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Statistical modeling is key in linking these unique population descriptions to psychopathology. The objective of using multivariate statistical methods in population imaging is thus two-fold: i) to extract sensible imaging patterns from multiple dimensions useful for personal trait prediction; ii) to make predictions about health outcomes at single-subject level.

The following work is organized around three major research directions, which have led to different series of contributions.

. . Methods for predicting outcomes

Chapter 2 focuses on outlining robust methods for imaging-based predictions. With the rise in population imaging and the many possible modeling pipelines, there is a clear need to benchmark predictive models for clinical phenotypes, in order to select the most accurate and robust methods. This part relies on Resting-state functional Magnetic Resonance Imaging (rfMRI) data and many analytic steps, organized in pipelines, required to process rfMRI data. rfMRI is a widely used technique to study functional connectomes, i.e. quantitative functional connectivity models estimated from brain Regions of Interest (ROIs) sampled over the whole brain. A core goal is indeed to predict clinical phenotypes from functional connectomes. Achieving this requires to make several choices regarding modeling steps : brain parcellations schemes, connectomes extraction algorithms and machine learning methods for prediction. After exhaustive comparisons of state-of-theart methods across diverse brain-imaging cohorts, this part provides guidelines and default choices for connectomes-based predictive modeling.

A B S T R A C T

Mental disorders display a vast heterogeneity across individuals. A fundamental challenge to studying their manifestations or risk factors is that the diagnosis of mental pathological conditions are seldom available in large public health cohorts. Here, we seek to develop brain signatures, biomarkers, of mental disorders. For this, we use machine learning to predict mental-health outcomes through population imaging i. e. with brain imaging (Magnetic Resonance Imaging (MRI)). Given behavioral or clinical assessments, population imaging can relate unique features of the brain variations to these non-brain selfreported measures based on questionnaires. These non-brain measurements carry a unique description of each individual's psychological differences which can be linked to psychopathology using statistical methods. This PhD thesis investigates the potential of learning such imaging-based outcomes to analyze mental health. Using machinelearning methods, we conduct an evaluation, both a comprehensive and robust, of population measures to guide high-quality predictions of health outcomes.

This thesis is organized into three main parts: first, we present an in-depth study of connectome biomarkers, second, we propose a meaningful data reduction which facilitates large-scale population imaging studies, and finally we introduce proxy measures for mental health.

We first set up a thorough benchmark for imaging-connectomes to predict clinical phenotypes. With the rise in the high-quality brain images acquired without tasks, there is an increasing demand in evaluation of existing models for predictions. We performed systematic comparisons relating these images to clinical assessments across many cohorts to evaluate the robustness of population imaging methods for mental health. Our benchmarks emphasize the need for solid foundations in building brain networks across individuals. They outline clear methodological choices.

Then, we contribute a new generation of brain functional atlases to facilitate high-quality predictions for mental health. Brain functional atlases are indeed the main bottleneck for prediction. These atlases are built by analyzing large-scale functional brain volumes using scalable statistical algorithm, to have better grounding for outcome prediction. After comparing them with state-of-the-art methods, we show their usefulness to mitigate large-scale data handling problems.

The last main contribution is to investigate the potential surrogate measures for health outcomes. We consider large-scale model comparisons using brain measurements with behavioral assessments in an iii imaging epidemiological cohort, the United Kingdom (UK) Biobank. On this complex dataset, the challenge lies in finding the appropriate covariates and relating them to well-chosen outcomes. This is challenging, as there are very few available pathological outcomes. After careful model selection and evaluation, we identify proxy measures that display distinct links to socio-demographics and may correlate with non-pathological conditions like the condition of sleep, alcohol consumption and physical fitness activity. These can be indirectly useful for the epidemiological study of mental health.

R É S U M É

Les troubles mentaux présentent une grande hétérogénéité entre les individus. Une difficulté fondamentale pour étudier leurs manifestations ou leurs facteurs de risque est que le diagnostic des conditions mentales pathologiques est rarement disponible dans les grandes cohortes de santé publique. Ici, nous cherchons à développer des biomarqueurs, signatures cérébrales de troubles mentaux. Pour cela, nous utilisons l'apprentissage automatique pour prédire les résultats de santé mentale grâce à l'imagerie de population, en se basant sur l'imagerie cérébrale (imagerie par résonance magnétique (IRM)). Compte tenu des évaluations comportementales ou cliniques, l'imagerie de population peut relier les caractéristiques uniques des variations cérébrales à ces mesures autodéclarées non cérébrales basées sur des questionnaires. Ces mesures non cérébrales fournissent une description unique des différences psychologiques de chaque individu qui peuvent être liées à la psychopathologie à l'aide de méthodes statistiques. Cette thèse de doctorat examine le potentiel d'apprentissage de tels résultats basés sur l'imagerie pour analyser la santé mentale. En utilisant des méthodes d'apprentissage automatique, nous effectuons une évaluation, à la fois complète et robuste, des mesures de population pour guider des prévisions de haute qualité des résultats pour la santé.

Cette thèse est organisée en trois parties principales : premièrement, nous présentons une étude approfondie des biomarqueurs du connectome, deuxièmement, nous proposons une réduction significative des données qui facilite les études d'imagerie de population à grande échelle, et enfin nous introduisons des mesures indirectes pour la santé mentale.

Nous avons d'abord mis en place une étude approfondie des connectomes d'imagerie afin de prédire les phénotypes cliniques. Avec l'augmentation des images cérébrales de haute qualité acquises en l'absence de tâche explicite, il y a une demande croissante d'évaluation des modèles prédictifs existants. Nous avons effectué des comparaisons systématiques reliant ces images aux évaluations cliniques dans de nombreuses cohortes pour évaluer la robustesse des méthodes d'imagerie des populations pour la santé mentale. Nos résultats soulignent la nécessité de fondations solides dans la construction de réseaux cérébraux entre les individus. Ils décrivent des choix méthodologiques clairs.

Ensuite, nous contribuons à une nouvelle génération d'atlas fonctionnels du cerveau pour faciliter des prédictions de haute qualité pour la santé mentale. Les atlas fonctionnels du cerveau sont en effet le principal goulot d'étranglement pour la qualité de la prédiction. Ces atlas sont construits en analysant des volumes cérébraux fonctionnels à grande échelle à l'aide d'un algorithme statistique évolutif, afin d'avoir une meilleure base pour la prédiction des résultats. Après les avoir comparés avec des méthodes de pointe, nous montrons leur utilité pour atténuer les problèmes de traitement des données à grande échelle.

La dernière contribution principale est d'étudier les mesures de substitution potentielles pour les résultats pour la santé. Nous considérons des comparaisons de modèles à grande échelle utilisant des mesures du cerveau avec des évaluations comportementales dans une cohorte épidémiologique d'imagerie, le UK Biobank. Dans cet ensemble de données complexe, le défi consiste à trouver les covariables appropriées et à les relier à des cibles bien choisies. Cela est difficile, car il y a très peu de cibles pathologiques fiables. Après une sélection et une évaluation minutieuses du modèle, nous identifions des mesures indirectes qui sont en corrélation avec des conditions non pathologiques comme l'état de sommeil, la consommation d'alcool et l'activité physique. Ceux-ci peuvent être indirectement utiles pour l'étude épidémiologique de la santé mentale.
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vi C O N T E N T S

1 I N T R O D U C T I O N .
Brain imaging holds the promise to provide an objective picture of brain states and structure, reflecting individual characteristics and diseases [START_REF] Bearden | Emerging Global Initiatives in Neurogenetics: The Enhancing Neuroimaging Genetics through Meta-analysis (ENIGMA) Consortium[END_REF][START_REF] Biswal | Toward discovery science of human brain function[END_REF][START_REF] Miller | Multimodal population brain imaging in the UK Biobank prospective epidemiological study[END_REF]. There has thus been an important interest in finding the brain imaging correlates of neurological and psychiatric diseases, in order to provide reliable markers of these diseases [START_REF] Woo | Building better biomarkers: brain models in translational neuroimaging[END_REF]. On the other hand, machine learning is expected to provide powerful inference mechanisms to discover and leverage such markers. Hence, until recently, machine-learning approaches to population imaging studies analysis have focused mostly on predicting individual clinical status from brain images acquired on individuals who are pre-stratified as healthy controls and patients [START_REF] Arbabshirani | Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls[END_REF]. For instance, a typical situation consists in discriminating normal versus major depression -a binary classification problem. These ongoing efforts have led to limited progress in psychiatry research, as manifested by the low accuracy of brain imaging-based predictions of clinical status (Kapur, Phillips, and [START_REF] Kapur | Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it?[END_REF]. The patho-physiological mechanisms of mental disorders are indeed complex to understand due to their vast heterogeneity in pathological conditions [START_REF] Insel | Brain disorders? Precisely[END_REF], and therefore too unreliable for clinical translation.

Alternative strategies for understanding mental disorders have put some emphasis on characterizing the underlying biological changes observed through population imaging [START_REF] Insel | Research Domain Criteria (RDoC): Toward a New Classification Framework for Research on Mental Disorders[END_REF]. This builds on the observation that complex information embedded in brain imaging requires adequate intermediate representations to overcome noise and be relevant for individual characterization [START_REF] Smith | Statistical Challenges in "Big Data" Human Neuroimaging[END_REF]. Large public health cohorts have emerged to allow the extraction of brain-imaging based signatures with statistical power [START_REF] Collins | What makes UK Biobank special?[END_REF]). Yet, this analysis framework is limited by the lack of direct measures relevant to mental health. This challenge calls for studying the impact of risk factors -whether derived from imaging or behavioral dataon generic potential health outcomes. For instance, considering that e. g. personality traits like neuroticism are genetically linked to depression, neuroticism may be a reliable proxy for mental health assessed through depression related questionnaires [START_REF] Lahey | Public health significance of neuroticism[END_REF]. We cast this challenge as understanding brain-behavior relationships which can be achieved by linking the large-scale brain measurements to behav-et al., 2018), a scalable Dictionary Learning algorithm. We also discuss the usefulness of these atlases from an analytical task standpoint and sketch some guidelines to choose brain parcellations for fMRI analysis, after comparing our atlases to the existing state-of-the-art pre-defined and data-driven functional parcellations. Task-and Rest-fMRI dataanalysis, as well as data compression experiments are presented. To complete this contribution, we provide names to these parcels based on neuroanatomical landmarks.
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. . Predicting proxy measures for mental health

Finally, Chapter 4 investigates the use of potential proxy measures from an imaging epidemiological cohort aimed at studying mental health. It provides a conceptualization of the use of indirect measures called proxies (self-reported measures to questionnaires) for mental health. This idea is tested through analysis of the UK Biobank cohort from a predictive modeling perspective. We combined both (self-reported) socio-demographic data and brain imaging data of each individual with a Random Forest model to perform the predictive modeling of behavioral outcomes. The outputs of such models combining population imaging and socio-demographic data are evaluated to assess whether there is an advantage in pooling imaging with socio-demographic variables. Finally, the best model comparisons are selected and predicted scores on each individual are gathered to correlate with health outcome variables such as sleep, alcohol consumption and physical fitness to derive endpoints for mental health. This chapter concludes with a brief outline to the elements of an ongoing work that are not part of this manuscript.
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. . Brain connectivity and its relevance to neuroscience

Brain imaging techniques such as functional Magnetic Resonance Imaging (fMRI) or Magnetoencephalography (MEG) are a fundamental tool for systems and cognitive neuroscience (Friston, 2009). These brain mapping methods can be used to understand the principles of brain organization such as brain connectivity, or the spatial organization of the brain networks underlying certain mental functions [START_REF] Friston | Functional and effective connectivity in neuroimaging: A synthesis[END_REF]. Brain connectivity encompasses many dimensions: synapses, axonal fiber pathways (anatomical connectivity), statistical relationships in the activity between remote regions (functional connectivity) or model-based interactions (effective connectivity). These relationships are defined among distinct units, where each unit or region is in principle composed of homogeneous neurons [START_REF] Sporns | Organization, development and function of complex brain networks[END_REF]. Brain connectivity is a central topic of interest to elucidate the interregional connections of the nervous system.

Though connectivity can be seen as the core concept in systems neuroscience, brain mapping approaches can be categorized according to the signal that they measure, and according to their goal [START_REF] Bullmore | Complex brain networks: graph theoretical analysis of structural and functional systems[END_REF]. A core distinction lies in how they capture the patterns of connectivity and whether these patterns could be used to understand brain function. Anatomical connectivity represents networks of neurons linked together through axonal pathways and synapses, forming distinct structured-like representations of the brain [START_REF] Sporns | Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices[END_REF]. Anatomical connectivity can be investigated using diffusion-weighted imaging techniques such as Diffusion Magnetic Resonance Imaging (dMRI). Such neuroanatomical structures ground our understanding of brain connectivity. Importantly, they do not inform us on how these structures communicate between each other nor regarding how their interaction is modulated by experimental manipulations. By contrast, functional connectivity and effective connectivity are ways to quantify neuronal activations for instance measured at macroscopic level using fMRI -a technique which indirectly measures the evoked or ongoing neural activity depending upon the regional metabolic demands Blood Oxygenation Level Dependent (BOLD) signal changes in time -reveal regional connectivity (static and dynamic interactions) [START_REF] Rubinov | Complex network measures of brain connectivity: Uses and interpretations[END_REF].

Under no strict biological assumptions for e. g. micro-structural properties, functional connectivity estimates functional associations between remote brain locations based on their neurophysiological states or neural activity [START_REF] Friston | Functional and effective connectivity in neuroimaging: A synthesis[END_REF]. In contrast to effective connectivity, functional connectivity estimates do not quantify the influence of one region over another one; instead it provides estimates of temporal associations without assessing directed effects [START_REF] Friston | Functional and effective connectivity: a review[END_REF]. In terms of statistical modeling, given certain measurements of neural activity, functional connectivity analyses find patterns of connectivity that can be used as phenotypes to predict or classify individuals into specific groups e. g. clinical diagnosis [START_REF] Fox | Clinical applications of resting state functional connectivity[END_REF]. These phenotypes are most often taken as the linear correlation coefficients among pairs of regions. In a nutshell, functional connectivity is dominantly used for classification problems i. e. attempts to establish a mapping from imaging data to a diagnostic label (consequences to cause) whereas effective connectivity analysis compares models of cause to consequences among brain states [START_REF] Friston | Functional and effective connectivity: a review[END_REF]. The study of brain functional architecture with connectivity methods now spans from simple correlations to complex models [START_REF] Duff | Task-driven ICA feature generation for accurate and interpretable prediction using fMRI[END_REF].

. . Brain function and structure for population analysis

Task-fMRI is used to map changes in BOLD signal in brain areas that are involved in doing certain behavioral tasks. Functional connectivity may be investigated in regions defined by task-fMRI. In these scenarios, the analyses will be more confined towards task-evoked regions constrained to sparse functional architecture [START_REF] Cole | Intrinsic and task-evoked network architectures of the human brain[END_REF]. However, it may be interesting to study the functional coupling across multiple experimental conditions or across multiple trials [START_REF] Rissman | Measuring functional connectivity during distinct stages of a cognitive task[END_REF].

Beyond task-driven activity, most brain activity can be captured with fMRI even when subjects are not engaged in any of the tasks or simply stay at "rest" [START_REF] Fox | Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging[END_REF]. This ongoing activity is observed as resting-state BOLD signal fluctuations (of frequency < 0.1 Hz), and generally considered as some background activity observable even when the metabolic demands are at baseline level. These temporal fluctuations form coherent networks that are interesting to examine functional connectivity on large-scale populations [START_REF] Greicius | Resting-state functional connectivity reflects structural connectivity in the default mode network[END_REF]. This ongoing brain activity should not be viewed as a random noise, as it can influence task-evoked activity at the onset of the stimulus [START_REF] Fox | Coherent spontaneous activity accounts for trial-to-trial variability in human evoked brain responses[END_REF] and is strongly associated with the taskevoked activity [START_REF] Biswal | Functional connectivity in the motor cortex of resting human brain using echo-planar mri[END_REF], actually representing temporal synchronization into networks [START_REF] Luca | fMRI resting state networks define distinct modes of long-distance interactions in the human brain[END_REF][START_REF] Raichle | A default mode of brain function[END_REF].

Resting-state functional connectivity thus demonstrates the presence of intrinsic human brain functional architecture even in the absence of behavioral tasks [START_REF] Fox | The human brain is intrinsically organized into dynamic, anticorrelated functional networks[END_REF]. Several applications have been developed: i) relating functional connectivity to clinical status [START_REF] Greicius | Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI[END_REF], ii) to behavior [START_REF] Miller | Multimodal population brain imaging in the UK Biobank prospective epidemiological study[END_REF], iii) predicting psychological traits (Dubois et al., 2018a) and iv) deriving data-driven parcellations [START_REF] Varoquaux | Multi-subject dictionary learning to segment an atlas of brain spontaneous activity[END_REF][START_REF] Yeo | The organization of the human cerebral cortex estimated by intrinsic functional connectivity[END_REF].

There exist other popular methods for population imaging. One is morphometric analysis of the structural neuroimaging, concerned with the quantification of size, volume of brain structures and tissue types and their variations under neuropathologies or behavior [START_REF] Lerch | Studying neuroanatomy using MRI[END_REF]. For example, volume changes in gray matter areas over lifetime are associated with: brain ageing [START_REF] Ritchie | Brain volumetric changes and cognitive ageing during the eighth decade of life[END_REF], brain evolution [START_REF] Evans | The NIH MRI study of normal brain development[END_REF], general intelligence ('g') [START_REF] Cox | Structural brain imaging correlates of general intelligence in UK Biobank[END_REF] and brain disease [START_REF] Thompson | Tracking Alzheimer's Disease[END_REF]. Such volumes are calculated within pre-defined ROIs [START_REF] Desikan | An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest[END_REF] or voxel-wise [START_REF] Ashburner | Voxel-based morphometry-The methods[END_REF]. Another popular method in structural neuroimaging i. e. dMRI, is concerned with the quantification of axonal pathways. Diffusion MRI enables to identify white matter tracts along principal diffusive direction of water molecules, as well as the connections between different gray matter areas [START_REF] Behrens | Characterization and propagation of uncertainty in diffusionweighted MR imaging[END_REF][START_REF] Conturo | Tracking neuronal fiber pathways in the living human brain[END_REF]. The study of these local anatomical connections through white matter are relevant to the understanding of neuropathologies and functional organization [START_REF] Saygin | Connectivity precedes function in the development of the visual word form area[END_REF].

. . Challenges in population imaging

There are however important issues with resting-state based functional connectivity or morphometric analysis, namely the presence of many potential confounds [START_REF] Smith | Statistical Challenges in "Big Data" Human Neuroimaging[END_REF]. Unlike taskbased functional connectivity, resting-state does not represent a wellcharacterized haemodynamic response function. Neural signal is not separated from noise sources, whether physiology-or acquisitionrelated [START_REF] Alexander-Bloch | Subtle in-scanner motion biases automated measurement of brain anatomy from in vivo MRI[END_REF][START_REF] Liu | Noise contributions to the fMRI signal: An overview[END_REF][START_REF] Power | Sources and implications of whole-brain fMRI signals in humans[END_REF]. Moreover, subjects e. g. psychiatric patients may feel uncomfortable while undergoing scanning and often move while sampling BOLD time series. This motion-related time series may create spurious functional connectivity [START_REF] Power | Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion[END_REF] or false positives in group studies [START_REF] Reuter | Head motion during MRI acquisition reduces gray matter volume and thickness estimates[END_REF] if not addressed properly. These population-specific effects are a typical confound when linking functional connectivity or morphological changes to clinical conditions [START_REF] Pardoe | Motion and morphometry in clinical and nonclinical populations[END_REF]. Another well known issue is subjects falling asleep during acquisition, which strongly corrupts the recorded signal [START_REF] Laumann | On the Stability of BOLD fMRI Correlations[END_REF].

What can we do about it? Several denoising methods and pipelines have already been proposed for cleaning such noisy BOLD timeseries signals [START_REF] Behzadi | A component based noise correction method (CompCor) for BOLD and perfusion based fMRI[END_REF][START_REF] Caballero-Gaudes | Methods for cleaning the BOLD fMRI signal[END_REF][START_REF] Ciric | Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity[END_REF]Griffanti et al., 2014a). Following those recommendations, we made choices of confounds such as 10 CompCor [START_REF] Behzadi | A component based noise correction method (CompCor) for BOLD and perfusion based fMRI[END_REF] and 6 motion signals to regress them from pre-processed BOLD time series. CompCor confounds are extracted on whole-brain voxels and motion signals are pre-extracted using common data pre-processing procedure on raw fMRI data as part of data analysis. In addition to confounds regression, signals are also normalized, detrended and bandpass-filtered between 0.01 and 0.1Hz. These cleaning steps are commonly used while studying phenotypes from functional connectivity or during the raw data preprocessing. These non-noisy data are then used for prediction, which is studied in detail in Chapters 2 to 4.

