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A B S T R A C T

Mental disorders display a vast heterogeneity across individuals. A
fundamental challenge to studying their manifestations or risk factors
is that the diagnosis of mental pathological conditions are seldom
available in large public health cohorts. Here, we seek to develop
brain signatures, biomarkers, of mental disorders. For this, we use ma-
chine learning to predict mental-health outcomes through population
imaging i. e. with brain imaging (Magnetic Resonance Imaging (MRI)).
Given behavioral or clinical assessments, population imaging can
relate unique features of the brain variations to these non-brain self-
reported measures based on questionnaires. These non-brain measure-
ments carry a unique description of each individual’s psychological
differences which can be linked to psychopathology using statistical
methods. This PhD thesis investigates the potential of learning such
imaging-based outcomes to analyze mental health. Using machine-
learning methods, we conduct an evaluation, both a comprehensive
and robust, of population measures to guide high-quality predictions
of health outcomes.

This thesis is organized into three main parts: first, we present
an in-depth study of connectome biomarkers, second, we propose
a meaningful data reduction which facilitates large-scale population
imaging studies, and finally we introduce proxy measures for mental
health.

We first set up a thorough benchmark for imaging-connectomes to
predict clinical phenotypes. With the rise in the high-quality brain
images acquired without tasks, there is an increasing demand in eval-
uation of existing models for predictions. We performed systematic
comparisons relating these images to clinical assessments across many
cohorts to evaluate the robustness of population imaging methods for
mental health. Our benchmarks emphasize the need for solid founda-
tions in building brain networks across individuals. They outline clear
methodological choices.

Then, we contribute a new generation of brain functional atlases to
facilitate high-quality predictions for mental health. Brain functional
atlases are indeed the main bottleneck for prediction. These atlases are
built by analyzing large-scale functional brain volumes using scalable
statistical algorithm, to have better grounding for outcome prediction.
After comparing them with state-of-the-art methods, we show their
usefulness to mitigate large-scale data handling problems.

The last main contribution is to investigate the potential surrogate
measures for health outcomes. We consider large-scale model compar-
isons using brain measurements with behavioral assessments in an
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imaging epidemiological cohort, the United Kingdom (UK) Biobank.
On this complex dataset, the challenge lies in finding the appropriate
covariates and relating them to well-chosen outcomes. This is chal-
lenging, as there are very few available pathological outcomes. After
careful model selection and evaluation, we identify proxy measures
that display distinct links to socio-demographics and may correlate
with non-pathological conditions like the condition of sleep, alcohol
consumption and physical fitness activity. These can be indirectly
useful for the epidemiological study of mental health.

R É S U M É

Les troubles mentaux présentent une grande hétérogénéité entre les in-
dividus. Une difficulté fondamentale pour étudier leurs manifestations
ou leurs facteurs de risque est que le diagnostic des conditions men-
tales pathologiques est rarement disponible dans les grandes cohortes
de santé publique. Ici, nous cherchons à développer des biomarqueurs,
signatures cérébrales de troubles mentaux. Pour cela, nous utilisons
l’apprentissage automatique pour prédire les résultats de santé men-
tale grâce à l’imagerie de population, en se basant sur l’imagerie
cérébrale (imagerie par résonance magnétique (IRM)). Compte tenu
des évaluations comportementales ou cliniques, l’imagerie de popula-
tion peut relier les caractéristiques uniques des variations cérébrales
à ces mesures autodéclarées non cérébrales basées sur des question-
naires. Ces mesures non cérébrales fournissent une description unique
des différences psychologiques de chaque individu qui peuvent être
liées à la psychopathologie à l’aide de méthodes statistiques. Cette
thèse de doctorat examine le potentiel d’apprentissage de tels résultats
basés sur l’imagerie pour analyser la santé mentale. En utilisant des
méthodes d’apprentissage automatique, nous effectuons une évalua-
tion, à la fois complète et robuste, des mesures de population pour
guider des prévisions de haute qualité des résultats pour la santé.

Cette thèse est organisée en trois parties principales : premièrement,
nous présentons une étude approfondie des biomarqueurs du connec-
tome, deuxièmement, nous proposons une réduction significative des
données qui facilite les études d’imagerie de population à grande
échelle, et enfin nous introduisons des mesures indirectes pour la
santé mentale.

Nous avons d’abord mis en place une étude approfondie des connec-
tomes d’imagerie afin de prédire les phénotypes cliniques. Avec l’aug-
mentation des images cérébrales de haute qualité acquises en l’absence
de tâche explicite, il y a une demande croissante d’évaluation des
modèles prédictifs existants. Nous avons effectué des comparaisons
systématiques reliant ces images aux évaluations cliniques dans de
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nombreuses cohortes pour évaluer la robustesse des méthodes d’ima-
gerie des populations pour la santé mentale. Nos résultats soulignent
la nécessité de fondations solides dans la construction de réseaux
cérébraux entre les individus. Ils décrivent des choix méthodologiques
clairs.

Ensuite, nous contribuons à une nouvelle génération d’atlas fonc-
tionnels du cerveau pour faciliter des prédictions de haute qualité
pour la santé mentale. Les atlas fonctionnels du cerveau sont en effet
le principal goulot d’étranglement pour la qualité de la prédiction.
Ces atlas sont construits en analysant des volumes cérébraux fonc-
tionnels à grande échelle à l’aide d’un algorithme statistique évolutif,
afin d’avoir une meilleure base pour la prédiction des résultats. Après
les avoir comparés avec des méthodes de pointe, nous montrons leur
utilité pour atténuer les problèmes de traitement des données à grande
échelle.

La dernière contribution principale est d’étudier les mesures de
substitution potentielles pour les résultats pour la santé. Nous consi-
dérons des comparaisons de modèles à grande échelle utilisant des
mesures du cerveau avec des évaluations comportementales dans
une cohorte épidémiologique d’imagerie, le UK Biobank. Dans cet
ensemble de données complexe, le défi consiste à trouver les cova-
riables appropriées et à les relier à des cibles bien choisies. Cela est
difficile, car il y a très peu de cibles pathologiques fiables. Après une
sélection et une évaluation minutieuses du modèle, nous identifions
des mesures indirectes qui sont en corrélation avec des conditions non
pathologiques comme l’état de sommeil, la consommation d’alcool
et l’activité physique. Ceux-ci peuvent être indirectement utiles pour
l’étude épidémiologique de la santé mentale.

v



A C K N O W L E D G M E N T S

I am very grateful to my supervisors Gaël Varoquaux, Bertrand
Thirion, Denis Engemann and Josselin Houenou for always being
available at any time and for their valuable guidance. I warmly thank
Sylvia Villeneuve, Pierre Bellec for reviewing this thesis as well as
Camille Maumet, Vincent Frouin, Michel Thiebaut de Schotten for
accepting to be part of my defense jury.

I thank all the members of the Parietal team for being great friends
and amazing colleagues. I thank Régine Bricquet, Corinne Petitot,
Stéphanie Druetta and Anne Vilant for their efficiency at handling
administrative issues. Most of all, I thank my family, my parents and
my wife for their patience and immense support. Finally, I thank Inria
for funding my thesis.

vi



C O N T E N T S

1 introduction 1

1.1 Overview of the thesis 1

1.2 A primer on MRI for Population Imaging 4

1.3 Conclusion 7

2 pipelines to best predict phenotypes from functional
connectomes 8

2.1 Population phenotypes studied 9

2.2 Estimating functional connectomes 10

2.3 Many choices of prediction pipeline 12

2.4 Guidelines for optimal modeling choices of prediction
pipeline 16

2.5 Discussion 18

2.6 Conclusion 21

3 brain atlases to extract functional signals 22

3.1 Dimensionality reduction 22

3.2 Image-derived phenotypes for population imag-
ing 23

3.3 A scalable model and a very large fMRI dataset 24

3.4 Soft functional modes in practice 26

3.5 Region names: relation to anatomical structures 31

3.6 Validations for population imaging 31

3.7 Discussion 35

3.8 Conclusion 39

4 predicting proxy measures for mental health 40

4.1 Problem Statement 40

4.2 Proxy measures 41

4.3 Objectives of conceptualizing mental disorders 42

4.4 Brain features and Socio-demographics for predicting
modeling 43

4.5 Predictive model comparisons 46

4.6 Brain imaging complements socio-demographics for
proxy measures 49

4.7 Classification groups are better discriminated with
socio-demographics 50

4.8 Age is best predicted from MRI compared to other
proxy measures 52

4.9 Conclusion 53

5 conclusion 55

6 synthèse en français 57

references
references 61

vii



contents viii

appendices
a review of predictive methods 84

a.1 Practices for imaging-based diagnosis 84

b tangent-space 85

b.1 Computing the tangent-space group average 85

b.2 Transforming covariance matrices 86

c imaging-based predictive models 88

c.1 Reproduced on high-quality datasets 88

d difumo extraction 90

d.1 Implementation details: model parameters 90

d.2 Input fMRI data 90

e image-derived proxy measures 96

e.1 Data acquisition details on UKBB samples 96

e.2 Data processing details on UKBB samples 97

e.3 More experiments 99



A C R O N Y M S

ADHD Attention Deficit Hyperactivity Disorder

ASD Autism Spectrum Disorder

AD Alzheimer’s disease

ADNI the Alzheimer’s Disease Neuroimaging Initiative

ADNI-DOD the Alzheimer’s Disease Neuroimaging Initiative
Department of Defense

AUC Area Under Curve

ANOVA Analysis of Variance

AAL Automated Anatomical Labeling

ACPI Addiction Connectome Preprocessed Initiative

ABIDE Autism Brain Imaging Data Exchange database

BOLD Blood Oxygenation Level Dependent

BET Brain Extraction Tool

BASC Bootstrap Analysis of Stable Clusters

COBRE Center for Biomedical Research Excellence

CanICA Canonical Independent Component Analysis

CamCAN The Cambridge Centre for Ageing and Neuroscience

CSF Cerebro-Spinal Fluid

dMRI Diffusion Magnetic Resonance Imaging

dMRI Diffusion Magnetic Resonance Imaging

DictLearn Dictionary Learning - `1

DOD Department of Defense

DiFuMo Dictionaries of Functional Modes

EPI Echo Planar Imaging

FDR False Discovery Rate

fMRI functional Magnetic Resonance Imaging

ix



acronyms x

FoV Field of View

FA Fractional Anisotropy

GNB Gaussian Naïve Bayes

GLM General Linear Model

GM Gray Matter

HCP Human Connectome Project

i.i.d. independent identically distributed

IBC Individual Brain Charting

IDPs Image-derived Phenotypes

ICA Independent Component Analysis

ICVF Intra-Cellular Volume Fraction

ISOVF Isotropic Volume Fraction

ICBM International Consortium for Brain Mapping

KNN K-Nearest Neighbor

MTA Multimodal Treatment Study

MCI Mild Cognitive Impairment

MO Tensor Mode

MEG Magnetoencephalography

MD Mean Diffusivity

MPRAGE Magnetization-Prepared Rapid Acquisition with Gradient
Echo

MNI Montreal Neurological Institute

MRI Magnetic Resonance Imaging

MIST Multiresolution Intrinsic Segmentation Template

MODL Massive Online Dictionary Learning

OD Orientation Dispersion index

PTSD Post Traumatic Stress Disorder

TR Repetition Time

rfMRI Resting-state functional Magnetic Resonance Imaging



acronyms xi

ROC Receiver Operating Characteristic

RSVP Rapid-Serial-Visual-Presentation

ROIs Regions of Interest

RSVP Rapid-Serial-Visual-Presentation

SOMF Stochastic Online Matrix Factorization

sMRI Structural Magnetic Resonance Imaging

SVC Support Vector Classifier

TR repetition time

UK United Kingdom

UKBB UK Biobank

WM White Matter



1 I N T R O D U C T I O N

1.1 overview of the thesis

Brain imaging holds the promise to provide an objective picture of
brain states and structure, reflecting individual characteristics and dis-
eases (Bearden and Thompson, 2017; Biswal et al., 2010; Miller et al.,
2016). There has thus been an important interest in finding the brain
imaging correlates of neurological and psychiatric diseases, in order
to provide reliable markers of these diseases (Woo et al., 2017). On the
other hand, machine learning is expected to provide powerful infer-
ence mechanisms to discover and leverage such markers. Hence, until
recently, machine-learning approaches to population imaging studies
analysis have focused mostly on predicting individual clinical status
from brain images acquired on individuals who are pre-stratified as
healthy controls and patients (Arbabshirani et al., 2017). For instance,
a typical situation consists in discriminating normal versus major de-
pression - a binary classification problem. These ongoing efforts have
led to limited progress in psychiatry research, as manifested by the
low accuracy of brain imaging-based predictions of clinical status (Ka-
pur, Phillips, and Insel, 2012). The patho-physiological mechanisms of
mental disorders are indeed complex to understand due to their vast
heterogeneity in pathological conditions (Insel and Cuthbert, 2015),
and therefore too unreliable for clinical translation.

Alternative strategies for understanding mental disorders have put
some emphasis on characterizing the underlying biological changes ob-
served through population imaging (Insel et al., 2010). This builds on
the observation that complex information embedded in brain imaging
requires adequate intermediate representations to overcome noise and
be relevant for individual characterization (Smith and Nichols, 2018).
Large public health cohorts have emerged to allow the extraction of
brain-imaging based signatures with statistical power (Collins, 2012).
Yet, this analysis framework is limited by the lack of direct measures
relevant to mental health. This challenge calls for studying the impact
of risk factors —whether derived from imaging or behavioral data—
on generic potential health outcomes. For instance, considering that
e. g. personality traits like neuroticism are genetically linked to depres-
sion, neuroticism may be a reliable proxy for mental health assessed
through depression related questionnaires (Lahey, 2009). We cast this
challenge as understanding brain-behavior relationships which can
be achieved by linking the large-scale brain measurements to behav-
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1.1 overview of the thesis 2

ioral assessments such as responses to questionnaires on populations
(Smith et al., 2015).

Statistical modeling is key in linking these unique population de-
scriptions to psychopathology. The objective of using multivariate
statistical methods in population imaging is thus two-fold: i) to extract
sensible imaging patterns from multiple dimensions useful for per-
sonal trait prediction; ii) to make predictions about health outcomes
at single-subject level.

The following work is organized around three major research direc-
tions, which have led to different series of contributions.

1.1.1 Methods for predicting outcomes

Chapter 2 focuses on outlining robust methods for imaging-based
predictions. With the rise in population imaging and the many possi-
ble modeling pipelines, there is a clear need to benchmark predictive
models for clinical phenotypes, in order to select the most accurate and
robust methods. This part relies on Resting-state functional Magnetic
Resonance Imaging (rfMRI) data and many analytic steps, organized
in pipelines, required to process rfMRI data. rfMRI is a widely used
technique to study functional connectomes, i.e. quantitative functional
connectivity models estimated from brain Regions of Interest (ROIs)
sampled over the whole brain. A core goal is indeed to predict clinical
phenotypes from functional connectomes. Achieving this requires to
make several choices regarding modeling steps : brain parcellations
schemes, connectomes extraction algorithms and machine learning
methods for prediction. After exhaustive comparisons of state-of-the-
art methods across diverse brain-imaging cohorts, this part provides
guidelines and default choices for connectomes-based predictive mod-
eling.

Published work

Kamalaker Dadi, Mehdi Rahim, Alexandre Abraham,
Darya Chyzhyk, Michael Milham, Bertrand Thirion,
and Gaël Varoquaux (2019). “Benchmarking functional
connectome-based predictive models for resting-state
fMRI.” In: NeuroImage 192, pp. 115 –134.

1.1.2 Scalable methods for high-quality predictions

Imaging-derived brain parcellations have received great interest and
made enormous progress with the availability of large-scale brain im-
age collections. In this Chapter 3, we took the advantage of these large
brain data collections to contribute new data-driven fine-grain brain
parcellations using Stochastic Online Matrix Factorization (Mensch



1.1 overview of the thesis 3

et al., 2018), a scalable Dictionary Learning algorithm. We also discuss
the usefulness of these atlases from an analytical task standpoint and
sketch some guidelines to choose brain parcellations for fMRI analysis,
after comparing our atlases to the existing state-of-the-art pre-defined
and data-driven functional parcellations. Task- and Rest-fMRI data-
analysis, as well as data compression experiments are presented. To
complete this contribution, we provide names to these parcels based
on neuroanatomical landmarks.

Published work

Kamalaker Dadi, Gaël Varoquaux, Antonia Machlouzarides-
Shalit, Krzysztof J. Gorgolewski, Demian Wassermann,
Bertrand Thirion, and Arthur Mensch (2020b). “Fine-grain
atlases of functional modes for fMRI analysis.” In: NeuroIm-
age, p. 117126. issn: 1053-8119.

1.1.3 Predicting proxy measures for mental health

Finally, Chapter 4 investigates the use of potential proxy measures
from an imaging epidemiological cohort aimed at studying mental
health. It provides a conceptualization of the use of indirect mea-
sures called proxies (self-reported measures to questionnaires) for
mental health. This idea is tested through analysis of the UK Biobank
cohort from a predictive modeling perspective. We combined both
(self-reported) socio-demographic data and brain imaging data of each
individual with a Random Forest model to perform the predictive
modeling of behavioral outcomes. The outputs of such models com-
bining population imaging and socio-demographic data are evaluated
to assess whether there is an advantage in pooling imaging with
socio-demographic variables. Finally, the best model comparisons are
selected and predicted scores on each individual are gathered to corre-
late with health outcome variables such as sleep, alcohol consumption
and physical fitness to derive endpoints for mental health. This chap-
ter concludes with a brief outline to the elements of an ongoing work
that are not part of this manuscript.

Submitted to journal

Kamalaker Dadi, Gaël Varoquaux, Josselin Houenou,
Danilo Bzdok, Bertrand Thirion, and Denis Engemann
(2020a). “Beyond brain age: Empirically-derived proxy mea-
sures of mental health.” In: bioRxiv. doi: 10.1101/2020.08.
25.266536.

https://doi.org/10.1101/2020.08.25.266536
https://doi.org/10.1101/2020.08.25.266536


1.2 a primer on mri for population imaging 4

1.2 a primer on mri for population imaging

1.2.1 Brain connectivity and its relevance to neuroscience

Brain imaging techniques such as functional Magnetic Resonance
Imaging (fMRI) or Magnetoencephalography (MEG) are a fundamental
tool for systems and cognitive neuroscience (Friston, 2009). These brain
mapping methods can be used to understand the principles of brain
organization such as brain connectivity, or the spatial organization
of the brain networks underlying certain mental functions (Friston,
1994). Brain connectivity encompasses many dimensions: synapses, ax-
onal fiber pathways (anatomical connectivity), statistical relationships
in the activity between remote regions (functional connectivity) or
model-based interactions (effective connectivity). These relationships
are defined among distinct units, where each unit or region is in prin-
ciple composed of homogeneous neurons (Sporns et al., 2004). Brain
connectivity is a central topic of interest to elucidate the interregional
connections of the nervous system.

estimates of brain connectivity Though connectivity can be
seen as the core concept in systems neuroscience, brain mapping
approaches can be categorized according to the signal that they mea-
sure, and according to their goal (Bullmore and Sporns, 2009). A
core distinction lies in how they capture the patterns of connectiv-
ity and whether these patterns could be used to understand brain
function. Anatomical connectivity represents networks of neurons
linked together through axonal pathways and synapses, forming dis-
tinct structured-like representations of the brain (Sporns, Tononi, and
Edelman, 2000). Anatomical connectivity can be investigated using
diffusion-weighted imaging techniques such as Diffusion Magnetic
Resonance Imaging (dMRI). Such neuroanatomical structures ground
our understanding of brain connectivity. Importantly, they do not in-
form us on how these structures communicate between each other nor
regarding how their interaction is modulated by experimental manip-
ulations. By contrast, functional connectivity and effective connectivity
are ways to quantify neuronal activations for instance measured at
macroscopic level using fMRI – a technique which indirectly measures
the evoked or ongoing neural activity depending upon the regional
metabolic demands Blood Oxygenation Level Dependent (BOLD) sig-
nal changes in time – reveal regional connectivity (static and dynamic
interactions) (Rubinov and Sporns, 2010).

Under no strict biological assumptions for e. g. micro-structural
properties, functional connectivity estimates functional associations
between remote brain locations based on their neurophysiological
states or neural activity (Friston, 1994). In contrast to effective connec-
tivity, functional connectivity estimates do not quantify the influence
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of one region over another one; instead it provides estimates of tem-
poral associations without assessing directed effects (Friston, 2011). In
terms of statistical modeling, given certain measurements of neural
activity, functional connectivity analyses find patterns of connectivity
that can be used as phenotypes to predict or classify individuals into
specific groups e. g. clinical diagnosis (Fox and Greicius, 2010). These
phenotypes are most often taken as the linear correlation coefficients
among pairs of regions. In a nutshell, functional connectivity is dom-
inantly used for classification problems i. e. attempts to establish a
mapping from imaging data to a diagnostic label (consequences to
cause) whereas effective connectivity analysis compares models of
cause to consequences among brain states (Friston, 2011). The study
of brain functional architecture with connectivity methods now spans
from simple correlations to complex models (Smith, 2012).

