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l’UNIVERSITÉ PIERRE ET MARIE CURIE
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CURIE

Sujet de la thèse :
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Abstract

This manuscript focuses on the electronic heat/charge transport dichotomy and the
beyond-quantum-limit transport properties of dilute metals.

In the first part, we report on a study of two semi-metals, WP2 and Sb. In both cases,
we found that the Wiedemann-Franz (WF) law is recovered at sufficiently low temperature
(T ⇡ 2K), but not at T ⇡ 15K. A careful examination shows that the finite-temperature
deviation from the WF law is due to a mismatch between the prefactors of the T 2-resistivities,
which arises because of electron-electron scattering. In the Boltzmann picture of transport
such a difference is expected if there were abundant small-angle scattering among elec-
trons. However, if we remember that momentum-conserving fermion-fermion collisions in
normal-state liquid 3He also produce a T 2-resistivity, this opens the door for an alternative
interpretation : the possible existence of a hydrodynamic regime for electrons in these semi-
metals at the crossover between ballistic and diffusive regimes. In this scenario, the larger
T-square thermal resistivity is caused by momentum-conserving collisions which decay the
energy current and not the charge current. In the case of elemental Sb, we found that both
charge and heat conductivities become ballistic at low temperature in millimetric samples and
the ratio of the two T-square prefactors evolves with sample size. This observation supports
the hydrodynamic scenario. Finally, we find that the phononic thermal conductivity also
displays a large hydrodynamic correction in a narrow temperature window.

The second part of this thesis deals with the fate of the Fermi sea in the quantum limit.
In the doped semi-conductor InAs we observe the existence of a field-induced insulating
state for all geometries of transport. The comparison with the succession of field-induced
states in graphite up to B = 90T, where in-plane metallicity coexists with a c-axis insulating
behavior, reveals that the ground state of a 3D electron gas beyond the quantum limit is
system-dependent. The observation of a saturating resistivity accompanied by vanishing
thermoelectric coefficients for T < 1K and B > 14T in InAs points to the existence of a
conductive surface state.
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Chapter 1

Introduction

The definition of metallicity has been intensely debated for more than a century now. While P.
Drude and A. H. Lorentz were the first to associate the phenomenon of electrical conductivity
with the free electron gas, it was A. Sommerfeld and F. Bloch who introduced the Fermi-Dirac
statistics in the model to acknowledge the quantum nature of the electron. For the first time,
it became possible to reconcile theory and experimental reports on the specific heat of alkali
metals [1]. However, this semi-classical description fails to describe non-alkali metals. The
victory of the modern electron theory was to link the electronic transport properties of a metal
to its individual Fermi surface. As an example, the FS of the alkali Na is a sphere (shown in
figure 1.1.a) whereas elemental lead displays a hard-to-describe but certainly non-spherical
FS (featured in figure 1.1.b). Both materials exhibit disparate transport properties [2, 3]. Just
like the wildlife at the summit of a mountain differs from the one down in the valley, the
transport properties of a metal evolve with the shape of its Fermi surface. At this point, a
new definition of a metal emerges, it is ’a solid with a Fermi surface’ [4] associated with a
first energy scale : the Fermi energy EF .

The electrons responsible for the finite conductivity at T = 0 are located in the vicinity
of the Fermi surface. Since they belong to a partially filled electronic band (see figure 1.1.c)
they can be easily scattered to previously unoccupied states under the effect of an electric
field. In other words, they contribute to electrical conductivity.

Quite the contrary, if electrons in the highest occupied states have no continuum of
unoccupied states to be scattered to, the system does not respond when subjected to an
electric field : it is now an insulator. Its Fermi level is buried deep in a forbidden energy gap,
as illustrated in figure 1.1.c. The gap is material dependent and extends over several eV in
most insulators or undoped semi-conductors.

One of them is silicon. In undoped samples s T!0���! 0 was verified : the system is an
insulator. When dopants are added to a semi-conductor, such as phosphorus to Si, more and
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Fig. 1. Comparison (a) of the band structure of semimetals with that of other crystalline 
solids at low temperatures, namely metals with a high electronic population and insulators 
with a large energy gap. The band structure of bismuth at 0 K is represented in (b); here 
GFe, GFh and GFl are the Fermi energies of electrons, heavy holes and light holes respectively, 
while e. is the direct energy gap. 

or, in other words, the density of free carriers at 0 K. While the Fermi energies are 
of the order of eV in metals, they are usually below a few tenths of an e V in semimetals 
(Table 1). The Fermi energies of electrons or holes are specified with respect to 
the energy extrema in the corresponding electron and hole carrier pockets, as indicated 
in Fig. 1. In this figure, the band structures of various kinds of crystalline solids 
are also schematically represented. It may be seen how the band structure varies 
from the typical metal, i.e. a partially filled band at 0 K which may be due to a large 
overlap, to an insulator with a large energy gap. The difference in the electronic 
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fore a minimum value Eg &0 of the gap Eg below
which the screened Coulomb interaction is too weak
to support an excitonic distorted state, even at O'K. '
Quantitative calculations of the effects of anisotropy
on the value of Ez have been undertaken by Zittartz. '
For moderate anisotropy, the magnitude of Ez is
comparable to the value of E~.
B. Nature of the Distortion

O'K
Ec

EG

Pro. 3. Phase diagram for semimetal-to-semiconductor transi-
tion assuming second-order phase transitions to the excitonic
phase. The abscissa Eg is a function of crystal density, and is
the value of the indirect energy gap in the nondistorted ground
state for the given density. The stable phase is nondistorted in
regions 1 and 2, a simple excitonic distorted state in regions 3
and 4, a doubly distorted state in regions 5 and 6, etc. Regions
1, 3, and 5 are nominally semimetallic, regions 2, 4, 6 semiconduct-
ing. The dividing line (dotted curve) is the place where the
renormalized energy gap Eo(T) goes to zero, and does not
represent any singularities in the physical properties of the
system.

Hartree-Pock potential is calculated for the distorted
state, the exchange potential has terms with periodicity
2w/to; in order for the distorted state to have lower
energy than the nondistorted state, the exchange po-
tential must be strong enough to produce the required
admixture of valence and conduction band states.
The interpretation of the Hartree —Fock excitonic

state in terms of a dilute Bose exciton gas is only
valid for Eg close to Es. As Eg decreases through zero,
the average distance between electrons or holes be-
comes smaller than the radius of the exciton. The
Coulomb interaction becomes more and more strongly
screened as Eg becomes more and more negative, and
significant mixing of valence and conduction band
states becomes restricted to states near the Fermi sur-
face of the nondistorted semimetal. In this region the
Hartree —Fock theory of the excitonic state is mathe-
rnatically similar to the BCS theory of superconductiv-
ity.' If the electron and hole Fermi surfaces are identical
in size and shape, as occurs in a simple two-band model
with isotropic effective masses, then the nondistorted
semimetal ground state is unstable for arbitrarily weak
electron —hole attraction, just as the normal Fermi sur-
face of a metal is unstable to the formation of Cooper
pairs, if there is an arbitrarily weak attraction between
spin-up and spin-down electrons.
Because of the relative simplicity of the calculations,

many studies of the excitonic state have been carried
out in the limit of the isotropic two-band semimetal
with weak eGective electron —hole interaction. The same
model has also been used by Fedders and Martin'8 in
their study of the antiferromagnetism of chromium.
For a real semimetal, the electron and hole Fermi

surfaces are never identical in shape. There is there-
"P.A. Fedders and P C. Martin, Ph. ys. Rev. 143, 245 (1966).

The nature of the distortion in the excitonic state
depends on whether the expectation value (A„t) is
real or imaginary, and also on whether the macro-
scopically occupied exciton state is a singlet or a triplet.
In a model without spin —orbit coupling, the four possi-
bilities are:

(1) Singlet with real phase—characterized by a
charge-density oscillation.
(2) Triplet with real phas- characterized by an

antiferromagnetic spin density oscillation. "
(3) Singlet with imaginary phase characterized by

transverse currents which change sign from one unit
cell to the next (i.e., orbital antiferromagnetism).
(4) Triplet with imaginary phase—characterized by

transverse spin currents. I In the presence of spin —orbit
coupling, states (2) and (3) would be mixed, as would
be states (1) and (4).j
The energies of these four states are degenerate if one
includes in the electron —hole interaction only the domi-
nant term, the long-range Coulomb attraction. The
energies are split, however, by terms in the Hamilton. -
ian representing interband scattering when the electron
and hole are on the same lattice site. The energy split-
tings are proportional to the ratio of the unit cell
volume to the volume of an exciton: these splittings
are therefore very small for loosely bound excitons.
The magnitude of the spin- or charge-density wave or
current is also very small.
By treating the splitting terms as a small perturba-

tion in the Hartree —Fock theory, we have found that
the lowest energy state, in the simplest models, is
always the spin-density wave state (2).4 If coupling
to the phonons is included in the model, however, and
if the coupling to the phonons is suQiciently strong,
then the charge-density oscillation can have a lower
energy. The charge-density oscillation is, of course,
coupled to a lattice distortion which doubles the lattice
period, whereas in the antiferromagnetic state the lat-
"The idea that, under some circumstances, the energy of the

Hartree-Fock ground state of a crystal could be lowered by the
introduction of an antiferromagnetic spin oscillation was sug-
gested by J. C. Slater, Phys. Rev. 82, 538 (1951).Later, A. W.
Overhauser )Phys. Rev. Letters 4, 462 (1960)g proposed that the
nondistorted ground state of a metal will always be unstable in
favor of a state with a spin-density wave. Although it is in fact
true in the strict Hartree-Fock approximation that the normal
metallic ground state always has this instability, this is not true
when the exchange interaction is screened by the dielectric func-
tion of the electron gas. It is believed by most authors that the
nondistorted state will be unstable only for special kinds of band
structures I,'see, for example, Ref. 18).
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Effect of a crystal potential 
How do we go from Fermi surfaces for free electrons to Fermi surfaces in the presence of a weak 
crystal potential? We can make approximate constructions freehand by the use of four facts: 
(i) The interaction of the electron with the periodic potential of the crystal causes energy gaps at 
the zone boundaries. 
(ii) Almost always the Fermi surface will intersect zone boundaries perpendicularly. Using the 

equation for the energy near the zone boundary it is easy to show that 
2 1

2
( )dE

d m
= −k G

k
! , which 

implies that on the Bragg plane the gradient of energy is parallel to the Bragg plane. Since the 
gradient is perpendicular to the surfaces on which function is constant, the constant energy 
surfaces at the Bragg plane are perpendicular to the plane.  
(iii) The crystal potential will round out sharp corners in the Fermi surfaces. 
(iv) The total volume enclosed by the Fermi surface depends only on the electron concentration 
and is independent of the details of the lattice interaction. 
(v) If a branch of the Fermi surface consists of very small pieces of surface (surrounding either 
occupied or unoccupied levels, known as "pockets of electrons" or "pockets of holes"), then a 
weak periodic potential may cause these to disappear. In addition, if the free electron Fermi 
surface has parts with a very narrow cross section, a weak periodic potential may cause it to 
become disconnected at such points. 
Below we give a few examples for real metals. 

Alkali metals 
The radius of the Fermi sphere in bcc alkali metals is less than the shortest distance from the 
center of the zone to a zone face and therefore the Fermi sphere lies entirely within the first 
Brillouin zone. The crystal potential does not distort much the free electron Fermi surface and it 
remains very similar to a sphere.  

Fig.10 Fermi surface of sodium. 
 
The noble metals 
The Fermi surface for a single half-filled free electron band in an fcc Bravais lattice is a sphere 
entirely contained within the first Brillouin zone, approaching the surface of the zone most 
closely in the [111] directions, where it reaches 0.903 of the distance from the origin to the 
center of the hexagonal face. For all three noble metals therefore their Fermi surfaces are closely 
related to the free electron sphere. However, in the [111] directions contact is actually made with 
the zone faces, and the measured Fermi surfaces have the shape shown in Fig.11. Eight "necks" 

At all levels of theory, both Pb and Uuq are found to be
metals or semimetals. In Fig. 3, electronic band structures
and DOSs are compiled for the optimized crystal structures
of both elements, on NR, SR, and SO level of theory. In a
nonrelativistic world, both Pb and Uuq would be diamond-
like semimetals, with very low density of states at the Fermi
level. The ns and np valence electrons would form a con-
tinuous band with a total width of about 9 eV for Pb and 8
eV for Uuq. Including scalar-relativistic effects changes the
preferred crystal structures for both elements to fcc and both
are metallic. The ns valence bands are separated from the np
bands, and much more stabilized for Uuq than for Pb. Addi-
tionally, the unoccupied Uuq 8s band is lowered such that it
mixes with the top of the 7p band, at about 7 eV above the
Fermi level !note that for element 118 the strong relativistic
8s stabilization leads to a positive electron affinity77". The
Uuq 6d bands are destabilized compared to Pb 5d, leading to
considerable mixing of 6d and 7s in Uuq. Around the Fermi
level, however, both elements show similar properties. This
is in agreement with the results presented by Noffsinger and
Cohen.49 Including spin-orbit interactions brings little
change for the DOS of Pb. The spin-orbit splitting between
6p3/2 and 6p1/2 is found to be !so=4.1 eV, and between
5d5/2 and 5d3/2 to be !so! =2.5 eV, the latter in rather good
agreement with the 5d96s2 2D5/2 /2D3/2 splitting in Pb3+ !2.64
eV".78 The largest splitting in the 6p levels in atomic lead is
between the 3P0 and 1S0 with 3.65 eV.78 For Uuq, spin-orbit
interactions will lead to a change in crystal structure, from
fcc to hcp. The band splitting between 6d5/2 and 6d3/2 is
found to be about !so! =4.2 eV. From the fcc electronic band
structure !not shown here" we find a rather large splitting
between the 7p3/2 and 7p1/2 states of !so=7.0 eV, but in
agreement with previous atomic calculations which show
equally large spin-orbit effects.26,45

The Fermi surfaces of the metallic phases of Pb and Uuq,
as obtained from scalar-relativistic and spin-orbit calcula-
tions, are shown in Fig. 4. For Pb, the two sheeted Fermi
surface displays the well-known “jungle gym” topology with
a localized closed sheet at the zone center and tubes along
the zone edges. The influence of spin-orbit effects on the
Fermi surface is small, and results compare well with experi-
mental data and previous spin-orbit calculations.22 For fcc-
Uuq at the scalar-relativistic level of theory, the Fermi sur-
face is qualitatively very similar to Pb, albeit with a smaller
sheet in the zone center and more slender tubes, in agreement
with the findings by Noffsinger and Cohen. Spin-orbit ef-
fects, however, have a much more pronounced effect on fcc-
Uuq than on Pb: the zone center sheet is much smaller and
the tube network along the zone edges is reduced to dis-
jointed sheets centered around the K and U points. This ef-

fect originates in the large spin-orbit splitting of !so
=7.0 eV, which lowers the 7p1/2 band such that the Fermi
energy level is only 1.1 eV below the 7p1/2 band maximum.
In the preferred hcp structure, Uuq has one sheet in the zone
center and another sheet localized around the H point.

IV. CONCLUSION

We demonstrated that spin-orbit effects substantially
lower the cohesive energy for solid lead and Uuq, and also
lead to a structural phase transition for the latter which
adopts the hcp phase under normal conditions. The rather
low cohesive energy for Uuq !0.5 eV" is in good agreement
with Pershina’s estimate44 or the predicted low sublimation
energy of 0.23!+0.22"!−0.08" eV by Eichler et al.33,73 Here
we note that for the dimer of Uuq, Uuq2, Liu et al.39 have
calculated a dissociation energy of only 0.12 eV compared to
2.16 eV at the scalar-relativistic level. However, in contrast
to these gas phase results39 we find an increase in the
nearest-neighbor distance due to spin-orbit effects, thus the
large destabilization outweighs the contraction of the 7p1/2
shell. We predict that solid Uuq is less stable than solid Pb
and perhaps less stable than solid Hg, supporting the original
hypothesis by Pitzer in 1975 !Ref. 24" that spin-orbit effects
lead to a large increase in chemical inertness for Uuq.
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Fig. 1.1 a) Fermi surface of Sodium in the first Brillouin zone of the body centered cubic
lattice from Lee [5]. b) Fermi surface of lead in the first Brillouin zone of a cubic face
centered Bravais lattice. Figure from Hermann et al. [6]. c) Schematic representation of
the typical band structure of metals, semi-conductors, semi-metals, zero-gap systems and
insulators. Examples of materials corresponding to each class are indicated. Figure from J.P.
Issi [7]

more impurity energy levels emerge in the gap. As they begin to aggregate, an impurity
band is formed (figure 1.2.a). With further increase of the doping, the density of impurities
becomes high enough to permit the overlapping of the electronic wavefunctions; the electrons
start to delocalize and the conductivity becomes finite at T = 0. Here, the Fermi energy is
pinned in the impurity band (figure 1.2.b). It was to account for this charge delocalization
without a Fermi surface, reported in Si:P as an example [8], that Mott described metals in the
broadest sense as ’systems which conduct electricity at T = 0’ [9].

Finally, once the doping exceeds a critical value, the highest occupied band of the semi-
conductor and the impurity band begin to overlap marking the emergence of a Fermi surface
with bulk carrier concentrations as low as 1015 cm�3 in systems with large Bohr radius
[10]. This carrier density is to be compared to n ⇡ 1022 cm�3 in usual metals. The study of
doped semi-conductors leads to fundamental results as well as multiple applications amongst
which we find one of the building blocks of modern electronics : the transistor. Recently, it
was shown that narrow-gap semi-conductors can display a 3D-like Dirac dispersion. Those
systems, sketched as zero-gap materials in figure 1.1.c, have been actively investigated in the
context of topological materials.
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standard phonon mediation. Besides doped diamond39, such a 
correlation-driven mechanism has, for instance, been proposed to 
occur in doped fullerenes40,41.

Ab initio calculations within density functional theory performed 
on highly doped diamond42–47, silicon4,48 and silicon carbide49 con-
sistently led to the picture that for a doping range of a few per cent, 
the Fermi level lies a few tenths of an electronvolt below the top of 
the valence bands. These results were obtained either in the virtual 
crystal approximation (VCA)42–44 or supercell45–49 calculations for 
various cell geometries and doping concentrations. Furthermore, 
the effect of disorder on the electronic properties was studied with 
the coherent potential approximation50 leading again to the picture 
of a degenerate system with the Fermi level entering valence bands 
that have been broadened by disorder. This degenerate picture 

with no signature of an impurity band was rapidly confirmed by 
experimental angle-resolved photoemission experiments on dia-
mond films51. Additional evidence for deep localized states in the 
gap came from element-sensitive soft X-ray emission and absorp-
tion spectroscopy, together with the conclusion that in the bulk of 
a superconductive sample, the Fermi level of the normal state lies 
below the top of the valence band, in a region where boron-related 
delocalized states are also present52. But these theoretical and experi-
mental results were obtained in the very large doping limit, away 
from the MIT transition, and the question of what happens close to 
this transition remains open.

In the absence of a narrow impurity band, the best guess for 
explaining the superconducting transition is the phonon-mediated 
mechanism. Ab initio simulations explored this mechanism by 

At T = 0, semiconductors are insulators with their highest occupied 
electronic band and their lowest unoccupied electronic band of 
delocalized states separated by an energy bandgap with a chemical 
potential located at midgap. Randomly distributed chemical impu-
rities or structural defects, leading to localized states within this 
forbidden gap, may liberate (donor centres) or capture (acceptor 
centres) electrons. At non-zero temperature, the number of free 
carriers in the bands will depend on the ratio of the ionization 
energy of these centres (respectively Ed and Ea) to the temperature, 
yielding an activated electrical resistivity intermediate between 
that of an insulator and that of a metal (see Fig. B2a).

In heavily doped semiconductors, the impurity energy 
levels begin to aggregate into a narrow range of energy, known 
as an ‘impurity band’, a misleading term as the wavefunctions 
remain localized. Moreover, the dispersion of energy levels due 
to disorder contributes to the spatial localization of electronic 
states (Anderson localization). At higher concentration, when 
the impurities are close enough, quantum overlapping of their 
wavefunctions tends to delocalize them, leading to a metallic 

behaviour at zero temperature with a Fermi level pinned inside 
the impurity band (see Fig. B2b). Mott proposed that this simpli-
fied one-electron picture may fail, and that the conduction mecha-
nism would remain thermally activated even if the impurities were 
regularly spaced102. Indeed, because of strong on-site correlations, 
the spin-degenerate half-filled impurity band splits into an empty 
band and a full band (see Fig. B2c). On further doping, these two 
bands begin to overlap and the metal–insulator transition takes 
place (see Fig. B2d).

Moreover, at such doping levels, screening of the impurities 
modifies the ionization energy itself. Zero-temperature model 
calculations have shown consequently that, at the transition, the 
impurity-band states associated with the doping atoms become 
energetically unfavourable: on adding one more impurity to the 
critical concentration, all these states become extended. Their 
energies now lie near the edge but within the band of delocalized 
states. Narrowing of the intrinsic bandgap energy103 is yet another 
consequence of the increased screening by these new free carriers 
(see Fig. B2e).

Box 2 | Metal–insulator transition.

Figure B2 | Evolution of the electronic density of states and band structure with increasing p-type doping. Doping increases from a to e. Coloured 
area represents filled states.
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Fig. 1.2 Evolution of the electronic density of states and band structure with increasing
doping in a semi-conductor. Doping increases from a to e. Coloured area represents filled
states. Sketch from Blase et al. [11]

Low electronic concentration metallicity is also found in another class of solids : the semi-
metals. The electronic band structure of these solids reveals the existence of a small band
overlap (sketched in figure 1.1.c), far from what is observed in conventional metals. This band
structure leads to a small Fermi surface composed of hole and electron pockets. Amongst the
semi-metals we find graphite, which has a carrier concentration of ne = nh = 3⇥1018cm�3

and the non-insulating pentavalent elements such as Sb with n = 5⇥1019cm�3 (determined
from the study of quantum oscillations). While these carrier concentrations are similar to
those of doped semi-conductors, the absence of ionized impurities in semi-metals allows for
a strong suppression of the rate of resistive scattering events affecting charge carriers. As a
consequence, the mean-free-path of charge carriers in bulk semi-metals can be larger than in
metals or doped semi-conductors, to the point where ballistic conduction can be attained at
low temperatures. This regime of transport was reported in bulk Sb [12].

This observation makes bulk semi-metals great candidates to study the crossover from
ballistic to diffusive transport, a region where the highly anticipated hydrodynamic regime of
electrons is expected. This viscous flow of charge carriers was predicted by Gurzhi more
than 50 years ago [13] and has been a subject of great attention in the last couple of years,
both from a theoretical and experimental perspective [14, 15]. The hydrodynamic regime is
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expected to emerge as a deviation from the conventional Boltzmannian picture of transport
caused by an abundance of momentum-conserving collisions in comparison with boundary
and momentum-relaxing scattering events affecting quasiparticles. Experimental signatures
were discussed in potassium in 1984 [16] but the first experimental observation came ten
years later, in a 2D system, with the work of M.J.M. de Jong and L.W. Molenkamp [17]. No
other reports were found until very recently, when hydrodynamic electrons were spotted in
graphene [18, 19] and in the 3D metal PdCoO2 [20]. This observation, in a context where a
possible link between hydrodynamic transport and Wiedemann-Franz law breakdown was
suggested [21–24], lead us to compare the charge and heat transport properties of two bulk
semi-metals : WP2 and Sb.

The study of dilute metals allowed us to tackle another problematic : the existence
of a universal electronic ground state of a 3D metal beyond its quantum limit. This limit
corresponds to the confinement of all electrons in the lowest Landau level under the effect
of a sufficiently high magnetic field. For conventional metals, such as Cu, the cyclotron
energy remains much smaller than the Fermi energy unless several thousands of Teslas are
applied. This makes the quantum limit experimentally unattainable. But in the case of
dilute metals, only a few Tesla are sufficient to have comparable cyclotron and Fermi energy,
granting physicists an easy access to the study of bulk metals beyond the quantum limit. The
physics of a 3D electron gas in the quantum limit has been particularly studied in the case of
graphite and lead to the discovery of a succession of field-induced phases associated with
density-wave instabilities [25, 26] or in the topological insulator KHgSb [27]. To test the
hypothesis of a ubiquitous ground state, we decided to study another dilute metal with an
entirely different Fermi surface than graphite : Indium arsenide (InAs). This material is a
III-V semi-conductor with a quantum limit standing at only B = 4T [8] which remains largely
unexplored to this day.

In this thesis we will present electrical and thermal transport as well as thermoelectricity
measurements to address the two aforementioned thematics. Dilute metals, whether it is
because of their easily accessible quantum limit or because they offer millimetric electronic
mean-free-path, constitute a perfect playground for theses studies.

The next chapter will serve as a reminder of the theoretical elements at the cornerstone
of heat and charge transport in metals. Then, an overview of the experimental setup and
protocols applied throughout this work will be detailed in chapter 3. The core of the
experimental results acquired throughout the three years of this PhD begins in chapter 4 with
a study of the electrical transport and thermoelectric coefficients of the III-V semi-conductor
InAs in the quantum limit. We confirm the existence of a field-induced insulating state
followed, to our surprise, by a saturation of the resistivity and vanishing thermoelectric
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coefficients at higher field. This observation yields fundamental differences between the
ground states of graphite and InAs beyond the quantum limit. Then, chapter 5 will be
dedicated to the comparison of the thermal and electrical transport properties of another
dilute metal, WP2. We confirm the observation of a quasi-unprecedentedly high heat/charge
transport dichotomy, indicated by a previous report, which we explain without invoking
the initially proposed hydrodynamic regime of electrons. In light of this study of WP2, we
proceeded to probe the departure from the Wiedemann-Franz law in another semi-metal
with an even lower electronic density while retaining comparable purity. We will show
in chapter 6 that millimetric samples of antimony fits this role perfectly. In this system,
however, the phonons have a non-negligible contribution to the thermal conductivity. In a
context of clear separation of the electronic and phononic terms, we reveal the emergence of
1/B-periodic oscillations in the high field phonon thermal conductivity, which we associate
with electron-phonon scattering and a size-dependent Lorenz ratio (which describes the
heat/charge dichotomy). While we fail to unfold the origin of this last observation in a semi-
classical framework, the hydrodynamic picture developped in chapter 7 gives a coherent
explanation. This alternate description accounts for the deviation from the conventional
transport that we observe both for electrons and phonons in Sb.





Chapter 2

Introduction to Heat & Charge
Transport

Résumé du chapitre

Ce chapitre vise à introduire les éléments théoriques nécessaires à notre étude du transport
de charge et d’entropie dans les métaux dilués. Tout d’abord, l’étude du modèle de Drude-
Sommerfeld permettra d’établir la loi de Wiedemann-Franz dans le cadre d’un gaz d’électrons
libres. Ensuite, nous montrerons comment les différents processus de diffusion qui dominent le
transport électronique à température finie imposent une déviation à cette loi. Nous étudierons
ensuite l’autre canal de conduction de la chaleur présent dans les solides : les phonons.
Enfin, nous présenterons l’évolution d’un gaz d’électrons 3D dans un champ magnétique.

Summary of the chapter

In this chapter we will present the different theoretical results at the cornerstone of the
following discussions on the charge and entropy transport properties of dilute metals. Through
the study of the Drude-Sommerfeld model, we will establish the Wiedemann-Franz law
(WFL) for a free electron gas. Then, we will present how the emergence of inelastic
scattering at finite temperature drives a downward deviation from the WFL. On the contrary,
an upward deviation from the WFL can also emerge at finite temperature : we will discuss
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phonons as a second heat conduction channel in metals. Finally, we will focus on the
evolution of a 3D electron gas in a magnetic field to define the notion of quantum limit.

2.1 The free electron gas

Let us first approach the electrical and thermal transport properties of electrons within
the Drude model. This oversimplified classical model of the electron gas will still give a
good introduction to a fundamental law which is extensively discussed in this thesis : the
Wiedemann-Franz law. This result will then be specified by considering the quantum nature
of the electron with Sommerfeld model.

2.1.1 The Drude model : a first glimpse at the Wiedemann-Franz law

Basic premises Only three years after J.J. Thomson’s discovery of the electron (1897),
Paul Drude had the great idea to picture metals as gases of free electrons. He then derived a
classical theory of electrical and thermal conduction through the kinetic theory of gases. To
do so, he assumed the following hypothesis :

(1) The collisions are treated as instantaneous and uncorrelated events that abruptly alter
the velocity of an electron.

(2) Independent electron approximation Between collisions, a given electron does not
interact with other electrons.

(3) Free electron approximation Between collisions, a given electron does not interact
with the ions. Combined with the independent electron approximation, this implies
that electrons travel in a straight line between collisions if there is no external field
applied to the system.

(4) The probability of an electron undergoing a collision in a time interval dt is dt/t . The
time t , known as the relaxation time, does not depend on the position nor momentum
of the electron.

(5) Only collisions thermalize electrons. After a collisions, an electron is at the temperature
of its local environment.

DC-conductivity of a metal The great success of Drude model was to recover Ohm’s law
and to give an estimate of the resistivity at play. The conductivity s is defined by j = sE
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where j is the current density and E the electrical field. It can be further derived by the
equation of the drift acceleration of an electron in the stationary regime to reach the famous
Drude conductivity (eq.2.1).

s =
ne2t

m
(2.1)

Let us look at the implications of formula 2.1 for a usual metal with a room temperature
resistivity r ⇡ 1µW.cm. If we assume an electronic mass m = m0, the mass of the free
electron, and the usual n ⇡ 1022 electrons per cm3, we can evaluate the relaxation time at
t ⇡ 10�14s. It is easier to discuss this number in terms of mean-free-path between collisions
: l = v0t where we evaluated v0 ⇡ 107 m.s�1 from the classical equipartition of energy. We
determine that l ⇡ 0.1 to 1 nm in usual metals, close to the inter-atomic distance. While
this value is a classical and only a first order approximation, comparing it with experimental
reports such as the effective millimetric mean-free-path found at low temperature in Sb [12]
suggests that Drude’s hypothesis of electrons ’bumping’ off ions is wrong.

Thermal conductivity & first derivation of the Wiedemann-Franz law In spite of the
aforementioned issue, which is one of several, the Drude model still had a second great
success : a close-to-quantitative explanation of the empirical law of Wiedemann and Franz
(1853). They reported that the ratio k/sT at room temperature, where k is the thermal
conductivity, is very similar amongst all metals. To verify this hypothesis, let us compute
the thermal conductivity of a metal in the Drude model. Before doing so, we need to make
another bold assumption : all the heat flowing in a metal is carried by charge carriers. While
this hypothesis is often verified in high-conductivity metals, we will see in a next section that
the existence of a phonon contribution to thermal conductivity may complicate the study of
k . Finally, we mention that k is a tensor.

Just like in the case of electrical conductivity, we start off from a phenomenological
model : the Fourier’s law jQ = �k—T where jQ is the thermal current density. jQ is also
determined simply from a kinetic model : jQ = 1

3v2cv(�—T ) where cv = (dE/dT )/V where
E is the thermal energy of the electron gas and cv is named the electronic specific heat. We
thus reach equation 2.2. We also indicate that equation 2.2 is true for any type of quasiparticle
with associated specific heat, speed and mean-free-path.

k =
1
3

l ⇥ v⇥ cv. (2.2)
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If we now form the ratio between thermal and electrical conductivities, we see that
k
s =

1
3 cvmv2

ne2 . Thanks to energy equipartition, we find cv = 3
2kBn and 1

2mv2 = 3
2kBT , where kB

is Boltzmann constant.
We finally reach k

sT = 3
2( kB

e )2, i.e k/sT is a constant. Numerically, this value is close
to half what was reported experimentally at the time, but an error in Drude’s calculation
introduced an extra factor 2 which caused an unexpected good agreement of his model with
experimental reports. Yet, there’s more. When Drude evaluated the electronic contribution
to specific heat at room temperature, he overestimated it by a factor 100 while he also
underestimated the mean square electronic speed by close to 100.

Thank to this fortuitous cancellation of mistakes, Drude reached a result only 20% off
the Wiedemann-Franz law as we know it today. But in spite of his mistakes, the qualitative
agreement with the experiment was an impressive success at the cornerstone of the modern
electron theory.

2.1.2 Sommerfeld’s addition : exact Wiedemann-Franz law for non-
interacting electrons

The Fermi surface The aforementioned mismatch between the experimental specific heat
reported in metals and the value predicted by Drude cast a shadow over his theory. In
his model, he made the assumption that the electronic velocity distribution was that of an
ordinary classical gas of density n described by the Maxwell-Boltzmann distribution. The
number of electrons per unit volume with velocity v in a range dv around v is given by
equation 2.3.

fB(v) = n (
m

2pkBT
)3/2 e�mv2/2kBT (2.3)

Sommerfeld managed to describe the specific heat of metals with a single modification
of the Drude model : the electronic velocity distribution had to be replaced by the quantum
Fermi-Dirac distribution to account for the quantum nature of the electron (equation 2.4). In
this equation the constant T0 is determined by the normalization condition n =

R
f (v)dv and

typically reaches several 104K.

f (v) =
(m/h̄)3

4p3
1

exp(1
2mv2 � kBT0)/kBT +1

(2.4)

Because of the Fermi-Dirac distribution, the study of the ground state properties of the
electron gas in the Sommerfeld model yields a good approximate of its room temperature
properties : the characteristic temperatures at play are usually too large to cause a difference
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between the T = 0K and T = 300K properties of the free electron gas. Computation of the
ground state, starting from Schrödinger equation are detailed in the famous book by Ashcroft
& Mermin [1].

The solution defines a vast region of k-space which is allowed for the N non-interacting
electrons. The ground state correspond to the one by one filling, according to Pauli exclusion
principle, of the allowed one-electron levels in k-space. The resulting ground state is a sphere
and its surface separates the occupied states from the unoccupied states : this is the Fermi
surface which is defined by its radius kF . The electronic density, n = N/V , can now be
defined by equation 2.5 :

n =
k3

F
3p2 (2.5)

The Fermi temperature TF , Fermi energy EF and Fermi velocity vF are also deduced
from kF . We now wish to compute the thermal conductivity of the free electron gas in the
Sommerfeld model.

The Wiedemann-Franz law Passing from Drude to Sommerfeld model the electrons went
from a gas of free particles to a free fermion gas. As a consequence, the specific heat can no
longer be wrongfully described by the classical equipartition of energy as it was in Drude
model, rather it should include the Fermi-Dirac statistic.

The calculation yields a T-linear specific heat, featured in equation 2.6 [1]. This prediction
is in good agreement with experimental reports in alkali metals.

cv =
p2

3
(
kBT
EF

)nkB (2.6)

The mean square velocity is also modified : we switch from the classical thermal definition
of the electron velocity to the Fermi velocity vF which describes the quantum nature of the
electron.

On the contrary, the Drude expression for the conductivity remains unchanged : as long
as the relaxation time t is independent of energy and momentum and the electron trajectory
remain semi-classical, i.e. a quantum object following a classical trajectory, there is no
reason to observe a modification of the conductivity. s is still defined by equation 2.1.

Finally, we can construct the ratio k/s in equation 2.7 which accounts for the quantum
nature of the electron.

k
s

=
p2

3
(
kb

e
)2 ⇥T = L0 ⇥T = 2.44⇥10�8 W.W.K�2 (2.7)
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We recover here the Wiedemann-Franz law in the case of a free electron gas. The value of
the universal Lorenz number L0, now computed with Sommerfeld theory and consequently
named Sommerfeld value, is in very good agreement with the experimental observation
realised at room temperature in metals.

For further simplicity, we define the thermal resistivity in equation 2.8. The WFL is
satisfied when r = (WT ).

(WT ) =
L0T

k
(2.8)

Overall, this approximation gives a good description of the quantum behavior of conduc-
tion electrons, and allows to give a first accurate demonstration of the Wiedemann-Franz law
for non-interacting electrons. More general computation of the Wiedemann-Franz law, from
Boltzmann transport equation can be found in Ziman’s book [28]. We do not wish to develop
these calculations but emphasize the criterion of validity of the Wiedemann-Franz law : the
electrons must form a degenerate Fermi-Dirac assembly and only undergo elastic scattering
events.

2.2 Evolution of the Wiedemann-Franz law at finite tem-
perature

So far, we have ignored the existence of scattering events amongst charge carriers and between
charge carriers and phonons in the electronic transport properties. Yet, these scattering events
dictate the finite temperature electronic transport properties of metals. To remedy this lack of
attention, we will first present the distinction between small and large angle scattering events
before discussing the different scattering mechanisms which affect charge carriers. This will
lead us to the evolution of the Wiedemann-Franz law at finite temperature.

2.2.1 Small-angle & large-angle scattering

For any type of collisions between an excited electron and another quasiparticle, the electron
can be scattered right around the Fermi sphere. This process reverses its direction. We will
refer to this type of collision as horizontal (or large-angle) processes. Such scattering events
degrades both the momentum and the energy of the quasiparticle, and as a consequence
do not necessarily alter the validity of the Wiedemann-Franz law. Horizontal scattering is
illustrated in figure 2.1.
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Fig. 2.1 a) Sketch of the evolution of the maximum phonon wave-vector with temperature.
b) A schematic representation highlighting the difference between horizontal and vertical in-
elastic scattering. Both kinds of processes degrade heat transport. Their effect on momentum
transport is however very different. Arrows indicate scattering from one state to another.

