hot if and only if only one of
the bits is high (1) and all the others are low (0). It was first used to find the current
state of state-machines 37 (Golson, 1993). This concept was then adapted to machine
learning. In fact, some algorithms (such as SVMs) are unable to process categorical
data 38.

In machine learning, one-hot encoding is used for representing categorical data
with no ordering relationship in order to feed algorithms unable to process them oth-
erwise. These algorithms include SVMs and some deep learning approaches (Barsan et
al., 2018; Salberg, Trier, and Kampffmeyer, 2017). In this thesis, we represent our sim-
plicial complexes as a set of three descriptors for each point with the code presented in
Table 6.1.

Point Edge Triangle
0D 1 0 0
1D 0 1 0
2D 0 0 1

Table 6.1 – Encoding of simplicial complexes as 3D descriptors.

We display the simplicial complexes encoded as shown on Table 6.1 on Figure 6.8.
We show in blue the points which are connected to a triangle, in green those which are
connected to an edge and no triangles. The remaining points are colored in red. We
observe that most of the road and the buildings are colored in blue, whereas the tree is
colored in blue for the trunk and main branches, twigs are colored in green and leaves
are red. We can observe on this figure that simplicial complexes are extremely noisy,
due to their sensitivity to the position of the sensor. This can lead to misclassifications
in the case of a weakly supervised classification, as the classifier has very little samples
to train on.

6.2.4 Adjacency Graph

The spatial structure of a point cloud can be represented by an unoriented graph
G = (V,E), in which the nodes represent the points of the cloud, and the edges en-
code their adjacency relationship. We compute the 10-nearest neighbors graph, as ad-
vocated in (Niemeyer et al., 2011). We remark that this graph defines a symmetric
graph-adjacency relationship which is different from the optimal neighborhood used in
Section 6.2.1.

36. Based on https://machinelearningmastery.com/why-one-hot-encode-data-in-ma
chine-learning/

37. A state machine is an abstract machine that can be only is one state from a finite number of states
at a given time.

38. Categorical data do not contain numeric values but rather labels such as dog or cat. Such labels
may or may not have a relationship between them.
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Figure 6.7 – Means and standard deviations of the local descriptors and the simplicial
complexes in the Paris dataset for the following classes: Facades, Road, Vegetation,
hardscape, Other.

(a) Representation of the simplicial com-
plexes on the Paris dataset.

(b) Representation of the simplicial com-
plexes on the top of a tree on the Paris dataset.

Figure 6.8 – Representation of simplicial complexes on the Paris dataset using the fol-
lowing color code: triangles, edges and points. Note that due to our geometric priors
when reconstructing the simplicial complexes, a part of the road that is too far from the
sensor is not reconstructed, thus only represented by unconnected points. This figure
is best viewed in color.

6.3 Segmentation into Homogeneous Segments

6.3.1 Potts Energy Segmentation

To each point, we associate its local geometric feature vector fi ∈ R4 (dimensional-
ity and verticality), and compute a piecewise constant approximation g? of the signal
f ∈ RV×4 structured by the graph G. g? is defined as the vector of RV×4 minimizing the
following Potts segmentation energy:

g? = arg min
g∈R4×V

∑
i∈V

‖gi − fi‖2 + ρ
∑

(i,j)∈E

δ(gi − gj 6= 0) , (6.6)
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A

B

C

Figure 6.9 – Adjacency structure of the segment-graph. The edges between points are
represented in black , the segmentation and the adjacency of its components in blue:

. In this figure, we have S = {A,B,C} and E = ({A,B}, {B,C}).

with δ(· 6= 0) the function of R4 7→ {0, 1} equal to 0 in 0 and 1 everywhere else. The first
part of this energy is the fidelity function, ensuring that the constant components of g?

correspond to homogeneous values of f . The second part is the regularizer which adds
a penalty for each edge linking two components with different values. This penalty
enforces the simplicity of the shape of the segments. Finally ρ is the regularization
strength, determining the trade off between fidelity and simplicity, and implicitly de-
termining the number of clusters.

This structured optimization problem can be efficiently approximated using the
greedy graph-cut based `0-cut pursuit algorithm presented in Landrieu and Obozinski
(2016). The segments are defined as the constant connected components of the piece-
wise constant signal g? obtained.

The benefit of this formulation is that it does not require defining a maximum size
for the segments in terms of extent or points. Indeed large segments of similar points,
such as roads or façades, can be retrieved. On the other hand, the granularity of the
segments will increase where the geometry gets more complex, as illustrated in Fig-
ure 6.1c.

For the remainder of the chapter we denote S = (S1, · · · , Sk) the non-overlapping
segmentation of V obtained when approximately solving the optimization problem
presented in Equation 6.6.

