Keywords: ambiguity, economics of risk, optimal contract, insurance, optimal growth

The thesis consists of two main themes: decision making under ambiguity and optimal growth with externalities.

First of all, I would like to thank Dr. Cuong Le-Van, the teacher whom I respect enormously both professionally and personally. His knowledge, patience and kindness have always been a source of inspiration. Without him this journey could never have begun.

My deepest gratitude goes to my three supervisors: Dr. Stefano Bosi, Dr. Yacine Chitour and Dr. François Pannequin. I have been so fortunate to get to know and work with them. I am grateful for their guidance, concern, support and sympathy. They have shown and reminded me often that hard work is always the right thing to do. They are, above all, outstanding champions of merit and excellence.

I would like to thank my colleagues at the EPEE laboratory for countless meaningful exchanges and discussions over our work. I would like to express special thanks to Dr.

Iliopulous, the former director of EPEE for her welcome and support during the time of my research. I would like to thank Dr. Ha-Huy, the colleague and big brother I respect so much. He is the most absent-minded walking encyclopedia I have ever known.

Finally, I would like to dedicate this thesis to my family and loved one. I am forever grateful for their love, trust, and all the times they tried to listen when I had nothing to say.

Synthèse

La thèse se compose de deux thèmes principaux: la prise de décision sous l'ambiguïté et la croissance économique en présence des externalités. Les trois premiers chapitres de la thèse sont consacrés à la compréhension de l'impact du risque et de l'ambiguïté sur les décisions économiques fondamentales, telles que le salaire optimal, l'assurance optimal, ainsi que l'investissement optimal dans le capital humain. Le dernier chapitre de la thèse s'agit d'un modèle de la croissance optimal en présence des externalités. Ce résumé met en évidence les principaux résultats et contributions de chaque chapitre à la littérature.

Le premier chapitre, Contrat d'Assurance Optimal en Présence du Risque et de l'Ambiguïté Reconsidéré, est un travail conjoint avec Yacine Chitour et François Pannequin. Dans ce chapitre, nous réexamine le problème du contrat optimal d'assurance en présence du risque et de l'ambiguïté en utilisant la théorie du contrôle optimal. L'ambiguïté est modélisés selon [START_REF] Klibanoff | A smooth model of decision making under ambiguity[END_REF]. Notre approche généralise les analyses effectuées jusqu'à présent en considérant le contrat d'assurance comme la paire d'une prime et une fonction d'indemnisation à résoudre simultanément. Dans ce cadre, nous prouvons l'existence d'un contrat optimal d'assurance dans le cas le plus général où tous les agents peuvent être simultanément averses à l'ambiguïté et au risque, ce qui englobe tous les cas précédemment examinés. Nous caractérisons non seulement le partage du risque mais aussi la règle du partage de l'ambiguïté entre un assureur et un assuré. Dans le cas de l'aversion vers l'ambiguïté unilatérale, nous montrons qu'une politique de franchise directe ne peut pas être optimale. Au contraire, dans l'hypothèse que les densités conditionnelles puissent être classées selon le rapport de vraisemblance monotone, un contrat avec des franchises qui disparaissent est optimal, un résultat qui est cohérent avec [START_REF] Gollier | Optimal insurance design of ambiguous risks[END_REF]. En particulier, la méthodologie mise en oeuvre complète l'analyse de [START_REF] Raviv | The design of an optimal insurance policy[END_REF] pour le cas du risque pur avec un assureur neutre au risque, montrant qu'une couverture de limite supérieure ne peut pas constituer un optimum. Ce résultat est robuste à la neutralité de l'ambiguïté.

Le deuxième chapitre, le Modèle de Principal-Agent en Présence de l'Ambiguïté, est un autre travail conjoint avec Yacine Chitour et François Pannequin. Dans ce chapitre, nous caractérisons le contrat de salaire optimal dans le cas "first-best" quand la distri-bution de du résultat au travail est ambiguë. L'ambiguïté est modélisée à la [START_REF] Klibanoff | A smooth model of decision making under ambiguity[END_REF], et la formulation du modèle de Principal-Agent suit [START_REF] Holmstrom | Moral hazard and observability[END_REF].

Nous utilisons la même technique que dans le premier chapitre, en analysant le contrat de salaire optimal dans le cadre d'un problème de contrôle optimal. Contrairement à la littérature existante, notre solution caractérise "simultanément" la fonction du salaire optimale et le niveau d'effort demandé quand l'information est symétrique (le contrat first-best). De plus, nous traitons le problème sous la forme la plus générale, permettant au principal d'être soit neutre, soit averse au risque et/ou à l'ambiguïté. Ceci est distinct de la littérature existante qui suppose souvent que le principal soit neutre à la fois au risque et à l'ambiguïté. Dans ce cadre, nous prouvons l'existence d'une fonction de salaire optimale pour le cas le plus général. Lorsque le principal est averse au risque, nous montrons que le le salaire optimal est robuste à l'ambiguïté en ce sens qu'il soit monotone croissant par rapport à la performance quelles que soient les attitudes des parties contractantes envers l'ambiguïté et le nombre d'états ambigus. Lorsque le principal est neutre au risque, l'agent est averse au risque et il n'y a que deux états ambigus, nous montrons que l'optimalité d'une telle fonction est robuste à l'aversion à l'ambiguïté si l'ambiguïté a une structure particulière, à savoir que si l'ambiguïté contamine soit la gamme de résultats inférieure ou supérieure, mais pas les deux.

Le troisième chapitre, l'Accumulation Stochastique et l'Investissement Optimal dans le Capital Humain, examine l'impact du risque et de l'ambiguïté sur l'investissement optimal dans le capital humain et le capital physique. L'incertitude (à la fois dans le sens du risque et de l'ambiguïté) est introduite à l'accumulation de capital humain de deux façons. Lorsque l'incertitude porte sur le taux de dépréciation du capital humain (obsolescence incertaine des compétences), j'ai constaté que l'investissement optimal dans le capital humain augmente toujours, que soit présent ou non le capital physique. Cette réponse à l'incertitude d'un ménage représente le comportement typique de l'auto-assurance. En revanche, lorsque l'incertitude se porte sur l'efficacité de l'accumulation du capital humain, l'investissement optimal dans le capital humain diminue parmi les ménages avec l'aversion au risque relative constante inférieure à un. Cette réponse à l'incertitude est typique d'un ménage qui considère l'investissement comme un actif à rendement risqué au lieu d'une assurance.

Le dernier chapitre, les Dynamiques Économiques avec des Ressources Renouvelables, est un travail conjoint avec Thai Ha-Huy, Cuong Le- Van et Thi Tuyet Mai Nguyen. Ce chapitre est relativement indépendant des chapitres précédents car il traite un modèle déterministe plutôt que stochastique. Néanmoins, il examine une question importante dans la théorie de la croissance: le rôle des ressources renouvelables et des externalités. La littérature existante a exploré l'impact des ressources renouvelables, à la fois en tant que bien de consommation directe et alimentation pour la produc-tion, sur la croissance économique [START_REF] Beltratti | Sustainable use of renewable resources[END_REF][START_REF] Ayong | Sustainable growth, renewable resources and pollution[END_REF]. Cette méthode est commode, mais comme [START_REF] Wirl | Sustainable growth, renewable resources and pollution: thresholds and cycles[END_REF] a observé, il peut y avoir plusiers solutions. Dans ce chapitre, nous proposons une nouvelle méthode pour étudier une économie à deux secteurs en présence des externalités. En particulier, l'analyse s'agit d'un secteur industriel dont les activités de production ont des effets négatifs sur la capacité de régénération d'une ressource naturelle dans l'autre secteur. L'introduction d'une fonction régénératrice non-concave par rapport à l'un des arguments rend le problème non convexe. En conséquence, nous ne pouvons plus utiliser les techniques traditionnelles de programmation dynamique telles que celles présentées dans [START_REF] Lucas | Recursive methods in dynamic economics[END_REF] ou Le [START_REF] Van | Dynamic programming in economics[END_REF] pour résoudre notre modèle. Nous attaquons ce problème en introduisant le concept de "gain net de stock", qui est une notion similaire au "gain net d'investissement" introduit par [START_REF] Kamihigashi | A nonsmooth, nonconvex model of optimal growth[END_REF].

En absence des propriétés convexes ou supermodulaires habituelles, nous prouvons que l'économie évolue pour augmenter le gain net de stock et établissons les conditions assurant la convergence de l'économie à long terme. Cette approche peut être appliquée aux problèmes de Beltratti et al. (1998) [START_REF] Ayong | Sustainable growth, renewable resources and pollution[END_REF], ou être étendu à l'analyse des économies aux plusieurs secteurs en général.

Introduction

This thesis is composed of two principal themes: economic decisions under uncertainty, and optimal growth with renewable resources in presence of externalities. The first and major part of this thesis is devoted to understanding the impact of ambiguity on fundamental economic decisions, such as optimal wage, optimal insurance contracts, as well as optimal investment in human capital. In this opening chapter, let us first revisit the paradox raised by [START_REF] Ellsberg | Risk, ambiguity, and the savage axioms[END_REF] to understand its main attacks on the traditional frameworks of decision making under uncertainty. We shall then follow (in an non-exhaustive fashion) the theoretical developments that have been made thenceforth to rationalize the Ellsberg choice.

Decades before Ellsberg, the distinction between risk and ambiguity has been emphasized by [START_REF] Knight | Risk, uncertainty and profit[END_REF]. In Knight's terms, a risky situation is one in which the decision maker (DM) can objectively deduce probabilities. Such a situation includes the likelihood of obtaining a "head" when tossing a fair coin, the odds of winning in a game of Russian Roulette, or the chance of drawing a pair from a sufficiently shuffled deck of card. By contrast, an ambiguous situation involves immeasurable uncertainty -the kind of uncertainty that a DM who cannot objectively quantify or deduce must thereupon resort to a subjective evaluation. This kind of uncertainty, which is referred to as ambiguity (Knightian uncertainty) abounds and affects many of our daily decisions. Think about the odds of Donald Trump being re-elected for another term, the likelihood that a vaccine against the SARS-Cov-2 virus will be found in the next month, or the probability of winning in a horse lottery (bets in a horse race).

How does the modern literature account for the two types of uncertainty? The most influential model of decision-making under risk (objective uncertainty) is perhaps the expected utility theory (EU) of Von Neumann and [START_REF] Neumann | Theory of games and economic behavior[END_REF], and its counter part under subjective uncertainty is the subjective expected utility theory (SEU) of [START_REF] Savage | The foundations of statistics[END_REF].

While continuing to serve as a canonical tool in choice modeling under risk, the EU framework is not without criticism. One of the earliest and most powerful critiques to Von Neumann and [START_REF] Neumann | Theory of games and economic behavior[END_REF] comes from the French economist and physicist Maurice Allais. In particular, [START_REF] Allais | Le comportement de l'homme rationnel devant le risque: critique des postulats et axiomes de l'école américaine[END_REF] demonstrates systematic violation of the Independence Axiom, one of the premises on the preference relation of the DM (on the set of objective lotteries) in order for it to have an expected utility representation 1 .

The SEU camp of is not immune to criticism either. With his classic thought experiments, [START_REF] Ellsberg | Risk, ambiguity, and the savage axioms[END_REF] contests the hypothesis that there exists a consistent subjective probability which can be deduced from individuals' choice under a set of suitable conditions. Recall that distinct from the EU à la von Neumann- Morgenstern, probabilities are endogenous in SEU. To illustrate, let us revisit Ellsberg's color betting experiment to understand why this hypothesis is contradicted.

In this experiment, Ellsberg presents the subjects with an urn containing 90 balls, 30 of which are known to be red, the rest are black or yellow in unknown proportion.

A ball is drawn from the urn. Each subject is asked to rank two pairs of alternatives.

First, they are asked to choose between betting on red and betting on black. Then they are asked to choose between red or yellow and black or yellow. In other words, individuals are asked to rank their preferences between 1 and 2 , and then between 3 and 4 in Table 1.1. Observe that the element of ambiguity in this experiment enters via Table 1.1: Ellsberg's color betting experiment the unknown proportion of the black and yellow balls. At first glance, one might be tempted to invoke the so-called Principle of Insufficient Reason proposed by [START_REF] Bernoulli | Specimen theoriae novae de mensura sortis. st. petersburg 1738. translated in[END_REF] to assign equal probabilities to all possible scenarios. This principle suffers from scathing criticism by [START_REF] Keynes | A treatise on probability[END_REF] in Chapter IV of his book A treatise on probability.

Indeed there can be multiple partitions of the same state space. Applied to the problem at hand, it is not clear if the principle tells us to suppose that the number of black and yellow balls are equal, or that each of the events ( = , = 60 -) where = 0, . . . , 60 has the same probability (of 1/61).

The SEU theory developed by [START_REF] Savage | The foundations of statistics[END_REF] is too technically complex for our pur-1 Recall the representation theorem of Von Neumann and [START_REF] Neumann | Theory of games and economic behavior[END_REF]: Let denote the finite set of consequences, Δ( ) the set of simple probability distributions on and be a preference relation over Δ( ). Then is a weak order (complete and transitive), Archimedean and independent if and only if there exists a function : → R, the vNM utility index such that is represented by the linear expected utility function : Δ( ) → R defined by ( ) = ∈ ( ) ( ) for all ∈ Δ( ). Moreover, is defined up to an affine transformation.

pose; we shall present only his most famous axiom, the Sure Thing Principle (STP), which is also the one challenged by Ellsberg. 2 First we need some definitions to set up Savage's world. Let Ω be a state space and be the set of consequences. The elements of Ω are assumed to be exhaustive and mutually exclusive (one and only one state ∈ Ω must occur). A Savage act : Ω → is a function that maps events (subsets of Ω) to consequences. Savage acts are also called event-contingent lotteries, as opposed to traditional probability-contingent lotteries [START_REF] Dhami | The foundations of behavioral economic analysis[END_REF]. For example, let { 1 , . . . , } be a partition of Ω and ( ) = ∈ for = 1, . . . , . Then we can write this act as = ( 1 , 1 ; . . . ; , ). The set of all Savage acts is Ω , the set of all functions from Ω to . [START_REF] Kreps | Microeconomic foundations I: choice and competitive markets[END_REF]'s version of the STP is the following.

Axiom 1 (The Sure Thing's Principle). Let , ′ , ℎ, ℎ ′ be Savage acts and ⊂ Ω such that ( ) = ′ ( ) and ℎ( ) = ℎ ′ ( ) for all ∈ , and ( ) = ℎ( ) and ′ ( ) = ℎ ′ ( ) for all ∈ . Then ℎ ⇐⇒ ′ ℎ ′ .

Observe that and ℎ yield the same outcome on (the complementary event of ).

The same goes for ′ and ℎ ′ . The STP says that if two acts are equivalent when some event does not occur, it does not matter what they are equivalent to (conditional on

). In particular, the ranking between and ℎ should depend only on the event where they differ. By this principle, the comparison between and ℎ, and that between ′ and ℎ ′ are equivalent.

In the thought experiment of Ellsberg, most subjects strictly prefer 1 to 2 , but strictly prefer 4 to 3 . This is at odds with the STP. In particular, 1 and 2 yield the same payoff in the event of yellow. The same is true for the pair 3 and 4 . In the complementary event of yellow (blue or red), 1 and 3 are identical, and so are 2 and 4 . Thus choices consistent with the STP must have been either ( 1 ≻ 2 , 3 ≻ 4 ) or ( 2 ≻ 1 , 4 ≻ 3 ), not ( 1 ≻ 2 , 4 ≻ 3 ). The predominantly reported choice violates the STP, consequently refuting the existence of a consistent subjective probability. Specifically, it is easy to see that the choice 1 ≻ 2 implies a subjective probability of blue strictly less than 1/3, while the ranking 4 ≻ 3 manifests the opposite. This choice is the consequence of a phenomenon called ambiguity aversion.

Although the Ellsberg paradox is based on a thought experiment, its striking implications have opened up whole new branch of research on ambiguity, both theoretically and empirically. Following Ellsberg, empirical evidence of ambiguity aversion has been documented from several surveys and lab experiments. [START_REF] Camerer | Recent developments in modeling preferences: Uncertainty and ambiguity[END_REF] documents early experimental works on ambiguity. Surveys on more recent empirical works can be found in [START_REF] Trautmann | Ambiguity attitudes. The Wiley Blackwell handbook of judgment and decision making[END_REF]. The concept of ambiguity contributes to the understanding of a growing number of economic topics and puzzles, such as the stock market participation puzzle [START_REF] Dow | Uncertainty aversion, risk aversion, and the optimal choice of portfolio[END_REF][START_REF] Bossaerts | Ambiguity in asset markets: Theory and experiment[END_REF][START_REF] Collard | Ambiguity and the historical equity premium[END_REF], portfolio choice and ambiguity aversion [START_REF] Gollier | Portfolio choices and asset prices: The comparative statics of ambiguity aversion[END_REF], the low take-up of freely available genetic tests [START_REF] Hoy | Take-up for genetic tests and ambiguity[END_REF], the decision to trust [START_REF] Corcos | Is trust an ambiguous rather than a risky decision[END_REF][START_REF] Li | Trust as a decision under ambiguity[END_REF], or the value of statistical life [START_REF] Treich | The value of a statistical life under ambiguity aversion[END_REF][START_REF] Bleichrodt | The value of a statistical life under changes in ambiguity[END_REF][START_REF] Berger | Treatment decisions under ambiguity[END_REF].

We now turn to some of the seminal theoretical models most pertinent to this thesis. 3 In particular, we focus on models of ambiguity that reduce to expected utility under pure risk. The attractive feature of these models is their analytical tractability, given that much of the literature has been built on EU. In a loose sense, models presented here are not behaviorally founded. Rather, they represent attempts at extending the traditional framework to account for a specific psychological phenomenon called ambiguity aversion and thus leave untouched existing contentious issues of EU. 4The first model to mention in this class is the so-called multiple priors or maximin expected utility (MEU) of [START_REF] Gilboa | Maxmin expected utility with non-unique prior[END_REF]. Gilboa and Schmeidler develop their theory on the foundation of [START_REF] Anscombe | A definition of subjective probability[END_REF] rather than that of [START_REF] Savage | The foundations of statistics[END_REF]. This approach is widely adopted in the literature since the Anscombe-Aumann framework is technically simpler. The reasoning of Gilboa and Schmeidler is the following. In presence of ambiguity, the DM forms a set of plausible priors. She then proceeds to evaluate each alternative by considering the minimal expected utility it yields over the set of priors. The DM selects the alternative that maximizes minimum expected utility, hence the name MEU. To be precise, let , : Ω → Δ( ) be Anscombe-Aumann acts (which map events to lotteries over the set of consequences). Let Δ(Ω)

be the set of lotteries over the state space Ω and (the set of priors) be a closed and convex subset of Δ(Ω). Then under a set of suitable conditions, the authors show that: 

⇐⇒ min ∈ ∫ Ω ( ) ≥ min ∈ ∫ Ω ( ) , ( 
( ) = min ∈ ∫ Ω ( ) + (1 -) max ∈ ∫ Ω ( ) . (1.2)
When = 1, this model reduces to MEU. Unfortunately, the axiomatization only holds for ∈ {0, 1} [START_REF] Eichberger | The -meu model: A comment[END_REF]. Moreover, [START_REF] Siniscalchi | A behavioral characterization of plausible priors[END_REF] contests the claim that can be interpreted as the degree of ambiguity aversion, showing that ambiguity and ambiguity aversion (supposedly captured by the set of priors and the index , respectively) cannot be disentangled in -MEU.

Let us turn next to Segal's recursive model [START_REF] Segal | The ellsberg paradox and risk aversion: An anticipated utility approach[END_REF][START_REF] Segal | Two-stage lotteries without the reduction axiom[END_REF]. The author demonstrates that in presence of ambiguity, the paradox arises due to the failure of the Reduction Of Compound Lottery (ROCL) axiom. To fix ideas, consider the diagram in Fig-
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Figure 1.1: Segal's two-stage decision process ure 1.1. The DM considers three plausible scenarios (or second-order states) 1 , 2 and 3 . She believes that one of them will realize, but faces ambiguity regarding the distribution of these states. Conditional on each second-order state, each act can be evaluated via an objective lottery (since the distribution of first-order states (R,B,Y) is known in each second-order state). Figure 1.1 depicts a situation that might arise from the Ellsberg's color betting experiment. Here the DM forms a subjective prior over the second-order states. Notice that all ambiguity is resolved once the second-order state is known. It is easy to see that if the ROCL axiom were satisfied, then all ambiguity could be reduced to risk. In this case, the DM would make decisions as if she faced an urn in which there were 30 balls of each color. Yet the DM deviates from ROCL and processes decisions in two stages. First, for each alternative, she computes the certainty equivalents using rank-dependent expected utility (RDEU). In the second stage, she computes the RDEU of the lottery = ( , 1 ( ); 1 -2 , 2 ( ); , 3 ( )), where ( ) denotes the RDU certainty equivalent of the lottery induced by the alternative under state 1 .

The smooth model of [START_REF] Klibanoff | A smooth model of decision making under ambiguity[END_REF][START_REF] Klibanoff | Recursive smooth ambiguity preferences[END_REF] belongs to the same class as those of Segal. There are two main differences, however. First, Klibanoff, Marinacci and Mukerji (KMM from now on) consider subjective rather than objective lotteries. Second, they assume different (rather than identical) preferences in each stage, one over Savage acts (first-order acts) and the other over second-order acts. Both are assumed to have an expected utility representation. A crucial axiom, called Consistency connects the two. Let = Ω × [0, 1] be the state space and Δ( ) be the set of lotteries over this space. A first-order act : → is evaluated according to:

( ) = ∫ Δ( ) ∫ ( ( )) ( ) = E E • , (1.3)
where is the DM's second-order prior, capturing ambiguity. The functional describes the attitude towards ambiguity, while the utility function reflects the attitude towards risk. The functional being concave, convex or linear corresponds to a DM being ambiguity averse, seeking, or neutral, respectively. KMM show that the MEU model of [START_REF] Gilboa | Maxmin expected utility with non-unique prior[END_REF] is a special case of smooth ambiguity aversion. In particular, MEU corresponds to a DM with infinite absolute constant ambiguity aversion, where the degree of ambiguity aversion (absolute or relative) is defined in the same fashion as the degree of risk aversion.

Note that

= • -1
, where is a strictly increasing, typically strictly concave utility function that figures in the representation of the second-order preference. This provides a close link to Segal's framework previously introduced. Indeed, the KMM agents also processes decisions in two stages. In the first stage, they calculate the certainty equivalents of lotteries for each first-order act (with respect to EU rather than RDEU). In the second stage the distortion due to ambiguity aversion is captured by the concavity of • -1 . Loosely speaking, the ambiguity-averse agent dislikes alternatives that lead to large variations in expected utilities. When ≡ , the representation reduces to EU. Let us consider an example that illustrates how KMM rationalize the Ellsberg choice.

CHAPTER 1. INTRODUCTION

Consider again the situation in Figure 1.1 but with = 1 2 . For simplicity let us normalize (0) = 0 and (100) = 1. Let be a strictly concave function capturing ambiguity aversion. KMM's evaluation of the alternatives in Table 1.1 are as follows.

(

1 ) = 1 3 , (1.4) ( 2 ) = 1 2 2 3 + 1 2 (0) , (1.5) ( 3 ) = 1 2 1 3 + 1 2 (1) , (1.6) ( 4 ) = 2 3 . (1.7)
Since is strictly concave, we obtain immediately by Jensen inequality that ( 1 ) >

( 2 ) and ( 4 ) > ( 3 ), resolving the paradox. The smooth model of KMM is analytically tractable. Its salient advantages include the separation between ambiguity and ambiguity aversion5 , which allows to conveniently perform comparative statics. The model has also been supported by a number of experimental studies [START_REF] Halevy | Ellsberg revisited: an experimental study[END_REF][START_REF] Chakravarty | Recursive expected utility and the separation of attitudes towards risk and ambiguity: an experimental study[END_REF][START_REF] Conte | Assessing multiple prior models of behavior under ambiguity[END_REF][START_REF] Ahn | Estimating ambiguity aversion in a portfolio choice experiment[END_REF][START_REF] Baillon | Testing ambiguity models through the measurement of probabilities for gains and losses[END_REF][START_REF] Mukerji | Discriminating between models of ambiguity attitude: A qualitative test[END_REF][START_REF] Cubitt | the strenght of sensitivity to ambiguity[END_REF]. For these reasons, the smooth model of ambiguity aversion is adopted as the analytical framework of decisions under ambiguity of this thesis.

Chapter 2, Optimal Insurance under Risk and Ambiguity Reconsidered, is a joint work with Dr. Yacine Chitour and Dr. François Pannequin. In this chapter, we revisit the problem of optimal insurance contract design under risk and ambiguity in an optimal control framework, where ambiguity and ambiguity preferences are modeled according to [START_REF] Klibanoff | A smooth model of decision making under ambiguity[END_REF]. Our approach generalizes the analyses carried out so far by viewing the insurance contract as a pair of a premium and an indemnity schedule to be solved for simultaneously. In this framework, we prove the existence of an optimal insurance policy in the most general case where all agents can be simultaneously ambiguity-and-risk-averse, which encompasses all the cases previously examined. We characterize not only the risk-sharing but also the ambiguity sharing rule between an insurer and a policyholder. Under one-sided ambiguity aversion, we show that a straight deductible policy cannot be optimal. Rather, under the assumption that the conditional densities can be ranked according to the monotone likelihood ratio, a contract with disappearing deductibles is optimal, a result that is consistent with Gollier (2014). In particular, the methodology implemented completes the analysis of [START_REF] Raviv | The design of an optimal insurance policy[END_REF] under pure risk in the context of a risk-neutral insurer, showing that an upper limit coverage cannot constitute an optimum. This result also holds under ambiguity neutrality.

Chapter 3, The Principal-Agent Model under Smooth Ambiguity, is a joint work with Dr.

Yacine Chitour and Dr. François Pannequin. In this chapter, we characterize the symmetric information benchmark for the principal-agent model under ambiguity, where ambiguity is modeled via the framework of [START_REF] Klibanoff | A smooth model of decision making under ambiguity[END_REF] and the princialagent formulation follows [START_REF] Holmstrom | Moral hazard and observability[END_REF]. We employ the same technique as in Chapter 2, studying the optimal wage contract in an optimal control framework. In contrast to the existing literature, our solution characterizes simultaneously the optimal wage function and the level of effort demanded of the agent under symmetric information (first-best result). Furthermore, we treat the problem in the most general form, allowing for the principal to be either neutral or averse to risk and/or ambiguity. This is distinct from the existing literature which often assumes that the principal is neutral to both risk and ambiguity. In this framework, we prove the existence of an optimal wage function for the most general case. When the principal is risk-averse, we show that the optimal wage behavior is robust to ambiguity in the sense that it is increasing in outcomes regardless of the attitudes of the contracting parties towards ambiguity and the number of ambiguous states under consideration. When the principal is riskneutral the agent is risk-averse and there are only two ambiguous states, we show that a wage function increasing in outcomes is also optimal under ambiguity aversion if ambiguity has an one-sided structure, namely that if ambiguity contaminates either the lower or the higher range of outcomes, but not both.

The next two chapters of the thesis concern the investment and consumption decisions in the context of endogenous growth theory. The modern theory of optimal economic growth began with the seminal contributions of [START_REF] Solow | A contribution to the theory of economic growth[END_REF] and [START_REF] Swan | Economic growth and capital accumulation[END_REF].

The Solow-Swan model introduces the neoclassical production function with diminishing returns while inheriting many features from [START_REF] Harrod | An essay in dynamic theory[END_REF][START_REF] Harrod | Towards a Dynamic Economics: Some recent developments of economic theory and their application to policy[END_REF] and [START_REF] Domar | Capital expansion, rate of growth, and employment[END_REF][START_REF] Domar | Expansion and employment[END_REF], including the aggregate Keynesian saving function. In these models, the level of saving is a constant fraction of output [START_REF] Keynes | The general theory of employment, interest and money[END_REF]. 6 Although the Solow-Swan is able to explain all the Kaldor facts [START_REF] Kaldor | A model of economic growth[END_REF], it has a troubling feature: sustained growth is due only to exogenous factors, such as population growth or technological progress. This implication is essentially due to the hypothesis of diminishing returns imposed on the production function. At the same time, saving being a linear function of output is at odds with the experience of the US for the period since 1899, as [START_REF] Friedman | Introduction to" a theory of the consumption function[END_REF] [START_REF] Cass | Optimum growth in an aggregative model of capital accumulation[END_REF] and [START_REF] Koopmans | On the concept of optimal economic growth[END_REF] have done. In particular, these authors reintroduce the idea of intertemporal utility maximization pioneered by [START_REF] Ramsey | A mathematical theory of saving[END_REF] into the Solow-Swan model, completing the basic theoretical framework that has become the workhorse of modern macroeconomics. In the Ramsey-Cass-Koopmans (RCK) model, the presence of a discount factor that puts more weight on current consumption (impatience) induces households to save less than those in the Solow-Swan economy.

Remarkably, the theoretical implications of the RCK are very similar to those of Solow-Swan. In particular, it still predicts (rather fast) conditional convergence and no sustained growth except due to factors exogenous to the model or under AK production. 7 In other words, diminishing returns remains the key barrier to economic growth.

Exogenous technological progress helps overcome this barrier by making inputs more productive. Brock and Mirman introduced uncertainty in the form of a stochastic productivity shock into the RCK model.

Initiated by [START_REF] Solow | Technical change and the aggregate production function[END_REF], several studies have been conducted to quantify the Solow residual, the estimate of the growth of the total factor of productivity (TFP), and its contribution to economic growth. The unanimous conclusion of these works is that TFP growth plays a substantial role. For example, following the method of [START_REF] Jorgenson | The explanation of productivity change[END_REF], [START_REF] Christensen | Economic growth, 1947-73: an international comparison[END_REF] Uzawa (1965) emphasizes that technological progresses or knowledge should not be viewed as manna from heaven. This idea does not seem to receive much attention until 7 For details on the AK model, see [START_REF] Romer | Increasing returns and long-run growth[END_REF] and [START_REF] Rebelo | Long-run policy analysis and long-run growth[END_REF]. 8 See [START_REF] Christensen | Economic growth, 1947-73: an international comparison[END_REF] and [START_REF] Jorgenson | Whatever happened to productivity growth? In New developments in productivity analysis[END_REF] for estimates of OECD countries for the periods 1947-1973 and 1960-1995, respectively. Estimates for East Asian countries during 1966-1990 can be found in [START_REF] Young | The tyranny of numbers: confronting the statistical realities of the east asian growth experience[END_REF], and for Latin American countries during 1940-1990 can be found in [START_REF] Elias | Sources of growth: study of seven Latin American economies[END_REF].

