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Abstract

Three of the most common long-term outcome domains to predict following ischemic

stroke are motor, language, and global outcome. While clinical variables, such as ini-

tial severity of the impairment, age, and lesion volume have proven good indicators

of future outcome, the preservation of major white matter structures also plays a role

in each of these outcome domains. One particular neuroimaging modality, diffusion

tensor imaging (DTI), is sensitive to axonal damage following ischemia and can eval-

uate the integrity of important white matter bundles. Using a large cohort of patients

who underwent a DTI protocol at 24 hours post-stroke, the current thesis sought

to (1) investigate spatial normalization strategies in order to optimally process the

available data, (2) establish which DTI parameter best captures axonal injury related

to long-term global outcome, and (3) determine if DTI can bring to light simple and

independent biomarkers of long-term motor and language outcome. First, our work

showed that commonly used scalar-based vs. novel fiber orientation distribution

(FOD)-based spatial normalization strategies performed similar for acute stroke data,

yet in an independent dataset of subacute-chronic stroke patients, FOD-based regis-

tration yielded stronger anatomo-clinical correlations. Second, we established that

axial diffusivity (AD) best captures acute axonal damage and that its evaluation in the

corona radiata highly contributes to the prediction of the autonomy or dependence

on external aid in patients at three months post-stroke. Third, we demonstrate that

AD evaluated in the corticospinal tract as early as 24 hours post-stroke alone can

predict motor outcome at the chronic stage. More importantly, we showed for the

first time that the AD of the arcuate fasciculus is an independent marker of aphasia

outcome. The work presented in this thesis supports the use of AD for quantifying

early brain damage and also the importance of the corona radiata, corticospinal tract,

and arcuate fasciculus for global, motor, and language outcome, respectively. These

surrogate markers could be used not only to inform patients but also to evaluate

the efficacy of neuroprotective therapies at the hyperacute stage or as a stratification

means for future rehabilitative therapies.
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Keywords: Biomarkers, diffusion MRI, diffusion tensor imaging, acute stroke, pre-

diction, prognosis, motor outcome, language outcome, functional outcome, machine

learning, corticospinal tract, arcuate fasciculus, spatial normalization.
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Résumé

Prédire le plus tôt possible la récupération (notamment l’autonomie, le langage et la

motricité) après un Accident Vasculaire Cérébral (AVC) est un défi de la recherche.

En plus de la valeur prédictive établie de la sévérité initiale d’un déficit, de l’âge et

du volume de l’infarctus, la préservation de certains faisceaux de matière blanche

s’avère cruciale pour la récupération de chacune de ces fonctions. Une modalité

d’Imagerie par Résonance Magnétique (IRM) nommée le tenseur de diffusion (DTI)

est sensible aux changements microstructuraux des neurones suivant l’ischémie et

peut donc quantifier l’intégrité de ces faisceaux. Les travaux de cette thèse reposent

sur une cohorte de patients thrombolysés ayant eu une IRM à 24 heures post-AVC (et

un DTI) et ont pour objectif de (1) comparer les stratégies de normalisation spatiale

afin de mieux traiter les données, (2) établir quel paramètre du modèle du tenseur

de diffusion reflète le mieux l’atteinte neuronale en lien avec la récupération glob-

ale, et (3) déterminer si l’évaluation des faisceaux de substance blanche sont des

biomarqueurs indépendants de récupération des fonctions motrices et du langage

à trois mois post-AVC. La première étude de cette thèse montre que deux types de

normalisation spatiale – une basée sur les cartes scalaires et l’autre basée sur les cartes

de distribution d’orientation de fibre (FOD) – donnent tous les deux des résultats

similaires pour les images obtenues au stade aigu, mais la normalisation par les cartes

de FOD fournit de meilleures corrélations anatomo-cliniques dans une cohorte de

patients au stade subaigu-chronique. La deuxième étude met en valeur la diffusivité

axiale (AD) comme étant le paramètre qui reflète le mieux l’atteinte axonale. De plus,

son évaluation dans la couronne rayonnante contribue fortement à la prédiction de

l’autonomie d’un patient à trois mois post-AVC. Enfin, la troisième étude démontre

que l’AD du faisceau corticospinal seule peut prédire le handicap moteur au stade

chronique. Plus important encore, nous démontrons pour la première fois que l’AD

du faisceau arqué est un marqueur indépendent de l’aphasie à trois mois. Les travaux

présentés dans cette thèse mettent en avant l’usage de l’AD pour la quantification

de la sévérité de l’ischémie aigüe ainsi que l’importance respective de la couronne



xx

rayonnante, du faisceau corticospinal et du faisceau arqué pour l’autonomie, le hand-

icap moteur et l’aphasie à trois mois post-AVC. Ces marqueurs pourraient servir non

seulement à informer les patients et leur proches mais aussi à évaluer l’efficacité de

thérapies neuroprotectrices au stade hyperaigu ou bien comme un critère de stratifi-

cation pour d’éventuels essais cliniques.

Keywords: Biomarqueurs, IRM de diffusion, tenseur de diffusion, accident ischémique

cérébrale, prédiction, pronostic, récupération motrice, récupération de la parole,

récupération globale, machine learning, faisceau corticospinal, faisceau arqué, nor-

malisation spatiale.
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Introduction

Cerebrovascular ischemia results from insufficient blood flow due to the obstruction

of blood vessels in the brain and leads to rapid cellular necrosis. Depending on the

affected populations of neurons, serious deficits can abruptly manifest, the most

common being related to motor function or language processing. While the brain

is capable of repairing itself, this process is highly imperfect, leaving patients with

long-lasting impairments affecting their autonomy in everyday life.

Predicting motor and language outcome, as well as overall autonomy, has become

one of the most important questions in stroke research. The initial severity of a

given deficit has been shown to highly correlate to its final severity; however, clinical

scales used to evaluate residual neurological function suffer from a poor specificity-

sensitivity tradeoff. In particular, initially minor deficits will almost always resolve

themselves in the long run, whereas patients with mild-to-severe deficits exhibit

highly variable recovery trajectories, making their final outcomes difficult to predict.

Recent work has shown that the structural integrity of important white matter

pathways are crucial for patient outcome. While motor outcome is highly dependent

on the preservation of the corticospinal tract, language outcome relies on a wider

network of white matter fasciculi, such as the arcuate fasciculus, inferior fronto-

occipital fasciculus, inferior longitudinal fasciculus, and the uncinate fasciculus.

Global outcome, on the other hand, is in large part the reflection of the cumulative

damage to these important structures. Moreover, the fact that ischemic stroke affects

white matter more than gray matter by a far larger percentage suggests that integrity

of these long-range fasciculi could be effective biomarkers for outcome in mild-to-

severe stroke patients.

Diffusion weighted imaging (DWI) is an imaging modality sensitive to the dif-

fusion of water molecules both in the healthy brain and ischemic stroke and is thus

optimal to probe the integrity of important white matter bundles. An extension of

DWI, called diffusion tensor imaging (DTI), is capable of characterizing the diffusion

of water in 3D space and yields several parametric maps, each providing comple-

mentary insights on the integrity of affected and unaffected neuronal populations.
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DTI could therefore uncover essential biomarkers indicative of the kind of motor,

language, and global outcome patients may expect.

The present thesis expands upon existing work using DTI at the acute stage for

long-term outcome. However, a majority of this work has only investigated acute

DTI for motor prediction, whereas the utility of DTI for global and language outcome

remained undefined to the scientific community. To investigate these unresolved

questions, we prospectively screened a large cohort of thrombolyzed patients from

the Pitié-Salpêtrière Hospital for whom a follow-up DTI sequence 24 hours after

admission has been systematically scheduled since September 2013. This dataset is

truly unique of its kind, since few studies have been able to exploit DTI data at such

an early time point. Because comparable datasets have so scarsely been reported in

the literature, reliable procedures to analyze these images were not available to us

at the onset of the current doctoral work. These available images therefore enabled

us to elucidate open-ended methodological questions to pave the path for future

investigations not only for our own studies but for future independent datasets once

they become more readily available. Using the insights from an initial technical study,

we were able to confidently probe the prognostic value of DTI at the acute stage of

stroke for long-term global, motor, and language outcome in two subsequent studies.

The flowchart showing patient inclusion from the original database to each of the

three studies is shown below in Figure 1. The varying sample sizes of each study

depended on the time at which each study was conceived and the respective inclusion

criteria to respond to the precise questions at hand.
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FIGURE 1: Patient inclusion flowchart for studies related to the current thesis.
Three studies emerged from a database available at the Pitié-Salpêtrière Hos-
pital. An initial methodological investigation allowed us to reliably prepare
data for statistical analyses, and two subsequent investigations sought to probe
the prognostic value of the diffusion tensor imaging sequence at 24 hours

post-stroke for global, motor, and language outcome.

Taking advantage of recent advances in imaging processing, machine learning,

and statistical analyses, the current doctoral thesis attemps to respond to the following

three objectives:

• Determine a spatial normalization strategy for diffusion MRI data of acute

stroke patients that preserves anatomical overlap of crucial white matter struc-

tures

• Compare machine-learning classification models constructed with DTI data in

order to deduce which diffusion parameters accurately capture acute stroke

damage related to long-term functional outcome.

• Conclude whether acute ischemic damage, quantified with DTI, can bring to

light simple and independent biomarkers of long-term motor and language

outcome in mild-to-severe stroke patients for whom outcome is more difficult

to predict.

Part I presents the thesis background and contains four chapters as follows:
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• Chapter 1 provides an overview of ischemic stroke deficits and introduces

the concept of predictive models for long-term outcome. The strengths and

weaknesses of important prognostic models constructed with clinical data

are presented. This chapter also argues that neuroimaging, especially DWI,

is capable of improving upon already existing clinical models, especially for

mild-to-severe stroke patients.

• Chapter 2 presents the anatomical underpinnings of motor function and lan-

guage processing in healthy individuals as well as the determinants of global

outcome in stroke patients. Common measures of evalatuing motor, language,

and global outcome are also presented.

• Chapter 3 lays the foundations for DWI in addition to common models of

water diffusion in the brain derived from this sequence. Diffusion parameters

estimated from these models are given for various structures in the healthy

brain as well as their evolution in ischemic stroke. Popular types of analyses

using DWI data are also presented with a focus on group-level analyses and

existing strategies for spatial normalization.

• Chapter 4 reviews the state of the art surrounding the prognostic value of DWI

in acute stroke for long-term outcome using the types of analyses outlined in

chapter 3 and constitutes the core of the current thesis.

Part II constitutes the thesis work and contains three chapters:

• Chapter 5 is a methodological study comparing sophisticated spatial normal-

ization techniques for DWI data in both acute and subacute-chronic stroke. The

study serves to contrast commonly used scalar-based techniques with novel

strategies that take advantage of the rich 3D data provided by DWI. The results

of this study, particularly for acute stroke patients, are used for the subsequent

studies.

• Chapter 6 presents a study comparing the accuracy of DTI parameter maps as

well as lesion segmentations for predicting global outcome with a multivariate

machine learning classification technique.

• Chapter 7 reports a regression analysis between diffusion abnormalities in

important white matter fasciculi for mild-to-severe stroke patients and fine-

grained measures for long-term motor and language outcome. This analysis
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is also complemented by a voxel-based analysis to show the specificity of the

chosen fiber tracts used in the regression models.

Part III is dedicated to the general discussion and conclusion:

• Chapter 8 finally concludes the thesis with a global discussion and perspectives

on the true clinical relevance of diffusion tensor imaging at the acute stage of

stroke.
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Part I

Thesis Background
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Chapter 1

Ischemic Stroke and Prognosis
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1.1 Post-stroke Deficits and Recovery

Stroke is defined as the sudden onset of focal symptoms related to vascular origin1. It

has recently moved from the third to the second cause of disability in the world, in

terms of disability-adjusted life years, and is also a leading cause of years lost due to

disability worldwide2. While stroke incidence, prevalence, mortality, and disability-

adjusted life-years have declined in the past two decades, the absolute number of

people affected or disabled from stroke has grown3, mainly from improvements in

stroke care and the increasing aging population.

Specifically, stroke encompasses three separate pathology types: ischemic stroke,

intracerebral haemorrhage, and subarachnoid haemorrhage. Ischemic stroke repre-

sents more than 85% of all stroke occurrences4 and will be the focus of the present

dissertation. By definition, ischemic stroke is the result of insufficient blood flow

due to the obstruction of blood vessels in the brain. After prolonged deprivation

of oxygen and glucose, neural cells in the ischemic core begin to undergo necrosis

following a cascade of pathological mechanisms. Massive neuronal death results in

the sudden onset of neurological deficits5 the nature of which depends on the affected

neuronal populations and the functions they uphold6.

The recovery process of lost neuronal function begins shortly after stroke onset

and continues until the chronic stage7 (i.e., more than 6 months post-stroke onset8).

Throughout this period, the brain undergoes massive reorganization through the

genesis of neurons, glia, and blood vessels in addition to functional and structural

remapping of preserved brain tissue in an attempt to maximally recover lost neuro-

logical function. Neural remodeling can rely on nearby tissue with similar function

either by strengthening diffuse synaptic connections or by creating new ones7. This

biological process is most active during the first month of stroke9 with most patients

achieving maximum gains by 3-6 months post-stroke (Fig 1.1).

Despite the brain’s best efforts to recover lost function, many patients are still bur-

dened by debilitating sequellae at the chronic stage of stroke. Common impairments

include motor function, language, and spatial attention. Motor deficits are the most

frequent impairment from stroke with 50-80% of patients presenting with hemiparesis

of the upper limb at the acute stage of stroke and about 40% at the chronic stage10,11.

Aphasia is present in around 30-40% of left-hemisphere stroke cases at the acute

stage, with longitudinal studies reporting only a small percentage that fully recover

pre-stroke language abilities12–14. About 25-50% of patients present with symptoms

relating to hemispatial neglect (usually following a stroke of the right hemisphere),
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FIGURE 1.1: Time windows of brain plasticity and spontaneous neurological
recovery following stroke.

Cellular and molecular processes result in neural death (red). Cell repair and
genesis are active in the weeks following stroke. Finally, functional (green) and
structural(blue) plasticity begin almost immediately following stroke onset and
are maximal in the first month. Most patients achieve their maximum potential

for recovery by 3 months post-stroke. Adapted from Stinear and Byblow9

with 75% of these patients experiencing persistent deficits in the chronic stage15–18.

Finally, all of these factors have significant impacts on the autonomy of patients, as

disabilities affecting basic activities of daily living (ADL) are present in more than

25% of stroke sufferers in the long term1,11.

1.2 Prognosis, Biomarkers, and the Role of Neuroimaging

Beyond quantifying the prevalence of deficits at the population level, being able

to explain and predict any impairment of individual stroke patients at any time is

one of the highest priorities in stroke research19. Prognostic models can be used to

predict anything from global stroke impairments, such as general autonomy or de-

pendence on external aid, to precise domain-specific deficits, such as motor dexterity

or strength, language comprehension or production, or spatial awareness. Effective

models serve several purposes: (1) informing patients, family, caregivers, and clini-

cians, (2) planning the future course of rehabilitation therapy20, and (3) determining
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which patients can benefit from interventions aimed at promoting stroke recovery21.

While the true underlying cause of any neurological impairment is ultimately the

result of cellular damage and repair, direct measurements of such processes are diffi-

cult to obtain; therefore, finding substitute biomarkers of these mechanisms, capable

of explaining present or future deficits, has been a developmental priority in stroke

research19. In addition to clinical variables (e.g., age, sex, stroke severity scales, etc.),

the vast majority of investigated biomarkers have been derived from radiological ex-

ams with magnetic resonance imaging (MRI) (e.g., lesion volume, lesion localization,

non-invasive measures of brain function or structure, etc.).

Predictive models can be applied to and across any stage of stroke to describe

different aspects of neurological impairments. In particular, the main concern of

prognostic models is to find variables capable of explaining three important yet

independent concepts: severity, outcome, and recovery. Stroke severity models are

those in which both explanatory factors (i.e., independent variables) and measures of

the degree of an impairment are acquired at the same time t post-stroke. Such models

are useful for elucidating the underlying clinical or neural correlates responsible for

the severity of a given deficit22–24. Due to the dynamic nature of spontaneous recovery,

deficits of a given domain (e.g., motor, language, or cognition) may be explained by

different factors at the hyperacute (0-24 hours), acute (1-7 days), subacute (1 week - 6

months), or chronic (>6 months) stage of stroke8,19. Outcome models, on the other

hand, attempt to uncover explanatory factors obtained at some time t capable of

explaining an impairment measured at some future time t + ∆t. Finally, recovery

models serve to explain the change in impairment from time t to time t + ∆t. While

related, there is a fundamental difference between outcome and recovery (Fig 1.2).

This difference can be appreciated in patients with distinct recovery profiles: two

patients may present with drastically different initial severities, yet both patients

may end up reaching the same level of impairment at some future point. In this case,

while one patient has recovered more than the other, both effectively have evolved

toward the same outcome.

Different outcome and recovery profiles are largely due to patient-specific varia-

tions in cerebral reorganization. In fact, there has been considerable work showing

that the outcome and recovery of patients in a particular neurological domain (e.g.,

motor, language, or cognition) are highly explained by the initial severity of the

stroke26,27 and the impairment itself28,29.
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FIGURE 1.2: Outcome vs. Recovery.
(Left) Patients with different baseline impairments may evolve towards the
same outcome (e.g., the yellow and light blue lines). (Middle) Outcome, given
by the y-value in the leftmost graph, may be directly explained by a baseline
measure. (Right) Recovery, given by the difference between outcome and
baseline, may be explained by a baseline measure. Points of the same color refer

to the same individual. Adapted from Hope et al. (2018)25

1.2.1 Initial severity as a Predictor of Outcome and Recovery

Early evaluation of a patient’s deficit can therefore reveal the specific outcome and

recovery potential to be attained within the period of spontaneous recovery. In

other words, patients with more severe deficits have a higher potential to recover

function and reach higher outcome endpoints, whereas patients with mild deficits

recover less and reach slightly better outcome endpoints, simply because there is less

progress to make. In fact, research has suggested that the vast majority of function

regained by patients is determined by biological processes at play during spontaneous

recovery30,31.

At the broadest level, a general relationship between stroke severity and long-

term functional outcome has been demonstrated with crude stroke-deficit rating

scales and overall outcome scales. In the seminal paper of the National Institute of

Health Stroke Severity (NIHSS) scale (see section 2.3), Brott et al. (1989)32 reported

that 3-month functional outcome was significantly correlated with stroke severity

assessed at admission (Spearman’s ρ=0.53) and at 7 days post stroke (ρ=0.71). Several

subsequent studies report similar findings in that the NIHSS evaluted at day 5 or 7

predicts long-term outcome better than at admission or at day 133,34. However, greater

prognostic value can be obtained with the NIHSS at admission when combined with

other clinical variables, such as the age of the patient and treatment received (e.g.,

recanalization therapy vs. none)35,36.

Where these clinical variables truly excel is when outcome measures are situated

at one extreme of the spectrum (i.e., near-to-perfect recovery vs. imperfect recovery
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or death vs. survival). For example, the SPAN-100 trial constructed the SPAN

score defined as the sum of the NIHSS at admission and the age of a patient. By

dichotimizing this score at 100, the authors created two groups: a "positive" group

for whom SPAN-100 < 100 and a "negative" group for whom SPAN-100 > 100. Their

primary outcome measure was a composite score for quasi-perfect outcome (mRS

of 0 or 1 AND NIHSS≤1 AND Barthel index≥95 AND and Glasgow Outcome Scale

score of 1 at 3 months, see reference37 for an explanation of these outcome measures).

Highly skewed towards severely affected patients, the SPAN-100 score was able

to correctly classify 93.5% of SPAN-100-negative patients in the less-than-perfect

outcome group, but only 47.7% of SPAN-100-positive patients in the perfect outcome

group. Similarly, Weimar et al. (2004)27 showed that the NIHSS at admission and age

correctly predicted mortality at 100 days post stroke with 91.5% specificity but only

57.9% sensitivity, showing that only extremely severe patients at admission have a

high chance of mortality, but the mortality of all other patients is more variable.

These relationships have also been shown to be valid for multiple functional

domains, including the upper28,38,39 and lower40 limbs as well as for aphasia29,41 and

visuopatial neglect42. For example, a study performed by Duncan et al. (1992)38

analyzed motor function using the Fugl-Meyer score (see section 2.3) at admission

and at 6 months post-stroke. The authors reported that all initially mild motor deficits

remained mild at six months (average change in Fugl-Meyer score = 5.4), whereas

the variability in outcome in all other patients was much larger (change for initially

moderate motor deficits = 20.8; moderate-severe = 25.5; severe = 35.7). Similarly,

Pedersen et al. (2004)29 reported a significant relationship between aphasia severity

at admission and 1 year post-stroke: while all mildly aphasic patients reached almost

perfect outcome, severely aphasic patients at admission exhibited a wide range of

outcome scores with some attaining perfect outcome and others improving very little.

The true predictive value of initial severity – be it global or domain-specific –

therefore seems to be driven by those patients who present with very minor deficits

shortly after stroke onset. For mild-to-severe deficits, on the other hand, outcome

is much more difficult to predict. However, for these patients, several studies have

shown that damage to crucial structures of, for instance, the motor or language system

can determine the outcome patterns of the corresponding neurological functions for

this difficult-to-predict population43–45.
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1.2.2 The Role of Neuroimaging in Prognostic Models

The potential for spontaneous neural plasticity is thus highly limited by both residual

function (i.e., initial severity) and preserved brain regions. It is therefore essen-

tial for researchers to identify proper biomarkers capable of accurately quantifying

and localizing stroke damage to important brain structures in order to understand

global patterns as well as the patient-specific potential for reaching certain outcome

endpoints19. Neuroimaging is a promising means of non-invasively investigating

stroke size and topography in addition to the structure and function of lesioned and

preserved brain regions. Imaging biomarkers are therefore strong candidates for

providing more subtle and sensitive measures of damage to brain regions critical for

the recovery of various neurological functions, such as sensorimotor, language, and

cognition19.

Neuroimaging biomarkers typically originate from two modalities: structural and

functional. While brain function is generally studied with functional MRI, electroen-

cephalography, or magnetoencephalography, structural imaging is accomplished

with either classical anatomical MRI sequences (e.g., T1- or T2-weighted images) or

diffusion MRI (dMRI). While each modality benefits from different temporal and

spatial resolutions and thus reveals different aspects about structural and functional

damage following stroke, the most interesting and widely used sequence in clinical

settings remains dMRI. Indeed, already acquired in many hospitals, this sequence

is an optimal candidate for finding effective and implementable biomarkers, which

constitutes the essence of the current doctoral work. Precisely, the present thesis

focuses on three of the most studied outcome domains in stroke research: (1) global

outcome, (2) motor deficits, and (3) aphasia. The anatomical bases of these systems

will be discussed in chapter 2, and the principles of dMRI will be detailed in chapter 3.

Finally, chapter 4 will provide a review of the literature revolving around prognostic

models using dMRI data acquired at the acute stage of stroke for long-term outcome.



17

Chapter 2

Outcome Domains and Measures

Contents

2.1 Motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Neuroanatomy of the Motor System . . . . . . . . . . . . . . 19

2.1.2 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Neuroanatomy of the Language System . . . . . . . . . . . . 22

2.2.2 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Stroke severity and Global Outcome . . . . . . . . . . . . . . . . . 27

2.3.1 Neural Underpinnings . . . . . . . . . . . . . . . . . . . . . . 28

2.3.2 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29





2.1. Motor 19

The three major outcome domains studied in the context of this doctoral work

are motor, language, and global outcome. The present chapter serves to outline the

neuroanatomy of the motor and language systems in the brain as well as the determi-

nants of global outcome. Each section is thereafter followed by a description of the

corresponding outcome measures used in the research contained in this manuscript.

2.1 Motor

The motor system is a large network of cortical and subcortical structures that relay

messages for planning and executing movements. This section concentrates on the

cortical regions and white matter pathways responsible for emitting and transmitting

the final motor commands to skeletal muscle for volitional movement as well as

standardized tests to evaluate their precision and performance.

2.1.1 Neuroanatomy of the Motor System

Volitional movement is generated by various motor cortices in the brain. The majority

of motor commands originates in the primary motor cortex (M1), located along the

posterior bank of the central sulcus and anterior surface of the precentral gyrus,

extending until the paracentral lobule on the medial surface of the brain (Fig 2.1A).

Secondary motor areas, such as the ventral (PMv), dorsal (PMd) premotor cortices,

and the supplementary motor area (SMA) also contribute to motor output, albeit to a

lesser degree47,48. These secondary motor areas influence muscle activity, either by

indirectly modulating pyramidal neurons in M149,50 or directly projecting onto target

muscles through the spinal cord48. The premotor cortices are mostly involved in the

preparation and selection of motor programs driven by external cues51, whereas the

SMA plays a role in internally initiated movements52. A somatotopical organization

exists along M1 and reflects the degree of motor control exerted by the brain. In

particular, the cortical representation of distal muscles, such as those in the hands,

legs, and feet occupy a larger surface than more proximal muscles, such as those in

the trunk (Fig 2.1B).

Motor neurons in the cortex relay their activity to target muscles through two

organized bundles of axons: the corticospinal tract (CST), originating from the upper

half of M1, and the corticobulbar tract, stemming from the lateral surface of M1. The

CST innervates muscles of the upper and lower limbs through relays in the spinal

cord, whereas the corticobulbar tract outputs motor commands to the muscles of
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A C

B

FIGURE 2.1: The cortical and white matter substrates of volitional movement.
(A) The primary motor cortex (M1 - purple), The lateral premotor cortex (blue),
composed of ventral (PMv) and dorsal (PMd) subparts, and the medial premo-
tor cortex (green), also referred to as the Supplementary Motor Area (SMA).
(B) The somatotopy of M1 known as Penfield’s homunculus. (C) Trajectories
of the corticospinal (CST) and corticobulbar tracts. Adapted from Purves et al.

(2004)46

the neck and face through relays in the various nuclei of the brain stem (Fig 2.1C).

Both the CST and corticobulbar tract descend through the corona radiata, posterior

limb of the internal capsule (PLIC), and cerebral peduncles. In the caudal portion

of the medulla, the vast majority of the CST fibers decussate and enter the lateral

columns of the spinal cord. Neurons in M1 represent about 70% of the fibers in the

CST, constituting the most important outflow of information for movement execution,

and have thus been the primary object of investigation in motor stroke recovery53,54.

Due to the somatotopical nature of M1, damage to these cortical areas or the fibers

emanating from them can lead to deficits of specific body parts. For instance, a stroke

lesion to the hand region area in M1 or the associated fibers at the level of the PLIC or

cerebral preduncles can lead to deficits of the upper limb. Therefore, a large portion of
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upper limb deficits can be explained by direct damage to CST fibers emanating from

M154, with recent work highlighting the additive role of additional corticofugal48,55–57

and corticocortical49,50,58,59 fibers in motor-related plasticity.

2.1.2 Measures

There is currently a plethora of used measurement scales for evaluating motor re-

covery in stroke. In fact, a recent Cochrane Overview of interventions aimed at

increasing upper limb function after stroke identified 208 assessment tools from 243

trials60. Interestingly, however, recent research has shown that different aspects of

motor impairment, such as strength, coordination, and range of motion and function

all covary to a considerable degree61,62. Presented in this section are the three motor

outcome assessments used in the research for this thesis and are among the most

commonly used in the literature63.

The Fugl-Meyer Motor Assessment

The most common measure for body function is the Fugl-Meyer Motor Assessment

(FMA)64–66. The FMA is a two-part numerical assessment of motor skill after stroke,

which takes into account limb synergy and range of motion for both the upper and

lower extremities65. In this doctoral thesis and as is commonly done67, only the upper

limb evaluation was used and is provided in Appendix A.

Various movements of the shoulder, forearm, and hand are attempted by a patient

and graded on an ordinal scale from 0 to 2. A correct execution of the movement

is graded 2; partial completion is graded 1; and absence of movement or incorrect

form is graded 0. All scores are added to compute a final score, reflecting the overall

motor status. A maximum score of 66 (or 60 without testing reflexes) corresponds to

no impairment, and a minimum score of 0 corresponds to complete hemiplegia.

The Jebson-Taylor Test

The Jebsen-Taylor Test (JTT)68 is a timed assessment of fine motor skills. Initially,

seven tasks were proposed by the authors68: (1) writing a sentence, (2) turning over

index cards, (3) picking up small objects, (4) picking up dried beans with a spoon,

(5) stacking checker pieces, (6) picking up empty tin cans, and (7) picking up full tin

cans. The work in this doctoral thesis as well as in other studies62 omitted the first

task due to its dependence on hand dominance and education level. Patients are
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timed for each task with a maximum cutoff of 120 seconds. A total score is computed

by adding the time for each task. Finally, a ratio of the scores from the affected and

unaffected limb can be computed to represent a relative percentage of dexterity.

Grip Strength

Grip strength is a measure of the maximum force output during a five-finger grip.

Usually while seated, patients grasp a dynamometer with their arm at a 90◦ angle and

their elbow resting on a table. If patients are not able to maintain their arm upright,

support can be provided by the examiner without influencing force production.

In other studies62 as well as in those in the present doctoral thesis, the average of

three trials is computed for the affected and unaffected limb from which a ratio (i.e.,

affected/unaffected) can be calculated. The ratio represents the percentage of the

force output of the affected hand with respect to the unaffected hand.

2.2 Language

The faculty of language comprises a large range of functions subserved by a vast

network of cortical regions and their respective white matter connectivity69. The exact

organization of the language system is by far more contentious than the motor net-

work, both in terms of the cortical substrates70 and their underlying connections71–73,

bringing into question the exact function(s) each element upholds70,72. This section

serves to outline the major constituents of the language network pertinent to the

work presented in this thesis.

2.2.1 Neuroanatomy of the Language System

The origin of the neural substrates for language production and comprehension date

back to the 19th century with the discoveries of Paul Broca74 and Carl Wernicke75,

respectively. While Paul Broca postulated that the seat of language production was in

the left posterior portion of the inferior frontal gyrus (IFG), Carl Wernicke posited

that language comprehension was localized to the left posterior superior temporal

gyrus (STG). About a century later, Normand Geschwind provided a unified view

of language processing by relating a series of deficits in aphasia as disconnections

between these regions and emphasizing the importance of the left angular gyrus as

a "way station" via an important white matter pathway, the arcuate fasciculus76,77.

Several decades later, the advent of functional brain imaging contributed important
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insights to the function of the language network and broadened the community’s

understanding thereof70. In 2007, Hickock and Poeppel expanded Geschwind’s

classical model by proposing a refined dorsal and ventral "dual-stream" theory to

explain the cortical substrates for processing speech78 (Fig 2.2).

According to this model, the two streams allow for parallel processing of different

aspects of speech input and output. On one hand, the dorsal stream was posited to

be largely left-lateralized in the brain and subtend auditory-to-motor mapping for

functions such as speech repetition. These functions would mainly be subserved by

(a) region in the Sylvian fissure at the boundary between the parietal and temporal

lobe just anterior to the angular gyrus as described by Geschwind, (b) the region

identified by Broca consisting of the pars triangularis and pars opercularis, and

(c) dorsal premotor areas. On the other hand, the ventral stream would underpin

conceptually driven speech production by bilaterally processing auditory inputs in

FIGURE 2.2: The dual stream model proposed by Hickok and Poeppel (2007).
Prefixes: a, anterior; p, posterior. Abbreviations; IFG, inferior frontal gyrus;
PM, premotor cortex; Spt, region in the Sylvian fissure at the parieto-temporal
boundary; STG, superior temporal gyrus; STS, superior temporal sulcus; MTG,
middle temporal gyrus; ITS, anterior inferior temporal sulcus. From Hickok

and Poeppel (2007)78
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the STG and mapping them to conceptual and semantic representations in the middle

(MTG) and inferior (ITG) temporal gyri.

While considerable advances have clarified the cortical regions involved in lan-

guage processing70, their underlying connections and cortical terminations are still

a source of controversy in the literature71–73,79 due to contradictory results from dif-

fusion tractography studies80–85 and post-mortem dissections79,86,87. By virtue of

the tight link between connectivity and function in the brain88–90, different versions

of the connectivity for each of these fiber tracts have resulted in revised models of

their function within the language network and the possible deficits that may arise

from lesions thereof91–93. Nevertheless, the presence of separate dorsal and ventral

pathways is a recurrent finding in the literature, which has lead to a general consensus

of their existence72,94.

As for the dorsal stream, the major white matter tract is the arcuate fasciculus (AF),

which classically connects Wernicke’s and Broca’s region95. Common variants of the

composition of the AF include a "two segment" model80, consisting of a phonological

and lexical-semantic pathway, in addition to a "three segment" model, comprising a

long, anterior, and posterior segment86,96 (Fig 2.3). Depending on the assumed profile

of connectivity, the AF has been posited to play a role in repetition and spontaneous

speech by converting both auditory information (from the STG) and lexical-semantic

information (from the MTG) to motor output in Broca’s area (pars triangularis, pars

opercularis) as well as in the PMv71,92.

The ventral stream, on the other hand, is composed of many individual fiber

pathways and is thus responsible for many functions revolving around language

comprehension (Fig 2.3). Its main purpose is to extract meaning from acoustic-

phonological input, integrate it with semantic hubs in the temporal lobe, and transfer

them to regions in the frontal lobe72. The three main pathways of the ventral stream

are the inferior fronto-occipital fasciculus (IFOF), the inferior longitudinal fasciculus

(ILF), and the uncinate fasiculus (UF)72. The IFOF is a long bundle with caudal

terminations in the occipital pole, certain parts of the superior parietal lobe, and

the ventral occipito-temporal cortex97. It courses through the external capsule and

fans out rostrally to parts of the medial, lateral, and dorsal frontal lobe84. Similar

to the IFOF, the ILF’s most caudal terminations are located in the inferior occipital

gyrus and ventral occipito-temporal cortex; however, the ILF projects laterally to

the temporal pole and medially to the anterior fusiform gyrus, parahippocampal

gyrus, and amygdala. Finally, the UF can be portrayed as a relay between the ILF
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FIGURE 2.3: White matter pathways of the dorsal and ventral stream.
Top Left: a two-segment version of the arcuate fasciculus (AF) connectivity
according to Glasser et al. (2008)80. Top Right: a three-segment version of
the AF connectivity according to Catani et al. (2005)100. Bottom: Proposed

pathways of the ventral stream. Figure adapted from Dick et al. (2014)72.

and frontal lobe by linking the anterior temporal lobe98 with the ventral and medial

frontal cortex, including the pars orbitalis99.

Disentangling the role in semantic processing of each of these pathways has been

the subject of debate in recent research due to the considerable degree of shared

connectivity. Certain authors have claimed that the IFOF is the main "direct" pathway

subserving the ventral stream through semantic processing for language and can

compensate for damage to an "indirect" pathway composed of the ILF and UF93. Due

to their shared connectivity between the extrastriate cortex, visual word form areas

of the fusiform territory, and frontal regions, these pathways share roles in object

recognition, picture naming, proper name retrieval, and reading.

The division of labor proposed by various dual stream models is often observed

in anatomo-behavioral studies of aphasia. Speech production deficits are largely

due to damage to dorsal pathway regions45,101, whereas language comprehension

and semantic processing deficits are far more related to ventral stream damage69,99.

However, purely isolated production or comprehension deficits are rarely seen in
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practice can also be compensated by the other preserved stream91,92. That being said,

patients with the most disabling aphasia are usually those with damage to regions at

the crossroads of both pathways102–104.

2.2.2 Measures

Due to the multifaceted nature of language, standardized tests are often lengthy and

detailed in an attempt to dissociate the various aspects of aphasia and are thus diffi-

cult to obtain in clinical settings or at the patient’s bedside105. However, like motor

deficits as explained above, recent research has shown that even for cognitive func-

tions as complex as language, there is a high level of correlation between scores from

different behavioral batteries61. Indeed, a dimensionality analysis on language tests17

and lesion-deficit maps69,94 in large cohorts have revealed that overall aphasia can

reliably be expressed by a single factor, whereas more detailed structure (e.g., speech

comprehension/semantics/ventral pathway vs. production/phonology/dorsal path-

way) becomes evident through an additional independent factor106. Due to the

consistency between such scores, therefore, the following section selectively presents

two measures of aphasia severity, a commonly used in-depth standardized battery

able to capture production and comprehension abilities and an in-house bedside

evaluation for global aphasia used at the Pitié-Salpêtrière Hospital.

The Boston Diagnostic Aphasia Evaluation

The Boston Diagnostic Aphasia Evaluation (BDAE)107 is a language battery for the

diagnosis of aphasia and the evaluation of perceptual (auditory, visual, and gestu-

ral), processing functions (comprehension, analysis, problem-solving), and response

modalities (writing, articulation, and manipulation). In its original version, the BDAE

is composed of eight sections for assessing fluency, auditory comprehension, naming,

oral reading, repetition, automatic speech, reading comprehension, and writing. The

BDAE exists in a short form yet still requires 30-45 minutes to administer. The Aphasia

Severity Rating Scale (ASRS) is an associated global measure of functional language

ability assessed on a 6-point scale with a lowest possible score of 0, corresponding to

no intelligible speech and no comprehension, to a best possible score of 5, referring to

no perceptible language disorders (Appendix B).
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The Aphasia Rapid Test

The Aphasia Rapid Test (ART) is a bedside assessment conceived by Azuar et al.

(2013) at the Pitié-Salpêtrière Hospital to rate aphasia severity in stroke patients in

less than 3 minutes108. The ART is a NIHSS-like 26-point scale with higher scores

indicating greater impairment (Appendix C), and its reproducibility, sensitivity, and

high predictive value have already been demonstrated108. The assessment is based

on 6 items, consisting of simple comprehension tasks (rated from 0-5 points), word

and sentence repetition (0-8 points), object naming (0-6 points), semantic fluency of

animals (0-4 points), and dysarthria evaluation (0-3 points).

The Aphasia Handicap Score

Complementary to the ART and similar to the modified Rankin Score (see section

2.3 hereafter), a global aphasia score, termed the Aphasia Handicap Score (AHS),

can be determined as well. The AHS is a five-point scoring system for disability in

verbal communication (Appendix D) and highly correlates with the ASRS108. The

AHS score and corresponding functions are as follows: 0 = normal communication,

1 = minor difficulties of language without disability (no impact on normal life), 2

= mild-language related disability (without restrictions in the autonomy of verbal

communication in daily life), 3 = moderate language-related disability (restricted

autonomy of verbal communication), 4 = severe language-related disability (lack of

effective verbal communication), 5 = mutism or total loss of verbal expression and

comprehension.

2.3 Stroke severity and Global Outcome

Stroke severity refers to crude measurements that encompass the overall degree of

present stroke deficits. While non-specific and sometimes inaccurate with respect to

the true deficit, their use and interpretation is nevertheless rather intuitive. Moreover,

the slight sacrifice of accuracy has highly contributed to their reproducibility across

treatment sites, making them indispensable for patient evaluation and clinical trials109.

On the other hand, global outcome (also referred to as functional outcome) reflects

a patient’s autonomy and ability to perform activities of daily living (ADL) and is

usually evaluated as a long-term outcome measure66.
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2.3.1 Neural Underpinnings

Due to the non-specific nature of global outcome scales, neural correlates of such

measures are distributed throughout the brain, covering a large range of neurolog-

ical functions, such as motor, language, and neglect110–114 (Fig 2.4). In one of the

first studies investigating stroke infarct location on functional outcome, Cheng et

al. (2014) found that lesions to the white matter corresponding to the CST or AF

were associated with worse outcome in patients. In fact, these regions are usually

found at the intersection of long-range pathways, causing simultaneous multiple

disconnections112,114,115. The level of autonomy of patients therefore decreases with

the increasing number of deficits arising from a higher number of affected white

matter tracts.

FIGURE 2.4: Annotated statistical maps of lesioned areas associated with global
outcome.

Colored regions correspond to worse clinical outcome. Z-coordinates in MNI
space are given below each slice. The colorbar shows the Z-score thresholded at
1% False Discovery Rate separately for each hemisphere. COC, central opercular
cortex; IPC, inferior parietal cortex; MTC, middle temporal cortex; STC, superior

temporal cortex. Figure from Cheng et al. (2014)110.
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2.3.2 Measures

The most common measures of stroke severity and global outcome are the National

Institute of Health Stroke Scale (NIHSS) and the modified Rankin Scale (mRS)66,116.

The National Institute of Health Stroke Scale

The NIHSS is a scale composed of 15 items for different neurological functions: con-

sciousness, gaze, vision, facial palsy, upper and lower motor function, ataxia, tactile

sensation, language, dysarthria, and spacial neglect (Appendix E). Each function is

assessed with a 3- or 4-point ordinal scale (5 for motor items) where 0 indicates no

impairment. The NIHSS has become such a universal and important measure of

stroke severity that most clinical trials require it to adjust outcome measures or use it

as an outcome measure in and of itself109.

The modified Rankin Scale

The most common outcome measure of functional outcome is the modified Rankin

Scale (mRS). The mRS is a 7 point scale ranging from no sequellae (mRS=0) to

death (mRS=6) (Appendix F). Despite the coarse scale and non-specificity to certain

neurological deficits, the mRS can provide a practitioner with an overall idea of the

status of a stroke patient, and single-point changes are clinically relevant117. Rather

than an ordinal variable, certain studies have employed a dichotimized version of

the mRS, each with different cutoffs: (1) mRS 0-1 vs. 2-6 distinguishes patients who

are able to perform all ADL as before the stroke from those for whom certain tasks

are no longer feasible, and (2) mRS 0-2 vs. 3-6 regroups patients who are autonomous

in their daily lives from those who require assistance on external aid.
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In this chapter and before discussing the state-of-the-art research related to this

doctoral work, I herein provide the technical basis of diffusion MRI image acquisition,

modeling, and analysis.

3.1 Origin of the Diffusion Signal in MRI

Diffusion Magnetic Resonance Imaging (dMRI) is a non-invasive imaging modality

sensitive to the natural diffusion of water molecules in-vivo and has become an indis-

pensable tool not only for neuroscience in general but also for stroke research118. The

principle of dMRI, laid out as early as the mid-1980s119, consists in a small adaptation

to conventional anatomical imaging sequences, such as a spin-echo sequence, in order

to render it sensitive to the diffusion of water molecules (Fig 3.1)120.