6.3.2 Segment-Graph

We argue that since the segments (S1, · · · , Sk) represent objects or significant parts
of objects of the scene, the segmentation represents its underlying high-level structure.
To obtain the relationship between objects, we build the segment-graph, which is de-
fined as G = (S,E, w) in which the segments of S are the nodes of G. E represents the
adjacency relationship between segments, while w encodes the weight of their bound-
ary, as represented in Figure 6.9. We define two segments as adjacent if there is an edge
in E linking them, and w as the total weight of the edges linking those segments:{

E = {(s, t) ∈ S2 | ∃(i, j) ∈ E ∩ (s× t)}
ws,t = |E ∩ (s× t)| , ∀(s, t) ∈ S2 .

(6.7)
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6.4 Contextual Classification of the Segments

To enforce spatial regularity, Niemeyer, Rottensteiner, and Soergel (2014) defines
the optimal labeling l? of a point cloud as maximizing the posterior distribution p(l | f ′)
in a CRF model structured by an adjacency graph G, with f ′ the vector of local and
global features. We denote a labeling of V by a vector l such that {l ∈ {0, 1}V×K |∑

k∈K li,k = 1, ∀i ∈ V } , with li,k equal to one if the point i of V is labelled as k ∈ K, and
zero else. For a point i of V , li is the vector of RK such that it encodes the labeling of i
as k. li contains zeros except for its kth value, which is 1.

This allows us to define l? as the maximizing argument of the following energy:

l? = arg max
l∈∆(V,K)

∑
i∈V

lᵀi p
i +

∑
(i,j)∈E

lᵀiM
(i,j)lj, (6.8)

with pik = log(p(li = k | f ′i)) the entrywise logarithm of the probability of node i being
in state k, and M(i,j),(k,l) = log(p(li = k, lj = l | f ′i , f ′j)) the entrywise logarithm of the
probability of observing the transition (k, l) at (i, j).

As advocated in Niemeyer, Rottensteiner, and Soergel (2014), we can estimate p(li =
k | f ′i) with a random forest probabilistic classifier pRF. pRF can be obtained as the num-
ber of trees in the Random Forest voting for each class, compared to the total number
of trees. To avoid infinite values, the probability pRF is smoothed by taking a linear
interpolation with the constant probability: p(k | fi) = (1− α)pRF(k | f ′i) + α/ |K| with
α = 0.01 and |K| the cardinality of the class set. The authors also advocate learning the
transition probability from the difference of the features vectors. However, our weak
supervision hypothesis prevents us from learning the transitions, as it would require
annotations covering the |K|2 possible combinations extensively. Furthermore the an-
notation would have to be very precise along the transitions, which are often hard
to distinguish in point clouds. We make the simplifying hypothesis that M is of the
following form :

M
(i,j)
(k,l) =

{
0 if k = l

σ else,
(6.9)

with σ a non-negative value, which can be determined by cross-validation.
Leveraging the hypothesis that the segments obtained in in Section 6.3.1 correspond

to semantically homogeneous objects, we can assume that the optimal labeling will be
constant over each segment of S. Consequently, we propose a formulation of a CRF
structured by the segment-graph G to capture the organization of the segments. We
denote L? the labeling of S defined as:

L? = arg max
L∈∆(S,K)

∑
s∈S

Lᵀ
sP

s +
∑

(s,t)∈E

ws,tL
ᵀ
sMLᵀ

t , (6.10)

with P
(s)
k = |s| log(p(Ls = k | {f ′i}i∈s)) the logarithm of the probability of segment s

being in state k multiplied by the cardinality of s. We define this probability as the
average of the probability of each point of the segment to be labeled as k:

p(Ls = k | {f ′i}i∈s) =
1

|s|
∑
i∈s

p(li = k | f ′i). (6.11)

Note that the influence of the data term of a segment is determined by its cardinality,
since the classification of the points remains the final objective. Likewise, the cost of
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road

building

vegetation

hardscape

Figure 6.10 – Illustration of the classification of the segments, based on the sum of
point’s classifications probabilities. Each pie corresponds to a single segment, and the
adjacency relationship illustrates the segment-graph. Each color represents a different
class.

a transition between two segments is weighted by the total weight of the edges at
their interface ws,t, and represents the magnitude of the interaction between those two
segments.

Following the conclusions of Landrieu, Weinmann, and Mallet (2017), we approxi-
mate the labelling maximizing the log-likelihood with the maximum-a-priori principle
using the α-expansion algorithm of Boykov, Veksler, and Zabih (2001), with the im-
plementation of Schmidt (2007). An illustration of the classification of the segments is
presented on Figure 6.10.