CHAPTER 1. INTRODUCTION Notably, a human capital index (HCI) based on different measures of health and education is being computed for each country (see [START_REF] Avitabile | Disaggregating the human capital index[END_REF]). According to [START_REF] Collin | The Effect of Increasing Human Capital Investment on Economic Growth and Poverty: A Simulation Exercise[END_REF], better health not only enhances productivity but also enables us to enjoy life better. In other words, good health is desirable both instrumentally and intrinsically. On the business side, [START_REF] Nalbantian | Navigating human capital risk and uncertainty[END_REF] calls for a distinction between human capital risk and ambiguity in order to address them with proper measures. [START_REF] Deloitte | Preparing tomorrow's workforce for the fourth industrial revolution[END_REF] highlights the importance of sufficiently investing in the workforce to pre-arm for the forth industrial revolution, the age of artificial intelligence.

From a modeling viewpoint, these sources of uncertainty call for a relaxation of the perfect foresight hypothesis on human capital accumulation typically seen in optimal growth models. Chapter 4 of the thesis, Stochastic Accumulation and the Optimal Investment in Human Capital is another step in this direction, with an aim to draw theoretical implications from the introduction of risk and ambiguity to human capital accumulation. One important question that this chapter tries to answer is whether more investment always the right response to uncertainty. This work continues the line of research initiated by [START_REF] Levhari | The effect of risk on the investment in human capital[END_REF] and [START_REF] Williams | Uncertainty and the accumulation of human capital over the life cycle[END_REF], and is in a spirit similar to [START_REF] Krebs | Human capital risk and economic growth[END_REF]. In particular, this chapter examines the impact of risk and ambiguity on the optimal level of investment in human and physical capital. Uncertainty (both in the sense of risk and of ambiguity) is introduced to the accumulation of human capital via two channels. When uncertainty is on the depreciation rate of human capital (uncertain skills obsolescence), I found that the optimal level of investment in human capital always increases, regardless of whether a risk-free physical capital is present. This response to uncertainty of an optimizing household is typically a self-insurance type of behavior. By contrast, when uncertainty is introduced to the efficiency of human capital accumulation, the optimal investment in this type of capital declines for the group of representative households with CRRA utility with relative risk aversion less than one. This response to uncertainty is typical of a household who views the investment as an asset with risky return instead of an insurance alternative.

Leaving human capital, Chapter 5, Economic Dynamics with Renewable Resources and Pollution of the thesis considers the issue of optimal extraction of renewable resources in endogenous growth theory. It is a joint work with Dr. Thai Ha-Huy, Dr. Cuong Le- Van and Thi Tuyet Mai Nguyen. The existing literature has explored the impact of renewable resources, both as direct consumption good and inputs for production, on economic growth [START_REF] Beltratti | Sustainable use of renewable resources[END_REF][START_REF] Ayong | Sustainable growth, renewable resources and pollution[END_REF]. This method is appealing, but multiple long-run outcomes may exist as [START_REF] Wirl | Sustainable growth, renewable resources and pollution: thresholds and cycles[END_REF] has observed. Our contribution is from a methodological perspective. In particular, we propose a new method to study a two-sector economy in which the industrial activities of a sector have negative impacts on the regenerating capacity of a natural resource in the other sector. The introduction of a regenerating function that is non-concave with respect to one of the arguments makes the problem non-convex, rendering existing dynamic programming techniques (such as those presented in [START_REF] Lucas | Recursive methods in dynamic economics[END_REF] or Le [START_REF] Van | Dynamic programming in economics[END_REF]) inapplicable to our model. The novelty of our approach lies in the introduction of the concept the net gain of stock, which is a similar notion to the net gain of investment previously studied by [START_REF] Kamihigashi | A nonsmooth, nonconvex model of optimal growth[END_REF]. In absence of the usual convex or the supermodular properties, we prove that the economy evolves to increase the net gain of stock and establish conditions that ensure the convergence of the economy in the long run. This approach can be applied to the problems of [START_REF] Beltratti | Sustainable use of renewable resources[END_REF] and [START_REF] Ayong | Sustainable growth, renewable resources and pollution[END_REF], or extended to similar analyses of multisector economies in general.

Optimal insurance under risk and ambiguity reconsidered

Chapter nomenclature 

Introduction

We know from the seminal work of [START_REF] Arrow | Optimal insurance and generalized deductibles[END_REF] that a straight deductible is optimal for a risk-averse policyholder facing a risk-neutral insurer and linear cost of indemnity provision. Since this pioneering work, the efficiency of deductible contracts became one of the basics of Insurance Economics and has proved particularly robust to economic contexts and generalizations. [START_REF] Raviv | The design of an optimal insurance policy[END_REF] made the first attempt to generalize the work of [START_REF] Borch | The safety loading of reinsurance premiums[END_REF] and [START_REF] Arrow | Aspects of the theory of risk-bearing[END_REF][START_REF] Arrow | Optimal insurance and generalized deductibles[END_REF] to demonstrate that the existence of co-insurance contracts is due to either the convex cost of indemnity provision, or risk-aversion on the part of the insurer. Alternatively, [START_REF] Huberman | Optimal insurance policy indemnity schedules[END_REF] showed that a disappearing deductible is optimal in the presence of concave transaction costs.

Subsequently, some contributions focused on the generalization of these results beyond the Expected Utility (EU) model [START_REF] Zilcha | Invariance of the efficient sets when the expected utility hypothesis is relaxed[END_REF][START_REF] Karni | Optimal insurance: a nonexpected utility analysis[END_REF][START_REF] Machina | Non-expected utility and the robustness of the classical insurance paradigm[END_REF]. Especially, [START_REF] Gollier | Arrow's theorem on the optimality of deductibles: a stochastic dominance approach[END_REF] showed that the optimality of deductibles is not exclusively reserved for the EU model since it springs from first-and second-degree stochastic dominance.

However, recently, [START_REF] Bernard | Optimal insurance design under rank-dependent expected utility[END_REF] questioned the relevance of a straight deductible contract for a decision maker whose preferences are described by the Rank Dependent Expected Utility (RDEU) model. In contrast with the mainstream results they showed that the optimal contract insures not only large losses above a deductible but also small ones. While the RDEU model results in a best fit to real human behavior than the EU model, these authors challenge Arrow's result.

In this paper, we follow this line of research and investigate the robustness of the efficiency of deductible insurance contracts under ambiguity. For this purpose, we characterize the efficient design of an insurance contract under ambiguity and provide a comprehensive treatment of the relationship between the insurer and the policyholder, in a principal-agent framework, both under risk and ambiguity.

The concept of ambiguity contributes to the understanding of a growing number of economic topics and puzzles, such as the stock market participation puzzle [START_REF] Dow | Uncertainty aversion, risk aversion, and the optimal choice of portfolio[END_REF][START_REF] Bossaerts | Ambiguity in asset markets: Theory and experiment[END_REF][START_REF] Collard | Ambiguity and the historical equity premium[END_REF], portfolio choice and ambiguity aversion [START_REF] Gollier | Portfolio choices and asset prices: The comparative statics of ambiguity aversion[END_REF], the low take-up of freely available genetic tests [START_REF] Hoy | Take-up for genetic tests and ambiguity[END_REF], the decision to trust [START_REF] Corcos | Is trust an ambiguous rather than a risky decision[END_REF][START_REF] Li | Trust as a decision under ambiguity[END_REF], the value of statistical life [START_REF] Treich | The value of a statistical life under ambiguity aversion[END_REF][START_REF] Bleichrodt | The value of a statistical life under changes in ambiguity[END_REF][START_REF] Berger | Treatment decisions under ambiguity[END_REF].

In the case of insurance behavior, ambiguity makes sense since many risks are either objectively poorly defined (e.g. environmental risks) or subjectively poorly perceived by the insured (e.g. health risk). Two recent contributions addressed the question of optimal demand for prevention and insurance when risks are ambiguous. While Alary 2.1. INTRODUCTION et al. (2013) emphasized the role of ambiguity aversion on the demands for insurance, self-insurance and self-protection, Gollier (2014) characterized optimal insurance contracting under linear transaction costs.

Both papers followed the approach of [START_REF] Klibanoff | A smooth model of decision making under ambiguity[END_REF] to model attitudes towards ambiguity although Ellsberg's paradox (1961) motivated the development of several competing ambiguity models (See [START_REF] Gilboa | Ambiguity and the bayesian paradigm[END_REF], [START_REF] Machina | Ambiguity and ambiguity aversion[END_REF] or [START_REF] Etner | Decision theory under ambiguity[END_REF]).

We also chose to rely on the smooth model of ambiguity of [START_REF] Klibanoff | A smooth model of decision making under ambiguity[END_REF] owing its ability to distinguish between risk aversion and ambiguity aversion. Moreover, the smooth ambiguity model has received a significant support from experimental studies, including [START_REF] Halevy | Ellsberg revisited: an experimental study[END_REF], [START_REF] Chakravarty | Recursive expected utility and the separation of attitudes towards risk and ambiguity: an experimental study[END_REF], [START_REF] Conte | Assessing multiple prior models of behavior under ambiguity[END_REF], [START_REF] Ahn | Estimating ambiguity aversion in a portfolio choice experiment[END_REF], [START_REF] Baillon | Testing ambiguity models through the measurement of probabilities for gains and losses[END_REF], [START_REF] Mukerji | Discriminating between models of ambiguity attitude: A qualitative test[END_REF], [START_REF] Cubitt | the strenght of sensitivity to ambiguity[END_REF].

We implemented a comprehensive approach of the problem of optimal insurance contracting, to extend and revisit the analysis of both contexts of risk and ambiguity.

First, we explored the idea that both parties could be both risk and ambiguous averse. If risk aversion on the insurer's side has already been studied in [START_REF] Raviv | The design of an optimal insurance policy[END_REF], we found relevant to assume ambiguity aversion not only on the policyholder's side but also on insurer's side. In the context of environmental and catastrophic risks, several studies documented the fact that insurers are ambiguity averse [START_REF] Kunreuther | How does ambiguity affect insurance decisions?[END_REF][START_REF] Kunreuther | Insurer ambiguity and market failure[END_REF][START_REF] Kunreuther | Ambiguity and underwriter decision processes[END_REF][START_REF] Cabantous | Ambiguity aversion in the field of insurance: Insurers' attitude to imprecise and conflicting probability estimates[END_REF][START_REF] Cabantous | Is imprecise knowledge better than conflicting expertise? evidence from insurers' decisions in the united states[END_REF].

Moreover, the substantial growth of insurance-linked securities (Cat bonds), which provide capital market-based insurance against the risk of natural catastrophes, in addition to standard reinsurance mechanisms, also argues for the benefit of the general assumption of ambiguity aversion.

Second, from a methodological viewpoint, our comprehensive approach differs from that generally used in the literature. In [START_REF] Raviv | The design of an optimal insurance policy[END_REF] and related papers, the optimal control problem characterizing the efficient insurance contract is conducted to seek the optimal indemnity function assuming the insurance premium as fixed. Instead, we solve the optimal control problem for the optimal indemnity function and the premium simultaneously.

Our results contribute to many dimensions of the literature. First, as this aspect is neglected in the literature, we have proved the existence of an optimal insurance policy in the most general case where all agents can be simultaneously ambiguity-and-riskaverse, encompassing all the cases examined in the previous papers. Second, we characterize not only the risk sharing but also the ambiguity sharing between an insurer and a policyholder. Third, our methodology allowed to complete the analysis of [START_REF] Raviv | The design of an optimal insurance policy[END_REF] for the case of a risk-neutral insurer. In particular, we showed that the policy with an upper limit coverage in the first theorem of [START_REF] Raviv | The design of an optimal insurance policy[END_REF] cannot constitute an RECONSIDERED optimum.

The rest of the paper is organized as follows. Section 2.2 introduces the optimal insurance problem under risk and ambiguity and key assumptions. Section 2.3 provides an existence proof of an optimal insurance contract. Section 2.4 applies the Pontryagin's Maximum Principle to characterize the contract under ambiguity. The unambiguous case of [START_REF] Raviv | The design of an optimal insurance policy[END_REF] is revisited and the upper limit contract is ruled out. The disappearing deductible contract of [START_REF] Gollier | Optimal insurance design of ambiguous risks[END_REF] is also recovered in the case of two ambiguous states. Section 2.5 provides a numerical simulation and Section 2.6 concludes.

Definition of the optimal insurance problem as an optimal control problem (OCP)

In this paper, we are interested in the problem where a potential policyholder considers an optimal insurance policy ( (•), ) where is the premium the policyholder pays to the insurer to obtain an indemnity schedule (•). Let the subscripts and denote, respectively, the policyholder and the insurer, who are the DMs in this problem. Let

The problem faced by the policyholder, which we shall refer to as the original problem (OP) is the following. max

( (•), ) =1 ∫ ( --+ ( )) ( ) (2.1a) s.t. ( ) ∈ [0, ], ∀ ∈ , (2.1b) ∈ = [ , ] ⊆ , (2.1c) =1 ∫ ( + -( ) -( ( )) ( ) ≥ ¯ , (2.1d) 
where and stand denote the initial wealth of the policyholder and the insurer, respectively. The last inequality is often called the participation constraint (of the insurer). In the program above, stands for the loss faced by the policyholder, which is a continuous random variable. Ambiguity enters through the unknown second-order state taking values in a finite second-order state space ℐ. Notice that the density of the loss is -conditional. The DMs have perfect knowledge of ℐ and each conditional distribution (•) of the loss, but faces ambiguity on the distribution of the second-order states.

The set { } ∈ℐ is the set of priors the DMs have on the distribution of the second-order states. We assume that the priors are symmetric, in the sense that both DMs have the same information on the distribution of the second-order states, and thus the same conditional loss densities. Both DMs exhibit attitudes towards risk and towards ambiguity.

In particular, the attitude towards risk of the policyholder and the insurer is captured → R + satisfying (0) = 0, ′ > 0, ′′ ≥ 0, and ( ) ≤ for all ≥ 0.

As mentioned earlier, the policyholder is risk-averse, namely that his preference can be modeled with a strictly increasing and concave utility function as follows. By contrast, the insurer is risk-neutral.

1 Recall that LRD is a special case of first-order stochastic dominance (FSD). Thus dominates in the LRD sense implies ( ) ≤ ( ) for all ∈ , with strict inequality on some subset of of positive measure. See, for example, [START_REF] Wolfstetter | Topics in microeconomics: Industrial organization, auctions, and incentives[END_REF] 

′′ < 0.
To ensure that is always well-defined, let us assume that the initial wealth of the policyholder satisfies:

≥ + ¯ , (2.2)
where is the upperbound for the premium. Let : R * + → R * + denote the familiar Arrow-Pratt measure of absolute risk aversion, defined by:

( ) = - ′′ ( ) ′ ( ) .
(2.3) Assumption 2.9 (Risk neutrality of the insurer). The insurer has identity utility function, namely that : R * + → R is the map ↦ → for all ∈ R * + . In light of Assumption 2.9, the participation constraint of the insurer can be rewritten as:

=1 ∫ ( + -( ) -( ( )) ( ) ≥ ¯ .
(2.4)

The phenomenon known as "ambiguity aversion" revived by [START_REF] Ellsberg | Risk, ambiguity, and the savage axioms[END_REF] is modeled in the smooth sense of [START_REF] Klibanoff | A smooth model of decision making under ambiguity[END_REF] via a strictly monotone concave second-order utility functional.

Assumption 2.10 (Ambiguity aversion). Let the second-order utility functional be :

R → R, where ∈ { , }. Then is at least 2 , strictly increasing and concave on its domain. Assume that the 's have bounded first-order derivatives, so that 0 < ′ < +∞, ′′ ≤ 0, for each ∈ { , }. Whenever is linear, we assume without loss of generality that is the identity function.

This assumption means that the DMs are either ambiguity-neutral ( is the identity function), or is (strictly) ambiguity-averse ( is strictly concave). Finally, let us make the following assumption regarding the initial wealth levels of the DMs.

Assumption 2.11 (Other parameters). We assume that ¯ is equal to the reservation secondorder utility of the insurer (i.e., the utility obtained without participating in the contract), namely that: ¯ = ( ).

(2.5) Furthermore, we assume that the bounds for the premium satisfy: (2.9) Equation (2.7) says that the premium cannot exceed the expected total cost of providing uniformly full insurance with respect to the ambiguity-neutral density.

= 0, (2.6) = ∫ + ( ) ¯ ( ) , ( 
Under the stated assumptions, the OCP faced by the policyholder is the following: max

( (•), ) =1 ∫ ( --+ ( )) ( ) (2.10a) s.t. ( ) ∈ [0, ], ∀ ∈ , (2.10b) ∈ ≡ [ , ], (2.10c) =1 + - ∫ [ ( ) + ( ( ))] ( ) ≥ ¯ .
(2.10d)

Existence of an optimal insurance policy

To facilitate the proof, we first recast the OCP following [START_REF] Trélat | Contrôle optimal: théorie & applications[END_REF]. To this end let the control be the function : → [0, 1] defined by:

( ) = ( ), ∈ . 
(2.11)

Since ( ) ∈ [0, ] for all ∈ by constraint (2.10b), the admissible control set is:

= { : → [0, 1], measurable}.
(2.12)

Clearly is compact with respect to the weak-★ topology. Notice that as defined is simply the insurance coverage rate. Next, let ≡ ( , , ) be the state vector defined on the state space = R + × R + × satisfying:

( ) = ( ) ( ) ( ) = ( --+ ( )) ( ) + -( ) -( ( )) ( ) 0 
, (0) = (0) = 0 (0) = 0 (0) = , (2.13)
where ( ) = ( ) ∈ℐ is the -dimensional vector of conditional densities defined in Assumption 2.4.
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Let the cost functional faced by the policyholder be (2.14) and the insurer's net welfare functional be

( , ) = - =1 ( ¯ ) ,
ℎ( , ) = =1 ( ( ¯ )) -¯ . (2.15)
Then the OCP can be rewritten as:

min { , } ( , ) 
. . ℎ( , ) ≥ 0.

(OCP)

Let ℳ 0 and ℳ 1 be measurable subsets of defined as

ℳ 0 = {0} × {0} × , (2.16 
)

ℳ 1 = R × , , (2.17) 
where , = { ∈ R × | ℎ( , ) ≥ 0} is the admissible set. The sets ℳ 0 and ℳ 1 are often called the source and target sets of the control system (2.13).

Proposition 2.1. The OCP admits an optimal pair ( , ). In other words, there exits an optimal insurance contract ( , ) such that ( ) = ( ) for ∈ .

Proof. See Subsection 2.7.1.

Lemma 2.1. The participation constraint (2.10d) is active (holds with equality) at an optimum.

In particular, if ( , ) is an optimal pair, then ℎ( , ) = 0.

Proof. See Subsection 2.7.2.

Remark 2.1. Before proceeding, let us consider two corner cases of the problem. In particular, let us consider the case of uniformly zero insurance, ( ) = 0 or ( ) = 0 on , and the case of

uniformly full insurance ( ) = 1 or ( ) = on .
First, consider the case of uniformly zero insurance ( ) = 0 for all ∈ . In this case,

ℎ(0, ) = ( + ) -¯ = ( + ) -( ), (2.18)
where the second equality comes from (2.5). Furthermore by (2.6) and (2.5), ℎ(0, ) = 0.

(2.19)

CHARACTERIZATION OF THE OPTIMAL INSURANCE CONTRACT

Observe that ℎ is strictly monotone in and ≥ for all ∈ . Hence the pair (0, ) is admissible for all ∈ . Nevertheless by Lemma 2.1, only the pair (0, ) is a candidate for an optimum.

Next, consider the case of uniformly full insurance, namely the case ( ) = 1 for all ∈ .

We have:

ℎ(1, ) = =1 + - ∫ ( + ( )) ( ) ) .
(2.20)

Note that since ℎ is strictly increasing in ,

ℎ(1, ) ≤ ℎ(1, ), ∀ ∈ . (2.21)
Let us consider two subscases.

• If is strictly concave (the insurer is ambiguity-averse), then by Jensen inequality2 and condition (2.7),

ℎ(1, ) < ( ) -¯ = 0. (2.22) Then (2.21) and (2.22) imply ℎ(1, ) < 0, ∀ ∈ , (2.23)
implying that there is no admissible pair.

• If is identity (the insurer is ambiguity-neutral), then also by condition (2.7) we have

ℎ(1, ) = 0, (2.24)
implying that ℎ(1, ) ≤ 0 for all ∈ . Hence the only admissible pair is ( = 1, = ).

To sum up, a contract involving uniformly zero insurance is always admissible, but can be an optimum if and only if the associated premium is zero. By contrast a contract involving uniformly full insurance is admissible if and only if the insurer is ambiguity-neutral ( being the identity function).

Characterization of the optimal insurance contract

General shape of an optimal contract

In this subsection, our goal is to derive the general properties of an optimal insurance contract. We employ the Pontryagin's Maximum Principle (PMP) to derive the necessary conditions that must be verified by the solutions. With slight modification from CHAPTER 2. OPTIMAL INSURANCE UNDER RISK AND AMBIGUITY RECONSIDERED [START_REF] Trélat | Contrôle optimal: théorie & applications[END_REF], the statement of the PMP applied to the OCP is provided in the following theorem.

Theorem 2.1 (Pontryagin Maximum Principle). Suppose ( , ) is an optimal pair for the OCP. There exists an absolutely continuous vector-valued function : → R 2 +1 and a real number 0 ≥ 0 with ( , 0 ) ≠ 0 ∈ R 2 +2 such that:

1. satisfies the canonical equations:

( ) = ∇ ( ( ), ( ), ( ), 0 , ), (2.25) ( ) = -∇ ( ( ), ( ), ( ), 0 , ), (2.26) 
for almost every ∈ , where the real-valued function :

R 2 +1 × R × R 2 +1 × R × R → R, called the Hamiltonian, is defined by: ( , , , 0 , ) = ( --+ ) , ( ) + + - -( ) , ( ) , (2.27)
where ≡ ( , , ) ∈ R 2 +1 is the adjoint vector whose components ∈ R , ∈ R and ∈ R themselves are the adjoint vectors corresponding to the state variables , and , respectively.

2. The maximum condition:

( ( ), ( ), ( ), 0 , ) = max

∈[0,1] ( ( ), , ( ), 0 , ) (2.28)
is satisfied for almost every ∈ .

3. The transversality conditions (TCs) hold:

(0) ∈ ℳ 0 ( (0)), (2.29) -0 ∇ ( , ) -( ¯ ) ∈ ℳ 1 ( ( ¯ )), (2.30)
where ℳ ( ( )) denotes the normal cone to ℳ at ( ), for ∈ {0, 1}.

Let = ( ℎ , , ) ∈ R 3 + be the vector of Lagrange multipliers, where ℎ is associated to the constraint ℎ( , ) ≥ 0, and ( , ) is associated to the constraint ∈ .

Proposition 2.2. The adjoint vectors and are constant with respect to . In particular,

= 0 ′ ( ( ¯ )) ∈ℐ , (2.31) = ℎ ′ ( ( ¯ )) ∈ℐ .
(2.32)

CHARACTERIZATION OF THE OPTIMAL INSURANCE CONTRACT

The adjoint vector satisfies

( ¯ ) = , ( ¯ ) + , ( ¯ ) + -, (2.33) (0) = 2 , ( ¯ ) + , ( ¯ ) + -.
(2.34)

Moreover if ∈ ( , ), then ( , ) = 0 and (0) = ( ¯ ) = 0. (2.35)
Proof. See Subsection 2.7.3.

Lemma 2.2. The non-triviality condition ( 0 , ℎ ) ≠ 0 holds.

Proof. See Subsection 2.7.4.

Remark 2.2. If either 0 or ℎ is equal to 0, then we normalize the other to one. If both are strictly positive, we defer the normalization until the numerical simulation.

Let us now consider the maximum condition. Denote ≡ , and ≡ 2 2 . For every fixed ∈ , we have

= ′ ( --+ ) , ( ) -(1 + ′ ( )) , ( ) , (2.36) = 2 ′′ ( --+ ) , ( ) -′′ ( ) , ( ) .
(2.37) Furthermore, denote

( ) = ′ ( --) ( ) -(1 + ′ (0)), (2.38) 
and

( ) = ′ ( -) ( ) -(1 + ′ ( )).
(2.39)

Notice that the signs of ( ) and ( ) are a.e. identical to the signs of ( )| =0 and

( )| =1 , respectively.
Lemma 2.3. At an optimum,

• 0 = 0 if and only if the optimal contract is the trivial pair ( = 0, = );

• ℎ = 0 if and only if is linear, in which case the optimal contract is the pair ( = 1, = ).

Proof. See Subsection 2.7.5.

Remark 2.3. In the remaining analyses of the paper we assume, whenever not explicitly stated, that both 0 and ℎ are strictly positive, bearing in mind that we need to eventually compare the cost yielded by the contract(s) found under this assumption with that in the two special cases addressed in Lemma 2.3 to find the optimal one(s).

Since all the prior probabilities and the densities are strictly positive (Assumption 2.2 and Assumption 2.4), we can define:

( ) = , ( ) , ( ) , ∈ , (2.40) ( ) = , ( ) , ( ) , ∈ (2.41)
Observe that both and are strictly positive since 0 > 0 and ℎ > 0. Hence we can define their ratio : → R * + by

( ) = ( ) ( ) = , ( ) , ( ) . (2.42)
Clearly is strictly positive. Notice that ( ) can be expressed as

( ) = 0 =1 ′ ( ( ¯ )) ( ) =1 ( ) = 0 =1 ( ) ′ ( ( ¯ )), (2.43) 
where

( ) = ( ) =1 
( ) is the Bayesian posterior probability on the occurrence of the second-order state given that the loss is . This inference is a direct consequence of the uncertainty on the distribution and that the second-order state itself is not a contractible variable. Hence ( ) so defined can be interpreted as the expected marginal second-order utility, or expected marginal welfare (EMW) of the policyholder with respect to the posterior distribution, up to a positive constant. Analogously ( ) can be interpreted as the EMW of the insurer with respect to the posterior distribution up to a positive constant. Finally, ( ), the expected marginal welfare ratio (EMWR), can be intuitively interpreted as the relative strength of the policyholder's ambiguity aversion with respect to that of the insurer (see equation (2.59) below).

Lemma 2.4. For each ∈ , the function Σ : [0, ] → R * + defined by:

Σ ( ) = 1 + ′ ( ) ′ ( --+ ) (2.44)
is strictly increasing in for ∈ .

Proof. See Subsection 2.7.6.

CHARACTERIZATION OF THE OPTIMAL INSURANCE CONTRACT

Hence for each fixed , the function Σ is strictly increasing for all ∈ [0, ], implying that Σ has a well-defined inverse Σ -1 : R * + → [0, ], which is also strictly increasing. Denote

Σ -1 = Ξ .
(2.45)

Proposition 2.3. An optimal coverage rate function is such that

( ) ∈ {0, 1 , Ξ ( ( ))} , ∈ . (2.46)
where Ξ : R * + → [0, ] is defined in (2.45), and is the ratio of EMWs given in (2.42). Equivalently, the corresponding indemnity function ( ) = ( ) satisfies

( ) ∈ {0, , Ξ ( ( ))} , ∀ ∈ .
(2.47)

Moreover, for ∈ (0, ¯ ] such that ( ) takes value in (0, 1), the indemnity function takes values in (0, ), is differentiable at and satisfies the differential equation

′ ( ) = ( ( )) + ′ ( ) ( ) ( ( )) + ′′ ( ( )) 1+ ′ ( ( )) , (2.48) 
where (•) > 0 is the policyholder's Arrow-Pratt degree of absolute risk aversion defined in (2.3) and ( ) is the final wealth of the policyholder

( ) = --+ ( ).
(2.49)

Proof. See Subsection 2.7.7.

Observe that both and defined in (2.40) and (2.41), respectively, are strictly positive-valued, bounded and continuously differentiable on (0, ¯ ). Differentiating with respect to yields:

′ ( ) = 0 1≤ < ≤ ′ ( ( ¯ )) -′ ( ( ¯ )) 2 ( )ℓ ′ ( ) , ( ) 2 , (2.50) and ′ ( ) = ℎ 1≤ < ≤ ′ ( ( ¯ )) -′ ( ( ¯ )) 2 ( )ℓ ′ ( ) , ( ) 2 . 
(2.51)

Thus the monotonic behavior of and depends on the ordering of the second-order states. In particular, a sufficient condition for to be increasing is that ( ¯ ) ≥ ( ¯ ) for all < since is concave and ℓ ′ ≤ 0. Likewise a sufficient condition for to be RECONSIDERED increasing is ( ¯ ) ≥ ( ¯ ) for all < . Observe that by integration by parts (IBP):

( ¯ ) = ( ¯ ) + ∫ ′ ( ) 1 + ′ ( ( )) ( ) , (2.52) ( ¯ ) = ( ( ¯ )) + ∫ [1 -′ ( )] ′ ( ( )) ( ) , (2.53) 
where

( ) = --+ ( ),
(2.54)

( ) = + -( ) -( ( )). (2.55) Hence ( ¯ ) -( ¯ ) = ∫ ′ ( )[1 + ′ ( ( ))]( ( ) -( )) , (2.56) ( ¯ ) -( ¯ ) = ∫ [1 -′ ( )]( ( ) -( )) .
(2.57)

Since ( ) ≥ ( ) on with strict inequality at least on a subset of positive-measured of by Assumption 2.5, the ordering of the states depend crucially on the magnitude of ′ relative to one. Observe that from Proposition 2.3,

′ ( ) ∈        0, 1, ( ( ) + ′ ( ) ( ) ( ( ) + ′′ ( ( )) 1+ ′ ( ( )) )        . (2.58)
Hence if ′ ≤ 0 for values of such that ( ) ∈ (0, ) then ′ ( ) ≤ 1 on . In this case we conclude from (2.57) that ( ¯ ) ≥ ( ¯ ). On the contrary if ′ > 0 for values of such that ( ) ∈ (0, ), then ′ ≥ 0 on , which via (2.56) that ( ¯ ) ≥ ( ¯ ). Hence the ordering of the states ultimately depend on the monotonic behavior of , the ratio of EMWs.

