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2020





R A F I K B E L L O U M

T O O L - B A S E D M E T H O D O L O G I E S F O R

D E V E L O P I N G A S S I S T E D L I V I N G

S E R V I C E S

I N R I A B O R D E A U X S U D - O U E S T, F R A N C E



LaBRI
Unité Mixte de Recherche CNRS (UMR 5800)
351 cours de la Libération
33405 Talence Cedex
France

Équipe PHOENIX, INRIA Bordeaux Sud-Ouest
200 avenue de la Vieille Tour
33405 Talence Cedex
France

Université de Bordeaux

Copyright © 2020 by Rafik Belloum

Inspired from the template provided by Paul van der Walt

WWW.DENKNERD.ORG

The typographic style of this document was inspired by Edward Tufte’s book Beautiful Evidence,
and typeset using LATEX and a modified version of Kevin Godby’s tufte-book class. The main
text is typeset in TEX Gyre Pagella, which is based on Hermann Zapf’s beautiful Palatino type
face. The typewriter text is typeset in Bera Mono, originally developed by Bitstream, Inc.

This work and associated source code is licensed under a Creative Commons Attribution-ShareAlike
4.0 International License, available at https://creativecommons.org/licenses/by-sa/4.0/.

Might the fleas of a thousand camels descend upon the armpits of those who would dare to
make unauthorised copies of this work, in whole or part, without proper attribution. Sickness
and ruin upon those who would attempt to derive financial gain from this work, even unto the
seventh generation.

Please mind the trees: think before you reproduce.

Version: July 27, 2020.

https://creativecommons.org/licenses/by-sa/4.0/


Abstract
The growing population of older adults gives rise to a need for as-

sistive computing systems that support independent living, to reduce
the number of people being transferred to costly care facilities. The
goal of assistive computing is to provide context-aware services that
assist older adults in all aspects of daily life, for example, monitoring
activities such as meal preparation and providing appointment or
medication reminders. Despite much progress, the development of
assistive services remains a challenge, because of a lack of support-
ing approaches and tools. This challenge involves: (1) coping with
inter-individual variabilities (e.g., home features and user routines
and preferences) to deliver tailored services, (2) monitoring activities
over long periods of time and (3) enabling care providers and/or
professionals in aging to contribute their expert knowledge towards
service development.

This dissertation presents several contributions to this topic. The
primary contributions are two iterative methods dedicated to sup-
porting the development of services that monitor activities of daily
living (ADLs). Each of these methods is supported by a set of tools
for collecting, analyzing and visualizing monitoring data. These tools
ensure the agile development of accurate activity recognizers via a
stepwise refinement of the analysis of sensor data. The first method,
for recognizing ADLs, encompasses the main variations of a target
activity by abstracting over descriptions reported by users. Beyond
recognizing ADLs, the second method addresses long-term monitor-
ing shortcomings (e.g., sensor failures) and gives health professionals
actionable insights into user activities. A final end-user approach is
presented, which provides a tool to enable experts in aging to easily
define assisted living services in smart homes.

The presented methodologies have been applied to an assisted
living platform for aging in place, deployed in the home of 140 users.
Experimental results show the effectiveness of all the proposed meth-
ods. First, the recognition methodology has achieved an accuracy of
80%, rising to 88% when considering the more routinized participants
of the experiment. Second, the method for long-term monitoring
of ADLs mostly produced the same interpretations as an expert in
activity analysis, who manually analyzed the longitudinal sensor
datasets. Finally, the findings reveal good usability of the end-user
tool, which has been tested by occupational therapists.

Keywords: Smart home, Assistive computing, Assisted living ser-
vices, End-user development, Activity monitoring





Résumé
L’accroissement du vieillissement de la population entraîne l’émer-

gence de technologies informatiques pervasives au service de l’aide
à domicile, afin de réduire le nombre de personnes transférées dans
des établissements de soins coûteux. L’objectif de l’informatique
d’assistance est de fournir des services adaptés au contexte qui aident
les personnes âgées dans tous les aspects de la vie quotidienne, par
exemple en surveillant des activités telles que la préparation des repas
et en leur rappelant leurs rendez-vous ou leurs médicaments. Malgré
de nombreux progrès, le développement des services d’assistance
reste un défi, en raison du manque d’approches et d’outils de soutien
au développement. Ce défi implique : (1) tenir compte des variations
interindividuelles (e.g., les caractéristiques du domicile et les habi-
tudes et préférences des utilisateurs), (2) surveiller les activités sur
de longues périodes et (3) permettre aux experts du vieillissement de
personaliser les services d’assistance.

Cette thèse présente plusieurs contributions à ce sujet. Les princi-
pales contributions sont deux méthodes itératives dédiées au soutien
du développement de services d’assistance. Chacune de ces méthodes
est soutenue par un ensemble d’outils pour la collecte, l’analyse et la
visualisation des données de suivi. Ces outils assurent le développe-
ment agile de détecteurs d’activité précis grâce à un affinement pro-
gressif de l’analyse des données des capteurs. La première méthode,
pour la reconnaissance des activités, utilise les déclarations de rou-
tines rapportées par les utilisateurs. Au-delà de la reconnaissance des
activités, la deuxième méthode s’attaque aux difficultés de la surveil-
lance à long terme (e.g., les défaillances des capteurs) et donne aux
professionnels de la santé des indications utiles sur les activités des
utilisateurs. Enfin, une approche pour l’utilisateur final est présen-
tée, qui fournit un outil permettant aux experts du vieillissement
de définir facilement les services d’assistance domiciliaire dans les
maisons intelligentes.

Les méthodologies présentées ont été appliquées à une plateforme
d’assistance, déployée au domicile de 140 utilisateurs. Les résultats
expérimentaux montrent l’efficacité de toutes les méthodes proposées.

Mots clés : Maison intelligente, Assistance domiciliaire, Développe-
ment par l’utilisateur final, Détection d’activités
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Résumé étendu

Le vieillissement de la population pose un vaste défi so-
ciétal pour répondre aux besoins des personnes âgées et leur
permettre de vivre de façon autonome. Pour relever ce défi,
une approche prometteuse s’articule autour de l’informatique
d’assistance et consiste à équiper le domicile des personnes
âgées de technologies informatiques ubiquitaires et de services
contextuels dédiés à la surveillance et à l’assistance de leurs ac-
tivités quotidiennes. Dans cette approche, plusieurs domaines
d’expertise sont impliqués dans le développement des services,
allant des sciences humaines et aidants professionnels pour
l’analyse des besoins, jusqu’à l’informatique pour le développe-
ment des services. En effet, l’adoption d’une approche interdis-
ciplinaire, centrée sur l’humain et faisant appel à un éventail
de compétences pour développer les services d’aide à l’auto-
nomie des personnes âgées joue un rôle clé dans l’efficacité
et l’acceptation de ces technologies. Bien que cette approche
ait montré de nombreux avantages pour le développement des
services d’assistance dans des environnements réels, il reste
encore des défis à relever pour exploiter le potentiel de l’infor-
matique d’assistance afin de répondre aux besoins des utilisa-
teurs et de garantir la précision des services fournis. Exam-
inons de plus près ces défis.

Assurer le développement de reconnaisseurs d’activités précis. Pour
favoriser l’autonomie, il est primordial de surveiller les activ-
ités quotidiennes des personnes âgées, telles que la routine
du coucher et la préparation des repas, car elles donnent une
indication fiable sur la préservation de l’autonomie et perme-
ttent de prévenir les situations indésirables (e.g., le manque
d’activité pendant la journée). Ce suivi a notamment pour but
d’évaluer l’évolution des activités quotidiennes dans le temps.
D’une part, un manque d’activité soudain est une information
précieuse pour un aidant ou un professionnel de la santé qui
peut aboutir à une intervention rapide. D’autre part, une aug-
mentation constante des absences est utile pour un soignant
afin d’anticiper les mesures de compensation (e.g., un service



de livraison de repas).
La surveillance de l’activité nécessite des méthodes de dév-

eloppement capables de fournir systématiquement des recon-
naisseurs d’activités suffisamment précis pour être fiables et
acceptés par les utilisateurs. En effet, compte tenu de leur im-
brication dans la vie quotidienne des usagers, des détecteurs
d’activités peu précis peuvent faire plus de mal que de bien.
Par exemple, imaginons un détecteur d’activité qui reconnaît
faussement des activités et envoie des rappels erronés à un util-
isateur fragile et à son aidant. Au mieux, un tel service serait
rapidement ignoré et/ou débranché par l’utilisateur ; au pire,
il aurait un effet délétère sur lui.

Le principal défi à relever lors de l’implémentation de ser-
vices de reconnaissance d’activités est de les rendre à la fois
génériques et spécifiques : génériques pour faire face à un
large éventail de configurations domestiques et de routines
d’utilisateurs, et spécifiques pour détecter les activités avec
un niveau de précision suffisant. Les approches basées sur
l’apprentissage automatique sont très puissantes pour traiter
un volume potentiellement élevé de données et fournir des
réponses statistiquement correctes. Cependant, ces réponses
peuvent ne pas être suffisamment prévisibles, ni faciles à ex-
pliquer aux personnes âgées et aux aidants. De plus, les ap-
proches basées sur l’apprentissage automatique nécessitent une
grande quantité de données d’apprentissage (parfois étiquetées
par des experts) afin d’être efficacement spécialisées pour cha-
que configuration domicile/utilisateur. Ces limitations sug-
gèrent que les solutions déterministes de reconnaissance d’acti-
vités sont mieux adaptées à l’informatique d’assistance et que
les reconnaisseurs d’activités devraient être à la fois génériques
pour passer à l’échelle et personnalisables pour tenir compte
des spécificités de l’utilisateur/du domicile.

Assurer le suivi des activités sur le long terme. La surveillance
des activités quotidiennes dans un environnement réel, sur
une longue période est très difficile. En plus de rendre les sys-
tèmes de surveillance des activités personnalisables pour tenir
compte des variations interindividuelles, ces systèmes doivent
relever d’autres défis importants.

Les systèmes de surveillance d’activités doivent tenir compte
des pannes des capteurs. L’importance de tenir compte des dé-
faillances des capteurs découle principalement du fait qu’elles
sont inhérentes au déploiement à long terme dans des environ-
nements réels de maisons intelligentes. Mais la surveillance
des pannes est également essentielle pour interpréter les résul-
tats des détecteurs d’activités. En effet, en l’absence d’activité



détectée pendant une certaine période, il est essentiel de dis-
tinguer les cas où l’activité n’a pas été réalisée et ceux où les
capteurs ont été dysfonctionnels, afin de surveiller de manière
fiable l’état fonctionnel des personnes âgées. Bien que promet-
teuse, la recherche sur les caractéristiques de la défaillance des
capteurs est encore étudiée dans un cadre autre que celui d’un
environnement réel : un laboratoire dédié aux études expéri-
mentales.

Les informations sur l’activité pourraient être analysées pour
évaluer le changement ou l’évolution de la routine des utilisa-
teurs, notamment pour détecter les premiers signes de déclin
cognitif (comme une diminution du temps de sommeil). Plus
précisément, ces informations pourraient être utilisées par les
professionnels de la santé dans le domaine du vieillissement,
tels que les ergothérapeutes et les gériatres, pour déterminer
l’assistance nécessaire. Dans le cadre d’études longitudinales,
une quantité importante de données de capteurs contenant
des informations sur les activités des utilisateurs est générée.
Ainsi, pour interpréter cette masse de données, il est important
de proposer des approches et des outils capables de visualiser
les activités des utilisateurs de manière synoptique.

Permettre le développement de services par l’utilisateur final. Les
aidants sont les mieux placés pour évaluer les besoins spéci-
fiques des personnes âgées en terme d’assistance nécessaire
à une vie autonome, car ils observent quotidiennement leurs
habitudes, leurs besoins et leurs préférences. En outre, les per-
sonnes âgées ont tendance à sous-estimer leurs difficultés quo-
tidiennes, ce qui oblige leurs aidants à compléter l’analyse des
besoins. Ainsi, un facteur clé pour fournir une assistance per-
sonnalisable est de tirer parti des connaissances et de l’expertise
des aidants dans le développement des services. Le problème
est que les aidants manquent souvent de compétences en pro-
grammation. De plus en plus, les chercheurs s’efforcent de
fournir des outils qui soutiennent la programmation par des
utilisateurs finaux. Cependant, la plupart de ces outils néces-
sitent une longue période de familiarisation. C’est pourquoi
il est nécessaire de proposer des outils pour les aidants non-
programmeurs qui permettent une facilité d’utilisation immé-
diate afin d’atteindre une évolutivité en terme de besoins sout-
enus.

Contributions

Cette thèse présente trois méthodologies outillées qui souti-
ennent et facilitent le développement de services d’assistance



précis. Chacune de ces méthodologies répond à un défi identi-
fié ci-dessus, à savoir la reconnaissance précise des activités, le
suivi à long terme de ces activités et la possibilité de dévelop-
per des services par l’utilisateur final.

Une méthode outiliée de développement de reconnaisseurs d’activités.
Nous présentons une approche systématique pour dévelop-
per des services précis de reconnaissance d’activité, basée sur
une méthode outillée. Pour atteindre la précision, notre méth-
ode consiste en un processus de développement en plusieurs
étapes qui fait abstraction des descriptions des activités clés
de l’utilisateur pour couvrir les variabilités inter-individuelles,
tout en assurant une personnalisation appropriée en ce qui
concerne les spécificités de l’utilisateur. Cette méthode de
développement est itérative et permet d’ajuster les paramètres
d’un détecteur d’activité pour maximiser sa précision.

Une méthodologie outiliée pour le suivi des activités sur le long
terme. Nous proposons une méthode outillée pour la surveil-
lance à long terme des activités des personnes âgées. Cette
méthodologie couvre les étapes clés de la définition d’un pro-
cessus de surveillance de ces activités. Ces étapes sont décrites
de manière uniforme avec des règles concises et de haut niveau
pour détecter les pannes des capteurs ou les activités. En outre,
pour permettre aux soignants de surveiller le déclin fonction-
nel des personnes âgées et de déterminer l’assistance néces-
saire, notre méthodologie comprend un outil de visualisation,
dédié à la gestion longitudinale des activités des utilisateurs.
Nous avons mené une étude préliminaire 1 pour évaluer la 1 La présente étude de cas est

accessible à l’URL suivante :
https://gitlab.inria.fr/rbelloum/

reproducibilitymonitoring.git

fiabilité intra- et inter-participants de notre méthodologie, en
utilisant des ensembles de données longitudinales, collectées
sur plusieurs mois.

Méthode de développement des services d’assistance par l’aidant. Afin
de fournir une assistance personnalisée aux personnes âgées,
nous présentons une méthode de développement des services
d’assistance par l’utilisateur final. Cette approche comprend
deux étapes : (1) une taxonomie des activités pour guider
l’aidant dans la définition des services d’assistance ; (2) un
wizard, qui permet à l’aidant d’exprimer facilement un service.
Notre approche a été implémentée. Notre wizard a été util-
isé avec succès pour définir les services existants programmés
manuellement et développés avec un langage de programma-
tion géneraliste (Java). Les services résultants ont été exécutés
par une vraie plateforme d’assistance et déployés au domicile
de nos participants.

https://gitlab.inria.fr/rbelloum/reproducibilitymonitoring.git
https://gitlab.inria.fr/rbelloum/reproducibilitymonitoring.git


Organisation du manuscrit

Ce document est organisé comme suit :

Chapitre 2 traite des travaux connexes, couvrant les points
saillants de nos méthodologies. Tout d’abord, nous discutons
des caractéristiques et des exigences qu’implique le suivi des
activités des personnes âgées. Ensuite, nous passons en re-
vue les approches existantes pour reconnaître ces activités. En-
fin, nous examinons certaines approches informatiques exis-
tantes qui soutiennent le développement d’applications con-
textuelles.

Chapitre 3 présente une méthode agile pour développer des
détecteurs d’activités précis qui couvrent les variabilités inter-
individuelles des utilisateurs. Pour illustrer notre approche,
nous avons implémenté 6 détecteurs d’activités au domicile de
5 personnes âgées. Pour évaluer la précision de nos services,
leurs résultats ont été comparés aux activités déclarées par nos
participants sur une période de 5 jours. Cette expérience mon-
tre que 80% des résultats de nos détecteurs d’activités ont été
confirmés par les utilisateurs, et 88% si l’on considère les qua-
tre participants les plus routinisés.

Chapitre 4 présente une méthode disciplinée et reproductible
de surveillance longitudinale des activités humaines. Par rap-
port à la méthodologie de Chapitre 3, nous montrons com-
ment cette approche contribue (1) à améliorer la reproductibil-
ité et (2) à raccourcir le cycle de développement des détecteurs
d’activités grâce à des règles de surveillance de haut niveau
et concises. Pour valider notre approche, nous présentons un
ensemble de règles dédiées à la surveillance des activités des
personnes âgées dans leurs domiciles. En utilisant la théorie
de la détection du signal, nous avons montré que nos règles
produisaient les mêmes interprétations qu’un expert en anal-
yse d’activités, qui a analysé manuellement 5 ensembles de
données de capteurs issues d’environnements réels.

Chapitre 5 présente une approche complète de développe-
ment de services de soutien à l’activité par les utilisateurs fin-
aux. Par rapport aux méthodologies précédentes des Chapitres 3

et 4, nous élevons encore le niveau d’abstraction auquel les re-
connaisseurs d’activité sont développés, afin de rendre leur
personnalisation accessible aux utilisateurs finaux. Pour ce
faire, nous présentons un wizard qui permet aux experts du
vieillissement de définir des services d’assistance à partir d’une



taxonomie d’activités cibles, et nous montrons comment le wiz-
ard est interfacé avec une plateforme d’assistance. Nous évalu-
ons la facilité d’utilisation de notre outil avec 5 professionnels
du vieillissement (ergothérapeutes).

Chapitre 6 détaille les conclusions de cette thèse et discute
des pistes de recherche en cours et à venir.
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1
Introduction

The aging of the population raises a vast societal challenge
to support the needs of older adults and to enable them to
live independently. To address this challenge, a promising
approach revolves around assistive computing and consists
of equipping the home of older adults with pervasive com-
puting technologies and context-aware services dedicated
to monitoring and assisting their daily activities 1. In this 1 Charles Consel [2018]. “Assistive com-

puting: a human-centered approach to
developing computing support for cog-
nition.” In: 2018 IEEE/ACM 40th Inter-
national Conference on Software Engineer-
ing: Software Engineering in Society (ICSE-
SEIS). IEEE, pp. 23–32.

approach, several areas of expertise are involved in service
development, ranging from human-related science and care-
givers, to addressing needs analysis, to computer science
for software development. In fact, following an interdis-
ciplinary, human-centered approach that involves a range
of expertise to develop assisted living services 2 for older 2 Assistive services take the form of ap-

plications that leverage the capabilities
of the underlying infrastructure, such as
sensing, actuating, user interaction, and
networking. Examples of such services
include agenda reminders, collaborative
games, sleep monitor, and pedometer.

adults plays a key role towards achieving effectiveness and
acceptance of these technologies 3. Although this approach

3 Lucile Dupuy et al. [2017]. “Everyday
Functioning Benefits from an Assisted
Living Platform amongst Frail Older
Adults and Their Caregivers.” In: Fron-
tiers in aging neuroscience 9, p. 302.

has shown numerous benefits for assistive service develop-
ment in real-world deployment, there are still challenges
that need to be addressed to harness the potential of assis-
tive computing towards meeting users’ needs and ensuring
the accuracy of the services delivered.
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Overview

• Overview of the challenges of developing services that mon-
itor home-based activities.

• Overview of the main research contributions presented in
this dissertation.
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1.1 Accurate Activity Recognizers

To support independent living, it is paramount to monitor
the daily activities performed by older adults, such as a bed-
time routine and meal preparation, because they give a reliable
indication of whether autonomy is preserved and prevent un-
wanted situations (e.g., lack of activity during daytime). In
particular, the goal of this monitoring is to assess how daily
activities evolve over time 4. On the one hand, a sudden surge 4 Barnan Das et al. [October 2012].

“PUCK: an automated prompting system
for smart environments: toward achiev-
ing automated prompting—challenges
involved.” en. In: Personal and Ubiqui-
tous Computing 16.7, pp. 859–873.

in activity misses is a valuable information for a caregiver or
a health professional that can result in a prompt intervention.
On the other hand, a steady increase in activity misses is use-
ful for a caregiver to anticipate compensation measures (e.g.,
meal delivery service).

To fulfill its promises, activity monitoring requires develop-
ment methods capable of systematically delivering activity rec-
ognizers that are accurate enough to be trusted and accepted
by users. Indeed, considering how much they are to be in-
tertwined in the daily life of users, activity detectors with low
accuracy may do more harm than good. For example, consider
an activity recognizer that falsely misses activities and issues
erroneous reminders to a frail user and their caregiver. At best,
such a service would be quickly ignored and/or unplugged by
the user; at worse, it would have a deleterious effect on them 5. 5 A.J. Bernheim Brush et al. [2011].

“Home automation in the wild: chal-
lenges and opportunities.” en. In: Pro-
ceedings of the 2011 annual conference on
Human factors in computing systems - CHI
’11. Vancouver, BC, Canada: ACM Press,
p. 2115.

The major challenge when developing activity recognizers
is to make them both generic and specific: generic to cope
with a wide range of home configurations and user routines,
and specific to detect activities with a sufficient level of ac-
curacy. Black-box approaches based on machine learning are
very powerful for dealing with potentially a high volume of
data and delivering statistically correct answers. However, such
answers may not be predictable enough, nor easy to explain
to older adults and caregivers. Moreover, approaches based
on machine learning require a great amount of training data
(sometimes tagged by experts) in order to be effectively spe-
cialized for each home/user configuration. These limitations
suggest that deterministic solutions to activity recognition are
better suited for assistive computing and that activity recog-
nizers should be both generic to scale and customizable to ac-
count for user/home specificities.

1.2 Long-Term Monitoring

Monitoring daily activities in the wild (i.e., real-life setting)
over a long period of time is very challenging. In addition
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to make activity monitoring systems customizable to account
for inter-individual variations, these systems need to address
other key challenges.

Addressing sensor failures. In a real-life setting, monitoring sys-
tems have to account for sensor failure. The importance of
considering sensor failure stems primarily from the fact that
it is inherent to long-term deployment in real smart home en-
vironments. But monitoring sensor failure is also essential for
interpreting the results of activity recognizers. In fact, in the
absence of an activity detected during a certain period, it is es-
sential to distinguish between cases in which the activity has
not been carried out and those in which the sensors have been
dysfunctional, to reliably monitor the functional status of older
adults. Although promising, research into the characteristics
of sensor failure is still being studied in a non-real-life setting:
a home dedicated to experimental studies 6. 6 Nancy ElHady and Julien Provost [June

2018]. “A Systematic Survey on Sensor
Failure Detection and Fault-Tolerance
in Ambient Assisted Living.” en. In:
Sensors 18.7, p. 1991.

