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Abstract

Given several economic, technical and environmental constraints, today’s power systems are

operated very close to their limits, which means they exhibit nonlinear behaviour more than

in the past. In addition, the transfer of large amount of power over long distances common

nowadays leads to nonlinear interactions, a phenomenon which challenges the traditional

power system analysis tools. Furthermore, high penetration of renewable energies and the

accompanying power electronics, which are evident in today’s power systems, increase the

nonlinearities of the systems. As a result, the well-established modal analysis tools become

insufficient for the analysis of present and future power systems; making the development of

alternative tools necessary. The inclusion of higher order terms in modal analysis, possible

with Normal Form (NF) method, augments the information it provides, and enables bet-

ter dynamic studies of systems exhibiting high nonlinear behaviour. However, NF method

requires the preliminary Taylor expansion of the nonlinear system, which generates several

higher order Hessian matrices and coefficients to be computed, an operation impracticable

with standard methods, when considering large scale systems. In this thesis, to answer to

this problem, an efficient numerical method for accelerating those computations, by avoiding

the usual Taylor expansion is developed. The new computations consist in prescribing the

linear eigenvectors as unknown field in the initial nonlinear system, which leads to solving

linear-only equations to obtain all needed coefficients. In this way, the computation of the

nonlinear model up to third order, and nonlinear modal analysis become fast, and achievable

in a convenient computation time. Moreover, NF-based indices for power system stability

and operation monitoring are proposed and tested on several systems.

Key words: Computation reduction, nonlinear modal analysis, normal form method, power

system analysis.

vii



viii



Résumé

Compte tenu de plusieurs contraintes économiques, techniques et environnementales, les sys-

tèmes électriques actuels fonctionnent très près de leurs limites, ce qui fait qu’ils présentent

de plus en plus des comportements non linéaires. De plus, le transfert d’une grande quantité

d’énergie sur de longues distances n’est pas rare aujourd’hui, cela conduit à des interactions

non linéaires, conduisant à un réel défit; celui de l’utilisation des outils traditionnels d’analyse

du système électrique en présence de fortes non linéarités. En outre, la forte pénétration des

énergies renouvelables et de l’électronique de puissance qui l’accompagne viennent augmenter

ces non linéarités du système électrique. En conséquence, les outils d’analyse modale bien

établis utilisés par le passé deviennent insuffisants pour l’analyse du système électrique au-

jourd’hui et celui du futur; d’où le besoin d’outils alternatifs. L’inclusion de termes d’ordres

supérieurs dans l’analyse modale, possible avec la méthode de forme normale (NF), aug-

mente les informations qu’elle fournit et permet de mieux étudier les aspects dynamiques sur

un système d’alimentation présentant un comportement fortement non linéaire. Cependant,

la méthode NF nécessite au préalable la décomposition de Taylor du système non linéaire,

qui produit plusieurs matrices et coefficients de Hesse d’ordre supérieur, une opération non

réalisable avec les méthodes standard lorsque l’on considère les systèmes à grande échelle.

Dans cette thèse, pour répondre à cette problématique, une méthode numérique efficace pour

accélérer ces calculs, en évitant l’expansion de Taylor habituelle, est développée. Les nou-

veaux calculs consistent à définir les vecteurs propres linéaires comme champ inconnu dans

le système non linéaire initial, ce qui conduit à résoudre des équations linéaires uniquement

pour obtenir tous les coefficients nécessaires. De cette façon, le calcul du modèle non linéaire

jusqu’au troisième ordre et l’analyse modale non linéaire deviennent simples et réalisables

avec un temps de calcul raisonnable. De plus, des indices basés sur la NF pour la stabilité du

système électrique et la surveillance du fonctionnement sont proposés et testés sur plusieurs

systèmes.

Mots clés: Réduction du calcul, analyse modale non linéaire, méthode de forme normale,

analyse du système d’alimentation.
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Chapter 1

Introduction

“Things change. And friends
leave. Life doesn’t stop for
anybody.”

Stephen Chbosky
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CHAPTER 1. INTRODUCTION

1.1 General Context and Motivation

1.1.1 The Changing Grid

Power system is an interconnection of many components such as generators, transformers,

transmission lines and so on. The electric power is produced by the generators and trans-

ported to the loads through the transmission lines. These lines can be short or long depending

on the separation between the generation and loads. The electric power seems to be the most

beneficial engineering innovation today. Therefore, to ensure a reliable and efficient power

delivery, several intelligent techniques are being introduced into the power system. However,

due to ratings and other constraints of the power system components, there is always a limit

for operating the system, so called stability margins.

In the traditional power systems, the generators are mainly synchronous machines, mainly

powered by environmentally-unfriendly sources like fossil fuel. Fossil fuel in turn is a key

player in environmental degradation due to the accompanying emissions. The reduction of

gas emissions and hence, fossil fuel, has been a worldwide concern owing to several negative

environmental changes. With several economic, technical and environmental constraints,

today’s power system is operated very close to its margins, making the system to be stressed.

A stressed system has operating condition near, for example, the voltage stability limit and

may be as a result of — 1) a higher level of system loadings, 2) heavy power transfer across

some transmission interfaces, and 3) heavy loading of certain plants. This can be represented

by a power-voltage (P-V) curve for bus voltage stability as shown in Figure 1.1. Stressed

power system can lead to complex dynamic behaviour. That is, unusual nonlinear behaviour

that could be difficult to explain.

Vmax

Vmin

Active Power

V
o
lt
a
g
e

Loadability Margin

Normal condition Stressed condition

Figure 1.1 – P-V curve showing normal and stressed conditions
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CHAPTER 1. INTRODUCTION

The depletion of fossil fuel has forced a shift from traditional energy resources to renew-

able energies (REs) such as solar thermal, solar photovoltaic, wind, and biogas [1]. Each

year, more electricity is generated from renewable energy than in the previous year (see Fig-

ure 1.2). The integration of these renewable energies into the grid is now feasible due to

the technological advancements in power-electronic-based (PE) converters. The emergence

of new PE devices onto the power scene and the increasing number of distributed genera-

tion power systems in electrical grids contribute to changing the structure of the traditional

grid. This outburst seems to be the fastest growing trend in power system [2, 3] with pro-

liferation of DC/AC inverters, switch mode power supplies, High Voltage DC (HVDC) links,

distributed renewable energy systems, Static VAr Compensator (SVC), and other Flexible

AC Transmission Systems (FACTS) devices.

Figure 1.2 – Annual Global Additions of Renewable Power Capacity, by Technology and Total, 2012-
2018 [4]

1.1.2 Present and Potential Future Challenges of the Grid

The system stress together with the integration of RE increases the system nonlinearities and

hence, creates new challenges to power systems. It can lead to nonlinear interactions of the

system modes of oscillation, which alter the dynamic behaviour of the system. Mode is the

technical term for a particular oscillation pattern (see detailed explanation in section 1.3). The

system nonlinearities and modal interactions are impacted by system operating conditions,

control strategy, and control system parameters [5]. The transfer of large amount of power

over long distances are not uncommon nowadays due to inter-area connections (example

Scotland-England) and the growth of RE sources. Moreover, most viable RE sources like

wind farms are usually far from load centre. The transfer of large power over long distances

leads to power oscillations and nonlinear interactions in a High Voltage AC (HVAC) system.
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HVDC links can be used instead, in order to damp the oscillations. However, the controls

for HVDC can lead to strong nonlinear interactions, though these interactions are not always

necessarily negative. Earlier investigation of nonlinear modal interaction in a HVDC/AC

system with DC modulation indicated that strong nonlinear modal interaction can result

from higher AC and DC loading and with well-tuned DC power modulation [5]. Perhaps,

with the development of Modular Multilevel Converters (MMC) technologies, the situation

may be different. Other PE devices also lead to increased nonlinearity. For example, the

control parameter of SVCs can lead to strong nonlinear interactions in a stressed system,

which gives rise to unstable oscillations [6]. Note that the controls of synchronous machines

can equally introduce nonlinearities especially if not properly tuned [7]. However, [8] reported

that nonlinear interaction is stronger when PE controls are in the system. With the growth

of REs, utilising an additional device, such as battery energy storage (BES) in power systems

is inevitable. A current research reported that increasing BES’s gain controller could lead

to interaction events [9]. Since REs inject power into the network through PE converters,

resulting in the lack of inertia and synchronising torque in the grid, de-commitment of the

synchronous generators would increase the effect of nonlinearity [10] and will affect the rotor

angle stability. Also, the PE converters could form a virtual capacitance, which could interact

with the AC grid to trigger an unstable oscillation in relatively weak (i.e high impedance)

system [11].

As highlighted in [12, 13], apart from contributing to nonlinearity, REs and their accompa-

nying PEs introduce new modes of oscillation to the grid due to displacement of synchronous

machines. It was noted in [12] that these new modes of oscillation are highly sensitive to con-

trol parameter variations, and can make the system more unpredictable and hard to monitor

or control.

The challenges of RE/PE penetration to the grid have triggered serious researches in Eu-

rope, mainly anchored by Massive Integration of Power Electronic Devices (MIGRATE) [14],

which aims at finding solutions to the technical challenges. The MIGRATE’s report on sys-

temic issues are summarised in Table 1.1. The manifestations of these challenges abound in

practical power systems with significant RE integration. For example, on 19 February 2011,

inter-area oscillations within the Continental Europe (CE) power system occurred. Similar

oscillations reoccurred on 24 February, 2011. The oscillation frequency was 0.25 Hz and lasted

for 15 minutes (see Figure 1.3). There was no clear clue on the cause of the oscillation ini-

tially. Modal calculations in [16] later revealed that two modes superimposed at 0.25 Hz with

participation of Turkey, Spain/Portugal and Italy against North of Europe. The following

conclusions were made in [16]: (1) there was an interaction of 0.18 Hz (East-West mode) and
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Table 1.1 – Ranking of the power system stability issues as identified by European TSOs in the context
of the MIGRATE Project [15]

Ranking Ranking score Issue

1 17.35 Decrease of inertia
2 10.16 Resonances due to cables and PE
3 9.84 Reduction of transient stability margins
4 8.91 Missing or wrong participation of PE-connected generators

and loads in frequency containment
5 8.19 PE Controller interaction with each other and passive AC

components
6 7.50 Loss of devices in the context of fault-ride-through capability
7 7.00 Lack of reactive power
8 6.91 Introduction of new power oscillations and/or reduced

damping of existing power oscillations
9 6.09 Excess of reactive power
10 4.27 Voltage Dip-Induced Frequency Dip
11 3.87 Altered static and dynamic voltage dependence of loads

0.25 Hz (North-south mode) modes, (2) synchronous connection of Turkey displaces 0.3Hz

mode to 0.25 Hz (new mode), (3) the RE generators subtracted inertia from the system by

replacing generators equipped with power system stabilzer (PSS). Consequently, the Italian

TSO immediately reinforced PSSs in Italy. Another severe oscillation occurred in Hami wind

Figure 1.3 – Detailed view of system frequency (measurements) for 19 February 2011— Brindisi (IT)
in phase with Sincan (TR) and Recarei (PT) opposite to Portile de Fier (RO) and Kassoe (DK) [[16]

power system, Xinjiang, China on July the 1st, 2015 and lasted for 3 hours and 20 minutes.
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It was later found out that this oscillation was caused by the interaction between multiple

wind turbine converters (WTCs) of permanent magnet synchronous generators (PMSGs) and

the weak AC grid [17].

In the light of all these present and anticipated changes in the grid, it becomes necessary

to extend the analysis of the grid in order to properly characterise its dynamic behaviour

and to better design its controls. This will require more sophisticated tools to cope with the

evolution. Although, there are several studies going on in respect to the increased nonlin-

earity and consequent unusual behaviour of the grid, not much attention is being paid to

the nonlinear interactions, which can reveal a lot of hidden information in the system. The

effect of nonlinear interactions in a system can be negative or positive, depending on the

condition of the system. This is perhaps, among other things, the reason why in literature,

both positive and negative effects of RE/PE integration are being reported. For instance,

improved damping of oscillations in case of an increasing share of PE-interfaced generation

was reported in [18].

1.1.3 Need for Developing Tools in Continuity of the Existing Ones

As mentioned earlier, stressed systems exhibit strong nonlinear behaviour and the RE/PE

integration into the grid further contributes to this stress. More sophisticated tools are needed

to cope with the complexity of the system. Advanced tools such as Pattern Recognition

methods [19], Expert Systems (ES) methods [20], Robust-control-based tools [21], are being

developed for the study of complex systems. However, these tools are too far from the

knowledge of an average power system operation engineer. Most often, they do not present

quantifiable physical parameters to enable the engineer make decisions or plannings. The best

known tool for studying oscillations in power system is modal analysis. The conventional

modal analysis tools such as small-signal stability are commonly used. However, they are

linear tools and will no more be sufficient to accurately characterise the behaviour of the grid

when there is high penetration of RE/PE. There is therefore, a need to provide alternative

tools with features common to the engineers and yet, with extended capabilities. Normal

Form (NF) is a good alternative but it is difficult to apply to systems with large number of

state variables.

1.1.4 Defining a Large Grid

Often times, when large grid/system is mentioned, what comes to mind is a power system

with so many buses, lines, generators and so on. While this is logical, the meaning of large

grid can be somewhat confusing. A grid could be large in the sense that there are many
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interconnections and buses. A grid may also be considered large because of the computational

difficulty in its analysis. The latter implies that, if power flow computation is considered,

a 39-bus system for instance, is larger than a 9-bus system. This is because, the voltages

at each bus and line flows have to be computed. On the other hand, if the dynamics of

the state variables are to be considered, a 9-bus system with four machines, each modelled

with 6 state variables may be considered larger that a 39-bus system with ten machines,

each modelled with 2 state variables. Large system is used in this work in the sense of

more state variables. The European interconnected system with about 20,000 state variables

is commonly considered a large system. However, some new tools being developed for the

future grid; such as the one considered in this work are extremely computation-intensive. As

such, a system of 100 state variables for example may be considered large if a system with,

say 20 variables, are sufficiently difficult to analyse. It is in this narrow context that large

grid is used in this work.

1.2 Tools for Power System Dynamic Performance Analysis

The tools for the analysis of power system dynamic behaviour can be classified into two:

• nonlinear tools, which are suited for transient stability analysis.

• linear or small-signal analysis (SSA), which is based on the linear techniques and em-

ployed for small-signal stability analysis.

1.2.1 Transient Stability Analysis

Transient stability is the capacity of the power system to remain in synchronism following

a large disturbance. There are several methods for transient stability analysis, which are

basically grouped into time domain simulations (TDS) and direct methods. TDS remains

the most reliable method to investigate nonlinear systems. However, simulating a high di-

mensional power grid could be very time consuming if oscillators are coupled and interact

nonlinearly [22, 23]. Moreover, it does not provide information regarding the degree of stabil-

ity or instability of a power system. It lacks in qualitative and structural information about

the system.

Direct methods such as equal area criterion (EAC) and energy function techniques like

boundary of stability region based controlling unstable equilibrium point method (BCU method)

have their own strengths and weaknesses. EAC uses graphical visualisation to simplify sta-

bility assessment, but limited to two-machine systems. Energy function methods are fast but

not every post-fault transient stability model admits an energy function [24]. In addition
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finding the controlling unstable equilibrium point (CUEP) by BCU is difficult. To enhance the

transient stability analysis, it could be gainful to combine the TDS and the direct methods.

This will reduce the challenges in each method.

1.2.2 Small-signal Stability Analysis

When a disturbance to the system is small enough, the system can be assumed to exhibit

linear behaviour and can be analysed by linearising the system model around its steady-state

operating points. The linearised model can provide many information not explicit in time-

domain simulation. Stability determined with such model and with such assumption is called

small-signal stability.

The first step involved is to linearise the power system differential equations in the neigh-

bourhood of stable operating point. Then, the eigenvalues of the system are used to char-

acterise the stability. The real part and the imaginary parts of an eigenvalue give damping

and frequency information respectively. If the real part of the eigenvalue is negative, the

amplitude of the oscillation decays and the system is stable. If the real part is positive, the

amplitude increases and the system is not stable. For zero real part, the amplitude remains

constant and more information is required for the stability. With the eigenvalues and eigen-

vectors, it is possible to obtain an approximate close-form solution of the nonlinear differential

equations with a given initial condition.

Small-signal stability analysis is a powerful tool for engineers. It presents the numerous

mathematics describing the system in terms that are easy to understand and interpret. Just

by observing the real part of an eigenvalue, an engineer has a feel of the likely behaviour of

the system. SSA tool is almost indispensable in dynamic analysis. The challenge however, is

that the analysis is limited to a neighbourhood of the operating point which the linearisation

is valid.

1.3 Modes of Oscillation

There are several modes of oscillations in an interconnected system. Mathematically, a mode

(or an eigenmode)/natural mode is the term for one eigenvalue/eigenvector pair of the linear

part of a dynamical system. Physically, a mode can be viewed as a unique pattern in which

the stored energy in the system is expended when the system is disturbed. As an illustration,

consider in Figure 1.4, two masses m1, m2, attached to three springs k1, k2 , and k12 . Assume

the end points are fixed, this system has two natural modes of oscillation.

Let the displacements of the first mass be x1(t) and that of the second mass x2(t). The
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m1 m2

k1 k12 k2

x1 x2

Figure 1.4 – Mass-spring system exhibiting two natural modes of oscillation.

equations of motion of the system are given by

mẍ1 = −k1x1−0.3k1x
2
1 − 0.4k1x

3
1 + k12(x2 − x1) (1.1a)

mẍ2 = −k2x2+0.4k1x
2
2 + 0.3k1x

3
2 + k12(x1 − x2), (1.1b)

where nonlinearities (arbitrarily chosen) in the springs are intentionally added for demon-

strations.

If we assume that the displacements are small enough and the equilibrium of the system

is at the origin, the effects of the nonlinear terms (blue in (1.1)) can be neglected and it is

possible to compute the natural frequencies in Hertz for identical springs and masses (i.e.,

k1 = k2 = k12 = k, m1 = m2 = m) as

f1 = 1
2π

√
k

m
, f2 = 1

2π

√
3k
m
. (1.2)

Having assumed a linear system, when the mass m1 is moved by x1 to the right, the spring

k1 pulls the mass to the left with a reaction force k1x1, and the spring k12 pushes the mass

to the left with a reaction force k12(x1− x2). Similarly, when the mass m2 is moved by x2 to

the left, the spring k2 pulls the mass to the right with a reaction force k2x2, and the spring

k12 pushes the mass to the right with a reaction force k12(x2 − x1). Assume k = 5, m = 1,

f1 = 0.36 Hz and f2 = 0.62 Hz. Thus, the two modes are described below :

• Mode 1 - both masses move together at frequency f1 = 0.36 Hz, with the same

amplitude and in the same direction so that the connecting spring (k12) between them is

neither stretched nor compressed. This motion is shown in Figure 1.5a and is obtained

by simulating the nonlinear system (1.1) with small and equal initial conditions for

x1, x2. The FFT of Figure 1.5b confirms the frequency of the oscillation.

• Mode 2 - both masses move at frequency f2 = 0.62 Hz, with the same amplitude but

in opposite directions so that the connecting spring (k12) between them is alternately

stretched and compressed. In this case, the center (node) of the connecting spring is

stationary. This motion is shown in Figure 1.5c and is obtained by simulating the

nonlinear system (1.1) with small, equal but opposite initial conditions for x1, x2. The

FFT of Figure 1.5d confirms the frequency of the oscillation.
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(b) Mode 1—FFT spectrum
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(d) Mode 2—FFT spectrum.

Figure 1.5 – Natural modes of Oscillation of two-mass three-spring system.

Any other motion of the bodies in Figure 1.4 is not natural but a linear combination of the

two natural modes. The two modes described above have two distinct frequencies. Thus,

mode is often used, more loosely, to refer to an oscillation at a characteristic frequency.

Power system can be modelled similar to the system in Figure 1.4, whereby the spring

constant and the displacement are equivalent to the line impedance and rotor deviation

respectively. The reaction force is analogous to the synchronising power of the power system.

Let the force moving these masses represent the generator or fault power transported through

the line. It can be seen from (1.1) and (1.2) that:

• Power flow on the lines can lead to oscillations.

• Higher impedance of the lines can lead to low frequency oscillation.

• Higher impedance of the lines can weaken the ties between machines.

Using more elaborate models, major oscillations in power systems include: electrome-

chanical, control, and torsional modes of oscillation. For electromechanical modes, the most

involved variables are the internal angles and the rotor speeds of the generators. Generally

speaking, power systems low-frequency oscillations are a result of electromechanical coupling

between the transmission network and generators. Control modes are associated with gener-

ator or the exciter units and other control equipment, such as poorly tuned exciters, HVDC

converters, and static var compensators. Torsional oscillation modes are associated with the
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turbine generator shaft rotational system. The major challenge of the power system is the

low frequency electromechanical oscillations which can either be local or inter-area. When

a machine or group of machines that have strong electric ties in an area oscillates and their

oscillations are dominant in the area they are located, it is known as local oscillation. Inter-

area mode involves machines in one area swinging against machines in other areas. It usually

has lower natural frequency in the range of 0.1-0.8Hz [25]. However, with several converter

control-based generators (CCBG) devices in the grid, the above characteristics may not al-

ways be true signatures of electromechanical modes. This is because the CCBGs lead to new

low oscillatory modes akin to the inter-area electromechanical modes of oscillation [12]. This

phenomenon poses a problem in identifying clearly, the actual electromechanical modes. New

methods are being developed to tackle this problem [26]. Analysis of large systems has to

necessarily focus on the critical modes of importance, usually the inter-area modes.

The study of the behaviour of these modes is known as modal analysis. The most common

tool for modal analysis is the SSA which provides much information regarding these oscil-

lations. Since SSA explains only linear behaviour, it is more precisely referred to as Linear

Modal Analysis (LMA).

1.4 Modal Interactions and Nonlinear Modes

When the power system is stressed, the dynamics are not completely described by the natural

modes. In addition to the natural modes, the dynamics can be affected by some higher

order combinations of the natural modes. The effect of these higher order combinations

is called nonlinear modal interaction. The nonlinear modal interaction gives rise to ”other

modes”, which may significantly affect the dynamics of the system. The mechanism, by which

these ”other modes” are formed, will be clearly explained, mathematically, in later chapters.

The concept of nonlinear mode allows for proper understanding, and interpretation of the

phenomenon—nonlinear modal interaction, since it helps to explain the ”other modes”, with

the eigenspectrum. Nonlinear mode is used to describe the extension of a linear mode to the

nonlinear regime. Thus, it is an extension of the invariance property of a linear mode to the

nonlinear regime. Physically, it is the rendering of nonlinear modal couplings, in a way that,

if a particular motion is initiated on a particular mode only; no energy is given to the others,

such that the motion remains on this mode only.

Modal interaction is critical and can either stabilise or destabilise the system. For instance,

the excitation system can introduce modes which interact with the electromechanical modes

of the system, resulting in angle instability. When nonlinear modal interaction occurs, the
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dynamics become difficult to explain with LMA. The modal analysis which takes into account

the nonlinear interactions of modes is known as Nonlinear Modal Analysis (NLMA).

A simple illustration of nonlinear modal interactions can be shown by simulating the

system (1.1) with higher initial conditions (i.e larger displacements of x1, x2). The effect

of the nonlinearities will no longer be negligible and the oscillation will be composed of

the linear (natural) and significant combinations of the linear modes. This is shown in

Figure 1.6. It is clear from Figure 1.6a that mode 1 is dominant. At least, the response

resembles the one in Figure 1.5a. However, the conclusion that linear mode is sufficient
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(b) FFT showing—linear and nonlinear modes.

Figure 1.6 – Example of modal interactions

to understand the behaviour of that system can be deceptive. The FFT in Figure 1.6b

clearly reveals the significant presence of other frequencies, in this case, due to nonlinear

distortions of the natural modes. For example, the two linear modes are identified (0.36 Hz

and 0.62 Hz) with mode 2 having smaller peak. Observe that there is a frequency of 0.72Hz

(i.e., 0.36 + 0.36 = 2 × mode 1), whose amplitude is high. There is also a frequency of

1.08 Hz (i.e., 0.36 + 0.36 + 0.36 = 3 × mode 1), although with smaller peak. In a way,

one can loosely say, there are ”new modes” in the dynamics other than the linear modes. A

common term usually used to describe these new frequencies is nonlinear harmonics, since

they are multiples of the fundamental modes. However, as we shall see in later chapters,

these new frequencies are not necessarily multiples of a fundamental mode but can come

from combinations of different modes. NF provides analytical way to clearly explain the

sources of these frequencies. When a power system is stressed, this phenomenon is present.

Therefore, other information is needed in addition to linear analysis to properly understand

the behaviour.

There are basically two approaches for detecting nonlinear modal interactions in a system—

time-domain-simulation-based methods and closed-form solution methods. In case of time

domain simulation, the time responses are extracted, and then, their spectral components
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decomposed with some tools like Hilbert spectra analysis (HSA), Prony analysis or FFT

(though other methods have been proven to be more efficient). By evaluating the damping

and the frequency, the mode combination leading to a new mode with significant amplitude

can be predicted. The comparison of the new mode with the natural modes can show possi-

ble interaction. The second method extends the LMA to obtain closed-form solution of the

nonlinear approximate model of the system. Then, it enables some definitions which exactly

detect the interacting modes and the new frequency. The most common tool in the second

category is the NF tool. NF method has advantage in that it does not only detect the nonlin-

ear interaction, but also, it renders the system in such a way that the convenient techniques

in LMA can still be employed to describe the system. In other words, it provides a good

way to explain the concept of nonlinear modes. However, it has very serious computational

challenges. The two approaches can be used in a complementary way. Thus, time domain

simulation can be used to verify the solutions from NF method.

1.5 Normal Form Method

The term Normal Form is used in several domains for various connotations. For example, it

is used to refer to database normalisation. In mathematics and computer science, it can mean

any standard way of presenting object as a mathematical expression. Example in this case is

the Jordan normal form. Normal Form as used in this work is a mathematical technique that

simplifies a set of nonlinear differential equations into a simplified one, which can be linear

in some particular cases. The simplification is achieved by introducing sequential nonlinear

coordinate transformations. The resulting equations are then in their simplest form (Normal

Form) [27–30]. This definition of Normal Form is often precisely referred to, as Poincaré

Normal Form, after the work of Poincaré [27]. It is based on the series expansion of a

system of nonlinear differential equations. The NF technique itself is very old but its power

system application to nonlinear modal analysis is quite on the trend. In the last two decades,

researchers at Iowa state university made several publications and promoted the need to

study higher order modal analysis with Normal Form. Their propositions received concern

and in 2005, an IEEE task-force was formed to investigate on the need for inclusion of the

higher order terms in small-signal analysis. The task-force highlighted the potentials of NF

technique and recommended its higher order development in future [31].

The NF approach consists of obtaining a higher order Taylor series expansion of the

nonlinear equations around a stable equilibrium point (SEP). The linear part of the series

expansion is analysed to extract the modal contents. With the modal parameters of the linear
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part, it is possible to define some coordinate change of variables which simplify the nonlinear

parts.

The higher order NF accounts for sufficient nonlinearities and hence, will be suitable for

studying the developments in today’s grid, and even in future. This has been demonstrated

on grid with high penetration of RE/PE in [10].

1.6 Objective and Scope of the Research

The implication of all the changes going on in today’s grid is that the LMA tools designed

for its analysis begin to fail. Yet, the features of LMA tools are so attractive that losing

them will be difficult. Among the nonlinear alternatives, NF method has received highest

research interest up till present day. NF tool has however, a major setback that limits its

application in power system. It is computationally very expensive. Traditional approach

requires the preliminary evaluation of Hessian matrices and eigenvalue expansion, which are

impracticable with standard methods when considering large scale systems. The process of

the eigenvalue expansion is very difficult and needs to be accelerated. In order to improve

on this global power system problem and make nonlinear modal analysis of the future grid

possible, this thesis principally deals with one issue:

• The drastic reduction of the computations needed to apply NF method to

power systems with large number of state variables (so-called large systems).

The thrust of the work is therefore, the simplification of processes for NF application in power

systems. A new method for rapidly evaluating all polynomial coefficients (termed nonlinear

coefficients in this work) needed for NF application is proposed. It is assumed that the

computation of all eigenvalues is possible and the power system network is already reduced

if necessary. Proposed method was applied to four different systems: the IEEE 3-, the IEEE

10-, the IEEE 16-, and the IEEE 50-machine systems. Known applications of NF, such as

participation factor analysis, stability and nonlinear frequency shift predictions are reviewed

and implemented with drastically reduced computation. The other scopes of the research

work are as follow:

• It is assumed that the nonlinearities are smooth and static. By smooth nonlinearities,

it means that the system nonlinearities considered are that which can be represented by

the higher order terms in the Taylor series expansion for the set of system differential

equations. By static nonlinearities, it means that the nonlinearities are not on the

differential parts (terms) of the system model but on the algebraic parts (terms). The

second and third order terms of the equations of the power system are considered in
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this research work. However, higher orders can be considered if deemed necessary and

practicable.

• The LMA is performed to extract the fundamental mode of oscillations of power sys-

tem and associated eigenvectors. Then with the eigenvectors, the original system is

transformed to Jordan form.

• The same Jordan transformation is extended to the nonlinear parts of the Taylor ex-

pansion. But the Jordan transform equivalent for the second and third order terms are

estimated with the modal parameters obtained from the LMA. The original system is

perturbed using the eigenvectors to evaluate the components of the Jordan transform

of the higher order terms (i.e. nonlinear coefficients).

• Both real-valued and complex-valued NF are considered for second order and first order

power system models respectively. For the second order model, the theory of nonlinear

normal mode (NNM) adapted from mechanical engineering domain is extended to study

power system oscillation.

• New method for selective application of NF to the study of nonlinear modal interactions

was proposed. Previous indices for nonlinear modal interactions were used to study

modal interactions based on the selective method for NF proposed.

• Based on NNM theory, a new method for monitoring instability of modes in a multi-

machine power system was developed.

• The time simulations were conducted to verify inferences made from NF technique,

regarding the system dynamic behaviour.

Therefore, the research work utilises a combination of normal form theory, nonlinear normal

mode theory, linear system techniques, Taylor series expansion, mode excitation technique,

and time-domain simulation.

1.7 Contributions of this PhD Research Work

In response to the research problem, this thesis has made the following contributions:

1. To the knowledge of the author, this thesis is the first application of NF to power system

study without the usual preliminary Taylor series expansion. This thesis proposes a

fast method to obtain the needed nonlinear coefficient for NF model without Taylor

expansion and the associated Hessian matrices computation. By avoiding the building

of Hessians, the NF analysis becomes fast.
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2. In terms of NF application to second order power system model, this thesis reports

the largest test case ever, considering third order nonlinearities. The application of NF

to second order power system model without any complex variables, using NNM is a

new concept not well exploited. To the author’s knowledge, the largest reported test

case of such application involves only four generators. The technique developed in this

thesis allows the extension of the capability of the previous proposals to the study of

more than fifty machines in a convenient computational time.

3. This thesis introduces new and computationally-reduced tool for monitoring electrome-

chanical mode instability in an interconnected power system. The proposed method has

potential for on-line application and can be used by power system operators to make

quick and rough estimation of modes’ proximity to instability.

4. The new approach to NF analysis proposed in this thesis opens the way for selective

NF application in power systems. For example, this thesis proposes a fast NF technique

for power system modal interaction investigation, which uses characteristics of system

modes to carefully select relevant terms to be considered in the analysis. This leads to

a very rapid nonlinear modal analysis.

5. To the author’s knowledge, there is no dedicated software for NF application due to

its computational complexities. The proposed method allows the reuse of only the

information from linear analysis, to evaluate the coefficients of all nonlinear terms, in

a linearly-simple and computer-friendly fashion. Thus, the implementation of NF with

power system commercial software like EUROSTAG®, which already has linear and

transient analysis tools embedded, is achievable.

6. Although certain constraints precluded some further experimentation and validation,

this thesis opens up several research problems for future researchers. For instance,

the criteria proposed for selective NF applications can be investigated for 100% PE

grid. Also, further computational reduction using balanced realisation technique was

suggested. This could be well explored for very large systems.

Some of the main contributions of this thesis are validated by the following articles which

were drawn from it:

• N. S. Ugwuanyi, X. Kestelyn, O. Thomas, B. Marinescu and A.R. Messina, “A New

Fast Track to Nonlinear Modal Analysis of Power System Using Normal Form,” IEEE

Trans. Power Syst., vol. 35, no. 4, pp. 3247-3257, 2020.
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• N. S. Ugwuanyi, X. Kestelyn, B. Marinescu and O. Thomas,“Power System Nonlinear

Modal Analysis using Computationally Reduced Normal Form Method,”Energies, vol.

13, no. 5, p. 1249, 2020.

• N. S. Ugwuanyi, X. Kestelyn, O. Thomas, and B. Marinescu, “A Novel Method for

Accelerating the Analysis of Nonlinear Behaviour of Power Grids using Normal Form

Technique,” in Innovative Smart Grid Technologies Europe (ISGT Europe), 2019.

• N. S. Ugwuanyi, X. Kestelyn, O. Thomas, and B. Marinescu, “Selective Nonlinear

Coefficients Computation for Modal Analysis of The Emerging Grid,” in Conférence des

Jeunes chercheurs en Génie Eléctrique, 2019.

• N. S. Ugwuanyi, X. Kestelyn, B. Marinescu, and O. Thomas, “Speedy Technique for

Selective Nonlinear Analysis of Electromechanical Modes of Future Grids,” European

Journal of Electrical Engineering: UNDER REVIEW.

1.8 Thesis Outline

The thesis is divided into 6 chapters described as follows.

Chapter 1 provides context as well as the statement of the problem. The motivation,

objectives and the main contributions of this research work are also presented in this chapter.

Chapter 2 presents a detailed literature review dedicated to Normal Form applications

in power systems, challenges, and the existing proposals to mitigate these challenges. Some

background information are presented as well. Also, the scientific position of the current

work globally and in L2EP1 is established in this chapter.

Chapter 3 describes the power system models used in this work and the Normal Form

method due to these models. Simple examples are used to explain the NF method. Also, in

this chapter, the challenges encountered in NF applications are discussed and demonstrated.

Chapter 4 presents a detailed documentation of the proposed method for computing all

the nonlinear coefficients, both for second and first order power system models. Examples

are presented to explain the method. Thereafter, several larger systems are tested. The pro-

posed method is compared with symbolic tool and the computational efficiency and accuracy

1L2EP is the french research laboratory in which the present PhD was prepared. L2EP stands for Labo-
ratory of Electrical Engineering and Power Electronics
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extensively discussed in this chapter. Also, the time domain simulations are presented to

support the results.

Chapter 5 presents the practical power system applications of NF method facilitated by

the proposed method. In this chapter, new proposals for studying power systems based on

NNM are presented and validated with numerical simulations on IEEE 3- and IEEE 50-

machine power systems. Also in this chapter, new approaches for selective study of modal

interactions and participation factors are presented.

Chapter 6 presents conclusions of this work and suggestions for future work.

Finally, the details of the third order normal form for the power system equations and the

data for the IEEE 3-machine system are given in Appendices D and E respectively. Other

interesting appendices are also presented.
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Literature Review

“That is part of the beauty of all
literature. You discover that
your longings are universal
longings, that you’re not lonely
and isolated from anyone. You
belong.”

F. Scott Fitzgerald
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Introduction

In chapter 1, it was stated that the thrust of the thesis is the simplification of the process

involved in Normal Form application. It was also stated that stressed systems exhibit increased

nonlinearities which lead to nonlinear modal interactions. These interactions can be positive

or negative, phenomena beyond the scope of linear analysis. The exploration on the NF

method, advocated since last two decades by researchers in IOWA state university; and later

by other laboratories in USA, Mexico, Japan, China, and recently France (L2EP1), highlights

NF’s potentials for better analysis of stressed systems ( hence, for present and future grids).

Several other research laboratories worldwide are working on Normal Form method and its

applications to modal analysis, both in power systems and in other fields. This chapter is

dedicated to the review of NF applications in power systems. The aim of the reviews is to

bring out the relevance of Normal Form as a tool in power systems; its challenges and the

existing proposals to mitigate these challenges. The position of the thesis globally is then

established. The reviews are sectioned for easy reading and some background information are

provided. The chapter starts with a concise appraisal of linear modal analysis, upon which

the developments of nonlinear modal analysis are based. The idea is to show the rich features

of linear analysis which are emulated and expanded by the Normal Form.

2.1 Revisiting Linear Modal Analysis Tools

Linear modal analysis is widely applied in power systems to study and provide solutions to

oscillation problems. The dynamical behaviour of power systems can be represented by

ẋ = f(x,u), (2.1a)

0 = g(x,u). (2.1b)

In (2.1), x is a vector of the state variables and u is a vector of input. The expressions

of x depend on the model being considered. A system described with differential equation

(2.1a) and the algebraic equation (2.1b) is said to be a differential-algebraic-equations (DAEs)

system. A linear model is obtained by linearising the nonlinear system around an operating

point, usually performed in the neighbourhood of SEP.

Assume x0,u0 to be initial state vector and the input vector respectively, which corre-

spond to the equilibrium point, then, x(x0,u0) is the solution of (2.1) with ẋ = 0. For small

perturbation, the new states and inputs are denoted as x = x0 + ∆x, u = u0 + ∆u, where

1L2EP is the french research laboratory in which the present PhD was prepared. L2EP stands for Labo-
ratory of Electrical Engineering and Power Electronics
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∆ stands for increment. Linearisation is an assumption that if the perturbation is sufficiently

small, first term of the Taylor series expansion can approximate the dynamics of the nonlinear

system. It is possible to put the algebraic equations into the differential ones. Therefore, the

linear model is given by

∆ẋ = A∆x + B∆u, (2.2a)

(2.2b)

where the Jacobians, evaluated at the SEP are:

A = ∂f
∂x |x0,u0 , B = ∂f

∂u |x0,u0 .

Under free motion (i.e. zero input), the system (2.2a) can be be written as

∆ẋ = A∆x. (2.3)

The equilibrium can be shifted to the origin so that the vector of state variables x represents

perturbations from the equilibrium. Therefore, the linear model under free oscillation is given

as

ẋ = Ax. (2.4)

The eigenvalues and eigenvectors are computed from A by solving the following eigenvalue

problem (A− λI)U = 0, where I is an identity matrix, U is a matrix with each column

corresponding to one eigenvalue λi of the system, so called right eigenvectors. With the right

eigenvectors determined, the complementary vector V is determined by solving VA = λV,

where V is a matrix with each row corresponding to an eigenvalue, so called left eigenvectors.

Participation factor is defined with left and right eigenvectors as

Pki = vkiuki. (2.5)

where vki and uki denote the k-th components of the eigenvectors vi and ui. The participation

factor is a dimensionless quantity which represents the measure of the participation of the

state variable xk in the i-th mode.

In LMA, it is not always easy to isolate the parameters that significantly affect the dy-

namics due to the cross-couplings existing among the state variables. These cross-couplings

are removed by putting the linear model in Jordan form. Jordan form is obtained by in-

troducing a new state variable through a linear transformation, using the eigenvectors. The
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linear transformation (also called similarity or near identity transformation) is of the form

x = Uy, (2.6)

where y is the vector of the new state variable.

Differentiating (2.6) and substituting into (2.4) yields

Uẏ = AUy. (2.7)

Pre-multiplying both sides of (2.7) by the left eigenvector matrix yields

ẏ = Λy, (2.8)

where Λ = VAU is a diagonal matrix with the eigenvalues on the diagonal. The system

(2.8) is said to be in Jordan form since the eigenvalues are distinct. Since the system is

now decoupled, each element of y corresponds to a particular eigenvalue (mode). Thus, the

variable y is also called modal variable and the model (2.8), modal model.

Hence, the solution of (2.8) for the i-th Jordan form variable can be written as

yj(t) = yj0e
λjt, (2.9)

where yj0 is the j-th initial condition in the Jordan form coordinate system. Then the closed-

form linear solution in the original machine states for an N -differential system is obtained by

using the transformation in (2.6) as

xi(t) =
N∑
j=1

uijyj0e
λjt ∀i, j = 1, 2, . . . , N, (2.10)

where uij is the element in the i-th row and j-th column of the right eigenvector U.

Countless number of researches and publications exist, based on linear analysis. It has

been used to analyse power system’s inter-area oscillation phenomenon in [25, 32–34]. Sen-

sitivity analysis performed in linear analysis helps to understand which state variable (and

from which machine) participates more in a particular mode. It also helps to know which

groups of machines will swing together or against themselves when a mode is excited. With

the linear techniques such as observability and controllability, the system eigenvectors can

help in designing power system controls [35]. Also, it helps to know the optimum location

for siting PSS [36]. Linear tools have gained even much wider usage with the developments

in power electronic converters. Researchers in L2EP are developing several control strategies
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for power electronic (PE) converters for power grid, based on the linear analysis [37–39].

To illustrate the benefits of LMA, let us consider the system in Figure 2.1. The complete

data for the system are presented in Appendix E. Each of the machines is represented with

2 state variables (rotor angle and speed), which means the size of the system is 6.

G1

G2 G3

2 7 8 9 3

65

4
1

Area 2

Area 1

Figure 2.1 – IEEE 3-machine 9-bus power system

The eigenvalues of the system are given in Table 2.1. Without time-domain simulation,

Table 2.1 shows immediately, at least, three important features of the system—(1) there are

two modes of oscillation with frequencies 2.2 Hz (local) and 1.4 Hz (inter-area)2; (2) these

modes are stable since they have negative real parts; and (3) these modes are poorly damped

since they have real parts near to zero and damping ratios much less than 5%. The work of a

control designer, is to ”push” the real parts of these modes (eigenvalues) far into the negative

half-plane.

Table 2.1 – Eigenvalues

Mode Eigenvalue Frequency (Hz) Damping ratio (%)

λ1,2 -0.0147±13.72j 2.20 0.11
λ3,4 -0.0075 ± 8.82j 1.40 0.09
λ5 -0.0087 0 100
λ6 -0.00 0 -

Table 2.2 shows the participation factor analysis corresponding to the system modes. The

participation factors give another vital information not apparent in time-domain simulations.

2Recalled from chapter 1, Inter-area oscillation mode involves machines from different areas, while local
oscillation mode involves machines in a particular area.
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It is clear that mode 1 is more associated with G2 and G3, while mode 2 is more associated

to G1 and G2. To improve the damping of mode 1 for instance, it is better to locate the PSS

in the area of the system closer to G3. The location of the PSS in the area closer to G1 may

be a bad choice. In the same vein, location of the PSS in area of G2 is more preferable for

improving the damping of mode 2.

Table 2.2 – Mode-in-state participation factors (absolute values) for the system modes

λ1 λ2 λ3 λ4 λ5 λ6 State

0.0032 0.0032 0.1284 0.1284 0.3564 0.3804 δ1
0.0032 0.0032 0.1284 0.1284 0.0000 0.7368 ω1
0.1033 0.1033 0.3081 0.3081 0.3163 0.1393 δ2
0.1033 0.1033 0.3081 0.3081 0.0000 0.1770 ω2
0.3934 0.3934 0.0635 0.0635 0.3273 0.2411 δ3
0.3934 0.3934 0.0635 0.0635 0.0000 0.0862 ω3︸ ︷︷ ︸ ︸ ︷︷ ︸

Mode 1 Mode 2

Furthermore, by plotting the right eigenvectors corresponding to the angles of the ma-

chines, it is possible to determine how the machines in the system will swing, should any of

the modes be excited. Such plots are known as the mode shapes and are shown in Figure 2.2.