Note that since ( ) = ( ) ( ) , differentiating with respect to and re-arranging yield:

′ ( ) ( ) = ′ ( ) ( ) - ′ ( ) ( ) . (2.59) Observe that ′ ( ) = 1≤ < ≤ - 2 ( )ℓ ′ ( ) , ( ) 2 . 
(2.60)

Hence the EMWR varies with respect to in general. Nevertheless, we can show that in the case of two ambiguous states ( = 2), the monotonic behavior of this important term is independent of the value of the loss. We defer the treatment of this case to 2.4. CHARACTERIZATION OF THE OPTIMAL INSURANCE CONTRACT Subsection 2.4.3.

Ambiguity-neutral DMs and Raviv (1979) revisited

Let us study the case of ambiguity-neutral DMs ( and are identity), which turns out to be a convenient setting to re-examine the main results obtained in [START_REF] Raviv | The design of an optimal insurance policy[END_REF], the seminal work that motivates the approach adopted in this paper. Notice that under ambiguity neutrality, the OCP of interest is: max

( (•), ) ∫ ( --+ ( )) ¯ ( ) (2.61a) s.t. ( ) ∈ [0, ], ∀ ∈ , (2.61b) ∈ ≡ [ , ], (2.61c) ≥ ∫ ( ( ) + ( ( )) ¯ ( ) , (2.61d) 
where ¯ ≡

=1

is the ambiguity-neutral density defined in (2.9). On the other hand, it is immediate to see that the unambiguous case of [START_REF] Raviv | The design of an optimal insurance policy[END_REF] corresponds to the case where the second-order state space ℐ is a singleton: = 1. Suppose WLOG that 1 = 1. Recall that is strictly increasing and ¯ = ( ), the OCP in this case reduces to: max

( (•), ) ∫ ( --+ ( )) 1 ( ) (2.62a) s.t. ( ) ∈ [0, ], ∀ ∈ , (2.62b) ∈ ≡ [ , ], (2.62c) ≥ ∫ ( ( ) + ( ( )) 1 ( ) . (2.62d) Since is strictly increasing, maximizing (2.61a) subject to (2.61b)(2.61c)(2.61d) is equivalent to maximizing (2.62a) subject to (2.62b)(2.62c)(2.62d
). Hence the ambiguityneutral case and the unambiguous case are philosophically distinct but technically equivalent problems. In fact the only principal difference between these two OCPs is the density function of the loss. In the ambiguity-neutral case, the ambiguity-neutral density is the relevant one. In the unambiguous case, the pertinent one is the unambiguous density associated with the second-order state that occurs with certainty (the objectively known loss density). Observe that modifying the density does not alter the shape of the optimal contract. Therefore while the remain of this section addresses the unambiguous case to facilitate the comparison with [START_REF] Raviv | The design of an optimal insurance policy[END_REF], all results hold for the ambiguity-neutral case.

Recall that under no ambiguity, Raviv shows that two types of policy might prevail RECONSIDERED at the optimum. 3 In particular, there could be either a deductible policy of the form

       ( ) = 0 ≤ 1 , ( ) ∈ (0, ) > 1 .
(2.63)

or an upper-limit policy of the form

       ( ) ∈ (0, ) ≤ 2 , ( ) = > 2 .
(2.64)

Notice that under no ambiguity ( = 1), Proposition 2 trivially yields

= 0 , (2.65) = ℎ .
(2.66)

If 0 = 0 or ℎ = 0, then either the optimal contract is one of the corner cases in Lemma 5. Otherwise 0 > 0 and ℎ > 0 and defined in (2.42) simplifies to:

( ) = 0 1 ( ) ℎ 1 ( ) = 0 ℎ ≡ ˜ 0 , (2.67) 
which is a strictly positive constant. 4 Hence the deductible 1 is defined as the unique zero of ( )| =0 while the upper limit 2 is the unique zero of ( )| =1 when is a constant. Moreover, the co-insurance equation (2.48) that the indemnity function must satisfy whenever ( ) ∈ (0, ) reduces to

′ ( ) = ( ( )) ( ( )) + ′′ ( ( )) 1+ ′ ( ( ))

,

(2.70) which depends on if and only if the cost of indemnity provision is strictly convex, as shown by [START_REF] Raviv | The design of an optimal insurance policy[END_REF]. 5 Recall that in Raviv's analysis, whether a deductible or an upper limit type of policy is optimal depends crucially on the premium, which is assumed fixed.

3 See Theorem 1 of [START_REF] Raviv | The design of an optimal insurance policy[END_REF] on page 87. 4 Under ambiguity neutrality,

= 0 ( ) ∈ℐ , (2.68) = ℎ ( ) ∈ℐ .
(2.69)

If 0 = 0 or ℎ = 0, we are back to the special contracts discussed in Lemma 2.3. If ℎ and 0 are strictly positive, then it is easy to see that ( ) = 0 ¯ ( )

ℎ ¯ ( )
= 0 ℎ = ˜ 0 , as in the unambiguous case. 5 Note that here the Arrow-Pratt degree of risk aversion of the insurer is zero.

CHARACTERIZATION OF THE OPTIMAL INSURANCE CONTRACT

Observe that in this case ( ) in (2.38) simplifies to:

( ) = ′ ( --) ˜ 0 -(1 + ′ (0)).
(2.71)

We have the following proposition.

Proposition 2.4. Consider the case of ambiguity-neutral DMs, or the unambiguous case = 1.

There exists a unique 1 ∈ (0, ¯ ), called the deductible, defined as the zero of ( ) in (2.71). If 0 = 0 or ℎ = 0, then the contracts are of the types discussed in Lemma 2.3. If 0 > 0 and ℎ > 0, then the optimal contract consists of the pair ( , ) such that the indemnity function satisfies:

( ) =        0 ∈ [0, 1 ], Ξ ( ˜ 0 ) ∈ (0, ) ∈ ( 1 , ¯ ].
(2.72)

The optimal premium ∈ ( , ) satisfies

= ∫ ¯ 1 ( ( ) + ′ ( ( ))) ¯ ( ) , (2.73)
where ¯ is the ambiguity-neutral density defined in (2.9). Moreover, for losses beyond the deductible 1 , the co-insurance level is determined by:

′ ( ) = ( --+ ( )) ( --+ ( )) + ′′ ( ( )) 1+ ′ ( ( ))

,

(2.74)

where (•) = -′′ (•) ′ (•)
is the Arrow-Pratt absolute risk aversion.

Proof. See Subsection 2.7.8.

Remark 2.4. Hence following the holistic approach of solving for the pair ( , ) simultaneously allows us to show directly that policy that involves an upper limit coverage, i.e., one that consists of an indemnity function of the type

( ) =        ≤ 2 , ∈ (0, ) > 2 ,
(2.75)

for some 2 > 0 cannot be optimal. In other words, Proposition 2.4 completes the analysis of [START_REF] Raviv | The design of an optimal insurance policy[END_REF]. Recall that [START_REF] Raviv | The design of an optimal insurance policy[END_REF] derives Theorem 1 for a fixed premium. This means to verify which type of indemnity function is optimal, one must first supply a premium. This is problematic since the premium itself depends on the shape of the indemnity function. Consequently, the first theorem of [START_REF] Raviv | The design of an optimal insurance policy[END_REF] is of limited use when it comes to selecting the optimal indemnity schedule. Our proposition addresses exactly this issue. By exploiting all information available from the maximum principle, we have shown that the upper limit type of policy cannot constitute an optimum in the case of a risk-neutral insurer. This is done without resorting to any additional technique outside of the optimal control framework.

Observe that if the cost of indemnity provision is linear (constant loading), then the differential equation characterizing co-insurance implies that ′ ( ) = 1 for all losses beyond the deductible. In other words, the contract is a straight deductible, as is obtained in Proposition 1 of Gollier (2014).6 

Corollary 2.1. Suppose that the cost of indemnity provision is linear, in particular,

( ) = , > 0. 
(2.76)

Then the optimal insurance contract is a straight deductible, namely that the pair ( , ) satisfies

( ) =        0 ∈ [0, 1 ], -1 ∈ ( 1 , ¯ ].
(2.77) and

= (1 + ) ∫ ¯ 1 ( -1 ) ¯ ( ) .
(2.78)

Proof. See Subsection 2.7.9

Proposition 2.5. Consider the case of ambiguity-neutral DMs, or the unambiguous case = 1 with constant loading factor ′ ( ) = ≥ 0. Full insurance is optimal if and only if = 0.

Proof. See Subsection 2.7.10.

Two ambiguous states

Recall from our discussion in Section 4.1 that in general varies in . Nevertheless, we can show that the monotonicity of is independent of in the case of two ambiguous states ( = 2), which we now consider. Notice that for = 2, then (2.50) and (2.51) reduce to:

′ ( ) = 0 1 2 ′ ( 1 ( ¯ )) -′ ( 2 ( ¯ )) 2 2 ( )ℓ ′ 12 ( ) ¯ 2 ( ) , (2.79) ′ ( ) = ℎ 1 2 ′ ( 1 ( ¯ )) -′ ( 2 ( ¯ )) 2 2 ( )ℓ ′ 12 ( ) ¯ 2 ( ) . (2.80) 2.4. CHARACTERIZATION OF THE OPTIMAL INSURANCE CONTRACT Define ( , ) = 1 2 -2 1 = ℎ 0 ′ ( 1 ( ¯ )) ′ ( 2 ( ¯ )) -′ ( 2 ( ¯ )) ′ ( 1 ( ¯ )) . (2.81) Then, ′ ( ) = 1 2 ( , ) 2 2 ( )ℓ ′ 12 ( ) , ( ) 2 .
(2.82)

Lemma 2.5. In the case of two ambiguous states = 2, the monotonic behavior of , the ratio of EMWs, is independent of the loss , for all ∈ . Furthermore, the EMWs of both DMs are increasing ( ′ ≥ 0 and ′ ≥ 0) on .

Proof. See Subsection 2.7.11.

Recall that the case ∈ { , } is discussed in Lemma 2.3. If ∈ ( , ), then (2.35)
holds. Let us rewrite this condition as:

∫ ′ ( ( )) , ( ) = , 1 , (2.83)
where ( ) is given by (2.49) and 1 denotes the -dimensional vector with all elements being equal to one. Since the RHS is strictly positive, we can rewrite (2.83) as:

∫ ′ ( ( )) ( ) ˜ ( ) = 1, (2.84)
where

˜ ( ) = , ( ) , 1 = =1 ( ) =1 .
(2.85)

Observe that ˜ in (2.85) is strictly positive on and 

∫ ˜ ( ) = 1.
       ( ) = 0 ∈ [0, 1 ], ( ) ∈ (0, ] ∈ ( 1 , ¯ ],
(2.86)

where 1 ∈ (0, ¯ ), the deductible, is the unique solution to ( ) = 0. The associated premium RECONSIDERED ∈ ( , ) satisfies:

=1 + - ∫ ( ( ) + ( ( )) ( ) = ( ).
(2.87)

Moreover if is linear, then in consideration of defined in (2.39), one of the following cases could occur.

• If ( ¯ ) ≥ 0, then there exists a unique 2 ∈ ( 1 , ¯ ], the smallest solution to ( ) = 0, such that an optimal indemnity function satisfies:

( ) =              0 ∈ [0, 1 ], Ξ ( ( )) ∈ ( 1 , 2 ), ∈ [ 2 , ¯ ].
(2.88)

• If ( ¯ ) < 0, then an optimal indemnity function has the form:

( ) =        0 ∈ [0, 1 ], Ξ ( ( )) ∈ ( 1 , ¯ ].
(2.89)

Proof. See Subsection 2.7.12

One-sided ambiguity aversion under two ambiguous states

Let us now consider a case of practical interest: the case of an ambiguity-averse policyholder and an ambiguity-neutral insurer. Again we assume that both 0 and ℎ > 0.

Proposition 2.6. In the case of two ambiguous states ( = 2) with ambiguity-averse policyholder and ambiguity-neutral insurer, there exists a unique 1 ∈ (0, ¯ ), called the deductible, such that ( 1 ) = 0. An optimum is either one of the corner cases discussed in Lemma 2.3, or consists of the pair ( , ) such that the indemnity function is of the form:

       ( ) = 0 ∈ [0, 1 ], ( ) ∈ (0, ] ∈ ( 1 , ¯ ].
(2.90)

The associated premium ∈ ( , ) satisfies:

= ∫ ¯ 1 ( ( ) + ( ( ))) ¯ ( ) . (2.91)
Moreover if is linear, then one of the following cases can occur.

• If ( ¯ ) ≥ 0, then there exists a unique 2 ∈ ( 1 , ¯ ], the smallest solution to ( ) = 0, such that an optimal indemnity function is a disappearing deductible:

( ) =              0 ∈ [0, 1 ], Ξ ( ( )/ ℎ ) ∈ ( 1 , 2 ), ∈ [ 2 , ¯ ].
(2.92)

• If ( ¯ ) < 0, then an optimal indemnity function entails co-insurance beyond a deductible:

( ) =        0 ∈ [0, 1 ], Ξ ( ( )/ ℎ ) ∈ ( 1 , ¯ ].
(2.93)

Moreover, whenever ( ) ∈ (0, ), the co-insurance rate is given by

′ ( ) = ( ( )) + ′ ( ) ( ) ( ( )) .
(2.94)

Proof. See Subsection 2.7.13.

Remark 2.5. Note that the existence of 2 depends on the magnitude of ( ¯ ), which depends on the optimal premium and the values of the co-states and . This poses challenges to ex-ante checking whether ( ¯ ) is negative, and calls for a numerical analysis of the problem, which is deferred to Section 2.5.

Remark 2.6. If the contract takes the form (2.93), it is noteworthy that a straight deductible is in general not optimal (unless under a special ambiguity structure). Indeed, a straight de-

ductible contract implies that ′ ( ) = 0 on [0, 1 ] and ′ ( ) = 1 on ( 1 , ¯ ]. Hence (2.168)
simplifies to:

1 ( ¯ ) -2 ( ¯ ) = ∫ 1 0 ′ ( ( ))( 1 ( ) -2 ( )) . (2.95) Observe from (2.79) that ′ ( ) = 0 if and only if either 1 ( ¯ ) = 2 ( ¯ ) or ℓ ′ 12 ( ) = 0.
Suppose there exists a subset of positive measure of [0, 1 ] such that 1 ( ) > 2 ( ), then (2.95) implies section, where ambiguity "contaminates" the whole range of the losses, i.e., ℓ ′ 12 < 0 on the whole support.

Numerical simulation

This section serves as a response to Remark 2.5 in the previous section. In addition, we also illustrate the impact of increasing ambiguity aversion on the contract. Recall from Remark 2.2 that when both ℎ and 0 are strictly positive, we still have a degree of freedom to normalize one of them. To facilitate the numerical analysis, we follow the convention in the literature and set:

0 = 1.
(2.96)

The numerical exercise reduces to solving a nonlinear system of the following equations:

(

1 ) = 0 ⇐⇒ ′ ( --1 ) =1 ′ ( ( ¯ )) ( 1 ) -ℎ (1 + ′ (0)) = 0, (2.97) ( 2 ) = 0 ⇐⇒ ′ ( -) =1 ′ ( ( ¯ )) ( 2 ) -ℎ (1 + ′ ( 2 )) = 0, (2.98) 1 ( ¯ ) = ∫ ¯ 0 ( --+ ( )) 1 ( ) , (2.99) 2 ( ¯ ) = ∫ ¯ 0 ( --+ ( )) 2 ( ) , (2.100) = ∫ ¯ 1 ( ( ) + ( ( ))) ¯ ( ) , (2.101) ℎ = ∫ ¯ 0 ′ ( --+ ( )) =1 ′ ( ( ¯ )) ( ) .
(2.102)

Note that the optimal contract (2.93) corresponds to the system of equations (2.97) and

(2.99)-(2.102). In this case for all losses between 1 and ¯ , the indemnity function satisfies

Ξ ( ( )/ ℎ ) = Ξ =1 ′ ( ( ¯ ))/( ℎ ¯ ( )) . (2.103)
On the other hand, the contract (2.92) corresponds to the system of equations (2.98)-

(2.102). In this case, the indemnity function satisfies (2.103) for losses between 1 and 2 . We emphasize that since the shape of the contract is not known ex-ante. In particu-2.5. NUMERICAL SIMULATION lar, the conditions conditions laid out in Proposition 2.6 pertaining to the shape of the optimal indemnity function are endogenous. Our strategy is thus to first hypothesize a certain shape, then solve the relevant system of equations under this hypothesis, and then go back to verify the conditions in Proposition 2.6. The rest of this section is organized as follows. Subsection 2.5.1 provides the specific functions and parameters used in the numerical exercise. Subsection 2.5.2 discusses the simulation results and some comparative statics of ambiguity and ambiguity aversion.

Data

CRRA Utility function

The function : R * + → R is defined by

( ) =        1--1 1- ≠ 1 ln = 1.
(2.104)

CRAA Second order utility functions

For ∈ { , },

( ) =        1--1 1- ≠ 1 ln = 1.
(2.105)

Cost of indemnity provision

The function is linear, in particular ( ) = , where ∈ (0, 1) is often referred to as the constant loading factor.

Priors and densities

The probability of the first state is 1 ∈ (0, 1). Let the densities be truncated exponential distributions defined as follows. For each in ℐ,

( ) =        1 -/ 1--¯ / ∈ , 0 ∉ .
(2.106)

where 's are strictly positive. In particular for Assumption 2.5 to hold we require that for all , in ℐ such that < , it holds that < . 

Parameters

= [0, ¯ ] [0, 1] Domain of the premium = [ , ] = 0, = (1 + ) ∫ 1 0 ¯ ( )
Policyholder's initial wealth + ¯ + 0.75 Insurer's initial wealth 1000

Table 2.2: Parameters assumed for the simulation

Simulation results

In this case the computed optimal deductible and premium are: Hence the contract with a deductible is the optimal one. The indemnity function in this case is plotted in Figure 2.1. Figure 2.2 verifies that (0) < 0, ( ¯ ) > 0 and ( ¯ ) < 0. In fact the indemnity function in Figure 2.1 resembles a straight deductible (it appears to be linear in for > 1 ) as the the ratio ′ / seems to converge to zero as tends to ¯ , as illustrated in Figure 2.3. Nevertheless, this is visually misleading. Recall from Remark 2.6 that in the case under consideration where ℓ ′ 2.6. CONCLUSION ductible there might exist an upper limit above which full insurance is optimal. The condition for the existence of this upper limit cannot be verified ex-ante, which motivates us to conduct a numerical simulation. Our numerical results suggest that while increasing ambiguity aversion raises the demand for insurance (and the associated premium) in the sense that it reduces the deductible, an upper limit is never reached for a range of parameters used.

1 ≈ 0.

Appendix of Proofs

Proof of Proposition 2.1

Let = inf ( , )∈ × ( , ). Consider a sequence of trajectories { (•)} ∈N associated with the sequence of admissible controls { (•)} ∈N defined by

( ) = ( ) ( ) ( ) = ( ) ∈ℐ ( ) ∈ℐ , ∈ \ {0}, such that ( , ) -→ as -→ ∞, where 
( ) = ∫ 0 ( - -+ ( )) ( ) , ∈ ℐ, ( ) = ∫ 0 ( + - ( ) -( ( ))) ( ) , ∈ ℐ.
By the weak-★ compactness of , the sequence { (•)} ∈N converges to * (•) ∈ up to some subsequence, i.e., -→ * . Likewise the compactness of implies -→ * ∈ up to some subsequence. Let ¯ * stand for the limiting trajectory defined by

¯ * ( ) = ¯ * ( ) ¯ * ( ) * = ¯ * ( ) ∈ℐ ¯ * ( ) ∈ℐ * , ∈ \ {0},
where

¯ * ( ) = ∫ 0 ( - * -+ * ( )) ( ) , ∈ ℐ, ¯ * ( ) = ∫ 0 + * - * ( ) -( * ( )) ( ) , ∈ ℐ.
The remain of the proof is completed in two steps. First, we show that the limiting trajectory is shown to satisfy the constraint. Second, we prove that this trajectory is an optimal one.

The limiting trajectory verifies the constraint

Let us now show that ℎ( * , * ) ≥ 0. By construction ℎ( , ) ≡ =1 ( ( ¯ ))-¯ ≥ 0 for all ∈ N. For ∈ ℐ and ≥ 0, let us write 

( ¯ ) = ∫ ( + * - ( ) -( ( ))) ( ) + Δ , where Δ = ∫ - * ( ) = - * . Clearly Δ tends to zero as tends to infinity. Let Γ ( ( )) ≡ -( + * - ( ) -( ( ))) ( ), then Γ ( ( )) is convex in ( ) since (•) is convex in ( )
∫ Γ ( * ( )) ≥ lim inf ∫ Γ ( ( )) , or -¯ * ( ¯ ) ≥ lim inf(-( ¯ ) -) ⇐⇒ ¯ * ( ¯ ) ≥ lim sup ( ¯ ).
By the continuity of ¯ * , for all > 0, there exists a sufficiently large positive integer such that

¯ * ( ¯ ) ≥ ( ¯ ) -.

Since

is increasing,

(¯ * ( ¯ )) ≥ ( ( ¯ ) -).
(2.111)

By the first fundamental theorem of calculus,

( ( ¯ )) -( ( ¯ ) -) = ∫ ′ ( ) ,
where ≡ ( ¯ ) and = -. Since ′ is bounded by Assumption 2.10, let ∈ R + be an upper bound of ′ over [ , ]. Then

( ( ¯ )) -( ( ¯ ) -) ≤ ( -) = , implying ( ( ¯ ) -) ≥ ( ( ¯ )) - ,
which, together with (2.111) imply

(¯ * ( ¯ )) ≥ ( ( ¯ )) - (2.112) =⇒ =1 (¯ * ( ¯ )) ≥ =1 ( ( ¯ )) - . (2.113) Observe that =1 ( ( ¯ )) ≥ ¯ since =1 ( ( ¯ )) ≥ ¯ for all ≥ 0. Thus from (2.113), we have =1 (¯ * ( ¯ )) ≥ ¯ - .
Since was arbitrary, letting → 0 completes the proof. We next show that the cost functional achieved by the limiting trajectory is optimal.

The optimality of the limiting trajectory

We now prove that the cost achieved by the limiting trajectory is optimal, i.e., ( * , * ) =

, where = inf ( , )∈ × ( , ). Since ( * , * ) is admissible, ( * , * ) ≥ . It remains to show that ( * , * ) ≤ . Let us write:

( ¯ ) = ∫ ( - * -+ ( )) ( ) + Δ ,
where

Δ ≡ ∫ ( + -+ ( )) -( + * -+ ( )) ( ) .
(2.114)

Observe that Δ tends to zero as tends to infinity since is bounded and continuous, and is continuous. Let Γ ( ( )) ≡ -( - * -+ ( )) ( ). Then Γ is convex in sinceis convex and is strictly positive. Again from [START_REF] Lee | Foundations of optimal control theory[END_REF],

∫ Γ ( * ( )) ≤ lim inf ∫ Γ( ( )) -¯ * ( ¯ ) ≤ lim inf(-( ¯ ) -Δ ) ¯ * ( ¯ ) ≥ lim sup ( ¯ ).
Proceed similarly to the proof of the previous lemma, we have that for all > 0, there exists a sufficiently large integer such that

- =1 ¯ * ( ¯ ) ≤ - =1 ( ¯ ) + .
Letting tend to zero yields:

( * , * ) ≤ ( , ),
which implies that ( * , * ) is a lower bound for ( , ). Hence ( * , * ) ≤ by definition of the infimum, as desired.

To sum up, we have proved that the limiting trajectory satisfies the constraint and the cost achieved by this trajectory is the minimum cost. Thus the pair ( * , * ) is an 59 2.7. APPENDIX OF PROOFS optimal pair, and the associated insurance contract ( * , * ), where * ( )

=        0 = 0 * ( ) ∈ (0, ¯ ] (2.115)
is an optimal one.

Proof of Lemma 2.1

Suppose by contradiction that ℎ( , ) > 0 for an optimal pair ( , ). We have

=1 ∫ ( + -( ) -( ( ))) ( ) -¯ > 0 ⇐⇒ =1 + - ∫ ( ) + ( ( )) ( ) -¯ > 0.
If ( ) = 1 for a.e. ∈ , then by the continuity of with respect to there exists some positive real number > 0 such that ℎ( , -) > 0. Since the cost is strictly increasing in , lowering reduces the cost. In this case we have:

ℎ( , -) > 0, (2.116) ( , -) < ( , ), (2.117) 
implying that the contract ( , -) is feasible and yields a lower cost. Hence ( , ) is not optimal, a contradiction.

If is not equal to 1 almost everywhere on , then by the continuity of the mapping ↦ → + ( ) and strict positivity of the conditional densities, there exists ⊂ of positive measure and a sufficiently small > 0 satisfying 0 ≤ ( ) + ≤ 1 for all ∈ such that ( ˜ , ) ≥ 0, where ˜ : (0, ¯ ] → [0, 1] is defined by

˜ ( ) =        ( ) ∈ (0, ¯ ] \ , ( ) + ∈ .
Since the cost is strictly decreasing in , the modified control ˜ yields a lower cost, i.e., ( ˜ , ) < ( , ), contradicting the hypothesis that ( , ) is optimal. We conclude that if ( , ) constitutes an optimal pair, then ℎ( , ) = 0.

Proof of Proposition 2.2

Let us first prove two lemmas. RECONSIDERED Lemma 2.6. The normal cone at (0) depends on the value of . In particular:

• If ∈ ( , ), then ℳ 0 ( (0)) = R × R × {0}; • If = , then ℳ 0 ( (0)) = R × R × R -; • If = , then ℳ 0 ( (0)) = R × R × R + .
The normal cone at ( ¯ ) is:

ℳ 1 ( ( ¯ )) = 0 -ℎ ∇ ℎ( , ) -ℎ ∇ ℎ( , ) - + .
(2.118)

Proof. First, consider ℳ 0 ( (0)), where (0) = (0, 0, ). Let = ( , , ) be an element in R × R × R. Let 0 be an element in ℳ 0 , hence 0 = (0, 0, ) for some ∈ . The normal cone to ℳ 0 at (0) can be written as:

ℳ 0 ( (0)) = ∈ R 2 +1 | , 0 -(0) ≤ 0, ∀ 0 ∈ ℳ 0 =⇒ ℳ 0 ( (0)) = ∈ R 2 +1 | ( -) ≤ 0, ∀ ∈ .
One of the following cases can occur.

• If ∈ ( , ), then = 0 since ( -) must be negative for any in . Hence in this case,

ℳ 0 ( (0)) = R × R × {0}.
(2.119)

• If = , then -≥ 0 for all ∈ . Thus ( -) is negative for any ∈ requires ≤ 0, implying that:

ℳ 0 ( (0)) = R × R × R -.
(2.120)

• If = , then -≤ 0 for all ∈ , implying that ≥ 0 and the normal cone in this case is:

ℳ 0 ( (0)) = R × R × R + .
(2.121)

Let us now compute the normal cone at the target compute ℳ 1 ( ( ¯ )), where ( ¯ ) = ( ¯ ), ( ¯ ), . Following [START_REF] Clarke | Optimization and nonsmooth analysis[END_REF], we can write

ℳ 1 ( ( ¯ )) = -ℎ ∇ ℎ( , ) + ∇ ( -) + ∇ ( -),
(2.122) where = ( ℎ , , ) satisfies the complementary slackness conditions

≥ 0, ( -) = 0, (2.123) ≥ 0, ( -) = 0. (2.124) Since ∇ ℎ( , ) = (0, ∇ ℎ( , ), ∇ ℎ( , )), (2.125) ∇ ( -) = (0, 0, -1), (2.126) ∇ ( -) = (0, 0, 1), (2.127)
we can rewrite (2.122) as:

ℳ 1 ( ( ¯ )) = 0 -ℎ ∇ ℎ( , ) -ℎ ∇ ℎ( , ) - + . (2.128) Lemma 2.7. If ∈ ( , ), then (0) = 0. If = , then (0) ≤ 0. If = , then (0) 
≥ 0.

Proof. The proof follows directly from condition (2.29) applied to different forms of ℳ 0 ( (0)) depending on where takes value (at the optimum). In particular, if ∈ ( , ), then the normal cone takes the form (2.119), implying that (0) = 0. If = , then the normal cone takes the form (2.120), implying that (0) ≤ 0. Finally if = , then the normal cone in (2.121) implies that (0) ≥ 0.

From the adjoint equation (2.26), we have that for almost every in ,

( ) ( ) ( ) = 0 0 ′ ( --+ ( )) , ( ) - , ( ) 
.
(2.129)

Hence ( ) = ≡ and ( ) = ≡ for all ∈ . In view of (2.128) we can rewrite the tranversality condition (2.30) as:

( ¯ ) = -0 ∇ ( , ) ℎ ∇ ℎ( , ) ∇ -0 ( , ) + ℎ ℎ( , ) + - . RECONSIDERED This yields = 0 ′ ( ( ¯ )) ∈ℐ , (2.130) = ℎ ′ ( ( ¯ )) ∈ℐ , (2.131) ( ¯ ) = 0 =1 ′ ( ( ¯ )) ( ¯ ) + ℎ =1 ′ ( ( ¯ )) ( ¯ ) + -.(2.132)
Let us substitute (2.130) and (2.131) into (2.132) to express ( ¯ ) more compactly as

( ¯ ) = , ( ¯ ) + , ( ¯ ) + -. (2.133) Observe that ∫ ( ) = ∫ ′ ( --+ ( )) , ( ) - ∫ , ( ) = - , ( ¯ ) - , ( ¯ ) , (2.134) 
where ( ¯ ) = 1 for all ∈ ℐ. Hence in view of (2.133) and (2.134)

(0) = ( ¯ ) - ∫ ( ) , = 2 , ( ¯ ) + , ( ¯ ) + -.
(2.135)

Observe that when ∈ ( , ), we have ( , ) = 0 ∈ R 2 thanks to the complementary slackness conditions (2.123) and (2.124). Hence for ∈ ( , ), we have:

(0) = 2 , ( ¯ ) + , ( ¯ ) = 2 ( ¯ ).
(2.136)

To arrive at (2.35), recall that (0) = 0 for interior values of by Lemma 2.7.

