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Les progrès technologiques en séquençage haut débit et en manipulation cellulaire permettent d'analyser simultanément et indépendamment le contenu de nombreuses cellules (ARN, ADN,...). Cette révolution "omique" offre un nouveau cadre pour revisiter la "Théorie Cellulaire", essentiellement basée sur des caractéristiques morphologiques et fonctionnelles. Les nombreuses modalités cellulaires désormais accessibles au niveau de la cellule unique, telles que leur transcriptome, leur localisation spatiale, leurs trajectoires développementales, enrichissent considérablement cette définition, et établissent un contexte totalement renouvelé pour réévaluer la définition de "types" ou d'"états" cellulaires ainsi que leurs interactions. Mon travail de thèse a été de mettre en place des approches statistiques appropriées pour analyser ces données transcriptomiques sur cellule unique caracteriseées par une forte variance, la présence d'un pourcentage élevé de valeurs nulles et un grand volume de données. Mon travail s'est focalisé sur le modèle expérimental central de mon laboratoire d'accueil, l'épithélium des voies respiratoires humaines. Les voies respiratoires humaines sont bordées d'un épithélium pseudo-stratifié composé principalement de cellules basales, sécrétrices, à gobelet et multiciliées. Les voies respiratoires constituent en outre un véritable écosystème cellulaire, dans lequel la couche épithéliale interagit étroitement avec les cellules immunitaires et mésenchymateuses. Cette coordination entre les cellules assure une bonne défense du système respiratoire et sa correcte régénération en cas d'agressions extérieures. Une meilleure compréhension des situations cellulaires normales et pathologiques peut améliorer les approches pour lutter contre des pathologies telles que la maladie pulmonaire obstructive chronique, l'asthme ou la mucoviscidose. J'ai d'abord pu caractériser au niveau de la cellule unique la séquence précise et spécifique des événements conduisant à la régénération fonctionnelle de l'épithélium, en utilisant un modèle 3D de cellules humaines. J'ai identifié des hiérarchies de lignées cellulaires et j'ai pu reconstruire les différentes trajectoires possibles de différentiation cellulaire. J'ai confirmé des trajectoires cellulaires décrites précédemment, mais j'ai aussi découvert une nouvelle trajectoire reliant les cellules à gobelet aux cellules multiciliées, identifiant de nouvelles populations cellulaires et de nouvelles interactions moléculaires impliquées dans le processus de régénération de l'épithélium sain des voies aériennes humaines. J'ai ensuite construit un atlas des différents types cellulaires qui tapissent les voies respiratoires humaines saines, du nez jusqu'à la 12ième génération de bronches. Le profilage de 10 volontaires sains a généré un ensemble de données de 77 969 cellules, provenant de 35 emplacements distincts, qui comprend plus de 26 types cellulaires épithéliaux, immunitaires et mésenchymateuses. Cet atlas illustre l'hétérogénéité cellulaire présente dans les voies respiratoires. Son analyse révèle une difference d'expression des gènes entre le nez et les voies respiratoires pulmonaires que j'ai caractérisé dans les cellules suprabasales, sécrétrices et multiciliées. Mes travaux ont également permis d'améliorer la caractérisation de certaines populations de cellules rares, comme les cellules "hillock", déjà décrites chez la souris. En conclusion, mon travail contribue à une meilleure compréhension des dynamiques de différenciation et d'hétérogénéité cellulaire dans les voies respiratoires humaines saines. La ressource ainsi constituée sera extrêmement utile dans tout projet futur visant à analyser avec précision les conditions spécifiques des maladies respiratoires.
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The single cell revolution

The first description of a cell (from Latin cella, meaning "small room") was done by Robert Hooke in 1665 in his book Micrographia (Hooke 1635(Hooke -1703, n.d.), n.d.). He described the 'cells' based on their morphology as he observed small pores in thin slices of cork through the microscope (Figure 1.1). From this initial description, and others work, emerged the first cell theory by Theodor Schwann and Mathias Jakob Schleiden in the 1830s. It stated that cells compose all living organisms being the most basic structural and functional unit of life. A third key tenet, added by Rudolf Virchow in 1855, described all cells as arising from pre-existing cells (in Latin Omnis cellula e cellula ) and moved the belief away from the spontaneous generation of life. Following this unifying principle of biology, many publications described the cell diversity seen in living organisms. According to the currently available technology (microscopy), cells were characterised by their associated tissue, their morphology or their specific function. As technology and scientific knowledge improved, other features, such as proteins, lipids, or metabolites, were used to develop a molecular cell classification. For instance, the cluster of differentiation in immunology was proposed and established in 1982 for the classification of the many monoclonal antibodies against surface molecules [START_REF] Chan | A simple guide to the terminology and application of leucocyte monoclonal antibodies[END_REF]. Notably, many of the former classification methods were based on a small number of markers/descriptors for each cell, which possibly biased the corresponding cell type definitions. We now have the numerous tools (which are still continuously improving) to describe more comprehensively the complexity of each cell and reform the concept of 'cell type' [START_REF] Stuart | Integrative single-cell analysis[END_REF].

Multiple cellular modalities measurable at single-cell resolution

Transcriptomic profile of single cells

The cell transcriptome is defined as a snapshot in time of the total transcripts present in a cell. Its study, through instrumental techniques, makes possible the qualitative and quantitative assessment of gene specific expression in multiple species. It brought an improved understanding into the regulation of gene expression and the plethora of distinct behaviours/functions, physiological states and cell types arising from identical genomes. If the process of transcriptome analysis is well established, there are a lot of essential steps that can tremendously affect the final output. RNA sequencing includes RNA extraction, mRNA enrichment, cDNA biosynthesis, preparation of an adaptor-ligated sequencing library and library sequencing. The following computational analysis performs sequence alignment to a reference genome, sequence quantification to its corresponding genes, normalisation between samples and statistical analysis of significant changes in gene expression levels [START_REF] Stark | RNA sequencing: the teenage years[END_REF]. Transcriptomic analysis is increasingly impacting the molecular biology field. It provides a unique framework at the levels of bench-work and computational analysis for an unprecedented quantitative description of biological systems.

One of the earliest sequencing-based transcriptomic methods was the serial analysis of gene expression (SAGE) described in 1995 [START_REF] Velculescu | Serial analysis of gene expression (SAGE)[END_REF][START_REF] Velculescu | Characterization of the yeast transcriptome[END_REF]. It used the Sanger technique to sequence concatenated random transcript fragments. Its output can be increased up to the quantification of over 1000 transcripts with the use of an automated sequencer. Computationally, it led to the development of specific analysis software (SAGE Software group), based on the BLAST algorithm, to map transcript fragments to a reference transcript database (GenBank release 87) [START_REF] Altschup | Altschul-1990-Basic Local Alignmen[END_REF].

Transcriptomic technologies are evolving rapidly, and SAGE was quickly overtaken by high-throughput sequencing techniques. Microarrays [START_REF] Schena | Quantitative monitoring of gene expression patterns with a complementary DNA microarray[END_REF] and RNA-seq [START_REF] Nagalakshmi | The transcriptional landscape of the yeast genome defined by RNA sequencing[END_REF] technologies were developed respectively in the late 1990s and early 2000s. Microarrays measure the abundance of a defined set of transcripts through their specific hybridisation to an array of thousands of complementary probes. To do so, transcripts are reverse-transcribed into cDNA with a fluorescent dye and laser scanner quantify their abundance based on the colour intensity emitted following hybridisation to the complementary probes. Such data type required the development of specific analysis software to normalise dye intensities for two-colour arrays and allow corresponding differential expression analysis (M. Robinson et al., 2010;[START_REF] Ritchie | Limma powers differential expression analyses for RNA-sequencing and microarray studies[END_REF]. Major improvements in nucleic acid sequencing led to the advent of RNA-sequencing approaches. They measure the abundance of each transcript based on the count of transcripts-fragments As my thesis is focused on the analysis of single-cell RNA-seq data (scRNA-seq), I will describe these fast-paced changes and improvements in scRNA-seq technologies as well as the numerous corresponding computational analysis tools in the following chapters. I will first, for the sake of completeness, briefly describe the other cell features which can be observed at single-cell resolution.

Epigenomic studies at single-cell resolution

The study of cell transcriptomes supports the idea that gene activity is a good proxy to track the establishment and maintenance of cellular identity. Yet, it does not include the many regulatory layers, such as epigenomic, that contribute to a given functional output. They cover a diverse and interconnected set of transcription factors (TFs), chromatin regulators (histones), chemical modifications of genomic DNA (DNA methylation). Comparably to transcriptome analysis, epigenomic was previously studied on bulk assays which gave averaged maps of regulatory elements over cell populations such as Encyclopedia of DNA Elements, Roadmap Epigenomics Project and International Human Epigenome Consortium [START_REF] Dunham | An integrated encyclopedia of DNA elements in the human genome[END_REF][START_REF] Yen | Integrative analysis of 111 reference human epigenomes[END_REF][START_REF] Stunnenberg | The International Human Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery[END_REF].

The improvements in scRNA-seq technologies and increased recognition of cell-tocell variations led to the development of numerous single-cell epigenomic technologies (Figure 1.3). It enabled the progressive answer to numerous questions that could not be addressed before acquiring single-cell resolution. For instance, can epigenetic elements properly describe cell types and cell states, how heterogeneous are cell epigenomes? And ultimately, how epigenomic heterogeneity relates to transcriptomic states? What is the time scale between transcriptomic and epigenomic regulation in the study of cell fate? [START_REF] Kelsey | Single-cell epigenomics: Recording the Past and Predicting the Future[END_REF][START_REF] Shema | Single-cell and single-molecule epigenomics to uncover genome regulation at unprecedented resolution[END_REF] The analysis of DNA modifications and more precisely DNA methylation can be done by single-cell bisulfite sequencing. It converts unmodified cytosine to thymine and preserves methylated cytosine which enables the identification of methylation sites at singlebase precision (H. [START_REF] Guo | Single-Cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing[END_REF]. DNA methylation has been shown to promote or inhibit TFs binding actively. Its analysis at single-cell level enabled the mapping of active demethylation at promoters of developmentally important genes in advance to changes in gene expression (C. [START_REF] Zhu | Single-Cell 5-Formylcytosine Landscapes of Mammalian Early Embryos and ESCs at Single-Base Resolution[END_REF].

Another approach to evaluate the epigenomic regulation layer is to assess chromatin accessibility. It provides information about nucleosome positioning on the genome. The approach, entitled Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq), probes DNA accessibility through the insertion of sequencing adapters by the prokaryotic Tn5 transposase. This modification is only possible in accessible regions of the genome, whereas inaccessible regions are left intact [START_REF] Buenrostro | Single-Cell chromatin accessibility[END_REF]. This technique revealed the evolution of regulators landscape during disease progression in acute myeloid leukaemia [START_REF] Ruscio | Lineage-specific and single cell chromatin accessibility charts human hematopoiesis and leukemia evolution[END_REF]. (Left) Overview of different molecular layers that can be assayed using single-cell protocols. (Right) A cell with different layers of multi-omics measurements, as defined on the left. Concordance or heterogeneity respectively may exist between the different layers, and this can be recorded by single-cell sequencing and computational evaluation. Figure extracted from [START_REF] Kelsey | Single-cell epigenomics: Recording the Past and Predicting the Future[END_REF] It is also possible to measure histone modifications and TFs binding sites at the singlecell level. The adaptation of bulk Chromatin Immuno-Precipitation sequencing (ChIPseq) to single cells (scChIP-seq) required the incorporation into chromatin of cell-specific information (cell barcode). A central issue to overcome came from the antibody characteristics that recognise specific factors in term of specificity and sensitivity. The assay is thus dependent on the antibody binding to specific histone/TF modifications to pull down the associated DNA and sequence it. The solution, similar to scATAC-seq, was to first isolate and barcode the cells using droplet-based isolation techniques. Then, to pool the cells before chromatin immune-precipitation. Lastly, data computational analysis and demultiplexing restored the single-cell resolution to the assay [START_REF] Rotem | Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state HHS Public Access Author manuscript[END_REF]. Recently, Grosselin et al. further improved the method by increasing the coverage up to 10,000 loci analysed per cell. It revealed previously uncharacterised rare chromatin states in tumours and identified key elements in the difference between resistant and compliant tumour cells [START_REF] Grosselin | High-throughput single-cell ChIP-seq identifies heterogeneity of chromatin states in breast cancer[END_REF].

This last example, from its introduction to its recent improvement, highlights a common flaw in single-cell 'omics' methods: the curse of sparse data. At best, the estimated proportion of information recovered from individual cells is estimated to 50% of its total content. Over recent years, each method was improved spectacularly to visualise biological processes at single-cell resolution better. Nevertheless, further progress is still necessary to reach the full potential of these methods. In addition, both bench and computational efforts are also needed to converge toward parallel epigenomic and transcriptomic data analysis and integration, ideally from the very same cells. CHAPTER 1. THE SINGLE CELL REVOLUTION

Spatially resolved 'omics' at single-cell level

As explained previously, cells were traditionally described by their location, morphology and/or by their function. Through 'omics' assays, either at bulk or single-cell resolution, cells are now described by their molecular composition, but the spatial and morphological information is lost. It leads, in both cases, to an incomplete description of the cells. The growing field of spatially resolved 'omic' technologies is now overcoming these limitations [START_REF] Crosetto | Spatially resolved transcriptomics and beyond[END_REF][START_REF] Moor | Spatial transcriptomics: paving the way for tissuelevel systems biology[END_REF].

Pioneer spatial technologies, such as DNA, RNA or protein in situ visualisation, immunohistology and immunocytology have favoured the integration of functional, molecular and spatial information in biological studies. For instance, Fluorescence In Situ Hybridisation (FISH) uses sequence-specific probes to hybridise RNA/DNA molecules which can be visualised through a chromogenic reaction. It was applied to demonstrate the chromosomal organisation inside the nucleus and to reveal gene expression gradient in embryogenesis [START_REF] Femino | Visualization of single RNA transcripts in situ[END_REF][START_REF] Boyle | Fluorescence in situ hybridization with high-complexity repeat-free oligonucleotide probes generated by massively parallel synthesis[END_REF]. The immunostaining methods are based on the antibody-antigen reaction to specific cell markers: antibodies are conjugated with an enzyme catalysing a colour-producing reaction or tagged with a fluorophore. They have been used for years to establish a structural and morphological classification of pathological and healthy tissues [START_REF] Langer-Safer | Immunological method for mapping genes on Drosophila polytene chromosomes (biotin-labeled DNA/antibiotin/fluorescence microscopy/immunoperoxidase localization)[END_REF][START_REF] Yuste | Fluorescence microscopy today[END_REF].

Following technical improvements, the resolution and signal amplification of these technologies was increased. It is now possible to specifically study cells and tissues at the scale of a single molecule. For instance, single-molecule FISH (smFISH), used DNA oligonucleotides complementary to the target RNA and labelled with fluorescent dyes. Individual transcripts are detected as diffraction-limited spots (Raj et al., 2008a). It was used to describe the subcellular location of mRNAs of interest such as splice variants or fusion transcripts [START_REF] Waks | Cell-to-cell variability of alternative RNA splicing[END_REF][START_REF] Semrau | FuseFISH: Robust detection of transcribed gene fusions in single cells[END_REF].

However, the major pitfall remained the restrictive number of simultaneously studied markers and molecule types. Many progress is being made toward an unbiased analysis of genomic, epigenomic or transcriptomic landscapes in spacially resolved single cells [START_REF] Crosetto | Spatially resolved transcriptomics and beyond[END_REF]. Former methods, such as laser capture microdissection (LCM) can be used to isolate cells from precise micro-anatomical locations. Following annotation, the original cell locations can be traced back, preserving their spatial information. DNA or RNA can be extracted from the captured cells and used for gene expression microarrays or RNA-seq [START_REF] Bagnell | Laser capture microdissection[END_REF]. Such a technique can reveal widespread anatomical variations in gene networks and highlight developmental processes and major cell type distribution [START_REF] Hawrylycz | An anatomically comprehensive atlas of the adult human brain transcriptome[END_REF]. Other previously described methods were improved to increase the number of studied genes (' hundred genes) in one experiment (cyclic smFISH or osmFISH, Chlo-FISH, seq-FISH) [START_REF] Codeluppi | Spatial organization of the somatosensory cortex revealed by osmFISH[END_REF][START_REF] Eng | Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+[END_REF].

The evolution of spatially resolved 'omics' created a further need for the development of appropriate computational tools. The integration of heterogeneous data coming from distinct 'omics' datasets would enable the creation of spatial expression maps that fully capture cellular heterogeneity and organisation in complex tissues (J.-E. [START_REF] Park | Fast Batch Alignment of Single Cell Transcriptomes Unifies Multiple Mouse Cell Atlases into an Integrated Landscape[END_REF][START_REF] Karaiskos | The Drosophila embryo at single-cell transcriptome resolution[END_REF].

Multiple applications of the single cell revolution

Development of single-cell techniques and their ability to measure numerous cell features have challenged the traditional definition of 'cell type'. Based on a restricted number of features, cells were classified in discrete cell types associated to specific function and with limited consideration regarding their physiological state and developmental origin. These critical questions -What is a cell type ? How to define it ? What is the distinction between cell type and cell state ? -have been progressively addressed through the multiple applications of single-cell transcriptomic analysis published in the last decade. The answers first appeared with developmental studies and were then enriched by organs/tissues detailed cell atlases. Lastly, studies comparing cell types and cell states between healthy and disease condition emerged to complete the 'cell type' definition.

New developments in developmental biology

Single-cell 'omics' techniques are particularly appropriate for studies in developmental biology. Embryogenesis and regeneration are indeed primarily based on individual cell-fate decisions. They generate a spectrum of different cellular states that eventually modulates specification, morphogenesis and/or cell differentiation in a spatial context [START_REF] Griffiths | Using single-cell genomics to understand developmental processes and cell fate decisions[END_REF]. As those processes are continuous, differentiating cells can be described by the gradual variations in their expression profile as they progress toward their differentiated state. It makes inappropriate a discrete classification of the different cell state. Consequently, trajectory inference methods have been developed to preserve and highlight the continuity of cell states in the data. They aim to order the cells according to an inferred pseudotime which relates an 'unseen' dimension/manifold describing the cell progress along its differentiation trajectory [START_REF] Trapnell | The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells[END_REF]. For instance, it may represent gene expression gradients between cell states involved in a differentiation process. Most of these methods are based on the hypothesis that developmental processes are barely synchronous. Thus a static snapshot of numerous single-cell transcriptomes will capture every different stage of differentiation. It will open the possibility to detect branching points in cell trajectories and reveal critical information in cell fate decision-making (Haghverdi et al., 2018). CHAPTER 1. THE SINGLE CELL REVOLUTION

Cell atlases and rare cells discovery

Despite that cell theory was developed more than one century ago, the exact number of cell types detectable in complex organisms remained surprisingly elusive. The advent of single-cell 'omics' technologies provides a unifying framework to answer this question. It launched a new era of cell type discovery, supporting their improved description and classification. An international effort has been organised toward the construction of extensive and comprehensive atlases of the many cells that make up a living organism. Its first aim was to perform a precise characterisation of the cell diversity and their heterogeneity in complex systems, organs and tissues (Azizi et al., 2018b). A second one was to produce a molecular description of rare cell populations and to discover and characterise new cell types (Montoro et al., 2018;[START_REF] Plasscheart | A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte[END_REF][START_REF] Grün | Single-cell messenger RNA sequencing reveals rare intestinal cell types[END_REF].

The Mouse cell Atlas [START_REF] Han | Mapping the Mouse Cell Atlas by Microwell-Seq[END_REF] and Tabula Muris [START_REF] Schaum | Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris[END_REF] were the two first extensive single-cell atlases of complex organisms. They were composed of 400k cells and 100k cells, respectively, collected from 51 and 20 organs and tissues from Mus musculus. These atlases demonstrated the emerging potential of single-cell transcriptomics technologies and its foreseeable impact in cell biology. They created a first reference describing the diversity and similarity in cell characteristics and composition across the various organs of a complete organism.

In 2016, the Human Cell Atlas (HCA) Consortium was created as an international and collaborative initiative to define all human cell types as thoroughly as possible (HCA-Consortium, 2017). The atlas is aimed at integrating all possible definition of a cell type. It includes epigenomic, transcriptomic and proteomic elements, but also descriptions of each cell type physiological states, developmental trajectories and physical locations in the human body. This highly ambitious project is divided into many diverse international sub-units which are specialised in a critical step for data acquisition and processing. Additionally, this massive effort is not only complex on a technical point of view (both in bench and computational work) but also at a scientific scale. The absence of a priori ground truth on the number of cell types and states, their relative proportions and rates of transitions requires extensive scientific collaborations and the set up of a large consortium to establish this new reference in scientific knowledge. Pilot projects have been funded to perform a first survey of the cells in a specimen (Figure 1.6). In that context, my team has been the only one in France to be selected. Our expertise and research results on tissue handling and processing will be described in the results part of this manuscript.

Many research teams have started their own collection of specific organ atlases such as pancreas [START_REF] Muraro | A Single-Cell Transcriptome Atlas of the Human Pancreas[END_REF], brain [START_REF] Zeisel | Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq[END_REF][START_REF] Darmanis | A survey of human brain transcriptome diversity at the single cell level[END_REF], kidney [START_REF] Sivakamasundari | Comprehensive Cell Type Specific Transcriptomics of the Human Kidney[END_REF], intestine [START_REF] Haber | A single-cell survey of the small intestinal epithelium[END_REF], etc ... 

Future applications in medicine

At the beginning of high throughput sequencing techniques, many gene expression comparisons were made between healthy and disease conditions. They aimed to understand the molecular processes involved in disease development. Yet, a significant limitation was the unknown proportion of the different cell types in 'bulk' samples. For instance, in the study of cancer cells, two samples with 5% or 50% of cancer cells will display different genes expression signatures. A better characterisation of disease states is now feasible at a single-cell resolution. It provides a comprehensive description of their molecular processes integrating the distinct contributions of different cell types, their functions and characteristics (regulatory pathways).

In cancer studies, many detailed descriptions of tumour composition and their micro-environments have been published (Azizi et al., 2018a;[START_REF] Ehman | Multiclonal invasion in breast tumors identified by topographic single cell sequencing[END_REF][START_REF] Guo | Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing[END_REF]. Tumour heterogeneity is well described in cancer, and its analysis at single-cell level gives access to transcriptional responses of individual cells and a better understanding of drug resistance [START_REF] Shalek | Single-cell analyses to tailor treatments[END_REF].

In the case of chronic or acute disease, such as asthma [START_REF] Vieira-Braga | A cellular census of human lungs identifies novel cell states in health and in asthma[END_REF] or influenza infection [START_REF] Russell | Extreme heterogeneity of influenza virus infection in single cells[END_REF], studies at single-cell resolution can give insights into which cell types are the most affected and how it might have consequences on the complex regulatory network across cells. CHAPTER 1. THE SINGLE CELL REVOLUTION Chapter 2

Bench-work challenges and solutions

in single-cell RNA sequencing and their impact on output data.

The past decade has seen the exponential progress of single-cell transcriptomic technologies, resulting in the development of numerous scRNA-seq protocols. Their basic steps can be summarized as follows : cell isolation, RNA capture, complementary DNA library synthesis, amplification, sequencing library preparation, and sequencing. To successfully quantify gene expression at a single-cell resolution, each protocol has been optimised regarding two main critical steps: (i) single-cell isolation and (ii) mRNA capture and amplification. Technical differences in their realisation can lead to significant variations regarding the number of detected genes, mean and variance in gene expression, etc... This, in turn, affects the power of each method to describe the observed cells at a molecular level. In a recent review, Ziegenhain et al. described the power of each scRNA-seq method as a combination of 4 measurable technical variables (Christoph [START_REF] Ziegenhain | Comparative Analysis of Single-Cell RNA Sequencing Methods[END_REF].

• Number of cells analysed per experiment;

• Sensitivity as the probability to capture and convert a molecule of transcript from a single-cell into a cDNA molecule from the cDNA library;

• Accuracy as a reliable measure between read quantification and the actual concentration of transcripts;

• Precision as the quantification robustness to limit technical variation between cells and samples.

Sincle-cell RNA-seq critical steps

Single-cell isolation

Tissue dissociation

Tissue dissociation is a key and challenging step that had to be precisely adapted to each project (except for circulating and non-adherent cells). Cells need to be freed from the extracellular matrix and cell-to-cell adhesion interactions to obtain a suspension from which they will be isolated. This can be achieved through enzymatic treatment or physical separation (microdissection, patch-clamping, Figure 2.1.A). There is a balance to define between two opposite points: the cell isolation needs to be sufficiently efficient to generate a sufficiently large collection of individual cells, but not too harsh, to avoid cell suffering that may alter the transcriptome. Each organ has its specificity, and optimal dissociation usually results from optimisation from cell culture communities. Efficiency and impact on the cells can be highly variable for various reasons :

• cell-to-cell interactions, such as tight junctions in the human adult kidney or lung epithelium, might prove highly resistant to enzymatic digestion;

• cellular morphology, as in adipocytes, may cause the freshly dissociated cells to become extremely fragile and easily lysed;

• cellular ultra-structure, such as cardiac and muscular tissues where cells may be fused together.

As a consequence, tissue dissociation critically needs to be optimised prior to scRNAseq. A useful control can be provided by a comparison of bulk gene expression profiles between dissociated and undissociated cells in order to estimate the possible impact of the dissociation. Measurement of the level of expression of genes such as FOS, JUN or EGR1 can give a first level of information about the initiation of a death program. Another useful measurement is the percentage of dead cells, which can give a picture of the overall state of the cells at the end of the extraction. Several optimisations have been able to limit RNA degradation. Faster procedures, or protease digestion run at cold temperature, can help controlling better the output.

A work around method for tissue dissociation, applicable for very fragile or complex starting material, is single-nuclei RNA sequencing (snRNA-seq). In this method, cell nuclei are isolated from fresh or frozen/fixed tissues in a one step preparation (dissociation in a mild solution of detergent, which breaks the plasma membrane without affecting the nuclear membrane). Nuclei total RNAs are then captured and sequenced differing from standard scRNA-seq by the relative abundance of intronic RNAs. Yet, a good correlation between nucleic and cytoplasmic quantification of mRNA has been reported despite the reversed abundance ratio between unprocessed and mature RNAs and the much shallower sequencing depth [START_REF] Grindberg | RNA-sequencing from single nuclei[END_REF][START_REF] Zhang | Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1[END_REF][START_REF] Ding | Systematic comparative analysis of single cell RNA-sequencing methods[END_REF] One of the first examples of microfluidic devices is the C1 system released by Fluidigm. It sequentially isolates 96 or 800 cells with precise and minimal volumes in tiny reaction chambers of complex integrated fluidic circuit (IFC) chips. The low pressures that are applied make this process much gentler for fragile cells, but each experiment is fitted for a limited range of cell size. This range can be sample-adapted with different IFC chip, which is not necessarily convenient. Additionally, despite an optimised flow of the cell suspension, the C1 device can generate a high doublet rate that needs to be controlled through careful (but time-consuming) imaging of individual wells.

Droplet-based methods, such as inDrop, Drop-seq and Chromium from 10X Genomics, improved the microfluidic approach. They isolate the cells into nanoliter droplet emulsions with unique cDNA barcoded beads. These methods merge two flows into a combined one: one flow contains reagents for cell lysis, reverse transcription and associated barcoded beads and the other one contains cells in buffer. This combined flow is then partitioned into droplets by the addition of oil at defined intervals. These droplet-based techniques greatly improved the cell throughput scale of scRNA-seq, going from hundreds to thousands of cells isolated in one experiment.

Lastly, an alternative technique was developed named Seq-Well. It uses arrays of subnanoliter wells loaded by gravity. This method reduces the need for peripheral equipment, decreases dead volumes and facilitates parallelisation. Wells are designed to encompass a unique barcoded bead and limit dual cell occupancy rate. Wells are covered by a semiporous-membrane to limit fluid exchange and cross-contamination between wells.

The exponential growth of simultaneously studied single-cells, greatly increase computational analysis statistical power in numerous ways:

• It increases the number of replicates/cells associated with a given cell type which allows a robust estimate of the cell types intra-and inter-variability/differences in gene expression;

• It increases the probability for a thorough capture of all transition states in a developmental study;

• It gives the possibility to capture and identify rare cells (low-frequency cells : 1 in 1000).

• It requires resource-efficient computational tools for the analysis of large datasets;

Number of processed cells in parallel

As briefly mentioned earlier, simultaneous processing of hundreds and thousands of cells (cell multiplexing) was permitted by the development of cell-specific in situ barcoding [START_REF] Islam | Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq[END_REF]. The addition of a cell-specific barcode (random oligonucleotides) to all cDNA generated from a single-cell made possible the signal deconvolution and association improvements made for the RT reaction. It uses additives and modified TSO as well as a high fidelity polymerase for PCA amplification [START_REF] Picelli | Full-length RNA-seq from single cells using Smart-seq2[END_REF]. These improvements significantly increased the full-length coverage of scRNA-seq but the in-adaptability to pool the samples at an early step keep the whole process costly as the number of processed cells increases.

Tag-based methods

CEL-seq and CEL-seq2

Cell Expression by Linear amplification and sequencing (CEL-seq) is the first method to use both cell barcodes and IVT amplification instead of PCR amplification [START_REF] Hashimshony | CEL-Seq: Single-Cell RNA-Seq by Multiplexed Linear Amplification[END_REF]. The introduction of early cell barcoding for cell-multiplexing increased the number of cells at limited cost and reduced technical bias. It is also one of the first protocols to specifically enrich its sequencing library with 3'end cDNA fragments to improve the expression quantification accuracy (there is no further need for gene length normalisation). The second version of the method, CEL-seq2, improved once again the gene expression quantification with the introduction of UMIs in the RT primer [START_REF] Hashimshony | CEL-Seq2: Sensitive highly-multiplexed single-cell RNA-Seq[END_REF]. It also removed the ligation of sequencing primers after tagmentation by adding them in the RT primer sequence.

Mars-seq

Massively parallel RNA Single-cell sequencing (MARS-seq) was one of the first protocols to introduce a high degree of multiplexing in single-cell transcriptome analysis [START_REF] Jaitin | Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types[END_REF]. It introduced UMIs into oligo-dT primers in addition to cell and plate barcodes. This strategy launched the possibility to study transcriptomic profiles of dozens to hundreds of cells simultaneously and at high resolution.

Drop-seq

Droplet-based sequencing (Drop-seq) is the successful combination of two simultaneously developed protocols (Macosko et al., 2015). CytoSeq uses 'magnetic beads' to efficiently load RT primers and capture mRNA molecules [START_REF] Fan | Combinatorial labeling of single cells for gene expression cytometry[END_REF]. These beads are coupled with millions of oligonucleotides composed of 4 elements:

• an oligo-dT sequence;

• a UMI (different for all oligonucleotides on the same bead);

• a unique cell barcode (identical for all oligos on the same bead but unique for each bead);

• a universal PCR priming sequence. As the polyA-tail of mRNAs hybridise on the beads, it forms Single-cell Transcriptomes Attached to MicroParticles (STAMPS) that can be easily manipulated and pooled to complete the reverse transcription step at low cost.

InDrop sequencing (Indexing Droplet) uses emulsion droplets and hydrogel beads to isolate the cells, capture mRNAs and reverse-transcribe them before the droplets are broken [START_REF] Klein | Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells[END_REF]. Unfortunately, it is highly limited by the low capture efficiency (less than 7% of mRNAs present in cells).

Drop-seq method isolates thousands of cells in nanoliter-scale droplets with a uniquely barcoded bead. Once STAMPS are formed, and the mRNAs are reverse-transcribed, the droplet emulsion is broken to perform PCR amplification and library preparation in a single tube. These methods significantly reduced the cost of transcriptome analysis per cell.

10X Genomics : Chromium device

Chromium device and its associated protocol(s) are droplet-based methods. It quantifies 3' RNAs of up to ten thousands of cells in a single experiment. It can process 8 samples simultaneously through the 8 independent channel present in a microfluidic chip. The formation of gel bead emulsion (GEM) isolates the cells so that each full droplet contains a single-cell, a barcoded gel bead, cell lysis and RT reagents. Due to the random capture approach, the cell capture efficiency is limited to 65 % of the loaded cells producing an important number of 'empty' droplets (compared to less than 5% for the inDrop and Drop-seq protocols). Cell lysis starts when the cells are encapsulated and the gel beads are later dissolved to release their oligonucleotides. The cDNAs produced in this way contain a UMI, a shared cell barcode and a TSO. Lastly, the emulsion is broken, cDNAs are pooled and amplified by PCR for sequencing library preparation.
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Chapter 3

Single cell RNA-seq data analysis

Since the first scRNA-seq dataset available in 2009, scRNA-seq data analysis remained a highly dynamic field of research with new statistical and computational methods regularly published. The key tenet of the field is to understand the complex properties of scRNA-seq data and overcome their flaws through the development and use of appropriate statistical methods. To this aim, approximately 400 analysis tools have been developed to date (seandavi/awesome-single-cell). This abundance of methods, while advantageous for scientific discovery, complicates the standardisation of an analysis workflow. A recent review, from Fabian Theis's group, outlines current best practices in the analysis of scRNA-seq data [START_REF] Luecken | Current best practices in single-cell RNA-seq analysis: a tutorial[END_REF]. Most importantly it lays down a 'model' pipeline of scRNA-seq data analysis (Figure 3.1). It starts with the sequencer outputs and corresponding processing of the raw data. Once the count matrices are generated, they undergo a quality control step for later normalisation and data correction.

If multiple samples are analysed together, an additional data integration step might be necessary. Then, the most informative features (e.g. highly variable genes) are selected for downstream analysis. Following dimension reduction, the data can be visualised, clustered and the cell trajectories can be inferred. The rest is up to the analyst for interpretation.

In this chapter, I will describe the principle of each of these analysis steps with some detailed examples regarding the tools used during my thesis. Additionally, I will focus this description on the statistical analysis of scRNA-seq data generated using the 10X Chromium device, which is the main type of data generated by my host laboratory. Lastly, I will draw your attention to the many progress made regarding these analysis tools. During the three years of my thesis, the environment of scRNA-seq data analysis has been completely transformed by the development of completely integrated workflows, namely Seurat [START_REF] Butler | Integrating singlecell transcriptomic data across different conditions, technologies, and species[END_REF] and Scanpy (Wolf et al., 2018). At the beginning of my thesis, the challenge was of another scale as there was no statistical framework in which to perform the complete analysis, but rather a patchwork of analysis tools scattered across publications and programming languages (R and Python). Each of them with its own requirements on input data format, pre-processing steps and output format, making data analysis a more tedious work.

From raw sequencing data to count matrices

Cell-barcodes processing

For protocols with pre-defined cell-barcode sequences, such as 10X Chromium (737,000 cell-barcodes) and inDrop (147,456 cell-barcodes), a whitelist of all available barcodes is supplied during library preparation. This list is necessary for correction of cell-barcode sequencing errors. The aim is to correct cell-barcodes with only x nucleotides different from the barcodes present in the whitelist (i.e. x-Hamming-distance away). For instance, CellRanger software first estimates the observed frequency of all barcodes in the dataset and computes a posterior probability for barcodes that are 1-Hamming-distance away from whitelist-barcodes. This probability estimates if such barcodes might originate from the whitelist-barcode with a sequencing error of 1 base. If the posterior probability is above a given threshold, the barcode is replaced by the corresponding whitelist-barcode [START_REF] Zheng | Massively parallel digital transcriptional profiling of single cells[END_REF]. In scRNA-seq protocols with random cell-barcodes, such as Dropseq, barcode sequencing errors cannot be corrected due to the lack of reference barcodes.

The last step of cell barcode processing is to distinguish barcodes marking cell-filled droplets from empty droplets. To this aim, barcodes are ordered by their total number of transcripts, and all top barcodes within the same order of magnitude are considered cell-barcodes. Empirically, the cumulative fraction of all transcripts per barcode always displays a 'knee' that corresponds to the 'targeted' number of cells processed (Macosko et al., 2015;A. Lun et al., 2018). Reads are then grouped by cell barcode in a gene-per-cell matrix.

UMIs processing

As mentioned in the previous chapter, every scRNA-seq protocol has an amplification step to increase the quantity of cDNA to sequence. If this step solves the issue of the low amount of starting material in single-cells it creates a new one: the amplification bias in read quantification. Depending on their composition in nucleotides, some sequences are better amplified than others which may lead to an over-/under-estimation of molecular counts. UMIs are thus used to correct this bias from the gene-per-cell count matrices. To this aim, UMIs are collapsed, and the total number of distinct UMIs associated with a gene is reported as the count value for that gene. Similarly to cell-barcodes, UMIs sequencing errors need to be considered. CellRanger software corrects a UMI that is 1-Hamming-distance away from another as the UMI with more reads. Finally, reads are grouped by UMI in gene-per-cell matrix freed of amplification bias.

UMIs and cell barcodes demultiplexing has still a large potential, as illustrated by the recently developed Java tool developed by Rainer Waldmann and Kevin Lebrigand in my laboratory that allows UMI corrected single-cell long read quantification through the combination of standard 10X Chromium scRNA-seq and Oxford Nanopore sequencing (High throughput, error-corrected Nanopore single-cell transcriptome sequencing, by Kevin Lebrigand, Virginie Magnone, Pascal Barbry Rainer Waldmann, submitted). Doublets are classically defined by the expression of chimeric single-cell transcriptomic profiles which might introduce bias in the analysis and spurious cell type annotation. Two types of doublets may be found in scRNA-seq data:

• Heterotypic doublets group cells from different cell types; • Homotypic doublets group cells from similar cell type. Doublet identification aims to filter out 'heterotypic' doublets preferentially as they influence the most the following statistical analysis.

Computational methods have been developed toward this aim and claim to identify heterotypic doublets in scRNA-seq data: Doublet Finder, Scrublet and DoubletDetection (non-exhaustive list) [START_REF] Mcginnis | DoubletFinder: Doublet Detection in Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors[END_REF][START_REF] Wolock | Scrublet: Computational Identification of Cell Doublets in Single-Cell Transcriptomic Data[END_REF][START_REF] Schemberg | DoubletDetection". In: Achieving 'At-one-ment[END_REF]. Despite different methods to estimate the probability of a cell being a doublet, all these methods share a common workflow:

• Preliminary analysis of the original data with saving of the parameters (normalisation, dimension reduction, ...);

• Synthesis of artificial doublets by randomly picking pairs of cells (counts average or addition);

• Integration of artificial doublets into original data primary analysis;

• Clustering of the merged dataset (K-nearest neighbours);

• Probability estimation of a 'single' cell being a doublet, based on its cluster composition represented by the ratio of artificial doublets to real cells in cell-clusters (probability density function, hypergeometric test).

No comparative analysis of these methods has been published so far to estimate which method is the most efficient and robust to identify doublets. A brief review of the literature reveals that each mentioned methods are evenly used in publications, and usually followed by further manual doublet curation.

At the bench-work levels, technical improvements have also been found to identify doublets with demultiplexing strategies :

• Natural Genetic Variants mixes samples from individuals with distinct genotype [START_REF] Kang | Multiplexed droplet single-cell RNA-sequencing using natural genetic variation[END_REF]); • Cell Hashing uses sample-specific oligonucleotides tags in addition to cell-barcodes and UMIs [START_REF] Gehring | Highly Multiplexed Single-Cell RNA-seq for Defining Cell Population and Transcriptional Spaces[END_REF]).

Yet, these methods are limited to the identification of inter-sample doublets and cannot identify intra-sample doublets.
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Genes filtering and correction

Low abundance genes filtering

Another part of the quality control step is at the gene level for uninformative genes removal. It usually relates to low abundance genes that are only expressed in a handful of cells and thus cannot be used to distinguish between cell types. This high abundance of zero in scRNA-seq data can arise in two ways (Hicks et al., 2017):

• Cells do not express any RNA molecule of a given gene at the time of the experiment;

• Cells do express some RNA molecules of a given gene, but they were lost either during the reverse transcription, the amplification or library preparation step of the protocol.

This missed transcript is referred as a dropout. The ambiguous balance between biological signal and technical flaw introduce a trade-off in the filtering of low abundance genes. They can be specifically expressed in low-frequency cells (rare cells) and thus it is essential to distinguish them from a technical artefact that would distort the statistical analysis. Consequently, genes expressed in less than x cells are removed from further analysis under the condition that the x number of cells is the smallest cell population of interest in the dataset. It means that at the very least a first complete analysis of the dataset, with permissive filtering, must be done to identify this rare population and set the appropriate threshold.

Background correction

Lastly, additional quality control can be done directly on the count data. A critical assumption in scRNA-seq experiments is that each barcode/cell contains RNAs from a single cell (doublets excluded). Unfortunately, droplet-based methods have highlighted the presence of ambient RNAs shared across all barcodes/cells, including 'empty' droplets. It represents cell-free RNAs, originated from lysed cells, that contaminated the cell suspension before cell isolation. This gene expression background is sample-specific and highly correlated with the sample-most-abundant-genes (e.g. highly expressed marker genes of the most abundant cell types). It can significantly impact marker genes identification and differential expression analysis, even more so, if multiple samples are analysed together. Still, only a preprint from Young et al., 2018 (SoupX) has directly tackled this issue, whereas other single-cell studies only mentioned that they took note of the potential bias in downstream analysis.

A generic method to identify genes involved in background contamination is to study the gene composition of 'empty' droplets (containing less than 10 UMIs). Genes found in these droplets are considered spurious and removed from downstream analysis. The alternative proposed by soupX, is to correct the background contamination in the count 32 CHAPTER 3. SINGLE CELL RNA-SEQ DATA ANALYSIS

Data integration

These three effects are of significant importance for downstream analysis such as differential analysis, identification of highly variable genes and dimension reduction / visualisation. Nonetheless, Lun et al. have reported a spurious effect of log-transformed counts on differential expression testing (A. [START_REF] Lun | Overcoming systematic errors caused by log-transformation of normalized single-cell RNA sequencing data[END_REF]. In the case of not differentially expressed genes, the mean of the log-counts is not generally the same as the log of the count mean, which results in false discrepancies in gene expression and potential misinterpretation of the data. This last normalisation step highlights once again the complex trade-off in scRNA-seq data analysis and how every single step has consequences on the overall data interpretation.

Data integration

In the previous section, I described the normalisation step as a batch-correction method for unwanted technical and biological variations between cells from a single experiment. In this section, I will describe the challenges and proposed solutions for data integration, which is defined as a batch-correction method between cells from distinct experiments (cells harvested at different time points, cells on separate chips, or sequencing lanes but also cells isolated and sequenced with different scRNA-seq protocols). Consequently, the technical and biological biases to correct are on different scales, with the additional challenge of compositional differences between datasets. It introduces either biological or technical variations between cell types/states that are not shared among datasets and needs to be corrected while preserving the biological variations of interest. As the number of published studies with multiple integrated datasets increases, several methods have been proposed, each of them based on a given similarity/matching metric between cells from different datasets. These methods range from linear regression models (ComBat, initially developed for bulk RNA-seq), to non-linear models (Canonical Correlation Analysis by Butler et al., 2018, scGen, LIGER) and projection of mutual nearest neighbours (MNN by Haghverdi et al., 2018, Scanorama by Hie et al., 2019, Harmony).

For instance, Mutual Nearest Neighbours (MNN) method identifies pairs of MNN between batches which are considered as the most similar cells across batches (Haghverdi et al., 2018). The gene expression differences between MNNs correspond to the batcheffect to correct. This batch-effect is robustly estimated by averaging across many MNN pairs and corrected by correction vector applied to the expression values. This approach avoids the assumption of equal composition between batches and thus significantly reduce over-correction as it only uses the overlapping subsets of cells to estimate the batch-effect. CHAPTER 3. SINGLE CELL RNA-SEQ DATA ANALYSIS

Diffusion map

The use of diffusion map as summarising technique has been initially spread in scRNAseq data analysis by Haghverdi et al. (Coifman et al., 2005;[START_REF] Haghverdi | Diffusion maps for high-dimensional single-cell analysis of differentiation data[END_REF]. It computes data embedding according to the geometric structure underlying the data. Using non-linear integration of local similarities at different scales, it creates a diffusion process which highlights transition in the data. Thus each diffusion component emphasises the heterogeneity of a given cell population. Similarly to PC space, Euclidean distances between cells in the diffusion map embedding tend to approximate the diffusion distances in the original feature space. This summarising technique is mainly used in the analysis of developmental/differentiation processes as diffusion distances can be approximated to the pseudo-time needed for one cell to 'differentiate' into another.