In a conventional spin-echo sequence, for example, the magnetic moments of

water molecules in a region of the brain are first excited by a 90◦ magnetic pulse, then

refocused by a 180◦ pulse. Finally, some time later, the water molecules re-emit the

absorbed energy as radiofrequency waves with coherent phases, which can thereafter

FIGURE 3.1: A spin-echo diffusion sequence.
Diffusion gradient strength and duration is determined by the b-value. For
stationary water molecules, the two diffusion gradients effectively cancel each
other out, resulting in coherent spin phases, as in a normal spin-echo sequence.
For mobile water molecules, the difference in diffusion gradients will cause
a loss in phase coherence, resulting in signal attenuation. From Bastiani and

Roebroeck (2015)121.
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be converted into an image. For a diffusion-weighted imaging (DWI) sequence, only

the insertion of two spatially varying diffusion gradients before and after the 180◦

pulse are required120 (Fig 3.1). The spatially varying magnitude of the magnetic field

from the first gradient serves to label a water molecule’s position along a specific

axis. The molecule is then free to diffuse for some time after which the second

gradient is applied with the same duration and direction after the 180◦ pulse so as to

undo the "labeling" effect of the first gradient. If the molecule has not moved from

its original position along the axis of the diffusion gradients, the effect of the two

gradients is effectively canceled, and the signal will remain unchanged with respect

to a conventional, non-diffusion-weighted imaging sequence. On the other hand, if

the molecule has moved from its original position, the difference in strengths of the

two gradient pulses will induce a decoherent phase, and the resulting signal will be

attenuated with respect to a non-diffusion-encoding sequence (Fig 3.1).

It can be shown that the signal from diffusion decays as an exponential function

of the strength and duration of the gradient pulses, summarized in a term called

the b-value, times the magnitude of observed diffusion along the direction of the

diffusion-encoding gradient, called the apparent diffusion coefficient (ADC)122. The

b-value is given by the Stejskal and Tanner equation:

b = γ2G2δ2(∆− δ/3) (3.1)

where γ is the gyromagnetic constant, G is the magnitude of the diffusion gradient,

δ is the duration of the diffusion gradients, and ∆ is the time interval between the

onsets of both diffusion gradients. By comparing a non-DWI sequence to a DWI

sequence, one can show that the natural logarithm of the relative signals becomes

linear in b·ADC as shown in the following equation

ln
[

S(b)
S(0)

]
= −b ·ADC (3.2)

where S(b) is the signal due to diffusion along a specific axis encoded by b, S(0) is

the signal without diffusion-encoding gradients (b=0 s/mm2) and ADC refers to the

observed magnitude of diffusion of water, given the local environment (e.g., brain

tissue). Since the gradient information contained in b is fixed by the experimenter,

the ADC can be deduced from the relative signal attenuation.

In DWI, voxel sizes in traditional imaging protocols are typically on the order

of a few millimeters, yet free water diffuses only on the order of a few micrometers
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on these time scales124. In the end, the observed signal attenuation reflects the

contribution of all microscopic displacements – both inter- and intra-voxel – of the

water molecules present in a given region of the brain. However, the goal of dMRI

is not to measure inherent physical properties of water but to deduce properties of

the local microstructure that are reflected through the diffusion of water124. In fact,

water in the brain diffuses through a complex architecture of axons, cell bodies, glia,

and capillaries, which is ultimately captured in the ADC term from equation 3.2.

Naturally, therefore, in a given region of the brain, the physical obstacles presented by

highly organized axons give rise to different ADC measurements depending on the

direction of the diffusion-encoding gradients (Fig 3.2). Water diffusion in such regions

is said to be anisotropic. In fact, diffusion is less restricted along the axis of fibers and

can be 3 to 6 times faster than in the plane perpendicular to fiber orientation due to a

highly organized architecture of hydrophobic cellular membranes, myelin sheaths,

and extracellular tortuosity125.

FIGURE 3.2: Different types of water diffusion in the brain.
Diffusion takes place in (A) the intra-cellular space, (B) in the tortuous pathways
of the extra-cellular space, or (C) even through cellular membranes or myelin.

Adapted from LeBihan (2003)123.
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3.2 Diffusion Models

The diffusion process in the brain can be represented with many models, each with

its own level of complexity. This section serves to outline three major models of water

diffusion in the brain and the types of inferences one can make about the underlying

microstructure in relation to ischemic stroke from the hyperacute to chronic stages.

3.2.1 Isotropic Apparent Diffusion Coefficient

As mentioned in the previous section, the ADC term in equation 3.2 represents the

apparent diffusion through local tissue and varies considerably depending on the

direction of the applied diffusion gradients126. However, it is often desirable to

obtain images that are both diffusion-sensitive but direction-independent in order to

extract reliable and reproducible information about the local microstructure122,126–128

The simplest means of removing the effect of white matter anisotropy is to obtain

an "isotropic" diffusion weighted (DW) image by taking the average or sum of

three diffusion-weighted images with three orthogonal diffusion-encoding gradients

(Fig 3.3). From this "isotropic" DW image, a corresponding "isotropic" ADC map,

sometimes referred to as trace ADC maps or diffusion trace images, can be obtained

with equation 3.2. Diffusion trace images represent quantitative maps that reflect the

FIGURE 3.3: Isotropic apparent diffusion coefficient model.
At least one non-diffusion-weighted (B0) and three DWIs are required for an
isotropic diffusion model yielding apparent diffusion coefficient (ADC) maps.
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average diffusivity. The practice of acquiring "isotropic" ADC maps in clinical routine

for the detection of acute stroke lesions129 is so diffuse that the term ADC has become

synonymous with isotropic ADC maps. Therefore, for the remainder of the current

thesis, ADC refers to isotropic ADC maps unless otherwise noted. The time course of

normal and pathological ADC values in ischemic stroke will be elaborated in section

3.4.

3.2.2 Diffusion Tensor Imaging

A more accurate means of studying anisotropic diffusion is with the diffusion tensor

imaging (DTI) model. Indeed, while isotropic ADC images bypass certain flaws of

direction-sensitive uni-directional ADC maps, they are not capable of fully charac-

terizing diffusion in all directions130. DTI is a simple model which represents the

diffusion profile in 3D space as a 3×3 tensor, which has a geometrical interpretation

as an ellipsoid120,127. Instead of estimating direction-dependent apparent diffusion

coefficients, DTI serves to estimate a diffusion tensor D with a simple adjustment to

equation 3.2 as follows:

ln
[

S(b)
S(0)

]
= −‖b‖ r̂>Dr̂ (3.3)

where b is the vector equivalent of the b-factor that now also encodes for the

direction of the diffusion gradients r̂, and D is the symmetric diffusion tensor as

shown below

D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz


The goal of DTI is to estimate each element of the diffusion tensor D. Since there

are six unknowns in D, at least six noncollinear diffusion-encoding measurements in

addition to a diffusion-unweighted (b=0) image must be acquired. In practice, diffu-

sion is sampled along many more directions to more reliably estimate the elements of

D due to noise131. Then, the coefficients of D can be estimated with, for example, an

Ordinary Least Squares regression by rewriting equation 3.3 as such:

ln
[

S(b)
S(0)

]
= Mc (3.4)
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where ln
[

S(b)
S(0)

]
is a N×1 column vector of the measured diffusion signals along

N different gradient directions encoded in b, M is a N×6 matrix of the different unit

vectors describing the N directions along which diffusion is sampled, and c is a 6×1

column vector of the six unknown diffusion tensor coefficients to be estimated. The

diffusion coefficients can thus be fit for every voxel in an image. These coefficients in

each voxel are all measured with respect to the laboratory reference frame; however,

by diagonalizing the diffusion matrices, we can represent each tensor in its own

local reference frame where its axes are coincident with the major directions of the

local diffusion ellipsoid. The resulting whole-brain eigenvalue maps λ1, λ2, and λ3

(where λ1 > λ2 > λ3) represent the magnitude of diffusion along these axes , and the

eigenvector maps e1, e2, and e3 show the direction of the major and minor axes.

Several scalar maps can be calculated with the eigenvalue maps, each characteriz-

ing a different aspect of the underlying diffusion behavior and microstructure120,127

(Fig 3.4). Fractional Anisotropy (FA) describes the fraction of the total diffusivity that

can be attributed to pure anisotropic diffusion and is given by the following equation:

FA =

√
3
2
· (λ1 − λ̂)2 + (λ2 − λ̂)2 + (λ3 − λ̂)2

λ2
1 + λ2

2 + λ2
3

(3.5)

,

where λ̂ is the average of the three eigenvalues, also referred to as the Mean

Diffusivity (MD). MD is thus related to the trace of the diffusion tensor, given by
1
3 Tr(D). As the name indicates, MD is the mathematical equivalent to trace ADC maps

or diffusion trace images described previously in section 3.2.1. However, diffusion

trace images typically do not benefit from as high a precision as MD maps, which

are optimally estimated from the diffusion tensor by solving equation 3.4. It is

also possible to investigate the λ1 map alone, as this represents the magnitude of

diffusivity along the major axis of the diffusion tensor. For white matter regions

where fibers are high aligned, water molecules would selectively and preferentially

diffuse along these axons. The λ1 map is therefore often referred to as the axial

diffusivity (AD). Likewise, we can consider the diffusivity in the plane perpendicular

to AD by taking the average of the remaining eigenvalues, λ2 and λ3, often termed

radial diffusivity (RD). The time course of normal and pathological DTI parameters

in ischemic stroke will be elaborated in section 3.4.

While DTI presents several advantages over simple ADC mapping, it is of

paramount importance to recognize that a literal interpretation of this model and
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FIGURE 3.4: Diffusion tensor imaging model in the brain.
At least one non-diffusion-weighted (B0) and six DWIs are required for a Dif-
fusion Tensor Imaging model yielding Fractional Anisotropy (FA), Mean Dif-
fusivity (MD), Axial Diffusivity (AD), and Radial Diffusivity (RD) maps. The
directions for diffusion tensors are mediolateral for red, anteroposterior for

green and superoinferior for blue.

the resulting parameter maps are based on the assumption of a single fiber popu-

lation in a given voxel. However, a recent study has estimated that up to 90% of

the white matter contains multiple fiber orientations132. In these "crossing-fiber"

regions, DTI parameters, such as FA, highly differ from regions where a single fiber

population dominates132,133. Therefore, extreme care needs to be taken when relating

DTI parameters with the properties of the underlying fibers134–136.

3.2.3 Fiber Orientation Distribution

Despite the utility and wide-spread use of DTI in studying fiber microstructure

and orientation, its invalidity in regions of crossing fibers created a need for more

sophisticated techniques to properly characterize the full underlying profile of the

diffusion of water136. The past two decades have witnessed the emergence of new

techniques to model the diffusion process with more precision (see Dell’Acqua et

al. (2018) for a review136), One particularly successful method is to estimate what is

referred to as the fiber orientation distribution (FOD).
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The FOD gives the fraction of total fibers within a sample that are aligned along

a given direction characterized by (θ,φ) in a spherical coordinate system137. Several

steps are necessary in order to infer fiber orientations from the diffusion signal;

however, the process is rather intuitive. Equation 3.2 implies that the observed signal

will be strong in directions where diffusion is low, but weak in directions where

diffusion is high. Hypothetically speaking, by measuring diffusion in all conceivable

directions, a typical shape of the signal from a generic single-fiber population would

generate 3D surfaces as shown in figure 3.5. Indeed, by plotting the radius as a

function of the strength of the diffusion signal in all orientations (θ,φ), the orientation

of the fiber can be easily deduced: (1) along the fiber axis, the radius is small (low

signal) due to high diffusivity along the fiber, and (2) in a plane normal to the fiber axis,

the radius is larger (stronger signal) due to low diffusivity perpendicular to the fiber.

If we assume that all fiber populations yield the same response function with respect

to their respective fiber orientation, the signal resulting from the presence of two

fibers in the same regions of space will be nothing other than the linear superposition

of their respective response functions. The following simple relationship can thus be

established:

S(θ, φ) = F(θ, φ)⊗ R(θ) (3.6)

where S(θ, φ) is the measured signal along a given direction, F(θ, φ) is the under-

lying FOD, and R(θ) is the canonical "response function" for a single fiber population,

and ⊗ is the convolution operator.

FIGURE 3.5: A schematic representation of spherical convolution.
Each underlying fiber (blue line) yields a "canonical" signal S represented by
the radius of the green surface from the origin. The observed signal in a voxel
is simply the linear superposition of the response functions (R) from all present
fibers, represented by the fiber orientation distribution function (fODF) or

(FOD). Adapted from Dell’Acqua (2018)136.
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Since the signal is often represented in the spherical coordinate system, it can be

easily reconstructed in the spherical harmonic basis. Indeed, similar to how a sound

wave can be reconstructed with a linear superposition of sine and cosine waves, the

diffusion signal measured in a many directions can be reconstructed with a set of

spherical basis functions. With this approach, the goal is to infer the underlying FOD

by undoing the convolution operation in equation 3.6 (i.e., through deconvolution).

If one assumes a fixed response function defined a priori, then the only unknowns to

estimate are the coefficients of the spherical harmonic functions to linearly reconstruct

the measured signal.

To perfectly reconstruct the continuous FOD function would require an infinite

number of spherical harmonics; however, in practice, only a few components are

needed to adequately estimate the FOD. The number of spherical harmonic compo-

nents in the FOD used to reconstruct the diffusion signal is governed by the maximum

degree, denoted by `max. As `max increases, the number and angular precision of fiber

populations which can be accurately reconstructed both increase, at the expense of

more unknown coefficients to estimate, which, in turn, require more DW images138.

Due to certain properties of the DWI signal, the minimum number of DW images

required to estimate the number of spherical harmonics up to degree `max is given by

n = 1
2 (`max + 1)(`max + 2)138. To properly resolve two fiber populations (e.g., crossing

fibers) in a given voxel, it is recommended to estimate FODs with at least a `max of 4,

corresponding to a minimum of 15 directions. However, in practice, diffusion should

be sampled along more directions in order to accurately estimate the shape of the

underlying FOD138.

3.3 Tractography

A major application of modeling the diffusion signal with diffusion tensors or FODs

is diffusion tractography, a technique for reconstructing entire fiber bundles in the

brain139. The process consists of (1) starting at a single point in the brain, called a seed

point, (2) observing the local fiber orientation, and (3) moving in that direction some

short distance ∆, called the step-size. This process is repeated at each step to trace

out the fiber’s trajectory, until various termination criteria are met such as (A) a fiber

reaching a pre-defined endpoint, for instance, the edge of the brain, gray matter, or

CSF, (B) an area of small FOD amplitude, (C) or sharp changes in fiber orientation139.
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The resulting virtual fiber is also called a streamline, in order to distinguish the

mathematical nature of the object from a true biological fiber.

The manner in which the streamline proceeds throughout the brain volume de-

pends on two popular frameworks called deterministic tractography and probabilistic

tractography140. While deterministic tractography results in a streamline that faith-

fully follows the direction of maximum diffusivity (given by the primary eigenvector

in DTI or the peaks of the FOD shape), probabilistic tractography can use the FOD or

tensor model as a probability distribution to choose the direction in which a stream-

line most likely proceeds. As the name indicates, deterministic tractography will

always yield the same result for a given configuration of initial seed points, whereas

streamlines in probabilistic tractography can differ. The advantage of probabilistic

tractography is that streamlines are more disperse due to the probabilistic nature

of the algorithm; by creating many seed points, the true underlying pathway is

presumed to be where the majority of streamlines pass141. Since FODs can resolve

FIGURE 3.6: Virtual fiber dissection with tractography.
Shown here is an example of whole-brain tractography done on a healthy
subject. Regions of interest (red) are placed according to the anatomy of the
pathway of interest. Streamline colors are given by the primary diffusion axis:
mediolateral for red, anteroposterior for green and superoinferior for blue. STG,

superior temporal gyrus.
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multiple fibers in a single region, FOD-based tractography in a probabilistic frame-

work has been repeatedly shown to accurately reconstruct intersecting major white

matter tracts in the brain, especially in the lesioned brain139,141.

The virtual dissection of known fiber pathways typically requires that the user

draw inclusion regions of interest (ROIs) at areas that the fiber pathway traverses

based on a priori anatomical knowledge. For longer tracts, several inclusion ROIs

are drawn to better extract relevant fibers. Likewise, exclusion ROIs can be used to

filter out erroneous fibers. One strategy consists in using one of the inclusion ROIs

to generate seed points and using the other ROIs to filter out aberrant fibers not

part of the targeted pathway. The second strategy consists of creating seed points

in all voxels in the brain, a process referred to as whole brain tractography, and

subsequently dissecting the tract with the pertinent ROIs (Fig 3.6).

3.4 Evolution of Diffusion MRI Parameters in Ischemic Stroke

3.4.1 Diffusion MRI Parameters in the Healthy Brain

Understanding the evolution of the various diffusion parameters in ischemic stroke is

important for determining the sensitivity of each one for quantifying neuronal dam-

age and thus its relationship with future outcome. At baseline, the individual values

of FA, MD/ADC, AD, and RD depend on the spatial organization and fiber density

and also vary as a function of age142. A stable reference point is the cerebrospinal

fluid (CSF): mostly composed of water and thus rather isotropic, CSF values of FA

are rather low (around 0.01-0.15), and MD, AD, and RD values are on average about

3.0×10−3s/mm2 143. Grey matter, which is marginally more anisotropic than the

CSF, has a FA spread of 0.05-0.25 due to a slightly larger AD (0.8-1.0×10−3s/mm2)

than RD (0.6-0.8×10−3s/mm2)143. Diffusion values in the white matter vary the most

according to the local fiber number and density. For example, the average FA of

the corticospinal tract is around 0.50-0.55, with MD/AD/RD values around 0.75-

0.80/1.35-1.45/0.55-0.66×10−3s/mm2 142,144. On the other hand, the tightly packed

fibers of the genu of the corpus callosum yield average FA values of 0.80-0.90 and

MD/AD/RD values around 0.60-0.65/1.40-1.45/0.20-0.25×10−3s/mm2 142,144. Due

to the spatial dependence of diffusion properties in the white matter, most studies

investigate relative changes of diffusion parameters in the lesion with respect to con-

trol regions-of-interest (ROIs), usually consisting of the contralesional homologous

region. By presuming that the contralesional ROI is representative of the infarcted
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area before stroke onset, the evolution of diffusion properties in the lesion can be

represented as changes from a baseline measure (Fig 3.7).

3.4.2 Diffusion MRI Parameters in Ischemic Lesions and Their Evolution

Within 30 minutes of vessel occlusion from stroke, cytotoxic edema drives an in-

flow of water into neurons, increasing intracellular fluid and thus decreasing ex-

tracellular space145. Swollen neurons result in water restriction in the axoplasm as

well as an increased tortuosity in the extracellular environment. Ultimately, this

mechanism is responsible for the hallmark sign of stroke, that is, a hypersignal in

DWI and a decrease in ADC, which are visible on MRI as early as 30 minutes after

occlusion146. In fact, the decrease in ADC/MD at this hyperacute stage of stroke (<7

hours) is driven by significant decreases in AD by 37% and RD by 45% with respect

to baseline147,148. The stronger decrease in RD vs. AD results in elevated FA (by a

factor of 1.1146,149, which has also been observed on MRI in humans as early as 2-7

hours post-stroke146,148,150,151.

The acute and early sub-acute phase (i.e., 24 hours to 1 month post-stroke) is

characterized by an increase in RD following the end of cytotoxic edema and the

onset of the breakdown of myelin sheaths145,147. AD, on the other hand, remains

FIGURE 3.7: Illustrative evolution of diffusion MRI parameters in ischemic
stroke lesions.

The evolution of each parameter in the ipsilesional hemisphere is relative to the
unchanging signal of the contralesional unaffected hemisphere. T2, hyperin-
tensity on non-diffusion-weighted images; RD, radial diffusivity; MD, mean
diffusivity; AD, axial diffusivity; DWI, diffusion weighted image; FA, fractional

anisotropy.
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decreased throughout this time due to permanent axonal damage following the initial

ischemia, only to normalize and subsequently increase around 2-3 weeks post-stroke

due to lesion cavitation147,152. Within the first 2 weeks post-stroke, therefore, the

stable decrease in AD and steadily increasing RD give rise to an early normalization

of FA around 24-36 hours post-stroke and a steady subsequent reduction of FA as of

3-5 days post-stroke until cavitation has been achieved several weeks later146,147,150,153.

Likewise, during the same period, MD normalizes at about 2 weeks post-stroke154–157

and continues to increase until cavitation.

Beyond local changes within the infarct core, remote effects can also be observed

due to a process referred to as Wallerian degeneration158. Following neuronal injury

within an ischemic lesion, anterograde degeneration of the distal parts of neurons

takes place with the disintegration of the axonal skeleton and degradation of myelin

sheaths. For example, Wallerian degeneration of the CST following a stroke of the

middle cerebral artery typically reaches the cerebral peduncles at around 1 week post-

stroke. This process has been corroborated by several studies reporting quasi-normal

FA of the cerebral peduncles at 80 hours post-stroke159 but significant observable de-

creases in FA157,160, ADC161, and AD162 around 1 week. In similar studies performed

in patients after 1 week and well into the chronic stage (i.e., > 1 year post-stroke),

a decreased AD can be reliably observed in distal portions of the CST due to mi-

crostructral obstacles following axonal breakdown, whereas a permanent increase

in RD can be observed due to the degradation of myelin sheaths157,160. Ultimately,

this results in a perpetual decrease in FA not only within the lesion but also along the

entire affected pathway.

3.5 Types of Analyses in Diffusion MRI

In many studies on stroke outcome with diffusion MRI, investigators typically aim to

establish the existence of correlations between early brain damage and future outcome.

Brain damage can be inferred and characterized by various means with the previously

described diffusion models and the resulting parameter maps. Currently, there is

no gold-standard for this practice; therefore, the current section serves to outline

the two most common strategies for relating early brain damage from stroke and

future clinical scores in addition their strengths and weaknesses: region-of-interest

and tract-specific analyses. Figure 3.8 serves as a reference for this section.
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3.5.1 Region-of-Interests Analyses in Native Space

As mentioned in section 3.2.2, dMRI-derived parameter maps can provide informa-

tion about the microstructure of white matter fibers in the brain and thus abnor-

malities due to ischemic stroke. One of the simplest methods to characterize stroke

damage reflected through diffusion changes is to calculate the average value within a

region-of-interest (ROI) (Fig 3.8). Drawing ROIs by hand directly on a subject’s image

(i.e, in native space) requires expert knowledge in neuroanatomy and also strong a

priori hypotheses regarding the outcome measure and the chosen structure163–165.

3.5.2 Tract-Specific Analyses in Native Space

Several tract-specific types of analysis are possible with tractography:

(A) The most direct measure is the number of streamlines that successfully reconstruct

a tract. Indeed, since severe strokes are known to create white matter disconnec-

tions in the brain, a loss of streamlines for certain pathways with respect to the

contralesional hemisphere or healthy controls usually reflects a loss of function166–169.

However, particular care is required when analyzing the absolute number of stream-

lines as it is also determined by the size of the ROI used to generate seed points as

FIGURE 3.8: Common analyses with diffusion MRI.
Left: Regions of Interest (ROIs) serve to extract the average value of a parameter
of interest. Shown here is a ROI in the posterior limb of the internal capsule
overlaid on a FA map of a chronic stroke patient. Right: Various tract-specific

analyses exist after virtual dissection of a pathway with tractography.
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well as voxel size (smaller voxels yield more seeds for a fixed ROI volume).

(B) Second, a set of streamlines constituting a reconstructed pathway can be converted

into a density image in which each voxel reflects the number of streamlines passing

through it. Alternatively, the image can be binarized to create a "mask" simply depict-

ing the spatial location of a tract. In this framework, the entire tract becomes a ROI

from which average parameters can be extracted. In the case of density maps, the

contribution of each voxel in the average is weighted by the number of streamlines

passing through it, since areas where tract density is high are presumed to have a

higher probability of belonging to the tract in question139.

(C) Third, one can also calculate the percent of a tract intersected by a patient’s hand

drawn lesion mask, referred to as lesion load39,45,170.

The greatest benefit of the previously described ROI and tract-specific analy-

ses is the specificity to each patient. However, in certain cases, various problems

may arise171. For manually drawn ROIs, the operator bias can severely hinder the

reproducibility of reported results, and severe stroke may sometimes obscure the

exact boundaries of certain structures. For tract-specific analyses using tractography-

derived masks, reconstructed pathways – and thus parameter extraction – is limited

to the parts of the tract where neuronal integrity is most preserved and spared by

stroke164. More serious lesions may result in the failure to recover any streamlines,

preventing investigators from attributing a tract-specific measure for these patients

or forcing them to assign a default value of 0172,173. In any case, both methods can be

time consuming if the study sample is rather large.

3.5.3 ROI and Tract-Specific Analysis in a Common Space with Spatial

Normalization

To lessen the time burden of processing images in large cohorts, many researchers

resort to conducting analyses in a common space through spatial normalization.

With this procedure, a single ROI can be drawn on a standard imaging template,

and tract probability maps can be constructed by considering the spatial overlap of

warped tracts reconstructed in healthy individuals174 or directly within the imaging

template175,176. The same ROI or tract mask/probability map in a standard space can

thus be used to extract the average parameter of interest from all warped images.

This approach has gained significant momentum in the past decade54, resulting in the

creation of many public imaging "reference" templates175,177,178, atlases of long-range

tracts83,174 or ROIs for various brain regions179.
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The process of spatial normalization consists in deforming a "source" image I to

resemble a "reference" image J . More precisely, one attempts to establish a spatial

transformation φ that maps each voxel x in image I to the corresponding location x’ in

image J by minimizing some cost function C, which describes the similarity between

both images180. After successful spatial normalization of a cohort to a standard

imaging template image, the same voxel for all images at location x’ in the standard

space corresponds – within some error – to the same anatomical landmark.

3.5.4 Voxel-based Analyses in a Common Space

Spatial normalization naturally paves the way for a set of analyses called voxel-based

analyses (VBAs). In general, for VBAs, images of a cohort are grouped together

in a 4D volume where the first 3 dimensions correspond to the size of the image

(x,y,z), and the 4th dimension is determined by the sample size N (Fig 3.9). Due to

the anatomical correspondence between spatially normalized images, all voxels (i,j,k)

FIGURE 3.9: Voxel-based analyses.
(A) Images in a cohort are stored as a 4D file where the first 3 dimensions
correspond to the size of the image, and the 4th dimension is determined by
the sample size N. (B) Univariate analyses are independent statistical analyses
performed at every voxel with a dependent variable. (C) Multivariate analyses
transform the input volume (x,y,z,N) to a 2D data matrix (N,x*y*z) in which
all voxels are used as features for machine learning algorithms, the output of
which can be a weight map for classifiers or decoders. Weight maps adapted

from Rondina et al. (2017)181.
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map to the same anatomical area. Therefore, the results of voxel-wise analyses can be

mapped back onto the brain in order to make inferences on the underlying structures

at a specific location. The major advantage of VBAs over ROI or tract-based analyses

is the absence of a priori assumptions concerning the choice of a given structure or

isolated tracts for posited structure-function relations.

Two types of frameworks are common for VBAs: mass univariate analyses at every

voxel182 or multivariate machine learning analyses183,184 (Fig 3.9). In mass univariate

analyses, independent statistical tests are performed at every voxel (i,j,k) by extracting

their values for every subject (along the 4th dimension). The output of such analyses

are statistical maps that show the significant relationships between brain regions and

a given dependent variable. Multivariate analyses, on the other hand, take the entire

4D volume and transform it into a 2D data matrix of size (N,x*y*z) in which all voxels

are used as features for a given machine learning algorithm184. The output of these

models are typically weight maps for classifiers or decoders185.

One advantage of multivariate machine learning techniques is that they can

account for complex interactions between distant brain regions, unlike in univariate

analyses where every voxel is considered independent from one another186. However,

a major downside of multivariate analyses is that they require large amounts of

data to be reliable due to the disproportionate number of features (i.e., voxels) to

subjects187. This imbalance is commonly referred to as the curse of dimensionality

and can hinder the performance of multivariate models. Univariate analyses, on the

other hand, can perform reasonably well with smaller sample sizes.

In light of the descriptions of the most common methods for analyzing diffusion

MRI data, Table 3.1 provides a summary of each method’s pros and cons.
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Analysis Native Common
All types Pro: Pro:

• Specific to a patient’s brain morphol-
ogy

• Time efficient

Con: Con:
• Operator Bias • Registration mismatches
• Requires expert knowledge in neu-

roanatomy
• Lesion-healthy template dissimilari-

ties
• Time-consuming

ROI Pro: Pro:
• – • –

Con: Con:
• Stroke may blur boundaries • Does not match patient’s brain mor-

phology
• A priori assumptions needed for

selected ROI
• Difficulty in finding publically avail-

able atlases for ROIs of specific struc-
tures (e.g., PMv, PMd)

Tract-based Pro: Pro:
• Patient-specific tract morphology

may be a property of interest
• Can evaluate changes for patients

with non-reconstructible tracts

Con Con:
• Restrained to parts of the tract with

the highest neuronal integrity
• Unable to disentangle lesion from

remote effects (e.g., Wallerian De-
generation)

• Automatic assignment of 0 for non-
reconstructible tracts

• Normalization may not take into
account infarct-induced changes to
tract trajectory

• A priori assumptions needed for
selected tract

Voxel-based Pro: Pro:
• Analysis not possible • No a priori assumptions for anatomo-

behavioral relations

Con: Con:
• Analysis not possible • –

TABLE 3.1: A comparison of the pros and cons of different common analyses
with diffusion MRI data performed in a patient’s native space or in a common

space. PMv = ventral premotor cortex, PMd = dorsal premotor cortex.
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3.6 Advances in Normalization Techniques and Stroke Pa-

tient Images

For all the reasons exposed in the table, we chose in this thesis to analyze our acute

stroke images in a common space. However, working in a common space required a

careful consideration of the available options regarding normalization strategies of

dMRI data within the scientific community.

3.6.1 Normalization Strategies

Many studies that conduct analyses in a common space resort to one of the two follow-

ing normalization strategies: (1) directly warping FA images to a FA template48,59,188,189

or (2) coregistering dMRI data to a high-resolution anatomical image (e.g., T1-

weighted), normalizing said image to a standard space, and applying the warp

field to dMRI-derived parameter maps172,190,191. However, T1-weighted images are

completely insensitive to the complex fiber architecture of the white matter, and

FA provides no information on the orientation of the underlying neural fibers (Fig

3.10). Using scalar images such as these for spatial normalization may not result in

proper overlap of white matter regions between subjects. Recently, researchers have

proposed more powerful registration algorithms, based on the entire diffusion tensor

or FOD, and thus result in better alignment of major white matter pathways with

respect to scalar-based registration.

Two recently developed software packages that optimize registration between

diffusion tensor images and FOD images are DTI-TK192 and MRtrix3176, respectively.

While a specific comparison of tensor vs. FOD registration has not been done, each

software has been shown to perform better than FA-based registration in aligning

well-known fiber bundles of the white matter in healthy subjects176,193. However, the

superiority of FOD/DTI over FA-based registration has yet to be proven in stroke

images and could also depend on the age of the stroke lesion. Indeed, as detailed in

section 3.4, diffusion parameters drastically change throughout the different stages

of stroke and could influence the behavior of FOD/DTI-based registration models,

which have only been evaluated in healthy subjects. Therefore, considering that (1)

the efficacy of ROI, tract-based, and voxel-based analyses performed in a common

space highly depends on the quality of the non-linear warping and (2) white matter

structures play an integral role in stroke outcome, these recent findings suggest that

such registration techniques could be highly beneficial for studies investigating white
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FIGURE 3.10: Sensitivity of imaging modalities to fiber orientation.
Top: Different common imaging modalities capture the complex architecture
of white matter in healthy individuals at varying degrees of sensitivity. From
least to highest, T1-weighted, Fractional Anisotropy, Diffusion Tensors, and
Fiber Orientation Distributions (FOD). The yellow dotted circle highlights an
area where multiple fiber populations cross. Lesioned tissue appears abnor-
mal on different imaging modalities for chronic (middle) and acute (bottom)
stroke patients. The pink and turquoise dotted circles highlight a chronic and
acute stroke lesion and the adjacent tissue, respectively. The directions for
diffusion tensors and FODs are mediolateral for red, anteroposterior for green

and superoinferior for blue.

matter in stroke using analyses conducted in a standard space. However, a proper

comparison of their effectiveness with commonly used scalar techniques in stroke

subjects is merited.

3.6.2 To Mask the Lesion or Not?

Regardless of the normalization strategy chosen, an important hurdle for regis-

tering stroke images is accounting for the large dissimilarities between lesioned

regions in a patient’s image and the corresponding areas in a template (Fig 3.10).

In general, registration algorithms attempt to maximize the similarity between the

patient’s image and the template by overly distorting the lesion during non-linear

warping, usually by shrinking the lesion194–196. By masking the lesion from the
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similarity calculation, such distortions can be lessened in order to obtain a more accu-

rate normalization194,196,197. A more advanced technique proposed by Nachev et al.

(2008)198, called enantiomorphic normalization, consists in replacing lesioned tissue

by contralesional homologous healthy tissue before performing normalization. While

a vast majority of this work has investigated the practice of "lesion-masking" at the

chronic stage and on T1 or FA images194,196–198, its effect on diffusion tensor or FOD

images in either acute or chronic stroke had yet to be elucidated before the present

doctoral thesis. Moreover, due to the differential changes in diffusion properties at

each stage of stroke, different normalization strategies might have different effects

for such populations. Therefore, in order to select the most appropriate strategy to

normalize stroke data and, considering that the existing literature did not provide an

adequate solution, we decided to first conduct a methodological study to elucidate

this question (see chapter 5 in Part II - Thesis Work).
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As described in chapter 1, one of the main goals of stroke research is to be able

to predict future outcome as soon as possible, even as early as 24 hours post stroke.

While clinical data are robust predictors, they suffer from a poor specificity-sensitivity

trade-off in patients with mild-to-severe stroke. The added value of neuroimaging

could therefore be found especially within this subpopulation. In a clinical setting,

DWI is the MRI modality of choice as this sequence is acquired routinely for the

diagnosis and monitoring of ischemic stroke patients. In research, the use of early

DWI data to predict long-term outcome relies on three major types of analyses:

(1) clinical models incorporating lesion volume, (2) analyzing the effect of lesion

location with voxel-based analyses (VBAs), and (3) studying region-of-interest (ROI)

or tract-specific properties. The present chapter serves to review recent, important

studies seeking to use early DWI data obtained within 1 week post-stroke in order

to explain mid- or long-term outcome past 1 month post-stroke. For each analysis,

significant contributions will be discussed first for motor, then language, and finally

global outcome. Moreover, the sections detailing recent studies resorting to VBA, ROI

and tract-specific studies will encompass all imaging modalities derived from DWI

sequences (e.g., lesion segmentations, ADC, or DTI-derived parameters). Finally, it is

worth noting that a fourth type of analysis exists with DWI data: tractography. While

certain studies have used tractography in the native space of acute stroke patients

to investigate long-term outcome, (1) the majority of them were performed at the

early developmental stages of dMRI, when tractography algorithms were not well

developed and imaging sequences were long with coarse spatial resolution and low

angular resolution; (2) sample sizes of these studies are rather low; and (3) it has not

proven to be a rather successful predictor of outcome when performed at the acute

stage but harbors greater predictive value at the subacute and chronic stages. For

these reasons, I have chosen to not discuss these studies in the context of the present

thesis.

4.1 Lesion Volume

Arguably the most impactful contribution of DWI is the highly sensitive detection

of acute ischemia for emergency management of stroke199. By manually delineating

the presence of hypersignal regions on DW images, one can obtain a rather accurate

estimation of the volume of the lesion. Due to the known relationship between final
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lesion volume and outcome scores, clinicians and researchers were naturally inter-

ested in the additive prognostic value of acute lesion volume in addition to important

clinical values, such as early stroke severity and age200–202. Thijs et al. (2000)200 were

among the first to report that DWI lesion volume measured within 48 hours of symp-

tom onset was an independent predictor (with respect to early NIHSS and age) of

autonomy vs. dependency assessed with a Barthel Index cutoff at 85. In two studies

by Johnston and colleagues, lesion volume did not yield clinically important increases

in predicting excellent outcome or death better than clinical variables, whether they

were measured upon admission201 or at day 5202. However, in these studies, their out-

come criteria were more skewed towards patients with very good outcome assessed

as a Barthel Index score of > 95 or mRS 0-1. Yoo and colleagues26, on the other hand,

reported in a cohort of 54 patients that all those with DWI lesion volumes < 72cm3

had good outcome using a mRS cutoff at 2, yielding a better model than NIHSS alone.

While achieving a specificity of 100%, the same model only predicted poor outcome

with a sensitivity of 61.9%. Similar trends have been observed between lesion volume

and with more fine outcome scales in the motor203,204 and language204,205 domains;

however, the size of the lesion likely contributes differently to prognosis. For instance,

since motor function primarily relies on intact fibers of a single anatomical tract, the

CST, location is arguably more important than volume170,206. On the other hand,

language function is subserved by several fiber bundles in the brain which play a

compensatory role when one is damaged91,92. Persistent aphasia is therefore often the

result of large lesions simultaneously affected several fiber bundles104,115, attributing

a more important role to lesion volume than for motor function.

4.2 Lesion Location

Beyond mere lesion load, segmented lesions from DW images – or other anatomical

imaging modalities – provide valuable information on an infarct’s spatial distribution

and the precise regions that are affected. Lesion topography is therefore a rich,

patient-specific measure, which can shed light on the determinants of post-stroke

outcome in individual functional domains204,207,208.

With regards to the objectives of the current thesis – that is, early imaging for long-

term prognosis – certain methodological considerations regarding lesion-behavior

relationships should be addressed. Lesion topography can be associated to long-term

outcome using either (1) a binary mask of the segmented lesion, or (2) parameter
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maps capable of quantifying brain damage by reflecting biological processes, such as

DTI parameter maps. The fundamental difference between both methods lies in their

dependency on infarct chronicity.

Concerning the use of lesion segmentations, the spatial extent of stroke lesions

between the acute and chronic stage has been shown to correlate quite well (r=0.84,

p<0.0001)209, despite acute lesion size significantly overestimating the extent of the

final infarct210. It thus becomes difficult to disentangle the prognostic value of binary

segmentations of acute vs. chronic lesions when the dependent variable remains

chronic outcome in both cases. Indeed, most studies investigating the relationship

between chronic lesion topography with long-term outcome often make inferences

that transcend infarct chronicity47,181,211,212; in other words, if a lesion-function rela-

tionship is observed at the chronic stage, similarly infarcted tissue in the acute stage

should yield comparable long-term deficits213. Karnath et al. (2017)214 addressed

this exact question by performing lesion-symptom mapping using structural images

and behavioral scores at both the acute (<5 days) and chronic stage (mean±standard

deviation: 409±202 days). They obtained the same results with either acute or chronic

images to explain chronic outcome (on the condition that patients who recovered be

included in the analysis). For this reason, this section will discuss pertinent lesion-

behavior studies performed to address the anatomical correlates of chronic outcome

or recovery (i.e., transient vs. persistent deficits), regardless of the time point of

imaging.

With respect to DTI parameter maps, microstructural differences within infarcted

tissue drastically change from the acute to the subacute and chronic stages, as de-

scribed in section 3.4. Consequently, when one is interested in the prognostic value

of early imaging parameters (such as those from DTI), only images acquired at the

acute stage should be used. Diffusion indices used at alternative time points may be

indicative of neural repair processes unique to later stages of stroke. For example,

one study by Chen et al. (2008) sought to relate DTI parameters of the anterior, knee,

and posterior limbs of the internal capsule and muscle strength in nine stroke pa-

tients scanned between 2 hours and 14 days post stroke (mean±standard deviation =

5.0±5.7 days). However, this time period is when DTI parameters are most dynamic

due to different cellular and molecular processes involved in neural repair. This

particular study hence suffers from severe methodological flaws, and the proposed

structure-function relationships should be interpreted with extreme caution. For

these reasons, only pertinent studies having acquired DTI data within 1 week will be
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discussed here.

4.2.1 Motor Outcome

Most voxel-wise studies on motor deficits from stroke have been performed at the

chronic stage. One such study by Lo et al. (2010)47 revealed that motor ability assessed

by the Jebsen-Taylor Test (JTT) and Upper Extremity Fugl-Meyer (UE-FM) scale was

highly correlated with damage to the corona radiata where several corticofugal

fibers descend from the primary motor and sensory cortices as well as the premotor

cortex. A very detailed study by Ramsey and colleagues (2017)204 had imaging

data of 132 patients within 2 weeks post-stroke and behavioral data at 3 months

post-stroke. Controlling for lesion size, age, education level, physiotherapy dose,

and baseline behavioral measurements, they showed that lesions (characterized

by binary lesion segmentation) involved in the deep white matter of the corona

radiata were significantly correlated with worse motor outcome. A third study

by Liu et al. (2017)215 acquired DTI data in patients within 1 week post-stroke

and motor evaluations with the UE-FM at baseline and 3 months post-stroke. The

longitudinal data allowed them to retrospectively identify patients for whom recovery

was proportional to their initial severity (PROP) and severely impaired patients that

recovered poor function (POOR). A voxel-wise analysis revealed that within 1 week

post stroke, MD in the PLIC, corona radiata, and cerebral peduncles but not FA

was able to distinguish between PROP and POOR groups. Furthermore, MD in the

posterior limb of the interal capsule (PLIC) and corona radiata but not FA was able to

predict motor improvements. That MD but not FA was sensitive to detect group level

differences as well as predict future recovery is in line with the time course of diffusion

parameters within the first week of stroke. At this time, MD remains decreased due to

axonal damage (reflected by decreases in AD), whereas FA normalizes at this time. At

the chronic stage, however, other studies have found relationships between FA and

motor abilities. For instance, Wang et al. (2018)216 scanned 18 chronic stroke patients

(29 weeks post-stroke) and found that lower FA in regions of the corpus callosum,

internal capsule, cortico-pontine-cerebellar and superior longitudinal fasciculus were

correlated with motor performance. Two other studies reported a lack of correlation

between diffusion abnormalitites and motor performance at the chronic stage, but

the sample sizes were rather low (N=11173,N=10217).
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4.2.2 Language Outcome

Language encompasses a plethora of abilities related to speech production and

comprehension and can be evaluated by testing different skills, such as articulation,

prosody, phonematic structure, speech repetition, speech comprehension, picture

naming, reading, and semantic differentiation218. These skills are usually attributed to

one of the two streams of language, with faculties of speech production (e.g., fluency,

object naming, repetition, naming-sentence-completion, etc.) being more associated

with the dorsal stream and faculties of speech comprehension (e.g., phonemic errors,

phonological errors, semantics, etc.) being more associated with the ventral stream.