Proof of Lemma 2.2

Suppose by contradiction that 0 = ℎ = 0. Then equations (2.31) and (2.32) imply:

= = 0 ∈ R .
(2.137)

Hence from (2.129) (2.140)

( ) = 0, . . ∈ , ( 2 
Consider the following cases.

• If ∈ ( , ), then = = 0, implying that = 0 ∈ R 2 +1 , violating the condition ( , 0 ) ≠ 0.

• If = , then = -≤ 0. Non-negativity implies that = 0, which in turn implies = 0, again violating the condition ( , 0 ) ≠ 0.

• If = , then = ≥ 0. If = 0, then = 0 and a similar contradiction ensues. If > 0, then (0) = > 0, inconsistent with Lemma 2.7.

Thus in any case, a contradiction follows if ℎ = 0 = 0, establishing the lemma.

Proof of Lemma 2.3

Suppose that 0 = 0. Then ℎ > 0 by Lemma 2.2. By equations (2.31) and (2.32), the costate is a zero vector and the costate has strictly positive components, implying that , ( ) = 0 and , ( ) > 0 since the densities are strictly positive. Hence by Assumption 2.7,

= -(1 + ′ ( ))
, ( ) < 0, . . ∈ , (2.141) (2.142) implying that ( ) = 0 for a.e. ∈ . By Remark 2.1 uniformly zero insurance constitutes an optimum if and only if = = 0 .

= -2 ′′ ( ) , ( ) ≤ 0, . . ∈ ,
Next, consider the case ℎ = 0, which by Lemma 2.2 implies 0 > 0. Thus , ( ) > 0 and , ( ) = 0. Hence by Assumption 2.8, (2.144) implying that ( ) = 1 for a.e. ∈ . Again by Remark 2.1, if is strictly concave then the admissible set is empty, violating Proposition 2.1. This implies that if ℎ = 0 at an optimum if and only if is identity (i.e., if the insurer is ambiguity-neutral). In this case, the admissible set is a singleton containing only the pair ( = 1, = ), which is then trivially optimal.

= ′ ( --+ ) , ( ) > 0, . . ∈ , (2.143) = 2 ′′ ( --+ ) , ( ) < 0, . . ∈ ,

Proof of Lemma 2.4

Since and are at least 2 , the function Σ is differentiable, hence:

Σ = ′′ ( ) ′ ( --+ ) -(1 + ′ ( )) ′′ ( --+ ) ( ′′ ( --+ )) 2 , (2.145)
which is strictly positive for all ∈ since the cost function is strictly increasing and convex (Assumption 2.7), and is strictly increasing and strictly concave (Assumption 2.8).

Proof of Proposition 2.3

Since the Hamiltonian is strictly concave in for a.e. ∈ , one of the following must occur:

• either ( )| =0 ≤ 0 ⇐⇒ ( ) ≤ 0, then ( ) = 0; • or ( )| =1 ≥ 0 ⇐⇒ ( ) ≥ 0, then ( ) = 1;
• or ( ) > 0 and ( ) < 0, then ( ) ∈ (0, 1) is characterized by:

′ ( ( )) ( ) = 1 + ′ ( ( )), (2.146) 
which by Lemma 2.4 and the definition of Ξ implies:

( ) = Ξ ( ( )).
(2.147)

We can then recover the optimal indemnity function in (2.47) associated with the optimal coverage function in (2.46) by recalling that ( ) = 0 for = 0 and ( ) = ( ) for > 0. The coinsurance rate (2.48) is obtained by differentiating (2.146) with respect to upon substituting ( ) = ( ) into the expression. In particular,

′ ( --+ ( )) ( ) = 1 + ′ ( ( )), (2.148) ′′ ( ( ))( ′ ( ) -1) ( ) + ′ ( ( )) ′ ( ) = -′′ ( ( )) ′ ( ), (2.149) 
implying that:

-′′ ( ( )) ′ ( ( ) ( ( )) (1 -′ ( )) + ′ ( ) ( ) = ′′ ( ( )) ′ ( ) 1 + ′ ( ( )) , (2.150)
which yields (2.48) upon gathering ′ ( ) and simplifying.

Proof of Proposition 2.4

The special cases associated to either 0 = 0 or ℎ = 0 are discussed in Lemma 2.3. In particular, the optimal contract is the trivial one ( = 0, = ) if 0 = 0, or the uniformly full insurance one ( = , = ) if ℎ = 0. For ℎ > 0 and 0 > 0, the optimal premium takes an interior value ∈ ( , ¯ ). Invoking Proposition 2.2 for ′ = ′ = 1 (the DMs are ambiguity-neutral), we can write:

∫ ′ ( --+ ( )) ˜ 0 ¯ ( ) = 1 (2.151)
Since ≥ ( ) for all ∈ and is concave:

′ ( -) ≤ ′ ( --+ ( )), ∀ ∈ , (2.152)
with strict inequality whenever > ( ). Hence

˜ 0 ∫ ′ ( --+ ( )) ¯ ( ) ≥ ˜ 0 ′ ( -) 1 ≥ ′ ( -) ˜ 0 .
(2.153)

Since ′ > 0, in view of (2.71) we have:

(0) = ′ ( -) ˜ 0 -(1 + ′ (0)) < 0.
(2.154)

Note that since and are continuously differentiable, the function in (2.71) is also continuously differentiable. Furthermore by the strict concavity of ,

′ ( ) = -′′ ( --) > 0, (2.155)
implying that is continuous and strictly increasing on . Hence is strictly increasing and satisfies (0) < 0. If ( ¯ ) ≤ 0, then ( ) ≤ 0 on , implying that ( ) = 0 for all ∈ , which is not optimal for > 0 by Lemma 2.3. Hence ( ¯ ) > 0. By continuity there exists 1 ∈ (0, ¯ ), called the deductible, such that ( 1 ) = 0. By the strict monotonicity of the deductible 1 is unique. Now since is strictly increasing, for all losses below 1 we have ( ) ≤ 0, or | =0 ( ) ≤ 0, implying that ( ) = 0 for all ≤ 1 . Likewise for all > 1 , we have | =0 ( ) > 0, implying that ( ) > 0 for for such losses. Observe that under ambiguity neutrality,

| =1 ( ) ≡ ( ) = ′ ( -) ˜ 0 -(1 + ′ ( )), (2.156) RECONSIDERED
which is continuous and differentiable with respect to . Since ′ is convex,

′ ( ) = -′′ ( ) ≤ 0, ∀ ∈ (0, ¯ ), (2.157)
with strict inequality if is strictly convex. This implies ( ¯ ) ≤ (0). But (0) = (0), which is strictly negative as previously shown, implying that ( ) < 0 for all ∈ (0, ¯ ).

Hence full insurance ( ) = is never reached for losses beyond 1 . Therefore for

∈ ( 1 , ¯ ], we have ( ) ∈ (0, ) satisfying ′ ( --+ ( )) ˜ 0 = 1 + ′ ( ( )) ( ) = Ξ ( ˜ 0 ). (2.158)
Finally, the co-insurance equation (2.74) is obtained from (2.48) for ′ = 0. This completes the proof.

Proof of Corollary 2.1

The shape of the indemnity function (2.77) can be obtained immediately by solving the initial value problem:

′ ( ) = 1, ( 1 ) = 0.
(2.159)

The associated premium (2.78) is obtained by substituting (2.77) into the equality constraint (2.73).

Proof of Proposition 2.5

For simplicity and comparability with [START_REF] Raviv | The design of an optimal insurance policy[END_REF], let us normalize 0 = 1. In this case (2.151) simplifies to:

∫ ′ ( --+ ( )) ¯ ( ) = ℎ .
(2.160) By Corollary 2.1, the contract in this case has the shape of a straight deductible of size 1 , which is characterized by:

( 1 ) = 0 ⇐⇒ ′ ( --1 ) = ℎ (1 + ).
(2.161) Equation (2.160) can be rewritten as:

∫ 1 0 ′ ( --) ¯ ( ) + ∫ ¯ 1 ′ ( --1 ) ¯ ( ) = ℎ .
(2.162)

Observe that by IBP, the first term on the LHS becomes: with ¯ (0) = 0. Likewise, using ¯ ( ¯ ) = 1, the second term on the LHS of (2.162) can be rewritten as:

′ ( --1 ) ¯ ( 1 ) + ∫ 1 0 ′′ ( --) ¯ ( ) , ( 
(1 -¯ ( 1 )) ′ ( --1 ).

(2.164)

Combining (2.163) and (2.164) yields:

′ ( --1 ) + ∫ 1 0 ′′ ( --) ¯ ( ) = ℎ .
(2.165)

We can now use (2.161) to substitute out ℎ in (2.165), which gives:

+ 1 = ∫ 1 0 -′′ ( --) ′ ( --1 ) ¯ ( ) .
(2.166)

Since the density is strictly positive everywhere and the policyholder is strictly riskaverse, the term inside the integral on the RHS of the expression above is strictly positive. It is then immediate to see that 1 = 0 if and only if = 0.

Proof of Lemma 2.5

The independence of the monotonic behavior of with respect to is immediate from (2.82) upon recalling that ℓ ′ 12 ( ) ≤ 0 for all in by Assumption 2.5, and that ( , ) is independent of . In particular the sign of ′ is opposite to the sign of ( , ).

Next, using (2.57) and (2.56) for = 2 yields:

1 ( ¯ ) -2 ( ¯ ) = ∫ ′ ( ) 1 + ′ ( ( )) ( 1 ( ) -2 ( )) , (2.167) 1 ( ¯ ) -2 ( ¯ ) = ∫ [1 -′ ( )] ′ ( ( )) ( 1 ( ) -2 ( )) , (2.168) 
where

( ) = --+ ( ).
Recall that 1 ( ) -2 ( ) ≥ 0 on is implied by Assumption 2.5. Let us consider two cases.

Suppose that ′ ≥ 0. In this case ′ ≥ 0 on , implying that 1 ( ¯ ) ≥ 2 ( ¯ ) in view of (2.167). But this implies, via (2.80) that ′ ≥ 0 on . Observe that (2.59) is equivalent to

′ = ′ + ′ ,
(2.169) which must be positive since both terms on the RHS are positive. Hence ′ ≥ 0 since RECONSIDERED is strictly positive.

Suppose that ′ ≤ 0. In this case ′ ( ) ≤ 1 on , implying via (2.168) that 1 ( ¯ ) ≥ 2 ( ¯ ). Hence (2.79) implies ′ ≥ 0 on . Again from (2.59) we can write:

′ = - ′ + ′ , (2.170) 
implying that ′ ≥ 0. This completes the proof.

Proof of Theorem 2.2

Observe that and defined in (2.38) and (2.39), respectively, are continuous and differentiable. We have:

′ ( ) = -′′ ( --) ( ) + ′ ( --) ′ ( ), (2.171) ′ ( ) = ′ ( -) ′ ( ) -′′ ( ).
(2.172)

Notice that if ′ ≥ 0, then ′ above is strictly positive since is strictly positive and is strictly increasing and strictly concave (Assumption 2.8). Moreover, the monotonicity of also implies:

(0) ≤ ( ), ∈ . 
(2.173)

In addition, Assumption 2.6 and Assumption 2.8 imply

′ ( -) ≤ ′ ( ( )), ∈ . 
(2.174)

Since and ′ are strictly positive, conditions (2.173) and (2.174) imply

′ ( -) (0) ≤ ′ ( ( )) ( ), ∈ . 
(2.175)

Taking expectation with respect to the density ˜ on both sides yields:

′ ( -) (0) ≤ ∫ ′ ( ( )) ( ) ˜ ( ) (2.176) ′ ( -) (0) ≤ 1, (2.177)
where the second line follows from (2.84). Since ′ > 0 (Assumption 2.7), this implies:

′ ( -) (0) -(1 + ′ (0)) < 0 (2.178) (0) < 0.
(2.179)

If ( ¯ ) ≤ 0, then ( ) ≤ 0 on since is continuous, strictly increasing and (0) < 0.

In this case ( ) = 0 on , which constitutes an optimum if and only if = = 0 by Lemma 2.3, contradicting the hypothesis that takes an interior value. Hence ( ¯ ) > 0, implying (by continuity and strict monotonicity) that there exists a unique deductible 1 ∈ (0, ¯ ) such that ( 1 ) = 0.

For losses beyond the deductible, consider in (2.39). Note that by the strict concavity of the Hamiltonian, ( 1 ) > ( 1 ), implying that ( 1 ) < 0. By continuity ( ) < 0 at least on a sufficiently small open interval to the right of 1 . Denote this interval ( 1 , 1 + ), then on ( 1 , 1 + ) we have ( ) > 0 and ( ) < 0, implying that ( ) ∈ (0, ) and is characterized by ( ) = Ξ ( ( )). Beyond 1 + the shape of the indemnity function depends on the monotonic behavior of . In view of (2.172), let us consider the following cases.

1. If is strictly convex, the sign of ′ is indeterministic and our analysis reaches an impasse.

2. If is linear, then ′ ( ) ≥ 0, implying that is increasing. We know that ( 1 ) < 0. (2.180)

It is easy to see that is closed and bounded. Then we can uniquely define 2 as the smallest element of . In this case since is increasing we have ( ) ≥ ( 2 ) = 0 for all ∈ [ 2 , ¯ ] and ( ) < 0 for all ∈ ( 1 , 2 ). Hence beyond 1 , the indemnity function is characterized by:

( ) =        Ξ ( ( )) ∈ ( 1 , 2 ), ∈ [ 2 , ¯ ].
(2.181)

Therefore in this case the indemnity function has the form (2.88).

Proof of Proposition 2.6

It is immediate to see that in this case

( ) = ( ) ℎ , ∈ . 
(2.182) 

Introduction

It is not hard imagine that when it comes to work, there are at least two kinds. One that is common or has been repeated long enough that the distribution of outcomes is known, and the other which involves jobs at the forefront of innovation whose distribution of outcomes is often ambiguous. Examples of the former category include simple office tasks, manual factory work, etc. Jobs in research and development, in creative domains are typical of the latter category. In this chapter, we are interested in the kind of labor contract that concerns jobs with ambiguous results. This kind of context has been analyzed by [START_REF] Ghirardato | Agency theory with non-additive uncertainty[END_REF] using Schmeidler (1989)'s Choquet capacity (nonadditive measure), by Kellner (2017) using smooth ambiguity aversion in the framework of [START_REF] Grossman | An analysis of the principal-agent problem[END_REF]. Our work adopts the principal-agent formulation of [START_REF] Holmstrom | Moral hazard and observability[END_REF], and models ambiguity preferences according to [START_REF] Klibanoff | A smooth model of decision making under ambiguity[END_REF]. In contrast to the existing literature, our solution characterizes simultaneously the optimal wage function and the level of effort demanded of the agent under symmetric information (first-best result). Furthermore, we treat the problem in the most general form, allowing for the principal to be either neutral or averse to risk and/or ambiguity. This is distinct from the existing literature which often assumes that the principal is neutral to both risk and ambiguity. Nevertheless, empirical evidence has suggests that the principals themselves might be ambiguity-averse [START_REF] Kunreuther | How does ambiguity affect insurance decisions?[END_REF][START_REF] Kunreuther | Insurer ambiguity and market failure[END_REF][START_REF] Kunreuther | Ambiguity and underwriter decision processes[END_REF][START_REF] Cabantous | Ambiguity aversion in the field of insurance: Insurers' attitude to imprecise and conflicting probability estimates[END_REF][START_REF] Cabantous | Is imprecise knowledge better than conflicting expertise? evidence from insurers' decisions in the united states[END_REF].

To handle this problem, we again employ the technical tools from optimal control theory with major references from [START_REF] Trélat | Contrôle optimal: théorie & applications[END_REF] and [START_REF] Clarke | Optimization and nonsmooth analysis[END_REF]. The rest of the chapter is organized as follows. Section 3.2 states the principal's optimal contract problem and key assumptions. Section 3.3 reformulates the principal's problem as an optimal control one. 3.4 provides a an existence proof of an optimal wage contract in the most general case. Having proved existence, we set out to characterize the optimal contract in Section 3.5. Section 3.6 considers the special case of two ambiguous states. Section 3.7 reconsiders the problem when the outcome is unbounded from above and Section 3.8 concludes.

Assumptions and formulation of the principal's problem

Consider a principal-agent model where decision makers (DMs), the agent and the principal, face ambiguity in the distribution of the states. Consequently, the distributions of outcomes are state-conditional. We assume that the state space is finite, and the DMs have common priors over the distribution of the states. Our objective is to determine an optimal wage contract under symmetric information. for all ∈ ℐ and =1 = 1

Let ∈ = [ , ¯ ] ⊂ R + be the level of effort/action to be implemented by the agent.

The principal has to determine the desirable level of effort she demands of the agent.

The effort exerted by the agent is assumed to be verifiable and legally enforceable.

In other words, it is a valid contracting variable. Conditional on , the outcome is assumed to be a continuous random variable ˜ whose state-conditional distributions have common support = [0, ¯ ]. In particular, the following assumption holds. We assume that ambiguous states can be ranked according to the likelihood ratio (LR), as next defined. Example 3.1. Suppose = 2, ¯ = 1 (so that any outcome is viewed as a fraction of the maximum outcome), and the outcome distribution follows a truncated exponential distribution with an ambiguous parameter. 2 In particular:

( | ) =        ( ) ( ) exp -( ) ∈ [0, 1], ( ) > 0, ∈ {1, 2} 0 o.w.
, where ( ) = exp( ( ))

exp( ( ))-1 > 1. The likelihood ratio ℓ 12 ( ) is increasing if and only if

2 ( ) -1 ( ) 1 ( ) 2 ( ) exp -( ( ) + ( )) ≥ 0 ⇐⇒ 2 ( ) -1 ( ) ≥ 0.
Thus an amelioration in the LRD sense is equivalent to a reduction in the parameter of the exponential distribution. In other words, the more favorable state (state 1) is associated with a smaller parameter. At this point, we have not explicitly specified how effort changes this parameter. In general, this relationship also state-conditional. One might hypothesize that the higher the level of effort, the smaller the gap ( ) = 2 ( )-1 ( ). Intuitively, this gap represents the severity, or the consequence of ambiguity. Letting ( ) decrease in means believing that high efforts can mitigate the severity of ambiguity.

Next, we hypothesize that in any given state , raising efforts improves the outcome distribution in following sense. Assumption 3.6. The cost of effort is a 2 function : → R + satisfying (0) = 0, ′ > 0, ′′ ≥ 0.

We model the DMs' attitude towards risk by the von Neumann-Morgenstern utility functions. Recall that the utility function being concave, linear, or convex corresponds to a risk-averse, risk-neutral, or risk-seeking DM, respectively. Typically, the agent is 2 Recall that if is distributed as an exponential distribution of parameter , its density is:

( ) = exp{-}, ≥ 0, > 0.
For our purpose, we need to "redistribute" the mass over a bounded interval , instead of the whole R + .

This conditioning is achieved by dividing the original density by the cumulative mass contained in this interval, which in this example is (1) = ∫ 1 0 ( ) = 1 -exp(-).

ASSUMPTIONS AND FORMULATION OF THE PRINCIPAL'S PROBLEM

assumed to be risk-averse and the principal risk-neutral. For greater generality, we allow for the possibility of the principal being risk-averse.

Assumption 3.7. The agent has utility function : R + → R, which is at least 2 , satisfying (0) = 0, ′ > 0, ′′ < 0, and the Inada condition lim →0 ′ ( ) = +∞. Similarly, the principal also has a 2 utility function : R + → R satisfying (0) = 0, ′ > 0 and ′′ ≤ 0.

If ′′ < 0, then lim →0 ′ ( ) = +∞.
To capture the phenomenon known as "ambiguity aversion" postulated by [START_REF] Ellsberg | Risk, ambiguity, and the savage axioms[END_REF], we follow the smooth model of [START_REF] Klibanoff | A smooth model of decision making under ambiguity[END_REF]. We refer to this model as KMM ( 2005) from now on. According to KMM (2005), attitudes towards ambiguity can be modeled by a functional , which is referred to as the welfare functional throughout this chapter. In particular, the welfare functional being concave, linear, or convex corresponds to a DM who is ambiguity-averse, ambiguity-neutral or ambiguity-seeking, respectively. The DMs are assumed to be either ambiguity-averse or ambiguity-neutral.

Assumption 3.8. Let the welfare functional be :

→ R, where is the range of 's utility function, for ∈ { , }. For each ∈ { , }, assume that is at least 2 on its domain, satisfying ′ > 0 and ′′ ≤ 0.

Example 3.2. Following the empirical work of [START_REF] Chakravarty | Recursive expected utility and the separation of attitudes towards risk and ambiguity: an experimental study[END_REF] and more recently of [START_REF] Berger | Ellsberg re-revisited: An experiment disentangling model uncertainty and risk aversion[END_REF], we can let ( ) = 1-, ≥ 0 where ∈ [0, 1) represents the degree of relative ambiguity aversion (RAA) and = 0 corresponds to being neutral to ambiguity.

The agent extracts satisfaction from wage and dissatisfaction from exerting efforts (there is no utility coming from work other than that from the payment). The principal, on the other hand, cares only about profits (outcomes net of compensation to the agent). Assuming that the cost of effort and the welfare of the agent are separable, the principal's problem in absence of moral hazard is: max

(.), =1 ( ∫ ¯ 0 ( -( )) ( | ) ) . . (3.1) ( ) ∈ [0, ] ∀ ∈ , ∈ , =1 ∫ ¯ 0 ( ( )) ( | ) -( ) ≥ ¯ ,
where ¯ ∈ R is the reservation welfare of the agent (representing her outside option), ¯ ≥ (0) ≡ ¯ ∈ R.

Formulation of the optimal control problem

In this section, we reformulate the optimization problem of the principal-agent model in the form of an optimal control problem (OCP) following [START_REF] Trélat | Contrôle optimal: théorie & applications[END_REF]. To this end let the state vector = ( , , ) ∈ = R + × R + × be defined as follows:

= = ( -( )) ( | ) ( ( )) ( | ) 0 , (0) = (0) = 0 (0) = 0, (0) = ∈ , (3.2)
where

( | ) = ( | ) ∈ℐ ∈ R ++ and = [ , ¯ ]⊂ R + .
Let ( ) = { : → measurable} be the set of measurable controls, and be the set of admissible controls defined by4 

= { ∈ ( ) | ( ) ∈ [0, ] a.e. ∈ } .

Lemma 3.1. The set is compact with respect to the weak-★ topology.

Proof. We want to show that every sequence in weak-★ converges to ¯ in , up to a subsequence. Arguing by contradiction, we suppose that ¯ ∉ i.e., there exists a measurable set ⊂ of positive measure such that ¯ ( ) > for all ∈ . Let : → be a characteristic function defined by

( ) =        1 ∈ 0 ∉
.

By assumption of weak-★ convergence, we have, as tends to infinity:

∫ ( ) ( ) -→ ∫ ( ) ¯ ( ) ⇐⇒ ∫ ( ) ( ) - -→ ∫ ( ) ( ¯ ( ) -) ⇐⇒ ∫ ( ) - -→ ∫ ( ¯ ( ) -) , (3.3) 
which yields a contradiction since the RHS of (3.3) is strictly positive by hypothesis, while the LHS is negative by construction. Thus there exists no such set , implying that ¯ is in , completing the proof.

FORMULATION OF THE OPTIMAL CONTROL PROBLEM

We now proceed to define the OCP. To this end, let the cost functional be:

( , ) = - =1 ( ( ¯ )), (3.4)
which is just minus the welfare functional of the principal, and the net welfare functional of the agent be:

ℎ( , ) = =1 ( ¯ ) -( ) -¯ . (3.5)
Under the new notation, the equivalent statement of the original optimization prob-

lem (3.1) is min (•), ( , 
)
. .

(3.6) ℎ( , ) ≥ 0.
We shall refer to this problem as the OCP in the sequel.

Lemma 3.2. The constraint is active at an optimum.

Proof. If it is not the case and (•) is optimal, then since is continuous, there exists

> 0 such that =1 ∫ ¯ 0 ( ( )) ( | ) --( ) > ¯ ⇐⇒ =1 ∫ ( ( ( )) -) ( | ) -( ) > ¯ .
Since all the prior densities are strictly positive and (•) is continuous, there exist a subset ⊂ of positive measure and some sufficiently small number > 0 satisfying ( ) -≥ 0 for all ∈ such that:

=1 ∫ ( ( )) -) ( | ) + ∫ \ ( ( )) ( | ) ≥ ( ) + ¯ . Define the function ˜ : → by ˜ ( ) =        ( ) - ∈ ( ) ∈ \
. Then ˜ (•) is both admissible and satisfies the constraint by construction. In addition, since (•) is also continuous and strictly increasing, and all the prior densities are strictly positive, we must have

∫ ( ˜ ( )) ( | ) > ∫ ( ( )) ( | ) for all ∈ ℐ. Finally, since > 0 for all ∈ ℐ and (•) is strictly increasing: =1 ∫ ( -˜ ( )) ( | ) > =1 ∫ ¯ 0 ( -( )) ( | ) ,
implying that (•) is not optimal, a contradiction. Hence if (•) is optimal, we must have:

=1 ∫ ¯ 0 ( ( )) ( | ) -( ) = ¯ .

Existence of optimal wage

Remark 3.1. We discuss briefly the two extreme cases where one of the state variables might have zero value.

Recall that

( ¯ ) = ∫ ¯ 0 ( ( )) ( | )
where > 0 for all ∈ ℐ. Thus, if there exists * ∈ ℐ such that * ( ¯ ) = 0 then ( ( )) = 0 for a.e. ∈ . But this implies ( ¯ ) = 0 for all ∈ ℐ. Since is strictly increasing and (0) = 0, we must have in this case ( ) = 0 for a.e. ∈ , which is obviously the wage schedule that costs the least to the principal. But this wage satisfies the participation constraint if and only if ¯ -( ) ≥ ¯ ⇐⇒ ( ) = 0 since ¯ ≥ ¯ by assumption. In sum, ( ¯ ) = 0 for some ∈ ℐ if and only if ( ) = 0 ⇐⇒ = 0, which is not an economically interesting case. If > 0, uniformly zero wage does not satisfy the participation constraint and thus is not admissible.

By the same reasoning, ( ¯ ) = 0 for some ∈ ℐ if and only if ( ) = for a.e. ∈ , which in turn implies ( ¯ ) = 0 for all ∈ ℐ. This is the most expensive wage to implement for the principal. If this wage satisfies the participation constraint with strict inequality, then by the same argument made under the proof of Lemma 3.2, it is not optimal. On the other hand, if this wage satisfies the participation constraint with equality, then it is the only admissible candidate for a solution, and thus is trivially optimal.

Both of these cases are discussed for technical reasons but are not very interesting economically. For this reason, we shall assume in the sequel that ( ¯ ) ∈ R ++ and ( ¯ ) ∈ R ++ .

Let ℳ 0 and ℳ 1 be measurable subsets of the state space defined as

ℳ 0 = {0} × {0} × , (3.7) ℳ 1 = R ++ × , , (3.8) 
where

, = { ∈ R ++ × | -ℎ( , ) ≤ 0}.
Our objective is to find a trajectory (•) defined on which solves (3.2) and corre- Next, we show that the sequence of welfare functional associated with (•) converges to the minimal cost.

Lemma 3.4. Let ( , ) ∈N be the sequence of cost functional defined by

( , ) = - =1 ( ¯ ) , ∈ N,
and let the cost at the limiting control ¯ be

( ¯ , * ) = - =1 (¯ ( ¯ )) .
Then ¯ is optimal, i.e., ( ¯ , * ) ≤ .

Proof. For ∈ ℐ and ≥ 0, we write

( ¯ ) = ∫ ¯ 0 ( -( )) ( | * ) + , (3.16) where = ∫ ¯ 0 ( -( )) ( | ) -( | * )
. It is immediate to see that tends to zero as tends to infinity since is bounded and defined on the compact set × is uniformly continuous.

We then invoke the same argument as in the proof of Lemma 3.3 for the convex function Γ ≡ ( -( )) ( | ), for each ∈ ℐ. Let ∈ R + be an upper bound for ′ , then for sufficiently large ∈ N and sufficiently small > 0,

( ¯ , * ) ≤ - =1 ( ¯ ) + ,
which is the analogy of (3.15) in this case. Again, letting → 0 yields:

( ¯ , * ) ≤ - =1 ( ¯ ) , (3.17)
implying that ( ¯ , * ) is a lower bound for -=1 ( ¯ ) . Thus ( ¯ , * ) ≤ by the definition of the infimum.
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To sum up, we have proved that the limiting trajectory satisfies the constraint, hence it brings the system from ℳ 0 to ℳ 1 . Moreover, the cost achieved by this trajectory is the minimum cost. Thus the limiting control ¯ is an optimal control.

Characterization of the optimal wage

We employ the Pontryagin Maximum Principle (PMP) to characterize the necessary conditions that must be satisfied by a solution to the OCP, which has been shown to exist in Proposition 3.1. With a slight modification from [START_REF] Trélat | Contrôle optimal: théorie & applications[END_REF], the statement of the PMP applied to this problem is the following.

Theorem 3.1 (Pontryagin Maximum Principle). Suppose ( , ) is a solution to the OCP.

There exists an absolutely continuous vector-valued function : → R 2 +1 and a real number

0 ∈ {0, 1} with ( , 0 ) ≠ 0 ∈ R 2 +2 such that:
1. satisfies the canonical equations ( ) = ∇ ( ( ), ( ), ( ), 0 , ) , (3.18)

( ) = -∇ ( ( ), ( ), ( ), 0 , ), (3.19) 
for almost every ∈ , where the real-valued function : R 2. The maximum condition ( ( ), ( ), ( ), 0 , ) = max

2 +1 × R × R 2 +1 × R × R → R, called
∈[0, ] ( ( ), , ( ), 0 , ) (3.21)
is satisfied for almost every ∈ .