90

270

180 0

G1

G2

G3

(a) Mode 1

90

270

180 0

G1

G2

G3

(b) Mode 2

Figure 2.2 – Mode shapes for the two oscillatory modes

Figure 2.2a shows that if mode 1 is excited, G2 and G3 will swing in 180◦ phase opposition.

G1 is not apparent in the figure because its participation to this mode is very low. If the

system in Figure 2.1 is considered a two-area power system, then mode 1 can be viewed

as local modes, since G2 and G3 are in one area. Figure 2.2b shows that when mode 2 is

excited, G2 and G3 will swing together and in 180◦ phase opposition with G1. This mode

can be viewed as inter-area, since G1 is in one area while G2 and G3 are in another area.

The information provided by mode shapes can be used as a guide in aggregating machines or

24



CHAPTER 2. LITERATURE REVIEW

model order reductions [see, 40].

To observe these oscillations in time-domain simulation, let us try to excite these modes

almost separately. Since mode 1 is more associated to G3, it can be excited by a disturbance

near G3. A three-phase fault at bus 9, applied at 1 s and cleared after 0.01 s produces the

response in Figure 2.3a. It is clear that G2 and G3 are in phase opposition at approximately
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(a) Mode 1
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Figure 2.3 – Excitation of the two oscillatory modes

2.2 Hz, with G1 almost unaffected. This is in agreement with the LMA in Figure 2.2a. A

disturbance at bus 2 will excite mode 2, but also significantly excite mode 1. This is because

G2 has also significant participation in mode 1. In general, inter-area modes involve many

machines in the system and can be difficult to excite without significant excitation of some

local modes. Since G1 has very low participation in mode 1, a disturbance near G1 will excite

mode 2 with minimum excitation of mode 1. A three-phase fault at bus 4, applied at 1 s and

cleared after 0.01 s produces the response in Figure 2.3b. The observed oscillation is coherent

with the LMA result of Figure 2.2b.

Notice that in Figure 2.3, it is easy to observe the pattern of the oscillations, but it is not

easy to pinpoint the exact states responsible. Indeed, linear analysis provide very interesting

characteristics of a system which are not very apparent in time-domain simulation tools.

As seen in chapter 1, the response of the power system is considered most often as a

combination of natural modes of oscillations present in the system. The eigenvalues obtained

from linear analysis should represent the fundamental frequencies which are observed in the

motions of the different machines in the system. It was also shown in chapter 1 that in a

stressed system with significant nonlinearity, the linear analysis may not be able to charac-

terise properly the dynamics due to significant modal interactions and harmonic distortions.

However, as seen above, it will be difficult to totally get rid of LMA due to the information

it provides. Moreover, the nonlinear effects can be better understood as the combinations of

these linear modes. As [41] says, ”The nonlinear effects should be considered as additions
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to the linear-modal picture, not as replacements for it”. Research interest has been kindled

towards developing nonlinear modal analysis tools (such as NF), able to conserve the kind of

information available with LMA but in extended manner. Such tool can be called extended

linear analysis tool.

2.2 Basic Idea of Normal Form

When approximating the nonlinear system model, the inclusion of higher order terms, which

leads to NLMA, augments the information provided by LMA and enables better dynamic

characteristic studies of the power systems. Normal Form uses sequence of nonlinear co-

ordinate transformations to remove the nonlinearities in the approximate Taylor expansion

model, to obtain a simplified system, easy to analyse [30].

The basic idea of NF is depicted with Figure 2.4, while more details are presented in the

next chapter. Notice that the operations from block 1 and block 2 are the same operations

discussed for the linear model in the Section 2.1. The only difference is that the expansion is

extended to higher orders. While the Jordan transformation in linear case totally decouples

the system (see (2.8)), it does not decouple the nonlinear parts for the higher order model.

The job of NF is to use block 3 to remove these nonlinear couplings and obtain a simple

system similar to (2.8).
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Figure 2.4 – Representation of the Basic idea of Normal Form Method

Although the simplified system ż = Λz resembles (2.8), the solution is different. The

difference is in the change of variables which is linear in LMA (2.6) and nonlinear in NF.

Thus, the ”magic” of NF is the inclusion of nonlinear information in a linear dynamical

system. The resulting simplified system has many advantages and allows the extension of
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many linear techniques. For instance, (1) it provides information on nonlinear interactions of

modes, which help to design better controls for power systems; (2) nonlinear mode-in-state

participation factors can be defined for better siting of PSS; (3) modal interaction also gives

insights into the stability of the nonlinear system; (4) the nonlinear interaction enables one

to explain the sources of unknown frequencies appearing in time responses.

2.3 Applications of Normal Form in Power Systems

As earlier mentioned, the nonlinear contents of the NF solution add several vital information

to the linear analysis. These extra information make NF a veritable tool in power system

studies. Several works have been reported on the applications of NF in power system.

As highlighted in chapter 1, power system controls can lead to some nonlinear behaviour

depending on the control parameters and the designs. The authors in [42, 43] used NF to

investigate the effects of modal interactions on the control performance. The results showed

that modal interaction can have significant effects on the control performance. The results

aroused interest in the use of NF for control designs. In [44], an approach is proposed to

reduce the nonlinear modal interactions of a stressed power system and improve the transient

stability of the system through re-tuning some parameters of the generator excitation system.

A nonlinearity index was developed using NF, then based on the index, a sensitivity function

was formed to indicate the dominant excitation system parameters in the nonlinear behaviour

of the system. These parameters are tuned to reduce the nonlinearity index, and hence reduce

nonlinear modal interactions. A bifurcation subsystem-based control design methodology to

study nonlinear effects of a robust µ-synthesis power system stabiliser (MPSS) was proposed

in [45]. In order to include nonlinear information, the authors introduced NF which enabled

them to define second order interaction indices used in the design. In [46], a decentralised

method for nonlinear control of oscillatory dynamics in power systems was proposed. The

nonlinear control scheme was derived using NF and the scheme ensures both transient stability

and small-signal stability.

Linear analysis is suited for power system control designs due to some linear techniques

like observability and controllability of states/modes. The linear analysis was extended to

define nonlinear measures of modal controllability and observability based on NF method

in [47]. These nonlinear measures for modal controllability and observability, allow for the

definition of nonlinear participation factors. Participation factor analysis is very crucial in

siting PSS in a power system. Various research works show that the nonlinear participation

factors analysis, possible with NF, could provide more reliable information than the linear
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one (see for example [31, 48, 49]). As a result, better methods for designing [50, 51] and

siting [52, 53] PSS using NF have been developed.

In a stressed power system, modal interaction can seriously affect the entire stability.

The authors in [54] showed that power system stability sub-modes interact with each other,

especially when the power system presents strong nonlinear characteristics. Stability sub-

modes were defined as the modes which participate more in voltage and angle state variables.

Since nonlinear modal interactions can be either negative or positive, they shade lights on the

system stability. By studying the nonlinear interactions of modes during disturbance, stability

indices using NF were proposed in [55, 56]. The authors focused on the interaction of weakly

damped oscillatory modes, which determine to a larger extent, the stability of the system.

The effect of higher order nonlinearity was described in the form of the change in oscillation

characteristics (damping factor and period) with respect to the change in amplitude. Then,

using NF, approximated stability regions of oscillation modes in state space were obtained.

Similar approach was followed to define a stability index in [57]. However, the authors added

a nonlinear term omitted in earlier works and reported improved stability analysis.

The SVC has been widely employed in power systems to provide reactive power and

maintain busbar voltages. Studies have shown that the controllers of PE devices such as

SVC, unified power flow controller (UPFC), and other FACTS devices, can have unusual

nonlinear interactions in the system. A main feature of a UPFC is its multiple control

function that may be implemented by multiple controllers (i.e power flow controller, AC

voltage controller and DC voltage controller). Zou, et. al. [58] investigated the interactions

among the multi-control channels of UPFCs using NF. The nonlinear participation factor

was developed with NF and used as an index to indicate the extent of nonlinear interaction

among these UPFC controllers. The results showed that the negative interactions among the

stable UPFC individual controllers result in poor control performance and even the closed-

loop instability. Also, the interaction between DC voltage controller and active power flow

is stronger than that between DC and AC voltage controller. Similar study was done in [59]

where the NF method was used to analyse the interaction of SVC with inter-area modes

and the interaction among multiple SVCs. A study case showed negative interactions among

multiple SVC controllers.

When there is a severe contingency in power systems such as a loss of a major HVDC

system, different machines can separate to form groups. This further cascades the protection

system. Identification of the grouping pattern, which would account for the nonlinear behav-

ior of the system and the nonlinear interaction between modes of oscillation, would provide

a basis for developing a systematic procedure to create islands in the remaining system. The
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authors in [60] used NF to develop an analytically based index which identifies the onset

of the inter-area separation of the generators. This index was used in [61] to determine the

natural groupings which are formed by the machines in Manitoba Hydro power system due

to nonlinear interaction.

Contrary to the assumption in the traditional LMA applied to power system studies,

when a nonlinear system is subjected to large disturbance, the frequencies of the modes are

not constant. The frequency of oscillation is changing with the amplitude. In the field of

mechanics, NF has been employed to accurately explain the amplitude-dependent frequency

shifts exhibited by nonlinear system under disturbance [62–64]. This concept can easily be

adapted for the study of power system electromechanical modes, under large disturbance.

The nonlinear transformation involved in NF leads to a complex representation of the state

variables, thereby befuddling its physical meaning. Also, NF operates with differential-only

equations which makes proper utilisation of the sparsity of power system DAEs difficult. The

authors in [65] proposed a method of applying NF, which exploits the sparsity of the power

system structure and preserves the physical meaning of the original variables. Real valued

NF transformation has also been proposed and used for predicting the stability boundary of

the power systems in [66].

The usefulness of NF analysis in power system triggered more researches to ensure its

accuracy. A fundamental study was conducted in [65, 67] to investigate the effect of higher

order modal interactions on the system dynamics. Reference [68] proposed some indices

based on Neumann series convergence, for validating the NF solutions. Only quadratic non-

linearities were considered. Recently, [69] extended the Neumann series convergence to study

the accuracy of higher order Normal Forms. It was concluded that higher order NF could

have a smaller convergence zone. The implication of the results however, requires further

verification as it was based on a single-machine-infinite-bus (SMIB) power system. An upper

bound for validity limits of NF was proposed in [70], where NF was done up to order 25.

Generally, determining the validity region of NF without the comparison of its solution with

the original solution is difficult.

Indeed, there are so many applications of Normal Form in power systems and different

versions of NF exist in literature as discussed in the next subheading.

2.3.1 Higher Order Normal Form Methods Existing in Literature

Depending on the order of the Taylor series expansion, two Normal Form approximations

are recently reported. They are: (1) Second order Normal Form (NF2) and Third order

Normal Form (NF3). Most of the works reported so far in literature are based on second
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order approximation, as in [7, 44, 49, 52, 61]. As reported in the previous section, NF2

has been used for: predicting the inter-area separation and grouping of generators under

fault; defining 2nd order nonlinear participation factors; designing and siting of PSS. A lot of

improvement has been done to linear analysis by including second order terms in the analysis.

However, there are some issues with second order approximations: 1) it can study only second

order interactions but the third order modal interaction can be significant; 2) the stability of

the system when studied by second order approximation is same with linear analysis; 3) its

validity region is still small and not remarkably far from the LMA. With these shortcomings,

researchers started exploring higher order NF tools.

With third order Normal Form approach, it is possible to study both second and third

order modal interactions and obtain some insights into the system stability. Applying non-

linear transformation to third order Taylor expansion can generate third order terms due to

residuals from second order transformation. In literature, different third order Normal Forms

have been proposed, many not including the second order residuals in the system dynamics.

In [51] a new parameter for siting PSS based on third order Normal Form was proposed but

the residual term was neglected. Similar omission was also observed in [71]. A fundamen-

tal study was done based on third order approximation in [72] and [67] but the validity

of their approach is very small because they not only neglected the residual term but also

neglected the inherent third order resonance in poorly damped system. At L2EP, Tian [57]

showed that the accuracy of the third order approximation is affected if both or either of the

residual and third order resonance terms are neglected. Currently, at L2EP Arts et Métiers

Institute of Technology, we are investigating the feasibility of NF3 method in characterisa-

tion of the stressed power system’s dynamic behaviour with emphasis on its computational

reduction. The preliminary results are reported in [73–76] in addition to this present report.

To summarise, two approximations for NF exist:

• Second Order Normal Form, where the Taylor series expansion is truncated at order

2. That is

ẋ = Ax + F2(x), (2.11)

where, F2(x) contains only second order terms. This type of NF is well developed in

literature, although applications are mostly on very small test cases.

• Third Order Normal Form, where the Taylor series expansion is truncated at order

3. That is

ẋ = Ax + F2(x) + F3(x), (2.12)

where, F3(x) contains only third order terms. Existing NF3 versions are summarized
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in [57].

Although, higher order NF gives more accurate results in analysis, the improvement is

basically due to the order of nonlinearity considered in the Taylor expansion and not

because of NF application. What NF does is to simplify the nonlinearities. Figure 2.5

shows typical behaviour of 1st, 2nd and 3rd order Taylor series approximation for no

stress and stressed conditions.
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Figure 2.5 – Typical responses for 1st, 2nd , and 3rd order Taylor approximations under no
stressed/stressed condition for a two-state variable SMIB system.

It can be seen that the more the order of Taylor expansion, the closer the approximation

to the exact (original) system. For this reason, the accuracy of NF solutions are sometimes

determined by comparing with its Taylor expansion model instead of the original system.

2.3.2 Real Normal Form Transformation

The strength of the conventional NF is its ability to decouple or simplify the model of a

nonlinear system. However, it usually operates with first order system models, which lead to

complex variables in NF coordinate. As noted earlier, when the variables in NF coordinates

are complex, the physical meanings of the states are lost. One starts with physical variables

(e.g speed, angle, . . . ) but ends in a simplified system whose meanings are difficult to inter-

pret. To overcome this challenge, a real NF approach for studying resonant power system

was proposed in [77]; however, it is based on 2nd order approximation. As a result, it has

little or no stability information.

In vibration mechanics, the theory of Nonlinear Normal Modes (NNM) is common. Ac-

cording to Shaw and Pierre [78], Nonlinear Normal Mode is defined when all displacements

and velocities can be related to a single pair of displacement and velocity. In the theory of

normal modes, a master mode (i.e. the mode of interest) is chosen, and the normal mode is

then defined by a formulation such that the remaining linear modes of the system (the slave

modes) depend on the master mode in a manner which is consistent with system dynamics.
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This approach allows some manipulations that get rid of the complex quantities. NNM has

also been adapted for studying power system electromechanical oscillations in [79, 80]. The

above works are still based on 2nd order approximation and are bereft of stability informa-

tion. In [62, 63] it was shown that NNM can also be obtained up to 3rd order, by just

nonlinear change of variable defined in such a way that complex quantities are avoided. The

approach follows same Poincaré and Poincé-Dulac NF theory [27, 81]. The difference here is

that there is no preliminary complex quantity computed. Also, the determination of Taylor

series coefficients is done with 2nd order differential equations. With this approach, an an-

alytical expression of the nonlinear frequent shifts can be easily defined. Recently, NF-like

nonlinear modal decoupling approach based on 3rd order approximation has been proposed

in [82, 83]. Here the multi-machine power system is decoupled into independent oscillators.

In these works, complex quantities are first computed and later got rid of, by some modal

transformations. A real Normal Form is eventually obtained, however, the preliminary com-

plex quantities increase the computation. Decoupled system has advantage in that analysis

on the dynamics and stability related to each mode can be performed on the corresponding

oscillator, which will be easier than on the original system.

2.3.3 Summary of NF Applications in Power Systems

From the above reviews, the application of NF in power systems can be summarised as follows:

1. Enables better power system control design and tuning. The nonlinear mode-in-state

participation factors can offer better location for placement of PSS to damp inter-area

modes.

2. Unravels the sources of unknown frequencies observed in the system.

3. NF3 particularly, provides expanded stability insights not possible with linear and NF2.

4. NF3 explains the proper behaviour of the natural frequency when subjected to distur-

bance. In other words, it explains the amplitude-dependent frequency shifts inherent

in a nonlinear dynamics.

2.4 Present Challenges with Normal Form Method

The precious NF technique has been challenged by its computational complexity arising from

the inclusion of higher order terms in the Taylor series expansion. As a result, most studies

are based on inclusion of 2nd order terms. Current researches emphasize the deficits of 2nd

order NF in the light of nonlinearly growing power systems [57]. Consequently, it is not
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possible with the present computing technologies to apply NF to large power system. Thus,

the benefits of NF can not be fully exploited. To extend the NF application to large power

systems and exploit all its benefits, preliminary steps must include solving this computation

problem.

In order to reduce the computational burden, the authors in [31, 84] opined that if the

interacting modes are accurately determined by higher order spectra (HOS) analysis or prony

method, several computations can be restricted to the interacting modes. The implementation

of this suggestion for NF however, does not exist in literature. Moreover, these preliminary

works are not in themselves simple, since they are sensitive to simulation data considered

and prony is also computationally demanding. The authors in [82] suggested that if there is

no strong resonance, coupling terms associated with non-conjugate eigenvalues may not have

significant contribution to the system nonlinearity in a classical power system. Therefore,

selective computation can reduce the computational burden. Two challenges however are—(

1) a prior knowledge of the significant terms; (2) convenient computational technique to focus

on the significant terms.

A reduced order NF study was proposed in [85], where some interactions were neglected

based on their damping rates and nearness to resonance. In order to estimate the NF coeffi-

cients relating to these interactions, the time-domain signal is fitted to the needed coefficients

in least square (LS) sense, which makes the modal reconstruction fast. The algorithm re-

quires prerequisite time-domain simulation data which determine the accuracy of LS. More

data for accuracy increases the computation which makes the claimed NF reduction unclear.

Also, while this method makes simulation in NF space fast, it hides the actual contribution

of each eigenvalue combination which is key to the study of modal interaction. Moreover, NF

is developed for analytical results and not for time-domain simulations.

Some researchers advocated for Modal series (MS) method in order to do the same analysis

as with NF [86, 87]. MS is similar to NF, but nonlinear transformation is avoided. MS applies

Voltera series theory to approximate the system response as an infinite series [88]. Since

nonlinear transformation is avoided, it is claimed to have advantage of always retaining the

physical meaning of the state variables. However, most recent comparison of both methods

shows NF to be more accurate and less burdensome under 3rd order consideration [89].

Moreover, processes involved in block 1 and block 2 in Figure 2.4, which are burdensome in

NF are exactly the same for MS.

Inspired by the NF potentials, Netto et al. [90] proposed an alternative method based on

Koopman Mode Decomposition (KMD), which enables the computation of nonlinear partici-

pation factor in similar manner as done with NF. However, a comparison of both approaches
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showed same computation complexity [91]. A Very recent work reveals that the efficiency of

KMD largely depends on the choice of the observable state variables, and one is never sure

the exact states to observe to ensure good results [90]. This review motivates the need to

expand Normal Form analysis to adapt to more complex system representations.

The major difficulty in NF is encountered in:

• Building the approximate model and computing its numerous nonlinear coefficients.

That is, computation of the Hessian matrices in block 1 and the nonlinear coefficients

(which also form Hessian matrices) in block 2 (see Figure 2.4).

• Finding the initial condition in NF space from initial values in physical space. That is,

the initial condition needed in block 4 to ”move” the NF system back to physical space.

The latter involves solving nonlinear optimisation problem, which may be difficult to converge,

or may even converge to a wrong solution. The former arises due to the numerous coefficients

needed for the analysis, which have to be computed. These coefficients increase exponentially

with system size.

In order to exploit in details the benefits of Normal Form, several types of power system

models such as grids including virtual synchronous machines (VSM), HVDC links, wind

farms, and PVs have to be investigated. This means that tools developed for NF have to

be easily adapted to a change of model in order to be applicable to different types of grid.

The conventional method for building Normal Form approximate models is not convenient

since it involves the expansion of the system equations by Taylor series up to desired order.

This gives rise to higher order derivatives and Hessian matrices difficult to evaluate for large

number of variables.

Basically, four approaches may be used to build the Hessian matrices and then compute

NF coefficients:

• The expressions for the Hessian derivatives may be pre-defined and then stored as a

library in advance (Hand-derived differentiation),

• Symbolic tools can be used to perform the higher order Hessian derivative,

• Numerical differentiation technique is achievable,

• Automatic differentiation (AD) method also exists [92–96].

Hand-derived differentiation entails deriving traditionally, all possible derivatives needed

in the analysis. If the expressions for the Hessian derivatives are defined in advance, only

substitution of the operating point is needed (e.g. in [7, 8] for NF2). As a result, this
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approach is expected to be faster once the expressions are defined. However, any change in

the model overhauls the whole exercise. At 3rd order, this approach can be cumbersome. It

can take days and it is easy to make mistakes after the painstaking work. In this aspect, this

method is very conservative and therefore not good for different models. This is probably

the reason why most NF applications to a relatively large system follow similar power system

model (see [53, 91]).

Symbolic differentiation programs manipulate formulas to produce new formulas, rather

than performing numeric calculations based on formulas. Examples of popular commercial

software with symbolic computing capability include, MATLAB®, Maple® and Mathematica®.

Symbolic tools have been employed in evaluating NF coefficients in [82, 83, 97–99]. Sym-

bolic computation minimizes error while dealing with higher order differentiation, but it is

generally too slow and does not scale to large system.

Numerical differentiation computes an approximation to the derivative of a function by

suitable combinations of the known values of the function. It simplifies derivative problems,

however it accumulates error. The higher the derivative, the more problematic is the round-

off error. For 2nd and higher order derivatives where possible, and often, for cross-derivatives,

the error can become substantial. This is not desirable especially since the Taylor series is in

itself an approximation.

Automatic differentiation is a method for efficiently augmenting computer programs

with statements for the computation of derivatives; motivated by the fact that every compu-

tation is made up of elementary mathematical operations like sine, cosine, multiplications,

and so on [92]. Considering the various combinations of these elementary operations, AD

exploits the structure of the chain rule to evaluate differential operators of a function as the

function itself is being evaluated as a computer program [94]. AD overcomes the problems

of numerical and symbolic differentiation and has similar efficiency as hand derived deriva-

tives but there are also some concerns. AD implementation requires high level skills almost

reserved for the experts and AD software developers. Decomposing a computer program

into the necessary component functions required in AD is far from simple. A computation-

ally naive implementation of AD can result in outrageously slow code and excessive use of

memory [93, 95]. There exists no standard set of problems cutting across the varieties of

AD applications, and the development of a package is usually driven by a specific class of

problems [93]. AD implementation for higher order derivatives is very complicated and far

from the well established first order implementation. A common method is to repeat AD of
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the first order till the desired order is obtained, an approach which Betancourt [94] described

as inefficient.

For polynomial nonlinearity, such as assumed in NF, not all terms will be very important

for some studies. This necessitates selective evaluation of certain terms in the polynomial

approximation. With selective NF application in view, the above methods are not very

convenient. All the reviewed methods have their strengths and weaknesses, however, one

may ask: can actual Taylor expansion in NF application be avoided entirely? A positive

answer to this question will mean significant improvement in the NF methods.

2.5 Power System Model Order Reductions

Whether linear, extended linear, or full nonlinear analysis, dealing with very large power

system is a huge task, even with advances in modern computing. In dealing with very large

power systems, computations may be lessened by first reducing the size of the grid. This re-

duction can be done in many ways, depending on the type of analysis required. For example,

the machines located in the area of interest can be modelled as detailed as possible, while

the machines far from the studied area represented with classical models. This approach was

used in [7] to apply NF2 to a 50-machine power system. The 6 machines in the area of

interest were represented with 4th order model while the remaining 44 machines were repre-

sented with classical model. Another option is to represent the areas not of interest with an

equivalent shunt. This approach has been used in [61] to apply NF2 to a system with over

300 generators. The challenge with the later is that the effects of inter-area mode involve

always many machines in different areas. Since the inter-area modes are more associated with

the angle and speed of the machines, representing an area with a static shunt equivalence

may sometimes introduce significant dynamic inaccuracy. A popular technique for reducing

the grid size is the synchronic modal equivalencing (SME) [100–102], which uses the mode

shape to classify the machines as either more relevant or less relevant. The less relevant ma-

chines can be replaced by equivalent current injectors at the buses where they are connected.

Extended versions of SME, called border synchrony, employing participation factor analysis,

mode shape, and balanced realisation techniques have been advocated in [40, 103, 104]. With

border synchrony, the reduction of the European system, containing about 400 generators

and 2000 buses to 20 generators has been reported in [40].

In order to study large grid with 100% PE, new reduction techniques are being developed

based on residualisation of some states or discarding of some modes in the system [105, 106].

To residualise states, the differential equations corresponding to these states are converted
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to algebraic equations. Depending on the reduction objective, some strategies are developed

for choosing either the states to residualise or the system modes to discard. The different

strategies for this type of reduction are reported in [107].

Apparently, model order reduction is an initial step that will ease computations. However,

they do not reduce any operation in NF analysis other than the grid size. It is acknowledged

that computations in very large power systems are generally difficult, but in the case of

Normal Form method, the difficulty is not only in the size of the power system, but also in

the way the method is applied. Application of NF3 to a grid of even 20 state variables is

enough burden with the current methods.

2.6 Summary

Linear analysis is a powerful tool in the field of engineering. It quickly reveals the system

characteristics with well known concepts like eigenvalues and eigenvectors. As a result, it

has been employed in various aspects of engineering and power systems for control designs.

As it offers mainly single-mode information, it fails to adequately characterise the system

behaviour under stress, since the modal interactions become significant. To improve the

linear tools, higher order terms are included in the analysis. This inclusion reveals many

other characteristics of the system not possible with the linear analysis. The analysis of the

resulting model is made possible using tools like Normal Form method. The NF tool has been

widely used in various aspects of power system analysis and control. Although powerful, NF

is difficult to realise in larger systems due to its computational complexity. Large power

systems can be first reduced before applying the NF analysis. Various techniques for model

reduction exist, but the current method for NF analysis is still very difficult to go by, even

when the network is well reduced.
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Chapter 3

Normal Form for Power System

Models

“The secret to modeling is not
being perfect. What one needs is
a face that people can identify in
a second. You have to be given
what’s needed by nature, and
what’s needed is to bring
something new. ”

Karl Lagerfeld
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Introduction

In chapter 2, we saw the several applications of NF method in power systems. A basic idea

of NF method was presented, including the existing higher order approximations in literature.

It was highlighted that NF requires computations of Hessian matrices, which are difficult

in large systems. In this chapter, a more detailed presentation of NF method is made and

the computational burden brought to the fore. Both NF of first order (leading to complex

quantities) and second order (retaining real quantities) systems are presented. Since this

thesis is building on already existing NF methods, some numerous mathematical derivations

are considered boring for the reader. The main ideas are presented, while supplementary

ideas can be found in the appendices and/or other sources referenced in the thesis. As NF is

a simplified representation of a system model, the power system models used throughout this

PhD are briefly discussed before describing their NF.

3.1 Power System Models

NF method usually operates with differential-only equations. Since power system is repre-

sented by DAEs, the algebraic equations are substituted in the differential ones to obtain

differential-only equations before applying NF. However, a structure-preserving application

is possible. The application of NF to power system structure-preserving DAEs models has

been addressed before in [65], but that is outside the scope of the present work. The mod-

els generating the DAEs are first of all briefly presented. The components of interest are:

synchronous generators, the excitation system, and the power network. The two generator

models used throughout the PhD are the classical and the two-axis models, however, the

method developed in this thesis is general and can be used for any model.

3.1.1 Classical Generator Model

The so-called classical model is the simplest model representing a multi-machine power sys-

tem. Though simple, it is not trivial especially when interest is only on the study of electrome-

chanical modes. Irrespective of the model used, the nature of electromechanical oscillations

remains the same [108]. Such models are widely used for NF and NF-like stability studies of

power systems (see for examples [66, 82, 83]).

Based on the assumptions [109], a power system composed of generators modelled as
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classical can be represented by first order swing equations

ω̇i = 1
M i

[Pmi − Pei −Di(ωi − 1)] (3.1)

δ̇i = ωs(ωi − 1) (3.2)

Pei = E2
i Gii +

N∑
j=1,j 6=i

EiEk[Gij cos δij + Bij sin δij ] (3.3)

δij = δi − δj , (3.4)

where

N : number of generators

Ei: internal bus voltage of generator i

Mi: inertia constant of generator i

Pmi : mechanical power input of generator i

Pei : electrical power of generator i

Gii: driving point conductance of node i

Gij + jBij : the transfer admittance in the system reduced to the internal nodes between

generators i and j

δi: rotor angle of generator i

ωi: rotor speed of generator i

ωs: synchronous speed

Di: damping coefficient of generator i.

Damping coefficient D can be set to zero if necessary.

3.1.2 Two-axis Generator Model

For analysis of the power system with excitation system controls, the synchronous generator

is represented by the two-axis model [Section 4.15, 109]. For a generator i, the variables and

the generator equations are given by

δ̇i = ωs(ωi − 1), (3.5)

Ė′qi = 1
T ′d0

[−E′qi − (xdi − x′di)Idi + Efdi ], (3.6)

Ė′di = 1
T ′q0

[−E′di + (xqi − x′qi)Iqi ], (3.7)

ω̇i = 1
Mi

[Pmi − (E′qiIqi + E′diIdi)−Di(ωi − 1)], (3.8)
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where

E′di , E
′
qi : direct and quadrature axes stator EMFs of generator i which correspond to rotor

transient flux components, respectively

Idi , Iqi : the d- and q- axes stator currents of generator i

τ ′d0i , τ
′
q0i : open-circuit direct and quadrature axes transient time constants of generator i

xdi , xqi : direct and quadrature axes synchronous reactances of generator i

x′di , x
′
qi : direct and quadrature axes transient reactances of generator i

Efdi : stator EMF corresponding to the field voltage of generator i

If the N -th machine is used as a reference to other machines, then, the order of the model

is reduced by defining a new state δiN = δi − δN . This is proper since loss of synchronism

is determined by the relative angles. Then (3.5) and (3.2) are redefined as (3.9), all other

equations remaining unchanged.

δ̇iN = ωs(ωi − ωN ). (3.9)

3.1.3 Network Equations

Assuming constant impedance loads, the network is reduced to the internal generator nodes

by eliminating all the load nodes. The Ybus of the reduced network is obtained with its

diagonal elements Yii = Gii + jBii, and off-diagonal elements Yij = Gij − jBij . With the

procedure described in [Section 12.3, 110], the generator currents Iq and Id are given by

Iqi =
N∑
j=i

[(Bij cos δij − Gij sin δij)E′qj + (Bij sin δij + Gij cos δij)E′dj ] (3.10)

Idi =
N∑
j=i

[(Bij sin δij + Gij cos δij)E′qj − (Bij cos δij − Gij sin δij)E′dj ]. (3.11)

The electrical power Pe for the 2-axis model becomes

Pei = E′qiIqi + E′diIdi + (x′di − x
′
qi)IdiIqi . (3.12)

3.1.4 Exciter Equations

The exciter model shown in Figure 3.1 is a simple AVR model which can be used for rough

stability evaluations. The equations are given as
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Figure 3.1 – Simple excitation system

V̇mi = (Vi − Vmi)/Tri , (3.13)

V̇ri = (KAi(1−
T1i
T2i

)(Vrefi − Vmi)− Vri)/T2i , (3.14)

Ėfdi = ((Vri +KAi
T1i
T2i

(Vrefi − Vmi) + Efd0i
) Vi
V0i
− Efdi)/Tei , (3.15)

Vi = Vdi + jVqi = (E′qi + x′qiIqi) + j(E′qi − x
′
diIdi), (3.16)

Vi =
√
V 2
qi + V 2

di
, (3.17)

where all the variables and parameters are shown in Figure 3.1 and

Vi: terminal voltage of generator i

Vrefi : exciter reference voltage of generator i

KAi: regulator gain for exciter connected to generator i

T1i : regulator zero for exciter connected to generator i

T2i : regulator pole for exciter connected to generator i

Tei : field circuit time constant for exciter connected to generator i

Tri : measurement time constant of generator i

Efd0i: field voltage offset of generator i

S: laplace operator

If there is no bus voltage offset (V0i), the term Vi
V0i

is set to 1.

3.2 General Normal Form Theory

NF main idea consists in simplifying all nonlinear terms that are not very relevant to the

system dynamics in the neighbourhood of an equilibrium point. Consider the power system

models discussed in the previous section, represented generally as

ẋ = f(x). (3.18)

43



CHAPTER 3. NORMAL FORM FOR POWER SYSTEM MODELS

In (3.18), x is the vector containing N state variables, f is a smooth vector field. The

expressions of x for the classical model and two-axis with AVR are given by:

x =
[
δ1, δ2, . . . , δN−1, ω1, ω2, . . . , ωN

]T
classical model (3.19)

x =
[
δ1, ω1, E

′
q1 , E

′
d1
, Efd1 , Vm1 , Vr1 . . . , δN−1, ωN , E

′
qN
, E′dN , EfdN , VmN , VrN

]T
2-axis

(3.20)

where the superscript T means transpose. The notation δi has been retained for relative

angle δiN , where the meaning is not confusing. It is assumed that the system in (3.18) has an

equilibrium point at the origin (or can be moved to the origin by a coordinate transformation)

and can be approximated by Taylor series around the equilibrium point.

Therefore, system (3.18) can be written as

ẋ = Ax + Γ(x), (3.21)

where A is the Jacobian of f , Γ(x) represents nonlinear terms expanded in polynomial series

and Γ(0) = 0.

As in the previous chapter, let us denote by Ui, and Vi the i-th columns of right and left

eigenvectors respectively, U = [uij ], V = [vij ], the corresponding matrices and Λ = VTAU =

diag(λp)1, the diagonal matrix of its eigenvalues, p, i, j = 1, . . . N . It is assumed that matrix

A is diagonalisable. Using the linear transformation

x = Uy (3.22)

in (3.21) and multiplying the result by the left eigenvectors yields

ẏ = Λy + Γ(y). (3.23)

NF theorem states that if no internal resonance exist among the eigenvalues of A, there exists

a nonlinear transformation

y = z + h(z) (3.24)

which simplifies the system (3.21) to

ż = Λz. (3.25)

In other words, the nonlinear part of the system of (3.23) is removed. h(z) is a polynomial of

1Note that if the left vector is normalised as inverse of the right vector (i.e., V = U−1), the transpose is
not used. Instead, VAU is used.
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higher order terms. If a resonant relation exists, then all mononomial terms in Γ(y) that are

resonant cannot be removed [62, 70]. NF finds h to remove the removable nonlinear terms.

3.2.1 Normal Form at a Certain Order

To perform Normal Form at a certain order, consider the nonlinear part of (3.21) sorted by

orders:

ẋ = Ax + F2(x) + F3(x)+H.O.T, (3.26)

where, F2 contains only second order terms, F3 contains only third order terms, H.O.T

stands for higher order terms.

As recalled in chapter 2, depending on the order of truncation of the Taylor series, dif-

ferent NFs are obtained. Each NF has different domain of validity and therefore, performs

differently. The higher the order of truncation, the better the NF. In other words, the higher

the truncation order, the closer the NF solution is to the original nonlinear system. As will

be seen later, components of these higher order terms are simply the eigenvalue expansion.

Although higher order truncation gives results closer to the original nonlinear system, the

complexity increases tremendously. Inclusion of third other terms, is enormous complexity

compared to the second order approximations.

3.2.2 Third Order Normal Form NF3

Suppose the expansion (3.26) is truncated to order 3 and the term H.O.T omitted in all

subsequent equations for simplicity, we obtain

ẋ = Ax + F2(x) + F3(x)︸ ︷︷ ︸
Γ(x)

, (3.27)

where Γ(x) collects all second and third order terms. In power system modal analysis,

the mechanical input is often assumed to be constant for small disturbances. That is, the

governor’s action can be neglected. This assumption is implied in this section. Equation

(3.27) can be written as

ẋi =
N∑
m=1

Aimxm +
N∑
m=1

N∑
n=1

F2imnxmxn +
N∑
m=1

N∑
n=1

N∑
l=1

F3imnlxmxnxl, (3.28)
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where

∀i,m, n, l = 1, 2, . . . N : Aim = ∂fi
∂xm
|x=x0 , F2imn = 1

2
∂2fi

∂xm∂xn
|x=x0 ,

F3imnl = 1
6

∂3fi
∂xm∂xn∂xl

|x=x0 .

(3.29)

Notice that the first indices for the elements of multidimensional matrices F2, and F3 have

been written as superscripts in (3.28) and (3.29). This is the convention adopted for all

elements of multidimensional matrices in this thesis.

Using the linear transformation (3.22), (3.27) is put in Jordan form as

ẏ = Λy + fNL(y1, y2, . . . , yN ), (3.30)

or

∀j = 1 . . . N : ẏj = λjyj +
N∑
k=1

N∑
l=1

Cjklykyl +
N∑
p=1

N∑
q=1

N∑
r=1

Dj
pqrypyqyr, (3.31)

and

fNL = VTΓ(Uy), (3.32)

where the eigenvalue λj is the jth element of Λ,


Cjkl = F2imnvijumkunl

Dj
pqr = F3imnlvijumpunqulr

(3.33)

are the nonlinear coefficients, while uij and vij are the ij-th elements of U and V respec-

tively. Currently there is no special software dedicated to NF application in power systems.

Therefore, the above presentations are commonly implemented by symbolic manipulations

using some software. Consequently, the processes taken to arrive at (3.33) are very difficult

to follow for large systems because of the need to evaluate the Hessians in (3.29).

Equation (3.31) is the modal model of the original system where the states are now repre-

sented with the modal variable y. Observe that the linear part of (3.31) is totally decoupled

but the nonlinear part remains coupled. NF theory leads to simplifying the nonlinear terms

in (3.30) by a nonlinear polynomial change of variables, written as [30]

y = z + h2(z) + h3(z), (3.34)
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or

∀j = 1 . . . N : yj = zj +
N∑
k=1

N∑
l=1

h2jklzkzl +
N∑
p=1

N∑
q=1

N∑
r=1

h3jpqrzpzqzr, (3.35)

where z is the state variable in NF coordinate, h2jkl and h3jpqr are respectively complex valued

quadratic and cubic coefficients, determined such that (3.30) is simplified, so-called normal

form coefficients.

Differentiating (3.34) and substituting into (3.30) yields after some simplifications (see

[(D.32), Appendix D])

ż = Λz + F̂(z). (3.36)

where

F̂ (z) = −ΛzD̄h3(z) + Λh3(z) + D̄C(z)h2(z) +D(z) (3.37)

and D̄ is a derivative operator, with terms of order higher than 3 neglected. Removing

nonlinear terms from (3.36) implies setting the second term on the right hand side of (3.36)

to zero (i.e equating (3.37) to zero). It can be shown that if there is no internal resonance

relationship among the eigenvalues, setting (3.37) to zero yields

h2jkl = Cjkl
λk + λl − λj

, (3.38a)

h3jpqr =
Dj
pqr + Cresjpqr

λp + λq + λr − λj
. (3.38b)

where Cres is a residual term from second order transformation and is expressed as
N∑
l=1

(Cjpl+

Cjlp)h2pqr [57] and Dj
pqr is the original third order term. Details of derivations leading to (3.38)

are documented in Appendix D. Notice that the NF coefficients are simply algebraic functions

of the nonlinear coefficients and the linear modes. The NF coefficients (3.38a) removes second

order nonlinearities from (3.31), while (3.38b) removes third order nonlinearities.

Generally, the removal of a certain order of nonlinearities introduces higher order non-

linearities (residuals) due to the transformation. These higher order nonlinearities are then

neglected for being weak compared to the considered order of nonlinearities. In other words,

NF transformation at a certain order, ”pushes” the nonlinearities to higher orders. Con-

sequently, for NF3, the removal of second order nonlinearities introduces new third order

nonlinearities, so-called second order residuals. Similarly, the removal of third order nonlin-
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earities introduces fourth and higher order nonlinearities which are neglected. In many cases

the effects of the second order residuals can be neglected without significant error. Thus,

(3.38b) is simplified to

h3jpqr =
Dj
pqr

λp + λq + λr − λj
. (3.39)

It can be seen that if the denominators of (3.38) are close to zero with non zero absolute

value of the numerators, the value of the coefficients will be very large, which would lead to a

inconsistent change of variables. The nullity of the denominators leads to particular relations

between the complex eigenvalues called internal resonances. If no internal resonance occurs,

(3.36) reduces to a fully linear system:

żj = λjzj , (3.40)

with solution given as

zj(t) = zj0e
λjt. (3.41)

In (3.41), the initial conditions zj0 of the variables zj are computed by solving a system of

nonlinear equations (3.42), formulated from (3.35) for given initial conditions y0.

∀j = 1 . . . N : fj(z0) = zj0−yj0 +
N∑
k=1

N∑
l=1

h2jklzk0zl0 +
N∑
p=1

N∑
q=1

N∑
r=1

h3jpqrzp0zq0zr0 = 0. (3.42)

The algorithm for obtaining the initial condition is presented in section 3.2.3.

In the other cases where internal resonances occur, some nonlinear terms cannot be elim-

inated from (3.31) and (3.40) becomes

żj = λjzj + gj(z), (3.43)

where gj(z) gathers the terms that cannot be removed. If 3rd order nonlinear terms are

considered and there exist lightly damped modes, there are always inherent near resonances

so that gj(z) is never zero. Such near resonances exist because if λj , λ2j−1, ∀j ∈ M lightly

damped modes are complex conjugates, λj + λ2j−1 + λi − λi will always lead to very small

divisor (near resonance) which translates to ill-conditioning. Technique for handling internal

resonances is outside the scope of this thesis. Interested readers can refer to [89] where a

method is proposed for getting closed-form solution under resonance.

At the end, system (3.43) has two advantages. Due to the normal transform, it is first,

much simpler than system (3.28), since it has much less nonlinear terms and second, it can

be consistently truncated to a few modes, thanks to the concept of nonlinear modes and
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invariant manifolds (see [62, 111, 112] and references therein). System (3.43) can then be

used for nonlinear modal analyses, time integration and many more, and can be reversed to

its original coordinates x by applying successively, the change of variables (3.35) and (3.22).

The solution of (3.28) after back transformation of z is of the form [71]

xi(t) =
N∑
j=1

µ1ije
λjt +

N∑
k=1

N∑
l=1

µi2kle
(λk+λl)t +

N∑
p=1

N∑
q=1

N∑
r=1

µi3pqre
(λp+λq+λr)t , (3.44)

where

µ1ij = uijzj0 , µi2kl = zk0zl0

N∑
j=1

uijh2jkl, µi3pqr = zp0zq0zr0

N∑
j=1

uijh3jpqr.

The boxed equation (3.44) is very important in understanding the motivation for NF analysis,

since it explains clearly its gains. For instance:

• The 2nd and 3rd terms on the right hand side of (3.44) represent the effects of nonlinear

modal interactions in addition to the linear modes on the dynamics of state i.

• µ1ij , µ
i
2kl , and µi3pqr indicate the sizes of the contributions of the linear mode j, nonlinear

mode (k + l), and nonlinear mode (p+ q + r) to the oscillations of state i respectively.

• The nonlinear modal interactions (k+ l) and (p+ q+ r) are both corrections and extra

information added to linear analysis.

3.2.3 Normal form initial condition

The initial condition plays a key role since all the indices depend on it. A robust Newton-

Raphson solution technique proposed in [31] for second order NF is extended here for third

order NF as follow:

1. x0 : Define x0, the initial condition of the power system after disturbance as x0 =

xcl − xSEP, where xSEP is the post disturbance equilibrium solution and xcl is the

system condition at the end of the disturbance.

2. y0 : Use the eigenvector to obtain the initial condition in Jordan coordinate as y0 = U−1x0.