Indeed, due to the many abilities that language comprises, whole-brain exploratory

analyses on the anatomical correlates of language abilities are abundant214. A major

finding of these studies is that a wide variety of aphasia symptoms seems to be specific

to the left hemisphere peri-sylvian regions94. One noteworthy study by Fridriksson

et al. (2016) performed lesion-symptom analyses for many aspects of language

processing and investigated the principle components of the spatial distribution

of the resulting statistical maps. They found that the first principle component

reflected global aphasia severity due to lesion distributions across the peri-sylvian

territory, whereas the classical ventral and dorsal streams naturally emerged in the

second principle component94 (Fig 4.1). These results are corroborated by findings

FIGURE 4.1: Lesion-symptom components of aphasia.
Major studies revealing the reflection of the dorsal and ventral streams of lan-
guage processing in aphasia through principle component analysis (PCA). (A)
Fridriksson et al. (2016)94 investigated the major spatial variations of lesion-
symptom maps, which revealed the emergence of the two language streams in
the second principle component (PC2). Colors represent the loadings of the prin-
ciple components onto the lesion-symptom data. (B) Fridriksson et al. (2018)69

computed lesion-symptom and disconnection-symptom maps on components
reflecting language production and language comprehension. Purple and green
colors represent the Z-scores for lesion-symptom and disconnection-symptom
analyses. (C) Henseler et al. (2014)218 performed a lesion-symptom analysis on

scores for similarity to Broca’s (red) and Wernicke’s (blue) aphasia.
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from the same team69 using lesion-symptom (and disconnection-symptom) mapping

for measures of speech production and comprehension, which were derived from a

principle component analysis of a large set of language evaluations (Fig 4.1). Similarly,

Henseler et al. (2014)218 found comparable results with a language battery that can

associate probabilites for classifying Broca’s and Wernicke’s aphasias: they found that

the classical syndromes based on a characterization of language deficits mapped well

to the respective vascular territories (but brain regions governing specific symptoms

were overlapping and crossed the Broca-Wernicke borders) (Fig 4.1).

In terms of studies with early imaging data to predict chronic outcome, Ramsey

et al. (2017)204 also investigated language recovery in the same cohort as described in

section 4.2.1. Using lesion location from brain imaging performed within 2 weeks post

stroke, they showed that worse aphasia (quantified by the first principle component

of a set of language evaluations) at 3 months was associated with lesions of the

superior and medial temporal gyri and the white matter corresponding to posterior

regions of the arcuate fasciculus, which improved prediction beyond lesion size, age,

education level, physiotherapy dose, and baseline behavioral measurements. Three

studies219–221 using acute DWI data to uncover determinants of acute aphasia showed

that semantic errors and comprehension performance were associated to damage of

cortical and subcortical regions of the ventral stream, whereas repetition errors were

localized to regions of the dorsal stream (specifically due to damage to the arcuate

fasciculus221), consistent with lesion-symptom analyses performed at the chronic

stage. Finally, a study by Zavanone et al. (2018) highly aligns with the objectives of

the current thesis. Using ADC maps at day 1 post-stroke, they conducted a voxel-wise

correlation analysis with ART scores assessed at 6 months post-stroke. They found

that lower ADC values in the posterior STG, MTG, and the underlying white matter

significantly correlated with worse aphasia outcome. This study is the first to report a

significant link between acute changes in diffusivity with chronic language outcome,

which has been declared a developmental priority by the scientific community19.

4.2.3 Global Outcome

Concerning global outcome, several important studies have taken advantage of the

diffuse use of the modified Rankin Score (mRS) to study the correlates of long-term

functional outcome. Moreover, all of these studies have acquired imaging data within

3 days post-stroke onset and clinical outcome scores at least 3 months afterwards (> 1

month for one study110). A rather encouraging finding is the strong convergence of
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these studies regarding the link between damage to deep white matter (especially the

corona radiata and the periventricular white matter) and functional outcome assessed

with the mRS despite slight differences in methodology: while Cheng et al (2014)110,

Wu et al. (2015)111, Payabvash et al. (2017)222, and Munsch et al. (2016)223 used binary

lesion segmentations and the mRS as an ordinal variable, Rosso et al (2011)112 and

Cuingnet et al. (2011)114 used continous ADC values to classify patients with good

(mRS 0-2) and poor (mRS 3-5) outcome (Fig 4.2).

Through a tractography analysis, Rosso et al. (2015) demonstrated that this

crucial region corresponds to the crossroads of major white matter bundles, such

as the corticospinal tract, the arcuate fasciculus, and the corpus callosum. Of note,

methodological considerations for lesion-symptom mapping of the mRS were raised

in two studies111,113 that performed similar analyses but controlled for sex, age, and

lesion volume. With this correction, they showed that a relationship between stroke

location and outcome was only found in the left hemisphere, whereas these clinical

FIGURE 4.2: Lesion location and global outcome.
Concordant evidence from several studies has demonstrated a link between
damage to the deep white matter and long-term functional outcome. For each
study, significant voxels are shown for a specific slice as reported by the authors.
Cheng et al (2014)110, Munsch et al. (2016)223, and Wu et al. (2015)111 analyzed
right (R) and left (L) lesions separately. Rosso et al. (2011)112, Cuingnet et
al. (2011)114, and Payabvesh et al. (2017)222 analyzed all lesions in the same
hemisphere(*). Using a tractography analysis, Rosso et al. (2015) showed that
these critical areas correspond to the crossroads of major white matter bundles,
such as the corticospinal tract (Blue), the arcuate fasciculus (Green), and the
corpus callosum (Purple). Blue region for Rosso et al. (2011) corresponds to the

location of the corticospinal tract. L=Left; R=Right.
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variables could independently explain variations in outcome in right-hemisphere

stroke.

4.3 ROI or Tract-specific Analyses to Predict Outcome

4.3.1 Motor Outcome

The corticospinal tract has received the most attention in the literature due to its

critical role in motor output54. Outside of dMRI studies, lesion load to the CST has

proven a valuable marker for future outcome. For example, Zhu et al. (2010)170

showed that, for a cohort of chronic stroke patients, a regression model constructed

with lesion size and CST lesion load (weighted by fiber density) accounted for 72.7%

of the variance in UE-FM scores. These results were corroborated by Feng et al.

(2015)206 who demonstrated that a regression model for lesion load also evaluated at

the acute stage and the UE-FM at 3 months explained around 69% of the variance in

an independent cohort, and 47% of severely impaired subjects in a subgroup analysis.

Moreover, they showed that the lesion load of the CST correlated with motor outcome

better than the initial impairment.

The CST has also been studied with diffusion MRI at the acute stage. Spampinato

et al. (2017) used DTI – among other methods – to evaluate the microstrutural

integrity of the CST in 17 stroke patients 1-4 days after stroke for whom they had

UE-FM scores at 3 months post-stroke. They reported significant correlations with

the ratio of the MD (ρ=0.65) and AD (ρ=0.55) of the affected:unaffected CST, but not

with FA (ρ=0.08). Another study by Groisser et al. (2014) extracted DTI parameters

from the CST in 10 acute stroke patients (3-7 days post-stroke) to investigate motor

outcome evaluated by grip strength and other outcome measures. They found the

highest correlations between the difference of AD between the affected and unaffected

CST and 6-7 month motor outcome. Moreover, they showed that this correlation

remained significant even after controlling for initial impairment. With the same

patients, they also evaluated the neuronal integrity of the CST at 1-2 months and

found that it was ∆FA that correlated the best with 6-7 month outcome. These results

corroborate findings from Puig et al. (2013) who evaluated the FA in the cerebral

peduncles in 70 patients at <12 hours, 3 days, and 30 days for motor outcome at 2

years post-stroke but only found correlations with FA at 30 days. Unfortunately, the

authors did not report analyses with other DTI parameters, such as AD or MD. Yu

et al. (2009) recorded DTI parameters in the cerebral peduncles 1-7 days and 13-20
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days post stroke and found no correlation for 1 year motor outcome with either time

point. On the other hand, the differences in FA observed between both time points

highly correlated with the motor NIHSS and another motor evaluation at one year

post-stroke. The neural integrity of alternative motor fibers, such as fronto-parietal

association fibers58, descending corticofugal fibers from the premotor cortex48,57 and

cerebello-cortical fibers49, and their relationship with residual motor function have

been studied at the chronic stage with dMRI; however, no studies have investigated

the predictive value of these fibers at the acute stage.

In summary, despite the difficulty of obtaining lengthy DTI data shortly after

stroke onset, there is a slowly developing corpus of literature on the predictive value

of acute DTI for 3-month motor outcome. There are conflicting results around the

predictive value of DTI parameters acquired at the acute stage in either the CST or

ROIs thereof for long-term outcome; however, a possible reason for the discrepency

between these results may be the variable time points at which patients were scanned

(e.g., 1-4 days for Spampinato et al. (2017), 3-7 days for Groisser et al. (2014), <12 hours

or 3 days for Puig et al. (2013), 1-7 days for Yu et al. (2009)). Indeed, DTI parameters

quickly evolve during this period of neural repair and degradation following acute

stroke147. Scanning patients at such different time points may capture distinct phases

of microstructural dynamics, which could severely hinder correlational analyses.

That being said, there is a strong consensus that FA evaluated at the acute stage is not

a sensitive biomarker for neuronal damage and hence future outcome. On the other

hand, relative changes in the diffusivity (i.e., AD or MD) of motor structures seem to

harbor higher predictive values for motor outcome.

4.3.2 Language Outcome

There has been considerably less work on the prognostic value of diffusion MRI at the

acute stage for long-term language outcome than for motor outcome. Nevertheless,

there is growing evidence to support the clinical relevance of the integrity of the

arcuate fasciculus. At the chronic stage, damage to the arcuate fasciculus has been

shown to correlate with rate, informativeness, efficiency of speech45, fluency224,225,

and other various measures of speech226. One notable study by Hillis et al. (2018)101

acquired acute DWI scans <48 hours post-stroke and found that lesion load to the

posterior STG and the AF was highly predictive of improvement in object naming 6

months afterwards. As for DTI studies, one at the chronic stage reported lower FA

in the AF, IFOF, ILF, and UF. Moreover, FA of the AF correlated with naming and
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sentence construction, whereas FA of the ILF and IFOF correlated with comprehension

of single words. One study having acquired DTI data at 2 days post-stroke reported

that the FA of the AF was not able to distinguish between aphasic and non-aphasic

patients at discharge. Unfortunately, this study did not report information on any

other diffusivity parameter, such as AD or MD.

Currently, there are no studies relating early diffusion changes and future lan-

guage outcome in pre-defined ROIs. While Zavanone et al. (2018)227, as described in

section 4.2.2, found that decreases in ADC in the STG, MTG, and underlying white

matter to be predictive of 6 month aphasia severity using a whole-brain analysis,

there has yet to be a rigorous investigation of acute diffusion abnormalities in well

establish language tracts or regions of interest. While whole-brain and ROI analyses

are complementary for elucidating the underpinnings of aphasia outcome, a single

tract or set of regions are easy biomarkers to implement in clinical practice and could

be readily deployed in large-scale trials. As mentioned above, identifying crucial

structures at the early phases of stroke constitutes a developmental priority in stroke

research19.

4.3.3 Global Outcome

As discussed in section 4.2.3, voxel-based analyses have found that global outcome is

determined by a large set of regions due to the cumulative effect of motor, language,

and cognitive impairments. Certain studies have therefore investigated the lesion

load of many ROIs and their relationship to global outcome. Forkert et al. (2015)228,

Payabvash et al. (2017)229, Habegger et al. (2018)203 used ROIs from several available

public atlases and found that the preservation of regions, such as the corona radiata,

insula, caudate nucleus, the corticospinal tract, somatosensory cortex, and superior

longitudinal fasciculus was crucial for outcome. As for diffusion studies, Rosso

et al. (2011)230 tested the importance of grey and white matter motor structures

(M1, putamen, SMA, cerebellum, CST) involved in functional outcome with ADC

measurements at admission and 24 hours post-stroke. They found that the putamen

at 2 hours post-stroke and the CST at day 1 classified outcome better than lesion

volume. In a similar study, Moulton et al. (2015)231 studied diffusion changes at

different levels of the CST (M1, the corona radiata, PLIC, and cerebral peduncles).

They found that AD decreases were more pronounced in the corona radiata and that

such asymmetries were correlated with the mRS at 3 months more than any other
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part of the CST or DTI parameter. Of note, the FA of no regions correlated with future

outcome.

4.4 Remarks on Acute DTI

In conclusion, in this chapter, we have seen a variety of analyses centered around

DWI data for the prognosis of motor, language, and global outcome in acute stroke.

Two major points emerge from the literature: (1) damage to important white mat-

ter structures is a strong correlate of outcome, and (2) it is crucial to account for

dynamic changes in diffusivity within the first week of stroke. In fact, both VBAs

and ROI/tract-based analyses have brought to light the importance of changes in

MD/ADC or AD but not FA within relevant fiber bundles for motor, language, and

global outcome within the first week of stroke. The correlations between changes

within these structures and future outcome are rather high and cover the entire range

of impairments, suggesting that, indeed, DWI is a useful modality for early prognosis

(i.e., at day 1 post-stroke) of long-term outcome.

Finally, another important limitation of these studies concerns the lack of com-

parison with the predictive value of clinical variables, such as initial severity and

age. While it is important to first demonstrate that early changes in diffusivity of

important white matter structures correlate with outcome, the true significance of

these variables is determined by their independence of clinical scores that are already

known to predict outcome.
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5.1 Overview of Study

The first study of my doctoral work served to establish an imaging processing pipeline

in order to warp all of my data to a common reference space. As we saw in chapter 3,

spatially warped images allow for both tract-specific analyses using common tract

templates in addition to voxel-based analyses. The majority of my imaging data

being derived from diffusion MRI sequences, it was important to consider not only

commonly used scalar normalization strategies but also more novel normalization

techniques based on complex diffusion models, such as the diffusion tensor or the

fiber orientation distribution (FOD). DTI and FOD-based registration have already

shown to yield significantly better overlaps in healthy individuals; however, a sys-

tematic comparison in stroke patients had yet to be performed. Moreover, since my

imaging data contained ischemic lesions, which severely alters the diffusion signal

in the brain, another interesting aspect to analyze was the practice of "lesion mask-

ing". Lesion masking is a method of reducing problematic distortions of abnormal

tissue during the normalization process. At the time of conception of the study, no

DTI-based registration had a readily implementable lesion masking function; there-

fore, we were not able to include it in our analysis. Finally, as we saw in chapter

3, diffusion within the lesion is drastically different at the acute stage compared

to the subacute-chronic stage. We therefore thought it interesting for the scientific

communinity to include a cohort of subacute-chronic stroke patients (minimum 1

month post-stroke) scanned in a parallel study in order to verify if strategies differed

with the time between stroke onset and imaging.

Our primary question was the following: what is the effect of normalization

strategy and lesion masking in acute stroke and subacute-chronic stroke? To answer

this question, we required a means to evaluate the quality of the studied normaliza-

tion techniques. For this, we took advantage of well-established structure-function

relationships as outlined in chapter 4: (1) in subacute-chronic stroke, the fractional

anisotropy (FA) of the corticopsinal tract (CST) correlates with motor performance,

and (2) in acute stroke, axial diffusivity (AD) of the CST correlates with acute motor

outcome. We therefore presumed that the most successful normalization strategy

would be that which best overlays a patient’s CST with the corresponding region

in the imaging template. Better voxel-wise anatomical correspondence would thus

result in a more accurate extraction of FA or AD in the CST, which, in turn, would

yield better correlations between motor scores.
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A B S T R A C T

A common means of studying motor recovery in stroke patients is to extract Diffusion Tensor Imaging (DTI)
parameters from the corticospinal tract (CST) and correlate them with clinical outcome scores. To that purpose,
conducting group-level analyses through spatial normalization has become a popular approach. However, the
reliability of such analyses depends on the accuracy of the particular registration strategy employed. To date, most
studies have employed scalar-based registration using either high-resolution T1 images or Fractional Anisotropy
(FA) maps to warp diffusion data to a common space. However, more powerful registration algorithms exist for
aligning major white matter structures, such as Fiber Orientation Distribution (FOD)-based registration.
Regardless of the strategy chosen, automatic normalization algorithms are prone to distortions caused by stroke
lesions. While lesion masking is a common means to lessen such distortions, the extent of its effect on tract-related
DTI parameters and their correlation with motor outcome has yet to be determined. Here, we aimed to address
these concerns by first investigating the effect of common T1 and FA-based registration as well as novel FOD-
based registration algorithms with and without lesion masking on lesion load and DTI parameter extraction of
the CST in datasets typically acquired for subacute-chronic and acute stroke patients. Second, we studied how
differences in these procedures influenced correlation strength between CST damage (through DTI parameters)
and motor outcome. Our results showed that, for high-quality subacute-chronic stroke data, FOD-based regis-
tration captured significantly higher lesion loads and significantly larger FA asymmetries in the CST. This was also
associated with significantly stronger correlations in motor outcome with respect to T1 or FA-based registration
methods. For acute data acquired in a clinical setting, there were few observed differences, suggesting that
commonly employed FA-based registration is appropriate for group-level analyses.

1. Introduction

In the past 20 years, the number and sample sizes of studies investi-
gating the role of the corticospinal tract (CST) in motor outcome with
diffusion MRI (dMRI) have increased substantially with time, especially
in the last decade (Koch et al., 2016). As a result, performing analyses in a
common space through spatial normalization is becoming a popular
choice. Conducting group-level analyses using a common template for
the CST presents several advantages over individual analyses in subjects'
native spaces without compromising lesion-behavior relationships (Park
et al., 2013; Vargas et al., 2013). The most obvious benefit is the

quickness with which large cohorts can be processed for statistical
analysis. Second, less expertise is required to properly reconstruct the
CST based on hand-drawn regions of interest for tractography. Third, in
patients with severe lesions for whom CST reconstruction failed, a tem-
plate allows for the evaluation of dMRI parameters and their relation to
motor outcome (Park et al., 2013).

Despite the appealing aspects of group-level analyses in a common
space, the efficacy of such procedures highly depends on the quality of
the non-linear warping for matching the template image with the anat-
omy of the studied subject. To date, most studies often employ one of the
two following normalization strategies: (1) directly warping Fractional
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Anisotropy (FA) images to a FA template (Archer et al., 2017; Kunimatsu
et al., 2003; Lindenberg et al., 2012; Schulz et al., 2012) or (2) cor-
egistering dMRI data to a high-resolution anatomical image (e.g.
T1-weighted), normalizing said image to a standard space, and applying
the deformation fields to dMRI-derived parameter maps (Hirai et al.,
2016; Newton et al., 2006; Phan et al., 2013). However, T1-weighted
images are completely insensitive to the complex fiber architecture of
the white matter, and FA provides no information on the orientation of
the underlying neural fibers. Using scalar images such as these for spatial
normalization may not result in proper overlap of white matter regions
between subjects. Recently, researchers have proposed more powerful
registration algorithms, which take into account the local, complex
diffusion profile and thus result in better alignment of major white matter
pathways with respect to scalar-based registration. One such method,
available in the MRtrix3 package (http://www.mrtrix.org) uses Fiber
Distribution Orientation (FOD) images to register diffusion weighted
images (Raffelt et al., 2011). FODs are mathematical constructs calcu-
lated from dMRI data which represent the partial volume of underlying
neuronal fibers as a function of orientation in the spherical harmonic
basis functions Y(l,m), expressed by the associated Legendre polynomials
Plm, where l is the degree and m is the order (Tournier et al., 2004). The
number of spherical harmonic components in the FOD used to recon-
struct the diffusion signal is governed by the maximum degree, also
called lmax. As lmax increases, the number and angular precision of fiber
populations which can be accurately reconstructed both increase, pro-
vided there are enough diffusion-encoding directions (Tournier et al.,
2013). While FOD-based registration has been shown to be superior to
registration of FA images in healthy subjects (Raffelt et al., 2011), its
efficacy has yet to be tested in stroke patients.

In this study, we were interested in evaluating the following common
and novel spatial normalization strategies in subacute-chronic but also
acute stroke patients: (1) direct normalization of FA images, (2) warping
of FA images through T1 normalization, and (3) FOD registration. While
there is no established method for determining the “success” of a
normalization strategy, in the context of stroke imaging, an optimal
normalization should preserve well-established relationships between
dMRI-derived parameters of CST damage and subacute-chronic and acute
motor outcomes. Here, we investigated the effect of normalization
strategy on two important Diffusion Tensor Imaging (DTI) parameters,
Fractional Anisotropy (FA) and Axial Diffusivity (AD) (Basser, 1995;
Basser et al., 1994; Pierpaoli and Basser, 1996). FA has been shown to
robustly reflect damage to the CST at the subacute-chronic stage (Boyd
et al., 2017; Puig et al., 2017; Rosso et al., 2013; Stinear andWard, 2013).
In contrast, at the acute stage of stroke (i.e., within a week of stroke
onset), AD - and not FA - has shown to be a better predictor of subacute
and chronic outcome (Doughty et al., 2016; Groisser et al., 2014;
Moulton et al., 2015; Spampinato et al., 2017).

Regardless of the normalization strategy chosen, an important hurdle
for registering stroke images is accounting for the large dissimilarities
between lesioned regions in a patient's image and the corresponding
areas in a template. In general, registration algorithms attempt to
maximize the similarity between the patient's image and the template by
overly distorting the lesion during non-linear warping, usually by
shrinking the lesion (Brett, 2001; Renard et al., 2016; Ripoll�es et al.,
2012). By masking the lesion from the similarity calculation, such dis-
tortions can be lessened in order to obtain a more accurate normalization
(Andersen et al., 2010; Brett, 2001; Nachev et al., 2008; Ripoll�es et al.,
2012). This beneficial effect of lesion masking has been largely studied
with anatomical images, such as T1-weighted images; however, only a
few studies have investigated its effect on dMRI-derived images, such as
FA maps (Andersen et al., 2010; Brett, 2001; Nachev et al., 2008; Renard
et al., 2016; Ripoll�es et al., 2012). Moreover, most of this work has solely
investigated the effect of lesion masking on the volume of normalized
lesions, but, to our knowledge, only one study has explored the effect of
lesion masking on the extraction of tract-related dMRI parameters from
chronic stroke images (Archer et al., 2017). Here, we sought to bridge the
gap between the spatial extent of the lesion and DTI parameter extraction
in the CST. We therefore performed the aforementioned normalization
strategies with and without lesion masking and evaluated the direct ef-
fect of lesion masking by testing the correlations between differences –
due to lesionmasking – in lesion load and DTI parameter extraction of the
CST.

Our goals were to (1) study the effect of lesionmasking with common,
scalar as well as FOD-based registration on lesion overlap and DTI
parameter extraction in a template CST and (2) determine which regis-
tration strategy yielded the highest correlation(s) between well-
established DTI parameters of the CST and motor outcome. We exam-
ined these goals at two different stages of stroke (subacute-chronic and
acute phases) where the challenges are different for two reasons: (A) at
the subacute-chronic stage, large lesions are often characterized by ce-
rebrospinal fluid-filled cavities surrounded by gliosis, causing atrophy
and stretching of the lateral ventricles (Skriver et al., 1990). On the other
hand, at the acute stage (day 1 post-stroke), infarcted tissue is swollen
from cytotoxic edema, causing local mass effects (Liang et al., 2007;
Skriver et al., 1990) but has yet to completely degrade the underlying
white matter fibers. Second, (B) DTI parameter dynamics differ at the
subacute-chronic and acute stage causing some to be more affected than
others (Bhagat et al., 2006; Lansberg et al., 2001; Puig et al., 2013).

We hypothesized that lesion masking should yield differences in
lesion load of the CST and that this should have a direct effect on DTI
parameter extraction and correlations withmotor outcome. Furthermore,
we hypothesized that scalar vs. FOD-based registration should yield dif-
ferences in correlation strength due to each strategy's sensitivity to the
underlying white matter architecture.

List of abbreviations

AD axial diffusivity
ANOVA analysis of variance
ANTs Advanced Normalization Tools
CI confidence interval
CST corticospinal tract
dMRI diffusion magnetic resonance imaging
DTI diffusion tensor imaging
DWI diffusion weighted imaging
FA fractional anisotropy
FLAIR fluid-attenuated inverse recovery
FOD fiber orientation distribution
JTT Jebson-Taylor Test

MPRAGE magnetization-prepared rapid gradient-echo
MRI magnetic resonance imaging
MSMT-CSD multi-shell multi-tissue constrained spherical

deconvolution
MVC maximum voluntary contraction
NIHSS National Institute of Health Stroke Scale
RGB red green blue
SD standard deviation
SE standard error
TE echo time
TI inversion time
TR repetition time
UE-FM upper extremity Fugl-Meyer
wLL weighted lesion load
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2. Methods and materials

2.1. Subjects

2.1.1. Subacute-chronic stroke cohort (N¼ 40)
Forty stroke patients (14 female, mean� SD age¼ 63.0� 12.8 years)

were included in this study. Stroke patients spanned the early subacute to
the chronic stage (median time [IQR] since stroke¼ 105.5
[47.5–275.75] months). Data were extracted from a parallel study (Core
protocol: NCT 02284087) and were collected before the intervention
stage of the study. Patients were recruited according the following in-
clusion criteria: (1) no history of neurological or psychiatric disorders
determined through an interview with a trained neurologist, (2) Mini-
Mental Status Examination score greater or equal to 27, (3) age older
than 18 years, (4) no contra-indications for MRI, and (5) presence of an
upper-limb deficit (Fugl-Meyer Score< 60) with some preserved hand
movement (maximum voluntary contraction> 0 N). All subjects from
this cohort were examined and scanned at the Brain and Spine Institute
(Institut du Cerveau et de la Moelle Epini�ere).

On the day of scanning, patients underwent a motor function evalu-
ation by a trained physiotherapist. The evaluation consisted of the (1)
Upper Extremity Fugl-Meyer (UE-FM) Scale (Fugl-Meyer et al., 1975), (2)
the Jebson-Taylor Test (JTT) (Jebsen et al., 1969), and (3) a grip-force
evaluation of the maximum voluntary contraction (MVC) using a dyna-
mometer (MIE, Medical Research Ltd., http://www.mie- uk.com/
pgripmyo/index.html). Similar to other studies (Park et al., 2013; Ron-
dina et al., 2017), we evaluated residual motor ability with a composite
motor score by taking the first principle component of the following
measures: (1) the raw UE-FM score, (2) the ratio of the affected/u-
naffected JTT total times (rJTT), and (3) the ratio of the affected/u-
naffected MVC (rMVC). The first principle component accounted for
88.2% of the total variance in the three scores and correlated strongly
with the UE-FM (Pearson's r [95% Confidence Interval]¼ 0.96 [0.93;
0.98]), the rJTT (r¼�0.96 [-0.98;-0.92]), and the rMVC (r¼ 0.89 [0.81;
0.94]) (p< 0.0001).

From the same protocol, 24 healthy controls (10 females, mean� SD
age¼ 31.7� 10.4 years, Supplementary Materials) were included in this
study to create the different image templates for normalization. Inclusion
criteria for healthy participants were (1) no history of neurological or
psychiatric disorders, (2) Mini-Mental State Examination� 27, (3) age
older than 18 years, (4) no contraindications to MRI, and (5) no use of
psychoactive medication or recreational drugs.

The study was approved by the appropriate legal and ethical au-
thority (CPP Ile de France VI— Piti�e-Salpêtri�ere, Paris, France). Written
informed consent was obtained from all participants.

2.1.2. Acute stroke data (N¼ 69)
Sixty-nine acute stroke patients (36 females, mean� SD

age¼ 71.9� 15.4 years) were studied retrospectively from the Urgences
C�er�ebrovasculaires at the Hôpital de la Piti�e Salpêtri�ere (subsample in
Moulton et al., 2015). Inclusion criteria for this cohort were: (1)
MRI-demonstrated ischemic stroke of the carotid territory, (2) throm-
bolysis treatment within 4.5 h after stroke onset, (3) follow-up MRI ac-
cess at 24 h post-stroke, and (4) availability of day 7 National Institute of
Health Stroke Scale (NIHSS) data.

The sum of NIHSS items 5 and 6 of the contralesional limbs acquired
on day 7 (herein referred to as NIHSS7 MOT) was used in the correlation
analysis for short outcome. As these data were acquired in a purely
clinical setting for emergency acute stroke management and studied
retrospectively, no imaging data for healthy controls are available.

2.2. Image acquisition

The diffusion MRI sequences detailed below reflect imaging protocols
typically acquired in today's research and clinical settings.

2.2.1. Subacute-chronic stroke cohort
Anatomical and diffusion MRI data were obtained with a 3T scanner

(Siemens, VERIO) with a 32-channel head coil. The MRI protocol
included a sagittal T1-weighted MPRAGE image (TR¼ 2300ms,
TE¼ 4.18ms, matrix size¼ 176� 256, slice number¼ 256, voxel
size¼ 1� 1� 1mm3, acquisition time¼ 4:44min), a Fluid-Attenuated
Inverse Recovery (FLAIR) sequence (TR¼ 9000ms, TE¼ 128ms,
TI¼ 2500ms, matrix size¼ 320� 320, slice number¼ 26, voxel
size¼ 0.75� 0.75� 5.5mm3, acquisition time¼ 3:20min), and amulti-
shell Diffusion Weighted Imaging (DWI) sequence (3 b-value shells
obtained with both posterior to anterior (PA) and anterior to posterior
(AP) phase encoding: 60 non-collinear diffusion encoding gradients at
b¼ 1500 s/mm2, 30 at b¼ 700 s/mm2, and 8 at b¼ 300 s/mm2,
TR¼ 4000ms, TE¼ 87.8ms, matrix size¼ 110� 110, slice num-
ber¼ 66, voxel size¼ 2� 2 � 2mm3, acquisition time¼ 16:16min).

2.2.2. Acute stroke cohort
Twenty-four hours after admission to the emergency stroke unit, pa-

tients underwent a follow-up MRI with a General Electric 3T MRI scanner
with an 8-channel coil. The following DWI sequences were used for the
current analysis: (1) An averaged 3-direction DWI (b¼ 1000 s/mm2,
TR¼ 11700ms, TE¼ 72.3ms, matrix size¼ 256� 256, slice num-
ber¼ 48, voxel size¼ 0.94� 0.94� 3mm3, acquisition time¼ 0:59min)
and (2) a 30-direction DWI (2 b¼ 0 s/mm2 images followed by 30 non-
collinear diffusion-encoding gradients at b¼ 1000 s/mm2,
TR¼ 12000ms, TE¼ 82.3ms, matrix size¼ 256� 256, slice num-
ber¼ 44, voxel size¼ 1.09� 1.09� 3mm3, acquisition time¼ 6:36min).

2.3. Image preprocessing

We used a series of preprocessing steps from multiple image pro-
cessing packages to optimally clean and prepare our data for both scalar
and FOD-based registration.

2.3.1. Anatomical MRI
T1-weighted anatomical images were only available for the subacute-

chronic stroke cohort. T1-weighted anatomical images for the subacute-
chronic stroke cohort underwent a bias correction and were segmented
into grey matter (GM), white matter (WM), cerebrospinal fluid (CSF) and
non-brain tissue using SPM12 in Matlab (http://www.fil.ion.ucl.ac.uk/
spm/software/spm12/) (Ashburner and Friston, 2005). A brain mask
for brain extraction was constructed with the mathematical and
morphological operations in the following order: (1) thresholding the
GM,WM, and CSF probability maps at 10%, (2) summing the thresholded
maps, (3) binarizing, (4) filling holes, and (5) computing a morphological
closing using a 5mm spherical structuring element to smooth the edges.

2.3.2. Diffusion MRI
DWI images underwent the following preprocessing steps: (1)

denoising (Veraart et al., 2016a, 2016b) (2) susceptibility distortion
correction using FSL's TOPUP (Andersson et al., 2003; Smith et al., 2004)
and EDDY with slice interpolation for slices with significant signal drop
(Andersson et al., 2016; Andersson and Sotiropoulos, 2016), and (3)
bias-field correction (Smith et al., 2004; Zhang et al., 2001) (https://fsl.
fmrib.ox.ac.uk). Diffusion MRI data for the acute stroke group did not
undergo TOPUP as they were acquired with only one phase-encoding
direction; however, they were processed with EDDY with slice interpo-
lation in order to salvage themaximum number of usable DWI volumes as
well as to optimize movement correction (Andersson et al., 2016). All
preprocessed DWI volumes were visually inspected after EDDY slice
interpolation, and any excessively artifacted volumes were removed. All
diffusion weighted volumes for the subacute-chronic stroke cohort were
of sufficiently good quality or corrected by preprocessing strategies,
whereas 21 (30.4%) patients of the acute stroke cohort had varying
amounts of overly artifacted data, requiring the removal of certain vol-
umes (Median¼ 2, Interquartile range¼ 2–7, Range¼ 1–12).

E. Moulton et al. NeuroImage 183 (2018) 186–199

188



Fractional Anisotropy (FA) and Axial Diffusivity (AD) maps were
calculated from a tensor model estimated using FSL's DTIFIT (Basser
et al., 1994; Smith et al., 2004). Fiber Orientation Distribution (FOD)
volumes were computed by estimating response functions for the GM,
WM, and CSF tissues (Dhollander et al., 2016) for multi-shell multi-tissue
constrained spherical deconvolution (MSMT-CSD) using a lmax of 4
(Jeurissen et al., 2014). Of note, the MSMT-CSD model on the acute
stroke cohort (with 2 b-values) output response functions only for two
tissue classes, the white matter and CSF, without disentangling the
contribution of the gray matter (Jeurissen et al., 2014). A lmax value of 4
was chosen for the MSMT-CSD model for two reasons: (1) FOD-based
registration accuracy does not improve when spherical harmonic co-
efficients Y(l,m) beyond a lmax of 4 are used (Raffelt et al., 2011) and (2)
the removal of corrupted volumes from the 30-direction DWI sequence in
our acute stroke cohort prevented us from estimating higher order FODs.
Nevetheless, a low number of diffusion-encoding directions with a clin-
ical b-value of 1000 s/mm2 and a lmax of 4 are acceptable parameters for
computing FODs, especially for the purpose of image registration (Raffelt
et al., 2011; Tournier et al., 2013; Wilkins et al., 2015). Finally, we
performed FOD intensity normalization (MRtrix3's mtnormalize) in order
to increase registration accuracy between FOD volumes from different
imaging protocols due to the sum of squares metric (see section 2.6).

We calculated brain masks from the mean b¼ 0 s/mm2 volume using
FSLs Brain Extraction Tool (Smith, 2002) and eroded them with a 6� 6 �
6mm3 kernel in order to remove the remaining thin “halo” of bright voxels
around FA maps. All brain masks and FA maps were visually inspected.

2.4. Creation of the study-specific templates and tractography

We created three study-specific templates from the healthy control
cohort as reference images for our non-linear registration strategies: (1) a
FOD template, (2) a FA template, and (3) a T1 template (Fig. 1, Sup-
plementary Materials). Briefly, we first created a FOD template through

iterative non-linear warping and averaging of FOD volumes using
MRtrix's population_template function (http://www.mrtrix.org). The
following warps were applied to the FA and coregistered T1 volumes for
the corresponding templates (Fig. 1). The CST was manually dissected
from whole-brain tractography performed on the FOD template (Geyer
et al., 2000; Newton et al., 2006) (Fig. 1, Supplementary Materials).

2.5. Lesion segmentation and masking

To perform the chosen registration strategies with lesion masking, it
was necessary to accurately contour the acute and subacute-chronic le-
sions and coregister them onto the appropriate images (i.e., FA and T1,
when available) in their native spaces.

Subacute-chronic lesions were manually segmented on the FLAIR
sequence by identifying hypersignal (gliosis) and hyposignal regions
(cavitary lesions) (Fig. 2). Subacute and chronic lesions were transferred
to diffusion space images by coregistering the FLAIR images to the cor-
responding FA maps with an affine transformation and a trilinear inter-
polation thresholded at 0.25. This transformation served for masking the
lesions for registration of the FA and FOD images. As for the T1 images, to
correct for distortions in the DWI sequence, we first needed to estimate a
non-linear transformation between FA maps and the T1 images for pa-
tients - as we did for healthy controls and as in (Schulz et al., 2015) (see
Supplementary Materials) - in order to estimate a transformation for
normalizing FA maps to the template space, passing through T1 space.
We therefore reused this transformation to transfer the lesion into T1
space for lesion masking during normalization.

Acute lesions were manually segmented by identifying hypersignal
regions on the 3-direction DWI sequence image (Fig. 2). Acute lesions
were then transferred to diffusion space by coregistering the averaged 3-
direction DWI sequence to the FA maps using an affine transformation
and a trilinear interpolation thresholded at 0.25. This transformation
served for masking the lesions for registration of the FA and FOD images.

Fig. 1. Templates built from healthy controls and used for spatial registration. Top row: a representative coronal slice of the templates where the corticospinal (CST)
tract descends from the motor cortex into the cerebral penduncles. Bottom row: a representative axial slice of the template where the CST intersects other white matter
pathways, leading to local changes in Fractional Anisotropy (FA) invisible on the T1. RGB color code of the FOD template refers to the principle direction of diffusion
in the lateral-medial, anterior-posterior, and inferior-superior directions, respectively. Right column: streamlines of the manually dissected CST from tractography
performed directly on the FOD template overlaid on the FA map. Streamlines on the coronal slice are those from the entire reconstructed CST. Images are presented in
the neuroradiological convention (right is left).
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2.6. Registration strategies

In this study, we used both scalar and FOD-based registration for
subacute-chronic and acute diffusion MRI data. Registration between
native images and the templates were performed both with and without
lesion masking. For scalar-based registration (i.e., for registering T1 and
FA maps), we opted for Advanced Normalization Tools (ANTs) with
default parameters using the mutual information metric for both rigid
and affine steps and the cross-correlation metric for the non-linear step.

For FOD-based registration, we used symmetric diffeomorphic
registration of fiber orientation distributions as provided by MRtrix3's
mrregister. In FOD-based registration, the number of spherical harmonic
coefficients Y(l,m) (governed by the parameter lmax) used to drive
registration may differ. Here, we tested lmax values of 2 and 4. While it
has been shown that a lmax of 4 yields the most accurate registration in
normal, healthy adults (Raffelt et al., 2011), it is known that stroke can
cause long-range significant changes in affected pathways in both DTI
parameters, as well as the principle direction of diffusivity (Pierpaoli
et al., 2001). For this reason, we chose to also evaluate the performance
of FOD-based registration using a lmax of 2 with the hypothesis that such
a strategy might be more robust to distal stroke effects on the FOD ori-
entations. The only readily available registration metric for mrregister at
the time of publication is the sum-of-squares. Consequently, this regis-
tration strategy is restrictively optimal between FOD images derived
from similar protocols using a shared, average response function with
proper intensity normalization and bias-field correction as is done in
other within-group studies (de Manzano and Ull�en, 2018). In our study,
we were not able to use a shared, average response function as the
number of unique b-values (i.e., shells) was different for the acute and
subacute-chronic cohort. Nevertheless, in order to circumvent this issue
as much as possible, we incorporated intensity normalization and

bias-field correction to our image processing pipeline. Furthermore, as a
precautionary measure, we incorporated additional subsampling steps
(i.e., scaling from 0.1 to 1.0 in increments of 0.1) in the FOD registration
algorithm for a smoother registration.

2.7. Effect of registration strategy and lesion masking on DTI parameter
extraction and lesion load

As a first step, we established whether registration strategies affected
the raw extraction of diffusion parameters in the CST before computing
ratios and correlations. In particular, we investigated the influence of
strategy and lesion masking on the diffusion parameters of the CST in the
unaffected and affected hemisphere as well as their ratio. We studied the
FA of the CST in the subacute-chronic stroke cohort and the AD of the
CST in the acute stroke cohort. To this end, we applied the deformation
fields estimated with each strategy to the native FA and AD maps and
computed tract-density-weighted averages of these parameters, P, of
both the affected and unaffected hemisphere with the following equa-
tion:

P ¼
P

i2DPðiÞ*DðiÞP
i2DDðiÞ

(1)

where P(i) is the value of the parameter (FA or AD) in voxel i of the CST
density map D and D(i) is the CST streamline density at voxel i. The
parameter of interest from both hemispheres was converted to a ratio
(Paffected=Punaffected) noted here as rFA or rAD.

In addition, we analyzed the effect of lesion load per strategy to study
the impact of lesion masking and normalization strategy on the spatial
extent of infarcted tissue in the CST. We warped native lesion segmen-
tations into the common space using the deformation fields for each

Fig. 2. Appearance of lesioned tissue on different imaging modalities for subacute-chronic and acute stroke. Image slices are from two representative patients from the
subacute-chronic (top) and the acute (bottom) stroke cohort. From left to right, the T1-weighted, Fractional Anisotropy (FA), and Fiber Orientation Distribution (FOD)
images used for normalization to the templates in Fig. 1. Lesion segmentation was performed on the FLAIR (top-right) or the averaged 3-direction Diffusion-Weighted
Image (bottom-right) for the subacute-chronic and acute stroke cohorts, respectively. Note the prominent effects of the subacute-chronic lesion on all imaging mo-
dalities, whereas the acute stroke lesion is unnoticeable on the FA map, and the principle directions of diffusion are preserved in the FOD image. T1-weighted images
were not available (NA) for the acute stroke cohort. Images are presented in the neuroradiological convention (right is left).
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strategy with a nearest neighbor interpolation. We then computed a
weighted lesion load (wLL) with the following equation:

wLL ¼
P

i2DLðiÞ*DðiÞP
i2DDðiÞ

(2)

where L(i) is equal to 1 if a lesion is present in voxel i of the CST density
map D and 0 if not, and D(i) is the CST streamline density at voxel i. By
weighting lesion load by streamline density, we can take into account the
narrowing in of the CST in the posterior limb of the internal capsule and
the cerebral peduncles (Zhu et al., 2010).