3. The transversality conditions (TCs)

(0) ∈ ℳ 0 ( (0)), (3.22) -0 ∇ ( ¯ , ( ¯ )) -( ¯ ) ∈ ℳ 1 ( ( ¯ )) (3.23)
are satisfied, where ℳ 0 and ℳ 1 are respectively defined by (3.7) and (3.8), and ℳ ( ( )) denotes the normal cone to ℳ at ( ), ∈ {0, 1}.

CHARACTERIZATION OF THE OPTIMAL WAGE

We start by computing the normal cones to ℳ 0 and ℳ 1 . First, consider ℳ 0 ( (0)).

Recall that (0) = (0, 0, ). Let = ( , , ) ∈ R × R × R. Take an element 0 ∈ ℳ 0 , then 0 = (0, 0, ) ∈ R × R × . The normal cone to ℳ 0 at (0) can be written as:

ℳ 0 ( (0)) = ∈ R 2 +1 | , 0 -(0) ≤ 0, ∀ 0 ∈ ℳ 0 =⇒ ℳ 0 ( (0)) = ∈ R 2 +1 | ( -) ≤ 0, ∀ ∈ .
One of the following scenarios can occur.

• If ∈ ( , ¯ ), then = 0 since ( -) ≤ 0 must be satisfied for any ∈ . Thus the normal cone is:

ℳ 0 ( (0)) = R × R × {0}.
(3.24)

• If = then ( -) ≤ 0 if and only if ≤ 0 since ≥ for all ∈ . Thus the normal cone is

ℳ 0 ( (0)) = R × R × R -.
(3.25)

• If = ¯ then ( -¯ ) ≤ 0 if

and only if

≥ 0 since ≤ ¯ for all ∈ . Thus the normal cone in this case is

ℳ 0 ( (0)) = R × R × R + .
(3.26) Next, consider ℳ 1 ( ( ¯ )). Recall that ( ¯ ) = ( ( ¯ ), ( ¯ ), ). Thanks to Lemma 3.2, we know from [START_REF] Clarke | Optimization and nonsmooth analysis[END_REF] that the normal cone ℳ 1 ( ( ¯ )) can be written as:

ℳ 1 ( ( ¯ )) = -ℎ ∇ ℎ( , ) + ∇ ( -) + ¯ ∇ ( -¯ ), (3.27) 
for some ℎ ≥ 0 and = ( , ¯ ) ∈ R 2 + satisfying the complementary slackness conditions:

( -) ≡ ( -) = 0, ≥ 0, (3.28) ¯ ( -¯ ) ≡ ¯ ( -¯ ) = 0, ¯ ≥ 0. (3.29)
Simplification of (3.27) yields:

ℳ 1 ( ( ¯ )) = 0 -ℎ ∇ ℎ( , ) -ℎ ∇ ℎ( , ) -+ ¯ . (3.30) Lemma 3.5. If ∈ ( , ¯ ), then (0) = 0. If = , then (0) ≤ 0. If = ¯ , then (0) ≥ 0.
Proof. The proof follows directly from condition 3.22 applied to different forms of 1. When the principal is risk-averse, the Inada condition on (•) implies that ( ) = cannot occur for any since | = = -∞. Thus the optimal wage satisfies

| = ( ) = 0, or ′ ( -( )) ′ ( ( )) = ( | ). (3.48)
Note that since ′′ ≤ 0 and ′ > 0,

-′′ ( -) ′ ( ) -′ ( -) ′′ ( )

[ ′ ( )] 2 > 0 (3.49)
for any fixed , implying that the mapping ↦ → ′ ( -)

′ ( ) is strictly increasing. Thus it has an inverse mapping Ξ , also strictly increasing, such that for each ∈ (0, ¯ ], the optimal wage is uniquely defined by

( ) = Ξ ( ( | )) , ∈ (0, ¯ ]. (3.50)
One deduces from the assumptions that (•) is differentiable on its domain. Let

′ ( | ) = ( | ) , we have ′ ( ) = Ξ ′ ( ( | )) ′ ( | ), (3.51) 
where Ξ ′ > 0 since Ξ is a strictly increasing map, implying that ′ ( ) has the same sign as ′ ( | ). Furthermore, differentiating both sides of (3.48) with respect to and simplifying yield and by strict convexity of the Hamiltonian, one gets that, for ∈ (0, ¯ ), the latter reaches its maximum at = if and only if ′ ( ) ( | ) ≥ 1.

By the Inada condition on , one deduces at once ( ) = for small enough.

Let 0 be the largest ∈ such that ( ) = on [0, 0 ].

Notice that 0 < ¯ , otherwise ( ) = on , which is ruled out by a previous remark. We claim that ′ ( 0 ) ( 0 | ) = 1. Indeed, one clearly has that ′ ( ) ( | ) ≥ 1 for < 0 and therefore ′ ( 0 ) ( 0 | ) ≥ 1. Furthermore by maximality of 0 , there exists a decreasing sequence ( ) ≥1 tending to 0 such that ( ) < for ≥ 1, i.e., ′ ( ) ( | ) < 1, yielding, as tends to infinity that

′ ( 0 ) ( 0 | ) ≤ 1.
Hence the claim and, as a byproduct, the characterization of 0 . Let the subset of ( 0 , ¯ ) defined in (3.46). Since ′ (•) (•| ) is continuous, is the countable union of open intervals on which the optimal wage ( ) is defined by | = ( ) = 0, i.e., by risk-neutrality of the principal, yields

1 ′ ( ( )) = ( | ), ∈ . (3.54) Since ↦ → 1 ′ (
) is strictly increasing by the strict concavity of , the inverse mapping Ξ ≡ 1 ′ -1 is well-defined. Inverting both sides of (3.54), we arrive at the desired expression for ( ). This completes the proof.

Remark 3.2. One may wonder about the uniqueness of the solution. Clearly, a solution is determined by the triple ( ℎ , 0 , ). In the case where is not interior, we have two unknowns and two equations: one from the equality constraint ℎ( , ) = 0, and the other from the characterization of 0 provided by the theorem, i.e., the study of the solution to equation ′ ( ) ( | ) = 0.

In the case where is interior, we have an extra equation, namely (3.32). However, it seems difficult to determine all the solutions analytically.

Remark 3.3. With reasonable assumptions on the data of the problem, such as real-analyticity, one can conclude that there is a finite number of solutions to ′ ( ) ( | ) = 1 on (0, ¯ ] and then is made of a finite number of open intervals. Furthermore, notice that on (0, ¯ ], one has that ( ′ ) ′ = ′′ + ′ ′ = ′ ( ′ -). One deduces that if ′ ≤ then = ( 0 , ¯ ) and 0 is the unique solution to ′ ( ) ( | ) = 1.

When both DMs are ambiguity-neutral, we recover the result that is most analogous to the straight deductible result of [START_REF] Raviv | The design of an optimal insurance policy[END_REF] in the context of insurance.

since ′ ( | ) < 0 and ′ ( | ) ≤ 0. Thus ′ ( | ) < 0.

We conclude that regardless of the sign of ′ ( | ), when = 2 we always have ′ ( | ) ≤ 0 and ′ ( | ) ≤ 0 for all ∈ .

Remark 3.7. As a direct consequence of Lemma 3.10, in the binary state case, we always have

1 ( ¯ ) ≥ 2 ( ¯ ) and 1 ( ¯ ) ≥ 2 ( ¯ ).
Example 3.3. Consider the binary state case with power welfare function ( ) = 1-, where ∈ [0, 1) is the degree of relative ambiguity aversion of decision maker , where ∈ { , }. Define ˆ = 1 ( ¯ ) 2 ( ¯ ) and ˆ = 1 ( ¯ ) 2 ( ¯ ) . Then ˆ ≥ 1 and ˆ ≥ 1 by the remark above. Note that 1 2 -2 1 = 1 2 ℎ ( , ), where

( , ) = ′ ( 1 ( ¯ )) ′ ( 2 ( ¯ )) -′ ( 2 ( ¯ )) ′ ( 1 ( ¯ )).
Thus ( , ) bears the same sign as ′ ( | ). Upon simplification we have

( , ) = (1 -)(1 -) 1 2 1 ˆ ˆ -1 .
Clearly, the sign of ( , ) depends on the sign of ˆ ˆ -1. Taking = 0, the sign of ( , ) is simply that of 1 -ˆ which can be made negative. By contrast, if = 0, the sign of ( , ) is that of ˆ -1 which can be made positive. In other words, ′ can take both signs in the binary case and its sign depends crucially on the degree of ambiguity aversion.

Definition 3.1. For lack of better terminologies, we say that the ambiguity-aversion effect of the agent dominates that of the principal if

′ ( | ) ≤ 0, ∀ , (3.75)
and vice versa. We say that the two ambiguity -aversion effects offset each other if the above holds with equality.

Remark 3.8. In the binary state case, (3.75) is independent of and in light of Example 3.3 is more likely to hold the more ambiguity-averse the agent and the less ambiguity-averse the principal.

Remark 3.9. When (3.75) holds and under the principal's risk-neutrality and the agent's ambiguity dominance assumptions, 0 is uniquely defined by equation ′ ( )( ( | ) = 1 and an optimal contract (3.45) can be fully characterized by

       ( ) = ∈ (0, 0 ], ( ) = Ξ ( ( | )) ∈ ( 0 , ¯ ],
(3.76)

where Ξ : R ++ → (0, ) is the inverse mapping of ↦ → 1 ′ ( ) .

Proposition 3.3. In the binary state case, when the principal is ambiguity neutral, the variation in optimal wage whenever ( ) ∈ (0, ) is the following.

1. If both DMs are ambiguity -averse, optimal wage is non decreasing in outcomes on [ 0 , ¯ ] if and only if the ambiguity-aversion effect of the principal dominates that of the agent;

2. If the principal is ambiguity-neutral and the agent is ambiguity-averse, optimal wage is non increasing in outcomes. Moreover, optimal wage is constant if and only if ambiguity has a one-sided structure, i.e., either ambiguity is concentrated only outcomes beyond 0 , or concentrated only on outcomes above 0 .

Proof. We consider each case separately.

1. To prove the first statement of the proposition, note that risk-neutrality of the principal implies = 0. Thus (3.52) becomes

′ ( ) = ′ ( | ) ( | ) ( ( )) . (3.77)
Since (•) > 0, optimal wage is non decreasing on [ 0 , ¯ ] if and only if ′ ( | ) ≥ 0, i.e., if and only if the ambiguity aversion effect of the principal dominates that of the agent by Definition 3.1. By the same token, optimal wage is non -increasing on [ 0 , ¯ ] if the ambiguity-aversion effect of the agent dominates.

2. For the second statement of the proposition, observe that when the principal is neutral to both risk and ambiguity, (3.77) simplifies to An optimal wage satisfies the equality constraint ℎ( , ) = 0. Moreover, either an optimal effort is not interior and takes value in { , ¯ }, or it is interior and satisfies (3.32).

′ ( ) = ′ ( | ) ( | ) ( ( )) , ( 3 
( ¯ ) -2 ( ¯ ) = ∫ 0 0 ′ ( ) [ 2 ( ) -1 ( )] + ∫ ¯ 0 ′ ( ( )) ′ ( ) [ 2 ( ) -1 ( )] . Since ′ ( ) = 0 on [ 0 , ¯ ], 1 ( ¯ ) -2 ( ¯ ) = ∫ 0 0 ′ ( ) [ 2 ( | ) -1 ( | )] ,
Proof. Observe that with the Inada conditions imposed at the boundary of the control set, corner solution cannot occur for any outcome. In particular, we have ′ (0) = +∞ for all . 6 Since ′ ( ) is strictly decreasing, for each fixed in , there exists a unique

( ) in (0, ¯ ) satisfying ′ ( ( )) = 0, which is equivalent to ′ ( ( )) ( | ) -1 = 0. Recall that Ξ is the inverse mapping to ↦ → 1 ′ ( )
, which is strictly increasing. Hence ′ ( ( )) = 0 is equivalent to (3.82), as desired. The proof for the result pertaining to the optimal level of effort is as before.

Corollary 3.2. Under ambiguity neutrality, fixed wage is optimal. In particular,

( ) = ¯ = Ξ( ℎ ), ∀ ∈ .
Proof. The corollary follows immediately from the fact that under ambiguity neutrality (of both DMs), = ℎ . Proposition 3.5. Consider the binary-state principal-agent model with a risk-neutral principal and a risk-averse agent. If the principal is ambiguity-neutral and the agent ambiguity-averse, then a fixed wage contract is optimal. In particular,

( ) = ˜ = Ξ( ℎ ), ∀ ∈ , (3.83)
where Ξ is the inverse mapping of ↦ → 1 ′ ( ) ′ ( ( )) . An optimal effort satisfies ℎ( ˜ , ) = 0, i.e.,

( ( ˜ )) -( ) = ¯ .
6 The optimal wage is also bounded above since the Inada condition implies ′ (∞) < 0. 100 CHAPTER 3. THE PRINCIPAL-AGENT MODEL UNDER SMOOTH AMBIGUITY Moreover, either an optimal effort is not interior and takes value in { , ¯ }, or it is interior and satisfies (3.32).

Proof. First, consider the case of an ambiguity-neutral principal. Since ′ = 0, we have that ℎ ′ = ′ , which implies that ′ ≤ 0 by virtue of Lemma 3.10. Hence 

Conclusion

Borrowing the optimal control framework, we reformulate the principal-agent problem as a Mayer's problem to prove the existence of an optimal wage function in the symmetric information case. On the basis of the existence result, we employ the Pontryagin's Maximum Principle to characterize the solution. Our approach, which is most similar to [START_REF] Raviv | The design of an optimal insurance policy[END_REF] represents a contribution to the existing literature in a number of ways. First, we have shown that an optimal wage is non decreasing in outcomes when the principal is risk-averse, regardless of the DMs' attitudes towards ambiguity and the number of ambiguous states. In other words, non decreasing wage is robust to ambiguity aversion when the principal is risk-averse. Second, we do not ex-ante assume an interior solution, which is not an innocuous assumption in presence of ambiguity aversion when the principal is risk-neutral. This is because the expected marginal welfare depends on the shape of the optimal wage function. Had we assumed interior solution, we would have concluded from (3.78) that constant wage were robust to ambiguity when the principal is neutral to risk and ambiguity while the agent is averse to both, regardless of the structure of ambiguity. Clearly this is not the case even in the case of two ambiguous states considered in Proposition 3.3.

The main limitation of our research is the generalizability of the result to more than two ambiguous states in the case of a risk-neutral principal. Since human capital is stored in, by definition, "human", it is also subject to the multitude of risks and uncertainties that humans face, such as those linked to the health, to the environment, as well as organizational and technological changes. This calls for a more general approach to modeling human capital, allowing for uncertainty in the form of risk as well as ambiguity in its accumulating process. Interestingly, in the field of management, [START_REF] Chauhan | Human obsolescence: A wake-up call to avert a crisis[END_REF] documented "superiors' attitude" as a crucial determinant of skills obsolescence perceived by managers. Needless to say, this factor is highly ambiguous by nature. In a more recent article, Nalbantian (2017) calls for an a distinction between risk and ambiguity1 in addressing issues related to human capital since they have distinct implications on a company's responses to uncertain skill obsolescence.

The first works on introducing stochastic elements into the law of motion of human capital date back to the 70s. This line of research was initiated by [START_REF] Levhari | The effect of risk on the investment in human capital[END_REF], who argued for the need of relaxing the assumption of perfect foresight in human capital accumulation, which had been maintained heretofore in the seminal treatises of [START_REF] Becker | Human capital: A theoretical and empirical analysis, with special reference to education[END_REF] and [START_REF] Schultz | Investment in human capital: The role of education and of research[END_REF]. In a two-period model, the authors categorized human capital risks as "input" and "output". The former includes factors concerning the production of human capital, such as learning abilities of the individuals, or schooling quality. The latter reflects the market conditions (supply and demand of the type of labor produced) in the post-production period, determining whether the skill produced is valued by the market. In the direction of this approach, [START_REF] Williams | Uncertainty and the accumulation of human capital over the life cycle[END_REF] 4.2. STATEMENT OF THE PROBLEM AND ASSUMPTIONS allowed for risky depreciation and net productivity (both log-normally distributed) in a model where human capital is accumulated linearly with respect to the level of investment in education. Although not explicitly stated, the so-called "net productivity" parameter in [START_REF] Williams | Uncertainty and the accumulation of human capital over the life cycle[END_REF] can be placed under "input" as the production of human capital occurs at the beginning of the period. The risky depreciation rate, on the other hand, could be categorized as "output": how robust is the produced skill/human capital to the market conditions. If the economy is caught by a technological or organization shock, some types of skill might become obsolete very quickly.

In this paper, I investigate the impact of uncertain human capital accumulation from two different viewpoints. First, in a spirit similar to [START_REF] Krebs | Human capital risk and economic growth[END_REF], the depreciation rate of human capital is viewed as a random variable to capture the so-called uncertain obsolescence of skills phenomenon. Then, I consider the case where the random variable is effectiveness (or net productivity) of human capital accumulation rather than its depreciation rate. In each case, I study the effect uncertainty, both in the form of risk (measurable uncertainty) and ambiguity (immeasurable uncertainty), on the optimal level of investment in human capital. The two views result in completely different implications. 

Statement of the problem and assumptions

0 ) + -1 (E (E ( ˜ 1 ))) (4.1) ( 
. . 0 + = 0 , (4.2)

˜ 1 = ˜ 1 , ∈ Θ, (4.3) = (ℎ ), ∈ {0, 1}, (4.4) h1 = ℎ 0 ( + 1 -˜ ), ∈ (0, 1], ∈ Θ, (4.5) > 0, > 0, ℎ 0 > 0 . (4.6)
In this program , , ℎ denote consumption, output, and human capital in period , respectively, for ∈ {0, 1}. The investment in human capital (control variable in the initial period) is . In addition, the parameters and stand for the total factor of output and human capital productivity, respectively. Ambiguity enters through the unknown scenario , which belongs to the scenario space Θ. The representative agent has perfect knowledge of Θ and the conditional distribution of ˜ , for each scenario HUMAN CAPITAL ∈ Θ, but faces uncertainty regarding which scenario is going to occur. This is in contrast to the unambiguous stochastic setting, where the distribution of the stochastic variable is assumed to be objectively known. In other words, in absence of ambiguity, the agent knows exactly which scenario will occur.

The attitude towards ambiguity of the decision maker is modeled in the smooth sense of [START_REF] Klibanoff | A smooth model of decision making under ambiguity[END_REF] and [START_REF] Klibanoff | Recursive smooth ambiguity preferences[END_REF], via the functional (also called second-order utility functional). This functional being concave, linear or convex corresponds to a decision maker that is ambiguity-averse, ambiguity-neutral or ambiguity-seeking, respectively. Note that the maximin expected utility (MEU) of [START_REF] Gilboa | Maxmin expected utility with non-unique prior[END_REF] is a special case of smooth ambiguity. In particular, [START_REF] Klibanoff | A smooth model of decision making under ambiguity[END_REF] proved that the MEU representation is achieved when the decision-maker has infinite absolute ambiguity aversion in the smooth sense. Hence associated to each scenario is a random variable ˜ whose distribution is perfectly known. We shall assume that all the scenario-conditional distributions ˜ have a common support. In other words, the scenarios do not shift the support of the random variable, which is crucial. Under this assumption, we can rewrite constraints (3) and ( 5) in the agent's program as:

1 ( ) = 1 ( ), (4.7) 
ℎ 1 ( ) = ℎ 0 ( + 1 -), (4.8) 
for all ∈ .

Assumption 4.3 (Smooth ambiguity aversion). The functional : R → R, the second order utility function, is strictly increasing, concave and continuously differentiable.

This assumption reflects a large body of empirical evidence since [START_REF] Ellsberg | Risk, ambiguity, and the savage axioms[END_REF] that decision makers are ambiguity-averse. The next assumption is also standard. where ′ (•) denotes the partial derivative of (•) with respect to the ℎ factor of production , = 1, . . . , .

Remark 4.1. The conditional expectation E (•) is the expectation with respect to each scenarioconditional distribution of ˜ . As a consequence of ambiguity, E [ ( ˜ 1 )] is a random variable depending on . On the other hand, the outer expectation E(•) is taken over the priors in the scenario space. For example let ( 1 , • • • , ) be priors on scenarios satisfying =1 = 1 and ≥ 0 for all ∈ Θ. Let ( ) be the probability that the depreciation rate takes value under scenario . Then the objective function could be written explicitly as:

( 0 ) + -1 =1 =1 ( ) ( 1 ( )) . (4.13)

Optimal investment in human capital in absence of physical capital

Let us rewrite the objective function in (4.1) as:

( ) = ( 0 -) + -1 E E 0 ( + 1 -˜ ) . (4.14)
To simplify notations, let : R + → R + be the mapping defined by: Proof. Observe that is twice differentiable, hence:

( ) = ′ ( 0 ) -1 . ( 4 
′ ( ) = 0 ′′ ( ) 1( -1) + ( -1) ′ ( ) -2 = -′ ( ) -2 0 + 1 -, (4.16) 
where

≔ - ′′ ( ) ′ ( ) (4.17)
is the Arrow-Pratt measure of relative risk aversion. Since ∈ (0, 1) and satisfies Assumption 4.4, it is clear that ′ > 0. Moreover,

′′ ( ) = ( 0 ) 2 ′′′ ( ) 3 -3 + 3 0 ( -1) ′′ ( ) 2 -3 + (1 -)(2 -) ′ ( ) -3 = ′ ( ) -3 ( 0 ) 2 + 3( 0 )(1 -) + (1 -)(2 -) , (4.18) 
where

≔ - ′′′ ( ) ′′ ( ) (4.19)
is the degree of relative prudence in the sense of Kimball (1990a). Since ∈ (0, 1) and Assumption 4.4 holds, a sufficient condition for to be convex in is ≥ 0, which is equivalent to ′′′ ≥ 0.

Observe that

′ ( ) = -′ ( 0 -) + 0 -1 E ′ (E ( ˜ 1 )) E ( ˜ ) ′ -1 E (E ( ˜ 1 )) , (4.20) 
where

≡ , (4.21) 
and

˜ = + 1 -˜ . (4.22)
Note that is not necessarily concave in when is strictly concave since -1 is not concave. Nevertheless, if absolute ambiguity tolerance (the inverse of absolute ambiguity aversion) is concave, then it can be shown that we indeed have a concave problem.

Assumption 4.6 (Concave absolute ambiguity tolerance). Let : R → R be the absolute ambiguity tolerance function defined by ( ) = -′ ( ) ′′ ( ) . Then is concave in R. Lemma 4.2. Assumption 4.6 is sufficient for the objective function defined in (4.14) to be strictly concave in .

Proof. See subsection 4.7.1.

Deterministic depreciation rate of human capital

Suppose first that there is perfect foresight, so that the depreciation rate is known with certainty to be . Define:

≡ + 1 -. (4.23)
Denote by 1 the objective function under perfect foresight. We have:

′ 1 ( ) = -′ ( 0 ) + 0 -1 ( ). (4.24)
Since is strictly concave and the positive constants and are less than one, it is easy to see that 1 is strictly concave in . Hence the first order condition (FOC) is both necessary and sufficient for an unique optimal. Let 1 denote the optimal level of investment in human capital in the deterministic case, we have:

′ 1 ( 1 ) = 0. (4.25)

Unambiguous stochastic depreciation of human capital

Under no ambiguity, we know exactly which scenario occurs. Let ˜ be the stochastic depreciation rate associated to this scenario and suppose that this uncertainty adds a zero-mean risk to the deterministic rate . In particular,

˜ = + ˜ , E ˜ = 0, (4.26)
where ˜ is a zero-mean risk. Then defined earlier becomes a random variable, which we shall denote by ˜ to mean:

˜ = + 1 -˜ . (4.27)
Clearly (4.26) implies

E ˜ = .
(4.28) HUMAN CAPITAL Let the objective function under pure risk be 2 . We have:

′ 2 ( ) = -′ ( 0 -) + 0 -1 E ( ˜ ), (4.29) 
where is the mapped defined in (4.15). It is easy to see that 2 is strictly concave in since is strictly concave and is strictly decreasing in . Hence the FOC is also sufficient for an unique solution. Denote by 2 the level of optimal investment in human capital under pure risk, then:

′ 2 ( 2 ) = 0. (4.30)
Assumption 4.7 (Risk prudence). The decision maker is prudent in the sense of Kimball (1990b). In particular, ′ > 0, ′′ < 0, ′′′ > 0.

(4.31)

Observe that monotonicity and risk aversion are already embedded in Assumption 4.4. Prudence adds a third order requirement to reflect the agent's aversion to fluctuation in marginal utilities.

Proposition 4.1. If risk preference satisfies prudence (Assumption 4.7), then the introduction of a zero-mean risk to the depreciation rate of human capital raises the optimal level of investment in human capital.

Proof. See subsection 4.7.2.

Remark 4.3. Observe that the increased saving (investment in human capital) in response to an increase in risk comes from the convexity of . In view of (4.18), this property is attributed to two sources: prudence (Assumption 4.7) and the concavity of the production function (1 -).

Clearly, if the production function were linear ( = 1), then the introduction of risk raises savings if and only if the DM is prudent. On the other hand, if the DM is imprudent in the sense that ′′′ = 0 (for example if he has quadratic utility), then the strict concavity of the production function (Assumption 4.5 is necessary and sufficient for a rise in savings.

Ambiguous depreciation rate of human capital accumulation

We now move to the ambiguous setting. Recall that the law of motion for human capital accumulation in this case is:

h1 = ℎ 0 ( + 1 -˜ ), ∈ Θ. (4.32)
Observe that each ˜ is a random variable taking values in the common support (defined in Assumption 4.2) for all in the scenario space Θ. We now consider two HUMAN CAPITAL subcases: one where the decision maker is ambiguity-neutral (linear ), and the other where she is ambiguity-averse (strictly concave ).

Ambiguity-neutral agent

Let 3 be the objective function in this case. Ambiguity neutrality implies that is linear, so that (4.20) can be simplified to:

′ 3 ( ) = -′ ( 0 -) + 0 -1 EE ( ˜ ), (4.33) 
where is the map defined in (4.15) and ˜ defined in (4.22). We assume that ambiguity enters in the following manner.

Assumption 4.8 (SSD ordering of scenarios). Suppose that the scenario-conditional distributions could be ranked according to the sense of second order stochastic dominance (SSD). In particular,

˜ = + =1 ˜ , ∀ ∈ Θ, (4.34) 
where { ˜ } ∈Θ are white noises, i.e.,

E ˜ = 0, ∀ ∈ Θ. (4.35) 
This structure is essentially a sequence of mean preserving spreads (MPS), with the higher value of associated to an increase in risk (or a deterioration in SSD) in the sense of Rothschild and Stiglitz (1970a). In fact Assumption 4.8 is the mildest ranking criterion of the conditional distributions in order to generate a differential effect on the level of optimal saving. As will be shown later, any ranking criterion stronger than SSD dominance will push optimal investment in human capital in the same direction.

Proposition 4.2. Under risk prudence, adding ambiguity as a sequence of MPSs described under (Assumption 4.8) induces the ambiguity-neutral agent to raise investment in human capital relative to the deterministic case.

Proof. See subsection 4.7.3.

Ambiguity-averse agent

Finally, we examine the impact of ambiguity on the optimal choice of an ambiguityaverse agent. The structure of ambiguity remains unchanged. We also maintain the risk prudence assumption. Let us rewrite (4.20) as:

′ ( ) = -′ ( 0 -) + 1- 0 -1 + × EE ( ˜ ) , (4.36) 

OPTIMAL INVESTMENT IN HUMAN CAPITAL IN ABSENCE OF PHYSICAL CAPITAL

where is defined in (4.15), and

≔ ′ (E ( ˜ 1 )), E ( ˜ ) ′ -1 (E (E ( ˜ 1 )) , (4.37) ≔ E ′ (E ( ˜ 1 )) ′ -1 (E (E ( ˜ 1 )) . (4.38)
Remark 4.4. It is noteworthy that and defined above are two fundamental effects of ambiguity aversion. On the one hand, the impact from is due to pessimism according to [START_REF] Gollier | Portfolio choices and asset prices: The comparative statics of ambiguity aversion[END_REF], in the sense of over-weighting worst scenarios. Naturally, is nil under ambiguity neutrality. On the other hand, the impact from results from preference for the timing of resolution of uncertainty according to [START_REF] Strzalecki | Temporal resolution of uncertainty and recursive models of ambiguity aversion[END_REF].

Assumption 4.9 (Ambiguity prudence). The agent is ambiguity prudent. In particular,

′ > 0, ′′ < 0, ′′′ > 0. (4.39)
Proposition 4.3. When the scenario-conditional distributions can be ranked according to SSD described under Assumption 4.8, the ambiguity-averse representative agent with risk preference satisfying prudence (Assumption 4.7) raises investment in human capital relative to the ambiguity-neutral agent if his ambiguity preference satisfies either constant absolute ambiguity aversion (CAAA) or decreasing absolute ambiguity aversion (DAAA). The impact of ambiguity aversion is ambiguous under increasing absolute ambiguity aversion (IAAA).

Proof. Let us first examine the impact of pessimism by proving the following lemma.

Lemma 4.3. Pessimism under ambiguity aversion induces the agent to raise investment in human capital: > 0.

Proof. Recall that a worse scenario in the pure ambiguity structure previously defined means a deterioration in second order stochastic dominance (SSD). Since is strictly decreasing and convex (-strictly increasing and concave), an SSD deterioration raises E ( ˜ ). By contrast, since is increasing and concave in ˜ , this deterioration reduces E ( ˜ 1 ), thus raising ′ (E ( ˜ 1 )) by the concavity of . Hence the two random variables in the covariance term move in the same direction, implying that > 0.

Next, we prove that the preference for timing of resolution of uncertainty has the following properties.

Lemma 4.4. defined in (4.38) manifests:

• preference for early resolution of uncertainty ( > 1) if satisfies DAAA;

• indifference to the timing of resolution of uncertainty ( = 1) if satisfies CAAA;

• preference for late resolution of uncertainty ( < 1) if satisfies IAAA.