1.2.2 Brain function and structure for population analysis

functional connectivity Task-fMRI is used to map changes in
BOLD signal in brain areas that are involved in doing certain behav-
ioral tasks. Functional connectivity may be investigated in regions
defined by task-fMRI. In these scenarios, the analyses will be more
confined towards task-evoked regions constrained to sparse functional
architecture (Cole et al., 2014). However, it may be interesting to study
the functional coupling across multiple experimental conditions or
across multiple trials (Rissman, Gazzaley, and D’Esposito, 2004).

Beyond task-driven activity, most brain activity can be captured with
fMRI even when subjects are not engaged in any of the tasks or simply
stay at “rest” (Fox and Raichle, 2007). This ongoing activity is observed
as resting-state BOLD signal fluctuations (of frequency < 0.1 Hz), and
generally considered as some background activity observable even
when the metabolic demands are at baseline level. These temporal
fluctuations form coherent networks that are interesting to examine
functional connectivity on large-scale populations (Greicius et al.,
2008). This ongoing brain activity should not be viewed as a random
noise, as it can influence task-evoked activity at the onset of the
stimulus (Fox et al., 2006) and is strongly associated with the task-
evoked activity (Biswal et al., 1995), actually representing temporal
synchronization into networks (Luca et al., 2006; Raichle et al., 2001).

Resting-state functional connectivity thus demonstrates the presence
of intrinsic human brain functional architecture even in the absence
of behavioral tasks (Fox et al., 2005). Several applications have been
developed: i) relating functional connectivity to clinical status (Gre-
icius et al., 2004), ii) to behavior (Miller et al., 2016), iii) predicting
psychological traits (Dubois et al., 2018a) and iv) deriving data-driven
parcellations (Varoquaux et al., 2011; Yeo et al., 2011).
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brain structural analysis There exist other popular methods
for population imaging. One is morphometric analysis of the struc-
tural neuroimaging, concerned with the quantification of size, volume
of brain structures and tissue types and their variations under neu-
ropathologies or behavior (Lerch et al., 2017). For example, volume
changes in gray matter areas over lifetime are associated with: brain
ageing (Ritchie et al., 2015), brain evolution (Evans, 2006), general
intelligence (’g’) (Cox et al., 2019) and brain disease (Thompson et al.,
2007). Such volumes are calculated within pre-defined ROIs (Desikan
et al., 2006) or voxel-wise (Ashburner and Friston, 2000). Another
popular method in structural neuroimaging i. e. dMRI, is concerned
with the quantification of axonal pathways. Diffusion MRI enables
to identify white matter tracts along principal diffusive direction of
water molecules, as well as the connections between different gray
matter areas (Behrens et al., 2003; Conturo et al., 1999). The study of
these local anatomical connections through white matter are relevant
to the understanding of neuropathologies and functional organization
(Saygin et al., 2016).

1.2.3 Challenges in population imaging

There are however important issues with resting-state based func-
tional connectivity or morphometric analysis, namely the presence
of many potential confounds (Smith and Nichols, 2018). Unlike task-
based functional connectivity, resting-state does not represent a well-
characterized haemodynamic response function. Neural signal is not
separated from noise sources, whether physiology- or acquisition-
related (Alexander-Bloch et al., 2016; Liu, 2016; Power et al., 2017).

Moreover, subjects e. g. psychiatric patients may feel uncomfort-
able while undergoing scanning and often move while sampling
BOLD time series. This motion-related time series may create spu-
rious functional connectivity (Power et al., 2012) or false positives in
group studies (Reuter et al., 2015) if not addressed properly. These
population-specific effects are a typical confound when linking func-
tional connectivity or morphological changes to clinical conditions
(Pardoe, Hiess, and Kuzniecky, 2016). Another well known issue is
subjects falling asleep during acquisition, which strongly corrupts the
recorded signal (Laumann et al., 2016).

What can we do about it? Several denoising methods and pipelines
have already been proposed for cleaning such noisy BOLD timeseries
signals (Behzadi et al., 2007; Caballero-Gaudes and Reynolds, 2017;
Ciric et al., 2017; Griffanti et al., 2014a). Following those recommenda-
tions, we made choices of confounds such as 10 CompCor (Behzadi
et al., 2007) and 6 motion signals to regress them from pre-processed
BOLD time series. CompCor confounds are extracted on whole-brain
voxels and motion signals are pre-extracted using common data pre-
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processing procedure on raw fMRI data as part of data analysis. In
addition to confounds regression, signals are also normalized, de-
trended and bandpass-filtered between 0.01 and 0.1Hz. These cleaning
steps are commonly used while studying phenotypes from functional
connectivity or during the raw data preprocessing. These non-noisy
data are then used for prediction, which is studied in detail in Chap-
ters 2 to 4.

mri data preprocessing steps to mitigate confounds We
use a standard protocol that includes: motion correction, fMRI co-
registration to T1-weighted MRI, normalization to the Montreal Neu-
rological Institute (MNI) template using SPM12

1, Gaussian spatial
smoothing (FWHM = 5mm). The SPM based preprocessing pipeline
is implemented through pypreprocess2- Python scripts relying on
Nipype interface (Gorgolewski et al., 2011). All subjects were visu-
ally inspected and excluded from the analysis if they have severe
scanner artifacts or head movements with amplitude larger than
2mm. Confounds regression is done at signal extraction level in the
functional-connectomes pipeline Section 2.3.1.3 implemented with
Nilearn (Abraham et al., 2014a).

1.3 conclusion

In summary, we have sketched the context behind the contributions
presented in this manuscript, and target a good use of brain imaging
for population studies. We also gave a very brief introduction to MRI

for population imaging neuroscience that covers: brain structure and
function for predicting population phenotypes and the importance
of data preprocessing and introduction of standard preprocessing
pipeline. In our thesis, we extensively worked on fMRI datasets. A
note on the datasets that we used in preparation of this manuscript is
openly-available downloaded under standard terms and conditions.
We were not involved in any data acquisition.

1 www.fil.ion.ucl.ac.uk/spm/

2 https://github.com/neurospin/pypreprocess

www.fil.ion.ucl.ac.uk/spm/
https://github.com/neurospin/pypreprocess


2
P I P E L I N E S TO B E S T P R E D I C T
P H E N OT Y P E S F R O M
F U N C T I O N A L C O N N E C TO M E S

Functional images acquired during rest is a promising universal
marker of brain function (Biswal et al., 2010). It can easily be acquired
on many different individuals, as it does not require any task per-
formance, and is applicable to studying diseased populations. Many
population-imaging studies use rfMRI to relate brain imaging to neu-
ropathologies or other behavior and population phenotypes (Dubois
and Adolphs, 2016; Miller and Alfaro-Almagro, 2016).

A functional connectome or shortly connectome – a model character-
izing the network structure of the brain (Sporns, Tononi, and Kotter,
2005)– can be extracted from functional interactions in rfMRI data (Varo-
quaux and Craddock, 2013). The weights of the corresponding brain
functional connectome are used to characterize individual subjects
behavior and mental health (Dubois et al., 2018a; Milazzo et al., 2014;
Smith et al., 2015).

Machine-learning pipelines are key to turning functional connec-
tomes into biomarkers that predict the phenotype of interest (Woo et al.,
2017). On rfMRI, such a pipeline typically comprises of 3 crucial steps
as depicted in Fig. 2.2, linking functional connectomes to the target
phenotype (Craddock, Tungaraza, and Milham, 2015; Varoquaux and
Craddock, 2013).

problem statement There exist many variations of this proto-
typical pipeline, even for classification from edge-weights of brain
functional connectomes, as revealed by reviews of the field (Arbab-
shirani et al., 2017; Brown and Hamarneh, 2016; Wolfers et al., 2015).
These various choices have a sizable impact on the accuracy of popula-
tion studies, and are seldom discussed (Carp, 2012). The cost of such
analytical variation is twofold. First, it puts the burden on the practi-
tioner to explore many options and make choices without systematic
guidance. Second, methods variations create researchers degrees of
freedom (Simmons, Nelson, and Simonsohn, 2011) that can compro-
mise the measure of the prediction accuracy of biomarkers (Varoquaux,
2017). Guidelines on optimal modeling choices are thus of great value
for imaging-based biomarker research.

In this chapter we introduce a prediction pipeline that estimates con-
nectivity weights to relate them to phenotypes and thereafter review
practices and methods used for prediction of psychiatric diseases from
functional connectomes. Then, we present and benchmark different

8
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methodological choices involved in the classification pipelines. Finally,
we report experimental results and the best performing methods, as
revealed by our experiments.

2.1 population phenotypes studied

Population phenotypes are individual assessments, characterized
through clinical diagnostic systems or questionnaires. We can study
prediction from functional connectomes of various phenotypes – clini-
cal and non-clinical outcomes that includes: neuro-degenerative and
neuro-psychiatric disorders, drug abuse impact, fluid intelligence.
Studies can then focus either on discriminating between two or more
groups i. e. binary values or predicting on a continuous integers, for
instance brain-aging (Liem et al., 2017a). Thanks to the open science
(Poldrack and Gorgolewski, 2014), several openly-accessible rfMRI

datasets exists to study diseased populations (Biswal et al., 2010). This
could be useful to apply our connectome-classification pipeline to
benchmark various predictive modeling choices. Some of the diverse
phenotypes which could be interesting to study on populations who
are pre-stratified into binary groups are listed below.

1. Center for Biomedical Research Excellence (COBRE)1, comprising
rfMRI data to study schizophrenia and bipolar disorder (Calhoun
et al., 2012). We focus on predicting schizophrenia diagnosis
versus normal control.

2. the Alzheimer’s Disease Neuroimaging Initiative (ADNI)2

database studies neuro-degenerative diseases (Mueller et al.,
2005). We focus on using rfMRI to discriminate individuals with
Mild Cognitive Impairment (MCI) from individuals diagnosed
with Alzheimer’s disease (AD) (Trzepacz et al., 2014).

3. the Alzheimer’s Disease Neuroimaging Initiative Department of
Defense (ADNI-DOD), funded by the US Department of Defense
(DOD) to study brain aging in Vietnam War Veterans, includes
rfMRI data of individuals with Post Traumatic Stress Disorder
(PTSD) or brain traumatic injuries. We focus on discriminating
PTSD condition from normal controls.

4. Addiction Connectome Preprocessed Initiative (ACPI)3, a longitu-
dinal study to investigate the effect of cannabis use among adults
with a childhood diagnosis of Attention Deficit Hyperactivity
Disorder (ADHD). In particular, we use readily-preprocessed
rfMRI data from Multimodal Treatment Study (MTA) of ADHD.

1 http://schizconnect.org/

2 www.adni-info.org

3 http://fcon_1000.projects.nitrc.org/indi/ACPI/html/

http://schizconnect.org/
www.adni-info.org
http://fcon_1000.projects.nitrc.org/indi/ACPI/html/
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We attempt to discriminate whether individuals have consumed
marijuana or not.

5. Autism Brain Imaging Data Exchange database (ABIDE), inves-
tigates the neural basis of autism (Di Martino et al., 2014). We
use the data from Preprocessed Connectome Project (Craddock
et al., 2013) to discriminate individuals with Autism Spectrum
Disorder (ASD) from normal controls.

We also perform extra benchmarks including the Human Connectome
Project (HCP) rfMRI datasets to discriminate individuals with high
vs low intelligence score. These additional light-weight benchmarks
are to investigate the consistency of analytical choices while probing
high-quality datasets.

2.2 estimating functional connectomes

A functional connectome is estimated from a set of brain ROIs, nodes
Fig. 2.1 that altogether form brain parcellations, by measuring their
pairwise interactions termed as functional connectivity, edges Fig. B.1.
This section describes standard methods to estimate such nodes and
edges from the rfMRI data.

2.2.1 Definition of brain regions of interest (ROIs)

For functional connectomes, the hypothesis is that the definition of
ROIs should capture well the relevant functional units (Smith et al.,
2011). ROIs selection is an important difficult choice, as the optimal
may vary for different conditions or pathologies. Studies define nodes
to estimate functional connectomes with a variety of approaches:

• balls4 of radius varying from 5mm to 10mm centered at coor-
dinates from the literature (Dosenbach et al., 2010; Power et al.,
2011);

• Pre-defined reference anatomical atlases such as Automated
Anatomical Labeling (AAL) (Tzourio-Mazoyer et al., 2002), sulci-
based atlases (Desikan et al., 2006; Perrot et al., 2009), or
connectivity-based cortical landmarks (Zhu et al., 2013);

• data-driven approaches based on k-means or Ward clustering
(Thirion et al., 2014), as well as Independent Component Analy-
sis (ICA) approaches (Beckmann and Smith, 2004a; Calhoun et al.,
2001) or dictionary learning (Mensch, Varoquaux, and Thirion,
2016).

4 We used the term ball rather a sphere. From a mathematical standpoint, A “ball” is
the inside of a sphere.
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Figure 2.1: Brain regions extracted with ICA, DictLearn, KMeans, and
Ward For ICA and dictionary learning, the dimensionality is of 80 and
60 resting-state networks – which are then broken up into more regions –
yielding 150 regions, and 120 for KMeans and Ward clustering. Colors are
arbitrary. Regions are data-driven on ADNI dataset (Mueller et al., 2005).

The number of nodes which range from dozens to several hundreds
and the formation of nodes either as local regions or distributed
networks are tied to the choice of definition of ROIs. For pre-defined
atlases, these are certainly fixed.

We contribute further to this problem of selecting good analytical
choices in brain parcellations at Chapter 3.

2.2.2 Representation of brain functional connectomes

Studies define functional interactions from second-order statistics –
based on signal covariance– using Pearson’s correlation or partial
correlations estimated mostly either with the maximum-likelihood
formula for the covariance or the Ledoit-Wolf shrinkage covariance
estimator (Brier et al., 2015; Ledoit and Wolf, 2004a; Varoquaux and
Craddock, 2013). Partial correlation between nodes is useful to rule
out indirect effects in the correlation structure, but calls for shrunk
estimates (Smith et al., 2011; Varoquaux et al., 2010b). Mathematical
arguments have also led to representations tailored to the manifold-
structure of covariance matrices (Colclough et al., 2017; Dodero et
al., 2015; Ng et al., 2014; Varoquaux et al., 2010c). We benchmark
the simplest of these, a tangent representation of the manifold which
underlies the more complex developments (see Appendix B for a quick
introduction to this formalism). Fig. B.1 shows the representation of
functional connectomes estimated on ADNI dataset (Mueller et al.,
2005).
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Figure 2.2: Functional connectome prediction pipeline with three main
steps: 1) definition of brain regions ROIs from rfMRI images or using already
defined reference atlases, 2) quantifying functional interactions from time
series signals extracted from these ROIs and 3) comparisons of functional
interactions across subjects using supervised learning.

Some studies employ complex-graph network modeling approaches
–e. g. network modularity or centrality (Rubinov and Sporns, 2011)–
(Arbabshirani et al., 2017; Brown and Hamarneh, 2016; Wolfers et al.,
2015).

2.3 many choices of prediction pipeline

Fig. 2.2 shows the standard prediction pipeline considered for func-
tional connectomes-based predictions. It typically comprises 3 crucial
steps: definition of brain ROIs from rfMRI data, estimation of connec-
tomes from time series signals extracted upon on these ROIs, and
comparison of connectomes across subjects using machine learning.
In Appendix A.1, we list some studies that have used rfMRI to study
diverse psychiatric diseases as well as the choices selected at the each
step.

The current practice is very diverse, without standard modeling
choices. To open the way toward informed decisions, we explore
popular variants of the classic machine-learning pipeline to predict
on connectomes. We measure the impact of choices at each step on
prediction for diverse targets across multiple datasets as on Table 2.1
and Section 2.1. We detail below the specific modeling choices included
in our benchmarks.

Dataset Prediction task Groups

COBRE Schizophrenia vs Control 65/77

ADNI AD vs MCI 40/96

ADNIDOD PTSD vs Control 89/78

ACPI Marijuana use vs Control 62/64

ABIDE Autism vs Control 402/464

Table 2.1: Datasets and prediction tasks, as well as the number of subjects
in each group. COBRE - 142 subjects, ADNI - 136 subjects, ADNIDOD - 167
subjects, ACPI - 126 subjects, ABIDE - 866 subjects.
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2.3.1 A selection of methods for definition of brain ROIs

2.3.1.1 Pre-defined atlases

Pre-defined atlases defined based on brain anatomy: AAL (Tzourio-
Mazoyer et al., 2002), a structural atlas defined from the anatomy of a
reference subject, Harvard Oxford (Desikan et al., 2006), a probabilistic
atlas of anatomical structures, contains of cortical & sub-cortical ROIs.

Another category is defining ROIs from rfMRI data which we call as
functional atlases. Such atlases include Bootstrap Analysis of Stable
Clusters (BASC)(Bellec et al., 2010), a multi-scale functional atlas built
with clustering on rfMRI; Power, a coordinate-based atlas consisting
of coordinates which can be positioned by the balls of 5mm radius
(Power et al., 2011).

For a pre-computed functional atlas with dictionary learning, we
can use an atlas5 computed by Mensch et al., 2016 with a very scal-
able sparse dictionary-learning algorithm on the HCP900 dataset (Van
Essen et al., 2012). This algorithm, Stochastic Online Matrix Factoriza-
tion (SOMF), solves the `1 dictionary-learning problem with an algo-
rithm fast on very large datasets that converges to the same solution
as standard on-line solvers (Mensch et al., 2018).

2.3.1.2 Data-driven methods

Moving away existing pre-defined atlases, brain ROIs can also be de-
fined using popular data-driven methods from intrinsic brain activity
of the rfMRI a. k. a. data-driven (Abraham et al., 2013; Beckmann and
Smith, 2004a; Calhoun et al., 2001; Kahnt et al., 2012; Thirion et al.,
2014; Yeo et al., 2011). We choose to define ROIs using two cluster-
ing methods: K-Means (Hastie, Tibshirani, and Friedman, 2009), and
hierarchical agglomerative clustering using Ward’s algorithm (Ward,
1963) with spatial connectivity constraints (Michel et al., 2012); and
two linear decomposition methods: Canonical Independent Compo-
nent Analysis (CanICA) (Varoquaux et al., 2010a), Dictionary Learning
- `1 (DictLearn) (Mensch, Varoquaux, and Thirion, 2016).

2.3.1.3 Time-series signals extraction

After defining brain ROIs, we extract a representative time-series for
each ROI in each subject. For atlases composed of non-overlapping
ROIs as can be seen in Fig. 2.1 (bottom row), we simply compute the
weighted average of the fMRI time series signals over all voxels within
that specific region. For fuzzy overlapping ROIs, such as the atlases
driven by CanICA and DictLearn as shown in Fig. 2.1 (top row), we use
ordinary least squares regression to unmix the signal in each voxel as

5 Pre-computed sparse dictionaries with the Massive Online Dictionary Learning
(MODL) approach of Mensch et al., 2016 are available from https://team.inria.fr/

parietal/files/2018/10/MODL_rois.zip

https://team.inria.fr/parietal/files/2018/10/MODL_rois.zip
https://team.inria.fr/parietal/files/2018/10/MODL_rois.zip
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the additive decomposition of signals over several overlapping ROIs.
Let Y ∈ Rn×p be the subject-specific signals, written as p voxels by n
timepoints, and V ∈ Rk×p the atlas of k maps supported on p voxels.
We estimate U ∈ Rn×k, the set of time series for each ROI, using:

Û = arg min
U
‖Y −UV‖2

At the signal-extraction level, we regress out confounds or non-
neural information (Varoquaux and Craddock, 2013). As confounding
time-series we use: 10 CompCor (Behzadi et al., 2007) on the whole
brain and 6 motion related. We remove motion-related signal only for
COBRE, ADNI and ADNIDOD as they are provided as raw data. We
have not done any additional preprocessing steps on already prepro-
cessed public datasets like ABIDE6, ACPI7. The signal of each region
is also then normalized, detrended and bandpass-filtered between 0.01
and 0.1Hz. All these steps are done with Nilearn v0.3.

2.3.2 Connectivity parametrization

To estimate functional interactions efficiently from time series signals
extracted from these ROIs, we use the Ledoit-Wolf regularized shrink-
age estimator (Brier et al., 2015; Ledoit and Wolf, 2004a; Varoquaux
and Craddock, 2013), which gives a closed form expression for the
shrinkage parameter. This estimator yields well-conditioned estima-
tors despite the variation in length of time series across rfMRI datasets.
With this covariance structure, we study three different parametriza-
tions of functional interactions: full correlation, partial correlation
(Smith et al., 2011; Varoquaux and Craddock, 2013) and the tangent
space of covariance matrices. The latter is less frequently used but has
solid mathematical foundations and a variety of groups have reported
good decoding performances with this framework (Barachant et al.,
2013; Dodero et al., 2015; Ng et al., 2014; Qiu et al., 2015; Rahim,
Thirion, and Varoquaux, 2017; Varoquaux et al., 2010c; Wong et al.,
2018). Note that computing partial correlation or tangent space require
inverting covariance matrices, hence these must be well conditioned.
Non regularized covariance estimation is thus not useable for these
parametrizations.

For each parametrization, we vectorize the functional connectome,
using the lower triangular part of the connectomes matrix for classifi-
cation.

