
HAL Id: tel-02948338
https://theses.hal.science/tel-02948338

Submitted on 24 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adapting a HPC runtime system to FPGAs
Georgios Christodoulis

To cite this version:
Georgios Christodoulis. Adapting a HPC runtime system to FPGAs. Operations Research [math.OC].
Université Grenoble Alpes, 2019. English. �NNT : 2019GREAM061�. �tel-02948338�

https://theses.hal.science/tel-02948338
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES
Spécialité : Informatique
Arrêté ministériel : 25 mai 2016

Présentée par

Georgios CHRISTODOULIS

Thèse dirigée par Frédéric DESPREZ
et codirigée par François Broquedis
et Olivier MULLER, MCF, Grenoble INP

préparée au sein du Laboratoire d'Informatique de Grenoble
dans l'École Doctorale Mathématiques, Sciences et
technologies de l'information, Informatique

Adaption d'un système HPC pour intégrer
des FPGAs

Adapting a HPC runtime system to FPGAs

Thèse soutenue publiquement le 5 décembre 2019,
devant le jury composé de :

Monsieur FREDERIC DESPREZ
DIRECTEUR DE RECHERCHE, INRIA CENTRE DE GRENOBLE
RHÔNE-ALPES, Directeur de thèse
Monsieur CHRISTIAN PEREZ
DIRECTEUR DE RECHERCHE, INRIA CENTRE DE GRENOBLE
RHÔNE-ALPES, Rapporteur
Monsieur SMAÏL NIAR
PROFESSEUR, UNIV. POLYTECHNIQUE DES HAUTS-DE-FRANCE,
Rapporteur
Monsieur FRANÇOIS BROQUEDIS
MAITRE DE CONFERENCES, GRENOBLE INP, Examinateur
Monsieur OLIVIER MULLER
MAITRE DE CONFERENCES, GRENOBLE INP, Examinateur
Monsieur RAYMOND NAMYST
PROFESSEUR, UNIVERSITE DE BORDEAUX, Président
Monsieur DAVID NOVO
CHARGE DE RECHERCHE, CNRS DELEGATION OCCITANIE EST,
Examinateur

Abstract

Along with the traditional CPU cores, processing units of different archi-

tectures are now employed by the High Performance Computing (HPC)

community in order to obtain improved efficiency and performance. A

Field Programmable Gate Array (FPGA), is a hardware fabric composed

of interconnected re-programmable logic and memory blocks. This type

of processing unit, is considered a promising candidate to amplify the ef-

ficiency and the computational power of heterogeneous HPC platforms

since it comes with massive parallelism and a reduced amount of abstrac-

tion layers between the application and the actual hardware.

However, exploiting FPGA requires an in-depth knowledge of low-level

hardware design and high expertise on vendor-provided tools, which is

not aligned with the skills of high performance computing application pro-

grammers. In the scope of this thesis, we have designed a framework that

allows straightforward development of scientific applications over hetero-

geneous platforms enhanced with FPGA. Using this framework requires

only a limited knowledge of the underlying architecture, and an FPGA

can be used in the same way as any other type of processing unit. At the

core of the proposed framework there is the StarPU heterogeneous runtime

system, that was extended to support this new type of accelerator, hiding

from the programmer complex operations deriving from the complexity of

the underlying architecture while it allows fine control of the performance

through different scheduling strategies. For the communication part, we

created Conor, a communication library based on RIFFA, that enforces

consistency in scenarios with concurrent accesses to the FPGA.

The approach proposed by our framework is evaluated across two direc-

tions. The first one corresponds to programmability, while the second

one concerns the performance overhead imposed by the additional com-

ponents attached to the FPGA. Both the programmability and overhead

of the framework are evaluated using a basic blocked version of matrix

3

multiplication showing the ease of development and the negligible over-

head imposed by FPGA management to the rest of the framework. In

addition to our experiments on matrix multiplication, we created an ef-

ficient hardware design of GEMM, that will allow the execution of more

complex and interesting applications like the Cholesky decomposition.

Contents

1 Introduction 1

2 Background And Problem Statement 4

2.1 Parallelism Is Everywhere . 5

2.2 HPC Systems . 7

2.2.1 Hardware Organization . 8

2.2.1.1 Parallelism Inside A CPU 8

2.2.1.2 From Processors To Nodes 11

2.2.1.3 From Nodes To Clusters 13

2.2.2 How To Program An HPC System? 13

2.2.2.1 Extracting Parallelism In An Application 14

2.2.2.2 Parallel Programming Models 15

2.3 FPGA . 16

2.3.1 FPGA: Architecture . 17

2.3.2 How To Program An FPGA Chip? 20

2.3.3 FPGA: Memory . 21

2.3.4 FPGA: Communication With Its Environment 22

2.4 Performance Results Of FPGAs On HPC Applications 23

2.5 Problem Statement . 26

3 Related Work 29

3.1 Heterogeneous Programming Approaches From The HPC Community 31

3.1.1 Low-Level Device Programming Libraries: OpenCL and CUDA 32

3.1.2 High-Level Heterogeneous Programming Environments 36

3.1.2.1 OpenACC - An Industrial Specification For Hetero-

geneous Computing 37

3.1.2.2 Runtime Support For Heterogeneous Task Execution

Using Charm++ . 37

i

ii Contents

3.1.2.3 OmpSs - Runtime Support Of FPGA For SoC 39

3.1.2.4 Anthill - Runtime Support For Large Heterogeneous

Distributed Environments 40

3.1.2.5 StarPU - A Runtime System For Heterogeneous Plat-

forms . 41

3.1.2.6 Harmony- Runtime Support For Heterogeneous Many

Core Systems . 41

3.1.2.7 Qilin - Adaptive Workload Mapping For Heteroge-

neous Machines With CPUs And GPUs 42

3.2 FPGA Accessibility From The Hardware Community 43

3.2.1 Thread Based Approaches . 43

3.2.1.1 HThreads - Hybrid Threads; A POSIX Compliant

Thread Based Abstraction For Reconfigurable Com-

puting . 44

3.2.1.2 SPREAD - A Thread Based Approach For Streaming

Applications . 45

3.2.1.3 FUSE - Front-End USEr Framework To Utilize Hard-

ware Accelerators Under An OS Abstraction 46

3.2.1.4 ReconOS- Multithreaded Programming Environment

For Computers With Reconfigurable Components . . 47

3.2.2 Dataflow Based Approaches 47

3.2.2.1 FOSFOR - A Model For Dataflow Applications On

Architectures With Reconfigurable Components . . . 48

3.2.2.2 ReConfigMe - An Operating System For Reconfig-

urable Computing 49

3.2.2.3 FlexTiles- Flexible Tiles For An Heterogeneous Many-

core Architecture . 50

3.2.3 Process Based Approaches . 50

3.2.3.1 BORPH - Berkeley Operating System For RePro-

grammable Hardware 51

3.2.3.2 SPORE- Simple Parallel Platform For Reconfigurable

Environment . 51

3.3 Bridging The Gap : Heterogeneous Programming With FPGA 52

3.3.1 OpenCL Support For FPGA 52

3.3.2 FCUDA . 54

3.3.3 OpenACC Support For FPGA 55

iii Contents

3.3.4 OmpSs Support For FPGA 55

3.4 Discussion . 56

4 An Heterogeneous HPC Framework Integrating FPGA 58

4.1 The Proposed Framework . 59

4.1.1 Inside StarPU . 61

4.1.1.1 The Task Model . 61

4.1.1.2 The Memory Model 64

4.1.1.3 Task Scheduling And Performance Models 64

4.1.2 The StarPU FPGA worker . 66

4.1.3 Conor: A Communication Library Based On RIFFA 69

4.1.3.1 RIFFA . 69

4.1.3.2 Channel Allocation 72

4.1.3.3 IP Mapping . 73

4.1.3.4 Performance Reports 74

4.1.4 Hardware Level Integration 74

4.1.4.1 IO Protocol For The IPs 75

4.1.4.2 Description Of The Connector 75

4.1.4.3 Overview Of The Entire Design 78

4.2 Evaluation . 80

4.2.1 Blocked Matrix Multiplication 80

4.2.2 The Programmers’ Side . 81

4.2.2.1 The StarPU Application 81

4.2.2.2 Writing Hardware Tasks 84

4.2.2.3 Generating The Bitstream 85

4.2.3 Results . 85

4.3 Conclusion . 90

5 Heterogeneous Scheduling 91

5.1 Heterogeneous Matrix Multiplication 92

5.2 Cholesky Decomposition . 95

5.3 Analysis On The Implementation Of The Cholesky Decomposition. . 96

5.4 Developing A Hardware Design Of GEMM 98

5.4.1 Hardware Design Optimizations Of GEMM. 99

5.4.2 Hardware GEMM - Performance Evaluation 103

5.5 Discussion . 105

iv Contents

6 Conclusion and Future Work 107

6.1 Conclusion . 107

6.2 Future Work . 109

6.2.1 Heterogeneous Experiments 109

6.2.2 Interconnect Version Upgrade 110

6.2.3 Dynamic Reconfiguration . 111

6.2.4 Multi-Board Experiments . 112

6.2.5 Use On-Board DDR . 112

A Appendix 114

Bibliography 121

List of Figures

2.1 Overview of the GoldmontPlus CPU architecture by Intel [2]. The

architecture is used as a reference to demonstrate how parallelism is

employed in the design of a modern CPU. 9

2.2 Reference structure of a typical heterogeneous processing node. The

node is constructed by a set of CPU accessing the same main memory

(host), and a series of accelerators connected to the host via a PCIe

bus. Typically, accelerators do not share the same memory as CPU

cores, hence they have their own privates memories. 12

2.3 Overview of the internal architecture of FPGAs. Configurable logic

blocks (CLB) are connected with embedded memory (BRAM) and

dedicated processing elements (DSPs and FPUs), in an array-like ar-

rangement. 18

2.4 Overview of the internal structure of a CLB for the Zynq 7000 family

of FPGAs by Xilinx [7]. Every block is assembled by two slices, that

can put through either purely logic operations, or logic operations along

with storage. The logic operations are provided via logical function

generators implemented by LUT and can simulate the behavior of any

Boolean function. 19

2.5 Block design of our experiment board - VC709, a member of the Zynq

7000 family from Xilinx [6]. The design is used to present the envi-

ronment of the chip on the board. Among with the DDR3 blocks, the

Differential Clock, the DIP Switches the UART and the JTAG inter-

faces, we highlight the 8-lane PCIe Edge Connector that allows the

communication of the chip with the host node. 22

v

vi List of Figures

2.6 Paradigm of our reference heterogeneous platform. A typical node

of our focus is assembled by a series of CPU cores accessing the same

physical memory (host), coupled with an accelerator (typically a GPU)

and an FPGA. The devices assembling the node are connected over

PCIe with the host. They have their own physical address space, hence

they are represented with their own private memories in the design. . 27

3.1 An overview of the related work on programming environments for het-

erogeneous platforms. On the high performance computing community

side (section: 3.1), we first introduce low-level libraries that allow the

execution of code on accelerators (section 3.1.1) and then higher-level

runtime environments (section 3.1.2). On the hardware community

side, we introduce frameworks that ease the accessibility and man-

agement of FPGAs (section 3.2). Our taxonomy distinguishes three

classes of works: the thread based ones (section 3.2.1), the task based

approaches (section 3.2.2) and the process based ones (section 3.2.3). 30

3.2 SDAccel reference architecture and software layout. The reference

architecture is similar to our heterogeneous reference architecture. A

series of CPU cores connected with a FPGA over a PCIe bus. The

FPGA is configured using a bitstream. The host executable is linked

with the Linux drivers and the runtime system of Xilinx (XRT). . . . 53

3.3 Synthesis flow of CUDA kernels for FPGAs using FCUDA. The syn-

thesis starts from a vanilla CUDA kernel, that is annotated with prag-

mas compiled into a synthesizable C kernel that is later translated into

hardware description level and then to a bitstream. 54

4.1 Figures 4.1a and 4.1b present the software stack and the reference

architecture of our approach. 60

4.2 Reference architectures of a StarPU scheduler. A scheduling policy

is responsible to determine the mapping between ready tasks and the

available processing units. The source of the scheduler is a FIFO queue

holding the tasks with satisfied dependencies, represented by the left

side FIFO on figures 4.2a,4.2b. On the other side there is the amount

of the available processing units represented by their workers, perform-

ing popping operations on the scheduler so they can proceed to task

execution. 65

vii List of Figures

4.3 Connector: a RIFFA channel to hardware task adapter. The connector

is assembled by two individual components the Input and the Output

handler. The input handler is responsible to drive the RD direction of

the RIFFA channel to the input port of the hardware task. The output

handler is responsible to drive the output port of the hardware task to

the TX direction of the RIFFA channel, using information provided by

the control port of the task. 77

4.4 Hardware Design Overview: This is a complete layout of a FPGA con-

figuration compatible with our framework. The objective is to provide

accessibility to a number of hardware tasks from the software (host)

side. The link between the host and the device is the PCIe bus, on

top of which the hardware interface of RIFFA is synthesized (using the

PCIe interface from the FPGA vendors). Every synthesized hardware

task is coupled with a connector component which is associated to a

RIFFA channel. 78

4.5 Overview of our evaluation algorithm: Blocked version of matrix mul-

tiplication. Figure 4.5a shows the partitioning of the input and output

matrices while figure 4.5b shows the data blocks associated to a single

task. 80

4.6 We conducted a series of experiments with a varying matrix size. We

kept the task granularity constant across the experiments, modifying

the number of tasks launched on every execution by adjusting the size

of a matrix dimension and the number of partitions per dimension. For

every set-up (configuration displayed in figures 4.6a through 4.6i) we

run a case for the heavy weight task and another for the light weight

one. 87

4.7 Performance results on homogeneous execution scenarios of blocked

matrix multiplication for block sizes of 64x64 (figure 4.7a) and 256x256

(figure 4.7b). An execution can happen completely on the CPU cores

(CPU-only bars) or the FPGA (FPGA-only bars). In the case of small

granularity, the execution time for both architectures is similar while

in the heavy-weight tasks, the FPGA impelmentation outperforms the

CPU one. In both cases, the increase in the number of tasks shows no

performance overhead imposed to the execution time. 89

viii List of Figures

5.1 Performance results on heterogeneous execution scenarios of blocked

matrix multiplication for block sizes of 64x64 (figure 5.1a) and 256x256

(figure 5.1b) . 94

5.2 Demonstration of memory mapping of a 3 by 3 matrix X and its trans-

pose XT . 98

6.1 A design of an extended version of the framework able to exploit the

on-board FPGA memory. 113

A.1 Task Graph of Cholesky decomposition 120

Chapter 1

Introduction

The evolution of technology has lead to computing systems of tremendous perfor-

mance capabilities coupled with a fair amount of complexity. As an example, the IBM

Summit super-computer reaches a theoretical peak performance of 200 Pflop s−1, at

the expense of a great increase in both architectural complexity and energy consump-

tion. In order to overcome the complexity associated with such machines, researchers

have developed models and tools that provide clean interfaces to developers bridging

the gap between a common modern computer and such a system.

To overcome the energy demands required for this amount of computations, the

community has oriented itself towards heterogeneous processing resources. The first

example of truly high performing heterogeneous computations was the one of the

GPU, that showed orders of magnitude of performance increase in certain kinds of

computation compared to the traditional CPU. The idea behind heterogeneity is

to identify and decompose an application into different parts with similar demands

and bottlenecks and assign them to the type of processing unit that corresponds

best to their characteristics. FPGA are re-configurable pieces of fabric, that lately

gained the interest of the high performance computing community for their low energy

consumption and potential for augmented performance. From a high level point of

view, those properties derive by the fact that in an FPGA, the description of the

application and its actual hardware implementation are closer (reduced amount of

abstraction layers) than a traditional architecture like the CPU.

The trade-off of utilizing FPGA for general purpose processing is the complexity

of hardware design. Despite the fact that hardware vendors have invested a lot of

effort to enable the configuration of those devices using a higher-level language, there

are still plenty of challenges to overcome in order to obtain efficient implementations.

Those challenges are mainly due to the massively parallel nature of the hardware, as

well as the fact that development happens in the inverse way compared to a traditional

1

2

CPU. The fundamental processing units of an FPGA are very primitive, yet in the

order of thousands and hundreds of thousands, so the level of parallelism exceeds by

far the one that software developers are used to. On top of that, in the process of

hardware design, it is the processing unit that is being adapted to the algorithm, and

not the other way around.

All things considered, only a fraction of the high performance computing commu-

nity considers programming FPGA for now. Besides the requirements for fine low-

level control of hardware design, programmers need to handle mechanisms associated

to the management of the device. The main objective of this thesis is to improve the

accessibility of heterogeneous architectures containing FPGA accelerators to parallel

application programmers. To do so, we propose a framework which enables devel-

opers to use FPGA as another accelerator within a traditionally heterogeneous high

performance computing platform. We focused on ease of development and portability

without sacrificing performance, to position this work as a first step towards bridging

the gap between the hardware and high performance computing communities. Our

solution relies on an extension of the StarPU heterogeneous runtime system and a

new communication library called Conor that facilitates the communication between

the software side and the device through PCIe. On the hardware side, we provided

the control units responsible for the integration of the hardware tasks that will be

provided by the developer This complexity has been the challenging, motivating and

rewarding part of this thesis along with the fact that the product of this work is

directly applicable to real large scale systems.

This manuscript is organized as follows:

• Chapter 2 provides the essential information about the background required for

the understanding of this work. Section 2.1 introduces the concept of paral-

lelism and its twofold nature, the spatial and the temporal one. Section 2.2

explains the different levels of complexity of a modern high performance com-

puting system, and how parallelism is exploited in every one of them, while

section 2.3 introduces FPGA as an accelerator to such system.

• Chapter 3 provides the different approaches associated to this work by the

software (3.1) and hardware (3.2) community respectively.

• Chapter 4 introduces our framework as well as the first series of its evaluation.

More precisely, section 4.1 focuses on both the software and hardware level

3

integration we went through during this thesis. In this chapter, we also evaluate

the behavior of our framework on homogeneous execution scenarios, using a

blocked version of matrix multiplication (4.2). The evaluation is across two

dimensions, one being the programming effort that our framework requires for

the support of FPGA (section 4.2.2), as well as the performance overhead of

our integration (section 4.2.3).

• Chapter 5 presents our work towards truly heterogeneous experiments. On the

first part of the chapter (in section 5.1) we present a series of experiments, where

we used the same blocked version of matrix multiplication used in chapter 4, that

multiplication tasks are executed simultaneously on the CPU and the FPGA.

For a more complete example of heterogeneous execution, we introduce Cholesky

decomposition, an application that is assembled by four different kernels, one

of which (GEMM), we have chosen to optimize and synthesize in hardware

(section 5.4).

• Lastly, chapter 6 presents a summary of this study as well as its possible per-

spectives.

Chapter 2

Background And Problem
Statement

Contents
2.1 Parallelism Is Everywhere 5

2.2 HPC Systems . 7

2.2.1 Hardware Organization . 8

2.2.2 How To Program An HPC System? 13

2.3 FPGA . 16

2.3.1 FPGA: Architecture . 17

2.3.2 How To Program An FPGA Chip? 20

2.3.3 FPGA: Memory . 21

2.3.4 FPGA: Communication With Its Environment 22

2.4 Performance Results Of FPGAs On HPC Applications 23

2.5 Problem Statement . 26

The core of this PhD stands across two well-established research areas: high per-

formance computing and hardware design using FPGAs. This chapter introduces

the reader to the notions and concepts of both, that are necessary for the further

comprehension of the contribution and the results of the work. Section 2.1 is an

introduction to the concept of parallelism highlighting both its spatial and temporal

nature. Section 2.2 introduces high performance computing systems presenting their

hardware organization and the way they are programmed today. Section 2.3 is ded-

icated to FPGAs and provides details on both their architecture and how to exploit

them from the programmers’ point of view. Section 2.4 then presents a taxonomy

of high performance computing applications and a suitability analysis of FPGAs to

each class, based on the literature. The chapter ends with section 2.5 that provides

4

5 2.1. Parallelism Is Everywhere

an analysis of the challenges and our positioning regarding the integration of FPGAs

in HPC.

2.1 Parallelism Is Everywhere

Once the capabilities of a single core reached a ceiling because of physical limits of

the matter, mainly its ability to drain off heat, parallelism was employed in order

to further augment the performance of computing platforms. The purpose of high

performance computing is to deliver fast computational solutions to problems and

algorithms of multiple fields. Often, those problems are by nature parallel, meaning

there are parts of the computational load that can be executed independently and

hence simultaneously with others. It is of vital importance to identify these parts in

order to exploit the underlying processing resources to reach the best possible per-

formance. Fundamentally parallelism has a twofold nature, the temporal and the

spatial one. In the following analysis, we present two generic techniques to capitalize

on its both aspects: pipelining for the temporal parallelism and resource duplication

for spatial parallelism. Those two universal concepts can be applied to almost ev-

ery problem. To demonstrate them we use the example of clothes-washing. Along

with the concepts of pipelining and resource duplication, we introduce fundamental

performance evaluation metrics like the throughput and the latency.

Problem description: the laundry Assume a given set of dirty t-shirts that

needs to be delivered clean and well folded. The standard procedure involves:

• Step a: doing the actual washing (processing unit: washing machine)

• Step b: drying the clothing (processing unit: drier)

• Step c: ironing and folding (processing unit: ironing table)

The latency metric corresponds here to how much time it is required in order

to get one t-shirt clean. Throughput refers to how many t-shirts per time unit we

can deliver (assuming we have more than one t-shirt to process). In a completely

sequential paradigm, we would wait for a t-shirt to pass from all the three stages

(washing, drying, ironing and folding) before getting the next one into the procedure.

6 2.1. Parallelism Is Everywhere

Pipelining The first optimization technique that comes immediately in mind is

that we can overlap washing with drying and ironing among different t-shirts. This is

the idea of pipelining that exploits temporal parallelism. The concurrent utilization

of the three different processing units on different t-shirts is possible because the

three procedures are independent and can operate individually. In other words, the

effort that is needed in order to perform the entire execution can be split into a set

of individual and well defined steps.

We can at this point evaluate the impact of pipelining using the latency and

throughput metrics introduced above. This will lead to a series of observations and

remarks regarding the parameters that effect the behavior and the effectiveness of the

method. Let step k requires tk units of time for its completion. First by evaluating

the sequential version of the laundry we obtain a latency and a throughput of:

Sequential latency = ta + tb + tc

Sequential throughput =
1

ta + tb + tc

By evaluating the pipelined version we obtain:

Pipelined latency = ta + tb + tc

Pipelined throughput =
1

max(ta, tb, tc)

The first observation here is that pipelining does not effect the latency. In other

words pipelining is a technique that aims to increase the throughput. The second

observation is that the effect on the throughput is correlated with the balance among

the time spent on each one of the steps. On the one hand, if the steps are well balanced

in terms of time demands, the gain in throughput is proportional to the number of

steps. On the other hand, if the majority of the processing is spent during one of the

steps, then the throughput of the pipelined version converges to the throughput of

the sequential one. Said differently, the effectiveness of pipelining is determined by

the delay of the slowest step compared to the average step delay.

Resource duplication The second intuitive optimization technique is to get equip-

ped with multiple units of each stage (laundry machines, driers and ironing tables) so

that we can perform the same step multiple times concurrently, exploiting the spatial

nature of parallelism. This optimization technique is called resource duplication and

by default is also a throughput optimization strategy. For our laundry problem, as

well as for any problem where every workload will be processed by every step, resource

7 2.2. HPC Systems

duplication can increase the throughput proportionally to the number of duplicates

if we have an equal amount of duplicates for every stage. In a laundry with three

washing machines, three dryers and one iron table, the throughput is the same than

the one of a laundry with one single processing unit per stage. This is because all the

t-shirts will have to serialize on the ironing step.

Assuming a facility with x processing units per step, the latency and the through-

put are the following ones:

Duplicates latency(x) = ta + tb + tc

Duplicates throughput(x) =
x

ta + tb + tc

Resource duplication is also technique to increase the throughput, by adding sup-

plementary processing units. The bottleneck of the throughput increase lies at the

step of the procedure with the least amount of resources.

Combining the two techniques As one could expect, the above two techniques

can be combined together in order to exploit both temporal spatial parallelism. In

our laundry problem, the facility can be equipped with a series of machines for every

stage, and the operation on the machinery can occur in a pipelined fashion. This

would increase the overall throughput in two ways, the amount of t-shirts processed

per time unit will be proportional to the number of available resources per unit, and

the time per new t-shirt will be decreased to the maximum delay per processing step.

The final throughput for this combined approach where pipelining is combined with

x duplicates is the following one:

Throughput(x) =
x

max(ta, tb, tc)

2.2 HPC Systems

The size and the computational power delivered by modern supercomputers are now

tremendous. The highest ranked computer system of today, in the TOP500 list called

Summit, according to the last published data of November 2018, holds 2,397,284 IBM

POWER9 22C cores at 3.07 GHz and 2.8 PB of main memory [119]. The system is also

equipped with NVIDIA Volta GV100 GPUs and connected with Dual-rail Mellanox

EDR Infiniband. Its theoretical peak performance is 200 Pflop s−1, and its submitted

power consumption is 9,8 MW. This tremendous power of computation comes with

very complex hardware and memory layouts that HPC application developers need to

8 2.2. HPC Systems

fully comprehend in order to exploit such platforms at their full potential. This section

first presents the hardware architecture of HPC systems. Moreover, it demonstrates

how an algorithm can be decomposed and transformed in order to adapt to the

underlying parallel infrastructure, from the point of view of the HPC programmer.

Finally, this section classifies from a very high level, existing programming models

currently used in order to implement a parallel algorithm.

2.2.1 Hardware Organization

This section presents the typical hardware organization of an HPC system such as

the Summit one mentioned above. It decomposes the system to different levels, and

highlights the hardware parallelism on every one of them. Our analysis will start

at the CPU level in section 2.2.1.1. In section 2.2.1.2 we present how several CPUs

are combined together assembling a node, while in section 2.2.1.3 we present how a

several nodes are combined together to form a cluster.

2.2.1.1 Parallelism Inside A CPU

A CPU is a processing unit responsible for the execution of streams of instructions

of a fixed architecture that are called programs. An instruction is a set of bits,

that combined with an architecture called the Instruction Set Architecture (ISA),

performs a specific operation that can be of various types such as integer or floating

point arithmetic operation, branching or memory access. In most of the cases, this

set of bits can be decomposed in two fields, the operation code (opcode) and the

operands. From the programmers point of view, a stream of instructions is executed

sequentially. That is, instructions are executed one after the other.

In practice, a CPU employs both pipelining and resource duplication to increase

throughput when executing a stream of instructions. For the better understanding of

how these two techniques are employed in a modern CPU, we will use the architecture

of figure 2.1 as a reference. The architecture is called GoldmontPlus and is used in

modern low-power x86-64 CPUs by Intel.

9 2.2. HPC Systems

Figure 2.1: Overview of the GoldmontPlus CPU architecture by Intel [2]. The
architecture is used as a reference to demonstrate how parallelism is employed in the
design of a modern CPU.

Program’s instructions live in memory, and are fetched as the execution progresses

according to a program counter, a CPU register pointing to the next instruction to

execute. Between memory and the processor there are several layers of caches.What

we see in figure 2.1 (yellow part) though is that an instruction is fetched from a

dedicated cache (Instruction Cache Array) and then passed to a queue in order to be

further executed.

The next step is the decoding of the instruction. It corresponds to the procedure

of the instruction’s identification by its opcode and fetching of its operands. In the

GoldmontPlus architecture, the decoding phase corresponds to a control operation,

during which the instruction passes from the Instruction Cache Array to the Instruc-

tion Queue (orange part). At that time, the control unit also specifies which execution

path will later be followed during the execution phase.

The next step that we see in figure 2.1 is related to the register renaming (pur-

ple part), which is a technique related to the out-of-order execution of instructions,

and goes beyond the scope of this analysis. Nevertheless,[110] provides a complete

presentation of register renaming techniques.

The next phase in the lifetime of an instruction is the execution. According to its

type, an instruction associated to an arithmetic operation will be forwarded to the

10 2.2. HPC Systems

appropriate processing unit that can be either a floating point unit (FP ALU) or an

integer arithmetic and logic unit (ALU).

Once the result of the corresponding operation is available, it will be written

in the physical register file (the same series of registers that hold the input of the

instruction).

The paths exploited so far correspond mainly to instructions with computational

nature. There other types of instructions, like those responsible for the interaction

with memory (loading and storing) or control oriented ones (branches). Although,

what is important to keep for the rest of the analysis is the fact that the life of

an instruction can be decomposed to the phases of fetching, decoding, execution,

interaction with memory and write back.

Instruction Pipelining In our laundry example of section 2.1 we saw that pipelin-

ing is a technique that allows to exploit temporal parallelism and obtain increased

throughput. It is the same very same basic idea, that has been employed by CPU de-

signers, in order to deliver better performance, and in that scope is called instruction

pipelining. In the presentation of the GoldmontPlus architecture, we observed that

simply put, the lifetime of an instruction can be decomposed in five phases: fetch-

ing, decoding, execution, memory accessing and writing back. Instruction parallelism

allows the overlapping of execution of different stages of different instructions at a

given time. This can happen since every stage is independent, and there are different

units responsible for its execution.

Overlapping the execution of instructions have some side effects that require some

additional control to ensure the correctness of the computations. Consider a scenario

according to which two consecutive instructions are pipelined, where the output of

the first is used as an input on the second one. Such phenomenon if often referred to

as data dependency conflict, and is usually handled by stalling a part of the pipeline

so that by the input reading phase of the second instruction the output of the first one

is the valid one. In such cases, the performance of the processor can converge down

to the performance of a non-pipelined one, but this only depends on the dependencies

of the instructions’ stream.

Super-Scalar Pipelines The second technique of our laundry example of sec-

tion 2.1 was resource duplication, that gives the ability of simultaneous execution of

multiple workloads of the same kind. In the example architecture of figure 2.1 we see

multiple execution units for basic arithmetic (ALUs) operations. A pipeline including

11 2.2. HPC Systems

such duplicates is called superscalar, since multiple instructions can be in the same

pipeline stage concurrently, the same way multiple t-shirts can be washed at the same

time in a laundry with several washing machines.

Exploiting parallelism in the processor with the aforementioned techniques allows

an execution throughput greater that one instruction per cycle, which is the case for

nearly every modern CPU. Because of the level that this parallelism is exploited, it

is often referred to as Instruction Level Parallelism (ILP).

In processor with super-scalar pipelines, specific attention should be paid to min-

imize the amount of time that processing units remain idle. Techniques like out-

of-order issue, branch prediction, speculative execution, register renaming and out

of order execution have been developed, but exceed the scope of this study, whose

main purpose is to highlight the role of parallelism in a modern high performance

computing system at every level.

