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Abstract

This thesis has for aim the study of some elliptic problems in some do-
mains becoming unbounded in one or several directions.

In the first part of the thesis, we study the problem
{

−div (A∇uℓ) = f in Ωℓ

uℓ = g on ∂Ωℓ ,

where Ωℓ is the cylinder ℓω1 × ω2 with ω1 and ω2 two bounded domains of
Rk and Rn−k respectively (with 1 ≤ k ≤ n − 1). We denote by Ω∞ the
infinite cylinder Rk × ω2 and we take f ∈ H−1

loc (Ω̄∞) and g ∈ H1
loc(Ω̄∞), so

that f ∈ H−1(Ωℓ) and g ∈ H1(Ωℓ) for any ℓ > 0. This work is based on
the methods developed in [23] and [19]. We show that it is possible to indif-
ferently pass to the limit in the sequence of cylinders and then to solve the
problem on the infinite cylinder, or to first solve the problem on the cylinder
Ωℓ and then to pass to the limit. The limit here is to be understood in the
sense of a Saint-Venant type principle, which is to say that the convergence
takes place for the restrictions of uℓ to smaller domains Ωℓ′ (with 0 < ℓ′ < ℓ)
contained in Ωℓ. After that, we give some optimality results concerning the
domain in which the sequence of solutions uℓ converges to u∞.

In the second chapter, we construct some correctors that enable us to
extend the convergence on the whole cylinder. The construction of these
correctors is inspired from the ones made in [17] and [18].

In the third chapter of the thesis we prove that, under some decreasing
conditions at infinity for the data f , it is possible to recover the same con-
vergence on the whole cylinder, without the adjunction of correctors.

In the last part of the thesis, we study the Stokes problem










− µ∆uℓ +∇pℓ = f in Ωℓ

div u = 0 in Ωℓ

u = 0 on ∂Ωℓ

on a domain Ωℓ = Bℓ×ω, where Bℓ ⊂ Rk (1 ≤ k ≤ n−1) is the ball of radius

5



ℓ centered at the origin. Here, an important hypothesis is that f has some
radial invariant properties with respect to the first k coordinates. One of the
major tools in the proof of the result of this chapter (concerning especially
the case k ≥ 2) is a result of the divergence-problem type. More precisely,
based on a construction inspired by [9], we prove the following result (here
below, Dℓ = Ωℓ+1 \ Ωℓ):

If g ∈ W 1,p(Dℓ) (1 < p <∞) is a radial function along X1 such that

∫

Dℓ

g = 0

and that g = 0 on (Bℓ+1 \ Bℓ)× ∂ω, then there exists u ∈ (W 1,p
0 (Dℓ))

n such
that:

{

div u = g in Dℓ

‖∇u‖Lp(Dℓ) ≤ C(‖g‖Lp(Dℓ) + ‖∇X2g‖Lp(Dℓ)),

the constant C being independent of ℓ for ℓ ≥ 1 (C depends on k, n, p and ω).

Thanks to this result, used in the case p = 2, we finally prove that in this
case, we also have an exponential rate of convergence of uℓ|Ω ℓ

2

to u∞.

Keywords: Cylinders, Long domains, Asymptotic analysis, Stokes prob-
lem, correctors.
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Résumé

Cette thèse a pour objet l’étude de quelques problèmes elliptiques dans
des domaines qui deviennent infinis dans une ou plusieurs directions.

Dans la première partie de la thèse, nous étudions le problème
{

−div (A∇uℓ) = f dans Ωℓ

uℓ = g sur ∂Ωℓ ,

où Ωℓ est le cylindre ℓω1 × ω2, avec ω1 et ω2 deux domaines bornés de Rk

et Rn−k respectivement (avec 1 ≤ k ≤ n − 1). On note Ω∞ le cylindre
infini Rk × ω2, et l’on prend f ∈ H−1

loc (Ω̄∞) et g ∈ H1
loc(Ω̄∞), de sorte que

f ∈ H−1(Ωℓ) et g ∈ H1(Ωℓ) pour tout ℓ > 0. Ce travail se fonde sur les
méthodes développées dans [23] et [19]. On démontre qu’il est possible de
passer indifféremment à la limite dans la suite de cylindres puis de résoudre
le problème, ou de d’abord résoudre le problème sur le cylindre Ωℓ puis de
passer à la limite. Ici, la limite doit être comprise dans le sens d’un principe
de Saint-Venant, c’est-à-dire que la convergence a lieu pour des restrictions
de uℓ à des cylindres Ωℓ′ plus petits (avec 0 < ℓ′ < ℓ). Dans la suite de ce
travail sont présentés des résultats sur l’optimalité du domaine dans lequel
la suite de solutions uℓ converge vers u∞.

Dans le deuxième chapitre, nous montrons comment il est possible d’éten-
dre le domaine de convergence à l’ensemble du cylindre Ωℓ par la construc-
tion de correcteurs. La construction de ces correcteurs se fonde sur celles
présentées dans [17] et [18].

Dans la troisième partie de la thèse, nous prouvons que sous des hy-
pothèses de décroissance à l’infini de la donnée f , il est possible de retrouver
la même convergence sur l’entièreté du cylindre, sans passer par le biais de
correcteurs.

La dernière partie de cette thèse est consacrée à l’étude du problème de
Stokes











− µ∆uℓ +∇pℓ = f dans Ωℓ

div u = 0 dans Ωℓ

u = 0 sur ∂Ωℓ
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sur le domaine Ωℓ = Bℓ × ω, où Bℓ ⊂ Rk est la boule de rayon ℓ centrée à
l’origine. Ici, une hypothèse primordiale est celle qui concerne les propriétés
d’invariance radiale de f par rapport aux k premières coordonnées. L’un des
outils principaux dans la preuve du résultat de cette partie (en particulier
dans le cas où k ≥ 2) est un résultat sur un problème de divergence. Plus
précisément, en se fondant sur une construction inspirée par [9], nous mon-
trons le résultat suivant (ci-dessous, Dℓ = Ωℓ+1 \ Ωℓ) :

Soit g ∈ W 1,p(Dℓ) une fonction radiale par rapport aux k premières coor-

données, et qui vérifie g = 0 sur (Bℓ+1 \ Bℓ)× ∂ω et

∫

Dℓ

g dx = 0. Alors, il

existe u ∈ (W 1,p
0 (Dℓ))

n telle que

{

div u = g in Dℓ

‖∇u‖Lp(Dℓ) ≤ C(‖g‖Lp(Dℓ) + ‖∇X2g‖Lp(Dℓ)),

avec C une constante qui, pourvu que ℓ ≥ 1, dépend seulement de k, n, p et ω.

À l’aide de ce résultat, appliqué au cas p = 2, nous démontrons finalement
que dans ce cas aussi, il y a convergence exponentielle de uℓ|Ω ℓ

2

vers u∞.

Mots clés : Cylindres, Domaines longs, Analyse asymptotique, Problème
de Stokes, Correcteurs.
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Introduction

The aim of this thesis is to study the behaviour of some elliptic problems in
domains becoming unbounded in one or several directions. In order to do so,
we consider a sequence of domains Ωℓ ⊂ Rn, constructed as follows:

Ωℓ = ℓω1 × ω2,

with ℓ a real number, ω1 ⊂ Rk with 1 ≤ k < n and ω2 ⊂ Rn−k. Along the
thesis, ω1 varies from an interval of R to a ball of Rk centered at the origin,
passing by a subdomain of Rk star-shaped with respect to a ball centered at
the origin. To each of these domains Ωℓ corresponds a solution uℓ of a given
elliptic problem. This leads to the construction of a sequence of solutions uℓ.
Furthermore, we define the infinite cylinder Ω∞ as

Ω∞ = Rk × ω2,

and we show that the limit of the solution uℓ (as ℓ goes to ∞) is the solution
u∞ of the elliptic problem on the infinite cylinder Ω∞.

The convergence results are very intuitive, since they can be seen as the
commutativity of two processes. More precisely, the limit u∞ is obtained by
first solving the problem in the cylinder Ωℓ and then get the limit by making
ℓ go to infinity in the sequence of solutions uℓ. But u∞ is also the solution
of the same type of problem in the infinite cylinder Ω∞, which is in fact the
limit of the bounded domains Ωℓ as ℓ goes to infinity.

Let us now be more specific regarding the sense in which the convergence
of uℓ takes place. The convergence that we consider describes in fact a Saint-
Venant-type principle, meaning that u∞ is a good approximation of uℓ as
long as we are far enough from the “lateral boudary” ∂(ℓω1) × ω2. More
specifically, under very weak growth assumptions (at infinity) on f , we prove
results of the type ‖uℓ − u∞‖H1(Ωℓ′ )

→ 0 for some ℓ′ < ℓ. The minimal case
that presents interest here is the one where ℓ′ is a constant (ℓ′ = ℓ0), but as
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we will see in the first chapter, one can also consider ℓ′ depending of ℓ, as for
instance ℓ′ = ℓ

2
.

The approach and the techniques used in this thesis are inspired by the
ones developed by Michel Chipot and his collaborators, see for instance [13]-
[23]. However, we would like to mention here the earlier work of O.A. Oleinik
and G.A. Yosifian (see [55]) concerning the classical Saint-Venant principle
in elasticity.

With respect to the asymptotic analysis, one important remark here is
that, at least intuitively, this study can be related to the study of PDE
problems in thin domains. Indeed, in order to do this, is suffices to make the
change of variables y = 1

ℓ
x, the domain Ωℓ becoming then a thin domain Ωε,

with ε = 1
ℓ
. An important literature related to this topic was produced. We

mention here only a few of these works, starting with some papers written
almost 60 years ago, by M.G. Dzhavadov, who in [32] studied the behaviour
of an elliptic operator in a thin rectangle, by A.L. Goldenveizer, who in [38]-
[40] considered the elasticity problem for thin structures, giving in this way a
justification of the two-dimensional models used for plates and shells. Later,
P.G. Ciarlet and P. Destuynder (see [25]) also justified the plate model by
means of asymptotical analysis.

More recently, G.P. Panasenko considered in [57] the stationnary Navier-
Stokes equations in a network of thin cylinders. Note that this paper contains
very fine results, since an asymptotic expansion of the solution is provided.
Later, G.P. Panasenko and K. Pileckas considered the non-steady Navier-
Stokes system in a tube structure (see [63] and [64]). The asymptotic be-
haviour of a biharmonic problem in a thin multi-structure is studied in [36]
by A. Gaudiello, G.P. Panasenko and A. Piatnitski. The study of Stokes and
Navier-Stokes problems in domains with outlets is also the subject of several
books, such as [34], [35] or [51].

The interested reader can also consult the papers [29] and [58], that are
also treating subjects similar to the ones described here above.

Also related to the study of the behaviour of the solutions of PDE prob-
lems in thin domains, the method of asymptotic partial decomposition of a
domain is an important tool developed by Grigory P. Panasenko (see, e.g.,
[59]-[61]). This method allows to give a good approximation on the whole
domain by separating it in two parts, one (the main part) where a reduction
of the dimension can be made, and a small part where the full dimension is
preserved, this part being the one where the boundary layers are located.

As a proof of the large amount of work that have been done on the topic

12
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of the asymptotic analysis in thin domains, many books have been written
gathering the results of these works. We only mention here several of these
monographs, such as [5], [24], [26], [28], [45], [51].

Let us now come back to the approach adopted in this thesis and make
some comments with respect to the parallels that can be made between the
two approaches (long domains and thin structures). First of all, notice that
when doing the change of variables y = 1

ℓ
x, we transform our problems -

where the parameter ℓ intervenes only in the domain Ωℓ - in a problem in
thin domains, where the parameter ε intervenes three times, since now the
operator, the domain and the data (the applied forces) depend on ε. But most
importantly, with the possible exception of the third chapter, the general
hypotheses on f are not transformed into hypotheses that are adequate to
the kind of problems in thin domains as treated in the works cited here
above. Also, from the point of view of the reduction of dimension - which
is treated here in the first two chapters - the boundary conditions are not of
the same type. We want to emphasize here that, in our case, the reduction
of dimension is made exactly with respect to the complementary directions
as the ones usually considered for the thin domains. Another problem is
that, because of the change of variables formula, a good approximation - in
a Sobolev norm - for the solution to the problem in the thin domain does
not necessary translate into a good approximation in Ωℓ, unless the rate of
convergence is high enough.

However, under some specific hypotheses on the data, the connection
between the two kinds of problems could be tighter. This could be a very
interesting theme for future researches. This is not the topic of this thesis,
our approach being the following: keeping in mind that what we are looking
for is to prove a Saint-Venant-type principle, what can we say with respect
to the most obvious limit u∞, that is the solution of the same problem in the
infinite domain? We prove that not only this natural limit is the good one,
but moreover, the rate of convergence of uℓ towards u∞ (on some smaller
domain Ωℓ′ ⊂ Ωℓ) is very high, being in many cases exponential.

Before giving a more detailed presentation of the kind of results that
we obtain, let us point out another related problem. We refer here to the
PDE anisotropic singular perturbation problems in a fixed, bounded domain.
Indeed, making the change of variables y = (Y1, Y2) = (1

ℓ
X1, X2) (where x =

(X1, X2) ∈ Ωℓ, with X1 = (x1, . . . , xk) ∈ ℓω1 and X2 = (xk+1, . . . , xn) ∈ ω2)
transforms the variable domain Ωℓ into the fixed domain Ω = ω1 × ω2. The
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price to pay is that now the operator and the applied forces f will depend on
ε = 1

ℓ
. However, this dependence only takes place with respect to the first

k coordinates, hence the anisotropic character of the problem. This type of
problems have also been studied by Michel Chipot and his collaborators, see
for instance [4], [14] and [42].

Let us now give some more specific details on the type of problems con-
sidered in this text. We study two different kinds of problems. First, we
consider the equation

−div (A∇u) = f.

To start with, by using some techniques developed by M. Chipot, S. Mardare
and K. Yeressian, we prove the following convergence result

‖∇(uℓ − u∞)‖L2(Ω ℓ
2
) ≤ Ce−αℓ,

for the case of nonhomeogeneous Dirichlet boundary conditions. For homo-
geneous Dirichlet conditions, this estimate was proved in [23].

Once proved this inequality, we study the optimality of the domain in
which this convergence holds by making use of some theoretical computa-
tions, as well as some specific examples. Indeed, we prove it is not possible
to have a convergence on the whole cylinder Ωℓ even if it is possible to get a
domain closer to Ωℓ than Ω ℓ

2
.

Then, we consider again this problem, but this time we focus our study
on the construction of some correctors. These correctors have two aims.

The first one is to correct the limit u∞ with a suitable corrector that
provides a good estimate of uℓ on the whole cylinder Ωℓ. Therefore, adding
a well chosen corrector wℓ unables us to have a convergence of the type

‖∇(uℓ − u∞ − wℓ)‖L2(Ωℓ) → 0.

Even better, we obtain the same exponential rate of convergence as for uℓ to
u∞ on Ω ℓ

2
mentioned above.

The second aim is to give a another proof of the optimality for the domain
of convergence in the case studied by M. Chipot and K. Yeressian.

In the third chapter, we find another case where still the convergence on
the whole cylinder holds: assuming that the data f satisfies some decreasing
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properties at the infinity, and more specifically that f ∈ H−1(Rk × ω2),
we prove that the convergence of uℓ to u∞ takes place once again in the
whole cylinder, the speed being the slowest between the exponential and the
decreasing speed of f at infinity.

We would like to notice here that one of the main ingredients in proving
the results of the third chapter is the study of the solution u∞ at infinity.
This kind of study is an important domain of research that has a great
interest on its own. An extensive literature on this topic was written, in
particular by the Russian school. A pioneering work was done in 1963 by
E.M. Landis (see [48]) for second order elliptic equations. In 1977, E.M.
Landis and G.P. Panasenko studied the behaviour of solutions to elliptic
equations with coefficients which are periodic with respect to all variables
except one (see [49]). In 1982, O.A. Oleinik and G.A. Yosifian described
in [56] the asymptotic behaviour at infinity for the solutions of the linear
elasticity problem. For the Stokes and Navier-Stokes problems, the same
kind of study was realized by numerous authors such as L.V. Kapitanskii
[44], O.A. Ladyzhenskaya and V.A. Solonnikov [47], S.A. Nazarov and K.
Pileckas (see, e.g., [54], [65],[66]).

However, the objectives of our study are not exactly the same as in the
papers cited here above. We are interested in determining the rate of decay
versus zero (as the space variable goes to infinity) of the solution, under the
hypothesis that f satisfies a similar decay property at infinity. Also, the tools
used for proving it are similar to the ones used in the previous chapters. In
particular, we do not make use of weighted Sobolev spaces, as in many of the
works cited above.

The second equation, studied in the last part of this thesis, is another
classical elliptic problem: the Stokes problem. In a domain of type Bℓ × ω2,
where Bℓ ⊂ Rk is a ball of radius ℓ centered at the origin, we do the same
study of the possibility to swap the two limit processes. Here we adapt the
methods used for the previous problem, but we encounter some additional
difficulties. This is due to the fact that we need to solve a problem of the
form

{

div u = g in Dℓ

‖∇u‖Lp(Dℓ) ≤ Cp(‖g‖Lp(Dℓ) + ‖∇X2g‖Lp(Dℓ)),

which represents the main theoretical aspect of the study. Thanks to the
result we prove for this divergence problem and to some results about radial
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0.1. ELLIPTIC PROBLEMS IN CYLINDERS

functions that we prove along the paper, we finally can make a good use of
the two methods from [23] and [19] to get the same exponential convergence
as in the previous papers.

We would like to emphasize here that the novelty with respect to the
previous works - dedicated to the Stokes problem in long cylinders - arises in
the case k ≥ 2. Indeed, concerning the case k = 1, M. Specovius-Neugebauer
[67] proved the convergence of uℓ towards u∞ on Ωℓ−ε (for any ε > 0), with an
exponential rate, provided that the applied forces f satisfy a similar property.
Also in the case k = 1, M. Chipot and S. Mardare [19] proved a Saint-Venant
type result under the same general growth assumptions on f than the ones
made in the forth chapter of this thesis.

This thesis is divided is four chapters as follows:

• Chapter 1: Elliptic problems in long cylinders revisited.

• Chapter 2: Correctors to elliptic problems in long cylinders.

• Chapter 3: Asymptotic analysis of some elliptic problems in long cylin-
ders with data decreasing at infinity.

• Chapter 4: Asymptotic analysis for the Stokes problem in domains
becoming unbounded in several directions.

In the remaining part of this introduction we give a brief overview of our work,
introducing the topic and the problem for each chapter. We also present a
short review of some related works, and describe our contribution to each
problem.

0.1 Elliptic problems in cylinders

In the first chapter of the thesis, we study the very classical problem

−div (A∇u) = f

on some cylinder Ωℓ. The study of this problem has been widely developed,
since the first article

• Chipot, M.; Rougirel, A., On the asymptotic behaviour of the solution
of parabolic problems in cylindrical domains of large size in some di-
rections, Discrete Contin. Dyn. Syst. Ser. B 1 (2001), no. 3, 319-338.
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0.1. ELLIPTIC PROBLEMS IN CYLINDERS

There are two articles that greatly influenced the evolution of this field of
research:

• Chipot, M.; Yeressian, K., Exponential rates of convergence by an iter-
ation technique, C. R. Acad. Sci. Paris, Ser. I 346 (2008), 21-26.

• Chipot, M.; Mardare, S., Asymptotic behaviour of the Stokes problem
in cylinders becoming unbounded in one direction, J. Math. Pure et
Appliquées, Vol. 90, Issue 2 (2008), 133-159.

The article of 2001 gives a primary convergence result, for some parabolic
problems of the same kind: for a fixed ℓ0, uℓ converges to u∞ on the cylinder
Ωℓ0 as ℓ goes to ∞.

The two articles published in 2008 are more directly relied to the work
we present in the first chapter. In the first one, under some assumptions that
we describe in the next section, the authors prove the following convergence:

‖∇(uℓ − u∞)‖L2(Ω ℓ
2
) → 0 as ℓ→ +∞.

This is what is now considered to be the classical expression of this kind of
convergence. Even more important is a technique introduced in this article
and which is nowadays very usual approach.

It consists in an iteration technique: we control the norm of ∇(uℓ − u∞)
on any cylinder Ωℓ1 (ℓ1 ≤ ℓ − 1) by its norm on the cylinder Ωℓ1+1, the
quotient between the two being less than 1. Then, we iterate this inequality
a suitable amount of times, in order to get an inequality of the type

‖∇(uℓ − u∞)‖L2(Ω ℓ
2
) ≤ Ce−αℓ.

The second article, although it concerns the Stokes problem, provides a
general method used in many following works. The idea developed there
is to consider the sequence of solutions (uℓ) as a ”Cauchy sequence”. The
use of this method in the first chapter, allows us to get rid of the restrictive
hypotheses on f and A made by M. Chipot and K. Yeressian in their article.

Finally, in 2014, M. Chipot proved the same convergence in the homoge-
neous Dirichlet problem in the laplacian case (A being the identity matrix)
with some general hypotheses, and with a general matrix field A in the book
“Asymptotic Issues for Some Partial Differential Equations” in 2016.
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0.1. ELLIPTIC PROBLEMS IN CYLINDERS

Our contribution

In this work, we study the following non homogeneous Dirichlet problem in
the cylinder Ωℓ:

{

−div (A∇uℓ) = f in Ωℓ

uℓ = g on ∂Ωℓ ,

where f ∈ H−1
loc (Ω̄∞) and g ∈ H1

loc(Ω̄∞), so that f ∈ H−1(Ωℓ) and g ∈ H1(Ωℓ)
for any ℓ > 0.

The first different point here with respect to the results quoted above is
that the Dirichlet condition we consider is nonhomogeneous. In order to deal
with this condition, we make a good use of the two techniques previously
introduced.

Furthermore, there are a few improvements that we describe below: first
of all (see also Asymptotic Issues for Some Partial Differential Equations by
M. Chipot in 2016) we get rid of the hypothesis made in [23] that some part
of the data do not depend on X1. Indeed, in [23] the authors suppose that f
depends only on X2 and that the matrix A, decomposed as

A =

(

A11 A12

A21 A22

)

,

verifies that A12(x) = A12(X2) and A22(x) = A22(X2). We also make a slight
improvement on the hypothesis concerning the domain ω1 by allowing it to
be only star-shaped (instead of convex) with respect to an open ball centered
at the origin. Furthermore, we prove (see Section 1.2) that the result of M.
Chipot and K. Yeressian can then be derived as a particular case of the one
presented in this chapter.

In the last part of the chapter, we provide some optimality results on
the domain in which uℓ converges to u∞. These results, given in the case of
homogeneous boundary conditions, detail some conditions on the parameters
for the convergence to take place. After that, we present some examples
where we retrieve the theoretical parameters for optimality computed before.
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0.2 Correctors for elliptic problems in cylin-

ders

The topic of correctors for the kind of problems in which we are interested
have been very few explored in the literature. More precisely, to our best
knowledge, there are only two works on this subject:

• Chipot, M.; Mardare, S., On correctors for the Stokes problem in cylin-
ders, Proceedings of the conference on nonlinear phenomena with en-
ergy dissipation, Chiba, November 2007, Gakuto International Series,
Mathematical Sciences and Applications, Vol. 29, Gakkotosho (2008),
37-52.

• Chipot, M.; Guesmia, S., Correctors for some asymptotic problems,
Proceedings of the Steklov Institute of Mathematics, Vol 270, (2010),
263-277.

There are mainly two motivations for the work presented in this second
chapter. The first one is the search of a way to extend the domain in which
the convergence from the Chapter 1 takes place. Indeed, as shown in the
first chapter, the convergence result is classically given on Ω ℓ

2
, but can be

obtained on any Ωγℓ for 0 ≤ γ < 1, in the case where f has polynomial
growth at infinity. Nevertheless, it is not possible in general to directly
obtain a convergence result on the whole cylinder. Therefore, one of the
main aims of this chapter is to construct a corrector, that is to say a function
wℓ in H1(Ωℓ) such that, added to u∞ we get a good approximation of uℓ.
More specifically, we look for a function wℓ such that

‖∇(uℓ − u∞ − wℓ)‖L2(Ωℓ) → 0

with the best rate of convergence we can find. Actually, we prove that it is
possible to have the same exponential rate of convergence as in the results
given in the first chapter.

The end of the chapter is devoted to the second motivation, that is to
prove the optimality of the result given by [23]. Here, it is important to note
that the optimality is to be understood in a quite unusual way: we do not
study the optimality of the convergence speed, but instead we look for the
largest domain in which the convergence takes place. Therefore, this justifies
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the use of correctors since we prove that it is not possible, under the general
conditions of this chapter, to get a convergence of uℓ to u∞ on the whole
cylinder.

Our contribution

The work we have done in the second chapter is essentially a generalisation
of the article by M. Chipot and S. Guesmia cited in the first part of this
section. Nevertheless, this generalisation is far from being straightforward.
Indeed, in their article the authors are considering the Laplacian (that is, the
matrix A is the identity matrix of Mn, the space of square matrices of order
n), which has some convenient symmetry properties, used along the article.
Furthermore, they assume the data f to depend only on X2. Under these
assumptions, they construct a corrector wℓ ∈ H1(Ωℓ) such that

‖∇(uℓ − u∞ − wℓ)‖L2(Ωℓ) ≤ Ce−αℓ.

Let us point out that their result is self-contained, which is to say that it can
be obtained independently of some convergence results such as the one from
[23] or from the previous chapter. Even more, the convergence result of [23]
can be retrieved from this result.

Here, we work with the problem
{

−div (A∇uℓ) = f in Ωℓ

uℓ = 0 on ∂Ωℓ ,

with f a H−1
loc (Ω̄∞)-distribution satisfying, for some constant β > 0,

‖f‖H−1(Ωℓ) ≤ Ceβℓ for all ℓ > 0 ,

and A = (aij)1≤i,j≤n ∈ L∞(Ω∞;Mn(R)) a matrix field satisfying the proper-
ties:

λ|ξ|2 ≤ A(x)ξ · ξ ∀ ξ ∈ Rn, a.e. x ∈ Ω∞

|A(x)ξ| ≤ Λ|ξ| ∀ ξ ∈ Rn, a.e. x ∈ Ω∞.

The difference with the first chapter is that we take the specific case k = 1
(with ω1 = (−1, 1) and ω2 = ω ⊂ Rn−1), meaning that the domain goes to
infinity in only one direction.
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Since our assumptions are weaker than those in [17], as the general ellip-
tic operator does not verify the same symmetry properties as the Laplacian,
we cannot use the construction done in [17].

Instead, the corrector is constructed separately on the right-hand side and
the left-hand side of the cylinder Ωℓ. This is why the corrector we construct
is in H1(Ωℓ\({0}×ω) and not in H1(Ωℓ). However, we show (see Section 2.1)
that this corrector allows to very easily construct a new corrector belonging
to H1(Ωℓ) and having the same convergence properties with respect to uℓ.

In the second part of the chapter, we assume the same conditions on the
data as in [23]. Under these conditions, we show that for every ℓ, the right
and left correctors w+

ℓ and w−
ℓ can be obtained as a translation of the same

functions w+ and w− defined on (−∞, 0)×ω and (0,+∞)×ω, respectively.
We then can use the properties of w+ and w− to prove the optimality of the
result from [23] (the optimality being understood in the sense given in the
first part of this section). More precisely, we prove that in general, for a
constant a > 0, we have that

‖∇(uℓ − u∞)‖L2(Ωℓ−a) 6→ 0.

0.3 Elliptic problems in cylinders with data

decreasing at infinity

This smaller chapter comes in the same spirit as the previous one. More
specifically, the aim of this part remains the extension of the domain of
convergence of uℓ to u∞. Nevertheless, this time instead of the adjunction
of a new correcting function, we achieve this goal by putting some stronger
hypothesis on the data f . More precisely, as pointed out in a remark of the
second chapter, we reach the convergence result

‖∇(uℓ − u∞)‖L2(Ωℓ) → 0

by assuming that f ∈ H−1(Rk × ω2). We would like to emphasize here the
fact that in this chapter, we go back to the general setting concerning the
domains Ωℓ, i.e. that they become unbounded in several directions, not only
in one direction as in the second chapter. Another important difference with
the previous chapter is that this time, we do not necessarily have the same
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exponential rate of convergence as we usually do, but here the speed is the
slowest between the exponential one and the decreasing speed of f to 0 at
infinity. Finally, in the very last part of this chapter we prove (see Section 3.2)
that in the case where k = 1, the same result can be obtained more directly
by making a good use of some results proved along the second chapter.

0.4 The Stokes problem in domains becom-

ing unbounded in several directions

In this last chapter, we study a different elliptic problem, the Stokes problem










− µ∆uℓ +∇pℓ = f in Ωℓ

div u = 0 in Ωℓ

u = 0 on ∂Ωℓ

on a domain Ωℓ = Bℓ × ω, where Bℓ ⊂ Rk is a ball of radius ℓ centered at
the origin.

This work is very different from the others presented in the rest of the
thesis. Indeed, the difficulties to overcome here do not come from a direct
application of the methods described above, but they come from some side
problems arising when trying to make the computations.

In a more precise way, the two principal tools that we use in order to
overcome the difficulties - generated by the fact that k might be greater
than 1 - are a particular form of the divergence problem described below,
and some results about functions which are radial with respect to the first k
coordinates.

Our contribution

In this chapter, we do not necessarily suppose that the domain becomes un-
bounded in only one direction, but instead we allow it to go to infinity in
several directions.

In the case where k = 1, it has already been proved in [19] that for some
positive constants a and α, the solution (uℓ, pℓ) of the Stokes problem in Ωℓ

22



0.4. THE STOKES PROBLEM

satisfies the estimate

‖∇(uℓ − u∞)‖L2(Ω ℓ
2
) + ‖∇(pℓ − p∞)‖L̂2(Ω ℓ

2
) ≤ αe−aℓ‖f‖L2(Q) ,

where Q = (0, 1)× ω and L̂2(Ω ℓ
2
) = L2(Ω ℓ

2
)/R.

One of the key ingredients in the proof of the main result of this chapter
(concerning the case k ≥ 1) is a result of the divergence-problem type. Let
us remind here the classical divergence problem:

If Ω ⊂ Rn is a Lipschitz domain and f ∈ L2(Ω) is such that

∫

Ω

f dx = 0,

then there exists u ∈ (H1
0 (Ω))

n such that

{

div u = f in Ω

‖∇u‖L2(Ω) ≤ C‖f‖L2(Ω)

with C independent of f .

In our case, we need to prove a similar result in a domainDℓ = Ωℓ+1\Ωℓ =
(Bℓ+1\Bℓ)×ω (where Bℓ = B(0, ℓ) ⊂ Rk and ω ⊂ Rn−k), but with a constant
C that does not depend on ℓ.

Actually, we obtain the following result:

If g ∈ W 1,p(Dℓ) (1 < p <∞) is a radial function along X1 such that

∫

Dℓ

g = 0

and that g = 0 on (Bℓ+1 \ Bℓ)× ∂ω, then there exists u ∈ (W 1,p
0 (Dℓ))

n such
that:

{

div u = g in Dℓ

‖∇u‖Lp(Dℓ) ≤ C(‖g‖Lp(Dℓ) + ‖∇X2g‖Lp(Dℓ)),

the constant C being independent of ℓ for ℓ ≥ 1 (C depends on k, n, p and ω).

In the proof of the main result of the chapter, we use this result in the
specific case of p = 2. A first important remark is that here, we control the
H1-norm of ∇u by the H1-norm of g and not as usually by the L2-norm of
g. Nevertheless, this weaker inequality still remains sufficient as a key tool in
proving the main result of this chapter concerning the asymptotic properties,
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i.e. the one of uℓ and pℓ as ℓ goes to infinity.

The second remark concerns the radiality assumption on g. Indeed, with-
out this assumption, the constant C appearing in the inequality ‖∇u‖H1(Dℓ) ≤
C‖g‖H1(Dℓ) depends on ℓ, i.e. the constant C is in fact a Cℓ. Hence, in order
to obtain a constant independent of ℓ, we make the additional assumption
that g is radial with respect to X1 = (x1, . . . , xk). Then, we prove that it
is possible to construct a vector field u on Dℓ satisfying the properties de-
scribed above, and in particular the inequality involving a constant C that
is independent on ℓ. The construction of the vector field u is inspired by
the one made by Bourgain and Brezis in [9], for the divergence problem in
hypercubes of Rn.
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Chapter 1

Elliptic problems in long

cylinders revisited

The asymptotic study of partial differential equations in cylinders becoming
unbounded in one or several directions has known important developments
in the last years, especially thanks to the works of Michel Chipot and his
collaborators, see for example [13]-[23], [41] and [69]. In this paper, we prove
the convergence to the solution of a linear elliptic problem on an infinite
cylinder of the solutions of the same problem taken on larger and larger
truncations of the cylinder. Following the methods introduced in [23] and
[19], we generalize the result of convergence found in [23] for the case where
the data is not necessarily independent of the coordinate along the axis of the
cylinder. We also consider the non-homogenous Dirichlet problem instead of
the homogenous one.

1.1 Introduction and Notation

On a generalized cylinder Ωℓ = ℓω1×ω2 ⊂ Rn, where ω1 ⊂ Rk (1 ≤ k ≤ n−1)
and ω2 ⊂ Rn−k are bounded open sets, we consider a linear elliptic problem
with non-homogenous Dirichlet boundary conditions. The data is given by
two functions f and g defined on the infinite cylinder Rk × ω2. Under very
weak assumptions on f and g, we can prove that the restriction to a bounded
subset of Rk ×ω2 of the solution uℓ of the Dirichlet problem in Ωℓ converges,
as ℓ goes to infinity, to the solution of a similar Dirichlet problem on the
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1.1. INTRODUCTION AND NOTATION

infinite cylinder. Moreover, the rate of this convergence is exponential. We
would like to precise here that the asymptotic analysis for the homogeneous
Dirichlet problem is presented in [15], under a stronger assumption on the
domain ω1.

Let us now give the notation that will be used in this chapter.

The notation | · | stands for the Euclidean norm in Rk. For x ∈ Rk and
r > 0, we use the notation B(x, r) for the open ball of Rk, centered at x of
radius r:

B(x, r) = {y ∈ Rk ; |y − x| < r} .
We denote by |A| the k-dimensional Lebesgue measure of a measurable sub-
set A of Rk.

If U is an unbounded open set of Rn, we define

L2
loc(Ū) = {v ∈ L2

loc(U) | v ∈ L2(O), for any bounded open set O ⊂ U},
H1

loc(Ū) = {v ∈ H1
loc(U) | v ∈ H1(O), for any bounded open set O ⊂ U}.

H−1
loc (Ū) = {v ∈ H−1

loc (U) | v ∈ H−1(O), for any bounded open set O ⊂ U}.