6 http://preprocessed-connectomes-project.org/abide/

7 http://fcon_1000.projects.nitrc.org/indi/ACPI/html/

http://preprocessed-connectomes-project.org/abide/
http://fcon_1000.projects.nitrc.org/indi/ACPI/html/
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2.3.3 Supervised learning: Classifiers

The final step of our pipeline predicts a binary phenotypic status from
connectivity features extracted from previous step. We consider sev-
eral linear and non-linear classifiers for prediction i. e. both sparse and
non-sparse methods. For non-linear methods, we consider K-Nearest
Neighbor (KNN) (Cover and Hart, 1967) with K=1 and Euclidean
distance metric, Gaussian Naïve Bayes (GNB) and Random Forests
Classifier (Breiman, 2001a). For linear classifiers we consider sparse `1
regularization for Support Vector Classifier (SVC), and Logistic Regres-
sion (Hastie, Tibshirani, and Friedman, 2009). For non-sparse linear
classifiers – i. e. `2 regularization – we consider Ridge classification,
SVC, Logistic regression. For SVC, we also considered 10% feature
screening with univariate Analysis of Variance (ANOVA). With regards
to the regularization parameter (e. g. soft margin parameter in SVC),
we use the default C = 1 or α = 1, which has been found to be a good
default (Varoquaux et al., 2017).

2.3.4 Cross validation and error measure

We perform cross-validation (CV) by randomly shuffling and splitting
each dataset over 100 folds, forming two sets of subjects: 75% for
training the classifier and learning brain atlases with data-driven
models and the remaining 25% for testing on unseen data (Varoquaux
et al., 2017). We create stratified folds, preserving the ratio of samples
between groups. For each split, we measure the Area Under Curve
(AUC) from the Receiver Operating Characteristic (ROC) curve: 1 is a
perfect prediction and .5 is chance. The final prediction scores in AUC
(> 120k scores, see Section 2.3.5) are used to measure the impact of
various choices in our prediction pipeline outlined below in results
section.

2.3.5 Computations and implementation

Our experimental study consists of more than 240 types of pipelines
(8 atlases × 3 connectivity measures × 10 classifiers). These pipelines
were run on each of 5 datasets for 100 CV folds. As a result, there are
more than 50 000 pipeline fits, from the raw data to the supervised
step, a heavy computational load. Technically, we rely on efficient
implementations open-source scientific computing packages using
Python 2.7: Nilearn v0.3 (Abraham et al., 2014b) to define brain atlases,
extract representative timeseries, and build connectivity measures.
All machine-learning methods used for prediction i.e., classifiers and
cross-validation are implemented with scikit-learn v0.18.1 (Pedregosa,
Varoquaux, and Gramfort, 2011). For visualization, we rely on Nilearn
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for brain-related figures while matplotlib is used (Hunter, 2007) for
generating other figures.

2.4 guidelines for optimal modeling choices
of prediction pipeline

We now outline which modeling choices have an important impact
on predicting over diverse phenotypes from all rfMRI datasets as men-
tioned on Table 2.1. We use high-quality HCP dataset to investigate
whether analytical choices which showed an impact on clinical ques-
tions will carry forward its consistency on a non-clinical behavioral
task prediction. Below, we study comparisons based on clinical ques-
tions and that behavioral task included comparisons on 6 datasets
with pre-computed atlases are summarized at Appendix C.1.

impact of methodological choices We study the prediction
score of each pipeline relative to the mean across pipelines on each fold.
This relative measure discards the variance in scores due to folds or
datasets. From these relative prediction scores, we study the impact of
the choice of each step in the prediction pipeline: choice of classifiers,
connectivity parametrizations, and definition of brain ROIs. This is a
multifactorial set of choices and there are two points of view on the
impact of a choice for a given step. First, the impact of the choice for
one step may be considered when the other steps are optimal, or close
to optimal. Second, the impact of one step may be considered for all
other choices for the other steps –marginally on the choice of other
steps. In the following figures, we study the first situation, focusing
on “good choices”: given a choice for one step, we report data for top
third highest performing scores (quantiles 0.666) for the choices in the
other steps.

2.4.1 Choice of classifier

Figure 2.3 summarizes the performances of classifiers on prediction
scores for all rfMRI datasets. The results display a certain amount of
variance across folds and datasets (i.e., prediction targets). However,
they show that non-sparse (`2-regularized) linear classifiers perform
better, with a slight lead for logistic-`2. Using non-linear classifiers
does not appear useful; neither does sparsity. The results in Figure 2.3
are conditional on a good choice for the other steps of the pipeline.
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Figure 2.3: Impact of classifier choices on prediction accuracy, for all rfMRI

datasets and all folds. For each classifier choice, only the top third highest per-
forming scores are represented when varying the modeling choices for other
steps in the pipeline: brain-region definition and connectivity parametriza-
tion. Overall, `2-regularized linear classifiers perform better, with a slight
lead for `2 logistic regression. The box plot gives the distribution across folds
(n=100) and datasets (denoted by markers) of prediction score for a given
choice (classifier) relative to the mean across all choices (regions-definition
and connectivity parametrizations, classifiers). The box displays the median
and quartiles, while the whiskers give the 5th and 95th percentiles.

2.4.2 Choice of connectivity parameterization

Figure 2.4 summarizes the impact of covariance matrix parametriza-
tion on the relative prediction scores for all rfMRI datasets. Tangent-
space parametrization tends to outperform full correlations or partial
correlations. Indeed, it performs better on average, but also has less
variance across datasets (prediction targets) or folds.

2.4.3 Choice of regions definition method

Figure 2.5 summarizes the relative prediction performance of all
choices of region-definition methods. While the systematic effects
are small compared to the variance over the folds and the datasets,
the general trend is that regions defined from functional data lead
to better prediction than regions defined from anatomy. Using `1
dictionary learning to define regions from rfMRI data appears to be
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Figure 2.4: Impact of connectivity parameterization on prediction accu-
racy, for all rfMRI datasets and folds. For each parametrization choice, only
the top third highest performing scores are represented when varying the
modeling choices for other steps in the pipeline: brain-region definition and
classifier. Prediction using tangent space based connectivity parameterization
displays higher accuracy with relatively lower variance than using full or
partial correlation. The box displays the median and quartiles, while the
whiskers give the 5th and 95th percentiles.

the best method, closely followed by ICA, which is also based on a
linear decomposition model. Interestingly, BASC, an atlas pre-defined
on unrelated rfMRI datasets using data-driven clustering technique,
performs almost as well as the best regions-extraction method applied
to the rfMRI data of interest. Unlike other pre-defined atlases, like
Harvard Oxford or AAL, that lack some crucial functional regions.
The BASC atlas (Bellec et al., 2010) is readily available online, and is
thus easy to apply to data. Figure 2.5 shows the impact of region-
definition approach conditional on good choices in the other steps
of the pipeline. Overall, comparisons highlight that defining regions
from functional data gives the best-performing pipelines, and that
linear-decomposition methods are to be preferred.

2.5 discussion

An increasing amount of studies use predictive models on functional
connectomes, for instance in population-imaging settings to relate
brain activity to psychological traits or to build biomarkers of patholo-
gies. While the basic steps of a pipeline are fairly universal –definition
of brain regions, construction of an interaction matrix, and supervised
learning– studies in the literature show many methodological variants
(Appendix A.1). Recommendations on methods that perform well can
increase practitioner’s productivity and limit vibration effects that



2.5 discussion 19

Figure 2.5: Impact of region-definition method on prediction accuracy, for
all rfMRI datasets and folds. For each region-definition choice, only the top
third highest performing scores are represented when varying the modeling
choices for other steps in the pipeline: classifier and connectivity parametriza-
tion. Learning atlases from rfMRI data tends the prediction for all tasks. By
contrast anatomical atlases perform poorly over diverse tasks. The box dis-
plays the median and quartiles, while the whiskers give the 5th and 95th

percentiles.

risk undermining the reliability of biomarkers (Varoquaux, 2017). A
challenge to such recommendations is the heterogeneity of prediction
settings, for instance across different acquisition centers or clinical
questions.

summary of models for predicting outcomes Here, we in-
vestigate methodological choices across 6 databases covering different
clinical questions and behavioral task. We systematically compare
commonly used functional connectome-based prediction methods. We
find that some trends emerge, despite a large variance due to vari-
ability across subjects –visible across the folds– and across cohorts
and clinical questions. Non-sparse linear models, such as logistic re-
gression, appear as a good default choice of classifier. The lack of
success of sparse approaches suggests that the discriminant signal is
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Step Recommendation

1: region extraction
Functional regions,

eg Dictionary learning or ICA

2: connectivity matrix Tangent-space embedding

3: supervised learning
Non-sparse linear model,

eg logistic regression or SVM

Table 2.2: Recommendations for imaging-based based prediction pipeline.

distributed across the functional connectome for the tasks we study.
The tangent-space parametrization of functional connectomes brings
improvements to prediction accuracy. With regards to nodes of the
functional connectomes, defining them from rfMRI data gives slight
benefits in prediction. Linear decomposition methods, such as dictio-
nary learning or ICA, are good approaches to define these nodes from
the rfMRI data at hand. Unlike clustering methods based on “hard”
assignment, they provide a soft assignment to regions, enabling to
capture a form of uncertainty in the definition of regions.

Alternatively, the MODL8 (Mensch et al., 2016) or BASC (Bellec et
al., 2010) atlases based predictions as shown on Fig. C.1, provide
good readily-available nodes that simplify the process and alleviate
computational cost. The good analytic performance of pre-computed
atlases is promising and calls for further study. Establishing standard
atlases brings significant computational benefits, as the definition of
regions and the extraction of signal is the most computation-intensive
part of the pipeline –in particular when performed inside a nested
cross-validation loop.

To enable comparison across different cohorts, we focused on 2-
class classification problems. However, the results in terms of regions
definition and connectivity parametrization should extend to other
supervised learning settings, such as regression –e.g. for age prediction
(Liem et al., 2017a)– multi-output approaches as with Canonical Cor-
relation Analysis popular in large-scale population imaging settings
(Miller and Alfaro-Almagro, 2016; Smith et al., 2015) for dimensional
approaches to psychology.

8 https://team.inria.fr/parietal/files/2018/10/MODL_rois.zip

https://team.inria.fr/parietal/files/2018/10/MODL_rois.zip
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2.6 conclusion

rfMRI-based predictive models bring the promise of robust and reliable
biomarkers: given new brain imaging data, they should give accurate
predictions of clinics or behavior (Woo et al., 2017).

Our study reveals trends that can provide good defaults to practi-
tioners, summarized on Table 2.2: regions defined from functional data,
for instance with ICA or dictionary learning as in the pre-computed
MODL atlas, representing connectivity with the tangent embedding of
covariance matrices, and using a non-sparse linear model, such as a
logistic regression. In particular, good defaults can limit the combinato-
rial explosion of analytic pipelines, which decreases the computational
cost of running a study and makes its conclusion more robust statis-
tically. Yet, as it is well known in machine learning (Wolpert, 1996),
there cannot be a one-size-fits-all solution to data analysis: optimal
choices will differ on datasets with very different properties from the
datasets studied here.



3 B R A I N AT L A S E S TO E X T R A C T
F U N C T I O N A L S I G N A L S

Chapter 2, has shown the benefits of functionally-defined brain parcel-
lations with ICA (Varoquaux et al., 2010a), dictionary learning (Men-
sch, Varoquaux, and Thirion, 2016) or clustering (Bellec et al., 2010).
Whether they are obtained from the data at hand or pre-defined from
other functional rfMRI datasets, these atlases overall showed higher
predictive accuracy. They extract better statistical links from brain
data to target outcomes as they capture the functional structure of
the brain. This finding motivates deriving high-resolution functional
atlases for better predictions and making them readily available to
plug into the prediction pipeline. This not only alleviates the computa-
tion burden but also satisfies the cross-validated supervised learning
criterion i. e. learning ROIs only on training data.

In this chapter, we focus on the derivation of high-resolution func-
tional brain parcellations for population imaging. We define this need
in the context of dimensionality reduction as a consequence of growth
in the population imaging. We discuss the limitations of existing al-
gorithms in terms of their scalability to large-scale brain volumes
and thereafter deploy efficient and scalable statistical algorithm for
high-resolution functional brain parcellations. We extend the vali-
dation of these new finely-grained brain ROIs to many varieties of
analytical tasks beyond rfMRI data. After comprehensive evaluation
against existing state-of-the-art pre-defined brain parcellations, we
conclude by showing the validation results and the need of such ROIs

for high-quality predictions.

3.1 dimensionality reduction

Population imaging has been collecting terabytes of high-resolution
functional brain images, uncovering the neural basis of individual
differences (Elliott and Peakman, 2008). While these great volumes of
data enable fitting richer statistical models, they also entail massive
data storage (Gorgolewski et al., 2017; Poldrack, Barch, and Mitchell,
2013) and challenging high-dimensional data analysis. A popular
approach to facilitate data handling is to work with Image-derived
Phenotypes (IDPs), i. e. low-dimensional signals that summarize the
information in the brain images (high-dimensional) while keeping
meaningful representations of the brain (Miller and Alfaro-Almagro,
2016). Then, these reduced representations are the starting point for
asking research questions.

22
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Brain parcellations are suitable and widely used for data reduction
in functional imaging (Craddock et al., 2012; Thirion et al., 2006). For
applications like IDPs, the choice of brain parcellations conditions the
signal captured in the data analysis. To define regions well suited to
brain-imaging endeavors, there is great progress in building atlases
from the neuroimaging data itself (Eickhoff, Yeo, and Genon, 2018).
There are two prominent data-driven approaches to define well-suited
structures. These can strive to select homogenous neural populations,
typically via clustering approaches (Bellec et al., 2010; Craddock et al.,
2012; Goutte et al., 1999; Schaefer et al., 2017; Thirion et al., 2014).
They can also be defined via continuous modes that map intrinsic brain
functional networks (Damoiseaux et al., 2006; Harrison et al., 2015;
Varoquaux et al., 2011). As showed on Fig. 2.5 on Chapter 2 and consis-
tent with Abraham et al., 2017, the functional modes have been shown
to capture well functional connectivity, with linear decomposition
techniques such as ICA or sparse dictionary learning.

problem statement High-resolution atlases can give a fine-
grained division of the brain and capture more functionally-specific
regions and rich descriptions of brain activity (Schaefer et al., 2017).
Yet, there is to date no highly-resolved set of “soft” functional modes
available, presumably because increasing the dimensionality raises
significant computational and statistical challenges (Mensch et al.,
2016; Pervaiz et al., 2019). “Soft” regions take continuous non-negative
values, in contrast with hard parcellation atlases.

In this chapter, we address this need with high-order Dictionaries of
Functional Modes (DiFuMo) extracted at a large scale both in terms of
data size (3 million volumes of total data size 2.4TB) and resolution (up
to 1024 modes). For this, we leverage the wealth of openly-available
functional images (Poldrack, Barch, and Mitchell, 2013) and efficient
dictionary-learning algorithms to fit on large data. This is unlike ICA

which is hard to use for a high number of modes (Pervaiz et al., 2019).

3.2 image-derived phenotypes for popula-
tion imaging

While analysis of brain images has been pioneered at the voxel level
(Friston et al., 1995), IDPs are increasingly used in the context of popu-
lation imaging. Trading voxel-level signals for IDPs has several moti-
vations. First and foremost, it greatly facilitates the analysis on large
cohorts: the data are smaller, easier to share, requiring less disk stor-
age, computer memory, and computing power to analyze. It can also
come with statistical benefits. For instance, in standard analysis of
task responses, e.g. in mass-univariate brain mapping, the statisti-
cal power of hypothesis test at the voxel level is limited by multiple
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comparisons (Friston et al., 1995), while working at the level of IDPs

mitigates this problem (Thirion et al., 2006). For predictive modeling,
e.g. in multi-variate decoding (Mourão-Miranda et al., 2005), the high-
dimensionality of the signals is a challenge to learning models that
generalize well—a phenomenon known as the curse of dimensionality
in machine learning (Hastie, Tibshirani, and Friedman, 2009). Finally,
for functional connectomes, working at voxel-level is computationally
and statistically intractable as it entails modeling billions of connec-
tions. The standard approach is therefore to average signals on regions
or networks (Varoquaux and Craddock, 2013).

3.3 a scalable model and a very large fmri
dataset

The most popular model in neuroimaging is ICA (Hyvärinen and
Oja, 2000), which optimizes spatial independence between extracted
maps. It has been extensively used to define resting-state networks
(Beckmann et al., 2005; Calhoun et al., 2001; Kiviniemi et al., 2003)
and implicitly outlines soft parcellations of the brain at high order
(Kiviniemi et al., 2009; Varoquaux et al., 2010a). ICA-defined networks
are used to extract the official IDPs of UK Biobank (UKBB), the largest
brain-imaging cohort to date; these have been shown to relate to
behavior (Miller and Alfaro-Almagro, 2016).

We rely on another decomposition model, dictionary learning (Ol-
shausen and Field, 1997), that enforces sparsity and non-negativity
instead of independence on the spatial maps. While less popular than
ICA in neuroimaging, sparsity brings the benefit of segmenting well
functional regions on a zeroed-out background (Lee, Tak, and Ye, 2010;
Varoquaux et al., 2011). For our purposes, an important aspect of
sparse models is that they have computationally-scalable formulations
even with high model order and on large datasets (Mensch et al., 2016,
2018).

3.3.1 Stochastic Online Matrix Factorization SOMF

We consider BOLD time-series from fMRI volumes, resampled and
registered to the MNI template. After temporal concatenation, those
form a large matrix X ∈ Rp×n, where p is the number of voxels of the
images (around 2 · 105), and n is the number of brain images, of the
order of 106 in the following. To extract DiFuMos, each brain volume is
modeled as the linear combination of k spatial functional networks,
assembled in a dictionary matrix D ∈ Rp×k. We thus assume that X
approximately factorizes as DA, where the matrix A ∈ Rk×n holds in
every column the loadings αi necessary to reconstruct the brain image
xi from the networksD. The dictionaryD is to be learned from data. For
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Figure 3.1: Linear decomposition model of fMRI time-series for estimat-
ing brain networks: The fMRI time series X are factorized into a product
of two matrices, D wich contain spatial modes and A temporal loadings of
each mode. p - number of features, n - number of volumes in fMRI image, k
- number of dictionaries.

this, we rely on Stochastic Online Matrix Factorization1 (Mensch et al.,
2018, SOMF), that is computationally tractable for matrices large in
both directions, as with high-resolution large-scale fMRI data. SOMF
solves the constrained `2 reconstruction problem

min
D∈Rp×k,A∈Rk×n

D>0,∀ j∈[k],‖dj‖161

‖X−DA‖2F + λ‖A‖2F, (3.1)

where λ is a regularization parameter that controls the sparsity of
the dictionary D, via the `1 and positivity constraints2. Encouraging
sparsity in spatial maps is key to obtaining well-localized maps that
outline few brain regions. The parameter λ is chosen so that the union
of all maps approximately covers the whole brain with minimum
overlap between maps. We provide an exhaustive description of the
methodological choices made for extracting DiFuMos in Appendix D.
In particular, we provide more details on selecting the optimum λ, on
the brain coverage of the DiFuMo atlases (see Table D.1) and overlaps
between the modes (see Fig. D.2).

3.3.2 Input fMRI data

Most functional brain atlases have been extracted from rfMRI (Bellec et
al., 2010; Craddock et al., 2012; Miller and Alfaro-Almagro, 2016; Power
et al., 2011; Schaefer et al., 2017; Yeo et al., 2011). Brain networks can
also be extracted from task-fMRI data (Calhoun, Kiehl, and Pearlson,
2008; Lee, Tak, and Ye, 2010), and segment a similar intrinsic large-
scale structure (Smith et al., 2009). In our work, we build functional

1 Available at: https://arthurmensch.github.io/modl/
2 Eq. (3.1) admits multiple local solutions: the obtained atlases may slightly vary across

training runs, although similar regions are recovered, and all atlas perform similarly.
Mensch, Varoquaux, and Thirion (2016) further discuss reproducibility of matrix
factorization across runs.

https://arthurmensch.github.io/modl/
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modes from datasets with different experimental conditions, including
task and rest. Our goal is to be as general as possible and capture
information from different protocols. Indeed, defining networks on
task-fMRI can help representing these brain images and predicting the
corresponding psychological conditions (Duff et al., 2012). We note
that appending rest data to the already large task-fMRI corpus gives
marginal improvement (Figure D.3).

We build the input data matrix X with BOLD time-series from 25

different task-based fMRI studies and 2 resting state studies, adding
up to 2 192 functional MRI recording sessions. We gather data from
OpenNeuro (Gorgolewski et al., 2017) –Appendix D.2 lists the corre-
sponding studies.

We use fMRIprep (Esteban et al., 2019) for minimal preprocessing:
brain extraction giving as a reference to correct for head-motion (Jenk-
inson et al., 2002a), and co-registration to anatomy (Greve and Fischl,
2009). All the fMRI images are transformed to MNI template space. We
then use MRIQC (Esteban et al., 2017) for quality control.

multi-dimensional difumo atlases We estimate dictionaries
of dimensionality k ∈ {64, 128, 256, 512, 1024}. This is useful as the
optimal dimensionality for extracting IDPs often depends on the down-
stream data analysis task. The obtained functional modes segment
well-localized regions, as illustrated in Figure 3.2 1a.