Yet there are also vertical transitions, in which an excited electron loses all its extra
energy and falls below the Fermi level with no momentum relaxation. Such a process has
little effect on electrical conductivity but affects thermal conductivity as much as horizontal
scattering does. As a consequence, vertical transition are by definition inelastic processes and
they induce a deviation from the Wiedemann-Franz law. They are represented in figure 2.1.

We understand that horizontal and vertical scattering events will not contribute equally
to heat and charge transport : when calculating a ’relaxation time’ linked to one of these
scattering events, in the case of electrical transport, the presence of a (1� cosq) pondering
factor will disfavor small-angle scattering. No such term exists for thermal conductivity. This
unequal importance of vertical events for electrical and thermal conductivities, pulls down
the L(T )/L0 ratio at finite temperature and generates a finite-temperature breakdown of the
Wiedemann-Franz law both for electron - electron scattering and electron-phonon scattering
[28], which as we will see dominate at finite temperature.



14 Introduction to Heat & Charge Transport

2.2.2 Fermi liquid theory : electron - electron scattering

Let us first take into consideration the effect of electron - electron scattering on the transport
properties of a metal. To do so, we turn to Landau’s theory of Fermi liquids [29, 30]. It
describes the properties of fermionic systems at temperatures T ⌧ TF . While the most cited
example is normal-state liquid 3He, which will be discussed in Chapter 6, the Fermi liquid
theory can also be used to describe the low temperature electronic properties of metals. As
we know from the Drude-Sommerfeld theory, the N electrons present in a metal fill the Fermi
sea up to the Fermi surface and define the Fermi wavelength kF . Yet, this model does not
take into consideration how the presence of an electron affects the distribution of the other
electrons in its vicinity. The Fermi liquid theory accounts for this interaction, as long as no
phase transition is induced and that the screening of the Coulomb interaction is sufficient to
destroy long-range interaction. In this framework, a particle is associated with an effective
mass m⇤ and a lifetime tqp µ 1/(E �EF)2 to account for the interactions with other particles.
We refer to this renormalized particle as a quasiparticle.

The deeper the electron is in the Fermi sea, the shorter it lives; this feature illustrates
how the Pauli exclusion principle restrict the scattering events between electrons to particles
within a layer of thickness kBT around the Fermi surface. As a consequence, at T = 0, there
are no possible inelastic collisions between electrons. At finite temperature however, the
relaxation rate of the quasiparticles presents a T 2 dependence, which is the most characteristic
property of a Landau Fermi liquid.

In light of equation 2.1, the resistivity of a Fermi liquid can thus be written as r =

r0 + A2 ⇥ T 2 and as we have seen, all electronic collisions also contribute to the thermal
resistivity (WT ) (eq.2.8), we also expect a thermal resistivity (WT ) = (W0T )+B2 ⇥T 2 to
emerge.

At T = 0, electrons only undergo scattering events with impurities and boundaries of
the system : these collisions are elastic by definition and thus the Wiedemann-Franz law is
satisfied, i.e. r0 = (W0T ).

Let us now turn to the effect of the aforementioned pondering (1�cos(q)) factor present
in the T 2-dependent electrical resistivity. After integration, it leads to a mismatch between
the prefactors in the form of B2 > A2. As a consequence, in the presence of electron - electron
scattering : (WT ) 6= r .

As a conclusion, electron - electron scattering implies the existence of a finite temperature
downward deviation from the WFL. This phenomenon has been observed in the heavy
fermion systems CeRhIn5 [31] and UPt3 [32].



2.2 Evolution of the Wiedemann-Franz law at finite temperature 15

2.2.3 ’Ideal’ resistance of metals

In most metals, finite temperature transport is dominated by the scattering events involving
charge carriers and the lattice vibrations. The calculation of the so-called ’ideal’ resistance
of metals, due to electron - phonon collisions, can be realized in the Bloch-Grüneisen picture
[28]. The resulting electrical resistivity is presented in equation 2.9 whereas the thermal
resistivity associated with electron - phonon scattering is shown in equation 2.10.

re�ph µ T ⇥
Z kBT

h̄vs

0
(1� cos(q))sin(q)dq µ T 5 (2.9)

(WT )e�ph µ T ⇥
Z kBT

h̄vs

0
sin(q)dq µ T 3 (2.10)

The electron-phonon collisions yield a T 5 electric resistivity and a T 3 thermal resistivity
[28]. The higher exponent for charge transport is due to the variation of the maximal
wave-vector of the thermally-excited phonons with temperature : qph = kBT

h̄vs
: small-angle

phonon-scattering becomes more frequent with cooling. This is illustrated in the sketch of
figure 2.1.a. Therefore, the capacity of phonons to degrade a momentum current declines
faster than their ability to impede energy transport. This power-law difference leads to
L(T )/L0 < 1 in the intermediate temperature window (below the Debye temperature), when
phonon scattering dominates over e�-e�impurity scattering, but all phonons are not thermally
excited. This phenomenon is, for example, typically observed in elemental metals [33, 34].

According to Matthiessen’s rule, the contribution due to each type of scattering event add
up to form the total resistivity of the metal.

2.2.4 Normal & Umklapp scattering processes

In the case of electron - electron scattering, a purely electronic collision has been proposed
to relax the total momentum of the electron gas and to lead to a T 2 contribution to resistivity.
At first glance, such phenomenon can appear as surprising : the total momentum before and
after a collision involving two electrons should be conserved. In order to relax momentum,
the electron - electron scattering event must be accompanied by losing part of the total
momentum to the lattice. Two known ways for such a momentum transfer are often invoked
[35]. The first is Baber mechanism, in which electrons exchanging momentum belong to
two distinct reservoirs and have different masses. The second is an Umklapp process, where
the change in the momentum of the colliding electrons is accompanied by the loss of one
reciprocal lattice wave-vector
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Fig. 2.2 Illustration of an Umklapp inter-electronic collisions on a top view of the Fermi
surface of WP2. The arrows illustrate wave-vectors during an inter-band Umklapp and small-
angle scattering event. ~ki,n and ~k f ,n are carrier momenta, ~k f ,2 � ~ki,2 =~q and ~k f ,1 � ~ki,1 = ~G+~q.

A sketch of an Umklapp scattering event, in the context of electron - electron scattering
illustrated on a cut of FS of the semi-metal WP2 (presented in Chapter 5), is featured in
figure 2.2. We notice that the definition of the BZ plays a role in the defining a collision as
umklapp [36].

Of course, Umklapp events are not limited to electronic collisions, they also describe
resistive phonon - phonon scattering events. In that case, they are defined in opposition to
’normal’ scattering which conserve the total momentum of phonons. We will see in the next
section that if it was not for the existence of umklapp phonon-phonon scattering, the thermal
conductivity of solids would diverge with temperature.

2.3 Bosonic thermal conductivity : Phonons

So far, we have focused on the heat carried by charge carriers in a metal. We now turn to the
second heat conduction channel present in a solid : phonons. Because they are bosons, it is
easy to think of phonons as if they were a gas of particle. In elementary kinetic theory, it is
shown that the thermal conductivity can be written as equation 2.2 where cV is the phononic
specific heat , vS is the sound velocity and l the mean-free-path associated with phonons.

Phonon specific heat Considering each boson as a harmonic oscillator which satisfies the
Bose-Einstein statistic, we can define the specific heat from the internal energy U of the
system by equation 2.11 :
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cV =
∂

∂T

 Z

BZ

 
h̄w(q)

exp( h̄w(q)
kBT )�1

!
dq3

(2p)3

!
(2.11)

In the case where T ⌧ qD, where qD is the Debye temperature, we can assume that
optical modes are not excited : the thermal energy is too small. We are left with acoustic
modes only. This is the Debye approximation where w = vSq. The specific heat can thus be
re-written as eq.2.12 :

cV =
6

p2

Z •

0

∂
∂T

 
h̄vSq3dq

exp( h̄vSq
kBT )�1

!
(2.12)

Which can be written as equation 2.13 in the T ⌧ qD limit :

cV =
2p2

5

 
k4

B

h̄3v3
S

T 3

!
(2.13)

As a conclusion the low temperature specific heat of phonon behaves as T 3 in the low
temperature regime. As the temperature increases and T > qD, the Debye approximation
fails and the Dulong-Petit law is recovered : the specific heat saturates in temperature.

Phonon thermal conductivity In practice, the other key parameter for the phononic ther-
mal conductivity, the mean-free-path of the phonons becomes comparable to the sample
size at low temperature (proximity to the ballistic regime). As a consequence, the thermal
conductivity due to phonons behaves as kphonons µ T 3 in the low temperature regime (region
A in figure 2.3).

As temperatures increases, if we have only phonon-phonon normal scattering, which
conserves momentum, any heat current carried by phonons would not be dissipated and the
thermal conductivity would become infinite. We mention that at the difference with the heat
conduction of a gas, this is made possible by the absence of net conservation of ’particles’ in
a phonon gas.

The finite conductivity of the crystal emerges because of the existence of phonon-phonon
umklapp scattering. At high temperature, when U-scattering dominates entirely the phonon
flow, the thermal conductivity is found to scale as k µ T �1 [28]. This is the diffusive regime
of transport illustrated by region D in figure 2.3. But interesting features can emerge at the
crossover between the ballistic and the diffusive regime of phonons.

First, when umklapp scattering events emerge but remain rare, the thermal conductivity
is expected to evolve as k µ expqD/aT . This is the Ziman regime (region C in figure 2.3).
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Fig. 2.3 Predicted phononic thermal conductivity as a function of temperature. Regions
A,B,C and D correspond respectively to the ballistic, hydrodynamic, Ziman and diffusive
regimes phonons. Figure from Beck et al. [37]

Second, at the border with the ballistic regime, the emergence of a hydrodynamic flow
of phonons was predicted by R.N Gurzhi [13]. It is represented as region B in figure 2.3.
It was later observed in a handful of solids [38–42]. This hydrodynamic correction, with a
temperature dependence of the phonon thermal conductivity up to T 8, is central to this thesis
and will be extensively discussed in Chapter 7.

As a conclusion, the thermal conductivity of a metal can emerge from two channels :
charge carriers and phonons. While we expect the electronic component to be much larger
than the phononic one in metals, the example of Sb presented in Chapter 6 will show us
otherwise.

2.4 Heat & charge interplay : the thermoelectric tensor

So far we have considered the electrical and thermal conductivities. We will now consider
the interplay between heat and charge transport. In the broad lines, thermoelectricity refers
to the conversion of a temperature gradient to a voltage and vice-versa. We will focus on the
thermopower and Nernst coefficient.

2.4.1 Thermopower

Upon the application of a temperature gradient across a homogeneous metallic system, the
electrons at the colder end of the sample have less thermal energy than those at the hotter
end. This induces a net particle flow of electrons from the hot side to the cold side. As a
consequence, electrons accumulate at the cold end and voltage settles across the conductor.
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The Seebeck coefficient Sxx is determined through equation 2.14 where DxxT is the applied
temperature difference along the x-axis and DVxx is the voltage measured along the x-axis.

Sxx =
DVxx

DTxx
(2.14)

More fundamentally, we can think of the thermopower as a measure of the net entropy
carried per charge carrier. There are two contribution to the thermopower of metallic systems
: the diffusive one (Sd) and the phonon drag effect (Sp).

Diffusive thermopower Let us first give a qualitative overview of the diffusive ther-
mopower by considering a 3D free electron gas. The only electrons which contribute
are located in a layer of kbT near the Fermi surface. As a consequence, there are kBT/EF

electrons at play. The entropy carried by a charge carrier can be approximated to kBT/T per
e. As a consequence we expect the diffusion thermopower of a 3D electron gas to scale as
k2

BT/eEF .
This result is confirmed by a more detailed computation realised by Mott et al. [10] by

using the linearized Boltzmann transport equation for a degenerate metal in the relaxation
time approximation. It leads to the following expression 2.15 (s is the electrical :

Sd =
p2k2

BT
3e

(
∂ (s(E))

∂E
)E=EF

(2.15)

Sxx

T
=

p2

3
(
kB

e
)

1
TF

(2.16)

The diffusive thermopower falls to zero at T = 0 according to the 2nd principle of
thermodynamics. With increasing temperature, it is expected to increase linearly with
temperature [43]. Its amplitude is determined by the derivative of the conductivity, i.e. in the
Drude picture, by the derivative of the density of state, Fermi velocity and relaxation time of
the QP.

Phonon drag thermopower The second component of the thermopower is related to the
phonon drag effect : if the electron - phonon interaction is sufficiently strong, the ballistic
phonons ’drag’ the carriers along the temperature gradient. This results in an increased
thermopower. The magnitude of this phonon drag thermopower is directly linked to the
strength of the interaction between the charge carriers and the phonons [44]. Also, the
relaxation time associated with electron - phonon interaction must be shorter than the phonon
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- phonon characteristic scattering time, so that the phonon drag effect takes place rather than
an inter-phonon scattering event. This is why at high temperature the phonon drag effect is
exceeded by phonon-phonon Umklapp scattering. At low enough temperature, the phonon
drag also becomes negligible : there are not enough populated phonon modes to significantly
contribute to the thermopower. As a consequence, the thermopower due to phonon drag
peaks at finite temperature.

2.4.2 Nernst effect

The Nernst effect is a second thermoelectric effect which we will study in this thesis. It was
reported for the first time in bismuth by Nernst and Ettingshausen in 1886. The Nernst, or
Nernst-Ettingshausen effect corresponds to the appearance of a transverse voltage (along the
y-axis) upon the application of a thermal gradient (along the x-axis) of a sample in presence
of a magnetic field (along the z-axis).

It is written as (see equation 2.17) where b = Lx/Ly is a geometric factor, DxxT is still the
applied temperature difference along the x-axis and and DVxy is the voltage along the y-axis.

Sxy =
DVxy

|DTxx|⇥b
(2.17)

Just like in the case of the thermopower, quasiparticles contribute to the Nernst coefficient.
We also mention that, in the case of a compensated system such as Sb (Chapter 6) or WP2

(Chapter 5), an ambipolar Nernst effect can arise. It was, for example, observed in the metal
NbSe2 [45]. Another contribution to the Nernst effect, due to vortexes, is relevant in the
context of superconductors but will not be discuss in this thesis.

Quasiparticle contribution Let us first focus on the case of a single type of carriers and
a single energy band. The linearized Boltzmann transport equation applied to a degener-
ate metal in the relaxation time approximation provides a simple formula for the Nernst
coefficient [46]. It is featured in equation 2.18.

Sxy,qp =
p2k2

BT
3e

(
∂ (sxy(E))

∂E
)E=EF

(2.18)

In order to estimate the order of magnitude of equation 2.18, we can approximate the
quasiparticle contribution to the Nernst coefficient by the expression 2.19 where n = Sxy/B.
This approximate value indicates that high carrier mobility µ (low effective mass, high
relaxation time) and low Fermi temperature TF lead to high Nernst coefficients. This explains
why the Nernst coefficient of Bi is high : all conditions are fulfilled.
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n
T

=
p2

3
kB

e
µ
TF

(2.19)

While it is obvious that the Nernst coefficient evolves with magnetic field, we have not
discussed the evolution of the thermopower with applied magnetic field. We will see that the
thermopower is also greatly affected. We will discuss theses effects in the specific context of
the different systems studied in this thesis : u-InAs (Chapter 4) and Sb (Chapter 6).

Let us now pursue with the effect of an external magnetic field on a 3D gas of electrons
and in particular on its electrical resistivity.

2.5 Magnetoresistance

The term magnetoresistance describes the evolution of the resistivity tensor of a material
when confronted to an external magnetic field. Let us discuss the origin of the general
magnetoresistance in metals as well as the Shubnikov-de Haas effect.

Magnetoresistance in the Drude model The classical equation of motion in an external
electromagnetic (E,B) field is written as eq.2.20.

m⇤ d~v
dt

= �e(~E +~v⇥~B)� m⇤

t
~v (2.20)

If we define bµ as the mobility tensor of the electrons, their velocity in the stationary state
is written as equation 2.21.

~v = bµ.(~E +~v⇥~B) (2.21)

Let us continue with the simplest Fermi surface : a spherical FS. The magnetic field is
applied along the z-axis : ~B = (0,0,B). We deduce the conductivity tensor and its inverse the
resistivity tensor br featured in equation 2.22 from the relation ~j = �ne~v = bs~E [47].

bs(B) =
ne

1+ µxµyB2

 
µx �µxµyB

µxµyB µy

!

br(B) =
1

neµxµy

 
µy µxµyB

�µxµyB µx

! (2.22)

Since the velocity along the magnetic field is not affected by the Lorenz force, there is
no longitudinal magnetoresistance. More surprisingly, the transverse magnetoresistance rxx
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and ryy for a single spherical FS with mobility anisotropy is also null (see equation 2.22).
This result contradicts our intuitive understanding of magnetoresistance. Yet, a finite Hall
resistivity rxy = �ryx = �B/ne emerges. In this model, the Hall resistivity is proportional
to the carrier density.

Magnetoresistance in semi-metals We now turn to semi-metals where electrons and
holes coexist. We define the mobility tensor for holes as bn and the hole density p. The total
conductivity is now written as bs(B) = bse(B)+csh(B). This leads to equation 2.23 where si, j

are given by equation 2.24.
 

se1 +sh1 �se2 +sh2

se2 �sh2 se1 +sh1

!
(2.23)

se1 =
neµx

1+ µxµyB2 se2 =
neµxµyB

1+ µxµyB2

sh1 =
penx

1+nxnyB2 sh2 =
penxnyB

1+nxnyB2

(2.24)

We finally reach the expression 2.25 for the transverse magnetoresistance of a semi-metal.
In the high field limit, µxµyB2 � 1 and nxnyB2 � 1, this expression becomes equation 2.26.
In the uncompensated case, n 6= p, the magnetoresistance saturates at high field. On the
contrary, in the compensated case n = p, the magnetoresistance never saturates and exhibits
a B2 dependence at high field. With simultaneous holes and electrons, the Hall resistivity
at high field is now given by equation 2.27 [1]. An illustration of the magnetoresistance
of three semi-metals, Bi, Sb and WTe2, is shown in figure 6.2.a. Finally, we mention that
multi-valley systems (only one type of carrier, but with more than one valley) also exhibit
magnetoresistance effects [47].

rxx =
se1 +sh1

(se1 +sh1)2 +(se2 �sh2)2 (2.25)

rh f
xx ' 1

e

( n
µy

+ p
ny

)B2

( n
µy

+ p
ny

)2 +(n� p)2B2 (2.26)

rh f
yx ' �B

e
(n� p)2B2

( n
µy

+ p
ny

)2 +(n� p)2B2 (2.27)

Let us now discuss another a magnetoresistance effect which can be used to probe the
Fermi surface of a metal : the Shubnikov de Haas effect.
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Fig. 2.4 a) Quantized energy levels of a 3D electron gas in a magnetic field. The electrons
are confined in Landau cylinders for B 6= 0. Only states within the Fermi sphere, |k| < kF
are occupied. b) First observation of QO in magnetization measurement (dHvA effect) of
Bismuth at T = 14.2K.

Quantum oscillations In 1930, Shubnikov and de Haas observed the existence of oscilla-
tions in the magnetoresistance of Bi at low temperature. This first observation, at T = 14.2K,
is reported in figure 2.4.b. Soon after this discovery, de Haas and van Alphen also reported the
observation of similar oscillations in the magnetization of bismuth. Over the years, similar
observations have been made in other metals.

It was Landau who gave the first explanation of these quantum oscillations. When an
external magnetic field is applied to a 3D electron gas along the z-axis, the energy dispersion
is quantified in the perpendicular plane, i.e. the (x,y) plane. Each level, named Landau level,
corresponds to a quantum number n and is degenerate so that the kinetic energy along the
magnetic field remains unchanged. The energy of the nth spin-split Landau level is given
by equation 2.28 where g is the Landé factor and µB the Bohr magneton. A sketch of the
resulting LL is presented in figure 2.4.a. The levels are separated by a constant energy which
depends linearly on the magnetic field h̄wc = h̄e

m⇤ B. As the field increases, the Landau levels
are more and more distant and less and less LL satisfy E < EF , i.e. less and less Landau
levels are populated.

En = (n+
1
2
)h̄wc +

1
2

h̄2k2
z

m⇤ ± 1
2

gµBB2 (2.28)
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When the field becomes large enough so that the thermal energy is smaller than the LL
spacing, h̄wc > kBT , and that wct � 1, the density of state at the Fermi level varies brutally
when a LL crosses the Fermi level : oscillations emerge in the thermodynamic and transport
properties with a frequency 1/B.

Consequently, the QO yield a direct access to the electronic structure of metals. The period
of the oscillations is linked to the cross-sectional area of the Fermi surface perpendicular to
the applied magnetic field. It is given by the Onsager relation (equation 2.29) where AF is
the aforementioned cross-section. To this day, the study of QO remains largely used to probe
the FS of metals.

D(
1
B

) =
eh̄

EFm⇤ =
2pe

h̄AF
(2.29)

The amplitude of the magnetization oscillations was explained by the original theory
of Lifshitz and Kosevich [48]. This result was computed in the case of 3D metals with an
arbitrary dispersion E(k) when the LL spacing is smaller than the characteristic dispersion
along the direction of the field. This formula, written in equation 2.30, describes the smearing
out of the Fermi Dirac distribution at finite temperature. In uncorrelated metals, the LK theory
is also often used to describe the amplitude of the SdH oscillations. Only the temperature
dependence is detailed in equation 2.31 as we will discuss it later in this thesis where

u(B) =
2p2kBm⇤

eh̄B
. All other details of the LK theory can be found in Shoenberg’s book [49].

A(B) = RT (B,T )⇥RD(B)⇥RMB(B)sin(2p f0

B
+F)) (2.30)

RT (B,T ) =
u(B)T

sinh [u(B)T ]
(2.31)



Chapter 3

Experimental aspects

Résumé du chapitre

Ce chapitre décrit les différents instruments de mesure et la fabrication des porte-échantillons
utilisés pour mesurer les propriétés de transport électrique et thermique et de thermo-
électricité présentées dans cette thèse. En particulier, nous présentons l’insert construit au
sein notre groupe afin de pouvoir mesurer k , r et S dans une configuration 4-point dans
un PPMS. A travers la vérification expérimentale de la loi de Wiedemann-Franz dans un
échantillon d’argent à B = 0T et B = 10T, nous assurons le bon fonctionnement de cet insert
sous champ.

Summary of the chapter

This chapter describes the material and the experimental protocols which have been used to
measure the electrical and thermal conductivities as well as the thermoelectric coefficients
reported in this thesis. In particular, we present the home-built insert designed to measure
k , r and S in a 4-terminal configuration in a PPMS. The proper functioning of this stick is
ensured by the experimental recovery of the WFL in silver at B = 0T and B = 10T.
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3.1 Cryogenics & Magnets

We start with a presentation of the cryogenic systems and their associated magnets available
in our group and in high-field facilities where some experimental part of this work has been
carried out.

3.1.1 Physical Property Measurement System : PPMS

The Physical Property Measurement System (PPMS), constructed by Quantum Design, is
our go-to system for measuring transport properties between T = 1.9K and T = 400K while
applying a magnetic field up to B = 13.8T. The cryostat is cooled by a circulation of 4He gas
while the magnetic field is generated by a superconducting Nb3Sn-based magnet. A residual
field up to B = 120Oe can be found in the magnet.

The PPMS is equipped with 12 wires, each able to carry up to I = 2A, which directly
connects the bottom connector inside the sample chamber to an output. The bottom connector
can only be connected to a compatible sample holder, named a ’puck’. This puck is at the
foundation of all of the PPMS measurement inserts. We also underline the presence of a
low-frequency lock-in amplifier for 4-point resistivity measurements. This built-in option is
however limited to a maximal current I = 5mA injected in the sample. If a higher current is
required, we rather use a Keithley 2100 as the current source.

Besides these basic features of the PPMS, one can add accessories and options. In our
case, the PPMS was equipped with the horizontal rotator accessory. This system, composed
of a rotation stick and a motor, plugs in the PPMS and allows resistivity measurements with
variation of the relative angle between the magnetic field and the sample holder. The rotation
is restricted to a plane. More options can also be bought to tune one’s PPMS to advanced
experimental capacities.

But one may also develop his plug-in accessories for specific measurements. The main
criteria is, as mentioned before, the compatibility with the 12 pins at the bottom of the sample
chamber. With that in mind, we built a thermal transport and thermoelectricity measurement
stick where the 12 pins are connected to 2 thermometers and one heater (3⇥4 contacts) in
order to locally probe/heat the temperature of a sample, fixed on a cold finger. An additional
line of 12 copper wires emerges from the top of the stick. These additional copper wires
allow resistivity and thermoelectricity measurements of the sample.

One of the main concern when building this stick was to ensure that the temperature of
the sample chamber was not affected by the presence of the stick. To do so, the stick was
equipped with screens to damp thermal leak. The thermometry of the stick as well as a test
experiment on a silver sample is featured bellow.
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Figure 3.8 – Panneau a : bobine supraconductrice 17 T utilisée lors de cette thèse.
Une source de courant keithley délivrant jusqu’à 3 A est connectée à la bobine en
place de la source de courant habituelle afin de produire des champs de zéro à 3800
G. Un étudiant peu consciencieux a laissé un tabouret métallique trop proche de la
bobine lors d’une mesure à 17 T. Panneau b : principe de fonctionnement d’un
réfrigérateur à dilution. La puissance frigorifique est assurée par la dilution de la phase
surnageante de 3He (bleu clair) vers la phase mixte (bleu foncé). Le porte échantillon
est thermiquement connecté à la chambre de mélange.

remettre à l’équilibre, l’hélium 3 migre vers la phase condensée ce qui nécessite un
coût énergétique. Ce coût est payé en pompant de la chaleur au système, entraînant
par conséquent le refroidissement de la chambre de mélange. Le 3He évaporé par le
bouilleur est récupéré et réinjecté dans la chambre de mélange en passant à nouveau
par le bain à 4.2 K, le 1K-pot puis en étant refroidi par la phase diluée remontant vers
le bouilleur.

La dilution que nous utilisons est fabriquée par cryoconcept et fonctionne sur le
même principe à un détail prêt : il n’y a pas de 1K-pot présent sur ce système. A
la place, un compresseur est utilisé pour injecter le mélange à environ 800 mbar. A
cette pression, la température de liquéfaction du mélange passe au-dessus de 4.2 K
permettant d’amorcer le processus. Une fois la dilution lancée, le mélange liquéfié,
et la température de base atteinte le système s’auto-entretien, le compresseur peut
être éteint. Notre dilution permet d’atteindre au mieux, sans mesure, une trentaine de
millikelvin.

3.5.3 Porte-échantillon

Le réseau de sondes de Hall est collé à la laque d’argent à une plaque en cuivre
disposant de 22 pads en or. Ces pads sont ensuite contactés aux di�érents contacts du
réseau de sondes de Hall à l’aide d’une machine à câblage par fil. La plaque de cuivre
est ensuite collée au porte-échantillon, là aussi à la laque d’argent.

Le porte-échantillon, en cuivre, est fixé à la chambre de mélange. Il consiste en

Fig. 3.1 a) The cryostat is equipped with a superconducting magnet (reaching up to B = 17T)
at ESPCI Paris. One may notice the metallic stool left by an unnamed student during a field
sweep up to B = 17T. b) Schematic representation of a dilution fridge. The cooling power
emerges from the dilution of the light phase (3He) to the mixed, and heavier, phase (deep
blue). The sample holder is in thermal contact with the mixing chamber. Figure from C.
Collignon [50].

3.1.2 Dilution Fridge

While the PPMS covers vast ranges of temperature and magnetic fields, the study of certain
phenomenon requires sub-Kelvin temperatures and even higher magnetic fields than B =

13.8T. In that case, we turn to a dilution fridge equipped with a 17T-magnet (figure 3.1.a).
One should also keep in mind that a residual field, from the superconducting magnet, can be
applied to the sample.

The working principle of a dilution fridge is described in figure 3.1.b. Its cooling process
is based on the phase equilibrium of a 3He/4He mixture and is already extensively described
in the literature. The base temperature of this fridge is T ⇡ 30mK.

The insert which was mostly used during this thesis has 26 phosphor bronze wires which
directly connect the bottom pins, to which the wires of the sample holder are soldered, to the
output connector at the top of the stick. Naked sample holders (SH) are bulk pieces of copper
with a bottom M8-screw, which are crafted to fit on the stick and equipped in function of
the experiment and the ranges of temperature/magnetic fields we wish to focus on. Further
details on thermometry, crucial for thermal transport and thermoelectricity experiments, are
detail in the next sections.
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3.1.3 High-field facilities

Our study of dilute metals beyond the quantum limit, presented in chapter 4, lead us to
measure the resistivity and thermoelectric properties of some samples up to very high fields.

Static fields We were able to conduce electrical transport experiments in static field up to
B = 33T down to T = 0.4K in the HFML in Nijmegen, Netherland and electrical, thermal
and thermo-electrical transport up to B = 35T, also static, down to T = 0.3K at the LNCMI
Grenoble, France. The low temperatures were attained with 3He refrigerators.

The high static fields, amongst the highest in the world, are generated by resistive
magnets. The constituting solenoids are made out of resistive metal (copper), as opposed
to superconducting magnets, which permit a very high current flow in the magnet and thus
generates high magnetic field as well as large Joule heating. In order to dissipate the heat,
the magnet is cooled down by a high-debit water cooling system (thankfully, a river flows
next to both facilities). Another limitation of the coil is its mechanical resistance to the large
stress caused by the Lorentz force at high-field.

Pulsed fields To probe the quantum limit even deeper, we measured graphite and InAs
samples in pulsed field up to B = 56T for InAs and B = 88T for graphite down to T = 1.5K.
The cooling is ensured by a 4He system while the field is generated by the synchronized
discharge of a bank of capacitor in a triple nested coil [51]. Synchronisation, determination
of the field, heat dissipation and Lorenz force are only part of the issues emerging when
working with pulsed fields of this amplitude.

Finally, let us look at the energy scales of these experiments. The energy required to
generate a pulsed magnetic field of B = 90T is P ⇡ 12MJ, sensibly the same energy to
maintain a static field of B = 30T during 1 sec. We can look at these numbers from a
very french energetic perspective with the following elements of comparison : one person
travelling from Paris to Marseille in a high-speed train consumes around 200kJ (1/60 of a
B = 90T pulsed field) whereas a cyclist over the entire Tour de France burns around 100MJ
(⇡ 8 seconds in a static field of B = 30T).

3.2 4-point measurement setup

Let us first remind the fundamental difference between a 4-point measurement in comparison
to a 2-point one. In the case of a 4-point setup, the current is injected via 2 electrodes while
the tension is measured through 2 other electrodes. A 2-point setup, on the contrary, uses the
same two electrodes to inject the current and to probe the voltage difference.
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Fig. 3.2 a) Transverse magnetoresistivity measurement geometry b) Longitudinal magnetore-
sistivity measurement geometryc) Hall resistivity measurement geometry

When a resistance is measured in a 2-point configuration, the measured resistance is the
sum of the resistances of the sample and the contact resistance. While this may not be a
problem for large resistances, it might induce a large discrepancy when measuring small
resistances (high conductivities).

A 4-point configuration, on the other hand, excludes the contact resistances. Even in the
case of poor contact quality, leaving aside heating and other problems associated with high
contact resistances, the measured resistance is reliable. The calculation for the 2 scenarios is
straightforward and can be found easily in the literature.

3.3 Electrical resistivity measurement

Let us now turn to the protocol and common considerations for electrical transport. We
first introduce the features of the typical sample holder used for these experiments and
discuss experimental considerations one should bear in mind when measuring r . The various
geometries of transport in presence of a magnetic field will be presented first.

3.3.1 In-field geometries

Throughout this thesis we will discuss magnetoresistivity measurements in different geome-
tries. These geometries are introduced here. The transverse and longitudinal geometries are
determined by the relative orientation of the injected current and the magnetic field while the
Hall geometry is specific to probe the Hall effect. A supporting sketch is shown in figure 3.2.

The transverse geometry (Fig 3.2.a) correspond to an applied electrical current jQ orthog-
onal to the applied magnetic field B. The voltage is probed in the direction of jQ.

The longitudinal (Fig 3.2.b) geometry corresponds to colinear applied electrical current
jQ, magnetic field B and voltage probes.
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Finally, in order to measure the Hall resistivity B and jQ are set orthogonal to maximize
the signal and the voltage is probed perpendicularly to the direction of jQ (Fig 3.2.c).

3.3.2 Sample holder

To build a sample holder (SH) for an electrical transport measurement for the dilution fridge
is a straightforward task : starting with the bare sample holder, which has to ensure good
thermal connection with the mixing chamber in a dilution fridge, we had electrical pins on
the top surface, a RuO2 resistor to serve as a SH heater and a pre-calibrated thermometer
glued to the SH with high thermal conductivity varnish or paste (Lakeshore GE Varnish or
Dupont silver paste as examples). The sample is then glued on the SH with GE Varnish and
Ag or Pt wires (25µm diameter) are fixed on its surface with silver paste. For all samples
contacted with silver paste presented in the study the contact resistance remained sub-ohmic
down to mK temperatures. The contact wires fixed on the sample are finally connected to the
pins and copper wires are soldered to connect the pins of the SH to the insert.

3.3.3 Experimental banana skin : electrical transport

Here are presented some common considerations one should keep in mind when measuring
the electrical resistivity of a material down to very low temperatures. The first regards the
temperature : one should always ensure that good thermal contact between the sample holder
and the sample is achieved. The second, closely linked to the first, is to always check for
self-heating due to a large current entering the sample and heating it by Joule effect. A
simple check is to verify reproducibility of the result with different currents. This has to be
emphasized when measuring systems with a very large magnetoresistance.

Speaking of large magnetoresistance, the presence of a residual field applied to the sample
by a superconducting magnet, as small as B = 100Oe, can radically transform the outcome
of an experiment. As an example, we will present in the following thesis the resistivity of a
large slab of Sb, which, at T = 2K is off by a factor of 4 in presence of a field of B = 100Oe.

Finally, when measuring the magnetoresistance one should check for misalignment. In
the longitudinal configuration this can be done by rotating the sample in order to minimize
the Hall effect. For the transverse geometry however, this is linked to experimental material
and setup.

While this section can seem a little sanctimonious, it is not the intent. It should rather
serve as a reminder for future student working on electrical transport of high MR compounds.
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Fig. 3.3 a) Photography of the sample holder used to measure, amongst other, the thermal
conductivity, thermopower and Nernst coefficient in the (1⇥5⇥10) mm3 Sb sample fixed
on the cold finger. b) Zoom on the sample. The cold finger, hot and cold thermometer and
sample heater are indicated by arrows. c) Schematic representation of the sample holder [43].

3.4 Thermal conductivity and thermo-electrical measure-
ments

Let us now turn to the experimental setup and protocol behind our reports on thermal
conductivity and thermoelectric coefficient.

3.4.1 Setups

A thermal conductivity and thermoelectricity setup is only slightly more complex to imagine
than an electrical transport one. However, it is much more cumbersome to fabricate. As an
example, a photo of a thermal transport sample holder with a large Sb sample installed is
featured in figure 3.3.a and explained by the sketch in figure 3.3.c.

The thermometers used to probe locally the temperature of the samples are either Cernox
chips CX-1010/CX-1030/CX-1050 (chosen upon the temperature range of interest) or RuO2-
base thermometers (which display a small magnetoresistance). The temperature of the
thermometer is determined by the evaluation of the 4-point resistivity of the thermometer. To
do so, 2 pairs of twisted manganin wires (to increase length) are soldered to the thermometers
on one side and soldered to contact pads, glued at the bottom of the SH on the other side.
The use of twisted manganin wires ensures electrical conduction without thermal loss. To
probe the temperature of the sample, the thermometers are then connected either directly
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on the sample (with silver paste or GE varnish) or, if the size of the sample forbids a direct
connection, via Ag or Pt wires of small diameter. A heater, most usually a RuO2-based
resistor, is then connected to one extremity of the sample and its resistance is measured
in 4-terminal configuration. The other extremity of the sample is connected to the cold
finger, i.e. the sample holder, with a high thermal conductivity paste (GE varnish or silver
paste again). Finally, a shield set to protect the thermometry from radiation and the sample
chamber is thoroughly carefully pumped at T = 300K to avoid thermal leaks.

The measurement is realised by sending a current in the sample-heater while probing its
voltage difference in order to determine the heating power and after the sample-thermometers
reach a steady regime, by measuring the temperature at two difference points of the sample
to construct the temperature difference. The ratio of these two quantities divided by the
geometric factor yields the thermal conductivity of the sample.

However, one needs to ensure that no thermal leak or contamination happens in the
system and poisons the measurements. This is the subject of the next section.

3.4.2 Excluding thermal leaks

We wish to prove that the manganin wires are resistive enough to isolate thermally the
thermometers and the heater from the sample holder, and as a consequence, yield a reliable
measure of the local temperature of the sample

In the following chapters we will report on thermal conductivities up to T = 30K. At
these temperatures, the thermal conductivity of manganin is k = 4.97W.K�1.m�1 [52]. The
manganin wires have a diameter of 50µm and typical length of l = 20cm. The geometric
factor is a = 3.93 ⇥ 10�7m. The thermal conductance of the wires is thus kManganin =

2.0⇥10�6 W.K�1.
This value is more than 3 orders of magnitude below the thermal conductance of the Ag

or Pt wires connecting the thermometers and heater to the sample (in the situation where
they are directly glued to the sample) [52]. It is also negligible in comparison to the thermal
conductance of the samples presented below.