It is important to remark that the segment-based CRF only involves the segment-
graph G, which can be expected to be much smaller than G, making inference poten-
tially much faster.

6.5 Numerical Experiments

We now demonstrate the advantages of our approach through numerical exper-
iments on three different datasets. First, we introduce the data and our evaluation
metric, then present the classification results compared to state-of-the-art methods at
the time of Guinard and Landrieu (2017).

6.5.1 Data

To validate our approach, we consider two publicly available data sets and one
private dataset.

The first dataset is the Paris dataset which has been acquired using the Stereopolis
vehicle (Paparoditis et al., 2012) in Paris. It is divided in 5 classes: facade, road, veg-
etation, hardscape (which comprises poles and traffic signs) and a class for unkown
objects named other. This dataset has been manually classified using the CloudCom-
pare software 39. The labeling process is presented in Appendix A. We used this dataset

39. https://www.danielgm.net/cc/
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because it contains the raw acquisition data, allowing for a simplicial complex recon-
struction of the scene (see Chapter 3). The only experiment done on this dataset is the
evaluation of the influence of simplicial complexes for the pointwise classification.

We then consider the urban part of the Oakland benchmark introduced in Munoz
et al. (2009), comprised of 655,297 points acquired by mobile LiDAR. Some classes
have been removed from the acquisition (i.e. cars or pedestrians) such that there are
only 5 left: electric wires, poles/trunks, façcades, roads and vegetation. We choose to
exclude the tree-rich half of the set as the segmentation results are not yet satifying at
the trunk-tree interface.

We also consider one of the urban scenes in the Semantic3D benchmark 40 (Hackel,
Wegner, and Schindler, 2016), downsampled to 3.5 millions points for memory reasons.
This scene, acquired with a fixed LiDAR, contains 6 classes : road, façade, vegetation,
car, acquisition artifacts and hardscape. Although the original dataset comprises 8 dif-
ferent classes, there was no natural terrain in the scene we chose for testing. Also we
decided to merge the two vegetation classes (high vegetation and low vegetation) as they
were really similar regarding our descriptors.

For each class and dataset we hand-pick a small number of representative points
such that the discriminative nature of our features illustrated in Figure 6.2 is repre-
sented. We select 10 points per classes for Paris, 15 for Oakland and 25 to 35 points for
semantic3D, for respective totals of 50, 75 and 180 points.

6.5.2 Metric

To take into account the imbalanced distribution of each class (roads and façades
comprise up to 80% of the points), we use the unweighted average of the F-score to
evaluate the classification results. The F-Score is based on the notion of precision and
recall, which are themselves based on the notions of True Positives and Negatives, and
False Positives and Negatives. In this context, we consider a single point i and a single
class k. The point is:

— True Positives (TP): if i belongs to class k and has been labeled as k,

— True Negatives (TN): if i does not belong to class k and has not been labeled as k,

— False Positives (FP): if i belongs to class k and has not been labeled as k,

— False Negatives (FN): if i does not belong to class k and has been labeled as k.

Precision and recall are introduced respectively in Equations 6.12:

precision =
TP

TP + FP
, (6.12)

and 6.13:
recall =

TP
TP + FN

. (6.13)

The F-Score per class is given in Equation 6.14. The overall F-Score is computed as
the mean of all per-class F-Scores. Consequently, a classification with decent accuracy
over all classes will have a higher score than a method with high accuracy over some
classes but poor results for others.

FScore = 2 · precision · recall
precision+ recall

. (6.14)

40. http://www.semantic3d.net/
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6.5.3 Competing Methods
To evaluate the efficiency of our implementation, we have implemented the follow-

ing methods:
— Pointwise: we implemented the pointwise classification relying on optimal neigh-

borhoods of Weinmann et al. (2015a), with a random forest (Breiman, 2001) and
restricted ourselves to the six geometric features presented in Section 6.2.1.

— CRF regularization: we implemented a CRF-model as defined in (6.8) without
aid from the segmentation.

Note that we do not compare our approach to data hungry methods such as deep
learning-based methods as we are in a weakly-supervised context.

6.5.4 Results
We first present the evaluation of the influence of simplicial complexes for point-

wise classification. This experiment was done on the Paris dataset. Then we compare
our pointwise classification to a CRF-based approach and a pre-segmentation-based
approach. The last experiments are done on the Oakland dataset and on the Seman-
tic3D dataset.

6.5.4.1 Experiments with Simplicial Complexes

In this experiment, we trained a Random Forest classifier on the 50 points manually
selected in the dataset (10 per class). We used the following parameters as they give
better results:

— Maximum depth of a single tree: 50,

— Minimum sample of point per leaf: 1,

— Number of variables randomly selected at each node: 2,

— Maximum number of trees in the forest: 50.