Long-term analysis of activity data. Activity information could
be analyzed to assess change or evolution of user routine, es-
pecially to detect early signs of cognitive decline (such as a
decrease in sleep time) 7. Specifically, such information could 7 Loïc Caroux, Charles Consel, Lucile

Dupuy, and Hélène Sauzeon [2018]. “To-
wards context-aware assistive applica-
tions for aging in place via real-life-
proof activity detection.” In: Journal
of ambient intelligence and smart environ-
ments 10.6, pp. 445–459.

be used by health professionals in aging, such as occupational
therapists and geriatricians, to determine what assisted sup-
port is needed. In the context of longitudinal studies, a size-
able amount of sensor data containing information on user ac-
tivities is generated. Thus, to interpret this mass of data, it is
important to propose approaches and tools capable of visual-
izing user activities in a synoptic way.

1.3 Enabling End-User Development of Services

Caregivers are best suited to assess the specific needs of
older adults in terms of the assistance required for indepen-
dent living, as they observe daily their habits, needs and prefer-
ences. Furthermore, older adults tend to under estimate their
daily difficulties, requiring their caregivers to complement the
needs analysis 8. Thus, a key factor in providing customiz- 8 David A Gold [2012]. “An examina-

tion of instrumental activities of daily
living assessment in older adults and
mild cognitive impairment.” In: Journal
of clinical and experimental neuropsychol-
ogy 34.1, pp. 11–34.

able assistance is to leverage the knowledge and expertise of
caregivers in the development of services. However, caregivers
often lack computer skills. Increasingly, researchers aim to pro-
vide tools that support end-user programming. However, most
of these tools require a long period of familiarization. For this
reason, it is required to propose tools for non-programmers
that allow for immediate ease of use in order to achieve scala-
bility in terms of supported needs.
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1.4 Main Contributions

This dissertation presents three tool-based methodologies
that support and facilitate the development of accurate assis-
tive services. Each of these methodologies addresses a chal-
lenge identified above, namely, accurate activity recognizers,
long-term monitoring, and enabling end-user development of
services.

A tooled method to develop activity recognizers. We present a sys-
tematic approach to developing accurate activity recognizers,
based on a tooled method. To achieve accuracy, our method
consists of a multi-step development process that abstracts
over the user descriptions of their key activities to cover inter-
individual variabilities, while ensuring proper customization
with respect to user specificities. This development method is
iterative and allows to adjust the parameters of an activity rec-
ognizer to maximize its accuracy. We validate our tool-based
method by measuring the accuracy of our set of activity recog-
nizers in a case study.

A tooled method for long-term monitoring. We propose a tool-
based methodology for long-term activity monitoring of older
adults. This methodology covers the key steps to defining a
monitoring process of these activities, from sensor measure-
ments to actionable activity information. These steps are uni-
formly described with concise and high-level rules for detect-
ing sensor failures or ADLs. Additionally, to allow caregivers
to monitor older adults’ functional decline and to determine
what assisting support is needed, our methodology includes a
visualization tool, dedicated to handling user activities longitu-
dinally. We have conducted a preliminary study 9 to evaluate 9 The present case study is publicly

available at the following URL:
https://gitlab.inria.fr/rbelloum/

reproducibilitymonitoring.git

the intra- and inter-participant consistency of our methodol-
ogy, using longitudinal datasets, collected over several months.

End-user method to develop assistive services. To provide a per-
sonalized assistance to older adults, we present an end-user
approach for developing assistive services. This approach con-
sist of two stages: (1) a taxonomy of home activities to guide
the caregiver in defining assisted living services; (2) a wiz-
ard, which allows a caregiver to easily and practically express
a service. Our approach has been implemented. Our wiz-
ard has been successfully used to define existing manually-
programmed 10, activity-supporting services. The resulting 10 The services developed with a main-

stream programming language (i.e.,
Java).

services have been deployed and executed by an existing as-
sisted living platform deployed in the home of community-
dwelling individuals.

https://gitlab.inria.fr/rbelloum/reproducibilitymonitoring.git
https://gitlab.inria.fr/rbelloum/reproducibilitymonitoring.git
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1.5 Outline

The reminder of this dissertation is organised as follows:

Chapter 2 discusses the related work, covering the salient
features of our methodologies. First, we discuss the charac-
teristics and requirements entailed by the monitoring of older
adults’ activities. Then, we review the existing approaches to
recognize activities. Finally, we investigate some existing com-
puting approaches that support the development of context-
aware applications.

Chapter 3 presents a disciplined method to develop accurate
activity recognizers that cover inter-individual variabilities of
users. Using this approach, we implemented 6 activity recog-
nizers in the home of 5 older adults. To assess the accuracy
of our service recognizers, their outputs were compared to the
activities self-reported by our participants over a period of 5

days. This experiment shows that 80% of the outputs of our
activity detectors were confirmed by the user reports, rising to
88% when considering the four more routinized participants.

Chapter 4 presents a a disciplined and reproducible method
for longitudinal monitoring of human activities. Compared to
the methodology of Chapter 3, we show how this approach
contributes to (1) improving reproducibility and (2) shorten
the development cycle of activity detectors via high-level and
concise monitoring rules. Using the signal detection theory,
we have shown that our rules produced the same interpreta-
tions as an expert in activity analysis, who manually analyzed
5 sensor datasets from real-life settings.

Chapter 5 presents a complete approach to developing acti-
vity-supporting services by end users. Compared to the pre-
vious methodologies of Chapters 3 and 4, we further raise the
level of abstraction at which activity recognizers are developed,
in order to make their customization accessible to end-users.
To do so, we describe an end-user tool (i.e., wizard) that al-
lows caregivers to define assistive services within a taxonomy
of the target activities, and we show how the wizard is inter-
faced with a smart home platform. We assess the usability
of our wizard with 5 professionals in aging (i.e., occupational
therapists).

Chapter 6 details the conclusions of this dissertation and
discusses the ongoing and future research avenues.





2
Related Work

The are many possible services that assistive computing sys-
tems can offer to older adults for prolonging aging in place
within a smart home. In order to provide these services,
computing approaches and tools are required to support the
development of services that monitor home-based activities.
In this chapter, we investigate smart homes that provide an
infrastructure for services monitoring daily activities. We
then examine these activities, drawing from how they are
modeled and classified in the literature, we also investigate
their characteristics in the context of our target population,
namely older adults, and the impact of aging on them. Next,
we review previous studies of sensor-based activity monitor-
ing, examining what types of sensors and experimental set-
tings were used. Finally, we review existing computing ap-
proaches to monitoring ADLs and the existing works aiming
to simplify and support the development of context-aware
services in smart homes. This review is done with respect
to the key challenges identified in Chapter 1.

Contents

2.1 Smart Homes . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Older-Adult Daily Activities . . . . . . . . . . . . . . . . . 8
2.3 Range of Sensors . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Experimental Settings . . . . . . . . . . . . . . . . . . . . . 10
2.5 Computing Support for ADLs . . . . . . . . . . . . . . . . 10
2.6 Service Development . . . . . . . . . . . . . . . . . . . . . 12

Overview

• A review of key characteristics and requirements involved
in the activity monitoring of older adults in smart homes.

• A review of existing programming support and abstractions
dedicated to the development of assisted living services.
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2.1 Smart Homes

A smart home is commonly viewed as a set of connected ob-
jects, allowing the various home components to be controlled
(heating, shutters, garage door, entrance gate, electrical outlets,
etc.), and providing technical solutions to meet comfort needs
(energy management, optimization of lighting and heating), se-
curity (alarm) and communication (remote controls, visual or
audible signals, etc.) [Aldrich 2003]. Despite the many bene-
fits of smart home automation, it does not address the specific
needs of individuals with cognitive decline and/or disability.
Their needs consist of environmental support to helping them
perform their daily activities, as increasingly evidenced [Mor-
row and Rogers 2008; Reijnders et al. 2013]. As such, these
needs go beyond existing forms of home automation but could
leverage this infrastructure towards forming an environmental
support. Research on applying smart homes to assisted living
is a young field [Rashidi and Mihailidis 2013].

In recent years, researchers have been developing services to
monitor older adults, and study how age decline impacts their
cognition and everyday functioning. A major project focusing
on the monitoring of older adults is CART [Kaye et al. 2011],
where longitudinal, naturalistic, observational cohort studies
are conducted at a large scale (totaling over 400 participants).
Other smart home-based projects for aging complement the
monitoring with services that assist older adults in their daily
activities. This approach is pursued by HomeAssist [Consel
et al. 2017], which provides assistance to older adults in the
form of notifications to remind them of an activity (e.g., an
appointment) and to alert them about an undesirable situation
(e.g., a door left open).

2.2 Older-Adult Daily Activities

Classification of ADLs. The autonomous performance of ADLs
is an important factor to promote independence in everyday
activities [Fisk et al. 2018]. There is an extensive literature on
activities of daily living, produced by such disciplines as occu-
pational therapy (e.g., [Townsend and Polatajko 2007]), human
factors (e.g., [Czaja et al. 1993]), psychology (e.g., [Ormel et al.
2002]). ADLs are generally divided into two categories: basic
activities (BADLs) that are necessary for fundamental function-
ing – eating, getting dressed, looking after the appearance, etc.–
and instrumental ADLs (IADLs) that are necessary for inde-
pendent living – cleaning and maintaining the house, prepar-
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ing meals, shopping for groceries and necessities, leisure, tak-
ing medications, etc. [Lawton and Brody 1969]. The disciplines
producing the classification of activities pursue various goals,
ranging from evaluating the functional status of an individual,
to devising an occupational rehabilitation program. Our goal
is complementary in that we aim to develop a taxonomy of
home activities, which serves as a framework for caregivers
to define technology-based assistive services. The aim of this
framework is to guide the caregivers in a step-by-step process
in identifying and declaring the specificities of the user needs.
Refining this process should contribute to develop a tool that
supports service development. This opportunity is explored
in Chapter 5 in order to address the challenge presented in
Chapter 1, Section 1.3.

Impact of aging. To monitor and assess ADLs, they need to be
characterized. To do so, a number of dimensions can be used,
including the location where they take place, the time of day
at which they occur, and the environment interactions they
entail [Hong and Nugent 2013]. For example, sleeping takes
place in the bedroom, dinner occurs in the evening, etc. For
older adults, ADLs are increasingly routinized with age decline,
compensating for decreasing cognitive resources [Bergua et al.
2013]. Caroux et al. were the first to leverage this situation and
to develop a knowledge-based approach to verifying whether
activities of interest are performed [Caroux, Consel, Dupuy,
and Sauzéon 2014].

2.3 Range of Sensors

In the context of a smart home there is a large variety of sen-
sors that can be used to monitor activities in a home. Sensors
are typically split into two categories: ambient sensors, which
instrument the environment, and wearable sensors, which in-
strument the user. Ambient sensors can either be wall-mounted
(e.g., motion detection sensors) or placed on objects (e.g., con-
tact sensors placed on doors and cupboards). Wearable sen-
sors can be a bracelet detecting falls or an RFID tag tracking
the location of a user. Wearable sensors are often said to be
unsuited for older adults, who may not accept them because
of their intrusive nature. In contrast, except for webcams, am-
bient sensors can blend into the environment and sustainably
contribute to detect activities [Logan et al. 2007]. Note that be-
cause of privacy and intrusiveness concerns, activity monitor-
ing for older adults often precludes the use of cameras when
studies are conducted in their homes [Hossain 2014].
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2.4 Experimental Settings

Most available sensor data targeting activity recognition are
recorded in a controlled environment dedicated to experimen-
tal studies [Logan et al. 2007; Seelye et al. 2013]. In such set-
tings, multi-day experiments are typically conducted with stu-
dents, who live in the controlled environment for a few days,
possibly performing pre-defined tasks. If older adults are re-
cruited, they usually participate to studies which only last for a
few hours. Because such an environment is unfamiliar to them,
their performance in executing activities is unlikely to match
their performance at home, where they have developed strate-
gies to compensate for decreasing cognitive resources [Caroux,
Consel, Dupuy, and Sauzeon 2018].

2.5 Computing Support for ADLs

The research in computing support to monitor activities can
be decomposed in two topics: 1) the activity recognition tech-
niques, and 2) the detection of sensor failures, as well as user
routine deviations.

Activity recognition. Research on sensor-based activity recogni-
tion has made significant progress and is attracting growing
attention in a number of application domains, and in particu-
lar context-aware services. Approaches to activity recognition
are mainly based on machine learning or driven by user knowl-
edge [Dawadi, D. J. Cook, and Schmitter-Edgecombe 2013].

Machine-learning approaches use statistical and probabilis-
tic methods to learn activity models from datasets collected
by ambient sensors, which monitor environment interactions.
The approaches are becoming mainstream in the domain of ac-
tivity recognition. One particular advantage is that they allow
the modelling of uncertainty and the handling of temporal in-
formation. However, sensor data used for machine learning
approaches usually need to be collected at a large scale to be
statistically robust. As well, such approaches rely on an accu-
rate and labor-intensive process to label activities and evalu-
ate the performance of recognition models [Logan et al. 2007].
The cost of the labelling task and its sensitivity to changes over
time and across individuals, which occur in real homes [Logan
et al. 2007], may explain why machine-learning approaches are
primarily explored in controlled environments during short
experiments (i.e., a few weeks), as illustrated by Dawadi et
al.’s work [Dawadi, D. J. Cook, and Schmitter-Edgecombe 2013;
Dawadi, D. J. Cook, Schmitter-Edgecombe, and Parsey 2013].
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As introduced earlier, a knowledge-driven approach relies
on routine declarations of users in their home to create activity
models [Caroux, Consel, Dupuy, and Sauzeon 2018]. Specifi-
cally, daily routines are initially declared by users and their
caregivers; these declarations are then formalized into simple
formulas, which model user interactions with their environ-
ment. Formulas, generalized across users, are matched against
sensor data to determine whether daily routines have been per-
formed. Because their approach is driven by user declarations,
activities are verified and not inferred, delivering predictable
information. This approach has proven to be effective in natu-
ralistic environments (i.e., real homes), across a sizeable group
of older adults (i.e., 140 participants), and over a long period
of time (i.e., 12 months) [Consel et al. 2017] Although, activity
verification has shown promising results, developing activity
recognizers involves ad hoc and manual steps that prompt a
need for methodological and tool support. Noticeably, it has
only been applied to single-occupant homes.

Finally, knowledge-based rule and probabilistic inference
have been combined in hybrid approaches such as Computa-
tional State Space Models, and more recently Computational
Causal Behaviour Models [Yordanova et al. 2019]. On the one
hand, by virtue of the knowledge-based rules component, such
approaches may achieve more robustness to unseen cases than
a pure machine learning approach. On the other hand, due to
the probabilistic component, they achieve robustness to sensor
noise. However, the probabilistic part of the model still re-
quires training data to be used; they have to be recorded and
manually annotated.

Anomaly detection. In a real-life setting and over a long pe-
riod of time, some of the sensors installed in a home do ex-
perience failures and malfunctions, which may result in mis-
leading interpretations when activities are being monitored
(e.g., a lost sensor packet signalling a door closed). Machine
learning approaches rely on sensor data to construct activity
models. Therefore, they are sensitive to sensor failures and
malfunctions, which can negatively interfere with the training
process. There are publicly available datasets from experimen-
tal studies in ambient assisted living (Kasteren [Van Kasteren
et al. 2010], Casas [D. Cook et al. 2009], Placelab [Logan et al.
2007]). Although these datasets include labelled activities for
activity detection purposes, none of them include any labeling
of data produced by faulty sensors [ElHady and Provost 2018].
As a result, research on activity monitoring in the presence of
sensor failures and malfunctions have required researchers to
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manually inject such events a posteriori in existing datasets. Al-
though this approach is a step towards more realistic datasets,
it remains a simulation, which may not be representative of the
extended range of sensor anomalies, occurring in a real home,
over a long period of time [ElHady and Provost 2018].

To construct their activity model, knowledge-driven meth-
ods do not rely on data but only use information about the
activities. Existing systems using these types of methods do
not include anomaly detection techniques because their algo-
rithms for activity inference are designed to be directly exe-
cuted on the datasets, as reported in the literature [Hong and
Nugent 2013; Riboni et al. 2011; Sarkar et al. 2010]. Yet, it has
been shown that not only must activity monitoring detect ab-
normal sensor events, due to anomalies, and discard them, but
it must also recognize abnormal user behaviors, such as sud-
den changes in the routines of an older adult due to health is-
sues. Such situations are paramount to ambient assisted living
(AAL) and have been studied by Tran et al. [Tran et al. 2010],
who have defined four types of abnormal behaviors:

• Known behavior in a deviating spatial context (e.g., sleeping
in the living room)

• Known behavior occurring at a deviating moment in time
(e.g., leaving home at abnormal time, having dinner unusu-
ally late)

• Known behavior with an abnormal duration or occurrence
(e.g., sleeping until noon, or going to the toilet twice as many
times as before)

• Behavior resulting in abnormal/unexpected sensor firing
patterns (e.g., a fall resulting in an extended period of mute
sensors).

These types of abnormal behaviors further demonstrate the
key role of knowledge about user routines to make the distinc-
tion between sensor anomalies and abnormal behaviors.

2.6 Service Development

To develop context-aware applications, approaches either
use general programming languages (GPLs), domain-specific
languages (DSLs) or end-user programming. This section in-
vestigates the different approaches to support the development
of such applications in smart homes and examines their draw-
backs.
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Domain-specific languages

Most existing approaches to developing sensor-based, con-
text-aware services use GPLs. These languages do not pro-
vide specific support for encoding activity-detection logic in
terms of sensor firing patterns. This difficulty is exacerbated
by the need to customize the activity-detection logic with re-
spect to the older adult’s routines, home setting, and lifestyle.
For example, everyday at noon Bob gets ready to have lunch;
he opens the fridge to get one of his daily-delivered meals
and starts the microwave to warm it up. In contrast, earlier
in the morning, Alice opens the cupboards and the fridge to
take out ingredients and cook herself a meal using the stove.
As illustrated by Bob and Alice, activity detection requires (1)
to encode activity detection logic with respect to sensors and
event conditions, and (2) to take into account inter-individual
variations thereof, which requires developing many variations
of such logic for each activity. This approach often results
in making the code tedious to develop and evolve, making
it difficult for researchers to build on each other’s work via
reproducible research. This issue even concerns DSLs for com-
plex event processing (CEP), whose syntax and semantics can
quickly obfuscate the detection logic [Volanschi, Carteron, et
al. 2018]. A prerequisite to reproducibility is that data pro-
cessing algorithms be accessible to and comprehensible for
other researchers. These algorithms should be written in a ded-
icated language, which addresses the mentioned shortcomings
of DSLs and GPLs. This opportunity is explored in Chapter 4.

End-user development

Beyond programming languages and domain-specific lan-
guages, end-user development (EUD) provides users with tex-
tual/visual forms of programming, which require little, if any,
technical skills. However, even a successful end-user program-
ming language, such as Scratch [Resnick et al. 2009], has a
long learning curve for less tech-savvy users; they require user
practice and time, which represent barriers for novices [Sut-
cliffe 2005].

In recent years, the field of smart home (SH) applications
has been a major area of research in the context of the EUD.
Early work on EUD for smart homes included iCAP, CAMP
and MAPS. Dey et al. have shown through a user study that
95% of the smart services envisioned by users can be expressed
as simple if-then rules [Dey et al. 2006]. Based on this finding,
they have implemented a system called iCAP, which includes
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a user interface for writing SH-related if-then rules, mixing
icons and text. Rules are only allowed for rudimentary tem-
poral relations (e.g., sequences and durations). Another ap-
proach, pursued by Truong et al. allowed end-users to specify
smart-home services by freely combining a small set of En-
glish words, relevant to a very narrow sub-domain, namely
sound/video recording/playback applications [Truong et al.
2004]. In this approach, the services were specified using a
system called CAMP, which automatically translated them into
executable form. Truong et al. recognized that their approach
was not suitable for broader service areas. Carmien et al. de-
veloped a system named MAPS that allows caregivers to de-
fine interactive prompting services for users with cognitive dis-
abilities, using a film scripting interface [Carmien and Fischer
2008]. The services were not context aware and were limited
to prompting (e.g., no activity monitoring).

An end-user approach to customizing smart homes is trigger-
action programming (TAP), such as if-this-then-that, as pio-
neered by iCap and popularized by the website IFTTT and
a variant such as AppsGate. They are prime examples of
end-user development [Coutaz and Crowley 2016], allowing
non-programmers to easily express services, which combine a
range of sensors and actuators, at the expense of various re-
strictions. For example, conditions only refer to one event and
a single state. Although convenient for simple scenarios (e.g.,
home automation), such EUD are too limited for AAL scenar-
ios. Furthermore, as observed by Huang et al., specifying ser-
vices in IFTT is difficult because the notion of event and state
are frequently confused by users [Huang and Cakmak 2015].

As observed by Greenhalgh et al., successful assistive ser-
vice for older adults is often characterized by pragmatic cus-
tomization, often performed by their caregivers [Greenhalgh
et al. 2013]. However, customizing and developing asstive ser-
vice can be quite an impediment for caregivers because it re-
quires programming skills. Brich et al. argue that involving
end-users in the development of services requires interfaces
that need to be easy to understand and use, especially for less
tech-savvy users [Brich et al. 2017], as are caregivers. A study
of visual languages for smart spaces is reported by Reisinger
et al., where form-filling and data-flow programming are com-
pared [Reisinger et al. 2017]. Form-filling allows participants
to complete programming tasks faster and higher overall com-
pletion rate, whereas significantly more items are remembered
when participants are being presented with a data-flow visu-
alization. The authors recommend to blend both approaches
for end-user programming of untrained users. Leveraging this
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work, we are envisioning a wizard-based approach for end-
user programming of services. This approach is presented in
Chapter 5.

