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INTRODUCTION

Context

Internet plays an important role in our daily life, it is accessible at any time once connected
to the network. Internet eliminates the physical distance between individuals and makes the
whole world accessible. More and more hardware and software resources are connected to the
Internet and provide on-demand availability as services, the most important of them are known
as cloud services. Nowadays, people are relying on the conveniences brought by cloud services,
for both work and entertainment: social networking, real-time video streaming, on-line gaming,
mail service, shopping, etc. Emerging services are making the cloud bigger than ever and the
tendency is still going on. For example, in 2017, 70 017 hours of videos have been watched
per minute by Netflix users, and this number jumped dramatically to 266 000 in 2018 [Des18].
Behind the Internet, all the cloud service are supported and provided by real and large scale
physical infrastructure: Data center. Data Centers are large scale facilities composed of com-
prehensive number of mechanical and electrical infrastructures. They are the cornerstones of
the Internet that support the digital life of everyone. Electricity is consumed by IT equipment
such as servers and network devices in data centers to provide data processing, transaction, stor-
age, etc. At the same time, due to the activities of the electrical devices, considerable amount of
heat will be generated and increases the surrounding air temperature quickly. Cooling system
is indispensable as well in a data center environment to keep appropriate operating temperature
for these electrical devices, and it requires consuming additional energy. Nowadays, with the
increasing demand of cloud services, data centers have became a huge energy consumer in the
world. Reducing the energy consumption, especially the part from fossil resources has became
a significant issue under discussion around the world. This thesis project focuses on evaluating
the energy impacts from different part of a data center, including hardware, software and envi-
ronment. Then propose a method to estimate the energy required by a physical infrastructure
with corresponding configurations. In this section, we introduce the background of this research
subject, specify the goals and detail the research plan.
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Energy consumption of Data centers: some numbers

With the rapid growth of Internet services in recent years, the dramatic energy consumed by
data centers has drawn much attention of data center owners and operators. For both economical
and environmental concerns. Recently, more and more discussions care about the side effects
on the environment brought by data centers. In terms of energy use, the data centers in the world
are estimated to consume 1.4% of the global electricity consumption in 2017 [ABC17]. With the
rise of data traffic, the percentage is estimated to reach 13% by 2030 [Sad17]. Power densities
of a data center are 538-2153 W ·m−2 and sometimes can be as high as 10 kW ·m−2 [Bea13].
Today, data centers are estimated to consume 200 terawatt hours (TWh) each year, which is
more than the need of some countries,such as Iran [Jon18]. In terms of CO2 emission, total
ICT (Information and Communication Technology) sector accounts for 2% of the global CO2

emission, that significantly contributes to the greenhouse effect, and data center is believed to
have the fastest growing carbon footprint among the whole ICT sector [WASM14].

Addressing the problem of high energy use, it is essential to have a preview of how data
center consume energy. Figure 1 illustrates how energy flows in a typical data center facility.
It can be seen from the figure that, for a data center, apart from the servers, power has to be
delivered to other parts of the facility so as to keep normal functioning of the entire data center.
The indicator Power Usage Effectiveness (PUE) [AAF12] is usually used to evaluate the general
energy efficiency of a data center. PUE is defined as the total power entering a data center
divided by the power used to run the computing equipment. An ideal PUE equals 1 which
means all the power has been used by the computing side (for more details about PUE, refer to
"Energy Efficiency metric" at section 1.1.2). Google claims to have achieved a comprehensive
trailing twelve-month (TTM) Power Usage Effectiveness (PUE) of 1.12 across all their data
centers, in all seasons, including all sources of overhead. Best PUE for individual campus can
be as low as 1.09. Which means that over 90% of the energy, including electricity and natural
gas, is consumed by computing equipment [Goo19]. While global average PUE of the other
largest data centers in the world is around 1.67 [Mem19].

Research background

The evolution of the data center architecture is changing rapidly. New technologies are
emerging to enrich IT services, such as 5G, IoT (Internet of things), BigData, etc. The evolution
of IT services obligates in the same time the revolution from the aspects of both hardware and
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Figure 1 – Power Usage in a Data Center [CK16]
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software. Data center designers often encounter the problems of selecting or replacing appropri-
ate equipment for emerging new services. An ideal design should ensure the required Quality
of Service (QoS), while minimizing the Total Cost of Ownership (TCO), with respect to the
Equipment Life Cycle. The explanations of the aspects are detailed as follows:

— Quality of Service (QoS): Cloud services come in with various forms: voice, video,
data and signaling. The single Internet platform should be able to support all type
of communication forms on demand, and meet up with desired requirements for run-
ning services, such as: expected delay, response time, Bandwidth, loss and error rates,
etc [CFY04].Full capacity is expected meet up with required QoS during peak demand
period.

— Equipment Life Cycle [GC15]: Electrical equipment has limited lifetime, depend on
manufacturing and usage. Taking servers for example, the general server lifetime is
about 3-5 years, depending on how it has been used. Sometimes the lifetime can be
extended to decades by doing periodic upgrades and component replacements. How-
ever, server will likely not remain cost-effective for decades. When the maintaining cost
exceed the replace cost, it is usually the time to buy a new one. Table 1 lists the general
lifetime for common equipment in a data center.

— Total Cost of Ownership (TCO): TCO for a data center includes total cost of investment
and operating costs as well costs related to replacement or upgrades at the end of the life
cycle. Major TCO costs consists of five parts: infrastructure, server acquisition, power
utilization, networking equipment, and maintenance cost [CIGH17]. TCO varies with
physical configurations like the number and type of server, hardware implemented and
the software service applied.

Estimating the energy impacts and evaluating the performance contributions of principal
parts of the data center allow us understanding the energy and performance trade-off, identifying
the low energy-efficiency parts, and finally help us to focus the efforts on specific areas and
optimize the global energy efficiency effectively.

As the leader provider of telecommunication in Europe, Orange proposes much kind of
telecommunication services across Europe and Africa. Consisting sustainable development and
being a responsible operator is always an important concern for Orange. Particularly, in 2007,
Orange confirmed its participation in 21st Climate Change Conference (COP21) and made a
promise that their emissions of CO2 will be reduced 20%, and energy consumption will be re-
duced 15% from 2016 to 2020 [Gro16]. Orange commits also to reduce 50% its CO2 emissions
per customer-usage in 2020 (base line 2006). Therefore, this thesis research project has been
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raised as part of the "Green ITN" plan [Gro19], with expectations to help developing an ener-
getic criterion that evaluates the energy efficiency along with contribution of service for data
centers of newer generation, so as to minimize energy consumption while meeting up with the
required QoS. The goal is planned to be realized by proposing a model that estimates both the
energy consumption and service contribution of principal parts of the data centers, including
servers and cooling system. Such a model can be very helpful for Orange in selecting appropri-
ate IT equipment and optimizing hardware, software and environmental configurations in terms
of designing, re-scaling, updating and renewing their data centers.

Table 1 – General Lifetime of main components in a Data center [Mic17]

Equipment/Services Lifetime (estimation, years)
Servers 3 ∼ 5
Firewall 5 ∼ 8
Switches 5 ∼ 8
Wireless Access Points 5 ∼ 8
Uninterruptible Power Supplies(UPS) Devices 4 ∼ 6

Research problem and goal

The evaluation of energy efficiency of different sub-systems in a data center is a key point
in optimizing hardware/software selection and environmental conditions. The subsystems vary
from single component like the processors, to a node then to an entire cluster. Over provision-
ing and inefficient usage of resources result in the waste in Data centers. For example, previous
research has highlighted the huge energy waste led by running too many idle servers in data
center (idle state: only OS is running, without executing any workload) [MCRS05]. Building
energy efficient data centers brings both economic and environmental benefits. Therefore, it
could be favorable to understand how energy has been consumed and how external aspects
such as environmental conditions and equipment related conditions interfere with the global
power consumption. Developing a power consumption predictive model is one of the solutions.
Ideally, such a model could be able to predict the power consumption of a system with accept-
able error rate, by taking various system parameters into consideration, such as system load,
environment conditions (i.e. ambient temperature and space area), system configurations, etc.
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Some parameters are known to be correlated with global power consumption (system load),
and some are not (equipment models, equipment arrangement, thermal effects, manufacturing
related features, etc.). There is a lack of study addressing identifying and characterizing the un-
derlying aspects that may have influence on global power consumption. Therefore, in the first
place, an overall evaluation will be performed to locate and quantify these potential aspects.
The large diversity and complex hardware/software configurations in a data center environment
make a great challenge for this research. Later on, based on the previous results, a global power
model is expected to be established to estimate the energy consumption of a physical infras-
tructure, for both server and cooling parts. The main goal of this thesis is to propose a model
to estimate the energy consumption of a computing system. Such model is expected to estimate
global energy consumption by providing with the important system related information, such as
IT load, hardware and software architectures, environmental conditions, etc. This model could
help evaluating the energy efficiency of critical parts in the whole infrastructure, optimizing the
configurations for current infrastructure and orienting the decisions on equipment selection and
renewal for data centers in the next generation.

In order to achieve the objective, the research in this thesis consists of several consecutive
steps, they are summarized as follows:

— Exploring a dedicate state of art study to obtain a systematic survey on the up to date
approaches and technologies.

— Performing an overall evaluation on the potential effects that may affect power con-
sumption in computing systems. Evaluating as well the accuracy, reliability for current
power metering and modeling approaches.

— Proposing a modeling approach based on previous studies to estimate energy consump-
tion of computing systems. Estimation is expected to include both the consumption from
servers and cooling system.

— Validating this modeling approach with real computing systems (in the progress).

Contributions

The principal purpose of this research is to realize a global power consumption model of a
comprehensive computing system, which allows us to understand the contributions of different
parts, such as system variables and environmental conditions to the global power consumption
of the system. So as to facilitate a global optimization. The research begins from a series of
experimental evaluations, in order to identify and quantify the potential influential aspects, that
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should be taken into account in a power model for a physical computing system. The evalua-
tions have been especially concentrated on some defects and uncertainties appeared in devices,
servers and environment several. In the end, we propose a global power consumption modeling
approach for a physical cluster, with expectations to take into account important variables in a
computing system, such as IT load, environmental temperature, cooling system configurations,
etc. The major contributions presented in this thesis are detailed as follows:

1. Before implementing a mathematical power model to a physical computing system, it
is substantial to recognize every possible consumer and underlying sources of influence
appeared in the system. Therefore, we have firstly performed an overall identification on
potential aspects that may affect the global power consumption of a computing system,
especially for the parts other than IT load. The computing systems scale from entire
cluster to single processor. Several underlying influential candidates that may brought
by infrastructure deployment or environment have been explored experimentally, such
as construction difference from manufacturing, arrangement of servers in the racks, fluc-
tuating ambient temperatures and voltage variation from power supply. The experiment
results turn out that, besides IT load, the power consumption of servers can be obviously
varied by two aspects: construction difference between identical servers and temperature
variation of environment. Later on, we have focused firstly on the thermal effect and the
construction difference will be discussed later in the next part. Especially, we design
tests to evaluate and characterize the influence of temperature variation of CPU and of
the other components to the power.

2. Secondly, we complete the evaluation on the differences between identical processors
caused by imperfection fabrication, as respond to the question left in the first study. We
concentrate the attention on processor, which is supposed to be the most consuming
component in a server. This manufacturing variability has been observed in previous
studies, however, the amount of samples is not adequate to determine the source of the
variability, especially from the perspective of thermal characteristics. In this study, we
compare the power consumption of two types of Intel processors from different gener-
ations, by running the samples at full load and under the same environment conditions.
Processors from modern generation appear more power variation between identical sam-
ples than the older one. Two hypothesis have been proposed and studied experimentally:
the application of TIM (thermal interface material), and parameters of leak current. The
observations and results drawn from this research highlight the variability between iden-
tical processor samples, they provide solid evidences to help understanding the imper-
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fections caused by fabrication processing. The findings remind us of re-evaluating the
accuracy of current power models.

3. In addition, we investigate experimentally as well two indispensable parts in terms
of building power model for physical computing systems: power characterization ap-
proaches and model type. In the beginning, we present a deep evaluation about the
power models based on CPU utilization. It is a single indicator power model, which
is widely adopted thanks to its convenience. However, according to the analysis, simple
linear regression is not sufficient to build reliable power models. The influence of inlet
temperature on accuracy of model has been especially explored. Based on the experi-
mental data, we propose a new model to compensate the additional power caused by the
rise of ambient temperature. Besides, we evaluate other two possible ways to improve
the accuracy of this kind of model: making use of operating frequency information,
and applying polynomial regression. Later on, we have investigated also the accuracy
and reliability of measurement values obtained from the following power metering ap-
proaches: IPMI, Redfish and Intelligent PDU. These approaches provide an alternative
and economic ways to get power data in data center environment. Comparing to tradi-
tional power meters, they take advantages of the integrated sensors in servers and PDU
to get directly the power data. However, few work addressing their accuracy and reliabil-
ity in real utilization. In order to compensate this missing part, we compared the values
obtained from them with a high-accuracy power analyzer, the evaluation has been done
for different infrastructures. We concludes the validation results with expectations that
the findings could provide more details and guidelines for data center operators, when
adopting these kinds of tool as power metering approaches.

4. In the end, we propose an approach to estimate the global power consumption of a physi-
cal cluster. The cluster consists of 48 identical servers in four racks and a cooling system.
Especially, two models have been realized and validated with real measurements: one
model simulates the thermal system of the cluster and an other model allows estimat-
ing the cooling power consumption based on inlet temperature. In the first model, the
thermal system has been simplified to an equivalent capacitance-resistance (RC) electri-
cal circuit. And the real-time model has been established by using Ordinary Differential
Equations (ODE), with respect to the law of heat balance during heat transfer process-
ing. In order to identify the parameters of model, which are combined with complicated
physical and thermal properties, we conducted a global optimization, by minimizing the
results of the model with the real measurements. The model is able to predict inlet tem-
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perature according to total power of servers, cooling power and environment tempera-
ture. Further more, we have proposed another model for estimating the real time cooling
power consumption based on inlet temperature. Four critical parameters determined the
functioning of cooling system have been identified, based on the behaviors and settings
of cooling system. A final model is expected to realize a global power consumption
estimation of the cluster, which includes both power consumed by cooling system and
servers. The model should be able to predict the global power consumption based on IT
load of servers, settings of cooling systems and environmental variable. Due to limited
time, we are still working on this model, the further work has been well detailed in this
study.

Publications

Most contributions mentioned before have been redacted in papers and the work have been
published and presented at different national and international conferences and workshops. The
last contribution is in the process of redaction and will be submitted later at a corresponding
conference or journal.

National conferences and workshops

— Yewan Wang, David Nörtershäuser, Stéphane Le Masson, Jean-Marc Menaud. Etude de
l’influence des aspects thermiques sur la consommation et l’efficacité énergétique des
serveurs. SFT 2018 - 26ème Congrès Français de Thermique, May 2018, Pau, France.
pp.1-8.

— Yewan Wang, David Nörtershäuser, Stéphane Le Masson, Jean-Marc Menaud. Etude
de l’influence de la température du processeur sur la consommation des serveurs. Com-
pas2018, Conférence d’informatique en Parallélisme, Architecture et Système, Toulouse,
France.

International conferences

— Yewan Wang, David Nörtershäuser, Stéphane Le Masson, Jean-Marc Menaud. Potential
effects on server power metering and modeling. CloudComp2018, 8th EAI International
Conference on Cloud Computing, Sep 2018, Newcastle, Great Britain.

— Yewan Wang, David Nörtershäuser, Stéphane Le Masson, Jean-Marc Menaud. An em-
pirical study of power characterization approaches for servers, ENERGY2019, 9th IARIA
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International Conference on Smart Grids, Green Communications and IT Energy-aware
Technologies, June 2-6, 2019, Athens, Greece.

— Yewan Wang, David Nörtershäuser, Stéphane Le Masson, Jean-Marc Menaud. Experi-
mental Characterization of Variation in Power Consumption for Processors of Different
generations, July 14-17, GreenCom2019, 15th IEEE International Conference on Green
Computing and Communications Atlanta, USA

International journal

— Yewan Wang, David Nörtershäuser, Stéphane Le Masson, Jean-Marc Menaud. Potential
effects on server power metering and modeling, Wireless Network (2018), page 1-8,
Springer, https://doi.org/10.1007/s11276-018-1882-1

Organization of the Manuscript

The rest of this thesis is structured as follows:
— In Chapter 1, a survey of the state-of-the-art is presented. The survey present the previous

studies related to this research in several domains: metrics concerning energy efficiency
evaluations for servers and data centers; current examples in using carbon free energy
in data center; hardware and software designs for achieving energy-efficient designs
for small and large computing design; instrumental and modeling approaches in getting
power measurement of servers, their advantages, accuracy and reliability, etc.

— In Chapter 2, we identify and quantify several underlying external aspects that may
have influence to the power consumption of a physical cluster. The aspects evaluated
include: construction difference, position and arrangement of servers, voltage variation
and temperature of components on motherboard. Power consumption variations brought
by thermal effects have been specially evaluated on servers of different brands and gen-
erations.

— In Chapter 3, we compare the power consumption among identical processors for two
Intel processors from different generations. The observed power variation of the pro-
cessors in newer generation is much greater than the older one. Then, we propose and
evaluate hypotheses on the underlying causes in dedicated experiments by precisely con-
trolling environmental conditions.

— In Chapter 4, we compare and discuss the reliability, advantages and limitations in terms
of power characterization solutions for servers. We evaluate firstly CPU-utilization based
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power models. The findings highlight the challenges in realizing accurate and reliable
power models. Later on, we extend the evaluation to the power metering tools: IPMI,
RedFish and Intelligent PDU, for the purpose of providing guidelines in adopting these
tools in real data centers.

— In Chapter 5, we present our work about realizing a global power consumption model
for a physical cluster. We have firstly proposed an approach to simulate the real-time
thermal system in using equivalent RC electrical circuit. Then a second model is realized
to estimate the cooling power consumption according to inlet temperature.

— In Conclusion, we conclude the work presented at the manuscript and present the per-
spectives for the further work.
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CHAPTER 1

STATE OF THE ART

The state of the art study contains related studies to our research interests. We review firstly
different metrics that present the energy efficiency of servers and data centers. Then we decribe
some classical and recent studies addressing building a "green" data center, such as replac-
ing fossil sources with carbon-free and clean energy sources, adopting energy-efficient designs
on hardware and software solutions of computing systems. The designs presented scale from
single component to large scale data centers. For modeling, we need firstly measuring. We eval-
uate three kinds of power meters: internal power meters, external power meters and embedded
power meters, by discussing and comparing the accuracy, availability and reliability. Moreover,
we summarize the studies concerning building power models for servers in two ways: using
resource usage or counters. We highlight further on the challenges in terms of building accurate
power models. Finally, we remind the influence of user behavior in this domain.

1.1 Energy Efficiency evaluation

In this section, we introduce the history and evolution of the theory of Moore, which high-
lights the importance of evaluating the energy efficiency of modern computing systems. There
are different metrics and methods in interpreting the energy efficiency for servers and data cen-
ters, several popular ones are presented in this survey.

1.1.1 Power Wall

Moore’s Law is not a physical or natural law but an observation that the number of tran-
sistors in a dense integrated circuit doubles approximately every two years. The observation is
named after Gordon E. Moore, the co-founder of Intel and Fairchild Semiconductor. His pre-
diction proved accurate for several decades, as shown by figure 1.1 and the law was used in the
semiconductor industry to guide long-term planning and to set targets for research and devel-
opment.
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Figure 1.1 – Microprocessor Transistor counts & Moore’s Law [Com18]

However, in recent years, some researches show that the growth in Moore’s Law may slow
even go to an end. For example, the international Technology Roadmap for Semiconductors of
2010, predicted that the growth would slow around 2013, and Gordon Moore in 2015 foresaw
that the rate of progress would reach saturation. Most semiconductor industry forecaster, in-
cluding Gordon Moore, expects Moore’s Law will end by around 2025. The increasing number
of transistor in one chip also causes some negative impacts. For example, a roughly 45% in-
crease in processor transistors has translated to roughly 10-20% increase in processing power.
Dennard scaling [DGR+74] proposed by Robert H. Dennard and his team in 1974 is a scaling
law. They defined scaling formula for scaling circuit parameters and dimensions based on tran-
sistor size. With the increase number of transistor, the scaling factor reduces the area of circuit
parameters and dimensions which contribute to compensate the power rise caused by transistor
density [BC11]. By following the scaling formula, transistor density can continue Moore’s Law
while keeping the power dissipation unchanged. Dennard scaling suggests that performance per
watt would grow at roughly the same rate as transistor density, doubling every 1-2 years. This
law has been then widely adopted by the semiconductor industry as the roadmap for setting
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targets and expectations for coming generations of process technology. However, since around
2005-2007, Dennard scaling appears to have a broken down, while Moore’s Law continued
on [Boh07]. The primary reason behind the breakdown is that at small sizes, current leakage
becomes greater and heats up the chip, which eventually increase further the static power. An-
other problem is that the voltage can on longer be scaled down as required by Dennard scaling,
the voltage scaling has reached the lower limits imposed by threshold voltage (VT) scaling
limits for security and reliability requirements [Tau02].

Therefore, density and number of transistors in chip can no longer be an effective indica-
tor to represent the energy efficiency for processors, as also for modern computing systems.
Instead, corresponding metrics have been proposed to evaluate the energy efficiency for recent
computing systems, they will be discussed for the rest of this section

1.1.2 Energy Efficiency metrics

As discussed in the previous section, transistor density can no longer determine the effi-
ciency of a system. Several metrics have been proposed and applied in the literature to evaluate
energy efficiency of data centers. In this section, we detail some energy efficiency metrics for
evaluating green computing systems, the computing systems under evaluation including single
server and data centers.

Power Usage Effectiveness (PUE) The most adopted one is Power Usage Effectiveness
(PUE), introduced by the Green Grid [AAF12]. The metric represents for the radio of total
energy consumed by data center to the part delivered to IT equipment. PUE is defined as equa-
tion 1.1 below:

PUE = Total Facility Energy

IT Equipment Energy
(1.1)

An ideal PUE equals 1, which means every watt of power is contributed to operate IT equip-
ment to do "useful computing work". However, value of 1 is unrealistic to achieve as energy is
required at support side to provide the normal operational conditions of data centers, such as
power supply equipment, cooling system, lighting, etc. Recently, thanks to the continues im-
provements achieved for cooling systems (better air flow design, efficient cooling equipment,
advanced cooling technologies, etc) and greater adoption of renewable energy, large-scale data
centers are beginning to have PUE value of 1.1 or less, while small scale data centers still have
PUE values greater than 2.0 [SSS+16]. Determining PUE requires a period of time as it mea-
sures energy. Some studies emphasize that relevant data should be collected at least one year
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to get a reasonable PUE value [YM13] [BKST13]. Because PUE can be influenced by outside
temperature and IT load variation. Even though the PUE value is widely used in the industry,
there still remains some limitations. For instance, the method of quantifying the PUE hasn’t be
unified. PUE is normally calculated and reported by industry operators with their own method,
that leaves room to "improve" the final result [Goo19].

Data Center Infrastructure Efficiency (DCiE) Same as PUE, DCiE was also proposed by
GreenGrid as a measurement to determine energy efficiency of a data center. It is expressed as
the percentage of power consumed by IT equipment power in total facility power. Therefore,
DCIE is actually the reciprocal of PUE, which has a value of 1/PUE. DCiE is defined as
equation 1.2 below:

DCiE = IT Equipment Energy

Total Facility Energy
× 100% (1.2)

Performance per Watt (PPW) Green500 project [FC07] proposes metric PPW to rank su-
percomputers efficiency based on power requirement and performance achievement. The per-
formance is determined as Giga Floating-point Operations Per Second, by running Linpack
benchmark on the system. And the power is determined as the average power during the en-
tire execution of running Linpack [DBMS0s]. The Performance (in operations/second) per watt
adopted by Green500 to rank the supercomputer can therefore be expressed as gigaflops/watt.
For example, as we write right now (November 2019), the lastest first record has achieved 16.9
gigaflops/watt, reported by A64FX prototype supercomputer [Top19]. Green500 aims to en-
courage long-term sustainability design for high-end supercomputers.

Server Efficiency Rating Tool (SERT) SERT is an industrial standard rating tool for eval-
uating energy-efficiency for server systems, developed by Standard Performance Evaluation
Corporation (SPEC) committee. It measures and analyze the energy efficiency of servers by
executing the SERT Test Suit to the Server Under Test (SUT), while measuring the power con-
sumption data in the same time. SERT 2 is the new version of SERT, it proposes the SERT 2
metric, also called the SERT 2 Efficiency Score to represent the energy efficiency of a whole
server system with one single number. The SERT 2 metric number can be used to compare
the energy efficiency between servers across different brands and scales. SERT 2 has been now
accepted officially by U.S.Environmental Protection Agency (EPA) for server energy efficiency
labeling with Energy Star certification [(EP19]. European Commission (EC) also adopts SERT
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test results as a software requirement for evaluating a potential environment friendly server sys-
tem design [COM19]. EC proposes Minimum Efficiency Performance Standard (MEPS) based
on SERT metric results to set minimum limits for servers in order to filter out the worst per-
forming servers from the market.

SERT 2 metric score can be obtained by executing the complete SERT 2 test suit on the
server system by following strict the environment conditions and power measurement device
requirements [Com13], the test environment and key components are detailed as follows:

— Test enviroment: The test environment is composed of multiple hardware and
software components, the simplified system diagram is shown by figure 1.2.

Figure 1.2 – SERT system diagram ©1995 - 2020 Standard Performance Evaluation Corpora-
tion (SPEC). All rights reserved.

SERT test environment consists of two independent systems: the system under test, the
computing system we want to evaluate the energy efficiency; And a controller system.
Controller is operated by the user and composed of several software components:
GUI: configuring the SUT and executing the SERT test suit through user interface
(GUI);
SPECPTDeam: communicating with the measurement devices;
Reporters: analyzing performance and power consumption data and generating human-
readable test reports for further analysis.

— SERT Test Suite: Complete SERT 2 test suit is composed by several workloads
targeting at stressing main components of a server: CPU, memory and storage. Each
workload includes several mini-workloads called worklet with a sequence of differ-
ent load levels, in order to perform an overall evaluation from different aspects. The
details of each workload is shown in the figure 1.3. At the beginning of the execution
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of a worklet, program will perform a "calibration" process to determine the maximum
throughput of the server as the highest load level, the other load levels are determined
based on calibration result as well.

Figure 1.3 – SERT 2 Test Suite ©1995 - 2020 Standard Performance Evaluation Corporation
(SPEC). All rights reserved.

— SPEC’s Power/Temperature Daemon (PTDeamon) In terms of getting real-
time energy consumption and ambiant temperature data during the test, SERT 2 is able
to work along with several high-accurate power analyzers and temperature sensors in
the market. While executing the test suit, instant power and temperature data will be
recorded in the meanwhile by PTDeamon. PTDeamon is a software component installed
on the controller system, provided by SERT. It can communicate with the power ana-
lyzers and temperature sensors with multiple functions, such as set up configuration
requirements directly to the devices, get back instant power/temperature data. For atten-
tion, only the devices in the "accepted devices list" [Cor] are able to work together with
SERT.

— SERT metric score The calculation of final SERT metric score consists of the
following steps, as also illustrated in figure 1.4:

1. Calculating per load level energy efficiency Effload for each load level during a
worklet execution as follows:

Effload = NormalizedPerformance

PowerConsumption
(1.3)

All worklets (except idle) run at multiple load levels. In this equation, normalized
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performance refers to normalized throughput, power consumption refers to in this
context the average measured power consumption for each load level.

2. Calculating worklet efficiency cores Effworklet in using the geometric mean of each
load level scores, as follows:

Effworklet = exp( 1
n
×

n∑
i=1

ln(Effloadi
))× 1000 (1.4)

Where n represents the number of load level available for each worklet.

3. Calculating Workload Efficiency Effworkload in using the geometric mean of all
worklets within the workload, as follows:

Effworkload = exp( 1
n
×

n∑
i=1

ln(Effworkleti
)) (1.5)

Where n represents the number of worklets available in a workload.

4. Calculating SERT 2 Metric score in using a weighted geometric mean, particular
workload weight is determined by expert groups of SPEC: 65% for CPU workload,
30% for Memory workload and 5% for storage workload. The final score is calcu-
lated as follows:

EffScore = exp(0.65ln(EffCP U) + 0.3ln(EffMemory) + 0.05ln(EffStorage))
(1.6)

However, the cost of running a compliance SERT test is not free, except labouring fee, in-
vestment is also required for purchasing both equipment (accepted power analyzer and temper-
ature sensors [(SP19]) and software license (2450e for SERT software license). EC estimates
in the report [COM19] that: the total compliance cost would be approximate 21000e for com-
panies with 15 server models and 30000e with 25 server models.

With the Dennard Scaling coming to the end, the energy efficiency of a computing system
can no longer be achieved easily by increasing the number of transistor in a chip, there are still
lots of other ways to realize a "green" data center, for example by using as much as possible
the green energy, adopting energy efficiency hardware and software designs on infrastructures,
etc. We are going to detail these solutions explored in previous studies in the next section.
Nevertheless, SERT metric puts forward a great step to the development of a worldwide agreed
standard of energy efficiency for computing systems, like servers and clusters. In this thesis
research, for most of the experiments, we utilise the workloads in test suite SERT to benchmark
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Figure 1.4 – SERT 2 metric calculation [vKLA+17] ©1995 - 2020 Standard Performance Eval-
uation Corporation (SPEC). All rights reserved.
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the performance and energy efficiency of our SUTs.

1.2 Making the data center Greener

Lawrence Berkeley National Laboratory draft the report "United States Data Center Energy
Usage Report" in 2016 [SSS+16]. The report estimates the total electricity consumed by data
centers in the US from 2000 to 2014, and forecasts the consumption up to 2020, based on
the previous studies and historical data provided by several institutions. Current results show
that, electricity consumed is estimated to be increased by about 4% from 2010-2014. The same
estimated values from 2010-2014 and 2000-2010 are 24% and 90% respectively. Data centers
in the US are estimated to consume about 70 billion kWh in 2014. Based on current trend
estimates, energy use is expected to rise slightly and reach approximately 73 billion kWh in
2020. Moreover, the reporters also point out that, the improvements at energy efficiency didn’t
have negative impacts on the normal progress in terms of performances. As conclusion, since
2010, the increase trend of electric demand for data centers in US has been dramatically slowed
down since 2010, thanks to the improvements at energy efficiency, regardless of the dramatic
increase in data center traffic and demand of services. Another report from International Energy
Agency (IEA) [Kam19] found the same tendency, huge strides have been achieved in improving
energy efficiency of data centers. The global energy demand of data centers in the world, is
expected to slightly decrease from 198 Twh in 2018 to 191 Twh in 2021 . These previous
studies confirm the effectiveness of the continuous efforts contributed to improve the energy
efficiency of data centers.

In this section, we provide an overview about the recent efforts and studies proposed in sev-
eral domains for the purpose saving energy and reducing carbon emission of data centers. The
state of the art study will be presented by the following perspectives: we introduce firstly the
methods concerning the exploitation of renewable energy to power on the data centers in the
section 1.2.1. Including both the real use cases which are already deployed by giant companies
and several scientific projects in the progress. After that, we summarize relevant researches aim
at improving energy efficiency of computing systems through power proportional designs, in-
cluding the hardware solutions in section 1.2.2 and the software solutions in section 1.2.3. In the
last section1.2.4, we present some advanced power management solutions for large-scale data
center, including some new propositions which provide possible directions in the perspective of
reducing energy consumption for data centers in the near future.
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1.2.1 Exploiting carbon-free energy sources

Recently, facing and dealing with climate change become an urgent global priority. In order
to minimize environmental footprint, some data center operators are seeking for powering the
facilities with carbon-free "green" energy instead of traditional fossil fuel "brown" resources
such as coal and natural gas. The attempts in exploring green energy are not for the purpose
of reducing the energy consumption of data centers but looking for opportunities to maximize
the portion of green energy usage in such big power consumer facilities, so as to reduce the
environmental impacts.