As a consequence, the heat loss through the manganin wires is negligible : all the heat
from the sample-heater is transferred to the sample while the sample-thermometers probe the
local temperature of the sample without contamination from the SH.

We mention another potential source of contamination : radiations. While they are
expected at high temperature, they can alter high precision measurements on high thermal
conductivity materials as early as T = 30K. A shield is present to damp this phenomenon but
the most efficient way to avoid it is to glue the thermometers directly on the sample.
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Finally, one last source of experimental error is improper pumping of the sample chamber
at T = 300K leading to traces of gas, especially He.

These potential source of experimental failure are to be kept in mind during thermal
conductivity and thermoelectricity measurements.

3.4.3 Recovering the Wiedemann-Franz law in Silver

In order to confirm our experimental protocol both at B = 0T and under an applied magnetic
field, we measured the thermal conductivity and electrical resistivity of a silver sample. We
measured a simple polycrystalline Ag wire with a 25µm diameter and 10mm length from
Goodfellow with a purity of 99.997%.

For metallic samples of such small limiting dimensions, the phonon contribution to
thermal conductivity is expected to be negligible in comparison with the large electronic
component. Considering that Ag is a common metal with a small magnetoresistance, in
which the Wiedemann-Franz law has been verified below helium temperatures, we expect to
recover the WFL both at zero field and in presence of a magnetic field at low temperature.

The resistivity, plotted as L0/r with L0 the aforementioned Sommerfeld value is shown
as a function of temperature both at B < 10Oe and B = 10T in figure 3.4.a alongside the
thermal conductivity, represented as k/T also for both fields. Both quantities increase with
decreasing values and saturate at the same value, within less than 5% error. This result is
confirmed both at B < 10Oe and B = 10T.

Following the definition of L(T ) given in the first chapter, We plotted the Lorenz ratio,
L(T )/L0 as a function of temperatures for both fields in figure 3.4.b. We do observe that
the WFL is experimentally recovered around T = 5K whether or not an external magnetic
field is applied and that upon increasing the temperature, the Lorenz ratio diverges from
the Sommerfeld value. This divergence, as discussed in Chapter 1, is associated with the
emergence of electron - phonon scattering at finite temperature.

As a conclusion, we have proven that our 4-point experimental setup and protocol is well
fitted to probe the electrical and thermal conductivities of metals down to T = 2K, even in
presence of an applied field as high as B = 10T.

Conclusion Most sample holder must be tailored to match the range of temperature/field
required for an experiment, leading to cumbersome fabrication steps. We also reminded the
reader of the most common experimental imprecisions to avoid in these measurements.

Now that we have reminded the theoretical minimum and the experimental elements
needed to discuss the work detailed below, we will get into the core of this thesis. The first
subject we will tackle is the study of undoped InAs and graphite in the deep quantum limit.
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Fig. 3.4 a) k/T and L0/r plotted for the Ag sample at B = 0T (red) and B = 10T (green).
The WFL is recovered when the two graphs, at equal field, meet. b) Lorenz number of the
Ag sample as a function of temperature plotted for B = 0T and B = 10T.



Chapter 4

Fate of the Fermi sea in the quantum
limit : InAs Vs Graphite

Résumé du chapitre

Le spectre électronique d’un gaz tridimensionnel d’électrons évolue vers un ensemble de
niveaux quantifiés sous l’effet d’un champ magnétique externe. À mesure que ce champ
augmente, le nombre de niveaux d’énergie peuplés diminue jusqu’au point où seul le dernier
niveau de Landau est occupé : le système a alors atteint sa limite quantique. Le spectre
électronique devient alors analogue à un système 1D pour lequel de nombreuses instabilitiés
électroniques sont attendues telles que des ondes de densité de charge (CDW) ou des ondes
de densité de spin (SDW) [53]. L’étude des propriétés électriques et thermoélectriques de
graphite jusqu’à B = 90.5T, bien au-delà de la limite quantique, révèle l’existence d’une
succession de trois phases induites par le champ magnétique qui ont été associées à la
formation d’ondes de densité. Afin de tester l’universalité de cette phase, nous présentons
une étude du tranport électrique et de la thermo-électricité dans un autre métal dilué : InAs.
Nous rapportons l’existence d’un état isolant induit par le champ magnétique associé à
l’ouverture d’un gap énergétique dans les conductivités électriques transverse, longitudinale
et Hall, sans signe de fermeture jusqu’à B = 56T. Ce résultat contraste avec l’observation
d’une résistivité hors-plan isolante qui coexiste avec des plans de graphène métalliques dans
graphite. À la lumière de cette comparaison nous concluons que l’état fondamental d’un
métal 3D au-delà de la limite quantique n’est pas universel mais propre à chaque système.
Enfin, nos mesures révèle une saturation vers un régime linéaire en champ et indépendant de
la température dans la résistivité haut-champ de InAs accompagné d’un thermoélectricité
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inattendue. Nous associons cette observation à l’existence d’un état de surface conducteur
dans InAs.

Summary of the chapter

The electronic spectrum of a 3D electron gas evolves to a set of quantized levels under the
effect of an external magnetic field. As the field increases, fewer energy levels are populated
up to the point where only the lowest Landau level (LL) is occupied : the system has reached
the quantum limit (QL). The electronic spectrum becomes analogous to a 1D system which
is highly sensitive to electronic instabilities such as charge density waves (CDW) or spin
density waves (SDW) [53]. In graphite, the study of low temperature electrical and thermo-
electrical properties up to B = 90.5T, far beyond the quantum limit, revealed the existence of
a succession of three field-induced phases associated with density wave (DW) transitions.
This observation raises the question of the existence of a ubiquitous ground state of 3D
metals beyond the QL. To answer this question, we report on the electrical and thermo-
electrical transport properties of another dilute metal beyond its QL : InAs. We observe in
this compounds a field-induced insulating state with gapped transverse, longitudinal and Hall
conductivities. This result contrasts with the observation of coexistent insulating out-of-plane
resistivity and in-plane metallicity in graphite. In light of this comparison, we conclude that,
despite some similarities, there is no universal ground state for a 3D metal but rather an
individual ground state associated with each system. Finally, our measurements in InAs show
a saturation into a B-linear temperature-independent resistivity accompanied by vanishing
thermoelectric coefficients at high field. The existence of a conductive surface states is
coherent with this observation.

4.1 Introduction & motivation

The observation of a succession of thermodynamic electronic phase transitions in graphite
ignited our interest for the study of another dilute metal in the deep quantum limit : u-InAs.
To set the stage for this study we will first introduce the fermiology of both compounds and
review the reports on the field-induced states observed in graphite.
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3.1. THE GRAPHITE LATTICE

Fig. 3.3: a) First Brillouin zone of graphite. It represents a regular hexadron. The charac-
teristic points are the centre G, the edge points K and K’, and the corner points H
and H’. Note that kz is given in units of c0/2p . The carriers occupy only a small
region along the H-K-H edge, which is schematically indicated by the pockets. b)
Bernal stacked graphite. Consecutive layers are shifted by the vector a0 given in
Fig. 3.1 a). The interaction between the carbon atoms are described by so-called
g-parameters.

scribes the interaction of carbon atoms within a graphite layer. The remaining parameters describe
interactions between atoms in various layers. The parameter g1 corresponds to the interaction of A
and B atoms stacked directly above each other. g2 describes the interaction between B-type atoms
in second nearest lattices. g3 and g4 describe the interaction between B-A atoms and A-B atoms,
respectively, which are not stacked directly one above the other. g5 determines the interaction be-
tween two second nearest A atoms. The parameter g6 � D reflects the inequivalence between the
atoms A and B once the presence of neighbouring layers is taken into account. The values of the
g-parameters used throughout this thesis are given in Table 5.1 (page 63).

Taking into account the symmetry of the graphite lattice and the coupling between the carbon
atoms, the SMW Hamiltonian is given by [2],
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Fig. 4.1 Schematic representation of the Fermi surface of graphite in the Brillouin zone by
S.B. Hubbard et al. [54]. The electron and hole pockets are located along the H-K-H and
H-K’-H direction of the BZ.

4.1.1 Fermiology of graphite

Graphite is one of the allotropic variety of crystalline carbon. It is made of a stacking of
hexagonal planar lattices of carbon, the graphene layers, along the c-axis [55].

Its electronic structure was first computed in the 50s. First, P.R. Wallace proved that
only the p bands close to the vertical edges of the BZ are relevant to the band structure [56].
Then, Slonczewski, Weiss and McClure showed that the electronic band structure can be
mapped out by a tight binding model in the graphene planes which interact through a hopping
term [57, 58]. This model was labelled the SWM-model. It revealed the compensated
semi-metallic nature of graphite with a small 3D Fermi surface composed of electron and
hole pockets with maximal cross sections respectively at kz = 0.00m�1 and kz = 0.35m�1.
The in-plane dispersion is parabolic for holes and electrons except at the H point of the BZ
where the linear dispersion is reminiscent of graphene. This Fermi surface, represented in
the Brillouin zone (BZ) for the hexagonal lattice, is shown in figure 4.1.

The electronic concentration of graphite was deduced from quantum oscillations : n ⇡
p ⇡ 3 ⇥ 1018cm�3. As indicated in the first chapter, a consequence of this low electronic
concentration is that the quantum limit is encountered as low as BQL = 7.5T. With further
increase of the magnetic field, a succession of field-induced states is observed.
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4.1.2 Field-induced states of graphite

In-plane resistivity up to B = 75T The first evidence of field-induced state of graphite
was reported by Tanuma et al. [59] and was later confirmed by a variety of experimental
studies which have been reviewed recently [60, 25]. The signature of this phase is illustrated
in figure 4.2.a with in-plane resistivity measurement up to B = 70T (along the c-axis) by
Fauqué et al. [61], at temperatures ranging from T = 1.5K to T = 10K.

The in-plane resistivity increases by several orders of magnitude upon the application of
a magnetic field before reaching saturating at B ⇡ 20T and a sharp increase of the in-plane
magnetoresistance is reported at B ⇡ 28T. This feature is suppressed for T > 10K. With
further increase of the field, Ra slowly decreases up to B = 70T. Besides this background
evolution, Ra also presents sharp features at high field. The first of these anomalies, labelled
a , corresponds to a sudden increase at a temperature dependent field. It is indicated by an
arrow in figure 4.2.a. This feature was linked to a change in the electronic ground state
of graphite [25]. The onset of the a-transition is shifted to higher magnetic fields as the
temperature increases and is suppressed above T = 10K. At higher field we observe another
structure in the in-plane resistance : a plateau near B = 35T emerges. This plateau is favored
by low temperatures and has been attributed to a second transition, labelled b on figure 4.2.a.
Upon further increase of the magnetic field, at B = 53T, we observe a drop of Ra back to the
low fields (a few Teslas) resistance values. For 53T < B < 70T, the resistivity decreases with
increasing field.

The evolution of the in-plane resistivity with temperature is illustrated at B = 64T in
figure 4.2.c. Ra present a B-linear magnetoresistance. While the temperature dependence of
the magnetoresistance is only plotted at B = 64T, we can easily transpose this result to other
fields from figure 4.2.a. The in-plane resistivity of graphite is metallic up to B = 70T.

Out-of-plane resistivity up to B = 75T We will now focus on the evolution of the out-of-
plane resistivity Rc of graphite as a function of magnetic field.

This quantity has been less studied for experimental reasons : the two varieties of graphite
with low stacking default, natural graphite and Kish, are flakes with millimetric in-plane
length and a c-axis extension of the order of ⇡ 10µm. It is thus extremely difficult to measure
the c-axis resistivity without any in-plane contamination. In addition, the anisotropy ratio
varies significantly between the different types of graphite.

Despite these difficulties, the study of the c-axis transport in the field-induced state has
been very fruitful [63] and revealed a remarkable sensitivity of Rc to the first field induced
states.
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Fig. 1. In combination with resistivity measurements (shown in
Supplementary Note 2) the ultrasound measurements reported
here lead to a detailed phase diagram of the high field states of
graphite presented in a semi-log plot in Fig. 2. Before discussing
in detail the various phases present in the phase diagram, let us
make a number of comments on its general shape. We distinguish
two main domes: dome A and dome B. Our ultrasound study is
restricted to dome A. When increasing the magnetic field the first
phase boundary that is crossed is associated with the α -transition
of dome A. Its boundary forms an almost straight line in the (B−1,
log(T)) plane, as seen in red in Fig. 2. This means that the critical
temperature and magnetic field, respectively T0 and B0, are linked
together through a simple formula: T0 ¼ T" exp #B"=B0ð Þ, where
T* is a temperature scale associated with the Fermi energy, and B*
a field associated with the Landau level dispersion along the field
direction8. This empirical expression can be understood as a BCS-
like formula for critical temperature., where the density of states
is proportional to magnetic field, as result of the degeneracy of the
Landau levels [6]. Dome A peaks at 50 T, with a maximum Tc =
10 K and then ends at a vertical phase boundary at 53 T, shown
by blue data points in Fig. 2. The subsidiary phases of dome A are
labeled Aα, Aβ, and Aγ. The destruction of phase A leads to
another field-induced state, called B. Dome B collapses abruptly
at 75 T and has a maximum Tc= 3.5 K25.

Below we describe the information that the ultrasound
attenuation and velocity yield regarding each of the phase
boundaries associated with dome A. The discussion is centered
around the comparison of in-plane and out-of-plane magnetore-
sistance shown in Fig. 3, and the temperature and frequency
dependence of ultrasound properties as a function of magnetic
field, that are shown in Figs. 4, 5.

α and β transitions. The onset of the transitions in the in-plane
resistance, Rxx, and the c-axis resistance, Rzz is illustrated in Fig. 3
at low temperatures. When the field is increased, Rxx first sharply
rises, then plateaus and finally increases again. The two successive
increases have been attributed to two successive transitions
labeled, α and β-transition24. In contrast Rzz does not show a
plateau, and only increases above a magnetic field close to the β-
transition. As previously noticed26, the α-transition barely affects
Rzz.

The first two peaks observed in the sound attenuation can
naturally be attributed to the α and β transitions. However, the
transition fields in ultrasound measurements differ slightly from
transport measurements. As shown in Fig. 5a, b, the magnetic
field at which the α and β attenuation peaks occur at a certain
temperature actually depends on the frequency of the sound
wave. The magnetic field positions of the attenuation peak at the
α transition is plotted as a function of frequency, for different
temperatures ranging from 0.7 to 6.2 K, and shown in Fig. 5c.
Each isotherm is well described by a simple formula:

f ¼ f0
B
B0

# 1
! "

: ð1Þ

Equation (1) is characteristic of an order parameter relaxation
process described by the so-called Landau−Khalatnikov (LK)
theory27, 28 first applied to sound propagation just below the
λ-transition in helium-429. The LK theory has been successfully
applied since then to various kinds of transitions ranging from
liquid/gas28, nematic/smectic30, ferroelectric31, and ferromagnetic
transitions32 (see ref. 28 for a review). The observation of such a
relaxation mechanism is a first evidence that a static, long-range,
3D order parameter appears at the α-transition in graphite. Below
the critical temperature Tc, when the sound wave frequency f
matches the order parameter relaxation rate 1/τ0 so that 2πfτ0= 1,
the energy absorption is the highest and an excess attenuation is
expected just below Tc. In the case of the λ-transition, as the
temperature gets closer to Tλ, τ is diverging as τ0

1#T=Tλ
and the

maximum in ultrasound absorption shifts further away from Tλ
as the frequency increases. Translating this theory to a field-
induced phase, the temperature is replaced by the magnetic field
and the transition occurs above the critical field B0 leading to Eq.
(1). We report on Fig. 2 the temperature dependence of B0(T) for
the α and β transitions. The comparison between the ultrasound
and transport measurements shows that B0,α matches with the
first anomaly in Rxx while B0,β matches the second anomalies in
Rxx (concomitant with the large increase in Rzz).

We note that the characteristic order parameter relaxation rate
1/τ0≈ 8 × 108 Hz found here at Bα= 36.1 T (Supplementary
Note 3) is small compared to a magnetic transition such as in
Ni32 where 1/τ0≈ 1014 Hz but it is large in comparison with the
CDW phase of NbSe2 where 1/τ0≈ 103 Hz due to the coupling
between the CDW and discommensuration domains33. As
discussed in Supplementary Note 3, this intermediate relaxation
time can be either the result of the coupling of the DW with the
lattice or with collective excitations of the DW condensate. Note
that in this experiment the field is oriented along the c-axis. It
would be interesting to study the angular dependence of f0 and
compare it with that of B013.

In Fig. 5b, we see that the location of the attenuation maximum
associated with the β transition has a similar frequency
dependence to that of the α transition. This indicates that the β
transition, which does not show hysteresis within our resolution,
is a second order transition. However, Fig. 5a shows that the
attenuation peak for the β transition increases more rapidly than
that of the α transition as a function of frequency. Different
behaviors at the two transitions are also found in the sound
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expected from a BCS-like description of the DW transition8. Dotted lines
are guides to the eye for the β, γ, and δ-transition lines. The boundaries of
dome B have been determined previously using Rzz25. The error bars of B0,β
have been estimated by measurements of Rzz in five different samples
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result, the spectrum is fully gapped, and an activated behavior is expected for any
direction of the current injection. This remarkable dichotomy between in-plane and
out-of-plane transport is the hallmark of a peculiar electronic organization that will
be discussed in the next section.

3 Theoretical overview of different electronic states expected for
a three-dimensional electron gas in the quantum limit

We wish to propose a short review of the theoretical ideas describing the electronic
organization in the quantum limit regime.

3.1 Field induced density waves

As early as 1968, Celli and Mermin found[36], within the Hartree-Fock approxima-
tion for a repulsive interaction, that the ground state of a 3D electron gas system in
a uniform magnetic field is subject to an electronic instability. According to their
work, at sufficiently low temperature, there is always a spin density wave directed
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we observe the emergence a sudden increase in resistivity (labelled a) on top of
this monotonic background. This sharp increase indicates a change in the electronic
ground state. The onset of the a-transition is shifting to lower magnetic fields as the
temperature decreases. A close look of the low temperature curves reveals the exis-
tence of additional structures, possibly associated with another transition [10, 12].
In particular at T=1.5K, a plateau in Ra has been observed near 35T and has been
attributed to a second transition, labelled b on Figure 4b). At higher magnetic field
(typically 53T) in-plane resistivity drops and erases the field-induced enhancement.
Remarkably, and contrary to the onset of the transition, the field at which this re-
entrance occurs is temperature-independent.
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Soon after the discovery reported by Tanuma et al.[9], Yoshokia and Fukuyama
[15] suggested that this field-induced state was the result of the formation of charge
density wave (CDW) along the magnetic field in the (n=0,+) LL of the electrons. As
we will discuss in the next section 3, while there is currently no consensus on the
precise nature of the density wave (DW) state, three experimental observations are
in agreeent a DW scenario. They are detailed below:
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two LLs (0,-) (for the electrons) and (-1,+) (for the holes) are occupied. As in the
case of the first instability, one can speculate on the formation of a CDW in the
two LLs or on an exciton-like state combining the (0,-) and (-1,+) LLs. However,
this picture is challenged by the second re-entrance field at 75T. If both LL (0,-) and
(1,+) are occupied, the depopulation of one LL implies the depopulation of the other
due to charge conservation. As a result, if one attributes the 75T re-entrance to the
depopulation of LL ((0,-) or (1,+)), the system should become an insulator, which
would contradict the result of the experiment. We have proposed another scenario,
sketched in the insert of Figure 7. At 53T, only one (and not two) Landau level is
depopulated. The LL (0,+) would then be depopulated at 75T, which would explain
the collapse of the second phase. Indeed, the only difference between both scenarios
is the number of LL which depopulate close to 53T (i.e. one or two). Recently,
Arnold et al.[12] have observed two resistance hysteresis (slightly below and above
53T) possibly associated with the destruction of two CDW states concomitant with
the depopulation of two LLs. We note however that in this scenario, the existence of
a second re-entrance transition at B=75T remains unexplained.

(ii) Why the in-plane resistivity blind to the phase transition at 53T? As one can
see in Figure 3, at low temperature and above 53T Ra has a monotonic behavior
which does not suggest a dramatic change in the electronic ground state. More pre-
cisely at B=64T, as it is shown on Figure.5b), Ra displays a metallic behavior with
a T-linear dependence. This is in contrast with Rc, which displays an activated be-
havior. This residual in-plane metallicity is indeed surprising and different from the
case of Bechgaard salts, which is a well-documented family of quasi-one dimen-
sional conductors hosting a density-wave transition. In the spin-density-wave sys-
tem (TMTSF)2PF6, all three components of resistivity display an activated behavior
with a gap of similar amplitude[47]. In the case of graphite, the in-plane kinetic en-
ergy is quenched by the magnetic field and a gap is formed along the c-axis. As the
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result, the spectrum is fully gapped, and an activated behavior is expected for any
direction of the current injection. This remarkable dichotomy between in-plane and
out-of-plane transport is the hallmark of a peculiar electronic organization that will
be discussed in the next section.

3 Theoretical overview of different electronic states expected for
a three-dimensional electron gas in the quantum limit

We wish to propose a short review of the theoretical ideas describing the electronic
organization in the quantum limit regime.

3.1 Field induced density waves

As early as 1968, Celli and Mermin found[36], within the Hartree-Fock approxima-
tion for a repulsive interaction, that the ground state of a 3D electron gas system in
a uniform magnetic field is subject to an electronic instability. According to their
work, at sufficiently low temperature, there is always a spin density wave directed
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two LLs (0,-) (for the electrons) and (-1,+) (for the holes) are occupied. As in the
case of the first instability, one can speculate on the formation of a CDW in the
two LLs or on an exciton-like state combining the (0,-) and (-1,+) LLs. However,
this picture is challenged by the second re-entrance field at 75T. If both LL (0,-) and
(1,+) are occupied, the depopulation of one LL implies the depopulation of the other
due to charge conservation. As a result, if one attributes the 75T re-entrance to the
depopulation of LL ((0,-) or (1,+)), the system should become an insulator, which
would contradict the result of the experiment. We have proposed another scenario,
sketched in the insert of Figure 7. At 53T, only one (and not two) Landau level is
depopulated. The LL (0,+) would then be depopulated at 75T, which would explain
the collapse of the second phase. Indeed, the only difference between both scenarios
is the number of LL which depopulate close to 53T (i.e. one or two). Recently,
Arnold et al.[12] have observed two resistance hysteresis (slightly below and above
53T) possibly associated with the destruction of two CDW states concomitant with
the depopulation of two LLs. We note however that in this scenario, the existence of
a second re-entrance transition at B=75T remains unexplained.

(ii) Why the in-plane resistivity blind to the phase transition at 53T? As one can
see in Figure 3, at low temperature and above 53T Ra has a monotonic behavior
which does not suggest a dramatic change in the electronic ground state. More pre-
cisely at B=64T, as it is shown on Figure.5b), Ra displays a metallic behavior with
a T-linear dependence. This is in contrast with Rc, which displays an activated be-
havior. This residual in-plane metallicity is indeed surprising and different from the
case of Bechgaard salts, which is a well-documented family of quasi-one dimen-
sional conductors hosting a density-wave transition. In the spin-density-wave sys-
tem (TMTSF)2PF6, all three components of resistivity display an activated behavior
with a gap of similar amplitude[47]. In the case of graphite, the in-plane kinetic en-
ergy is quenched by the magnetic field and a gap is formed along the c-axis. As the
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Fig. 4.2 a) In-plane magnetoresistance (Ra) of Kish graphite up to B = 70T for temperatures
between T = 1.5K and T = 10K. The magnetic field is applied along the c-axis. The curves
are shifted for clarity.b) Rc (shown in d) as a function of T �1 for B = 47T (circles) and
B = 64T (squares) in a log scale. Dashed lines are Arrhenius fits to Rc. c) Ra as a function of
temperature for B = 64T. d) Out-of-plane magnetoresistance Rc in semi-logarithmic scale of
Kish graphite up to B = 80T and down to T = 0.44K. e) Field dependence of the gap deduced
from the activating behavior of Rc. Inset is a sketch of the occupied Landau sub-levels with
increasing magnetic field. f) (B�1,log(T )) phase diagram of graphite. Graph from Le Boeuf
et al. [62].
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The out-of-plane resistance of a Kish sample, also from Fauqué et al. [61], is plotted
as a function of the magnetic field up to B = 80T at various temperatures from T = 0.44K
to T = 15K in figure 4.2.d. We observe an increase by more than 3 orders of magnitude of
the out-of-plane resistivity at the b -transition. Surprisingly, in contrast with the in-plane
magnetoresistance, the c-axis magnetoresistance displays an insulating behavior.

In both regions of fields [30T,53T] and [53T,75T], Rc has a strong temperature dependence
which is illustrated at B = 47T and B = 64T is plotted in a semi-log scale as a function of
T �1 in figure 4.2.b.

log(Rc) evolves linearly with T �1, i.e presents an activated behavior, over several orders
of magnitude before saturating both at low and high temperatures. The energy gap in this
interval, d , is determined from an Arrhenius law and is plotted in figure 4.2.e as a function
of the magnetic field. Its amplitude increases to reach a first maximum at B = 47T where
d = 2.4meV and then sharply decreases down to d = 0.5meV at the (first) re-entrance field
B = 53T. With further increase of the field, the gap increases again and saturates between
B = 60T to B = 75T at a value close to d = 1meV. The gap finally decreases suddenly and
closes at B = 75T. This is the second re-entrance field.

Contrary to the in-plane resistivity which remained metallic up to B = 75T, Rc shows an
insulating behavior in both field-induced states.

(B,T) phase diagram So far, the in-plane and out-of-plane resistivity reports established
the existence of two successive field-induced states in graphite. The resulting phase diagram
as a function of field and temperature is plotted in figure 4.2.f. Both the A-phase and
the B-phase present simultaneous in-plane metallicity with c-axis field-induced insulating
behavior.

Let us now turn to a recent study which explores the resistivity of graphite up to B = 90.5T.
Zhu et al. reported on the in-plane and out-of-plane resistivities of natural graphite samples
up to B = 90.5T from T = 1.4K to T = 9K [26]. Their measurements, shown in figure
4.3, reveal a sharp increase of Ra for B > 75T at sufficiently low temperature while the
out-of-plane resistivity remains quasi-constant for 75T< B < 90T. They associate this feature
with a third field-induced state, labelled the C-phase, which was absent of the (B,T ) phase
diagram presented (Figure 4.2.e). The updated phase diagram is presented in 4.3.c.

This observation of the C-phase was reported in a natural sample. We confirm this
observation through the study of the in-plane resistivity of a natural graphite sample of
exceptional quality up to B = 88T.

Ra of this sample is plotted as a function of temperature for B < 10Oe in figure 4.4.a.
His residual resistivity ratio RRRNG�1 = 200 is, to the best of our knowledge, the highest
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excitonic insulator [25]. A more detailed introduction on
the theoretical background of these orders can be found in
Ref. [8]. Recently, a new transition and a second dome in
the temperature-field plane ending at 75 Twere established
by out-of-plane (Ikc) measurements [16]. Signatures of
these transitions in ultrasonic attenuation and velocity [15]
(up to 65 T) and in Nernst coefficient [26] in fields below
45 T have been detected. Exfoliation was also used to study
the thickness dependence of the transitions [27].
Here, we present a study of magnetoresistance in a

nondestructive magnetic field up to 90.5 T, revealing an
additional phase and bringing new insight to the identity of
the previously known field-induced states. The contrasting
roles of orbital and Zeeman energies can be elucidated by
the orientation of the applied field owing to their differing
anisotropies. The α and β transitions (marking the begin-
ning of the in-plane and out-of-plane insulating response)
do not deviate from a cosinusoidal angular dependence
over the entire measurement range. In contrast to all other
threshold fields, the 54 T transition (α0) does not follow a
cosinusoidal behavior. This implies that the Zeeman energy
plays a central role in the transition from one field-induced
insulator to the other one. Phase A is located between the α
and α0 anomalies and phase B between the α0 and ζ
anomalies. The combination of temperature dependence
and angle dependence of the ζ transition leads us to identify
phase B as a spin-polarized strong-coupling excitonic
insulator (likely paring between electron and hole bands
with the opposite spin) destroyed by strong magnetic field.
By measuring up to 90.5 T, ρxx and ρzz, we identify here for
the first time a metallic state, beyond the ζ anomaly,
irrespective of the orientation of the charge flow (parallel
and perpendicular) respective to the graphene planes. This
highlights the peculiarity of phase B, where in-plane
metallicity (with no magnetoresistance) coexists with
out-of-plane activation. Furthermore, the absence of semi-
metal to full semiconductor gap at the ζ transition indicates
that in phase C the lowest spin-polarized hole and electron
levels are still occupied.
In-plane magnetoresistance was measured with a stan-

dard four-contact setup. Out-of-plane magnetoresistance
was measured using two pairs of electrodes attached to the
top and bottom of a sample, as illustrated in the inset of
Fig. 1. In both cases, the magnetic field was predominantly
oriented along the c axis of the sample, with θ defined to be
the angle between the field orientation and the c axis. For
the description of samples and measurement methods, see
Ref. [28]. Figure 1(a) shows the field dependence of in-
plane ρxx and out-of-plane ρzz magnetoresistance, up to
90.5 T at 1.4 K. ρzz rises by 1 order of magnitude at the β
transition. It drops before rising again in the vicinity of
54 T, signaling the existence of a second insulating phase
named B [16]. It drops again at 75 T and becomes relatively
flat afterward upon the destruction of phase B. The in-plane
resistivity ρxx presents a kink at the α transition and a small

enhancement at the β transition, becomes flat, and then
shows a dramatic rise above 75 T. Figure 1(b) displays the
field dependence of the anisotropy ratio ρzz=ρxx. The three
field-induced cascading phases can be clearly delineated:
phase A refers to the one between the α and α0 anomalies,
phase B exists between the α0 and ζ anomalies, and phase C
starts at ζ and continues up to the highest explored
magnetic field. The zero-field anisotropy ratio of the
resistivity, ρzz=ρxx, of the natural graphite sample studied
here was found to be around 500, comparable to previous
reports [28,30]. Upon the application of the magnetic field,
ρzz=ρxx steadily decreases to around 3 at 7.5 T, above which
the quantum limit is reached. Then it increases steeply
following the β and α0 transition, recovering significant
anisotropy of about 50, still 1 order of magnitude lower
than the zero-field value. Finally, following the ζ tran-
sition, the system tends to become quasi-three-
dimensional again. We note that different types of
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Fig. 4.3 a) Field dependence of the in-plane resistivity rxx and the out-of-plane resistivity
rzz of a kish graphite sample up to B = 90.5T at T = 1.4K from Zhu et al. [26]. Sketches
show the measurement geometries. b) Field dependence of rzz/rxx. The QL as well as the
three phases are indicated by dotted lines. The zero-field anisotropy reaches 500. c) (B�1,T )
phase diagram of graphite with inputs from Zhu et al. (black) and this work (red).
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ever reported in graphite. It guarantees high crystalline quality and low contamination of the
c-axis in the in-plane resistivity. This lack of contamination makes this sample particularly fit
to explore the B > 75T C-phase : this phase was discovered through a sharp increase in the
in-plane resistivity with evolution of the c-axis resistivity (figure 4.3.b), yet at these magnetic
fields, Rc is an order of magnitude higher than Ra and would hide the in-plane signal in case
of large c-axis contamination.

The evolution of Ra for NG-1 is presented as a function of magnetic field in figure 4.4.b.
Our results are in good agreement with the report by Zhu et al. : At B = 75T, we observe
a sharp increase of the in-field resistivity for T = 1.4K to T = 6K. This increase saturates
at the highest recorded field B ⇡ 88T and appears to start decreasing for the T = 4.2K data
over the last Tesla.

Our experimental results on a high quality natural graphite confirm the existence of the
C-phase and allow us to contribute to the updated (B,T ) phase diagram of graphite in the QL
(Fig 4.3.c).

Origin of the field-induced states : density-wave transitions Let us now turn to the
origin of the field-induced states of graphite. Shortly after their discovery, these successive
field-induced states were attributed to the formation of charge density waves along the
magnetic field in the (n = 0,+) LL [64]. However, other DW instabilities have been proposed
such as spin density waves [65] and more recently excitons [66]. There is yet no consensus
on the nature of the DW. Nevertheless, a consensus on the essential ingredients in favor
of an electronic instability in the quantum limit emerged. Both a change in the effective
dimensionality of the charge carriers from 3D to 1D because of the magnetic field and an
enhancement of the electron-electron interaction, in particular when the magnetic field is
near a field for which a low LL empties, are required. For both reasons, these instabilities are
thought to be driven by the electron - electron interaction.

In the case of graphite, the compensated nature of the FS and the valley degree of freedom
have to be considered. For B > 7.5T, as represented in the sketch of fig 4.2.e four Landau
levels are occupied (respectively (0,±) for the hole pocket and (-1,±) for the electron pocket),
and therefore several instabilities involving either a CDW or a SDW have been proposed.
First, Yoshokia and Fukuyama [64] suggested the formation of two charge-density-waves
along the c-axis, with opposite phases in order to minimize Coulomb interaction, in the two
valleys along the H-K-H and H-K’-H directions of the Brillouin zone. However, this scenario
was later challenged by Takahashi al. [65], who argued that the electrons along the H-K-H
and H-K’-H directions do not belong to the same layers. In other words, the cancellation
of the Coulomb interaction cannot be at work in each layer. Instead, he suggested that a
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transverse SDW forms in the (n = 0,±) LLs. Finally, Akiba et al. recently proposed that
the observed gapped out-of-plane conduction above B = 53T is associated with an excitonic
BCS-like state [66]. This excitonic scenario has been a subject of further attention recently
[67] and Zhu et al. submitted evidence that the insulating state destroyed at B = 75T is an
excitonic condensate of electron-hole pairs [26].

Moreover, the observation by Fauqué et al of an activated conductivity along the c-axis
which coexists with metallic conductivity in the graphene planes contrasts with what has been
reported in other 1D density-wave systems. Rather, the coexistence of these two features
for a bulk system with a fully gaped electronic spectrum points to the existence of a second
channel of conduction in the system [61]. From a theoretical standpoint, this observation
qualifies graphite as a possible host of the 3D quantum Hall effect.

Finally, we indicate that the emergence of a density-wave transition is not limited to
semi-metals. Nesting vectors can also exist in the case of a doped semi-conductor with a
single Fermi surface and lead to a DW-transition. More generally it is predicted to happen
in any system, brought deep enough in its quantum limit and at sufficiently low enough
temperature [53]. In order to test the universality of such instability we have studied the case
of u-InAs. In this system, the QL is reached at only B = 4T, making it an ideal subject of
investigation which has been, so far, poorly studied.

4.1.3 Presentation of Indium Arsenide

Indium arsenide is an intermetallic compound formed between the group IIIb element In
and the group Vb element As. It is a narrow gap semi-conductor, Eg = 0.35eV at T = 300K,
which crystallizes in the zinc-blende (ZnS) structure (cubic space group F43m). The carrier
concentration n = 2.0 � 2.2 ⇥ 1016cm�3 [68, 69] and the high electronic mobility µ =

40000cm2.V�1.s�1 [70] were established from Hall resistivity measurements. The effective
mass of the electrons, m⇤ = 0.023⇥m0 was determined by magneto-optical measurements
[71].

Let us confirm the shape of the Fermi surface, the electronic concentration and more
generally the transport properties of u-InAs through our electrical transport measurements.
Our work was done on undoped InAs (u-InAs) samples cut from a t = 500µm thick wafer
grown by the Liquid Encapsulated Czochralski (LEC) method. The different samples were
cleaved into bar-like geometries of width w ⇡ 500µm with millimetric lengths.

Temperature dependence In the absence of magnetic field, the resistivity r of u-InAs as a
function of temperature is represented in figure 4.5. From T = 300K to T = 95K, r decreases
linearly with decreasing temperature. The resistivity reaches a minimum at Tmin = 95K and
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Fig. 4.5 Resistivity of undoped n-type InAs as a function of temperature. Sample is a slab of
dimension (0.75x0.5x6) mm3. The dotted vertical line indicates the value of u-InAs Fermi
temperature TF = 130K.

increases with further decreasing temperature down to dilution temperatures. The resistivity
at T = 300K and T = 2.0K are very similar.

Let us first evaluate the Fermi temperature TF from the aforementioned carrier concen-
tration and effective mass reported in the literature. We find TF = 130K. When T < TF ,
the resistivity is dominated by the scattering with the ionized impurities, it decreases with
increasing temperature. Above TF however, r is dominated by the electron - phonon scat-
tering process and thus becomes T -linear. The resistivity of u-InAs is characteristic of a
semi-conductor with ionized impurities. We now turn to its magnetoresistance to establish
the fermiology of u-InAs.

Angular dependence of the magnetoresistance Let us first discuss the evolution of the
resistivity when an external magnetic field is applied. We report on the transverse magnetore-
sistance rxx in figure 4.6.a and the longitudinal magnetoresistance rzz in figure 4.6.b. Both
quantities are plotted as functions of the magnetic field up to B = 13.8T for temperatures
ranging from T = 2.15K to T = 100K. In the transverse configuration, q = 0�, the magnetic
field is oriented along the [1 0 0] direction whereas in the longitudinal geometry, q = 90�, it
is oriented along the [1 1 0] direction.