ZINB-WaVE

ZINB-WaVE is a summarising method developed by [START_REF] Risso | ZINB-WaVE: A general and flexible method for signal extraction from single-cell RNA-seq data[END_REF]. It uses a zeroinflated negative binomial model (ZINB) of the data to extract the stable low-dimensional signal from it (Wanted Variation Extraction, WaVE). It aims to normalise, correct and reduce the data dimensionality, all in one go to avoid multiplication of processing steps and their potential shortcomings that might influence downstream analysis. Even if ZINB-WaCE has not become a standard in scRNA-seq data analysis, it highlights once again a significant issue: the interconnectivity between each step of the analysis and its influence on the final data interpretation.

Visualisation

Unlike data summarising methods, visualisation methods attempt to optimally describe the dataset into a limited number of dimension, usually two or three. These techniques make possible data exploration on a human scale. The identification of gene expression pattern across cells is much more feasible for a human when represented in a 2D scatter plot rather than a count matrix with thousands of rows and columns. In addition, visual exploration of the data might lead to a 'supervised' analysis of the data and to the discovery of outlier patterns that would not have been identified without it. Non-linear dimension reduction methods have solved this challenge. The data reduced dimensions are thus used as coordinates on a scatter plot to obtain a visual representation of the data.

t-SNE

t-distributed stochastic neighbour embedding (t-SNE) is the dimension reduction technique the most used for visualisation purposes [START_REF] Maaten | Visualizing Data using t-SNE[END_REF]. Similarly to diffusion maps, it uses the overlap of the local similarities between points (cells) to create a lowdimensional projection of the data, and thus capture its non-linear global structure. It associates a Gaussian distribution to measure the relationship between points (cells) in the CHAPTER 3. SINGLE CELL RNA-SEQ DATA ANALYSIS original space with a Student t-distribution (hence the t in t-SNE) to project the probability distribution in low-dimensional space. The optimisation of the data projection uses a gradient descent with a non-convex cost function, which might stop the optimisation at a local minimum instead of a global one and produce different output if run multiple times. In summary, t-SNE works well in practice, yet it is worthy of acknowledging some of its shortcomings to avoid misinterpretation of the low-dimensional embedding. For instance, t-SNE focuses on local similarity which implies that the global structure of the low dimensional embedding needs to be considered with care as differences (distances) between cells might be exaggerated and potential connections might be lost. Then, the non-deterministic property of the technique might produce a lack of robustness in data representation.

UMAP

Uniform Manifold Approximation and Projection (UMAP) has been recently presented as an improved alternative compared to t-SNE visualisation method [START_REF] Mcinnes | UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction[END_REF][START_REF] Becht | Dimensionality reduction for visualizing single-cell data using UMAP[END_REF]. As I am not familiar with topological data analysis and category theory, I will summarise this method from a computational point of view as explained by McInnes et al. UMAP uses construction and operations on a weighted graph both in the high and low dimensional space. It then optimises the layout of the low dimensional data embedding to minimise the cross-entropy between the two topological representations. Based on the comparative analysis between t-SNE and UMAP visualisation, Becht et al. reported an improved visualisation quality with an arguably increase in the preservation of the data global structure and a superior run time performance. In addition, its theoretical geometry allows it to scale to much larger dataset than feasible for t-SNE, without restriction on embedding dimension.

Force Atlas 2

Force Atlas 2 has also been proposed as a good approximation of the underlying topology of scRNA-seq data [START_REF] Weinreb | SPRING: A kinetic interface for visualizing high dimensional single-cell expression data[END_REF]. It belongs to force-based graph drawing algorithms, which represents cells as nodes and connection/similarity between cells as edges. These algorithms aim to position the graph nodes so that all their edges are of equal length with as few exceptions as possible. To do so, it assigns spring-like forces to the set of edges:

• Short edges tend to get longer and repel their endpoints in opposite directions; • Long edges tend to get shorter and attract their endpoint nodes toward each other.

Nodes/cells are thus positioned so as to reach an equilibrium between all the applied forces. The visualisation output of such methods is thus highly dependent on the initial graph construction and its ability to avoid spurious edges between cells.

Single-cell interpretation via multi-kernel learning (SIMLR) represents one of the improved k-means-based clustering method for scRNA-seq (Wang et al., 2017). It combines data dimension reduction, visualisation and clustering. It learns a distance metric that best fits the data structure by the use of multiple weighted Gaussian kernels and then constructs the corresponding cell-to-cell similarity matrix with special for the high proportion of zero-counts. Lastly, the similarity matrix is used for k-means clustering or visualisation. Wang et al. claimed improved scalability, visualisation and interpretation of single-cell sequencing data compared to pioneer scRNA-seq clustering methods.

Single-cell consensus clustering (SC3) uses a consensus approach to tackle the k-means clustering limited robustness [START_REF] Kiselev | SC3: consensus clustering of single-cell RNA-seq data[END_REF]. Similarly to SIMLR, it takes as input normalised data, then performs additional gene filtering based on their expression, and computes Euclidean, Pearson and Spearman cell-cell distance matrices. Using PCA, it performs multiple k-means on a fixed number of PC from each distance matrix. The key to SC3 is its last step using cluster-based similarity partitioning algorithm which creates a consensus binary-similarity matrix corresponding to the number of times when two cells have been assigned to the same cluster. This last similarity matrix is then clustered by hierarchical clustering to produce robust cell-clusters.

Yet, despite improvements to the original k-means algorithm in similarity measure and cluster robustness, k-means based methods still require a predetermined number of clusters which limits its use in an exploratory analysis. In addition, the distance to cluster centroids used by k-means-based clustering roughly assumes clusters of equal size and round shape, which is rarely the case in scRNA-seq dataset. These assumptions constitute major limitations to the continued use of k-means based clustering in scRNAseq data analysis.

Graph-based algorithms

An alternative with less stringent assumptions is based on community detection algorithms. They are special cases of density-based clustering which represent data as graphs. In scRNA-seq data analysis, this graph representation is the result of a K-Nearest Neighbour approach in which cells are nodes connected to their K most similar cells by edges. Once again, the similarity is usually estimated by the Euclidean distance between cells in a PC-reduced space. However, compared to k-means based algorithms, graphs can easily represent complex non-linear structures and thus identify clusters of different sizes, densities and shapes [START_REF] Fortunato | Community detection in graphs[END_REF].

Cluster biological significance and annotation

As mentioned repeatedly, the concepts of cell type and cell state have been enriched by the increasing number of measurable cell modalities [START_REF] Wagner | Revealing the vectors of cellular identity with single-cell genomics[END_REF]. At the level of the transcriptome, as measured by scRNA-seq, cell identities are defined by cell-clusters which group cells of similar transcriptomes. To match this new definition of cell type with the former one, the cell-clusters need to be annotated. This annotation process is based on further analysis of the cell-clusters at the gene level. Through differential expression testing (described below), marker genes are identified as a unique combination of genes, specifically expressed in a given cell-cluster. This specific gene signature is then used to annotate the cell-clusters with an insightful biological label and cell type identity. As explained earlier, there is no clustering that can identify both large and small-sized clusters, as a consequence, it is at the annotation level that small clusters might be regrouped under a unique cell type label based on the analyst expertise and potential complementary analysis.

As increasing efforts are being made to create top quality atlases (Mouse and Human), many reference databases are becoming available to improve the annotation sensibility and robustness. Automated tools have been developed toward this aim and provide automated cell type annotation or compare cell-cluster gene signatures across datasets.

For instance, MatchSCore compares a reference list of marker genes to the one identified from the dataset and estimates their overlap using the Jaccard index [START_REF] Mereu | matchSCore: Matching Single-Cell Phenotypes Across Tools and Experiments[END_REF]. It then gives each cell-cluster a cell type label which corresponds to the top overlap with a reference gene signature.

Recently developed Garnett tool uses a supervised classification method to classify and annotated cells from multiple scRNA-seq datasets using a reference list of cell type-specific genes as a classifier [START_REF] Pliner | Supervised classification enables rapid annotation of cell atlases[END_REF]. It provides an unbiased framework to annotate multiple datasets uniformly and define cell types and their features robustly. Differently, scmap projects cells from one scRNA-seq experiment onto another based on their similarity and thus projects the cell type annotation. It provides a useful comparison of the annotation robustness between a reference dataset and newly annotated one.

In conclusion, these tools improved the robustness of cell type annotations. Yet, their efficiency and robustness against the wide variety of single-cell studies remain to be evaluated (including cell states, disease-related variations and developmental trajectories). Consequently, the best cell-cluster annotation method, for now, is a combination of automated and manually curated annotation as well as additional external validation.

Slingshot

Slingshot has also been designed to infer branching trajectories [START_REF] Street | Slingshot: Cell lineage and pseudotime inference for single-cell transcriptomics[END_REF]. Implemented as a flexible toolbox, it easily integrates data in any low dimensional space but recommends ZINB-WaVE as dimensionality reduction method. From this space, it constructs multiple MST on cell-clusters with the constraint of a unique shared starting cluster. Slingshot then reconstructs branching trajectories as the addition of several linear trajectories. Lastly, based on the global lineage structure, it fits smooth branching curves to these lineages and estimates the pseudotime variable using a new method named simultaneous principal curves. Saelens et al. reported that the absence of a feature selection step, as well as the use of cell-clusters for graph construction, provide high robustness in the inference of branching trajectories with Slingshot (Saelens et al., 2019).

Palantir

Palantir was developed as a trajectory inference tool that takes into account the probabilistic view of cell-fate choice in addition to the reconstruction of the differentiation lineages [START_REF] Setty | Palantir characterizes cell fate continuities in human hematopoiesis[END_REF]. It moves away from the traditional view of cell-fate decisions as a series of discrete bifurcations leading to terminal cell state and hypothesises that a continuous process drives differentiation. It uses diffusion maps for data dimensionality reduction, as inspired by Setty's previous work: Wishbone [START_REF] Setty | Wishbone identifies bifurcating developmental trajectories from single-cell data[END_REF], then constructs a K-nearest neighbour graph. Shortest paths from a user-defined early cell initiate pseudotime. Based on the neighbour graph and pseudotime estimation, Palantir constructs a Markov chain that models differentiation as a stochastic process, where a cell reaches one or more terminal states through a series of steps in the manifold. All cells can thus potentially lead to multiple terminal states, which improves the comparison of gene expression dynamics between lineages as it does not require to select subsets of cells from one lineage to compare with the other. This technique improved the study and characterisation of multiple branching trajectories more comprehensively as it avoids the selection of so-called branching points.

PAGA

Partition-based graph abstraction (PAGA) algorithm was developed to reconcile clustering and trajectory inference tools [START_REF] Wolf | PAGA : graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells[END_REF]. It supposes that in the study of complex cell differentiation processes, all cell states of interest might be incompletely sampled. As a consequence, data might not conform to a connected manifold and trajectory reconstruction as a continuous tree-like process might have little meaning. Therefore, PAGA preserves both continuous and disconnected structure in the data through a graph-like map of the arising data manifold. Similarly to previously described trajectory inference methods, it uses PCA as dimension reduction methods and constructs a KNN-graph based on Euclidean distance between cells. Then, it uses a specially developed statistical model to estimate the connectivity of group of cells and thus perform graph partitioning (similar to clustering using Louvain or Phenograph algorithm). It produces a simpler graph whose nodes correspond to cell groups/clusters and whose edge weights quantify the connectivity between groups. By averaging over multiple single-cell paths, PAGA reconstructs trajectories from a progenitor to multiple cell-fates in a robust way and limited effect of spurious edges. Pseudotime is estimated through a diffusion process and assigns an infinite distance to cells that reside in disconnected clusters and computes distances among cells within connected regions in the graph (Haghverdi et al., 2018). This method has been evaluated as one of the rare trajectory inference methods to perform well across all evaluation criterion, and is the only reviewed method able to cope with disconnected topologies and complex graphs containing cycles (Saelens et al., 2019).

RNA velocity

Lastly, as an off-the-chart trajectory inference method, La Manno et al. developed RNA Velocity as a time-resolved additional analysis of dynamic processes (La Manno et al., 2018). It aims to provide additional time-scale information and directionality to developmental and differentiation studies (Figure ??). It defines RNA velocity as the first derivative of the gene expression state, by distinguishing between unspliced and spliced mRNAs in scRNA-seq count data. The time-dependent relationship between the abundance of precursor and mature mRNAs is estimated by modelling the balance between the production of spliced mRNA from unspliced mRNA, and the mRNA degradation. For instance:

• an increase in the transcription rate results in a rapid increase in unspliced mRNA, followed by a subsequent increase in spliced mRNA.

• a drop in the rate of transcription first leads to a rapid drop in unspliced mRNA, followed by a reduction in spliced mRNAs.

This balance of unspliced and spliced mRNA abundance is, therefore, an indicator of the future state of mature mRNA abundance, and thus the future state of the cell. It makes possible the inference of directionality in the cell progress through a dynamic process. RNA velocity has been highly praised as it gives an estimated 'real' time-scale to dynamic processes, which ranges from one to two hours between a cell and its inferred state, as opposed to standard trajectory inference tools which use pseudotime as an arbitrary measure of the cells progress in the differentiation process.

Nevertheless, Luecken et al. reported two important aspects when detecting marker genes:

• P-values obtained for marker genes must be considered with care as their identification by DE testing is done between groups obtained on the same gene expression data. As cell-groups were obtained by clustering, it violates the null hypothesis implicit in DE tests that genes have the same distribution of expression values between the two groups. A consequence is that P-values are often inflated, which might lead to an overestimation of the number of marker genes even as the ranking by P-values is unaffected. AS a solution, additional permutation test can be done to account for the confounding clustering effect in the DE testing design.

• As marker genes characterise a cluster compared to the rest of the dataset, they are dependent on the whole dataset composition and which genes are expressed or not expressed in the rest of the cells. Therefore, a gene might be considered as a marker in one dataset with low cellular heterogeneity, but several clusters might share its expression in a more complex dataset. Thus, it is the combination of the expression of multiple 'marker genes' that should be considered as the true cluster identity.

Group and condition comparison of gene expression

Similarly to bulk sequencing techniques, scRNA-seq aims to test for gene differential expression between conditions or specific groups of cells. In bulk DE testing methods, the challenge was to estimate gene expression variance from a limited number of samples. Whereas for scRNA-seq DE testing methods, the challenge is to account for the dataspecific statistical properties (high variance, high percentage of zeros, low signal-to-noise ratio). (Hicks et al., 2017;[START_REF] Vallejos | Normalizing single-cell RNA sequencing data: challenges and opportunities[END_REF][START_REF] Kharchenko | Bayesian approach to singlecell differential expression analysis[END_REF]. A recent comparison overview of 36 differential expression testing methods surprisingly showed that bulk and single-cell methods perform comparably [START_REF] Soneson | Bias, robustness and scalability in single-cell differential expression analysis[END_REF]. For instance, two of the top-performing methods are edgeR developed for bulk count data and MAST specifically designed for DE testing on scRNA-seq data (M. D. [START_REF] Robinson | edgeR: A Bioconductor package for differential expression analysis of digital gene expression data[END_REF][START_REF] Finak | MAST: A flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data[END_REF].

• edgeR uses an overdispersed Poisson model and an empirical Bayes procedure associated with conditional maximum likelihood to moderate the degree of overdispersion across genes. It then effectively assesses differential expression using a test analogous to Fisher's test. Additionally, it can integrate covariates into the Poisson model to distinguish between technical and biological variations.

• Model-based Analysis of Single-cell Transcriptomics (MAST) models single-cell gene expression using a two-part generalised linear model. One component models the discrete expression rate of each gene across cells, while the other component models the conditional continuous expression level (conditional on the gene being expressed). This model can account simultaneously for stochastic dropouts and bimodal expression distributions in which expression is either strongly non-zero or non-detectable. A covariate named cellular detetion rate (fraction of genes expressed in each cell) can be modelled to take into account additional nuisance and treatments effects. Similarly to edgeR, an empirical Bayesian framework is used to fit the model parameters for lowly expressed genes. Lastly, the differential gene expression is determined using the likelihood-ratio test.

In conclusion, there are many methods available for DE testing whether or not they were initially developed for the analysis of scRNA-seq data. Yet, their use is limited by two criteria:

• The scalability to a large number of cells. Many methods were developed for the comparison of a small number of samples per group and their runtime when comparing the expression of thousand of cells might increase exponentially.

• The capacity to handle confounding batch-effects. Batch-effects are much more present scRNA-seq data (between cells from the same or distinct experiments) compared to bulk RNA-seq data. Consequently, data must be rigorously normalised before DE testing and the DE testing itself must be done with care to avoid spurious results.

Gene expression dynamics

Similarly to clustering and marker genes identification, trajectory inference methods are associated with the study of gene expression dynamics. The aim is to identify genes that vary smoothly across pseudotime and relate them to the underlying regulatory processes. Typically, each trajectory inference method has its own technique to identify its trajectoryrelated genes:

• Monocle 2 was developed with a branch expression analysis modelling method (BEAM) which detects branch-specific gene dynamics (Qiu et al., 2017). It performs a likelihood-ratio test to identify the best fit between two negative binomial regression models: one that assumes that the gene is not branch-specific and one that supposes it is.

• Slingshot proposes to use the limma R package by adding the pseudotime as a covariate in the smoothed regression model of gene expression [START_REF] Street | Slingshot: Cell lineage and pseudotime inference for single-cell transcriptomics[END_REF].

• Palantir computes gene expression dynamics using generalised additive models and weighs each cell's contribution based on branch probabilities [START_REF] Setty | Palantir characterizes cell fate continuities in human hematopoiesis[END_REF].

Gene set analysis

A fundamental fact in biology states that genes do not act independently in cells, but are rather involved in a complex interplay of regulatory processes which associates other genes and their products (RNAs and proteins). The multiple regulatory units composing this interplay have been extensively studied over the years and associated with a large number of biological functions. All these annotations have then been assembled in large gene sets databases such as Gene Ontology (Ashburner et al., 2000), KEGG (Kanehisa et al., 2017) and Reactome (Fabregat et al., 2018). The availability of these databases launched the development of gene set analyses to provide support for the interpretation of long lists of candidate genes, including marker genes, differentially-expressed genes and trajectory-related genes.

• Gene Set Enrichment Analysis (GSEA) was one of the first methods to test if a specific gene set was over-represented/enriched in a list of genes and deduce a potential effect on the corresponding biological function.

• Gene set scoring is an alternative developed for scRNA-seq data and estimate the level of co-expression/co-activity of a set of genes in each cell. Gene set scoring was introduced for inferring the cell cycle phase in single cells by Macosko et al., 2015. • Gene regulatory network analysis is inspired by the system biology field and identifies modules of co-expressing genes as a putative causal regulatory relationship between genes. It then hypothesises that the downstream biological processes depend on the state of this module. Several methods were developed for scRNA-seq data accounting for the high noise level and spurious correlations between genes [START_REF] Aibar | SCENIC: Single-Cell Regulatory Network Inference And Clustering[END_REF]). Yet, a recent review highlighted their lack of consistency and advice to consider their output with care [START_REF] Chen | Constructing cell lineages from single-cell transcriptomes[END_REF].

• Ligand-Receptor interaction analysis was developed to infer the putative interaction between cell types, based on the specific expression of ligand-receptor pairs in distinct cell types [START_REF] Vento-Tormo | Single-cell reconstruction of the early maternal-fetal interface in humans[END_REF][START_REF] Efremova | Cell-PhoneDB v2.0: Inferring cell-cell communication from combined expression of multisubunit receptor-ligand complexes[END_REF]. This analysis is very popular for identifying disrupted cell type interactions between conditions.

• The olfactory mucosa, which is located on the upper part of the two nasal cavities and is mainly lined by a neurosensory epithelium responsible for olfaction.

• The squamous mucosa is a stratified squamous epithelium, resistant to the physical aggressions imposed by its situation at the entrance to the respiratory tract.

Paranasal sinuses

The paranasal sinuses form a group of four symmetrically paired cavities. They are named, maxillary, ethmoidal, frontal and sphenoidal, for the facial bones in which they are located. The functions of these sinuses are still unclear but it would seem that their roles are multiple. They would reduce the mass of the skull, resonate for the voice or warm and humidify the inhaled air thanks to the very slow airflow in this region. Lastly, they participate in the mucous drainage that purifies the inhaled air. In the case of allergic inflammation, or after swelling of the nasal lining that occurs during a cold, normal drainage of mucous through the sinuses can be altered, and sinusitis may occur.

Pharynx

The pharynx delimits the separation between the nasal cavities and the larynx. It is divided into three parts (Figures 4.1 and 4.2):

• The nasopharynx or rhinopharynx extends from the base of the skull to the upper surface of the soft palate. The ceiling of its wall shows the pharyngeal tonsils (or tonsils, also called adenoids) which are lymphoid tissues. The auditory tube opens in the side walls of the nasopharynx and allow the balance of the air pressure in the ear with the outside air.

• The oropharynx is located at the back of the oral cavity. It receives air from both the nasal cavities and the mouth. Because it is a crossroad between both food and air, a flap of connective tissue called the epiglottis closes over the glottis when food is swallowed to prevent aspiration. The oropharynx is also lined by non-keratinised squamous stratified epithelium to resist physical constraints. Similarly to the nasopharynx, the oropharynx has tonsils as a kind of immune control zone against pathogens passing through this aerodigestive crossroads. The oropharynx is lined by non-keratinised squamous stratified epithelium.

• The laryngopharynx, which is the most distal sub-division of the pharynx, extends to the larynx. It is in this area that the respiratory and digestive tracts diverge. The mucous membrane of the pharynx evolves by descending the respiratory tract as the physical constraints are reduced.

Larynx

The larynx is a tube communicating with the laryngopharynx in its proximal part and the trachea in its distal part. It is surrounded by nine different cartilages, the largest of which forms two blades better known as Adam's apple. The larynx conducts the air to the trachea but also prevents food aspiration through cartilage movements. It is lined by a mucous membrane of respiratory type with the exception of the epiglottis and vocal cords where a squamous epithelium is observed. These areas undergo significant physical forces for which a simple respiratory epithelium would not be strong enough. During mucociliary clearance from the lower airway tract (trachea and bronchi), the mucous goes up to the level of the larynx where it is either swallowed or spat out. The larynx, also called voice box, has the role of phonation since it shelters the vocal cords.

Lower respiratory tract

Trachea

The trachea is a cartilaginous tube, 10 to 12 cm long with a lumen diameter of about 2.5 cm, connecting the larynx and bronchi. It is surrounded by 16 to 20 incomplete rings of hyaline cartilage in the shape of a "C". These cartilages make the trachea rigid to avoid large amplitudes of its diameter during breathing. Throughout its internal surface, the trachea is covered with a respiratory mucosa characterised by the pseudostratified epithelium composed of a large number of multiciliated cells essential for the propulsion of mucous secreted by the surface secretory cells as well as by submucosal glands.

Bronchi and bronchioles

The distal end of the trachea divides at the carina into the two primary bronchi (right and left). Each of them penetrates a lung where they are subdivided into lobar or secondary bronchi corresponding to the different lobes, 3 in the right lung and 2 in the left lung. These lobar bronchi further divide into narrower segmental or tertiary bronchi, which in turn subdivide into larger and smaller-sized segmental or subsegmental bronchi. When the bronchi are too narrow (1 mm diameter) to be supported by cartilage they are known as bronchioles. There are up to 23 orders of bronchi and bronchioles in the human airways, which explains the use of the term respiratory tree. In its most distal parts, the bronchioles, called respiratory bronchioles, penetrate the pulmonary lobules.

The bronchial tree, including its epithelium, develops specific characteristics going from trachea to distal bronchiole (Figure 4.3). Increasingly scattered cartilage patches are gradually replacing hyaline cartilage rings. As the diameter of the bronchi decreases, the proportion of smooth muscle around the bronchi increases to cover the bronchioles with smooth muscle fibers completely. The thickness of the surface epithelium decreases, and there is a progressive decrease in the number of multiciliated cells and basal cells compared to an increase of neuroendocrine cells and club/clara cells [START_REF] Rao Tata | Plasticity in the lung: Making and breaking cell identity[END_REF]. 60 CHAPTER 4. MODEL OF STUDY: THE HUMAN AIRWAY EPITHELIUM

Basal cells

Basal cells are found in all stratified and pseudo-stratified epithelium. From a morphological point of view, they can be distinguished by a small size and a very high nucleus/cytoplasm ratio. They are located in the lowest part of the surface respiratory epithelium in contact with the basal lamina. They are more numerous at the proximal level of the respiratory tree where they represent about 30% of the epithelial population and cover 90% of the basal blade [START_REF] Mercer | Cell number and distribution in human and rat airways[END_REF]. They become less numerous at the distal level [START_REF] Baldwin | Basal cells in human bronchial epithelium[END_REF] where they represent only 2 to 10% of the population in bronchiolar segments less than 0.5 mm (Boers et al., 1998a). Their number is strongly correlated to the height of the surface epithelium [START_REF] Evans | Cellular and molecular characteristics of basal cells in airway epithelium[END_REF].

Basal cells express intracellular markers that are specific and are widely used in studies to distinguish them from luminal cells of cylindrical shape. These markers may be cytokeratins, such as KRT5 and KRT7 (cytokeratin-5, -7), transcription factors, such as TP63 (Tumor Protein P63) or pathway-related ligands/receptors, like DLK2 (Delta Like Non-Canonical Notch Ligand 2) a Notch pathway inhibitor (Boers et al., 1998a). A transcriptomic analysis of isolated basal cells confirmed and improved this list of marker genes [START_REF] Hackett | The human airway epithelial basal cell transcriptome[END_REF]. According to several studies, it is likely that the basal cells population is probably more heterogeneous with, for instance, only a fraction of KRT5 positive cells that also express KRT14 which has also been reported as a marker gene of basal epithelial cells [START_REF] Rao Tata | Plasticity in the lung: Making and breaking cell identity[END_REF].

Basal cells have two essential roles within the epithelium.

• A structural role where basal cells provide a solid anchoring of the epithelium to the basal lamina, through hemi-desmosome junctions. Their name come from this contact with the basal lamina. These cells also form bonds with neighbouring (cylindrical/luminal) cells using desmosomes junctions. Basal cells therefore maintain the epithelium on the basal lamina (Shebani et al., 2005;[START_REF] Evans | Cellular and molecular characteristics of basal cells in airway epithelium[END_REF].

• A role as stem cells or progenitor cells to reform a functional epithelium. Basal cells are capable of proliferating and differentiating in other epithelial cell types during homeostasis and following injury. Their ability to differentiate into other epithelial cell types has been demonstrated using transgenic mice expressing a reporter gene under the control of a basal cell specific promoter (KRT14 ). A study by Hong et al., has demonstrated that after epithelial lesion in vivo, both the newly differentiated multiciliated and secretory cells derived from basal cells [START_REF] Hong | Basal Cells Are a Multipotent Progenitor Capable of Renewing the Bronchial Epithelium[END_REF]).

In addition, two studies showed that, in vitro, isolated basal cells can re-form a mucociliated epithelium [START_REF] Hajj | Basal Cells of the Human Adult Airway Surface Epithelium Retain Transit-Amplifying Cell Properties[END_REF][START_REF] Rock | Basal cells as stem cells of the mouse trachea and human airway epithelium[END_REF]. Lastly, a recent study proposed that basal cells are in fact the grouping of two morphologically identical subpopulations, a multipotent strain population and a population of precursors committed to differentiation (Watson et al., 2015).

Suprabasal / Parabasal cells

So-called parabasal (suprabasal or intermediate) cells have been described to be located between basal and cylindrical/luminal cells (Figure 4.5) (Boers et al., 1998a). Microscopic studies show that these cells do not appear to share common morphological characteristics with either multiciliated cells, mucous or neuroendocrine secretory cells [START_REF] Breeze | The cells of the pulmonary airways[END_REF]. Yet, they bear similar morphological features with basal cells as they are fusiform and do not reach the surface of the epithelium. Even though their function is still hypothetical, their abundance up to 25% of basal cells and their similarities could suggest that they are basal cells engaged in a differentiation program into multiciliated or secretory cells (Mori et al., 2015).

Secretory cells

The non-ciliated secretory cells found in the respiratory epithelium can are divided into distinct types of secretory cells depending on the nature of the molecules they secrete and their localisation.

Club cells

Some of these secretory cells were first described in 1937 by Max Clara, who distinctly identified their cytoplasmic granules, indicative of a secretory function. These cells were initially named Clara as a posthumous honour to the one who discovered them, but due to his close links with Nazi party during World War II, they have been renamed Club cells [START_REF] Winkelmann | The Clara cell: A "Third Reich eponym"?[END_REF] Club cells are differentiated luminal cells, with a columnar/cylindrical shape and microvilli on their apical surface. Club cells display a large heterogeneity of shape and properties across the different species [START_REF] Crystal | Airway Epithelial Cells: Current Concepts and Challenges[END_REF]. They are mainly present in the distal part of the conducting airways (Boers et al., 1998b), they have an important role in the protection of the airways through diverse mechanisms:

• An anti-inflammatory and immuno-modulatory function via the secretion of uteroglobin (or CC10 for "Club Cell protein 10kDa"), but also of many antimicrobial peptides, such as lipocalin (LCN2 ) [START_REF] Hung | Regulation of TH2 responses by the pulmonary Clara cell secretory 10-kd protein[END_REF][START_REF] Lin | Comparison of normalization and differential expression analyses using RNA-Seq data from 726 individual Drosophila melanogaster[END_REF].

• A detoxifying function through their contribution to xenobiotic metabolism by a high level of expression of metabolosing enzymes including cytochrome P450 [START_REF] Stripp | Maintenance and repair of the bronchiolar epithelium[END_REF].

In addition, studies have demonstrated that club cells can differentiate into multiciliated cells and mucous-secreting cells (Evans et al. 2004). They have also been described as multipotent progenitor in mice following injury and complete basal cell depletion [START_REF] Hong | Clara cell secretory protein-expressing cells of the airway neuroepithelial body microenvi-ronment include a label-retaining subset and are critical for epithelial renewal after progenitor cell depletion[END_REF]. CHAPTER 4. MODEL OF STUDY: THE HUMAN AIRWAY EPITHELIUM

Goblet cells

Goblet cells are mucous-secreting cells also named caliciform because of their cylindrical shape. Their entire apical part is full of secretion vesicles, mainly composed of glycoproteins such as mucins, rich in sialic acid and major component of mucous. Even though there are 21 different MUC genes, not all of them encode for secreted mucins. The nomenclature of these genes groups mucins and mucin-like proteins, which ability to generate the three-dimensional network of the mucous gel are different. There are only 4 secreted gel-forming mucins coded by the genes MUC5AC, MUC5B, MUC2 and MUC6, of which only MUC5AC and MUC5B are secreted in the airways and are considered as respective marker genes of surface epithelial and submucosal glands goblet cells [START_REF] Porchet | Les gènes MUC Mucin or not mucin ?[END_REF]. The secretion of mucins is mostly carried out in a merocrine manner (i.e. by exocytosis vesicles) but sometimes by an apocrine process (in which the entire apical pole of the cell is fragmented) [START_REF] Rogers | Airway goblet cells: responsive and adaptable front-line defenders[END_REF]. Goblet cells are also capable of producing molecules endowed of anti-bacterial activity such as secretory IgA, lactoferrin, lysozyme defensins, etc... In the surface epithelium of the airways, goblet cells are disseminated among multiciliated cells and represent 15% of the cylindrical/luminal cells of the epithelium. In submucosal gland epithelium, similar cells (MUC5AC-/MUC5B+) can be found and their number is 40 times more important. As a result, 90% of the mucous is secreted via the tubulo-acinous glands of the mucosa. Although mucous-secreting cells are largely in the minority within the epithelium, their proportion can increase drastically under stressful or pathological conditions. This is the case when a Th2 response develops, which leads to an increased level of IL-13 (K.-s. [START_REF] Park | Goblet cell hyperplasia and mucous hypersecretion contribute to the pathogenesis of chronic pulmonary diseases including cystic fibrosis , asthma , and chronic obstructive pulmonary disease . In the present work , mouse SAM pointed domain-containing ETS t[END_REF][START_REF] Park | Chronic intermittent mechanical stress increases MUC5AC protein expression[END_REF]. In such a situation, the multiciliated/mucous cell balance no longer allows optimal mucociliary clearance and can lead to obstructions, phenomena found in chronic respiratory diseases.

Sub-mucosal glands structure and epithelia

Submucosal glands are a specialised structure of multiple cells (mainly secretory cells) localised within the cartilaginous/ large conducting airways. Their contribution to the protective function of the surface epithelium happens via the secretion of ions, water, mucous and other proteins that are found in the airway surface liquid (ASL), which corresponds to the liquid that bathes the luminal surface of the airway epithelium. These glands can be divided into four regions, from the more distal to the more proximal/luminal, each with a distinct physiological function and cell composition (Figure 4.6) [START_REF] Tata | Myoepithelial Cells of Submucosal Glands Can Function as Reserve Stem Cells to Regenerate Airways after Injury[END_REF][START_REF] Fischer | Differential Gene Expression in Human Conducting Airway Surface Epithelia and Submucosal Glands[END_REF].

Observation of the mouse respiratory tract by electron microscopy shows that the cilia of the MCCs shorten when considered from the trachea to the bronchial tree. Indeed, Greenwood and Holland estimated that these motile cilia go from 7 μm in the upper tract to 3 or 4 μm in the bronchi (Greenwood Holland, 1972). The cilia structure remains the same throughout the airways, regardless of their length. Nonethless, their synchronised beating frequency is faster in the proximal bronchi than in the distal bronchi, with an average frequency of 10 to 20 Hz (Zahm et al., 1990). Their nucleus is located at the basal level of the cell while the mitochondria are found very enriched at the apical pole of the cell to provide the energy necessary for ciliary beating (Hansell Moretti,. 1969). It is the synchronisation of the ciliary beating that allows the mucociliary clearance of the airways and the efficient elimination of the mucous in the pharynx. Multiciliated cells are considered as one of the terminally differentiated cell fate of basal cells as they are unable to divide and proliferate. (Kauffman et al., 1980;McDowell et al., 1983). However, this is currently challenged with the observation of transdifferentiation mechanisms of multiciliated cells into mucous-secreting cells (J. A. [START_REF] Park | Chronic intermittent mechanical stress increases MUC5AC protein expression[END_REF]. Their differentiation of basal cells to multiciliated cells results of numerous key regulatory processes:

• Basal cells cell cycle arrest [START_REF] Deblandre | A two-step mechanism generates the spacing pattern of the ciliated cells in the skin of Xenopus embryos[END_REF];

• Notch signalling inhibition (Tsao et al., 2009);

• Actin apical cytosqueleton remodelling by RhoA and ERM complex (Ezrine, Radixine and Moesine) [START_REF] Pan | Myb Permits Multilineage Airway Epithelial Cell Differentiation[END_REF];

• Massive centriol multiplication after activation of MYB signalling;

• Basal bodies maturation and cilia elongation mediated by transcription factor FOXJ1 and RFX3 [START_REF] Baas | A deficiency in RFX3 causes hydrocephalus associated with abnormal differentiation of ependymal cells[END_REF].

Rare cells

In addition to the main cell types described previously, the airway epithelium is also composed of so-called 'rare cells'. Their low frequency made them particularly hard to identify and limited the characterisation of their function in the airway epithelium.

Ionocytes

Ionocytes also named mitochondrion-rich cells or chloride cells, are specialised in ionic transport. They were first described in fish gills, where they actively transport salt from the fish media into its body through the gills, to balance the chloride concentration [START_REF] Esaki | Mechanism of development of ionocytes rich in vacuolar-type H+-ATPase in the skin of zebrafish larvae[END_REF][START_REF] Jänicke | Foxi3 transcription factors and Notch signaling control the formation of skin ionocytes from epidermal precursors of the zebrafish embryo[END_REF]. They were later described in mammals kidney, epididymis and endolymphatic duct of the inner ear. They were additionally named proton-secreting cells as they drive transepithelial movements of ions required for pH osmoregulation using the H+ ATPase. Finally, recent experiments of single-cell transcriptomics of mice airway epithelium identified a cluster of cells with marker genes associated to the osmoregulation function of the ionocytes, such as Foxi1, Ascl3, subunits of the H+ATPase and several subunits of Cl-transport systems. Interestingly, those ionocytes also display an enrichment in Cftr, which encodes for a chloride channel that is mutated in cystic fibrosis (Montoro et al., 2018;[START_REF] Plasscheart | A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte[END_REF]. Based on this observation, these authors have suggested that these cells may play a determinant role in this disease.

Tuft cells

Tuft cells, also named brush cells, are characterised by the presence of a tuft squat microvilli (120-140/cell) on their apical surface. They are distinctively pear-shaped, with a wide base and a narrow microvillous apex. Brush cells are scarcely located within the epithelial layer of the gastrointestinal and respiratory tracts. They have been associated with chemosensory function that use the canonical taste transduction cascade (allowing bitter and umami tastes) to detect irritants and modulate the immune response, similarly to their function in the intestine [START_REF] Reid | Summary The Mysterious Pulmonary Brush Cell A Cell in Search of a Function[END_REF][START_REF] Gerbe | Intestinal tuft cells: Epithelial sentinels linking luminal cues to the immune system[END_REF][START_REF] Von Moltke | Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit[END_REF].

Pulmonary neuro-endocrine cells

Pulmonary neuroendocrine cells (PNEC), also named Kulchitsky cells, are specialised airway epithelial cells that are scattered as solitary cells or as clusters called neuroepithelial bodies (only reported in mice) all along the airways. These cells are bottle-like shaped, and reach from the basal lamina to the lumen. They were reported to have an important role in fetal lung development, including branching morphogenesis by the secretion of peptides and amines which exhibit many properties similar to those of growth factors (neurotransmitters such as calcitonin-gene-related peptide and -aminobutyric acid). However, in the adult lung their role is still not fully understood, with the hypothesis of a localised regulation of epithelial cell growth and regeneration through a paracrine mechanism [START_REF] Rao Tata | Plasticity in the lung: Making and breaking cell identity[END_REF]. Other studies suggest critical role in the modulation of the immune response to allergens and an influence in goblet cell hyperplasia [START_REF] Sui | Pulmonary neuroendocrine cells amplify allergic asthma responses[END_REF].

The muco-ciliary epithelium: a protective functional unit for the respiratory tract

As mentioned previously, the airway epithelium covers most of the respiratory tract. In constant contact with the external environment and continuously exposed to live and inert particles, its main function is to protect the respiratory tree from external aggressions. Thus, the airway epithelium constitutes a physical and physiological defence barrier which will allow the conduction of purified air to the alveoli. In this section, I will describe the complementary mechanisms put in place by the epithelial cells to ensure the homeostatic maintenance and integrity of this protective tissue.

Mucous : first line of defense

Every day, a human being inhales about 10,000L of air, the equivalent of about 5x10 10 inhaled particles. Against them, the airway surface liquid represents the body's first line of defence. It constitutes a continuous layer along the airway epithelium trapping airborne particles like flypaper [START_REF] Coraux | Réparation et régénération de l ' épithélium respiratoire[END_REF]. This surface liquid is divided into two distinct phases.

• The periciliarly layer (PCL) which bathes the cilia and acts as a lubricant for efficient ciliary beating;

• The overlying mucous layer which traps inhaled particles and pathogens for later removal through the mucociliary clearance [START_REF] Webster | Slippery When Wet: Airway Surface Liquid Homeostasis and Mucus Hydration[END_REF].

Periciliarly layer

The periciliarly liquid, located under the gel phase, corresponds to the layer in which the cilia can move. Initially described as an aqueous layer devoid of mucins, it has been demonstrated that mucins are also present and essential to the function of the periciliarly liquid. These mucins are organised like brushes at the surface of the cilia (MUC-4 and MUC-20 ) and microvilli (MUC-1 ) forming a real network excluding particles larger than 25 nm in diameter (Figure 4.7) [START_REF] Kesimer | Molecular organization of the mucins and glycocalyx underlying mucus transport over mucosal surfaces of the airways[END_REF]. The repulsion forces between these negatively charged mucins contribute to an optimal beat of the cilia, without friction [START_REF] Hattrup | Structure and Function of the Cell Surface (Tethered) Mucins[END_REF]. In addition, mucin charges create an osmotic pressure which influences the distribution of water between the gel phase and periciliarly fluid [START_REF] Button | A periciliary brush promotes the lung health by separating the mucus layer from airway epithelia[END_REF]. In pathological situations, hypersecretion of mucous interferes with this osmotic pressure, resulting in a crushing of the periciliary fluid and therefore a defective cilia beat.

• Defensins are small cationic peptides with antimicrobial activity against bacteria, parasites and viruses. They are produced by surface epithelial cells, glandular cells and macrophages (Martin et al. 1995).

• Secretory Leukocyte Protein Inhibitor (SLPI) is a protein with antimicrobial activity.

It is secreted by macrophages, neutrophils and serous cells [START_REF] Gauthier | Kinetics of the inhibition of leukocyte elastase by the bronchial inhibitor[END_REF].

• Cathelicidin is an antimicrobial protein which belongs to the family of cathelicidins and acts in synergy with lactoferrin and lysosyme. Secreted by neutrophils, lymphocytes and surface epithelial cells, it has a chemo-attractive action to immune cells at the site of inflammation or infection [START_REF] Agerberth | The human antimicrobial and chemotactic peptides LL-37 and -defensins are expressed by specific lymphocyte and monocyte populations[END_REF]. This protein also triggers apoptosis of epithelial cells infected with a pathogen [START_REF] Barlow | The human cathelicidin LL-37 preferentially promotes apoptosis of infected airway epithelium[END_REF].

• Lactoperoxidase is an enzyme with an antimicrobial activity, particularly on Pseudomonas aeruginosa and Haemophilus influenzae [START_REF] Gerson | The lactoperoxidase system functions in bacterial clearance of airways[END_REF]. Its inhibition has been reported to decrease bacterial clearance in the respiratory tract [START_REF] Wijkstrom-Frei | Lactoperoxidase and human airway host defense[END_REF].

• In addition to molecules acting directly on inhaled pathogens, the epithelium is also capable of secreting molecules that will generate a local immune response: cytokines and chemokines [START_REF] Gandhi | Airway epithelium interactions with aeroallergens: Role of secreted cytokines and chemokines in innate immunity[END_REF].

Mucociliary clearance

The optimal protection of the airways does not only consist in trapping particles in the airway surface liquid but also to evacuate them. The coordinated beating of multiciliated cells gradually drains the mucous along the respiratory tract and up to the larynx where it is spat out or swallowed in the digestive system. The frequency of the ciliary beating is between 10 and 20 Hz, causing mucous displacement of about 5 mm/min [START_REF] Widdicombe | Airway Gland Structure and Function[END_REF].

Epithelial hydro-electric transport

As previously mentioned, an optimal osmolarity of the periciliarly fluid is necessary for the ciliary beat. Its degree of hydration needs, therefore, to be tightly controlled. The volume and composition of the airway surface liquid are regulated by a hydro-electrolytic transport involving ionic transporters, such as ion channels and aquaporins, located on the apical membrane of the epithelial cells. The combination of cation (especially Na+), anion (mainly Cl-, but also HCO3-) and water transport regulate the hydration of the surface liquid. In pathological conditions such as cystic fibrosis, the dysfunction of the Cl-CFTR channel disrupts the water balance, thus modifying the physicochemical properties of the surface liquid [START_REF] Boucher | Cystic fibrosis: a disease of vulnerability to airway surface dehydration[END_REF].

Planar cell polarity

To achieve an efficient mucociliary clearance, motile epithelial cilia (hundreds of cilia per single multiciliated cell) must undergo a precise and coordinated orientation. This orientation is controlled by a regulatory cascade called 'planar cell polarity' which determines at the scale of the cell and tissue the vectorial orientation of all cilia in the plane of the epithelium. It is the coordinated contribution of actin and microtubules that operates the correct positioning and orientation of the cilia basal bodies, in connection with its neighbours.