One big barrier nowadays in using renewable energy is due to its higher price comparing to
fossil fuel energy, which is not commercial effective for many small and medium size indus-
tries. In earlier stage, government policies, social responsibility of industry are indispensable for
the development and commercialization of renewable energy. Facebook, Microsoft and Google
are a few of the technology companies that have committed to go ‘100% renewable’ through
the RE100 [Org14], with commitment to source 100% of their global electricity consumption
from renewable sources by a specified year. Thanks to the continuous efforts, development and
financial investment over decades, renewable energy remains its healthy growth and have be-
come a mainstream source of affordable electricity for millions of people [REN18]. From the
perspective of economics, the cost of renewable power has dropped dramatically. Over the past
eight years, levelized costs for wind and solar energy have decreased by 67% and 86% [Laz17],
respectively. According to a recent study from Bloomberg New Energy Finance [SH18], by
2050 half of the world’s electricity will be generated from wind and solar. From the perspective
of marketing, according to the estimation from International Energy Agency (IEA) [FB18], in
the next five years, renewable energy will have the fastest growth in electricity section. It is es-
timated to meet up with over 70% if the global energy consumption growth and provide almost
30% of power demand in 2030. [FB18]

In 2018, Google claims to have achieved a great goal in 2017: they have purchased 100%
wind and solar energy to match consumption for both data centers and offices operations [RP18].
Except powering some parts of the Data center by in-site renewable energy [GKL+13], this
achievement is completed by buying renewable electricity directly from a particular renewable
energy providers in the form of a power purchase agreement (PPA). PPA is long-term contract
to purchase power at a fixed and negotiated price from a renewable energy producer, the con-
tract lasts usually for decades. PPA helps renewable energy providers getting solid and stable
financial commitment that they need to develop new clean energy facilities. In exchange, PPA
buyers will be rewarded with Renewable Energy Credits (RECs), and one REC represents for
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one MWh of renewable power [Goo13]. However, data center operates 24/7 but most renewable
energy sources don’t yet. In addition, for some complicated reasons such as environment and
politics, renewable energy is not available to customers in some areas around the world. In this
case, part or whole of Google’s data centers still need to connect to traditional grid to get con-
stant and stable power, which is from fossil fuel resources. Therefore, Google purchase extra
RECs to compensate "no-green" part and meet their 100% goal [Goo16].

EpoCloud project [BFG+17] EPOC refers to Energy Proportional and Opportunistic Com-
puting systems. This project focuses on an optimal power management solution for a mono-site
and small scale data center, which has all the resources in one location and powered on by
both regular electricity from grid and local renewable energy sources (windmill or solar cells).
In EPOC, each job is executed in a dedicated Virtual Machine (VM) in order to facilitate the
energy-aware resource allocation. Usual tasks which need continuous computing resource like
web servers are powered on by electricity from regular grid. For the less urgent tasks that can be
delayed and interrupted with a deadline constraint, EPOC takes advantage of the local renew-
able resources to perform opportunistic tasks. They adopt the concept "green energy virtualiza-
tion" [HKLP17] in order to avoid using energy storage in the small scale data center. Renewable
energy will be used once available. In terms of virtualization, when there is excessive green en-
ergy than demand, they use the surplus part to make up for the degraded interval with less green
energy. Therefore, the supply of "green energy" appears to ideally meet the demand. In this
way, not a watt of green energy will be wasted and there is no need for energy storage. Their
solution is shown to be able to reduce "grown energy" consumption by 45% and double the
"green energy" utilization compared to the baseline algorithm. As part of EpoCloud project,
Seduce platform [PM18] is developed to provide the scientific testbed for studying power and
thermal management aspects in a data center. Seduce enables real-time access to more than
200 measurements around a physical cluster, such as power consumption of servers and cooling
system, temperatures at different positions of the cluster (at the front and back of each server
and the cooling system, of the room), configurations and working states of cooling system, etc.
The data is available through a user friendly API to the public. Now, the developers are working
on integrating the renewable energy data to the platform, such as real-time information from
solar panels and batteries.

DATAZERO projet [CRGRS18], short for "Data centers with zero emissions and robust
management using renewable energy", is an innovation project aims for optimizing manage-
ment of electricity and service flows for a data center powered with multiple energy resources.
The project leads by Toulouse Institute of Computer Science Research and units interdisci-
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plinary team from both industry and academia. The consortium also includes Eaton Coop-
eration, LAPLACE laboratory and the FEMTO-ST Institute. For now this project is still in
progress. DATAZERO project targets at mid-sized data centers (up to 1000 m2 and 1 MW),
where IT loads can be managed through either virtualization or cloud orchestration. The main
purpose of the project is to enable using effectively multiple renewable energy sources in a data
center by proposing a simulation toolkit. Users are able to test by tuning and comparing sev-
eral mixes of renewable sources, trying scheduling policies in order to reach a given level of
performance in a robust and efficient manner. The simulation can be done by providing nec-
essary descriptions to the simulation toolkit, such as application, IT load and energy source
information in forms of XML profiles.

Powering data center with renewable energy is beneficial to reduce the environmental im-
pacts of the facilities caused from using traditional fossil energy. However, these solutions are
not aim at reducing the global energy consumption. At the rest of the section, we are going to
discuss the hardware and software solutions proposed to reduce the energy consumption, scale
from processors to data centers.

1.2.2 Energy proportional design: Hardware solutions

In an energy proportional system, overall power consumption is proportional to its utiliza-
tion. This concept is firstly introduced by Google engineers Luiz André Barroso and Urs Höl-
zle [BH07]. In the paper, they argue that servers could be much more energy efficient with an
energy proportional design. An ideal energy proportional system is expected to consume nearly
no power when idle and gradually more power with the increase of activity level. At that time
(2007), they investigate the CPU utilization of thousands of servers at a google data center, for a
period of six months. They find that servers operate most of the time at a utilization percentage
between 10 and 50. They calculate and compare the energy efficiency at different usage lev-
els for two servers with different power proportional features. The results are shown in Figure
1.5a and Figure 1.5b. Utilization has been defined in this case as a measure of the application
performance: normalized value to the performance at peak load. The green line represents the
normalized server power to its peak, as a function of utilization. Energy efficiency is derived
here as the division result of utilization and power. Red line represents the energy efficiency
of the server at different utilization. Figure 1.5a indicates that the server still consume half of
the peak when doing nothing useful work (utilization equals 0). Energy efficiency drops quickly
while lowering utilization. Most of the time, servers are running with efficiency lower than 50%.
When taking a look at an energy proportional server in 1.5b, the energy efficiency within the
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typical operating range has been improved greatly, even for the utilization at 10%, efficiency
can reach near up to 60%, which almost triples the value of the previous server.

(a) Less energy-proportional server (b) More energy-proportional server

Figure 1.5 – Server power usage and energy efficiency at varying utilization levels [BH07]
© 2015 IEEE

This section details the hardware solutions dedicated to energy proportional designs, in-
cluding configuring voltage and frequencies settings for the processor, switching to different
sleep states to turn off unnecessary hardware resources, improving energy efficiency through
multi-threading and hybrid hardware combination, etc. The designs vary from component level
to entire and large-scale systems.

Dynamic voltage and frequency scaling (DVFS) (ACPI P-states) For CMOS circuits, dy-
namic power dissipated per unit of time by a chip depends on voltage and frequency, and can
be defined by equation 1.7 [HIG94]:

PT = CfV 2
cc (1.7)

Where:
C : dynamic power-dissipation capacitance, in farads (F)
f : frequency, in hertz (Hz)
Vcc : supply voltage, in volt (V)
For a given processor, C is normally a constant value according to physical features. There-
fore, reducing Vcc can lead to power saving according to the formula 1.7. However, constrained
by stability requirement in CMOS design, f must be scaled along with Vcc [LSH10], and
that will result in performance degradation. The advanced configuration and power interface
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(ACPI) [Hog04] specification defines the CPU performance states (P-states) and idle states
(C-states). Through P-states, ACPI selects different DVFS operating levels in order to adjust
dynamically voltage and frequency according to current load, in order to saving active power
consumption of a CPU. While ACPI also defines different idle state to adjust power consump-
tion of a CPU during period without activities. We will detail idle state management in next part.
Under DVFS, P-states defines the pair of voltage and frequency at which the processor operates
on. The experimental research of Cesarini et al. [CBB17] illustrates how different P-states man-
age DVFS levels. The Levels of Intel P-state range from P0 to Pn and higher n means slower
processor speeds (takes more time to complete a task) and less power consumption. It can be
configured dynamically according to system workload [int15a]. P0 represents for the highest
frequency with the possibility to run with at the peak load. DVFS has proven to be a highly
effective method of matching system power consumption with required performance. Many ad-
vanced usage of DVFS approaches are also proposed to reduce forward energy consumption
under specific situations [CSP05] [KDLA07].

C-States C-states refer to idle state, which means the operating system actually executes noth-
ing, except C0 state. Basic idea of C-state is to cut down activities for some subsystems inside
the CPU, such as cutting the clock, reduce the voltage or even completely power off. Therefore,
C-state x, or Cx, represents for one or some of subsystem of the CPU is powered off. The higher
the x is the more parts of subsystem are powered off, and less energy is consumed. At C0 state,
CPU is fully turned on and is able to reactive immediately. P-state can be exploited only at C0
state. CPU sleeps at deeper in higher C-state and requires more time to "wake up" and back to
100% operational (C0 state). [Del18]

Intel: Hyper-Threading(HT) Number of transistor implemented in a processor continue to
increase so as to keep up with the growth of performance requirement. However, as a mat-
ter of fact, transistor count and power consumption goes faster than processor performance.
Simultaneous multi-threading is one of the thread-level parallelism approach, where multiple
thread can run within one processor without switching. This approach makes better use of the
resource available in processor, therefore performance can be improved at a greater rate than
power dissipation, which improves significantly the energy efficiency. Intel’s HT technology
adopts simultaneous multi-threading approach to its architecture and is firstly introduced in In-
tel Xeon processor family [MBH+02]. For each physical processor that present, HT makes it
appears as multiple logical processors to the operating system and shares the workload between
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them. Thus, multiple tasks can be executed simultaneously within one processor. Later on, In-
tel compare the performance of two Xeon processors with and without HT functionality, the
results show that, HT is effective to a range of applications of type data-parallel and compute-
intensive [MPS02]. On the other side, as quoted by OpenBSD maintainer Mark Kettenis, the
implementations of Simultaneous Multi Threading typically share TLBs and L1 caches between
threads, and that is suspected to lead to security problems. Therefore, in 2018, OpenBSD op-
erating system decided to disable hyper-threading "in order to avoid data potentially leaking
from applications to other software" [Sha18]. Then in 2019, following by critical chip flaws
revealed: Meltdown [LSG+18] and Spectre [KHF+19], millions of computers are exposed to
security risks [Gre18]. Experts in security recommend disabling HT to prevent potential at-
tacks [Gre19], even through that could lead to a huge performance loss.

Heterogeneous computing Hybrid architectures are proposed on optimize energy propor-
tionality. Such that, workloads can be migrated dynamically between high performance hard-
ware and low performance hardware. Existing hybrid designs vary from one component to the
whole data center [WA12].

In terms of the processor, ARM’s big.LITTLE technology is one of the power manage-
ment technologies to save power in mobile SoCs [Hol16]. It works with Dynamic Voltage and
Frequency Scaling (DVFS), clock gating, power gating, retention modes, and thermal manage-
ment to deliver a full set of power control for the SoC. It combines with the high-performance
CPUs and smaller CPUs in one CPU subsystem to allow software to dynamically move to the
right size processor for the required performance. The latest big.LITTLE software and plat-
forms can save 75% of CPU energy and can increase performance by 40% in highly threaded
workloads to the appropriate CPU core based on performance needs [AQ14].

Villebonnet et al. inspires the concept of big.LITTLE and extend it to a data center scale
[VDCL+15], by proposing the infrastructure BML (“Big, Medium, Little”). BML is composed
of heterogeneous computing resources, as well as a corresponding BML framework acts as the
global scheduler to deal with the applications and resources management. They validate this
proposition by running simulations for a stateless web server use case. The performance and
energy profiles show that, running distributing requests with BML heterogeneous nodes saves
more energy than homogeneous nodes.

The hardware solutions here informed us of how to reduce the power consumption by taking
advantages of P-states, C-state and heterogeneous architectures. It is difficult to increase for-
ward processor performance and efficiency through hardware solutions, but there is still much
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room left for software solutions. The following section introduces several software solutions to
optimize the energy usage efficiency: increasing the load level of the physical machine through
resource arrangement.

1.2.3 Energy proportional design: Software solutions

Recently, the break outs at hardware level have been slowed down due to fabrication pro-
cess. Comparing to hardware design, software consolidation provides more possibilities for
researches to improve the energy proportionality of an existing infrastructure, as it has less re-
quirements on hardware architecture and is easier to implement [BCH09]. Likewise, as shown
by figure 1.5, more IT load, better the energy efficiency of servers. Conversely, less the servers
are utilised, worse the energy efficiency. Therefore, software consolidation can take effect on
two things to improve the overall energy efficiency: a) for servers: increasing IT load; b) for
clusters/data centers: turning off unused servers. This section details some commonly adopted
software consolidation solutions on energy proportional designs, including virtualization tech-
nology, server consolidation, VM/container migration and right sizing policies.

Virtualization Virtualization technology is a popular and widely applied method in improv-
ing energy proportionality for computing systems. Virtualization can reduce the power con-
sumption at data center level by assembling job into less Physical Machines(PM). In this man-
ner, the rest of the PM could be turned off or turned into deeper sleep mode. In 2011, Koomey
[Koo11] published a report for The New York Times. The study found the growth of electricity
has slowed down because of energy efficiency improvements brought by virtualization: from
2005 to 2010, worldwide electricity consumption increased only 56% instead of a doubling
as observed from 2000 to 2005. Here, we discuss two forms of virtualization which have cur-
rently many mature use cases: Virtual Machine (VM) and Container. VM technology
provides a complete and isolated environment between multiple systems. Relying on partition-
ing [BHR89], virtualization enables distributing hardware resources of a PM to multiple VMs.
For a VM environment, guest refers to the process or system that runs on a VM, and host
refers to the underlying hardware platform that supports the VMs. Thanks to the isolation, VMs
can coexist and run simultaneously on the same hardware platform. The security or system
failure that may occur on one guest system will not affect the others [JR05].

Server consolidation and VM migration Server consolidation entails replacing multiples
servers running at low utilization with a single server running at a higher utilization [HLM+09]
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[SSS+16]. And the consolidation process involves VM migrations between different PMs [FNCR11].
Since VM acts as a fully functional system, the entire VM can be migrated to the other nodes
on the network at run time [JR05]. There are two challenges in performing effectively VM
migrations among nodes:

— Optimizing VM placement. Hardware sources of VM is allocated and fixed once created
(i.e. the amount of capacities of CPU/RAM/Storage and etc.). The size of VM varies ac-
cording to the job requirement. However, the sum of resources required by VMs should
not exceed the fixed capacity of PM. The real capacity of a physical machine is fixed (for
example, 64Gb of RAM). Therefore, the capacity volume demanded by any VM should
consider the available capacity left in the physical machine, in order to avoid "overcom-
mit". Common objective to save energy in a data center is to reduce the number of active
PMs, thus an ideal VM placement algorithm could provide better use of PM resources,
so as to minimize the number of active PMs [SSS+16].

— Minimizing delay and energy cost. Even though the VM migration can bring in energy
saving benefits, migration operations among different PMs still requires a mount time,
this delay could be significant and lead to additional energy cost, if the migration fre-
quency is not suitable [OAL14].

Lefèvre and Orgerie [LO10] propose Green Open Cloud (GOC) architecture as an energy-
efficiency framework dedicated to Cloud architecture. They develop a prediction algorithm to
anticipate the upcoming recourse requirements in order to switch on the nodes in advance.
Frequent On and Off cycles have been avoided by aggregating the reservations. Finally, their
solution is validated on a physical cloud nodes and 25% electric consumption is proved to be
saved in using GOC.

Khosravi et al. [KGB13] introduce Energy and Carbon-efficient (ECE) VM placement al-
gorithm. Their proposal considers both Power Usage Effectiveness (PUE) and carbon footprint
rates. The simulation results of CloudSim show that, the ECE can reduce the power consump-
tion by an average of 8% and 20% and the CO2 emission up to 10% and 45% comparing to
other solutions. These reductions have no degradation effect on Quality of Service (QoS) to the
platform.

Later on, renewable energy resources implementations have been considered on VM mi-
gration. In the work of Li et al. [YAJ17], solutions have been proposed to maximize the use
of on-site solar panels for small/medium-sized data center (with 20 to 150 servers). In terms
of scheduling VMs, they combine the algorithm of First Fit Decreasing (FFD) and resource
over-commit, aims to use as less as PMs. Then they propose solution to find optimal solar panel
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dimension and battery size so as to balance the energy losses brought by battery inefficiency and
VM migrations cost. Comparing to other approaches based on Energy Storage Devices (ESDs),
the proposed solution can save up to 33% more energy consumption.

Container Migration Containers are also referred as OS level virtualization [Sch14]. A con-
tainer is an isolated software package out of the rest of the system. The package provides all
the dependencies, codes and libraries are assembled to a distinct image, so as to support an
application running quickly and reliably across different computing environments. Unlike VM,
containers do not replicate the entire operating system, they just keep the necessary compo-
nents needed to operate on. This strategy makes them more lightweight and easier to develop. In
terms of migration, containers on a PM are not only sharing the underlying OS kernel but also
some libraries. Therefore, destination PM should prepare these libraries before taking in mi-
grated containers. Common container migration technologies including: check point and restart
(CR) [MKK08] and another project CRIU [con] (based on CR). Other than containers, VMs
have complete and isolated execution environments (an OS) once created, they can be received
and managed by other PM [FGXR18]. Recently, container migrations become more popular in
the internet of things (IoT) domain. The lightweight containers are very suitable for supporting
IoT equipment, which have usually limited computing capacities [PVM+19].

Slow/Shut down policies Considering the inefficiency brought by high energy usage at idle
state, shutting down unused servers that are not expected to be used in a long period, is ex-
pected to achieve reasonable energy savings. Moreover, when applying consolidation work-
loads for fewer node, overall energy can not be reduced effectively while switching on un-
used nodes. Meisner et al. [MGW09] propose PowerNap in their work. PowerNap is an
energy-conservation approach which is able to switch the entire system rapidly between a high-
performance active state and a near-zero-power idle state. Rather than powering off the unused
idle servers, authors intend to put them into deep sleep mode in exchanging for shorter wake-
up time. This method suits especially for a unpredictable dynamic system, where user demand
varies rapidly and randomly.

Benoit et al. [BLOR17] point that, shutting down policies can not be applied at large-scale
if no constraint is respected on the target system. The model proposed addresses various con-
straints, such as time and energy cost of shutting down and waking up, power capping con-
straints imposed by provider, etc. The author present formal definitions for three shutting down
models with different features: Basic Models, Sequence-Aware Models and Power-Capping-
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Aware Models. They also provide possible applications of these models through simulations
on real workload traces. The simulations show that the models can be used only or combined
according to different application scenarios and architectures.

Shutting/slow down policies can combine with VM migrations to move forward the en-
ergy proportionality at data center scale. However, how to determine the number of servers
to turn into slow mode and how to deal with upcoming requests remain still a challenge. Lin
et al. [LWAT11] propose the idea of "right sizing" the data center, in order to avoid overhead
brought by infrastructure and make the data centers more energy proportional. "Right sizing"
refers to dynamically adapt the number of active servers to match the current workload. Unused
servers are allowed to enter a power-saving mode (e.g., go to sleep or shut down). In their work,
they propose online algorithm Lazy Capacity Provisioning (LCP) to minimize the total cost.
Total cost including two cost models: a) Operational cost related to active server’s activities; b)
Switching cost, modeling the costs of changing states between active and power-saving modes,
such as delay caused by migrating connections/data/etc. (e.g., via VM techniques). Later on,
many studies have been propose to optimize and extend the work of LCP [AQ18] [LLWA12]
[ZZS18].

1.2.4 Advanced power management

Nowadays, data centers have multi roles and become more and more complex: heteroge-
neous, geographically-located, mixed energy resources, etc. Apart from power proportional de-
signs targeting at optimize single system energy efficiency, power management is essential for
such large scale data centers in regulating hardware and energy resources. Nowadays, many sites
have implemented renewable resources on site. In these cases, advanced power management can
help for instance: avoiding safety issues, minimizing total cost and promoting the green energy
across different sites. In this section, we concentrate on several power management approaches
dedicated to large-scale data centers, from traditional "power-capping" approach to newer op-
portunities brought by Geographical Load Balancing and block chain.

Power Capping Power capping is a hardware mechanism to cap peak power of servers. Most
servers have been shipped with this mechanism to limit the peak consumption of servers to
stay within a set threshold [LWW08]. For example, Intel apply Running Average Power Lim-
its (RAPL) technology to enforce in hardware a given power limit. RAPL scales up and down
core’s frequency by tunning the P-states, in order to limit the power under constraint [CBB17].
One of the typical usage is provisioning power consumption of servers lower than observed
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peak, so as to ensure safety. In practice, real word application can barely exercise every sub com-
ponent of server at the peak consumption denoted by nameplate ratings of server. Data center
designer measure the peak power of each individual server by running the hosted application at
the highest request rate supported by servers. However, peak power may increase after software
changes or reboots. Power capping technology can fix the peak power once determined, thus
avoid damaging circuits and power distribution units. Capping the peak power of servers can not
save too much energy. Instead, changing cap levels dynamically according to workloads will be
more efficient. Coordinated power capping systems have been proposed [WCLK12] [WDG+16]
to make control decisions efficiently and safely.

Intel has applied the power capping technology by using "Intel Dynamic Power Node Man-
ager (DPNM)", which adopts IPMI interfaces and an add-on software in order to balance and
trade off power consumption against performance for a group of servers [Int15b]. One major
challenging in applying power capping is reducing maximum energy without losing too much
performance. Intel’s power capping technology has been successfully applied into a data center
of Baidu: for a three-server rack, a 750W power capping policy has been implemented (250W
per server), rather than capping the power for each individual server. Before power capping pol-
icy, the peak power at rack level can achieve 900W. The implementation policy has been tested
on other levels as well, such as 200W and 260W in place, in order to evaluate the final impact
on performance. Finally, the optimal policy level set to 250W is confirmed to reduce platform
power consumption while maintaining an acceptable performance level [Sam09].

Sun et al. [SLH+16] discover that applications under different hardware resources allo-
cations, such as different CPU capacity, memory size and I/O bandwidth configurations, can
have similar performances but distinct power consumption. They defined this phenomenon as
"Performance-Equivalent Resource Configurations (PERC)". This observation exhibit the pos-
sibility of reducing energy usage of running an application by re-allocating hardware configura-
tions without performance degradation. Generally, power capping methods based on resource-
constrained focus on cutting down CPU-related activities when current power usage exceeds
power budget, which will more or less lead to performance degradation and be less effective
when dealing with non CPU-intensive applications. Authors introduce a new framework of
power capping and propose an heuristic algorithm called PowerCap in using PERC replace-
ment. Basic idea of this approach is to select the optimal one among several PERC candidates,
which has the highest power reduction and least or no performance degradation.

Recently, some innovative methods combined with up-to-date technologies have been pro-
posed for large scale data centers power managements. These propositions, such as Geographi-
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cal Load Balancing (GLB) and blockchain give new ideas and directions for decreasing forward
the energy consumption of future data centers.

Geographical Load Balancing (GLB) Recently, concept of GLB and "Right sizing" (as men-
tioned in previous subsection) provides new opportunities to make the large scale data center
(with thousands of servers) more energy proportional [QWB+09] [ZZS18]. GLB distributes dy-
namically the workloads to various data centers at different locations. In the first place, GLB
is proposed for safety and gaining economical benefits for industries. For example, preventing
shutting down services or losing permanently data from unpredictable accidents like nature dis-
aster at one location [Avi19]. In terms of saving money, energy prices varies dynamically across
different regions according to nature resources conditions (wind, solar variations), local time
difference, etc [IA09] [RLXL10]. GLB can be applied to reduce total cost by moving services
from one location to the others with lower electric cost [GP13]. However, the action of reduc-
ing cost can paradoxically result in the rise of total energy use [LLW+11b] [GP13]. Nowadays,
researches are trying to "follow the renewables" in using GLB, which means to use as much as
"green" renewable energy instead of "brown" fossil fuel energy. Liu et al. [LLW+11a] inves-
tigate the possibility of powering up internet-scale systems entirely or nearly with renewable
energy. Their result highlight the effectiveness of using GLB in reducing the brown energy use.
GLB could significantly increase the renewable energy capacity. After that, emerging solutions
have followed up to optimize the concept [LLW+11b] [GP13] [TQdAB17].

Block-chain technology Blockchain has also been applied to help improving the general en-
ergy efficiency of data center. In the work of Xu et al. [XWG17], the authors consider using
block-chain technology to minimize the total energy consumption of cloud DCs connected to
both power grid and fluctuating green energy (wind, solar and tide) resources, without prior
knowledge about future green energy generation. Traditional resource management models
adopt usually a scheduler to handle request and VMs migrations across different clould DCs.
And the migration process will cost a lot during network congestion. In order to reduce the extra
energy cost spent at request scheduling and request migration among DCs, the authors propose
a block-chain-based decentralized resource management framework to replace the scheduler.
Moreover, block-chain features bring other benefit like robustness to the framework, as failure
from one data center will have no impact to the continued resource management, which brings
significant robustness to the data centers. In the end, they implement the reinforcement learning
(RL)–based method in the framework to minimize the total energy cost from request migrations
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among DCs. RL generates the model from learning historical data, therefore, prior knowledge
of the upcoming renewable energy generation is not required. In the end, they valid the proposi-
tion by running the simulation in Google cluster workload traces. The results achieve 50% and
20% more energy savings than Round-robin(RR) and MinBrown(MB) approaches respectively.

1.2.5 Advanced cooling technologies

High temperature remains the main cause of component failure [AR08]. Data centers have
to be adequately cooled for guaranteeing sustainable safety and reliability to IT equipment.
As we mentioned in section "Introduction", traditional cooling infrastructures usually take up
about 50% of the total power consumption in a data center, and could be even worse in some
cases [EJF14]. Therefore, the improvements contributed to optimize the energy efficiency for
cooling system represents an effective manner to reduce the global power consumption of
data centers. Recently, the evolution of servers increases continuously power density. In or-
der to avoid hot spots, temperature is usually set below the IT requirement for the cooling
system [NBA11], which results in considerable waste and inefficiency. Therefore, advanced
cooling solutions have emerged to improve the cooling ability while reducing the energy use,
for example, increasing heat transfer efficiency by placing cooling equipment closer to the heat
generator components (rack, servers, even CPU); taking advantages of the outside environment
conditions to reduce the cooling cost; designing buildings with special structures to facilitate
the air circulation, etc. In this part, we introduce some advanced cooling system technologies,
which helps the energy consumption of cooling system, especially the solutions for the DCs
with high power densities.

Air-cooled systems Air conditioning system in a data center has two fundamental functions:
cool down IT equipment and manage air distribution. According to the ways of distributing air
to the IT equipment, there are three mainstream cooling designs: based on room, rack or row.
The basic design concept of the three manners is compared in figure 1.6, distinguished by the
position of the computer room air handler (CRAH) units.

In the figure, blue arrows indicate the paths of the primary cooling supply in the room. For
Room based cooling system, CRAH units are associated with the room. Room-based cooling
has simpler and economical mechanical design, suitable for small data centers with lower power
densities (below 5kW per rack [ILA18]). For rack based cooling, each rack is equipped with in-
dependent CRAH unit, provides powerful cooling performance, and dedicates to extreme power
density situations (up to 50 kW per rack) [DR10], however, additional equipment brings extra
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Figure 1.6 – Basic concepts of room, row, and rack based cooling [DR10].

Figure 1.7 – In-Row cooling system in a DC [PK14] [LZY18]

cost on equipment, which makes rack-based cooling too expensive to afford. Row-based cool-
ing places the CRAH unit between racks, and provide relatively powerful cooling performance
to deal with high power density needs (above 6-7 kW per rack [ILA18]), and with less cost.
Rack-base and row-based cooling are designed to constrain the cooling power to target and
limited area (within rack or row), the airflow paths have been reduced, which economize a lot
the CRAH fan power and increases the efficiency. For data centers with light load, fan power is
usually wasted into wide space. Figure 1.7 shows the basic concept of In-Row design applied in
a DC environment. Nowadays, as the cost of row-based cooling has been reduced and becomes
acceptable, this cooling method has been commercialized and is considered to be a good choice
for data centers of new generations, for the reasons of high efficiency and redundancy [LZY18].

Liquid-cooled systems Direct air cooled system is still attractive as a conventional cooling
technique wherever possible, thanks to its mechanical simplicity [Ete07]. However, air-cooled
system is not supposed to be the best solution for DCs with high power density as the cool-
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ing capacity and air management are no longer adequate. The poor air management may result
in rising local temperatures and harm the IT equipment [CYP14]. Liquid-cooled systems have
been proposed in dealing with high power density situations. Among all the liquid cooling
techniques, liquid cold plates are the most advanced commercial devices [Ete07], which are
equipped by certain server models and provide server-level cooling solutions: cold plates are
heat exchangers in direct contact with heat generating sources like CPU, memories. For exam-
ple, in 2010, IBM built a hot-water-cooled supercomputer prototype called Aquasar in Zurich
as part of IBM’s First-Of-A-Kind (FOAK) program [ZMT+12], the built-in microchannel cop-
per coolers replaced the heat spreader and contact directly to CPUs and DIMMs (Dual In-Line
Memory Module, a type of computer memory). The chip level cooling ensures high efficiency
heat transfer between components and the water, as shown in figure 1.8. The prototype also
disposes of an air cooled part to help comparing the performance between air and water cooled
systems. The comparisons show that, thanks to the higher thermal conductivity and specific
heat capacity of water, heat can be transferred from chip to water more quickly and easily. For
water cooled side, the temperature difference of 15 C◦ between water and chip is sufficient to
meet cooling requirement, while for air cooled side, however, the difference mush reach 35 C◦.
That allows water being heated up to 60C◦ without causing overheat of chip (the temperature
of chip must be kept below 85C◦). Moreover, such high temperature water at outside provides
opportunities for heat reuse, such as heating building spaces [IBM10].

Figure 1.8 – Water cooled IBM Blade Center QS22 [ZMT+12]
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Free cooling Free cooling, also commonly known as the cooling system in economizer mode,
is believed to be the most effective way to save cooling energy consumption. As recognized by
the name, free cooling is meant to cool the facility with natural free resources, usually by tak-
ing advantage of outside conditions [ZSX+14]. Therefore, it can help even replace the role
taken by traditional mechanical cooling. For a long period of time, the adoption of free cooling
is suspecting, because the outdoor condition was not considered appropriate for a data center
environment, as IT devices requires strict working conditions, especially the operating temper-
ature and humidity [ZWZ17]. In 2008, ASHRAE TC9.9 evolve the requirements to expanded
the environmental range for data centers to cover more locations in the world and enable longer
operating hours in economizer mode. Later on, in 2011 ASHRAE update the TC9.9 guideline
by including expansion of the environmental classes, to provide different operating envelopes
that matches different business values and climate conditions [Com11].