Multi-core CPU The previous paragraphs presented how parallelism is expressed

inside a CPU made of single processing unit, referred to as a core. To further exploit

spatial parallelism, several cores are combined together in modern CPU. The CPU

cores have access to the same shared main memory. In such a multi-core CPU, several

instruction streams can be executed concurrently, and they can communicate through

the shared memory.

2.2.1.2 From Processors To Nodes

The previous section linked the fundamental concepts of parallelism introduced in

section 2.1 to a typical modern CPU architecture. This section focuses on the intro-

duction of the next level of complexity of modern parallel computers, which is the

node level.

To further exploit spatial parallelism, several processing units are combined to-

gether to make a node. Along with the CPUs, other kind of processing units have

been employed in order to enhance the processing capabilities of the node. Figure 2.2

shows a typical node design. The so called host part of the node is made of one or

more multi-core CPU (4 in the example) accessing the same main memory. The other

part of the node contains a series of accelerators often connected to the host via a

PCIe bus. In this design, accelerators do not share the same memory as CPU cores,

hence they have their own privates memories.

The number of CPU cores can greatly vary in modern processing nodes, depending

on computing needs. Typical sizes are four (e.g. a single 4-core CPU) to thirty-two

12 2.2. HPC Systems

Memory

CPU CPU

CPU CPU

PCIe

ACCELERATOR 1 ACCELERATOR 2

Memory Memory

Figure 2.2: Reference structure of a typical heterogeneous processing node. The node
is constructed by a set of CPU accessing the same main memory (host), and a series
of accelerators connected to the host via a PCIe bus. Typically, accelerators do not
share the same memory as CPU cores, hence they have their own privates memories.

cores (e.g. four 8-core CPU). In a node with a single CPU all the cores access the

same single shared memory as already stated. In other words they have uniform

memory access at the same memory banks.

The increasing amount of CPU cores, is shown to throttle the performance of

memory operations for the uniform memory accessing scenarios. To solve this issue

hardware designers introduced architectures where all the CPU cores share a physi-

cally distributed memory. In this case the access to memory is no more uniform. Such

architectures are called Non Uniform Memory Access (NUMA) architectures. There

is a dedicated circuitry responsible for the exchange of data between the CPU cores

and the different parts of the memory. The size of such architectures can increase

significantly, with usual cases of nodes having a total of 256 cores (e.g. sixteen 16-

core CPU) or more. Fine control over the location of data when performing memory

accesses is then crucial to obtain the best performance that can be delivered by such

architecture. The deeper understanding of their structure and behavior though, lies

beyond the focus of this work.

On the accelerators side, a typical node is coupled with one or two GPUs. Many-

core processors, such as the Intel Xeon Phi, are also nowadays used as accelerator.

The parts of the computation that are more efficiently executed on an accelerator

than on a CPU are offloaded from the host side to the accelerator one. These ac-

celerators come with there own private memories as already stated. The consistency

between the host memory and the private memories of the accelerators is not handled

13 2.2. HPC Systems

by the hardware. Considering as an example the architecture presented in figure 2.2,

and assuming that initially data lie in main memory, we can study the hypothetical

scenario according to which a part of the execution will occur in one of the GPUs.

The corresponding data need to be transferred from the main memory to the private

memory of the accelerator. Meanwhile, an authority needs to ensure which of the

two copies is valid at a given moment of the execution, as well as to synchronize the

non-valid copies when needed.

2.2.1.3 From Nodes To Clusters

Like multiple processing units can be put together to form a parallel, possibly het-

erogeneous compute node, the same approach can be followed to design large-scale

clusters of nodes, an extreme -in terms of capabilities- instance of which is Summit

introduced in section 2.2. The building block of a cluster is the node and nodes are

connected using a network, like Ethernet or Infiniband .

The interconnection of multiple nodes brings enormous processing power that

comes to the theoretically unlimited scalability of such a system, although there

are challenges to overcome deriving from the interconnection itself, along with the

management of the underlying resources.

From the software point of view, there was a need to establish a protocol for the

communication of execution units that are being processed on different nodes. This

communication’s overhead usually varies according to the distance of the processing

units in the cluster. Another major concern in order to obtain the desired performance

is the load balancing between the different nodes; in other words, we need to ensure

that the workload will be distributed to the available processing nodes in a way

that the variance of the completion time for every node is minimal as well as the

communication overhead required for the exchange of data between nodes. Along

with load balancing, another development concern is to set the proper affinity of

execution units to nodes or cores (usually ensuring that an execution unit will remain

close to the data that is associated with, making a better use of data locality). In

other words, the developer needs to create and maintain a mapping between the

processing load to a node, or more even more specifically to a core, in order to obtain

a minimal overhead deriving from data movement.

2.2.2 How To Program An HPC System?

In the preceding part of the chapter, one could obtain a global view of the hard-

ware architecture of a modern high performance computing platform. It is of vital

14 2.2. HPC Systems

importance for the programmer to capitalize on the amount of computational power

provided by such systems, that mainly derives from the underlying parallelism. To do

so, one needs to adopt strategies, concepts and methodologies that would allow the

concurrent execution of a formerly sequential algorithm or of a new one. Program-

ming models and associated infrastructures are then needed for this parallel algorithm

to be expressed and executed.

2.2.2.1 Extracting Parallelism In An Application

Given a reference architecture, the entry point for the development of high performing

application is the analysis and understanding of the algorithm that will later be

expressed in the form of a program. In order to take advantage of a massively parallel

platform like the ones described in section 2.2.1, it is essential that the nature of the

computations is also heavily parallel. If not, the entire workload will be processed by

a single processing unit while the rest of the resources will remain idle.

Finding Concurrency In the case the application contains parallelism, it is not

always trivial to identify it in order to design a parallel version of the algorithm. Task

and data decomposition, defined as follows, can be used to decompose the problem

into pieces that can execute concurrently:

• The task decomposition dimension views the problem as a stream of instructions

that can be broken down into sequences called tasks that execute simultaneously.

For the computation to be efficient, the operations that make up the task should

be largely independent of the operations taking place inside other tasks.

• The data decomposition dimension focuses on the data required by the tasks

and how they can be decomposed into distinct chunks. Strong computational

dependencies among the different chunks make the overall computation ineffi-

cient.

Task and data decomposition are tightly coupled, since one implies the other,

although by making them distinct, we make the design emphasis explicit. In some

cases the problem will naturally break down into a collection of tasks, hence the

task-based approach is easier. In most cases though, the tasks are difficult to isolate

and the decomposition of the data is a better starting point. Regardless of whether

the starting point is a task or a data-based approach, a parallel algorithm ultimately

needs individual work loads that will execute concurrently, so the tasks must be

15 2.2. HPC Systems

identified. In the case only data-parallelism is used, the tasks will all perform the

same computation, but on different chunks of data.

2.2.2.2 Parallel Programming Models

Many parallel programming models have been proposed and are in used to implement

a parallel algorithm on an High Performance Computinghardware architecture. The

evolution and proposal of these models have been following the evolution of hardware

architectures. Combinations of these models are often used in order to exploit the

hardware parallelism at all the levels.

Shared memory programming models In a shared memory programming model,

the programmer specifies parallel activities communicating through writes and reads

in a shared memory. Depending on the particular programming model, the proper

synchronization between the activities is handle by the programmer or automatically.

Among many others, POSIX threads and OpenMP are two widely used shared mem-

ory programming models. They are described in the next two paragraphs.

POSIX threads In the POSIX threads programming model, several indepen-

dently controlled execution paths, called threads are created by the programmer.

POSIX threads are implemented as a library with functions for creating, destroy-

ing and coordinating thread activities. This model is especially appropriate for the

fork/join parallel programming pattern, according to which several execution flows

are instantiated and then merged when everyone is completed. Threads are sharing

the dynamically allocated heap memory causing programming difficulties regarding

synchronization . When multiple threads access shared data, they must be prop-

erly synchronized by the programmer to avoid race conditions and deadlocks. That

corresponds to a task oriented parallel programming model for shared memory archi-

tectures. The number of threads is not necessarily related to the number of processors.

OpenMP OpenMP is a shared memory programming model providing a higher

level abstraction than Posix threads. Said differently, it eases the creation and man-

agement of threads from the programmers point of view. It is a portable application

programming interface (API) implemented as a combination of a set of compiler

directives (thread creation, synchronization, memory management), pragmas, and

runtime providing both management of the thread pool and a set of library routines.

Parallel regions enables a set of instructions to be replicated across a set of threads.

16 2.3. FPGA

OpenMP is specially suited for the loop parallel program structure pattern, although

the Single Program Multiple Data (SPMD) and fork/join patterns also benefit from

this programming environment.

Message passing programming models In message passing programming mod-

els, several entities are evolving in separate memory address spaces and communicate

via explicit message exchanges. This is a natural model for a distributed memory

system, where communication cannot be achieved directly by sharing variables.

Message Passing Interface (MPI) is the most used standard in this category. It

defines a portable message passing interface designed to function on a wide variety

of parallel computing architectures. It is a library that specifies the names, calling

sequences and results of the subroutines or functions to be called. In MPI, work load

partitioning and task mapping are assigned to the developer. In addition to point to

point exchanges, MPI supports collective communications.

Programming models for heterogeneous architectures The previously de-

scribed programming models focused on programming homogeneous architectures.

The introduction of GPUs by Nvidia and their exploitation to non-graphic uses, that

is General Purpose GPU (GPGPU), led to programming models explicitly dedicated

to heterogeneous architectures including GPUs. CUDA from Nvidia, and the OpenCL

standard are the two most used programming models in this category but many other

solutions such as OpenMP target construct [25], OpenACC [76] or HMPP [33] have

been proposed to ease the programming of architectures with GPUs.

In contrast with shared-memory, with these programming models, the programmer

needs to offload some data to and from accelerators private memories. Also, because

parts of the application are offloaded to accelerators, the programmer needs to write

the code to be executed there. In CUDA for example, this done by writing C code

which is compiled to GPU binary with the Nvcc compiler provided by Nvidia.

Because programming heterogeneous architectures is the main focus of this thesis,

we extensively describe programming models for heterogeneous architecture in the

related work chapter 3.

2.3 FPGA

In the previous section we explained how and why processing elements of different

architectures were employed for general purpose computing in order to enhance the

17 2.3. FPGA

performance of high performance computing platforms. Our work has focused on

incorporating FPGAs in such platforms. From that point of view, FPGAs can be

considered as reprogrammable integrated circuits. In other words, they are hardware

fabrics, with interconnected basic elements of logic and memory, whose content can

change dynamically according to the configuration.

In order to explore the behavior and characteristics of FPGAs we will go along

the natural process one will follow to integrate such an accelerator to a given hetero-

geneous platform. There is a series of fundamental questions to be answered:

• How to program the device?

• How is memory organized?

• How does the device communicate with the rest of the platform?

In order to understand how an FPGA is programmed, we need to understand

its architecture which is presented in section 2.3.1. Then, section 2.3.2 presents the

process of low level hardware design, as well as the utility of higher level synthesis

tools that can be used in order to program the accelerator. In section 2.3.3 we present

the different types of memory a modern FPGA chip and board are equipped with,

and how they are used by modern vendor tools. Lastly, section 2.3.4 describes how

an FPGA is connected with its environment to assemble an heterogeneous execution

platform.

2.3.1 FPGA: Architecture

When asked to integrate an FPGA, understanding its architecture is crucial, since it

is not similar to the one of a traditional CPU that can be programmed using an ISA

like x86. For the configuration of FPGAs, programming happens at a much lower

level, that in practice it is no longer considered software development but hardware

design.

Figure 2.3 shows a high level overview of an FPGA. It is composed by Configurable

Logic Blocks (CLB), memory blocks (BRAM) and an interconnection network (PI).

In this section we will dive into the CLB components of the chip, while memory will

be analyzed in section 2.3.3.

18 2.3. FPGA

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

PI PI PI

PI PI PI

BRAM BRAM BRAM

BRAM BRAM BRAM

DSP

DSP

FPU

FPU

Figure 2.3: Overview of the internal architecture of FPGAs. Configurable logic blocks
(CLB) are connected with embedded memory (BRAM) and dedicated processing
elements (DSPs and FPUs), in an array-like arrangement.

As a reference of a CLB we will use the Zynq 7000 FPGA family from Xilinx [1],

since this is the FPGA family we conducted our experiments on. Figure 2.4 shows

that a CLB is composed out of two disconnected slices. Each slice has an input

and an output port (CIN and COUT respectively), and is also connected to the

interconnection network (marked as Switch Matrix). A simple slice contains function

generators, storage elements, carry logic and multiplexers, and is called SLICEL.

Along with SLICEL slices, there are also SLICEM, that can additionally provide

data storing functionalities through distributed RAM elements. A CLB can be either

assembled by two SLICEL slices, or by one SLICEL and one SLICEM.

19 2.3. FPGA

Figure 2.4: Overview of the internal structure of a CLB for the Zynq 7000 family
of FPGAs by Xilinx [7]. Every block is assembled by two slices, that can put through
either purely logic operations, or logic operations along with storage. The logic op-
erations are provided via logical function generators implemented by LUT and can
simulate the behavior of any Boolean function.

Function generators are the building blocks of logic, and are implemented using

look-up tables (LUT). Every slice contains four function generators, every such gen-

erator is implemented by a LUT and can behave as an arbitrary Boolean function.

Along with the logic, a CLB is associated with some control signals like set/reset,

write-enable, clock and clock-enable. Set/reset initialize the internal state of the

LUT, so that we can obtain the output of the Boolean functions given the current

inputs. Write enable is used in order to enable writing on the memory elements of

the CLB. The clock is a signal that is used to synchronize the lower level hardware

components like the flip-flops used to compose the LUT or the memory elements.

Along with the traditional reconfigurable logic, provided by the LUT, FPGA

vendors have tried to augment the capabilities of the chips on dedicated computations.

In order to deliver high performance on basic arithmetic operations Digital Signal

Processors (DSPs) are added, while some modern FPGAs come also with dedicated

logic for floating point (FPU) operations.

It is useful at this point to provide an order of magnitude of the amount of logic

elements of a chip, and for that we will use our experimentation platform (7VX690T)

as a reference. There are ∼108 k CLB slices out of which ∼65 k slices are of type

SLICEL and the rest (∼43 k) are of type SLICEM. To implement those slices ∼400 k

LUT have been utilized. This particular chip is not equipped with a dedicated unit for

floating point operations, although it holds 3.6 k DSP slices organized in 18 columns

of 200 slices per column.

20 2.3. FPGA

2.3.2 How To Program An FPGA Chip?

In section 2.3.1 we introduced a reference architecture of an FPGA, that we described

as an integrated circuit that can be reconfigured. A configuration of the chip, is a

hardware design that determines the contents of the CLB, the memory as well as

the way that those components are connected via the interconnection network. The

default languages for hardware design are called hardware description languages, Ver-

ilog and VHDL being the two representative examples of the category. Programming

in such language is happening in very low level, justifying the existence of two distinc-

tive communities: software developers and hardware designers. In appendix A and

listing 20 one can see a template code of a single bit-adder module written in Verilog.

The purpose of this template code is to demonstrate how low-level hardware design

is compared to software development even for a language like C, that is particularly

known for the fine control it gives to the programmer.

Given a hardware description of a design, there is a series of steps to be followed

so that we have an FPGA circuit behaving accordingly. First the hardware design

needs to be synthesized, which involves the procedures of syntactic checking and

optimizations to the given FPGA chip. Next step is placement and routing, which

is the procedure of mapping the synthesized design to the logic blocks and memory

elements of the given chip, as well as determining the behavior of the interconnection

network. Once placement and routing is finished, we can obtain the hardware design

in a bitstream file, that will be flashed in the device and will give the requested

behavior. All those functionalities, are provided by vendor tools that are proprietary,

allowing very limited flexibility to the designers. This flexibility mainly relies on the

ability of the designer to determine the exhaustiveness of the heuristics used by the

algorithms (that by default are NP-complete).

In order to ease the accessibility of FPGA, so that they become usable for general

purpose computing, researchers from both communities have created synthesis tools

that bridge the gap between higher level languages (C, C++, python) and the hard-

ware description level. Such tools are called High Level Synthesis (HLS) tools, and

have become a matter of study for many years in an academic and industrial level.

Nowadays, HLS tools can deliver augmented performance, providing fine control of

the design in the form of compiler directives, that allow the programmer to exploit

the massive parallelism of the FPGA, increasing their popularity and usability.

21 2.3. FPGA

2.3.3 FPGA: Memory

Memory is a fundamental component of every processing unit, including FPGAs.

From a high level view there are three types of storage associated to an FPGA chip, the

memory units inside a CLB, the block memory (BRAM) and the on board memory

(external to the chip). Every type of the above comes at a different level of integration,

and has different capacity and accessibility overhead.

Block level memory, has already been introduced in the presentation of the CLB

in section 2.3.1. Data here are mainly stored in the LUT and in one bit registers.

LUT memory is a versatile kind of storage, although when selected to store big

memory structures the final design will be huge (in spatial terms). This will make

the rest of the synthesis process (place and design and routing) very hard in terms of

complexity and hence time consuming. Nevertheless, it is the selected memory type

to store simple variables by most of the synthesis tools.

The block memory (BRAM) is a series of blocks of RAM, coupled with CLB,

in most FPGAs in order to host large data structures. This is the type of memory

that will concern developers the most, because most of the currently used High Level

Synthesis tools map by default complex structures like arrays to this type of storage.

BRAM memory is organized into single or dual port blocks, resulting in a reading

throughput of one or two words per cycle respectively. Developers using HLS tools

are equipped with a series of optimization directives that allow the fine control of

how data are mapped to BRAM. Efficient block memory control combined with the

massive amount of parallel resources available can deliver impressive performance

increase. The capacity of the available BRAM memory will be a factor that indicates

the granularity of the kernels, and should be taken into account from the beginning

of the design process.

On top of the memory structures mentioned above, most of the modern FPGA

boards, allow a memory extension with a DDR3 or DDR4 RAM sets. The charac-

teristics of those memory blocks are similar to those used for conventional systems

like laptops and barebones. In order to communicate with this external board mem-

ory, vendors provide a series of control designs, that should be manually tuned and

incorporated to the rest of the design. This task used to be complicated for people

without a certain amount of expertise on hardware design. Nowadays vendors have

worked a lot to make the design process much simpler on more recent versions of the

synthesis tools.

To provide an insight on the difference in capacity between the different storage

elements of an FPGA we will use again as a reference the chip we conducted our

22 2.3. FPGA

experiments on (7VX690T). Inside the CLBs there are ∼10 Mb of distributed memory

and ∼5 Mb of shift registers. With the BRAM blocks, the chip reaches a storage

capacity of ∼53 Mb. Regarding the on board memory, we can slot two blocks of 4 GB

external DDR3 memory, enabling the hosting of much bigger structures.

2.3.4 FPGA: Communication With Its Environment

In order to use FPGAs in the context of general purpose processing, they need to be

connected with their environment, so that they can receive computations’ input and

propagate their output. Modern FPGAs are usually delivered into boards with a rich

amount of IO ports. The fabric itself can be directly coupled with a processor (most

of the times a single or dual core ARM processor) via an AXI bus, where the FPGA

chip and the CPU cores co-exist on the same chip, that is they make up a System on

Chip (SoC). As an alternative to that, the FPGA chip can be connected to a host

machine via one of the available buses, typically the PCIe bus.

The block diagram of figure 2.5 shows the peripherals accompanying the FPGA

chip, which the board we conducted our experiments on (VC709- 7VX690T) is equipped

with.

Figure 2.5: Block design of our experiment board - VC709, a member of the Zynq
7000 family from Xilinx [6]. The design is used to present the environment of the
chip on the board. Among with the DDR3 blocks, the Differential Clock, the DIP
Switches the UART and the JTAG interfaces, we highlight the 8-lane PCIe Edge
Connector that allows the communication of the chip with the host node.

23 2.4. Performance Results Of FPGAs On HPC Applications

A PCIe based communication facilitates fundamental principles of high perfor-

mance computing like the scalability and modularity. Building a system based on

the SoC approach mentioned earlier, restricts the developers to a small amount of

CPU cores and a single FPGA chip. On the other hand, utilizing the PCIe as the

connection mean, allows a greater level of complexity on the node level. A node is

not limited to a single FPGA device.

2.4 Performance Results Of FPGAs On HPC Ap-

plications

Despite the effort from the hardware community to bridge the gap between soft-

ware development in HPC and hardware design required in order to exploit re-

programmable hardware, one could infer from the previous sections that there is

still a fair amount of complexity associated to the usage of FPGAs in that context.

The motivation to overcome this complexity barrier is associated to the ability of

FPGAs to deliver noticeable performance with very low energy requirements. The

energy consumption of an FPGA is significantly lower than the one of a typical CPU

a fact that derives from the overhead imposed by the levels of abstraction between

the CPU and the software languages utilized. Performance wise, according to the

literature FPGAs can deliver comparable if not greater performance compared to a

typical CPU, for certain applications.

HPC applications are scattered among a wide spectrum of application domains

from commercial to financial, medical or scientific fields. Nevertheless, Asanovic et

al. [16] has sorted them in different classes, putting together applications with similar

behavior and bottlenecks, in a taxonomy called Berkeley categorization. The initiative

of the following analysis is to present reported artifacts of the behavior of FPGA in

every such category, following the analysis of Escobar et al. [38]. Roughly, in the

aforementioned study, HPC applications are classified in the following categories:

• Dense Linear Algebra

One of the most popular category, that includes decomposition and factorization

methods (Cholesky, LU, QR). BLAS, CUBLAS, LAPACK are libraries widely

adopted by developers, offering outstanding performance using block and tile

algorithms to perform the aforementioned calculations. State of the art FPGA

implementations of applications from this group, have shown impressive perfor-

mance results, although CPU-GPU combination is still more than an order of

a magnitude faster [116, 128, 130].

24 2.4. Performance Results Of FPGAs On HPC Applications

• Sparse Linear Algebra

In this category we get the same group of applications as before, though in

this cases matrices have few non-zero elements. We observe irregular mem-

ory accesses, low data reuse and low number of floating operations per access.

Efforts to implement Sparse Matrix Vector (SpMV) multiplication in FPGAs

have shown promising results, comparable with the performance of CPU-GPU

platforms [34, 81, 88, 101].

• Spectrum Methods

This class of applications contains arithmetic computations on the frequency

domain, partial or ordinary differential equation solvers being the two most

representative candidates. Most of the algorithms employ a Fast Fourier Trans-

form. The most promising results for this class are coming from the 3D-FFT

version, where studies show that an FPGA implementation can outrun a GPU-

CPU combination [61, 121].

• N-Body Methods

It is the set of algorithms describing the interactions of the particles due to

gravitational forces between each other. The CPU profiles appear irregular

memory accesses and scalability issues. CPU-GPU solutions increased a lot

the performance over CPU only solutions, although they consume up to fifteen

times more power per floating operation [58, 70, 109] than FPGA solutions.

• Structured Grids

It is the class of problems where data can be arranged into arrays with interact-

ing neighboring elements. They are characterized by regular memory accesses.

Studies have shown acceleration potentials using FPGAs for this class of appli-

cations, although most of the times it is a theoretical estimation of the expected

performance [72, 107].

• Unstructured Grids

Here applications are characterized by irregular memory accesses due to their

natural inability to be formatted in a structured representation. Techniques

like data compression and encoding have been used to tolerate the bandwidth

bottleneck between the host and the FPGA, but the results are comparable to

a middle class CPU [10].

25 2.4. Performance Results Of FPGAs On HPC Applications

• Map Reduce

It is a set of distributed algorithms without strong dependencies allowing max-

imum parallelism. The most significant paradigm of this set is Hadoop which

assumes a full dedicated cluster control, which makes it not the best candidate

for HPC. There are several attempts to combine Map Reduce algorithms but

each one of them requires a careful analysis to evaluate the results [120, 131].

• Combinational Logic

It is a class of application with extensive work in FPGAs invested in. It includes

cryptographic algorithms like AES, DES, RC4, SHA-1, RSA. In multiple studies

optimization techniques have been suggested, with results close to the ones

obtained by CPUs [39, 86, 112].

• Graph Traversal

It is a category of applications from several domains, since a graph is a flexi-

ble data structure to represent pieces of information and dependencies between

them. BFS and DFS are the two widely known approaches to traverse a graph,

and BFS is selected as a Graph500 benchmark, a clear notation of its impor-

tance. It suffers from poor locality caused by excessive data access to fairly ir-

regular memory footprints. Studies have shown impressive FPGA performance

compared to powerful CPUs [17, 23].

• Dynamic Programming

It is a class of applications showing a high level of dependencies, scattered

among a wide range of scientific fields. FPGA development relies mostly in the

field of bioinformatics [108], using systolic arrays and pipelining. In a series of

studies we see acceleration obtained by FPGAs over CPUs; although the serious

bottleneck of those works is that the recursive nature of DP requires complex

management units with low portability [90].

• Backtrack and Branch&Bound

It is a computational class with very few results in the area of the FPGAs, with

some interesting results though over the Pentium CPU family. It is composed

by algorithms that can be split into a branching and a pruning face in order

to obtain the result of the computation. Distinctive behavioral attribute of the

class is the irregularity and unpredictability of the data footprint There are very

few FPGA implementations for this class.

26 2.5. Problem Statement

• Graphical Methods

This class contains applications like neural or Bayesian networks, where a graph

is employed in order to represent and explain the behavior of a system. In

this class we have a show case of an FPGA implementation (on Virtex-5) of a

Bayesian learner that vastly outperforms the combination of CPUs and GPUs.

Neural network implementations on FPGAs have also shown interesting results

with serious acceleration over commodity CPUs [71, 79, 95].

• Finite State Machines (FSM)

The executional footprint of this class, is an oscillation through different states,

where the computational load is to determine the next state as well the outputs

of the current one. Latency and memory size is the two basic bottlenecks for

this category with a few attempts to deploy FSMs in FPGAs published.

The preceding classification indicates that HPC applications show different execu-

tional patterns that are more or less suitable for different processing units. FPGAs

can be a promising alternative both in terms of absolute performance and energy

efficiency. The goal of a truly heterogeneous platform is to harness this diversity, by

leveraging from the advantages of each computational resource.

2.5 Problem Statement

The landscape of common HPC architectures is currently moving to large-scale het-

erogeneous platforms, similar to those introduced in section 2.2. These machines are

composed by a large number of interconnected nodes, similar to those of figure 2.2

of section 2.2.1.2. Traditionally, those nodes contain multiple CPU cores on the host

side, and a couple of GPUs on the accelerator side. However, to build exascale-ready

supercomputers, the HPC community now also considers other kinds of processing

units that can perform better, both in terms of time and energy consumption. Based

on the reported artifacts about the performance of FPGAs in traditional HPC appli-

cations of section 2.4, we believe they can be one of them.

Unlike other kinds of accelerators where the application is optimized to fit to

the architecture of the processing unit, FPGAs work the other way around; it is

the underlying hardware that is tailored to fit the applications’ needs. Despite the

promising perfromance and energy efficiency, there is a big amount of complexity

that comes together with this type of processing units. The complexity is not only

limited to the programming effort required for the development of hardware designs

27 2.5. Problem Statement

of high performance, but also to the effort required to orchestrate the execution of an

application in such heterogeneous environment.

Figure 2.6 shows the reference node architecture we are targetting in this work.

The FPGA is connected to a node via a PCIe bus, the same way another accelerator

like a GPU does. We believe that an integration attempt will only be successful and

widely accepted if FPGAs are handled the same way as the rest of the processing

units of the node. This way of integrating FPGAs would allow to benefit from a

wide range of mature software stacks from the HPC community and to allow true

heterogeneous execution.

Memory

CPU CPU

CPU CPU

PCIe

ACCELERATOR
FPGA

Memory

Memory

Figure 2.6: Paradigm of our reference heterogeneous platform. A typical node of
our focus is assembled by a series of CPU cores accessing the same physical memory
(host), coupled with an accelerator (typically a GPU) and an FPGA. The devices
assembling the node are connected over PCIe with the host. They have their own
physical address space, hence they are represented with their own private memories
in the design.

In respect to the previous analysis, the objective of this work is to deliver:

• A runtime system that provides an adaptable (easy to plug and drive to an

existing platform), scalable (multiple FGPA devices per node), portable (not

limited to a certain board), non-restrictive (FPGA support does not prevent the

concurrent use of other accelerators) and transparent (the developer does not

need to be aware of the underlying architecture details) task-level integration of

FPGAs in a Distributed Memory architecture, based on a relaxed consistency

memory model that provides a global address space to the programmer.

28 2.5. Problem Statement

• A case study were an FPGA is used to accelerate parts of an application, show-

ing the impact of the integration to the rest of the parameters taken into account

from the scheduling point of view.

• An example of a widely used HPC kernel -GEMM, that is optimized to deliver

augmented perfromance when executed on an FPGA.

Chapter 3

Related Work

Contents
3.1 Heterogeneous Programming Approaches From The HPC

Community . 31

3.1.1 Low-Level Device Programming Libraries: OpenCL and
CUDA . 32

3.1.2 High-Level Heterogeneous Programming Environments . . . 36

3.2 FPGA Accessibility From The Hardware Community . 43

3.2.1 Thread Based Approaches 43

3.2.2 Dataflow Based Approaches 47

3.2.3 Process Based Approaches 50

3.3 Bridging The Gap : Heterogeneous Programming With
FPGA . 52

3.3.1 OpenCL Support For FPGA 52

3.3.2 FCUDA . 54

3.3.3 OpenACC Support For FPGA 55

3.3.4 OmpSs Support For FPGA 55

3.4 Discussion . 56

29

30

There has been a significant amount of contributions from both the HPC and the

hardware communities that constitute the background of this work. To accompany

the description that follows, Figure 3.1 shows how we classify existing approaches.

Application

High-level environment with a runtime
section 3.1.2

Low-level library
section 3.1.1

HPC community
section 3.1

GPU ManycoreCPU

Application

Hardware community
section 3.2

FPGA

Accessibility
and management

frameworks

Figure 3.1: An overview of the related work on programming environments for het-
erogeneous platforms. On the high performance computing community side (sec-
tion: 3.1), we first introduce low-level libraries that allow the execution of code on
accelerators (section 3.1.1) and then higher-level runtime environments (section 3.1.2).
On the hardware community side, we introduce frameworks that ease the accessibility
and management of FPGAs (section 3.2). Our taxonomy distinguishes three classes of
works: the thread based ones (section 3.2.1), the task based approaches (section 3.2.2)
and the process based ones (section 3.2.3).

Researchers from the HPC community have worked extensively in order to provide

programming models and frameworks that allow the programmers to exploit the

available parallelism in heterogeneous machines mainly consisting of CPUs and GPUs.

Section 3.1 presents a summary of these programming models and frameworks.