We use a standard protocol that includes: motion correction, fMRI coregistration to T1-weighted MRI, normalization to the Montreal Neurological Institute (MNI) template using SPM12 1 , Gaussian spatial smoothing (FWHM = 5mm). The SPM based preprocessing pipeline is implemented through pypreprocess 2 -Python scripts relying on Nipype interface [START_REF] Gorgolewski | Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python[END_REF]. All subjects were visually inspected and excluded from the analysis if they have severe scanner artifacts or head movements with amplitude larger than 2mm. Confounds regression is done at signal extraction level in the functional-connectomes pipeline Section 2.3.1.3 implemented with Nilearn (Abraham et al., 2014a).

. In summary, we have sketched the context behind the contributions presented in this manuscript, and target a good use of brain imaging for population studies. We also gave a very brief introduction to MRI for population imaging neuroscience that covers: brain structure and function for predicting population phenotypes and the importance of data preprocessing and introduction of standard preprocessing pipeline. In our thesis, we extensively worked on fMRI datasets. A note on the datasets that we used in preparation of this manuscript is openly-available downloaded under standard terms and conditions. We were not involved in any data acquisition.

P I P E L I N E S T O B E S T P R E D I C T P H E N O T Y P E S F R O M F U N C T I O N A L C O N N E C T O M E S

Functional images acquired during rest is a promising universal marker of brain function [START_REF] Biswal | Toward discovery science of human brain function[END_REF]. It can easily be acquired on many different individuals, as it does not require any task performance, and is applicable to studying diseased populations. Many population-imaging studies use rfMRI to relate brain imaging to neuropathologies or other behavior and population phenotypes [START_REF] Dubois | Building a Science of Individual Differences from fMRI[END_REF][START_REF] Miller | Multimodal population brain imaging in the UK Biobank prospective epidemiological study[END_REF].

A functional connectome or shortly connectome -a model characterizing the network structure of the brain [START_REF] Sporns | The human connectome: a structural description of the human brain[END_REF]can be extracted from functional interactions in rfMRI data [START_REF] Varoquaux | Learning and comparing functional connectomes across subjects[END_REF]. The weights of the corresponding brain functional connectome are used to characterize individual subjects behavior and mental health (Dubois et al., 2018a;[START_REF] Milazzo | Identification of mood-relevant brain connections using a continuous, subject-driven rumination paradigm[END_REF][START_REF] Smith | A positive-negative mode of population covariation links brain connectivity, demographics and behavior[END_REF].

Machine-learning pipelines are key to turning functional connectomes into biomarkers that predict the phenotype of interest [START_REF] Woo | Building better biomarkers: brain models in translational neuroimaging[END_REF]. On rfMRI, such a pipeline typically comprises of 3 crucial steps as depicted in Fig. 2.2, linking functional connectomes to the target phenotype [START_REF] Craddock | Connectomics and new approaches for analyzing human brain functional connectivity[END_REF][START_REF] Varoquaux | Learning and comparing functional connectomes across subjects[END_REF].

There exist many variations of this prototypical pipeline, even for classification from edge-weights of brain functional connectomes, as revealed by reviews of the field [START_REF] Arbabshirani | Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls[END_REF][START_REF] Brown | Machine Learning on Human Connectome Data from MRI[END_REF][START_REF] Wolfers | From estimating activation locality to predicting disorder: a review of pattern recognition for neuroimaging-based psychiatric diagnostics[END_REF]. These various choices have a sizable impact on the accuracy of population studies, and are seldom discussed [START_REF] Carp | On the plurality of (methodological) worlds: Estimating the analytic flexibility of fMRI experiments[END_REF]. The cost of such analytical variation is twofold. First, it puts the burden on the practitioner to explore many options and make choices without systematic guidance. Second, methods variations create researchers degrees of freedom [START_REF] Simmons | Falsepositive psychology: Undisclosed flexibility in data collection and analysis allows presenting anything as significant[END_REF] that can compromise the measure of the prediction accuracy of biomarkers [START_REF] Varoquaux | Cross-validation failure: small sample sizes lead to large error bars[END_REF]. Guidelines on optimal modeling choices are thus of great value for imaging-based biomarker research.

In this chapter we introduce a prediction pipeline that estimates connectivity weights to relate them to phenotypes and thereafter review practices and methods used for prediction of psychiatric diseases from functional connectomes. Then, we present and benchmark different methodological choices involved in the classification pipelines. Finally, we report experimental results and the best performing methods, as revealed by our experiments.

. Population phenotypes are individual assessments, characterized through clinical diagnostic systems or questionnaires. We can study prediction from functional connectomes of various phenotypes -clinical and non-clinical outcomes that includes: neuro-degenerative and neuro-psychiatric disorders, drug abuse impact, fluid intelligence. Studies can then focus either on discriminating between two or more groups i. e. binary values or predicting on a continuous integers, for instance brain-aging (Liem et al., 2017a). Thanks to the open science [START_REF] Poldrack | Making big data open: data sharing in neuroimaging[END_REF], several openly-accessible rfMRI datasets exists to study diseased populations [START_REF] Biswal | Toward discovery science of human brain function[END_REF]. This could be useful to apply our connectome-classification pipeline to benchmark various predictive modeling choices. Some of the diverse phenotypes which could be interesting to study on populations who are pre-stratified into binary groups are listed below.

1.

Center for Biomedical Research Excellence (COBRE) 1 , comprising rfMRI data to study schizophrenia and bipolar disorder [START_REF] Calhoun | Exploring the psychosis functional connectome: Aberrant intrinsic networks in schizophrenia and bipolar disorder[END_REF]. We focus on predicting schizophrenia diagnosis versus normal control.

2. the Alzheimer's Disease Neuroimaging Initiative (ADNI) 2 database studies neuro-degenerative diseases [START_REF] Mueller | The alzheimer's disease neuroimaging initiative[END_REF]. We focus on using rfMRI to discriminate individuals with Mild Cognitive Impairment (MCI) from individuals diagnosed with Alzheimer's disease (AD) [START_REF] Trzepacz | Comparison of neuroimaging modalities for the prediction of conversion from mild cognitive impairment to Alzheimer's dementia[END_REF]. We attempt to discriminate whether individuals have consumed marijuana or not.

the

5.

Autism Brain Imaging Data Exchange database (ABIDE), investigates the neural basis of autism [START_REF] Martino | The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism[END_REF]. We use the data from Preprocessed Connectome Project [START_REF] Craddock | The Neuro Bureau Preprocessing Initiative: open sharing of preprocessed neuroimaging data and derivatives <br[END_REF] to discriminate individuals with Autism Spectrum Disorder (ASD) from normal controls.

We also perform extra benchmarks including the Human Connectome Project (HCP) rfMRI datasets to discriminate individuals with high vs low intelligence score. These additional light-weight benchmarks are to investigate the consistency of analytical choices while probing high-quality datasets.

. 

A

. . Definition of brain regions of interest (ROIs)

For functional connectomes, the hypothesis is that the definition of ROIs should capture well the relevant functional units [START_REF] Smith | Network modelling methods for fMRI[END_REF]. ROIs selection is an important difficult choice, as the optimal may vary for different conditions or pathologies. Studies define nodes to estimate functional connectomes with a variety of approaches:

• balls4 of radius varying from 5mm to 10mm centered at coordinates from the literature [START_REF] Dosenbach | Prediction of Individual Brain Maturity Using fMRI[END_REF][START_REF] Power | Functional Network Organization of the Human Brain[END_REF];

• Pre-defined reference anatomical atlases such as Automated Anatomical Labeling (AAL) [START_REF] Tzourio-Mazoyer | Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain[END_REF], sulcibased atlases [START_REF] Desikan | An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest[END_REF][START_REF] Perrot | Joint Bayesian Cortical Sulci Recognition and Spatial Normalization[END_REF], or connectivity-based cortical landmarks [START_REF] Zhu | birth 1787-2.0 Maternal smoking around birth Table E.3: List of 9 non-imaging variables grouped into Early life[END_REF];

• data-driven approaches based on k-means or Ward clustering [START_REF] Thirion | Which fMRI clustering gives good brain parcellations?[END_REF], as well as Independent Component Analysis (ICA) approaches (Beckmann and Smith, 2004a;[START_REF] Calhoun | A method for making group inferences from fMRI data using independent component analysis[END_REF] or dictionary learning (Mensch, Varoquaux, and Thirion, 2016). The number of nodes which range from dozens to several hundreds and the formation of nodes either as local regions or distributed networks are tied to the choice of definition of ROIs. For pre-defined atlases, these are certainly fixed.

We contribute further to this problem of selecting good analytical choices in brain parcellations at Chapter 3.

. . Representation of brain functional connectomes

Studies define functional interactions from second-order statisticsbased on signal covariance-using Pearson's correlation or partial correlations estimated mostly either with the maximum-likelihood formula for the covariance or the Ledoit-Wolf shrinkage covariance estimator [START_REF] Brier | Partial covariance based functional connectivity computation using Ledoit-Wolf covariance regularization[END_REF]Ledoit and Wolf, 2004a;[START_REF] Varoquaux | Learning and comparing functional connectomes across subjects[END_REF]. Partial correlation between nodes is useful to rule out indirect effects in the correlation structure, but calls for shrunk estimates [START_REF] Smith | Network modelling methods for fMRI[END_REF][START_REF] Varoquaux | Brain covariance selection: better individual functional connectivity models using population prior[END_REF]. Mathematical arguments have also led to representations tailored to the manifoldstructure of covariance matrices [START_REF] Colclough | The heritability of multimodal connectivity in human brain activity[END_REF][START_REF] Dodero | Kernel-based classification for brain connectivity graphs on the Riemannian manifold of positive definite matrices[END_REF][START_REF] Ng | Transport on Riemannian Manifold for Functional Connectivity-based Classification[END_REF]Varoquaux et al., 2010c). We benchmark the simplest of these, a tangent representation of the manifold which underlies the more complex developments (see Appendix B for a quick introduction to this formalism). Fig. B.1 shows the representation of functional connectomes estimated on ADNI dataset [START_REF] Mueller | The alzheimer's disease neuroimaging initiative[END_REF]. Some studies employ complex-graph network modeling approaches -e. g. network modularity or centrality (Rubinov and Sporns, 2011)- [START_REF] Arbabshirani | Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls[END_REF][START_REF] Brown | Machine Learning on Human Connectome Data from MRI[END_REF][START_REF] Wolfers | From estimating activation locality to predicting disorder: a review of pattern recognition for neuroimaging-based psychiatric diagnostics[END_REF].

. Fig. 2.2 shows the standard prediction pipeline considered for functional connectomes-based predictions. It typically comprises 3 crucial steps: definition of brain ROIs from rfMRI data, estimation of connectomes from time series signals extracted upon on these ROIs, and comparison of connectomes across subjects using machine learning. In Appendix A.1, we list some studies that have used rfMRI to study diverse psychiatric diseases as well as the choices selected at the each step.

The current practice is very diverse, without standard modeling choices. To open the way toward informed decisions, we explore popular variants of the classic machine-learning pipeline to predict on connectomes. We measure the impact of choices at each step on prediction for diverse targets across multiple datasets as on Table 2 

Pre-defined atlases

Pre-defined atlases defined based on brain anatomy: AAL [START_REF] Tzourio-Mazoyer | Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain[END_REF], a structural atlas defined from the anatomy of a reference subject, Harvard Oxford [START_REF] Desikan | An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest[END_REF], a probabilistic atlas of anatomical structures, contains of cortical & sub-cortical ROIs.

Another category is defining ROIs from rfMRI data which we call as functional atlases. Such atlases include Bootstrap Analysis of Stable Clusters (BASC) [START_REF] Bellec | Multi-level bootstrap analysis of stable clusters in restingstate fMRI[END_REF], a multi-scale functional atlas built with clustering on rfMRI; Power, a coordinate-based atlas consisting of coordinates which can be positioned by the balls of 5mm radius [START_REF] Power | Functional Network Organization of the Human Brain[END_REF].

For a pre-computed functional atlas with dictionary learning, we can use an atlas 5 computed by Mensch et al., 2016 with a very scalable sparse dictionary-learning algorithm on the HCP900 dataset [START_REF] Van Essen | The Human Connectome Project: A data acquisition perspective[END_REF]. This algorithm, Stochastic Online Matrix Factorization (SOMF), solves the 1 dictionary-learning problem with an algorithm fast on very large datasets that converges to the same solution as standard on-line solvers (Mensch et al., 2018).

. . .

Data-driven methods

Moving away existing pre-defined atlases, brain ROIs can also be defined using popular data-driven methods from intrinsic brain activity of the rfMRI a. k. a. data-driven [START_REF] Abraham | Extracting brain regions from rest fMRI with Total-Variation constrained dictionary learning[END_REF]Beckmann and Smith, 2004a;[START_REF] Calhoun | A method for making group inferences from fMRI data using independent component analysis[END_REF][START_REF] Kahnt | Connectivity-Based Parcellation of the Human Orbitofrontal Cortex[END_REF][START_REF] Thirion | Which fMRI clustering gives good brain parcellations?[END_REF][START_REF] Yeo | The organization of the human cerebral cortex estimated by intrinsic functional connectivity[END_REF]. We choose to define ROIs using two clustering methods: K-Means [START_REF] Hastie | The elements of statistical learning[END_REF], and hierarchical agglomerative clustering using Ward's algorithm [START_REF] Ward | Hierarchical Grouping to Optimize an Objective Function[END_REF] with spatial connectivity constraints [START_REF] Michel | A supervised clustering approach for fMRI-based inference of brain states[END_REF]; and two linear decomposition methods: Canonical Independent Component Analysis (CanICA) (Varoquaux et al., 2010a), Dictionary Learning -1 (DictLearn) (Mensch, Varoquaux, and Thirion, 2016).

. . . Time-series signals extraction

After defining brain ROIs, we extract a representative time-series for each ROI in each subject. For atlases composed of non-overlapping ROIs as can be seen in Fig. 2 Let Y ∈ R n×p be the subject-specific signals, written as p voxels by n timepoints, and V ∈ R k×p the atlas of k maps supported on p voxels. We estimate U ∈ R n×k , the set of time series for each ROI, using:

Û = arg min U Y -UV 2
At the signal-extraction level, we regress out confounds or nonneural information [START_REF] Varoquaux | Learning and comparing functional connectomes across subjects[END_REF]. As confounding time-series we use: 10 CompCor [START_REF] Behzadi | A component based noise correction method (CompCor) for BOLD and perfusion based fMRI[END_REF] on the whole brain and 6 motion related. We remove motion-related signal only for COBRE, ADNI and ADNIDOD as they are provided as raw data. We have not done any additional preprocessing steps on already preprocessed public datasets like ABIDE6 , ACPI7 . The signal of each region is also then normalized, detrended and bandpass-filtered between 0.01 and 0.1Hz. All these steps are done with Nilearn v0.3.

. . Connectivity parametrization

To estimate functional interactions efficiently from time series signals extracted from these ROIs, we use the Ledoit-Wolf regularized shrinkage estimator [START_REF] Brier | Partial covariance based functional connectivity computation using Ledoit-Wolf covariance regularization[END_REF]Ledoit and Wolf, 2004a;[START_REF] Varoquaux | Learning and comparing functional connectomes across subjects[END_REF], which gives a closed form expression for the shrinkage parameter. This estimator yields well-conditioned estimators despite the variation in length of time series across rfMRI datasets. With this covariance structure, we study three different parametrizations of functional interactions: full correlation, partial correlation [START_REF] Smith | Network modelling methods for fMRI[END_REF][START_REF] Varoquaux | Learning and comparing functional connectomes across subjects[END_REF] and the tangent space of covariance matrices. The latter is less frequently used but has solid mathematical foundations and a variety of groups have reported good decoding performances with this framework [START_REF] Barachant | Classification of covariance matrices using a Riemannian-based kernel for BCI applications[END_REF][START_REF] Dodero | Kernel-based classification for brain connectivity graphs on the Riemannian manifold of positive definite matrices[END_REF][START_REF] Ng | Transport on Riemannian Manifold for Functional Connectivity-based Classification[END_REF][START_REF] Qiu | Manifold learning on brain functional networks in aging[END_REF][START_REF] Rahim | Population-shrinkage of covariance to estimate better brain functional connectivity[END_REF]Varoquaux et al., 2010c;[START_REF] Wong | Riemannian Regression and Classification Models of Brain Networks Applied to Autism[END_REF]. Note that computing partial correlation or tangent space require inverting covariance matrices, hence these must be well conditioned. Non regularized covariance estimation is thus not useable for these parametrizations.

For each parametrization, we vectorize the functional connectome, using the lower triangular part of the connectomes matrix for classification.

. . Supervised learning: Classifiers

The final step of our pipeline predicts a binary phenotypic status from connectivity features extracted from previous step. We consider several linear and non-linear classifiers for prediction i. e. both sparse and non-sparse methods. For non-linear methods, we consider K-Nearest Neighbor (KNN) [START_REF] Cover | Nearest Neighbor Pattern Classification[END_REF] with K=1 and Euclidean distance metric, Gaussian Naïve Bayes (GNB) and Random Forests Classifier (Breiman, 2001a). For linear classifiers we consider sparse 1 regularization for Support Vector Classifier (SVC), and Logistic Regression [START_REF] Hastie | The elements of statistical learning[END_REF]. For non-sparse linear classifiers -i. e. 2 regularization -we consider Ridge classification, SVC, Logistic regression. For SVC, we also considered 10% feature screening with univariate Analysis of Variance (ANOVA). With regards to the regularization parameter (e. g. soft margin parameter in SVC), we use the default C = 1 or α = 1, which has been found to be a good default [START_REF] Varoquaux | Assessing and tuning brain decoders: cross-validation, caveats, and guidelines[END_REF].

. . Cross validation and error measure

We perform cross-validation (CV) by randomly shuffling and splitting each dataset over 100 folds, forming two sets of subjects: 75% for training the classifier and learning brain atlases with data-driven models and the remaining 25% for testing on unseen data [START_REF] Varoquaux | Assessing and tuning brain decoders: cross-validation, caveats, and guidelines[END_REF]. We create stratified folds, preserving the ratio of samples between groups. For each split, we measure the Area Under Curve (AUC) from the Receiver Operating Characteristic (ROC) curve: 1 is a perfect prediction and .5 is chance. The final prediction scores in AUC (> 120k scores, see Section 2.3.5) are used to measure the impact of various choices in our prediction pipeline outlined below in results section.

. . Computations and implementation

Our experimental study consists of more than 240 types of pipelines (8 atlases × 3 connectivity measures × 10 classifiers). These pipelines were run on each of 5 datasets for 100 CV folds. As a result, there are more than 50 000 pipeline fits, from the raw data to the supervised step, a heavy computational load. Technically, we rely on efficient implementations open-source scientific computing packages using Python 2.7: Nilearn v0.3 (Abraham et al., 2014b) to define brain atlases, extract representative timeseries, and build connectivity measures. All machine-learning methods used for prediction i.e., classifiers and cross-validation are implemented with scikit-learn v0.18.1 [START_REF] Pedregosa | Scikit-learn: Machine Learning in Python[END_REF]. For visualization, we rely on Nilearn for brain-related figures while matplotlib is used [START_REF] Hunter | Matplotlib: A 2D graphics environment[END_REF] for generating other figures.

.

We now outline which modeling choices have an important impact on predicting over diverse phenotypes from all rfMRI datasets as mentioned on Table 2.1. We use high-quality HCP dataset to investigate whether analytical choices which showed an impact on clinical questions will carry forward its consistency on a non-clinical behavioral task prediction. Below, we study comparisons based on clinical questions and that behavioral task included comparisons on 6 datasets with pre-computed atlases are summarized at Appendix C.1.

We study the prediction score of each pipeline relative to the mean across pipelines on each fold. This relative measure discards the variance in scores due to folds or datasets. From these relative prediction scores, we study the impact of the choice of each step in the prediction pipeline: choice of classifiers, connectivity parametrizations, and definition of brain ROIs. This is a multifactorial set of choices and there are two points of view on the impact of a choice for a given step. First, the impact of the choice for one step may be considered when the other steps are optimal, or close to optimal. Second, the impact of one step may be considered for all other choices for the other steps -marginally on the choice of other steps. In the following figures, we study the first situation, focusing on "good choices": given a choice for one step, we report data for top third highest performing scores (quantiles 0.666) for the choices in the other steps.

. . Choice of classifier

Figure 2.3 summarizes the performances of classifiers on prediction scores for all rfMRI datasets. The results display a certain amount of variance across folds and datasets (i.e., prediction targets). However, they show that non-sparse ( 2 -regularized) linear classifiers perform better, with a slight lead for logistic-2 . Using non-linear classifiers does not appear useful; neither does sparsity. The results in Figure 2.3 are conditional on a good choice for the other steps of the pipeline. 

. . Choice of connectivity parameterization

Figure 2.4 summarizes the impact of covariance matrix parametrization on the relative prediction scores for all rfMRI datasets. Tangentspace parametrization tends to outperform full correlations or partial correlations. Indeed, it performs better on average, but also has less variance across datasets (prediction targets) or folds.