If O is an open subset of Rn and v ∈ H1
0 (O), then by convention, we will

also denote by v its extension by 0 outside of O. Note that in this case, we
have v ∈ H1

0 (U) for any open set U ⊃ O.
For a bounded Lipschitz domain O ⊂ Rk (1 ≤ k ≤ n), we denote by γ(v)

the trace on ∂O of the function v ∈ H1(O).

Let k be an integer such that 1 ≤ k ≤ n−1 and ω1 be a bounded domain
(i.e., open and connected) of Rk, verifying

ω1 is star-shaped with respect to an open ball of Rk centered at 0. (1.1.1)

Note that in particular, any bounded open convex set containing 0 satisfies
the property (1.1.1).

Let ω2 be a bounded Lipschitz domain of Rn−k. We set

Ωℓ = ℓω1 × ω2 , Ω∞ = Rk × ω2 .

For a point x ∈ R, we set

X1 = (x1, ..., xk) , X2 = (xk+1, ..., xn),
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hence we can write x = (X1, X2), and we use the notation

∇X1 =
( ∂

∂x1
, · · · , ∂

∂xk

)

, ∇X2 =
( ∂

∂xk+1

, · · · , ∂

∂xn

)

.

The hypothesis of ω1 satisfying the property (1.1.1) is fundamental in
the proof of the main result of this paper, since this property allows us to
construct a function

ρ = ρ(X1) ∈ W 1,∞(Rp × ω2)

such that

0 ≤ ρ ≤ 1, ρ = 1 on ℓω1 × ω2, ρ = 0 on (Rk \ (ℓ+ 1)ω1)× ω2,

and |∇X1ρ| ≤ c0 in Rk × ω2, with c0 a constant depending only on ω1. The
construction of such functions ρ is possible thanks to the following result:

Lemma 1.1.1. Let ω1 ( Rk an open set which is star-shaped with respect to
the open ball Bδ = B(0, δ) = {x ∈ Rk ; |x| < δ}. Then for all ℓ > 0, one has

dist(ℓω1,R
k \ (ℓ+ 1)ω1) ≥ δ . (1.1.2)

Proof. Proving inequality (1.1.2) is equivalent to proving the inclusions

B(X1, δ) ⊂ (ℓ+ 1)ω1 for all X1 ∈ ℓω1 , (1.1.3)

since (1.1.3) implies |X1−Y1| ≥ δ for all X1 ∈ ℓω1 and all Y1 ∈ Rk \ (ℓ+1)ω1.
So let X1 ∈ ℓω1 be fixed. Thus, X1 = ℓX̃1 for some X̃1 ∈ ω1. Then for

any Y1 ∈ B(X1, δ), we have Y1 = (ℓ+ 1) 1
ℓ+1

Y1 and

1

ℓ+ 1
Y1 =

1

ℓ+ 1
(Y1 − ℓX̃1 + ℓX̃1) =

1

ℓ+ 1
(Y1 − ℓX̃1) +

ℓ

ℓ+ 1
X̃1 .

But |Y1 − ℓX̃1| = |Y1 − X1| < δ, hence Y1 − ℓX̃1 ∈ Bδ. Consequently,
since X̃1 ∈ ω1 and ω1 is star-shaped with respect to the ball Bδ, we deduce
that 1

ℓ+1
Y1 ∈ ω1, which implies Y1 ∈ (ℓ + 1)ω1 for any Y1 ∈ B(X1, δ). The

argument above being valid for any X1 ∈ ℓω1, this ends the proof of the
inclusion (1.1.3).
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Note that the condition of ω1 being star-shaped with respect to the origin
is necessary in order to have the inclusion ℓ1ω1 ⊂ ℓ2ω1 for ℓ1 ≤ ℓ2 and the
hypothesis (1.1.1) is the minimal assumption that insures

ℓ1ω1 ⊂ ℓ2ω1 if ℓ1 < ℓ2 . (1.1.4)

Indeed, if ω1 is only star-shaped with respect to a convex set of dimsension
k− 1, (1.1.4) may no longer be satisfied. Note also that the assumption that
the origin belongs to the open set ω1 implies Rk =

⋃

ℓ>0

ℓω1, thus
⋃

ℓ>0

Ωℓ = Ω∞.

Let A = (aij)1≤i≤n be a field of n× n matrices defined on Rk × ω2, such
that aij ∈ L∞(Rk×ω2) for all i, j ∈ {1, . . . , n}, and for some constants λ > 0
and Λ > 0,

λ|ξ|2 ≤ A(x)ξ · ξ ∀ ξ ∈ Rn, a.e. x ∈ Rk × ω2 , (1.1.5)

|A(x)ξ| ≤ Λ|ξ| ∀ ξ ∈ Rn, a.e. x ∈ Rk × ω2 . (1.1.6)

For β ∈ R, we define

Vβ(Ω∞) = {f ∈ L2
loc(Ω̄∞) | ∃C0 ≥ 0 such that ‖f‖L2(Ωℓ) ≤ C0e

βℓ ∀ ℓ > 0},
Wβ(Ω∞) = {f ∈ H−1

loc (Ω̄∞) | ∃ C̃0 ≥ 0 such that ‖f‖H−1(Ωℓ) ≤ C̃0e
βℓ ∀ ℓ > 0}.

For any ℓ > 0, we consider the following non-homogenous Dirichlet prob-
lem in Ωℓ:

{

−div (A∇uℓ) = f in Ωℓ

uℓ = g on ∂Ωℓ ,
(1.1.7)

where f ∈ H−1
loc (Ω̄∞) and g ∈ H1

loc(Ω̄∞), so that f ∈ H−1(Ωℓ) and g ∈ H1(Ωℓ)
for any ℓ > 0.

In particular, the fact that f ∈ H−1
loc (Ω̄∞) implies that 〈f, v〉 is defined for

any v ∈ ⋃ℓ>0H
1
0 (Ωℓ). This remark is useful when defining the problem in

the infinite cylinder Ω∞ (see Section 1.2).
For the simplicity of the presentation, we consider here a function g de-

fined on the whole infinite cylinder Ω∞ in order to define the boundary con-
dition in problem (1.1.7) for any ℓ > 0. However, the results of this paper

are easily adapted to the case where we only consider g ∈ H
1
2
loc(∂Ω∞) and

where the boundary condition in (1.1.7) is replaced by

uℓ = gℓ on ∂Ωℓ ,
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for some functions gℓ ∈ H
1
2 (∂Ωℓ) satisfying

gℓ = g on ∂Ωℓ ∩ ∂Ω∞ for all ℓ > 0 .

Thanks to the Lax-Milgram theorem, there exists a unique weak solution
to problem (1.1.7), i.e. there exists a unique solution uℓ ∈ H1(Ωℓ) to the
variational problem:







∫

Ωℓ

A∇uℓ · ∇v dx = 〈f, v〉 for all v ∈ H1
0 (Ωℓ) ,

uℓ = g on ∂Ωℓ .
(1.1.8)

Notice that the last equality is to be taken is the sense of the trace theory in
H1(Ωℓ), i.e. uℓ satisfies γ(uℓ) = g on ∂Ωℓ. The aim of this paper is to study
the behaviour of uℓ as ℓ goes to infinity.

Let us first recall a classical result that we prove below, for the sake
of completeness. In its proof, we use a technique that have been used for
example by Morrey in [53].

Lemma 1.1.2. Let D1 ⊂ Rk be a bounded Lipschitz domain and v ∈ H1(D1×
ω2) such that v = 0 on D1×∂ω2. Then, for almost every X1 in D1, we have:

v(X1, ·) ∈ H1
0 (ω2) and [∇X2v](X1, ·) = ∇X2 [v(X1, ·)]. (1.1.9)

Proof. Since D1 and ω2 are bounded Lipschitz domains in Rk, respectively
Rn−k, their Cartesian product D1 × ω2 is a bounded Lipschitz domain in
Rn. Then there exists a sequence {vk} ⊂ C1(D1 × ω2) such that vk → v in
H1(D1 × ω2) (see, e.g, [2]). Therefore,

∫

D1×ω2

(|vk − v|2 + |∇(vk − v)|2) dx k→+∞−−−−→ 0.

Using the Fubini theorem, we can write
∫

D1

(

∫

ω2

(|vk − v|2 + |∇(vk − v)|2)dX2

)

dX1
k→+∞−−−−→ 0.

It follows that, up to a subsequence,
∫

ω2

(|(vk − v)(X1, ·)|2 + |∇(vk − v)(X1, ·)|2)dX2
k→+∞−−−−→ 0 a.e. X1 ∈ D1
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and more particularly
∫

ω2

(|(vk − v)(X1, ·)|2 + |∇X2(vk − v)(X1, ·)|2)dX2
k→+∞−−−−→ 0 a.e. X1 ∈ D1.

This last convergence implies that for almost every X1 ∈ D1, vk(X1, ·) →
v(X1, ·) in H1(ω2) and ∇X2 [v(X1, ·)] = [∇X2v](X1, ·), since this equality is
valid for every vk ∈ C1(D1 × ω2). By definition of the trace on ∂(D1 × ω2),
we have that vk |∂(D1×ω2)

→ γ(v) in L2(∂(D1×ω2)), so particularly in L2(D1×
∂ω2). By hypothesis, γ(v) = 0 on D1 × ∂ω2. Thus,

∫

D1×∂ω2

v2k(X1, ·)dσx =

∫

D1

(

∫

∂ω2

v2k(X1, ·)dσX2

)

dX1 → 0

We deduce that, up to a subsequence,
∫

∂ω2

v2k(X1, ·)dσX2 → 0 a.e. X1 ∈ D1 .

This implies that vk(X1, ·)|∂ω2
→ 0 in L2(∂ω2) for a.e. X1 ∈ D1. Since we

know that vk(X1, ·) → v(X1, ·) in H1(ω2) for a.e. X1 ∈ D1, we have that for
almost every X1 ∈ D1, γ(v(X1, ·)) = 0 in the sense of the trace theory in
H1(ω2). Since ω2 is Lipschitz, this finally implies that v(X1, ·) ∈ H1

0 (ω2) for
a.e. X1 ∈ D1.

The previous lemma helps us to establish the following Poincaré inequal-
ity:

Lemma 1.1.3. Let v ∈ H1(Ωℓ) such that v = 0 on ℓω1 × ∂ω2 and ω̃1 ⊂ ℓω1

a measurable set. Then there exists a constant cω2 depending only on ω2 such
that:

‖v‖L2(ω̃1×ω2) ≤ cω2‖∇X2v‖L2(ω̃1×ω2) . (1.1.10)

Proof. Since ω1 is a bounded domain satisfying (1.1.1), it is also a bounded
Lipschitz domain (see, e.g., Teorema 1.I in [33]) and the same is true for ℓω1.
Therefore, thanks to Lemma 1.1.2, we know that for almost every X1 ∈ ℓω1,
v(X1, ·) ∈ H1

0 (ω2) and [∇X2v](X1, ·) = ∇X2 [v(X1, ·)], which allows us to
apply the usual Poincaré inequality on H1

0 (ω2) to v(X1, ·), to get
∫

ω2

v2(X1, X2) dX2 ≤ c2ω2

∫

ω2

|∇X2v(X1, ·)|2 dX2,

where c2ω2
is a constant depending only on ω2. To obtain (1.1.10), it is enough

to integrate the previous inequality in X1 over ω̃1.
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1.2 The main result

As announced in the Introduction, the aim of this paper is to prove that
the solutions uℓ defined in the previous section converge, in a sense that
will be precised in the next theorem, to the solution of a non-homogeneous
Dirichlet problem in the infinite cylinder Ω∞. This problem is introduced in
the statement of our main result here below.

Theorem 1.2.1. Let f ∈ Wβ(Ω∞) and g ∈ H1
loc(Ω̄∞) such that ∇g ∈

(Vβ(Ω∞))n for some small enough β > 0 and let uℓ ∈ H1(Ωℓ) be the so-
lution of the variational problem (1.1.8). Then for all ℓ0 > 0,

uℓ → u∞ strongly in H1(Ωℓ0)

as ℓ → ∞, where u∞ ∈ H1
loc(Ω̄∞) is the weak solution to the following non-

homogenous Dirichlet problem in the cylinder Ω∞:










−div (A∇u∞) = f in Ω∞

u∞ = g on ∂Ω∞

‖∇u∞‖L2(Ωℓ) ≤ C∞e
2βℓ ∀ ℓ > 0,

(1.2.1)

with C∞ ≥ 0 not depending on ℓ.
Furthermore, we have the estimate

‖∇(uℓ − u∞)‖L2(Ω ℓ
2
) ≤ Ce−αℓ for all ℓ > 0 ,

where C ≥ 0 and α > 0 are constants depending only on ω1, ω2, λ, Λ, C0,
C̃0 (the constants appearing in the definitions of Vβ(Ω∞) andWβ(Ω∞)) and β.

Let first notice that the variational formulation corresponding to the first
equation of problem (1.2.1) is

∫

Ω∞

A∇u∞ · ∇v dx = 〈f, v〉 for all v ∈
⋃

ℓ>0

H1
0 (Ωℓ) (1.2.2)

and the inequality satisfied by ∇u∞ in (1.2.1) can be reformulated as

∇u∞ ∈ (V2β(Ω∞))n.

Notice also that, thanks to the Poincaré inequality (1.1.10), if f ∈ Vβ(Ω∞),
then f ∈ Wβ(Ω∞). More generally, any linear combination of functions and
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partial derivatives (in the distributional sense) of functions in Vβ(Ω∞) belongs
to Wβ(Ω∞).

In the case where the boundary condition in problem (1.1.8) is replaced

by uℓ = gℓ on ∂Ωℓ (with gℓ ∈ H
1
2 (∂Ωℓ) satisfying gℓ = g on ∂Ωℓ ∩ ∂Ω∞), the

condition ∇g ∈
(

Vβ(Ω∞)
)n

should be replaced by

‖gℓ‖H 1
2 (∂Ωℓ)

≤ C0e
βℓ for all ℓ > 0 ,

where the norm on H
1
2 (∂Ωℓ) is given by

‖w‖
H

1
2 (∂Ωℓ)

= inf{‖h‖H1(Ωℓ) ; h ∈ H1(Ωℓ) and γ(h) = w on ∂Ωℓ}.

Note however, that in the statement of Theorem 1.2.1, one does not need to
have an estimate for the whole H1-norm of g, but only for the L2-norm of
its gradient.

Finally, an important remark is that the existence and uniqueness of the
solution u∞ to problem (1.2.1) is a result of the theorem. We would like to
emphasize the fact that a growth condition at infinity for u∞ is necessary in
order to have uniqueness of the solution to problem (1.2.1). To see that, it is
enough to consider the particular case of the Laplacian (where the field A is
constant and equal to the identity matrix), k = 1, f = 0 and g = 0. Then the
functions 0 and (X1, X2) 7→ e

√
µX1ψ(X2) are both solutions to the problem

given by the first two equations of (1.2.1), where −µ < 0 is an eigenvalue
and ψ ∈ H1

0 (ω2) is an eigenfunction (associated to−µ) of the Laplacian on ω2.

Proof of Theorem 1.2.1. The proof of the theorem is divided into six
steps. The first three ones will show that uℓ is a Cauchy “sequence” for the
norm of H1(Ωℓ0) for all ℓ0 > 0, then we prove that the limit of (uℓ) is the
solution to the problem (1.2.1) and finally we prove the uniqueness of the
solution to this problem.

Step I. There exists a constant a ∈ (0, 1) only depending on ω1, ω2, λ and
Λ such that

∫

Ωℓ1

|∇(uℓ − uℓ+r)|2 dx ≤ a

∫

Ωℓ1+1

|∇(uℓ − uℓ+r)|2 dx

for all ℓ > 1, for all ℓ1 ≤ ℓ− 1 and for all r ≥ 0.
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In this step of the proof, we consider ℓ > 1 and r ≥ 0 fixed.

Let v ∈ H1
0 (Ωℓ). In particular v ∈ H1

0 (Ωℓ+r), using the convention we
made regarding the extensions of functions in H1

0 (Ωℓ). Then we can use
v as a test function for the variational equations satisfied by uℓ and uℓ+r.
Substracting the two equations, we derive

∫

Ωℓ

A∇(uℓ − uℓ+r) · ∇v dx = 0 for all v ∈ H1
0 (Ωℓ) , (1.2.3)

given that v and ∇v are zero on Ωℓ+r \ Ωℓ. Taking a good test function
v ∈ H1

0 (Ωℓ) in equation (1.2.3) allows us to prove the estimate in (I). In
what follows, we describe the construction of such a test function.

Let ℓ1 ∈ R be such that 0 < ℓ1 ≤ ℓ − 1. We define a function ρ ∈
W 1,∞(Rk × ω2) only depending on X1 such that 0 ≤ ρ ≤ 1, ρ = 1 on Ωℓ1 ,
ρ = 0 on (Rk × ω2) \ Ωℓ1+1, and |∇X1ρ| ≤ c0 in Ωℓ, with c0 a constant
depending only on ω1, and therefore independent of ℓ1 or ℓ. Since ℓ1+1 ≤ ℓ,
we have

ρ = 0 on ∂(ℓω1)× ω̄2 . (1.2.4)

Note that this construction is possible thanks to Lemma 1.1.1.

On the other hand, ∂Ωℓ =
(

∂(ℓω1)× ω̄2

)

∪ (ℓω1 × ∂ω2) and, since uℓ = g
on ∂Ωℓ and uℓ+r = g on ∂Ωℓ+r, we derive

uℓ − uℓ+r = 0 on ℓω1 × ∂ω2 , (1.2.5)

given that ℓω1 × ∂ω2 ⊂ (ℓ+ r)ω1 × ∂ω2 ⊂ ∂Ωℓ+r. Therefore, it is possible to
take v = ρ(uℓ−uℓ+r) ∈ H1

0 (Ωℓ) (since Ωℓ is Lipschitz and ρ(uℓ−uℓ+r) = 0 on
∂Ωℓ, thanks to (1.2.4) and (1.2.5)) as a test function in the equation (1.2.3).

Observing that ∇X1ρ = 0 in Ωℓ1 ∪ (Ωℓ \ Ωℓ1+1), we have

∫

Ωℓ

A∇(uℓ − uℓ+r) · ρ∇(uℓ − uℓ+r) dx

= −
∫

Ωℓ

A∇(uℓ − uℓ+r) ·
(

∇X1ρ
0

)

(uℓ − uℓ+r) dx

≤
∫

Ωℓ1+1\Ωℓ1

|A∇(uℓ − uℓ+r)||∇X1ρ||uℓ − uℓ+r| dx .
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Using the Cauchy-Schwartz inequality and properties (1.1.5)-(1.1.6) satisfied
by A, this leads to

λ

∫

Ωℓ

ρ|∇(uℓ − uℓ+r)|2 dx ≤
∫

Ωℓ

ρA∇(uℓ − uℓ+r) · ∇(uℓ − uℓ+r) dx

≤ c0Λ

∫

Ωℓ1+1\Ωℓ1

|∇(uℓ − uℓ+r)||uℓ − uℓ+r| dx

≤ c0Λ‖∇(uℓ − uℓ+r)‖L2(Ωℓ1+1\Ωℓ1
)‖(uℓ − uℓ+r)‖L2(Ωℓ1+1\Ωℓ1

) .

Then we use the following Poincaré inequality:

‖(uℓ − uℓ+r)‖L2(Ωℓ1+1\Ωℓ1
) ≤ cω2‖∇X2(uℓ − uℓ+r)‖L2(Ωℓ1+1\Ωℓ1

),

which is a consequence of Lemma 1.1.3, since uℓ − uℓ+r ∈ H1(Ωℓ),

Ωℓ1+1 \ Ωℓ1 =
(

(ℓ1 + 1)ω1 \ ℓ1ω1

)

× ω2 , (ℓ1 + 1)ω1 \ ℓ1ω1 = ω̃1 ⊂ ℓω1

and uℓ − uℓ+r = 0 on ℓω1 × ∂ω2.

Consequently,

λ

∫

Ωℓ1

|∇(uℓ − uℓ+r)|2 dx ≤ c0Λcω2

∫

Ωℓ1+1\Ωℓ1

|∇(uℓ − uℓ+r)|2 dx

= c0Λcω2

∫

Ωℓ1+1

|∇(uℓ − uℓ+r)|2 dx

− c0Λcω2

∫

Ωℓ1

|∇(uℓ − uℓ+r)|2 dx ,

which is
∫

Ωℓ1

|∇(uℓ − uℓ+r)|2 dx ≤ C

1 + C

∫

Ωℓ1+1

|∇(uℓ − uℓ+r)|2 dx ,

with C = c0cω2

Λ
λ
. This is exactly the inequality we were looking for, with

a = C
1+C

∈ (0, 1).

Step II. There exists constants C ≥ 0 and α > 0, depending only on ω1, ω2,
λ, Λ, C0, C̃0 and β, such that

‖∇(uℓ − uℓ+r)‖L2(Ω ℓ
2
) ≤ Ce−αℓ for all ℓ > 0 and all r ∈ [0, 1]. (1.2.6)
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Let ℓ > 0 and r ∈ [0, 1]. Starting with ℓ1 =
ℓ
2
, we iterate the inequality

∫

Ωℓ1

|∇(uℓ − uℓ+r)|2dx ≤ a

∫

Ωℓ1+1

|∇(uℓ − uℓ+r)|2 dx

[ ℓ
2
] times, where [ ℓ

2
] is the integer part of ℓ

2
. As a result, we have

∫

Ω ℓ
2

|∇(uℓ − uℓ+r)|2 dx ≤ a[
ℓ
2
]

∫

Ω ℓ
2+[ ℓ2 ]

|∇(uℓ − uℓ+r)|2 dx .

Noticing that
ℓ

2
− 1 <

[ ℓ

2

]

≤ ℓ

2
et 0 < a < 1 ,

it follows that Ω ℓ
2
+[ ℓ

2
] ⊂ Ωℓ and then

∫

Ω ℓ
2

|∇(uℓ − uℓ+r)|2 dx ≤ a
ℓ
2
−1

∫

Ωℓ

|∇(uℓ − uℓ+r)|2 dx.

Hence,

‖∇(uℓ − uℓ+r)‖L2(Ω ℓ
2
) ≤ ce−α̃ℓ‖∇(uℓ − uℓ+r)‖L2(Ωℓ) , (1.2.7)

with c = a−
1
2 and α̃ = 1

4
ln( 1

a
) > 0.

Now, in order to establish the step II, we only need to estimate ‖∇(uℓ −
uℓ+r)‖L2(Ωℓ). Taking zℓ = uℓ − g, we have that zℓ ∈ H1

0 (Ωℓ). Then, we can
use zℓ as a test function in (1.1.8), leading to

∫

Ωℓ

A∇uℓ · ∇zℓ dx =

∫

Ωℓ

A∇(zℓ + g) · ∇zℓ dx = 〈f, zℓ〉 .

Consequently, using properties (1.1.5)-(1.1.6),

λ

∫

Ωℓ

|∇zℓ|2 dx ≤
∫

Ωℓ

A∇zℓ · ∇zℓ dx = 〈f, zℓ〉 −
∫

Ωℓ

A∇g · ∇zℓ dx

≤ 〈f, zℓ〉+
∫

Ωℓ

|A∇g‖∇zℓ| dx

≤ ‖f‖H−1(Ωℓ)‖∇zℓ‖L2(Ωℓ) + Λ‖∇g‖L2(Ωℓ)‖∇zℓ‖L2(Ωℓ)

≤ Ceβℓ‖∇zℓ‖L2(Ωℓ),
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thanks to the fact that f ∈ Wβ(Ω∞) and ∇g ∈ (Vβ(Ω∞))n. Therefore,

‖∇zℓ‖L2(Ωℓ) ≤ Ceβℓ ,

for a constant C only depending on λ, Λ and on the constants C0, C̃0 ap-
pearing in the definition of the spaces Vβ(Ω∞) and Wβ(Ω∞).
Consequently,

‖∇uℓ‖L2(Ωℓ) = ‖∇(zℓ+g)‖L2(Ωℓ) ≤ ‖∇zℓ‖L2(Ωℓ)+‖∇g‖L2(Ωℓ) ≤ Ceβℓ. (1.2.8)

In the same way

‖∇zℓ+r‖L2(Ωℓ) ≤ ‖∇zℓ+r‖L2(Ωℓ+r) ≤ Ceβ(ℓ+r) ≤ Ceβeβℓ,

since r ∈ [0, 1], with C being the same constant as previously.
Since uℓ − uℓ+r = zℓ − zℓ+r on Ωℓ, we have

‖∇(uℓ − uℓ+r)‖L2(Ωℓ) = ‖∇(zℓ − zℓ+r)‖L2(Ωℓ) ≤ ‖∇zℓ‖L2(Ωℓ) + ‖∇zℓ+r‖L2(Ωℓ)

≤ Ceβℓ,

with the last constant still not depending on ℓ > 0 or on r ∈ [0, 1].
Combined with the inequality (1.2.7), the last inequality implies

‖∇(uℓ − uℓ+r)‖L2(Ω ℓ
2
) ≤ Ce−(α̃−β)ℓ.

Finally, if β from the definitions of Vβ(Ω∞) and Wβ(Ω∞) verifies β < α̃
(where α̃ = 1

4
ln( 1

a
) only depends on ω1, ω2, λ and Λ, since this is the case

for the constant a found in step I), we have

‖∇(uℓ − uℓ+r)‖L2(Ω ℓ
2
) ≤ Ce−αℓ,

for all positive ℓ and all r ∈ [0, 1], with α ∈ R given by α = α̃− β > 0.

Step III. There exists two constants C ≥ 0 and α > 0 depending only on
ω1, ω2, λ, Λ, C0, C̃0 and β such that

‖∇(uℓ − uℓ+t)‖L2(Ω ℓ
2
) ≤ Ce−αℓ , (1.2.9)

for all positive ℓ and all non-negative t.
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This is a simple consequence of inequality (1.2.6):

‖∇(uℓ − uℓ+t)‖L2(Ω ℓ
2
) ≤

[t]−1
∑

i=0

‖∇(uℓ+i − uℓ+i+1)‖L2(Ω ℓ
2
)

+ ‖∇(uℓ+[t] − uℓ+t)‖L2(Ω ℓ
2
)

≤
[t]−1
∑

i=0

‖∇(uℓ+i − uℓ+i+1)‖L2(Ω ℓ+i
2

)

+ ‖∇(uℓ+[t] − uℓ+t)‖L2(Ω ℓ+[t]
2

)

≤
[t]
∑

i=0

Ce−α(ℓ+i) = Ce−αℓ

[t]
∑

i=0

e−αi

≤ C
1

1− e−α
e−αℓ,

with α being the same as in step II and C being different but depending on
the same parameters.

Step IV. There exists u∞ ∈ H1
loc(Ω̄∞) such that for all ℓ0 > 0, uℓ → u∞ in

H1(Ωℓ0), and uℓ − u∞ verifies

‖∇(uℓ − u∞)‖L2(Ω ℓ
2
) ≤ Ce−αℓ for all ℓ > 0 , (1.2.10)

for some constants C ≥ 0 and α > 0, depending only on ω1, ω2, λ, Λ, C0,
C̃0 and β.

A consequence of the Poincaré inequality (1.1.10) (since uℓ − uℓ+t ∈
H1(Ωℓ) and uℓ − uℓ+t = 0 on ℓω1 × ∂ω2) and of inequality (1.2.9) is that
for a fixed ℓ0 > 0,

‖uℓ − uℓ+t‖H1(Ωℓ0
) ≤ C‖∇(uℓ − uℓ+t)‖L2(Ωℓ0

) ≤ Ce−αℓ,

for all ℓ ≥ 2ℓ0 and all t ≥ 0. This implies that (uℓ)ℓ>0 is a Cauchy “sequence”
for the norm of the space H1(Ωℓ0). Since H1(Ωℓ0) is a Banach space, there
exists uℓ0∞ ∈ H1(Ωℓ0) such that uℓ → uℓ0∞ in H1(Ωℓ0).
defined Making ℓ0 vary in N∗ gives us a sequence of limits uk∞ in Ωk. For all
non-zero natural integer k, we have uℓ → uk∞ in H1(Ωk). Since Ωk1 ⊂ Ωk2
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for all k1 < k2, we have uk1∞ = uk2∞ a.e. in Ωk1 , since uℓ → uk1∞ and uℓ → uk2∞
in H1(Ωk1).

We can then construct a function u∞ ∈ H1
loc(Ω̄∞) such that u∞ = uk∞ in

Ωk for all positive integer k. It is enough to set

u∞ =

{

u1∞ in Ω1

uk∞ in Ωk \ Ωk−1 for all k ≥ 2.

This function verifies

uℓ → u∞ in H1(Ωℓ0) for all ℓ0 > 0.

Estimate (1.2.10) is finally obtained by taking ℓ > 0 fixed and making t go
to infinity in inequality (1.2.9).

Step V. The limit u∞ from the previous step is a solution to problem (1.2.1).

For a fixed ℓ0 > 0, let v ∈ H1
0 (Ωℓ0). Then, for all ℓ ≥ ℓ0, v ∈ H1

0 (Ωℓ). It
follows that v is a good test function for the variational problem verified by
uℓ, for all ℓ ≥ ℓ0. Since v is 0 outside of Ωℓ0 , we have that for all ℓ ≥ ℓ0,

∫

Ωℓ0

A∇uℓ · ∇v dx =

∫

Ωℓ

A∇uℓ · ∇v dx = 〈f, v〉 .

Since ∇uℓ → ∇u∞ strongly in (L2(Ωℓ0))
n, letting ℓ go to infinity leads to

∫

Ω∞

A∇u∞ · ∇v dx =

∫

Ωℓ0

A∇u∞ · ∇v dx = 〈f, v〉 .

This shows that u∞ satisfies the variational equation (1.2.2), since ℓ0 is taken
arbitrarily. So u∞ satisfies the first equation of the problem (1.2.1).
On the other hand, for any fixed ℓ0 > 0, we have that, for any ℓ ≥ ℓ0, γ(uℓ) =
g on ∂Ωℓ, hence γ(uℓ) = g on ℓω1 × ∂ω2. Since ℓ0ω1 ⊂ ℓω1, we get γ(uℓ) = g
on ℓ0ω1×∂ω2 ⊂ ∂Ωℓ0 . Remembering that uℓ → u∞ in H1(Ωℓ0) and using the
continuity of the trace operator, we deduce γ(uℓ) → γ(u∞) in L2(∂Ωℓ0) and
particularly in L2(ℓ0ω1×∂ω2). Thus, γ(u∞) = g on ℓ0ω1×∂ω2. Since ℓ0 was
arbitrarily taken, we derive γ(u∞) = g on ∂Ω∞ = Rk×∂ω2 =

⋃

ℓ0>0

(ℓ0ω1×∂ω2).
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Finally, using the estimate (1.2.10) and the inequality (1.2.8), we have

‖∇u∞‖L2(Ωℓ) ≤ ‖∇(u∞ − u2ℓ)‖L2(Ωℓ) + ‖∇u2ℓ‖L2(Ωℓ)

≤ ‖∇(u∞ − u2ℓ)‖L2(Ωℓ) + ‖∇u2ℓ‖L2(Ω2ℓ)

≤ C(e−2αℓ + e2βℓ)

≤ C∞e
2βℓ.

Step VI. There exists a unique solution to problem (1.2.1).

The existence of a solution being already established, we only need to
prove its uniqueness. Let u∞, ũ∞ be two solutions of the problem. Then for
any ℓ1 > 0, the computations of step I remain valid for u∞ and ũ∞ replacing
uℓ and uℓ+r. We finally get the inequality

∫

Ωℓ1

|∇(u∞ − ũ∞)|2 dx ≤ a

∫

Ωℓ1+1

|∇(u∞ − ũ∞)|2 dx,

for all ℓ1 > 0, where a is the same constant as in step I. Then,

‖∇(u∞ − ũ∞)‖L2(Ωℓ1
) ≤ a

1
2‖∇(u∞ − ũ∞)‖L2(Ωℓ1+1).

Iterating k times the previous inequality leads to

‖∇(u∞ − ũ∞)‖L2(Ωℓ1
) ≤ a

k
2 ‖∇(u∞ − ũ∞)‖L2(Ωℓ1+k)

= e−2α̃k‖∇(u∞ − ũ∞)‖L2(Ωℓ1+k) ,

with α̃ = 1
4
ln( 1

a
) found in step II. Combining the last inequality with the

ones satisfied by u∞ and ũ∞ in problem (1.2.1), we deduce that,

‖∇(u∞ − ũ∞)‖L2(Ωℓ1
) ≤ 2C∞e

2β(ℓ1+k)e−2α̃k

= 2C∞e
2βℓ1e−2(α̃−β)k.

Fixing ℓ1 and making k go to infinity, we have that ‖∇(u∞− ũ∞)‖L2(Ωℓ1
) = 0,

since β < α̃.
On the other hand, u∞ = ũ∞ = g on ∂Ω∞, implying u∞ − ũ∞ = 0 on

∂Ω∞. More particularly, for any ℓ1 > 0, we have u∞ − ũ∞ ∈ H1(Ωℓ1) and
u∞− ũ∞ = 0 on ℓ1ω1×∂ω2. Thanks to the Poincaré inequality (1.1.10), this
implies u∞ − ũ∞ = 0 a.e. in Ωℓ1 . Since ℓ1 was arbitrarily chosen, this leads
to u∞ − ũ∞ = 0 a.e. in Ω∞. �

The following generalization of Theorem 1.2.1 is straightforward:
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Theorem 1.2.2. Let f and g satisfy the assumptions of Theorem 1.2.1 and
{fℓ}ℓ>0, {gℓ}ℓ>0 such that fℓ ∈ H−1(Ωℓ), gℓ ∈ H

1
2 (∂Ωℓ) for all ℓ > 0 and

‖fℓ − f‖H−1(Ωℓ) ≤ C1e
−α1ℓ for all ℓ > 0 ,

‖gℓ − g‖
H

1
2 (∂Ωℓ)

≤ C2e
−α2ℓ for all ℓ > 0 ,

for some constants C1 ≥ 0, C2 ≥ 0, α1 > 0 and α2 > 0. If ũℓ ∈ H1(Ωℓ) is
the weak solution to the problem

{

−div (A∇ũℓ) = fℓ in Ωℓ

ũℓ = gℓ on ∂Ωℓ ,

then the following estimate take place:

‖ũℓ − u∞‖H1(Ω ℓ
2
) ≤ Ce−γℓ for all ℓ > 0 , (1.2.11)

where u∞ is the solution to problem (1.2.1) and C ≥ 0, γ > 0 are constants
independent of ℓ.