3.4 soft functional modes in practice

This section bares a resemblance to Section 2.3.1.3 in Chapter 2. Here,
we briefly summarize in this chapter as it is an important step for IDPs

to lead high-quality predictions. The functional modes decomposed
from ICA or SOMF algorithms take continuous values (we refer to
them as soft) and can have some overlap –though in practice this
overlap is small. As a consequence, signal extraction calls for more than
averaging on regions. The natural formulation is that the extracted
signals (the IDPs) should best approximate the brain image x ∈ Rp

as a linear combination α ∈ Rk of the set of modes in the dictionary
D ∈ Rp×k. This is solved by linear regression:

α = argmin
α∈Rk

‖x−Dα‖22, i.e. α = D†x, (3.2)

where D† = (DTD)−1DT ∈ Rk×p is the pseudo-inverse of D. For
atlases composed of non-overlapping regions, such as classic brain
parcellations—e.g. BASC (Bellec et al., 2010) or normalized cuts (Crad-
dock et al., 2012)—linear regression simply amounts to averaging the
images values in every cluster ofD. For overlapping modes as the ones
of DiFuMo or the ICA maps used in UKBB (Miller and Alfaro-Almagro,
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Figure 3.2: Schema of DiFuMo atlases and their usage in typical fMRI anal-
yses. DiFuMo atlases are extracted from a massive concatenation of BOLD

time-series across fMRI studies, using a sparsity inducing matrix factorization
algorithm. We compute the DiFuMo atlases at different resolutions, up to 1024

components. We assess our atlases in 2 benchmarks that measure suitability
to classic fMRI analyses. Those are performed on reduced and non-reduced
data, with different atlas sizes and a comparison between atlases. The eas-
iest way to view and download DiFuMo atlases is via the online interactive
visualizations: parietal-inria.github.io/DiFuMo.

2016), the linear regression formulation caters for the overlap and
softness of the regions.

We use the reduced representations IDPs introduced above for vari-
ous functional-imaging analytic tasks: decoding mental processes from
brain activity (Section 3.4.2); predicting phenotypes from functional
connectomes (Section 3.4.3); standard mass-univariate analysis of brain
responses (Section 3.4.4); finally, we measure the quality of signal re-
construction after dimension reduction, illustrated on meta-analyses
(Section 3.4.5).

3.4.1 Benchmarking several functional atlases

To gauge the usefulness of the DiFuMos for IDPs extraction, we com-
pare each analysis pipeline across several functional atlases: DiFuMo

and reference atlases are used to compute functional IDPs. We use the
same signal-extraction function (3.2), but vary the spatial components
D. As a baseline, we also perform the voxel-level analyses, though it
entail significantly larger computational costs.

We consider other functional atlases that are multi-resolutions, ac-
cessible to download, and volumetric (Table 3.1):

https://parietal-inria.github.io/DiFuMo
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Name # subjects Data type Dimensionality Soft Method

BASC 200 rest 64, 122, 197, 325, 444 No Hierarchical clustering

MIST ATOMa
200 rest 1095 No Region growing

Craddock 41 rest 200, 400 No Spectral clustering

FINDb
15 rest 90, 499 Yes ICA; Ward clustering

Gordon 120 rest 333 No Local-gradient approach

UKBB ICA 4100 rest 21, 55 Yes Selected ICA componentsc

Schaefer 1489 rest 100, 200, 300, 400 No Gradient-weighted

500, 600, 800, 1000 Markov Random Field (gwMRF)

DiFuMod 2192 task, rest 64, 128, 256, 512, 1024 Yes Sparse dictionary learning

a https://figshare.com/articles/_/5633638
b https://findlab.stanford.edu/functional_ROIs.html c https://www.fmrib.ox.ac.uk/ukbiobank/
d https://parietal-inria.github.io/DiFuMo

Table 3.1: Functional atlases that we benchmark; they define IDPs for popula-
tion imaging

3.4.2 Decoding experimental stimuli from brain responses

Decoding predicts psychological conditions from task-related z-maps
(Haynes and Rees, 2006). The validity of a decoding model is evaluated
on left-out data (following Varoquaux et al., 2017), e.g. left-out subjects
for inter-subject decoding (Poldrack, Halchenko, and Hanson, 2009).
We use linear decoding models: ridge regression for continuous target
and SVC (Hastie, Tibshirani, and Friedman, 2009) for classification.
For each study, we separate sessions (for intra-subject decoding) or
subjects (for inter-subject decoding) into randomly-chosen train and
test folds (20 folds with 30% test size), and measure the test accuracy.
We compare the performance of predictive models using voxel-level
z-maps or data reduced with functional atlases.

3.4.2.1 Data

We use 6 open-access task-fMRI studies. We perform inter-subject
decoding in the emotional and sensitivity to pain experiences from
Chang et al., 2015, and in three studies from HCP900 (Van Essen et al.,
2012): working memory, gambling (Delgado et al., 2000), and relational
processing (Smith, Keramatian, and Christoff, 2007). We perform intra-
subject decoding using the several sessions of left and right button
press responses in Individual Brain Charting (IBC) (ARCHI protocol,
Pinel et al., 2007). The unthresholded z-maps used in the decoding
pipeline are either obtained from Neurovault (Gorgolewski et al.,
2015), or computed with the General Linear Model (GLM) following
Section 3.4.4.

https://figshare.com/articles/_/5633638
https://findlab.stanford.edu/functional_ROIs.html
https://www.fmrib.ox.ac.uk/ukbiobank/
https://parietal-inria.github.io/DiFuMo
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3.4.3 Predicting phenotype from functional connectomes

Resting-state fMRI can be used to predict phenotypic traits (Richiardi
et al., 2010). For this, each subject is represented by a functional connec-
tivity matrix capturing the correlation between brain signals at various
locations. Our functional-connectome prediction pipeline comprises
three steps: 1) we extract a reduced representation of the BOLD signal 3,
projecting voxel-level data onto a functional atlas as in Section 3.4.4; 2)
we compute a functional connectome from the reduced BOLD signals; 3)
we use it as input to a linear model. We compute a connectome from
activations with the Ledoit and Wolf (2004a) covariance estimator as
Brier et al. (2015) and Varoquaux and Craddock (2013). We then derive
single-subject features from covariance matrices using their tangent
space parametrization (Barachant et al., 2013; Pervaiz et al., 2019; Varo-
quaux et al., 2010c), as advocated by the benchmarks at Section 2.4.2
in Chapter 2. Those are used to fit an `2-penalized logistic regression
for classification and a ridge regression for continuous targets. We
assess predictive performance with 20 folds, random splits of subjects
in train and test sets, with 25% test size.

3.4.3.1 Data

We use 7 openly-accessible datasets with diverse phenotypic targets, as
summarized in Table D.3. We predict diagnostic status for Alzheimer’s
disease on ADNI (Mueller et al., 2005), PTSD on ADNI-DOD; Autism
Spetrum Disorder on ABIDE (Di Martino et al., 2014) and schizophrenia
on COBRE (Calhoun et al., 2012); drug consumption on ACPI; fluid
intelligence measures on HCP (Van Essen and Smith, 2013); and age
(with a regression model) in normal aging with The Cambridge Centre
for Ageing and Neuroscience (CamCAN) (Taylor et al., 2017).

3.4.4 Mapping brain response: standard task-fMRI analysis

Standard analysis in task-fMRI relates psychological manipulations
to brain activity separately for each voxel or region. It models the
BOLD signal as a linear combination of experimental conditions—the
General Linear Model (GLM, Friston et al., 1995). The BOLD signal
forms a matrix Y ∈ Rn×p, where p is the number of voxels. With data
reduction, we use as input the reduced signal Yred = Yvoxel(D

†)> ∈
Rn×k (Equation 3.2). The GLM models Y or Yred as Y = Xβ+ ε where
X ∈ Rn×q is the design matrix formed by q temporal regressors
of interest or nuisance and ε is noise (Friston et al., 1998). In our
experiments, we use the Nistats library4, and compute a common brain

3 We handle site differences by casting all data in the MNI template space. Abraham
et al. (2017) shows the robustness to site difference of predictors based on functional
connectomes.

4 https://nistats.github.io/

https://nistats.github.io/


3.4 soft functional modes in practice 30

mask from data covering brain areas with International Consortium
for Brain Mapping (ICBM) grey matter mask.

With reduced input Yred, we obtain one signal per region, as β ∈
Rq×k. The full β-maps can then be reconstructed by setting βrec =

βD> ∈ Rq×p. We transform the reconstructed β-maps into z-maps z ∈
Rq×p using base contrasts, before thresholding them with Benjamini
and Hochberg (1995) False Discovery Rate (FDR) correction for multiple
comparisons. We then compare the z-maps obtained using voxels as
input, and z-maps using reduced input and reconstructed β-maps,
using the dice similarity coefficient.

3.4.4.1 Data

We consider the Rapid-Serial-Visual-Presentation (RSVP) language task
of IBC (see Pinho et al., 2018, for experimental protocol and pre-
processing). We model six experimental conditions: complex meaning-
ful sentences, simple meaningful sentences, jabberwocky, list of words,
lists of pseudowords, consonant strings. β-maps are estimated for each
subject using a fixed-effect model over 3 out of the 6 subject’s sessions.
We randomly select 3 sessions 10 times to estimate the variance of the
Dice index across sessions. As a baseline, we evaluate the mean and
variance of the Dice index across z-maps when varying the sessions
used in voxel-level GLM.

3.4.5 Quality of image reconstruction

The signals extracted on a brain atlas can be seen as a compression,
or simplification, of the original signal. Indeed, a full image can be
reconstructed from these signals. We quantify the signal loss incurred
by this reduction. For this, we project a brain map x (obtained with
the ICBM whole brain mask) onto an atlas (solving Eq. (3.2)), and
compute the best reconstruction of x from the loadings α, namely
x̂ = Dα ∈ Rp. We compare original and reconstructed images through
the R2 coefficient,

R2(x, x̂) = 1−
‖x− x̂‖22
‖x− x̄‖22

, (3.3)

where x̄ ∈ R is the spatial mean of map x. The R2 coefficient is
averaged across all images. Higher R2 coefficients means that the
reduced signals IDPs explain more variance of the original images,
where R2 = 1 corresponds to no signal loss. The larger the number
of signals used, the easier it is to explain variance; it is therefore
interesting to compare this measure across atlases with similar number
of components. For a fixed number of component in the DiFuMo atlases,
R2 increases with brain coverage.
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3.4.5.1 Data

We use NeuroVault (Gorgolewski et al., 2015), the largest public
database of statistical maps. To avoid circularity, we exclude maps
derived from the studies used to extract the DiFuMo atlases, along
with maps that fail semi-automated quality inspection (filtering out
thresholded or non-statistical maps), resulting in 15,542 maps.

3.4.5.2 Meta-analysis of contrasts maps

Ideally, the extracted IDPs should allow to compute meta-analytical
summaries of brain activity maps. In this setting, a single map, cor-
responding to a certain cognitive concept, is computed from many
z-maps across different studies, associated to conditions that involve
this cognitive concept. We compare the summaries obtained at voxel-
level, i. e. averaging the maps {x}, with the ones obtained using recon-
structed images, i.e. averaging the maps {x̃} used in Eq. (3.3). We use
maps from our curated subset of NeuroVault annotated with terms
motor, language and face recognition.

3.5 region names: relation to anatomical
structures

Relating IDPs to known brain structures facilitates interpretation and
discussion of results. Though the DiFuMo atlases are defined from func-
tional signal, we choose to reference their regions by their anatomical
location, as it is a common and well-accepted terminology in neu-
roscience. For each resolution, we match the modes with regions in
references of brain structure: the Harvard-Oxford atlas (Desikan et al.,
2006), Destrieux atlas (Destrieux et al., 2010), the MIST atlas (Urchs
et al., 2019), Johns Hopkins University (JHU) atlas (Hua et al., 2008),
and the Dierdrichsen cerebellum atlas (Diedrichsen et al., 2009). We
name each mode from the anatomical structure that it most overlaps
with. When the overlap was weak, a trained neuroanatomist (AMS)
looked up the structure in standard classic anatomy references (Catani
and Schotten, 2012; Henri, 1999; Ono, Kubik, and Abernathey, 1990;
Rademacher et al., 1992; Schmahmann et al., 1999).

3.6 validations for population imaging

3.6.1 Decoding mental state from brain responses

Figure 3.3 shows the impact on decoding performance of reducing
signals with various functional atlases. It reports the performance
relative to the median across methods for each of the 6 tasks. These
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Figure 3.3: Impact of the choice of atlas on decoding performance. Each
point gives the relative prediction score, over 6 different task-fMRI exper-
iments. The thick lines give the median relative score per atlas. The base-
line (black) is the relative score. High-order resolutions increase prediction
accuracy. Using high-order DiFuMo (k = 1024) and Schaefer parcellations
(k = 1000) gives the best performance and, on average, outperforms voxel-
level prediction.

results clearly show the importance of high-dimensional functional
modes for decoding. Indeed, the higher the atlas resolution, the better
the predictions. Using DiFuMo k = 1024 or Schaefer k = 1000 gives
the best performance. In addition, as these functional atlases segment
sufficiently-fine regions, prediction from the corresponding signals
tends to outperform voxel-level prediction. Indeed, applying multi-
variate models to a larger number of signals with a limited amount
of data is more prone to overfitting—data reduction acts here as a
welcome regularization. Qualitatively, brain maps containing decoding
weights can be reconstructed. With high-dimensional atlases, they are
interpretable and capture information similar to voxel-level analysis
(Figure 3.4).

3.6.2 Predicting traits from functional connectomes

Figure 3.5 shows the impact of the choice of functional atlas when
predicting phenotypes from functional connectomes. We report the
relative prediction accuracy for 7 different prediction problems (each
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Figure 3.4: Decoding maps of the working memory task, face versus rest,
showed for Voxel-level analysis, DiFuMo, and Schaefer. The maps are highly
interpretable with high-dimensional soft modes (DiFuMo 1024) compared to
voxel-level analysis. Brain areas important in the visual working memory
task –fusiform gyrus and lateral occipital cortex– are clearly visible.
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Figure 3.5: Impact of the choice of atlas for predictions based on func-
tional connectomes. Each data point gives the prediction accuracy relative
to the median for one of the 7 phenotypic prediction targets, i.e. each point a
dataset. The thick line shows the median over the datasets. While the results
are noisy, the optimal dimensionality seems to lie around 300 nodes, and the
best-performing atlas is DiFuMo k = 256, followed by Craddock k = 400 and
BASC k = 444.

composed of a dataset and a target phenotype); the lines give the
median across the prediction problems. Here, we do not report a
voxel-level baseline, as it requires to compute covariance matrices
of dimensions around 100, 000× 100, 000 and is therefore computa-
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tionally and statistically intractable. In contrast with previous results,
high-resolution atlases do not provide the best performance, likely be-
cause the complexity of the statistical models increases with the square
of the number of nodes. The best prediction overall is achieved using
DiFuMo k = 256, followed by Craddock k = 400 and BASC k = 444

atlases.

3.6.3 Brain mapping: standard task-fMRI analysis

Figure 3.6 reports the results of standard analysis of task-fMRI GLM,
comparing analysis at the voxel-level with analyses on signals ex-
tracted from functional atlases. Best correspondence is obtained at
highest dimensionality, as the regions are finer. Notably, analysis
with DiFuMo of dimensionality 1024 is markedly closer to voxel-level
analysis than using the best-performing alternatives, i. e. the 1000-
dimensional Schaefer parcellation and the 1095 MIST atoms. In ad-
dition, the Dice index relative to the voxel-level gold standard is
comparable to the Dice index between runs of voxel-level GLM esti-
mated across folds. We note that using soft functional modes from
only 55 ICA components shows excellent results, comparable to those
obtained using the 1000 components Schaefer atlas. This stresses the
benefit of continuous functional modes for the analysis of task responses.
Overall, standard task-fMRI analysis on signals derived from 512 or
1024-dimensional DiFuMo gives results close to the voxel-level gold
standard (Figure 3.6 shows that the maps are also qualitatively simi-
lar).5 Dimension reduction has the additional benefit of alleviating the
burden of correcting for multiple comparisons.

3.6.4 Fraction of the original signal captured

Figure 3.7 (left) displays the R2 scores summarizing the loss of infor-
mation when data are reduced on an atlas and reconstructed back
to full images. Unsurprising, reducing the images with lower-order
dimensions (atlases with fewer regions) yields a high loss of informa-
tion across all methods. DiFuMo k = 1024 captures 70% of the original
voxel-level signal. Qualitatively, the benefits of functional modes can
be seen by comparing the meta-analytic maps related to motor tasks
(Figure 3.7 right). The DiFuMo have clear visual benefits over brain
discrete parcellations, such as BASC, as they better capture gradients.

5 We note that using too coarse altases may fail at detecting statistically significant
voxel activations, yielding a Dice index of 0.



3.7 discussion 35

32 64 128 256 512 1024Dimension

0.0

0.2

0.4

0.6

0.8

M
ea

n 
Di

ce
 in

de
x 

re
la

tiv
e 

to
vo

xe
l-l

ev
el

 m
ap

s

UKBB ICA
DiFuMo
BASC

Craddock
FIND

Gordon
Schaefer

MIST ATOM
Voxel-level

Across-fold consistency
at voxel-level

General Linear Model on task fMRI

x=14

L R

z=0 -4.5
-2.2
0
2.2
4.5

GLM at the voxel level, 
 p ~ 200,000 voxels

GLM on DiFuMo reduction, 
 p = 1024 modes

Group-level z-map: complex sentence

Figure 3.6: Overlap between GLM maps obtained with functional atlases
and voxel-level analysis. Top: The overlap is measured with the Dice simi-
larity coefficient. The black line gives a baseline the mean overlap between
voxel-level contrast maps over several random selections of sessions per
subject. The figure gives Dice similarity scores between the GLM maps com-
puted with signals extracted on functional atlases and at the voxel-level,
after reconstruction of full z-maps and voxel-level thresholding with FDR

control. The best similarity is achieved for highest dimensionality, though
1024-dimensional DiFuMo atlas largely dominates 1000-dimensional Schaefer
parcellation and 1095 Multiresolution Intrinsic Segmentation Template (MIST).
Each point is the mean and the error bar denotes the standard deviation
over contrast maps. Bottom: The activity maps encoded on 1024-dimensional
space capture the same information as voxel-level analysis, while being
smoother.

3.7 discussion

This chapter introduces brain-wide soft functional modes, named
DiFuMos and made of a few hundreds to a thousand of brain sub-
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Figure 3.7: Image reconstruction quality. Left: Quantitative comparison on
15542 statistical images. The R2 loss between the true and recovered images
after compression with brain atlases of multiple resolutions. In general,
higher-order atlases capture more signal. Right: Meta-analysis summaries
for the motor task. High R2 score (left) correspond to better capturing fine
structures of images, as visible on the qualitative images. DiFuMo atlases
better capture the gradients and smooth aspects of the original images than
hard parcellations, as BASC.

divisions. They are derived from BOLD time-series across many studies
to capture well functional images with a small number of signals.
In the context of population imaging, these signals are known as
image-derived phenotypes (IDP, Miller and Alfaro-Almagro, 2016)
and are crucial to easily scale statistical analysis, building a science
of inter-individual differences by relating brain signals to behavioral
traits (Dubois and Adolphs, 2016). Reducing the dimensionality of
the signals not only come with a 1000× gain in storage, but also with
100× computational speed-up for the analysis (Table 3.2). Even small-
scale studies may need functional nodes, e.g. for computing functional
connectomes (Varoquaux and Craddock, 2013; Zalesky et al., 2010).
There already exist many functional brain atlases; yet DiFuMos have
the unique advantage of being both soft and highly resolved. These
features are important to capture gradients of functional information.

grounding better image-derived phenotypes for high-qual-
ity predictions Signals extracted from a functional atlas should
enable good statistical analysis of brain function. We considered quan-
titative measures for typical neuroimaging analytic scenarii and com-
pared the fitness of extracting signal on DiFuMo with using existing
functional brain atlases. The biggest gains in analysis come from
increasing the dimensionality of brain sub-divisions, aside for func-
tional connectome studies where an optimal is found around 200

nodes. Choosing the number of nodes then becomes a tradeoff be-
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Task
#

samples

Representation

Time

(se
c)

Speedup

Emotion 4924

Voxel-level 77.7
46×

Reduced 1.7

Pain 84

Voxel-level 1.5
250×

Reduced 0.006

Working 3140

Voxel-level 874.7
240×

memory Reduced 3.7

Gambling 1574

Voxel-level 298.7
270×

Reduced 1.12

Relational 1572

Voxel-level 263.1
405×

Reduced 0.65

Table 3.2: The comparison in computational times while predicting mental
state on two set of brain features space: voxel-level ≈ 200, 000 and reduced
voxels to DiFuMo 1024. We report the averaged time over 20 cross-validation
folds for several task-fMRI conditions. Clearly, there are benefits trading for
reduced representations in terms of computation time. On high-resolution
brain images like HCP, these are decreased by a factor 200.
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Figure 3.8: Modes around the putamen, for DiFuMo dimensionality 64, 256,
and 512. As dimensionality increases: sub-divisions are more refined, modes
are split into right and left hemisphere and anterio-posterior direction. Each
color represents a single mode.

tween complexity of the representation and analytic performance.
Importantly, the gains in analytic performance continue way beyond
the dimensionality typically used for IDPs (e.g. 55 components from
Miller and Alfaro-Almagro, 2016). These results extend prior litera-
ture emphasizing the importance of high-dimensional parcellations
for fMRI (Abou Elseoud et al., 2011; Arslan et al., 2017; Sala-Llonch
et al., 2019; Thirion et al., 2014). To foster good analysis, the second
most important aspect of a parcellation appears that it be soft, i.e.
continuously-valued. For a given dimensionality, soft modes tend to
outperform hard parcellations, whether they are derived with ICA or
dictionary learning.
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Figure 3.9: Region volume (cm3) of modes on the brain with 1024 dictio-
nary of DiFuMo. The volume of the modes tends to be larger corresponding
to white matter when compared with the cortical gray matter. This justifies
the adaptation of DiFuMo atlas to the fMRI signal.

modes well-adapted to the epi signal The functional modes
are optimized to fit well a large number of Echo Planar Imaging (EPI)
images: 2,192 sessions across 27 studies. As a result, they form a divi-
sion of the brain well adapted to the signal. For instance, they define
regions larger in the white matter and in the CSF than in the grey
matter (Figure 3.9). A large dataset is needed to capture such implicit
regularities of the signal with high-dimensional spatial decomposi-
tions. Indeed, running the same model on less data extracts modes
with less spatial regularity (Mensch et al., 2016). The combination of
high dimensionality and large dataset leads to significant computa-
tional demands. The extraction of DiFuMos was possible thanks to
fast algorithms for huge matrix factorization (Mensch et al., 2018), and
gathering data representative of a wide variety of scanning protocols
via openfMRI (Poldrack, Barch, and Mitchell, 2013).