. . Choice of regions definition method

Figure 2.5 summarizes the relative prediction performance of all choices of region-definition methods. While the systematic effects are small compared to the variance over the folds and the datasets, the general trend is that regions defined from functional data lead to better prediction than regions defined from anatomy. Using 1 dictionary learning to define regions from rfMRI data appears to be the best method, closely followed by ICA, which is also based on a linear decomposition model. Interestingly, BASC, an atlas pre-defined on unrelated rfMRI datasets using data-driven clustering technique, performs almost as well as the best regions-extraction method applied to the rfMRI data of interest. Unlike other pre-defined atlases, like Harvard Oxford or AAL, that lack some crucial functional regions. The BASC atlas [START_REF] Bellec | Multi-level bootstrap analysis of stable clusters in restingstate fMRI[END_REF] is readily available online, and is thus easy to apply to data. Figure 2.5 shows the impact of regiondefinition approach conditional on good choices in the other steps of the pipeline. Overall, comparisons highlight that defining regions from functional data gives the best-performing pipelines, and that linear-decomposition methods are to be preferred.

.

An increasing amount of studies use predictive models on functional connectomes, for instance in population-imaging settings to relate brain activity to psychological traits or to build biomarkers of pathologies. While the basic steps of a pipeline are fairly universal -definition of brain regions, construction of an interaction matrix, and supervised learning-studies in the literature show many methodological variants (Appendix A.1). Recommendations on methods that perform well can increase practitioner's productivity and limit vibration effects that risk undermining the reliability of biomarkers [START_REF] Varoquaux | Cross-validation failure: small sample sizes lead to large error bars[END_REF]. A challenge to such recommendations is the heterogeneity of prediction settings, for instance across different acquisition centers or clinical questions.

Here, we investigate methodological choices across 6 databases covering different clinical questions and behavioral task. We systematically compare commonly used functional connectome-based prediction methods. We find that some trends emerge, despite a large variance due to variability across subjects -visible across the folds-and across cohorts and clinical questions. Non-sparse linear models, such as logistic regression, appear as a good default choice of classifier. The lack of success of sparse approaches suggests that the discriminant signal is

Step Recommendation distributed across the functional connectome for the tasks we study.

The tangent-space parametrization of functional connectomes brings improvements to prediction accuracy. With regards to nodes of the functional connectomes, defining them from rfMRI data gives slight benefits in prediction. Linear decomposition methods, such as dictionary learning or ICA, are good approaches to define these nodes from the rfMRI data at hand. Unlike clustering methods based on "hard" assignment, they provide a soft assignment to regions, enabling to capture a form of uncertainty in the definition of regions.

Alternatively, the MODL 8 (Mensch et al., 2016) or BASC [START_REF] Bellec | Multi-level bootstrap analysis of stable clusters in restingstate fMRI[END_REF] atlases based predictions as shown on Fig. C.1, provide good readily-available nodes that simplify the process and alleviate computational cost. The good analytic performance of pre-computed atlases is promising and calls for further study. Establishing standard atlases brings significant computational benefits, as the definition of regions and the extraction of signal is the most computation-intensive part of the pipeline -in particular when performed inside a nested cross-validation loop.

To enable comparison across different cohorts, we focused on 2class classification problems. However, the results in terms of regions definition and connectivity parametrization should extend to other supervised learning settings, such as regression -e.g. for age prediction (Liem et al., 2017a)multi-output approaches as with Canonical Correlation Analysis popular in large-scale population imaging settings [START_REF] Miller | Multimodal population brain imaging in the UK Biobank prospective epidemiological study[END_REF][START_REF] Smith | A positive-negative mode of population covariation links brain connectivity, demographics and behavior[END_REF] for dimensional approaches to psychology. rfMRI-based predictive models bring the promise of robust and reliable biomarkers: given new brain imaging data, they should give accurate predictions of clinics or behavior [START_REF] Woo | Building better biomarkers: brain models in translational neuroimaging[END_REF].

Our study reveals trends that can provide good defaults to practitioners, summarized on Table 2.2: regions defined from functional data, for instance with ICA or dictionary learning as in the pre-computed MODL atlas, representing connectivity with the tangent embedding of covariance matrices, and using a non-sparse linear model, such as a logistic regression. In particular, good defaults can limit the combinatorial explosion of analytic pipelines, which decreases the computational cost of running a study and makes its conclusion more robust statistically. Yet, as it is well known in machine learning [START_REF] Wolpert | The lack of a priori distinctions between learning algorithms[END_REF], there cannot be a one-size-fits-all solution to data analysis: optimal choices will differ on datasets with very different properties from the datasets studied here.

F U N C T I O N A L S I G N A L S

Chapter 2, has shown the benefits of functionally-defined brain parcellations with ICA (Varoquaux et al., 2010a), dictionary learning (Mensch, Varoquaux, and Thirion, 2016) or clustering [START_REF] Bellec | Multi-level bootstrap analysis of stable clusters in restingstate fMRI[END_REF]. Whether they are obtained from the data at hand or pre-defined from other functional rfMRI datasets, these atlases overall showed higher predictive accuracy. They extract better statistical links from brain data to target outcomes as they capture the functional structure of the brain. This finding motivates deriving high-resolution functional atlases for better predictions and making them readily available to plug into the prediction pipeline. This not only alleviates the computation burden but also satisfies the cross-validated supervised learning criterion i. e. learning ROIs only on training data.

In this chapter, we focus on the derivation of high-resolution functional brain parcellations for population imaging. We define this need in the context of dimensionality reduction as a consequence of growth in the population imaging. We discuss the limitations of existing algorithms in terms of their scalability to large-scale brain volumes and thereafter deploy efficient and scalable statistical algorithm for high-resolution functional brain parcellations. We extend the validation of these new finely-grained brain ROIs to many varieties of analytical tasks beyond rfMRI data. After comprehensive evaluation against existing state-of-the-art pre-defined brain parcellations, we conclude by showing the validation results and the need of such ROIs for high-quality predictions.

. Population imaging has been collecting terabytes of high-resolution functional brain images, uncovering the neural basis of individual differences [START_REF] Elliott | The UK Biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine[END_REF]. While these great volumes of data enable fitting richer statistical models, they also entail massive data storage [START_REF] Gorgolewski | OpenNeuro -a free online platform for sharing and analysis of neuroimaging data[END_REF][START_REF] Poldrack | Toward open sharing of task-based fMRI data: the OpenfMRI project[END_REF] and challenging high-dimensional data analysis. A popular approach to facilitate data handling is to work with Image-derived Phenotypes (IDPs), i. e. low-dimensional signals that summarize the information in the brain images (high-dimensional) while keeping meaningful representations of the brain [START_REF] Miller | Multimodal population brain imaging in the UK Biobank prospective epidemiological study[END_REF]. Then, these reduced representations are the starting point for asking research questions.

Brain parcellations are suitable and widely used for data reduction in functional imaging [START_REF] Craddock | A whole brain fMRI atlas generated via spatially constrained spectral clustering[END_REF][START_REF] Thirion | Dealing with the shortcomings of spatial normalization: Multi-subject parcellation of fMRI datasets[END_REF]. For applications like IDPs, the choice of brain parcellations conditions the signal captured in the data analysis. To define regions well suited to brain-imaging endeavors, there is great progress in building atlases from the neuroimaging data itself [START_REF] Eickhoff | Imaging-based parcellations of the human brain[END_REF]. There are two prominent data-driven approaches to define well-suited structures. These can strive to select homogenous neural populations, typically via clustering approaches [START_REF] Bellec | Multi-level bootstrap analysis of stable clusters in restingstate fMRI[END_REF][START_REF] Craddock | A whole brain fMRI atlas generated via spatially constrained spectral clustering[END_REF][START_REF] Goutte | On clustering fMRI time series[END_REF][START_REF] Schaefer | Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI[END_REF][START_REF] Thirion | Which fMRI clustering gives good brain parcellations?[END_REF]. They can also be defined via continuous modes that map intrinsic brain functional networks [START_REF] Damoiseaux | Consistent restingstate networks across healthy subjects[END_REF][START_REF] Harrison | Large-scale Probabilistic Functional Modes from resting state fMRI[END_REF][START_REF] Varoquaux | Multi-subject dictionary learning to segment an atlas of brain spontaneous activity[END_REF]. As showed on Fig. 2.5 on Chapter 2 and consistent with [START_REF] Abraham | Deriving reproducible biomarkers from multisite resting-state data: An Autism-based example[END_REF], the functional modes have been shown to capture well functional connectivity, with linear decomposition techniques such as ICA or sparse dictionary learning.

High-resolution atlases can give a finegrained division of the brain and capture more functionally-specific regions and rich descriptions of brain activity [START_REF] Schaefer | Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI[END_REF]. Yet, there is to date no highly-resolved set of "soft" functional modes available, presumably because increasing the dimensionality raises significant computational and statistical challenges (Mensch et al., 2016;[START_REF] Pervaiz | Optimising network modelling methods for fMRI[END_REF]. "Soft" regions take continuous non-negative values, in contrast with hard parcellation atlases.

In this chapter, we address this need with high-order Dictionaries of Functional Modes (DiFuMo) extracted at a large scale both in terms of data size (3 million volumes of total data size 2.4TB) and resolution (up to 1024 modes). For this, we leverage the wealth of openly-available functional images [START_REF] Poldrack | Toward open sharing of task-based fMRI data: the OpenfMRI project[END_REF] and efficient dictionary-learning algorithms to fit on large data. This is unlike ICA which is hard to use for a high number of modes [START_REF] Pervaiz | Optimising network modelling methods for fMRI[END_REF].

. --

While analysis of brain images has been pioneered at the voxel level [START_REF] Friston | Statistical Parametric Maps in Functional Imaging: A General Linear Approach[END_REF], IDPs are increasingly used in the context of population imaging. Trading voxel-level signals for IDPs has several motivations. First and foremost, it greatly facilitates the analysis on large cohorts: the data are smaller, easier to share, requiring less disk storage, computer memory, and computing power to analyze. It can also come with statistical benefits. For instance, in standard analysis of task responses, e.g. in mass-univariate brain mapping, the statistical power of hypothesis test at the voxel level is limited by multiple comparisons [START_REF] Friston | Statistical Parametric Maps in Functional Imaging: A General Linear Approach[END_REF], while working at the level of IDPs mitigates this problem [START_REF] Thirion | Dealing with the shortcomings of spatial normalization: Multi-subject parcellation of fMRI datasets[END_REF]. For predictive modeling, e.g. in multi-variate decoding [START_REF] Mourão-Miranda | Classifying brain states and determining the discriminating activation patterns: Support Vector Machine on functional MRI data[END_REF], the highdimensionality of the signals is a challenge to learning models that generalize well-a phenomenon known as the curse of dimensionality in machine learning [START_REF] Hastie | The elements of statistical learning[END_REF]. Finally, for functional connectomes, working at voxel-level is computationally and statistically intractable as it entails modeling billions of connections. The standard approach is therefore to average signals on regions or networks [START_REF] Varoquaux | Learning and comparing functional connectomes across subjects[END_REF].

.

The most popular model in neuroimaging is ICA [START_REF] Hyvärinen | Independent component analysis: algorithms and applications[END_REF], which optimizes spatial independence between extracted maps. It has been extensively used to define resting-state networks [START_REF] Beckmann | Investigations into resting-state connectivity using independent component analysis[END_REF][START_REF] Calhoun | A method for making group inferences from fMRI data using independent component analysis[END_REF][START_REF] Kiviniemi | Independent component analysis of nondeterministic fMRI signal sources[END_REF] and implicitly outlines soft parcellations of the brain at high order [START_REF] Kiviniemi | Functional segmentation of the brain cortex using high model order group PICA[END_REF]Varoquaux et al., 2010a). ICA-defined networks are used to extract the official IDPs of UK Biobank (UKBB), the largest brain-imaging cohort to date; these have been shown to relate to behavior [START_REF] Miller | Multimodal population brain imaging in the UK Biobank prospective epidemiological study[END_REF].

We rely on another decomposition model, dictionary learning (Olshausen and Field, 1997), that enforces sparsity and non-negativity instead of independence on the spatial maps. While less popular than ICA in neuroimaging, sparsity brings the benefit of segmenting well functional regions on a zeroed-out background [START_REF] Lee | A data-driven sparse GLM for fMRI analysis using sparse dictionary learning with MDL criterion[END_REF][START_REF] Varoquaux | Multi-subject dictionary learning to segment an atlas of brain spontaneous activity[END_REF]. For our purposes, an important aspect of sparse models is that they have computationally-scalable formulations even with high model order and on large datasets (Mensch et al., 2016(Mensch et al., , 2018)).

. . Stochastic Online Matrix Factorization SOMF

We consider BOLD time-series from fMRI volumes, resampled and registered to the MNI template. After temporal concatenation, those form a large matrix X ∈ R p×n , where p is the number of voxels of the images (around 2 • 10 5 ), and n is the number of brain images, of the order of 10 6 in the following. To extract DiFuMos, each brain volume is modeled as the linear combination of k spatial functional networks, assembled in a dictionary matrix D ∈ R p×k . We thus assume that X approximately factorizes as DA, where the matrix A ∈ R k×n holds in every column the loadings α i necessary to reconstruct the brain image x i from the networks D. The dictionary D is to be learned from data. For this, we rely on Stochastic Online Matrix Factorization1 (Mensch et al., 2018, SOMF), that is computationally tractable for matrices large in both directions, as with high-resolution large-scale fMRI data. SOMF solves the constrained 2 reconstruction problem min

D∈R p×k ,A∈R k×n D 0,∀ j∈[k], d j 1 1 X -DA 2 F + λ A 2 F , (3.1) 
where λ is a regularization parameter that controls the sparsity of the dictionary D, via the 1 and positivity constraints2 . Encouraging sparsity in spatial maps is key to obtaining well-localized maps that outline few brain regions. The parameter λ is chosen so that the union of all maps approximately covers the whole brain with minimum overlap between maps. We provide an exhaustive description of the methodological choices made for extracting DiFuMos in Appendix D.

In particular, we provide more details on selecting the optimum λ, on the brain coverage of the DiFuMo atlases (see Table D.1) and overlaps between the modes (see Fig. D.2).

. . Input fMRI data

Most functional brain atlases have been extracted from rfMRI [START_REF] Bellec | Multi-level bootstrap analysis of stable clusters in restingstate fMRI[END_REF][START_REF] Craddock | A whole brain fMRI atlas generated via spatially constrained spectral clustering[END_REF][START_REF] Miller | Multimodal population brain imaging in the UK Biobank prospective epidemiological study[END_REF][START_REF] Power | Functional Network Organization of the Human Brain[END_REF][START_REF] Schaefer | Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI[END_REF][START_REF] Yeo | The organization of the human cerebral cortex estimated by intrinsic functional connectivity[END_REF]. Brain networks can also be extracted from task-fMRI data [START_REF] Calhoun | Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks[END_REF][START_REF] Lee | A data-driven sparse GLM for fMRI analysis using sparse dictionary learning with MDL criterion[END_REF], and segment a similar intrinsic largescale structure [START_REF] Smith | Correspondence of the brain's functional architecture during activation and rest[END_REF]. In our work, we build functional modes from datasets with different experimental conditions, including task and rest. Our goal is to be as general as possible and capture information from different protocols. Indeed, defining networks on task-fMRI can help representing these brain images and predicting the corresponding psychological conditions [START_REF] Duff | Task-driven ICA feature generation for accurate and interpretable prediction using fMRI[END_REF]. We note that appending rest data to the already large task-fMRI corpus gives marginal improvement (Figure D.3). We build the input data matrix X with BOLD time-series from 25 different task-based fMRI studies and 2 resting state studies, adding up to 2 192 functional MRI recording sessions. We gather data from OpenNeuro [START_REF] Gorgolewski | OpenNeuro -a free online platform for sharing and analysis of neuroimaging data[END_REF]) -Appendix D.2 lists the corresponding studies.

We use fMRIprep [START_REF] Esteban | fM-RIPrep: a robust preprocessing pipeline for functional MRI[END_REF] for minimal preprocessing: brain extraction giving as a reference to correct for head-motion (Jenkinson et al., 2002a), and co-registration to anatomy [START_REF] Greve | Accurate and robust brain image alignment using boundary-based registration[END_REF]. All the fMRI images are transformed to MNI template space. We then use MRIQC [START_REF] Esteban | MRIQC: Advancing the automatic prediction of image quality in MRI from unseen sites[END_REF] for quality control.

-

We estimate dictionaries of dimensionality k ∈ {64, 128, 256, 512, 1024}. This is useful as the optimal dimensionality for extracting IDPs often depends on the downstream data analysis task. The obtained functional modes segment well-localized regions, as illustrated in Figure 3.2 1a.

. This section bares a resemblance to Section 2.3.1.3 in Chapter 2. Here, we briefly summarize in this chapter as it is an important step for IDPs to lead high-quality predictions. The functional modes decomposed from ICA or SOMF algorithms take continuous values (we refer to them as soft) and can have some overlap -though in practice this overlap is small. As a consequence, signal extraction calls for more than averaging on regions. The natural formulation is that the extracted signals (the IDPs) should best approximate the brain image x ∈ R p as a linear combination α ∈ R k of the set of modes in the dictionary D ∈ R p×k . This is solved by linear regression:

α = argmin α∈R k x -Dα 2 2 , i.e. α = D † x, (3.2) 
where

D † = (D T D) -1 D T ∈ R k×p is the pseudo-inverse of D.
For atlases composed of non-overlapping regions, such as classic brain parcellations-e.g. BASC [START_REF] Bellec | Multi-level bootstrap analysis of stable clusters in restingstate fMRI[END_REF] 2016), the linear regression formulation caters for the overlap and softness of the regions.

We use the reduced representations IDPs introduced above for various functional-imaging analytic tasks: decoding mental processes from brain activity (Section 3.4.2); predicting phenotypes from functional connectomes (Section 3.4.3); standard mass-univariate analysis of brain responses (Section 3.4.4); finally, we measure the quality of signal reconstruction after dimension reduction, illustrated on meta-analyses (Section 3.4.5).

. . Benchmarking several functional atlases

To gauge the usefulness of the DiFuMos for IDPs extraction, we compare each analysis pipeline across several functional atlases: DiFuMo and reference atlases are used to compute functional IDPs. We use the same signal-extraction function (3.2), but vary the spatial components D. As a baseline, we also perform the voxel-level analyses, though it entail significantly larger computational costs. We consider other functional atlases that are multi-resolutions, accessible to download, and volumetric (Table 3 

. . Decoding experimental stimuli from brain responses

Decoding predicts psychological conditions from task-related z-maps [START_REF] Haynes | Decoding mental states from brain activity in humans[END_REF]. The validity of a decoding model is evaluated on left-out data (following [START_REF] Varoquaux | Assessing and tuning brain decoders: cross-validation, caveats, and guidelines[END_REF], e.g. left-out subjects for inter-subject decoding [START_REF] Poldrack | Decoding the large-scale structure of brain function by classifying mental states across individuals[END_REF].

We use linear decoding models: ridge regression for continuous target and SVC [START_REF] Hastie | The elements of statistical learning[END_REF] for classification.

For each study, we separate sessions (for intra-subject decoding) or subjects (for inter-subject decoding) into randomly-chosen train and test folds (20 folds with 30% test size), and measure the test accuracy.

We compare the performance of predictive models using voxel-level z-maps or data reduced with functional atlases.

. . . Data

We use 6 open-access task-fMRI studies. We perform inter-subject decoding in the emotional and sensitivity to pain experiences from [START_REF] Chang | A Sensitive and Specific Neural Signature for Picture-Induced Negative Affect[END_REF], and in three studies from HCP900 [START_REF] Van Essen | The Human Connectome Project: A data acquisition perspective[END_REF]: working memory, gambling [START_REF] Delgado | Tracking the Hemodynamic Responses to Reward and Pun-ishment in the Striatum[END_REF], and relational processing [START_REF] Smith | Localizing the rostrolateral prefrontal cortex at the individual level[END_REF]. We perform intrasubject decoding using the several sessions of left and right button press responses in Individual Brain Charting (IBC) (ARCHI protocol, [START_REF] Pinel | Fast reproducible identification and large-scale databasing of individual functional cognitive networks[END_REF]. The unthresholded z-maps used in the decoding pipeline are either obtained from Neurovault [START_REF] Gorgolewski | NeuroVault.org: a web-based repository for collecting and sharing unthresholded statistical maps of the human brain[END_REF], or computed with the General Linear Model (GLM) following Section 3.4.4.

. . Predicting phenotype from functional connectomes

Resting-state fMRI can be used to predict phenotypic traits [START_REF] Richiardi | Decoding brain states from fMRI connectivity graphs[END_REF]. For this, each subject is represented by a functional connectivity matrix capturing the correlation between brain signals at various locations. Our functional-connectome prediction pipeline comprises three steps: 1) we extract a reduced representation of the BOLD signal3 , projecting voxel-level data onto a functional atlas as in Section 3.4.4; 2) we compute a functional connectome from the reduced BOLD signals; 3) we use it as input to a linear model. We compute a connectome from activations with the Ledoit and Wolf (2004a) covariance estimator as [START_REF] Brier | Partial covariance based functional connectivity computation using Ledoit-Wolf covariance regularization[END_REF] and [START_REF] Varoquaux | Learning and comparing functional connectomes across subjects[END_REF]. We then derive single-subject features from covariance matrices using their tangent space parametrization [START_REF] Barachant | Classification of covariance matrices using a Riemannian-based kernel for BCI applications[END_REF][START_REF] Pervaiz | Optimising network modelling methods for fMRI[END_REF]Varoquaux et al., 2010c), as advocated by the benchmarks at Section 2.4.2 in Chapter 2. Those are used to fit an 2 -penalized logistic regression for classification and a ridge regression for continuous targets. We assess predictive performance with 20 folds, random splits of subjects in train and test sets, with 25% test size.