Chapter 2: Summary

Although promising, in the context of smart homes,
most of existing approaches to monitor ADLs are still be-
ing studied in experimental settings. Furthermore, the
computing techniques to support ADLs (e.g., machine
learning algorithms) often used in this context, face ma-
jor challenges when applied to computing systems sup-
porting individuals with cognitive decline and/or dis-
ability. Whether supervised or unsupervised, in a nat-
uralistic setting, machine learning-based systems have
to account for changes in sensors (e.g., moved, broken,
replaced) and changes in activities (e.g., new activity pat-
terns due to declining/acquired abilities). Putting these
systems to practice still requires research.
Most approaches to programming activity-detection
logic, whether using a GPL or a DSL, do not scale with
the variations of user specificities. This shortcoming
hampers the comprehensibility of the resulting code,
which, in turn, becomes an obstacle towards making re-
search on activity detection reproducible. Additionally,
further research in EUD is needed to allow non-experts in
programming to define personalized smart home services
without relying on programming.





3
A Tooled Method for Developing
Activity Recognizers

This chapter presents a disciplined and agile method dedi-
cated to producing accurate and rapidly customizable activ-
ity recognizers that cover fine-grained specificities of users.
This method is (1) knowledge-based in that it involves dec-
larations from users and their caregivers to drive the service
customization process, and (2) data centric in that it uses
real sensor logs from smart homes, untagged and in small
amount, to achieve the required level of accuracy. 1. 1 This work has been submitted: Rafik
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Contributions

• A multi-step development method that leverages user dec-
larations and generalizes over inter-individual variabilities.

• A visualization tool that enables the rapid customization of
generic activity recognizers.

• An experimental study that assesses the accuracy of our ap-
proach by matching the results of activity recognizers against
the user truth.
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3.1 Introduction

The range of variabilities in real-life settings and their un-
expected nature have been a major barrier for the applicabil-
ity of activity recognition approaches based on machine learn-
ing and activity models. This difficulty is illustrated in Chap-
ter 2. Caroux et al. introduce an alternative to inferring ac-
tivities, named activity verification 2, 3; it is inspired by Chen 2 Loïc Caroux, Charles Consel, Lucile

Dupuy, and Hélène Sauzéon [October
2014]. “Verification of Daily Activities of
Older Adults: A Simple, Non-Intrusive,
Low-Cost Approach.” In: ASSETS -
The 16th International ACM SIGACCESS
Conference on Computers and Accessibility.
Rochester, NY, United States, pp. 43–50.
3 Loıc Caroux et al. [2018]. “Towards
context-aware assistive applications for
aging in place via real-life-proof activ-
ity detection.” In: Journal of ambient in-
telligence and smart environments 10.6,pp.
445–459.

et al.’s knowledge-based approach 4 and has been successfully

4 Liming Chen et al. [June 2012]. “A
Knowledge-Driven Approach to Activ-
ity Recognition in Smart Homes.” In:
IEEE Transactions on Knowledge and Data
Engineering 24.6, pp. 961–974.

applied to a real-life setting: homes of older adults. Activ-
ity verification leverages knowledge about users to verify their
daily activities; the verification is driven by the characteristics
of the user and their daily activities. Activity verification tar-
gets older adults because these individuals are known to rou-
tinize their daily activities as they age 5. Caroux el al. use

5 Valérie Bergua et al. [2013]. “Restric-
tion in instrumental activities of daily
living in older persons: Association with
preferences for routines and psycholog-
ical vulnerability.” In: The International
Journal of Aging and Human Development
77.4, pp. 309–329.

declarations provided by older adults to model their activities.
In doing so, a user declares the characteristics of each activity
of interest. Specifically a user is asked to situate the activity in
a room (i.e., where), to identify the user-environment interac-
tions (i.e., how), and to give a time at which the activity occurs
(i.e., when). The declared user-environment interactions give a
list of markers that characterize an activity (e.g., breakfast prepa-
ration involves turning on the coffee machine, getting a mug
from a kitchen cabinet, taking a milk bottle from the fridge).
Markers are not equally reliable to detect an activity: some are
said to be primary markers because they are present every time
the activity is performed (e.g., coffee machine); whereas others
are said to be secondary markers because they may sometimes
be missing (e.g., a mug can be taken from the dishwasher, in-
stead of the usual cabinet). In practice, activity verification
requires a minimal set of sensors because markers have been
carefully selected based on the user-declared routines. Fur-
thermore, the approach only requires three kinds of sensors:
motion detectors (room presence), contact sensors (room/en-
trance and cabinet doors) and connected plugs (appliance us-
age). Their placement is driven by user declarations to target
specific user-environment interactions. Although promising,
Caroux et al.’s approach involves ad hoc and manual steps to
achieve accuracy.

We take here activity verification further by systematizing
and tooling the development of accurate activity recognizers.
Achieving accuracy is driven by a multi-step development met-
hod that leverages user declarations but generalizes over inter-
individual variabilities while allowing proper customization
with respect to user specificities. This development method
is iterative and allows to adjust the parameters of an activity
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recognizer to maximize its accuracy.
Our work makes the following key contributions. Firstly,

our method is supported by a set of tools for collecting, analyz-
ing and visualizing monitoring data. These tools ensure the ag-
ile development of generic activity recognizers and their rapid
and effective customization to achieve accuracy. Secondly, we
reveal the fact that user declarations have to be checked and
ususally adjusted with respect to the real sensor data to ensure
accurate activity recognition. Thirdly, we expand the range of
target activities, compared to Caroux et al, and generalize their
formula-based approach to cope with partially performed ac-
tivities; a set of generic and customizable activity recognizers
is presented. Finally, we validate our tool-based method by
measuring the accuracy of our set of activity recognizers in a
realistic case study on 5 users and 6 activities, namely, bed-
time routine, wakeup routine, outings, preparation of break-
fast, lunch and dinner.

3.2 Background

To develop our proposed method, we leveraged the Home-
Assist project 6, which aims to support aging in place by de- 6 Charles Consel et al. [2017]. “Home-

Assist: An assisted living platform for
aging in place based on an interdisci-
plinary approach.” In: International Con-
ference on Applied Human Factors and Er-
gonomics. Springer, pp. 129–140

veloping and deploying a smart home platform in the home
of older adults. This platform consists of sensors, which pro-
vide contextual information to a set of assistive services, and
actuators, which allow these services to take actions, if needed.
These services target three assistive domains: 1) they monitor
activities of daily living and providing assistance when neces-
sary (e.g., reminders, task prompting); 2) they alert the user
and/or caregiver when security issues are detected (e.g., en-
trance door left open); 3) they support social interactions (e.g.,
collaborative games). The HomeAssist platform was used in
a field study and deployed in over 140 homes of older adults,
aged 80 years on average, living alone, during a maximum of
24 months. This field study revealed the positive impact of
HomeAssist on participants in terms of daily autonomy, self-
regulation and empowerment 7. 7 Lucile Dupuy et al. [2017]. “Everyday

Functioning Benefits from an Assisted
Living Platform amongst Frail Older
Adults and Their Caregivers.” In: Fron-
tiers in aging neuroscience 9, p.302

For each participant, depending on their needs, specific ac-
tivities are targeted for assistance. Declaring an activity in-
cludes having the user sketch the activity of interest in their
home to determine reliable markers. Table 1 presents a typi-
cal list of sensors deployed in a home; the first column lists
the rooms fitted with sensors, whose names are defined in the
second column (Sensor ID) – these names are later used to dis-
cuss activity recognizers. The last column of Table 1 defines
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the function for each sensor deployed in a home, that is, the
meaning of the sensor measurements.

Figure 1 displays the layout of an apartment fitted with the
HomeAssist sensors, whose placements are guided by the dec-
larations of its occupant.

Room Sensor ID Function

Kitchen

EMeter_Coffeemaker Coffee maker in use
EMeter_Microwave Microwave in use
ContactS_Cupboard Cabinet door open

ContactS_Fridge Fridge door open
MotionD_K Kitchen presence

Entrance
ContactS_E Door open
MotionD_E Entrance presence

Bedroom
EMeter_L Bedside lamp in use

MotionD_B Bedroom presence

Bathroom
MotionD_Ba Bathroom presence
MotionD_S Shower/Bathtub presence

Toilet MotionD_T Toilet presence
Living room MotionD_L Living room presence

Table 1: HomeAssist sensors
and their functions.

Figure 1: Example of an
apartment layout with sen-
sors.

3.3 Development Method

This section defines our disciplined and tool-supported met-
hod for the agile development of activity recognizers. The
overall view of our approach is depicted in Figure 2. Let us
examine the key concepts and steps, forming our approach.

Step 1 of our approach (noted “1. Declaration” in Figure
2) is the declaration of routines by the seniors and/or their
caregivers (noted ‘(a)’ in Figure 2). During interviews using
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dedicated questionnaires, they declare the steps used to per-
form their daily routines (e.g., “When I wake up, I come out of
the bedroom and shortly afterwards I go to the kitchen”) and
they provide estimated values for these steps (e.g., bedtime,
wakeup time, transition time between bedroom and kitchen
in the morning). These values serve as parameters for service
customization (noted ‘(b)’ in Figure 2).

1	

Logs	

App	

2.	Data	
collection	

3.	Generic	
service	
development	

4.	Service	
customization	

Spec	
+	

Params	

Specification	
prototyping	 Visualisation	

Exec.	spec.	

Statistics	

Smart	
Home	

parms	
parms	
parms	Parms	
values	

…	

1.	Declaration	

Adjustment	

(a)	

(b)	

Statistic	
values	

Declared	
values	

(c)	

(d)	

Figure 2: Overview of the de-
velopment method.

Step 2 of our approach is the deployment of sensors in the
home of a senior, and the collection of the logs during a setup
period. Only the sensors required to verify the routines de-
clared at Step 1 are installed. In our method, the logs gathered
during the setup period are used as a base line to build and
tune the target activity recognizers.

Next, Step 3 consists of iteratively developing a service to
recognize a target activity. The service needs to be generic
enough, not only to cover all the declared variations of user
routines, but also to cope with diverse home configurations.
Indeed, homes may range from small apartments to houses
with several floors. The agility of this development step hinges
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on a rapid prototyping cycle. However, from our experience
developing a range of assistive services, a prototyping cycle
for simple activity recognizers takes in the order of 2 person-
weeks, assuming a general-purpose programming language
is used, such as Java, as well as state-of-the-art development
tools. Additional time is also needed to deploy and test activ-
ity recognizers in the homes of older adults. The duration of
this process does not meet our requirement of rapid iterative
prototyping of generic services.

To resolve this issue, we chose to raise the level of abstrac-
tion at which activity recognizers are developed by using a
scripting language. Furthermore, we decided to prototype ac-
tivity recognizers by running them against recorded logs, in-
stead of deploying them. In practice, our strategy is particu-
larly well-suited for developing and testing the kind of applica-
tive logic needed to detect daily activities declared by users.
Indeed, daily activities consist of events (e.g., motion detected,
door closed) with ordering constraints and time delays that
can naturally be expressed as timed automata, which are to be
matched against event logs. As such, developing activity rec-
ognizers requires a programming language with limited but
specialized expressive power. To ease the prototyping process,
event logs are kept in a simple textual format (JSON format,
with one sensor event per line), ensuring good readability for
easy manual inspection, understanding, and debugging. Con-
sidering the textual nature of the data to be processed, we
chose Perl as the scripting language to benefit from its rich
set of text processing operations.

Assessment of our new strategy revealed that the Perl-scri-
pted, executable specifications of activity recognizers incurred
a development cycle of less than 1 person-day. As such, it is
short enough to be considered an agile iterative development.

As a specification gets tested against an increasing number
of logs, coming from different homes, its generality typically
grows by introducing new parameters; e.g., delays between
user actions or the name of the room where the user sleeps at
night. Once the Perl-scripted specification covers all the config-
urations, it is implemented as a generic service over the sensor
infrastructure, using appropriate technology. In our case, we
use the Java programming language and the HomeAssist plat-
form 8. 8 Benjamin Bertran et al. [January 2014].

“DiaSuite: A tool suite to develop
Sense/Compute/Control applications.”
en. In: Science of Computer Programming
79, pp.39–51.

Finally, Step 4 is the generic service customization for each
configuration. In principle, parameter values can simply be
extracted from user declarations. However, as we show in Sec-
tion 3.5, values provided by users are only estimates, and can
rarely be used as final customization values. Thus, it is neces-
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sary to check these values against real logs, and perform the
necessary adjustments. Considering the potentially large num-
ber of user/home configurations for a given service (over 100

homes in the HomeAssist project), it is critical to use an ef-
ficient process to find the right parameter adjustments. This
is why we developed a visualization tool for assisting this in-
stantiation step. More specifically, this tool performs statistic
analyses on the logs and displays the results in a visual form
as histograms to facilitate the manual validation or adjustment
of parameter values for the generic services. The histograms
allow one to understand the typical values for a given home-
/user configuration. For example, the time slots and the ap-
propriate appliances for detecting a lunch activity in a specific
user-home configuration can be found using histograms of ap-
pliance usage from log data. Also, the correct threshold for the
delay between the wakeup time of a user and the start of their
morning routine can be easily observed using an appropriate
histogram.

Whenever a set of values is chosen for the parameters of an
activity detector during Step 4, the visualization tool allows to
execute that specification of the detector on any smart home
log, and to display the results as a list of detected activities for
each day. This allows to instantly see the effect of changing a
parameter value and relate this value with the one declared by
the user.

Thus, our visualization tool enables rapid customization de-
cisions based on automated statistic analyses and dedicated
display functionalities.

3.4 Case Study

We now present the case study used to validate our ap-
proach. Specifically, we applied our tooled method to the de-
velopment of 6 generic activity recognizers, which were then
customized with respect to 5 older adults, and deployed in
their homes during 5 days. Once deployed, the results pro-
duced by these activity recognizers were checked daily against
activities self-reported by our participants. Let us describe
each step of our study.

Declaration and data collection

The declarations of activities of interest were gathered at
the installation time of the platform in each home. In do-
ing so, sensor logs started to be accumulated and provided
a basis to assess the accuracy of user declarations. Activities
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were declared using questionnaires dedicated to extract key in-
puts for the sensor-based verification process. For instance, for
the preparation of each meal during the day, the older adult
and/or caregiver were asked to provide the approximate time
period of this activity and the appliances used to perform the
task.

Generic service development

Developing generic services is driven by initial declarations
of older adults and their caregivers describing the steps in-
volved in performing the activities of interest. Analyzing the
inter-individual variations is essential to determine where gene-
ricity (i.e., parameters) is needed to abstract over these varia-
tions. As illustrated with the activity recognizers presented
below, the parameters often need to be adjusted when applied
to real homes and users. Note that we only discuss parameters
that are not self-explanatory.

Each activity recognizer is briefly described. Its behavior is
then formalized in the form of an automaton. Finally, the list
of its parameters are presented, as well as its evolution to cap-
ture unanticipated variations.

Meal preparation. In pursuit of genericity, we set out to develop
one service that could cover all three meals (breakfast, lunch
and dinner), as opposed to one service for each meal.

Initial	state	

Monitoring	meal	

Secondary	marker	Primary	marker	

…	Start	of	meal	slot?	 End	of	meal	slot?	
=>	publish(0)	

Primary	marker?	 Secondary	marker?	

Secondary	marker?	
=>	publish(1)	

Primary	marker?	
=>	publish(1)	

End	of	meal	slot?	
=>	publish(0.2)	

End	of	meal	slot?	
=>	publish(0.8)	

Figure 3: Automaton for rec-
ognizing the different meal
routines.

Logic: The logic of this service is implemented by the au-
tomaton in Figure 3. The automaton starts in the initial state
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and begins monitoring a meal when the corresponding time
slot starts (transition to the “monitoring meal” state). While
in this state, the service waits for the markers associated to
the meal to be detected. If the primary marker is detected
first, another state is reached where the secondary marker is
waited for, and vice versa. If both are detected, in any or-
der, the automaton publishes a value of 1, meaning that the
meal has been definitely recognized, and resets itself. If, how-
ever, the end of the meal slot happened before the sequence
is complete, the automaton resets itself without waiting fur-
ther markers. Depending on the markers already seen (which
are encoded in the current state), the published value may be 0

(meaning that no meal has been recognized), 0.2 (meaning that
only the secondary marker has been activated), or 0.8 (mean-
ing that only the primary marker has been activated).

Initial parameters: meal name, time slot, primary marker,
secondary marker.

Added parameters: several primary markers, several sec-
ondary markers. In a second iteration of our method, the pa-
rameters for the markers had to be extended from a single sen-
sor to a list of sensors. This is because, for some participants,
there are variants of meal preparation that need to be covered
by a set of primary (or secondary) markers, from which any
appliance is considered part of the activity. For instance, a par-
ticipant may prepare breakfast using either the coffeemaker,
the microwave, or the fridge as a primary, while the cupboard
door is always the secondary marker when detected open.

Wakeup routine. The wakeup routine detects a user starting
their day. The challenge is to exclude situations where the user
wakes up during the night to visit the toilet or to drink in the
kitchen and later goes back to bed. The two key elements to
consider are the time period at which the user normally wakes
up and how much time it takes them to go to the kitchen to
start their day.

Logic: The logic of this service is implemented by the timed
automaton in Figure 4. Indeed, with respect to the previous
service recognizing meals, the present service has to check
some timing constraints. A timed automaton is adequate for
this purpose, as it contains clock variables that may be reset
by transition actions and may be read by the transition condi-
tions. The automaton transitions from the initial state to a mon-
itoring state when the wakeup time slot starts. Subsequently,
when user motion is detected in the bedroom, the ‘delay’ clock
variable is reset and a transition is taken towards state “In bed-
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Initial	state	

Monitoring	
wakeup	

In	bedroom	 Timed	out	

Start	of	wakeup	slot?	

End	of	wakeup	slot?	
=>	publish(0)	

MotionEntrance	
or	MotionBath?	
=>	publish(0.8)	

MotionBedroom?	
=>	delay	=	0	

delay>10?	

MotionBedroom?	
=>	delay	=	0	

MotionKitchen?	
=>	publish(1)	

MotionBedroom?	
=>	delay	=	0	

Figure 4: Timed automaton
for recognizing the wakeup
routine.

room”. Any further motion in the bedroom resets this clock.
Upon a motion in the kitchen, a value of 1 is published, which
corresponds to a full recognition of the wakeup routine. Alter-
natively, if the clock reaches 10 minutes, the “timed out” state
is reached. While in this timeout state, a value of 0.8 may be
published (meaning that the routine has been partially recog-
nized) if motion is detected in a different room, excluding the
kitchen. Alternatively, a new motion in the bedroom triggers
a transition back to the previous state “In bedroom”. How-
ever, if the end of the wakeup time slot is reached, no matter
the current state, the automaton resets itself and publishes a
value of 0 (meaning that the wakeup routine was not detected
at all). This is expressed by the transition originating in the
compound state regrouping all the previous three states.

Initial parameters: time slot, delay from bedroom to kitchen.
Added parameters: room where the user usually sleeps (de-

fault: bedroom), room where activity occurs in the morning
(default: kitchen). Indeed, a second iteration of our method
consisted in allowing to parameterize the rooms for the wakeup
routine, as they are not always the bedroom and the kitchen.
For instance, after wakeup, a participant may start their day
by visiting the bathroom to shower, rather than the kitchen to
prepare breakfast.

Bedtime routine. This routine targets the actions performed by
a user before going to bed at a specific time period. The typ-
ical pattern we considered is a visit to the bathroom shortly
followed by an extended stay in the bedroom.

Logic: The logic of this service is implemented by the timed
automaton in Figure 5. Starting in the initial state, a transition
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Initial	state	

Monitoring	gotobed	

In	Bathroom	In	Bedroom	

Start	slot	of	gotobed?	

MotionBathroom?	
=>	tBath	=	0	

MotionBedroom?	
=>	tSleep	=	0	

MotionEntrance		
or	MotionLiving		
or	MotionToilets	
or	MotionKitchen?	

MotionBathroom?	
=>	tBath	=	0	

tBath	>	10	?	

MotionBedroom?	
=>	publish(1)	

End	slot	of	gotobed?	
=>	publish(0)	

tSleep	>	20	?	
=>	publish(0.8)	

MotionBathroom?	
=>	tBath	=	0	

Figure 5: Timed automaton
for recognizing the bedtime
routine.

to a monitoring state is taken upon the start of the indicated
time slot. Here, a motion in the bathroom or in the bedroom
causes a transition to one of two states: “In bathroom”’ and
“In bedroom”, respectively. A corresponding clock variable,
tSleep or tBath, is also reset. While in the bathroom, any mo-
tion in the bedroom within 10 minutes (for instance) causes
a full recognition of the routine (by publishing a value of 1).
While in the bedroom, any motion in the bathroom transitions
to the previous state “In bathroom”; any motion elsewhere
causes a transition back to the monitoring state. Alternatively,
if no movement is sensed anywhere else for 20 minutes (for
instance), the routine is partially recognized (by publishing a
value of 0.8). However, if the end of the given time slot is
reached, whatever the current state, the automaton resets itself
without recognizing the routine at all (by publishing a value
of 0).

Initial parameters: time slot, delay from bathroom to bed-
room.

Added parameters: room where activity occurs last (default:
bathroom), room where the user usually sleeps (default: bed-
room). Indeed, in a second iteration of our method, the rooms
involved in the bedtime routine were parameterized because
they are not always the bathroom and the bedroom. For in-
stance, a participant may visit the toilets, rather than the bath-
room, shortly before going to bed.
Regular outings. This service detects when the user departs

from home to conduct some activity outside. The key insight
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to detect an outing is to monitor the entrance door and motion
within the home.

Initial	state	

Closed	door	

Outdoor	

CloseDoor?	
=>	delay	=	0	

delay	>	T	
=>	publish(1)	

MotionX	
or	OpenDoor?	

OpenDoor?	

MotionX?	
=>	publish(Error)	

Initial	state	

Closed	door	

Timed	out	

CloseDoor?	
=>	delay	=	0	

delay	>	T	

MotionX	
or	OpenDoor?	

OpenDoor?	
=>	publish(1)	

MotionX?	

(a)	 (b)	

Figure 6: Timed automaton
for recognizing outings: (a)
in real time; (b) a posteriori.

Initial logic: The initial logic of the service was implemented
by the timed automaton in Figure 6 (a). This automaton rec-
ognizes an outing soon after a closed door, if the door is not
opened and no motion in the home has been sensed during
a certain delay T. For that, it uses the clock variable ‘delay’.
When the clock reaches T, the automaton signals the outing
and goes to the ‘Outdoor’ state. In this state, the only legal
transition is when the door is opened, which signals the end
of the outing. Sensing any motion within the house in this
state, before opening the door, means that the person was re-
ally inside the house, so the signalled outing was in fact a false
positive. Therefore, an error is published to signal the mistake.
We initially thought that choosing a suitable value for the de-
lay T should cover all possible configurations. But in fact, this
specification never worked reliably in all the homes with any
reasonable delay: the service sometimes raised errors. This is
because the motion detectors of many homes do not exhaus-
tively cover the space. Thus, it is possible for the user to close
the door from the inside, and stay undetected inside the home
for an arbitrary long time.