All statistics were performed using the R programming software (R
Core Team, 2016; www.r-project.org). We performed repeated measures
ANOVA to find systematic differences in the dependent variables,
Paffected, Punaffected, Pratio, and wLL, with within-subject factors MASKING
and STRATEGY (Lawrence, 2015). If Mauchly's test of sphericity indi-
cated that the assumption of sphericity was violated, degrees of freedom
and p-values were reported using Greenhouse-Geisser correction. We
proceeded with post-hoc t-tests when the main effect of a factor or
interaction term was significant. We also computed individual paired
t-tests in the following manner. First, we fixed registration strategy and
compared lesion masking vs. no lesion masking (e.g., FOD-lmax4 with
lesion masking vs. FOD-lmax4 without lesion masking). Second, we fixed
the lesion masking factor and compared strategies (e.g., FOD-lmax4 with
lesion masking vs. ANTs-FA with lesion masking). This resulted in 16
pairs of correlation coefficients for the subacute-chronic stroke cohort
and 9 for the acute stroke cohort.

Finally, to determine if differences in lesion load – due to lesion
masking – had an effect on the observed asymmetries in DTI parameters,
we performed Spearman rank correlations between the difference in

lesion load and the difference in Pratio. The aforementioned post-hoc t-
tests, individual paired t-tests, and correlations were Bonferroni-
corrected for multiple comparisons.

2.8. Comparison of registration strategy by correlation strength

For the subacute-chronic stroke cohort, we computed Spearman rank
correlations between the rFA of the CST and the composite motor score
(see section 2.1.1). For the acute stroke cohort, we computed Spearman
rank correlations between rAD of the CST with day 7 NIHSS total motor
score. Confidence intervals were calculated by bootstrapping with
10,000 iterations. We analyzed the FA of the CST in the subacute-chronic
stroke cohort and the AD of the CST in the acute stroke cohort, as these
are the DTI parameters which best characterize CST damage at these two
stages in stroke. However, the correlation analysis with the other DTI
parameters (Radial Diffusivity-RD, Mean Diffusivity-MD) can be found in
the Supplementary Materials.

In order to demonstrate that the difference between two Spearman
correlation coefficients (i.e. ρa � ρb ¼ Δρ) is statistically significant, we
ran permutation tests with 10,000 iterations to reconstruct the sampling
distribution of the null hypothesis, H0 : ρa ¼ ρb (two-tailed) (Nieu-
wenhuis et al., 2011; Roser et al., 2015). In the subacute-chronic cohort,
there were 8 correlation coefficients (4 registration strategies with and
without lesion masking), and in the acute cohort, there were 6 correla-
tion coefficients (3 registration strategies with and without lesion
masking). We performed the same pairwise comparisons as with the
repeated measures ANOVA. First, we fixed registration strategy and
compared lesion masking vs. no lesion masking. Second, we fixed the
lesion masking factor and compared strategies.

Fig. 3. Lesion probability maps from the subacute-chronic (A) and acute stroke cohorts (B) overlaid on selected slices of the T1 template (C). The two color maps
reflect the percentage of lesioned voxels for the acute and subacute-chronic cohorts, respectively. Right-sided lesions were flipped onto the left hemisphere, and
normalization was performed again to warp the lesion.
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3. Results

3.1. Patients

3.1.1. Subacute-chronic stroke cohort
Patients had overall severe to moderate deficits (mean� SD Fugl-

Meyer¼ 44� 16) with reduced grip strength (rMVC¼ 0.50� 0.31) and
slower movements with the affected hand (rJTT¼ 6.94� 8.62). Lesions
for the subacute-chronic cohort were of variable size (mean� SD lesion
volume¼ 25.6� 44.3mL) located at different levels along the cortico-
spinal tract, consistent with their deficit (Fig. 3A). Maximum overlap for
this cohort (75.0–77.5% of subjects depending on normalization strat-
egy, N¼ 30–31, Fig. 3A) was located in the white matter of the inferior
corona radiata and superior portion of the posterior limb of the internal
capsule, like in similar studies investigating motor outcome in stroke
(Schulz et al., 2017a).

3.1.2. Acute stroke cohort
At day 1, 47.8% (n¼ 33) of patients had no proximal limb deficits

(NIHSS1 MOT¼ 0), and the remaining patients exhibited varying motor

deficit severity (NIHSS1 MOT¼ 4.6� 2.7). At day 7, 6 additional pa-
tients fully recovered proximal limb function (NIHSS7MOT¼ 0), and the
remaining patients still exhibited a large spread of motor deficit severity
(NIHSS7 MOT¼ 4.5� 2.9). Acute stroke lesions were also of variable
size (38.7� 61.0mL). Maximum lesion overlap for this cohort was in the
putamen, external capsule, and the caudate nucleus (43.5%–46.4% of
subjects depending on normalization strategy, N¼ 30–32, Fig. 3B),
reflecting typical lesions of the middle cerebral artery territory of a
clinical population, as was the case for the majority of the acute stroke
patients (Phan et al., 2005).

3.2. Effect of registration strategy and lesion masking on DTI parameter
extraction

Presented below are the results of the repeated measures ANOVA
investigating the effects of STRATEGY and MASKING on DTI parameters
extracted from the corticospinal tract (CST) of the unaffected and
affected hemisphere as well as their ratio and lesion load. Tests of sta-
tistical significance are provided in the Supplementary Materials.

Fig. 4. Effect of registration strategy and lesion masking on DTI parameter extraction of the corticospinal tract (CST). Fractional Anisotropy (FA) of the subacute-
chronic stroke cohort (top row) and Axial Diffusivity (AD) of the acute stroke cohort (bottom row) of the unaffected (left column) and affected (middle column)
CST as well as the ratio (right column). Boxes display the median and interquartile range, whiskers show the range of values, dots reflect outliers, and triangles
represent the mean value. For tidiness, black-colored comparisons reflect significant differences between two registration strategies (hooks over interquartile lines),
whereas grey-colored comparisons reflect significant differences between two software packages for both lesion masking and without lesion masking (hooks in be-
tween blue and red boxplots). Black bars at the top of the whiskers reflect significant differences for lesion masking for a given software. *p < 0.05, **p < 0.001, ***p
< 0.0001 Bonferroni-corrected from individual paired t-tests.
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Fig. 5. Lesion load analysis. Lesion load for the subacute-chronic stroke cohort (A) and the acute stroke cohort (B). Note that the y-axis scales as y2 to facilitate
visualization between both groups. Boxes display the median and interquartile range, whiskers show the range of values, dots reflect outliers, and triangles represent
the mean value. For tidiness, black-colored comparisons reflect significant differences between two registration strategies (hooks over interquartile lines), whereas
grey-colored comparisons reflect significant differences between two software packages for both lesion masking and without lesion masking (hooks in between blue
and red boxplots). Black bars at the top of the whiskers reflect significant differences for lesion masking for a given software. *p < 0.05, **p < 0.001, ***p < 0.0001
Bonferroni-corrected from individual paired t-tests.

Fig. 6. Spearman correlations between clinical scores and DTI parameters of the CST for each registration strategy. (A) Correlations were performed between ratios of
the Fractional Anisotropy (rFA ¼ affected/unaffected) and the composite motor score for the subacute-chronic stroke cohort. (B) Correlations were performed between
ratios of day 1 post-stroke Axial Diffusivity (rAD) and the NIHSS motor score at day 7 post-stroke. Spearman's ρ for each correlation is shown on the y-axis and each
strategy with lesion masking (blue) and without lesion masking (red) is shown on the x-axis. For tidiness, black-colored comparisons reflect significant differences
between two registration strategies (hooks over center of bars), whereas grey-colored comparisons reflect significant differences between two software packages for
both lesion masking and without lesion masking (hooks in between blue and red bars). Permutation test significance: *p < 0.05, **p < 0.001, ***p < 0.0001.
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3.2.1. Subacute-chronic stroke cohort

3.2.1.1. FA values. In the unaffected hemisphere, significant differences
in FA were observed depending on the registration STRATEGY (F
(1.9,74.2)¼ 44.3, p< 0.001), and there was neither an effect of MASK-
ING (F (1,39)¼ 2.8, p¼ 0.10; Fig. 4A) nor significant interaction (F
(1.7,65.6)¼ 3.3, p¼ 0.051). Methods yielded different values of FA of
the CST (mean� SD) with the following hierarchy: ANTs-FA
(0.532� 0.033)>ANTs-T1 (0.524� 0.033)¼ FOD-lmax2 (0.521�
0.035)> FOD-lmax4 (0.516� 0.036).

In the affected hemisphere, significant differences in FA were also
observed depending on STRATEGY (F (1.4,54.8)¼ 66.3, p< 0.001) and
MASKING (F (1,39)¼ 40.5, p< 0.001; Fig. 4B) with a significant
STRATEGY*MASKING interaction (F (2,84.9)¼ 7.9, p< 0.001). Post hoc
t-tests revealed that the hierarchy of FA values in the affected hemisphere
was the following: ANTs-FA (0.445 � 0.067) > ANTs-T1
(0.435 � 0.067) > FOD-lmax2 (0.422� 0.076)> FOD-lmax4
(0.414� 0.076). FA values were consistently lower when lesion masking
was employed. Also, post-hoc t-tests for the interaction term revealed
that lesion masking had the smallest effect on FOD-lmax4 than on any
other strategy (Supplementary Materials).

Finally, ratios of the FA were also different depending on STRATEGY
(F (1.3,49.8)¼ 27.6, p< 0.001) with a significant main effect of MASK-
ING (F (1,39)¼ 36.5, p< 0.001; Fig. 4C) and a significant STRAT-
EGY*MASKING interaction (F (2.2,85.3) ¼ 6.3, p ¼ 0.002). The
hierarchy for rFA values was the following: ANTs-FA
(0.836 � 0.116) ¼ ANTs-T1 (0.831 � 0.118) > FOD-lmax2
(0.811� 0.136)> FOD-lmax4 (0.802� 0.139). rFA values were always
lower when lesion masking was employed. Lesion masking had the
smallest effect on FOD-lmax4 than on any other strategy (Supplementary
Materials).

3.2.1.2. Lesion load of the CST. For weighted lesion load (wLL) of the
CST, significant effects for STRATEGY (F (1.4,54.8) ¼ 37.3, p < 0.001),
MASKING (F (1,39) ¼ 47.2, p < 0.001), and a STRATEGY*MASKING
interaction (F (2.0,78.5)¼ 16.0, p< 0.001) were observed (Fig. 5A). The
hierarchy of lesion load was the following: ANTs-FA
(14.4� 8.9%)¼ANTs-T1 (14.1� 9.3%)< FOD-lmax2 (17.0� 10.2%)
< FOD-lmax4 (17.4� 10.2%). wLL was always higher when lesion
masking was employed. Lesion masking had the smallest effect on FOD-
lmax2 and FOD-lmax4, both of which were smaller than the effect on
ANTs-FA and ANTs-T1 (Supplementary Materials).

Our data showed that the additional lesion load from masking vs. no
masking correlated significantly with decreases in FA from masking vs.
no masking for all strategies (p< 0.05, Supplementary Materials).

3.2.2. Acute stroke cohort

3.2.2.1. AD values. In the unaffected hemisphere, registration strategy
yielded different values of AD of the CST (F (1.3,85.6)¼ 15.2, p< 0.001)
with no effect of MASKING (F (1,68)¼ 2.0, p¼ 0.16; Fig. 4D) and no
significant interaction (F (1.0,68.1)¼ 1.8, p¼ 0.18). In this case, the
hierarchy of AD values in the acute stroke cohort was different than for
the FA of the subacute-chronic stroke cohort. In particular, FOD-lmax4
had higher AD values (mean� SD: 1.408� 0.084� 10�3mm2s�1) than
both ANTs-FA (1.393� 0.071� 10�3mm2s�1) and FOD-lmax2
(1.389� 0.075� 10�3mm2s�1) which yielded similar values.

In the affected hemisphere, registration strategy had the same effect
on the hierarchy of AD values of the unaffected CST (F (1.3,87.2)¼ 24.6,
p< 0.001; Fig. 4E): FOD-lmax4 (1.361� 0.105� 10�3mm2s�1) followed
by ANTs-FA (1.344� 0.093� 10�3mm2s�1) and FOD-lmax2
(1.341� 0.098� 10�3mm2s�1), with ANTs-FA and FOD-lmax2 yielding
similar AD values. Also, on average, AD values were lower with lesion
masking. The interaction term was not significant (F (1.0,70.5)¼ 2.4,
p¼ 0.12).

As for the ratio of AD in the CST, there was a significant effect of
MASKING (F (1,68)¼ 11.6, p< 0.001; Fig. 4F) with no difference be-
tween strategies (F (1.5,99.6)¼ 0.5, p¼ 0.54), or interaction (F
(1.0,70.1)¼ 0.1,p¼ 0.88). On average, the rAD with lesion masking was
lower than with masking.

3.2.2.2. Lesion load of the CST. Concerning lesion load, there was a
significant effect of STRATEGY (F (1.1,75.2)¼ 4.3, p¼ 0.04) and
MASKING (F (1,68)¼ 12.7, p< 0.001, Fig. 5B) with no interaction (F
(1.1,74.2)¼ 0.3, p¼ 0.6). Post hoc t-tests revealed that there was only a
significant difference between ANTs-FA (5.0� 7.2%) and FOD-lmax2
(5.3� 7.1%), both of which were similar to FOD-lmax4 (5.3� 7.0). wLL
was higher when lesion masking was employed.

Finally, changes in lesion load also correlated with changes in AD for
the acute stroke cohort (p< 0.001, Supplementary Materials).

3.3. Correlation analysis between CST integrity and motor outcome

For the subacute-chronic stroke cohort, correlations between the
composite motor score and the rFA of the CST were highly significant for
each registration method (Fig. 6A, Table 1). The more severe the motor
deficit was (low composite motor score), the more pronounced the FA
asymmetry was (low rFA). We observed significantly different correla-
tions between the composite motor score and rFA depending on regis-
tration strategy. Lesion masking improved the correlation strength
significantly for ANTs-FA, FOD-lmax2, and FOD-lmax4 with a marginally
significant effect for ANTs-T1 (p¼ 0.062). For registration strategies
where lesion masking was employed, there was no significant difference
between (a) ANTs-T1 and ANTs-FA or (b) FOD-lmax2 and FOD-lmax4. All
other comparisons between strategies with lesion masking were signifi-
cant (p< 0.0001), with FOD-lmax4 yielding the highest correlation
strength and ANTs-FA and ANTs-T1 yielding the lowest, resulting in a
max improvement in correlation strength of Δρ¼ 0.125. Differences in
strategies without lesion masking were similar to those with lesion
masking (Fig. 6A, Supplementary Materials).

For the acute stroke cohort, correlations between the day 7 NIHSS
motor score and day 1 rAD of the CST were highly significant (Table 1,
Fig. 6B). The only observed significant differences were due to lesion
masking vs. no lesion masking for FOD-lmax2 (p< 0.0001) and FOD-
lmax4 (p< 0.0001); however, the differences in correlation coefficient
were rather small (Δρ ¼ 0.013, 0.019 respectively).

4. Discussion

We evaluated both scalar vs. FOD-based registration strategies with
and without lesion masking in dMRI data for tract-based correlations in
subacute-chronic and acute stroke patients. For multi-shell datasets in
subacute-chronic stroke populations, our results showed that normali-
zation strategy had a strong effect on FA asymmetry and lesion load
calculated from a corticospinal tract (CST) template. These different
parameters thereafter yielded significantly different correlations in
motor outcome with FOD-based registration with lesion masking out-
performing common FA/T1-scalar registration. As for the acute stroke
cohort, registration strategies performed equally well with a minor effect
of lesion masking for FOD-based registration.

4.1. Registration effects on DTI parameter extraction

In the subacute-chronic stroke cohort, FOD-based registration yielded
the lowest FA values for both the affected and unaffected hemisphere,
whereas ANTs-FA yielded the highest. At first sight, it may seem coun-
terintuitive that there be differences in the unaffected hemisphere.
However, these observations may be explained by each registration al-
gorithm's cost function (Irfanoglu et al., 2016). Here, FA-based regis-
tration is more precise when aligning the CST according to its FA values,
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whereas diffusion-based registration is better at aligning the CST ac-
cording to its diffusion orientation and amplitude (Irfanoglu et al., 2016;
Wang et al., 2011). ANTs-FA is therefore incentivized to warp high FA
values towards the center of the CST where densely-packed fibers
aggregate and low FA values towards the edge of the tract or areas of
crossing fibers in the centrum semiovale and corona radiata, where CST
fiber density is low (Jones, 2008; Jones et al., 2013; Puig et al., 2017)

(Figs. 1 and 7). Since we calculated density-weighted FA, ANTs-FA could
have attributed more weight to high FA values and less to low FA values.
On the other hand, FOD-based registration is more sensitive to the
different axes of diffusivity. For example, in the crossroads of the fiber
pathways within the corona radiata, the principle axis of diffusivity
primarily reflects descending fibers of the CST (Moulton et al., 2015).
Therefore, even FODs with spherical harmonic coefficients up to a lmax
of 2 – which are mostly sensitive to a single direction – can capture
descending CST fibers. Consequently, there is less bias towards warping
high FA values of patients with high FA values in the template. These
factors likely had the effect of capturing the whole anatomy of the CST for
FOD-based registration, be it at the crossroads of several pathways (i.e.,
low FA) or at the center (i.e., high FA). Ultimately, this leads to a lower
FA value for FOD-based registration than for FA-based registration. In
line with this idea, T1-based registration had FA values in between those
of ANTs-FA and FOD-lmax2/FOD-lmax4. This is likely explained by the
T1 images' blindness to elevated FA regions in combination with the
imprecision in overlap with the underlying white matter architecture
(Zhang et al., 2006).

On the affected side, as expected, FA was reduced for all methods
likely from the lesion itself and Wallerian degeneration (Beaulieu et al.,
1996; Lindberg et al., 2007; Puig et al., 2010; Thomalla et al., 2004; Yu
et al., 2009). Furthermore, we observed a similar hierarchy in FA values
as on the unaffected side (Fig. 7). This is likely due to the same reason as
for the unaffected side, namely the effect of each normalization's cost
function; however, here, distal effects of the lesion likely played an
additional role. Indeed, even outside the masked lesion, ANTs-FA will
ignore pathological (low) FA of the CST, preferring FA values resembling
those of the healthy subjects from which the template was made.

Table 1
Subacute-chronic and acute stroke cohort tract-based correlations. Spearman's ρ
is given for the correlations between the ratio of the Fractional Anisotropy (for
the subacute-chronic cohort) or Axial Diffusivity (for the acute cohort) extracted
with each normalization strategy and the respective motor outcome scores with
the bootstrapped 95% confidence interval (CI). All correlations are statistically
significant p�0.0002.

Strategy Lesion
Masking

Subacute-Chronic Stroke ρ
(CI)

Acute cohort ρ (CI)

ANTs-T1 Yes 0.703 (0.470; 0.839) –

No 0.662 (0.409; 0.823) –

ANTs-FA Yes 0.692 (0.458; 0.841) �0.668 (�0.776;-
0.513)

No 0.635 (0.362; 0.813) �0.660 (�0.778;-
0.500)

FOD-
lmax2

Yes 0.808 (0.637; 0.901) �0.677 (�0.785;-
0.528)

No 0.733 (0.518; 0.864) �0.664 (�0.776;-
0.509)

FOD-
lmax4

Yes 0.817 (0.647; 0.907) �0.658 (�0.769;-
0.501)

No 0.790 (0.618; 0.888) �0.639 (�0.758;-
0.470)

Fig. 7. Effects of scalar vs. FOD-based registration in subacute-chronic stroke. Image slice is from a representative chronic stroke patient. From left to right, the
normalized FA maps using warp fields with strategies ANTs-T1, ANTs-FA, FOD-lmax2, and FOD-lmax4. Top row: Normalization with lesion masking. Bottom row:
Normalization without lesion masking. The colorbar shows the percentage of the maximum tract density. White arrows point to the posterior limb of the internal
capsule (PLIC) of the unaffected hemisphere, showing larger normalized PLICs for scalar-based registration and smaller PLICs for FOD-based registration. Blue arrows
highlight white matter tissue of the PLIC close to the lesion when lesion masking is applied; visually, ANTs-FA results in the lowest lesion overlap, whereas FOD-lmax4
yields the most. Turquoise arrows show varying degrees of distortions when the lesion is not masked during normalization; as can be seen, scalar-based registration
causes most of the PLIC to be filled by high-FA perilesional white matter, whereas FOD-based registration is less sensitive to the lesion.
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FOD-based registration, on the other hand, may be more likely to capture
remnants of the CST, thereby retaining the pathological FA of the
affected side in the weighted average and thus reflecting true FA asym-
metries brought on by subacute-chronic stroke lesions. However, one
concern in the interpretation of these results is the potential bias from
weighting the averages of DTI parameters by fiber density. On the other
hand, binarizing tracts by thresholding comes with its own methodo-
logical issues. In particular, thresholding at a low fiber density/prob-
ability allows one to conserve diffuse tracts near the upper cortex at the
risk of false positives in inferior portions of the CST, whereas high
thresholds allow for the removal of more false positives at the risk of
eliminating the upper CST from the region of interest. To bypass this
compromise, we reran the analysis using the publicly available binary
CST-M1mask from the sensorimotor area tract template (SMATT), which
was constructed using a novel slice-wise thresholding technique as
described in Archer et al. (2018) (Supplementary Materials). We found
that the overall trends remained unchanged, albeit with a marked
decrease in correlation strength. Despite the potential confounds of
density-weighted DTI measurements (Archer et al., 2018), density
weighting has been shown to be superior in quantifying acute stroke
damage to the CST (Hirai et al., 2016) and can account for the important
deficits that occur when compacted portions of the CST are lesioned
(Vargas et al., 2013; Zhu et al., 2010).

More crucial than the absolute value of FA for which we do not have
the ground truth, the parameter of clinical importance is the asymmetry.
In fact, our data showed that FOD-lmax4 registration yielded the largest
FA differences between the affected and unaffected side (FAaff-FAu-

naff¼�0.105), whereas ANTs-FA yielded the lowest FA differences
(FAaff-FAunaff¼�0.087). The relative proportion of FAaff/FAunaff was
therefore highest for FOD-based registration, corroborating the notion
that FOD-based registration is more sensitive to underlying FA asym-
metries of the CST.

As for the acute stroke cohort, registration strategy had little effect on
parameter extraction, a stark contrast from the subacute-chronic stroke
cohort. Unfortunately, we are not able to perfectly disentangle the con-
tributions of the nature of early stroke lesions and the limitations in the
DWI protocol to these results. Concerning the effect of registration for the
acute stroke cohort, that all registration strategies performed equally well
likely stems from the low angular resolution of the DWI protocol which
was acquired in a purely clinical setting and at day 1 post-stroke, no less.
These are truly difficult circumstances for obtaining clean data, as can be
seen by the large percentage of patients (30.4%) who needed manual
removal of corrupted images. These data reflect the maximally feasible
scanning time for day 1 post-stroke onset patients, making the
improvement of the angular resolution of the dMRI imaging sequence
quite difficult. Whereas 30 diffusion-encoding directions is sufficient to
reliably estimate FA values (Sharman et al., 2011), it pales in comparison
to the high angular resolution of the subacute-chronic stroke cohort for
FOD estimation, undoubtedly resulting in more orientation errors and
increased false-positive and false-negative rates of the FODs (Wilkins
et al., 2015). This likely prevented FOD-based registration from sur-
passing FA-based registration as was the case for the subacute-chronic
stroke cohort and other studies (Raffelt et al., 2011). That being said,
the contribution of the spherical harmonic functions up to a lmax of 4 do
not require many diffusion-encoding directions to stably model the
diffusion signal (Tournier et al., 2013). Moreover, a lmax of 4 has been
shown to be optimal for FOD-based registration (Raffelt et al., 2011).
Finally, MRtrix has been shown to be a top-performing tool for estimating
FODs with constrained spherical deconvolution for clinical datasets even
with a low number of directions at a relative low b-value of 1000 s/mm2

(Wilkins et al., 2015). Although we were mathematically able to perform
FOD-based registration with the recommended lmax value of 4 with the
acute stroke data, the less-than-optimally estimated FODs undoubtedly
hindered the full potential of FOD-based registration. In fact, although
not significant, FOD-lmax4 yielded weaker correlations than FOD-lmax2
and ANTs-FA, on average. This likely arose from overfitting noise with

the 15 free parameters using a lmax of 4 vs. the 6 free parameters using a
lmax of 2.

4.2. Lesion masking effects on DTI parameter extraction and lesion overlap

Expectedly, lesion masking produced no effect in the unaffected
hemisphere for DTI parameter extraction or lesion load, but only in the
affected hemisphere, attesting to the local nature of non-linear warping
(Andersen et al., 2010; Brett, 2001). In our study, lesion masking resulted
in significantly larger lesion loads of the CST (Fig. 7), corroborating
previous findings that lesion masking prevents volume reduction of
infarcted tissue through normalization (Brett, 2001; Renard et al., 2016).
Furthermore, lesion masking always yielded decreased FA values in the
affected CST in subacute-chronic stroke. In fact, our data showed that the
marked changes in FA of the subacute-chronic stroke cohort were, in
part, the result of the additional lesion load resulting from masking the
lesion during normalization.

In acute stroke, lesion masking only affected AD measures for FOD-
based normalization and not FA-based normalization. Such differential
effects of lesionmasking on lesion load likely reflect the fact that, at day 1
post stroke, FA values are pseudonormal (see Fig. 2). FA-based registra-
tion therefore is not as affected by lesioned tissue than at the subacute-
chronic stages, where FA values both at the core of the lesion and
distally through Wallerian degeneration are drastically reduced (Beau-
lieu et al., 1996; Lindberg et al., 2007; Puig et al., 2010; Thomalla et al.,
2004; Yu et al., 2009). On the other hand, in acute stroke, cytotoxic
edema causes extreme reductions in diffusivity (Bhagat et al., 2008,
2006; Feng et al., 2015; Liang et al., 2007; Moulton et al., 2015; Sotak,
2002). Despite superficially preserving the local directions of diffusivity
in the FOD maps, edema causes fiber density to be over-estimated as can
be seen in Fig. 2, directly affecting registration, albeit by a small amount.

4.3. Effect of registration strategy on correlations between CST integrity
and motor outcome

In the subacute-chronic stroke group, FOD-lmax4 yielded the stron-
gest correlations between FA asymmetries and motor outcome. Here, we
argue that FOD-lmax4 is, in fact, truly capable of better aligning the
entirety of the affected CST, both directly and indirectly affected by
stroke, better than FA or T1-based registration (Raffelt et al., 2011), thus
capturing true asymmetries. While stroke can cause long-range signifi-
cant changes in both DTI parameters as well as the principle orientations
of diffusivity (Pierpaoli et al., 2001), FODs altered by stroke may still be
able to capture remnants of the CST, leading to better anatomical overlap
as in healthy subjects. Indeed, the fact that lesion masking in FOD-based
registration had a smaller effect on rFA extraction than in scalar-based
registration corroborates this idea. Importantly, as explained in section
4.1, FOD-based registration is not driven by the same parameter as that
used for motor outcome correlations. Consequently, FOD-based regis-
tration is less likely to misrepresent FA of the affected side and accurately
capture remnants of the CST, yielding larger lesion loads and thus FA
reductions. That these FA asymmetries then correlate the most strongly
with motor outcome become attests to a more anatomically accurate
normaliza-tion with FODs.

Despite FOD-based registration yielding the strongest correlations
with motor outcome, normalization with ANTs-FA and ANTs-T1 still
yielded significant correlations. Our results, in no way, therefore, cast
doubt on previous studies that employed similar techniques. Rather, this
new, innovative method can improve existing models of recovery based
on asymmetries in CST FA, including those which have investigated the
role of alternate corticofugal or corticocortical pathways in motor
outcome in a common space (Schulz et al., 2017a, 2017b, 2012). These
pathways are often very close to the fibers originating in the primary
motor cortex; suboptimal normalization can therefore lead to improper
overlap of the various corticofugal and/or corticocortical pathways and
thus different correlation strengths. Notably, more sensitive measures of
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CST damage (via better correlations from FOD-based registration) leave
less variance to be explained by other pathways. This effect might
particularly alter model outcome when the contribution of such alternate
pathways is close to the threshold of significance, once adjusted for CST
damage (Schulz et al., 2017a, 2017b, 2012). Our data suggest that, when
the acquisition protocol permits, FOD-based registration should be
considered the reference technique when normalizing subacute-chronic
stroke dMRI data to a common template.

As for the acute stroke cohort, registration strategy had little effect on
parameter correlation strength. We attribute this result in part to the
nature of acute stroke lesions as well as to the limitations in the imaging
protocol as previously discussed. Nevertheless, most clinical studies
having performed group-level analyses in acute stroke rarely acquired
more than 30 diffusion-encoding directions (Doughty et al., 2016;
Moulton et al., 2015; Puig et al., 2011). Until acquisition acceleration
techniques can be incorporated in clinical dMRI sequences, our data
suggest that FA-based registration remains an adequate technique for
normalization of dMRI data in acute stroke.

4.4. Limitations

Themost important limitation to our study was the different protocols
for our acute and subacute-chronic stroke cohort. In particular, our acute
stroke cohort did not have T1-weighted images. However, in clinical
practice for emergency thrombolysis treatment, it is not customary to
acquire high-resolution T1 images as they are lengthy and do not provide
clinically relevant information to medical doctors for acute management
of stroke. Second, the number of diffusion-encoding directions and b-
value of the acute DWI sequence were both inferior to that of the
subacute-chronic stroke cohort and thus to the templates derived from
the healthy controls. It is therefore conceivable that such a disparity in
imaging protocol artifactually drove the findings about the acute stroke
cohort. We therefore reran the entire analysis using new templates con-
structed from separate healthy control images acquired with similar
imaging parameters in the same MRI machine as the acute stroke cohort
(TR¼ 14s, TE¼ 83.2, voxel size¼ 1.09� 1.09� 3mm3, no phase
encoding, 30 directions, b¼ 1000 s/mm2). We found that the results
remained globally unchanged for both the acute and subacute-stroke
cohort, implying that our registration was robust to the imaging tem-
plate and that our conclusions remain valid (Supplementary Materials).
Nevertheless, only a few studies have published imaging data using DTI
models at the acute stroke stage (Doughty et al., 2016; Groisser et al.,
2014; Moulton et al., 2015; Puig et al., 2011; Spampinato et al., 2017).
Instead of comparing acute vs. subacute-chronic stroke, this study serves
to suggest optimal registration strategies for datasets typically acquired
in today's clinical and research settings. As image acquisition accelera-
tion techniques become available in the future, similar data should be
reanalyzed with more directions, or possibly higher b-values (Xie et al.,
2015) for stroke cohorts at any stage.

Second, we note that our healthy controls are younger than the
studied stroke patients (p< 0.0001) and that there are well-known
changes in dMRI parameters with age (Lebel et al., 2012). Nevertheless,
the healthy controls used to construct our templates are similar to those
for existing open source FA and FOD templates, such as the IIT Human
Brain Atlas v4.1 (https://www.nitrc.org/projects/iit/) (Varentsova et al.,
2014).

Third, we limited our comparison to T1, FA, and FOD-based regis-
tration using ANTs and MRtrix despite the availability of other software
aimed at registering DWI data, such as other commonly used scalar-based
(Klein et al., 2009), tensor-based (Irfanoglu et al., 2016; Zhang et al.,
2006), surface-based (Esteban et al., 2016), streamline-based (Gar-
yfallidis et al., 2015), or based on whole DWI datasets (Afzali et al., 2017;
Zhang et al., 2014). We limited our registration algorithms to ANTs and
MRtrix for the following reasons: (1) These two packages have been
openly available to the general public for many years and do not require
study-specific file formats or data architecture. (2) One important factor

we wished to evaluate was lesion masking vs. no lesion masking. It was
therefore crucial that this feature be readily implemented in the studied
algorithms and appropriate for stroke lesions. At the time of publication,
this feature was not available for two popular tensor-based registration
software packages, DTI-TK (Zhang et al., 2006) and MED-INDRIA (Yeo
et al., 2009), whereas a third, DR-TAMAS (Irfanoglu et al., 2016), utilized
a lesion masking algorithm unsuitable for subcortical stroke lesions.
Nevertheless, DTI-based registration remains a promising avenue for
registration in stroke imaging and should be evaluated in the future
studies when appropriate lesion masking schemes become available. (3)
We deemed streamline based registration an unsuitable candidate due to
the strong white matter disconnections known to be caused by stroke
(Grefkes and Fink, 2014); moreover, this would have required person-
alized tractography in all 109 patients' native spaces, which defeated the
purpose of this study. (4) ANTs and MRtrix's mrregister are both based on
the same underlying symmetric diffeomorphic non-linear registration
(Avants et al., 2008; Raffelt et al., 2011), making the comparison of each
strategy's performance less ambiguous. (5) Finally, we chose ANTs for
our scalar based registration due to its superiority over other commonly
used techniques for registering T1 and FA images (Irfanoglu et al., 2016;
Klein et al., 2009; Tustison et al., 2014) and because it has already shown
to perform well with lesion masking in chronic stroke (Ripoll�es et al.,
2012).

Lastly, we did not investigate the effect of virtual lesions super-
imposed on healthy dMRI data on registration accuracy as in Brett
(2001), Nachev et al. (2008), Renard et al. (2016) due to the
high-dimensional complex models that are FODs. Unlike T1 or FA images
where subacute-chronic ischemic lesions resemble simple hypointense
regions, their effect on FOD shape has not been explored and is difficult
to artificially reproduce. Indeed, due to the complex shape of FODs,
which may reflect spared fiber populations, it is imperative that any
virtual lesion be consistent with the surrounding healthy tissue when
superimposed on a healthy brain. Not only is this procedure challenging,
but it also highly restricts the reusability of virtually lesioned FODs in
different areas of the brain where the direction of diffusion needs to be
consistent along major white matter pathways. Second, unlike chronic
stroke, acute stroke lesions contain restricted water diffusion due to
cytotoxic edema, yielding large FOD shapes that have a completely
different and under-investigated diffusion profile. For these reasons, we
did not investigate enantiomorphic normalization as described in Nachev
et al. (2008), which has proven effective in normalizing T1 stroke images
(Nachev et al., 2008). Indeed, the amplitude and complex directional
information of the FODs make the implementation of enantiomorphic
normalization in FOD-based registration far from straight-forward. As
explained previously, simply swapping lesioned regions with the ho-
mologous healthy side may lead to discontinuities along the interface of
the superimposed lesion and the salvaged, surrounding white matter.
Concerning virtual lesions reflecting acute stroke damage, at the acute
stage, FA is pseudonormal in the lesion (Doughty et al., 2016; Moulton
et al., 2015), making it difficult to create useful FA virtual lesions.

5. Conclusion

Our study is unique in that we contrasted commonly used and novel,
FOD-based registration strategies for typical datasets in subacute-chronic
and acute stroke. We have demonstrated that for high angular resolution
diffusion imaging in subacute-chronic stroke, FOD-based registration to a
template with lesion masking is the optimal method determining lesion
load and DTI correlates of motor outcome in a common space. While this
strategy could be used by many existing data sets, no study to our
knowledge has yet taken advantage of this strategy. This normalization
method should serve as a reference procedure for conducting future
group-level analyses for effective biomarkers of stroke recovery in the
white matter (Boyd et al., 2017; Carey et al., 2015). As for acute stroke
data acquired in clinical routine, traditional scalar-based normalization
methods are still appropriate until image acquisition acceleration
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techniques can become readily available, allowing for a denser sampling
of diffusion space.
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5.3 Conclusion

Our results showed that, for high-quality subacute-chronic stroke data, FOD-based

registration captured significantly larger FA asymmetries in the CST. This was also

associated with significantly stronger correlations in motor outcome with respect to

T1 or FA-based registration methods. For acute data acquired in a clinical setting,

there were few observed differences, suggesting that commonly employed FA-based

registration is appropriate for group-level analyses. Concerning the acute stroke

group, we were unable to conclude if the lack of differences were attributable to the

lower angular resolution of the DWI sequence or inherent diffusion properties of

acute ischemic stroke.

On a global level, FOD-based registration instead of commonly used FA-based

registration seems to robustly capture damage to important white matter structures

and should be considered a reference procedure for future studies. While the same

clear-cut conclusions could not be extended to the acute stroke cohort, these un-

resolved questions could constitute the basis for future investigations. The major

unsolved question of the first study is whether a higher angular resolution of the

acute stroke cohort imaging protocol could have lead to a better performance of FOD

with respect to FA-based registration. Indeed, the clinical DTI protocol of our acute

stroke cohort only benefited from diffusion-weighted images along 30 directions,

which, while mathematically sufficient to estimate FODs, are less than what is com-

monly acquired in research imaging centers. On the other hand, if obtaining more

diffusion-weighted images is not logistically feasible in practice, there exists several

DTI-based registration techniques which appear to be a promising alternative for

datasets of low angular resolution, such as those obtained in our clinical practice.

Indeed, here, 30 directions are more than adequate to reliably estimate the diffusion

tensor and could thus drive a more accurate registration than with FODs. However,

today’s most popular DTI-based registration techniques do not benefit from easily

implementable lesion masking strategies and could thus constitute the focus of future

research. In any case, considering that FA and FOD-based registration yielded similar

results for our acute stroke cohort and that the corresponding DWI protocol did not

benefit from a high angular resolution, we chose to use FA-based registration for the

subsequent investigations in the current thesis.

Finally, these results not only served for the remaining studies of the present

doctoral work but also contributed to an independent research project outside the

context of this thesis. A parallel study by Kemlin et al. (In Prep) at the Institut du
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Chapter 5. Study I: Comparison of Spatial Normalization Strategies of Diffusion

MRI Data for Studying Motor Outcome in Subacute-Chronic and Acute Stroke

Cerveau et de la Mœlle Epinière sought to determine the independent contributions

of the structural integrity of the corticospinal tract – evaluted with the FOD-based

registration method outlined in this chapter – and other electrophysiological and

clinical variables for upper limb motor impairments at the subacute-chronic stage of

stroke. Our proposed method allowed the authors to accurately quantify the neuronal

integrity of the corticospinal tract and evaluate the amount of variance in upper limb

motor impairment explained by this variable in relation to others.
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6.1. Overview of Study 93

6.1 Overview of Study

Now that a proper registration strategy had been established for the acute stroke

imaging data, we were able to proceed to a voxel-based analysis for evaluating

the prognostic value of early DTI for long-term global outcome. In particular, the

conception of the second study arose from the most common functional outcome

score available in our acute stroke cohort, the modified Rankin Score (mRS), which,

as detailed in section 2.3.2, is a measure of the level of patient autonomy in everyday

life. Previous studies have already demonstrated the relationship between stroke

location and functional outcome using primarily binary manual lesion segmentations.

However, as detailed in chapter 3, Diffusion Tensor Imaging (DTI) constitutes a

powerful means of quantifying the degree of acute ischemia and may be more suitable

for characterizing stroke topography. Indeed, each patient experiences different

degrees of neuronal damage depending on different factors, such as the duration of

ischemia and the success of recanalization therapy. DTI could thus be more sensitive

to patient-specific neuronal damage, whereas lesion segmentations treat all visible

infarcts on a "all-or-nothing" basis. Moreover, DTI is able to capture remote effects

outside the visible lesion, whereas any analysis performed with lesion segmentations

is restrained to these regions. We wondered whether using DTI-derived imaging

parameters could improve prediction models over those constructed with lesion

segmentation and thus provide valuable insight on critical brain areas important for

long-term outcome. Using the normalization strategies established in the first study

in addition to the large cohort of acute stroke patients enabled us to take advantage of

more powerful multivariate machine learning techniques to elucidate this question.

The major objective of the second study was to determine which DTI parameter

best captures acute axonal damage in relation to long-term functional outcome. To

do so, we used machine-learning classifiers called support vector machines (SVM)

to build prognostic models with different imaging modalities – in combination with

lesion volume, age, recanalization status, and thrombectomy treatment – in order

to predict good (modified Rankin Score - mRS ≤ 2) and poor (mRS > 2) outcome.

Our hypothesis was that the parameter that best captured microstructural damage

from stroke would also predict patient outcome with the highest accuracy. Then, by

inspecting the feature weights of the best classifier, we could deduce which brain

regions are most important for long-term global outcome. The specific goals of the

second study were thus: (1) to evaluate the predictive power of the four classical DTI

parameter maps – fractional anisotropy, mean diffusivity, axial diffusivity, and radial
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diffusivity – at the acute stage of stroke as well as lesion segmentations in classifying

good vs. poor outcome classifiers and (2) infer which brain regions contributed

the most to predicting functional outcome by investigating the weights of the SVM

classifer.

6.2 Article

The supplementary materials for this article can be found in Appendix H
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Abstract 

The relationship between stroke topography and functional outcome has largely been studied with binary 

manual lesion segmentations. However, stroke topography may be better characterized by continuous 

variables capable of reflecting the severity of ischemia, which may be more pertinent for long-term 

outcome. Diffusion Tensor Imaging (DTI) constitutes a powerful means of quantifying the degree of acute 

ischemia and its potential relation to functional outcome. Our aim was to investigate whether using more 

clinically pertinent imaging parameters with powerful machine learning techniques could improve 

prediction models and thus provide valuable insight on critical brain areas important for long-term 

outcome. Eighty-seven thrombolyzed patients underwent a DTI sequence at 24 hours post-stroke. 

Functional outcome was evaluated at 3-months post-stroke with the modified Rankin Score and was 

dichotomized into good (mRS ≤ 2) and poor (mRS > 2) outcome. We used support vector machines to 

classify patients into good vs. poor outcome and evaluate the accuracy of different models built with 

fractional anisotropy, mean diffusivity, axial diffusivity, radial diffusivity asymmetry maps, and lesion 

segmentations in combination with lesion volume, age, recanalization status, and thrombectomy 

treatment. SVM classifiers built with axial diffusivity maps yielded the best accuracy of all imaging 

parameters (median [IQR] = 82.8 [79.3-86.2]%), compared to that of lesion segmentations (76.7 [73.3-

82.8]%) when predicting 3-month functional outcome. Model weights revealed a strong contribution of 

clinical variables, notably – in descending order – lesion volume, thrombectomy treatment, and 

recanalization status, in addition to the deep white matter at the crossroads of major white matter tracts. 