. . . Data

We use 7 openly-accessible datasets with diverse phenotypic targets, as summarized in Table D.3. We predict diagnostic status for Alzheimer's disease on ADNI [START_REF] Mueller | The alzheimer's disease neuroimaging initiative[END_REF], PTSD on ADNI-DOD; Autism Spetrum Disorder on ABIDE [START_REF] Martino | The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism[END_REF] and schizophrenia on COBRE [START_REF] Calhoun | Exploring the psychosis functional connectome: Aberrant intrinsic networks in schizophrenia and bipolar disorder[END_REF]; drug consumption on ACPI; fluid intelligence measures on HCP [START_REF] Van Essen | The WU-Minn human connectome project: an overview[END_REF]; and age (with a regression model) in normal aging with The Cambridge Centre for Ageing and Neuroscience (CamCAN) [START_REF] Taylor | The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) data repository: Structural and functional MRI, MEG, and cognitive data from a cross-sectional adult lifespan sample[END_REF].

. . Mapping brain response: standard task-fMRI analysis

Standard analysis in task-fMRI relates psychological manipulations to brain activity separately for each voxel or region. It models the BOLD signal as a linear combination of experimental conditions-the General Linear Model (GLM, [START_REF] Friston | Statistical Parametric Maps in Functional Imaging: A General Linear Approach[END_REF]. The BOLD signal forms a matrix Y ∈ R n×p , where p is the number of voxels. With data reduction, we use as input the reduced signal

Y red = Y voxel (D † ) ∈ R n×k (Equation 3.2).
The GLM models Y or Y red as Y = Xβ + where X ∈ R n×q is the design matrix formed by q temporal regressors of interest or nuisance and is noise [START_REF] Friston | Event-Related fMRI: Characterizing Differential Responses[END_REF]. In our experiments, we use the Nistats library 4 , and compute a common brain mask from data covering brain areas with International Consortium for Brain Mapping (ICBM) grey matter mask.

With reduced input Y red , we obtain one signal per region, as β ∈ R q×k . The full β-maps can then be reconstructed by setting β rec = βD ∈ R q×p . We transform the reconstructed β-maps into z-maps z ∈ R q×p using base contrasts, before thresholding them with [START_REF] Benjamini | Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing[END_REF] False Discovery Rate (FDR) correction for multiple comparisons. We then compare the z-maps obtained using voxels as input, and z-maps using reduced input and reconstructed β-maps, using the dice similarity coefficient.

. . . Data

We consider the Rapid-Serial-Visual-Presentation (RSVP) language task of IBC (see [START_REF] Pinho | Individual Brain Charting, a high-resolution fMRI dataset for cognitive mapping[END_REF] for experimental protocol and preprocessing). We model six experimental conditions: complex meaningful sentences, simple meaningful sentences, jabberwocky, list of words, lists of pseudowords, consonant strings. β-maps are estimated for each subject using a fixed-effect model over 3 out of the 6 subject's sessions. We randomly select 3 sessions 10 times to estimate the variance of the Dice index across sessions. As a baseline, we evaluate the mean and variance of the Dice index across z-maps when varying the sessions used in voxel-level GLM.

. .

Quality of image reconstruction

The signals extracted on a brain atlas can be seen as a compression, or simplification, of the original signal. Indeed, a full image can be reconstructed from these signals. We quantify the signal loss incurred by this reduction. For this, we project a brain map x (obtained with the ICBM whole brain mask) onto an atlas (solving Eq. (3.2)), and compute the best reconstruction of x from the loadings α, namely x = Dα ∈ R p . We compare original and reconstructed images through the R 2 coefficient,

R 2 (x, x) = 1 - x -x 2 2 x -x 2 2 , (3.3)
where x ∈ R is the spatial mean of map x. The R 2 coefficient is averaged across all images. Higher R 2 coefficients means that the reduced signals IDPs explain more variance of the original images, where R 2 = 1 corresponds to no signal loss. The larger the number of signals used, the easier it is to explain variance; it is therefore interesting to compare this measure across atlases with similar number of components. For a fixed number of component in the DiFuMo atlases, R 2 increases with brain coverage.

. . . Data

We use NeuroVault [START_REF] Gorgolewski | NeuroVault.org: a web-based repository for collecting and sharing unthresholded statistical maps of the human brain[END_REF], the largest public database of statistical maps. To avoid circularity, we exclude maps derived from the studies used to extract the DiFuMo atlases, along with maps that fail semi-automated quality inspection (filtering out thresholded or non-statistical maps), resulting in 15,542 maps.

. . .

Meta-analysis of contrasts maps

Ideally, the extracted IDPs should allow to compute meta-analytical summaries of brain activity maps. In this setting, a single map, corresponding to a certain cognitive concept, is computed from many z-maps across different studies, associated to conditions that involve this cognitive concept. We compare the summaries obtained at voxellevel, i. e. averaging the maps {x}, with the ones obtained using reconstructed images, i.e. averaging the maps {x} used in Eq. (3.3). We use maps from our curated subset of NeuroVault annotated with terms motor, language and face recognition.

. :

Relating IDPs to known brain structures facilitates interpretation and discussion of results. Though the DiFuMo atlases are defined from functional signal, we choose to reference their regions by their anatomical location, as it is a common and well-accepted terminology in neuroscience. For each resolution, we match the modes with regions in references of brain structure: the Harvard-Oxford atlas [START_REF] Desikan | An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest[END_REF], Destrieux atlas [START_REF] Destrieux | Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature[END_REF], the MIST atlas [START_REF] Urchs | MIST: A multi-resolution parcellation of functional brain networks[END_REF], Johns Hopkins University (JHU) atlas [START_REF] Hua | Tract probability maps in stereotaxic spaces: Analyses of white matter anatomy and tract-specific quantification[END_REF], and the Dierdrichsen cerebellum atlas [START_REF] Diedrichsen | A probabilistic MR atlas of the human cerebellum[END_REF]. We name each mode from the anatomical structure that it most overlaps with. When the overlap was weak, a trained neuroanatomist (AMS) looked up the structure in standard classic anatomy references [START_REF] Catani | Atlas of Human Brain Connections[END_REF][START_REF] Henri | The Human Brain: Surface, Three-dimensional Sectional Anatomy with MRI, and Blood Supply[END_REF][START_REF] Ono | Atlas of the cerebral sulci[END_REF][START_REF] Rademacher | Human Cerebral Cortex: Localization, Parcellation, and Morphometry with Magnetic Resonance Imaging[END_REF][START_REF] Schmahmann | Three-Dimensional MRI Atlas of the Human Cerebellum in Proportional Stereotaxic Space[END_REF]. results clearly show the importance of high-dimensional functional modes for decoding. Indeed, the higher the atlas resolution, the better the predictions. Using DiFuMo k = 1024 or Schaefer k = 1000 gives the best performance. In addition, as these functional atlases segment sufficiently-fine regions, prediction from the corresponding signals tends to outperform voxel-level prediction. Indeed, applying multivariate models to a larger number of signals with a limited amount of data is more prone to overfitting-data reduction acts here as a welcome regularization. Qualitatively, brain maps containing decoding weights can be reconstructed. With high-dimensional atlases, they are interpretable and capture information similar to voxel-level analysis (Figure 3.4). composed of a dataset and a target phenotype); the lines give the median across the prediction problems. Here, we do not report a voxel-level baseline, as it requires to compute covariance matrices of dimensions around 100, 000 × 100, 000 and is therefore computa-tionally and statistically intractable. In contrast with previous results, high-resolution atlases do not provide the best performance, likely because the complexity of the statistical models increases with the square of the number of nodes. The best prediction overall is achieved using DiFuMo k = 256, followed by Craddock k = 400 and BASC k = 444 atlases.

. . Predicting traits from functional connectomes

. . Brain mapping: standard task-fMRI analysis Figure 3.6 reports the results of standard analysis of task-fMRI GLM, comparing analysis at the voxel-level with analyses on signals extracted from functional atlases. Best correspondence is obtained at highest dimensionality, as the regions are finer. Notably, analysis with DiFuMo of dimensionality 1024 is markedly closer to voxel-level analysis than using the best-performing alternatives, i. e. the 1000dimensional Schaefer parcellation and the 1095 MIST atoms. In addition, the Dice index relative to the voxel-level gold standard is comparable to the Dice index between runs of voxel-level GLM estimated across folds. We note that using soft functional modes from only 55 ICA components shows excellent results, comparable to those obtained using the 1000 components Schaefer atlas. This stresses the benefit of continuous functional modes for the analysis of task responses.

Overall, standard task-fMRI analysis on signals derived from 512 or 1024-dimensional DiFuMo gives results close to the voxel-level gold standard (Figure 3.6 shows that the maps are also qualitatively similar). 5 Dimension reduction has the additional benefit of alleviating the burden of correcting for multiple comparisons.

. . Fraction of the original signal captured

Figure 3.7 (left) displays the R 2 scores summarizing the loss of information when data are reduced on an atlas and reconstructed back to full images. Unsurprising, reducing the images with lower-order dimensions (atlases with fewer regions) yields a high loss of information across all methods. DiFuMo k = 1024 captures 70% of the original voxel-level signal. Qualitatively, the benefits of functional modes can be seen by comparing the meta-analytic maps related to motor tasks (Figure 3.7 right). The DiFuMo have clear visual benefits over brain discrete parcellations, such as BASC, as they better capture gradients.

5 We note that using too coarse altases may fail at detecting statistically significant voxel activations, yielding a Dice index of 0. divisions. They are derived from BOLD time-series across many studies to capture well functional images with a small number of signals. In the context of population imaging, these signals are known as image-derived phenotypes (IDP, Miller and Alfaro-Almagro, 2016) and are crucial to easily scale statistical analysis, building a science of inter-individual differences by relating brain signals to behavioral traits [START_REF] Dubois | Building a Science of Individual Differences from fMRI[END_REF]. Reducing the dimensionality of the signals not only come with a 1000× gain in storage, but also with 100× computational speed-up for the analysis (Table 3.2). Even smallscale studies may need functional nodes, e.g. for computing functional connectomes [START_REF] Varoquaux | Learning and comparing functional connectomes across subjects[END_REF][START_REF] Zalesky | Wholebrain anatomical networks: Does the choice of nodes matter?[END_REF]. There already exist many functional brain atlases; yet DiFuMos have the unique advantage of being both soft and highly resolved. These features are important to capture gradients of functional information.

---Signals extracted from a functional atlas should enable good statistical analysis of brain function. We considered quantitative measures for typical neuroimaging analytic scenarii and compared the fitness of extracting signal on DiFuMo with using existing functional brain atlases. The biggest gains in analysis come from increasing the dimensionality of brain sub-divisions, aside for functional connectome studies where an optimal is found around 200 nodes. Choosing the number of nodes then becomes a tradeoff be- tween complexity of the representation and analytic performance. Importantly, the gains in analytic performance continue way beyond the dimensionality typically used for IDPs (e.g. 55 components from Miller and Alfaro-Almagro, 2016). These results extend prior literature emphasizing the importance of high-dimensional parcellations for fMRI [START_REF] Elseoud | Group-ICA Model Order Highlights Patterns of Functional Brain Connectivity[END_REF][START_REF] Arslan | Human brain mapping: A systematic comparison of parcellation methods for the human cerebral cortex[END_REF][START_REF] Sala-Llonch | Spatial parcellations, spectral filtering, and connectivity measures in fMRI: Optimizing for discrimination[END_REF][START_REF] Thirion | Which fMRI clustering gives good brain parcellations?[END_REF]. To foster good analysis, the second most important aspect of a parcellation appears that it be soft, i.e. continuously-valued. For a given dimensionality, soft modes tend to outperform hard parcellations, whether they are derived with ICA or dictionary learning. 

-

The functional modes are optimized to fit well a large number of Echo Planar Imaging (EPI) images: 2,192 sessions across 27 studies. As a result, they form a division of the brain well adapted to the signal. For instance, they define regions larger in the white matter and in the CSF than in the grey matter (Figure 3.9). A large dataset is needed to capture such implicit regularities of the signal with high-dimensional spatial decompositions. Indeed, running the same model on less data extracts modes with less spatial regularity (Mensch et al., 2016). The combination of high dimensionality and large dataset leads to significant computational demands. The extraction of DiFuMos was possible thanks to fast algorithms for huge matrix factorization (Mensch et al., 2018), and gathering data representative of a wide variety of scanning protocols via openfMRI [START_REF] Poldrack | Toward open sharing of task-based fMRI data: the OpenfMRI project[END_REF].

We did not limit the DiFuMo modes to gray matter, as measures outside gray matter can be useful in subsequent analysis, for instance to remove the global signal [START_REF] Murphy | Towards a consensus regarding global signal regression for resting state functional connectivity MRI[END_REF]. In addition, distributed modes extracted from full-brain EPI can separate out noise -such as movement artifacts-and help rejecting it in a later analysis [START_REF] Griffanti | ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging[END_REF][START_REF] Perlbarg | CORSICA: correction of structured noise in fMRI by automatic identification of ICA components[END_REF][START_REF] Pruim | Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI[END_REF]. Some DiFuMo modes indeed segment ventricles or interfaces. Depending on the application, practitioners can choose to restrict signal extraction to a grey-matter mask.

To extract structures defined by brain anatomy or microstructure, atlasing efforts have used anatomical or multimodal imaging [START_REF] Desikan | An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest[END_REF][START_REF] Eickhoff | Assignment of functional activations to probabilistic cytoarchitectonic areas revisited[END_REF][START_REF] Glasser | A multi-modal parcellation of human cerebral cortex[END_REF][START_REF] Mori | MRI atlas of human white matter[END_REF]. The DiFuMo atlases capture a different signal: brain activity. Yet, thanks to the sparsity and non-negativity constraint, they are made of localized modes which often have a natural anatomical interpretation. Consequently, we have labeled the modes with a unique name based on the most relevant anatomical structure, following [START_REF] Urchs | MIST: A multi-resolution parcellation of functional brain networks[END_REF] who also give anatomical labels to functional regions. Indeed, using a common vocabulary of brain structures is important for communication across the neuroimaging community. As visible on Figure 3.8, the modes are well anchored on anatomical structures such as the putamen and the thalamus. They are however not constrained to contain only one connected region. Smaller dimension DiFuMos indeed capture distributed networks, often comprising bilateral regions. As the dimensionality increases, the networks progressively separate in smaller networks which eventually form single regions. For instance, the left and right putamen appear in the same mode at dimension 64, and are first sub-divided along the anterio-posterior direction, and later the left and right putamen are separated (Figure 3.8). Dimension choice is data driven: it should best explain the functional signal.

. With this chapter, we provide multidimensional atlases of functional modes for population imaging to extract functional signals: parietal-inria.github.io/DiFuMo. They give excellent performance for a wide variety of analytic tasks: mental-process decoding or functionalconnectivity analysis. Their availability reduces computational burdens: practitioners can readily perform analyses on a reduced signal, without a costly ROI-definition step. In addition, working on common functional modes across studies facilitates comparison and interpretations of results. To help communication, we have labeled every functional mode to reflect the neuroanatomical structures that it contains. To date, these are the only high-dimensional soft functional modes available. As they have been extracted from a variety of data (more than 2,000 sessions across 27 studies, 2.4TB in size) and improve many analytic tasks, the rich descriptions of neural activity that they capture is well suited for a broad set of fMRI studies.

P R E D I C T I N G P R O X Y M E A S U R E S F O R M E N T A L H E A LT H

In this Chapter, we combine socio-demographic information and brain images to derive end points for mental health. We study these to bring complementary information to the challenging problem of understanding complex brain and mind disorders. An epidemiological approach to mental health may benefit from candidate measures extracted from machine learning. We discuss these measures and comparatively learn to predict them from epidemiological data. We evaluate the importance of socio-demographics (non-imaging) and imaging in deriving surrogate endpoints for mental disorders.

. Individual assessments in psychology and psychiatry rely on observing behavior. Using biological insight to diagnose and treat mental disorders remains a hard problem despite substantial research efforts [START_REF] Kapur | Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it?[END_REF]. The field of psychiatry has struggled with purely descriptive and unstable diagnostic systems [START_REF] Insel | Research Domain Criteria (RDoC): Toward a New Classification Framework for Research on Mental Disorders[END_REF], small sample sizes [START_REF] Szucs | Empirical assessment of published effect sizes and power in the recent cognitive neuroscience and psychology literature[END_REF], and reliance on dichotomized groups, i.e., patients vs controls [START_REF] Hozer | Can neuroimaging disentangle bipolar disorder?[END_REF]. Compared to somatic medicine, mental-health research faces the additional roadblock that mental pathologies cannot be measured the same way diabetes can be assessed through plasma levels of insulin or glucose. Psychological constructs, e.g., depressiveness or anxiety can only be probed indirectly through expert-built procedures such as specially-crafted questionnaires and structured interviews. Measuring reliably a given construct is difficult, and questionnaires often remain the best option [START_REF] Enkavi | Large-scale analysis of test-retest reliabilities of self-regulation measures[END_REF]. While the field of psychometrics has thoroughly studied the validity of psychological constructs and their measures [START_REF] Borsboom | The Concept of Validity[END_REF][START_REF] Cronbach | Construct validity in psychological tests[END_REF][START_REF] Eisenberg | Uncovering the structure of self-regulation through data-driven ontology discovery[END_REF], the advent of new biophysical measurements on the brain brings new promises (Engemann et al., 2020a;[START_REF] Kievit | The neural determinants of age-related changes in fluid intelligence: a pre-registered, longitudinal analysis in UK Biobank[END_REF][START_REF] Nave | Are Bigger Brains Smarter? Evidence From a Large-Scale Preregistered Study[END_REF]. In particular, the growth of biobanks as well as the advances in statistical-learning techniques opens the door to large-scale validation of psychological constructs and measures for neuropsychiatric research [START_REF] Collins | What makes UK Biobank special?[END_REF]).

. . Motivating example

In clinical neuroscience, machine learning is increasingly popular, driven by the hope to develop more generalizable models [START_REF] Woo | Building better biomarkers: brain models in translational neuroimaging[END_REF].

Chapter 2 studies the required statistical tools. Yet, the availability of large high-quality neuropsychiatric cohorts is a practical obstacle for applied machine learning in psychiatry [START_REF] Varoquaux | Cross-validation failure: Small sample sizes lead to large error bars[END_REF]. Rather, there have been successes developing brain-derived measures on populations without neuropsychiatric conditions, capturing proxy information on mental health such as aging (Liem et al., 2017b). Accordingly, the hope is to learn general measures of individual differences in large datasets with high fidelity, to then enhance a prediction task in a small dataset by exploiting the links between the actual clinical endpoint of interest, e. g. diagnosis or drug response, with those general measures.

. . Contributions

In this Chapter, we systematically benchmarked distinct proxymeasures of individual differences in three psychological constructs, i. e. brain age, fluid intelligence and neuroticism on the UKBB, the largest epidemiological resource gathering various health-related, social and somatic and neuroimaging data. Contrary to prior studies using similar constructs [START_REF] Cox | Structural brain imaging correlates of general intelligence in UK Biobank[END_REF][START_REF] Maglanoc | Brain Connectome Mapping of Complex Human Traits and Their Polygenic Architecture Using Machine Learning[END_REF][START_REF] Nave | Are Bigger Brains Smarter? Evidence From a Large-Scale Preregistered Study[END_REF], our analyses focused on extending the predictive modeling across all domains of MRI and, importantly, performing model comparisons with and against socio-demographic variables. This approach allowed us to investigate, in both regression and classification analyses, the redundancies between these different sources of information and to assess when combining neuroscientific information with socio-demographics variables helped improve learning.

.

In the past years, brain age has received significant interest as one such proxy measure, giving rise to the so called brain age delta defined as the difference between predicted and actual age [START_REF] Smith | Estimation of brain age delta from brain imaging[END_REF].