3. To compute z0 :

I. Formulate the solution problem as (3.42).

II. Choose the initial guess for z0. z0 = y0 recommended.

III. Compute the mismatch function for iteration s as:
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∀j, k, l, p, q, r = 1 . . . N :

fj(z(s)) = z
(s)
j − yj +

N∑
k=1

N∑
l=1

h2jklz
(s)
k z

(s)
l +

N∑
p=1

N∑
q=1

N∑
r=1

h3jpqrz(s)
p z(s)

q z(s)
r = 0.

IV. Compute the Jacobian of f(z) at z(s) as
[
A(z(s))

]
=
[
∂f
∂z

]
z=z(s)

V. Compute the increment ∆z(s) = −
[
A(z(s))

]−1
f(z(s))

VI. Obtain the optimal step length ρ with cubic interpolation or any other appropriate

procedure and compute z(s+1) = z(s) + ρ∆z(s).

VII. Iterate till a specific tolerance is met. The value of z(s) meeting the tolerance gives

the solution z0.

Note that it is possible for the iteration to converge to a false solution. Several methods can

be used to verify the initial condition, such as backward transformation to compare with the

x0. Reference [68] gives other guides.

3.2.4 Didactic Example

Consider a classical single machine connected to an infinite bus shown in Figure 3.2. The

machine data are x′d = 0.3,M = 7. The network reactances are given on 220MVA, 24kV,

60Hz base and the post-fault values are given as: P = 0.9 p.u., Q = 0.3 p.u. (overexcited),

terminal voltage = 1∠36◦, total line impedance Xs = 0.95p.u. The stable operating condition

δSEP = 49.92◦, ωSEP = 1, D = 0. The state vector x = [δ, ω]T , and the general nonlinear

j0.3 j0.65E =1.123

V1 = 0:995

Figure 3.2 – Single machine-infinite-bus system

function f(x) is given by

δ̇ = f1(δ, ω) = ωs(ω − 1)

ω̇ = f2(δ, ω) = 1
M

[Pm − Pe −D(ω − 1)]

Pe = EV∞
Xs

sin δ.

With ωs = 2πf ≈ 377 rad/s, the Jacobian and Hessians are defined as shown below:
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Evaluation of Jacobian and modal contents (3.29)

A =

 ∂f1
∂δ

∂f1
∂ω

∂f2
∂δ

∂f2
∂ω


x=x0

=

 0 377

−0.1082 0



Λ =

 6.38i 0

0 −6.38i

 , U =

 0.9999 0.9999

0.0169i −0.0169i

 , VT =

 0.5001 −29.5205i

0.5001 29.5205i

.

Evaluation of multidimensional Hessian matrices (3.29)

F2 = 1
2


 ∂2f1

∂δ2
∂2f1
∂δ∂ω

∂2f2
∂δ2

∂2f2
∂δ∂ω


 ∂2f1

∂ω∂δ
∂2f1
∂ω2

∂2f2
∂ω∂δ

∂2f2
∂ω2




x=x0

=


 0 0

0.0643 0


 0 0

0 0




F3 = 1
6



 ∂3f1
∂δ3

∂3f1
∂δ2∂ω

∂3f2
∂δ3

∂3f2
∂δ2∂ω


 ∂3f1

∂ω∂δ2
∂3f1

∂ω∂δ∂ω

∂3f2
∂ω∂δ2

∂3f2
∂ω∂δ∂ω

 ∂3f1
∂δ∂ω∂δ

∂3f1
∂δ∂ω2

∂3f2
∂δ2∂ω

∂3f2
∂δ∂ω∂δ


 ∂3f1

∂ω2∂δ
∂3f1
∂ω3

∂3f2
∂ω2∂δ

∂3f2
∂ω3




x=x0

=



 0 0

0.018 0


 0 0

0 0

 0 0

0 0


 0 0

0 0





Modal expansion/Evaluation of nonlinear coefficients C and D (3.32)

C = VTF2U =


 −1.89i −1.89i

1.89i 1.89i


 −1.89i −1.89i

1.89i 1.89i




=⇒ C(y) =
−1.89iy2

1 −3.79iy1y2 −1.89iy2
2

1.89iy2
1 +3.79iy1y2 +1.89iy2

2

(3.45)

D = VTF3U =



 −0.53i −0.53i

0.53i 0.53i


 −0.53i −0.53i

0.53i 0.53i

 −0.53i −0.53i

0.53i 0.53i


 −0.53i −0.53i

0.53i 0.53i




=⇒ D(y) =

−0.53iy3
1 −1.59iy2

1y2 −1.59iy1y
2
2 −0.53iy3

2

0.53iy3
1 +1.59iy2

1y2 +1.59iy1y
2
2 +0.53iy3

2

(3.46)

Note that by symmetry, Hessian evaluation splits diagonal elements such that Cjkl = Cjlk, D
j
kkl =

Dj
lkk = Dj

klk. Therefore, the actual coefficients are Cjklactual = 2Cjlk, D
j
kklactual

= 3Dj
lkk, where

the residual Cres is at this point neglected. Therefore, (3.31) becomes

ẏ1 = 6.38iy1 − 1.89iy2
1 − 3.79iy1y2 − 1.89iy2

2 − 0.53iy3
1 − 1.59iy2

1y2 − 1.59iy1y
2
2 − 0.53iy3

2 (3.47a)

ẏ2 = −6.38iy2 + 1.89iy2
1 + 3.79iy1y2 + 1.89iy2

2 + 0.53iy3
1 + 1.59iy2

1y2 + 1.59iy1y
2
2 + 0.53iy3

2 . (3.47b)
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Evaluation of NF coefficients h2 and h3 (3.38)

The NF transformation polynomials can be defined as

y1 = z1 + h21
11z

2
1 + h21

12z1z2 + h21
22z

2
2 + h31

111z
3
1 + h31

112z
2
1z2 + h31

221z
2
2z1 + h31

222z
3
2 (3.48a)

y2 = z1 + h22
11z

2
1 + h22

12z1z2 + h22
22z

2
2 + h32

111z
3
1 + h32

112z
2
1z2 + h32

221z
2
2z1 + h32

222z
3
2 . (3.48b)

Since the nonlinear coefficients (C and D) have been computed in (3.47), the NF coefficients

(h2 and h3) are easily evaluated by implementing (3.38a) and (3.38b). Implementation of

(3.38a) obtains the h2 coefficients as:

h21
11 = −0.29, h21

12 = 0.59, h21
22 = 0.099

h22
11 = 0.099, h22

12 = 0.59, h22
22 = −0.29.

To implement (3.38b), we first need to evaluate the second order residuals Cres defined as:

Cres1(y) = (2C1
11h21

11)y3
1 + (C1

12h21
12)y2

1y2 + (C1
12h21

12)y1y
2
2 + (2C1

22h21
22)y3

2 (3.49a)

Cres2(y) = (2C2
11h22

11)y3
1 + (C2

12h22
12)y2

1y2 + (C2
12h22

12)y1y
2
2 + (2C2

22h22
22)y3

2 . (3.49b)

Definition (3.49) is obtained by differentiating (3.45) and multiplying by h2 coefficients (i.e.,

D̄C(z)h2(z), the third term on the right hand side of (3.37)). The reader may refer to

[Section D.2, Appendix D] for details. Substituting the values of h2 and C coefficients in

(3.49) yields

Cres1(y) = 1.10y3
1 − 2.24y2

1y2 − 2.24y1y
2
2 − 0.37y3

2 (3.50a)

Cres2(y) = 0.37y3
1 + 2.24y2

1y2 + 2.24y1y
2
2 − 1.10y3

2 . (3.50b)

Equations (3.50) contain only cubic terms which are then added to the cubic terms of (3.47).

Therefore, (3.47) are updated as:

ẏ1 = 6.38iy1 − 1.89iy2
1 − 3.79iy1y2 − 1.89iy2

2 + 0.57iy3
1 − 3.83iy2

1y2 − 3.83iy1y
2
2 − 0.9iy3

2 (3.51a)

ẏ2 = −6.38iy2 + 1.89iy2
1 + 3.79iy1y2 + 1.89iy2

2 + 0.9iy3
1 + 3.83iy2

1y2 + 3.83iy1y
2
2 − 0.57iy3

2 . (3.51b)
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Considering the updated cubic terms of (3.51), the h3 coefficients are computed as:

h31
111 = 0.045, h31

122 = 0.3, h31
222 = 0.035

h32
111 = 0.035, h32

112 = 0.3, h32
222 = 0.045.

Therefore, the nonlinear transformation (3.35) can be defined as

y1 = z1 − 0.29z2
1 + 0.59z1z2 + 0.099z2

2 + 0.045z3
1 + 0.3z1z

2
2 + 0.035z3

2 (3.52a)

y2 = z2 + 0.099z2
1 + 0.59z1z2 − 0.29z2

2 + 0.035z3
1 + 0.3z2

1z2 + 0.045z3
2 . (3.52b)

If the second order residual terms are not considered, h3 coefficients are determined directly

from (3.47) and (3.39). Notice that h31
112 and h32

221 are not determined since they correspond

to resonant conditions (i.e. λ1 + λ1 + λ2 − λ1 = 0, λ2 + λ2 + λ1 − λ2 = 0). Therefore, their

corresponding mononomial terms must not be removed from the NF. With all the possible

coefficients determined, the NF is then obtained by substituting (3.52) into (3.51) which

yields

ż1 = 6.38iz1 − 3.83iz2
1z2 (3.53a)

ż2 = −6.38iz2 + 3.83iz1z
2
2 . (3.53b)

It can be seen that the system of (3.53) is very simplified compared to the system of (3.51),

since it has mush less nonlinear terms. System (3.51) has 14 nonlinear terms while system

(3.53) has just 2.

Remark. The computed nonlinear coefficients in the above example are symmetrical, which

leads to the symmetry of (3.47). This is because the classical SMIB power system used has

one mode of oscillation, since the two eigenvalues are conjugate pair. This symmetry can be

lost when there are some real eigenvalues in the system.

Numerical simulations

For any initial condition in the physical space (x-coordinate), the initial conditions in NF-

coordinate are obtained by the algorithm described in section 3.2.3. The system is stressed

by increasing the operating point by: (a) ∆δ = 5◦ ( π36 rad) ; (b) ∆δ = 15◦ ( π12 rad) , and (c)

∆δ = 25◦ (5π
36 rad) . The NF results of these stress conditions are shown in Figure 3.3. For less

stressed condition, the linear, the NF2, and the NF3 approximations work quite well compared
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to the the original (exact) system. This is seen in Figure 3.3a, where all curves approximately

match the exact one. As the operating point increases by ∆δ = 15◦, the linear model begins to

deviate in the amplitude, while the NF2 and NF3 still approximate well, the original system

(see Figure 3.3b). Further increase of the operating point by ∆δ = 25◦, increases significantly,
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Figure 3.3 – Comparison of different approximate models for NF analysis

the nonlinearity. As a result, both linear and NF2 deviate in the frequency, although NF2

captures the amplitude. On the other hand, NF3 captures the amplitude and the frequency

of the original system. These are seen in Figure 3.3c. Figure 3.3d shows a comparison of

NF3 performed by neglecting (NF3no res) and retaining (NF3res), the second order residual

terms. This figure shows that neglecting the residual term can introduce some errors. The

errors of (NF3no res) and (NF3res) are plotted in Figure 3.3e, which clearly shows the merit

of (NF3res) over (NF3no res). However, in some specific NF studies, the effects of the error

do not play significant roles and can therefore be neglected [55].
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Finally, Figure 3.3f presents the average errors on 20s time window for linear, NF2, and

NF3 as functions of the operating point. As the operating point increases (increase in stress),

the error increases for all the approximations. It is clear from the figure that NF3 incurs

least error over large range of operating points compared to the linear and NF2. It is clear

from the figure that the improvement brought by adding second order nonlinearities is not

remarkably far from the linear approximation. The errors due to linear and NF2 seem to be

very near. It seems that there are some operating points where the NF3 produces result worse

than even linear and NF2. For instance, after 1.82 rad, the error of NF3 keeps increasing

while the linear and NF2 dropped before rising again. The determination of the exact validity

region of NF a priori is still an open problem. However, since NF is based on asymptotic

expansion, one can envisage that before reaching the point at which the linear and NF2 give

better results, the underlying assumption that the Taylor expansion around the operating

point is sufficient to describe the dynamic behaviour of the system would have been broken.

Hence, NF3 is judged to have effectively higher validity limit than linear and NF2.

From the didactic example above, one can identify the challenges with the traditional

method for NF application. Some of these challenges are discussed in the next subsections.

3.2.5 Computational Burden

For better understanding of the main issue this thesis aims at solving, we can compute the

number of nonlinear coefficients required for NF application. Considering an N -dimensional

dynamical system and the symmetries of the Hessian matrices in (3.29), the number of non-

linear terms (which is equivalent to number of computations) that need to be computed in

Γ(x) (i.e (3.27)) is

Nc = N

[ (N + 1)!
2!(N − 1)! + (N + 2)!

3!(N − 1)!

]
= N4

6 +N3 + 5N2

6 , (3.54)

where N ! is the factorial of integer N . Furthermore, the number of coefficients Cjkl and Dj
pqr

in the modal model (3.31) that have to be computed using (3.32) is again Nc. Equation (3.54)

shows that the computational burden increases with the power of four of the number of state

variables of the initial system. Also, from the didactic example above, it is seen that the

Hessians computed by (3.29) can be sparse, but the computation of the nonlinear coefficients

using (3.32) leads to full matrices. Then, the overall implication in terms of memory and

computation time can be huge, even impracticable for large systems with large N .

As an illustration, the evolution of the number of coefficients with respect to the linear

basis size (i.e. number of state variables) is shown in Figure 3.4. A small change in size
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Figure 3.4 – Computational Burden of NF3

leads to a huge computational burden. As shall be seen in the next chapter, the major

advantage of the method proposed in this thesis is that it enables one to compute directly,

the nonlinear coefficients Cjkl and Dj
pqr without requiring the preliminary computation of

the Taylor expansion of (3.29) and the modal expansion by the use of (3.32). Moreover,

the final number of nonlinear coefficients in the modal model (3.31) is equal to Nc since

it is naturally written in upper triangular form (The sums
∑N
k,l=1,

∑N
k,l,s=1 are replaced by∑N

k=1,l>k,
∑N
k=1,l>k,s>l) [113]. It means that instead of 2Nc computations, it is sufficient to

perform only Nc computations in an easier way.

3.2.6 Model Flexibility

As seen earlier in chapter 2, higher order differentiation in (3.29) can be implemented by

symbolic method, or by defining the expressions for those derivatives in advance. We assume

that symbolic approach is avoided for being slow and one is able to painstakingly define those

derivatives for a particular power system. Assuming for the same power system, the type

of exciter used changes, or a static var compensator (SVC) is introduced, or a PE converter

integrated or other changes that introduce modifications of the model, then definitions of

(3.29) have to be extended to accommodate the new models. One has to repeat the process

for the added model by defining the derivatives of the new variables with respect to the old

ones and vice versa, in order to study these changes. Unfortunately, the above changes are

typical of real power system.
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The method proposed in this thesis is both efficient in reducing the computational burden

and also very convenient for real life power system operators since it adapts easily to any

addition of new component. The next chapter will show that the method acts only on the

output of the overall system to formulate linear system of equations that obtain the needed

coefficients. It is not necessary to obtain the derivative of the new model, hence, the method

can easily adapt to changes in models.

Recapitulation

Let us quickly remind some major points so far in this chapter. Power systems are usually

represented by first order DAEs models. For classical model, second order DAEs representa-

tions are possible. The DAEs models can be formulated as differential-only models suitable for

NF application. These models can be approximated by Taylor series expansion which describe

the nonlinear model with polynomials. The higher order approximations which have several

nonlinear terms can be simplified using NF method. Moreover, the evaluation of these non-

linear terms is very difficult since it involves higher order derivatives and Hessian matrices.

NF method uses nonlinear change of variable/nonlinear transformation (or simply NF trans-

formation) to remove the nonlinear terms in order to obtain a simplified system. The NF

procedures involve the computation of higher order Hessian matrices and numerous nonlinear

coefficients which are computationally demanding in terms of time and memory. Since, con-

ventional way to apply NF requires preliminary higher order derivative of the system model,

slight change in the model will introduce significant changes in the Hessian matrices. Hence,

the conventional method is less flexible in terms of model variations. A didactic example has

been used to show the main steps and computations.

3.3 Normal Form of Second Order System Models

Till now, we have considered only first order model which is standard in power systems. The

didactic example showed that this model presents the state variables as complex quantities.

For mechanical systems, second order models are standard. In power systems, many direct

methods for quick stability assessments such as equal area criteria, Lyapunov energy functions

and Zubov’s method are usually based on the classical model of power systems. Classical

models of power systems are similar to mechanical systems and can equally be modelled with

second order differential equations. Second order model has two main advantages:

• It has less number of variables, hence, less computational demand;

• It allows for convenient computation of only real eigenvalues.
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The 2nd order classical modelling of power system can be described similar to mechanical

system as

Mẍ + C̄ẋ + f(x) = PT, (3.55)

where M and C̄ are symmetric matrices which respectively correspond to inertia and damping

of the electric machine. PT is a vector of mechanical power input of the machines, x is an

N -dimensional vector of the state variables, and f(x) corresponds to Pe in (3.3). Similar to

the first order model, the nonlinear coefficients are computed first and thereafter, a nonlinear

change of variable is defined. The Taylor expansion model of (3.55) can be obtained at order

3 as

Mẍ + C̄ẋ + Kx + F2(x) + F3(x)︸ ︷︷ ︸
Γ(x)

= P, (3.56)

or

∀i = 1 . . . N : Mij ẍj + C̄ij ẋj +
N∑
j=1

Kijxj +
N∑
j=1

N∑
k=1

F2ijkxjxk +
N∑
j=1

N∑
k=1

N∑
l=1

F3ijklxjxkxl = Pi,

(3.57)

where P = ∆PT, K, the Jacobian of f(x) and differs from A, defined for first order model,

in that its eigenvalues are all real.

Let Ω2 be a vector of the eigenvalues, obtained by solving (K − Ω2
iM)Φi = 0. Let the

i-th element be Ω2
i and Φ be the right eigenvector. Exploiting the orthogonality properties

of eigenmodes, the following statements are true


ΦT
i MΦj = σij ∀i, j

ΦT
i KΦj = Ω2

iσij ∀i, j

ΦT
i C̄Φj ≈ 2ζiΩ2

iσij ∀i, j (for low damping),

(3.58)

where ζ is the damping constant and the left eigenvector is the transpose of the right eigen-

vector. The Kronecker-σ is defined as σij =


1 ∀i = j

0 ∀i 6= j.

If Φip implies the ith element of Φp, and Φjq implies the jth element of Φq (p,q = 1. . . N),

then (3.58) can be re-written in scalar form as


ΦT
piMijΦjq = σpq ∀p, q

ΦT
piKijΦjq = Ω2

pσpq ∀p, q

ΦT
piC̄ijΦjq = 2ζpΩ2

pσpq ∀p, q.

(3.59)
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Similar to the case of first order model, (3.56) is transformed to modal coordinate by

x = Φη =⇒ xi = Φipηp, (3.60)

where η is now the modal variable equivalence of y for first order model. Putting equation

(3.60) into (3.56) using (3.59) yields

MΦη̈+ C̄Φη̇+KΦη+ ΓNL(η1, η2, . . . , ηN ) = ΦTP. (3.61)

or

MijΦjqη̈q + C̄ijΦjqη̇q +KijΦjqηq + F2ijkΦjpΦkqηpηq + F3ijklΦjpΦkqΦlrηpηqηr = Pi. (3.62)

Pre-multiplying (3.62) with ΦT
p (= Φpi), paying attention to (3.59) yields

η̈p + 2ζpΩpη̇p + Ω2
pηp +

N∑
q=1

N∑
r=1

Gpqrηpηr +
N∑
q=1

N∑
r=1

N∑
s=1

Hp
qrsηqηrηs = ΦpiPi,∀p = 1, . . . N,

(3.63)

where 
Gpqr = F2ijkΦipΦjqΦkr,

Hp
qrs = F3ijklΦipΦjqΦkrΦls.

(3.64)

or compactly,

η̈+ 2ζΩη̇+ Ω2η+ fNL(η1, η2, . . . , ηN ) = ΦTP, (3.65)

where fNL = ΦTΓ(Φη). Equations (3.63)—(3.65) are written based on the normalisation,

ΦT
pMΦp = 1. The nonlinear coefficients G and H in (3.64) are equivalence of C and D for

first order models. However, while C and D are complex valued, G and H are only real.

Having obtained the nonlinear coefficients, the nonlinear change of variable (NF transfor-

mation) is used to obtain a simplified form of (3.63) called nonlinear normal mode (NNM)2.

Recall from chapter 2 that NNM is defined according to Shaw and Pierre [78], when all

displacements and velocities can be related to a single pair of displacement and velocity.

2The invariance property of NNM is equally maintained in the structure of (3.43), which was obtained for
first order system. The only challenge is that the physical meaning of such expression is difficult to interpret,
since the state variables are complex-valued
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3.3.1 Nonlinear Change of Variables

References [62, 63] showed that NNM can be obtained by just nonlinear change of variable

defined in such a way that complex quantities are avoided. That is, the NF transformation

is performed similar to that of first order models, but with complex quantities avoided.

The second order model considered in this thesis is a specific power system model, so-called

classical model, however, we can imagine that the same nonlinear change of variables can

be applied to systems more complex (if they can be put in second order form). If constant

mechanical input is assumed and the damping neglected, (3.63) becomes

∀p = 1 . . . N : η̈p + Ω2
pηp +

N∑
i=1

N∑
j≥i

Gpijηiηj +
N∑
i=1

N∑
j≥i

N∑
k≥j

Hp
ijkηiηjηk = 0. (3.66)

To avoid complex quantities, (3.66) can be put to first order using the velocity $p = η̇p

as auxiliary variable and then each oscillator represented by a block diagonal matrix

 0 1

−Ω2
p 0

 . (3.67)

The auxiliary variable allows (3.66) to be written as η̇p = fp(η) and can always be cancelled

to recover 2nd-order-like oscillator equations. Using (3.67), the system in (3.66) is rendered

in first order and a nonlinear change of variable (i.e nonlinear transformation) is defined

to remove the nonlinear terms. This is done sequentially, first, the quadratic and next, the

cubic terms are removed. The first difference compared to conventional NF method discussed

earlier is that, the 2nd order system model is expanded by Taylor series before putting to

first order. The linear mode is unchanged while maintaining simpler computation.

As clearly stated in chapter 1, the focus of this thesis is not deriving new NF but facil-

itating the processes, especially the computation of the nonlinear coefficients (G and H in

this case). Full derivations of nonlinear change of variables for second order models can be

found in [62, 63, 114]. Only necessary equations considered useful in this work are presented

next.
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Quadratic Nonlinear Transformation

The system of (3.66) up to 2nd order becomes

η̇p = $p (3.68a)

$̇p = −Ω2
pηp −

N∑
i=1

N∑
j≥i

Gpijηiηj . (3.68b)

Equation (3.68) suggests that at each point, one is working with N pairs of displacement-

velocity variables. The nonlinear change of variable is defined as

ηp = Up +
N∑
i=1

N∑
j≥i

(apijUiUj + bpijViVj) +
N∑
i=1

N∑
j=1

cpijUiVj (3.69a)

$p = Vp +
N∑
i=1

N∑
j≥i

(ϕpijUiUj + βpijViVj) +
N∑
i=1

N∑
j=1

γpijUiVj . (3.69b)

where Up and Vp are the new variables. Notice that the transformation in (3.69) is similar to

that in (3.35) for first order model. However, it has been written in such a way as to take into

account commuting and non-commuting terms differently. It is different in that it is defined

as displacement-velocity pair.

To determine the unknown coefficients apij , b
p
ij , c

p
ij , ϕ

p
ij , β

p
ij , γ

p
ij (equivalence of h2 coeffi-

cients in first order case), one has to use (3.69) to re-write (3.68),3 which yields

U̇p +
N∑
i=1

N∑
j≥i

[(apij − Ω2
jb
p
ij)ViUj + (apij − Ω2

jb
p
ij)UiVj ] +

N∑
i=1

N∑
j=1

cpij(ViVj − Ω2
jUiUj)

= Vp +
N∑
i=1

N∑
j≥i

(ϕpijUiUj + βpijViVj) +
N∑
i=1

N∑
j=1

γpijUiVj

(3.70a)

V̇p +
N∑
i=1

N∑
j≥i

[(ϕpij − Ω2
jβ

p
ij)ViUj + (apij − Ω2

jb
p
ij)UiVj ] +

N∑
i=1

N∑
j=1

γpij(ViVj − Ω2
jUiUj)

= −
N∑
i=1

N∑
j=1

cpijUiVj − Ωp

Up +
N∑
i=1

N∑
j≥i

(ϕpijUiUj + βpijViVj) +
N∑
i=1

N∑
j=1

cpijUiVj

−∑
1=1

N∑
j≥i

GpijUiUj .

(3.70b)

Then, terms of like powers are equated, leading to a set of linear equations, which are

easily solved. At last, the unknown coefficients required to remove second order nonlinearities

from (3.66) are determined as [114]

3This generates terms of the form U̇iUj , V̇iVj , U̇iVj . . . which is simplified by observing that at lower order
U̇p = Vp, V̇p = −V 2

p Up [114]
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∀i = 1 . . . N ,∀j ≥ i . . . N

apij =
Ω2
i + Ω2

j − Ω2
p

∆̄ijp

Gpij (3.71a)

bpij = 2
∆̄ijp

Gpij (3.71b)

cpij = 0, ϕpij = 0, βpij = 0 (3.71c)

γpii = 2
4Ω2

i − Ω2
p

Gpij (3.71d)

∀i = 1 . . . N − 1, ∀j > i . . . N (3.71e)

γpij =
Ω2
j − Ω2

i − Ω2
p

∆̄ijp

Gpij (3.71f)

γpji =
Ω2
i − Ω2

j − Ω2
p

∆̄ijp

Gpij (3.71g)

where ∆̄ijp = (Ωi + Ωj − Ωp)(Ωi + Ωj + Ωp)(−Ωj + Ωi + Ωp)(Ωi − Ωj − Ωp). Notice that

∆̄ijp is composed of all possible second order resonant relations, implying that some second

order nonlinearities cannot be removed in the case of resonance. Unlike the NF coefficients

(h2) in (3.38a), the above coefficients are all real valued. Note that to remove the second

order nonlinearities, (3.66) is first of all written in first order. Then, the results of (3.71) are

substituted in (3.69) and back to (3.66). This leaves only third and higher order terms in

(3.66).

Cubic Nonlinear Transformation

For cubic change of variables, the technique is the same although tedious. Since the second

order nonlinearities are removed, considering only third order terms, (3.66) becomes

U̇p = Vp (3.72a)

V̇p = −Ω2
pUp −

N∑
i=1

N∑
j≥i

N∑
k≥j

Hp
ijkUiUjUk −

N∑
i=1

N∑
j=1

N∑
k≥j

[ApijkUiUjUk +Bp
ijkUiUjUk], (3.72b)

where Apijk and Bp
ijk are cubic terms (residuals) introduced by the quadratic transformation4

and are expressed as

Apijk =
N∑
l≥i

Gpila
l
jk +

N∑
l≤i

Gpila
l
jk

Bp
ijk =

N∑
l≥i

Gpilb
l
jk +

N∑
l≤i

Gpilb
l
jk.

(3.73)

4The reader is reminded that elimination of nonlinear term of a particular order in NF transformation
normally introduces higher order terms
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A similar change of variable is defined and similar procedure is followed to obtained all

unknown coefficients. The overall expression for the nonlinear change of variables reads

ηp = Rp +
N∑
i=1

N∑
j≥i

(apijRiRj + bpijSiSj) +
N∑
i=1

N∑
j≥i

N∑
k≥j

rpijkRiRjRk +
N∑
i=1

N∑
j≥i

N∑
k≥j

upijkRiSjSk

(3.74a)

$p = Sp +
N∑
i=1

N∑
j=1

γpijRiSj +
N∑
i=1

N∑
j≥i

N∑
k≥j

µpijkSiSjSk +
N∑
i=1

N∑
j≥i

N∑
k≥j

vpijkSiRjRk, (3.74b)

where Rp and Sp are new variables (i.e. in NF coordinate), upijk, r
p
ijk, v

p
ijk, µ

p
ijk are coefficients

determined in similar manner as in the previous case of quadratic transformation. Detailed

presentation of their computations can be found in [Appendix C, 114].

The nonlinear dynamics in the new coordinate is obtained by substituting (3.74) in (3.66)

which yields [114]

Ṙp = Sp. (3.75a)

Ṡp = −Ω2
pRp − (Apppp +Hp

ppp)R3
p −Bp

pppRpS
2
p −Rp[

N∑
j>p

[(Apjpj +Appjj +Hp
pjj)R

2
j +Bp

pjjS
2
j ]

+
∑
i<p

[(Apiip +Appii +Hp
iip)R

2
i +Bp

piiS
2
i ]]− Sp[

N∑
j>p

Bp
jpjRjSj +

N∑
i<p

Bp
iipRiSi].

(3.75b)

3.3.2 Simplification to NNM

The NNM is obtained by cancelling all other variables except the displacement-velocity pair

considered [62, 63] in (3.75). For instance, for mode p, the NNM will be defined as:

∀q 6= p : Rq = 0, Sq = 0, (3.76a)

Ṙp = Sp, (3.76b)

Ṡp = −Ω2
pRp − (Apppp +Hp

ppp)R3
p −Bp

pppRpS
2
p (3.76c)

Notice that for p-th mode, (3.76) is a function of only one displacement-velocity pair. The

highly coupled system of (3.57) can now be studied analytically with the uncoupled and sim-

pler model of (3.76), which preserves the system dynamics but in a new coordinate. Justifica-

tion for (3.76a)—(3.76c) is on the assumption that effects of any cross-coupling nonlinearity

is weak compared to any self-coupling nonlinearity, provided no internal resonance occurs.
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As in the case of first order model, the initial conditions R0 are determined by formulating

nonlinear optimisation problem from (3.74), with S0 = 0.

3.3.3 NF of Second Order Models versus NF of First Order Models

Although the two models describe the same system behaviour, they do not give exactly the

same results under NF analysis. The previous NF analysis on a SMIB power system is

repeated with second order model (i.e. following NNM). The analyses from the two models

are compared in Figure 3.5. Notice that for the linear case, both models give exactly the
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Figure 3.5 – NF— Second order versus First order Models for a SMIB power system.

same result (i.e. purple and red curves). However, for a third order NF (i.e. blue and green

curves) analysis, there is a slight difference, both in the amplitude and in the frequency. In

fact, the second order model is closer to the exact solution (i.e black curve). The difference

in the first and second order methods comes from a difference in their invariance properties

[115]. In the first order form, the eigenvalue decomposition results in the natural frequency

ωn being split into two eigenvalue components jωn and −jωn. In contrast, the second order

form has eigenvalues of ω2
n for each ωn. Although, first order NF application is predominant

in power system, for classical models, its second order counterpart is more accurate and less

computation-intensive since the number of state variables is lesser. Moreover, the physical

meaning is well preserved for second order model since there is no complex quantities in the

process.

3.4 Summary of Normal Form Steps in Power System

Normal Form analysis can be applied to classical models of power system as well as to the

detailed model. A classical model can be written either as set of first order differential
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equations or as a set of second order differential equations. The application of NF to second

order model is more accurate than that of first order [115], however, in taking into account

the excitation controls, power systems are usually represented with first order models. The

detailed model adopted in this work is the two-axis model. The power system DAEs is

formulated as differential-only equations suitable for NF. The basic steps of NF application

to power systems can be summarised with Figure 3.6 and described below:

1: Perform

4:Nonlinear
Transform

5:
Normal Form
Simulation

6: Inverse
Transform

Taylor
ExpansionPower Flow

Figure 3.6 – Main steps in NF application to power systems.

1. Formulate the DAEs of the system: The power flow solutions are obtained and the

stable equilibrium point (SEP) for the post-fault system is determined.

2. Taylor expansion: The algebraic equations are substituted into the differential ones and

the resulting differential-only equations are expanded by Taylor series up to desired

order around the SEP. The Taylor expansion can also be done on structure preserving

power system DAEs [65]. The Jacobian of the system (i.e the first order term in the

Taylor expansion.) is used to extract the system eigenvalues and vectors.

3. Modal expansion: The system of step 2 is expanded onto the eigenvectors basis obtained

at step 2 and a new dynamical system with Jordan linear part is obtained, with nonlinear

terms that couple the equations. The coefficients of the nonlinear terms, referred to as

nonlinear coefficients, have to be computed.

4. Normal form transformation: The nonlinear part is further simplified by applying the

normal form technique, based on successive nonlinear change of variables. This step

leads to evaluation of other polynomial coefficients, so-called NF coefficients.

5. NF initial conditions and simulation: For transient simulations, the initial conditions

of the NF system are determined, usually by combination of Newton-Raphson method

and optimisation techniques. The system is then simulated in NF coordinates.

6. Inverse NF and modal transformation: The original dynamics can be reconstructed by

using the change of coordinates of steps 4 and 3.
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For power system applications, step 6 is often only used as a verification of the method.

Meanwhile, most analyses are based on the investigation of the information in steps 3-4 and

the initial condition of step 5. Evaluation of NF coefficients in step 4 finally boils down to

simple division of the nonlinear coefficients (computed in step 3) by different combinations

of the linear eigenvalues (computed in step 2). Hence the major computational burden is in

steps 2 to step 3 and evaluation of initial condition in step 5. As will be seen, the method

promoted in this work aims at significantly simplifying steps 2 to 3. In the next chapter, the

proposed method for facilitating the NF3 application is systematically presented.
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Chapter 4

Developed Method for Facilitating

Normal Form Applications

“Out of intense complexities,
intense simplicities emerge.”

Winston Churchill
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Introduction

In the previous chapter, the theories of Normal Form were presented. We have seen that

NF can be applied to first order system models as well as second order system models. It

was shown, how the nonlinear normal mode (NNM) can be defined for second order models,

following NF procedure. Whether first or second order model, the evaluation of Hessian ma-

trices and numerous nonlinear coefficients as a result of Taylor expansion, and its associated

higher order derivatives is common. It was noted that the evaluations of Hessians and these

nonlinear coefficients are very difficult, especially for systems with large number of variables.

In this chapter, we proposed a method that avoids the evaluation of Hessians and higher or-

der derivatives but obtains the nonlinear coefficients by solving sets of linear equations. The

proposed method is originally based on second order system model. In this chapter, it will be

shown how to generalise it to power system first order model. Thus, the second order models

are taken first and thereafter, the first order models. In each case, simple example is used

to demonstrate the technique, followed by the implementation on larger power systems. We

recall that in the previous chapter, the mechanical input power of the generator turbine was

assumed constant. It will be seen in this chapter that the proposed method has to assume

non-constant mechanical input for the evaluation of the nonlinear coefficients. The efficiency

and accuracy of the proposed method are accessed by comparison with symbolic computation

as well as with time domain simulations.

4.1 Motivation for the Proposed Method

In this thesis, we propose a method that avoids all the Hessian matrices and simultaneously

obtains the nonlinear coefficients. The proposed method is motivated by a technique intro-

duced in the mechanical engineering field [116], and widely applied since, to compute the

coefficients of nonlinear modal reduced order models of mechanical structures discretized by

a finite-elements method [113, 117]. Effort in the following section is to exploit the similarities

between second order mechanical and electrical systems, in order to adapt this technique for

power system studies.

Motivation

For better understanding of the proposed method, let us consider a simple motivating exam-

ple. Figure 4.1 shows a mass connected to a rigid body through a spring of stiffness K. The

mass rests on some rollers, such that it can move. Assume that an external force Fext causes

the movement of the mass, which in turn causes the spring to extend through a distance x.
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Fext

x

m

Figure 4.1 – One mass-spring system

The nonlinear behaviour of the spring can be modelled as:

mẍ+ f(x) = Fext. (4.1)

System (4.1) can be approximated with nonlinearities up to third order as

mẍ+Kx+ βx2 + γx3 = Fext, (4.2)

where β, γ are unknown coefficients. Let us try to solve for the unknown coefficients by taking

the stiffness (i.e. assuming a steady-state condition) part of (4.2). But since it contains two

unknowns in one equation, solving for β, γ is mathematically difficult; requiring perhaps,

iterations. It is assumed that we know the range of x for which the approximation (4.2) is

valid and we can always compute f(x); then it is possible to solve (4.2) linearly to obtain the

unknown coefficients. Let us select two arbitrary values of x, equal in amplitude but opposite

in sign (i.e. ±x ≡ x, −x) from the range of values of x. For simplicity, the value of m is

equal to unity. Then, it is possible to obtain two different equations, one for each value of x

as

Kx± + βx2± + γx3± = F±ext =⇒


Kx+ + βx2+ + γx3+ = F+

ext

Kx− + βx2− + γx3− = F−ext,

(4.3)

where the positive and negative superscripts are used to refer to equation relating to x and

−x respectively. Thus, F+
ext and F−ext correspond to f(x) and f(−x) respectively in the static

part of (4.1). The more compact form ± will henceforth, be used where the meaning is not

confusing.

System of equations (4.3) is linear and totally defined and can then be solved to find the

unknown coefficients β and γ. The above operation is exactly the idea proposed in this work,

except that the proposed method deals with vector field instead of scalar equation as (4.2).

The method is presented next.
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4.2 Computation of Nonlinear Coefficients: 2nd Order Model

Let us recall that the 2nd order classical model of power system with negligible damping can

be described as

Mẍ + f(x) = PT, (4.4)

where M is diagonal matrix, which corresponds to inertia constant of the electric machine.

PT is a vector of mechanical power input of the machines, x is an N -dimensional vector of

the state variables, and f is a smooth vector field collecting all nonlinearities. Also, we recall

from section 3.3 that (4.4) can be expanded as

Mẍ + Kx + F2(x) + F3(x)︸ ︷︷ ︸
Γ(x)

= P, (4.5)

and transformed by

x = Φη =⇒ xi = Φipηp, (4.6)

to

η̈+ Ω2η+ fNL(η1, η2, . . . , ηN ) = ΦTP, (4.7)

or

η̈p + Ω2
pηp +

N∑
q=1

N∑
r=1

Gpqrηpηr +
N∑
q=1

N∑
r=1

N∑
s=1

Hp
qrsηqηrηs = ΦpiPi, ∀p = 1, . . . N, (4.8)

where

fNL = ΦTΓ(Φη). (4.9)

K is the linear part, Γ(x) collects all the 2nd and 3rd order terms, P = ∆PT, while G and

H are the nonlinear coefficients that must be computed.

To describe the new method for computing these nonlinear coefficients, we first consider

in (4.4), the static part (i.e. f(x) = PT) and we assume that we are able to compute f(x) for

any x. The reader is reminded from chapter 2 that if the equilibrium is shifted to the origin,

the state variable ∆x is retained as x. Therefore, taking up to 3rd order for a perturbation,

the static part of (4.4) can be written as

PT = f(x0 + x) ≈ f(x0) + Kx + Γ(x). (4.10)
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Then, for a given SEP x0 and a given disturbance x, the definition

P = ∆PT = PT − f(x0) (4.11)

and the nonlinear part can be written

PNL = Γ(x) = PT − f(x0)−Kx = P−Kx. (4.12)

Then, considering the static part of (4.8) and (4.7), the expression of the r-th component of

fNL can be written:

f rNL(η1, η2, ...ηN ) =
N∑
j=1

N∑
k=1

Grjkηjηk +
N∑
j=1

N∑
k=1

N∑
l=1

Hr
jklηjηkηl = ΦT

r PNL, (4.13)

where (4.12) has been used to cancel the linear part.

The method proposed here consists of two successive steps:

• First, one has to prescribe a set of displacement vectors x, which are linear combina-

tions of selected eigenvectors Φi and compute the corresponding nonlinear force vector

PNL = Γ(x). The above operation is possible as soon as one can compute PT or f(x)

in (4.4) for a given x. It does not require to solve any nonlinear system, for instance,

with a Newton-Raphson technique. In time-domain simulation, the above operation

implies the initialisation of the nonlinear system with a chosen initial condition.

• Second, the unknown coefficients Grjk and Hr
jkl are found by solving a linear system of

equations, for which the second members are known functions of PNL = Γ(x), computed

at the previous step.

It is worthy of note that any SEP and model can be considered, with (4.13). To illustrate

the method, we first consider prescribing the following perturbation of the SEP:

x±1 = ±αiΦi ⇒

 ηi = αi,

ηj = 0 ∀j 6= i,
(4.14)

where αi, called modal deviation amplitude in this thesis is an arbitrary constant whose

value will be addressed hereafter. The second part of the above equation comes from the

orthogonality of the eigenmodes and (4.6). As explained earlier in the motivating example,

the reason for the negative and positive prescriptions is to make it possible for creating two

equations to be solved simultaneously. Prescribing a perturbation αi on a given eigenmode Φi

leads to set to zero, all the other modal coordinates ηj . That is to say that passing x = Φiαi
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to linear and nonlinear static models will have effect, approximately, only on the node ii,

x = Φiαi + Φjαj will have effect on ii, jj, and ij. By prescribing series of x, one obtains sets

of linear equations whose solutions are the coefficients. Considering (4.14) and (4.13), one

obtains:

α2
iG

r
ii + α3

iH
r
iii = ΦT

r P+
NL (4.15)

α2
iG

r
ii − α3

iH
r
iii = ΦT

r P−NL, (4.16)

where P±NL = Γ(x±1 ) = Γ(±αiUi). As a consequence, coefficients Grii and Hr
iii are solutions

of a linear system whose second member is easily computed with the static part of the initial

system f(x). This linear system can be generally written as Acxc = Bc, where

Ac =

α2
i α3

i

α2
i −α3

i

 ,xc =

 Grii
Hr
iii

 ,Bc =

ΦT
r P+

NL

ΦT
r P−NL

 . (4.17)

For other coefficients, such as Grij , H
r
iij , H

r
jji, i 6= j and Hijk i 6= j 6= k, 16 different

prescriptions of x are needed as:

x =



±Φiαi

±Φjαj

±Φkαk

Φiαi + Φjαj

Φiαi −Φjαj

−Φiαi + Φjαj

Φiαi + Φkαk

Φiαi −Φkαk

−Φiαi + Φkαk

Φjαj + Φkαk

Φjαj −Φkαk

−Φjαj + Φkαk

Φiαi + Φjαj + Φkαk

(4.18)
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Then a new linear system is obtained with Ac =



α2
i α3

i 0 0 0 0 0 0 0 0 0 0 0 0 0 0

α2
i −α3

i 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 α2
j α3

j 0 0 0 0 0 0 0 0 0 0 0 0

0 0 α2
j −α3

j 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 α2
k α3

k 0 0 0 0 0 0 0 0 0 0

0 0 0 0 α2
k −α3

k 0 0 0 0 0 0 0 0 0 0

α2
i α3

i α2
j α3

j 0 0 αiαj α2
iαj αiα

2
j 0 0 0 0 0 0 0

α2
i α3

i α2
j −α3

j 0 0 −αiαj −α2
iαj αiα

2
j 0 0 0 0 0 0 0

α2
i −α3

i α
2
j α3

j 0 0 −αiαj α2
iαj −αiα2

j 0 0 0 0 0 0 0

α2
i α3

i 0 0 α2
k α3

k 0 0 0 αiαk α2
iαk αiα

2
k 0 0 0 0

α2
i α3

i 0 0 α2
k −α3

k 0 0 0 −αiαk −α2
iαk αiα

2
k 0 0 0 0

α2
i −α3

i 0 0 α2
k α3

k 0 0 0 −αiαk α2
iαk −αiα2

k 0 0 0 0

0 0 α2
j α3

j α2
k α3

k 0 0 0 0 0 0 αjαk α2
jαk αjα

2
k 0

0 0 α2
j α3

j α2
k −α3

k 0 0 0 0 0 0 −αjαk −α2
jαk αjα

2
k 0

0 0 α2
j −α3

j α
2
k −α3

k 0 0 0 0 0 0 −αjαk α2
jαk −αjα2

k 0

α2
i α3

i α2
j α3

j α2
k α3

k αiαj α2
iαj αiα

2
j αiαk α2

iαk αiα
2
k αjαk α2

jαk αjα
2
k αiαjαk



Xc =
[
Gr

ii, H
r
iii, G

r
jj , H

r
jjj , G

r
kk, H

r
kkk, G

r
ij , H

r
iij , H

r
ijj , G

r
ik, H

r
iik, H

r
ikk, G

r
jk, H

r
jjk, H

r
jkk, G

r
ijk

]T

Bc =


ΦT

r P+
NLi

, ΦT
r P−

NLi
, ΦT

r P+
NLj

, ΦT
r P−

NLj
, ΦT

r P+
NLk

, ΦT
r P−

NLk
, ΦT

r P++
NLij

, . . .