Axial diffusivity is a more appropriate imaging marker to characterize stroke topography for predicting 

long-term outcome than binary lesion segmentations. 
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1. Introduction 

 

While clinical variables such as initial stroke severity, age, and lesion volume are useful in 

determining long-term outcome assessed by the modified Rankin Score (mRS), recent work has shed light 

on the independent predictive power of early ischemic stroke topography (Cheng et al., 2014; Duncan et 

al., 2000; Rosso et al., 2011; Wu et al., 2015; Yoo et al., 2010). In particular, damage to deep white matter 

at the crossroads of major white matter pathways has been shown to play a critical role in the level of 

autonomy patients can expect after an ischemic stroke (Rosso et al., 2011). In the majority of these 

studies, lesion topography is often represented as binary segmentations of abnormal regions on clinical 

diffusion weighted imaging (DWI) or FLAIR sequences. However, at the acute stage, the mere presence 

or absence of a lesion (binary segmentation) might be less informative than continuous variables capable 

of reflecting the severity of ischemia, which could be more pertinent for long-term outcome. The diffusion 

tensor imaging (DTI) model can reliably quantify tissue microstructure and thus constitutes a powerful 

means of evaluating the degree of ischemia at the acute stage of stroke (Beaulieu, 2002; Sotak, 2002). 

While, fractional anisotropy (FA) has proven a noteworthy biomarker at the subacute-chronic stage, there 

is now substantial evidence that axial diffusivity (AD) instead of FA is able to accurately reflect acute 

axonal damage related to subacute and chronic motor and global outcome (Doughty et al., 2016; Groisser 

et al., 2014; Liu et al., 2018; Moulton et al., 2015; Spampinato et al., 2017). Whether the severity of 

ischemia assessed with continuous DTI parameter maps and the presence or absence of an infarct using 

binary lesion segmentations harbor different prognostic values, however, remains to be elucidated. 

 

Studying the effect of stroke topography on functional outcome using machine learning techniques 

has become increasingly popular due to their ability to account for complex interactions between brain 

regions (Price et al., 2017). Unlike commonly used mass-univariate analyses such as Voxel-based Lesion 

Symptom Mapping (VLSM) (Bates et al., 2003), multivariate methods can represent the relation of 

damage at every voxel to all other voxels. These methods are therefore highly adapted for predicting 

multifaceted clinical outcome scores, such as the mRS, which can reflect deficits covering several 

functional domains, namely motor, language, and spatial attention (Cheng et al., 2014). The relationship 

between functional outcome, evaluated by the mRS, and stroke topography has already been studied with 

both univariate and multivariate analyses using lesion segmentations (Cheng et al., 2014; Ernst et al., 

2018; Munsch et al., 2016; Wu et al., 2015) and also with apparent diffusion coefficient (ADC) maps 

(Cuingnet et al., 2011; Rosso et al., 2011) acquired at the acute stage; however, to our knowledge, no 

whole-brain study has been performed with acute DTI images. In this study, we take advantage of a large 

dataset of thrombolyzed stroke patients who underwent a DTI imaging protocol at 24 hours post-stroke 

and a sophisticated machine learning pipeline to evaluate the prognostic value of DTI-derived parameters 

and lesion segmentations. 
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Our goals were to (1) evaluate the predictive power of the DTI-derived parameter maps generated 

at the acute stage as well as lesion segmentations in classifying good vs. poor outcome using support 

vector machine (SVM) classifiers, (2) determine if certain DTI maps yield better classification rates than 

lesion segmentations, and (3) infer which brain regions contribute the most to functional outcome by 

investigating the weights of the best performing model. We predicted that classification accuracy would 

differ among the four classical DTI parameters, considering the varying degrees to which each one 

reflects acute stroke damage. Furthermore, we hypothesized that the severity (i.e., continuous changes in 

diffusivity) rather than the presence or absence of ischemia (i.e., binary lesion segmentation) would be 

able to better capture brain damage affecting long-term functional outcome. Finally, in concordance with 

previous findings, we expected damage to deep white matter to play an influential role in distinguishing 

good vs. poor outcome, due to the simultaneous multiple disconnections that may arise at the intersection 

of long-range pathways. 

 

2. Materials and Methods 

 

2.1. Patients 

Two hundred ninety-seven patients were retrospectively screened from September 1, 2013 until 

April 30th, 2018 at the Urgences Cérébrovasculaires at the Hôpital de la Pitié Salpêtrière. Inclusion criteria 

for this cohort were: (1) MRI-demonstrated ischemic stroke of the carotid territory, (2) thrombolysis 

treatment within 4.5 h after stroke onset, (3) follow-up MRI access at 24 hours post-stroke, (4) 

interpretable recanalization status, and (5) clinical assessment using the modified Rank Score (mRS) at 3-

months post-stroke. Thrombolytic treatment was administered according to the American Stroke Stroke 

Association and the European Stroke Organization guidelines (0.9 mg/kg, maximal dose 90 mg)(Jauch et 

al., 2013). Patients with bilateral lesions were deemed suitable for analysis if clinical symptoms were 

lateralized to one hemisphere (e.g., unilateral hemiparesis, aphasia without neglect, etc.). For these 

patients, the affected hemisphere was considered as that which caused clinical symptoms. Exclusion 

criteria were (1) overly artifacted imaging data, (2) dependence on external aid before the stroke (i.e., pre-

stroke mRS > 2) or the reoccurrence of stroke before the 3-month follow-up, (3) death before the 3-month 

follow-up.  

 

A mRS score was recorded at the 3-month follow-up through a physical examination with a 

neurologist at our hospital or through a structured telephone interview. The primary outcome measure of 

this study was a dichotomized mRS score for good (mRS ≤ 2) and poor (mRS > 2) outcome. Descriptive 

statistics consisted of median and interquartile ranges (IQR). All imaging and clinical data were obtained 

during routine clinical workup in our stroke center. According to French legislation, explicit informed 
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consent was therefore waived. The study was approved by the Pitié-Salpêtrière Hospital Ethics 

Committee. 

 

2.2. Image Acquisition 

Imaging data used in this study are from our emergency stroke unit in which we examined 

patients with typical DWI sequences but also a DTI protocol. Twenty-four hours after admission, patients 

underwent a follow-up MRI with a 3T MR750 MRI scanner (General Electric) with an 8-channel coil. The 

following DWI sequences were used for the current analysis: (1) an averaged 3-direction DWI (b=1000 

s/mm2, TR=11700ms, TE=72.3ms, matrix size=256⨉256, slice number=48, voxel size=0.94⨉0.94⨉3mm3, 

acquisition time=0:59 min) and (2) a 30-direction DWI (2 b=0 s/mm2 images followed by 30 non-collinear 

diffusion-encoding gradients at b=1000 s/mm2, TR=12000ms, TE=82.3ms, matrix size=256⨉256, slice 

number=44, voxel size=1.09⨉1.09⨉3mm3, acquisition time=6:36 min). 

 

2.3. Image Processing 

Image processing served to prepare data for classification in a common reference space and was 

performed using a pipeline optimal for diffusion MRI data at the acute stroke stage as previously described 

(Moulton et al., 2018). In brief, after correcting for (1) denoising (Veraart et al., 2016a, 2016b) (2) eddy 

currents and head motion using FSL’s EDDY with slice interpolation for slices with significant signal drop 

(Andersson et al., 2016; Andersson and Sotiropoulos, 2016), and (3) bias-field correction (Zhang et al., 

2001), FA, AD, mean diffusivity (MD), and radial diffusivity (RD) maps were calculated from a tensor 

model estimated using FSL's DTIFIT (Basser et al., 1994; Smith et al., 2004), and brains were skull 

stripped (Smith, 2002). Lesion segmentation was performed by identifying hypersignal regions on the 3-

direction DWI sequence image and co-registered to the DTI maps. To process all images in the same 

hemisphere, both native and flipped DTI maps as well as lesion segmentations were registered to an in-

house healthy-subject FA template using Advanced Normalization Tools (ANTs) with lesion masking 

(Supplementary Materials). 

 

In stroke imaging, it is common practice to analyze relative differences between the affected and 

unaffected hemispheres rather than absolute values of the affected hemisphere alone. To this end, we 

kept all affected hemispheres to the same side and constructed laterality index (LI) maps, hereafter 

referred to as asymmetry maps, using the normalized native and flipped DTI maps with the following 

equation at each voxel: (affected-unaffected)/(affected+unaffected). The LI is a score between -1 and 1 for 

which the negative range indicates smaller values on the affected side and the positive range indicates 

larger values on the affected side. Acute stroke is largely characterized by strong decreases in diffusivity 

with respect to the unaffected hemisphere, which can be seen as negative values on the MD, AD, or RD 

asymmetry maps (Fig. 1). We also applied a modest 2 mm Gaussian smoothing to the asymmetry maps 

to compensate for imperfections in normalization while conserving the specificity of each region (Samper-
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González et al., 2018). Since asymmetry maps are highly symmetrical, our analysis can be reliably 

restrained to one hemisphere. Moreover, relative differences in diffusivity are more pronounced in white 

matter than grey matter regions (Bhagat et al., 2008; Muñoz Maniega et al., 2004; Yang et al., 1999). With 

these considerations, we restricted our analysis to a hemispheric white matter mask by thresholding the 

FA template at 0.2 and manually filling in potential holes in the mask, such as those in the basal ganglia. 

 

 

Figure 1. Diffusion Tensor Imaging (DTI) features 

A. The four DTI parameter maps for a representative acute stroke patient. From left to right: Fractional 

Anisotropy (FA), Mean Diffusivity (MD), Axial Diffusivity (AD), and Radial Diffusivity (RD). B. The 

corresponding Laterality Index (LI) or asymmetry maps in a white matter mask used to create prediction 

models. The black arrow indicates the presence of acute ischemia, shown as an area of low diffusivity on 

MD, AD, and RD maps and negative regions on the respective LI maps. Acute ischemia is poorly seen on 

the FA map. 

 

 

2.4. Model Estimation and Validation 

We sought to classify patients into good vs. poor outcome at 3 months post-stroke with imaging 

data at 24 hours post-stroke and baseline clinical variables using a support vector machine (SVM) as 

implemented in scikit-learn in Python (Abraham et al., 2014). SVMs are useful machine learning 
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techniques used in neuroimaging (See Lemm et al., (2011) for a detailed explanation of SVMs and 

Rondina et al., (2017) for an illustrative application to stroke imaging), have already proven effective in 

explaining various categories of stroke-related deficits, and are compatible with structural imaging data 

(Cuingnet et al., 2011; Mah et al., 2014; Mateos-Pérez et al., 2018; Rondina et al., 2016; Yourganov et al., 

2015; Zhang et al., 2014). Here, we estimated and validated classification models using different imaging 

modalities (i.e., DTI-derived asymmetry maps or lesion segmentations) along with important clinical 

variables considered to be independent predictors of stroke outcome, notably recanalization status, 

thrombectomy treatment, age, and lesion volume. Recanalization status (complete or not) and 

thrombectomy treatment (received or not) were treated as binary variables. As in similar studies (Wu et 

al., 2015), we did not include baseline NIHSS as a feature since it already reflects the extent of brain 

damage and can be predicted from stroke topography (Phan et al., 2010). 

 

In machine learning and neuroimaging, there is often a disproportionate ratio of features (here, 

voxels) for available observations (i.e., patients). This imbalance is commonly referred to as the curse of 

dimensionality and can hinder the predictive power of multivariate models. Therefore, we introduced a 

principle component analysis (PCA) step for imaging data in our model construction pipeline in order to 

reduce the dimensionality of our data (Figure 2). In fact, PCA presents a double advantage in machine 

learning analyses with stroke patients. The most obvious advantage is that the number of features will be, 

at most, one less than the number of observations (when there are more features than observations). The 

second advantage of PCA stems from the fact that, in stroke, lesioned voxels do not arise randomly but 

co-occur according to the vascular tree (Mah et al., 2014). At the population level, therefore, recurrent 

patterns of diffusivity asymmetries and stroke lesions will be present across patients and can form a new 

basis for explaining them. In other words, we can describe diffusivity asymmetries or lesioned voxels by a 

weighted sum of representative patterns of these parameters instead of tens of thousands of voxels 

(38,807 in our case). These weights in PCA-space then become the features for our classifier. While 

previous studies have fixed the number of components based on a priori explained variance criteria 

(Corbetta et al., 2015; Siegel et al., 2016), we decided to introduce the number of principle components to 

retain as a hyper-parameter to be optimized as explained below. 
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Figure 2. Dimensionality reduction with Principle Component Analysis (PCA). 

PCA allows for the reconstruction of each subject’s (subj) imaging data through a linear combination of 

principle components (PC), which reflect representative patterns over the studied population. The 

coefficients of each PC used to reconstruct each subject’s imaging data become the features for the 

classifier. For illustrative purposes, shown here is the PCA analysis for AD asymmetry maps (LI) over the 

whole cohort, whereas independent PCAs are performed for each cross-validation split. 

 

We employed repeated stratified nested cross-validation (CV) for the unbiased construction and 

evaluation of our classifiers, according to the recommendations in Varoquaux et al. (2017) 

(Supplementary Figure 1). In our nested CV, an inner 2-fold CV loop first builds models with optimized 

hyperparameters (here, number of principle components and L2-regularization constant), and an outer 3-

fold CV loop then yields unbiased evaluations of the constructed model. With this CV scheme, we ensured 

not only an equal partition of our data set in all loops but also a balanced proportion of good:poor class 

observations. Furthermore, models were constructed with a misclassification penalty weighted by class 

balance. To bypass the computational time required to determine the optimal set of hyperparameters, for 

each inner CV loop, we randomly chose 60 candidate values from a discrete uniform distribution for 

possible principle components (1-87) and a reciprocal distribution for regularization constants (1⨉10-3 to 

1⨉106). Random searches over parameter space have been found to be as good as or better than 

systematic grid searches with significant gains in computational time (Bergstra and Bengio, 2012). In our 
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case, using 60 candidate values ensured that we had a 95% chance of being within a 5% interval of the 

best parameter set. This procedure was repeated 500 times in order to obtain a reliable point-estimate of 

model accuracy with an associated confidence interval. For each imaging modality, we herein summarize 

classification accuracy, sensitivity, and specificity as the median with the interquartile range (IQR) over CV 

splits. In order to demonstrate that model accuracy significantly differed from chance, we ran permutation 

tests with 1,000 iterations to reconstruct the sampling distribution of the underlying null hypothesis. 

 

To gain insight on the underlying anatomical determinants of long-term outcome, we inspected the 

model of the imaging modality that yielded the highest median classification accuracy. For this model, we 

projected the SVM model weights back onto the brain from PCA-space and calculated the average over 

all CV folds (Rondina et al., 2017; Varoquaux et al., 2017). The resulting map reflected the relative 

importance of each brain region in classifying groups. We created a region of interest (ROI) composed of 

the largest connected component of voxels with the strongest weights (95th percentile) associated with 

larger decreases in diffusivity or higher lesion incidence in patients with poor outcome, depending on the 

winning model. We then used this ROI to investigate the involvement of well-known long-range white 

matter tracts in functional outcome in a tractography analysis using a whole-brain connectome performed 

on the in-house template (Moulton et al., 2018) (Supplementary Materials).  

 

 

3. Results 

 

3.1. Patient Cohort 

Out of the prospective 297 patients, 87 were retained for the final analysis (Figure 3, Table 1). 

Maximum lesion overlap was in the putamen, external capsule, and caudate nucleus (35-40%, N=31–36), 

reflecting typical lesions of the middle cerebral artery territory of a clinical population(Phan et al., 2005) 

(Supplementary Figure 2). 
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Age (years) 71.1 [57.1-80.8] 

Female N (%) 39 (44.8%) 

NIHSS Admission (N=87) 11.5 [7.3-20.0] 

NIHSS Day 1 (N=85) 4.5 [2.0-12.0] 

NIHSS Day 7 (N=62) 2.0 [0.0-9.5] 

Time to MRI (min) (N=87) 110.0 [78.0-170.0] 

Time to rtPA (min) (N=87) 140.0 [110.8-202.3] 

DWI Lesion Volume (mL) (N=87) 12.4 [4.2-45.1] 

Received Thrombectomy N (%) 32 (36.8%) 

Complete Recanalization N (%) 62 (71.3%) 

Pure MCA stroke N (%) 81 (92.0%) 

Mixed MCA-ACA stroke N (%) 2 (2.3%) 

Mixed MCA-PCA stroke N (%) 4 (4.6%) 

Mixed MCA-ICA stroke N (%) 1 (1.1%) 

Left Lesions N (%) 58 (66.6%) 

Good Outcome (mRS ≤ 2) N (%) 61 (70.1%) 

Table 1. Patient cohort descriptive statistics. 
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Figure 3. Patient inclusion flowchart. 

 

3.2. Model Evaluation 

Model performance differed for each imaging modality (Table 2). In particular, AD asymmetry 

maps yielded the highest median accuracy (82.8%), sensitivity (80.0%), and specificity (84.0%). MD 

asymmetry maps performed slightly less well, closely followed by RD. Finally, classifiers with lesion 

segmentation and FA performed the worst, both yielding median accuracies of 76.7%. In other words, a 

model based on AD maps would result in a false prediction for one out of every six patients in a clinical 

setting, whereas, a model based on FA maps or lesion segmentation would result in a false prediction for 

one out of every four patients. All model accuracies were statistically significant (p<0.003).  
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Table 2. Model evaluation and construction. 

The median and interquartile range is shown over cross-validation splits for SVM models constructed with 

different imaging modalities. The number of principle components and explained variance thereof refer to 

automatically tuned hyper-parameters. Permutation test significant *p<0.003 

 

Each type of model found different numbers of principle components optimal for classification 

(Table 2). Models built with AD, MD, RD asymmetry maps and lesion segmentations retained principle 

components explaining the variance of much of the data (77.5%-89.0%). On the other hand, classifiers 

with FA asymmetry maps retained only 53.2% of the variance in the data. 

 

For the winning model constructed with AD asymmetry maps, the clinical variable with the 

strongest influence on outcome was lesion volume (indicating that smaller lesion volumes were associated 

with good prognosis), followed by thrombectomy treatment (receiving thrombectomy treatment resulted in 

good outcome) and less so by recanalization status (patients with complete recanalization had good 

outcome) (Figure 4). As for imaging data, the strongest SVM weights formed a large cluster in the deep 

MCA territory (Figure 4). The tractography analysis revealed that this region largely corresponded to the 

deep white matter at the crossroads of corticofugal and long-range associative pathways, such as the 

corticospinal tract, the corpus callosum, the long, anterior, and posterior segments of the arcuate 

fasciculus, the second and third branches of the superior longitudinal fasciculus, and the frontal aslant 

tract (Figure 5). 

 

Imaging 

Modality 

Model Evaluation Model Construction 

 
Accuracy (%) Sensitivity (%) Specificity (%) Number of 

Principle 

Components 

Variance of Data 

Explained by 

PCs (%) 

FA 76.7 [72.4-80.0]* 66.7 [57.1-80.0] 80.0 [76.2-83.3] 17 [9-24] 53.2 [38.2-64.1] 

MD 80.0 [75.9-86.2]* 77.8 [66.7-88.9] 82.6 [79.2-86.4] 17 [9-25] 82.3 [70.3-87.8] 

AD 82.8 [79.3-86.2]* 80.0 [66.7-88.9] 84.0 [80.0-88.2] 15 [8-24] 77.5 [66.0-85.0] 

RD 79.3 [72.4-82.8]* 71.4 [60.0-83.3] 81.0 [77.3-85.7] 18 [9-26] 89.0 [81.2-93.4] 

Lesion 

Segmentation 

76.7 [73.3-82.8]* 66.7 [57.1-80.0] 81.8 [77.3-85.0] 15 [7-23] 80.7 [65.5-89.2] 
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Figure 4. Model weights of the SVM classifier using AD asymmetry maps and clinical variables.  

For imaging data, the weights represent the relative relevance of each brain region in classifying good vs. 

poor outcome on axial (top) and coronal (bottom) slices. Positive values indicate relatively lower AD 

asymmetries for patients with poor outcome compared with those with good outcome, and vice-versa. 

Separate color bars are used for the SVM weights of the imaging data and clinical variables due to the 

differences in scale. 
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Figure 5. Tractography analysis from most influential regions for functional outcome. 

The most influential areas of lower axial diffusivity for patients with poor outcome (red cluster). Major 

corticofugal and long-range associative tracts pass through this critical area, notably, the second and third 

branch of the superior longitudinal fasciculus (SLF), the corpus callosum, the corticospinal tract, the long, 

anterior, and posterior segments of the arcuate fasciculus (AF), and the frontal aslant tract. 

 

4. Discussion 

We used early DTI in combination with baseline clinical data in a large cohort of acute stroke 

patients to power a sophisticated machine learning pipeline aimed at classifying good vs. poor functional 

outcome. We found that AD was able to best classify long-term outcome, much better than FA or 

commonly used lesion segmentations. As expected, we found a strong contribution from clinical variables, 

notably – in decreasing order – lesion volume, thrombectomy treatment, and recanalization status. In 

addition, we found that the most influential brain areas on outcome were highly concordant with previous 

studies, supporting the validity of our results. 

 

The novelty of our study lies within the systematic availability of DTI data at 24 hours post-stroke 

to investigate the effect of stroke topography on long-term outcome. This unique data set differs from 

similar studies performed at the acute phase which have primarily resorted to clinical DWI or FLAIR 

sequences for lesion segmentation to address this question (Cheng et al., 2014; Ernst et al., 2018; 

Munsch et al., 2016; Wu et al., 2015). Moreover, while other studies have evaluated the predictive value of 



 14 

acute DTI biomarkers with correlation analyses (Groisser et al., 2014; Liu et al., 2018; Moulton et al., 

2015; Spampinato et al., 2017), to our knowledge, this is the first study to use whole-brain DTI data in a 

multivariate framework for classifying functional outcome. Interestingly, in our study, we found that not 

only did AD asymmetry maps result in the highest classification accuracies of all DTI parameters, but they 

also outperformed commonly used binary lesion segmentations by 6.1%, resulting in an improvement of 

false prediction ratio of 1/4 to 1/6. It is important to note that, considering the current study design, there 

was no a priori reason for all models to not achieve the same classification rate if not for the data driving 

them. Indeed, each model was given the same clinical scores along with the same partitions of imaging 

data over cross-validation loops and was free to optimize its own hyper-parameters to maximize accuracy. 

From this perspective, all imaging modalities were on an equal footing. The only limiting factor for each 

classifier, therefore, was the relevance – or lack thereof – of the imaging features used to train it. We can 

therefore conclude that there was truly something unique about the clinical pertinence of AD – compared 

to other candidate imaging parameters and beyond baseline clinical scores – in characterizing acute 

ischemia and its relationship to future outcome. 

 

The superior classification performance of AD over other imaging modalities corroborates 

previous studies having reported higher correlations between acute AD abnormalities of the corticospinal 

tract and future motor and global outcome with respect to other DTI parameters (Groisser et al., 2014; Liu 

et al., 2018; Moulton et al., 2015; Spampinato et al., 2017). Acute changes in AD likely reflect increased 

intracellular viscosity from direct axonal damage as supported by recent DTI-immunohistology studies or 

neuronal beading (Baron et al., 2015; Budde and Frank, 2010; Sun et al., 2006). Moreover, from the acute 

to subacute stage, AD and RD follow different trajectories. While AD monotonically decreases over this 

time period partly from cell necrosis and axonal degeneration, RD first decreases, in part, due to cytotoxic 

oedema only to then increase following the deterioration of myelin sheaths (Liang et al., 2007). This switch 

in dynamics of RD happens within days post stroke onset, limiting its ability to characterize the degree of 

ischemia and thus its predictive power. The same limitations therefore apply to FA since it takes into 

account both AD and RD.  

 

The most noteworthy result of our analysis is that continuous DTI variables, in particular AD, 

performed better than binary lesion segmentations, which have been the primary means for stroke 

topography characterization. This result has important repercussions for the long-debated independent 

role of stroke topography vs. baseline clinical variables. For example, using voxel-based lesion symptom 

mapping (VLSM), two studies reported that, once corrected for lesion volume, lesion location was no 

longer related to the 3-month follow-up mRS in the right hemisphere but remained so in the left 

hemisphere (Ernst et al., 2018; Wu et al., 2015). Similarly, Munsch et al., (2016) used VLSM to identify 

eloquent brain regions associated with the 3-month mRS; in a separate analysis, they showed that the 

number of overlapping voxels between patients’ lesions and the previously found eloquent cluster was not 

an independent predictor of good vs. poor outcome. While these studies have provided evidence that 
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stroke location may not be as important as baseline clinical variables in predicting long-term outcome, our 

findings suggest that these previously reported negative results may arise from inadequately 

characterizing stroke topography with simple lesion segmentation. Furthermore, unlike models with binary 

lesion segmentations, which are constrained to areas of high infarct incidence, whole-brain diffusion maps 

can also take into account abnormalities at a distance from the lesion. In light of these considerations, 

right hemisphere and perhaps additional left hemisphere regions may still in fact highly contribute to long-

term stroke outcome, if represented by more sensitive imaging markers.  

 

Our SVM models with AD asymmetry maps revealed a spatially heterogeneous set of weights for 

classification. In particular, the weights corresponding to larger decreases in diffusivity for poor vs. good 

recovery formed a cluster in the white matter at the crossroads of many major fiber tracts governing motor, 

language, and attention, in concordance with many previous findings (Cheng et al., 2014; Cuingnet et al., 

2011; Ernst et al., 2018; Munsch et al., 2016; Rosso et al., 2011; Wu et al., 2015). Importantly, this critical 

region was established through the contribution of different lesion topographies accounting for 77.5% of 

the variance in AD asymmetry maps, as identified with PCA. An interpretation of this result is that 

functional outcome is mostly governed by a subset of reoccurring lesion patterns, rather than individual 

voxels. In other words, it is the similarity between the spatial extent of a patient’s lesion and these critical 

patterns that ultimately determines autonomy vs. dependence on external aid at 3-months post-stroke, 

supporting the significance of lesion topography (Corbetta et al., 2015). In fact, this procedure likely 

enabled us to overcome the fixed set of lesion patterns specific to our cohort and capture global lesion 

topographies that generalize to a typical population.  

 

A caveat of our study was our inability to disentangle the contribution of lesion side. Indeed, 

machine learning techniques require large datasets to build reliable models and evaluate their 

performance in an unbiased way (Varoquaux, 2018). For this reason, we were obliged to keep all lesions 

in the same hemisphere to maximize the amount of usable data. As mentioned, previous studies have 

highlighted differential effects of lesion topography for left vs. right lesions, either from a symptomatology 

(Cheng et al., 2014) or a clinical relevance (Ernst et al., 2018; Munsch et al., 2016; Wu et al., 2015) point-

of-view. While our approach prevented us from further investigating this, our study provides a serious 

argument to revisit certain conclusions of these studies, since most of them have been performed with 

lesion segmentations. Moreover, our tractography analysis revealed a crucial role of fiber tracts involved in 

well-recognized lateralized functions, such as the arcuate fasciculus for language (Marchina et al., 2011; 

Rosso et al., 2015) and the SLF-II for neglect (Thiebaut de Schotten et al., 2014), suggesting that our 

model captured important structures of stroke topography for both left and right hemispheres. 

 

A second limitation could be our restrained analysis to the white matter and inclusion of patients 

with stroke of the carotid territory. However, in a general clinical population, as in ours, infarcts of the 

carotid territory represent more than 85% of all stroke and mostly occur in subcortical structures where 
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DTI is most informative and important diffusion changes take place in response to acute ischemia (Bhagat 

et al., 2008; Muñoz Maniega et al., 2004; Phan et al., 2005; Yang et al., 1999). 

 

5. Conclusion 

 

In summary, this is the first study to investigate the effect of stroke topography on functional 

outcome evaluated with both DTI and lesion segmentations in a machine learning framework. Our study 

highlights the added benefit of axial diffusivity in addition to the limitations of binary lesion segmentation 

for quantifying acute ischemic stroke topography and its relation to long-term outcome. Our results have 

important implications for salvaging brain areas critical for functional outcome and can aid clinicians in 

weighing the costs, benefits, and risks for thrombolysis or thrombectomy treatments at the acute stroke 

stage. 
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6.3 Conclusion

Axial diffusivity maps yielded the best accuracy of all imaging parameters (82.8%),

compared to that of lesion segmentations (76.7%) when predicting 3-month functional

outcome. Model weights revealed a strong contribution of clinical variables, notably –

in descending order – lesion volume, thrombectomy treatment, and recanalization

status, in addition to the deep white matter at the crossroads of major white matter

tracts. This study confirms that axial diffusivity is a more appropriate imaging marker

to characterize acute stroke damage for predicting long-term outcome than commonly

used binary lesion segmentations. Moreover, our study supports the importance

of the deep white matter, notably within the corona radiata, and the many major

long-range fiber bundles that pass through it.

The second study made use of all available DTI parameter maps in addition

to classically used lesion segmentations to predict long-term global outcome. This

study contributed two important conclusions to the scientific community. First, we

showed that whole-brain axial diffusivity maps are capable of yielding generalizable

predictions of long-term global outcome. Second, we demonstrated the limitations of

making predictions of brain damage characterized by simple lesion segmentations.

Due to the difficulty of obtaining DTI data at early times post-stroke, the vast majority

of studies have used lesion segmentations on rapidly acquired anatomical MRI in

order to relate the spatial extent of ischemic lesions to outcome. However, the results

of this study suggest that the severity of acute ischemia, captured specifically by

the continuous values of AD, reflects damage unique to given patients and their

associated outcome. Of note, we did not evaluate the contribution of the day 1 NIHSS

score as it is already encoded in the topography of the stroke. We did, however, control

for other important clinical variables that could affect the magnitude of diffusion, such

as thrombectomy treatment and recanalization status. Nevertheless, AD highlighted

important brain regions for the prognosis of long-term global outcome, which resulted

in the best predictions. As described in section 3.4, while AD, mean diffusivity (MD),

and radial diffusivity (RD) are all decreased at 24 hours post-stroke, only AD remains

consistenly decreased, whereas radial diffusivity (RD) – and thus mean diffusivity

(MD) – begin to increase through demyelination. The monotonic evolution of AD

(i.e., always decreasing), with respect to the dynamic behavior of RD and MD at the

hyperacute-acute phase, likely explains why AD was able to classify patients better

than MD or RD. In any case, these diffusivity measures all yielded better predictions

than lesion segmentations or fractional anisotropy (FA). Our results therefore have
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important implications not only for finding future biomarkers of the outcome of any

functional domain – be it global, motor, or language – but also for understanding the

underlying physiopathology of acute ischemic damage and thus the neural correlates

of long-term outcome.
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7.1 Overview of Study

The results of the second study enabled us to ascertain that AD is the most appro-

priate DTI parameter for quantifying early acute stroke damage related to long-term

outcome. While a few previous studies have already shown that acute AD is an

independent predictor of long-term motor outcome, patient recruitment in these

investigations has been at quite variable intervals following stroke onset, ranging

over the first week post-stroke (1-7 days) when diffusion parameters rapidly evolve.

In other words, there was a need to investigate the earliest moment at which DTI

can yield effective predictions – that is, day 1 post stroke. Moreover, studies having

investigated the effect of acute DTI and baseline clinical variables with long-term

motor outcome suffered from small sample sizes.

In the third study, therefore, we sought to determine if changes in AD, measured

as early as 24 hours post-stroke in a consistent manner, could independently predict

motor outcome evaluated at 3 months post-stroke. Furthermore, we were also in-

terested to see if the predictive value of AD extended to a theretofore unexplored

functional domain: language. However, as explained in chapter 1, clinical variables

such as initial severity, age, and – to a lesser degree – lesion volume are also powerful

predictors of domain-specific outcomes. However, the relationship between these

important variables and outcome is mainly driven by minor stroke patients, who

generally evolve towards good recovery. On the other hand, this relationship is

more questionable for mild-to-moderate stroke patients. We therefore focused on this

subset of patients for whom outcome is more difficult to predict.

Because any predictive model should be easily implementable and reproducible

for wide-range clinical trials, we first conducted simple tract-specific analyses. Here,

we extracted changes in AD from a set of major white matter fasciculi known to be

involved in motor and language function and included them in a regression analysis

to predict clinical outcome scores at 3 months post-stroke. Since this initial analysis

relies on strong hypothesis-driven assumptions, we complemented the regression

analysis with data-driven mass univariate voxel-wise regressions to determine if

the same, additional, or altogether new regions were associated with long-term out-

come. Specifically, our goals were to (1) determine if changes in AD and in which

major white matter fasciculi within the motor and language networks were inde-

pendent predictors of outcome in these two domains in mild-to-severe acute stroke

patients, and (2) conduct similar mass univariate voxel-wise regression analyses with

whole-brain AD maps in order to determine the specificity of the anatomical regions
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Abstract 

Early severity of stroke symptoms – especially in mild-to-severe stroke patients – are imperfect predictors 

of long-term motor and aphasia outcome. Motor function and language processing heavily rely on the 

preservation of important white matter fasciculi in the brain. Axial diffusivity (AD) from the diffusion tensor 

imaging (DTI) model has been repeatedly shown to accurately reflect acute axonal damage and is thus 

optimal to probe the integrity of important white matter bundles and their relationship with long-term 

outcome. Our aim was to investigate the independent prognostic value of the AD of white matter tracts in 

the visuomotor and language network evaluated at 24 hours post-stroke for motor and language outcome 

at 3 months post-stroke. Eighteen (motor cohort) and twenty-eight (aphasia cohort) thrombolyzed patients 

with initial mild-to-severe stroke or aphasia underwent a DTI sequence at 24 hours post-stroke. Motor and 

language outcome was evaluated at 3 months post-stroke with a composite motor score and the aphasia 

handicap scale (AHS). We first used stepwise regression to determine which clinical (age, initial motor or 

aphasia severity, and lesion volume) and imaging (ratio of affected/unaffected AD of motor and language 

fasciculi) factors were related to outcome. Second, in order to determine the specificity of our a priori 

choices of fasciculi, we performed voxel-based analyses to determine if the same, additional, or altogether 

new regions were associated with long-term outcome. The ratio of AD in the corticospinal tract was the 

sole predictor of long-term motor outcome, and the ratio of AD in the arcuate fasciculus – along with age 

and initial aphasia severity – was an independent predictor of 3-month aphasia outcome. White matter 

regions overlapping with these fasciculi naturally emerged in the corresponding voxel-based analyses. AD 

of the corticospinal tract and arcuate fasciculus are effective biomarkers of long-term motor and aphasia 

outcome, respectively. 
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1. Introduction 

Finding surrogate markers of long-term motor and aphasia outcome as early as a few days 

following cerebral ischemia has become one of the most important topics in stroke research (Boyd et al., 

2017). The initial severity of motor and language deficits has been shown to highly correlate to their status 

at the chronic stage of stroke; however, clinical scales used to evaluate residual neurological function 

suffer from a poor specificity-sensitivity tradeoff. In particular, initially minor deficits will almost always 

resolve themselves in the long run, whereas patients with mild to severe impairments exhibit highly 

variable recovery trajectories, making their final outcomes difficult to predict (Pedersen et al., 2004; 

Prabhakaran et al., 2008). While other clinical factors such as age and lesion volume can refine prognostic 

models, notably for aphasia prediction (El Hachioui et al., 2013; Plowman et al., 2012), recent work has 

shown that the structural integrity of important white matter pathways in the motor and language systems 

are crucial for patient outcome (Byblow et al., 2015; Feng et al., 2015; Groisser et al., 2014; Marchina et 

al., 2011; Ramsey et al., 2017). In particular, motor outcome of the upper limb is highly dependent on the 

preservation of the corticospinal tract, whereas language outcome relies on a wider network of white 

matter fasciculi, such as the arcuate fasciculus, inferior fronto-occipital fasciculus, inferior longitudinal 

fasciculus, and uncinated fasciculus (Roelofs, 2014; Ueno et al., 2011; Zavanone et al., 2018). 

 

Diffusion weighted imaging (DWI) is an imaging modality sensitive to the diffusion of water 

molecules both in the healthy brain and ischemic stroke and is thus optimal to probe the integrity of 

important white matter bundles. Diffusion tensor imaging (DTI), an extension of DWI, is capable of 

characterizing the diffusion of water in 3D space and yields several parametric maps, each providing 

complementary insights on the integrity of affected and unaffected neural populations. Of the four classical 

DTI parameters, fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial 

diffusivity (RD), AD has been repeatedly shown to most accurately reflect acute axonal damage related to 

subacute and chronic motor and functional outcome (Doughty et al., 2016; Groisser et al., 2014; Liu et al., 

2018; Moulton et al., 2019, 2015; Spampinato et al., 2017). Acute changes in AD likely reflect increased 

intracellular viscosity from direct axonal damage as supported by recent DTI-immunohistology studies or 

neuronal beading (Baron et al., 2015; Budde and Frank, 2010; Sun et al., 2006). Groisser et al. (2018) 

scanned 10 stroke patients at 3-7 days post-stroke with DTI and evaluated their motor outcome with a grip 

force and dexterity assessment at 2 and 6 months. They found that early decreases in AD of the CST 

highly correlated with chronic motor outcome, even after adjusting for initial impairment and lesion volume. 

On the other hand, no study has yet confirmed these findings in a larger cohort or examined the predictive 

value of AD in language fasciculi on long-term aphasia outcome. In fact, to date, there have been no 

established predictors of long-term aphasia outcome from biomarkers assessed in the hyperacute period 

(<24h), and finding such markers has been declared a developmental priority (Boyd et al., 2017). 
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In this study, we attempted to determine if acute changes in AD in major white matter fasciculi of 

the motor network and the language network – evaluated at even earlier time points compared to previous 

studies (i.e., 24 hours post-stroke) – could predict not only motor but also aphasia outcome at 3 months 

post-stroke, independently from important clinical variables, such as age, lesion volume, and initial 

impairment. To do so, we retrospectively studied thrombolyzed stroke patients from our emergency stroke 

unit who systematically undergo a DTI imaging protocol at 24 hours post-stroke. Because any predictive 

model should be easily implementable and reproducible for wide-range clinical trials, we first conducted 

simple tract-specific analyses by extracting changes in AD from a set of major white mater bundles and 

inserted them in a regression analysis along with clinical variables (hypothesis-driven analysis). Next, in 

order to validate our choices of white matter tracts, we complemented the regression analysis with mass 

univariate voxel-wise regressions to determine if the same, additional, or altogether new regions were 

associated with long-term outcome (data-driven analysis). 

 

Our goals were to (1) determine if changes in AD and in which major white matter fasciculi within 

the motor and language networks were independent predictors of outcome in these two domains in mild-

to-severe acute stroke patients, and (2) conduct similar mass univariate voxel-wise regression analyses 

with whole-brain AD maps in order to determine the specificity of the anatomical regions corresponding to 

the a priori choices of fasciculi. We predicted that (A), in concordance with previous work, changes in AD 

would significantly contribute to the prediction of long-term motor and also language outcome – beyond 

important clinical variables, such as age, lesion volume, and initial impairment – and (B) that the specific 

fasciculi chosen a priori in the first analysis – namely, those that significantly contributed to motor and 

language outcome – would also emerge in the whole-brain analysis.  

 

2. Materials and Methods 

 

2.1. Patients 

Patients were retrospectively screened from October 1, 2015 until April 30th, 2018 at the 

Urgences Cérébrovasculaires at the Hôpital de la Pitié Salpêtrière. Inclusion criteria common to both 

cohorts were: (1) MRI-demonstrated ischemic stroke of the carotid territory, (2) thrombolysis treatment 

within 4.5 h after stroke onset, (3) follow-up MRI access at 24 hours post-stroke, and (4) a clinical 

assessment at 3-months post-stroke with either a motor or language evaluation according to the patients’ 

deficits. Since we were interested in predicting mild-to-severe patients at the acute stage, we only 

considered patients with a day 1 NIHSS > 4 for patients in the motor outcome cohort and a day 1 Aphasia 

Rapid Test (ART) > 4 (see section 2.2) for patients in the aphasia outcome cohort. Only patients with 

lesions to the left hemisphere were considered for the aphasia outcome cohort. Thrombolytic treatment 

was administered according to the American Stroke Association and the European Stroke Organization 

guidelines (0.9 mg/kg, maximal dose 90 mg)(Jauch et al., 2013). Patients with bilateral lesions were 
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deemed suitable for analysis if clinical symptoms were lateralized to one hemisphere (e.g., unilateral 

hemiparesis, aphasia without neglect, etc.). For these patients, the affected hemisphere was considered 

as that which caused clinical symptoms. Exclusion criteria were (1) overly artifacted imaging data, (2) 

dependence on external aid before the stroke (i.e., pre-stroke mRS > 2) or the reoccurrence of stroke 

before the 3-month follow-up, (3) death before the 3-month follow-up. All imaging and clinical data were 

obtained during routine clinical workup in our stroke center. According to French legislation, explicit 

informed consent was therefore waived. The study was approved by the Pitié-Salpêtrière Hospital Ethics 

Committee. 

 

2.2. Evaluation of Initial Impairment 

Initial stroke severity was evaluated with the National Institute of Health Stroke Scale (NIHSS) upon 

admission to our stroke clinic and at day 1 post-stroke. The day 1 NIHSS motor item of the upper limb 

(UL-NIHSS) was also recorded as a proxy for initial motor impairment. Initial aphasia severity was 

evaluated with the ART (Azuar et al., 2013). The ART is a NIHSS-like 26-point scale with higher scores 

indicating greater impairment. It is based on 6 items, consisting of simple comprehension tasks (rated 

from 0-5 points), word and sentence repetition (0-8 points), object naming (0-6 points), semantic fluency of 

animals (0-4 points), and dysarthria evaluation (0-3 points). The reproducibility, sensitivity, and high 

predictive value of the ART score have been published, and its external validation has recently been 

reported in Portuguese and Indian populations (Azuar et al., 2013; Jayakumar et al., 2018; Tábuas-

Pereira et al., 2018).  

 

2.3. Three-month Evaluation 

The motor evaluation consisted of the (1) the Jebson-Taylor Test (JTT) (Jebsen et al., 1969), and (2) a 

grip-force evaluation for the maximum voluntary contraction (MVC) using a dynamometer (MIE, Medical 

Research Ltd., http://www.mie- uk.com/pgripmyo/index.html). Similar to other studies (Moulton et al., 

2018; Park et al., 2013; Rondina et al., 2017), we evaluated residual motor ability with a composite motor 

score by taking the first principle component of the following measures: the ratio of the affected/unaffected 

JTT total times (rJTT) and the ratio of the affected/unaffected MVC (rMVC). The first principle component 

accounted for 86.9% of the total variance between the two scores. In our study, a higher motor composite 

score corresponded to a more severe deficit. 