The delta has been shown to reflect physical and cognitive impairment in adults and gives an index of neurodegenerative processes (Liem et al., 2017b). Can the successful strategy pursued with the brain age as a brain-derived proxy-measure be extended beyond the construct of pathological aging? Intelligence, one of the most extensively studied concepts from psychology, may be such one potential candidate. Fluid intelligence [START_REF] Cattell | Theory of fluid and crystallized intelligence: A critical experiment[END_REF][START_REF] Cattell | Modafinil Alters Intrinsic Functional Connectivity of the Right Posterior Insula: A Pharmacological Resting State fMRI Study[END_REF] refers to the putatively culture-free, physiological component of intelligence and has been robustly associated with maturation but also differences in cognitive-processing speed and working-memory capacity [START_REF] Shelton | The relationships of working memory, secondary memory, and general fluid intelligence: working memory is special[END_REF]. It may thus serve as a more specific surrogate measure and, indeed, has been associated with psychiatric disorders such as psychosis, bipolar disorder and substance abuse [START_REF] Keyes | Association of Fluid Intelligence and Psychiatric Disorders in a Population-Representative Sample of US Adolescents[END_REF][START_REF] Khandaker | Association of Childhood Infection With IQ and Adult Nonaffective Psychosis in Swedish Men: A Population-Based Longitudinal Cohort and Co-relative Study[END_REF].

Neuroticism, on the other hand, is a traditional concept from personality psychology intrinsically related to anxiety, depression and negative emotions and has been interculturally validated [START_REF] Cattell | Modafinil Alters Intrinsic Functional Connectivity of the Right Posterior Insula: A Pharmacological Resting State fMRI Study[END_REF][START_REF] Lynn | Gender differences in extraversion, neuroticism, and psychoticism in 37 nations[END_REF]. However, neuroticism has so far been a more elusive trait. Neuroticism has turned out to be useful in psychometric screening and supports predicting real-world behavior [START_REF] Lahey | Public health significance of neuroticism[END_REF][START_REF] Tyrer | Classification, assessment, prevalence, and effect of personality disorder[END_REF]. Moreover, despite strong heritability at the population level [START_REF] Power | Heritability estimates of the Big Five personality traits based on common genetic variants[END_REF][START_REF] Vukasović | Heritability of personality: a meta-analysis of behavior genetic studies[END_REF][START_REF] Yarkoni | Neurobiological substrates of personality: A critical overview[END_REF], the link with brain function at the level of large-scale network dynamics or the level of molecular mechanisms remains ambiguous given a large body of contradictory results [START_REF] Yarkoni | Neurobiological substrates of personality: A critical overview[END_REF]. This raises the question of what neuroimaging data it should be related to.

The advent of large MRI datasets has revealed the complexity of anchoring personality traits in the brain. Current attempts to predict fluid intelligence or neuroticism from thousands of MRI scans, argue in favor of overwhelming heterogeneity and rather subtle effects that do not generalize well to unseen data (Dubois et al., 2018b,c). This stands in contrast to the remarkable performance obtained when predicting intelligence or neuroticism from other psychometric measures or semantic data qualitatively similar to psychometric questionnaires, e. g. Twitter and Facebook posts [START_REF] Quercia | Our twitter profiles, our selves: Predicting personality with twitter[END_REF][START_REF] Youyou | Computerbased personality judgments are more accurate than those made by humans[END_REF]. As MRI acquisitions can be expensive and difficult in clinical settings or population, the success of social-media data is appealing. Reusing such data for medical research and treatment may neither be ethically nor practically feasible while, potentially, susceptible to complex and difficult to control selection bias. On the other hand, background sociodemographic characteristics of individuals can be easily accessible and may help inform in similar ways on the heterogeneity of psychological traits, for instance capturing that fluid intelligence decreases with age. An important question is then whether they bring redundant or complementary information to brain data.

. An intensified focus on sociodemographics calls into attention the diversity of measurement scales, that are often categorical, e. g. education degree, or quantitative, yet, on arbitrary non-physical units, e. g. monthly income. In fact, society treats individual differences as categorical or continuous, depending on the practical context. Personality has been proposed to span a continuum [START_REF] Eysenck | The continuity of abnormal and normal behavior[END_REF]. Nevertheless, psychiatrists treat certain people as patients, not others [START_REF] Perlis | Translating biomarkers to clinical practice[END_REF]. The utility of any proxy-measure, therefore, depends on its practical context: When learning boundaries between qualitatively distinct groups, a measure that performs globally poorly for regression analysis can, nevertheless, be sufficient for classification analysis. In fact, a measure may be solely informative around the boundary region between certain classes, e. g. pilots who should fly and who should not. Importantly, the utility of any proxy-measure ultimately depends on its signal-to-noise ratio, which may be driven by measurement noise, heterogeneity, as well as variability intrinsic to the particular psychometric instrument chosen, e. g. the type of test to assess intelligence. It is therefore important to assess the limits of what can be learnt with state-of-the-art general purpose machine learning from large-scale datasets.

. -

. . Dataset

We focused on the UKBB database which is openly accessible and has extensive data acquired on 500 000 individuals aged 40-70 years covering rich phenotypes, health-related information, brain-imaging and genetic data [START_REF] Collins | What makes UK Biobank special?[END_REF]. UKBB is a prospective cohort where participants across Great Britain who have provided informed consent will follow: Initial assessment visit, first repeat assessment visit, imaging visit (brain image acquisition) and first repeat imaging visit1 .

. . Participants

In this analysis2 , we used data mostly based on the initial assessment and the imaging visit (i. e. first and third visit) gathering around 10 000 individuals. We found 11175 individuals who have responded to fluid intelligence questionnaires with 51.6% female (5572) and 48.3% male (5403); and have an age range between 40-70 years (with a mean of 55 years and standard deviation of 7.5 years). Out of these, 5587 individuals are included in the analysis to train the model and 

Early life

Country of birth, adopted as child ... In this work we combined multiple classes of brain images (A) with sociodemographic data (B) to approximate health-related biomedical and psychological constructs situated at distinct levels of measurement (C), i. e. , the brain age (accessed through prediction of chronological age), cognitive performance (accessed through a test for fluid intelligence) and the tendency to report negative emotions (accessed through the neuroticism questionnaire). We included 10 000 subjects imaging data release from the UK biobank. Among imaging data (A) we considered features related to cortical and subcortical volumes, functional connectivity from rfMRI based on ICA networks and white-matter molecular tracts from diffusive directions (see Table 4.1 for an overview about multiple classes of brain images). We then grouped the sociodemographic data (B) into five different blocks of variables related to self-reported responses of health issues, primary demographics, lifestyle, education and early life events (Table 4.2 lists the number of variables in each block). Subsequently, we conducted systematic comparisons between the approximations of all three targets based on either brain images and sociodemographics in isolation or combined (C) to evaluate the relative contribution of these distinct inputs. Models were developed on 50% of the data (randomly drawn) based on random forest regression guided by Monte Carlo cross-validation with 25 splits. For simplicity, we refer to the target-approximations as prediction of proxy measures.

remaining subjects were kept aside for later generalization testing. Also, there were 86 non-imaging variables in our download related to lifestyle, early life, smoking habits and complaints about mental health which we used as additional health-related and sociodemographic predictors in statistical modeling. The present study was supported by application number 23827.

. . Data processing

The full details about MRI data preprocessing to feature extraction are explained at Appendix E. Here, we briefly outline about the brain features.

. . Brain features

We conducted predictive modeling combining several sources of input data: Structural Magnetic Resonance Imaging (sMRI), rfMRI, dMRI and non-imaging data.

. . .

Structural MRI

We included 157 sMRI features consisting of volume of total brain and grey matter along with brain subcortical structures. 3 All these features are pre-extracted by UKBB brain imaging team [START_REF] Miller | Multimodal population brain imaging in the UK Biobank prospective epidemiological study[END_REF] and are part of data download. We use them as is to stack with other MRI features for predictive analysis.

. . . Diffusion weighted MRI

We included 432 dMRI skeleton features of Fractional Anisotropy (FA), Tensor Mode (MO) and Mean Diffusivity (MD), Intra-Cellular Volume Fraction (ICVF), Isotropic Volume Fraction (ISOVF) and Orientation Dispersion index (OD) modelled on many brain white matter structures extracted from Neuroanatomy 4 . The skeleton features we included were from category134 shipped by the UKBB brain imaging team and we used them without modification.

. . . Functional MRI

We also included resting-state connectivity features based on the timeseries extracted from 55 ICA components representing various brain networks. These included the default mode network (red), extended default mode network and cingulo-opercular network (light red), executive control and attention network (green), visual network (blue), and sensorimotor network (orange) as shown on Fig. E.1. We measured functional connectivity in terms of the between-network covariance.

To account for the fact that covariance matrices live inside a particular manifold, i. e. a curved non-Euclidean space, we used the tangentspace embedding to transform the matrices into a Euclidean space (Abraham et al., 2014a;Varoquaux et al., 2010d). Then, we vectorized the connectivity matrices to 1485 features by taking the lower triangular part for predictive modeling. 

. . Socio-demographics

Also often called as Non-imaging variables in this chapter. We included 86 non-imaging data which are the collection of variables reflecting each participant demographic and social factors i. e. sex, age, date and month of birth, body mass index, ethnicity, exposures at early life such as -breast feeding, maternal smoking around birth, adopted as child -education, exposures of lifestyle related to -occupation, household family income, household people living at the same place, smoking habits -mental health conditions. All these data consist of self-assessments available as part of data download along with imaging data. .

. . Imaging-based models

First, we focused on purely imaging-based models based on exhaustive combinations of the three types of MRI modalities (see Table 4.1 for an overview). This allowed us to study potential overlap and additive effects between the modalities. For simplicity, we only focused on the full MRI model in subsequent analyses.

. . Socio-demographic models

We then composed predictive models based on non-exhaustive combinations of different types of socio-demographic variables. We then performed model comparisons to learn about the importance of each of these types. We were particularly interested in studying the relative contributions of early life factors as compared to factors related to more recent life events such as education as well as factors related to current circumstances such as mental health and life-style. Therefore, we first considered baseline models based on one group of sociodemographic variables and then progressively extended the models to a full model based on all socio-demographic variables. The resulting one group models are listed in Table 4.2.

. . Combined imaging and socio-demographic models

Importantly, we were interested in how brain-related information would interact with sociodemographics for each of these models. We therefore considered an alternative variant for each of the models in Table 4.2 that included all MRI-related features (2074 additional features) as described at Section 4.4.4.

. . Predictive model

The choice of learning algorithm is an important concern when performing predictive modeling. As studied on Fig. 2.3 at Chapter 2, linear models have turned out to be good default choices in neuroimaging research, yet they may not be optimal when dealing with heterogeneous data on large-scale samples. To combine imaging data with socio-demographics, we relied on the non-parametric random forest (RF) algorithm that can be readily used on data of different units for regression and classification (Breiman, 2001b). Moreover, random forests enable learning non-linear interaction effects without explicit modeling, which makes them an interesting tool to explore the relationship between different modalities. We used cross-validation to train RF on 90% samples and test on the remaining 10%. We repeat this process for 25 cross-validation splits. For each split, we used in-built cross-validation of the model to tune the maximum depth of the tree and minimum number of samples required at leaf node for split point with two fixed parameters; variance reduction criterion as "mse" for 250 number of trees. For the list of parameters see , 350, 500, 800, 1000, 2000, 3000, 5000. tuning the parameter selection, the coefficient of determination (R 2 ) is the metric used for the assessment of prediction performance of the model on test data.

. . Statistical hypothesis testing

To establish the null-hypothesis baseline of the model, the prediction targets are permuted within each fold where the optimal model is trained on permuted targets and predicted on test data. This process is repeated for 10 random permutations on prediction targets. Finally, the distribution of R 2 scores from these 10 random permutations for 25 splits are used for comparisons against the distributions of the true model. This allows us to assess the significance of model prediction accuracy.

. . Classification analysis

We also performed classification analysis on the continuous targets.

For this purpose, we discretized the targets into three groups based on the 33% and 66% percentiles. Then we performed binary classification on these three groups i. e. group 1 vs group 2; group 2 vs group 3; group 1 vs group 3. We were particularly interested in understanding whether model performance would increase when moving toward classifying extreme groups. For this analysis, we considered all three types of models (see Sections 4.5.1 to 4.5.3 and Tables 4.1 and 4.2. To assess the performance of classification analysis, we use AUC ROC as an evaluation metric.

. . Ranking statistics to assess paired differences of combined models

To assess the statistical significance in the benefits of combining brain images with socio-demographics for proxy measures, we followed the ranking statistics procedure as in Engemann et al., 2020b. First, we estimate paired differences by relying on pair-wise per split esti- mates of combined models (see Section 4.5.3) and socio-demographics models (see Section 4.5.2). Then, we extracted the mean, the standard deviation, the 5 and 95 percentiles on those paired-wise estimates on distribution of 25 splits to determine the combined models prediction performances.

. -

We first performed model comparisons across socio-demographic models Table 4.2 to evaluate the relative performance of each model composed of distinct groups of sociodemographic variables for predicting proxy measures. Fig. 4.2 (in red) summarizes these model comparisons for predicting three targets: age, fluid intelligence and neuroticism. The analysis revealed that for each target there was one principal block of variables explaining most of the prediction performance. For age prediction, variables related to current life-style (LS) showed by far the highest performance. For fluid intelligence, education (EDU) performed by far best. Finally, for neuroticism, mental health clearly showed the strongest performance. This pattern persisted when considering exhaustive model comparisons based on all possible combinations of variable blocks (supplement Figs. E.3 and E.4.

We then repeated the analysis including brain images (full MRI composed of 2074 variables, Table 4.1 to investigate potential synergies and redundancies between socio-demographics and brain imaging Fig. 4.2(in blue). The results suggest that age prediction improved as sociodemographics and MRI were combined. This effect was visible on all four blocks of variables. As the performance distributions between the purely sociodemographic and the combined model were overlapping for the lifestyle model, we considered the paired differences across cross-validation splits. The analysis revealed that the combined model performed better in 24 out of 25 folds than the purely sociodemographic model (M=0.059, SD=0.03, P(5,95)=[0.006, 0.116]), suggesting that the observed differences should reproduce on future data and is unlikely to be due to chance. The potential benefit of including brain imaging features, however, was less consistent for prediction of fluid intelligence and neuroticism. For fluid intelligence, average performance was enhanced through brain images in poorly performing sociodemographic models, i. e. early life (better in 22/25 folds, M=0.025, SD=0.022, P(5,95)=[-0.005, 0.06]), but not the best performing model (education) where distributions were virtually identical. Similarly, for neuroticism, higher average performance with brain images emerged for education (better in all 25 folds, M=0.023, SD=0.014, P(5,95)=[0.002, 0.045]) but not the best model (mental health). Nevertheless, we found significant average prediction based on brain images only for, both, fluid intelligence and neuroticism. This suggests that variance in lifestyle and mental health is reflected in neurobiological variance. For neuroticism current mental health variables were strongly informative for prediction, suggesting that mental health is a reasonable proxy of neuroticism. Overall, predicting fluid intelligence or neuroticism was clearly more successful based on socio-demographic data as compared to brain images.

. --

The scale and units of psychological proxy-measure are often unknown. In practice, clinicians and educators aim at specific thresholds for decision-making. How do predictive models compare across proxy measures when considering discrete extreme-groups? To address this question, we performed binary classification analysis on three diverse groups i. e. low vs high, low vs middle, middle vs high dichotomized on the continuous values of three prediction targets: age, fluid intelligence and neuroticism. Moreover, we focused on the AUC as a performance metric which, other than accuracy, is only sensitive to ranking while ignoring the scale of the error. The analysis revealed model-ranking comparable to the previous regression analysis. Classification-performance was better than chance for all models as shown on Figs. 4.3, E.5 and E.6. We observed the highest scores when discriminating between the extreme groups, i. e. low vs high Fig. 4.3. Overall, a similar picture emerged as for the regression analysis. Across proxy measures, models including sociodemographics performed best. Combining sociodemographics and brain imaging led to slight benefits for age prediction in 23/25 folds (M=0.012, SD=0.01, P(5,95)=[-0.002,0.027]). For fluid intelligence and neuroticism a weak opposite trend was visible in which the combined model performed worse on about 2 thirds of the folds. But overall, performance differences between the sociodemographic and combined models were 4.2. Color indicates whether MRI (blue) was included for prediction or not (red). We used the R 2 score to facilitate comparisons across prediction targets. The estimated null-distribution is depicted by gray violin plots (across permutations and folds). The expected prediction performance is depicted by colored violin plots. Vertical dotted lines indicate the average performance of the full MRI model introduced in Fig. 4.4. For convenience, the mean performance is annotated for each plot. One can readily see that prediction with socio-demographics (red) was markedly stronger than with only the brain-based model (dotted vertical lines) for three targets. The most important blocks of sociodemographic predictors (annotated with red cross) were lifestyle for age, education for fluid intelligence and mental health for neuroticism. Moreover, the effect of combining socio-demographics with brain-data depended on the prediction target. For age, overall performance improved beyond the previous analyses. The picture was less consistent for fluid intelligence and neuroticism showing weaker additive effects, if any. low on the order of one or two AUC units on average. It is noteworthy that for both types of models prediction performance reached levels above 0.8, which is considered clinically useful for biomarker candidates [START_REF] Perlis | Translating biomarkers to clinical practice[END_REF]. Low vs middle and middle vs high groups based classification are shown on Figs. E.5 and E.6. Overall, the results suggest that moving from the more difficult full-scale regression problem to extreme-group classification problem with purely rankingbased loss functions, the relative differences between brain-based and socio-demographics-based prediction gradually fade away. Shape and color indicates the type of data used for model comparison on each of two binary groups. We report the accuracy in AUC. The estimated null-distribution is shown in gray violin plots whereas colored violin plots depict the distribution of classification accuracies per model. The mean value is shown on each violin plot to facilitate comparisons across classification groups. The model comparisons reveal that higher classification accuracies were achieved with low vs high when compared to other groups on Figs. E.5 and E.6. Models including socio-demographics performed visibly better than models purely based on brain imaging. Differences between brain-imaging and sociodemographics were reduced as compared to the fully-fledged regression analysis.

. -

We perform imaging-based model comparisons to identify the links between measures of the brain and surrogate targets, also check if there exists any additive effects between brain imaging modalities that could potentially improve these links. Fig. 4.4 summarizes the comparisons of predicting three targets -fluid intelligence, neuroticism and brain age -from the combination of imaging-based models Table 4.1. The analysis revealed weak associations linking targets like fluid intelligence or neuroticism to brain images whereas on the other hand strong associations were found linking age to brain images. In terms of additive learning, the maximum performance for fluid intelligence and neuroticism is achieved while using more than one imaging modality such as the full MRI model. This emphasizes the benefits of combining many sources of brain images for additive effects. For fluid intelligence and neuroticism, we can see that the additive effects are weak but significantly better than chance. Overall, model comparisons Prediction of age, fluid intelligence and neuroticism based on three MR modalities: sMRI, dMRIand rfMRI. Different models are based on exhaustive combinations between modalities. Shape and color indicate the number of modalities per model. We used the R 2 score to facilitate comparisons across prediction targets. The estimated null-distribution is depicted by gray violin plots. The expected prediction performance is depicted by colored violin plots. For convenience, the mean performance is annotated for each plot. Prediction of age was markedly stronger than prediction of fluid intelligence or prediction of neuroticism. Nevertheless, significant prediction was achieved for all targets. As a general trend, models based on multiple MRI modalities tended yield better prediction.

suggests that combining multiple sources of brain imaging yields better prediction.

.

A fundamental challenge of mental-health research is that the quantities of interest are not directly observable: psychological traits that have to be inferred. In this work, we systematically compared MRI and socio-demographics data to derive proxy measures for mental health. We build these measures by applying machine learning on the largest brain-imaging cohort to date, UK Biobank, with 10 000 subjects multimodal MRI and rich socio-demographics information. As these measures are based on data of different nature, brain imaging (2074 variables), socio-demographics, and questionnaires (summed to 86 variables), we compare them objectively by assessing which aspects of individual traits they capture, in isolation and both combined (brain & socio-demographics). All brain-derived proxy measures captured the constructs of interest, however the association between the brain imaging and socio-demographics was most pronounced for aging. On the other hand, for intelligence and neuroticism, we did not find evidence that brain-derived information was independent from sociodemographic information. Overall, brain imaging complement nicely socio-demographic information and self-assessments that are robust to cultural dimensions of distinct constructs of interest. For instance, education variables predict fluid intelligence, mental health complaints predict neuroticism. As such, the combined proxy measures may be promising for epidemiological studies of mental health.

Currently in the upcoming work, we investigate how subject-specific derived proxy measures can be linked to lifestyle habits such as alcohol or sleep to test the relevance of proxy measures for health outcomes. We establish brain age delta, the difference between the predicted age and the chronological age, fluid intelligence and neuroticism predictions and their assocications with the health-related habits (alcohol and tobacco consumption, sleep duration, physical activity) using multiple linear regression. With best performing models, multiple linear regression reveal specific and additive associations with health outcomes. Furthermore, we extend our model comparisons to 100 cross-validation splits and introduce a new test set which we call generalization set (5 000 samples). Using the trained RF model on 90% samples as described at Section 4.5.4, we evaluate predictions that is independent from the previously left-out data (validation set of equal size 5 000 samples).