We compared:
— a pointwise classification with only local descriptors named: local,

— a pointwise classification with the local descriptors, the elevation and the position
with respect to the road named: local + global,

— a pointwise classification with the local descriptors and the one-hot encoded sim-
plicial complexes named: local + sc,

— a pointwise classification with all the descriptors named: local + global + sc.

The results are visible on Figure 6.11 with a zoom on a tree in front of a facade in
Figure 6.12. We observe that the classification local + global gives the best results, and
is much less noisy than the classifications using the simplicial complexes. This is due
to the fact that simplicial complex reconstructions are extremely noisy and they may
confuse the classifier. The detailed results per class are available on Table 6.2. For the
following experiments, we will use the best configuration here: local descriptors, plus
the elevation and the position with respect to the road.
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(a) Ground Truth for the Paris Dataset (b) Binary classification in road (blue) / non
road (red)

(c) Pointwise classification: local (d) Pointwise classification: local + global

(e) Pointwise classification: local + sc (f) Pointwise classification: local + global + sc

Figure 6.11 – Comparison of the classifications on the Paris Dataset, with only local
descriptors (c), local descriptors + elevation and position with respect to the road (d),
local descriptors and one-hot encoded simplicial complexes (e) and with all the descrip-
tors (f). The semantic classes are represented with the following color code: buildings,
road, vegetation, hardscape and other.
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(a) Ground Truth for the Paris Dataset (b) Binary classification in road (blue) / non
road (red)

(c) Pointwise classification: local (d) Pointwise classification: local + global

(e) Pointwise classification: local + sc (f) Pointwise classification: local + global + sc

Figure 6.12 – Comparison of the classifications on a portion of the Paris dataset rep-
resenting a tree in front of a facade, with only local descriptors (c), local descriptors +
elevation and position with respect to the road (d), local descriptors and one-hot en-
coded simplicial complexes (e) and with all the descriptors (f). The semantic classes
are represented with the following color code: buildings, road, vegetation, hardscape
and other.
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The classification using simplicial complexes did not perform as well as the classi-
fication with only 6 descriptors. This is mostly due to the noisy reconstruction: we can
observe that on simple areas such as the road or the central part of buildings, the clas-
sification performs well. However, as soon as the geometry of the scene becomes more
complex (e.g. close to windows), the classifier is unable to tell the difference between
a building, vegetation or hardscape. As illustrated on Figure 6.7, the three descriptors
associated to simplicial complex reconstructions are not discriminant enough for clas-
sifying the scene. This leads to an overall FScore lower than the one of the pointwise
classification using only 6 descriptors. For the remaining experiments we decided to
use only the first 6 descriptors. Some future experiments may focus on the regulariza-
tion of simplicial complexes descriptors to improve point cloud classification.

6.5.4.2 Experiments on Public Benchmarks

In Tables 6.3 and 6.4, we represent the classification results of our method and the
competing methods for both datasets. We observe that both the CRF and the pre-
segmentation approach significantly improve the results compared to the pointwise
classification. Although the improvement in term of global accuracy of our method
compared to the CRF-regularization is limited (a few percents at best), the quality of
the classification is improved significantly for some hard-to-retrieve classes such as
poles, wires, and cars. Furthermore, our method provides us with an object-level seg-
mentation as well.

For both experiments, we set the Random Forest parameters to:
— Maximum depth of a single tree: 25,

— Minimum sample of point per leaf: 1,

— Number of variables randomly selected at each node: 4,

— Maximum number of trees in the forest: 25.

We changed the parameters from the previous experiments due to the size differ-
ence of the point clouds compared to the Paris one.
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CHAPTER 6. WEAKLY SUPERVISED SEGMENTATION-AIDED CLASSIFICATION
OF LIDAR POINT CLOUDS

6.6 Conclusion

In this chapter, we presented a point cloud classification method aided by a ge-
ometric pre-segmentation capturing the high-level organization of urban scenes. We
first investigated the influence of simplicial complexes as per points descriptors. In
our experiments, simplicial complexes did not help the classifier. Instead they tend to
harm the final classification. This is due to the high level of noise of our simplicial com-
plexes. However, such structure provide useful information for a classification (e.g.
the facades are mostly composed of triangles, poles or electric wires are composed of
edges), so we think that a regularization step of the simplicial complexes descriptors
could improve the overall classification.

We also showed that the pre-segmentation step allowed us to formulate a CRF
model to directly classify the segments, improving the results over the CRF regular-
ization. The same approach has been studied and tested at a larger scale with the
SuperPoint Graph method (Landrieu and Simonovsky, 2018; Landrieu and Boussaha,
2019).