Proof. Note that all the three ambiguity preferences satisfying DAAA, CAAA or IAAA also satisfy ambiguity prudence. Following [START_REF] Berger | Smooth ambiguity aversion in the small and in the large[END_REF], by ambiguity aversion and ambiguity prudence there exist an utility ambiguity premium ( ) ≥ 0 and an utility ambiguity precautionary premium ( ) ≥ 0 implicitly defined by:

E (E ( ˜ 1 )) = (EE ( ˜ 1 ) -( )), (4.40) E ′ (E ( ˜ 1 )) = ′ (EE ( ˜ 1 ) -( )). (4.41) Thus = ′ (EE ( ˜ 1 ) -( )) ′ (EE ( ˜ 1 ) -( )) . (4.42)
It is easy to see that a necessary and sufficient condition for ambiguity preference to satisfying DAAA is that -′ is more concave than in the sense of Arrow-Pratt. 3 By definition, this implies that ceteri paribus, the ambiguity premium associated to -′ is greater than that associated to . This is equivalent to saying that the ambiguity precautionary premium is greater than the ambiguity premium, implying that ≥ 1 under DAAA. The arguments can be repeated for the CAAA and IAAA cases.

When ≥ 1, the preference for early resolution of uncertainty acts in the same direction as pessimism, inducing the agent to raise since in this case,

′ ( ) ≥ ′ 3 ( ), (4.43) 
implying ′ ( 3 ) ≥ 0. Let 4 be the unique solution to ′ ( ) = 0, then by the concavity of proven in Lemma 4.2, we conclude that 4 ≥ 3 .

When ≤ 1, the two effects act in opposite directions, rendering the final impact on ambiguous.

What happens to Proposition 4.3 if the conditional distributions are ranked by a stronger notion of stochastic dominance? Consider an improvement in first order stochastic dominance (FSD) of the distribution of ˜ when decreases. This is equivalent to an FSD deterioration in the distribution of ˜ . In other words, the distribution of ˜ dominates that of ˜ +1 in FSD for each ∈ Θ. Mathematically, this means

( ˜ ≤ ) ≤ ( ˜ +1 ≤ ), ∀ ∈ . (4.44)
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Since is decreasing in ˜ , the FSD improvement reduces its expectation. By contrast, since ( ˜ 1 ) = ( 0 ˜ ) increasing in ˜ , the FSD improvement raises E ( ˜ 1 ), hence reducing ′ (E ( ˜ 1 )). Consequently is also positive . In other words, if we allow for the mean of each conditional distribution to be lower or greater than , but the ambiguity-neutral mean satisfies EE ˜ = , then Proposition 4.3 still holds. The same reasoning holds for stronger notion of stochastic dominance than FSD. 4

Corollary 4.1. The result of Proposition 4.3 still holds if ambiguity enters as a series of conditional distributions that can be ranked according to the FSD order as in (4.44), or stronger, so long as EE ˜ = .

Comparative statics of increasing ambiguity aversion

Does increasing ambiguity aversion raise optimal investment in human capital? Let us focus on the CAAA and DAAA cases.

Consider first the impact on the preference for timing of ambiguity resolution.

Clearly it is nil under CAAA since the ambiguity premium and ambiguity precautionary premium are always equal. Under DAAA, which belongs to the class of hyperbolic absolute ambiguity aversion (HAAA) second order utility functions, we can write the measure of absolute ambiguity prudence (•) as:

( ) = 1 + 1 ( ), > 0, (4.45) 
where ( ) > 0 is the measure of absolute ambiguity aversion defined by

( ) = + -1 . (4.46) 
If = 0, then satisfies CRAA with constant relative ambiguity aversion equal to . 5

Denote:

˜ ( ) = E ( ˜ 1 ) ≡ E ( ˜ 1 ( )).
(4.47)

Define the ambiguity-neutral expected utility:

( ) = E ˜ ( ).
(4.48)

4 For example, it holds also if the conditional distributions are ranked according to the probability ratio (PR), the hazard rate (HR), or the likelihood ratio (LR). See, for example, the Appendix of [START_REF] Krishna | Auction theory[END_REF], or [START_REF] Levy | Stochastic dominance: Investment decision making under uncertainty[END_REF] for further discussion.

5 [START_REF] Gollier | The economics of risk and time[END_REF] discusses the properties of the utility functions belonging to the hyperbolic absolute risk aversion (HARA) class. By analogy, a HAAA second order utility function can be written as

( ) = + 1-
, where + > 0. Monotonicity and ambiguity aversion require 1-> 0.
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Assumption 4.10 (Pure ambiguity). Assume that ambiguity is a zero-mean risk added to ( ). Specifically,

˜ ( ) = ( ) + ˜ , E ˜ = ˜ ( ) = 0. (4.49)
Then the utility ambiguity premium ( ) and the utility ambiguity precautionary premium ( ) satisfy:

E ( ( ) + ˜ ) = ( ( ) -( )), (4.50) E ′ ( ( ) + ˜ ) = ′ ( ( ) -( )). (4.51)
Lemma 4.5. Under Assumption 4.10 and DAAA, the preference for early resolution of ambiguity manifest by in (4.38) is increasing in ambiguity aversion.

Proof. Following [START_REF] Pratt | Risk aversion in the small and in the large[END_REF] and [START_REF] Arrow | Aspects of the theory of risk-bearing[END_REF], a Taylor approximation around ( ) yields:

E ( ( ) + ˜ ) ≈ ( ( )) + ′ ( ( ))E ˜ + 0.5 ′′ ( ( ))E ˜ 2 = ( ( )) + 0.5 ′′ ( ( ))E ˜ 2 , (4.52)
where the second line follows from ˜ being a zero-mean risk. Clearly, the smaller the risk, the more precise is the approximation. Similarly, a first order approximation around ( ) for the RHS of (4.50) gives:

( ( ) -( )) ≈ ( ( )) + ( ) ′ ( ( )). (4.53)
Equating (4.52) and (4.53), we arrive at the familiar Arrow-Pratt's approximation:

( ) ≈ 0.5 ( ( )) ( ˜ ), (4.54) 
where ( ˜ ) = E ˜ 2 denotes the variance of ˜ . The larger the the variance of the priors (increasing ambiguity), the larger is the agent's willingness to pay to eliminate ambiguity. Likewise for the utility precautionary ambiguity premium:

( ) ≈ 0.5 ( ( )) ( ˜ ), = 0.5 1 + 1 ( ( )) ( ˜ ), (4.55) 
where the second line results from (4.45). Hence for each each fixed , the elasticity of (4.56)

Since satisfies DAAA, the term in the square bracket on the RHS of (4.56) is positive.

Thus under DAAA, the higher the degree of ambiguity aversion, the higher the preference for early resolution of ambiguity, as illustrated in Figure 4.3 for a DM with CRAA and logarithmic utility. In other words, increasing ambiguity aversion has a positive impact on the HC investment. The higher the degree of ambiguity (the larger the variance of the priors), the larger this effect.

Figure 4.3: Impact of increasing ambiguity aversion on the preference of timing for resolution of ambiguity How about the impact coming from pessimism? Observe that (4.37) can be rewritten as:

= ′ (E ( ˜ 1 )), E ( ˜ ) ′ (EE ( ˜ 1 ) -( )) . (4.57)
For any fixed , increasing ambiguity aversion raises the utility ambiguity premium ( ). This, however, does not imply a reduction in the denominator of , since the curvature of is also varying. Likewise the direction of change of the numerator is HUMAN CAPITAL also ambiguous. We thus resort to a numerical exercise to understand the impact of increasing ambiguity aversion on . Figure 4.4 shows that although increasing ambiguity aversion has a non-monotone effect on the numerator of , its impact on the denominator dominates, resulting in a net positive impact on the HC investment. Since both effects of ambiguity aversion (preference for timing of uncertainty resolution and pessimism) point in the same direction, it is no surprise that the final impact of increasing ambiguity aversion on the investment in human capital is positive, as shown in Figure 4.5. The intuition is that increasing ambiguity aversion essentially reduces the utility ambiguity-equivalent of the next period's uncertain income, which raises this period's savings in order to smooth consumption (across scenarios). The preference for smoothing across scenarios is stronger the higher the degree of ambiguity aversion.

Optimal investment in human capital in presence of physical capital

We saw in the previous section that the introduction of risk or ambiguity raises the optimal level of investment in human capital. We might suspect that this is a consequence of having only one type of capital, that in presence of a risk-free physical capital, the In particular, the representative household faces the following problem: max 0 ≥0, ≥0, ≥0

( 0 ) + -1 (E (E ( ˜ 1 ))) (4.58)

. . 0 + + = 0 , (4.59)

˜ 1 = ˜ 1 , ∈ Θ, (4.60) = ( , ℎ ), ∈ {0, 1}, (4.61) 1 = (1 -) 0 + , ∈ [0, 1], (4.62) h1 = ℎ 0 ( + 1 -˜ ), ∈ (0, 1), ∈ Θ, (4.63) 0 > 0, ℎ 0 > 0 , (4.64)
where is the depreciation rate of physical capital, which is assumed to be deterministic. We maintain that the production function is Cobb-Douglass:

( , ℎ ) = 1-ℎ , ∈ (0, 1). (4.65)
Note that for simplicity we have set = ≡ 1. Our new objective function is:

( , ) = ( 0 --) + -1 (E (E ( ˜ 1 ))), (4.66) HUMAN CAPITAL

where

˜ 1 = 1- 1 h 1 = 1- 1 ℎ 0 ( + 1 -˜ ) .
(4.67) Denote ( , ) ≡ ( , ) and ( , ) ≡ ( , ). We have:

( , ) = -′ ( 0 ) + 1- 1 ℎ 0 -1 E ′ (E ( ˜ 1 ))E ′ ( ˜ 1 ) h -1 1 ′ ( -1 (E (E ( ˜ 1 )))) , (4.68) ( , ) = -′ ( 0 ) + (1 -) - 1 E ′ (E ( ˜ 1 ))E ′ ( ˜ 1 ) h 1 ′ ( -1 (E (E ( ˜ 1 )))) . (4.69)
Note that in this case the strict concavity of the objective function with respect to each argument (which is implied by Assumption 4.6) does not guarantee that it is jointly concave in both. For simplicity, we assume that the utility function is logarithmic.

With log utility, the FOCs are indeed sufficient. (4.72)

Observe that under log utility, we can rewrite (4.68) and (4.69) as:

( , ) = -′ ( 0 ) + -1 + EE ( ˜ -1 ) , (4.73) ( , ) = -′ ( 0 ) + (1 -) -1 1 , (4.74) 
where ˜ ≡ + 1 -˜ as before and 

= ( ′ (E ( ˜ 1 )), E ( ˜ -1 )) ′ ( -1 (E (E ( ˜ 1 )))) , ( 4 

Deterministic depreciation

In this case the depreciation rate of human capital is known to be . Observe that in this case = 0 and = 1. Denote by 1 ( , ) the objective function under perfect foresight. We have:

1 ( , ) = -′ ( 0 ) + -1 -1 , (4.77) 1 ( , ) = -′ ( 0 ) + (1 -) -1 1 . (4.78)
Let ( 1 , 1 ) be optimal for the deterministic problem. Denote

( , ) = (1 -) 0 + 0 -- . (4.79)
Observe that so defined is strictly increasing in both of its arguments. Mathematically ( , ) ≡ ( , ) > 0, ∈ { , }.

(4.80)

Then from (4.78):

( 1 , 1 ) = (1 -).

(4.81)

Risky depreciation

Proposition 4.4. Under logarithmic utility, the introduction of a zero-mean risk to the depreciation rate of human capital raises the optimal level of investment in human capital and reduces the optimal investment in physical capital.

Proof. Notice that under risk, it still holds that = 0 and = 1. Denote by 2 ( , ) the objective function in this case. The FOC with respect to rests unchanged, while the FOC with respect to becomes:

2 ( , ) = ′ ( 0 ) + -1 E ˜ -1 . (4.82)
From the FOC with respect to :

( 2 , 2 ) = (1 -) = ( 1 , 1 ), (4.83)
implying, in view of (4.80) that

( 2 -1 )( 2 -1 ) ≤ 0. (4.84)
On the other hand, by the convexity of the map ℎ ↦ → ℎ -1 , we have by Jensen inequality HUMAN CAPITAL that:

E ˜ -1 > (E ˜ ) -1 = -1 ≡ (1 -+ ) -1 , ∀ . (4.85)
By optimality 2 ( 2 , 2 ) = 2 ( 2 , 2 ) = 0, which implies: (4.86) where the second line results from (4.85). Let be the map defined by

1 0 -2 -2 = (1 -) -1 1 = -1 2 E ˜ -1 > -1 2 (1 -+ 2 ) -1 ,
( , ) = + (1 -) 1- (1 -) 0 + . (4.87)
Then (4.86) is equivalent to:

( 2 , 2 ) > 1 - = ( 1 , 1 ), (4.88)
where the equality follows from the optimality of ( 1 , 1 ) in the deterministic case. Observe that from (4.84), either of the followings must hold: 

2 ≥ 1 , 2 ≤ 1 , (4.89) 2 ≤ 1 , 2 ≥ 1 . ( 4 

Ambiguous depreciation

Ambiguity-neutral agent

Let us first consider the case of an ambiguity-neutral representative agent. Denote by 3 the objective function in this case. Observe that since is linear under ambiguity neutrality, we have in this case that = 0 and = 1. Let ( 3 , 3 ) be optimal for 3 , then

3 ( 3 , 3 ) = 0. (4.92)
The objective is to examine the impact of ambiguity aversion on the optimal levels of investment in each type of capital.

Ambiguity-averse agent

Let 4 be the objective function under ambiguity aversion and ( 4 , 4 ) be the optimal solution. As in the previous section, we need to examine two effects: one from pessimism (the sign of in (4.75)) and the other from the preference for the timing of uncertainty resolution (the magnitude of in (4.76)). Recall that = ( ′ (E ( ˜ 1 )), E ( ˜ -1 ))

′ ( -1 (E (E ( ˜ 1 )))) .

(4.93)

Since the map ℎ ↦ → ℎ -1 is strictly decreasing and convex, a higher value of (deterioration in SSD) would raise E h-1

1 . On the other hand since is strictly increasing an concave, an SSD deterioration would lower E ( ˜ 1 ), thus increasing ′ (E ( ˜ 1 ))

since is strictly concave. Hence > 0. As proven in the previous section, the magnitude of depends on the property of the ambiguity preference. In particular, it is greater than one under DAAA and equal to one under CAAA.

Proposition 4.5. When the scenario-conditional distributions can be ranked according to SSD (Assumption 4.8), the ambiguity-averse representative agent with logarithmic utility raises investment in human capital relative to the ambiguity-neutral agent if his ambiguity preference satisfies CAAA.

Proof. Recall that under CAAA, the impact from the preference for timing of resolution of uncertainty is null, i.e., = 1. Observe that the FOC with respect to is unchanged compared to the previous cases since physical capital is always risk-free, hence ( 4 , 4 ) = ( 3 , 3 ), which implies:

( 4 -3 )( 4 -3 ) ≤ 0.
(4.94)

Hence either of the followings must hold:

4 ≥ 3 , 4 ≤ 3 , (4.95) 4 ≤ 3 , 4 ≥ 3 . (4.96)
On the other hand, the FOCs imply:

1 - = 1- 4 ( + EE ˜ -1 )[(1 -) 0 + 4 ] < 1- 4 EE ˜ -1 [(1 -) 0 + 4 ] , (4.97)
where the third inequality comes from being strictly positive. Let * be the map defined by: * ( , PC is no longer silent. Indeed, it is not difficult to see that in this case (4.94) does not necessarily hold although we still have (4.99). Thus the only conclusion we can draw, due to the monotonic behavior of the map * (•, •) is that either the HC investment rises, or the PC investment falls (relative to the ambiguity-neutral case), but not necessarily both. Numerically, Figure 4.8 suggests that increasing ambiguity aversion for a CRAA agent (a particular case of DAAA) has a similar effect on consumption and investment.

) = 1- EE ˜ -1 [(1 -) 0 + ] . ( 4 
Observe that relative ambiguity aversion = 0 corresponds to an ambiguity-neutral agent.

Impact of uncertain effectiveness of human capital accumulation

Up to this point, it seems that the introduction of uncertainty into the simplified Ben-Porath model always leads to a rise in investment in human capital under DAAA and where ∈ [0, 1] is the deterministic depreciation rate of human capital. Would the main results of this paper up to now still hold? It turns out that for CRRA risk preference with constant relative risk aversion less than one, the direction of change will be reverse.

Proposition 4.6. Under CRRA risk preference of degree ≤ 1, the introduction of pure risk lowers investment in human capital. 6 The introduction of ambiguity as a series of MPSs around also reduces investment in human capital for an ambiguity-neutral agent. An ambiguity-averse agent reduces investment under CAAA and IAAA; the direction of change is ambiguous under DAAA.

Proof. See subsection 4.7.4.

The intuition behind this difference is that when uncertainty is in the depreciation 4.6. CONCLUSION parameter, raising the investment in human capital is essentially investing in self insurance. As is well-known from existing insurance literature, increasing risk raises the demand for self-insurance. By contrast, when uncertainty enters through , the optimal choice of is viewed as optimal investment in an uncertain asset. Typically, there are two effects acting in opposite directions in this case. According to [START_REF] Eeckhoudt | Economic and financial decisions under risk[END_REF], while the pure increase in risk makes a risk-averse agent less interested in the investment (second-order effect), the sufficiently prudent agent is still induced to raise the investment via the precautionary channel (third-order effect). For CRRA risk preference with linear accumulation of human capital, for instance, it is easy to verify that "sufficient prudence" means that the degree of relative prudence, which is defined by the map ↦ → -′′′ ( )/ ′′ ( ), is greater than two. It is straightforward to see that this translates to the degree of relative risk preference being greater than one for CRRA preferences. This problem treats a non-linear human capital law of motion, and thus it is much more complicated to obtain a clear-cut rule for "sufficient prudence". Figure ??

illustrates such a case. Note that in this figure, the parameter controls the spread of of the risky distribution of ˜ . For example, = 0.5 means that the decision-maker faces a risk of losing or gaining half of the deterministic with equal probabilities. In this case, for a risk ≈ 0.5, the agent with relative risk aversion of = 6 is sufficiently prudent (third order effect dominates) and would raise the investment in human capital.

For larger risks, risk aversion (second order effect) dominates, inducing him to lessen the investment in human capital. We end this section with an illustration on the impact of increasing ambiguity aversion. In particular, Figure ?? is drawn for the following parameters:

= 0.9 ℎ 0 = 100 = 0.67 = 1 = 0.3 ˜ 1 ∼ (0.85 ; 0.5; 1.15 ) = 0.67 ˜ 2 ∼ (0.5 ; 0.5; 1.5 )

0 = 1 ( 1 , 2 ) = (0.3, 0.7)
This figure shows that for any values of relative risk aversion less than about 2, increasing relative ambiguity aversion reduces the investment in human capital. Noticeably, we observe the same impact of ambiguity aversion on a risk-neutral decision-maker ( = 0), although the effect kicks in only after the degree of ambiguity aversion is sufficiently high ( ≈ 0.6); for smaller values of , the effect is also negative but is negligible.

Conclusion

The co-existence of over-education in some sectors and skills shortage in others can be explained by the sources of uncertainty faced by different types of individuals. HUMAN CAPITAL On the one hand, if uncertainty is on the net productivity of human capital accumulation, then the investment is viewed as one with increasingly uncertain return, making it less attractive to a decision maker who is uncertainty-averse (risk averse or ambiguity averse). This might be the culprit behind the lack of skills in technical sectors in developing countries, where the quality of training is highly questionable due to the lack of infrastructure. One case in point is Vietnam. Highly skilled workers and technicians are in great demand, but the quality of vocational schools across the countries is hardly consistent. Thus even if the expected return on investment in vocational training for households remain high, the highly uncertain outcome makes it much less attractive.

To address this issue, public policies need to work on improving the quality of training as well as to communicating this improvement to the groups of interest. This would raise expected return and reduce uncertainty on the quality of vocational education, rendering investment in it more attractive.

On the other hand, if uncertainty is on the obsolescence parameter, then the investment in human capital also serves as a type of insurance against labor income fluctuations, which is assumed to be nonexistent due to market incompleteness. In this case, individuals facing idiosyncratic uncertainty are induced to invest more, leading to ove-reducation.7 

There is yet another implication of Proposition 4.3 and/or Proposition 4.1 on overeducation. Individuals who do not have the means (being constrained by the first period's wage) to raise investment to the optimal level might opt for career choices that are less subject to obsolescence risks. Typically, they might accept jobs that pay less, where they are overqualified or over-educated in exchange for more security. This also causes a problem since numerous research has shown that overqualified workers are more likely to be dissatisfied at the workplace, leading to lower productivity. The policy response to this issue must also be multidimensional. Clearly, there remains the uncertainty-reducing role of the government by providing more precise data on the labor market conditions. Companies that work in sectors highly susceptible to uncertain obsolescence must also take a proactive approach in investing in their human resource. This should encourage uncertainty-averse individuals to be more willing to accept offers in these sectors, rather than migrating to where they are overqualified.

In a simple two-period framework, this work represents the first attempt to address ambiguous stochastic human capital accumulation, an issue that is increasingly relevant in the modern economy. In fact, the model is general enough to allow for an analysis of optimal investment in physical or financial capital. An abrupt technological change could render all existing machines obsolete. The burst of a financial bubble

Proof of Proposition 4.1

Since is convex by Lemma 4.1, by Jensen inequality

E ′ ( ˜ 1 ) ˜ -1 ≡ E ( ˜ ) > (E ˜ ) = ′ ( 0 ) -1 , (4.107)
where the last equality has used the assumption of zero-mean risk via (4.26). Thus if 2 is optimal for 2 , we have shown that

′ 2 ( 2 ) = 0 =⇒ ′ 2 ( 1 ) > 0, (4.108)
implying 2 > 1 by the strict concavity of 2 .

Proof of Proposition 4.2

As shown in the proof of Proposition 4.1, the map is strictly convex under risk prudence. By Jensen inequality,

E ( ˜ ) ≥ (E ˜ ) = ( ), ∀ ∈ Θ, (4.109) 
where the equality comes from Assumption 4.8. Hence if 3 is optimal for 3 , we have shown that:

′ 3 ( 3 ) = 0 =⇒ ′ 3 ( 1 ) > 0, (4.110) 
implying 3 > 1 by the concavity of 3 .

Proof of Proposition 4.6

Under stochastic effectiveness of investment in human capital, the law of motion governing the accumulation of human capital (constraint (4.5)) becomes:

h1 = ℎ 0 ˜ , where ˜ ≡ ˜ + 1 -, (4.111) 
and ∈ [0, 1] is the deterministic depreciation rate of human capital. Equation (4.20) becomes:

′ ( ) = -′ ( 0 -) + 0 -1 E ′ (E ( ˜ 1 ))E ′ ( ˜ 1 ) ˜ ˜ -1 ′ ( -1 (E (E ( ˜ 1 )))) , (4.112) 
where ≡ . Thus under CRRA risk preference

′ ( ) = -′ ( 0 ) + 1- 0 -1 E ′ (E ( ˜ 1 ))E ˜ ( ˜ ) ′ ( -1 (E (E ( ˜ 1 )))) , (4.113)
where is the mapping defined in (4.15). Let 1 , 2 , 3 , and denote the objective function in the deterministic, unambiguous stochastic (pure risk), ambiguous stochastic with ambiguity neutral agent, and ambiguous stochastic with ambiguity averse agent case, respectively. Observe that Lemma 4.2 still applies.

As before, we study three different settings: pure risk, ambiguity in the sense of a sequence of MPSs around with ambiguity-neutral agents, then with ambiguityaverse agents.

Optimal investment under pure risk

When is deterministic, we have:

′ 1 ( ) = -′ ( 0 ) + 1- 0 -1 ( ), (4.114) 
where denotes the deterministic value of ˜ . Let ˜ = ˜ + 1 -. Then (4.113) simplifies to:

′ 2 ( ) = -′ ( 0 ) + 1- 0 -1 E ( ˜ ), (4.115)
where is the mapping defined by:

( ) = ( ) ≡ ( + 1 -) , (4.116) 
where = (1 -) -1 < 0 for all ≥ 0 and ∈ (0, 1). We now show that is increasing and concave for ≤ 1. Indeed, in this case ∈ [-1, 0), so:

′ ( ) = -1 [ (1 + ) + 1 -] > 0, (4.117) and ′′ ( ) = -2 (1 + ) + 2(1 -) < 0. (4.118)
Hence by Jensen inequality,

E ˜ ( ˜ ) ≡ E ( ˜ ) < (E ˜ ) = ( ), (4.119) implying ′ 2 ( 2 ) = 0 =⇒ ′ 2 ( 1 ) < 0, (4.120)
which in turn implies 2 < 1 by the strict concavity of 2 .

Notice that for > 1, the sign of ′′ is in general ambiguous, but the higher is , the more likely is ′′ to be positive, inducing more investment in human capital. This is intuitive since higher raises the mean of the risky investment.

Optimal investment under ambiguity neutrality

The first order derivative now reads:

′ 3 ( ) = ′ ( 0 ) + 1- 0 -1 EE ˜ ( ˜ ). = ′ ( 0 ) + 1- 0 -1 EE ( ˜ ) (4.121)
The proof is completed by recognizing that is strictly increasing and concave for ≤ 1.

Optimal investment under ambiguity aversion

In this case we also have two effects from pessimism and preference for early resolution of uncertainty. In particular,

′ ( ) = -′ ( 0 ) + 1- 0 -1 + × EE ( ˜ ) , (4.122) 
where

= ( ′ (E ( ˜ 1 )), E ( ˜ )) ′ ( -1 (E (E ( ˜ 1 )))) , (4.123) 
and

= E ′ (E ( ˜ 1 )) ′ ( -1 (E (E ( ˜ 1 )))) . (4.124)
The rest of the proof is almost identical, except that now the concave function takes place of the convex function in (4.37) and (4.38).

We remark also as in the case of stochastic depreciation, the result of Proposition 4.6 is robust to any ranking criterion stronger than SSD. This is a direct consequence of the fact that in this case the function is increasing.

Economic dynamics with renewable resources and pollution

5.1. INTRODUCTION

Introduction

Natural resources play an important role in the economy. Intriguingly, they are not always a boon to economic growth. While abundant resources may help a country overcome the fixed costs problem and avoid poverty traps (Le [START_REF] Van | With exhaustible resources, can a developing country escape from the poverty trap?[END_REF], they might induce excessive consumption, stagnating the economy in the long run [START_REF] Rodriguez | Why do resource-abundant economies grow more slowly[END_REF][START_REF] Eliasson | Renewable resources in an endogenously growing economy: balanced growth and transitional dynamics[END_REF].

The existing literature has also explored the impact of natural resources manifest in the form of externalities in a two-sector economy. In particular, consider an economy with an industrial production sector and a natural resource exploitation sector (such as forestry or fishery). While the latter may enhance the productivity of the former sector or provide an additional source of income, the former typically engages in polluting industrial activities at the detriment of the renewable resources, as has been studied by [START_REF] Beltratti | Sustainable use of renewable resources[END_REF][START_REF] Ayong | Sustainable growth, renewable resources and pollution[END_REF]. These authors consider the renewable resource as a consumption good as well as an input for production. The regenerating capacity of the resource is impaired by pollution from the final good producing sector.

Under suitable conditions, the existence of a stationary state and its local stability are proved.

This approach is appealing, but as [START_REF] Wirl | Sustainable growth, renewable resources and pollution: thresholds and cycles[END_REF] has observed, there is always room for limit cycles. Multiple long-run outcomes exist and are separated by a threshold, even under a sufficiently convexity structure of the model. In this paper, we propose a new approach to study a two-sector economy with a renewable resource under discrete time configuration. We specify the conditions that ensure long-run convergence of the economy. Our approach can be applied not only to the work of [START_REF] Beltratti | Sustainable use of renewable resources[END_REF] and [START_REF] Ayong | Sustainable growth, renewable resources and pollution[END_REF], but also for other multisector models.

We consider a two-sector economy with an industrial sector that uses intermediate inputs to produce a final consumption good, and another sector, called the exploitation sector, which engages in exploiting a renewable resource. This resource can be sold directly at an exogenously determined market price, generating an additional source of income. We assume there is a representative consumer who lives infinitely, and seeks to allocate total incomes between consumption and capital investment to maximize intertemporal utility. She can use the income from the exploitation sector to invest in physical capital, or to purchase consumption good.

This problem is challenging since we cannot follow the standard techniques laid out in the dynamic programming literature to study the long-term behavior of the economy. Usually, as well presented in [START_REF] Stokey | Recursive methods in economic dynamics[END_REF], or Le [START_REF] Van | Dynamic programming in economics[END_REF], an analysis of the Euler equations provides us with information on the optimal choice of investment and exploitation. In our economy, such a technique is inapplicable since we are POLLUTION not sure whether the optimal choice belongs to the interior of the domain of definition.

Moreover, the presence of two control variables rules out super-modularity1 .

To overcome this difficulty, we introduce the concept net gain of stock, which is the difference between the discounted value of production, and the existing resource stock and capital.2 This concept is similar to the net gain of investment presented by [START_REF] Majumdar | Dynamic optimization in non-convex models with irreversible investment: monotonicity and turnpike results[END_REF], [START_REF] Dechert | A complete characterization of optimal growth paths in an aggregated model with a non-concave production function[END_REF], [START_REF] Mitra | Dynamic optimization on a non-convex feasible set: some general results for non-smooth technologies[END_REF] or [START_REF] Kamihigashi | A nonsmooth, nonconvex model of optimal growth[END_REF]. As we shall see, the analysis of the net gain of investment can help illuminate our understanding of economic dynamics. Following [START_REF] Kamihigashi | A nonsmooth, nonconvex model of optimal growth[END_REF], we prove that the economy evolves to increase the value of the net gain of stock some day in the future. This property has an important implication. It ensures that in the long run, the economy gets very close a steady state3 . In this article we specify the conditions for the uniqueness of steady states.

The rest of the article is organized as follows. Section 5.2 considers the problem of the representative consumer without the negative externality of the production sector on the exploitation sector. Section 5.3 takes into account the negative externalities of the polluting industrial sector on the regenerating capacity of the other sector. This chapter contains the main results of our paper, including the characterization of the conditions for the uniqueness of the steady states, and the long-run convergence of the economy.