. . . ΦT
r P+−

NLij
, ΦT

r P−+
NLij

,ΦT
r P++

NLik
,ΦT

r P+−
NLik

,ΦT
r P−+

NLik
,ΦT

r P++
NLjk

, ΦT
r P+−

NLjk
, . . .

. . . ΦT
r P−+

NLjk
,ΦT

r P+++
NLijk


T

,

where the superscripts correspond to the signs of the different prescriptions of x in (4.18). The

16 different prescriptions can be done simultaneously through a parallel computation software.

The challenge however, is that the big matrix Ac is rebuilt for every set of coefficients,

leading to repeated computations which are not desired. It is possible to reuse the previous

computations for the subsequent ones. It is better to solve a lot of small systems and not a

big one, computationally speaking.

Suppose all Grii and Hr
iii are computed with (4.17), for the other coefficients such as
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Grij , H
r
iij and Hr

jji, i 6= j, x can be prescribed as:

x =


Φiαi + Φjαj

Φiαi −Φjαj

−Φiαi + Φjαj

(4.19)

A new linear system is obtained with unknown Grij , H
r
iij and Hr

jji and with the previously

obtained coefficients Grii and Hr
iii in the second member. Therefore, using (4.14) and (4.13)

we get a set of linear equations

Acxc = Bc (4.20)

with:

Ac =


αiαj α2

iαj αiα
2
j

−αiαj −α2
iαj αiα

2
j

−αiαj α2
iαj −αiα2

j

 , xc =


Grij

Hr
iij

Hr
jji

 ,

Bc =

ΦT
r P++

NLij
−Griiα2

i −Hr
iiiα

3
i −Grjjα2

j −Hr
jjjα

3
j

ΦT
r P+−

NLij
−Griiα2

i −Hr
iiiα

3
i −Grjjα2

j +Hr
jjjα

3
j

ΦT
r P−+

NLij
−Griiα2

i +Hr
iiiα

3
i −Grjjα2

j −Hr
jjjα

3
j

 .
(4.21)

Note that all self-coupled coefficients have been previously determined with (4.17).

Finally, the last coefficients Hr
ijk, k 6= i 6= j, x are obtained by prescribing:

x = Φiαi + Φjαj + Φkαk. (4.22)

Then all Hr
ijk can be obtained from

Griiα
2
i +Hr

iiiα
3
i +Grjjα

2
j +Hr

jjjα
3
j +Grkkα

2
k +Hr

kkkα
3
k +Grijαiαj +Hr

iijα
2
iαj + . . .

. . . Hr
ijjαiα

2
j +Grikαiαk +Hr

iikα
2
iαk +Hr

ikkαiα
2
k +Grjkαjαk +Hr

jjkα
2
jαk +Hr

jkkαjα
2
k . . .

+Hr
ijkαiαjαk = ΦT

r P+
NLijk

.

(4.23)

Equation (4.23) contains only one unknown term Hr
ijk, since all other terms have been pre-

viously determined in (4.17) and (4.21).

Observe the following:

• The actual Taylor expansion and associated higher order derivatives and Hessian com-

putations in (4.5) have been avoided. Therefore, instead of building Hessians, one needs

only to solve linear system of equations.
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• The computation of nonlinear coefficients via the modal expansion (4.9) has been

avoided. Implementation of (4.9) leads to full matrices (not always symmetrical) even

with sparse Hessian matrices of ((4.5)), thus symmetry cannot always be exploited.

• It is important to note that any desired coefficients can be computed easily by such a

formulation as in (4.15) and (4.16). This is a major advantage of the proposed method,

since not all terms will be needed for every analysis. It has to be emphasised that it is

not practically impossible to compute a term selectively with the conventional method;

the proposed method is only more convenient and faster.

4.2.1 Choosing the Modal Deviation Amplitude (α)

Although the amplitude of the deviation α is chosen arbitrarily, it should neither be too

small nor too big. Very small value of α does not trigger the nonlinearity very well; hence,

the system is more or less linear. On the other hand, too large value of α leads to higher

nonlinearity, hence the domain of validity of 3rd order approximation is exceeded. Figure 4.2

shows the sensitivity of α for the system demonstrated in subsection 4.3.1. The modulus of

some nonlinear coefficients is shown as a function of α. We observe that the coefficients

Figure 4.2 – Sensitivity of Modal deviation amplitude (α)

are consistent for α within certain range. As α becomes large, the nonlinearity increases

beyond the validity of the third order approximation. This is evident from Figure 4.2 as the

curves deviate from the actual results. In all the cases we have tried, a value in the range

of 0.001 ≤ α ≤ 0.9 seems to give good result. However, it is necessary to know in advance,

the actual value of α that gives the correct result for any given system. The modal deviation

amplitude α is now chosen empirically, but future work should be able to define its value in

advance, considering the degree of nonlinearity of the studied system.
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A summary of the steps involved in the proposed method is depicted with Figure 4.3.

The first two steps can be obtained with a commercial software and the other steps can also

be implemented.

Modal Perturbation

Steady-state Solution

Compute Coefficients

Form Linear Eqs.

End

Start

Power Flow
SEP

Linearisation
Eigenmodes/Vectors

Figure 4.3 – Flow Chart of the Proposed Method

4.2.2 Benefits of the Proposed Method Summarised

The benefits of the proposed method are highlighted as follows:

• Both second and third order nonlinear coefficients are computed simultaneously.

• With good knowledge of the coefficients of interest, they can be selectively computed

rapidly.

• It requires only the state matrix used for the linear analysis. No further differentiation

needed.

• It is easy to implement and can easily adapt to model variations.

• It can be convenient to integrate in a commercial software, since there are many small

signal analysis software that generate the state matrix.

Remark. The developed method assumes that the nonlinearities are smooth and static. This

implies that the nonlinearities are not on the differential parts of the equations.
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4.2.3 Illustrative Example

Firstly, the IEEE 3-machine 9-bus power system (Figure 2.1) is used to demonstrate the

method. The full data of the system can be found in Appendix E. The numerical results

are compared to that obtained by symbolic method. Symbolic method is also called Hessian

approach in this thesis, since it involves the actual Taylor expansions and Hessian evaluations.

Each of the three machines can be expressed as

Miδ̈i + C̄iδ̇i + Pei = Pmi (4.24a)

Pei = E2
i Gii +

N∑
k=1,k 6=i

EiEk [Gik cos δik + Bik sin δik] . (4.24b)

Mi, C̄i , Pei , Pmi , δi have their meanings as defined in chapter 3. The damping constant C̄i

is set to zero for simplicity. The system of (4.24) is linearised and the Jacobian matrix K

built as:

∀ (i, j = 1 . . . N) : Kij = ∂Pei
∂δj
|δ=δ0 . (4.25)

With last machine used as a reference, the size of K becomes (N − 1) × (N − 1), which

corresponds to two1 oscillators. The quadratic and cubic nonlinear coefficients for the two

modes using the proposed method are presented in Table 4.1 and Table 4.2 . The results

from the conventional Hessian approach (symbolic) are also presented for comparison. As

can be seen from the tables, the two results perfectly agree. The superiority of the proposed

method is seen immediately by comparing the computation costs. With an Intel CoreTM

i7-4610M, 3Gz personal computer, the allocated memory and time consumed are estimated

as shown in Figure 4.4. It is clear that the computational burden is significantly reduced,

especially in time and memory consumption. As, shall be seen later, for more state variables,

the proposed method shows almost incomparable results with the symbolic method in terms

of computation cost.

1

The fact that the left eigenvector is the transpose of the right eigenvector has a computational advantage since
matrix inversion is avoided. However, the right eigenvector should be normalised such that ΦTpiMijΦjq = 1,

given that the eigenvalues are computed as the solution of (K − Ω2
iM)Φi = 0. In an interconnected power

system, at least one of the eigenvalues of K is zero. Thus, there are at most (N − 1) modes in an N -machine
system, where one machine is used as reference. The equation corresponding to the reference machine is
subtracted from all other equations in order to get rid of the zero eigenvalue. This modifies K and M which
makes the eigenvector normalisation more rigorous. The simplest normalisation is to define the left vector as
the inverse of the right vector, but then, a price is paid for matrix inversion.
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Table 4.1 – Proposed versus Symbolic—Quadratic coefficients for the 9-Bus Power System

r-th Mode Symbolic Proposed

G11 G12 G22 G11 G12 G22
1 -8.3772 -1.0724 0.1855 -8.3772 -1.0724 0.1855
2 -0.0098 -9.5637 5.1094 -0.0098 -9.5637 5.1094

Table 4.2 – Proposed versus Symbolic—Cubic coefficients for the 9-Bus Power System

r-th Mode Symbolic Proposed

H111 H112 H122 H222 H111 H112 H122 H222
1 -17.5849 0.2575 -5.9340 -0.1392 -17.5849 0.2571 -5.9336 -0.1392
2 0.8617 -42.7540 -3.2966 -16.0409 0.8617 -42.7542 -3.2964 -16.0408
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Figure 4.4 – Proposed vs Symbolic—Computation costs for the 9-Bus Power system

4.2.4 Implementation on Larger Power Systems

The power systems selected in this section are the 39-bus, 10-machine power system shown

in Figure 4.5, and the 145-bus, 50-machine system shown in Figure 4.13. The 39-bus system

is basically a two-area system where G1 represents an equivalent New York system and G2 to

G10 New England system [118]. The system exhibits 9 natural modes of oscillation and mode

1 (slowest) is an inter-area mode, with major participation from generator 1. The inter-area

mode is regarded as a New England versus New York oscillation, with all generators within

New England area oscillating coherently, against the New York equivalent [118]. The 145-bus

system on the other hand, has 49 electromechanical modes, most of which are local.

With second order modelling, and the last generator as a reference, the 10-machine system

and 50-machine system have 9 and 49 state variables respectively. The number of nonlin-

ear coefficients (G, H) needed for NF transformation, according to (3.54) are 1, 890 and

1, 080, 450 for the 10- and 50-machine systems respectively. These are obviously too large

numerical results to present on paper. Therefore, to validate the computed coefficients, we
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Figure 4.5 – One line diagram of 39-bus New England power system

simulated the modal model (4.8), with nonlinear coefficients computed by the symbolic tools

and with nonlinear coefficients computed by the proposed method, under the same initial con-

ditions. Using symbolic method as a standard, the result from the proposed method is being

compared in Figure 4.6 for the 10-machine system. It is clear that the two curves are in good

match. The error evolution indicates a maximum error of 2.2e−5 (i.e. Hessian− Proposed)

at the end of 20s, which confirms the accuracy of the proposed method. Note that this is a

cumulative error while using the method in the simulation. Further error analysis specifically

related to the coefficients will be presented later in the chapter. In the second case, the limit

of symbolic method is reached (i.e based on the personal computer and MATLAB® used).

The computation could not be completed even after 12 hours. However, with the proposed

method, all the 1, 080, 450 coefficients were computed in approximately 131 seconds. The

magnitude of these coefficients are plotted in Figure 4.8.
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Figure 4.6 – Proposed versus Symbolic (direct Hessian) method for 39-Bus Power system

Computational Analysis

As announced, the proposed and the symbolic methods become incomparable with the in-

creased number of state variables. This is clearly seen in Figure 4.7, where the bar correspond-

ing to the proposed method (Figure 4.7a) is almost invisible and the sector corresponding to

the proposed method in Figure 4.7b is less than 1%.
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Figure 4.7 – Proposed vs Symbolic—Computation costs for 39-Bus Power System

The computational analyses of the proposed method, in comparison with the symbolic

method for the two power systems are summarised in Table 4.3. The table shows that the

proposed method leads to remarkable gain, both in memory and in time, compared with

the symbolic method, where Hessians are evaluated. For instance, the memory saving factor

(MSF) and the time saving factor (TSF) for the case of the 10-machine system are respectively,

1.52e3 and 475. Saving factor is defined as the ratio of the computation cost by symbolic

method to the computation cost by the proposed method. This implies that for the 10-

machine system, the proposed method is 475 times faster and 1.52e3 times less costly (in

terms of memory) than the symbolic method.

From Figure 4.8 and Tables 4.1, 4.2, the following observations can be made about non-

linearities for the test case:
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Table 4.3 – Computational efficiency of the proposed method—2nd Order Model

System Symbolic Proposed

Time (s) Mem. (kb) Time (s) Mem. (kb) MSF∗ TSF∗∗

10-Machines 95 91e3 0.20 60 1.52e3 475
50-Machines – – 131 49e3 – –

∗MSF =Memory saving factor; ∗∗TSF = Time saving factor.
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Figure 4.8 – Distribution of G and H coefficients for the 145-Bus Power system

• The nonlinearities are not uniformly distributed among the modes. They are instead,

localised on few modes in the system.

• Third order nonlinearities can be stronger than second order nonlinearities.

The implication of the first observation is that it may be possible to build a reduced order

model, whereby, not all the nonlinear coefficients are computed. Currently, researchers in

mechanical domain are already exploiting this benefit [62, 63, 113, 117]. This of course, can

be extended to power system analysis. The implication of the second observation is that third

order nonlinearities can play very significant role in the system dynamics. Therefore, if NF

is performed with classical model (e.g. [60, 79]), at least third order nonlinearities should be

considered. In fact, in vibrational mechanics, for some models, second order nonlinearities

are sometimes negligible compared to third order nonlineairties. This point can be shown

clearly by simulation.

Consider a three-phase solid fault at bus 4 of the 10-machine system shown in Figure

4.5. We know from previous works that a fault added to bus 4 of that system, will excite

significantly the inter-area mode. The fault was cleared after 0.35 seconds. Three approxi-

mate modal models, namely— linear, second order and third order, obtained from (4.8) are

simulated. The responses of the first modal variable due to these models are plotted in Figure

4.9. It can be seen that for the test case:

• The inclusion of second order nonlinearities for classical model do not show very signif-
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Figure 4.9 – Comparison of Linear, 2nd and 3rd order modal model for 39-bus system

icant difference from linear one.

• The three models had initially, nearly same frequency and amplitude, but the frequency

of third order model keeps shifting as time evolves.

A characteristic behaviour of nonlinear system is this shifting of frequency with respect to

amplitude during a disturbance. It is possible to study the amplitude-frequency shifts using

third order nonlinearities. This is one of the major achievements of NF application using

second order differential equations.

Recapitulation

As discussed above, the proposed method is very efficient, since no Taylor expansion is in-

volved, and since the evaluation of the nonlinear coefficients reduces to (i) the evaluation of

f(x) for a given x and (ii) the solving of linear systems. Consequently, huge computations

are avoided, leading to significant reduction in memory and time of computations. Another

interesting feature of this method is that if one has good information regarding the coefficients

of interest, they can be selectively computed without having to do the whole computation. In

general, all that are needed are the state matrix, which is readily available in many commer-

cial SSA software, and the exact nonlinear equations that model the system. With nonlinear

coefficients computed, the NF coefficients are computed easily by direct substitution. The next

challenging step is the evaluation of NF initial conditions, which is not directly dealt with in

this work. Note that the first steps (linear analysis) of our method can be obtained with a

commercial software and the implementation of other steps is achievable.
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4.3 Computation of Nonlinear Coefficients: 1st Order Model

In the previous section, the computations of the nonlinear coefficients for second order models

were discussed and a faster method was proposed. As noted, the new method is an extension

of a technique already existing in the mechanical engineering field. However, this method

has been applied only to systems of second order differential equations with real eigenval-

ues/vectors. On the contrary, power systems are modelled usually, as first order systems with

complex eigenvalues/vectors. First order models are more convenient for the incorporation of

other elements of power systems like, exciters and PSS. Furthermore, when power system is

represented with second order model, each machine is represented by a differential equation

with a corresponding mechanical input power. This mechanical input power is a forcing term,

compulsory for the proposed technique. On the contrary, with first order representation, only

one out of many differential equations describing the machine, has a mechanical input power.

As a further extension of the technique proposed in the previous section, the formulation

in this section considers the following:

• first order complex differential systems;

• differential equations without input, or with other input other than mechanical power

(e.g. Voltage);

• detailed model generator; and

• other conditions for good results with first order model.

Consider a power system modelled with N -dimensional first order differential equations

ẋ + f(x) = PT, (4.26)

where x and PT are vectors of state and external input respectively. Though, PT does not

apply to all the equations if the system is in first order differential equations (since some

equations have zero input), the idea is to put element of PT = 0 where they do not apply.

The representation in (4.26) is a specific form of the general representation in (3.18), and is

chosen to emulate the previous proposal. f(x) is a nonlinear function and its expression and

degree of nonlinearity depends on the particular model adopted. Let the Taylor expansion of

(4.26) be expressed as

ẋ + Ax + Γ(x) = P, (4.27)

where A is the Jacobian, Γ(x) collects all second and third order terms and P = ∆PT. Recall

from chapter 3, the following definitions: Ui, and Vi are the i-th columns of right and left
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eigenvectors respectively, U = [uij ], V = [vij ], the corresponding matrices and Λ = VTAU =

diag (λp), the diagonal matrix of its eigenvalues, p, i, j = 1, . . . N .

As shown in chapter 3, with the transformation

x = Uy (4.28)

one obtains the r-th component of the nonlinear part (4.27) similar to that obtained for

second order model (4.13) and is given by

f rNL =
N∑
j=1

N∑
k=1

Crjkyjyk +
N∑
j=1

N∑
k=1

N∑
l=1

Dr
jklyjykyl = VT

r P, (4.29)

where

fNL = VTΓ(Uy) (4.30)

and C, D are nonlinear coefficients to be computed. Apart from the definition of the left

eigenvector V (defined as U−1 to ensure proper normalisation), the procedures are the same

as in the previous section, the major difference is in the treatment of PT in the right hand

side of (4.26), which is discussed next.

In order to make the proposed method work for first order power system models, the

following changes relating to the treatment of PT are proposed.

1. Define dummy parameters at the right hand side of all equations without input in

(4.26).

2. Identify any constant terms (i.e. non-state variables that are not multipliers) in f(x)
(i.e. in (4.26)) and move them to the right hand side.

3. Assign zeros as the initial values of the dummy parameters defined above.

4.3.1 Didactic Examples

Example 1—Classical SMIB model

We consider a 2-state-variable system verifying the following equations:

ω̇ + 1
M

[
EV

Xs
sin δ +D(ω − 1)

]
= PT (4.31a)

δ̇ − ωs(ω − 1) = P ∗T (4.31b)
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M and D are respectively the inertia and damping2 constants. Xs is the total reactance

between the machine and infinite bus, PT is the mechanical input power while P ∗T in (4.31)

is a dummy parameter. For the SMIB system above, P ∗T is zero at SEP since ωs(ω − 1) is

zero. After perturbation, P ∗T will not necessarily be zero since ωs(ω − 1) is no longer zero

(i.e. considering the static part of (4.31)). Assume the system parameters to be: M = 1, E =
1.123 p.u., V = 0.995 p.u., Xs = 0.95 p.u., D = 2, SEP = [0.3 rad, 1 p.u.], PT0 = 0.35 p.u..
The right and left eigenvectors are computed as:

U =
[
−0.0026 + 0.0544i −0.0026− 0.0544i

0.9985 0.9985

]
, V =

[
0.4383− 9.1702i 0.5008
−0.4383 + 9.1702i 0.5008

]

The necessary deviations are defined as (4.28):

x±1 = ±0.1 ∗
(
−0.0026 + 0.0544i

0.9985

)
x±2 = ±0.1 ∗

(
−0.0026− 0.0544i

0.9985

)

The r−th quadratic and cubic coefficients of the SMIB system using the symbolic and pro-

posed methods are presented in Table 4.4 and Table 4.5. As can be seen from the tables, the

two results are in agreement.

Table 4.4 – Proposed Vs Symbolic—Quadratic coefficients for SMIB example

r-th Mode Symbolic Proposed

C11 C12 C22 C11 C12 G22
1 -1.59j -3.18j -1.59j -1.59j -3.18j -1.59j
2 1.59j 3.18j 1.59j 1.59j 3.18j 1.59j

Table 4.5 – Proposed Vs Symbolic—Cubic coefficients for SMIB example

r-th Mode Symbolic Proposed

D111 D112 D122 D222 D111 D112 D122 D222
1 -1.71j -5.14j -5.14j -1.71j -1.71j -5.14j -5.14j -1.71j
2 1.71j 5.14j 5.14j 1.71j 1.71j 5.14j 5.14j 1.71j

Example 2—Two-axis machine model

The second example is the 9-bus power system previously studied (Figure 2.1). Each of the

three machines is represented with a two-axis model described in section 3.1.2 by (3.5) —

(3.8). With the last generator as a reference, the number of differential equations will be 11,

which translate to 3, 872 coefficients (i.e., C, D ).

2

For specific case of classical model, it is recommended to define a damping coefficient (≥ 0.1 recommended)
to avoid unnecessary rearrangement of equations. If there is no damping, the magnitudes of the coefficients
will be same, but the signs may rotate, due to the splitting of eigenvalues.
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Firstly, rearrange (3.5)—(3.8) in the form (4.26) and create dummy param-

eters where necessary



δ̇i − ωs(ωi − ωN )

Ė′qi − 1
T ′
d0

[−E′qi − (xdi − x′di)Idi ]

Ė′di − 1
T ′q0

[−E′di + (xqi − x′qi)Iqi ]

ω̇i − 1
Mi

[−(E′qiIqi + E′diIdi)−Di(ωi − 1)]


=



P ∗Tδi

PTEfdi

P ∗TE′
di

PTωi


≡



0

Efdi

0
Pmi
Mi


, (4.32)

where the asterisk (*) denotes dummy parameters while the subscripts in PT indicates the

corresponding equation.

Secondly, set all derivatives to zero to obtain the static model

f(x) =



−ωs(ωi − ωN )

− 1
T ′
d0

[−E′qi − (xdi − x′di)Idi ]

− 1
T ′q0

[−E′di + (xqi − x′qi)Iqi ]

− 1
Mi

[−(E′qiIqi + E′diIdi)−Di(ωi − 1)]


= PT (4.33)

and the initial forcing vector,

f(x0) = PT =



0

Efd0i

0
Pm0i
Mi


(4.34)

where

Iqi =
N∑
j=i

[(Bij cos δij − Gij sin δij)E′qj + (Bij sin δij + Gij cos δij)E′dj ] (4.35a)

Idi =
N∑
j=i

[(Bij sin δij + Gij cos δij)E′qj − (Bij cos δij − Gij sin δij)E′dj ] (4.35b)

Prescribe deviations x to compute the nonlinear coefficients:

(a.) For x, the nonlinear algebraic equations (4.35) are solved to obtain Iqi , Idi ;

(b.) Then Iqi , Idi replaced in (4.33) to get new PT;

(c.) Then PNL is obtained from (4.12) as PNL = PT − f(x0).

The quadratic and cubic coefficients of the rth equation are presented in Table 4.7 and

Table 4.9. The results from the conventional direct Hessian approach (symbolic in this case)
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are also presented (Table 4.6 and Table 4.8) for comparison. Note that not all coefficients are

shown in the tables, since the data are too large and inconvenient to show on paper.

Table 4.6 – Quadratic Coefficients —Hessian Method (symbolic) for 2-axis Model

rth C11 C23 C45

1 0.3249 + 0.2378i 0.5124 + 0.3663i 0.6631 - 3.0947i
3 -0.0105 - 0.0028i 0.0406 + 0.1353i 0.2577 - 0.8525i
4 -0.1323 - 0.0191i 0.0641 + 0.1335i 0.3234 - 0.8295i
6 0.6383 - 0.0433i -0.0824 + 0.0197i 0.1117 + 0.0280i
7 -0.1193 + 0.0151i 0.0264 - 0.0059i -0.0597 + 0.0051i
10 0.1617 + 0.0732i -0.0088 - 0.0036i -0.1960 - 0.0368i
11 0.0140 +0.0099i -0.0469 +0.0075i -0.2191 - 0.0653i

Table 4.7 – Quadratic Coefficients — Proposed Method for 2-axis Model

rth C11 C23 C45

1 0.3249 + 0.2376i 0.5124 + 0.3661i 0.6631 - 3.0948i
3 -0.0104 + 0.0027i 0.0410 + 0.1508i 0.2581 - 0.8370i
4 -0.1323 - 0.0189i 0.0641 + 0.1337i 0.3234 - 0.8293i
6 0.6309 - 0.0433i -0.0897 + 0.0197i 0.1043 + 0.0280i
7 -0.1191 - 0.0151i 0.0264 - 0.0059i -0.0597 + 0.0051i
10 0.1649 + 0.0732i -0.0086 - 0.0036i -0.1928 - 0.0368i
11 0.0150 + 0.0100i -0.0468 + 0.0075i -0.2191 - 0.0653i

Table 4.8 – Cubic Coeff. Hessian Method (symbolic) for 2-axis Model

rth D222 D4,8,8 D9,10,11

1 -0.3191 - 0.3763i -0.0015 - 0.0188i -0.2008 - 1.0589i
3 -0.0043 - 0.0121i -0.0027 + 0.0208i 0.0210 + 0.2150i
4 0.0034 + 0.0091i 0.0077 - 0.0214i 0.0210 - 0.2150i
6 -0.0278 - 0.0519i -0.0489 - 0.0052i -0.2819 - 0.0000i
7 -0.0046 - 0.0104i 0.0104 + 0.0015i 0.0633 + 0.0000i
10 0.0036 + 0.0113i -0.0266 - 0.0024i -0.2473 - 0.0000i
11 -0.0022 - 0.0067i 0.0013 - 0.0000i 0.0071 + 0.0000i

Table 4.9 – Cubic Coeff. Proposed Method for 2-axis Model

rth D222 D4,8,8 D9,10,11

1 -0.3191 - 0.3763i -0.0015 - 0.0188i -0.2010 - 1.0584i
3 -0.0043 - 0.0121i -0.0028 + 0.0208i 0.0209 + 0.2150i
4 0.0034 + 0.0091i 0.0077 - 0.0213i 0.0209 - 0.2150i
6 -0.0278 - 0.0519i -0.0490 - 0.0052i -0.2819 - 0.0000i
7 -0.0046 - 0.0104i 0.0104 + 0.0015i 0.0632 + 0.0000i
10 0.0036 + 0.0113i -0.0266 - 0.0024i -0.2472 - 0.0000i
11 -0.0022 - 0.0067i 0.0013 - 0.0000i 0.0071 + 0.0000i

As could be seen from the tables, the two results highly agree.
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4.3.2 Application to Larger Power Systems

In this section, we will progressively investigate the application of the proposed method to

the IEEE 3-Machine system with excitation controls, the IEEE 16-Machine, and the IEEE

50-Machine systems. In all cases, the number of coefficients becomes too large to show due

to lack of paper space. We will focus on the computation time and memory consumption.

However, the accuracy will be investigated by checking the maximum error compared to

the direct Hessian approach (where possible), which is used here as standard. The modal

deviation amplitude (α) of 0.1 was used in all cases. The state matrix employed by the

proposed method was obtained from a commercial software. It is important to note that

the complexity arises from the number of state variables (linear basis size) in the system,

and not from the size of network. Clearly, it is possible for a small network to have a very

large computational burden due to the number of state variables. One power electronic (PE)

converter, for instance, can have up to 13 state variables [105], which is computationally

larger than 6-machine system with classical model.

Test on IEEE 3-Machine System with Detailed Model and Excitation Control

The proposed method is now investigated for two-axis model with control. The excitation

model described in (3.13)—(3.17) was added to the previous 9-bus system (i.e. Figure 2.1).

With machine 3 used as reference, the linear basis size is 20, which from (3.54) amounts

to 35,000 nonlinear coefficients . The procedures discussed in section 4.3 were followed to

compute all the coefficients.

A further comparison by numerical simulation is provided by Figure 4.10a,b. A 3-phase

fault was applied to bus 4 and cleared in 0.184 s. This clearing time is almost the critical

clearing time3, and was chosen to ensure a very severe condition where there should be

significant difference in the methods. Then, a 3rd order NF model was built using the

conventional Hessian and the proposed methods. As expected, the NF solutions show some

remarkable deviations from the exact solution due to the severity of the stress. However,

the results from the proposed method and the conventional Hessian approach are matched to

very high extent, which confirms that the proposed method reduces the computational burden

without the accuracy compromised. The maximum errors in percentage were computed as

ξ2= max|
C2j

klh
−C2j

klp

C2j
klh

| × 100 and ξ3 = max|D3jpqrh−D3jpqrp

D3jpqrh
| × 100 for quadratic and cubic

coefficients respectively. The errors were estimated to be 2e−5% and 1.8e−3% for quadratic

and cubic coefficients respectively. The error distribution, taking into account all quadratic

and cubic coefficients is shown with the red line (Case-A) in Figure 4.11b.

3The critical clearing time is 0.185 s which was obtained by several simulation runs.
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Figure 4.10 – Accuracy of the proposed method on detailed model with control

To validate the method, further investigation was performed on relatively larger systems

in the next subsections.

Test on IEEE 16-Machine System

The New England/New York System [119] is a widely used 5-Area system consisting of

16 generators, 68 buses and 83 lines. The classical model was used with machine 16 as a

reference, making the total number of differential equations 31 and total of 186, 434 C and

D coefficients.

Again, time-domain solution Figure 4.11a for a 0.02s short-circuit at bus 53, coming from

models built by both the proposed and the conventional Hessian methods show the accuracy

of both methods to be same. Note that this system is unstable when no PSS or only one PSS
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Figure 4.11 – Accuracy of the proposed method on 20- and 31-state system

is installed [119]. As we did not consider PSS, the system is unstable; the interest in Figure

4.11a is only to show the accuracy of the proposed method compared with the standard

Hessian approach even for unstable system.

The maximum errors were estimated to be 1.7e−7% and 7.3e−5%, for quadratic and cubic
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coefficients respectively. The error here is very infinitesimal compared to the errors in the

previous subsection (see case-B in Figure 4.11b). The reason, is likely due to degree of

nonlinearity. When there is control in the system such as AVR and PSS, the nonlinearity

increases compared to that of classical model. In general, the error incurred by the proposed

method is small and is a good compromise for the time and memory saved.

Test on IEEE 50-Machine System

In the previous subsections, we have verified the accuracy of the proposed method by com-

paring with symbolic computation. Here, we focus on the number of coefficients and the

time for their computation. We applied our method to the IEEE 50-Machine system shown

in Figure 4.13 and modelled as classical, with machine 50 taken as reference. There are

16,988,400 C and D coefficients which were computed in approximately 4 hours. Table 4.10

shows some selected coefficients. All the coefficients were computed. The presented coeffi-

cients were only selected randomly. Figure 4.12a–d show the absolute value distributions of

C and D coefficients for some modes. Figure 4.12a–b represent a complete plot of all the C

and D coefficients of the first row in Table 4.10 (mode 1), while Figure 4.12c–d represent a

complete plot of all the C and D coefficients in row 70 (mode 70), not shown in Table 4.10.

It is evident from the figures that both numerically significant and insignificant values are

computed.

Table 4.10 – Quadratic & Cubic Coeff.Proposed Method

rth C1,1 C10,50 D1,60,80 D90,90,90

1 9.6e-3j - 1.6e-3j -2e-4 + 6.1e-3j 9e-6 - 3e-4j
45 1e-4 - 11.9e-3j 2e-4 - 7e-4j -1e-5 - 1e-4j 3e-5 + 1e-4j
99 -1e-3 + 3e-3j 2e-5 - 2e-4j 2e-4 - 2.5e-3j 11.9e-3j

In addition to huge computational success already brought by the proposed method,

another major advantage is that it allows with convenience, the application of NF to power

system, focusing only on some selected terms. We note that to reduce NF computational

burden, earlier researches had suggested that higher order spectra (HOS) or prony analyses

be used to detect the interacting modes, and then, only terms relating to these modes can be

selectively computed [31, 84]. With the proposed method, any terms of interest can be easily

computed. Table 4.10 and Figure 4.12 lend more credence to the fact that some terms can be

negligible in NF application. With the proposed method, one can reduce the computational

burden drastically by neglecting some terms due to the particular modes excited. Certainly,

there are some coefficients in NF application that can be neglected, even if we are not precise

now and in pursuance of such selective NF applications, the proposed method is apt.
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Figure 4.12 – Distribution of C and D coefficients for 147-Bus Power System

4.3.3 Computational Efficiency

A summary of the computational analysis of some tested cases is shown in Table 4.11. N/A

in Table 4.11 means not applied. For the 3-machine system, the time and memory costs

were investigated on an Intel CoreTM i7-3520M 2.9GHz laptop computer, and compared

with computation, using the Symbolic Math Toolbox in MATLAB®. The proposed method

achieved time and memory saving factors of 43 and 49 respectively (please see columns 8-9 of

Table 4.11). Saving factor is computed as the ratio of the symbolic time/memory consumption

to that of the proposed method. Similar comparison for the 16-machine system yielded time

and memory saving factors of 472 and 776 respectively (see columns 8-9 of Table 4.11). In

comparison with the symbolic method, this method is indeed a huge success and good news for

power system researchers interested in Normal Form based analysis. For further assessment of

the computational efficiency, we investigated the time and memory consumption on various

system sizes. Figure 4.14a and Figure 4.14b show the evolution of computation time and

memory consumption for varying size of the system respectively. We observed that for very

small size (≤ 5), both methods give fairly comparable results in memory consumption but
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Figure 4.13 – One-line Diagram of the IEEE 50-Machine 145-Bus Power system [120].

the times required are remarkably different. Beyond 5 state variables, symbolic method’s

consumption rate increases tremendously.

Table 4.11 – Computation efficiency for the Tested Cases

System No. of Coeff. Symbolic Proposed

Time(s) Mem. (Mb) Time (s) Mem. (Mb) Error (%) MSF∗ TSF∗∗

3-Machines 35,000 1245 475 29 10 1.8e-3 49 43
16-Machines 186,434 23,130 11.4e6 49 14.7e3 7.3e-5 776 472
50-Machines 16,988,400 N/A N/A 15,355 1,535 – – –

∗MSF =Memory saving factor; ∗∗TSF = Time saving factor.

Figure 4.12 is a further computational analysis of the proposed method based on the

number of state variables.
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Figure 4.14 – Time-Memory comparison of symbolic and proposed for varying system size

Table 4.12 – Computation efficiency based on number of state variables

No. of Var. No. of Coeff. Symbolic Proposed

Time(s) Time(s) TSF∗

2 14 0.68 0.03 23
9 1,890 89 0.20 458
20 35,000 1,245 29 43
31 186,434 23,130 49 472
49 1,080,450 N/A 131 –
99 16,988,400 N/A 15,355 –

∗TSF = Time for Symbolic
Time for Proposed

4.4 Comments on the Computational Accuracy/Efficiency

The various tests in this chapter show that the accuracy of the proposed method is high.

It is noted that the accuracy is higher for the classical models than for the detailed mod-

els, although the error in each case is infinitesimal. Where the power system is modelled

classically, the computational burden is further reduced drastically if second order model is

adopted. For instance, the last two rows in Table 4.12 are for the same system. While the first

order model requires 15, 355s, the second order model requires only 131s; both implemented

with the proposed method.

It is important to note at this point that the achieved efficiency in this work is limited

by the author’s programming competence. The algorithm is linear and computer-friendly;

hence, it is possible to achieve very high efficiency if the code is well optimised. Although we

could not compare with the method that involves building the Hessian matrix by predefined

derivatives, the proposed method is envisaged to compare favourably with it if optimised. In

the memory estimation for symbolic method, we did not consider the sparsity of the DAEs

which will of course bring some reduction in memory usage while building the Hessians.

However, the modal model (4.29), which has enough computational burden is not sparse,

even with sparse DAEs. This still puts the proposed method very far from symbolic method.
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Automatic differentiation (AD) could also be a strong competitor with the proposed

method. Although we could not implement AD, a cursory look on both algorithms seems to

suggest that our method will likely save more memory under similar program optimisation.

Firstly, AD computes the nonlinear solutions and its source code simultaneously computes the

derivatives, while the proposed method performs only the same nonlinear solution without any

derivative at this first level. The additional memory for the 2nd and 3rd order derivatives

may be significant. At the second level, with the derivatives computed by AD, operation

(4.29) has to be done, and separately for 2nd and 3rd order terms. The proposed method

obtains directly, the 2nd and 3rd coefficients in (4.29) in a linear way, without any derivative.

To recall the main the benefits of the proposed method over the conventional one, Fig-

ure 4.15 summarises the two pathways to evaluating the nonlinear coefficients.
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Nonlinear
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Linear equations
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Figure 4.15 – Two pathways for computing nonlinear coefficients

4.5 Summary

In this chapter, a method is proposed for accelerating NF computation in power systems. The

proposed method is an extension of a technique previously employed in structural analysis.

In contrast to the conventional method, it avoids Taylor expansion which reduces time and

memory in Normal Form computations. The proposed method has been developed to account

for real and complex differential systems. In other words, both first and second order models

of power systems were accounted for. In comparison with symbolic method, the proposed

method proves to save significantly, the computation time and memory.

The method is attractive, in that both second and third order coefficients needed for the

NF model are simultaneously evaluated in a linear way and any preferred coefficient can be

computed selectively. Many nonlinear modal analyses, such as nonlinear interactions, stability

assessments, and nonlinear participation factors usually focus on low frequency modes instead

of all modes. This makes the proposed method very useful for quick nonlinear assessments.

Also, since the method builds only on the same parameters used for linear analysis, it can
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easily be integrated in commercial modal analysis software. Moreover, the modal deviations

described by our method correspond to initialising a nonlinear system with chosen condition

and investigating its solution in steady state. Therefore, using same software for linear

analysis to achieve NF should be achievable.

This chapter has principally focused on the computational reduction of the NF method

in power system. In the next chapter, the application of NF method in power systems will

be addressed. The method developed in this chapter will be employed.
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Applications of Normal Form in

Power Systems

“The beauty of simplicity is the
complexity it attracts.”

Tom Robbins
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Introduction

Let us recall some of the key points raised in the previous chapters. In chapter 1, it was

established that the changes going on in the grid, notably the increasing bulk power transfer

on the network and the integration of renewable energies, increase the nonlinearities of the

grid. It was demonstrated that increase in nonlinearities leads to nonlinear modal interactions,

a phenomenon beyond linear analysis and hence, the need for nonlinear modal analysis tool

such as Normal Form (NF). In chapter 2, we saw the various potentials and applications

of NF method in power system, as well as its computational challenges. In chapter 3, we

have discussed the basic theories of NF method for first and second order system models

along with more details on its computational challenges. It was identified that the higher

order differentiation and the evaluations of Hessian matrices, which are compulsory with

the conventional method pose serious computational difficulty. In chapter 4, a new method

was developed for mitigating this computational challenge. The developed method avoids the

higher order differentiation and evaluations of Hessian matrices; thereby increasing the speed

of analysis and consequently, the size of the system that can be considered. In this chapter,

the applications of NF in power systems will be discussed, especially with the use of the

new method developed in chapter 4. The chapter is made up of basically two parts—(1) NF

application based on already existing tools but now with reduced computations and (2) NF

application based on new tools that are developed in this chapter. Various applications of NF

in power systems were highlighted in chapter 2 but in this chapter, we focus on:

a. Nonlinear participation factor analysis;

b. Detection and effects of nonlinear modal interactions;

c. Amplitude-dependent frequency shifts of the nonlinear dynamics; and

d. Transient/Mode’s instability monitoring.

The first two (i.e., a and b) are based on tools already existing while the last two are based

on the tools developed in this chapter.

5.1 Nonlinear Modal Interactions and Participation Factors

Analysis via Normal Form

As noted before, when controlled generators are considered, the power systems are usually

represented with first order models. In designing and siting of these controls such as PSS,

usually linear techniques such as state observability and controlloability are used. These
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techniques lead to the definition of some indices such as participation factors and residues,

which enables one to design and optimally site the controls in the power system. As we saw in

chapter 1, increasing stress in the system leads to nonlinear interactions of the fundamental

modes. These interactions can affect these controls, hence the quest for nonlinear equiva-

lence of those indices (e.g. participation factors). In this section, the extension of linear

participation factors to the nonlinear one is presented. Also, some already-existing indices

for estimating the effects of modal interactions are presented.

5.1.1 Nonlinear Participation Factors

The inverse transform of the third order approximation can be defined from the NF transform

(3.42) as

zj0 = yj0 −
N∑
k=1

N∑
l=1

h2jklyk0yl0 −
N∑
p=1

N∑
q=1

N∑
r=1

h3jpqryp0yq0yr0 , (5.1)

where y is the Jordan form variable (i.e., from x = Uy or y = Vx, where U and V = U−1

are right and left eigenvectors respectively), h2 , h3 are NF coefficients and z, the NF state

variable. The above parameters were fully defined in chapter 3. Recall also that the solution

after inverse transformation was defined in (3.44) as

xi(t) =
N∑
j=1

µ1ije
λjt +

N∑
k=1

N∑
l=1

µi2kle
(λk+λl)t +

N∑
p=1

N∑
q=1

N∑
r=1

µi3pqre
(λp+λq+λr)t , (5.2)

where

µ1ij = uijzj0 , µi2kl = zk0zl0

N∑
j=1

uijh2jkl, µi3pqr = zp0zq0zr0

N∑
j=1

uijh3jpqr.

The participation factors represent the size of the modal oscillations in a state when only

that state is perturbed. Hence, the initial condition vector x0 = ei (where all elements of ei

are zero except the i-th, which is one). By applying the initial condition x0 = ei vector, the

Jordan form initial conditions are [31]

yj0 = vji. (5.3)

Putting (5.3) into (5.1), the NF initial conditions become

zj0 = vji −
N∑
k=1

N∑
l=1

h2jklvkivli −
N∑
p=1

N∑
q=1

N∑
r=1

h3jpqrvpivqivri = vji + v2jii + v3jiii. (5.4)
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Substituting (5.4) in the inverse solution (5.2) gives

xi(t) =
N∑
j=1

P3ije
λjt +

N∑
k=1

N∑
l=1

P i3kle
(λk+λl)t +

N∑
p=1

N∑
q=1

N∑
r=1

P i3pqre
(λp+λq+λr)t , (5.5)

where P3 stands for participation factors due to third order approximation and

P3ij = uij(vji + v2jii + v3jiii) (5.6a)

P i3kl = u2ikl(vki + v2kii + v3kiii)(vli + v2lii + v3liii) (5.6b)

P i3pqr = u3ipqr(vpi + v2pii + v3piii)(vqi + v2qii + v3qiii)(vri + v2rii + v3riii). (5.6c)

where u2ikl =
N∑
j=1

uijh2jkl and u3ipqr =
N∑
j=1

uijh3jpqr.