Final logic: In a later iteration of our method, after having
tried different designs, we aimed to detect outings in an a pos-
teriori way. Specifically, an outing is signalled when no motion
has been sensed within the home since the entrance door was
closed and until it is opened again. This logic is implemented
by the automaton in Figure 6 (b). Note that, in this version,
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the value of 1 (signalling the outing) is not published until
the entrance door is opened again. The delay T in this case
only serves to signal outings lasting more than T. This param-
eter can be set to any value (e.g., filtering out short outings
for checking the mailbox or emptying the thrash) without in-
curring any risk of creating false positives. Although accurate
in practice, this approach comes at a price: outings are never
detected in real time, but only when the user returns home.

Parameters: minimum duration of the outings (value of T).

Service customization

Once developed, the generic services can be customized,
leveraging our visualization tool. We illustrate the customiza-
tion steps on one user/home configuration for all the above 6

services.
In a first phase, the visualization tool is used to produce

histograms of the various sensors events in a log, distributed
across a 24-hour period. These histograms provide a graphical
summary of events gathered during the whole setup period,
spread across a single day representation. Figure 7 displays
three such histograms, one for each category of sensors de-
ployed in a home: contact sensors, electric meters, and motion
detectors. In each histogram, time is placed in the X-axis, con-
taining 24 labels representing a day (of 1 hour length in the
figure, but other granularities can be chosen), and, in the Y-
axis, the number of events is placed, computed from the log
for each sensor within a given hour. In our case study, the
logs cover a setup period of two weeks. Note that using logs
of several weeks provides confidence in the activity patterns
revealed by our visualization tool.

From these histograms, one can observe that the peaks in the
opening of the fridge and the cupboard occur around the time
meals are being prepared. Consequently, these events can be
used either as primary or secondary markers for preparation
activities of the three meals of the day. In contrast, the toaster
was only used twice during the two-week period at breakfast
time; the microwave was only used once, in the afternoon.
From these occurrences, one can conclude that the toaster is
used rather rarely and, if used as a marker for breakfast prepa-
ration, it needs to be combined with some other marker to be
reliable.

At this point, we have identified initial candidates for pri-
mary and secondary markers of our service recognizers. Fur-
thermore, initial candidates for the time periods of activities
can be extracted from user declarations. These candidate con-
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figuration parameters allow to make an assessment of the ac-
curacy of the service recognizers, by executing the scripted
service recognizers on the log. Table 2 shows, for each of our
service recognizers, the initial and adjusted/final customiza-
tion settings. Each customization is assessed and its success
rate in recognizing the target activity is reported in the last
column of the table.

Activity Iteration Slot Parameters Success
Begin End Primary Secondary (%)

Breakfast Initial config 08:30 09:00 Toaster, Fridge Cupboard 48

Final config 07:00 09:00 Toaster, Fridge Cupboard 90

Lunch Initial config 12:00 13:00 Fridge, Mwave Cupboard 71

Final config 11:00 13:00 Fridge, Mwave Cupboard 81

Dinner Initial config 19:30 20:00 Fridge, Mwave Cupboard 57

Final config 18:30 21:00 Fridge, Mwave Cupboard 86

Active room Delay (min)
Wakeup Initial config 06:00 07:00 Kitchen 10 10

Final config 06:00 08:30 Shower 60 80

Gotobed Initial config 22:30 23:00 Shower 10 50

Final config 22:00 23:30 Shower 10 85

Table 2: Examples of service
customization for one home-
/user configuration.

Let us examine Table 2 for a specific service recognizer: break-
fast preparation. The participant declared preparing this meal
between 8:30 and 9:00, by opening the fridge, using the toaster,
and usually also opening the cupboard. Before even running
the service recognizer, observing Figure 7, for the related event
sensors and the declared period, reveals that this period is too
restrictive. Indeed it does not include the peak of the fridge
uses in the morning, nor the two uses of the toaster. Let us
inspect the initial configuration of the breakfast preparation
service, parameterized with the user declared parameters (see
the top entry of Table 2): time slot = 8:30-9:00; primary markers
= Toaster and Fridge; secondary markers = Cupboard.

For such a configuration, the service recognizer only detects
breakfast preparation in 48% of days within the two-week pe-
riod. This situation illustrates the typical discrepancy between
user declarations and measured activities: the user informa-
tion is correct overall but often inaccurate. By adjusting the
time period of breakfast preparation to better reflect the mea-
sured activities (i.e., setting the time interval to 07:00-09:00),
breakfast preparation is recognized in 90% of cases for this
period.

Similar adjustments were done to parameter values of other
activity recognizers. The adjusted values of these are displayed
in italics in Table 2. As can be seen, the time slots of all the rec-
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Figure 7: Histograms of sen-
sors spread over a 24-hour
period in a home: con-
tact sensors (top), appliance
uses (middle), motion sen-
sors (bottom).

ognizers had to be adjusted for this user/home configuration.
Moreover, some additional parameters had to be changed

for the recognizer of the wakeup activity. Indeed, using user
declarations for this routine, the detection rate was only 10%.
Our participant declared to wake up between 06:00-07:00 and
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to go to the kitchen within 10 minutes after that (second-to-last
activity in Figure 2). By studying the histograms of the motion
detectors (bottom part of Figure 7), we observe that motion in
the bedroom (first bar of each group) is rarely followed, within
less than 1 hour, by motion in the kitchen (4th bar of each
group). Instead, motion in the shower (3rd bar of each group)
within the following hour appears to be much more correlated
to the presence in the bedroom. To account for this situation,
the value of the first room, where activity occurs after waking
up, was changed from kitchen to shower. Re-executing the
service, with this room value and an increased delay of 1 hour,
confirms this fact because the detection rate of the wakeup
routine raises from 10% to 80%.

Testing in silent mode

We implemented the automata corresponding to the final
specifications of each activity recognizer using Java, combined
with the DiaSuite, a middleware underneath HomeAssist and
dedicated to develop pervasive computing applications 9. We 9 Benjamin Bertran et al. [January 2014].

“DiaSuite: A tool suite to develop
Sense/Compute/Control applications.”
en. In: Science of Computer Programming
79, pp. 39–51.

then customized these services with respect to 5 different users
and their home using the visualization tool, as described pre-
viously. Then, we deployed the services in those homes for
two weeks in ‘silent mode’; that is, they ran on the real sensor
infrastructure, detected their target activity, but no action was
performed in response to detection or absence of the target ac-
tivity (e.g., no notification issued if activity is missed). This
mode only logs the detected activities.

At the end of the silent-mode period, to further ensure the
reliability of the Java implementation of the service recogniz-
ers, we tested whether they behaved the same as their Perl-
scripted counterparts. To do so, we checked that they detected
the same activities on the collected logs.

3.5 Validation

Despite our test process, activity recognizers still need to be
validated by their respective user to determine whether they
agree on the reported activities. Filming the user around the
clock in their home would be an effective approach to estab-
lishing ground truth for our services. However, the vast ma-
jority of participants rejected the option of including cameras
in the set of sensors to be deployed in their home. As an al-
ternative, the user could decide whether they agree with the
detected activities; with no cameras, this approach seems to be
the ultimate measure of the accuracy of our activity recogniz-
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ers, and more generally, of the services produced by our tooled
method.

To achieve this user validation, we activated our services in
the home of 5 users, who agreed to evaluate them during 5

days. This evaluation took the form of a questionnaire sub-
mitted daily to our 5 participants. More specifically, a ques-
tionnaire was sent every morning by e-mail to each user; it
consisted of the list of activities detected the day before. The
user was asked whether they approved or disproved each item
of the list.

The questionnaire data collected from our 5 participants are
displayed in Table 3. Note that, because Participant B was
bedridden during our study, the services to detect wakeup and
outing were not installed. Note also that a technical difficulty
prevented us from installing the outing detector in the home
of Participant D 10. Table 3 lists, for each day, participant, and 10 We chose not to visit the participant

to fix the sensor during the test week in
order to avoid any bias with respect to
the other participants.

activity, the score between 0 and 1 produced by the activity rec-
ognizer, and the corresponding user report (Yes or No). Recall
that scores of 0 or 0.2 indicate a non-detected activity, while
scores of 0.8 or 1 indicate a detected activity. The greyed cells
in the table correspond to cases where the user did not agree
with the activity detector.

Service User Service User Service User Service User Service User
Wake	up 100 Yes 100 Yes 100 Yes 100 Yes 100 Yes
Breakfast 80 Yes 80 Yes 80 Yes 80 Yes 100 Yes
Lunch 0 No 100 Yes 100 Yes 100 Yes 100 Yes
Dinner 100 Yes 100 Yes 100 Yes 100 Yes 100 Yes

Go	to	bed 0 Yes 100 Yes 80 Yes 100 Yes 100 Yes
Exit 1 1 0 0 1 1 0 0 0 0

Wake	up
Breakfast 100 Yes 20 Yes 100 Yes 80 Yes 80 Yes
Lunch 100 Yes 100 Yes 100 Yes 100 Yes 100 Yes
Dinner 100 Yes 100 Yes 100 Yes 100 Yes 100 Yes

Go	to	bed 80 Yes 80 Yes 100 No 100 Yes 100 Yes
Exit

Wake	up 100 No 100 No 100 No 100 Yes 100 No
Breakfast 100 No 100 Yes 100 Yes 100 Yes 100 Yes
Lunch 100 Yes 20 Yes 0 Yes 0 Yes 20 Yes
Dinner 0 Yes 0 No 20 No 20 Yes 20 No

Go	to	bed 100 Yes 100 Yes 100 Yes 100 Yes 0 Yes
Exit 3 2~3 3 2~3 1 2~3 1 1 3 1

Wake	up 80 Yes 0 Yes 80 Yes 80 Yes 0 No
Breakfast 100 Yes 100 Yes 100 Yes 100 Yes 100 No
Lunch 100 Yes 100 Yes 100 Yes 100 Yes 100 Yes
Dinner 20 Yes 0 Yes 100 Yes 100 Yes 100 Yes

Go	to	bed 80 Yes 80 Yes 0 Yes 0 Yes 80 Yes
Exit

Wake	up 100 Yes 100 Yes 100 Yes 100 Yes 100 Yes
Breakfast 100 Yes 100 No 100 Yes 100 Yes 100 Yes
Lunch 100 Yes 100 No 0 Yes 100 Yes 100 Yes
Dinner 100 Yes 100 Yes 0 Yes 100 Yes 80 Yes

Go	to	bed 80 Yes 80 Yes 100 Yes 80 Yes 80 Yes
Exit 0 0 0 0 1 1 0 0 1 1

Day1 Day2 Day3 Day4 Day5
Activity

Table 3: Comparison of activ-
ities detected by the services
vs. reported by the users.

An overall view of the validity of our activity detectors is
shown in Figure 8. The detailed counts of valid and invalid
reports for each detector are given in Table 4.
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72%	

8%	

13%	

7%	

Performed	
Not	performed	
False	nega8ve	
False	posi8ve	

Figure 8: Overall validity of
the detected activities.

Detector OK KO %
Wakeup 14 6 70

Breakfast 21 4 84

Lunch 19 6 76

Dinner 20 5 80

Gotobed 20 5 80

Exit 13 2 87

Table 4: Detailed validity re-
sults for each activity detec-
tor.

3.6 Discussion

As shown by Figure 8, 80% of the activity detector outputs
are confirmed by the users reports: 72% of activities performed
and detected and 8% of non-performed and non-detected ac-
tivities. The reminding 20% correspond to wrong results pro-
duced by the activity detectors, assuming that the user re-
sponses are the ground truth. In particular, in 13% of cases,
the activity was performed but slipped undetected, which can
be considered a false negative, while in 7% of cases, the activ-
ity was not performed but was wrongly detected, which can
be considered a false positive. Although some proportion of
technical errors cannot be excluded (i.e., missed events from
sensors, or spurious sensor activations), we hypothesize that
false negatives essentially correspond to activities that were
performed by deviating from the declared routine, and that
false positives were due to other activity in the home that ac-
cidentally triggered the same event patterns. This hypothesis
may easily explain why false negatives are encountered sig-
nificantly more often (twice as often, in our case) than false
positives.

The more detailed figures in Table 4 show that some activ-
ity recognizers perform better than others. The least accurate
recognizers are those for the wakeup and lunch activities. By
diving into the details in Table 3 for these detectors, other in-
teresting patterns are revealed. Namely, the wrong results pro-
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duced by these two detectors are specific, with very few ex-
ceptions, to Participant C (a single exception for the wakeup
detector, and only two exceptions for the lunch detector). This
tends to indicate that these detectors are less effective for this
user. Moreover, all the detectors seem to be less effective on
this user/home configuration, because Participant C gathers
most detection errors: 14 errors. This is more than the total of
13 errors on all the other participants; these errors correspond
to an overall accuracy of 53% for Participant C vs. an average
of 88% for the other four participants. This lack of effectiveness
for Participant C could be attributed to different factors, such
as more routine variations, less structured time periods for ac-
tivities, or technical issues with the infrastructure of this home.
No matter the reason, for this case, this uneven error distribu-
tion between 80% of the users and the remaining 20% could
indicate that our activity recognizers (that is, based on decla-
rations and developed using our method) are highly adequate
for most user/home configurations, and much less adequate
for the remaining ones. A study on a larger sample would be
needed to confirm or infirm this hypothesis.

In any case, achieving 100% accuracy in the domain of ac-
tivity detection seems out of reach considering the contingen-
cies that need to be taken into account when monitoring real
users in real homes, even when users are routinized with age
decline. Consequently, obtaining an overall accuracy of 80%
should provide older adults and their caregivers valuable in-
formation to support independent living.
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Chapter 2: Summary

We have presented a tooled method to develop accurate
activity recognizers, which support aging in place. User
declarations of daily activities are refined with sensor
logs, visualized with a dedicated tool. Perl is used to
rapidly script activity recognizers, which are executed
over sensors logs. Then, Perl-scripted activity recogniz-
ers are implemented in Java and deployed in the homes
of older adults.
We conducted a case study to put our method to prac-
tice. We scripted 6 activity recognizers, which, once re-
fined, were implemented in Java. These services were
deployed in the home of 5 older adults in silent mode
(i.e., without user notifications) at first to check their
consistency with respect to their Perl counterparts. To
assess the accuracy of these activity recognizers, their
outputs were compared to the activities self-reported by
our participants over a period of 5 days. This experi-
ment shows that 80% of the outputs of our activity de-
tectors were confirmed by the user reports. The accuracy
of our approach goes up to 88% when considering the
four, more routinized participants.



4
Long-Term Activity Monitoring

This chapter introduces a tool-based methodology that ad-
dresses the long-term monitoring challenges discussed in Chap-
ter 1, Section 1.3. To pursue reproducibility and shorten the de-
velopment cycle, this approach goes beyond mainstream pro-
gramming languages used to monitor the activities in Chap-
ter 3. In particular, this method uses a domain-specific lan-
guage (DSL) to define concise, high-level monitoring rules.
This language (1) allows an even more agile development
than the tools used in the previous chapter 3 and (2) makes
the monitoring algorithms comprehensible and accessible to
other researchers 1. 1 This work has been published: Rafik

Belloum et al. [2020]. “A Tool-Based
Methodology For Long-Term Activity
Monitoring.” In: PETRA’20-Pervasive
Technologies Related to Assistive Environ-
ments.
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Contributions

• An iterative process for developing concise, high-level mon-
itoring rules that analyze sizeable sensor data to detect sen-
sor failures or ADLs.

• A visualization tool to support the refinement of analysis
rules during the iterative process and also to allow care-
givers to monitor older adults longitudinally.

• An experimental study that uses Signal Detection Theory to
validate the accuracy of monitoring rules.
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4.1 Introduction

During the past few decades, steady progress has been made
in developing sensor-based approaches, capable of recognizing
a range of activities. However, monitoring activities in a real
home and over a long period of time often defeats conceptual
models developed in a controlled environment, as shown in
Chapter 2. A methodology claiming to support the develop-
ment of monitoring systems should be applied to a realistic
case study and evaluated with respect to 1) its ability to over-
come sensor failures, 2) its support to aid the researchers cover
unexpected user-activity patterns, and 3) its effectiveness in
making sizeable sensor data actionable.

Our approach

We introduce a tool-based methodology that covers the key
aspects of an activity monitoring system.

An iterative process to define the analysis of sensor data. To compen-
sate for sensor failures and reliably detect activities, we present
an iterative process that supports a stepwise refinement of the
analysis of the sensor data. It consists of applying analysis
rules to realistic sensor data and checking their output against
typical user-activity patterns. To support this process, a visu-
alization tool is used by the rule developer to ensure that the
detected activities have an overall consistency. In practice, this
process allows to gradually introduce knowledge about user-
activity patterns in the analysis rules. Note that the visualiza-
tion tool is also used by caregivers to monitor the activities of
older adults longitudinally.

Using a dedicated language. To pursue reproducibility and al-
low analysis rules to evolve during the iterative process, our
approach revolves around Allen, a domain-specific language
dedicated to defining rules that analyze sensor data 2. Specifi- 2 Nic Volanschi, Bernard Serpette, et al.

[December 2018]. “A Language for On-
line State Processing of Binary Sensors,
Applied to Ambient Assisted Living.”
en. In: Proceedings of the ACM on In-
teractive, Mobile, Wearable and Ubiquitous
Technologies 2.4, pp. 1–26.

cally, we use this DSL to write rules that detect sensor failures
and activities of daily living. Because of the dedicated nature
of this DSL, analysis rules are concise and high-level, facili-
tating their evolution and they can be developed in a more
agile manner than using a GPL or even a scripting language.
As a byproduct, the use of this DSL makes the rules more
comprehensible to other researchers, contributing to research
reproducibility.

Putting the methodology into practice. We have applied our tool-
based approach to realistic, sensor data from real homes of
five older adults, collected over several months. These rules to
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detect sensor failures and specific activities have been refined
using our iterative process. The results have been validated,
using signal detection theory, by comparing the results of our
rules with a human observer. Our rules produced the same
interpretation as the human judge, who manually analyzed
the datasets.

4.2 Methodology

In this section, we present our tool-based approach, which
(1) processes longitudinal sensor data with respect to monitor-
ing rules, aimed to detect activities and sensor failures, and
(2) provides a tool capable of visualizing activities over a long
period of time for screening purposes.

Let us first examine the steps required to define monitor-
ing rules, according to the different dimensions of the activity
monitoring system: activity detection and sensor failure detec-
tion.

Note that our methodology is illustrated by sensor datasets
from the HomeAssist project presented in Chapter 3, Section 3.2.
The sensors used for our examples in this chapter are pre-
sented in Table 1 of Chapter 3.

Defining monitoring rules

Defining monitoring rules is an iterative process, which con-
sists of four steps. Firstly, the developer writes a rule in a
dedicated language (see below) to detect an activity or sensor
failures by processing binary sensor data. As illustrated in
Table 5, each rule produces a label, denoting an activity or sen-
sor failures, for a given period during which a situation has
been detected. Note that the detected situations may overlap
in time, as illustrated by the last two lines of Table 5, labelled
‘bed_failure’ and ‘door_failure’. Thus, each rule is executed
independently by processing its input sensors.

After writing the first version of the rule, the developer car-
ries out a feasibility study. Specifically, the rule undergoes
preliminary testing by applying it to several sets of real sen-
sor data and matching a sample of its results against a man-
ual analysis of the corresponding sensor data. In doing so,
this phase determines whether the detection of a situation of
interest can be formulated in a rule, which combines one or
more sensors at strategic locations; and, whether a rule has
the potential of producing reliable information. If this feasibil-
ity study is successful, then an iterative process to refine the
rule is initiated; it identifies the patterns of sensor data that can
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lead to erroneous labels, and refines the rule to cover the var-
ious homes and user specificities. The completeness of these
patterns depends on the rigor used to conduct the iterative
process and the representativeness of the data. As a final step,
the accuracy of a rule is evaluated against a human observer,
to ensure that it produces the same interpretation as a human
observer.

Start date End date Label
2017-08-01 08:09:02 2017-08-01 08:50:37 outing
2017-10-20 04:56:34 2017-10-20 05:00:20 toilet
2017-11-09 21:15:31 2017-11-13 14:21:22 toilet_failure
2017-12-27 21:00:00 2017-12-28 06:32:48 sleep_quiet
2018-02-07 14:18:25 2018-02-10 02:59:27 platform_failure
2018-08-01 15:05:56 2018-08-06 08:42:20 bed_failure
2018-08-03 13:56:45 2018-08-12 20:03:51 door_failure

Table 5: Output of monitor-
ing rules detecting activities
and sensor failures

Let us now illustrate the first three steps of our approach by
defining a rule that detects visits to the toilets. The fourth step
is examined in Section 4.4, where a set of rules is evaluated
using Signal Detection Theory and a human observer.

Writing a rule. Our goal is to define a rule that detects the
toilet activity by measuring the user’s presence via a motion
detector, placed inside the toilet. Recall that, because we lever-
age the HomeAssist project, we only consider single-occupant
dwellings. In its simplest form, the rule for detecting toilet
visits can be written in Allen as follows.

1toilet:

2 "MotionD_T"

The rule is named toilet, is introduced with a colon (’:’),
and produces Label “toilet” whenever the condition of the rule
is true; that is, when a motion is detected in the toilet via the
motion sensor named MotionD_T.

Feasibility study. Once a first version of a rule is defined, the
developer needs to apply it to sensor data across several par-
ticipants and manually analyze the results to gather and gen-
eralize special cases that may have occurred. In our example, a
typical situation that needs to be handled is the loss of the sen-
sor event indicating that the user left the toilet. Loss of sensor
data must be addressed when measurements are performed in
a natural setting; it is typically caused by a low battery condi-
tion, temporary loss of radio transmission (or radio reception
on the sensor gateway side), and packet collisions. In our ex-
ample, if not properly handled, the loss of this information
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means that the visit to the toilet is endless. Another situation
observed on ecological sensor data is the occurrence of many,
very short toilet visits; that is, visits separated by less than a
minute. This situation is caused by a user who is motionless
during enough time so as to cause the sensor to indicate that
the room is unoccupied, until a new motion is detected shortly
afterwards.

These two situations have the potential to cause the first ver-
sion of our rule to produce erroneous information. However,
they do not compromise the feasibility of our rule to detect
toilet visits because they can be compensated by introducing
simple conditions. This refinement is conducted next.