Meanwhile, researchers of the hardware community have worked towards improv-

ing accessibility of FPGA from the software side. While most of those attempts

succeeded to provide a framework that allows a software programmer to offload code

to an FPGA, those approaches did not manage to get widely accepted. Approaches

from this community were either focused on restrictive programming models or pro-

vided a limited level of abstraction. Section 3.2 gives an overview of representative

examples of this class of frameworks. Our taxonomy distinguishes three classes of

31 3.1. Heterogeneous Programming Approaches from the HPC Community

works: the thread based ones (section 3.2.1), the task based approaches (section

3.2.2) and the process based ones (section 3.2.3).

Section 3.3 presents the few works, as our presented in this thesis, trying to

combine approaches proposed by both communities.

Finally, section 4.3 discusses and positions our work regarding existing approaches.

As mentioned previously, in order to assemble this section, representatives of two

large communities need to be presented. In order to maintain a reasonably readable

chapter, we tried to restrict ourselves to approaches that have been active or have

significantly contributed to the evolution of the domain. Moreover, the information

presented is based on the best of our understanding of the available literature, and

not on exhaustive experimentation, since such a procedure would require a lot more

time than a PhD thesis.

3.1 Heterogeneous Programming Approaches From

The HPC Community

Once GPUs started to be adopted for general purpose processing, standards have

been proposed in order to ease the application development. The two most widely

accepted programming standards are CUDA and OpenCL. CUDA was introduced

by Nvidia for their graphics processors while OpenCL is the non-proprietary open

standard that provides equivalent functionalities to the programmer.

OpenCL and CUDA provide the means for the programmer to access the device.

They come with an API for the communication between the host and the device

memory, as well as mechanisms to orchestrate the execution of the device code. Nev-

ertheless, there is a big amount of low level concerns remaining to the programmer,

that are not automatically handled by the standards. The programmer needs to en-

sure the correctness and efficiency of its applications, managing mechanisms like the

workload scheduling and memory management. In section 3.1.1 we present these two

standards the way they were introduced for the GPU case, while in section 3.3 we

introduce approaches that extend them to support FPGA.

Dedicated programming environments were developed to handle automatically, or

at least more easily, and efficiently the aforementioned procedures. These environ-

ments come along with a so-called runtime system. This term happens to be over-

loaded across the researchers depending on their perspective and their scope. Within

the scope of this work, a runtime system is a framework that is responsible for the

32 3.1. Heterogeneous Programming Approaches from the HPC Community

management of the dependencies between the parallel code regions, the data move-

ment between the different memories of the platform and the scheduling/mapping of

the workload to the resources. The vast majority of such heterogeneous environments

rely on CUDA or OpenCL for data exchange between the GPU and the host side, as

well as for the orchestration of the part of the computation happening on the devices,

on top of which they provide support for high-level functionalities. Section 3.1.2

introduces these environments.

3.1.1 Low-Level Device Programming Libraries: OpenCL and
CUDA

As already mentioned above, OpenCL and CUDA are two standards, a proprietary

one provided by Nvidia and the open equivalent, that provide a generic mechanism

to access accelerators, originally developed for easing the utilization of graphics pro-

cessors for general purpose computing. They both provide programming interfaces

and hardware abstractions enabling developers to accelerate applications with data-

parallel computations in an heterogeneous computing environment consisting of CPUs

and GPUs. An OpenCL or a CUDA program is usually made of a host part executed

by one or more of the CPUs, and some computing kernels designed to be executed on

the GPUs. While the host part follows the standard path of compilation, the GPU

computing kernels have to be compiled using a specific compiler.

Since the two models are very similar, OpenCL being the open equivalent of

CUDA, we will stick to the first and its terminology during our analysis. OpenCL as

a standard specifies a platform model, an execution model, and a memory model.

According to OpenCL, a platform consists of the host (CPU) and the device side,

the last being further decomposed into one or more compute units, each one assembled

by one or more processing elements.

Every OpenCL device, is associated with a command queue, that can be used

from the software side to enqueue kernels, to transfer data and orchestrate the syn-

chronization of kernels execution.

The execution of a kernel is associated to a context, which is the combination of a

device, the kernel function, a program executing on the host and memory objects. The

synchronization of the kernels happens either via specific commands (like barriers) or

events. During its lifetime an OpenCL kernel passes through different states. First

it is queued, which is being enqueued to a command queue, then it is submitted, that

is being flushed from the command queue to a device and waits in this state until it

becomes ready, meaning that all of its dependencies are met. A ready kernel goes to

33 3.1. Heterogeneous Programming Approaches from the HPC Community

running state during its execution, by the completion of which it is considered ended.

Lastly, it goes to a completed state, by propagating a CL COMPLETE event.

A single context may contain several command-queues, and the programmer is

responsible for the orchestration of the execution, by creating events for the synchro-

nization of the kernels among the different queues.

The organization of the working units in OpenCL is mostly influenced by the

architecture of GPUs. At the lowest level, we have the working units. Each one of

these units is represented in OpenCLby an autonomous threads of execution with a

global identifier called a work-item. Working items are further organized into work-

groups. Synchronization primitives can only be used among working units of the

same work-group.

In OpenCL there are two types of memory, the host one, which is memory accessi-

ble from host software, and the device one which is the one accessible from the kernel

function executing in the accelerator. Device memory, is organized into different lay-

ers, starting with the private memory, which is storage facility attached to and only

accessible by a work-item. On the immediately higher level, there is local memory,

that is associated to a work-group. On top of that there is global memory, that is

accessible by every work-item of every work-group of the context. A part of global

memory is characterized as constant, and is guaranteed to remain constant during

the execution of a kernel instance. Global memory may or may not provide caching

structures, depending on the architecture implementing the API.

OpenCL implements a shared virtual memory mechanism, so that kernels execut-

ing in the device and host parts of the program can share the same address space.

This mechanism is the global device memory and the host memory. The synchroniza-

tion between the two is orchestrated explicitly by the programmer using map/unmap

commands.

The code snippets of listings 1 to 3 show a C-based pseudo code of the host side

program that performs matrix multiplication. The code sources are based on the

open implementation provided by the University of Eindhoven [5].

34 3.1. Heterogeneous Programming Approaches from the HPC Community

1 // OpenCL device memory for matrices

2 cl_mem d_A, d_B, d_C;

3

4 // Allocate and initialize host memory for matrix A

5 unsigned int size_A = WA * HA;

6 unsigned int mem_size_A = sizeof(float) * size_A;

7 float* h_A = (float*) malloc(mem_size_A);

8 randomInit(h_A, size_A);

9 // Same for B and C

10

11 // Initialize Environment

12 cl_uint dev_cnt = 0;

13 clGetPlatformIDs(0, 0, &dev_cnt);

14

15 cl_platform_id platform_ids[100];

16 clGetPlatformIDs(dev_cnt, platform_ids, NULL);

17

18 // Connect to a compute device

19 clGetDeviceIDs(platform_ids[0], gpu ? CL_DEVICE_TYPE_GPU :

CL_DEVICE_TYPE_CPU, 1,↪→

20 &device_id, NULL);

21

22 // Create a compute context

23 context = clCreateContext(0, 1, &device_id, NULL, NULL, &err);

24

25 // Create a command commands

26 commands = clCreateCommandQueue(context, device_id, 0, &err);

Listing 1: C-based pseudo-code of matrix multiplication in OpenCL, environment
initialization.

In the very beginning of the execution, matrices of the device side are declared while

matrices on the host side are declared, allocated and initialized. Then the user needs

to detect the number and the IDs of connected devices, create their context and their

command queues.

35 3.1. Heterogeneous Programming Approaches from the HPC Community

1 // Create and build the kernel program from the source file

2 LoadOpenCLKernel("matrixmul_kernel.cl", &KernelSource, false);

3

4 program = clCreateProgramWithSource(context, 1, (const char **) &

KernelSource, NULL, &err);↪→

5

6 clBuildProgram(program, 0, NULL, NULL, NULL, NULL);

7

8 // Create the compute kernel in the program we wish to run

9 kernel = clCreateKernel(program, "matrixMul", &err);

Listing 2: C-based pseudo-code of matrix multiplication in OpenCL, device code
compilation.

According to the standard, OpenCL kernels are compiled at runtime, for reasons of

portability despite the additional performance overhead. To do so, the programmer

needs to load the sources of the kernel using LoadOpenCLKernel and create the

associated program using clCreateProgramWithSource. Then the program is built

(clBuildProgram) and the kernel is created (clCreateKernel).

The last phase of the execution is about the organization of the work-groups and

the distribution of the workload, shown in figure 3. First the programmer needs to

allocate the device side buffers and associate them to the hots side ones (clCreate-

Buffer). Then, these device side buffers are mapped to the kernel arguments (clSetK-

ernelArg). The programmer then needs to specify the number of work-items with the

globalWorkSize, and the way they are organized in work-groups using localWorkSize.

Then the kernel is submitted for the given configuration using clEnqueueNDRangeK-

ernel, and finally the result is read back to host memory using clEnqueueReadBuffer.

36 3.1. Heterogeneous Programming Approaches from the HPC Community

1 // Create the input and output arrays in device memory for our

calculation↪→

2 d_A = clCreateBuffer(context, CL_MEM_READ_WRITE |

CL_MEM_COPY_HOST_PTR, mem_size_A, h_A, &err);↪→

3 // Same for B and C

4

5 // Launch OpenCL kernel

6 size_t localWorkSize[2], globalWorkSize[2];

7

8 int wA = WA;

9 int wC = WC;

10 err = clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&d_C);

11 err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *)&d_A);

12 err |= clSetKernelArg(kernel, 2, sizeof(cl_mem), (void *)&d_B);

13 err |= clSetKernelArg(kernel, 3, sizeof(int), (void *)&wA);

14 err |= clSetKernelArg(kernel, 4, sizeof(int), (void *)&wC);

15

16 localWorkSize[0] = 16;

17 localWorkSize[1] = 16;

18 globalWorkSize[0] = 1024;

19 globalWorkSize[1] = 1024;

20

21 err = clEnqueueNDRangeKernel(commands, kernel, 2, NULL,

globalWorkSize, localWorkSize, 0, NULL, NULL);↪→

22

23 // Retrieve result from device

24 clEnqueueReadBuffer(commands, d_C, CL_TRUE, 0, mem_size_C, h_C, 0,

NULL, NULL);↪→

Listing 3: C-based pseudo-code of matrix multiplication in OpenCL, device code
execution.

The code of the OpenCL kernel for this example of matrix multiplication is displayed

in appendix A on listing 21.

3.1.2 High-Level Heterogeneous Programming Environments

In the previous section, we presented CUDA and OpenCL, two frameworks that

ease the accessibility of devices in the context of general purpose computing. The

frameworks provide the means to accomplish the heterogeneous execution, but there

is a large amount of management remaining to the programmer. The synchronization

37 3.1. Heterogeneous Programming Approaches from the HPC Community

between the host and device memory, the synchronization of the device side code, and

the workload mapping (associating certain parts of the workload to the accelerator)

happen explicitly by the developer as shown previously on the matrix multiplication

example.

The approaches in this section provide additional functionalities on the aforemen-

tioned mechanisms. On the host side, most of them provide a task based programming

model implemented on top of threads. In that context, a task is a well defined piece

of work that performs a set of operations on some data. Focusing on the task level,

the developer does not need to manage explicitly the threads.

3.1.2.1 OpenACC - An Industrial Specification For Heterogeneous Com-
puting

OpenACC [126] is a directive-based industrial standard. It was originally proposed

as a fork of OpenMP aiming to ease the programmability of accelerators, targeting

GPUs. The underlying memory model is based on separate host and device memo-

ries, without automatic synchronization. The programmer needs to be aware of the

different memories, and orchestrate data movements using clauses that specify the

direction of data movement (copyin/copyout). OpenACC implementations come

with proprietary compilers able to generate GPU-compatible binary. The notion of

the gang, or vector length is defined corresponding to the notion of work-groups we

met in OpenCL. The most significant directives are the parallel, kernel and loop ones,

to annotate parallel regions, computationally intensive code areas and parallel loops

respectively.

3.1.2.2 Runtime Support For Heterogeneous Task Execution Using Cha-
rm++

Charm++ [68] was originally introduced as a C++ API targeting parallel platforms

relying on the Charm parallel programming system [102]. It was created to overcome

the bottlenecks imposed by concurrency within parallel computing, involving load

scheduling, balancing and synchronization, satisfying the definition of a runtime sys-

tem in our context.

Charm++ is a portable platform (that can be deployed on any shared memory

homogeneous multicore machine) responsible for the orchestration of the application

building blocks that are called chares. A chare is similar to a task. It is an individual

work-unit that can communicate with its environment (other chares) via messages or

through shared memory. Chares are dynamically distributed over the computational

38 3.1. Heterogeneous Programming Approaches from the HPC Community

resources in a balanced fashion, ensuring a better resources utilization. Every call to

the runtime system and message exchange is asynchronous. Charm++also provides

several data structures that are tagged according to their access permissions, including

read-only objects, write-once objects, accumulators and distributed tables.

Multiple scheduling policies have been implemented in Charm++ in a modular

way. Among them one can find a random one (chares are randomly distributed to the

processing units), an adaptive contracting within neighborhood (dynamically created

chares are scheduled to processing units near the processor executing the parent

chare) and a central manager (where the scheduling of that chares is happening from

a centralized component that has an overview of the system).

The programming environment exposed to the programmer with Charm++ is

composed by a source to source compiler (translator interface) as well as the Charm

runtime system. The translator transforms the Charm++ constructs into C++

ones. The Charm runtime system is written in C. Every additional functionality,

feature or strategy (queue and memory management, load balancing) can be written

separately and linked as a module to the core of the system.

In the context of heterogeneous computing, when GPUs got widely adopted in high

performance computing, Charm++ was extended in order to incorporate GPUs as

supplementary general purpose processing units.

Wesolowsky et al. [125] extended Charm++to provide GPU support. Hybri-

dAPI is the Charm++ component responsible for the GPU integration, and relies

on CUDA to communicate with GPU devices. A work queue is associated to every

GPU connected to the platform, holding the kernels assigned to the device. The user

needs to declare the access rights of every kernel to every data structure it is associ-

ated with that will later run on the GPU, as well as a callback function that will be

invoked by the GPU once the work request is completed. At runtime, the scheduler

will push the kernel in the appropriate GPU queue, and ping for the completion of

its execution in order to satisfy the dependencies of the rest of the chares or kernels.

In order to minimize the overhead of data exchange, data are sent back to the host

along with the execution of the next kernel of the queue, overlapping execution and

communication when possible.

In [104], Robson et al. extended this work, focusing on the generation of the GPU

code and the dynamic target selection. The GPU manager presented in [125], was

inherently asynchronous, managing transparently blocking operations like memory

allocation on the GPU side. Robson et. al. utilize ACCEL, which is a framework

that automatically extracts kernels that are annotated with the keyword accel by the

39 3.1. Heterogeneous Programming Approaches from the HPC Community

user to be executed in a GPU, managing automatically the callback function necessary

to the GPU manager. ACCEL also handles data transfers between the CPUs and the

GPUs, inheriting and augmenting the computation and communication overlapping

when possible.

G-Charm [122] is another effort to augment the capabilities of HybridAPI,

in order to have a better utilization of the GPU resources. G-Charm focuses on

dynamic heterogeneous scheduling, automatic memory management with emphasis

on data transfer minimization and work agglomeration merging multiple chares to

larger kernels when this is beneficial.

3.1.2.3 OmpSs - Runtime Support Of FPGA For SoC

OmpSs [36] is a directive based environment for the execution of task-based applica-

tions on heterogeneous platforms. It provides a task-based programming model, as

well as a runtime system responsible for the dependency resolution, and the orches-

tration of execution of an application on platforms with a series of devices connected

with a multicore CPU.

In the scope of the programming model, every accelerator is considered a process-

ing unit that can efficiently execute parts of the application. In the introduction of

OpenMP (chapter 2) the definition of tasks was introduced, as code blocks that are

associated to some data and can execute in parallel. It is the same definition that

applies to the notion of a task in OmpSs. The developer needs to annotate a code

block (usually a function) as a task, and to indicate its associated data using the

input, output constructs to indicate the nature of the dependency. In case the task

can be executed BY one of the available devices, it needs to also annotated, specifying

the device target, and forcing the copy of the dependencies. If no target is explicitly

specified, the task must be executed in one of the available CPU cores.

The OmpSs programming model is implemented with a dedicated compiler and

the Nanos++ runtime system. Nanos++ creates a pool of software threads, that

correspond to workers, and are associated to the computational units (including both

the CPU cores and the available devices). Scheduling policies can be implemented as

plug-ins, indicating the principle upon which tasks will be assigned to workers during

the execution.

40 3.1. Heterogeneous Programming Approaches from the HPC Community

3.1.2.4 Anthill - Runtime Support For Large Heterogeneous Distributed
Environments

Anthill [40] was introduced as a runtime framework for heterogeneous distributing

computing, originally designed for data-mining applications. Such applications are

made of a series of operations performed on data chunks that are distributed all over

the system. The computations performed on the data are split into individual stages,

called in this context filters, that are pipelined to decrease the total execution time.

Those filters are typically organized in cyclic graphs, that are concurrently applied

on the data chunks that are distributed all over the system. Filters are further

decomposed into tasks, that may be executed on different nodes of the platform. The

motivation behind the runtime design of Anthill was to provide the infrastructure

that exploits both the task and the data parallelism as well as the asynchrony of the

nature of the algorithm.

In order to achieve the aforementioned goal, Anthill provides labeled stream

support, a global persistent storage structure and a termination detection mechanism.

Labels are applied, in order to ease the dynamic routing of the exchanged data,

that are streamed between tasks. The global storage refers to a concept that the

internal state of the filters are stored and propagated to multiple nodes, along with the

associated data chunk, in order to decrease the distance between data and computing

resources, as well as to provide a certain level of fault tolerance. The termination

detection mechanism refers to applications where the graph is cyclic, and a loop

counter is kept internally during the execution.

In [117], Teodoro et al. present a new event-oriented model for Anthill, targeting

a more efficient utilization of the resources at the node level. This new event-based

approach enables a transparent and automatic handling of data dependencies. The

programmer can focus on the processing that should occur on the arrival of new

data of a stream. The data exchange is no longer managed in a point to point

fashion between the filters, but there is an event controller, orchestrating the message

exchange interacting with a centralized communication module and event handlers

associated to filters. Monitoring the communication module and the events produced

by the event handlers of the filters, scheduling policies can be ported and applied for

better resource utilization.

In [118], Anthill was extended to exploit GPUs as supplementary processing

resources. It is the event handler that needs to be extended, in order to permit the

data streams to be offloaded on a different kind of resource. The communication with

the GPU is done with CUDA. With the event-based model, dependency resolution

41 3.1. Heterogeneous Programming Approaches from the HPC Community

occurs on the fly, and the runtime system can choose the processing unit that will

process a certain filter based on the event handlers provided with it. In terms of

scheduling, two scheduling policies are implemented. The first one is first come First

served, where the first available resource will process the next pending event that

entered first in the events queue, The second one is weighted round robin, where a

weight is dynamically assigned to every handler of every event, and the first available

resource will serve the heaviest weighted event with the appropriate handler.

Teodoro et al. claim that any device can be supported by the framework, men-

tioning the Cell co-processor and FPGA specifically, but to the best of our knowledge,

no FPGA support was added so far.

3.1.2.5 StarPU - A Runtime System For Heterogeneous Platforms

StarPU is a runtime environment providing an API that is used as a library to exploit

parallelism in heterogeneous machines. Parallelism in StarPU is expressed through

the notion of tasks; autonomous chunks of work with input dependencies, that can

be executed on any of the available underlying processing units. A task is abstracted

using the notion of a codelet, which holds the information of its dependencies, along

with its available implementations. An application is then expressed as a task graph.

As a runtime system, StarPU provides the necessary mechanisms to detect task

dependencies, handle task communications accordingly and provide scheduling mech-

anisms for an efficient workload mapping. The reference platform architecture tar-

geted by StarPU is the one of figure 2.2, on top of which it implements a relaxed

consistency shared memory model. To do so, StarPU employs a MESI like protocol,

to update every private memory of the platform with the valid data. The program-

mer does not need to explicitly orchestrate the data movement, since this is done

transparently by the runtime. On the scheduling part, there is the StarPU scheduler

responsible to assign tasks with resolved dependencies to processing units. This gives

the flexibility to programmers to chose among different scheduling policies provided,

or implement their own, according to the characteristics of their application.

StarPU is one of the main building blocks of our framework and will be extensively

described in chapter 4.

3.1.2.6 Harmony- Runtime Support For Heterogeneous Many Core Sys-
tems

Harmony [32] was introduced as a programming model and an execution environ-

ment for heterogeneous platforms. The reference architecture for the environment is

42 3.1. Heterogeneous Programming Approaches from the HPC Community

the one of an heterogeneous node, where multiple CPU cores can access the same

memory under a global address space and accelerators can be attached usually via

a PCIe bus. The architecture demonstrated in [32] was based on an heterogeneous

node assembled by CPUs and GPUs, while a speculative example was provided to a

platform that could include an FPGA.

Diamos et al. [32] suggested a programming model based on three elements: the

computational kernels, control decisions and a global memory address space. Compu-

tational kernels are well defined code segments, associated with some data (analogous

to the task concept in our context). Every kernel can be executed on processing units

of different architectures, as long as the programmer provides an implementation for

every such. Within the description of computational kernels, the input and output

data need to be annotated, allowing a dependency-driven scheduling approach. The

shared address space creates the need for the management of coherence and consis-

tency issues that occur with the concurrent access of different kernels to some shared

chunks of memory, as well as for the management of data transfers between the main

memory and the private memories of the accelerators, managed by the runtime.

Harmony was extended to support Kernel Level Speculation (KLS) [31], which is

speculative execution of kernels, similar to the one that is employed at the thread level

transparently to the programmer. Since the input/output of every kernel is declared

by the programmer, data dependency graphs can be created dynamically.Speculation

is employed in order to minimize the overhead of blocking control decisions. In order

to allow this speculative kernel execution, several mechanisms are employed; one for

variable renaming (similar to register renaming that is happening in hardware level),

one for resources de-allocation and control flow reset on misspeculated scenarios.

3.1.2.7 Qilin - Adaptive Workload Mapping For Heterogeneous Machines
With CPUs And GPUs

Qilin [84] is among the first frameworks that demonstrated the importance of dy-

namic load balancing in platforms with heterogeneous computing resources, which

in the context of this approach is called adaptive mapping (similar to the notion

of scheduling according to the terminology we follow within our work). Luk et al.

demonstrated that executing a simple matrix multiplication on a platform with a

multicore CPU and a GPU can deliver different results based on the amount of com-

putations assigned to every processing unit. Furthermore, in the same study they

demonstrated that the optimum load balance varies for different problem sizes of the

same application.

43 3.2. FPGA Accessibility From The Hardware Community

Qilin provides a C/C++ API, a dynamic compiler that creates machine code for

both the CPU and the GPU, development and monitoring tools as well as a scheduler.

The dynamic nature of the compiler is expressed by its ability to identify the device

code, and use NVCC for its compilation. The API is based on top of Intel Thread

Building Blocks (TBB [73]) for the management of parallelism on the CPU cores, and

Nvidia CUDA for accessing the GPU.

For the adaptive mapping, Qilin uses a history-based approach for the estimation

of the workload instead of an analytical performance model that would have been

obtained from static analysis. Every time Qilin executes an application for the first

time, a training run is performed, offloading parts of the workload to the underlying

processing units and registering the obtained performance to a database. For every

other execution of the same application, the workload mapping happens based on the

results obtained from the training run. To the best of our knowledge, Qilin was not

extended to support other accelerators rather than the GPU.

3.2 FPGA Accessibility From The Hardware Com-

munity

This section introduces the FPGA integration approaches from the hardware com-

munity. Most of the approaches focus on platforms with only CPUs and FPGAs.

The main focus is to abstract as much as possible hardware side so that software and

hardware can co-operate.

In our presentation we have distinguished three integration levels; integration on

the thread level (section 3.2.1), the task level (section 3.2.2) and the process level

(section 3.2.3). The criterion we based our taxonomy on is how the accelerated parts

of an application communicates with the rest of the environment.

3.2.1 Thread Based Approaches

This section presents some of the most popular thread based approaches of integra-

tion of FPGA in a heterogeneous environment. Conceptually a thread is a set of

instructions that are executed sequentially. Threads can be executed concurrently

and independently, sharing the same memory space.

As an access point, threads is a versatile level, that can deliver increased perfor-

mance. Nevertheless, to ensure the correctness of the execution, developers need to

deal with low level mechanisms such as thread communication, synchronization and

scheduling.

44 3.2. FPGA Accessibility From The Hardware Community

In software development, there is a long history in thread based programming.

The POSIX library is a well established API in C/C++ that provides support for

the basic functionalities of a thread, on top of which the heterogeneous frameworks

of section 3.1 have been developed. The majority of the approaches of the current

section attempt to provide POSIX compliant interfaces, where hardware threads

should be able to communicate transparently with their software counterparts.

3.2.1.1 HThreads - Hybrid Threads; A POSIX Compliant Thread Based
Abstraction For Reconfigurable Computing

HThreads [15] is a design flow opting to provide a unified thread based model for

architectures with reconfigurable components, abstracting the underlying hardware.

It was introduced by the time FPGA boards became capable enough to be cou-

pled with multiprocessor systems on chip. From the application point of view, the

model corresponds to a fork-join execution, when a parent thread creates a number

of children threads that can be executed transparently on the underlying computa-

tional resources and then reunite to the single parent thread gathering the result of

the computation. The introduced design flow, along with the runtime support pro-

vided by the framework, enables the programming of an heterogeneous MPSoC using

standard POSIX-compatible programming abstractions, by using a hardware-based

microkernel to provide the OS back-end to the rest of the components assembling the

system.

The compilation and synthesis flow starts from a C application that is processed

by the HybridThreadsCompiler (HTC) (yet another High Level Synthesis tool), that

is a concatenation of two tools, HIFGEN and HIF2VHDL. HIFGEN is a GCC based

compiler that creates an intermediate representation for the hardware targets called

HIF. HIF2VHDL is the tool that performs the synthesis of the HIF sources to VHDL.

As with the other thread based approaches like ReconOS (3.2.1.4) and

SPREAD (3.2.1.2), HThreads delivers hardware mechanisms that enable the trans-

parent integration of the hardware threads to the rest of the system. These mech-

anisms include a component that performs basic scheduling, a component providing

synchronization (mutexes) support, as well as an interrupt handling unit for the hard-

ware threads. The design decision to migrate this component on hardware was taken

with performance being the basic criterion. In addition, a hardware thread interface

(HWTI) is added along with every hardware thread (similar to the HTI shown in

section 3.2.1.2) that allows the communication between threads as well as between a

hardware thread and the OS. A distinctive feature of this HWTI, is a local memory

45 3.2. FPGA Accessibility From The Hardware Community

that is coupled to every HWTI instance, and is globally accessible, that allows fast

communication without contention/congestion on the communication bus.

In [8] the platform is evaluated on a set of application including parallel π approx-

imation, divide and conquer parallelization and mailbox-based communication.

3.2.1.2 SPREAD - A Thread Based Approach For Streaming Applica-
tions

SPREAD [124] is a streaming oriented programming environment for architectures

with reconfigurable components. It is a thread based approach where tasks executed

in hardware are encapsulated into threads, resembling the POSIX paradigm of the

software counterparts. The application is decomposed into tasks, that are further

manually organized into threads.

Since the focus is put on streaming application, they consider three basic opera-

tions performed by a thread, which is getting the data associated to the computation,

the computation phase itself, and then providing the data to the next consumer. To

facilitate switching between hardware and software, the model is based on a switchable

thread approach (similar to software hardware codesign), where a software implemen-

tation of a thread is provided supplementary to every hardware one. Moreover, for

every hardware thread, a software delegate is created, called the stub thread, respon-

sible for the monitoring of the hardware thread on the software side. A Hardware

Thread Interface (HTI) is coupled with every hardware thread enabling the commu-

nication between hardware and software threads as well as hardware threads between

each other.

For the management of the reconfigurable resources, a dedicated component is

employed in order to detect idle hardware threads, and replace them without manual

intervention with others. The resource manager is designed so that partial dynamic

reconfiguration techniques can be employed in the future. Along with the resource

manager, a hardware thread manager is associated to hardware threads responsible

for their creation and termination.

There are three different cases of inter-thread communication depending of whether

the communicating components are executed on hardware or software. In case both

threads are implemented in software, the communication will by delivered using mem-

cpy(). In case there is a software and a hardware communicating thread, they com-

municating via a synchronous point to point connection using DMA. In the last case,

where both threads are executed on hardware, they communicate over FIFOs syn-

chronized by the HTI.

46 3.2. FPGA Accessibility From The Hardware Community

3.2.1.3 FUSE - Front-End USEr Framework To Utilize Hardware Accel-
erators Under An OS Abstraction

FUSE [64] is another approach that eases the programmability of reconfigurable

hardware accelerators. The reference model for an application developed using FUSE

is thread based. Threads are assembled out of tasks, that can be executed either on

software or on hardware. FUSE threads are POSIX compliant, and are integrated

into the PetaLinux OS.

In order to provide a transparent abstraction for task execution, FUSE relies in

a user space and a kernel space component respectively called the Top Level FUSE

Component (TLFC) and the Low Level FUSE Component (LLFC).

TLFC is provided as a library to the user space. According to the model, every

task on the TLFC layer is associated to a context, that curries information about

its state. TLFC provides the mechanisms to create, initialize, execute and destroy

contexts. It also provides a set of functions that allow the communication with the

LLFC and with the OS, allowing the dynamic OS module loading and unloading that

permits the actual task execution on hardware. TLFC is also the component respon-

sible for tasks scheduling. According to the literature, FUSE provides the flexibility

for any scheduling policy to be implemented and applied on a given application, al-

though it comes with a default scheduling policy which is the following. If a task has

a hardware counterpart instantiated in hardware and that counterpart is idle (not ex-

ecuting another similar task), then TLFC and LLFC are orchestrating the execution

in the hardware component. Otherwise, if there is no hardware implementation, or

the available instances are busy, the task is executed in software.

LLFC is the kernel side counterpart, responsible for the communication, the syn-

chronization and the monitoring of the hardware tasks. Every hardware task instance

is coupled with a hardware accelerator interface, which is the connector between the

task and the LLFC. More specifically, for every such interface, a loadable kernel mod-

ule is created dynamically during the runtime while the kernel is executing, within

the LLFC layer.

The platform is evaluated on three applications that are a 2D-DCT transforma-

tion, a 3DES encryption and a SOBEL filter. The evaluation is based on the execution

time per task, when this iss executed in software and hardware, with and without

taking into account the time overhead associated to the loading of the kernel mod-

ule of every hardware task, showing that there are cases where the hardware tasks

significantly outperformed the software ones.

47 3.2. FPGA Accessibility From The Hardware Community

3.2.1.4 ReconOS- Multithreaded Programming Environment For Com-
puters With Reconfigurable Components

ReconOS is an operating system for computer architectures that incorporate re-

configurable hardware components. The framework was originally developed for SoC

architectures; CPU cores coupled with an FPGA on the same die.