This test set is held-out within the same cohort UKBB that accounts for 50% of complete samples size used in this analysis. The idea of keeping aside this generalization set is to assess the generalization performance under new samples. Also importantly, generalization set allowed us to estimate proper permutation-based p-values and bootstrap-based confidence intervals. The fraction of UKBB data heldout for generalization test was not used until June 2020. We prefered to test on the samples within the same cohort, as investigating other data sources would bring undesirable differences in terms of cognitive measures, age range and imaging protocols. The ongoing work we described is presented in Kamalaker Dadi, Gaël Varoquaux, Josselin Houenou, Danilo Bzdok, Bertrand Thirion, and Denis Engemann (2020a). "Beyond brain age: Empirically-derived proxy measures of mental health." In: bioRxiv. doi: 10.1101/2020.08.

25.266536.

More and more cohorts are being built in the general and pathological population, grounding high-quality predictive analysis in mental health. Analyzing such datasets requires benchmarking predictive methods on real and high-dimensional brain-imaging data. This thesis describes a comprehensive and robust evaluation of predictive methods conducted over many brain-imaging cohorts, contributes a family of functional atlases for fMRI analysis, and finally, investigates the potential of imaging epidemiology to analyze behavioural factors for mental health.

In Chapter 2, we benchmarked several analysis pipelines for predicting population phenotypes from Resting-state functional connectomes. rfMRI has proved to be a great tool to study intrinsic brain organization and diseases through brain functional connectivity characterized at "rest". Transforming the conceptual ideas into practice requires statistical modeling on rfMRI data. Here, the challenge lies in settling on a standard modeling framework to turn complex rfMRI data into regions, connectomes and predictive markers. The availability of many statistical models makes the selection harder and represents a burden on researchers for computational exploration. We ran more than 50 000 analysis pipelines that cover exploration of numerous methods on many openly available imaging cohorts to recommend a robust analysis pipeline. Defining continuously-valued regions with sparse linear decomposition methods, comparing connections estimated on those regions in manifold space, and using linear classifiers were shown to dominate other solutions.

Chapter 2 sheds light on the data-driven brain parcellations that provide the support of functional connectivity (brain phenotypes) to predictions. Given its role in predictions, in Chapter 3, we further explore continuous functional brain parcellations. We took the advantage of the amount of openly-accessible fMRI brain records and existing sparse matrix factorization technique that have been developed to scale to large-scale high-dimensional brain imaging functional records. We extracted dictionaries of 1024 components from OpenfMRI data hosting repository, which opens new perspectives for brain-imaging derived phenotypes -an emerging trend for easier access to nonexperts in fMRI data processing. We are the first to provide multi-scale (64,128,256,512,1024) continuous functional networks learned on such large data (2192 fMRI records). Extensive validation of these functional networks revealed that "soft" probabilistic atlases are beneficial 55 and more components are crucial for reducing the dimensionality of raw fMRI data.

Proposed atlases and anatomical labels assigned to each atlas component are ready to view and download via the online interactive visualizations website: parietal-inria.github.io/DiFuMo.

The work presented in Chapter 3 relied on a Python package called modl, that is publicly available1 with an easy to use documentation that can be applied to brain-imaging cohorts.

Imaging epidemiological cohorts provide large-scale data resources that challenge the identification of appropriate measures to relate to health outcomes. In Chapter 4, we investigated proxy measures that could be interesting in predicting or understanding complex mental disorders. To do this, we compared three targets -age, fluid intelligence and neuroticism -at large-scale to potentially uncover epidemiologically relevant associations through behavioral assessments and brain measurements. So far, this study used large sample size of 10 000 individuals, on which we performed systematic predictive model comparisons by individuals socio-demographic measures with multi-modal brain images and showed that the combination enhanced predictions. Out of many model comparisons, there exists a predominant model that showed distinct predictive performance linked to each target e. g. mental health variables predicting neuroticism and education is linked to fluid intellgence test scores. This suggests that the models captured the quantitative and objective information from both socio-demographics and brain images. On the other hand, brain images were best at age but less well-suited for predicting psychological constructs such as fluid intelligence and neuroticism questionnaires. This last study opened a new perspective of how proxy measures could be defined as surrogate end points for mental disorders from an epidemiological standpoint.

As part of the non-PhD activity, I was lucky enough to participate in an exciting international project called Neuroimaging Analysis Replication and Prediction Study (NARPS) as one of the analysis team on behalf of the Parietal team. This project involves estimating the variability of neuroimaging results across analysis teams that test nine specific a priori hypotheses (regarding activation in specific brain areas recruited while performing mixed-gambling task). My contribution involved statistical modeling on the raw task-fMRI data towards nine specific hypotheses testing.

During these three years of my PhD, I underwent many nontechnical courses that fall under the category of scientific mediation and foreign languages that are the most interesting tools for enhancing my profession as a doctoral student. I also had the joy to attend summer schools, international conference or workshops to present my thesis work.

S Y N T H È S E E N F R A N Ç A I S

Les troubles mentaux présentent une grande hétérogénéité entre les individus. Une difficulté fondamentale pour étudier leurs manifestations ou leurs facteurs de risque est que le diagnostic des conditions mentales pathologiques est rarement disponible dans les grandes cohortes de santé publique. Ici, nous cherchons à développer des biomarqueurs, signatures cérébrales de troubles mentaux. Pour cela, nous utilisons l'apprentissage automatique pour prédire les résultats de santé mentale grâce à l'imagerie de population, en se basant sur l'imagerie cérébrale (imagerie par résonance magnétique (IRM)). Compte tenu des évaluations comportementales ou cliniques, l'imagerie de population peut relier les caractéristiques uniques des variations cérébrales à ces mesures autodéclarées non cérébrales basées sur des questionnaires. Ces mesures non cérébrales fournissent une description unique des différences psychologiques de chaque individu qui peuvent être liées à la psychopathologie à l'aide de méthodes statistiques. Cette thèse de doctorat examine le potentiel d'apprentissage de tels résultats basés sur l'imagerie pour analyser la santé mentale. En utilisant des méthodes d'apprentissage automatique, nous effectuons une évaluation, à la fois complète et robuste, des mesures de population pour guider des prévisions de haute qualité des résultats pour la santé.

Cette thèse est organisée en trois parties principales: premièrement, nous présentons une étude approfondie des biomarqueurs du connectome, deuxièmement, nous proposons une réduction significative des données qui facilite les études d'imagerie de population à grande échelle, et enfin nous introduisons des mesures indirectes pour la santé mentale.

Nous avons d'abord mis en place une étude approfondie des connectomes d'imagerie afin de prédire les phénotypes cliniques. Avec l'augmentation des images cérébrales de haute qualité acquises en l'absence de tâche explicite, il y a une demande croissante d'évaluation des modèles prédictifs existants. Nous avons effectué des comparaisons systématiques reliant ces images aux évaluations cliniques dans de nombreuses cohortes pour évaluer la robustesse des méthodes d'imagerie des populations pour la santé mentale. Nos résultats soulignent la nécessité de fondations solides dans la construction de réseaux cérébraux entre les individus. Ils décrivent des choix méthodologiques clairs: régions définies à partir de données fonctionnelles, par exemple avec l'analyse des composants indépendants ou l'apprentissage par dictionnaire, représentant la connectivité avec l'incorporation tangente des matrices de covariance et utilisant un modèle linéaire non 57 clairsemé, comme une régression logistique. Ce travail est publié dans la revue NeuroImage [START_REF] Dadi | Benchmarking functional connectome-based predictive models for resting-state fMRI[END_REF].

Ensuite, nous contribuons à une nouvelle génération d'atlas fonctionnels du cerveau pour faciliter des prédictions de haute qualité pour la santé mentale. Les atlas fonctionnels du cerveau sont en effet le principal goulot d'étranglement pour la qualité de la prédiction. Ces atlas sont construits en analysant des volumes cérébraux fonctionnels à grande échelle à l'aide d'un algorithme statistique évolutif, afin d'avoir une meilleure base pour la prédiction des résultats. Après les avoir comparés avec des méthodes de pointe, nous montrons leur utilité pour atténuer les problèmes de traitement des données à grande échelle. Ils offrent d'excellentes performances pour une grande variété de tâches analytiques: décodage de processus mental ou analyse de connectivité fonctionnelle. Leur disponibilité réduit les charges de calcul: les praticiens peuvent facilement effectuer des analyses sur un signal réduit, sans étape coûteuse de définition du retour sur investissement. De plus, travailler sur des modes fonctionnels communs à travers les études facilite la comparaison et l'interprétation des résultats. Pour faciliter la communication, nous avons étiqueté chaque mode fonctionnel pour refléter les structures neuroanatomiques qu'il contient. Nous les avons rendus disponibles pour téléchargement à partir de parietal-inria.github.io/DiFuMo. Ce travail est publié dans la revue NeuroImage (Dadi et al., 2020b).

La dernière contribution principale consiste à étudier les mesures de substitution potentielles des résultats pour la santé. Un défi fondamental de la recherche en santé mentale est que les quantités d'intérêt ne sont pas directement observables: des traits psychologiques qui doivent être déduits. Nous considérons des comparaisons de modèles à grande échelle utilisant des mesures du cerveau avec des évaluations comportementales dans une cohorte épidémiologique d'imagerie, le UK Biobank avec 10 000 sujets. Sur cet ensemble de données complexe, le défi consiste à trouver les covariables appropriées et à les relier à des résultats bien choisis, car ces mesures sont basées sur des données de nature différente, l'imagerie cérébrale, la sociodémographie et des questionnaires. Après une sélection et une évaluation soigneuses du modèle à l'aide de l'apprentissage automatique, nous identifions des mesures de substitution qui affichent des liens distincts avec les données sociodémographiques et peuvent être en corrélation avec des conditions non pathologiques. Par exemple, toutes les mesures indirectes dérivées du cerveau ont capturé les construits d'intérêt, mais l'association entre l'imagerie cérébrale et les données sociodémographiques était plus prononcée pour le vieillissement. Par contre, pour l'intelligence et le névrosisme, nous n'avons pas trouvé de preuves que les informations dérivées du cerveau étaient indépendantes des informations sociodémographiques. Dans l'ensemble, l'imagerie cérébrale complète bien les informations sociodémographiques et les auto-évaluations qui sont robustes aux dimensions culturelles de différents concepts d'intérêt. En tant que telles, les mesures substitutives combinées peuvent être prometteuses pour les études épidémiologiques de la santé mentale. Ce travail est soumis à la publication de revue disponible à https://doi.org/10.1101/2020.08.25.266536.

A

R E V I E W O F P R E D I C T I V E M E T H O D S .
- .

Reference

-

As with any analysis based on covariance or correlation matrices, it is preferable to compute individual covariances from time series with an estimator that ensures well-conditioned matrices. The Ledoit and Wolf, 2004a estimator is a good default choice [START_REF] Brier | Partial covariance based functional connectivity computation using Ledoit-Wolf covariance regularization[END_REF][START_REF] Varoquaux | Learning and comparing functional connectomes across subjects[END_REF].

Strictly speaking, the group average should be computed according to the geometry of covariance matrices [START_REF] Pennec | A Riemannian framework for tensor computing[END_REF]Varoquaux et al., 2010c). This is a Frechet mean, which is computed by minimizing a cost function for instance using algorithm 3 of [START_REF] Fletcher | Riemannian geometry for the statistical analysis of diffusion tensor data[END_REF]. A simpler approach relies on using the Euclidean mean, which we found to give almost the same predictive performance. In this case, the formula of the mean is the standard one:

Euclidean mean : Σ = 1 n train i∈Train Σ i (B.1)
.

Given the group reference covariance matrix Σ , covariance matrices are transformed in the tangent-space representation by whitening them as follows (Varoquaux et al., 2010c). Computations are easily written with eigenvalues decompositions2 : given a subject's covariance matrix Σ i ,

1. Compute the whitened matrix Σi = Σ -1/2 Σ i Σ -1/2 : Σi ← U T ∆ -1 2 U Σ i U T ∆ -1 2 U (B.2)
where U T ∆ U = Σ by eigen-value decomposition, and operations on the diagonal matrix ∆ are element-wise operation applied to the diagonal.

2. Compute the matrix logarithm logm Σi :

logm( Σi ) = ŨT log( ∆i ) Ũ (B.3)
where Σi = ŨT ∆i Ũ and the logarithm is applied to the diagonal elements of ∆i .

Finally, the resulting matrix is turned to a vector and its entries are used as a features for the classifier. The motivation from these transformations arises from the fact that covariance matrices -or correlations matrices-form a specific manifold of the R p×p matrices. Their structure is broken by standard additive arithmetic's: the difference of two covariances may create a matrix that does not correspond to the covariance matrix of a signal. Optimal statistical analysis calls for following the structure of the manifold [START_REF] Pennec | A Riemannian framework for tensor computing[END_REF]. The tangent-space parametrization is a simple way to approximate this structure by Euclidean geometry, in which standard additions and subtractions can be used (Varoquaux et al., 2010c).

With regards to statistical analysis, the structure of covariance matrices appears as constraints, or dependencies, between the coefficients of the matrix. As a result, these coefficients alone form a poor representation for second-level statistical analysis. The tangent-space approximation yields a parametrization of the problem in which features are independent identically distributed (i.i.d.) (Varoquaux et al., 2010c). Such a parametrization is optimal for statistical learning. In addition, as discussed in Varoquaux et al. (2010c), this parametrization also gives good edge-level tests for instance see As can be seen, tangentspace parametrized connections are interpretable and positions in between correlation and partial correlation in terms of connectivity differences. We show the matrices estimated using timeseries extracted with pre-computed MODL dict. learning atlas of n=64 a .

a Pre-computed sparse dictionaries with the MODL approach of Mensch et al., 2016 are available from https://team.inria.fr/parietal/files/2018/10/MODL _ rois.zip

C I M A G I N G -B A S E D P R E D I C T I V E M O D E L S . -
To investigate the consistency of analytics choices for higher-quality datasets, we perform extra benchmarks including the HCP dataset to probe different setting: data with longer acquisitions. Due to the data size, we limit the benchmarks here to pre-computed atlases. We share the resulting time-series and scripts to reproduce our analysis1 .

HCP contains imaging and behavioral data of healthy subjects [START_REF] Van Essen | The WU-Minn human connectome project: an overview[END_REF]. We use preprocessed rfMRI data from HCP900 release [START_REF] Van Essen | The Human Connectome Project: A data acquisition perspective[END_REF] to discriminate individuals with high vs low intelligence score by splitting the data into 3 groups according to quantiles 0.333 and 0.666. The subjects in the middle group are excluded to make the prediction in a binary classification setup.

Dataset

Prediction task Groups HCP High IQ vs Low IQ 213/230 Figure C.1 summarizes the impact of method choice on the prediction accuracy for all six different cohorts. This experiment outline similar tradeoffs as the others: functional atlas pre-computed with dictionary learning (here MODL or SOMF, from Mensch et al., 2016Mensch et al., , 2018)), tangent-space parametrization, and 2 -regularized classifiers are preferable. This experiment is not as systematic as the other, as a very large dataset like HCP would require much more computing power to study region extraction2 . Yet, even for region-definition methods, it outlines similar trends than when tuning the regions to the data at hand. We also consider extracting DiFuMo from resting-state and task data separately. This is to evaluate the impact of learning functional atlases separately on task and rest fMRI data and compare them to using both data types in the training dataset. For this, we separate the training dataset (Table D.2) into task fMRI studies and resting-state studies (adding each up to 1 970 and 222 fMRI recording sessions respectively). We train DiFuMo atlases (of all dimensions) on each data corpus separately, and compare the performance of the obtained atlases with the atlases trained on both datasets used jointly.

Figure D.3 compares the performance of atlases trained on rest, task and rest+task data, for predicting mental states across 6 task fMRI studies (see Table D.4 for the details about the studies) and predicting traits from connectomes across 7 different cohorts (see Table D.3 for the list of cohorts). Overall, it reveals that using functional modes learnt from both data types -task and rest -marginally improves brain signal extraction.

We do not observe a significant impact of using task-specific modes for predicting traits from functional connectomes. functional networks [START_REF] Bzdok | Formal Models of the Network Co-occurrence Underlying Mental Operations[END_REF][START_REF] Smith | Correspondence of the brain's functional architecture during activation and rest[END_REF]. This can explain the little difference observed when appending resting-state data to the training corpus. The y-axis shows how many voxels are at the intersect of exactly n modes (x-axis), without thresholding the modes. On average, at least two modes are shared between voxels. Coverage (i.e. low number of voxel at the intersect of 0 mode) is higher for finer grain atlases, at the cost of larger overlap. Note that the overlaps often comprises voxels with small values, and may thus be weak. The thick lines give the median relative score per type of data in task, rest and combination of both. Using the combination of both is marginally better than using task data alone to learn parcellations. We observe no crucial dominance of task-dependent variance in dictionaries in decoding performance.

Task-fMRI

E I M A G E -D E R I V E D P R O X Y M E A S U R E S .
-

Here we detail about data acquisition parameters of multi-modalities of MRI images that we use in our study at Chapter 4.

Non-imaging data were acquired through different assessment procedures across multiple sites1 . Cognitive functioning of each participant was assessed with self-report measures administered through touchscreen questionnaires, complemented by verbal interviews, physical measures, biological sampling and imaging data. Here we focused on the following categories of measures provided by the UKBB: Sociodemographics, Lifestyle and environment, Early life factors, Psychosocial factors and many others. MRI data2 were acquired in Manchester with Siemens Skyra 3T using a standard Siemens 32-channel RF receiver head coil [START_REF] Alfaro-Almagro | Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank[END_REF]. We considered three MR imaging modalities as each of them potentially captures unique neurobiological details: sMRI, resting-state functional MRI rfMRI and dMRI. Briefly, the acquisition parameters used for each modality are described here. For additional technical details, refer [START_REF] Miller | Multimodal population brain imaging in the UK Biobank prospective epidemiological study[END_REF].

. . T1 weighted MRI or structural MRI

We relied on T1-weighted MR sequences used for acquiring high-resolution brain 3D brain volumes. In UKBB, brain volumes were extracted from high-resolution T1 images acquired using a Magnetization-Prepared Rapid Acquisition with Gradient Echo (MPRAGE) sequence at spatial resolution of 1x1x1 mm.

. . Resting-state functional MRI

Resting-state functional MR images capture low-frequency fluctuations in blood oxygenation that can reveal ongoing neuronal large-scale interactions in distinct brain networks [START_REF] Biswal | Functional connectivity in the motor cortex of resting human brain using echo-planar mri[END_REF]. Resting state was acquired using EPI sequences with multi-band acceleration at resolution 2.4x2.4x2.4 mm and repetition time (TR) of 0.735s. As a result 3D volumes were acquired every 0.735s during 6 minutes resulting in 490 brain volumes in time (4D image). All images were acquired in Anterior-Posterior phase encoding direction. For this purpose, participants were instructed to keep their eyes fixated on a crosshair and to "think of nothing in particular."

. . Diffusion MRI

Diffusion-weighted imaging is used to measure the local structures in-vivo by tracking the movement of the water molecules along fibre tracts. dMRI were acquired using EPI sequences at resolution 2x2x2 mm with 50 diffusion-encoding directions by varying the field strength b-value=1000, b-value=2000.

.

-

All the MR data preprocessing steps described here were carried out by UKBB brain imaging team 3 using software tool called FSL 4 . Briefly, we walk through the steps for each modality.

. . Structural MRI

After de-identification of faces on raw T1 images, further processing on de-faced T1 images included field distortion correction, reduction of Field of View (FoV) and skull stripping using Brain Extraction Tool (BET) [START_REF] Smith | Fast robust automated brain extraction[END_REF] followed by registration to MNI152 T1 template space using (FLIRT) [START_REF] Jenkinson | A global optimisation method for robust affine registration of brain images[END_REF]Jenkinson et al., 2002b). The images were then warped to MNI152 template using non-linear registration method (FNIRT) [START_REF] Andersson | Non-Linear Registration aka Spatial Normalisation FMRIB Technial Report TR07JA2[END_REF] and segmented into most prominent tissue types such as Gray Matter (GM), White Matter (WM) and Cerebro-Spinal Fluid (CSF) volumes using FAST segmentation method [START_REF] Zhang | Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm[END_REF]. This whole process yielded a full bias field corrected T1 images which were then further processed to generate IDPs. The IDPs based on sMRI are volumes of 157 grey matter cortical and subcortical anatomical structures 5 , in total modelled with SIENAX [START_REF] Smith | Accurate, Robust, and Automated Longitudinal and Cross-Sectional Brain Change Analysis[END_REF] and FIRST [START_REF] Patenaude | A Bayesian model of shape and appearance for subcortical brain segmentation[END_REF] 

. . Diffusion MRI

The preprocessing of diffusion weighted images includes: correction for eddy current distortions, head motion and removal of image slices lying outside the brain [START_REF] Andersson | Nonparametric representation and prediction of single-and multi-shell diffusion-weighted MRI data using Gaussian processes[END_REF]. These corrected images were followed by gradient distortion correction. The preprocessed images were then further processed for IDPs. For this purpose, images were separately fed into Diffusion Tensor Imaging (DTIFIT) tool to model the 50 diffusion directions to generate IDPs, e. g. FA, MO, MD and NODDI (Neurite Orientation Dispersion and Density Imaging) estimates using AMICO (Accelerated Microstructure Imaging via Convex Optimization) [START_REF] Daducci | Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data[END_REF][START_REF] Zhang | NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain[END_REF]. This also enabled modeling the biological properties of fiber tracts visible in the form of IDPs, ICVF, ISOVF and OD. In order to facilitate cross-subject comparisons on fiber tract based IDPs, all the outputs need to be aligned to common space. This was achieved using an approach called tract-based spatial statistics (TBSS) [START_REF] Smith | Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data[END_REF]. For more details on the technical aspects like cross-alignment procedures can be found in [START_REF] Alfaro-Almagro | Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank[END_REF][START_REF] Groot | Improving alignment in Tract-based spatial statistics: Evaluation and optimization of image registration[END_REF].