Iterative refinement. The loss of the sensor event indicating the
exit from the toilet can be addressed by setting an upper limit
on the duration of a toilet visit. This limit allows our rule to
compensate for sensor faults and transmission losses and to re-
set its state so as to detect future toilet visits. Specifically, a toi-
let occupancy is considered valid, if it does not last more than
(Operator ‘<=’) a given duration (Parameter T1). This parame-
ter is set to the appropriate value (e.g., 20 min) depending on
the user specificities, which can be determined by examining
the sensor data. When toilet visits are longer than the duration
limit, they are discarded by the rule. The new version of our
rule is defined below.

1toilet:

2 "MotionD_T"<= T1

To circumvent the second situation (i.e., close, short visits
due to a lack of motion), we need to group together intervals
of motion separated by short pauses. First, let us define a rule
that recognizes a short pause, as shown below.

1toilet_pause:

2 holds(~any_motion_up, ~"MotionD_T" <= T2)

Rule toilet_pause is true when there is no motion in the toi-
let during less than T2 minutes and no motion is detected any-
where else in the home. Absence of motion is expressed using
the negation operator (˜). Short absences of motion are filtered
by Operator ‘<=’. Further filtering is performed by Operator
holds(p,q), which gathers the time intervals during which q

is true and only keeps the ones for which p holds. In our ex-
ample, Operator holds allows to select short absences in the
toilet (q) during which no movement is detected elsewhere
(p). This last condition (p) is defined by (the negation of) Rule
any_motion_up, which selects periods during which no motion
is detected anywhere in the home (its definition is given in
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Section 4.3). Because we assume single-occupant dwellings, a
presence detected in the toilet followed by no motion in the
home indicates that the user has not left that room. Extend-
ing Rule toilet with Rule toilet_pause gives the following
definition, using the logic ‘or’ operator (∣).

1toilet:

2 "MotionD_T" <= T1 | holds(~any_motion_up, ~"MotionD_T" <=

T2)

This iterative refinement of Rule toilet was completed when
sensor data of representative participants were successfully la-
belled.

Sensor-failure detection

To address sensor failures, dedicated rules need to be de-
fined. Their aim is to report periods during which sensor fail-
ures occurred, as shown in Table 5. The definition of such rules
follows the same steps as the ones to detect activities, namely,
writing a rule, a feasibility study, and an iterative refinement.

For sensors providing a failure detection mechanism, such
as a heartbeat, detecting failures is straightforward, as shown
in the following rule.

1toilet_failure:

2 "MotionD_T.CommFailure"

This expression annotates the periods during which the sen-
sor is out of service, as exposed by Attribute CommFailure of
Sensor MotionD_T. This attribute is available on any sensor but
needs to be refined because we found that in many cases it
is not reliable. An alternative is to define a faulty sensor as
one that does not emit information for an extended period of
time, which depends on the location of the sensor and the envi-
ronment interaction it is measuring. For example, the toilet is
typically visited many times everyday. Consequently, we can
introduce a rule to detect the failure of the motion detector of
the toilet as follows.

1toilet_failure:

2 ~"MotionD_T" >= T | "MotionD_T" >= T

This rule states that the toilet sensor fails if it is inactive for
more than time T (first term) or active for more than time T

(second term). Parameter T is typically set to 1 day or more.
Note that a motion detector is (in-)active during an extended
period of time if the message indicating a lack/presence of
motion was lost or the sensor is locked in a given state and
needs to be reset.
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Further applying this version of toilet_failure to sensor
data and manually analyzing the results reveal another issue:
some periods do not show any toilet visits because of outings
of the home occupant that last more than time T (e.g., one or
more days). To account for this situation, a rule detecting out-
ings (defined in Section 4.3) needs to be included. The new
version of Rule toilet_failure is defined below, using the
logical ‘and’ operator (&) to skip outings.

1toilet_failure:

2 (~"MotionD_T" & ~outing) >= T |

3 ("MotionD_T" & ~outing) >= T

This version of the rule was applied to a variety of sensor
data and produced correct results when manually checked.

Long-term visualization

Because of the study duration of HomeAssist, applying mon-
itoring rules to sensor data produces massive amounts of ac-
tivity information. This situation raises the need to provide a
synoptic view of these activity information to allow caregivers
to analyze them, identify trends or events of interest, and take
action if necessary. We propose an approach to visually char-
acterizing a user activity during a given period of time. An
example is shown in Figure 9. Specifically, the blue bars rep-
resent the average duration of the activity, and the red line
indicates its frequency (e.g., number of visits per month). How-
ever, the detected periods of sensor failures obviously impact
the significance of the average duration of the activity. To vi-
sually account for this aspect, the width of the bars is adjusted
with respect to the extent to which sensor failures occurred:
the fewer the failures, the thicker the bar, indicating a more
significant average value of activity duration.

However, when no blue bar is displayed in the graph for a
given month, this may correspond to two different cases: Sit-
uation 1 – no activity is performed at all during the month,
although the sensor worked properly during this period, or
Situation 2 – the sensor failures cover the whole period, hence
there is no information about the activity. To avoid the ambi-
guity between these situations, we added green witness bars at
the bottom of the graph, independently of the presence of the
blue bars, to separately indicate the periods when the sensors
were working, via their width, as for the blue bars. Thus, Situ-
ation 1 results in a green bar without a blue bar (not occurring
in Figure 9); and Situation 2 results in the absence of both bars
(first two months in the figure).
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Figure 9: Visualization of toi-
let activity.Example. Figure 9 represents the toilet activity of Ms. Dupont.

The x-axis represents the period at which the sensor data were
collected. The y-axis on the right side, represents the number
of toilet visits per month (the red line). The y-axis on the left
side, represents the average duration of activity for this par-
ticipant (the blue bars), which varies between 100s and 140s.
Thanks to the green witness bars and their width, we can see
the periods during which the toilet detector properly worked
in this user’s home. During August and September 2017, we
have no activity information: no green (hence no blue bars)
shown in the graph. This unambiguously indicates that dur-
ing these two months, this activity could not be measured. The
caregiver cannot misinterpret this period as a routine devia-
tion: information about the activity is simply missing. The ver-
tical lines around the top of each bar represent the standard
deviation of the averaged values. Considering the small val-
ues of the standard deviation in relation to variations between
bars, the results of our rule can be considered as significant.
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4.3 Case Study

This section applies the proposed methodology to a realistic
case study. Specifically, two activities of daily living are exam-
ined, namely, outings and sleeping. This presentation is used
to show how our approach contributes to improving replica-
bility and reproducibility via the definition of concise, high-
level monitoring rules, which can be made available to other
researchers, as well as the sensor data. In fact, the present
case study is publicly available at the following URL: https://
gitlab.inria.fr/rbelloum/reproducibilitymonitoring.git.

This reproducibility kit contains (1) the complete dataset of
one participant, covering the whole year 2017 with 95,157 sen-
sor measurements, and (2) instructions for replaying the activ-
ity detection and visualization phases explained in this chapter.
The dataset of the other participants could not be disclosed for
privacy reasons.

Outings

Let us first define the rules for each of the monitoring ac-
tivities addressed by our case study. To do so, we introduce
the notion of user-defined operator provided by Allen to allow
some structuring and reuse in programming monitoring rules.
User-defined operators can be seen as function definitions in
mainstream programming languages. They allow rules to be
reused and parameterized, allowing them to be customized
with respect to user specificities. A user-defined operator is in-
troduced with Construct def followed by a name and optional
parameters, delimited by square brackets.

Activity detection. We begin by defining the user-defined op-
erator outing_period to delimit the period during which no
activity occurs in a home between two consecutive door open-
ings.

1def outing_period =

2 holds(no_activity,

3 between(dn("ContactS_E"), up("ContactS_E")))

More precisely, an outing period begins when the entrance
door is closed (i.e., user’s departure), and ends when it is
opened again (i.e., user’s return). Technically, Operators up

and dn select the time when a sensor goes from 0 to 1, respec-
tively from 1 to 0. Operator between(p,q) selects any time
interval between a period when p is true and the subsequent
period when q is true. Therefore, the expression means that,
if after Door sensor "ContactS_E" has produced Value 0 (state

https://gitlab.inria.fr/rbelloum/reproducibilitymonitoring.git
https://gitlab.inria.fr/rbelloum/reproducibilitymonitoring.git
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‘closed’), there is no other activation of any sensor inside the
home until the next activation of "ContactS_E" (state ‘open’),
an outing has occurred. The term no_activity is another user-
defined operator, detailed later. It is true whenever no sensor
is activated in the home.

Following our methodology, we manually analyzed samples
of sensor data of participants. We noticed that our rule de-
tected some short outings, which probably correspond to the
user taking out the trash or picking up the mail. After consult-
ing with our experts in aging, these short absences were not
deemed proper outings because they likely did not involve
much physical activity nor social interaction. To skip such ab-
sences, we added to the operator definition a minimal time
of absence T before declaring an outing; it is introduced as a
parameter to the user-defined operator definition, as shown
below.

1def outing_period[T] =

2 holds(no_activity,

3 between(dn("ContactS_E"), up("ContactS_E")) > T)

Parameterization thus allows this rule to be customized with
respect to the elapsed time before a departure is considered an
outing. Such customization is shown below with the definition
of Rule outing.

1outing:

2 outing_period[10min]

Thanks to the domain-specific nature of Allen, it offers a built-
in type and related constants to express time (e.g., 10min, 21hr).

The user-defined operator no_activity is defined below, fol-
lowing some auxiliary definitions. A period is labelled as no_-

activity when no electric appliances, contact or motion sen-
sors are activated in a home. This situation is defined by the
following set of rules.

1def any_emeter_up =

2 any_up("EMeter_Microwave", "EMeter_Coffeemaker", "

EMeter_L")

3def any_contact_sw =

4 any_sw("ContactS_B", "ContactS_Cupboard", "ContactS_E", "

ContactS_Fridge")

5def any_motion_up =

6 any_up("MotionD_B", "MotionD_Ba", "MotionD_E", "MotionD_K

", "MotionD_L", "MotionD_S")

7def any_activity =

8 any_motion_up() | any_emeter_up() | any_contact_sw()

9def no_activity =

10 ~any_activity()
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Operators any_up and any_dn are the n-ary version of Op-
erators up and dn introduced earlier. A third operator called
sw, and its n-ary version any_sw signal the moments when a
sensor switches value (up/down).

Sensor-failure detection. We now investigate the sensor failures
that can compromise the detection of outings, as was done for
toilet visits. Here, the key component is the contact sensor
monitoring the entrance door. Because we follow the same
logic as the final rule for toilet failures, we introduce a user-
defined operator that encapsulates these failures, and parame-
terize it with 1 week (i.e., 168 hours).

1def sensor_failure[T](s) =

2 (~s & ~outing) >= T | (s & ~outing) >= T

3door_failure:

4 sensor_failure[168hr]("ContactS_E")

As can be noticed, user-defined operators can not only be
parameterized with time constants, but can also take sensor
name parameters. To visually distinguish these two types,
time parameters are given between square brackets, while sen-
sor name parameters are given between parentheses.

This rule determines that the contact sensor has failed, if
the user is at home (i.e., ˜outing) and the contact sensor of the
entrance door has not been activated during a given time T.

Visualization. Figure 10 visualizes the information produced by
our rules for outings and failures of the entrance door sensor.
The y-axis on the right side represents the number of outings
per month (the red line), and the y-axis on the left side repre-
sents the average duration of this activity (the blue bars). As
can be noticed, during the first 4 months of the monitoring,
our graph does not show any outing. However, the absence
of a green bar during these months indicates that the contact
sensor of the entrance door did not work during this period.
This sensor functioned properly for the remainder of the year,
as shown by the width of our (blue and) green bars. We also
notice that our rules produced consistent measurements of the
outing activity: the participant made between 22 and 37 out-
ings per month, lasting from 1h30 to 2 hours. In our experi-
ence, this consistency is a key factor in giving confidence to
monitoring rules.

Sleeping

It would be unrealistic to aim at detecting actual sleep of an
individual solely with ambient sensors. Instead, our goal is to
detect when the user spends some quiet time during the night
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Figure 10: Visualization of
outings.in their bedroom. This activity should give an indication of

how much sleep an individual is getting.

Activity detection. Let us incrementally define our notion of
sleep. First, we assume that this activity occurs in the bed-
room, and thus, any motion detected in another room may
contradict a sleep activity. This situation is covered by the fol-
lowing fragment of rule introduced below.

1let any_motion_up_but_bed =

2 any_up("MotionD_E", "MotionD_K", "MotionD_L",

3 "MotionD_S", "MotionD_T")

Note the use of a local variable, introduced by Construct let.
Local variables are used to factorize some logic without param-
eters. Local variable any_motion_up_but_bed is then included
in another rule fragment to define a segment of continuous
presence in the bedroom, in much the same way as toilet visits
(Rule toilet in Section 4.2).

1let sleep_segment =

2 holds(~any_motion_up_but_bed,
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3 ("MotionD_B" >= 30min) <= 10hr |

4 (~"MotionD_B" >= 30min) <= 10hr)

Specifically, Rule sleep_segment produces a segment of sleep,
if motion has not occurred anywhere else but in the bedroom,
and if user presence in the bedroom is sensed, using the mo-
tion detector, during at least 30 minutes but no more than 10

hours. Alternatively, because of the nature of the target activ-
ity, a segment of sleep is also produced if there is an absence
of motion in the bedroom that lasts between 30 minutes and
10 hours. These two alternatives take into account intra- and
inter-individual variations of motion patterns during sleep.

As our approach is knowledge driven, it leverages the per-
sonal routines of the user and thus gathers their usual sleep
time slots. This piece of knowledge is introduced as a variable,
named night. For example, a participant declares that he usu-
ally goes to sleep at 9:00PM and wakes up at 8:00AM. Here is
the definition of the night time slot for this user as a variable
in Allen:.

1let night = slot_2017[21hr, 8hr] | slot_2018[21hr, 8hr]

The above definition uses Allen operators slot_YYYY generat-
ing periodic signals, which are true between the given times of
the day, each covering one entire year. Here, we cover the two
years including the period of the study.

We are now ready to put all the pieces together in a complete
monitoring rule to detect a sleeping activity.

1sleep:

2 ex(night,

3 sleep_segment |

4 during(~sleep_segment <= 15min, night))

This rule includes two new operators (ex and during) and
introduces an alternative (i.e., a disjunction) to a sleep segment.
First, Operator ex, which means ‘exists’, ensures that the sleep
activity intersects the night time slot (there exists at least a mo-
ment in the sleep activity, which happens during the night).
This results in excluding naps during the day, while allowing
some flexibility (e.g., the sleep may go beyond the end of the
night slot). Second, the alternative to a sleep segment is some
other short activity happening during the night (e.g., a toilet
visit). Operator during is used to handle such sleep interrup-
tions (i.e., negation of Rule sleep_segment), which do not con-
tradict a sleep activity. Specifically, an interruption does not
contradict a sleep activity if it does not last for too long (the
maximum pause duration is set here to 15 minutes), and oc-
curs during (Operator during) the night time slots (Variable
night).
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Finally, further analysis of the sensor datatsets revealed that
some participants are occasionally not sleeping in their bed-
room (typically, in their living room). To account for this sit-
uation, we introduced a new monitoring rule (definition omit-
ted), which detects this kind of sleep segments. In doing so,
this routine deviation can be monitored; the user and/or their
caregiver can be informed about potential resulting health is-
sues. This situation further illustrates the need for our iterative
approach to developing monitoring rules.

Failure detection for bedroom sensor. The same logic as that of
toilet failure and door failure is used to detect failures of the
bedroom motion detector. Therefore, we may reuse our user-
defined operator.

1bed_failure:

2 sensor_failure[24hr]("MotionD_B")

Visualization. Figure 11 shows an example of visualization
of data representing sleeping activity for a participant, every
month during one-year period. The blue bars represent the
average sleep duration of a person, which varies from 7 to 10

hours per day. We notice that the bedroom sensor has worked
well, as shown by the width of our (blue and) green bars, apart
from October 2017 and February 2018 where the bars are thin.

Platform failures

Our previous failure rules can detect sensor failures related
to specific activities, but they do not annotate more radical fail-
ures, such as an Internet outage or a general platform failure
when no sensor is working. In fact, it is important for techni-
cians to obtain such information for maintenance purposes of
the smart-home infrastructure. To address this issue, we de-
fined a rule that detects when there is no activity in the home
for a given duration, provided it is not an outing.

1def platform_failure[T] =

2 no_activity > T & ~outing_period[T]

3

4platform_failure_1day:

5 platform_failure[24hr]

Note that this rule reuses the one detecting outings defined in
the sub Section 4.3.

4.4 Evaluation of Activity Monitoring Rules

Using Signal Detection Theory 3 (SDT), an expert in activity 3 Harold Stanislaw and Natasha Todorov
[March 1999]. “Calculation of signal de-
tection theory measures.” en. In: Be-
havior Research Methods, Instruments, &
Computers 31.1, pp. 137–149.
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Figure 11: Visualization of
sleeping activity.analysis, served as a human judge to examine some samples

from the datasets of 5 participants to manually label activities
and sensor failures. Then, the manual labels were compared
to the ones generated by our rules to determine whether these
rules are as accurate as our human expert to detect activities.
In doing so, the output of the monitoring rules were tested
against the answers of the human judge, which were used as
the ground truth.

Thirty five samples of sensor logs were randomly selected
from the datasets collected at participants’ home. For each par-
ticipant, the samples of sensor logs covered three entire days
for each activity, and an entire month for each kind of sensor
failure.

Two specific indices were calculated for each monitoring
rule: the sensitivity and the response bias indices, noted re-
spectively A’ and B"D. Sensitivity indices are used in signal de-
tection theory to measure performance in Yes/No tasks. Specif-
ically, human judges are asked to discriminate against signals
(the stimulus is present) and noise (stimulus is absent). In
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the presence of a stimulus, affirmative responses are correct
and are called hits. In the absence of a stimulus, the answers
‘yes’ are incorrect and called false alarms. Then, successes and
false alarms are used to calculate the indices. The sensitivity
A’ measures the participant’s ability to correctly discriminate
the presence or absence of stimuli. This index is between 0 (ex-
tremely low sensitivity) and 1 (extremely high sensitivity). The
response bias B"D measures the participant’s general tendency
to answer yes or no. B"D is between -1 (tendency to answer yes
and produce false alarms) and 1 (tendency to answer no and
miss the stimuli), the ideal value of this index being 0. In our
experiment, the rules take the role usually played by human
participants in Yes/No tasks. These tasks are independent be-
cause they concern activities that occur at a specific location
(i.e., targeting specific sensors) and time periods. Thus, this
labeling process amounts to a binary classification.

Rules
Results

Trials Hits False alarm A’ B”D

Outgoing 13 13 0 1.00 0.00

Toilet 45 41 10 0.91 0.22

Sleep quiet 16 14 2 0.87 0.12

Door failure 7 7 0 1.00 0.00

Bed failure 9 9 0 1.00 0.00

Toilet failure 3 3 0 1.00 0.00

Platform failure 2 2 0 1.00 0.00

Table 6: Evaluation of moni-
toring rules using SDT.

The complete results are shown in Table 6. For the rules con-
cerning 1) outings, 2) platform failures, and 3) sensor failures
(related to outings, visiting the toilet and sleeping activity), the
values of both sensitivity and response bias are ideal: A’ = 1.00

and B"D = 0.00. These results demonstrate that our rules pro-
duce correct results with respect to the human observer. The
rules can be considered as extremely sensitive and fits perfectly
the observer in this case.

Results pertaining to the detection of toilet visits show a
very good sensitivity, A’ = 0.91. That means that most of the
responses of the rule were correct. The corresponding rule is
said to be highly sensitive. Furthermore, it shows a reasonable
response bias of B"D = 0.22, which indicates that the rule is
slightly conservative, in that it misses a few stimuli (the rule
has a slight tendency to respond No).

Results for sleeping activity also has both good sensitivity
and response bias, A’ = 0.87 and B"D = 0.12, which show that
most of the rule-generated values match the judgement of the
human observer. The response bias index indicates that the
rule rarely misses stimuli.
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To sum up, our rules are accurate in that they always de-
tect a sensor-failure and almost always detect if an activity of
interest is present in a given dataset, as compared to our hu-
man observer. As such, this evaluation contributes to validate
our tool-based methodology to developing activity-monitoring
rules.

Chapter 3: Summary

We have presented a tool-based methodology to develop
knowledge-based rules dedicated to processing longitu-
dinal, real-world, home-centric, sensor data. We have
shown that our approach reliably detects older adults’
activities and provides professional caregivers with ac-
tionable insights via a visualization tool.
Our work improves replicability of activity monitoring
research in that it introduces an iterative process to de-
velop concise and high-level activity-monitoring rules.
Compared to the previous methodology of Chapter 3.
we shorten the development cycle in the order of 1

hour-person instead of 1 person-day. Our approach con-
tributes to expose and systematize the stepwise refine-
ment of monitoring rules by making explicit this itera-
tive process, leveraging user-specific knowledge, and ab-
stracting over hard-to-anticipate, yet typical situations.
We illustrated our methodology by using it in a case
study, which involved monitoring data of five different
older adults in their respective dwellings during several
months. This case study has shown the generality of our
methodology, which was successfully applied across the
characteristics of individuals, their routines, their home
layouts, etc.
Using Signal Detection Theory, we have shown that our
rules for detecting sensor failures and various activities
(sleeping, toilet visits and outings) are accurate and reli-
able.





5
End-User Development of
Activity-Supporting Services

As we saw in the previous Chapter 4, Allen allows the ex-
pression of high-level and comprehensible rules but this lan-
guage is only accessible to programmers. In this chapter, we
present how to leverage the knowledge and expertise of care-
givers for service development, without relying on program-
ming. To address this challenge of end-user development iden-
tified in Chapter 1, Section 1.3, we present here a tool-based
approach that allows caregivers to define services. This ap-
proach consists of two main stages: 1) a wizard that allows
caregivers to define an activity-supporting service,; 2) the
wizard-generated service is uploaded in an existing smart
home platform and interpreted by a dedicated component,
carrying out the caregiver-defined service 1, 2. 1 A preliminary version of this work

has been published: Rafik Belloum
[2020]. “End-user Development of
Activity-Supporting Services for Smart
Homes.” In: In Proceedings of IEEE Inter-
national Conference on Pervasive Comput-
ing and Communications (PerCom Work-
shops). Austin, Texas. 2020.
2 A full version of this work has been
submitted: Rafik Belloum, Charles Con-
sel, et al. [2020]. “Caregiver Develop-
ment of Activity-Supporting Services for
Smart Homes.”
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Contributions

• A Taxonomy for independent living to model the target ac-
tivities to support by our methodology.