The underlying model relies on threads, that need to be explicitly managed by

the application programmer. More precisely, it is the application developer who is re-

sponsible for decomposing the application into individual threads, managing their syn-

chronization (through semaphores and mutexes) and their communication (through

shared memory or message exchanges for the communication between the device and

the host). From the programmability point of view, the API provided by ReconOS

is very close to the POSIX one, with calls for semaphore handling, mutexes, condition

variables, mailboxes, and thread orchestration being almost identical.

ReconOS software threads are identical to the POSIX ones, and can be im-

plemented using the POSIX library. From the hardware point of view, the massive

concurrency of hardware designs requires a synchronization mechanisms for the soft-

ware side compliance. For this to be accomplished, every hardware kernel, is coupled

with another hardware component, that is written in VHDL and is implementing the

hardware thread synchronization mechanisms. Thread creation and termination is

fully POSIX compliant.

In order to make the resource sharing feasible, an indexing mechanism is intro-

duced for the hardware threads. Threads memory is shared, leaving the consistency

and coherence hazards between software and hardware threads to be handled by the

programmer.

In [106] is a demonstration of utilizating Reconos for an image processing appli-

cation.

3.2.2 Dataflow Based Approaches

In this section we present a number of approaches, that target applications written

using a dataflow model and that try to provide a model level abstraction of the FPGA.

According to this model a program is composed by concurrently executing entities,

called actors, communicating through explicit channels. Actors have dynamically

created input dependencies and will remain in blocking state until they are satisfied.

The resulting application then takes the form of a static dataflow graph, that is the

graph is known at compile time and does not change during execution. The goal of

48 3.2. FPGA Accessibility From The Hardware Community

this level of abstraction is to automatically manage the communication between the

device and the host.

3.2.2.1 FOSFOR - A Model For Dataflow Applications On Architectures
With Reconfigurable Components

FOSFOR [52] is a framework that provides a transparent abstraction layer for ap-

plications following the Synchronous Data Flow model, deployed on System on Chip

architectures. Synchronous Data Flow model derives as a restriction of the data flow

model. Here actors produce and consume a fixed amount of tokens on every channel

which is known at compile time. Within the project, the notion of Dynamic Hardware

Actors is introduced, corresponding to tasks that are executed in hardware that can

be configured dynamically during the runtime.

The design flow involves multiple levels of synthesis from the Synchronous Data

Flow description of the application to the actual execution. The underlying platform

is composed by a combination of multiple softcores - hardware designs of CPU cores

configured on the FPGA - (MicroBlaze) and a number of reconfigurable hardware

components. Starting from the Synchronous Data Flow description, an architectural

mapping is required in order to associate the actors to the processing units that they

will be executed on. Then it is the implementation of the actors, which is conducted

using C and C++ for the software and a hardware-level description (using VHDL)

for the hardware ones. The result of synthesis is a hardware design which is then

used to configure the FPGA and perform the actual computation.

Once the amount of softcore processors is determined taking into account the

amount of the available resources, the remaining area on the chip is split into recon-

figurable partitions where the hardware actors will be executed on. Every hardware

actor is represented by a hardware thread in the OS level, while a software actor is

associated to an OS one. For the orchestration of the reconfigurable areas, Flexible

OS is chosen as a hardware operating system. For the OS management of the software

part RTEMS OS is employed.

Hardware actors are represented by hardware threads at the system level. Hard-

ware threads are composed by a static component, that is responsible for the commu-

nication with the hardware OS as well as for the communication with the network,

and a dynamic one that contains the hardware actor (task) as well as some associated

control and a private memory to facilitate the communication through the network

interface.

49 3.2. FPGA Accessibility From The Hardware Community

In order to overcome the complexity of the communication that comes because of

the different nature of the processing units, a middleware layer is established between

the application and the OS of the software and the hardware units. This layer provides

a virtualization (according to their terminology) of the resources, providing clean

interface for the thread communication called Virtual Channels.

The framework is evaluated on an image processing application that performs

pattern recognition and tracking on an infrared video stream. The evaluation refers

mostly to the resources allocated to every component on the system, not to the

performance.

3.2.2.2 ReConfigMe - An Operating System For Reconfigurable Comput-
ing

ReConfigMe [127] is another approach to provide a unified OS abstraction for

computing systems with reconfigurable hardware components. It is designed distin-

guishing three different entities, the user tier, the OS tier and the platform tier that

are connected over a TCP/IP network. The reference hardware architecture is a con-

ventional multicore processor coupled with an FPGA via PCIe, that communicates

with the OS and the user client via a TCP/IP network.

The reference model of an applications designed for the platform is the one of a

flow graph, where nodes correspond to processes. The application graph should be

designed so that computation will start from a source node that contains the source

data in the beginning of the execution, and it will finish at an exiting node connected

to a data sink where the result data will be written on. Communication between pro-

cesses is performed through the board memory, so every hardware implementation of

a node is coupled with a memory interface. The placement and routing of every node,

and consequently of the entire design is performed statically before the execution.

The platform tier is the one closest to the hardware among the 3 tiers mentioned

previously. Its main objective is to provide control of the underlying architecture to a

remotely connected user. A Hardware Abstraction layer (HAL) is provided to allow

user read and write bitstreams to the FGPA, as well as to communicate with the

executed processes via the onboard memory.

The OS tier is also named the Colonel. It is a platform where the user can remotely

connect and create the bitstream corresponding to the application. Colonel ensures

that the user design satisfies the spatial restrictions imposed by the FPGA board. It

directly communicates with HAL, serving as its client side, providing the bitstreams

synthesized by the user. Last but not least Colonel performs the memory management

50 3.2. FPGA Accessibility From The Hardware Community

required on the hardware side for the application data provided by the user. A part

of the OS tier is the management of the user client, making sure that application data

can be passed through a secure connection abstracting the underlying communication

protocol.

It is the user tier that allows developers to deploy their applications. It provides a

basic API to communicate with the Colonel, as well as to stream data to the platforms

memory.

The proof of concept is made using a blob tracking application used in image

processing. The evaluation mostly concerns the hardware resources required for the

deployment of the application.

3.2.2.3 FlexTiles- Flexible Tiles For An Heterogeneous Manycore Archi-
tecture

FlexTiles [66] is a project introducing a programming model for heterogeneous

many-core architectures that include general purpose processors, Digital Signal

Processors and embedded FPGA connected over a network on chip. The hardware

resources are organized into individual entities called tiles with a varying granularity

(from a single general purpose processor to groups of resources). An application

adjusted to the FlexTilesmodel is decomposed to actors, that are later on mapped

to and executed by the processing units of their associated tiles.

According the FlexTiles model, software is organized in layers. It is the CoMiK

microkernel that provides a primitive level of scheduling and memory management, on

top of which the operating system POSE provides a second level of scheduling along

with the infrastructure for task communication. Scheduling is conducted in two levels,

one closer to the tiles and one from a higher point of view, by a virtualization layer,

that is communicating with resource managers extracting runtime information about

the state of the tiles.

3.2.3 Process Based Approaches

In this category we present approaches on the process level. Here the parts of the

program that are executed on the FPGA have the form of Linux processes, commu-

nicating through pipes. Usually a hardware process has a software counterpart, to

communicate with the rest of the software processes making the application. This

software counterpart is responsible for the synchronization of the process and the

communication between the host and the device.

51 3.2. FPGA Accessibility From The Hardware Community

3.2.3.1 BORPH - Berkeley Operating System For ReProgrammable Hard-
ware

BORPH [111], as the acronym mandates, provides an Operating System level support

for platforms with a various number of reprogrammable computing resources, by

extending the standard Linux Kernel. The main motivation was to enhance the

accessibility of such platforms, designing a system that can exploit the flexibility of

those resources, endorsing their ability to be partially reconfigured dynamically.

A program in BORPH corresponds to a number of processes, with hardware

processes being the equivalent of the software ones, corresponding to the part of the

program that is executed on the reconfigurable fabric. Technically a hardware process

in BORPH is an executable binary object file, that contains information about the

reconfigurable resources like the configuration (hardware design) of the process itself.

The framework is made of a kernel module and a user API that provides a set of

system calls to the module. The module is responsible for the request handling that

mainly correspond to the allocation and configuration of the hardware resources. The

API includes a series of system calls that implement a message passing interface al-

lowing a hardware process to access data files or to communicate with other processes

through pipes. In order to enable the communication between software and hardware

through file accesses, the traditional file system was extended to IOREG [4], where

files are created dynamically for every configured hardware process.

3.2.3.2 SPORE- Simple Parallel Platform For Reconfigurable Environ-
ment

SPORE [48] is an execution model designed for parallel computing on platforms

that include reconfigurable hardware. In [46] Foucher et al. present their application

model, according to which an application is divided in kernels, communicating using

MPI. Kernels along with their dependencies are described in XML.

The SPORE model is built around three principles: execution-communication

decoupling, online codesign and virtualization (following their terminology). Execu-

tion and communication decoupling refers to the concept that the communication

interface should remain the same regardless of the underlying processing unit. Online

codesign refers to the concept that every kernel should come with a software and a

hardware implementation. Virtualization refers to the concept that multiple hard-

ware implementations of a kernel can be provided, leaving the decision of where a

kernel will execute on will be taken at runtime depending on the availability of the

52 3.3. Bridging the Gap : Heterogeneous Programming with FPGA

underlying resources, hence in the application description a kernel is represented by

a virtual abstraction.

The model comes with two implementations, the Software HPC Platform (SHP)

responsible for the software orchestration, and the Hardware Stream Dynamic Plat-

form (HSDP) responsible for the execution of decisions coming from the concept of

virtualization.

From the architectural point of view, the entry point is a node. For their evaluation

they used a Virtex 5 FPGA coupled with a PowerPC 440 CPU representing their node

reference. The operating system is installed on the CPU core, playing the role of

the host that is responsible for the internode communication as well as the intranode

orchestration. Their processing nodes are multiple MicroBlaze softcores, running pure

MPI processes, communicating with the host through mailboxes -bidirectional FIFOs

on top of shared memory enabling the message passing. In the SPORE approach

the global scheduler is physically detached from the computing nodes, and scheduling

decisions are communicated to local schedulers that are running to every node host.

The same applies for the data server, that can also be accessed through the network,

and has a host counterpart called storage manager.

3.3 Bridging The Gap : Heterogeneous Program-

ming With FPGA

This section presents the number of approaches that have attempted to provide ac-

cessibility of FPGAs in the scope of a truly heterogeneous environment including any

type of processing units such as CPUs, GPUs and FPGAs. Approaches here, have

already been presented in the previous sections. In this section we present how they

were extended to support FPGA. We first present how OpenCL and CUDA were ex-

tended to support FPGA. Then we introduce extensions to OpenACC and OmpSs,

two frameworks that incorporate FPGA on a higher level than CUDA and OpenCL.

3.3.1 OpenCL Support For FPGA

OpenCL as an open standard targeting the accessibility of accelerators for general

purpose computing is currently supported by the two major FPGA vendors, that

is, Xilinx and Altera. SDAccel is a software environment from Xilinx while Intel

FPGA SDK for OpenCL is the equivalent development kit from Altera that provide

OpenCL support for FPGA. We will use as a reference SDAccel, to present the

structure of an application with OpenCL kernels executed in FPGA.

53 3.3. Bridging the Gap : Heterogeneous Programming with FPGA

Figure 3.2 provides an overview of the reference architecture as well as the software

layout of an application with OpenCL kernels targeting FPGA using SDAccel from

Xilinx. The host code along with the Xilinx runtime and the required drivers are

running on the CPU nodes, while the OpenCL kernels are configured on the hardware

fabric. XRT manages transparently the low level mechanisms of the data exchange,

and delivers some basic scheduling mechanisms of the application threads.

Memory

CPU CPU

CPU CPU

PCIe

FPGA

Memory

(a) Reference architecture.

Host Executable

XRT Drivers

PCIe

Bitstream

Host Side

FPGA side

(b) Software layout.

Figure 3.2: SDAccel reference architecture and software layout. The reference
architecture is similar to our heterogeneous reference architecture. A series of CPU
cores connected with a FPGA over a PCIe bus. The FPGA is configured using a
bitstream. The host executable is linked with the Linux drivers and the runtime
system of Xilinx (XRT).

OpenCL is so far the most widely adapted framework to utilize FPGA on the

industrial scale level, with companies like Amazon enhancing their cloud infrastruc-

ture with such devices [12]. On the overview of example applications provided in the

developers page by Amazon [13], we can see that the majority of the application were

developed using OpenCL for the accelerated kernels, and SDAccel as a framework

to deploy the application across the resources. The Amazon paradigm is distinctive

since resources are accessible by the general public. A user can allocate special re-

sources, called instances, that may contain FPGA as accelerators. The instance sizes

may differ, from 8 virtual CPU cores coupled with one FPGA, up to 64 virtual CPU

cores coupled with 8 FPGA devices. The access to the platform is not free, although

54 3.3. Bridging the Gap : Heterogeneous Programming with FPGA

a wide range of code generation, hardware design synthesis and FPGA configuration

tools are provided with the instances.

3.3.2 FCUDA

CUDA [91] was introduced in section 3.1.1 as a general-purpose parallel programming

model for the graphics processors of Nvidia. A CUDA program consists of one or more

phases that are executed on either the host (CPU) or a NVIDIA GPU device in a fork-

join strategy. The phases that exhibit little or no data parallelism are implemented

in the host code, while phases exposing rich data parallelism are implemented in the

device code. The host code is ordinary C/C++ code, while the device code is an

extended ANSI C with keywords for labeling data-parallel functions, called kernels,

and their associated data structures. The parallelism is expressed by a hierarchy

of thread groups called blocks. In CUDA, the host and the devices have separate

address spaces. CUDA supports a number of features such as asynchronous execution,

concurrency with streams, event monitoring, unified virtual address space (UVA), and

multi-device support.

FCUDA [97, 98] is a framework that allows CUDA code with some supplementary

annotations to be synthesized in hardware and further executed on a FPGA.

The synthesis flow of FCUDA is composed of 4 steps, from the original C/CUDA

code to the final hardware description and then the final hardware design, demon-

strated in figure 3.3.

CUDA
kernel

Annotated
CUDA
kernel

Synthesizable
C kernel

Hardware
Description

Level
Bitstream

CETUS

Figure 3.3: Synthesis flow of CUDA kernels for FPGAs using FCUDA. The synthesis
starts from a vanilla CUDA kernel, that is annotated with pragmas compiled into a
synthesizable C kernel that is later translated into hardware description level and
then to a bitstream.

The first layer corresponds to some code annotation with pragmas, used by the

programmer, that allow the synchronization of the kernels and some irregular control

flow statements (like breaks and returns). The annotated code is then parsed by

Cetus [75], a source to source compiler than performs the translation and optimiza-

tion of the enhanced C/CUDA code to some synthesizable C code. The code is then

processed by Vivado HLS, for the hardware-level description of the design, and then

55 3.3. Bridging the Gap : Heterogeneous Programming with FPGA

by Vivado, the back-end from Xilinx that will finally deliver the hardware design

that corresponds to the CUDA code.

On the runtime aspect, FCUDA and OpenCL both provide mechanisms to access

the device and feed the kernels with the corresponding data, but the dependency

analysis, the decisions of which data need to be moved, and the scheduling of the

tasks/kernels remains to be handled by the programmer manually.

3.3.3 OpenACC Support For FPGA

In [76] Lee et al. proposed a framework that enables the execution of an OpenACC

program on an FPGA-enhanced platform. The core of the work is based on Ope-

nARC, a source-to-source compiler used to convert and optimize OpenACC code to

OpenCL for the FPGA. The AlteraBackend OpenCL compiler was used in order to

create the hardware design, that was targeting an Altera Stratix V FPGA. The ap-

proach was evaluated in a series of kernels from different benchmark suits (OpenARC

suit, Rodinia, Altera suit). Performance results correspond to a comparison between

the execution times of different configurations on different architectures, without any

truly heterogeneous scenarios. Meaning, for every execution of the applications, the

compute intensive parts were executed either on an FPGA or on a GPU or on a Xeon

Phi, but there were no results combining different resources.

3.3.4 OmpSs Support For FPGA

In [42], OmpSs is extended to support FPGA on an all-programmable SoC board. To

the best of our knowledge, OmpSs is not further extended to support more scalable

architectures, where FPGA are connected as accelerators to bigger nodes.

For the code generation, Mercurium, a source-to-source compiler, is employed to

handle the FPGA related tasks. For every FPGA task, mercurium produces a C file

with the body of the task annotated with pragmas, that is furtherly processed by

Vivado HLS and Vivado in order to obtain the hardware design corresponding to

the FPGA tasks. Along with the C-sources that are further processed by the FPGA

tool-suit, Mercurium generates another C-file associated to every task, that works as

the software counter-part of the task. This other file incorporates the calls to the

runtime as well as calls for the data exchange to and from the FPGA device.

For the runtime management the Nanos++ runtime system is employed. The

scheduler of Nanos++ is extended to allow multiple task submission to the FPGA.

This is due to the fact the amount of CPU cores is limited, and the thread that

56 3.4. Discussion

performs the task submission can not block waiting to receive back data, leaving part

of the hardware resources idle. To allow multiple tasks submission, double buffering

and pipelining features are employed.

For the evaluation of the approach, experiments are performed on a series of ap-

plication including matrix multiplication of two granularities, Cholesky factorization

and Covariance computation. The comparison is between the execution time running

on a single ARM core, versus the execution running on one or two FPGA tasks. Re-

sults indicated that the execution of the the FPGA outperformed the single ARM

core, in every case, while the heterogeneous scenarios where tasks are executing both

on an FPGA and on the CPU core, did not show further performance improvement.

3.4 Discussion

In sections 3.1 and 3.2 we presented a plethora of works that aim to ease the accessi-

bility of FPGA as well as to provide programming environments that can exploit the

parallelism of the underlying platforms without imposing a big overhead. The amount

of approaches, as well as big recent industrial efforts like the oneAPI project by Intel

[63], expose the need for a unified programming environment to exploit the process-

ing power of massively heterogeneous processing machines, including reprogrammable

hardware components.

The approaches from the hardware community can be categorized in three groups,

those who provide a thread-level, those who provide a task-level and those who pro-

vide a process level integration of FPGA. Approaches of the first group associate a

FPGA with a software thread. Most of the times, mechanisms for the thread creation

and the device accessing are provided by the framework. Although thread synchro-

nization and device memory synchronization need to be managed explicitly by the

programmer. The approaches of the last two categories, suffer either because the

reference application model is too restrictive, or because the abstraction layer is not

close to what software developers expect. Moreover, the reference platform architec-

ture for the majority of the related work of this category, is the one of a single FPGA

coupled with a small number of CPU cores, which imposes scalability and portability

barriers to their integration in a modern high performance computing system.

On the other hand, software community offers a wide range of environments where

parallelism can be expressed in a manageable way, without the difficulties of manual

thread manipulation. The building blocks of those platforms are tasks, that come

at a finer granularity than threads. The memory synchronization, the resolution of

57 3.4. Discussion

the dependencies, the data exchanges, and the workload mapping are handled by the

runtime system.

OpenCL so far is the most widely adopted accessibility framework. It was origi-

nally created to ease the accessibility of GPUs, but it evolved successfully to support

FPGAs, to the point that FPGA vendors nowadays have integrated OpenCL sup-

port in their tool-suits. Although, despite the fact that OpenCL provides a rich

environment for the accessing of the device and the data exchange, the resolution of

the dependencies and the data exchange, as well as the workload scheduling are not

completely automated.

The approach of OmpSs (3.1.2.3) is the closer to the one we have chosen. OmpSs

provide runtime system support, for parallel applications exposing task parallelism,

handling automatically data dependencies and data exchange. Although the FPGA

integration is bound to SoC architectures. This impose a limitation regarding the

scalability of the approach, since the underlying architecture is bound to a single

FPGA and a small number of integrated CPU cores.

With our approach we introduce a framework to exploit the processing power of a

platform made of multiple resources of different types including FPGA. By extended

StarPU to support FPGA, we inherit a rich task execution environment, were FPGA

can be transparently utilized as yet another accelerator.

Chapter 4

An Heterogeneous HPC
Framework Integrating FPGA

Contents
4.1 The Proposed Framework 59

4.1.1 Inside StarPU . 61

4.1.2 The StarPU FPGA worker 66

4.1.3 Conor: A Communication Library Based On RIFFA 69

4.1.4 Hardware Level Integration 74

4.2 Evaluation . 80

4.2.1 Blocked Matrix Multiplication 80

4.2.2 The Programmers’ Side . 81

4.2.3 Results . 85

4.3 Conclusion . 90

The objective of this thesis as introduced in chapter 2 is to deliver:

• A runtime system that provides an adaptable (easy to plug and drive to an

existing platform), scalable (multiple FGPA devices per node), portable (not

limited to a certain board), non-restrictive (FPGA support does not prevent the

concurrent use of other accelerators) and transparent (the developer does not

need to be aware of the underlying architecture details) task-level integration of

FPGAs in a Distributed Memory architecture, based on a relaxed consistency

memory model that provides a global address space to the programmer.

• A case study were an FPGA is used to accelerate parts of an application, show-

ing the impact of the integration to the rest of the parameters taken into account

from the scheduling point of view.

58

59 4.1. The Proposed Framework

• An example of a widely used HPC kernel -GEMM, that is optimized to deliver

augmented perfromance when executed on an FPGA.

Section 4.1 of this chapter focuses on the first part of the objective, describing

the details of the framework that corresponds to the aforementioned properties. Sec-

tion 4.2 demonstrates the accomplishment of our claim for an easily programmable

framework, with a proof-of-concept evaluation of a matrix multiplication application.

4.1 The Proposed Framework

The layout of the framework is presented in figure 4.1a. The figure is vertically split

into two parts, host and FPGA, to illustrate the hardware integration of platform we

target and the distribution of the platform components over both the host side and

the FPGA side. Solid black boxes correspond to tools and infrastructures that our

approach relied on. Red boxes correspond to software layers that either we created

from scratch or extended. Finally, dashed boxes correspond to the part that the users

will have to develop in order to run their application on a FPGA-based HPC machine.

60 4.1. The Proposed Framework

StarPUApplication

Extended StarPU

Conor

RIFFA

Linux

RIFFA

Connector

Hardware tasks

P
C

IeH
os

t
F

P
G

A

(a) The proposed framework. RIFFA is re-
sponsible accessing of the FPGA through the
PCIe bus, using a dedicated RIFFA Linux ker-
nel. On the software side on top of RIFFA we
introduce Conor a library responsible for the
orchestration of the communication between
the host and the device. We extend StarPU to
support FPGAs. That way we inherit its run-
time level management mechanisms including
dependency analysis, scheduling and data ex-
change automation. On the hardware side we
introduce a connecting component between
the RIFFA hardware interface and the hard-
ware tasks.

Memory

CPU CPU

CPU CPU

PCIe

ACCELERATOR
FPGA

Memory

Memory

(b) Reference heterogeneous architecture.
Our work focuses on heterogeneous nodes
composed by a series of CPU cores, accessing
the same main memory (assembling the host),
and FPGA among other devices used as accel-
erators. Every device has access to a separate
memory address space, hence it is represented
with its own memory on the figure.

Figure 4.1: Figures 4.1a and 4.1b present the software stack and the reference archi-
tecture of our approach.

Unlike most proposals from the related work, we target FPGA-based platforms

in which the host and the FPGA communicate through a PCIe link, since it al-

lows the construction of scalable nodes composed by multiple accelerators. We used

RIFFA, described thoroughly in section 4.1.3.1, to enable this communication. In

short, RIFFA provides both a software level interface and a hardware handshake

protocol, and so appears on both side of the PCIe link on figure 4.1a. For the com-

munication with the hardware tasks on the FPGA side, we built a communication

library called Conor on top of RIFFA, that is described in section 4.1.3. Conor pro-

vides mechanisms that allow allocating channels, mapping hardware tasks to channels

and monitoring the performance of the operated communication.

On the software side, our proposal comes with an extension of the StarPU runtime

61 4.1. The Proposed Framework

system to be able to seamlessly execute data-flow task-based applications on any

heterogeneous platform that includes FPGA. Section 4.1.1 describes the use of StarPU

as the runtime system for the implementation of the task model and the capabilities

that come along with it. In particular, section 4.1.1.1 presents how the task model

is expressed and implemented in StarPU ; section 4.1.1.2 analyzes its shared memory

model implementation of distributed physical memories ; and section 4.1.1.3 provides

an overview of the available task scheduling policies. Section 4.1.2 completes the

overview of the software part of the framework, providing details on the worker we

added to support FPGA.

The hardware side of our framework is presented in section 4.1.4. As mentioned

previously, we first provide a detailed presentation of the handshake protocol that

comes with RIFFA. Then, we describe the hardware-level protocol that comes with

every hardware kernel, and last we describe a hardware component that was designed

to provide high performance connectivity between the two interfaces. Section 4.1.4

ends with a complete picture of the final hardware design that corresponds to what

will be finally used for the configuration of the hardware fabric.

4.1.1 Inside StarPU

The main focus of this section is to provide the essential information and functionali-

ties that StarPU already delivers, that are necessary to understand the extension we

proposed to allow FPGA to be used as processing units. We took the code snippets

presented in this section from the source code of StarPU [80]. Some of them have

been slightly modified in order to serve the purpose of the listing, which is to give an

insight on the functionality of every component we present.

4.1.1.1 The Task Model

We recall our definition of a task in the context of this thesis as a well-defined set

of operations imposed on some data. There are three different terms within the

terminology of StarPU that are associated to this notion: the codelet, the task and

the job. A codelet is an abstraction of a task, implemented as a structure that allows

the programmer to define the parameters determined by the abstraction. A task is

the instance of a codelet, or more precisely it is the codelet along with the data it will

be applied on. A job is a task whose dependencies are satisfied, and is scheduled to be

executed to the appropriate processing unit. Listing 5 shows a C-based pseudo-code

of a codelet.

62 4.1. The Proposed Framework

1 struct starpu_codelet

2 {

3 uint32_t where;

4 int (*can_execute)(unsigned workerid, struct starpu_task

*task, unsigned nimpl);↪→

5 enum starpu_codelet_type type;

6 int max_parallelism;

7

8 // The quotted double per-cent (<%%>) here corresponds

9 // to any supported processing unit including

10 // cpu, opencl, cuda, mic, scc, conor - for FPGA

11 starpu_<%%>_func_t <%%>_func STARPU_DEPRECATED;

12 starpu_<%%>_func_t <%%>_funcs[STARPU_MAXIMPLEMENTATIONS];

13

14 char <%%>_funcs_name[STARPU_MAXIMPLEMENTATIONS];

15

16 char *conor_kernel_type[STARPU_MAXIMPLEMENTATIONS];

17

18 int nbuffers;

19 enum starpu_data_access_mode modes[STARPU_NMAXBUFS];

20 enum starpu_data_access_mode *dyn_modes;

21

22 unsigned specific_nodes;

23 int nodes[STARPU_NMAXBUFS];

24 int *dyn_nodes;

25

26 struct starpu_perfmodel *model;

27 struct starpu_perfmodel *energy_model;

28

29 unsigned long per_worker_stats[STARPU_NMAXWORKERS];

30

31 const char *name;

32

33 int flags;

34 };

Listing 4: C-based pseudo-code of a codelet

The first information held by the codelet is the set of potential processing units

that an associated task can execute on. Examples of such processing units are a

CPU, an OpenCL or a CUDA device, or a Conor device (a hardware task executed

on FPGA.) For every processing unit a task may execute on, the programmer needs to

63 4.1. The Proposed Framework

provide at least one implementation of the body of the task. This is done by providing

the function(s) associated to the architecture (lines 11,12 of listing 5). Then what

needs to be defined is the number of data structures that an associated task will be

applied on, as well as the access modes on every such structure (read-only, write-

only, read-write, etc). Lastly, the programmer can determine a performance model

associated to the codelet, that will be later described in section 4.1.1.3.

1 #define PERTURBATE(a) ((starpu_drand48()*2.0f*(AMPL) + 1.0f -

(AMPL))*(a))↪→

2

3 double cpu_chol_task_gemm_cost(struct starpu_task *task,

4 struct starpu_perfmodel_arch* arch, unsigned nimpl)

5 {

6 uint32_t n;

7

8 n = starpu_matrix_get_nx(task->handles[0]);

9

10 double cost = (((double)(n)*n*n)/50.0f/10.75/8.0760);

11 return PERTURBATE(cost);

12 }

13

14 double cuda_chol_task_gemm_cost(struct starpu_task *task,

15 struct starpu_perfmodel_arch* arch, unsigned nimpl)

16 {

17 uint32_t n;

18

19 n = starpu_matrix_get_nx(task->handles[0]);

20

21 double cost = (((double)(n)*n*n)/50.0f/10.75/76.30666);

22 return PERTURBATE(cost);

23 }

Listing 5: Performance model example. The code contains the performance model
of the GEMM used in Cholesky decomposition form the resources of StarPU.

Abstracting tasks to codelets provides great flexibility to the programmer, since

combined with the performance models and the scheduling policies, the identification

of the best performing candidate can occur automatically by the runtime.

64 4.1. The Proposed Framework

4.1.1.2 The Memory Model

While StarPU supports multi-node distributed architectures, the focus of our study

is put on architectures similar to the one shown in figure 4.1b. In such architectures,

multiple CPU cores have access to the same physical memory. The HPC community

usually refers to this part of the machine as the host part. Multiple accelerators, with

their private memories, are connected to the host via a PCIe bus.

StarPU implements a relaxed consistency shared memory model. This means

that the runtime provides a global address space, on top of the distributed physical

memories to the programmer.

A developer needs to register the data that will later be accessed by the tasks.

There are different data types that can be used, from a single variable to 1-D vectors,

2-D matrices and 3-D blocks. StarPU provides a handler to every registered data,

which will be used later to associate data chunks with tasks, before the task launching.

Consequently, the runtime at every point of the execution is aware of which data are

accessed by which tasks with what privileges, and ensures the consistency of the

multiple physical memories.

4.1.1.3 Task Scheduling And Performance Models

Task scheduling is in the core of StarPU, and is performed by employing scheduling

policies. There is a series of such policies, that come with the runtime system itself,

although, the programmer can implement new ones based on the needs of the appli-

cation to be deployed. As a clarification to avoid misunderstandings, it needs to be

declared that the scheduler is the component responsible for the mapping of tasks to

the processing units once their dependencies are satisfied. Those tasks are considered

to be ready for execution, and are pushed in a ready tasks FIFO (Figure 4.2, left

hand queue). Hence the goal of the scheduling policies is to dynamically distribute

sets of ready tasks to the underlying processing units that can be either idle or busy.