4.1 Introduction & motivation 45

0 90 180 270 360
 (deg)

0

0.5

1

1.5

2

(
)/

=0

B = 1.0 T
B = 3.0 T
B = 5.0 T
B = 7.0 T
B = 9.0 T
B = 11.0 T
B = 13.0 T

T = 2.15 K

0 2 4 6 8 10 12 14
B (T)

10-2

10-1

100

101

(T
=2

.1
5K

) (
.c

m
)

 = 0° - Transverse
 = 10°
 = 20°
 = 30°
 = 40°
 = 50°
 = 60°
 = 70°
 = 80°
 = 90° - Longitudinal

a) b)
0 90 180 270 360

 (deg)

0

0.5

1

1.5

2

(
)/

=0

B = 1.0 T
B = 3.0 T
B = 5.0 T
B = 7.0 T
B = 9.0 T
B = 11.0 T
B = 13.0 T

T = 2.15 K

0 2 4 6 8 10 12 14
B (T)

10-2

10-1

100

101

(T
=2

.1
5K

) (
.c

m
)

 = 0° - Transverse
 = 10°
 = 20°
 = 30°
 = 40°
 = 50°
 = 60°
 = 70°
 = 80°
 = 90° - Longitudinal

a) b)

InAs 1016 : Sweep

0 2 4 6 8 10 12 14
B (T)

10-2

10-1

100

101

xx
 (

.c
m

)

T = 2.15K
T = 5.0K
T = 10.0K
T = 40.0K
T = 70.0K
T = 100.0K

0 2 4 6 8 10 12 14
B (T)

10-2

10-1

100

101

zz
 (

.c
m

)

T = 2.15K
T = 5.0K
T = 10.0K
T = 40.0K
T = 70.0K
T = 100.0K

 = 0° - Transverse  = 90° - Longitudinal

a) b)

c) d)

Fig. 4.6 a) Transverse magnetoresistance ( jQ ? B) rxx as a function of magnetic field up
to B = 14T for different temperatures. b) Longitudinal ( jQ k B) magnetoresistance rzz as a
function of magnetic field up to B = 14T for the same array of temperatures. Both datasets
were acquired during the same experimental run. c) Magnetoresistance r as a function of
the magnetic field for various angle q = (~jQ,~B) from transverse (q = 0�) to longitudinal
(q = 90�) geometries. Temperature was set to at T = 2.15K. d) Magnetoresistance rq plotted
as rq/rq=0 as a function of the angle q = (~jQ,~B) for static magnetic fields at T = 2.15K. All
sets of data were acquired during the same experimental run.
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For B < 3.85T, we do not observe any MR in rxx and rzz, only quantum oscillations for
T < 5K. While all the peaks up to B = 2T are identical in rxx and rzz, the peak at B = 3.85T
is absent in rzz even though it is observed in rxx. This absence is emphasized in figure 4.6.c
which shows the magnetoresistivity as a function of the magnetic field for various angles
ranging from transverse, q = 0�, to longitudinal q = 90� geometry. Figure 4.6.c also reveals
a small evolution of the resistivity, up to factor of 3, caused by the relative orientation of the
current and field.

Fermiology of u-InAs We now turn to the analysis of the observed quantum oscillations.
First we wish to determine the electronic concentration and the effective mass of the electrons
in this wafer of u-InAs.

1 - Carrier concentration One way to evaluate the charge carrier concentration is
to study the frequency of the quantum oscillations f through the Onsager relation. This
relation has been detailed in chapter 1. We measure f = 1.85T, which yields an electronic
concentration : n = 1.6⇥1016 cm�3. This value is around 30% lower than the aforementioned
reports from Hall measurements [69, 68].

2 - Effective mass Next, the temperature dependence of the amplitude of the QO peaks
allows us to determine the effective mass m⇤ = 0.023 ⇥ m0 of the carriers in light of the
Lifschitz-Kosevich model. The method is illustrated in figure 4.7.b and was also presented
in the first chapter of the present thesis. We notice that this value does not evolve with
magnetic field (as seen on the inset). The effective mass of carriers in u-InAs matches the
aforementioned literature [71].

3 - Entrance in the quantum limit Now that we have confirmed the electronic con-
centration and effective mass of the carriers, we wish to confirm that the B = 3.85T peak
marks the entrance in the quantum limit [68, 72]. To do so, we compute the evolution of
the Fermi energy as a function of the magnetic field. The position of the lowest Landau
level is set by the Landé factor g = �14.6 [73] and the Fermi energy EF calculated from the
previously determined Fermi temperature. to the experimental oscillations of rxx in figure
4.7.a. We observe that the population/depopulation of the successive Landau levels matches
the extrema of the resistivity and for B > 3.85T, all electrons are predicted to lay in the lowest
Landau level. For B > 3.85T the quantum limit is reached in u-InAs.

Finally, we can track the evolution of the amplitude and frequency of the QO upon
variation of the angle between the electrical current and the magnetic field in figure 4.7.c. We
observe no variation of the position of the peaks (the B = 3.85T peak is not discussed here)
nor of their amplitude with q . As a consequence, the frequency of the QO does not evolve
with q and we can conclude that the cross-section of the Fermi surface shows no angular
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Fig. 4.7 a) Left-axis : computed Fermi energy EF plotted as a function of magnetic field for
u-InAs. Right axis : rxx plotted as a function of magnetic field at T = 2.0K b) Logarithm
of the amplitude of the QO (drxx determined by removing a polynomial background to the
magnetoresistance) plotted as logdrxx/T as a function of temperature. The straight line
fit corresponds to an effective mass m⇤ = 0.023 ⇥ m0 determined at B = 3.85T. The inset
shows the evolution of m⇤ with field. c) Evolution of the QO plotted as a function of B�1 for
different angles q . The inset shows the extracted frequency of QO as a function of the angle.

dependence. While the in-plane rotation is not studied here, we can safely conclude that
the FS of u-InAs is highly isotropic, i.e. close to a sphere. This result is in agreement with
previous report of a spherical FS located at the G-point of the BZ [72].

Field-induced state in u-InAs We have shown that u-InAs enters the quantum limit at
a field of only B = 3.85T. Upon further increase of the magnetic field, we observe a large
increase of the resistivity both in the transverse geometry, figure 4.6.a, and the longitudinal
one, figure 4.6.b. Both resistivities increase by several orders of magnitude for B > 5T and
display large temperature dependence : a field-induced insulating state emerges.

This result confirms by prior experimental observations [72, 74]. This phenomenon was
associated with the ’magnetic freeze-out’ regime [75] : the intense magnetic field shrinks the
electronic wave-function to a volume lower than the average volume of impurity ions, which
results in a electron-impurity bound state with an increasing binding energy as the field is
increased. This phenomenon is schematically represented in figure 4.1.a. The electrons are
’frozen-out’ of the lowest Landau level and the carrier concentration drops. This leads to a
sharp increase of the transverse and Hall resistivity.

The onset of this magnetic field assisted Mott-Anderson transition is defined by equation
4.1. It involves the spatial extension of the electronic wave-function along the applied
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magnetic field ak,B, its extension perpendicular to the field a?,B and the average distance
between ionized impurities n1/3. From a theoretical standpoint, three factors are going
to affect these quantities : the thermal excitation, the screening of the impurities and the
effective Bohr radius [76].

aB ⇥n1/3 ⇡ 0.25

aB = (a2
?,B/ak,B)

(4.1)

This transition has been particularly studied in semiconductors with low electronic carrier
concentration : undoped-InSb with nominal n = 2�5⇥1015 cm�3 [77–79], Hg1�xCdxTe
with n = 1 � 10 ⇥ 1014 cm�3[78, 80] and u-InAs [72]. As an example, the increase in rxx

and rHall due to the magnetic freeze-out in n-type InSb (n = 2.5⇥1015 cm�3) is presented
to the reader in figure 4.8.a. It has to be noticed that the driving force of the field-induced
transition observed in doped semi-conductors is fundamentally different than in graphite
in which it is associated with e�-e� interaction. In addition to this interaction, in a doped
semi-conductor one has to consider the interaction between electrons and ionized impurities.
This last interaction can be the strongest and pin down the ground state.

We emphasize again that this compound has not been studied to sub-kelvin temperatures
and high magnetic fields deep in the magnetic freeze-out regime (besides an observation
of a small negative longitudinal magnetoresistance [81] up to B = 20T). Also, its ther-
moelectric properties have been ignored as we could only find a low field study of the
Nernst-Ettingshausen effect which dates back to half a century ago [68]. The lack of interest
for the fate of bulk u-InAs in field is surprising in regard of the attention it recently received
in the context of device and hetero-structures [82].

u-InAs thus appears as a very interesting playground to study the ground state of a 3D
electron gas in the deep quantum limit, especially in light of all the work done on graphite.

4.2 Indium arsenide in the deep quantum limit

In order to deepen our understanding of the field-induced state observed in u-InAs, we will
now investigate the resistivity to unexplored low temperatures and high magnetic fields.
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Fig. 4.8 a) Schematic representation of the emergence of the magnetic freeze-out regime in
regard of the relative spatial extension of the electronic wave-function ab and the average
distance between impurities n1/3. b) Evolution of rxx, rzz and rxy in undoped n-InSb in the
magnetic freeze-out regime in the quantum limit. The carrier concentration is 10 times lower
than u-InAs.
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4.2.1 Resistivity in the field-induced state

Transverse, longitudinal & Hall resistivities We measured the transverse, longitudinal
and Hall resistivities as functions of magnetic field at different fixed temperatures. They are
respectively shown in figures 4.9.a and c, 4.9.b and 4.9.d.

Before discussing the result, we wish to introduce the different samples studied here in
different geometries. All samples were cut from the same homogeneous wafer and their size
will be presented as (width ⇥ thickness ⇥ length). The contacts were pasted on the [1,0,0]
surface with silver paste.

The transverse resistivity featured in figure 4.9.a was measured on sample #1 of dimension
(0.8 ⇥ 0.5 ⇥ 2.4)mm3 in pulsed magnetic fields at LNCMI in Toulouse, France while the
sample #3 presented in figure 4.9.c has been measured on a (0.45 ⇥ 0.5 ⇥ 3.3) in static
fields up to B = 34T at LNCMI Grenoble, France. The longitudinal resistivity, figure 4.9.a,
was measured on sample #2 of similar dimensions : (0.8 ⇥ 0.5 ⇥ 4.2) mm3. Finally, the
Hall resistivity (figure 4.9.c) was measured on sample #3 simultaneously as the transverse
resistivity feature in figure 4.9.c.

The resistivity shows a similar field-dependence in all three different geometries of
measurement over the whole interval of field studied. As a consequence, we will use the
generic term resistivity in the discussion to refer interchangeably to rxx, rxy and rzz unless
otherwise specified. We will now discuss three different regions of field.

We define BM�I as the field at which the magnetoresistance increases sharply in the
T ! 0 limit. We find BM�I ⇡ 8T. This field increases temperature.

The first region, 0 < B < BM�I , has already been discussed. For B > BM�I , the resistivity
becomes presents a strong temperature dependence : while r increases by 3 to 4 orders of
magnitude at T ⇡ 1K, it only increases by a factor 20 at T = 20K. BM�I corresponds to the
entrance in the magnetic freeze-out regime [72].

However, at higher field we report the emergence of a second characteristic field, labelled
Blin, corresponding to the entrance in a saturation regime for the resistivity. For B > Blin,
the resistivity increases linearly with the magnetic field and becomes independent of the
temperature. Blin is shifted to higher fields with higher temperatures, as an example for
T = 6K we observe no saturation at B = 56T whereas for T = 0.33K it is attained at B = 12T.
This observation constitutes the first novel result of this study : the emergence of a third
regime of magnetoresistance in u-InAs.

We now turn to the comparison of the saturation regime in rxx for two different samples
cut from the same wafer with very similar geometries. The values of the saturation observed
in #1 (Fig 4.9.a) and #3 (Fig 4.9.c) differ by a factor of 10. Even though we only show data of
saturation in rxx for two samples here, the sample dependent saturation regime is ubiquitous
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Fig. 4.9 a) Transverse magnetoresistance Rxx as a function of the magnetic field up to B = 56T
at various temperatures from T = 1.5K to T = 40K. Measurement in pulsed field realised in
LNCMI Toulouse on u-InAs sample #1. Signal is not symmetrized which explains the low
field difference with c.. b) Longitudinal magnetoresistance Rzz as a function of the magnetic
field up to B = 56T at various temperatures from T = 1.5K to T = 40K. Measurement in
pulsed field realised in LNCMI Toulouse on u-InAs sample #2. c) Transverse magnetore-
sistivity rxx as a function of the magnetic field up to B = 34T at various temperatures from
T = 0.33K to T = 25K. Measurement in static field realised in LNCMI Grenoble on u-InAs
sample #3. d) Hall resistivity rxy as a function of the magnetic field up to B = 34T at various
temperatures from T = 0.33K to T = 25K. Measurement in static field realised in LNCMI
Grenoble on u-InAs sample #3. Inset shows the low field Hall resistivity.
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to transverse/longitudinal/Hall resistivities and was confirmed by the study of 8 different
samples with similar geometries, same experimental protocol and same origin.

Study of the electronic concentration We now turn to the analysis of the electronic
concentration and charge carriers mobility deduced from the Hall resistivity.

The low field linear evolution of the Hall resistivity (inset of figure 4.9.d yields a
temperature independent carrier concentration of n = 2.2 ⇥ 1016cm�3 (compared to n =

1.6⇥1016cm�3 from QO). At higher field, figure 4.10.a shows that the field-induced insu-
lating state is accompanied by a drop of the carrier concentration followed by a saturation
at nH = 3.5 ⇥ 1014cm�3 for fields between B = 12T and B = 22T in the low temperature
regime. For B > 22T, nH increases back and saturates at nH = 1.5 ⇥ 1015cm�3. As the
temperature increases, the effect on the electronic concentration vanishes and, as an example,
nH at T = 25K is quasi-constant up to B = 34T. We can also extract the mobility (µ = nes )
from the comparison of the transverse and Hall conductivities. The result is presented in
figure 4.10.b. The mobility drops between B = 0T and B = 2T by a factor ⇡ 50 and then
slowly decreases further with increasing field. The mobility at B = 34T is more than 2 orders
of magnitude lower than the 0-field mobility. The mobility shows a smaller temperature
dependence than the carrier concentration : besides some small features (local minima),
the mobility at T = 25.0K shows very little differences with the one determined at dilution
temperatures.

The observation of a saturating nH and mobility in the deep quantum limit is puzzling.
Indeed, in the magnetic freeze-out picture, we expect nH to monotonously go down as the
field is increased [78]. Instead, we observe a residual carrier concentration close to nH ⇡
1014 �1015 which is temperature independent for T < 5K.

In conclusion, we show that in the QL of u-InAs the resistivity, whatever the current
direction, has insulating behavior above a critical field BM�I concomitant with a drop in the
carrier concentration nH . At higher field, we discovered the emergence of saturation regime
of transport. In this regime, the resistivity departs from the insulating behavior and adopts a
close to B-linear behavior with no temperature dependence under low-temperature/high-field
conditions accompanied by a saturation of nH . Consequently, this saturation regime can be
seen as the existence of a residual carrier contribution.

In order to further investigate the origin of this third regime of magnetoresistivity, we
turn to the unexplored thermoelectric coefficients of u-InAs.
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Fig. 4.10 a) Electronic concentration nH as a function of magnetic field for various tempera-
tures in u-InAs. b) Mobility of the charge carriers µH determined from the Hall resistivity
plotted as a function of magnetic field for various temperatures in u-InAs.

4.2.2 Vanishing thermoelectric coefficients

Thermoelectricity measurements are a powerful probe of electronic phase transition : it was
successfully used to study the field-induced states of graphite [83] or in u-InSb where a giant
Nernst effect has been observed in the magnetic freeze-out regime [84].

Thermal conductivity The first quantity we wish to report is the low temperature thermal
conductivity. k is plotted as a function of temperature up to T = 6.0K in figure 4.11.a. A
previous report on a sample of u-InAs with similar size completes our data-set and indicates
the existence of a peak in k at T = 15K [85] with k reaching up to k ⇡ 5000W.K�1.m�1

(millimetric sample). Over the whole range of study, since r ⇡ 10mW.cm, the electronic
contribution to k is much smaller than the phononic contribution. As a consequence, k is
entirely due to phonons. This result is coherent with the T 3-dependence of k .

Zero-field value of Sxx We report on Sxx plotted as Sxx/T as a function of temperature
for B = 0T in figure 4.11.b. Below T < 3K, a constant Sxx/T = 8.5µV.K�2 is observed
followed by a small peak at T = 6.5K. The thermopower drops with further increase of the
temperature and reaches Sxx/T = 0.1µV.K�2 at T = 35K.
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Fig. 4.11 a) Thermal conductivity k plotted as a function of temperature in u-InAs. The
green dotted line indicate a T 3 dependence. b) Thermopower plotted as Sxx/T for applied
magnetic fields B = 0T and B = 23T.

Sxx

T
=

p2

3
(
kB

e
)

1
TF

(4.2)

The low temperature saturation of Sxx/T indicates that the diffusive contribution domi-
nates the thermopower below T = 3K. We can compare the saturation value to the expected
QP contribution in this regime, which is given by equation 4.2. With TF = 130K, the diffusive
contribution from equation 4.2 is expected to be Sxx,th/T = 3µV.K�2, which is ⇡ 1/3 of the
measured value. This discrepancy can be associated the energy dependence of the scattering
time associated with ionized impurity scattering.

In-field We turn to the evolution of the thermopower as a function of the magnetic field.
Sxx/T is plotted as a function of B for various temperatures in figure 4.12.a. In the low
magnetic field region, B < 4T, and at low enough temperature Sxx/T does not evolve with
the magnetic field besides the presence of QO. These oscillations are damped with increasing
temperatures. Once in the quantum limit, B > 4T, the thermopower starts increasing with
magnetic field until it reaches a maximum, two orders of magnitude (at most) higher than
the zero-field value. The position in field Bmax and amplitude Amax of this maximum depend
on the temperature. For temperatures T < 8K, Bmax and Amax both increase with increasing
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Fig. 4.12 a) Sxx/T plotted as a function of magnetic field for various temperatures. Tem-
peratures are separated in two plots for clarity. b) Nernst coefficient, plotted as n/T as a
function of magnetic field for various temperatures. The inset focuses the T = 650mK Nernst
coefficient n/T . Both graphs share the same legend.

temperatures. On the contrary, for T > 8K, Bmax is not observed and Amax decreases with
increasing temperature.

The main result of this section is the evolution of the thermopower upon further increase
of the field. When B > Bmax, the thermopower drops and reaches a quasi-constant and low
saturation value. This is similar to the behavior of the resistivity presented in the previous
section. The amplitude of the Sxx/T plateau is not temperature independent, contrary to our
report on the saturation regime of rxx,zz. The comparison of two samples from the same wafer
with similar geometries shows that the Sxx/T plateau value is also sample dependent. In a
second sample, the high-field thermopower changes sign and saturates at a negative value.
This is highly reminiscent of the mismatch between the high-field saturation resistivities of
different u-InAs samples.

The drop of the thermopower is surprising : for an insulator we expect Sxx/T B!+•����! +•.
But instead, in the field-induced insulating state of u-InAs we observe Sxx/T B!+•����! 0. This
result is another evidence that we are dealing with a ’non-trivial’ insulator.

The increase in the thermopower caused by the magnetic field is emphasized in figure
4.11.b. Upon the application of a strong magnetic field, B = 23T, the temperature dependence
of Sxx/T is transformed. At low temperatures, T < 2K, SB=23T

xx /T ⇡ 2SB=0T
xx /T , i.e. a small

increase of the thermopower. However, for T > 2K, the aforementioned peak in SB=0T
xx /T
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is greatly enhanced and reaches SB=23T
xx /T = 1000 µV.K�2 at T = 6.5K. This represents an

increase by 2 orders of magnitude of the thermopower when B = 23T is applied. Upon further
heating of the system, the thermopower falls and reaches a few µV.K�2 at T = 20K.

We now turn to the study of a second thermoelectric coefficient : the Nernst coefficient.
This quantity was measured simultaneously as the thermopower. We define the Nernst
coefficient n = Sxy/B and plot n as n/T in figure 4.12.b. We observe a behavior similar to
the one of the thermopower. The Nernst signal presents a peak which amplitude and field
of occurrence increase with increasing temperature up to T = 8.5K. At higher temperatures,
the peak is suppressed and n/T decreases with increasing temperatures. After the peak, the
signal vanishes.

To conclude, we report on low temperature vanishing thermopower and Nernst coefficient
in u-InAs. This surprising behavior is a strong deviation from the expect thermoelectric
tensor of a dilute metal in the deep quantum limit which can be illustrated by the case of
Bi2Se3 [86] or PbSnTe [87].

4.3 Discussion on the in-field transport properties of dilute
metals

The reported dichotomy between in-plane metallic resistivity and out-of-plane insulating
resistivity in graphite comes as a surprise. The energy spectrum of this semi-metal is entirely
gaped, thus we do not expected the graphene planes to remain metallic after the DW-phase
transition. The case of u-InAs serves as a good counter-example : the field-induced insulating
behavior is observed in all geometries of transport. We will now discuss and compare the
gap opening in these two systems pushed deep in their quantum limit.

4.3.1 Study of the activated behavior

u-InAs We first focus on the evolution with temperature of the transverse and longitudinal
resistivities of u-InAs in the field-induced state. To do so, rxx and rzz are plotted respectively
in figure 4.13.a and b using a semi-logarithmic scale and as a function of T �1 for different
applied magnetic fields.

We observe a linear dependence of both logrxx and logrzz as a function of T �1 at high
temperatures. This behavior is found at all the magnetic fields showed here. Upon decreasing
temperatures, we observe a saturation of logrxx and logrzz. This phenomenon corresponds
to the previously indicated ’saturation’ regime where a B-linear temperature-independent
resistivity emerges in the deep quantum limit of u-InAs (discussed in Fig 4.9).
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For temperatures high enough to avoid this saturation of the resistivity, the dotted line
displayed in figure 4.13.a and b yields an adequate fit of the data to an Arrhenius law. This law
describes the thermally activated conduction in the high temperatures range and is described
in equation 4.3. The good quality of these fits, at each magnetic field, allow us to extract an
activation gap from rxx and rzz.

rxx,zz = r0
xx,zz ⇥ e� D

kBT (4.3)

The evolution of this energy gap is plotted as a function of magnetic field in figure 4.13.c.
We confronted the different data sets from different experiments we lead on different samples
(PPMS, dilution fridge up to B = 17T, B = 34T static in Grenoble and B = 56T pulsed in
Toulouse) presented above. Good coherence was attained, leading to the reasonably small
error-bars shown in figure 4.13.c.

We see that the activation gap opens up in both the transverse and longitudinal resistivities
upon application of a magnetic field B > 4T. The gap then increases sub-linearly with
increasing field up to B = 56T where it reaches ⇡ 4-5meV. We observe a slight mismatch
between the two gaps : the gap determined from rxx appears ⇡ 10 to 40% smaller than the
one determined from rzz. The gap Dzz also appears to open up at lower magnetic field, B ⇡
4T while Dxx starts increasing around B ⇡ 7T. This discrepancy should yet be considered
small in light of the error-bars.

We can conclude that the field-induced state emerging in the deep quantum limit of
u-InAs is accompanied by the smooth opening of an isotropic gap in the system. This gap
grows larger as the field is increased and shows no clear sign of saturation up to B = 54T
where it reaches close to D = 5mev for both geometries.

Graphite We now turn to the temperature dependence of the in-plane and out-of-plane
magnetoresistivity of graphite. We show Ra and logRc respectively as a function of T and
T �1 for different magnetic fields in the first ordered state in figure 4.13.d and e. The out-
of-plane data featured in 4.13.e were measured in pulsed field on a natural graphite sample
(NG-3) up to B = 56T for different temperatures. Rc for sample NG-3 plotted as a function
of magnetic field is featured in the annex.

We start with the in-plane resistance Ra in Fig 4.13.d. For B = 30T and B = 65T. Ra

increases linearly with increasing T . We can thus confirm that at both fields, the graphene
planes do not show any insulating behavior : they present a metallic behavior with a T-linear
magnetoresistance.

At the contrary, the c-axis resistance measured in another natural graphite sample, pre-
sented in 4.13.e shows a strong insulating behavior at high field. For all the fields considered,
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Fig. 4.13 a) u-InAs rzz plotted as a function of T �1 in a semi-log scale for different magnetic
fields. b) u-InAs rzz plotted as a function of T �1 in a semi-log scale for different magnetic
fields. In panels a and b the dotted lines correspond to a fit to an Arrhenius law. c) u-InAs
Energy gap deduced from an Arrhenius law corresponding to the rxx (a) and rzz (b) data.
d) Graphite In-plane resistance Ra of a natural graphite sample plotted as a function of T
for different magnetic fields. Data plotted as function of magnetic field in the appendix. e)
Graphite Out-of-plane resistance of natural graphite sample NG-3 Rc plotted as a function
of T �1 in a semi-log scale for different magnetic fields. f) Energy gap deduced from an
Arrhenius law fit of the Rc data presented in panel (b) (sample NG-3) and data by Fauqué et
al. [61]
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we observe a linear in T �1 behavior of logRc over a finite temperature window in the ordered
state. This linearity indicates an activated behavior of Rc which is then followed by deviations
from the Arrhenius law at higher and lower temperatures.

On the low temperatures side, the deviation from the Arrhenius law implies the existence
of a residual metallic conductance channel along the c-axis : Fauqué et al. proposed the
existence of an edge state to account for this phenomenon. We will further discuss this result
in a next section. On the other hand, at high temperatures, the out-of-plane resistance also
saturates. This result can be associated to a residual contribution from the graphene planes
: as the temperatures increases their conductivity increases and thus the decreasing c-axis
resistance is buried by the in-plane pollution.

The two saturation regimes left aside, we can extract the activation gap from Rc and
present it as a function of the magnetic field in figure 4.13.f. We also feature the data
determined by Fauqué et al. [61]. We observe that the gap opens up around B = 25T
and grows up to D = 2.5 meV at B = 47T before closing down to D = 0.5 meV at B =
56T. Our results on the out-of-plane resistivity of graphite confirm the previous reports
[59, 88–90, 63, 83, 61, 26].

We can conclude that an activation gap of a few meV opens up in the field-induced state
of both graphite and u-InAs in the deep quantum limit. This feature is also observed in u-InSb
[77–79] and Hg1�xCdxTe [78, 80] in the quantum limit (non-exhaustive list). However, in
u-InAs, we observe an insulating behavior for all geometries of transport studied, with
a common high field saturation regime. This observation only makes the coexistence of
in-plane metallicity and c-axis insulating behavior in the ordered state of graphite only more
mysterious.

4.3.2 Electronic ground state of dilute metals in the deep quantum
limit

The study of u-InAs and graphite in the quantum limit reveals the existence of a field-induced
insulating state in both systems. In first approach, the two field-induced states may appears
as similar. We will discuss this assumption in the next few lines.

In the case of graphite we observe a thermodynamic transition at B = 25T with the opening
of an activation gap in the c-axis electrical conductivity while the graphene planes remain
metallic. This feature has been linked to the formation of a charge-density wave transition
resulting from the 2kF nesting process [64]. This field-induced state is destroyed at B =
53T. But this first ordered state is followed by a similar one at higher field, also successively
induced then destroyed by the increasing magnetic field [61]. The observation of an activated
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behavior in Rc while Ra remains metallic in both field-induced states is enigmatic. The
coexistence of these two features for a bulk system with a fully gaped electronic spectrum
points to the existence of a second channel of conduction in the system [61].

Our study of u-InAs also reveals the emergence of a field-induced insulating state in the
deep quantum limit. The temperature dependence of the resistivity, in various geometries
of measurement, indicates an activated behavior of the resistivity with an isotropic gap of a
few meV, comparable to the amplitude of the gap we determined in graphite. Other dilute
metals InSb and Hg1�xCdxTe [78] reveal a field-induced phase transition to an insulating
state. This field-induced state has been associated with the magnetic freeze-out regime :
a Mott-Anderson transition induced by the magnetic field. But this study of u-InAs also
suggests the existence of a metallic conduction channel at high magnetic field and low
temperatures with the saturation regime.

Evidences points to the existence of a variety of fundamental states of a 3D electron gas
in the quantum limit. While a common feature is to be a field-induced insulator with a fully
gaped electronic spectrum, the anisotropic effect observed in graphite, when compared to
u-InAs, indicates strong discrepancies in the fundamental state of both systems far in the QL.
Yet, result point to a similar feature in both systems : the existence of an edge conduction
channel.

4.3.3 Towards a second conduction channel in InAs ?

We will now discuss the possibility of the observation of a surface state in u-InAs. The
study of rxx,xy,zz has revealed the emergence of a saturation of the resistivity at low enough
temperature and far in the field-induced state. All component of the resistivity tensor adopt
a temperature independent behavior. But this result is in direct contradiction with the
observation of a field-induced insulating state of the bulk which yields sbulk µ e

�D
kBT T!0K����! 0.

A finite conductivity, in the T ! 0K limit implies the existence of a second channel of
conduction, i.e a total conductivity written as 4.4.

stotal = sbulk +sS (4.4)

The observation of a vanishing thermopower in the same context is also puzzling. Ac-
cording to Mott formula, we expect for the bulk S µ ∂ ln(s)

∂e = D
kBT

∂D
∂B

∂B
∂e . As a consequence,

we expect the thermopower of bulk u-InAs to behave as Sbulk µ �D
kBT

T!0K����! • in the field-
induced state. This is, for example, what was observed in the deep quantum limit of u-InSb
which enters the same magnetic freeze-out regime [84] or in the case of PF6 [91]. This
is prediction is in contradiction with our observation in u-InAs. However, the assumption
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that two types of carriers with conductivity and thermopower (sbulk,Sbulk) and (sS,SS) exist
gives a satisfactory explanation to our result. We note the aforementioned total conductivity
stotal and the total thermopower Stotal (which is detailed in 4.5).

Stotal =
(sbulk ⇥Sbulk +sS ⇥SS)

stotal
(4.5)

As a consequence, for a bulk insulating state, we expect both stotal
T!0K����! sS and

Stotal
T!0K����! SS.

We propose this metallic contribution to be associated with a surface state in u-InAs.
This explanation is coherent with the variation of the saturation values of both r and Sxx

at high field from one sample to another (cut of the same wafer). The size and quality
of the surface can will play a role in the the value of sS and SS. Also, an ARPES (angle
resolved photo-emission spectroscopy) study of u-InAs have proven the existence of a charge
accumulation layer (n-type) at the surface of u-InAs [92].

In order to confirm, or infirm, the surface nature of transport in the QL of u-InAs, we
propose the following experiments.

Size-effect It is the first obvious choice to probe the existence of a surface state. Changing
the volume to surface ratio of u-InAs should affect the saturation regime if due to a surface
contribution.

Ionic liquid gating Because the wafer has a high roughness, a solid gate would not yield
a high enough electronic accumulation on the surface to affect its resistivity. However,
by applying a voltage between a drop of electrolyte and the surface of u-InAs on which
the drop sits, a large electric field of the order of 10 MV.cm�2 is created at the interface
drop/u-InAs thanks to the formation of an electric double layer [93]. One can reach charge
density accumulations as high 1015 cm�2 through this technique far beyond the limitations
of dielectric solid gating. In u-InAs nano-wires, this technique showed a clear change from
semiconductor to quasi-metallic behavior [93].

Corbino disk geometry Finally, we propose to turn to non-local transport measurements
to isolate the alleged surface contribution in u-InAs from the bulk contribution. The use
of a ’Corbino disk’ geometry has been successfully developped and used to separate bulk
and surface contributions to the electrical resistivity in the case of SmB6 [94] and further
developped for 3D topological insulators [95]. We point to the experimental protocol of
Syers et al. for development [94].
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We can conclude that the high-field behavior of u-InAs shows signatures of a second and
metallic conduction channel. The existence of a charge accumulation layer at the surface of
this compound points to the existence of a surface state. However, we have not reported on
unambiguous observation of this surface state in u-InAs yet. This remain an open question
for experimentalists.

4.4 First Conclusion

The magnetic field is expected to induce a many-body gap in a metal brought beyond its
quantum limit. Our experimental study of the conductivity tensors of u-InAs and graphite
in the deep quantum limit shows evidence of this prediction : we observe the opening of an
activation gap in both systems. However, there are crucial differences between the ground
states of these 3D metals beyond the QL. First, there is a succession of field-induced states,
i.e. gap closing, in graphite whereas in the case of u-InAs only one phase transition is
observed and the gap increases monotonously up to B = 56T. Second, a gap opens up in
the transverse, longitudinal and Hall resistivity of u-InAs while we observe a field-induced
c-axis insulating state with coexistent in-plane metallicity in graphite. We conclude that
there is no ubiquitous ground state for a 3D metal in the QL, but rather there is a variety of
ground states determined by the specific properties of each system. Yet, a common feature to
3D metals beyond the quantum limit was predicted : the existence of edge states [96, 97].
In the case of graphite, a conductive edge state was proposed to account for the in-plane
metallicity [61]. In u-InAs, we report on the observation of a temperature independent
B-linear magnetoresistance accompanied by vanishing thermoelectric coefficients at high
field. This result is coherent with the presence of a charge accumulation layers on the surface
and makes the existence of an edge channel in graphite even more unique.

To conclude, our work illustrates that the variety of fundamental ground states for a
3D electron gas beyond the quantum limit makes a great playground for condensed matter
physicists which lead to discoveries such as the most expected 3D quantum Hall effect in
ZrTe5 [98] or new states of matter in Weyl semimetals [99].



Chapter 5

Charge and Entropy transport in WP2

Résumé du chapitre

Ce chapitre est dédié à l’étude du transport électrique et thermique dans le diphosphine de
tungsten (WP2). A travers des mesures de résistivité électrique et thermique, nous observons
que la loi de Wiedemann-Franz est satisfaite à basse température (T < 2K) dans ce semimetal.
Cependant, une augmentation de la température du système engendre une forte dichotomie
entre transport de charge et de chaleur. Ce phénomène se manifeste par une déviation du
nombre de Lorenz par rapport à la constante de Sommerfeld. Cette déviation est maximale
à T = 13K. Cette inégalité entre transport de charge et de chaleur à température finie est
universelle aux systèmes métalliques, elle résulte des processus de diffusion inélastiques
qui affectent les électrons. Son amplitude dans WP2 est cependant largement plus grande
que dans la plus part des autres métaux. Afin d’expliquer l’origine de cette forte déviation,
nous avons étudié séparément les différentes composantes de la résistivité électrique et
thermique, chacune étant associée à un processus de diffusion spécifique. Notre étude rélève
qu’il existe un facteur 5 entre le préfacteur du terme de diffusion interélectronique de la
résistivité électrique et celui de la résistivité thermique. Cette différence est à l’origine du
fort contraste entre transport de charge et de chaleur observé dans WP2. Nous associons
cet écart à une abondance particulière de processus de diffusion inter-electroniques à petit
angle, particulièrement favorisés par la topologie de la surface de Fermi de WP2. Motivés
par notre étude, des résultats théoriques ont démontré qu’un fort écrantage des électrons
dans un semimetal permet un ratio de Lorenz arbitrairement bas, c’est à dire une déviation
de la loi de Wiedemann-Franz à température finie arbitrairement grande. Nous concluons
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que le très grand écart à la loi de Wiedemann-Franz observé à température finie dans WP2

s’explique dans un cadre semi-classique.

Summary of the chapter

This chapter is dedicated to the study of the electrical and thermal resistivities of bulk single
crystals of WP2. The comparison between these two quantities yields two main results.
First, we observe the recovery of the Wiedemann-Franz law at T < 2K. Second, we measure
a large finite temperature departure, maximal at T = 13K, from the aforementioned law.
While the existence of inelastic scattering affecting electrons at finite temperature makes this
deviation ubiquitous in metals, the comparison with its recorded amplitude in other metallic
systems indicates that WP2 features one of the largest heat/charge transport dichotomy
of all bulk metals. To unriddle the origin of this large deviation, we separated both the
electrical and thermal resistivities into additive separate contributions which we associated
with either boundary, electron - electron or electron - phonon scattering. We concluded that
the existence of a five-fold mismatch between the T -square prefactors of the electrical and
thermal resistivities is the driving factor of the departure from the WFL. We associate this
mismatch with an abundance of inter-electronic small-angle collisions, particularly favored
by the topology of the Fermi surface of this material. Motivated by this study, theoretical
work showed that strong screening of the electrons in a semimetal can lead to an arbitrarily
small Lorenz ratio, i.e. confirmed the possibility of an arbitrarily large finite temperature
deviation from the Wiedemann-Franz law in a semi-metal. We conclude that the large
charge/heat transport dichotomy in WP2 can be explained in a semi-classical framework.