This result is an immediate consequence of Theorem 1.2.1 and of the well-
known estimate (obtained by considering the problem satisfied by ũℓ − uℓ):

‖ũℓ − uℓ‖H1(Ωℓ) ≤ C
(

‖fℓ − f‖H−1(Ωℓ) + ‖gℓ − g‖
H

1
2 (∂Ωℓ)

)

,

where C is a constant depending only on λ, Λ and ω2, thanks to the Poincaré
inequality (1.1.10). Hence the estimate (1.2.11) is obtained by taking γ =
min{α1, α2, α}, where α is the constant given by Theorem 1.2.1.

Remark. We can obtain the result considered in [23] and corresponding to
a data that is constant in the direction of the cylinder’s axis as a particular
case of Theorem 1.2.1.

More specifically, consider that A is divided into four blocks

A =

(

A11 A12

A21 A22

)

,

where A11 is a p× p matrix and A22 a (n− p)× (n− p) matrix.
Then if the data of the problem satisfy the conditions

A12 = A12(X2), A22 = A22(X2), f = f(X2), g = g(X2),
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with f ∈ H−1(ω2) and g ∈ H1(ω2), we retrieve the result in [23]. Here,
the equality f = f(X2) for some f ∈ H−1(ω2) is to be understood in the
following sense: for a given f ∈ H−1(ω2), the element f ∈ H−1

loc (Ω̄∞) such
that f = f(X2) is defined by the formula

〈f, v〉 =
∫

Rk

〈f, v(X1, ·)〉 dX1 for all v ∈
⋃

R>0

H1
0 (BR × ω2) ,

where BR is the open ball of Rk of radius R, centered at the origin. We
can see that this a valid definition, thanks to Lemma 1.1.2. In fact, the less
obvious part here is the measurability of the integrand, but this can be ob-
tained (using the same technique as in the proof of Lemma 1.1.2) by proving
that this integrand is the a.e.-limit of the sequence of continuous functions
X1 ∈ Rk 7→ 〈f, vk(X1, ·)〉, where, for v ∈ H1

0 (BR × ω2), {vk} ⊂ D(BR × ω2)
is a sequence satisfying vk → v in H1(BR × ω2).

Using Lemma 1.1.2, we can verify that under these assumptions, the
solution u∞ of problem (1.2.1) can be written as u∞ = u∞(X2), where u∞ ∈
H1(ω2) is the weak solution to the problem

{

−div X2(A22∇u∞) = f in ω2

u = g on ∂ω2,

i.e. u∞ is the solution in H1(ω2) to the variational problem







∫

ω2

A22∇X2u∞ · ∇X2v dx = 〈f, v〉 ∀ v ∈ H1
0 (ω2)

u = g on ∂ω2.

Note that, under these particular assumptions, f and g satisfy the hypoth-
esis of Theorem 1.2.1, since f ∈ Wβ(Ω∞) and ∇g ∈ (Vβ(Ω∞))n for any β > 0.

Indeed, we have ‖f‖H−1(Ωℓ) ≤
(

ℓk|ω1|
) 1

2‖f‖H−1(ω2) ≤ C0e
βℓ for all ℓ > 0, by

taking

C0 = sup
ℓ∈(0,+∞)

|ω1|
1
2‖f‖H−1(ω2)ℓ

k
2

eβℓ
.

A similar computation gives ‖∇g‖L2(Ωℓ) =
(

ℓk|ω1|
) 1

2‖∇X2g‖L2(ω2) ≤ C0e
βℓ for

all ℓ > 0.
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1.3 Precisions and optimality results

In this section we give some optimality results concerning the domain of con-
vergence in which the convergence previously proven of uℓ to u∞ takes place.
For the sake of simplicity, we only consider here the case of homogeneous
boundary conditions.

To start with, we recall that from the first step of the proof of the main
theorem of the previous section comes the result:

∫

Ωℓ1

|∇(uℓ − uℓ+r)|2 dx ≤ C

C + 1

∫

Ωℓ1+1

|∇(uℓ − uℓ+r)|2 dx

which is valid for every r > 0. Instead of following the second step by taking
0 ≤ r ≤ 1, we then can iterate this inequality directly. Therefore, for all
r > 0 and for all ℓ1 ≤ ℓ− 1, we have

‖∇(uℓ − uℓ+r)‖L2(Ωℓ1
) ≤ Ce−α̃(ℓ−ℓ1)‖∇(uℓ − uℓ+r)‖L2(Ωℓ). (1.3.1)

Then, assuming that 0 ≤ r ≤ 1, by following the second step of the proof of
the main theorem in the previous section we can derive the inequality

‖∇(uℓ − uℓ+r)‖L2(Ωℓ1
) ≤ Ce−α̃(ℓ−ℓ1)‖f‖H−1(Ωℓ+1), (1.3.2)

where α̃ = 1
2
ln 1

a
with a =

c0cω2
Λ
λ

c0cω2
Λ
λ
+1

.

Assuming that ‖f‖H−1(Ωℓ) = O(eβℓ) we have the following cases:

• If β < α̃, then for any fixed a > 0, it follows from (1.3.2) that

‖∇(uℓ − uℓ+r)‖L2(Ωa) ≤ C ′e−α̃(ℓ−a)eβℓ = Ce−(α̃−β)ℓ.

Then, for t > 0,the triangle inequality leads to

‖∇(uℓ − uℓ+t)‖L2(Ωa) ≤ Ce−αℓ

for α = α̃ − β > 0 with β < α̃. Therefore, following the arguments in
the previous section, we get the convergence of uℓ towards u∞ and the
estimate

‖∇(uℓ − u∞)‖L2(Ωa) ≤ Ce−αℓ. (1.3.3)
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• Taking 0 ≤ γ < 1, if ‖f‖H−1(Ωℓ) = O(eβℓ) with β < (1 − γ)α̃, we have
that

‖∇(uℓ − uℓ+r)‖L2(Ωℓγ) ≤ Ce−α̃(ℓ−γℓ)eβℓ = Ce−(α̃(1−γ)−β)ℓ.

Then, for t > 0, using the triangle inequality we get

‖∇(uℓ − uℓ+t)‖L2(Ωγℓ) ≤ Ce−αℓ, with

α = α̃(1 − γ) − β. Following again the arguments in the previous
section, we get the convergence of uℓ towards u∞ and the estimate

‖∇(uℓ − u∞)‖L2(Ωγℓ) ≤ Ce−αℓ. (1.3.4)

Remark 1.3.1. Since the hypothesis β < (1 − γ)α̃ insures the validity of
estimate (1.3.4), we can see that, under the hypothesis β < α̃, we can always
obtain more than estimate (1.3.3), i.e. an estimate of the type (1.3.4). In-
deed, for any γ small enough, more specifically for γ satisfying γ < 1 − β

α̃
,

one can derive the estimate (1.3.4) on Ωγℓ.

Let us now assume that ‖f‖H−1(Ωℓ) = O(ℓγ) for some γ > 0. Using (1.3.2),
it follows that, for a positive constant η,

‖∇(uℓ − uℓ+r)‖L2(Ωℓ−η ln ℓ) ≤ Ce−α̃η ln ℓℓγ = Cℓ−(α̃η−γ).

We can now see that for η large enough we obtain convergence for uℓ on
Ωℓ−η ln ℓ. Indeed, if α′ = α̃η − γ > 1, we can derive that, since ℓ − η ln ℓ ≤
(ℓ+ r)− η ln (ℓ+ r) for ℓ ≥ η,

‖∇(uℓ − uℓ+t)‖L2(Ωℓ−η ln ℓ) ≤
∑

0≤i≤[t]−1

‖∇(uℓ+i − uℓ+i+1)‖L2(Ω(ℓ+i)−η ln (ℓ+i))

+ ‖∇(uℓ+[t] − uℓ+t)‖L2(Ω(ℓ+[t])−η ln (ℓ+[t]))

≤ C ′
∑

0≤k≤[t]

(ℓ+ k)−α′

≤ C ′
∫ +∞

ℓ−1

x−α′

dx

≤ C(ℓ− 1)−(α′−1),
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where [·] stands for the integer part and C = C′

α′−1
.

Therefore we can directly derive that

‖∇(uℓ − uℓ+t)‖L2(Ωℓ−η ln ℓ) ≤ Cℓ−α

with α = (α′ − 1) = (α̃η − γ) − 1. So we finally have that, since α has
to be positive, that η has to be larger than 1+γ

α̃
. Moreover, we can obtain

polynomial convergence of any order provided that η is large enough.

We now suppose that k = 1 and that f and A verify f(x1, X2) = f(X2)
and A12 = A12(X2), A22 = A22(X2). First of all, we prove that

∫

Ωℓ
‖∇(uℓ −

u∞)‖2 dx ≤ C‖u∞‖2H1(ω). To do so, we first of all define a function ρ =

ρ(x1) such that ρ =







ρ(x1) = 0 in Ωℓ−1

ρ(x1) = 1 in Ωc
ℓ

ρ(x1) = |x1| − ℓ+ 1 in Ωℓ \ Ωℓ−1.
The function

uℓ − u∞ + ρu∞ is then in H1
0 (Ωℓ) and can be used as a test function in

∫

Ωℓ

A∇(uℓ − u∞) · ∇v dx = 0.

Using the Cauchy-Schwarz inequality and the properties of A, it follows that

λ

∫

Ωℓ

|∇(uℓ − u∞)|2 dx = −
∫

Ωℓ

A∇(uℓ − u∞) · ∇(ρu∞) dx

≤
∫

Ωℓ

A∇(uℓ − u∞) · ∇(uℓ − u∞) dx

≤ Λ
(

∫

Ωℓ

|∇(uℓ − u∞)|2 dx
) 1

2
(

∫

Ωℓ

|∇(ρu∞)|2 dx
) 1

2
.

Taking the square of this inequality and making use of the properties of ρ,

∫

Ωℓ

|∇(uℓ − u∞)|2 dx ≤ Λ2

λ2

∫

Ωℓ

|∇(ρu∞)|2 dx

≤ Λ2

λ2

∫

Ωℓ\Ωℓ−1

|ρ∇X2u∞|2 + |u∞∇x1ρ|2 dx

≤ C

∫

ω

|u∞|2 + |∇X2u∞|2 dx2,
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which is the equality we were looking for. Coming back to inequality (1.3.1),
we derive that, since r in this inequality can be chosen arbitrarily,

‖∇(uℓ − u∞)‖L2(Ωℓ1
) ≤ Ce−α̃(ℓ−ℓ1)‖∇(uℓ − u∞)‖L2(Ωℓ)

by letting r go to +∞. Using the previously proven inequality,

‖∇(uℓ − u∞)‖L2(Ωℓ1
) ≤ Ce−α̃(ℓ−ℓ1)‖u∞‖H1(ω).

Therefore, in order to ensure the convergence of uℓ towards u∞, we can in
this case replace ℓ1 by ℓ− k(ℓ) with k(ℓ) < ℓ and k(ℓ) → +∞. Thus,

‖∇(uℓ − u∞)‖L2(Ωℓ−k(ℓ)) ≤ Ce−α̃k(ℓ) −→
ℓ→+∞

0,

with a constant C that does not depend on ℓ.

Remark 1.3.2. In what follows, we would like to give a method due to N.
Bruyère and which, in the case where Ωℓ = Bℓ × ω2 (with Bℓ ⊂ Rk the open
ball of center 0 and of radius ℓ), gives some better constants for the first two
cases previously treated. In fact, in the case of the laplacian (A = In), these
constants are optimal, as can be seen in the examples given at the end of this
chapter.

We place ourselves in the particular case of the laplacian, with the data
f satisfying the growth condition

‖f‖H−1(Ωℓ) = O(eβℓ) for some β > 0,

and the solution u∞ in the infinite domain Ω∞ satisfying the condition

‖∇u∞‖L2(Ωℓ) = O(eβℓ) (1.3.5)

We start from the equation

∫

Ωℓ

∇(uℓ − u∞) · ∇v = 0 for all v ∈ H1
0 (Ωℓ).

Then, we define the function

ρ(X1) = e−σ|X1| − e−σℓ,
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with σ to be chosen later on. The function v = ρ(uℓ−u∞) belongs to H1
0 (Ωℓ),

and we therefore can derive that
∫

Ωℓ

ρ|∇(uℓ − u∞)|2 dx = −
∫

Ωℓ

∇X1(uℓ − u∞) ·
(

∇X1ρ
0

)

(uℓ − u∞) dx.

Since

∇X1ρ = −σe−σ|X1| X1

|X1|
,

we therefore have that
∫

Ωℓ

ρ|∇(uℓ − u∞)|2 dx ≤ σ

∫

Ωℓ

e−σ|X1||∇X1(uℓ − u∞)||uℓ − u∞| dx.

We now use the inequality

ab ≤ a2r

2
+
b2

2r
( for any r > 0)

to get
∫

Ωℓ

ρ|∇(uℓ − u∞)|2 dx ≤ σ

∫

Ωℓ

e−σ|X1|(
r

2
|∇X1(uℓ − u∞)|2 + 1

2r
|uℓ − u∞|2) dx.

Then, using the Poincaré inequality on the section ω2

∫

ω2

(uℓ − u∞)2(X1, ·) dX2 ≤ c2ω2

∫

ω2

(∇X2(uℓ − u∞))2(X1, ·) dX2

leads to
∫

Ωℓ

e−σ|X1|(uℓ − u∞)2 dx =

∫ ℓ

−ℓ

e−σ|X1|
∫

ω2

(uℓ − u∞)2 dX2 dX1

≤ c2ω2

∫

Ωℓ

e−σ|X1|(∇X2(uℓ − u∞))2 dx.

It follows that
∫

Ωℓ

ρ|∇(uℓ − u∞)|2 dx ≤ σ

2

∫

Ωℓ

e−σ|X1|(r|∇X1(uℓ − u∞)|2 + c2ω2

r
|∇X2(uℓ − u∞)|2) dx

≤ σ

2
max{r, c

2
ω2

r
}
∫

Ωℓ

e−σ|X1|‖∇(uℓ − u∞)‖2 dx.
(1.3.6)
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Since

max{r, c
2
ω2

r
} ≥ 1

2
(r +

c2ω2

r
) ≥

√

r
c2ω2

r
= cω2

we can see that the best constant in inequality (1.3.6) is
σcω2

2
, reached for

r = cω2 . Therefore,
∫

Ωℓ

(e−σ|X1| − e−σℓ)|∇X1(uℓ − u∞)|2 dx ≤ σcω2

2

∫

Ωℓ

e−σ|X1||∇(uℓ − u∞)|2 dx.

It follows that
(

1− σcω2

2

)

∫

Ωℓ

e−σ|X1||∇(uℓ − u∞)|2 dx ≤ e−σℓ

∫

Ωℓ

|∇(uℓ − u∞)|2 dx.

Let now ℓ1 > ℓ. Using the fact that Ωℓ1 ⊂ Ωℓ, it follows that, for σ <
2

cω2
,

∫

Ωℓ1

e−σ|X1||∇(uℓ − u∞)|2 dx ≤ e−σℓ

(

1− σcω2

2

)

∫

Ωℓ

|∇(uℓ − u∞)|2 dx.

Furthermore, for |X1| ≤ ℓ1, we have that e−σℓ1 ≤ e−σ|X1| and therefore,
∫

Ωℓ1

|∇(uℓ − u∞)|2 dx ≤ e−σℓeσℓ1
(

1− σcω2

2

)

∫

Ωℓ

|∇(uℓ − u∞)|2 dx.

Finally, using (1.3.5) and the estimate for uℓ, we derive that

‖∇(uℓ − u∞)‖2L2(Ωℓ1
) ≤

c
(

1− σcω2

2

)e−σ(ℓ−ℓ1)e2βℓ (1.3.7)

in the case where ‖f‖H−1(Ωℓ) = O(eβℓ), c being a constant independant of ℓ
and ℓ1. Let us now consider the two cases ℓ1 = a = constant, and ℓ1 = γℓ
with γ ∈ (0, 1).

• Case ℓ1 = a > 0.

The inequality (1.3.7) then becomes

‖∇(uℓ − u∞)‖2L2(Ωa)
≤ c
(

1− σcω2

2

)e−σ(ℓ−a)e2βℓ =
ceσa

(

1− σcω2

2

)e(σ−2β)ℓ.

Therefore the convergence takes place if we can chose σ satisfying

2β < σ <
2

cω2

,

which is possible provided that β < 1
cω2

.
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• Case ℓ1 = γℓ. The existence of σ is then ensured if β satisfies the
inequality β < 1

Cω2
. The inequality (1.3.7) then rewrites

‖∇(uℓ − u∞)‖2L2(Ωγℓ)
≤ c
(

1− σcω2

2

)e−ℓ(σ(1−γ)−2β.

To get the convergence to 0 as ℓ goes to infinity, we therefore need γ
to verify σ(1− γ)− 2β > 0, i.e.

γ < 1− 2β

σ
.

Then, we have
2β

1− γ
< σ <

2

cω2

,

implying β
1−γ

< 1
cω2

, i.e.

γ < 1− βcω2 .

Let us now take some examples to show the optimality of the results
established above. The optimality is to be understood with respect to the
largest type of domain Ωℓ′ ⊂ Ωℓ such that ‖∇(uℓ − u∞)‖L2(Ωℓ′ )

→ 0 as ℓ goes
to +∞. In this part, we take Ωℓ = (−ℓ, ℓ)× (0, π) ⊂ R2, we assume A to be
the identity matrix (the equation therefore becomes −∆uℓ = f), and f to be
of the form

f(x1, x2) = ϕ(x1) sin(x2)

(note that x2 7→ sin x2 is the first eigenfunction of −∆). Then we can see
that the solutions uℓ are also of the type

uℓ(x1, x2) = φ(x1) sin x2,

the function φ being solution to the problem
{

φ′′ − φ = −ϕ in (−ℓ, ℓ)
φ(−ℓ) = φ(ℓ) = 0,

taking into account the fact that

∆(uℓ)(x1, x2) = (φ′′(x1)− φ(x1)) sin x2.

Finally, let us note that in this case, the Poincaré constant (which is equal
to 1√

λ1
, λ1 being the first eigenvalue of −∆ on ω2 = (0, π)) is equal to 1.
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• First example. We prove that the sequence of uℓ is not a Cauchy se-
quence in H1(Ωa) for a > 0 fixed, if ‖f‖L2(Ωℓ) = O(eℓ).

Remark 1.3.3. From the previous computations, we know that the
estimate (1.3.3) takes place provided that ‖f‖L2(Ωℓ) = O(eβℓ) with β <
1

cω2
= 1. Therefore, the example below proves the optimality of the

hypothesis β < 1
cω2

ensuring the validity of estimate (1.3.3).

Let f be defined by f(x) = −2sinh (x1) sin(x2). Then,

∆(uℓ) = (φ(x1)
′′ − φ(x1)) sin(x2)

and we look for φ solution of the equation

φ′′(x1)− φ(x1) = 2sinh (x1).

Since a particular solution to this equation is φ(x1) = x1cosh (x1) and
that general solutions of the homogeneous equation are of the type
C1cosh (x1)+C2sinh (x1), we have that general solutions of the equation
φ′′(x1)− φ(x1) = 2sinh (x1) are of the type

C1cosh (x1) + C2sinh (x1) + x1cosh (x1).

Then, we make use of the boundary conditions φ(−ℓ) = φ(ℓ) = 0 to
compute the unique solution uℓ. The conditions actually are giving
that

C1 = 0 and C2 = −ℓcosh ℓ
sinh ℓ

.

Then,

uℓ(x1, x2) =
(

x1cosh (x1)−
ℓcosh ℓ

sinh ℓ
sinh (x1)

)

sin(x2).

It follows that for any ℓ,

(u2ℓ − uℓ)(x1, x2) = sinh (x1) sin(x2)
(ℓcosh (ℓ)

sinh (ℓ)
− 2ℓch(2ℓ

sinh (2ℓ)

)

.

We now can compute

‖∇(u2ℓ−uℓ)‖L2(Ωa) =
∣

∣

∣

ℓcosh (ℓ)
sinh (ℓ)

− 2ℓcosh (2ℓ)
sinh (2ℓ)

∣

∣

∣
‖∇
(

sinh (x1) sin(x2)
)

‖L2(Ωa).
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Since |‖∇(sinh (x1) sin(x2)‖L2(Ωa) does not depend on ℓ we just have to

find the limit when ℓ goes to infinity of ( ℓcosh (ℓ)
sinh (ℓ)

− 2ℓcosh (2ℓ
sinh (2ℓ)

). We have

that, using the equivalence cosh (ℓ) ∼ sinh (ℓ) as ℓ→ ∞
∣

∣

∣

ℓcosh (ℓ)
sinh (ℓ)

− 2ℓcosh (2ℓ)
sinh (2ℓ)

∣

∣

∣
= |ℓ|

∣

∣

∣

cosh (ℓ)sinh (2ℓ)−2sinh (ℓ)cosh (2ℓ)
sinh (ℓ)sinh (2ℓ)

∣

∣

∣

= |ℓ|
∣

∣

∣

cosh (ℓ)sinh (2ℓ)(1−2(
sinh (ℓ)
cosh (ℓ)

sinh (2ℓ)
cosh (2ℓ)

))

sinh (ℓ)sinh (2ℓ)

∣

∣

∣→ +∞ as ℓ→ +∞.

Since the limit is not 0, we deduce that uℓ is not a Cauchy sequence.

• Second example. We have seen in the beginning of this section that if
‖f‖H−1(Ωℓ) = O(eβℓ) with β < α̃, then ‖∇(uℓ − u∞)‖L2(Ωγℓ) → 0 for
γ ∈ (0, 1) satisfying β < (1 − γ)α̃. We show in the following example
that the convergence on Ωγℓ is lost if γ is not sufficiently small.

For this, let f be defined by f(x) = cosh (x1

2
) sin(x2). A simple com-

putation shows that ‖f‖L2(Ωℓ) = O(e
ℓ
2 ). Hence, here β = 1

2
. Following

the same method as in the first example, we look for φ solution of the
equation

φ′′(x1)− φ(x1) = −3

4
cosh (

x1
2
).

A particular solution of the equation is φ(x1) = cosh (x1

2
) and therefore,

the homogeneous equation remaining the same, the general solutions
of the equation are of the type

C1cosh (x1) + C2sinh (x1) + cosh (
x1
2
).

Using the boundary conditions, we have that

C2 = 0 and C1 = −cosh ( ℓ
2
)

cosh (ℓ)
.

Then

uℓ =
(

− cosh ( ℓ
2
)

cosh (ℓ)
cosh (x1) + cosh (

x1
2
)
)

(sin(x2)),

and since

u∞ =
(

cosh (
x1
2
)
)

(sin(x2))
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(note that ‖∇u∞‖2L(Ωℓ) = O(e
ℓ
2 ), we have that

uℓ − u∞ = −cosh ( ℓ
2
)

cosh (ℓ)
cosh (x1) sin(x2).

Then, we have that

∇(uℓ − u∞) =





− cosh ( ℓ
2
)

cosh (ℓ)
sinh (x1) sin(x2)

− cosh ( ℓ
2
)

cosh (ℓ)
cosh (x1) cos(x2)



 ,

and it follows that

|∇(uℓ − u∞)|2 = cosh 2( ℓ
2
)

cosh 2(ℓ)

(

sinh 2(x1) sin
2(x2) + cosh 2(x1) cos

2(x2)
)

,

which can be written

|∇(uℓ − u∞)|2 = cosh 2( ℓ
2
)

cosh 2(ℓ)
(cosh 2(x1)− sin2(x2)).

Finally, we deduce that

‖∇(uℓ − u∞)‖2L2(Ωγℓ)
=

∫ π

0

∫ γℓ

−γℓ

cosh 2( ℓ
2
)

cosh 2(ℓ)
(cosh 2(x1)− sin2(x2)) dx1dx2

=
πcosh 2( ℓ

2
)

cosh 2(ℓ)

∫ γℓ

−γℓ

cosh 2(x1)dx1 −
γℓcosh 2( ℓ

2
)

cosh 2(ℓ)

∫ π

0

sin2(x2)dx2.

We now compute −πcosh ( ℓ
2
)

cosh (ℓ)

∫ γℓ

−γℓ
cosh 2(x1)dx1. Using the formula

cosh 2(x1) =
1 + cosh (2x1)

2

, we derive

∫ γℓ

−γℓ

cosh 2(x1)dx1 =

∫ γℓ

−γℓ

1

2
+
cosh (2x1)

2
dx1 = γℓ+

1

4
(sinh (2γℓ)−sinh (−2γℓ)).

It follows that, when ℓ goes to +∞, since

γℓcosh 2( ℓ
2
)

cosh 2(ℓ)

∫ π

0

sin2(x2)dx2 → 0

51



1.3. PRECISIONS AND OPTIMALITY RESULTS

and

−γπℓcosh
2( ℓ

2
)

cosh 2(ℓ)
→ 0,

in order to have ‖∇(uℓ − u∞)‖L2(Ωγℓ) → 0 we need to have

−πsinh (2γℓ)cosh
2( ℓ

2
)

cosh 2(ℓ)
→ 0,

which implies that γ must be less than 1
2
.

• Third example. In this example we show that if we have that ‖f‖H−1(Ωℓ) =
O(ℓγ) for some γ > 0, then the convergence ‖∇(uℓ−u∞)‖L2(Ωℓ−η ln ℓ) → 0
can be lost if η is too small. Consequently, we cannot replace η ln ℓ by
a quantity having a slower growth at infinity than ln ℓ.

In this example, we suppose that f(x) = x1 sin(x2). Hence ‖f‖L2 =

O(ℓ
3
2 ). Still following the same method, we look for a solution of the

equation
φ′′(x1)− φ(x1) = −x1.

A particular solution of this equation is φ(x1) = x1 and it follows that
the general solutions of the equation are of the type

C1cosh (x1) + C2sinh (x1) + x1.

We derive from the boundary conditions that

C1 = 0 and C2 =
−ℓ

sinh (ℓ)
.

Then,

uℓ =
( −ℓ
sinh (ℓ)

sinh (x1) + x1

)

sin(x2)

and since
u∞ = x1 sin(x2)

(note that ‖∇u∞‖L2(Ωℓ) = O(ℓ
3
2 ), we have that

uℓ − u∞ =
−2ℓ

sinh (ℓ)
sinh (x1) sin(x2).
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From that comes

∇(uℓ − u∞) =

(

−ℓ
sinh (ℓ)

cosh (x1) sin(x2)
−ℓ

sinh (ℓ)
sinh (x1) cos(x2)

)

and

|∇(uℓ − u∞)|2 = ℓ2

sinh 2(ℓ)

(

cosh 2(x1) sin
2(x2) + sinh 2(x1) cos

2(x2)
)

=
ℓ2

sinh 2(ℓ)

(

ch2(x1)− cos2(x2)
)

=
ℓ2

sinh 2(ℓ)

(1 + ch(2x1)

2
− cos2(x2)

)

.

We deduce that

‖∇(uℓ − u∞)‖L2(ℓ−η ln ℓ) =
πℓ2

sinh 2(ℓ)

∫ ℓ−η ln ℓ

−ℓ+η ln ℓ

1 + cosh (2x1)

2
dx1

− πℓ2

sinh 2(ℓ)
(2ℓ− 2η ln ℓ)

∫ π

0

cos2(x2)dx2.

In order to have ‖∇(uℓ − u∞)‖L2(ℓ−η ln ℓ) → 0, we need to have

πℓ2

sinh 2(ℓ)

∫ ℓ−η ln ℓ

−ℓ+η ln ℓ

cosh (2x1)dx1 → 0.

We have that

πℓ2

sinh 2(ℓ)

∫ ℓ−η ln ℓ

−ℓ+η ln ℓ

cosh (2x1)dx1 =
πℓ2

sinh 2(ℓ)
sinh (2ℓ− 2η ln ℓ).

∼
+∞

πℓ2e2ℓ−2η ln ℓ

e2ℓ
= 2πe2(1−η)ℓ,

since sinh (t) ∼
+∞

et

2
. So if we want ‖∇(uℓ − u∞)‖L2(ℓ−η ln ℓ) to go to 0 as

ℓ goes to ∞, we need η to be greater than 1.
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Chapter 2

Correctors to elliptic problems

in long cylinders

The last years have seen the development of the asymptotic study of par-
tial differential equations in cylinders becoming unbounded in one or several
directions, particularly under the impetus of Michel Chipot and his collabo-
rators. In this paper, we aim to improve some results that have already been
shown about the convergence to the solution of a linear elliptic problem on
an infinite cylinder of the solutions of the same problem taken on larger and
larger truncations of the cylinder. This aim will be realized by the construc-
tion of well-adjusted correctors. Thanks to our main results established in
Section 2 of this paper, we conclude by an application in a particular case
(by taking data that does not depend on the coordinate along the cylinder’s
axis) that the convergence results that can be obtained using the methods
introduced by Chipot and Yeressian (in their paper of 2008) are optimal.
The particularity here is that the optimality is taken in the sense of “the
largest domain where the convergence takes place” instead of the classical
optimality of the speed of convergence itself.

2.1 Introduction

The asymptotic behavior of PDE problems in cylinders of the form Ωℓ =
ℓω1 × ω2 ⊂ Rn (with ω1 ⊂ Rk and ω2 ⊂ Rn−k, where 1 ≤ k ≤ n − 1) have
been heavily studied during the last twenty years by Michel Chipot and his
collaborators, see for instance [13] - [23], [41], [69]. However, few works were
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dedicated to the construction of correctors allowing to have good estimates
in the whole cylinder Ωℓ. To the best of authors’ knowledge, this type of
problem has only been addressed in [17] and [18]. In this paper, we will
construct correctors for elliptic problems in cylinders becoming unbounded
in one direction (hence k = 1 in the definition of Ωℓ).

On a cylinder Ωℓ = (−ℓ, ℓ) × ω ⊂ Rn, where ω ⊂ Rn−1 is a bounded
Lipschitz open set, we consider a linear elliptic problem with homogeneous
Dirichlet boundary conditions. Thanks to the results in [16] (see also [15]),
we already know that the “sequence” of the solutions uℓ of the problem in a
larger and larger cylinder (i.e., as ℓ goes to infinity) converges to the unique
solution u∞ of the problem in the infinite cylinder. Since the functions uℓ are
not all defined on the same domain, this convergence takes place on any fixed
cylinder Ωℓ0 . However, one can ask the question of an estimate of uℓ−u∞ on
the whole cylinder Ωℓ and we are in particular interested in estimates giving
‖uℓ − u∞‖H1(Ωℓ) → 0 as ℓ→ +∞. In [16] it was shown that

‖uℓ − u∞‖H1(Ω ℓ
2
) → 0 (2.1.1)

exponentially fast and it is easy to see that, adapting the methods presented
in this paper, one can replace Ω ℓ

2
by cylinders that are closer to Ωℓ (see

section 3 for more details). But, under the very weak assumptions made on
the data, it is not possible to replace Ω ℓ

2
by Ωℓ in convergence (2.1.1), see

for instance [15]. In order to have a good approximation of u∞ on the whole
cylinder Ωℓ, we need to add a corrector to the solution u∞ of the problem
in the infinite cylinder. The construction of this corrector and the proof of
the resulting estimate on Ωℓ is the main purpose of this paper and is the
subject of the second section. We would like to mention here the fact that
the correctors problem have been considered in [17] (see also [15]) for the
case of the laplacian and for data not depending on the coordinate along
the cylinder’s axis . However, in this work, the symmetry properties of the
laplacian (implying the symmetry of the solutions) plays an important role
in the proofs. While we follow here some ideas from [17], we also need to find
new strategies allowing us to treat the case of general elliptic operators. One
of the main differences is that the results in [17] are obtained independently
of the previous results concerning the convergence (2.1.1) and one can derive
a new proof of the estimates leading to (2.1.1) as a consequence of the result
on correctors. In our paper, this is not possible, since the convergence (2.1.1)
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is used in our proof of the estimate involving the correctors.
Finally, the corrector constructed in Section 2 allows us to prove the op-

timality of the results that can be obtained with the methods introduced in
[23] regarding the convergence of uℓ towards u∞ on cylinders smaller than
Ωℓ. This argument is applied to a particular case in Section 3.

Let us now give the notation that will be used in this chapter.

The notation | · | will designate the Euclidean norm in Rk. The space of
n× n square matrices with real entries will be denoted by Mn(R).

For an unbounded domain Ω ⊂ Rn, we define the spaces

L2
loc(Ω̄) = {v ∈ L2

loc(Ω) | v ∈ L2(O), for any bounded open set O ⊂ Ω},
H1

loc(Ω̄) = {v ∈ H1
loc(Ω) | v ∈ H1(O), for any bounded open set O ⊂ Ω},

H−1
loc (Ω̄) = {v ∈ H−1

loc (Ω) | v ∈ H−1(O), for any bounded open set O ⊂ Ω}.

By convention, any function u in H1
0 (Ω) is extended by 0 outside of Ω and

will still be denoted by u.

Let ω be a bounded Lipschitz domain of Rn−1. For any ℓ > 0, we define

Ωℓ = (−ℓ, ℓ)× ω,

and we set
Ω∞ = R× ω.

We denote by Ω+
ℓ and Ω−

ℓ the domains

Ω+
ℓ = (0, ℓ)× ω and Ω−

ℓ = (−ℓ, 0)× ω.

A point x in Rn is denoted

x = (x1, x
′), with x′ = (x2, ..., xn).

Similarly, we use the notation ∇′ =
(

∂
∂x2
, . . . , ∂

∂xn

)

and div ′ where, for v =

(v2, v3, . . . , vn) : ω → Rn−1 ,

div ′v =
∂v2
∂x2

+ · · ·+ ∂vn
∂xn

.
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Let f be a H−1
loc (Ω̄∞) distribution satisfying, for some constant β > 0,

‖f‖H−1(Ωℓ) ≤ Ceβℓ for all ℓ > 0 . (2.1.2)

We consider a matrix field A = (aij)1≤i,j≤n ∈ L∞(Ω∞;Mn(R)), i.e. aij ∈
L∞(Ω∞) for all i, j ∈ {1, . . . , n}, satisfying the following properties:

λ|ξ|2 ≤ A(x)ξ · ξ ∀ ξ ∈ Rn, a.e. x ∈ Ω∞,

|A(x)ξ| ≤ Λ|ξ| ∀ ξ ∈ Rn, a.e. x ∈ Ω∞,
(2.1.3)

for some constants λ > 0 and Λ > 0. To the matrix field A, we associate the
matrix field A′ ∈ L∞(Ω∞;Mn−1(R)) defined by A′ = (aij)2≤i,j≤n. It is then
easy to see that A′ also satisfies the properties (2.1.3) for all ξ ∈ Rn−1, a.e.
x ∈ Ω∞.

We consider the following problem in the cylinder Ωℓ :
{

−div (A∇uℓ) = f in Ωℓ

uℓ = 0 on ∂Ωℓ .
(2.1.4)

This problem has for weak formulation






Find uℓ ∈ H1
0 (Ωℓ) such that

∫

Ωℓ

A∇uℓ∇v dx = 〈f, v〉 for all v ∈ H1
0 (Ωℓ).