Further developments should focus on improving the quality of the segmentation
near loose and scattered acquisition such as foliage. Another possible improvement
would be to better exploit the context of the transition. Indeed the form of the transition
matrix in (6.9) is very restrictive, as it does not take into account rules such as "roads
are below the façade" or the "tree-trunk transitions are more likely than foliage-road
transition". Although the weakly-supervised context excludes learning the transition,
it would nonetheless be beneficial to incorporate such expertise from an operator.
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CHAPTER 7. CONCLUSION

7.1 Summary

In this thesis, we investigated the use of simplicial complexes for reconstructing 3D
urban scenes acquired with a LiDAR sensor. We presented the constraints associated to
the processing of LiDAR data, and notably the problems of missing data, and the lack
of internal structure connecting 3D points. In urban scenes, there exists various cases
in which an object hides a part of the scene. This can lead to holes and occlusions in
LiDAR scans. In order to recover the missing geometry, there exists some techniques,
such as inpainting or continuous reconstruction, that infer the missing geometry and
add plausible information to the input scan. In this thesis, we chose to not add any in-
formation to the original data. Instead, we take into account all available information
and rely on the topology of LiDAR sensors for reconstructing 3D scenes. We argue
that some objects in urban scenes can have a higher geometric complexity than the
scan resolution. Hence, we propose to only infer a continuous geometry (such as lines
or planes) where the scan information allows it. The resulting object is a collection of
points, edges, and triangles, and is called a simplicial complex. Reconstructing simpli-
cial complexes allows us to preserve small geometrical details and gives meaningful
information on the local geometry of the scene. We acknowledge that simplicial com-
plexes do not allow for a watertight reconstruction and that their high locality makes
them harder to interprete for visualization.

Moreover, simplicial complexes on urban scenes are composed of hundreds of thou-
sands of simplices. Geometrically simple objects, such as roads or facades are com-
posed of thousands of nearly coplanar triangles. We argue that such geometry can
be precisely approximated by a small number of primitives. Hence, we decided to
add a generalisation process focusing on simplices of dimension 2 (i.e. triangles). We
designed a global approach that takes as input a set of points with an adjacency re-
lationship (such as the triangles of our simplicial complexes) and iteratively divide a
scene into a set of planar regions. Our approach, named `0-plane pursuit, iteratively
segments an input point cloud in a set of planar regions. This method is adaptive to the
geometry of the cloud, thus preserves the highly resolute geometry by locally refining
the segmentation, while aggregating thousands of simplices for geometrically simple
areas such as roads or facades. Our method showed promising results, both in terms
of computation speed and geometric quality of the approximation.

Based on `0-plane pursuit results, we proposed an approach to merge coplanar tri-
angles with the edge collapse algorithm. We evaluated the quality of the approxima-
tion by projecting each point of the original cloud to the simplified model. We also
evaluated the degree of generalization of our models by computing their MDL, which
corresponds to the quantity of information needed to represent the data. Our approach
showed better results than classic 3D modeling approaches. This means that aggregat-
ing 2D-simplices within simplicial complexes is a valid method for generalising the 3D
point clouds of urban scenes.

Last, we investigated the performances of simplicial complexes as data structure.
More specifically, we evaluated the performance of classification algorithms operat-
ing on 3D point clouds. We showed how simplicial complexes could be used as 3D
geometric descriptors. Following our objective of relying on as little extraneous in-
formation as possible, we trained a Random Forest with only a few samples for each
semantic class. We argued that a pointwise classification of 3D point clouds tends
to not be of high quality, but they can be spatially regularised using a segmentation
algorithm, such as `0-cut pursuit. However, our experiments showed that simplicial
complexes were too dependent from the local geometry of the scene to meaningfully
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improve such pointwise classification.
In the end, we proposed a simple and lightweight method to reconstruct simplicial

complexes from 3D LiDAR data acquisitions of urban scenes. We argued that simpli-
cial complexes are an alternative for meshes that allows to preserve all the geometri-
cal informations without modifying the data. We showed that simplicial complexes
can be generalised with a limited number of primitives as well, and that global ap-
proaches can be used to produce geometrically accurate, yet compact, models of 3D
urban scenes.

7.2 Perspectives

We now present some ideas for future works, based on simplicial complex recon-
structions of urban scenes, taking advantage of the geometrical quality of such recon-
structions.