5.1 Presentation of WP2

Throughout the following section we will introduce the material under scrutiny in this chapter
: WP2. First we will present its fermiology, i.e its band structure and Fermi surface, then we
will present previous reports on the transport properties of this compounds. Finally, we will
focus on the geometry and orientation of the samples presented in this work.
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points of electron and hole pockets, is within the reach of
ARPES experiments.
The two compounds were identified by performing a

high-throughput screening of the band structure topology
of materials in the inorganic crystal structure database
(ICSD) [32], using the hybrid Wannier charge center
technique [33,34] as implemented in the Z2Pack package
[35]. Both MoP2 and WP2 crystallize in an orthorhombic
base-centered structure [30,31] containing two formula
units per unit cell as shown in Fig. 1(a). Both crystals
are noncentrosymmetric and belong to the nonsymmorphic
space group Cmc21 (36), which contains three symmetries:
a C2 screw axis along the [001] direction (21), a mirror
plane normal to the [100] direction [m, shown in green in
Fig. 1(b)], and a glide plane normal to the [010] direction
[g, shown in red in Fig. 1(b)]. Although the crystalline
symmetries of MoP2 and WP2 are similar to that of the
ditellurides, the atomic structure of the phosphides is very
different. While the structure of XTe2 consists of van der
Waals bonded layers, no layered structure exists in XP2
materials.
The electronic structure of MoP2 and WP2 was com-

puted from first principles [36,37]. The methodology is
described in more detail in the Supplemental Material [38].
The band structures along the high-symmetry directions of
the Brillouin zone (BZ) are shown in Figs. 1(c) and 1(d), for
MoP2 and WP2, respectively. Both compounds share a
similar semimetallic band structure, very different from that
of the XTe2 compounds, with an electron pocket around Y
and a hole pocket in the vicinity of the XS direction. The
Fermi contour of these pockets is shown with a dashed line
in Fig. 2(a) for MoP2 at k z ¼ 0. The main difference
between the two compounds is that the spin-orbit coupling
(SOC) is stronger in WP2, which results in a larger band
splitting compared to MoP2.
The band structure of MoP2 and WP2 along the high

symmetry lines of the BZ suggests that these compounds
are ordinary semimetals. However, a more careful analysis
reveals the presence of eight points in the k z ¼ 0 plane

where the conduction and valence bands touch. This can be
seen in Fig. 2(a), where we plot the energy difference
between the lowest conduction and the highest valence
bands in the k z ¼ 0 plane of the BZ. The gap closes at two
inequivalent points w1 and w0

1, located away from any high-
symmetry line. The positions of these points are listed in
Table I. The six other points wi and w0

i (i ¼ 2, 3, 4) are
related to w1 and w0

1 by mirror and time-reversal (T )
symmetries. In both compounds, w1 and w0

1 are at −0.410
and −0.364 eV relative to the Fermi level in MoP2 and at
−0.471 and −0.340 eV relative to the Fermi level in WP2.
Analogously to the case of XTe2, the existence of

degeneracy points in the k z ¼ 0 plane of MoP2 and WP2
is due to the presence of the product symmetry C2T , which
restricts a general 2 × 2 Hamiltonian in the plane to be of
the form

Hðk x; k y; 0Þ ¼ d0ðk x; k yÞσ0 þ dyðk x; k yÞσy þ dzðk x; k yÞσz;
ð1Þ

where σy;z are the corresponding Pauli matrices and σ0 is
the 2 × 2 unit matrix associated with the kinetic energy
term of the type-II Weyl Hamiltonian [18]. The full
derivation of the model Hamiltonian is presented in the
Supplemental Material [38]. In order to establish that
the degeneracies wi and w0

i are indeed WPs, we computed
the Chern numbers of surfaces enclosing these points
following the method described in Ref. [18]. We find that
both w1 and w0

1 carry a topological charge C ¼ þ 1 [38],
while the charges of the other six points are obtained by
symmetry arguments: mirror reflection flips the sign of the
Chern number of a WP; thus, w2;4 and w2;4

0 have C ¼ −1,
while T reflection preserves it, so C ¼ þ 1 for w3 and w0

3.
The WPs in MoP2 and WP2 are of type II as can be
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FIG. 1. (a) Crystal structure of
MoP2. The black box corresponds to
the orthorhombic conventional unit cell.
(b) Brillouin zone of MoP2 showing the
positions of Weyl nodes with positive
(red) and negative (blue) Chern numbers.
Band structures of (c) MoP2 and (d) WP2
plotted along high symmetry directions,
as well as along the Γw1Y path in order to
reveal the band crossings.
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points of electron and hole pockets, is within the reach of
ARPES experiments.
The two compounds were identified by performing a

high-throughput screening of the band structure topology
of materials in the inorganic crystal structure database
(ICSD) [32], using the hybrid Wannier charge center
technique [33,34] as implemented in the Z2Pack package
[35]. Both MoP2 and WP2 crystallize in an orthorhombic
base-centered structure [30,31] containing two formula
units per unit cell as shown in Fig. 1(a). Both crystals
are noncentrosymmetric and belong to the nonsymmorphic
space group Cmc21 (36), which contains three symmetries:
a C2 screw axis along the [001] direction (21), a mirror
plane normal to the [100] direction [m, shown in green in
Fig. 1(b)], and a glide plane normal to the [010] direction
[g, shown in red in Fig. 1(b)]. Although the crystalline
symmetries of MoP2 and WP2 are similar to that of the
ditellurides, the atomic structure of the phosphides is very
different. While the structure of XTe2 consists of van der
Waals bonded layers, no layered structure exists in XP2
materials.
The electronic structure of MoP2 and WP2 was com-

puted from first principles [36,37]. The methodology is
described in more detail in the Supplemental Material [38].
The band structures along the high-symmetry directions of
the Brillouin zone (BZ) are shown in Figs. 1(c) and 1(d), for
MoP2 and WP2, respectively. Both compounds share a
similar semimetallic band structure, very different from that
of the XTe2 compounds, with an electron pocket around Y
and a hole pocket in the vicinity of the XS direction. The
Fermi contour of these pockets is shown with a dashed line
in Fig. 2(a) for MoP2 at k z ¼ 0. The main difference
between the two compounds is that the spin-orbit coupling
(SOC) is stronger in WP2, which results in a larger band
splitting compared to MoP2.
The band structure of MoP2 and WP2 along the high

symmetry lines of the BZ suggests that these compounds
are ordinary semimetals. However, a more careful analysis
reveals the presence of eight points in the k z ¼ 0 plane

where the conduction and valence bands touch. This can be
seen in Fig. 2(a), where we plot the energy difference
between the lowest conduction and the highest valence
bands in the k z ¼ 0 plane of the BZ. The gap closes at two
inequivalent points w1 and w0

1, located away from any high-
symmetry line. The positions of these points are listed in
Table I. The six other points wi and w0

i (i ¼ 2, 3, 4) are
related to w1 and w0

1 by mirror and time-reversal (T )
symmetries. In both compounds, w1 and w0

1 are at −0.410
and −0.364 eV relative to the Fermi level in MoP2 and at
−0.471 and −0.340 eV relative to the Fermi level in WP2.
Analogously to the case of XTe2, the existence of

degeneracy points in the k z ¼ 0 plane of MoP2 and WP2
is due to the presence of the product symmetry C2T , which
restricts a general 2 × 2 Hamiltonian in the plane to be of
the form

Hðk x; k y; 0Þ ¼ d0ðk x; k yÞσ0 þ dyðk x; k yÞσy þ dzðk x; k yÞσz;
ð1Þ

where σy;z are the corresponding Pauli matrices and σ0 is
the 2 × 2 unit matrix associated with the kinetic energy
term of the type-II Weyl Hamiltonian [18]. The full
derivation of the model Hamiltonian is presented in the
Supplemental Material [38]. In order to establish that
the degeneracies wi and w0

i are indeed WPs, we computed
the Chern numbers of surfaces enclosing these points
following the method described in Ref. [18]. We find that
both w1 and w0

1 carry a topological charge C ¼ þ 1 [38],
while the charges of the other six points are obtained by
symmetry arguments: mirror reflection flips the sign of the
Chern number of a WP; thus, w2;4 and w2;4

0 have C ¼ −1,
while T reflection preserves it, so C ¼ þ 1 for w3 and w0

3.
The WPs in MoP2 and WP2 are of type II as can be

concluded by examining the Fermi surface at the energies
of w1 and w0

1, shown in Fig. 2(b) for the case of MoP2. Both
nodes appear at the points of contact between the electron
pocket located around Y and the hole pocket located along
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FIG. 1. (a) Crystal structure of
MoP2. The black box corresponds to
the orthorhombic conventional unit cell.
(b) Brillouin zone of MoP2 showing the
positions of Weyl nodes with positive
(red) and negative (blue) Chern numbers.
Band structures of (c) MoP2 and (d) WP2
plotted along high symmetry directions,
as well as along the Γw1Y path in order to
reveal the band crossings.
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Fig. 5.1 a) DFT computed band structure of WP2 along high symmetry direction of the
Brillouin zone [100]. b) DFT-computed 3D Fermi Surface of WP2 in the rectangular BZ.

5.1.1 Fermiology of WP2

Tungsten diphosphide WP2 is a 3D material which crystallizes in an orthorhombic structure
(namely the non-symmorphic Cmc21 space group). Each tungsten atom is surrounded by
seven phosphorus atoms, six located at the corners of triangular prisms while the seventh
stands outside one of the rectangular faces.

The electronic band structure of WP2 was computed from first principles (DFT calcula-
tions lead by A. Subedi). The band structure is presented along the high symmetry directions
of the Brioullin zone (BZ) in figure 5.1.a. It is in good agreement with previous calculations
[100] and confirms the high compensation of WP2 with a computed carrier concentration
n = 2.5⇥1021 cm�3. The Fermi surface (FS) associated with the electronic band structure
is constituted of 2 hole and 2 electron pockets, all located at the Brioullin zone boundary.
The FS in the first BZ is represented in figure 5.1.b. A close inspection of the band structure
reveals the semimetallic nature of WP2, but also shows the presence of eight points in the kz

= 0 plane where the valence and conduction bands touch. These points are located away from
any high-symmetry line. The 8 points can be deduced from two non-equivalent points by
mirror and time reversal symmetry. These two non-equivalent gap closing points are indicated
in the electronic band structure by a red circle on figure 5.1.a : they are respectively found at
0.471eV and 0.340eV below the Fermi surface. As a consequence, WP2 was predicted to be
a Weyl semimetal [100]. This has lead WP2 to gather a lot of experimental attention in the
recent years. The prediction was eventually confirmed experimentally [101].
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a) b)

Fig. 5.2 a) Resistivity along the a-axis as a function of temperature for different applied
magnetic fields. Sample is a needle-like single crystal of WP2. b) Magnetoresistance of WP2
as a function of B in the high field region for different temperatures. Both datasets are from
Kumar et al. [102]

5.1.2 Transport properties of WP2

Amongst these reports we find studies of the electrical resistivity. Needle-like single
crystals of WP2 were measured along the a-axis [102, 103]. The resistivity decrease from
r(300K) = 40µW.cm at room temperature to a residual term r(2K) = 1 to 10 nW.cm. r
as a function of temperature is shown in figure 5.2.a. The WP2 single crystals yield an
impressively high room-temperature Residual Resistivity Ratio for a binary compound :
(RRR) = r(300K)

r(2K) ⇡ 10000. This result indicates the high purity of the crystals. This allows
the mean-free-path of the charge carriers, deduced from the residual resistivity, le = 0.5
mm, to be comparable to the limiting dimension of the sample. WP2 is thus a highly clean
semi-metal in which charge carriers can reach a near-ballistic regime of transport at low
temperature.

Another way to reveal a remarkable sample quality is to measure the magnetoresistance
(MR) of this system. Reports on the MR of WP2 samples are featured in figure 5.2.a
[104, 102]. The MR follows a B2-dependence up to B = 10T and reaches MR ⇡ 106% at
(T=2K,B=9T). This value is one order of magnitude higher than what has been recorded
in WTe2 [105] and comparable to reports on the magnetoresistance of small samples of
Sb [106]. It implies a large electronic mobility in WP2. This result is confirmed by the
observation of quantum oscillations in the high-field resistivity of this compound. We also
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a) b)

Fig. 5.3 a) Thermal conductivity (blue) and electrical resistivity (red) of a micro-ribbon of
WP2 measured by Gooth et al. [107]. b) Lorenz ratio L(T ) = k/T s plotted as L(T )/L0 as a
function of temperature. L0 is the Sommerfeld value of the Lorenz ratio. Inset shows a focus
on the low temperature region.

indicate that there is a difference of 3 orders of magnitude between the transport and the
Dingle mobility in this system [102].

The thermal transport properties of WP2 have also been previously investigated [107].
Measurements were carried on a micro-ribbon (2.5µm wide) of WP2 where the thermal
conductivity, shown in figure 5.2.a, was measured with a 2-point setup (where the heaters
also play the role of thermometers). The comparison with the electrical resistivity, shown
in 5.2.a, reveals that the Lorenz ratio (L = k

sT ) holds an unprecedentedly large deviation
from the Sommerfeld value at T = 11K with no sign of low temperature recovery of the
Wiedemann-Franz law (WFL) down to T = 5K (Fig 5.2.b). This strong dichotomy between
heat and charge transport in WP2 was associated with the emergence of a hydrodynamic
regime of electrons [107]. This result motivated us to study the thermal conductivity of bulk
singles crystals of WP2 in a 4-point geometry.

5.1.3 Samples presentation

The samples measured in this study were 3 needle-like single-crystals grown along the a-axis.
They presented very similar dimensions : (1-2⇥0.1⇥0.1) mm3. The samples are similar to
those detailed in [102] : they were grown by chemical vapor transport. Starting materials
were red phosphorous (Alfa-Aesar, 99.999%) and tungsten trioxide (Alfa-Aesar, 99.998%)
with iodine as a transport agent. The materials were taken in an evacuated fused silica



68 Charge and Entropy transport in WP2

ampoule. The transport reaction was carried out in a two-zone-furnace with a temperature
gradient of 1000�C (T1) to 900�C (T2) for several weeks. After reaction, the ampoule was
removed from the furnace and quenched in water. The metallic needle-like crystals were
later characterized by X-ray diffraction.
The samples were contacted with 10 µm diameter Pt wires fixed with silver paste. The
contact resistance were sub-Ohmic. The sample was then setup to our home-made PPMS-
compatible stick which has been presented in chapter 2. All measurements took place in
a PPMS with j k (a-axis) for both heat and electrical currents. The electrical and thermal
resistivities were measured with the same setup while the residual magnetic field present in
the magnet was carefully suppressed during the measurements by a slow field sweep of a
resistivity.

5.2 Experimental results - WP2

We will now report on the experimental determination of both the electrical resistivity and
thermal conductivity of a bulk single crystal of WP2 along the a-axis and down to T = 2.0K.

5.2.1 Temperature dependence of the electrical resistivity

Zero-field Figure 5.4.a shows the resistivity as a function of temperature in a WP2 single
crystal. In the absence of an external magnetic field, we observe a decrease of the resistivity
with decreasing temperature down to T = 2K.

The residual resistivity r0 of this sample is r0 = 4.8nW.cm which yields a RRR of
(RRR) = r(300K)/r(2K) = 9600. The residual resistivities r0 of the 3 different samples
were found to lie between 4 and 6 nW.cm. Besides the variations of the residual term, no
detectable difference in the temperature dependence of the resistivity was found between the
different samples. For clarity reasons we will only feature the data from one of the three
samples in the following study.

At T = 2.0K we can determine the electronic mean-free-path le and compare it to prior
reports. With a carrier density of n = 2.5 ⇥ 1021 cm�3 (from QO) and assuming in first
approximation the effective mass of the charge carriers to be m0 (which is a reasonable
approximation for all pockets [102]), we can compute le in the low temperature region from
Drude model 5.1. We reach le ⇡ 80µm. This is to be compared to the sample limiting
dimension ⇡ 100µm. We conclude that the charge carriers behave as ballistic quasiparticles
at low temperatures in the sample under scrutiny.
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le =
h̄kF

ne2r0
(5.1)

To further study the temperature dependence of the resistivity, we plot r as a function of
T 2 in figure 5.4.b. We observe that for T 2 < 100K2, the resistivity varies linearly with T 2

and can be fitted to a A2 ⇥T 2 term with A2 = 16.6 pW.cm.K�2. For T 2 > 100K2 we observe
an upturn from the T 2 behavior. We present dra = r �r0 �A2 ⇥T 2 as a function of T 5 in
the inset of figure 5.4.b. We observe that the deviation from the T 2 temperature dependence,
dra, behaves as T 5.

Field dependence Upon application of a magnetic field of B = 10T, the resistivity increases
by 4 orders of magnitude at T = 2K (Fig 5.4.a). The B = 10T resistivity then decreases with
increasing temperature. Yet, it remains several orders of magnitude higher than the 0-field
resistivity throughout the temperature range of this study.

We conclude that the electrical resistivity increases with increasing temperature, starting
from the residual term r0, following a T2 temperature dependence up to T = 10K. Above
this temperature a T 5 contribution emerges. Around T = 30K the resistivity becomes r µ T g

with g < 5 decreasing with increasing temperature up to T = 100K when finally g = 1; the
resistivity of WP2 becomes T -linear. We are thus able to separate the different contributions
of the electrical resistivity of WP2 between T = 2K and T = 30K. Also, we emphasize the
large MR of this semi-metal. To pursue our study of the electronic transport properties of
WP2 we now turn to its thermal conductivity.

5.2.2 Temperature dependence of the thermal conductivity

In the following section we present data on the thermal conductivity k of the aforementioned
bulk single crystal of WP2. The results are presented in figure 5.5.a.

We observe that the 0-field thermal conductivity increases with decreasing temperature,
peaks at T = 7K, and decreases with further cooling of the sample. The application of a
magnetic field B = 10T decreases the thermal conductivity by at least one order of magnitude
over the temperature range of study.

To compare simply the electrical and thermal transport we define the thermal resistivity
WT = L0T

k where L0 = 2.44⇥10�8W.W.K�2 is the Sommerfeld number. WT is expressed
in W.cm and plotted as a function of T 2 in figure 5.5.b. We observe that for T < 7K the
thermal resistivity follows B2 ⇥ T 2 with B2 = 75.6pW.cm.K�2. For T > 7K, we observe
an upturn from the T 2-dependence. The inset of figure 5.5.b shows this deviation, dWT =
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Fig. 5.5 a) Thermal conductivity k , measured along the a-axis of a single crystal of WP2
as a function of temperature for B = 0T and B = 10T. b) Thermal resistivity, WT = L0T
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as a function of T 2. The dotted line is a linear fit to the T < 8K data. The inset shows
dWT = WT � W0T � B2T 2 as a function of T 3 expressed in nW.cm.



5.3 Discussion on the strong heat/charge transport dichotomy 71

WT � W0T � B2T 2, as a function of T 3. We can thus conclude that the upward deviation
follows a T 3 behavior.

We can summarize this section as the following : the thermal resistivity of bulk WP2

shows a similar behavior than its electrical counterpart. WT can be broken down into a
residual contribution W0T , a T 2-dependent part which dominates up to T = 7K and a higher
order term, B3 ⇥T 3 which controls the thermal resistivity at higher temperatures.

5.3 Discussion on the strong heat/charge transport dichotomy

In light of our measurements of the electrical and thermal resistivities of WP2, we will now
discuss the experimental recovery of the Wiedemann-Franz law at T = 2K and the emergence
of a strong finite temperature dichotomy between electronic charge and heat transport.

5.3.1 Phononic thermal conductivity

The thermal conductivity of a metallic systems results from various additive contributions
: one from charge carriers, which we label kelectrons, and another from phonons, named
kphonons. Also, a third contribution due to ambipolar diffusion kambipolar can be found. As we
wish to compare the electronic heat and charge transport properties of WP2, we first need to
separate kelectrons from the other components of the total thermal conductivity. This section
is dedicated to this process.

Ambipolar term Let us first show that an ambipolar contribution is negligible in WP2.
It is instructive to recall the case of semimetallic bismuth, in which thermal transport is
dominated by phonons. In such a compensated system, an ambipolar contribution to the
thermal conductivity, arising from a counter-flow of heat-carrying electrons and holes was
expected to be present [108, 109]. An ambipolar contribution would have led to an upward
deviation of L/L0 from unity. However, Uher and Goldsmid [108] found (after subtracting
the lattice contribution) that L/L0 < 1 in bismuth at finite temperature. This point to a
negligible ambipolar contribution to the thermal conductivity of Bi at low temperatures. The
reason is that the electron and hole gases are degenerate in Bi below room temperature, and
thus the ambipolar contribution is small in proportion to T/EF [7]. With strongly degenerate
holes and electrons in WP2 at low temperatures, we also expect no significant ambipolar heat
transport in WP2. We conclude that in WP2 : k = kphonons +kelectrons.
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Phononic thermal conductivity We now turn to the thermal conductivity of lattice vi-
brations. We recall that WP2 presents a large magnetoresistance. Precisely, the electrical
resistivity at T = 2K increases by a factor 104 (Fig.5.4.b) when a magnetic field B = 10T is
applied. According to the WFL, the electronic thermal conductivity kelectrons decreases by the
same order of magnitude. When B = 10T is applied to the sample, we observe in figure 5.5.a
that the thermal conductivity is only reduced by 2 orders of magnitude. Since there are only
two channels of heat conduction in the system, this result implies that k(B = 10T ) is no other
than kphonons(B = 10T ). From the high-field thermal conductivity of WP2 we are able to eval-
uate the thermal conductivity of phonons. We further assume that the thermal conductivity of
phonons is, at the first order, independent of the field, i.e. kphonons ⇡ kphonons(B = 10T )

We can now compare kphonons and the total thermal conductivity at zero field. We observe
that k(B = 0T ) � kphonons. As a consequence, kelectrons � kphonons in the absence of an
applied magnetic field. We can thus neglect the phonon contribution to the total thermal
conductivity and assume that k in this WP2 sample is entirely electronic at zero field.

Phonons mean-free-path But we can also extract further information on the phonons in
this system from the high field thermal conductivity. We know that kphonons is related to the
specific heat of phonons by equation 2.2. The heat capacity was studied experimentally, as
part of this work [110], by Kumar et al. from the Max-Planck Institute in Dresden, Germany.
The result is presented in figure 5.6.a.

Just like the thermal conductivity, the specific heat has an electronic and a phononic
contribution. In order to derive the specific heat due to phonons only, without the exact
phonon dispersion curve, we have to make an approximation. We will consider that for
T ⌧ qD with qD = 445K, the Debye approximation is valid. It yields a T 3-dependent
phononic specific heat. On the other hand, the electronic contribution takes the form of a
T -linear term. We define the specific heat from both contributions in equation 5.2 :

Cp = gT +C3.T 3 (5.2)

Figure 5.6.a presents the specific heat Cp plotted as Cp/T as a function of T 2 from
measurements in WP2. Below T = 4K, we are able to estimate both contributions. First, from
the intercept with the y-axis we determine the electronic contribution Cel = gT . Then the
slope gives us access to the phononic contribution. We find C3 = 6.62⇥10�2 mJ.mol�1.K�4.
Also, the inset of Fig.5.6.a shows that the T 3 contribution to the specific heat is suppressed
at T ⇡ 40K as we head toward a saturating regime of Cp. The Dulong-Petit law is then
recovered.
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Fig. 5.6 a) Specific Heat plotted as Cp/T as a function of T 2 for WP2. The inset shows the
specific heat plotted as Cp as a function of T up to T = 100K. b) Thermal conductivity, k ,
as a function of temperature in WP2 for B = 0T (black dots) and B = 10T (green dots). The
dotted line corresponds to the ballistic thermal conductivity of phonons in WP2.

We have thus determined the specific heat of phonons in WP2. Using equation 2.2,
we can now determine the mean-free-path of phonons at low temperature in WP2. To do
so, we assume a speed of sound of vs = 5000m.s�1 (similar to that of W). At T = 3K, we
determine lph = 80µm. Since the limiting dimension of the sample is 100µ , this result
implies that phonons are close to the ballistic regime at T = 3K. The evolution of the thermal
conductivity in the case of ballistic phonons is represented by the dotted line in figure 5.6.b.
While a proximity to the ballistic regime of phonons is observed at T = 3K, upon increasing
temperature a downward deviation from the ballistic regime emerges. This deviation is
the result of Umklapp scattering of phonons, which eventually dominate transport at finite
temperature and leads to the peak observed in kphonons, in figure 5.6.b, around T = 15K. The
flow of phonons is then dominated by resistive collisions.

We come to the conclusion that for temperatures from T = 2K to T = 20K, the zero-field
thermal conductivity of a (0.1⇥0.1⇥0.9) mm3 single crystal of WP2 due to charge carriers.

5.3.2 Temperature dependence of the Lorenz number

We have determined both the electrical resistivity and electronic thermal conductivity in WP2.
In order to compare both quantities, we define the Lorenz number L(T ) = kr

T . L(T) is plotted
as L(T )/L0 as a function of temperature in figure 5.7. According to our data, L/L0 is close to
0.5 at T = 40K and decreases with decreasing temperature until it becomes as low as 0.25 at
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shown in green. b) L(T )/L0 as a function of temperature in CeRhIn5 [31]. c) L(T )/L0 as a
function of temperature for an Ag wire with a 50µm diameter and 99.99% purity. WP2 and
Ag were measured with the same experimental setup.

T = 13K. This is in qualitative agreement with the observation originally reported by Gooth
et al. [107], who first described the very low magnitude of the L/L0 ratio in WP2. However,
the two sets of data diverge at low temperature and we recover the expected equality between
L and L0, i.e. an experimental verification of the Wiedemann-Franz law, at low temperature.

The comparison with two other metals, Ag and CeRhIn5, is instructive. Fig.5.7.b displays
the temperature dependence of L/L0 in the heavy fermion antiferromagnet, CeRhIn5 as
reported by Paglione et al. [31]. The L/L0 ratio, close to unity at T = 8K, decreases with
decreasing temperature and becomes as low as 0.5 at T = 2K, before shooting upwards
and attaining unity around T = 100mK. In Ag, as seen in Fig.5.7.c which presents our data
obtained on a silver wire, a similar downward deviation of the L/L0 ratio is detectable. Close
to unity below T = 8K, it decreases with warming and attains a minimum of 0.6 at T = 30K
before increasing again. Both Ag and CeRhIn5 show smaller deviation than what we observe
in WP2.
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Similar behavior was also observed in high-purity Cu half a century ago [33], in other
elements such as Al and Zn [34], in the heavy-fermion metals UPt3 [32], CeCoIn5 [111] as
well as in magnetically-ordered elements like Ni [112] or Co [113]. Only W [114] showed a
deviation with comparable amplitude to the one we report in WP2.

As a conclusion for this section, while we recovered the Wiedemann-Franz law in bulk
WP2 at low temperature, we measured a particularly large finite temperature deviation of the
Lorenz number from the Sommerfeld value in WP2 : L/L0 = 0.25 at T = 13K. This deviation
is larger than what was reported in any other metallic systems besides elemental tungsten (to
the best of our knowledge).

5.3.3 Abundant small-angle resistive electron-electron scattering

To understand the amplitude of the deviation let’s first discuss why we expect this downward
departure in finite temperature metals in the first place. In the scattering-based Boltzmann
picture, we have shown in chapter 2 that thermal and electrical transport are affected in
different ways by inelastic collisions labeled as "horizontal" and "vertical" (see sketch in
Fig.2.1.b).

But the deviation from the Wiedemann-Franz law observed in WP2 at finite temperature
is larger than what has been reported in most of other metals. To explain this behavior we
need to identify which small-angle scattering process affecting electrons is dominant.

On the microscopic level, we have shown that two distinct types of vertical scattering
events can drive the Lorenz ratio down in a metal at finite temperature. The first is electron-
phonon scattering [28] relevant in elemental metals whereas a second source of q-selectivity
concerns momentum-relaxing electron-electron scattering [115]. This second route towards
L(T )/L0 < 1, is prominent in correlated metals [116, 117].

In order to determine what set of microscopic collisions causes the downward deviation
from the WFL in WP2, we identified and quantified the different contributions to the thermal
and electrical resistivities of the system.

We have determined that both r and WT are T 2-dependent for T < 7K with distinct
prefactors. An upward deviation from the low-temperature quadratic behavior occurs for
both quantities, at different temperatures and in different fashions. The resistivites can
be written as a sum of three distinct contributions that we identify as scattering of charge
carriers by defects, electrons and phonons. We assume these scattering mechanisms to be
additive. Note that since the data are limited to a temperature window in which T > h̄

kBt , no
Altshuler-Aronov corrections are expected [117]. The expressions for r and WT become :

r = r0 + A2T 2 + A5T 5 (5.3)
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Fig. 5.8 a) Inelastic electrical resistivity dr caused by phonon scattering in WP2 (Black) and
Ag (Red) as a function of T 5. b) Inelastic thermal resistivity, dWT , in WP2 (Black) and Ag
(Red) as a function of T 3. The ratio of the two slopes is similar for heat and charge transport.

WT = W0T + B2T 2 + B3T 3 (5.4)

Our experimental results are in agreement with what is expected from equations 5.3 and
5.4, i.e. that r0 = W0T and A2 6= B2.

It is now instructive to compare WP2 and Ag to examine the possible role played by
inelastic phonon scattering. Fig.5.8 compares the amplitude of the T 5 terms in WP2 and
Ag. As seen in the Figure 5.8, the amplitude of both A5 and B3 is larger in WP2. More
quantitatively, A5(WP2)/A5(Ag)=3.4 and B3(WP2)/B3(Ag)=3.6. In other words, the B3 and
A5 ratios of WP2 and Ag are similar in magnitude, which implies that phonon scattering is
not the origin of the unusually low magnitude of the Lorenz number in WP2.

Having ruled out a major role played by phonon scattering in setting the low magnitude
of L/L0, let us turn our attention to electron-electron scattering. As stated above, the
prefactors of the T-square terms in r and WT , namely A2 and B2, are unequal. The ratio
A2/B2 is as low as 0.22, well below what was observed in different metals, such as CeRhIn5

(A2/B2 ' 0.4) [31], UPt3 (A2/B2 ' 0.65) [32], or nickel (A2/B2 ' 0.4) [112]. This feature
pulls down the magnitude of the L/L0 ratio in WP2. It can be explained by unusually
abundant vertical electronic events (involving a small change in the wave-vector of one of
the colliding electrons). These could be either Umklapp or inter-band, involving collisions
between hole-like and electron-like carriers belonging to different pockets.

The profusion of small-angle scattering is further confirmed, in the case of electron -
impurity, by the observation of a strong discrepancy, up to 3 orders of magnitude, between
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the transport and the Dingle mobility in this material [102]. This is presumably because
of a very long screening length, weakening large-angle scattering and helping momentum
conservation along long distances.

To have electron-electron collisions which are simultaneously small-angle, Umklapp
and intra-band, one needs a Fermi surface component located at the zone boundary [118].
Interestingly, as seen in the 3D representation of the FS (Fig5.1.b) this is the case for WP2.
Such a configuration allows abundant intra-band low-q Umklapp scattering. According to
previous theoretical calculations [119, 103], the weight of small-angle scattering can pull
down the A2/B2 (and the L/L0) ratio. However, the lowest number found by these theories
(' 0.38) is well above what was found here by our experiment on WP2 (A2/B2 ' 0.22), as
well as what was reported long ago in the case of tungsten [114]. Nevertheless, following
the present experimental observation, Li and Maslov showed [120] that in a compensated
metal with a long-range Coulomb interaction amongst the charge carriers, the Lorenz ratio
is given by equation 5.5, where k is the (inverse) screening length and kF is the (common)
Fermi momentum of the electron and hole pockets. By assumption, k ⌧ kF and thus L/L0

can be arbitrarily small in this model.

L/L0 = (k/kF)2/2 (5.5)

5.4 Conclusion on the heat/charge transport dichotomy of
WP2

In summary, we found that WP2 obeys the Wiedemann-Franz law at T = 2K but drastically
deviates from it at finite temperature. The amplitude of the departure is higher than what is
observed in most other metals. We recalled that this finite temperature dichotomy between
charge and heat transport is universal in metallic systems because of small angle scatter-
ing. These collisions weaken heat conduction more intensely than they affect electrical
conductivity. We found the exceptionally low magnitude of the L/L0 ratio to mirror the
discrepancy between the amplitude of the T-square prefactors of the thermal and electrical
resistivities. This observation yields that electron-electron scattering is at the origin of the
exceptionally large downward deviation from the Wiedemann-Franz law in WP2. This can
only happen if small-angle momentum-relaxing electronic scattering events are unusually
frequent. These collisions are actually favored in WP2 by the topology of the Fermi surface
which is located at the boundary of the Brillouin zone. This semi-classical approach explains
the large dichotomy between heat and charge transport that we measure in WP2. In the larger
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picture, this study motivated theoretical work which concluded that, in a semi-metal, there is
a priori no limit to the deviation from the Wiedemann-Franz law at finite temperature.



Chapter 6

Charge and Entropy transport in
Antimony

Résumé du chapitre

Ce chapitre est dédié à l’étude du transport électrique et thermique dans différentes tailles
d’échantillons d’antimoine (Sb). Malgré de précents rapports qui font état d’une des plus
grandes magnétorésistances connue et de la possibilité pour les porteurs de charge d’entrer
dans le régime ballistique à basse température, ce semi-métal n’a été que peu étudié.

Dans un premier temps, nous présentons l’évolution de la résistivité électrique en fonction
de la température de T ⇡ 1K jusqu’a T = 30K. Nous observons que les collisions inter-
électroniques dominent le transport electronique à T < 8K. La dépendence en taille des
résistivité résiduelles et des préfacteur de la résistivité en T 2 indiquent la proximité avec le
régime ballistique à basse température.

Dans un second temps, nous nous sommes concentrés sur la conductivité thermique
de Sb. Favorisée par la taille millimétrique des échantillons, la contribution phononique
ne pouvait être ignorée dans Sb comme elle le fut dans WP2. Les deux composantes,
électronique et phononique, ont été séparées quantitativement par une étude en champ. La
partie électronique indique que la loi de Wiedemann-Franz est vérifiée dans Sb à T = 2K
et subit une déviation due aux collisions électroniques à température finie d’une amplitude
comparable aux autres métaux (sauf WP2). L’étude de différentes tailles d’échantillon révèle
une dépendence en taille du ratio de Lorenz.

Enfin, nous avons isolé la composante phononique de la conductivité thermique. Nous
rapportons l’émergence d’oscillations périodiques en 1/B de kph pour B > 5T entre T = 0.4K
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et T = 10K. Bien que ces oscillations rappellent les oscillations quantiques, il est impossible
de leur associer une nature purement électronique sans induire une violation par plusieurs
ordres de grandeur de la loi de WF. Leur origine se trouve plutôt dans l’absorption/emission
de phonons par des porteurs de charges qui sont alors diffusés d’un niveau de Landau à un
autre.

Summary of the chapter

This chapter is a report on the electrical and thermal conductivities of different sizes of
elemental antimony samples. In spite of early work showing one of the strongest recorded
magnetoresistance and an attainable ballistic regime of electrons at low temperatures, this
semi-metal remains poorly investigated. We first report on the temperature dependence of the
electrical resistivity between T ⇡ 1K and T = 30K. We observe that inter-electronic collisions
dominate electrical transport for T < 8K. The prefactor of this T 2-resistivity evolves with
sample size, as well as the residual resistivity, proving the proximity to the ballistic regime
for low temperatures electrons. In a second time, we turn to the thermal conductivity of Sb.
Favored by millimetric samples, the phononic contribution to the thermal conductivity could
not be ignored in Sb as it was in WP2. We separate the two contributions, electronic and
phononic, by an in-field study of k . The electronic fraction reveals that the WFL is satisfied
in Sb below T = 2K and followed by a size-dependent finite temperature violation. The
amplitude of this departure is comparable to most metals reported in the literature, i.e. half
what we measured in WP2 (chapter 5). We show that this deviation is also associated with
electronic collisions. Finally, we focus on the phonon component of the thermal conductivity.
We report the existence of 1/B-periodic oscillations of kph for B > 5T between T = 0.4K
and T = 10K. While these oscillations are reminiscent of quantum oscillations, a purely
electronic origin would imply a violation of the WFL by several orders of magnitude. Rather,
their origin is found on the absorption or emission of phonons by charge carriers which are
scattered from one Landau level to another.
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a) b) c)

d)

Fig. 6.1 a) Band structure of Sb along various symmetry lines from [121]. b) Brillouin
zone for the rhombohedral structure. c) Representation of the Fermi surface of Sb from
[122]. d) Fermi surface of the electron pockets (at the L-point) and hole pockets (at the
T-point) according to the Liu and Allen [121] tight-binding model. Close to the T-point the 6
ellipsoids merge to form a unique object. Experimentally no evidence allows to conclude
whether or not the ellipsoids merge.

6.1 Presentation of Antimony

We begin the corpus of this report by an introduction to the state-of-the-art electronic and
transport properties of Sb. We will also present the different samples studied in the course of
this project.

6.1.1 Fermiology of Sb

Antimony is a semimetal with a rhombohedral crystal structure. The band structure, de-
termined from a third-neighbor tight-binding model [121] is represented in figure 6.1.a
alongside the Brillouin zone for the rhombohedral structure (Fig.6.1.b). The ensuing Fermi
surface (FS) of Sb is sketched in figure 6.1.c [122]. It is composed of three electron pockets
centered at the L-point of the Brillouin zone and six hole pockets located in the (trigonal,
bisectrix) plane in the vicinity of the T-point where they, following theoretical predictions,
merge into a single object [123–125]. Yet, no experimental results allow to discriminate
between 6 distinct ellipsoids and a single entity at the T-point.
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Direction melectrons (m0) mholes (m0)
1’ 0.093 0.068
2’ 1.140 0.920
3’ 0.088 0.050

Table 6.1 Mass tensor for the holes & electrons of Sb along the principal direction of the
ellipsoids [106, 126]

Individually, the hole and electron pockets are anisotropic ellipsoids with one of the short
axes oriented along the binary direction while the mean direction of the elongation is titled
in the (trigonal, bisectrix) plane from the bisectrix direction.