We did not limit the DiFuMo modes to gray matter, as measures
outside gray matter can be useful in subsequent analysis, for instance
to remove the global signal (Murphy and Fox, 2017). In addition,
distributed modes extracted from full-brain EPI can separate out noise
–such as movement artifacts– and help rejecting it in a later analysis
(Griffanti et al., 2014b; Perlbarg et al., 2007; Pruim et al., 2015). Some
DiFuMo modes indeed segment ventricles or interfaces. Depending on
the application, practitioners can choose to restrict signal extraction to
a grey-matter mask.

the functional modes are sharp and anatomically relevant
To extract structures defined by brain anatomy or microstructure, at-
lasing efforts have used anatomical or multimodal imaging (Desikan
et al., 2006; Eickhoff et al., 2007; Glasser et al., 2016; Mori et al., 2005).
The DiFuMo atlases capture a different signal: brain activity. Yet, thanks
to the sparsity and non-negativity constraint, they are made of lo-
calized modes which often have a natural anatomical interpretation.
Consequently, we have labeled the modes with a unique name based
on the most relevant anatomical structure, following Urchs et al., 2019

who also give anatomical labels to functional regions. Indeed, using
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a common vocabulary of brain structures is important for communi-
cation across the neuroimaging community. As visible on Figure 3.8,
the modes are well anchored on anatomical structures such as the
putamen and the thalamus. They are however not constrained to con-
tain only one connected region. Smaller dimension DiFuMos indeed
capture distributed networks, often comprising bilateral regions. As
the dimensionality increases, the networks progressively separate in
smaller networks which eventually form single regions. For instance,
the left and right putamen appear in the same mode at dimension 64,
and are first sub-divided along the anterio-posterior direction, and
later the left and right putamen are separated (Figure 3.8). Dimension
choice is data driven: it should best explain the functional signal.

3.8 conclusion

With this chapter, we provide multidimensional atlases of func-
tional modes for population imaging to extract functional signals:
parietal-inria.github.io/DiFuMo. They give excellent performance for
a wide variety of analytic tasks: mental-process decoding or functional-
connectivity analysis. Their availability reduces computational bur-
dens: practitioners can readily perform analyses on a reduced signal,
without a costly ROI-definition step. In addition, working on common
functional modes across studies facilitates comparison and interpre-
tations of results. To help communication, we have labeled every
functional mode to reflect the neuroanatomical structures that it con-
tains. To date, these are the only high-dimensional soft functional
modes available. As they have been extracted from a variety of data
(more than 2,000 sessions across 27 studies, 2.4TB in size) and improve
many analytic tasks, the rich descriptions of neural activity that they
capture is well suited for a broad set of fMRI studies.

https://parietal-inria.github.io/DiFuMo


4
P R E D I C T I N G P R O X Y
M E A S U R E S F O R M E N TA L
H E A LT H

In this Chapter, we combine socio-demographic information and brain
images to derive end points for mental health. We study these to bring
complementary information to the challenging problem of understand-
ing complex brain and mind disorders. An epidemiological approach
to mental health may benefit from candidate measures extracted from
machine learning. We discuss these measures and comparatively learn
to predict them from epidemiological data. We evaluate the impor-
tance of socio-demographics (non-imaging) and imaging in deriving
surrogate endpoints for mental disorders.

4.1 problem statement

Individual assessments in psychology and psychiatry rely on observ-
ing behavior. Using biological insight to diagnose and treat mental
disorders remains a hard problem despite substantial research efforts
(Kapur, Phillips, and Insel, 2012). The field of psychiatry has struggled
with purely descriptive and unstable diagnostic systems (Insel et al.,
2010), small sample sizes (Szucs and Ioannidis, 2017), and reliance on
dichotomized groups, i.e., patients vs controls (Hozer and Houenou,
2016). Compared to somatic medicine, mental-health research faces the
additional roadblock that mental pathologies cannot be measured the
same way diabetes can be assessed through plasma levels of insulin
or glucose. Psychological constructs, e.g., depressiveness or anxiety
can only be probed indirectly through expert-built procedures such as
specially-crafted questionnaires and structured interviews. Measuring
reliably a given construct is difficult, and questionnaires often remain
the best option (Enkavi et al., 2019). While the field of psychometrics
has thoroughly studied the validity of psychological constructs and
their measures (Borsboom, Mellenbergh, and Heerden, 2004; Cronbach
and Meehl, 1955; Eisenberg et al., 2019), the advent of new biophysical
measurements on the brain brings new promises (Engemann et al.,
2020a; Kievit et al., 2018; Nave et al., 2018). In particular, the growth
of biobanks as well as the advances in statistical-learning techniques
opens the door to large-scale validation of psychological constructs
and measures for neuropsychiatric research (Collins, 2012).

40
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4.1.1 Motivating example

In clinical neuroscience, machine learning is increasingly popular,
driven by the hope to develop more generalizable models (Woo et al.,
2017).

Chapter 2 studies the required statistical tools. Yet, the availability
of large high-quality neuropsychiatric cohorts is a practical obstacle
for applied machine learning in psychiatry (Varoquaux, 2018). Rather,
there have been successes developing brain-derived measures on popu-
lations without neuropsychiatric conditions, capturing proxy informa-
tion on mental health such as aging (Liem et al., 2017b). Accordingly,
the hope is to learn general measures of individual differences in large
datasets with high fidelity, to then enhance a prediction task in a small
dataset by exploiting the links between the actual clinical endpoint of
interest, e. g. diagnosis or drug response, with those general measures.

4.1.2 Contributions

In this Chapter, we systematically benchmarked distinct proxy-
measures of individual differences in three psychological constructs,
i. e. brain age, fluid intelligence and neuroticism on the UKBB, the
largest epidemiological resource gathering various health-related, so-
cial and somatic and neuroimaging data. Contrary to prior studies
using similar constructs (Cox et al., 2019; Maglanoc et al., 2020; Nave
et al., 2018), our analyses focused on extending the predictive mod-
eling across all domains of MRI and, importantly, performing model
comparisons with and against socio-demographic variables. This ap-
proach allowed us to investigate, in both regression and classification
analyses, the redundancies between these different sources of informa-
tion and to assess when combining neuroscientific information with
socio-demographics variables helped improve learning.

4.2 proxy measures

In the past years, brain age has received significant interest as one such
proxy measure, giving rise to the so called brain age delta defined as
the difference between predicted and actual age (Smith et al., 2019).
The delta has been shown to reflect physical and cognitive impairment
in adults and gives an index of neurodegenerative processes (Liem
et al., 2017b). Can the successful strategy pursued with the brain age
as a brain-derived proxy-measure be extended beyond the construct
of pathological aging?

Intelligence, one of the most extensively studied concepts from
psychology, may be such one potential candidate. Fluid intelligence
(Cattell, 1963; Cattell and Scheier, 1961) refers to the putatively culture-
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free, physiological component of intelligence and has been robustly
associated with maturation but also differences in cognitive-processing
speed and working-memory capacity (Shelton et al., 2010). It may
thus serve as a more specific surrogate measure and, indeed, has
been associated with psychiatric disorders such as psychosis, bipolar
disorder and substance abuse (Keyes et al., 2017; Khandaker et al.,
2018).

Neuroticism, on the other hand, is a traditional concept from per-
sonality psychology intrinsically related to anxiety, depression and
negative emotions and has been interculturally validated (Cattell and
Scheier, 1961; Lynn and Martin, 1997). However, neuroticism has so
far been a more elusive trait. Neuroticism has turned out to be use-
ful in psychometric screening and supports predicting real-world
behavior (Lahey, 2009; Tyrer, Reed, and Crawford, 2015). Moreover,
despite strong heritability at the population level (Power and Pluess,
2015; Vukasović and Bratko, 2015; Yarkoni, 2015), the link with brain
function at the level of large-scale network dynamics or the level of
molecular mechanisms remains ambiguous given a large body of con-
tradictory results (Yarkoni, 2015). This raises the question of what
neuroimaging data it should be related to.

The advent of large MRI datasets has revealed the complexity of
anchoring personality traits in the brain. Current attempts to predict
fluid intelligence or neuroticism from thousands of MRI scans, argue
in favor of overwhelming heterogeneity and rather subtle effects that
do not generalize well to unseen data (Dubois et al., 2018b,c). This
stands in contrast to the remarkable performance obtained when pre-
dicting intelligence or neuroticism from other psychometric measures
or semantic data qualitatively similar to psychometric questionnaires,
e. g. Twitter and Facebook posts (Quercia et al., 2011; Youyou, Kosinski,
and Stillwell, 2015). As MRI acquisitions can be expensive and difficult
in clinical settings or population, the success of social-media data is
appealing. Reusing such data for medical research and treatment may
neither be ethically nor practically feasible while, potentially, suscep-
tible to complex and difficult to control selection bias. On the other
hand, background sociodemographic characteristics of individuals
can be easily accessible and may help inform in similar ways on the
heterogeneity of psychological traits, for instance capturing that fluid
intelligence decreases with age. An important question is then whether
they bring redundant or complementary information to brain data.

4.3 objectives of conceptualizing mental
disorders

An intensified focus on sociodemographics calls into attention
the diversity of measurement scales, that are often categorical,
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e. g. education degree, or quantitative, yet, on arbitrary non-physical
units, e. g. monthly income. In fact, society treats individual differ-
ences as categorical or continuous, depending on the practical context.
Personality has been proposed to span a continuum (Eysenck, 1958).
Nevertheless, psychiatrists treat certain people as patients, not others
(Perlis, 2011). The utility of any proxy-measure, therefore, depends
on its practical context: When learning boundaries between qualita-
tively distinct groups, a measure that performs globally poorly for
regression analysis can, nevertheless, be sufficient for classification
analysis. In fact, a measure may be solely informative around the
boundary region between certain classes, e. g. pilots who should fly
and who should not. Importantly, the utility of any proxy-measure
ultimately depends on its signal-to-noise ratio, which may be driven
by measurement noise, heterogeneity, as well as variability intrinsic to
the particular psychometric instrument chosen, e. g. the type of test to
assess intelligence. It is therefore important to assess the limits of what
can be learnt with state-of-the-art general purpose machine learning
from large-scale datasets.

4.4 brain features and socio-demographics
for predicting modeling

4.4.1 Dataset

We focused on the UKBB database which is openly accessible and has
extensive data acquired on 500 000 individuals aged 40-70 years cover-
ing rich phenotypes, health-related information, brain-imaging and
genetic data (Collins, 2012). UKBB is a prospective cohort where partic-
ipants across Great Britain who have provided informed consent will
follow: Initial assessment visit, first repeat assessment visit, imaging
visit (brain image acquisition) and first repeat imaging visit1.

4.4.2 Participants

In this analysis2, we used data mostly based on the initial assessment
and the imaging visit (i. e. first and third visit) gathering around
10 000 individuals. We found 11175 individuals who have responded
to fluid intelligence questionnaires with 51.6% female (5572) and
48.3% male (5403); and have an age range between 40-70 years (with a
mean of 55 years and standard deviation of 7.5 years). Out of these,
5587 individuals are included in the analysis to train the model and

1 http://biobank.ctsu.ox.ac.uk/crystal/instance.cgi?id=2 UKBB assessment cen-
tre visit and its instances denoted as number

2 We undertook this analysis dated December 2017, and we used the data that was
available by then, the 10,000 samples release.

http://biobank.ctsu.ox.ac.uk/crystal/instance.cgi?id=2


4.4 brain features and socio-demographics for predicting modeling 44

0 10

Neuroticism (questionnaire)

c

40 50 60 70

Age (physical)

a

0 10

Fluid intelligence (test)

b

Structural volumes

Functional
connectivity

Diffusion tracts

Brain images

Sociodemographics

Derive proxy measures from
combinations of classes of input
features

Predictive modelcomparisonA C

B
Mental health
Frequency of tenseness, low mood, ...

Age, sex
Life style
Status of current employment, ...

Education
Qualifications, ...

Early life
Country of birth, adopted as child ...

Figure 4.1: Approximating health-related psychological constructs from
brain imaging and sociodemographics. In this work we combined multiple
classes of brain images (A) with sociodemographic data (B) to approximate
health-related biomedical and psychological constructs situated at distinct
levels of measurement (C), i. e. , the brain age (accessed through prediction
of chronological age), cognitive performance (accessed through a test for
fluid intelligence) and the tendency to report negative emotions (accessed
through the neuroticism questionnaire). We included 10 000 subjects imaging
data release from the UK biobank. Among imaging data (A) we considered
features related to cortical and subcortical volumes, functional connectivity
from rfMRI based on ICA networks and white-matter molecular tracts from
diffusive directions (see Table 4.1 for an overview about multiple classes of
brain images). We then grouped the sociodemographic data (B) into five
different blocks of variables related to self-reported responses of health
issues, primary demographics, lifestyle, education and early life events
(Table 4.2 lists the number of variables in each block). Subsequently, we
conducted systematic comparisons between the approximations of all three
targets based on either brain images and sociodemographics in isolation or
combined (C) to evaluate the relative contribution of these distinct inputs.
Models were developed on 50% of the data (randomly drawn) based on
random forest regression guided by Monte Carlo cross-validation with 25

splits. For simplicity, we refer to the target-approximations as prediction of
proxy measures.

remaining subjects were kept aside for later generalization testing.
Also, there were 86 non-imaging variables in our download related to
lifestyle, early life, smoking habits and complaints about mental health
which we used as additional health-related and sociodemographic
predictors in statistical modeling. The present study was supported
by application number 23827.

4.4.3 Data processing

The full details about MRI data preprocessing to feature extraction are
explained at Appendix E. Here, we briefly outline about the brain
features.
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4.4.4 Brain features

We conducted predictive modeling combining several sources of input
data: Structural Magnetic Resonance Imaging (sMRI), rfMRI, dMRI and
non-imaging data.

4.4.4.1 Structural MRI

We included 157 sMRI features consisting of volume of total brain and
grey matter along with brain subcortical structures.3 All these features
are pre-extracted by UKBB brain imaging team (Miller et al., 2016) and
are part of data download. We use them as is to stack with other MRI

features for predictive analysis.

4.4.4.2 Diffusion weighted MRI

We included 432 dMRI skeleton features of Fractional Anisotropy (FA),
Tensor Mode (MO) and Mean Diffusivity (MD), Intra-Cellular Volume
Fraction (ICVF), Isotropic Volume Fraction (ISOVF) and Orientation
Dispersion index (OD) modelled on many brain white matter structures
extracted from Neuroanatomy 4. The skeleton features we included
were from category134 shipped by the UKBB brain imaging team and
we used them without modification.

4.4.4.3 Functional MRI

We also included resting-state connectivity features based on the time-
series extracted from 55 ICA components representing various brain
networks. These included the default mode network (red), extended
default mode network and cingulo-opercular network (light red), exec-
utive control and attention network (green), visual network (blue), and
sensorimotor network (orange) as shown on Fig. E.1. We measured
functional connectivity in terms of the between-network covariance.
To account for the fact that covariance matrices live inside a particular
manifold, i. e. a curved non-Euclidean space, we used the tangent-
space embedding to transform the matrices into a Euclidean space
(Abraham et al., 2014a; Varoquaux et al., 2010d). Then, we vector-
ized the connectivity matrices to 1485 features by taking the lower
triangular part for predictive modeling.

3 Regional grey matter volumes http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?
id=1101 Subcortical volumes http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?

id=1102

4 Diffusion MRI skeleton measurements http://biobank.ctsu.ox.ac.uk/crystal/

label.cgi?id=134

http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=1101
http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=1101
http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=1102
http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=1102
http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=134
http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=134
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Index Name # variables # groups

1 brain volumes (sMRI) 157 1

2 white matter (dMRI) 432 1

3 functional connectivity (fMRI) 1485 1

4 sMRI, dMRI 589 2

5 sMRI, fMRI 1642 2

6 dMRI, fMRI 1917 2

7 sMRI, dMRI, fMRI (full MRI) 2074 3

Table 4.1: Imaging-based models.

4.4.5 Socio-demographics

Also often called as Non-imaging variables in this chapter. We included
86 non-imaging data which are the collection of variables reflecting
each participant demographic and social factors i. e. sex, age, date and
month of birth, body mass index, ethnicity, exposures at early life
such as – breast feeding, maternal smoking around birth, adopted
as child – education, exposures of lifestyle related to – occupation,
household family income, household people living at the same place,
smoking habits – mental health conditions. All these data consist
of self-assessments available as part of data download along with
imaging data. The whole collection of 86 variables are clustered into
5 groups, where each group consists of variables having correlation
associations with each other as shown on Fig. E.2. We name these
groups as 1) age, sex (primary demographics) see Table E.1 for the list,
2) early life see Table E.3, 3) education see Table E.2, 4) lifestyle see
Tables E.4 and E.5 and 5) mental health see Tables E.6 and E.7.

4.5 predictive model comparisons

4.5.1 Imaging-based models

First, we focused on purely imaging-based models based on exhaustive
combinations of the three types of MRI modalities (see Table 4.1 for
an overview). This allowed us to study potential overlap and additive
effects between the modalities. For simplicity, we only focused on the
full MRI model in subsequent analyses.

4.5.2 Socio-demographic models

We then composed predictive models based on non-exhaustive com-
binations of different types of socio-demographic variables. We then
performed model comparisons to learn about the importance of each
of these types. We were particularly interested in studying the relative
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Index Name # variables # groups

1 Mental health (MH) 25 1

2 Age, Sex (AS) 5 1

3 Life style (LS) 45 1

4 Education (EDU) 2 1

5 Early Life (EL) 9 1

Table 4.2: Non-imaging baseline models or socio-demographic models based
on single group. Variables in each group are listed on Tables E.1 to E.7
respectively.

contributions of early life factors as compared to factors related to
more recent life events such as education as well as factors related to
current circumstances such as mental health and life-style. Therefore,
we first considered baseline models based on one group of socio-
demographic variables and then progressively extended the models to
a full model based on all socio-demographic variables. The resulting
one group models are listed in Table 4.2.

4.5.3 Combined imaging and socio-demographic models

Importantly, we were interested in how brain-related information
would interact with sociodemographics for each of these models. We
therefore considered an alternative variant for each of the models
in Table 4.2 that included all MRI-related features (2074 additional
features) as described at Section 4.4.4.

4.5.4 Predictive model

The choice of learning algorithm is an important concern when per-
forming predictive modeling. As studied on Fig. 2.3 at Chapter 2,
linear models have turned out to be good default choices in neu-
roimaging research, yet they may not be optimal when dealing with
heterogeneous data on large-scale samples. To combine imaging data
with socio-demographics, we relied on the non-parametric random
forest (RF) algorithm that can be readily used on data of different
units for regression and classification (Breiman, 2001b). Moreover,
random forests enable learning non-linear interaction effects without
explicit modeling, which makes them an interesting tool to explore the
relationship between different modalities. We used cross-validation to
train RF on 90% samples and test on the remaining 10%. We repeat this
process for 25 cross-validation splits. For each split, we used in-built
cross-validation of the model to tune the maximum depth of the tree
and minimum number of samples required at leaf node for split point
with two fixed parameters; variance reduction criterion as “mse” for
250 number of trees. For the list of parameters see Table 4.3. After
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Parameter Values

Impurity criterion Mean squared error

Maximum tree depth 5, 10, 20, 40, full depth

Fraction of features for split 1, 5, “log2”, “sqrt”, “complete”

Number of trees 250

Table 4.3: Random forest model paramters tuned with in-built cross-
validation Number of trees is set by stabilization of out-of-bag (OOB) error
rate after trying from a range of values in 250, 350, 500, 800, 1000, 2000, 3000,
5000.

tuning the parameter selection, the coefficient of determination (R2) is
the metric used for the assessment of prediction performance of the
model on test data.