All proofs are given in the appendix.

Model without emission

Fundamentals

We consider a two-sector economy, one engaging in industrial activities to produce a final consumption good, and the other in the exploitation of a renewable resource.

The industrial sector is characterized by a production function , satisfying the usual conditions in literature, such as monotonicity, concavity and Inada. To simplify the exposition, we assume without loss of generality (WLOG) that physical capital depreciates fully after each period.

The exploitation sector is characterized by the regenerating function and the price of the renewable resource > 0, which is exogenously determined. To fix ideas, we assume in this section that the function depends only on the natural resource stock and not on the industrial activities. In other words, the industrial activities have no negative effect on the renewable resource. POLLUTION

ii) The production function : R + → R + strictly increasing, strictly concave, continuously differentiable and satisfies (0

) = 0, ′ (∞) < 1, ′ (0) = ∞.
iii) The regenerating function of the renewable resource : R + → R + is strictly increasing, strictly concave, continuously differentiable and satisfies (0

) = 0, ′ (∞) < 1, ′ (0) = ∞. iv) For any ( 0 , 0 ) ∈ R 2 + , there exists a feasible sequence {( , )} ∞ =0 such that ∞ =0 ( ) + ( ) -+1 - +1 > -∞.
These conditions are standard in the literature. They ensure that in the production topology, the set of feasible path Π( 0 , 0 ) is compact and the value function is upper semi-continuous. It is well-established that under theses properties, an optimal path exits. In absence of externality, the concavity of the production function and regenerating function ensures the uniqueness of the optimal path. Moreover, we can write the Bellman functional equation which admits as a solution4 .

The correspondence Γ is non-empty, convex, compact-valued, and continuous. The i) The correspondence Γ is non-empty valued, continuous on R 2 + and convex, compact-valued

ii) The value function satisfies the Bellman functional equation:

( , ) = max ( ′ , ′ )∈Γ( , ) ( ) + ( ) -′ -′ + ( ′ , ′ ) .
Moreover, if the utility function is bounded from below, then is the unique solution.

iii) There exists an policy function such that

( , ) = argmax ( ′ , ′ )∈Γ( , ) ( ) + ( ) -′ -′ + ( ′ , ′ ) .
iv) The feasible sequence {( , )} ∞ =0 is optimal if and only if for any , ( +1 , +1 ) = ( , ).

MODEL WITHOUT EMISSION

v) Assume 0 > 0 and 0 > 0. The optimal path {( * , * )} ∞ =0 satisfies the property that for any * > 0, * > 0 for any ≥ 0.

Denote by ( , ) the stocks such that ′ ( ) = 1 and ′ ( ) = 1 .

It is easy to verify that ( , ) ∈ Γ( , ) and is the unique steady state of the problem.

Local and global dynamics

Local dynamics

The difficulty in analysing this problem is that, though the Inada conditions are satisfied, we can not exclude the possibility that for some date , there is no extracting resource activity, namely * +1 = ( * ). This prevents us to apply directly the Euler equations and well-known approaches in dynamic programming theory to study the long-term behaviour of the economy. Moreover, the lack of the super-modularity rules out the applications of the monotonicity results in Amir [START_REF] Amir | Sensitivity analysis of multisector optimal economic dynamics[END_REF].

To tackle this problem, we first study the behaviour of optimal path for an economy that begins sufficiently "near" the steady state. Consider now the following modified problem. We define first the "production function" of this economy.

For each > 0, let

( ) = max + = ( ) + ( ) .
(5.1)

We have the following lemma.

Lemma 5.1. The function defined in (5.1) is strictly concave. Moreover, with

, ) = argmax + = ( ) + ( ) , ( 
we have 0 < < and 0 < < . The derivatives satisfy ′ ( ) = ′ ( ) = ′ ( ).

The proof of Lemma 5.1 is immediate from the results of [START_REF] Rockafellar | Convex analysis[END_REF]. Define

= ( 0 ) + ( 0 ). (5.2)
Since is striclty increasing, it is invertible. Let 0 = -1 ( ), then 0 is well-defined.6 .

MODEL WITHOUT EMISSION

of the initial problem in a neighborhood of its steady state. Using the results in [START_REF] Stokey | Recursive methods in economic dynamics[END_REF], the convergence follows a geometrical speed.

Proposition 5.2. Assume 5.1. Denote by the steady state of the modified problem and

( , ) the steady state of the initial problem. We have:

i) The point ( , ) satisfies

( , ) = argmax + = ( ) + ( ) . 
ii) There exists a neighborhood of ( , ) such that for any ( 0 , 0 ) ∈ , the optimal sequence {( * , * )} ∞ =0 of the initial problem converges to ( , ).

This local dynamic property echoes the results in continuous time articles. It also helps us to study the global dynamic, where ( 0 , 0 ) may not be sufficiently close to ( , ).

Global dynamics

For an arbitrary initial state ( 0 , 0 ), the analysis becomes more complicated since we may have * +1 = ( * ) in some date . We cannot ensure that ( * , * ) maximizes ( ) + ( ) under the constraint + = * . It is possible that the solutions of the two maximization problems do not coincide as established in Lemma 5.2. To overcome this difficulty, first we will prove that for sufficiently big, the constraints do not bind for ≥ . Precisely, we have 0 < * +1 < ( * ) for any ≥ . We consider here the important notion, called the net gain of stock that we have mentioned earlier in the paper. For each ( , ) ∈ R 2 + , define Ψ( , ) = ( ) + ( ) -( + ).

(5.4)

This notion was first analyzed in one-dimensional economics by [START_REF] Majumdar | Dynamic optimization in non-convex models with irreversible investment: monotonicity and turnpike results[END_REF], [START_REF] Dechert | A complete characterization of optimal growth paths in an aggregated model with a non-concave production function[END_REF] and [START_REF] Mitra | Dynamic optimization on a non-convex feasible set: some general results for non-smooth technologies[END_REF] to study the properties of steady states. [START_REF] Kamihigashi | Dynamic optimization with a nonsmooth, nonconvex technology: the case of a linear objective function[END_REF] and [START_REF] Kamihigashi | A nonsmooth, nonconvex model of optimal growth[END_REF] prove that the economy always evolves to increase the value of the net gain function in the future, otherwise we are at the steady state. Following their insight, this article proves that although the sequence of net gain of stock may not monotonically increase, it will increase at some point in the future. This important result shall allow us to establish the long-run convergence of the economy.

The idea runs as follows. Observe that ( , ) maximizes Ψ( , ) on R 2 + . Suppose that the economy begins with a state which is not stable. If we can prove that the net gain of stock must always increase in the future, then we we are done. More precisely, POLLUTION when the renewable resource has a rather insignificant impact on the economy. The following proposition provides a partial response to this concern. In particular, we show that for the case of Cobb-Douglass production functions, the convergence of the economy is satisfied without imposing supplementary conditions. Proposition 5.9. Assume that ( ) = , ( ) = and ℎ( ) = -with 0 < , < 1, and > 0.

Then the assumption 5.3 is satisfied. For any initial state ( 0 , 0 ), there exists an optimal path which converges to the unique steady state ( , ).

Let us illustrate the result of Proposition 5.9 via a numerical exercise. For simplicity assume that the utility function is logarithmic. We simulated the optimal paths of consumption, renewable resources and physical capital for two different values of price in Fig. 5.3 and Fig. 5.4. In both cases we start with an initial physical capital stock greater than the steady state and an initial resources stock lower than the steady state by the same fraction for convenient comparability.

Observe that the higher the price of resources, the greater the steady state values of consumption and resources stock, and the smaller the steady state value of physical capital. The convergence speed also appears to be slower when the resources price is higher.

Suppose now that the emission function takes the form ℎ( ) = (1 + ) -. Assume logarithmic utility, Cobb-Douglas production and other parameters as in Table 5.2, we simulated the optimal paths for = 0.5 and = 10 in Fig. 5.5 and Fig. 5.6, respectively.

Notice that represents the impact of pollution on renewable resources (while reflects the intensity of industrial pollution).

A few comments are in order. First, the impact of pollution on fishery has a mild negative effect on steadystate consumption and positive effect on steadystate physical capital. Second, the impact of pollution on the steadystate value of the natural resource is dramatic: when is sufficiently large, the stock of the renewable resource is depleted at the steady state. The sequence { * } ∞ =0 is decreasing and hence converges to some * satisfying * ≤ ( * ) ≤ * , which implies that * = ( * ) = . Recall that is the unique solution to ( ) = .

Now we prove the existence of some such that ′ ( * +1 ) > ′ ( * +1 ).

Indeed, suppose the contrary. This implies lim sup →∞ ′ ( * ) ≤ ′ ( )

< 1.
By the Euler equations ′ ( * ) = ′ ( * +1 ) ′ ( * +1 ), there exists sufficiently big such that for any ≥ , ′ ( * ) ≤ ′ ( * +1 ). By the concavity of , the function ′ is decreasing. This implies that the truncated sequence { * } ∞ = is decreasing and converges to * . The convergence of sequences { * } ∞ = and { * } ∞ =0 implies the convergence of { * } ∞ =0 : lim

→∞ * = * .
From the Euler equations, we deduce that either * = 0, or ′ ( * ) = 1 . The hypothesis that ′ ( * ) = 1 , which is bigger than 1, leads us to a contradiction. Hence * = 0. Since lim →∞ * = , we have lim →∞ * = , the solution to ( ) = . By the continuity of the optimal policy function, we have the conclusion that the consumption level at initial state ( , ) is * = 0: a contradiction.

Hence there exists some such that ′ ( * +1 ) > ′ ( * +1 ).

Fix > 0 sufficiently such that: Then there exists some such that * < ( * ). Hence * < . By induction, for any ≥ , * < . This implies * < ( * ) for any ≥ 0. Recall that sup ≥0 Ψ( * , * ) ≤ Ψ( , ). Suppose that this inequality is strict.

Since the sequence {( * , * )} ∞ =0 is bounded, without loss of generality, we can assume that lim →∞ * = * , lim →∞ * = * .

Since sup ≥0 Ψ( * , * ) < Ψ( , ), we have Ψ( * , * ) < Ψ( , ) and ( * , * ) is not steady state. By the first part of this proof, we deduce that * ≤ ( * ).

Let { ˜ , ˜ } ∞ =0 the optimal path beginning from ( * , * ). By Lemma 5.4, there exists such that Ψ( ˜ , ˜ ) > Ψ( * , * ). By the part ( ), this implies that for some sufficiently big, the point ( * , * ) belongs to the neighborhood of ( , ) and there exists an optimal path {( ′ + , ′ + )} ∞ The sequence {( ˆ , ˆ )} ∞ =0 is an optimal path beginning from ( 0 , 0 ) which converges to ( , ).

Proof of Proposition 5.7

We prove that the function is strictly concave, hence solution to function ′ ( ) = 1 , and assumption 5.3 is satisfied.

Precisely, i) For each , there exists unique ( ( ), ( )) which maximizes ( ) + ( )ℎ( ) under constraint + ≤ .

ii) The function ( ) is increasing in respect to .

iii) The function is strictly concave and there exists unique steady , which is solution to ′ ( ) = 1 .

( ) For ≥ 0, we must find which maximizes

( ) = ( ) + - ℎ( ).
We have

′′ ( ) = ′′ ( ) + 1 ′′ - ℎ( ) -2 ′ - ℎ ′ ( ) + 2 - ℎ ′′ ( ).
The assumption 5.5 implies that is strictly concave. Hence there exists unique ( ) ∈ [0, ] maximizing ( ). POLLUTION

( ) It is easy to verify that for > 0, we have 0 < ( ) < . The value ( ) is hence solution to ′ ( ) -′ ℎ( ) + ℎ ′ ( ) = 0.

By the implicit theorem, we get For any > * , we have ′ ( ) < 0. This implies that for any ≥ * , ( ) < ( * ). The original equation ( ) = 1 has unique solution.

6

Conclusion

In closing the thesis, I would like to discuss the limitations of the research presented here and a few ideas on developing them further in the future.

With respect to the optimal insurance problem, many our analytical results under ambiguity aversion are limited to the case of two ambiguous states. To extend the results to more than two states, we might need to resort to the shooting method to numerically obtain the shape of the optimal indemnity schedule. Alternatively one could test the theoretical implications of the two-state case in an experiment where the number of ambiguous states can be controlled for.

The second chapter is a work in progress since we have only treated the first-best case. The second-best case with moral hazard is technically much harder in our framework, but we are optimistic about being able to bring it home some day. We can also adopt an experimental approach to test the robustness of our results with respect to the number of ambiguous states as suggested above.

For the third chapter on ambiguous returns on investment in human capital, it would be interesting to extend the model beyond two periods to understand the longrun impact on economic growth. It is also my goal to bring the model to the data to see how well the theoretical predictions perform.

The final chapter is complete in its own right, but one might think of several ways to further develop it. For example, we can allow emission to accumulate over time, or examine the impact of the arrival of a green technology.

Time is now up for this thesis, but not for research. After all, research engenders research; there is always room for further investigation. And this is good news. Dans les deux premiers chapitres, nous étudions le problème du contrat optimal en présence de risque et de l'ambiguïté dans le cadre d'un problème du contrôle optimal. L'ambiguïté est modélisée selon [START_REF] Klibanoff | A smooth model of decision making under ambiguity[END_REF]. Notre approche généralise les analyses effectuées jusqu'à présent en considérant le contrat d'assurance comme la paire d'une prime et une fonction d'indemnisation à résoudre simultanément. Nous prouvons l'existence d'un contrat optimal dans le cas le plus général où tous les agents peuvent être simultanément averses à l'ambiguïté et au risque, ce qui englobe tous les cas précédemment examinés. Nous caractérisons non seulement le partage du risque mais aussi la règle du partage de l'ambiguïté entre les parties contractantes. Dans le cas de l'aversion vers l'ambiguïté unilatérale, nous montrons qu'une politique de franchise directe ne peut pas constituer un contrat d'assurance optimal. Au contraire, sous l'hypothèse que les densités conditionnelles puissent être classées selon le rapport de vraisemblance monotone, un contrat avec des franchises qui disparaissent est optimal, un résultat qui est cohérent avec [START_REF] Gollier | Optimal insurance design of ambiguous risks[END_REF]. En particulier, la méthodologie mise en oeuvre complète l'analyse de [START_REF] Raviv | The design of an optimal insurance policy[END_REF] pour le cas du risque pur avec un assureur neutre au risque, montrant qu'une couverture de limite supérieure ne peut pas constituer un optimum. Ce résultat est robuste à la neutralité de l'ambiguïté.

Université

Dans le troisième chapitre, j'ai examiné l'impact du risque et de l'ambiguïté sur l'investissement optimal dans le capital humain et le capital physique en utilisant le modèle de Mincer à deux périodes. L'incertitude (à la fois dans le sens du risque et de l'ambiguïté) est introduite à l'accumulation de capital humain de deux façons.

Lorsque l'incertitude porte sur le taux de dépréciation du capital humain (obsolescence incertaine des compétences), j'ai constaté que l'investissement optimal dans le capital humain augmente toujours, que soit présent ou non le capital physique. Cette réponse à l'incertitude d'un ménage représente le comportement typique de l'auto-assurance. En revanche, lorsque l'incertitude se porte sur l'efficacité de l'accumulation du capital humain, l'investissement optimal dans le capital humain diminue parmi les ménages avec l'aversion au risque relative constante inférieure à un. Cette réponse à l'incertitude est typique d'un ménage qui considère l'investissement comme un actif à rendement risqué au lieu d'une assurance.

Le dernier chapitre (relativement indépendant des chapitres précédents) examine une question importante dans la théorie de la croissance: le rôle des ressources renouvelables et des externalités dans l'économie. L'introduction d'une fonction régénératrice (d'une ressource naturelle) nonconcave par rapport à l'un des arguments rend le problème non convexe. En conséquence, nous ne pouvons plus utiliser les techniques traditionnelles de programmation dynamique. En attaquant ce probpème, nous proposons une nouvelle méthode pour étudier une économie à deux secteurs en présence des externalités. En l'occurrence, nous introduisons le concept de "gain net de stock", qui est une notion similaire au "gain net d'investissement" introduit par [START_REF] Kamihigashi | A nonsmooth, nonconvex model of optimal growth[END_REF]. En absence des propriétés convexes ou supermodulaires habituelles, nous prouvons que l'économie évolue pour augmenter le gain net de stock et établissons les conditions assurant la convergence de l'économie à long terme. Cette approche peut être appliquée aux problèmes similaires précédemment posées, ou être étendu à l'analyse des économies multisectorielles en général.

In the first two chapters, we study the optimal contract problem in presence of risk and ambiguity as an optimal control problem. Ambiguity is modeled according to [START_REF] Klibanoff | A smooth model of decision making under ambiguity[END_REF]. Our approach generalizes all the analyses carried out so far by considering the insurance contract as a pair of an indemnity function and a premium to be solved for simultaneously. We prove the existence of an optimal contract in the most general case, allowing for the principal or the insurance to be averse or neutral to risk or ambiguity. We characterize both the risk and ambiguity sharing rule between the contracting parties. In the case of one-sided ambiguity aversion, we show that an optimal insurance contract cannot contain a straight deductible policy. Furthermore, under the hypothesis that the conditional densities can be ranked according to the monotone likelihood ratio, we prove that a disappearing deductible contract is optimal, a result that is consistent with [START_REF] Gollier | Optimal insurance design of ambiguous risks[END_REF]. In particular, our method completes the analysis of [START_REF] Raviv | The design of an optimal insurance policy[END_REF], showing that in the pure risk case with a risk-neutral insurer, a policy with an upper limit coverage cannot be optimal. This result also holds under ambiguity neutrality.

In the third chapter, I examine the impact of risk and ambiguity on the optimal investment in human and physical capital in a two-period Mincer's model. Uncertainty (both in the form of risk and ambiguity) is introduced to the accumulation of human capital via two channels. When uncertainty is on the depreciation rate of human capital (uncertain obsolescence of skills), I have found that the optimal investment in human capital always increases, whether or not physical capital is present. This response to uncertainty of an optimizing household represents the typical self-insurance behavior. By contrast, when uncertainty is on the effectiveness of human capital accumulation, the optimal investment in human capital diminishes among the households with a degree of constant risk aversion less than one. This response to uncertainty is typical of a household who views human capital as an investment with risky/ambiguous return.

The final chapter (relatively independent from the preceding chapters) examines an important subject in the theory of economic growth: the role of renewable resources and externalities in the economy. The introduction of a (natural resource) regenerating function that is non-concave with respect to one of its arguments renders the problem non-convex. In consequence, we can no longer apply traditional dynamic programming techniques to this model. We thus propose a new method to study two-sector economies with externalities. In particular, we introduce the notion of "the net gain of stock", which is a notion similar to "the net gain of investment" of [START_REF] Kamihigashi | A nonsmooth, nonconvex model of optimal growth[END_REF]. In absence of the usual convex and supermodular requirements, we prove that the economy evolves to increase the net gain of stock, and establish conditions that ensure long-run convergence. This approach can be adapted to similar problems previously studied, or be extended to the analysis of multi-sector economies in general.
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  ) → R is the expected utility map. Note that as the Ellsberg paradox violates the STP, it also violates Anscombe-Aumann's Independence Axiom since the latter implies the former. Gilboa and Schmeidler obtain their representation by relaxing the Independence Axiom, replacing it with two other milder conditions called C-independence (independence with respect to constant acts) and Uncertainty aversion. Ghirardato et al. (2004) extends MEU to -MEU, aiming to allow for varying degrees of ambiguity aversion via the index ∈ [0, 1]. In this framework, an alternative is CHAPTER 1. INTRODUCTION evaluated according to:

  report 1.35 percent of annual TFP growth during the period 1947-1973 for the US, which accounts for 34 percent of economic growth. The TFP growth estimate for France during the same period is almost 3 percent, contributing to 54 percent of economic growth. 8 Evidently, the importance of TFP cannot be overestimated. Nevertheless, this quantity remains a black box in the Solow-Swan or the basic RCK model. The sore need to understand the mechanism behind TFP growth calls for further investigation, leading to the development of a new literature which has come to be known as endogenous growth theory. In essence, the goal of endogenous growth theory is to flesh out how the optimizing decisions of agents (public or private) in the model lead to higher productivity of inputs over time. With significant contributions from Aghion et al. (1998), this line of research can be roughly divided into three big topics: technological change, human capital accumulation, and natural resources (exhaustible and renewable). Chapters 4 and 5 of the thesis fall under the last two categories.

  is the ambiguity-neutral cumulative distribution function (cdf),

  Consider the following subcases. a. If ( ¯ ) < 0 then monotonicity implies ( ) < 0 on ( 1 , ¯ ]. Therefore on ( 1 , ¯ ] the indemnity function satisfies ( ) ∈ (0, ) and is characterized by ( ) = Ξ ( ( )). In other words, the indemnity function has the form (2.89). b. If ( ¯ ) ≥ 0 then by continuity the equation ( ) = 0 has a solution. Denote = { ∈ ( 1 , ¯ ] | ( ) = 0}.

3. 2 .

 2 ASSUMPTIONS AND FORMULATION OF THE PRINCIPAL'S PROBLEM Notation 3.1. Throughout this chapter, the subscripts and refer to the agent and the principal, respectively. Notation 3.2. The -dimensional Euclidean space whose elements have all non-negative coordinates is denoted by R + . The -dimensional Euclidean space whose elements have all strictly positive coordinates are denoted by R ++ Assumption 3.1. Let the state space be ℐ = {1, 2, . . . , }, where < +∞. Let denotes the prior belief of both DMs regarding the likelihood of state occurring. Assume that ∈ (0, 1)

Assumption 3. 2 .

 2 For each ∈ and ∈ ℐ, let (•| ) : → [0, 1] be the conditional cumulative distribution function (cdf) of ˜ defined by ( | ) = Pr( ˜ ≤ | ), ∈ ℐ. Assume that all the cdfs are 2 on their common support . Let (•| ) : → R ++ be the conditional probability density function (pdf) associated with (•| ) defined by = 1 for each ∈ ℐ, and ( | ) = ( | ) ∈ℐ ∈ R ++ for all ∈ .

Assumption 3. 3 .

 3 For two distinct indexes , in ℐ, let ℓ (•| ) : → R + be the effortconditional likelihood ratio defined by ℓ ( | ) = ( | ) ( | ) . Then state is said to dominate state in the sense of likelihood ratio dominance (LRD) if ℓ ( | ) = ℓ ′ ( | ) ≥ 0 for a.e. ∈ , with strict inequality in some subset of positive measure of . 1

Assumption 3. 4 .

 4 Let the function ℓ (•) : → R + be the state conditional likelihood ratio defined by ℓ ( ) ≔ ( | 2 ) ( | 1 ) , 1 < 2 ∈ . Then ℓ ′ ( ) ≥ 0 a.e. ∈ , with strict inequality in some subset of positive measure of . Assumption 3.5. The wage is a measurable function : → R + satisfying ( ) ∈ [0, ] for a.e. ∈ . 3

  ℎ( ¯ , * ) ≥ 0.

  the Hamiltonian associated with the OCP is defined by: ( , , 0 , , ) = ( -) , ( | ) + ( ) , ( | ) , (3.20) where = ( , , ) ∈ R 2 +1 is called the adjoint vector whose components ∈ R , ∈ R and ∈ R themselves are the adjoint vectors associated with the state variables , and respectively.

  ) > 0 denote the degree of the absolute risk aversion of the principal and the agent, respectively. Observe that ( | ) = , ( | ) , ( | ) is bounded above and below by positive constants since all the elements of the adjoint vectors are positive and finite, and the densities are positive and bounded. Since ( ) ∈ (0, ) for all ∈ (0, ¯ ], there exists 1 > 0 such that ′ ( 1 ) > 0, otherwise ( ) ≤ 0 for all ∈ since (0) = 0, which is either inadmissible, or ruled out by a previous remark. From (3.51) we have ′ ( 1 | ) > 0. We would like to show that ′ ( | ) ≥ 0 for all ∈ . Suppose by contradiction, there exists 2 ∈ (0, ¯ ] such that ′ ( 2 | ) < 0. By the continuity of ′ (•| ), there exists 3 ∈ (0, ¯ ] such that ′ ( 3 | ) = 0, which, via (3.51) implies ′ ( 3 ) = 0. But ′ ( 3 | ) = 0 and ′ ( 3 ) = 0 imply (•) = 0 in light of (3.52), a contradiction. Hence we must have ′ ( | ) ≥ 0 for all ∈ , implying via (3.51) that ′ ( ) ≥ 0 for all ∈ . 91 3.5. CHARACTERIZATION OF THE OPTIMAL WAGE 2. When the principal is risk-neutral, ′ ≡ 1. Equation (3

  .78) implying that ′ ( ) ≤ 0 on [ 0 , ¯ ] since ′ ( | ) ≤ 0 for all ∈ by Lemma 3.10. Thus the only non decreasing candidate solution satisfies ′ ( ) = 0 for all ∈ [ 0 , ¯ ], which satisfies (3.78) if and only if ′ ( | ) = 0 for all ∈ [ 0 , ¯ ]. Note that in the binary case (3.71) can be re-written as 1

  98 CHAPTER 3. THE PRINCIPAL-AGENT MODEL UNDER SMOOTH AMBIGUITY which is zero if and only if 2 ( | ) = 1 ( | ) a.e. ∈ (0, 0 ]. Thus from (3.67) we have ′ ( | ) = 0 on [ 0 , ¯ ] if and only if either ℓ ′ 12 ( | ) = 0, ∀ ∈ ( 0 , in . Under the modified maximum condition, the second part of Theorem 3.2 changes to the following. Proposition 3.4. Consider the principal-agent model with a risk-neutral principal and a riskaverse agent. For each in , the unique optimal wage satisfies ( ) = Ξ( ( | )), ∀ ∈ . (3.82)

′

  ( ) = Ξ ′ ( ( | )) ′ ( | ) ≤ 0. Since is positive-valued, the only admissible wage that satisfies ′ ( ) ≤ 0 is ′ ( ) = 0 for all . Denote the fixed wage by ˜ . Recall that = ′ ( ) ∈ℐ . Under constant wage, = ( ˜ ) for all , hence ′ ( ) ( ( )) is strictly increasing due to the strict concavity and monotonicity of and . Hence its inverse mapping Ξ exists and we could invert (3.84) to obtain (3.83). As before, if takes an interior value, then the triple ( ℎ , ˜ , ) is pinned down by three equations, namely (3.84), (3.32) and ℎ( ˜ , ) = 0.

  Consider the discrete time analog of the Ben-Porath model Ben-Porath (1967) with no learning time and ambiguous stochastic depreciation rate of human capital. For simplicity let us examine a two-period economy without physical capital. The program faced by a representative agent is: max 0 ≥0, ≥0

  Assumption 4.1 (Finite scenario space). Let the scenario space be Θ = {1, 2, • • • , }, where is a positive integer.

Assumption 4. 2 (

 2 Finite common support). Assume that all scenario-conditional random variables ˜ 's have a common finite support = { 1 , • • • , }, where ∈ (0, 1) for all = 1, . . . , , for some positive integer .

Assumption 4. 4 (

 4 Risk aversion).The vNM utility function : R + → R is strictly increas-4.3. OPTIMAL INVESTMENT IN HUMAN CAPITAL IN ABSENCE OF PHYSICAL CAPITALing, concave and satisfies the Inada conditions: Production technology). Assume that the production function : R + → R + is strictly increasing and concave with respect to each factor of production and satisfies the

  Under Assumption 4.4, the function defined by (4.15) is strictly decreasing. If moreover the utility function satisfies ′′′ ≥ 0, then is strictly convex. HUMAN CAPITAL

Remark 4. 2 .

 2 A very popular class of utility functions is the class of hyperbolic absolute risk aversion (HARA), which has linear absolute risk tolerance (in wealth). 2 In the same vein, ambiguity preferences that belong of the hyperbolic absolute ambiguity aversion (HAAA) class 4.3. OPTIMAL INVESTMENT IN HUMAN CAPITAL IN ABSENCE OF PHYSICAL CAPITAL have linear absolute ambiguity tolerance (in utility), thus satisfying Assumption 4.6. HAAA ambiguity preferences include those that satisfy DAAA (decreasing absolute ambiguity aversion), CAAA (constant absolute ambiguity aversion), or IAAA (increasing absolute ambiguity aversion).

Figure 4 . 4 :

 44 Figure 4.4: Pessimism due to increasing ambiguity aversion

  Figure 4.5: Increasing ambiguity and optimal saving and consumption

Lemma 4. 6 .

 6 If the utility function is logarithmic and the second-order utility function satisfies linear absolute ambiguity tolerance (Assumption 4.6), then the objective function (4.66) is jointly concave in both arguments. Proof. See subsection 4.7.1. Denote ( , ) ≡ EE ( ˜ 1 ).

  ) and ( , ) be the utility ambiguity premium and the utility ambiguity precautionary premium, respectively defined byE (E ( ˜ 1 )) = ( ( , ) -( , )), (4.71) E ′ (E ( ˜ 1 )) = ′ ( ( , ) -( , )).

Figure 4 . 6 :

 46 Figure 4.6: The impact of increasing risk (MPS) on investment and consumption. The deterministic case corresponds to MPS being equal to zero.

Figure 4 . 7 :

 47 Figure 4.7: The impact of increasing ambiguity aversion on investment and consumption for a CAAA agent with logarithmic utility.

Figure 4

 4 Figure 4.8: The impact of increasing ambiguity aversion on investment and consumption for a CRAA agent with logarithmic utility.

  value function is a solution of the Bellman functional equation 5 . The optimal policy function is well-defined and satisfies usual continuity properties. Readers interested in the proof of Proposition 5.1 can refer to the classical work of Stockey & Lucas (

  for any ≥ , ˆ = * for any 0 ≤ ≤ ,ˆ +1 = * +1 + , ˆ = * for any ≥ + 2.We can verify that the sequence {( ˆ , ˆ )} ∞ =0 is feasible. We have This contradiction comes from the hypothesis that for any , * ≥ ( * ).

()

  Consider the subsequence {( * , * )} ∞ =0 such that lim →∞ Ψ * , * = sup ≥0 Ψ( * , * ).

  from the hypothesis such that ( ˜ , ˜ ) is not steady state. By the uniqueness of steady state, we have lim →∞ ( * , * ) = ( , ).