The Fermi surface has also been intensively studied from an experimental standpoint
through different probes. The high mobility of the carrier allows for the observation of
quantum oscillations in the resistivity, thermoelectric tensor, magnetization and magneto-
acoustic effect of Sb [124, 106, 125, 123]. The spectral analysis of the QO yields a Fermi
surface in good agreement with the band calculations and a carrier concentration of n =

5.5 ⇥ 1019 cm�3 was deduced. As an example, QO measured in the Hall effect with (j k
bisectrix) and (B k trigonal), which is the geometry on which we will focus on in this study,
are shown in figure 6.2.c. The Fourier transform (FT) of these oscillations is also featured in
figure 6.2.d. In this geometry, there are two main frequencies with comparable amplitudes
which stand out : f1 = 100T and f2 = 380T. They are respectively associated with the hole
pockets and the electron pockets [106].

Also, the study of the SdH effect [106] and the De Haas-van Alfen (dHvA) effect [124]
in the trigonal-bisectrix plane revealed a planar anisotropy of the Fermi wavevector of 6.4 for
electrons and 3.2 for holes. We can compare this anisotropy to the evolution of the effective
masses of the carriers along the ellipsoid principal axis (1’,2’,3’) from [126]. The results
are featured in table 6.1. A mismatch between the anisotropy of the Fermi momentum and
the anisotropy of the effective mass is observed. It was associated with a deviation from the
ellipsoidal pocket for electrons and holes [106].

The high mobility of charge carriers in Sb results both of its semimetallic nature and
its chemical simplicity [12, 127]. In millimetric samples, the mobility of charge carriers
can attain µ ⇡ 10000m2.V�1.s�1 while smaller samples usually display a mobility of the
order of µ ⇡ 100m2.V�1.s�1. The latter is an order of magnitude higher than in graphite
(discussed in chapter 3) and of the order of what we reported in WP2 (discussed in chapter
4). The combination of highly mobile charge carriers and a low electronic concentration
in Sb leads to one of the largest recorded MR [106, 128, 129]. Contrary to other metallic
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Fh1,h2,h3 Fe1,e2,e3

a)

b)

c) d)

Fig. 6.2 a) Magnetoresistance of selected semimetals ((r(B)�r0)/r0) : Sb (red), Bi (blue)
and WTe2 (green) as a function of magnetic field at T = 2K from [106]. The black line
indicates a B2 behavior. b) r22 plotted here as a function of B in a linear scale [106]. Quantum
oscillations appear for B > 3T. c) Oscillating part of the resistivity dr as a function of B�1

at T = 2K. The inset shows a sketch of the Fermi surface of Sb and the direction along which
the field is applied. d) Fourier transform of the oscillations reported in (c).
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systems, the magnetoresistance of Sb does not show signs of saturation up to B = 60T, as
shown in figure 6.2.a. This observation can be explained by the almost perfect compensation
of charge carriers. The deviation from perfect compensation was then evaluated from MR
measurements and confirmed to be small : Dn/n (Dn/n ⇡ 10�3 - 10�4) [106]. Finally, the
analysis of the QO allows us to determine the Dingle mobility µD and compare it to the
mobility µr deduced from r22. The ratio µr/µD reaching values up to 250 implies and
indicates that small angle electron - impurity scattering is dominant in Sb [106].

Let’s continue this presentation of the state-of-the-art transport properties of antimony
with early reports on the thermal conductivity of millimetric Sb samples. k was measured as
a function of temperature and under the effect of an external magnetic field. An experimental
determination of k is featured in figure 6.3.a down to T = 4K. This experiment was conducted
on a polycrystalline rod of diameter d = 5mm by White et al. [130]. The grain size was
described by the authors as ’very much greater than 0.1mm’. The thermal conductivity was
measured at B = 0T and upon application of an external magnetic field. These measurements
lead to the separation of the electronic and phononic parts of the thermal conductivity of the
rod. The electronic fraction showed that the Wiedemann-Franz law was roughly recovered
at low temperature. The heat transported by the lattice waves was evaluated but poorly
discussed in this first study.

Following reports nevertheless focused more on the phononic thermal transport properties
of rods of Sb [131–133]. One result of particular interest is the observation by Long et al.
of 1/B-periodic oscillations of k . Upon sweeping the magnetic field, after the initial drop
of thermal conductivity at a few Teslas, k starts to oscillate. This result is presented in 6.3
[132]. Because of their amplitude, the oscillations were not associated with oscillations of
the electronic contribution to k : a discrepancy of at least 3 orders of magnitude between the
oscillations of r and k emerges through the WFL. These oscillations were rather associated
with the oscillation of the electronic density due to Landau quantization. Recent observations
have showed the same oscillating behavior in wide variety of semimetals : Bi [134], Graphite
[135], NbP [136] and TaAs [137]. These reports did not investigate these oscillations down
to low temperature in a clear context of separation of the electronic and phononic thermal
conductivities. So far, no agreement on the origin of this phenomenon has been reached.

6.1.2 Samples presentation

The Sb samples presented in this work are single crystals. The samples designated by #1
and #2 in table 6.2 were prepared in the same batch while sample #3 comes from a different
provider. Sample #3 is a precisely cut slab however, samples #2 and #3 are bar-like with
rough edges. These are the 3 samples we used to carry out the following study of the effect
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a) b)

Fig. 6.3 a) Thermal conductivity as a function of temperature for a millimetric Sb sample.
The full line corresponds to k , the line with markers (circles) refers to kph and the broken
line is ke. The graph is from [130]. b) The high-field thermomagnetoresistivity g11 = L0T/k
as a function of magnetic field. Graph taken from [132].

of size on the transport properties of Sb. The dimensions of the samples are presented in
table 6.2. We define the cross section of the slabs by the following parameter : s =

p
w⇥ t

with width (w) and thickness (t). We will refer to the samples using the s parameter.

6.2 Study of the electrical resistivity of Sb

In the following section we will present our results on the electrical resistivity of the different
Sb samples. First, we will study the temperature dependence of the resistivity in absence of a
magnetic field. In a second time we will report on the large magnetoresistance of the samples.

6.2.1 Temperature dependence of the resistivity

We report on the electrical resistivity as a function of temperature for the three previously
presented Sb samples. Their resistivities along the bisectrix direction r22 are presented as
a function of temperature in figure 6.4.a. The inset shows a sketch of the geometry and
the orientation of the slabs. We emphasize that special attention was paid to suppress any
residual magnetic field present in the superconducting magnet down to B = 10Oe.
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Fig. 6.4 a) Electrical resistivity along the bisectrix direction r22 as a function of temperature
for three different geometries of Sb samples denoted by the s parameter. The inset explicitly
defines s and the orientation of the crystals. Note that the s=1.26mm sample displays irregular
dimensions and poor orientation. b) The same r22 plotted here as a function T 2. The red
markers refer to data from Fauqué et al. [106] with a sample geometry defined by s=0.3mm.

Sample Dimensions (mm3) s (mm) r0 (nW.cm) RRR le (mm) A2 (nW.cm.K�2)
S1 (0.3x0.5x4.1) 0.39 159 260 0.02 0.70 ± 0.03
S2 (0.4x4x2.8) 1.26 110 370 0.04 0.44 ± 0.06
S3 (1x5x10) 2.24 24.1 2000 0.11 0.32 ± 0.07

Table 6.2 Electrical transport properties of the Sb samples.

All samples showed a room temperature resistivity r300K = 41µW.cm. From T = 300K to
T = 25K, r22 does not display any notable sample dependence. Upon further decrease of the
temperature, the resistivity presents a size-dependent behavior. The residual resistivity ratio
(RRR = r300K/r2K) decreases as the size of the sample increases. The residual resistivities
of the different samples, along with their RRRs, are presented in table 6.2.

We can now evaluate the low temperature electronic mean-free-path (mfp) le. It is
determined through equation 5.1 with the following parameters : kF , r0 and n. To determine
kF and n, along the bisectrix, we rely on the known fermiology of the system. Using the
carrier density determined from QO oscillations n = 5.5⇥1019cm�3 [106] we find an average
Fermi wavevector kF = 0.8nm�1 and EF = 94meV. The values of le are presented in table
6.2.
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As suggested by the size dependence of r22 below T = 25K, the value of the electronic
mean-free-path reveals a proximity to the ballistic regime for low temperature charge carriers.
This result is coherent with previous reports of ballistic transport in millimetric Sb samples
with RRRs up to of the order of 104 [12].

We then pursued by investigating the inelastic contributions to r22 at finite temperature.
The resistivity is plotted as a function of T 2 in figure 6.4.b. For temperatures up to T ⇡ 10K,
the resistivity shows a T 2 behavior. It can be written as : r22 = r0 +A2 ⇥T 2. The value of
A2 for the three different samples are listed in Table 6.2. A2 evolves with the sample size.
This is the first main result of this chapter. The red line featured in Fig.6.4.b represents data
from Fauqué et al. [106] for a sample of size s = 0.3mm similar to our smallest sample of
size s = 0.4mm. We can observe that both samples, from different batches, show similar
r22 temperature dependence. Above T = 10K, an upward deviation from the T 2 behavior is
observed in all different samples. This result is coherent with an increasing rate of inelastic
electron - phonon scattering as the temperature is increased. The upturn, once removed
from the residual and T 2-term, does not follow the T 5 dependence which is expected in the
Grüneisen model and remains an open question.

6.2.2 Study of the magnetoresistance

In the following section we report on the magnetoresistance of the three aforementioned
Sb samples. We have measured the transverse magnetoresistance along the bisectrix direc-
tion for the small (s = 0.4mm) and large (s = 2.2mm) samples. Figure 6.5.a presents the
magnetoresistance, defined as MR = r(B)/r0 at T = 100mK.

We first pinpoint the value of the magnetoresistance of the s = 2.2mm sample : MR =

108% at B = 9T and T = 2K. We can compare this value to previous reports on lower
quality Sb samples (MR ⇡ 106% at (2K,9T ) in [106]), to other semimetals such as Bismuth
[138], WTe2 [105, 139], WP2 [103, 102] and also to the III-V semiconductor InAs presented
earlier in this thesis. To the best of our knowledge, we have recorded here the highest
magnetoresistance of any bulk 3D system. The record breaking property of the s = 2.2mm
sample reflects its high purity and the high mobility of charge carriers.

The high electronic mobility of Sb is further underlined by the observation of quantum
oscillations in the resistivity. Both r22 (current injected and voltage probed along the bisectrix
direction) and r21 (current injected along the bissectrix direction and voltage probed along
the binary direction) as a function of applied magnetic field are presented in figure 6.6.a and
c. The 1/B-periodic oscillations are a signature of the SdH effect. We were able to extract
two QO frequencies, f1 = 100±5T and f2 = 380±20T through the Fourier transform of r22

(Fig 6.6.b) and r21 (Fig 6.6.d). While the two frequencies are visible in both geometries of
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Fig. 6.5 a) Transverse magnetoresistance MR = (r(B)�r0)/r0 as a function of magnetic
field for two samples at T = 100mK. The red dotted line shows a T 2 behavior. b) r22 plotted
here as a function T for the small and large samples both at B = 0T and B = 10T.

measurement, the relative amplitudes of the high frequency and low frequency peaks differ.
Both peaks show a comparable amplitude in the FFT of r21 whereas the f1 peak displays
a larger amplitude than f2 in r22. These results are coherent with previous observation by
Fauqué et al. [106]. The low frequency, f1, is associated with the hole pockets (for B applied
along the trigonal axis) whereas the high frequency f2 corresponds to the electrons pockets
(in the same configuration) [106, 126].

Finally we turn to the field dependence of the resistivity of sample s = 2.2mm. It follows
a B1.85 dependence, with no sign of saturation up to B = 17T. r22 of sample s = 0.4mm,
on the other hand, shows a B1.85 dependence up to B = 10T, which then starts to saturate
upon further increase of the magnetic field. The field dependence goes down to B1.6 around
B = 17T.

The temperature dependence of r22 for both samples in a static magnetic field of B = 10T
was also studied. The results are featured in figure 6.5.b. The B = 0T data have been
presented in Fig 6.4.a. We notice that upon application of a strong magnetic field, B = 10T,
the temperature dependence of the resistivity r22 is modified : it decreases with increasing
temperature. The magnetoresistance is also higher in sample s = 2.2mm which is consistent
with the data from Fig.6.5.a. Finally, we observe a saturation of r22 below T = 5K at B = 10T.
We do not have magnetoresistance data on the s = 1.3mm sample.
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Fig. 6.6 a) r22 as a function of B for various temperatures in sample s = 2.2mm. The
magnetic field is applied along the trigonal direction. b) Fourier transform of r22 presented
in a. c) r21 as a function of B for various temperatures in sample s = 2.2mm. The magnetic
field is applied along the trigonal direction. d) Fourier transform of r21 in c.
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Fig. 6.7 a) Thermal conductivity k plotted as a function of temperature for three different bulk
Sb geometries. The measurements were done along the bisectrix direction of the samples. b)
Lorenz ratio L(T ) = kr/(T.L0) plotted as a function of temperature for the three samples.
The same colormap is used in a and b.

6.3 Study of the thermal conductivity of Sb

This section is devoted to the main experimental result of this chapter, the experimental
determination of the thermal conductivity of the three Sb samples along the bisectrix direction.
We studied k as a function of the temperature, the magnetic field and the sample size.

6.3.1 The recovery of the Wiedemann-Franz law at low temperature

First of all let us compare the thermal conductivity and the electrical resistivity of these
samples at low temperature to observe whether or not the Wiedemann-Franz law is recovered
at low temperatures.

Figure 6.7 shows k as a function of temperature for the three samples. The measurements
were performed according to the experimental protocol presented in chapter 2, i.e. the
standard one-heater-two-thermometers setup. Extra care was also given to suppress the
residual magnetic field down to B = 5 Oe. Measurements from T = 2K to T = 30K were
performed on our home made PPMS-compatible stick while the temperature range T = 0.1K
to T = 4K was done in a dilution fridge.

We observe that the three samples display similar thermal conductivities between T = 15K
and T = 30K. However, upon decreasing temperature, the s = 0.4mm sample deviates
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and peaks around T = 11K before decreasing with further decrease of the temperature.
The s = 1.3mm sample reaches a maximal value at T = 9K whereas the largest sample,
s = 2.2mm, encounters a maximum in k at T ⇡ 8K. For all three samples, the thermal
conductivity decreases upon further cooling. The small and large samples show a T -linear
behavior below T = 1K.

To simplify the comparison between electrical and thermal transport we introduce the
thermal resistivity (WT ) = L0T/k . From our measurements of both r22 and (WT ) we
can construct the Lorenz ratio L(T ) = ( r

WT )L0 (as defined in chapter 1) and determine its
evolution with temperature. The results are plotted in figure 6.7.b. We see that at high
temperature L(T ) > 1 for all three samples. This indicates an upward deviation from the
Wiedemann-Franz law. Upon decreasing temperature the Lorenz ratio decreases toward the
validation of the Wiedemann-Franz law : L(T )/L0 = 1. This condition is satisfied for the
three samples below T = 1K. This result is given within experimental error represented by the
cloud of points for each data sets. We are able to confirm from the raw thermal conductivity
data that the Wiedemann-Franz law is recovered, within errorbars, below T = 2K in the
different samples.

6.3.2 In-field Temperature dependence of the thermal conductivity

In the following section we show the evolution with temperature of the thermal conductivity
when an external magnetic field is applied to the Sb samples.

Special care was taken to calibrate the thermometers at the specific magnetic field of the
measurements (as detailed in chapter 2). Figure 6.8.a shows the thermal conductivity k as a
function of temperature for different magnetic fields applied to the s = 0.4mm sample.

We observe a rapid decrease of k upon application of an external magnetic field. This
decrease is observed upon application of a magnetic field as small as B = 0.02T (see inset of
Fig.6.8.a). k then saturates for B > 0.6T in sample S1. We will refer to this floor value of the
thermal conductivity as kB�saturated .

Figure 6.8.b presents kB�saturated for the three different samples of this study. Mea-
surements were repeated for a variety (at least 5) of magnetic field for each sample until
kB�saturated was determined unambiguously. We underline that kB�saturated is orders of
magnitude smaller than k in the sub-Kelvin region.

The three samples display similar behaviors when confronted to an external magnetic
field. On figure 6.8.b we see that kB�saturated is size independent for temperatures T < 1K
and T > 15K. Only when 1 < T < 15K do we observe variations of kB�saturated between the
three samples. k displays a maximum at a sample-dependent temperature T ⇡ 8�15K before
decreasing monotonously with further increase of the temperature. Below this maximum,
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Fig. 6.8 a) Thermal conductivity k plotted as a function of temperature for the small,
s = 0.4mm sample. Black circles represent B = 0T data whereas black crosses refer to
B = 5T data. The color-map represents an increase of the magnetic field from B = 0T to
B = 2T with a step of B = 0.05T. Above B = 1.4T there is no visible difference in the
temperature dependence of k . Inset shows k as a function of B for the same sample at
T ⇡ 2K. The temperature of the sample changes when sweeping the field upon a constant
heat current. b) Non magnetic field dependent thermal conductivity kB�saturated as a function
of temperature for the three Sb samples. The broken black line represents a T 3 behavior.

kBsaturated follows a power law kB�saturated µ T g with g > 3, respectively g = (3.6, 3.8 and
4.3) for samples s = 0.4mm, s = 1.3 mm and s = 2.2 mm. For comparison, the dashed black
line in Fig 6.8.b represents a T 3 behavior.

The temperature dependence of kB�saturated and its evolution with the size of the sample
form the second main result of this study. It will be further discussed in chapter 6.

6.3.3 High field dependence of the thermal conductivity

We also studied the counterpart of the previous result : the thermal conductivity as a function
of magnetic field up to B = 17T at a constant temperature. As shown in the inset of figure
6.8.a, the thermal conductivity drops drastically when a small magnetic field is applied to the
sample. k then saturates around B ⇡ 1T.

In the low field region, the sudden drop of k upon sweeping the field induces a change
in the temperature of the sample when a constant heat current is applied. Maintaining a
constant temperature would require immediate feedback and iteration between the heater and
the thermometers, which is a very cumbersome procedure when dealing with finite response
time between the sample and the thermometers. But we observe that the thermal conductivity
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Fig. 6.9 a) Thermal conductivity k plotted as k/k1T a function of magnetic field for the large,
s = 2.2mm sample. All plots are shifted for clarity. The temperature was determined in the
B-saturation regime. b) Oscillations of the thermal conductivity dk (dk = k� background)
plotted as a function of B�1 for two temperatures T = 1.4K and T = 3.0K.

saturates typically around B = 1T, and further measurement of k when the magnetic field is
swept above B = 1T with a constant heat current is thus an isothermal measurement.

Figure 6.9 presents the temperature dependent magneto-thermal transport measurements
performed on the s = 2.2mm Sb sample. k is presented in figure 6.9.a as a function of the
magnetic field for different temperatures, which are evaluated in the B-saturated regime. Data
up to B = 17T were measured in our dilution fridge whereas data limited at B = 14T were
measured in the PPMS. The discrepancy between both sets of measurements is attributed to
a small misalignment between the magnetic field and the trigonal direction of the sample
from one setup to another.

As previously announced, the sudden drop of k at very low magnetic field is followed
by a constant thermal conductivity upon further increase of the magnetic field. However, as
we can see in figure 6.9.a where k/kB=1T is shown (graphs are shifted vertically for clarity),
for B > 5T an oscillating pattern emerges in k . The amplitude of the oscillations accounts
for only a fraction of the signal value (⇡ 5% in this sample) and is temperature dependent;
the amplitude of the oscillations increases from T = 0.5K to T = 5K before diminishing
with further increase of temperature. At the highest temperature we studied in this sample,
T = 10K, we hardly see any detectable oscillations.

We removed the background term (a polynomial fit) and plotted the oscillations as a
function of B�1 in figure 6.9.b for two temperatures, T = 1.4K and T = 3.0K. We observe
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Fig. 6.10 a) Specific heat Cv as a function of temperature both from experimental results
(black crosses) and ab initio calculation (red line). b) Specific heat plotted as Cv/T 3 for both
experimental and theoretical results.

1/B-periodic oscillations. These oscillations are dominated by one frequency : f1 = 96-101T.
This frequency does not evolve with temperature. The data shown here are for the large
sample only, but we observed similar 1/B-periodic oscillations of k in the other Sb samples
with a major frequency f1 ⇡ 100T. The amplitude of the oscillations evolve with sample size.
The field sweep data regarding sample S1 are available in the appendix 2.

6.3.4 Study of the specific heat

To further shed light on the phonons contribution to the heat transport properties of Sb, we
decided to take a closer look at the specific heat of this elemental system. Measurements
have been realised by T. Lorenz and coworkers in Köln on a (2⇥2⇥1) mm3 single crystal of
Sb from the same batch as sample s = 0.4mm. Cv was determined from T = 2K to T = 300K.
We then separated the electronic and phononic contributions to the specific heat similarly to
what we did in the case of WP2 (chapter 4).

We also report on a theoretical prediction of the phonon specific heat thanks to the
computation of the phonon band structure of Sb by A. Subedi (details of the calculation are
provided in the annex). The specific heat due to the phonons was then determined from this
band structure.

Both the experimental and theoretical results are presented in Fig.6.10.a. There is a
strong agreement between the experimental specific heat and the computed specific heat as
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functions of temperature. The specific heat of Sb decreases with decreasing temperature.
To study the different components of Cv, we plot Cv/T 3 as a function of temperature, both
experimental and theoretical, in figure 6.10.b. Both plots show the same deviation from a
T 3 behavior at finite temperature, i.e. the same anharmonic behavior. Our results are also
in agreement with previous experimental determinations of the specific heat of antimony
[140, 141].

6.3.5 Study of the thermoelectric effects in Sb

In addition to the electrical and thermal conductivities, our experimental setup allows the
measurement of the thermopower and Nernst coefficient. We will now report on the effect of
temperature and magnetic field on these two coefficients of the thermoelectric tensor in Sb.
The large and small samples were studied (s = 2.2mm and s = 0.4mm).

The thermopower Sxx and the Nernst signal Sxy have been respectively defined in equations
2.14 and 2.17. We remind the reader that the Nernst coefficient is defined as n = Sxy/B.

Temperature dependence The thermopower of the small (s = 0.4mm) sample was first
measured as a function of temperature in the absence of a magnetic field down to T = 0.3K.
It is presented in figure 6.11.a as Sxx/T . We observe a small positive thermopower throughout
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the entire range of temperature of this study. Sxx/T shows two maxima at T = 0.6K and
T = 6K where it reaches a value close to 0.3µV.K�2. It then decreases at higher temperatures.
The variation of Sxx/T between T = 0.3K and T = 10K do no exceed 50%. The peak at
T = 6K is most likely due to the phonon drag effect.

Below T < 1K, Sxx/T appears to saturate around 0.3µV.K�2. We remind the reader that,
in the diffusive limit, the thermopower is only related to intrinsic properties of the system
and not to the scattering of the carriers. It is approximated by equation 2.16. We can use
this limit to evaluate a lower bound of the Fermi temperature TF from the saturation value of
Sxx/T . We find a lower bound for TF = 1200K. If we now compute the Fermi temperature
from the frequency of the QO in r22, we reach an average value TF ⇡ 1000K. The agreement
between the Fermi temperature determined from QO and the lower limit evaluated from the
thermopower measurement indicates that the thermoelectric response at low temperature is
dominated by the diffusive response of charge carriers.

We now turn to the Nernst coefficient of Sb. Figure 6.12.a shows the Nernst coefficient
n plotted as n/T as a function of temperature for different applied magnetic fields. At low
temperatures, T < 6K, we observe a slowly varying Nernst coefficient. This Nernst coefficient
seems to saturate at low temperature. Upon increasing temperature, an upward deviation is
observed : n/T shows a peak at T = 6K. With further increase of the temperature �n/T
decreases quickly and reaches 10µV.K�2.T�1 at T = 20K. Over the whole temperature range,
the field dependence of �n/T remains small.

In the case of a Fermi liquid, the value of the Nernst coefficient is also determined by
intrinsic properties of the system : the Fermi temperature of the system TF and the mobility
of the quasiparticles µ . n is evaluated from equation 2.19. This law has been verified over
several orders of magnitude in different systems. This expected quasiparticle contribution
is shown as a dotted line in figure 6.12.a and gives a lower bound to n/T . We observe
qualitatively in figure 6.12.a that �n/T T!0K����! 283µ/TF in the large Sb sample. This result
is further emphasized at lower temperature in figure 6.11.b where n/T (T = 1K) is shown as
a function of µ/TF for different systems. From this plot, we can confirm that Sb displays a
Fermi liquid behavior at T = 1K and that its Nernst coefficient is high compared to systems
which are not semi-metals. It is comparable to the n/T reported graphite and lower to the
one of Bi [142].

At higher temperature, the peak observed in the Nernst coefficient implies the existence
of a supplementary contribution to n , similarly what we report in Sxx/T which we associate
with the phonon drag effect. We underline that this peak occurs at the same temperature in k ,
Sxx/T and n/T .
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The temperature dependence of the thermopower and the Nernst effect in static magnetic
fields confirms the Fermi liquid behavior of Sb at low temperatures and points to the existence
of a phonon drag effect at finite temperature.

Field dependence Upon application of a magnetic field we see a strong response in both
the thermopower and the Nernst coefficient. The thermopower (Fig 6.12.b) shows a peak in
temperature at T = 6K for all magnetic fields applied. It increases with increasing magnetic
field as supported by its B-dependence in figure 6.12.d. For T > 6K the thermopower
decreases with decreasing temperature and changes sign at high enough temperature. Finally,
we observe QO in Sxx/T plotted as a function of B. The Fourier analysis of the signal shows
two main frequencies, similarly to what we observed in the resistivity : f1 = 100T and
f2 = 380T.

These QO were also observed in the field dependence of the Nernst coefficient plotted as
�n in figure 6.12.c. Upon application of a magnetic field, �n decreases rapidly (B < 0.1T)
and plateaus with further increase of B for T < 6K. We notice that for T > 6K, �n does not
reach a plateau but rather decreases with increasing field. The QO are very well observed
with symmetrical peaks (unlike what was reported in graphite [83]). The Fourier transform
of n/T reveals only one major frequency f1 = 100T which we showed to be associated
with holes. The frequency associated with electrons pockets is not revealed by the Nernst
coefficient oscillations.

Finally, we conclude that the thermoelectric tensor confirms the Fermi liquid behavior of
Sb at low temperatures. Our observations in Sb are coherent with prior observation of strong
thermoelectric effects in other semi-metals such as Bi and graphite. The thermoelectric tensor
clearly shows QO which are consistent with the fermiology of Sb, previously determined
from the electrical transport measurements. We add that our investigation confirms the
existence of a ’phonon drag contribution’ discussed in prior reports [7].

6.4 Discussion on the thermal transport properties of Sb

We have presented heat and charge transport measurements for slabs of antimony of different
dimensions. We will now present a quantitative separation of the different contributions
(namely phononic and electronic) to the thermal conductivity. From the electronic thermal
conductivity, on one hand, we will show the recovery of the WFL at low temperature to be
followed by a departure from this law upon warming. The study of this deviation reveals that
a mismatch in the T 2-prefactor of electrical and thermal resistivities drives down the Lorenz
ratio, similarly to what we reported in the case of WP2. The phonon contribution, on the
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other hand, displays 1/B-periodic oscillations at high magnetic field. We will discuss the
particular electron - phonon scattering phenomenon at the origin of this phenomenon.

6.4.1 Separation of the electronic and phononic thermal conductivities

The thermal conductivity of Sb is the sum of two components, the first is associated with
charge carriers while the second results of a phononic contribution. We have introduced in
chapter 2 how the two contributions can be separated in a system with a high MR. We will
now use this method in Sb.

Our starting assumption is that k is the sum of an electronic component and a phononic
term. The existence of a third contribution, an ambipolar component is prevented by the
same reasons as in the case of WP2 : the degeneracy of the electron and hole gases [110]. As
a consequence, k is written as the sum of two terms in equation 6.1.

k = ke +kph (6.1)

Let’s focus on the electronic term of k . At finite temperature, we know that resistive
(electron - electron) and (electron - phonon) scattering events induce a departure of the
electronic Lorenz ratio from the Sommerfeld value in metals. This yields the following
inequation for ke at finite temperature :

ke <
L0T

r
(6.2)

In light of inequation 6.2, if a strong magnetic field is applied to Sb, ke will see its upper
bound decrease proportionally to the increase observed in r . Figure 6.5.b shows that for
T < 20K, r increases by 4-5 orders of magnitude when B = 10T is applied to the system.
We thus expect ke to drop by at least 4 orders of magnitude.

The gradual decrease of k as a function of temperature and with increasing field was
shown for sample S1 (s = 0.4mm) in figure 6.8. We will illustrate the separation of the
contribution to k on the example of the large S3 sample.

k/T as a function of T 2 for this sample is shown in figure 6.13. For the different magnetic
fields, in this low temperature regime (0 < T < 0.3K), k/T behaves as T 2. We can thus
write k under the following expression : k = a ⇥T +b ⇥T 3. We notice that the slope of
k/T as a function of T 2, does not depend on the magnetic field. Also, the intercept of k/T
with the y-axis decreases with increasing field. In each case though, it matches its respective
L0/r(B) (represented by the dotted line in figure 6.13). Above B = 5T, the intercept with the
y-axis is too small to be resolved experimentally.
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Fig. 6.13 Thermal conductivity plotted as k/T as a function of T 2 for different magnetic
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L0/r(B). The Wiedemann-Franz law is satisfied if the intercept of k/T matches the dotted
line in the T = 0K limit. The broken line serves as a guide for the eyes.

First, the observation, at fixed B, of the match between the y-axis intercept of k (i.e. T-
linear component) and its corresponding L0/r(B) value indicates that the Wiedemann-Franz
law is experimentally recovered in the T ! 0K limit for the various applied magnetic fields.

Second, from the B-independent slope of k/T as a function of T 2, we can conclude
that the T 3-dependent part of the thermal conductivity saturates. This invariant component
corresponds to the thermal conductivity which is associated with phonons and thus does not
depend on the magnetic field for moderate fields. We thus associate kB�saturated shown in
Fig.6.8.b with the phonons thermal conductivity.

We have determined quantitatively both the total thermal conductivity and the thermal
conductivity due to phonons. We can now extract the electronic component of the thermal
conductivity for the three samples :

ke = k �kB�saturated (6.3)

For sample s = 2.2mm we plot k , ke and kph simultaneously in figure 6.14.a. Both the
electronic and the phononic contributions show a maximum in temperature, respectively at
T = 4K and T = 7K in this sample. Also, we observe that for T < 3K, ke becomes T -linear
while kph ⌧ ke. Below T = 2K, we can write k = ke whereas above this temperature, the
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phonons thermal conductivity increases faster than the electronic one. Both contributions
account for roughly half of k above T = 3K. This result is confirmed in the three samples
by the comparison of ke shown on figure 6.14.b and their respective phonons contributions
displayed in Fig.6.8.b.

Now that we have separated the two contributions which form k , we will concentrate on
the electronic fraction first. Let us define the electronic Lorenz ratio Le/L0 = rke/L0T and
plot it as a function of temperature in Fig.6.14.c. We observe that Le/L0 = 1 below helium
temperature. Upon increasing temperature, a size-dependent downward deviation is observed
with a minimal Le/L0 observed in the vicinity of T = 10K. The first observation confirms
what we knew from the study of the total Lorenz ratio : the WFL is recovered at low enough
temperature in the two Sb samples presented here. Second, and similarly to our study of
WP2, we can now determine the origin of this finite temperature departure from the WFL in
Sb. To do so we extract and compare the different components of the electrical and thermal
resistivities.

The thermal resistivity (WT ) is defined, as it was previously, by (WT ) = L0T/ke. (WT )

increases with increasing temperature in figure 6.14.d. It is also plotted alongside as a
function of T 2 in figure 6.15.b while r22 is plotted as a function of T 2 in figure 6.15.a . These
plots reveal that both (WT ) and r22, both in samples S1 and S3, scale as T 2 up to T = 8K.
These T 2-resistivities are both followed by upturns at higher temperature.

To determine the origin of this T 2-resistivity, we now separate the different contributions
to r22 and (WT ). Assuming the validity of Matthiessen’s rule in Sb, we can write the
electrical and thermal resistivities under a sum of the residual, (electron - electron) and
(electron - phonon) terms :

r = r0 + A2T 2 + A5T 5 (6.4)

WT = W0T + B2T 2 + B3T 3 (6.5)

At low temperature, we have shown r0 = (W0T ) with the recovery of the WFL. After
subtracting it to the resistivity, we can evaluate the prefactors of the T 2-dependent terms
in both (WT ) and r . In the small sample S1, we find A2 = 0.70nW.cm.K�2 whereas
B2 = 0.81nW.cm.K�2 is the thermal one. In the large Sb sample S3, the electrical resistivity
T 2-prefactor is A2 = 0.32nW.cm.K�2 whereas the thermal one is B2 = 0.63nW.cm.K�2. The
size-dependence of A2 and B2 will be discussed in chapter 6.

We identify the upturn from the T 2 behavior observed in both (WT ) and r22 to the
emergence of an (electron - phonon) contribution to the resistivity. However, in Sb, the
electron - phonon term does not appear to follow the expected Bloch-Gruneisen T 5-behavior.
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Fig. 6.14 a) Plot of the total thermal conductivity k , the electronic part ke and the phonons’
contribution kph as a function of temperature for the large Sb sample. b) ke plotted as a
function of temperature for the three Sb samples. c) Electronic Lorenz ratio plotted as a
function of temperature for the three sample. Le/L0 = 1 indicates the recovery of the WFL.
d) Thermal resistivity (WT ) = L0T/ke plotted as a function of temperature for the small and
large samples.
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We do not observe a T 3 contribution, associated with (electron - phonon) scattering in (WT )

either. This is the case in all three samples. This observation of a small (electron - phonon)
term in both resistivities is also confirmed by previous reports [12, 131, 132]. While we do
not understand the evolution with temperature of the electron - phonon scattering term in Sb,
we show that it is at least negligible up to T = 8K in this study.

We can thus associate the finite temperature deviation of the electronic Lorenz number
Le from the Sommerfeld value L0 to the mismatch in the T 2-prefactor of the electrical and
thermal resistivity. Microscopically, it means that inter-electronic scattering events drive the
Lorenz ratio down. In light of our study of WP2, we can conclude that this phenomenon can
be associated with the small-angle fraction of electronic collisions which contribute more to
the thermal resistivity than they do to the electrical resistivity. The amplitude of the deviation
observed in Sb (L = 0.46L0 at T ⇡ 10K in S3 is half what we observed in the case of WP2

(L = 0.23L0 at T ⇡ 10K in WP2 [110]. We will now discuss this difference considering the
different topologies of the respective Fermi surfaces of the two materials.

We have previously shown that all hole/electron pockets of the FS of WP2 lay at the zone
boundary and occupy a considerable fraction of the BZ 5.1. This favors small-q umklapp
scattering events and thus a strong heat/charge transport dichotomy [118]. In contrast, the
FS of Sb is composed of small electronic pockets buried in the Brillouin zone. This Fermi
surface topology does not favor as much small-q electronic collisions as it does in WP2. As a
consequence, the observation of a smaller deviation to the WFL at finite temperature in Sb
than in WP2 is coherent with the differences between the FS of these semimetals.

Finally, we can also compare the amplitude of the deviation to what was reported in two
heavy fermions systems : UPt3 [32] and CeRhIn5 [31]. In both systems, the deviation of
the Lorenz number from the Sommerfeld value was also associated to (electron - electron)
scattering. The amplitude of the deviations are very similar to what we observe in Sb. The
respective Fermi surfaces of these compounds are mostly located inside the Brillouin zone
[143, 144]. This observation is coherent with our qualitative explanation of the amplitude of
the electronic Lorenz number in various metals.

To summarize this section, we have presented a quantitative separation of the electronic
and phononic parts of the thermal conductivity in Sb. We are then able to give a quantitative
study of ke in presence of a non-negligible phonon contribution to the thermal transport. This
study proves the experimental recovery of the Wiedemann-Franz law at low temperature
in different sizes of Sb samples. We then report on a departure from the WFL at finite
temperature. We associate this phenomenon, similarly to the case of WP2, with abundant
small-angle electronic collisions. The amplitude of the deviation is similar to what was
observed in other metals yet smaller than what we reported on WP2. We associate this
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Fig. 6.15 a) Electrical resistivity r22 plotted as a function of T 2 in the three Sb samples. b)
Thermal resistivity (WT ) plotted as a function of T 2 in the large and small Sb samples. The
dotted lines correspond to fits to T 2-resistivities. Different x-axis ranges are used in the two
plots.

difference with the dissimilarities of the Fermi surfaces of these compounds : large pockets
located at zone boundary favor small-q electronic U-scattering in WP2 while Sb, with
small FS pockets located inside the Brillouin zone, which, do not particularly favor vertical
scattering.