The 2011 updated version brings new opportunities in saving energy at cooling side. Since
then, free cooling technologies experience emerging developments. As shown in the recent
ASHRAE thermal guidelines [Com11], the recommended envelope (Rec) defines the long term
operating limits that can ensure the greater reliability of IT equipment. The allowable classes
(A1-A3) specify that, the environmental conditions for data centers operated at economize mode
are accepted to loose to allowable envelopes for short periods of time, without affecting the over-
all reliability and operation of the IT equipment [Com11]. Different classes define envelopes for
verifying functionality of IT equipment according to different business purposes [Dem15]. Ac-
cording to a white paper of Green Grid [HPB12], 99 % of the locations in Europe is able to
use air-side free cooling all year, if data center apply the A2 allowable envelopes. Nowadays,
free cooling is becoming an essential component of the modern DC [GE19]. There are different
designs for realizing free cooling, such as air-side, water-side and heat pipe system [ZSX+14].
This part concentrates at free cooling through air-side and water-side, their benefits and appli-
cations will be discussed as follows.

The most applied free cooling technology is the air-side free cooling. Air-side cooling makes
use of outside cold air to take the whole or part of the role of refrigeration component. The
outside air can be used in a directly or indirectly way. Direct air-side free cooling draw the
outside cold air directly into the data center room, when temperature difference between inside
and outside is suitable [Sha12]. In terms of implementation, direct air-side free cooling is the
simplest way to apply free cooling technology. Despite for the simplicity and benefits in cold
climate zones, direct air-side free cooling can bring in indoor environment humidity, particulates
and gaseous contaminants [CHP+11] affecting the IT reliability. Therefore, ventilation system
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is required to work along with fresh air handling unit, includes dehumidification device, filters
and air cleaners to guarantee the indoor air quality. Lee et al. [LC13] conduct a simulation to
examine the potential energy savings of data centers located at 17 climate zones, their study
show that direct air-side cooling is not suitable for regions with too dry and humid climate
zones, additional cost demanded by fresh air handling unit will overcome the benefits obtained
from free cooling. Moreover, for the regions located in hot areas such as Turkey, the energy
savings varied with the months in the year [BA11], free cooling has less benefits from June to
August as the outdoor air temperatures is too high.

In order to solve the problems led by direct air-side free cooling, other free cooling tech-
nologies have been proposed. Firstly, the outdoor air can be applied in an indirect way to cool
the indoor air, which we called indirect air-side cooling system. Generally, this design uses an
air-to-air heat exchanger, in order to avoid the indoor air mixing with the outside air [NBA11].
Kyoto Wheel is a classical example applying this design [Pot11]. In addition, when difference
of temperature between indoor and outdoor is small, this type of cooling system can be used
along with the evaporator to extent the operating hours [LNL15].

Water-side free cooling is another solution, due to the significant thermal mass of water,
natural cold water is a good chose to transfer heat. Water-side free cooling aims at cooling
down the return water in a chilled water directly, or indirectly with a cooling tower [DW17].
Clidaras et al. proposed a water-based data center placed on ship(s), specially for the zones near
sea. The cooling system consists of a closed water loop with seawater-to-freshwater heat ex-
changer, natural cold water from sea is conducted to decrease the temperature of the freshwater
flow used for cooling IT devices. The data centers on the sea could also take advantage of the
sea waves when applicable by including further a wave-powered electrical generator into the
grid. More commonly, the water-side free cooling is introduced to work alone or together with
mechanical refrigeration mode, the system can switch to or work partially at economizer mode
when environmental conditions meet the requirement [Lui10]. The returned chilled water can
be cooled by cold air or cold water. For example, depends on seasons and weather, mechanical
refrigeration can stop completely or partially producing chiller water when the outside air is
cold enough [ZWZ17]. More advanced system designs propose the combination of both free
cooling resources and renewable resources to make the system more efficiency and adaptable
to more zones with different conditions. Hamann et al. [HIVK11] propose an energy efficiency
data center cooling system combined the usage of free and/or solar cooling when possible. The
cooling system includes a free cooling unit and/or a solar cooling unit, one or more modular
refrigeration chiller, and a water loop. The direction of the water loop is selected by a control
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unit, through one of the above cooling units or in a combination way. The decision is determined
by several aspects: data center thermal load, ambient temperature (condition for free cooling),
available sunlight energy (condition for solar cooling). As highlighted by Lee et al. [LC13],
water based free cooling system worth more attention for too dry as well as humid climate
zones.

In this section, we present the solutions of building a "green" data center with low environ-
mental impacts. A "Green" data center can be achieved by increasing the usage of renewable
energy resources and reducing the total energy consumption. Servers and cooling system con-
sume most of the energy required by a data center. We briefly introduce the hardware and
software solutions to increase the energy efficiency of server, by means of energy proportional
designs. The evaluations of the solutions mentioned above, in terms of performance, efficiency,
effectiveness and reliability, rely tightly on precise power consumption measurements or sim-
ulation results. In the next section, we are going to present the previous studies concerning the
power characterization methods for servers, from instrument and from power models.

1.3 Power Characterization for Servers: Hardware Solutions

Cloud data centers can be formed by a great number of servers. Reliable power characteri-
zation is an essential part of power management for data centers. Accurate power measurement
data is also indispensable for building reliable power models. We are going to give more de-
tails in the next section 1.4. In this section, we list and compare some alternative economical
instrumental solutions by discussing principally the following properties: accuracy, availabil-
ity, we classify the power measure instrument methods into three categories and detail them in
the following subsections: internal power meters in 1.3.1, external power meters in 1.3.2 and
embedded power meter in 1.3.3.

1.3.1 Internal power meters

Internal power meters allows studying the contribution of each component to the total power
of server. Traditional technology uses a digital meter to measure the voltage drop across a shunt
resistor across the server motherboard, and to compute the power dissipated on the wire. Sev-
eral previous studies use this solution to analyze the power consumption behaviors at component
granularity while running different workloads: [BJ08] [BEK+02] [DS12]. With the increasing
demand of analyzing power consumption for individual components in the server, several solu-
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tions have been proposed to target this problem.

PowerPack PowerPack is a framework composed of hardware components (e.g., sensors
and digital meters), and software tool (e.g., drivers, user-level Application Programming Inter-
faces (APIs)) [GFS+10]. Together, PowerPack allows power consumption profiling at compo-
nent level in a high performance cluster environment. Total power consumption can be isolated
to each subsystem, such as processors, disks, memory, Network interface controllers (NICs).
Later on, These measurements can be correlated to code segments of an application. Power
consumption of individual component is captured by a precise sensing resistor tapped into each
DC power line, then use a digital meter to measure the voltage difference between two ends of
the resistor. Total AC power is also measured by an inline sensor device between system power
cable and the wall. The combination of AC and DC measurements allows evaluating the loss of
AC to DC conversion as well. Software has been developed to collect, synchronize and analyze
data recorded by all the sensors in a manner of "out-of-band", which means using a separate
computer system to trait the data. Software compatible with many widely used power instru-
ments available in the marketing, including NI Device, Watt’sUp Pro, Yokogawa, RadioShack
and Baytech PDU.

PowerMon2 Powermon and Powermon2 are low cost power monitoring devices designed
for analyzing both entire and sub systems’ power consumption inside commodity computer sys-
tems. Powermon devices are integrated with power meter that connects between an ATX power
supply and the other internal components, such as motherboard and hard disk. Powermon can
make separate voltage and current measurements on each of 6 DC power tails, at the frequency
of 50Hz through a USB interface. PowerMon2 disposes of 2 more measurement channels for ad-
ditional peripherals such as disks and graphic processing unit (GPU), it can reach up to 1024Hz
for single channel and 3072Hz divided for multiple channels measurement sampling. It fea-
tures also a smaller form that allows fitting in a standard 3.5" hard drive bay of a 1U server
chassis [BLFP10]. Figure 1.9 shows the Powermon2 device.

PowerInsight: PowerInsight follows the same principle as PowerMon2 and is built on
top of BeagleBone board that uses an ARM Cortex A8 processor with 256 MB of DDR2 mem-
ory. BeagleBone has small size but powerful enough to satisfy capability and connectivity re-
quirements. Scaling is able to provide raw value for current in mA, voltage in mV and power
in mW. Sapming frequency can be greater than 1KHz, which is limited by user-space over-

54



1.3. Power Characterization for Servers: Hardware Solutions

Figure 1.9 – Powermon2 [BLFP10] ©2010 IEEE
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head.The board can be connected via the USB device and the onboard 100/100 Ethernet. Other
expansion headers includes JTAG interface, 48 pin connectors, SPI links, UARTs, analog in-
puts, GPIO. PowerInsight can be connected up to 15 components and is used to acquire power
measurements from custom power sensing boards connected to it. Each board is then connected
through Ethernet and can send the acquired data to a master node [LPD13]. Figure 1.10 shows
the connections diagrams of PowerInsignt within a motherboard and among several computing
nodes.

Figure 1.10 – PowerInsight internal and external connections [LPD13] ©2013 IEEE

Internal power meters are capable of conducting component level power measurements,
which enables the researches to specific architectures within computing systems. However,
when dealing with a large-scale data centers with a great number of servers, each node need
independent device, the installation, management and maintenance will be complexe. More-
over, most internal power meters are made for laboratory research purpose instead of being
commercialized, the products are not usually available to get in the market. Therefore, internal
power meters are more suitable for specific laboratory researches, such as understanding the
energy flow within independent or small scale servers. In real situations, the commonly used
power meters for getting power data of servers are external 1.3.2 and embedded 1.3.3 power
meters, we are going to give some examples in the follow parts.

1.3.2 External power meter

External power meter usually stands between wall plug and the power supply of device.
High accuracy power analyzers such as devices accepted by SPEC PTDaemon Tool in this
list [Cor], are capable of providing highly accurate power consumption data (refer to "Server
Efficiency Rating Tool (SERT)" at section 1.1.2 for more details). However, their limitations
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like high cost, weak support of integration with server systems make it unrealistic in widely
using high accuracy power analyzers in a data center environment. Energy measurement errors
can be accumulated according to instrumental imperfections and data processing inaccuracies,
some principal reasons are summarized as follows:

— Measurement errors from Voltage and current sensors. Power cannot be measured di-
rectly, the value is calculated by multiplying instantaneous voltage and current data from
sensors. Each sensor exhibit a certain measurement error which is inevitable due to man-
ufacturing tolerances.

— Analog to digital convection (ADC) error. Signal come from electrical sensors need to
be filtered to reduce aliasing and noise then be converted from continuous time domain
to discrete steps.

— Low pass filters. Data sampling rate may not be fast enough to track the highly dynamic
behaviors of computing system (in particular for CPU).

— Data conversion. Signals from sensors needed to be converted to machine processing
data, multiplied to be power value then to human readable data format. Each conver-
sion/manipulation may introduce additional errors due to limited resolution.

— Time stamp latency. Each measurement is tapped with a time stamp. However, it is hard
to determine the latency between the time stamp and the exact time when measurement
sample is taken.

In this section, we investigate several low cost external power meters in the marketing to
provide some references in choosing power meters for servers.

WattsUp Pro: Wattsup Pro was widely used to monitor real-time electricity usage and
cost. Currently, the provider of Wattsup series has gone out of business and new product is no
longer available in the market. Once installed, the device collects and calculates a wide variety
of data, such as power (in Watts), Root Mean Squared (RMS) potential present on the power
line, current (in ameres), estimated electricity cost (daily, monthly) [Tec15]. The device stands
between the power supply and the wall plug, can be connected via USB cable. Official logging
software tool can no longer be found but there are several open source libraries for python to
redirect the measurements from WattsUp pro to PC [Lin16] [yyo15].

PowerSpy: PowerSpy is an advanced energy analyzer, it can work in both autonomous
data logging mode and real time mode. In real time mode, PowerSpy can serve as an os-
cilloscope, data such as voltage, current, power (RMS and peak), line frequency, etc. can be
transferred in real time via Bluetooth to user’s PC. In data logging mode, energy information
can be logging into internal memory (4 GB) in a CSV format. Internal storage is able to store
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data for one month with a resolution of 20ms and up to 20 years with a resolution of 5 years.
Reliable measurement is guarantee of 1% precision for a large range, specially for very low
power: current from 1mA to 6A, voltage from 90 to 240V (AC), power from 10mW to 1300W
and frequency from 45 to 65Hz. A windows based software PowerLog is also developed to
facilitate the collection, virtualization and analysis of the data. [Alc]

Power distribution Unit (PDU): PDU in data center is used to distribute AC power to mul-
tiple servers and related IT equipment. PDUs vary from simple 120 volts power strips to units
that bread out 240 volts into 120 volts and three phases. [Dav]. Advanced high edge intelligent
PDUs are equipped with multiple functions to satisfy advanced power management require-
ments in data centers, such as power filtering to improve power quality, monitoring remotely
via the SNMP/LAN protocol from a web browser. Moreover, intelligent PDU allows power
metering at rack level helping operators to determine real-time power usage and rack capacities
in order to identify underutilized servers, avoid downtime brought by overloaded circuits and
realize load balancing intelligently to utilize power resources efficiently [Inc] [Tec]. The PDU
is designed for power management purposes in data center, therefore device like PDU may have
limited temporal resolution. [HIS+13].

External power meters require additional investment, besides external power meters, nowa-
days, more and more servers propose embedded power meters in their product, gives an other
option. The power data can be requested directly from the operating system through specific
interfaces such as IPMI and Redfish.

1.3.3 Embedded power meter

IPMI and Redfish are usually available in modern high performance servers. They can be
used to monitor system state information such as power consumption, inlet and exhaust tem-
peratures through specific interfaces. IPMI represents for Intelligent Platform Management In-
terface, created by Intel, Dell, HP and NEC in 1998. It is a standardized hardware management
interface and has been widely implemented on more 200 server vendors nowadays [Int]. IPMI is
designed to realize system-management independently without passing through OS. Adminis-
trators are allowed using IPMI to manage the machine locally or remotely regardless of its state
(on or off). Monitoring system status is one of the functionality of IPMI. IPMI can communicate
with Baseboard Management Controller (BMC) to retrieve data of certain hardware components
(temperature probe, Fans, power supplies, etc.). BMC is a specialized micro controller embed-
ded on the motherboard by the vendors. There are several open source tools supporting IPMI
protocol, such as ipmitool, freeipmi, OpenIPMI, etc. Then, with the massive growth in size and
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complex of Data centers, traditional IPMI is not sufficient to manage the modern scalable data
centers anymore. Hence, In 2010, Distributed Management Task Force (DMTF) proposed Red-
fish to overcome the limitations of IPMI in terms of scalability, performance, simplicity and
interoperability [KSSC17]. In comparison with IPMI, Redfish is a standard API adopts HTTPS
protocol, which is considered more secure than UDP protocol (adopted by IPMI). In addition,
Redfish use human readable technologies like JSON and OData, which makes the operations
such as request and response more user friendly.

Table 1.1 compares the different hardware power characterization solutions.

Table 1.1 – Comparisons between different hardware power characterization solutions

Hardware Features Precision Price
Raritan’s PX
intelligent rack
PDU series

400V three-phase power distribution Power(kWH):
±1%

404e∼
1087e

WattsUp Pro USB interface communication
Energy cost estimation
Low cost

Power(W):
±1.5%

117e

Powermon
Powermon2

Subsystems monitoring
USB interface communication
Low cost

Voltage:±0.9%
Current:−6.6%/
+ 6.8%

125e

Power Insight Component level measurement
In band and out-of band collection
Large scale instrument

Voltage:±0.3%
Current:±1.8%

N/A

PowerSpy Reliable measurement for low power
Bluetooth link between device and
software
Large internal storage of 4GB
Competitive price comparing to high
level analyzer

Power(W):
±1%

239e

Powerpack Component and total power are both
available
Compatible with many widely used
meters
Compete power collection and analy-
sis solution

N/A N/A

IPMI/Redfish N/A

In this section, we discussed the instrumental solutions to get power data of servers through
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multiple types of power meters. Depending on the types, power meters can provide measure-
ment on hardware levels, for nodes, servers (external and embedded power meters) or com-
ponents (internal power meters). Today, for optimization purposes, the power consumption on
software levels are quite demanded by researches, such as the energy consumed by an applica-
tion, a VM, a process, etc. These requirements are completely beyond the capabilities of power
meters. In order to meet the requirements, power models are proposed to provide power char-
acterisation solutions on software level. In the next section, we are going to present previous
work concerning different methods of building power models, then discuss the problems and
challenging encountered in this research domain.

1.4 Power characterization for servers: Power Models

Modeling power consumption of servers is an active area of research. Power models are
built by correlating system activity data, with the power measurement through mathematical
analysis. Comparing to physical power analyzers, power models have several advantages. First
of all, it provides an economical way to get power data, no more investment on power meters is
required. More interesting, power models are built from activity data of system, they have po-
tential abilities to link the energy data with system activities. That gives opportunities to derive
the energy consumed on software level, such as single process or Virtual Machine (VM). Next,
in using power models, it will be possible to identify the performance bottlenecks, inefficiency
of algorithm and optimize the software design in a comprehensive way. Even more, power
models are easier to integrated with server system, they can be used to orient some power man-
agement and optimization propositions, such as VM Migration, shut down technologies, etc. In
this section, we present several examples of building power models, in two classical ways: based
on resource usages (1.4.1) and performance counters (1.4.2). The problems and challenges of
achieving high precision are discussed as well (1.5).

1.4.1 Power models based on resource usages

In early stage, power models adopt the utilization of CPU as the only input. One of the
most notable study is conducted by Fan et al. [FWB07], whose study has shown that the power
consumption of servers can be accurately represented by CPU utilization by using simple lin-
ear relationship. The error is validated less than 5% for dynamic system activities. Economou
et al. [ERKR06] introduced a method called Mantis to model full-system power consumption.
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The model is built with linear regression based on component utilization metrics: CPU Uti-
lization, off-chip memory accesses, disk and network I/O rates. The model achieves an overall
error range from 0% to 15% for two different server systems. Especially, the blade model has
errors less than 5% for all cases. After that, with the evolution of manufacturing, server ar-
chitecture becomes more complex, the accuracy of models based on CPU utilization has been
questioned in many ways. Orgerie et al. [OLG10] highlight that CPU consumption is not linear
to its load. The results of their experiments showed that even applying the same CPU load, they
observed three different power consumption values. Hence, they concluded that it is indeed not
possible to get a linear function between CPU utilization and power consumption. Zhang et
al. [ZLQZ13] validated the linear model for 392 published results, which composed of differ-
ent kind of servers. They use R-squared values to evaluate their model. The authors show that,
among 395 published results, 6.5% (25 kinds of servers) have the R-squared values less than
0.95, which means the CPU utilization is not always correlated significantly with server power
usage.

1.4.2 Power models based on counters

Furthermore, researchers try to build power estimation models with performance monitoring
counters (PMC). PMCs record and store the counts of system-related activities. The principal
of models based on PMCs is the selection of several PMCs, which have good correlation with
power consumption. The models can be then illustrated through mathematical methods such as
linear, non-linear regression formula, or even by neural network. PMCs based power models
usually have better accuracy in comparing with single indicators based model. Some previ-
ous studies deem the model-based power consumption to be reasonably accurate [GMG+10]
[CM05].

Model evaluation metric The model quality can be evaluated with different metrics, they
represent for the statistical measure of how well the values of prediction approximate the real
data. Here, we present two widely used metric: Mean Absolut Percentage Error (MAPE) and
coefficient of determination (R squared).

— Mean Absolut Percentage Error (MAPE), serves as an metric to evaluate the expected
value of the absolute error loss. MAPE is calculated as the average absolute percentage
error between the actual values and the forest values at each time point [Mak93]. MAPE
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is defined as equation 1.8, where At is the actual value and Ft is the forecast value.

MAPE = 1
n

n∑
t=1
|At − Ft

At

| (1.8)

— R-squared or R2 is also known as coefficient of determination. The value of R-squared
ranges from 0 to 1, describes the goodness of prediction, the higher the better. R2 equals
1 means the prediction data fits perfectly the real data. In Numpy - a fundamental python
package for scientific computing [vCV11], the R2 is calculated as equation 1.9 :

R2(y, ŷ) = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2 (1.9)

Da Costa et al. [DCH10] evaluate the power consumption of a PC by using performance
counters, then extend the conception to predict the power consumption of single applications.
Training data is collected by running several applications and synthetic benchmarks. A small
number of optimal variables combinations within 165 different counters are selected for each
synthetic benchmark, which has the best regression result with the real power consumption
measurements. Then, a global model for the entire PC is derived by including and analyzing the
possible candidate variables. The global model has R-squared values greater than 0.94 for all
the cases when applied respectively to each benchmark. Even though they did not evaluate the
global model with some real applications, their results confirm the feasibility by using PMC to
predict the power consumption of the IT systems.

Running Average Power Limit (RAPL) proposed by Intel is one of the nobel work in power
modeling area [STIH11]. Dongarra et al. [DLLW12] compare the energy measurements from
both RAPL model and PowerPack framework with a sampling frequency of 100ms. The ex-
periments are performed on two multicore architectures: one dual-socket quad-core Intel Xeon
and one quad-socket quad-core Intel Sandy Bridge. They consider RAPL to be a trustworthy
alternative to physical measurements.

Bircher et al. [BJ12] propose a method to create power models for six subsystems (CPU,
memory, chipset, I/O, disk and GPU) by using performance counters within processors. They
chose several performance events which are highly correlated to power consumption in subsys-
tem including memory, chipset, IO, disk and processor. Resistors are connected in series with
power source to capture the power consumption for each subsystem. Their models are validated
by a wide range of workloads and achieved an average error less than 9% for each subsystem.
However, they did not mention the model accuracy for the entire system.

Witkowski et al. [WOPW13] present a practical approach to estimate power consumption of
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applications in High Performance Computing (HPC) environment. Their models are represented
as regression functions by using only a few variables related to CPU, motherboard and memory.
Variables will be included in the model once the coefficient of determination increases. Some
of the original variables are transformed to increase model accuracy. When validated with the
same synthetic workloads during training phase, their model reports an average error between
1% and 4% comparing to real measurements. However, the average error is increased to a range
of 3% -7% when tested with a real HPC application.

Some state-of-the-art power models provide platform-specific solutions [LGT08] [BdM12],
which makes the model more accurate and adaptive in current situation. However, the methods
used to build the model lack always portability, the usage is limited to specific platforms or
conditions. Some other researchers suggest advanced machine learning techniques to improve
accuracy of PMC-based models for general use. Some of them point that, the accuracy of model
can be greatly increased by removing some irregular outliers of measurements [WOPW13]
[DCH10].

Cupertino et al. [CDCP15] propose to use Artificial Neural Network (ANN), one of the com-
putational intelligence technologies to improve the model accuracy. They compare the MAPE
between an ANN model and a traditional capacitive model, and show that the ANN can de-
crease the MAPE from 5.45% to 1.86%. MAPE is a widely adopted indicator to evaluate the
model quality, less error means better quality.

Wang et al. [WCS11] point out that for a given processor, the usage of PMCs is limited
by the available event counters and the maximum number of PMCs that can be read simulta-
neously. Even more, power models with less PMC can be more flexible and applicable. Based
on this fact, the authors have then proposed a power model with only Instruction Per Cycle
(IPC) and frequency as inputs. In order to improve the accuracy, running benchmarks will be
divided into different categories based on IPC values, then they build the models separately for
each category. The authors also develop a tool “SPAN” to realize run-time power profiling and
correlate power dissipation to source code functions. Their power model is validated by using
two benchmarks from SPEC2008Cjvm, and achieve absolute error rate of 5.17% and 4.46% re-
spectively. Tool "SPAN" achieve accuracy as high as 97% on average by running FT benchmark
from NAS Parallel benchmark suite and synthetic workloads.

Mair et al. [MHEZ14] present their power estimation model called “W-Classifier”. The
model classifies different workloads into 5 categories by using some power-dominant PMCs:
INT, FPU, FPU/cache mixed, INT/cache mixed and memory/idle. They validate W-Classifier
with OpenMP multi-threaded benchmarks from NAS Parallel Benchmark suite on all 16 cores.
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They find that W-Classifier has an average MAE of 6.95% for all benchmarks, while traditional
multi-variable model achieves an average MAPE of 40.74%. However, authors admit that W-
classifier has difficulty to estimate the power consumption of benchmarks with large range
of power variation. They have then proposed to improve the model by adding more kinds of
classification categories as further work.

Power models have wider interesting applications, they are essential for conducting energy
efficiency optimization studies. However, according to some evaluation studies, the precision
of power models are not so promising as stated by the propositions. Actually the high precision
is not easy to achieve and the accuracy could be doubtful under different situations. We will go
through the potential challenges and problems stated by previous studies in the next section.

1.5 Challenging in building accurate power models for mod-
ern processors/servers

Building high accuracy power models is challenging, not only due to the advanced tech-
niques of mathematical analysis. With the evolution of processors and servers, advanced tech-
nologies have been applied into the product and rise the challenges of building high-accuracy
power models. Many evaluation reports and studies show that, the precision of power mod-
els can be potentially influenced by defects and uncertainties appeared in devices, servers and
environment. In this section, we list these underlying influences raised by the observations men-
tioned in these researches.

1.5.1 Power characterization instruments

Internal watt meter mentioned in 1.3.1 seems to be a perfect power characterization ap-
proach to take a deeper look at how power is distributed among different components. However,
the precision provided by internal watt meter is not always satisfying. [DDG+13] performed a
test and compared the readings between external power meters and internal power meters when
running the same benchmarks. They pointed out that internal power meters like Powermon2
may not have the same reading compared to external power meters. The values collected by
internal power meter are more dispersed and there are more outlier samples. Internal device can
cause a difference of more than 50% for low consuming benchmarks like hdparm and iperf.

Hackenberg et al. [HIS+13] evaluate the RAPL accuracy for a Sandy Bridge system in
using the physical measurements taken by 12V P8 LMG450 as the reference. They find that
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the accuracy of RAPL depends on the type of workloads. Computationally intensive worload
has little deviation comparing with the reference measurement. However, RAPL in the tested
system underestimated the energy consumption for a particular memory workload. The authors
blame the causes to the Sandy Bridge architecture, as the DRAM domain is not included for
RAPL measurements. In contrast, RAPL overestimate the energy consumption for idle state.
In additional, RAPL provide energy rather than power consumption data without time stamp
information updated to each sampling.

In terms of the power characterization approaches under data center environment: intelligent
PDU, IPMI and Redfish are commonly used solutions to realize large-scale power management
for a group of servers. However, there is a lack of study addressing the precision of these tools.
Moreover, there isn’t a specification uniform the precision for IPMI or Redfish adopted for
servers. Especially, at the written time, the work for Redfish hasn’t finished and is still a “Work
in Progress” on the website of DMTF [DMT].

1.5.2 PMC related problems

As mentioned in section 1.4.2, power models built on PMC could have better correlation
result than models with single indicator. Obtaining accurate results of consumption behavior
at the whole system level or individual component level is not straightforward. According to
previous studies, the difficulties include but are not limited to the following reasons:

1) Diversity. Physical architecture of server differs very much between manufactures and
becomes more complicated from generation to generation, with the emerging of new features.
The availability of PMCs differs among different machines [WOPW13]. The problem of the
diversity makes the power models less portable between heterogeneous servers in Data centers.

2) Evolution. Evolution of system is somehow rapid and random. Some indicators used to
build the original model would no longer exist with the evolution of computing system. For
example, four years after the introduce of Mantis [ERKR06] (mentioned in 2.1), John C et
al [MAC+11] have noticed that, some of the original indicators used by Mantis no longer exist
in current systems.

3) Hidden system behaviors. Some component provider make optimizations without ex-
posing to any of the existing counters, which makes some device behaviors invisible to OS
[MAC+11]. High precision will be difficult to achieve without being aware of these changes
that affect power draw.
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1.5.3 Environmental influences

Some recent studies concluded that except IT load applied to the components (CPU, mem-
ory, network and storage), the power of servers can be affected by external factors, such as origi-
nal fabrication process [CQP14] [vKBB+16a], ambient temperature [OLG10] [WKV11] [Sam12],
way of placement in a rack. Among all of the components, processors are responsible for most of
the power consumption and the variations [DGLM13] [vKBB+16b]. Normally, the consump-
tion of CPU depends mainly on IT load. As the power increases with the load, CPU works
harder and dissipates more heat, if the heat is not evacuated in time by the cooling system,
the temperature of the CPU becomes higher and leads to the rise of leakage current, which
will in reverse increase the power of CPU [KC09] [MB09]. Patterson et al. [Pat08], the ambi-
ent temperature affects server power in two ways: through temperature sensitive components
(i.e. CPU) and through server internal cooling fans. They draw the conclusion theoretically
by analyzing a typical data center configuration. CPU temperature draws much attention, as a
lot of work has confirmed the strong correlation between CPU temperature and server power
[HSP+15] [CQP14] [GAAS+16].

Mair et al. [MHEZ13]observed the power latency when running unchanged system load in
the server. Moreover, the duration of power latency follows tightly the CPU warm-up period,
and the system’s fan speed remained steady at 3600 rpm during the test. Therefore, the power la-
tency in this case was not due to the consumption of fan but to the rise of CPU temperature. The
conclusion was that the CPU temperature can result in notable variation of power consumption
before and after the stable state. They suggested to prolong the execution time to eliminate this
thermal impact and increase the model precision. However, the correlation between the CPU
temperature and the server power hasn’t been discussed and only the AMD architecture servers
are concerned in their studies.

El Mehdi Diouri et al. [DGLM13] find that different nodes from a homogeneous cluster have
different power consumption at idle state. The power consumption of two nodes stay unchanged
even after exchanging the positions. They blame the causes to the age of the processors, as the
server equipped with older processors shows more variation.

1.5.4 Variability between identical systems

Recent scientific observations altered that, the fabrication discrepancy between the printed
transistors can result in visible difference on performance and power consumption among high-
performance microprocessors. Moreover, the variation is becoming worse in modern proces-
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sors [AMK16] [MZB+17]. This observation rises doubt about the real precision of the existing
power models. For example, if a power model is built upon a server and the validation is also
done with the same one, will the precision remain the same to other servers in the homoge-
neous cluster or even to the whole data centers? According to the experiment done by John C.
McCullough et al. [MAC+11], they found that when applying a power model trained on Intel
Core i5 labeled 540M-1 to an identical processor labeled 540M-2, mean prediction errors could
be increased from 10% to 23%. They conclude that, power instrumentation is the only way to
perform accurate power characterization for servers. There are other evaluation studies hold the
similar doubts.

Henry C Cole et al. [CQP14] conducted several tests among three server manufacturers
(three from Intel, one from Dell and one from Supermicro) with similar mechanical and elec-
tronic specifications, in order to determine whether the energy use and efficiency of server had
the relationship with their brands. 5% difference of power consumption was observed among
three identical Intel servers. They switched their main components in the motherboard in or-
der to identify the source of the difference. The results showed that the difference was mainly
brought by CPU. However, these tests were performed within only three servers and the con-
clusion was suggestive rather than definitive.