The StarPU execution model relies on the notion of worker threads, responsible for

executing tasks on specific processing units, like for example a core of a multicore

CPU, a GPU device or a Xeon Phi co-processor. Every processing unit of the target

platform is represented by a worker thread attached to it, running on the host. The

dynamic set of tasks to be executed is most of the time implemented as a FIFO queue

of tasks, which can be either globally accessed by every worker, as depicted on figure

4.2a, or split into per-worker data structures, like shown on figure 4.2b, depending

65 4.1. The Proposed Framework

on the needs of the scheduling policy. The worker is the one responsible for popping

tasks that have been assigned to its associated processing unit by the scheduler.

The available scheduling policies can be separated into two categories. The first

one gathers strategies that tries to even the number of tasks to be assigned to each

processing unit, like random, eager, lws, ws, prio and heteroprio. The second one

involves heuristics that take an estimation of a task performance, most of the time

expressed as an execution time, on any processing unit to compute a mapping. The

dm and heft scheduling families are examples of performance model-based schedulers.

Scheduler pop()
worker

pop()
worker

pop()
worker

(a) Centralized queue: In this simple sched-
uler architecture, there is one main queue that
workers access to obtain tasks.

Scheduler pop()
worker

pop()
worker

pop()
worker

(b) Worker Dedicated Queues: Here every
worker has its own dedicated queue with ready
tasks, and the scheduler assigns the workload
according to the determined policy.

Figure 4.2: Reference architectures of a StarPU scheduler. A scheduling policy is
responsible to determine the mapping between ready tasks and the available pro-
cessing units. The source of the scheduler is a FIFO queue holding the tasks with
satisfied dependencies, represented by the left side FIFO on figures 4.2a,4.2b. On the
other side there is the amount of the available processing units represented by their
workers, performing popping operations on the scheduler so they can proceed to task
execution.

The eager scheduler comes with a centralized FIFO of ready tasks that workers

concurrently pop tasks from. The random scheduler randomly distributes ready tasks

to per-worker queues. The ws and lws schedulers implement the work-stealing exe-

cution model, in which an idle worker tries to steal tasks from other loaded queues

in a dynamic fashion. The prio and heteroprio schedulers use centralized queues

of tasks that are sorted according to a per-task user-specified priority.

For the second category where performance models are employed, the majority

of the policies require a series of calibration that allows StarPU to obtain reference

performance estimations for the execution of a task on a specific architecture. In order

to use any of those performance model-based scheduling policies, a cost function needs

to be implemented for every architecture and every implementation of a task. Listing

18 of appendix A shows a C-based pseudo-code of the structure of a performance

66 4.1. The Proposed Framework

model, while listing 19 shows an example of a performance model for GEMM, used

in Cholesky decomposition, for both the CPU and the GPU.

If there is not enough information about the estimated execution time of a task

(no cost function associated with the task) on a specific architecture, the scheduler

will fall back to an eager scheduling policy.

The performance model-based scheduling policies that are shipped with StarPU

are derivatives of HEFT - Heterogeneous Earliest Finished Time [3]. In HEFT, a

submitted task can be executed in multiple processing units of potentially different

architectures (hence ”Heterogeneous”), and the scheduler needs to know which worker

will the task be eventually assigned to. The rank of a task ni for a processing unit u

is recursively computed by the formula:

ranku(ni) = wi + max
nj∈succ(nj)

(cij + ranku(nj))

and corresponds to the estimated execution time of the task ni at the processing

unit u. Where wi corresponds to the average estimated execution time of ni to

every processing unit, nj corresponds to a child of ni, cij corresponds to the average

estimated communication time of the data of ni that will be consumed by nj. Once

the rank of a task has been computed for every processing unit that can be executed

by, it is assigned to the one that ensures the earliest finished time (as the name of

the policy denotes).

The most simple HEFT derivative that comes with StarPU is dm (dequeue model),

where tasks are scheduled as soon as they become available to the worker of the

processing unit of the earliest estimated execution time.

An evolution of dm, is dmda (data-aware dm), according to which data exchange

is also taken into account. This policy can be considered a deprecated alias of HEFT.

Other refinements of the data-aware dequeue model are the dmdar, dmdas, dmdasd

schedulers, where supplementary conditions are taken into account, like task priorities

or the proximity of reading buffers.

4.1.2 The StarPU FPGA worker

This section reports on how we extended StarPU to support FPGA, with the introduc-

tion of FPGA workers, also called Conor workers after the name of the communication

library that enables the FPGA accessing, described in section 4.1.3. As explained in

section 4.1.1.3, we recall that the worker is the software representative of an under-

lying processing unit. It is implemented as a POSIX thread and is bound to a CPU

67 4.1. The Proposed Framework

core. The worker is responsible to monitor the availability of the underlying resource,

and manage the task execution that is orchestrated by the scheduler.

As already mentioned, StarPU implements a relaxed consistency shared memory

model, where data exchange between the main memory and the private memories

of the devices is happening transparently from the programmer. In our work, we

followed an agile model, with two rounds of development. In the first round, data

exchange was controlled by the developer, by a conor func that is written in software.

One such function should be provided for every codelet with a FPGA implementation

of a task. With this function, the programmer:

• allocates a channel using Conor

• retrieves the data structures associated to the task, and sends them to the device

using Conor

• receives and distributes the output to the appropriate place of the host memory

using Conor

• allocates the channel using Conor

For the exchange of input and output, there is a certain order that needs to be

respected; data dependencies should be sent from the host to the device in the order

depicted in the design of the hardware implementation of the task. The experiments

of sections 4.2 and 5.1 have been conducted using this version of the framework.

In the second round off development, we proceeded into supporting automatic data

exchange. The main memory model of StarPU is described in section 4.1.1.2, where

it is stated that StarPU uses a MESI-like protocol to ensure consistency between the

different physical private memories. The integration of FPGA to this model is not

straightforward because of the following reasons:

• Conor can only transmit memory blocks that are contiguously stored in the

host memory

• Data up-streaming should be completed using a single call to Conor

• Exchange data sent to the device are private to the task and can not be re-used.

For contiguous blocks, down-streaming is a trivial process, since a simple call to

Conor, using as a source buffer the one that the data are originally stored, would

do the work. Nevertheless, this operation does not come by default at a zero per-

formance overhead, since RIFFA driver locks the associated memory pages during

68 4.1. The Proposed Framework

the transaction. For non-contiguous data blocks though, the performance overhead

of initiating a new transaction for every contiguous data chunk would kill the overall

performance. For that reason, in the second phase of integration, we allowed Conor

to allocate memory buffers, associated to every data structure a task is associated

with, through which we perform the actual data exchange. Those Conor buffers exist

on the software side, and are allocated once for every data matrix, block, vector or

variable.

According to RIFFA, on every up-streaming operation, the number of words sent

from the FPGA side should match the number of words received from the host side.

In case the buffer size of the software end is smaller than the amount of transmitted

words, the remaining data will be discarded. This limitation complexes a lot an

automatic receiving operation, in cases where a task has several output dependencies.

Lastly, there are several limitation by the fact that the data on hardware tasks

are stored in BRAM blocks. As mentioned previously, those blocks are private to

every task, and can not be re-used between rounds of execution. In other words, the

hardware side is not aware of which data exists on witch block, and on every task

execution, the IO phase needs to be repeated. This means, that regardless of weather

the Conor buffer is holding a valid image of the data, on every round of execution,

task dependencies need to be re-sent to the hardware task.

To accomplish automatic data exchange, StarPU worker uses the Conormemory

allocation mechanism, the same way as an OpenCL buffer is allocated by the OpenCL

worker on the device. The main difference here is that the allocated memory exists

on the host and not on the device side. Once a task is assigned to the worker by the

scheduler, the worker will first ensure that there is an implementation of this task for

its architecture. Then it schedule the execution of the job associated to the task:

• it will allocate a channel corresponding to the assigned task using Conor

• it will communicate with the StarPU datawizard (the component of StarPU

responsible for the memory consistency) and allocate the Conor buffers when

necessary (on the first data access)

• it will send every input dependency from the Conor buffer to the hardware side

using Conor, respecting the order by which dependencies are declared to the

codelet (first declared first sent)

69 4.1. The Proposed Framework

• it will create a temporary buffer, fetch the output dependencies of the task

and distribute them to the appropriate Conor buffers, again respecting the

declaration order.

• it will release the channel.

The consistency of the Conor buffers is managed by the StarPU datawizard. The

assignment of tasks to the worker is managed by the StarPU scheduler, respecting

the selected scheduling policy.

In our approach, the number of Conor workers that need to be created corresponds

to the number of hardware tasks synthesized on the hardware design used for the

configuration of the device. This is due to the fact that every hardware task is

completely independent, and can be concurrently accessed by a software thread in

order to provide the associated data enabling the execution of its core.

Listing 17 of appendix A shows the main job of a worker, in the format of a

C-based pseudo-code

4.1.3 Conor: A Communication Library Based On RIFFA

Conor is a communication library, that was created within the scope of this thesis,

aiming to provide a complete infrastructure to access and monitor the behavior of

all the FPGA devices connected to the machine. Device accessing corresponds to a

set of utilities including data exchange mechanisms and communication performance

report.

Conor relies on RIFFA [65], which stands for Reusable Integration Framework for

FPGA, that implements a channel-oriented approach where software threads com-

municate with hardware tasks through individual channels over PCIe. Each channel

comes with its own lock a thread must acquire to guarantee exclusive access to the

corresponding hardware tasks. The responsibility to acquire and release the lock for

accessing a particular channel remains to the user though.

4.1.3.1 RIFFA

RIFFA as a PCIe accessing framework satisfies the requirements for scalability and

portability that were set in our objective. It provides support for up to five FPGA

devices connected via PCIe to the host node. RIFFA supports a series of boards from

both Xilinx and Altera. The version of RIFFA used in our framework is 2.2.2, and

provides access to FPGA connected over PCIe generations gen1 or gen2. From the

70 4.1. The Proposed Framework

performance point of view, it was designed ensuring a minimal interaction between the

host memory and the PCIe bus, in order to obtain minimal communication latency.

Regarding the communication throughput, performance results indicate that burst

data exchange using RIFFA can reach to the point of bus saturation for both gen1

and gen2.

Architecturally, RIFFA provides a software library that is linked with the host

side of the application as well as a hardware design where the developer can integrate

the hardware tasks corresponding to the application. Both of them will be thoroughly

described later in this section. On the host side, the software library cooperates with

a kernel driver that is loaded from the operating system during startup. The driver

holds a series of 4MB of PCIe-accessible buffers, in kernel space, that are used in

order to transfer data from and to the device. Data exchange happens using DMA,

allowing the CPU core that invoked the exchange to be utilized by another software

thread.

When the software library invokes down-streaming, which refers to the action of

sending data from the host to the device, a driver buffer is allocated. The corre-

sponding channel is notified for the exchange, data are copied from the user memory

to the allocated buffer, and then transferred through the channel to the hardware

tasks. Then, the software thread is notified that the data exchange has been com-

pleted and the driver buffer is freed. RIFFA only supports blocking communication,

meaning that the software thread blocks until it receives an acknowledgment that the

communication has been completed. When the software library invokes up-streaming,

which refers to the action of sending data from the device to host, the hardware task

sends a signal to the channel that a data sending is ready to occur. The channel then

notifies the driver, that allocates an internal buffer for the data copy, and returns the

address to the channel. Once data are written to the internal buffer, the hardware

task is notified, and data are copied from the internal buffer to the user space. The

host thread receives an acknowledgment that data writing has been completed, and

the internal buffer is freed, while the thread can resume its execution.

The next two paragraphs provide a thorough description of the software and hard-

ware interface of RIFFA to the programmer.

Software Side Interface During application development, for the host code, it is

safe to assume that the device is configured with a hardware design of the expected

behavior. What the software side of RIFFA provides is a set of functions that enable

to open the device, send and receive data to and from a channel and close the device.

71 4.1. The Proposed Framework

Invoking fpga list() in the beginning of the execution populates a dedicated data

structure that contains the number of configured FPGA devices, as well as the number

of active channels per device. Before any data exchange, the user needs to invoke

fpga open() on every FPGA device detected by fpga list() which returns a device

handler, that will later be passed to fpga send() / fpga recv() in order for data to be

sent to / received from the proper destination device.

Regardless of the direction of the data, on the host, data will be held on a buffer

of the software thread invoking the call to the kernel driver. In the case of data

sending, data should be contiguously stored in a void* buffer, while in the case of

data receiving they will be contiguously stored in a void* buffer respectively. For

both data sending and receiving the user needs to determine the expected payload

size of the exchange, which corresponds to the number of 4-byte words that will be

read or written to and from that void* buffer. In the receiving scenario, if the size

of the buffer is not sufficient to hold the entire payload, the remaining data will be

discarded.

Hardware Side Interface On the hardware side, there is a handshaking interface

for both the up-streaming and the down-streaming, that IPs can use in order to access

the PCIe bus. On the back-end of this interface there is a receiver (RX) engine for the

down-streaming path, and a transmitter one (TX) for the up-streaming path. Both

are multiplexed to provide up to 12 bidirectional channels at the endpoint. Every

channel may operate at different frequencies, determined by the IP that is connected

with. RIFFA provides template designs for user clocks between 5 and 250Mhz.

On the hardware part, data are encapsulated into packages. The size of a package

is associated to the width of the PCIe bus, that is set as a parameter in the config-

uration of the hardware part of RIFFA. In the current version of our framework, we

used PCIe bus sizes of 64 or 128 bits.

In the case of down-streaming, the channel raises a CHNL_RX flag indicating that

an exchange is to be performed. The IP needs to acknowledge the notification raising

a CHNL_RX_ACK signal. Information about the upcoming exchange is provided by the

RX engine regarding the length of the transaction, or a possible offset of the data,

as well as whether this is the last of a series of transactions. RIFFA indicates that

CHNL_RX_DATA contains valid data with the CHNL_RX_DATA_VALID flag, that can be

consumed by the IP with a read-enable flag CHNL_RX_DATA_REN, at a pace of one

package per clock cycle.

72 4.1. The Proposed Framework

An equivalent handshaking procedure takes place on the up-streaming exchange.

It is the IP who is responsible to indicate the initialization of a transaction by rais-

ing CHNL_TX, a flag that needs to be maintained high until the exchange completion.

Once the TX engine acknowledge the up-streaming, the IP needs to provide afore-

mentioned information (CHNL_TX_LEN, CHNL_TX_OFF, CHNL_TX_LAST and indicate the

beginning of the actual transaction by raising CHNL_TX_DATA_VALID. The engine can

then consume one package per cycle raising a CHNL_TX_DATA_REN flag.

4.1.3.2 Channel Allocation

As mentioned in 4.1.3.1, RIFFA splits the PCIe bus into individual bidirectional

channels, that can be accessed concurrently to communicate with the hardware tasks.

However, if one individual channel is accessed by several software threads at the same

time, then the behavior of the driver is undefined. Moreover, considering that in

our architecture there is a one-to-one mapping between the active channels and the

hardware tasks, we need to ensure that it is the same worker thread on the software

side that is communicating with a given hardware task. To address potential hazards

that derive from the aforementioned concepts, we implemented in Conor a mechanism

to allocate channels on the software side.

Once a software binary is linked with Conor, fpga list is called in order to obtain

the number of FPGA devices connected via PCIe on the platform, as well as the

number of active channels for every device. For every channel of every device, a lock

of type pthread mutex t is created and initialized. Acquiring this lock will provide

exclusive access to the corresponding channel, and by extent to the corresponding

hardware task.

Conor users have two ways to allocate channels, illustrated by two different scenar-

ios. In the first scenario, multiple instances of the same hardware task are configured

to every connected FPGA device. In this case, every channel is equivalent from the

programmer point of view. In other words, in order to execute a hardware task, we

need to allocate any of the available/idle RIFFA channels. For this purpose, Conor

provides the conor allocate channel function, which, when called, cycles through all

the available channel locks (with phtread mutex trylock), until a free channel lock is

found and obtained. Once the lock is acquired, the corresponding channel is returned

to the calling thread that can further continue its execution. Every allocated channel

needs to be released once the execution of the hardware task is finished. A task is

considered to be finished once the data that it is producing have been read by the

software thread. It is the responsibility of the programmer to instruct Conor to release

73 4.1. The Proposed Framework

a channel on the software side using the conor release channel() function provided by

the library.

In the second scenario, different types of hardware tasks are configured to the

FPGA devices. The procedure of channel allocation for this scenario will be described

in the next section.

4.1.3.3 IP Mapping

An FPGA can be configured with an arbitrary number and type of hardware tasks

within the limits of the twelve available channels provided by RIFFA. In our approach

we only consider static configurations, where the hardware design is provided stat-

ically by the user, and flashed to the device before the beginning of the execution.

During the execution, a software thread must allocate a channel of the type of the

task it wants to execute. To address this, Conor provides the ability to allocate a

channel of a certain type, calling the conor reserve channel of kernel type() function.

In order this to be possible, the user needs to provide a description of the config-

uration of each device, using an environment variable. The user indicates the kernel

types in channel ascending order, using a colon separation format, like the one indi-

cated in Listing 6. In this example, there is only one FPGA device connected to the

system, with four active channels, where channels 0 and 1 correspond to kernel type

1 while channels 2 and 3 to kernel type 2.

1 FPGA_CONFIGURATION="kernel1:kernel1:kernel2:kernel2"

Listing 6: Example Configuration

In the scanning phase at the beginning of the execution, Conor verifies that the

amount of active channels is compatible with the description of the configuration

provided by the user. Once the checking is successfully completed, Conor groups

channels by their kernel type. In the example of code on listing 6, two groups will

be created, one containing channels 0 and 1 associated to kernel type 1, and another

containing channels 2 and 3 associated to kernel type 2.

In a scenario where a task of type 1 needs to be executed, a software thread needs

to allocate a channel associated to kernel1. Once the function conor reserve channel

of kernel type() is called, Conor cycles through the channels of the corresponding

group (group 1), and acquires the lock of the first available/idle channel of the group.

In alignment with the basic channel allocation process of section 4.1.3.2 once the

74 4.1. The Proposed Framework

execution of the hardware task is finished, the user needs to release the channel

calling conor release channel().

4.1.3.4 Performance Reports

As described in section 4.1.3.1, once fpga send() or fpga recv() is invoked, RIFFA

returns the number of 4-byte words that have been successfully transmitted over the

channel specified by the call. If there is no error during the design and the execution

of the application, the number of exchanged data should be equal to the number

indicated by the user within the function call.

From the programmers point of view, it is convenient to have easy access to

the information regarding the behavior and the performance of the communication

with the device for profiling, monitoring and performance debugging purposes. For

example, in the case of StarPU integration, this information could be used by a

performance model-based scheduler. In order to provide such utility, for every data

exchange invoked using Conor, a tuple is returned to the calling thread, holding the

actual size of the exchanged data as well as the time of the data transaction. The

transaction time refers to the time the thread spent idle, waiting for the completion of

the transaction. This time may or may not correspond exclusively to data exchange,

and this derives directly from the reference model of a hardware task from the software

point of view.

According to the aforementioned hardware task model, the lifespan of a task is

composed by three phases: a first one dedicated to receive the input data, a second

one in charge of the computation itself and a last one responsible for sending back

the output data.

In the case of conor data send(), the measured time corresponds strictly to the

time that the thread remained idle because of the undergoing data exchange. In

the case of conor data recv(), there is no guarantee that the computation phase of

the application has been completed before the invocation of the exchange. Since

data sending and receiving are blocking, the time returned by Conor corresponds to

the time during which the thread remained idle waiting for the completion of the

transaction, which from the hardware point of view could be spent both in the task

execution and the data exchange.

4.1.4 Hardware Level Integration

Sections 4.1.1 to 4.1.3 were dedicated to the presentation of the development of the

software side, along with the hardware end-point of RIFFA for purposes of complete-

75 4.1. The Proposed Framework

ness. This section is dedicated to the hardware part of the framework, where the

analysis is focused on the characteristics of the hardware components assembling the

design. Section 4.1.4.1 presents the design requirements regarding the input and out-

put interfaces of a hardware task in order to be compatible with the rest of the design.

Section 4.1.4.2 exposes the internals and the behavior of the connector, the component

between a hardware task and a RIFFA channel hardware end-point. Lastly, section

4.1.4.3 provides a complete overview of the hardware design, where the hardware side

of RIFFA, the hardware tasks and the connectors are all assembled together.

4.1.4.1 IO Protocol For The IPs

The focus of this work is to provide a programmable framework for the high perfor-

mance computing community. It is obvious that developers with this expertise will

not attempt to design their hardware kernels at the RTL level, but will most probably

use one of the available High Level Synthesis tools introduced in section 3.2. In this

case, they are bound to the input and output interfaces provided by the chosen High

Level Synthesis tool.

Most of them implements a simple and widely-used directionless two-way hand-

shake protocol. In a scenario where one hardware IP is acting as a sender, and wants

to communicate with another one acting as a receiver, two control signals are needed

in total. Besides the control signals, the actual DATA bus needs to be instantiated.

This bus will be used to pass data from the sender to the receiver. The sender raises

a READY flag once the DATA bus contains valid values, which is considered by the

receiver as an indicator of a data exchange transaction. The receiver then raises an

acknowledgment ACK flag, and data are consumed word after word, at a pace of one

word per cycle. The size of a word is determined by the width of the DATA bus.

Vivado HLS provides such handshake interface, named ap hs (Access Point Hand

Shake), which we eventually use. In case that buffering can better serve the hard-

ware design, Vivado HLS provides a number of FIFO implementations, that can be

incorporated to the rest of our framework with minimal changes.

4.1.4.2 Description Of The Connector

What we call connector here refers to a hardware component meant to link a hardware

task to a RIFFA channel hardware end-point. It was created due to the difference of

the communication protocols between the implementation of the hardware end-point

of RIFFA and IPs created by a High Level Synthesis tool. Designing this component

implied to take architectural decisions to make it easy to integrate to the existing

76 4.1. The Proposed Framework

framework, while imposing the smallest overhead possible on the performance of

data transaction, both in terms of latency and throughput. The integration part

concerns the distribution of the available RIFFA channels to the hardware tasks.

We already mentioned in section 4.1.3.1 that RIFFA allows the PCIe bus of every

FPGA device to be split into up to twelve, completely autonomous and concurrent

bi-directional channels. We recall that, in our framework, we have chosen to associate

every hardware task with one channel. There is a trade-off over this decision. Indeed,

associating more than one channel to a single hardware task would enable faster data

sending, since input data would be able to be sent concurrently. However, this would

impose a stronger limitation to the number of hardware tasks that can be synthesized

on a single device, from one task per channel to one task per group of channels.

Moreover, associating more channels per task would require several software worker

threads associated to a single hardware task. Such a design would greatly increase

the complexity of the design of the Conor driver of StarPU, while the improvement

of the overall performance is not guaranteed, since the overhead on the software side

can not be computed easily.

77 4.1. The Proposed Framework

Hardware Task

In
p
u
t

P
or

t

O
u
tp

u
t

P
or

t

C
on

tr
ol

P
or

t

Input
Handler

Output
Handler

CONNECTOR

R
D

T
X

RIFFA Channel

Figure 4.3: Connector: a RIFFA channel to hardware task adapter. The connector
is assembled by two individual components the Input and the Output handler. The
input handler is responsible to drive the RD direction of the RIFFA channel to the
input port of the hardware task. The output handler is responsible to drive the
output port of the hardware task to the TX direction of the RIFFA channel, using
information provided by the control port of the task.

Figure 4.3 shows how the connector interfaces an hardware task with a RIFFA

channel. The input and the output paths are implemented with two different handlers.

Every handler is a finite state machine that performs the control translation between

the two protocols. The input handler will raise the CHNL_RX_ACK signal when CHNL_RX

is indicated by the RX part of the channel, and raise the READY flag at the end-point

of the hardware task. It will then raise the CHNL_RX_REN flag when the ACK flag of

the hardware task is on.

The output handler is a little more complicated, since the TX end-point of the

RIFFA channel requires the length, in number of words, of the upcoming transaction,

which is not held by the ap hs interface. This information is provided by the task,

through the control port, which is implemented in the form of another ap hs interface.

It is the programmer responsibility to propagate the length of data up-streaming

through the control port prior to the initiation of the transaction itself.

78 4.1. The Proposed Framework

4.1.4.3 Overview Of The Entire Design

This section provides a complete overview of the reference hardware design of our

framework. While one could infer the structure from the preceding sections, the goal

of this section is to clarify any potential blurry point.

Figure 4.4 shows the design of the FPGA fabric, along with its accessing point,

which is the PCIe bus. Direct access to the bus, is provided via designs provided by

the FPGA vendors, like the PCIe interface provided by Xilinx that we used for the

series of our experiments. The RIFFA hardware endpoint is connected on top of the

vendors-provided accessing component, constituting the entry point for the program-

mers hardware design. Up to that point, everything is static and predetermined, as

nothing here depends on the application our framework will execute. The only thing

that needs to be configured by the developer is the width of the PCIe bus, which can

vary from 64 to 128bits.

Hardware
Task #1

Hardware
Task #N

. . .

CONNECTOR CONNECTOR

RIFFA Interface

PCIe Interface

PCIe

Figure 4.4: Hardware Design Overview: This is a complete layout of a FPGA config-
uration compatible with our framework. The objective is to provide accessibility to
a number of hardware tasks from the software (host) side. The link between the host
and the device is the PCIe bus, on top of which the hardware interface of RIFFA is
synthesized (using the PCIe interface from the FPGA vendors). Every synthesized
hardware task is coupled with a connector component which is associated to a RIFFA
channel.

The truly reconfigurable part of our design comes below the RIFFA channels.

Indeed, the developer needs to :

79 4.1. The Proposed Framework

• implement and instantiate the hardware tasks that are going to be flushed to

the device ;

• instantiate a connector between every task and the corresponding channel.

Along with the number and the type of hardware tasks to be synthesized, the devel-

oper also needs to determine the clock frequency associated to every task. Available

clock frequencies vary from 10 kHz to 250 MHz.

80 4.2. Evaluation

4.2 Evaluation

This section presents the first evaluation of our framework on a blocked version of

matrix multiplication using an FPGA as an accelerator. This section layout is two-

fold. First, section 4.2.2 focuses on the impact our framework has on programmability

of HPC platforms including FPGA illustrating the transparency of integration of

FPGA compared to the rest of the supported accelerators. Then, section 4.2.3 focuses

on evaluating the performance overhead that comes with the extension of StarPU,

presented in section 4.1.2.

4.2.1 Blocked Matrix Multiplication

(a) Matrices are partitioned on the
horizontal and the vertical axes, cre-
ating the blocks. We focused our
experiments of orthogonal set-ups;
every matrix dimension is identical,
and matrices are partitioned homo-
geneously on every dimension.

(b) In our blocked version of matrix
multiplication, a task is associated to
the computation of one block of the
output matrix C. The input depen-
dencies of the computation are the
associated blocks of matrices A and
B.

Figure 4.5: Overview of our evaluation algorithm: Blocked version of matrix multi-
plication. Figure 4.5a shows the partitioning of the input and output matrices while
figure 4.5b shows the data blocks associated to a single task.

Figure 4.5a shows the data layout corresponding to the algorithm, whose mathemat-

ical form is:

C = A ∗B

where A is a x×z matrix, B is a z×y matrix and C a x×y matrix.Dimensions x and

y are partitioned in nx and ny number of slices respectively. The workload of a task

is associated to the computation of a single block of matrix C. Figure 4.5b shows the

blocks associated to a single task. The input dependencies of a task are the associated

81 4.2. Evaluation

blocks of matrices A and B. The output dependency of a task is the C block. In the

case of the blocked matrix multiplication we use for the framework evaluation in

this section, tasks are completely independent, since there is no task reading from

the output of another one. Nevertheless, the framework is designed to support more

complicated applications with task dependencies, since they are natively suported by

StarPU.

4.2.2 The Programmers’ Side

To describe this application using our framework, the application developer must

write both the StarPU application along with the hardware implementation of its

tasks as shown by dashed boxes in figure 4.1a.

4.2.2.1 The StarPU Application

First, the programmer must describe the codelet for the tasks computing one block in

the result matrix. Listing 7 shows how to do that using StarPU’s C API. This codelet

provides both a CPU implementation and an FPGA one. It also specifies that the

task has two inputs and one output through the nbuffers and modes attributes.

1 static struct starpu_codelet cl = {

2 /*

3 cpu_mult (resp. fpga_mult) points to a C function

4 implementing the CPU (resp. FPGA) version of the task.

5 */

6 .cpu_funcs = {cpu_mult},

7 .conor_funcs = {fpga_mult},

8 .nbuffers = 3,

9 .modes = {READ, READ, WRITE}

10 };

Listing 7: Task codelet for a task computing one block of the result matrix.
The task has two inputs and one output. The codelet provides both a CPU
implementation and an FPGA one.

Listing 8 shows the implementation of the function fpga mult, declared in the

definition of the codelet, as the one associated to the execution of the Conor device

implementation of the task. A Conor device is a hardware task, configured in an

FPGA and accessed via Conor. This function is mainly divided in four steps:

82 4.2. Evaluation

• Instruct a RIFFA channel reservation associated to a hardware task through

Conor;

• Retrieve the blocks associated to that particular instance of the task;

• Ask Conor to send the input blocks to the hardware task through the reserved

channel;

• Retrieve and copy back into the C block the result of the task computation

through Conor;

• Release the reserved channel, enabling another instance of a task of this kind

to be executed in this resource.

In this function, the order used to send the inputs is crucial. It must be aligned

with the expected inputs order in the hardware task implementations as explained in

Section 4.2.2.2.

83 4.2. Evaluation

1 void fpga_mult(void *data[]) {

2 /* Ask Conor for a channel, or equivalently for a hardware task */

3 int chnl = conor_reserve_a_chanel();

4

5 /* Get data from STARPU */

6 int* subA = SPU_MATRIX_GET_PTR(data[0]);

7 int* subB = SPU_MATRIX_GET_PTR(data[1]);

8 int* subC = SPU_MATRIX_GET_PTR(data[2]);

9

10 /* Get info on which part of the data the task must operate */

11 uint32_t nyA = SPU_MATRIX_GET_NY(data[0]);

12 uint32_t ldA = SPU_MATRIX_GET_LD(data[0]);

13 // Same for B and C

14

15 /* Send A and B */

16 int buf_s[nyA], buf_r[nxC*nyC];

17 conor_trans sent, recv;

18 for (uint32_t j = 0; j < nxC; j++){

19 for (uint32_t k = 0; k < nyA; k++)

20 buf_s[k] = subA[j+k*ldA];

21 conor_data_send(chnl, buf_s, nyA);

22 }

23 for (uint32_t i = 0; i < nyC; i++){

24 for (uint32_t k = 0; k < nyA; k++)

25 buf_s[k] = subB[k+i*ldB];

26 conor_data_send(chnl, buf_s, nyA);

27 }

28

29 /* Receive C. This is blocking */

30 conor_data_recv(chnl, buf_r, nxC*nyC);

31 for (uint32_t i = 0; i < nxC; i++){

32 for (uint32_t j = 0; j < nyC; j++)

33 subC[j + i*ldC] = buf_r[i*nyC+j];

34 }

35 conor_release_chanel(chnl);

36 }

Listing 8: Definition of the fpga mult function.