Therefore, 3rd order NF analysis leads to three types of participation factors: 1-eigenvalue

participation factor (5.6a), which is a correction of the linear one and measures the participa-

tion of a single eigenvalue to a state; 2-eigenvalue participation factor (5.6b), which measures

the participation of two eigenvalues combination to a state; and 3-eigenvalue participation

factor (5.6c), which measure the participation of three eigenvalues combination to a state.

We are aware that mode-in-state participation factors are not always the same as the

state-in-mode participation factors. The participation factors defined above correspond to

the participation of modes in states. For details of the differences between mode-in-state and

state-in-mode participation factors, the reader is kindly referred to [121].

5.1.2 Indices for Modal Interaction

In order to detect and quantify modal interactions in the system, some indices exist in liter-

ature. These indices are used in the remaining part of this chapter and are defined below.

Nonlinearity Indices [42, 71, 122]

The nonlinearity indices N2LI(j), N3LI(j), defined in (5.7) and (5.8), estimate the effect of

the 2nd and 3rd order nonlinear terms respectively, in the approximate closed form solution.

Large values indicate that the higher order terms are significant or that the difference between

modal and NF variables is large, both cases indicating potential for nonlinear interaction.

N2LI(j) = |(yj0 − zj0) + max(h2jklzk0zl0)|
|zj0 |

(5.7)

N3LI(j) =
|(yj0 − zj0) + max(h2jklzk0zl0) + max(h3jpqrzp0zq0zr0)|

|zj0 |
(5.8)
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The index “0” in the above equations indicates initial conditions.

Nonlinear Interaction Indices [71, 122]

These indices defined in (5.9) and (5.10), show whether the higher order nonlinear effects may

cause strong modal interaction. Large values indicate more potential for strong nonlinear

interactions.

N2II(j) = max|h2jklzk0zl0 |
|zj0 |

(5.9)

N3II(j) =
max|h3jpqrzp0zq0zr0 |

|zj0 |
(5.10)

As noted in [31], the indices in (5.7)—(5.10) can only be used to compare the modes for

individual cases. They cannot be used as a measure to compare modes between two different

cases, since they use normalised eigenvectors, which can differ between cases.

Nonlinear Modal Persistence Indices [31]

These indices estimate the extent of dominance of the mode combinations in the system

response. They are defined as

T2set(j) = −4
Re.(λk + λl)

, T3set(j) = −4
Re.(λp + λq + λr)

, (5.11)

Tr2(j) = τ(λk + λl)
τ(λj)

, T r3(j) = τ(λp + λq + λr)
τ(λj)

, (5.12)

τ(λ) = −1
Re.(λ) , (5.13)

where Re.(·) stands for real part of and τ(·) for time constant of. Tset measures the settling

time of the mode combination interacting with mode (j). Settling time here is defined as the

time taken for a response to remain within 2% of the final value, and it is approximately 4

time constants. Tr is a measure of the persistence of the modal combination with respect to

the dominant mode. High value of Tr indicates that the influence of the modal combination

decays faster with respect to the dominant mode and vice versa. A relatively large value of

N2II ∗ Tr2, N3II ∗ Tr3 tend to show a strong modal interaction of long duration for 2nd

and 3rd order interactions respectively.

The study of modal interactions have been extensively reported in the past. The new idea

in this thesis is the study of these interactions with fewer nonlinear terms and less burdensome

computation, so-called selective nonlinear modal interaction. Next section will be dedicated

to selective nonlinear modal interactions.
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5.2 Selective Nonlinear Modal Interactions

In chapter 4, a method which facilitates the computation of the nonlinear coefficients required

for NF application has been developed. The method enables computing selectively, any

desired term rapidly, by avoiding the usual Taylor expansion. However, much reduction is

still needed as there are still too many terms being considered in the analysis. For specific NF

studies, it is possible to use some selected terms instead of all the terms. The main goal of

this section is to reduce the computational burden associated with NF application to power

systems, especially when it is applied to understand the significant modal interactions and the

accompanying new frequencies. The section investigates further reduction of NF computation

by considering fewer terms in the nonlinear approximation based on the information provided

by the linear analysis. The analysis is then focused only on the considered terms. As stated

before, analysis of nonlinear modal interaction is not new in power systems. What is new here

is the selective application of NF to this analysis, which is made possible by the developed

method.

5.2.1 Proposals for Selective NF Applications

Let us recall again from chapter 3 that the NF coefficients (i.e., h2 and h3) needed in the NF

solution (5.2) are given by

h2jkl = Cjkl
λk + λl − λj

, (5.14a)

h3jpqr =
Dj
pqr + Cresjpqr

λp + λq + λr − λj
. (5.14b)

where Cres is a residual term from second order transformation and is expressed as
N∑
l=1

(Cjpl+

Cjlp)h2pqr and Dj
pqr is the original third order term. Our goal is to not compute all the

coefficients but only some and set the other h-coefficients to zero. If modal interaction is the

objective of study, whereby sources of unknown frequencies in time responses are explained;

significant reduction of NF computation can be achieved by careful selection of relevant h-

coefficients.

Careful observation of (5.14) and (5.2) shows that the indices of the NF coefficients are

consistent with the indices of the mode combinations such that h2jkl = 0, h3jpqr = 0 implies

that that mode combinations λk +λl, λp +λq +λr have zero effects on the dynamics of state

i. Therefore, to neglect the effect of a mode combination, the corresponding NF coefficient

can be set to zero. However, the challenge remains how to decide which coefficients to set

to zero. In this section, we propose two approaches that can be used to discriminate some

h-coefficients, thereby reducing further the NF computations:
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• real modes/eigenvalues exemption and

• mode’s energy consideration.

They are discussed in the following subsections.

5.2.2 Real Modes/Eigenvalues Exemption Proposal

Let us assume that we can compute all the coefficients. Then, observation of (5.2) shows that

there are interactions among the linear modes. Previous works on NF and spectral analysis

prove that oscillatory modes can interact to produce new oscillations [31, 84]. However,

there has not been any meaningful interpretation to interactions involving real modes or its

physical phenomenon. The stability indices proposed in [55, 57] are based on the interactions

associated to only oscillatory modes. With controls included in the models, there may be

many of these real modes. Real modes are aperiodic and the actual interactions involving

real modes may only affect the damping, but not alter the analysis of modal interaction. We

propose to reduce NF computation by keeping all the linear modes in the linear part of the

3rd order approximate model, but considering only the interactions among oscillatory modes

in the nonlinear part. The proposal is based on the interpretation of (5.2). Given that all

modes are initially stable, (5.2) leads to the following deductions:

1. A combination of only real modes does not lead to a new frequency in the spectral.

2. A 2nd order combination of a real mode with an oscillatory mode does not lead to a

new frequency in the spectral, rather a more damped version of the oscillatory mode

which combined with the real mode.

3. A 3rd order combination of real and oscillatory modes may lead to a new frequency but

this frequency must be the more damped version of a combination of two oscillatory

modes already existing at 2nd order.

To sum up the above hypotheses, nonlinear interactions associated to real modes may be

neglected without significantly altering the information needed to study modal interaction.

Application of the above hypotheses to (5.2) yields a reduced model of the the form

xi(t) =
N∑
j=1

µ1ije
λjt +

n∑
k≥1

n∑
l≥1

µi2kle
(λk+λl)t +

n∑
p≥1

n∑
q≥1

n∑
r≥1

µi3pqre
(λp+λq+λr)t, (5.15)

where i, j = 1, 2 . . . N , k, l, p, q, r ∈ oscillatory modes and n ≤ N . Then only h-coefficients

corresponding to oscillatory modes are computed. Equation (5.15) implies that all the system
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modes are retained for the linear part, while for the nonlinear parts, some interactions are

neglected. This is a nontrivial effort as it leads to a drastic reduction in NF computation.

Remark. The interactions neglected in (5.15) does not mean they are exactly zero, but they

are neglected on the assumption that their interactions are not nonlinearly significant. In

the way NF is applied, there are always many interactions, but of interest in control are the

interactions that persist [31].

Numerical Simulations and Results for Real Mode Exemption Proposal

The test system is IEEE 9-bus power system used in the previous chapters (i.e., Figure 2.1)

and has been used in the literature to study modal interaction [71, 85]. Two-axis model

was used with each generator equipped with a simple exciter described in chapter 3. The

loads were modelled as constant impedance. G3 is used as reference and the system modes are

shown in Table 5.1. The natural frequencies of the modes in rad/s are given by the imaginary

parts of the eigenvalues and are listed in column three of Table 5.1. With the linear mode-in-

state participation factor analysis, the dominant states for each mode are obtained as listed

in column five of Table 5.1. The states Vmi and Vri are exciter parameters. Every other

parameters have their usual meanings. It is a small power system containing 20 states, but

large enough to demonstrate the NF problem solved in this section. As stated earlier, the

Table 5.1 – Linear analysis.

Mode Eigenvalue Freq. Damping Dominant
# (rad/s) (%) States

1 −50.32 0 100 Efd1 , Efd2 , Efd3

2 −50.24 0 100 Efd1 , Efd2

3 −50.21 0 100 Efd2 , Efd3

4,5 −1.02 ± j13.63 13.63 7.45 ω3, δ3, ω2, δ2
6,7 −0.14 ± j8.94 8.94 1.52 ω2, δ2, ω1, δ1
8,9 −0.84 ± j4.03 4.03 20.30 E′q1, V m1
10 −5.22 0 100 E′d2, E

′d3
11,12 −1.18 ± j2.86 2.86 38 V m1, V m2, E

′q1,
13,14 −1.50 ± j1.98 1.98 60 V m3, E

′q3, E
′d3

15 −3.59 0 100 E′d3
16 −3.25 0 100 E′d1

17,18 −0.12 ± j0.01 0.01 99.52 vr1, ω1
19,20 −0.11 ± j0.001 0.001 99.99 vr1, vr2

degree of stress can be increased by changing the post-disturbance operating condition or by
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changing the severity of the disturbance. Two test cases were selected for fault at Bus 4.

Case 1: Fault cleared after 0.019s. This case represents a less stressed condition.

Case 2: Fault cleared after 0.184s very near the critical clearing time1. This case

represents stressed condition with severe nonlinear behaviour.

There are 35,000 (2nd and 3rd) coefficients in the model. NF models were built with

35,000 (full) coefficients and the reduced model discussed in next heading. In a case where

linear analysis cannot explain the observations in the system response (i.e., the nonlinearity

becomes significant), NF analysis is then performed with the two models, and the results

compared. The transient simulations were performed with the help of PSAT software [123]

to obtain the post-fault initial condition, while the algorithm described in Section 3.2.3 was

followed to obtain NF initial condition. Then all NF analyses are implemented with computer

programs written by the author in the MATLAB® software.

Obtaining the Reduced Model

The reduced model was obtained by skipping coefficients corresponding to the interactions

of real modes as explained in Section 5.2.2. Table 5.1 shows that the studied system has

6 real modes. Reducing N by 6 leads to a total of 9,310 coefficients which translate to

skipping 25,690 C,D coefficients and 25,690 h2, h3 coefficients, since h-coefficients are conse-

quences of C and D coefficients (see (5.14)). For example C1,1,1, D1,1,1,1, C1,1,2, C10,15,16 . . . ,

h21,1,1, h31,1,1,1, h21,1,2, h210,15,16 . . . are not computed since they involve real mode combi-

nations. However, C1,4,5, D1,4,5,6, C1,8,9, C10,11,12 . . . , h21,4,5, h31,4,5,6, h21,8,9, h210,11,12 . . . are

computed since they involve only oscillatory mode combinations. The NF solution obtained

with this reduced model shall be referenced as NF-9,310 against the full model referenced as

NF-35,000. The computation of the remaining coefficients is easy since one just has to solve

a set of linear equations as described in chapter 4.

Figure 5.1 shows drastic reduction in computation time brought by the proposed method.

The time considered in Figure 5.1 is only for computing the coefficients. It can be seen that

more significant reduction is achieved by skipping some interactions.

Analysis of Case 1

Figure 5.2a shows the active power response of generator 1 after fault is cleared. Generator

1 is used because it is closest to the fault point. Under this condition, the system is more or

less linear. This is revealed by the FFT spectrum in Figure 5.2b which shows that nonlinear

1Critical clearing time is 0.185 s
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70%

30%NF-35,000
NF-9,310

Figure 5.1 – Normal Form (NF) computation time for full and reduced models.

interactions are not strong, since the spectrum is dominated by the approximate linear modes.

For example, the highest peak corresponds to a frequency of 8.9 rad/s, which is approximately

mode λ6,7 with frequency 8.94 rad/s in Table 5.1. This is followed by a peak with frequency

3.9 rad/s which is approximately mode λ8,9 with frequency of 4.03 rad/s in Table 5.1. The

frequency, 17.6 rad/s, which also appears in Figure 5.2b does not exist among the linear

modes in Table 5.1 and must come from modal interaction. Note that, to compute the FFT

spectrum, the instant of time for initial conditions should be chosen such that all limiting

actions by controllers in the system must have ceased after the clearance of the fault.
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Figure 5.2 – (a) Generator 1 active power response for case 1. (b) Fast Fourier transform (FFT)
spectrum of generator 1 active power for case 1, showing less severe nonlinear effects.

In order to predict which mode is likely responsible for the interaction leading to the

unknown frequency in Figure 5.2b, the indices discussed in Sections 5.1.2 and 5.1.2 are com-

puted. These indices are listed in Tables 5.2 and 5.3 for 2nd and 3rd order nonlinearities

respectively. In Table 5.2, among the oscillatory modes, mode 4(5) has the largest N2LI and
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N2II indices. This is followed by modes 17(18) and 13(14). Others have smaller values. This

observations suggest that effect of 2nd order nonlinearity on mode 4(5) may be significant.

In Table 5.3, mode 4(5) also has the highest N3LI and N3II among all the oscillatory modes.

However, its N3II value is very small compared to the 2nd order value. This observation

suggests, perhaps a less significant interaction of 3rd order. From Tables 5.2 and 5.3, one

can predict that mode 4(5) is most likely to lead to significant nonlinear interaction. A de-

tailed NF study on mode 4(5) is likely to reveal the mode combination leading to 17.6 rad/s,

observed in Figure 5.2b, but since this frequency has negligible amplitude (i.e., 11 dB), the

system condition can be assumed linear.

Table 5.2 – 2nd-order NF indices for modal interaction.

Mode Eigenvalue N2LI N2II

15 −3.59 0.315 0.314
4(5) −1.02 ± j13.63 0.443 0.212
16 −3.25 0.192 0.192

17(18) −0.12 ± j0.011 0.139 0.138
13(14) −1.50 ± j1.98 0.245 0.108

10 −5.22 0.263 0.100
19(20) −0.11 ± j0.001 0.061 0.061
6(7) −0.14 ± j8.94 0.072 0.034
8(9) −0.84 ± j4.03 0.035 0.028

1 −50.32 0.002 0.016
11(12) −1.18 ± j2.86 0.045 0.014

3 −50.22 0.015 0.013
2 −50.24 0.002 0.001

Table 5.3 – 3rd-order NF indices for modal interaction.

Mode Eigenvalue N3LI N3II

16 −3.25 0.177 0.069
15 −3.59 0.301 0.037

4(5) −1.02 ± j13.63 0.430 0.016
10 −5.22 0.250 0.015

13(14) −1.50 ± j1.98 0.252 0.008
6(7) −0.14 ± j8.94 0.070 0.002
8 (9) −0.84 ± j4.03 0.033 0.002

11(12) −1.18 ± j2.86 0.044 0.001
3 −50.22 0.015 0.001
1 −50.32 0.002 0.001

17(18) −0.12 ± j0.011 0.143 0.001
19(20) −0.11 ± j0.001 0.061 0.000

2 −50.24 0.002 0.000
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Analysis of Case 2

In case 2, the stress is increased and more nonlinearity is induced on the system. The

active power response of generator 1 is shown in Figure 5.3a, and its FFT spectrum in

Figure 5.3b. The FFT spectrum shows existence of significant nonlinear interactions whose

sources have to be explained. For instance, the frequencies 3.9 rad/s, 8.9 rad/s, and 13.4 rad/s

approximately correspond to the linear modes 8(9), 6(7), and 4(5) which have frequencies

4.03 rad/s, 8.94 rad/s, and 13.63 rad/s respectively, in Table 5.1. However, 17.6 rad/s

frequency which had negligible amplitude in case 1 now has amplitude of 36 dB and does not

correspond to any linear frequency in Table 5.1. This is also the case of 26.8 rad/s frequency,

appearing with amplitude of 33dB higher than the amplitude of the linear frequency 3.9 rad/s.

To unravel the sources of these frequencies in Figure 5.3b, a detailed NF analysis is performed

next.
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Figure 5.3 – (a) Generator 1 active power response for case 2. (b) FFT spectrum of generator 1 active
power for case 2, showing severe nonlinear effects.

Qualitative NF analysis of Case 2

In this section, the detailed analyses based on two NF models (i.e., NF-35,000 and NF-

9,310) are compared. As earlier revealed by Tables 5.2 and 5.3, mode 4(5) is more likely to

cause significant modal interactions. It was also established from Table 5.3 that 3rd order

interactions for the studied system may be weak. Hence, only detailed analysis of mode 4(5)

is presented, although all other modes were studied. Also, only 2nd order modal interaction

coefficients (h24,5
kl z0kz0l) were examined in detail for both NF-35,000 and NF-9310 models.

The nonlinear persistence measures, Tset, Tr and N2II ∗Tr, together with the interaction

coefficients associated with mode 4(5) are listed in Table 5.4, in descending order of the

interaction coefficients. There are numerous interactions involving mode 4(5), so only first

few ones are presented. The largest interaction coefficient corresponds to a combination of

eigenvalues 5 and 17 (i.e., −1.13 − j13.62), which has settling time almost equal to that of
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Table 5.4 – NF-35,000—Quantitative Measures of combination Modes for Fundamental Mode 4(5).

h24,5
kl z0kz0l k l λk + λl Tr Tset N2II ∗ Tr
5.462 5 17 −1.13 − j13.62 0.899 3.529 4.908
1.761 5 18 −1.13 − j13.64 0.899 3.529 1.582
1.579 5 9 −1.85 − j17.66 0.549 2.158 0.868
1.539 5 8 −1.85 − j9.60 0.549 2.158 0.845
1.215 4 17 −1.13 + j13.64 0.899 3.529 1.092
1.063 4 9 −1.85 + j9.60 0.549 2.158 0.584
1.028 4 8 −1.85 + j17.66 0.549 2.158 0.565
0.308 4 5 −2.04 0.500 1.964 0.154
0.262 5 8 −1.85 − j9.60 0.549 2.158 0.144
0.258 7 9 −0.97 − j12.97 1.049 4.119 0.271
0.232 5 12 −2.19 − j16.50 0.463 1.820 0.107
0.227 5 5 −2.04 − j27.26 0.500 1.964 0.113
0.201 5 9 −1.85 − j17.66 0.549 2.158 0.110
. . . . . . . . . . . . . . . . . . . . .

the dominant mode (i.e., 3.68 s) and large N2II ∗Tr. However, the new frequency is very near

to the linear frequency 13.63 rad/s and is difficult to differentiate by FFT, if it appears in

the response. Moreover, the modal persistence Tr is close to 1 (i.e., 0.899). Hence, it may not

even be observed in the response. The combination of eigenvalues 5 and 9 (i.e., −1.02 − j13.63

−0.84 − j4.03 = −1.85 − j17.66) has relatively large interaction coefficient (1.579) and low

Tr (0.549), with settling time, well above half that of the dominant mode (i.e., 1/2 × 3.68s),

and relatively high N2II ∗ Tr. These observations indicate that mode 4(5) is interacting

nonlinearly with mode 8(9). Notice that the new frequency 17.66 rad/s is approximately

observed in the FFT spectrum of Figure 5.3b (i.e., 17.6 rad/s). Also, down the table, there

is a self combination of eigenvalues 5 and 5 (i.e., −1.02 − j13.63 − 1.02 − j13.63 = −2.04

− j27.26), which leads to a frequency of 27.26 rad/s, approximate value of the 26.8 rad/s

appearing in the spectrum. However, its interaction coefficient is relatively small (0.227),

with relatively small value of N2II ∗ Tr (0.113). This is consistent with Figure 5.3b, where

26.8 rad/s frequency has low amplitude. If the test system Figure 2.1 is considered a two-area

system, it is seen that mode 4(5) which is associated with area 2 interacts with control mode

8(9) in area 1. Control-wise, in placement of PSS to damp mode 4(5), effect of its interaction

with controls in area 1 should be considered in its optimisation formulation. Although, the

interactions of electromechanical modes with the control modes in the same area should have

more adverse effects.

The above analysis is repeated but now with NF-9,310 model and the results are listed
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in Table 5.5. It is clear from the table that the reduced model identifies correctly, the same

eigenvalue combinations leading to the observed frequencies in the FFT spectrum. There are

some slight deviations in the values of the interaction index (h24,5
kl z0kz0l) in both cases due

to different NF initial conditions.

Table 5.5 – NF-9,310—Quantitative Measures of combination Modes for Fundamental Mode 4(5).

h24,5
kl z0kz0l k l λk + λl Tr Tset N2II ∗ Tr
6.351 5 17 −1.13 − j13.62 0.899 3.529 5.706
2.048 5 18 −1.13 − j13.64 0.899 3.529 1.840
1.843 5 9 −1.85 − j17.66 0.549 2.158 1.013
1.798 5 8 −1.85 − j9.60 0.549 2.158 0.988
0.956 4 17 −1.13 + j13.64 0.899 3.529 0.859
0.840 4 9 −1.85 + j9.60 0.549 2.158 0.462
0.813 4 8 −1.85 + j17.66 0.549 2.158 0.447
0.307 5 5 −2.04 − j27.26 0.500 1.964 0.153
0.306 5 8 −1.85 − j9.60 0.549 2.158 0.168
0.282 4 5 −2.04 0.500 1.964 0.141
0.268 5 12 −2.19 − j16.50 0.463 1.820 0.124
0.259 7 9 −0.97 − j12.97 1.049 4.119 0.272
0.234 5 9 −1.85 − j17.66 0.549 2.158 0.129
. . . . . . . . . . . . . . . . . . . . .

It is important to recall at this point that interactions are detected by comparing the

relative magnitudes of the defined indices in each case. Hence, the actual values of these

indices do not have to be the same, but the information they provide are same for the

same case. These indices depend on NF initial condition which in turn depends on the

number of h-coefficients considered. Note that the main idea of NF is to, at least, simplify

the system nonlinearity, which implies that the values computed depend on what level the

system is simplified to. So, even in full NF, not all h-coefficients computations are possible

when resonance occurs. The NF initial conditions are determined only using the possible

h-coefficients.

5.2.3 Mode’s Energy Consideration

Alternatively, we can deduce the less relevant h-coefficients by exploiting the physical prop-

erties of the system modes. Recall that we established a link between the mode combinations

and the h-coefficients in the previous subsection. Hence, apart from the real modes, we can

search for less relevant modes (not necessarily real modes). The assumption here is that

only modes with sufficient energy can interact nonlinearly. So the problem is reduced
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to looking for modes in the system that have least/more impact on the system dynamics,

so-called least/most relevant modes. In control theory, it is easy to determine the states and

modes sufficient to reduce a system considering the controllability and observability of the

modes [40, 103, 104].

Let the state-space representation of a linear time-invariant system (LTI) be

ẋ = Ax + Bu

y = Cx + Du,
(5.16)

where A is the state matrix, B and D are constant matrices that weight the input u and

C is a matrix that weights the states x, while y is the output matrix. The C and D in

(5.16) should not be confused with that earlier defined for nonlinear coefficients. Controlla-

bility and observability can be measured by calculating the controllabilty and observabilty

grammians [124]

Wc =
∫ ∞

0
eAtBBT eA

T tdt, (5.17a)

Wo =
∫ ∞

0
eA

T tCTCeAtdt. (5.17b)

There exist a unique base in which both grammians are equal and diagonal, so-called

balanced realisation [124]. That is Wc = Wo = diag{σ1, σ2, σ3, . . .} where σ1 ≥ σ2 ≥ σ3 . . .

are called Hankel singular values. The most relevant modes of the system are both controllable

and observable, and they are the ones associated with the first state variable of the balance

realisation [40]. To associate these modes to the states in balanced realisation, we use the

mix balanced-modal truncation algorithm proposed in [104] as follow:

1. Obtain a balanced realisation as explained above (easy with a MATLAB® function).

2. Select the states for which the Hankel singular values are large.

3. Obtain the mode-in-state participation factors for the selected states [121].

4. Select modes with major participation in the selected states in 2 using the participation

factors in 3.

Then only the selected modes are needed in the reduced model (5.15).

The Hankel singular values for the above test system is shown in Figure 5.4. The figure

hints that the system can be modelled with only 3 or at best 5 states. The modes that

participate in these 5 most relevant Hankel states, so-called relevant modes, are shown in

Figure 5.5. Notice that the mode corresponding to first Hankel state (state with highest

111



CHAPTER 5. APPLICATIONS OF NORMAL FORM IN POWER SYSTEMS

energy) is λ4,5. This is consistent with the above NF analysis, which showed mode 4(5) to be

most responsible for the nonlinear modal interaction. If one focuses on the first three Hankel

states, then λ4,5, λ8,9 and λ11,12 can be retained for the study of modal interaction. Recall

that the above NF analysis revealed mode 4(5) and mode 8(9) to be interacting nonlinearly.

Even if all the five Hankel states are to be considered, Figure 5.5 hints that in addition to the

real modes, λ13,14 and λ19,20 may also be skipped, thereby reducing further the computation.

The two proposals should be explored in details with various systems, to established

concretely, their merits and demerits.
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5.2.4 Nonlinear Mode-in-state Participation Factor Analysis

A common method for siting PSS in power system is the mode-in-state participation factor

analysis [121]. Also, in stability studies, attention is more on those modes that participate
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actively in the stability states (i.e., voltage and angle). In this section, nonlinear participation

factor analysis for the system studied in section 5.2.2 is presented just for the two angle states

to emphasise the correction that NF adds to linear analysis. The three types of participation

factors discussed in section 5.1.1 are implemented.

Figures 5.6a and 5.6c respectively show the 1-eigenvalue participation factors for relative

angles of generators 1 and 2, which were obtained from linear analysis, 2nd NF, and 3rd NF. It

can be seen that the linear analysis under-estimates the contributions of certain eigenvalues.

For example, the contributions of eigenvalues 17–20 are not captured at all by the linear

analysis, while the contributions of eigenvalue 15 (for generator 1) and eigenvalues 13–15

(for generator 2) are far under-estimated. This lack of information may lead to improper

control designs or poor placement of PSS. The 2nd and 3rd order 1-eigenvalue corrections

are similar as the effect of 3rd order interactions are not very strong in the studied case.

Figures 5.6b, 5.6d show respectively, the 2-eigenvalue participation factors for generators 1

and 2.

Worthy of note is that the eigenvalue combination due to modal interactions can some-

times participate more than the dominant mode. For example, the highest participating

mode to generator 2 is mode 4(5), however, in Figure 5.6d, it is clear that some interactions

of this mode have more participation than single mode 4(5). Similar observation has been

made in [31]. Figures 5.6e, 5.6f show respectively, the 3-eigenvalue participation factors for

generators 1 and 2. Here, the 3-eigenvalue participation are not very strong as the bars are

far below that of the dominant modes.

Normally, PSS is sited in the area with highest participation factor. As seen in the

previous section, interaction can exist between modes in two different areas. The area of the

newly formed mode is unclear, should it participate more. All these have to be factored in,

while designing controls for stressed power systems. A knowledge of interacting modes could

be used in nonlinear control of converters in the emerging 100% PE grids.

5.2.5 Further Discussions on the Proposed Selective NF Application

In this section, major implications of the results presented in Sections 5.2.2— 5.2.4 are dis-

cussed as follows:

• The results illustrate that the proposed method can significantly reduce the computa-

tional burden in NF applications. This is depicted with the pie chart shown in Fig-

ure 5.1, where the computation time using the proposed method occupies a sector of

30% against the conventional technique, which occupies 70%. In [31], 2nd order modal

interaction was studied with a model that has 27 eigenvalues, of which 13 are real. In

113



CHAPTER 5. APPLICATIONS OF NORMAL FORM IN POWER SYSTEMS

1,3

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
EIgenvalues

0

0.1

0.2

0.3

0.4
Pa

rti
cip

at
io

n 
fa

ct
or

s

NF3
NF2
Linear

(a)

5
+

1
8

5
+

1
7

6
+

7

7
+

1
7

6
+

1
8

6
+

1
7

7
+

1
8

5
+

1
8

4
+

1
7

4
+

5

1
4
+

1
7

1
3
+

1
8

6
+

9

7
+

8

1
7
+

1
9

Eigenvalues

0

0.1

0.2

0.3

 P
a
rt

ic
ip

a
ti
o
n
 f
a
c
to

rs

1,3

(b)

2,3

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Eigenvalues

0

0.1

0.2

0.3

0.4

Pa
rti

ci
pa

tio
n 

fa
ct

or
s

NF3
NF2
Linear

(c)

4
+

1
8

5
+

1
7

5
+

4

5
+

1
8

4
+

1
7

1
4
+

1
7

1
3
+

1
8

1
4
+

1
8

1
3
+

1
7

5
+

8

4
+

9

7
+

1
7

6
+

1
8

5
+

1
4

4
+

1
3

Eigenvalues

0.2

0.4

0.6
0.7

P
a
rt

ic
ip

a
ti
o
n
 f
a
c
to

rs

2,3

(d)

6
+

7
+

1
5

1
5
+

1
9
+

2
0

1
5
+

1
7
+

1
9

1
5
+

1
7
+

2
0

1
5
+

1
8
+

2
0

1
5
+

1
8
+

1
9

1
5
+

1
7
+

1
8

6
+

1
9
+

2
0

7
+

1
9
+

2
0

1
5
+

1
9
+

1
9

1
5
+

2
0
+

2
0

5
+

1
9
+

2
0

4
+

1
9
+

2
0

1
5
+

1
8
+

2
0

4
+

1
7
+

1
9

Eigenvalues

0

0.05

0.1

P
a
rt

ic
ip

a
ti
o
n
 f
a
c
to

rs

1,3

(e)

6
+

7
+

1
5

4
+

5
+

1
5

4
+

1
9
+

2
0

5
+

1
9
+

2
0

5
+

1
8
+

2
0

4
+

1
7
+

1
9

5
+

1
8
+

1
9

4
+

1
7
+

2
0

1
5
+

1
5
+

1
7

1
5
+

1
5
+

1
8

4
+

1
8
+

2
0

5
+

1
7
+

1
9

4
+

1
8
+

1
9

5
+

1
7
+

2
0

4
+

5
+

1
9

Eigenvalues

0

0.05

0.1

P
a

rt
ic

ip
a

ti
o

n
 f

a
c
to

rs

2,3

(f)

Figure 5.6 – (a) 1-eigenvalue mode-in-state participation factors to generator 1 relative angle. (b) 2-
eigenvalue participation factors to generator 1 relative angle. (c) 1-eigenvalue participation factors to
generator 2 relative angle. (d) 2-eigenvalue participation factors to generator 2 relative angle. (e) 3-
eigenvalue participation factors to generator 2 relative angle. (f) 3-eigenvalue participation factors to
generator 2 relative angle.

the interpretation of the results, the interactions involving real modes were ignored,

which implies a huge computational waste. If this model is to be considered for 3rd or-

der NF study, it will generate 108,864 coefficients. However, with the proposed method,

this model will only have 9,310 coefficients, a computational saving factor of 12.

• The results show that stressed power system leads to nonlinear interactions of modes.

This can be seen for example, in case 1, where less severe fault led to spectrum of

Figure 5.2b with no significant interaction, whereas in case 2, where the stress increases,

the nonlinearity increases and the modal interaction becomes apparent in the spectrum
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of Figure 5.3b. NF analysis is able to identify these interactions as revealed in Tables 5.4

and 5.5. These observations corroborate previous research on modal interaction [31].

A significant new contribution is the use of fewer terms to perform the same analysis.

This contribution is especially pertinent in view of fully PE grids. In PE grids there

are several modes that decay very fast. The treatment of real modes proposed in this

chapter may be extended to such very fast modes to further simplify NF application to

PE grids.

• The results of the participation factor analyses in Figures 5.6a— 5.6f show the cor-

rection to the linear participation factor due to the addition of higher order terms.

Reference [53] reported a case where PSS location using nonlinear participation factors

outperforms the location using linear participation factor.

• As shown in Figure 5.6d, the combination modes may participate more than the funda-

mental modes. Hence, as the disturbance becomes significant, the stability/instability

may not be completely determined by single eigenmodes without their interactions.

Reference [57] has reported a case where single eigenvalue showed instability but the

3rd order interaction maintained the stability of the system.

• Since the idea proposed in this section addresses specific case of NF application (i.e., modal

interaction) its potency for other NF applications such as stability studies is not guar-

anteed.

• The results indicate that avoiding the interactions associated to the real modes does

not compromise the effectiveness of NF modal interaction analysis. This, however, does

not mean that all other remaining interactions are nonlinearly significant. The Hankel

energy proposal showed that even some interactions due to oscillatory modes can be

discriminated.

Some Practical Concerns

It is obvious that the proposed method significantly reduces the computation needed to apply

NF to power system. However, the following practical concerns are worthy of discussion:

• A major concern is the implication of the proposed method in a large system. Even

with the reduction proposed in this chapter, the number of nonlinear terms will still

be enormous in the case of large systems. It is important to state that the approach

proposed here is one out of many steps needed to apply NF to large systems. Although

general application of NF to unreduced large system remains difficult, it is good to note
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that the proposed reduction is based on the physics of the modes and thus, can be

applied to system of any size. We are working on several ideas, to advance NF to very

large system. At the moment, reducing the network and focusing on a particular area

of the network is the approach to attempt large system (already used in [61] for system

with over 300 generators).

• Another valid argument could be if the usefulness of NF analysis is worth the com-

putations involved, given that the time domain analysis could identify the interaction

of nonlinear dynamics. It is good to emphasise that NF analysis just like other an-

alytical methods, does not replace time domain analysis but complements it. Time

domain analysis can identify the interactions of nonlinear dynamics but the exact na-

tures of these interactions are unclear. Moreover, analytical parameters needed for

power system control designs are not as apparent as with analytical methods. It lacks

in qualitative information about the system. The nonlinear participation factor analysis

helps to know from where comes the interaction. Other analytical information for the

power system control designs are not exhaustively available with time domain analy-

sis. NF analysis should be used when some phenomena are difficult to explain with

the time domain analysis. Also, indices are needed based on the system condition, to

know a priori that it is gainful embarking on NF analysis to avoid computational loss.

These indices should be developed. We are optimistic that a well developed selective

NF application will position it as always very useful tool.

Recapitulation

The previous sections were dedicated to the application of NF to the study of modal interac-

tions. In particular, the use of NF to explain the sources of unknown frequencies due to modal

interactions and the extension of the linear participation factor analysis to the nonlinear one

were considered. Those concepts are not new in the literature. The significant new idea is

the introduction of selective application made possible by the developed method; and allows

larger systems to be considered. Selective application of NF to the study of nonlinear modal

interactions are scarcely reported in literature. Moreover, such operation is not convenient

with the conventional method for NF analysis. The remaining sections in this chapter will be

dedicated to the developments of new tools for power system analysis based on NF, notably the

detection of nonlinear frequency shift and stability monitoring. These new tools also enjoy

the selective-computation capability of the computational method developed in chapter 4.
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5.3 Concept of Nonlinear Frequency

Traditional power system modal analysis assumes harmonic electromechanical oscillations,

which allows such oscillations to be decomposed as a sum of positively or negatively damped

sinusoids. However, under large disturbance, and especially near the stability bound, elec-

tromechanical oscillations become asymmetric and their frequencies not constant. The fre-

quency of the nonlinear system under large disturbance is then dependent on the amplitude

at each time. Such frequency can be regarded as nonlinear frequency (NLF). In other words,

apart from the nonlinear modal interactions, increasing stress (which increases the level of

nonlinearities) also affects the frequency of the fundamental modes. This nonlinear change

of frequency with respect to the amplitude of the oscillation, as we shall see, is related to the

deterioration of the system stability during disturbance.

Stress, Nonlinear Frequency and the System Stability

First of all, the stress can be induced by either change of operating conditions or the severity

of the disturbance. That is, increase in power transfer through the lines or severe fault case

can induce stress. To make a link between the nonlinear frequency and the stability of the

oscillation under stressed condition, let us consider two scenarios—effect of tie line flows and

effect of large disturbance.

Effects of tie line flow on the oscillation mode

In the SMIB power system previously studied in chapter 3 (i.e. Figure 3.2), the generator

output power Pe is transferred on the tie line of total impedance Xs. The system can be

represented (for speed not in p.u.) by

2H
ωs
ω̇ = Tm − Te −Dω = ωs

ω
Tm −

ωs
ω
Te −Dω (5.18a)

δ̇ = ω − ωs. (5.18b)

Equations (5.18) can be written as

ω̇ = ω2
s

2HωPm −
ω2
s

2HωPe −
ωs
2HDω (5.19a)

δ̇ = ω − ωs (5.19b)

Pe = EV

Xs
sin δ, (5.19c)
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where δ is the rotor angle in radians, and ω is speed in rad/s, Tm and Te are the mechanical

and the electrical torque in p.u, Pm and Pe are mechanical input and the electrical power

output in p.u., ωs is the synchronous speed in rad/s, and H and D are the generator inertia

constant and damping coefficient, respectively. As the operating point of a power system

determines the oscillation modes, the oscillation behaviour will be affected by the tie line

flow (Pe).

Considering constant Tm, generator internal voltage E and infinite bus voltage V , lin-

earising (5.19) around SEP yields

 ∆ω̇

∆δ̇

 =

 ω2
s

2Hω2
0
Pe0 − ωs

2HD − ω2
s

2Hω2
0

EV
Xs

cos δ0

1 0


 ∆ω

∆δ

 (5.20)

Defining Ks = ωs
2H , Ke = EV

Xs
cos δ0, the system oscillation modes (eigenvalues) are given

by

λ1,2 = −σ ± jω =
−
[
−Ks

ωs
ω2

0
Pe0 +KsD

]
± j

√[
Ks

ωs
ω2

0
Pe0 −KsD

]2
− 4Ks

ωs
ω0
Ke

2 . (5.21)

The damping ratio becomes

ξ = σ√
σ2 + ω2

. (5.22)

Note that ωs = ω0 is a common and simplifying assumption in many textbooks, which makes

the term ω2
s

ω2
0

= 1. However, this assumption will not allow for better representation of damping

effects which is intended in this section.

With varying electrical output (varying stress) in (5.21), the effects on the oscillation

frequency and damping can be visualised in Figure 5.7. The parameters for plotting Figure 5.7

were discussed in section 3.2.4 with ωs = ω0 in (5.21). Figure 5.7 shows that as the generator
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Figure 5.7 – Frequency and damping ratio variations with generator power output.
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output power increases, the damping and frequency of the mode decrease simultaneously. In

other words, increasing the stress on the system by increased tie line flows, decreases the mode

oscillation and damping. Decreasing of damping suggests a deterioration of the oscillation

stability. In fact, the figure shows decreasing damping and frequency up to a point beyond

which the system stability finally deteriorates, so-called knee point. This phenomenon is the

same even for detailed generator model. Thus, predicting the nonlinear frequency can suggest

the proximity of a mode to instability.

Effects of large disturbance on the oscillation mode

With same SMIB power system (5.19), let the SEP be 15◦ ( π12 rad). With the conventional

SSA, the frequency of the electromechanical mode is 7.82 rad/s (1.24 Hz). With the well

known equal area criterion (EAC), the stability bound for this operating point is 165◦ (2.88

rad), as seen in Figure 5.8a. Now, let us consider a certain disturbance with oscillation

amplitude 164.90◦ (i.e., 99.94% of the stability bound). The exact nonlinear response of this

condition is shown in Figure 5.8b. At this point, the nonlinear oscillation is asymmetric,

since the positive and negative amplitudes are not equal. At the same time, the frequency is

far shifted from that obtained from SSA. Estimation of the oscillation frequency under this

condition, using the two peaks indicated in the figure gives 0.65 Hz which, is 48% less than the

linear frequency. Notice that the disturbance of Figure 5.8b is 99.94% close to the boundary

(a) Equal Area Criterion
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Figure 5.8 – Amplitude-dependent frequency shift during large disturbance

of stability. In order words, 0.65 Hz is near to a knee point, beyond which instability occurs.

The above illustrations indicate that detecting the nonlinear frequency could be used in

monitoring the deterioration of the system stability. This relationship between the nonlinear

frequency and the power system stability has been pointed out in [125].
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5.4 Detection of Frequency-Amplitude Shifts via Normal Form

Recall from chapter 3 that the second order classical modelling of power system expanded

by Taylor series, up to third order, can be simplified into its normal form, called nonlinear

normal mode (NNM) as

∀q 6= p : Rq = 0, Sq = 0, (5.23a)

Ṙp = Sp, (5.23b)

Ṡp = −Ω2
pRp − (Apppp +Hp

ppp)R3
p −Bp

pppRpS
2
p , (5.23c)

where Ω is the natural frequency (linear mode), R and S, the state variables in the NF

coordinate, A and B, the NF coefficients defined in chapter 3 and H, the cubic nonlinear

coefficient discussed in chapter 3 and chapter 4.

It can be shown that the frequency-amplitude relation for (5.23) is given by [62]:

Ωpnl = Ωp

(
1 + ΞpΠ2

)
Ξp =

3(Apppp +Hp
ppp) + Ω2

pB
p
ppp

8Ω2
p

,
(5.24)

where Ωpnl is a nonlinear angular frequency due to the disturbance, and depends on the

amplitude Π considered. The implementation of (5.24) is illustrated next with the same

SMIB power system used above. The second term in the parenthesis in (5.24) is a correction

of the linear frequency Ωp.

Remark. To analyse the power system using NNM, the whole process presented in chapter 3

need not be completed since only specific terms are needed. Equations (5.23) contain only

terms that are readily available from the beginning of the process. For instance Ωp comes from

linear analysis, Apppp and Bp
ppp are just terms from quadratic change of variable see [(3.73),

chapter 3], Hp
ppp is a nonlinear coefficient for self coupled terms, which can be selectively

computed (see equation (5.28)). The above observation is a computational gain and makes

this specific NF (i.e. NNM) method suitable for on-line applications.

5.4.1 Example with SMIB Power System

Considering the SMIB power system used above, the first order model (5.19) is re-written in

second order and expanded by Taylor series up to third order. Then the nonlinear coefficients

are computed as explained in chapter 4 and the NF coefficients are computed for defining

the NNM as explained in chapter 3. Then using the nonlinear frequency estimator (5.24), a

frequency-amplitude (F-A) curve is produced for the range of amplitude 0 — 3 rads. This
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curve should then be able to predict the nonlinear frequency of the system for any amplitude

between 0 — 3 rads.

The F-A curve for the above description is shown in Figure 5.9. In Figure 5.8b, the

maximum amplitude of the oscillation from SEP is 2.57 rad. With the analytical equation

(5.24), this amplitude2 gives a nonlinear frequency (NLF) of 4.20 rad/s, which is equivalent

to 0.67 Hz and very close to the exact 0.65 Hz. The NLF 4.20 rad/s can be read easily from

F-A curve for an amplitude of 2.57 rad. The F-A curve shows that the linear and nonlinear
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Figure 5.9 – F-A curve for the SMIB system

frequencies will be same for very small amplitudes. For larger amplitude (stressed condition),

the linear analysis will not be effective, since it is based on small disturbance assumption. It

can be seen that even though NF builds on the linear analysis, it adds extra information not

possible with the linear analysis due to the nonlinearities accounted for.