Cilia beating cycle

Finally, the evacuation of mucous is made possible by a very specific cycle of cilia beating. Sanderson and Sleigh observed the different phases of cilia beating in 1981 by electron microscopy on the cilia of a rabbit trachea. This movement is divided in two phases (Figure 4.8) (Brooks et al., 2014).

• An effector phase during which the cilia is perpendicular to the plane of the epitheliumand its end is anchored in the mucous layer. The cilia moves in a plane, in the direction of mucous evacuation forming a trajectory of about 110°.

• A recovery phase during which the cilia curve and make a clockwise arc of a circle to return to its initial position. Although cilia are said to beat synchronously on the surface of multiciliated cells, their movement is slightly shifted over time, causing a wave on the surface of the epithelium. This slight shift in cilia is believed to be due to hydrodynamic interactions between cilia [START_REF] Gueron | Cilia internal mechanism and metachronal coordination as the result of hydrodynamical coupling[END_REF]. Simulations demonstrated that cilia asynchronous beat produces a mucous propulsion efficiency 10 times higher and 3 times faster than synchronous beat (Elgeti et al., 2013). CHAPTER 4. MODEL OF STUDY: THE HUMAN AIRWAY EPITHELIUM

Epithelial permeability

The airway epithelium forms a physical barrier between the external environment and the body. The integrity of this barrier requires strong cohesion of all the cells that compose it, making the organism impermeable to air contaminants and inhaled pathogens. As seen previously, the airway epithelium is itself protected on its luminal surface by the periciliary fluid, and a layer of mucous. However, although the movement of the gel phase within the airways can be simplistically assimilated to a continuous moving walkway, the most realistic concept advocates a discontinuity of this mucous layer [START_REF] Sears | Mucociliary interactions and mucus dynamics in ciliated human bronchial epithelial cell cultures[END_REF]. Therefore, the surface epithelium is likely to be exposed, at least partially, to airborne particles. This is why, within the epithelium itself, several junction complexes ensure the physical cohesion and integrity of this barrier but also defines the apicobasal polarity of the epithelium (Figure 4.9). • Tight junctions (from Latin zonula occludens) are located at the boundary between the apical and lateral domains of cylindrical/luminal epithelial cells. These are the most apical and narrowest junctions between adjacent cells (hence their name 'tight junctions'). They constitute a physiological barrier between the exterior and interior of the body by limiting the passage of molecules (small molecules only) into the paracellular space (Gumbiner et al., 1993).

• Intermediate junctions (from Latin zonula adherens) strengthen the cohesion and intercellular adhesion of the airway epithelium. They form a junction belt around the epithelial cells and below the tight junctions. Each intermediate junction is connected to the actin cytoskeleton and microtubule network. Their role is to strengthen the integrity of the epithelium during shape modifications generated by conformational changes in actin filaments [START_REF] Perez-Moreno | Sticky business: Orchestrating cellular signals at adherens junctions[END_REF].

• Gap junctions provide intercellular communication by forming large-diameter pores for the passive diffusion of small molecules (<1 kDa). These pores, assimilated to channels, are very important for electrical conduction, intercellular communication and nutrition. The opening and closing of these channels are dynamically regulated [START_REF] Goodenough | CONNEXINS, CONNEXONS, AND INTERCELLULAR COMMUNICATION[END_REF].

• Desmosomes (from Latin macula adherens)are distributed over the entire basolateral surface below the belt of the adherent junctions. These anchor junctions are characterised by the presence of dense protein plaques in which the intermediate cytokeratin filaments of adjacent cells are inserted, thus ensuring cohesion and intercellular interaction (Baum et al., 2011).

• Hemidesmosomes, unlike the previous junctions presented, mediate the interaction of a cell with the extracellular matrix. These protein complexes are located at the basal pole of basal epithelial cells. These junctions maintain the cohesion of the epithelium by connecting the extracellular matrix to the filaments of intracellular keratins (Shebani et al., 2005).

Interaction with the immune system

In addition to the multi-layered innate defence system provided by epithelial cells, they are also able to recognise microbial pathogens and their products and initiate signalling to recruit and 'instruct' cells of the immune system [START_REF] Whitsett | Airway Epithelial Differentiation and Mucociliary Clearance[END_REF][START_REF] Iwasaki | Early local immune defenses in the respiratory tract[END_REF]. This step-wise mechanism ensures that the minimum necessary response to a pathogen is engaged (Figure 4.10). It is a three-phased sequential process initiated by the detection of pathogens through the wide expression pattern-recognition receptors (PRRs) on the surfaces of epithelial cells:

• Epithelial cell-intrinsic defence responses efficiently contain and clear pathogen;

• Epithelial cells secrete chemoattractants, as first-order cytokines, which recruit rapid responder cells (neutrophils, alert lung-resident lymphocytes such as innate-like lymphocytes, natural killer and tissue-resident memory T cells) to clear pathogens;

• These lymphocytes next transform first order cytokine signals into second-order cytokines that recruit and enhance the activation of effector cells and can eliminate or expel pathogens and foreign particles.

CHAPTER 4. MODEL OF STUDY: THE HUMAN AIRWAY EPITHELIUM

Lung development

During its development, the lung interacts actively with other tissues to form its complex and ramified structure. It starts at the embryonic stage of life, with the specification of the endoderm into a lung bud, then goes through airway branching morphogenesis in interaction with the mesenchyme and concludes with the simultaneous postnatal differentiation of alveolar and mesenchymal cells [START_REF] Herriges | Lung development: Orchestrating the generation and regeneration of a complex organ[END_REF]. As the unravelling of the lung developmental processes was extensively done by lineage tracing on mice, I will specify the timeline of these processes based on mice embryonic development, and add the human equivalent whenever feasible.

Embryonic development of the tree-like architecture of the airways

The lung bud is specified from the ventral anterior foregut endoderm at embryonic day 9.0 (E9.0) by the expression of NKX2 (transcription factor). The respiratory primordium begins to elongate and divide into the future tracheal tube and main bronchi through the additional expression of SOX2 (proximal), SOX9 (distal) and WNT signalling (Goss et al., 2009). A first interconnected signalling between the pulmonary mesenchyme (derived from the mesoderm) and the bronchi buds promotes their outgrowth and differentiation through the expression of the growth factor FGF10 by mesenchymal tissue in the regions adjacent to the distal tip endoderm. The support of key morphogen sonic hedgehog (SHH ) expressed in the respiratory endoderm, rapidly induce the process of branching morphogenesis creating the extensive tree-like network of the airways. Progression of branching morphogenesis terminates with the formation of distal alveoli at E16.5. Alveolar epithelial lineages differentiate from the SOX9+ID2+ distal tip endoderm, early before birth in mice, approximately between E17. 5 and E18.5 (Figure 4.11) (Herriges et al., 2014).

Airway surface and glandular epithelial cell differentiation starts almost synchronously to the branching morphogenesis, at E9.5 and continues until E16.5. Even as the different cells lineages cannot be easily tracked by morphology, their appearance is detected by the expression of their specific marker genes. Starting with KRT5+ TP63+ basal cells, which are multipotent cells capable of differentiating in both conducting and alveolar epithelial cells. The presence of secretory cells is then detected by the expression of secretoglobins (SCGB1A1, SCGB3A2 ) followed by multiciliated cells which express transcription factor FOXJ1 [START_REF] Nikolić | Human embryonic lung epithelial tips are multipotent progenitors that can be expanded in vitro as long-term self-renewing organoids[END_REF]. Submucosal glands are formed following basal cell proliferation and organisation into a solid protusion or bud (Tos et al.,1966). The bud then expand into a cylinder which extends into the submucosa. After accumulation of mucin secretion in the centre of the cylinder, the cells rearrange themselves creating a lumen. The lumen is later enlarged by continued secretion of mucins and the growing extremity of the cylinder undergoes repeated dichotomous branching forming the acini (Tos et al.,1968). CHAPTER 4. MODEL OF STUDY: THE HUMAN AIRWAY EPITHELIUM

Homeostasis and Regeneration

At homeostasis, airway epithelial cells are characterised by a low cellular turnover and proliferation rate (approximately 100 days). Yet, upon tissue damage, several epithelial cells exhibit stem and/or progenitors attributes as they display the capacity to self-renew and differentiate into multiple cell lineages. Our understanding of these lineages and their regulators have been permitted by different injury model and lineage tracing methods done in mice which might thus slightly differ compared to Human. Similarly to lung development, there is growing evidence of the implication of mesenchymal and immune cells in the support and maintenance of the epithelial niche (Figure 4.14).

The airway epithelium niche and its response to injury.

Basal cells were the first cells identified as stem cells and progenitors to all airway epithelial cells, and they conserve this property in homeostatic and injured airway epithelium. Their homeostatic turnover is regulated through steady-state signalling which involves both inhibition of fibroblast growth factor receptor 2 (FGFR2 ) and activation of BMP pathway. It respectively limits cell proliferation and inhibits cell differentiation to maintain basal cells in the quiescent state [START_REF] Rao Tata | Plasticity in the lung: Making and breaking cell identity[END_REF][START_REF] Peng | Hedgehog actively maintains adult lung quiescence and regulates repair and regeneration[END_REF].

Basal cells differentiation commitment toward other cell lineages has been associated with Notch signalling in opposite ways. As a reminder, Notch signalling involves a signalling cascade between two neighbouring cells, one expressing Notch receptors (NOTCH 1-4 ) and the other Notch ligands (JAG1-2 and DLL1,3,4 ).

• Notch activation is required to initiate basal cells differentiation toward other cell lineages. They first differentiate into TP63-/KRT5+/KRT8+ early progenitors, named parabasal or suprabasal cells, which can then commit to secretory or ciliated cell fate depending on local signals including the intracellular level of Notch signalling [START_REF] Rock | Basal cells as stem cells of the mouse trachea and human airway epithelium[END_REF].

• Notch sustained activation lead to secretory cell-fate commitment (club and goblet cells);

• Notch delayed inhibition lead to ciliated cell-fate commitment. My group participated in deciphering the mechanism involved in the inhibition of the Notch pathway [START_REF] Marcet | Extracellular nucleotides induce COX-2 up-regulation and prostaglandin E2 production in human A549 alveolar type II epithelial cells[END_REF]. They highlighted the key role of the miR-34/449 family in the complex differentiation of multiciliated cells by their targeted inhibition of NOTCH1 and DLL1.

In mice, another potential niche of stem cells, the secretory cells, has been identified in basal cells depleted injury model. Yet, their ability to self-renew and differentiate in human is still unknown.

Another example might be an accrued expansion of basal cells in regions severely damaged by influenza injury. Such accumulation will then form clusters leading to tissue keratinisation, known as squamous metaplasia, which will impair the tissue architecture and functions [START_REF] Taylor | A Conserved Distal Lung Regenerative Pathway in Acute Lung Injury[END_REF].

A last example is goblet cell hyperplasia induced, for instance, after inflammation by Th2 type cytokines, interleukins, IL-4 and IL-13 and activation of SPDEF transcription factor (Bonser et al., 2017). This large increase in the number of goblet cells will change the functional balance between goblet cells and multiciliated cells, impairing the mucociliary clearance of the airways (K.-s. [START_REF] Park | Goblet cell hyperplasia and mucous hypersecretion contribute to the pathogenesis of chronic pulmonary diseases including cystic fibrosis , asthma , and chronic obstructive pulmonary disease . In the present work , mouse SAM pointed domain-containing ETS t[END_REF].

Development and Regeneration

Pioneer study on the development of distal airways Treutlein et al. published the first study of the airway epithelium at single-cell resolution (Treutlein et al., 2014). They described one of the latest developmental stages of the distal airways in mice, named sacculation. This stage corresponds to the expansion of the distal airway tips into a sac-like configuration. During this process, a morphologically uniform population of columnar progenitors differentiates into either AT1 or AT2 cells (Figure 5.2).

This study :

• confirmed the basic outlines of epithelial cell type differentiation in the distal lung without the use of lineage inference algorithms. The authors deduced the differentiation trajectories by exploiting gradients of gene expression between cells within a given lineage.

• described the molecular processes involved in the differentiation from alveolar bipotential progenitor (BP) to AT1 or AT2 cells.

• discovered novel cell type markers such as transcriptional regulators like Hopx and Vegfa.

• hypothesised from the limited de novo expression of lineage-specific transcription factors in intermediate and late developmental cell states that lineage commitment mainly involves the down-regulation of factors which are active in progenitor state.

CHAPTER 5. A COMBINED EFFORT TO IMPROVE OUR UNDERSTANDING OF THE AIRWAY EPITHELIUM USING SINGLE-CELL TECHNOLOGIES Strunz et al. studied the whole lung plasticity following injury. They investigated, through the analysis of two extensive time-course experiments, the complex gene expression dynamics and routes of cell-cell communications present during lung regeneration (Figure 5.6) [START_REF] Strunz | Longitudinal single cell transcriptomics reveals Krt8 + alveolar epithelial progenitors in lung regeneration[END_REF]. They divided their study in two parts. (i) First a survey of whole-lung regeneration at six time points following injury, (ii) then a 'sky dive' approach with a high temporal resolution (18 time-points) for sorted epithelial cells.

This study :

• provided an extensive description of the lung cell composition following bleomycininduced injury.

• described the active recruitment of immune cells, such as macrophages and monocytes, in the first days following injury.

• identified a new Krt8+ cell state involved in alveolar regeneration. The detailed analysis of their high-resolution epithelial dataset revealed a transcriptional convergence of club and AT2 cells toward Krt8+ cells following injury. Trajectory inference described these Krt8+ cells as progenitors to AT1 cells and highlighted their potential communication with mesenchymal cells in the regeneration process. 92 CHAPTER 5. A COMBINED EFFORT TO IMPROVE OUR UNDERSTANDING OF THE AIRWAY EPITHELIUM USING SINGLE-CELL TECHNOLOGIES

Rare cell type discovery and atlas building

Single-cell RNA-seq has also allowed the establishment of molecular cell atlas and cell throughput increase has led to the discovery of rare cell types.

Rare cells discovery and description

Montoro et al. studied the cellular heterogeneity in mouse tracheal epithelium by combining extensive scRNA-seq and in vivo lineage tracing. They aimed to refine the description of epithelial cells, their lineage relationships and influence on major respiratory diseases (Figure 5.7) (Montoro et al., 2018).

The authors divided their study in two parts. (i) An initial survey of epithelial cells from mice whole-trachea , (ii) then combined lineage-tracing and single-cell experiment to investigate the epithelial homeostatic turnover in mice. For this last part, they developed a pulse-seq method to monitor the generation of differentiated cell types. They used Krt5 inducible-labeling transgenic mice to follow basal cells and their progeny through scRNA-seq of 66,265 cells obtained at 0, 30 and 60 days of homeostatic turnover in adult mice.

From this complex experimental design and the corresponding extensive data analysis, Montoro et al. draw 4 main conclusions :

• Identification of a rare cell type, the ionocyte which had not been previously described in airway epithelia. They found the ionocytes to be the major Cftrexpressing cells. Using Foxi1 -KO mice (major ionocyte transcription factor), they evaluated the impact of deficient ionocytes (reduced expression of marker genes) and revealed a similar phenotype to that of cystic fibrosis disease;

• All epithelial cells emerge om basal cells at homeostasis in the trachea;

• Identification of new subclasses of disease-relevant tuft and goblet cells, respectively related to asthma and mucosal immunity;

• Identification of novel transitional cells arranged in discrete high turnover structures, named 'hillocks'. They characterised them by a high expression of Krt13 and Krt4 and potential function as a squamous barrier and immunomodulation.
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In a similar study, Plasscheart et al. also investigated the differentiation trajectories in (i) mouse trachea in non-injured, (ii) injured conditions and (iii) in vitro primary human bronchial epithelial cells (Figure 5.8) [START_REF] Plasscheart | A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte[END_REF].

From this study:

• Similarly to Montoro et al., the authors described a continuum of expression and differentiation from basal to luminal cells. They identified a group of Krt4/Krt13 positive cells in the mouse dataset as a potential intermediate cell state.

• They revealed a cell cluster enriched in early multiciliogenesis markers (Foxn4 ) as putative precursor cells to multiciliated in the human model.

• They described a cluster of ionocytes expressing similar markers as the ones identified by Montoro et al. (Foxi1,Ascl3,Tfcp211 ) in both mouse and human.

Complementary to the work of Montoro et al. they showed in human cells that overexpression of FOXI1 induced a larger number of ionocytes whereas inhibition of Notch signaling induces a reduced number of both multiciliated cells and ionocytes.

• In their post-injury model, they detected a population of basal cells expressing multiples keratins which have never been described as co-expressed in homeostatic tissue (Krt5, Krt14 which are canonical basal cell keratins and Krt8, which is a luminal keratin).

• They also described an injury-specific population of basal cells directly differentiating into multiciliated cells and by-passing the secretory progenitor state. 96 CHAPTER 5. A COMBINED EFFORT TO IMPROVE OUR UNDERSTANDING OF THE AIRWAY EPITHELIUM USING SINGLE-CELL TECHNOLOGIES

Lung cell atlases

Vieira Braga et al. were first to publish an atlas of the human lung in both healthy (n=6) and asthmatic (n=6) conditions [START_REF] Vieira-Braga | A cellular census of human lungs identifies novel cell states in health and in asthma[END_REF]. Their study aimed to investigate the differences in proportion and transcriptional phenotype of structural and inflammatory cells between upper and lower airways and lung parenchyma (Figure 5.9).

The study:

• described a total of 36,931 cells obtained in healthy donor and corresponding to 21 coarse-grained cell types. They detected multiple basal, club, goblet and multiciliated cell states with varying abundance between upper and lower airways.

• revealed a macrophages enrichment in the immune compartment of the atlas with substantial patient-patient variations.

• described the molecular features of goblet cell hyperplasia in asthmatic condition, with an increase in the number of goblet cells and the identification of a population of mucous-ciliated cells expressing both goblet and multiciliated marker genes. They hypothesised that this particular cell state is the dedifferentiation from multiciliated cell to goblet cell induced by IL13-IL4 signalling in inflammatory condition.

• described the remodelling of the stromal and immune compartment in asthmatic condition as well as an enhanced signalling network between all cell types to stimulate pathogenic effector Th2 cells.
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Very recently, Travaglini at al. published a preprint version of their human lung atlas [START_REF] Travaglini | A molecular cell atlas of the human lung from single cell RNA sequencing[END_REF]. They did an extensive profiling of 70,000 cells from both human lung and blood obtained from the healthy part of the lung of 3 patients with carcinoma. They aimed to improve the 'completeness' of molecular cell atlases by providing detailed description of 28 cell identities and locations. They focused their study on a large number of cells from epithelial, mesenchymal and immune compartment to better describe cell identities rather than the overall tissue composition. They also added an evolutionary analysis by comparing with the lung compartment of the mouse cell atlas (Figure5.10).

From this large dataset, the authors:

• identified nearly all 45 previously known human lung cell types that compose the epithelial, stromal, endothelial and immune compartments of the lung [START_REF] Franks | Resident Cellular Components of the Human Lung: Current Knowledge and Goals for Research on Cell Phenotyping and Function[END_REF]. They estimated to 200 the number of genes needed to virtually distinguish all lung cell types.

• described the immune compartments as the most heterogeneous. They hypothesise that this heterogeneity is dependent on the numerous inhaled toxins and pathogens.

• discriminated immune lung resident cells (alveolar macrophages, natural killer T cells and intermediate monocytes) from circulating ones (dendritic cells) using combined profiling of immune cells in both blood and lung samples. They provided a first unambiguous description of the resident immune compartment in the lung. They predicted numerous potential interactions with all other lung cell types as well as a particular sensibility to hormones.

• described a proximo-distal transcriptomic gradient in epithelial cells and hypothesised that the many clusters found in the epithelial compartments might be individual states of known and well described cell types. Yet, some of these lung cell types are donor-specific which call into question the robustness of their hypothesis (It will be discussed further in the discussion). 100 CHAPTER 5. A COMBINED EFFORT TO IMPROVE OUR UNDERSTANDING OF THE AIRWAY EPITHELIUM USING SINGLE-CELL TECHNOLOGIES

An atlas of the aging lung

Angelidis et al. followed the trend of lung cell atlas building but in mice using a different point of view. They investigating the effects of ageing the on lung cell transcriptomes and the potential decline of lung functions. They performed an integrative study associating scRNA-seq, bulk RNA-seq and bulk proteomic measurements (mass spectrometry) to analyse the effects of ageing as a multi-factorial process (Figure 5.11) [START_REF] Angelidis | An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics[END_REF].

In this study, Angelidis et al.:

• identified 30 cell types, including most known epithelial, mesenchymal, and leukocyte lineages.

• demonstrated an increase in transcriptional instability in aged cells.

• described an altered cell type specific phenotype in ageing mice. They characterised them by the up-regulation of inflammatory related genes and increased variability of secretory-related genes.

• They concluded that these variations might influence the mucociliary clearance of the airways in ageing.
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Single-cell studies of lung respiratory diseases

This last section is a non-exhaustive description of some significant studies focused on lung diseases.

Study of the airway epithelium remodelling induced by chronic inflammatory diseases.

Ordovas-Montanes et al. investigated the impact of chronic inflammatory respiratory diseases on the overall tissue ecosystem. They studied the variation in cell compositions and cell states induced by these diseases. They used the case of patients with chronic rhinosinusitis, which ranges in severity from rhinitis to severe nasal polyps (Figure 5.12) (Ordovas- Montanes et al., 2018).

From this comparative study, the authors:

• described an increased frequency of basal cells in polyps compared to healthy as well as an increased expression of chemokines and lipid mediators in epithelial cells and more specifically in basal cells. They hypothesised a link between increased basal cell numbers in disease and enhanced activation of effector cells of type 2 immunity response.

• revealed a defect in the differentiation potential of basal cells from polyp tissues. It relates to some of their previous work describing basal cells hyperplasia in chronic inflammatory tissue and upon long exposure to IL4/IL13.

• identified, in the disease state, subgroups of secretory cells with varying antimicrobial expression. They hypothesised that it is an unbalanced frequency of these cells which partly impair the innate host defense. 104 CHAPTER 5. A COMBINED EFFORT TO IMPROVE OUR UNDERSTANDING OF THE AIRWAY EPITHELIUM USING SINGLE-CELL TECHNOLOGIES

Pulmonary fibrosis at single cell resolution

Xu et al. studied the differentiation states and gene expression patterns of epithelial cells from normal and idiopathic pulmonary fibrosis human lung (IPF) [START_REF] Xu | Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis[END_REF]. They improved the description of the molecular regulations induced by IPF, which causes airway remodeling, inflammation, alveolar destruction, and fibrosis.

In this study, the authors :

• noted an unbalanced distribution of cell types between healthy and IPF lungs. Cells from the healthy lungs almost all belonged to the AT2 cell type, whereas they only represent 9 cells in IPF lung cells.

• identified 3 other cell types in IPF lungs, basal and secretory cells and a cluster expressing mixed markers from other cell populations. They hypothesised that this 'mixed' cluster represents potential progenitor cells, and corresponds to a hallmark of the tissue remodelling process seen in IPF lungs. Differential expression analysis revealed a global decrease in cell marker gene expression, notably ion channels.

• highlighted the implication of key signalling pathways, TGFand PI3K/AKT, in IPF lung. They concluded their description of the IPF lung by a global loss of identity in epithelial cells and the presence of novel disease-related intermediate cell states.

Similarly to cigarette smoke studies, Reyfman et al. improved the description of idiopathic pulmonary fibrosis, systemic sclerosis, polymyositis and chronic hypersensitivity pneumonitis using high cell throughput single cell RNA-seq technologies [START_REF] Reyfman | Single-Cell Transcriptomic Analysis of Human Lung Provides Insights into the Pathobiology of Pulmonary Fibrosis[END_REF]. They generated an atlas of pulmonary fibrosis including immune and epithelial cells from the human lung.

From this study, the authors:

• localised the expression of pro-fibrotic genes to specific cell population and identified differing states of alveolar macrophages by comparing cells from healthy and IPF lungs.

• evealed a cell type specific and distinct expression pattern of Wnt ligands and targets.

• improved accordingly the description of the multicellular and spatially restricted nature of Wnt-signalling niches in the normal and fibrotic lung. They validated their results using in situ fluorescence hybridisation and a complementary scRNAseq dataset obtained from mice lungs. 

Context of the study

As mentioned in the introduction, my thesis started simultaneously with the bursting of single-cell RNA-seq technologies. Consequently, the methods to analyse this new type of data were being published at an exponential rate with limited standardisation and benchmarking between them. The absence of a standard analysis 'workflow' was an indicator of the complexity of the scRNA-seq data and of how challenging it was to analyse them. It also demonstrated the need for a controlled environment in which to test the performance of these analysis methods and deeply understand the properties of scRNA-data and their impact on the analysis outputs. It is in this aim that I developed SCsim. To properly simulate single-cell RNA-seq data, I had, first, to identify and understand their many specific properties and then implement them in a structured environment. As a starting point, I used some of the simulation frameworks already available in published analysis methods.

Yet, these simulations were usually oriented to test for the specific parameters tackled by their corresponding analysis method, such as batch effect (size factors) or differentially expressed genes and thus lacked usefulness when applied in another context. In the rest of this section, I will thus describe, from a modelling point of view, the main properties of scRNA-seq data that I used for the simulation framework.

Cell trajectories

The recent benchmarking study on single-cell trajectory inference methods by Saelens et al. describes the multiple topologies that can be found in scRNA-seq datasets (Saelens et al., 2019). Therefore, there are multiple ways to model differentiation trajectories in the count data according to each topology. From these parameters, SCsim simulates data in four main steps (Figure 6.4). The detailed formulas and illustrations for each step of the simulation are in the poster at the end of the chapter.

(1) Basal gene mean

The first simulation step creates a numeric vector corresponding to the initial mean expression of genes across all cells. It is common to all cells in the simulated dataset and determines the initial proportion of highly and lowly expressed genes. I used a Gamma or by a Negative binomial distribution to generate the mean expression values of the genes.

(

2) Effective gene mean per cell clusters

The second simulation step produces a numeric matrix with the adjusted mean expression of genes, specific to each cell cluster. It takes into account batch effect, library size, differentially expressed genes, cell trajectories and doublets.

The batch effect between samples is generated as a shift in the mean expression of genes. I used a Normal distribution to assign a 'batch effect' shift to each cell from a specific batch. If multiple batches are generated, multiple Normal distributions are used, each with a different mean.

Cell-cell library size differences between cells are produced by a Normal distribution (one batch) which will induce slight variations in the mean expression of genes between all cells.

Differentially expressed genes are first annotated as one of the four possible types of differentially expressed genes simulated by SCsim (Figure 6.3).

• Traditional differentially expressed genes (DE) are characterized by a unimodal distribution within each cell type;

• Genes with different modes in expression (DM) have a unimodal distribution within a given cell type and a bimodal distribution in another (with one mode overlapping the unimodal distribution). It implies that in the same cell type, there is a heterogeneity in the gene expression that might lead to spurious clustering of cell subtypes.

• Genes with different modes in expression and different proportion of cells expressing them (DP) correspond to genes with bi-or multimodal expression in each cell type. These genes are a more complex version of DM genes.

• Dynamically expressed genes are labelled as 'common' (DC) because they display a linear up-or down-regulation of expression across all the cell types involved in the modelled trajectory.

Results

Once the type of differentially expressed genes is set, the cells associated with the different expression modes are randomly picked in the corresponding cell types. The fold-change sign is fixed by the genes label as up-or down-regulated compared to the basal mean. The percentage of up-regulated genes is fixed by the user. I used a Negative Binomial distribution to generate fold-changes and assigned them to each differentially expressed gene. The Negative Binomial distribution generates fold-changes so that a small number of genes will have high fold-changes, whereas the majority will have relatively low fold-changes.

Lastly, doublets are generated as the sum of the gene counts from two randomly picked cells.

(

3) Basal gene counts

The third step of the simulation generates the basal gene counts for each cell in the dataset. I used a Negative Binomial distribution, with the mean equal to the effective-gene-mean, to generate the basal gene count values. The Negative binomial distribution produces a high variance in the simulated counts, it is a reminder of the telegraph model for the transcriptional bursting.

(4) Effective gene counts

The fourth and last step of the simulation adjusts the final count table by introducing dropouts. I used a probabilistic process to generates dropout events in the count table .  A logistic regression on the percentage of zero per mean expression of genes determines the probability of a given count to be set to zero. It sets a higher probability of dropout event to lowly expressed genes than for highly expressed genes.

SCsim applications

Once I had completed the development of the SCsim package, I had to reduce the scope of the exploratory analysis on synthetic data that I intended initially. By that time, my team had produced multiple 'real' scRNA-seq datasets to study the regeneration of the airway epithelium, and the analysis of these datasets became the main focus of my thesis work. Nonetheless, I generated a few synthetic datasets to test the effects of some scRNAseq properties on downstream analysis. I performed the downstream analysis using the newly published Seurat R package (version 1), one of the first integrated framework for scRNA-seq data analysis [START_REF] Butler | Integrating singlecell transcriptomic data across different conditions, technologies, and species[END_REF].

As presented in the poster, I tested the Seurat framework and Monocle tool on five steps of the analysis.

• I tested the global-scaling normalisation method against different levels of technical (batch effect and library size) and biological (low or high gene expression in a specific cell type) effects. Seurat performs a median normalisation and sets the library size of each cell to its median across the whole dataset. I concluded on an efficient correction of the batch effects but without any discrimination between technical and biological biases. It thus introduced spurious corrected-count values that would later influence the differential expression analysis outputs and lead to an under or over-estimation of the differences in gene expression between groups of cells.

• I estimated the relevance of the highly variable genes identified by measuring the proportion of differentially expressed genes in the selection. Seurat identifies highly variable genes by setting minimum thresholds on the gene mean expression and overall dispersion. I concluded that this technique identifies a mixed proportion of differentially and stably expressed genes. Yet, this selection significantly increases the ratio between informative and uninformative genes of the overall count data an thus improve the signal to noise ratio for the downstream analysis.

• I also tried to estimate the respective impact of doublets and dropouts on the clustering step of the analysis. Seurat uses the Louvain clustering algorithm based on the cells in the PC space. My initial results regarding the effects of doublets suggested that until they reach a certain proportion of cells in the dataset (' 5%), they are not isolated as in a single cell-cluster but spread among them. Yet, a more precise analysis of their effects on the identification of marker genes is necessary to estimate their capacity to distort an analysis and its interpretation. Regarding the proportion of zero count values in the data, their effect is highly correlated with the proportion and fold-change level of differentially expressed genes. As such, I was still able to distinguish the cell-clusters even at a high level of dropouts (> 90%). Yet, the next question is how well would I be able to characterise them (marker genes, cell trajectories) with so few genes to work with?

• I measured the proportion of the different type of differentially expressed genes identified as markers by Wilcoxon's rank test and made a similar assessment as Korthauer and al.. The standard test for the identification of marker genes mainly identifies traditional differentially expressed genes and a limited proportion of (DM) and (DP) genes which have the highest fold change differences. I concluded that this method works well for the identification of the top marker genes of each cluster. Yet, the analyst should consider with care the complete list of differentially expressed genes and that further analysis is required to test the implication of each gene with its associated cell-cluster.

• Lastly, I tested Monocle (version 2) trajectory inference tool and its ability to reconstruct linear trajectories. For instance, I simulated a dataset composed of four cell populations and three of them belonged to a linear cell trajectory. As I used all the cells of the dataset when I tested Monocle, I found that Monocle will find a trajectory (branched or linear) between all the cells in any case. Thus, the analyst should consider with care the input of Monocle analysis as well as the output to avoid any misinterpretation of the resulting trajectories.

In conclusion, these tests are still in their preliminary stages and a more complex and thorough evaluation framework is needed to truly evaluate the potential of each step of the analysis as well as their limitations against the characteristics of scRNA-seq data.

In another project, I collaborated with Cyprien Gilet (fellow PhD student), Michel Barlaud and Jean-Baptiste Caillau to develop a new clustering method for single-cell RNA-seq data. My participation in this work was to provide and pre-process four publicly available scRNA-seq datasets and to generate synthetic datasets on which to develop and test the clustering method. Cyprien Gilet developed, implemented and tested the clustering method on these datasets. Michel Barlaud and Jean-Baptiste Caillau provided feedback on the theoretical part of the clustering method and wrote the paper. This project aimed to develop a clustering method that would simultenously provide the top marker genes of each cell-clusters and avoid the multiplication of analysis steps. The clustering method and benchmarking results are detailed in the publication: K-sparse: clustering with feature selection using alternating minimisation and projection-gradient available in ArXiv and the appendix of this manuscript.

Conclusions and discussions

The development of the SCsim R package as well as the following analyses of synthetic data gave me the opportunity to apprehend the specific properties of scRNA-seq data and the complex patchwork of analysis tools available directly. It helped me to quickly make the transition from my previous experience in the analysis of bulk RNA-seq data to the analysis of scRNA-seq data. The development of SCsim as an R package required a structured programming framework easily reusable and capable of simulating the many heterogeneous cases seen in published scRNA-seq datasets. SCsim successfully simulates scRNA-seq raw count data based on the theoretical properties of real datasets. It also helped me to identify key challenges in the analysis of single-cell RNA-seq data:

• The impact of data normalisation on the downstream analysis (visualisation, clustering, differential analysis and trajectory inference);

• The clustering sensibility to technical and biological artefacts;

• The differential expression testing sensibility to lowly expressed genes;

• The spurious inferred trajectories in heterogeneous scRNA-seq datasets.

Nevertheless, this work is still in its infancy compared to its initial scope and to similar studies published during my thesis. One study, in particular, drew my attention as I was finishing the wrapping of the SCsim package, it is the simulation tool Splatter published by Zappia et al. as a preprint in May 2017 and in Genome Biology Journal in August 2017 [START_REF] Zappia | Splatter : simulation of single-cell RNA sequencing data[END_REF]. Splatter is a Bioconductor package, including 5 previously published simulation methods, some that I used as inspiration, and the Splat method itself developed by the authors. It provides an easy-to-use interface for the simulation of scRNA-seq datasets and returns the matrix of counts in SCEset object as defined by the scater package. The publication of Splatter highlighted the main flaw of the SCsim package : the lack of direct comparison between synthetic and real datasets. Splatter defines a robust comparison framework to evaluate the quality of the implemented simulation methods. It mainly compares quality control and count distribution metrics and revealed the accuracy of the Splat simulation method compared to the previously published ones. Yet, the similarities between the SCsim simulation framework and the Splat one suggests a work done in the right direction.

Another aspect of this project has been apprehended by recently published benchmarking studies of scRNA-seq data analysis methods [START_REF] Soneson | Bias, robustness and scalability in single-cell differential expression analysis[END_REF]Saelens et al., 2019). Indeed, the initial goal of the SCsim project was to compare the efficiency of the many analysis methods available in a controlled environment in which the 'ground-truth' is known. The published benchmarking studies made me realise that it would take a full thesis to achieve such an ambitious project. Indeed, they revealed a complex evaluation CHAPTER 6. SCSIM: SINGLE CELL RNA-SEQ DATA SIMULATION framework based on structured and well-defined evaluation criteria and included many real datasets and synthetic ones. In retrospective, it makes my attempts at testing the Seurat framework look like a toy example of what was to come next in the scRNA-seq data analysis field.

In conclusion, this work, despite its flaws was a necessary step in my thesis. It gave me the experience needed to pursue my thesis project on the study of the airway epithelium through the analysis of scRNA-seq data. From this initial project, I learned enough on the scRNA-seq data properties to consider, at their fair value, their impact on the following downstream analyses and to avoid misinterpretation of their outputs. Lastly, it was also a first attempt to transpose the initial definition of 'cell type' into a scRNA-seq data matrix shape. As mentioned in the introduction, the advent of single-cell technologies challenged the definition of 'cell type' by the addition of many heterogeneous features, and in this SCsim project, I faced for the first time these critical questions: What is the definition of a 'cell type' ? How do I represent it with simulated count data? The answers or hypotheses to these questions will be further discussed in the discussion chapter of this manuscript.
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Single-cell RNA sequencing reveals novel cell differentiation dynamics during human airway epithelium regeneration

Context of the study

As described in the introduction, the airway epithelium acts as a protecting barrier for the respiratory system. Its correct function mainly relies on the mucociliary clearance process, which itself is ensured by the balance between epithelial cells and their interactions.

Following aggressions, such as inhaled noxious elements or infections, the epithelium can be damaged and its defensive function impaired. To be restored to its homeostatic state, the epithelium needs to go through a regeneration process and recover its initial cell type composition. Yet, in chronic lung diseases (e.g. COPD, asthma or cystic fibrosis), the epithelium is subjected to chronic injuries and inflammation leading to a remodelling of the epithelium (e.g. goblet cell hyperplasia and/or loss of multiciliated cells) and producing worsen pathological conditions. By providing a detailed characterisation and improved understanding of the molecular and cellular events leading both the functional regeneration and pathological remodelling of the airway epithelium it is possible to anticipate the development of better approaches to treat these diseases.

Several studies have already deciphered parts of these processes. However, they have mainly been done on mouse models which allow the use of in vivo cell-lineage tracking and induced-injury models. These studies have successfully established a rather complete scheme of cell trajectories and regulatory processes involved in airway epithelium regeneration and remodelling (see Fig 1A from paper,Chapter 4.4). Yet, they include some inherent limitations. (i) Genetic cell-lineage techniques require an a priori selection of a cell type marker which constraints and orients the study to cells expressing this given gene. (ii) Differences in airway epithelium cell type composition and structure between the human and mouse species imply carefully curated transposition of the findings obtained in one species to the other. The advent of single-cell technologies (scRNA-seq) circumvent these limitations and allow the unbiased study of heterogeneous systems, complex cell trajectories and the regulatory pathways that drive them (see Chapter 5).

Consequently, this project aimed to provide a detailed description of the regeneration/differentiation process of the upper human airway epithelium. To achieve this goal, we used single-cell transcriptomics to identify the distinct cell populations emerging during the differentiation, infer their lineage relationships and determine the corresponding molecular regulatory mechanisms.

As starting material, we used cultures of human epithelial cells obtained from resected nasal turbinates. The culture system consists of dissociating basal cells from the turbinates and seeding them on culture inserts (Transwells) soaked in a defined medium. Basal cells are let to proliferate until they reach confluency. Then the culture media on the apical side of the cells is removed to put them in direct contact with air. It allows for the cells to be in an air-liquid interface mimicking the in vivo airway epithelium environment. After about 20-21 days, a functional airway epithelium has been regenerated (see Fig 1B from paper).

From this technique, we designed a scRNA-seq time-course experiment to provide a characterisation at a single-cell level representative of the known steps of airway regeneration: proliferation, polarisation and specification. Based on our group previous work, we performed this experiment in two different media known to induce variations in the cell composition of the epithelium. I analysed the resulting datasets and developed an evaluation metric of the cluster robustness, detailed in the following Materials and Methods section. We completed our study using a variety of samples, from distinct origins and organisms: cells dissociated from human nasal brushings, nasal turbinates or bronchial biopsies (fresh tissue), pig trachea (fresh tissue), as well as differentiating Mouse Tracheal Epithelial Cells (MTECs, in vitro). All results are detailed in the following publication: Single-cell RNA-seq reveals novel cell differentiation dynamics during human airway epithelium regeneration, published in Development (see the end of the chapter). 126 CHAPTER 7. SINGLE-CELL RNA SEQUENCING REVEALS NOVEL CELL DIFFERENTIATION DYNAMICS DURING HUMAN AIRWAY EPITHELIUM REGENERATION

Results

In the following section, I will briefly describe the main results obtained by the complementary work undergone by Sandra Ruiz Garcia (co-first author) and myself. Sandra performed all the bench-work part of this study, she generated all the scRNA-seq datasets and then carried out the experimental validations by immuno-stainings. Following sequencing data preprocessing done by Kevin Lebrigand, I analysed all the datasets present in this study from the raw count table to the final figures present in the publication. Agnès Paquet and Marin Truchi helped to design the appropriate analysis workflow for theses datasets.

Reconstruction of cell-lineages in regenerating airway epithelium by single-cell RNA-seq

The first step in our study was to ensure the relevance and quality of our in vitro 3D differentiation model of human airway epithelial cells (HAECs). To this aim, I analysed single-cell transcriptomes obtained from both differentiated in vitro HAECs and native airway tissues. I annotated cell types based on the specific expression of canonical markers known from the literature: KRT5 for basal cells, SCGB1A1 for club cells, MUC5AC for goblet cells, and FOXJ1 for multiciliated cells. The comparison demonstrated that fully differentiated HAECs accurately recapitulate the cell type composition and gene expression profile of nasal brushing samples and nasal turbinates. Then, we compared the regeneration process of HAECs using two different media:

• Pneumacult which enables the production of both multiciliated and goblet cells;

• BEGM which favours the production of multiciliated cells.

In each media, we respectively measured the cell transcriptomes at three (Pneumacult, ALI 7,12 and 28) and six (BEGM, ALI 2,[START_REF] Kyrousi | Mcidas and GemC1 are key regulators for the generation of multiciliated ependymal cells in the adult neurogenic niche[END_REF][START_REF] Zhou | Gmnc is a master regulator of the multiciliated cell differentiation program[END_REF][START_REF] Boon | MCIDAS mutations result in a mucociliary clearance disorder with reduced generation of multiple motile cilia[END_REF]17 and 21) time-points. In a first approach, I analysed each time-point independently using a self-optimised robust clustering method (see Materials and Methods below).

Cell composition and trajectories in Pneumacult media

From these analyses, I identified six major cell types in Pneumacult media : (1) cycling and ( 2 or multiciliated cells as differentiation endpoints. A closer examination of the pseudotime ordering revealed cells expressing both MUC5AC and FOXJ1 in the multiciliated branch, suggesting that goblet cells might act as precursors to multiciliated cells.

Cell composition and trajectories in BEGM media

Comparably in the BEGM media, I identified seven cell populations. Club and goblet cells were not detected but in their stead was a cell population that we termed 'club-like' cells due to their transcriptional similarity with club cells, except for secretoglobin genes (SCGB1A1, SCGB3A1 ). Two additional cell populations were detected and named 'undefined intermediates' 1 and 2 due to their ambiguous gene expression profile (KRT5-, KRT13+, KRT4+). Using Monocle 2, I reconstructed a linear cell trajectory from cycling basal cells as a starting point to multiciliated cells as a differentiated endpoint. It revealed a cell type ordering similar to the one obtained with cells differentiating in Pneumacult media and confirmed the role of club and club-like cells as precursors to multiciliated cells.

Goblet cells can be differentiation intermediates for multiciliated cells

We further investigated the hypothesis that some goblet cells might act as a precursor to multiciliated cells. An initial approach was to compare the gene expression signatures of club and goblet cells. Their high similarity in gene expression profiles, with the high discriminative expression of MUC5AC in goblet cells, suggested that goblet cells might be a 'hyperactive' state to club cells and might retain some multiciliated precursor potential.

Another approach aimed to investigate the co-expression of the marker genes of both goblet and multiciliated cells in single cells. The identification of an unambiguous proportion of co-expressing cells (FOXJ1+MUC5AC+) both in mRNA and protein in HAECs, fresh human bronchial biopsy and pig trachea also supported this hypothesis.