7.2.1 Generalization of Simplicial Complexes

The main problem that arises when using simplicial complexes as structure is that
their high locality can actually hinder classification algorithms, as seen in Chapter 6.
Hence, future work might focus on the generalisation of simplicial complexes. A first
approach, using a wedge-based regularization, has been presented in Section 3.2.3. This
approach allows us to recover missing edges in the reconstruction. The next step
would be to better use global knowledge of the scene, by regularizing the reconstruc-
tion in areas where simplices of low dimension are surrounded by simplices of a larger
dimension. In fact, holes and occlusions can lead to missing information locally, which
can prevent the reconstructions of lower dimensions. Hence, a regularization step,
processing the scene with a global point of view should improve the reconstruction
issues due to small holes.

This regularization step could be done, for instance, by optimising over the entire
reconstruction. Such regularization should penalize the transitions between simplices
of different dimensions, while taking into account the C0 and C1 regularities defined in
Section 3.2.2.2. Also, geometrical descriptors, such as the dimensionality (Demantke et
al., 2011) could be useful to improve the reconstruction as they provide complementary
information to our own geometrical contraints.

7.2.2 Multi-Primitive-Based Generalization

The generalisation work undertaken in this thesis focused only on triangles. This
was motivated by the fact that urban scenes are mostly composed of planar areas (such
as roads). However, even if they may look planar at a very local scale, many objects are
not planar. Poles and tree trunks are cylindrical, bushes, pedestrians, or cars actually
have more complex shapes. Thus, future works on simplicial complexes may focus on
multi-primitive-based generalisation. This generalisation could include cylinders, but
also spheres or tores (Wang and Shi, 2014). Complex objects such as cars can in turn be
represented as a set of primitives.

Moreover, in this thesis, we did not apply any generalisation algorithm to edges and
unconnected point of our simplicial complexes. Future work may look for designing
an algorithm, similar to `0-plane pursuit, but operating on sets of edges. This algorithm
would iteratively segment sets of edges into sets of linear or cylindrical regions. The
final representation of such sets of edges will be a set of polylines and cylinders. This
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will be consistent with the fact that most thin objects, for which we reconstructed only
edges, are in fact thin cylinders (poles, small branches, wires).

Lastly, it is hard to find the underlying 3D shape of a set of unconnected points.
Since we chose to let single points unconnected in the final reconstruction, we only
know that their local neighborhood presents high geometrical variations. However,
we noticed that when a large number of points are left unconnected in a small area,
this usually correspond to the presence of vegetation in the scan. To reconstruct and
visualise this vegetation, one may reconstruct a freeform surface, based on the global
shape of this set of points. For instance, Lafarge and Alliez (2013) propose an algo-
rithm combining mesh surfaces detected via a planar-based segmentation approach,
and freeform surfaces for non-planar areas.

7.2.3 LOD-3 City-Scale Reconstruction

In this thesis, simplicial complexes are used to reconstruct urban scenes while pre-
serving the geometric details of the scene. This could be used as input for further re-
constructions as proposed in Verdie, Lafarge, and Alliez (2015). However, their method
operates on 3D meshes covering entire scenes. As simplicial complexes are composed
of points, edges and triangles, we think that simplices of each dimension can be gener-
alized using different methods. Also, as in Verdie, Lafarge, and Alliez (2015), we think
that a point-wise or simplex-wise semantic classification of the entire scene would be
helpful to guide the reconstruction process. In fact, this classification could be used to
cluster simplices in a similar manner as the work presented in Chapter 6. Then, for
each cluster, a dedicated reconstruction method, taking into account all the geometric
information of the cluster would be applied. Note that every step of this reconstruction
process should include a data fitting prior, based on the local geometry of the scene,
in order to preserve the geometric quality of the reconstruction. We argue that such
method, combined with the high geometric precision of our reconstructed simplicial
complexes could lead to a geometrically detailed modelisation of an entire city.

One of the first problems that needs to be solved is the missing geometry due to
occlusion. A hole-filling step as in Biasutti et al. (2019) would be helpful to overcome
missing data. However, we think that, in our case, classic inpainting techniques may
not be able to recover all missing data, as occlusions can block large part of the scene.
Hence, one could consider learning-based methods, such as the use of NN to complete
missing data in urban scenes (Liu, He, and Salzmann, 2016). For instance, Dai, Diller,
and Nießner (2019) propose to train a NN to fill incomplete 3D scenes by hiding parts
of a partially occluded dataset and evaluate the network performances for reconstruct-
ing the geometry of the hidden areas. Their network is self-supervised, and even if it
does not produce watertight reconstructions, it is able to reconstruct the geometry in
unseen areas with low volumetric error.