. . Resting-state fMRI

We applied the following pre-processing pipeline on rfMRI data before processing for IDPs. The pipeline started with motion correction using MCFLIRT (Jenkinson et al., 2002b), grand-mean intensity normalisation and high-pass temporal filtering (Gaussian-weighted least-squares straight line fitting, with sigma=50.0s) including the unwarping of EPI and co-registration to T1 template and GDC. Finally, structured artefacts were removed by ICA followed by FIX cleaning (FMRIB's ICAbased X-noiseifier). After pre-processing, the next step was to identify the resting-state networks (RSN) on a group of subjects using linear decomposition method called ICA [START_REF] Hyvarinen | Fast and robust fixed-point algorithms for independent component analysis[END_REF] implemented with MELODIC tool (Beckmann and Smith, 2004b). Group-PCA algorithm was then applied on the preprocessed rfMRI images as a dimensionality reduction step before feeding into MELODIC ICA to identify RSN at higher resolution i. e. 100 ICA components. These ICA components were quality-checked and 45 components were identified as artifactual components (components of no interest). The remaining 55 components were used for further processing to get IDPs. The 55 ICA components are identified on group of 4100 UKBB rfMRI images and easily accessible at this location. The next step is to extract subject-specific time series signals by projecting ICA components onto each individual raw rfMRI images. In total, 55 signals per subject were extracted using the first stage in the dual regression analysis [START_REF] Filippini | Distinct patterns of brain activity in young carriers of the APOE-ε4 allele[END_REF]. We then estimated connectivity matrices on the ensuing time series based on a regularized covariance estimate (Ledoit and Wolf, 2004b). We then mapped the covariance matrices into a Euclidean representation based on the Riemannian tangent space embedding as proposed in (Varoquaux et al., 2010d). We then vectorized the connectivity matrices by extracting the lower triangular part and used them as the rfMRI features for supervised learning. The tangent space parametrization was implemented with Nilearn (Abraham et al., 2014a) Cette thèse est organisée en trois parties principales: premièrement, nous présentons une étude approfondie des biomarqueurs du connectome, deuxièmement, nous proposons une réduction significative des données qui facilite les études d'imagerie de population à grande échelle, et enfin nous introduisons des mesures indirectes pour la santé mentale.

Nous avons d'abord mis en place une étude approfondie des connectomes d'imagerie afin de prédire les phénotypes cliniques. Avec l'augmentation des images cérébrales de haute qualité acquises en l'absence de tâche explicite, il y a une demande croissante d'évaluation des modèles prédictifs existants. Nous avons effectué des comparaisons systématiques reliant ces images aux évaluations cliniques dans de nombreuses cohortes pour évaluer la robustesse des méthodes d'imagerie des populations pour la santé mentale. Nos résultats soulignent la nécessité de fondations solides dans la construction de réseaux cérébraux entre les individus. Ils décrivent des choix méthodologiques clairs.

Ensuite, nous contribuons à une nouvelle génération d'atlas fonctionnels du cerveau pour faciliter des prédictions de haute qualité pour la santé mentale. Les atlas fonctionnels du cerveau sont en effet le principal goulot d'étranglement pour la qualité de la prédiction. Ces atlas sont construits en analysant des volumes cérébraux fonctionnels à grande échelle à l'aide d'un algorithme statistique évolutif, afin d'avoir une meilleure base pour la prédiction des résultats. Après les avoir comparés avec des méthodes de pointe, nous montrons leur utilité pour atténuer les problèmes de traitement des données à grande échelle.

La dernière contribution principale est d'étudier les mesures de substitution potentielles pour les résultats pour la santé. Nous considérons des comparaisons de modèles à grande échelle utilisant des mesures du cerveau avec des évaluations comportementales dans une cohorte épidémiologique d'imagerie, le UK Biobank. Dans cet ensemble de données complexe, le défi consiste à trouver les covariables appropriées et à les relier à des cibles bien choisies. Cela est difficile, car il y a très peu de cibles pathologiques fiables. Après une sélection et une évaluation minutieuses du modèle, nous identifions des mesures indirectes qui sont en corrélation avec des conditions non pathologiques comme l'état de sommeil, la consommation d'alcool et l'activité physique. Ceux-ci peuvent être indirectement utiles pour l'étude épidémiologique de la santé mentale.

Université Paris-Saclay Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France heterogeneity across individuals. A fundamental challenge to studying their manifestations or risk factors is that the diagnosis of mental pathological conditions are seldom available in large public health cohorts. Here, we seek to develop brain signatures, biomarkers, of mental disorders. For this, we use machine learning to predict mental-health outcomes through population imaging i. e. with brain imaging (Magnetic Resonance Imaging (MRI)). Given behavioral or clinical assessments, population imaging can relate unique features of the brain variations to these non-brain self-reported measures based on questionnaires. These non-brain measurements carry a unique description of each individual's psychological differences which can be linked to psychopathology using statistical methods. This PhD thesis investigates the potential of learning such imaging-based outcomes to analyze mental health. Using machinelearning methods, we conduct an evaluation, both a comprehensive and robust, of population measures to guide high-quality predictions of health outcomes.

This thesis is organized into three main parts: first, we present an in-depth study of connectome biomarkers, second, we propose a meaningful data reduction which facilitates large-scale population imaging studies, and finally we introduce proxy measures for mental health.

We first set up a thorough benchmark for imaging-connectomes to predict clinical phenotypes. With the rise in the high-quality brain images acquired without tasks, there is an increasing demand in evaluation of existing mod-els for predictions. We performed systematic comparisons relating these images to clinical assessments across many cohorts to evaluate the robustness of population imaging methods for mental health. Our benchmarks emphasize the need for solid foundations in building brain networks across individuals. They outline clear methodological choices.

Then, we contribute a new generation of brain functional atlases to facilitate high-quality predictions for mental health. Brain functional atlases are indeed the main bottleneck for prediction. These atlases are built by analyzing large-scale functional brain volumes using scalable statistical algorithm, to have better grounding for outcome prediction. After comparing them with state-of-the-art methods, we show their usefulness to mitigate large-scale data handling problems.

The last main contribution is to investigate the potential surrogate measures for health outcomes. We consider large-scale model comparisons using brain measurements with behavioral assessments in an imaging epidemiological cohort, the United Kingdom (UK) Biobank. On this complex dataset, the challenge lies in finding the appropriate covariates and relating them to well-chosen outcomes. This is challenging, as there are very few available pathological outcomes. After careful model selection and evaluation, we identify proxy measures that display distinct links to socio-demographics and may correlate with non-pathological conditions like the condition of sleep, alcohol consumption and physical fitness activity. These can be indirectly useful for the epidemiological study of mental health.

Université Paris-Saclay Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Figure 2 . 1 :

 21 Figure 2.1: Brain regions extracted with ICA, DictLearn, KMeans, and Ward For ICA and dictionary learning, the dimensionality is of 80 and 60 resting-state networks -which are then broken up into more regionsyielding 150 regions, and 120 for KMeans and Ward clustering. Colors are arbitrary. Regions are data-driven on ADNI dataset[START_REF] Mueller | The alzheimer's disease neuroimaging initiative[END_REF].

Figure 2 . 2 :

 22 Figure 2.2: Functional connectome prediction pipeline with three main steps: 1) definition of brain regions ROIs from rfMRI images or using already defined reference atlases, 2) quantifying functional interactions from time series signals extracted from these ROIs and 3) comparisons of functional interactions across subjects using supervised learning.

Figure 2 . 3 :

 23 Figure2.3: Impact of classifier choices on prediction accuracy, for all rfMRI datasets and all folds. For each classifier choice, only the top third highest performing scores are represented when varying the modeling choices for other steps in the pipeline: brain-region definition and connectivity parametrization. Overall, 2 -regularized linear classifiers perform better, with a slight lead for 2 logistic regression. The box plot gives the distribution across folds (n=100) and datasets (denoted by markers) of prediction score for a given choice (classifier) relative to the mean across all choices (regions-definition and connectivity parametrizations, classifiers). The box displays the median and quartiles, while the whiskers give the 5 th and 95 th percentiles.

Figure 2 . 4 :

 24 Figure2.4: Impact of connectivity parameterization on prediction accuracy, for all rfMRI datasets and folds. For each parametrization choice, only the top third highest performing scores are represented when varying the modeling choices for other steps in the pipeline: brain-region definition and classifier. Prediction using tangent space based connectivity parameterization displays higher accuracy with relatively lower variance than using full or partial correlation. The box displays the median and quartiles, while the whiskers give the 5 th and 95 th percentiles.

Figure 2 . 5 :

 25 Figure 2.5:Impact of region-definition method on prediction accuracy, for all rfMRI datasets and folds. For each region-definition choice, only the top third highest performing scores are represented when varying the modeling choices for other steps in the pipeline: classifier and connectivity parametrization. Learning atlases from rfMRI data tends the prediction for all tasks. By contrast anatomical atlases perform poorly over diverse tasks. The box displays the median and quartiles, while the whiskers give the 5 th and 95 th percentiles.
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Figure 3 . 1 :

 31 Figure 3.1: Linear decomposition model of fMRI time-series for estimating brain networks: The fMRI time series X are factorized into a product of two matrices, D wich contain spatial modes and A temporal loadings of each mode. p -number of features, n -number of volumes in fMRI image, k -number of dictionaries.

Figure 3 . 2 :

 32 Figure 3.2: Schema of DiFuMo atlases and their usage in typical fMRI analyses. DiFuMo atlases are extracted from a massive concatenation of BOLD time-series across fMRI studies, using a sparsity inducing matrix factorization algorithm. We compute the DiFuMo atlases at different resolutions, up to 1024 components. We assess our atlases in 2 benchmarks that measure suitability to classic fMRI analyses. Those are performed on reduced and non-reduced data, with different atlas sizes and a comparison between atlases. The easiest way to view and download DiFuMo atlases is via the online interactive visualizations: parietal-inria.github.io/DiFuMo.

Figure 3 Figure 3 . 3 :

 333 Figure 3.3 shows the impact on decoding performance of reducing signals with various functional atlases. It reports the performance relative to the median across methods for each of the 6 tasks. These

Figure 3 . 5 Figure 3 . 4 :Figure 3 . 5 :

 353435 Figure3.5 shows the impact of the choice of functional atlas when predicting phenotypes from functional connectomes. We report the relative prediction accuracy for 7 different prediction problems (each

Figure 3 . 6 :.Figure 3 . 7 :

 3637 Figure 3.6: Overlap between GLM maps obtained with functional atlases and voxel-level analysis. Top: The overlap is measured with the Dice similarity coefficient. The black line gives a baseline the mean overlap between voxel-level contrast maps over several random selections of sessions per subject. The figure gives Dice similarity scores between the GLM maps computed with signals extracted on functional atlases and at the voxel-level, after reconstruction of full z-maps and voxel-level thresholding with FDR control. The best similarity is achieved for highest dimensionality, though 1024-dimensional DiFuMo atlas largely dominates 1000-dimensional Schaefer parcellation and 1095 Multiresolution Intrinsic Segmentation Template (MIST). Each point is the mean and the error bar denotes the standard deviation over contrast maps. Bottom: The activity maps encoded on 1024-dimensional space capture the same information as voxel-level analysis, while being smoother.

Figure 3 . 8 :

 38 Figure 3.8: Modes around the putamen, for DiFuMo dimensionality 64, 256, and 512. As dimensionality increases: sub-divisions are more refined, modes are split into right and left hemisphere and anterio-posterior direction. Each color represents a single mode.

  Figure 3.9: Region volume (cm 3 ) of modes on the brain with 1024 dictionary of DiFuMo. The volume of the modes tends to be larger corresponding to white matter when compared with the cortical gray matter. This justifies the adaptation of DiFuMo atlas to the fMRI signal.

Figure 4 . 1 :

 41 Figure 4.1: Approximating health-related psychological constructs from brain imaging and sociodemographics.In this work we combined multiple classes of brain images (A) with sociodemographic data (B) to approximate health-related biomedical and psychological constructs situated at distinct levels of measurement (C), i. e. , the brain age (accessed through prediction of chronological age), cognitive performance (accessed through a test for fluid intelligence) and the tendency to report negative emotions (accessed through the neuroticism questionnaire). We included 10 000 subjects imaging data release from the UK biobank. Among imaging data (A) we considered features related to cortical and subcortical volumes, functional connectivity from rfMRI based on ICA networks and white-matter molecular tracts from diffusive directions (see Table4.1 for an overview about multiple classes of brain images). We then grouped the sociodemographic data (B) into five different blocks of variables related to self-reported responses of health issues, primary demographics, lifestyle, education and early life events (Table4.2 lists the number of variables in each block). Subsequently, we conducted systematic comparisons between the approximations of all three targets based on either brain images and sociodemographics in isolation or combined (C) to evaluate the relative contribution of these distinct inputs. Models were developed on 50% of the data (randomly drawn) based on random forest regression guided by Monte Carlo cross-validation with 25 splits. For simplicity, we refer to the target-approximations as prediction of proxy measures.

Figure 4 . 2 :

 42 Figure 4.2: Prediction of psychological proxy measures from sociodemographic data combined with and without MRI. Prediction of age, fluid intelligence and neuroticism from socio-demographic one group models Table4.2. Color indicates whether MRI (blue) was included for prediction or not (red). We used the R 2 score to facilitate comparisons across prediction targets. The estimated null-distribution is depicted by gray violin plots (across permutations and folds). The expected prediction performance is depicted by colored violin plots. Vertical dotted lines indicate the average performance of the full MRI model introduced in Fig.4.4. For convenience, the mean performance is annotated for each plot. One can readily see that prediction with socio-demographics (red) was markedly stronger than with only the brain-based model (dotted vertical lines) for three targets. The most important blocks of sociodemographic predictors (annotated with red cross) were lifestyle for age, education for fluid intelligence and mental health for neuroticism. Moreover, the effect of combining socio-demographics with brain-data depended on the prediction target. For age, overall performance improved beyond the previous analyses. The picture was less consistent for fluid intelligence and neuroticism showing weaker additive effects, if any.

Figure 4 . 3 :

 43 Figure 4.3: Classification analysis from imaging, socio-demographics and combination of both data. Classification of extreme groups i. e. low vs high where split was on the basis of age, fluid intelligence and neuroticism scores. This analysis is a complementary model comparison as compared to Fig. 4.2.Shape and color indicates the type of data used for model comparison on each of two binary groups. We report the accuracy in AUC. The estimated null-distribution is shown in gray violin plots whereas colored violin plots depict the distribution of classification accuracies per model. The mean value is shown on each violin plot to facilitate comparisons across classification groups. The model comparisons reveal that higher classification accuracies were achieved with low vs high when compared to other groups on Figs. E.5 and E.6. Models including socio-demographics performed visibly better than models purely based on brain imaging. Differences between brain-imaging and sociodemographics were reduced as compared to the fully-fledged regression analysis.

Figure 4 . 4 :

 44 Figure 4.4: Prediction of individual differences from brain-imaging data.Prediction of age, fluid intelligence and neuroticism based on three MR modalities: sMRI, dMRIand rfMRI. Different models are based on exhaustive combinations between modalities. Shape and color indicate the number of modalities per model. We used the R 2 score to facilitate comparisons across prediction targets. The estimated null-distribution is depicted by gray violin plots. The expected prediction performance is depicted by colored violin plots. For convenience, the mean performance is annotated for each plot. Prediction of age was markedly stronger than prediction of fluid intelligence or prediction of neuroticism. Nevertheless, significant prediction was achieved for all targets. As a general trend, models based on multiple MRI modalities tended yield better prediction.

  Figure B.1. Hence, the weight vectors of the classifiers can be interpreted as edge-level weights.

Figure B. 1 :

 1 Figure B.1: Difference between mean of MCI and AD group connectivity matrices:We show the connectivity matrices from the ADNI dataset[START_REF] Mueller | The alzheimer's disease neuroimaging initiative[END_REF] computed on samples diagnosed as Mild Cognitive Impairment (MCI) and Alzheimer's disease (AD). As can be seen, tangentspace parametrized connections are interpretable and positions in between correlation and partial correlation in terms of connectivity differences. We show the matrices estimated using timeseries extracted with pre-computed MODL dict. learning atlas of n=64 a .

Figure D. 1 :

 1 Figure D.1: Overlap between maps with λ = 0.0001 in DiFuMo model, for DiFuMo dimensionality 64, 256, and 512. As dimensionality increases, subdivisions are strongly overlapped lacking clear delineation across brain regions. Table D.1 gives details about the percentage of non-zero voxels covering whole brain for λ = 0.01, 0.001, 0.0001

Figure D. 3 :

 3 Figure D.3: Impact of the choice of DiFuMo atlases training data on decoding and functional connectomes. Each point gives the relative prediction score, over 6 different task fMRI experiments.The thick lines give the median relative score per type of data in task, rest and combination of both. Using the combination of both is marginally better than using task data alone to learn parcellations. We observe no crucial dominance of task-dependent variance in dictionaries in decoding performance.

Figure E. 1 : 0

 10 Figure E.1: ICA components (n=55) on UKBB resting-state fMRI data.Resting-state functional connectivity features are estimated from these widerange of functional brain networks.

Figure E. 5 :Figure E. 6 :

 56 Figure E.5: Classification analysis from imaging, socio-demographics and combination of both data of low versus middle groups on the basis of age, fluid intelligence and neuroticism scores. This analysis reveals model comparison outputs in contrast to the predictions on Figs. 4.3 and E.6. Shape and color indicates the type of data used for model comparison on these binary groups.We report the accuracy in AUC. The estimated null-distribution is shown in gray violin plots whereas colored violin plots depict the distribution of classification accuracies per model. The mean value is shown on each violin plot to facilitate easy comparisons across classification groups. We observe low classification accuracies using these groups while comparing to classification accuracies with low vs high groups as on Fig.4.3. Overall, the model comparisons showed consistency with low vs high groups i. e. sociodemographics data gave better prediction performance than imaging with fluid intelligence and neuroticism as proxy measures. Adding brain imaging to socio-demographics improves age prediction than socio-demographics or imaging alone.

  

  functional connectome is estimated from a set of brain ROIs, nodes Fig. 2.1 that altogether form brain parcellations, by measuring their pairwise interactions termed as functional connectivity, edges Fig. B.1.This section describes standard methods to estimate such nodes and edges from the rfMRI data.

.1 and Section 2.1. We detail below the specific modeling choices included in our benchmarks.

  

	Dataset	Prediction task	Groups
	COBRE	Schizophrenia vs Control	65/77
	ADNI	AD vs MCI	40/96
	ADNIDOD	PTSD vs Control	89/78
	ACPI	Marijuana use vs Control	62/64
	ABIDE	Autism vs Control	402/464

Table 2 .1: Datasets and prediction tasks, as

 2 

	well as the number of subjects

selection of methods for definition of brain ROIs . . .

  

Table 2 .2: Recommendations for imaging-based based prediction pipeline.

 2 

. Validation benchmarks Map reconstruction and meta-analysis Dictionary learning on 2192 OpenfMRI sessions 1a. DiFuMo: multi-scale dictionary of Functional Modes

  

			1b. Existing atlases
	given experimental design Decoding experimental design given brain activity Mapping brain activity 444 ROIs UKBB ICA 55 components 2BASC GLM HOUSE FACE PUNISH REWARD Components projection studies 7 resting-state Time series 128 components 64 components Craddock et al. 256 components 1024 components 512 components 400 ROIs etc.
	Contrast maps 7 task fMRI studies		Predictive modeling from functional connectomes
	Public datasets	Reduced representations	Classic fMRI data analysis

or normalized cuts

[START_REF] Craddock | A whole brain fMRI atlas generated via spatially constrained spectral clustering[END_REF]

-linear regression simply amounts to averaging the images values in every cluster of D. For overlapping modes as the ones of DiFuMo or the ICA maps used in UKBB

(Miller and Alfaro-Almagro, 

  .1):

	Name	# subjects Data type	Dimensionality	Soft	Method
	BASC		200	rest	64, 122, 197, 325, 444 No	Hierarchical clustering
	MIST ATOM a	200	rest	1095	No	Region growing
	Craddock		41	rest	200, 400	No	Spectral clustering
	FIND b		15	rest	90, 499	Yes	ICA; Ward clustering
	Gordon		120	rest	333	No	Local-gradient approach
	UKBB ICA		4100	rest	21, 55	Yes	Selected ICA components c
	Schaefer		1489	rest	100, 200, 300, 400	No	Gradient-weighted
					500, 600, 800, 1000		Markov Random Field (gwMRF)
	DiFuMo d		2192 task, rest 64, 128, 256, 512, 1024 Yes	Sparse dictionary learning
	a https://figshare.com/articles/ _ /5633638	
	b https://findlab.stanford.edu/functional _ ROIs.html	c https://www.fmrib.ox.ac.uk/ukbiobank/

d https://parietal-inria.github.io/DiFuMo

Table 3 . 1 :

 31 Functional atlases that we benchmark; they define IDPs for population imaging

Table 3 .