4.5.5 Statistical hypothesis testing

To establish the null-hypothesis baseline of the model, the prediction
targets are permuted within each fold where the optimal model is
trained on permuted targets and predicted on test data. This process
is repeated for 10 random permutations on prediction targets. Finally,
the distribution of R2 scores from these 10 random permutations for
25 splits are used for comparisons against the distributions of the true
model. This allows us to assess the significance of model prediction
accuracy.

4.5.6 Classification analysis

We also performed classification analysis on the continuous targets.
For this purpose, we discretized the targets into three groups based on
the 33% and 66% percentiles. Then we performed binary classification
on these three groups i. e. group 1 vs group 2; group 2 vs group 3;
group 1 vs group 3. We were particularly interested in understanding
whether model performance would increase when moving toward
classifying extreme groups. For this analysis, we considered all three
types of models (see Sections 4.5.1 to 4.5.3 and Tables 4.1 and 4.2. To
assess the performance of classification analysis, we use AUC ROC as
an evaluation metric.

4.5.7 Ranking statistics to assess paired differences of combined
models

To assess the statistical significance in the benefits of combining brain
images with socio-demographics for proxy measures, we followed
the ranking statistics procedure as in Engemann et al., 2020b. First,
we estimate paired differences by relying on pair-wise per split esti-
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Features space # groups Age Fluid intelligence Neuroticism

Imaging and Non-imaging
1 1335 1108 1054

2 1668 2197 1476

3 1200 898 1020

Non-imaging
1 1764 1515 1388

2 2223 2906 1959

3 1600 1166 1350

Table 4.4: Number of samples for classification analysis (N). N varies on the
feature space as not all individuals have completed the imaging visit.

mates of combined models (see Section 4.5.3) and socio-demographics
models (see Section 4.5.2). Then, we extracted the mean, the standard
deviation, the 5 and 95 percentiles on those paired-wise estimates on
distribution of 25 splits to determine the combined models prediction
performances.

4.6 brain imaging complements socio-demographics
for proxy measures

We first performed model comparisons across socio-demographic
models Table 4.2 to evaluate the relative performance of each model
composed of distinct groups of sociodemographic variables for pre-
dicting proxy measures. Fig. 4.2 (in red) summarizes these model
comparisons for predicting three targets: age, fluid intelligence and
neuroticism. The analysis revealed that for each target there was one
principal block of variables explaining most of the prediction perfor-
mance. For age prediction, variables related to current life-style (LS)
showed by far the highest performance. For fluid intelligence, edu-
cation (EDU) performed by far best. Finally, for neuroticism, mental
health clearly showed the strongest performance. This pattern per-
sisted when considering exhaustive model comparisons based on all
possible combinations of variable blocks (supplement Figs. E.3 and E.4.

We then repeated the analysis including brain images (full MRI com-
posed of 2074 variables, Table 4.1 to investigate potential synergies
and redundancies between socio-demographics and brain imaging
Fig. 4.2(in blue). The results suggest that age prediction improved as
sociodemographics and MRI were combined. This effect was visible
on all four blocks of variables. As the performance distributions be-
tween the purely sociodemographic and the combined model were
overlapping for the lifestyle model, we considered the paired differ-
ences across cross-validation splits. The analysis revealed that the
combined model performed better in 24 out of 25 folds than the
purely sociodemographic model (M=0.059, SD=0.03, P(5,95)=[0.006,
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0.116]), suggesting that the observed differences should reproduce
on future data and is unlikely to be due to chance. The potential
benefit of including brain imaging features, however, was less con-
sistent for prediction of fluid intelligence and neuroticism. For fluid
intelligence, average performance was enhanced through brain im-
ages in poorly performing sociodemographic models, i. e. early life
(better in 22/25 folds, M=0.025, SD=0.022, P(5,95)=[-0.005, 0.06]), but
not the best performing model (education) where distributions were
virtually identical. Similarly, for neuroticism, higher average perfor-
mance with brain images emerged for education (better in all 25 folds,
M=0.023, SD=0.014, P(5,95)=[0.002, 0.045]) but not the best model
(mental health). Nevertheless, we found significant average prediction
based on brain images only for, both, fluid intelligence and neuroti-
cism. This suggests that variance in lifestyle and mental health is
reflected in neurobiological variance. For neuroticism current mental
health variables were strongly informative for prediction, suggesting
that mental health is a reasonable proxy of neuroticism. Overall, pre-
dicting fluid intelligence or neuroticism was clearly more successful
based on socio-demographic data as compared to brain images.

4.7 classification groups are better dis-
criminated with socio-demographics

The scale and units of psychological proxy-measure are often un-
known. In practice, clinicians and educators aim at specific thresh-
olds for decision-making. How do predictive models compare across
proxy measures when considering discrete extreme-groups? To ad-
dress this question, we performed binary classification analysis on
three diverse groups i. e. low vs high, low vs middle, middle vs high
dichotomized on the continuous values of three prediction targets:
age, fluid intelligence and neuroticism. Moreover, we focused on the
AUC as a performance metric which, other than accuracy, is only sen-
sitive to ranking while ignoring the scale of the error. The analysis
revealed model-ranking comparable to the previous regression analy-
sis. Classification-performance was better than chance for all models
as shown on Figs. 4.3, E.5 and E.6. We observed the highest scores
when discriminating between the extreme groups, i. e. low vs high
Fig. 4.3. Overall, a similar picture emerged as for the regression anal-
ysis. Across proxy measures, models including sociodemographics
performed best. Combining sociodemographics and brain imaging led
to slight benefits for age prediction in 23/25 folds (M=0.012, SD=0.01,
P(5,95)=[-0.002,0.027]). For fluid intelligence and neuroticism a weak
opposite trend was visible in which the combined model performed
worse on about 2 thirds of the folds. But overall, performance dif-
ferences between the sociodemographic and combined models were
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Figure 4.2: Prediction of psychological proxy measures from socio-
demographic data combined with and without MRI. Prediction of age,
fluid intelligence and neuroticism from socio-demographic one group mod-
els Table 4.2. Color indicates whether MRI (blue) was included for prediction
or not (red). We used the R2 score to facilitate comparisons across predic-
tion targets. The estimated null-distribution is depicted by gray violin plots
(across permutations and folds). The expected prediction performance is
depicted by colored violin plots. Vertical dotted lines indicate the average
performance of the full MRI model introduced in Fig. 4.4. For convenience,
the mean performance is annotated for each plot. One can readily see that
prediction with socio-demographics (red) was markedly stronger than with
only the brain-based model (dotted vertical lines) for three targets. The most
important blocks of sociodemographic predictors (annotated with red cross)
were lifestyle for age, education for fluid intelligence and mental health for
neuroticism. Moreover, the effect of combining socio-demographics with
brain-data depended on the prediction target. For age, overall performance
improved beyond the previous analyses. The picture was less consistent for
fluid intelligence and neuroticism showing weaker additive effects, if any.

low on the order of one or two AUC units on average. It is notewor-
thy that for both types of models prediction performance reached
levels above 0.8, which is considered clinically useful for biomarker
candidates (Perlis, 2011). Low vs middle and middle vs high groups
based classification are shown on Figs. E.5 and E.6. Overall, the re-
sults suggest that moving from the more difficult full-scale regression
problem to extreme-group classification problem with purely ranking-
based loss functions, the relative differences between brain-based and
socio-demographics-based prediction gradually fade away.
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Figure 4.3: Classification analysis from imaging, socio-demographics and
combination of both data. Classification of extreme groups i. e. low vs high
where split was on the basis of age, fluid intelligence and neuroticism scores.
This analysis is a complementary model comparison as compared to Fig. 4.2.
Shape and color indicates the type of data used for model comparison on
each of two binary groups. We report the accuracy in AUC. The estimated
null-distribution is shown in gray violin plots whereas colored violin plots
depict the distribution of classification accuracies per model. The mean value
is shown on each violin plot to facilitate comparisons across classification
groups. The model comparisons reveal that higher classification accuracies
were achieved with low vs high when compared to other groups on Figs. E.5
and E.6. Models including socio-demographics performed visibly better than
models purely based on brain imaging. Differences between brain-imaging
and sociodemographics were reduced as compared to the fully-fledged
regression analysis.

4.8 age is best predicted from mri com-
pared to other proxy measures

We perform imaging-based model comparisons to identify the links
between measures of the brain and surrogate targets, also check if
there exists any additive effects between brain imaging modalities
that could potentially improve these links. Fig. 4.4 summarizes the
comparisons of predicting three targets – fluid intelligence, neuroti-
cism and brain age – from the combination of imaging-based models
Table 4.1. The analysis revealed weak associations linking targets like
fluid intelligence or neuroticism to brain images whereas on the other
hand strong associations were found linking age to brain images. In
terms of additive learning, the maximum performance for fluid intelli-
gence and neuroticism is achieved while using more than one imaging
modality such as the full MRI model. This emphasizes the benefits of
combining many sources of brain images for additive effects. For fluid
intelligence and neuroticism, we can see that the additive effects are
weak but significantly better than chance. Overall, model comparisons
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Figure 4.4: Prediction of individual differences from brain-imaging data.
Prediction of age, fluid intelligence and neuroticism based on three MR
modalities: sMRI, dMRIand rfMRI. Different models are based on exhaustive
combinations between modalities. Shape and color indicate the number of
modalities per model. We used the R2 score to facilitate comparisons across
prediction targets. The estimated null-distribution is depicted by gray violin
plots. The expected prediction performance is depicted by colored violin
plots. For convenience, the mean performance is annotated for each plot. Pre-
diction of age was markedly stronger than prediction of fluid intelligence or
prediction of neuroticism. Nevertheless, significant prediction was achieved
for all targets. As a general trend, models based on multiple MRI modalities
tended yield better prediction.

suggests that combining multiple sources of brain imaging yields
better prediction.

4.9 conclusion

A fundamental challenge of mental-health research is that the quan-
tities of interest are not directly observable: psychological traits that
have to be inferred. In this work, we systematically compared MRI

and socio-demographics data to derive proxy measures for mental
health. We build these measures by applying machine learning on
the largest brain-imaging cohort to date, UK Biobank, with 10 000
subjects multimodal MRI and rich socio-demographics information. As
these measures are based on data of different nature, brain imaging
(2074 variables), socio-demographics, and questionnaires (summed
to 86 variables), we compare them objectively by assessing which
aspects of individual traits they capture, in isolation and both com-
bined (brain & socio-demographics). All brain-derived proxy measures
captured the constructs of interest, however the association between
the brain imaging and socio-demographics was most pronounced for
aging. On the other hand, for intelligence and neuroticism, we did
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not find evidence that brain-derived information was independent
from sociodemographic information. Overall, brain imaging comple-
ment nicely socio-demographic information and self-assessments that
are robust to cultural dimensions of distinct constructs of interest.
For instance, education variables predict fluid intelligence, mental
health complaints predict neuroticism. As such, the combined proxy
measures may be promising for epidemiological studies of mental
health.

ongoing work Currently in the upcoming work, we investigate
how subject-specific derived proxy measures can be linked to lifestyle
habits such as alcohol or sleep to test the relevance of proxy mea-
sures for health outcomes. We establish brain age delta, the difference
between the predicted age and the chronological age, fluid intelli-
gence and neuroticism predictions and their assocications with the
health-related habits (alcohol and tobacco consumption, sleep dura-
tion, physical activity) using multiple linear regression. With best
performing models, multiple linear regression reveal specific and ad-
ditive associations with health outcomes. Furthermore, we extend our
model comparisons to 100 cross-validation splits and introduce a new
test set which we call generalization set (5 000 samples). Using the
trained RF model on 90% samples as described at Section 4.5.4, we
evaluate predictions that is independent from the previously left-out
data (validation set of equal size 5 000 samples).

This test set is held-out within the same cohort UKBB that accounts
for 50% of complete samples size used in this analysis. The idea of
keeping aside this generalization set is to assess the generalization
performance under new samples. Also importantly, generalization
set allowed us to estimate proper permutation-based p-values and
bootstrap-based confidence intervals. The fraction of UKBB data held-
out for generalization test was not used until June 2020. We prefered
to test on the samples within the same cohort, as investigating other
data sources would bring undesirable differences in terms of cognitive
measures, age range and imaging protocols. The ongoing work we
described is presented in

Kamalaker Dadi, Gaël Varoquaux, Josselin Houenou,
Danilo Bzdok, Bertrand Thirion, and Denis Engemann
(2020a). “Beyond brain age: Empirically-derived proxy mea-
sures of mental health.” In: bioRxiv. doi: 10.1101/2020.08.
25.266536.

https://doi.org/10.1101/2020.08.25.266536
https://doi.org/10.1101/2020.08.25.266536


5 C O N C L U S I O N

More and more cohorts are being built in the general and pathologi-
cal population, grounding high-quality predictive analysis in mental
health. Analyzing such datasets requires benchmarking predictive
methods on real and high-dimensional brain-imaging data. This the-
sis describes a comprehensive and robust evaluation of predictive
methods conducted over many brain-imaging cohorts, contributes a
family of functional atlases for fMRI analysis, and finally, investigates
the potential of imaging epidemiology to analyze behavioural factors
for mental health.

In Chapter 2, we benchmarked several analysis pipelines for predict-
ing population phenotypes from Resting-state functional connectomes.
rfMRI has proved to be a great tool to study intrinsic brain organiza-
tion and diseases through brain functional connectivity characterized
at “rest”. Transforming the conceptual ideas into practice requires
statistical modeling on rfMRI data. Here, the challenge lies in settling
on a standard modeling framework to turn complex rfMRI data into
regions, connectomes and predictive markers. The availability of many
statistical models makes the selection harder and represents a burden
on researchers for computational exploration. We ran more than 50 000
analysis pipelines that cover exploration of numerous methods on
many openly available imaging cohorts to recommend a robust analy-
sis pipeline. Defining continuously-valued regions with sparse linear
decomposition methods, comparing connections estimated on those
regions in manifold space, and using linear classifiers were shown to
dominate other solutions.

Chapter 2 sheds light on the data-driven brain parcellations that
provide the support of functional connectivity (brain phenotypes) to
predictions. Given its role in predictions, in Chapter 3, we further ex-
plore continuous functional brain parcellations. We took the advantage
of the amount of openly-accessible fMRI brain records and existing
sparse matrix factorization technique that have been developed to
scale to large-scale high-dimensional brain imaging functional records.
We extracted dictionaries of 1024 components from OpenfMRI data
hosting repository, which opens new perspectives for brain-imaging
derived phenotypes – an emerging trend for easier access to non-
experts in fMRI data processing. We are the first to provide multi-scale
(64, 128, 256, 512, 1024) continuous functional networks learned on
such large data (2192 fMRI records). Extensive validation of these func-
tional networks revealed that “soft” probabilistic atlases are beneficial
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and more components are crucial for reducing the dimensionality of
raw fMRI data.

Proposed atlases and anatomical labels assigned to each atlas com-
ponent are ready to view and download via the online interactive
visualizations website: parietal-inria.github.io/DiFuMo.

The work presented in Chapter 3 relied on a Python package called
modl, that is publicly available1 with an easy to use documentation
that can be applied to brain-imaging cohorts.

Imaging epidemiological cohorts provide large-scale data resources
that challenge the identification of appropriate measures to relate
to health outcomes. In Chapter 4, we investigated proxy measures
that could be interesting in predicting or understanding complex
mental disorders. To do this, we compared three targets – age, fluid
intelligence and neuroticism – at large-scale to potentially uncover epi-
demiologically relevant associations through behavioral assessments
and brain measurements. So far, this study used large sample size
of 10 000 individuals, on which we performed systematic predictive
model comparisons by individuals socio-demographic measures with
multi-modal brain images and showed that the combination enhanced
predictions. Out of many model comparisons, there exists a predom-
inant model that showed distinct predictive performance linked to
each target e. g. mental health variables predicting neuroticism and ed-
ucation is linked to fluid intellgence test scores. This suggests that the
models captured the quantitative and objective information from both
socio-demographics and brain images. On the other hand, brain im-
ages were best at age but less well-suited for predicting psychological
constructs such as fluid intelligence and neuroticism questionnaires.
This last study opened a new perspective of how proxy measures
could be defined as surrogate end points for mental disorders from
an epidemiological standpoint.

As part of the non-PhD activity, I was lucky enough to participate
in an exciting international project called Neuroimaging Analysis
Replication and Prediction Study (NARPS) as one of the analysis team
on behalf of the Parietal team. This project involves estimating the
variability of neuroimaging results across analysis teams that test nine
specific a priori hypotheses (regarding activation in specific brain areas
recruited while performing mixed-gambling task). My contribution
involved statistical modeling on the raw task-fMRI data towards nine
specific hypotheses testing.

During these three years of my PhD, I underwent many non-
technical courses that fall under the category of scientific mediation
and foreign languages that are the most interesting tools for enhanc-
ing my profession as a doctoral student. I also had the joy to attend
summer schools, international conference or workshops to present my
thesis work.

1 https://github.com/arthurmensch/modl

parietal-inria.github.io/DiFuMo
https://github.com/arthurmensch/modl


6 S Y N T H È S E E N F R A N Ç A I S

Les troubles mentaux présentent une grande hétérogénéité entre les in-
dividus. Une difficulté fondamentale pour étudier leurs manifestations
ou leurs facteurs de risque est que le diagnostic des conditions men-
tales pathologiques est rarement disponible dans les grandes cohortes
de santé publique. Ici, nous cherchons à développer des biomarqueurs,
signatures cérébrales de troubles mentaux. Pour cela, nous utilisons
l’apprentissage automatique pour prédire les résultats de santé men-
tale grâce à l’imagerie de population, en se basant sur l’imagerie
cérébrale (imagerie par résonance magnétique (IRM)). Compte tenu
des évaluations comportementales ou cliniques, l’imagerie de popula-
tion peut relier les caractéristiques uniques des variations cérébrales
à ces mesures autodéclarées non cérébrales basées sur des question-
naires. Ces mesures non cérébrales fournissent une description unique
des différences psychologiques de chaque individu qui peuvent être
liées à la psychopathologie à l’aide de méthodes statistiques. Cette
thèse de doctorat examine le potentiel d’apprentissage de tels résultats
basés sur l’imagerie pour analyser la santé mentale. En utilisant des
méthodes d’apprentissage automatique, nous effectuons une évalua-
tion, à la fois complète et robuste, des mesures de population pour
guider des prévisions de haute qualité des résultats pour la santé.

Cette thèse est organisée en trois parties principales: premièrement,
nous présentons une étude approfondie des biomarqueurs du con-
nectome, deuxièmement, nous proposons une réduction significative
des données qui facilite les études d’imagerie de population à grande
échelle, et enfin nous introduisons des mesures indirectes pour la
santé mentale.

Nous avons d’abord mis en place une étude approfondie des con-
nectomes d’imagerie afin de prédire les phénotypes cliniques. Avec
l’augmentation des images cérébrales de haute qualité acquises en
l’absence de tâche explicite, il y a une demande croissante d’évaluation
des modèles prédictifs existants. Nous avons effectué des compara-
isons systématiques reliant ces images aux évaluations cliniques dans
de nombreuses cohortes pour évaluer la robustesse des méthodes
d’imagerie des populations pour la santé mentale. Nos résultats soulig-
nent la nécessité de fondations solides dans la construction de réseaux
cérébraux entre les individus. Ils décrivent des choix méthodologiques
clairs: régions définies à partir de données fonctionnelles, par exem-
ple avec l’analyse des composants indépendants ou l’apprentissage
par dictionnaire, représentant la connectivité avec l’incorporation tan-
gente des matrices de covariance et utilisant un modèle linéaire non
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clairsemé, comme une régression logistique. Ce travail est publié dans
la revue NeuroImage (Dadi et al., 2019).

Ensuite, nous contribuons à une nouvelle génération d’atlas fonc-
tionnels du cerveau pour faciliter des prédictions de haute qualité
pour la santé mentale. Les atlas fonctionnels du cerveau sont en effet
le principal goulot d’étranglement pour la qualité de la prédiction.
Ces atlas sont construits en analysant des volumes cérébraux fonc-
tionnels à grande échelle à l’aide d’un algorithme statistique évolutif,
afin d’avoir une meilleure base pour la prédiction des résultats. Après
les avoir comparés avec des méthodes de pointe, nous montrons leur
utilité pour atténuer les problèmes de traitement des données à grande
échelle. Ils offrent d’excellentes performances pour une grande variété
de tâches analytiques: décodage de processus mental ou analyse de
connectivité fonctionnelle. Leur disponibilité réduit les charges de
calcul: les praticiens peuvent facilement effectuer des analyses sur
un signal réduit, sans étape coûteuse de définition du retour sur in-
vestissement. De plus, travailler sur des modes fonctionnels communs
à travers les études facilite la comparaison et l’interprétation des ré-
sultats. Pour faciliter la communication, nous avons étiqueté chaque
mode fonctionnel pour refléter les structures neuroanatomiques qu’il
contient. Nous les avons rendus disponibles pour téléchargement
à partir de parietal-inria.github.io/DiFuMo. Ce travail est publié
dans la revue NeuroImage (Dadi et al., 2020b).