 

Aphasia outcome was assessed at 3 months post-stroke using the Aphasia Handicap Score (AHS) 

(Azuar et al., 2013).  The AHS is a five-point scoring system for disability in verbal communication similar 

to the modified Rankin Scale. 0 = normal communication, 1 = minor difficulties of language without 

disability (no impact on normal life), 2 = mild-language related disability (without restrictions in the 

autonomy of verbal communication in daily life), 3 = moderate language-related disability (restricted 

autonomy of verbal communication), 4 = severe language-related disability (lack of effective verbal 
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communication), 5 = mutism or total loss of verbal expression and comprehension. There is a strong 

inverse relation with the AHS and the Boston Diagnosis Aphasia Examination aphasia severity rating 

scale (ASRS). For example, a AHS score of 0 corresponds to a ASRS score of 5, whereas a AHS score of 

5 corresponds to a ASRS score of 0 (see Azuar et al. (2013) for a detailed description as well as the 

reproducibility and comparison with the ASRS). Here, the AHS was analyzed as a continuous variable. 

 

2.4. MRI acquisition and processing 

2.4.1. Acquisition 

Imaging data used in this study are from our emergency stroke unit in which we examined 

patients with typical DWI sequences but also a DTI protocol. Twenty-four hours after admission, patients 

underwent a follow-up MRI with a 3T MR750 MRI scanner (General Electric) with an 8-channel coil. The 

following DWI sequences were used for the current analysis: (1) an averaged 3-direction DWI (b=1000 

s/mm2, TR=11700ms, TE=72.3ms, matrix size=256⨉256, slice number=48, voxel size=0.94⨉0.94⨉3mm3, 

acquisition time=0:59 min) and (2) a 30-direction DWI (2 b=0 s/mm2 images followed by 30 non-collinear 

diffusion-encoding gradients at b=1000 s/mm2, TR=12000ms, TE=82.3ms, matrix size=256⨉256, slice 

number=44, voxel size=1.09⨉1.09⨉3mm3, acquisition time=6:36 min). 

 

2.4.2. Image processing 

2.4.2.1.  Preprocessing and spatial normalization 

Image processing served to prepare data for spatial normalization to a study-specific diffusion 

imaging template as outlined in Moulton et al. (2018). In brief, after correcting for (1) denoising (Veraart et 

al., 2016a, 2016b), (2) eddy currents and head motion using FSL’s EDDY with slice interpolation for slices 

with significant signal drop (Andersson et al., 2016; Andersson and Sotiropoulos, 2016), and (3) bias-field 

correction (Zhang et al., 2001), FA and AD maps were calculated from a tensor model estimated using 

FSL's DTIFIT (Basser et al., 1994; Smith et al., 2004), and brains were skull stripped (Smith, 2002). 

Lesion segmentation was performed by identifying hypersignal regions on the 3-direction DWI sequence 

image in order to calculate the volume of the lesion. 

  

Warped images were used in a tract-specific analysis to extract average diffusion values from 

various left- and right-hemisphere fasciculi for a regression analysis (section 2.4.3). For our voxel-based 

analyses, we required that both affected and unaffected hemispheres be fixed to the same side in order to 

calculate voxel-wise asymmetry maps (see section 2.4.4). To this end, both original (unflipped) and flipped 

FA maps were registered to an in-house healthy-subject FA template using Advanced Normalization Tools 

(ANTs) with lesion masking. The corresponding warp fields were thereafter applied to the original and 

flipped AD maps (Supplementary Materials). 
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2.4.3. Tractography  

Whole-brain tractography was performed on an in-house Fiber Orientation Distribution (FOD) 

imaging template constructed from healthy individuals as described in Moulton et al. (2018) 

(Supplementary Materials). Adhering to the procedures outlined in Rojkova et al. (2016) and Catani and 

Thiebaut de Schotten (2008), we virtually dissected the left and right (1) second and (2) third branches of 

the superior longitudinal fasciculus (SLF) and (3) the CST as part of the motor network in addition to the 

left and right (A) arcuate fasciculus (AF), (B) inferior fronto-occipital fasiculus (IFOF), (C) inferior 

longitudinal fasciculus (ILF), and (D) the uncinate fasciculus (UNC) as part of the language network. The 

SLF-II and SLF-III were included for analysing motor outcome in addition to the CST due to their important 

role in reaching and reach-to-grasp movements (Budisavljevic et al., 2016), which are necessary for good 

performance on the JTT evaluation. Moreover, microstructural changes assessed with DTI in such parieto-

frontal connections have shown to play a role in residual motor function at the chronic stage, beyond 

damage to the CST (Schulz et al., 2015). 

 

For the regression analyses, we extracted density-weighted AD values from the affected and unaffected 

fasciculi of the visuomotor and language networks from which ratios of the affected/affected AD (rAD) 

were computed (Moulton et al., 2018).  

 

2.4.4. Construction of asymmetry maps for voxel-based analyses 

To process all images in the same hemisphere for the voxel-based analyses, we warped both the 

original and flipped AD maps. Indeed, in stroke imaging, it is common practice to analyze relative 

differences between the affected and unaffected hemispheres rather than absolute values of the affected 

hemisphere alone. To this end, we kept all affected hemispheres to the same side (here, the left-

hemisphere) and constructed laterality index (LI) maps, hereafter referred to as asymmetry maps, using 

the normalized original and flipped DTI maps with the following equation at each voxel: (affected-

unaffected)/(affected+unaffected). The LI is a score between -1 and 1 for which the negative range 

indicates smaller values on the affected side and the positive range indicates larger values on the affected 

side. Particularly, acute stroke is largely characterized by strong decreases in AD with respect to the 

unaffected hemisphere. 

 

AD asymmetry maps were smoothed with a 6 mm Gaussian kernel to compensate for imperfections in 

normalization while conserving the specificity of each region. Since all of the information of asymmetry 

maps is contained in one hemisphere, our analysis can be reliably restrained to one side. Moreover, 

relative differences in diffusivity are more pronounced in white matter than grey matter regions (Bhagat et 

al., 2008; Muñoz Maniega et al., 2004; Yang et al., 1999). With these considerations, we restricted our 



 7 

analysis to the left cerebral white matter mask from the Harvard-Oxford Atlas by registering our study-

specific FA template to the FMRIB58_FA template as provided by the FSL software using ANTs.  

 

2.5. Statistics 

Descriptive statistics are reported as the mean and interquartile range (IQR). Proportions were tested 

different from 50% with exact binomial tests. Between-group differences were tested with a Wilcoxon 

Rank-Sum test. Testing differences in behavioral and imaging measures between the affected and 

unaffected side were accomplished with a paired Wilcoxon Signed-Rank test. These statistical tests were 

performed using the R programming software (R Core Team, 2016; www.r-project.org). 

 

For motor and aphasia outcomes, we ran two stepwise regressions, a purely “clinical” model with only 

clinical scores, and a mixed “radiological-clinical” model with both clinical and tract-specific measures of 

rAD. Dependent variables for the motor and language models were the motor composite score and the 

AHS at 3 months, respectively. Clinical independent variables consisted of age, lesion volume, and initial 

impairment (i.e., day 1 UL-NIHSS for motor models and day 1 ART for language models). Radiological 

variables were the rAD values of the visuomotor fasciculi for motor outcome and the rAD values of the 

language fasciculi for aphasia outcome as described in section 2.4.3. For all models, variables significant 

at p<0.05 were retained in the final regression models. Explained variance is reported as the adjusted R2 

of the final model. Step-wise regression models were run using MedCalc (version 12.5.0, Belgium, 2013). 

 

To ensure that our a-priori choice of radiological variables (i.e., fasciculi) in the step-wise regression 

analyses were valid, we ran two mass univariate ordinary least squares regression analyses using 

permutation testing for family-wise error (FWE) corrected p-values as implemented in Nilearn v0.5.0 in 

Python (Abraham et al., 2014). Similar to the step-wise regression analyses, the dependent variables 

were the motor composite score and the AHS, and the corresponding independent variables were the AD 

asymmetry maps. In concordance with the step-wise regression analyses, we sought to determine in 

which regions significantly lower AD at day 1 post-stroke was associated with more severe deficits at 3 

months post-stroke, correcting each linear model by the following confounding variables: (1) age, (2), 

lesion volume, and (3) the day 1 UL-NIHSS or ART for the motor and aphasia outcome models, 

respectively. Cluster location is reported according to the JHU white-matter tractography atlas (Laboratory 

of Brain Anatomical MRI, Johns Hopkins University). 

 

3. Results 

3.1. Patient Cohorts 

Eighteen patients (9 female, 65.5 [50.0;77.7] years-old) were included in the motor analysis, and 

twenty-eight (13 female, 69.6 [53.3;78.9] years-old) were included in the language analysis (Table 1). Ten 
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patients (4 female, 64.7 [50.0-75.4] years-old) were common to both groups. Upon removal of these 

patients, groups did not differ in day 1 NIHSS (p=0.8), age (p=0.9), or lesion volume (p=0.6). All 

differences in clinical scores and AD between the affected and unaffected side were significant except for 

the rAD of the ILF in the language cohort. The motor cohort had a significantly higher rate of left 

hemisphere lesions than right lesions (p<0.01). In both groups, the highest infarct incidence was in the 

insular and central opercular cortex (Figure 1). 

 

 Motor Group (N=18)  Language Group 

(N=28) 

Day 1 Clinical variables 

Females N (%) 9 (50%) Females N (%) 13 (46%) 

Left hemisphere 

lesions N (%) 

15 (83%)** Left hemisphere 

lesions N (%) 

28 (100%)** 

Age (years) 65.5 [50.0;77.7] Age (years) 69.6 [53.3;78.9] 

Lesion volume (mL) 42.6 [25.8;74.5] Lesion volume (mL) 41.3 [20.5;72.2] 

Day 1 NIHSS 10.0 [7.0;13.5] Day 1 NIHSS 11.0 [7.0;18.3] 

Day 1 UL-NIHSS 1.00 [1.00;2.75] Day 1 ART 22.0 [14.5;24.0] 

Day 1 Radiological Variables 

rAD CST 0.98 [0.94;1.00]* rAD AD 0.94 [0.81;0.97]* 

rAD SLF-II 0.98 [0.95;1.00]* rAD IFOF 0.97 [0.93;1.01]* 

rAD SLF-III 0.92 [0.89;0.98]* rAD ILF 0.99 [0.95;1.03] 

  rAD UNC 0.95 [0.88;0.97]* 

Month 3 Evaluation 

Month 3 rMVC 0.85 [0.58;0.98]* Month 3 AHS 1 [1;3] 

Month 3 rJTT 1.14 [1.01;1.44]*   

Motor Composite Score -0.37 [-0.63;0.32]   

Table 1: Motor and language cohort. *p<0.05 according to a paired Wilcoxon signed-rank test between 

the affected and unaffected side. **p<0.05 according to an exact binomial test. 
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Figure 1: Lesion probability maps for the motor (top) and language (bottom) cohorts overlaid on the 

FMRIB58_FA template. The color map reflects the percentage of lesioned voxels. For the motor cohort, all 

lesions are fixed to the left hemisphere. Axial slice coordinates are given in MNI space. 

 

3.2. Prediction of 3-month outcome using clinical and tract-specific 

measures 

The only independent clinical predictor of long-term motor outcome was lesion volume, explaining 25.6% 

of the variance in motor impairment. Age and day 1 UL-NIHSS were not significantly associated with 

motor outcome. The inclusion of tract-specific measures revealed the rAD of the CST to be the sole 

independent predictor (p=0.0003), explaining 28.1% more variance than clinical variables for a total of 

53.7% of explained variance in motor impairments at 3 months. 

 

For language, the step-wise regression yielded a clinical model retaining only day 1 ART (p<0.001) for 

aphasia outcome, explaining 53.7% of the variance in outcome. On the other hand, after introducing 

radiological variables, the step-wise regression retained the rAD of the AF (p=0.013), age (p=0.037), and 

day 1 ART (p=0.002), explaining an additional 12.9% of the variance for a total of 66.6% of explained 

variance in aphasia severity at 3 months. 

 

To verify that the motor and language fasciculi were specific to this functional domain, we reran the same 

step-wise regressions and included the rAD measures of all fasciculi. The models remained unchanged. 



 10 

 

3.3. Prediction of 3-month outcome using voxel-based analyses with 

AD asymmetry maps 

Four clusters corresponding to regions of lower AD asymmetries and more severe motor outcome of the 

upper limb emerged from the voxel-based analysis. There was a predominantly large cluster in the deep 

white matter of the corona radiata, the underlying white matter of the precentral and postcentral gyri and 

superior parietal lobe (Figure 2). Smaller clusters were found in the ventral temporal lobe as well as in the 

frontal and occipital poles. 

 

 

 

Figure 2. Clusters of reduced AD at day 1 post-stroke significantly associated with more sever motor 

impairments of the upper limb (top) and aphasia severity (bottom) at 3 months post-stroke overlaid on the 

FMRIB58_FA template. Both correlations are corrected for age, lesion volume, and initial impairment. For 

the motor cohort, all AD asymmetry maps were processed in the left hemisphere. Axial slice coordinates 

are given in MNI space. The color map shows the T statistic of the general linear model. All voxels are 

FWE-corrected at p<0.05.   
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As for the language analysis, three significant clusters corresponding to regions of lower axial diffusivity 

asymmetries and more severe aphasia outcome were found in the white matter of the AF as well as in the 

ventral temporal lobe, corresponding to waypoints of the ILF, and the frontal pole at the terminations of the 

IFOF and UNC (Figure 2).  

 

 

4. Discussion 

Combining acute DTI data in combination with baseline clinical scores measured at day 1 post-

stroke, we found that acute changes in AD of the CST was an independent predictor of chronic motor 

impairment and – to our knowledge, for the first time – demonstrated that AD of the AF was also an 

independent predictor of aphasia outcome at 3 months in mild-to-severe stroke patients. Moreover, these 

tract-specific results were confirmed in a subsequent voxel-based analysis in which – without any a priori 

assumptions – white matter regions corresponding to these same fasciculi naturally emerged and 

remained significant even after adjusting for age, lesion volume, and initial impairment. The novelty of our 

study lies within the systematic availability of DTI data at 24 hours post-stroke to investigate the prognostic 

value of acute changes in axial diffusivity for long-term motor and aphasia outcome. Concordant with 

previous studies, we have confirmed that acute changes in AD of the CST are independent predictors of 

long-term motor outcome (Groisser et al., 2014), yet we have demonstrated this relationship to be valid at 

the very early time point of 24 hours post-stroke. More interestingly, our results suggest that the 

asymmetry in AD of the AF could serve as an effective biomarker of future aphasia outcome, responding 

to a developmental priority of the stroke imaging community. 

 

4.1. Diffusion determinants of motor outcome 

 The step-wise regression revealed the CST, but not parieto-frontal pathways of the visuomotor 

network, to be independent predictors of long-term motor outcome. While the corresponding voxel-based 

analysis revealed a cluster highlighting, in part, the white matter of the CST, the cluster also extended far 

posteriorly to the white matter underlying the post-central gyrus and the superior parietal lobe. The 

posterior part of the cluster likely encompassed a portion of these parieto-frontal fasciculi, yet their 

correlations to future motor impairment were not independent of damage to the CST. Interestingly, 

however, the cluster largely overlapped white matter regions of ascending thalamocortical fibers extending 

until to the postcentral gyrus, which constitute the anatomical substrates for somatosensory perception 

(Meyer et al., 2016). Generally speaking, motor performance heavily relies on sensory and proprioceptive 

feedback loops within the somatosensory system in order to adjust and correct on-going movements 

(Scott, 2004), which are crucial factors for motor outcome in stroke patients (Meyer et al., 2014). It would 

be interesting for future studies to explicitly relate somatosensory deficits and acute changes in axial 

diffusivity for long-term motor outcome. 
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 Surprisingly, the initial motor impairment was not an independent predictor of motor outcome. 

However, unlike the acute aphasia evaluation, we did not use a specific scale but the upper limb motor 

item of the NIHSS. The UL-NIHSS is scored from 0 to 4 and is easily obtained at day one. The long-term 

motor assessment was accomplished with sensitive measures of dexterity and strength output; however, 

the regression model only accounted for 53.7% of the variance. In this case, the unexplained variability in 

motor outcome might in fact be explained by missing clinical or imaging features. For example, an 

evaluation of motor impairment at the acute stage more refined than UL-NIHSS may have accounted for 

additional differences in motor outcome, yet these measures are rather difficult to obtain in clinical 

practice, especially at day 1 post-stroke onset. Similarly, tract-specific measures of somatosensory 

pathways could have improved the proposed prognostic model.  

 

4.2. Specificity of the arcuate fasciculus for long-term aphasia 

outcome 

As for language outcome, our tract-based analysis revealed the AF and no other language-related 

tract to be an independent predictor of aphasia outcome. Moreover, our voxel-based analysis suggests 

that damage to the dorsal portion of the AF drove the strong correlation between this tract and future 

language outcome. While there were two other clusters, one within the white matter of the ventral 

temporal lobe and a thin cluster in the frontal lobe, which are part of the ventral language pathways, the 

rAD of the ventral language pathways did not survive the statistical significance from the step-wise 

regression, and it is unclear if the latter was driven by mismatches in normalization at the grey-white 

matter interface.  

 

In any case, our tract-based and voxel-based analyses having highlighted the importance of the 

AF suggest that the AHS reflects functions related to the dorsal stream of language processing. 

Traditionally, the AF is posited to primarily underpin repetition in language production (Hickok and 

Poeppel, 2007), which has been corroborated by several studies (Cloutman et al., 2009; Fridriksson et al., 

2010; Kümmerer et al., 2013). However, more recent models have attributed a wider range of functions to 

the AF for spontaneous speech (Dick and Tremblay, 2012; Glasser and Rilling, 2008; Roelofs, 2014). 

Since the AHS reflects functional daily use of language, which is highly weighted by communication skills 

related to spontaneous speech, it is perhaps unsurprising that the AF correlate so well with this global 

measure of aphasia. In fact, several previous studies have also attributed a wide range of functions to the 

AF, reinforcing its crucial role in aphasia outcome.  For example, tract-specific analyses performed at the 

chronic stage of stroke have reported that damage to the AF has been shown to correlate with rate, 

informativeness, and efficiency of speech (Marchina et al., 2011), fluency (Basilakos et al., 2014; 

Fridriksson et al., 2013), and other various measures of speech (Geva et al., 2015). One notable study by 

Hillis et al. (2018) acquired acute DWI scans <48 hours post-stroke and found that lesion load to the 

posterior superior temporal gyrus and the AF was highly predictive of improvement in object naming 6 
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months afterwards. In terms of voxel-based studies with early imaging data to predict chronic outcome, 

Ramsey et al. (2017) investigated language recovery in a large cohort of patients using lesion location 

from brain imaging performed within 2 weeks post stroke; they showed that worse aphasia at 3 months 

was associated with lesions of the superior and medial temporal gyri and the white matter corresponding 

to posterior regions of the AF, which improved prediction beyond lesion size, age, education level, 

physiotherapy dose, and baseline behavioral measurements.  

 

As we are the first to report day 1 changes in AD of the AF related to chronic aphasia, it is difficult 

to compare our results to other studies. In fact, there are few studies reporting acute (<1 week post-

stroke) changes in diffusivity for future aphasia outcome. In one investigation similar to ours, Hosomi et al. 

(2009) acquired DTI data at 2 days post-stroke in thirteen patients and reported that the FA of the AF was 

unable to distinguish between aphasic and non-aphasic patients at discharge. Unfortunately, this study did 

not provide information on any other diffusivity parameter, such as AD. Nevertheless, acute FA has 

repeatedly been shown to be a poor marker of acute neuronal damage and long-term motor and global 

outcome (Doughty et al., 2016; Groisser et al., 2014; Moulton et al., 2019, 2015); thus, a similar 

relationship would also be expected for language outcome. More similar to the present study, Zavanone et 

al. (2018) reported a significant link between acute changes in diffusivity with chronic language outcome 

using apparent diffusion coefficient (ADC) maps at day 1 post-stroke and ART scores at 6 months post-

stroke. They found that lower ADC values in the posterior superior and middle temporal gyri, and the 

underlying white matter corresponding to the AF, ILF, and IFOF significantly correlated with worse aphasia 

outcome. 

 

More importantly, not only have we confirmed that initial aphasia severity is crucial to predict long-

term language outcome (Lazar et al., 2010; Pedersen et al., 2004), but we have also demonstrated that 

the AD of the AF contains additive information for improving prognosis. Moreover, this variable lead to a 

clinically relevant increase of 12.9% in explained variance with respect to a purely clinical model. This 

extra variability in aphasia outcome captured by a DTI imaging protocol suggests that this radiological 

exam can provide clinicians with the pertinent information as early as day 1 post-stroke to make accurate 

predictions for mild-to-severe stroke patients.  

 

Despite the many candidate fasciculi and clinical variables entered in the step-wise regression to 

capture the variability in chronic aphasia, the final model only explained 66.6% of the variance in language 

outcome. In fact, the complementarity of the tract-specific and voxel-based analyses suggest that all of the 

pertinent predictors of aphasia outcome – here, the rAD of the AF, age, and initial aphasia severity – were 

well accounted for. One logical follow-up question, therefore, is: what could be responsible for the 

remaining unexplained variance? The answer may lie in an unaccounted clinical, imaging, or more 

profound neuroanatomical features such as aphasia type, damage to cortical regions outside the scope of 
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our analysis, hemispheric dominance, or wide-range network measures (Forkel et al., 2014; Fridriksson et 

al., 2018; Watila and Balarabe, 2015).  

 

4.3. Limitations 

A small caveat of the motor cohort was the unbalanced side of lesions. Indeed, in our stroke unit, the 

day 1 follow-up DTI protocol is only part of the imaging clinical routine for patients who receive 

thrombolysis treatment in order to closely monitor efficacy of the treatment and potential complications. 

This imbalance could be explained by the fact that aphasic patients (usually afflicted by left-sided lesions) 

are known to seek medical help earlier than non-aphasic patients (which, in large part, suffer from right-

sided lesions) and are therefore more prone to arrive within the therapeutic window of 4.5 hours (Engelter 

et al., 2006).  

 

Second, since we limited prognosis to mild-to-severe stroke patients, our findings will likely not 

generalize to minor stroke or aphasia. Indeed, in these patients, initial severity is a very strong indicator of 

near-perfect outcome or complete recovery, leaving little variance left to be explained by imaging variables 

(Lazar et al., 2010; Pedersen et al., 2004). Consequently, future research may aim to refine cutoff values 

of initial aphasia severity in order to determine which patients could benefit from a DTI scan at 24 hours 

post-stroke to improve the certainty of prognosis. 

 

5. Conclusion 

In summary, our study has shown that acute changes in AD measured as early as 24 hours post-

stroke in crucial white matter pathways are independent predictors of not only motor but also aphasia 

outcome in mild-to-severe stroke patients. With respect to previous research, our findings demonstrate 

that damage to the CST predicts better than initial motor severity and that the AD of the AF adds a 

clinically relevant improvement to the prediction made by baseline clinical variables.  

While the sample size of our cohorts may be considered small, we have purposefully limited our 

analysis to patients for whom prognosis is difficult to predict, which we believe constitutes a noteworthy 

strength of the current investigation. As MRI acceleration techniques continue to progress, acquiring DTI 

data in emergency stroke units, as is done in ours, may allow these markers of motor and language 

outcome to be easily incorporable in clinical trials at the hyperacute and acute stages of stroke. Moreover, 

that AD strongly correlates with outcome in two functionally and anatomically separate domains suggests 

that all future investigations employing DTI at the acute stroke stage should quantify early brain damage 

with AD. Finally, our results have important implications for salvaging brain areas critical for motor and 

aphasia outcome and can aid clinicians in weighing the costs, benefits, and risks for thrombolysis or 

thrombectomy treatments at the acute stroke stage. 
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7.3 Conclusion

The last study of the current thesis revealed two effective and simple imaging biomark-

ers of long-term motor and language outcome. Not only did we confirm that acute

AD of the corticospinal tract is associated with chronic motor impairment, but we

have demonstrated this relationship to be valid at the very early time point of 24

hours post-stroke. However, the most novel result of this investigation was the

first-time report of the AD of the arcuate fasciculus as an independent predictor of

chronic aphasia severity. Moreover, these tract-specific results were confirmed in

a subsequent voxel-based analysis in which – without any a priori assumptions –

white matter regions corresponding to these same fasciculi naturally emerged and re-

mained significant even after adjusting for age, lesion volume, and initial impairment.

Importantly, our results showed that damage to the corticospinal tract alone – that

is, with no contribution of the initial motor deficit – was an independent predictor

of motor outcome. For aphasia outcome, on the other hand, initial severity still

remained a significant predictor, yet the AD of the arcuate fasciculus explained a

clinically relevant increase in the variability of patient outcome. Finally, since the

entire analysis – from processing the raw data to the extraction of axial diffusivity

in these two fasciculi using the normalization strategy proposed in chapter 5 – was

entirely automized, these biomarkers of acute damage could be easily implemented

in clinical practice.
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The present thesis benefits from robust image processing techniques and a mix-

ture of machine learning and classical statistical analyses to respond to a lack of

reliable diffusion tensor imaging (DTI) biomarkers at the acute stage of stroke for

long-term global, motor, and language outcome. More precisely, the objectives of the

current doctoral work were threefold: (1) determine a spatial normalization strategy

for diffusion MRI data of acute stroke patients that preserves anatomical overlap

of crucial white matter structures, (2) assess which diffusion parameters accurately

capture acute stroke damage related to long-term functional outcome, and (3) con-

clude whether acute ischemic damage to major white matter fasciculi, quantified

with DTI, can bring to light simple and independent biomarkers of long-term motor

and language outcome. Using a unique dataset to conduct the proper research to

achieve these objectives, the present thesis led to three major contributions to the

scientific community in the form of one publication and two submitted articles. The

results of the present work strongly support the use of AD for quantifying early brain

damage and also its use within crucial brain regions such as the corona radiata, the

corticospinal tract, and the arcuate fasciculus for prognosis. The current discussion

reviews the strengths and limitations concerning the implementation of the DTI

protocol, the practicality of its use in clinical trials, and perspectives for future work.

8.1 Implementation in Clinical Practice

Above all, it is important to reflect on the remarkable dataset that drove the inves-

tigations of the current thesis: thrombolyzed patients who underwent a diffusion-

weighted imaging protocol with 30 diffusion-encoding directions at the very early

time point of 24 hours post-stroke. From a clinical perspective, this dataset is truly

unique in its kind with respect to previously reported results. The inclusion of this

imaging modality in clinical routine allowed for a large number of patients to be

scanned: from September 2013 to April 2018, analyzable images and the associated

behavioral evaluations from 131 patients became available, of which 69 were used

in the first publication, 87 in the second, and 18 & 28 in the third in order to achieve

the precise objectives of the doctoral thesis. This cohort enabled us to reliably deter-

mine a proper spatial normalization strategy to analyze not only this large cohort

but any stroke cohort at any stage. Using this reliable strategy, we were able to

(1) demonstrate that axial diffusivity is truly the best parameter – more than any

other diffusion tensor imaging parameter – to study acute neuronal damage and (2)
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propose effective biomarkers of motor and language outcome at one of the earliest

moments post-stroke.

Nevertheless, the current dataset suffers from several drawbacks, the vast majority

of which stem from the practical and realistic logistics of its implementation. In

particular, such an imaging sequence could not overly interfere with the natural

order of the emergency stroke unit of the Salpêtrière Hospital. Since thrombolyzed

patients require careful monitoring of the evolution of their stroke, the DTI protocol

was added to a routine imaging exam at 24 hours post-stroke already in place for this

population. The use of thrombolyzed patients in the current investigations thus led

to uncontrolable shortcomings. First, there was a marginally significant imbalance in

left-to-right (2:1) lesions. Indeed, it has been reported that aphasic patients (mostly

suffering from left-hemisphere lesions) are more likely to arrive in the therapeutic

window of thrombolysis than non-aphasics13 (which constitute almost all right-sided

stroke cases). A second consequence of studying thrombolyzed patients was their

long-term outcome. Since thrombolysis is an effective recanalization therapy, many

of the studied patients at follow-up had few discernable deficits, slightly skewing

our analyses and results towards patients with good outcome. Perhaps the largest

limitation of the current thesis was the difficulty in obtaining exploitable imaging

data. Indeed, while 131 analyzable images were available after the study period, 146

thrombolyzed patients during the same time window did not receive the follow-up

DTI protocol (see Fig 1 in the Introduction). In fact, the MRI scanner required over

6 minutes to obtain diffusion-weighted images in all 30 directions. At 24 hours

post-stroke, a large percentage of patients are disoriented or aphasic and are thus too

severe to endure or remain still during the entire length of the scan. For this reason,

the radiologists at our emergency stroke unit sometimes did not perform the scan

after weighing the benefits and costs for patients in such a critical state. That being

said, for those patients who did receive the DTI protocol, only a small percentage

(6.7%) were not able to be analyzed, suggesting that incorporating this modality in

clinical routine can feasibly yield useful biomarkers. In addition, despite the great

feat it is to obtain DTI data in an emergency stroke unit at 24 hours post-stroke, from a

purely image processing point of view, 30 diffusion-weighted directions is considered

rather low according to today’s standards. However, as MRI acceleration techniques

continue to progress, acquiring DTI data in emergency stroke units, as is done in

ours, may allow the biomarkers highlighted in this thesis to be easily incorporable

in clinical trials at the hyperacute and acute stages of stroke. In fact, current MRI
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scanners are now able to obtain DWI data with twice the angular resolution in half

the time. Furthermore, it is important to consider that all of the predictions – from

raw imaging data to a final prognosis – relied on completely automated analyses,

suggesting that this practice could be easily integrated in clinical workflow.

8.2 Clinical Practicality

An important reflection of this conclusion concerns the practicality of the use of the

models proposed within the current manuscript. To summarize, this thesis puts

forth three particular models using day 1 AD in crucial white matter structures for

predicting various outcome measures at 3 months post-stroke: (1) one for autonomy

vs. dependence on external aid with 82.8% accuracy, (2) a second for motor outcome

explaining 53.7% of the variance in outcome, and (3) a third for aphasia outcome ex-

plaining 66.6% of the variance in outcome. From a research perspective, these models

are either on par with or better than those based on other imaging markers used in

the literature; however, from a clinical standpoint, one can wonder whether these

models are reliable enough to fulfill the major objectives of prognostic models20: (A)

informing patients, family, caregivers, and clinicians, (B) evaluating the effectiveness

of treatment, and (C) planning the future course of rehabilitation therapy. The current

section serves to contemplate the clinical utility of the models of this thesis for each

of these purposes with an emphasis on the repercussions of false predictions.

The models proposed in this thesis are likely most appropriate for informing

patients. Indeed, informing patients and their entourage of expected outcomes is

already common practice and currently relies on easily measurable clinical factors

such as, initial severity, age, and lesion volume. Since these "reference" predictions

are prone to high error rates, from a clinical perspective, any increase in accuracy

or certainty can be considered useful and low risk. Moreover, the cost-benefit ratio

of additional MRI time vs. the increase in prediction accuracy with respect to non-

imaging clinical variables seems advantageous. In our case, for patient autonomy,

while our model would correctly identify a high percentage of 82.8% of patients, 17.2%

(1 out of 6) would receive an incorrect prognosis. The harm in erroneously predicting

patient outcome is rather insignificant; however, care would need to be taken for such

early predictions to not affect decisions regarding standard rehabilitation or patient

motivation.
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The use of acute AD in critical brain regions for the two remaining objectives

is more nuanced. First of all, its benefit can be imagined in several situations. For

example, early neuroprotective clinical trials aiming to diminish the deleterious effects

of stroke – perhaps intervening at admission in an emergency stroke unit – could use

measures of AD within crucial brain regions and fasciculi as early as the following

day to assess their efficacy on long-term outcome. For this scenario, using our early

predictive models as opposed to waiting several months to record true outcome may

result in a larger sample size by reducing the dropout rate of patients. Alternatively,

similar AD measures may be used as a means to stratify patients in therapeutic trials

for later stages of stroke targeting those with damage to specific critical structures.

Indeed, by considering expected outcomes for patients, clinicians and researchers

can deduce their recovery potential and propose adaptive rehabilitative strategies.

Similarly, deviations from expected outcomes vs. true outcome after a therapeutic

trial may be used to evaluate their effectiveness. However, in all of these cases, the

limitations of the implementation of our proposed models lies within the effectiveness

of the trials themselves. In other words, the effect sizes of any intervention would

need to exceed the non-negligible error rates in order for the biomarkers proposed in

this thesis to be clinically useful. It is therefore difficult to judge the clinical relevance

of early AD in crucial brain structures and whether this marker is ready to be used in

clinical trials as it is case-dependent. For example, concerning our model for patient

autonomy vs. dependence on external aid, one may envision a clinical trial aimed at

improving outcome in patients who are attributed a poor prognosis. Patient inclusion

would hypothetically occur at 24 hours post-stroke when all determining factors are

available; however, 1 out of every 6 patients would be incorrectly placed in this group.

These patients, even if they do not respond to the proposed therapy, will still evolve

towards a good outcome, which could alter the preceived efficacy of the trial on a

group level. With this in mind, our models – as they stand today – could be used

for evaluating trial effectiveness or founding stratification strategies but should be

employed with caution.

8.3 Perspectives

As discussed in the previous section, the biomarkers from the models proposed in

this thesis could be tested in clinical trials. However, despite the high accuracies of

our models – both absolute and relative to other studies – a non-negligible amount of
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error remains. While the most obvious solution is to include more patients (possibly,

from other hospital centers) to increase the certainty of our predictions, the associated

error may not necessarily improve. Rather, new features are likely to account for the

unexplained variability in outcome.

One promising research avenue is to include an extra follow-up imaging exam

as longitudinal data are considerably more sensitive than cross-sectional measures.

For instance, previous research has suggested that changes in diffusion parameters

from the first to the second week post-stroke are highly predictive of long-term

outcome157. We could therefore imagine incorporating a second scan at one week

post-stroke to investigate short-term changes in AD of crucial brain structures for the

prediction of long-term outcome. Scanning at the first week seems ideal also from

a neurophysiological point of view since substantial changes in absolute AD occur

during this time. However, a large limitation of this type of implementation would

be that a prognosis would not be available before the second scan, and dropout rates

may be rather high.

One crucial factor that was not taken into account in this thesis is the contribution

of brain function in predicting outcome. While damage to the white matter is a

large determinant of the deficits patients can experience, functional reorganization

– through functional connectivity measured at rest – has been shown to play a sig-

nificant role, especially for language outcome232. Two modalities are possible in a

clinical setting: functional MRI or electroencephalography (EEG). Functional MRI

is not only costly but also requires more time than DTI sequences. EEG data, on

the other hand, can be easily obtained while patients are in bed. Such data could

also be acquired as early as 24 hours post-stroke and benefit from automatic data

processing methods, making their implementation with MRI data rather easy. The

combination of structural and functional imaging methods could not only improve

upon the proposed prediction models of the current thesis but also bring to light new

subgroups of patients for distinct outcome profiles.

Beyond prognostic models in and of themselves, the research in the current thesis

strongly emphasizes the importance of white matter pathways in patient outcome.

This result alone could therefore generate new avenues for neuroprotective therapies

aimed at preserving white matter following stroke. Similarly, our results also support

the use of non-invasive stimulation techniques to reinforce the neuronal integrity

of crucial white matter fasciculi involved in global, motor, and language outcome.

While other imaging or clinical parameters may be preferred for patient stratification
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or for evaluating the effectiveness of such trials, from a neuroscientific point of view,

our research supports the clinical relevance of these fasciculi.

In conclusion, the research contained in the present manuscript serves to lay a

foundation for quantifying early brain damage with diffusion tensor imaging. Its

implementation in clinical practice is already feasible and imaginable in emergency

stroke units on a large scale. Markers derived from this research should be better

understood either through subsequent investigations, in clinical trials as secondary

surrogate markers of hyperacute treatment effectiveness, or as a stratification tool for

therapies expecting large effect sizes.
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126. Uluǧ, A. M., Beauchamp, N., Bryan, R. N. & Van Zijl, P. C. Absolute quantitation

of diffusion constants in human stroke. Stroke 28, 483–490 (1997).

127. Basser, P. J. Inferring microstructural features and the physiological state of

tissues from diffusion-weighted images. NMR in biomedicine 8, 333–44 (1995).

128. Beaulieu, C. The basis of anisotropic water diffusion in the nervous system - a

technical review. NMR in biomedicine 15, 435–55 (2002).



BIBLIOGRAPHY 167

129. Chong, J et al. Diffusion-weighted MR of acute cerebral infarction: comparison

of data processing methods. AJNR. American journal of neuroradiology 19, 1733–9

(1998).

130. Pierpaoli, C., Jezzard, P, Basser, P. J., Barnett, A & Di Chiro, G. Diffusion tensor

MR imaging of the human brain. Radiology 201, 637–48 (1996).

131. Sharman, M. A. et al. Impact of outliers on diffusion tensor and Q-ball imaging:

Clinical implications and correction strategies. Journal of Magnetic Resonance

Imaging 33, 1491–1502 (2011).

132. Jeurissen, B., Leemans, A., Tournier, J. D., Jones, D. K. & Sijbers, J. Investigating

the prevalence of complex fiber configurations in white matter tissue with

diffusion magnetic resonance imaging. Human Brain Mapping 34, 2747–2766

(2013).

133. Volz, L. J., Cieslak, M. & Grafton, S. T. A probabilistic atlas of fiber crossings for

variability reduction of anisotropy measures. Brain Structure and Function 223,

635–651 (2018).

134. Dubois, J et al. The early development of brain white matter: a review of imag-

ing studies in fetuses, newborns and infants. Neuroscience 276, 48–71 (2014).

135. Jones, D. K., Knösche, T. R. & Turner, R. White matter integrity, fiber count,

and other fallacies: the do’s and don’ts of diffusion MRI. NeuroImage 73, 239–54

(2013).

136. Dell’Acqua, F. & Tournier, J. D. Modelling white matter with spherical decon-

volution: How and why? NMR in Biomedicine, 1–18 (2018).

137. Tournier, J.-D. D., Calamante, F., Gadian, D. G. & Connelly, A. Direct estimation

of the fiber orientation density function from diffusion-weighted MRI data

using spherical deconvolution. NeuroImage 23, 1176–1185 (2004).

138. Tournier, J. D., Calamante, F. & Connelly, A. Determination of the appropriate b

value and number of gradient directions for high-angular-resolution diffusion-

weighted imaging. NMR in Biomedicine 26, 1775–1786 (2013).

139. Jeurissen, B., Descoteaux, M., Mori, S. & Leemans, A. Diffusion MRI fiber

tractography of the brain. NMR in biomedicine, 1–22 (2017).

140. Mukherjee, P, Berman, J. I., Chung, S. W., Hess, C. P. & Henry, R. G. Diffusion

tensor MR imaging and fiber tractography: theoretic underpinnings. AJNR.

American journal of neuroradiology 29, 632–41 (2008).



168 BIBLIOGRAPHY

141. Tournier, J.-D., , F. Calamante & a. Connelly. Improved probabilistic streamlines

tractography by 2 nd order integration over fibre orientation distributions.

Ismrm 88, 2010 (2010).

142. Cox, S. R. et al. Ageing and brain white matter structure in 3,513 UK Biobank

participants. Nature Communications 7, 1–13 (2016).

143. Alexander, A. L., Lee, J. E., Lazar, M. & Field, A. S. Diffusion Tensor Imaging of

the Brain. Neurotherapeutics 4, 316–329 (2007).

144. Bennett, I. J., Madden, D. J., Vaidya, C. J., Howard, D. V. & Howard, J. H. Age-

related differences in multiple measures of white matter integrity: A diffusion

tensor imaging study of healthy aging. Human Brain Mapping 31, 378–390

(2010).

145. Liang, D., Bhatta, S., Gerzanich, V. & Simard, J. M. Cytotoxic edema: mecha-

nisms of pathological cell swelling. Neurosurgical focus 22, E2 (2007).

146. Liu, Y. et al. Serial diffusion tensor MRI after transient and permanent cerebral

ischemia in nonhuman primates. Stroke 38, 138–145 (2007).

147. Pitkonen, M. et al. Long-term evolution of diffusion tensor indices after tempo-

rary experimental ischemic stroke in rats. Brain Research 1445, 103–110 (2012).

148. Bhagat, Y. a. et al. The relationship between diffusion anisotropy and time of

onset after stroke. Journal of cerebral blood flow and metabolism : official journal of

the International Society of Cerebral Blood Flow and Metabolism 26, 1442–50 (2006).

149. Kambiz Nael et al. White Matter Ischemic Changes in Hyperacute Ischemic

Stroke. Stroke 46, 413–418 (2015).

150. Bhagat, Y. a. et al. Elevations of diffusion anisotropy are associated with hyper-

acute stroke: a serial imaging study. Magnetic resonance imaging 26, 683–93

(2008).

151. Yang, Q. et al. Serial Study of Apparent Diffusion Coefficient and Anisotropy

in Patients With Acute Stroke. Stroke 30, 2382–2390 (1999).

152. Sun, S.-W. et al. Differential sensitivity of in vivo and ex vivo diffusion tensor

imaging to evolving optic nerve injury in mice with retinal ischemia. NeuroIm-

age 32, 1195–204 (2006).

153. Muñoz Maniega, S. et al. Temporal evolution of water diffusion parameters

is different in grey and white matter in human ischaemic stroke. Journal of

Neurology, Neurosurgery and Psychiatry 75, 1714–1718 (2004).



BIBLIOGRAPHY 169

154. Schlaug, G, Siewert, B, Benfield, a, Edelman, R. R. & Warach, S. Time course of

the apparent diffusion coefficient (ADC) abnormality in human stroke. Neurol-

ogy 49, 113–9 (1997).

155. Schwamm, L. H. et al. Time course of lesion development in patients with

acute stroke: serial diffusion- and hemodynamic-weighted magnetic resonance

imaging. Stroke; a journal of cerebral circulation 29, 2268–76 (1998).

156. Lansberg, M. G. et al. Evolution of apparent diffusion coefficient, diffusion-

weighted, and T2-weighted signal intensity of acute stroke. AJNR. American

journal of neuroradiology 22, 637–44 (2001).

157. Yu, C. et al. A longitudinal diffusion tensor imaging study on Wallerian degen-

eration of corticospinal tract after motor pathway stroke. NeuroImage 47, 451–8

(2009).