 3 

	T a s k	# s a m p l e s	R e p r e s e n t a t i o n	T i m e ( s e c )	S p e e d u p
	Emotion	4924	Voxel-level Reduced	77.7 1.7	46×
	Pain	84	Voxel-level Reduced	1.5 0.006	250×
	Working memory	3140	Voxel-level Reduced	874.7 3.7	240×
	Gambling 1574	Voxel-level Reduced	298.7 1.12	270×
	Relational 1572	Voxel-level Reduced	263.1 0.65	405×

2:

The comparison in computational times while predicting mental state on two set of brain features space: voxel-level ≈ 200, 000 and reduced voxels to DiFuMo

3

  Regional grey matter volumes http://biobank.ctsu.ox.ac.uk/crystal/label.cgi? id=1101 Subcortical volumes http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?

	Index	Name	# variables # groups
	1	brain volumes (sMRI)	157	1
	2	white matter (dMRI)	432	1
	3	functional connectivity (fMRI)	1485	1
	4	sMRI, dMRI	589	2
	5	sMRI, fMRI	1642	2
	6	dMRI, fMRI	1917	2
	7	sMRI, dMRI, fMRI (full MRI)	2074	3

id=1102

4 Diffusion MRI skeleton measurements http://biobank.ctsu.ox.ac.uk/crystal/ label.cgi?id=134

Table 4 . 1 :

 41 Imaging-based models.

Table 4

 4 

	.3. After

Table 4 . 4 :

 44 Number of samples for classification analysis (N). N varies on the feature space as not all individuals have completed the imaging visit.

	Features space	# groups Age	Fluid intelligence Neuroticism
		1	1335 1108	1054
	Imaging and Non-imaging	2	1668 2197	1476
		3	1200 898	1020
		1	1764 1515	1388
	Non-imaging	2	2223 2906	1959
		3	1600 1166	1350

  Most of the methods that we study are readily-available in several computing environments, including Matlab and Python with a variety of well-maintained implementations. However, the only library that provides the tangent-space parametrization of covariance matrices is the Nilearn Python library 1 . To facilitate reproducing our analysis in different environments, we describe here how to compute this parametrization with a few simple formulas. The computation is made of two step: First a group average covariance matrix Σ is computed from the covariances of the training subjects: {Σ i , i ∈ Train}. Second, it is used to transform covariance matrices, in the train set or the test set.

	B T A N G E N T-S PA C E			
	Clinical question #Subjects Functional	# Nodes Classifier
		& Accuracy		matrix	(type of nodes)	
	Nielsen et al., 2013	ASD	964	Pearson's	7266	SVM
		60%		correlation	(coordinates)	
	Abraham et al., 2017 ASD	811 Tangent-space	84	SVM-2
		67%	parametrization	(data-driven)	
	Iidaka, 2015	ASD	640	Pearson's	90	KDA
		90%		correlation	(anatomical)	
	Dodero et al., 2015	ASD	94	graph	264	Kernel
		60.76%		Laplacian	(coordinates)	SVM-2
	Anderson et al., 2014 ADHD	730	Graph	90	Decision
		67%		Networks	(data-driven)	trees
	Cheng et al., 2012	ADHD	730	Pearson's	90	Kernel
		76%		correlations	(anatomical)	SVM-2
	Rashid et al., 2016	Schizo	273	Full	100	SVM
		59.12%		correlation	(data-driven)	
	Bassett et al., 2012	Schizo	58	Graph	90	SVM-2
		75%		Networks	(anatomical)	
	Shen et al., 2010	Schizo	52	Pearson's	116	C-means
		92%		correlation	(anatomical)	
	Guo et al., 2012	MDD	76	Graph &	90	RBF-SVM
		79%		Networks	(anatomical)	
	Craddock et al., 2009 MDD	40	Pearson's	15	SVM-1
		95%		correlation	(coordinates)	
	Rosa et al., 2015	MDD	38	Inverse	137	SVM-1
		85%		covariance	(pre-defined)	
	Chen et al., 2011	AD	55	Pearson's	116	LDA
		87%		correlation	(anatomical)	
	Zhu et al., 2013	MCI	28	Pearson's	358	SVM-2
		96%		correlation	(coordinates)	

Table C .1: HCP dataset and prediction task, as

 C well as the number of subjects in each group. HCP -443. IQ represents fluid intelligence; 788 subjects had an IQ score in the HCP900 release. Table2.1 denotes other datasets and prediction tasks.

Table D .1: Coverage of the whole brain (%) as a function of dimension and range of λ in DiFuMo model.

 D Marginal distribution of relative prediction scores, using only precomputed atlases for regions definition, where MODL is a parcellation built using a form of Online dictionary learning. Restricting to pre-computed regions and adding a different dataset (HCP) gives results consistent with Figure2.5, 2.4, and 2.3: best choices are regions defined functionally, with decomposition methods (MODL) followed by clustering methods (BASC), tangent-space parametrization of connectivity, and 2 -regularized logistic regression. The box displays the median and quartiles, while the whiskers give the 5 th and 95 th percentiles. While the higher dimension 1024 of DiFuMo maps yields a coverage of the whole brain, other DiFuMo atlases with smaller dimensions do not have such coverage. We recommend the optimum tradeoff value as λ = 0.001 by analysing both the degree of overlap between modes as shown on Figure D.1 and non-zero voxels. A lower λ gives full coverage of the whole brain but suffers from strong overlap between modes whereas higher λ has lost the brain coverage. The values are reported based on union of all modes per dimension.

	-0.2 (116 regions) AAL Harvard Oxford (118 regions) Power (264 regions) BASC (122 networks) MODL dict. learning (64 networks) MODL dict. learning (128 networks) Partial Correlation Correlation Tangent K-NN Random Forest Gaussian Naive Bayes SVC-1 ANOVA + SVC-1 Logistic-1 Ridge SVC-2 ANOVA + SVC-2 Logistic-2 Figure C.1: Pipelining choices with precomputed regions, across six -0.1 0.0 +0.1 Relative prediction scores (AUC) Regions-definition pre-computed atlases Connectivity Classifiers COBRE ADNI ADNIDOD ACPI ABIDE HCP λ Non-zero voxels (%) 0.01 12% 64 0.001 59% 0.0001 100% 0.01 21% 128 0.001 77% 0.0001 100% 0.01 34% 256 0.001 98% 0.0001 100% 0.01 51% 512 0.001 100% 0.0001 100% 0.01 73% 1024 0.001 100% datasets: Dimension 0.0001 100%

Table D . 2 :

 D2 Large-scale fMRI datasets downloaded from OpenNeuro to build our multi-dimensional DiFuMo atlases. Data are pre-processed using fMRIprep. The corpus is 2.4TB in total.

	Rest-fMRI	Prediction groups		Samples
	HCP900	High IQ vs Low IQ		443 subjects
		213/230		
	ABIDE	Autism vs control		866 subjects
		402/464		
	fMRI study		#Subjects #Sessions #Runs
	(Schonberg et al., 2012) ACPI Marijuana use vs control 16	_ 126 subjects	3
	(Aron, Gluck, and Poldrack, 2006) 62/64	17	_	2
	(Xue and Poldrack, 2007) (Jimura et al., 2014) ADNI Alzheimers vs MCI 40/96	13 14	_ 2 136 subjects	6
	(Xue, Aron, and Poldrack, 2008)	20	_	2
	(Aron et al., 2007) ADNIDOD PTSD vs control	14	_ 167 subjects	3
	(Foerde, Knowlton, and Poldrack, 2006) 89/78	14	_	2
	(Rizk-Jackson, Aron, and Poldrack, 2011) (Alvarez and Poldrack, 2011) COBRE Schizophrenia vs control 8 13 65/77	2 _ 142 subjects	3 8
	(Poldrack et al., 2001)		14	_	2
	(Mennes et al., 2013) (Kelly et al., 2008) CamCAN	Age 24 -86	21 26	_ _ 626 subjects	2 2
	(Haxby, Gobbini, and Furey, 2001)	6	_	12
	(O'Toole et al., 2005)			
	(Hanson, Matsuka, and Haxby, 2004)		
	(Duncan et al., 2009)		49	_	2
	(Moran, Jolly, and Mitchell, 2012)	36	_	2
	(Uncapher, Hutchinson, and Wagner, 2011)	18	_	10
	(Gorgolewski et al., 2013)		10	2	_
	(Repovs and Barch, 2012)		1	_	_
	(Cera, Tartaro, and Sensi, 2014)	26	2	3
	(Verstynen, 2014)		28	_	_
	(Gabitov, Manor, and Karni, 2015)	15	_	3
	(Lepping et al., 2016)		39	_	5
	(Lepping, Atchley, and Savage, 2016)		
	(Iannilli et al., 2016)		1	_	_
	(Stephan-Otto et al., 2017)		26	_	2
	(Kim et al., 2016)		11	_	2
	(Romaniuk et al., 2016)		40	_	_
	(Roy et al., 2017)		26	2	_
					Previous work have
	established a strong correspondance between resting-state and task

Table D .3: Resting-state rfMRI datasets used in the pipeline described on Section 3.4.3 for predicting phenotypic labels from functional connec- tomes.

 D In CamCAN, age is predicted using ridge regression. The groups from other datasets are predicted using logistic regression. IQ -Fluid intelligence,

PTSD, MCI.

Table D .4: Dataset, prediction tasks and dataset size for each of the 6 decoding tasks we consider in Section 3.4.2

 D . z-maps from HCP and IBC were computed using the GLM, while NeuroVault directly provided the β-maps for Emotion and Pain. NV: NeuroVault.

	a. Predicting mental tasks		
	64 128 256 512 1024 Dimension -8% -6% -4% -2% 0% +2% +4% Accuracy gain relative to median data type performance -10% tfMRI data rfMRI data both
	Prediction task Rating:1, 2, 3, 4, 5 Sensitivity: 1, 2, 3 face vs place loss vs reward relational vs matching 64 128 256 512 1024 # maps NV503: Emotion 4924 NV504: Pain 84 HCP: Working mem. 3140 HCP: Gambling 1574 HCP: Relational 1572 -5% 0% +5% Accuracy gain relative to median data type performance -10% Dimension tfMRI data rfMRI data both
	IBC: Archi standard	left vs right hand	1040

b.

Predicting traits from functional connectomes

  

  tools.

	MR data processing details http://biobank.ctsu.ox.ac.uk/showcase/showcase/
	docs/brain _ mri.pdf

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki The ROIs are the combinations from several atlases: Harvard-Oxford cortical and subcortical atlases, and Diedrichsen cerebellar atlas.

Table E .1: List of 5 baseline variables grouped into Age, Sex.

 E 

3: Prediction of individual differences from socio-demographic data.

  . Prediction of age, fluid intelligence and neuroticism based from 86 socio-demographic variables ordered from lower to higher i. e. a single group to 5 groups as introduced on TableE.8. Models are based on non-exhaustive combinations of variables related to early life factors (EL), education (EDU), life-style (LS) and measures related to age and sex (AS). Color indicates the number of blocks of variables per model. We used the R 2 score to facilitate comparisons across prediction targets. The estimated null-distribution is depicted by gray violin plots. The expected prediction performance is depicted by colored violin plots. Vertical dotted lines indicate the average performance of the full MRI model introduced in Fig.4.4. For convenience, the mean performance is annotated for each plot. One can readily see that prediction with socio-demographics was markedly stronger than with the brain-based model for all three targets. Education related variables explains most of fluid intelligence prediction and similarly mental health for neuroticism prediction. On the other hand, lifestyle showed impact on age prediction when socio-demographic variables are considered. This plot is related to the simplified plot in Fig.4.2. Overall, considering full socio-demographics (5 groups = 86 variables) explains better predictions significance of additive learning effects.

			Socio-demographics								
			Age						Fluid intelligence			Neuroticism
		EL, EDU, LS, MH, AS									0.18					0.31
		EDU, LS, MH, AS									0.17					0.31
		EL, LS, MH, AS							0.08						0.31
		EL, EDU, MH, AS									0.17					0.31
		EL, EDU, LS, MH					0.63				0.18					0.30
		EL, EDU, LS, AS									0.18				0.07
		EDU, MH, AS LS, MH, AS	0.07 Socio-demographics and MRI	0.16					0.31 0.31
	Model comparison Model comparison	Age, Sex (AS) Mental health (MH) EL, EDU EL, LS EL, AS EL, MH EDU, LS LS, AS LS, MH MH, AS EL, EDU, LS EL, EDU, AS EL, EDU, MH EL, LS, AS EL, LS, MH EDU, LS, MH EDU, LS, AS EL, EDU, LS, MH, AS EL, MH, AS EDU, LS, MH, AS EDU, LS, MH EDU, MH, AS LS, MH, AS EL, EDU, LS, AS EL, EDU, LS, MH EL, EDU, MH, AS EL, LS, MH, AS EDU, LS, AS EDU, MH EL, MH, AS EDU, AS EL, LS, MH LS, AS LS, MH MH, AS EL, EDU, LS EL, EDU, AS EL, EDU, MH EL, LS, AS Life style (LS) EDU, MH Education (EDU) EDU, AS Early Life (EL) EDU, LS EL, MH EL, AS EL, LS	0.03 0.08 0.09 0.0 Age	0.24 0.26 0.29 0.30 0.2	0.4	0.61 0.61 0.62 0.62 0.62 0.62 0.62 0.6 0.67 0.67 0.67 0.67 0.54 0.67 0.54 0.67 0.54 0.67	0.8	0.01 0.06 0.01 0.02 0.07 0.02 0.03 0.06 0.07 0.03 0.07 0.07 0.15 0.15 0.16 0.14 0.15 0.17 0.16 0.16 0.04 0.16 0.16 0.0 0.2 Fluid intelligence 0.4 0.15 0.15 0.15 0.15 0.07 0.15 0.15 0.15 0.07 0.15 0.04 0.07 0.07 0.04 0.15 0.15 0.15 0.07 0.07 0.15 0.15 0.15 0.04 R 2 0.07 0.04	0.6	0.8	0.00 -0.00 0.03 0.04 0.01 0.03 0.05 0.03 0.05 0.06 0.03 0.05 0.07 0.06 0.0 Neuroticism 0.2 0.05 0.05 0.05 0.04 0.03 0.05 0.03 0.04 0.04 0.03	0.30 0.31 0.30 0.30 0.31 0.30 0.30 0.31 0.30 0.31 0.31 0.30 0.31 0.30 0.30 0.30 0.31 0.30 0.30 0.30 0.30 0.30 0.30 0.30	0.4 # groups 0.6 # groups 1 2 3 4 5 0.8 1 2
	0.50 0.54 0.50 Figure E.0.50 Early Life (EL) Education (EDU) Life style (LS) Mental health (MH) EL, EDU Age, Sex (AS)	0.67		0.04 0.07 0.04 0.04	0.15 0.15				0.01 0.02 0.04 0.02 0.03	0.30	3 4 5
			0.0	0.2	0.4	0.6	0.8	0.0		0.2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	0.8
												R 2			
	.														

Figure E.4: Prediction of individual differences from imaging and socio- demographic data.

  Prediction of age, fluid intelligence and neuroticism based from 86 socio-demographic variables Table E.8 and the 2074 variables included in the full-MRI model from Fig. 4.4. Rules for graphical display as in Fig. E.3. One can see that the effect of combining socio-demographics with brain-data depended on the prediction target. For age, overall performance improved beyond the previous analyses. The picture was less consistent for fluid intelligence and neuroticism.

	Index	Name	# variables # groups
	1	EL, EDU	11	2
	2	EL, LS	54	2
	3	EL, AS	14	2
	4	EL, MH	34	2
	5	EDU, LS	47	2
	6	EDU, AS	7	2
	7	EDU, MH	27	2
	8	LS, AS	50	2
	9	LS, MH	70	2
	10	MH, AS	30	2
	11	EL, EDU, LS	56	3
	12	EL, EDU, AS	16	3
	13	EL, EDU, MH	36	3
	14	EL, LS, AS	59	3
	15	EL, LS, MH	79	3
	16	EL, MH, AS	39	3
	17	EDU, LS, AS	52	3
	18	EDU, LS, MH	72	3
	19	EDU, MH, AS	32	3
	20	LS, MH, AS	75	3
	21	EL, EDU, LS, MH	81	4
	22	EL, EDU, LS, AS	61	4
	23	EL, EDU, MH, AS	41	4
	24	EL, LS, MH, AS	84	4
	25	EDU, LS, MH, AS	77	4
	26	EL, EDU, LS, MH, AS	86	5

Table E . 8 :

 E8 More non-imaging baseline models, a progressive extension of models reported on Table4.2. These models are based on the combination of two or more groups: Early Life (EL), Education (EDU), Life style (LS), Mental health (MH), Age, Sex (AS). Random forest model paramters tuned with in-built cross-validation Number of trees is set by stabilization of out-of-bag (OOB) error rate after trying from a range of values in250, 350, 500, 800, 1000, 2000, 3000, 5000. 

http://schizconnect.org/ www.adni-info.org http://fcon _ 1000.projects.nitrc.org/indi/ACPI/html/

We used the term ball rather a sphere. From a mathematical standpoint, A "ball" is the inside of a sphere.

http://preprocessed-connectomes-project.org/abide/

http://fcon _ 1000.projects.nitrc.org/indi/ACPI/html/

Available at: https://arthurmensch.github.io/modl/

Eq. (3.1) admits multiple local solutions: the obtained atlases may slightly vary across training runs, although similar regions are recovered, and all atlas perform similarly.Mensch, Varoquaux, and Thirion (2016) further discuss reproducibility of matrix factorization across runs.

We handle site differences by casting all data in the MNI template space.[START_REF] Abraham | Deriving reproducible biomarkers from multisite resting-state data: An Autism-based example[END_REF] shows the robustness to site difference of predictors based on functional connectomes.

http://biobank.ctsu.ox.ac.uk/crystal/instance.cgi?id=2 UKBB assessment centre visit and its instances denoted as number

2 We undertook this analysis dated December 2017, and we used the data that was available by then, the 10,000 samples release.

https://github.com/arthurmensch/modl

http://nilearn.github.io/

All covariance matrices are symmetric definite positive, and well-conditioned if estimated with the Ledoit-Wolf approach

github.com/KamalakerDadi/benchmark_rsfMRI_prediction

To ensure a correct nested cross-validation and avoid circularity (overfitting), datadriven region-extraction methods must be run on each fold, hence several hundred time for each pipeline configuration.

Details about multiple sites http://biobank.ctsu.ox.ac.uk/crystal/field.cgi? id=54

Details about MRI acquisition and image processing pipelines http://biobank.ctsu. ox.ac.uk/showcase/showcase/docs/brain _ mri.pdf

D D I F U M O E X T R A C T I O N

.

: -

To run the SOMF algorithm, we relied on the open-source Python package readily available at https://arthurmensch.github.io/modl/.

The MODL package is implemented using Cython [START_REF] Dalcin | Cython: The Best of Both Worlds[END_REF], scikit-learn [START_REF] Pedregosa | Scikit-learn: Machine Learning in Python[END_REF] and nilearn (Abraham et al., 2014b).

We use a coordinate descent algorithm [START_REF] Friedman | Pathwise coordinate optimization[END_REF] to solve for the inner 1 regularization problems with positivity constraints. Setting optimum λ for DiFuMo extraction is a challenging task as the DiFuMo extraction is an unsupervised learning problem. On one hand the number of modes extracted should approximately cover the whole brain; on the other hand the overlap should be minimal between the modes. As can be seen from Table D.1, higher λ gives a lower brain coverage whereas lower value has 100% coverage starting from low-dimensions. Yet lower λ creates overlap between the modes as shown on Figure D.1. We set λ = 0.001 as it provides a good compromise in between modes overlap and brain coverage, as summarized on Figure D.2. It gives full brain coverage for high-order atlases.

Following Mensch et al. (2018), we access a random fraction of each record at each iteration to accelerate training. We use a subsampling ratio value r = 12, run the algorithm on a single epoch, and use a learning rate β = 0.92, as empirically proposed by Mensch et al. (2016). We compute a brain mask that intersect the signal from all the resampled images, using Nilearn (Abraham et al., 2014b). DiFuMo atlases are learned using this mask. The training scripts are available at https://github.com/KamalakerDadi/DiFuMo _ analysis _ scripts.

. This section gives complementary details to Section 3.3.2. Table D.2 lists the corresponding fMRI data which we relied upon for DiFuMos extraction. The data includes BOLD timeseries from different cognitive tasks and resting-state based studies, the combination of task+rest give 2 192 recording sessions to fit the model.