In that version of our framework, data exchange was not yet automatic. In the

current version, data exchange is happening transparently for most of the data formats

including a single variable, a vector, a block or a matrix. Said differently, the runtime,

and more precisely Conor worker, will automatically send and receive the inputs and

outputs of a task, resolving its dependencies once they are fetched by the scheduler.

Then the programmer must write the main part of the application responsible

for allocating matrices, register them with StarPU, launch tasks and wait for their

completion as shown in listing 9.

84 4.2. Evaluation

1 /* Init and regist A, B and C */

2 init_and_register_data();

3 /* Partition data into blocks */

4 partition_data();

5 /* Submit all tasks */

6 ret = launch tasks();

7 /* Wait for termination */

8 starpu_task_wait_for_all();

Listing 9: Main part of the StarPU application.

The procedure for launching the task is completely uniform; it does not know anything

about task types as shown in listing 10. It consists of creating the tasks, associating

them with the codelet defined in listing 7, setting their dependencies, and finally

submitting them.

1 for (uint32_t x = 0; x < 9; x++) {

2 for (uint32_t y = 0; y < 9; y++) {

3 spu_task* task = spu_task_create();

4 task->cl = &cl;

5 /* Get handlers for each block */

6 task->handles[0] = spu_get_sub_data(

7 A_handle, 1, y);

8 task->handles[1] = spu_get_sub_data(

9 B_handle, 1, x);

10 task->handles[2] = spu_get_sub_data(

11 C_handle, 2, x, y);

12 starpu_task_submit(task);

13 }

Listing 10: Submit tasks to the StarPU runtime.

4.2.2.2 Writing Hardware Tasks

On the FPGA side, the application developer must provide the implementation of

hardware tasks. The HEAVEN framework relies on Vivado HLS for this task. Using

this tool, the application programmer describes the implementation of its hardware

tasks in C++. This description consists in:

• Receive the block from A and B;

85 4.2. Evaluation

• Compute the block of C as the product of the blocks from A and B;

• Send this C computed block.

For receiving inputs and sending outputs, the application developer is provided

two high-level objects which type is Vivado HLS hls::stream. The interface is of type

hls::stream, and the protocol implementing the streaming interface is the ap hs, that

was mentioned in section 4.1.4.1. The first one is used to receive inputs and the

second one to send outputs. The function also has a third hls::stream parameter

used for control. The interface between these three high-level objects with the PCIe

bus is handled transparently by the framework through the connector and RIFFA as

described in section 4.1.4.

For the receiving part of the function, the programmer must read the blocks for

the A and B input matrices in a given order and save them in local variables which

are automatically translated to BRAM by Vivado HLS. This reading order must be

respected in StarPU when inputs are sent to the FPGA.

For the computation step, the application developer has first to declare the C

matrix as a local variable that will also be allocated into BRAM by Vivado HLS.

Then the effective computation of C is done using three nested for loops just as in a

software implementation.

Finally, the C matrix must be sent back to the host side using the second hls::stream

object provided to the function. In cases of tasks with several outputs, as for the in-

puts, the sending order must be respected on both sides.

4.2.2.3 Generating The Bitstream

Once the RTL description of the hardware tasks has been generated with Vivado HLS,

the application developer must generate the final bitstream to be used to configure

the FPGA. For that task, the HEAVEN framework provides a parametric wrapper

written in Verilog. This wrapper is only configured by the application developer to

specify the number of hardware tasks to be instantiated. The wrapper combines the

specified number of hardware tasks along with the hardware part of RIFFA, and the

connector between RIFFA and the hardware tasks. The application developer then

uses Vivado to synthesize the complete design to the final bitstream.

4.2.3 Results

We executed the experiments in a heterogeneous machine, where an FPGA was con-

nected to the host via PCIe. The host CPU was a 64-bit Intel Xeon W3530, a

86 4.2. Evaluation

two-way hyperthreaded quad-core, for a total of 8 virtual cores, running at the speed

of 2.80GHz, with a smart cache of 8MB, 256KB of L2 and 8192KB of L3, a thermal

design reference power of 130W, and a semiconductor size of 45nm. It was coupled

with 12GB of DRAM at 1333MHz.

The FPGA we used for our experiments was Xilinx Virtex-7 VC709, a board using

the XC7VX690T chip, with 693,120 logic cells, 3,600 DSP slices, 52,920kb of BRAM

memory, up to 4GB of RAM at 1866Mbps, and an 8-lane PCIe edge connector.

Within the context of this study, we opted to evaluate the performance we could

obtain using our platform on the blocked version of matrix multiplication introduced

in section 4.2.1. For the given analysis, we did not consider heterogeneous scenarios,

where the scheduler could use within the same execution CPU and FPGA imple-

mentations for the tasks. Thus, for every experiment under test, we went through

two executions, one using only FPGA tasks and one using only CPU tasks. In this

range of experiments, we did not include scenarios where tasks are executed concur-

rently in both of the resources (the CPU and the FPGA), because our focus was to

demonstrate the correctness of our integration.

We expected that the communication overhead would significantly downgrade the

performance of the FPGA version. As a consequence, to study this effect, we focused

on two constant task sizes for the entire range of experiments. A low-weight task

operates on blocks of 64x64 integers while a heavy-weight task operates on 256x256

blocks.

We also vary the size of the input matrices A and B. We evaluated nine different

sizes as shown in figure 4.6. For each one of these nine scenarios, the number of tasks

that can be deduced from the way the input matrices were sliced. Each scenario is

further divided in two by using either low-weight of heavy-weight tasks. For example,

the scenario in figure 4.6e corresponds to a setup for the 64x64 task size and to another

setup for the 256x256 one. In this scenario, for both 64x64 and 256x256 setups the

A and B matrices are split into five slices leading to a total of 25 tasks. In the 64x64

setup the size of A is then 320x64 and the size of B is 64x320. In the 256x256 setup

the size of A is then 1280x256 and the size of B is 256x1280.

In all our experiments, the FPGA was configured with four instances of the hard-

ware task computing a single block of the result matrix. Hence for both architectures,

CPU and FPGA we had an equal amount of independent computational entities be-

cause in the CPU case, StarPU allocates by default a number of workers equals to

the number of physical cores in the host (4 in our case).

87 4.2. Evaluation

(a) 1 task (b) 4 tasks (c) 9 tasks9 (d) 16 tasks (e) 25 tasks

(f) 36 tasks (g) 49 tasks (h) 64 tasks (i) 81 tasks

Figure 4.6: We conducted a series of experiments with a varying matrix size. We
kept the task granularity constant across the experiments, modifying the number of
tasks launched on every execution by adjusting the size of a matrix dimension and
the number of partitions per dimension. For every set-up (configuration displayed in
figures 4.6a through 4.6i) we run a case for the heavy weight task and another for the
light weight one.

Low-weight Task heavy-weight Task
FPGA 1.40 msec 7.01 msec
CPU 1.63 msec 113.37 msec

Table 4.1: Performance of a single task for each architecture and task size.

We first evaluated the per task execution time for each architecture. This corre-

sponds to the scenario presented in figure 4.6a. In that case, the computation of the

block corresponded to the entire application. The per-task performance we obtained

is presented in 4.1. The bigger task shows a significant performance difference when

executed on an FPGA compared to when executed on a CPU. In the smaller task, the

ratio between the computation and the communication is small, resulting in compa-

rable behavior for both architectures. With the increase of the task size, the cost of

data transfer (linear) has a minor impact compared to the cost of the computations

(cubic).

Then we evaluated how the extended StarPU runtime behaves when the number

of tasks increases. In this case, the expected total execution time should theoretically,

follow the formula:

ttotal =

⌈
#tasks

#conTasks

⌉
× tpt + α (4.1)

In this formula, ttotal refers to the total execution time of the application, tpt to the

execution time of a single task which value is shown in Table 4.1, #tasks to the

88 4.2. Evaluation

number of tasks, #conTasks to the number of concurrent tasks and α to a constant

representing the initialization overhead. Within our experiments, #conTasks equals

4.

89 4.2. Evaluation

1 4 9 16 25 36 49 64 81
Number of Tasks

0

10

20

30

40

Ti
m

e
(m

se
c)

Total Execution Time
CPU-only (4 CPU workers)
FPGA-only (4 FPGA workers)

(a) Results on the low-weight scenario — Orthogonal 64 × 64 Blocks

1 4 9 16 25 36 49 64 81
Number of Tasks

0

500

1000

1500

2000

2500

Ti
m

e
(m

se
c)

Total Execution Time
CPU-only (4 CPU workers)
FPGA-only (4 FPGA workers)

(b) Results on the heavy-weight scenario — Orthogonal 256 × 256 Blocks

Figure 4.7: Performance results on homogeneous execution scenarios of blocked ma-
trix multiplication for block sizes of 64x64 (figure 4.7a) and 256x256 (figure 4.7b). An
execution can happen completely on the CPU cores (CPU-only bars) or the FPGA
(FPGA-only bars). In the case of small granularity, the execution time for both
architectures is similar while in the heavy-weight tasks, the FPGA impelmentation
outperforms the CPU one. In both cases, the increase in the number of tasks shows
no performance overhead imposed to the execution time.

90 4.3. Conclusion

Figure 4.7 shows how the total execution time evolves with the number of tasks

both for the CPU only version and the FPGA only version. For both low-weight and

heavy-weight tasks, Figures 4.7a and figure 4.7b, we observe a linear evolution of the

total execution time validating the theoretically expected one. We can then conclude

that for the sizes studied in our experiments, there is no additional overhead coming

from task management.

4.3 Conclusion

This chapter presents the architecture and the primary evaluation of our framework,

showing that it is fully operational, on homogeneous scenarios of a naive implemen-

tation of blocked matrix multiplication.

The entry point regarding the connectivity of the FPGA in the computing node is

the PCIe bus. We choose RIFFA as an accessing framework that provides a software

and a hardware interface of the bus, splitting the connection in a number of individual

bi-directional channels that can be driven concurrently.

From the software point of view, we have extended the StarPU runtime system,

creating a dedicated driver responsible for driving FPGA devices in a transparent

way, similar to the software counterparts. On top of RIFFA, we have built Conor a

software library managing the allocation of the device channels as well as the data

exchange and provides performance results corresponding to the behavior of every

transaction. On the hardware side, we have designed a connector that operates as a

low latency intermediate between a RIFFA channel and a hardware task.

The evaluation of the integration is based on a blocked version of matrix mul-

tiplication, where every task computed a block of the result matrix. This series of

experiments is conducted on homogeneous scenarios. On every run, tasks are running

either on software or on hardware, using the standard eager scheduling policy. For

the experiments we create tasks of different granularity exposing that the overhead

imposed by the data movement is not always compensated in cases where the corre-

sponding amount of execution load is not sufficient. For the tasks of small granularity,

the performance per task is similar among the software and the hardware case. For

the computationally heavier task, the acceleration obtained by the massive paral-

lelism of the FPGA, is enough to overcome the overhead of the data transmission,

getting a hardware task that outperforms its software counterpart. The results show

that our framework does not impose any significant overhead to the execution of the

application on any scenario.

Chapter 5

Heterogeneous Scheduling

Contents
5.1 Heterogeneous Matrix Multiplication 92

5.2 Cholesky Decomposition 95

5.3 Analysis On The Implementation Of The Cholesky De-
composition. 96

5.4 Developing A Hardware Design Of GEMM 98

5.4.1 Hardware Design Optimizations Of GEMM. 99

5.4.2 Hardware GEMM - Performance Evaluation 103

5.5 Discussion . 105

This chapter introduces our development towards heterogeneous execution sce-

narios involving concurrent task execution on CPU cores and the FPGA. Chapter 4

presents the design and the architecture of our framework, as well as an evaluation

of: a) the performance overhead that comes with the FPGA b) the platforms overall

programmability. The evaluation of that chapter is based on a series of homogeneous

experiments, where tasks are implementing for two different target processing units,

the CPU and the FPGA, but on every run they are executed only on one of the two.

Moreover, the complexity of the application under test in terms of its dependencies

is very limited; said differently tasks are completely independent and can all execute

concurrently. The target of this part of the work is to allow the execution of more

complex applications in heterogeneous scenarios, where there are dependencies be-

tween tasks, that impose priorities, and tasks are executed on different processing

units during the run time. Our reference application for this scenario is the Cholesky

decomposition. StarPU comes with an existing implementation of Cholesky decom-

position, with task implementations for the CPU and the GPU.

91

92 5.1. Heterogeneous Matrix Multiplication

In our experiments, we chose one of the tasks assembling Cholesky decomposition,

the GEMM kernel, optimized it and tried to provide heterogeneous execution scenar-

ios where GEMM runs on the FPGA while the rest of the tasks run on the CPU.

Gemm was chosen since it is the task executed the most during the decomposition,

as shown in 5.3. The first step to accomplish the aforementioned goal is to ensure

that with our integration we can actually obtain heterogeneous execution scenarios.

The second step is to provide a hardware implementation of GEMM, that can deliver

enough performance to compensate the overhead of the movement between the host

memory and the device of its input and output dependencies. The third step is to

provide a performance model of the FPGA implementation of GEMM and run a se-

ries of experiments to observe the effect of different scheduling policies on the result

performance.

For the accomplishment of the first step, we conducted a series of experiments on

the previous blocked matrix multiplication application, exploring the behaviors of our

framework on a truly heterogeneous execution scenario. This series of experiments is

presented in section 5.1. The analysis of GEMM and the development process of a

highly optimized hardware implementation is presented in section 5.4. Unfortunately,

with respect to the time limits of this thesis, we did not manage to complete this series

of experiments, leaving the performance model of GEMM and the scheduling analysis

of Cholesky decomposition on the perspectives of this study.

5.1 Heterogeneous Matrix Multiplication

This section describes a series of heterogeneous experiments we conducted in order

to verify the ability of our framework to deliver truly heterogeneous executions. Het-

erogeneity here corresponds to the concept of concurrent task execution on resources

of different architectures, in this case the CPU and the FPGA.

To demonstrate cases of heterogeneous execution, we used the blocked version of

matrix multiplication of chapter 4, allowing a task to be executed either on a CPU

core (using the cpu mult function), or on one of the available hardware tasks at FPGA

(using the fpga mult function. That being said, for this series of experiments we used

the version of our framework, where data exchange happens explicitly. We applied a

random scheduling policy, where a task can be randomly chosen to execute in any of

the two available processing units.

On the FPGA side there were four available hardware tasks corresponding to the

multiplication operation. The node was equipped with four CPU cores, allowing a

93 5.1. Heterogeneous Matrix Multiplication

maximum of four workers in total. The FPGA configuration here was identical to

the one used for the experiments of the previous chapters. Since every processing

unit needed to be represented by a worker thread on the software side and since there

should be one to one mapping between CPU cores and worker threads, we limited

ourselves to four worker threads in total in order to allow heterogeneous execution.

Half of the threads were associated to a CPU core as a working unit and the other

half were associated to a hardware task on the FPGA.

Our experiments were conducted on the same fashion as the homogeneous equiva-

lents of chapter 4. We run a series of executions, determining the task size (orthogonal

blocks of dimension size equal to 64 or 256), as well as the number of tasks per execu-

tion. The number of tasks was determined by specifying the number of partitions per

dimension as well as the size of every dimension of the corresponding matrix (figure

4.5).

Figure 5.1 shows a comparison based on the total execution time of matrix multi-

plication for the equivalent matrix sizes between the two homogeneous and the het-

erogeneous scenario. For a fair comparison, on the homogeneous scenarios, we limited

the number of workers of every unit to two. The performance per task remains the

same as expected, to the one presented in section 4.2.3.

Figure 5.1a shows the comparison between the total execution time for the light

weight tasks (orthogonal blocks of dimension equal to 64). The CPU and the FPGA

implementation of a task at this granularity show similar performance. Figure 5.1b

shows the comparison between the total execution time for the heavy weight tasks

(orthogonal blocks of dimension size equal to 256). In this case, the execution time

of the FPGA implementation of a task is faster compared to the one of the CPU

implementation.

In this series of experiments a task could either execute on the CPU or the FPGA.

Tasks were executing concurrently in both of the resources. The results were marked

with the ”Heterogeneous” label, and were compared with the equivalent homogeneous

scenarios of execution, were tasks were executing either exclusively on the CPU or

exclusively on the FPGA.

94 5.1. Heterogeneous Matrix Multiplication

1 4 9 16 25 36 49 64 81
Number of Tasks

0

10

20

30

40

50

60

70

80

Ti
m

e
(m

se
c)

CPU-only (2 CPU workers)
FPGA-only (2 FPGA workers)
Heterogeneous (2 CPU + 2 FPGA workers)

(a) Results on the low-weight scenario — Orthogonal 64 × 64 Blocks

1 4 9 16 25 36 49 64 81
Number of Tasks

0

1000

2000

3000

4000

5000

Ti
m

e
(m

se
c)

CPU-only (2 CPU workers)
FPGA-only (2 FPGA workers)
Heterogeneous (2 CPU + 2 FPGA workers)

(b) Results on the heavy-weight scenario — Orthogonal 256 × 256 Blocks

Figure 5.1: Performance results on heterogeneous execution scenarios of blocked ma-
trix multiplication for block sizes of 64x64 (figure 5.1a) and 256x256 (figure 5.1b)

With this series of experiments we provided a proof of concept, of execution sce-

narios where a part of the application is running on the CPU while another is running

95 5.2. Cholesky decomposition

on the FPGA. We observed that even with a single type of tasks, scheduling can have

a strong impact on performance.

In the low-weight tasks, performance per task for the CPU and the FPGA case was

similar, and we saw that even by applying a simple random policy, we could obtain

better total execution time with the combination of the two. In the heavy-weight

scenario, things change. The performance per task between the CPU and the FPGA

case are not comparable. Just by assigning a part of the workload to the CPU slows-

down the overall performance, compared to a pure FPGA execution. Nevertheless,

the results we obtained here, can not be generalized for more sophisticated scheduling

policies.

5.2 Cholesky Decomposition

Cholesky decomposition or Cholesky factorization, is a numerical method that, for a

Hermitian positive-definite matrix A, finds a lower triangular matrix L such that:

A = L ∗ LH

A matrix X is called Hermitian if and only if:

• X is square

• X = XH , where XH is the conjugate transpose of matrix X.

A matrix X is called positive-definite if and only if:

• X is symmetric

• For every non-zero column vector z, the product zT ∗ X ∗ z is positive, where

zT is the transpose of z

A matrix X is called lower triangular if and only if every element above its main

diagonal is zero.

The conjugate transpose of a real matrix X is equal to its transpose:

XH = XT , when X is real

Since we only focus on real matrices, the factorization we are focusing on is the one

below:

A = L ∗ LT ,

96 5.3. Analysis on the implementation of the Cholesky Decomposition.

where A is a real Hermitian positive-definite matrix, and L a real lower triangular

matrix.

Cholesky decomposition is a method widely used in a wide range of applications

from the numerical solution of partial differential equations, to Kalman filters (algo-

rithms to estimate unknown variables of a complex system out a series of measure-

ments observed over time via their joint probability distribution) and Monte Carlo

simulations (method used for simulating systems with multiple correlated variables).

Cholesky decomposition is known to be a good candidate to demonstrate the

benefit of scheduling in heterogeneous environments. Hence it has been thoroughly

studied in platforms assembled by a combination of CPUs and GPUs [9]. The appli-

cation is composed of tasks of different kinds that are known to adapt more or less

efficiently among processing units of different architecture.

5.3 Analysis On The Implementation Of The Cho-

lesky Decomposition.

Most efficient software implementations of Cholesky decomposition (like the one of

BLAS -3) are typically assembled by four kernels operating on blocks of the matrix

A : POTRF, TRSM, SYRK and GEMM. Listing 11 shows a C-based pseudo-code of

the core of the application.

The aforementioned kernels are presented below:

• POTRF is a software kernel that implements directly the Cholesky decompo-

sition. It is an efficient way to decompose small blocks, and hence it is applied

directly to the diagonal blocks.

• TRSM is a triangular matrix equation solver. In its general form, it solves the

equation M ∗ X = alpha ∗ N , where M is a triangular matrix. The kernel in

this context is applied to M = A[k][k] and N = A[i][k]. The result matrix X,

overwrites N, in this case A[i][k].

• SYRK is a kernel that performs a rank-k matrix-matrix operation between a

symmetric matrix N and a matrix M of the form N := alpha∗A∗A′+beta∗N .

In this context is applied to N = A[i][i] and M = A[i][k]. As indicated by the

mathematical formula, matrix N is updated with the new values that derive

from the computation.

97 5.3. Analysis on the implementation of the Cholesky Decomposition.

• GEMM is a generic matrix multiplication solver that can be mathematically

formed as N = alpha ∗ op(M1) ∗ op(M2) + beta ∗N and is thoroughly analyzed

in section 5.4. In this context N = A[i][j], M1 = A[i][k] and M2 = A[j][k].

1 for(k=0; k<N; k++){

2 DPOTRF(RW, A[k][k]);

3 for(i=k+1; i<N; i++){

4 DTRSM(RW, A[i][k], R, A[k][k]);

5 }

6 for(i=k+1; i<N; i++){

7 DSYRK(RW, A[i][i], R, A[i][k]);

8 for(j=k+1; j<i; j++){

9 DGEMM(RW, A[i][j], R, A[i][k], R, A[j][k]);

10 }

11 }

12 }

Listing 11: C-based pseudo-code of the core of Cholesky decomposition.

Code 11 shows the core of Cholesky decomposition. Figure A.1 of appendix A

shows a graphical representation of the task graph of Cholesky decomposition for

N=4. Following the code of listing 11, the algorithm iterates over every diagonal

block. So, on the kth iteration, POTRF is applied on block A[k][k]. Then a TRSM

is applied on every block of the same column bellow the diagonal block, this is every

block A[i][k], where i > k. A SYRK kernel is applied on every block diagonal block

after k (i.e. every block A[i][i], where i > k). And a GEMM kernel is applied on

every block between the diagonal and the kth column, this is every block A[i][j], where

i, j > k.

No TRSM kernel can execute before the completion of the POTRF on block

A[k][k]. No SYRK kernel can execute on block A[i][i] before the completion of TRSM

on block A[i][k]. In other words, no SYRK kernel can execute on a diagonal block

before the completion of the TRSM kernel of the same row. Lastly, no GEMM kernel

can execute on block A[i][j] before the completion of TRSM on blocks A[i][k] and

A[j][k].

98 5.4. Developing a hardware design of GEMM

5.4 Developing A Hardware Design Of GEMM

General Matrix Multiply - GEMM - is a kernel that performs matrix multiplication of

two matrices, although in a more general way than the mmult examined in chapter

4. The mathematical formula associated to the kernel is the one below:

C := alpha ∗ op(A) ∗ op(B) + beta ∗ C

,where alpha and beta are constants, A is a x by z matrix, B is a z by y matrix, C is

a x by y matrix and

op(X) =

X ,transX = ’N’

XT ,transX = ’T’

XH ,transX = ’H’

(5.1)

indicates the order that data are stored in memory. Our experiments only focus on

real matrices where:

XH = XT

.

Figure 5.2 exposes an example of how a 3 by 3 matrix X is stored in memory

when transx is either ’N’ (figure 5.2b, line X) or ’T’ (figure 5.2b, line XT).

X =

 1 2 3
4 5 6
7 8 9

(a) The original 3 by 3 matrix X

Address 0 1 2 3 4 5 6 7 8
X 1 2 3 4 5 6 7 8 9
XT 1 4 7 2 5 8 3 6 9

(b) Memory mappings of X and XT

Figure 5.2: Demonstration of memory mapping of a 3 by 3 matrix X and its transpose
XT

In the CPU implementation of the GEMM kernel, different cases are distinguished

according to the order the input matrices are stored in memory (whether they are

stored in a transpose way or not). For the FPGA implementation such thing is

not necessary, since data are transferred from the host to the device memory, and

hence they can be remapped. Indeed for matrices A and B, transA and transB are

transmitted before the elements themselves, and if they are originally stored in a

transpose fashion, they are re-arranged in the FPGA memory to a non-transpose

mapping.

After this data re-arrangement, the FPGA version of the kernel becomes:

C = alpha ∗ A ∗B + beta ∗ C

.

99 5.4. Developing a hardware design of GEMM

5.4.1 Hardware Design Optimizations Of GEMM.

IO template: The very first step for writing a hardware task compatible to the

HEAVEN framework is the definition of its input, output, and control ports. Listing

12 shows the definition of the wrapping function of the GEMM hardware task named

top. Following the template requirements of chapter 4, top has one 64-bits wide input

port - instream, one 64-bits wide output port - outstream and a 32-bits wide control

port - control. Every port is set to implement an ap hs protocol (listing 12 lines 3-5).

Lastly, there is no control signal set for the completion of the tasks execution.

1 void top(hls::stream<DATA_WIDTH> &instream,

hls::stream<DATA_WIDTH> &outstream, hls::stream<int> &control)↪→

2 {

3 #pragma HLS INTERFACE ap_hs port=instream

4 #pragma HLS INTERFACE ap_hs port=control

5 #pragma HLS INTERFACE ap_hs port=outstream

6 #pragma HLS INTERFACE ap_ctrl_none port=return

Listing 12: The high level function implementing GEMM has three arguments of
type hls::stream. One input (instream) and two outputs (outstream, control). On
the hardware level, streams are implemented as simple handshake interfaces.

Receiving Dependencies: In chapter 4 we specified that the dependencies of a

task need to be sent in a specific order. Conor worker will first send the STARPU R

and then the STARPU RW dependencies of a task, in the order they are registered

during the codelet defintion and task creation. For the up-streaming phase, it is the

STARPU RW dependencies expected according to their declaration order, and then

the STARPU W ones.

Respecting the aforementioned restrictions the hardware task expects first to re-

ceive matrix A, then matrix B, and last matrix C since there is both and input and

an output dependency on the result matrix. Listing 13 shows the code associated

to the hardware side declaration and receiving of matrix A. It is exactly the same

procedure for matrix B. The control branch of lines 9 and 18 ensure the non transpose

remapping of the matrix to the FPGA memory.

HLS ARRAY RESHAPE is a memory optimization technique provided by Vi-

vado HLS, that performs data partitioning and mapping to the BRAM. By default,

when an array is defined, Vivado HLS maps it automatically to a BRAM block. A

BRAM block can be either single or dual ported allowing a total maximum of two

100 5.4. Developing a hardware design of GEMM

memory operations per cycle. This memory throughput would not allow to exploit

the available parallelism of the device. HLS ARRAY PARTITION would allow ev-

ery row or column of a matrix to be mapped to a different BRAM block increasing

proportionally the number of memory operations per cycle. This partitioning strat-

egy by default could lead to a bad memory usage. HLS ARRAY RESHAPE is a

combination of partitioning and mapping, that maps several (in our case 2) rows or

columns of the matrix to the same BRAM block, without decreasing the throughput

of memory operations.

1 REAL A[DIM][DIM];

2 #pragma HLS ARRAY_RESHAPE variable=A complete dim=2

3 int Ar, Ac;

4

5 *((DATA_WIDTH *) temp)= instream.read();

6 Ar = temp[0];

7 Ac = temp[1];

8

9 if(TA==0){

10 IO_Ar_NT:for(int i=0; i<DIM; i++){

11 IO_Ac_NT:for(int j=0; j<DIM; j+=2){

12 *((DATA_WIDTH *) temp)= instream.read();

13 A[i][j] = temp[0];

14 A[i][j+1] = temp[1];

15 }

16 }

17

18 }else{

19 IO_Ar_TR:for(int i=0; i<DIM; i++){

20 IO_Ac_TR:for(int j=0; j<DIM; j+=2){

21 *((DATA_WIDTH *) temp)= instream.read();

22 A[j][i] = temp[0];

23 A[j+1][i] = temp[1];

24 }

25 }

26 }

Listing 13: Defining, Receiving and Remapping the input arrays A and B

Matrix C is the last matrix to be received as mentioned previously. Listing 14

shows the implementation of the receiving procedure. HLS ARRAY RESHAPE is

101 5.4. Developing a hardware design of GEMM

also applied on the C matrix to allow the increased memory throughput during the

writing phase of the computation.

An important performance optimization at this point is the overlapping of com-

munication and part of the computation. As shown in listing 14, instead of storing

C itself, we store beta ∗ C while receiving the elements of the matrix.

Last performance optimization at this phase of the kernel is pipelining the receiv-

ing loop (Listing 14, line 11), with an initiation interval of 3 cycles (initiation interval

refers to the number of cycles needed to complete the first iteration of the body of

the loop).

1 //Get C, C = BETA * C;

2 REAL C[DIM][DIM];

3 #pragma HLS ARRAY_RESHAPE variable=C complete dim=2

4 int Cr, Cc;

5

6 *((DATA_WIDTH *) temp)= instream.read();

7 Cr = temp[0];

8 Cc = temp[1];

9 IO_Cr:for(int i=0; i<DIM; i++){

10 IO_Cc:for(int j=0; j<DIM; j+=2){

11 #pragma HLS PIPELINE II=3

12 *((DATA_WIDTH *) temp)= instream.read();

13 C[i][j] = BETA * temp[0];

14 C[i][j+1] = BETA * temp[1];

15 }

16 }

Listing 14: Defining, Receiving array C. Overlap communication with the com-
putation of the C = beta ∗ C part of the algorithm

The computation’s phase: Listing 15 shows the main phase of computations of

the kernels that corresponds to the C = alpha∗A∗B part. It corresponds to a 3-level

nested loop. The optimizations techniques we used on this part is a combination of

loop pipelining and loop unrolling.

Loop unrolling flattens the iterations of the loop to a certain factor, allowing the

execution of the entire unrolled load in one clock cycle, if and only if the memory

throughput is sufficient to feed the computation. This hardware optimization comes

at a cost in terms of resource utilization, since the number of logic elements utilized

for the implementation of the unrolling is proportional to the unrolling factor. This

102 5.4. Developing a hardware design of GEMM

indicates the necessity of applying the HLS ARRAY RESHAPE optimization that

was applied on the A, B and C blocks.

Loop unrolling was applied to the inner loop (Listing 15, line 7, loop C i) using

the HLS UNROLL directive. Without specifying an unrolling factor, the loop was

unrolled completely. The same technique was applied to the middle loop (Listing

15, line 3, loop C m). This time the loop was unrolled to a factor of 2, because of

resource constraints as well as a bottleneck imposed by the memory’s throughput.

Along with loop unrolling, loop pipelining with an initiation interval of 5 cycles was

also applied to C m. This initiation interval was decided in order to obtain higher

target frequencies.

1 //COMPUTATIONS

2 C_o:for(int i=0; i<DIM; i++){

3 C_m:for(int k=0; k<DIM; k++){

4 #pragma HLS PIPELINE II=5

5 #pragma HLS UNROLL factor=2

6 REAL A_PART = ALPHA * A[i][k];

7 C_i:for(int j=0; j<DIM; j++){

8 #pragma HLS UNROLL

9 C[i][j] += A_PART *B[k][j];

10 }

11 }

12 }

Listing 15: The core of the computation which corresponds to the alpha ∗ A ∗ B
part.