5.4.2 Application to Multi-machine Power Systems

The power systems selected under this section are the IEEE 3-machine 9-bus system used in

the previous chapters (i.e. Figure 2.1) and the IEEE 50-machine 145-bus power system used

in chapter 4 (i.e. Figure 4.13).

2

The amplitude in (5.24) is the amplitude of oscillation in NF coordinate (i.e. R − S coordinate). For the
SMIB example, the right eigenvector is equal to 1, hence, the amplitude in the original coordinate (i.e., δ−Ω
coordinate) is approximately the same as that of modal coordinate (i.e., η −$) and approximately same in
R − S coordinate. For multi-machine system, the initial amplitude R0 (R − S coordinate) can roughly be
approximated as the modal amplitude η0 (η−$ coordinate) with minimal error to avoid solving for NF initial
conditions with many iterations.
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As a quick reminder, the equation of motion for N generators of power system represented

by 2nd order classical model can be written as (5.25).

Miδ̈i + C̄iδ̇i + Pei = Pmi (5.25a)

Pei = E2
i Gii +

N∑
k=1,k 6=i

EiEk [Gik cos δik + Bik sin δik] . (5.25b)

Mi, C̄i , Pei , Pmi , δi have their meanings as defined in chapter 3. The damping constant C̄i is

set to zero for simplicity. To build the approximate nonlinear model of (5.25), it is expanded

up to 3rd order, around a stable equilibrium point (SEP) of δ. Since loss of synchronism is

determined by the relative angles δiN = δi − δN and not δi, the state variables are defined as

δiN where generator N serves as a reference. Therefore, (5.25) comprises N − 1 oscillators.

The approximate model of (5.25) after setting damping to zero with equilibrium moved to

the origin is of the form:

Mδ̈+Kδ+ F2(δ) + F3(δ) = 0. (5.26)

where ∀(i, j, k, l = 1 . . . N) :Kij = ∂Pei
∂δj
|δ=δ0 , F2ijk = 1

2
∂2Pei
∂δj∂δk

|δ=δ0 , F3ijkl = 1
6

∂3Pei
∂δj∂δk∂δl

|δ=δ0 .

The natural frequency Ω is obtained by solving the eigenvalue problem (K − Ω2
iM)Φi = 0

and the modal model is obtained by the Jordan transformation

η = ΦTδ, (5.27)

with its nonlinear coefficients defined ∀(i, j, k, l, p, q, r, s = 1 . . . N) as:

Gpqr = F2ijkΦipΦjqΦkr (5.28a)

Hp
qrs = F3ijklΦipΦjqΦkrΦls. (5.28b)

Equations (5.28a) and (5.28b) are easily implemented without Taylor expansion of (5.26),

using the method proposed in the previous chapter. Using the nonlinear coefficients, the

nonlinear change of variables are defined and the NNM (5.23) are obtained for each oscillator.

Then, for the desired oscillation amplitude, the nonlinear frequency is detected by (5.24).

Test on IEEE 3-Machine 9-Bus Power System

As discussed in chapter 2, the IEEE 3-machine 9-bus power system has two electromechanical

modes of frequencies 13.72 rad/s (2.2 Hz) and 8.82 rad/s (1.4 Hz) for the given SEP. We

consider two fault scenarios to excite the modes. A three phase fault applied at bus 9 makes
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the first mode (i.e. mode 1=13.72 rad/s) dominant while a three phase fault at bus 4 makes

the second mode (i.e. mode 2 = 8.82 rad/s) dominant. The faults were cleared near the

critical clearing time (CCT), which are about 0.30s and 0.24s respectively. At the instant

of clearing the fault, the rotor amplitudes are obtained (initial conditions) and scaled by

the linear transformation (5.27), to obtain the modal amplitude needed for the analytical

nonlinear frequency estimation proposed in (5.24).

The responses for the two fault conditions are presented in Figure 5.10. Figure 5.10a

shows the response for the fault at bus 9. The response shows that mode 1 is predominant,

since we know from chapter 2 that generator 1 (G1) and generator 2 (G2) swing together

when mode 1 is excited. A rough estimation of the oscillation frequency from the curves

using the first two peaks gives 12.50 rad/s. The estimation is rough because in the form of

equations normally used in power systems, the angle differences contain harmonic terms, gen-

erally involving all fundamental frequencies of oscillation. Hence we have difficulty observing

these frequencies in measured physical variables. In some situations, it is even difficult to

identify the right peaks. However, in Jordan coordinate (i.e., modal model obtained after

Jordan/linear transformation), all frequencies are separated [109]. Since higher order terms

are included in nonlinear modal analysis, total separation of all frequencies is difficult due to

nonlinear coupling. NF transformation helps to further remove these nonlinear coupling and

provide clearer separation of frequencies. For this reason, the same initial condition is used to

transfer the system to the modal coordinate (Figure 5.10c) and NF coordinate (Figure 5.10e).

The two coordinates (i.e., η − $ and R − S) clearly show the dominance of mode 1. The

two plots seem very identical because of the level of nonlinearities, which is not evidently

high. Later example will reveal the difference in the two coordinates. Note that the pre-fault

condition is not included in the plots. The frequency of the response in η −$ coordinate is

12.80 rad/s while the actual frequency in R−S coordinate is 13.24 rad/s. With the same ini-

tial condition, the nonlinear frequency computed with the proposed equation (5.24) is 12.96

rad/s which is just 2.11% away from the actual value. Recall that in chapter 2, we observed

the linear frequency (≈ 13.72 rad/s) when this mode was excited because the disturbance

was sufficiently small. Here, the linear frequency is decreased to 13.24 rad/s due to the dis-

turbance. Interestingly, NF is able to predict this shift of frequency accompanying the large

amplitude of the oscillation. The above observations are summarised in Table 5.6.

For the fault at bus 4, Figure 5.10b shows that mode 2 is dominant since from chapter 2

G1 and G2 swing in ant-phase with each other when mode 2 is excited. The figure also shows

that mode 1 is also excited, though not at the same level as mode 2. A rough estimation of

the frequency of the dominant mode from the curves gives 7.30 rad/s. As before, the system is
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Figure 5.10 – Oscillations during large disturbance for 9-Bus Power System

transferred to the modal coordinate ( Figure 5.10d) and NF coordinate ( Figure 5.10f), where

the actual frequency of the dominant mode is obtained as 8.09 rad/s. With the analytical

equation (5.24), the nonlinear frequency is estimated as 8.03 rad/s, an error of 0.05% (see

Table 5.6).

Table 5.6 – Frequency–Amplitude Shifts for the 9-Bus Power System

Faulted Dominant Linear Rough (δ − ω) Actual (R− S) Proposed Error
Bus Mode (rad/s) (rad/s) (rad/s) (rad/s) (%)

9 Mode 1 13.72 12.50 13.32 12.96 2.11%
4 Mode 2 8.82 7.30 8.09 8.03 0.05%
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Test on IEEE 50-Machine 145-Bus Power System

Firstly, the conventional modal analysis was performed and the natural modes are listed in

Table 5.7. The third, sixth, and ninth columns of Table 5.7 give the natural frequencies in

Hertz (Hz). We know from previous studies that mode 44 (i.e., 2.80 rad/s) is an inter-area

Table 5.7 – Natural Modes for 145-Bus Power System

# Ω (rad/s) (Hz) # Ω (rad/s) (Hz) # Ω (rad/s) (Hz)
1 31.72 5.05 21 13.09 2.08 41 1.32 0.21
2 25.85 4.11 22 12.68 2.02 42 2.09 0.33
3 26.67 4.24 23 12.51 1.99 43 1.85 0.29
4 21.87 3.48 24 12.00 1.91 44 2.80 0.45
5 20.31 3.23 25 11.32 1.80 45 3.08 0.49
6 17.89 2.85 26 10.18 1.62 46 3.37 0.54
7 17.75 2.83 27 9.82 1.563 47 3.76 0.60
8 16.35 2.60 28 9.24 1.47 48 3.53 0.56
9 15.44 2.46 29 8.46 1.35 49 3.66 0.58
10 15.19 2.42 30 8.35 1.33
11 15.09 2.40 31 8.25 1.31
12 14.97 2.38 32 7.65 1.22
13 14.29 2.28 33 7.95 1.27
14 14.32 2.28 34 8.04 1.28
15 14.05 2.24 35 6.75 1.07
16 13.82 2.20 36 5.65 0.90
17 13.76 2.19 37 5.34 0.85
18 13.34 2.12 38 5.21 0.83
19 13.36 2.13 39 4.68 0.74
20 13.26 2.11 40 4.44 0.71

mode with participation from all the generators, although the participations of machines to

most local modes are far more than that in the inter-area mode. For example, mode 8 is a

local mode with very large participation from generator 7 and close-to-zero participation from

other generators. A fault at bus 7 leads to very high amplitude oscillation associated to mode

8 and leads to instability. Also, previous studies indicate that a fault at bus 1 excites both

local and inter-area modes, and can lead to separation of some generators from others. In

this section, two scenarios are considered—(1) fault at bus 7 with local mode 8 as dominant

and (2) fault at bus 1 with significant excitation of several local and inter-area modes.

The responses due to the above two fault scenarios are shown in Figure 5.11. For fault

at bus 7, Figure 5.11a indicates that generator 7 (G7) is most affected as the amplitude of

oscillation is significantly high with respect to other generators. A rough estimation of the

frequency of this oscillation from the figure is 14.06 rad/s. Figure 5.11c and Figure 5.11e

show the transformation of the system to modal and NF coordinates respectively. Both

figures indicate that mode 8 is predominantly excited. The actual frequency of mode 8 (i.e.,

125



CHAPTER 5. APPLICATIONS OF NORMAL FORM IN POWER SYSTEMS

0 1 2 3 4 5
Time (s)

-2

-1

0

1

2
, 

ra
d

G7

(a) Fault at Bus 7–Original coordinate (δ − ω)
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(b) Fault at Bus 1—Original coordinate (δ − ω)
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(c) Fault at Bus 7—Modal coordinate (η −$)
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(d) Fault at Bus 1—Modal coordinate (η −$)
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(e) Fault at Bus 7—NF coordinate (R− S)
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(f) Fault at Bus 1—NF coordinate (R− S)

Figure 5.11 – Oscillation during large disturbance for 145-Bus Power System

from R− S coordinate) is obtained as 14.16 rad/s. With the analytical method proposed in

equation (5.24), the nonlinear frequency is calculated as 14.33, rad/s which incurs an error

of 1.2%. This frequency is closer to the actual frequency, compared to the linear one which

is 16.35 rad/s (see Table 5.7).

For fault at bus 1, Figure 5.11b shows that the oscillation is complicated, as many gener-

ators are affected and several modes significantly excited. Generator 2 (G2) has the highest

amplitude in the first swing. A rough estimation of the oscillation frequency of the dominant

mode, using G2, yields 12.27 rad/s. As in the previous cases, the system is transformed to

the modal coordinate as shown in Figure 5.11d, which also show that several modes including

the inter-area mode (mode 44) are significantly excited. We pay attention to Mode 18, which

can be considered most excited since it shows growing oscillation. Taking mode 18 as most

dominant, the frequency in the modal coordinate is estimated from the figure as 12.96 rad/s.

Figure 5.11d shows clearly, that even though linear couplings are removed by the Jordan
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transformation, there are still strong nonlinear couplings as we see several modes excited,

almost with similar amplitudes. The system is further transformed to the NF coordinate as

shown in Figure 5.11f, which becomes clearer as a result of the simplification of the nonlin-

earities. We see that only two most dominant modes have higher amplitudes, the rest become

slaves. We pay attention to mode 18, which has actual frequency in this NF coordinate as

12.56 rad/s. The nonlinear frequency calculated from the proposed method is 12.30 rad/s,

which is an error of 2.07%. The summary of the above analysis is presented in Table 5.8.

Table 5.8 – Frequency–Amplitude Shifts for the 145-Bus Power System

Faulted Dominant Linear Rough (δ − ω) Actual (R− S) Proposed Error
Bus Mode (rad/s) (rad/s) (rad/s) (rad/s) (%)

7 Mode 8 16.35 14.06 14.16 14.33 1.20%
1 Mode 18 13.34 12.96 12.56 12.30 2.07%

5.4.3 Practical Significance of Frequency Shift Monitoring

Traditional power system modal analysis pays less attention to this frequency-amplitude shift

phenomenon which can have some adverse effects on the system. As shown in section 5.3,

both machine loading and large disturbance lead to decrease in the oscillation frequency and

damping. The decrease in frequency is gradual and seems minimal initially. However, close to

the knee point, it drops sharply (see Figure 5.7). Since the decrease of oscillation frequency is

accompanied by decrease in damping, power system control usually focus on detecting the low

damping situation, which are then addressed by the damping controllers such as PSS or other

modulation-based methods. Modern power system control focuses on oscillation monitoring

using real time measurements. One objective of a Wide Area Measurement System (WAMS) is

to provide critical information regarding the system’s oscillatory behaviour. Hauer et al. [126]

discussed the potentials of any measurement-based approach that automatically estimates

mode parameters (e.g., frequency and damping) in near real time for system operation and

control applications. Such method is called Mode Meter methods [126]. In Mode Meter

technologies, accurate monitoring of frequency is paramount since parameters of a mode can

change and become close to that of another known mode in the system. This can lead to

identification problem, especially if the damping is not perfectly determined. Hence, mode

frequency monitoring by NF can be a complementary tool in Mode Meter technology.

A practical example is the massive breakup experienced by the western interconnection

on August 10, 1996. The mechanism of failure was suggested to be a transient oscillation,

under conditions of high power transfer on long paths that had been progressively weakened

through a series of seemingly routine transmission line outages [126]. Measurement-based
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studies revealed that the 0.25-Hz oscillation, which was indicative of the impending breakup,

resulted from progressive decrease of the oscillation frequency from 0.27 Hz to 0.25 Hz, and

the oscillation damping ratio, from 7.0% to 1.2% (see Figure 5.12).

Figure 5.12 – Oscillation buildup for the WSCC breakup of August 10, 1996 [126]

5.5 Transient/Mode’s Stability Estimation using Normal Form

In chapter 1, we saw that the stability of the power system following large disturbance is

known as transient stability. One of the main advantages of the modal analysis is that it

allows the expression of the dynamic behaviour of the power system with modes. The stability

of the power system is in essence, the stability of the modes in the system. In this section,

we will explore the application of NF to the monitoring of the oscillation mode’s stability

under large disturbance, so-called transient stability monitoring. In the previous chapters,

nonlinear normal mode (NNM) theory was used to obtain a decoupled system, where each

machine is represented by one degree-of-freedom oscillator. The decoupled system was used

to obtain an analytical expression for nonlinear frequency (NLF) of electromechanical modes

under disturbance in the previous section. Here, we use the expression for the NLF to define
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an instability proximity index, which estimates the system’s stability by investigating the

proximity of NLF of each mode to the defined index during disturbance. Tests on the IEEE

3-machine and 50-machine power systems give good results and reveal the potency of the

proposed method for warnings of instability.

5.5.1 Motivating Example with SMIB Power System

Still with the same SMIB power system used in the previous sections, we consider a moti-

vating example. Recall that the SEP is π
12 rad and the stability bound from EAC is 2.88

rad. After certain disturbances, the system behaviour is approximated by 3rd order Taylor

expansion, transformed to NNM (5.23a)—(5.23c) and finally reconstructed to the original

coordinate using the processes outlined in chapter 3. The time-domain simulations (TDS) of

the disturbances are shown in Figure 5.13. Figure 5.13a is a case where the rotor angle is

within the stability bound and reveals that NNM3 (green curve) provides best approximation.

In Figure 5.13b the rotor angle reaches the stability bound and NNM3 maintains constant

value as the exact solution for sometimes before it goes unstable. The linear (dashed red

curve) and NNM2 (blue curve) show stability in contrast. In Figure 5.13c, the rotor angle

goes beyond the stability bound and both NNM3 and Exact (black curve) solutions show

instability while NNM2 and linear solutions indicate stability.

(a) Oscillation within boundary (b) Oscillation at boundary

(c) Oscillation exceeds boundary

Figure 5.13 – Rotor angle for different approximations and operating points (SMIB)
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The above observations show that NNM3 retains enough nonlinear characteristics of the

nonlinear system and could offer a good insight into the stability of the original system.

Moreover, NNM3 decouples the multi-machine system into equivalent SMIB-like oscillator

systems, so that the stability of each oscillator can be accessed separately.

5.5.2 NF Stability Assessment Index

We repeat the p-th mode’s frequency-amplitude relation (5.24) here for emphasis.

Ωpnl = Ωp

(
1 + ΞpΠ2

)
Ξp =

3(Apppp +Hp
ppp) + Ω2

pB
p
ppp

8Ω2
p

.
(5.29)

For a stable mode, the increasing amplitude Π leads to a decreasing nonlinear frequency Ωpnl

as shown previously in Figure 5.9. The descent of the NLF gets to a critical point (knee

point) beyond which the mode looses stability. To estimate the critical NLF, it is necessary

to estimate the critical amplitude. In a stable power system, if the rotor angle δ reaches its

maximum, δ̇ = 0 and the net torque on the rotor starts retarding. Therefore, if δ̇ = 0 at

the stability bound, then Ṙ = 0 in the NF equation (5.23b) and invariably Ṡ = 0 in (5.23c).

Then for p-th mode, (5.23c) becomes

0 = −Ω2
pRp − (Apppp +Hp

ppp)R3
p (5.30)

∴ Rpcr = Rp =
√

−Ω2
p

(Apppp +Hp
ppp)

, (5.31)

where Rpcr stands for the critical amplitude of p-th mode in the NF coordinate. One way

to assess stability is to construct transient energy function, using the roots of (5.30). This

however, will lead to very deceptive results for this case because (5.31) is a function of the

operating modal frequency, which requires that the linear analysis be repeated for every

disturbance. Alternatively, we use Rpcr from (5.31) to compute the critical NLF from (5.24).

Therefore, we define a critical frequency shift (CFS) from (5.24) as:

CFSpcr = Ωp

(
1 + ΞpR2

pcr

)
. (5.32)

To ascertain stability:

1. Obtain the pre-fault equilibrium condition and project it to NF coordinate to obtain

NNM (5.23c).

2. Using (5.31), compute critical displacement Rpcr for p-th mode satisfying (5.30) and
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compute CFSpcr with (5.32).

3. For a fault, obtain the deviations immediately the fault is cleared and transform to

modal coordinate using (5.27). This is the initial condition in modal coordinate.

4. Obtain Rpcl with the technique discussed in chapter 3, where cl represents after fault

is cleared. This is the initial condition in NF coordinate3

5. With Rpcl determined, obtain the CFSpcl using (5.32).

6. If CFSpcl < CFSpcr , the post-disturbance condition is assessed to be stable otherwise

it is not.

The proposed method may incur at least three kinds of error—(1) error due to model

reduction; (2) error due to truncation order; and (3) error due to modal interactions. The

results from classical models may not always be exact with the detail modelled power system.

A third order truncation is only a compromise for computational burden; close to stability

bound, higher order terms may be important. Simplification to NNM (5.23) is more valid

when the initial conditions for k 6= p is zero. When all the initial conditions are not zero

as is the case when fault is cleared, the interaction of modes may be significant. As noted

in chapter 1, the effects of modal interactions can be negative or positive. Because of the

above reasons, instability determined by the proposed method may be conservative (true

instability occurring later than the proposed) or optimistic (true instability occurring sooner

than the proposed). Since the initial condition for k 6= p is not zero for multi-machine

system under disturbance, the effects of other modes will set CFSp farther than would be

for a classical SMIB power system which has only one mode. To address this challenge we

introduce a shrinking factor to shrink the cumulative effects of all modes to the particular

mode of interest. The shrinking factor is discussed in next paragraph.

Following the definitions in [127], the modal mass m∗p = ΦT
p MΦp is equal to the sum

of (mass)× (mode displacement)2 for each mode (m∗p =
N∑
q=1

mqΦ2
pq). Similarly, the modal

stiffness k∗p = ΦT
p KΦp is the sum of the strain energy stored at each oscillator and the total

strain energy indicates that k∗p = mpΩ2
p, where all parameters have their previously defined

meanings. Therefore we define

STEpl = mpΩ2
p (5.33a)

STEpnl = mpΩ2
pnl
, (5.33b)

3Step 4 above implies iterative solving of nonlinear equations which is not desirable for on-line application.
For a motion initiated in p-th path, Rk = 0, ∀k 6= p in [see (3.74), chapter 3]. This makes the solution of Rp
very near to ηp so that further rough approximation Rp ≈ ηp can be made if the the operating point is not
too far from SEP.
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where STEpl is the total modal strain energy for the linear frequency of mode p and STEpnl

is the total modal strain energy for the nonlinear frequency of mode p. The shrinking factor

is thus defined for p-th mode as

S.F = STEpnl
STEpl

. (5.34)

Therefore, for any fault condition, (5.32) is redefined as

CFSpcl = Ωp

(
1 + ΞpR2

pcl

)
× S.F. (5.35)

Then the instability proximity index (IPI), which measures how far the operating point is

from instability is defined as

IPIp =
(
CFSpcl
CFSpcr

− 1
)
× 100%. (5.36)

Later, the results will show that IPI gives tolerable errors for the considered model. It is

important to note that the stability determined this way is limited to the validity of the

approximation and the generator model used, and therefore, cannot be a global stability.

Numerical simulations are presented in the following sections to test the proposed method.

Test on IEEE 3-Machine 9-Bus Power System

A three phase fault is added to bus 4 and cleared at increasing time by removing the fault

until instability. The values of CFS and IPI after each clearing time are listed in Table 5.9.

The critical clearing time (CCT) obtained by TDS in MATLAB® is t < 0.24 s. As seen from

Table 5.9 – Stability Assessment for the 9-Bus Power System (Fault at Bus 4)

Tcl (s) Mode 1 (rad/s) Mode 2 (rad/s)

CFS1cl CFS1cr IPI1 CFS2cl CFS2cr IPI2
0.05 13.71 8.55 60.35% 8.81 5.44 62%
0.15 13.65 8.55 59.65% 8.32 5.44 52.94%
0.22 13.41 8.55 56.84% 6.67 5.44 22.61%
0.24 13.30 8.55 55.56% 5.89 5.44 8.27%
0.25 13.22 8.55 54.71% 5.36 5.44 -1.47%

Tcl = clearing time. Actual CCT = 0.24 s

Table 5.9, the CCT with the proposed method is t < 0.25 s which is fair. The results show

that mode 2 is less stable than mode 1 under the studied contingency. This can be observed

from the table as the frequency of mode 2 drops faster as the stress increases while that of

mode 1 decreases slowly. This is consistent with the previous simulations (Figure 5.10), which

showed that mode 2 is more excited when fault is added to bus 4.
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A second case is considered by adding a three phase fault to bus 9 and clearing at increas-

ing time by removing the fault until instability occurs. The values of CFS and IPI after each

clearing time are listed in Table 5.10. The table shows that the proposed method predicted

instability at CCT of t < 0.26 s which is earlier than the TDS (i.e., 0.3 s). It can also be seen

from the table that the local mode 1 is driving the instability in this case. The nonlinear

frequency of mode 2 is unchanging as the stress increases. This is equally consistent with the

previous simulations (Figure 5.10), where we saw that mode 1 is not significantly affected by

fault at bus 9. These observations emphasise the need to monitor all modes, whether they

are critical modes or not, since the stability of a mode is also dependent on the location of

the disturbance.

Table 5.10 – Stability Assessment for the 9-Bus Power System (Fault at Bus 9)

Tcl (s) Mode 1 (rad/s) Mode 2 (rad/s)

CFS1cl CFS1cr IPI1 CFS2cl CFS2cr IPI2
0.15 13.00 8.55 52% 8.81 5.44 62%
0.22 10.67 8.55 25% 8.81 5.44 62%
0.24 9.58 8.55 12% 8.81 5.44 62%
0.25 9.00 8.55 4.78% 8.81 5.44 62%
0.26 8.30 8.55 -2.9% 8.81 5.44 62%

Tcl = clearing time. Actual CCT = 0.3 s

Test on IEEE 50-Machine 145-Bus Power System

In this case, we consider the two scenarios already considered in the previous section—(1)

fault at bus 7 with local mode 8 as dominant and (2) fault at bus 1 with significant excitation

of several local and inter-area modes.

Table 5.11 lists the results of mode stability monitoring for fault at bus 7, using the

proposed method. Mode 8 is the first to exhibit instability, hence, only the stability of mode

8 is presented in Table 5.11. With TDS in MATLAB® , the first instability occurs at 0.27 s,

where generator 7 goes out of synchronism with the rest (see Figure 5.14). It is found that

at clearing time of 0.26 s, mode 8 goes unstable with CFS8cl exceeding the critical value.

For the second case of fault at bus 1, only mode 18 is monitored as it encountered insta-

bility first. The results are listed in Table 5.12. The results show that the stability is lost if

the fault is cleared after 0.9 s. The actual time-domain simulation in MATLAB® shows that

at CCT t ≥ 1.2 s, the system looses stability with some generators separating from others

(see Figure 5.15).

Table 5.13 gives detailed comparison of proposed method with TDS, for some cases con-
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Table 5.11 – Stability Assessment for the 145-Bus Power System (Fault at Bus 7)

Tcl (s) Mode 8 (rad/s)

CFS8cl CFS8cr IPI8
0.15 15.27 9.05 68.79%
0.22 11.78 9.05 30.20%
0.24 10 9.05 12.40%
0.25 9.27 9.05 2.48%
0.26 8.33 9.05 -7.97%

Tcl = clearing time. Actual CCT = 0.27 s
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Figure 5.14 – Marginally unstable system at 0.27 s clearing time for fault at bus 7 (145-bus power
system)

Table 5.12 – Stability Assessment for the 145-Bus Power System (Fault at Bus 1)

Tcl (s) Mode 18 (rad/s)

CFS18cl CFS18cr IPI18
0.15 13.33 8.21 62.36%
0.22 13.30 8.21 61.99%
0.40 12.88 8.21 56.90%
0.60 11.31 8.21 37.81%
0.80 8.34 8.21 1.55%
0.90 6.42 8.21 -21.80%

Tcl = clearing time. Actual CCT = 1.2 s

sidered. The errors incurred are tolerable for the case tested. However, like all NF approxi-

mations, the results are only reliable within the boundary of validity of the approximation.
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Figure 5.15 – Unstable system at 1.2 s clearing time for fault at bus 1 (145-bus power system)

Depending on the fault locations and the severity, proposed method may incur very signif-

icant error. The fact that large disturbance is discussed does not mean that the proposed

method will still work when the operating point is extremely far from SEP. Also, as seen for

the error in the case of fault at bus 1 of the 145-bus power system, the proposed method

can be ”blinded”, if several modes, are significantly excited. Therefore, the proposed method

should be used for warning signals of mode instability.

Table 5.13 – CCT—Proposed Method Vs TDS for some cases

Bus Case TDS Proposed Method Error

4 IEEE 9-Bus t < 0.24s t < 0.26s 8.30%
7 IEEE 9-Bus t < 0.29s t < 0.32s 10.34%
9 IEEE 9-Bus t < 0.30s t < 0.26s 13.30%
7 IEEE 145-Bus t < 0.27s t < 0.26s 3%
1 IEEE 145-Bus t < 1.20s t < 0.90s 25%

5.5.3 Computational complexity of the Proposed Method

Computationally, the proposed method is far simpler than conventional NF performed at

first order. The approximate model is built once and only repeated whenever power flow

is repeated. With 3520M 2.9GHz laptop computer, the overall time elapsed in the case of

50-machine system, for all the modes is 451s (≈ 7.5 minutes), while the time to build the

approximate model is 131s (≈ 2 minutes). Even if it is needed to rebuild the approximate

model, 7.5 minutes is not expensive and can be routinely done in power system operation.

This time is drastically reduced when only some selected modes are analysed. The proposed

method is suitable for on-line assessment, especially when focus is on vulnerable modes. A
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computational comparison with similar works [82, 83] where the approximate model is built

with first order model is shown in Table 5.14. Since the transformations are not the same,

only time to build the approximate models is considered. It could be seen that the time saved

by avoiding first order representation initially is huge, especially as the system size increases.

Table 5.14 – Computational benefits of proposed method

Case [82, 83] Proposed Method

No. Var. Time (s) No. Var. Time (s) TSF∗

IEEE 9-bus system 5 0.120 3 0.029 4
IEEE 39-bus system 19 2.80 9 0.195 14
IEEE 145-bus system 99 15,355 49 131 117

No. var = number of variable; TSF=time saving factor

5.5.4 Practical Application of the NF-Based Stability Estimation

The proposed method has potential for on-line application and can be used by power system

operators to make quick and rough estimation of modes’ proximity to instability. Since NF

analysis is based on truncated Taylor series approximation, the stability determined by the

proposed method cannot represent a global solution. Although the proposition is based on

classical model, it is important to note the following points about the method: (1) nature

of electromechanical oscillation is same, irrespective of the model. Detailed model does add

more information to the classical model, especially in the damping of the modes, but the

frequencies do not change significantly; (2) the stability can be wrongly accessed with the

proposed method but it correctly identifies the vulnerable modes due to a disturbance.

For practical application, we recommend that the proposed method be run routinely (say

every 15 minutes) in the power system operation for warning signals. Once a warning flag

is raised by the proposed method, other more robust approaches can be used to analyse the

particular mode in detail for appropriate control actions.

5.6 Summary

In this chapter, some applications of Normal Form analysis have been explored. Tests have

been done on both small and large power systems. The computationally-reduced method

developed in the previous chapter has been used throughout the present chapter.

Firstly, proposals for further reduction of Normal Form computation, by focusing only on

some selected terms are made. Two proposals were made — one which consists in neglecting

interaction associated to real eigenvalues in the building of NF model and the other, which
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consists in neglecting interactions associated to modes with least energy. These treatments

drastically reduce the computational burden and accelerate the study of modal interaction.

The extension of linear analysis to nonlinear participation factors arising from the modal

interactions are also presented. The practical applications of modal interactions and possible

concerns were equally discussed.

Secondly, didactic examples were used to explain the phenomenon of nonlinear frequency

shifts when power systems experience disturbance. It was demonstrated that during dis-

turbance (or increasing system stress), the frequency of an oscillation is dependent on the

oscillation amplitude and can reduce, contrary to the assumption of the linear modal analy-

sis. It was shown that the reduction of the frequency of an oscillation mode is linked to the

mode’s instability.

Thirdly, a method is proposed based on Normal Form, which is able to monitor an oscilla-

tion mode and detect its frequency whenever there is a disturbance. This new frequency due

to disturbance is termed nonlinear frequency. Test cases showed that the proposed method

captures the nonlinear frequency shift of the oscillation under disturbance with minimal error.

The practical applications of the method for on-line dynamic assessments of power systems

were discussed.

Finally, a mode instability monitoring method was proposed based on the nonlinear fre-

quency, having established a relationship between the nonlinear frequency and mode’s in-

stability. The instability monitoring method consists in searching for a critical nonlinear

frequency beyond which the mode loses stability, so-called critical frequency shift (CFS).

With the CFS of all modes determined, an instability proximity index (IPI) was proposed

which monitors how close the operating point is to instability. The comparison of the pro-

posed method and the time-domain simulations for the tested cases showed the error of the

proposed method to be fair. The potential of the proposed method for on-line applications

and warning signs of mode’s instability were discussed.

In the next chapter, we will connect all the developments from the first chapter to the

present chapter in order to draw some conclusions.
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Chapter 6

Conclusions and Future Works

“Ends are not bad things, they
just mean that something else is
about to begin. And there are
many things that don’t really
end, anyway, they just begin
again in a new way. Ends are
not bad and many ends aren’t
really an ending; some things are
never-ending.”

C. JoyBell C.
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CHAPTER 6. CONCLUSIONS AND FUTURE WORKS

6.1 Conclusions

With all the known potentials of Normal Form method for better analysis of stressed power

systems and systems exhibiting strong nonlinear behaviour, the goal of the this work has

been to fast-track Normal Form application processes in order to position it as a useful tool

for future grid. In this work a computationally-improved method for deriving third order

Normal Form representations in the neighbourhood of equilibrium points is presented. The

method has employed eigenmodes’ properties and careful perturbation of the nonlinear model

to avoid certain computationally-difficult steps in Normal Form analysis. Using the conven-

tional methods for obtaining the Normal Form model requires the implementation of higher

order Taylor expansion of the nonlinear model. This expansion leads to the computation of

higher order Hessian matrices and the projection of the eigenmodes onto the expanded sys-

tem. For systems with small number of variables, these operations are convenient; but when

considering large scale systems they are computationally expensive, and even impracticable.

A more efficient method has therefore been developed to extend Normal Form application

to larger and future power systems. In addition to the proposed method, new proposals are

made to allow for selective Normal Form application which leads to further computational

reduction. Furthermore, based on the nonlinear approximate models, analytical criteria have

been developed to monitor the stability of electromechanical modes and their frequency shifts

during disturbance. The theory, analysis, results, and observations presented in this thesis

can be summarised as follows:

1. The conventional Normal Form method and theories were first recalled. In the ap-

plication of third order Normal Form in power system, firstly, the nonlinear model is

expanded by Taylor series up to third order and the Hessian matrices are evaluated

for the given operating point. The resulting approximate model is transformed to Jor-

dan form, using the eigenvector/eigenvalues computed from the first order part of the

Taylor expansion. The coefficients of the Jordan model, called in this thesis nonlinear

coefficients, are determined. Finally, a nonlinear change of variable is defined to remove

the nonlinear terms in the Jordan model, which put the resulting nonlinear approxi-

mate model in normal form. Based on this model analytical indices can be defined to

understand the effect of the nonlinear interactions when the system is stressed.

2. In the case of the developed method, the linear analysis is first performed to extract

the eigenvalues/eigenvectors. Then, the original nonlinear system is perturbed in such

a way that certain desired modes or combinations of modes are excited using scaled

eigenvectors. The scaling factor is the amplitude of the modal perturbation, and is

140



CHAPTER 6. CONCLUSIONS AND FUTURE WORKS

chosen, such that the anticipated nonlinearities due to the perturbation are within

third order Taylor approximation. The static solution of the nonlinear system due

to the perturbation is obtained. Different excitations allow the formulation of linear

system of equations, whose coefficients correspond to the desired nonlinear coefficients

and whose second member corresponds to the static solution of the nonlinear system. In

this way, any desired coefficients can be computed without the actual Taylor expansion

and computation of Hessian matrices. The developed method was applied to power

systems represented with second order differential equations, where all quantities are

real-valued, and as well as, to power systems represented with first order differential

equations, where computed quantities are complex-valued.

3. The computations with the developed method are compared with computations using

symbolic toolbox. The time-domain simulations for models built from the two com-

putations were also compared. From the results presented in chapter 4, the following

observations are made:

• The proposed method is highly accurate, recording an error of 1.83e−3% as the

highest error in all tested cases, and simulations from both the proposed and

symbolic methods under severe stress conditions are matching.

• Computations with the proposed method are very fast and memory economical,

compared with symbolic method. The results showed that with increased number

of variables in the system, the proposed method becomes incomparable with the

symbolic method. For compared cases, the proposed method can be 776 times

faster and 1.52e3 times less costly (in terms of memory) than the symbolic method.

This computational economy is firstly due to the avoidance of Hessian matrices and

higher order differentiation; and secondly, due to the fact that the proposed method

obtains all coefficients by solving sets of linear equations which are computer-

friendly. This observation is good, since the new method can now extend the size

of the system that can be considered with third other Normal Form. Furthermore,

future power systems will be full of power electronic converters which have several

state variables, needing the use of the proposed method to obtain their normal

forms.

• The proposed method is conveniently selective; allowing one to compute only spe-

cific terms of the approximate nonlinear model without computing the rest. This

observation is pertinent since it allows analysis to be focused only on some spe-

cific modes in the system with less burdensome computations. In addition, the
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results in chapter 4 suggest that the nonlinearities of the system are not evenly

distributed, but are localised around some certain modes in the system. This im-

plies that selective Normal Form application can be pursued with the developed

method for system with large number of variables.

• Considering power system time-domain simulation software, the perturbation of

the nonlinear system with scaled eigenvectors, as required by the proposed method,

corresponds simply to initialising the system with initial conditions—the scaled

eigenvectors. This observation underscores the possibility of using the already

existing power system software for Normal Form analysis. Moreover, there has not

been any dedicated commercial software for power system Normal Form analysis.

• It is observed that with the developed method, both second and third order terms

are computed simultaneously. This has advantage for third order Normal Form

application; however, if only second order Normal Form is needed, it is not possible

with the developed method to compute the second order terms without some third

order terms. This implies that the method is specifically developed for third order

Normal Form application, although the idea can be extended if necessary.

• The developed method assumes that there is no exact modal resonance. That is,

all eigevalues are distinct and the system state matrix is diagonalisable. In the

case of exact modal resonance, excitation of different modes independently using

scaled eigenvectors becomes complicated, thereby limiting the developed method.

This is though, a general problem in Normal Form application and not specific to

the developed method.

• In exciting the modes to compute the coefficients, the choice of the modal deviation

amplitude can affect the results. If too large amplitude is used, the level of the

nonlinearities due to the perturbation exceeds third order, on which the method

is based, thereby giving wrong results. On the other hand, very small value of

the modal deviation amplitude does not create sufficient nonlinearities due to

the perturbation, placing the system in only linear region, whereas the needed

coefficients are for the nonlinear terms.

• Yet another limitation of the developed method is the assumption that the nonlin-

earities are smooth and static. If these assumptions become invalid, the method

may break down.

4. Using the Normal Form defined for power system represented by second order differen-

tial equations, analytical index for estimating the frequency shift of electromechanical
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modes under disturbance is proposed. Based on this frequency shift estimation index,

an instability proximity index (IPI) is developed for estimating the proximity of oscilla-

tory mode to instability. These indices were tested on small and larger power systems.

From the results presented in chapter 5, the following observations are made:

• Increasing stress in the system decreases the frequencies of electromechanical

modes. That is, the frequencies of the electromechanical modes shift from the

fundamental values (determined by linear analysis) to another lesser value due to

increased nonlinearities.

• The frequency shift is more pronounced on the dominant mode and is related to

the stability of the mode. The frequency shifts increases as the stress increases till

a critical point where the modes lose stability.

• Modern power system control focuses on wide-area monitoring of electromechan-

ical oscillations using real time measurements, whereby mode parameters (e.g.,

frequency and damping) are automatically estimated for any current operating

conditions for proper control action. The indices proposed in this work can fairly

predict the frequency shifts of electromechanical modes as the stress increases.

This observation is very crucial, since the indices can be used for rough on-line

estimation of the system stability and for warning signals of instability in power

system operation.

• Being based on classical power system model and third order approximation of

the exact nonlinear model, the proposed indices have limited range of validity and

hence, cannot give global stability information.

5. Finally, to further reduce Normal Form computations, selective Normal Form applica-

tion is proposed. The method consists in neglecting the interactions associated to—

(1) real eigenvalues and (2) modes with least energies. To determine the modes with

least energies, Hankel singular values are used to determine most controllable and ob-

servable states; then participation factor analysis is used to determine modes which are

related to the most relevant Hankel states. The interactions related to these modes are

considered, while others are not. This selective Normal Form application technique was

used to study nonlinear modal interactions and nonlinear participation factors. From

the results presented in chapter 5, the following observations are made:

• For the tested case, same nonlinear interactions are detected, both for the selective

and full Normal Form application. This observation tend to suggest that real

eigenvalues do not play significant role on nonlinear modal interactions. Also, it
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was found that the same modes involved in nonlinear interaction are the modes

having the high energies based on the Hankel singular values. This observation

tends to suggest that apart from the real eigenvalues, some oscillatory modes are

weak for nonlinear interactions, such that including them contributes to more

computational ”wastage”.

• In addition to the computational reduction due to the new method for computing

nonlinear coefficients, selective Normal Form application introduces another sharp

reduction in computational time. This observation is especially important because

when controls are considered in the generator models, many eigenvalues are real.

Also, many modes are highly damped, allowing them to be neglected. This could

be very useful when considering power electronic grids, where several modes are

real and many oscillatory modes are highly damped.

In this thesis, it has been shown that avoiding higher order differentiation and Hessian eval-

uations can extend third order Normal Form analysis to larger systems, beyond what the

conventional method can handle. It has also been shown that many opportunities for reduc-

ing the intractable computations in Normal Form analysis exist. From all the results in this

work, it can be concluded that, with new computational technique developed, together with

proper developments of the selective Normal Form application ideas proposed in this work, it

will be possible to use Normal Form for studying the future and larger grids when nonlinear

interactions become significant.

6.2 Future Works

Several potentially fruitful experiments were not performed due to many constraints during

this research. From the observations and experience gathered in the course of this research,

many potentially gainful possibilities for future work may be recommended as follows:

1. Since the developed method is non-intrusive, and requires initialisation of the original

nonlinear model with choice initial conditions, it could be a very gainful adventure to try

realising the proposed method with commercial power system software. The method

needs a formulation of sets of linear equations, where every needed parameters are

obtained from the state matrix, after linear analysis. Many standard commercial power

system software such as EUROSTAG® can perform both linear analysis and time-

domain simulation. Thus, it may be possible to use a time-domain simulation software

to obtain the static nonlinear solution of the nonlinear model, which is needed by the

developed method. If realised, such breakthrough will be both beneficial to power
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system operators for detailed modal analysis, and to the researchers having interest

in Normal Form analysis, since Normal Form will then be integrated as a program

package into such software. Furthermore, the integration of the developed method into

a commercial software will give the software a good marketing edge.

2. Although the proposed method has significantly reduced the computational burden of

Normal Form, a particular aspect not directly dealt with is the burden of computing the

initial condition in the Normal Form space. The determination of the initial condition

is time-consuming. A more effective algorithm for solving nonlinear equations could

help to ease this challenge.

3. As noted in the work, the results of the developed method is affected by the amplitude

of the modal deviation. This amplitude was chosen heuristically, even though a range

of values that give good results was established for the test cases used. In order to

promote the method, it will be necessary to define the value of the modal deviation am-

plitude in advance, considering the degree of nonlinearities of the studied system. Such

relationship between the degree of system nonlineaities and the right modal deviation

amplitude should be developed in future.

4. The indices developed for monitoring the frequency shifts of electromechanical modes

are based on the application of Normal Form to power systems represented with second

order differential equations. In that case, there is no complex quantities in the formula-

tions. Since the first-order-equation representation of power system is the standard, it

could be interesting to investigate in future, the extension to power system represented

with first order model, involving complex quantities.

5. Although the selective Normal Form ideas presented in this work give good results, the

test case was very simple. It is recommended in future to investigate the perceived

potentials with larger power systems. If the results are consistent in larger power

systems, the proposal will be very essential for the future grids.

6. Whether computationally reduced or not, Normal Form analysis is not necessary if the

system condition does not show strong nonlinearities. Therefore, indices are needed

based on the system condition, to determine the level of nonlinearities and which order

of Normal Form to be used. This will help to know a priori, if it is gainful embarking

on Normal Form analysis to avoid computational loss. Thus, in future, these indices

should first of all be found, or developed before proceeding with NF analysis.
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7. All the developments in this work have been based on the conventional generator mod-

els. Future grids will be made up of mainly converter-control-based generators. It is

necessary in future to investigate the effectiveness of the developed method, using the

power electronic (PE) converter models. Moreover, the limitation of the method lies in

the fact that the nonlinearities have to be static, which may not be the case for grids

with 100% PE; so tests are needed.