• A wizard that allows caregivers to define activity-supporting
services without programming.

• A run time component, carrying out the caregiver-defined
services to deliver assistance to users.

• An experimental study to evaluate the usability of the wiz-
ard by health professionals.
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5.1 Introduction

We conducted such an experiment using HomeAssist plat-
form, presented in Chapter 3, Section 3.2, to address the needs
of three populations – older adults, persons with intellectual
disability, and persons with autism spectrum disorders – in
performing their home activities independently. Our aim was
to explore assistive services with practical case studies, cover-
ing all aspects from collecting needs for specific users, to de-
ploying services tailored to each user in their home. To do so,
we formed an interdisciplinary group with a range of expertise,
including psychology, occupational therapy, professional care-
giving, and computer science. Early in the project, we found
that, even though some services could apply to a range of
users, those creating the most interest in users and caregivers
often required specific interviews, analysis, and software de-
velopment. Although specific, this work involved common
stages that often was iterated: (1) analyzing needs with a user
and/or their caregiver; (2) writing a specification of an assis-
tive service with feedback from the user and/or their caregiver;
(3) developing the assistive application for the smart home plat-
form; (4) and, assessing the application with the user and/or
their caregiver. Thanks to our human-centered approach, we
were able to adjust the services during development, prevent-
ing any gap between the behavior of the services and the needs
expressed by the user and/or their caregiver.

This systematic approach allowed us to produce services
highly tailored to users, not necessarily knowing a priori the
specific topics we would be addressing. Such services showed
a positive impact on the users and their caregivers because
they felt their individual needs had been taken into account
and they were able to concretely assess the outcome of their
inputs in the resulting services. As an illustration of this ex-
ploration, we developed a service to manage outside appoint-
ments of a user. This service uses a calendar to manage events.
If an event is triggered and corresponds to an outside appoint-
ment, the service informs the user of the upcoming appoint-
ment early enough to give them time to prepare. Then, a sen-
sor is used to check whether the user left home. If not, when
the appointment is important (e.g., health related), the care-
giver is notified, in addition to the user. Other examples cov-
ered in this exploration included such activity areas as house-
hold chores (i.e., homemaking), vocational, leisure and health
management. Even though satisfying for users, our approach
showed practical limitations, as we tried to grow the number
of users and assistive goals: it did not scale up because of the
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amount of time required to gather the user needs and develop
the corresponding services.

To resolve our software development bottleneck, we set out
to analyze the activity-supporting services we had developed.
This analysis revealed that they had extensive common prop-
erties, which suggested that they formed a program family 3. 3 David Lorge Parnas [1976]. “On the de-

sign and development of program fam-
ilies.” In: IEEE Transactions on software
engineering 1, pp. 1–9.

As reported in the literature, the variations and commonali-
ties of a program family can be leveraged to factorize parts
of the software development process. Factorization typically
takes the form of domain-specific languages 4 and gives rise to 4 Marjan Mernik et al. [2005]. “When

and how to develop domain-specific lan-
guages.” In: ACM computing surveys
(CSUR) 37.4, pp. 316–344.

program generation tools 5. This finding was a key insight to-

5 Krzysztof Czarnecki et al. [2000]. Gen-
erative programming: methods, tools, and
applications. Vol. 16. Addison Wesley
Reading

wards solving our software development bottleneck problem.

Our approach

We propose a complete approach to developing activity-sup-
porting services, ranging from the modeling of the target ac-
tivities, to an end-user tool to define services, to a layer to run
services in a smart home.

A taxonomy of activities. To model the activities to be supported
by our approach, we have developed a taxonomy, drawing
from 1) the taxonomies of home activities reported in the lit-
erature, 2) discussions with caregivers and 3) examining the
assistive services that we developed during our experiment.

A wizard for activity-supporting services. To prevent any gap
between the gathered user needs and the resulting activity-
supporting service, we have developed a wizard, which allows
a caregiver to express a service within our taxonomy of target
activities. This wizard runs on a tablet and was designed and
developed in close collaboration with three professionals in
aging to ensure its usability. Specifically, at key development
stages, we conducted interviews and usability tests.

Execution support for wizard-defined services. Our wizard gener-
ates a representation of a caregiver-defined service that is fed
to the smart home platform. A dedicated layer is in charge
of interpreting this representation to realize the service, lever-
aging available connected objects (e.g., sensor), services (e.g.,
calendar), and interaction modalities (e.g., user notifications).

Validation. To validate our approach, (1) we used our wizard
to define existing activity-supporting services and observed
their behaviour equivalence when deployed in the home of
our participants; (2) additionally, we used our wizard to de-
fine a number of new services to test the coverage of the target
taxonomy of activities – the wizard-defined services targeted
older adults, users with intellectual disability, and users with
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autism; (3) finally, we conducted a study to measure the usabil-
ity of the wizard with five occupational therapists (OTs) that
used the wizard’s features to respond to clinical fictitious sit-
uations; the results reveal a good usability of our wizard by
OTs.

5.2 Taxonomy of Activities for Independent Living

First, we explore and organize activities of daily living and
the needs they could address, according to users and their care-
givers. Next, we present the assistive goals that result from
activities of interest. Then, we examine the assistive applica-
tions that were (manually) developed, based on these assis-
tive goals and deployed in the smart home of our participants.
Leveraging these applications, we identify and analyze their
commonalities and variabilities towards forming a taxonomy
of technology-supported activities. This taxonomy will serve
as a framework to define activity-supporting services.

Laundry

- Taking out the garbage
- Vacuuming
- Sweeping

- Doing the laundry 
- Folding clothes

- Ironing

- Playing an instrument
- Physical exercise

- Concerts 

Health 
management

- Health care professional
- Care intervention

- Medication
- Caregiver

Cleaning

Leisure

Activities

VocationalHomemaking

- Work schedule

Personal care

- Dressing
- Showering

- Shaving
Preparing meals

- Breakfast
- Lunch
- Dinner

Figure 12: An extract of a
taxonomy of home activities.Exploring activities. To explore activities of daily living in the

home, we leverage a taxonomy used by occupational thera-
pists to assess the ability of individuals to live independently
in their home 6. An extract of this taxonomy is presented in 6 Richard Bernard Dever [1988]. Commu-

nity living skills: A taxonomy. American
association on mental retardation

Figure 12. As can be noticed, activities of daily living in the
home are decomposed hierarchically: from general categories
of activities at the root, to refined specific categories towards
the bottom. Leaves define a set of concrete activities, such
as taking out the garbage, vacuuming and sweeping. As such,
this taxonomy allowed us to explore user needs in a systematic
manner, down to specific activities, which can become assistive
goals.

Assistive goals. Once an activity is targeted by a user and/or
their caregiver as an assistive goal, we start specifying what
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Activity Assistive goal
Household chores – Preparing meals (breakfast, lunch,
dinner)

Supervising and assisting meal preparation.

Sleep hygiene –Bed times Supervising the user and suggesting bed times.
Vocational – Going to work Supervising the user to ensure they leave home for

work on time.
Household chores – Vacuuming, sweeping, ironing,
taking out the garbage, etc.

Supervising and assisting household chores to en-
sure a well-managed home.

Leisure – Swimming pool Supervising the user to ensure they leave home for
swimming activity on time.

Leisure – Practicing a musical instrument Supervising the user to ensure they practice their
musical instrument.

Health management – Healthcare visit Supervising the user to ensure they are ready for a
visit of a healthcare professional.

Health management – Medication Supervising the user to ensure they take their medi-
cation.

Table 7: Assistive goals.
assistance should be delivered and what technological sup-
port would be needed. Table 7 lists on the left column a few
categories of activitities, extracted from the taxonomy, and
illustrates them; the right column briefly outlines an assis-
tive goal for each example of activity. Beyond the user and
their caregiver, analyzing an assistive goal may also involve
experts in human-related sciences to refine the user character-
istics and needs by administering standardized assessments to
determine the user’s skill set and deficiency. This knowledge
is then used to determine such dimensions as whether the as-
sistance should be context-aware and the type of assistive sup-
port that is required (e.g., reminder, task prompting). These
steps are inspired by the human-centered approach to devel-
oping assistive computing support proposed by Consel 7. 7 Charles Consel [2018]. “Assistive com-

puting: a human-centered approach to
developing computing support for cog-
nition.” In: 2018IEEE/ACM40th Inter-
national Conference on Software Engineer-
ing: Software Engineering in Society (ICSE-
SEIS). IEEE, pp.23–32.

Assistive services. Assistive goals are carried out in practice by
developing assistive services that will be deployed in the smart
home of the target user. In Table 8, we describe a representa-
tive sample of assistive services that we developed; it lists an
abbreviated name of the service used later for conciseness, its
target activity, and a short description.

As we developed services for our participants, we realized
that they consisted of recurring features. This situation is re-
flected by the analysis of the service descriptions, provided in
Table 8. For example, examining meal preparation and vac-
uuming reveals that both activities are located at home; they
must occur during a given time period and at recurring dates;
they can be supervised via sensors; reminders can be sent to
the user in case the activity is not performed. Let us system-
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atize this analysis to identify the commonalities and variabili-
ties of our assistive services.

Analyzing commonalities and variabilities. Because of the fea-
tures they shared, we approach our assistive services as a pro-
gram family and analyzed their commonalities and variabili-
ties. This work first allowed to group services into three main
categories: indoor, outdoor, home visit. Indoor consists of ac-
tivities performed at home (e.g., vacuuming, sweeping, shower-
ing, preparing meals) and may be supervised via sensors. Out-
door activities may require preparation time; it should eventu-
ally lead the user to leave home at a given time, which can be
checked via sensors. Home visit occurs indoor and may also
involve activities to prepare it. Variabilities are concerned with
the time of an event, the time period, the sensor involved, the
kind of user interaction, the communication modality with a
caregiver, and the task prompter. Commonalities and variabil-
ities are summarized in Table 9.

A taxonomy of technology-supported activities. We have organized
the commonalities and variabilities identified previously into a
taxonomy (displayed in Figure 13), which classifies technology-
supported activities and elicits their characteristics. As such,
it can serve as a guide for caregivers to define an activity-
supporting service and address the user’s needs. At the root
of this hierarchy, an activity needs to have a description. It
may be recurring and may be supported by actions. The next
level introduces a choice between outdoor, indoor, and home
visit-related activities. Outdoor activities require a date and a
time at which the user is notified to start preparing, as well
as a date and a time at which the user is supposed to have
departed from home. User departure can be checked via a de-
tector. Indoor activities consist of a date, a time period, and
a sensor, if supervision is needed. Finally, home visit-related
activities require a date and a time. The leaves of our taxon-
omy consist of actual activities that inherits the characteristics
of the parent levels.

Our taxonomy of technology-supported activities suggests
a staged process to define services that could be tooled. This
opportunity is explored in the next section.

5.3 A Wizard for Caregiver Development of Services

Our aim is to create a tool that 1) covers the taxonomy for
technology-supported activities and 2) provides an accessible
user interface such that caregivers and clinicians without pro-
gramming skills can define services that address their care re-
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Name Activity Service description
PM Preparing meals The service measures key user interactions with the environment (fridge,

kitchen cabinet, etc.) via sensors to detect whether a meal is being
prepared within a set time interval, supplied by the user at configuration
time. The user and/or a caregiver is notified, when no meal preparation
is detected via a tablet notification or a text/email message. The service
can also assist the user in preparing a meal by launching a dedicated
prompter.

BT Bedtime rou-
tines

Driven by user-declared routines, the service checks whether they are
realized by monitoring user interactions with their environment via
sensors. When a mismatch is detected the user and/or the caregiver
are alerted as in the previous service.

VA Vacuuming User is reminded of vaccuming, according to a user-supplied schedule.
The vaccum cleaner is equipped with a sensor to check whether it is
running, allowing reminders to be sent appropriately. Also, a dedicated
task prompter can be launched to assist the user in performing the task.

IR Ironing Same as vacuuming. Sensor-equipped iron for context-aware reminders.
SW sweeping Same as vacuuming. A sensor is located at a strategic location to detect

whether the activity is being performed (e.g., the door of a cabinet
containing cleaning items).

IN Practicing a mu-
sical instrument

Same as vacuuming. The musical instrument is equipped with a sensor.
Dedicated task prompter can be launched to assist the user in starting
setting up the instrument.

SH Showering The service notifies the user and/or their caregiver, when no show-
ering activity is detected (via a motion detector), according to the
user-supplied schedule.

TR Taking out the
garbage

The service notifies the user and/or their caregiver when the garbage
is not taken out, according to the user supplied-schedule. This activity
relies on a dedicated sensor, placed at a strategic location.

WO Going to work The service sends a notification to the user before and at departure
time, according to a user-declared schedule. User departure is checked
via sensors. If the user is late, an alert is sent to them and/or their
caregiver.

SP Swimming pool Same as previous service.
CP Healthcare-

related visit
The service sends a reminder to the user before the time of the appoint-
ment. Additionally, a dedicated prompter can be launched to assist the
user in preparing the visit (personal care, household chores, etc.).

CG Caregiver visit Same as previous service with a dedicated task prompter.
ME Medication tak-

ing
A dedicated sensor checks medication is accessed (e.g., the door of a
cabinet) at the user-supplied times. An alert is sent to the user, if the
activity is not performed. A dedicated task prompter can be launched
to guide the user, if needed.

Table 8: Description of ser-
vices.
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Indoor Outdoor Home visit
PM BT VA IR SW SH TR IN ME WO SP CP CG

Description ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Begin date ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × × × ×

End date ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × × × ×

Recurrence ✓ * ✓ * P P P ✓ * P P P ✓ ✓ P P
Reminder × × × × × × × × × P P ✓ ✓

Alert ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ×

Preparation date × × × × × × × × × ✓ ✓ × ×

Exit date × × × × × × × × × ✓ ✓ × ×

Date of reminding × × × × × × × × × × × ✓ ✓

SMS P P P P P P P P P P P P P
Email P P P P P P P P P P P P P
Guiding (Prompter) P P P P P P P P P P P P P
Supervised (sensor) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × × × ×

Departure detection × × × × × × × × × ✓ ✓ × ×

P: Possible (depends of the needs) ✓*: mandatory recurrence for such activities as preparing meals and
showering.

Table 9: Family of assistive
services.ceiver’s needs. As suggested by our taxonomy of technology-

supported activities, defining assistive services should be a
staged process, allowing the user to specify the characteris-
tics of the target service in a stepwise manner. To match this
requirement, our tool has been designed as a wizard, which
makes explicit the decomposition of a service definition, re-
ducing the risk of errors 8. 8 Dmitry Kovalenko [March 2017]. 16

Tips that Will Improve Any Online Form.We first discuss the design of our wizard. Then, we illus-
trate the use of our wizard by creating an indoor activity-
supporting service, showing screenshots of our tablet-based
Android implementation.

Designing a Wizard

We examine the service characteristics that need to be sup-
plied by the wizard user. Then, we present the task flow un-
derlying our wizard. Finally, we outline a few elements used
to design the user interface of our wizard.

User-supplied service characteristics. Our taxonomy (Figure 13)
has already made explicit the activity characteristics that need
to be supplied by the user of our wizard to define a service. As
can be noticed, three categories of services emerge: indoor, out-
door, home visit. We thus revisit the activity characteristics by
defining them for service category. Consequently, indoor activ-
ities consist of an activity description, a start date and time, an
end date and time, a recurrence (optional), a sensor (optional),



end-user development of activity-supporting services 63

 Activity 

- Description 
- Recurrence 

- Actions (notification/
prompting/ sms /

mail)

Outdoor

- Start/end date
- Preparation time
- Departure time

- Departure detector

Home visit

- Date and time of
reminder 

 Indoor 

- Start/end date 
 - Start time
 - End time

 - Supervision (sensors)

- Taking out the garbage
- Running the washer

- Playing an instrument
- Preparing meals 

- Vacuuming
- Sweeping 

- Ironing
- Etc.  

- Going to work 
 - Swimming pool

- Etc.  

 - Health related visit
 - Caregiver visit

 - Etc.  

Figure 13: A taxonomy for
technology-supported activi-
ties.

and an action. A sensor is selected for a service when its acti-
vation at a given time period suggests that the activity is being
performed (e.g., personal care activity can be assumed when
motion is detected in the bathroom in the morning). Different
actions can be included in a service; they are detailed in our
example below.

Outdoor activities are composed of an activity description,
a date and time to start preparing, a date and time to depart
from home, a recurrence (optional), and an action to trigger if
departure is not detected. Last, home visits consist of a descrip-
tion, the date and time of a reminder, a recurrence (optional),
and an action if a preparation activity is not detected.

Task flow. Our taxonomy (Figure 13) suggests a flow of specific
information to be supplied and decisions to be taken by the
user to define a service. This task flow is shown in Figure 14

with each step represented as a rectangle. The first step is to
choose a type of activity: indoor, outdoor, home visit. Then,
the user is prompted with category-specific information. Ev-
ery step requires the user-supplied information to be complete
before going to the next step. Note that an indoor activity re-
quires a time interval within which the activity must occur.
An outdoor activity also requires a time interval to be defined:
the start time is when preparation must begin, whereas the
end time is when the user is supposed to depart from home.
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In contrast, home visit does not define an interval but a time
at which the visit is reminded to the user.

Choosing activity type

Selecting a sensor

Validation

Indoor  Home visit

Selecting an action

Outdoor 

Filling parameters:
 (Description, date and time of reminder,

recurrence)

Filling parameters:
 (description, start/end date & time,

recurrence)

Filling parameters:
 (description, start/end date, preparation,

time, departure time,
departure detector, recurrence)

Figure 14: The task flow of
our wizard.

User Interface. The general design of the user interface of our
wizard follows the usual rules of such a tool: conforming to
the users’ mental model of the target process, enforcing a clear
sequential order of the steps, showing a progress status with
numbered steps, allowing navigation buttons to go back and
forth in the process, etc. We iterated the design of our wiz-
ard with caregivers to ensure the activity characteristics were
prompted in an order that matched their preference. We also
ensured that each wizard step consisted of a self-explanatory
title and field names.

Figure 15: Step 1: Choosing
the kind of activity to assist.
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An Example

Let us explore the details of our wizard by creating an as-
sistive service for doing laundry. The first step, shown in
Figure 15, allows the user to choose the indoor activity cate-
gory. Next, the user is prompted with the parameters of the
target activity to be assisted, as shown in Figure 16: the activity
description, the date and time, and the frequency. Start/end
dates and times are selected via a calendar and a clock, respec-
tively. Frequency is defined via a dedicated menu.

Figure 16: Step 2: Indoor
activity details step (descrip-
tion, periodicity, frequency).

The third step, shown in Figure 17, involves deciding whether
the activity needs to be monitored. To do so, a sensor category
is first selected; there are three categories: 1) sensors attached
to electric appliances (iron, coffee machine, washing machine,
etc.) to detect whether they are running; 2) contact sensors
to detect the opening/closing of drawers, cabinet doors, and
room/entrance doors; 3) motion sensors to detect a presence
in a room or a specific location in a room (depending on the
layout). In practice, we have added sensors as new assistive
needs were revealed by discussions with participants and six
caregivers over various durations of deployment, ranging from
one month to a year.

In the fourth step, Figure 18 shows the actions that can be
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Figure 17: Step 3: choosing a
sensor.

associated with an activity. The first action is a reminder to be
sent to the user, whose meaning depends on the activity type.
For a home visit, it corresponds to a time at which the user
needs to get ready. For outdoor activities, one message is is-
sued to inform the user that their preparation should start. An
alert is then sent, if the user is still detected at home after the
departure time. Indoor activities can trigger an unconditional
alert when the time of the activity has arrived, or a conditional
alert if the activity is monitored, as is the case in our laundry
example. When an alert is issued, it prompts the user for one
or more answers, which acknowledge that it has been taken
into account.

Note that alerts can be defined as critical or non-critical, de-
pending on the nature of the activity. Non-critical notifications
can be ignored by the user, whereas critical ones will repeat
the notification until the user responds. A notification is asso-
ciated to an answer, allowing the service to check whether the
user has responded to it. The second and third actions pre-
sented in Figure 18 are an email or text message that can be
sent to a caregiver in case the activity has not been performed
by the user.

Last, Figure 18 shows a menu allowing the wizard user to
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Figure 18: Step 4: choosing
one or more actions for the
user and their caregiver.

launch a task prompter to guide the user in performing an
activity. In practice, this task prompter is launched on a tablet
and takes as argument the name of the prompting scenario to
invoke.

In the last step of the wizard, shown in Figure 19, the wizard
user is presented with a summary of the activity to be assisted.

Implementing our Wizard

Our wizard runs on Android tablets and has been imple-
mented in Java. Tablets allow intuitive touchscreen interface,
facilitating the usability of the wizard by caregivers. We used
Android’s activity transition layout to navigate back and forth
between the different wizard forms to be filled by the user. The
Android SDK provides a range of UI controls and components
to support the implementation of applications such as wizards.

5.4 Executing Wizard-Defined Services

We now present the different building blocks that allow
wizard-defined services to be executed by a smart home. Our
overall system following the wizard stage is displayed in Fig-
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Figure 19: Step 5: validation
step.

ure 20 taking the output of our wizard as the starting point.
First, we examine what is required to implement our approach
in a smart home. Then, we describe how we implemented it
using the HomeAssist platform.

Wizard
Calendar setup Event

parameters

AAL JSON parameters

  Description 
  Period 
  Recurrence 

 Actions 
 Supervision 

calendar

Piggybacking

Output data

Application that manage 
the ASS with a runtime  

  

Assisted living platform

Figure 20: The overall sys-
tem.

Smart Home Requirements

As suggested by the previous section, executing wizard-def-
ined services revolves around a calendar to manage dates, times
and recurrence. In fact, part of the output of our wizard con-
sists of standard calendar event parameter information; this
wizard output is denoted by the red arrow in Figure 20. Most
calendar provides an API, allowing event to be created with
respect to these parameters.

Executing a wizard-defined service still requires to invoke a
runtime component to carry out the assistance of the activity,
when its calendar event is triggered. The assistance-specific pa-
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rameters are denoted by the green output arrow of the wizard
(Figure 20) and include information mentioned earlier, such
as sensor and notification. These parameters need to be asso-
ciated with the calendar event and be passed to the runtime
component, which is in charge of performing the required ac-
tions on the smart home, such as querying a sensor and issuing
a notification.