158. Waller, A. Experiments on the Section of the Glossopharyngeal and Hypoglos-

sal Nerves of the Frog, and Observations of the Alterations Produced Thereby

in the Structure of Their Primitive Fibres. Philosophical Transactions of the Royal

Society of London 140, 423–429 (1850).

159. Doughty, C. et al. Detection and Predictive Value of Fractional Anisotropy

Changes of the Corticospinal Tract in the Acute Phase of a Stroke. Stroke 47,

1520–1526 (2016).

160. Thomalla, G. et al. Diffusion tensor imaging detects early Wallerian degen-

eration of the pyramidal tract after ischemic stroke. NeuroImage 22, 1767–74

(2004).

161. DeVetten, G. et al. Acute corticospinal tract Wallerian degeneration is associated

with stroke outcome. Stroke; a journal of cerebral circulation 41, 751–6 (2010).

162. Liu, G. et al. Axial diffusivity changes in the motor pathway above stroke foci

and functional recovery after subcortical infarction. Restorative Neurology and

Neuroscience 36, 173–182 (2018).

163. Stinear, C. M. et al. Functional potential in chronic stroke patients depends on

corticospinal tract integrity. Brain : a journal of neurology 130, 170–80 (2007).

164. Park, C.-H., Kou, N., Boudrias, M.-H., Playford, E. D. & Ward, N. S. Assessing

a standardised approach to measuring corticospinal integrity after stroke with

DTI. NeuroImage. Clinical 2, 521–33 (2013).



170 BIBLIOGRAPHY

165. Vargas, P. et al. Assessment of corticospinal tract (CST) damage in acute stroke

patients: comparison of tract-specific analysis versus segmentation of a CST

template. Journal of magnetic resonance imaging : JMRI 37, 836–45 (2013).

166. Radlinska, B et al. Diffusion tensor imaging, permanent pyramidal tract damage,

and outcome in subcortical stroke. Neurology 75, 1048–54 (2010).

167. Bonilha, L., Rorden, C. & Fridriksson, J. Assessing the clinical effect of residual

cortical disconnection after ischemic strokes. Stroke 45, 988–993 (2014).

168. Yourganov, G., Fridriksson, J., Rorden, C., Gleichgerrcht, E. & Bonilha, L. Mul-

tivariate Connectome-Based Symptom Mapping in Post-Stroke Patients: Net-

works Supporting Language and Speech. The Journal of Neuroscience 36, 6668–

6679 (2016).

169. Peters, D. M. et al. Cortical disconnection of the ipsilesional primary motor

cortex is associated with gait speed and upper extremity motor impairment in

chronic left hemispheric stroke. Human Brain Mapping 39, 120–132 (2018).

170. Zhu, L. L., Lindenberg, R., Alexander, M. P. & Schlaug, G. Lesion load of the

corticospinal tract predicts motor impairment in chronic stroke. Stroke; a journal

of cerebral circulation 41, 910–5 (2010).

171. Petoe, M. A. et al. A template-based procedure for determining white matter

integrity in the internal capsule early after stroke. NeuroImage: Clinical 4, 695–

700 (2014).

172. Hirai, K. K., Groisser, B. N., Copen, W. A., Singhal, A. B. & Schaechter, J. D.

Comparing prognostic strength of acute corticospinal tract injury measured

by a new diffusion tensor imaging based template approach versus common

approaches. Journal of Neuroscience Methods 257, 204–213 (2016).

173. Chen, J. L. & Schlaug, G. Resting state interhemispheric motor connectivity

and white matter integrity correlate with motor impairment in chronic stroke.

Frontiers in Neurology 4 NOV, 1–7 (2013).

174. Hua, K. et al. Tract probability maps in stereotaxic spaces: Analyses of white

matter anatomy and tract-specific quantification. NeuroImage 39, 336–347 (2008).

175. Varentsova, A., Zhang, S. & Arfanakis, K. Development of a high angular

resolution diffusion imaging human brain template. NeuroImage 91, 177–186

(2014).



BIBLIOGRAPHY 171

176. Raffelt, D. et al. Symmetric diffeomorphic registration of fibre orientation distri-

butions. NeuroImage 56, 1171–1180 (2011).

177. Zhang, Y. et al. Atlas-guided tract reconstruction for automated and compre-

hensive examination of the white matter anatomy. NeuroImage 52, 1289–1301

(2010).

178. Zhang, S. & Arfanakis, K. Role of standardized and study-specific human

brain diffusion tensor templates in inter-subject spatial normalization. Journal

of magnetic resonance imaging : JMRI 37, 372–81 (2013).

179. Mori, S. et al. Stereotaxic white matter atlas based on diffusion tensor imaging

in an ICBM template. NeuroImage 40, 570–82 (2008).

180. Avants, B. B. et al. A reproducible evaluation of ANTs similarity metric perfor-

mance in brain image registration. NeuroImage 54, 2033–2044 (2011).

181. Rondina, J. M., Park, C.-h. H. & Ward, N. S. Brain regions important for recovery

after severe post-stroke upper limb paresis. Journal of Neurology, Neurosurgery

and Psychiatry 88, 737–743 (2017).

182. Friston, K. in Statistical Parametric Mapping: The Analysis of Functional Brain

Images 10–31 (2007). arXiv: 1802.08624.

183. Mateos-Pérez, J. M. et al. Structural neuroimaging as clinical predictor: A review

of machine learning applications. NeuroImage: Clinical 20, 506–522 (2018).

184. Abraham, A. et al. Machine learning for neuroimaging with scikit-learn. Fron-

tiers in Neuroinformatics 8, 1–10 (2014).

185. Varoquaux, G. et al. Assessing and tuning brain decoders: Cross-validation,

caveats, and guidelines. NeuroImage 145, 166–179 (2017).

186. Price, C. J., Hope, T. M. & Seghier, M. L. Ten problems and solutions when

predicting individual outcome from lesion site after stroke. NeuroImage 145,

200–208 (2017).

187. Varoquaux, G. Cross-validation failure: Small sample sizes lead to large error

bars. NeuroImage 180, 68–77 (2018).

188. Archer, D. B., Patten, C. & Coombes, S. A. Free-water and free-water corrected

fractional anisotropy in primary and premotor corticospinal tracts in chronic

stroke. Human Brain Mapping 4562, 4546–4562 (2017).

http://arxiv.org/abs/1802.08624


172 BIBLIOGRAPHY

189. Kunimatsu, A. et al. Three-dimensional white matter tractography by diffusion

tensor imaging in ischaemic stroke involving the corticospinal tract. Neuroradi-

ology 45, 532–535 (2003).

190. Newton, J. M. et al. Non-invasive mapping of corticofugal fibres from multiple

motor areas - Relevance to stroke recovery. Brain 129, 1844–1858 (2006).

191. Phan, T. G. et al. Impact of corticofugal fibre involvement in subcortical stroke.

BMJ Open 3 (2013).

192. Zhang, H., Yushkevich, P. a., Alexander, D. C. & Gee, J. C. Deformable regis-

tration of diffusion tensor MR images with explicit orientation optimization.

Medical image analysis 10, 764–85 (2006).

193. Wang, Y. et al. DTI registration in atlas based fiber analysis of infantile Krabbe

disease. NeuroImage 55, 1577–86 (2011).

194. Brett, M. Spatial Normalization of Brain Images with Focal Lesions Using Cost

Function Masking. NeuroImage 14, 486–500 (2001).

195. Renard, F., Urvoy, M. & Jaillard, A. in MICCAI, Brain lesion workshop 91–103

(2016).

196. Ripollés, P et al. Analysis of automated methods for spatial normalization of

lesioned brains. NeuroImage 60, 1296–1306 (2012).

197. Andersen, S. M., Rapcsak, S. Z. & Beeson, P. M. Cost function masking during

normalization of brains with focal lesions: Still a necessity? NeuroImage 53,

78–84 (2010).

198. Nachev, P., Coulthard, E., Jäger, H. R., Kennard, C. & Husain, M. Enantiomor-

phic normalization of focally lesioned brains. NeuroImage 39, 1215–1226 (2008).

199. Van Gelderen, P. et al. Water diffusion and acute stroke. Magnetic Resonance in

Medicine 31, 154–163 (1994).

200. Thijs, V. N. et al. Is early ischemic lesion volume on diffusion-weighted imaging

an independent predictor of stroke outcome? A multivariable analysis. Stroke

31, 2597–2602 (2000).

201. Johnston, K. C. et al. Validation of an acute ischemic stroke model: does

diffusion-weighted imaging lesion volume offer a clinically significant im-

provement in prediction of outcome? Stroke; a journal of cerebral circulation 38,

1820–5 (2007).



BIBLIOGRAPHY 173

202. Johnston, K. C., Barrett, K. M., Ding, Y. H. & Wagner, D. P. Clinical and imaging

data at 5 days as a surrogate for 90-day outcome in ischemic stroke. Stroke; a

journal of cerebral circulation 40, 1332–3 (2009).

203. Habegger, S. et al. Relating Acute Lesion Loads to Chronic Outcome in Ischemic

Stroke–An Exploratory Comparison of Mismatch Patterns and Predictive Mod-

eling. Frontiers in Neurology 9, 737 (2018).

204. Ramsey, L. E. et al. Behavioural clusters and predictors of performance during

recovery from stroke. Nature Human Behaviour 1, 0038 (2017).

205. Watila, M. M. & Balarabe, B. Factors predicting post-stroke aphasia recovery.

Journal of the Neurological Sciences 352, 12–18 (2015).

206. Feng, W. et al. Corticospinal tract lesion load: An imaging biomarker for stroke

motor outcomes. Annals of Neurology 78, 860–870 (2015).

207. Etherton, M. R., Rost, N. S. & Wu, O. Infarct topography and functional out-

comes. Journal of Cerebral Blood Flow and Metabolism 38, 1517–1532 (2018).

208. Sperber, C. & Karnath, H. O. Topography of acute stroke in a sample of 439

right brain damaged patients. NeuroImage: Clinical 10, 124–128 (2016).

209. Lövblad, K. O. et al. Ischemic lesion volumes in acute stroke by diffusion-

weighted magnetic resonance imaging correlate with clinical outcome. Annals

of Neurology 42, 164–170 (1997).

210. Gaudinski, M. R. et al. Establishing final infarct volume: Stroke lesion evolution

past 30 days is insignificant. Stroke 39, 2765–2768 (2008).

211. Geva, S., Baron, J. C., Jones, P. S., Price, C. J. & Warburton, E. A. A comparison

of VLSM and VBM in a cohort of patients with post-stroke aphasia. NeuroImage:

Clinical 1, 37–47 (2012).

212. Pillay, S. B., Binder, J. R., Humphries, C., Gross, W. L. & Book, D. S. Lesion

localization of speech comprehension deficits in chronic aphasia (2017).

213. Seghier, M. L. et al. The PLORAS Database: A data repository for Predicting

Language Outcome and Recovery After Stroke. NeuroImage 124, 1208–1212

(2016).

214. Karnath, H. O. & Rennig, J. Investigating structure and function in the healthy

human brain: validity of acute versus chronic lesion-symptom mapping. Brain

Structure and Function 222, 2059–2070 (2017).



174 BIBLIOGRAPHY

215. Liu, G. et al. Motor Recovery Prediction With Clinical Assessment and Local

Diffusion Homogeneity After Acute Subcortical Infarction. Stroke (2017).

216. Wang, P. et al. Development and validation of a deep-learning algorithm for

the detection of polyps during colonoscopy. Nature Biomedical Engineering 2,

741–748 (2018).

217. Takenobu, Y. et al. Motor recovery and microstructural change in rubro-spinal

tract in subcortical stroke. NeuroImage. Clinical 4, 201–8 (2014).

218. Henseler, I., Regenbrecht, F. & Obrig, H. Lesion correlates of patholinguistic pro-

files in chronic aphasia: Comparisons of syndrome-, modality-and symptom-

level assessment. Brain 137, 918–930 (2014).

219. Kümmerer, D. et al. Damage to ventral and dorsal language pathways in acute

aphasia. Brain : a journal of neurology 136, 619–629 (2013).

220. Cloutman, L. et al. Where (in the brain) do semantic errors come from? Cortex

45, 641–649 (2009).

221. Fridriksson, J. Preservation and modulation of specific left hemisphere regions

is vital for treated recovery from anomia in stroke. The Journal of neuroscience :

the official journal of the Society for Neuroscience 30, 11558–64 (2010).

222. Payabvash, S., Taleb, S. & Qureshi, A. I. Cerebral regions preserved by success-

ful endovascular recanalization of acute M1 segment occlusions: A voxel based

analysis. British Journal of Radiology 90 (2017).

223. Munsch, F. et al. Stroke location is an independent predictor of cognitive out-

come. Stroke 47, 66–73 (2016).

224. Fridriksson, J., Guo, D., Fillmore, P., Holland, A. & Rorden, C. Damage to the

anterior arcuate fasciculus predicts non-fluent speech production in aphasia.

Brain 136, 3451–3460 (2013).

225. Basilakos, A. et al. Regional White Matter Damage Predicts Speech Fluency in

Chronic Post-Stroke Aphasia. Frontiers in Human Neuroscience 8, 1–9 (2014).

226. Geva, S., Correia, M. M. & Warburton, E. A. Contributions of bilateral white

matter to chronic aphasia symptoms as assessed by diffusion tensor MRI. Brain

and Language 150, 117–128 (2015).

227. Zavanone, C. et al. Critical brain regions related to post-stroke aphasia severity

identified by early diffusion imaging are not the same when predicting short-

and long-term outcome. Brain and Language 186, 1–7 (2018).



BIBLIOGRAPHY 175

228. Forkert, N. D. et al. Multiclass support vector machine-based lesion mapping

predicts functional outcome in ischemic stroke patients. PLoS ONE 10 (2015).

229. Payabvash, S., Taleb, S., Benson, J. C. & Mckinney, A. M. Acute Ischemic

Stroke Infarct Topology : Association with and Discharge. American Journal of

Neuroradiology 38, [Epub ahead of print] (2017).

230. Rosso, C. et al. Early ADC changes in motor structures predict outcome of

acute stroke better than lesion volume. Journal of neuroradiology. Journal de

neuroradiologie 38, 105–12 (2011).

231. Moulton, E. et al. Axial diffusivity of the corona radiata at 24 hours post-stroke:

A new biomarker for motor and global outcome. PLoS ONE 10, 1–16 (2015).

232. Siegel, J. S. et al. Disruptions of network connectivity predict impairment in

multiple behavioral domains after stroke. Proceedings of the National Academy of

Sciences of the United States of America 113, E4367–76 (2016).





177

Appendix A

Fugl-Meyer Arm Motor

Assessment





Echelle de Fugl-Meyer 
 

A. Epaule/ Coude/ Avant-bras en position assise 

 

I. Motricité volontaire en synergie 

a. Synergie en flexion : porter la main à l'oreille ipsi-latérale avec l'avant-bras en supination, le coude 

en flexion, et l'épaule en abduction à 90°, rotation externe, rétropulsion et élévation. 

 

Epaule     Rétropulsion   ______ 

     Elévation   ______ 

     Abduction   ______ 

     Rotation externe  ______ 

Coude     Flexion                ______ 

Avant-bras    Supination   ______ 

 

b. Synergie en extension de la position ci-dessus, porter la main en direction du genou coté sain 

avec l'épaule en rotation interne et adduction, le coude en extension, l'avant-bras en pronation. 

 

Epaule     Adduction/rotation int             ______ 

Coude     Extension    ______ 

Avant-bras    Pronation    ______ 

 

 0 = non effectué 

 1 = partiellement effectué 

 2 = complètement effectué  Total (max = 18) ______ 

 

II. Motricité volontaire associant des synergies en flexion et en extension 

a. Main/lombes       ______ 

 0 = non effectué 

 1 = dépasse l'épine iliaque 

 2 = complètement effectué 

 

b. Flexion de l'épaule de 0° à 90°     ______ 

(coude en extension complète et avant-bras en pronation/supination neutre) 

 0 = bras en abduction et coude fléchi dès le début du mouvement 

 1 = bras en abduction et coude fléchi en cours de mouvement 

2= complètement effectué 

 

c. Prono-supination de l'avant-bras     _______ 

(épaule à 0° de flexion et coude en flexion à 90°) 

 0 = position d'épaule et de coude incorrecte et/ou aucune prono-supination 

 1 = position d'épaule et de coude correcte mais prono-supination limitée 

 2 = complètement effectué 

 

     Total (max = 6)_______ 

III. Motricité volontaire avec peu ou pas de synergies 

 

a. Abduction d'épaule de 0° à 90)     _______ 

(coude en extension complète, avant bras en pronation) 

 0 = flexion du coude ou perte de la pronation dès le début du mouvement 



 1 = abduction partielle, ou perte de l'extension du coude, ou de la pronation en cours  de 

mouvement 

2 = complètement effectué 

 

b. Flexion de l'épaule de 90° à 180°      _______ 

(coude en extension complète et avant bras en position neutre) 

 0 = bras en abduction ou coude fléchi dès le début du mouvement 

 1 = bras en abduction ou coude fléchi en cours de mouvement 

 2 = complètement effectué 

 

c. Prono-supination de l'avant-bras     ________ 

(épaule entre 30° et 90° de flexion et coude en extension complète) 

 0 = position d'épaule et de coude incorrecte et/ou aucun prono-supination 

 1 = position d'épaule et de coude correcte mais prono-supination limitée 

 2 = complètement effectué 

 

     Total (max = 6)________ 

   



B. Poignet 

 

I. Stabilité du poignet :       ______ 

Maintenir le poignet en dorsiflexion à 15°  

(épaule à 0° de flexion, coude à 90° de flexion et avant-bras en pronation) 

0 =  ne peut amener le poignet à 15° de dorsiflexion 

1 = atteint 15° de dorsiflexion mais ne peut maintenir cette position contre résistance 

2 = atteint 15° de dorsiflexion et peut maintenir cette position contre certaine (légère) 

 résistance 

 

II. Flexion/extension de poignet :      ______ 

Mouvements répétés de flexion/extension dans toute l'amplitude avec la position d'épaule et de coude 

décrite en I (l'avant-bras peut être soutenu) 

 0 = pas de mouvement volontaire 

 1 = mouvement possible mais pas dans toute l'amplitude 

2= mouvement complètement effectué 

 

III. Stabilité du poignet :       ______ 

Maintenir le poignet en dorsiflexion à 15° (épaule en flexion et/ou abduction, coude en extension 

complète et avant-bras en pronation ; le bras peut être soutenu) 

 0 = ne peut pas amener le poignet à 15° de dorsiflexion 

 1 = atteint 15° de dorsiflexion mais ne peut maintenir cette position contre résistance 

 2 = atteint 15° de dorsiflexion et peut maintenir cette position contre une certaine 

 (légère) résistance. 

 

IV. Flexion/extension de poignet :     ______ 

Mouvements répétés de flexion/extension dans toute l'amplitude avec la position d'épaule et de coude 

décrite en III. 

 0 = pas de mouvement volontaire 

 1 = mouvement possible mais pas dans toute l'amplitude 

 2 = mouvement complètement effectué 

 

V. Circumduction (position épaule-coude non précisée)  ______ 

 0 = aucune circumduction 

 1 = circumduction incomplète ou avec des ressauts 

 2 = circumduction complète 

 

      Total (max = 10) ______ 

 

 

  



C. Main 

 

I. Flexion globale       ______ 

(L'examinateur peut aider en soutenant  le coude à 90°, sans toucher le poignet) 

Flexion de tous les doigts  

 0 = aucune flexion volontaire 

 1 = flexion volontaire partielle 

 2 = flexion volontaire complète (par rapport au coté sain) 

 

II. Extension globale       ______ 

De la position de flexion active ou passive complète, extension de tous les doigts 

 0 = aucune extension volontaire 

 1 = peut relâcher une position de flexion globale active 

 2 = extension volontaire complète par rapport au coté opposé 

 

III. Préhension A (préhension en crochet)     ______ 

Extension des articulations métacarpophalangiennes et flexion des articulations interphalangiennes 

proximales et distales des doigts II à V ; tester la préhension contre résistance 

 0 = la position ne peut être atteinte 

 1 = la préhension est faible 

 2 = la position est maintenue contre une résistance importante 

 

IV. Préhension B       ______ 

Pouce contre la face latérale du 2ème métacarpe 

 0 = non effectuée 

 1 = un papier placé entre le pouce et le 2ème métacarpe peut être tenu mais pas contre 

 résistance 

 2 = le papier est tenu correctement contre résistance 

 

V. Préhension C (pince pouce/index)      ______ 

Opposition de la pulpe du pouce contre la pulpe de l'index et un crayon est interposé 

 0 = non effectuée 

 1 = le crayon peut être tenu, mais pas contre résistance 

 2 = le crayon est tenu correctement contre résistance 

 

VI. Préhension D (tenir un cylindre)     ______ 

Le pouce contre l'index 

 0 = non effectuée 

 1 = le cylindre peut être tenu, mais pas contre résistance 

 2 = le cylindre est tenu correctement contre résistance 

 

VII. Préhension E (préhension sphérique : balle de tennis)   ______ 

 0 = non effectuée 

 1 = l'objet peut être tenu, mais pas contre résistance 

 2 = l'objet est tenu correctement contre résistance 

 

      Total (max = 14) ______ 

 

 

  



D. Coordination/Vitesse 

Doigt/nez rapidement, 5 fois, les yeux fermés. Mesurer le temps de réalisation et comparer au côté 

opposé. 

 

I. Tremblement       ______ 

 0 = tremblement marqué 

 1 = léger tremblement 

 2 = pas de tremblement 

 

II. Dysmétrie        ______ 

 0 = dysmétrie prononcée ou non systématisée 

 1 = dysmétrie légère ou systématisée 

 2 = pas de dysmétrie 

 

III. Vitesse (par rapport au coté sain)    ______ 

 0 = au moins 6 secondes de plus 

 1 = 2 à 5 secondes de plus 

 2 = moins de 2 secondes de différence 

 

      Total (max = 6)______ 

 

 

 

 

 

Total membre supérieur (max 60)     
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Appendix B

Aphasia Severity Rating Scale

5 Minimal discernible speech handicap

4 Obvious loss of fluency or facility of comprehension

3 Conversation about certain topics difficult/impossible

2 Conversation about familiar subjects possible with help

1 Fragmentary expression

0 No usable speech or auditory comprehension
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Appendix C

Aphasia Rapid Test





Aphasia Rapid Test (ART) 
 Cotation  

1a. Exécution d’ordres simples :  

« Ouvrez et fermez les yeux. » 
« Donnez-moi la main gauche. »  

1b. Exécution d’ordre complexe :  

« Mettez votre main gauche sur 
votre oreille droite. »  

0 = exécute les 2 ordres correctement. 1 = exécute 1 seul ordre 
correctement. 2 = n’exécute aucun des 2 ordres.  

0 = exécute l’ordre en moins de 10 secondes. 
1 = exécute l’ordre en plus de 10 secondes ou nécessité d’un 
rappel de la consigne. 
2 = exécute partiellement l’ordre : passe la ligne médiane ou 
exécute mais avec erreur de côté.  

3 = n’exécute pas l’ordre : ne passe pas la ligne médiane ou pas 
de mouvement.  

2. Répétition de mots :  

2a. « anneau » 
2b. « macaron » 
2c. « bagage »  

Chaque mot est côté de 0 à 2 (total de 0 à 6), avec pour chacun: 
0 = répétition parfaite. 
1 = mot reconnaissable.  

2 = mot non reconnaissable.  
3. Répétition de phrase :  

« Le garçon chante dans les bois.»  

0 = répétition parfaite. 
1 = phrase reconnaissable. 
2 = phrase non reconnaissable.  

4. Dénomination d'objets :  

4a. « montre » 
4b. « stylo » 
4c. « blouse »  

Chaque mot est côté de 0 à 2 (total de 0 à 6), avec pour chacun: 
0 = dénomination parfaite. 
1 = mot reconnaissable.  

2 = mot non reconnaissable.  

5. Evaluation de la dysarthrie :  

0 = pas de dysarthrie. 
1 = dysarthrie minime. 
2 = dysarthrie modérée, compréhensible. 3 = dysarthrie sévère, 
incompréhensible.  

6. Fluence catégorielle :  

« Dites le plus de noms d’animaux 
en 1minute. »  

0 = plus de quinze mots. 
1 = entre onze et quinze mots. 2 = entre six et dix mots. 
3 = entre trois et cinq mots. 
4 = entre zéro et deux mots.  

Score total           /26  
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Appendix D

Aphasia Handicap Scale

0 Normal Language

1 Minor difficulties of language without disability (no impact on normal life)

2 Mild language-related disability (without restrictions in the autonomy of

verbal communication in daily life)

3 Moderate language-related disability (restricted autonomy of verbal commu-

nication)

4 Severe language-related disability (lack of effective verbal communication)

5 Mutism or total loss of verbal expression and comprehension
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Appendix E

National Institute of Health Stroke

Scale





              Score NIHSS 

Item 
 

Intitulé 
 

cotation 
 

score 
 la 

 
vigilance 
 

0 vigilance normale, réactions vives 
1 trouble léger de la vigilance : obnubilation, éveil plus ou moins adapté aux 
stimulations environnantes 
2 coma ; réactions adaptées aux stimulations nociceptives 
3 coma grave : réponse stéréotypée ou aucune réponse motrice 
 

 
 

Ib 
 

orientation 
(mois, âge) 
 

0 deux réponses exactes  
1 une seule bonne réponse 
2 pas de bonne réponse 
 

 
 

lc 
 

commandes 
(ouverture des yeux, 
ouverture du poing) 
 

0 deux ordres effectués 
1 un seul ordre effectué 
2 aucun ordre effectué 
 

 
 

2 
 

oculomotricité 
 

0 oculomotricité normale 
1ophtalmoplégie partielle ou déviation réductible du regard 
2 ophtalmoplégie horizontale complète ou déviation forcée du regard 
 

 
 

3 
 

champ visuel 
 

0 champ visuel normal  
1 quadranopsie latérale homonyme ou hémianopsie incomplète ou négligence visuelle 
unilatérale  
2 hémianopsie latérale homonyme franche  
3 cécité bilatérale ou coma (la=3) 
 

 
 

4 
 

paralysie faciale 
 

0 motricité faciale normale 
1 asymétrie faciale modérée (paralysie faciale unilatérale incomplète) 
2 paralysie faciale unilatérale centrale franche  
3 paralysie faciale périphérique ou diplégie faciale 
 

 
 

5 
 

motricité membre 
supérieur 
 

0 pas de déficit moteur proximal 
1 affaissement dans les 10 secondes, mais sans atteindre le plan du lit.  
2 effort contre la pesanteur, mais le membre chute dans les 10 secondes sur le plan du lit. 
3 pas d'effort contre la pesanteur (le membre chute mais le patient peut faire un 
mouvement tel qu'une flexion de hanche ou une adduction.) 
4 absence de mouvement (coter 4 si le patient ne fait aucun mouvement volontaire) 
X cotation impossible (amputation, arthrodèse) 
 

Dt         G 
 

6 
 

motricité membre 
inférieur 
 

0 pas de déficit moteur proximal 
1 affaissement dans les 5 secondes, mais sans atteindre le plan du lit. 
2 effort contre la pesanteur, mais le membre chute dans les 5 secondes sur le plan du lit. 
3 pas d'effort contre la pesanteur (le membre chute mais le patient peut faire un 
mouvement tel qu'une flexion de hanche ou une adduction.) 
4 absence de mouvement (le patient ne fait aucun mouvement volontaire) 
X cotation impossible (amputation, arthrodèse) 
 

Dt         G 
 

7 
 

ataxie 
 

0 ataxie absente 
1 ataxie présente pour 1 membre 
2 ataxie présente pour 2 membres ou plus 
 

 
 

8 
 

sensibilité 
 

0 sensibilité normale 
1 hypoesthésie minime à modérée 
2 hypoesthésie sévère ou anesthésie 
 

 
 

9 
 

langage 
 

0 pas d'aphasie 
1 aphasie discrète à modérée : communication informative 
2 aphasie sévère 
3 mutisme ; aphasie totale 
 

 
 

10 
 

dysarthrie 
 

0 normal 
1 dysarthrie discrète à modérée 
2 dysarthrie sévère 
X cotation impossible 
 

 
 

11 
 

extinction, négligence 
 

0 absence d'extinction et de négligence 
1 extinction dans une seule modalité, visuelle ou sensitive, ou négligence partielle 
auditive, spatiale ou personnelle. 
2 négligence sévère ou anosognosie ou extinction portant sur plus d'une modalité 
sensorielle 
 

 
 

 
 

 
 

                                                                                                                                   TOTAL 
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Appendix F

modified Rankin Scale

0 No symptoms

1 No significant disability. Able to carry out all usual activities, despite some

symptoms

2 Slight disability. Able to look after own affairs without assistance, but unable

to carry out all previous activities

3 Moderate disability. Requires some help, but able to walk unassisted

4 Moderately severe disability. Unable to attend to own bodily needs without

assistance, and unable to walk unassisted

5 Severe disability. Requires constant nursing care and attention, bedridden,

incontinent

6 Dead
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Appendix G

Supplementary Materials for Study

I





 
 

SUPPLEMENTARY MATERIALS 
 

Comparison of Spatial Registration Strategies of Diffusion MRI Data for 
Studying Motor Outcome in Acute and Chronic Stroke 

Eric Moulton, Romain Valabregue, Belén Díaz, Claire Kemlin, Sara Leder, Stéphane Lehéricy, 
Yves Samson, Charlotte Rosso 

 

Creation of the Study-Specific Templates and Tractography 
 
Twenty-four healthy controls (10 females, age=31.7±10.4 years) from the same protocol as the subacute-chronic 
stroke cohort were included in this study to create the different image templates for normalization. We note that, while 
our healthy controls are younger than the studied stroke patients (p<0.0001), the templates constructed from these 
data are similar to existing open source FA and FOD templates, such as the IIT Human Brain Atlas v4.1 
(https://www.nitrc.org/projects/iit/) (Varentsova et al., 2014). 

We began by creating a FOD template through iterative non-linear warping and averaging of FOD volumes using 
MRtrix’s population_template function (http://www.mrtrix.org) (Raffelt et al., 2011). The final resolution of the template 
was 2x2x2mm3.   

The deformation fields obtained from the previous step were applied to the subjects’ respective FA maps and brain 
masks. The resulting summed FA map was divided by the summed brain mask in order to create a voxel-wise 
average FA template reflecting the correct overlap of subjects due to differences in brain extraction masks or partial 
brainstem coverage.  

In order to create a T1 template, the T1 images of healthy controls from the subacute-chronic cohort were first 
nonlinearly registered to the corresponding FA map using Advanced Normalization Tools (ANTs) and then normalized 
and averaged with the FOD-estimated deformation fields as for the FA template (Avants et al., 2008). We opted for a 
non-linear registration between the native T1 and native FA maps for several reasons. We found that affine 
transformations between these two images did not yield a perfectly satisfactory overlap, likely due to the strong 
susceptibility distortions caused by the high b-value of 1500 s/mm2 despite the TOPUP and EDDY preprocessing 
steps as in other studies (Schulz et al., 2015). While we could have created a separate T1 population template using 
ANTs’s buildtemplateparallel.sh function, we wanted to have all of our templates in the same reference frame and of 
the same size to avoid any bias. Furthermore, we wanted to avoid a suboptimal T1 template due to imperfect 
registrations between the T1 and FA images. 

We performed whole brain probabilistic tractography on the FOD template using the second-order integration over 
fiber orientation distribution (iFOD2) algorithm with the following parameters (number of streamlines=100 million, max 
length=250mm, step size=1mm, max angle=45°) (Tournier and , F. Calamante, 2010). Streamlines were subsequently 
filtered down to 10 million using the SIFT algorithm (Smith et al., 2013).  

 
We virtually dissected the corticofugal tracts emanating from the primary motor cortex (M1) using carefully segmented 
landmarks as described in (Geyer et al., 2000; Newton et al., 2006). The cortex of M1 is composed of the central 
sulcus, the paracentral lobule on the medial convexity and the exposed cortical surface of the precentral gyrus. The 
rostral border on the pre-central gyrus is delimited by a line joining the vertex of the precentral sulcus at the 
longitudinal cerebral fissure to the vertex of the central sulcus at the level of the junction of the superior frontal sulcus 
with the precentral sulcus. We further included an inclusion mask in the cerebral peduncles in addition to appropriate 
exclusion masks to remove aberrant fibers. Finally, streamlines of the corticospinal tract (CST) were converted to a 
density map. 

  



Supplementary Tables for ANOVA analyses 
 
Repeated measures ANOVA were performed for DTI parameters extracted from the corticospinal tract of the 
unaffected and affected hemisphere as well as their ratio and lesion load. Presented below for each parameter are the 
descriptive statistics, within-subject effects, post-hoc tests for significant factors and interactions where applicable, 
and individual paired t-tests between each pair of strategies. 

 
Fractional Anisotropy of the Unaffected Hemisphere (FAunaff) 

STRATEGY  MASKING Mean SD 

ANTs-T1   Masking  0.524  0.033   

    No_Masking  0.524  0.033   

ANTs-FA   Masking  0.532  0.034   

    No_Masking  0.533  0.033   

FOD-lmax2   Masking  0.521  0.035   

    No_Masking  0.521  0.035   

FOD-lmax4   Masking  0.516  0.036   

    No_Masking  0.516  0.036   

Table S1. Descriptive statistics for FAunaff. SD = Standard Deviation. 
 

Post Hoc Comparisons - STRATEGY  

      Mean Difference SE t p bonf 

ANTs-T1   ANTs-FA   -0.009  0.002  -5.482 < .001   

    FOD-lmax2   0.003  0.002  1.751 0.527   

    FOD-lmax4   0.007  0.002  4.012 0.002   

ANTs-FA   FOD-lmax2   0.012  0.001  9.175 < .001   

    FOD-lmax4   0.016  0.001  11.706 < .001   

FOD-lmax2   FOD-lmax4   0.004  4.246e -4  9.797 < .001   

 Table S2. Post-hoc t-tests for main effect of STRATEGY. For each comparison, the mean difference, standard error 
(SE), t statistic, and Bonferroni-corrected p-value (pbonf) are shown. 
  

Individual Paired Samples T-Test  

         t df p bonf Mean Difference SE Difference 

ANTs-T1_Masking   -   ANTs-T1_No_Masking   0.013  39  1  4.510e -6  3.478e -4  

ANTs-FA_Masking   -   ANTs-FA_No_Masking   -2.113  39  0.657  -0.001  5.426e -4  

FOD-lmax2_Masking   -   FOD-lmax2_No_Masking   -1.941  39  0.953  -4.917e -5  2.534e -5  

FOD-lmax4_Masking   -   FOD-lmax4_No_Masking   -0.150  39  1  -1.568e -6  1.046e -5  

ANTs-T1_Masking   -   ANTs-FA_Masking   -5.085  39  < .001  -0.008  0.002  

ANTs-T1_Masking   -   FOD-lmax2_Masking   1.786  39  1  0.003  0.002  

ANTs-T1_Masking   -   FOD-lmax4_Masking   4.032  39  0.004  0.007  0.002  

ANTs-FA_Masking   -   FOD-lmax2_Masking   8.067  39  < .001  0.012  0.001  

ANTs-FA_Masking   -   FOD-lmax4_Masking   10.490  39  < .001  0.016  0.001  

FOD-lmax2_Masking   -   FOD-lmax4_Masking   9.749  39  < .001  0.004  4.243e -4  

ANTs-T1_No_Masking   -   ANTs-FA_No_Masking   -5.713  39  < .001  -0.010  0.002  

ANTs-T1_No_Masking   -   FOD-lmax2_No_Masking   1.701  39  1  0.003  0.002  

ANTs-T1_No_Masking   -   FOD-lmax4_No_Masking   3.955  39  0.005  0.007  0.002  

ANTs-FA_No_Masking   -   FOD-lmax2_No_Masking   10.082  39  < .001  0.013  0.001  

ANTs-FA_No_Masking   -   FOD-lmax4_No_Masking   12.647  39  < .001  0.017  0.001  

FOD-lmax2_No_Masking   -   FOD-lmax4_No_Masking   9.837  39  < .001  0.004  4.254e -4  

Table S3. Individual paired t-tests between each strategy. For each comparison, the t-statistic, degrees of freedom 
(df), Bonferroni-corrected p-value (pbonf), mean difference, and standard error (SE) are shown.  
 
  



Fractional Anisotropy of the Affected Hemisphere (FAaff) 
 

STRATEGY  MASKING Mean SD 

ANTs-T1   Masking  0.430  0.070   

    No_Masking  0.440  0.065   

ANTs-FA   Masking  0.440  0.069   

    No_Masking  0.450  0.065   

FOD-lmax2   Masking  0.419  0.077   

    No_Masking  0.425  0.075   

FOD-lmax4   Masking  0.412  0.076   

    No_Masking  0.416  0.076   

Table S4. Descriptive statistics for FAaff. SD = Standard Deviation.  
  

Post Hoc Comparisons - STRATEGY  

      Mean Difference SE t p bonf 

ANTs-T1   ANTs-FA   -0.010  0.002  -6.398  < .001  

    FOD-lmax2   0.013  0.003  4.871  < .001  

    FOD-lmax4   0.021  0.003  7.166  < .001  

ANTs-FA   FOD-lmax2   0.023  0.003  8.989  < .001  

    FOD-lmax4   0.031  0.003  10.408  < .001  

FOD-lmax2   FOD-lmax4   0.008  7.401e -4  10.751  < .001  

 Table S5. Post-hoc t-tests for main effect of STRATEGY. For each comparison, the mean difference, standard error 
(SE), t statistic, and Bonferroni-corrected p-value (pbonf) are shown. 
 

Post Hoc Comparisons - MASKING  

      Mean Difference SE t p bonf 

Masking   No_Masking   -0.008  0.001  -6.363  < .001  

 Table S6. Post-hoc t-tests for main effect of MASKING. The mean difference, standard error (SE), t statistic, and 
Bonferroni-corrected p-value (pbonf) are shown. 
 

Post Hoc Comparisons - STRATEGY*MASKING Interaction  

      Mean Difference SE t p bonf 

ANTs-T1   ANTs-FA   0.0006  0.0015  0.437  1  

    FOD-lmax2   -0.0032  0.0015  -3.631  0.257  

    FOD-lmax4   -0.0055  0.0015  -2.094  0.005  

ANTs-FA   FOD-lmax2   -0.0038  0.0016  -3.983  0.149  

    FOD-lmax4   -0.0061  0.0015  -2.333  0.002  

FOD-lmax2   FOD-lmax4   -0.0023  0.0007  -3.405  0.009  

Table S7. Post-hoc t-tests for the STRATEGY*MASKING interaction, representing the comparison of the effect of 
MASKING on each strategy (i.e., ΔFAaff from MASKING). The mean difference, standard error (SE), t statistic, and 
Bonferroni-corrected p-value (pbonf) are shown. 
 
 

Individual Paired Samples T-Test 

         t df p bonf Mean Difference SE Difference 

ANTs-T1_Masking   -   ANTs-T1_No_Masking   -6.232  39  < .001  -0.010  0.002  

ANTs-FA_Masking   -   ANTs-FA_No_Masking   -6.302  39  < .001  -0.010  0.002  

FOD-lmax2_Masking   -   FOD-lmax2_No_Masking   -4.053  39  0.004  -0.007  0.002  

FOD-lmax4_Masking   -   FOD-lmax4_No_Masking   -3.866  39  0.007  -0.004  0.001  

ANTs-T1_Masking   -   ANTs-FA_Masking   -5.798  39  < .001  -0.010  0.002  

ANTs-T1_Masking   -   FOD-lmax2_Masking   4.633  39  < .001  0.012  0.003  

ANTs-T1_Masking   -   FOD-lmax4_Masking   6.657  39  < .001  0.018  0.003  

ANTs-FA_Masking   -   FOD-lmax2_Masking   8.306  39  < .001  0.022  0.003  

ANTs-FA_Masking   -   FOD-lmax4_Masking   9.559  39  < .001  0.028  0.003  

FOD-lmax2_Masking   -   FOD-lmax4_Masking   10.993  39  < .001  0.007  6.202e -4  

ANTs-T1_No_Masking   -   ANTs-FA_No_Masking   -5.817  39  < .001  -0.011  0.002  

ANTs-T1_No_Masking   -   FOD-lmax2_No_Masking   4.784  39  < .001  0.015  0.003  

ANTs-T1_No_Masking   -   FOD-lmax4_No_Masking   7.236  39  < .001  0.024  0.003  

ANTs-FA_No_Masking   -   FOD-lmax2_No_Masking   8.847  39  < .001  0.025  0.003  

ANTs-FA_No_Masking   -   FOD-lmax4_No_Masking   10.593  39  < .001  0.034  0.003  



Individual Paired Samples T-Test 

         t df p bonf Mean Difference SE Difference 

FOD-lmax2_No_Masking   -   FOD-lmax4_No_Masking   9.408  39  < .001  0.009  9.668e -4  

Table S8. Individual paired t-tests between each strategy. For each comparison, the t-statistic, degrees of freedom 
(df), Bonferroni-corrected p-value (pbonf), mean difference, and standard error (SE) are shown.  
 
  



FAaff/FAunaff (rFA) 
 

STRATEGY  MASKING Mean SD 

ANTs-T1   Masking  0.821  0.122   

    No_Masking  0.840  0.114   

ANTs-FA   Masking  0.827  0.121   

    No_Masking  0.845  0.112   

FOD-lmax2   Masking  0.804  0.138   

    No_Masking  0.817  0.136   

FOD-lmax4   Masking  0.798  0.141   

    No_Masking  0.806  0.139   

 Table S9. Descriptive statistics for rFA. SD = Standard Deviation. 
 

Post Hoc Comparisons - STRATEGY  

      Mean Difference SE t p bonf 

ANTs-T1   ANTs-FA   -0.005  0.002  -2.269  0.173  

    FOD-lmax2   0.020  0.005  4.365  < .001  

    FOD-lmax4   0.029  0.005  5.466  < .001  

ANTs-FA   FOD-lmax2   0.025  0.005  5.229  < .001  

    FOD-lmax4   0.034  0.006  5.893  < .001  

FOD-lmax2   FOD-lmax4   0.008  0.002  5.378  < .001  

 Table S10. Post-hoc t-tests for main effect of STRATEGY. For each comparison, the mean difference, standard error 
(SE), t statistic, and Bonferroni-corrected p-value (pbonf) are shown. 
 