(2.1.5)

Thanks to the Lax-Milgram theorem, there exists a unique solution uℓ of
this problem.

We also consider the following elliptic problem in the infinite cylinder Ω∞:










−div (A∇u∞) = f in Ω∞

u∞ = 0 on ∂Ω∞

‖∇u∞‖L2(Ωℓ) ≤ C0e
2βℓ for all ℓ > 0, for some constant C0 ≥ 0,

(2.1.6)

with β > 0 a constant which is small enough.

More precisely, u∞ is the solution of the variational problem


























Find u∞ ∈ H1
loc(Ω̄∞) such that

∫

Ω∞

A∇u∞ · ∇v dx = 〈f, v〉 ∀v ∈ H1
0 (Ωℓ), for some ℓ > 0

u∞ = 0 on ∂Ω∞

‖∇u∞‖L2(Ωℓ) ≤ C0e
2βℓ for all ℓ > 0, for some constant C0 ≥ 0.

(2.1.7)
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Notice that uℓ and u∞ share the property of being 0 on (−ℓ, ℓ)×∂ω. The
following result gives a useful Poincaré inequality for functions vanishing on
the lateral boundary of a cylinder.

Theorem 2.1.1. There exists a constant Cω depending only on ω such that
for any a, b ∈ R, a < b, we have

‖v‖L2((a,b)×ω) ≤ Cω‖∇v‖L2((a,b)×ω) (2.1.8)

for all v ∈ H1((a, b)× ω) satisfying v = 0 on (a, b)× ∂ω.

Proof. The hypothesis on v implies that v(x1, ·) belongs to H1
0 (ω) for a.e.

x1 ∈ (a, b). We then derive inequality (2.1.8) from the Poincaré inequality
on ω. For a detailed proof of Lemma 2.1.1, see e.g. [11].

The following result, established in [16] (see also [15] and [11]), states that
as ℓ goes to infinity, the restrictions to a fixed cylinder of the solutions uℓ (of
problem (2.1.5)) converge to the solution u∞ of problem (2.1.7). Moreover,
this convergence is exponential.

Theorem 2.1.2. Let f verify inequality (2.1.2) for β > 0 small enough, and
let uℓ ∈ H1

0 (Ωℓ) be the solution of the variational problem (2.1.5). Then for
all ℓ0 > 0,

uℓ → u∞ strongly in H1(Ωℓ0)

as ℓ → +∞, where u∞ ∈ H1
loc(Ω̄∞) is the weak solution to the homogeneous

Dirichlet problem (2.1.7) in the cylinder Ω∞.
Furthermore, we have the estimate

‖∇(uℓ − u∞)‖L2(Ω ℓ
2
) ≤ C1e

−α1ℓ for all ℓ > 0, (2.1.9)

where C1 ≥ 0 and α1 > 0 are constants depending only on ω, λ, Λ, C0 (the
constant appearing in (2.1.7)) and β.

Note that the estimate (2.1.9) is a stronger result than the one stating
that uℓ converges exponentially to u∞ in H1(Ωℓ0) for any fixed cylinder Ωℓ0 .
On the other hand, (2.1.9) is weaker than having an estimate in the whole
cylinder Ωℓ. In order to obtain an estimate in the whole cylinder, we need
to introduce a corrector that, added to the solution u∞ of problem (2.1.7),
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can give a good approximation of uℓ on Ωℓ. The main purpose of this paper
is to construct such a corrector, introduced below.

Observe first that for a given ℓ, the perfect corrector would be wℓ =
uℓ − u∞, verifying



























wℓ ∈ H1(Ωℓ)
∫

Ωℓ

A∇wℓ · ∇v dx = 0 for all v ∈ H1
0 (Ωℓ)

wℓ = −u∞ on {−ℓ} × ω and on {ℓ} × ω

wℓ = 0 on (−ℓ, ℓ)× ∂ω.

(2.1.10)

Nevertheless, we do not use this corrector since the dependence on the param-
eter ℓ is too strong. For practical reasons, we would like to have a corrector
that can be easily derived by some computation: here, we construct correc-
tors wℓ that, in some particular cases (see Section 4), can be derived only in
terms of two functions w+ and w− which are independent of ℓ.
Le us now describe the construction of our corrector: we build it separately
on Ω+

ℓ and Ω−
ℓ . Thus, wℓ will be defined as

wℓ =

{

w−
ℓ on Ω−

ℓ

w+
ℓ on Ω+

ℓ

(2.1.11)

where w+
ℓ is the solution to the problem



























w+
ℓ ∈ H1((−∞, ℓ)× ω)
∫

(−∞,ℓ)×ω

A∇w+
ℓ · ∇v dx = 0 ∀ v ∈ H1

0 ((−∞, ℓ)× ω)

w+
ℓ = −u∞(ℓ, ·) on {ℓ} × ω

w+
ℓ = 0 on (−∞, ℓ)× ∂ω,

(2.1.12)

while w−
ℓ is the solution of



























w−
ℓ ∈ H1((−ℓ,+∞)× ω)
∫

(−ℓ,+∞)×ω

A∇w−
ℓ · ∇v dx = 0 ∀ v ∈ H1

0 ((−ℓ,+∞)× ω)

w−
ℓ = −u∞(−ℓ, ·) on {−ℓ} × ω

w−
ℓ = 0 on (−ℓ,+∞)× ∂ω.

(2.1.13)
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As one could notice, this corrector wℓ belongs to H
1(Ωℓ\({0} × ω)) but

does not necessarily belong to H1(Ωℓ).
To get a H1(Ωℓ)-corrector, it is enough to take a Lipschitz-continuous func-
tion ψ : R → R such that

ψ(x1) =







1 if |x1| > 1

0 if |x1| <
1

2
,

and then to set w̃ℓ = ψwℓ ∈ H1(Ωℓ), where ψ(x) = ψ(x1).

Nevertheless, in all that follows, we consider the corrector defined in
(2.1.11) and the gradient of wℓ will be considered in the sense of D′(Ωℓ \
({0} × ω)). Since the n-dimensional Lebesgue measure of {0} × ω is 0, we
can consider the gradient ∇wℓ as a measurable function on the whole set Ωℓ.

2.2 Main results

We begin this section by establishing the existence of the corrector introduced
in the previous section, then we give a first estimate related to this corrector,
which will be used in the final step of the proof of the result justifying the
pertinence of the corrector.

Lemma 2.2.1. There exists a unique solution w+
ℓ to problem (2.1.12).

Proof. Let ρ : (−∞, ℓ)× ω → R be the Lipschitz function defined by

{

ρ = ρ(x1) , ρ(x1) = x1 + 1− ℓ if x1 ∈ (ℓ− 1, ℓ) ,

ρ(x1) = 0 for x1 ≤ ℓ− 1.
(2.2.1)

Then, ρu∞ ∈ H1((−∞, ℓ) × ω) and, thanks to the Lax-Milgram theorem,
there exists a unique solution ŵℓ to the following problem:



















ŵℓ ∈ H1
0 ((−∞, ℓ)× ω)

∫

(−∞,ℓ)×ω

A∇ŵℓ · ∇v dx =

∫

(−∞,ℓ)×ω

A∇(ρu∞) · ∇v dx

∀v ∈ H1
0 ((−∞, ℓ)× ω)

(2.2.2)
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Note that the coerciveness of the bilinear form

(u, v) ∈
(

H1
0 ((−∞, ℓ)× ω)

)2

7→
∫

(−∞,ℓ)×ω

A∇u · ∇v dx

is an immediate consequence of Poincaré inequality (2.1.8). Then we can
easily verify that the function w+

ℓ = ŵℓ − ρu∞ is a solution to problem
(2.1.12). The uniqueness of w+

ℓ is a simple consequence of the linearity of
the problem and of the coerciveness of the bilinear form defined here above.

Lemma 2.2.2. We have

‖∇w+
ℓ ‖L2((−∞,ℓ)×ω) ≤ C3e

2βℓ, (2.2.3)

where β is the constant appearing in (2.1.7) and C3 > 0 is a constant de-
pending only on λ,Λ, ω and C0 (the constant appearing in (2.1.7)).

Proof. Since, (see the proof of Lemma 2.2.1),

w+
ℓ = ŵℓ − ρu∞,

we have

‖∇w+
ℓ ‖L2((−∞,ℓ)×ω) ≤ ‖∇ŵℓ‖L2((−∞,ℓ)×ω) + ‖∇(ρu∞)‖L2((−∞,ℓ)×ω) (2.2.4)

Using ŵℓ ∈ H1
0 ((−∞, ℓ) × ω) as test function in the variational equation

(2.2.2), we deduce the inequality

‖∇ŵℓ‖L2((−∞,ℓ)×ω) ≤
Λ

λ
‖∇(ρu∞)‖L2((−∞,ℓ)×ω) (2.2.5)

thanks to properties (2.1.3) satisfied by A and the Cauchy-Schwarz inequality.
Note that

∇(ρu∞) = ρ∇u∞ + u∞(ρ′, 0, . . . , 0).

Hence, since ρu∞ vanishes outside of (ℓ− 1, ℓ)× ω, we get

‖∇(ρu∞)‖L2((−∞,ℓ)×ω) = ‖∇(ρu∞)‖L2((ℓ−1,ℓ)×ω)

≤ ‖∇u∞‖L2((ℓ−1,ℓ)×ω) + ‖u∞‖L2((ℓ−1,ℓ)×ω).
(2.2.6)
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Using (2.2.5), (2.2.6) and the inequality in (2.1.7), we obtain

‖∇w+
ℓ ‖L2((−∞,ℓ)×ω) ≤

(

Λ

λ
+ 1

)

‖∇(ρu∞)‖L2((−∞,ℓ)×ω)

≤
(

Λ

λ
+ 1

)

(‖∇u∞‖L2((ℓ−1,ℓ)×ω) + ‖u∞‖L2((ℓ−1,ℓ)×ω))

≤
(

Λ

λ
+ 1

)

(Cω + 1)‖∇u∞‖L2((ℓ−1,ℓ)×ω)

≤
(

Λ

λ
+ 1

)

(Cω + 1)‖∇u∞‖L2(Ωℓ)

≤ C3e
2βℓ,

where Cω is the Poincaré constant on ω ⊂ Rn−1 and C3 is given by C3 =
C0

(

Λ
λ
+ 1
)

(Cω + 1).

Remark 2.2.1. Note that in the previous proof we established an even more
refined estimate for ∇w+

ℓ , since we proved that

‖∇w+
ℓ ‖L2((−∞,ℓ)×ω) ≤ C̃‖∇u∞‖L2((ℓ−1,ℓ)×ω), (2.2.7)

with C̃ =
(

Λ
λ
+ 1
)

(Cω + 1). Hence the constant C̃ is only depending on Λ, λ
and ω. This more precise inequality cannot be exploited under the very weak
assumptions (2.1.2) on the data. However, if the function f satisfies stronger
conditions with respect to its growth at infinity, inequality (2.2.7) can be used
in order to derive a very interesting result, as it will be seen at the end of
this section.

Now comes an important result giving an upper estimate for the L2-norm
of ∇(uℓ − u∞ − w+

ℓ ):

Theorem 2.2.1. There exists a constant C ≥ 0, depending only on λ, Λ
and ω, such that

‖∇(uℓ−u∞−w+
ℓ )‖L2(Ω+

ℓ ) ≤ C(‖∇(uℓ−u∞)‖L2(Ω+
1 )+‖∇w+

ℓ ‖L2(Ω1)) . (2.2.8)

Proof. Noting thatH1
0 (Ω

+
ℓ ) is included in bothH1

0 (Ωℓ) andH
1
0 ((−∞, ℓ)×ω),

we derive from the equations (2.1.5), (2.1.7) and (2.1.12) satisfied by uℓ, u∞
and w+

ℓ that
∫

Ω+
ℓ

A∇(uℓ − u∞ − w+
ℓ )∇v dx = 0 ∀v ∈ H1

0 (Ω
+
ℓ ) (2.2.9)
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Let ρ be the function defined by











ρ = ρ(x1)

ρ(x1) = 1− x1 for 0 ≤ x1 ≤ 1

ρ(x1) = 0 for x1 > 1.

(2.2.10)

Noticing that v = (1− ρ)(uℓ − u∞ − w+
ℓ ) is in H

1
0 (Ω

+
ℓ ), we have

0 =

∫

Ω+
ℓ

A∇(uℓ − u∞ − w+
ℓ )∇v dx

=

∫

Ω+
ℓ

A∇(uℓ − u∞ − w+
ℓ )∇(uℓ − u∞ − w+

ℓ ) dx

−
∫

Ω+
ℓ

A∇(uℓ − u∞ − w+
ℓ )∇(ρ(uℓ − u∞ − w+

ℓ )) dx

and by (2.1.3),

λ

∫

Ω+
ℓ

|∇(uℓ − u∞ − w+
ℓ )|2 dx ≤

∫

Ω+
ℓ

A∇(uℓ − u∞ − w+
ℓ )∇(uℓ − u∞ − w+

ℓ ) dx

=

∫

Ω+
ℓ

A∇(uℓ − u∞ − w+
ℓ )[ρ

′(x1)(uℓ − u∞ − w+
ℓ , 0, . . . , 0)

+ ρ∇(uℓ − u∞ − w+
ℓ )] dx.

(2.2.11)

By taking into account the fact that ρ = 0 outside of Ω+
1 , we derive

λ

∫

Ω+
ℓ

|∇(uℓ − u∞ − w+
ℓ )|2 dx ≤

∫

Ω+
1

A∇(uℓ − u∞ − w+
ℓ )(−1)(uℓ − u∞ − w+

ℓ , 0, . . . , 0) dx

+

∫

Ω+
1

ρA∇(uℓ − u∞ − w+
ℓ )∇(uℓ − u∞ − w+

ℓ ) dx.

Since 0 ≤ ρ ≤ 1 on Ω1, we derive the following inequality, using the properties
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(2.1.3) of A:

λ‖∇(uℓ − u∞ − w+
ℓ )‖2L2(Ω+

ℓ )
= λ

∫

Ω+
ℓ

|∇(uℓ − u∞ − w+
ℓ )|2 dx

≤ Λ(

∫

Ω+
1

|∇(uℓ − u∞ − w+
ℓ )||uℓ − u∞ − w+

ℓ | dx

+

∫

Ω+
1

|∇(uℓ − u∞ − w+
ℓ )|2) dx

≤ Λ(‖∇(uℓ − u∞ − w+
ℓ )‖L2(Ω+

1 )‖uℓ − u∞ − w+
ℓ ‖L2(Ω+

1 )

+ ‖∇(uℓ − u∞ − w+
ℓ )‖2L2(Ω+

1 )
)

≤ Λ(Cω + 1)‖∇(uℓ − u∞ − w+
ℓ )‖2L2(Ω+

1 )
,

where Cω is the Poincaré constant on ω ⊂ Rn−1.

Setting C =
√

Λ
λ
(Cω + 1), we get (2.2.8) thanks to the triangle inequality.

The following result will help us to estimate the quality of the approxi-
mation of the solution uℓ of (2.1.5) by the corrected function u∞ + wℓ.

Theorem 2.2.2. Let k ∈ (−∞, ℓ − 1] be fixed. Then there exists C2 ≥ 0
depending only on Λ, λ, k and ω; and α2 > 0 depending only on Λ, λ and ω
such that

‖∇w+
ℓ ‖L2((−∞,k)×ω) ≤ C2e

−α2ℓ‖∇w+
ℓ ‖L2((−∞,ℓ)×ω). (2.2.12)

Proof. Let us first denote by h = h(x1) the function defined by

h(x1) =











1 for x1 ≤ k

0 for x1 ≥ k + 1

− x1 + k + 1 for k < x1 < k + 1.

(2.2.13)

Then, for k + 1 ≤ ℓ,

hw+
ℓ ∈ H1

0 ((−∞, ℓ)× ω), (2.2.14)

so that we have
∫

(−∞,ℓ)×ω

A∇w+
ℓ ∇(hw+

ℓ ) dx = 0.
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This implies

λ

∫

(−∞,k)×ω

|∇w+
ℓ |2 dx ≤

∫

(−∞,k)×ω

A∇w+
ℓ · ∇w+

ℓ dx

≤
∫

(−∞,ℓ)×ω

hA∇w+
ℓ · ∇w+

ℓ dx

= −
∫

(−∞,ℓ)×ω

w+
ℓ A∇w+

ℓ · ∇h dx

≤ Λ

∫

(k,k+1)×ω

|w+
ℓ ||∇w+

ℓ | dx

≤ Λ‖w+
ℓ ‖L2((k,k+1)×ω)‖∇w+

ℓ ‖L2((k,k+1)×ω)

≤ ΛCω‖∇w+
ℓ ‖2L2((k,k+1)×ω)

by (2.1.3), the Cauchy-Schwarz and the Poincaré inequalities. Consequently
∫

(−∞,k)×ω

|∇w+
ℓ |2 dx ≤ ΛCω

λ

∫

(k,k+1)×ω

|∇w+
ℓ |2 dx

=
ΛCω

λ

∫

(−∞,k+1)×ω

|∇w+
ℓ |2 dx−

ΛCω

λ

∫

(−∞,k)×ω

|∇w+
ℓ |2 dx

which, for C = ΛCω

λ
, reeds

∫

(−∞,k)×ω

|∇w+
ℓ |2 dx ≤

(

C

C + 1

)∫

(−∞,k+1)×ω

|∇w+
ℓ |2 dx.

Iterating [ℓ− k] times this formula, we get

∫

(−∞,k)×ω

|∇w+
ℓ |2 dx ≤

(

C

C + 1

)[ℓ−k] ∫

(−∞,ℓ)×ω

|∇w+
ℓ |2 dx.

Since ℓ− k − 1 ≤ [ℓ− k] ≤ ℓ− k this leads to
∫

(−∞,k)×ω

|∇w+
ℓ |2 dx ≤ e−2α2(ℓ−k−1)

∫

(−∞,ℓ)×ω

|∇w+
ℓ |2 dx,

with α2 =
1
2
ln 1+C

C
. This completes the proof by taking C2 = eα2(k+1).

This last result finally implies our main result which is
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Theorem 2.2.3. Assuming that the constant β appearing in inequalities
(2.1.2) and (2.1.7) is small enough, there exists C depending only on Λ,
λ, C0 and ω and α depending only on Λ, λ, ω and β two positive constants
such that

‖∇(uℓ − u∞ − w+
ℓ )‖L2(Ω+

ℓ ) ≤ Ce−αℓ (2.2.15)

for all ℓ > 0.

Proof. By Theorem 2.2.1, we know that

‖∇(uℓ − u∞ − w+
ℓ )‖L2(Ω+

ℓ ) ≤ C(‖∇(uℓ − u∞)‖L2(Ω+
1 ) + ‖∇w+

ℓ ‖L2(Ω+
1 )).

Combining this inequality with (2.1.9), (2.2.3) and (2.2.12), we directly have,
since Ω+

1 ⊂ (−∞, 1)× ω,

‖∇(uℓ − u∞ − w+
ℓ )‖L2(Ω+

ℓ ) ≤ C(C1e
−α1ℓ + C2e

−α2ℓ‖∇w+
ℓ ‖L2((−∞,ℓ)×ω))

≤ C(C1e
−α1ℓ + C2C3e

−α2ℓe2βℓ) ≤ C ′e−αℓ

(2.2.16)
with α = min(α1, α2 − 2β).

The constant α is positive, provided that 2β < α2. This is indeed the
case, since the assumption of smallness that β must satisfy in Theorem 2.1.2
is exactly the same (i.e. 2β < α2, with the α2 defined at the end of the
proof of Theorem 2.2.2). In order to see this, it is enough to follow the
proof of Theorem 1.2.1, for instance in [11], since in our particular case, the
constant c0 appearing in the proof of Theorem 2.1 of [11] (corresponding to
the Theorem 1.2.1 of the present paper) is equal to 1.

Remark 2.2.2. 1. It is important to notice that the construction of the
constant α in (2.2.15) is well done, since it is not cyclical. Indeed, this is
due to the fact that the constant α2 of (2.2.12) depends only on Λ, λ and ω,
and therefore is independent of the constants C0 and β appearing in (2.1.7).

2. Note also that in order to obtain the estimate (2.2.15), we only need
an estimate of the H1-norm of uℓ − u∞ on Ω1. But this kind of estimate
can be obtained even under the weaker assumption that β < α2. However, in
this case, in order to preserve the uniqueness of the solution u∞ to problem
(2.1.7), one must replace 2β by β in the growth condition satisfied by u∞.

By the same arguments used to prove Theorem 2.2.3, we get
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Theorem 2.2.4. Assuming that the constant β appearing in inequalities
(2.1.2) and (2.1.7) is small enough, there exists C depending only on Λ,
λ, C0 and ω; and α depending only on Λ, λ, ω and β two positive constants
such that

‖∇(uℓ − u∞ − w−
ℓ )‖L2(Ω−

ℓ ) ≤ Ce−αℓ. (2.2.17)

Observing that

‖∇(uℓ−u∞−wℓ)‖2L2(Ωℓ)
= ‖∇(uℓ−u∞−w−

ℓ )‖2L2(Ω−
ℓ )
+‖∇(uℓ−u∞−w+

ℓ )‖2L2(Ω+
ℓ )

(2.2.18)
where ∇wℓ is to be understood as the distributional derivative in the space
D′(Ωℓ\({0} × ω)), we obtain the main result of this paper:

Theorem 2.2.5. There exists positive constants C and α independent of ℓ
such that

‖∇(uℓ − u∞ − wℓ)‖L2(Ωℓ) ≤ Ce−αℓ (2.2.19)

for all ℓ > 0, where wℓ is the corrector introduced in (2.1.11).

As mentioned in the introduction,the corrector defined in (2.1.11) does
not belong to H1(Ωℓ), since the traces of w+

ℓ and w−
ℓ on {0} × ω may not

coincide. However, we can overcome this difficulty by multiplying wℓ by a
Lipschitz function vanishing in the neighbourhood of {0}×ω. More precisely,
we have the following:

Theorem 2.2.6. Let ψ : R → R be a Lipschitz-continuous function such
that

ψ(x1) =







1 if |x1| > 1

0 if |x1| <
1

2
,

and let wℓ be the corrector introduced in (2.1.11). Then w̃ℓ = ψwℓ belongs to
H1(Ωℓ) and satisfies

‖∇(uℓ − u∞ − w̃ℓ)‖L2(Ωℓ) ≤ Ce−αℓ for all ℓ > 0,

where C, α > 0 are constants independent of ℓ.

Proof. Notice that with such a definition, we have that w̃ℓ = wℓ outside of
Ω1. In order to get the desired inequality, let us start by estimating ψw+

ℓ

in Ω+
1 , a symmetrical argument being used to give an estimate of ψw−

ℓ in
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Ω−
1 . Since ψ is a Lipschitz-continuous function, there exists two constants

K1 > 0 and K2 > 0 such that ‖ψ‖L∞(Ω+
1 ) ≤ K1 and ‖∇ψ‖L∞(Ω+

1 ) ≤ K2. Then
we have, using the Cauchy-Schwarz and the Poincaré inequalities combined
with (2.2.12) and (2.2.3),

‖∇(ψw+
ℓ )‖L2(Ω+

1 ) ≤ ‖ψ∇w+
ℓ + w+

ℓ ∇ψ‖L2(Ω+
1 )

≤ ‖ψ∇w+
ℓ ‖L2(Ω+

1 ) + ‖w+
ℓ ∇ψ‖L2(Ω+

1 )

≤ ‖ψ‖L∞(Ω+
1 )‖∇w+

ℓ ‖L2(Ω+
1 ) + ‖∇ψ‖L∞(Ω+

1 )‖w+
ℓ ‖L2(Ω+

1 )

≤ ‖ψ‖L∞(Ω+
1 )‖∇w+

ℓ ‖L2(Ω+
1 ) + ‖∇ψ‖L∞(Ω+

1 )Cω‖∇w+
ℓ ‖L2(Ω+

1 )

≤
(

‖ψ‖L∞(Ω+
1 ) + Cω‖∇ψ‖L∞(Ω+

1 )

)

‖∇w+
ℓ ‖L2((−∞,1)×ω)

≤ (K1 + CωK2)C2e
−α2ℓ‖∇w+

ℓ ‖L2((−∞,ℓ)×ω)

≤ C4e
−(α2−2β)ℓ

with C4 = C2C3(K1 +K2Cω) a positive constant depending on ω, λ, Λ, C0

and ψ.
It follows that there exists C5 depending on the same parameters as C4

such that ‖∇w̃ℓ‖L2(Ω1) ≤ C5e
−(α2−2β)ℓ.

Then we have, using (2.1.9), (2.2.19) and the previous inequality,

‖∇(uℓ − u∞ − w̃ℓ)‖L2(Ωℓ) ≤ ‖∇(uℓ − u∞ − w̃ℓ)‖L2(Ωℓ\Ω1) + ‖∇(uℓ − u∞ − w̃ℓ)‖L2(Ω1)

= ‖∇(uℓ − u∞ − wℓ)‖L2(Ωℓ\Ω1) + ‖∇(uℓ − u∞ − w̃ℓ)‖L2(Ω1)

≤ ‖∇(uℓ − u∞ − wℓ)‖L2(Ωℓ) + ‖∇(uℓ − u∞)‖L2(Ω1)

+ ‖∇w̃ℓ‖L2(Ω1)

≤ Ce−αℓ + C1e
−α1ℓ + C5e

−(α2−2β)ℓ

≤ C ′e−αℓ

which is exactly the result we were looking for, with α = min{α1, α2 − 2β}
(see proof of Theorem 2.2.3).

Remark 2.2.3. Thanks to inequality (2.2.7) of Remark 2.2.1, if f ∈ H−1(Ω∞)
(hence in particular, if f ∈ L2(Ω∞)), we have that

‖∇(uℓ − u∞)‖L2(Ωℓ) → 0, (2.2.20)

since f ∈ H−1(Ω∞) implies u∞ ∈ H1(Ω∞) and therefore,

‖∇u∞‖2L2(Ω∞\Ωℓ−1)
= ‖∇u∞‖2L2((−∞,−ℓ+1)×ω) + ‖∇u∞‖2L2((ℓ−1,+∞)×ω) → 0
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as ℓ goes to infinity.
The convergence (2.2.20) then follows from inequality (2.2.7), (2.2.8) and
their similar counterparts involving w−

ℓ . Nevertheless, even in this case, using
a corrector remains interesting in order to improve the rate of convergence.

2.3 An important particular case

In this section, we study the case in which both aij, 1 ≤ i, j ≤ n and f are
not depending on x1.

First of all, we make the following remark: assuming that instead of
condition (2.1.2), f satisfies the stronger condition

‖f‖H−1(Ωℓ) = O(ℓγ) , (2.3.1)

where γ > 0 is a constant, and using the methods introduced in [23], we can
derive the stronger convergence result

‖∇(uℓ − u∞)‖L2(Ωℓ−η ln ℓ) −→
ℓ→+∞

0,

for somme large enough constant η > 0. This is a general result that is true
even if the data is not necessarily independent of x1 and is also valid in the
framework of domains Ωℓ that goes to infinity in several directions (for a
rigorous definition of these domains, see e.g., [23] or [11]). Note that in the
particular case of this section, f satisfies the hypothesis (2.3.1) with γ = 1

2
.

However, in the case of cylinders going to infinity only in one direction
and where the data is independent of x1 (and also in the case where the data
is periodic in the x1-direction), one can even prove the following stronger
convergence:

‖∇(uℓ − u∞)‖L2(Ωℓ−κ(ℓ)) −→
ℓ→+∞

0, (2.3.2)

where κ(ℓ) ≤ ℓ and lim
ℓ→+∞

κ(ℓ) = +∞.

Thanks to the results shown in the previous section applied to this par-
ticular case, we are now able to prove that the convergence result (2.3.2) is
optimal. This optimality is to be understood in the following sense: we are
looking for the largest domains that can be considered in the L2-norm ap-
pearing in (2.3.2) such that the convergence of uℓ to u∞ described in (2.3.2)

70



2.3. AN IMPORTANT PARTICULAR CASE

remains valid. In the end of this section we give two examples proving that,
if we want the convergence (2.3.2) to be preserved, we cannot consider bigger
domains than these of the type Ωℓ−k(ℓ) with lim

x→+∞
k(ℓ) = +∞.

Let us first remind that, since A and f are independent of x1, it follows
from the definition of u∞ that u∞ has the same property. Indeed, it is easy
to see that if u∞ ∈ H1

0 (ω) is the weak solution to the problem (see Section 1
for the definitions of A′ and div ′)

{

− div ′(A′∇u∞) = f in ω

u∞ = 0 on ∂ω,
(2.3.3)

then u∞ = u∞(x′) is the solution to problem (2.1.7).
Hence, the functions w+

ℓ and w−
ℓ are solutions of the variational problems



























w+
ℓ ∈ H1((−∞, ℓ)× ω)
∫

(−∞,ℓ)×ω

A∇w+
ℓ · ∇v dx = 0 ∀ v ∈ H1

0 ((−∞, ℓ)× ω)

w+
ℓ = −u∞ on {ℓ} × ω

w+
ℓ = 0 on (−∞, ℓ)× ∂ω

(2.3.4)

and



























w−
ℓ ∈ H1((−ℓ,+∞)× ω)
∫

(−ℓ,+∞)×ω

A∇w−
ℓ · ∇v dx = 0 ∀ v ∈ H1

0 ((−ℓ,+∞)× ω)

w−
ℓ = −u∞ on {−ℓ} × ω

w−
ℓ = 0 on (−ℓ,+∞)× ∂ω.

(2.3.5)

Since A and u∞ are independent of x1, it is obvious that these functions
can be obtained by translations from the solution to problems set on the
fixed domains (−∞, 0)× ω and (0,+∞)× ω. More specifically, we have

w+
ℓ (x1, x

′) = w+(x1 − ℓ, x′), (2.3.6)
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where w+ is defined by



























w+ ∈ H1((−∞, 0)× ω)
∫

(−∞,0)×ω

A∇w+∇v dx = 0 ∀ v ∈ H1
0 ((−∞, 0)× ω)

w+ = −u∞ on {0} × ω

w+ = 0 on (−∞, 0)× ∂ω

(2.3.7)

and

w−
ℓ (x1, x

′) = w−(x1 + ℓ, x′)

with w− defined by



























w− ∈ H1((0,+∞)× ω)
∫

(0,+∞)×ω

A∇w−∇v dx = 0 ∀ v ∈ H1
0 ((0,+∞)× ω)

w− = −u∞ on {0} × ω

w− = 0 on (0,+∞)× ∂ω.

(2.3.8)

Remark 2.3.1. Using the properties of w+ and w−, we can justify that in
general the following negative result takes place:

For a constant a > 0, we have that

‖∇(uℓ − u∞)‖L2(Ωℓ−a) 6→ 0.

Let us suppose that, to the contrary,

‖∇(uℓ − u∞)‖L2(Ωℓ−a) → 0.

Then, since

‖∇wℓ‖L2(Ωℓ−a) ≤ ‖∇(uℓ − u∞ − wℓ)‖L2(Ωℓ−a) + ‖∇(uℓ − u∞)‖L2(Ωℓ−a)

and

‖∇(uℓ − u∞ − wℓ)‖L2(Ωℓ−a) → 0 (thanks to (2.2.19)),

‖∇(uℓ − u∞)‖L2(Ωℓ−a) → 0,
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as ℓ goes to +∞, we have

‖∇wℓ‖L2(Ωℓ−a) → 0. (2.3.9)

Obviously ‖∇w+
ℓ ‖L2(Ω+

ℓ−a)
= ‖∇w+‖L2((−ℓ,−a)×ω). Since the function ℓ 7→

‖∇w+‖L2((−ℓ,−a)×ω) is positive and increasing, it follows from (2.3.9) that
‖∇w+‖L2((−∞,−a)×ω) = 0. Using the Poincaré inequality, we deduce that

w+ = 0 a.e. in (−∞,−a)× ω. (2.3.10)

Let us now give two examples where this is impossible:

• If the coefficients of A are analytic, then it follows from its definition
that w+ is analytic on (−∞, 0)×ω, see for instance [43] or [52]. Using
(2.3.10) we therefore derive w+ = 0 in (−∞, 0)× ω, which contradicts
w+ = −u∞ on {0} × ω in the case where u∞ 6= 0, i.e. if f 6= 0.

• If f ≤ 0 on ω, then by the weak maximum principle u∞ ≤ 0 a.e. in ω,
hence a.e. in Ω∞. Therefore w+ = −u∞ ≥ 0 a.e. on {0}×ω and again,
by the weak maximum principle applied to w+, one has w+ ≥ 0 a.e. in
(−∞, 0) × ω. But w+ = 0 a.e. in (−∞,−a) × ω, hence w+ “achieves
its minimum” inside (−∞, 0) × ω, in the sense that there exists an
open ball B ⊂⊂ (−∞, 0)×ω such that ess infBw

+ = ess inf(−∞,0)×ωw
+.

Therefore, thanks to the strong maximum principle (see, e.g. [37]), we
derive w+ = 0 on (−∞, 0)×ω. This is in contradiction with w+ = −u∞
on {0} × ω, if u∞ 6= 0. Obviously, a similar argument is valid in the
case f ≥ 0 in ω.

The result described in Remark 2.3.1 shows the optimality of the con-
vergence result (2.3.2). We would like to mention here the fact that the
non-convergence result of Remark 2.3.1 have been proved in [17] (see also
[15]), in the particular case of the laplacian.

73





Chapter 3

Asymptotic analysis of some

elliptic problems in long

cylinders with data decreasing

at infinity

The asymptotic study of PDEs in cylinders becoming unbounded in one or
several directions have been fairly developped since the beginning of our
century, starting from Michel Chipot and his collaborators. In this paper
we give some estimation about the rate of the convergence to the solution
of a linear elliptic problem on an infinite cylinder of the solutions of the
same problem taken on larger and larger truncations of the cylinder when
the data is in H−1(Ω∞), Ω∞ being the infinite cylinder. The difference with
the previous articles of Chipot and co-authors is that the convergence takes
place in the whole cylinder Ωℓ (see here below for its definition) instead of
only a portion of it, that usually is Ωℓ/2. As expected, this is possible thanks
to more restrictive assumptions on the data.

3.1 Introduction

We put ourselves in a generalized cylinder Ωℓ = ℓω1 × ω2 ⊂ Rn, where
ω1 ⊂ Rk(1 ≤ k ≤ n − 1) and ω2 ⊂ Rn−k are bounded open sets, and
we consider a linear elliptic problem with homogeneous Dirichlet boundary
conditions, where the data is given f , an element belonging to H−1(Rk×ω2).
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The aim here is to prove that the solutions uℓ of the Dirichlet problem in
Ωℓ are converging, as ℓ goes to infinity, to the solution of a similar Dirichlet
problem on the infinite cylinder, at a speed which is either exponential or
equivalent to the decreasing speed of f at infinity.