6.4.2 Origin of the 1/B-periodic oscillations

While the previous section was devoted solely to the electronic transport properties of Sb, we
will now shift our attention to the phononic fraction of the thermal conductivity. We have
proven that kph is independent of the magnetic field in the B < 5T region. However, when
sweeping the magnetic field above this value we observe 1/B-periodic oscillations of kph, as
seen in Fig.6.9. We now wish to determine the origin of these oscillations.

Phononic origin of the oscillations Figure 6.16.a compares the amplitude of the electrical
resistivity r22 (green) and the thermal resistivity (WT ) (red) as a function of the magnetic
field for T = 3K in sample S3. We notice that r22 is 6 orders of magnitude larger than (WT )

over the whole temperature range.
If the oscillations observed in k = kph were associated with a residual electronic fraction

of the thermal conductivity, dke, the amplitude of the oscillations would be bound to the am-
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plitude of the resistivity oscillations by the Wiedemann-Franz law. The oscillations observed
in (WT ) and r22 would thus be of similar amplitudes. The large discrepancy between r22

and (WT ) forbids this purely electronic scenario. We can conclude that these oscillations are
not associated with straightforward SdH oscillations but rather with oscillations of kph.

A second key feature which shines light on the origin of the oscillations of kph is the
comparison with the oscillations recorded in the resistivity and the Nernst coefficient. We
plot in figure 6.16.b, along a common x-axis, the oscillations (background removed) observed
in the aforementioned quantities : dr22, dk and of the Nernst number dN = dn ⇥ B as a
function of B�1 for B from 6.25T to 12.5T. These measurements were all taken at T = 3K in
sample S3 (s = 2.24 mm). The electrical resistivity was previously shown in figure 6.5) while
the raw Nernst coefficient can be found in figure 6.12.c.

We observe that all three quantities present 1/B-periodic oscillations. The amplitude of
the peaks observed in r22 decreases quickly with increasing 1/B : only few oscillations are
visible in the range of magnetic field studied here. The oscillations in the Nernst number and
the thermal conductivity, on the other hand, can be resolved over a larger 1/B-range.

The crucial feature we wish to emphasize in figure 6.16.b is the relative phase of dr22 and
dk . These two quantities oscillate in-phase according to one major frequency : f1 = 100T.
This observation confirms the non-SdH nature of the oscillations. Indeed, in the case of
electronic thermal conductivity oscillations, the WFL would again impose that k oscillates
as 1/r22. As a consequence, dr22 and dk would be in phase opposition. The synchronous
oscillations of k and r22 (and �N), is another argument to support the non-electronic origin
of the oscillations of kph. We finally add that the observation of out-of-phase dr22 and dN is
expected for a semimetal. The electrical resistivity reaches a minimal value when a Landau
level is full which simultaneously corresponds to a maximum in the Nernst coefficient [46].

Similar observations have recently been reported in a variety of semimetals : in NbP
(attributed to an ambipolar contribution) [136], TaAs (related to variations of the electron-
phonon coupling) [137], TaAs2 [145] and NbAs2 [145]. They have also been reported half a
century ago in Bi [134], Sb [132] and graphite [135]. Their origin remains poorly explored.

Our study is the first to track these oscillations down to low temperatures in a context
of clear separation of the different contributions to the thermal conductivity. We are able to
conclude that dk is not associated with a violation of the Wiedemann-Franz but rather with
oscillations of kph with the population of the LL.

Fourier transform analysis of dk We now turn to the spectral analysis of dk to unveil
more information on the nature of the (electron - phonon) scattering which leads to these
oscillations. We present the Fourier transform of dk in figure 6.17. We remind the reader that
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Fig. 6.16 a) Electrical r22 and thermal (WT ) resistivities plotted as a function of magnetic
field for T = 3K. b) Quantum oscillations extracted, from top to bottom, from r22, k and
N (Nernst coefficient) in arbitrary units. All sweeps were realised at T = 3K. The vertical
dotted lines serve as guides for the eye.

dk is defined by subtracting a polynomial fit to kph. The Fourier transform is then computed
over a window of magnetic field between 4T and 10T at a fixed temperature.

As an example, the resulting Fourier transform of kph at T = 1K is shown in the inset of
figure 6.17.b. In this case, and for all temperatures, we were able to track only one frequency
in the FT signal : the peak at f1 = 100T. The amplitude of this 100T-peak, labelled AFT (dk),
is plotted as a function of temperature in figure 6.17.a. The inset shows AFT (dk)/T 3 as a
function of temperature. For T < 4K, AFT (dk) increases with increasing temperature. This
increase follows a temperature dependence close to T 3 as supported by the inset of 6.17.a.
The amplitude AFT (dk) then reaches a maximum close to T = 4 � 5K before decreasing
with any further increase of the temperature. We know that the frequency f1, in this geometry
of experiment, is associated with the hole pockets. In comparison, the spectral analysis of
r22 contains the same peak at f1 = 100T but also reveals a second peak at f2 = 380T which
is associated with the electron pockets. The inset of figure 6.17.b superposes the amplitude
of the FT of r22 and k . For r22, the amplitude of the Fourier transform of the 380T-peak
is smaller by a factor ⇡ 2 in regard of the amplitude of the 100T-peak. While the peak at
f2 = 380T is visible in r22 it is not found in kph. We can thus conclude that holes, through
scattering events with the phonons, rather than electrons; drive the oscillations of kph.
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Hole - phonon scattering In the literature, the decrease of the phononic lifetime when a
Landau level is depopulated has been previously discussed under the ’surf-riding’ condition
[49]. The Landau quantification acts as a frequency comb for the electron - phonon interaction.
Upon depopulation of a Landau level by the increasing magnetic field, a phonon with an
energy matching the energy difference between Landau levels is absorbed or emitted. This
LL - phonon interplay is illustrated in the sketch of figure 6.17.b. A Multiple phonons
process, such as wp,1 +wp,2 = wc, could also be invoked. For the sake of simplicity we will
only consider a single-phonon process in the following discussion.

Both the typical phonon wavelength and the LL smearing depend on temperature. These
effects adding up, we expect dk to have a strong temperature dependence. Figure 6.9.a gives
a qualitative description of this effect : the amplitude of the oscillations, at a fixed magnetic
field, presents a maximum between T = 2K and T = 8K. Both the amplitude and position of
this maximum depend on the magnetic field. The existence of this peak in the amplitude of
dk as a function of temperature is further confirmed by the observation of a maximum in
AFT (dk) (Fig.6.17.a).

We can understand the existence of this maximum and its field dependence ’by hand’.
Hole - phonon scattering is strongly favored when the typical wavevector of acoustic phonons
is small enough to match the small-q of carriers (holes) in Sb, i.e. when qphonons = 2kF .
We define Te�phonon as the temperature at which this condition is satisfied. Te�phonon can
be understood as an effective Debye temperature; above Te�phonon phonons have a typical
q-vector too large in comparison to kF to interact with the charge carriers. Te�phonon is
explicitly given by equation 6.6. After calculation, we find Te�phonon ⇡ 30K in Sb. As a
consequence, we do not expect oscillations of kph above T = 30K.

Te�phonon =
2h̄⇥ vS ⇥ kF

kB
; (6.6)

Since the oscillations are a signature of scattering events between acoustic phonons and
charge carriers confined in LL, a third energy scale has to be considered : the energy difference
between Landau levels. This difference is the cyclotron energy h̄wc with wc = eB/m⇤.

We can define a third characteristic temperature Tcyclo associated with this energy scale
such as kB ⇤Tcyclo = h̄wc. At Tcyclo, the majority of phonons have sufficient energy to enable
the transition of a hole from one LL to another. Scattering is thus favored. Below Tcyclo

however, the emission rate of phonons is reduced as electrons become more degenerate. In
the low temperature regime we expect a reduction of AFT (dk). As an example at B = 1T :
Tcyclo = 4K. This example can be transposed to other field. We thus expect the hole - phonon
scattering rate to decrease at low temperature and, leading to a maximum in AFT (dk).
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Another argument which points towards the suppression of the oscillations at higher
temperature too is the strong mismatch between the Dingle mobility and the Hall mobility :
µD ⌧ µH . We know that the mobility of charge carriers decreases with increasing T [106]
above T = 5K. As a matter of fact, the characteristic lifetime of quasiparticles decreases
upon increasing electron - electron scattering. These features induce a decrease of AFT (dk)

at higher temperature.
We can conclude that the observation of a maximum in the amplitude of the 100T-peak in

the FT of kph at finite temperature is coherent with the scattering of holes confined in Landau
levels by acoustic phonons (sketch in Fig 6.17.b).

We will now give hints towards a quantitative approach of the evolution of the amplitude
of the oscillations with temperature. Because of the nature of the scattering events, AFT (dk)

has a temperature dependence due to both electrons and phonons. To isolate the thermal
smearing of the LL we need to remove the temperature dependence due to the phonon
population. We know that this quantity is proportional to a

R
D(q)n(q)dq where D(q) is the

phonon dispersion, n(q) is the phonon population and a a prefactor. This term is present in
both dk and kph. Consequently, we propose to remove the temperature dependence due to
phonons by normalizing normalize dk by the value of kph at the said temperature. kph can
be found in figure 6.8 and the normalized result AFT (dk)/k1T is presented in figure 6.17.c.
The temperature dependence of this normalized quantity is now independent of the phonon
population; it is entirely ascribed to scattering with charge carriers. Electronic conductivity,
whether it is electrical or thermal, depends linearly on the electronic density of state as a
first approximation. We thus test the theory of Lifschitz-Kosevich as a first approach to
understand the T -dependence of the normalized oscillations (as presented in Chapter 1 [49]).

A fit of AFT /kph to the RT term is shown in red in figure 6.17.c. It yields an effective
mass of the carrier of m = 0.3 ⇥ m0, to be compared with the mass of the hole pocket,
m = 0.34⇥m0 at the origin of the 100T-oscillations [106]. However, the low temperature
data cannot be explained in this framework; we observe a decrease of AFT (dk)/kph with
decreasing temperature below T = 1K.

However, the peak in AFT (dk)/kph is reminiscent of the temperature dependence of
amplitude of the QO reported in the thermopower Sxx of a dilute metal [46]. In this case,
the evolution with temperature of the amplitude of the peak is set by the derivative of the
electronic density of states. We propose a fit to the temperature derivative of the LK model
(green) in figure 6.17. This fit yields an effective mass of the carrier m = 0.36⇥m0 which is
in good agreement with the hole mass in Sb. A more detailed and explanatory analysis of the
temperature evolution of AFT (dk)/kph will be released after this manuscript. We remind the
reader that only the RT term in 2.30 depends on temperature.
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Fig. 6.17 a) Evolution with temperature of the amplitude the Fourier transform of the
f1 = 100T peak in kph (AFT (dk)) of Sb sample S3. Inset shows AFT (dk)/T 3 as a function of
temperature c) Amplitude of the 100T-peak normalized by the Phonons thermal conductivity
AFT (dk)/kph as a function of temperature. Black markers represent experimental data
while the red and green dotted lines correspond respectively to fits to the LK model and its
derivative. Error-bars are evaluated from both experimental noise and numerical analysis.
The inset compares the Fourier transform (FT) of k (red) and r22 at the same temperatures.
Also featured as an inset is a sketch of an acoustic phonon absorbed by an electron in the Nth

LL scattered to the (N +1)th LL.
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6.5 Conclusion on the electronic and phononic transport
properties of Sb

As a conclusion, we are able to clearly separate the contributions associated with phonons and
electrons to the total thermal conductivity of Sb. The electronic part, on one hand, satisfies
the WFL at low temperature, it deviates from it at T ⇡ 10K. We show that this deviation
emerges from inter-electronic collisions. On the other hand, the phonon thermal conductivity
does not evolve with the magnetic field except for the emergence of 1/B-periodic oscillations
at B > 5T. The amplitude of these oscillations and their relative phases in regard of the
oscillations we report in r22 and n and finally the temperature dependence of the amplitude
of the peaks, all discard a purely electronic origin for this signal. Instead, our observations
point to the existence of a two quasiparticles scenario, lead by scattering events between
acoustic phonons and holes confined in Landau level. This leads to the absorption/emission
of phonons with a 1/B-periodic frequency. Finally, we showed that a quantitative description
of the oscillations is not an obvious problem : the LK theory is not able to account for the
evolution of the amplitude of the oscillations with temperature.



Chapter 7

Hydrodynamic Flow of Quasiparticles

Résumé du chapitre

Nous avons associé la forte déviation par rapport à la loi de Wiedemann-Franz qui est
observée à température finie dans WP2 et Sb à une abondance particulière des processus
de diffusion électronique à petits angles. À travers l’exemple d’hélium 3 liquide, dans son
état normal, nous proposons un méchanisme alternatif à l’origine de la dichotomie entre les
préfacteurs des résistivités T 2 thermique et électrique : une abondance de collisions électron-
iques qui conservent le moment total (MC) par rapport aux collisions résistives et avec les
bords. La composante quadratique de la résistivité thermique est alors associée à la fréquence
des collisions MC tandis que la résistivité électrique est associée au processus de diffusion
qui dégradent le moment total du gaz électronique. Dès lors, nous pouvons définir deux
libres parcours moyens, un pour chacun des deux types de processus, ainsi qu’un troisième
qui décrit les collisions avec les bords du système. Le régime de transport est alors dicté
par la hiérarchie entre ces longueurs caractéristiques. R. N. Gurzhi avait prédit l’existence
d’un régime de transport dominé par les collisions MC : le régime hydrodynamique des
quasiparticules. Nous démontrons à travers l’analogie avec 3He que le critère d’émergence du
régime hydrodynamique est satisfait dans WP2 et Sb à la transition entre les régimes diffusifs
et ballistiques. Mais bien que ce régime soit a priori permis, cela ne constitue pas une preuve
de son émergence. Ainsi, dans le cas de WP2 nous ne pouvons conclure définitivement sur
l’existence ou non d’un régime hydrodynamique des électrons. En revanche, nous rapportons
l’observation d’une dépendance en taille du ratio des préfacteurs des termes quadratiques en
température des résistivités électriques et thermiques dans antimoine. Nous interpretons ce
résultat comme une signature du régime hydrodynamique des électrons.

Parallement, notre étude d’antimoine révèle aussi l’existence d’une autre fenêtre de
température liée à un écoulement visqueux de quasiparticules. Au sein de cet intervalle, le
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libre parcours moyen des phonons augmente avec la température et dépend de la taille de
l’échantillon. Cette observation est caractéristique d’un écoulement hydrodynamique des
phonons. Cependant, cette conclusion est rendue paradoxale dans Sb par un régime basse
température, jusqu’à T = 80 mK, où une longueur intrinsèque limite le libre parcours moyen
des phonons. Nous étudierons cette limitation à la lumière de la diffusion electrons - phonons
mise en avant dans le chapitre précédent.

Summary of the chapter

We have previously associated the strong heat/charge transport dichotomy observed at finite
temperature in WP2 and Sb to a particular abundance of small-angle electronic scattering
events. Yet, previous reports on the thermal conductivity of normal-state liquid 3He offer
an alternative route to a T 2-prefactors dichotomy : the role of momentum-conserving yet
energy-relaxing electronic collisions in regard to the momentum-relaxing collisions. We
associate the momentum-conserving (MC) fermion-fermion collisions to the T 2-term of the
thermal resistivity while the electrical T 2-resistivity is associated with momentum-relaxing
(MR) scattering events affecting the charge carriers. Hence, we can define two mean-free-
paths, one for each type of scattering process, as well as a third one which describes the
collisions with the boundaries of the system. The regime of transport is determined by the
hierarchy of these characteristic lengths. In particular, R. N. Gurzhi predicted the existence
of a regime of transport dominated by MC collisions : the hydrodynamic regime. The
analogy with 3He reveals that the hydrodynamic criterion is satisfied in both WP2 and Sb
at the crossover between the ballistic and diffusive regimes. Even though this regime is
permitted, its signature remain scarce. In the case of WP2, the observation of hydrodynamic
effects remains an open question. Nevertheless, in Sb, we interpret our observation of a
size-dependent electrical to thermal T 2-prefactors ratio, i.e. a size-dependent electronic
Lorenz number, as a signature of a hydrodynamic flow of electrons. Also, we show that the
mean-free-path of phonons in Sb becomes size dependent over a finite temperature window.
This result is reminiscent of previous observations of hydrodynamic flow of phonons in other
materials. Yet, contrary to these reports, phonons in Sb do not reach the ballistic regime
below this temperature window. We associate this discrepancy to the electron - phonon
collisions which we have discussed in chapter 6.
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PHYSICS OF QUANTUM MATERIALS 
 

If a snapshot were taken of the flow velocity profile of 
an electron moving through a two-dimensional channel 
of a standard metal, it would look like the one shown 
in Fig. 1a. As the electrons flow, they scatter very 
frequently from lattice imperfections or phonons so 
that, on average, their flow velocity in the bulk of the 
channel is independent of y. There will be some extra 
scattering from the channel boundaries, but its effects 
will be seen only very close to those boun-daries, and 
make little difference to the overall flow resistance in 
all but the very narrowest wires. Because the scattering 
originates from features of the material through which 
the conduction electrons are flowing, the resistance is 
essentially entirely determined by the resistivity, which 
is a property of the material. 

The mental picture represented by Fig. 1a is so strongly 
ingrained in the mind of a condensed matter physicist 
that the alternative limit, shown in Fig. 1b, has not been 
widely considered. Here, there is no scattering of the 
electrons from the host lattice or its excitations; the 
only scattering is between the elec-trons themselves. If 
the electrons only scatter from one other, they can 
exchange momentum but the overall momentum of the 
electron system is con-served. The only place that this 
is violated is at the boundary of the channel, so there is 

now a y dependence of the velocity, which is maximum 
at the centre. In these circumstances, the flow 
resistance is determined by details of the boundary 
scattering and how well the electrons can couple to the 
boun-daries i.e. a transverse coupling along the 
y direction. The quantity that parametrizes this coupling 
is the shear viscosity K, which is a property of the fluid, 
not of the medium through which it flows. 

This simple discussion is an example of a more general 
principle, so-called hydrodynamic physics. If a fluid’s 
flow is described by conserved quantities, there will be 
associated hydrodynamic modes and coefficients. 
Here, the conserved quantity in the bulk of the 
hydrodynamic electron fluid is its momentum; this 
conservation is associated with the coefficient K and 
the role that it plays in determining the flow resistance. 

Although first considered theoretically over half a 
century ago [1], electron hydrodynamics has been very 
sparsely studied, for a simple reason. To approach the 
hydrodynamic limit, one needs a material in which the 
internal scattering rate from defects or excitations is 
very small. Almost every known metal fails to satisfy 
this demanding criterion, so electron hydrodynamics 
did not seem likely to be grounded in experimental 
reality, except in the most special of circumstances [2]. 
Over the past decade, however, considerable 
theoretical attention has been paid to the possibility 
that in some special materials in which the internal 
electronic scattering rate is particularly high [3], there 
might be a hierarchy of scattering rates leading to 
quasi-conservation of momentum and a contribution to 
the resistance from hydrodynamic effects [4]. Testing 
experimentally for hydrodynamic effects in such 
strongly scattering materials is a formidable challenge, 
but the renewed interest in electron hydrodynamics 
stimulates the search for materials in which the 
hydrodynamic regime may be attainable because of 
very low internal scattering rates with the appropriate 
hierarchy. Our strategy has been to look for such 
materials and use them to gain ex-perience in how to 

Electronic Hydrodynamics 
Andy Mackenzie#, Nabhanila Nandi, Seunghyun Khim, Pallavi Kushwaha, Philip Moll, Burkhard Schmidt 
 

The quest to discover materials in which electron flow is influence by the laws of hydrodynamics rather 
than being fully ohmic is over fifty years old. Only now is the hydrodynamic regime becoming attainable 
in ultrapure materials. Here we describe our research on viscous electronic flow in the delafossite metals, 
describing our first measurements published in 2016 and the ways in which we are extending the study of 
hydrodynamic effects to include the application of external magnetic fields. 

 

Fig.-1: Velocity profiles across a two-dimensional 
channel of width W for ohmic (a) and hydrodynamic 
(b) electron flow. 

a) b) 

a) b)

c)Fig. 7.1 a) Velocity profile of the quasiparticles in a 2D channel of width w in the diffusive
regime of transport. Figure from A. Mackenzie [15]. b) Velocity profile of the quasiparticles
in a 2D channel of width w in the hydrodynamic regime of transport [15]

7.1 Introduction to hydrodynamic transport

Let us first introduce the hydrodynamic description of quasiparticles flow and underline the
experimental challenge that it constitutes. We will then present the thermal conductivity of
normal state liquid 3He at low temperature to shine a different light on the charge and heat
transport measurements reported in Chapter 5 and 6.

7.1.1 Gurzhi’s hierarchy of scattering times

One of the main successes of the quantum theory of solids was to give a correct description
of the basic features of the electrical conductivity of metals and the thermal conductivity
of metals and dielectric compounds. At finite temperature, both quantities are set by the
frequency of the collisions which degrade either the momentum or the energy of the quasi-
particles. In the T ! 0K limit, the electrical conductivity is set by the scattering of charge
carriers off the boundaries or impurities of the system while the thermal conductivity due
to phonons vanishes. But in this low temperature limit, a large number of both metals and
dielectrics display deviations from this expected behavior.

Amongst these deviations is the effect of momentum-conserving collisions. In the
diffusive regime of transport, momentum-relaxing collisions are far more frequent than any
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other type of scattering events. Only a negligible fraction of the quasiparticles reaches the
boundaries of the system. This leads to a velocity profile similar to what is represented in
figure 7.1.a : a flat profile independent of the width of the channel in which the quasiparticles
flows.

Now if the rate of MC scattering events is higher than boundary scattering and resistive
scattering, the MC collisions will redistribute momentum/energy of the quasiparticles over
much shorter lengths than the resistive collisions. As a consequence, some discrepancies
between QP located at different distances from the boundaries of the channel emerge. This is
the hydrodynamic regime of transport which was first described by R.N. Gurzhi [13].

In a purely hydrodynamic regime, resistive scattering is entirely suppressed and dissi-
pation occurs only at the boundaries. The further away the electron is from the boundaries,
the hardest the MC collisions will make it for the QP to find a path to the boundaries of the
system. Consequently, the further away from the boundary the QP is, the more unlikely it is to
undergo a dissipative collision. The profile of velocity of the QP in the channel thus depends
on the position of the QP in the channel : the velocity profile becomes parabolic (Fig.7.1.b).
This regime is reminiscent of the flow of a viscous liquid in a pipe, i.e. a Poiseuille flow.
Further developments of the implications of a hydrodynamic flow of QP from a theoretical
standpoint were given recently [14, 15].

However, at finite temperature and whether it is for phonons or electrons, resistive
scattering events are present. R. N. Gurzhi proposed that the hydrodynamic regime can
survive under a particular hierarchy of scattering times which is detailed in inequation
7.1. This inequality is composed of 3 terms : tN the scattering time between momentum-
conserving collisions, tR the one between resistive events and finally tB the rate of boundary
collisions. Following its definition, the hydrodynamic regime lays at the crossover between
the diffusive and ballistic regimes.

tN ⌧ tB ⌧ tR (7.1)

Back in Chapter 2, we discussed the different regimes of phononic heat transport when
we introduced the thermal conductivity of phonons in figure 2.3. Let us now focus on
the hydrodynamic region. The thermal conductivity due to hydrodynamic phonons can
grow up to a T 8-power law [37]. This high exponent power law is nonetheless never
observed experimentally : U-scattering events are always present and only a fraction of the
phonons fluid can enter the hydrodynamic regime. Yet, a viscous flow of phonons leads to
kphonons µ T g -dependent with g > 3. For charge carriers, similar limits can be achieved. As
an example, a change of sign of ∂s

∂T is predicted in the hydrodynamic regime. One of the
signature of the viscous flow of electrons is an increase of the conductivity with increasing
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temperature [146]. The possibility of measuring such a feature in an actual metallic system
will be discussed later on. All in one, for all types of quasiparticle, the QP viscosity is
associated with the rate of momentum-conserving collisions. If the viscosity is sufficiently
high, the transport properties deviates from the ’simple’ Boltzmann equation of transport
which does not usually takes into account MC collisions. We will turn to experimental
observations of electronic and phononic hydrodynamics.

7.1.2 An experimental challenge

The very first experimental observation of a hydrodynamic flow of quasiparticles in a solid
came from thermal conductivity measurements in crystalline 4He by Mezhov-Deglin [147].
He revealed a size-dependent mean-free-path of phonons which increases with temperature
in a temperature range squeezed between the ballistic and diffusive regimes of transport.
Observations of phononic hydrodynamics, from similar signatures, have since been reported
in a handful of systems : 3He [38], Bi [39], solid H [40], SrTiO3 [41] and Black P [42].

In the case of electron hydrodynamics, the first observation was reported in a 2D system
by L. W. Molenkamp and M. J. M. de Jong [17]. More observations of hydrodynamic flow of
electrons came only very recently and are still actively debated : graphene [19, 18], PdCoO2

[20] or WP2 [107]. All these studies report small hydrodynamic corrections to the electronic
transport properties. Indeed, there are multiple difficulties preventing direct observation of
electron hydrodynamics.

lMR ⌧ s The emergence of a hydrodynamic regime of electrons is conditioned by a
strong suppression of resistive collisions involving charge carriers. In all the aforementioned
systems, the resistivity measurements revealed an electronic mean-free-path between resistive
scattering events lMR which is comparable to the size of the sample, i.e. ballistic electrons at
low enough temperature.

lMC � lMR The second length scale associated with the emergence of hydrodynamic
effect in the flow of charge carriers is the mean-free-path between momentum-conserving
collisions affecting electrons. Inequality 7.1 must be satisfied. Yet, there is no experimental
determination of lMC in the literature: lMC was either ignored or evaluated from a theoretical
model which provides an upper bound as defined in equation 7.2 [148].

lMC =
vF

kb
h TF( T

TF
)2

(7.2)
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To set the state-of-the-art, we focus on this model first. According to this report, lMC

depends solely on TF and the effective mass of the carriers. This is reminiscent of the
thermal conductivity of 3He. We notice that the higher the Fermi temperature, the larger is
the momentum-conserving mean-free-path of electrons. In this approximation, a viscous
electronic flow is favored by a small Fermi temperature of the system. In summary, we
should a priori expect to find hydrodynamic corrections in ’ultra-pure metals’ with low Fermi
temperature.

An example which illustrates this criterion is the absence of hydrodynamic corrections
in the electrical resistivity of thin wires of potassium. Even though this system displays a
very long resistive mean-free-path lMR � s [16], potassium has a high Fermi temperature
TF ⇡ 20000K. At low temperature, lMC ⇡ 1MR. This result explains why there is no visible
viscosity effects in thin wires of potassium. However, the most convincing evidence of
hydrodynamic corrections to date was obtained in PdCoO2 which has a Fermi temperature
TF = 27000K [20]. We will now show how this study, through heat and charge transport
measurements, gives quantitative details as to where one can expect to observe electronic
hydrodynamic effects in a metal.

7.1.3 The case of 3He

The earliest reports on the experimental determination of the thermal conductivity of normal
state liquid 3He were presented in the late 50s [149, 150]. They first showed that k increases
slowly with increasing temperature in the range T = 0.24K to T = 3.0K. A few years later,
in an impressive experimental achievement, Anderson et al measured k down to T = 20mK
[151]. This experiment revealed the existence of a minimum in the thermal conductivity
below which k was found to increase with decreasing temperature down to the superfluid
transition. This observation was confirmed by independent studies over a wide spectrum of
pressure and temperature ranges [152–157].

We illustrate this result with one outstanding report by Greywall [158] in figure 7.2.a.
It shows the thermal conductivity of normal liquid 3He along isochores for 7mK< T < 1K
and 0 < P < 30mbar. The precision of this study is an order of magnitude higher than what
was reported before. k , as a function of temperature for different 3He densities, is shown
in figure 7.2.a. Starting from T = 1K, k decreases as

p
T with decreasing temperature

down to T ⇡ 100mK, where it reaches a minimum. The amplitude and temperature of this
minimum both depend on the 3He density. With further cooling, k evolves as 1/T down
to the superfluid transition. In terms of thermal resistivity, this k µ T �1 is equivalent to
(WT ) µ T 2. We indicate that the viscosity of normal liquid 3He was also studied down to a
few mK. An example, from Black et al. is shown in figure 7.2.b. Over the same range of



7.1 Introduction to hydrodynamic transport 117

DENNIS S. GREY%"ALI.

E oooo

~ oooo

I I I I I I I il
lo

T I/P.
I I I IIll I I I I I I II

loO lOGO
T (rnK)

l

lo 40 60
I

0 20 30 50
T (rnK)

PIG. 7. Thermal-conductivity data below 60 mK plotted on
linear scales. The solid and open circles represent data obtained
using the cells shown in Figs. 1 and 2, respectively.

FIG. 6. Thermal-conductivity data for normal liquid He on
log-log scales. The solid and open circles represent data ob-
tained using the cells shown in Pigs. 1 and 2, respectively. centratlon) dependence. Consequently, Ic Is roughly pro-

portional to 3He density. The very different behavior of
the pure liquid is a manifestation of the strong interac-
tions experienced by the He atoms.

UF =2k' TF/171 3
where R is the gas constant, and

(4)

It then follows that, in this regime, a is inversely propor-
tional to T.
For temperatures high compared to Tp, Boltzmann

statistics apply, and kinetic theory gives the result that,
for an ideal gas, a ~ (T/m3)'~ . The data shown in Fig. 6
extend upward in temperature to only l K, which is of the
order of T~. Here the data are approaching density in-
dependence, but the temperature dependence differs from
T'~ . This is not surprising since the molar specific heat
near l K also differs considerably from the classical value
of —,R.
Another notable feature of the data is that at very low

temperatures the conductivity decreases with increasing
He density, contrary to the results for dilute He- He
mixtures. In the latter case, the Fermi system is only
shghtly nonideal and ~, has only a weak density (i.e., con-

Here Cy is the molar specific heat at constant volume, V
is the molar volume, v~ is the Fermi velocity, and z„ is the
scattering time appropriate for thermal conductivity. The
scattering time is proportional to T at very low-
temperatures as a consequence of the Pauli exclusion prin-
ciple, which permits only particles in states near the Fer-
mi level to scatter. At very low temperatures we also have

Cy/8 =(n /2)( T/TF )
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ments is made in Fig. 8, which shows the relative differ-
ences from the more-precise present measurements. It
should be noted that in all of the previous experiments
magnetic cooling was used, and, consequently, true
steady-state conditions could not be achieved. This is an
important consideration in these experiments because of
the very long relaxation times encountered. As already
discussed, the long times at very low temperatures are due
to the large thermal boundary resistance, and at higher
temperatures they are due to the small thermal diffusivity.
These experiments also have the complication that a por-
tion of the power generated in the tube heater goes toward
increasing the temperature of the sample. Bearing in
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Fig. 7.2 a) Thermal conductivity of liquid normal 3He as a function of temperature. The
different curves correspond to different 3He densities while the solid and open circles indicate
two different experimental setups for the measurement. Inset show the T < 60mK region in
a linear scale. Data from Greywall [158]. b) Viscosity as a function of temperature for liquid
normal 3He. Experimental points by the 45� phase method for pure 3He. Curve A represents
a saturated solution of 3He in 4He, curve B represents pure 3He by Betts et al. [159, 160].
Curve C represents a solution of around 5% 4He in 3He.

temperature as the thermal conductivity, the viscosity of liquid normal 3He is proportional to
T �2.

The temperature dependence of k and h was already explained by the work of Abrikosov
and Khatalinkov [161]. In 1959, they derived the transport equations for fermions in the
framework of Landau’s Fermi liquid theory. They showed the transport problem in the Fermi
liquid to be formally identical to that of the Fermi gas. The transport coefficients were later
computed exactly [162–164]. The thermodynamics and transport properties of 3He were
consequently found to depend only on the amplitude of momentum-conserving two fermions
scattering events, without any way to relax momentum. Let us illustrate the case of the
thermal conductivity. According to the kinetic theory of gases, we can write equation 7.3 :

k =
1
3

Cv ⇥ v2
F ⇥ tQ (7.3)

Here Cv is the volumetric specific heat, vF is the Fermi velocity and tQ is the characteristic
time between quasiparticle collisions which contributes to the thermal resistivity. In the
Fermi liquid theory, i.e. at very low temperature for a fermionic system, tQ is proportional
to T �2 because of the Pauli exclusion principle : only particles in a layer of thickness kBT
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around the Fermi surface can scatter. The specific heat in the Fermi liquid theory is given by
expression 7.4 where TF is the Fermi temperature :

Cv

R
=

p2

2
T
TF

(7.4)

Being aware that the Fermi velocity is given by v2
F = 2kBTF/m⇤, we wish to emphasize

that, in this picture, the amplitude of the thermal resistivity due to fermion - fermion collisions
depends only on the Fermi temperature and the effective mass of the quasiparticle.

As a conclusion, it has been known for half a century that in very low temperature
3He, the archetype of the Fermi liquid, normal inter-fermionic scattering events lead to a
T 2-dependent thermal resistivity and a finite viscosity which scales as T �2. We also indicate
that in a Fermi liquid, the momentum-conserving electronic scattering rate is set by the
temperature, the Fermi temperature of the system and the effective mass of the carriers.

7.2 Quantifying normal and resistive mean-free-paths of
electrons

The problem of the experimental evaluation of the rate of boundary, momentum-conserving
and momentum-relaxing scattering events affecting quasiparticles is crucial to the prediction
of the hydrodynamic regime. In this section, we propose to evaluate the MC and MR mean-
free-path respectively based on thermal conductivity and electrical resistivity measurements.
We deduce from these results the temperature range which satisfies the hydrodynamic
criterion in Sb and WP2. The effect of impurities and sample-size on the hydrodynamic
window will also be discussed.

7.2.1 Determination of a hydrodynamic temperature window

The possibility of a hydrodynamic flow of charge carriers was left aside in the previous
chapters in the discussion on the origin of the discrepancy between heat and charge transport
in Sb and WP2. An abundance of small-q scattering events, associated with high energy
dissipation and low momentum relaxation gives a satisfactory explanation for the observation
of a particularly large deviation from the Wiedemann-Franz law at finite temperature in
these systems. However, the observation of a 20-fold heat/charge transport dichotomy in a
micro-ribbon of WP2 by Gooth et al. [107] had raised fundamental questions regarding the
relevance of the scattering-based theory of charge and entropy transport by mobile electrons
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Fig. 7.3 a) The Kadowaki-Woods plot with A2 plotted as a function of fermionic specific
heat g (from C = gT) compiled by Tsujii et al. [166]. We have added the data for , WP2
(This work), W [114] and CeRhIn5 [31, 167]. These compounds are indicated by boxes. b)
Plot of the B2 thermal T 2-prefactor as a function of fermionic specific heat g . Data from 3He
[158, 153, 168], WP2 (this work), W [114] and CeRhIn5 [31, 167] and UPt3 [32].

in this high mobility semi-metal. This result also came while the possible link between WFL
breakdown and electron hydrodynamics was a subject of attention [21–24, 165].

We first turn to the case of normal state liquid 3He. In this liquid, fermionic collisions
generate a thermal resistivity (WT ) = B2 ⇥T 2 in the absence of any momentum relaxation.
Let us now present in Fig.7.3.b the magnitude ofB2 (prefactor of the thermal T-square
resistivity) for 3He alongside CeRhIn5, WP2 and W plotted as a function of g , the fermionic
specific heat. We notice that B2 scales with the universal Kadowaki-Woods plot (Figure
??.a). This implies that, while A2 quantifies the size of momentum-relaxing collisions and
B2 is a measure of energy-relaxing, yet momentum-conserving collisions, both scale roughly
with the size of the phase space for fermion-fermion collisions, which (provided a constant
fermion density) is set by g2. As a consequence, an alternate route can be used to explain the
observation of B>A2 both in WP2 and Sb : momentum-conserving collisions contribute to
electronic transport.
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7.3 Discussion on the emergence of a hydrodynamic elec-
tronic transport properties in WP2 and Sb

We have shown in the previous section how an alternate route to the emergence of T 2 thermal
resistivity can be deduced from the physics of 3He. We will use this analogy to discuss the
implication of a strong mismatch in T 2-prefactors of thermal and electrical resistivities in
WP2 and Sb.

7.3.1 Study of possible hydrodynamic signatures in WP2

Hydrodynamic window In respect to the chronology of this study, we first discuss the
case of WP2. We turn to figure 7.4 to discuss the relative weight of momentum-conserving,
momentum-relaxing and boundary scattering events in WP2. These data, previously shown
in figure 5.4 and figure 5.5, reveal that at a finite temperature close to T = 9K : B2 ⇥T 2 ⇡
r0 = W0T � A2 ⇥T 2. In other words, in this temperature region, momentum-conserving and
boundary scattering events happen at a much higher rate than momentum-relaxing collisions
: electrons are within the hydrodynamic hierarchy of scattering times. We can use the Drude
model to approximate the characteristic frequencies associated with each type of scattering
processes : fMC, fMR and fboundaries.