Marathe et al [MZB+17] performed several tests to compare both performance and energy
efficiency variation among identical nodes on Sandy Bridge, Ivy Bridge and Broadwell clusters.
The variations are compared separately with and without hardware-enforced power limit. They
found that processor performance and energy efficiency variation is becoming worse with the
evolution of computation capacity on modern Intel processors.

Balaji et al. [BMGA12] compare the power consumption variation for modern mobile pro-
cessors. Their data shows power consumption variation among processors ranging from 5% to
17% when processors operate at the lowest and highest frequency respectively. Different power
management settings such as Turbo Boost and C-state can also affect the value of variation.

Acun et al. [AMK16] investigate the processors under Turbo Boost in HPC systems. They
point out that dynamic overclocking feature of processor is responsible for substantial frequency
difference among the processors, which explains the up to 16% of core-to-core performance
variation. The faster processors usually consume more than the slower ones.

Jóakim et al. [vKBB+16b] characterize the variation on CPU power consumption. Experi-
ments are performed on three different platforms and different processors are picked for each
platform. Identical processor samples are exchanged after each run to guarantee the identical
conditions. The power consumption can differ as much as 29.6% in idle and 19.5% at full load
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for identical samples. Their observations also show that CPU power directly influence system
power. Additionally, the authors use worklets in SERT (Server Efficiency Rating Tool) [LT11]
as workloads to stress the SUT (System Under Test). To our knowledge, during the phase of
calibration, SERT will identify the maximum rate at which transaction can be executed for
each worklet. This value is highly reproducible for one server in run-to-run test, but may vary
from server to server calibration [WNLMM18a]. However, as the performance variation among
processors has been observed in previous studies, and the authors has not mentioned the core-
to-core performance variation reported by SERT in this paper, we cannot tell if the workloads
(worklets after the phase of calibration) used to stress each sample of processor are exactly the
same.

Apart from frequency variability, S. R. Sarangi et al [SGT+08] emphasize that, within-die
parameter variation can result in process variation including both random and systematic effects,
can also negatively impact a processor’s frequency and leakage power.

However, most of the studies focus on the difference at the server level, since processors are
placed in different servers or different sockets, the results cannot eliminate the influences caused
by system noise, such as the influence of the nearby processors, the platform bugs [MZB+17]
[TAZ+17] [LKM16]. Moreover, thermal control strategy is rarely mentioned. As processors are
temperature sensitive components, different operational temperature can affect the results.

Even though high-accuracy power model is hard to realize, efforts should not be given up
on this area. The requirements of accuracy depend on concrete objectives. In terms of consoli-
dating workloads, the base power of total servers is relatively high, modeling within 5 to 10%
error is acceptable to support power aware decisions. While for scheduling applications/VMs
on a heterogeneous processor platform, the accuracy should be precise enough to capture the
difference of power consumption between the cores. Otherwise the decision policy will not be
able to make correct guide [MAC+11].

1.6 Conclusions

Environmental impacts brought by data centers in the world has been a great concern, in
terms of the huge energy consumption and emission CO2. However, the scale of worldwide
data centers continues to expand dramatically due to emerging demand in cloud computing
services, efforts and actions much be taken in to reduce the side environmental effects from
running data centers. The subject of the thesis has been part of the "Green IT" project of Orange.
The objective of the research aims to optimiser the energy efficiency of a computing system by

68



1.6. Conclusions

proposing a comprehensive power model, which takes into account the hardware and software
resources, activities and environmental variables.

In the beginning this chapter, we introduce different metrics representing energy efficiency
of computing systems, from data centers to a server. The indicators of these metrics have differ-
ent evaluation purposes and standards.

Then, in the next section of the chapter, we present the recent technologies trying to build
"green" data centers with less electrical power consumption and emission CO2. Firstly, we
introduce the current advancement of powering data centers completely or partially with re-
newable energy resources. These solutions cannot reduce the total power consumption but are
effective of reducing the environmental impacts in long term perspectives. Then we focus on the
studies regarding energy proportional designs, including both hardware and software solutions.
Since the end of Dennard Scaling, energy efficiency has no more increase possibility by rising
transistor densities on a chip, and energy proportional designs provide another promising way
to increase the energy efficiency.

Later on, we investigate previous studies addressing obtaining power data of servers, through
different instrumental power meters. We explore as well, two classical methods of building
power models: based on resource usages and performance counters.

Moreover, during the state of the art studying, we find that the precision of power models is
not determined only by mathematical techniques, they can be influenced by various of potential
uncertainties around: such as human related operations, measurement tool, complexity and di-
versity of modern servers, environmental conditions, etc. There lacks obviously comprehensive
evaluations with sufficient experimental evidences, to identify and characterize these uncertain
impacts. Therefore, the scientific research of this thesis has been conducted by covering two
parts: (1) Chapter 4-6: Experimental evaluations on the potential effects from different aspects
that may influence the power consumption of servers and the precision of power models. (2)
Chapter 7: Estimation the total power consumption of a physical cluster through power models,
including the electrical power consumption from cooling and servers.
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CHAPTER 2

IDENTIFICATION AND

CHARACTERIZATION OF THE

MYSTERIOUS AMONG IDENTICAL

SERVERS

Suitable configuration of hardware resources in data center is indispensable to make good
use of the energy resources [Com]. Much work has been done on building accurate power
predictive models for servers in data centers. Some of them proposed high-accuracy software-
level solutions as replacements to physical analyzers in order to allocate efficiently physical
resources and make the system more energy-aware, as the approaches we mentioned in 1.4.2.
The question is, if we build and validate the power model for one server, can we rely on the
precision obtained and apply directly the model to the other servers in the homogeneous cluster
or even in the whole data centers?

During our experimental measurements, we observe that there exist some external factors
that may cause unexpected power variation among identical servers and result in extra errors to
the original precision stated by power model designers. Similar observations appear in previ-
ous studies also highlight that, other than IT load, the server power could be varied by external
factors, several assumptions have been detailed in section 1.5.3. Moreover, among all the as-
sumptions, power variation brought by CPU temperature has drawn much attention as a lot of
work has confirmed the strong correlation between CPU temperature and server power. Corre-
spondent findings can be found in 1.5.3. However, there lacks sufficient experimental evidences
supporting and characterizing these assumptions, which make some of the statement less per-
suasive. Therefore, in this chapter, we try to fill the gap by providing more evidences to clarify
the mysterious. Series of experiments have been designed and performed to answer the follow-
ing questions:

— Do identical servers stressed at the same load have the same power consumption?
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— Do the factors list here have influence on the power consumption of servers: position and
arrangement in the cluster, fluctuating neighboring temperature and variation of source
voltage ?

— How thermal effect influence the power consumption of servers?

2.1 Context and objective

In this study, We investigate the mysterious of power consumption among 15 identical
servers, several workloads in SERT test suit has been used to perform stress test to the servers.
The potential factors evaluated include: different positions and arrangement of servers in the
cluster, fluctuating neighboring temperature, source voltage variations. Especially, we design
and perform experiments to evaluate and characterize the influence of temperature variation
from CPU and from the other components to the power.

The objective of this study is to identify and characterize the influences introduced by these
potential factors, that may contribute to the power variation of servers. The findings are ex-
pected to remind the further power model designers to consider the factors identified into the
model building, and correcting the precision of previous theoretical power models built from
mathematical analyses. This chapter is organized as follows: Firstly, in section 2.2, we compare
the power consumption of 15 nominally identical servers under the same load. An industrial-
standard benchmark has been used to stress different components of the servers at different
target levels. This experiment aims at clarifying how power varies among identical servers in a
real data centers. Then in section 2.3, we explore several potential factors that may contribute
to the power variation of servers in real data centers, including: server arrangements in racks,
fluctuating neighboring temperature and variations of source voltage from power supply. Espe-
cially, in section 2.4 we study the influence of temperature variation on power consumption and
performance of servers. Temperature is varied separately on CPU and on the other components
in the motherboard. Conclusions are given in section 2.5.

2.2 Variations of power consumption among identical servers
in a cluster

In this part, we execute the same test suite to 12 identical servers in a rack, in order to
investigate whether the servers consume the same under the same load. The experiments are
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performed to compare both the power and performance variations of the servers, by executing
different type of workload of multiple load levels.

2.2.1 "Ecotype" cluster overview

The experiments are performed to the servers of the cluster named "ecotype". Ecotype is one
of the clusters belonging to Grid5000 [BCAC+13], and geographically located at the university
IMT Atlantique Pays de la Loire, in the city of Nantes in France. Grid5000 is a large-scale
testbed for all areas of computer science research, such as distributed computing, Cloud, HPC
and Big Data. Until Avril in 2019, as shown by figure 2.1, Grid5000 testbed contains 31 clusters
located at 8 sites across France, users have access to 828 compute-nodes grouped in homoge-
neous clusters.

Figure 2.1 – Grid’5000 sites across France

The "ecotype" cluster is placed in an independent room of the university. Figure 2.2 show
the front and back views of the ecotype cluster in the room.

Ecotype contains 48 identical servers labeled ecotype 1 to 48, they are installed in 4 server
racks of the cluster, each server rack has 12 servers of model Dell PowerEdge R630. Placement
and arrangement of the servers in the racks are illustrated in 2.3. Ecotype applies two kinds
of server arrangements in the racks. As can be seen from the figure, in rack 1 and 2, the 12
servers are placed loosely in the rack, there are spaces without obstacle between servers. While
for servers in rack 3 and 4, they are placed right next to each other without space between them.
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Figure 2.2 – Ecotype cluster overview

The later arrangement allows putting more servers in one rack, and the power density will be
increased as well. Characteristics of servers can be found in table. 2.1.

Figure 2.3 – Position and arrangement of servers in ecotype cluster
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Table 2.1 – Characteristics of servers in ecotype cluster

Items Dell Power Edge R630

Processor Intel Xeon E5-2630L v4
Processor Release date Q1’2016
Base frequency 1.7 GHz
Cores 10 cores, 20 threads per CPU
RAM 128GB
Solid State Disk (SSD) 400 GB

Table 2.2 – Test suite information

Worklet Components Description Load Levels

LU CPU Dense Matrix operations 100%, 75%, 50%, 25%
SHA256 CPU SHA256 hashing transformation 100%, 75%, 50%, 25%
Sequential Storage Reads and writes data to/from file 100%, 50%
Capacity3 Memory XML Validation Base, Max
Idle System No load on SUT None

2.2.2 Experiments setup

In terms of benchmarking, five typical micro-workloads called worklets from test suite
SERT are chosen to stress the key components of the SUT: CPU, memory and storage sys-
tem (refer to "Server Efficiency Rating Tool (SERT)" in section 1.1.2 for more details about
the SERT Test Suite). Features of these worklets chosen are shown in Table 2.2. Before testing,
we have evaluated whether the SERT result is reproducible for same server: all the worklets
are executed twice on S1-S5. The results show that the power and performance (throughput)
variation is within 1%, the result of SERT is highly reproducible.

The experiment is performed on individual server one after one in the rack 1, with respect to
the run rules defined by SERT commit [Com13]. The system’s connection diagram is shown in
Figure 2.4, which includes principally three parts: Measurement system, Controller and SUT.

— The measurement system is composed by two devices:
Yokogawo WT330: a power analyzer measuring AC (alternative current) power pro-
vided to PSU (power supply unit) of server, with maximum measurement error less than
1%.
Testo176 + Thermocouple: a thermometer with two thermocouples connected (type K,
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Figure 2.4 – System diagram

with 0.1mm diameter)
— Controller: controls SUT by sending commands via a network cable. Controller also

gathers measurement data recorded by power and temperature analyzers with 1Hz sam-
pling frequency.

— SUT: installed with Linux OS compatible to SERT, systems are configured according to
the guidelines described in the SPEC Methodology [Com14]

2.2.3 Power variation for 12 identical servers in the same rack

The test suite is repeated on S1-S12 in sequence in rack 1. Figure 2.5 shows the aver-
age power of S1-S12 while running different worklets and figure2.6 precises the maximum-
minimum power and performance variation on percentage.

Figure 2.5 – Average power of 12 identical servers while running different worklets
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Figure 2.6 – Power and performance variation in percentage among 12 identical servers

It can be observed that under the same load, power variation among identical system in the
same rack can reach up to 7.8%. According to our observations and previous state-of-the-art
study, this variation may be caused by several potential factors, such as fabrication process vari-
ability, fluctuating neighboring temperature, way of placement in the rack and source voltage
variation. One of the effective approaches to determine the influence of fabrication variabil-
ity between SUTs is to run the test suite one more time after switching their positions in the
rack [DGLM13] or switching their key components if necessary [CQP14]. However, we are not
allowed to open or to move the servers belonging to Grid5000 because of security and assur-
ance issues, the impact of manufacturing variability will be further discussed and studied in the
chapter 3.

2.3 Evaluations of potential impacts on power variation among
servers

In this part, we identify and characterize experimentally the potential impacts that may result
in power consumption variation among identical server. The following aspects have been inves-
tigated: different arrangement of placing servers in the rack; fluctuating ambient temperature
and variation of source voltage.

2.3.1 The impact of arrangement densities of servers and neighboring
temperature

As we mentioned in 2.2.1, servers are placed in the four racks in two kinds of arrangements.
For a working cluster with active servers, rack 1,2 and rack 3,4 have different situations in terms
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of air circulation and heat distribution between hot and cold sides of the servers. All the racks
have same amount of servers, therefore, the power density remains the same. This configuration
allows us to investigate whether the way of arrangement has impact on the power consumption
of servers. In this case, four SUTs at the same height in the racks are chosen: S6, S18, S30 and
S42 (refer to Figure 2.3).

Test suite is repeated twice in two cases. In case one, only the SUT is turned on in the rack.
In case two, we increase the neighboring temperature by turning on the other servers. Figure 2.7
shows the percentage of power variation in two cases for four SUTs. The results turned out that,
for the same server under different neighboring temperatures, the power varies from 0 (idle,
S42) to 5.6% (LU25%, S30). Comparing the variation on percentage between S6, S18 and S30,
S42, different way of arrangements have no obvious impact on power consumption of servers.

Figure 2.7 – Power variation on percentage for servers under different placement densities

2.3.2 The impact of source voltage variation

While performing the tests in section 2.2.3 , we have noted that source voltage provided by
grid varies randomly from 230ACV to 240ACV. In order to eliminate these variables, we per-
form additional test in a thermal laboratory to determine whether the variations of voltage from
grid has impact on power consumption of devices. In the laboratory, the ambient temperature is
controlled and remained at 23◦C. The power supply of SUTs is replaced by an AC power gen-
erator, which can provide stable AC voltage. The tests are performed on two servers with very
different characteristics: Gigabyte mw50-sv0 and Dell PowerEdgeR630, servers’ details can be
found in Tab. 2.3. Test suite SERT is performed three times on each server under the following
voltages: 207V, 230V and 253V. The results show that, for Gigabyte, the power variation is less
than 2% for all the worklets. For Dell, the variation is less than 1.5% for worklets except the
“Sequential” (storage, 2.8 %). These observations demonstrate that, the voltage variation from
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Table 2.3 – Characteristics of the SUTs

SUT Gigabyte mw50-sv0 SuperMicro x10sdv-
tln4f

PowerEdge R630

Processor Intel Xeon E5-
2609v3,6 cores,
1.9GHz

Xeon D-1540, 2.0 GHz,
20 cores

2 x Intel Xeon E5-
2650L v4 56 cores,
1.7GHz

Release date Q3 2014 Q1 2015 Q1 2016
Memory 4 x 16Go DDR4

2133MHz
4 x 16Go DDR4,
2400MHz

4 x 32 Go DDR4
2400MHz

Storage 480Go SSD 400Go SSD 400Go SSD

source power will not bring additional impact on the server power. Therefore, voltage variation
is not the reason for the power variation between identical servers.

2.4 Evaluations of thermal effects on power consumption of
servers

In this part, we focus on the influence of thermal effects on the power consumption of
servers. Results of the experiments in previous section 2.2 show that, apart from the system
load, ambient temperature is one of the major contributors to the power variation between iden-
tical servers. However, ambient temperature variations can act on different components of the
servers. According to previous studies, CPU is supposed to be the most temperature sensitive
component. However, besides CPU, there lacks evaluations studying the temperature sensitivi-
ties of the other components. In addition, dedicate and precise temperature control techniques
at component levels is a must to conduct this study. Therefore, the experiments presented in
this section aim at filling the study blanks in this area. The impacts of temperature variations on
power consumption of servers, will be characterized separately on two parts of the server: CPU
and the other components, through variables controlled experiments.

The impact of CPU temperature (leakage current) and of the other components are studied
separately in section 2.4.2 and 2.4.3. SUTs include servers from different manufactures of dif-
ferent sizes. Fans, DC power generator and climatic chamber are provided to help controlling
precisely the thermal conditions at component levels.

79



Chapter 2 – Identification and characterization of the mysterious among identical servers

Table 2.4 – Characteristics of the SUTs

SUT Gigabyte mw50-sv0 SuperMicro x10sdv-
tln4f

PowerEdge R630

Processor Intel Xeon E5-
2609v3,6 cores,
1.9GHz

Xeon D-1540, 2.0 GHz,
20 cores

2 x Intel Xeon E5-
2650L v4 56 cores,
1.7GHz

Release date Q3 2014 Q1 2015 Q1 2016
Memory 4 x 16Go DDR4

2133MHz
4 x 16Go DDR4,
2400MHz

4 x 32 Go DDR4
2400MHz

Storage 480Go SSD 400Go SSD 400Go SSD

2.4.1 Experiments setup

Cluster environment is not able to realize the component level temperature control, there-
fore, the experiments of this part are performed in a thermal laboratory. Moreover, different type
of servers have participated in the evaluation, which makes our final conclusion applicable to
most cases. Four servers from different providers are chosen as SUT in this evaluation. They are
equipped with different Intel CPUs from different generations, their characteristics are shown
in table 2.4.

With the rise of ambient temperature, integrated fan may consume more power to reject the
heat of CPU, that could influence the final result. Therefore, in order to eliminate the electricity
consumed by fans, integrated fans in the motherboard are removed and replaced by external
fans powered by a separated DC power supply. The system diagram of the testbed to evaluate
thermal effects on CPU and on the other components are shown in figure 2.8.

The testbeds include mainly four parts: measurement system, controller, SUT and tempera-
ture control system.

— The measurement system: Fluke 430T, a high-accuracy power analyzer, allows measur-
ing AC (alternating current) power provided to PSU (power supply unit) of server, with
maximum measurement error less than 1%.

— Controller: controls SUT by sending commands via a network cable. Power analyzer
are connected to controller via USB cables, controller gathers power readings on server
power with a sampling frequency at 1Hz.

— SUT: installed with Linux OS.
— Temperature control system: External fan powered by a DC generator and climatic

chamber.
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Figure 2.8 – Test system diagram: evaluate influence of temperature variations on CPU and on
the other components

2.4.2 Impact of CPU temperature (leakage current)

Benchmark cpuburn [Rob11] is used to stress the SUT in this test. It is a CPU inten-
sive benchmark that keeps the load level at 100% and maximizes the heat production of CPU.
Cpuburn is executed on each SUT for more than 30 minutes. While running the cpuburn, we
vary manually the surface temperature of CPU via the external fan by adjusting the air flow
between fan and heat sink. CPU temperature is varied by following a same pattern on SUTs:
firstly, CPU temperature is maintained high for a period of time. Then the fan is put immedi-
ately close to CPU to cool down its temperature as low as possible. At that point, we remove
the fan, CPU temperature will increase quickly as heat generated by transistors can not be evac-
uated efficiently. The fan should be replaced before temperature exceed the threshold allowed
by manufacture, otherwise system will trigger the protection policy by lowering the CPU fre-
quency. The CPU temperature is varied manually as demonstrated in 2.9. CPU temperature is
recorded and marked by red points in the figure.

Results of four different servers are shown from figure 2.9, to figure 2.12. Blue points are
the records of server power. It can be observed that under a stable load, the instant data of CPU
temperature and server power consumption are highly correlated. The spearman coefficients are
larger than 0.93 for all the SUTs. The power varied more than 10 Watt for servers Gigabyte and
Dell PowerEdgeR630, R740.
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Figure 2.9 – Relationship between CPU Temperature and server power-Gigabyte

Figure 2.10 – Relationship between CPU Temperature and server power-SuperMicro
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Figure 2.11 – Relationship between CPU Temperature and server power-PowerEdgeR630

Figure 2.12 – Relationship between CPU Temperature and server power-PowerEdgeR740
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2.4.3 Impact of the temperature of the components other than CPU in the
motherboard

In this part, we try to characterize the influence of the temperature variation on the other
components except CPU in the motherboard. CPU temperature should maintained unchanged
while varying the temperature of the other components. In order to do so, we put the whole
server into a climatic chamber, where ambient temperature can be well configured and main-
tained. The temperature of the components will be varied with the ambient temperature in the
climatic chamber. Meanwhile, CPU temperature is remained the same (in average) by adjusting
the air flow speed of the external fan. As shown in figure 2.8. CPU and memory intensive bench-
mark stream [Joh] is used to stress the SUTs. The test is repeated twice with climatic cham-
ber’s temperature configured respectively at 25◦C and 35◦C. Results of two different servers are
shown in figure 2.13 and figure 2.14. Only the server Gigabyte and SuperMicro are concerned
in this test because of the limited size of the climatic chamber. CPU temperatures are remained
at 47◦C for Gigabyte and 59◦C for SuperMicro during the execution when the ambient (cli-
matic chamber) temperature increases from 25◦C to 35◦C. The results prove that the power
remains nearly the same when just varying the temperature of the other component than
CPU. Execution time of the benchmark stream is recorded for the two servers under differ-
ent CPU temperatures, as shown in figure 2.15. CPU temperature has no obvious impact on
server performance.

Figure 2.13 – Relationship between temperature of other components and server power - Giga-
byte
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Figure 2.14 – Relationship between temperature of other components and server power – Su-
perMicro

Figure 2.15 – Impact of CPU temperature on server performance
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2.5 Conclusions

This chapter addresses how power varies by other external aspects except IT loads. In order
to identify and quantify the influences, physical experiments have been performed to investigate
several assumptions made by previous literature. In the first place, we investigate the power vari-
ation between 12 identical servers in a physical cluster in section 2.2.3, 7.8% power variation
is observed while executing a same test suites. After that, we perform several tests to verify the
following aspects that may result in power variation: different server arrangements in the racks,
fluctuating neighboring temperature and voltage variation from power supply. The results turn
out that, influences from different arrangement and voltage variation are obvious. However,
we find that, fluctuating neighboring temperature can contribute up to 5.6% power variation
for a same server. Thermal effect, turned out to be one of the major contributors to the power
variation. Therefore, later in section 2.4, we have further investigated how the thermal effects
vary the power consumption of servers in a thermal laboratory. Thanks to the climatic chamber,
external fans and DC power supply. We are able to control precisely the surface temperature
at component levels. The influence of temperature variation on CPU and on the other compo-
nents to the power consumption of server have been studied separately. The results prove that
CPU temperature can introduce important power variation: for the server Gigabyte equipped
with an Intel Xeon E5-2609v3 CPU, the server power (fan is not included) is increased by 16%
while the CPU temperature varying from 37.7◦C to 74.5◦C. However, the server power remains
nearly the same when just varying the temperature of the other components while maintaining
the temperature of CPU. Therefore, CPU is supposed to be the most temperature sensitive com-
ponent. The ambient temperature affects the power consumption of servers via two ways: the
consumption of fans and CPU (leakage current).

The results presented here are significant for the development of a predictive model to es-
timate the power consumption of servers. Thermal effect from CPU has great impact on server
power. The results also emphasize the effectiveness of liquid-cooled solutions at component
level (refer to 1.2.5). According to the observations of the first experiment, another potential im-
pact that way cause the power variation between identical servers is the fabrication difference.
Servers in a homogeneous cluster seem not to be created "equally". However, with respect to
security and assurance policy of Grid5000, we are not able to characterize the influence brought
by fabrication variability by opening the servers. Therefore, in the next chapter 3, we are go-
ing to discuss and explore deeply the fabrication variability problems by comparing the power
variation between the most consuming component in a server: processors.
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CHAPTER 3

VARIATIONS BETWEEN IDENTICAL

PROCESSORS

In previous chapter, we observe the power variation between identical servers in a rack
under the same load. Several assumptions have been investigated by experiments. Among all
the assumptions, the influence brought by fabrication variability between servers still remains
unsolved. In such situation, we require more conditions to guarantee the same ambient temper-
ature for each server in a rack, while the security and assurance issues not allow us to do further
investigations in using these servers. Among all of the components, processors are believed to
be the biggest consumer comparing to other components, according to previous studies such
as [DGLM13] [vKBB+16b]. Moreover, recent studies altered that, the tiny fabrication discrep-
ancy between the printed transistors can result in visible difference in terms of both performance
and power consumption among high-performance microprocessors. Therefore, in this chapter,
we try to address the fabrication variability problem by identifying the differences between
identical processors.

3.1 Context and objectives

Physical experiments have shown that even under the same conditions, identical processors
consume different amount of energy to complete the same task. The variation is becoming worse
in modern processors [AMK16] [MZB+17]. In the domain of modeling, variability could rise
problem in accuracy. For example, John C. McCullough et al. [MAC+11] found that when
applying a power model trained on Intel Core i5 labeled 540M-1 to an identical processor
labeled 540M-2, mean prediction errors is increased from 10% to 23%. They suggest using
power instrumentation instead for accurate power characterization.

Recent experimental studies have identified several sources of variation such as: frequency
variation introduced by advanced performance enhancement technologies like Turbo Boost
and Multi-Threading [MZB+17] [AMK16], within die parameter variation [SGT+08], aging
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[DGLM13], etc. Even though this manufacturing variability has been observed and studied be-
fore, according to our acknowledgement, there lacks of experimental evidence supporting the
hypotheses due to limited amount of samples, especially from perspective of thermal character-
istics.

The objective of this study is to investigate the power variation between identical processors
and identify the variation sources brought by fabrication processing. Addressing the lack of
study on physical experiments and limited samples, we investigate the power variation between
samples of two processors: Intel Xeon E5345 and Intel Xeon E5-2603v2. They have the same
number of cores and Thermal Deign Power (TDP), but come from different generations. Thirty
identical processor samples participated in this evaluation for each generation. Evaluation of
the variability is done by switching processors in the same platform in order to eliminate the
influences introduced by platform design. Thermal parameters such as ambient and CPU tem-
peratures are controlled and varied with the help of a climatic chamber and an external powered
fan.

The chapter is organized as follows: Firstly, in Section 3.2, we compare the power con-
sumption between processor samples came from 2 generations. Test environment is strictly
controlled to provide equal environmental conditions. Then, in 3.3 we propose and evaluate two
hypotheses that may eventually led to difference between processor samples, from the perspec-
tives of thermal characteristics: different application of Thermal Interface Material (TIM) and
variation of leakage current. Conclusions are given in 3.4. The approaches proposed give new
directions in term of identifying and characterizing the influence of manufacturing variability
between processors. Results of our experiments highlight that more attention should be paid to
the difference between identical information systems.

3.2 Exploring power consumption variation between identi-
cal processor samples

Newer technologies bring diverse features in improving performance for processors, and in
the same time, introduce more variation regarding performance and energy usage to proces-
sors with the same design. In this section, we compare with physical experiments, the power
variation between identical samples for Intel Xeon E5345 and Intel Xeon E5-2603 v2. Details
about the processors can be found in Table 3.1. The two processors both have 4 physical cores,
the same TDP. TDP cannot represent the actual power usage of CPU [And13]. Indeed, TDP
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Table 3.1 – Characteristics of the processors

Platform name G41(socket 775) Just Game LGA2011

Processor ID Xeon E5345 Xeon E5-2603v2
Processor Release date Q1’2007 Q3’2013
Architecture Cloverdown Ivy Bridge
Base frequency 2.33 GHz 1.8 GHz
Cores per processor 4 4
Lithography 65nm 22nm
TIM Solder TIM Polymer TIM
TDP 80 W 80 W
Turbo Boost No support No support
Hyper Threading No support No support
OS ubuntu-18.04-live-server-amd64 ubuntu-18.04-live-server-amd64

refers to cooling system requirement for supporting long-term sustainable workload [HP11].
Usually, it is determined below the peak power but higher than the average power that could
be sustained for long-term use (defined by CPU provider, generally determined as the average
power during the execution of a given computation). For example, some modern Intel proces-
sors equipped with Turbo-Boost technology, which allows CPU running at the highest possible
frequency achievable for short duration [Cor13]. The power level at this point is higher than
the TDP configurations. Objective of Turbo-Boost is to complete an intensive task at maximize
performance for short-term use. In this case, this task is not a long-term sustainable workload
for the system. Even more, if execution time at Turbo-Boost is asked to be extended, tempera-
ture limit could be exceeded, conditions will not meet the Turbo-Boost running requirements,
and heat management system will slow down the clock speed until meet the sustainable average
power specified by TDP. Therefore, TDP is a reference for cooling system designer, the cooling
system should be designed to match or exceed the TDP [HP11]. In terms of the software test
environment, same operating systems Ubuntu 18.04 OS are installed on the platforms. Turbo
Boost and Hyper Threading technologies are identified as important impacts result in variability
between processors, corresponding researches have been presented in section 1.5.4. In our case,
none of the two technologies is available for the two processors. That provides an opportunity
for us to concentrate on exploring deeper sources of variability behind the design, especially the
thermal characteristics. Otherwise, the two processors dispose different designs on architecture,
TIM application and operating frequency.
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3.2.1 Experiments setup

The testbed platform is designed to create strict identical operating environment for the
processor samples. The whole platform (excluding the power supply) is placed in a climatic
chamber, where the ambient temperature is configured at 35◦C. The ambient set point is set lit-
tle beyond the ASHRAE typical requirement envelope (15- 32◦C, for products require a stable
and more restrictive environment) [Com16], so as to exposure as much as possible the thermal
characteristics difference between samples. Fan is placed on top of the processor’s heat sink and
powered by an external DC (Direct Current) source so as to avoid power variation brought by
motherboard’s fan. Homemade CPU intensive workload called bzip2 (compress folder with
different type of files) and pi_calculator (calculate bits of pi) are chosen as stress tools
to maximize the usage and heat dissipation of CPU. Homemade workloads are designed with
the following features: a) The workloads can active all the threads available in the system and
maintain them at the full load for a configured period of time; b) During the test time, instant
power of server has stable value without much variation, it is important to compare with dif-
ferent samples with stable value; c) The homemade workloads simulate the execution of actual
application in the real world, performance data (execution time) can also be obtained for further
analysis; d) Moreover, we found that workload bzip2 can make processors generate more heat
than cpuburn (with higher CPU temperature). That meets better our expectations to maximize
the thermal characteristics of samples. Samples of processors are tested and exchanged one by
one in the same platforms. When exchanging the samples after each run, we try our best to
uniform the heat paste applied between processor and fan. The platform test diagram shown in
figure 3.1 includes three parts: SUT, control and measurement system.

— SUT: Server Under Test, installed with Ubuntu Server OS.
— The control system:

Controller: normal PC (personal computer) with Linux system installed, in the same
local network with SUT and controls SUT remotely by SSH. Controller also gathers
and synchronizes measurement data recorded by power and temperature analyzers.
Climatic chamber: Servathin RC01, controls ambient temperature, provide equal test
environment.
External Fan: controls CPU surface temperature, powered by external DC source. Ex-
ternal Fan is used to replace the integrated fan in the motherboard, in order to eliminate
the power consumption variation from the integrated fan.