In the case k = 1, these results can also be obtained as a consequence of
the estimates obtained in the previous chapter, where the use of correctors
allowed us to obtain good estimates in the whole domain Ωℓ.

Let us now give the notation that will be used in this chapter.

The notation | · | stands for the Euclidean norm in Rm (m ∈ N∗). For
x ∈ Rm and r > 0, we use the notation B(x, r) for the open ball of Rm,
centered at x of radius r:

B(x, r) = {y ∈ Rm ; |y − x| < r} .

We denote by |A| the m-dimensional Lebesgue measure of a measurable sub-
set A of Rm.

If O is an open subset of Rn and v ∈ H1
0 (O), then by convention, we will

also denote by v its extension by 0 outside of O. Note that in this case, we
have v ∈ H1

0 (U) for any open set U ⊃ O.

Let k be an integer such that 1 ≤ k ≤ n−1 and ω1 be a bounded domain
(i.e., open and connected) of Rk, verifying

ω1 is star-shaped with respect to an open ball of Rk centered at 0. (3.1.1)

Note that in particular, any bounded open convex set containing 0 satisfies
the property (3.1.1).

Let ω2 be a bounded Lipschitz domain of Rn−k. We set

Ωℓ = ℓω1 × ω2 , Ω∞ = Rk × ω2 .

For a point x = (x1, . . . , xn) ∈ Rn, we set

X1 = (x1, . . . , xk) , X2 = (xk+1, . . . , xn),

hence we can write x = (X1, X2), and we use the notation

∇X1 =
( ∂

∂x1
, · · · , ∂

∂xk

)

, ∇X2 =
( ∂

∂xk+1

, · · · , ∂

∂xn

)

.
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We will also use the notation ∂xi
for the partialderivative ∂

∂xi
.

The hypothesis of ω1 satisfying the property (3.1.1) is fundamental in
the proof of the main result of this paper, since this property allows us to
construct a function

ρℓ = ρℓ(X1) ∈ W 1,∞(Ω∞)

such that

0 ≤ ρℓ ≤ 1, ρℓ = 1 in Ωℓ, ρℓ = 0 in Ω∞ \ Ωℓ+1,

and |∇X1ρℓ| ≤ c0 in Ω∞, with c0 a constant depending only on ω1. The
construction of such functions ρℓ is possible thanks to the following result,
established in the first chapter (see Lemma 1.1.1).

Lemma 3.1.1. Let ω1 ( Rk be an open set which is star-shaped with respect
to the open ball Bδ = B(0, δ) = {x ∈ Rk ; |x| < δ}. Then for all ℓ > 0, one
has

dist(ℓω1,R
k \ (ℓ+ 1)ω1) ≥ δ . (3.1.2)

Using classical methods, as for instance the convolution with a regular-
izing sequence of the indicator function of the set Eℓ, δ

2
=
⋃

X1∈ℓω1
B(X1,

δ
2
)

(with ℓ = ℓ1−1 for the following lemma), we can now construct the function
ρℓ announced above, which plays a major role in the proof of the main result
of this chapter.

Lemma 3.1.2. For any ℓ1 > 1, there exists a function ρ in W 1,∞(Ω∞)
satisfying ρ(x) = ρ(X1),

ρ =











0 in Ωℓ1−1

1 in Ω∞ \ Ωℓ1

0 ≤ ρ(x) ≤ 1 in Ωℓ1 \ Ωℓ1−1

and
‖∇ρ‖L∞(Ω∞) ≤ cδ, (3.1.3)

where cδ is a constant independent of ℓ1.

Another important tool that is used along this chapter is the following
Poincaré inequality, which was already introduced in the first chapter (see
Lemma 1.1.3).
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Lemma 3.1.3. Let v ∈ H1(Ωℓ) such that v = 0 on ℓω1 × ∂ω2 and ω̃1 ⊂ ℓω1

a measurable set. Then there exists a constant cω2 depending only on ω2 such
that:

‖v‖L2(ω̃1×ω2) ≤ cω2‖∇X2v‖L2(ω̃1×ω2) . (3.1.4)

Let A = (aij)1≤i,j≤n be a field of n×n matrices defined on Ω∞, such that
aij ∈ L∞(Ω∞) for all i, j ∈ {1, . . . , n}, and for some constants λ > 0 and
Λ > 0,

λ|ξ|2 ≤ A(x)ξ · ξ ∀ ξ ∈ Rn, a.e. x ∈ Ω∞ , (3.1.5)

|A(x)ξ| ≤ Λ|ξ| ∀ ξ ∈ Rn, a.e. x ∈ Ω∞ . (3.1.6)

For any ℓ > 0, we consider the following homogenous Dirichlet problem
in Ωℓ:

{

−div (A∇uℓ) = f in Ωℓ

uℓ = 0 on ∂Ωℓ ,
(3.1.7)

where f ∈ H−1(Ω∞), so that f ∈ H−1(Ωℓ) for any ℓ > 0.

Thanks to the Lax-Milgram theorem, there exists a unique weak solution
to problem (3.1.7), i.e. there exists a unique solution uℓ ∈ H1

0 (Ωℓ) to the
variational problem:

∫

Ωℓ

A∇uℓ · ∇v dx = 〈f, v〉 for all v ∈ H1
0 (Ωℓ) . (3.1.8)

Let u∞ ∈ H1
0 (Ω∞) the weak solution to the following non-homogeneous

Dirichlet problem in the cylinder Ω∞:
{

−div (A∇u∞) = f in Ω∞

u∞ = 0 on ∂Ω∞
(3.1.9)

Since f belongs to H−1(Ω∞), the variational equation associated to (3.1.9)
simply writes as

∫

Ω∞

A∇u∞ · ∇v dx = 〈f, v〉 for all v ∈ H1
0 (Ω∞) . (3.1.10)

We now recall this classical result on the characterization of the H−1-
spaces, that can be found, e.g., in [10] or [27].
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Lemma 3.1.4. If Ω is an open subset of Rn and f is an element of H−1(Ω),
then there exists some functions f0, f1, . . . , fn in L2(Ω), such that

f = f0 +
n
∑

i=1

∂xi
fi .

The following result is easily derived from the previous lemma.

Lemma 3.1.5. If f belongs to H−1(Ω∞), then we have

lim
ℓ→∞

‖f‖H−1(Ω∞\Ωℓ)
= 0

Proof. If f ∈ H−1(Ω∞), then by Lemma 3.1.4, there exists some functions
f0, f1, . . . , fn in L2(Ω∞) such that

f = f0 +
n
∑

i=1

∂xi
fi.

Then we just have to estimate the norm

‖f‖H−1(Ω∞\Ωℓ)
= sup

‖v‖
H1
0(Ω∞\Ωℓ)

=1

〈f, v〉

In what follows, we consider the space H1
0 (Ω∞ \ Ωℓ) endowed with the L2-

norm of the gradient. Note that the result of Lemma 3.1.3 remains valid -
with the corresponding modifications - if one considers v in the Sobolev space
H1

0 (Ω∞ \ Ωℓ) (see the proof of Lemma 1.1.3).
For any v in H1

0 (Ω∞ \ Ωℓ) we have that

〈f, v〉 =
∫

Ω∞\Ωℓ

f0v dx−
n
∑

i=1

∫

Ω∞\Ωℓ

fi∂xi
v dx,

and then, by applying the Cauchy-Schwarz inequality,

|〈f, v〉| ≤ ‖f0‖L2(Ω∞\Ωℓ)
‖v‖L2(Ω∞\Ωℓ)

+
n
∑

i=1

‖fi‖L2(Ω∞\Ωℓ)
‖∂xi

v‖L2(Ω∞\Ωℓ)
.

Hence, for any v satisfying ‖v‖H1
0 (Ω∞\Ωℓ)

= 1, one has

|〈f, v〉| ≤ cω2‖f0‖L2(Ω∞\Ωℓ)
+

n
∑

i=1

‖fi‖L2(Ω∞\Ωℓ)
,
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using the Poincaré inequality (3.1.4). Therefore,

‖f‖H−1(Ω∞\Ωℓ)
≤ cω2‖f0‖L2(Ω∞\Ωℓ)

+
n
∑

i=1

‖fi‖L2(Ω∞\Ωℓ)

and the result follows, since ‖fi‖L2(Ω∞\Ωℓ)
→ 0 as ℓ→ +∞ for any 0 ≤ i ≤ n,

taking into account the fact that fi ∈ L2(Ω∞).

3.2 Main result

To start this section, we recall this result from [16] and [11] (see Theorem
1.2.1 of the first chapter):

Theorem 3.2.1. Let f ∈ H−1(Ω∞). Then the functions uℓ and u∞ intro-
duced in the previous section verify the following inequality:

‖∇(uℓ − u∞)‖L2(Ω ℓ
2
) ≤ Ce−αℓ for all ℓ > 0 , (3.2.1)

where C ≥ 0 and α > 0 are constants depending only on ω1, ω2, λ and Λ.

We will see in what follows that, in order to obtain a good estimate on
the remaining part Ωℓ \ Ω ℓ

2
, it suffices to estimate separately uℓ and u∞ on

this part, in other words, to describe the decay of uℓ and u∞ at infinity.
Note that in the case of u∞, this means that we study the behaviour

at infinity of the solution to an elliptic equation in an infinite domain. We
would like to emphasize that this kind of analysis is an important research
topic on its own. Let us first remind the 1963 paper of E.M. Landis [48], and
later, in 1977, the work of E.M. Landis and G.P. Panasenko [49], where the
subject was the behaviour at infinity of solutions to elliptic equations. For
the linear elasticity problem, the interested reader can consult the 1982 paper
of O.A. Oleinik and G.A. Yosifian [56]. The asymptotic behavior at infinity
of solutions to Stokes or Navier-Stokes problems in domains with infinite
cylindrical outlets was the subject of many articles. To mention only a few,
see for instance the works of L.V. Kapitanskii [44], O.A. Ladyzhenskaya and
V.A. Solonnikov [47], or S.A. Nazarov and K. Pileckas ([54], [65],[66]).

For the sake of completeness, we include here the proof of the result
describing the behaviour at infinity of u∞, which is very similar to the one
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concerning uℓ. In many of the works cited above, the asymptotic behaviour
at infinity is described by means of weighted Sobolev spaces. Here, we only
use elementary tools, resembling to the ones introduced in Chapter 1.

Theorem 3.2.2. Assume that f ∈ H−1(Ω∞). Then for any ℓ positive, the
following inequality stands:

‖∇uℓ‖L2(Ωℓ\Ω ℓ
2
) ≤ C

(

e−α̃ℓ + ‖f‖H−1(Ω∞\Ω ℓ
4
)

)

, (3.2.2)

where C ≥ 0 and α̃ > 0 are constants depending only on ω1, ω2, λ and Λ.

Proof. The proof is divided into two steps.

Step I. We will first prove that: for any 1 < ℓ1 < ℓ, we have

‖∇uℓ‖2L2(Ωℓ\Ωℓ1
) ≤ b‖f‖2

H−1(Ω∞\Ωℓ1−1)
+ a‖∇uℓ‖2L2(Ωℓ\Ωℓ1−1)

,

where the constants b ≥ 0 and 0 < a < 1 depend only on ω1, ω2, λ and Λ
(hence they are independent of ℓ and ℓ1).

So let 1 < ℓ1 < ℓ. We use the function ρuℓ, which belongs to H1
0 (Ωℓ), as

a test function in (3.1.8) (ρ being the function introduced in Lemma 3.1.2),
leading us to the following computations:

∫

Ωℓ

A∇uℓ∇(ρuℓ) dx =

∫

Ωℓ1−1

A∇uℓ∇(ρuℓ) dx+

∫

Ωℓ1
\Ωℓ1−1

A∇uℓ∇(ρuℓ) dx

+

∫

Ωℓ\Ωℓ1

A∇uℓ∇(ρuℓ) dx

= 〈f, ρuℓ〉.

Since the function ρ is equal to 0 on Ωℓ1−1, we have that

∫

Ωℓ1−1

A∇uℓ∇(ρuℓ) dx = 0 .

Secondly, since by definition ρ is equal to 1 in Ωℓ \ Ωℓ1 , one has that
ρuℓ = uℓ in the open set Ωℓ \ Ωℓ1 . Hence ∇(ρuℓ) = ∇uℓ in Ωℓ \ Ωℓ1 . Using
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the fact that |Ωℓ ∩ ∂Ωℓ1 | = 0 (thanks to the assumptions on ω1, which imply
that ω1 is a Lipschitz domain; see e.g., Teorema 1.I in [33]), it follows that
∫

Ωℓ\Ωℓ1

A∇uℓ∇(ρuℓ) dx =

∫

Ωℓ\Ωℓ1

A∇uℓ∇(ρuℓ) dx =

∫

Ωℓ\Ωℓ1

A∇uℓ∇uℓ dx

=

∫

Ωℓ\Ωℓ1

A∇uℓ∇uℓ dx .

Using this two observations combined with the property (3.1.5) verified by
A, we have

λ‖∇uℓ‖2L2(Ωℓ\Ωℓ1
) ≤

∫

Ωℓ\Ωℓ1

A∇uℓ∇uℓ dx = 〈f, ρuℓ〉 −
∫

Ωℓ1
\Ωℓ1−1

A∇uℓ∇(ρuℓ) dx

= 〈f, ρuℓ〉 −
∫

Ωℓ1
\Ωℓ1−1

A∇uℓ(ρ∇uℓ + uℓ∇ρ) dx .

We now use (3.1.6) in order to derive

λ‖∇uℓ‖2L2(Ωℓ\Ωℓ1
) ≤〈f, ρuℓ〉+ Λ‖∇uℓ‖2L2(Ωℓ1

\Ωℓ1−1)

+ Λ‖∇ρ‖L∞(Ωℓ1
\Ωℓ1−1)‖∇uℓ‖L2(Ωℓ1

\Ωℓ1−1)‖uℓ‖L2(Ωℓ1
\Ωℓ1−1) .

Notice that the function ρuℓ belongs to the space H1
0 (Ωℓ \ Ωℓ1−1). We use

now the definition of the H−1-norm and the inequalities (3.1.3) and (3.1.4),
in order to deduce

λ‖∇uℓ‖2L2(Ωℓ\Ωℓ1
) ≤ 〈f, ρuℓ〉+ Λ(1 + cδcω2)‖∇uℓ‖2L2(Ωℓ1

\Ωℓ1−1)

≤ ‖f‖H−1(Ωℓ\Ωℓ1−1)
‖∇(ρuℓ)‖L2(Ωℓ\Ωℓ1−1)

+ Λ(1 + cδcω2)‖∇uℓ‖2L2(Ωℓ1
\Ωℓ1−1)

= ‖f‖H−1(Ωℓ\Ωℓ1−1)
‖∇(ρuℓ)‖L2(Ωℓ\Ωℓ1−1)

+ Λ(1 + cδcω2)‖∇uℓ‖2L2(Ωℓ1
\Ωℓ1−1)

,

where in the last equality we have used the fact that the n-dimensional
Lebesgue measure of Ωℓ ∩ ∂Ωℓ1−1 vanishes.

Taking into account the properties of ρ and the Poincaré inequality (3.1.4),
we obtain as in the previous computations,

‖∇(ρuℓ)‖L2(Ωℓ\Ωℓ1−1) ≤ ‖ρ‖L∞(Ωℓ\Ωℓ1−1)‖∇uℓ‖L2(Ωℓ\Ωℓ1−1)

+ ‖∇ρ‖L∞(Ωℓ\Ωℓ1−1)‖uℓ‖L2(Ωℓ\Ωℓ1−1)

≤ (1 + cδcω2)‖∇uℓ‖L2(Ωℓ\Ωℓ1−1) .
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Combining the last two inequalities, we get

λ‖∇uℓ‖2L2(Ωℓ\Ωℓ1
) ≤ (1 + cδcω2)‖f‖H−1(Ωℓ\Ωℓ1−1)

‖∇uℓ‖L2(Ωℓ\Ωℓ1−1)

+ Λ(1 + cδcω2)‖∇uℓ‖2L2(Ωℓ1
\Ωℓ1−1)

.

To continue, we notice that

Ωℓ1 \ Ωℓ1−1 = (Ωℓ \ Ωℓ1−1) \ (Ωℓ \ Ωℓ1) .

Therefore,

‖∇uℓ‖2L2(Ωℓ1
\Ωℓ1−1)

= ‖∇uℓ‖2L2(Ωℓ\Ωℓ1−1)
− ‖∇uℓ‖2L2(Ωℓ\Ωℓ1

) ,

which leads to the following inequality:

(λ+ Λ(1 + cδcω2))‖∇uℓ‖2L2(Ωℓ\Ωℓ1
) ≤ (1 + cδcω2)‖f‖H−1(Ωℓ\Ωℓ1−1)

‖∇uℓ‖L2(Ωℓ\Ωℓ1−1)

+ Λ(1 + cδcω2)‖∇uℓ‖2L2(Ωℓ\Ωℓ1−1)
.

We now use the inequality

|xy| ≤ x2

4ε
+ εy2

which is valid for any ε > 0, in order do derive

(λ+ Λ(1 + cδcω2))‖∇uℓ‖2L2(Ωℓ\Ωℓ1
)

≤ (1 + cδcω2)
( 1

4ε
‖f‖2

H−1(Ωℓ\Ωℓ1−1)
+ ε‖∇uℓ‖2L2(Ωℓ\Ωℓ1−1)

)

+ Λ(1 + cδcω2)‖∇uℓ‖2L2(Ωℓ\Ωℓ1−1)

and therefore,

‖∇uℓ‖2L2(Ωℓ\Ωℓ1
) ≤

1 + cδcω2

4ε(λ+ Λ(1 + cρcω2))
‖f‖2

H−1(Ω∞\Ωℓ1−1)

+
ε(1 + cδcω2) + Λ(1 + cδcω2)

λ+ Λ(1 + cδcω2)
‖∇uℓ‖2L2(Ωℓ\Ωℓ1−1)

Let us set

a =
ε(1 + cδcω2) + Λ(1 + cδcω2)

λ+ Λ(1 + cδcω2)
and b =

1 + cδcω2

4ε(λ+ Λ(1 + cρcω2))
,
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so that the previous inequality rewrites

‖∇uℓ‖2L2(Ωℓ\Ωℓ1
) ≤ b‖f‖2

H−1(Ω∞\Ωℓ1−1)
+ a‖∇uℓ‖2L2(Ωℓ\Ωℓ1−1)

. (3.2.3)

The goal of the first step is now attained, provided that the constant a
satisfies 0 < a < 1. Or this is obtained by choosing an ε > 0 such that
ε(1 + cδcω2) < λ.

Step II. We deduce the inequality (3.2.2) by an iteration technique. We first
take ℓ1 =

ℓ
2
in inequality (3.2.3) and then iterate it [ ℓ

4
] times, with [·] denoting

the integer part. Keeping in mind that
∑+∞

j=0 a
j = 1

1−a
(since 0 < a < 1, this

series is convergent), this leads to

‖∇uℓ‖2L2(Ωℓ\Ω ℓ
2
) ≤ b

[ ℓ
4
]

∑

i=1

(

ai−1‖f‖2
H−1(Ω∞\Ω ℓ

2−i
)

)

+ a[
ℓ
4
]‖∇uℓ‖2L2(Ωℓ\Ω ℓ

2−[ ℓ4 ]
)

≤ b
(

[ ℓ
4
]

∑

i=1

ai−1
)

‖f‖2
H−1(Ω∞\Ω ℓ

4
)
+ a[

ℓ
4
]‖∇uℓ‖2L2(Ωℓ\Ω ℓ

4
)

≤ b

1− a
‖f‖2

H−1(Ω∞\Ω ℓ
4
)
+ a

ℓ
4
−1‖∇uℓ‖2L2(Ωℓ\Ω ℓ

4
) ,

using the fact that

‖f‖H−1(Ω∞\Ω ℓ
2−i

) ≤ ‖f‖H−1(Ω∞\Ω ℓ
4
) for all i ∈

{

1, . . . ,
[ ℓ

4

]

}

.

Finally, we obtain, by taking α̃ = 1
8
ln( 1

a
),

‖∇uℓ‖2L2(Ωℓ\Ω ℓ
2
) ≤ C

(

‖f‖2
H−1(Ω∞\Ω ℓ

4
)
+ e−2α̃ℓ‖∇uℓ‖2L2(Ωℓ\Ω ℓ

4
)

)

≤ C
(

‖f‖2
H−1(Ω∞\Ω ℓ

4
)
+ e−2α̃ℓ‖∇uℓ‖2L2(Ωℓ)

)

and so we retrieve the result of the theorem, thanks to the inequality

‖∇uℓ‖L2(Ωℓ) ≤
1

λ
‖f‖H−1(Ωℓ) ≤

1

λ
‖f‖H−1(Ω∞) ,

obtained by taking uℓ as test function in (3.1.8).
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In the same spirit as the previous one, we have the following result:

Theorem 3.2.3. Assume that f ∈ H−1(Ω∞). Then for any ℓ positive, the
following inequality stands:

‖∇u∞‖L2(Ω∞\Ω ℓ
2
) ≤ C

(

e−α̃ℓ + ‖f‖H−1(Ω∞\Ω ℓ
4
)

)

, (3.2.4)

where C ≥ 0 and α̃ > 0 are constants depending only on ω1, ω2, λ and Λ.

Proof. The proof is very similar to the one of Theorem 3.2.2. Therefore, we
will outline it by insisting only on the most noteworthy aspects.

As in the proof of Theorem 3.2.2, we begin by establishing the following
result:

There exists a constant b ≥ 0 and a constant a ∈ (0, 1) depending only on λ,
Λ, ω1 and ω2 such that

‖∇u∞‖2L2(Ω∞\Ωℓ1
) ≤ b‖f‖2

H−1(Ω∞\Ωℓ1−1)
+ a‖∇u∞‖2L2(Ω∞\Ωℓ1−1)

.

for any ℓ1 > 1.

So let ℓ1 > 1. The function ρuℓ belongs to H
1
0 (Ω∞), hence we can use it

as a test function in the variational equation (3.1.10):

∫

Ω∞

A∇u∞∇(ρu∞) dx =

∫

Ωℓ1−1

A∇u∞∇(ρu∞) dx+

∫

Ωℓ1
\Ωℓ1−1

A∇u∞∇(ρu∞) dx

+

∫

Ω∞\Ωℓ1

A∇uℓ∇(ρu∞) dx

= 〈f, ρu∞〉.

As in the proof of Theorem 3.2.2, we deduce from the properties of ρ that
∇(ρu∞) = 0 in Ωℓ1−1 and

∫

Ω∞\Ωℓ1

A∇u∞∇(ρu∞) dx =

∫

Ω∞\Ωℓ1

A∇u∞∇u∞ dx .
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Consequently, combining this equalities with the property (3.1.5) verified
by A, we derive

λ‖∇u∞‖2L2(Ω∞\Ωℓ1
) ≤

∫

Ω∞\Ωℓ1

A∇u∞∇u∞ dx

= 〈f, ρu∞〉 −
∫

Ωℓ1
\Ωℓ1−1

A∇u∞∇(ρu∞) dx

= 〈f, ρu∞〉 −
∫

Ωℓ1
\Ωℓ1−1

A∇u∞(ρ∇u∞ + u∞∇ρ) dx .

Using the same arguments as in the proof of Theorem 3.2.2 and taking
into account the fact that ρu∞ ∈ H1

0 (Ω∞ \ Ωℓ1−1), we get

λ‖∇u∞‖2L2(Ω∞\Ωℓ1
) ≤ ‖f‖H−1(Ω∞\Ωℓ1−1)

‖∇(ρu∞)‖L2(Ω∞\Ωℓ1−1)

+ Λ(1 + cδcω2)‖∇u∞‖2L2(Ωℓ1
\Ωℓ1−1)

≤ (1 + cδcω2)‖f‖H−1(Ω∞\Ωℓ1−1)
‖∇u∞‖L2(Ω∞\Ωℓ1−1)

+ Λ(1 + cδcω2)‖∇u∞‖2L2(Ωℓ1
\Ωℓ1−1)

.

Since
Ωℓ1 \ Ωℓ1−1 = (Ω∞ \ Ωℓ1−1) \ (Ω∞ \ Ωℓ1) .

we deduce

‖∇u∞‖2L2(Ωℓ1
\Ωℓ1−1)

= ‖∇u∞‖2L2(Ω∞\Ωℓ1−1)
− ‖∇u∞‖2L2(Ω∞\Ωℓ1

) .

Thus, the last inequality becomes

(λ+ Λ(1 + cδcω2))‖∇u∞‖2L2(Ω∞\Ωℓ1
)

≤ (1 + cδcω2)‖f‖H−1(Ω∞\Ωℓ1−1)
‖∇u∞‖L2(Ω∞\Ωℓ1−1)

+ Λ(1 + cδcω2)‖∇u∞‖2L2(Ω∞\Ωℓ1−1)
.

We then make the same computations as in the previous proof in order
to obtain the inequality

‖∇u∞‖2L2(Ω∞\Ωℓ1
) ≤ b‖f‖2

H−1(Ω∞\Ωℓ1−1)
+ a‖∇u∞‖2L2(Ω∞\Ωℓ1−1)

, (3.2.5)

with a ∈ (0, 1) and b ≥ 0 given by the same formulas as in the proof of
Theorem 3.2.2.
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Now we use an iteration technique: we start with ℓ1 = ℓ
2
in inequality

(3.2.5) and then we iterate this inequality [ ℓ
4
] times. With the same argu-

ments as in the previous proof, this leads us to the following inequality:

‖∇u∞‖2L2(Ω∞\Ω ℓ
2
) ≤ C

(

‖f‖2
H−1(Ω∞\Ω ℓ

4
)
+ e−2α̃ℓ‖∇u∞‖2L2(Ω∞\Ω ℓ

4
)

)

≤ C
(

‖f‖2
H−1(Ω∞\Ω ℓ

4
)
+ e−2α̃ℓ‖∇u∞‖2L2(Ω∞)

)

,

where α̃ = 1
8
ln( 1

a
). Combining the last inequality with the estimate

‖∇u∞‖L2(Ω∞) ≤
1

λ
‖f‖H−1(Ω∞) ,

obtained by taking u∞ as test function in (3.1.10), allows us to establish the
inequality (3.2.4) and thus to end the proof of the theorem.

Remark 3.2.1. Note that the constant α̃ appearing in (3.2.4) is exactly the
same as the one in (3.2.2).

Combining the previous results, we can now easily obtain the main result
of this chapter.

Theorem 3.2.4. Let f ∈ H−1(Ω∞). Then for any ℓ > 0, we have the
estimate:

‖∇(uℓ − u∞)‖L2(Ωℓ) ≤ C
(

e−α′ℓ + ‖f‖H−1(Ω∞\Ω ℓ
4
)

)

, (3.2.6)

for some constants C ≥ 0 and α′ > 0 depending only on λ, Λ, ω1 and ω2.

Proof. To start with, we make the following splitting:

‖∇(uℓ − u∞)‖2L2(Ωℓ)
= ‖∇(uℓ − u∞)‖2L2(Ω ℓ

2
) + ‖∇(uℓ − u∞)‖2L2(Ωℓ\Ω ℓ

2
)

Therefore, using the triangular inequality,

‖∇(uℓ − u∞)‖L2(Ωℓ) ≤ ‖∇(uℓ − u∞)‖L2(Ω ℓ
2
) + ‖∇(uℓ − u∞)‖L2(Ωℓ\Ω ℓ

2
)

≤ ‖∇(uℓ − u∞)‖H1(Ωℓ) + ‖∇uℓ‖H1(Ωℓ\Ω ℓ
2
) + ‖∇u∞‖L2(Ωℓ\Ω ℓ

2
)

≤ ‖∇(uℓ − u∞)‖L2(Ωℓ) + ‖∇uℓ‖L2(Ωℓ\Ω ℓ
2
) + ‖∇u∞‖L2(Ω∞\Ω ℓ

2
) .

The inequality (3.2.6) is then derived from inequalities (3.2.1), (3.2.2) and
(3.2.4), by taking α′ = min{α, α̃}.
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Remark 3.2.2. The inequality (3.2.6) implies that the rate of convergence
to zero of the difference between uℓ and u∞ on Ωℓ is the slowest between the
one of e−αℓ and the one of ‖f‖H−1(Ω∞\Ω ℓ

4
). We recall that, thanks to Theorem

3.1.5, we have that ‖f‖H−1(Ω∞\Ω ℓ
4
) → 0, as ℓ goes to infinity.

In particular, if f decays exponentially to zero at infinity, with respect to
the H−1-norm, i.e.

‖f‖H−1(Ω∞\Ωℓ)
≤ Ce−α′′ℓ for all ℓ > 0

(C and α′′ being positive constants independent of ℓ), then we obtain once
again an exponential rate of convergence of uℓ towards u∞, but this time on
the whole cylinder Ωℓ.

Remark 3.2.3. In the case where k = 1 and ω1 = (−1, 1), the same result
can be recovered using the correctors constructed in the previous chapter.
Indeed, the following estimate was established in Theorem 2.2.3:

‖∇(uℓ − u∞ − w+
ℓ )‖L2(Ω+

ℓ ) ≤ Ce−αℓ , (3.2.7)

where wℓ is a corrector and w+
ℓ its restriction to Ω+

ℓ = (0, ℓ)× ω2.
On the other hand, we have seen in Remark 2.2.1 that

‖∇w+
ℓ ‖L2((−∞,ℓ)×ω2) ≤ C̃‖∇u∞‖L2((ℓ−1,ℓ)×ω), (3.2.8)

Combining inequalities (3.2.7) and (3.2.8) with (3.2.4) (with 2(ℓ − 1) in
the role of ℓ) leads us to the inequality

‖∇(uℓ − u∞)‖L2(Ω+
ℓ ) ≤ C

(

e−αℓ + ‖f‖
H−1
(

Ω∞\Ω ℓ−1
2

)

)

.

A similar inequality takes place on the other semi-cylinder Ω−
ℓ = (−ℓ, 0)×ω2.

Combining the inequalities on Ω+
ℓ and Ω−

ℓ , we derive the estimate

‖∇(uℓ − u∞)‖L2(Ωℓ) ≤ C
(

e−αℓ + ‖f‖
H−1
(

Ω∞\Ω ℓ−1
2

)

)

,

which gives in this case an improved version of (3.2.6).
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Chapter 4

Asymptotic analysis for the

Stokes problem in long domains

becoming unbounded

4.1 Introduction

On a cylinder Ωℓ = Bℓ × ω where Bℓ ⊂ Rk is the ball centered at the origin
and of radius ℓ and ω ⊂ Rn−k is a bounded Lipschitz domain, we study the
Stokes problem











− µ∆uℓ +∇pℓ = f in Ωℓ

div u = 0 in Ωℓ

u = 0 on ∂Ωℓ

(4.1.1)

of unknowns uℓ ∈
(

H1
0 (Ωℓ)

)n
and pℓ ∈ L2(Ωℓ)/R, where f ∈ L2(Ωℓ) (for any

ℓ > 0) and µ is a positive constant describing the dynamic velocity of the
fluid. The aim of the chapter is to describe the behaviour of the solutions
(uℓ, pℓ) as ℓ goes to ∞ while assuming a radiality hypothesis on f which, as
we prove along the chapter, involves the same kind of properties for uℓ.

We remind the following classical result (see e.g. [34] and [68]): there
exists a unique weak solution to the Stokes problem (4.1.1). More specifically,
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there exists a unique solution (uℓ, pℓ) to the variational problem











(uℓ, pℓ) ∈ Ĥ1
0(Ωℓ)× L̂2(Ωℓ),

µ

∫

Ωℓ

∇uℓ · ∇v dx−
∫

Ωℓ

pℓdiv v dx =

∫

Ωℓ

fv dx for all v ∈ H1
0(Ωℓ).

(4.1.2)
In the case where k = 1, it have been proved in [19] that, provided that

‖f‖L2(Ωℓ) = O(eβℓ) for β > 0 small enough, then for some positive constants
C and α, the solution (uℓ, pℓ) to the problem (4.1.1) satisfies

‖∇(uℓ − u∞)‖L2(Ω ℓ
2
) + ‖pℓ − p∞‖L̂2(Ω ℓ

2
) ≤ Ce−αℓ

as ℓ goes to ∞, where (u∞, p∞) ∈
(

H1
loc(Ω∞)

)n ×L2
loc(Ω∞)/R is the solution

to the following problem:







































− µ∆u∞ +∇p∞ = f in
(

D′(Ω∞)
)n

div u∞ = 0 in Ω∞

u∞ = 0 on ∂Ω∞
∫

ω

u∞,1(X1, X2) dX2 = 0 for a.e. X1 ∈ R

‖∇u∞‖L2(Ωℓ) = O(e2βℓ) ,

(4.1.3)

where u∞,1 is the first component of u∞.
In our case, if k > 1, the main difficulty comes from the emergence of the

following divergence problem (in what follows, Dℓ = Ωℓ+1 \ Ωℓ):

Let g ∈ H1(Dℓ) verifying g = 0 on (Bℓ+1 \Bℓ)× ∂ω and

∫

Dℓ

g dx = 0. Then

there exists a vector field u ∈
(

H1
0 (Dℓ)

)n
such that

{

div u = g in Dℓ

‖∇u‖L2(Dℓ) ≤ C‖g‖H1(Dℓ) ,

with the constant C being independent of ℓ.

Usually, the constant C depends on the domain Dℓ, hence it depends on ℓ
if k ≥ 2. Nevertheless, under some specific hypotheses on g, it is possible to
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get a constant that does not depend on ℓ. As an example, if g is radial along
X1, there exists a function u ∈ H1

0 (Dℓ) solution to the previous problem,
with C a constant independent of ℓ. Note that a difference arising between
this specific problem and the classic results for the equation div u = g is
that here, the H1-norm of u is controlled by the H1-norm of g while usually,
it is possible to have the L2-norm of g instead. Nevertheless, this weaker
inequality is still sufficient for our purposes, since it plays a key role in the
proof of the main result given in the last section of this paper.

We now introduce the notation that we use in the chapter:

The notation | · | stands for the Euclidean norm in Rm, m ∈ N∗. The
same notation is used for the Frobenius norm for matrices. Let us remind
here that this norm is a matrix norm, i.e. that it satisfies |AB| ≤ |A||B|
whenever the matrix product AB is possible.

The space of orthogonal matrices of order m is denoted by Om, i.e.

Om =
{

Q ∈ Mm, QTQ = Im
}

where Mm is the space of square matrices of order m, QT is the transpose of
Q and Im is the identity matrix of Mm.