The resulting frequencies are plotted in figure 7.5.a. As temperature increases, the
frequencies of MR and MC collisions increase. We define T1 as the temperature where
fMC = lBoundaries and f2 as the temperature where fMR = lBoundaries. For WP2, T1 = 10.3K
and T2 = 15.8K. For T < T1, boundary scattering dominates transport. This is the ballistic
regime of transport. For T > T2, momentum-relaxing scattering events are the most frequent;
this is the diffusive regime. However, for T1 < T < T2, momentum-conserving collisions are
more frequent than boundary scattering which are more frequent than momentum-relaxing
scattering events. For T1 < T < T2, the hydrodynamic requirement is satisfied in this WP2

sample. Figure 7.5.a can be seen as a different illustration of the result yielded by figure 7.4 :
the sample of WP2 presented in Chapter 5 can enter the hydrodynamic regime. We note that,
in the case of WP2, the hydrodynamic window coincides with the observed 20-fold decrease
of L/L0 (at T = 13K) [107] and our observation of a 4-fold decrease. This minimum is
then associated with an excess of momentum flow in comparison to energy flow. In the
hydrodynamic scenario, this coincidence is not an accident but rather a signature of the
hydrodynamic flow of electrons. Figure 7.5 emphasizes that the position and the width of
this hydrodynamic window are not solidly set. So far, we assumed that the residual resistivity
of WP2 was entirely due to boundary scattering. However, nothing is perfect in reality, so we
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Fig. 7.4 Electrical resistivity r and thermal resistivity (WT ) plotted as a function of T 2 for
WP2. The arrows indicate the value of the residual resistivity r0 = W0T , the T 2 electrical
resistivity (associated with MR scattering) r at T 2 = 75K2 and the T 2 thermal resistivity
(associated with MC collisions) at at T 2 = 75K2. We observe that in the vicinity of T 2 = 75K2,
MC and boundary collisions dominates strongly over resistive scattering.

have to consider that the residual resistivity r0 contains a sizable component due to impurity
scattering. In this case, one must write:

r0 = r00 +rimp (7.5)

Here, r00 is due to boundary scattering whereas rimp results of impurities and defects.
We illustrate the effect of impurity scattering in the case of WP2 in Figure 7.5. It represents
the frequency of each scattering processes as a function of temperature. When r00 only
represents 75% (Fig7.5.b)), one can still encounter a temperature range which satisfies
Gurzhi’s criterion. The hydrodynamic window is shifted to lower temperatures and gets
narrower. However, if r00 becomes 50% (Fig7.5.c)) of the residual resistivity, then there is
no range of temperature which allows the emergence of a hydrodynamic regime in WP2.

We reach here one of the main results of this study. In light of previous reports on
the thermal conductivity of 3He, the observation of a five-fold mismatch between thermal
and electrical T 2-prefactors indicates the existence of a finite temperature window were
momentum-conserving collisions outweigh the resistive ones and, as a consequence, where
Gurzhi’s hydrodynamic criterion is satisfied. We also emphasize that the hydrodynamic
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Fig. 7.5 The magnitude of B2T 2, proportional to momentum-conserving (MC) electron-
electron collisions is compared to A2T 2 +A5T 5, which is proportional to momentum-relaxing
electron-phonon collisions and to boundary scattering described by r00. A limited window
where the hydrodynamic hierarchy is satisfied can be found for the three following cases. a)
r0 is solely due to boundary scattering. b)r00, due to boundary scattering, represents 75% of
the total residual resistivity. c) r00, represents 50% of the total residual resistivity.

regime of electrons is expected to occur in a finite temperature window squeezed between the
ballistic and diffusive regimes and that the hydrodynamic window is fragile and not solidly
set.

Review of hydrodynamic signatures in WP2 The hydrodynamic interpretation of the
large heat/charge dichotomy in WP2 was initiated by Gooth et al.. We remind that they
reported, from 2-points measurements, a 20-fold deviation from the WFL below T = 20K
with no sign of recovery of the Wiedemann-Franz law down to T = 5K in a micro-ribbon
(width = 2.5µm) of WP2. Let us discuss this result and compare the two possible inter-
pretations. To do so, we first assume fMC and lMR to be independent of the sample size in
WP2. With a sample about 50 time thinner than the one presented in this work, fboundaries

will be importantly increased (r0,2.5µm ⇡ 100nW.cm). Adding this boundary mean-free-path
on the figure 7.5, we observe that the hydrodynamic window closes for the micro-ribbon.
From this first approach, we would not expect hydrodynamic effects in a micro-ribbon of
WP2. But as we will see through the example of Sb, the assumption of size-independent fMC

and fMR may be wrong. Another observation which casts a shadow on the hydrodynamic
interpretation is the absence of recovery of the WFL down to T = 5K. As we have underlined,
the hydrodynamic regime emerges at the crossover between ballistic and diffusive regimes
: a zero-temperature viscosity is not defined. In that sense, the absence of recovery of the
Wiedemann-Franz law, which is a T ! 0K law, cannot be accounted for as an hydrodynamic
signature. Lower temperature measurements would be required. We conclude that the emer-
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gence of a hydrodynamic regime of electrons in WP2 remains an open question. Both the
semi-classical (Chapter 5) and hydrodynamic approaches are able to explain the experimental
results obtained in WP2. On a final note, we wish to point out that the two solids in which
an anomalously low L/L0 have been reported (W [114] and WP2) are those in which the
T = 0 ballistic limit is accessible and a hydrodynamic window can open up. Observation
of hydrodynamic signatures in elemental tungsten is an unaddressed subject left for future
research.

7.3.2 Size-dependence of the resistivity T 2-prefactor in Sb

Benefiting from our experience on WP2, we turned to Sb to further probe the emergence of
a hydrodynamic flow of electrons through electrical and thermal transport measurements.
Contrary to the existing literature on electron hydrodynamics [20, 19, 18, 17, 107], we chose
to study millimetric Sb samples. This decision was motivated by the possibility to reach
millimetric electronic mean-free-paths in Sb at low temperature with a Fermi temperature one
order of magnitude lower. As discussed in chapter 6, both the electrical and thermal resistivity
behaves as T 2 for T < 8K. We can thus compare the residual, A2T 2 and B2T 2 resistivities in
the thin (s = 0.35mm) and thick (s = 2.24mm) Sb samples respectively shown in figure 7.6.a
and b. In both slabs, B2T 2 ⇡ r0 > A2T 2 around T = 10K. This result is reminiscent of what
we have just observed in WP2 : in the hydrodynamic scenario, inspired by the case of 3He,
a large fraction of electron-electron scattering events conserves momentum and this is the
reason for B2 > A2. We will see below that this hydrodynamic interpretation is favored by the
size dependence of the B2/A2 ratio. In this study of different sizes of Sb samples, we observe
a size-dependence of the T 2-prefactors of the electrical and thermal resistivities. Along
with data from the literature [130, 133, 131, 128], the results are plotted as a function of
sample size s in figure 7.6. We observe that both A2 (electrical T 2-prefactor) and B2 (thermal
T 2-prefactor) decrease with increasing size. The comparison of A2 and B2 as a function
of size reveals the first observation a size-dependent A2/B2 ratio, which decreases sharply
with s : from the small S1 to the large S3 samples we observe A2,Small = 2.0 ⇥ A2,Large to
B2,Small = 1.1⇥B2,Large. We can safely exclude magnetoresistance effect, self heating and
crystal misorientation to account for this phenomenon. We also underline that the fitting
parameters were consistent during the whole study, on a constant temperature range (T = 2K
to T = 8K).

The observation of size-dependent A2 can be explained by the proximity to the electronic
ballistic regime at low temperature. As an example, we point to studies on whiskers and thin
films of metals, such as zinc [169] or cadmium [170]. They show evidence of dependence
of the non-residual electrical resistivity with sample size. The smaller was the limiting
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Fig. 7.6 a) r and (WT ) plotted as functions of T 2 in the thin Sb sample S1. b) r and
(WT ) plotted as functions of T 2 in the large Sb S3. Both plots share a common x-axis. c)
T 2-prefactors for the electrical (A2) and thermal (B2) resistivities as a function of the sample
average cross section s. Data from the literature [130, 131] are featured and indicated directly
on the plot. Inset shows the evolution of the B2/A2 ratio size.
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dimension of the sample, the higher was the prefactor of the T -dependent part. The thickness
dependence of B2 can be explained in a similar picture. It is true that in the diffusive regime,
the T 2-prefactor of the resistivity is only dictated by the Fermi energy of the system and
therefore is expected to be independent of the sample size. In the ballistic regime, however, a
fraction of electrons do not suffer any collisions with other electrons during their trajectory
from one end of the sample to the other. The thicker the sample, the larger is the fraction of
such electrons. The decrease in the magnitude of B2 can be ascribed to the proximity of the
ballistic regime. However, we notice that compared to A2, B2 displays much weaker thickness
dependence (see inset figure 7.6.c). This is hard to explain in a scattering-based picture in
which A2 and B2 would be affected in the same manner. In the hydrodynamic picture, on
the other hand, if B2 is mainly set by the rate of momentum-conserving collisions, it would
barely change with the thickness. Therefore the size-dependent B2/A2 ratio strongly suggests
a that a T 2-dependent thermal resistivity emerges in Sb due to MC electronic collisions.

In this hydrodynamic framework, we can evaluate the viscosity h of the electronic fluid
in Sb. We present a first estimation of h from the kinetic theory of gases, detailed in equation
7.6, however we mention the existence of more through theoretical models describing the
viscosity of the electron fluid at low temperatures [20, 15].

h =
1
3

leh̄n4/3(3p2)1/3 (7.6)

We find a dynamic viscosity h = 0.7 cP in sample S3. This value is comparable to the
dynamic viscosity of water at 30�C, similar to the viscosity of the electron fluid in PdCoO2

[20] and an order of magnitude higher than what is reported in WP2 [107]. We note that the
electronic mean-free-path is an order of magnitude larger and the carrier density is orders of
magnitude lower in Sb in comparison with PdCoO2. Remarkably, the order of magnitude
of the dynamic viscosity is comparable. To conclude, the observation of a size-dependent
A2 prefactor can be explained in a semi-classical context by the proximity with the ballistic
regime. However, we report here the first observation of a size-dependent A2/B2 ratio. We
associate this feature with a deviation from the Boltzmann transport equation and point to
the existence of an hydrodynamic regime of electrons in millimetric Sb samples.

7.3.3 Discussion on the thermal conductivity of phonons in Sb

Let us now discuss the flow of phonons in Sb. Just like the case of electrons, the emergence of
a hydrodynamic regime of phonons is possible in-between ballistic and diffusive regimes [37].
In contrast to the case of electrons, for phonons, Umklapp scattering vanishes exponentially
with temperature whereas normal scattering follows a power law [171]. This difference makes
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phonon hydrodynamics more easily identifiable than its electronic counterpart. In this section,
we report on the observation of a signature of phonon hydrodynamics in Sb : a strongly
size-dependent and non-monotonous phononi mean-free-path over a finite temperature range.
While the size-independent regime at higher temperature is easily understood in the diffusive
picture, the absence of size-effect at lower temperature reveals that phonons remain far from
the ballistic regime down to T = 0.08K.

Size-dependent phonon mean-free-path

We first present the evolution with temperature of the mean-free-path associated with lattice
vibrations in different size of Sb samples. This phonons mean-free-path, lphonons, is defined
through equation 7.7 where vs is the speed of sound. The speed of sound along the bissectrix
direction in Sb is quasi-constant over the temperature range of this study [172]). We will
pursue with the following value : vs = 3420m.s�1. The mean-free-path of phonons is then
determined by the ratio of kphonons and Cphonons.

lphonons =
3⇥kphonons

Cphonons ⇥ vs
(7.7)

We have previously demonstrated that kB�saturated = kphonons(B) ⇡ kphonons(B = 0T).
The second quantity at play here is the specific heat of phonons. We also discussed its
evolution with temperature and observed a deviation from the T 3 behavior in chapter 5.
Now, in order to compare the relative evolution of the phonons thermal conductivity and
the phonons specific heat with temperature, we plot both of them on a common x-axis in
figure 7.7 a and b. Both quantities deviate from T 3 over different temperature ranges. As
a consequence, the anharmonic behavior of Cv does not cancel out the variation of kphonons

with temperature. This leads to the phononic mean-free-path represented as a function
of temperature in figure 7.7.c. This plot contains results from this study alongside other
extracted and analyzed from previous reports on millimetric samples by Blewer et al. [133]
and White et al. [33] (red markers).

Starting from T = 80mK, we notice lphonons to be smaller than the sample size in both
S1 and S3. With increasing temperature, lphonons decreases. All samples show the same
size-independent phonon mfp up to T = 500mK. The data extracted from the literature, match
remarkably well our data. Upon further heating, lphonons reaches a minimum, then followed
by a strong increase which leads to a local maximum. We illustrate these variations in the case
of the large Sb sample S3. A local minimum of lphonons = 15.8µm is reached at T = 1.55K.
It is followed by a local maximum of lphonons = 59.0µm at T = 5.46K. The temperatures
of both extrema are shifted to lower values and the ratio maximum to minimum mfp gets
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Fig. 7.7 a) Phonon thermal conductivity plotted as kph/T 3 for the three Sb samples
(S1,S2,S3). Additional data extracted from the literature is also featured [33, 133]. b)
Phononic part of the specific heat plotted as Cphonons/T 3. Data taken from [140] are also
featured. c) Phonons mean-free-path lphonons plotted as function of temperature for the same
samples presented in a). The sound velocity was assumed to be vs = 3420 m.s�1.



128 Hydrodynamic Flow of Quasiparticles

larger as the size of the sample increases. In this temperature range, the mean-free-path
of the phonons shows a strong size dependence. Upon further increase of the temperature,
i.e. after the local maximum, lphonons drops monotonically with no size dependence. We
conclude on the existence of a temperature window where the mean-free-path of phonons is
size dependent, squeezed between regions where it is not. The origin of the non-monotonous
variation of lphonons with temperature will be discussed in light of prior reports on phonons
hydrodynamics in the next section.

Hydrodynamic features of phonons heat transport in Sb

Let us first recall the thermal conductivity of InAs developped in chapter 3. We have
shown that k is due to phonons and varies with temperature as T 3 up to T = 3K. At higher
temperatures, k/T 3 decreases with further increasing temperature. This is understood by
an increasing rate of Umklapp scattering of phonons with increasing temperature. For InAs,
kphonons/T 3 is a monotonous function of temperature.

In comparison, the example of InAs underlines the unusual evolution with temperature of
lphonons in Sb : over a finite temperature range, an increasing temperature leads to an increase
of the phonon mean-free-path. This observation is reminiscent of what is predicted, and
observed, in the case of a hydrodynamic flow of phonons. Just like in the case of electrons, if
the hydrodynamic criterion is met, the normal collisions dominate phononic transport and
reduce the fraction of quasiparticles which is able to reach the boundaries (where relaxation
occurs). With further increase of the temperature, U-scattering of phonons sets in and marks
the end of the hydrodynamic regime. As a consequence, one expects the phonon mean-free-
path to have a local minimum at the onset of the hydrodynamic regime when the ballistic
regime ends, i.e. a Knudsen minimum, followed by a local maximum when the diffusive
regime sets-in : a Poiseuille peak. We turn to the previously reported signatures of phonon
hydrodynamics for comparison. The variation of lphonons with temperature for different sizes
of Black P (a), Bi (b) and solid 4He systems is shown in figure 7.8. We observe that all
systems display a Knudsen minimum and a Poiseuille peak. The hydrodynamic regime is set
between these extrema and revealed by a clear signature : a size-dependent lphonons. This is
similar to what we observe in Sb. The effect is shifted to lower temperature with higher effect
upon increasing size of the sample, similarly to what is observed in black P [42]. Moreover,
in all but one of these compounds, the variation of lphonons in the hydrodynamic regime does
not exceed 50% while it reaches 400% in the large Sb sample. Only one study on solid 4He
[147], featured in figure 7.8.c, shows a comparable size effect as the one we report here in
Sb.
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Fig. 7.8 a) Mean-free-path of phonons lphonons plotted as a function of temperature for
different size of Black P samples. Data from Machida et al. [42]. b)lphonons plotted as a
function of temperature for different size of Bi samples. Data from Kopylov et al. [39].
c)lphonons plotted as a function of temperature for solid 4He grown in different sizes of
ampoules. Data from L.P. Mehzov-Deglin [147].

We reach here the first conclusion of this section : the mean-free-path of phonons in Sb
presents a signature of hydrodynamic phonons. Furthermore, the fourfold hydrodynamic
correction found in Sb is one of the largest reported.

Nonetheless, the sub-Kelvin evolution of lphonon mitigates this straightforward hydro-
dynamic interpretation. Below the hydrodynamic temperatures, the mean-free-path of the
phonons in Sb presents no size dependence. This result implies that the ballistic regime of
phonons is not reached yet, while we have seen that kphonons µ T 3 below T = 0.25K. The
reports on Bi, Black P or He show clear evidence of ballistic phononic heat transport below
the hydrodynamic temperature window (see Fig.7.8). This observation makes any conclusion
on the emergence of a Poiseuille flow of phonons arguable : how can a crossover regime
emerge if the crossover does not take place ? An answer to this question is revealed by
another result we presented in chapter 5 : the emergence of 1/B-periodic oscillations of
kph with the magnetic field. We showed that all acoustic phonons are able to scatter holes
from one LL to another at T < Te�phonon ⇡ 30K in Sb. These scattering events affect the
flow of phonons and, a priori, affect lphonon. Also, this phenomenon is set by kF , so we
expect it to be size-independent. Below the hydrodynamic window, we observe a regime of
phononic transport which is limited not by the boundaries (ballistic) but by the scattering
off the holes. Similar phenomenon is not observed in Black P, Bi or others due to lower
carrier concentration : the regime qphonons = 2kF implies a larger length associated with
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electron - phonon interaction than it does in Sb. Our observations can appear as paradoxical
at first glance : on one side we observe a strong signature of a Poiseuille flow of phonons
(comparable to what is observed in an insulator) which requires a strong suppression of MR
scattering events to allow for MC scattering to dominate transport. On the other side we
have shown a clear signature of resistive processes affecting the flow of quasiparticles. The
apparent contradiction between these two results was addressed from a theoretical standpoint,
by the possibility of the emergence of a second sound in a semiconductor [173] or an ’elec-
tron sound’ in metals [146]. The former reveals that in a semiconductors, interaction with
electrons can favor the emergence of a hydrodynamic flow of phonons. The latter proves
that phonons can increase the rate of momentum-conserving inter-electrons collisions. Both
conclusions require the system to be close to perfect compensation (which is the case for Sb).
As a consequence, the observation of hydrodynamic features both for electrons and phonons
are not antinomic. Even further, the onset of a strong hole-phonon interplay, with abundant
N-collisions, can favor the hydrodynamic corrections and give hints to understand why the
phonon hydrodynamic correction is larger in antimony than in other systems. As an example,
the idea of a strongly interacting incoherent electron-phonon "soup" has been invoked to
account for the unusual transport properties of YBCO [174].

Conclusion on the hydrodynamic regime in semimetals

We previously associated the strong dichotomy between heat and charge transport to the
angle-selectivity of electronic collisions. However, the thermal conductivity of normal-state
liquid 3He reveals an alternate source of T 2-thermal resistivity : momentum-conserving
collisions. The T 2 thermal resistivity prefactor becomes a measure of energy-relaxing, yet
momentum-conserving collisions and scales roughly with the size of the phase space for
fermion-fermion collisions. This interpretation grants a direct access to the values of the
scattering times involved in Gurzhi’s hydrodynamic hierarchy. Looking back at our report on
the heat and charge transport properties of WP2, we show that the hydrodynamic regime is a
priori favored by the abundance of momentum-conserving collisions in regard of boundary
and momentum-relaxing collisions. Yet, no unequivocal signature of hydrodynamic effects
has been reported to this day. Our study of millimetric Sb is more intriguing. In a context
where the hydrodynamic criterion is satisfied, we report on a size-dependent T 2-prefactors
ratio (electrical to thermal). To the best of our knowledge, this is the first instance of such
observation which can only be explained in a hydrodynamic framework. It is however easier
to satisfy the basic condition for a fully developed hydrodynamic regime for phonons than it
is for electrons. Focusing on the thermal conductivity of phonons in Sb, we the existence
of a temperature window where the mean-free-path of phonons becomes size-dependent
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and increases with increasing temperature. We associate this phenomenon with a strong
hydrodynamic correction, which only compares in amplitude with one report on solid 4He.
Our claim of the observation of a hydrodynamic regime of phonons is however questioned by
the absence of recovery of a ballistic regime of phonons down to T = 80mK. In light of prior
reports on the lattice thermal conductivity of Sb and the observation of oscillations of the
phonons thermal conductivity, we conclude that scattering between holes in Landau levels
and phonons, favored at low temperature, induces an intrinsic length scale, smaller than all
the samples of this study, which sets the low temperature phononic mean-free-path. As a
conclusion, we report on the simultaneous hydrodynamic regimes of electrons and phonons
in millimetric Sb samples.





Chapter 8

Conclusion

Throughout the three years of this study we addressed the broad subject of the charge
and heat transport properties of low electronic density metals. Two main thematics stood
out. The first deals with the existence of an ubiquitous ground state of 3D metals beyond the
quantum limit; the second with the microscopic nature of the finite temperature violation of
the Wiedemann-Franz law in semi-metals.

The first part was motivated by the observation of a succession of field-induced phase
transitions in the deep quantum limit of graphite [61]. The quantum limit corresponds to the
confinement of all electrons in the lowest Landau level under a sufficiently large magnetic
field. In order to test the possibility of a universal phase diagram of 3D metals in the quantum
limit, we turned to other low electronic density metals. The only systems which display
a sufficiently low carrier concentration to allow an experimental study beyond the QL are
found amongst the semi-metals and narrow gap semi-conductors. We refer to them as dilute
metals. In particular, the III-V semi-conductor InAs appears as a great candidate to test our
hypothesis : with a spherical single pocket Fermi surface located at the G-point of the BZ,
InAs differs from graphite. Also, its transport properties had not been thoroughly investigated
: previous studies only located the QL at B = 4T and reported on a sharp increase of the
transverse magnetoresistivity in the deep quantum limit [8]. We measured the transverse,
longitudinal and Hall resistivity of InAs down to T = 50mK and up to field as high as B = 56T.
We show that an energy gap opens up in all three resistivities and increases monotonously
up to B = 56T. This result is in contrast with the co-existence of a gapped out-of-plane
resistivity and in-plane metallicity in graphite. In the case of InAs, we associated the opening
of the gap with the ’magnetic freeze-out’ of the electrons [78]. In graphite, the field-induced
states have been attributed to a density wave driven by the electron - electron interaction
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[25]. Both systems exhibit a field-induced state, but we conclude that the nature of the
ground states differs from one system to another. This observation shows that the fate of
a 3D electron gas deep in the quantum limit is not universal. Also, our discovery of a
linear temperature-independent magnetoresistivity accompanied by vanishing thermoelectric
coefficients at high-field in InAs points to the existence of a surface conduction channel in
this system. This result echoes the explanation of the peculiar in-plane metallicity of graphite
: the development of edge-state transport, which is expected to develop in the presence of
a bulk gap [175, 61] and has been experimentally reported as a manifestation of the 3D
quantum Hall effect in ZrTe5 [98].

The second part of this thesis deals with the dichotomy between heat and charge transport
observed in the vicinity of the ballistic regime in semi-metals. The starting point was a report
by Gooth et al. [107] which pointed to an unprecedentedly large finite temperature violation
of the Wiedemann-Franz law, with no sign of recovery down to T = 5K, in a micro-ribbon
of WP2. This feature was associated with the emergence of a hydrodynamic regime of
electrons. The premises of this regime were fixed by R.N. Gurzhi [13]; it requires a specific
hierarchy of scattering times between momentum-conserving tMC, momentum-relaxing tMR

and boundary scattering tBoundaries affecting the quasiparticles : tMC ⌧ tBoundaries ⌧ tMR.
The first observation of a hydrodynamic flow of electrons was reported in a 2D system in
the 90s [17] but it gained most of its attention more recently due to theoretical predictions
[22, 23, 21] and its experimental observation in graphene [19] as well as a 3D system,
PdCoO2 [20]. Yet, the work of Gooth et al. was the first to establish a connection between a
downward violation of the WFL and the possibility of a viscous flow of electrons.

Our four-terminal measurements of k and r in three bulk needle-like single crystals
(around 50 times thicker than the aforementioned work) confirms the observation of a quasi-
unprecedentedly large downward deviation from the WFL in WP2. Around T = 2K, we
observe the recovery of the WFL. We indicate that a downward deviation from the WFL
at finite temperature in a metal is expected, whether it is because of inelastic electron -
electron scattering like in heavy fermion systems [31, 32], or driven by electron - phonon
collisions, as illustrated by our study of silver. Yet, the amplitude of the deviation in WP2

only compares with one previous report in a high-purity W crystal [114]. To determine what
was the microscopic origin of the deviation, we separated the different components of the
electrical and thermal resistivities and showed that the T 2-prefactor of the thermal resistivity
is 5 times larger than its electrical counterpart. We associate this mismatch with a particular
abundance of small-angle electronic scattering, favored by the topology of the FS of WP2.
We reach here a semi-classical explanation of the deviation from the WFL observed in WP2.
Following our work, theoretical developments confirmed that clean compensated metals, do
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not have, a priori, any lower boundary to their Lorentz ratio [120]. However, this conclusion
was not the end of the story.

At sufficiently low temperature, the thermal conductivity of normal-state liquid 3He
adopts a T �1 behavior, i.e. a T 2-dependent thermal resistivity emerges solely because
of momentum-conserving fermion-fermion collisions. This observation becomes striking
when added to the well-known Kadowaki-Woods plot (see figure 7.3) and yield one of the
main result of this thesis : an alternate route to the B2 ⇥T 2 thermal resistivity we reported
in WP2. In addition to 3He, we observe that the prefactor of the T 2-thermal resistivity,
B2, reported in CeRhIn5 [31], UPt3 [32] or from our work on WP2 [110], all scale with
the size of phase space for electron - electron collisions. In this framework, we can now
associate this contribution to thermal resistivity with momentum-conserving yet energy-
relaxing electronic collisions. Based on these observations, we can discuss the relative rate
of MC, MR and boundary collisions. We establish that a temperature window which satisfies
the hydrodynamic criterion opens up in WP2, at the crossover between the ballistic and
diffusive regimes. This interval of temperature is however narrow and highly sensitive to
impurity scattering and we emphasize that a finite temperature downward deviation from
the WFL in a compensated metal is not, by itself, a signature of hydrodynamic electronic
transport. In light of our work on WP2, we decided to further investigate the emergence of
hydrodynamic effects in other semi-metals, with a lower Fermi temperature but equivalent
purity. This choice was motivated by the predicted increase of the electronic viscosity of a
Fermi liquid with decreasing TF .

With a carrier density two orders of magnitude lower than WP2 and residual resistivities
comparable to that of the WP2 needles, millimetric-Sb samples appeared as the adequate
candidates. Contrary to the state-of-the-art work on electron hydrodynamics which has been
reported in mesoscopic sized systems [107, 20, 19], we chose to work with large samples to
suppress boundary scattering and explore phonon hydrodynamics as well. Unlike the case
of WP2, the phonon contribution to the thermal conductivity of Sb can not be neglected in
regard of the electronic one. We were able to quantify both contributions.

Our study of the electronic fraction reveals the expected finite temperature violation
of the WFL in Sb, reaching roughly half the amplitude of the one observed in WP2. It
is followed by a low temperature recovery of the WFL. Similarly to WP2, a T 2 thermal
and electrical resistivity was determined at low temperature which, in the 3He scenario,
reveals that the hydrodynamic criterion is satisfied in large Sb samples. We further measured
different sizes of sample and observed one of the main result of this thesis : the evolution
of the T 2-resistivities prefactors with sample size. While our report on a size-dependent A2

(electrical T 2-resistivity prefactor) can only account for a proximity to the ballistic regime
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of electrons, our observation of a size-dependent B2/A2 ratio (where B2 is the prefactor of
the T 2-thermal resistivity) is a first and, to the best of our knowledge, not explained by the
semi-classical theory. Rather, it fits the hydrodynamic narrative : as size increase, so does the
rate of MC to MR electronic collisions. Yet, the amplitude of the hydrodynamic correction
to electronic transport observed in Sb remain small. For future work, we pinpoint that high
purity W samples present a ten-fold mismatch between T 2 electrical and thermal prefactors
as well as residual resistivity of the order of 100 pW.cm. In the hydrodynamic scenario, this
makes W an even better playground than WP2 or Sb for the study of electron hydrodynamics.

The phononic heat transport properties of Sb also shows the existence of strong hydro-
dynamic signatures, i.e. non-monotonous size-dependent evolution of the phonon mean-
free-path over a finite temperature window. This observation was the initial illustration of
the hydrodynamic flow of QP by Gurzhi [13], and previously reported in different solids
[38–42]. The amplitude of the hydrodynamic correction observed in Sb exceeds almost all
the others. The co-existence of hydrodynamic regimes of electrons and phonons can raise a
few eyebrows : a Poiseuille flow of phonons requires a suppression of resistive events, yet we
have shown evidences of resistive scattering of quasiparticles. This observation, supported
by theoretical work [146], can be further probed by second sound measurements in Sb. In
the context of perfectly compensated semi-metals, electron and phonon hydrodynamics can
favor each other.

To conclude, this study of the charge and entropy transport of low electronic density
metals relied on a variety of different energy scale. Through their comparison, we made
some expected, yet previously unstated, connections between the physics of Helium 3, heavy
fermions, hydrodynamic and field-induced metal-insulator transitions.



References

[1] N.W. Ashcroft and N.D. Mermin. Solid State Physics. Saunders College Publishing,
Fort Worth, 1976.

[2] TC Chi. Electrical resistivity of alkali elements. Journal of Physical and Chemical
Reference Data, 8(2):339–438, 1979.

[3] A Eiling and JS Schilling. Pressure and temperature dependence of electrical resistivity
of pb and sn from 1-300k and 0-10 gpa-use as continuous resistive pressure monitor
accurate over wide temperature range; superconductivity under pressure in pb, sn and
in. Journal of Physics F: Metal Physics, 11(3):623, 1981.

[4] AR Mackintosh. The fermi surface of metals. Scientific American, 209(1):110–121,
1963.

[5] Martin JG Lee. The de haas—van alphen effect and the fermi surface of sodium.
Proceedings of the Royal Society of London. Series A. Mathematical and Physical
Sciences, 295(1443):440–457, 1966.

[6] Andreas Hermann, Jürgen Furthmüller, Heinz W Gäggeler, and Peter Schwerdtfeger.
Spin-orbit effects in structural and electronic properties for the solid state of the
group-14 elements from carbon to superheavy element 114. Physical Review B,
82(15):155116, 2010.

[7] JP Issi. Low temperature transport properties of the group v semimetals. Australian
Journal of Physics, 32(6):585–628, 1979.

[8] T. F. Rosenbaum, K. Andres, G. A. Thomas, and R. N. Bhatt. Sharp metal-insulator
transition in a random solid. Phys. Rev. Lett., 45:1723–1726, Nov 1980.

[9] Nevill Mott. Metal-insulator transitions. CRC Press, 2004.

[10] Nevill Francis Mott and Harry Jones. The theory of the properties of metals and alloys.
Courier Corporation, 1958.

[11] Xavier Blase, Etienne Bustarret, Claude Chapelier, Thierry Klein, and Christophe
Marcenat. Superconducting group-iv semiconductors. Nature materials, 8(5):375,
2009.



138 References

[12] B. N. Aleksandrov, V. V. Dukin, L. A. Maslova, and S. V. Tsivinskiǐ. Effect of Size and
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Fig. 1 a) Ra plotted as a function of temperature in sample NG-2 b) Ra plotted as a function
of field for various temperatures in sample NG-2.

We report here on the in-plane resistivity of a natural graphite sample labelled NG-2. Ra,
which display a RRR = 60, is plotted as a function of temperature in figure 1.a. The in-plane
field dependence is plotted up to B = 56T (measured in pulsed field, LNCMI Toulouse,
France) in figure 1.b. This data are used in chapter 4 to study the in-plane metallicity of
graphite in the field-induced states.
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SUPPLEMENTAL MATERIAL FOR ’DEPARTURE FROM THE WIEDEMANN-FRANZ LAW IN WP2

DRIVEN BY MISMATCH IN T-SQUARE RESISTIVITY PREFACTORS’

Samples Measured

We measured 3 di�erent single crystals of WP2, all grown in the same batch. The sample presented in the corpus

is S3. In table I we present their geometries and basic electrical characteristics.

All the samples were measured along the same direction, with j k (a-axis) for both heat and electrical currents. The

result for the electrical conductivity in all three samples are shown in Fig.8. Besides the residual resistivity �0, we see

that both the T 2-dependent and T 5-dependent terms are equal from one sample to another.

From Fig.9 we can deduce that the T 2-dependent and T 3-dependent terms of the thermal resistivity, WT , are also

equivalent in the three di�erent samples. We thus confirm that besides the residual terms, the electrical and thermal

resistivities are reproducible from one sample to another with comparable size.

Sample Length (mm) Width (µm) Thickness (µm) �0 (n�.cm) RRR =�(300K)/�(2K)

S1 1.5 80-100 110 3.94 11200
S2 1.9 90-100 110 5.85 7600
S3 0.9 80-110 120 4.69 9600

TABLE I: Presentation of the di�erent WP2 samples
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FIG. 8: a) Resistivity �, measured along the a-axis, of WP2 as a function of T 2 for the three samples S1, S2 and S3. b) Phonon
contribution to the electrical resistivity �� = � � �0 � AT 2 as a function of T 5 for the same three samples. Inset shows a fit
of �� to a T 5 law with A5 = 3.9 � 10�15 �.cm.K�5. We observe a downward deviation for T > 20K.

15

Fig. 2 a) Resistivity r , measured along the a-axis, of WP2 as a function of T 2 for the
three samples S1, S2 and S3. b) Phonons contribution to the electrical resistivity dr =
r � r0 � AT 2 as a function of T 5 for the same three samples. Inset shows a fit of dr to a
T 5 law with A5 = 3.9⇥10�15 W.cm.K�5. We observe a downward deviation for T > 20K.

.2 Supplementary Data : WP2

We measured 3 different single crystals of WP2, all grown in the same batch. The sample
presented in the corpus is S3. In table 1 we present their geometries and basic electrical
characteristics.
All the samples were measured along the same direction, with j k (a-axis) for both heat
and electrical currents. The result for the electrical conductivity in all three samples are
shown in Fig.2. Besides the residual resistivity r0, we see that both the T 2-dependent and
T 5-dependent terms are equal from one sample to another.
From Fig.3 we can deduce that the T 2-dependent and T 3-dependent terms of the thermal
resistivity, WT , are also equivalent in the three different samples. We thus confirm that
besides the residual terms, the electrical and thermal resistivities are reproducible from one
sample to another with comparable size.

Sample Length (mm) Width (µm) Thickness (µm) r0 (nW.cm) RRR =r(300K)/r(2K)

S1 1.5 80-100 110 3.94 11200
S2 1.9 90-100 110 5.85 7600
S3 0.9 80-110 120 4.69 9600

Table 1 Presentation of the different WP2 samples
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FIG. 9: a) Thermal resistivity, WT = L0T
� , as a function of T for the three WP2 samples. b) Ratio of Lorenz, L(T ) = �

T� ,
to Sommerfeld, L0 = 2.44 � 10�8 W.�.K�2, numbers as a function of temperature for the same three samples. c) Here we
show WT � W0T as a function of T 2 for the three samples. d) Plot of the phonon component of the thermal resistivity
�WT = WT � W0T � BT 2 as a function of T . The black line corresponds to a T 3 fit.

ELECTRICAL AND THERMAL T 2-DEPENDENT RESISTIVITY : COMPARISON OF DIFFERENT

SYSTEMS

We reference in table II the values of the electrical and thermal resistivities quadractic prefactors for di�erent

materials. The electrical prefactor is noted A2 whereas the thermal T 2-prefactor is B2. We computed the ratio of

these two terms in the third column.

Material Residual Resistivity �0 (n�.cm) Electrical Prefactor A2 (p�.cm.K�2) Thermal Prefactor B2 (p�.cm.K�2) A2/B2

WP2 4 - 7 16.6 75.6 0.22
W 0.06 - 0.5 0.9±0.3 6.2±0.9 0.15

UPt3 200 - 600 (1.6±0.59)�106 (2.44±0.9)�106 0.65
Ni 1 - 3 25±5 61 0.40

CeRhIn5 37 21000 57000 0.4

TABLE II: Presentation of the electrical (A2) and thermal (B2) quadratic prefactors of di�erent materials. WP2 data from
this work, W from [30], UPt3 from [5], elemental Ni from [20] and CeRhIn5 from [4].
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Fig. 3 a) Thermal resistivity, WT = L0T
k , as a function of T for the three WP2 samples.

b) Ratio of Lorenz, L(T ) = k
T s , to Sommerfeld, L0 = 2.44 ⇥ 10�8 W.W.K�2, numbers as

a function of temperature for the same three samples. c) Here we show WT � W0T as
a function of T 2 for the three samples. d) Plot of the phonon component of the thermal
resistivity dWT = WT � W0T � BT 2 as a function of T . The black line corresponds to a
T 3 fit.
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.3 Supplementary Data : Sb

We report here on oscillations of the phonon thermal conductivity in the small Sb sample,
similar to our report on the large Sb samples. The amplitude of the oscillations, featured in
figure 4, in this sample is smaller and the oscillations remain 1/B-periodic with a frequency
close to f ⇡ 100T.
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Fig. 4 Thermal conductivity of samples s = 0.52 mm Sb samples as a function of magnetic
field for different temperatures. Inset shows the background removed oscillations plotted as
a function of B�1.
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