— The measurement system:
Power: measured by Wattsup-Pro [Tec15]. Measures contain the power consumption of
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the whole server except the fan’s.
Ambient temperature: measured by a thermometer with a thermocouple connected
(type K, with 0.1mm diameter).
CPU Temperature: collected by Linux command line tool lm-sensors.
Sampling frequency for all the measures are configured at 1Hz.

Figure 3.1 – Platform test diagram for exploring power variations between identical processors

3.2.2 Power variation between identical processor samples

In this part of study, we investigate the power consumption variations between two Intel
processors, by executing the same workload under equal test environment. Environmental con-
ditions and test processing have been detailed in previous section 3.2.1. The SUT equipped
with different processor samples has been stressed at full load during about an hour. The power
taken for analyzing the variation between processor samples is the average power during the
last minute, when thermal condition tends towards stable.

For each processor, the power consumption data are collected for all the 30 samples. While
in order to have a better view and understanding, for each type of processor, we choose 18
representative samples for presenting the results: 9 samples that consume the most and another
9 samples that consume the least among the 30 samples. Figure 3.2 and Figure 3.4 show the
rank of power consumption by running application pi_calculator. Moreover, CPU tem-
peratures are also collected during the test. The two processors both have four physical cores,
and temperatures are collected per second for all the cores by the integrated sensors. During
the stress test, all cores in the CPU are activated to run at full load. We take then, the average
temperature of four cores per second as the CPU temperature value of each sample. The distri-
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butions of CPU temperature for each sample is presented in Figure 3.3 and Figure 3.5. Right
below the power consumption figures, and take the same order. Box plot is chosen to illustrate
distributions along the test (variation of CPU temperature around about 1 hour).

Figure 3.2 – Server power comparison for samples of Xeon E5-2603v2

Figure 3.3 – CPU distribution for samples of Xeon E5-2603v2

Power variation between processor samples is calculated as the maximum percentage differ-
ence between the best and worst cases. It can be obtained form figure 3.2 and 3.4 that, processor
samples from Xeon E5-2603v2 (newer generation) have the power variation of 30% (16.1W /
51.9W), which is much greater than the power variation obtained from samples of Xeon E5345
(older generation): 2.8% (2.8W / 98.4W). In order to make sure that the power consumption
variation is not caused by execution of workload, we re-verify the power variation of Xeon E5-
2603v2 by performing the same experiment with another CPU intensive workload bzip2. The
rank of power consumption of the samples remains the same. Therefore, the power variation
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Figure 3.4 – Server power comparison for samples of Xeon E5345

Figure 3.5 – CPU distribution for samples of Xeon E5345
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observed in Xeon E5-2603v2 does exist and has nothing to do with the type of workload. In
addition, we notice that the server power at full load of all the samples of Xeon E5-2603v2 are
below the TDP (80W, refer to Table 3.1). As we already mentioned in 3.2, TDP is actually a
cooling system design requirement. It has no direct reflect to the actual working power of CPU,
it can be lower or higher than actual CPU power [And13].

The first penitential cause came to our mind is the differences of CPU temperatures be-
tween samples. However, the variation of CPU temperature can not explain the power variation:
there is no obvious correlation between CPU temperature and power consumption. Otherwise,
processor samples from Xeon E5-2603v2 have wider CPU temperature distribution than Xeon
E5345 during the whole test. As can be seen in the box plots 3.3 and 3.5, CPU temperatures of
processor samples from Xeon E5-2603v2 varies within an interval. While for processor samples
from Xeon E5345, CPU temperatures are almost stable at a constant for each sample.

Moreover, we evaluate as well the performance variation among processor samples. The
performances of samples are represented as the execution time for completing the same task
(defined by workload). The results show that, little performance variations are observed for both
Xeon E5-2603v2 and Xeon E5345, between the shortest and longest execution time, the per-
formance differences are 0.3% and 0.6% respectively. We find the results normal, since all the
samples operate at the same frequency, there is neither influence coming from Turbo Boost nor
Multi-Threading technologies. According to previous studies, operating frequency is responsi-
ble for most of the performance variation. The results indicate also that, the power variation
observed before has no relation with the performance variation neither.

In the following research, we try to find the reasons behind the power variation between
samples, especially from perspective of thermal characteristics.

3.3 The differences of thermal characteristics behind identi-
cal processors

Results of the experiments in previous part tell that, in this case, processors from newer
generation have much more power variation than the ones from older generation. CPU temper-
ature distributions along the test cannot perfectly explain the power variation. We confirm as
well that the power variation is not introduced by the performance variation. Power and CPU
temperature do not show correlation, although the different range of CPU temperature distri-
bution between the two processors still got our attention. In this situation, we try to identify
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the source of variability by investigating the differences of thermal features between samples.
The power required by processor in a server system can be divided into two parts: IT load and
associated cooling system (sink + fan). With the increase of IT load, processor consumes more
energy to meet the service requirement and in the same time dissipates more heat into the air. If
the heat is not evacuated in time by the cooling system, the temperature surrounding processor
becomes higher and leads to the rise of leakage current, which will in reverse increase the power
of CPU [KC09] [MB09]. However, there is doubt about whether the processor samples have the
same behavior in generating and rejecting heat. We are wondering if the differences of thermal
feature can also lead to the power variation among processors under the same load.

In this section, we propose two hypotheses regarding different thermal features between dif-
ferent samples of Xeon E5-2603v2. In subsection 3.3.1, we study the influence of TIM (Thermal
Interface Material), in order to verify if the new PTIM (Polymer Thermal Interface Material)
can lead to the different thermal characteristics between identical samples. In subsection 3.3.2,
we investigate the parameters of leakage current among processors (presented by static power).
We start from the mathematical formula of static power and analyses the relationship between
the leakage current and the temperature. Fans, DC power generator and climatic chambers are
provided to help controlling precisely the thermal conditions.

3.3.1 Hypothesis 1 : Thermal Interface Material (TIM) applications

Thermal conductivity of a material describes its ability to transfer heat, measured in watts
per metre kelvin (W/mK). Higher the thermal conductivity, higher the ability to transfer heat.
CPU is an electrical component with high density of transistor and circuits, lots amount of heat
can be generated quickly in a concentrated small area, that’s why we need specific structure to
help dissipating heat of a working CPU. Figure 3.6 demonstrates a simplified structure of the
thermal package design of a CPU in a motherboard. In such a structure, heat is generated within
the silicon die area. Integrated Heat Spreader (IHS) is a mental made component served as
transferring the heat from silicon die to CPU cooler (fan or liquid cube, refer to "liquid-cooled
system" in section 1.2.5), so as to dissipate heat quickly. The problem is, silicon die and IHS are
made by different material, sometimes the micro air gap between them is inevitable. However,
air is a poor conductor of heat with very low thermal conductivity value of 0.026 W/mK (at
25◦C). While for metal such as copper, the value can reach 384.1 W/mK (at 18◦C). Therefore,
air gap reduce effective contact area between silicon die and IHS, which affects dramatically
the heat transfer efficiency. TIM is therefore applied to fill the air gap between IHS and silicon
die, so as to facilitate heat exchange between them [Rac17] [Pra06].
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A thermal model proposed by Huang W et al. [HHSS05] shows that, the thickness varia-
tion of TIM can affect a lot silicon die temperature distributions across processors. Since Ivy
Bridge processor generation, Intel decides to apply Polymer TIM (PTIM) to the processors as a
replacement of Solder TIM (STIM), for reasons of economics, environment and better cooling
performance [RMPV06].

Figure 3.6 – Processor thermal package structure

In the previous experiment, Xeon E2603v2 applied with PTIM is observed to have more
power variation than Xeon E5345 applied with STIM. Type of TIM could be one of the sus-
pects leading to the power variation. If the hypothesis is correct, then the removal of TIM from
the original package of processor will effectively reduce the power variation extent between
samples. Therefore, we try to recognize the possible influence brought by TIM by removing
PTIM from the Xeon E2603v2 and re-perform the same test. TIM is hidden behind IHS from
exposure directly to outside, that challenges a lot the manipulation: we have to remove TIM
along with the entire IHS. Moreover, this manipulation is irreversible and can result in per-
manent damage to the processor. We start the verification with a small quantity of samples, in
order to reserve enough samples for further studies. Three samples consuming less: P14, P23,
P9 and two samples consuming more P30, P20 are chosen in this study (refer to figure 3.2 for
consumption information). Figure 3.7 shows the example of the processor sample after the re-
moval of TIM, the right part shown in the figure has been removed. After the manipulation, the
processor’s silicon die (lower half in the figure 3.7) is cooled directly with the heat spreader of
fan as illustrated by Figure 3.8). We applied equal amount of heat paste between silicon die and
heat spreader to facilitate the heat exchange between them.

Then we re-perform the test as described in section 3.2 and re-analyze the power variation.
Table 3.2 shows the results of power consumption and average CPU temperature in two circum-
stances: with and without PTIM. Unfortunately, removing the PTIM does not help reducing the
power variation extent between samples. After removing PTIM, most of the samples (except
P9) just have little power variation as well as with PTIM. Therefore, we think that PTIM is not
the major source leading to the power variation between identical processor samples.
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Figure 3.7 – Remove the TIM from the processor [Har19]

Figure 3.8 – TIM remove schematic diagram
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Table 3.2 – Power and CPU temperature for Xeon E5-2609V2: with and without PTIM (work-
load: pi_calculator)

Processors With PTIM Without PTIM ∆ (Watt & ◦C)

P(W) T(◦C) P(W) T(◦C) ∆ P(W) ∆ T(◦C)
P14 50.0 38.2 50.3 40.0 +0.3 +1.8
P23 50.6 40.3 51.0 36.0 +0.4 -4.3
P9 50.6 39.5 56.4 36.7 +5.8 -2.8
P30 63.9 42.9 63.3 38.9 -0.6 -4
P20 66.8 42.7 68.3 47.7 +1.5 +4.7

3.3.2 Hypothesis 2 : The parameter variation of static power

The overall power dissipation in today’s microprocessors is mainly composed by two sources:
dynamic power and static power. Other power loss such as short circuit occurs at whenever gate
switch is relative small, it can be absorbed by dynamic power [KAB+03]. In this sub-section,
we review firstly the CMOS technology as theoretical inspiration for our hypothesis. Then we
present the details of the investigation and analysis of the test.

CMOS Technology review

Dynamic power comes from charging and discharging the processor’s capacity loads. It can
be described by the equation (3.1) [STD94] [Eti18]:

Pdynamic = α
∑

CifV
2

dd (3.1)

In this equation, f is the switching activity (operating frequency),
∑
Ci is the sum of gate

and interconnection capacitance, Vdd is the supply voltage and α is the activity factor of the
overall circuit. Static power is the product of voltage supply and leakage current. There are
different kinds of leakage modes in MOS transistor, and the most dominant leakage mechanism
is sub-threshold leakage IDsub [KRH97]. IDsub is the current flow between source and drain
at off-state. Off-state current becomes now a limitation factor for down-scaling the threshold
voltage, since it determines the power consumption of a chip in its idle state. Therefore, the
static power dissipation representation can be simplified and described by equation (3.2). IDsub

can be described by equation (3.3), according to previous studies [HIG94] [BS00].

Pstatic = VddIDsub (3.2)
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IDsub = e
−qVth

akT (3.3)

where q, k, a and k are physical related constants, T is the absolute temperature and Vth is
the threshold voltage of the transistor, which sits between ground and the supply voltage.

In earlier years, traditional low-power microprocessor design focus mainly on reducing dy-
namic power consumption. At that time, static power consumption is not a limitation and is
negligible compared to dynamic power [STD94] [HIG94]. In pursuing higher performance and
lower consumption, CMOS technologies scaled the chips from generation to generation by
following Moore’s law "The number of transistors and resistors on a chip doubles every 24
months" [Moo98]. The chips then have more transistors, denser CMOS circuitry and smaller
dimension. In 2007, in applying 45nm process technology, there were 3.3 million transistors
per square millimeter (MTr/ mm2) for chips of Intel. Ten years after, in 2017, Intel announced
its latest chip generation: 10nm technology, with density as high as 100.8 MTr/ mm2, which is
30 times denser than in 2007 [Rac17]. Note that, the designation like "45nm", "10nm" refers
to commercial name for certain lithography process technology. The number doesn’t indicate
the size of any particular feature of the chip and can vary significantly between manufac-
tures [Nod16]. As a general rule, the smaller the number is, the denser the circuitry becomes.

As the chip dimension scaled, for the purpose of reliability required by constant field scaling,
supply voltage Vdd has to be decreased by the same factor for chips to keep the electric fields the
same across different generations [DGR+74]. That brings additional benefit of dynamic power
saving as suggested by formula (3.1). The threshold voltage (Vth), has also to be scaled down
along with the Vdd in order to avoid performance degradation as shown by formula (3.4) [SN90].

Delay = 1
f

= CgateVdd

IDsat

∝ Vdd

(Vdd − Vth)1.3 (3.4)

Yet, as a result, the IDsub increases exponentially with the Vth decreases [KAB+03] [ZBS+04]
according to formula (3.4). Therefore, in modern processors, static power takes greater and
greater part in consumption and becomes increasingly dominant. Moreover, advanced lithog-
raphy process with thinner xnm may have more fabrication deviations to impact the parameter
values of leakage current among identical processor samples, then leads to eventually power
consumption variation. Comparing the two processors, the newer generation E5-2603v2 with
22nm technology has 10 times more power variation than E5345 with 65nm technology. This
provides a great opportunity to empirically evaluate the impact of parameter variation brought
by CMOS technology evolution on the processors variability.
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However, there is no way to measure directly the leak current of the processor by physical
device, without "opening" some key components hidden and protected by Intel packing tech-
nology. Such manipulation is too risky and may cause permanent damage to the motherboard.
The only measure of consumption accessible is the whole consumption of server composed of
consumption of CPU (Pcpu) and of the other components including motherboard (Pchip). The
processor samples are switched one by one in the same motherboard, Pchip remains the same,
the only item can vary the consumption of server is Pcpu. As discussed before, Pcpu is composed
by dynamic and static power. It can be seen from the equation (3.1) (3.2) and (3.3) that, dynamic
power is frequency dependent value but independent from temperature variation. On the con-
trary to dynamic power, static power is temperature sensitive value, but cannot be affected by
frequency scaling. The consumption of the whole server can be then simply represented by the
equation (3.5) and (3.6):

Pserver(Vdd, Tcpu, f) = Pchip + Pcpu(Vdd, Tcpu, f) (3.5)

Pcpu(Vdd, Tcpu, f) = Pdynamic(Vdd, f) + Pstatic(Vdd, Tcpu) (3.6)

Our test platform has no support in BIOS to regulate manually Vdd. f is governed by frequency
governor "performance" and adjusted by frequency driver intel_pstate. f varies according
to system current load. In this case, the data obtained is too limited to separate and quantify the
two sources of consumption by statistical analyses. Deriving the models of static and dynamic
power of processor is interesting, but it is beyond the scope of the study discussed here. If in-
terested, Goel et al [GM16] present a systematic methodology for modeling static and dynamic
power consumption of individual cores and uncore components in their work. In our cases, for
a given processor sample, we fix f and Vdd, and suppose that the value of Pdynamic is constant
and independent from temperature variation. The parameters of leakage current as expressed in
equation (3.2) and (3.3) can be simply identified by varying the Tcpu whiling keeping the f and
Vdd unchanged.

Experiment setup

Same platform as described in section 3.2.1 is adopted. CPU intensive benchmark cpuburn
[Rob11] was used to stress the SUT in this test. The benchmark is usually used to maximize
the heat dissipation of processor. It can active and stress every thread available in the processor
at 100% utilization. During the execution of cpuburn, operating frequency (f ) is maintained
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constantly at maximum (1.8GHz). Besides ambient and CPU temperature, we monitor as well
the CPU frequency (provided by python library psutil [Psu09]). Climatic chamber is used to
vary the ambient temperature. However, as presented in section 3.3.1, five processors: P14, P23,
P9, P30 and P20 have been used to validate the first hypotheses, their TIM and HIS have been
removed. We worried that, this manipulation may change their original features and introduce
unexpected influence to the following experiment. Therefore, they are not included in this test.
Other four samples consume less: P12, P21, P6 and P4, as well as the four samples consume
more: P3, P10, P5 and P8 are chosen to validate the second hypotheses.

For each sample, we repeat the test procedures as follows. Figure 3.9 illustrates the whole
procedure.

1. Keep the server on idle state for 3 minutes at 22◦C ambient temperature.

2. Execute cpuburn for 30 minutes. Along the test, configure the climatic chamber to
increase the ambient temperature from 22◦C to 50◦C.

3. After the execution of cpuburn, keep the server on state idle for 3 minutes at 50◦C
ambient temperature.

4. Shutdown the server, switch for the next processor sample and wait for the whole plat-
form cool down to 22◦C ambient temperature.

Figure 3.9 – Leakage current variation investigation: experiment illustration

Experiment results and analyzes

On high load state High load state occurs at the second step, where server is stressed by
cpuburn. Figure 3.10 shows the evolution of CPU temperatures over time, with the ambient
temperature increases from 22◦C to 50◦C, as illustrated by figure 3.9. It can be observed that,
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Figure 3.10 – CPU temperature evolutions on function of time

the change of CPU temperature between different samples differs from each other. Under the
same load and the same ambient temperature, CPU temperature increases gradually with the rise
of ambient temperature but up to different maximum values. For example, CPU temperature of
P3 can be increased to more than 70◦C while P10 just reaches 60◦C. Figure 3.11 shows the
value of server power during high load while varying CPU temperatures. Processor samples
are marked by different colors, the points represent for the real measurement data. Not two of
the samples have the same Thermal behaviors. Moreover, we were able to fit the server power
and temperature data with a mathematical function as shown by equation 3.7. The equation has
an exponential form of exp(−k/T ) which links to the static power dissipation formulas based
on temperature as described before in equations 3.2 and 3.3. We calculate the Mean Absolut
Percentage Error (MAPE) (refer to "Model evaluation metric" in section 1.4.2) to evaluate the
fitting quality, and MAPE is less than 0.4% for all the samples.

Pserver(T ) = a+ b ∗ e(−k
T

) (3.7)

In this equation, P represents for total server power in Watt, P varies according to CPU
temperature T in Celsius degree. Comparing this equation with equation 3.5 and 3.6, intercept
a actually contains Pchip, Pdynamic at high load and Pstatic at temperature 20◦C. Parameters b and
k represent leakage current parameters. It can be seen from the fitting equations shown in figure
3.11 that, the variation of leakage current parameters between samples, result in different power
change rates of server power while varying CPU temperature. Samples consume the most (P3,
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P10, P5 and P8) in the first experiment 3.2 also have higher power change rates than samples
consume the least (P12, P21, P6, P4). In another word, processor samples P3, P10 P5 and P8
dissipate heat at higher rate under the equal test conditions (same load and ambient temperature
is varied in the same way). Power change rates among samples have been illustrated separately
in Figure 3.12, where we present only the exponential part of the power function, and for a
wider range.

Figure 3.11 – Relationship of CPU temperature and Server power for different processor sam-
ples with execution of cpuburn

On idle state On idle state, there is no workload, only OS keeps running in the server. Server
power on idle state installed with different processor samples are compared at 22◦C and 50◦C
ambient temperature respectively. Results are shown in Figure 3.13. We can observe that, power
variation between samples on idle state is greater at 50◦C. Moreover, samples belong to higher
consumption group (P3, P10,P5 and P8) have bigger power increment when ambient temper-
ature passes from 22◦C to 50◦C. Server power installed with P3 has a rise of 6.9 Watt. While
with P4, total power increases only by 0.7 Watt.
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Figure 3.12 – Illustrations of Server Powers functions for different processor samples

Figure 3.13 – Server power on idle state at 22◦C and 50◦C ambient temperatures
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3.4 Conclusions

Processors are becoming smaller, more powerful and less consuming from generation to
generation. On the other side, processors become more complex than ever. Leakage current
variations arise from imperfections in the fabrication process among modern processors, such
as lithographic length aberration. According to our observations, leakage current variations have
impact on cooling ability, samples dispose of different increase rate with the rise of temperature.

With the decrease of lithography size for modern processors, technology today can hardly
control precisely the variability between processors in fabrication process. Apart from the per-
formance variability brought by the operating frequency variation, our experimental results
show surprisingly high variability of power consumption within modern processor. 30% power
consumption variation is observed among 30 identical processor samples, which has no corre-
lation with the performance (frequency variation). In the first time, we confirm and characterize
by means of physical experiments, the power consumption variation introduced by leakage
current parameter variation. Samples can have different heat dissipation under the supposed
same conditions (ambient temperature and load level), which results in different leakage cur-
rent distributions then finally affect the static power consumption among samples. Moreover,
fabrication variability has random effects on processor samples and cannot be detected by OS.
Our demonstration highlights the challenges of modeling techniques posed by the processors
variability. The finding highlight that, same servers in the production line are not created equal.
The variability between identical servers in homogeneous clusters do exist, and the difference
should not be ignore in terms of modeling their power consumption under equal test conditions.
As a result, the precision of power models presented in previous studies could be questionable
when applying to the other identical SUTs. The variability issue from imperfection of fabri-
cation processing can not be avoided so far. Therefore, power modeling techniques based on
mathematical analysis should respect the potential errors that may introduce from the variabil-
ity between identical samples, especially for modern ones.

In addition, the findings present in this chapter can be also applied to optimize the en-
ergy management strategies in data center. By developing a model allows identifying static and
dynamic power during an execution of an application, we could improve the performance of
current optimization algorithms. Processor samples with worse thermal features will not only
have more static power, but also require more energy for cooling, same for the servers. It worth
the efforts to identify the servers with better and worse thermal features in a data center, so as
to better orient energy management strategies.
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CHAPTER 4

POWER CHARACTERIZATION

APPROACHES FOR SERVERS

Reliable power characterization approaches are essential for supporting energy-aware so-
lutions. High accuracy power analyzers are capable of providing accurate power consumption
data. However, limitations like high cost, weak support of integration with computing systems
make it unrealistic to use power analyzers in a data center environment. Recently, some alterna-
tive economical solutions are adopted widely. Such as embedded power meters (refer to 1.3.3)
and power models (refer to 1.4). The reliability of these solutions need to be evaluated thought-
fully before applying to different real situations. In this study, we investigate experimentally the
following approaches: IPMI, Redfish, Intelligent PDU and power models.

4.1 Context and objectives

Power consumption characterization of servers is an essential part to achieve energy-aware
adaption strategies in a data center environment. Physical instruments such as wattmeter and
power analyzer can get accurate measurements for electrical devices. However, in a data center
environment, it costs too much. Moreover, for optimization requirements, estimating the power
consumption for further use cases is demanded as well, and power meters cannot help. Recently,
economical alternative power characterization approaches, include both hardware and software
solutions are applied widely in data center environments. Popular hardware approaches include:
a) Intelligent power distribution units (PDU); b) Standard specifications that provide interface
with integrated sensors, such as Intelligent Platform Management Interface (IPMI) and Redfish.
Besides, software solution like power models, provide a device less solution to get power data
based on system activities. Moreover, they can be part of the optimization strategies of data
centers, by estimating the power consumption in further use cases. Despite of the wide em-
ployments of the above solutions mentioned, as far as we know, few works addressing the data
precision obtained through these approaches.
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In this study, we try to fill up this missing part by evaluating the data precision of these
economical power characterization approaches.

The chapter is organized as follows: in Section 4.2 we evaluate the precision of Redfish and
IPMI applied in a new series of IBM servers. The measures of power consumption recorded
by Redfish and IPMI are compared with a high-accuracy power analyzer. Similar evaluations
has been done to IPMI and Intelligent PDU for Dell Poweredge servers in a cluster. Then,
in Section 4.3, we conduct a deep research to the power models based on CPU utilization. The
source of inaccuracy has been discussed and the solutions are proposed to improve the accuracy.
Conclusion is given in section 4.4.

4.2 IPMI, Redfish and Intelligent PDU: power data precision
evaluations

The employment of PDU and embedded power meters are discussed in section 1.3.2 and
1.3.3. Apart from getting power values, IPMI, Redfish and Intelligent PDU also usually take
participation to realize the power management for the entire data center, there are several use
cases in the real world: [Inc] [Tec] [Int15b] [Len19]. As discussed in state of the art, their
concepts make us curious about their actual abilities of power characterizations.

In this section, we present our comprehensive evaluation of these power characterization
solutions.

4.2.1 Evaluation experimental setup

Basic idea of the evaluation is to compare their readings in real time with a high accuracy
power analyzer.

The evaluations have been conducted separately on two different servers: a prototype server
from Lenovo Skylake series, installed in a cluster at Orange Labs in Rennes; and a Dell Pow-
erEdge R630 server, installed in a cluster at univsersity IMT Atlantique in Nantes. The precision
of IPMI, Redfish and Intelligent PUD have been obtained and evaluated as described below:

— IPMI precision is evaluated on both the two servers, as they all have equipped with
IPMI technology. We use an open source API tool freeipmi [Tea] to get the power read-
ings from IPMI. In addition, Dell propose Original Equipment Manufacturer (OEM)
specific IPMI commands. For certain Dell servers supported this function, users are
able to read instantaneous power consumption data through " get-instantaneous-power-
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consumption-data" Dell OEM IPMI command [Sys12]. This option is proposed by
server manufacture to provide additional functionality in their product. It is realized
by adding hardware extensions (like specific sensors) on the motherboard. This func-
tion is available for our Dell server, gives us the opportunity to evaluate the precision of
IPMI-oem function as well.

— Redfish precision is evaluated on Lenovo server. The prototype server integrated the
newest XClarity Controller - a software server management solution proposed
by Lenovo. The software controller includes a Redfish REST API to get server power in
real time by the latest Redfish technology.

— Intelligent PDU is evaluated on a Dell server belonging to "ecotype" cluster (refer to
2.2.1 for more details).

Server is stressed with the test suite SERT as mentioned in "Server Efficiency Rating Tool"
in section 1.1.2, with a total execution time of about 2 hours. The SUTs have both double power
supplies design, the measurement diagram is shown in figure 4.1. High accuracy power analyzer
Yokogawa WT330 is placed between server power supply unit and wall plug to measure and
record power consumption data as the evaluation reference (with maximum measurement error
less than 1%). A program has been developed as software collector. The software collector is
running in the server while executing the test, serves as synchronizing readings from several
channels to local database based on Network Time Protocol (NTP). Sampling frequency is set
to 2 Hz.

4.2.2 Experimental results and analysis

We evaluate the power measurement precision of IPMI, Redfish and PDU by calculating
their MAPEs (refer to "Model evaluation metric" in section 1.4.2) with the power measurement
taken by Yokogawa WT330 - a high accurate power analyzer. The evaluations of IPMI and
Redfish performed on Lenono server is presented in figure 4.2. The evaluation of IPMI and
Intelligent PDU on Dell server is presented in figure 4.3.

The measurements taken by power analyzer is marked with green points in the two figures.
MAPE of IPMI and Redfish in Lenovo server are 3.7% and 2.9%. As demonstrated by figure
4.2, IPMI and Redfish are less capable to capture server power when the power varies at a high
frequency. We find that, the sampling frequency of power data collected from Redfish and IPMI
is not as frequent as power analyser. However we didn’t find any document specifying their
sampling frequencies. We have then configured the sampling frequency of power analyser to
50 ms, and compare the data with the power measurements taken per second from IPMI and
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Figure 4.1 – Measurement diagram: evaluate power measurement precision for IPMI, Redfish
and Intelligent PDU

Figure 4.2 – Evaluating precision of IPMI and Redfish on Lenovo server
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Figure 4.3 – Evaluating precision of IPMI and Intelligent PDU on Dell server

Redfish. A roughly sampling frequency of 200 ms is identified. The power data obtained from
IPMI and Redfish could be less accurate when power varies in a high frequency (higher than
5Hz).

We calculated later the MAPEs at three server power ranges with the same data: below 200
Watt, from 200 to 400 Watt and above 400 Watt. Results in table 4.1 show that, the precision has
worse results at lower power range. In fact, power consumption is observed to have more varia-
tions at lower system load (lower power ). Unfortunately, we didn’t find concrete explanations.
According to our knowledge, the frequent power variation at low load may due to the execu-
tion of some low proprieties system processes. Since during unoccupied periods, servers have
more available resources, some system-related background processes are likely to be awake and
executed.

Table 4.1 – MAPE of Redfish & IPMI between different power ranges

Power Ranges (Watt) Redfish MAPEs (%) IPMI MAPEs (%)
From 0 to 199 4.1 5.5
From 200 to 399 4.0 4.4
From 400 to 600 1.8 2.3
From 0 to 600 2.9 3.7
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Table 4.2 – Summary of evaluations for the hardware power characterization solutions

Solution(server) Max MAPE (%) Limitations
IPMI (Lenovo)
IPMI (Dell)

5.5%
2.8%

Less accurate for highly varied and weak val-
ues;
The offset could exist, calibration is needed

IPMI-oem (Dell) 1.1% Available only for certain models
RedFish (Lenovo) 4.1% Less accurate for highly varied and weak val-

ues;
Intelligent PDU (Dell) 2.8% Less accurate for highly varied values

The offset could exist, calibration is needed

Figure 4.3 show the precision evaluation results of IPMI and Intelligent in a Dell server. In
this evaluation, we find that, other than inaccuracy brought by sampling frequency. Power mea-
surements obtained from IPMI and Intelligent PDU can both have the problem of calibration.
As shown by the figure, instant power values have a stable difference of +3Watt and -3Watt
for IPMI and PDU respectively. MAPE can be improved to less than 1.5% after correcting the
calibration. The evaluation of precision for Dell OEM IPMI command has been completed with
an other test by following the same procedure as described before. The specific OEM IPMI
command "get-instantaneous-power-consumption-data" in the tested server can provide high
accuracy power consumption data with MAPE value of "1.1%". This command is available for
certain Dell server models.

Finally, in table 4.2, we conclude the precision and possible problems could be encountered
during the usage of these tools.

The work presented in this part expected to give references in choosing hardware power
consumption characterization solutions in a data center environment. We suggest that, before
applying IPMI, Redfish and Intelligent PDU in a data center environment, for the purposes like
power management and optimization, it worth checking firstly the precision and calibration of
these tools and make sure that measurement is accurate enough for supporting decision makings.

4.3 Power models based on CPU-Utilization

Power meters are able to provide real-time power consumption data by measuring. Hard-
ware investment is indispensable. IPMI, Redfish are available only on modern servers. Equip a
data center with intelligent PDU requires higher budget. Basic idea of power model is to corre-
late power consumption with some system related data through mathematical analysis. Power
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models is a software solution providing hardware free power characterization approaches. Be-
sides financial benefits, sometimes, we are will to know the power consumption situation at a
future time point for optimization requirements. Power models can be used also to estimate the
power consumption according to system activities occurred in the future. Power models can be
built with different system related data. In this study, we evaluate power model of servers based
on CPU utilization, since it is one of the most classical power models. This type of model has
particular advantages comparing to the others. It is easy to deploy to all kinds of servers regard-
less of the server architecture, processor types, or providers. However, beyond these advantages,
the accuracy of model remains as a big problem, since only one indicator is used to build the
model.

In this section, we discuss the power model based on CPU utilization by exploring experi-
mentally two questions:

— Firstly, in reality, how power spreads out for a fixed usage value?
— Secondly, is power linear to usage for a given CPU frequency range?

At the end of the evaluations, we propose two ways to improve the model accuracy: by applying
polynomial regression function and by adding ambient temperature data into the model.

4.3.1 Question 1: How power spreads out for a fixed CPU utilization value?

Power model is nothing but a math function. Single utilization value corresponding to single
estimated power value. In reality, power varies for a given utilization value, since resources in
server can be stressed in different ways according to service requirements. The distribution of
power values for a given utilization value affects directly the model accuracy. In this section, we
stress the SUT by executing different kinds of workload and see how largely can power spread
for the same CPU utilization.