La dernière contribution principale consiste à étudier les mesures
de substitution potentielles des résultats pour la santé. Un défi fonda-
mental de la recherche en santé mentale est que les quantités d’intérêt
ne sont pas directement observables: des traits psychologiques qui
doivent être déduits. Nous considérons des comparaisons de mod-
èles à grande échelle utilisant des mesures du cerveau avec des
évaluations comportementales dans une cohorte épidémiologique
d’imagerie, le UK Biobank avec 10 000 sujets. Sur cet ensemble de
données complexe, le défi consiste à trouver les covariables appro-
priées et à les relier à des résultats bien choisis, car ces mesures sont
basées sur des données de nature différente, l’imagerie cérébrale,
la sociodémographie et des questionnaires. Après une sélection et
une évaluation soigneuses du modèle à l’aide de l’apprentissage
automatique, nous identifions des mesures de substitution qui af-
fichent des liens distincts avec les données sociodémographiques et
peuvent être en corrélation avec des conditions non pathologiques.
Par exemple, toutes les mesures indirectes dérivées du cerveau ont
capturé les construits d’intérêt, mais l’association entre l’imagerie
cérébrale et les données sociodémographiques était plus prononcée
pour le vieillissement. Par contre, pour l’intelligence et le névro-
sisme, nous n’avons pas trouvé de preuves que les informations
dérivées du cerveau étaient indépendantes des informations sociodé-
mographiques. Dans l’ensemble, l’imagerie cérébrale complète bien

parietal-inria.github.io/DiFuMo
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les informations sociodémographiques et les auto-évaluations qui sont
robustes aux dimensions culturelles de différents concepts d’intérêt.
En tant que telles, les mesures substitutives combinées peuvent être
prometteuses pour les études épidémiologiques de la santé men-
tale. Ce travail est soumis à la publication de revue disponible à
https://doi.org/10.1101/2020.08.25.266536.

https://doi.org/10.1101/2020.08.25.266536
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A R E V I E W O F P R E D I C T I V E
M E T H O D S

a.1 practices for imaging-based diagnosis

Reference Clinical question #Subjects Functional # Nodes Classifier

& Accuracy matrix (type of nodes)

Nielsen et al., 2013 ASD 964 Pearson’s 7266 SVM

60% correlation (coordinates)

Abraham et al., 2017 ASD 811 Tangent-space 84 SVM-`2
67% parametrization (data-driven)

Iidaka, 2015 ASD 640 Pearson’s 90 KDA

90% correlation (anatomical)

Dodero et al., 2015 ASD 94 graph 264 Kernel

60.76% Laplacian (coordinates) SVM-`2
Anderson et al., 2014 ADHD 730 Graph 90 Decision

67% Networks (data-driven) trees

Cheng et al., 2012 ADHD 730 Pearson’s 90 Kernel

76% correlations (anatomical) SVM-`2
Rashid et al., 2016 Schizo 273 Full 100 SVM

59.12% correlation (data-driven)

Bassett et al., 2012 Schizo 58 Graph 90 SVM-`2
75% Networks (anatomical)

Shen et al., 2010 Schizo 52 Pearson’s 116 C-means

92% correlation (anatomical)

Guo et al., 2012 MDD 76 Graph & 90 RBF-SVM

79% Networks (anatomical)

Craddock et al., 2009 MDD 40 Pearson’s 15 SVM-`1
95% correlation (coordinates)

Rosa et al., 2015 MDD 38 Inverse 137 SVM-`1
85% covariance (pre-defined)

Chen et al., 2011 AD 55 Pearson’s 116 LDA

87% correlation (anatomical)

Zhu et al., 2013 MCI 28 Pearson’s 358 SVM-`2
96% correlation (coordinates)



B TA N G E N T-S PA C E

Most of the methods that we study are readily-available in several
computing environments, including Matlab and Python with a variety
of well-maintained implementations. However, the only library that
provides the tangent-space parametrization of covariance matrices is
the Nilearn Python library 1. To facilitate reproducing our analysis
in different environments, we describe here how to compute this
parametrization with a few simple formulas. The computation is made
of two step: First a group average covariance matrix Σ? is computed
from the covariances of the training subjects: {Σi, i ∈ Train}. Second,
it is used to transform covariance matrices, in the train set or the test
set.

b.1 computing the tangent-space group
average

As with any analysis based on covariance or correlation matrices, it is
preferable to compute individual covariances from time series with an
estimator that ensures well-conditioned matrices. The Ledoit and Wolf,
2004a estimator is a good default choice (Brier et al., 2015; Varoquaux
and Craddock, 2013).

Strictly speaking, the group average should be computed according
to the geometry of covariance matrices (Pennec, Fillard, and Ayache,
2006; Varoquaux et al., 2010c). This is a Frechet mean, which is com-
puted by minimizing a cost function for instance using algorithm 3

of Fletcher and Joshi, 2007. A simpler approach relies on using the
Euclidean mean, which we found to give almost the same predictive
performance. In this case, the formula of the mean is the standard one:

Euclidean mean : Σ? =
1

ntrain

∑
i∈Train

Σi (B.1)

1 http://nilearn.github.io/
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b.2 transforming covariance matrices

Given the group reference covariance matrix Σ?, covariance matrices
are transformed in the tangent-space representation by whitening
them as follows (Varoquaux et al., 2010c). Computations are easily
written with eigenvalues decompositions2: given a subject’s covariance
matrix Σi,

1. Compute the whitened matrix Σ̃i = Σ
−1/2
? ΣiΣ

−1/2
? :

Σ̃i ← UT∆− 1
2 UΣiU

T∆− 1
2U (B.2)

where UT∆U = Σ? by eigen-value decomposition, and oper-
ations on the diagonal matrix ∆ are element-wise operation
applied to the diagonal.

2. Compute the matrix logarithm logmΣ̃i:

logm(Σ̃i) = Ũ
T log(∆̃i) Ũ (B.3)

where Σ̃i = Ũ
T ∆̃i Ũ and the logarithm is applied to the diagonal

elements of ∆̃i.

Finally, the resulting matrix is turned to a vector and its entries are
used as a features for the classifier.

The motivation from these transformations arises from the fact that
covariance matrices –or correlations matrices– form a specific manifold
of the Rp×p matrices. Their structure is broken by standard additive
arithmetic’s: the difference of two covariances may create a matrix
that does not correspond to the covariance matrix of a signal. Optimal
statistical analysis calls for following the structure of the manifold
(Pennec, Fillard, and Ayache, 2006). The tangent-space parametrization
is a simple way to approximate this structure by Euclidean geometry,
in which standard additions and subtractions can be used (Varoquaux
et al., 2010c).

With regards to statistical analysis, the structure of covariance matri-
ces appears as constraints, or dependencies, between the coefficients
of the matrix. As a result, these coefficients alone form a poor rep-
resentation for second-level statistical analysis. The tangent-space
approximation yields a parametrization of the problem in which fea-
tures are independent identically distributed (i.i.d.) (Varoquaux et al.,
2010c). Such a parametrization is optimal for statistical learning. In
addition, as discussed in Varoquaux et al. (2010c), this parametrization
also gives good edge-level tests for instance see Figure B.1. Hence,
the weight vectors of the classifiers can be interpreted as edge-level
weights.

2 All covariance matrices are symmetric definite positive, and well-conditioned if
estimated with the Ledoit-Wolf approach
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Figure B.1: Difference between mean of MCI and AD group connectiv-
ity matrices: We show the connectivity matrices from the ADNI dataset
(Mueller et al., 2005) computed on samples diagnosed as Mild Cognitive
Impairment (MCI) and Alzheimer’s disease (AD). As can be seen, tangent-
space parametrized connections are interpretable and positions in between
correlation and partial correlation in terms of connectivity differences. We
show the matrices estimated using timeseries extracted with pre-computed
MODL dict. learning atlas of n=64

a.

a Pre-computed sparse dictionaries with the MODL approach of Mensch et al., 2016 are
available from https://team.inria.fr/parietal/files/2018/10/MODL_rois.zip

https://team.inria.fr/parietal/files/2018/10/MODL_rois.zip


C I M A G I N G - B A S E D P R E D I C T I V E
M O D E L S

c.1 reproduced on high-quality datasets

To investigate the consistency of analytics choices for higher-quality
datasets, we perform extra benchmarks including the HCP dataset to
probe different setting: data with longer acquisitions. Due to the data
size, we limit the benchmarks here to pre-computed atlases. We share
the resulting time-series and scripts to reproduce our analysis1.

hcp dataset and a phenotype studied HCP contains imaging
and behavioral data of healthy subjects (Van Essen and Smith, 2013).
We use preprocessed rfMRI data from HCP900 release (Van Essen et al.,
2012) to discriminate individuals with high vs low intelligence score
by splitting the data into 3 groups according to quantiles 0.333 and
0.666. The subjects in the middle group are excluded to make the
prediction in a binary classification setup.

Dataset Prediction task Groups

HCP High IQ vs Low IQ 213/230

Table C.1: HCP dataset and prediction task, as well as the number of sub-
jects in each group. HCP - 443. IQ represents fluid intelligence; 788 subjects
had an IQ score in the HCP900 release. Table 2.1 denotes other datasets and
prediction tasks.

Figure C.1 summarizes the impact of method choice on the pre-
diction accuracy for all six different cohorts. This experiment outline
similar tradeoffs as the others: functional atlas pre-computed with
dictionary learning (here MODL or SOMF, from Mensch et al., 2016,
2018), tangent-space parametrization, and `2-regularized classifiers
are preferable. This experiment is not as systematic as the other, as
a very large dataset like HCP would require much more computing
power to study region extraction2. Yet, even for region-definition meth-
ods, it outlines similar trends than when tuning the regions to the
data at hand.

1 github.com/KamalakerDadi/benchmark_rsfMRI_prediction
2 To ensure a correct nested cross-validation and avoid circularity (overfitting), data-

driven region-extraction methods must be run on each fold, hence several hundred
time for each pipeline configuration.
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Figure C.1: Pipelining choices with precomputed regions, across six
datasets: Marginal distribution of relative prediction scores, using only pre-
computed atlases for regions definition, where MODL is a parcellation built us-
ing a form of Online dictionary learning. Restricting to pre-computed regions
and adding a different dataset (HCP) gives results consistent with Figure 2.5,
2.4, and 2.3: best choices are regions defined functionally, with decomposi-
tion methods (MODL) followed by clustering methods (BASC), tangent-space
parametrization of connectivity, and `2-regularized logistic regression. The
box displays the median and quartiles, while the whiskers give the 5th and
95th percentiles.



D D I F U M O E X T R A C T I O N

d.1 implementation details: model parame-
ters

To run the SOMF algorithm, we relied on the open-source Python
package readily available at https://arthurmensch.github.io/modl/.
The MODL package is implemented using Cython (Dalcin et al., 2011),
scikit-learn (Pedregosa, Varoquaux, and Gramfort, 2011) and nilearn
(Abraham et al., 2014b).

We use a coordinate descent algorithm (Friedman et al., 2007) to
solve for the inner `1 regularization problems with positivity con-
straints. Setting optimum λ for DiFuMo extraction is a challenging task
as the DiFuMo extraction is an unsupervised learning problem. On
one hand the number of modes extracted should approximately cover
the whole brain; on the other hand the overlap should be minimal
between the modes. As can be seen from Table D.1, higher λ gives a
lower brain coverage whereas lower value has 100% coverage starting
from low-dimensions. Yet lower λ creates overlap between the modes
as shown on Figure D.1. We set λ = 0.001 as it provides a good com-
promise in between modes overlap and brain coverage, as summarized
on Figure D.2. It gives full brain coverage for high-order atlases.

Following Mensch et al. (2018), we access a random fraction of each
record at each iteration to accelerate training. We use a subsampling
ratio value r = 12, run the algorithm on a single epoch, and use
a learning rate β = 0.92, as empirically proposed by Mensch et al.
(2016). We compute a brain mask that intersect the signal from all
the resampled images, using Nilearn (Abraham et al., 2014b). DiFuMo

atlases are learned using this mask. The training scripts are available
at https://github.com/KamalakerDadi/DiFuMo_analysis_scripts.

d.2 input fmri data

This section gives complementary details to Section 3.3.2. Table D.2
lists the corresponding fMRI data which we relied upon for DiFuMos
extraction. The data includes BOLD timeseries from different cognitive
tasks and resting-state based studies, the combination of task+rest
give 2 192 recording sessions to fit the model.
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Dimension λ Non-zero voxels (%)
0.01 12%

64 0.001 59%

0.0001 100%
0.01 21%

128 0.001 77%

0.0001 100%
0.01 34%

256 0.001 98%

0.0001 100%
0.01 51%

512 0.001 100%

0.0001 100%
0.01 73%

1024 0.001 100%

0.0001 100%

Table D.1: Coverage of the whole brain (%) as a function of dimension
and range of λ in DiFuMo model. While the higher dimension 1024 of DiFuMo

maps yields a coverage of the whole brain, other DiFuMo atlases with smaller
dimensions do not have such coverage. We recommend the optimum trade-
off value as λ = 0.001 by analysing both the degree of overlap between modes
as shown on Figure D.1 and non-zero voxels. A lower λ gives full coverage
of the whole brain but suffers from strong overlap between modes whereas
higher λ has lost the brain coverage. The values are reported based on union
of all modes per dimension.

We also consider extracting DiFuMo from resting-state and task data
separately. This is to evaluate the impact of learning functional atlases
separately on task and rest fMRI data and compare them to using
both data types in the training dataset. For this, we separate the
training dataset (Table D.2) into task fMRI studies and resting-state
studies (adding each up to 1 970 and 222 fMRI recording sessions
respectively). We train DiFuMo atlases (of all dimensions) on each
data corpus separately, and compare the performance of the obtained
atlases with the atlases trained on both datasets used jointly.

Figure D.3 compares the performance of atlases trained on rest,
task and rest+task data, for predicting mental states across 6 task fMRI

studies (see Table D.4 for the details about the studies) and predicting
traits from connectomes across 7 different cohorts (see Table D.3 for
the list of cohorts). Overall, it reveals that using functional modes
learnt from both data types – task and rest – marginally improves
brain signal extraction.

We do not observe a significant impact of using task-specific modes
for predicting traits from functional connectomes. Previous work have
established a strong correspondance between resting-state and task
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fMRI study #Subjects #Sessions #Runs

(Schonberg et al., 2012) 16 _ 3

(Aron, Gluck, and Poldrack, 2006) 17 _ 2

(Xue and Poldrack, 2007) 13 _

(Jimura et al., 2014) 14 2 6

(Xue, Aron, and Poldrack, 2008) 20 _ 2

(Aron et al., 2007) 14 _ 3

(Foerde, Knowlton, and Poldrack, 2006) 14 _ 2

(Rizk-Jackson, Aron, and Poldrack, 2011) 8 2 3

(Alvarez and Poldrack, 2011) 13 _ 8

(Poldrack et al., 2001) 14 _ 2

(Mennes et al., 2013) 21 _ 2

(Kelly et al., 2008) 26 _ 2

(Haxby, Gobbini, and Furey, 2001) 6 _ 12

(O’Toole et al., 2005)

(Hanson, Matsuka, and Haxby, 2004)

(Duncan et al., 2009) 49 _ 2

(Moran, Jolly, and Mitchell, 2012) 36 _ 2

(Uncapher, Hutchinson, and Wagner, 2011) 18 _ 10

(Gorgolewski et al., 2013) 10 2 _

(Repovs and Barch, 2012) 1 _ _

(Cera, Tartaro, and Sensi, 2014) 26 2 3

(Verstynen, 2014) 28 _ _

(Gabitov, Manor, and Karni, 2015) 15 _ 3

(Lepping et al., 2016) 39 _ 5

(Lepping, Atchley, and Savage, 2016)

(Iannilli et al., 2016) 1 _ _

(Stephan-Otto et al., 2017) 26 _ 2

(Kim et al., 2016) 11 _ 2

(Romaniuk et al., 2016) 40 _ _

(Roy et al., 2017) 26 2 _

Table D.2: Large-scale fMRI datasets downloaded from OpenNeuro to build
our multi-dimensional DiFuMo atlases. Data are pre-processed using fMRIprep.
The corpus is 2.4TB in total.
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Rest-fMRI Prediction groups Samples

HCP900

High IQ vs Low IQ
443 subjects

213/230

ABIDE
Autism vs control

866 subjects
402/464

ACPI
Marijuana use vs control

126 subjects
62/64

ADNI
Alzheimers vs MCI

136 subjects
40/96

ADNIDOD
PTSD vs control

167 subjects
89/78

COBRE
Schizophrenia vs control

142 subjects
65/77

CamCAN
Age

626 subjects
24− 86

Table D.3: Resting-state rfMRI datasets used in the pipeline described on
Section 3.4.3 for predicting phenotypic labels from functional connec-
tomes. In CamCAN, age is predicted using ridge regression. The groups from
other datasets are predicted using logistic regression. IQ - Fluid intelligence,
PTSD, MCI.

functional networks (Bzdok et al., 2016; Smith et al., 2009). This can
explain the little difference observed when appending resting-state
data to the training corpus.

128 components 256 components 512 components

Figure D.1: Overlap between maps with λ = 0.0001 in DiFuMo model, for
DiFuMo dimensionality 64, 256, and 512. As dimensionality increases, sub-
divisions are strongly overlapped lacking clear delineation across brain
regions. Table D.1 gives details about the percentage of non-zero voxels
covering whole brain for λ = 0.01, 0.001, 0.0001
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Figure D.2: Comparison of modes overlap for all proposed DiFuMo atlases.
The y-axis shows how many voxels are at the intersect of exactly n modes
(x-axis), without thresholding the modes. On average, at least two modes are
shared between voxels. Coverage (i.e. low number of voxel at the intersect of
0 mode) is higher for finer grain atlases, at the cost of larger overlap. Note
that the overlaps often comprises voxels with small values, and may thus be
weak.

Task-fMRI Prediction task # maps

NV503: Emotion Rating:1, 2, 3, 4, 5 4924

NV504: Pain Sensitivity: 1, 2, 3 84

HCP: Working mem. face vs place 3140

HCP: Gambling loss vs reward 1574

HCP: Relational relational vs matching 1572

IBC: Archi standard left vs right hand 1040

Table D.4: Dataset, prediction tasks and dataset size for each of the 6
decoding tasks we consider in Section 3.4.2. z-maps from HCP and IBC were
computed using the GLM, while NeuroVault directly provided the β-maps
for Emotion and Pain. NV: NeuroVault.
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b. Predicting traits from functional connectomes

Figure D.3: Impact of the choice of DiFuMo atlases training data on decod-
ing and functional connectomes. Each point gives the relative prediction
score, over 6 different task fMRI experiments. The thick lines give the median
relative score per type of data in task, rest and combination of both. Using the
combination of both is marginally better than using task data alone to learn
parcellations. We observe no crucial dominance of task-dependent variance
in dictionaries in decoding performance.



E I M A G E - D E R I V E D P R O X Y
M E A S U R E S

e.1 data acquisition details on ukbb sam-
ples

Here we detail about data acquisition parameters of multi-modalities
of MRI images that we use in our study at Chapter 4.

Non-imaging data were acquired through different assessment pro-
cedures across multiple sites1. Cognitive functioning of each partic-
ipant was assessed with self-report measures administered through
touchscreen questionnaires, complemented by verbal interviews, phys-
ical measures, biological sampling and imaging data. Here we focused
on the following categories of measures provided by the UKBB: Sociode-
mographics, Lifestyle and environment, Early life factors, Psychoso-
cial factors and many others. MRI data2 were acquired in Manchester
with Siemens Skyra 3T using a standard Siemens 32-channel RF re-
ceiver head coil (Alfaro-Almagro et al., 2018). We considered three
MR imaging modalities as each of them potentially captures unique
neurobiological details: sMRI, resting-state functional MRI rfMRI and
dMRI. Briefly, the acquisition parameters used for each modality are
described here. For additional technical details, refer (Miller et al.,
2016).

e.1.1 T1 weighted MRI or structural MRI

We relied on T1-weighted MR sequences used for acquiring
high-resolution brain 3D brain volumes. In UKBB, brain volumes
were extracted from high-resolution T1 images acquired using
a Magnetization-Prepared Rapid Acquisition with Gradient Echo
(MPRAGE) sequence at spatial resolution of 1x1x1 mm.

e.1.2 Resting-state functional MRI

Resting-state functional MR images capture low-frequency fluctua-
tions in blood oxygenation that can reveal ongoing neuronal large-scale
interactions in distinct brain networks (Biswal et al., 1995). Resting
state was acquired using EPI sequences with multi-band acceleration

1 Details about multiple sites http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?

id=54

2 Details about MRI acquisition and image processing pipelines http://biobank.ctsu.

ox.ac.uk/showcase/showcase/docs/brain_mri.pdf
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at resolution 2.4x2.4x2.4 mm and repetition time (TR) of 0.735s. As a
result 3D volumes were acquired every 0.735s during 6 minutes result-
ing in 490 brain volumes in time (4D image). All images were acquired
in Anterior-Posterior phase encoding direction. For this purpose, par-
ticipants were instructed to keep their eyes fixated on a crosshair and
to “think of nothing in particular.”

e.1.3 Diffusion MRI

Diffusion-weighted imaging is used to measure the local structures
in-vivo by tracking the movement of the water molecules along fibre
tracts. dMRI were acquired using EPI sequences at resolution 2x2x2 mm
with 50 diffusion-encoding directions by varying the field strength
b-value=1000, b-value=2000.

e.2 data processing details on ukbb sam-
ples

All the MR data preprocessing steps described here were carried out
by UKBB brain imaging team3 using software tool called FSL4. Briefly,
we walk through the steps for each modality.

e.2.1 Structural MRI

After de-identification of faces on raw T1 images, further processing
on de-faced T1 images included field distortion correction, reduc-
tion of Field of View (FoV) and skull stripping using Brain Extraction
Tool (BET) (Smith, 2002) followed by registration to MNI152 T1 tem-
plate space using (FLIRT) (Jenkinson and Smith, 2001; Jenkinson et
al., 2002b). The images were then warped to MNI152 template using
non-linear registration method (FNIRT) (Andersson et al., 2007) and
segmented into most prominent tissue types such as Gray Matter (GM),
White Matter (WM) and Cerebro-Spinal Fluid (CSF) volumes using
FAST segmentation method (Zhang, Brady, and Smith, 2001). This
whole process yielded a full bias field corrected T1 images which
were then further processed to generate IDPs. The IDPs based on sMRI

are volumes of 157 grey matter cortical and subcortical anatomical
structures 5, in total modelled with SIENAX (Smith et al., 2002) and
FIRST (Patenaude et al., 2011) tools.