8. The use of Normal Form method to derive a nonlinear control law for power converter

control could also be a very interesting research adventure.
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Appendix A

List of acronyms

AD Automatic differentiation. 34, 35

CCT critical clearing time. 123

CFS critical frequency shift. 130

DAEs differential-algebraic-equations. 20, 29, 40, 57, 65, 93, XXIII

IPI instability proximity index. 132

LMA Linear Modal Analysis. 11–15, 21, 23, 25, 26, 29, 30, XVIII–XXI

MMC Modular Multilevel Converters. 4

NF Normal Form. 6, 12–18, 26, 29, 30, 32, 35–37, 40, 45, 55, 65, XVI, XVIII, XIX, XXI–
XXIII

NF2 Second order Normal Form. 29, 30, 32, 34, 36, 53–55

NF3 Third order Normal Form. 29, 30, 32, 37, 39, 45, 53–55, 66

NLF nonlinear frequency. 117

NLMA Nonlinear Modal Analysis. 12, 26, XVIII

NNM nonlinear normal mode. 15, 16, 18, XXI

PE power electronic. 23, 36

PSS power system stabilzer. 5, 22, 24, 27, 32, 83, 98, 127, XV, XX

SEP stable equilibrium point. 13, 20, 21, 71, 118, 122, XIX

SME synchronic modal equivalencing . 36

SMIB single-machine-infinite-bus. 29, 31, 53, 64, 84, 85, 117, 119–121, 129, 131

SSA small-signal analysis. 7, 8, 11, 82, XVIII

SVC Static VAr Compensator. 3, 4, 28

TDS time-domain simulations. 129

UPFC unified power flow controller. 28
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Appendix B

Glossary

invariance in dynamic system means that a motion initiated along a manifold at time t = 0
remains within the manifold for every t > 0. That is, the ability of a motion to remain
only in the path where it is initiated.. 11, 59, 64, XVIII

nonlinear coefficients After the Taylor series expansion, the resulting approximate system
is put in Jordan form with decoupled linear part and coupled nonlinear parts. The
coefficients of these nonlinear polynomials are referred to, in this thesis, as the Nonlinear
Coefficients.. 14, XXI

resonance Given a system whose eigenvalues are {λk}k=1...N , special combinations of these
eigenvalues that equal another eigenvalue result in resonance. Resonance relation among
the eigenvalues {λk}k=1...N are defined as:

∀s=1...N : λs =
N∑
i=1

miλi, mi ≥ 0,∑
mi = p ≥ 2,

(B.1)

where p is the order of resonance and N is the number of eigenvalues of the system.. 44
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Appendix C

Road Map for R & D of this PhD

The first work in developing this research is to include the developed method as a program
package in a power system commercial software. This leads to inclusion of Normal Form
analysis in an existing software. The algorithm developed in this PhD would interact mutually
with specific modules of the commercial software so that one would not need to build a new
model for NF studies. The integration scheme is depicted in Figure C.1.

Computation/
Initialisation

Module

Load Flow
Module

Model
+ Dummy

_x+ f(x) = PT

Linearisation
Module

Nonlinear Coefficients
Computation

Module

Nonlinear Modal
Analysis
Module

A
;

Λ
;

U

f(
x
)

x
=
U
α

COMMERCIAL SOFTWARE

NF SOFTWARE

| SEP

| Jacobian (A)
| Eigenvalues (Λ)
| Eigenvector (U)

Figure C.1 – Road Map for Integration into Commercial Software
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APPENDIX C. ROAD MAP FOR R & D OF THIS PHD

Desired features for Commercial Software are:

• Ability to linearise implemented model.

• Allows access to states after simulation/initialisation.

• Allows initialisation with user’s choice values.

• Permits definition of dummy parameters.

• Interface with other software like MATLAB®.

EUROSTAG® software seems to be a good candidate.

II



Appendix D

Third Order Normal Form
Derivation

NF main idea consists in simplifying all nonlinear terms that are not very relevant to the
system dynamics in the neighbourhood of an equilibrium point. Consider the power system
models represented generally as

ẋ = f(x). (D.1)

If the nonlinearities can be approximated by third order nonlinearities, then Taylor expansion
of (D.1) yields

ẋ = Ax + F2(x) + F3(x) (D.2)

where x and Fp are column vectors of length N, A is (N × N) constant matrix, and
Fp is homogeneous polynomials of degree p in x. Assume that Fp are smooth vector fields
satisfying Fp(0) = 0 so that x = 0 is a fixed (equilibrium) point.
Let the similarity transformation x = Uy be applied to (D.2) in order to to obtain:

ẏ = Λy + F2(y) + F3(y) (D.3)

The linear part of the system is decoupled but the nonlinear part is yet coupled. The coef-
ficients of F2(y) and F3(y) are respectively gathered in matrices C and D called nonlinear
coefficients in the thesis, such that for simplicity (D.3) can be written as

ẏ = Λy + C(y) + D(y) (D.4)

The idea is to perform sequence of transformation that removes the higher order terms
starting from 2, thereby reducing (D.2) to linear or simplified nonlinear system. Instead of
sequential transformations, it is also possible to just perform a single nonlinear transformation
and the result is the same. The non sequential transformation is given as

y = z + h2(z) + h3(z) (D.5)

Then hp is chosen such that the simplest possible form of the system equation is obtained
(Normal Form) such as:

ż = Λz + g2(z) + g3(z) (D.6)

g2(z) and g3(z) are included to represent respectively second and third order terms which
perhaps, could not be removed so-called resonant terms. The terms g2(z) and g3(z) become
zero when there is no resonance. To be step-wise, let us use sequential transformation in-
stead of a single nonlinear transformation. Focusing first on the quadratic nonlinearities, let
nonlinear transformation be defined as

III



APPENDIX D. THIRD ORDER NORMAL FORM DERIVATION

y = z + h2(z) (D.7)

h2(z) is a quadratic polynomial in z such that the expanded form of (D.7) for jth equation
becomes

yj = zj +
N∑
k=1

N∑
l=1

h2jklzkzl (D.8)

Differentiating (D.7) in time yields:

ẏ = ż(1 + D̄h2(z)). (D.9)

where D̄ is a derivative operator.
Substituting (D.7) and (D.9) in (D.3) yields:

ż(1 + D̄h2(z)) =Λ(z + h2(z)) + F2(z + h2(z)) + F3(z + h2(z)) (D.10)

Assuming very small value of z then (1 + D̄h2(z))−1 can be expanded in Taylor series as:

(1 + D̄h2(z))−1 = 1− D̄h2(z) + (D̄h2(z))2 − (D̄h2(z))3 + ... (D.11)

With (D.11) truncated at third term, (D.10) can be approximated as:

ż = Λz(1− D̄h2(z) + (D̄h2(z))2 + . . . ) + Λh2(z)(1− D̄h2(z) + . . . ) + F2(z)(1− D̄h2(z))
+ . . . D̄F2(z)h2(z) + F3(z)

(D.12)

Note that any multiplications that give rise to terms higher than three have been skipped.
Equation (D.12) can be sorted in ascending order as:

ż = Λz (Order 1)

+Λh2(z)−ΛzD̄h2(z) + F2(z) (Order 2)

−D̄h2(z)(Λh2(z)−ΛzD̄h2(z) + F2(z)) + D̄F2(z)h2(z) + F3(z) (Order 3)

(D.13)

D.1 Removing the Quadratic Terms

To simplify (D.13) the nonlinearities should be removed in sequence. The idea is to determine
the coefficient of h2(z) to remove the nonlinearities and put the equation in a Normal Form
(simple form). Since (D.6) is the targeted Normal Form, it follows that second order terms
of (D.13) should correspond to second order terms of (D.6). Therefore:

g2(z) + ΛzD̄h2(z)−Λh2(z) = F2(z) (D.14)

The operator L(h2(z)) = ΛzD̄h2(z)−Λh2(z) = D̄[h2,Λz] is called the Lie or Poisson
bracket.
To show how h is determined, we consider a two-dimensional system as:[

ẏ1
ẏ2

]
=
[
λ1 0
0 λ2

] [
y1
y2

]
+
[
C1

11y
2
1 + C1

12y1y2 + C1
22y

2
2

C2
11y

2
1 + C2

12y1y2 + C2
22y

2
2

]

+
[
D1

111y
3
31 +D1

112y
2
31y32 +D1

221y
2
32y31 +D1

222y
3
32

D2
111y

3
21 +D2

112y
2
31y32 +D2

221y
2
32y31 +D2

222y
3
32

] (D.15)
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This system has been transformed already to Jordan form. That is, it is expanded form of
(D.4). Noting that transformation is a change of variable, we use equation(D.15) to re-write
equation(D.14) as:[
g1

2
g2

2

]
+

 ∂h1
2

∂z1

∂h1
2

∂z2
∂h2

2
∂z1

∂h2
2

∂z2

[ λ1 0
0 λ2

] [
z1
z2

]
−
[
λ1 0
0 λ2

] [
h1

2
h2

2

]
=
[
C1

11z
2
1 + C1

12z1z2 + C1
22z

2
2

C2
11z

2
1 + C2

12z1z2 + C2
22z

2
2

]
(D.16)

Observe that this time third terms are not included since we are removing the nonlineariies
in sequence. Inspection of the right hand side of equation(D.16) suggests that g2 and h2 be
of the form:

h1
2 = h21

11z
2
1 + h21

12z1z2 + h21
22z

2
2 (D.17)

h2
2 = h22

11z
2
1 + h22

12z1z2 + h22
22z

2
2 (D.18)

g1
2 = g21

11z
2
1 + g21

12z1z2 + g21
22z

2
2 (D.19)

g2
2 = g22

11z
2
1 + g22

12z1z2 + g22
22z

2
2 (D.20)

Equations (D.17—D.20) are then put back into equation(D.16) to obtain:

λ1z1(2h21
11z1 + h21

12z2) + λ2z2(h21
12z1 + 2h21

22z2)− λ1(h21
11z

2
1 + h21

12z1z2 + h21
22z

2
2)

= (C1
11 − g21

11)z2
1 + (C1

12 − g21
12)z1z2 + (C1

22 − g21
22)z2

2
(D.21)

λ1z1(2h22
11z1 + h22

12z2) + λ2z2(h22
12z1 + 2h22

22z2)− λ2(h22
11z

2
1 + h22

12z1z2 + h22
22z

2
2)

= (C2
11 − g22

11)z2
1 + (C2

12 − g22
12)z1z2 + (C2

22 − g22
22)z2

2
(D.22)

Equating the coefficients of z2
1 , z1z2 and z2

2 on both sides of (D.21) and (D.22) one can write
a form of equation as:

λ1 0 0 0 0 0
0 λ2 0 0 0 0
0 0 2λ2 − λ1 0 0 0
0 0 0 2λ1 − λ2 0 0
0 0 0 0 λ1 0
0 0 0 0 0 λ2



h21
11

h21
12

h21
22

h22
11

h22
12

h22
22

=

C1
11 − g21

11
C1

12 − g21
12

C1
22 − g21

22
C2

11 − g22
11

C2
12 − g22

12
C2

22 − g22
22

(D.23)

Which can be written as:

Bh2 = C− g2 =⇒ h2 = B−1[C− g2] (D.24)

or h2 = B−1C if g2 = 0.

h21
11 = C1

11 − g21
11

λ1
, h21

12 = C1
12 − g21

12
λ2

h21
22 = C1

22 − g21
22

2λ2 − λ1
, h22

11 = C2
11 − g22

11
2λ1 − λ2

h22
12 = C2

12 − g22
12

λ1
, h22

22 = C2
22 − g22

22
λ2

More generally, for g2 = 0,

h2jkl = Cjkl
λk + λl − λj

(D.25)

Equation(D.25) satisfies the condition for eliminating the second order terms. Notice what
happened. It means that as long as g2 is zero (no resonance) all values of h2 determined from
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(D.25) will remove all second order nonlinearities in (D.13) when substituted. Then (D.13)
becomes simply

ż = Λz + Terms of order 3 and above. (D.26)

If the higher order terms are neglected, (D.26) is very similar to the linear part of (D.3)
except that (D.26) is in z coordinate. This is the point where second order transformation
ends.

D.2 Removing the Cubic Terms

With quadratic term removed (D.13) becomes:

ż = Λz + D̄F2(z)h2(z) + F3(z) (D.27)

To remove the cubic terms of (D.27), another nonlinear transformation of order 3 is needed.
Therefore:

z = z + h3(z) (D.28)

h3(z) is a cubic polynomial in z such that the expanded form of (D.28) for jth equation
becomes

yj = zj +
N∑
p=1

N∑
q=1

N∑
r=1

h3jpqrzpzqzr. (D.29)

Differentiating (D.28) in time and substituting in (D.27) and neglecting any term higher than
three yields:

ż = Λz(1− D̄h3(z)) + Λh3(z)(1− D̄h3(z)) + D̄F2(z)h2(z) + F3(z) (D.30)

ż = Λz−ΛzD̄h3(z) + Λh3(z) + D̄F2(z)h2(z) + F3(z) (D.31)

If the C and D coefficients are used in place of F2 and F3 as in [(3.37), Chapter 3], then
(D.31) becomes

ż = Λz−ΛzD̄h3(z) + Λh3(z) + D̄C(z)h2(z) +D(z) (D.32)

As in the previous section, if (D.31) has to be in Normal Form, then its cubic term must
correspond to the third term of (D.6). Therefore:

ΛzD̄h3(z)−Λh3(z) = D̄F2(z)h2(z) + F3(z)− g3(z). (D.33)

Re-write (D.33) using (D.15) as: ∂h1
3

∂z1

∂h1
3

∂z2
∂h2

3
∂z1

∂h2
3

∂z2

[ λ1 0
0 λ2

] [
z1

z2

]
−
[
λ1 0
0 λ2

] [
h1

3
h2

3

]
=

[
D̄F2h21

D̄F2h22

]
+
[
D1

111z
3
1 +D1

112z
2
1 z2 +D1

221z
2
2 z1 +D1

222z
3
2

D2
111z

3
21 +D2

112z
2
1 z2 +D2

221z
2
2 z1 +D2

222z
3
2

]
−
[
g1

3
g2

3

] (D.34)

We choose h2, g3 and h3 to be of the form below:

h21 = h21
11z

2
1 + h21

12z1z2 + h21
22z

2
2 (D.35)

h22 = h22
11z

2
1 + h22

12z1z2 + h22
22z

2
2 (D.36)

h1
3 = h31

111z
3
1 + h31

112z
2
1 z2 + h31

221z
2
2 z1 + h31

222z
3
2 (D.37)

h2
3 = h32

111z
3
21 + h32

112z
2
1 z2 + h32

221z
2
2 z1 + h32

222z
3
2 (D.38)

g1
3 = g31

111z
3
1 + g31

112z
2
1 z2 + g31

221z
2
2 z1 + g31

222z
3
2 (D.39)

g2
3 = g32

111z
3
21 + g32

112z
2
1 z2 + g32

221z
2
2 z1 + g32

222z
3
2 (D.40)
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Therefore:

∂h1
3

∂z1
= 3h31

111z
3
1 + 2h31

112z1z2 + h31
221z

2
2 (D.41)

∂h1
3

∂z2
= h31

112z
2
1 + 2h31

112z1z2 + 3h31
222z

2
2 (D.42)

∂h2
3

∂z1
= 3h32

111z
3
1 + 2h32

112z1z2 + h32
221z

2
2 (D.43)

∂h2
3

∂z2
= h32

112z
2
1 + 2h32

112z1z2 + 3h32
222z

2
2 (D.44)

∂F 1
2

∂z1
= 2C1

11z1 + C1
12z2 (D.45)

∂F 1
2

∂z2
= C1

12z1 + 2C1
22z2 (D.46)

∂F 2
2

∂z1
= 2C2

11z1 + C2
12z2 (D.47)

∂F 2
2

∂z2
= C2

12z1 + 2C2
22z2 (D.48)

Handling the left hand side (LHS) of (D.34)

3h31
111z

3
1λ1 + 2h31

112z
2
1 z2λ1 + h31

221z
2
2 z1λ1 + h31

112z
2
1 z2λ2 + 2h31

221z
2
2 z1λ2 + 3h31

222z
3
1λ2

−h31
111z

3
1λ1 − h31

112z
2
1 z2λ1 − h31

221z
2
2 z1λ1 − h31

222z
3
2λ1
(D.49)

3h32
111z

3
1λ1 + 2h32

112z
2
1 z2λ1 + h32

221z
2
2 z1λ1 + h32

112z
2
1 z2λ2 + 2h32

221z
2
2 z1λ2 + 3h32

222z
3
1λ2

−h32
111z

3
1λ2 − h32

112z
2
1 z2λ2 − h32

221z
2
2 z1λ2 − h32

222z
3
2λ2
(D.50)

Collecting like terms, LHS therefore is:

(2h31
111λ1)z3

1 + (h31
112λ1 + h31

112λ2)z2
1 z2 + (2h31

221λ1)z2
2 z1 + (3h31

222λ2 − h31
222λ1)z3

2 (D.51)

(2h32
111λ1)z3

1 + (h32
112λ1 + h31

112λ2)z2
1 z2 + (2h32

221λ2)z2
2 z1 + (3h32

222λ1 − h32
222λ2)z3

2 (D.52)

Handling the Right hand side (RHS) of (D.34)

First we note that the expression D̄F2h2 is element-wise matrix multiplication. That is,
each element of D̄F2 is multiplied by its corresponding element of h2. Thus,

(D̄F2h2)1
111z

3
1 + (D̄F2h2)1

112z
2
1 z2 + (D̄F2h2)1

221z
2
2 z1 + (D̄F2h2)1

222z
3
2 (D.53)

(D̄F2h2)2
111z

3
21 + (D̄F2h2)2

112z
2
1 z2 + (D̄F2h2)2

221z
2
2 z1 + (D̄F2h2)2

222z
3
2 (D.54)

D̄F21 = ∂F 1
2

∂z1
+ ∂F 1

2
∂z2

= 2C1
11z1 + C1

12z2 + C1
12z1 + 2C1

22z2 (D.55)

D̄F22 = ∂F 2
2

∂z1
+ ∂F 2

2
∂z2

= 2C2
11z1 + C2

12z2 + C2
12z1 + 2C2

22z2 (D.56)

We also note that D̄F2 is symmetrical so h12 = h21 and C12 = C21. Therefore, D̄F2h2 can
be expressed as:

(2C1
11h21

11)z3
1 + (C1

12h21
12)z2

1 z2 + (C1
21h21

21)z2
2 z1 + (2C1

22h21
22)z3

2 (D.57)
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(2C2
11h22

11)z − 13 + (C2
12h22

12)z2
1 z2 + (C2

21h22
21)z2

2 z1 + (2C2
22h22

22)z3
2 (D.58)

Collecting like terms in RHS gives:

(2C1
11h21

11 +D1
111 − g31

111)z3
1 + (C1

12h21
12 +D1

112 − g31
112)z2

1 z2

+(C1
21h21

21 +D1
221 − g31

221)z2
2 z1 + (2C1

22h21
22 +D1

222 − g31
222)z3

2

(D.59)

(2C2
11h22

11 +D2
111 − g32

111)z3
1 + (C2

12h22
12 +D2

112 − g32
112)z2

1 z2

+(C2
21h22

21 +D2
221 − g32

221)z2
2 z1 + (2C2

22h22
22 +D2

222 − g32
222)z3

2

(D.60)

Equating the coefficients of like terms in both sides of (D.34)

2h31
111λ1 = 2C1

11h21
11 +D1

111 − g31
111 (D.61)

h31
112λ1 + h31

112λ2 = C1
12h21

12 +D1
112 − g31

112 (D.62)

2h31
221λ1 = C1

21h21
21 +D1

221 − g31
221 (D.63)

3h31
222λ2 − h31

222λ1 = 2C1
22h21

22 +D1
222 − g31

222 (D.64)

2h32
111λ1 = 2C2

11h22
11 +D2

111 − g32
111 (D.65)

h32
112λ1 + h32

112λ2 = C2
12h22

12 +D2
112 − g32

112 (D.66)

2h32
221λ2 = C2

21h22
21 +D2

221 − g32
221 (D.67)

3h32
222λ1 − h32

222λ2 = 2C2
22h22

22 +D2
222 − g32

222 (D.68)

Therefore, (D.61 —D.68) can be written as:

2λ1 0 0 0 0 0 0 0
0 λ1 + λ2 0 0 0 0 0 0
0 0 2λ2 0 0 0 0 0
0 0 0 3λ2 − λ1 0 0 0 0
0 0 0 0 3λ1 − λ2 0 0 0
0 0 0 0 0 2λ1 0 0
0 0 0 0 0 0 λ1 + λ2 0
0 0 0 0 0 0 0 2λ2



h31
111

h31
112

h31
221

h31
222

h32
111

h32
112

h32
221

h32
222

=

2C1
11h21

11 +D1
111 − g31

111
C1

12h21
12 +D1

112 − g31
112

C1
21h21

21 +D1
221 − g31

221
2C1

22h21
22 +D1

222 − g31
222

2C2
11h22

11 +D2
111 − g32

111
C2

12h22
12 +D2

112 − g32
112

C2
21h22

21 +D2
221 − g32

221
2C2

22h22
22 +D2

222 − g32
222

(D.69)

Thus:

h31
111 = 2C1

11h21
11 +D1

111 − g31
111

2λ1
(D.70)

h31
112 = C1

12h21
12 +D1

112 − g31
112

λ1 + λ2
(D.71)

h31
221 = C1

21h21
21 +D1

221 − g31
221

2λ2
(D.72)

h31
222 = 2C1

22h21
22 +D1

222 − g31
222

3λ2 − λ1
(D.73)

h32
111 = 2C2

11h22
11 +D2

111 − g32
111

3λ1 − λ2
(D.74)

h32
112 = C2

12h22
12 +D2

112 − g32
112

2λ1
(D.75)

h32
221 = C2

21h22
21 +D2

221 − g32
221

λ1 + λ2
(D.76)

h32
222 = 2C2

22h22
22 +D2

222 − g32
222

2λ2
(D.77)
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Assuming g3 = 0, then from (D.69) we can write a general expression for h3 as:

h3jpqr =
[Cres +D]jpqr

λp+ λq + λr − λj
(D.78)

∴ ż = Λz (D.79)

Where Cres is a residual term emanating from second order transformation and which corre-
sponds to the coefficient of D̄F2(z)h2(z) while, D is the original third term corresponding
to the coefficient of the term F3(z)

We have finally removed the third order nonlinearities and the monstrous (D.15) has been
put to Normal Form!.
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Appendix E

Data of Studied Power Systems

E.1 Line Data: IEEE 3-Machine Power System

Table E.1 – Line Data

Fr Bus To Bus R (pu) X (pu) Bch(pu) full

1 4 0 0.0576 0
2 7 0 0.0625 0
3 9 0 0.0586 0
4 6 0.017 0.0920 0.1580
4 5 0.01 0.0850 0.1760
6 9 0.039 0.170 0.3580
5 7 0.032 0.1610 0.3060
8 9 0.0119 0.1008 0.2090
7 8 0.0085 0.072 0.149

E.2 Bus Data: IEEE 3-Machine Power System

Table E.2 – A2: Bus Data

Bus Type Volt. Mag. Ang. (deg) Pd Qd Pg Qg Qmin Qmax

1 Slack 1.040 0 0 0 71.9 54.6 -300 300
2 PV 1.025 9.48 0 0 163 30.4 -300 300
3 PV 1.025 4.77 0 0 85 14.2 -300 300
4 PQ 1.010 -2.26 0 0 0 0 0 0
5 PQ 0.972 -4.06 125 50 0 0 0 0
6 PQ 0.989 -3.70 90 30 0 0 0 0
7 PQ 1.011 3.84 0 0 0 0 0 0
8 PQ 0.997 0.78 100 35 0 0 0 0
9 PQ 1.018 2.03 0 0 0 0 0 0
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E.3 Dynamic and Exciter Data

Table E.3 – Dynamic Data: IEEE 3-Machine Power System

Bus Ra Xd X ′d X ′′d Xq X ′q X ′′q T ′do T ′′do T ′qo T ′′qo H D

1 0.089 0.269 0.0608 0 0.0969 0.0969 0 8.96 0 0.31 0 23.64 0.2
2 0.089 0.8958 0.1198 0 0.8645 0.1969 0 6.00 0 0.535 0 6.4 0.2
3 0.089 1.998 0.1813 0 1.2578 0.2500 0 5.89 0 0.600 0 3.01 0.2

Table E.4 – Exciter Data

KA Tr TE T1 T2

20 0.6 0.02 10 2.5
20 0.6 0.02 10 2.5
20 0.6 0.02 10 2.5

E.4 Data for the 39- and 145-Bus Power Systems

The data for the 39-bus power system was extracted form [118]. For the 145-bus power
system, the power flow data was extracted from MATPOWER [128, 129], while the dynamic
data was taken from [130].
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Appendix F

Résumé Étendu en Français

F.1 Introduction Général

Le chapitre 1 de ce manuscrit de thèse renvoie à des introductions générales. En effet, le
contexte et l’énoncé du problème relatif aux travaux de recherches effectuées y sont présentés
d’une part. D’autre part, la principale motivation, aussi bien les objectifs que les principales
contributions de ce travail sont pour leur part, largement mis en lumière (dans ce chapitre)
selon le plan de travail ci-après.

F.1.1 Contexte et Motivation

En ce qui concerne les combustibles fossiles, ils constituent l’un des agents principaux de la
dégradation de l’environnement en raison des émissions dû à leur exploitation. La réduc-
tion des émissions de gaz et donc des combustibles fossiles est une préoccupation mondiale
étant donné leurs retombées néfastes sur l’environnement. Du fait de plusieurs contraintes
économiques, techniques et environnementales, les systèmes électriques actuels fonctionnent
très près de leurs limites et donc, présentent de plus en plus des comportements non linéaires.
Un système contraint est donc un systeme dont les conditions de fonctionnement sont tres
proches de ses limites fonctionnelles, à l’exemple, de la limite de stabilité de sa tension.
Plusieurs autres aspects peuvent induire un système electrique a fonctionnement proche de
ses limites à savoir — (1) un niveau plus élevé de charges du système, (2) un transfert de
puissance important à travers certaines interfaces de transmission, et (3) chargement lourd
de certaines plantes. Un système d’alimentation contraint peut conduire à un comportement
dynamique complexe et donc, un comportement fortement non linéaire pouvant être très
difficile à expliquer.

Suite à l’épuisement des combustibles fossiles, il s’est revelé un important problème de
disponibilité des ressources énergétiques traditionnelles aux profits des énergies renouvelables
(REs) telles que l’énergie solaire thermique, solaire photovoltäıque, éolien et le biogaz [1].
Au fil des années, une utilisation de plus en plus accrue des énergies renouvelables est ob-
servée à des fin d’électricité comparativement aux années antérieures (voir Figure F.1). Les
progrès de la science relatif à la technologie des convertisseurs au moyen de l’électronique
de puissance (PE) ont rendu possible l’intégration des énergies renouvelables dans un réseau
de production électrique. De plus, l’émergence de nouveaux dispositifs PE utilisé dans un
systeme d’alimentation et le nombre croissant de systèmes de production d’energie distribuée
dans les réseaux électriques contribuent à changer la structure du réseau traditionnel.

F.1.2 Défis Actuels et Futurs Potentiels du Reseau

La contrainte du système du fait de l’intégration des REs augmente les non-linéarités du
système et, par conséquent, crée de nouveaux défis pour les systèmes électriques. Elle peut
conduire à des interactions non linéaires des modes d’oscillation du système, ce qui modifie
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Figure F.1 – Ajouts mondiaux annuels de capacité d’énergie renouvelable, par technologie et total,
2012-2018 [4]

le comportement dynamique du système. Mode est le terme technique designant un modèle
d’oscillation particulier (voir l’explication détaillée dans la section F.1.4). Les non-linéarités
du système et les interactions modales sont affectées par les conditions de fonctionnement
du système, la stratégie de contrôle et les paramètres du système de contrôle [5]. Le trans-
port d’une grande quantité d’énergie sur de longues distances est très courantes de nos jours
en raison des connexions inter-zones (par exemple Ecosse-Angleterre) et de la croissance
des sources REs. De plus, la plupart des sources REs viables comme les parcs éoliens sont
généralement loin du centre de charge. Le transport de grande puissance sur de longues dis-
tances entrâıne des oscillations de puissance et des interactions non linéaires dans un système
à haute tension AC (HVAC). Des liaisons HVDC peuvent être utilisées en substitution afin
d’amortir ces oscillations. Les contrôles pour HVDC peuvent conduire à de fortes interac-
tions non linéaires, bien que ces interactions ne soient pas toujours nécessairement négatives.
Une étude antérieure de l’interaction modale non linéaire dans un système HVDC/AC avec
modulation DC a indiqué qu’une interaction modale fortement non linéaire peut résulter des
charges AC et DC très élevés avec des modulations de puissance DC bien réglées [5]. Étant
donné que les REs injectent de l’énergie dans le réseau via des convertisseurs PE, entrâı-
nant un manque d’inertie et un couple de synchronisation dans le réseau, la deconnexion des
générateurs synchrones augmenterait l’effet de non-linéarité [10] affectant ainsi la stabilité de
l’angle du rotor. En plus, les convertisseurs PE pourraient former une capacité virtuelle, qui
pourrait interagir avec le réseau AC pour déclencher une oscillation instable dans un système
relativement faible (c’est-à-dire à haute impédance) [11].

Comme souligné dans [12, 13], en plus de contribuer à la non-linéarité, les REs et les PEs
qui les accompagnent introduisent de nouveaux modes d’oscillation sur le reseau en raison
du déplacement des machines synchrones. Il a été noté dans [12] que ces nouveaux modes
d’oscillation sont très sensibles aux variations des paramètres de contrôle et peuvent rendre
le système plus imprévisible et difficile à surveiller ou à contrôler.

Les manifestations de ces défis abondent dans les systèmes d’alimentation pratiques avec
une intégration RE significative. Par exemple, le 19 février 2011, des oscillations inter-zones
au sein du réseau électrique de l’Europe continentale (CE) se sont produites. Des oscillations
similaires se sont reproduites le 24 février 2011. La fréquence d’oscillation était de 0,25
Hz et a duré 15 minutes (voir Figure F.2). Il n’y avait aucun indice clair sur la cause de
l’oscillation au départ. Les calculs modaux dans [16] ont révélé plus tard que deux modes
se superposaient à 0,25 Hz avec la participation de la Turquie, de l’Espagne/du Portugal et
de l’Italie contre le nord de l’Europe. Les conclusions suivantes ont été tirées dans [16]: (1)
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il y a eu une interaction des modes 0,18 Hz (mode Est-Ouest) et 0,25 Hz (mode Nord-Sud),
(2) la connexion synchrone de la Turquie déplace 0,3 Hz à 0,25 Hz (nouveau mode), (3) les
générateurs RE ont soustrait l’inertie du système en remplaçant les générateurs équipés de
PSS. Par conséquent, le GRT italien a immédiatement renforcé le PSS en Italie.

Figure F.2 – Vue détaillée de la fréquence du système (mesures) pour le 19 février 2011 — Brindisi
(IT) en phase avec Sincan (TR) et Recarei (PT) en face de Portile de Fier (RO) et Kassoe (DK) [[16]

Une autre dangeureuse oscillation de 3 heures et 20 minutes de durée moyenne , s’est
produite dans le système éolien de Hami, Xinjiang, Chine, le 1er juillet 2015 . Plus tard , Il a
été découvert que cette oscillation était causée par l’interaction entre plusieurs convertisseurs
d’éoliennes (WTC) de générateurs synchrones à aimants permanents (PMSG) et le faible
réseau AC [17].

Compte tenu de tous ces changements présents et anticipés dans les systèmes électriques,
il devient nécessaire d’étendre l’analyse d’un système électrique, afin de caractériser correcte-
ment son comportement dynamique et de mieux concevoir ses commandes. Pour ce faire, des
outils plus sophistiqués sont neccessaires afin de faire face à l’évolution. Bien que plusieurs
études soient en cours concernant l’augmentation de la non-linéarité et le comportement très
complexe qui en résulte pour un système électrique, peu d’attention est accordée jusqu’ici aux
interactions non linéaires pouvant révéler beaucoup d’informations cachées dans le système.
Selon l’état du système, l’effet des interactions non linéaires peut lui être tantot négatif ou
positif. Ce constat est d’autant plus perceptible au travers de la littérature scientifique où
les effets positifs et négatifs de l’intégration des RE/PE sont présentés. Par exemple, un
amortissement amélioré des oscillations dans le cas d’une partie croissante du PE interfacé
de génération est rapporté dans [18].

F.1.3 La Nécessité de Développer des Outils dans la Continuité des Exis-
tants

Comme précédemment mentionné, les systèmes contraints présentent un comportement forte-
ment non linéaire et l’intégration RE/PE dans un système électrique contribue en outre à
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cette contrainte. Des outils plus sophistiqués sont alors indispensables pour palier à la com-
plexité du système. Des outils avancés à savoir les méthodes de reconnaissance des formes [19],
les méthodes des systèmes experts (ES) [20], les outils basés sur le contrôle robuste [21] sont
en cours de développement pour l’étude des systèmes complexes. Ces outils sont pas à la
portée d’un point de vue exploitation, d’un ingénieur moyen d’exploitation de système élec-
trique. Dans la plus part des cas, aucun paramètres physiques quantifiables n’est disponibles
permettant à l’ingénieur de prendre des décisions ou des plannings. L’outil le plus répan-
due pour l’étude les oscillations d’un système électrique est l’analyse modale. Des outils
d’analyse modale conventionnels tels que la stabilité des petits signaux sont couramment
utilisés. Cependant, ceq derniers sont linéaires et ne peuvent caractériser avec précision le
comportement d’un système électrique en cas d’intégration en grand nombre de RE/PE. Il
existe donc un besoin de fournir des outils alternatifs avec des fonctionnalités communes aux
ingénieurs et possédant de très larges capacités. La méthode Forme Normale (NF) est une
bonne alternative mais elle est difficile à appliquer aux systèmes avec un grand nombre de
variables.

F.1.4 Modes d’oscillation

Il existe plusieurs modes d’oscillations dans un système interconnecté. Mathématiquement, un
mode (ou un mode propre)/mode naturel est le terme pour une paire valeur propre/vecteur
propre de la partie linéaire d’un système dynamique. Physiquement, un mode peut être
considéré comme un modèle unique dans lequel l’énergie stockée dans le système est dépensée
lorsque le système est perturbé. À titre d’illustration, considérons dans la Figure F.3, deux
masses m1, m2, attachées à trois ressorts k1, k2 et k12. Supposons que les points finaux sont
fixes, ce système a deux modes naturels d’oscillation.

m1 m2

k1 k12 k2

x1 x2

Figure F.3 – Mass-spring system exhibiting two natural modes of oscillation.

Soit les déplacements de la première masse x1(t) et ceux de la seconde masse x2(t). Les
équations de mouvement du système sont données par

mẍ1 = −k1x1−0.3k1x
2
1 − 0.4k1x

3
1 + k12(x2 − x1) (F.1a)

mẍ2 = −k2x2+0.4k1x
2
2 + 0.3k1x

3
2 + k12(x1 − x2), (F.1b)

où des non-linéarités (choisies arbitrairement) dans les ressorts sont intentionnellement ajoutées
pour les démonstrations.

Si l’on suppose que les déplacements sont suffisamment faibles et que l’équilibre du système
est à l’origine, les effets des termes non linéaires (bleu dans (F.1)) peuvent être négligés et
il est possible de calculer les fréquences naturelles, en Hertz, pour des ressorts et des masses
identiques (c.-à-d. k1 = k2 = k12 = k, m1 = m2 = m) comme

f1 = 1
2π

√
k

m
, f2 = 1

2π

√
3k
m
. (F.2)

Ayant supposé un système linéaire, lorsque la masse m1 est déplacée de x1 vers la droite, le
ressort k1 tire la masse vers la gauche avec une force de réaction k1x1, et le ressort k12 pousse
la masse vers la gauche avec une force de réaction k12(x1 − x2). De même, lorsque la masse
m2 est déplacée de x2 vers la gauche, le ressort k2 tire la masse vers la droite avec une force
de réaction k2x2, et le ressort k12 pousse la masse vers la droite avec une force de réaction
k12(x2 − x1). Supposons que k = 5, m = 1, f1 = 0, 36 Hz et f2 = 0, 62 Hz. Ainsi, les deux
modes sont décrits ci-dessous:
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• Mode 1 — les deux masses se déplacent ensemble à la fréquence f1 = 0, 36 Hz, avec
la même amplitude et dans la même direction de sorte que le ressort de connexion (k12)
entre elles n’est pas étiré ni compressé. Ce mouvement est illustré sur la Figure 1.5a et
est obtenu en simulant le système non linéaire (F.1) avec des conditions initiales petites
et égales pour x1, x2. La FFT de la Figure F.4b confirme la fréquence de l’oscillation.

• Mode 2 — les deux masses se déplacent à la fréquence f2 = 0, 62 Hz, avec la même
amplitude mais dans des directions opposées de sorte que le ressort de connexion (k12)
entre elles est alternativement étiré et compressé . Dans ce cas, le centre (noeud) du
ressort de connexion est fixe. Ce mouvement est illustré à la Figure F.4c et est obtenu en
simulant le système non linéaire (F.1) avec des conditions initiales petites, égales mais
opposées pour x1, x2. La FFT de la Figure F.4d confirme la fréquence de l’oscillation.

0 2 4 6 8 10

Time (s)

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

D
is

p
la

c
e
m

e
n

t

m1

m2

(a) Mode 1—0.36 Hz

0 0.5 1 1.5 2

Frequency (Hz)

0

2

4

6

8

A
m

p
li

tu
d

e

(b) Mode 1—FFT spectrum

0 2 4 6 8 10

Time (s)

-0.05

0

0.05

D
is

p
la

c
e
m

e
n

t

m1

m2

(c) Mode 2—0.62 Hz.

0 0.5 1 1.5 2

Frequency (Hz)

2

3

4

5

6

7

8

A
m

p
li

tu
d

e

(d) Mode 2—FFT spectrum.

Figure F.4 – Natural modes of Oscillation of two-mass three-spring system.

Tout autre mouvement des corps de la Figure F.3 n’est pas naturel, mais une combinaison
linéaire des deux modes naturels. Les deux modes décrits ci-dessus ont deux fréquences
distinctes. Ainsi, le mode est souvent utilisé, de façon plus lâche, pour désigner une oscillation
à une fréquence caractéristique.

Avec les modèles plus élaborés, les oscillations majeures dans les systèmes d’alimentation
comprennent: les modes d’oscillation électromécanique, de contrôle et de torsion. Pour les
modes électromécaniques, les variables les plus impliquées sontles angles internes et les vitesses
de rotor des générateurs. De manière générale, les oscillations basse fréquence des réseaux
électriques sont le résultat du couplage électromécanique entre le réseau de transmission et
les générateurs. Les modes de contrôle sont associés au générateur ou aux unités d’excitation
et à d’autres équipements de contrôle, tels que des excitateurs mal réglés, des convertisseurs
HVDC et des compensateurs de var statique. Les modes d’oscillation de torsion sont associés
au système de rotation de l’arbre du turbogénérateur. Le défi majeur du système électrique
est les oscillations électromécaniques à basse fréquence qui peuvent être soit locale soit inter-
zone. Lorsqu’une machine ou un groupe de machines qui ont de forts liens électriques dans
une zone oscille et que leurs oscillations dominent dans la zone où elles se trouvent, on parle
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d’oscillation locale. Le mode inter-zone implique des machines dans une zone se balançant
contre des machines dans d’autres zones. Il a généralement une fréquence propre inférieure
dans la plage de 0,1 - 0,8 Hz [25]. Cependant, avec plusieurs générateurs à commande par
convertisseur (CCBG) dans le réseau, les caractéristiques ci-dessus peuvent ne pas toujours
être de véritables signatures de modes électromécaniques. Cela est dû au fait que les CCBG
conduisent à de nouveaux modes d’oscillation bas semblables aux modes électromécaniques
d’oscillation inter-zones [12]. Ce phénomène pose un problème pour identifier clairement les
modes électromécaniques réels. De nouvelles méthodes sont en cours de développement pour
résoudre ce problème [26]. L’analyse des grands systèmes doit nécessairement se concentrer
sur les modes critiques d’importance, généralement les modes inter-zones.

L’étude du comportement de ces modes est connue sous le nom d’analyse modale. L’outil
le plus courant pour l’analyse modale est l’analyse de stabilité du petit signal (SSA) qui
fournit de nombreuses informations concernant ces oscillations. Comme SSA n’explique que
le comportement linéaire, il est plus précisément appelé analyse modale linéaire (LMA).

F.1.5 Interactions Modales et Modes Non Linéaires

Lorsque le système électrique est contraint, la dynamique n’est pas complètement décrite
par les modes naturels. En plus des modes naturels, la dynamique peut être affectée par cer-
taines combinaisons d’ordre supérieur des modes naturels. L’effet de ces combinaisons d’ordre
supérieur est appelé interaction modale non linéaire. L’interaction modale non linéaire donne
naissance à ”d’autres modes”, qui peuvent affecter de manière significative, la dynamique du
système. Le concept de mode non linéaire permet de comprendre et d’interpréter correcte-
ment le phénomène — interaction modale non linéaire, car il aide à expliquer les ”autres
modes”, avec le spectre propre. Le mode non linéaire est utilisé pour décrire l’extension d’un
mode linéaire au régime non linéaire. Il s’agit donc d’une extension de la propriété invariance
d’un mode linéaire au régime non linéaire. Physiquement, c’est le rendu de couplages modaux
non linéaires, d’une manière qui, si un mouvement particulier n’est initié que sur un mode
particulier; aucune énergie n’est donnée aux autres, de sorte que le mouvement ne reste que
sur ce mode. L’interaction modale est essentielle et peut soit stabiliser, soit déstabiliser le
système.

Lorsque l’interaction modale non linéaire se produit, la dynamique devient difficile à
expliquer avec LMA. L’analyse modale qui prend en compte les interactions non linéaires des
modes est connue sous le nom de NLMA.

Une illustration simple des interactions modales non linéaires peut être montrée en simu-
lant le système (F.1) avec des conditions initiales plus élevées (c’est-à-dire des déplacements
plus importants de x1, x2). L’effet des non-linéarités ne sera plus négligeable et l’oscillation
sera composée des combinaisons linéaires (naturelles) et significatives des modes linéaires.
Ceci est illustré dans la figure F.5. Il ressort clairement de la figure F.5a que le mode
1 est dominant. Au moins, la réponse ressemble à celle de la figure F.4a. Cependant, la
conclusion que le mode linéaire est suffisant pour comprendre le comportement de ce système
peut être trompeuse. La FFT de la figure F.5b révèle clairement la présence significative
d’autres fréquences, dans ce cas, en raison de distorsions non linéaires des modes naturels.
Par exemple, les deux modes linéaires sont identifiés (0,36 Hz et 0,62 Hz), le mode 2
ayant un pic plus petit. Observez qu’il existe une fréquence de 0,72 Hz (c’est-à-dire 0,36
+0, 36 = 2 × mode1), dont l’amplitude est élevée. Il existe également une fréquence de
1,08 Hz (c’est-à-dire 0,36 +0, 36 + 0, 36 = 3 × mode 1), bien qu’avec un pic plus petit.
D’une certaine manière, on peut vaguement dire qu’il existe de ”nouveaux modes” dans la
dynamique autres que les modes linéaires. Un terme commun habituellement utilisé pour
décrire ces nouvelles fréquences est harmoniques non linéaires, car ce sont des multiples des
modes fondamentaux. Cependant, comme nous le verrons dans les chapitres suivants, ces
nouvelles fréquences ne sont pas nécessairement des multiples d’un mode fondamental mais
peuvent provenir de combinaisons de modes différents. NF fournit un moyen analytique
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Figure F.5 – Example of modal interactions

d’expliquer clairement les sources de ces fréquences. Lorsqu’un système électrique est stressé,
ce phénomène est présent. Par conséquent, d’autres informations sont nécessaires en plus de
l’analyse linéaire pour bien comprendre le comportement.