For a vector field v = (v1, . . . , vm) : O → Rm, with O ⊂ Rl an open set,
we consider ∇v as a matrix field taking its values in Mm×l:

∇v =
(

(∇v)i,j
)

1≤i≤m
1≤j≤l

=

(

∂vi
∂xj

)

1≤i≤m
1≤j≤l

.

Therefore, ∇vi is the i-th line of ∇v. We also use the convention that each
time a vector of Rl appears in a matrix product, it is by default considered
as a column vector.

For x ∈ Rk and r > 0, we use the notation Br for the open ball of Rk,
centered at 0 of radius r:

Br = {y ∈ Rk ; |y| < r}.

We say that f ∈ C1(Ω̄) if f is the restriction of a C1 function on an open set
O verifying Ω̄ ⊂ O.
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We denote by |A| the k-dimensional Lebesgue measure of a measurable subset
A of Rk. We also use the notation σk for the area of the unit sphere of Rk.
We note, for U and O open sets of Rn, U being unbounded,

L2
loc(Ū) = {v ∈ L2

loc(U) | v ∈ L2(O), for any bounded open set O ⊂ U}
H1

loc(Ū) = {v ∈ H1
loc(U) | v ∈ H1(O), for any bounded open set O ⊂ U}

H1(O) =
(

H1(O)
)n

H1
0(O) =

(

H1
0 (O)

)n

Ĥ1
0(O) = {v ∈ H1

0(O) | div v = 0 in O}
L̂2(O) = L2(O)/R.

In all the chapter, for v = (v1, . . . , vm) a vector field in
(

W 1,p(O)
)m

(1 ≤ p ≤ +∞), with O ⊂ Rl an open set, we define the Lp-norm of ∇v by

‖∇v‖Lp(O) =
m
∑

i=1

l
∑

j=1

‖∂xj
vi‖Lp(O).

Note that this norm is equivalent to the norm

v 7→
∥

∥|∇v|
∥

∥

Lp(O)
=
(

∫

O

|∇v|pdx
) 1

p ,

where |∇v| is the Frobenius norm of ∇v, i.e.

|∇v| =
(

m
∑

i=1

l
∑

j=1

|∂xj
vi|2
) 1

2

where ∂xj
vi denotes the partial derivative ∂vi

∂xj
. Indeed, on the one hand we

have

|∇v| ≤
m
∑

i=1

l
∑

j=1

|∂xj
vi|

hence

∥

∥|∇v|
∥

∥

Lp(O)
≤
∥

∥

m
∑

i=1

l
∑

j=1

|∂xj
vi|
∥

∥

Lp(O)
≤

m
∑

i=1

l
∑

j=1

‖∂xj
vi‖Lp(O) = ‖∇v‖Lp(O).

(4.1.4)
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On the other hand, |∂xj
vi| ≤ |∇v| for all i and j. Thus

‖∇v‖Lp(O) =
m
∑

i=1

l
∑

j=1

‖∂xj
vi‖Lp(O) ≤

m
∑

i=1

l
∑

j=1

∥

∥|∇v|
∥

∥

Lp(O)
= ml

∥

∥|∇v|
∥

∥

Lp(O)
.

(4.1.5)
For ω a bounded Lipschitz domain of Rn−k, we set

Ωℓ = Bℓ × ω, Ω∞ = Rk × ω .

We furthermore set

Aℓ = Bℓ+1 \Bℓ and Dℓ = Ωℓ+1 \ Ωℓ = Aℓ × ω.

For a point x ∈ R, we set

X1 = (x1, ..., xk) and X2 = (xk+1, ..., xn).

Hence, we can write x = (X1, X2), and we use the notation

∇X1 =
( ∂

∂x1
, · · · , ∂

∂xk

)

, ∇X2 =
( ∂

∂xk+1

, · · · , ∂

∂xn

)

.

Also, if u = (u1, . . . , un) is a Rn-valued function, then we note

u′ = (u1, . . . , uk) and u
′′ = (uk+1, . . . , un).

Hence u = (u′, u′′), with u′ and u′′ being respectively Rk and Rn−k-valued
functions.

For β ∈ R, we define

Vβ(Ω∞) = {f ∈ L2
loc(Ω̄∞) | ∃C0 ≥ 0 such that ‖f‖L2(Ωℓ) ≤ C0e

βℓ ∀ ℓ > 0}

and we give the following definition:

Definition 4.1.1. Let f : (BR \Br)× ω → R, with 0 ≤ r < R ≤ +∞. One
says that f is radial along X1 if there exists a function g : (r, R) × ω → R

such that
f(X1, X2) = g(|X1|, X2)

for all (X1, X2) ∈ (BR \Br)× ω.

We now give some primary results.

93



4.2. PRELIMINARIES

4.2 Preliminaries

We start by reminding three useful general results.

We begin by a first result that can be seen as a spherical Fubini formula.
Indeed, this result can be obtained by first passing in spherical coordinates,
then using the classical Fubini formula.

Theorem 4.2.1. Let a and b be two positive constants such that
0 ≤ a < b ≤ +∞, and f a function such that f ∈ L1(Bb \ Ba). Then, we
have that

∫

Bb\Ba

f(x) dx =

∫ b

a

(∫

∂Bs

f(x) dσx

)

ds.

The second result concerns the change of variables in Sobolev spaces.

Theorem 4.2.2. Let Ω and Ω′ be two open subsets of Rn and H : Ω′ → Ω a
bijection such that

H ∈ C1(Ω′;Rn), H−1 ∈ C1(Ω;Rn)

and
J(H) ∈

(

L∞(Ω′)
)n×n

and J(H−1) ∈
(

L∞(Ω)
)n×n

,

where J(H) and J(H−1) are respectively the Jacobian matrix of H and the
Jacobian matrix of H−1. Then for u ∈ W 1,p(Ω) (1 ≤ p < +∞), u ◦ H ∈
W 1,p(Ω′) and

∂

∂yj
(u ◦H)(y) =

n
∑

i=1

∂u

∂xi
(H(y))

∂Hi

∂yj
(y) ∀1 ≤ j ≤ n.

This result and its proof can be found in, as an example, [10].

We also give this Poincaré inequality which is an adaptation of Lemma
1.1.3:

Lemma 4.2.1. Let v ∈ H1(Ωℓ) such that v = 0 on Bℓ × ∂ω and ω̃1 ⊂ Bℓ

a measurable set. Then there exists a constant Cω depending only on ω such
that:

‖v‖L2(ω̃1×ω) ≤ Cω‖∇X2v‖L2(ω̃1×ω) . (4.2.1)
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We now give some results about radiality.

Theorem 4.2.3. If g : Ωℓ → R satisfies g(QX1, X2) = g(X1, X2) for all
Q ∈ Ok and all (X1, X2) ∈ Ωℓ, then g is radial along X1, which is to say that
there exists a function h : [0, ℓ]× ω → R such that

g(X1, X2) = h(r,X2) for all (X1, X2) ∈ Ωℓ, (4.2.2)

where r = |X1|.

Theorem 4.2.4. If g : Ωℓ → Rk satisfies g(QX1, X2) = Qg(X1, X2) for all
Q ∈ Ok and all (X1, X2) ∈ Ωℓ, then there exists R : [0, ℓ]× ω → R such that
g(X1, X2) = R(r,X2)X1.

Proof. For X1 ∈ Rk, we set r = |X1|. Then we have that |re1| = |X1| where
e1 is the first element the canonical basis of Rk. Therefore, there exists
Q ∈ Ok such that Q(re1) = X1. It follows that g(X1, X2) = g(Q(re1), X2) =
Qg(re1, X2).

Let now R = diag(1,−1, . . . ,−1), the diagonal matrix of order k in
which the elements of the diagonal coincide with the ones of the vector
(1,−1, . . . ,−1) ∈ Rk. Then we have that R ∈ Ok and Re1 = e1. There-
fore, we have:

g(re1, X2) = g(rRe1, X2) = g(R(re1), X2) = Rg(re1, X2).

It follows that

(Ik −R)g(re1, X2) = 0

and therefore gi(re1, X2) = 0 for all 2 ≤ i ≤ k, which is to say that
g(re1, X2) = g1(re1, X2)e1. Combining all the equalities on g, we have that

g(X1, X2) = Qg(re1, X2) = Qg1(re1, X2)e1 = g1(re1, X2)Qe1 =
g1(re1, X2)

r
X1.

This finally implies that g(X1, X2) = R(r,X2)X1 with R(r,X2) =
g1(re1,X2)

r
.

Theorem 4.2.5. Let f ∈ L1(Rn) such that for all Q ∈ Ok, one has f(QX1, X2) =
f(X1, X2) for a.e. (X1, X2) ∈ Rn, and let ρ ∈ D(Rn) be a radial function
along X1. Then, the convolution product f ∗ ρ is radial along X1.
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Proof. Let f and ρ be two functions verifying the hypotheses of the theorem.
According to Theorem 4.2.3, it is enough to prove that

(f ∗ ρ)(QX1, X2) = (f ∗ ρ)(X1, X2)

for all Q ∈ Ok and all (X1, X2) ∈ Rn. We now fix Q ∈ Ok. Then for all
(X1, X2) ∈ Rn, we have

(f ∗ ρ)(QX1, X2) =

∫

Rn

f(QX1 − Y1, X2 − Y2)ρ(Y1, Y2) dY.

Taking QZ1 = Y1 and Z2 = Y2, we have that dZ = dZ1dZ2 = dY1dY2 = dY
since Q is orthogonal. Therefore, using the assumptions on f and ρ, we
obtain for any (X1, X2) ∈ Rn,

(f ∗ g)(QX1, X2) =

∫

Rn

f(QX1 −QZ1, X2 − Z2)ρ(QZ1, Z2) dZ

=

∫

Rn

f(Q(X1 − Z1), X2 − Z2)ρ(QZ1, Z2) dZ

=

∫

Rn

f(X1 − Z1, X2 − Z2)ρ(Z1, Z2) dZ

= (f ∗ ρ)(X1, X2).

Theorem 4.2.6. Let g ∈ L1(Ωℓ) such that for all Q ∈ Ok, one has g(QX1, X2) =
g(X1, X2) for a.e. (X1, X2) ∈ Ωℓ. Then g has a representative g̃, satisfying

g̃(X1, X2) = h(r,X2) for all (X1, X2) ∈ Ωℓ,

where r = |X1| and h is a function defined on [0, ℓ)× ω.

Proof. To start with, we extend g oustide of Ωℓ by 0. For convenience,
we also denote this extend function by g. Note that this extension verifies
g ∈ L1(Rk × ω) and that for every (X1, X2) ∈ (Rk \ Ωℓ) × ω and Q ∈ Ok,
since QX1 ∈ (Rk \ Ωℓ), g(X1, X2) = g(QX1, X2).
We now take a sequence {ρm} of mollifiers in C∞(Rn) such that for all m,
ρm verifies that for every (X1, X2) ∈ Rk × ω and Q ∈ Ok, ρm(QX1, X2) =
ρm(X1, X2). Then, the convolution product also verifies this property and
therefore, by using Theorem 4.2.5, gm is radial along X1 for every m. Con-
sequently, there exists a function hm : [0,+∞) × ω such that gm(X1, X2) =
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hm(|X1|, X2).
We also know that gm converges to g in L1(Rk × ω). Therefore, gm is a
Cauchy sequence in L2(Rk × ω). We have that

‖gm − g‖L2(Rk×ω) =

∫

ω

∫ +∞

0

∫

∂Br

(gm − g)2 dσX1 dr dX2 → 0,

and then, up to a subsequence,

‖gm(·, X2)− g(·, X2)‖L2(∂Br) → 0 in L2((0,+∞)× ω).

Therefore, for a.e r ∈ (0,+∞) and a.e. X2 ∈ ω,
∫

∂Br

(gm − g)2 dσX1 → 0,

and it follows that

‖gm(·, X2)− g(·, X2)‖L2(∂Br) → 0 for a.e. (r,X2) ∈ (0,+∞)× ω).

It follows that there exists a set Γ ⊂ (0,+∞)× ω of zero measure such that
{gm(·, X2)} is a Cauchy sequence in L1(∂Br) for all (r,X2) ∈

(

(0,+∞) ×
ω
)

\ Γ. This implies that, for any fixed (r,X2) ∈
(

(0,+∞)× ω
)

\ Γ and for
any ǫ > 0, there exists n0 ∈ N∗ such that for all m1 and m2 greater than n0,
‖g(·, X2)m1 − g(·, X2)m2‖L2(∂Br) ≤ ǫσkr

k−1. Therefore, since

‖gm1 − gm2‖L1(∂Br) = σkr
k−1|h(·, X2)m1 − h(·, X2)m2 |,

it follows that {hm(r,X2)} is a Cauchy sequence for all (r,X2) ∈
(

(0,+∞)×
ω
)

\ Γ. Then, for all (r,X2) ∈
(

(0,+∞) × ω
)

\ Γ, we have that there exists

h̃(r,X2) defined by
h̃(r,X2) = lim

m→+∞
hm(r,X2).

Let h(r,X2) be defined as

h(r,X2) =

{

h̃(r,X2) if (r,X2) ∈
(

(0,+∞)× ω
)

\ Γ
0 if (r,X2) ∈ Γ.

Finally, we set g̃(X1, X2) = h(|X1|, X2), and we want to prove that gm → g̃
a.e. in Rk × ω. We have that

gm(X1, X2) = hm(|X1|, X2) → h(|X1|, X2) = h(r,X2)
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for all (X1, X2) such that (|X1|, X2) ∈
(

(0,+∞)× ω
)

\ Γ. Since the set Γ is
of zero measure in (0,+∞)× ω, the set

Λ{(X1, X2) ∈ Rk × ω; (|X1|, X2) ∈ Γ}

is of zero measure in Rk × ω. Indeed, we have that gm → g̃ a.e. in Rk × ω,
and therefore

g = g̃ a.e. in Rk × ω,

since , up to a subsequence, we also have

gm → g in Rk × ω

gm → g a.e.

Definition 4.2.1. A function g is satisfying the hypotheses of Theorem 4.2.6
is said to have radial symmetry along X1.

Convention. In order to simplify the notation, we will use the following
convention for functions radial along X1: we will write

g(X1, X2) = g(r,X2), where r = |X1|,

instead of (4.2.2). Moreover, the notation r will be used to denote both a
simple variable (for instance when considering the partial derivative ∂

∂r
) and

the function of X1 defined by

r(X1) = |X1|

as in (4.2.2). The different meanings of this notation will be clear from the
context.

In a similar manner as for Theorem 4.2.6, we can prove the following
result:

Theorem 4.2.7. If g ∈ L1(Ωℓ,R
k) is such that for all Q ∈ Ok, one has

g(QX1, X2) = Qg(X1, X2) for a.e. (X1, X2), then g has a representative, for
convenience also denoted by g, satisfying

g(X1, X2) = R(r,X2)X1 for all (X1, X2) ∈ Ωℓ,

where r = |X1| and R : [0, ℓ)× ω.
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The following result states that it is possible to approach a X1- radial
symmetric function in W 1,p(Dℓ) (where Dℓ = Aℓ × ω = (Bℓ+1 \ Bℓ)× ω) by
regular X1-radial symmetric functions.

Theorem 4.2.8. Let g ∈ W 1,p(Dℓ) (1 ≤ p < +∞) be a function with radial
symmetry along X1 such that g = 0 on Aℓ×∂ω. Then, there exists a sequence
{gm} of C1(Dℓ) functions radial along X1 such that

gm −→
W 1,p(Dℓ)

g.

Proof. The idea of the proof is to extend g on a domain larger than Dℓ,
in order to approximate g by a sequence (gm) of C1-functions, using the
convolution with a regularizing sequence. To simplify the presentation, we
consider for g a representative also denoted by g, satisfying

g(X1, X2) = h(r,X2)

for all (X1, X2) ∈ Dℓ (see Theorem 4.2.6).

To start with, we extend g to a W 1,p-function on Aℓ×Rn−k (also denoted
by g) by defining g(X1, X2) = 0 for all (X1, X2) ∈ Aℓ × (Rn−k \ ω). This
function belongs to W 1,p(Aℓ × Rn−k), since g = 0 on Aℓ × ∂ω. Then, we
extend this function by g̃ in the following way:

g̃(X1, X2) =



















g(X1, X2) if ℓ < |X1| < ℓ+ 1

g
(

(2(ℓ+1)
|X1| − 1)X1, X2

)

if ℓ+ 1 < |X1| < ℓ+ 2

g
(

( 2ℓ
|X1| − 1)X1, X2

)

if ℓ− ε < |X1| < ℓ,

(4.2.3)

with ε = min(1, ℓ
2
). Note that for X1 ∈ (Bℓ+2 \ Bℓ), the point Y1 =

(

2(ℓ+1)
|X1| − 1

)

X1 is the “radial” symmetric of X1 with respect to ∂Bℓ+1, i.e.

the symmetric of X1 with respect to the point at the intersection between

∂Bℓ+1 and the ray [OX1). In the same manner, Z1 =
(

2(ℓ)
|X1| − 1

)

X1 is the

“radial” symmetric of X1 with respect to ∂Bℓ. We set

Cℓ = (Bℓ+2 \Bℓ−ε)× ω̃,

where ω̃ ⊂ Rn−k is a fixed bounded Lipschitz domain such that ω ⊂⊂ ω̃. It
is clear from the radiality of g on Dℓ that g̃ is radial with respect to X1 on Cℓ.
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We have that

(X1, X2) ∈ (Bℓ+2 \Bℓ+1)× ω̃ 7→
(

(

2(ℓ+1)
|X1| − 1

)

X1, X2

)

∈ Aℓ × ω̃

and

(X1, X2) ∈ (Bℓ\Bℓ−ε)× ω̃ 7→ (
(

2ℓ
|X1| − 1

)

X1, X2) ∈ (Bℓ+ε\Bℓ)× ω̃ ⊂ Aℓ× ω̃.

are C1-diffeomorphisms satisfying the hypotheses the diffeomorphism H in
Theorem 4.2.2 (note that their inverses are given by exactly the same formu-
las). Therefore, g̃ ∈ W 1,p

(

(Bℓ+2 \Bℓ+1)× ω̃
)

and g̃ ∈ W 1,p
(

(Bℓ \Bℓ−ε)× ω̃
)

.

Consequently, g̃ ∈ W 1,p
(

Cℓ \ Aℓ × ω̃
)

since Cℓ \ Aℓ × ω̃ =
(

(Bℓ+2 \ Bℓ+1) ×
ω̃
)

∪
(

(Bℓ \Bℓ−ε)× ω̃
)

.

Since g̃ ∈ W 1,p(Aℓ×ω̃), there exists a sequence {ḡm} of functions C1(Aℓ × ω̃)
such that ḡm → g̃ in W 1,p(Aℓ × ω̃). Therefore,

ḡm|(∂Bℓ+1)×ω̃
−→

Lp((∂Bℓ+1)×ω̃)
Tr(∂Bℓ+1)×ω̃ g̃.

Next, we extend ḡm on (Bℓ+2 \ Bℓ+1) × ω̃ in the same manner as in (4.2.3).

Then the extensions g̃m belong to C1
(

(Bℓ+2 \Bℓ+1)× ω̃
)

and satisfy

g̃m → g̃ in W 1,p
(

(Bℓ+2 \Bℓ+1)× ω̃
)

using the formula of Theorem 4.2.2 and the fact that g̃m → g̃ inW 1,p(Aℓ× ω̃.
Consequently,

g̃m|(∂Bℓ+1)×ω̃
−→

Lp((Bℓ+2\Bℓ+1)×ω̃)
Tr(∂Bℓ+1)×ω̃ g̃.

Since ḡm|(∂Bℓ+1)×ω̃
= g̃m|(∂Bℓ+1)×ω̃

, it follows that g̃ ∈ W 1,p
(

(Bℓ+2 \ Bℓ) × ω̃
)

.

Following the same arguments on (∂Bℓ)× ω̃, we have that g̃ ∈ W 1,p
(

(Bℓ+1 \
Bℓ−ε)× ω̃

)

. Thus, g̃ ∈ W 1,p(Cℓ).

Since Dℓ ⊂⊂ Cℓ we therefore can take a sequence of mollifiers {ρm},
radial along X1, verifying that

gm = g̃ ∗ ρm −→
W 1,p(Dℓ)

g.

Note that, thanks to Theorem 4.2.5, gm is radial along X1, since both g̃ and
ρm are radial along X1.
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The following result will be very useful in the proof of the main result of
this chapter (see section 4.4). It states that if f has some radial symmetry
properties with respect to X1, then the weak solution of the Stokes problem
(4.1.1) has some similar properties.

Theorem 4.2.9. Let (u, p) ∈ Ĥ1
0(Ωℓ) × L̂2(Ωℓ) be a weak solution to the

Stokes problem in Ωℓ = Bℓ × ω, i.e satisfying the variational equation in
(4.1.2) with uℓ and pℓ replaced by u and p. If f verifies

f = (f ′, f ′′) =

{

f ′(QX1, X2) = Qf ′(X1, X2)

f ′′(QX1, X2) = f ′′(X1, X2)

for all Q ∈ Ok and for a.e. (X1, X2) ∈ Ωℓ, then (u, p) satisfies











u′(QX1, X2) = Qu′(X1, X2)

u′′(QX1, X2) = u′′(X1, X2)

p(QX1, X2) = p(X1, X2)

for all Q ∈ Ok and for a.e. (X1, X2) ∈ Ωℓ.

Proof. Let (u, p) be a weak solution of the Stokes problem (4.1.1), which is
to say u ∈ H1

0(Ωℓ), and







µ

∫

Ωℓ

∇u · ∇v dx−
∫

Ωℓ

pdiv v dx =

∫

Ωℓ

fv dx for all v ∈ H1
0(Ωℓ)

div u = 0 in Ωℓ.

Let Q ∈ Ok. We take (ũ, p̃) with ũ = (ũ′, ũ′′) and











ũ′(X1, X2) = QTu′(QX1, X2)

ũ′′(X1, X2) = u′′(QX1, X2)

p̃(X1, X2) = p(QX1, X2),

(4.2.4)

that we can rewrite







(

ũ′

ũ′′

)

(X1, X2) =

(

QT 0
0 In−k

)(

u′

u′′

)

(QX1, X2)

p̃(X1, X2) = p(QX1, X2).
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We will prove that (ũ, p̃) is also a weak solution to the Stokes problem. The
formulas (4.2.4) will then follow from the uniqueness of the solution to the
Stokes problem. Using the formula ∇(g ◦ φ) = (∇g ◦ φ)∇φ, we derive

∇
(

ũ′

ũ′′

)

(X1, X2) =

(

QT 0
0 In−k

)(

∇u′
∇u′′

)

(QX1, X2)

(

Q 0
0 In−k

)

by taking φ(X1, X2) = (QX1, X2) =

(

Q 0
0 In−k

)(

X1

X2

)

and∇φ =

(

Q 0
0 In−k

)

,

which is to say

∇
(

ũ′

ũ′′

)

(X1, X2) =

(

QT 0
0 In−k

)(

∇X1u
′(QX1, X2)Q ∇X2u

′(QX1, X2)
∇X1u

′′(QX1, X2) ∇X2u
′′(QX1, X2)

)

and finally

∇
(

ũ′

ũ′′

)

(X1, X2) =

(

QT∇X1u
′(QX1, X2)Q QT∇X2u

′(QX1, X2)
∇X1u

′′(QX1, X2) ∇X2u
′′(QX1, X2)

)

.

We therefore have that

div ũ′(X1, X2) = Tr(∇ũ)(X1, X2)

= Tr(QT∇X1u
′(QX1, X2)Q) + Tr(∇X2u

′′(QX1, X2))

= Tr(∇X1u
′(QX1, X2)) + Tr(∇X2u

′′(QX1, X2))

= Tr(∇u(QX1, X2))

= (div u)(QX1, X2) = 0.

Let now v ∈ H1
0(Ωℓ). We have that µ

∫

Ωℓ
∇ũ · ∇v dx −

∫

Ωℓ
p̃ div v dx can be

written

µ

∫

Ωℓ

(

QT∇X1u
′(QX1, X2)Q QT∇X2u

′(QX1, X2)
∇X1u

′′(QX1, X2) ∇X2u
′′(QX1, X2)

)

·
(

∇X1v
′ ∇X2v

′

∇X1v
′′ ∇X2v

′′

)

(QX1, X2) dx

−
∫

Ωℓ

p(QX1, X2) div v(X1, X2).

Using then the change of variable x̃ = (X̃1, X̃2) = (QX1, X2), which gives
(X1, X2) = (QTX1, X2) and dx = dx̃, it then have that the previous expres-
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sion equals

µ

∫

Ωℓ

(

QT∇X1u
′(X̃1, X̃2)Q · (∇X1v

′)(QTX1, X2)

+QT∇X2u
′(X̃1, X̃2) · (∇X2v

′)(QT X̃1, X̃2)

+∇X1u
′′(X̃1, X̃2)Q · (∇X1v

′′)(QT X̃1, X̃2)

+∇X2u
′′(X̃1, X̃2) · ∇X2v

′′(QT X̃1, X̃2)
)

dx̃

−
∫

Ωℓ

p(X̃1, X̃2) (div v)(Q
T X̃1, X̃2) dx̃

Let us now compute each term separately after recalling that A · B =
Tr(ABT ) = Tr(ATB):
- First of all,

QT∇X1u
′(X̃1, X̃2)Q · (∇X1v

′)(QTX1, X2)

= Tr(QT∇X1u
′(X̃1, X̃2)Q · (∇X1v

′)T (QTX1, X2))

= Tr(∇X1u
′(X̃1, X̃2)Q · (∇X1v

′)T (QTX1, X2)Q
T )

= Tr(∇X1u
′(X1, X2)(Q(∇X1v

′)(QTX1, X2))
T )

= ∇X1u
′(X̃1, X̃2) ·Q(∇X1v

′)(QT X̃1, X̃2)Q
T

-Then,

QT∇X2u
′(X̃1, X̃2) · ∇X2v

′(QT X̃1, X̃2)

= Tr(QT∇X2u
′(X̃1, X̃2)(∇X2v

′)T (QT X̃1, X̃2))

= Tr(∇X2u
′(X̃1, X̃2)(∇X2v

′)T (QT X̃1, X̃2)Q
T )

= Tr(∇X2u
′(X̃1, X̃2)(Q(∇X2v

′)(QT X̃1, X̃2))
T )

= ∇X2u
′(X̃1, X̃2) ·Q(∇X2v

′)(QT X̃1, X̃2).

-Finally,

∇X1u
′′(X̃1, X̃2)Q · (∇X1v

′′)(QT X̃1, X̃2)

= Tr(∇X1u
′′(X̃1, X̃2)Q(∇X1v

′′)T (QT X̃1, X̃2))

= Tr(∇X1u
′′(X̃1, X̃2)((∇X1v

′′)(QT X̃1, X̃2))
T )

= ∇X1u
′′(X̃1, X̃2) · ∇X1v

′′(QT X̃1, X̃2)Q
T .
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Therefore, we have that µ
∫

Ωℓ
∇ũ · ∇v dx̃−

∫

Ωℓ
p̃ div v dx̃ is

µ

∫

Ωℓ

(

∇X1u
′ ∇X2u

′

∇X1u
′′ ∇X2u

′′

)

(X̃1, X̃2)·
(

Q∇X1v
′(QT X̃1, X̃2) Q∇X2v

′(QT X̃1, X̃2)

∇X1v
′′(QT X̃1, X̃2)Q

T ∇X2v
′′(QT X̃1, X̃2)

)

dx̃

−
∫

Ωℓ

p(X̃1, X̃2)(div v)(Q
T X̃1, X̃2) dx̃.

By setting ṽ(X̃1, X̃2) = (ṽ′(X̃1, X̃2), ṽ
′′(X̃1, X̃2) = (Qv′(QT X̃1, X̃2), v

′′(QT X̃1, X̃2)),
and since (div ṽ)(X̃1, X̃2) = (div v)(QT X̃1, X̃2) we have

µ

∫

Ωℓ

∇ũ · ∇v dx̃−
∫

Ωℓ

p̃ div v dx̃ = µ

∫

Ωℓ

(

∇X1u
′ ∇X2u

′

∇X1u
′′ ∇X2u

′′

)

(X̃1, X̃2) · ∇ṽ(X̃1, X̃2) dx̃

−
∫

Ωℓ

p div ṽ dx̃

= µ

∫

Ωℓ

∇u · ∇ṽ dx̃−
∫

Ωℓ

p div ṽ dx̃

=

∫

Ωℓ

fṽ dx̃

=

∫

Ωℓ

(f ′ · ṽ′ + f ′′ · ṽ′′) dx̃

=

∫

Ωℓ

f ′(X̃1, X̃2) ·Qv′(QT X̃1, X̃2)

+ f ′′(X̃1, X̃2) · v′′(QT X̃1, X̃2) dx̃

=

∫

Ωℓ

f ′(QX1, X2) ·Qv′(X1, X2)

+ f ′′(QX1, X2) · v′′(X1, X2) dx

=

∫

Ωℓ

fv dx,

where the last inequality comes from the fact that

f ′(QX1, X2) ·Qv′(X1, X2) = (Qv′(X1, X2))
Tf ′(QX1, X2)

= (v′(X1, X2))
TQTf ′(QX1, X2)

= QTf ′(QX1, X2) · v′(X1, X2)

= f ′(X1, X2) · v′(X1, X2).
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From the uniqueness of the weak solution of the Stokes problem follows that
ũ = u a.e in Ωℓ and since the pressure is unique up to an additive constant,
there exists a constant cQ ∈ R such that p̃ = p+ cQ a.e. in Ωℓ. Then we have
that
∫

Ωℓ

(p(X1, X2)+cQ) dx =

∫

Ωℓ

p̃(X1, X2) dx =

∫

Ωℓ

p(QX1, X2) dx =

∫

Ωℓ

p(X1, X2) dx,

and therefore the constant cQ equals 0, which is to say p̃ = p a.e. in Ωℓ.

Let now g ∈ W 1,p(Dℓ) satisfying g = 0 on Aℓ × ∂ω and
∫

Dℓ
g(x) dx = 0.

In order to construct a function u ∈ W 1,p
0 (Dℓ) satisfying:

{

div u = g in Dℓ

‖∇u‖Lp(Dℓ) ≤ C‖g‖W 1,p(Dℓ),

we use a construction inspired by the one in [9]. More precisely, we look for
solutions of the type

u(X1, X2) =
(

h(r,X2)X1, φ(r)v(X2)
)

,

where r = |X1| and φ : Aℓ → R is a radial function to be determined later.
For the sake of simplicity, we use the same notation for the radial function
defined on Aℓ and for the function defined on (ℓ, ℓ+1) describing the radiality,

i.e. we write φ(r) = φ(X1) if r = |X1|. Finally, v ∈
(

W 1,p
0 (ω)

)n−k
is a solution

to the problem
{

div X2v = ḡ in ω

‖∇X2v‖Lp(ω) ≤ C‖ḡ‖Lp(ω).

where C = C(p, ω) and ḡ ∈ Lp(ω) is defined by

ḡ(X2) =

∫

Aℓ

g(X1, X2) dX1.

Note that such a function v exists since
∫

ω

ḡ dX2 =

∫

ω

∫

Aℓ

g(X1, X2) dX1dX2 =

∫

Dℓ

g dx = 0.

The computations that follow are in a first time made formally (as if all the
functions were regular), their justifications under our regularity hypotheses
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being done later. In order to simplify the notation, we set ∂rh(·, X2) =
∂h
∂r
(·, X2). Then,

(div u)(X1, X2) = div X1(h(r,X2)X1) + div X2(φ(r)v(X2))

=
k
∑

i=1

(

∂rh(r,X2)
∂r

∂xi
xi + h(r,X2)

)

+ φ(r)(div X2v)(X2)

= ∂rh(r,X2)

∑k
i=1 x

2
i

r
+

k
∑

i=1

h(r,X2) + φ(r)(div X2v)(X2)

= ∂rh(r,X2)r + kh(r,X2) + φ(r)ḡ(X2)

= g(r,X2).

It follows that

∂rh(r,X2)r + kh(r,X2) = g(r,X2)− φ(r)ḡ(X2).

Multiplying by rk−1, we therefore have

∂rh(r,X2)r
k + krk−1h(r,X2) = rk−1g(r,X2)− rk−1φ(r)ḡ(X2).

This previous inequality then rewrites

∂r
(

h(r,X2)r
k
)

= rk−1(g(r,X2)− rk−1φ(r)ḡ(X2)) in (ℓ, ℓ+ 1).

For X2 fixed, a solution to this differential equation is then given by the
formula

h(r,X2) =
1

rk

[∫ r

ℓ

sk−1g(s,X2) ds− ḡ(X2)

∫ r

ℓ

sk−1φ(s) ds

]

=
1

rkσk

[∫ r

ℓ

∫

∂Bs

g(X1, X2) dσX1ds− ḡ(X2)

∫ r

ℓ

∫

∂Bs

φ(s) dσX1ds

]

=
1

rkσk

[
∫

Aℓ,r

g(X1, X2) dX1 − ḡ(X2)

∫

Aℓ,r

φ(X1) dX1

]

.

(4.2.5)
where we denote by Aℓ,r the set Br \Bℓ. Note that h = 0 on Aℓ × ∂ω comes
from the fact that g = 0 on Aℓ × ∂ω, which implies ḡ = 0 on ∂ω.

Since we want our solution u to be in
(

H1
0 (Dℓ)

)

, we need u′ to verify
u(X1, X2) = 0 on ∂Dℓ, which is to say

{

h(ℓ,X2) = h(ℓ+ 1, X2) = 0

h(r,X2) = 0 ∀X2 ∈ ∂ω.
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Computing h(ℓ+ 1, X2) gives

h(ℓ+ 1, X2) =
1

(ℓ+ 1)kσk

[∫

Aℓ

g(X1, X2) dX1 − ḡ(X2)

∫

Aℓ

φ(X1) dX1.

]

=
1

(ℓ+ 1)kσk
ḡ(X2)

(

1−
∫

Aℓ

φ(X1) dX1

)

.

Combined with the fact that u′′ ∈ (H1(Dℓ))
n−k must satisfy u′′ = 0 on ∂Dℓ,

we derive the following conditions for φ:


















φ ∈ W 1,∞(Aℓ)

φ(ℓ) = φ(ℓ+ 1) = 0
∫

Aℓ

φ(X1) dX1 = 1.

(4.2.6)

We therefore set

φ(r) =
Φ(r)

σkrk−1
(4.2.7)

with Φ : [ℓ, ℓ+ 1] → R a Lipschitz-continuous function satisfying











Φ(ℓ) = Φ(ℓ+ 1) = 0
∫ ℓ+1

ℓ

Φ(s) ds = 1.
(4.2.8)

In order to fix the ideas, let us take

Φ(r) =











4(r − ℓ) if ℓ ≤ r ≤ ℓ+
1

2

4(ℓ+ 1− r) if ℓ+
1

2
≤ r ≤ ℓ+ 1.