The possibility of reconstructing the full geometry from a LiDAR scan, while pre-
serving a high LoD (for instance, LoD-3 for buildings), could simplify the production
of 3D city models, especially for urban simulations (Piepereit et al., 2019) and 3D areas
in films or video games (Gabellone et al., 2017). Such urban models usually require a
large amount of data from various sources, and long fusion and generalization steps.
Hence, the ability to reconstruct 3D cities with a high geometrical precision, and based
on a single acquisition, and whose missing parts are completed by a dedicated algo-
rithm, would save both time and computations.

Last, our data showed that simplicial complexes could also be used on scans of
building interiors thanks to openings, such as windows. Indeed, our scans usually
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include part of floors and roofs inside buildings. Here as well, learning-based meth-
ods would be useful to fill missing data and help the joint interior and exterior recon-
struction simultaneously, and from a single LiDAR acquisition. Such reconstruction
for buildings could be classified as a LoD-4 reconstruction. At the moment of writing
this thesis, few studies exists that combine geometrically detailed interior and exte-
rior reconstruction, and they usually need several acquisitions to be performed and
co-registered (Yilmaz and Buyuksalih, 2015; Buyuksalih et al., 2019).

7.2.4 Real Time Analysis
The reconstruction of simplicial complexes, as defined in Section 3.2.2.2, is highly

local and requires no global knowledge of the scene. Hence, we think that this recon-
struction could be perfomed in real time with a mobile mapping platform. This opens
new perspectives to real-time monitoring and autonomous driving.

Simplicial complexes are a great tool for detecting vegetation and thin objects such
as electric wires. This makes simplicial complexes suitable for representing railroad in-
frastructures (Arastounia, 2015). Being able to reconstruct the 3D environment around
rail tracks, and labeling surrounding point clouds is highly valuable for improving
maintenance processes. In fact, if many trains were equipped with a LiDAR sensor,
real-time reconstructions could be performed while the train is running and railway
companies would be able to monitor the evolution of the whole network in real time.

The ability to perform a simplicial complex-based reconstruction in real time opens
many applications. In fact, when time is an issue (for instance, with environmental
hazards, such as earthquakes), it would be benefical to perform a fast acquisition of the
impacted area with an ALS or a UAV-borne LiDAR leading to the fast reconstruction
of the scene while maintaining precise geometrical informations, even on small objects
(Olsen and Kayen, 2013). In fact, simplicial complexes would also help the identifi-
cation of thin objects by modeling such objects as sets of lines. This would make it
possible to quickly assess damages and detect damaged critical objects, such as electric
wires.

Real-time simplicial complex reconstruction can also be used in the context of au-
tonomous driving. In fact, real-time object identification based on LiDAR data is still a
current challenge in the remote sensing community (Wu et al., 2018; Wang et al., 2018)
and we think that strong geometric hints provided by simplicial complexes could help
the identification of the geometrically complex objects such as street furniture or mov-
ing pedestrians and cyclists.
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A Creating a Classification Ground Truth
with Cloud Compare

A.1 Cloud Compare

CloudCompare (Girardeau-Montaut, 2015) is an open-source software for visualiz-
ing and processing 3D point clouds and meshes. This software is able to read and pro-
cess multiple file formats, including but not limited to: ASCII clouds, PLY, LAS, OBJ
and OFF. CloudCompare is able to perform measurments between point clouds, ap-
ply 3D transformations, registrate, segment and compute statistics on 3D point clouds
and meshes. Also, the software contains some additional plug-ins allowing for Shape
extraction (Schnabel, Wahl, and Klein, 2007), Poisson reconstruction (Kazhdan and
Hoppe, 2013), hidden points removal (Katz, Tal, and Basri, 2007) and so on.

In this appendix, we present the approach used to create the manual classification
of the Paris dataset as presented in Section 6.5.1, using the CloudCompare software.

A.2 Point Cloud Labeling

The approach we present for labeling 3D point clouds in CloudCompare is based
on three main steps:

1. manual segmentation of the input cloud
2. labeling of each segment
3. merge of all the segments

A.2.1 Manual Segmentation of the point cloud

From the input point cloud visible in Figure A.1, a manual segmentation can be
performed using the segmentation tool of CloudCompare. This tool allow the user
to create a polyline by sucessives left-clicks. The polyline is closed with a right click.
CloudCompare propose to divide the selected cloud in two different clouds. The first
one contains all the points inside the 3D extent of the polyline and the second cloud
contains the remaining points. This is done by clicking on the segment in option. An
illustration of this step is shown on Figure A.2.

A.2.2 Labeling of the Segments

Once the whole point cloud has been manually segmented, we have to label each
segment. To this end, we select a segment and manually add the label, as a new scalar
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Figure A.1 – Input point cloud loaded in CloudCompare.