Lastly, I performed a complementary trajectory inference analysis using RNA velocity and Palantir. RNA velocity estimates a ratio between spliced and unspliced transcripts as a proxy to RNA dynamics and potential cell trajectories. The measure of a high ratio of unspliced mRNAs related to multiciliogenesis in goblet cells supports the precursor hypothesis. Additionally, Palantir computes the differentiation potential of each cell toward the identified trajectory endpoints. It revealed a non-null differentiation potential of goblet cells toward the multiciliated cell-fate. To better investigate the epithelial cell heterogeneity on both regenerating and homeostatic epithelium, I used a second, more permissive, clustering approach and identified six additional clusters. The non-cycling basal cells were split into two clusters termed basal 1 and basal 2 cells and could be differentiated by a potentially increased migratory function. The club cells were divided into three populations with one of them expressing genes suggesting enriched interactions with the immune system. Lastly, the multiciliated cells were split into two cell clusters: one characterised by the expression of mature multiciliated genes and one expressing specific genes involved in the biosynthesis of hundreds of basal bodies required for motile cilia elongation. We termed this population 'deuterosomal' cells due to the specific expression of DEUP1, a hallmark of massive centriole amplification in structures called deuterosomes. We validated this cell population in a homeostatic human fresh biopsy, pig trachea and differentiating MTECs. Through differential expression testing, I identified a unique deuterosomal gene expression signature compared to multiciliated and cycling basal cells. I identified notably the specific expression of CDC20B, the miR-449 host gene that our group have recently shown to be a key regulator of centriole amplification by deuterosomes (publication in the appendix). This signature perfectly delineates the regulatory events occurring at this stage of multiciliogenesis and provides an extensive repertoire of specific cell-cycle related genes that are re-expressed at the deuterosomal stage.

Establishing a keratin switch pattern during airway regeneration

We also established a repertoire of keratins in the different epithelial cell types based on their epithelial locations and their stage of differentiation. We thus studied the specific expression of keratin genes (mRNA and protein) in cells based on pseudotime ordering and position in the epithelium. Our results showed that the keratin repertoire could be sufficient to reconstruct cell trajectories during airway epithelium regeneration. We also compared our keratins (KRT5/KRT13/KRT4 ) co-expression profiles from in vitro HAECs and fresh tissue with those previously described in mouse and did not find the same co-expression pattern. It demonstrated that there are some critical differences between the mouse and human airway epithelium that require careful transposition of the findings obtained in one model compared to the other. 

Establishing a combinatorial repertoire of signaling pathways during airway regeneration

Lastly, we sought to investigate the cell type-specific expression of elements from key regulatory pathways involved in the maintenance and regeneration of the airway epithelium.

We thus classified the Notch, BMP/TGF and WNT pathways components into ligands, receptors and targets and identified their specific-expressing cell types. This repertoire is a first step toward building a complete regulatory interactions map between epithelial cells in homeostasis.

Additional results : CDC20B is required for deuterosomemediated centriole production in multiciliated cells

Simultaneously to this project, my team was finishing a collaborative study on the last stage of multiciliogenesis and identified CDC20B as a key regulator of the deuterosomemediated centriole amplification which is necessary for cilia elongation in multiciliated cells [START_REF] Revinski | CDC20B is required for deuterosome-mediated centriole production in multiciliated cells[END_REF]. Sandra and I participated in this study by the addition of a single-cell RNA-seq experiment that she generated at ALI14 from HAECs cultured in BEGM media and that I analysed. I used Monocle 2 to infer the cell trajectories and studied the specific expression of cell-cycle genes along the pseudotime. I thus inferred a score of each cell-cycle phase by re-implementing the method described by Macosko et al., 2015. This study was a preliminary description of the deuterosomal cell type that we fully characterised in the regeneration study. 

Materials and methods

Cluster robustness

At the beginning of this study, unsupervised clustering methods for scRNA-seq data analysis were only emerging, and the standard was k-means based clustering methods.

Yet, there was no way of knowing a priori the number of clusters to be found. As such, I developed a robust consensus clustering method that could provide this information. I developed this method based on the SIMLR clustering method for scRNA-seq data in the R programming language. SIMLR is a k-means based clustering method which requires the setting of a parameter k for the number of clusters to be found in the data.

This method is divided into two major steps:

• First, subsets of the dataset are clustered multiple times to identify robust cellclusters, this step is repeated with different k parameters (i.e. the number of clusters) (Figure 7.1);

• Then, quality metrics are computed on the clustering results. The clustering results with the best metrics are selected, and the final number of cell-clusters/cell types is identified (Figure 8.8).

Cells are subsetted in 10 smaller datasets, each subset being composed of 90% of the cells. The 10% of discarded cells are different for each subset in order to remove the cells from the analysis only once in the whole process. Then, the cells are clustered using SIMLR. As mentioned in the introduction, SIMLR is a k-means based clustering method and require the setting of two parameters: k, number of clusters to be found, and a random parameter, named seed, to initialise the position of k initial centroids. This clustering step is run 10 times per subset with a different seed. Each clustering results are then stored in an 'affinity' matrix of dimension n cells X n cells. The stability matrix contains a 1 or 0 value for each pair of cells whether the cells are clustered together (1) or not (0). They are then summed into a consensus affinity matrix ranging from 0 to 100 representing respectively cells that are never or always clustered together. To finally separate the cells, hierarchical clustering is performed on the consensus affinity matrix and partitions it into the initial number of clusters k. Cells with an affinity lower than 70 with the other cells of their cluster are labelled as Unassigned because of their instability. This method also partly solved one of the main issues that I had in this study: how to define the boundaries between cell types involved in a differentiation process? Indeed, a first observation that I made while analysing these datasets is that there is a linear gradient of expression of the marker genes of each cell types along the inferred trajectory. As such, any clustering method that I tested lacked robustness to identify the boundaries between these clusters, and also lacked of precision to determine the exact number of clusters to be found. In conclusion, this method allowed me to identify the core cells of each cell types and to discard the cells that were in transition between the two, yet it did not fully answer my question about the definition of 'cell type' in a differentiation process. This question will be mentioned further in the discussion part of this manuscript. 134 CHAPTER 7. SINGLE-CELL RNA SEQUENCING REVEALS NOVEL CELL DIFFERENTIATION DYNAMICS DURING HUMAN AIRWAY EPITHELIUM REGENERATION

INTRODUCTION

The airway epithelium makes an efficient line of defense against inhaled substances. It is mainly composed of multiciliated cells (MCCs), goblet cells (GCs), club cells (CCs) and basal cells (BCs) [START_REF] Gras | Bronchial epithelium as a target for innovative treatments in asthma[END_REF][START_REF] Kotton | Lung regeneration: mechanisms, applications and emerging stem cell populations[END_REF]. Decreased numbers of MCCs and increased number of GCs hallmark many chronic respiratory diseases, during which frequent injuries, repair defects, tissue remodeling and altered mucociliary clearance occur [START_REF] Cohn | Mucus in chronic airway diseases: Sorting out the sticky details[END_REF][START_REF] Curran | Advances in mucous cell metaplasia: a plug for mucus as a therapeutic focus in chronic airway disease[END_REF][START_REF] Merigo | The ultrastructure of nasal mucosa in children with asthma[END_REF]. Characteristics contributing to efficient airway regeneration after injuries have been extensively investigated in mouse, establishing mouse BCs as the main airway stem cells, with self-renewal capacities and the ability to differentiate into MCCs, CCs and GCs [START_REF] Cole | Tracheal basal cells: a facultative progenitor cell pool[END_REF][START_REF] Kotton | Lung regeneration: mechanisms, applications and emerging stem cell populations[END_REF][START_REF] Rock | Basal cells as stem cells of the mouse trachea and human airway epithelium[END_REF]. BCs are abundant in upper mouse airways but absent from lower airways (Hogan et al., 2014). Human BCs populate the whole airways, and their abundance also decreases in smaller airways (Boers et al., 1998) [START_REF] Boers | Number and proliferation of Clara cells in normal human airway epithelium[END_REF]. CCs are luminally located, show a characteristic columnar shape and contribute to xenobiotic metabolism through the production of anti-microbial and antiinflammatory peptides [START_REF] Wang | Clara cell secretory protein modulates lung inflammatory and immune responses to respiratory syncytial virus infection[END_REF][START_REF] Jones | Xenobiotic metabolism in Clara cells and alveolar type II cells isolated from lungs of rats treated with beta-naphthoflavone[END_REF], such as the secretoglobin SCGB1A1. CCs can give rise to MCCs, as detected by the expression of transcription factor FOXJ1 [START_REF] Rawlins | The role of Scgb1a1+ Clara cells in the long-term maintenance and repair of lung airway, but not alveolar, epithelium[END_REF]Watson et al., 2015) and to GCs, as detected by the expression of mucin MUC5AC [START_REF] Chen | SPDEF is required for mouse pulmonary goblet cell differentiation and regulates a network of genes associated with mucus production[END_REF][START_REF] Kotton | Lung regeneration: mechanisms, applications and emerging stem cell populations[END_REF]. Distinct molecular mechanisms regulate cell fate decisions in airway epithelium lineages. Notch signaling plays a pivotal role during commitment of BCs: activation leads to CC/GC lineages, while inhibition leads to MCC lineages [START_REF] Morimoto | Canonical Notch signaling in the developing lung is required for determination of arterial smooth muscle cells and selection of Clara versus ciliated cell fate[END_REF]Pardo-Saganta et al., 2015b;Rock et al., 2011;Tsao et al., 2009). We have shown that Notch pathway inhibition by the miR-34/449 families of microRNAs is required for MCC differentiation (Marcet et al., 2011a,b;[START_REF] Mercey | Characterizing isomiR variants within the microRNA-34/449 family[END_REF]. In vivo lineagetracing studies have some limitations: observations in animal models do not necessarily transfer to human; use of drastic forms of injuries may not completely reveal physiological tissue turnover; and strategies of specific genetic cell labeling (usually Krt5 for BCs and Scgb1a1 for CCs) are not necessarily comprehensive and do not necessarily provide a full picture of the airway epithelial cell hierarchies. In human, in which lineage tracing is impossible, cell lineage hierarchies in homeostatic bronchi have been indirectly inferred by assessing somatic mitochondrial mutations [START_REF] Teixeira | Stochastic homeostasis in human airway epithelium is achieved by neutral competition of basal cell progenitors[END_REF]; however, in vitro approaches are still necessary to study cell lineage during epithelial regeneration.

Single-cell RNA-sequencing has emerged as a powerful approach to measure cell lineage hierarchies [START_REF] Fletcher | Deconstructing olfactory stem cell trajectories at single-cell resolution[END_REF][START_REF] Karamitros | Single-cell analysis reveals the continuum of human lympho-myeloid progenitor cells[END_REF][START_REF] Pal | Construction of developmental lineage relationships in the mouse mammary gland by single-cell RNA profiling[END_REF], by capturing cells at different levels of differentiation [START_REF] Plass | Cell type atlas and lineage tree of a whole complex animal by single-cell transcriptomics[END_REF]. After a first study that delineated lineage hierarchies of mouse alveolar cells (Treutlein et al., 2014), several atlases of the airways have recently been released in mouse (Montoro et al., 2018) and human (Ordovas-Montanes et al., 2018;[START_REF] Plasschaert | A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte[END_REF]Vieira Braga et al., 2019), providing a first panorama of human airway cell diversity and lineages that we are extending here, after analyzing single-cell RNA-seq data in fresh human airway epithelial tissues and throughout an experiment in 3D in vitro regeneration of human airway epithelium. The resulting cell trajectory roadmap of human airways identifies novel cell populations and offers new insights into molecular mechanisms taking place during the mucociliary epithelium regeneration.

RESULTS

Reconstruction of cell lineage in regenerating airway epithelium by single-cell RNA-seq

We have analyzed single-cell transcriptomes at successive stages during in vitro 3D differentiation of human airway epithelial cells (HAECs) (Fig. 1A,B). This in vitro model faithfully recapitulated cell population compositions found in native airway tissues, as shown by a comparison between single-cell (sc) RNA-seq of epithelial cells dissociated from nasal brushing samples or from fresh nasal turbinates and scRNA-seq of HAECs at a late time point of in vitro air-liquid interface differentiation (3D cells) (Fig. S1). Most of our results were obtained with HAECs that were differentiated in Pneumacult media (StemCell Technologies), which allows the production of multiciliated cells and goblet cells. Additional experiments were also performed with HAECs differentiated in BEGM (Lonza), which rather favors the production of multiciliated cells. Cell identity was inferred from the expression of specific marker genes, such as KRT5 and TP63 for basal cells (BCs), SCGB1A1 for club cells (CCs), MUC5AC for goblet cells (GCs), and FOXJ1 for multiciliated cells (MCCs). These cell types were robustly found in all samples at various proportions (Fig. S1A-C). We also confirmed that cell type proportions inferred from scRNA-seq were correlated with cell type proportions inferred from protein measurements by performing immunostaining of selected population markers (Fig. S1D,E). Cell dissociation did not produce a major impact on gene expression with the exception of FOS and FOSB (Fig. S2). Molecular function enrichment with Ingenuity Pathway Analysis (Qiagen) showed that 'cell death and survival' and 'cellular growth and proliferation' were the only molecular functions that were regulated with P<0.001 (Fig. S2C).

Single-cell transcriptomes of HAECs differentiated in Pneumacult medium were analyzed at three time points [after transition to an air-liquid interface (ALI) 7, ALI 12 and ALI 28] (Fig. 1B), which are representative of the proliferation, polarization and specification steps of regeneration [START_REF] Chevalier | miR-34/449 control apical actin network formation during multiciliogenesis through small GTPase pathways[END_REF]. This experiment was complemented by six additional time points of HAECs differentiated in BEGM medium (ALI 2, ALI 4, ALI 7, ALI 12,ALI 17 and ALI 22). In the first approach, each time point was analyzed independently. We carried out 10 random selections of cells, corresponding to subgroups containing 90% of the initial number of cells. The resulting gene expression submatrices were then iteratively clustered (10 times with varying parameters), and a census was applied to define the most robust cell types. We then studied the variations of these populations during the entire time course. Cells clustered in six main populations in Pneumacult: (1) cycling (MKI67+) BCs; (2) non-cycling (MKI67-) BCs (KRT5+/ TP63+); (3) supraBCs (KRT5+/TP63-/KRT13+/KRT4+); ( 4) CCs (SCGB1A1+); ( 5) GCs (MUC5AC+); and ( 6) MCCs (FOXJ1+) (Fig. 1C; Table S1). Cell population proportions evolved during the time course, with a global reduction in BCs and CCs, an initial detection of supraBCs at ALI 7, followed by an increase of the proportion of this cell population at ALI 28, and an initial detection of GCs and MCCs at ALI 28 (Fig. 1D). In BEGM, cells clustered in seven cell populations (Fig. S3A,B and Table S2). We did not detect CCs and GCs using this culture condition, but found instead a cell population that we termed 'Club-like cells', given their high gene expression similarity with CCs, except for SCGB1A1, which was not detected (Fig. S4). Additional cell types were found in these samples: KRT5-supraBCs (TP63-/KRT13+/KRT4+) and two cell populations that we termed as 'undefined intermediates 1' and 'undefined intermediates 2' because their gene expression profiles did not allow unambiguous classification. Inter-donor variability was assessed by analyzing ALI cultures from independent donors in both BEGM and Pneumacult media. Very similar cell population distributions were found across donors and differences between the two cell culture media were maintained in all samples (Fig. S5). An aggregated t-SNE graph for all cells at all time points for each medium condition was plotted (Pneumacult, Fig. 1E; BEGM, Fig. S3C). Cell trajectories and transitions from one cell population to another were deduced from a trajectory inference analysis using Monocle 2, followed by differential expression analysis between consecutive cell states in pseudotime using Seurat. Fig. S6 shows the position of all cells within pseudotime and trajectories colorcoded according to their experimental time point of origin. In BEGM, a unique cell trajectory was found (Fig. S3D), starting with cycling and non-cycling BCs at its beginning, followed by KRT5+ and then KRT5-supraBCs cells, with MCCs at its end. Despite the absence of SCGB1A1 expression in secretory-like cells (SCGB1A1-/BPIFA1+/KRT8+), these cells were ordered in the pseudotime before MCCs, as expected for canonical CCs (Fig. S3D-F). A more complex trajectory was observed with Pneumacult, in which Monocle 2 detected a bifurcation into two distinct branches after the SC stage: a larger branch leading to FOXJ1+ MCCs, and a smaller one leading to MUC5AC+ GCs (Fig. 1F,G). A closer examination of pseudotime ordering and differential gene expression (Fig. 1H) revealed that some MUC5AC+ cells were found on the MCC branch, after the GC bifurcation and that some FOXJ1+ cells retained expression of MUC5AC. Altogether, our findings confirm CCs as precursors of both MCCs and GCs. They also suggest that GCs can also act as MCC precursors in airway epithelial regeneration.

Goblet cells can be differentiation intermediates for multiciliated cells

We further tested the hypothesis that some GCs correspond to MCC precursors. In clustering analyses, either from fresh tissues or from in vitro samples, GC and CC populations displayed very similar gene expression profiles, being discriminated by higher MUC5AC and MUC5B expression levels in GCs (Table S1). In Pneumacult, 24 of the 54 top genes for GCs were also associated with CCs (Fig. 2A), including SCGB1A1. Expression of MUC5AC and MUC5B was stronger in GCs (Fig. 2B). A direct assessment of differential gene expression between cells located at the two ends of the GC branch confirmed the high similarity of gene expression existing between CCs and GCs (Fig. 2C; Table S3A,B). GCs differed from CCs by higher levels of mucins (MUC1, MUC4, MUC5B and MUC5AC), secretoglobins (SCGB1B1 and SCGB3A1), PLUNC antimicrobial factors (BPIFA1 and BPIFB1) and SLPI, the secretory leukocyte protease inhibitor (Fig. 2C). These properties led us to consider GCs as 'hyperactive' CCs and led to the prediction that these cells could also function as MCC precursors. This point was tested by quantifying the expression of MUC5AC and FOXJ1, and by measuring the percentage of doublelabeled cells. Detecting cells simultaneously expressing MUC5AC and FOXJ1 would suggest the existence of a transitory state between GCs and MCCs. Fig. 2D,G,J indeed shows that 8.9% of GCs and MCCs simultaneously express MUC5AC and FOXJ1. It also shows the existence of CCs/MCCs expressing both SCGB1A1 and FOXJ1, which correspond to a more conventional type of precursor for MCCs (Fig. 2M). The presence of MUC5AC+/FOXJ1+ and SCBG1A1+/FOXJ1+ cells was not restricted to a cell culture differentiation model, and these transitionary cells were also detected in fresh biopsies from human homeostatic bronchi (Fig. 2E,H,K,N) and newborn pig trachea (Fig. 2F,I,L,O).

Hybrid cells were also detected by qRT-PCR in a fully independent HAEC culture, after isolation of the cells using C1 technology (Fluidigm) and quantification of gene expression with a Biomark (Fluidigm). Cells isolated with the C1 were visually inspected, and these experimental settings ensured the absence of cell doublets. Four cells out of 74 expressed GC-specific genes (namely MUC5AC, MUC5B and TFF3), together with MCC-specific genes (FOXJ1), and more specifically, immature MCC genes (PLK4, MYB and CDC20B) [START_REF] Revinski | CDC20B is required for deuterosome-mediated centriole production in multiciliated cells[END_REF] (Fig. S7A,B). This result was confirmed after re-analyzing a recently published dataset [START_REF] Plasschaert | A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte[END_REF] (Fig. S7C,D). A further confirmation came from the detection at the protein level of cells that were simultaneously labeled for MUC5AC and acetylated tubulin, a specific protein marker of the cilia (Fig. 2P). A final point came after a survey of our data with two additional algorithms: 'RNA velocity' (La Manno et al., 2018) and Palantir [START_REF] Setty | Characterization of cell fate probabilities in single-cell data with Palantir[END_REF]. RNA velocity can predict the fate of individual cells over a timescale of hours by distinguishing the expression of spliced and unspliced forms of transcripts. We analyzed with RNA velocity the behavior of CEP41, SCGB1A1 and MUC5B, in which CEP41 is an early marker of multiciliated cells differentiation. RNA velocity calculates a residual value of each gene, which indicates expected upregulation when it is positive and expected downregulation when it is negative. Positive residuals were found for transcripts of CEP41 in the GC population, predicting an upregulation of CEP41 over the following hours. A different picture was observed for the transcripts of SCGB1A1 and MUC5B, in which negative residuals were found in the GC and CC populations, indicating an expected downregulation of the corresponding transcripts over the following hours (Fig. 2Q). We then explored the same dataset with Palantir, another algorithm that models cell trajectory, with which we confirmed the presence of GCs on the MCC branch (Fig. S7E). The score for differentiation potential was highest for cycling basal cells. A high score was also found in the MCC branch in a region containing both CCs and GCs, before the gap separating them from MCCs (Fig. S7F), further suggesting a high probability to differentiate into at least two distinct trajectories. Estimation of gene expression trends showed an upregulation and then a downregulation of both MUC5AC and MUC5B along the pseudotime in cells committed to the MCC lineage (Fig. S7G). Finally, computing branch probabilities of randomly selected GCs on the MCC branch showed that some of them have between 24.7% and 49.7% chance of following the MCC trajectory (Fig. S7H). Altogether, these data indicate that GCs can act as precursors for MCCs in normal in vitro and in homeostatic in vivo airway regeneration.

Refining cell clustering identifies six additional clusters, including a discrete population of pre-MCC 'deuterosomal' cells

To gain further insight into the diversity of cell populations composing the airway epithelium and the transitionary cell populations occurring during the regeneration, we considered additional clusters that could be derived from our sub-clustering analysis, by accepting less discriminations between them than between the six previously identified clusters. This deeper analysis led to the identification of 12 clusters, instead of six (Fig. 3A; Fig. S8A and Table S4). The non-cycling BC population was split into two clusters that we termed BC1 and BC2. The major difference between these two clusters was the higher level of expression of genes associated with cell migration: FN1, VIM, SPARC and TAGLN in the BC2 cluster. Analysis of enriched canonical pathways with Ingenuity Pathway Analysis showed enrichment for integrin, actin cytoskeleton and Rho GTPase signaling, as well as the pathway 'regulation of actin-based motility' in BC2 compared with BC1, suggesting an increased migratory activity in BC2 (Fig. S9). The supraBC and CC populations could also be further split into three new populations of supraBC and three new populations of CCs (Fig. 3A; Fig. S8A). Each of them displayed its own distinct gene set enrichment (Fig. S9). The CC2 subpopulation displayed a strong enrichment score for the feature 'immune cell migration, invasion and chemotaxis', and a strong positive enrichment for canonical pathways such as 'neuroinflammation signaling' and 'dendritic cell maturation'. This was explained by an increased gene expression of targets for pro-inflammatory molecules such as TNF, IFNG, NFkB, IL1A/B, IL2 or IL6, as well as decreased gene expression for targets for the anti-inflammatory PPARG pathway (Fig. S9). This may confer to this subpopulation of CCs a unique relationship with the immune response. This subpopulation was confirmed in nasal and bronchial epithelia in a subset of healthy subjects from a Human Cell Atlas cohort (data not shown).

The MCC group of FOXJ1+ cells was further split in two discrete clusters: (1) the largest one is positive for mature MCC genes such as DNAH5, and corresponds to terminally differentiated MCCs; (2) the second one specifically expresses several molecules that are important for the biosynthesis of hundreds of basal bodies from which motile cilia elongate. Among them is DEUP1, a hallmark of massive centriole amplification at deuterosomes (Fig. 3B). We named these cells 'deuterosomal' cells. This subpopulation is clearly distinct from mature MCCs (Fig. 3B) and expresses highly specific markers such as PLK4, CCNO and CEP78 (Fig. S10A and Table S5A-C). Existence of deuterosomal cells was confirmed in mouse tracheal epithelial cells (MTECs) dissociated at ALI 3, in newborn pig trachea and in human bronchial biopsy tissue (Fig. 3C; Fig. S10B,C). All samples, even under homeostatic conditions, displayed deuterosomal cells that clustered independently of mature MCCs. In adult mouse trachea, we detected Deup1+ cells by immunohistochemistry that were clearly distinct from mature MCCs (multiple centrioles but no cilia). MCCs were devoid of Deup1 protein (Fig. S10D). Deuterosomal cells expressed unique gene markers, but also genes found in MCCs and cycling BCs (Fig. 3D). Our analysis found 149 specific genes, and 33 and 244 genes shared with cycling BCs and mature MCCs, respectively (Fig. 3E; Table S5). Among the 33 genes in common with cycling BCs, we noticed the re-expression of several cell cycle-related genes, which are required for the massive amplification of centrioles that takes place (Al Jord et al., 2017;[START_REF] Revinski | CDC20B is required for deuterosome-mediated centriole production in multiciliated cells[END_REF]. The most specific genes are displayed in Fig. 3E. This analysis not only confirms the known expression of CDK1 in deuterosomal cells (Al Jord et al., 2017), it also highlights the expression in deuterosomal cells of genes coding for centromere proteins (CENPF, CENPU and CENPW), securin (PTTG1), a core subunit of the condensing complex (SMC4) and cyclin-dependent kinase regulatory subunits (CKS1B and CKS2). We confirmed the deuterosomal-specific expression of CDC20B, the miR-449 host gene that we have recently shown to be a key regulator of centriole amplification by deuterosomes [START_REF] Revinski | CDC20B is required for deuterosome-mediated centriole production in multiciliated cells[END_REF]. Incidentally, a splice variant of this gene was detected, including a novel exon near the location of the miR-449 family (Fig. 3B; Fig. S11A). This short CDC20B isoform was also detectable in mouse RNA-seq data (Fig. S11B). Comparison of transcript abundance in several samples, including the Pneumacult ALI 28 and the human bronchial biopsy tissue, showed higher levels for short CDC20B (Fig. S11C,D), which likely corresponds to the major source of miR-449 in deuterosomal cells. A list of novel markers of deuterosomal cells that are specifically expressed in this cell population is provided in Table S5. Some of these genes have never been described before in the context of centriole amplification, such as the yippee-like factor YPEL1 or the Notch pathway-related hairy-enhancer-of-split family of transcription factors HES6 (Fig. S10A-C). Gene set enrichment of the deuterosomal population-specific genes (Fig. 3F) showed enrichments for 'cilium assembly' and 'centrosome maturation', but also cell-cycle mechanism-related terms such as 'resolution of sister chromatid cohesion', 'regulation of AURKA', 'PLK1 activity' and 'CDH1 autodegradation'. 'Mitochondrial membrane part' was also among the enriched terms, suggesting an increase in mitochondria numbers at this stage. This signature perfectly delineates the events occurring at this MCC differentiation stage and provides an extensive repertoire of specific cell-cycle related genes that are re-expressed at the deuterosomal stage. The pool of deuterosomal cells was consistently larger than recently described rare cell populations such as ionocytes (Montoro et al., 2018;[START_REF] Plasschaert | A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte[END_REF], which we also identified (Fig. S8C).

Establishing a keratin switch pattern during airway regeneration

A rich repertoire of keratins is expressed in different epithelial cells, depending of cell type, period of embryonic development, stage of histological differentiation, cellular growth environment, disease state, etc. We screened our scRNA-seq data for expression of different keratins, besides KRT5 and KRT14, which are bona fide BC markers in the airways and lung, but also in bladder (Colopy et al., 2014), prostate [START_REF] Hudson | Epithelial cell differentiation pathways in the human prostate: identification of intermediate phenotypes by keratin expression[END_REF] and mammary gland [START_REF] Jumppanen | Basallike phenotype is not associated with patient survival in estrogen-receptornegative breast cancers[END_REF], or for KRT8, which is clearly associated with luminal cell types [START_REF] Rock | Basal cells as stem cells of the mouse trachea and human airway epithelium[END_REF]. A recent study performed on mouse and human models of in vitro regeneration identified KRT4 and KRT13 in a subpopulation reminiscent of our supraBCs, as it emerges between BCs and CCs [START_REF] Plasschaert | A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte[END_REF]. Our repertoire of KRT expression during airway regeneration was based on pseudotime ordering in our Pneumacult ALI 28 dataset. Our analysis confirmed the presence of KRT5 and KRT14 in BCs, of KRT4 and KRT13 in supraBCs, and the expression of KRT8 in luminal cell types (CCs, GCs and MCCs) (Fig. 4A,E). Unlike recent data obtained by Plasschaert et al. under similar conditions [START_REF] Plasschaert | A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte[END_REF], who showed parallel RNA expression of KRT13 and KRT4, we consistently noticed that expression profiles of KRT13 and KRT4 were slightly de-correlated, with KRT13 detected at earlier pseudotimes than KRT4. This was confirmed at the protein level by a quantification of immunostainings of the proportion of KRT5+/KRT13+ and KRT5+/KRT4+ double-positive cells (Fig. 4B). Fig. 4C shows that there were more KRT5+/KRT13+ (7.4%) than KRT5+/KRT4+ (4.9%) double-positive cells, consistent with an earlier expression of KRT13 compared with KRT4. A similar observation was made in the newborn pig trachea, in which we also found a very clear shift, with 16.8% and 11.2% of KRT5+/KRT13+ and KRT5+/KRT4+ double-positive cells, respectively (Fig. 4D). Our results show that KRT4 and KRT13 are not strictly expressed at the same time during airway regeneration and their expression delineates subtle differences in cell subpopulations. In homeostatic nasal epithelium, we noticed an even greater uncoupling of KRT4 and KRT13 expression at RNA and protein levels. In scRNA-seq, KRT13 was highest in cycling BCs, then in BCs and supraBCs. KRT4 was highest in CCs, then in supraBCs and cycling BCs (Fig. S12A). Immunostaining on nasal turbinate epithelium confirmed that KRT13 was predominantly found at a basal position, and KRT4 at a luminal position (Fig. S12C). Hence, KRT4 and KRT13 cell-type specificity might differ according to the homeostatic or regenerative status. Additional keratins, such as KRT16 and KRT23 displayed a specific supraBC expression (Fig. 4E). We also identified additional keratins that were more specifically associated with differentiated cell types: KRT7 and KRT19 were strongly enriched in CCs, but their expression completely dropped in MCCs, while KRT8 was still expressed (Fig. 4E). Expression patterns for these cell type-specific keratins were confirmed by immunohistochemistry on sections of ALI culture and nasal epithelium (Fig. 4F; Fig. S12B,D). Altogether, our data indicate that the keratin repertoire can be sufficiently specific to reconstruct cell trajectories during airway regeneration.

Establishing a combinatorial repertoire of signaling pathways during airway regeneration

We have finally analyzed the cell specificity of expression of important signaling pathways in order to determine mutual influences between distinct cells that could play a role in airway regeneration. Our investigation was focused on the Notch, BMP/ TGFβ and Wnt pathways. For each different component, we classified them as ligands, receptors, or targets. The expression profiles are shown as heatmaps, with cells being sorted by their subgroups.

Notch pathway

BCs express the ligands DLL1, JAG1 and JAG2, as well as the receptor NOTCH1, as expected [START_REF] Plasschaert | A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte[END_REF][START_REF] Rock | Basal cells as stem cells of the mouse trachea and human airway epithelium[END_REF]. In this population, no target gene expression was detected, suggesting an inactive pathway. BCs also express LFNG, which is known to inhibit JAG1 signaling via NOTCH1 [START_REF] Yang | Fringe glycosyltransferases differentially modulate Notch1 proteolysis induced by Delta1 and Jagged1[END_REF]. SupraBCs cells express NOTCH1, JAG1 and JAG2, and show clear activation of the Notch pathway by expression of the target genes HEY1, HES2 and HES4. NOTCH3 expression is turned on and is specific to this population. In CCs/GCs, NOTCH2 is the major receptor to be detected and signal activation remains, as evidenced by the expression of HEY1 and HES4. CCs/GCs also express the non-canonical Notch ligand NTN1. In deuterosomal cells/MCCs, a clear shift is observed. Expression of NOTCH2, NOTCH3, HEY1 and HES4 is reduced, and NOTCH4 is specifically expressed. As previously described, JAG2 [START_REF] Plasschaert | A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte[END_REF], which is present in BCs then absent in supraBCs and CCs/BCs, is re-expressed in the MCC compartment. We have found the same behavior for DLL1 and the non-canonical ligand DNER. Thus, MCC express some Notch ligands. Strikingly, a major inhibitory signature dominates in MCCs, with the expression of CIR1 and SAP30, two transcriptional corepressors, and of DYRK1A, an inhibitor of the NICD. HES6, the expression of which is not regulated by Notch signaling but has been identified as a Notch pathway inhibitor [START_REF] Bae | The bHLH gene Hes6, an inhibitor of Hes1, promotes neuronal differentiation[END_REF], is highly enriched in deuterosomal cells (Figs 5A and3E). We have confirmed at the protein level an enrichment of SAP30 in MCCs (Fig. S13A).

Wnt pathway

The Wnt target genes SNAI2 and TCF4, which are indicators of an active pathway, are mainly enriched in the BC population, especially in BC2 for SNAI2. We have confirmed enrichment of SNAI2 in BCs at the protein level (Fig. S13B). In the BC population, WNT10A and LRP1 are strongly enriched, and several SOX family members (SOX2 and SOX21) are underrepresented, especially in the cycling BCs, suggesting an activation of the pathway in this compartment. In the MCC population, the situation is more complex. Despite the slight expression of TCF4 together with positive regulators of the pathway, such as WNT9A, FZD6, APPL2, CSNK1G1 (a casein kinase component that can act as an activator or inhibitor of the pathway; [START_REF] Cruciat | Casein kinase 1 and Wnt/β-catenin signaling[END_REF], no SNAI2 expression is detected, and known repressors of the Wnt pathway are also overrepresented. Indeed, MCCs express significant levels of the transcriptional repressors SOX2 and SOX21, and display strong enrichment for the reptin components RUVBL1 and RUVBL2 (Fig. 5B).

BMP/TGFβ

BMP ligands, such as BMP2 and BMP7, are enriched in the BC population, while BMP3 and BMP4 are both enriched in the CC/GC populations. We did not find any specific cell population expression for BMP receptors. Specific expression of FST (follistatin) and FKBP1A (also known as FKBP12), two BMP inhibitors, was found in BCs, which was confirmed for FST in BCs at the protein level (Fig. S13C,D). Regarding the TGFβ pathway, a clear signal of activation is detected in the deuterosomal/MCC population, with specific expression of the target genes SERPINE1 (PAI-1), CTGF, ATF3, TGFBR3 and IRF7, consistent with the previous finding that TFGβ pathway regulates motile cilia length by affecting the transition zone of the cilium (Tözser et al., 2015). We did not detect TGFβ ligands in the MCC population but rather found them expressed in BCs (TGFB1) and supraBCs (TGFB3).

We have confirmed the main distribution of the three pathway components in samples differentiated with the BEGM medium (Fig. S14) and in two fresh tissue samples (human bronchial biopsy and nasal turbinate) for which a selection of genes is shown in Fig. 5D. Collectively, our data provide for the first time a detailed account of Notch, Wnt and BMP signaling pathways at work during airway regeneration, with receptors and ligands specifically expressed at each cell stage. 
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DISCUSSION

We have established here a comprehensive single-cell atlas throughout the entire time course of human nasal airway differentiation in vitro. We quantified the proportion and identity of each cell population at carefully chosen time points after the establishment of the air liquid interface. We provide the first comparison between the most widely used culture media in the 3D culture of airway epithelial cells, BEGM (with which the majority of studies have been performed), and a more recently available commercial medium, Pneumacult. In the BEGM medium, we have performed analyses at earlier time points, i.e. ALI 2 and ALI 4. These time points allowed us to measure the extent of cell proliferation during in vitro regeneration. Cycling BCs accounted for ∼40% of total cells at ALI 2 and ALI 4, and this number dropped to 5% at ALI 7. These early time points also showed that supraBCs appeared early under these conditions, being already detected at ALI 4. With BEGM, we never detected any GCs (MUC5AC+) or 'canonical' CCs (SCGB1A1+), even after long periods of time and using several dozens of cultures from distinct donors (Figs S1, S3, S4; data not shown). However, we found a cell population that we have termed 'club-like'. These 'club-like' cells express a gene pattern very similar to that of canonical CCs, and they can differentiate into MCCs. Interestingly, GCs were detected in BEGM medium after IL13 treatment [START_REF] Laoukili | IL-13 alters mucociliary differentiation and ciliary beating of human respiratory epithelial cells[END_REF]data not shown). Future work should investigate whether club-like cells first evolve into canonical CCs and then GCs upon IL13 treatment.

In Pneumacult, but also in freshly dissociated human bronchial biopsy tissue and newborn pig trachea, we have detected hybrid cells expressing both MUC5AC and FOXJ1. This finding is consistent with our lineage inference, as RNA velocity and Palantir analyses consistently defined GCs as possible precursors of multiciliated cells. Other groups have previously detected cells expressing both markers, in a context of GC hyper/metaplasia induced by Sendai virus infection or after IL13 treatment and in asthma [START_REF] Gomperts | IL-13 regulates cilia loss and foxj1 expression in human airway epithelium[END_REF][START_REF] Turner | Goblet cells are derived from a FOXJ1-expressing progenitor in a human airway epithelium[END_REF][START_REF] Tyner | Blocking airway mucous cell metaplasia by inhibiting EGFR antiapoptosis and IL-13 transdifferentiation signals[END_REF]Vieira Braga et al., 2019). These findings led some of them to hypothesize a transdifferentiation of MCCs into GCs. However, no convincing data support this conclusion and none of these data show a difference in the number of these hybrid cells between control and treated conditions. For example, Turner and colleagues [START_REF] Turner | Goblet cells are derived from a FOXJ1-expressing progenitor in a human airway epithelium[END_REF]) postulated this after performing in vitro lentiviral transduction of HAECs with a vector containing a Cre recombinase under the control of the FOXJ1 promoter. However, no control demonstrated the absence of leakage of the FOXJ1 promoter and these findings were not confirmed by Rajagopal's group who showed no GCs arising from MCCs in a context of OVA-induced mucous metaplasia in mouse airways, using in vivo lineage tracing with Foxj1-cre mice [START_REF] Pardo-Saganta | Ciliated cells of pseudostratified airway epithelium do not become mucous cells after ovalbumin challenge[END_REF]. Our contribution to resolve this conundrum is by showing that these hybrid cells do exist in the absence of I-13 stimulation and in healthy subjects. We therefore suggest that their expression profiles place them more straightforwardly as alternative precursors of MCCs than as transdifferentiated MCCs.

As our work was performed on either cultured or fresh cells from nasal or lung airways derived from three distinct animal species, the generalization of some of our conclusions to mouse, human and pig airways is probably justified. This is probably the case for the general mechanisms of MCC and GC differentiations. At the same time, we are also aware of the important gradients of gene expression that exist between different compartments, as already documented between nose and bronchi (Giovannini-Chami et al., 2018). Future work will have to address the origins of these spatial idiosyncrasies. Our study was also not intended to characterize rare cell types such as pulmonary neuroendocrine, brush cells or ionocytes, which have recently been described elsewhere. We confirm the detection of cells displaying high levels of expression of CFTR, ASCL3 and FOXI1, corresponding to pulmonary ionocytes (Montoro et al., 2018;[START_REF] Plasschaert | A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte[END_REF]. Our investigation was more focused on the main cell types that compose the epithelium, and their underlying mechanisms of differentiation. Three subtypes of BCs were identified, including a group of cycling BCs, and a group of BCs expressing higher levels of genes involved in extracellular matrix connection and actin-based motility. This latter group is reminiscent of that described by Coraux et al. who showed that airway BCs undergo changes in the cytoskeleton organization and acquire mesenchymal cell-associated vimentin as well as various matrix metalloproteinases necessary for migration above the denuded basement membrane in response to injury [START_REF] Coraux | Epithelial cellextracellular matrix interactions and stem cells in airway epithelial regeneration[END_REF]. This BC subtype is probably specific to regeneration and should not be detected in homeostatic samples. Accordingly, few such cells were found in nasal and bronchial epithelial samples from 12 healthy subjects of the Human Cell Atlas (data not shown).

The specificity of the secretory compartment comes from one club cell subpopulation that displayed an immune-related gene signature. So far, diversity within the club cell compartment is thought to be established after expression of different members of the secretoblogin family [START_REF] Reynolds | Secretoglobins SCGB3A1 and SCGB3A2 define secretory cell subsets in mouse and human airways[END_REF] or via an appropriate activation level of the Notch pathway [START_REF] Guha | Analysis of notch signaling-dependent gene expression in developing airways reveals diversity of Clara cells[END_REF]. We propose that diversity within this cell compartment should also include specialized functions related to the interaction between the epithelium and immune cells. Additional experiments, including protein labeling on fresh tissue sections from several levels of the airways, have now to be performed in order to confirm this diversity and identify the spatial distribution of these subpopulations.

Our study has also provided a first extensive gene signature of the deuterosomal population, which plays a key role during MCC differentiation. This population comprises three to four times fewer cells than the MCC population, suggesting that each cell transits quickly through this stage. In line with what has been shown recently by our group and others (Al Jord et al., 2017;[START_REF] Revinski | CDC20B is required for deuterosome-mediated centriole production in multiciliated cells[END_REF][START_REF] Vladar | Cyclin-dependent kinase control of motile ciliogenesis[END_REF], cell cycle-related genes become reexpressed in this population of non-cycling cells. We have confirmed the very specific expression of CDC20B, a key player of centriole amplification [START_REF] Revinski | CDC20B is required for deuterosome-mediated centriole production in multiciliated cells[END_REF], and have identified, both in human and mouse, a novel isoform of this transcript that displays higher expression than the annotated long isoform. As the pre-mRNA corresponding to this short isoform comprises the miR-449-encoding intron, we suggest that this isoform should indeed be the major source of miR-449 in deuterosomal cells. The alternative splicing that is responsible for this alternative isoform might represent an optimization of gene expression regulation to efficiently increase miR-449 levels.

We also characterized the distribution of important signaling pathways. We started with the Notch pathway as it is a major regulator of the mucociliary differentiation. We have confirmed the distribution of ligands and receptors described by others (Mori et al., 2015;Pardo-Saganta et al., 2015b;[START_REF] Plasschaert | A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte[END_REF]Rock et al., 2011). Absence of HES4 expression, the most representative target gene in our model, confirmed the absence of Notch activation in BCs and MCCs. BCs rather express NOTCH1 and NOTCH ligands. However, no clear Notch pathway activation can be detected within this cell population even in a patchy manner as 10 might be expected from Notch lateral inhibition. This absence of activation might result from the weak NOTCH1 expression or the expression of Notch inhibitors such as the ligand LFNG or casein kinase II subunit beta (CSNK2B) [START_REF] Cheng | Effects of Notch signaling on regulation of myeloid cell differentiation in cancer[END_REF][START_REF] Wang | Protein kinase CK2 both promotes robust proliferation and inhibits the proliferative fate in the C. elegans germ line[END_REF]. Inhibition of the Notch pathway in MCCs at the end of multiciliogenesis has been widely documented. Here, the specific expression of several Notch transcriptional inhibitors at the deuterosomal stage suggest a novel mechanism for this inactivation. This is the case for HES6, an inhibitory HES acting through HES1 binding [START_REF] Bae | The bHLH gene Hes6, an inhibitor of Hes1, promotes neuronal differentiation[END_REF][START_REF] Nam | Hairy and Enhancer of Split 6 (Hes6) deficiency in mouse impairs neuroblast differentiation in dentate gyrus without affecting cell proliferation and integration into mature neurons[END_REF], DYRK1A, an inhibitor of Notch intracellular domain transcriptional activity [START_REF] Fernandez-Martinez | Attenuation of Notch signalling by the Downsyndrome-associated kinase DYRK1A[END_REF], as well as CIR1 and SAP30, which are transcriptional repressors of the Notch/CSL transcriptional complex [START_REF] Hsieh | CIR, a corepressor linking the DNA binding factor CBF1 to the histone deacetylase complex[END_REF]. On the other hand, CCs must undergo clear Notch activation to maintain cell identity and differentiate into GCs (Pardo-Saganta et al., 2015b;Rock et al., 2011;Tsao et al., 2009). However, the onset of activation of this signal has not been widely studied. Mori and colleagues have described NOTCH3 expression in TP63-negative cells in a parabasal position of the epithelium, which likely correspond to the cells that we and others have termed supraBCs (Mori et al., 2015). We have confirmed that the NOTCH3 transcript is absent from BCs and becomes upregulated in supraBCs. We went further by showing that HES4 becomes expressed at this cell stage, confirming that Notch pathway activation starts at the supraBC stage. We emphasize here the importance of this intermediate cell population for establishing Notch activation and subsequent differentiation, even though it has not been well characterized so far.