(4.2.9)

Note that 0 ≤ Φ(r) ≤ 2 for all r ∈ [ℓ, ℓ+ 1]. Consequently, φ ≥ 0 and

‖φ‖L∞(Aℓ) ≤
2

σkℓk−1
.

Theorem 4.2.10. Let g ∈ C1(Dℓ) be a radial function, and φ ∈ W 1,∞(Aℓ)
be the radial function defined in (4.2.7). Then the function

(X1, X2) 7→ u′(X1, X2) = h(|X1|, X2)X1,
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with h defined by (4.2.5), belongs to (C1(Dℓ))
k and satisfies











(div X1u
′)(x) = g(X1, X2)− φ(r)ḡ(X2) in Dℓ

u′ = 0 on (∂Aℓ)× ω

‖∇u′‖Lp(Dℓ) ≤ C(‖g‖Lp(Dℓ) + ‖∇X2g‖Lp(Dℓ)),

(4.2.10)

for all p ∈ [1,+∞], where the constant C depends only on k and n (for
ℓ ≥ 1). Moreover, the mapping associating u′ to g is linear.

Proof. We start by proving that u′ ∈ (C1(Dℓ))
k. From the definition of the

space C1(Dℓ), it follows that g is the restriction to Dℓ of a function of class
C1 on an open set (Bℓ+1+ε \ Bℓ−ε) × ω̃ containing Dℓ. For convenience, we
also denote this function by g. We extend φ by 0 outside of Aℓ, and we define
h : (ℓ− ε, ℓ+ 1 + ε)× ω̃ → R by

h(r,X2) =
1

rkσk

[∫ r

ℓ

∫

∂Bs

g(X1, X2) dσX1ds− ḡ(X2)

∫ r

ℓ

∫

∂Bs

φ(X1) dσX1ds

]

=
1

rkσk
H(r,X2).

(4.2.11)
for all r ∈ (ℓ− ε, ℓ+ 1 + ε) and all X2 ∈ ω̃, where

ḡ(X2) =

∫

Aℓ

g(X1, X2) dX1.

Since g is of class C1 on (Bℓ+1+ε \Bℓ−ε)× ω̃, we have

(∇X2 ḡ)(X2) =

∫

Aℓ

(∇X2g)(X1, X2) dX1.

for all X2 ∈ ω̃.

Note that the mapping associating the function h to the function g is
linear. Consequently, the application giving u′ is linear with respect to g.
Another remark is that ḡ is of class C1 on ω̃, since g is C1 on (Bℓ+1+ε \
Bℓ−ε)× ω̃.
Since X1 7→ |X1| is of class C∞ on Rk \ {0} and r 7→ 1

rkσk
is of class C∞ on

(0,+∞), it suffices to prove that H is of class C1 on (ℓ − ε, ℓ + 1 + ε) × ω̃.

108



4.2. PRELIMINARIES

Therefore, we will prove that ∂rH and ∇X2H exist and are continuous on
(ℓ− ε, ℓ+ 1 + ε)× ω̃. For X2 fixed, we have that

s 7→
∫

∂Bs

g(X1, X2) dσX1 and s 7→
∫

∂Bs

φ(X1) dσX1

are continuous on (ℓ − ε, ℓ + 1 + ε) thanks to the continuity of g and φ.
Therefore, the partial derivative with respect to r exists and

∂rH(r,X2) =

∫

∂Br

g(X1, X2) dσX1 − ḡ(X2)

∫

∂Br

φ(X1) dσX1 . (4.2.12)

Since ḡ depends only on X2 and is continuous on ω̃ and r 7→
∫

∂Br
φ(X1) dσX1

depends only on r and is continuous on (ℓ − ε, ℓ + 1 + ε), the product
ḡ(X2)

∫

∂Br
φ(X1) dσX1 is continuous on (ℓ − ε, ℓ + 1 + ε) × ω̃. All is left

to do is to prove that the function (r,X2) 7→
∫

∂Br
g(X1, X2) dσX1 is continu-

ous. To do so, let us take (r,X2) ∈ (ℓ− ε, ℓ+ 1 + ε)× ω̃ and (r′, X ′
2) ∈

([r− δ, r+ δ]×B(X2, γ)) ⊂ ((ℓ− ε, ℓ+1+ ε)× ω̃). We then use the equality
∫

∂Br

g(X1, X2) dσX1 = rk−1

∫

∂B1

g(rY1, X2) dσY1 .

We derive that
∫

∂Br′

g(X1, X
′
2) dσX1−

∫

∂Br

g(X1, X2) dσX1

= r′k−1

∫

∂B1

g(r′Y1, X
′
2) dσY1 − rk−1

∫

∂B1

g(rY1, X2) dσY1

= r′k−1

(∫

∂B1

g(r′Y1, X
′
2)− g(rY1, X2) dσY1

)

+ (r′k−1 − rk−1)

∫

∂B1

g(rY1, X2) dσY1 .

Since

|(r′Y1, X ′
2)− (rY1, X2)| = |((r − r′)Y1, X

′
2 −X2)|

=
√

(r − r′)2||Y1|2 + |X ′
2 −X2|2

=
√

(r − r′)2 + |X ′
2 −X2|2

= |(r′, X ′
2)− (r,X2)|

109



4.2. PRELIMINARIES

and (r′)k−1 is bounded as r′ → r, using the uniform continuity of g on the
compact (Br+δ \Br−δ)× B(X2, γ), we derive

r′k−1

(∫

∂B1

g(r′Y1, X
′
2)− g(rY1, X2 dσY1)

)

→ 0 as (r′, X ′
2) → (r,X2).

Since (r′k−1 − rk−1) → 0 as r′ → r, we have that (recall that r and X2 are
fixed here)

(r′k−1 − rk−1)

∫

∂B1

g(rY1, X2) dσY1 → 0 as (r′, X ′
2) → (r,X2),

and so finally
∫

∂Br′

g(X1, X
′
2) dσX1 −

∫

∂Br

g(X1, X
′
2) dσX1 → 0 as (r′, X ′

2) → (r,X2),

which implies that ∂rH(r,X2) is continuous.
Let us now prove the existence and the continuity of ∇X2H. Since for any s
fixed, the function

X2 ∈ ω̃ 7→
∫

∂Bs

g(X1, X2) dσX1

is in C1(ω̃) and its gradient on X2 is given by
∫

∂Bs

∇X2g(X1, X2) dσX1 ,

we deduce that for all r ∈ (ℓ− ε, ℓ+1+ ε) and all X2 ∈ ω̃, ∇X2H exists and
is defined by

∇X2H(r,X2) =

∫ r

ℓ

∫

∂Bs

∇X2g(X1, X2) dσX1 ds−∇X2 ḡ(X2)

∫ r

ℓ

∫

∂Bs

φ(X1) dσX1 ds.

To start with, the expression

∇X2 ḡ(X2)

∫ r

ℓ

∫

∂Bs

φ(X1) dσX1 ds

is continuous as the product of ∇X2 ḡ(X2), which is continuous since ḡ is of
class C1, with the function r 7→

∫ r

ℓ

∫

∂Bs
φ(X1) dσX1 ds which is continuous

thanks to the local integrability of

s 7→
∫

∂Bs

φ(X1) dσX1 on (ℓ− ε, ℓ+ 1 + ε).
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Therefore, the only part that remains to study is
∫ r

ℓ

∫

∂Bs

∇X2g(X1, X2) dσX1 ds.

Let ψ(s,X2) =
∫

∂Bs
∇X2g(X1, X2) dσX1 . Using the same kind of computa-

tions as previously, one can prove that ψ is continuous on (ℓ−ε, ℓ+1+ε)×ω̃.
Then, we have that
∫ r′

ℓ

ψ(s,X ′
2) ds−

∫ r

ℓ

ψ(s,X2) ds =

∫ r

ℓ

(ψ(s,X ′
2)−ψ(s,X2)) ds+

∫ r

r′
ψ(s,X2) ds,

which goes to 0 as (r′, X ′
2) → (r,X2) by using the uniform continuity of ψ

on [ℓ, r]×B(X2, γ) for the first term and its boundedness on [r − δ, r + δ]×
B(X2, γ) for the second term. Therefore, the function

(r,X2) 7→
∫ r

ℓ

ψ(s,X2) ds,

is continuous and we deduce that ∇X2H(r,X2) is continuous.
We have, from the construction, that

(∇u′)(X1, X2) =
(

∇X1u
′ ∇X2u

′) (X1, X2)

=
(

X1XT
1

r
∂rh(r,X2) + h(r,X2)Ik X1∇X2h(r,X2)

)

.

Therefore, for any x = (X1, X2) ∈ Dℓ = Aℓ × ω, we have

(div X1u
′)(x) = Tr(

X1X
T
1

r
∂rh(r,X2) + h(r,X2)Ik)

=
k
∑

i=1

(

x2
i

r
∂rh(r,X2) + h(r,X2)

)

= r∂rh(r,X2) + kh(r,X2)

=
1

rk−1
(rk∂rh(r,X2) + krk−1h(r,X2))

=
1

rk−1
∂r(r

kh(r,X2))

=
1

rk−1
∂r

(

H(r,X2)
σk

)

=
1

σkrk−1

(∫

∂Br

g(X1, X2) dX1 − ḡ(X2)

∫

∂Br

φ(X1)dσX1

)

= g(X1, X2)− ḡ(X2)φ(r)
(4.2.13)
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thanks to (4.2.12) and to the radiality of g and φ on Dℓ. Then, all that
remains to do is to prove the estimate

‖∇u′‖Lp(Dℓ) ≤ C(‖g‖Lp(Dℓ) + ‖∇X2g‖Lp(Dℓ)).

• We start by estimating ‖∇X1u
′‖Lp(Dℓ).

We have that, for any x = (X1, X2) ∈ Dℓ,

|(∇X1u
′)(x)| =

∣

∣

∣

X1XT
1

r
∂rh(r,X2) + h(r,X2)Ik

∣

∣

∣

≤
∣

∣r∂rh(r,X2)
∣

∣

∣

∣

∣

X1XT
1

r2

∣

∣

∣
+
√
k|h(r,X2)||Ik|

≤
∣

∣r∂rh(r,X2)
∣

∣+
√
k
∣

∣h(r,X2)
∣

∣

since
∣

∣

∣

X1XT
1

r2

∣

∣

∣
= 1 and |Ik| =

√
k. Using the equality (see (4.2.13))

r∂rh(r,X2) + kh(r,X2) = g(r,X2)− φ(r)ḡ(X2),

we therefore can derive that

|(∇X1u
′)(x)| ≤

∣

∣g(r,X2)
∣

∣+
∣

∣φ(r)ḡ(X2)
∣

∣+ (
√
k + k)

∣

∣h(r,X2)
∣

∣ .

It follows that
∥

∥|∇X1u|
∥

∥

Lp(Dℓ)
≤ ‖g‖Lp(Dℓ) + ‖φ‖L∞(Dℓ)‖ḡ‖Lp(Dℓ) + (

√
k + k)‖h‖Lp(Dℓ).

Futhermore, we have that

‖ḡ‖pLp(Dℓ)
=

∫

Dℓ

∣

∣

∣

∣

∫

Aℓ

g(X1, X2) dX1

∣

∣

∣

∣

p

dX̃1 dX2

≤
∫

Dℓ

[

(∫

Aℓ

dX1

) 1
p′
(∫

Aℓ

|g(X1, X2)|p dX1

) 1
p

]p

dX̃1 dX2

=

∫

Dℓ

|Aℓ|
p
p′

(∫

Aℓ

|g(X1, X2)|p dX1

)

dX̃1 dX2

= |Aℓ|
p
p′

∫

Aℓ

∫

ω

∫

Aℓ

|g(X1, X2)|p dX1 dX2 dX̃1

= |Aℓ|
p
p′

∫

Aℓ

‖g‖pLp(Dℓ)
dX̃1

≤ |Aℓ|
p
p′
+1‖g‖pLp(Dℓ)

= |Aℓ|p‖g‖pLp(Dℓ)
,
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and therefore

∥

∥|∇X1u
′|
∥

∥

Lp(Dℓ)
≤ ‖g‖Lp(Dℓ) + ‖φ‖L∞(Dℓ)|Aℓ|‖g‖Lp(Dℓ) + (

√
k + k)‖h‖Lp(Dℓ)

≤ ‖g‖Lp(Dℓ) + |Aℓ|
2

ℓk−1σk
‖g‖Lp(Dℓ) + (k +

√
k)‖h‖Lp(Dℓ).

On the one hand, we have that

|Aℓ| =
∫ ℓ+1

ℓ

(∫

∂Br

1 dσ

)

dr

≤ σk

∫ ℓ+1

ℓ

rk−1dr

≤ σk

∫ ℓ+1

ℓ

(ℓ+ 1)k−1dr

≤ σk

∫ ℓ+1

ℓ

(2ℓ)k−1dr = 2k−1σkℓ
k−1.

(4.2.14)

Using this inequalities gives

∥

∥|∇X1u
′|
∥

∥

Lp(Dℓ)
≤ ‖g‖Lp(Dℓ) + 2k‖g‖Lp(Dℓ) + (k +

√
k)‖h(r,X2)‖Lp(Dℓ).

We now have to estimate ‖h‖Lp(Dℓ). Using the expression of h form
(4.2.11), we have that

‖h‖Lp(Dℓ) ≤ ‖ 1

σkrk
‖L∞(Dℓ)‖H‖Lp(Dℓ)

≤ 1

σkℓk
‖H‖Lp(Dℓ).

For all r ∈ (ℓ, ℓ+ 1) and for all X2 ∈ ω, we furthermore have

|H(r,X2)| =
∣

∣

∣

∣

∫

Aℓ,r

g(X1, X2) dX1 − ḡ(X2)

∫

Aℓ,r

φ(X1) dX1

∣

∣

∣

∣

≤
∫

Aℓ

|g(X1, X2)| dX1 + |ḡ(X2)|
∫

Aℓ

φ(X1) dX1

≤ 2

∫

Aℓ

|g(X1, X2)| dX1

≤ 2|Aℓ|
1
p′ ‖g(·, X2)‖Lp(Aℓ),
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using that Aℓ,r ⊂ Aℓ and that 0 ≤
∫

Aℓ,r
φ(X1) dX1 ≤

∫

Aℓ
φ(X1) dX1 = 1

(since φ is positive). It follows that

‖h‖Lp(Dℓ) ≤
2

σkℓk

∥

∥

∥

∥

|Aℓ|
1
p′ ‖g(·, X2)‖Lp(Aℓ)

∥

∥

∥

∥

Lp(Dℓ)

≤ 2

σkℓk

(∫

Dℓ

|Aℓ|
p
p′

∫

Aℓ

|g(X1, X2)|p dX1 dx

) 1
p

≤ 2

σkℓk

(

|Aℓ|
p
p′

∫

Aℓ

∫

ω

∫

Aℓ

|g(X1, X2)|p dX1 dX2 dX̃1

) 1
p

≤ 2

σkℓk

(

|Aℓ|
p
p′

∫

Aℓ

‖g‖pLp(Dℓ)
dX̃1

) 1
p

≤ 2

σkℓk
|Aℓ|

1
p′ |Aℓ|

1
p‖g‖Lp(Dℓ)

≤ 2

σkℓk
|Aℓ|‖g‖Lp(Dℓ) ≤

2k

ℓ
‖g‖Lp(Dℓ) ,

thanks to equality (4.2.14).

Combining all these estimates, we finally have that

∥

∥|∇X1u
′|
∥

∥

Lp(Dℓ)
≤
(

1 + 2k +
2k(k +

√
k)

ℓ

)

‖g‖Lp(Dℓ) .

• We now deal with ‖∇X2u
′‖Lp(Dℓ).

We have that, since
∣

∣

X1

r

∣

∣ = 1,
∣

∣(∇X2u
′)(X1, X2)

∣

∣ =
∣

∣X1∇X2h(r,X2)
∣

∣

= |r∇X2h(r,X2)|

=
1

σkrk−1

∣

∣

∣

∣

∫

Aℓ,r

∇X2g(X1, X2) dX1 −∇X2 ḡ(X2)

∫

Aℓ,r

φ(X1) dX1

∣

∣

∣

∣

≤ 1

σkrk−1

(
∫

Aℓ,r

|∇X2g| dX1 + |∇X2 ḡ(X2)|
∫

Aℓ

|φ(X1)| dX1

)

using again that Aℓ,r ⊂ Aℓ, that φ is positive and that
∫

Aℓ
φ dX1 = 1.

Therefore, using the equality

∇X2 ḡ(X2) =

∫

Aℓ

(∇X2g)(X1, X2) dX1,
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we derive that

∣

∣(∇X2u
′)(X1, X2)

∣

∣ ≤ 1

σkrk−1

(∫

Aℓ

|∇X2g(X1, X2)| dX1 +

∫

Aℓ

|∇X2g(X1, X2)| dX1

)

≤ 2

σkrk−1

∫

Aℓ

|∇X2g(X1, X2)| dX1

Using the Hölder inequality, it follows that

∥

∥|∇X2u
′|
∥

∥

Lp(Dℓ)
≤
∥

∥

∥

1

σkrk−1

∥

∥

∥

L∞(Dℓ)

∥

∥

∥

∫

Aℓ

|∇X2g(X1, X2)| dX1

∥

∥

∥

Lp(Dℓ)

≤ 1

σkℓk−1

(∫

Dℓ

∣

∣

∣

∣

∫

Aℓ

|∇X2g(X1, X2)| dX1

∣

∣

∣

∣

p

dx

)
1
p

≤ 1

σkℓk−1

(∫

Dℓ

|Aℓ|
p
p′

∫

Aℓ

|∇X2g(X1, X2)|p dX1 dx

) 1
p

≤ 1

σkℓk−1

(

|Aℓ|
p
p′

∫

Aℓ

∫

ω

∫

Aℓ

|∇X2g(X1, X2)|p dX1 dX2 dX̃1

) 1
p

≤ 1

σkℓk−1
|Aℓ|

1
p′

(∫

Aℓ

‖∇X2g‖pLp(Dℓ)
dX̃1

) 1
p

≤ 1

σkℓk−1
|Aℓ|

1
p′ |Aℓ|

1
p‖∇X2g‖Lp(Dℓ) =

|Aℓ|
σkℓk−1

‖∇X2g‖Lp(Dℓ)

≤ 2k−1‖∇X2g‖Lp(Dℓ),

by using equality (4.2.14).

Combining the estimates satisfied by∇X1u
′ and∇X2u

′ we get, for ℓ ≥ 1,
∥

∥|∇X1u
′|
∥

∥

Lp(Dℓ)
+
∥

∥|∇X2u
′|
∥

∥

Lp(Dℓ)

≤
(

1 + 2k +
2k(k +

√
k)

ℓ

)

‖g‖Lp(Dℓ) + 2k−1‖∇X2g‖Lp(Dℓ)

≤
(

1 + 2k(1 + k +
√
k)
)

‖g‖Lp(Dℓ) + 2k−1‖∇X2g‖Lp(Dℓ)

≤ Ck

(

‖g‖Lp(Dℓ) + ‖∇X2g‖Lp(Dℓ)

)

.

The result then follows thanks to the equivalence between the norms
‖∇(·)‖Lp(Dℓ) and

∥

∥|∇(·)|
∥

∥

Lp(Dℓ)
(see (4.1.5)).

115



4.3. SOME RESULTS ON THE DIVERGENCE PROBLEM

For the case p = +∞, while it is possible to give a direct proof, the easiest
way at this point is to let p go to infinity in (4.2.10)3, using the fact that the
constant is independent of p.

4.3 Some results on the divergence problem

In its simplest form, the divergence problem - which plays a crucial role in the
mathematical approach of fluid mechanics theory - is stated in the following
way:

Let Ω be a Lipschitz domain of Rn and g ∈ Lp(Ω), with 1 < p < +∞,

satisfying

∫

Ω

g dx = 0. Then there exists a vector field u ∈ (W 1,p
0 (Ω))n such

that
{

div u = g in Ω

‖∇u‖Lp(Ω) ≤ C‖g‖Lp(Ω) ,
(4.3.1)

where C > 0 is a constant depending only on Ω.

Despite the simplicity of its statement, this problem is far from being
trivial. The difficulty comes in particular from the boundary condition. In-
deed, without this condition, it is very easy to construct a solution to the
divergence problem (at least for regular domains) by considering a solution
w ∈ H2(Ω) to the Laplace equation ∆w = g in Ω (with some boundary con-
ditions, as for instance homogeneous Dirichlet or Neumann conditions) and
then taking u = ∇w. Note that if we consider the homogeneous Neumann
conditions, only a small part of the boundary conditions will be satisfied by
u, since in this case, only the normal part of the gradient of w -hence of u-
vanishes on ∂Ω, not the whole gradient.

Considering the important role that this problem plays in the study of
the equations of fluid mechanics, there is no wonder that many authors took
interest in finding original solutions to it. To mention only a few, we send
the reader to the pioneering works of O.A. Ladyzhenskaya [46] and Bogovskii
([6] and [7]) and to the more recent papers of Acosta et al. [1], Amrouche
& Girault [3], Borchers & Sohr [8], Bourgain & Brezis [9], and Dacorogna
[30]. For the same problem, we also recommend the books of Dacorogna [31],
Galdi [34] and Temam [68].
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For general domains, the manner in which the constant C in (4.3.1) de-
pends on Ω is quite complex, see for instance [6] or [34]. In this section, we
are interested in solving the problem (4.3.1) in tubular annuli of the type
Dℓ = Aℓ×ω = (Bℓ+1 \Bℓ)×ω (i.e., we take Ω = Dℓ in (4.3.1)), and we need
the constant C to be independent of ℓ. If we consider the constants appearing
in the works cited above, we can clearly see that they depend on ℓ. However,
the constructions made in these works do not necessarily lead to the best
constants for the inequality (4.3.1)2. Therefore, there is still a chance for
the best constants in (4.3.1) to be independent of ℓ, when considering the
problem in the domains Dℓ, with ℓ going to infinity.

In fact, we know now that without any additional assumptions on g, this
is not possible. Indeed, in a recent paper, C. Mardare [50] proved that the
best constant C of (4.3.1)2 is at least of order ℓ1/p

′
, with 1

p
+ 1

p′
= 1.

The following theorem plays a key role in the proof of the main result
of this chapter and it states that one can have on Dℓ a result similar to the
one in (4.3.1), with a constant C independent of ℓ, provided that g is radial
with respect to X1. In fact, the inequality that we obtain is weaker than
the one appearing in the classical divergence problem, since one also needs
the Lp-norm of ∇X2g - not only the Lp-norm of g - in order to control the
Lp-norm of ∇u. This new inequality is however sufficient for our purpose,
which is the proof of Theorem 4.4.1 in the next section.

Theorem 4.3.1. If g ∈ W 1,p(Dℓ) (1 < p < ∞) is a radial function along

X1 such that

∫

Dℓ

g = 0 and that g = 0 on Aℓ × ∂ω, then there exists u ∈

(W 1,p
0 (Dℓ))

n such that:

{

div u = g in Dℓ

‖∇u‖Lp(Dℓ) ≤ C(‖g‖Lp(Dℓ) + ‖∇X2g‖Lp(Dℓ)),
(4.3.2)

the constant C being independent of ℓ for ℓ ≥ 1 (C depends on k, n, p and
ω). Moreover, u can be chosen depending linearly on g.

Remark 4.3.1. We would like to emphasize here the fact that, even with
the weaker inequality in (4.3.2), it is still not possible to drop the radiality
assumption on g, if we want the constant C of (4.3.2) to be independent of
ℓ. Indeed, without the radiality assumption, the best constant in (4.3.2) is at
least of order ℓ1/p

′
(see [50]).
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Proof. To start with, we take once again u defined in the following way:

u(X1, X2) = (h(r,X2)X1, φ(r)v(X2)) = (u′, u′′)(X1, X2)

with h being defined by the formula

h(r,X2) =
1

rkσk

[
∫

Aℓ,r

g(X1, X2) dX1 − ḡ(X2)

∫

Aℓ,r

φ(X1) dX1

]

,

where Aℓ,r = Br \ Bℓ (for ℓ < r < ℓ + 1), v ∈
(

W 1,p
0 (ω)

)n−k

is a solution to

the problem
{

div X2v = ḡ in ω

‖∇X2v‖Lp(ω) ≤ Cp,ω‖ḡ‖Lp(ω)

(4.3.3)

and φ is given by (4.2.7) and (4.2.9). Recall that the existence of v is guar-
anteed by the condition

∫

Dℓ
g dx = 0, which implies

∫

ω
ḡ(X2) dX2 = 0.

We now are going to justify this formula. First of all, since g ∈ H1(Dℓ) is
a radial function along X1 and g = 0 on Aℓ × ∂ω, it follows from Theorem
4.2.8 that there exists a sequence {gm} of C1(Dℓ)-functions, radial along X1

such that gm −→
W 1,p(Dℓ)

g. Therefore, we can construct a sequence of functions

{u′m}, with
u′m(X1, X2) = hm(r,X2)X1

and

hm(r,X2) =
1

rkσk

[
∫

Aℓ,r

gm(X1, X2) dX1 − ḡm(X2)

∫

Aℓ,r

φ(X1) dX1

]

in the exact same way as we did before Theorem 4.2.10. Therefore, according
to Theorem 4.2.10, u′m satisfies











(div X1u
′
m)(x) = gm(X1, X2)− φ(r)ḡm(X2) in Dℓ

u′m = 0 on (∂Aℓ)× ω

‖∇u′m‖Lp(Dℓ) ≤ C(‖gm‖Lp(Dℓ) + ‖∇X2gm‖Lp(Dℓ)).

We now prove that u′m → u′ in Lp(Dℓ). Since the function

(X1, X2) 7→
X1

σkrk
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is in (L∞(Dℓ))
k, it is enough to prove that

(X1, X2) 7→ Hm(|X1|, X2) −→
Lp(Dℓ)

(X1, X2) 7→ H(|X1|, X2)

where

H(r,X2) =

∫

Aℓ,r

g(X1, X2) dX1 − ḡ(X2)

∫

Aℓ,r

φ(X1) dX1.

To simplify the computations, we prove that

(

(X1, X2) 7→
∫

Aℓ,r

gm(X1, X2) dX1

)

−→
Lp(Dℓ)

(

(X1, X2) 7→
∫

Aℓ,r

g(X1, X2) dX1

)

.

Indeed, using the Hölder inequality (with 1
p
+ 1

p′
= 1),

∫

Dℓ

∣

∣

∣

∣

∫

Aℓ,r

(gm(X1, X2)− g(X1, X2)) dX1

∣

∣

∣

∣

p

dx

≤
∫

Dℓ

|Aℓ,r|
p
p′

∫

Aℓ,r

|gm(X1, X2)− g(X1, X2)|p dX1 dx

≤ |Aℓ|
p
p′

∫

Dℓ

∫

Aℓ,r

|gm(X1, X2)− g(X1, X2)|p dX1 dx

≤ |Aℓ|
p
p′

∫

Dℓ

∫

Aℓ

|gm(X1, X2)− g(X1, X2)|p dX1 dx

= |Aℓ|
p
p′

∫

Aℓ

∫

Dℓ

|gm(X1, X2)− g(X1, X2)|p dx dX1

= |Aℓ|
p
p′
+1‖gm − g‖Lp(Dℓ)

= |Aℓ|p‖gm − g‖Lp(Dℓ) → 0,

as m→ +∞.
The same kind of computations, associated with the fact that

∫

Aℓ

φ(X1) dX1 = 1,

lead to

(X1, X2) 7→ ḡm(X2)

∫

Aℓ,r

φ(X1) dX1 −→
Lp(Dℓ)

(X1, X2) 7→ ḡ(X2)

∫

Aℓ,r

φ(X1) dX1.
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and therefore,

(X1, X2) 7→ Hm(|X1|, X2) −→
Lp(Dℓ)

(X1, X2) 7→ H(|X1|, X2).

Since the mapping giving u′ in Theorem 4.2.10 is linear with respect to g, by
noting u′ = u′g, one has

u′m1
− u′m2

= u′gm1
− u′gm2

= u′gm1−gm2
.

Therefore, using Theorem 4.2.10,

‖∇u′m1
−∇u′m2

‖Lp(Dℓ) = ‖∇u′gm1−gm2
‖Lp(Dℓ) ≤ C‖gm1 − gm2‖W 1,p(Dℓ),

which implies, since {gm} is a Cauchy sequence, that {∇u′m} is a Cauchy
sequence and therefore converges in (Lp(Dℓ))

n. We then have that

u′m −→
W 1,p(Dℓ)

u′ ∈ W 1,p(Dℓ). (4.3.4)

and since
‖∇u′m‖Lp(Dℓ) ≤ C(‖gm‖Lp(Dℓ) + ‖∇X2gm‖Lp(Dℓ)),

thanks to Theorem 4.2.10, we derive

‖∇u′‖Lp(Dℓ) ≤ C(‖g‖Lp(Dℓ) + ‖∇X2g‖Lp(Dℓ)) (4.3.5)

by letting m→ +∞. Furthermore, we have, for every x ∈ Dℓ,

(div u)(x) = (div X1u
′)(x) + (div X2u

′′)(x)

= (div X1u
′)(x) + φ(r)(div X2v)(X2)

= (div X1u
′)(x) + φ(r)ḡ(X2).

(4.3.6)

Thanks to the convergence (4.3.4), we know that

div X1u
′
m → div X1u

′ in Lp(Dℓ).

Since gm −→
Lp(Dℓ)

g, it follows that

(div X1u
′
m)(x) = gm(X1, X2)− φ(r)ḡm(X2) → g(X1, X2)− φ(r)ḡ(X2).

Therefore, (div X1u
′)(x) = g(X1, X2) − φ(r)ḡ(X2) and then we deduce from

(4.3.6) that
div u = g in Dℓ.

We now estimate ‖∇X1u
′′‖Lp(Dℓ) and ‖∇X2u

′′‖Lp(Dℓ).
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• To start with, we study the term ‖∇X1u
′′‖Lp(Dℓ). We have

|(∇X1u
′′)(X1, X2)| =

∣

∣

∣

φ′(r)
r
v(X2)X

T
1

∣

∣

∣
,

and since
∣

∣

∣

XT
1

r

∣

∣

∣
= 1,

|(∇X1u
′′)(X1, X2)| ≤

∣

∣φ′(r)v(X2)
∣

∣ = |φ′(r)||v(X2)|.

Since φ(r) = Φ(r)
σkrk−1 with Φ(r) =











4(r − ℓ) if ℓ ≤ r ≤ ℓ+
1

2

4(ℓ+ 1− r) if ℓ+
1

2
≤ r ≤ ℓ+ 1,

we have

φ′(r) =
( Φ(r)

σkrk−1

)′
=

1

σk

(Φ′(r)

rk−1
− (k − 1)Φ(r)

rk

)

and then

|φ′(r)| ≤ 1

σk

(

4

ℓk−1
+

2(k − 1)

ℓk

)

≤ 2(k + 1)

σkℓk−1

if ℓ ≥ 1. Using the Poincaré inequality (4.2.1) for v and the Hölder
inequality, we obtain

(∫

Dℓ

|∇X1u
′′|p dx

) 1
p

≤
(∫

Dℓ

|φ′(r)|p|v(X2)|p dx
) 1

p

=

(∫

Aℓ

|φ′(r)|p dX1

) 1
p
(∫

ω

|v(X2)|p dX2

) 1
p

≤
(∫

Aℓ

(

2(k+1)
σkℓk−1

)p

dX1

) 1
p

‖v‖Lp(ω)

≤ 2(k + 1)

σkℓk−1
Cω|Aℓ|

1
p‖∇X2v‖Lp(ω)

≤ 2(k + 1)

σkℓk−1
CωCp,ω|Aℓ|

1
p‖ḡ‖Lp(ω)

(4.3.7)
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We now estimate the term ‖ḡ‖Lp(ω):

‖ḡ‖Lp(ω) ≤
(
∫

ω

∣

∣

∣

∣

∫

Aℓ

g(X1, X2) dX1

∣

∣

∣

∣

p

dX2

)
1
p

≤
(
∫

ω

(∫

Aℓ

|g(X1, X2)| dX1

)p

dX2

)
1
p

≤
(∫

ω

(

|Aℓ|
1
p′ ‖g(·, X2)‖Lp(Aℓ)

)p

dX2

) 1
p

≤ |Aℓ|
1
p′

(∫

ω

‖g(·, X2)‖pLp(Aℓ)
dX2

) 1
p

≤ |Aℓ|
1
p′ ‖g‖Lp(Dℓ).

(4.3.8)

It follows that

(∫

Dℓ

|∇X1u
′′|p dx

) 1
p

≤ 2(k + 1)

σkℓk−1
CωCp,ω|Aℓ|

1
p‖ḡ‖Lp(ω)

≤ 2(k + 1)

σkℓk−1
CωCp,ω|Aℓ|

1
p |Aℓ|

1
p′ ‖g‖Lp(Dℓ)

≤ 2(k + 1)

σkℓk−1
CωCp,ω|Aℓ|‖g‖Lp(Dℓ)

≤ 2k(k + 1)CωCp,ω‖g‖Lp(Dℓ)

by combining inequalities (4.3.7) and (4.3.8) with equality (4.2.14).

• We finally take care of the last term ‖∇X2u
′′‖Lp(Dℓ). First of all,

|(∇X2u
′′)(X1, X2)| = |φ(r)(∇X2v)(X2)|.

122



4.3. SOME RESULTS ON THE DIVERGENCE PROBLEM

Then,

(∫

Dℓ

|∇X2u
′′|p dx

) 1
p

≤
(∫

Dℓ

|φ(r)(∇X2v)(X2)|p dx
) 1

p

=

(∫

Aℓ

|φ(r)|p dX1

∫

ω

|(∇X2v)(X2)|p dX2

) 1
p

≤ ‖φ‖Lp(Aℓ)‖∇X2v‖Lp(ω)

≤ |Aℓ|
1
p‖φ‖L∞(Aℓ)‖∇X2v‖Lp(ω)

≤ 2

σkℓk−1
Cp,ω|Aℓ|

1
p‖ḡ‖Lp(ω)

≤ 2

σkℓk−1
Cp,ω|Aℓ|

1
p |Aℓ|

1
p′ ‖g‖Lp(Dℓ)

≤ 2

σkℓk−1
Cp,ω|Aℓ|‖g‖Lp(Dℓ)

≤ 2kCp,ω‖g‖Lp(Dℓ),

by using inequalities (4.3.8) and (4.2.14).