HomeAssist Implementation

Figure 20 presents our implementation based on HomeAs-
sist. As can be noticed, HomeAssist uses Google Calendar,
whose API is used by our implementation to manage events.
Furthermore, the activity-supporting service characteristics are
piggybacked in a calendar event so that the runtime compo-
nent can extract them when the event is triggered. Specifically,
Figure 21 shows the ouput of the wizard (green arrow) in a
JSON format for the example of doing laundry, in the context
our HomeAssist implementation. Property MonitoredEvent is
true when the activity is supervised by a sensor, whose name
is given by Property Conditions. If the activity is not performed
by the user, actions to be triggered are listed in Property Ac-
tions. For example, Property Android intent contains the pack-
age name of the prompter application, which gets triggered to
assist the user in accomplishing the target activity. The last
property defines the notification to be issued to the user, in-
cluding its title and message (Property non-critical_notification).

{

"monitoredEvent":true,

"conditions":{

"Emeter_Laundry":true

},

"actions":{

"android_intent":{

"packageName":"com.apps.gk.firstthen"

},

"non_critical_notification":{

"id":"IdNotifier",

"title":"Turn on the washing machine",

"text":"It is time to do the laundry.",

"answer":[

"Ok"

]

}

}

}

Figure 21: The JSON output
of the wizard.

In HomeAssist, smart home applications can be developed
and added to a catalog of applications available to users, in
the spirit of mobile app platforms. Applications of this catalog
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support three main areas: ADLs (e.g., monitoring meal prepa-
ration and self-care), user and home safety (e.g., a light path
to the bathroom at night and monitoring the stove), and social
participation (e.g., simplified email tool and games).

We leveraged this capability by developing an application,
dedicated to carry out the assistance of all wizard-defined ser-
vices. This application subscribes to wizard-related calendar
events, extracts piggybacked information from an event field,
and provides the assistive support accordingly. For example,
in the case of doing laundry, the application checks whether
the electric meter of the washing machine is on within the time
interval set for this activity. If not, it issues a non-critical noti-
fication to the user and launches the prompter on a dedicated
tablet.

5.5 Evaluation

Activity coverage and execution equivalence

To evaluate our approach, we used our wizard to define
existing activity-supporting services that had been developed
manually for older adults, adults with autism, and adults with
intellectual disability. In doing so, we wanted to determine
whether the wizard could be used to reproduce the develop-
ment of existing services. This work was quite useful to refine
the functionalities of the wizard and ensure that it offered the
features needed to cover the existing applications, whose use-
fulness had already been validated by users and caregivers.
Although this first phase allowed us to validate the coverage
of the wizard in practice, it did not address the execution of
the wizard-defined services. In particular, we still had to show
that the execution of wizard-defined services was equivalent to
their manually-programmed counterparts. To do so, we devel-
oped our special-purpose application in HomeAssist, which is
dedicated to execute the wizard-defined services (as explained
in Section 5.4). After testing it, we deployed it in the home of
our participants to enable wizard-defined services to be exe-
cuted in real environments. These updated platforms allowed
us to validate that the behavior of wizard-defined services was
equivalent to their manually-programmed counterparts.

Usability study

Usability tests were conducted with occupational therapists
in an apartment laboratory. The goal was to document the
perspectives of occupational therapists on the wizard. Indeed,
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these clinicians are trained professionals 1) to assess the needs
of people living with cognitive impairments and 2) to deter-
mine the types of interventions, which can ensure their safety
and increase their independence with respect to specific activi-
ties 9. They are also able to anticipate facilitators and obstacles 9 Walter Wittich et al. [2015]. “Screening

for sensory impairment in older adults:
Training and practice of occupational
therapists in Quebec: Formation et pra-
tique des ergothérapeutes du Québec
dans le dépistage des troubles sensoriels
chez les personnes âgées.” In: Cana-
dian Journal of Occupational Therapy 82.5,
pp. 283–293.

to the facilitators and obstacles to the implementation of new
technologies, such as assistive technologies for cognition 10.

10 Susanne Smith Roley et al. [2008]. “Oc-
cupational therapy practice framework:
domain & process 2nd edition.” In: The
American journal of occupational therapy
62.6, p. 625.

Methods. Our usability testing approach was based on two
methods: Cognitive Walkthrough with Users, and administration
of standardized usability questionnaires. The Cognitive Walk-
through with Users is a method that consists of evaluating the
usability of an interactive system by constructing different us-
age scenarios 11. While they interact with a system, the users

11 Thomas Mahatody et al. [2010]. “State
of the art on the cognitive walkthrough
method, its variants and evolutions.” In:
Intl. Journal of Human–Computer Interac-
tion 26.8, pp. 741–785

are asked to think aloud, allowing the experimenter to record
their thoughts, feelings and opinions on different aspects of
the system being studied. Users perform the tasks of interest
after a brief presentation of the experiment. The user’s eval-
uation of the design features of a system is a key factor that
determines technology acceptance and is of great importance
to software designers 12. Each occupational therapist was met 12 Tamar Ben-Bassat et al. [2006]. “Eco-

nomic and subjective measures of the
perceived value of aesthetics and usabil-
ity.” In: ACM Transactions on Computer-
Human Interaction (TOCHI) 13.2, pp. 210–
234.

during a 60-minute session. First, the participants spent 5 min-
utes introducing themselves to the technology by reading a
document presenting the various features of the wizard. Then,
they received two clinical vignettes with 2 fictitious patients
for whom they had to find solutions using the Wizard applica-
tion. During this period, subjective data was collected through
recording of the participant’s voice; objective data (i.e., time
spent for each task, number of errors) was collected through
recording of the tablet’s screen.

Two usability questionnaires (System Usability Scale (SUS)
and Attrackdiff) were also administered after the completion
of the tasks by each participant. The SUS is a 10-item ques-
tionnaire with five response options for respondents; from
Strongly agree to Strongly disagree. It is commonly used to
assess a wide range of technologies from hardware to mo-
bile applications 13. The AttrakDiff is a 28-item questionnaire, 13 Aaron Bangor et al. [2008]. “An em-

pirical evaluation of the system usabil-
ity scale.” In: Intl. Journal of Human–
Computer Interaction 24.6, pp. 574–594.

which assesses user experience through 3 dimensions: Prag-
matic Quality (PQ), Hedonic Quality (HQ) and ATTractiveness
(ATT) 14. For both of these questionnaires, psychometric prop- 14 Carine Lallemand et al. [2015].

“Création et validation d’une version
française du questionnaire AttrakDiff
pour l’évaluation de l’expérience utilisa-
teur des systèmes interactifs.” In: Revue
Européenne de Psychologie Appliquée/Eu-
ropean Review of Applied Psychology 65.5,
pp. 239–252.

erties such as reliability and validity have been demonstrated.

Results. A total of 5 occupational therapists from different clin-
ical settings in psychogeriatrics agreed to participate in the
study, as shown in Table 10. As reported in the literature,
5 participants can lead to the identification of approximately
80% of the usability problems 15. 15 Carl W Turner et al. [2006]. “Determin-

ing usability test sample size.” In: In-
ternational encyclopedia of ergonomics and
human factors 3.2, pp. 3084–3088
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Participants Sex Age Degree Years of experience Familiar type of software
P1 Female 29 Master 3 Android
P2 Female 44 PhD 17 iOS
P3 Female 49 Bachelor 20 iOS
P4 Female 25 Master 1 iOS
P4 Female 27 Mater 3 iOS

Table 10: Participant’s char-
acteristics.Qualitative data: Subjective data about participants’ thoughts,

feelings and opinions reveal good usability potential of our
wizard, with some suggestions for improvement. One sugges-
tion is related to the way the wizard is supplied information to
schedule an activity. Specifically, all of our participants found
it difficult to program a recurring activity (e.g., from Monday
to Friday). One participant suggested: “It would be more intu-
itive to specify that an activity is recurring while setting its date and
time than to do it in two phases .”

Another participant further suggested: “It would be nice to
have access to a small calendar that gives access to all configured
reminders because it is easily forgotten”.

In relation to the way users can configure alerts, participants
suggested that an option to make them repeat should be of-
fered since some care receivers may need to receive an alert
more than once to ensure appropriate actions are taken. Par-
ticipants also were uncertain about how to fill the parameters
of the alert menu (Figure 18). One participant said:

“It’s not obvious to understand what message to put in the alert
menu. . . In particular, It’s not clear how to fill ‘Answers’; it should
show answers by default or be more explicit. . . ”. In fact, this field
was introduced at the end of our design process and its com-
prehension was not properly tested with users prior to our
study. Since then, it has been changed to take these comments
into account.

Another issue noted by the 5 participants was about the sen-
sor options, offered to monitor an activity (Step 3 of the wizard
– See Figure 17). Most participants found it too restrictive to
use only one sensor for monitoring indoor activities. Indeed,
the unique sensor may be activated, and yet, the activity may
not be properly completed. For example, one participant sug-
gested that a care receiver may open and close the washing
machine door, without loading the laundry, putting the soap,
or launching the washing machine. Yet, since the contact sen-
sor of the door was activated, the activity could wronly be
considered as completed. A participant suggested:

“It would be interesting to have the possibility to add several sen-
sors to detect an activity. For example, a contact sensor for monitor-
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ing the washing machine door and an electric sensor for finding out
whether it runs”

Participants also gave suggestions to improve the process of
defining services. For example, one participant suggested to
use speech recognition to improve efficiency, as most clinicians
have time constraints. Another participant suggested to add a
fourth type of activity, named “preparation/organizer”; a pro-
grammed alert and/or launch of the task prompter would as-
sist the care receivers to organize and prepare their upcoming
activities.

Figure 22: Time (mins) to
achieve tasks 1 to 6 for each
participant (n = 5).

Figure 23: Amount of errors
per participant for tasks 1 to
6.

Quantitative data: They were collected while participants
completed their tasks using our wizard; their analysis reveals
promising findings. Specifically, as shown in Figure 22, the
average time to complete each task decreased as participants
became more familiar with the application. The number of er-
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Figure 24: Participant Re-
sponses (n = 5) to the Sys-
tem Usability Scale Ques-
tionnaire (SUS).

rors per task also decreased, as shown in Figure 23. This trend
does not apply to the fourth task, for which all the participants
experienced difficulties to select the days of the week for which
an activity needed to be scheduled, as discussed earlier. These
results suggest that with time and practice, the application be-
comes easier to use.

Finally, the data collected from the usability questionnaires
suggest good usability properties. In particular, Figure 24

shows that the average score of the participants’ answers to the
Attrackdiff items are positives, except for 3 of them: creativity,
practical aspect and human aspect. For the SUS, participants’
responses were generally similar for each question, as shown
in Figure 25. The only negatives scores matched the issues dis-
cussed during the recording of the participants, as mentioned
above.
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Figure 25: Participant Out-
comes (n = 5) to the AT-
TRACKDIFF Questionnaire.

Chapter 4: Summary

We have characterized an area of home activities that
is needed for independent living and can be supported
by smart homes. To address this area, we have in-
troduced a wizard-based approach towards empower-
ing caregivers to develop activity-supporting services,
leveraging smart home functionalities. As such, our ap-
proach allows the expertise of caregivers to be directly
applied to defining assistive support for an individual
they care for. We showed how the information gath-
ered by the wizard can be interfaced with a smart home,
to carry out the activity-supporting service. We eval-
uated wizard-defined services by comparing them to
manually-programmed services and ensuring that they
both had the same behavior. In particular, this evalua-
tion was done by deploying wizard-defined services in
the home of participants. We also conducted a usabil-
ity study of our wizard with professionals. The study
showed a good usability potential and an ease of use.





6
Conclusion and Future Work

This chapter details the conclusions of this work. We be-
gin with a discussion on the different contributions we have
presented throughout this dissertation. Then, we show how
our methods address the challenges identified in the intro-
duction of this thesis in Chapter 1. Finally, we discuss the
limitations of each methodology presented and the avenues
for future work.
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This thesis presented three methods of developing assistive
services that support independent living. First, we proposed
an approach to develop activity recognizers that are accurate in
order to improve their effectiveness and acceptability to users
and caregivers. This first approach is based on tools that en-
sure the agile development of service recognizers. Second, we
proposed an approach dedicated to monitoring activities on
sizeable sensor data. Compared to the first method, this ap-
proach raises the level of abstraction for expressing activity
detectors, using a domain-specific language (Allen). This DSL
provides high-level and concise rules for an even more agile de-
velopment and also to support reproducible research. Further-
more, this approach provides a visualization tool for experts in
aging, displaying a synoptic view of activities on the long term,
augmented with information about sensor failures. Although
Allen is easier to access than a general or scripting program-
ming language, it remains a language difficult to access for
experts in aging who are not programmers. Thereby, to lever-
age caregivers’ expertise, we presented an end-user approach
that provides them a step-by-step process to develop assistive
services which supports aspects of a daily activity, specific to
an older adult. To do so, we introduced a wizard-based inter-
face in order to facilitate the definition of services by end users.
In addition, we showed how the caregiver-defined services are
uploaded in a real assisted living platform.

6.1 Discussion

We now review our approaches in more detail with respect
to the key challenges identified in Chapter 1.

To address the challenges for accurate activity recognizers in-
troduced in Section 1.1, we provided an approach that: 1)
covers the variations of a target activity by abstracting over
descriptions reported by users; 2) ensures proper customiza-
tion with respect to user specificities using a visualization tool.
To assess the accuracy of our approach, we showed its inter-
individual consistency since we applied it on 6 activity recgo-
nizers and five different user/home configurations. The out-
puts of our activity recognizers were compared to the activities
self-reported by our participants. The results show that 80% of
the outputs were confirmed by the user reports. The accuracy
of our activity detectors goes up to 88% when considering the
more routinized participants.

We addressed the long-term monitoring challenges presented
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in Section 1.2 by (1) proposing an iterative process that sup-
ports a gradual refinement of the analysis of sizeable sensor
data. This process allows to reliably detect sensor failures or
daily activities; (2) we introduced a long-term visualization
tool that provides caregivers a synoptic view of user activities .
To assess the accuracy of our approach, we applied our moni-
toring rules on 5 longitudinal datasets, collected over a period
of 12-months. Then, using SDT, the rules outputs were com-
pared against the manual labels of a human expert in activity
analysis, which were used as a baseline. As a result, our mon-
itoring rules mostly produced the same interpretations as the
human expert.

To address the challenge of enabling end-user development of
service presented in Section 1.3, we proposed a wizard-based
approach that allows caregivers to easily define assistive sup-
port for the older aduts they care for. Our finding suggests
an ease of use of the wizard by occupational therapists. They
have been able to successfully define activity-supporting appli-
cations, without programming background.

6.2 Limitations and Future Work

Our tooled-methods are a first step towards supporting the
development of assisted living applications, and present a num-
ber of limitations.

Evaluation. For the proposed methods of this dissertation, we
are planning to conduct our experiments with a larger group
of participants in their smart environment to assess whether
our results scale up. Furthermore, we plan to consider more
daily activities to investigate the range of applicability of our
methodologies. Another direction for future work is to apply
our approaches in other smart home environments. This is
important to assess the applicability of our methodologies to
a range of smart homes. By using Signal Detection Theory in
Chapter 4, we have shown the accuracy of our rule for detect-
ing activities and sensor failures. However, the accuracy of the
rules has been validated by a unique human expert. In the fu-
ture, we plan to improve this aspect by involving three human
observers to assess the interjudge reliability of our approach.

Screening. Another line of work we are exploring aims to
link a user’s activity data with their clinical data (e.g., sensory
and motor functioning, hospitalization, frailty and degrada-
tion etc.) over a long period of time so that care professionals,
such as occupational therapists, can evaluate potential signs of
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age-related decline. This work goes beyond our longitudinal
case study (see Chapter 4), which was limited in duration and
did not consider the clinical data of its participants. Lifting
these limitations could pave the way to screening capabilities,
which is a driving force for the development of activity moni-
toring systems dedicated to older adults.

Activity coverage of the Wizard. In the future, we plan to ex-
tend the kind of sensors that can be used in the wizard to
detect richer activity contexts than those defined by a unique
sensor. In particular, we would like to introduce a high-level
notion of sensors that would allow caregivers to exploit activ-
ities involving a set of sensor activations, activation durations,
etc. In fact, we already introduced this kind of sensors with
our departure detector. In practice, not only does this detector
monitors the entrance door, but it also checks that there is no
motion at home for a while before declaring that the user has
departed. For another example, consider a routine for going to
bed that may involve motion in the bathroom, followed by mo-
tion in the bedroom (see Chapter 3). Needs for such high-level
sensors are naturally and promptly expressed by caregivers,
as reported by our study, as they discover the potentials of
technology to support independent living of individuals they
care for. These high-level sensors should be made available in
the wizard, as well as simple ones, increasing the coverage of
activity-supporting services.

As illustrated in Figure 26, the contributions of our work
can be used as a part of a complete activity monitoring system
that operates in real time.

For an agile development of services, professional develop-
ers can benefit from our iterative development process, illus-
trated in Chapters 3 and 4. This iterative process supports a
stepwise refinement of the analysis of the sensor data, driven
by dedicated tools.

For caregivers, we imagine a tool for service development
with a high level of abstraction, which can be an improved ver-
sion of our wizard (with more activity coverage). The wizard
can be accompanied by the interactive configuration tool that
we proposed in Chapter 3, Section 3.4. This can support care-
givers to check and adjust the values of activity recognizers
parameters with respect to the real sensor data.

For better service reliability, a maintenance tool can also be
part of the system to detect sensor and platform failures in
real time. This will allow technicians to intervene quickly to
remedy the failure.
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Figure 26: A complete activ-
ity monitoring system.Finally, the long-term visualization tool presented in Chapter 4,

Section 4.2 can also be integrated into the system to allow clin-
icians to detect routine deviation of older adults and evaluate
the effectiveness of the assisted living platform.
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Allen Syntax

Prog -> Use* Lib Rules?

Use -> "use" id ("[" int "]")? ("(" int ")")?

Lib -> (Def | Let)*
Def -> "def" id ("[" id+(",") "]")? ("(" id*(",") ")")? str*

"=" Context

Lets -> Let*
Let -> "let" id "=" Expr "in"

Rules -> id ":" Context (";" Rules)?

Context -> Lets Expr

Expr -> Prod "|" Expr | Prod

Prod -> Comp "&" Prod | Comp

Comp -> Expr1 (">=!"|"<="|">="|">!"|">!!"|"<"|">") Int | Expr1

Expr1 -> true | false | "~" Expr1 | "(" Expr ")" | str

| id ("[" Int+(",") "]")? ("(" Expr*(",") ")")?

Int -> Int1 ("+"|"-") Int | Int1

Int1 -> id | ts | int ("hr" | "min" | "sec")?

Figure 27: Syntax of the
Allen language.





Static Table of Interactions

1 {

2 "presence": {"kind": "Presence",

3 "values": ["true", "false"]},

4 "door": {"location": "Entrance","kind": "Door",

5 "values": ["open", "close"]},

6 "cupboard": {"location": "Kitchen", "kind": "Cupboard",

7 "values": ["open", "close"]},

8 "fridge": {"location": "Kitchen", "kind": "Fridge",

9 "values": ["open", "close"]},

10 "stove": {"location": "Kitchen", "kind": "Stove",

11 "values": ["on", "off"]},

12 "juicer": {"location": "Kitchen", "kind": "Juicer",

13 "values": ["on", "off"]},

14 "toaster": {"location": "Kitchen", "kind": "Toaster",

15 "values": ["on", "off"]},

16 "meatcleaver": {"location": "Kitchen", "kind": "Meatcleaver",

17 "values": ["on", "off"]},

18 "microwave": {"location": "Kitchen", "kind": "Microwave",

19 "values": ["on", "off"]},

20 "kettle": {"location": "Kitchen", "kind": "Kettle",

21 "values": ["on", "off"]},

22 "coffeeMaker": {"location": "Kitchen", "kind": "CoffeeMaker",

23 "values": ["on", "off"]},

24 "nightTime": {"location": "Night", "kind": "Calendar",

25 "values": ["begin", "end"]},

26 "dinnerTime": {"location": "Dinner", "kind": "Calendar",

27 "values": ["begin", "end"]},

28 "lunchTime": {"location": "Lunch", "kind": "Calendar",

29 "values": ["begin", "end"]},

30 "breakfastTime": {"location": "Breakfast", "kind": "Calendar",

31 "values": ["begin", "end"]},

32 "bedTime": {"location": "Bed", "kind": "Calendar",

33 "values": ["begin", "end"]},

34 "dressingTime": {"location": "Dressing", "kind": "Calendar",

35 "values": ["begin", "end"]},

36 "wakeUpTime": {"location": "WakeUp", "kind": "Calendar",

37 "values": ["begin", "end"]}

38 }

Figure 28: Complete static ta-
ble of interactions in Home-
Assist.





Bibliography

Frances K Aldrich (2003). “Smart homes: past, present and fu-
ture.” In: Inside the smart home. Springer, pp. 17–39.

Aaron Bangor, Philip T Kortum, and James T Miller (2008).
“An empirical evaluation of the system usability scale.” In:
Intl. Journal of Human–Computer Interaction 24.6, pp. 574–594.
doi: 10.1080/10447310802205776.

Rafik Belloum (2020). “End-user Development of Activity-Supporting
Services for Smart Homes.” In: In Proceedings of IEEE Interna-
tional Conference on Pervasive Computing and Communications
(PerCom Workshops). Austin, Texas. 2020.

Rafik Belloum, Charles Consel, and Nic Volanschi (2020). “A
Tool-Based Methodology For Long-Term Activity Monitor-
ing.” In: PETRA’20-Pervasive Technologies Related to Assistive
Environments.

Tamar Ben-Bassat, Joachim Meyer, and Noam Tractinsky (2006).
“Economic and subjective measures of the perceived value of
aesthetics and usability.” In: ACM Transactions on Computer-
Human Interaction (TOCHI) 13.2, pp. 210–234. doi: 10.1145/
1165734.1165737.

Valérie Bergua, Jean Bouisson, Jean-François Dartigues, Joel
Swendsen, Colette Fabrigoule, Karine Pérès, and Pascale Barberger-
Gateau (2013). “Restriction in instrumental activities of daily
living in older persons: Association with preferences for rou-
tines and psychological vulnerability.” In: The International
Journal of Aging and Human Development 77.4, pp. 309–329.
doi: 10.2190/AG.77.4.c.

Benjamin Bertran, Julien Bruneau, Damien Cassou, Nicolas Lo-
riant, Emilie Balland, and Charles Consel (January 2014).
“DiaSuite: A tool suite to develop Sense/Compute/Control
applications.” en. In: Science of Computer Programming 79,
pp. 39–51. issn: 01676423. doi: 10.1016/j.scico.2012.
04.001. (Visited on 04/22/2020).