The Wnt/β-catenin pathway has been less extensively studied in the context of airway epithelium differentiation [START_REF] Brechbuhl | Β-catenin dosage is a critical determinant of tracheal basal cell fate determination[END_REF][START_REF] Malleske | Regulation of human airway epithelial tissue stem cell differentiation by β-catenin, P300, and CBP[END_REF][START_REF] Schmid | Modulation of Wnt signaling is essential for the differentiation of ciliated epithelial cells in human airways[END_REF][START_REF] Smith | Direct and indirect roles for βcatenin in facultative basal progenitor cell differentiation[END_REF][START_REF] Zemke | Single-cell RNAseq data in fresh human airway epithelial tissues and air liquid cultures identifies novel cell populations and offers new insights into the molecular mechanisms occurring during mucociliary epithelium regeneration. Funding details S[END_REF]. Crosstalk with Notch has been suggested in non-airway studies: in hair follicle precortex, β-catenin stimulates Notch signaling by inducing Jag1 transcription [START_REF] Estrach | Jagged 1 is a β-catenin target gene required for ectopic hair follicle formation in adult epidermis[END_REF]. In the airway epithelium, β-catenin signaling is required at 'specification', i.e. early stages of GC and MCC differentiation, but was detrimental at later stages [START_REF] Malleske | Regulation of human airway epithelial tissue stem cell differentiation by β-catenin, P300, and CBP[END_REF]. Ordovas-Montanes et al. have recently shown that Wnt is also related to inflammatory-induced epithelial remodeling. In nasal polyps, an imbalance between Wnt and Notch signaling favors Wnt signaling and GCs at the expense of MCCs (Ordovas-Montanes et al., 2018). In airway smooth muscle cells, WNT5A is associated with remodeling in a context of airway hyperresponsiveness [START_REF] Koopmans | Regulation of actin dynamics by WNT-5A: implications for human airway smooth muscle contraction[END_REF]. In HAECs from individuals with chronic obstructive pulmonary disease, WNT4 upregulation increases IL8 and CXCL8 gene expression [START_REF] Durham | Regulation of Wnt4 in chronic obstructive pulmonary disease[END_REF]. Interestingly, WNT5A and WNT4 were specifically expressed by the subpopulation of CCs related to immune response. This finding further reinforces the hypothesis of a role for this CC population in the inflammation-induced airway remodeling.

Based on expression of the target genes TCF4 and SNAI2, activation of the Wnt pathway is confined to the BC population. SNAI2 enrichment in the basal cell compartment had already been noticed by Rock and colleagues upon sorting of basal cells from mouse trachea [START_REF] Rock | Basal cells as stem cells of the mouse trachea and human airway epithelium[END_REF]. This population also strongly and specifically expresses the ligand WNT10A, suggesting an autocrine regulatory loop. WNT10A is also BC specific in other epithelia, such as the mammary epithelium [START_REF] Ji | Proteomic profiling of secretome and adherent plasma membranes from distinct mammary epithelial cell subpopulations[END_REF]. In fallopian organoids, Wnt has been shown to be essential for stemness [START_REF] Kessler | The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids[END_REF] and for self-renewal, but not for proliferation, in basal-like breast cancer cells [START_REF] Dimeo | A Novel lung metastasis signature links Wnt signaling with cancer cell self-renewal and epithelialmesenchymal transition in basal-like breast cancer[END_REF]. Thus, autocrine WNT10A signaling may also regulate self-renewal in the BC compartment of the airway epithelium. In contrast, we have observed in MCCs a specific expression of the two ATP-dependent DNA helicases from the Reptin family that act as Wnt signaling repressors [START_REF] Bauer | Pontin52 and Reptin52 function as antagonistic regulators of beta-catenin signalling activity[END_REF][START_REF] Weiske | The histidine triad protein Hint1 interacts with Pontin and Reptin and inhibits TCF-β-catenin-mediated transcription[END_REF]. Additional investigations should certainly be carried out to characterize more precisely the role of Wnt/β-catenin during airway epithelial regeneration.

Regarding the TGFβ/BMP pathway, our data strongly suggest inhibition of this pathway in the BC compartment. As this signaling is considered to be a brake for proliferation, our findings are consistent with a previous report showing maintenance of a proliferative potential of this progenitor population by dual SMAD inhibition [START_REF] Mou | Dual SMAD signaling inhibition enables long-term expansion of diverse epithelial basal cells[END_REF].

Conclusions

We provide several novel insights in the dynamics of airway differentiation by positioning goblet cells as possible precursors of multiciliated cells: this illustrates how cells carrying specialized function, i.e. club and goblet cells, can still constitute differentiation intermediates for other specialized cells, i.e. multiciliated cells. We also identify subpopulations of basal, suprabasal, club and multiciliated cells. Our dataset also provides extensive characterization of the deuterosomal cell population, an intermediate state before the formation of multiciliated cells. After establishing a comprehensive repertoire of keratin expression, we show that monitoring 'keratin switch' during differentiation could be self-sufficient to establish the different cell identities. Our improved characterization of the different signaling pathway components detects putative Notch repressors that probably contribute to Notch signal shutdown at the deuterosomal stage, and details Wnt pathway activity within the basal cell compartment.

MATERIALS AND METHODS

Human airway epithelial cell culture

Human airway epithelial cell (HAEC) cultures were derived from nasal mucosa of inferior turbinates. After excision, nasal inferior turbinates were immediately immersed in Ca 2+ /Mg 2+ -free HBSS supplemented with 25 mM HEPES, 200 U/ml penicillin, 200 μg/ml streptomycin, 50 μg/ml gentamicin sulfate and 2.5 μg/ml amphotericin B (all reagents from Gibco). After repeated washes with ice-cold supplemented HBSS, tissues were digested with 0.1% Protease XIV from Streptomyces griseus (Sigma-Aldrich) overnight at 4°C. After incubation, fetal calf serum (FCS) was added to a final concentration of 10%, and nasal epithelial cells were detached from the stroma by gentle agitation. Cell suspensions were further dissociated by trituration through a 21 G needle and then centrifuged at 150 g for 5 min. The pellet was resuspended in supplemented HBSS containing 10% FCS and centrifuged again. The second cell pellet was then suspended in Dulbecco's Modified Eagle's Medium (DMEM, Gibco) containing 10% FCS and cells were plated (20,000 cells per cm 2 ) on 75 cm 2 flasks coated with rat-tail collagen I (Sigma-Aldrich). Cells were incubated in a humidified atmosphere of 5% CO 2 at 37°C. Culture medium was replaced with bronchial epithelium basal medium (BEBM, Lonza) supplemented with BEGM SingleQuot Kit Supplements (Lonza) on the following day and was then changed every other day. After 4 to 5 days of culture, after reaching about 70% confluence, cells were detached with trypsin-EDTA 0.05% (Gibco) for 5 min and seeded on Transwell permeable supports (6.5 mm diameter; 0.4 μm pore size; Corning) in BEGM medium at a density of 30,000 cells per Transwell. Once the cells have reached confluence (typically after 5 days), they were induced to differentiate at the air-liquid interface by removing medium at the apical side of the Transwell, and by replacing medium at the basal side with either DMEM:BEBM (1:1) supplemented with BEGM SingleQuot Kit Supplements or with Pneumacult-ALI (StemCell Technologies), as indicated in the figure legends. Culture medium was changed every other day.

Mouse tracheal epithelial cell culture

Mouse tracheal epithelial cell (MTEC) cultures were established from the tracheas of 12-week-old C57BL/6 mice. After dissection, tracheas were placed in ice-cold DMEM:F-12 medium (1:1) supplemented with 15 mM HEPES, 100 U/ml penicillin, 100 μg/ml streptomycin, 50 μg/ml gentamicin sulfate and 2.5 μg/ml amphotericin B. Each trachea was processed under a binocular microscope to remove as much conjunctive tissue as possible with small forceps and was opened longitudinally with small dissecting scissors. Tracheas were then placed in supplemented DMEM:F-12 containing 0.15% protease XIV from S. griseus. After overnight incubation at 4°C, FCS was added to a final concentration of 10%, and tracheal epithelial cells were detached by gentle agitation. Cells were centrifuged at 400 g for 10 min and resuspended in supplemented DMEM:F-12 containing 10% FCS. Cells were plated on regular cell culture plates and maintained in a humidified atmosphere of 5% CO 2 at 37°C for 4 h to allow attachment of putative contaminating fibroblast. Medium-containing cells in suspension were further centrifuged at 400 g for 5 min and cells were resuspended in supplemented DMEM:F-12 containing BEGM Singlequot kit supplements and 5% FCS. Cells were plated on rat tail collagen I-coated Transwell. Typically, five tracheas resulted in 12 Transwells. Medium was changed every other day. Airliquid interface culture was conducted once transepithelial electrical resistance had reached a minimum of 1000 Ω/cm 2 (measured with EVOM2, World Precision Instruments). Air-liquid interface culture was obtained by removing medium at the apical side of the Transwell and by replacing medium at the basal side with Pneumacult-ALI medium (StemCell Technologies).

HAEC and MTEC dissociation for single-cell RNA-seq

Single-cell analysis was performed at the indicated days of culture at the airliquid interface. To obtain a single-cell suspension, cells were incubated with 0.1% protease type XIV from S. griseus (Sigma-Aldrich) in supplemented HBSS for 4 h at 4°C. Cells were gently detached from Transwells by pipetting and then transferred to a microtube. Fifty units of DNase I (EN0523 Thermo Fisher Scientific) per 250 μl were directly added and cells were further incubated at room temperature for 10 min. Cells were centrifuged (150 g for 5 min) and resuspended in 500 μl supplemented HBSS containing 10% FCS, centrifuged again (150 g for 5 min) and resuspended in 500 μl HBSS before being mechanically dissociated through a 26 G syringe (four times). Finally, cell suspensions were filtered through a 40 μm porosity Flowmi Cell Strainer (Bel-Art), centrifuged (150 g for 5 min) and resuspended in 500 μl of ice-cold HBSS. Cell concentration measurements were performed with a Scepter 2.0 Cell Counter (Millipore) and Countess automated cell counter (Thermo Fisher Scientific). Cell viability was checked with a Countess automated cell counter (Thermo Fisher Scientific). All steps except the DNAse I incubation were performed on ice. For cell capture using the 10× genomics device, the cell concentration was adjusted to 300 cells/μl in HBSS, aiming to capture 1500 cells for HAECs and 5000 cells for MTECs.

Turbinate epithelial cell dissociation

To obtain a single-cell suspension directly from turbinates, the whole turbinate from a 30-year-old female donor was incubated with 0.1% protease type XIV from S. griseus (Sigma-Aldrich) in supplemented HBSS at 4°C overnight. Epithelial cells were gently detached from the turbinate by washing with HBSS by pipetting up and down, and then transferred to a 50 ml Falcon tube. Cells were centrifuged (150 g for 5 min at 4°C) and after removing the supernatant the cells were resuspended in 1 ml of HBSS. Fifty units of DNase I (EN0523 Thermo Fisher Scientific) per 250 μl were directly added and cells were further incubated at room temperature for 10 min. Cells were centrifuged (150 g for 5 min at 4°C) and resuspended in 1 ml supplemented HBSS containing 10% FCS, centrifuged again (150 g for 5 min at 4°C) and resuspended in 500 μl HBSS before being mechanically dissociated through a 26 G syringe (four times). Finally, cell suspensions were filtered through a 40 μm porosity Flowmi Cell Strainer (Bel-Art), centrifuged (150 g for 5 min) and resuspended in 500 μl of ice-cold HBSS. Cell concentration measurements were performed using a Scepter 2.0 Cell Counter (Millipore) and Countess automated cell counter (Thermo Fisher Scientific). Cell viability was checked with a Countess automated cell counter (Thermo Fisher Scientific). All steps, except the DNAse I incubation, were performed on ice. For the cell capture using the 10× genomics device, the cell concentration was adjusted to 500 cells/μl in HBSS aiming to capture 5000 cells.

Anesthetic procedure

Intranasal anesthesia is performed with topical application (gauze) of 5% lidocaine (anesthetic) plus naphazoline (vasoconstrictor) solution (0.2 mg/ml). Laryngeal and endobronchial anesthesia is performed with topical application of 2% lidocaine through the working channel of a 4.9 mm outer diameter bronchoscope.

Nasal brushing

Brushing was performed with a 2 mm cytology brush (Medi-Globe) in the inferior turbinate zone of a 56-year-old healthy male donor.

Bronchial biopsy

Bronchial biopsy was performed at the spur between the left upper lobe and the left lower lobe with a 1.8 mm-diameter Flexibite biopsy forceps (Medi-Globe) passed through the working channel of the bronchoscope (WCB) on a 59-year-old male donor.

Dissociation of nasal brushing

The brush was soaked in a 5 ml Eppendorf containing 1 ml of dissociation buffer, which was composed of HypoThermosol (BioLife Solutions), 10 mg/ml protease from Bacillus Licheniformis (Sigma-Aldrich, P5380) and 0.5 mM EDTA [START_REF] Adam | Psychrophilic proteases dramatically reduce single-cell RNA-seq artifacts: a molecular atlas of kidney development[END_REF]. The tube was shaken vigorously and centrifuged for 2 min at 150 g. The brush was removed, cells pipetted up and down five times and then incubated cells on ice for 30 min, with gentle trituration with 21 G needles five times every 5 min. Protease was inactivated by adding 200 μl of HBSS/2% BSA. Cells were centrifuged (400 g for 5 min at 4°C). Supernatant was discarded leaving 10 μl of residual liquid on the pellet. Cells were resuspended in 500 μl of wash buffer (HBSS/0.05% BSA) and 2.25 ml of ammonium chloride 0.8% was added to perform red blood cell lysis. After a 10 min incubation, 2 ml of wash buffer was added and cells were centrifuged (400 g for 5 min at 4°C). Supernatant was discarded leaving 10 μl of residual liquid on the pellet, cells were resuspended in 1 ml of wash buffer and centrifuged (400 g for 5 min at 4°C). Supernatant was discarded leaving 10 μl of residual liquid on the pellet, cells were resuspended in 1 ml of wash buffer and passed through a 40 μm porosity Flowmi™ Cell Strainer (Bel-Art) then centrifuged (400 g for 5 min at 4°C). Supernatant was discarded, leaving 10 μl of residual liquid on the pellet. Cells were resuspended in 100 μl of wash buffer. Cell counts and viability were performed with a Countess automated cell counter (Thermo Fisher Scientific). For cell capture using the 10× genomics device, the cell concentration was adjusted to 500 cells/μl in HBSS, aiming to capture 5000 cells. All steps were performed on ice.

Dissociation of bronchial biopsy

The biopsy tissue was soaked in 1 ml dissociation buffer, which was composed of DPBS, 10 mg/ml protease from Bacillus licheniformis (Sigma-Aldrich, P5380) and 0.5 mM EDTA. After 1 h, the biopsy was finely minced with a scalpel and returned to the dissociation buffer. From this point, the dissociation procedure is the same as the one described in the 'dissociation of nasal brushing' section, with an incubation time increased to 1 h, and omitting the red blood cell lysis procedure. For cell capture using the 10× genomics device, the cell concentration was adjusted to 300 cells/μl in HBSS, aiming to capture 5000 cells. All steps were performed on ice.

Pig tracheal epithelial cell dissociation

To obtain a single-cell suspension from newborn pig trachea, whole clean tracheas were incubated with 0.1% protease type XIV from S. griseus (Sigma-Aldrich) in supplemented HBSS at 4°C overnight. Epithelial cells were gently detached from the turbinate by washing with HBSS and pipetting up and down, then transferring to a 50 ml Falcon tube. Cells were centrifuged (150 g for 5 min at 4°C) and after removing the supernatant the cells were resuspended in 1 ml of HBSS and 50 units of DNase I (EN0523, Thermo Fisher Scientific) per 250 μl were directly added. The cells were then further incubated at room temperature for 10 min. Cells were centrifuged (150 g for 5 min at 4°C) and resuspended in 1 ml supplemented HBSS containing 10% FCS, centrifuged again (150 g for 5 min at 4°C) and resuspended in 500 μl HBSS before being mechanically dissociated through a 26 G syringe (four times). Finally, cell suspensions were filtered through a 40 μm porosity Flowmi Cell Strainer (Bel-Art), centrifuged (150 g for 5 min) and resuspended in 500 μl of ice-cold HBSS. Cell concentration measurements were performed using a Scepter 2.0 Cell Counter (Millipore) and a Countess automated cell counter (Thermo Fisher Scientific). Cell viability was checked with a Countess automated cell counter (Thermo Fisher Scientific). All steps except the DNAse I incubation were performed on ice. For cell capture using the 10× genomics device, the cell concentration was adjusted to 500 cells/μl in HBSS, aiming to capture 5000 cells.

Single-cell RNA-seq

We followed the manufacturer's protocol (Chromium Single Cell 3′ Reagent Kit, v2 Chemistry) to obtain single cell 3′ libraries for Illumina sequencing. Libraries were sequenced with a NextSeq 500/550 High Output v2 kit (75 cycles) that allows up to 91 cycles of paired-end sequencing: read 1 had a length of 26 bases that included the cell barcode and the UMI; read 2 had a length of 57 bases that contained the cDNA insert; index reads for sample index of eight bases. Cell Ranger Single-Cell Software Suite v1.3 was used to perform sample demultiplexing, barcode processing and single-cell 3′ gene counting using standard default parameters and human build hg19, pig build sus scrofa 11.1 and mouse build mm10. All single-cell datasets that we generated, and the corresponding quality metrics are displayed in Table S6 and were deposited on the Gene Expression Omnibus portal under the series number GSE121600.

Single-cell quantitative PCR

HAECs were dissociated as described above, then single cells were separated using a C1 Single-cell AutoPrep system (Fluidigm), followed by quantitative PCR on the Biomark system (Fluidigm) using SsoFast evaGreen Supermix (Biorad) and the primers described in Table S7.

RNA-seq on dissociated and non-dissociated HAECs

Two Transwells from fully differentiated HAECs from two distinct donors were each dissociated as described above. After the final resuspension, cells were centrifuged and resuspended in 800 μl Qiazol (Qiagen). Nondissociated cells from two Transwells were also lyzed in 800 μl Qiazol. RNAs were extracted with the miRNeasy mini kit (Qiagen) according to the manufacturer's instructions. Two micrograms from each RNA was used in RNA-seq library construction with the Truseq stranded total RNA kit (Illumina). Sequencing was performed with a NextSeq 500/550 High Output v2 kit (75 cycles). Reads were aligned against hg19 human build using STAR aligner. Low expressed genes were filtered out, then paired differential analysis was performed with DESeq2, comparing dissociated versus nondissociated samples from cultures generated from two different donors. Pvalues were adjusted for multiple testing using the false discovery rate (FDR). Top differentially expressed genes were selected using the following cutoffs: FDR<0.001 and an absolute log2FC>1.5.

Cytospins

Fully differentiated HAECs were dissociated by incubation with 0.1% protease type XIV from Streptomyces griseus (Sigma-Aldrich) in HBSS (Hanks' balanced salts) overnight at 4°C. Cells were gently detached from the Transwells by pipetting and then transferred to a microtube. Cells were then cytocentrifuged at 72 g for 10 min onto SuperFrost Plus slides using a Shandon Cytospin 4 cytocentrifuge. Cytospin slides were fixed for 10 min in 4% paraformaldehyde at room temperature or with methanol for 10 min at -20°C for further immunostaining.

Tissue processing for embedding

Nasal turbinates were fixed in paraformaldehyde 4% at 4°C or with methanol at -20°C (for the following antibodies: KRT7, KRT19, DEUP1, centrin 2, HES6) overnight then extensively rinsed with phosphate-buffered saline (PBS). Fixed tissues where then prepared for paraffin embedding or cryo-embedding for cryostat sectioning. For cryoprotection, tissues were soaked in a 15% sucrose solution until saturation of the tissue followed by saturation in a 30% sucrose solution. Tissue was embedded in optimal cutting temperature (OCT) medium (Thermo Fisher Scientific) at room temperature and then submerged in isopentane previously tempered at -80°C. Fully differentiated air-liquid cell cultures were embedded in paraffin using a similar protocol with a shorter time for paraformaldehyde 4% fixation (15 min at room temperature). Each Transwell was cut with a razor blade before embedding. Cutting of frozen tissues was performed with a cryostat Leica CM3050 S. Cutting of paraffin-embedded sections was performed using a rotary microtome MICROM HM 340E (Thermo Fisher Scientific).

Immunostaining

Samples were permeabilized with 0.5% Triton X-100 in PBS for 10 min. Cells were blocked with 3% BSA in PBS for 30 min. The incubation with primary antibodies was carried out at 4°C overnight. Cells were blocked with 3% BSA in PBS for 30 min. The incubation with primary antibodies was carried out at 4°C overnight. Primary antibodies were as follows: mouse monoclonal anti-KRT4 (1:50, Santa Cruz Biotechnology, sc-52321 for Fig. 4 or 1:250 Proteintech 16572-1-AP for Fig. S11A), rabbit polyclonal anti-KRT5 (1:2000, Biolegend, BLE905501), mouse monoclonal anti-KRT7 (1:100, Dako, M7018), mouse monoclonal anti-KRT8 (1:50, Santa Cruz Biotechnology, sc-58737), mouse monoclonal anti-KRT13 (1:200, Sigma-Aldrich clone KS-1A3), rabbit polyclonal anti-KRT19 (1:250, Proteintech, 10712-1-AP), rabbit polyclonal anti-DEUP1 (1:500, Proteintech, 24579-1-AP), rabbit polyclonal anti-CC10 (SCGB1A1) (1:500,Millipore,, mouse monoclonal anti-acetylated tubulin (1:500, Sigma-Aldrich clone 6-11B-1), mouse monoclonal anti-MUC5AC (1:250, Abnova clone 45M1), mouse monoclonal anti-SNAI2 (1:50, Santa Cruz Biotechnology, sc-166476), rabbit polyclonal anti-SAP30 (1:200, Proteintech, 27679-AP), goat polyclonal anti-FST (1:200, R&D Systems, AF-669) mouse monoclonal anti-centrin 2 (1/250e, clone 20H5, Sigma-Aldrich, 04-1624) and mouse monoclonal anti-FOXJ1 (1:200,eBiosciences,.

Secondary antibodies used were: Alexa Fluor 488 goat anti-rabbit (1:500; Thermo Fisher Scientific, A-11008), Alexa Fluor 647 goat anti-mouse (1:500; Thermo Fisher Scientific, A-21235), Alexa Fluor 488 goat anti-mouse IgG1 (1:500, Fisher Scientific, A-21121), Alexa Fluor 594 goat anti-mouse IgG2a (1:500, Fisher Scientific, A-21135), Alexa Fluor 647 goat anti-mouse IgG2b (1:500, Fisher Scientific, A-21242) and Alexa Fluor 488 donkey anti-goat (1:500; Thermo Fisher Scientific, A-11055). Incubation with secondary antibodies was carried out for 1 h at room temperature. Nuclei were stained with 4,6-diamidino-2-phenylindole (DAPI).

When necessary, acetylated tubulin, Muc5AC and KRT5 antibodies were directly coupled to CF 594, 488 and 488 respectively, using the Mix-n-Stain kit (Sigma-Aldrich) according to the manufacturer's instructions. Coupled primary antibodies were applied for 2 h at room temperature after secondary antibodies had been extensively washed and after a 30 min blocking stage in 3% normal rabbit or mouse serum in PBS. MTEC immunostaining was directly performed on Transwell membranes using a similar protocol. For mounting on slides, Transwell membranes were cut with a razor blade and mounted with ProLong Gold medium (Thermo Fisher Scientific). Images were acquired using the Olympus Fv10i or Leica sp5 confocal imaging systems.

Time course sample analysis Preprocessing

For each sample, cells with levels in the top 5% or bottom 5% of distribution for the following quality metrics: number of expressed features, dropout percentage and library size (total UMI count) were filtered out. Additionally, cells with a percentage of mitochondrial genes >top 5% were also removed. Quality metrics were computed using the scatter package (2.3.0) (McCarthy et al., 2017). Only genes detected (1 UMI) in at least five cells were kept for analysis.

Normalization

The scran package (Lun et al., 2016 preprint) was used to calculate cellbased scale factors and normalize cells for differences in count distribution. Each sample was normalized separately twice, first in an unsupervised manner, then after grouping cells of similar gene expression based on our robust clustering results.

Clustering robustness

In order to best determine the key steps in the differentiation process, a customized method was implemented to analyze clustering robustness to dataset perturbation. For all possible numbers of clusters (from 2 to 9), multiple subsets of the studied datasets were created (10 subsets with 10% of the cells randomly removed each time) and clustering was performed multiple times on each subset with changing settings of the seed parameter. The result of those clusterings were stored in a (n cells)² stability matrix, containing for each pair of cells 1 or 0 depending on whether the cells are clustered together (1) or not (0). This stability matrix was then transformed in a Euclidean distance matrix between cells and then divided into the used k number of clusters k using hierarchical clustering (hclust with 'average' method). To identify the optimal number of clusters, a visual inspection of the elbow plot of the average intra-stability (mean stability within each cluster) and the average inter-stability (mean stability between each cluster) was carried out. Cells with a stability metric less than 70% were labeled as 'unassigned', owing to the high clustering variability between each round of clustering, then removed from further analysis of the time course data. Cell clustering was performed using SIMLR ( package version 1.4.1) (Wang et al., 2017). Heatmaps for the clustering of each dataset are shown in Table S8.

Differential analysis

To further analyze the robustness of each step of the differentiation process, we tested the robustness of the cell type marker gene identification through differential gene expression analysis. Differential expression analysis was performed using edgeR (package version 3.22) (Robinson et al., 2010). In a one versus all differential analysis, a pool of 100 cells from one cluster were analyzed against an equal mixture of cells from all other clusters. In a one versus one differential analysis, pools of cells of the same size were compared. Those differential analysis were performed multiple times (10 times) on different pool of cells and the DEG identified were compared between each pool of cells using the rank-rank hypergeometric overlap algorithm [START_REF] Plaisier | Rank-rank hypergeometric overlap: identification of statistically significant overlap between gene-expression signatures[END_REF]. This approach was too stringent and only identified highly expressed marker genes that are less sensitive to dropout events. Thus, the Seurat FindAllMarkers function based on a non-parametric Wilcoxon rank sum test was used to identify cell type marker genes.

Time points aggregation

10× datasets generated during the time course were aggregated using MNN correction (Haghverdi et al., 2018) from the scran package.

Trajectory inference

Trajectory inference was performed using monocle 2 ( package version 2.8) (Qiu et al., 2017). Cell ordering was based on highly variable genes (∼200-500 genes) selected by their expression dispersion. Monocle analysis on the aggregated time points was carried out on raw counts after library size correction (downsampling). Branch building was performed using BEAM analysis from Monocle, and corresponding differential analysis was carried out after a cross comparison of a group of cells along the pseudotime (before branching, after branching and at the branch end) using Seurat 1 versus 1 differential analysis.

Cell type projection

To compare cell types identified in distinct samples, cells were projected from one dataset onto the other using scmap R package version 1.1, scmapCluster function [START_REF] Kiselev | scmap: projection of single-cell RNAseq data across data sets[END_REF].

Data visualization

All graphs were generated using R (ggplot2). Heatmaps were obtained using pheatmap (no clustering used, genes ordered by their expression in pseudotime or in cluster, cells ordered by pseudotime or cluster). Heatmaps show smoothed gene expression values: for each gene, normalized gene expression values were first transformed into z-scores, then averaged across 10 neighboring cells in the chosen ordering ( pseudotime only or pseudotime in clusters). Single gene representation: for the sake of clarity, only cells with expression levels above the top 50 percentiles for that gene are represented.

Individual sample analysis

Each sample of our study was reanalyzed with less stringent parameters to identify rare or transitory cell types or gene expression events Preprocessing, normalization and clustering Individual dataset analysis was performed using Seurat standard analysis pipeline. Briefly, cells were first filtered based on number of expressed features, dropout percentage, library size and mitochondrial gene percentage. Thresholds were selected by visually inspecting violin plots in order to remove the most extreme outliers. Genes expressing fewer than five UMI across all cells were removed from further analysis. Cell-level normalization was performed using the median UMI counts as a scaling factor. Highly variable genes were selected for following analyses based on their expression level and variance. PCA analysis was performed on those genes, the number of PCs to use was chosen upon visual inspection of the PC variance elbowplot (∼10 to 20 PCs depending on the dataset). Clustering was first performed with default parameters and then by increasing the resolution parameter above 0.5 to identify small clusters (but with the knowledgeable risk of splitting big clusters due to high gene expression variability). Differential analysis was again performed using Seurat FindAllMarkers and FindMarkers functions based on non-parametric Wilcoxon rank sum test. Gene Set Enrichment analysis was performed using fgsea R package with the following gene sets reactome.db (R package) and GO cellular component (Broad Institute GSEA MSigDB) genesets. Molecular function enrichment analysis was performed using Ingenuity Pathway Analysis (Qiagen).

Cell type annotation

Based on the time course experiment analysis and associated top ∼15 marker genes identified, a score was computed to associate cell types to each cluster. The scoring method is based on Macosko et al. cell cycle phase assignment (Macosko et al., 2015). For each cell it measures the mean expression of the top marker genes for each possible cell type, which results in a matrix c cell types per n cells. Then it calculates a z-score of the mean expression for each cell; the top resulting score gives the matching cell type.

Velocity

RNA velocity was calculate using latest release of velocyto pipeline (velocyto.org/) using standard parameters: GTF file used for Cell Ranger analysis and the possorted_genome_bam.bam, Cell Ranger output alignment file. From the loom file that contains a count table of spliced and unspliced transcripts, the gene.relative.velocity.estimates function was used on cell type marker genes. The resulting expression pattern of unspliced-spliced phase portraits shows the induction or repression of those marker genes from one cell type to the next. We used velocyto package version 0.5 (La Manno et al., 2018).

Trajectory inference using Palantir algorithm

Palantir analysis was used as an integrated function of the Scanpy workflow (Wolf et al., 2018). The filtered raw count matrix was loaded into Scanpy, along with the cell type annotation (Scanpy v1.4, Python 3.7); each cell was normalized to the total count over all genes (without log transform) before running Palantir [START_REF] Setty | Characterization of cell fate probabilities in single-cell data with Palantir[END_REF]. The first 14 principal components were used to compute the diffusion map. The corresponding t-SNE embedding was obtained using the first two diffusion components. A start cell was randomly selected among the cycling basal cell cluster to infer trajectories and the associated terminal states. In the process, each cell of the dataset was associated with a probability to differentiate into each of the terminal states identified. Associated with the identified trajectory, Palantir allowed the associated gene trends to be studied using MAGIC [START_REF] Van Dijk | Recovering gene interactions from single-cell data using data diffusion[END_REF] correction of the count matrix.

Plasscheart et al. dataset

Plasscheart et al.'s data [START_REF] Plasschaert | A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte[END_REF] were downloaded as processed data along with visualization coordinates and were used without further manipulation. (kleintools.hms.harvard.edu/tools/springViewer_1_6_ dev.html?datasets/reference_HBECs/reference_HBECs).

Chapter 8

Cellular mapping of the human airway epithelium using single-cell RNA-seq

Context of the study

As mentioned before, the defence function of the airway epithelium relies on its structure, cell type composition and interactions. This complex ecosystem is thus composed of epithelial, mesenchymal and immune cells which distributions and interactions may vary depending on the mechanical and biological constraints applied to the epithelium. The anatomy of the airways from the nose, pharynx, trachea to the ramified structure of the lung serves, therefore, as sequential air filters against inhaled particles. They constitute a protective physiological continuum along the respiratory tract. Yet, some differences have been noted between the upper and lower airway epithelium:

• In their developmental origin, the upper airways mainly differentiated from the neural crest, whereas the lower airways originated from the specification of the endoderm into the lung bud (see Chapter 4).

• In allergic respiratory diseases, where the defence response in the nasal epithelium is either reduced or amplified compared to the lower airways (Giovannini-chami et al., 2018).

• In the epithelium defence response to pathogens, such as bacteria or viruses, and sensibility to inflammation [START_REF] Roberts | Comparison of paired human nasal and bronchial airway epithelial cell responses to rhinovirus infection and IL-13 treatment[END_REF][START_REF] Imkamp | Nasal epithelium as a proxy for bronchial epithelium for smoking-induced gene expression and expression Quantitative Trait Loci[END_REF][START_REF] Mcdougall | Nasal epithelial cells as surrogates for bronchial epithelial cells in airway inflammation studies[END_REF][START_REF] Riaz | Differential Response of Human Nasal and Bronchial Epithelial Cells upon Exposure to Size-fractionated Dairy Dust Brie[END_REF].

These statements raise the need for a detailed characterisation of this continuum to improve our understanding of this complex tissue in its entirety in both healthy and disease conditions.

Previous studies worked toward this goal but were limited by their use of bulk RNAseq methods. The average transcriptome of thousands of cells blurs the interpretation of differential gene expression analysis between actual differences and heterogeneous cell type composition. The advent of single-cell RNA-seq techniques counteracts this limited resolution and led to the creation of large atlas-building initiatives, such as the Human Cell Atlas. It is in this framework that we designed our study. It aimed to build a comprehensive reference map of the airway epithelium along the respiratory tract.

To achieve it, we chose an approach similar to clinicians with non-invasive sampling techniques from the nose to the 12th generation of bronchi. This technique would allow us to build an atlas of the accessible part of the airway epithelium and a powerful resource against which clinicians can relate in the diagnosis and understanding of respiratory diseases.

As starting material, we sampled 10 healthy living volunteers using forceps and brushing biopsies at precise positions in the nose, trachea and bronchi (4-6th and 9-12th generation of bronchi, respectively intermediate and distal samples). Our sampling design aimed to cover, as best as possible, the entirety of the respiratory tract, including the ramified structure of the lung (upper, middle and lower lobes, right and left lungs). It ensued a large dataset composed of 77,969 cells divided into 35 samples. I analysed this extensive dataset by integrating numerous tools in a specially designed analysis workflow. This atlas was further completed by in situ immuno-stainings and hybridisation (RNA scope). All results are detailed in the following publication: Cellular mapping along the human airway epithelium using single-cell RNA-sequencing in healthy volunteers, soon to be submitted (see the end of the chapter).

Results

This atlas of the airway epithelium is the result of extensive collaborative work between:

• clinicians, Charles-Hugo Marquette and Sylvie Leroy, who collected the samples;

• wet-lab biologists, Laure-Emmanuelle Zaragosi, Marie-Jeanne Arguel and Sandra Ruiz Garcia, who processed the samples and provided in situ validations;

• and computational biologists, Kevin Lebrigand, Agnès Paquet, Marin Truchi and myself, who analysed the resulting datasets.

Kevin Lebrigand, first, pre-processed the raw sequencing data. Then, as it took months to complete the collection of all samples, Marin and I performed a primary analysis of each sample so as to get a first idea of their cell composition and the analysis workflow needed to integrate them all. Lastly, I performed the integrative analysis of the complete dataset with the help of Marin and Agnes valuable advice.

Building a molecular atlas of the airways in healthy volunteers

Following the aforementioned experimental design, we obtained a large and complex dataset describing the airway epithelium along the respiratory tract. From the extensive analysis of this dataset on both individual samples and integrated dataset, we robustly identified 14 epithelial, 7 immune and 4 mesenchymal cell types spread across the 35 samples composing the atlas. We annotated the clusters based on the specific expression of well-established markers and our previous experience in the analysis of scRNA-seq datasets of the airway epithelium. The epithelial compartment of the atlas represents 89% of the total cells and include surface epithelial cell types, submucosal glands and rare cells. The immune and mesenchymal compartments, much smaller, represent respectively 6% and 5% of the total cells.

Differences in cell composition and gene expression along the proximo-distal axis of the respiratory tree

Once the cell types were identified, we studied their distribution along the respiratory tract and demonstrated that the mode of sampling influences the cell distribution within samples. Brushing samples mostly captured luminal cells, whereas biopsies were enriched in cells close to the basal lamina of the epithelium (Figure 8.1).

CHAPTER 8. CELLULAR MAPPING OF THE HUMAN AIRWAY EPITHELIUM USING SINGLE-CELL RNA-SEQ

Materials and methods

Quality control

As mentioned in the introduction, single-cell RNA-seq data analysis starts with a quality control step. For the analysis of our 'Human Cell Atlas' dataset, I divided this quality control step in 4 to best determine the required downstream analysis:

• Screening of the quality metrics from each sample and low-quality cells filtering;

• Preliminary analysis of each sample individually;

• Doublets detection and removal;

• Correction of ambient mRNA background.

Quality metrics

Based on the complex experimental design used to generate our dataset, variations in each sample quality metrics were expected. These metrics include sequencing quality metrics, obtained after CellRanger read-alignment, as well as standard quality metrics such as the number of genes or UMIs per cell. To efficiently screen and compare these metrics between samples, I used a radar plot representation (Figure 8.3). This graph represents each quality metric of interest as a percentage. If a quality metric is not a percentage, it will be represented as a percentage between the minimum and maximum value available across all 35 samples of our dataset. For instance, the number of cells varies between from 500 to 6,000 cells across all samples, a dataset composed of 1,500 cells will display a value of 25% in the radar plot. I chose to study seven quality metrics as a proxy of the sample content and the success of the experimental processing.

• The number of cells is a rough indicator of the cell diversity (presence of rare cells, number of distinct cell types...)

• The mean reads per cell, median genes per cell and median UMI per cell are information about the mRNA content of cells.

• Sequencing saturation is a function of library complexity and sequencing depth.

It represents the percentage of transcripts diversity retrieved during sequencing. A high value means that re-sequencing the sample would only provide limited information on new transcripts, whereas a low value indicates a shallow-sequencing of the sample, and potentially missed information.

• Fraction of reads in cell measures the percentage of reads mapped to an actual cell-barcode compared to reads with empty-droplet barcodes. 

Conclusions

The extensive analysis of this dataset enabled us to create a powerful and reliable resource describing the airway epithelium cell composition along the respiratory tract. We described multiple cells-types from the epithelial, mesenchymal and immune compartments, their distribution, and we studied their transcriptional signatures along the proximo-distal axis of the airways. We also improved the description of rare epithelial cell types and provided a first description of the 'hillock' structure in healthy human airway epithelium.

The creation and analysis of this large dataset required careful planning for both sample collection and processing and their corresponding analysis. Thanks to Marin's help, we were able to provide a robust annotation of the complete dataset and hopefully participated in the production of a consensus lung atlas. Indeed, simultaneously to our work, two other atlases were published: Viera Braga et al. with a preprint version in february 2019 and a Nature medicine publication in june 2019 and Travaglini et al. also with a preprint version in august 2019. Our different experimental designs provide, for the most part, complementary information and some cross-validation of our findings that brings us a step forward the creation of a detailed human lung atlas. Yet, some results highlight a conflicting definition of cell types and cell-states between our respective studies that should be further discussed in the lung community so as to reach a consensus definition of the cell types found in the lung and their impact on the healthy and disease condition of the lung. This last point will be further discussed in the Discussion part of this manuscript. 
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Discussion and Perspectives

Since 2009 and the first single-cell RNA-seq publication by Tang et al., single-cell technologies (transcriptomics, spatially-resolved and epigenomics) have become a powerful tool in the investigation of complex biological processes. Over the past decade, the number of 'single-cell' publications has increased exponentially and provided a detailed description of many biological systems. It is in this context, this effervescence that I realised my thesis. This research work gave me the opportunity to provide a better characterisation of the differentiation processes involved in the airway epithelium regeneration -a study which, at the time, was unprecedented in its design and investigation tools. Then, my thesis work allowed me to participate in a worldwide collaborative initiative, the Human Cell Atlas, and to create, with my team, an atlas of the healthy human airway epithelium. I thus described, through the analysis of scRNA-seq data, the many cell types composing the airway epithelium and revisited, at my scale, the centuries-old definition of 'Cell type'. This definition describes the cells based on their morphology, precise position in a tissue or organ and their function. Through scRNA-seq data, two out of these three defining criteria are lost by tissue dissociation and cell lysis (with some exceptions depending on the protocol), and the last one, the cell function, can only be inferred based on the specificexpression of marker genes. Consequently, a direct transposition of this definition into a large count matrix seems compromised, and the emergence of an 'improved' definition is necessary. In the course of my thesis work, I thus identified some parts of the answer toward this improved definition of 'Cell type'. Starting with the development of the SCsim package and the, slightly naive, simulation of multiple cell populations through their marker genes. Then, through the growing dilemma (and uncertainty) of the cell identities defined by clustering and trajectory inference algorithms. Lastly, by including all the slight variations between each of these descriptions (cell state, developmental origin, cell fate, cell position, disease...). In this last chapter, I will thus describe, the multiple cell type definitions that I envisioned during my thesis and the corresponding perspectives to keep improving it, with the particular example of the airway epithelium cells.

Simulation of scRNA-seq data

My initial transposition of the cell type concept was when I developed the SCsim package and modelled multiple cell populations by the expression of their marker genes. This simulation was almost a direct transposition of the cell-function criteria into a large count matrix. I modelled each cell population by giving them a defined number of marker genes (differentially expressed genes) as a proxy of their supposed function (cf chapter 6). The levels of expression of these genes were defined arbitrarily by the transcriptional bursting and technical effects characteristic of the scRNA-seq data. Any differentiation trajectory was defined by an additional set of genes which expression varied linearly between the concerned cell types. The number of each set of marker genes could be modified to blur the boundaries between cell types, but the core description of each cell identity remained. In conclusion, this first project in my thesis did not improve the definition of cell type since it provided an almost binary one. Yet, it served as an easy comparison example for the more elaborate descriptions of cell types that I would encounter in my other thesis projects.

Clustering of scRNA-seq data

The following definition of a cell type that I faced was through the clustering of scRNA-seq data. Cell identities are defined as groups of cells with similar transcriptomic signatures. These groups are then annotated based on their specific expression of known and unknown markers genes which provide a molecular description of each cell type. Yet, faced with a complex biological system, such as the airway epithelium, the clustering of scRNA-seq data may provide a more tedious and elaborate definition of cell type.

Direct transposition of biological functions to groups of cells

A first example was to identify the main epithelial cell types, with well-known marker genes and functions, among the many cell-clusters present in our scRNA-seq datasets, namely: basal cells (KRT5+), club cells (SCGB1A1+), goblet cells (MUC5AC+) and multiciliated cells (FOXJ1+). For some of these cell types, this annotation step was not trivial.

The transcriptomic distinction between club and goblet cells

The literature described club and goblet cells as two separate cell types with a similar secreting property but distinct secreted products and thus distinct functions in the airway epithelium. Yet, as described by scRNA-seq data, these cell types have highly similar transcriptomic signatures with very few discriminating genes between them (MUC5AC, MUC5B), making the boundaries between them blurred to clustering analysis (cf. chapter 8, paper Figure S4). As a consequence, how should we now consider these cells in light of their molecular description by scRNA-seq data? During my thesis, I considered these cells as two separates or a unique cell type(s) depending on the context of the study. If the clustering results overlayed the gradient of expression of secretory genes, I identified a cell-cluster as goblet cells based on its percentage of MUC5AC+ cells (cf. chapter 7). If not, I annotated club and goblet cells jointly as 'secretory' cells (cf.chapter 8). Yet, this annotation process is a temporary solution, and further investigations are required to provide a detailed molecular description of both club and goblet cells and estimate the impact of the cell function in an enriched cell type definition.

The transcriptomic identification of suprabasal cells

Scarcely described in the literature, suprabasal cells are mainly presented as non-basal and non-secretory cells due to their para-luminal localisation in the epithelium and lack of secretory vesicles in their cytoplasm. Similarly, scRNA-seq data described them by the reduced expression of basal and secretory cells marker genes and the expression of few suprabasal-specific genes (SERPINB4, NOTCH3, S100A2, LY6D). Besides, their main descriptive criteria, from both the literature and scRNA-seq data, relies on their role as intermediate cells between basal and club cells in the differentiation of airway epithelial cells (cf. chapter 7). As a consequence, how should we describe suprabasal in light of their lack of known independent function in the airway epithelium? Should these cells be considered as a cell type (despite the cell function criteria) or as a cell state? Their number in our datasets first suggested a meta-stable cell state between basal and secretory cells (as opposed to cell type, which suggests an independent function). Yet, their identification as 'variant' basal cells in several single-cell publications and their potential role as stemcell niche of the airway epithelium (cf. chapter 8) suggest that suprabasal cell can be considered as a cell type similarly to basal cells (Vieira- [START_REF] Braga | A cellular census of healthy lung and asthmatic airway wall identifies novel cell states in health and disease[END_REF][START_REF] Travaglini | A molecular cell atlas of the human lung from single cell RNA sequencing[END_REF][START_REF] Goldfarbmuren | Dissecting the cellular specificity of smoking effects and reconstructing lineages in the human airway epithelium[END_REF].