Experiment setup and methodology The experiment is performed on a Gigabyte mw50-
sv0 server, equipped with one Xeon E5-2609v3 processor. Different types of workload from
SERT [LT11] (refer to "Server Efficiency Rating Tool (SERT)" in 1.1.2 for more information)
are chosen, in order to stress SUT in different ways. The test suit includes six CPU-intensive
workloads (Compress, CryptoAES, LU, SOR, Sort and SHA256); one CPU and memory
hybrid workloads (SSJ); two memory-intensive workloads (Flood3 and Capacity3). Con-
sumption at idle state is also measured. Details about the worklets used can be found in Table
4.3 [Com13].
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Table 4.3 – Test Suite Information

Worklet Components Description Load Levels

Compress CPU Compress and decompress data 100%, 75%, 50%, 25%
CryptoAES CPU Encrypts and decrypts data 100%, 75%, 50%, 25%
LU CPU LU factorization of dense matrix operations 100%, 75%, 50%, 25%
SOR CPU Jacobi Successive Over-relaxation workload 100%, 75%, 50%, 25%
Sort CPU Sorts randomized 64-bit integer array 100%, 75%, 50%, 25%
SHA256 CPU SHA256 hashing transformation and encryption/decryption 100%, 75%, 50%, 25%
SSJ CPU/Cache/Memory simulates Online Transaction Processing (OLTP) operations 100%, 87.5% ... 12.5%
Flood Memory Measures memory bandwidth across arrays Full, Half
Capacity Memory Exercises Java’s XML Validation Base, Max
Idle System No load on SUT None

The power consumption data is collected by Yokogawa WT330, a high-accuracy power ana-
lyzer, with maximum measurement error less than 1%. CPU utilization information is collected
by redirecting the information from linux system directory “/proc/cpuinfo”. Data sampling fre-
quency is set at 1Hz. At the end of test, box plot from python library matplotlib [Hun07] is
used to interpreted the dispersion of power for a given CPU utilization. Box plot is widely used
for displaying statistic distribution, a simplified manner in comparison to a histogram or den-
sity plot. For a normal distribution, 50% of the data is within the box. Two short lines beyond
the box represent for the minimum and maximum values within 99.3% of the data. Outliers
represent for the remaining 0.7% data.

Evaluation results The whole test suite mentioned above is executed on SUT for more than
one hour, the dispersion of instant power at different CPU utilization is shown by box plots in
figure 4.4. In general, server power is supposed to increase with the rise of load levels (CPU
utilization). However, we are surprised to see that, the power distributes in a considerable range
at a certain CPU utilization. For instance, when CPU utilization of server is at 20%, the power
can vary between 47 Watt and 57 Watt (99.3% of the data). Sometimes, the power is even higher
than the CPU utilization at 30% and 40%. In fact, even through the workloads occupy same CPU
time, they make use of the other hardware resources of the server in a different way: Cache and
memory access, I/O operations, network resources, etc. The situation is worse when server run
at full load. Power ranges in a large distribution from about 62 Watt to 78 Watt. There are also
lots of power outliers (represent by the small circles) at full load. Actually, system spent time
in activating electrical components when current load change dramatically from a lower level
to highest level, the period is very short but still account for about 0.7% of the total power data.
The power ranges are relatively lower at 10%, 50%, 70% and 90%, due to a lack of experimental
data at these load levels (refer to "load levels" in table 2.2).
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Figure 4.4 – Distribution of power under different CPU-utilization.

Different ways in using hardware resources in a server is one of the major explanations for
the power distribution at certain CPU utilization. In order to understand the differences of re-
source usage between workloads, we show the instant power measurement data based on CPU
utilization in figure 4.5, the measurement points have been classified by workloads with differ-
ent colors. The result illustrate the phenomenon: even for workloads with the same type "CPU
intensive", the relation between power and CPU utilization can be represented with different
linear functions. For instance, comparing with the other CPU intensive workloads, while exe-
cuting worklet LU (green points in the figure), server power increases at higher rate with the
rise of CPU utilization. Still, we can also see that: even though server power spreads a lot at
one certain utilization level while executing different workloads, the power distribution of one
workload at one CPU utilization is relatively much smaller, the power model precision could be
increased by workload classification technology.

Therefore, the power model based on CPU utilization could be optimized through workload
classification. The classification could help identifying the way of using the other hardware
resources in a server. As further work, we think it could be an effective way to improve the ac-
curacy of power models based on CPU utilization, if workloads could be identified into different
classifications with PMCs and attribute them with different models.

The accuracy of power model is limited by number of parameter (only one), and workload
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Figure 4.5 – Relationships between CPU-utilization and server power of different worklets.

seems to be a possible way to optimize the model accuracy. In the following section 4.3.2, we
are going to explore if operating frequency of CPU can be also used to improve the precision
effectively. In addition, we are wondering if the polynomial regression instead of linear regres-
sion could help increasing the model precision. The application of polynomial regression will
be discussed in the section 4.3.3. Moreover, inspired by the study of section 2.4, we’ve also
evaluated the influence of ambient temperature variation on the model. A delta power based on
ambient temperature has been proposed to correct the thermal influence.

4.3.2 Question 2: For a given frequency, is power consumption linear to
the CPU utilization?

In the study of [HCD+17a], server power is observed to be somehow linear to the number
of cores running at full speed. However, the linear function needs to be updated under different
p-state available in the system. SimGrid [HCD+17b] adopts this idea and develop the energy
plugin in their simulator. SimGrid is designed to do simulations for analyze distributed applica-
tion running at distributed computer systems. In the framework of Simgrid, an energetic profile
is requested to configure in advance to the energy plugin [v3.]. For a multi core system with
DVFS, the energy profile need to be configured for each p-state, with the following four power
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values in Watts:
— idle: when OS is up and running but does nothing;
— OneCore: when one core is running at 100%;
— AllCores: when all cores are running at 100%;
— Off: when host is turned off. For the other number of cores running at 100% the power

is estimated by linear extrapolation between OneCore and AllCores
However, it is impossible for SimGrid to estimate the power for a given core with a utilization
between idle and full. That makes us wondering whether power could be linear to CPU usage
for a narrow frequency range?

In order to perform the experiment, we determine to run the test in a modern server: Dell
PowerEdge R630, the server has wider operating frequency: from 1200Hz to 2000Hz. A python
library psutil (python system and process utilities) [Psu09] has been used to retrieve current
CPU frequency in real time, with the function "psutil.cpu_freq". We divided the operating fre-
quency into 10 small ranges as illustrated by figure 4.6. Measurements data points are marked
by different colors according to the frequency ranges, as shown by figure 4.7.

Figure 4.6 – Will server power be linear to utilization within a narrow frequency range?

We can see form the results that, within a small frequency range, server power is not
linear to CPU utilization, the power varies occasionally. For example, data belonging to the
highest frequency range is presented in blue sky, the data distributes randomly across different
CPU utilization and server power. Even more, as illustrated by the comment in the figure, server
power can be different for same CPU frequency and CPU utilization. We blame as well this
phenomenon to the type of workload: the other hardware resources are being used differently.
Therefore, making use of CPU frequency data is not an effective way to improve the accuracy
of power models based on CPU-utilization.

In the following parts, we propose our own ideas to improve the model accuracy. The ideas
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Figure 4.7 – Relationships between CPU-utilization and server power under different frequen-
cies

are based on real observations on a physical machine. The approaches include applying poly-
nomial function and adding additional temperature data into the model.

4.3.3 Proposition 1: Applying polynomial function

In question 1, we explain how accuracy is lost while building the power model with single
CPU utilization value. Moreover, traditional method adopts linear regression to fit data with
a straight line, which seems not the perfect relationship between CPU utilization and server
power. According to the curves shown in figure 4.5, the data is supposed to be fitted better with
a non-linear model. In this part, we try to improve the model accuracy by using polynomial
regression. Polynomial regression is used to capture the non-linear features between variables
with the method of least square [STI74]. Theoretically, polynomial regression belongs to linear
model, as the model is expressed as linear in the form of coefficients associated with the vari-
ables. In practical, each xn is treated as an independent variable, and the fitting can be done by
least squares analysis to a multiple regression model [Smi18].

For a single independent variable, polynomial regression of degree n is defined as equation
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4.1:

y = a0 + a1x+ a2x
2 + ...+ anx

n (4.1)

Higher degree is able to capture more non-linear features for the data and improve the model
accuracy. However, model could also learn noise if degree n is set too high. Model has perfect
fitting result in trainning data set, but poor precision when dealing with new data that hasn’t
participated in the trainning process. This problem is called over-fitting. For a model over-fitted
, even through the model gets closer to more data in the training set, it fails to capture precisely
the unseen data and becomes less generalized [Aga18]. The overfitting can be prevented by
providing more data to the training data set. However, in most of the cases in real situation,
only one dataset is available for training. In this case, overfitting is possible to be avoided
by algorithm. In our example, we evaluate quantitatively the overfitting issue by using Cross-
Validation (CV). In CV mode, the whole data set is divided into two parts, one part is used
to train the model, and the other part won’t participate the trainning process but be reserved
for model validation. CV accuracy is a qualification value between 0 and 1, higher accuracy in
validation set represents for a more generalized model. We use the PolynomialFeatures
class provided by scikit-learn [PVG+11] and train the model with polynomial regression under
different degree. Then, we compare the CV accuracy of the validation data set, with the MAPE
value (refer to "Model evaluation metric" in section 1.4.2) obtained from whole data set. The
values of CV accuracy and MAPE with the increase of polynomial degree (from 1 to 9) are
shown seperately in figure 4.8. MAPE values at different degrees are marked in red, it quantifies
the overall error loss of the model. Accuracy of CV at different degrees are marked in blue, it
quantifies the model quantity on validation data set.

As can be seen from the figure 4.8: in the beginning, with the rise of polynomial degree, both
the accuracy of CV and the MAPE have been improved dramatically, especially when degree
increases from 1 (equal to linear regression) to 2. However, starting from degree 6, MAPE
continues to decrease but accuracy of CV becomes worse and worse. In fact, in this example,
after degree 5, model starts to learn noise from the training data. Therefore, in this specific
example, degree 5 is believed to be the optimal polynomial regression degree of the model to fit
the data. At this point, validation shows the best accurate result.

After determining the polynomial regression as 5, we apply the polynomial regression model
of degree 5 to the whole data set, the fitting result in shown in the figure 4.9. Blue points
represent the real measurement data, and the power estimation result of the fitting model is
showed in orange. It can be seen from the plot that, polynomial regression has better abilities
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Figure 4.8 – Which polynomial degree fits best the data

Figure 4.9 – Fitting power data with a polynomial function of degree 5
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than linear regression in terms of capturing the non-linear features between independent
variables: model built by linear regression can have error more than 6.2% (refer to the MAPE
value at degree 1 in figure 4.8, polynomial regression with degree 1 equals linear regression).
In using polynomial regression, the MAPE can be improved to 5.3%.

For attention, the most advanced math technology can not resolve the errors result from the
lack of data. for example, actually, the model shown in figure 4.9 doesn’t have ideal estimation
of power for CPU utilization between 80-100%. The major problem is due to the lack of avail-
able data in this area. The precision of the power model is expected to be better by providing
training data with full-scale coverage.

4.3.4 Proposition 2: Considering the influence of ambient temperature

Furthermore, we evaluate the influence of inlet temperature to the power consumption of
server. The server is placed in a climatic chamber, where we can control the ambient tempera-
ture precisely. Inlet temperature is measured by a thermocouple of type K. Test suite SERT is
executed three times on the server at 22◦C, 35◦C and 45◦C ambient temperatures respectively.
The results of the server power under different ambient temperatures can be seen in Figure
4.10. Server power increases with the rise of inlet temperatures. As we studies before, the in-
crement of power is contributed mainly by fans and leakage current of CPU (refer to 2.4 for
more information) [WNLMM18b]. Unlike power, CPU utilization remains all the same under
different ambient temperatures, the results are shown in Figure 4.11. Therefore, as demonstrated
by the experiments, there is a risk of losing accuracy without considering variation of ambient
temperature in the models.

Taking the data sets of worklet “SSL” as a use case. Function (4.2) describes a baseline
model proposed by [FWB07]. Data set is collected at 22◦C ambient temperature. Estimated
power is simply represented by a linear function by using the power values at idle and full load.
Beyond the baseline model, we propose the power increment function PDelta(T ). PDelta(T )
represents the increment of server power due to the rise of ambient temperature DeltaT (tem-
perature base line is 22◦C), with the unit of W/◦C. PDelta(T ) can be interpreted by a quadratic
equation as shown in function (4.3). There are parameters are determined: a0 (W ), a1(W/◦C)
and a2(W/◦C2). The final power model is built by adding PDelta(T ) to the baseline model, as
shown by (4.4).

Pestimated = Pidle + Ucpu%(P100% − Pidle) (4.2)
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Figure 4.10 – Server power under three different ambient temperatures.

Figure 4.11 – CPU utilization under different inlet temperatures.
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PDelta(T ) = a0 + a1T + a2T
2 (4.3)

Pestimated = Pidle + Ucpu%(P100% − Pidle) + PDelta(T ) (4.4)

Within the formulas, Ucpu% represents CPU utilization in percentage and T is ambient tem-
perature. Pidle and P100% are the average power (Watt) when server running at idle (Ucpu% = 0)
and full load (Ucpu% = 100). The models are trained and validated with the same data set by
using cross validation from function cross_val_score of scikit-learn [PVG+11], cross val-
idation (cv) generator is set to 4 to realize a 4-fold cross validation. The average MAPEs after
CV for model (4.2) and (4.4) shown in Table 4.4 demonstrate the effectiveness of including
the power increment function PDelta(T ) (4.3): the MAPE of updated model (4.4) increases
dramatically with the ambient temperature rises from 22◦C to 45◦C.

TABLE 4.4. MAPE OF MODELS AT DIFFERENT AMBIENT TEMPERATURES

Tambient (◦C) 22 30 45
Model without Delta (T◦) 5.6 % 9.2 % 16.8 %
Model with Delta (T◦) 4.6 % 4 % 3.2 %

4.4 Conclusion

The influence of thermal effects have been discussed and evaluated on servers and proces-
sors. In this study, we have further studied the thermal effects on accuracy of power models.
We present a deep evaluation about the power models based on CPU utilization. The influence
of inlet temperature on models has been especially discussed. According to the analysis, one
regression formula by using CPU utilization as the only indicator is not adequate for building
reliable power models. First of all, workloads have different behaviors by using CPU and other
hardware resources in server platforms. Therefore, power is observed to have high dispersion
for a fixed CPU utilization, especially at full workload (CPU utilization = 100%). At the same
time, we also find that, power is well proportional to CPU utilization within the execution of one
single workload. Hence, applying workload classifications could be an effective way to improve
model accuracy. Moreover, inlet temperature can cause surprising influence on model accuracy.
The model reliability can be questioned without including inlet temperature data. In a use case,
after including inlet temperature data, we have greatly improved the precision of model outputs
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while stressing server under three different ambient temperatures.
Using industrial specifications, such as IPMI and Redfish is another popular way to get

power consumption data for some modern HPC servers. The experiment results show that, the
precision of both IPMI and Redfish differs from different power ranges, the higher the better.
We blame the loss of precision due to the latency during requests. Comparing to IPMI, Redfish
is observed to have less latency in our experiments.
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CHAPTER 5

ESTIMATING POWER CONSUMPTION OF

CLUSTERS

5.1 Context and objectives

In this chapter, we present our research concerning the modeling of the global energy con-
sumption of a computer cluster - the ecotype cluster of Grid5000 (refer to section 2.2.1 for more
information about ecotype cluster). The cluster is located in an independent room with 48 iden-
tical servers and equipped with two separated air cooling systems. One is at the top the room and
the other is close to the server racks. These physical facilities allows an overview about how the
global power consumption varies according to operating variables in a data center, such as the
computing resource usage, external environmental temperature, cooling system configurations,
etc. In general, the energy consumption of a typical data center contains [IT07]:

— Servers & Storage: Doing actual computing, data processing and storage work.
— Cooling system: Maintaining favorable temperature conditions for hardware to operate,

according to the requirements suggested by American Society of Heating, Refrigerating
and Air-Conditioning Engineers (ASHRAE). [Com16]

— Network Hardware: Network devices which are responsible for transferring data packets
across connecting devices on a network, including routers, switches, firewalls, modems,
etc.

— Power conversion: Accessories such as cables, Uninterruptible Power Supply (UPS) and
Power Distribution Units (PDU), etc.

— Lighting: Human operator related facilities.

The first two parts: servers and cooling systems consume the most of the energy required, as
introduced in . Apparently, the energy consumed by servers and cooling is positively related
to each other: when intensive work coming, servers increase the load level and occupy more
computing resources to provide processing capacities. Server power increases with the increase
of load, and in the same time generate more heat. As a result, cooling system works harder to
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Table 5.1. Nomenclature

Symbol Description Units

T ◦
inlet or T ◦

i Temperature of the air entering into the servers (measure) C◦

T ◦
outlet or T ◦

o Temperature of the air left the servers (measure) C◦

T ◦
room or T ◦

r Temperature of the room (measure) C◦

T ◦
server or T ◦

s Temperature of the servers (virtual) 1 C◦

T ◦
container or T ◦

c Temperature of the container (virtual) C◦

R1,2,3,4 Server Racks, #1 to #4
PCS Primary Cooling System, In-Row
SCS Secondary Cooling System, air conditioning in the room
Pserver Instant power consumed by servers W
Pcooling Instant power consumed by In-Row W
hr Thermal conductance between room and the container C◦/W
hc Thermal conductance between container and cold air entering into servers C◦/W
hs Thermal conductance between servers and container C◦/W
ho Thermal conductance between container and hot air leaving servers C◦/W
Ca,1 Thermal capacitance of air at the container’s cold side J/C◦

Ca,2 Thermal capacitance of air at the container’s hot side J/C◦

Cc Thermal capacitance of container J/C◦

Cs Thermal capacitance of servers J/C◦

Ms Flow rate of air passing through servers kg/s
Cp Specific heat of air at constant pressure J/kgC◦

t time s
T Temperature C◦

meet the heat transfer requirement. Within a closed and stable system, according to heat balance
policy, it is possible to build a model to estimate the energy required by cooling system based on
the power consumption of servers. Another key point is the temperature outside of the cooling
system, the heat exchange could be important if the thermal isolation is weak.

A dedicated power model of data center could be useful for predicting the global energy
consumption by feeding common operational data such as server usage information and thermal
conditions. Once the model is realized, by varying configurations, we could be able to optimize
the global energy efficiency at run time level. For example, finding the optimal cooling system
set points according to the current and/or the upcoming loads.

This study is composed of both physical experiments to the clusters and numeric modeling
of the global energy consumption, including the power consumption from servers and cooling
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systems. In order to facilitate the reading, notations that have been used in this chapter are
detailed in table 5.1. The contents for the rest of this chapter are organized as follows:

In 5.2, a global description of the cluster is given, including the position and placement of the
servers and cooling system in cluster; the role and function of cooling system and the sensors
used for getting data. Our basic idea of building the model based on observations of the real
time system is presented at the end of this section. In section 5.3, we present our study about the
digital simulation of the cooling behavior for the cluster. The model is able to estimate the real
time temperature of the cold air entering into servers and of the hot air leaving the servers. The
model takes three operating variables as inputs: power of servers, power of cooling system and
the temperature outside the cooling system. In section 5.4, we propose a cooling consumption
model based on the real time temperature of the cold air entering into servers. The conclusion
is given in section 5.6.

5.2 Cluster overview

Basic information about ecotype cluster has been presented in previous study at section
2.2.1. In this part, we present the following information: power management platform Seduce
in 5.2.1; architecture and function of the cooling system in section 5.2.2 and thermal behavior
in section 5.2.3. Finally, we present our idea of building the model based on the knowledge of
the system in section 5.3.

5.2.1 Power and thermal management platform: Seduce

Seduce platform is used to collect data in this study. SeDuCe is a scientific testbed [PM18]
designed for power and thermal management in data centers. Seduce has been developped for
cluster ecotype of the Grid5000 infrastructure. It enables researchers studying both power and
thermal aspects of servers while conducting experiments. Uses from Grid5000 can have real-
time access to operating information about the cluster. In terms of individual server, users can
get power, the temperatures at the front and back of each server. Server power data is retrieved
from intelligent PDU installed in the cluster, and temperatures are getting from the measure-
ments taken by thermal couples of type k. Besides servers, the room temperature is also moni-
tored with a temperature sensor. In addition, Seduce also integrates the data provided by cooling
system of cluster. Such as the inlet and outlet temperatures of the cooling system, temperature
thresholds, fan speed, cooling consumption, etc. Users can visualize the real time data of the
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system through the dashboard tool. If needed, the raw data can be obtained via the web por-
tal and user-friendly Seduce API by specifying the start and end time in the scripts. All the
measurements are collected at the frequency of 1Hz.

5.2.2 Cooling systems of the cluster

Figure 5.1 provides a top view of the "ecotype" cluster. It disposes of five air-tight racks,
design is based on Schneider Electric IN-ROW model ACRD600 (200-240V, 50/60Hz) [ele19].
We have introduced this row-based air side cooled system the state of the art study at 1.2.5. In
addition, the model applies indirect air-side free cooling technology to take advantage of the
outside cold air. The system is equipped with an evaporator to help increasing the temperature
difference between the outdoor air and the liquid in the heat changer (refer to "Free cooling" at
section 1.2.5 for more information about free cooling of this kind). The functions of the In-Row
cooling system will be explained later.

The cluster disposes of two cooling systems, the primary cooling system (PCS) also called
In-Row is installed in the middle of the racks for servers. In-row gets back the hot air at the back
side of the servers (T ◦

outlet), cools down the hot air then blows the cold air to the front side of the
servers (T ◦

inlet). This In-Row model consists in a direct expansion cooling system with fans and
controllers. Four server racks and one In-Row rack are placed inside an closed cooling container
equipped with Plexiglas doors, which limits the air and heat exchange between inside and out-
side of container. Equipped with advanced air management strategy, In-Row is capable to work
efficiently, as the cooling area is limited within the container, the influence from outside of the
container (room temperature) is restrained as well thanks to the design. Besides In-Row, on the
top of the room, there is an air-conditioning served as the Secondary Cooling System (SCS) to
keep a stable room temperature. This study concentrates on the cooling power consumption of
the PCS (In-Row). The power consumed by SCS is wished to be completed in future study.

In order to better understand the functions of In-Row, a 3-D architecture of the cluster is
presented in figure 5.2. Arrow marks in the figure indicate the circulation of the airflow within
the container, between servers and the In-Row. Red and blue represent for hot and cold air
respectively. Cold air passes through the working servers from the cold side of the container,
be warmed up and gets out to the hot side. Afterwards, hot air will be taken in by the In-Row,
cooled down quickly while passing through the cooling module of the In-Row then return back
to the cold side. Cooling module of In-Row is actually composed by two parts. One part is
placed inside the rack and another part is installed outdoor. Figure 5.3 shows the details of its
architecture and illustrates the actions taken by the cooling module to lower the temperature
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Figure 5.1. "Ecotype" cluster topview

of hot air. The compressor constricts the refrigerant vapor, raising its pressure, and pushes it
into the condenser. When the hot gas in the condenser meets the cooler air temperature of the
outside, it becomes a liquid. The refrigerant absorbs the heat from the server, cooling down
the air. Condenser has large surface area to evacuate heat from liquid to outside air quickly and
efficiently. On the way out of the condenser, expansion device helps lowering down the pressure
within the metal tube to facilitate cooled liquid return back to the evaporator.

Once configured, the In-row works automatically along with sensors installed around the
container. The positions of the temperature sensors are marked in the figure with orange points
in figure 5.1 and 5.2. One sensor is placed at the cold side in order to get the value of the inlet air
temperature (T ◦

inlet or T◦i). It’s positioned right after the fan, where cold air just gets out from the
In-Row. Another one is placed at the hot side to get the value of outlet air temperature (T ◦

outlet

or T◦o). It’s positioned on the top the In-Row before the fan, as the hot air is usually lighter than
the cold air. There are three other temperature sensors placed in front of rack 2,3,4 to provide
additional information when necessary. The In-row has a central processing system to manage
the measurements from sensors and guide the operations of In-Row. Operators can access the
processing system remotely to view or modify some cooling configurations and retrieve the
measurements. On the top of the room, there is a temperature sensor (marked by a green point)
installed by ourselves to monitor the room temperature (T◦room or T◦r).
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Figure 5.2. "Ecotype" cluster 3D architecture

Figure 5.3. Architecture of the cooling module of In-Row

130



5.2. Cluster overview

5.2.3 Observations of the thermal management of the cluster

We start building the model by observing the real time data in the Seduce platform (refer to
5.2.1). In order to have a clear view, we zoom in the system to a short period of time. Figure 5.4
illustrates a typical thermal behaviors of the In-Row for a about two hours.

Figure 5.4. Thermal behaviors of In-Row

In the figure 5.4, orange line represents the Pserver(t), green line represents Pcooling(t).
Pserver(t) represents the power of all the servers in the cluster at time t. Pcooling(t) represents
the total power of In-Row (including all the parts) at time t. Pserver(t) and Pcooling(t) own the
left label with the unit of kw. Blue line represents T ◦

inlet, owns the right label with the unit of
Celsius degree. As shown in figure 5.4, Pcooling within the container is not a constant value.
Actually, In-Row activates compressor regularly according to T ◦

inlet, T
◦
inlet varies in an infinite

loop and acts as the trigger for cooling module. As shown by figure 5.5, there are two phases
in a cycle, in the first phase, compressor is turned off, hot air continues to increase the liquid
temperature within the evaporator and T ◦

inlet becomes more and more higher. In this phase, In-
Row works at a constant and lower power about 460 Watt, energy is consumed mainly by fans,
condenser, regulator and control units. Once the T ◦

inlet exceed the high temperature threshold
about 20◦C, compressor will be activated to lower down the liquid temperature and the second
phase begins. T ◦

inlet starts to decrease. During this phase, with the activation of compressor,
power of In-Row will be increased more than 10 times. Once T ◦

inlet is lowered down to the low
temperature threshold about 12◦C, compressor will be then deactivated and the system returns
back to the first phase. The temperature of the high and low thresholds of T ◦

inlet are initialized
at the installation by technicians from the manufacture. The configuration of the thresholds are
not allowed to be modified by users because of warranty policy.

Heat is generated mainly by servers, therefore, power of servers can influence the increasing
rate of T ◦

inlet at the first phase. We show an example in figure 5.4, where Pserver varies from
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Figure 5.5. Demonstration: two phases in a cycle

about 1.8kw to about 3.8kw. When Pserver becomes higher, servers generate more heat to the
space in the same unit of time, T ◦

inlet increases quicker and activates compressor in a shorter
time. Otherwise, when Pserver is lower, less heat will be generated, T ◦

inlet will take more time to
reach the high temperature threshold. Except for the Pserver, we think that Tr could also be an
important key indicator, as cooling container is not built by perfect thermal isolation material.
Even though the container is closed and it is capable to prevent massive air flow between the
cooling container and the room, the heat exchange between them could still be important to
affect the temperature of air inside the container (T ◦

inlet and T ◦
outlet).

Figure 5.6 shows a stable system state: both Pserver and Tr have stable and constant values
over time. In this case, T ◦

inlet has highly similar form at each cycle time.

Figure 5.6. One case: In-Row works at a stable state
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5.2.4 Idea of building cooling model, based on the conclusions from ob-
servations

As conclusion, for a normal working cluster, T ◦
inlet ranges between the lower and higher tem-

perature thresholds in an infinite loop. It continues to increase when compressor stop working
and turns to decrease with the activation of compressor. Pserver and Tr can change the thermal
conditions within the container then lead to variation of loop cycle time. According to the obser-
vations, we draw several rules to determine the operations of the cooling system: In-Row relies
on T ◦

inlet to activates and deactivates compressor. T ◦
inlet varies according to the Pserver, Pcooling

and the Tr.
In reality, In-Row follows regular working patterns and these patterns can be simulated

through thermal analyses. However, classical thermal analyses for such a system need to solve
Navier-Stokes equations which requires a lot on design for grid and huge computational re-
sources. Taking all the situations into consideration, we decided to build a simplified one dimen-
sional thermal model of the cluster by using only four measurements into the model: Pserver,
Pcooling, Tr, T ◦

inlet and T ◦
outlet. Once the parameters of the thermal model are determined, Pcooling

could be estimated by providing the other variables. The idea of building the cooling consump-
tion model could be realized by following the steps below:

— Modeling Ti based on Pserver, Pcooling and Tr:

Ti(t) = f(Pserver(t), Pcooling(t), Tr(t)) (5.1)

— Modeling Pcooling based on Ti:

Pcooling(t) = f(Ti(t)) (5.2)

— Modeling the Pcooling based on Pserver and Tr:

Pcooling(t) = f(Tr(t), Pserver(t)) (5.3)

5.3 Modeling thermal behavior of In-Row by digital simula-
tion

In this section, we present our method of building the models to simulate the thermal behav-
ior of the cluster. The idea comes from observing the real time data of the cluster as described
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Table 5.2. Thermal-Electrical Analogy; symbols and units [Dav04] [FVLA02] [PW08]

Thermal Electrical

Temperature T C◦ Voltage V V
Thermal Resistance R C◦/W Electrical Resistance R Ω
Thermal capacitance C J/C◦ Electrical Capacitance C F

Heat Flux Q̇ = ∆T
R

(W ·m−2) Current through Capacitor I = C dV
dt

(A)

Heat balance Kirchhoff’s Current Law

in section 5.2.3. So far, we have realized two modelings, one for Ti and another for Pcooling re-
spectively as described by equation 5.1 and 5.2. In this section, we present our work concerning
the model for Ti. The model for Pcooling will be presented later on in section 5.4. The method
of building model for Ti is introduced in subsection 5.3.1. Value of Ti in real time is actually
related to several system variables. In order to estimate the Ti, we build an entire thermal system
for cluster. The whole system has been simplified and represented as an equivalent RC circuit
to facilitate the data processing and calculation. Then in subsection 5.3.2 we describe how to
identify the parameters of the model. Finally, we show the model validation results in 5.3.2.

5.3.1 Method for the In-Row thermal system simulation: equivalent RC
electric circuit

During the observation, we notice that the variation of Ti over time seems similar to the form
of current in a resistor-capacitor(RC) electrical circuit. Actually, in 1942, Paschkis [Pas42] has
already proposed a description about how to simulate thermal behavior in buildings by using
electrical analogy analyses. In this study, we present our approach to model the thermal system
of a cluster by analysing the corresponding equivalent electrical circuit. Similar methods have
been proposed in previous studies like [TWR02]. Table 5.2 list the analogy between electrical
components and thermal quantities that have been used in this study.

Thermal resistance (R) and thermal capacitance (C) are fundamental elements in a thermal
system [Che]. They are both physical properties of material. Figure 5.7 shows a typical heat flux
through an object. Q represents for heat, according to the second law of thermodynamics, the
heat flows (shown by the red arrow) from the hot side of an object to the cold side to equalize the
temperature difference [Dug18]. Thermal resistance (R) and thermal capacitance (C) determine
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the behaviors of heat flow when temperature difference presents.
Three Heat transfer modes can be distinguished: by thermal conduction, thermal convection

or thermal radiation. In terms of thermal conduction, for an object with thermal conductivity
k(W/(mK)), area A(m2) and thickness L(m), thermal conductance (h) of an object can be
defined by equation 5.4, measured in W/K or W/C◦. Thermal resistance is the inverse of
thermal conductance (note as h and R = 1

h
) [BK03].

h = kA

L
(5.4)

In terms of thermal convection, with heat transfer coefficient hv, we have:

h = hv × A (5.5)

In our model, thermal convection is taken into account through conduction coefficient. And heat
transfer by radiation is integrated in convection coefficient. For the rest of this study, the three
heat transfer modes are all included and simplified by thermal conductivity variable h.