Post Hoc Comparisons - MASKING  

      Mean Difference SE t p bonf 

Masking   No_Masking   -0.014  0.002  -6.044  < .001  

 Table S11. Post-hoc t-tests for main effect of MASKING. The mean difference, standard error (SE), t statistic, and 
Bonferroni-corrected p-value (pbonf) are shown. 
 

Post Hoc Comparisons - STRATEGY*MASKING Interaction  

      Mean Difference SE t p bonf 

ANTs-T1   ANTs-FA   -0.0013  0.0029  -0.465  1  

    FOD-lmax2   -0.0062  0.0029  -2.163  0.221  

    FOD-lmax4   -0.0106  0.0029  -3.688  0.004  

ANTs-FA   FOD-lmax2   -0.0049  0.0032  -1.536  0.796  

    FOD-lmax4   -0.0092  0.0028  -3.241  0.015  

FOD-lmax2   FOD-lmax4   -0.0044  0.0013  -3.350  0.011  

Table S12. Post-hoc t-tests for the STRATEGY*MASKING interaction, representing the comparison of the effect of 
MASKING on each strategy (i.e., ΔrFA from MASKING). The mean difference, standard error (SE), t statistic, and 
Bonferroni-corrected p-value (pbonf) are shown. 
 
 

Individual Paired Samples T-Test 

         t df p bonf Mean Difference SE Difference 

ANTs-T1_Masking   -   ANTs-T1_No_Masking   -6.068  39  < .001  -0.019  0.003  

ANTs-FA_Masking   -   ANTs-FA_No_Masking   -5.881  39  < .001  -0.018  0.003  

FOD-lmax2_Masking   -   FOD-lmax2_No_Masking   -3.952  39  0.005  -0.013  0.003  

FOD-lmax4_Masking   -   FOD-lmax4_No_Masking   -3.797  39  0.008  -0.008  0.002  

ANTs-T1_Masking   -   ANTs-FA_Masking   -2.141  39  0.618  -0.006  0.003  

ANTs-T1_Masking   -   FOD-lmax2_Masking   3.966  39  0.005  0.017  0.004  

ANTs-T1_Masking   -   FOD-lmax4_Masking   4.720  39  < .001  0.023  0.005  

ANTs-FA_Masking   -   FOD-lmax2_Masking   4.818  39  < .001  0.023  0.005  

ANTs-FA_Masking   -   FOD-lmax4_Masking   5.303  39  < .001  0.029  0.006  

FOD-lmax2_Masking   -   FOD-lmax4_Masking   4.424  39  0.001  0.006  0.001  

ANTs-T1_No_Masking   -   ANTs-FA_No_Masking   -1.695  39  1  -0.004  0.003  

ANTs-T1_No_Masking   -   FOD-lmax2_No_Masking   4.377  39  0.001  0.023  0.005  

ANTs-T1_No_Masking   -   FOD-lmax4_No_Masking   5.778  39  < .001  0.034  0.006  

ANTs-FA_No_Masking   -   FOD-lmax2_No_Masking   5.125  39  0.001  0.028  0.005  

ANTs-FA_No_Masking   -   FOD-lmax4_No_Masking   6.111  39  < .001  0.039  0.006  



Individual Paired Samples T-Test 

         t df p bonf Mean Difference SE Difference 

FOD-lmax2_No_Masking   -   FOD-lmax4_No_Masking   5.479  39  < .001  0.011  0.002  

Table S13. Individual paired t-tests between each strategy. For each comparison, the t-statistic, degrees of freedom 
(df), Bonferroni-corrected p-value (pbonf), mean difference, and standard error (SE) are shown.  
 
  



Weighted Lesion Load (wLL) of the Corticospinal Tract 

STRATEGY  MASKING  Mean SD 

ANTs-T1   Masking   0.158  0.100   

    No_Masking   0.124  0.083   

ANTs-FA   Masking   0.158  0.093   

    No_Masking   0.129  0.083   

FOD-lmax2   Masking   0.175  0.104   

    No_Masking   0.166  0.102   

FOD-lmax4   Masking   0.177  0.103   

    No_Masking   0.172  0.102   

Table S14. Descriptive statistics for wLL. SD = Standard Deviation.  
 
 
Post Hoc Comparisons - STRATEGY  

      Mean Difference SE t p bonf 

ANTs-T1   ANTs-FA   -0.003  0.003  -1.135  1.000  

    FOD-lmax2   -0.030  0.004  -7.076  < .001  

    FOD-lmax4   -0.034  0.004  -7.522  < .001  

ANTs-FA   FOD-lmax2   -0.027  0.005  -5.430  < .001  

    FOD-lmax4   -0.031  0.005  -5.787  < .001  

FOD-lmax2   FOD-lmax4   -0.004  0.001  -2.816  0.046  

 Table S15. Post-hoc t-tests for main effect of STRATEGY. For each comparison, the mean difference, standard error 
(SE), t statistic, and Bonferroni-corrected p-value (pbonf) are shown. 
 

Post Hoc Comparisons - MASKING  

      Mean Difference SE t p bonf 

Masking   No_Masking   0.019  0.003  6.869  < .001  

 Table S16. Post-hoc t-tests for main effect of MASKING. The mean difference, standard error (SE), t statistic, and 
Bonferroni-corrected p-value (pbonf) are shown. 
 
  

Post Hoc Comparisons - STRATEGY*MASKING Interaction  

      Mean Difference SE t p bonf 

ANTs-T1   ANTs-FA   0.0049  0.0063  0.776  1  

    FOD-lmax2   0.0256  0.0048  4.437  <.001  

    FOD-lmax4   0.0287  0.0052  5.012  <.001  

ANTs-FA   FOD-lmax2   0.0208  0.0058  4.317  0.001  

    FOD-lmax4   0.0238  0.0057  4.579  <.001  

FOD-lmax2   FOD-lmax4   0.0030  0.0011  2.690  0.063  

Table S17. Post-hoc t-tests for the STRATEGY*MASKING interaction, representing the comparison of the effect of 
MASKING on each strategy (i.e., ΔwLL from MASKING). The mean difference, standard error (SE), t statistic, and 
Bonferroni-corrected p-value (pbonf) are shown. 
 
 

Individual Paired Samples T-Test 

         t df p bonf Mean Difference SE Difference 

ANTs-T1_Masking   -   ANTs-T1_No_Masking   6.051  39  < .001  0.034  0.006  

ANTs-FA_Masking   -   ANTs-FA_No_Masking   5.211  39  < .001  0.029  0.006  

FOD-lmax2_Masking   -   FOD-lmax2_No_Masking   3.653  39  0.012  0.008  0.002  

FOD-lmax4_Masking   -   FOD-lmax4_No_Masking   3.642  39  0.013  0.005  0.001  

ANTs-T1_Masking   -   ANTs-FA_Masking   -0.194  39  1  -6.317e -4  0.003  

ANTs-T1_Masking   -   FOD-lmax2_Masking   -3.843  39  0.007  -0.017  0.004  

ANTs-T1_Masking   -   FOD-lmax4_Masking   -3.999  39  0.004  -0.019  0.005  

ANTs-FA_Masking   -   FOD-lmax2_Masking   -4.607  39  < .001  -0.016  0.004  

ANTs-FA_Masking   -   FOD-lmax4_Masking   -5.013  39  < .001  -0.019  0.004  

FOD-lmax2_Masking   -   FOD-lmax4_Masking   -2.041  39  0.769  -0.002  0.001  

ANTs-T1_No_Masking   -   ANTs-FA_No_Masking   -1.132  39  1  -0.005  0.005  

ANTs-T1_No_Masking   -   FOD-lmax2_No_Masking   -7.455  39  < .001  -0.043  0.006  

ANTs-T1_No_Masking   -   FOD-lmax4_No_Masking   -8.358  39  < .001  -0.048  0.006  



Individual Paired Samples T-Test 

         t df p bonf Mean Difference SE Difference 

ANTs-FA_No_Masking   -   FOD-lmax2_No_Masking   -5.387  39  < .001  -0.037  0.007  

ANTs-FA_No_Masking   -   FOD-lmax4_No_Masking   -5.705  39  < .001  -0.043  0.007  

FOD-lmax2_No_Masking   -   FOD-lmax4_No_Masking   -3.081  39  0.060  -0.005  0.002  

Table S18. Individual paired t-tests between each strategy. For each comparison, the t-statistic, degrees of freedom 
(df), Bonferroni-corrected p-value (pbonf), mean difference, and standard error (SE) are shown.  
 
 
  



Axial Diffusivity of the Unaffected Hemisphere (ADunaff) 
 

STRATEGY  MASKING Mean SD 

ANTs-FA   Masking  1.395  0.074   

    No_Masking  1.392  0.068   

FOD-lmax2   Masking  1.389  0.075   

    No_Masking  1.389  0.075   

FOD-lmax4   Masking  1.408  0.084   

    No_Masking  1.408  0.084   

Table S19. Descriptive statistics for ADunaff. SD = Standard Deviation. 
 

Post Hoc Comparisons - STRATEGY  

      Mean Difference SE t p bonf 

ANTs-FA   FOD-lmax2   0.005  0.004  1.405  0.494  

    FOD-lmax4   -0.014  0.005  -3.033  0.010  

FOD-lmax2   FOD-lmax4   -0.019  0.002  -9.171  < .001  

 Table S20. Post-hoc t-tests for main effect of STRATEGY. For each comparison, the mean difference, standard error 
(SE), t statistic, and Bonferroni-corrected p-value (pbonf) are shown. 
  

Individual Paired Samples T-Test 

         t df p bonf Mean Difference SE Difference 

ANTs-FA_Masking   -   ANTs-FA_No_Masking   1.378  68  1  0.003  0.002  

FOD-lmax2_Masking   -   FOD-lmax2_No_Masking   2.499  68  0.134  7.072e -5  2.830e -5  

FOD-lmax4_Masking   -   FOD-lmax4_No_Masking   0.587  68  1  4.040e -5  6.882e -5  

ANTs-FA_Masking   -   FOD-lmax2_Masking   1.556  68  1  0.007  0.004  

ANTs-FA_Masking   -   FOD-lmax4_Masking   -2.444  68  0.154  -0.013  0.005  

FOD-lmax2_Masking   -   FOD-lmax4_Masking   -9.177  68  < .001  -0.019  0.002  

ANTs-FA_No_Masking   -   FOD-lmax2_No_Masking   1.077  68  1  0.004  0.003  

ANTs-FA_No_Masking   -   FOD-lmax4_No_Masking   -3.534  68  0.007  -0.016  0.005  

FOD-lmax2_No_Masking   -   FOD-lmax4_No_Masking   -9.162  68  < .001  -0.019  0.002  

Table S21. Individual paired t-tests between each strategy. For each comparison, the t-statistic, degrees of freedom 
(df), Bonferroni-corrected p-value (pbonf), mean difference, and standard error (SE) are shown.  
 
  



Axial Diffusivity of the Affected Hemisphere (ADaff) 
 

STRATEGY  MASKING Mean SD 

ANTs-FA   Masking  1.344  0.095   

    No_Masking  1.345  0.091   

FOD-lmax2   Masking  1.340  0.100   

    No_Masking  1.343  0.097   

FOD-lmax4   Masking  1.359  0.106   

    No_Masking  1.362  0.104   

Table S22. Descriptive statistics for ADaff. SD = Standard Deviation. 
 

Post Hoc Comparisons - STRATEGY  

      Mean Difference SE t p bonf 

ANTs-FA   FOD-lmax2   0.003  0.003  1.050  0.892  

    FOD-lmax4   -0.016  0.004  -4.237  < .001  

FOD-lmax2   FOD-lmax4   -0.019  0.002  -10.178  < .001  

 Table S23. Post-hoc t-tests for main effect of STRATEGY. For each comparison, the mean difference, standard error 
(SE), t statistic, and Bonferroni-corrected p-value (pbonf) are shown. 
 

Post Hoc Comparisons - MASKING  

      Mean Difference SE t p bonf 

Masking   No_Masking   -0.002  6.899e -4  -2.853  0.006  

 Table S24. Post-hoc t-tests for main effect of MASKING. The mean difference, standard error (SE), t statistic, and 
Bonferroni-corrected p-value (pbonf) are shown. 
 
  

Individual Paired Samples T-Test 

         t df p bonf Mean Difference SE Difference 

ANTs-FA_Masking   -   ANTs-FA_No_Masking   -0.374  68  1  -5.429e -4  0.001  

FOD-lmax2_Masking   -   FOD-lmax2_No_Masking   -4.534  68  < .001  -0.003  6.179e -4  

FOD-lmax4_Masking   -   FOD-lmax4_No_Masking   -5.204  68  < .001  -0.003  4.918e -4  

ANTs-FA_Masking   -   FOD-lmax2_Masking   1.362  68  1  0.004  0.003  

ANTs-FA_Masking   -   FOD-lmax4_Masking   -3.845  68  0.002  -0.015  0.004  

FOD-lmax2_Masking   -   FOD-lmax4_Masking   -10.217  68  < .001  -0.020  0.002  

ANTs-FA_No_Masking   -   FOD-lmax2_No_Masking   0.655  68  1  0.002  0.003  

ANTs-FA_No_Masking   -   FOD-lmax4_No_Masking   -4.508  68  < .001  -0.017  0.004  

FOD-lmax2_No_Masking   -   FOD-lmax4_No_Masking   -10.105  68  < .001  -0.019  0.002  

Table S25. Individual paired t-tests between each strategy. For each comparison, the t-statistic, degrees of freedom 
(df), Bonferroni-corrected p-value (pbonf), mean difference, and standard error (SE) are shown.  
 
 
  



ADaff/ADunaff (rAD) 
 

STRATEGY  MASKING Mean SD 

ANTs-FA   Masking  0.964  0.059   

    No_Masking  0.966  0.054   

FOD-lmax2   Masking  0.965  0.053   

    No_Masking  0.967  0.051   

FOD-lmax4   Masking  0.966  0.054   

    No_Masking  0.968  0.052   

Table 26 Descriptive statistics for rAD. SD = Standard Deviation. 
 

  

Post Hoc Comparisons - MASKING  

      Mean Difference SE t p bonf 

Masking   No_Masking   -0.002  6.131e -4  -3.408  0.001  

 Table S27. Post-hoc t-tests for main effect of MASKING. The mean difference, standard error (SE), t statistic, and 
Bonferroni-corrected p-value (pbonf) are shown. 
 

Individual Paired Samples T-Test 

         t df p bonf Mean Difference SE Difference 

ANTs-FA_Masking   -   ANTs-FA_No_Masking   -1.835  68  1  -0.002  0.001  

FOD-lmax2_Masking   -   FOD-lmax2_No_Masking   -4.644  68  < .001  -0.002  4.497e -4  

FOD-lmax4_Masking   -   FOD-lmax4_No_Masking   -5.222  68  < .001  -0.002  3.578e -4  

ANTs-FA_Masking   -   FOD-lmax2_Masking   -0.591  68  1  -0.001  0.002  

ANTs-FA_Masking   -   FOD-lmax4_Masking   -0.837  68  1  -0.002  0.002  

FOD-lmax2_Masking   -   FOD-lmax4_Masking   -0.615  68  1  -6.333e -4  0.001  

ANTs-FA_No_Masking   -   FOD-lmax2_No_Masking   -0.603  68  1  -9.512e -4  0.002  

ANTs-FA_No_Masking   -   FOD-lmax4_No_Masking   -0.771  68  1  -0.001  0.002  

FOD-lmax2_No_Masking   -   FOD-lmax4_No_Masking   -0.403  68  1  -4.134e -4  0.001  

Table S28. Individual paired t-tests between each strategy. For each comparison, the t-statistic, degrees of freedom 
(df), Bonferroni-corrected p-value (pbonf), mean difference, and standard error (SE) are shown.  
 
  



Weighted Lesion Load (wLL) of the Corticospinal Tract 

STRATEGY  MASKING Mean SD 

ANTs-FA   Masking  0.051  0.076   

    No_Masking  0.047  0.068   

FOD-lmax2   Masking  0.055  0.074   

    No_Masking  0.051  0.069   

FOD-lmax4   Masking  0.054  0.072   

    No_Masking  0.051  0.068   

Table S29. Descriptive statistics for wLL. SD = Standard Deviation. 
 

Post Hoc Comparisons - STRATEGY  

      Mean Difference SE t p bonf 

ANTs-FA   FOD-lmax2   -0.004  0.002  -2.529  0.041  

    FOD-lmax4   -0.004  0.002  -1.810  0.224  

FOD-lmax2   FOD-lmax4   5.764e -4  6.421e -4  0.898  1.000  

 Table S30. Post-hoc t-tests for main effect of STRATEGY. For each comparison, the mean difference, standard error 
(SE), t statistic, and Bonferroni-corrected p-value (pbonf) are shown. 
 

Post Hoc Comparisons - MASKING  

      Mean Difference SE t p bonf 

Masking   No_Masking   0.004  0.001  3.567  < .001  

 Table S31. Post-hoc t-tests for main effect of MASKING. The mean difference, standard error (SE), t statistic, and 
Bonferroni-corrected p-value (pbonf) are shown. 
 
  

Individual Paired Samples T-Test 

         t df p bonf Mean Difference SE Difference 

ANTs-FA_Masking   -   ANTs-FA_No_Masking   1.985  68  0.461  0.004  0.002  

FOD-lmax2_Masking   -   FOD-lmax2_No_Masking   4.718  68  < .001  0.004  8.507e -4  

FOD-lmax4_Masking   -   FOD-lmax4_No_Masking   4.386  68  < .001  0.003  6.764e -4  

ANTs-FA_Masking   -   FOD-lmax2_Masking   -1.874  68  0.587  -0.004  0.002  

ANTs-FA_Masking   -   FOD-lmax4_Masking   -1.242  68  1  -0.003  0.003  

FOD-lmax2_Masking   -   FOD-lmax4_Masking   1.629  68  0.972  0.001  6.753e -4  

ANTs-FA_No_Masking   -   FOD-lmax2_No_Masking   -3.326  68  0.013  -0.004  0.001  

ANTs-FA_No_Masking   -   FOD-lmax4_No_Masking   -2.582  68  0.108  -0.004  0.002  

FOD-lmax2_No_Masking   -   FOD-lmax4_No_Masking   0.079  68  1  5.288e -5  6.712e -4  

Table S32. Individual paired t-tests between each strategy. For each comparison, the t-statistic, degrees of freedom 
(df), Bonferroni-corrected p-value (pbonf), mean difference, and standard error (SE) are shown.  
 
  



Correlations between ΔwLL and ΔFA/ΔAD due to lesion masking 
 
Subacute-Chronic Stroke Cohort 

Strategy 𝝆 (CI) p bonf 

ANTs-T1 -0.783 (-0.864;-0.644) <.001 

ANTs-FA -0.762 (-0.901;-0.526) <.001 

FOD-lmax2 -0.395 (-0.694;-0.028) 0.046 

FOD-lmax4 -0.432 (-0.701;-0.103) 0.021 

Table S33. Spearman correlations between the difference (Δ) in weighted lesion load (wLL) and Fractional Anisotropy 
(FA) due to lesion masking. Shown are Spearman’s ρ with the 95% confidence interval (CI) and the Bonferroni-
corrected p-value. 
 
Acute Stroke Cohort 

Strategy 𝝆 (CI) p bonf 

ANTs-FA -0.663 (-0.808;-0.461) <.001 

FOD-lmax2 -0.802 (-0.875;-0.671) <.001 

FOD-lmax4 -0.742 (-0.842;-0.597) <.001 

Table S34. Spearman correlations between the difference (Δ) in weighted lesion load (wLL) and Axial Diffusivity (AD) 
due to lesion masking. Shown are Spearman’s ρ with the 95% confidence interval (CI) and the Bonferroni-corrected p-
value. 
 

  



Supplementary Tables for Correlation Comparisons 
 
Paired Samples T-Test (Subacute-Chronic) 

         p Difference 

ANTs-T1_Masking   -   ANTs-T1_No_Masking    0.059  0.041   

ANTs-FA_Masking   -   ANTs-FA_No_Masking    0.009  0.057   

FOD-lmax2_Masking   -   FOD-lmax2_No_Masking    < .001  0.075   

FOD-lmax4_Masking   -   FOD-lmax4_No_Masking    0.003  0.027   

ANTs-T1_Masking   -   ANTs-FA_Masking    0.671  0.011   

ANTs-T1_Masking   -   FOD-lmax2_Masking    < .001  -0.105   

ANTs-T1_Masking   -   FOD-lmax4_Masking    < .001  -0.114   

ANTs-FA_Masking   -   FOD-lmax2_Masking    < .001  -0.116   

ANTs-FA_Masking   -   FOD-lmax4_Masking    < .001  -0.125   

FOD-lmax2_Masking   -   FOD-lmax4_Masking    0.215  -0.009   

ANTs-T1_No_Masking   -   ANTs-FA_No_Masking    0.315  0.027   

ANTs-T1_No_Masking   -   FOD-lmax2_No_Masking    0.005  -0.071   

ANTs-T1_No_Masking   -   FOD-lmax4_No_Masking    < .001  -0.128   

ANTs-FA_No_Masking   -   FOD-lmax2_No_Masking    < .001  -0.098   

ANTs-FA_No_Masking   -   FOD-lmax4_No_Masking    < .001  -0.155   

FOD-lmax2_No_Masking   -   FOD-lmax4_No_Masking    < .001  -0.057   

Table S35. Permutation tests for comparing the correlation strength (Spearman’s ρ) between the rFA extracted with 
each STRATEGY and the composite motor score. The largest differences between strategies where lesion masking 
was and was not employed are in bold.  

 

 
Permutation Tests (Acute) 

         p Difference 

ANTs-FA_Masking   -   ANTs-FA_No_Masking    0.452  0.008   

FOD-lmax2_Masking   -   FOD-lmax2_No_Masking    < .001  0.013   

FOD-lmax4_Masking   -   FOD-lmax4_No_Masking    < .001  0.019   

ANTs-FA_Masking   -   FOD-lmax2_Masking    0.683  -0.009   

ANTs-FA_Masking   -   FOD-lmax4_Masking    0.084  0.010   

FOD-lmax2_Masking   -   FOD-lmax4_Masking    0.174  0.019   

ANTs-FA_No_Masking   -   FOD-lmax2_No_Masking    0.865  0.004   

ANTs-FA_No_Masking   -   FOD-lmax4_No_Masking    0.364  -0.021   

FOD-lmax2_No_Masking   -   FOD-lmax4_No_Masking    0.699  0.025   

 

Table S36. Permutation tests for comparing the correlation strength (Spearman’s ρ) between the rAD extracted with 
each STRATEGY and the NIHSS7 MOT. The largest differences between strategies where lesion masking was and 
was not employed are in bold.  

  



Supplementary Analysis with CST template from Archer et al. 2018 
Cerebral Cortex 
 
In order to superimpose the CST template from Archer et al., (2018) on our normalized images, we estimated non-
linear transformations with ANTs between our FA template and the FMRIB58_FA template for which Archer et al. 
(2018)’s CST template was constructed. We then extracted the unweighted FA and AD from both hemispheres in the 
subacute-chronic and acute stroke cohorts, respectively. We observed that the previously observed trends for FA, AD, 
rFA, rAD, lesion load, and correlations globally stayed the same (see figures below for this response); however, the 
correlation strength of the unweighted DTI-parameters were much less.  

 

 
Figure S1. Effect of registration strategy and lesion masking on DTI parameter extraction of the corticospinal tract 

(CST) template from Archer et al. 2018 Cerebral Cortex.  

Fractional Anisotropy (FA) of the subacute-chronic stroke cohort (top row) and Axial Diffusivity (AD of the acute stroke 

cohort (bottom row) of the unaffected (left column) and affected (middle column) CST as well as the ratio (right 

column). Boxes display the median and interquartile range, whiskers show the range of values, dots reflect outliers, 

and triangles represent the mean value. For tidiness, black-colored comparisons reflect significant differences 

between two registration strategies (hooks over interquartile lines), whereas grey-colored comparisons reflect 

significant differences between two software packages for both lesion masking and without lesion masking (hooks in 

between blue and red boxplots). Black bars at the top of the whiskers reflect significant differences for lesion masking 

for a given software. *p<0.05, **p<0.001, ***p<0.0001 Bonferroni-corrected from individual paired t-tests. 



 

Figure S2. Lesion load analysis using the CST template from Archer et al. 2018 Cerebral Cortex. Lesion load for the 

subacute-chronic stroke cohort (A) and the acute stroke cohort (B). Note that the y-axis scales as y2 to facilitate 

visualization between both groups. Boxes display the median and interquartile range, whiskers show the range of 

values, dots reflect outliers, and triangles represent the mean value. For tidiness, black-colored comparisons reflect 

significant differences between two registration strategies (hooks over interquartile lines), whereas grey-colored 

comparisons reflect significant differences between two software packages for both lesion masking and without lesion 

masking (hooks in between blue and red boxplots). Black bars at the top of the whiskers reflect significant differences 

for lesion masking for a given software.  *p<0.05, **p<0.001, ***p<0.0001 Bonferroni-corrected from individual paired 

t-tests. 



 

 

Figure S3. Spearman correlations between clinical scores and DTI parameters of the CST from Archer et al. 2018 

Cerebral Cortex for each registration strategy.  

 (A) Correlations were performed between ratios of the fractional anisotropy (rFA; affected/unaffected) and the 

composite motor score for the subacute-chronic stroke cohort. (B) Correlations were performed between ratios of day 

1 post-stroke radial diffusivity (rAD) and the NIHSS motor score at day 7 post-stroke. Spearman’s 𝜌 for each 

correlation is shown on the y-axis and each strategy with lesion masking (blue) and without lesion masking (red) is 

shown on the x-axis. The upper limit for the y-axis is the same as in the manuscript to facilitate visual comparison. For 

tidiness, black-colored comparisons reflect significant differences between two registration strategies (hooks over 

center of bars), whereas grey-colored comparisons reflect significant differences between two software packages for 

both lesion masking and without lesion masking (hooks in between blue and red bars). Permutation test significance: 

*p<0.05, *p<0.001, *p<0.0001 

 
  



Supplementary Analysis using imaging and CST templates from 
healthy controls from the acute stroke cohort MRI scanner 
 
Data from sixteen healthy controls (mean±std age 33.8±6.5 years old, 9 female) who had undergone a DWI sequence 
acquired with the same MRI scanner as the acute stroke cohort, were retrospectively used to create the imaging and 
CST templates. The imaging protocol for the controls was very similar to the acute stroke cohort (TR=14s, TE=83.2, 
voxel size=1.09x1.09x3mm3, no phase encoding, 50 directions, b=1000s/mm2).  
 
Before any preprocessing steps, we only retained the 30 diffusion-encoding directions from the DWI sequence of the 
healthy controls which were most aligned with those of the acute stroke cohort (mean ± standard deviation difference 
in bvec axes: 7.6+/-3.0°). As with the acute stroke patients, we applied the following steps: denoising, eddy without 
topup, DTIFIT and MSMT-CSD FOD with intensity normalization. The healthy control FODs were used to make a 
population template using MRtrix’s population_template function, and the resulting warp fields were applied to the FA 
maps to recreate the corresponding FA template. As with the acute stroke patient population, there were no T1 
images available. Whole brain tractography with SIFT with the same regions of interest were used to reconstruct the 
CST of both hemispheres as described above. 
 
The patient data from the acute stroke cohort (and the subacute-chronic stroke cohort as a control) were renormalized 
to the new template with and without lesion masking, and the warp fields were applied to the different DTI parameter 
maps, and the weighted average value within the CST was extracted. We then reran the same statistical analyses. 
 
As can be seen from the graphs below, the general trends were very similar for both the acute and subacute-chronic 
stroke cohort. 
 

 
Figure S4. Effect of registration strategy and lesion masking on DTI parameter extraction of the corticospinal tract 

(CST) template the second healthy control cohort.  

Fractional Anisotropy (FA) of the subacute-chronic stroke cohort (top row) and Axial Diffusivity (AD of the acute stroke 

cohort (bottom row) of the unaffected (left column) and affected (middle column) CST as well as the ratio (right 



column). Boxes display the median and interquartile range, whiskers show the range of values, dots reflect outliers, 

and triangles represent the mean value. For tidiness, black-colored comparisons reflect significant differences 

between two registration strategies (hooks over interquartile lines), whereas grey-colored comparisons reflect 

significant differences between two software packages for both lesion masking and without lesion masking (hooks in 

between blue and red boxplots). Black bars at the top of the whiskers reflect significant differences for lesion masking 

for a given software. *p<0.05, **p<0.001, ***p<0.0001 Bonferroni-corrected from individual paired t-tests. 

 

 
Figure S5. Lesion load analysis using the CST template from the second healthy control cohort. Lesion load for the 

subacute-chronic stroke cohort (A) and the acute stroke cohort (B). Note that the y-axis scales as y2 to facilitate 

visualization between both groups. Boxes display the median and interquartile range, whiskers show the range of 

values, dots reflect outliers, and triangles represent the mean value. For tidiness, black-colored comparisons reflect 

significant differences between two registration strategies (hooks over interquartile lines), whereas grey-colored 

comparisons reflect significant differences between two software packages for both lesion masking and without lesion 

masking (hooks in between blue and red boxplots). Black bars at the top of the whiskers reflect significant differences 

for lesion masking for a given software.  *p<0.05, **p<0.001, ***p<0.0001 Bonferroni-corrected from individual paired 

t-tests. 



 
Figure S6. Spearman correlations between clinical scores and DTI parameters of the CST from the second healthy 

control cohort for each registration strategy.  

 (A) Correlations were performed between ratios of the fractional anisotropy (rFA; affected/unaffected) and the 

composite motor score for the subacute-chronic stroke cohort. (B) Correlations were performed between ratios of day 

1 post-stroke radial diffusivity (rAD) and the NIHSS motor score at day 7 post-stroke. Spearman’s 𝜌 for each 

correlation is shown on the y-axis and each strategy with lesion masking (blue) and without lesion masking (red) is 

shown on the x-axis. The upper limit for the y-axis is the same as in the manuscript to facilitate visual comparison. For 

tidiness, black-colored comparisons reflect significant differences between two registration strategies (hooks over 

center of bars), whereas grey-colored comparisons reflect significant differences between two software packages for 

both lesion masking and without lesion masking (hooks in between blue and red bars). Permutation test significance: 

*p<0.05, *p<0.001, *p<0.0001 

 
  



All correlations with DTI parameters and subacute-chronic/acute 
outcome 
 

Parameter Strategy Masking ρ CI_lower CI_upper 

rFA ANTs-FA Masking 0.692* 0.446 0.839 

rFA ANTs-FA No_Masking 0.635* 0.361 0.813 

rFA ANTs-T1 Masking 0.703* 0.471 0.841 

rFA ANTs-T1 No_Masking 0.662* 0.41 0.817 

rFA FOD-lmax2 Masking 0.808* 0.634 0.901 

rFA FOD-lmax2 No_Masking 0.733* 0.512 0.859 

rFA FOD-lmax4 Masking 0.817* 0.653 0.907 

rFA FOD-lmax4 No_Masking 0.790* 0.606 0.89 

rMD ANTs-FA Masking -0.673* -0.814 -0.437 

rMD ANTs-FA No_Masking -0.655* -0.815 -0.379 

rMD ANTs-T1 Masking -0.651* -0.803 -0.399 

rMD ANTs-T1 No_Masking -0.653* -0.813 -0.392 

rMD FOD-lmax2 Masking -0.732* -0.837 -0.536 

rMD FOD-lmax2 No_Masking -0.730* -0.846 -0.527 

rMD FOD-lmax4 Masking -0.718* -0.83 -0.516 

rMD FOD-lmax4 No_Masking -0.737* -0.844 -0.542 

rAD ANTs-FA Masking -0.315* -0.548 -0.029 

rAD ANTs-FA No_Masking -0.239 -0.516 0.065 

rAD ANTs-T1 Masking -0.259 -0.517 0.041 

rAD ANTs-T1 No_Masking -0.150 -0.447 0.178 

rAD FOD-lmax2 Masking -0.371* -0.582 -0.099 

rAD FOD-lmax2 No_Masking -0.309 -0.551 -0.016 

rAD FOD-lmax4 Masking -0.383* -0.587 -0.111 

rAD FOD-lmax4 No_Masking -0.341* -0.556 -0.064 

rRD ANTs-FA Masking -0.755* -0.867 -0.554 

rRD ANTs-FA No_Masking -0.722* -0.859 -0.494 

rRD ANTs-T1 Masking -0.732* -0.859 -0.522 

rRD ANTs-T1 No_Masking -0.709* -0.849 -0.48 

rRD FOD-lmax2 Masking -0.837* -0.902 -0.701 

rRD FOD-lmax2 No_Masking -0.844* -0.912 -0.707 

rRD FOD-lmax4 Masking -0.805* -0.882 -0.661 

rRD FOD-lmax4 No_Masking -0.821* -0.891 -0.676 

 

Table S37. Correlation coefficients of the ratio (r) of Fractional Anisotropy (FA), Mean Diffusivity (MD), Axial Diffusivity 
(AD), and Radial Diffusivity (RD) of the affected over the unaffected CST. Correlation coefficients (ρ) and confidence 
intervals (CI) were computed with each registration strategy with and without masking. * p<0.05, uncorrected 

 

 

 

 

 

 

 



 
Parameter Strategy Masking ρ CI_lower CI_upper 

rFA ANTs-FA Masking -0.451* -0.632 -0.233 

rFA ANTs-FA No_Masking -0.446* -0.618 -0.243 

rFA FOD-lmax2 Masking -0.431* -0.614 -0.217 

rFA FOD-lmax2 No_Masking -0.387* -0.575 -0.162 

rFA FOD-lmax4 Masking -0.398* -0.592 -0.172 

rFA FOD-lmax4 No_Masking -0.384* -0.571 -0.165 

rMD ANTs-FA Masking -0.550* -0.704 -0.355 

rMD ANTs-FA No_Masking -0.550* -0.709 -0.347 

rMD FOD-lmax2 Masking -0.547* -0.722 -0.323 

rMD FOD-lmax2 No_Masking -0.533* -0.713 -0.304 

rMD FOD-lmax4 Masking -0.535* -0.697 -0.325 

rMD FOD-lmax4 No_Masking -0.511* -0.686 -0.287 

rAD ANTs-FA Masking -0.668* -0.777 -0.516 

rAD ANTs-FA No_Masking -0.660* -0.777 -0.498 

rAD FOD-lmax2 Masking -0.677* -0.784 -0.519 

rAD FOD-lmax2 No_Masking -0.664* -0.775 -0.51 

rAD FOD-lmax4 Masking -0.658* -0.769 -0.498 

rAD FOD-lmax4 No_Masking -0.639* -0.759 -0.473 

rRD ANTs-FA Masking -0.411* -0.598 -0.185 

rRD ANTs-FA No_Masking -0.430* -0.612 -0.207 

rRD FOD-lmax2 Masking -0.430* -0.638 -0.181 

rRD FOD-lmax2 No_Masking -0.425* -0.631 -0.179 

rRD FOD-lmax4 Masking -0.406* -0.606 -0.168 

rRD FOD-lmax4 No_Masking -0.408* -0.604 -0.168 

 

Table S38. Correlation coefficients of the ratio (r) of Fractional Anisotropy (FA), Mean Diffusivity (MD), Axial Diffusivity 
(AD), and Radial Diffusivity (RD) of the affected over the unaffected CST. Correlation coefficients (ρ) and confidence 
intervals (CI) were computed with each registration strategy with and without masking. * p<0.05, uncorrected 
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Topography Characterized by Acute Diffusion Tensor Imaging 
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Rosso 
 

Supplementary Methods 
 
Creation of in-house study-specific template as described in 
Moulton et al. 2018 
 
The following procedure is as described in Moulton et al. (2018). Data from twenty-four healthy 
controls (10 females, age=31.7±10.4 years) acquired with a different imaging protocol were used to 
create the in-house templates for image normalization. Subjects were scanned with a 3T MRI 
(Siemens, VERIO) with a 32-channel head coil. A multi-shell Diffusion Weighted Imaging (DWI) 
sequence (3 b-value shells obtained with both posterior to anterior (PA) and anterior to posterior (AP) 
phase encoding: 60 non-collinear diffusion encoding gradients at b=1500s/mm2,30 at b=700s/mm2, 
and 8 at b=300 s/mm2, TR=4000 ms, TE=87.8 ms, matrix size=110⨉110, slice number=66, voxel 

size=2⨉2⨉2mm3, acquisition time=16:16 min). 

 
Image processing was the same as the stroke cohort in the current paper, with the exception of FSL’s 
TOPUP as an additional step to take advantage of the opposite phase-encoded images.  
 
Fiber Orientation Distribution (FOD) volumes were computed by estimating response functions for the 
GM, WM, and CSF tissues (Dhollander et al., 2016) for multi-shell multi-tissue constrained spherical 
deconvolution (MSMT-CSD) using a lmax of 4 (Jeurissen et al., 2014). 

We began by creating a FOD template through iterative non-linear warping and averaging of FOD 
volumes using MRtrix’s population_template function (http://www.mrtrix.org)(Raffelt et al., 2011). The 
final resolution of the template was 2x2x2mm3.   

The deformation fields obtained from the previous step were applied to the subjects’ respective FA 
maps and brain masks. The resulting summed FA map was divided by the summed brain mask in 
order to create a voxel-wise average FA template reflecting the correct overlap of subjects due to 
differences in brain extraction masks or partial brainstem coverage. 

 

Tractography analysis with the group template 

A tractography analysis was used to visualize the white matter tracts passing through regions of the 
brain with the most influence on long-term outcome. We performed whole brain probabilistic 
tractography on the FOD template using the second-order integration over fiber orientation distribution 
(iFOD2) algorithm with the following parameters (number of streamlines=100 million, max 
length=250mm, step size=1mm, max angle=45°) (Tournier and , F. Calamante, 2010). Streamlines 
were subsequently filtered down to 10 million using the SIFT algorithm (Smith et al., 2013).  

 
Adhering to the procedures outlined in Rojkova et al. (2016) and Catani and Thiebaut de Schotten 
(2008), we dissected the following well-known long-range tracts: (1) the three branches of the superior 
longitudinal fasciculus (SLF), (2) cingulum, (3) uncinate fasciculus, (4) the anterior, long, and posterior 
segment of the arcuate fasciculus (AF), (5) inferior fronto-occipital fasciculus (IFOF), (6), inferior 
longitudinal fasciculus (ILF) (7) frontal aslant tract (FAT), (8) corticospinal tract (CST), and (9) the 
corpus callosum (CC). Tracts were converted into density maps and the most probable regions (at 
least 10% maximum tract density) were retained. We created a region of interest (ROI) composed of 



the largest connected component of voxels with the strongest weights (95th percentile) associated with 
larger decreases in diffusivity or higher lesion incidence in patients with poor outcome, depending on 
the winning model. We then investigated which of the dissected long-range fasciculi passed through 
this area. 

Supplementary Figures 
 

 
Supplementary Figure 1. Cross-validation scheme 
The full dataset is initially split into the decoding set and test set. The decoding set is split again into a 
training and validation set. Multiple models, each with a unique set of hyperparameters, are built with 
data in the training set and evaluated on the independent, validation set. The best set of 
hyperparameters are chosen for the final model, reconstructed with the decoding set. A final, unbiased 
evaluation is performed on the test set. 
 
 
 

 
Supplementary Figure 2. Lesion Probability Maps 
Lesion probability maps overlaid on selected axial (top) and coronal (bottom) slices of the in-house FA 
template. The colormap reflects the percentage of lesioned voxels over the studied cohort. Right-sided 
lesions were flipped onto the left hemisphere, and normalization was performed again to warp the 
lesion. 
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Supplementary Methods 
 
Creation of in-house study-specific template as described in 
Moulton et al. 2018 
 
The following procedure is as described in Moulton et al. (2018). Data from twenty-four healthy 
controls (10 females, age=31.7±10.4 years) acquired with a different imaging protocol were used to 
create the in-house templates for image normalization. Subjects were scanned with a 3T MRI 
(Siemens, VERIO) with a 32-channel head coil. A multi-shell Diffusion Weighted Imaging (DWI) 
sequence (3 b-value shells obtained with both posterior to anterior (PA) and anterior to posterior (AP) 
phase encoding: 60 non-collinear diffusion encoding gradients at b=1500s/mm2,30 at b=700s/mm2, 
and 8 at b=300 s/mm2, TR=4000 ms, TE=87.8 ms, matrix size=110⨉110, slice number=66, voxel 

size=2⨉2⨉2mm3, acquisition time=16:16 min). 

 
Image processing was the same as the stroke cohort in the current paper, with the exception of FSL’s 
TOPUP as an additional step to take advantage of the opposite phase-encoded images.  
 
Fiber Orientation Distribution (FOD) volumes were computed by estimating response functions for the 
GM, WM, and CSF tissues (Dhollander et al., 2016) for multi-shell multi-tissue constrained spherical 
deconvolution (MSMT-CSD) using a lmax of 4 (Jeurissen et al., 2014). 

We began by creating a FOD template through iterative non-linear warping and averaging of FOD 
volumes using MRtrix’s population_template function (http://www.mrtrix.org)(Raffelt et al., 2011). The 
final resolution of the template was 2x2x2mm3.   

The deformation fields obtained from the previous step were applied to the subjects’ respective FA 
maps and brain masks. The resulting summed FA map was divided by the summed brain mask in 
order to create a voxel-wise average FA template reflecting the correct overlap of subjects due to 
differences in brain extraction masks or partial brainstem coverage. 

 

Tractography analysis with the group template 

A tractography analysis was used to virtually dissect major white matter fasciculi of the visuomotor and 
language networks. We performed whole brain probabilistic tractography on the FOD template using 
the second-order integration over fiber orientation distribution (iFOD2) algorithm with the following 
parameters (number of streamlines=100 million, max length=250mm, step size=1mm, max angle=45°) 
(Tournier and , F. Calamante, 2010). Streamlines were subsequently filtered down to 10 million using 
the SIFT algorithm (Smith et al., 2013).  

 
Adhering to the procedures outlined in Rojkova et al. (2016) and Catani and Thiebaut de Schotten 
(2008), we virtually dissected the (1) the second and (2) third branches of the superior longitudinal 
fasciculus (SLF) and (3) the corticopinal tract (CST) as part of the visuomotor network in addition to 
the (A) arcuate fasciculus (AF), (B) inferior fronto-occipital fasiculus (IFOF), (C) inferior longitudinal 
fasciculus (ILF), and (D) the unciate fasciculus (UNC) as part of the language network.  
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