Clustering artefacts or unknown cell type / cell state?

Lastly, how should we describe a cell-cluster which marker genes do not correspond to any previously described cell types? In our study of the regeneration of the airway epithelium, we identified a cell-cluster in one of the time-course datasets cultured in BEGM media that we named 'undefined intermediate' (cf. chapter 7, paper Figure S3). This cellcluster did not express any marker genes related to an unambiguous epithelial cell type nor to precise biological function, and we chose not to describe it further as it was not the topic of our study. Yet, how should we consider it: as an experimental artefact or as an unexpected result that could suggest a more complex cell type or cell state in the differentiation of the epithelium? An easy answer would be to consider the lack of robust identification of this undefined intermediate population in other datasets and conclude to an experimental artefact. Yet, their particular position in the inferred trajectory of epithelial cell differentiation leaves the question open. CHAPTER 9. DISCUSSION AND PERSPECTIVES

Robust annotation of the cell-clusters

As explained by the above examples, the transposition of the traditional definition of cell type to scRNA-seq data is not as straightforward as I had anticipated while developing the SCsim package. As a consequence, I developed a robust clustering method to best identify the core of each cell-cluster and highlight their gene expression differences (cf. chapter 7, Materials and Methods). Even though this method only partially solved the dilemmas described above, it provided the appropriate cell type annotation to establish a clean list of gene marker associated with the airway epithelium cells. This approach made possible the joined definition of the epithelial cell types by their previously known cell morphology, position in tissue and function and by their recently improved molecular description. It thus allowed a progressive renewal of the cell type definition.

In addition, Marin and I used this database of known marker genes for airway epithelial cells to robustly annotate each of the 35 samples composing our airway epithelium cell atlas. We also updated it by re-running the identification of marker genes in datasets with a more heterogeneous cell composition and thus identified more specific marker genes. We thus created, at our scale, a consensus annotation database of airway epithelial cell types (cf. chapter 8, paper Figure S8). A necessary perspective to this work and the simultaneous creation of other lung cell atlases is the establishment, by the lung community, of a consensus annotation and description of the lung cell types (Vieira- [START_REF] Braga | A cellular census of healthy lung and asthmatic airway wall identifies novel cell states in health and disease[END_REF][START_REF] Travaglini | A molecular cell atlas of the human lung from single cell RNA sequencing[END_REF]. This ambitious perspective could then provide the starting material for automatic annotations of new scRNA-seq datasets, using either MatchScore or Garnett, and the continued improvement of the lung description [START_REF] Pliner | Supervised classification enables rapid annotation of cell atlases[END_REF][START_REF] Mereu | matchSCore: Matching Single-Cell Phenotypes Across Tools and Experiments[END_REF].

Clustering balance between abundant and rare cell-clusters

Another complex interpretation of the scRNA-seq data clustering is the balance for the identification of rare cell types as opposed to abundant ones. As explained in the introduction, clustering algorithms cannot robustly identify both small and large cell-clusters. For instance, graph-based algorithms identify cell-clusters with a size of a slightly larger scale as the number of nearest-neighbours used to build the graph. Consequently, if the number of nearest-neighbours is low, the algorithm will have a tendency to split large cell-clusters into smaller ones. This bias in the clustering results may lead to spurious cell annotations and describe a cell-cluster, identified by a technical bias, as novel cellsubtype. Yet, it can also lead to the identification of rare cell types, so how should we determine the limit between biologically-relevant cell types and spurious cell subtypes in the clustering analysis? I faced this dilemma multiple times during my thesis and have yet to identify a complete answer.

• The identification of deuterosomal cells required a permissive clustering approach to distinguish them from multiciliated cells. As precursors to multiciliated cells, deuterosomal cells share a similar transcriptome only distinguished by a small number of specific marker genes and are in much lower abundance as multiciliated cells. Consequently, to identify them, I needed to use a small number of nearest neighbours during the graph construction step of the clustering. It took into account their small number and forced the clustering output to split the multiciliated cluster into two cell-clusters (deuterosomal and multiciliated cells). However, it also split the suprabasal cell-cluster into potential spurious cell sub-types (cf. chapter 7, paper Figure 1,3).

• A different approach was required for the identification of the rare cell types in the HCA dataset. Their potential common cell lineage and transcriptome similarity grouped them in an initial clustering step done on the complete dataset. Yet, rare cells could not be distinguished until I re-ran a sub-clustering analysis specifically on the rare cell-cluster, including a new selection of highly variable genes specifically oriented on the variations between rare cell types. I used the same technique to differentiate the mesenchymal and immune cell types (cf. chapter 8, paper Figure 3, S6,S7). I also used it on the main epithelial cell types to investigate a potential heterogeneity in their transcriptome, but the clustering results only split them by their sample of origin, merging both technical and biological biases in the ensuing interpretation. Nevertheless, this clustering/sub-clustering technique demonstrated another interesting limit of the clustering algorithms. When faced toward a highly heterogeneous dataset (as our HCA dataset with its many distinct cell types), the clustering will focus on the main axis of variation present in the data (cf. chapter 8, Materials and Methods) and lack of precision for the identification of more subtle variations.

In conclusion, I tested different clustering techniques to balance the identification of abundant and low-frequency cell types through clustering of scRNA-seq data and didn't find a consensus approach. It supposed that further investigations are needed in this area which is, for now, mainly subjected to the analyst's interpretation of the clustering results. It highlights once again the need to establish a consensus definition of cell types in regard to the clustering of scRNA-seq data.

Distinction between cell type and cell state

As a final question on the definition of cell type done by the clustering of scRNA-seq data: how should we distinguish a cell type from a cell state based on the clustering results? Considering the definition of cell type by a specific (and independent) cell function, if the inferred cell function change so does the cell type annotation but if the cell function does not change or is impaired/improved how should we define the corresponding cells? During my thesis, I avoided this complex distinction and labelled each annotated cell-cluster as CHAPTER 9. DISCUSSION AND PERSPECTIVES a cell type. Yet, further reflection on the matter may be useful for a better description of the respiratory epithelium.

• The identification of cycling cells in the airway epithelium. In our datasets, cycling cells are defined by a large number of marker genes associated with the cell cycle, and a shared transcriptomic signature with basal and suprabasal cells.

According to the function criteria of the cell type definition, these cells represent a particular state of basal and suprabasal cells which function as stem-cell niche of the airway epithelium is ongoing. This description of cycling cells as a cell state is further supported in the analysis of our atlas, in which cycling cells are lost among basal and suprabasal cells in the batch-corrected embedding (cf, chapter 8, paper Figure 4, S3, S10).

• Cycling, basal and suprabasal cells in 'hillock' structures. A similar consideration can be done for the KRT13+ cells identified in our atlas. Our description of these cells suggests a more complex cell structure in the airway epithelium with an enhanced stem-cell niche function. Yet, these cells were only identified by the outlier proportion of cycling cells in the corresponding sample, the specific expression of KRT13 and were, therefore, not isolated by clustering analysis suggesting another particular cell state of basal and suprabasal cells. Further investigations are still required to validate the hypothesis of enhanced turnover structures, understand how they differentiate, which regulatory signals drive it and better describe their frequency and specific position along the airway epithelium (cf, chapter 8, paper Figure 4).

• Suprabasal, Secretory and Multiciliated cells differences along the proximodistal axis of the airway. The identification of distinct cell-clusters of suprabasal, secretory and multiciliated cells depending on their position along the airways relates to the position criteria of the cell type definition. Yet, until further functional characterisation, these cells, despite their transcriptomic differences, conserve a similar cell function in the airway epithelium (cf, chapter 8, paper Figure 2). As a consequence, how should they be considered regarding the conflicting definitions between the clustering results and the function and position criteria?

Cell trajectories in scRNA-seq data

Over the course of my thesis I also faced the definition of cell types through the differentiation trajectories to which they belong. It revealed a conflicted continuous representation of the differentiating cell types as opposed to the discrete classification usually used to describe biological systems. In addition, it provided a 'dynamic' definition of cell type according to their plasticity and differentiation potential which significantly enriched but also complicated it.

Boundaries between cell types in a differentiation trajectory

In the study of the regeneration of the airway epithelium, I was directly faced with this conflicting discrete versus continuous description of cell types. The differentiation trajectory between epithelial cells is characterised by a linear gradient of expression of the marker genes of each cell type along the mentioned trajectory (cf. chapter 8, paper Fig- ure 1 andS3). It resulted in a lack of robustness in the clustering results, and thus enticed me to develop a solution to identify the core cell types and their marker genes. As mentioned above, the results of my robust clustering method helped me later on in the analysis of our atlas. Yet, it did not solve the complex interpretation of the cell-clusters found along the epithelial differentiation trajectory. A promising solution, inspired by automatic annotation tools, would be to provide multiple labels to each cell-clusters involved in a differentiation trajectory. For instance, based on the overlap between the cell-clusters top marker genes and a reference database, cell-clusters could be labelled as 90% basal cells and 10% suprabasal cells. Such annotation, could provide information on the differentiation potential and progress of each cell-clusters and avoid restrictive and ill-adapted discrete classifications. Yet, to be truly functional, this method would require a well-defined annotation database and thus a consensus in cell type annotation among the lung community.

Cell type compared to cell fate

In the course of my thesis, as well as in other developmental single-cell publications, an improved definition of cell type has been repeatedly mentioned regarding their differentiation potential. They raised the question of whether a cell-cluster can be considered as a cell type if its actual state is not the most differentiated one? This question is highly pertinent in the case of the epithelial cell types and their differentiation trajectory.

Cell type or meta-stable cell state

As mentioned above, the differentiation of epithelial cells results in a gradient of expression in which each cell type marker genes melt into the next (cf. chapter 7, paper Figure 1,SS3). This description of the epithelial cells types suggests a continuous process in which every cell are committed to the differentiation process without any stable state in the trajectory. However, to regenerate a fully functional epithelium, only certain cells will differentiate into the most differentiated cell types: goblet or multiciliated cells.

In this context, how can we differentiate, for each epithelial cell type, the cells in a meta-stable state (which will maintain their actual phenotype) and the cells in a potential differentiation state (which will differentiate)? Our study on the regeneration of the airway epithelium provided some insights on the main regulatory processes that can drive the switch between these cell states and ensure the balance in the cell type distribution CHAPTER 9. DISCUSSION AND PERSPECTIVES in the epithelium. Yet, it didn't provide at the scale of the cell transcriptomes sufficient information to truly distinguish between these stable and unstable cell states and further work is needed to describe the complex regulatory processes that induce the cells toward their differentiation trajectory.

A more striking example of this cell-state-switch concerns the commitment of club cells to multiciliated cell fate. A surprising result in the study of the epithelial cell trajectories was that they could all be described by a linear variation of gene expression along the trajectory except for the multiciliated branch. The commitment of club cells to multiciliated cell fate corresponds to an abrupt change in their transcriptome profiles without any intermediate state. The deuterosomal cells being described, by their transcriptome signature, as an almost differentiated state with high similarity to multiciliated cells. This particular feature in the differentiation trajectory of multiciliated cells reached the limits of trajectory inference algorithms. Indeed, this abrupt change in the cells transcriptional profile suggest an incomplete sampling of all the transitionary states between club cells and deuterosomal cells which is against the hypothesis of many trajectory inference tools and produced particular results:

• Monocle 2 produced a multiciliated-branch much more stretched than the goblet one (cf. chapter 7, paper Figure 1). It also produced an abrupt increase in pseudotime at the branching point toward multiciliated cells compared to goblet cells which agree with the pseudotime interpretation as defined by Monocle [START_REF] Trapnell | Monocle: Cell counting, differential expression, and trajectory analysis for single-cell RNA-Seq experiments[END_REF].

The pseudotime reflects an arbitrary measurement of the cell progress in a dynamic process, and as Monocle did not detect any intermediate cells between club and deuterosomal cells, it considered it as a sudden jump in the differentiation progress.

• Velocity produced a promising trajectory inference from basal to club cells but did not manage to model the entire branching trajectory. I hypothesize that the genes used to infer the cell velocities did not capture the branching process. Velocity uses a ratio between the count of spliced and unspliced genes to infer the cells velocities, but it first filters these genes based on their count values and correlations which significantly reduce the number of selected genes and potentially excluded some informative genes. This incomplete result also limited the description of the branching process in a 'real' time scale based on the time resolution provided by the mRNA splicing process.

• Palantir provided a multi-labelled annotation of the cells based on their differentiation potential toward the most differentiated cell fates (cf. chapter 7, paper Figure S7). It also highlighted the cleavage in the differentiation process toward multiciliated cells in which the cells mostly have a low differentiation potential toward multiciliated cells until they are committed to this fate and the probability increases abruptly. It demonstrates once again the lack of intermediate state between club and deuterosomal cells.

In conclusion, these results gave little insights into the commitment process of club cells toward multiciliated cells. The lack of intermediate cells and the abrupt shift in gene expression suggest that this particular differentiation process might be at another time-scale that was not captured in our single-cell experiments. A time-resolved study of this branching process is thus required to understand the differentiation dynamics leading to the multiciliated cell fate.

Intermediate cells as cell type or cell state

Another ambiguous cell type description, from a differentiation point of view, concerns the deuterosomal cells. As explained repeatedly, these cells have a transcriptomic profile highly similar to multiciliated, are described as precursors to multiciliated cells, and their marker genes do not suggest a particular function (independent to multiciliated cells) in the airway epithelium. Consequently, these cells do not meet the criteria of the traditional cell type definition even if they were robustly identified by clustering in many scRNA-seq datasets. Deuterosomal cells should thus be considered as a pre-multiciliated cell state rather than an independent cell type, similarly to cycling cells. This statement is even more relevant in the case of mucous-multiciliated cells. These cells, similarly to deuterosomal cells, have a transcriptomic profile highly similar to both multiciliated and goblet cells and have been described as intermediate between goblet and multiciliated cells. Contrary to deuterosomal cells, mucous-multiciliated cells have not been identified by clustering but by specifically searching their chimeric transcriptomic profile (after doublets and mRNA background removal, cf. chapter 7 paper Figure 2 and chapter 8 paper Figure 3). They were also validated by immunostainings (cf. chapter 7 paper Figure 2), and identified in other single-cell publications (Vieira- [START_REF] Braga | A cellular census of healthy lung and asthmatic airway wall identifies novel cell states in health and disease[END_REF][START_REF] Goldfarbmuren | Dissecting the cellular specificity of smoking effects and reconstructing lineages in the human airway epithelium[END_REF]. Yet, a question remains open on whether these cells are goblet cells trans-differentiating into multiciliated cells (our hypothesis) or if it is the other way around. Another question asks if this trans-differentiation is a rare but homeostatic process or if it is a disease/stress-induced event. As we identified mucousmulticiliated cells in both of our studies on the healthy human airway epithelium and that some of these cells are expressing deuterosomal marker genes, we hypothesise that goblet cells may differentiate into multiciliated cells in a rare but homeostatic process. We thus defined them as another pre-multiciliated cell state. However, to validate our hypothesis and determine the direction of this particular differentiation trajectory, further work is required on these specific cells. A hypothetical experiment, and a way to improve developmental and differentiation studies would be to associate both lineage tracing and scRNA-seq experiments. Such design would provide a direction in the differentiation process without the limitation of a limited number of simultaneously studied genes. An only limitation would remain: the non-applicability of this design in human and thus the use of either mouse or in vitro models of study and their potential bias when compared to true in vivo data.

A cell atlas definition of cell type

The increase in cell-throughput of single-cell technologies induced a worldwide atlas building trend using multiple cellular features measurable at single-cell resolution.

A system biology definition of cell type

A part of the description of biological systems that was only briefly addressed in my thesis is the cell-cell interactions. In the study of the regeneration of the airway epithelium, we studied the cell-specific expression of key elements of Notch, BMP-TGF and Wnt pathways and inferred the corresponding cell-cell interactions between epithelial cell types along the differentiation process. In our atlas of the airway epithelium, we did not report this analysis despite the increased number of cell types and the current trend in the field. Indeed, the cell type distribution in our HCA dataset did not allow a robust inference of the cell interactions if we consider their position of sampling. However, it is now evident that biological systems should be described with regard to their environment and their interactions with multiple cells compartments (epithelial, mesenchymal, immune...). As mentioned previously, it is most plainly that the interactions between each epithelial cells determine their cell identity as cell type or cell state, and even more that these cell identities can be further influenced by the interaction with immune or mesenchymal cell types. This last statement provides a broad perspective in the system biology field for the improved definition of cell type but most evidently for the continued characterisation of the airway epithelium in a homeostatic state, regeneration process or disease condition.

Multi-dimensional definition of cell type

In the HCA context, the creation of a reference atlas implies a description of the cells in the most exhaustive way and requires the integration of many data types. The characterisation of the cell types composing the human being will, therefore, be multi-dimensional and will include the traditional cell type definition as well as the improved one. It will consist of the cell position, morphology, function, molecular composition, embryonic origin, differentiation trajectory, possible interactions with their environments and corresponding reactions. Nevertheless, before reaching this definition, it will be necessary to reach a consensus definition on the already acquired data to update the cell type dogma simultaneously to the technologies that can describe it.

An example of this consensus definition has been extensively discussed above and should be continued on a larger scale in the lung community. A promising perspective would be to analyse all the already published lung atlases to highlight the robust cell annotations, identify the complementary features of each experimental design, and provide a precious resource on which the next phase of the Human Cell Atlas can be envisioned.

Conclusions

In conclusion, during my thesis, I discovered a new type of data and learned its properties and how to analyse it accordingly. I studied the complex regeneration process of the airway epithelium, provided a detailed description of the epithelial cell types and identified new cell trajectories and intermediate cell states. Then, I built an atlas of the airway epithelium along the respiratory tract and detailed its composing cell types, cell states and their distribution along the respiratory tract. Finally, this research pushed me toward a profound reflection on the definition of 'Cell type' through the understanding and analysis of single-cell RNA-seq data on the airway epithelium. This feedback on my research can be summarised in the open-ended questions listed below:

• Does a group of cells with a similar transcriptomic signature constitute a cell type?

• How to establish a balance between a 'traditional' and renewed description of a biological system?

• Can we define cells as a mixture of multiple cell types?

• What are the features defining the distinct cell types and states composing a trajectory?

• Does a cell type change its type or state in a disease condition?

• How to merge a static and dynamic definition of cell type?

• Does the addition of multiple cell features make the cell definition clearer or on the contrary more ambiguous?

All these questions need to be answered collectively to offer a detailed description of these elementary functional units of life and provide a continuously improved description of the complexity of life.

Part IV Appendices

Introduction

This paper deals with unsupervised clustering and feature selection in high dimensional space. Early work on feature selection were based on support vector machine (see [START_REF] Guyon | Gene selection for cancer classification using support vector machines[END_REF]) or logistic regression [START_REF] Shevade | A simple and efficient algorithm for gene selection using sparse logistic regression[END_REF]). We advocate the use of sparsity promoting methods as they allow not only to perform feature selection (a crucial task in biological applications, e.g. where features are genes), but also to use efficient state-of-the-art algorithms from convex optimization. Clustering in high dimension using classical algorithms such as k-means [START_REF] Mcqueen | Some methods for classification and analysis of multivariate observations[END_REF]; [START_REF] Arthur | k-means++: The advantages of careful seeding[END_REF]) suffers from the curse of dimensionality. As dimensions increase, vectors become indiscernible and the predictive power of the aforementioned methods is drastically reduced [START_REF]On k-anonymity and the curse of dimensionality[END_REF]; [START_REF] Radovanovic | Hubs in space : Popular nearest neighbors in high-dimensional data[END_REF]). In order to overcome this issue, a popular approach for high-dimensional data is to perform Principal Component Analysis (PCA) prior to clustering. This approach is however difficult to justify in general [START_REF] Wei-Chien | On using principal components before separating a mixture of two multivariate normal distributions[END_REF]). An alternative approach proposed in (de la [START_REF] De La Torre | Discriminative cluster analysis[END_REF]; [START_REF] Ding | Adaptive dimension reduction using discriminant analysis and k-means clustering[END_REF]) is to combine clustering and dimension ©2018 Cyprien Gilet, Michel Barlaud, Jean-Baptiste Caillau and Marie Deprez.

reduction by means of Linear Discriminant Analysis (LDA). The heuristic used in [START_REF] Ding | Adaptive dimension reduction using discriminant analysis and k-means clustering[END_REF]) is based on alternating minimization, which consists in iteratively computing a projection subspace by LDA, using the labels y at the current iteration and then running k-means on the projection of the data onto the subspace. Departing from this work, Bach and Harchaoui (2008) propose a convex relaxation in terms of a suitable semi-definite program (SDP). Another efficient approach is spectral clustering where the main tools are graph Laplacian matrices [START_REF] Ng | On spectral clustering: Analysis and an algorithm[END_REF]; Von [START_REF] Luxburg | A tutorial on spectral clustering[END_REF]). However, methods such as PCA, LDA or, more recently SIMLR, do not provide sparsity. A popular approach for selecting sparse features in supervised classification or regression is the Least Absolute Shrinkage and Selection Operator (LASSO) formulation [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF]). The LASSO formulation uses the 1 norm instead of 0 [START_REF] Candès | The restricted isometry property and its implications for compressed sensing[END_REF]; [START_REF] Candès | Enhancing sparsity by reweighted 1 minimization[END_REF]; [START_REF] Donoho | Optimally sparse representation in general (nonorthogonal) dictionaries via 1 minimization[END_REF]; [START_REF] Donoho | Signal recovery and the large sieve[END_REF]) as an added penalty term [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF]; [START_REF] Hastie | The entire regularization path for the support vector machine[END_REF]; [START_REF] Ng | Feature selection, 1 vs. 2 regularization, and rotational invariance[END_REF]; [START_REF] Friedman | Regularization path for generalized linear models via coordinate descent[END_REF]; [START_REF] Hastie | Statistcal learning with sparsity: The lasso and generalizations[END_REF]; [START_REF] Wei | Penalized model-based clustering with application to variable selection[END_REF]; [START_REF] Li | Feature selection: A data perspective[END_REF]. A hyperparameter, which unfortunately does not have any simple interpretation, is then used to tune sparsity. [START_REF] Witten | A framework for feature selection in clustering[END_REF] use a lasso-type penalty to select the features and propose a sparse k-means method. A main issue is that optimizing the values of the Lagrangian parameter λ [START_REF] Hastie | The entire regularization path for the support vector machine[END_REF]; [START_REF] Witten | A framework for feature selection in clustering[END_REF]) is computationally expensive. All these methods (Bach and Harchaoui (2008); de la Torre and Kanade (2006); [START_REF] Ding | Adaptive dimension reduction using discriminant analysis and k-means clustering[END_REF]; [START_REF] Witten | A framework for feature selection in clustering[END_REF]) require a k-means heuristic to retrieve the labels. The alternating scheme we propose combines such a k-means step with dimension reduction, as well as feature selection using an 1 sparsity constraint (see [START_REF] Barlaud | Classification and regression using an outer approximation projection-gradient method[END_REF]).

Constrained unsupervised classification

General Framework

Let X be the (nonzero) m × d matrix made of m line samples x 1 , . . . , x m belonging to the d-dimensional space of features. Let Y ∈ {0, 1} m×k be the matrix of labels where k 2 is the number of clusters. Note that we assume that this number is known; It is indeed the case for the applications we present in Section 3, while estimating k is in general a delicate matter out of the scope of this paper. Each line of Y has exactly one nonzero element equal to one, y ij = 1 indicating that the sample x i belongs to the j-th cluster. Let W ∈ R d× d be the projection matrix, where the dimension in the projected space, d, is understood to be much smaller than d. Let then μ be the k × d matrix of centroids of the projected data, XW :

μ(j, :) := 1 m i=1 y ij i s.t. y ij =1
(XW )(i, :).

The j-th centroid is the model for all samples x i belonging to the j-th cluster (y ij = 1). The clustering criterion can be cast as the Within-Cluster Sum of Squares (WCSS, [START_REF] Selim | K-means-type algorithms: A generalized convergence theorem and characterization of local optimality[END_REF]; [START_REF] Witten | A framework for feature selection in clustering[END_REF]) in the projected space

1 2 Y μ -XW 2 F → min (1)
where . F is the Frobenius norm induced by the Euclidean structure on m × d matrices,

(A|B) F := tr(A T B) = tr(AB T ), A F := (A|A) F .

The matrix of labels is constrained according to

y ij ∈ {0, 1}, i = 1, . . . , m, j = 1, . . . , k, (2) 
k j=1 y ij = 1, i = 1, . . . , m, (3) 
m i=1 y ij 1, j = 1, . . . , k. (4) 
Note that (3) implies that each sample belongs to exactly one cluster while (4) ensures that each cluster is not empty (no fusion of clusters). This prevents trivial solutions consisting in k -1 empty clusters and W = 0. In contrast with the Lagrangian LASSO formulation, we want to have a direct control on the value of the 1 bound, so we constrain W according to

W 1 η (η > 0), (5) 
where . 1 is the 1 norm of the vectorized d × d matrix of weights:

W 1 := W (:) 1 = d i=1 d j=1 |w ij |.
The problem is to estimate labels Y together with the sparse projection matrix W . As Y and W are bounded, the set of constraints is compact and existence of minimizers holds.

Proposition 1 The minimization of the norm (1), jointly in Y and W under the constraints ( 2)-( 5), has a solution.

To attack this difficult nonconvex problem, we propose an alternating (or Gauss-Seidel) scheme as in de la [START_REF] De La Torre | Discriminative cluster analysis[END_REF]; [START_REF] Ding | Adaptive dimension reduction using discriminant analysis and k-means clustering[END_REF]; [START_REF] Witten | A framework for feature selection in clustering[END_REF]. Another option would be to design a global convex relaxation to address the joint minimization in Y and W (see, e.g., Bach and Harchaoui (2008); [START_REF] Flammarion | Robust discriminative clustering with sparse regularizers[END_REF]).

The first convex subproblem is to find the best projection from dimension d to dimension d for a given clustering.

Problem 1 For a fixed clustering Y (and a given η > 0),

1 2 Y μ -XW 2 F → min
under the constraint (5) on W .

Given the matrix of weights W , the second subproblem is the standard k-means on the projected data.

Problem 2 For a fixed projection matrix W ,

1 2 Y μ -XW 2 F → min
under the constraints ( 2)-( 4) on Y .

Exact gradient-projection splitting method

To solve Problem 1, we use a gradient-projection method. It belongs to the class of splitting methods [START_REF] Boyd | Convex Optimization[END_REF]; [START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF]; [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF]; [START_REF] Lions | Splitting algorithms for the sum of two nonlinear operators[END_REF]; [START_REF] Mosci | Solving structured sparsity regularization with proximal methods[END_REF]; [START_REF] Sra | Optimization for Machine Learning[END_REF]; [START_REF] Parikh | Proximal Algorithms[END_REF]). It is designed to solve minimization problems of the form

ϕ(W ) → min, W ∈ C, (6) 
using separately the convexity properties of the function ϕ on one hand, and of the convex set C on the other. We use the following forward-backward scheme to generate a sequence of iterates:

V n := W n -γ n ∇ϕ(W n ), (7) 
W n+1 := P C (V n ) + ε n , (8) 
where P C denotes the projection on the convex set C (a subset of some Euclidean space).

Under standard assumptions on the sequence of gradient steps (γ n ) n , and on the sequence of projection errors (ε n ) n , convergence holds (see, e.g., [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]).

Theorem 2 Assume that ( 6) has a solution. Assume that ϕ is convex, differentiable, and that ∇ϕ is β-Lipschitz, β > 0. Assume finally that C is convex and that

n |ε n | < ∞, inf n γ n > 0, sup n γ n < 2/β.
Then the sequence of iterates of the forward-backward scheme [START_REF] Zhou | Gmnc is a master regulator of the multiciliated cell differentiation program[END_REF][START_REF] Stubbs | Multicilin promotes centriole assembly and ciliogenesis during multiciliate cell differentiation[END_REF] converges, whatever the initialization. If moreover (ε n ) n = 0 (exact projections), there exists a rank N and a positive constant K such that, for n N ,

ϕ(W n ) -inf C ϕ K/n. (9) 
In our case, ∇ϕ is Lipschitz since it is affine,

∇ϕ(W ) = X T (XW -Y μ), (10) 
and we recall the estimation of its best Lipschitz constant.

Lemma 3 Let A be a d × d real matrix, acting linearly on the set of d × k real matrices by left multiplication, W → AW . Then, its norm as a linear operator on this set endowed with the Frobenius norm is equal to its largest singular value, σ max (A).

Proof. The Frobenius norm is equal to the 2 norm of the vectorized matrix,

W F = ⎡ ⎢ ⎣ W 1 . . . W h ⎤ ⎥ ⎦ 2 , AW F = ⎡ ⎢ ⎣ AW 1 . . . AW h ⎤ ⎥ ⎦ 2 , (11) 
where W 1 , . . . , W h denote the h column vectors of the d × h matrix W . Accordingly, the operator norm is equal to the largest singular value of the kd × kd block-diagonal matrix whose diagonal is made of k matrix A blocks. Such a matrix readily has the same largest singular value as A.

As a byproduct of Theorem 2, we get Corollary 4 For any fixed step γ ∈ (0, 2/σ 2 max (X)), the forward-backward scheme applied to the Problem 1 with an exact projection on 1 balls converges with a linear rate towards a solution, and the estimate ( 9) holds.

Proof. The 1 ball being compact, existence holds. So does convergence, provided the condition of the step lengths is fulfilled. Now, according to the previous lemma, the best Lipschitz constant of the gradient of ϕ is σ max (X T X) = σ 2 max (X), hence the result.

Algorithm 1 Exact gradient-projection algorithm Input: X, Y, μ, η, W 0 , N, γ W ← W 0 for n = 1, . . . , N do V ← W -γX T (XW -Y μ) W ← P 1 η (V ) end for Output: W Exact projection.
In Algorithm 1, we denote by P 1 η (W ) the (reshaped as a d × d matrix) projection of the vectorized matrix W (:). An important asset of the method is that it takes advantage of the availability of efficient methods [START_REF] Condat | Fast projection onto the simplex and the l1 ball[END_REF]; [START_REF] Duchi | Efficient projections onto the l 1-ball for learning in high dimensions[END_REF]) to compute the 1 projection. For η > 0, denote B 1 (0, η) the closed 1 ball of radius η in the space R d× d centered at the origin, and

Δ η the simplex {w ∈ R d× d | w 1 + • • • + w d d = 1, w 1 0, . . . , w d d 0}. Let w ∈ R d× d,
and let v denote the projection on Δ η of (|w 1 |, . . . , |w d d|). It is well known that the projection of w on B 1 (0, η) is

(ε 1 (v 1 ), . . . , ε kd (v d d)), ε j := sign(w j ), j = 1, . . . , d d, (12) 
and the fast method described in [START_REF] Condat | Fast projection onto the simplex and the l1 ball[END_REF]) is used to compute v with complexity O(d × d).

Fista implementation. A constant step of suitable size γ is used in accordance with Corollary 4. In our setting, a useful normalization of the design matrix X is obtained replacing X by X/σ max (X). This sets the Lipschitz constant in Theorem 2 to one. The O(1/n) convergence rate of the algorithm can be speeded up to O(1/n 2 ) using a FISTA step [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF]). In practice we use a modified version [START_REF] Chambolle | On the convergence of the iterates of "fista[END_REF]) which ensures convergence of the iterates, see Algorithm 2. Note that for any fixed step γ ∈ (0, 1/σ 2 max (X)), the FISTA algorithm applied to Problem 1 with an exact projection on 1 balls converges with a quadratic rate towards a solution, and the estimate (9) holds.

Algorithm 2 Exact gradient-projection algorithm with FISTA Input: X, Y, μ, η, W 0 , N, γ > 0, a > 2

W ← W 0 V ← W 0 t ← 1 for n = 1, . . . , N do W new ← V -γX T (XV -Y μ) t new ← (n + a)/a λ ← 1 + (t -1)/t new V ← λW new + (1 -λ)W W ← W new t ← t new end for Output: W 2.

K-sparse clustering algorithm

The resulting alternating minimization is described by Algorithm 3. (One can readily replace the gradient-projection step by the FISTA version described in Algorithm 2.) Labels Y are for instance initialized by spectral clustering on X, while the k-means computation relies on standard methods such as k-means++ [START_REF] Arthur | k-means++: The advantages of careful seeding[END_REF]).

Algorithm 3 Alternating minimization clustering.

Input:

X, Y 0 , μ 0 , W 0 , L, N, k, γ, η Y ← Y 0 μ ← μ 0 W ← W 0 for l = 0, . . . , L do for n = 1, . . . , N do V ← W -γX T (XW -Y μ) W ← P 1 η (V ) end for Y ← kmeans(XW, k) μ ← centroids(Y, XW ) end for Output: Y, W
Convergence of the algorithm. Similarly to the approaches advocated in (Bach and Harchaoui (2008); de la [START_REF] De La Torre | Discriminative cluster analysis[END_REF]; [START_REF] Ding | Adaptive dimension reduction using discriminant analysis and k-means clustering[END_REF]; [START_REF] Witten | A framework for feature selection in clustering[END_REF]), our method involves non-convex k-means optimization for which convergence towards local minimizers only can be proved [START_REF] Bottou | Convergence properties of the k-means algorithms[END_REF]; [START_REF] Selim | K-means-type algorithms: A generalized convergence theorem and characterization of local optimality[END_REF]). In practice, we use k-means++ with several replicates to improve each clustering step. We assume that the initial guess for labels Y and matrix of weights W is such that the associated k centroids are all different. We note for further research that there have been recent attempts to convexify k-means (see, e.g., [START_REF] Bunea | PECOK: A convex optimization approach to variable clustering[END_REF]; [START_REF] Condat | A convex approach to k-means clustering and image segmentation[END_REF]; [START_REF] Mixon | Clustering subgaussian mixtures with k-means[END_REF]; [START_REF] Peng | Approximating k-means-type clustering via semidefinite programming[END_REF]). As each step of the alternating minimization scheme decreases the norm in (1), which is nonnegative, the following readily holds.

Proposition 5

The Frobenius norm Y μ -XW F converges as the number of iterates L in Algorithm 3 goes to infinity.

This property is illustrated in the next section on biological data. Further analysis of the convergence may build on recent results on proximal regularizations of the Gauss-Seidel alternating scheme for non convex problems [START_REF] Attouch | Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the kurdyka-lojasiewicz inequality[END_REF]; [START_REF] Bolte | Proximal alternating linearized minimization for nonconvex and nonsmooth problems[END_REF]). We also note that the extension to multi-label classification is straightforward as it suffices to allow several unit values on each line of the matrix Y by relaxing constraint [START_REF] Brooks | Multiciliated cells[END_REF].

Features selection. Feature selection is based on the sparsity inducing 1 constraint ( 5). The projection P 1 η (W ) aims at sparsifying the W matrix so that the features j will be selected if W (j, :) > 0. Hence, the number of the selected features is directly linked to the choice of the parameter η. To illustrate this fact, some examples are given in the next section, see Figure 1, right, and Figure 5, right. Moreover, let us note that the clustering result is computed by using only the selected features. In this sense, we can say that the combination of selected features is relevant for discriminating each cluster. However, our method does not guarantee that all the selected features are discriminant in each cluster.

Choice of the sparsity constraint. As previously mentioned, the constraint η is an important parameter in our algorithm since it aims at sparsifying the W matrix and selecting the most relevant features to compute the clustering. In practice, an interesting approach is to choose the parameter η such that it allows to both obtain a high silhouette coefficient [START_REF] Peter | Silhouettes: A graphical aid to the interpretation and validation of cluster analysis[END_REF]) and also to discard a large number of noisy features. In this sense, the silhouette coefficient guarantees a discriminant and relevant classification, while keeping in mind that the number of selected features for discriminating each cluster is reasonably lower, and noisy features are discarded. To illustrate this process, some examples are given in the next section, see Figure 2 and Figure 5.

Experimental evaluation on single cell RNA-seq clustering

In this section we evaluate K-sparse clustering algorithm on single cell RNA-seq databases. The next subsection is devoted to the experimental settings. Then we perform our algorithm on synthetic datasets. Finally, in subsection 3.3, we perform our algorithm on real single cell RNA-seq databases.

Experimental settings

We normalize the features and use the FISTA implementation with constant step γ = 1 in accordance with Corollary 4, and we set d = k + 4. Methods based on k-means provide different labels depending on the initial conditions, thus we select the best result over 40 replicates of k-means++ [START_REF] Arthur | k-means++: The advantages of careful seeding[END_REF]). The problem of estimating the number of clusters is out of the range of this study, and we refer to the popular GAP method Table 1: Simulation 1 (4 clusters, 600 cells, 10,000 genes): Comparison between methods and with real labels. According to Figure 2, we can chose η = 5000 which allows us to have both an excellent silhouette coefficient and also to discard a large number of noisy features. With η = 5000, k-sparse selected 3, 976 genes and outperforms others methods in terms of silhouette coefficient, accuracy, ARI and NMI. cell-to-cell variation in sequencing, we report clustering into four cell sub-populations, corresponding to the four culture conditions.

Zeisel scRNA-seq dataset. Zeisel et al. (Kiselev (2017); [START_REF] Zeisel | Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq[END_REF]) collected 3,005 mouse cells from the primary somatosensory cortex (S1) and the hippocampal CA1 region, using the Fluidigm C1 microfluidics cell capture platform followed. Gene expression was quantified with UMI counts. The raw UMI counts and metadata (batch, sex, labels) were downloaded from linnarssonlab.org/cortex. We applied low expressed gene filtering (7,364 remaining genes after removing genes that have less than 2 counts in 30 cells) and CPM normalization. We report clustering into the nine major classes identified in the study.

Usoskin scRNA-seq dataset. Uzoskin et al. [START_REF] Usoskin | Unbiased classification of sensory neuron types by large-scale single-cell rna sequencing[END_REF]) collected 622 cells from the mouse dorsal root ganglion, using a robotic cell-picking setup and sequenced with a 5' single-cell tagged reverse transcription (STRT) method. Filtered (9,195 genes) and normalized data (expressed as Reads Per Million) were downloaded with full sample annotations from linnarssonlab.org/drg. We report clustering into four neuronal cell types. Table 4: Klein dataset (4 clusters,2,717 cells,[START_REF] Quigley | Rfx2 stabilizes Foxj1 binding at chromatin loops to enable multiciliated cell gene expression[END_REF]322 genes): Comparison between methods and with real labels. For η = 25000, k-sparse selected 9, 870 genes and has an accuracy close to 100%. SIMLR has similar performances (accuracy, ARI and NMI) than k-sparse (which is 5 times faster than SIMLR).

Klein dataset

PCA [START_REF] Bach | Sharp analysis of low-rank kernel matrix approximations[END_REF]). The computational cost is improved (see Table 7) while the performance (ARI) drop significantly (see Table 6) when using low rank kernel matrix approximation in Large SIMLR (https://github.com/BatzoglouLabSU/SIMLR/tree/SIMLR/MATLAB). Methods SIMLR Large SIMLR k-sparse Klein (2,717 cells,[START_REF] Quigley | Rfx2 stabilizes Foxj1 binding at chromatin loops to enable multiciliated cell gene expression[END_REF]322 genes,k = 4) 98.34 61.49 98.34 Zeisel (3,005 cells,[START_REF] Zhou | Gmnc is a master regulator of the multiciliated cell differentiation program[END_REF]364 genes,k = 9) 64.8 56.39 84.17

Conclusion and discussion

We need to fix the number of clusters for unsupervised feature selection algorithms. In real world applications, we usually have limited knowledge about the clustering structure of the data. Choosing different number of clusters may lead to merging totally different small clusters into one big cluster or splitting one big cluster into smaller ones. In this paper, we use the approach [START_REF] Tibshirani | Estimating the number of clusters in a data set via the gap statistic[END_REF], a principled way to estimate the number of suitable clusters in a dataset. However, this clustering should be validate by biologist end-users. Regarding feature selection, most algorithms (in particular feature weighting methods) require that the number of selected features is specified while the optimal number of such features is in general not known. We do not have the prior knowledge about the label of each data instance and moreover data are very noisy and which will affect the stability of the algorithm (dropouts in single cell dataset). In this paper our heuristic method based on silhouette to specify the number of features is relevant while only 40% of selected genes are relevant due to noise.

To summarize, we focus in this paper on unsupervised classification. We provide a new efficient algorithm, k-sparse clustering, based on alternating minimization that achieves feature selection by introducing an 1 constraint in the gradient-projection step. This step, of splitting type, uses an exact projection on the 1 ball to promote sparsity, and is alternated with k-means. Convergence of the projection-gradient method is established, and each iterative step of our algorithm necessarily lowers the cost. Experiments on single-cell RNA-seq dataset in Section 3 illustrate that our method is very promising compared to other algorithms in the field. Ongoing developments deal with the application of k-sparse to very large datasets.

ARTICLE

CDC20B is required for deuterosome-mediated centriole production in multiciliated cells Diego R. Revinski Multiciliated cells (MCCs) harbor dozens to hundreds of motile cilia, which generate hydrodynamic forces important in animal physiology. In vertebrates, MCC differentiation involves massive centriole production by poorly characterized structures called deuterosomes. Here, single-cell RNA sequencing reveals that human deuterosome stage MCCs are characterized by the expression of many cell cycle-related genes. We further investigated the uncharacterized vertebrate-specific cell division cycle 20B (CDC20B) gene, which hosts microRNA-449abc. We show that CDC20B protein associates to deuterosomes and is required for centriole release and subsequent cilia production in mouse and Xenopus MCCs. CDC20B interacts with PLK1, a kinase known to coordinate centriole disengagement with the protease Separase in mitotic cells. Strikingly, over-expression of Separase rescues centriole disengagement and cilia production in CDC20B-deficient MCCs. This work reveals the shaping of deuterosome-mediated centriole production in vertebrate MCCs, by adaptation of canonical and recently evolved cell cycle-related molecules. M ulticiliated cells (MCCs) are present throughout metazoan evolution and serve functions ranging from locomotion of marine larvae and flatworms, to brain homeostasis, mucociliary clearance of pathogens and transportation of oocytes in vertebrates 1-3 . The formation of MCCs requires the production of numerous motile cilia through a complex process called multiciliogenesis 2,3 . The transcriptional control of multiciliogenesis has been decrypted to a large extent, through studies in Xenopus and mouse 2 . Seating at the top of the cascade, the Geminin-related factors GemC1 4-7 and Multicilin 8,9 (MCIDAS in mammals) are both necessary and sufficient to initiate MCC differentiation. GemC1 and Multicilin in complex with E2F transcription factors have been reported to activate the expression of Myb, FoxJ1, Rfx2, and Rfx3, which collectively regulate the expression of a large body of effectors required for the formation of multiple motile cilia 4,5,8-11 . Recently, defective multiciliogenesis caused by mutations in MCIDAS and Cyclin O (CCNO) has been associated with congenital respiratory and fertility syndromes in human 12,13 .