3 MR data processing details http://biobank.ctsu.ox.ac.uk/showcase/showcase/

docs/brain_mri.pdf

4 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki

5 The ROIs are the combinations from several atlases: Harvard-Oxford cortical and
subcortical atlases, and Diedrichsen cerebellar atlas.

http://biobank.ctsu.ox.ac.uk/showcase/showcase/docs/brain_mri.pdf
http://biobank.ctsu.ox.ac.uk/showcase/showcase/docs/brain_mri.pdf
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
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e.2.2 Diffusion MRI

The preprocessing of diffusion weighted images includes: correction
for eddy current distortions, head motion and removal of image slices
lying outside the brain (Andersson and Sotiropoulos, 2015). These
corrected images were followed by gradient distortion correction. The
preprocessed images were then further processed for IDPs. For this
purpose, images were separately fed into Diffusion Tensor Imaging
(DTIFIT) tool to model the 50 diffusion directions to generate IDPs,
e. g. FA, MO, MD and NODDI (Neurite Orientation Dispersion and
Density Imaging) estimates using AMICO (Accelerated Microstructure
Imaging via Convex Optimization) (Daducci et al., 2015; Zhang et al.,
2012). This also enabled modeling the biological properties of fiber
tracts visible in the form of IDPs, ICVF, ISOVF and OD. In order to
facilitate cross-subject comparisons on fiber tract based IDPs, all the
outputs need to be aligned to common space. This was achieved using
an approach called tract-based spatial statistics (TBSS) (Smith et al.,
2006). For more details on the technical aspects like cross-alignment
procedures can be found in (Alfaro-Almagro et al., 2018; Groot et al.,
2013).

e.2.3 Resting-state fMRI

We applied the following pre-processing pipeline on rfMRI data before
processing for IDPs. The pipeline started with motion correction using
MCFLIRT (Jenkinson et al., 2002b), grand-mean intensity normalisa-
tion and high-pass temporal filtering (Gaussian-weighted least-squares
straight line fitting, with sigma=50.0s) including the unwarping of
EPI and co-registration to T1 template and GDC. Finally, structured
artefacts were removed by ICA followed by FIX cleaning (FMRIB’s ICA-
based X-noiseifier). After pre-processing, the next step was to identify
the resting-state networks (RSN) on a group of subjects using linear de-
composition method called ICA (Hyvarinen, 1999) implemented with
MELODIC tool (Beckmann and Smith, 2004b). Group-PCA algorithm
was then applied on the preprocessed rfMRI images as a dimension-
ality reduction step before feeding into MELODIC ICA to identify
RSN at higher resolution i. e. 100 ICA components. These ICA compo-
nents were quality-checked and 45 components were identified as
artifactual components (components of no interest). The remaining 55

components were used for further processing to get IDPs. The 55 ICA
components are identified on group of 4100 UKBB rfMRI images and eas-
ily accessible at this location. The next step is to extract subject-specific
time series signals by projecting ICA components onto each individual
raw rfMRI images. In total, 55 signals per subject were extracted using
the first stage in the dual regression analysis (Filippini et al., 2009). We
then estimated connectivity matrices on the ensuing time series based
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Figure E.1: ICA components (n=55) on UKBB resting-state fMRI data.
Resting-state functional connectivity features are estimated from these wide-
range of functional brain networks.

Group eid Variables

1: Age, Sex

31-0.0 Sex

34-0.0 Year of birth

52-0.0 Month of birth

21022-0.0 Age at recruitment

21003-2.0 Age when attended assessment centre

Table E.1: List of 5 baseline variables grouped into Age, Sex.

on a regularized covariance estimate (Ledoit and Wolf, 2004b). We
then mapped the covariance matrices into a Euclidean representation
based on the Riemannian tangent space embedding as proposed in
(Varoquaux et al., 2010d). We then vectorized the connectivity matrices
by extracting the lower triangular part and used them as the rfMRI

features for supervised learning. The tangent space parametrization
was implemented with Nilearn (Abraham et al., 2014a).

e.3 more experiments
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Mental Health
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Early life

Lifestyle
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Figure E.2: Pearson’s correlation coefficients across non-imaging UKBB

variables. The coefficients are reordered to form a block-like structure easy
to form 5 groups where each group is assigned to correlated variables.

Group eid Variables

3: Education
6138-2.0 Qualifications

845-2.0 Age completed full time education

Table E.2: List of 2 variables grouped into Education.

Group eid Variables

2: Early life

1647-2.0 Country ogf birth (UK/elsewhere)

1677-2.0 Breastfed as a baby

1687-2.0 Comparative body size at age 10

1697-2.0 Comparative height size at age 10

1707-2.0 Handedness (chirality/laterality)

1767-2.0 Adopted as a child

1777-2.0 Part of a multiple birth

1787-2.0 Maternal smoking around birth

Table E.3: List of 9 non-imaging variables grouped into Early life.
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Group eid Variables

4: Lifestyle

670-2.0 Type of accommodation lived in

680-2.0 Own or rent accommodation lived in

6139-2.0 Gas or solid-fuel cooking/heating

699-2.0 Length of time at current address

709-2.0 Number in household

6141-2.0 How are people in household related to participant

728-2.0 Number of vehicles in household

738-2.0 Income before tax

796-2.0 Distance between home and job workplace

757-2.0 Time employed in main current job

767-2.0 Length of working week for main job

777-2.0 Freq. of travelling from home to job workplace

6143-2.0 Transport type for commuting to job workplace

6142-2.0 Current employment status

806-2.0 Job involves mainly walking or standing

816-2.0 Job involves heavy manual or physical work

826-2.0 Job involves shift work

3426-2.0 Job involves night shift work

1031-2.0 Freq. of friend/ family visits

6160-2.0 Leisure/social activities

2110-2.0 Able to confide

1239-2.0 Current tobacco smoking

1249-2.0 Past tobacco smoking

1259-2.0 Smoking/smokers in household

1269-2.0 Exposure to tobacco smoke at home

1279-2.0 Exposure to tobacco smoke outside home

2644-2.0 Light smokers, at least 100 smokes in lifetime

2867-2.0 Age started smoking in former smokers

2877-2.0 Type of tobacco previously smoked

2887-2.0 Number of cigarettes previously smoked daily

2897-2.0 Age stopped smoking

2907-2.0 Ever stopped smoking for 6+ months

2926-2.0 Number of unsuccessful stop-smoking attempts

2936-2.0 Likelihood of resuming smoking

Table E.4: List of non-imaging variables grouped into Lifestyle.
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Group eid Variables

4: Lifestyle

3436-2.0 Age started smoking in current smokers

3446-2.0 Type of tobacco currently smoked

3456-2.0 Number of cigarettes currently

smoked daily (current cigarette smokers)

3466-2.0 Time from waking to first cigarette

3476-2.0 Difficulty not smoking for 1 day

3486-2.0 Ever tried to stop smoking

3496-2.0 Wants to stop smoking

3506-2.0 Smoking compared to 10 years previous

5959-2.0 Previously smoked cigarettes on most/all days

6157-2.0 Why stopped smoking

6158-2.0 Why reduced smoking

Table E.5: Continuation to previous Table E.4 non-imaging lifestyle vari-
ables.

Group eid Variables

5: Mental Health

2040-2.0 Risk taking

4526-2.0 Happiness

4537-2.0 Work/job satisfaction

4548-2.0 Health satisfaction

4559-2.0 Family relationship satisfaction

4570-2.0 Friendships satisfaction

4581-2.0 Financial situation satisfaction

4598-2.0 Ever depressed for a whole week

4609-2.0 Longest period of depression

4620-2.0 Number of depression episodes

4631-2.0 Ever unenthusiastic/disinterested for a whole week

4642-2.0 Ever manic/hyper for 2 days

4653-2.0 Ever highly irritable/argumentative for 2 days

2050-2.0 Frequency of depressed mood in last 2 weeks

2060-2.0 Frequency of unenthusiasm / disinterest in last 2 weeks

2070-2.0 Frequency of tenseness / restlessness in last 2 weeks

Table E.6: List of 16 mental health variables from a total of 25.
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Group eid Variables

5: Mental Health

2080-2.0 Frequency of tiredness / lethargy in last 2 weeks

2090-2.0 Seen doctor (GP) for nerves, anxiety, tension or depression

2100-1.0 Seen a psychiatrist for nerves, anxiety, tension or depression

5375-2.0 Longest period of unenthusiasm / disinterest

5386-2.0 Number of unenthusiastic/disinterested episodes

5663-2.0 Length of longest manic/irritable episode

5674-2.0 Severity of manic/irritable episode

6145-2.0 Illness, injury, bereavement, stress in last 2 years

6156-2.0 Manic/hyper symptoms

Table E.7: Remaining list mental health variables from a total of 25.
Linked to Table E.6
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Figure E.3: Prediction of individual differences from socio-demographic
data. Prediction of age, fluid intelligence and neuroticism based from 86

socio-demographic variables ordered from lower to higher i. e. a single group
to 5 groups as introduced on Table E.8. Models are based on non-exhaustive
combinations of variables related to early life factors (EL), education (EDU),
life-style (LS) and measures related to age and sex (AS). Color indicates the
number of blocks of variables per model. We used the R2 score to facilitate
comparisons across prediction targets. The estimated null-distribution is de-
picted by gray violin plots. The expected prediction performance is depicted
by colored violin plots. Vertical dotted lines indicate the average performance
of the full MRI model introduced in Fig. 4.4. For convenience, the mean
performance is annotated for each plot. One can readily see that prediction
with socio-demographics was markedly stronger than with the brain-based
model for all three targets. Education related variables explains most of
fluid intelligence prediction and similarly mental health for neuroticism
prediction. On the other hand, lifestyle showed impact on age prediction
when socio-demographic variables are considered. This plot is related to the
simplified plot in Fig. 4.2. Overall, considering full socio-demographics (5
groups = 86 variables) explains better predictions significance of additive
learning effects.
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Figure E.4: Prediction of individual differences from imaging and socio-
demographic data. Prediction of age, fluid intelligence and neuroticism
based from 86 socio-demographic variables Table E.8 and the 2074 variables
included in the full-MRI model from Fig. 4.4. Rules for graphical display as
in Fig. E.3. One can see that the effect of combining socio-demographics with
brain-data depended on the prediction target. For age, overall performance
improved beyond the previous analyses. The picture was less consistent for
fluid intelligence and neuroticism.
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Index Name # variables # groups

1 EL, EDU 11 2

2 EL, LS 54 2

3 EL, AS 14 2

4 EL, MH 34 2

5 EDU, LS 47 2

6 EDU, AS 7 2

7 EDU, MH 27 2

8 LS, AS 50 2

9 LS, MH 70 2

10 MH, AS 30 2

11 EL, EDU, LS 56 3

12 EL, EDU, AS 16 3

13 EL, EDU, MH 36 3

14 EL, LS, AS 59 3

15 EL, LS, MH 79 3

16 EL, MH, AS 39 3

17 EDU, LS, AS 52 3

18 EDU, LS, MH 72 3

19 EDU, MH, AS 32 3

20 LS, MH, AS 75 3

21 EL, EDU, LS, MH 81 4

22 EL, EDU, LS, AS 61 4

23 EL, EDU, MH, AS 41 4

24 EL, LS, MH, AS 84 4

25 EDU, LS, MH, AS 77 4

26 EL, EDU, LS, MH, AS 86 5

Table E.8: More non-imaging baseline models, a progressive extension of
models reported on Table 4.2. These models are based on the combination of
two or more groups: Early Life (EL), Education (EDU), Life style (LS), Mental
health (MH), Age, Sex (AS). Random forest model paramters tuned with
in-built cross-validation Number of trees is set by stabilization of out-of-bag
(OOB) error rate after trying from a range of values in 250, 350, 500, 800,
1000, 2000, 3000, 5000.
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Figure E.5: Classification analysis from imaging, socio-demographics and
combination of both data of low versus middle groups on the basis of age,
fluid intelligence and neuroticism scores. This analysis reveals model com-
parison outputs in contrast to the predictions on Figs. 4.3 and E.6. Shape and
color indicates the type of data used for model comparison on these binary
groups. We report the accuracy in AUC. The estimated null-distribution is
shown in gray violin plots whereas colored violin plots depict the distribu-
tion of classification accuracies per model. The mean value is shown on each
violin plot to facilitate easy comparisons across classification groups. We
observe low classification accuracies using these groups while comparing to
classification accuracies with low vs high groups as on Fig. 4.3. Overall, the
model comparisons showed consistency with low vs high groups i. e. socio-
demographics data gave better prediction performance than imaging with
fluid intelligence and neuroticism as proxy measures. Adding brain imaging
to socio-demographics improves age prediction than socio-demographics or
imaging alone.
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Figure E.6: Classification analysis from imaging, socio-demographics and
combination of both data of middle vs high groups on the basis of age,
fluid intelligence and neuroticism scores. This analysis reveals model com-
parison outputs in contrast to the predictions on Figs. 4.3 and E.5. Shape and
color indicates the type of data used for model comparison on these binary
groups. We report the accuracy in AUC. The estimated null-distribution is
shown in gray violin plots whereas colored violin plots depict the distribu-
tion of classification accuracies per model. The mean value is shown on each
violin plot to facilitate easy comparisons across classification groups. We
observe low classification accuracies using these groups while comparing to
classification accuracies with low vs high groups as on Fig. 4.3. Overall, the
model comparisons showed socio-demographics data gave better prediction
performance than imaging with fluid intelligence and neuroticism while
brain-imaging brings in additive predictive effects for age prediction.
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Résumé: Les troubles mentaux présentent
une grande hétérogénéité entre les individus.
Une difficulté fondamentale pour étudier leurs
manifestations ou leurs facteurs de risque
est que le diagnostic des conditions mentales
pathologiques est rarement disponible dans les
grandes cohortes de santé publique. Ici, nous
cherchons à développer des biomarqueurs, sig-
natures cérébrales de troubles mentaux. Pour
cela, nous utilisons l’apprentissage automatique
pour prédire les résultats de santé mentale
grâce à l’imagerie de population, en se basant
sur l’imagerie cérébrale (imagerie par résonance
magnétique (IRM)). Compte tenu des évalua-
tions comportementales ou cliniques, l’imagerie
de population peut relier les caractéristiques
uniques des variations cérébrales à ces mesures
autodéclarées non cérébrales basées sur des
questionnaires. Ces mesures non cérébrales
fournissent une description unique des dif-
férences psychologiques de chaque individu qui
peuvent être liées à la psychopathologie à l’aide
de méthodes statistiques. Cette thèse de doc-
torat examine le potentiel d’apprentissage de
tels résultats basés sur l’imagerie pour anal-
yser la santé mentale. En utilisant des méth-
odes d’apprentissage automatique, nous effec-
tuons une évaluation, à la fois complète et ro-
buste, des mesures de population pour guider
des prévisions de haute qualité des résultats
pour la santé.

Cette thèse est organisée en trois parties
principales: premièrement, nous présentons une
étude approfondie des biomarqueurs du con-
nectome, deuxièmement, nous proposons une
réduction significative des données qui facilite
les études d’imagerie de population à grande
échelle, et enfin nous introduisons des mesures
indirectes pour la santé mentale.

Nous avons d’abord mis en place une étude
approfondie des connectomes d’imagerie afin
de prédire les phénotypes cliniques. Avec
l’augmentation des images cérébrales de haute

qualité acquises en l’absence de tâche explicite,
il y a une demande croissante d’évaluation des
modèles prédictifs existants. Nous avons effec-
tué des comparaisons systématiques reliant ces
images aux évaluations cliniques dans de nom-
breuses cohortes pour évaluer la robustesse des
méthodes d’imagerie des populations pour la
santé mentale. Nos résultats soulignent la né-
cessité de fondations solides dans la construc-
tion de réseaux cérébraux entre les individus.
Ils décrivent des choix méthodologiques clairs.

Ensuite, nous contribuons à une nouvelle
génération d’atlas fonctionnels du cerveau pour
faciliter des prédictions de haute qualité pour la
santé mentale. Les atlas fonctionnels du cerveau
sont en effet le principal goulot d’étranglement
pour la qualité de la prédiction. Ces atlas sont
construits en analysant des volumes cérébraux
fonctionnels à grande échelle à l’aide d’un al-
gorithme statistique évolutif, afin d’avoir une
meilleure base pour la prédiction des résultats.
Après les avoir comparés avec des méthodes
de pointe, nous montrons leur utilité pour at-
ténuer les problèmes de traitement des données
à grande échelle.

La dernière contribution principale est
d’étudier les mesures de substitution poten-
tielles pour les résultats pour la santé. Nous con-
sidérons des comparaisons de modèles à grande
échelle utilisant des mesures du cerveau avec des
évaluations comportementales dans une cohorte
épidémiologique d’imagerie, le UK Biobank.
Dans cet ensemble de données complexe, le défi
consiste à trouver les covariables appropriées et
à les relier à des cibles bien choisies. Cela est dif-
ficile, car il y a très peu de cibles pathologiques
fiables. Après une sélection et une évalua-
tion minutieuses du modèle, nous identifions
des mesures indirectes qui sont en corrélation
avec des conditions non pathologiques comme
l’état de sommeil, la consommation d’alcool et
l’activité physique. Ceux-ci peuvent être indi-
rectement utiles pour l’étude épidémiologique de
la santé mentale.
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Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France
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Title: Machine Learning on Population Imaging for Mental Health
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Abstract: Mental disorders display a vast
heterogeneity across individuals. A fundamen-
tal challenge to studying their manifestations
or risk factors is that the diagnosis of mental
pathological conditions are seldom available in
large public health cohorts. Here, we seek to
develop brain signatures, biomarkers, of mental
disorders. For this, we use machine learning to
predict mental-health outcomes through popu-
lation imaging i. e. with brain imaging (Mag-
netic Resonance Imaging (MRI)). Given behav-
ioral or clinical assessments, population imag-
ing can relate unique features of the brain vari-
ations to these non-brain self-reported measures
based on questionnaires. These non-brain mea-
surements carry a unique description of each
individual’s psychological differences which can
be linked to psychopathology using statistical
methods. This PhD thesis investigates the
potential of learning such imaging-based out-
comes to analyze mental health. Using machine-
learning methods, we conduct an evaluation,
both a comprehensive and robust, of popula-
tion measures to guide high-quality predictions
of health outcomes.

This thesis is organized into three main
parts: first, we present an in-depth study of
connectome biomarkers, second, we propose
a meaningful data reduction which facilitates
large-scale population imaging studies, and fi-
nally we introduce proxy measures for mental
health.

We first set up a thorough benchmark for
imaging-connectomes to predict clinical pheno-
types. With the rise in the high-quality brain
images acquired without tasks, there is an in-
creasing demand in evaluation of existing mod-

els for predictions. We performed systematic
comparisons relating these images to clinical as-
sessments across many cohorts to evaluate the
robustness of population imaging methods for
mental health. Our benchmarks emphasize the
need for solid foundations in building brain net-
works across individuals. They outline clear
methodological choices.

Then, we contribute a new generation of
brain functional atlases to facilitate high-quality
predictions for mental health. Brain func-
tional atlases are indeed the main bottleneck
for prediction. These atlases are built by an-
alyzing large-scale functional brain volumes us-
ing scalable statistical algorithm, to have bet-
ter grounding for outcome prediction. After
comparing them with state-of-the-art methods,
we show their usefulness to mitigate large-scale
data handling problems.

The last main contribution is to investigate
the potential surrogate measures for health out-
comes. We consider large-scale model compar-
isons using brain measurements with behavioral
assessments in an imaging epidemiological co-
hort, the United Kingdom (UK) Biobank. On
this complex dataset, the challenge lies in find-
ing the appropriate covariates and relating them
to well-chosen outcomes. This is challenging,
as there are very few available pathological out-
comes. After careful model selection and eval-
uation, we identify proxy measures that display
distinct links to socio-demographics and may
correlate with non-pathological conditions like
the condition of sleep, alcohol consumption and
physical fitness activity. These can be indirectly
useful for the epidemiological study of mental
health.
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