Julia Brich, Marcel Walch, Michael Rietzler, Michael Weber,
and Florian Schaub (2017). “Exploring end user program-
ming needs in home automation.” In: ACM Transactions on

https://doi.org/10.1080/10447310802205776
https://doi.org/10.1145/1165734.1165737
https://doi.org/10.1145/1165734.1165737
https://doi.org/10.2190/AG.77.4.c
https://doi.org/10.1016/j.scico.2012.04.001
https://doi.org/10.1016/j.scico.2012.04.001


90 tool-based methodologies for developing assisted living services

Computer-Human Interaction (TOCHI) 24.2, p. 11. doi: 10 .

1145/3057858.
A.J. Bernheim Brush, Bongshin Lee, Ratul Mahajan, Sharad

Agarwal, Stefan Saroiu, and Colin Dixon (2011). “Home au-
tomation in the wild: challenges and opportunities.” en. In:
Proceedings of the 2011 annual conference on Human factors in
computing systems - CHI ’11. Vancouver, BC, Canada: ACM
Press, p. 2115. isbn: 9781450302289. doi: 10.1145/1978942.
1979249. (Visited on 04/22/2020).

Stefan Parry Carmien and Gerhard Fischer (2008). “Design,
adoption, and assessment of a socio-technical environment
supporting independence for persons with cognitive disabil-
ities.” en. In: Proceeding of the twenty-sixth annual CHI con-
ference on Human factors in computing systems - CHI ’08. Flo-
rence, Italy: ACM Press, p. 597. isbn: 9781605580111. doi:
10.1145/1357054.1357151. (Visited on 04/22/2020).

Loïc Caroux, Charles Consel, Lucile Dupuy, and Hélène Sauzeon
(2018). “Towards context-aware assistive applications for ag-
ing in place via real-life-proof activity detection.” In: Journal
of ambient intelligence and smart environments 10.6, pp. 445–
459. doi: 10.3233/AIS-180505.

Loïc Caroux, Charles Consel, Lucile Dupuy, and Hélène Sauzéon
(October 2014). “Verification of Daily Activities of Older Adults:
A Simple, Non-Intrusive, Low-Cost Approach.” In: ASSETS
- The 16th International ACM SIGACCESS Conference on Com-
puters and Accessibility. Rochester, NY, United States, pp. 43–
50. doi: 10.1145/2661334.2661360.

Liming Chen, Chris D. Nugent, and Hui Wang (June 2012).
“A Knowledge-Driven Approach to Activity Recognition in
Smart Homes.” In: IEEE Transactions on Knowledge and Data
Engineering 24.6, pp. 961–974. issn: 1041-4347. doi: 10.1109/
TKDE.2011.51. (Visited on 04/22/2020).

Charles Consel (2018). “Assistive computing: a human-centered
approach to developing computing support for cognition.”
In: 2018 IEEE/ACM 40th International Conference on Software
Engineering: Software Engineering in Society (ICSE-SEIS). IEEE,
pp. 23–32. doi: 10.1145/3183428.3183431.

Charles Consel, Lucile Dupuy, and Hélène Sauzéon (2017). “Home-
Assist: An assisted living platform for aging in place based
on an interdisciplinary approach.” In: International Confer-
ence on Applied Human Factors and Ergonomics. Springer, pp. 129–
140.

Diane Cook, M Schmitter-Edgecombe, Aaron Crandall, Chad
Sanders, and Brian Thomas (2009). “Collecting and dissem-
inating smart home sensor data in the CASAS project.” In:
Proceedings of the CHI workshop on developing shared home be-

https://doi.org/10.1145/3057858
https://doi.org/10.1145/3057858
https://doi.org/10.1145/1978942.1979249
https://doi.org/10.1145/1978942.1979249
https://doi.org/10.1145/1357054.1357151
https://doi.org/10.3233/AIS-180505
https://doi.org/10.1145/2661334.2661360
https://doi.org/10.1109/TKDE.2011.51
https://doi.org/10.1109/TKDE.2011.51
https://doi.org/10.1145/3183428.3183431


bibliography 91

havior datasets to advance HCI and ubiquitous computing research,
pp. 1–7.

Joelle Coutaz and James L. Crowley (April 2016). “A First-
Person Experience with End-User Development for Smart
Homes.” In: IEEE Pervasive Computing 15.2, pp. 26–39. issn:
1536-1268. doi: 10.1109/MPRV.2016.24. (Visited on 04/22/2020).

Sara J Czaja, Ruth A Weber, and Sankaran N Nair (1993). “A
human factors analysis of ADL activities: A capability-demand
approach.” In: Journal of Gerontology 48.Special_Issue, pp. 44–
48.

Krzysztof Czarnecki, Ulrich W Eisenecker, and Krysztof Czar-
necki (2000). Generative programming: methods, tools, and appli-
cations. Vol. 16. Addison Wesley Reading.

Barnan Das, Diane J. Cook, Maureen Schmitter-Edgecombe,
and Adriana M. Seelye (October 2012). “PUCK: an auto-
mated prompting system for smart environments: toward
achieving automated prompting—challenges involved.” en.
In: Personal and Ubiquitous Computing 16.7, pp. 859–873. issn:
1617-4909, 1617-4917. doi: 10.1007/s00779- 011- 0445- 6.
(Visited on 04/22/2020).

Prafulla N. Dawadi, Diane J. Cook, and Maureen Schmitter-
Edgecombe (November 2013). “Automated Cognitive Health
Assessment Using Smart Home Monitoring of Complex Tasks.”
In: IEEE Transactions on Systems, Man, and Cybernetics: Sys-
tems 43.6, pp. 1302–1313. issn: 2168-2216, 2168-2232. doi:
10.1109/TSMC.2013.2252338. (Visited on 04/22/2020).

Prafulla N. Dawadi, Diane J. Cook, Maureen Schmitter-Edgecombe,
and Carolyn Parsey (August 2013). “Automated assessment
of cognitive health using smart home technologies.” In: Tech-
nology and Health Care 21.4, pp. 323–343. issn: 09287329, 18787401.
doi: 10.3233/THC-130734. (Visited on 04/22/2020).

Richard Bernard Dever (1988). Community living skills: A taxon-
omy. American association on mental retardation.

Anind K Dey, Timothy Sohn, Sara Streng, and Justin Kodama
(2006). “iCAP: Interactive prototyping of context-aware ap-
plications.” In: International Conference on Pervasive Comput-
ing. Springer, pp. 254–271.

Lucile Dupuy, Charlotte Froger, Charles Consel, and Hélène
Sauzéon (2017). “Everyday Functioning Benefits from an As-
sisted Living Platform amongst Frail Older Adults and Their
Caregivers.” In: Frontiers in aging neuroscience 9, p. 302. doi:
10.3389/fnagi.2017.00302.

Nancy ElHady and Julien Provost (June 2018). “A Systematic
Survey on Sensor Failure Detection and Fault-Tolerance in
Ambient Assisted Living.” en. In: Sensors 18.7, p. 1991. issn:
1424-8220. doi: 10.3390/s18071991. (Visited on 04/22/2020).

https://doi.org/10.1109/MPRV.2016.24
https://doi.org/10.1007/s00779-011-0445-6
https://doi.org/10.1109/TSMC.2013.2252338
https://doi.org/10.3233/THC-130734
https://doi.org/10.3389/fnagi.2017.00302
https://doi.org/10.3390/s18071991


92 tool-based methodologies for developing assisted living services

Arthur D. Fisk, Sara J. Czaja, Wendy A. Rogers, Neil Char-
ness, Sara J. Czaja, and Joseph Sharit (November 2018). De-
signing for Older Adults: Principles and Creative Human Fac-
tors Approaches, Second Edition. en. 0th ed. CRC Press. isbn:
9780429195914. doi: 10.1201/9781420080681. (Visited on
04/22/2020).

David A Gold (2012). “An examination of instrumental activi-
ties of daily living assessment in older adults and mild cog-
nitive impairment.” In: Journal of clinical and experimental neu-
ropsychology 34.1, pp. 11–34. doi: 10.1080/13803395.2011.
614598.

Trisha Greenhalgh, Joe Wherton, Paul Sugarhood, Sue Hin-
der, Rob Procter, and Rob Stones (2013). “What matters to
older people with assisted living needs? A phenomenolog-
ical analysis of the use and non-use of telehealth and tele-
care.” In: Social science & medicine 93, pp. 86–94. doi: 10.

1016/j.socscimed.2013.05.036.
Xin Hong and Chris D. Nugent (March 2013). “Segmenting

sensor data for activity monitoring in smart environments.”
en. In: Personal and Ubiquitous Computing 17.3, pp. 545–559.
issn: 1617-4909, 1617-4917. doi: 10.1007/s00779-012-0507-
4. (Visited on 04/22/2020).

Mohammad Anwar Hossain (2014). “Perspectives of human
factors in designing elderly monitoring system.” In: Comput-
ers in Human Behavior 33, pp. 63–68. issn: 0747-5632. doi:
https://doi.org/10.1016/j.chb.2013.12.010.

Justin Huang and Maya Cakmak (2015). “Supporting mental
model accuracy in trigger-action programming.” In: Proceed-
ings of the 2015 ACM International Joint Conference on Pervasive
and Ubiquitous Computing. ACM, pp. 215–225. doi: 10.1145/
2750858.2805830.

Jeffrey A Kaye, Shoshana A Maxwell, Nora Mattek, Tamara L
Hayes, Hiroko Dodge, Misha Pavel, Holly B Jimison, Kather-
ine Wild, Linda Boise, and Tracy A Zitzelberger (2011). “In-
telligent systems for assessing aging changes: home-based,
unobtrusive, and continuous assessment of aging.” In: Jour-
nals of Gerontology Series B: Psychological Sciences and Social
Sciences 66.suppl_1, pp. i180–i190. doi: 10.1093/geronb/
gbq095.

Dmitry Kovalenko (March 2017). 16 Tips that Will Improve Any
Online Form. url: https://uxplanet.org/the-18-must-do-
principles-in-the-form-design-fe89d0127c92.

Carine Lallemand, Vincent Koenig, Guillaume Gronier, and
Romain Martin (2015). “Création et validation d’une version
française du questionnaire AttrakDiff pour l’évaluation de
l’expérience utilisateur des systèmes interactifs.” In: Revue

https://doi.org/10.1201/9781420080681
https://doi.org/10.1080/13803395.2011.614598
https://doi.org/10.1080/13803395.2011.614598
https://doi.org/10.1016/j.socscimed.2013.05.036
https://doi.org/10.1016/j.socscimed.2013.05.036
https://doi.org/10.1007/s00779-012-0507-4
https://doi.org/10.1007/s00779-012-0507-4
https://doi.org/https://doi.org/10.1016/j.chb.2013.12.010
https://doi.org/10.1145/2750858.2805830
https://doi.org/10.1145/2750858.2805830
https://doi.org/10.1093/geronb/gbq095
https://doi.org/10.1093/geronb/gbq095
https://uxplanet.org/the-18-must-do-principles-in-the-form-design-fe89d0127c92
https://uxplanet.org/the-18-must-do-principles-in-the-form-design-fe89d0127c92


bibliography 93

Européenne de Psychologie Appliquée/European Review of Ap-
plied Psychology 65.5, pp. 239–252. doi: 10.1016/j.erap.
2015.08.002.

M. P. Lawton and E. M. Brody (September 1969). “Assessment
of Older People: Self-Maintaining and Instrumental Activ-
ities of Daily Living.” en. In: The Gerontologist 9.3 Part 1,
pp. 179–186. issn: 0016-9013, 1758-5341. doi: 10.1093/geront/
9.3_Part_1.179. (Visited on 04/22/2020).

Beth Logan, Jennifer Healey, Matthai Philipose, Emmanuel Munguia
Tapia, and Stephen Intille (2007). “A long-term evaluation of
sensing modalities for activity recognition.” In: International
conference on Ubiquitous computing. Springer, pp. 483–500.

Thomas Mahatody, Mouldi Sagar, and Christophe Kolski (2010).
“State of the art on the cognitive walkthrough method, its
variants and evolutions.” In: Intl. Journal of Human–Computer
Interaction 26.8, pp. 741–785.

Marjan Mernik, Jan Heering, and Anthony M Sloane (2005).
“When and how to develop domain-specific languages.” In:
ACM computing surveys (CSUR) 37.4, pp. 316–344. doi: 10.
1145/1118890.1118892.

Daniel G Morrow and Wendy A Rogers (2008). “Environmen-
tal support: An integrative framework.” In: Human Factors
50.4, pp. 589–613.

Johan Ormel, Frühling V Rijsdijk, Mark Sullivan, Eric Van Son-
deren, and Gertrudis IJM Kempen (2002). “Temporal and
reciprocal relationship between IADL/ADL disability and
depressive symptoms in late life.” In: The Journals of Geron-
tology Series B: Psychological Sciences and Social Sciences 57.4,
P338–P347. doi: 10.1093/geronb/57.4.P338.

David Lorge Parnas (1976). “On the design and development
of program families.” In: IEEE Transactions on software engi-
neering 1, pp. 1–9. doi: 10.1109/TSE.1976.233797.

Parisa Rashidi and Alex Mihailidis (2013). “A survey on ambient-
assisted living tools for older adults.” In: IEEE journal of
biomedical and health informatics 17.3, pp. 579–590. doi: 10.
1109/JBHI.2012.2234129.

Jennifer Reijnders, Caroline van Heugten, and Martin van Box-
tel (2013). “Cognitive interventions in healthy older adults
and people with mild cognitive impairment: a systematic
review.” In: Ageing research reviews 12.1, pp. 263–275.

M. R. Reisinger, J. Schrammel, and P. Fröhlich (2017). “Visual
languages for smart spaces: End-user programming between
data-flow and form-filling.” In: 2017 IEEE Symposium on Vi-
sual Languages and Human-Centric Computing (VL/HCC), pp. 165–
169. doi: 10.1109/VLHCC.2017.8103464.

https://doi.org/10.1016/j.erap.2015.08.002
https://doi.org/10.1016/j.erap.2015.08.002
https://doi.org/10.1093/geront/9.3_Part_1.179
https://doi.org/10.1093/geront/9.3_Part_1.179
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1093/geronb/57.4.P338
https://doi.org/10.1109/TSE.1976.233797
https://doi.org/10.1109/JBHI.2012.2234129
https://doi.org/10.1109/JBHI.2012.2234129
https://doi.org/10.1109/VLHCC.2017.8103464


94 tool-based methodologies for developing assisted living services

Mitchel Resnick, John Maloney, Andrés Monroy-Hernández,
Natalie Rusk, Evelyn Eastmond, Karen Brennan, Amon Mill-
ner, Eric Rosenbaum, Jay Silver, Brian Silverman, et al. (2009).
“Scratch: programming for all.” In: Communications of the
ACM 52.11, pp. 60–67. doi: 10.1145/1592761.1592779.

Daniele Riboni, Linda Pareschi, Laura Radaelli, and Claudio
Bettini (2011). “Is ontology-based activity recognition really
effective?” In: 2011 IEEE International Conference on Pervasive
Computing and Communications Workshops (PERCOM Work-
shops). IEEE, pp. 427–431.

Susanne Smith Roley, Cynthia J Barrows, L Susan Brownrigg
OTR, Deanna Iris Sava, L Vibeke Talley OTR, BS Kristi Voelk-
erding, L COTA, Emily Smith MOT, MS Pamela Toto, OTR
Sarah King MOT, et al. (2008). “Occupational therapy prac-
tice framework: domain & process 2nd edition.” In: The Amer-
ican journal of occupational therapy 62.6, p. 625. doi: 10.5014/
ajot.62.6.625.

A. M. Jehad Sarkar, Young-Koo Lee, and Sungyoung Lee (2010).
“ARHMAM: an activity recognition system based on hidden
Markov minded activity model.” en. In: Proceedings of the
4th International Conference on Uniquitous Information Manage-
ment and Communication - ICUIMC ’10. Suwon, Republic of
Korea: ACM Press, p. 1. isbn: 9781605588933. doi: 10.1145/
2108616.2108702. (Visited on 04/22/2020).

Adriana M. Seelye, Maureen Schmitter-Edgecombe, Diane J.
Cook, and Aaron Crandall (April 2013). “Naturalistic As-
sessment of Everyday Activities and Prompting Technolo-
gies in Mild Cognitive Impairment.” en. In: Journal of the In-
ternational Neuropsychological Society 19.4, pp. 442–452. issn:
1355-6177, 1469-7661. doi: 10.1017/S135561771200149X. (Vis-
ited on 04/22/2020).

Harold Stanislaw and Natasha Todorov (March 1999). “Calcu-
lation of signal detection theory measures.” en. In: Behavior
Research Methods, Instruments, & Computers 31.1, pp. 137–149.
issn: 0743-3808, 1532-5970. doi: 10.3758/BF03207704. (Vis-
ited on 04/22/2020).

Alistair Sutcliffe (2005). “Evaluating the costs and benefits of
end-user development.” In: ACM SIGSOFT Software Engi-
neering Notes. Vol. 30. 4. ACM, pp. 1–4.

Elizabeth A Townsend and Helene J Polatajko (2007). “Advanc-
ing an occupational therapy vision for health, well-being,
and justice through occupation.” In: Ottawa, ON: CAOT Pub-
lications ACE.

An C Tran, Stephen Marsland, Jens Dietrich, Hans W Guesgen,
and Paul Lyons (2010). “Use cases for abnormal behaviour

https://doi.org/10.1145/1592761.1592779
https://doi.org/10.5014/ajot.62.6.625
https://doi.org/10.5014/ajot.62.6.625
https://doi.org/10.1145/2108616.2108702
https://doi.org/10.1145/2108616.2108702
https://doi.org/10.1017/S135561771200149X
https://doi.org/10.3758/BF03207704


bibliography 95

detection in smart homes.” In: International Conference on
Smart Homes and Health Telematics. Springer, pp. 144–151.

Khai N Truong, Elaine M Huang, and Gregory D Abowd (2004).
“CAMP: A magnetic poetry interface for end-user program-
ming of capture applications for the home.” In: International
Conference on Ubiquitous Computing. Springer, pp. 143–160.

Carl W Turner, James R Lewis, and Jakob Nielsen (2006). “De-
termining usability test sample size.” In: International ency-
clopedia of ergonomics and human factors 3.2, pp. 3084–3088.

TLM Van Kasteren, Gwenn Englebienne, and Ben JA Kröse
(2010). “Activity recognition using semi-markov models on
real world smart home datasets.” In: Journal of ambient intelli-
gence and smart environments 2.3, pp. 311–325. doi: 10.3233/
AIS-2010-0070.

Nic Volanschi, Adrien Carteron, and Charles Consel (Octo-
ber 2018). “A Domain-Specific Approach to Unifying the
Many Dimensions of Context-Aware Home Service Devel-
opment.” In: 2018 IEEE SmartWorld, Ubiquitous Intelligence
& Computing, Advanced & Trusted Computing, Scalable Com-
puting & Communications, Cloud & Big Data Computing, In-
ternet of People and Smart City Innovation (SmartWorld/SCAL-
COM/UIC/ATC/CBDCom/IOP/SCI). Guangzhou, China: IEEE,
pp. 480–489. isbn: 9781538693803. doi: 10.1109/SmartWorld.
2018.00108. (Visited on 04/22/2020).

Nic Volanschi, Bernard Serpette, Adrien Carteron, and Charles
Consel (December 2018). “A Language for Online State Pro-
cessing of Binary Sensors, Applied to Ambient Assisted Liv-
ing.” en. In: Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies 2.4, pp. 1–26. issn: 2474-
9567, 2474-9567. doi: 10.1145/3287070. (Visited on 04/22/2020).

Walter Wittich, Elizabeth A Barstow, Jonathan Jarry, and Aliki
Thomas (2015). “Screening for sensory impairment in older
adults: Training and practice of occupational therapists in
Quebec: Formation et pratique des ergothérapeutes du Québec
dans le dépistage des troubles sensoriels chez les person-
nes âgées.” In: Canadian Journal of Occupational Therapy 82.5,
pp. 283–293. doi: 10.1177/0008417415573076.

Kristina Yordanova, Stefan Lüdtke, Samuel Whitehouse, Frank
Krüger, Adeline Paiement, Majid Mirmehdi, Ian Craddock,
and Thomas Kirste (February 2019). “Analysing Cooking
Behaviour in Home Settings: Towards Health Monitoring.”
en. In: Sensors 19.3, p. 646. issn: 1424-8220. doi: 10.3390/
s19030646. (Visited on 04/22/2020).

https://doi.org/10.3233/AIS-2010-0070
https://doi.org/10.3233/AIS-2010-0070
https://doi.org/10.1109/SmartWorld.2018.00108
https://doi.org/10.1109/SmartWorld.2018.00108
https://doi.org/10.1145/3287070
https://doi.org/10.1177/0008417415573076
https://doi.org/10.3390/s19030646
https://doi.org/10.3390/s19030646

	Colophon
	Résumé
	Abstract
	Remerciements
	Table des matières
	Liste des figures
	Liste des tableaux
	1 Introduction
	Table of Contents
	1.1 Accurate Activity Recognizers
	1.2 Long-Term Monitoring
	1.3 Enabling End-User Development of Services
	1.4 Main Contributions
	1.5 Outline

	2 Related Work
	Table of Contents
	2.1 Smart Homes
	2.2 Older-Adult Daily Activities
	2.3 Range of Sensors
	2.4 Experimental Settings
	2.5 Computing Support for ADLs
	2.6 Service Development
	Domain-specific languages
	End-user development


	3 A Tooled Method for Developing  Activity Recognizers
	Table of Contents
	3.1 Introduction
	3.2 Background
	3.3 Development Method
	3.4 Case Study
	Declaration and data collection
	Generic service development
	Service customization
	Testing in silent mode

	3.5 Validation
	3.6 Discussion

	4 Long-Term Activity Monitoring
	Table of Contents
	4.1 Introduction
	4.2 Methodology
	Defining monitoring rules
	Sensor-failure detection
	Long-term visualization

	4.3 Case Study
	Outings
	Sleeping
	Platform failures

	4.4 Evaluation of Activity Monitoring Rules

	5 End-User Development of  Activity-Supporting Services
	Table of Contents
	5.1 Introduction
	5.2 Taxonomy of Activities for Independent Living
	5.3 A Wizard for Caregiver Development of Services
	Designing a Wizard
	An Example
	Implementing our Wizard

	5.4 Executing Wizard-Defined Services
	Smart Home Requirements
	HomeAssist Implementation

	5.5 Evaluation
	Activity coverage and execution equivalence
	Usability study


	6 Conclusion and Future Work
	Table of Contents
	6.1 Discussion
	6.2 Limitations and Future Work

	Allen Syntax
	Static Table of Interactions
	Bibliography