Thermal conductivity hmeasures the ability of a material to conduct heat [AA66]. Heat will
be transferred faster in a material with higher thermal conductivity. For example, material with
high thermal conductivity are widely adopted in heat sink to dissipate heat, while material with
low conductivity material are commonly applied to provide thermal insulation. The heat flux
through an object can be obtained by dividing the temperature difference by thermal resistance
as shown by equation 5.6.

Figure 5.7. Typical heat flow in a thermal system

Q̇ = T2 − T1

R
= h× (T2 − T1) (5.6)

Besides thermal conductance, when heat diffuse through an object, the temperature of object
could be raised because of thermal capacitance (also known as thermal mass), and T2 will
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be lower as heat flows out. Thermal capacitance describes the capability of an object to store
heat, providing "inertia" against temperature variation [KPG+01]. For an object of uniform
composition, the thermal capacitance of an object can be approximately determined by equation
5.7, where m is the mass in kg and Cp is the specific heat capacity of the material in J/(kgC◦).
The heat flux depends on the temperature difference between two sides and can be defined by
equation 5.8.

C = mCp (5.7)

Q̇(t) = C
dT

dt
(5.8)

Figure 5.9 presents the equivalent electrical circuit of the cluster. In order to simplify the
modeling, the whole system has been considered as single layers, materials like container and
server are considered to be homogeneous. It is therefore an one-dimensional thermal system.
All the servers present in the cluster are simplified to one point. Pserver(t) is the heat resource
of the system. We suppose that, the power consumed by servers is all turned into heat. In this
case, Pserver(t) represents for the total instant server power at time t, the measurement value
is provided by a high accuracy power analyser. Pcooling(t) provides the cold source and lead to
the drop of Ti(t). Unlike the electrical power, in thermal system, the cold production power of
In-Row is called "cooling demand". Cooling systems have usually an energy efficient design,
with one unit of electrical energy consumption, they are able to produce several units of cold
(usually from 2 to 5). Compressor is the key component to produce cold in a cooling system,
most of the electrical energy is consumed by compressor. The efficiency of cooling system can
be obtained by dividing the "cooling demand" with the electrical power. For example, figure 5.8
shows the relationship between cool demand and electrical power for the In-Row. Cool demand
is zero when compressor stops working, while during the activation of compressor, the In-Row
works around electrical power of 4.4kW has a cold production power at about 23.3kW, in order
to produce 23.3kW of cold air. The In-Row has therefore an efficiency of about 5.3.

In our modeling, in order to facilitate the calculation of electrical energy consumption, we
applied Pcooling(t) as the instant electrical power consumption of In-Row at time t, the measure-
ment is provided by control panel of In-Row. The points noted as Tx represent temperatures at
different positions of the cluster. Tr, Ti(t) and To(t) are real measurements taken by tempera-
ture sensors at time t. Their positions are precised in 5.2 and 5.3. Tc(t) and Ts(t) are "imagined"
virtual temperatures of container and servers. They are necessary to be included in the model to
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Figure 5.8. In-Row Cool Demand vs Cooling Electrical Power

present the existence of properties for container and servers. All the physical measurements are
provided by Seduced platform with a sampling rate of 1 second.

In terms of parameters of the thermal system, Cx represents the thermal capacities of differ-
ent material with certain volumes. And hx represents heat transfer by conduction, convection
or radiation. For example, hr models the heat exchange between the air of the room and the
surface of the cooing container. Details of the notations are explained in Table 5.1.

Each point in the model represents a volume (with corresponding physical properties, i.e,
mass, specific heat, thermal resistance). At each time step, energy balance at the volume level
is computed, as demonstrated by equation 5.6 and 5.8, the thermal system model of the cluster
can be formed by a group of ODEs (Ordinary Differential Equation) in 5.9:



Ca,1
dTc

dt
= hr(Tr − Tc) + hs(Ts − Tc) + ho(To − Tc)

Cc
dTi

dt
= −Pcooling + hc(Tc − Ti)

Cs
dTs

dt
= Pserver +msCp(Ti − Ts) + hs(Tc − Ts)

Ca,2
dTo

dt
= msCp(Ts − To) + ho(Tc − To)

(5.9)
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Figure 5.9. Equivalent circuit of the cluster’s thermal system
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5.3.2 Parameter identification

As explained in previous section, the thermal model proposed for the cluster has been much
simplified. The parameters presented in the model are mixed with several objects or combined
with several forms of heat transfer. It becomes impossible to recognize their values through
physical or thermal properties. Therefore, we need to identify these parameters by taking use
of available physical measurements of the system: Tr, Ti(t), To(t), Pcooling(t) and Pserver(t).
Searching the optimal parameters of a model to fit existing data is an optimization problem. We
choose the python package LMFIT [MS+18] for perform the optimization. LMFIT is designed
for fitting complex models to real data by performing non-linear least-squares minimization and
curve-fitting methods. The problem can be expressed as minimizing the difference between the
model estimation results and the real measurement values. Inputs of the model are operating
variables as Pcooling(t), Pserver(t) and Tr(t), and the outputs are the temperatures of four points:
Tc(t), Ti(t), Ts(t) and To(t). Among them, Tc and Ts are virtual variables, we have only the
measurements of Ti(t) and To(t). Therefore, the identification of the parameters in our cooling
model is done by progressively comparing the estimation results Ti(t) and To(t) from the model
with the real physical measurements. The principal procedure of identifying the parameter can
be described by figure 5.10. In the figure, Ti_e and To_e are estimations from model simula-
tion. Optimization algorithm calculates the value of the sum of the last square value between
the estimations and real measurements with the parameters provided, then tries new parameter
combinations in order to obtain a lower value.

Figure 5.10. Diagram of the identification procedure

There are two key functions in the program of identification:
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1. Cooling system model functions. It is a time-series model composed by four ODEs. The
function takes in operating variables as inputs: Tr, Pserver and Pcooling, thermal system
parameters

−→
Cx,
−→
hx and MsCp. Outputs of the model are the temperatures from different

positions of the cluster as function of time. Pseudo code of the model is exhibited below:

function cooling_model(T_initial, Paras, Data)

# Initial data

Tc, Ti, Ts, To = T_initial

# Operating variables, from physical measurements

Tr, Pserver, Pcooling = Data[’Tr’, ’Pserver’, ’Pcooling’]

# Cooling system parameters

Hr, Hc, MsCp, Hs, Ho = Paras[’Hr’, ’Hc’, ’MsCp’, ’Hs’, ’Ho’]

Ca1, Ca2, Cc, Cs = Paras[’Ca1’, ’Ca2’, ’Cc’, ’Cs’]

# Cooling model expressed by differential equations

Tc_t = (-Hr - Hs - Ho) / Ca1 * Tc + Hr / Ca1 * Tr + Hs / Ca1 * Ts + Ho / Ca1 * To

Ti_t = -Pcooling / Cc + Hc / Cc * Tc + (-Hc) / Cc * Ti

Ts_t = Pserver / Cs + MsCp / Cs * Ti + (- MsCp - Hs) / Cs * Ts + Hs / Cs * Tc

To_t = MsCp / Ca2 * Ts + (-MsCp - Ho) / Ca2 * To + Ho / Ca2 * Tc

return Tc_t, Ti_t, Ts_t, To_t

2. Objective minimize function. The function returns the differences between real Ti, To

from measurement data and the their estimations from cooling model, by calculating the
sum of the differences. Pseudo code of objective function is exhibited below:

function residu(T_initial, Paras, data):

% Get the estimating results from cool model

T_estimate = cooling model(T_initial, Paras, data)

Ti_estimate = T_estimate[’Ti’]

To_estimate = T_estimate[’To’]

% Calculate the sum of difference for Ti and To

residu = (data[’Ti’] - T_estimate[’Ti’]) + (data[’To’] - T_estimate[’To’])

return residu

We applied the function minimize from LMFIT to perform the optimization. According to
the documentation, function minimizewill do a least-squares optimization of the return array:
calculate the sum of squares of the array, then send the result to the optimization method to be
minimized. Optimization method searches the optimal parameter values within the constraints
defined by users. Our cooling model contains nine parameters. The procedure of searching the
parameters are realized by two steps. Firstly, determining the range of the parameters according
to physical thermal characteristics of object, and secondly determining the value of parameters
by running optimization algorithm with several training sequences.
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Identification the thermal capacitance parameters

Cool model shown in 5.9 contains nine unknown parameters, including four thermal capaci-
tance parameters, four thermal conductance parameters and a thermal fluid conductance MsCp,
which represents air flow passing through servers. Thermal conductance values may vary ac-
cording to some system variable such as flow. Thermal capacitance represents materiel property,
they are supposed to be constant in our system. Therefore, in the first place, we start by iden-
tifying the values for the thermal capacitance parameters. The training set chosen is shown in
figure5.11, during this period, system has a stable state: Pserver varies around 1.7kW and within
a limited range, Tr is stable and between 23C◦ to 24C◦. All the parameters during the training
set are approximately constant.

Figure 5.11. Training dataset for identifying thermal capacitance

Even though all the parameters are supposed to be constant in this training dataset, possible
parameter combinations would be too large to select without specifying a reasonable research-
ing gird. Fortunately, all the parameters represent certain thermal and physical properties of
objects. We start by assigning ranges for each of the parameters according to the prior knowl-
edge about the system. For example, Ca,1 represents for the capacitance of the air in the room.
The value ranges can be obtained according to equation 5.7, where the specific heat capacity of
air (Cp,air) is about 1004 (J ·kg−1·K−1). The mass of air in the room can be obtained thought
the production of density of air (ρair = 1.225kg/m3 at 15C◦, sea level) and the volume. The
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Table 5.3. Initial value and researching range for system parameters

Parameters Searching range

Ca,1 [3800, 26600]
Ca,2 [175, 1550]
Cc [23300, 186400]
Cs [200000, 2000000]
MsCp [301, 903]
hr [0.04, 3]
hc [80, 4860]
hs [0, 2]
ho [0, 2]

volume of the room except the cooling container is estimated between 15 m3 to 103 m3. There-
fore the range of parameter (Cp,air) suppose to between 19000 and 133000. Considering that
we apply electrical power instead of cool demand for Pcooling, the values of parameters should
be divided by a coefficient of five in the model. Therefore, the range for Cp,air is set to [3800
26600]. We define the range for each parameter by following the same method. Table 5.3 lists
for each parameter the researching range for optimization algorithm.

The cooling model to be optimized contains multi variables and has a large searching space,
it is hard to generate initial guess values due to limited prior knowledge. Considering the model
features, we determine to choose "Differential Evolution (DE)" as the optimization method. DE
is a global optimization method, firstly introduced by Storn and Price [SP97]. DE aims to find
the global minimum of a multivariate function. Specially, DE can be applied to optimization
problems with large searching scale, to find solutions for multiple and constrained objective
functions, under dynamic and uncertain environments [DS11]. Users just need to specify the
constrains for each parameters (minimum and maximum value), initial guess is not required.
DE starts solving the optimization problem by randomly proposing initiated candidates within
the large scale searching scale, then focus on searching around several interesting candidates if
exist. Comparing to DE, the estimations searched by classic gradient descent local optimization
techniques such as Levenberg-Marquardt or Gauss-Newton. The final solution can be greatly
influenced by initial values, as the final estimation may converge to local solutions [Dat15].
Local optimization approaches usually requires less time than global optimization approaches
to find the solution if initial guess is well provided. However, they are not suitable for finding
the possible better solutions which are far from the initial guess. Table 5.4 shows the obtained
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Table 5.4. Identification of the thermal capacitance parameters

Thermal capacitance Ca,1 Ca,2 Cc Cs

Obtained values (J/K) 25120 1200 36263 210700

capacitance values from running the algorithm based on DE.

Identification the thermal conductance parameters

Five training data sets have been used to identify the thermal conductance. For each dataset
chosen, Pserver runs steadily at different average power, varying at about 1.7kW, 1.8kW, 3.8kW,
4.2kW and 6.3kW respectively. Thermal conductance hc and fluid conductance McCp are ob-
served to have different values according to Pserver. In order to determine the expression for hc

and MsCp based on Pserver. We search the optimal hc, MsCp combinations for each data sets,
by fixing the other parameters to a constant that we obtained while searching the capacitance in
previous optimization. After that, we apply the logarithmic curve fitting to find the expressions.
Figure 5.12 shows the log equations fitting the Pserver with hc and MsCp that we find under
each data set.

In fact, McCp represents the thermal fluid conductance, this parameter relies on the quantity
of air flowing during a unit of time. When server power increases, more heat is generated,
therefore integrated fans work at higher speed, more air will pass through the server during the
same period of time. Value of MsCp increases with the rise of Pserver, the expression that we
find match exactly the real situation. In terms of hc, it increases with Pserver as well, because
heat convection is boosted with higher air temperature.

So far, we have identified all the parameters of the model, table 5.5 presents the value or
expressions that we found for each ones.

5.3.3 Validation on the identification process

Once the parameters are determined, we can already verify the correctness by comparing
the model estimations results with the real measurements on the data sets that we use during
the identification process. Figures from 5.13 to 5.17 shows the estimation results obtained on
the trainning data set. The MAPEs (refer to "Model evaluation metric" in section 1.4.2) are less
than 4% for estimations of Ti and 3% for To.
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Figure 5.12. Values of Hc and MsCp based on Pserver

Table 5.5. Obtained values or expressions for system parameters

Parameters Searching range Obtained value or expression

Ca,1 [3800, 26600] 25120
Ca,2 [175, 1550] 1200
Cc [23300, 186400] 36263
Cs [200000, 2000000] 200700
MsCp [301, 903] 128.6× log(Pserver/46.1)− 63
hr [0.04, 3] 1
hc [80, 4860] 70× log(Pserver/124.8) + 90.3
hs [0, 2] 0.4
ho [0, 2] 0.44
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Figure 5.13. Estimation result on trainning set 1: Pserver runs around 1.7kW

Figure 5.14. Estimation result on trainning set 2: Pserver runs around 1.8kW

Figure 5.15. Estimation result on trainning set 3: Pserver runs around 3.8kW
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Figure 5.16. Estimation result on trainning set 4: Pserver runs around 4.2kW

Figure 5.17. Estimation result on trainning set 3: Pserver runs around 6.3kW
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In addition to the training set, we choose another data set that we didn’t use during the
training processing to complete the model validation. This data set consists in 33 hours of the
measurements. In this data set, Pserver varies dynamically between 4.2kW and 6.8kW. The val-
idation result is shown in figure 5.18. The MAPE for Ti and To are 3.4% and 2.1% respectively.
The estimation result starts to have more distance from real measurements after about 40000s,
where Tr starts to have more fluctuations. It seems that one or more parameters may also vary
according to Tr. We will identify these parameters and optimize the model in a future work.

Figure 5.18. Estimation result: Pserver runs between 4.2 and 6.8 kW

5.4 Modeling cooling power of cluster based on inlet temper-
ature

Previous section introduces modeling the evolution of Ti based on operating variables of the
cluster: Pserver, Pcooling and Tr. In order to get the estimation of Pcooling directly from Pserver and
Tr, the relationship between Ti and Pcooling is required, we have already explained the details in
section 5.2.3. In this section, we present our study on modeling the Pcooling based on Ti.

Actually, as we explained in section 5.2.3, Ti plays as a trigger for cooling module of In-
Row. The cooling power is therefore modeled based on four parameters:

— Ti,low: Compressor stops working once Ti is cooled down to Ti,low (value is about 12.4◦C).
— Ti,high: Compressor starts working once Ti goes up to Ti,high (value is about 20.3◦C).
— Pcooling,low: Compressor is working, power of In-Row is about 4600W.
— Pcooling,high: Compressor is not working, power of In-Row is about 260W.

It has been observed as well that, at the beginning of restart of compressor, In-Row runs sud-
denly at a peak power (between 7kW to 9kW), but during a very short of time, which is a normal
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behavior of electrical motors. Moreover, the peak power varies randomly, hard to analyse and
estimate. We didn’t consider modeling this peak power in our model, energy consumption is the
production of power and time, the peak power has little influence on the final result, and we are
capable to compensate this peak by increasing a little the value of Pcooling,high. Figure 5.19 illus-
trates our basic idea of modeling the Pcooling based on Ti in a simple way. In the figure, Pcooling

represents for real cooling power and Pcoolinge represents for the estimated cooling power from
model. In this model, Pcooling switches between two values: Pcooling,low and Pcooling,high, turning
points are determined by the predefined values of Ti,low and Ti,high, which are caused by the
working states (on or off) of compressor.

Figure 5.19. Idea of modeling Pcooling based on Ti

The cooling can be determined by identifying the four parameters according to operating
variables.

5.4.1 Identification

In this section, we present our method concerning identifying Pcooling,low, Pcooling,high, Ti,low

and Ti,high. We use the same data sets that have been used for building Ti model. Among them,
Ti,low, Ti,high and Pcooling,high will increase with the rise of Pserver, even though the increment
is very small, the values of turning point have great impact on the precision of cooling model.
After several experiments, we decided to assign different values to each parameter based on
Pserver range. For example, in data set 1, servers run steady at around 1.7kW, we identify firstly
all the turning points (the sets of Ti,low and Ti,high) in data set 1, part of the result is shown in
figure 5.20.

In this data set, Pserver varies between 1592W and 2236W and has an average power of
1762W. Ti,low of each cycle varies between 11.72 ◦C and 11.95 ◦C and Ti,high varies between
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Figure 5.20. The values of Ti,low and Ti,high, Pserver runs at around 1.7kW

20.30 ◦C and 20.39 ◦C. In order to contain all the turning points, the value of Ti,low in the
model need to be set a little higher than the maximum result of the Ti,low in the data set. For
the cycles in the data set, if Ti,low is set too low, sometimes, the Ti cannot be cooled down to
the set temperature, cooling model will consider that the compressor should keep working and
maintain the cooling power at Pcooling,high. Eventually, cooling model will miss several cycles
and loss the precision. Similar to Ti,low, the value of Ti,high in the model is set a little lower than
the minimum result of the Ti,high in the data set. Therefore, we set 12 ◦C for Ti,low and 20.3 ◦C
for Ti,high. We follow the same method and identify the best Ti,low and Ti,high for the rest of the
data sets. The turning points for cool model are therefore defined based on the range of Pserver.
In terms of Pcooling,low and Pcooling,high, they do not have much variation across different Pserver

range, average value are selected to fit the data.

An exception: servers run at higher power The models built with initial parameters fit well
the training sets where Pserver below 4700W. However, the model didn’t fit very well the data
of training set 5. In this data set, Pserver varies between 6077W to 6693W. For previous data
sets, Ti,low are equal or less than 12.4◦C and they are always the minimum temperature value
at each cycle. However, if we investigate the Ti values of data set 5, it has been found that, for
servers run at higher power, heat will be generated by servers at higher rate, in this situation, the
cooling system may not be powerful enough to cool down the Ti,low below the low temperature
set limit 12.4◦C (Ti,low is about 12.4◦C). In this case, the working state of compressor is hard to
estimate: compressor may stop at a Ti temperature higher than Ti,low. We show an example in
figure 5.21, where we zoom in to a part of data set 5. Blue line represents the real cooling power
and estimation of cooling power from the model is in green. On the first cycle, the minimum
temperature of Ti in this cycle is 12.42◦C, but it is still higher than Ti,low of 12.4◦C. Instead of
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stopping at 12.42◦C, compressor continues to work for a while and stops when Ti is at 12.51◦C.
However, our model is not able to estimate this behavior, for the first cycle, the compressor in
our cooling model still stops when Ti reached 12.42◦C, that results in an under estimation of the
energy consumption due to this exception period. The third cycle shown in the figure 5.21 has
the same problem. Actually, the real range of Ti,low in data set 5 is between 12.43 and 12.80◦C.
We set the Ti,low value as the minimum temperature achievable during the data set in order to
have lowest loss. In addition, we increase the value of Pserver,high to 5000W so as to compensate
the possible energy loss during the exception period.

Table 5.6. Parameters of cooling model based on Ti

Pserver range(W) [0 1800] [1801 2500] [2501 6000] > 6000

Ti,low 12 12.11 12.4 12.42
Ti,high 20.29 20.29 20.40 20.42
Pcooling,low 260 260 260 260
Pcooling,high 4800 4800 4800 5000

Figure 5.21. Cooling model challenge: servers runs at high power

Table 5.6 shows the values of the parameters chosen for different Pserver ranges.

5.4.2 Validation

We evaluate the cooling model by using the same data sets in previous section. Electrical
energy consumption is determined as the sum of all the instant cooling powers (power data is
recorded per second). The error of the cooling model is calculated by computing difference
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percentage error between the measured and the estimated energy consumption. The formula
used to calculate the percentage error result is shown in equation 5.10:

Errorcooling =
∑n

t=0 P
estimated(t)−

∑n

t=0 P measured
cooling

cooling (t)∑n
t=0 P

measured
cooling (t) × 100% (5.10)

Same as the validation process for Ti model, we have firstly evaluate the model correctness
directly from the training data sets that have been used to determine the model parameters. Fig-
ures 5.22 to 5.26 show the validation results on the training data sets. Model error is calculated
by using all the data in the data set, as there are lots of cycles, only part of the data has been
shown in the figures. As shown by the figures, model has a percentage error of -3.17% for train-
ing set 5. For the rest of the data sets, the percentage errors are all less than 1.1%. Later on,
we validate as well the model on the data set excluded from the training process. As shown by
the figure 5.27, the model has a percentage error result of -3.21%. The current model shows
better result for servers run at lower power (less than 4.7kW), otherwise, the accuracy can
be influenced by unexpected periods as we showed in 5.4. In general, the percentage error is
kept at an acceptable level for all cases (less than 3.3%). Further work can concentrate on these
exceptions occurred while servers run at high power, the accuracy of model could be improve
further by correcting the unexpected energy loss.

Figure 5.22. Estimation result on trainning set 1: Pserver runs around 1.7kW

Figure 5.23. Estimation result on trainning set 2: Pserver runs around 1.8kW
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Figure 5.24. Estimation result on trainning set 3: Pserver runs around 3.8kW

Figure 5.25. Estimation result on trainning set 4: Pserver runs around 4.2kW

Figure 5.26. Estimation result on trainning set 5: Pserver runs around 6.3kW

Figure 5.27. Estimation result on data set exclude from training: Pserver runs dynamically from 4.2 to 6.3kW
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5.5 Real time and global power consumption modeling of clus-
ter: Further work

According to the initial idea described in section 5.1, the global cooling model can be re-
alized in three steps. We have completed at the moment the first and second step. In terms of
the first step, the model simulated the thermal system behavior has been realized in section 5.3.
Taking use of this model, we are able to estimate the value of Ti(t) by providing Pserver(t),
Pcooling(t) and Tr(t). After that, in section 5.4, we present our work on modeling the cooling
power consumption based on the description of second step. The model estimates the Pcooling(t)
according to Ti(t) and the corresponding cooling system configuration parameters:Ti,high, Ti,low,
Pcooling,high and Pcooling,low. The final model is expected in the third step, to estimate the global
power consumption Ptotal(t) by feeding directly with operating variables Pserver(t), Tr(t), and
the cooling system configuration parameters: Ti,high, Ti,low, Pcooling,high and Pcooling,low. The
model is combined by the previous two models for the estimations of Ti and Pcooling. The idea
of building the final model is described as follows: firstly, we provide initial Pcooling(0) and Ti(0)
to the system, in order to initialize the working environment of the cooling system. In terms of
setting the initial values for Pcooling(t) and Ti(t) at t = 0, in fact, what we expect from the model
is estimating the total electrical power consumption, Pcooling(t) starts with either Pcooling,high or
Pcooling,low has little importance to the final estimation result. Similarly, the start temperature
of Ti could be set randomly between thresholds Ti,low and Ti,high as well. Once having initial
the Pcooling(0) and Ti(0), Ti(t) could be generated by using the model realized in the first step.
After that, the value of Pcooling(t) would be switched between Pcooling,high and Pcooling,low at the
moment Ti(t) reaches the thresholds. Finally, the total cooling energy consumption during the
period could be obtained by calculating the sum of Pcooling(t).

Further more, the value of Pserver(t) could be actually replaced by real time server activity
related data, such as the current load, number of active VMs, etc. Then, a model estimating the
total power of the cluster can be realized by providing operation/activity related data, and the
cooling system configuration parameters, as show by the equations 5.11 to 5.13.
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config = [Ti,high, Ti,low, Pcooling,high, Pcooling,low]

Pserver(t) = f(Loadservers(t)) (5.11)

Pcooling(t) = f(Pserver(t), Tr(t), P cconfig) (5.12)

Ptotal(t) = Pserver(t) + Pcooling(t) (5.13)

= f(Loadservers(t), Tr(t), config)

A model estimating the real time global power consumption of a physical cluster is very
helpful, once realized, much work can be realized in using the model. One can vary certain
operating conditions (different Tr, cooling configurations such as Ti thresholds) and compare
the simulated power consumption between different conditions. This allows us realizing a full
optimization of the global energy power consumption for the cluster. Unfortunately, restrained
by deadline, we haven’t completed the final model. The final model is expected to be optimized
and completed in further work.

5.6 Conclusion

In this section, we describe our method of building a cooling model for a physical cluster.
The cooling of the cluster is provided by a specific cooling system called "In-Row", it is a
high efficiency cooling equipment which is widely adopted for data centers equipped with large
clusters. The cluster we modeled contains five racks, there are four server racks, with a total
of 48 servers and an In-Row rack. The whole cluster is placed within a closed container which
avoids air and heat exchange between the racks and the outside room. The In-Row rack is
installed in the middle of the four server racks. Basic function of In-Row is to take in the hot air
generated by servers at the hot aisle, cool down the hot air then release the cold air to the cold
aisle. Compressor is the key component of the cooling module of the In-Row, which consumes
most of the energy required by In-Row. In order to save energy, compressor does not work
all the time, the working state of the compressor is activated and deactivated according to the
temperature of air released to the front side (Ti), which is measured and recorded by a sensor
installed along with the In-Row. Compressor restarts and stops in an infinite loop when Ti

reaches the low and high temperature thresholds. This phenomenon indicates that, if we know
how Ti varies according to the operating variables of the system, the cooling power can be
estimated based on the value of Ti. Therefore, in our point of view, a global power consumption
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model can be realized in three steps.

In the first step, we try to estimate the real time Ti value based on the following operating
variables: power of total server Pserver(t), total cooling electrical power of In-Row (Pcooling(t))
and the room temperature (Tr(t)). The estimation can be achieved by building the thermal sys-
tem model for the cooling system of the cluster, with respect to the heat balance within the
system. After analysing the elements of the system, we propose a simplified equivalent RC cir-
cuit to mimic the heat transfer among different objects of the cluster. The simplified one-layer
model has been be proposed by a group of ODEs (Ordinary Differential Equation). However, as
the thermal model has been much simplified (for example, all the servers are represented with
one point, resistances are mixed with thermal conductance, convention and radiation, each point
has different mass and volume behind them, etc), the parameters in the model represent complex
thermal and physical properties, it is impossible to get their values in a direct way in this case.
Therefore, we need to identify the values of the parameters in the model by using the available
real measurements of the system. We propose in this situation a global optimization method to
solve the parameters in the model. Moreover, two parameters in the model (hc and MsCp) are
found to vary with Pserver(t). We retrieved eventually the expressions of these parameters by
curve fitting the best solutions under different Pserver(t) range. Our model have been validated
on all the training data sets and a data set excluded from training process. The MAPE results
are less than 4% and 3% for estimations of Ti and To comparing to the physical measurements.
Especially, this thermal model of the physical cluster has been realized with limited computa-
tional resources (one HP laptop with four Intel i5-7300@2.6GHz cores). We believe that, the
model can be more accurate with more details, for example: building the thermal model with
multiple layers, providing more physical temperatures such as the temperatures at different po-
sitions of the cluster and room, which requires obviously, more computational resources. Thus,
our approach demonstrate a feasible simpler way to model such a system, with acceptable error
range.

In the second step, we build the cooling power consumption model of In-Row based on
Ti values. The principle objective is to determine four parameters of the model: the low and
high temperature thresholds which switch the on and off working states of compressor (Ti,high

and Ti,low), and the power of In-Row during the activation and deactivation of compressor
(Pcooling,high and Pcooling,low). Actually, (Ti,high and Ti,low) will vary within different Pserver

ranges. We train the model by using data sets with different range of Pserver(t), and determine
the precise Ti,high and Ti,low values according to different Pserver(t) ranges. Model has been then
validated by calculating the difference of energy consumption obtained from the model and the

155



Chapter 5 – Estimating power consumption of clusters

measured one, the result is presented by percentage error. Model shows better fitting with the
data while servers run under about 6kW. For higher power, cooling system may not be capable
to cool down the Ti to a desired temperature (12.4◦C). In this case, instead of stopping working
at the minimum temperature in the cycle, compressor will continue to work for a while and
stop at a higher Ti temperature. According the observations, this exception happens occasion-
ally, and the cooling model is not capable to detect and react properly at these exceptions yet.
In general, we have a absolute percentage error less than 3.3% for all the validation data sets.
As further work, the study can concentrate on dealing with these excepted situations, so as to
improve further the model accuracy.

In terms of the third and final step, we have not completed the final model estimating the
global power consumption of the cluster yet, restrained by thesis deadline. The idea of achieving
the model has been detailed in section 5.5. The model is expected to complete and optimized in
further work.
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CONCLUSION

Summary of the Dissertation

Internet is probably the largest thing built by us, as the physical infrastructure, data centers
takes unsurprisingly tremendous amount of energy to our needs in digital life. According to
recent predictions, in 2025, share of global electricity used by data centers is predicted to ac-
count for no less than 4.5%, and 3.2% of the total carbon emissions [And17]. Building "green"
data centers and reducing environmental impact become a great concern, especially for large In-
ternet companies [C+]. Therefore, for an operator telecom like Orange, it is essential to have a
preview of the energy consumption before planning the construction, for both economic and en-
vironmental benefits. Energy predictive power model is one of the approaches [VDBDCJ+14].
Much work has been done to realize an energy predictive model for servers, we have intro-
duced some of the representative work in section 1.4.1 and 1.4.2. However, according to our
experiments in section 2.2.3, for a physical homogeneous cluster, a maximum of 7.8% power
variation has been found between 12 identical servers under the same load. This observation
indicates that, the accuracy of a power model built upon one server can be questioned if applied
to the other identical ones.

Based on this finding, we try to identify the underlying causes for the power variation be-
tween identical computing systems. We find through other experiments that, fluctuating neigh-
boring temperature can vary the average power of a same server to 5.6% , with execution of
the same workload. Previous studies have also emphasized the power variation brought by tem-
perature changes, as mentioned in 1.5.3. However, few work addressing about how temperature
variations affect the power of computing systems. We try to provide more concrete explanations
in the study described in section 2.4. The study has been performed on two parts of physical
servers: the influence brought by temperature variation from CPU and from the other compo-
nents. During the experiments, we found ways to only vary the surface temperature for one part
while keeping the temperature of the other part constant. The results demonstrate that: the rise
of the ambient temperature can increase the power consumption of servers in two ways: through
the consumption of cooling system (integrated fans) and static power dissipated by CPU. The
evaluation proved as well that, except CPU, the other components in the server are almost not
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sensitive to ambient temperature variation. Moreover, we have correlated the power of server
with the static power of CPU. The static power dominated by leakage current increases dramat-
ically fast with the rise of ambient temperature. Taking a Gigabyte server for example, during
a stable CPU intensive application execution, server power experienced a 16% rise by only
raising CPU temperature.