Il existe essentiellement deux approches pour détecter les interactions modales non linéaires
dans un système — méthodes basées sur la simulation dans le domaine temporel et méthodes
de résolution sous forme fermée. La deuxième méthode étend le LMA pour obtenir une so-
lution de forme fermée du modèle approximatif non linéaire du système. Ensuite, il permet
certaines définitions qui détectent exactement les modes d’interaction et la nouvelle fréquence.
L’outil le plus courant dans la deuxième catégorie est l’outil NF. La méthode NF a l’avantage
de détecter non seulement l’interaction non linéaire, mais aussi de rendre le système de telle
sorte que les techniques pratiques de LMA peuvent toujours être utilisées pour décrire le
système. En d’autres termes, il fournit un bon moyen d’expliquer le concept de modes non
linéaires. Cependant, il a de très sérieux défis informatiques. Les deux approches peuvent
être utilisées de manière complémentaire. Ainsi, la simulation dans le domaine temporel peut
être utilisée pour vérifier les solutions de la méthode NF.

F.1.6 Méthode de Forme Normale

La Forme Normale telle qu’elle est utilisée dans ce travail est une technique mathématique qui
simplifie un ensemble d’équations différentielles non linéaires en une équation simplifiée, qui
peut être linéaire dans certains cas particuliers. La simplification est obtenue en introduisant
des transformations de coordonnées non linéaires séquentielles. Les équations résultantes sont
alors dans leur forme la plus simple (forme normale) [27–30]. Cette définition de Forme
Normale est souvent désignée avec précision, comme Poincar é Forme Normale, d’après le
travail de Poincar é [27]. Elle est basée sur l’expansion en série d’un système d’équations
différentielles non linéaires. La technique NF elle-même est très ancienne mais son application
de système d’alimentation à l’analyse modale non linéaire est assez à la mode. Au cours des
deux dernières décennies, des chercheurs de l’université d’État de l’Iowa ont publié plusieurs
publications et ont souligné la nécessité d’étudier l’analyse modale d’ordre supérieur avec la
forme normale.

L’approche NF consiste à obtenir une expansion en série de Taylor d’ordre supérieur des
équations non linéaires autour d’un SEP. La partie linéaire de l’expansion de la série est
analysée pour extraire le contenu modal. Avec les paramètres modaux de la partie linéaire,
il est possible de définir des changements de coordonnées de variables qui simplifient les
parties non linéaires. L’ordre supérieur NF représente des non-linéarités suffisantes et, par
conséquent, sera approprié pour étudier les développements dans le réseau actuel, et même
à l’avenir. Cela a été démontré sur un réseau avec une forte pénétration de RE / PE dans
[10].
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L’idée de base de NF est illustrée par la figure F.6. Notez que les opérations du bloc 1
et du bloc 2 sont les mêmes opérations effectuées pour le modèle linéaire. La seule différence
est que l’expansion est étendue aux commandes plus élevées. Bien que la transformation
de Jordan en cas linéaire dissocie totalement le système, elle ne dissocie pas les parties non
linéaires pour le modèle d’ordre supérieur. La tâche de NF est d’utiliser le bloc 3 pour
supprimer ces couplages non linéaires et obtenir un système simple (au mieux un système
linéaire).
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Figure F.6 – Representation of the Basic idea of Normal Form Method

Bien que le système simplifié ż = Λz ressemble à un système linéaire, la solution est
différente. La différence réside dans le changement de variables qui est linéaire dans LMA et
non linéaire dans NF. Ainsi, la ”magie” de NF est l’inclusion d’informations non linéaires dans
un système dynamique linéaire. Le système simplifié qui en résulte présente de nombreux
avantages et permet l’extension de nombreuses techniques linéaires. Par exemple, (1) il
fournit des informations sur les interactions non linéaires des modes, ce qui aide à concevoir
de meilleurs contrôles pour les systèmes électriques; (2) des facteurs de participation en mode
non linéaire peuvent être définis pour un meilleur emplacement de PSS; (3) l’interaction
modale donne également un aperçu de la stabilité du système non linéaire; (4) l’interaction
non linéaire permet d’expliquer les sources de fréquences inconnues apparaissant dans les
réponses temporelles.

Défis avec la Méthode de Forme Normale

La difficulté majeure de la NF se rencontre dans:

• Construire le modèle approximatif et calculer ses nombreux coefficients non linéaires.
C’est-à-dire le calcul des matrices hessiennes dans le bloc 1 et les coefficients non linéaires
(qui forment également des matrices hessiennes) dans le bloc 2 (voir Figure F.6).

• Recherche de la condition initiale dans l’espace NF à partir des valeurs initiales dans
l’espace physique. C’est-à-dire la condition initiale nécessaire dans le bloc 4 pour ”dé-
placer” le système NF vers l’espace physique.

Ce dernier implique la résolution d’un problème d’optimisation non linéaire, qui peut être
difficile à converger, ou même converger vers une mauvaise solution. Le premier découle
des nombreux coefficients nécessaires à l’analyse, qui doivent être calculés. Ces coefficients
augmentent de façon exponentielle avec la taille du système.
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F.1.7 Objectif et portée de la recherche

L’implication de tous les changements en cours dans les réseaux actuels est que les outils
LMA conçus pour son analyse commencent à échouer. Pourtant, les fonctionnalités des
outils LMA sont si attrayantes qu’il sera difficile de les perdre. Parmi les alternatives non
linéaires, la méthode NF a reçu le plus grand intérêt de recherche jusqu’à nos jours. L’outil
NF a cependant un revers majeur qui limite son application dans le système d’alimentation.
C’est très coûteux en calcul. L’approche traditionnelle nécessite l’évaluation préliminaire des
matrices de Hesse et l’expansion des valeurs propres, qui sont impraticables avec les méthodes
standard lorsque l’on considère les systèmes à grande échelle. Le processus d’expansion des
valeurs propres est très difficile et doit être accéléré. Afin d’améliorer ce problème global du
système électrique et de rendre possible l’analyse modale non linéaire du futur réseau, cette
thèse traite principalement d’un problème:

• La réduction drastique des calculs nécessaires pour appliquer la méthode
NF aux systèmes d’alimentation avec grand nombre de variables (ce qu’on
appelle les grands systèmes).

L’idée mâıtresse du travail est donc la simplification du processus d’application NF dans le
système d’alimentation. Une nouvelle méthode pour évaluer rapidement tous les coefficients
polynomiaux (appelés nonlinear coefficients dans ce travail) nécessaires à l’application NF est
proposée. On suppose que le calcul de toutes les valeurs propres est possible et que le réseau
du système électrique est déjà réduit si nécessaire. La méthode proposée a été appliquée
à quatre systèmes différents: les systèmes IEEE 3-, IEEE 10-, IEEE 16- et IEEE 50. Les
applications connues de NF telles que l’analyse des facteurs de participation, la stabilité et
les prédictions de décalage de fréquence non linéaire sont passées en revue et mises en œuvre
avec un calcul considérablement réduit.

F.1.8 Contributions de cette Thèse

En réponse au problème de la recherche, cette thèse a apporté les contributions suivantes:

1. À la connaissance de l’auteur, cette thèse est la première application de NF à l’étude
des réseaux électriques sans l’expansion préliminaire habituelle de la série Taylor. Cette
thèse propose une méthode rapide pour obtenir le coefficient non linéaire nécessaire pour
le modèle NF sans expansion de Taylor et le calcul des matrices de Hesse associées. En
évitant la construction de Hessois, l’analyse NF devient rapide.

2. En termes d’application NF au modèle de système d’alimentation du second ordre,
cette thèse présente le plus grand cas de test jamais réalisé, compte tenu des non-
linéarités du troisième ordre. L’application de NF à un modèle de système d’alimentation
de second ordre sans variables complexes, utilisant NNM est un nouveau concept mal
exploité. À la connaissance de l’auteur, le plus grand cas de test signalé d’une telle ap-
plication n’implique que quatre générateurs. La technique développée dans cette thèse
permet d’étendre la capacité des propositions précédentes à l’étude de plus de cinquante
machines en un temps de calcul commode.

3. Cette thèse présente un nouvel outil réduit en termes de calcul pour surveiller l’instabilité
du mode électromécanique dans un système d’alimentation interconnecté. La méthode
proposée a un potentiel d’application en ligne et peut être utilisée par les gestionnaires
de réseau électrique pour faire une estimation rapide et approximative de la proximité
des modes à l’instabilité.

4. La nouvelle approche de l’analyse NF proposée dans cette thèse ouvre la voie à une
application sélective NF dans les réseaux électriques. Par exemple, cette thèse propose
une technique NF rapide pour l’étude des interactions modales du système électrique,
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qui utilise les caractéristiques des modes du système pour sélectionner soigneusement
les termes pertinents à considérer dans l’analyse. Cela conduit à une analyse modale
non linéaire très rapide.

5. À la connaissance de l’auteur, il n’existe pas de logiciel dédié pour l’application NF en
raison de sa complexité de calcul. La méthode proposée permet de réutiliser uniquement
les informations de l’analyse linéaire, pour évaluer les coefficients de tous les termes non
linéaires, de manière linéaire et simple et conviviale. Ainsi, la mise en œuvre de NF
avec un logiciel commercial de système d’alimentation comme EUROSTAG ®, qui a
déjà des outils d’analyse linéaire et transitoire intégrés, est réalisable.

6. Bien que certaines contraintes empêchent l’expérimentation et la validation, cette thèse
pose plusieurs problèmes de recherche aux futurs chercheurs. Par exemple, les critères
proposés pour les applications sélectives NF peuvent être étudiés pour un réseau 100%
PE. De plus, une réduction de calcul supplémentaire utilisant une technique de réali-
sation équilibrée a été suggérée. Cela pourrait être bien exploré pour les très grands
systèmes.

Certaines des principales contributions de cette thèse sont validées par les articles suivants
qui en sont issus:

• N. S. Ugwuanyi, X. Kestelyn, O. Thomas, B. Marinescu and A.R. Messina, “A New
Fast Track to Nonlinear Modal Analysis of Power System Using Normal Form,” IEEE
Trans. Power Syst., 2020.

• N. S. Ugwuanyi, X. Kestelyn, B. Marinescu and O. Thomas,“Power System Nonlinear
Modal Analysis using Computationally Reduced Normal Form Method,”Energies, vol.
13, no. 5, p. 1249, 2020.

• N. S. Ugwuanyi, X. Kestelyn, O. Thomas, and B. Marinescu, “A Novel Method for
Accelerating the Analysis of Nonlinear Behaviour of Power Grids using Normal Form
Technique,” in Innovative Smart Grid Technologies Europe (ISGT Europe), 2019.

• N. S. Ugwuanyi, X. Kestelyn, O. Thomas, and B. Marinescu, “Selective Nonlinear
Coefficients Computation for Modal Analysis of The Emerging Grid,” in Conférence des
Jeunes chercheurs en Génie Eléctrique, 2019.

• N. S. Ugwuanyi, X. Kestelyn, B. Marinescu, and O. Thomas, “Speedy Technique for
Selective Nonlinear Analysis of Electromechanical Modes of Future Grids,” European
Journal of Electrical Engineering: UNDER REVIEW.

F.2 Plan de la Thèse

La thèse est divisée en 6 chapitres, et les cinq chapitres restants sont décrits comme suit.

F.2.1 Chapitre 2 — Les Revues Littéraires

Ce chapitre est dédié à la revue des applications NF dans les réseaux électriques. Le but des
revues est de faire ressortir la pertinence de la forme normale comme outil dans les systèmes
électriques; ses défis et les propositions existantes pour atténuer ces défis. La position de la
thèse au niveau mondial est alors établie.

L’analyse linéaire est un outil puissant dans le domaine de l’ingénierie. Il révèle rapidement
les caractéristiques du système avec des concepts bien connus comme les valeurs propres et les
vecteurs propres. En conséquence, il a été utilisé dans divers aspects de l’ingénierie et des sys-
tèmes d’alimentation pour les conceptions de commande. Comme il offre principalement des
informations monomode, il ne parvient pas à caractériser correctement le comportement du
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système sous contrainte, car les interactions modales deviennent importantes. Pour améliorer
les outils linéaires, des termes d’ordre supérieur sont inclus dans l’analyse. Cette inclusion
révèle de nombreuses autres caractéristiques du système impossibles avec l’analyse linéaire.
L’analyse du modèle résultant est rendue possible en utilisant des outils comme la méthode
de forme normale. L’outil glspl NF a été largement utilisé dans divers aspects de l’analyse
et du contrôle des systèmes électriques. Bien que puissant, NF est difficile à réaliser dans les
grands systèmes en raison de sa complexité de calcul. Les grands systèmes d’alimentation
peuvent d’abord être réduits avant d’appliquer l’analyse NF. Il existe différentes techniques
de réduction de modèles, mais la méthode actuelle d’analyse NF est encore très difficile à
suivre, même lorsque le réseau est bien réduit.

F.2.2 Chaptre 3 — Résumé des Étapes pour Appliquer NF dans le Système
d’Alimentation

L’analyse de la forme normale peut être appliquée aux modèles classiques du système
d’alimentation ainsi qu’au modèle détaillé. Un modèle classique peut être écrit soit comme
un ensemble d’équations différentielles du premier ordre, soit comme un ensemble d’équations
différentielles du second ordre. L’application de NF au modèle du second ordre est plus précise
que celle du premier ordre [115], cependant, en tenant compte des contrôles d’excitation, les
systèmes d’alimentation sont généralement représentés avec des modèles du premier ordre. Le
modèle détaillé adopté dans ce travail est le modèle à deux axes. Le système d’alimentation
DAEs est formulé sous forme d’équations différentielles uniquement adaptées à NF. Les étapes
de base de l’application de NF aux réseaux électriques peuvent être résumées par la figure F.7
et décrites ci-dessous:

1: Perform

4:Nonlinear
Transform

5:
Normal Form
Simulation

6: Inverse
Transform

Taylor
ExpansionPower Flow

Figure F.7 – Principales étapes de l’application NF aux réseaux électriques.

1. Formuler les DAE du système: Les solutions de flux de puissance sont obtenues et le
point d’équilibre stable (SEP) pour le système post-défaut est déterminé.

2. Expansion de Taylor: Les équations algébriques sont remplacées par les équations dif-
férentielles et les équations différentielles résultantes sont développées par la série de
Taylor jusqu’à l’ordre souhaité autour du SEP. L’extension Taylor peut également être
effectuée sur des DAE de système d’alimentation préservant la structure [65].

Le jacobien du système (c’est-à-dire le terme de premier ordre dans l’expansion de
Taylor) est utilisé pour extraire les valeurs propres et les vecteurs du système.

3. Expansion modale: Le système de l’étape 2 est développé sur la base des vecteurs propres
obtenus à l’étape 2 et un nouveau système dynamique avec la partie linéaire de Jordan
est obtenu, avec des termes non linéaires qui coupler les équations. Les coefficients des
termes non linéaires, appeléscoefficients non linéaires, doivent être calculés.

4. Transformation de forme normale: La partie non linéaire est encore simplifiée en appli-
quant la technique de forme normale, basée sur le changement non linéaire successif de
variables. Cette étape conduit à l’évaluation d’autres coefficients polynomiaux, appelés
coefficients NF.
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5. Conditions initiales et simulation NF: Pour les simulations transitoires, les conditions
initiales du système NF sont déterminées, généralement par combinaison de la méthode
de Newton-Raphson et des techniques d’optimisation. Le système est ensuite simulé en
coordonnées NF.

6. NF inverse et transformation modale: La dynamique d’origine peut être reconstruite
en utilisant le changement de coordonnées des étapes 4 et 3.

Pour les applications de système d’alimentation, l’étape 6 est souvent utilisée uniquement
comme vérification de la méthode. Pendant ce temps, la plupart des analyses sont basées
sur l’analyse des informations dans les étapes 3 —4 et la condition initiale de l’étape 5.
L’évaluation des coefficients NF à l’étape 4 revient finalement à une simple division des
coefficients non linéaires (calculée à l’étape 3) par différentes combinaisons des valeurs propres
linéaires (calculées à l’étape 2). Par conséquent, la principale charge de calcul se situe aux
étapes 2 à step 3 et à l’évaluation de la condition initiale à l’étape 5. Comme on le verra, la
méthode promue dans ce travail vise à simplifier considérablement les étapes 2 à 3.

F.2.3 Chapitre 4 — Méthode Développée pour Faciliter les Applications
de Forme Normale

Dans cette thèse, nous proposons une méthode qui évite toutes les matrices de Hesse et
obtient simultanément les coefficients non linéaires. La méthode proposée est motivée par
une technique introduite dans le domaine du génie mécanique [116], et largement appliquée
depuis, pour calculer les coefficients des modèles modaux non linéaires d’ordre réduit des
structures mécaniques discrétisées par une méthode des éléments finis [113, 117]. L’effort dans
la section suivante est d’exploiter les similitudes entre les systèmes mécaniques et électriques
du second ordre, afin d’adapter cette technique pour les études de réseaux électriques.

Motivation: Pour une meilleure compréhension de la méthode proposée, considérons un
exemple de motivation simple. La figure F.8 montre une masse reliée à un corps rigide par un
ressort de raideur K. La masse repose sur certains rouleaux, de sorte qu’elle peut se déplacer.
Supposons qu’une force externe Fext provoque le mouvement de la masse, ce qui entrâıne à

Fext

x

m

Figure F.8 – Un système masse-ressort

son tour le ressort à s’étendre sur une distance x. Le comportement non linéaire du ressort
peut être modélisé comme:

mẍ+ f(x) = Fext. (F.3)

Le système (F.3) peut être approximé avec des non-linéarités jusqu’au troisième ordre comme

mẍ+Kx+ βx2 + γx3 = Fext, (F.4)

où β, γ sont des coefficients inconnus. Essayons de résoudre les coefficients inconnus en
prenant la partie rigidité (c’est-à-dire en supposant une condition stationnaire) de (F.4).
Mais comme il contient deux inconnues dans une equation, la résolution de β, γ est mathé-
matiquement difficile; nécessitant peut-être, des itérations. On suppose que nous connaissons
la plage de x pour laquelle l’approximation (F.4) est valide et nous pouvons toujours calculer
f(x); alors il est possible de résoudre (F.4) linéairement pour obtenir les coefficients inconnus.
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Choisissons deux valeurs arbitraires de x, d’amplitude égale mais de signe opposé (c’est-à-dire
±x ≡ x, −x) dans la plage de valeurs de x. Ensuite, il est possible d’obtenir deux equations
différentes, une pour chaque valeur de x as

Kx± + βx2± + γx3± = F±ext =⇒
{
Kx+ + βx2+ + γx3+ = F+

ext

Kx− + βx2− + γx3− = F−ext,
(F.5)

où les exposants positifs et négatifs sont utilisés pour faire référence à l’equation relative à
x et −x respectivement. Ainsi, F+

ext et F−ext correspondent respectivement à f(x) et f(−x)
dans la partie statique de (F.3) . La forme plus compacte ± sera désormais utilisée là où le
sens n’est pas déroutant.

Le système d’equations (F.5) est linéaire et totalement défini et peut ensuite être résolu
pour trouver les coefficients inconnus β et γ. L’opération ci-dessus est exactement l’idée
proposée dans ce travail, sauf que la méthode proposée traite du champ vectoriel au lieu de
l’equation scalaire comme (F.4).

Résumé du chaptire: Dans ce chapitre, une méthode est proposée pour accélérer le calcul
de la NF dans les réseaux électriques. La méthode proposée est une extension d’une technique
précédemment utilisée en analyse structurale. Contrairement à la méthode conventionnelle,
elle évite l’expansion de Taylor qui réduit le temps et la mémoire dans les calculs de forme
normale. La méthode proposée a été développée pour tenir compte des systèmes différentiels
réels et complexes. En d’autres termes, les modèles de premier et de second ordre des systèmes
électriques ont été pris en compte. Par rapport à la méthode symbolique, la méthode proposée
s’avère économiser de manière significative, le temps de calcul et la mémoire.

La méthode est intéressante, dans la mesure où les coefficients du deuxième et du troisième
ordre nécessaires pour le modèle NF sont évalués simultanément de manière linéaire et tout
coefficient préféré peut être calculé de manière sélective. De nombreuses analyses modales
non linéaires, telles que les interactions non linéaires, les évaluations de stabilité et les facteurs
de participation non linéaires se concentrent généralement sur les modes basse fréquence au
lieu de tous les modes. Cela rend la méthode proposée très utile pour des évaluations non
linéaires rapides. De plus, comme la méthode ne s’appuie que sur les mêmes paramètres que
ceux utilisés pour l’analyse linéaire, elle peut facilement être intégrée dans un logiciel d’analyse
modale commercial. De plus, les écarts modaux décrits par notre méthode correspondent à
l’initialisation d’un système non linéaire avec la condition choisie et à l’étude de sa solution
en régime permanent. Par conséquent, l’utilisation du même logiciel pour l’analyse linéaire
pour atteindre la NF devrait être réalisable.

Ce chapitre a principalement porté sur la réduction des calculs de la méthode NF dans le
système électrique. Dans le chapitre suivant, l’application de la méthode NF dans les réseaux
électriques sera abordée. La méthode développée dans ce chapitre sera utilisée.

F.2.4 Chapitre 5 — Applications de Forme Normale dans les Systèmes
d’Alimentation

Dans ce chapitre, certaines applications de l’analyse de forme normale ont été explorées. Des
tests ont été effectués sur des systèmes d’alimentation petits et grands. La méthode à calcul
réduit développée dans le chapitre précédent a été utilisée tout au long du présent chapitre.

Premièrement, des propositions de réduction supplémentaire du calcul de la forme nor-
male, en se concentrant uniquement sur certains termes sélectionnés, sont faites. Deux propo-
sitions ont été faites — une qui consiste à négliger les interactions associées aux valeurs propres
réelles dans la construction du modèle NF et l’autre qui consiste à négliger les interactions
associées aux modes avec le moins d’énergie. Ces traitements réduisent considérablement la
charge de calcul et accélèrent l’étude de l’interaction modale. L’extension de l’analyse linéaire
aux facteurs de participation non linéaires résultant des interactions modales est également
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présentée. Les applications pratiques des interactions modales et les préoccupations possibles
ont également été discutées.

Deuxièmement, des exemples didactiques ont été utilisés pour expliquer le phénomène des
décalages de fréquence non linéaires lorsque les systèmes électriques subissent des perturba-
tions. Il a été démontré que pendant la perturbation (ou l’augmentation de la contrainte du
système), la fréquence d’un mode d’oscillation dépend de l’amplitude d’oscillation et peut
diminuer, contrairement à l’hypothèse de l’analyse modale linéaire. Il a été montré que la
réduction de la fréquence d’un mode d’oscillation est liée à l’instabilité du mode.

Troisièmement, une méthode basée sur la forme normale est proposée, qui permet de
surveiller un mode d’oscillation et de détecter sa fréquence en cas de perturbation. Cette
nouvelle fréquence due aux perturbations est appelée fréquence non linéaire. Les cas de test
ont montré que la méthode proposée capture la fréquence non linéaire de l’oscillation sous
perturbation avec une erreur minimale. Les applications pratiques de la méthode d’évaluation
dynamique en ligne des réseaux électriques ont été discutées.

Enfin, une méthode de surveillance de l’instabilité du mode a été proposée sur la base de la
fréquence non linéaire, ayant établi une relation entre la fréquence non linéaire et l’instabilité
du mode. La méthode de surveillance de l’instabilité consiste à rechercher une fréquence
critique non linéaire au-delà de laquelle le mode perd de sa stabilité, appelé décalage de
fréquence critique (CFS). Le CFS de tous les modes étant déterminé, un indice de proximité
d’instabilité (IPI) a été proposé qui surveille la proximité du point de fonctionnement à
l’instabilité. La comparaison de la méthode proposée et des simulations dans le domaine
temporel pour les cas testés a montré que l’erreur de la méthode proposée était juste. Le
potentiel de la méthode proposée pour les applications en ligne et les signes avant-coureurs
de l’instabilité du mode ont été discutés.

Dans le prochain chapitre, nous relierons tous les développements du premier chapitre au
présent chapitre afin de tirer quelques conclusions.

F.3 Conclusions et Travaux Futurs

F.3.1 Conclusions

La théorie, l’analyse, les résultats, et les observations présentées dans cette thèse peuvent
être résumées comme suit:

1. La méthode et les théories conventionnelles de la forme normale ont d’abord été rap-
pelées. Dans l’application de la forme normale du troisième ordre dans le système
électrique, tout d’abord, le modèle non linéaire est étendu par la série Taylor jusqu’au
troisième ordre et les matrices de Hesse sont évaluées pour le point de fonctionnement
donné. Le modèle approximatif résultant est transformé en forme de Jordan, en util-
isant le vecteur propre/valeurs propres calculé à partir de la partie de premier ordre
de l’expansion de Taylor. Les coefficients du modèle de Jordan, appelés dans cette
thèse coefficients non linéaires, sont déterminés. Enfin, un changement de variable non
linéaire est défini pour supprimer les termes non linéaires du modèle de Jordan, qui
mettent le modèle approximatif non linéaire résultant sous une forme normale. Sur la
base de ce modèle, des indices analytiques peuvent être définis pour comprendre l’effet
des interactions non linéaires lorsque le système est stressé.

2. Dans le cas de la méthode développée, l’analyse linéaire est d’abord effectuée pour ex-
traire les valeurs propres/vecteurs propres. Ensuite, le système non linéaire d’origine
est perturbé de telle sorte que certains modes ou combinaisons de modes souhaités sont
excités à l’aide de vecteurs propres à l’échelle. Le facteur d’échelle est l’amplitude de
la perturbation modale, et est choisi de telle sorte que les non-linéarités anticipées dues
à la perturbation se trouvent dans l’approximation de Taylor du troisième ordre. La
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solution statique du système non linéaire due à la perturbation est obtenue. Différentes
excitations permettent de formuler un système d’équations linéaire dont les coefficients
correspondent aux coefficients non linéaires souhaités et dont le deuxième membre corre-
spond à la solution statique du système non linéaire. De cette façon, tous les coefficients
souhaités peuvent être calculés sans l’expansion de Taylor et le calcul réels des matrices
de Hesse. La méthode développée a été appliquée aux systèmes de puissance représentés
avec des équations différentielles de second ordre, où toutes les quantités sont à valeur
réelle, ainsi qu’aux systèmes de puissance représentés avec des équations différentielles
de premier ordre, où les quantités calculées sont à valeur complexe.

3. Les calculs avec la méthode développée sont comparés aux calculs utilisant la bôıte à
outils symbolique. Les simulations dans le domaine temporel des modèles construits à
partir des deux calculs sont également comparées. A partir des résultats présentés au
chapitre 4, les observations suivantes sont faites:

• La méthode proposée est très précise, enregistrant une erreur de 1, 83e−3 % comme
l’erreur la plus élevée dans tous les cas testés, et les simulations des méthodes
proposées et symboliques dans des conditions de stress sévères correspondent.

• Les calculs avec la méthode proposée sont très rapides et économiques en mé-
moire, comparés à la méthode symbolique. Les résultats ont montré qu’avec
l’augmentation du nombre de variables dans le système, la méthode proposée
devient incomparable avec la méthode symbolique. Pour des cas comparés, la
méthode proposée peut être 776 fois plus rapide et 1, 52e3 fois moins coûteuse
(en termes de mémoire) que la méthode symbolique. Cette économie de calcul
est d’abord due à l’évitement des matrices de Hesse et des différenciations d’ordre
supérieur; et deuxièmement, du fait que la méthode proposée obtient tous les co-
efficients en résolvant des ensembles d’équations linéaires qui sont faciles à utiliser
par ordinateur. Cette observation est bonne, car la nouvelle méthode peut désor-
mais étendre la taille du système qui peut être considérée avec une troisième autre
forme normale. De plus, les futurs systèmes d’alimentation seront remplis de con-
vertisseurs électroniques de puissance qui ont plusieurs variables d’état, nécessitant
l’utilisation de la méthode proposée pour obtenir leurs formes normales.

• La méthode proposée est commodément sélective, permettant de calculer unique-
ment les termes spécifiques du modèle non linéaire approximatif sans calculer le
reste. Cette observation est pertinente car elle permet à l’analyse de se concen-
trer uniquement sur certains modes spécifiques du système avec des calculs moins
lourds. De plus, les résultats du chapitre 4 suggèrent que les non-linéarités du
système ne sont pas réparties uniformément, mais sont localisées autour de cer-
tains modes dans le système. Cela implique que l’application sélective de la forme
normale peut être poursuivie avec la méthode développée pour un système avec
un grand nombre de variables.

• En considérant le logiciel de simulation de domaine temporel du système élec-
trique, la perturbation du système non linéaire avec des vecteurs propres à l’échelle,
comme requis par la méthode proposée, correspond simplement à l’initialisation
du système avec les conditions initiales — les vecteurs propres à l’échelle. Cette
observation souligne la possibilité d’utiliser le logiciel du système d’alimentation
déjà existant pour l’analyse de la forme normale. De plus, il n’y a pas de logiciel
dédié pour l’analyse de la forme normale du système d’alimentation.

• On observe qu’avec la méthode développée, les termes du deuxième et du troisième
ordre sont calculés simultanément. Cela présente un avantage pour la demande
de formulaire normal de troisième ordre; cependant, si seule la forme normale du
second ordre est nécessaire, il n’est pas possible avec la méthode développée de
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calculer les termes du second ordre sans certains termes du troisième ordre. Cela
implique que la méthode est spécifiquement développée pour les applications de
forme normale de troisième ordre, bien que l’idée puisse être étendue si nécessaire.

• La méthode développée suppose qu’il n’y a pas de résonance modale exacte.
Autrement dit, toutes les valeurs propres sont distinctes et la matrice d’état du
système est diagonalisable. Dans le cas d’une résonance modale exacte, l’excitation
de différents modes indépendamment à l’aide de vecteurs propres à l’échelle de-
vient compliquée, limitant ainsi la méthode développée. Il s’agit cependant d’un
problème général dans l’application de formulaire normal et non spécifique à la
méthode développée.

• En excitant les modes de calcul des coefficients, le choix de l’amplitude de l’écart
modal peut affecter les résultats. Si une amplitude trop grande est utilisée, le
niveau des non-linéarités dues à la perturbation dépasse le troisième ordre sur
lequel la méthode est basée, donnant ainsi des résultats erronés. D’un autre côté,
une très faible valeur de l’amplitude de l’écart modal ne crée pas de non-linéarités
suffisantes en raison de la perturbation, plaçant le système uniquement dans une ré-
gion linéaire alors que les coefficients nécessaires sont pour les termes non linéaires.

• Une autre limitation de la méthode développée est l’hypothèse que les non-linéarités
sont lisses et statiques. Si ces hypothèses deviennent invalides, la méthode peut
échouer.

4. En utilisant la forme normale définie pour le système d’alimentation représenté par
des équations différentielles du second ordre, un indice analytique pour estimer le dé-
calage de fréquence des modes électromécaniques sous perturbation est proposé. Sur la
base de cet indice d’estimation de décalage de fréquence, un autre indice de proximité
d’instabilité est développé pour estimer la proximité du mode oscillatoire à l’instabilité.
Ces indices ont été testés sur de petits et grands réseaux électriques. A partir des
résultats présentés au chapitre 5, les observations suivantes sont faites:

• L’augmentation des contraintes dans le système diminue les fréquences des modes
électromécaniques. C’est-à-dire que les fréquences des modes électromécaniques
passent des valeurs fondamentales (déterminées par analyse linéaire) à une autre
valeur moindre en raison de l’augmentation des non-linéarités.

• Le décalage de fréquence est plus prononcé sur le mode dominant et est lié à
la stabilité du mode. Les décalages de fréquence augmentent à mesure que la
contrainte augmente jusqu’à un point critique où les modes perdent leur stabilité.

• Le contrôle du système d’alimentation moderne se concentre sur la surveillance
étendue des oscillations électromécaniques à l’aide de mesures en temps réel, où
les paramètres de mode (par exemple, la fréquence et l’amortissement) sont au-
tomatiquement estimés pour toutes les conditions de fonctionnement actuelles pour
une action de contrôle appropriée. Les indices proposés dans ce travail peuvent as-
sez bien prédire les décalages de fréquence des modes électromécaniques à mesure
que la contrainte augmente. Cette observation est très cruciale, car les indices
peuvent être utilisés pour une estimation approximative en ligne de la stabilité du
système et pour des signaux d’avertissement d’instabilité dans le fonctionnement
du système électrique.

• Étant basés sur un modèle de système d’alimentation classique et une approxima-
tion du troisième ordre du modèle non linéaire exact, les indices proposés ont une
plage de validité limitée et ne peuvent donc pas fournir des informations sur la
stabilité globale.

5. Enfin, pour réduire encore les calculs de forme normale, une application sélective de
forme normale est proposée. La méthode consiste à négliger les interactions associées
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aux — (1) valeurs propres réelles et (2) modes aux énergies les plus faibles. Pour
déterminer les modes avec le moins d’énergie, les valeurs singulières de Hankel sont
utilisées pour déterminer les états les plus contrôlables et observables; l’analyse des
facteurs de participation est ensuite utilisée pour déterminer les modes qui sont liés aux
états de Hankel les plus pertinents. Les interactions liées à ces modes sont prises en
compte, tandis que d’autres ne le sont pas. Cette technique d’application sélective de
forme normale a été utilisée pour étudier les interactions modales non linéaires et les
facteurs de participation non linéaires. A partir des résultats présentés au chapitre 5,
les observations suivantes sont faites:

• Pour le cas testé, les mêmes interactions non linéaires sont détectées, à la fois
pour l’application sélective et la forme normale complète. Cette observation tend
à suggérer que les valeurs propres réelles ne jouent pas un rôle significatif sur
les interactions modales non linéaires. En outre, il a été constaté que les mêmes
modes impliqués dans l’interaction non linéaire sont les modes ayant les hautes
énergies basées sur les valeurs singulières de Hankel. Cette observation tend à
suggérer qu’en dehors des valeurs propres réelles, certains modes oscillatoires sont
faibles pour les interactions non linéaires, de sorte que leur inclusion contribue à
davantage de ”gaspillage” de calcul.

• En plus de la réduction de calcul due à la nouvelle méthode de calcul des coeffi-
cients non linéaires, l’application sélective de forme normale introduit une autre
forte réduction du temps de calcul. Cette observation est particulièrement impor-
tante car lorsque les contrôles sont pris en compte dans les modèles de générateur,
de nombreuses valeurs propres sont réelles. De plus, de nombreux modes sont
fortement amortis, ce qui permet de les négliger. Cela pourrait être très utile
lorsque l’on considère les réseaux électroniques de puissance, où plusieurs modes
sont réels et de nombreux modes oscillatoires sont fortement amortis.

Dans cette thèse, il a été démontré qu’éviter la différenciation d’ordre supérieur et les
évaluations de Hesse peuvent étendre l’analyse de forme normale du troisième ordre à des
systèmes plus grands, au-delà de ce que la méthode conventionnelle peut gérer. Il a également
été démontré qu’il existe de nombreuses possibilités de réduire les calculs intraitables dans
l’analyse de forme normale. De tous les résultats de ce travail, on peut conclure que, avec
la nouvelle technique de calcul développée, ainsi que les développements appropriés des idées
d’application de forme normale sélective proposées dans ce travail, il sera possible d’utiliser
la forme normale pour étudier l’avenir et plus réseaux lorsque les interactions non linéaires
deviennent significatives.

F.3.2 Travaux Futurs

Plusieurs expériences potentiellement fructueuses n’ont pas été réalisées en raison de nom-
breuses contraintes au cours de cette recherche. D’après les observations et l’expérience
recueillies au cours de cette recherche, de nombreuses possibilités potentiellement lucratives
pour les travaux futurs peuvent être recommandées comme suit:

1. Étant donné que la méthode développée n’est pas intrusive et nécessite l’initialisation
du modèle non linéaire d’origine avec des conditions initiales de choix, il pourrait
être très intéressant d’essayer de réaliser la méthode proposée avec un logiciel de sys-
tème d’alimentation commercial. La méthode nécessite une formation d’ensembles
d’équations linéaires, où tous les paramètres nécessaires sont obtenus à partir de la
matrice d’état, après une analyse linéaire. De nombreux logiciels standard de systèmes
d’alimentation commerciaux tels que EUROSTAG ® peuvent effectuer à la fois une
analyse linéaire et une simulation dans le domaine temporel. Ainsi, il peut être possible
d’utiliser un logiciel de simulation dans le domaine temporel pour obtenir la solution
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statique non linéaire du modèle non linéaire, qui est requise par la méthode dévelop-
pée. Si elle est réalisée, une telle percée sera à la fois bénéfique pour les opérateurs de
réseaux électriques pour une analyse modale détaillée, et pour les chercheurs intéressés
par l’analyse de la forme normale, puisque la forme normale sera ensuite intégrée en
tant que progiciel dans un tel logiciel.

2. Bien que la méthode proposée ait considérablement réduit la charge de calcul de la
forme normale, un aspect particulier non directement traité est la charge de calcul de la
condition initiale dans l’espace de la forme normale. La détermination de la condition
initiale prend du temps. Un algorithme plus efficace pour la résolution d’équations non
linéaires pourrait aider à résoudre ce problème.

3. Comme indiqué dans l’article, les résultats de la méthode développée sont affectés par
l’amplitude de l’écart modal. Cette amplitude a été choisie heuristiquement, même si
une plage de valeurs donnant de bons résultats a été établie pour les cas de test utilisés.
Afin de promouvoir la méthode, il sera nécessaire de définir à l’avance la valeur de
l’amplitude de l’écart modal, compte tenu du degré de non-linéarité du système étudié.
Une telle relation entre le degré de non-linéarité du système et l’amplitude correcte de
l’écart modal devrait être développée à l’avenir.

4. Les indices développés pour surveiller les décalages de fréquence des modes électromé-
caniques sont basés sur l’application de la forme normale aux réseaux électriques représen-
tés par des équations différentielles du second ordre. Dans ce cas, il n’y a pas de quan-
tités complexes dans les formulations. Étant donné que la représentation par équation
du premier ordre du système d’alimentation est la norme, il pourrait être intéressant
d’étudier à l’avenir, l’extension au système d’alimentation représentée avec un modèle
du premier ordre, impliquant des quantités complexes.

5. Bien que les idées sélectives de forme normale présentées dans ce travail donnent de
bons résultats, le cas de test était très simple. Il est recommandé à l’avenir d’étudier
les potentiels perçus avec des systèmes d’alimentation plus importants. Si les résultats
sont cohérents dans les grands réseaux électriques, la proposition sera très essentielle
pour les futurs réseaux.

6. Qu’elle soit réduite ou non par calcul, l’analyse de forme normale n’est pas nécessaire
si la condition du système ne montre pas de fortes non-linéarités. Par conséquent, des
indices sont nécessaires en fonction de l’état du système, pour déterminer le niveau
de non-linéarités et l’ordre de forme normale à utiliser. Cela aidera à savoir a priori,
s’il est rentable de se lancer dans l’analyse de forme normale pour éviter une perte de
calcul. Ainsi, à l’avenir, ces indices devraient d’abord être trouvés ou développés avant
de procéder à l’analyse NF.

7. Tous les développements de ce travail ont été basés sur les modèles de générateurs
conventionnels. Les futurs réseaux seront constitués principalement de générateurs
à commande par convertisseur. Il est nécessaire à l’avenir d’étudier l’efficacité de la
méthode développée en utilisant les modèles de convertisseurs électroniques de puissance
(PE). De plus, la limitation de la méthode réside dans le fait que les non-linéarités
doivent être statiques, ce qui peut ne pas être le cas pour les réseaux avec 100 % PE;
des tests sont donc nécessaires.

8. L’utilisation de la méthode de la forme normale pour dériver une loi de commande non
linéaire pour la commande du convertisseur de puissance pourrait également être une
aventure de recherche très intéressante.

XXX
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Contributions pour le positionnement de
la méthode de forme normale comme

outil d’analyse de future système
d’alimentation

Résumé: Compte tenu de plusieurs contraintes économiques, techniques et environ-
nementales, les systèmes électriques actuels fonctionnent très près de leurs limites,
ce qui fait qu’ils présentent de plus en plus des comportements non linéaires. De
plus, le transfert d’une grande quantité d’énergie sur de longues distances n’est pas
rare aujourd’hui, cela conduit à des interactions non linéaires, conduisant à un réel
défit; celui de l’utilisation des outils traditionnels d’analyse du système électrique
en présence de fortes non linéarités. En outre, la forte pénétration des énergies
renouvelables et de l’électronique de puissance qui l’accompagne viennent augmenter
ces non linéarités du système électrique. En conséquence, les outils d’analyse
modale bien établis utilisés par le passé deviennent insuffisants pour l’analyse du
système électrique aujourd’hui et celui du futur; d’où le besoin d’outils alternatifs.
L’inclusion de termes d’ordres supérieurs dans l’analyse modale, possible avec la
méthode de forme normale (NF), augmente les informations qu’elle fournit et permet
de mieux étudier les aspects dynamiques sur un système d’alimentation présentant
un comportement fortement non linéaire. Cependant, la méthode NF nécessite au
préalable la décomposition de Taylor du système non linéaire, qui produit plusieurs
matrices et coefficients de Hesse d’ordre supérieur, une opération non réalisable avec
les méthodes standard lorsque l’on considère les systèmes à grande échelle. Dans
cette thèse, pour répondre à cette problématique, une méthode numérique efficace
pour accélérer ces calculs, en évitant l’expansion de Taylor habituelle, est développée.
Les nouveaux calculs consistent à définir les vecteurs propres linéaires comme champ
inconnu dans le système non linéaire initial, ce qui conduit à résoudre des équations
linéaires uniquement pour obtenir tous les coefficients nécessaires. De cette façon,
le calcul du modèle non linéaire jusqu’au troisième ordre et l’analyse modale non
linéaire deviennent simples et réalisables avec un temps de calcul raisonnable. De
plus, des indices basés sur la NF pour la stabilité du système électrique et la
surveillance du fonctionnement sont proposés et testés sur plusieurs systèmes.

Mots clés: Réduction du calcul, analyse modale non linéaire, méthode de forme normale, anal-
yse du système d’alimentation.

Abstract: Given several economic, technical and environmental constraints, today’s
power systems are operated very close to their limits, which means they exhibit
nonlinear behaviour more than in the past. In addition, the transfer of large amount
of power over long distances common nowadays leads to nonlinear interactions, a
phenomenon which challenges the traditional power system analysis tools. Fur-
thermore, high penetration of renewable energies and the accompanying power
electronics, which are evident in today’s power systems, increase the nonlinearities of
the systems. As a result, the well-established modal analysis tools become insufficient
for the analysis of present and future power systems; making the development of
alternative tools necessary. The inclusion of higher order terms in modal analysis,
possible with Normal Form (NF) method, augments the information it provides,
and enables better dynamic studies of systems exhibiting high nonlinear behaviour.
However, NF method requires the preliminary Taylor expansion of the nonlinear
system, which generates several higher order Hessian matrices and coefficients to
be computed, an operation impracticable with standard methods, when considering
large scale systems. In this thesis, to answer to this problem, an efficient numerical
method for accelerating those computations, by avoiding the usual Taylor expansion
is developed. The new computations consist in prescribing the linear eigenvectors
as unknown field in the initial nonlinear system, which leads to solving linear-only
equations to obtain all needed coefficients. In this way, the computation of the
nonlinear model up to third order, and nonlinear modal analysis become fast, and
achievable in a convenient computation time. Moreover, NF-based indices for power
system stability and operation monitoring are proposed and tested on several systems.

Keywords: Computation reduction, nonlinear modal analysis, normal form method, power sys-
tem analysis.
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