Return result: The last phase of the task, is the phase of data write back, end

more precisely the up-streaming of the C - matrix. In chapter 4 is specified that before

data up-streaming, the size of the exchange should be propagated through the control

channel (Listing 16, line 2). Without the use of any directive, the data exchange

happens at a pace of one 64-bits word per cycle, assuming that the consumer can

sustain this throughput, which is the optimal exchange performance we can expect

in this context.

103 5.4. Developing a hardware design of GEMM

1 //WRITE OUTPUT

2 control.write(Cr*Cc);

3

4 OI_Cr:for(int i=0; i<DIM; i++){

5 OI_Cc:for(int j=0; j<DIM; j+=2){

6 temp[0] = C[i][j];

7 temp[1] = C[i][j+1];

8 outstream.write(*((DATA_WIDTH *) (temp)));

9 }

10 }

Listing 16: Writing back the result matrix C.

5.4.2 Hardware GEMM - Performance Evaluation

The following chapter presents a performance analysis of the FPGA version of GEMM,

based on the evaluation of the hardware design presented in Section 5.4.1. The anal-

ysis follows the optimization process, where we were trying to obtain the maximum

performance for the given underlying resources. The results presented in the chapter,

are taken from the static analysis performed at the end of synthesis by Vivado HLS.

The target frequency for all the configurations of this series of experiments is set

to 250MHz, corresponding to a period of 4ns. The tool (Vivado HLS) managed to

deliver the designs at a period of 3.41ns, which corresponds to a maximum frequency

of 293MHz.

The performance results of table 5.1 correspond to the performance we could

obtain with the optimization techniques of section 5.4.1 on kernels of various sizes.

We focused on orthogonal blocks, whose dimension size was 256, 512 or 1024; the last

being the largest design that fits into the area of our FPGA chip.

Performance
Dimension size

256 512 1024

Latency (cycles) 558875 2231835 8920091
Throughput (Giga Operations per second) 15.6 25 55

Table 5.1: Timing results corresponding to the complete kernel (computations plus
IO).

The estimation on the latency of the kernels or the operations per cycle are based

on the assumption that data are available from the software side without any delay. In

104 5.4. Developing a hardware design of GEMM

other words, to achieve this performance, the software side should be able to feed the

hardware tasks at a throughput of two words per cycle, and receive the upstream-ed

data at the same speed.

Tables 5.2 and 5.3 show the resource demands of the corresponding designs in

absolute and relative values respectively. Table 5.2 is useful in order to understand

the amount of resources required in order to obtain a kernel of the tested sizes at the

indicated performance, but does not help to understand the relative size of a kernel

compared to the size of the FPGA chip. On the other hand, table 5.3 provides a

comparative representation between the kernels of different sizes and the amount of

the available resources.

From table 5.3 one can obtain the number of kernels of every size that can be

synthesized concurrently on a single design, with respect to the available resources

of our FPGA. For the case where every dimension is of 256, the limiting factor is

the LUT (27% for a single kernel), allowing a maximum of three such kernels to

be printed on a single design concurrently. For the cases of dimension size 512 and

1024 the limiting factor is the available amount of BRAM blocks; resulting hardware

designs of a single 512 wide kernel or a single 1024 kernel.

Resource type
Dimension size

256 512 1024

BRAM 18K 570 1140 2733
DSP48E 520 1032 2056

FF 95749 222781 438351
LUT 120718 120845 120970

Table 5.2: Resource usage per complete kernel (computations plus IO)

Resource type(%)
Dimension size

256 512 1024

BRAM 18K 19 38 92
DSP48E 14 28 57

FF 11 25 50
LUT 27 27 27

Table 5.3: Resource usage per complete kernel (computations plus IO) as a percentage
of the total amount of resources of the FPGA chip

As already stated, the aforementioned results correspond to the estimation of Vi-

vado HLS. Despite the fact that in theory we should be able to obtain the expected

designs, Vivado was not able to pass the synthesis steps at the frequency of 250Mhz

105 5.5. Discussion

for any of the previous kernels. Since both Vivado HLS and Vivado are proprietary

tools from Xilinx, we have no way to further investigate the reason behind this incom-

patibility between the estimation of Vivado HLS and the synthesis failure of Vivado.

The only complete design (kernel plus connector plus RIFFA backend) that passed

the synthesis step, is a single 256-wide kernel at the frequency of 100Mhz. Assuming

that no better frequency can be obtained by the vendors tools, we can further inves-

tigate the effect of different Vivado HLS directives, that will allow us to obtain the

same performance at lower resource demands.

5.5 Discussion

This second chapter of contribution is dedicated to the work conducted in order to

evaluate the behavior of our framework to heterogeneous execution scenarios. Section

5.1 presents execution scenarios where tasks of the blocked Matrix Multiplication

example of Chapter 4 are executed both in the CPU and the FPGA concurrently.

The results of this series of experiments on the one hand prove that our framework

can be used for truly heterogeneous execution scenarios, involving processing units

of different types along with the FPGA. On top of that, we observed that even

for parallel applications with trivial dependencies, the impact of heterogeneity and

scheduling can be significant.

The initiative for the rest of this work, is to prepare the ground for more complex

experiments, showing the impact of sophisticated scheduling policies in such cases.

Here applications are composed of tasks of different characteristics ,their dependency

resolution is not trivial, and they are known to be sensitive to different scheduling

approaches. Cholesky decomposition is a typical such application; it is composed by

tasks of different type that are known to be more or less suitable for processing units

of different kinds.

In this chapter, we present the fundamental tasks assembling Cholesky decom-

position. For our experiments, we chose GEMM, since it is the most heavily used

task within a round of execution. We exposed the steps and optimization techniques

employed in order to obtain a fairly optimized hardware design of GEMM, along with

the associated performance resource utilization estimation.

Unfortunately, we did not manage to obtain the desired execution scenarios within

this study, since there is still a number of engineering trade-offs that need to be re-

solved considering our hardware implementation of GEMM. Those trade-offs come

106 5.5. Discussion

from the fact that the heuristics of the High Level Synthesis tool regarding the sus-

tainable frequency of the design did not match with the synthesis abilities of the

back-end during the implementation of the design.

In the perspectives of this work, we plan to complete our heterogeneous experi-

ment, by creating the performance model associated with our hardware implementa-

tion and applying different scheduling policies.

Chapter 6

Conclusion and Future Work

Contents
6.1 Conclusion . 107

6.2 Future Work . 109

6.2.1 Heterogeneous Experiments 109

6.2.2 Interconnect Version Upgrade 110

6.2.3 Dynamic Reconfiguration 111

6.2.4 Multi-Board Experiments 112

6.2.5 Use On-Board DDR . 112

6.1 Conclusion

This work was conducted in order to provide a runtime system that supports the

execution of parallel applications on heterogeneous resources that involve FPGA.

Chapter 4 presented the first part of contribution of this work, the design and

implementation of the framework that can facilitate this heterogeneous execution,

as well as a study of the performance of the framework on homogeneous execution

scenarios of a basic blocked matrix multiplication application.

The entry point regarding the connectivity of the FPGA in the computing node is

the PCIe bus. We chose RIFFA as an accessing framework that provides a software

and a hardware interface of the bus, splitting the connection in a number of individual

bi-directional channels that can be driven concurrently. From the software point

of view, we extended the StarPU runtime system, creating a driver responsible for

driving FPGA devices in a transparent way, similar to the software counterparts. On

top of RIFFA, we built Conor, a software library managing the allocation of the device

channel as well as the data exchange and provides performance results corresponding

107

108 6.1. Conclusion

to the behavior of every transaction. On the hardware side, we designed a connector

that operates as a low latency intermediate between a RIFFA channel and a hardware

task.

The evaluation of the integration was based on a blocked version of matrix mul-

tiplication, where every task computed a block of the result matrix. This series of

experiments were conducted on homogeneous scenarios. On every run, tasks were

running either on software or on hardware, using the standard eager scheduling pol-

icy. For experimental purposes, we created tasks of different granularities exposing

that the overhead imposed by the data movement is not always compensated in cases

where the corresponding amount of execution load is not sufficient. For the tasks of

small granularity, the performance per task was similar among the software and the

hardware case. For the computationally heavier tasks, the acceleration obtained by

the massive parallelism of the FPGA was enough to overcome the overhead of the

data transmission, getting a hardware task that outperformed its software counter-

part. The results showed that our framework did not impose any significant overhead

to the execution of the application on any scenario.

Chapter 5 presented an evaluation of the matrix multiplication application of

Chapter 4 for truly heterogeneous scenarios, where tasks were executed both in the

CPU and the FPGA concurrently. This series of experiments, at first, was a proof of

concept that our environment is fully operational on heterogeneous execution scenar-

ios. On top of that, we saw the strong impact of heterogeneity and scheduling, even

for simple applications like blocked matrix multiplication. Distributing the compu-

tational load between the CPU and the FPGA, can increase the overall performance

when the performance of the two is equivalent, but can also slow down the final

performance in cases where the two implementations differ significantly.

The second part of this chapter was dedicated to describing the steps followed in

order to obtain an execution scenario of a more complex application. Indeed, both

the execution scenarios of chapters 4 and 5 were based on an application with trivial

dependencies and complexity, that did not allow the power of sophisticated schedul-

ing policies to be expressed. The motivation and goal was to observe the impact

of scheduling on applications with complex execution footprint, where the depen-

dency resolution is not trivial. Such applications are composed of tasks of different

characteristics and are known to be sensitive to different scheduling policies. Our

reference application to study the behavior of our framework in such scenario was the

Cholesky decomposition. In this chapter, one could find the fundamental task types

assembling the Cholesky decomposition. For our heterogeneous experimentation, we

109 6.2. Future Work

chose GEMM, since it is the most heavily used task within a round of execution. We

exposed the steps and optimization techniques employed in order to obtain a fairly

optimized hardware design of GEMM, along with the associated performance resource

utilization estimation.

6.2 Future Work

This section covers the perspectives of this work towards an execution environment

that can provide augmented performance of our reference platform architecture, as

well as better understanding of the behavior of heterogeneous execution and its cor-

relation with scheduling. The main performance bottleneck that can be directly

overcome, is the upgrade of the interconnection technology between the host and the

FPGA (Section 6.2.2). A more complex research direction, is the utilization of the

on-board memory of the FPGA, that will allow better data reuse by decreasing the

amount of data moving between the accelerator and the host memory (Section 6.2.5).

The aspect of heterogeneous scheduling has been merely exploited within this work,

but the provided infrastructure can host more complex heterogeneous experiments,

that can expose the benefits of efficient workload mapping on heterogeneous parallel

applications with complicated dependencies (Section 6.2.1). For a further exploration

of the potentials of such a framework, a fruitful analysis is around the scalability of the

platform, conducting experiments with more than one FPGA operating concurrently

(Section 6.2.4).

6.2.1 Heterogeneous Experiments

The main motivation behind this work is to provide a framework that allows appli-

cations to utilize efficiently heterogeneous resources involving FPGA. The power of

such an approach, compared to the existing device accessing libraries presented in

Chapters 2, 3 comes from:

• The automatic management of low level mechanisms needed to ensure the cor-

rect execution of a parallel architecture in such platforms

• The scheduling policies that are provided, or that can easily be ported, that

allow an efficient mapping of the workload to the underlying resources with

respect to some criteria (performance, energy consumption, etc).

110 6.2. Future Work

The benefits of the first point have been thoroughly demonstrated and analyzed

within this work, more precisely in Chapters 3 and 4. The second point remains to

be explored, since with this work, all the necessary tools for such study are available.

Given the experiments obtained by the development needed for this work, the main

challenge of such studies is to identify the workload that, when executed in hardware,

can show enough speed-up to overcome the overhead imposed by the data exchange

between the host and the FPGA. Along with the identification of the workload,

it is also challenging to choose the proper optimization strategies that will lead to

the optimal hardware design, especially for developers with background in software

engineering.

The most immediate results of the effect of heterogeneous scheduling on a fairly

complex application can be obtained for the case of the Cholesky decomposition. In

Chapter 5, we presented a series of steps towards an execution scenario were part of

the application was running on the CPU (or any other accelerator of the platform)

and the GEMM kernel on the FPGA. We went through the optimization strategies

and we managed to obtain a fairly optimized hardware design of the kernel. However,

there are still some design decisions to be made regarding the trade-off between the

frequency of the design and the granularity of the hardware kernel. Once those

parameters are set, we need to develop a performance model for this new architecture,

that will be used as an heuristic of the schedulers presented in section 5. Once the

aforementioned prerequisites are set, the environment is set for the execution of the

application using different scheduling policies.

Hopefully, the optimizations conducted on GEMM will be enough to overcome

the overhead imposed by the data exchange, and combined with different scheduling

policies, we will obtain an overall performance increase for the entire application.

6.2.2 Interconnect Version Upgrade

A significant overhead on the use of accelerators is the penalty imposed by the data

exchange associated to the execution of the load. Although this penalty can not be

completely eliminated since data need to be transferred between the device and the

host, current technology allows to reduce significantly its effect.

In our framework, we used the first generation of PCIe interface to communicate

with the device, because the bandwidth was enough to feed the number of kernels we

were concurrently using at the frequency of 250Mhz. PCIe generations 1 and 2 use a

data encoding with 20% overhead to the theoretical bandwidth being lost just there.

Taking this overhead into account, the per-lane bandwidth of a single lane for the first

111 6.2. Future Work

generation of PCIe is 250MB/s for every direction, while for Gen 2 the bandwidth

becomes double (500MB/s). In their modern FPGA boards, Xilinx for example pro-

vides PCIe support for the third and fourth generation of connection which comes at

much higher bandwidth. To explore the full potential of such communication speed,

we should re-design fundamentally the architecture of the connection, since twelve

channels operating at 250Mhz cannot make use of the full capacity of such links, even

when we double the bus width of every channel.

Reducing the absolute communication overhead should allow the data aware schedul-

ing policies to offload more work to the FPGA, that will hopefully increase the overall

performance. It will also allow to consider hyper-threaded solutions, where more than

one Conor worker will be mapped to one physical core, and investigate if this could

bring any performance improvement.

6.2.3 Dynamic Reconfiguration

In the scope of this thesis, the FPGA designs are static. This means that the developer

needs to decide how many instances of every kernel will be actually implemented

and configured to the FPGA. This imposes an upper limit regarding the absolute

maximum number of hardware kernels that can be executed on a single configuration

(and consequently on a single run).

An extension of our framework with a capability to reconfigure dynamically parts

of the FPGA would bring great flexibility to the overall design. In such case, several

implementations of several tasks can be provided in hardware, and configured on the

fly to the device when the scheduler decides to. The only responsibility of the designer

will be to design hardware kernels that will fit to the amount of resources dedicated

to the reconfigurable area.

In order for such an option to be feasible, there is a series of extensions that needs

to take place in the runtime part of the existing framework, besides the hardware

oriented upgrades. First of all, Conor needs to be extended to be able to keep track

of the state of every device at every given time of the execution. Secondly, StarPU

and Conor need to collaborate, so that the first will be able to issue a reconfiguration

request to the second, ensuring the corresponding hardware task is currently idle

(i.e., there is no Conor worker executing the hardware task that had been previously

configured to the device). Lastly, since the reconfiguration time of some reasonably

heavy hardware tasks can be long, smart scheduling policies could be employed. One

could imagine to overlap reconfiguration with execution for example, or to trigger the

reconfiguration process ahead-of-time if the hardware task is idle.

112 6.2. Future Work

6.2.4 Multi-Board Experiments

One of the main requirements that our framework satisfies is the ability to host

more than one FPGA devices simultaneously. This distinguishes our approach from

similar ones that are focused on SoC architectures where a single FPGA is attached

to a multicore processor.

The experimental set-ups of chapters 4 and 5 show the strong dependency of

the final performance to the amount of underlying resources. Both set-ups try to

explore the capabilities of FPGA, without reaching the full potential of the theoretical

computational ceiling. In a realistic scenario, multiple tasks of an application will be

synthesized and finally executed in hardware (FPGA). Having multiple connected

devices will allow such a configuration without imposing a great bottleneck on the

amount of resources allocated to every task; a limitation that would lead to poor

performance.

Given the current state of our framework, this next step is straightforward. On a

platform with multiple FPGA devices attached, the programmer needs to decide the

which kernels will be executed on which device, create the hardware designs, and pro-

vide the configurations to StarPU, before the execution, the same way this happends

with single-board experiments. Then Conor and StarPU can transparently handle

the allocation and managements of the channels associated to the communication

with every kind of hardware task.

6.2.5 Use On-Board DDR

The background of this work (Chapter 2) presented the different types of memory that

are associated to an FPGA. Unlike the BRAM blocks, that are tightly coupled with

logic elements and scattered all across the fabric, the on-board memory is external to

the fabric, but it can be accessed in a way similar to how main memory is accessed

by the CPU. There is a difference of orders of magnitudes between the capacities of

the two. In the case of our board (VC709), the total amount of the available BRAM

that can be found in the chip is around 50MB, while the on-board memory can be

up to 8 GB.

Extending our framework to support the on-board memory would allow:

• to handle kernels of bigger granularity, when the available memory was the

limiting design factor

113 6.2. Future Work

• to dramatically reduce the amount of exchanged data, since data blocks that

reside on the on-board memory can be re-used by hardware tasks, as long as

they are valid.

Board Memory

MIG - Memory Interface Generator

MIG to AXI

AXI Interconnect (6x1)

Hardware
Task

Hardware
Task

P
C

Ie
to

A
X

I

P
C

Ie
H

ard
w

are
E

n
d
p

oin
t

FPGA

Figure 6.1: A design of an extended version of the framework able to exploit the
on-board FPGA memory.

For such an extension, there is a series of architectural changes both on the soft-

ware and hardware design of the proposed framework, that are presented in figure

6.1. On the hardware side, a memory controller needs to be used in order to access

the on-board memory from the FPGA, on top of which an AXI2MIG interface can be

implemented, that will allow the hardware tasks to access the on-board memory via

an AXI bus. The host can communicate with the on-board memory directly through

an AXI bus, imposing a PCI2AXI interface on top of the PCIe bus. On the soft-

ware side, Conor needs to be extended with a primitive memory allocator. Moreover,

the mechanism via which STARPU CONOR MEM remains consistent needs to be

updated, since there is no need to always transfer data to and from the device.

Appendix A

Appendix

114

115

1 int _starpu_conor_driver_run_once(struct _starpu_worker

*conor_worker)↪→

2 {

3 unsigned memnode = conor_worker->memory_node;

4 int workerid = conor_worker->workerid;

5

6 _STARPU_TRACE_START_PROGRESS(memnode);

7 _starpu_datawizard_progress(memnode, 1);

8 if (memnode != STARPU_MAIN_RAM){

9 _starpu_datawizard_progress(STARPU_MAIN_RAM, 1);

10 }

11 _STARPU_TRACE_END_PROGRESS(memnode);

12

13 task = _starpu_get_worker_task(conor_worker, workerid,

memnode);↪→

14

15 job = _starpu_get_job_associated_to_task(task);

16

17 /* can CONOR perform that task ? */

18 if (!_STARPU_CONOR_MAY_PERFORM(job))

19 {

20 /* put it and the end of the queue ... XXX */

21 _starpu_push_task_to_workers(task);

22 return 0;

23 }

24

25 struct starpu_perfmodel_arch* perf_arch =

&conor_worker->perf_arch;↪→

26

27 _starpu_set_current_task(job->task);

28 conor_worker->current_task = job->task;

29

30 res = execute_job_on_conor(job, task, conor_worker, rank,

perf_arch);↪→

31 }

Listing 17: C-based pseudo-code of the core of the FPGA worker

116

1 struct starpu_perfmodel

2 {

3 enum starpu_perfmodel_type type;

4

5 double (*cost_function)(struct starpu_task *, unsigned nimpl);

6 double (*arch_cost_function)(struct starpu_task *, struct

starpu_perfmodel_arch * arch, unsigned nimpl);↪→

7

8 size_t (*size_base)(struct starpu_task *, unsigned nimpl);

9 uint32_t (*footprint)(struct starpu_task *);

10

11 const char *symbol;

12

13 unsigned is_loaded;

14 unsigned benchmarking;

15 unsigned is_init;

16

17 starpu_perfmodel_state_t state;

18 };

Listing 18: C-based pseudo-code of a StarPU performance model

117

1 #define PERTURBATE(a) ((starpu_drand48()*2.0f*(AMPL) + 1.0f -

(AMPL))*(a))↪→

2

3 double cpu_chol_task_gemm_cost(struct starpu_task *task,

4 struct starpu_perfmodel_arch* arch, unsigned nimpl)

5 {

6 uint32_t n;

7

8 n = starpu_matrix_get_nx(task->handles[0]);

9

10 double cost = (((double)(n)*n*n)/50.0f/10.75/8.0760);

11 return PERTURBATE(cost);

12 }

13

14 double cuda_chol_task_gemm_cost(struct starpu_task *task,

15 struct starpu_perfmodel_arch* arch, unsigned nimpl)

16 {

17 uint32_t n;

18

19 n = starpu_matrix_get_nx(task->handles[0]);

20

21 double cost = (((double)(n)*n*n)/50.0f/10.75/76.30666);

22 return PERTURBATE(cost);

23 }

Listing 19: Example of a StarPU performance model. The code corresponds to
the performance model of GEMM for the CPU and the GPU used in Cholesky
decomposition.

118

1 module addbit(

2 a ,//first input

3 b ,//second input

4 ci ,//curry input

5 sum ,//sum output

6 co //carry output

7);

8 //In-Out Declarations

9 input a;

10 wire a;

11 input b;

12 wire b;

13 input ci;

14 wire ci;

15 output sum;

16 wire sum;

17 output co;

18 wire co;

19 //CODE

20 assign {co,sum}=a+b+ci;

21 //CODE_END

22 endmodule

Listing 20: An adder moduler written in verilog

119

1 __kernel void

2 matrixMul(__global float* C,

3 __global float* A,

4 __global float* B,

5 int wA, int wB)

6 {

7 int tx = get_global_id(0);

8 int ty = get_global_id(1);

9

10 // value stores the element that is

11 // computed by the thread

12 float value = 0;

13 for (int k = 0; k < wA; ++k)

14 {

15 float elementA = A[ty * wA + k];

16 float elementB = B[k * wB + tx];

17 value += elementA * elementB;

18 }

19

20 // Write the matrix to device memory each

21 // thread writes one element

22 C[ty * wA + tx] = value;

23 }

Listing 21: Device side code of matrix multiplication in OpenCL. The code com-
putes the value of one element of the result matrix.

120

func: potrf
file: pdpotrf.c

line: 54,
kid:1

0x7fed8f2e2000
numaid:0

0x7fed8f2e2000
numaid:0

func: trsm
file: pdpotrf.c

line: 63,
kid:0

0x7fed8f8e2000
numaid:0

0x7fed8f2e2000
numaid:0

0x7fed8f8e2000
numaid:0

func: trsm
file: pdpotrf.c

line: 63,
kid:1

0x7fed8f4e2000
numaid:0

0x7fed8f2e2000
numaid:0

0x7fed8f4e2000
numaid:0

func: syrk
file: pdpotrf.c

line: 77,
kid:0

0x7fed8fa62000
numaid:0

func: syrk
file: pdpotrf.c

line: 77,
kid:1

0x7fed8f562000
numaid:0

0x7fed8f8e2000
numaid:0

func: syrk
file: pdpotrf.c

line: 77,
kid:1

0x7fed8fa62000
numaid:0

0x7fed8f4e2000
numaid:0

func: potrf
file: pdpotrf.c

line: 54,
kid:1

0x7fed8f562000
numaid:0

0x7fed8f562000
numaid:0

func: trsm
file: pdpotrf.c

line: 63,
kid:0

0x7fed8f6e2000
numaid:0

0x7fed8f6e2000
numaid:0

func: dgemm
file: pdpotrf.c

line: 90,
kid:1

0x7fed8f962000
numaid:0

0x7fed8f4e2000
numaid:0

0x7fed8f8e2000
numaid:0

func: trsm
file: pdpotrf.c

line: 63,
kid:1

0x7fed8f962000
numaid:0

func: syrk
file: pdpotrf.c

line: 77,
kid:0

0x7fed8f7e2000
numaid:0

0x7fed8f6e2000
numaid:0

func: syrk
file: pdpotrf.c

line: 77,
kid:0

0x7fed8f7e2000
numaid:0

func: dgemm
file: pdpotrf.c

line: 90,
kid:0

0x7fed8f762000
numaid:0

0x7fed8f6e2000
numaid:0

func: trsm
file: pdpotrf.c

line: 63,
kid:0

0x7fed8f762000
numaid:0

0x7fed8f562000
numaid:0

0x7fed8f962000
numaid:0

0x7fed8f962000
numaid:0

func: syrk
file: pdpotrf.c

line: 77,
kid:1

0x7fed8fa62000
numaid:0

0x7fed8f762000
numaid:0

func: dgemm
file: pdpotrf.c

line: 90,
kid:1

0x7fed8f9e2000
numaid:0

func: dgemm
file: pdpotrf.c

line: 90,
kid:1

0x7fed8f9e2000
numaid:0

0x7fed8f762000
numaid:0

func: potrf
file: pdpotrf.c

line: 54,
kid:0

0x7fed8f7e2000
numaid:0

0x7fed8f7e2000
numaid:0

func: trsm
file: pdpotrf.c

line: 63,
kid:0

0x7fed8f9e2000
numaid:0

0x7fed8f9e2000
numaid:0

func: potrf
file: pdpotrf.c

line: 54,
kid:0

0x7fed8fa62000
numaid:0

Figure A.1: Task Graph of Cholesky decomposition

Bibliography

[1] Clb architecture for the zynq7000 family of xilinx. URL https://www.xilinx.

com/support/documentation/user_guides/ug474_7Series_CLB.pdf.

[2] Presentation of intels goldmontplus architec-

ture. URL https://www.extremetech.com/computing/

261217-new-details-intels-goldmont-plus-cpu-architecture-inside-gemini-lake.

[3] Heterogeneous earliest finished time scheduler. URL https://en.wikipedia.

org/wiki/Heterogeneous_Earliest_Finish_Time.

[4] Ioreg- a tool to display the kit registry. URL http://www.manpagez.com/man/

8/ioreg/.

[5] Matrix multiplication in opencl. URL http://www.es.ele.tue.nl/

~mwijtvliet/5KK73/?page=mmopencl.

[6] Vc709, evaluation board for the virtex-7 fpga. URL https:

//www.xilinx.com/support/documentation/boards_and_kits/vc709/

ug887-vc709-eval-board-v7-fpga.pdf.

[7] Presentation of clb by xilinx. URL https://www.xilinx.com/support/

documentation/user_guides/ug474_7Series_CLB.pdf.

[8] Jason Agron and David Andrews. Building heterogeneous reconfigurable sys-

tems with a hardware microkernel. In Proceedings of the 7th IEEE/ACM inter-

national conference on Hardware/software codesign and system synthesis, pages

393–402. ACM, 2009.

[9] Emmanuel Agullo, Cédric Augonnet, Jack Dongarra, Hatem Ltaief, Raymond

Namyst, Jean Roman, Samuel Thibault, and Stanimire Tomov. Dynamically

scheduled cholesky factorization on multicore architectures with gpu accelera-

tors. 2010.

121

https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
https://www.extremetech.com/computing/261217-new-details-intels-goldmont-plus-cpu-architecture-inside-gemini-lake
https://www.extremetech.com/computing/261217-new-details-intels-goldmont-plus-cpu-architecture-inside-gemini-lake
https://en.wikipedia.org/wiki/Heterogeneous_Earliest_Finish_Time
https://en.wikipedia.org/wiki/Heterogeneous_Earliest_Finish_Time
http://www.manpagez.com/man/8/ioreg/
http://www.manpagez.com/man/8/ioreg/
http://www.es.ele.tue.nl/~mwijtvliet/5KK73/?page=mmopencl
http://www.es.ele.tue.nl/~mwijtvliet/5KK73/?page=mmopencl
https://www.xilinx.com/support/documentation/boards_and_kits/vc709/ug887-vc709-eval-board-v7-fpga.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/vc709/ug887-vc709-eval-board-v7-fpga.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/vc709/ug887-vc709-eval-board-v7-fpga.pdf
https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf

122 Bibliography

[10] Takayuki Akamine, Kenta Inakagata, Yasunori Osana, Naoyuki Fujita, and

Hideharu Amano. Reconfigurable out-of-order mechanism generator for un-

structured grid computation in computational fluid dynamics. In Field Pro-

grammable Logic and Applications (FPL), 2012 22nd International Conference

on, pages 136–142. IEEE, 2012.

[11] P Alankrutha, H V Deepika, N Mangala, and N S C Babu. Multi-accelerator

cluster runtime adaptation for enabling discrete concurrent-task applications.

In Advance Computing Conference (IACC), 2014 IEEE International, pages

754–760. IEEE, 2014.

[12] Amazon. Amazon ec2 f1 instances, . URL https://aws.amazon.com/ec2/

instance-types/f1/.

[13] Amazon. Amazon ec2 f1 instances, developers page, . URL https://github.

com/aws/aws-fpga.

[14] D. Andrews, R. Sass, E. Anderson, J. Agron, W. Peck, J. Stevens, F. Baijot,

and E. Komp. Achieving programming model abstractions for reconfigurable

computing. Very Large Scale Integration (VLSI) Systems, IEEE Transactions

on, 16(1):34–44, 2008.

[15] David Andrews, Ron Sass, Erik Anderson, Jason Agron, Wesley Peck, Jim

Stevens, Fabrice Baijot, and Ed Komp. Achieving programming model ab-

stractions for reconfigurable computing. IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, 16(1):34–44, 2008.

[16] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis,

Parry Husbands, Kurt Keutzer, David A Patterson, William Lester Plishker,

John Shalf, Samuel Webb Williams, et al. The landscape of parallel com-

puting research: A view from berkeley. Technical report, Technical Report

UCB/EECS-2006-183, EECS Department, University of . . . , 2006.

[17] Osama G Attia, Tyler Johnson, Kevin Townsend, Philip Jones, and Joseph

Zambreno. Cygraph: A reconfigurable architecture for parallel breadth-first

search. In Parallel & Distributed Processing Symposium Workshops (IPDPSW),

2014 IEEE International, pages 228–235. IEEE, 2014.

https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://github.com/aws/aws-fpga
https://github.com/aws/aws-fpga

123 Bibliography

[18] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André

Wacrenier. StarPU: A Unified Platform for Task Scheduling on Heterogeneous

Multicore Architectures. In Euro-Par 2009 Parallel Processing, pages 863–874.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[19] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André

Wacrenier. Starpu: a unified platform for task scheduling on heterogeneous

multicore architectures. Concurrency and Computation: Practice and Experi-

ence, 23(2):187–198, 2011.