Each cilium sits atop a modified centriole, called a basal body (BB). After they exit from the cell cycle, maturing MCCs face the challenge of producing dozens to hundreds of centrioles in a limited time window. In vertebrate MCCs, bulk centriole biogenesis is mostly achieved through an acentriolar structure named the deuterosome, although canonical amplification from parental centrioles also occurs 1-3 . The deuterosome was first described in early electron microscopy studies of various multiciliated tissues including the mammalian lung 14 and oviduct 15,16 , the avian trachea 17 , and the Xenopus tadpole epidermis and trachea 18 . In mammalian MCCs, the deuterosome was described as a spherical mass of fibers organized into an inner dense region and an outer, more delicate, corona 16 . In Xenopus, deuterosomes were initially named procentriole organizers and were reported as dense amorphous masses 18 . Recent studies have revealed that deuterosome-mediated centriole synthesis mobilizes key components of the centriole-dependent duplication pathway of the cell cycle, including CEP152, PLK4, and SAS6 19-21 . However, the deuterosome itself differs from the centriole and may contain specific components. The identification of one such component, called DEUP1 for Deuterosome assembly protein 1, opened the possibility to investigate the deuterosome at the molecular level 21 . In mouse tracheal ependymal cells, DEUP1 was detected in the core of the deuterosome 21 . DEUP1, also known as CCDC67, is a conserved vertebrate paralogue of CEP63, itself known for its importance in initiation of centriole duplication during the cell cycle 21,22 . Consistently, DEUP1 was shown to be essential for centriole multiplication in mouse and Xenopus MCCs 21 . Both CEP63 and DEUP1 interact with CEP152, an essential event for centriole duplication and multiplication in cycling cells and MCCs, respectively 21,22 . Once centriole multiplication is over, neosynthesized centrioles must disengage from deuterosomes and parental centrioles, convert into BBs and migrate apically to dock at the plasma membrane to initiate cilium elongation.

In this study, we aimed at better understanding deuterosome biology. We found that the gene CDC20B was specifically expressed in maturing MCCs during the phase of centriole multiplication. We established the corresponding CDC20B protein as an essential regulator of centriole-deuterosome disengagement. This work illustrates well the strong functional relationships that exist between centriole release from deuterosomes and centriole disengagement in mitotic cells. It also posits CDC20B as a component of a "multiciliary locus" that contains several gene products, either proteins, such as MCIDAS, CCNO or CDC20B itself, or microRNAs, such as miR-449abc, which are all actively involved into vertebrate multiciliogenesis.

Results

MCC single-cell transcriptome at deuterosome stage. To identify regulators of centriole multiplication, we analyzed the transcriptome of human airway epithelial cells (HAECs) at the differentiation stage corresponding to active centriole multiplication 23 at the single-cell level (Fig. 1a). Gene expression data from 1663 cells were projected on a 2D space by t-distributed Stochastic Neighbor Embedding (tSNE) (Fig. 1b). We identified a small group of 37 cells corresponding to maturing MCCs engaged in deuterosome-mediated centriole amplification, as revealed by the specific expression of MCIDAS 8 , MYB 24 , and DEUP1 21 (Fig. 1c, d and Supplementary Figure 1). This subpopulation was characterized by the expression of known effectors of centriole synthesis, such as PLK4, STIL, CEP152, SASS6, but also of cell cycle regulators, such as CDK1, CCNB1, CDC20, SGOL2, and NEK2 (Fig. 1d, Supplementary Figure 1 and Supplementary Table 1). We reasoned that uncharacterized cell cycle-related genes that are specific to this subpopulation could encode components of the deuterosome-dependent centriole amplification pathway. A particularly interesting candidate in this category was CDC20B (Fig. 1d), which is related to the cell cycle regulators CDC20 and FZR1 25 (Supplementary Figure 2a). First, the CDC20B gene is present in the vertebrate genomic locus that also contains the key MCC regulators MCIDAS 8 and CCNO 13 . Coexpression of CDC20B, MCIDAS, and CCNO throughout HAEC differentiation was indeed observed in an independent RNA sequencing study, performed on a bulk population of HAECs (Supplementary Figure 2b). These results fit well with the observation that the promoter of human CDC20B was strongly activated by the MCIDAS partners E2F1 and E2F4 (Supplementary Figure 2c), as also shown in Xenopus by others 9 (Supplementary Figure 2d). Second, the CDC20B gene bears in its second intron the miR-449 microRNAs, which were shown to contribute to MCC differentiation 23,26-30 . Finally, in Xenopus epidermal MCCs, cdc20b transcripts were specifically detected during the phase of centriole amplification (Supplementary Figure 2e-m). This first set of data pointed out the specific and conserved expression pattern of CDC20B in immature MCCs. In the rest of this study, we analyzed the putative role of CDC20B in deuterosome-mediated centriole multiplication.

Composition and organization of vertebrate deuterosomes. We first conducted a series of immunofluorescence analyses to gain a better understanding of deuterosome organization in mouse ependymal and Xenopus epidermal MCCs as models. In wholemounts of mouse ependymal walls, mature deuterosomes revealed by DEUP1 staining appeared as circular structures around a lumen (Fig. 2a). We noticed that DEUP1 also stained fibers emanating from the core into the corona. Nascent centrioles revealed by the marker FOP were organized around the DEUP1-positive core ring. STED super-resolution microscopy helped to better appreciate the regular organization of individual FOP-positive procentrioles (Fig. 2b). Proximity labeling assays have revealed that when ectopically expressed in centrosomes CCDC67/DEUP1 is found close to Pericentrin (PCNT) and γtubulin, two main components of the pericentriolar material (PCM) 31 . Interestingly, we found that PCNT was present in the deuterosome corona (Fig. 2a), and STED microscopy further revealed that PCNT formed fibers around growing procentrioles (Fig. 2b). γ-tubulin staining was detected in the DEUP1-positive deuterosome core, as well as in the corona (Fig. 2a). STED microscopy indicated that PCNT and γ-tubulin stained distinct interwoven fibers in the deuterosome corona. Next, we stained immature Xenopus epidermal MCCs with γ-Tubulin and Centrin to reveal centriole amplification platforms. These platforms displayed irregular shapes and sizes (Fig. 2c), in agreement with early electron microscopy studies 18 . Expression of low amounts of GFP-Deup1 in MCCs induced by Multicilin confirmed that active deuterosomes are embedded in γ-Tubulin-positive masses (Fig. 2d). Overall, this analysis is consistent with early ultrastructural studies, as the deuterosome core and corona can be distinguished by the presence of DEUP1 and PCNT, respectively. Moreover, γ-tubulin is a conserved marker of centriole amplification platforms in vertebrate MCCs. By analogy to the organization of the centrosome, we propose to coin the term perideuterosomal material (PDM) to describe the corona, as this region may prove important for deuterosome function. Note that CDC20B exhibits the most specific expression among deuterosome marker genes CDC20B associates to vertebrate deuterosomes. We then analyzed the subcellular localization of CDC20B protein in deuterosome stage mouse and Xenopus MCCs. In immature mouse tracheal MCCs, double immunofluorescence revealed the association of CDC20B to DEUP1-positive deuterosomes (Fig. 3a).

We noticed that CDC20B tended to associate primarily to large DEUP1 foci. As deuterosomes grow as they mature 21 , this suggests that CDC20B may penetrate into the deuterosomal environment at a late stage of the centriole multiplication process. The same observation was made when comparing CDC20B staining in the region of immature and mature deuterosomes of mouse ependymal MCCs (Fig. 3b). As double DEUP1/CDC20B staining could not be performed on these cells, we analyzed CDC20B distribution relative to FOP-positive procentrioles. In early deuterosome stage MCCs, CDC20B was expressed at low levels and FOP staining was mostly concentrated in a large amorphous cloud (Fig. 3b). In such cells, no CDC20B staining was detected in association to FOP-positive procentrioles growing around deuterosomes. In contrast, in mature deuterosome stage MCCs, CDC20B was enriched in the innermost part of the PDM, probably very close to the deuterosome core (Fig. 3b). Further evidence was provided with a custom-made polyclonal antibody (Supplementary Figure 3b, c) used to analyze Cdc20b protein distribution in Xenopus epidermal MCCs. Here also, Cdc20b was found associated to Deup1-positive deuterosomes actively engaged in centriole synthesis (Fig. 3c). We finally analyzed the distribution of CDC20B in mature MCCs. As previously reported, the CDC20B protein was detected near BBs 23 , but also in cilia of fully differentiated human airway MCCs (Supplementary Figure 4a-c). This was confirmed by proximity ligation assays that revealed a tight association of CDC20B with Centrin2 and acetylated α-Tubulin, in BBs and cilia, respectively (Supplementary Figure 4d-f). Fluorescent immunostaining also revealed the presence of Cdc20b in the vicinity of BBs in Xenopus epidermal MCCs (Supplementary Figure 4g-i). In contrast, no cilia staining was observed in these cells. Altogether, our analyses revealed that in three distinct types of MCCs in two distant vertebrate species, CDC20B is tightly associated to mature deuterosomes. We next investigated whether it may control their function.

CDC20B is required for multiciliogenesis in vertebrates. For that purpose, Cdc20b was knocked down in mouse ependymal MCCs, through post-natal brain electroporation of three distinct shRNAs. One of them, sh274, which targets the junction between exons 3 and 4, and can therefore only interact with mature mRNA, was useful to rule out possible interference with the production of miR-449 molecules from the Cdc20b pre-mRNA (Supplementary Figure 5a). Five days after electroporation, all three shRNAs significantly reduced the expression of CDC20B in deuterosome stage MCCs (Fig. 4c), but did not alter MCC identity as revealed by FOXJ1 expression (Fig. 4a,b,d). Centriole production by deuterosomes was analyzed by FOP/DEUP1 double staining 9 days after electroporation. At this stage, control MCCs had nearly all released their centrioles and disassembled their deuterosomes (Fig. 4e,g). In sharp contrast, Cdc20b shRNAs caused a significant increase in the number of defective MCCs that displayed centrioles still engaged on deuterosomes (Fig. 4f,g). Fifteen days after electroporation, a majority of CDC20Bdeficient MCCs still showed a severely reduced number of released centrioles, and consequently lacked cilia (Fig. 4h-k).

Cdc20b was also knocked down in Xenopus epidermal MCCs, through injection of two independent morpholino antisense oligonucleotides targeting either the ATG (Mo ATG), or the exon 1/intron 1 junction (Mo Spl) (Supplementary Figure 5b). The efficiency of Mo ATG was verified through fluorescence extinction of co-injected Cdc20b-Venus (Supplementary Figure 5c). RT-PCR confirmed that Mo Spl caused intron 1 retention (Supplementary Figure 5d), which was expected to introduce a premature stop codon, and to produce a Cdc20b protein lacking 96% of its amino acids, likely to undergo unfolded protein response-mediated degradation. Thus, both morpholinos were expected to generate severe loss of Cdc20b function. Consistent with this interpretation, both morpholinos strongly reduced Cdc20b immunostaining in deuterosome stage MCCs (Supplementary Figure 5e). We verified that neither morpholinos caused p53 transcript up-regulation (Supplementary Figure 5f), a nonspecific response to morpholinos that is sometimes detected in zebrafish embryos 32 . Importantly, whole-mount in situ hybridization indicated that miR-449 expression was not perturbed in the presence of either morpholino (Supplementary Figure 5g). We found that cdc20b knockdown did not interfere with acquisition of the MCC fate (Supplementary Figure 6a-e), but severely impaired multiciliogenesis, as revealed by immunofluorescence and electron microscopy (Fig. 5a-i). This defect stemmed from a marked reduction in the number of centrioles, and poor docking at the plasma membrane (Fig. 5g-o and Supplementary Figure 6f-k). Importantly, centrioles and cilia were rescued in Mo Spl MCCs by co-injection of cdc20b, venus-cdc20b or cdc20bvenus mRNAs (Fig. 5j-o and Supplementary Figure 6f-k). In normal condition, Xenopus epidermal MCCs arise in the inner mesenchymal layer and intercalate into the outer epithelial layer, while the process of centriole amplification is underway 33 . To rule out secondary defects due to poor radial intercalation, we assessed the consequences of cdc20b knockdown in MCCs induced in the outer layer by Multicilin overexpression 8 . Like in natural MCCs, Cdc20b proved to be essential for the production of centrioles and cilia in response to Multicilin activity (Supplementary Figure 7a-g). We also noted that the apical actin network that normally surrounds BBs was disrupted in absence of Cdc20b, although this defect could be secondary to the absence of centrioles (Supplementary Figure 7d-g). Centrioles in Cdc20b morphant cells often formed clusters, suggesting that disengagement from deuterosomes could have failed (Fig. 5l,m). To better assess this process, we injected GFP-Deup1 in Multicilin-induced MCCs and stained centrioles with Centrin. In mature control MCCs, deuterosomes were disassembled, centrioles were converted into BBs, had docked and initiated cilium growth (Fig. 5p,s). In contrast, both morpholinos caused a marked increase in the number of defective MCCs, which were devoid of cilia and displayed centrioles still engaged on deuterosomes (Fig. 5q-u).

Altogether our functional assays in mouse and Xenopus indicate that CDC20B is required for centriole disengagement from deuterosomes and subsequent ciliogenesis in MCCs. We next investigated the molecular mechanism of action of CDC20B underlying its role in centriole release.

Partners and effectors of CDC20B reveal its mechanism of action. In mitotic cells, centriole disengagement is necessary to license centriole duplication in the following cell cycle 34 . This process is known to depend on the coordinated activities of the mitotic kinase PLK1 and the protease Separase 35 . One proposed mechanism involves the phosphorylation of PCNT by PLK1, which induces its cleavage by Separase, thereby allowing centriole disengagement through disassembly of the PCM 36,37 . Separase is known to be activated by the degradation of its inhibitor Securin, which is triggered by the Anaphase Promoting Complex (APC/C) upon binding to CDC20 25 . PLK1, Separase (ESPL1), Securin (PTTG1), CDC20, and PCNT were all found to be expressed in human deuterosome stage MCCs (Fig. 1d and Supplementary Figure 1). We have shown above that PCNT is present in the PDM and a recent study revealed the presence of CDC20 and the APC/C component APC3 in mouse ependymal MCCs at the stage of centriole disengagement 38 . Based on this large body of information, we hypothesized that centriole-deuterosome disengagement involves the coordinated activities of PLK1 and Separase, and that CDC20B would be involved in this scenario. CDC20B encodes a protein of about 519 amino acids largely distributed across the vertebrate phylum 23 . In its C-terminal half, CDC20B contains seven well conserved WD40 repeats, predicted to form a β-propeller, showing 49 and 37% identity to CDC20 and FZR1 repeats, respectively (Supplementary Figure 2a). However, CDC20B lacks canonical APC/C binding domains (Supplementary Figure 2a). Using mass spectrometry on immunoprecipitated protein complexes from transfected HEK cells, we could identify multiple APC/C components interacting with CDC20 but not with CDC20B (Supplementary Table 2). We conclude that CDC20B is probably incapable of activating APC/ C. Interestingly, an unbiased interactome study reported association of CDC20B with PLK1 39 . Using reciprocal coimmunoprecipitation assays in HEK transfected cells, we confirmed that CDC20B and PLK1 could be found in the same complex (Fig. 6a and Supplementary Figure 8). This suggested that CDC20B could cooperate with PLK1 to trigger centriole disengagement. Consistent with this hypothesis, we found that PLK1 was enriched in the PDM of mature deuterosomes in mouse ependymal MCCs (Fig. 6b), in agreement with a recent report 38 . Another interesting partner of CDC20B identified in a second unbiased interactome study 40 was SPAG5 (Astrin), which was reported to control timely activation of Separase during the cell cycle 41,42 . Using the same strategy as above, we could detect CDC20B and SPAG5 in the same complex (Fig. 6c and Supplementary Figure 8). As SPAG5 was found associated to DEUP1 in a proximity labeling assay 31 , we assessed its localization in deuterosomes. Strikingly, SPAG5 was detectable in mature deuterosomes of mouse ependymal MCCs, with a clear enrichment in the deuterosome core (Fig. 6d). Finally, reciprocal coimmunoprecipitations revealed that CDC20B and DEUP1 were detected in the same complex when co-expressed in HEK cells (Fig. 6e and Supplementary Figure 8). Consistent with this result, we observed that RFP-Cdc20b was recruited around spherical Deup1-GFP structures positive for γ-Tubulin and Centrin in Xenopus epidermal MCCs (Supplementary Figure 7h-m). This series of experiments suggested that CDC20B could participate in the assembly of a protein complex in mature deuterosomes, required to coordinate the activities of PLK1 and Separase for centriole disengagement. As Separase is the last effector in this scenario, we tested whether over-expressing human Separase in Xenopus cdc20b morphant MCCs could rescue centriole disengagement. In support to our hypothesis, over-expression of wildtype, but not protease-dead Separase, efficiently rescued centriole disengagement and cilia formation in cdc20b morphant MCCs (Fig. 7a-g and Supplementary Figure 7n-s). Separase could also rescue multiciliogenesis in Multicilin-induced MCCs injected with cdc20b Mos (Supplementary Figure 7t-z). We conclude that CDC20B is involved in Separase-mediated release of mature centrioles from deuterosomes in vertebrate MCCs (Fig. 7h).

Discussion

In this study, we report the essential and conserved role of CDC20B in vertebrate multiciliogenesis. Our data suggest that the presence of CDC20B in the perideuterosomal region is necessary to allow centriole disengagement. We note, however, that our data, which are based on partial knockdowns, remain compatible with an earlier function of CDC20B in promoting deuterosome assembly and/or activity. A total genetic knockout of Cdc20b should help to assess this possibility in mouse tracheal and ependymal MCCs. By analogy to mitosis, we propose that CDC20B is involved in Separase-dependent proteolysis at deuterosomes, allowing the release of mature centrioles and subsequent ciliogenesis. This view is consistent with a recent report showing that centriole disengagement in murine ependymal MCCs involves the activities of PLK1, a partner of CDC20B, and APC/C, the activator of Separase 38 . The central question arising from our work then becomes: how are CDC20B and Separase activities integrated? The simple scenario of a CDC20-like function of CDC20B is very unlikely as it does not appear to bind APC/C (Supplementary Table 2). CDC20 was detected in cultured murine ependymal MCCs during the phase of centriole disengagement 38 , and FZR1 genetic ablation was reported to cause reduced production of centrioles and cilia in the same cells 43 . APC/C is therefore likely activated in maturing MCCs by its classical activators, CDC20 and/or FZR1, leading to Separase activation through degradation of its inhibitor Securin. In that context, we propose that additional factors linked directly or indirectly to CDC20B may contribute to activation of Separase. It was shown that SPAG5 inhibits or activates Separase depending on its status of phosphorylation 41,42 . As the phosphorylation status of SPAG5 was shown to be controlled by PLK1 44 , our data suggest that the CDC20B/PLK1/SPAG5 complex could control the timing of Separase activation locally in deuterosomes. It is therefore possible that multiple modes of activation of Separase may act in parallel to trigger the release of neo-synthesized centrioles in maturing MCCs. Alternatively, different pathways may be used in distinct species, or in distinct types of MCCs. An important question for future studies regards the identity of PLK1 and Separase substrates involved in centriole disengagement. Work on mitotic cells 36,37 candidate could be DEUP1 itself as it is clear that deuterosomes are disassembled after the release of centrioles. In that respect, it is interesting to note the presence of multiple PLK1 consensus phosphorylation sites in human, mouse, and Xenopus DEUP1.

In this study, we have introduced the notion of perideuterosomal material, in analogy to the pericentriolar material. It is striking that the two main components of the PCM, PCNT, and γ-Tubulin, are also present in the PDM, which begs the question whether additional PCM proteins may be present in the PDM. The PDM may constitute a platform to sustain procentriole growth, through the concentration and delivery of elementary parts. It could also have a mechanical role to hold in place the growing procentrioles. Future work should evaluate deuterosomemediated centriole synthesis in absence of major PDM components.

We found that beyond its association to deuterosomes during the phase of centriole amplification, CDC20B was also associated to BBs and cilia in fully differentiated mammalian MCCs. This dual localization is consistent with failed ciliogenesis upon CDC20B knockdown in mouse ependymal MCCs. However, while we could detect Cdc20b near BBs of mature MCCs in Xenopus, we found no evidence of its presence in cilia. Furthermore, cilia were rescued by Separase overexpression in Cdc20b morphant MCCs. This suggests that Cdc20b is not required for ciliogenesis in this species, although it could potentially contribute to cilium structure and/or function. Thus, refined temporal and spatial control of CDC20B inhibition will be needed to study its function beyond centriole synthesis.

This and previous studies 23,26-28 establish that the miR-449 cluster and its host gene CDC20B are commonly involved in multiciliogenesis. Consistent with its early expression, it was suggested that miR-449 controls cell cycle exit and entry into differentiation of MCCs 23,27,30 . This study reveals that CDC20B itself is involved in the production of centrioles, the first key step Previous works have established the involvement of the centriole duplication machinery active in S-phase of the cell cycle, during centriole multiplication of vertebrate post-mitotic MCCs 19-21 . Our study further reveals a striking analogy between centriole disengagement from deuterosomes in MCCs, and centriole disengagement that occurs during the M/G1 transition of the cell cycle (Fig. 7g). Thus, it appears that centriole production in MCCs recapitulates the key steps of the centriole duplication cycle 34 . However, the cell cycle machinery must adapt to the acentriolar deuterosome to massively produce centrioles. Such adaptation appears to involve physical and functional interactions between canonical cell cycle molecules, such as CEP152 and PLK1, and recently evolved cell cycle-related deuterosomal molecules, such as DEUP1 21 and CDC20B. It remains to examine whether additional deuterosomal cell cycle-related molecules have emerged in the vertebrate phylum to sustain massive centriole production.

In conclusion, this work illustrates how coordination between ancestral and recently evolved cell cycle-related molecules can give rise to a novel differentiation mechanism in vertebrates.

Methods

Subjects/human samples. Inferior turbinates were from patients who underwent surgical intervention for nasal obstruction or septoplasty (provided by L. Castillo, Nice University Hospital, France). Experiments involving human tissues were performed according to the guidelines of the Declaration of Helsinki, after approval by the institutional review board "Comité de Protection des Personnes Sud Méditerranée V" (06/16/2015). All patients gave their written informed consent.

Single-cell RNA sequencing of human airway epithelial cells (HAECs). HAECs cultures were derived from nasal mucosa of inferior turbinates. After excision, nasal inferior turbinates were immediately immersed in Ca 2+ /Mg 2+ -free HBSS supplemented with 25 mM HEPES, 200 U/mL penicillin, 200 μg/mL streptomycin, 50 μg/mL gentamicin sulfate, and 2.5 μg/mL amphotericin B (all reagents from Gibco). After repeated washes with cold supplemented HBSS, tissues were digested with 0.1% Protease XIV from Streptomyces griseus (Sigma) overnight at 4 °C. After incubation, fetal calf serum (FCS) was added to a final concentration of 10%, and nasal epithelial cells were detached from the stroma by gentle agitation. Cell suspensions were further dissociated by trituration through a 21 G-needle and then centrifuged at 150×g for 5 min. The pellet was resuspended in supplemented HBSS containing 10% FCS and centrifuged again. The second cell pellet was then suspended in Dulbecco's Modified Eagle's Medium (DMEM, Gibco) containing 10% FCS and cells were plated (20 000 cells per cm 2 ) on 75 cm 2 -flasks coated with rat tail collagen I (Sigma-Aldrich). Cells were incubated in a humidified atmosphere of 5% CO 2 at 37 °C. Culture medium was replaced with Bronchial Epithelium Basal Medium (BEBM, Lonza) supplemented with BEGM SingleQuot Kit Supplements (Lonza) on the day after and was then changed every other day. After 4 to 5 days of culture, after reaching about 70% confluence, cells were detached with trypsin-EDTA 0.05% (Gibco) for 5 min and seeded on Transwell® permeable supports (6.5 mm diameter; 0.4 μm pore size; Corning), in BEGM medium, with a density of 30,000 cells per Transwell®. Once the cells have reached confluence (typically after 5 days), they were induced to differentiate at the air-liquid interface by removing medium at the apical side of the Transwell®, and by replacing medium at the basal side with DMEM:BEBM (1:1) supplemented with BEGM SingleQuot Kit Supplements. Culture medium was changed every other day. Single-cell analysis was performed after 14 days of culture at the air-liquid interface, which corresponds to the maximum centriole multiplication stage. To obtain a single-cell suspension, cells were incubated with 0.1% protease type XIV from S. griseus in supplemented HBSS for 4 h at 4 °C. Cells were gently detached from Transwells® by pipetting and then transferred to a microtube. 50 units of DNase I (EN0523 ThermoFisher Scientific) per 250 μL were directly added and cells were further incubated at room temperature for 10 min. Cells were centrifuged (150×g for 5 min) and resuspended in 500 μL supplemented HBSS containing 10% FCS, centrifuged again (150×g for 5 min) and resuspended in 500 μL HBSS before being mechanically dissociated through a 26 G syringe (4 times). Finally, cell suspensions were filtered through a Scienceware® Flowmi™ Cell Strainer (40 μm porosity), centrifuged (150×g for 5 min) and resuspended in 500 μL of cold HBSS. Cell concentration measurements were performed with Scepter™ 2.0 Cell Counter (Millipore) and Countess™ automated cell counter (ThermoFisher Scientific). Cell viability was checked with Countess™ automated cell counter (ThermoFisher Scientific). All steps except the DNAse I incubation were performed on ice. For the cell capture by the 10× genomics device, the cell concentration was adjusted to 300 cells/μL in HBSS aiming to capture 1500 cells. We then followed the manufacturer's protocol (Chromium™ Single Cell 3′ Reagent Kit, v2 Chemistry) to obtain single cell 3′ libraries for Illumina sequencing. Libraries were sequenced with a NextSeq 500/550 High Output v2 kit (75 cycles) that allows up to 91 cycles of paired-end sequencing: the forward read had a length of 26 bases that included the cell barcode and the UMI; the reverse read had a length of 57 bases that contained the cDNA insert. CellRanger Single-Cell Software Suite v1.3 was used to perform sample demultiplexing, barcode processing and single-cell 3′ gene counting using default parameters and human build hg19. Additional analyses were performed using R. Pseudotemporal ordering of single cells was performed with the last release of the Monocle package 45 . Cell cycle scores were calculated by summing the normalized intensities of genes belonging to phase-specific gene sets then centered and scaled by phase. Gene sets for each phase were curated from previously described sets of genes 46 (Table S2). Data was submitted to the GEO portal under series reference GSE103518. Data shown in Fig. 1 is representative of four independent experiments performed on distinct primary cultures.

RNA sequencing of HAECs. For Supplementary Fig. 2B, three independent HAEC cultures (HAEC1, HAEC2, HAEC3) were triggered to differentiate in air-liquid interface (ALI) cultures for 2 days (ALI day 2, undifferentiated), ALI day 14 (first cilia), or ALI day 28 (well ciliated). RNA was extracted with the miRNeasy mini kit (Qiagen) following manufacturer's instructions. mRNA-seq was performed from 2 μg of RNA that was first subjected to mRNA selection with Dynabeads® mRNA Purification Kit (Invitrogen). mRNA was fragmented 10 min at 95 °C in RNAseIII buffer (Invitrogen) then adapter-ligated, reverse transcribed and amplified (6 cycles) with the reagents from the NEBNext Small RNA Library Prep Set for SOLiD. Small RNA-seq was performed from 500 ng RNA with the NEBNext Small RNA Library Prep Set for SOLiD (12 PCR cycles) according to manufacturer's instructions. Both types of amplified libraries were purified on Purelink PCR micro kit (Invitrogen), then subjected to additional PCR rounds (8 cycles for RNA-seq and 4 cycles for small RNA-seq) with primers from the 5500 W Conversion Primers Kit (Life Technologies). After Agencourt® AMPure® XP beads purification (Beckman Coulter), libraries were size-selected from 150 nt to 250 nt (for RNAseq) and 105 nt to 130 nt (for small RNA-seq) with the LabChip XT DNA 300 Assay Kit (Caliper Lifesciences), and finally quantified with the Bioanalyzer High Sensitivity DNA Kit (Agilent). Libraries were sequenced on SOLiD 5500XL (Life Technologies) with single-end 50b reads. SOLiD data were analyzed with lifescope v2.5.1, using the small RNA pipeline for miRNA libraries and whole transcriptome pipeline for RNA-seq libraries with default parameters. Annotation files used for production of raw count tables correspond to Refseq Gene model v20130707 for mRNAs and miRBase v18 for small RNAs. Data generated from RNA sequencing were then analyzed with Bioconductor (http://www.bioconductor.org) package DESeq and size-factor normalization was applied to the count tables. Heatmaps were generated with GenePattern using the "Hierarchical Clustering" Module, applying median row centering and Euclidian distance.

Re-analysis of Xenopus E2F4 Chip-seq and RNA-seq. RNA-seq (samples GSM1434783 to GSM1434788) and ChIP-seq (samples GSM1434789 to GSM1434792) data were downloaded from GSE59309. Reads from RNA-seq were aligned to the Xenopus laevis genome release 7.1 using TopHat2 47 with default parameters. Quantification of genes was then performed using HTSeq-count 48 release 0.6.1 with "-m intersection-nonempty" option. Normalization and statistical analysis were performed using Bioconductor package DESeq2 49 . Differential expression analysis was done between Multicilin-hGR alone versus Multicilin-hGR in the presence of E2f4ΔCT. Reads from ChIP-seq were mapped to the X. laevis genome release 7.1 using Bowtie2 50 . Peaks were called and annotated according to their positions on known exons with HOMER 51 . Peak enrichments of E2F4 binding site in the promoters of centriole genes and cell cycle genes 9 were estimated in presence or absence of Multicilin and a ratio of E2F4 binding (Multicilin vs no Multicilin) was calculated.

Promoter reporter studies. The human CDC20B promoter was cloned into the pGL3 Firefly Luciferase reporter vector (Promega) with SacI and NheI cloning sites. The promoter sequenced ranged from -1073 to +104 relative to the transcription start site. 37.5 ng of pGL3 plasmid were applied per well. pCMV6-Neg, pCMV6-E2F1 (NM_005225) and pCMV6-E2F4 (NM_001950) constructs were from Origene. 37.5 ng of each plasmid was applied per well. 25 ng per well of pRL-CMV (Promega) was applied in the transfection mix for transfection normalization (Renilla luciferase). HEK 293T cells were seeded at 20,000 cells per well on 96-well plates. The following day, cells were transfected with the indicated plasmids (100 ng of total DNA) with lipofectamine 3000 (Invitrogen). After 24 h, cells were processed with the DualGlo kit (Promega) and luciferase activity was recorded on a plate reader.

Proximity ligation assays. Fully differentiated HAECs were dissociated by incubation with 0.1% protease type XIV from S. griseus (Sigma-Aldrich) in HBSS (Hanks' balanced salts) for 4 h at 4 °C. Cells were gently detached from the Transwells® by pipetting and then transferred to a microtube. Cells were then cytocentrifuged at 72×g for 8 min onto SuperFrostPlus slides using a Shandon Cytospin 3 cytocentrifuge. Slides were fixed for 10 min in methanol at -20 °C for Centrin2 and ZO1 assays, and for 10 min in 4% paraformaldehyde at room temperature and then permeabilized with 0.5% Triton X-100 in PBS for 10 min for acetylated-α-tubulin assays. Cells were blocked with 3% BSA in PBS for 30 min. The incubation with primary antibodies was carried out at room temperature for 2 h. Then, mouse and rabbit secondary antibodies from the Duolink® Red kit (Sigma-Aldrich) were applied and slides were processed according to manufacturer's instructions. Images were acquired using the Olympus Fv10i confocal imaging systems with ×60 oil immersion objective and Alexa 647 detection parameters.

Animals. All experiments were performed following the Directive 2010/63/EU of the European parliament and of the council of 22 September 2010 on the protection of animals used for scientific purposes. Experiments on X. laevis and mouse were approved by the 'Direction départementale de la Protection des Populations, Pôle Alimentation, Santé Animale, Environnement, des Bouches du Rhône' (agreement number F 13 055 21). Mouse experiments were approved by the French ethical committee no. 14 (permission number: 62-12112012). Timed pregnant CD1 mice were used (Charles Rivers, Lyon, France).

Immunostaining on mouse ependyma. Dissected brains were subjected to 12 min fixation in 4% paraformaldehyde, 0.1% Triton X-100, blocked 1 h in PBS, 3% BSA, incubated overnight with primary antibodies diluted in PBS, 3% BSA, and incubated 1 h with secondary antibodies at room temperature. Ependyma were dissected further and mounted with Mowiol before imaging using an SP8 confocal microscope (Leica microsystems) equipped with a ×63 oil objective. The same protocol was used to prepare samples for super-resolution acquisition. Pictures were acquired with a TCS SP8 STED ×3 microscope equipped with an HC PL APO 93×/1.30 GLYC motCORR TM objective (Leica microsystems). Pericentrin was revealed using Alexa 514 (detection 535-564 nm, depletion 660 nm), γ-tubulin was revealed using Alexa 568 (detection 582-667 nm, depletion 775), and FOP was revealed using Alexa 488 (detection 498-531 nm, depletion 592 nm). Pictures were deconvoluted using Huygens software. Maximum intensity projection of 3 deconvoluted pictures is presented in Fig. 4g. Primary antibodies: rabbit anti-CDC20B (1:500; Proteintech, 133376-1-AP), mouse IgG anti-PLK1 (1:500; Ther-moFisher, 33-1700), rabbit anti-Pericentrin (1:500, Abcam, ab4448), mouse IgG1 anti-FoxJ1 (1:1000; eBioscience, 14-9965), rabbit anti-Deup1 (1:1000; kindly provided by Dr Xueliang Zhu), rabbit anti-Deup1 (1:250; Proteintech, 24579-1-AP), mIgG1 anti-γ-Tubulin (clone GTU88) (1:250; Abcam, Ab 11316), rabbit anti-ZO1 (1:600; ThermoFisher Scientific, 61-7300), rabbit anti-Spag5 (1:500; Proteintech, 14726-1-AP), mouse IgG1 anti-ZO1 (1:600;Invitrogen,, mouse IgG2b anti-FGFR1OP (FOP) (1:2000; Abnova, H00011116-M01), mouse IgG1 anti-αtubulin (1:500; Sigma-Aldrich, T9026). Secondary antibodies: Alexa Fluor 488 goat anti-rabbit (1:800; ThermoFisher Scientific, A-11034), Alexa Fluor 647 goat antirabbit (1:800; ThermoFisher Scientific, A-21244), Alexa Fluor 514 goat anti-rabbit (1:800; ThermoFisher Scientific, A-31558), Alexa Fluor 488 goat anti-mouse IgG2b (1:800; ThermoFisher Scientific, A-21141), Alexa Fluor 568 goat anti-mouse IgG2b (1:800; ThermoFisher Scientific, A-21144), Alexa Fluor 488 goat anti-mouse IgG2a (1:800; ThermoFisher Scientific, A-21131), Alexa Fluor 568 goat anti-mouse IgG1 (1:800; ThermoFisher Scientific, A-21134), Alexa Fluor 647 goat anti-mouse IgG1 (1:800; ThermoFisher Scientific, A-21240). were obtained from , TRCN0000088274 (sh274), TRCN0000088277 (sh277)). PCX-mcs2-GFP vector (Control GFP) kindly provided by Xavier Morin (ENS, Paris, France), and U6 vector containing a validated shRNA targeting a specific sequence in the NeuroD1 coding sequence 52 (Control sh, ref. TRCN0000081777, Sigma-Aldrich) were used as controls for electroporation experiments.

Post-natal mouse brain electroporation. The detailed protocol for post-natal mouse brain electroporation established by Boutin and colleagues 53 was used with minor modifications. Briefly, P1 pups were anesthetized by hypothermia. A glass micropipette was inserted into the lateral ventricle, and 2 μL of plasmid solution (concentration 3 μg/μL) was injected by expiratory pressure using an aspirator tube assembly (Drummond). Successfully injected animals were subjected to five 95 V electrical pulses (50 ms, separated by 950 ms intervals) using the CUY21 edit device (Nepagene, Chiba, Japan), and 10 mm tweezer electrodes (CUY650P10, Nepagene) coated with conductive gel (Signagel, Parker laboratories). Electroporated animals were reanimated in a 37 °C incubator before returning to the mother.

Statistical analyses of mouse experiments. Analysis of CDC20B signal intensity in deuterosomes (dot plot in Fig. 3b). For each category, >25 cells from two different animals were analyzed. Deuterosome regions were delineated based on FOP staining and the intensity of CDC20B fluorescent immunostaining was recorded using ImageJ software, and expressed as arbitrary units. Unpaired t test vs immature: p = 0.0005 (intermediate, ***); p < 0.0001 (Mature, ****).

Analysis of Cdc20b shRNAs efficiency (Fig. 4c): For each cell at the deuterosomal stage, the intensity of CDC20B fluorescent immunostaining was recorded using ImageJ software and expressed as arbitrary units. Data are mean ± sem. Two independent experiments were analyzed. A minimum of 35 cells per condition was analyzed. n = 3, 4, 5 and 5 animals for sh control, sh273, sh274, and sh277, respectively. Unpaired t test vs sh control: p < 0.0001 (sh273, sh274, and sh277 ****).

Analysis of the number of FOXJ1-positive cells at 5dpe (Fig. 4d): Unpaired t test vs sh control: 0.3961 (sh273, ns), 0.1265 (sh274, ns), 0.3250 (sh277, ns).

Analysis of the number of cells with non-disengaged centrioles at 9dpe (Fig. 4g): 15-20 fields were analyzed per condition. n = 4, 4, 3, and 4 animals for sh control, sh273, sh274, and sh277, respectively, from two independent experiments. Unpaired t test vs sh control: p < 0.0001 (sh273, sh274, sh277 ****).

Analysis of the number of centrioles per cell at 15dpe (Fig. 4j): > 100 cells were analyzed per condition. n = 3, 3, 3, and 3 animals for sh control, sh273, sh274, and sh277, respectively, from two independent experiments. Unpaired t test vs sh control: p < 0.0001 (sh273, sh274, sh277 ****).

Analysis of ependymal cell categories at 15dpe (Fig. 4k): Data are mean ± sem from three independent experiments. More than 500 cells were analyzed for each condition. n = 4, 4, 3, and 3 animals for sh control, sh273, sh274, and sh277, respectively. Unpaired t test vs sh control: p = 0.0004 (sh273, ***), 0.0001 (sh274, ****), 0.0038 (sh277, **).

Mouse tracheal epithelial cells (MTECs). MTECs cell cultures were established from the tracheas of 12 weeks-old mice. After dissection, tracheas were placed in cold DMEM:F-12 medium (1:1) supplemented with 15 mM HEPES, 100 U/mL penicillin, 100 μg/mL streptomycin, 50 μg/mL gentamicin sulfate, and 2.5 μg/mL amphotericin B. Each trachea was processed under a binocular microscope to remove as much conjunctive tissue as possible with small forceps and was opened longitudinally with small dissecting scissors. Tracheas were then placed in supplemented DMEM:F-12 containing 0.15% protease XIV from S. griseus. After overnight incubation at 4 °C, FCS was added to a final concentration of 10%, and tracheal epithelial cells were detached by gentle agitation. Cells were centrifuged at 400 g for 10 min and resuspended in supplemented DMEM:F-12 containing 10% FCS. Cells were plated on regular cell culture plates and maintained in a humidified atmosphere of 5% CO 2 at 37 °C for 4 h to allow attachment of putative contaminating fibroblast. Medium containing cells in suspension was further centrifuged at 400×g for 5 min and cells were resuspended in supplemented DMEM:F-12 containing BEGM Singlequots kit supplements and 5% FCS. Cells were plated on rat tail collagen I-coated Transwell®. Typically, 5 tracheas resulted in 12 Transwells®. Medium was changed every other day. Air-liquid interface culture was conducted once transepithelial electrical resistance had reached a minimum of 1000 ohm/cm 2 (measured with EVOM2, World Precision Instruments).

Air-liquid interface culture was obtained by removing medium at the apical side of the Transwell®, and by replacing medium at the basal side with supplemented DMEM:F-12 containing 2% Ultroser-G TM (Pall Corporation). 10 μM DAPT (N-[N- (3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester) (Sigma) was added one day after setting-up the air-liquid interface.

Immunostaining on HAECs and MTECs. Three days after setting-up the air-liquid interface, MTECs on Transwell membranes were pre-extracted with 0.5% Triton X-100 in PBS for 3 min, and then fixed with 4% paraformaldehyde in PBS for 15 min at room temperature. HAECs were treated 21 days after setting-up the air-liquid interface. They were fixed directly on Transwells® with 100% cold methanol for 10 min at -20 °C (for CDC20B and Centrin2 co-staining, Supplementary Figure 4a,b) or with 4% paraformaldehyde in PBS for 15 min at room temperature (for CDC20B single staining, Supplementary Figure 4c). All cells were then permeabilized with 0.5% Triton X-100 in PBS for 5 min and blocked with 3% BSA in PBS for 30 min. The incubation with primary and secondary antibodies was carried out at room temperature for 2 h and 1 h, respectively. Nuclei were stained with 4,6-diamidino-2-phenylindole (DAPI). Transwell® membranes were cut with a razor blade and mounted with ProLong Gold medium (Thermo-Fisher). Primary antibodies: rabbit anti-CDC20B (1:500; Proteintech, 133376-1-AP), rabbit anti-DEUP1 (1:500; Proteintech, 24579-1-AP), anti-Centrin2 (Clone 20H5, 1:500; Millipore, 04-1624). Secondary antibodies: Alexa Fluor 488 goat antirabbit (1:1000; ThermoFisher Scientific, A-11034), Alexa Fluor 647 goat antimouse (1:1000; ThermoFisher Scientific, A-21235). For co-staining of CDC20B and DEUP1, CDC20B primary antibody was directly coupled to CF TM 633 with the Mix-n-Stain TM kit (Sigma-Aldrich) according to the manufacturer's instruction. Coupled primary antibody was applied after secondary antibodies had been extensively washed and after a 30 min blocking stage in 3% normal rabbit serum in PBS.

Western blot and immunofluorescence on transfected cells. Cos-1 or Hela cells cells were grown in DMEM supplemented with 10% heat inactivated FCS and transfected with Fugene HD (Roche Applied Science) according to manufacturer's protocol. Transfected or control cells were washed in PBS and lysed in 50 mM Tris HCl pH 7.5, 150 mM NaCl, 1 mM EDTA, containing 1% NP-40 and 0.25% sodium deoxycholate (modified RIPA) plus a Complete Protease Inhibitor Cocktail (Roche Applied Science) on ice. Cell extracts separated on polyacrylamide gels were transfered onto Optitran membrane (Whatman) followed by incubation with rabbit anti-mouse CDC20B (1:500, Proteintech, 24579-1-AP) or homemade rabbit anti-Xenopus Cdc20b (1:300) antibody and horseradish peroxidase conjugated secondary antibody (Jackson Immunoresearch Laboratories,. Signal obtained from enhanced chemiluminescence (Western Lightning ECL Pro, Perkin Elmer) was detected with MyECL Imager (ThermoFisher Scientific).

For immunofluorescence staining, transfected cells were grown on glass coverslips and fixed for 6 min in methanol at -20 °C. Cells were washed in PBS, blocked in PBS, 3% BSA and stained with rabbit anti-Xenopus Cdc20b (1:300) or rabbit anti-CFTR (1:200, Santa-Cruz Biotechnology, 10747) as a negative control, in blocking buffer. After washings in PBS 0.1% Tween-20, cells were incubated with Alexa fluor 488 donkey anti-rabbit antibody (ThermoFisher Scientific, R37118), washed, and DNA was stained with 250 ng/mL DAPI. Coverslip were then rinsed and mounted in Prolong Gold antifade reagent (ThermoFisher Scientific) and confocal images were acquired by capturing Z-series with 0.3 μm step size on a Zeiss LSM 510 laser scanning confocal microscope.