Fabrication process discrepancy can be another cause for the power variation observed
among identical servers. Relevant studies are detailed in section 1.5.4. However, due to lim-
ited samples, there lacks enough physical evidence and deeper exploration addressing how the
fabrication process makes the processor samples differs from each other. Therefore, in section
3 we explore this subject by deep exploring the variability between identical processor samples.
Two processors of Intel from different generations have been participated in this evaluation.
We test 30 samples for each type. Except the CPU samples, environmental variables have been
well controlled: samples are switched one by one in the same motherboard, stressed with the
same workload, and the whole testbed is placed in a climatic chamber with the same ambient
temperature. In this case, the modern type is turn out to have more power variation between
samples. Inspired by the previous studies, we propose and analyze two potential possibilities:
TIM applied and the parameter of leakage current. However, removing TIM didn’t help reduc-
ing the variation. After that, we try to exposure the difference of thermal characteristics between
samples and finally find the reasons. In fact, with the decrease of lithography size in modern
processors, leakage current becomes more important and parameters within leakage current can
differ from one to another. This difference affects finally the static power consumption among
samples: static power increases with different rate while the rise of CPU temperature. In this
study, we have characterized in an innovative way, the power variation brought by the difference
of leakage current parameters between processors.

Thermal effects have been explored deeply to servers in chapter 2 and to processors in chap-
ter 3. Later on in chapter 4, we have discussed influence of thermal effects on the accuracy of
power models. We evaluate the classical power model based on CPU utilization. We find that,
power model can loss much accuracy for server running under different ambient temperature.
According to the studies conducted in previous chapters, we propose to take in ambient tem-
perature as another indicator in the model. Other than thermal effects, single indicator based
modeling approach has limitation to build reliable model for modern servers: power could vary
within a large range for a fixed CPU utilization level. Even with a fixed CPU frequency, uti-
lization is not perfectly linear to power. Polynomial regression function is capable to fit better
the real measurements. However, higher degree could lead to eventually over-fitting. In order
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to avoid this problem, we have proposed an algorithm to research and determine the best poly-
nomial degree for building power models. Besides power models, in the same chapter, we have
also evaluated the reliability of power measurement data obtained from IPMI, Redfish and In-
telligent PDU. Recently, these tools are becoming popular and often play an essential role in
realizing the entire power management in a data center environment. However, there is not
much work discussing the reliability of these tools. We compare the power measurements from
these tools with an high accuracy power analyzer. The experiment results show that, the preci-
sion of both IPMI and Redfish can differ from different power ranges, usually, the higher the
better. After analysing, the loss of accuracy is believed to be brought by the latency from re-
quests between controller and sensors. Comparing to IPMI, Redfish is observed to have less
such latency. Besides latency, sometimes the tools under evaluation have not been well cali-
brated before using. The accuracy was greatly improved after the calibration. This evaluation is
not quite included in the scope of our research, but we still hope that, the results presented can
provide some references and guidelines for data center operators, when applying IPMI, Redfish
or Intelligent PDU as power characterization approach.

In the end, we present our idea of modeling the global power consumption of a physical
cluster. The model is expected to estimate the global power consumption of the cluster, by
providing operational configurations of cluster and server activity related data, such as room
temperature, configurations of cooling system and load of servers. The objective global power
consumption includes the power consumed by both servers and cooling system. The cluster
adopts the "In-Row" model as the cooling solution, which consists in a direct expansion system
with fans and controllers. In-Row has been nowadays widely used for large scale data centers.
The whole cluster is placed within a closed cooling container which includes four servers racks
with 48 servers and one In-Row rack served as the primary cooling system of the cluster. The
final model has been planned to be realized in three steps, and at the moment we have realized
the required models in first and second step. The first model concerns stimulating the thermal
system of the cluster. It is a one dimension thermal model. The model is able to estimate real-
time inlet and outlet temperatures, by providing three system variable: power of total servers,
power of cooling system and temperature outside the cluster (room temperature). The thermal
model proposed is simplified with one dimensional, it represents the heat transfer between dif-
ferent elements of the system. The thermal model has been built through equivalent RC circuits,
heat flux at four positions of the cluster have been established with ordinary differential equa-
tions (ODE), with respect to the heat balance. As the thermal model has been much simplified,
parameters presented in the model have mixed with complex physical and thermal properties,
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it is hard to retrieve their values according to real world physical or thermal rules. In this case,
we propose a global optimization method based on differential evolution (DE) to find solutions
of the parameters in the model, in order to approach the outputs of the model as close as pos-
sible to the physical measurements. For all the data sets, the validation result shows the MAPE
values less than 4% and 3% for the estimations of inlet and outlet temperatures. In terms of
the second step, we propose a cooling power consumption model based on the evolution of
inlet temperature of the cluster. The model is simply composed by four cooling configuration
parameters: the high and low thresholds of inlet temperature, which determine the activation
and deactivation of compressor in the cooling system. And the high and low cooling power of
cooling system. The power of cooling system is observed to switch between the high and low
power depends on the working states on and off of the compressor. However, the thresholds of
the inlet temperature vary according to the total power of server. In this case, we propose to
provide different thresholds temperatures based on the range of total server power. The model
has validation results with percentage error less than 1.2% for servers running at lower power
(lower than 4.7kW), and less than 3.3% for servers running at higher power. The errors is in-
creased due to some hard-to-estimate exception of the inlet temperature, occurring specially at
higher server power. The model can be improved if these exceptions can be well estimated. We
consider finding the solutions in further work. In the end, as the third step, a model targets at
estimating the global power consumption of the cluster, includes both server and cooling power
is expected. However, we haven’t completed the final model due to the thesis deadline. The idea
and procedure of realizing such a model has been well detailed in section 5.5. We hope that
the work can be carried on and the model is expected to be realized and optimized in the future
work. Such model will be very helpful in realizing a global power consumption optimization, by
taking environmental conditions, operational configurations and IT loads all into consideration.

Power consumption of a data center is a large subject. During the whole research, we spent a
lot of time on experimental evaluations, from single elements like processors, servers, measure-
ment devices to a whole functional cluster. The principal objective and direction of the research
have been inspired and cleared a lot after analysing the data obtained from these experimental
evaluations. Instead of concentrating on the analysis of the activity related data generated by
servers, which has been much and well explored during the last decades, we put more focus on
the uncertainties of the power consumption brought by external variables: thermal effects led by
temperature variation, differences on identical samples caused by imperfect of fabrication pro-
cessing, accuracy problems come from power measure approaches. Each factor has been deeply
studied and evaluated in our research. Besides experimental evaluations, we put forward as well,
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the modeling of the global power consumption of a physical cluster, equipped with advanced
and widely used cooling system. Generally, traditional data-oriented methods train the model
with "big data", and the model is presented as a "black box". Once the initial conditions change,
the model has to be re-trained under new environment. We propose to realize the model in a
different way. The model has been built from thermal analysis of the whole cluster, it takes in
the environmental conditions and system configurations as variables. It is expected to estimate
the global power consumption under different environment and/or configuration situations.

Perspectives

During this thesis research, encouraged by research spirit, we’ve explored a lot the subject in
different ways. However, there is still room to enrich the research in several aspects. Constrained
by the time and original research scope, we didn’t go much further for every aspect that worth
digging deeper. In this section, we provide three feasible directions in pursuit of the current
work. One of them is being proposed as a postdoc research in Orange Labs.

Static and dynamic power modeling of servers

In reality, due to imperfection fabrication processing, the supposed identical processors are
not totally equal to each other in terms of energy efficiency. The evidence indicates that fab-
rication processing can make the static power differ from one sample to another, concretes in
the parameters obtained from the fitting the power with temperature data are different. On the
other hand, the same concept can be applied to estimate the static power of the processor from
the total server power. When being stressed by a stable IT load, the power increment caused by
temperature rise are brought principally by static power from processors (refer to 2.4.2, 2.4.3
and 3.3.2). Besides temperature, static power depends as well on frequency, supply voltage, size
and number of transistor. Therefore, modeling the static and dynamic power of a server under
different load and environmental temperatures can be realized, by taking the above aspects into
consideration. Much work can be done based on the result of the model. For example, operator
will be able to locate the servers with higher and lower static power in a homogeneous cluster,
and set different priorities for servers in a VM migration design. Moreover, such a model can
also provide a different way to predict the power consumption of a VM.

This subject is being proposed as a postdoc research in Orange Labs.
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Workload classification based, single indicator power modeling for servers

In chapter 4, we evaluate the accuracy of the power model designed for servers, built by
single indicator CPU utilization. The evaluation result show that, server power can be well fitted
with CPU utilization by a nonlinear model during the execution of single workload or workloads
with similar functionalities. Accuracy can be improved by applying different models for each
workload type. This observation provides a possible way to optimize the server power models
based on CPU utilization. The steps of realizing the model can be summarized as follows:

— Executing different type of workload on the SUT, while collecting CPU utilisation,
power consumption and selective PMCs during execution.

— Classifying the workloads in using PMCs according to CPU Utilization & Power curves
(can be expressed with same or similar nonlinear regression formula).

— Building the table of classification based on workload type, (CPU types: FLP/INT calcu-
lating, sort, compress; Memory & Hard Drive: Read/Write (RW) operations; Network,
etc) and each type corresponding to one CPU Utilization & Power model.

When new workload coming, determine its type in real-time according to PMC values, then the
power can be calculated by specific model in the classification table.

In our point of view, accuracy of power model based on CPU-utilization could be well
improved by applying classification during the workload execution.

Real time and global power consumption modeling of cluster

We expect to realize a global power consumption model for physical cluster, as the final step
of the work presented in chapter 5. A model estimating the real time global power consump-
tion of a physical cluster is very helpful, once realized, much work can be realized in using
the model. The final model is expected to estimate the global power consumption Ptotal(t) by
providing operating variables Pserver(t), Tr(t), and the cooling system configuration parame-
ters: Ti,high, Ti,low, Pcooling,high and Pcooling,low. We have ready realized the the estimations of Ti

and Pcooling in chapter 5. The final model is expected to generate the Ti according to the other
working and configuration variables. Steps of building the model has been detailed in section
5.5.

Once realized, operators can preview the further power consumption by simply varying
working and operating conditions. Further more, cooling power consumption of the SCS (air
conditioning) in the room is also interesting. The cooling model of SCS allows us simulating
the seasonal cooling consumption, according to outdoor temperature.
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RÉSUMÉ EN FRANÇAIS

Contexte et objectif de la recherche

L’internet des premiers jours est bien loin de celui de nos jours. De quelques messages
échangés entre deux ordinateurs, ce dernier traite aujourd’hui des flux d’information toujours
plus nombreux et volumineux. Mais au-delà des flux réseaux ce sont bien les services proposés
qui ont largement évolués. Le Cloud computing et ses applications en ligne, la video à la de-
mande, les réseaux sociaux, le streaming de jeux ont fait explosé tant les besoins en réseau
que ceux en calcul. Ces nouveaux services sont principalement exécutés dans des salles infor-
matiques dédiées, nommées centre de données, composées de dizaine, centaine voir plusieurs
milliers d’ordinateurs. Un des sujets de préoccupation industriel, societal et scientifique con-
cerne la consommation électrique mondiale de ces salles.

Cette thèse s’inscrit dans ce sujet et aborde le défi scientifique de la modélisation énergétique
d’un centre de données. L’objectif de cette modélisation étant de pouvoir estimer et prédire la
consommation de la salle en fonction des paramètres les plus importants. Disposant d’une telle
modélisation, un opérateur comme orange aurait la possibilité de mieux repenser/concevoir ses
actuels/futurs centre de données.

De nombreux travaux scientifiques s’inscrivent dans ce défi. Cependant, les paramètres
importants retenus dans leurs modélisation sont souvent liés aux paramètres technique d’un
serveur (activité cpu, ram etc. . . ) et ne prennent que rarement en compte des paramètres externes
comme la température. Dans la première partie de la thèse, nous avons réaliser un grand nombre
d’expérience pour déterminer quels étaient les paramètres importants a prendre en compte dans
la modélisation. Une fois déterminé les paramètres, la seconde partie de la thèse propose une
modélisation d’un centre de données basée sur les résultats de la première (variables de charge
des serveurs, conditions thermiques internes et externes, et variables opérationnelles liés aux
configurations du système de refroidissement).
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Organisations du manuscrit

Les travaux de recherche présentés dans ce manuscrit se composent de trois parties princi-
pales : une dédiée à l’état de l’art, une partie focalisée sur des expérimentations en vu de définir
les principaux paramètre a prendre en compte pour la modélisation, cette dernière étant détaillée
dans la troisième partie du manuscrit.

— L’état de l’art est présenté en chapitre 1.
— La partie évaluation se compose des chapitres 2, 3 et 4. Dans ces chapitres, les impacts

énergétiques des éléments hors charge informatique classique sont identifiés, suite aux
nombreuses expérimentations physiques. Les éléments étudiées comprennent : l’environnement
physique et thermique associé, la variation entre les processeurs identiques amenés par
l’imperfection de la fabrication, les défauts possibles causés par les outils de mesures,
etc.

— La partie consacrée à la modélisation est décrite au chapitre 5. Cette étude a pour ob-
jectif d’estimer la consommation global d’un ensemble de serveurs physiques, composé
dans le cadre d’expérimentation à 48 serveurs refroidi dans un système étanche à l’air
(InRow).

Dans la suite de ce résumé, nous décrivons succinctement les travaux réalisés pendant cette
thèse.

Résumes des recherches et contributions scientifiques

Etant donné que la consommation énergétique mondiale des centres de donnée augmentent
chaque année et atteint des valeurs importantes, ce sujet de thèse fut un des sujets de recherches
proposés par Orange Labs en 2016 en écho avec les objectifs de la COP21 : réaliser une réduc-
tion de 20% sur l’émission CO2 et de 15% de la consommation énergétique global. L’objectif de
cette thèse consiste a permettre l’optimisation de l’efficacité énergétique globale du data center,
en proposant une modélisation de la consommation électrique la plus fiable possible. Les défis
scientifiques initiaux sont liés à la complexité des interactions entre l’architecture matérielle et
l’architecture logicielle ainsi que les éléments externes tel que la température. Pour se faire, nos
travaux scientifiques ont commencé par une série d’évaluation pour identifier et caractériser les
impacts énergétiques sur la consommation des systèmes informatiques, y compris les impacts
matériels et environnementaux tout en analysant les sources d’erreurs issues des instruments de
mesure. Nous avons terminé cette étude scientifique par le développement d’une modélisation
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global pour un cluster physique donné.

Tout d’abord, nous avons réalisé plusieurs expérimentations physiques et mis en évidence
les impacts énergétiques externes sur la consommation des serveurs. Dans un première temps,
les tests ont été effectués sur 12 serveurs identiques du site G5K de l’IMT Atlantique à Nantes.
Nous avons comparé la variation de leurs consommations en exécutant la même suite de test.
Les résultats montrent qu’il a y au maximum 7.8% de différence de consommation entre des
serveurs pourtant identiques. Cela démontre que, en plus de la charge informatique, la consom-
mation d’un serveur varie sous certains impacts externes. Les tests complémentaires ont été
effectué afin d’identifier ces impacts externes importants. Plusieurs candidats sont évaluées: la
construction intrinsèque du serveur, la température de l’environnement (ambiance et sources de
chaleur alentour), les positions et agencement des serveurs (espacés ou accolés) et la variation de
la tension d’alimentation. Les résultats expérimentaux ont montré que la position, l’agencement
et la tension d’alimentation du serveur n’a que peu d’impact sur leur consommation. La vari-
ation observée entre les serveurs est liée à la température ambiante et/ou leur construction.
Malheureusement, les conditions expérimentales ne nous permettent pas d’étudier la variation
liée à la construction (par exemple échanger les processeurs de deux serveurs physiques dont la
consommation électrique varie beaucoup). Nous nous sommes dans un premier temps concentré
sur l’impact thermique sur la consommation.

Selon nos résultats, la puissance moyenne d’un serveur peut être varier de 5.6% juste en
fonction de différente température de fonctionnement et pour une même charge de travail. Les
études précédentes ont des observations similaires 2.2.3. Etant donné que la puissance aug-
mente avec la charge du processeur, la chaleur dissipée augmente et la température du com-
posant également. Par ailleurs, cette augmentation de la température induit une augmentation
des courants de fuite [KC09] [MB09], qui contribue aussi à une augmentation de la consomma-
tion énergétique. Cet impact n’a pas fait l’objet d’études suffisamment vastes (plusieurs types
de CPU) ni d’une caractérisation précise, ce que nous proposons de compléter dans cette thèse.
Pour cela nous avons étudié la variation de la puissance liée à deux sous-parties d’un serveur
: le CPU et les autres composants. Nous avons proposé une méthode pour faire varier la tem-
pérature d’une partie tout en gardant une même température pour l’autre partie. Trois serveurs
équipés de différentes générations de CPU ont été retenus pour cette évaluation. Cette étude dé-
montre par des mesures expérimentales que la température du CPU peut induire une variation
importante dans la consommation électrique des serveurs. Par exemple, pour des serveurs basés
sur un CPU Intel Xeon v3 (E5-2609v3), la puissance électrique augmente de 16% lorsque nous
augmentons seulement la température du CPU. Des expérimentation supplémentaires montrent
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que l’influence de la température des autres composants sur la consommation du serveur peut
être négligée. De plus, nous avons corrélé la puissance du serveur avec la puissance statique du
processeur. La puissance statique dominée par le courant de fuite augmente considérablement
et rapidement avec l’élévation de la température ambiante. Il apparaît donc que la température
du milieu ambiant impacte sur la consommation des serveurs via deux composants : la consom-
mation des ventilateurs et la consommation du CPU et des courants de fuite. Ces résultats sont
importants pour le développement de modèles de prédiction de la consommation énergétique
car ils indiquent que pour établir un modèle précis, tenir compte de la charge informatique du
CPU ne suffit pas ; la connaissance de la température des cœurs doit aussi être prise en compte.
Ils permettent également d’insister sur l’intérêt des méthodes de refroidissement liquides qui
permettent de maintenir des températures de CPU plus basses, et dont l’impact sur la consom-
mation du serveur a été sous-estimé.

Dans un second temps, nous avons complèté l’étude de la variation de la consommation
entre serveurs identiques en évaluant l’impact de leur fabrication. Dans cette étude nous nous
sommes concentré sur l’impact de la fabrication du composant le plus consommateur : le pro-
cesseur. Ces études démontrant que deux processeurs identiques peuvent consommer différem-
ment sont détaillées dans la section 3.2. Cependant, due au nombre d’échantillons processeur
limité, il manque encore quelques expérimentations physiques et une exploration plus appro-
fondie pour expliquer le pourquoi de cette différence de consommation.

Dans cette étude détaillée en chapitre 3, nous avons élargi la variabilité entre des pro-
cesseurs identiques en imposant un environnement thermique. Deux types de processeur d’Intel
de générations différentes ont participé à cette évaluation. Nous avons testé 30 échantillons
pour chaqu’un des types. Le principe fût de définir un banc de test commun a toutes les expéri-
mentations (température, carte mère, voltage . . . ), celles consistant a réaliser la même charge
processeur sur les 30 échantillons. Nous avons montré que les processeurs moderne, pour une
même génération, possédaient plus de variabilité dans leurs consommations électriques qu’en
les anciens modèles.

Inspiré par les études précédentes, nous avons analysé deux hypothèses pour expliquer cette
variation : le TIM (Thermal Interface Material) et les courants de fuite. Cependant, la suppres-
sion du TIM n’a pas aidé à réduire la variation. Avec la diminution de la taille de la lithographie
dans les processeurs modernes, les courants de fuite devienent de plus en plus important mais
surtout leurs quantités peuvent varier d’un processeur à l’autre. Ces courants de fuite varient
sensiblement en fonction de la température. Dans cette étude, nous avons proposé une méthode
pour caractériser le paramètre de courant de fuite du processeur, et nous considérons qu’il est
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la raison principale de la variation de puissance entre les processeurs identiques et ceci due à
l’imperfection de la fabrication.

Avant d’adresser la modélisation d’une infrastructure complète, nous avons évalué la mod-
élisation de la consommation du serveur basé sur l’utilisation du processeur. Nous avons évalué
sa fiabilité sous différentes température ambiante. En termes d’effet thermique, nous consta-
tons que ce type de modèle peut perdre de sa précision si le serveur fonctionne sous différente
température ambiante. Afin de corriger ce perte de précision, nous proposons de prendre la tem-
pérature ambiante comme une autre variable du modèle : l’augmentation de la consommation
à cause d’un changement de condition thermique est modélisé en fonction de la température
ambiante. La précision de ce nouveau modèle de consommation au niveau serveur prenant en
compte la température ambiante permet d’avoir une estimation bien plus précise.

Cependant, toute la difficulté dans cette modélisation concernait le degré polynomial a
étudier dans la régression linéaire. Augmenter le degré augmente la précision pour les valeurs
données mais peut entraîner un effet de « sur-estimation ». Afin d’éviter ce problème, nous
avons proposé un algorithme pour déterminer le meilleur degré polynomial pour les modèles
à générer. Enfin, dans le même chapitre, nous avons également évalué la fiabilité des données
obtenues par trois outils de mesure de puissance, qui sont largement utilisé dans un environ-
nement de data center : IPMI (carte mère), Redfish et au niveau des PDU. Ces outils permet-
tent d’obtenir les données de consommations en utilisant les wattmètres intégrés soit dans les
serveurs (IPMI, Redfish) ou soit dans la « multi-prises » PDU. Si ces outils sont devenus pop-
ulaires, peu d’études ont été réalisées sur la fiabilité des outils. L’idée principale de notre étude
est de comparer les mesures de puissance fournit par ces outils avec un analyseur de puissance
de haute précision. Les résultats de l’expérience montrent que la précision de l’IPMI et du Red-
fish peut être dégradés lors de mesure de consommation faible. Après analyse, on pense que la
perte de précision est provoquée par le temps de latence des requêtes entre le contrôleur et les
capteurs, car il y a souvent plus de variation sur des serveurs fonctionnant à faible puissance. On
constate également que Redfish a moins de latence qu’IPMI. Outre la latence, les outils n’ont
parfois pas été bien calibrés avant installation. La précision a été grandement améliorée après
le calibrage. Finalement, nous présentons notre étude sur la modélisation de la consommation
énergétique globale d’un cluster physique. La modélisation permet d’estimer la consommation
énergétique globale du cluster en fonction des configurations opérationnelles et des données
relatives à l’activité informatique, telles que la température ambiante, les configurations du sys-
tème de refroidissement et la charge des serveurs. Dans cette étude, la consommation d’énergie
globale à estimer inclut l’énergie consommée par les serveurs et le système de refroidissement.
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Le cluster adopte le modèle de refroidissement nommé "In-Row" proposé par Schneider, qui
consiste au refroidissement direct avec ventilateurs et contrôleurs au sein d’un ou plusieurs
racks étanches à l’air. Ce type de système de refroidissement est largement adopté aujourd’hui
dans les centres de données à grande échelle. L’ensemble du cluster est étudié est disposé dans
un conteneur fermé, il comprend quatre baies de serveurs avec 48 serveurs et un baie d’In-Row
servant de système de refroidissement principal du cluster. La modélisation de la consomma-
tion globale finale a été planifié sur deux étapes. La première étape concerne l’établissement
d’une modélisation du système thermique pour le cluster, elle prend en entrée trois variables
en temps réel : la puissance totale des serveurs, la puissance de refroidissement et la tempéra-
ture en dehors du cluster (température ambiante de la salle), et estime les températures aux
différentes positions du cluster. Après avoir analysé les données en temps réel du cluster, nous
proposons un système thermique simplifié pour représenter le transfert de chaleur entre les
éléments du système. Le système thermique a été présenté par des circuits électroniques de
Résistance-Conduance équivalents, des flux de chaleur en quatre points ont été établis avec des
équations différentielles ordinaires (ODE) : les températures à l’entrée et à la sortie des serveurs,
les températures des serveurs et du conteneur. Les ODEs concernent le bilan thermique au sein
du cluster. Comme le système thermique a été très simplifié, les paramètres présentés dans le
modèle sont mixés à des propriétés physiques et thermiques complexes liés aux différents di-
mentions (volumes et masse). Il reste difficile d’estimer leurs valeurs, conformément aux règles
fondamentales de la physique ou de la thermique. Pour ce cas, nous proposons une méthode
d’optimisation globale basée sur l’évolution différentielle (DE) pour trouver des solutions aux
paramètres du système proposé. L’idée principale est d’approcher les températures estimées à
l’entrée et à la sortie des serveurs de la simulation au plus près possible des mesures physiques.
La précision de cette simulation a été validée par plusieurs jeux de données avec des caractéris-
tiques différentes. Les résultats de la validation indiquent que les valeurs MAPE (Maximum Av-
erage Percentage Error) sont inférieures à 4% pour les estimations des températures à l’entrée
et 3% pour celles de la sortie. En ce qui concerne la deuxième étape, nous proposons une mod-
élisation de consommation d’énergie du système de refroidissement basée sur l’évolution de la
température à l’entrée des serveurs. On observe que la puissance du système de refroidissement
bascule entre les puissances haute et basse dépend des états de fonctionnement du compresseur.
La modélisation se compose donc de quatre paramètres de configuration du système de re-
froidissement: les seuils haut et bas de la température d’entrée, qui déterminent l’activation et
la désactivation du compresseur du système de refroidissement, et les deux puissances haute et
basse du système de refroidissement avec et sans fonctionnement du compresseur. Cependant,
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les seuils de température d’entrée varient en fonction de la puissance totale des serveurs. Afin
de tenir compte de ce phénomène, nous proposons de définir différents seuils de température en
fonction de la plage de puissance totale du serveur. Les résultats de la validation de la modéli-
sation finale présente un pourcentage d’erreur de moins de 1,2% pour les jeux de donnée avec
la puissance totale des serveurs inférieure à 4,7 kW, et moins de 3,3% pour la puissance totale
supérieure à 4,7 kW. Les erreurs sont dues à certaines exceptions difficiles à estimer, issue du
fonctionnent du compresseur, et se produisant lorsque la consomation des serveurs est élevée.
Le modèle peut être amélioré si ces cas particulier peuvent être correctement modélisé, sujet à
nos travaux futurs. Pour nos travaux futurs, nous adresserons La modélisation de la consomma-
tion énergétique globale du cluster, ce qui inclut à la fois la consommation total des serveurs et
la consomation du système de refroidissement. Ces futurs travaux sont détaillés en section 5.6.

Conclusion

Estimer la consommation énergétique d’un data center est un sujet très complexe. Durant
toute cette recherche, nous avons volontairement mettre un accent important sur des évaluations
expérimentales, à partir d’éléments individuels tels que processeurs, serveurs, outil de mesure
ou cluster physique. Ces expérimentions ont pris un temps très important pendant la durée de la
thèse mais ont permis d’ouvrir de nouvelles pistes sur la moddélisation de la consomation des
salles informatiques. En plus de se concentrer sur l’analyse des données relatives à l’activité in-
formatique des serveurs, qui a été beaucoup explorée au cours des dernières années, nous nous
sommes concentrés sur les incertitudes de la consommation énergétique induite par les vari-
ables externes: effets thermiques induits par variation de la température ambiante, différences
d’efficacité entre des processeurs identiques causées par un processus de fabrication imparfait,
problèmes de précision issus de choix d’outil de mesure de la puissance. Chaque facteur a
été profondément étudié et évalué dans notre recherche. Outre les évaluations expérimentales,
nous avons également proposé une méthode pourt estimer la consommation énergétique globale
d’un cluster physique, ce cluster est composé par 48 serveurs identiques et équipé d’un système
de refroidissement à expansion à direct, classiquement utilisé de nos jours pour les data cen-
ters modernes. Généralement, les méthodes traditionnelles consistent à entraîner un modèle en
utilisant des outils de type « intelligence artificielle » avec des données représentatives (big
data). Le modèle obtenu est vu comme une "boîte noire". Si les conditions initiales changent,
le modèle doit être redéveloppé pour le nouvel environnement. Nous proposons de réaliser un
modèle d’une manière différente. Le modèle a été construit à partir d’une analyse thermique de
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l’ensemble du cluster. Il prend en compte les conditions environnementales et les configurations
du système en tant que variables. Il permet de prévoir la consommation énergétique globale du
cluster en changeant les conditions environnemental et opérationnelles.
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Titre : Évaluation et modélisation de l’impact énergétique des centres de donnée en fonction de l’archi-

tecture matérielle/logicielle et de l’environnement associé
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seurs, Effect Thermique

Résumé : Depuis des années, la consommation
énergétique du centre de donnée a pris une im-
portance croissante suivant une explosion de de-
mande dans cloud computing. Ce thèse aborde
le défi scientifique de la modélisation énergétique
d’un centre de données, en fonction des para-
mètres les plus importants. Disposant d’une telle
modélisation, un opérateur pourrait mieux repen-
ser/concevoir ses actuels/futurs centre de données.

Pour bien identifier les impacts énergétiques
des matériels et logiciels utilisés dans les systèmes
informatiques. Dans la première partie de la thèse,
nous avons réaliser un grand nombre évaluations
expérimentales pour identifier et caractériser les in-
certitudes de la consommation d’énergie induite
par les éléments externes : effets thermiques, diffé-

rences entre des processeurs identiques causées par
un processus de fabrication imparfait, problèmes
de précision issus d’outil de mesure de la puis-
sance, etc. Nous avons terminé cette étude scien-
tifique par le développement d’une modélisation
global pour un cluster physique donné, ce cluster
est composé par 48 serveurs identiques et équipé
d’un systèmede refroidissement à expansion à di-
rect, largement utilisé aujourd’hui pour les data
centers modernes. La modélisation permet d’esti-
mer la consommation énergétique globale en fonc-
tion des configurations opérationnelles et des don-
nées relatives à l’activité informatique, telles que
la température ambiante, les configurations du sys-
tème de refroidissement et la charge des serveurs.

Title: Evaluating and Modeling the Energy Impacts of Data centers, in terms of hardware/software ar-

chitecture and associated environment

Keywords: Energy consumption modeling, Energy efficiency, Processor variability, Thermal Effect

Abstract: For years, the energy consumption of the
data center has dramatically increased followed by
the explosion of demand in cloud computing. This
thesis addresses the scientific challenge of energy
modeling of a data center, based on the most impor-
tant variables. With such modeling, an data center
operator will be able to better reallocate/design the
current/future data centers.

In order to identify the energy impacts of hard-
ware and software used in computer systems. In
the first part of the thesis, to identify and char-
acterize the uncertainties of energy consumption
introduced by external elements: thermal effects,

difference between identical processors caused by
imperfect manufacturing process, precision prob-
lems resulting from power measurement tool, etc.
We have completed this scientific study by devel-
oping a global power modeling for a given physi-
cal cluster, this cluster is composed by 48 identical
servers and equipped with a direct expansion cool-
ing system, conventionally used today for modern
data centers. The modeling makes it possible to es-
timate the overall energy consumption of the clus-
ter based on operational configurations and data re-
lating to IT activity, such as ambient temperature,
cooling system configurations and server load.
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