[20] Eduard Ayguadé, Rosa M Badia, Pieter Bellens, Daniel Cabrera, Alejandro

Duran, Roger Ferrer, Marc González, Francisco Igual, Daniel Jiménez-González,

Jesús Labarta, et al. Extending openmp to survive the heterogeneous multi-core

era. International Journal of Parallel Programming, 38(5-6):440–459, 2010.

[21] Ozalp Babaoglu, Hein Meling, and Alberto Montresor. Anthill: A framework for

the development of agent-based peer-to-peer systems. In Proceedings 22nd In-

ternational Conference on Distributed Computing Systems, pages 15–22. IEEE,

2002.

[22] Michael O. Bender and Michael O. Rabin. Online Scheduling of Parallel

Programs on Heterogeneous Systems with Applications to Cilk. Theory of

Computing Systems, 35(3):289–304, 2002. ISSN 1432-4350. doi: 10.1007/

s00224-002-1055-5.

[23] Brahim Betkaoui, David B Thomas, Wayne Luk, and Natasa Przulj. A frame-

work for fpga acceleration of large graph problems: Graphlet counting case

study. In Field-Programmable Technology (FPT), 2011 International Confer-

ence on, pages 1–8. IEEE, 2011.

[24] J C Beyer, E J Stotzer, A Hart, and B R de Supinski. OpenMP for accelerators.

OpenMP in the Petascale . . . , 2011.

[25] The OpenMP Architecture Review Board. The openmp specification version

4.0. http://openmp.org/wp/openmp-specifications/, 2013.

[26] Jaume Bosch, Antonio Filgueras, Miquel Vidal, Daniel Jimenez-Gonzalez, Car-

los Alvarez, and Xavier Martorell. Exploiting parallelism on gpus and fpgas

with ompss. In Proceedings of the 1st Workshop on AutotuniNg and aDaptivity

AppRoaches for Energy efficient HPC Systems, page 4. ACM, 2017.

124 Bibliography

[27] Vincent Boulos, Sylvain Huet, Vincent Fristot, Luc Salvo, and Dominique

Houzet. Efficient implementation of data flow graphs on multi-gpu clusters.

Journal of Real-Time Image Processing, (Special issue):online, October 2012.

doi: 10.1007/s11554-012-0279-0. URL https://hal.archives-ouvertes.fr/

hal-00746981.

[28] Javier Bueno, Judit Planas, Alejandro Duran, Rosa M Badia, Xavier Martorell,

Eduard Ayguade, and Jesus Labarta. Productive programming of gpu clusters

with ompss. In 2012 IEEE 26th International Parallel and Distributed Process-

ing Symposium, pages 557–568. IEEE, 2012.

[29] Jean-Philippe Chancelier, Bernard Lapeyre, and Jérôme Lelong. Using premia

and nsp for constructing a risk management benchmark for testing parallel

architecture. Concurrency and Computation: Practice and Experience, 26(9),

2012.

[30] Ying Chen, Tan Nguyen, Yao Chen, Swathi T Gurumani, Yun Liang, Kyle Rup-

now, Jason Cong, Wen-Mei Hwu, and Deming Chen. Fcuda-hb: Hierarchical

and scalable bus architecture generation on fpgas with the fcuda flow. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 35

(12):2032–2045, 2016.

[31] Gregory Diamos and Sudhakar Yalamanchili. Speculative execution on multi-

gpu systems. In 2010 IEEE International Symposium on Parallel & Distributed

Processing (IPDPS), pages 1–12. IEEE, 2010.

[32] Gregory F Diamos and Sudhakar Yalamanchili. Harmony: an execution model

and runtime for heterogeneous many core systems. In Proceedings of the 17th in-

ternational symposium on High performance distributed computing, pages 197–

200. ACM, 2008.

[33] Romain Dolbeau, Stéphane Bihan, and François Bodin. Hmpp: A hybrid multi-

core parallel programming environment. In Workshop on general purpose pro-

cessing on graphics processing units (GPGPU 2007), volume 28, 2007.

[34] Richard Dorrance, Fengbo Ren, and Dejan Marković. A scalable sparse matrix-

vector multiplication kernel for energy-efficient sparse-blas on fpgas. In Proceed-

ings of the 2014 ACM/SIGDA international symposium on Field-programmable

gate arrays, pages 161–170. ACM, 2014.

https://hal.archives-ouvertes.fr/hal-00746981
https://hal.archives-ouvertes.fr/hal-00746981

125 Bibliography

[35] Alejandro Duran, Eduard Ayguadé, Rosa M Badia, Jesús Labarta, Luis Mar-

tinell, Xavier Martorell, and Judit Planas. Ompss: a Proposal for Programming

Heterogeneous Multi-Core Architectures. Parallel Processing Letters (), 21(2):

173–193, 2011.

[36] Alejandro Duran, Eduard Ayguadé, Rosa M Badia, Jesús Labarta, Luis Mar-

tinell, Xavier Martorell, and Judit Planas. Ompss: a proposal for programming

heterogeneous multi-core architectures. Parallel Processing Letters, 21(02):173–

193, 2011.

[37] Marie Durand, Francois Broquedis, Thierry Gautier, and Bruno Raffin. An Effi-

cient OpenMP Loop Scheduler for Irregular Applications on Large-Scale NUMA

Machines. In OpenMP in the Era of Low Power Devices and Accelerators, pages

141–155. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[38] Fernando A Escobar, Xin Chang, and Carlos Valderrama. Suitability analysis

of fpgas for heterogeneous platforms in hpc. IEEE Transactions on Parallel and

Distributed Systems, 27(2):600–612, 2016.

[39] Reza Rezaeian Farashahi, Bahram Rashidi, and Sayed Masoud Sayedi. Fpga

based fast and high-throughput 2-slow retiming 128-bit aes encryption algo-

rithm. Microelectronics journal, 45(8):1014–1025, 2014.

[40] Renato A Ferreira, Wagner Meira, Dorgival Guedes, Lúcia Maria de A Drum-

mond, Bruno Coutinho, George Teodoro, Tulio Tavares, Renata Araujo, and

Guilherme T Ferreira. Anthill: A scalable run-time environment for data mining

applications. In 17th International Symposium on Computer Architecture and

High Performance Computing (SBAC-PAD’05), pages 159–166. IEEE, 2005.

[41] Antonio Filgueras, Eduard Gil, Carlos Alvarez, Daniel Jimenez, Xavier Mar-

torell, Jan Langer, and Juanjo Noguera. Heterogeneous tasking on smp/fpga

socs: The case of ompss and the zynq. In Very Large Scale Integration (VLSI-

SoC), 2013 IFIP/IEEE 21st International Conference on, pages 290–291. IEEE,

2013.

[42] Antonio Filgueras, Eduard Gil, Carlos Alvarez, Daniel Jimenez, Xavier Mar-

torell, Jan Langer, and Juanjo Noguera. Heterogeneous tasking on smp/fpga

socs: The case of ompss and the zynq. In 2013 IFIP/IEEE 21st International

Conference on Very Large Scale Integration (VLSI-SoC), pages 290–291. IEEE,

2013.

126 Bibliography

[43] Antonio Filgueras, Eduard Gil, Daniel Jiménez-González, Carlos Alvarez,

Xavier Martorell, Jan Langer, Juanjo Noguera, and Kees Vissers. OmpSs@Zynq

all-programmable SoC ecosystem. In the 2014 ACM/SIGDA international sym-

posium, pages 137–146, New York, New York, USA, 2014. ACM Press.

[44] Antonio Filgueras, Eduard Gil, Daniel Jimenez-Gonzalez, Carlos Alvarez,

Xavier Martorell, Jan Langer, Juanjo Noguera, and Kees Vissers. Ompss@

zynq all-programmable soc ecosystem. In Proceedings of the 2014 ACM/SIGDA

international symposium on Field-programmable gate arrays, pages 137–146.

ACM, 2014.

[45] Message P Forum. Mpi: A message-passing interface standard. Technical re-

port, Knoxville, TN, USA, 1994.

[46] Clément Foucher, Fabrice Muller, and Alain Giulieri. Exploring fpgas capability

to host a hpc design. In NORCHIP 2010, pages 1–4. IEEE, 2010.

[47] Clément Foucher, Fabrice Muller, and Alain Giulieri. Online codesign on recon-

figurable platform for parallel computing. Microprocessors and Microsystems,

37(4-5):482–493, 2013. ISSN 01419331. doi: 10.1016/j.micpro.2011.12.007. URL

http://linkinghub.elsevier.com/retrieve/pii/S0141933111001293.

[48] Clément Foucher, Fabrice Muller, and Alain Giulieri. Online codesign on recon-

figurable platform for parallel computing. Microprocessors and Microsystems,

37(4-5):482–493, 2013.

[49] Clément Foucher, Fabrice Muller, and Alain Giulieri. Online codesign on recon-

figurable platform for parallel computing. Microprocessors and Microsystems,

37(4–5):482 – 493, 2013.

[50] The HSA Foundation. The hsa foundation specifications version 1.0.

http://www.hsafoundation.com/standards/, 2012.

[51] Matteo Frigo, Charles E Leiserson, and Keith H Randall. The Implementation

of the Cilk-5 Multithreaded Language. PLDI, pages 212–223, 1998.

[52] Laurent Gantel, Amel Khiar, Benoit Miramond, Mohamed El Amine Benkhe-

lifa, Lounis Kessal, Fabrice Lemonnier, and Jimmy Le Rhun. Enhancing re-

configurable platforms programmability for synchronous data-flow applications.

ACM Transactions on Reconfigurable Technology and Systems (TRETS), 5(3):

14, 2012.

http://linkinghub.elsevier.com/retrieve/pii/S0141933111001293

127 Bibliography

[53] Benedict Gaster, Lee Howes, David R Kaeli, Perhaad Mistry, and Dana Schaa.

Heterogeneous Computing with OpenCL: Revised OpenCL 1. Newnes, 2012.

[54] Thierry Gautier, Joao VF Lima, Nicolas Maillard, and Bruno Raffin. Xkaapi: A

runtime system for data-flow task programming on heterogeneous architectures.

In Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th International

Symposium on, pages 1299–1308. IEEE, 2013.

[55] Diana Göhringer and Jürgen Becker. FPGA-Based Runtime Adaptive Multi-

processor Approach for Embedded High Performance Computing Applications.

ISVLSI, pages 477–478, 2010.

[56] Jose-Ernesto Gomez-Balderas and Dominique Houzet. A 3D reconstruction

from real-time stereoscopic images using GPU. In 2013 Conference on Design

and Architectures for Signal and Image Processing (DASIP 2013), pages 253–

258, Cagliari, Italy, October 2013. URL https://hal.archives-ouvertes.

fr/hal-00878683. IEEE Xplore Compliant Files 979-10-92279-01-6.

[57] René Griessl, Meysam Peykanu, Jens Hagemeyer, Mario Porrmann, Stefan

Krupop, Lars Kosmann, Patrick Knocke, Micha l Kierzynka, and Ariel Olek-

siak. FPGA-accelerated Heterogeneous Hyperscale Server Architecture for

Next-Generation Compute Clusters. First International Workshop on Het-

erogeneous High-performance Reconfigurable Computing, 2015. URL http:

//h2rc.cse.sc.edu/h2rc-p12.pdf.

[58] Tsuyoshi Hamada, Khaled Benkrid, Keigo Nitadori, and Makoto Taiji. A com-

parative study on asic, fpgas, gpus and general purpose processors in the o (nˆ

2) gravitational n-body simulation. In Adaptive Hardware and Systems, 2009.

AHS 2009. NASA/ESA Conference on, pages 447–452. IEEE, 2009.

[59] A Hart. The OpenACC programming model. Cray Exascale Research Initiative

Europe, 2012.

[60] Muhuan Huang, Di Wu, Cody Hao Yu, Zhenman Fang, Matteo Interlandi,

Tyson Condie, and Jason Cong. Programming and runtime support to blaze

fpga accelerator deployment at datacenter scale. In Proceedings of the Seventh

ACM Symposium on Cloud Computing, pages 456–469. ACM, 2016.

https://hal.archives-ouvertes.fr/hal-00878683
https://hal.archives-ouvertes.fr/hal-00878683
http://h2rc.cse.sc.edu/h2rc-p12.pdf
http://h2rc.cse.sc.edu/h2rc-p12.pdf

128 Bibliography

[61] Benjamin Humphries, Hansen Zhang, Jiayi Sheng, Raphael Landaverde, and

Martin C Herbordt. 3d ffts on a single fpga. In Field-Programmable Custom

Computing Machines (FCCM), 2014 IEEE 22nd Annual International Sympo-

sium on, pages 68–71. IEEE, 2014.

[62] Ra Inta, David John Bowman, and Susan M Scott. The ”Chimera”: An Off-

The-Shelf CPU/GPGPU/FPGA Hybrid Computing Platform. Int. J. Reconfig.

Comp. (IJRC) 2012, 2012.

[63] Intel. Intel one api to rule them all is much needed. URL https://www.

servethehome.com/intel-one-api-to-rule-them-all-is-much-needed/.

[64] Aws Ismail and Lesley Shannon. Fuse: Front-end user framework for o/s ab-

straction of hardware accelerators. In 2011 IEEE 19th Annual International

Symposium on Field-Programmable Custom Computing Machines, pages 170–

177. IEEE, 2011.

[65] Matthew Jacobsen, Dustin Richmond, Matthew Hogains, and Ryan Kastner.

Riffa 2.1: A reusable integration framework for fpga accelerators. ACM Trans-

actions on Reconfigurable Technology and Systems (TRETS), 8(4):22, 2015.

[66] Benedikt Janßen, Fynn Schwiegelshohn, Martijn Koedam, François Duhem,

Leonard Masing, Stephan Werner, Christophe Huriaux, Antoine Courtay, Em-

ilie Wheatley, Kees Goossens, et al. Designing applications for heterogeneous

many-core architectures with the flextiles platform. In 2015 International Con-

ference on Embedded Computer Systems: Architectures, Modeling, and Simula-

tion (SAMOS), pages 254–261. IEEE, 2015.

[67] David H. Jones, Adam Powell, Christos Savvas Bouganis, and Peter Y K Che-

ung. GPU versus FPGA for high productivity computing. Proceedings - 2010

International Conference on Field Programmable Logic and Applications, FPL

2010, pages 119–124, 2010. ISSN 1946-1488. doi: 10.1109/FPL.2010.32.

[68] Laxmikant V Kale and Sanjeev Krishnan. CHARM++: a portable concurrent

object oriented system based on C++, volume 28. Citeseer, 1993.

[69] Lester Kalms and Diana Göhringer. Exploration of opencl for fpgas using sdac-

cel and comparison to gpus and multicore cpus. In 2017 27th International

Conference on Field Programmable Logic and Applications (FPL), pages 1–4.

IEEE, 2017.

https://www.servethehome.com/intel-one-api-to-rule-them-all-is-much-needed/
https://www.servethehome.com/intel-one-api-to-rule-them-all-is-much-needed/

129 Bibliography

[70] Md Ashfaquzzaman Khan, Matt Chiu, and Martin C Herbordt. Fpga-

accelerated molecular dynamics. In High-Performance Computing Using FP-

GAs, pages 105–135. Springer, 2013.

[71] Lok-Won Kim, Sameh Asaad, and Ralph Linsker. A fully pipelined fpga ar-

chitecture of a factored restricted boltzmann machine artificial neural network.

ACM Transactions on Reconfigurable Technology and Systems (TRETS), 7(1):

5, 2014.

[72] Ryohei Kobayashi, Shinya Takamaeda-Yamazaki, and Kenji Kise. Towards a

low-power accelerator of many fpgas for stencil computations. In Networking

and Computing (ICNC), 2012 Third International Conference on, pages 343–

349. IEEE, 2012.

[73] Alexey Kukanov and Michael J Voss. The foundations for scalable multi-core

software in intel threading building blocks. Intel Technology Journal, 11(4),

2007.

[74] Céline Labart and Jérôme Lelong. A parallel algorithm for solving bsdes. Monte

Carlo Methods Appl., 19(1), January 2013.

[75] Sang-Ik Lee, Troy A Johnson, and Rudolf Eigenmann. Cetus–an extensible

compiler infrastructure for source-to-source transformation. In International

Workshop on Languages and Compilers for Parallel Computing, pages 539–553.

Springer, 2003.

[76] Seyong Lee, Jungwon Kim, and Jeffrey S Vetter. Openacc to fpga: A framework

for directive-based high-performance reconfigurable computing. In 2016 IEEE

International Parallel and Distributed Processing Symposium (IPDPS), pages

544–554. IEEE, 2016.

[77] Fabrice Lemonnier, Philippe Millet, Gabriel Marchesan Almeida, Michael

Hübner, Jürgen Becker, Sébastien Pillement, Olivier Sentieys, Martijn Koedam,

Shubhendu Sinha, Kees Goossens, et al. Towards future adaptive multiprocessor

systems-on-chip: An innovative approach for flexible architectures. In 2012 In-

ternational Conference on Embedded Computer Systems (SAMOS), pages 228–

235. IEEE, 2012.

130 Bibliography

[78] João V F Lima, Thierry Gautier, Vincent Danjean, Bruno Raffin, and Nicolas

Maillard. Design and analysis of scheduling strategies for multi-CPU and multi-

GPU architectures. Parallel Computing, 44:37–52, 2015.

[79] Mingjie Lin, Ilia Lebedev, and John Wawrzynek. High-throughput bayesian

computing machine with reconfigurable hardware. In Proceedings of the 18th

annual ACM/SIGDA international symposium on Field programmable gate ar-

rays, pages 73–82. ACM, 2010.

[80] Detailed list of authors on the respository. Starpu development repository. URL

https://gforge.inria.fr/scm/?group_id=1570.

[81] Antonio Roldao Lopes and George A Constantinides. A high throughput fpga-

based floating point conjugate gradient implementation. Lecture Notes in Com-

puter Science, 4943(2008):75–86, 2008.

[82] Enno Lübbers and Marco Platzner. Reconos: Multithreaded programming for

reconfigurable computers. ACM Transactions on Embedded Computing Systems

(TECS), 9(1):8, 2009.

[83] Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. Qilin: Exploiting Par-

allelism on Heterogeneous Multiprocessors with Adaptive Mapping. Pro-

ceedings of the 42nd Annual IEEE/ACM International Symposium on Mi-

croarchitecture - Micro-42, page 45, 2009. ISSN 10724451. doi: 10.1145/

1669112.1669121. URL http://www.scopus.com/inward/record.url?eid=

2-s2.0-76749140917{&}partnerID=tZOtx3y1.

[84] Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. Qilin: exploiting parallelism

on heterogeneous multiprocessors with adaptive mapping. In Microarchitec-

ture, 2009. MICRO-42. 42nd Annual IEEE/ACM International Symposium on,

pages 45–55. IEEE, 2009.

[85] Enno Lübbers and Marco Platzner. Reconos: An rtos supporting hard- and

software threads. In Koen Bertels, Walid A. Najjar, Arjan J. van Genderen,

and Stamatis Vassiliadis, editors, FPL, pages 441–446. IEEE, 2007.

[86] Harris E Michail, GS Athanasiou, George Theodoridis, and Costas E Goutis.

On the development of high-throughput and area-efficient multi-mode crypto-

graphic hash designs in fpgas. Integration, the VLSI Journal, 47(4):387–407,

2014.

https://gforge.inria.fr/scm/?group_id=1570
http://www.scopus.com/inward/record.url?eid=2-s2.0-76749140917{&}partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-76749140917{&}partnerID=tZOtx3y1

131 Bibliography

[87] Nicholas Moore, Miriam Leeser, and Laurie Smith King. VForce: An environ-

ment for portable applications on high performance systems with accelerators.

J. Parallel Distrib. Comput., 72(9):1144–1156, September 2012.

[88] Gerald R Morris and Khalid H Abed. Mapping a jacobi iterative solver onto a

high-performance heterogeneous computer. IEEE Transactions on Parallel and

Distributed Systems, 24(1):85–91, 2013.

[89] Olivier Muller, Amer Baghdadi, and Michel Jézéquel. From parallelism levels

to a multi-asip architecture for turbo decoding. Very Large Scale Integration

(VLSI) Systems, IEEE Transactions on, 17(1):92–102, 2009.

[90] Kevin Nibbelink, Sanjay Rajopadhye, and Ross McConnell. 0/1 knapsack on

hardware: A complete solution. In Application-specific Systems, Architectures

and Processors, 2007. ASAP. IEEE International Conf. on, pages 160–167.

IEEE, 2007.

[91] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable Parallel

Programming with CUDA. ACM Queue (), 6(2):40–53, 2008.

[92] NVIDIA. Drive px news, mar 2015. URL http://www.nvidia.com/object/

drive-px.html.

[93] Nuno Oliveira and Pedro D Medeiros. A heterogeneous runtime environment

for scientific desktop computing. In International Conference on Vector and

Parallel Processing, pages 256–269. Springer, 2016.

[94] Nuno Oliveira and Pedro D Medeiros. Heterogeneous personal computing: A

case study in materials science. Procedia Computer Science, 108:2398–2402,

2017.

[95] Francisco Ortega-Zamorano, José M Jerez, and Leonardo Franco. Fpga im-

plementation of the c-mantec neural network constructive algorithm. IEEE

Transactions on Industrial Informatics, 10(2):1154–1161, 2014.

[96] Muhsen Owaida, David Sidler, Kaan Kara, and Gustavo Alonso. Centaur:

A framework for hybrid cpu-fpga databases. In 2017 IEEE 25th Annual In-

ternational Symposium on Field-Programmable Custom Computing Machines

(FCCM), pages 211–218. IEEE, 2017.

http://www.nvidia.com/object/drive-px.html
http://www.nvidia.com/object/drive-px.html

132 Bibliography

[97] Alexandros Papakonstantinou, Karthik Gururaj, John A Stratton, Deming

Chen, Jason Cong, and Wen-Mei W Hwu. Fcuda: Enabling efficient compi-

lation of cuda kernels onto fpgas. In 2009 IEEE 7th Symposium on Application

Specific Processors, pages 35–42. IEEE, 2009.

[98] Alexandros Papakonstantinou, Karthik Gururaj, John A Stratton, Deming

Chen, Jason Cong, and Wen-Mei W Hwu. Efficient compilation of cuda kernels

for high-performance computing on fpgas. ACM Transactions on Embedded

Computing Systems (TECS), 13(2):25, 2013.

[99] Artur Podobas. Accelerating parallel computations with openmp-driven

system-on-chip generation for fpgas. In 2014 IEEE 8th International Sym-

posium on Embedded Multicore/Manycore SoCs, pages 149–156. IEEE, 2014.

[100] Adrien Prost-Boucle, Olivier Muller, and Frédéric Rousseau. Fast and stan-

dalone design space exploration for high-level synthesis under resource con-

straints. Journal of Systems Architecture, 60(1):79 – 93, 2014.

[101] Abid Rafique, George A Constantinides, and Nachiket Kapre. Communication

optimization of iterative sparse matrix-vector multiply on gpus and fpgas. IEEE

Transactions on Parallel and Distributed Systems, 26(1):24–34, 2015.

[102] B Ramkumar, AB Sinha, VA Saletore, and LV Kale. The charm parallel pro-

gramming language and system: Part ii-the runtime system. IEEE Transactions

on Parallel and Distributed Systems, 1994.

[103] James Reinders. Intel threading building blocks: outfitting C++ for multi-core

processor parallelism. ” O’Reilly Media, Inc.”, 2007.

[104] Michael P Robson, Ronak Buch, and Laxmikant V Kale. Runtime coordinated

heterogeneous tasks in charm++. In 2016 Second International Workshop on

Extreme Scale Programming Models and Middlewar (ESPM2), pages 40–43.

IEEE, 2016.

[105] Christopher J Rossbach, Jon Currey, Mark Silberstein, Baishakhi Ray, and

Emmett Witchel. Ptask: operating system abstractions to manage gpus as

compute devices. In Proceedings of the Twenty-Third ACM Symposium on

Operating Systems Principles, pages 233–248. ACM, 2011.

133 Bibliography

[106] Syam Sanal and J Pinalkumar. Multithreaded image processing using reconos

on reconfigurable computing system. In 2018 International Conference on

Emerging Trends and Innovations In Engineering And Technological Research

(ICETIETR), pages 1–5. IEEE, 2018.

[107] Kentaro Sano, Yoshiaki Hatsuda, and Satoru Yamamoto. Multi-fpga accelera-

tor for scalable stencil computation with constant memory bandwidth. IEEE

Transactions on Parallel and Distributed Systems, 25(3):695–705, 2014.

[108] Sean O Settle. High-performance dynamic programming on fpgas with opencl.

In Proc. IEEE High Perform. Extreme Comput. Conf.(HPEC), pages 1–6, 2013.

[109] Aaron Severance, Joe Edwards, Hossein Omidian, and Guy Lemieux. Soft

vector processors with streaming pipelines. In Proceedings of the 2014

ACM/SIGDA international symposium on Field-programmable gate arrays,

pages 117–126. ACM, 2014.

[110] Dezso Sima. The design space of register renaming techniques. IEEE micro, 20

(5):70–83, 2000.

[111] Hayden Kwok-Hay So and Robert W Brodersen. Borph: An operating system

for fpga-based reconfigurable computers. University of California, Berkeley, 2007.

[112] Mostafa I Soliman and Ghada Y Abozaid. Fpga implementation and perfor-

mance evaluation of a high throughput crypto coprocessor. Journal of Parallel

and Distributed Computing, 71(8):1075–1084, 2011.

[113] Lukas Sommer, Jens Korinth, and Andreas Koch. Openmp device offloading to

fpga accelerators. In 2017 IEEE 28th International Conference on Application-

specific Systems, Architectures and Processors (ASAP), pages 201–205. IEEE,

2017.

[114] John E Stone, David Gohara, and Guochun Shi. Opencl: A parallel program-

ming standard for heterogeneous computing systems. Computing in science &

engineering, 12(3):66, 2010.

[115] P Sundararajan. High performance computing using FPGAs. Xilinx

White Paper: FPGAs, 2010. URL http://china.zylinks.com/support/

documentation/white{_}papers/wp375{_}HPC{_}Using{_}FPGAs.pdf.

http://china.zylinks.com/support/documentation/white{_}papers/wp375{_}HPC{_}Using{_}FPGAs.pdf
http://china.zylinks.com/support/documentation/white{_}papers/wp375{_}HPC{_}Using{_}FPGAs.pdf

134 Bibliography

[116] Yi-Gang Tai, Chia-Tien Dan Lo, and Kleanthis Psarris. Scalable matrix de-

compositions with multiple cores on fpgas. Microprocessors and Microsystems,

37(8):887–898, 2013.

[117] George Teodoro, Daniel Fireman, Dorgival Guedes, Wagner Meira Jr, and Re-

nato Ferreira. Achieving multi-level parallelism in the filter-labeled stream pro-

gramming model. In 2008 37th International Conference on Parallel Processing,

pages 287–294. IEEE, 2008.

[118] George Teodoro, Rafael Sachetto, Olcay Sertel, Metin N Gurcan, Wagner Meira,

Umit Catalyurek, and Renato Ferreira. Coordinating the use of gpu and cpu

for improving performance of compute intensive applications. In 2009 IEEE

International Conference on Cluster Computing and Workshops, pages 1–10.

IEEE, 2009.

[119] TOP500. Top500 list of june 2018, ibm summit. URL https://www.top500.

org/lists/2018/06/.

[120] Deepak Unnikrishnan, Sandesh Gubbi Virupaksha, Lekshmi Krishnan, Lixin

Gao, and Russell Tessier. Accelerating iterative algorithms with asynchronous

accumulative updates on fpgas. In Field-Programmable Technology (FPT), 2013

International Conference on, pages 66–73. IEEE, 2013.

[121] B Sharat Chandra Varma, Kolin Paul, and M Balakrishnan. Accelerating 3d-fft

using hard embedded blocks in fpgas. In VLSI Design and 2013 12th Inter-

national Conference on Embedded Systems (VLSID), 2013 26th International

Conference on, pages 92–97. IEEE, 2013.

[122] R Vasudevan, Sathish S Vadhiyar, and Laxmikant V Kalé. G-charm: an adap-

tive runtime system for message-driven parallel applications on hybrid systems.

In Proceedings of the 27th international ACM conference on International con-

ference on supercomputing, pages 349–358. ACM, 2013.

[123] Philippe Virouleau, Pierrick Brunet, Francois Broquedis, Nathalie Furmento,

Samuel Thibault, Olivier Aumage, and Thierry Gautier. Evaluation of OpenMP

Dependent Tasks with the KASTORS Benchmark Suite. In OpenMP in the

Petascale Era, pages 16–29. Springer International Publishing, Cham, 2014.

https://www.top500.org/lists/2018/06/
https://www.top500.org/lists/2018/06/

135 Bibliography

[124] Ying Wang, Xuegong Zhou, Lingli Wang, Jian Yan, Wayne Luk, Chenglian

Peng, and Jiarong Tong. Spread: A streaming-based partially reconfigurable

architecture and programming model. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 21(12):2179–2192, 2013.

[125] Lukasz Wesolowski. An application programming interface for general purpose

graphics processing units in an asynchronous runtime system. PhD thesis, Uni-

versity of Illinois at Urbana-Champaign, 2008.

[126] Sandra Wienke, Paul Springer, Christian Terboven, and Dieter an Mey. Ope-

nacc—first experiences with real-world applications. In European Conference

on Parallel Processing, pages 859–870. Springer, 2012.

[127] Grant Wigley, David Kearney, and Mark Jasiunas. Reconfigme: a detailed

implementation of an operating system for reconfigurable computing. In Pro-

ceedings 20th IEEE International Parallel & Distributed Processing Symposium,

pages 8–pp. IEEE, 2006.

[128] Guiming Wu, Yong Dou, Junqing Sun, and Gregory D Peterson. A high per-

formance and memory efficient lu decomposer on fpgas. IEEE Transactions on

Computers, 61(3):366–378, 2012.

[129] Yan Xu, O. Muller, P. Horrein, and F. Petrot. Hcm: An abstraction layer

for seamless programming of dpr fpga. In Field Programmable Logic and Ap-

plications (FPL), 2012 22nd International Conference on, pages 583–586, Aug

2012.

[130] Depeng Yang, Gregory D Peterson, and Husheng Li. Compressed sensing and

cholesky decomposition on fpgas and gpus. Parallel Computing, 38(8):421–437,

2012.

[131] Dong Yin, Ge Li, and Ke-di Huang. Scalable mapreduce framework on fpga

accelerated commodity hardware. Internet of Things, Smart Spaces, and Next

Generation Networking, pages 280–294, 2012.

[132] Hamid Reza Zohouri, Naoya Maruyama, Aaron Smith, Motohiko Matsuda, and

Satoshi Matsuoka. Evaluating and optimizing opencl kernels for high perfor-

mance computing with fpgas. In SC’16: Proceedings of the International Con-

ference for High Performance Computing, Networking, Storage and Analysis,

pages 409–420. IEEE, 2016.

136 Bibliography