Figure A.2 – Segmenting a point cloud by drawing a polyline (in green).

field, for the segment. This label is set by clicking on the Add Constant SF option. Then,
a first window appears, in which we set the name of the new scalar field. This name
has to be excalty the same for all segments. Next, the software asks for a scalar value.
We set the value according to the class to which the points of the segment belong. This
process has to be done independently for each segment.

A.2.3 Merge of the Segments

The last step is simply done that selecting all the segments and using the merge
tool of CloudCompare. An illustration of the merged labeled segments is presented in
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A.2. POINT CLOUD LABELING

Figure A.3.

Figure A.3 – Final labeled point cloud. The semantic classes are represented with the
following color code: buildings, road, vegetation, hardscape and other.
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Sarala, Tapio Väänänen, Jukka Räisänen, Jouko Saarelainen, Niina Ahtonen, et al.
(2017). “High-resolution LiDAR mapping of glacial landforms and ice stream lobes
in Finland.” In: Bulletin of the Geological Society of Finland 89.2 (cit. on pp. 37, 86).

Qi, Charles R, Hao Su, Kaichun Mo, and Leonidas J Guibas (2017). “Pointnet: Deep
learning on point sets for 3d classification and segmentation”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 652–660 (cit. on pp. 82,
170).

Quadros, ND, PA Collier, and CS Fraser (2008). “Integration of bathymetric and topo-
graphic LiDAR: a preliminary investigation”. In: The International Archives of the Pho-

226



BIBLIOGRAPHY

togrammetry, Remote Sensing and Spatial Information Sciences 36, pp. 1299–1304 (cit. on
p. 83).

Raczko, Edwin and Bogdan Zagajewski (2017). “Comparison of support vector ma-
chine, random forest and neural network classifiers for tree species classification on
airborne hyperspectral APEX images”. In: European Journal of Remote Sensing 50.1,
pp. 144–154 (cit. on p. 170).

Radovic, Matija, Offei Adarkwa, and Qiaosong Wang (2017). “Object recognition in
aerial images using convolutional neural networks”. In: Journal of Imaging 3.2, p. 21
(cit. on p. 63).

Ramakrishnan, Shivakumar, Vincent Demarcus, Jerome Le Ny, Neal Patwari, and Joel
Gussy (2002). “Synthetic aperture radar imaging using spectral estimation tech-
niques”. In: Advanced Signal Processing (cit. on p. 65).

Ramsey, Norman F (1983). “History of atomic clocks”. In: Journal of research of the Na-
tional Bureau of Standards 88.5, p. 301 (cit. on p. 77).
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Romanoni, Andrea, Amaël Delaunoy, Marc Pollefeys, and Matteo Matteucci (2016).
“Automatic 3d reconstruction of manifold meshes via delaunay triangulation and
mesh sweeping”. In: 2016 IEEE Winter Conference on Applications of Computer Vision
(WACV). IEEE, pp. 1–8 (cit. on pp. 39, 96).

Rosenfeld, Azriel (1969). “Picture processing by computer”. In: ACM Computing Sur-
veys (CSUR) 1.3, pp. 147–176 (cit. on p. 63).

Rossignac, Jarek and Paul Borrel (1993). “Multi-resolution 3D approximations for ren-
dering complex scenes”. In: Modeling in computer graphics. Springer, pp. 455–465 (cit.
on p. 152).

Ruiz, Reuben M, Denis A Elliott, Gary M Yagi, Richard B Pomphrey, Margaret A Power,
K Winslow Farrell Jr, Jean J Lorre, William D Benton, Robert E Dewar, and Louise E
Cullen (1977). “IPL processing of the Viking Orbiter images of Mars”. In: Journal of
Geophysical Research 82.28, pp. 4189–4202 (cit. on p. 62).

Rupnik, Ewelina, Mehdi Daakir, and Marc Pierrot Deseilligny (2017). “MicMac–a free,
open-source solution for photogrammetry”. In: Open Geospatial Data, Software and
Standards 2.1, pp. 1–9 (cit. on p. 62).

227



BIBLIOGRAPHY

Russell, Bryan C, Josef Sivic, Jean Ponce, and Helene Dessales (2011). “Automatic align-
ment of paintings and photographs depicting a 3D scene”. In: 2011 IEEE interna-
tional conference on computer vision workshops (ICCV workshops). IEEE, pp. 545–552
(cit. on p. 94).

Rusu, Radu Bogdan, Nico Blodow, Zoltan Csaba Marton, and Michael Beetz (2009).
“Close-range scene segmentation and reconstruction of 3D point cloud maps for
mobile manipulation in domestic environments”. In: International Conference on In-
telligent Robots and Systems (cit. on p. 113).
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