Putting together the estimates for the Lp-norms of |∇X1u
′′| and |∇X2u

′′,
we get

∥

∥|∇X1u
′′|
∥

∥

Lp(Dℓ)
+
∥

∥|∇X2u
′′|
∥

∥

Lp(Dℓ)
≤ 2kCp,ω

(

(k+1)Cω+1
)

||g||Lp(Dℓ). (4.3.9)

The estimate (4.3.2) follows from equations (4.3.5) and (4.3.9) combined
with the equivalence of the norm ‖∇(·)‖Lp(Dℓ) and

∥

∥|∇(·)|
∥

∥

Lp(Dℓ)
(see (4.1.5)).

We now verify that u′ = 0 on ∂Dℓ = (∂Aℓ)×ω
⋃

Aℓ× ∂ω. To start with,
we have that

(u′m)|∂Dℓ
−→

Lp(∂Dℓ)
Tr(u′)

by using the convergence (4.3.4). Since, thanks to Theorem 4.2.10, we know
that (u′m)|(∂Aℓ)×ω

= 0 for all m, it follows that Tr(u′) = 0 on (∂Aℓ)× ω.

The remaining part is to prove that u′ = 0 on Aℓ × ∂ω and to do so, we look
to the traces of u′m on this set. We have that

(u′m)|Aℓ×∂ω
= hm(r,X2)X1|Aℓ×∂ω

.
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Since 1
rkσk

X1 ∈ L∞(Aℓ × ∂ω), it suffices to prove that

Hm|Aℓ×ω
→ 0 in Lp(Aℓ × ω).

We will only give the computations proving the convergence of the first term
in the definition of Hm, the second can be treated in a similar manner. We
have:
∫

Aℓ×∂ω

∣

∣

∣

∣

∫

Aℓ,r

gm(X1, X2) dX1

∣

∣

∣

∣

p

dσ ≤
∫

Aℓ×∂ω

|Aℓ,r|
p
p′

∫

Aℓ,r

|gm(X1, X2)|p dX1 dσ

≤ |Aℓ|
p
p′

∫

Aℓ×∂ω

∫

Aℓ

|gm(X1, X2)|p dX1 dσ

= |Aℓ|
p
p′
+1

∫

Aℓ×∂ω

|gm(X1, X2)|p dσ → 0,

using the fact that

‖(gm)|Aℓ×∂ω
‖Lp(Aℓ×∂ω) → ‖Tr(g)‖Lp(Aℓ×∂ω) = 0.

We therefore can conclude that

Tr(u′) = 0 on Aℓ × ∂ω.

We therefore have that

u′ = 0 on ∂Dℓ.

It remains to prove that u′′ ∈ W 1,p
0 (Dℓ). Since v ∈ W 1,p

0 (ω), there exists a
sequence {vm} ⊂ D(ω) of functions converging to v in W 1,p(ω). Therefore,
φvm ∈ W 1,p(Dℓ)

⋂

C(Dℓ) and φvm = 0 on ∂ω, which is to say that φvm ∈
W 1,p

0 (Dℓ), and therefore φv ∈ W 1,p
0 (Dℓ) using the fact that W 1,p

0 is a closed
space and φvm = 0 on ∂Dℓ.

Remark 4.3.2. Note that in the case k = n− 1, hence n− k = 1, we have
an obvious solution to problem (4.3.3), with Cp,ω = 1, that is even true for
p ∈ [1,+∞]. Thus, in this case, we have a relatively simple constructive
solution for the problem (4.3.2). Moreover, the result of Theorem 4.3.1 is
this time valid for 1 ≤ p ≤ +∞, with the constant in (4.3.2)2 depending
only on k and ω. In order to see that, it suffices to remark that, on the
one hand, the arguments in the proof of Theorem 4.3.1 remain valid for any
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p ∈ [1,+∞) (since the Theorem 4.2.8 and the inequality (4.2.10)3 of Theorem
4.2.10 are valid for p ∈ [1,+∞)); and on the other hand, for p = +∞, since
the domain Dℓ is bounded, one has g ∈ W 1,s(Dℓ) for any s ∈ [1,+∞), hence
we can apply the result of Theorem 4.3.1 with p = s and then let s go to +∞
and use the fact that the constant in (4.3.2)2 is independent of p.

Remark 4.3.3. We would also like to remark here that one obtains a differ-
ent solution u satisfying (4.3.2) for each choice of Φ ∈ W 1,∞((ℓ, ℓ+ 1)

)

that
intervenes in the construction of the function φ. Indeed, we made the special
choice (4.2.9) in order to fix the ideas, but any positive function satisfying the
properties (4.2.8) is valid, since what is important here is that the function
φ defined in (4.2.7) satisfies the properties (4.2.6).

Furthermore, we have the following lemma, which can be easily obtained
by a scaling argument.

Lemma 4.3.1. Let ℓ ≥ 1 and g ∈ Lp(Ωℓ) (1 < p < +∞) such that
∫

Ωℓ
g dx = 0. Then there exists u ∈ (W 1,p

0 (Ωℓ))
nsuch that

{

div u = g in Ωℓ

‖∇u‖Lp(Ωℓ) ≤ Cℓ‖g‖Lp(Ωℓ) ,

where C is a constant depending only on k, p and ω.

4.4 The main result

Before giving the main result of this paper, we provide here a last Lemma
that gives a useful property of solenoidal vector fields in Ωℓ, vanishing on
Bℓ × ∂ω.

Lemma 4.4.1. If a function v ∈ H1(Ωℓ) satisfies
{

div v = 0 in Ωℓ

v = 0 on Bℓ × ∂ω,

then
∫

(∂Br)×ω

v · ν dσ = 0

for all r ∈ (0, ℓ].
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Proof. We have that

0 =

∫

Br×ω

div v dx =

∫

∂(Br×ω)

v · ν dσ =

∫

(∂Br)×ω

v · ν dσ +

∫

Br×∂ω

v · ν dσ,

thanks to the divergence theorem. Since Br × ∂ω ⊂ Bℓ × ∂ω, it follows that
∫

Br×∂ω
v · ν dσ = 0, and therefore

∫

(∂Br)×ω
v · ν dσ = 0.

We now give our main result:

Theorem 4.4.1. Let f ∈ Vβ(Ω∞) for some small enough β > 0 verify

f = (f ′, f ′′) =

{

f ′(QX1, X2) = Qf ′(X1, X2)

f ′′(QX1, X2) = f ′′(X1, X2),
(4.4.1)

and let uℓ ∈ Ĥ1(Ωℓ) be the solution of the variational problem (4.1.2). Then
for all ℓ0 > 0,

(uℓ, pℓ) → (u∞, p∞) strongly in H1(Ωℓ0)× L̂2(Ωℓ0)

as ℓ→ ∞, where (u∞, p∞) ∈
(

H1
loc(Ω̄∞)

)n × L2
loc(Ω∞)/R is weak solution to

the following Dirichlet problem in the cylinder Ω∞:































u∞ satisfies the same radial properties as f (see (4.4.1))

− µ∆u∞ +∇p∞ = f in
(

D′(Ω∞)
)n

div u∞ = 0 in Ω∞

u∞ = 0 on ∂Ω∞

‖∇u∞‖L2(Ωℓ) = O(e2βℓ).

(4.4.2)

Furthermore, we have the estimates

‖∇(uℓ − u∞)‖L2(Ω ℓ
2
) ≤ Ce−αℓ for all ℓ > 1

and
‖pℓ − p∞‖L̂2(Ωℓ/2)

≤ Cℓe−αℓ for all ℓ > 1 ,

where C ≥ 0 and α > 0 are constants depending only on k, n, ω, µ, C0 (the
constant appearing in the definition of Vβ(Ω∞)) and β.
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Remark 4.4.1. The radial properties of u∞ are used to prove the uniqueness
of u∞, and it is highly probable that without this condition, the uniqueness
of the solution to problem (4.4.2) would be lost. This fact is suggested by the
case k = 1, where one can construct different solutions to problem (4.4.2)
(minus the radial properties) having non-zero fluxes (see e.g. [19]).

Proof. The proof of the theorem is divided in seven steps. The first three
ones will show that uℓ is a Cauchy “sequence” for the norm of H1(Ωℓ0) for
all ℓ0 > 0, then we prove that the limit of (uℓ) is the solution to the problem
(4.4.2) and the uniqueness of the solution to this problem. Finally, we treat
the estimate of the pressure.

Step I. There exists a constant a ∈ (0, 1) only depending on k, n and ω such
that

∫

Ωℓ1

|∇(uℓ − uℓ+r)|2 dx ≤ a

∫

Ωℓ1+1

|∇(uℓ − uℓ+r)|2 dx (4.4.3)

for all ℓ > 1, for all ℓ1 ≤ ℓ− 1 and for all r ≥ 0.

We start here by recalling the variational equalities satisfied by uℓ and
uℓ+t on Ωℓ and Ωℓ+t respectively:

µ

∫

Ωℓ

∇uℓ · ∇v dx =

∫

Ωℓ

fv dx for all v ∈ Ĥ1
0(Ωℓ) (4.4.4)

and

µ

∫

ℓ+r

∇uℓ+r · ∇v dx =

∫

ℓ+r

f v dx for all v ∈ Ĥ1
0(Ωℓ+r).

Since a function v ∈ Ĥ1
0(Ωℓ) also belongs to Ĥ1

0(Ωℓ+r) (by extending it by 0
outside of Ωℓ), one can use the same function v as a test function for both
equations. Subtracting the two equations leads to

∫

Ωℓ

∇(uℓ − uℓ+r) · ∇v dx = 0 for all v ∈ Ĥ1
0(Ωℓ). (4.4.5)

Inspired by the methods from numerous previous works (see e.g. [11] or
[23]), we look for a test function of the type ρ(uℓ − uℓ+r), with ρ = ρ(X1)
and ρ(ℓ) = 0. More precisely, we define ρ in the following way:
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ρ = ρ(|X1|) =











0 if |X1| > ℓ1 + 1

1 if |X1| < ℓ1

ℓ1 + 1− |X1| if ℓ1 ≤ |X1| ≤ ℓ1 + 1.

This implies that

∇X1ρ = − X1

|X1|
on Dℓ1 .

However, this kind of functions cannot be considered as test functions in
(4.4.5). Indeed, while ρ(uℓ − uℓ+r) ∈ H1

0(Ωℓ), its divergence do not vanish on
Ωℓ since

div (ρ(uℓ − uℓ+r)) =
k
∑

i=1

(∂xi
ρ)(uℓ,i − uℓ+r,i) +

k
∑

i=1

ρ∂xi
(uℓ − uℓ+r)i

+
n
∑

i=k+1

ρ∂xi
(uℓ − uℓ+r)i

= (∇X1) · ρ(uℓ − uℓ+r)
′ + ρdiv (uℓ − uℓ+r).

Since div (uℓ − uℓ+r) = 0, in order to have div (ρ(uℓ − uℓ+r) = 0 in Dℓ1 ,
we therefore have to subtract from ρ(uℓ − uℓ+r) a H1

0(Dℓ1)-function β such
that



















div β = (∇X1ρ) · (uℓ − uℓ+r)
′ in Dℓ1

‖∇β‖L2(Dℓ1
) ≤ C

(

‖(∇X1ρ) · (uℓ − uℓ+r)
′‖L2(Dℓ1

)

+ ‖(∇X1ρ) · ∇X2(uℓ − uℓ+r)
′‖L2(Dℓ1

)

)

.

(4.4.6)

Note that here, we use the equality

∇X2

(

(∇X1ρ) · (uℓ − uℓ+r)
′) = (∇X1ρ) · ∇X2(uℓ − uℓ+r)

′.

In order to ensure the existence of such a function, we need to verify that
(∇X1ρ) · (uℓ − uℓ+r)

′ verifies the hypotheses of Theorem 4.3.1.
First of all, (∇X1ρ) · (uℓ − uℓ+r)

′ ∈ H1(Dℓ1), since ∇X1ρ = X1

|X1| ∈
(

W 1,∞(Dℓ1)
)k
.
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Then, we have that (recall that Dℓ1 = Aℓ1 × ω)
∫

Dℓ1

(∇X1ρ) · (uℓ − uℓ+r)
′ dx =

∫

Aℓ1
×ω

− X1

|X1|
· (uℓ − uℓ+r)

′ dx

=

∫

Aℓ1

∫

ω

− X1

|X1|
· (uℓ − uℓ+r)

′ dx

=

∫ ℓ1+1

ℓ1

∫

(∂Br)×ω

− X1

|X1|
· (uℓ − uℓ+r)

′ dσX1 dX2 dr.

Since ν(x) =
(

X1

|X1| , 0
)

on (∂Br)× ω, then

X1

|X1|
· (uℓ − uℓ+r)

′ = (uℓ − uℓ+r) · ν(x)

on (∂Br)× ω.
Moreover, we have that ∂Ωℓ =

(

(∂Bℓ)×ω
)

∪ (Bℓ × ∂ω) and, since uℓ = 0
on ∂Ωℓ and uℓ+r = 0 on ∂Ωℓ+r, we derive

uℓ − uℓ+r = 0 on Bℓ × ∂ω ,

given that Bℓ × ∂ω ⊂ Bℓ+r × ∂ω ⊂ ∂Ωℓ+r.
It follows that
∫

Dℓ1

(∇X1ρ) · (uℓ − uℓ+r)
′ dx = −

∫ ℓ1+1

ℓ1

∫

(∂Br)×ω

(uℓ − uℓ+r) · ν dσ dr = 0.

thanks to Lemma 4.4.1. Note that the fact that uℓ − uℓ+r = 0 on Bℓ × ∂ω
also implies that

(∇X1ρ) · (uℓ − uℓ+r)
′ = 0 on Aℓ1 × ∂ω ⊂ Bℓ × ∂ω.

We now have to prove that (∇X1ρ) · (uℓ − uℓ+r)
′ is radial along X1.

Since f verifies that

f = (f ′, f ′′) =

{

f ′(QX1, X2) = Qf ′(X1, X2)

f ′′(QX1, X2) = f ′′(X1, X2),

we have by Theorem 4.2.9 that uℓ and uℓ+r verify

u′ℓ(QX1, X2) = Qu′ℓ(X1, X2) and u
′
ℓ+r(QX1, X2) = Qu′ℓ+r(X1, X2).
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Then, we know by Theorem 4.2.7 that there exists two functions

Rℓ = Rℓ(r,X2) and Rℓ+r = Rℓ+r(r,X2),

with r = |X1|, such that

u′ℓ(X1, X2) = Rℓ(r,X2)X1 for all (X1, X2) ∈ Ωℓ

and
u′ℓ+r(X1, X2) = Rℓ+r(r,X2)X1 for all (X1, X2) ∈ Ωℓ.

It follows that, on Ωℓ, (uℓ − uℓ+r)
′ can be written as R(r,X2)X1. Since

∇X1ρ = − X1

|X1| , we therefore have that

(∇X1ρ) · (uℓ − uℓ+r)
′ = − X1

|X1|
·R(r,X2)X1 = −R(r,X2)r

which is radial along X1. Consequently, we can apply Theorem 4.3.1 and
there exists a function β verifying the properties (4.4.6). We extend this
function outside Dℓ1 by 0, the fonction obtained in this way satisfying the
properties

β ∈ H1
0(Ωℓ) and div β = div (ρ(uℓ − uℓ+r)) in Ωℓ.

Therefore,
v = ρ(uℓ − uℓ+r)− β ∈ Ĥ1

0(Ωℓ).

Then,
∫

Ωℓ

∇(uℓ − uℓ+r) · ∇
(

ρ(uℓ − uℓ+r)− β
)

dx = 0 .

This implies, taking into account that |∇X1ρ| = 1,
∫

Ωℓ

ρ|∇(uℓ − uℓ+r)|2 dx = −
∫

Dℓ1

∇X1(uℓ − uℓ+r) · (uℓ − uℓ+r)(∇X1ρ)
T dx

+

∫

Dℓ1

∇(uℓ − uℓ+r) · ∇β dx

≤
∫

Dℓ1

|∇X1(uℓ − uℓ+r)||(uℓ − uℓ+r)| dx

+

∫

Dℓ1

|∇(uℓ − uℓ+r)||∇β| dx .
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Using the Cauchy-Schwarz inequality, (4.4.6) and the fact that on Dℓ1 ,
∇X1ρ = − X1

|X1| and hence ‖∇X1ρ‖L∞(Dℓ1
) ≤ 1, we deduce that

∫

Ωℓ

ρ|∇(uℓ − uℓ+r)|2 dx ≤ ‖∇X1(uℓ − uℓ+r)‖L2(Dℓ1
)‖uℓ − uℓ+r‖L2(Dℓ1

)

+ ‖∇(uℓ − uℓ+r)‖L2(Dℓ1
)‖∇β‖L2(Dℓ1

)

≤ ‖∇X1(uℓ − uℓ+r)‖L2(Dℓ1
)‖uℓ − uℓ+r‖L2(Dℓ1

)

+ C‖∇(uℓ − uℓ+r)‖L2(Dℓ1
)

(

‖(uℓ − uℓ+r)
′‖L2(Dℓ1

)

+ ‖∇X2(uℓ − uℓ+r)
′‖L2(Dℓ1

)

)

.

Since (uℓ−uℓ+r) vanishes on Bℓ×∂ω, we can use the Poincaré inequality
(4.2.1) to deduce
∫

Ωℓ

ρ|∇(uℓ−uℓ+r)|2 dx ≤ C‖∇(uℓ−uℓ+r)‖2L2(Dℓ1
) = C

∫

Dℓ1

|∇(uℓ−uℓ+r)|2 dx

and, since ρ is nonnegative, this leads to
∫

Ωℓ1

|∇(uℓ − uℓ+r)|2 dx =

∫

Ωℓ1

ρ|∇(uℓ − uℓ+r)|2 dx ≤
∫

Ωℓ

ρ|∇(uℓ − uℓ+r)|2 dx

≤ C

{

∫

Ωℓ1+1

|∇(uℓ − uℓ+r)|2 dx−
∫

Ωℓ1

|∇(uℓ − uℓ+r)|2 dx
}

which is to say that
∫

Ωℓ1

|∇(uℓ − uℓ+r)|2 dx ≤ C

1 + C

∫

Ωℓ1+1

|∇(uℓ − uℓ+r)|2 dx.

which proves inequality (4.4.3) with a = C
1+C

≤ 1.

Step II. There exists constants C ≥ 0 and α > 0, depending only on ω, C0,
β and µ such that

‖∇(uℓ − uℓ+r)‖L2(Ω ℓ
2
) ≤ Ce−αℓ for all ℓ > 0 and all r ∈ [0, 1]. (4.4.7)

Let ℓ > 0 and r ∈ [0, 1]. Starting with ℓ1 =
ℓ
2
, we iterate the inequality

∫

Ωℓ1

|∇(uℓ − uℓ+r)|2dx ≤ a

∫

Ωℓ1+1

|∇(uℓ − uℓ+r)|2 dx
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[ ℓ
2
] times, where [ ℓ

2
] is the integer part of ℓ

2
. As a result, we have

∫

Ω ℓ
2

|∇(uℓ − uℓ+r)|2 dx ≤ a[
ℓ
2
]

∫

Ω ℓ
2+[ ℓ2 ]

|∇(uℓ − uℓ+r)|2 dx .

Noticing that
ℓ

2
− 1 <

[ ℓ

2

]

≤ ℓ

2
et 0 < a < 1 ,

it follows that Ω ℓ
2
+[ ℓ

2
] ⊂ Ωℓ and then

∫

Ω ℓ
2

|∇(uℓ − uℓ+r)|2 dx ≤ a
ℓ
2
−1

∫

Ωℓ

|∇(uℓ − uℓ+r)|2 dx.

Hence,

‖∇(uℓ − uℓ+r)‖L2(Ω ℓ
2
) ≤ ce−α̃ℓ‖∇(uℓ − uℓ+r)‖L2(Ωℓ) , (4.4.8)

with c = a−
1
2 and α̃ = 1

4
ln( 1

a
) > 0.

Now, in order to establish the step II, we only need to estimate ‖∇(uℓ −
uℓ+r)‖L2(Ωℓ). We have that uℓ ∈ Ĥ1

0(Ωℓ), and we therefore can use uℓ as a test
function in (4.4.4). This writes

µ

∫

Ωℓ

∇uℓ · ∇uℓ dx =

∫

Ωℓ

fuℓ dx.

Consequently, using the Poincaré inequality (4.2.1),

µ

∫

Ωℓ

|∇uℓ|2 dx ≤ ‖f‖L2(Ωℓ)‖uℓ‖L2(Ωℓ)

≤ Cω‖f‖L2(Ωℓ)‖∇uℓ‖L2(Ωℓ)

≤ Ceβℓ‖∇uℓ‖L2(Ωℓ),

thanks to the fact that f ∈ Vβ(Ω∞). Therefore,

‖∇uℓ‖L2(Ωℓ) ≤ Ceβℓ , (4.4.9)

for a constant C only depending on µ, Cω and on the constant C0 appearing
in the definition of the space Vβ(Ω∞).
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In the same way

‖∇uℓ+r‖L2(Ωℓ) ≤ ‖∇uℓ+r‖L2(Ωℓ+r) ≤ Ceβ(ℓ+r) ≤ Ceβeβℓ,

since r ∈ [0, 1], with C being the same constant as previously.

We therefore have

‖∇(uℓ − uℓ+r)‖L2(Ωℓ) ≤ ‖∇uℓ‖L2(Ωℓ) + ‖∇uℓ+r‖L2(Ωℓ) ≤ Ceβℓ,

with the last constant still not depending on ℓ > 0 or on r ∈ [0, 1].

Combined with the inequality (4.4.8), the last inequality implies

‖∇(uℓ − uℓ+r)‖L2(Ω ℓ
2
) ≤ Ce−(α̃−β)ℓ.

Finally, if β from the definition of Vβ(Ω∞) verifies β < α̃ (where α̃ = 1
4
ln( 1

a
)

only depends on k, n and ω since this is the case for the constant a found in
step I), we have

‖∇(uℓ − uℓ+r)‖L2(Ω ℓ
2
) ≤ Ce−αℓ,

for all positive ℓ and all r ∈ [0, 1], with α ∈ R given by α = α̃− β > 0.

Step III. There exists two constants C ≥ 0 and α > 0 depending only on µ,
k, n, ω, C0, and β such that

‖∇(uℓ − uℓ+t)‖L2(Ω ℓ
2
) ≤ Ce−αℓ , (4.4.10)

for all positive ℓ and all non-negative t.
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This is a simple consequence of inequality (4.4.7):

‖∇(uℓ − uℓ+t)‖L2(Ω ℓ
2
) ≤

[t]−1
∑

i=0

‖∇(uℓ+i − uℓ+i+1)‖L2(Ω ℓ
2
)

+ ‖∇(uℓ+[t] − uℓ+t)‖L2(Ω ℓ
2
)

≤
[t]−1
∑

i=0

‖∇(uℓ+i − uℓ+i+1)‖L2(Ω ℓ+i
2

)

+ ‖∇(uℓ+[t] − uℓ+t)‖L2(Ω ℓ+[t]
2

)

≤
[t]
∑

i=0

Ce−α(ℓ+i) = Ce−αℓ

[t]
∑

i=0

e−αi

≤ C
1

1− e−α
e−αℓ,

with α being the same as in step II and C being different but depending on
the same parameters.

Step IV. There exists u∞ ∈ H1
loc(Ω̄∞) such that for all ℓ0 > 0, uℓ → u∞ in

H1(Ωℓ0), and uℓ − u∞ verifies

‖∇(uℓ − u∞)‖L2(Ω ℓ
2
) ≤ Ce−αℓ for all ℓ > 0 , (4.4.11)

for some constants C ≥ 0 and α > 0, depending only on ω, µ, C0 and β.

A consequence of the Poincaré inequality (since uℓ − uℓ+t ∈ H1(Ωℓ) and
uℓ−uℓ+t = 0 on Bℓ×∂ω) and of inequality (4.4.10) is that for a fixed ℓ0 > 0,

‖uℓ − uℓ+t‖H1(Ωℓ0
) ≤ C‖∇(uℓ − uℓ+t)‖L2(Ωℓ0

) ≤ Ce−αℓ,

for all ℓ ≥ 2ℓ0 and all t ≥ 0. This implies that (uℓ)ℓ>0 is a Cauchy “sequence”
for the norm of the space H1(Ωℓ0). Since H1(Ωℓ0) is a Banach space, there
exists uℓ0∞ ∈ H1(Ωℓ0) such that uℓ → uℓ0∞ in H1(Ωℓ0).

Making ℓ0 vary in N∗ gives us a sequence of limits uk∞ defined in Ωk. For
all non-zero natural integer k, we have uℓ → uk∞ in H1(Ωk). Since Ωk1 ⊂ Ωk2

for all k1 < k2, we have uk1∞ = uk2∞ a.e. in Ωk1 , since uℓ → uk1∞ and uℓ → uk2∞
in H1(Ωk1).
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Then, we can construct a function u∞ ∈
(

H1
loc(Ω̄∞)

)n
such that u∞ = uk∞

in Ωk for all positive integer k. It is enough to set

u∞ =

{

u1∞ in Ω1

uk∞ in Ωk \ Ωk−1 for all k ≥ 2.

This function verifies

uℓ → u∞ in H1(Ωℓ0) for all ℓ0 > 0.

Estimate (4.4.11) is finally obtained by taking ℓ > 0 fixed and making t go
to infinity in inequality (4.4.10).

Step V. The limit u∞ from the previous step is a solution to problem (4.4.2)

First of all, u∞ satisfies the same radial properties as f , since for any
fixed ℓ0 > 0,

uℓ → u∞ in H1(Ωℓ0)

as ℓ→ +∞, and uℓ satisfies the following property: for all Q ∈ Ok, one has
{

u′ℓ(QX1, X2) = Qu′ℓ(X1, X2)

u′′ℓ (QX1, X2) = u′′ℓ (X1, X2)
for a.e. (X1, X2) ∈ Ωℓ0 .

The properties for u∞ are then obtained by proving that we also have

uℓ → ũ∞ in
(

L2(Ωℓ0)
)n

with

ũ∞(X1, X2) = (ũ′∞, ũ
′′
∞)(X1, X2) =

(

QTu′∞(QX1, X2), u
′′
∞(QX1, X2)

)

.

Indeed,

‖u′ℓ − ũ′∞‖2L2(Ωℓ0
) =

∫

Ωℓ0

∣

∣u′ℓ(X1, X2)−QTu′∞(QX1, X2)
∣

∣

2
dx

=

∫

Ωℓ0

|QT (u′ℓ(QX1, X2)− u′∞(QX1, X2))|2 dx

=

∫

Ωℓ0

|(u′ℓ − u′∞)(QX1, X2)|2 dx

=

∫

Ωℓ0

|(u′ℓ − u′∞)(Y1, Y2)|2 dy

135



4.4. THE MAIN RESULT

since dx = dy for y = (Y1, Y2) = (QX1, X2) (recall that Q ∈ Ok). A similar
computation can be made in order to prove the convergence u′′ℓ → ũ′′∞ in
(

L2(Ωℓ0)
)n−k

.

For a fixed ℓ0 > 0, let v ∈ Ĥ1
0(Ωℓ0). Then, for all ℓ ≥ ℓ0, v ∈ H1

0(Ωℓ). It
follows that v is a good test function for the variational problem verified by
uℓ, for all ℓ ≥ ℓ0. Since v is 0 outside of Ωℓ0 , we have that for all ℓ ≥ ℓ0,

µ

∫

Ωℓ0

∇uℓ · ∇v dx = µ

∫

Ωℓ

∇uℓ · ∇v dx =

∫

Ωℓ

fv dx =

∫

Ωℓ0

fv dx.

Since ∇uℓ → ∇u∞ strongly in (L2(Ωℓ0))
n, letting ℓ go to infinity leads to

µ〈−∆u∞, v〉 = µ

∫

Ωℓ0

∇u∞ · ∇v dx =

∫

Ωℓ0

fv dx.

This shows that u∞ satisfies the variational equation associated with (4.4.2),
since ℓ0 is taken arbitrarily. In particular, u∞ satisfies

〈−µ∆u∞ − f, φ〉 = 0

for all φ ∈ (D(Ω∞))n such that div φ = 0. Therefore, thanks to the de Rham
Theorem, there exists p̃∞ ∈ D′(Ω∞) satisfying

−µ∆u∞ − f = ∇p̃∞.

Hence,
−µ∆u∞ +∇p∞ = f in (D′(Ω∞))n

xith p∞ = −p̃∞. Since µ∆u∞+f ∈ (H−1(Ωℓ))
n for all ℓ > 0, this implies that

p∞ ∈ L2
loc(Ω∞), using the fact that every Ωℓ is a bounded Lipschitz domain

(see e.g., [3]). As usual, we consider the class associated to p∞ in L2
loc(Ω∞)/R

(for simplicity also denoted by p∞) in order to retrieve the uniqueness for p∞.
Therefore, the couple (u∞, p∞) satisfies the first equation of problem (4.4.2).

On the other hand, for any fixed ℓ0 > 0, we have that, for any ℓ ≥ ℓ0,
γ(uℓ) = 0 on ∂Ωℓ, hence γ(uℓ) = 0 on Bℓ × ∂ω, where γ is the trace opera-
tor. Since Bℓ0 ⊂ Bℓ, we get γ(uℓ) = 0 on Bℓ0 × ∂ω ⊂ ∂Ωℓ0 . Remembering
that uℓ → u∞ in H1(Ωℓ0) and using the continuity of the trace operator, we
deduce γ(uℓ) → γ(u∞) in L2(∂Ωℓ0) and particularly in L2(Bℓ0 × ∂ω). Thus,
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γ(u∞) = 0 on Bℓ0 × ∂ω. Since ℓ0 is arbitrarily taken, we derive γ(u∞) = 0
on ∂Ω∞ = Rk × ∂ω =

⋃

ℓ0>0

(Bℓ0 × ∂ω).

Finally, using the estimate (4.4.11) and the inequality (4.4.9), we have

‖∇u∞‖L2(Ωℓ) ≤ ‖∇(u∞ − u2ℓ)‖L2(Ωℓ) + ‖∇u2ℓ‖L2(Ωℓ)

≤ ‖∇(u∞ − u2ℓ)‖L2(Ωℓ) + ‖∇u2ℓ‖L2(Ω2ℓ)

≤ C(e−2αℓ + e2βℓ)

≤ C∞e
2βℓ.

Step VI. There exists a unique solution to problem (4.4.2).

The existence of a solution being already established, we only need to
prove its uniqueness. Let u∞, ũ∞ be two solutions of the problem. Then for
any ℓ1 > 0, the computations of step I remain valid for u∞ and ũ∞ replacing
uℓ and uℓ+r. We finally get the inequality

∫

Ωℓ1

|∇(u∞ − ũ∞)|2 dx ≤ a

∫

Ωℓ1+1

|∇(u∞ − ũ∞)|2 dx,

for all ℓ1 > 0, where a is the same constant as in step I. Then,

‖∇(u∞ − ũ∞)‖L2(Ωℓ1
) ≤ a

1
2‖∇(u∞ − ũ∞)‖L2(Ωℓ1+1).

Iterating k times the previous inequality leads to

‖∇(u∞ − ũ∞)‖L2(Ωℓ1
) ≤ a

k
2 ‖∇(u∞ − ũ∞)‖L2(Ωℓ1+k)

= e−2α̃k‖∇(u∞ − ũ∞)‖L2(Ωℓ1+k) ,

with α̃ = 1
4
ln( 1

a
) found in step II. Combining the last inequality with the

ones satisfied by u∞ and ũ∞ in problem (4.4.2), we deduce that,

‖∇(u∞ − ũ∞)‖L2(Ωℓ1
) ≤ 2C∞e

2β(ℓ1+k)e−2α̃k

= 2C∞e
2βℓ1e−2(α̃−β)k.

Fixing ℓ1 and making k go to infinity, we have that ‖∇(u∞− ũ∞)‖L2(Ωℓ1
) = 0,

since β < α̃.
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On the other hand, u∞ = ũ∞ = 0 on ∂Ω∞, implying u∞ − ũ∞ = 0 on
∂Ω∞. More particularly, for any ℓ1 > 0, we have u∞ − ũ∞ ∈ H1(Ωℓ1) and
u∞ − ũ∞ = 0 on Bℓ1 × ∂ω. Thanks to the Poincaré inequality, this implies
u∞ − ũ∞ = 0 a.e. in Ωℓ1 . Since ℓ1 was arbitrarily chosen, this leads to
u∞ − ũ∞ = 0 a.e. in Ω∞.

Step VII. Estimate for the pressure: there exists a constant C ≥ 0 indepen-
dent of ℓ such that

‖pℓ − p∞‖L̂2(Ω ℓ
2
) ≤ Cℓe−αℓ (4.4.12)

for any ℓ ≥ 2.

By substracting the equations (4.1.1) and (4.1.3) we obtain in H−1(Ωℓ):

−∇(pℓ − p∞) = −µ∆(uℓ − u∞) .

This is equivalent to
∫

Ωℓ

(pℓ − p∞) div v dx = µ

∫

Ωℓ

∇(uℓ − u∞) · ∇v dx for all v ∈ H1
0(Ωℓ) .

(4.4.13)
For pℓ − p∞ belonging to L̂2(Ωℓ), we choose the representative, for the sim-
plicity also denoted by pℓ − p∞, which satisfies

∫

Ω ℓ
2

(pℓ − p∞) dx = 0 .

Then, by Lemma 4.3.1, there exists v ∈ H1
0(Ω ℓ

2
) satisfying

{

div v = pℓ − p∞ in Ω ℓ
2

‖∇v‖L2(Ω ℓ
2
) ≤ Cℓ‖pℓ − p∞‖L2(Ω ℓ

2
)

for some constant C depending only on k and ω (and independent of ℓ).
Extending v by 0 outside Ω ℓ

2
and using it as a test function in (4.4.13),

we get
∫

Ω ℓ
2

(pℓ − p∞)2 dx =

∫

Ωℓ

(pℓ − p∞) div v dx = µ

∫

Ωℓ

∇(uℓ − u∞) · ∇v dx

= µ

∫

Ω ℓ
2

∇(uℓ − u∞) · ∇v dx
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This leads to

‖pℓ − p∞‖2L2(Ω ℓ
2
) ≤ µ‖∇(uℓ − u∞)‖L2(Ω ℓ

2
)‖∇v‖L2(Ω ℓ

2
)

≤ Cℓ‖∇(uℓ − u∞)‖L2(Ω ℓ
2
)‖pℓ − p∞‖L2(Ω ℓ

2
) .

Finally, from the definition of the L̂2-norm, we have that

‖pℓ − p∞‖L̂2(Ω ℓ
2
) ≤ ‖pℓ − p∞‖L2(Ω ℓ

2
) ≤ Cℓ‖∇(uℓ − u∞)‖L2(Ω ℓ

2
) ≤ Cℓe−αℓ.
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