Co-immunoprecipitation studies. Asynchronous HEK cells transfected with the plasmids described below, using lipofectamine 3000 according to manufacturer's instructions, were rinsed on ice with chilled Ca2+ and Mg2+ free Dulbecco's PBS (DPBS, Invitrogen), harvested using a cell scraper and lysed on ice for 5 min in lysis buffer (0.025 M Tris, 0.15 M NaCl, 0.001 M EDTA, 1% NP-40, 5% glycerol; pH 7.4) supplemented with EDTA and Halt™ Protease and Phosphatase Inhibitor Cocktail (Pierce, ThermoFisher). Lysates were clarified (12,000×g, 4 °C, 10 min) and the protein concentrations were determined using the Bradford assay (Bio-Rad). Immunoprecipitations were performed with the Pierce co-immunoprecipitation kit (Pierce, ThermoFisher) according to the manufacturer's instructions. For each immunoprecipitation, 1-1.5 mg of total lysate was precleared on a control column, then incubated on columns coupled with 20 μg of anti-GFP or anti-c-myc antibody (clone 9E10). Incubation was performed overnight at 4 °C. Columns were washed and eluted with 50 μL elution buffer. Samples were denatured at 70 °C for 10 min with Bolt™ LDS Sample Buffer and Bolt reducing agent, then separated on 4-12% gradient Bolt precast gels (ThermoFisher), transferred onto nitrocellulose (Millipore), and subjected to immunoblot analysis using either anti-CDC20B (Pro-teinTech, 133376-1-AP, 1/500) or anti-c-myc antibody (clone 9E10, 1/1000). In Fig. 6, note that the high level of expression of myc-PLK1 (Fig. 6a) and myc-SPAG5 (Fig. 6b) drained out locally the ECL reagent at the peak of the protein. The resulting double bands correspond in fact to unique ones. Human SPAG5, subcloned into pCMV6-MT, was from OriGene. Human DEUP1 and PLK1 were cloned into pCS2-MT vector (Addgene). Human CDC20B was cloned into pEGFP-C1, pEGFP-N1 (Clontech) for the GFP fusion protein and pIRES-EYFP (Addgene) for the untagged protein.

In-gel digestion, NanoHPLC, and Q-exactive plus analysis. For mass spectrometry analysis, protein spots were manually excised from the gel and destained with 100 μL of H2O/ACN (1/1). After 10 min vortexing, liquid was discarded, and the procedure was repeated 2 times. They were rinsed with acetonitrile and dried under vacuum. Extracts were reduced with 50 μL of 10 mM dithiothreitol for 30 min at 56 °C, then alkylated with 15 μL of 55 mM iodoacetamide for 15 min at room temperature in the dark. They were washed successively by: (i) 100 μL of H2O/ACN (1/1) (2 times) and (ii) 100 μL of acetonitrile. Gel pieces were rehydrated in 60 μL of 50 mM NH 4 HCO 3 containing 10 ng/μL of trypsin (modified porcine trypsin, sequence grade, Promega) incubated for one hour at 4 °C. After the removal of trypsin, samples were incubated overnight at 37 °C. Tryptic peptides were extracted with: (i) 60 μL of 1% FA (formic acid) in water (10 min at RT), (ii) 60 μL acetonitrile (10 min at RT). Extracts were pooled, concentrated under vacuum, resuspended in 15 μL of aqueous 0.1% formic acid for NanoHPLC separation.

Separation was carried out using a nanoHPLC (Ultimate 3000, ThermoFisher Scientific). After concentration on a μ-Precolumn Cartridge Acclaim PepMap 100 C 18 (i.d. 5 mm, 5 μm, 100 Å, ThermoFisher Scientific) at a flow rate of 10 μL/min, using a solution of H 2 O/ACN/FA 98%/2%/0.1%, a second peptide separation was performed on a 75 μm i.d. × 250 mm (3 μm, 100 Å) Acclaim PepMap 100 C 18 column (ThermoFisher Scientific) at a flow rate of 300 nL/min. Solvent systems were: (A) 100% water, 0.1% FA, (B) 100% acetonitrile, 0.08% FA. The following gradient was used t = 0 min 6% B; t = 3 min 6% B; t = 119 min, 45% B; t = 120 min, 90% B; t = 130 min 90% B (temperature at 35 °C).

NanoHPLC was coupled via a nanoelectrospray ionization source to the Hybrid Quadrupole-Orbitrap High Resolution Mass Spectrometer (ThermoFisher Scientific). MS spectra were acquired at a resolution of 70,000 (200 m/z) in a mass range of 300-2000 m/z with an AGC target 3e6 value of and a maximum injection time of 100 ms. The 10 most intense precursor ions were selected and isolated with a window of 2 m/z and fragmented by HCD (Higher energy C-Trap Dissociation) with normalized collision energy (NCE) of 27. MS/MS spectra were acquired in the ion trap with an AGC target 2e5 value, the resolution was set at 17 500 at 200 m/z combined with an injection time of 100 ms.

Data were reprocessed using Proteome Discoverer 2.1 equipped with Sequest HT. Files were searched against the Swissprot Homo sapiens FASTA database (update of February 2016). A mass accuracy of ±10 ppm was used to precursor ions and 0.02 Da for product ions. Enzyme specificity was fixed to trypsin, allowing at most two miscleavages. Because of the previous chemical modifications, carbamidomethylation of cysteines was set as a fixed modification and only oxydation of methionine was considered as a dynamic modification. Reverse decoy databases were included for all searches to estimate false discovery rates, and filtered using the Percolator algorithm at a 1% FDR.

Xenopus embryo injections, plasmids, RNAs, and morpholinos. Eggs obtained from NASCO females were fertilized in vitro, dejellied and cultured using standard protocols 54 . All injections were done at the 8-cell stage in one animal-ventral blastomere (presumptive epidermis), except for electron microscopy analysis for which both sides of the embryo were injected, and for RT-PCR analysis for which 2-cell embryos were injected.

cdc20b riboprobe was generated from X. laevis cDNA. Full-length sequence was subcloned in pGEM™-T Easy Vector Systems (Promega). For sense probe, it was linearized by SpeI and transcribed by T7. For antisense probe it was linearized by ApaI and transcribed by Sp6 RNA polymerase. Synthetic capped mRNAs were produced with the Ambion mMESSAGE mMACHINE Kit. pCS105/GFP-CAAX was linearized with AseI and mRNA was synthesized with Sp6 polymerase. pCS2-mRFP and pCS2-GFP-gpi were linearized with NotI and mRNA was synthesized with Sp6 polymerase. pCS-Centrin4-YFP (a gift from Reinhard Köster, Technische Universität Braunschweig, Germany) was linearized with Notl and mRNA was synthesized with Sp6 polymerase. pCS2-GFP-Deup1 and pCS2-Multicilin(MCI)-hGR were kindly provided by Chris Kintner; both plasmids were linearized with ApaI, and mRNAs were synthesized with Sp6 polymerase. Embryos injected with MCI-hGR mRNA were cultured in Dexamethasone 20 μM in MBS 0,1× from st11 until fixation. pCS2-Separase wild-type and phosphomutant 2/4 (protease dead, PD) were provided by Marc Kirchner and Olaf Stemann, respectively; plasmids were linearized with NotI and mRNAs were synthesized with Sp6 polymerase. Venus-cdc20b, cdc20b-Venus, and cdc20b were generated by GATEWAY™ Cloning Technology (GIBCO BRL) from Xenopus laevis cdc20b cDNA. cdc20b was also subcloned in pCS2-RFP to make RFP-cdc20b and cdc20b-RFP fusions. All cdc20b constructs were linearized with NotI and mRNAs were synthesized with Sp6 polymerase. Quantities of mRNA injected: 500 pg for GFP-CAAX, RFP, GFP-gpi, Separase and Separase(PD); 25 to 500 pg for GFP-Deup1; 40 to 500 pg for MCI-hGR; 1 ng for Venus-cdc20b, cdc20b-Venus, cdc20b, and cdc20b-RFP; 500 pg to 1 ng for RFP-cdc20b.

Two independent morpholino antisense oligonucleotides were designed against cdc20b (GeneTools, LLC). cdc20b ATG Mo: 5′-aaatcttctctaacttccagtccat-3′, cdc20b Spl Mo 5′-acacatggcacaacgtacccacatc-3′. 20 ng of MOs was injected per blastomere or 10 ng of each Mo for co-injection.

PCR and quantitative RT-qPCR. Xenopus embryos were snap frozen at different stages and stored at -80 °C. Total RNAs were purified with a Qiagen RNeasy kit (Qiagen). Primers were designed using Primer-BLAST Software. PCR reactions were carried out using GoTaq® G2 Flexi DNA Polymerase (Promega). RT reactions were carried out using iScript™ Reverse Transcription Supermix for RT-qPCR (BIO-RAD). qPCR reactions were carried out using SYBRGreen on a CFX Bio-rad qPCR cycler. To check cdc20b temporal expression by qPCR we directed primers to exons 9/10 junction (Forward: 5′-ggctatgaattggtgcccg-3′) and exons 10/11 junction (Reverse: 5′-gcagggagcagatctggg-3′) to avoid amplification from genomic DNA. The relative expression of cdc20b was normalized to the expression of the housekeeping gene ornithine decarboxylase (ODC) for which primers were as follows: forward: 5′-gccattgtgaagactctctccattc-3′: reverse: 5′-ttcgggtgattccttgccac-3′.

To check the efficiency of Mo SPL, expected to cause retention of intron 1 in the mature mRNA of cdc20b we directed forward (5′-cctcccgagagttagagga-3′) and reverse (5′-gcatgttgtactttctgctcca-3′) primers in exon 1 and exon2, respectively.

To check the expression of p53 in morphants by qPCR, primers were as follows: forward: 5′-cgcagccgctatgagatgatt-3′; reverse: 5′-cacttgcggcacttaatggt-3′. The relative expression of p53 was normalized to Histone4 expression (H4) for which primers were as follows: forward: 5′-ggtgatgccctggatgttgt-3′; reverse: 5′ggcaaaggaggaaaaggactg-3′.

Immunostainining on Xenopus embryos. Embryos were fixed in 4% paraformaldehyde (PFA) overnight at 4 °C and stored in 100% methanol at -20 °C. Embryos were rehydrated in PBT and washed in MABX (Maleic Acid Buffer + Triton X100 0,1% v/v). Next, embryos were incubated in Blocking reagent (Roche) 2% BR + 15% Serum + MABX with respective primary and secondary antibodies. The anti-Xenopus laevis CDC20B antibody was obtained by rabbit immunization with the peptide SPDQRRIFSAAANGT (amino acids 495-509) conjugated to keyhole limpet hemocyanin, followed by affinity purification (Eurogentec). For immunofluorescence, embryos were fixed at RT in PFA 4% in PBS, and incubated in the CDC20B antibody diluted 1/150 in BSA 3% in PBS. For all experiments, secondary antibodies conjugated with Alexa were used. GFP-CAAX in Supplementary Figure 5g was revealed using a rabbit anti-GFP antibody together with a secondary antibody coupled to Alkaline Phosphatase (AP), which was revealed as follows: embryos incubated with the AP-conjugated antibody were washed twice in alkaline phosphatase buffer (PAB) (NaCl 0.1 M, Tris HCl pH 9.5 0.1 M, MgCl 2 0.05 M, Tween 0.1%), 10 min each. Next, embryos were incubated in PAB with INT/BCIP substrate (Roche, REF:11681460001) until appropriate staining. Finally embryos were washed twice in MABX and fixed in MEMFA 30 min at RT. To mark cortical actin in MCCs, embryos were fixed in 4% paraformaldehyde (PFA) in PBT (PBS + 0.1% Tween v/v) for 1 h at room temperature (RT), washed 3 × 10 min in PBT at RT, then stained with phalloidin-Alexa Fluor 555 (Invitrogen, 1:40 in PBT) for 4 h at RT, and washed 3 × 10 min in PBT at RT. Primary antibodies: mouse anti-Acetylated-α-Tubulin (Clone 6-11B-1, Sigma-Aldrich, T7451, 1:1000), rabbit anti-γ-Tubulin (Abcam, Ab 16504, 1:500), mouse anti-γ-Tubulin (Clone GTU88, Ab 11316, Abcam, 1:500), Chicken anti-GFP (AVES, GFP-1020, 1:1000), rabbit anti-GFP (Torrey Pines Biolabs, TP401, 1:500), mouse anti-Centrin (Clone 20H5, EMD Millipore, 04-1624, 1:500). Secondary antibodies: donkey anti-rabbit-AP (Jackson ImmunoResearch, 711055152, 1:1000), Alexa Fluor 647 goat anti-mouse IgG2a (1:500; ThermoFisher Scientific, A-21241), Alexa Fluor 488 goat antichicken (1:500; ThermoFisher Scientific, A-11039), Alexa Fluor 568 goat antirabbit (1:500; ThermoFisher Scientific, A-11011).

In situ hybridization on Xenopus embryos. Whole-mount chromogenic in situ hybridization and whole-mount fluorescent in situ hybridization (FISH) was performed as detailed by Marchal and colleagues 54 , and Castillo-Briceno and Kodjabachian 55 , respectively. For single staining, all RNA probes were labeled with digoxigenin. For FISH on section, embryos were fixed in 4% paraformaldehyde (PFA), stored in methanol for at least 4 h at -20 °C, then rehydrated in PBT (PBS + Tween 0.1% v/v), treated with triethanolamine and acetic anhydride, incubated in increasing sucrose concentrations and finally embedded with OCT (VWR Chemicals). 12 μm-thick cryosections were made. Double FISH on sections was an adaptation of the whole-mount FISH method. 80 ng of cdc20b digoxigenin-labeled sense and antisense riboprobes and 40 ng of antisense α-tubulin fluorescein-labeled riboprobe 56 were used for hybridization. All probes were generated from linearized plasmids using RNA-labeling mix (Roche). FISH was carried out using Tyramide Signal Amplification -TSA TM Plus Cyanine 3/Fluorescein System (Perkin Elmer). Antibodies: Anti-DigAP (Roche, 11266026, 1:5000), Anti-DigPOD (Roche, 11207733910, 1:500), Anti-FluoPOD (Roche, 11426346910, 1:500).

Microscopy. Confocal: Flat-mounted epidermal explants were examined with a Zeiss LSM 780 confocal microscope. Four-colors confocal z-series images were acquired using sequential laser excitation, converted into single plane projection and analyzed using ImageJ software. Scanning Electron Microscopy (SEM): stage 37 Xenopus embryos were fixed in 3% glutaraldehyde in 0.1 M phosphatase buffer pH 7.4 (19 mL monosodium phosphate 0.2 M and 81 mL disodium phosphate 0.2 M) made with filtered (0.22 μm) bi-distilled water, during 4 h with vigorous agitation, then washed with phosphatase buffer and filtered bi-distilled water, to be successively dehydrated in ethanol at 25, 50, and 70% for 30 min each; then, embryos were stored in fresh ethanol 70% at 4 °C for 1-2 days before further processing. Embryos in 70% ethanol were further dehydrated with vigorous agitation in ethanol once at 90% and twice at 100% for 30 min each; they were subsequently subjected to CO 2 critical point drying (CPD030, Balzers) at 31 °C and 73 atm. Finally, samples were sputter-coated with gold (vacuum 1 × 10-12 Torr, beam energy 3-4 keV) for immediate SEM digital imaging (FEI TENEO) of the skin epidermis. Transmission Electron Microscopy (TEM): stage 25 Xenopus embryos were fixed overnight at 4 °C in 2.5% glutaraldehyde, 2% paraformaldehyde, 0.1% tannic acid in a sodium cacodylate buffer 0.05 M pH 7.3. Next, embryos were washed 3 × 15 min in cacodylate 0.05 M at 4 °C. Post-fixation was done in 1% osmium buffer for 2 h. Next, embryos were washed in buffer for 15 min. Then, embryos were washed in water and dehydrated conventionally with alcohol, followed by a step in 70% alcohol containing 2% uranyl during 1 to 2 h at RT, or overnight at 4 °C. Following three incubations in 100% alcohol, completed with three washes of acetone, embryos were included in classical epon resin, which was polymerized in oven at 60 °C for 48 h. Sections of 80 nm were made and analyzed into an FMI TECNAI microscope with acceleration of 200 kV.

Statistical analysis of Xenopus experiments.

To quantify the effect of our different experiments, we applied one-way ANOVA analysis and Bonferroni's multiple comparisons test (t test). ***p < 0.05; ns = not significant. Statistical analyses were done using GraphPad Prism 6.

Figure 5o and Fig. S6k: 10 cells per condition were analyzed and the total number of Centrin-YFP or γ-tubulin-positive spots per injected cell was counted. 
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 11 Figure 1.1: Cell structure of cork by Hooke (1665) .
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 13 Figure 1.3: Single-cell methods and heterogeneity of different molecular layers.
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 216 Figure 1.6: Human cell atlas pilot projects distribution in six research areas .
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 2 BENCH-WORK CHALLENGES AND SOLUTIONS IN SINGLE-CELL RNA SEQUENCING AND THEIR IMPACT ON OUTPUT DATA.

Figure 4 . 8 :

 48 Figure 4.8: Diagram of normal ciliary beat cycle. A normal ciliary beat pattern is characterised by a strong beating stroke (black) followed by a recovery stroke (grey). Whereas the cilia are in a straight position during the beating stroke, the recovery stroke is initiated by a bending of the proximal axoneme. Figure extracted from Raidt et al., 2014 .

Figure 4 . 9 :

 49 Figure 4.9: The different types of cell junctions. Tight junctions (blue dots) between cells are connected areas of the plasma membrane that stitch cells together. Adherens junctions (red dots) join the actin filaments of neighboring cells together. Desmosomes are even stronger connections that join the intermediate filaments of neighboring cells. Hemidesmosomes (light blue) connect intermediate filaments of a cell to the basal lamina, a combination of extracellular molecules on other cell surfaces. Gap junctions (yellow) are clusters of channels that form tunnels of aqueous connectivity between cells. .

  ) non-cycling basal cells, (3) suprabasal cells, (4) secretory/club cells, (5) goblet cells and (6) multiciliated cells. I then studied the evolution of their proportion at each time point. It showed a global decrease in basal and club cells along the time-course followed by an initial detection of suprabasal cells at ALI 12 and of goblet and multiciliated cells at ALI 28. Lastly, using Monocle 2 as trajectory inference tool, I reconstructed the cell trajectories from cycling basal cells as a starting point to basal, suprabasal and club cells. A branching point was detected at the club cell stage, bifurcating into either goblet CHAPTER 7. SINGLE-CELL RNA SEQUENCING REVEALS NOVEL CELL DIFFERENTIATION DYNAMICS DURING HUMAN AIRWAY EPITHELIUM
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 7 SINGLE-CELL RNA SEQUENCING REVEALS NOVEL CELL DIFFERENTIATION DYNAMICS DURING HUMAN AIRWAY EPITHELIUM REGENERATION

Fig. 1 .

 1 Fig. 1. Characterization of multiciliated and goblet cell lineages during airway epithelium regeneration using single-cell RNA-Seq. (A) Model of upper airway epithelium, based on six major types of epithelial cells, with consensus lineage hierarchy. (B) scRNA-seq experimental design. Regenerating airway epithelia were dissociated on successive days (7, 12 and 28) after a transition to an air-liquid interface (ALI). (C) t-SNE plots of the scRNA-seq expression data highlighting the main cell types observed at ALI 7 (3426 cells), ALI 12 (2785 cells) and ALI 28 (3615 cells) (gray, unassigned cells). (D) Relative abundance of the six main cell types at each time point. (E) Aggregate t-SNE plot of gene expression in 9826 cells. (F) Inference of goblet and multiciliated cell lineages by Monocle 2, based on an aggregate of the entire experiment. Color code is the same as in C. Inset shows pseudotime picturing using a white-to-gray gradient along the differentiation trajectory. (G) Distribution of the six main cell types in the pseudotime along the two branches of the trajectory from F (bottom, goblet cell branch; top right, multiciliated cell branch). (H) Heatmap representing the smoothened temporal expression pattern of a representative list of cell type-specific markers, with branch representations as in G. Cells were ordered by branch, then cluster emergence, then pseudotime.

2

 2 

Fig. 2 .

 2 Fig. 2. Goblet cells as differentiation intermediates for multiciliated cells. (A) Venn diagram illustrating the closeness of the best marker genes for club and goblet cells deduced from scRNA-seq of cells differentiated in Pneumacult medium (ALI 28). (B) Violin plots of normalized expression of SCGB1A1, MUC5AC and MUC5B, three markers of club and goblet cells. (C) Heatmap of the most differentially expressed genes between groups of suprabasal, club and goblet cells at key points in the pseudotime (before branching, start of the GC branch and end of the GC branch). Cells are ordered by pseudotime. Bars on the top of the heatmap indicate cell type and pseudotime. (D-F) t-SNE plots of expression from scRNA-seq of ALI 28 (D), bronchial biopsy cells (E) and newborn pig tracheal cells (F). (G-I) Highlights of gene expression for FOXJ1+ cells (blue), MUC5AC+ cells (green) and FOXJ1+/MUC5AC+ cells ( pink) in the same samples as in D-F. (J-L) Relationships between normalized expression of MUC5AC and FOXJ1 in the three same samples. (M-O) Highlights of gene expressions for FOXJ1+ cells (blue), SCGB1A1+ cells (green) and FOXJ1+/SCGB1A1+ cells ( pink). (P) Immunodetection of cells co-expressing markers of multiciliated cells (acetylated tubulin) and of goblet cells (MUC5AC) (left) or of club cells (SCGB1A1) (right). Scale bars: 50 μm. (Q) Representation by a t-SNE plot (scRNA-seq of cells differentiated in Pneumacult medium at ALI 28) of the RNA velocity residuals colored according to estimates of the positive (red) and negative (blue) residuals for a multiciliated cell marker (CEP41), a goblet cell marker (MUC5B) and a club cell marker (SCGB1A1).

Fig. 3 .

 3 Fig. 3. Deuterosomal cells form a discrete multiciliated cell intermediate population with a centriole amplification signature. (A) Subclusterization of scRNA-seq from cells differentiated in Pneumacult medium (ALI 28) into 12 cell types, deduced from intra-heterogeneity analysis of the six initial clusters. (B) Illustration of the specific expression of DEUP1 and short CDC20B in the deuterosomal cell population (low to high expression, gray to red). (C) Identification of the cluster of deuterosomal cells in scRNA-seq data from a biopsy of human bronchi, newborn pig trachea and mouse primary culture (MTEC, ALI 3, stage of higher centriole amplification). Light blue, deuterosomal cells; dark blue, multiciliated cells. (D) Venn diagram showing that overlaps exist between top gene markers of deuterosomal cells (light blue) and those of proliferative ( pink) or multiciliated cells (dark blue). (E) Dot plot of marker genes for the deuterosomal cell population. Color gradient (gray to red) and dot size indicate for each cluster the mean marker expression and the percentage of cells expressing the marker, respectively. (F) Enriched gene sets in deuterosomal cell marker genes.

Fig. 4 .

 4 Fig. 4. Keratin signature switch during airway regeneration. (A) Plot of normalized gene expression of keratins according to pseudotime from scRNA-seq of cells differentiated in Pneumacult medium (ALI 28). (B) Double immunofluorescence staining for KRT5 and KRT13, KRT4 or KRT8. White arrowheads indicate doubly labeled cells (KRT5+/KRT13+, KRT5+/KRT4+, KRT5+/KRT8+). Nuclei are shown in blue (DAPI). (C) Quantification of double-positive cells from B. **P<0.01 (Wilcoxon test). The black line inside each box represents the median. The vertical size of the boxes are the interquartile range, or IQR. Whiskers indicate 1.5×IQR for the box at the extreme left, or most extreme values in the other two boxes. (D) tSNEs of scRNA-seq data from pig tracheal epithelial cells. KRT5+ cells are shown in emerald green, KRT13+ cells are shown in red, KRT4+ cells are shown in yellow-green and double-positive cells are shown in black. The indicated percentage corresponds to double-positive cells. (E) Heatmap for scRNA-seq data from Pneumacult ALI28 showing gene expression for keratins. (F) Immunohistochemistry for KRT5, KRT7 and acetylated tubulin or SCGB1A1 on sections of Pneumacult fully differentiated in vitro epithelium. Arrows indicate KRT7+ luminal non-multiciliated cells. Scale bars: 20 μm.

Fig. 5 .

 5 Fig. 5. Single-cell expression of signaling pathway components during airway regeneration. (A) Heatmap of the genes related to the Notch pathway with cells ordered by clusters. (B) Heatmap of the genes related to the Wnt pathway with cells ordered by cluster. (C) Heatmap of the genes related to the BMP/TGFβ pathway with cells ordered by cluster. (D) Violin plots for selected genes in the bronchial biopsy and nasal turbinate samples. (E) Summary of the major partners involved in specific cell types for the three pathways.
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Fig. 1

 1 Fig. 1 Single-cell RNA-seq analysis reveals MCC transcriptome at deuterosome stage. a Experimental design of the scRNA-seq experiment. b tSNE plot. Each point is a projection of a unique cell on a 2D space generated by the tSNE algorithm. Blue dots represent MKI67-positive proliferating cells, and red dots represent DEUP1-positive cells corresponding to maturing MCCs at deuterosome stage. c Cell cycle-related gene set expression in HAECs measured by scRNA-seq. Cells were ordered along a pseudotime axis, defined with the Monocle2 package. Phase-specific scores are displayed in the top heatmap. Expression of selected genes is displayed in the bottom heatmap. d tSNEs plots for a selection of genes specifically enriched in deuterosome stage cells. Note that CDC20B exhibits the most specific expression among deuterosome marker genes

Fig. 2

 2 Fig. 2 Composition and organization of vertebrate deuterosomes a, b Maturing mouse ependymal MCCs were immunostained as indicated, pictures were taken with confocal (a) or STED (b) microscope. a Individual deuterosomes (dashed boxes in top panels) are shown at higher magnification in bottom panels. DEUP1 stains the deuterosome core (ring) and a close fibrous area that defines the perideuterosomal region. The centriolar marker FOP reveals procentrioles arranged in a circle around the deuterosome. Pericentrin (PCNT) is enriched in the perideuterosomal region. γ-Tubulin (γ-TUB) stains the core as well as the periphery of the deuterosome. b STED pictures showing the organization of FOP, PCNT, and γ-TUB around deuterosomes. Individual centrioles identified by FOP staining are pointed out with arrowheads. The diagram was drawn from the adjacent FOP photograph to help reveal the regular concentric organization of nascent centrioles in a typical deuterosomal figure. c Xenopus embryos were immunostained for γ-Tubulin (γ-Tub) and Centrin and high magnification pictures of immature epidermal MCCs were taken. In these cells, Centrin-positive procentrioles grow around γ-Tubulin-positive structures. d Xenopus embryos were injected with Multicilin-hGR and GFP-Deup1 mRNAs, treated with dexamethasone at gastrula st11 to induce Multicilin activity, and immunostained at neurula st18 for γ-Tubulin, GFP, and Centrin. In c and d, zooms (right panels) were made on regions identified by dashed boxes. Scale bars: 5 μm (a, top), 500 nm (a, bottom), 500 nm (b), 10 μm (c, d, large view), 1 μm (c, d, high magnification)

Fig. 3

 3 Fig. 3 CDC20B associates to vertebrate deuterosomes. a Double immunofluorescence was performed on mouse tracheal MCCs after 3 days of culture in air-liquid interface. Low magnification confocal panels show coincident CDC20B and DEUP1 staining in several individual MCCs. High magnification on a single MCC reveals the prominent association of CDC20B to large deuterosomes marked by DEUP1 (arrowheads). Note that some smaller deuterosomes do not contain CDC20B (arrows). b Mouse ependymal MCCs were immunostained as indicated, and high magnification confocal pictures of cells with immature and mature deuterosomal figures were taken. In these cells, centrioles revealed by FOP form a ring around deuterosomes. CDC20B staining forms a ring inside the ring of FOP-positive procentrioles indicating that CDC20B is tightly associated to deuterosomes. Note that the CDC20B signal associated to deuterosome increased with their maturation (high magnification pictures of >25 cells per category from two different animals were quantified in the graph; mean values and standard deviations are shown). Unpaired t test vs immature: p = 0.0005 (intermediate, ***); p < 0.0001 (mature, ****). In a and b, zooms were made on regions identified by dashed boxes. c Xenopus embryos were injected with GFP-Deup1 mRNA and immunostained at neurula st18 as indicated. Scale bars: 5 μm (a, b, large view), 1.5 μm (a, high magnification), 500 nm (b, high magnification), 10 μm (c)

Fig. 4

 4 Fig. 4 CDC20B knockdown impairs multiciliogenesis in mouse ependymal MCCs. a, b Ependyma were stained for CDC20B (green) and FOXJ1 (nuclear MCC fate marker, red) 5 days post electroporation (5dpe) of control shRNA (a) or Cdc20b shRNA (b). sh277 is exemplified here, but all three Cdc20b shRNAs produced similar effects. c Graph showing the quantification of CDC20B protein levels in cells at the deuterosomal stage at 5dpe from two experiments. Mean values and standard error are shown. Unpaired t-test: ****p < 0.0001. d Dot plot showing the number of FOXJ1-positive nuclei observed for each field, with mean values and standard deviations from two experiments. Unpaired t-test: p = 0.3961 (sh273, ns), p = 0.1265 (sh274, ns), p = 0.3250 (sh277, ns). No significant variations were observed between conditions, indicating that MCC fate acquisition was not affected by Cdc20b knockdown. e, f Confocal pictures of 9dpe ependyma electroporated with control shRNA (e) or Cdc20b shRNAs (f) and stained for DEUP1 (deuterosome, green), FOP (centrioles, red) and ZO1 (cell junction, white). DEUP1-positive deuterosomes with non-disengaged FOP-positive centrioles were observed much more frequently in MCCs electroporated with Cdc20b shRNAs compared to control. g Dot plot showing the percentage of MCCs with nondisengaged centrioles per field, with mean values and standard deviations. Two experiments were analyzed. Unpaired t-test: ****p < 0.0001. h, i Confocal pictures of 15dpe ependyma stained for FOP (centrioles, green), α-Tubulin (α-TUB, cilia, red), and ZO1 (cell junction, white) showing the morphology of normal MCCs in shRNA control condition (h), and examples of defects observed in MCCs treated with sh Cdc20b (i). j Dot plot showing the number of released centrioles per cell, with mean values and standard deviations. k Dot plot showing the percentage of normal and abnormal MCCs per field of observation, with mean values and standard deviations. MCCs were scored abnormal when they did not display organized centriole patches associated to cilia. Three experiments were analyzed. Unpaired t-test: p = 0.0004 (sh273, ***), p = 0.0001 (sh274, ****), p = 0.0038 (sh277, **). Scale bars: 20 μm (a), 5μm (e, i)

Fig. 5

 5 Fig. 5 cdc20b knockdown impairs multiciliogenesis in Xenopus epidermal MCCs. a-c 8-cell embryos were injected in presumptive epidermis with GFP-CAAX mRNA and cdc20b morpholinos, as indicated. Embryos at tailbud st25 were processed for fluorescent staining against GFP (injection tracer, green) and Acetylated-α-Tubulin (Ac-α-Tub, cilia, white). White dotted lines indicate the position of orthogonal projections shown in bottom panels. Note that cdc20b morphant MCCs display cytoplasmic filaments but do not grow cilia (white arrowheads). d-f Scanning electron microscopy (SEM) of control (d) and cdc20b morphant (e, f) embryos at tadpole st31. Yellow arrowheads point at normal (d) and defective MCCs (e, f). g-i Transmission electron microscopy (TEM) of control (g) and cdc20b morphant (h, i) embryos at tailbud st25. Yellow arrowheads point at normally docked basal bodies supporting cilia (g) and undocked centrioles unable to support cilia (h, i). j-n 8-cell embryos were injected in presumptive epidermis with centrin-YFP mRNA, cdc20b morpholinos, and cdc20b mRNA, as indicated. Centrin-YFP fluorescence was observed directly to reveal centrioles (yellow). Nuclei were revealed by DAPI staining in blue. White dotted lines indicate the position of orthogonal projections shown in bottom panels. Yellow arrowheads point at undocked centrioles. o Bar graph showing the mean number of BBs per MCC, and standard error mean, as counted by Centrin-YFP dots. One-way ANOVA and Bonferroni's multiple comparisons test on two experiments, ***p < 0.0001. cdc20b knockdown significantly reduced the number of BBs per cell, and this defect could be corrected by cdc20b co-injection with Mo Spl. p-u Embryos were injected with Multicilin-hGR and GFP-Deup1 mRNAs, treated with dexamethasone at gastrula st11 to induce Multicilin activity, and immunostained at neurula st23 against Acetylated-α-tubulin (cilia, white), GFP (deuterosomes, green), and Centrin (centrioles, red). p Control cells showed individual centrioles, many of which had initiated ciliogenesis. Note that Deup1-positive deuterosomes were no longer visible at this stage. (q, r, t, u) cdc20b morphant MCCs showed procentrioles still engaged on deuterosomes and lacked cilia. In t and u, zooms were made on regions identified by dashed boxes in q and r. s Bar graph showing the mean percentage of cells that completed or not centriole disengagement with standard deviations. Three experiments were analyzed. Unpaired t-test: p = 0.0037 (Mo ATG, **), p = 0.0004 (Mo Spl, ***). Scale bars: 20 μm (a, d), 1 μm (g, t), 5 μm (j, p)

Fig. 7

 7 Fig. 7 Separase overexpression rescues multiciliogenesis in absence of Cdc20b. a-f 8-cell Xenopus embryos were injected in the presumptive epidermis with GFP-gpi mRNA, cdc20b morpholinos, and human Separase mRNA, as indicated. Embryos were fixed at tailbud st25 and immunostained against GFP (injection tracer, green), Acetylated-α-Tubulin (cilia, white) and ɣ-Tubulin (BBs, red). White dotted lines indicate the position of orthogonal projections shown in bottom panels. Red arrowheads point undocked BBs. Left inset in e shows zoom on clustered centrioles. g Bar graph showing the mean number of properly ciliated MCCs among injected cells, per field of observation, with standard error mean, from two independent experiments. Counting was performed on pictures taken at low magnification (×20), in order to score a large number of cells. Separase overexpression fully rescued multiciliogenesis in cdc20b morphant MCCs. One-way ANOVA and Bonferroni's multiple comparisons on two experiments, ***p < 0.0001, ns p > 0.05. Scale bars: 5 μm (a). h Model illustrating the analogy between centriole disengagement in mitotic cells and centriole release from deuterosomes in post-mitotic MCCs
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Figure 7g: 5

 5 fields (×20 zoom) per condition were analyzed, and the total number of properly ciliated MCCs based on acetylated α-tubulin staining among GFP positive cells per field was counted. Each field corresponded to a different embryo.

  Figure 5s: 160-200 cells per condition were analyzed. n = 6, 8, and 10 embryos from three independent experiments for control, Mo ATG and Mo Spl, respectively. Unpaired t test vs control: p = 0.0037 (Mo ATG **) and 0.0004 (Mo Spl ***).

  In this chapter, I will describe the initial computational development done during my thesis: a R package, named scSim, for the simulation of scRNA-seq data. This package was used to simulate data for the development and testing of a new clustering method developed in a collaborative work done with Cyprien Gillet, Michel Barlaud and Jean-Baptiste Caillau (publication in submission, see Annexe). I also presented this package in a poster session at the BC2 conference in Basel in September 2017 (see end of the chapter).
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CHAPTER 5. A COMBINED EFFORT TO IMPROVE OUR UNDERSTANDING OF THE AIRWAY EPITHELIUM USING SINGLE-CELL TECHNOLOGIES

  Recent single-cell trajectory simulation tools, such as Dyngen[START_REF] Saelens | A comparison of singlecell trajectory inference methods: towards more accurate and robust tools[END_REF] and ProssTT Papadopoulos model them by simulating respectively gene regulatory networks and probabilistic tree-like topologies through linear variations of gene expression.

	Doublets
	Doublets 'cells' characterise scRNA-seq datasets obtained by tag-based isolation methods.

They correspond to multiple cells (2 or more) isolated in a unique capture site and thus tagged with the same cell barcode. As such, they have a chimeric transcriptome composed of transcripts from multiple cells. These technical artefacts have been modelled in doublet detection methods as the sum or the average of randomly picked cells

[START_REF] Wolock | Scrublet: Computational Identification of Cell Doublets in Single-Cell Transcriptomic Data[END_REF][START_REF] Mcginnis | DoubletFinder: Doublet Detection in Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors[END_REF]

. CHAPTER 6. SCSIM: SINGLE CELL RNA-SEQ DATA SIMULATION

6.2. Results 

  ResultsAs a conclusion, these data demonstrate that goblet cells can act as precursors for multiciliated cells in normal in vitro and in homeostatic in vivo airway epithelium regeneration.

	7.2.3 Refining cell clustering identifies six additional clusters, in-
	cluding a discrete population of pre-MCC 'deuterosomal'
	cells

128 CHAPTER 7. SINGLE-CELL RNA SEQUENCING REVEALS NOVEL CELL DIFFERENTIATION DYNAMICS DURING HUMAN AIRWAY EPITHELIUM REGENERATION 7.2.

  . A direct differentiation of BCs into MCCs has been reported after injury(Pardo-Saganta et al., 2015a), but the current consensus is that BCs can differentiate first into CCs(Watson et al., 2015), i.e. club/ secretory or Clara cells. CCs are widespread in the whole mouse airways. They are less abundant in human, being nearly absent from upper airways but enriched in terminal and respiratory bronchioles

Table 2 :

 2 Simulation 2 (4 clusters, 600 cells,[START_REF] Dirksen | Centriole morphogenesis in developing ciliated epithelium of the mouse oviduct[END_REF]000 genes): Comparison between methods and with real labels. According to Figure2, we can chose η = 6000 which allows us to have both an excellent silhouette coefficient and also to discard a large number of noisy features. With η = 6000, k-sparse selected 5, 531 genes and outperforms others methods in terms of silhouette coefficient. Note that here the labels computed with SIMLR match better with real labels than for our method. But according to our silhouette coefficient, the clustering computed with k-sparse should also have sense.

	Simulation 1	PCA Spectral SIMLR k-sparse
	Silhouette coefficient 0.58	0.72	0.85	0.98
	Accuracy (%)	61.33	74.50	97.50	97.83
	ARI (%)	34.75	57.37	93.27	94.04
	NMI	0.49	0.60	0.90	0.91
	Time (s)	0.80	0.74	13.90	33.74
	Simulation 2	PCA Spectral SIMLR k-sparse
	Silhouette coefficient 0.60	0.77	0.85	0.97
	Accuracy (%)	61.33	74.00	96.00	80.00
	ARI (%)	36.06	56.06	91.76	65.18
	NMI	0.49	0.60	0.86	0.74
	Time (s)	0.97	0.99	9.76	75.31

Table 5 :

 5 Zeisel dataset (9 clusters,[START_REF] Brooks | Multiciliated cells[END_REF]005 cells,[START_REF] Zhou | Gmnc is a master regulator of the multiciliated cell differentiation program[END_REF]364 genes): Comparison between methods and with real labels. According to Figure5, we can chose η = 12500 which allows us to have both a solid silhouette coefficient and also to discard a large number of noisy features. With η = 12500, k-sparse selected 3, 981 genes and outperforms others methods in terms of accuracy by 16%. For this clustering K-sparse is 6 times faster than SIMLR.Sparcl is computationally expensive, with complexity O(m 2 × d). Naive implementation of Kernel methods SIMLR results in O(m 2 ) complexity. The computational cost can be reduced to O(p 2 × m) (p is the low rank) using low rank kernel matrix approximation

			Spectral SIMLR k-sparse
	Silhouette coefficient	0.61	0.73	0.95	0.96
	Accuracy (%)	68.50	63.31	99.12	99.12
	ARI (%)	44.82	38.91	98.34	98.34
	NMI	0.55	0.54	0.97	0.97
	Time (s)	10.91	20.81	511	97.10
	Zeisel dataset	PCA Spectral SIMLR k-sparse
	Silhouette coefficient 0.45	0.56	0.82	0.83
	Accuracy (%)	39.60	59.30	71.85	88.15
	ARI (%)	34.67	50.55	64.8	84.17
	NMI	0.54	0.68	0.75	0.81
	Time (s)	11	23	464	71.60

Table 6 :

 6 Comparison between SIMLR, Large SIMLR and k-sparse in terms of ARI (%) on large datasets. K-sparse outperforms Large SIMLR by 36% on Klein dataset and 27% on Zeisel dataset in terms of ARI.
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  and our own analysis suggest that PCNT may represent a prime target. Another potentially relevant
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Supplementary information available online at http://dev.biologists.org/lookup/doi/10.1242/dev.177428.supplemental [START_REF] Tibshirani | Estimating the number of clusters in a data set via the gap statistic[END_REF]). For evaluating our clustering results, we compute the silhouette coefficient [START_REF] Peter | Silhouettes: A graphical aid to the interpretation and validation of cluster analysis[END_REF]). Since the true labels are available for these experiments, we moreover compare the labels obtained from our method with the true labels by computing the clustering accuracy. We also report the popular Adjusted Rank Index (ARI) [START_REF] Hubert | Comparing partitions[END_REF]) and Normalized Mutual Information (NMI) criteria. Processing times are obtained on a computer using an i7 processor (2.5 Ghz). We compare our method with PCA k-means, spectral clustering [START_REF] Luxburg | A tutorial on spectral clustering[END_REF]), and SIMLR (Single-cell Interpretation via Multikernel Learning) (Wang et al. (2017); [START_REF] Bach | Multiple kernel learning, conic duality, and the smo algorithm[END_REF]). The first two methods (PCA k-means and spectral clustering) are standard and easily tested, and we refer for SIMLR to the codes available online: See https://github.com/BatzoglouLabSU/SIMLR/tree/SIMLR/MATLAB.

Application to computational biology: Synthetic datasets

For this experiment, we generated two single cell RNA-seq synthetics databases. The first one contains k = 4 clusters, m = 600 cells, and d = 10, 000 genes. The second one contains k = 4 clusters, m = 600 cells, and d = 15, 000 genes. To this aim, we used the simulation software was downloaded from https://github.com/DeprezM/SCsim, with default parameters. Concerning our K-sparse clustering method, the decay of the Frobenius norm (1) with respect to the number of alternating minimization iterations l = 1, . . . , L is portrayed on Figure 1, left, and illustrates the good properties of our method in terms of convergence. The evolution of the number of selected genes versus the sparsity constraint η is shown in Figure 1, right. The evolution of the silhouette coefficient as a function of η is shown in Figure 2, up. As previously explained, we chose the parameter η using both Figure 1, right, and Figure 2, up, and such that it allows to both obtain a high silhouette coefficient and also to discard a large number of noisy features. For each database, the results of our algorithm compared to other methods are given in Table 1 andTable 2. We can observe that k-sparse clustering behaves better than any of the four other methods in term of silhouette coefficient. This shows that the clusters found by k-sparse were better discriminated than for the other methods. Note that for these experiments, SIMLR algorithm got very interesting results too. Finally, we also provide tsne (Van der [START_REF] Maaten | Visualizing Data using t-SNE[END_REF]) for a 2D visual evaluation of each method (see Figure 3). The results, quite comparable for SIMLR and k-sparse, provide a clear confirmation of those in Tables 1 and2 .

Application to real single cell RNA-seq datasets

Our algorithm can be readily extended to multiclass clustering of high dimensional databases in computational biology (single cell clustering, mass-spectrometric data...), pattern recognition, combinatorial chemistry, social networks clustering, decision making, etc. We provide an experimental evaluation on Single-cell sequencing dataset. The new Single-cell technology has been elected "method of the year" in 2013 by Nature Methods [START_REF] Evanko | Method of the year 2013: Methods to sequence the dna and rna of single cells are poised to transform many areas of biology and medicine[END_REF]). The widespread use of such methods has enabled the publication of many datasets with ground truth cell type annotations [START_REF]Sc3: consensus clustering of single-cell rna-seq data[END_REF]). Thus we compare algorithms on three of those public single-cell RNA-seq datasets: Klein dataset (Klein (2015)), Zeisel dataset [START_REF] Zeisel | Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq[END_REF]) and Usoskin [START_REF] Usoskin | Unbiased classification of sensory neuron types by large-scale single-cell rna sequencing[END_REF]) dataset.

of the multiciliogenesis process. From that perspective, the nested organization of miR-449 and CDC20B in vertebrate genomes, which allows their coordinated expression, appears crucial for successful multiciliogenesis.

It is also noteworthy to point out the location of this gene in a genomic locus where congenital mutations in MCIDAS and CCNO were recently shown to cause a newly-recognized MCC-specific disease, called reduced generation of multiple motile cilia (RGMC). RGMC is characterized by severe chronic lung infections and increased risk of infertility 12,13 . Its location in the same genetic locus as MCIDAS and CCNO makes CDC20B a putative candidate for RGMC. By extension, the deuterosome stagespecific genes uncovered by scRNA-seq in this study also represent potential candidates for additional RGMC mutations. 
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