=0

  beginning from ( * , * ) which converges to ( , ). Define the sequence {( ˆ , * ) for 0 ≤ ≤ , ( ′ , ′ ) for ≥ .

′--.

  ( ) = --1 ′′ -ℎ( ) + ′ -ℎ ′ ( ) ′′ ( ) + 1 ′′ -ℎ( ) -2 ′ -ℎ ′ ( ) + 2 is positive and the denominator is negative.( ) For any ≥ 0, ′ ( ) = ′ ( ( )) ′ ( ) + ′ -( ) (1 -′ ( ))ℎ( ( )) + -( ) ℎ ′ ( ( )) ′ () terms are negative. The function is strictly concave.5.5.9 Proof of Corollary 5.1Since ′′ ( ) ≤ 0 for any , the condition ( ) in assumption 5.5 is satisfied. Moreover, are positive, the assumption in the statement of this corollary implies the satisfaction of the condition ( ) in 5.5. The assumption 5.5 is hence satisfied. Applying directly Proposition 5.6, the proof is completed. POLLUTION Since ′ ( * ) < 0, this inequality is verified for = * . Define ˜ ( ) = 2-. We have As ˜ ′ ( * ) > 0, for any > * we have ˜ ′ ( ) > 0. Hence the function ˜ is increasing in [ * , ∞). For any ≥ * we have 2
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  R is at least 2 , strictly increasing and strictly concave: ′ > 0, and
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  and ( ) > 0 by Assumption 2.4. Hence from[START_REF] Lee | Foundations of optimal control theory[END_REF], we have

  Never before has the concern regarding developing human capital become so pressing as nowadays. Human capital becomes a crucial issue because for certain nations especially those deprived of natural resources such as Israel, Japan or Singapore, it is human capital that brings about the economic miracles. Accordingly, investment in education and training is of utmost importance in these countries. Nevertheless, especially in developing countries, there is evidence of co-existence of over-education in some sectors (such as in management and finance), and severe lack of skill in others, especially in highly specialized technical fields. One reason for this imbalance is that while technical expertise consumes much more resource to develop, its market value is highly susceptible to uncertainty. The technicians who are in demand today might see their skills become obsolete tomorrow at the arrival of a new technology. Without sufficient job security and investment in lifelong learning from the private and public sectors, there might not be enough incentive to specialize in technical areas.
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  The result of Proposition 4.4 is illustrated in Figure4.6. Intuitively, increasing risk reduces the certainty equivalent of the next period's uncertain income (output) due to both risk aversion and the concavity of the production function. This raises savings due to a precautionary motive (to smooth consumption across states in the next period) and consequently reduces this period's consumption. Although aggregate saving is higher, the allocation to each type of capital moves in opposite direction. The increase in the HC investment has a self-insurance motive. This effect is stronger the more risk averse and/or concave the production function is with respect to HC (the closer is to zero). The reduction in the PC investment would reduce the variance of the uncertain income, which is preferred by a risk-averse agent.In other words, among the pairs ( , ) that yield the same expected next period's output, a riskaverse agent would always prefer to allocate as much as possible to the investment in human
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Table 5 .

 5 The following parameter values are used for this simulation. 2: Parameters used for the numerical simulation under exponential emission

	Parameter	Value
		0.5
		0.98
		0.67
		0.8
	(Emission coefficient)	0.2
	(TFP in final good sector) 2
	(TFP in fishery sector)	1

An alternative approach to the SEU representation result is developed by[START_REF] Anscombe | A definition of subjective probability[END_REF].

For more comprehensive treatment on the theoretical development of this literature, interested readers may consult the works of[START_REF] Siniscalchi | Ambiguity and ambiguity aversion[END_REF],[START_REF] Machina | Ambiguity and ambiguity aversion[END_REF] and[START_REF] Etner | Decision theory under ambiguity[END_REF].

 4 Wakker (2010) advocates for Propect theory[START_REF] Kahneman | Prospect theory: An analysis of decision under risk[END_REF] as the more psychologically realistic framework to study decisions under risk and ambiguity.

This feature is challenged by[START_REF] Epstein | A paradox for the "smooth ambiguity" model of preference[END_REF].

A concise exposition on this class of models can be found in Chapter 1 of Le[START_REF] Van | Dynamic programming in economics[END_REF].

See, for example, Chapter 6 of Pishro-Nik (2016).

Hence Proposition 1 of Gollier (2014) is a special case of Proposition 2.4 where is linear as shown below.

( ¯ ) >

( ¯ ) by the strict monotonicity of the utility function. In this case ′ ( ) = 0 on ( 1 , ¯ ] if and only if ℓ ′ 12 ( ) = 0 on this interval. In other words, if the densities satisfy 1 ( ) 2 ( ) = on ( 1 , ¯ ]. By contrast, if there exists a subset of positive measure of ( 1 , ¯ ], say , such that ℓ ′ 12 ( ) < 0 on , then ′ ( ) > 0 on in view of (2.79), implying that ′ ( ) > 1 on , contradicting the straight deductible hypothesis. More generally, a straight deductible contract may be optimal if and only if ambiguity has a one-sided structure in the sense that either the set of positive measure in which ℓ ′ 12 ( ) < 0 (which implies 1 ( ) > 2 ( )) is a subset of either [0, 1 ] or ( 1 , ¯ ], but not both. A violation of this condition is provided in the numerical

( ) < 0 on the whole range of losses [0, 1], a straight deductible policy cannot be optimal. On the other hand, there exists a subset of positive measure of ( 1 , 1] where ′ ( ) > 1. This point is

′ ( )ℎ , implying that ′ ≥ 0 on by Lemma 2.5. The rest of the proof follows that of Theorem 2.2 verbatim.

The principal-agent model under smooth ambiguity

Note that LRD is a special case of FSD. Thus (•) dominates (•) in the sense of LRD implies ( ) ≤ ( ) for all ∈ , with strict inequality on some subset of of positive measure. See Appendix A for further discussion.

This assumption deviates from the mainstream of the existing literature that considers a global, rather than a point-wise constraint on (•). We shall also consider the implication of this assumption in a separate later section.

Specifically, let be aon , then( , ) is a measurable space. The function : → is called measurable if, for all in , the preimage of under is also in where the preimage of under is the set preim ( ) = { ∈ | ( ) ∈ }.

In particular, let 1 , 2 be arbitrary functions in . For any ∈ [0, 1], we have by the concavity of that( 1 ( ) + (1 -) 2 ( )) ≥ ( 1 ( )) + (1 -) ( 2 ( )). Multiplying both sides of the inequality by ( | ) which is positive and does not depend on , we see that ( ( )) ( | ) is concave.

( | ) = 1 ( | ), a.e. ∈ (0, 0 ]. (3.80)

In the terms of in[START_REF] Knight | Risk, uncertainty and profit[END_REF], this is the difference between measurable and immeasurable uncertainty.

See Chapter 4 of[START_REF] Lengwiler | Microfoundations of financial economics: an introduction to general equilibrium asset pricing[END_REF] for a detailed discussion on HARA.

See, for example, Chapter 2.5 of[START_REF] Gollier | The economics of risk and time[END_REF] for a proof.

Taking into account the preference towards ambiguity, the degree of relative risk aversion being less than one is supported by a number of experiments, among which[START_REF] Chakravarty | Recursive expected utility and the separation of attitudes towards risk and ambiguity: an experimental study[END_REF] and[START_REF] Berger | Ellsberg re-revisited: An experiment disentangling model uncertainty and risk aversion[END_REF].

Recall that investment in human capital always increases under DAAA and CAAA ambiguity preferences. The experimental evidence of[START_REF] Berger | Ellsberg re-revisited: An experiment disentangling model uncertainty and risk aversion[END_REF] is in favor of these types of preferences under CRRA utilities.

For the definition and a detailed survey on the super-modular economy, see the works of[START_REF] Amir | Sensitivity analysis of multisector optimal economic dynamics[END_REF] and[START_REF] Amir | Supermodularity and complementarity in economics: An elementary survey[END_REF].

For example in a one-dimensional economy, given the discount rate , the production function and capital stock , the net gain of stock is equal to ( ) -.

If the steady state is unique, the convergence is ensured.

For the details, see Le[START_REF] Van | Dynamic programming in economics[END_REF] or Le[START_REF] Van | Optimal growth models with bounded or unbounded returns: a unifying approach[END_REF].

For the case where the utility function is bounded from below, it is unique.

This consideration is necessary, since ( 0 , 0 ) may differ from argmax + = 0 ( ) + ( ) .

For analogous discussion of the discrete case, see[START_REF] Levy | Stochastic dominance: Investment decision making under uncertainty[END_REF].

The term first coined byKimball (1990a).
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EXISTENCE OF OPTIMAL WAGE

sponds to an admissible control ∈ satisfying (0) ∈ ℳ 0 , ( ¯ ) ∈ ℳ 1 , such that the cost functional is minimized over all possible trajectories (•) linking ℳ 0 to ℳ 1 .

Proposition 3.1. The OCP admits an optimal control.

Proof. Let = inf ( , )∈ × ( , ). Consider a sequence of trajectories { (•)} ∈N associated with the sequence of admissible controls (•) ∈N defined by

such that ( , ) -→ as -→ ∞, where

By the weak-★ compactness of , the sequence (•) ∈N weak-★ converges to ¯ (•) ∈ up to some subsequence, i.e.

(•) ⇀ ¯ (•). By the compactness of , the sequence { } ∈N converges to * ∈ , up to some subsequence. Denote the limiting trajectory as: We first show that this limiting trajectory also brings the system from ℳ 0 to ℳ 1 , which is completed by Lemma 3.3. Second, we show that the control associated with this limiting trajectory is optimal, which is the result of Lemma 3.4.

Lemma 3.3. We have ℎ( ¯ , * ) ≥ 0. . It is immediate to see that Δ tends to zero as tends to infinity since is bounded and defined on the compact set × is uniformly continuous.

From [START_REF] Lee | Foundations of optimal control theory[END_REF], we have, for a convex function Γ :

(3.12)

Let Γ ( ( )) ≡ -( ( )) ( | * ). Then Γ is convex with respect to since is concave and is positive and does not depend on 5 . We can rewrite (3.12) as:

-¯ ( ¯ ) ≤ lim inf(-( ¯ ) -Δ ) ⇐⇒ ¯ ( ¯ ) ≥ lim sup ( ¯ ).

(3.13)

By the continuity of ¯ , for all > 0, there exists a sufficiently large positive integer such that ¯ ( ¯ ) ≥ ( ¯ ) -. Since is increasing, ( ¯ ( ¯ )) ≥ ( ( ¯ ) -). ℳ 0 ( (0)) depending on where takes values as previously computed. In particular:

• If ∈ ( , ¯ ), then the normal cone takes the form 3.24, implying (0) = 0;

• If = , then the normal cone takes the form 3.25, implying (0) ≤ 0;

• If = ¯ , the normal cone takes the form 3.26, implying (0) ≥ 0.

Proposition 3.2. The adjoint vector to satisfies

Moreover, when is interior,

(3.32)

Proof. Note that (3.19) implies Observe that: • If ∈ ( , ¯ ), then = 0, violating ( , 0 ) ≠ 0.

• If = , then the complementary slackness condition (3.29) implies = . If = 0, then again ( , 0 ) ≠ 0 is violated. If > 0, then Lemma 3.5 is contradicted.

• If = ¯ , then the complementary slackness condition (3.28) implies = -¯ ≤ 0. Thus the only admissible value for ¯ in this case is zero, violating ( , 0 ) ≠ 0.

We see that regardless of the value of , a contradiction follows if 0 = ℎ = 0. Hence we always have ( 0 , ℎ ) ≠ 0.

Lemma 3.7. The adjoint vectors and satisfies ( ,

Proof. In light of Lemma 3.6, we only need to consider the following cases.

1. If ℎ = 0, 0 = 1, then 

If

] by the same argument as in the previous case. Thus ( ) = for all ∈ . This case is also ruled out in light of Remark 3.1.

If

We conclude that only ( ℎ > 0, 0 = 1) can occur under the standing assumptions. In

++ by assumptions on the priors and the welfare functional.

Lemma 3.8. The Hamiltonian is strictly concave in .

Proof. From (3.20), we have for each fixed ∈ (0, ¯ ] then the following holds for an optimal wage function.

1. If the principal is risk-averse, then the optimal wage function takes the form

where Ξ : R ++ → (0, ) is the inverse mapping of ↦ → ′ ( -) ′ ( ) . Moreover, the optimal wage is non decreasing in outcomes.

2. If the principal is risk-neutral, then there exist 0 ∈ (0, ¯ ) such that an optimal wage function takes the form

where Ξ : R ++ → (0, ) is the inverse mapping of ↦ → 1 ′ ( ) and the set is the countable union of open intervals defined by

(3.46)

In particular, an optimal wage is differentiable on (0, ¯ ) except at an at most countable set of points.

Moreover, 0 is the smallest ∈ (0, ¯ ) such that ′ ( )( ( | ) = 1 and there exists a decreasing sequence ( ) ≥1 converging to 0 with ′ ( )( ( | ) < 1 for ≥ 1.

An optimal effort satisfies ℎ( ,

where the optimal state vector ( ¯ ) ∈ℐ is evaluated at the optimal wage in each case. Moreover, either an optimal effort is not interior (and then belongs to { , ¯ }) or it is interior and satisfies (3.32).

Proof. Notice that ( ) = 0 cannot occur for any ∈ since the Inada condition on implies | =0 = +∞, regardless of the principal's attitude towards risk.

Corollary 3.1. [START_REF] Raviv | The design of an optimal insurance policy[END_REF]] When both DMs are ambiguity-neutral and the principal is risk-neutral, the shape of the optimal contract is the following

where 0 is uniquely defined by ′ ( 0 ) = 1 ℎ .

Proof. When both DMs are ambiguity-neutral, (3.55) where ≡ ( 1 , . . . , ) is the vector of priors.

According to Remark 3.3, 0 is the unique solution to

By the monotonicity of ′ , for all ≤ 0 we have ′ ( ) ℎ -1 ≥ 0, implying that ( ) = for all ≤ 0 and then for all > 0 we have ′ ( ) ℎ -1 < 0, implying that ( ) = 0 for all > 0 .

Remark 3.4. Observe that the sharing rule (3.48) characterizes both efficient risk and ambiguity-sharing. It has a nice interpretation. The LHS of this equation is the relative marginal utilities, while the RHS is relative expected marginal welfare. The expectation is computed with respect to the posterior distribution. To see this, define the expected marginal welfare of the agent and the principal, respectively, be:

is the probability that state occurs given that the outcome is , which is by definition the Bayesian posterior probability. This inference that each contracting party has to make here is a direct consequence of the uncertainty on the distribution and that the state itself is not a contractible variable. Then (3.48) is equivalent to

which tells us that at the optimum, the ratio between the product of marginal utility and ex- according to [START_REF] Borch | The safety loading of reinsurance premiums[END_REF]. Hence (3.59) can be viewed as a modified Borch rule that an optimal contract has to satisfy under ambiguity.

Remark 3.5. To clarify the notion of Bayesian inference mentioned above, consider a situation where the states are contractible variables, i.e., when the contract can be written as { (•), } ∈ℐ instead of { (•), }. In this case, we can slightly modify the state variables as

and and easily show that the sharing rule (3.59) holds for every state. In particular,

implying that the state-conditional ratio of marginal utilities

′ ( ( )) is held constant across all ∈ , in each state ∈ ℐ. Hence (3.61) can be viewed as a state-conditional Borch rule.

Observe that the DMs no longer have to make an inference on the state based on the outcome as suggested by (3.48). Furthermore, when the principal is neutral to risk and ambiguity, (3.62) implying that ( ) = ≡ ¯ ∈ (0, ¯ ) for all satisfying ( ) ∈ (0, ). In view of Corollary 3.1, the optimal wage function under risk and ambiguity-neutral principal when the states are contractible has the form:

where ¯ is the unique solution to ( ) = 0 where ( ) 

∀ ∈ ℐ.

(3.65)

Observe that the contract (3.63) is robust to the principal's ambiguity attitude. When the principal is ambiguity-averse, we simply modify ( ) = ′ ( ) ′ ( ( ¯ ))

′ ( ( ¯ )) ℎ -1, which is also strictly decreasing in . Hence, if the states are contractible (markets are complete), we conclude from (3.65) and Corollary 3.1 that the shape of the optimal contract is robust to ambiguity when the principal is risk-neutral.

Binary ambiguous state case with risk-neutral principal

Under a risk-averse principal, we have shown in Theorem 3.2 that ′ is always non negative, regardless of the number of ambiguous states and, since the sign of ′ determines the sign of ′ , an optimal wage was always non decreasing. For = 2, we prove in the next lemma that ′ has a constant sign a hence deduces some information on the sign of an optimal wage under a risk-neutral principal. Lemma 3.9. Under Assumption 3.3, in the binary state case = 2, the sign of ′ ( | ) does not depend on ∈ . As a consequence, the following holds: either ′ ≤ 0, in which case 0 is the unique solution of ′ ( ) ( | ) = 1 and defined in (3.46) is equal to ( 0 , ¯ ); or ′ > 0, in which case an optimal wage is non decreasing.

Proof. Denote

= ( 1 , . . . , ) and = ( 1 , . . . , ). Then ′ ( | ) can be expressed as:

(3.66)

Hence for = 2

where ℓ ′ 12 ( ) ≥ 0 by Assumption 3.3. Clearly, the sign of ′ ( | ) depends on the sign of 1 2 -2 1 , which is independent of . Combining that result with Theorem 3.2 yields the rest of the statement of the lemma. . We have Proof. Note that by integration by parts (IBP), we always have

and

Recall that when = 2, by Lemma 3.9 the sign of ′ ( | ) is constant with respect to . Suppose ′ ( | ) ≥ 0, then (3.51) implies ′ ( ) ≥ 0 for ∈ ( 0 , ¯ ) (and thus for all

, differentiating with respect to and simplifying yield:

Consider next the case ′ ( | ) < 0, again from (3.51) we have ′ ( ) < 0 for ∈ ( 0 , ¯ ). Thus ′ ( ) ≤ 1 for all ∈ , and we have from (3.72) that 1 ( ¯ ) ≥ 2 ( ¯ ). Hence ′ ( | ) ≤ 0 in light of (3.68). On the other hand (3.73) implies

bution of outcome has either of these one-sided ambiguous structures, then then the optimal wage contract is identical to the unambiguous case as expressed in Corollary 3.1.

Remark 3.10. If ambiguity contaminates both sides of the support, then there exists a subinterval of ( 0 , ¯ ] where ′ ( ) < 0. For example, suppose there exists an interval

where

contradicting the hypothesis that ′ ( ) ≥ 0 for all ∈ . Hence, if the one-sided ambiguity structure is violated, there exists a subset of outcomes where optimal wage is strictly decreasing.

Optimal wage under a modified admissible set

In this section, we modify one assumption, namely Assumption 3.5 and add another Inada condition on the utility function in Assumption 3.7. We modify also the outcome set so that = [0, ∞). In particular, the followings hold.

Assumption 3.9. The wage is a measurable function :

Essentially, this modification allows the wage to be greater than the outcome for some outcomes; it is no longer constrained point-wise.

Assumption 3.10. The agent has utility function : R + → R, which is at least 2 , satisfying (0) = 0, ′ > 0 > ′′ and the Inada conditions lim →0 ′ ( ) = +∞, and lim →∞ ′ ( ) = 0.

Under the revised assumptions, the admissible control coincides with the set ( ), hence is compact. The first major change occurs in the maximum condition 4.7. APPENDIX OF PROOFS could wipe out the value of financial assets in a blink of an eye. Indeed, the evolution of any types of capital are ridden with uncertainty nowadays.

The model has at least two short-comings. First, the potential welfare-enhancing role of social security is neglected and the welfare analysis thereof. Second, the model is static, leaving the question on long-run growth open. At least in these dimensions can future research extend.

Appendix of Proofs

Proof of Lemma 4.2

Let us define the function : R → R by

where : R + → R is the vector-valued function defined by:

where

Notice that is increasing in since is increasing (thus so is its inverse -1 ). Also, by Lemma 8 of [START_REF] Gollier | The economics of risk and time[END_REF], the function is concave in R under Assumption 4.6. Our goal is to show that the composite function

is concave in for all . In particular, following [START_REF] Dattorro | Convex optimization & Euclidean distance geometry[END_REF], this means that for positive scalars 1 and 2 , and any ∈ (0, 1)

where the notation denotes an element-wise inequality. By the monotonicity of ,

Furthermore, by the concavity of in R ,

From (4.105) and (4.106), we conclude that • is concave in R + . Since is strictly concave in and > 0, the objective function is the sum of two concave functions, so it is indeed strictly concave in , as desired.

MODEL WITHOUT EMISSION

At the beginning period of time , the economy possesses a stock of capital and a stock of the renewable resource , which generate an output from production ( ) and a regenerated stock ( ) of the resource, respectively. Let denote the amount of natural resource exploited by the agent and the total revenue available to her at the beginning of period . Clearly = ( )+ . She then decides to allocate this revenue between current consumption and next-period investment in physical capital +1 .

Given the initial capital and natural stocks 0 and 0 , respectively, the representative agent solves the intertemporal optimization problem:

, , , ≥ 0 for any ≥ 0, where ∈ (0, 1) is the discount factor.

By replacing by ( ) -+1 , we can rewrite the problem as:

, , ≥ 0 for any .

Observe from the first constraint that with the presence of the natural resource as an additional source of revenue, the capital stock +1 can be greater than the output ( ) generated by the industrial sector. The second constraint says that the amount of exploitation cannot exceed the total amount of natural stock available.

For each ( ,

=0 from ( 0 , 0 ). We now impose standard conditions on the utility function, the production function and the resource regenerating function of the model. Assumption 5.1. i) The utility function : R + → R is strictly increasing, strictly concave, continuously differentiable and satisfies the Inada condition ′ (0) = +∞.

Consider the modified problem:

Observe that thanks to Lemma 5.1, the modified problem is convex. It has a unique optimal path, which converges monotonically to the steady state , the solution to

Note that in general the corresponding path {( ˜ , ˜ )} ∞ =0 may not satisfy the constraint ˜ +1 ≤ ( ˜ ). Only for the case where the economy begins near the steady state ( , ), this constraint is satisfied and the sequence {( ˜ , ˜ )} ∞ =0 also solves the initial problem. First, we provide conditions ensuring the equivalence between the initial and the modified models. If for any ≥ 0, 0 < * +1 < ( * ), then the sequence { * } ∞ =0 is solution of the modified problem.

ii) Consider the solution { ˜ } ∞ =0 of the modified problem. For any ≥ 1, define

In other words, if the initial model has an interior solution, then this solution also solves the modified problem. If the modified problem generates a sequence {( ˜ , ˜ )} ∞ =0 such that ˜ +1 ≤ ˜ for any , then this sequence also solves the initial problem.

The analysis of the modified problem allows us to study local dynamic properties POLLUTION for any ≥ 0, there exists some date

Hence there exists some period that the state ( * , * ) gets very close to the steady state.

We then show, via Proposition 5.2, that from this period the optimal sequence converges rapidly to the steady state ( , ). These ideas are presented formally in Lemma 5.3, Lemma 5.4 and Proposition 5.3 below.

Lemma 5.3. Assume 5.1. The steady state is the only solution which maximizes Ψ:

This lemma can be proved using the concavity of the functions and . Lemma 5.4 is the most important intermediary result in the establishment of the long-term behavior of the optimal path. It states that though the sequence of {Ψ( * , * )} ∞ =0 can be non-monotonic, there exists some period in the future when the net gain of stock shall increase.

Lemma 5.4. Assume 5.1. Consider the initial state ( 0 , 0 ) such that 0 ≤ ( 0 ). Exactly one of the following statements is true: i) For any , we have * = 0 and * = 0 .

ii) There exists some > 0 such that Ψ( * , * ) > Ψ( 0 , 0 ).

(5.5) Lemma 5.4 tells us that for any non-steady initial state, the value of the net gain of stock will increase some day in future. The following proposition asserts that this value converges to Ψ( , ) and that the optimal path converges to ( , ).

Proposition 5.3. Assume 5.1. For any ( 0 , 0 ) ∈ R 2 + , the optimal path converges to ( , ).

Let us now illustrate the existence of a unique steady state and global convergence to this steady state. For simplicity, suppose that the utility function satisfies constant intertemporal elasticity of substitution (CIES), both the production function and the 143
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ii) (0, ) = 0 for all ≥ 0.

iii) For any > 0, ′ (0, ) = ∞ and ′ (∞, ) < 1.

iv) For any ( 0 , 0 ) ∈ R 2 + , there exists a feasible sequence {( ,

The representative agent solves the following inter-temporal optimization problem:

, , ≥ 0 for any .

A few remarks are in order. Observe that the model does not satisfy neither convexity structure or super-modularity. The feasible correspondence remains compact-valued, and hence a solution always exists. Nevertheless, the solution may not be unique; there might exist multiple optimal paths starting from the same initial state.

As in the previous case, we establish first the basic properties concerning the value function and optimal policy correspondence. For each ( , ) ∈ R 2 + , define the feasible correspondence Γ : R 2 + → R 2

+ by:

+ such that ′ + ′ ≤ ( ) + , ( ) and ′ ≤ , ( ) }.

(5.6)

We immediately obtain the following proposition using the results from Stokey & Lucas (with Prescott) [START_REF] Stokey | Recursive methods in economic dynamics[END_REF].

Proposition 5.4. Assume 5.2.

i) The correspondence Γ defined in (5.6) is continuous, convex, and compact-valued.

ii) The value function satisfies the Bellman functional equation:

iii) There exists an upper semi-continuous policy correspondence defined by:

is optimal if and only if for any , ( +1 , +1 ) ∈ ( , ).

v) Assume that 0 > 0 and 0 > 0. Denote by {( * , * )} ∞ =0 the optimal sequence.Then * > 0, and * > 0 for any ≥ 0.

Long-term dynamical analysis

Existence of steady states

When the problem is not convex, the existence and uniqueness of steady states are not ensured. Let us first describe some properties of the long-term behaviour of the economy. As in the previous section, define the net gain of investment function by:

, ( ) -( + ) .

(5.7)

Observe that the argmax set is non-empty due to the compactness of the model. Furthermore, define

(5.8)

By the continuity of , it easy to verify that ≠ ∅ and for any ( , ) ∈ , the constant sequence { , } ∞ =0 satisfying ( , ) = ( , ) for all , is feasible. Hence a steady state exists. For any initial state which is not a steady state, the value of the net gain of stock will increase in the future.

Proposition 5.5. Assume 5.2. i) A steady state exists.

ii) Consider an initial state such that 0 ≤ 0 , ( 0 ) . Either ( 0 , 0 ) is a steady state, or for any optimal path {( * , * )} ∞ =0 beginning from ( 0 , 0 ), there exists some ≥ 0 such that

As in Section 5.2, Proposition 5.5 allows us to prove that any optimal sequence must gets very close to the set of steady state(s) at some point in the future. If this set is a singleton, this state must be an absorbing point, in the sense that starting from anywhere in a neighbourhood of this point, there exists an optimal path converging to it.

By similar arguments to Section 5.2, it can be proved that beginning from any initial state, there exists an optimal path converging to the steady state. Note that although
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the possibility of multiple optimal paths can not be excluded, the set initial states which generate multiple optimal paths has zero measure [START_REF] Dechert | A complete characterization of optimal growth paths in an aggregated model with a non-concave production function[END_REF]. So we can be almost sure that the economy converges in the long term.

Long-term dynamics

In this subsection, we characterize the conditions that guarantee the uniqueness of the steady state.

Let 1 and 2 be the partial derivatives of with respect to its first and the second argument, respectively.

Assumption 5.3. The following system has unique solution:

Since this system of equations provide the necessary conditions for a steady state, Assumption 5.3 ensures its uniqueness.

First, as in Section 5.2, we analyse the dynamic that begins near the steady state.

Define

(5.9)

Observe that is strictly increasing and differentiable. By 5.3, there exists a unique solution to ′ ( ) = 1 . By the Inada conditions, ′ (0) = ∞ and ′ (∞) < 1. This implies that ′ ( ) > 1 for 0 < < and ′ ( ) < 1 for > 7 .

Consider the following modified problem:

Since is strictly increasing, the indirect utility function ( , ′ ) = ( ( ) -′ ) has increasing differences. Following [START_REF] Amir | Sensitivity analysis of multisector optimal economic dynamics[END_REF], this implies the monotonicity of the optimal paths of the modified problem.

Lemma 5.5. Assume 5.2 and 5.3. For any initial state 0 , every optimal path of the modified problem converges monotonically to the unique steady state .

7 Since is differentiable, its derivatives function satisfies also the famous Bolzano -Cauchy property, which states that if ′ ( ) > 1 and ′ ( ′ ) < 1 , then there exists some ˜ between and ′ such that ′ (˜ ) = 1 . Hence we do not have to require the continuity of ′ . POLLUTION Similarly to Section 5.2, Lemma 5.5 allows us to describe the behaviour of the optimal path once initial state is sufficiently close the steady state ( , ). In the following proposition, we prove that starting from any initial state, there exists an optimal path which converges to the steady state. The idea is that any optimal path must gets "close" to the steady state, and from that new position, there is a path which converges monotonically to ( , ).

Proposition 5.6. Assume 5.2, 5.3.

i) There exists a neighbourhood of ( , ) such that for any ( 0 , 0 ) ∈ , there exists an optimal path which begins at ( 0 , 0 ) and converges to ( , ).

ii) For any ( 0 , 0 ), there exists an optimal path beginning from ( 0 , 0 ) which converges to ( , ).

Uniqueness of the steady state and long-term convergence

In this section, we study the conditions that ensure the uniqueness of the steady state.

We first make the simplifying assumption that the pollution function is linear, so that

, where > 0 captures the influence of the production sector on pollution (and consequently on the regeneration of the natural resource). Next, let us consider the plausible conditions to impose on . Observe that concavity of is counter-intuitive.

Indeed, suppose that is concave with respect to the second argument. Then ( , •)

is strictly decreasing for all , implying that for sufficiently large, we obtain a negative value for the renewable resource, which is not intuitive. By contrast, suppose lim →∞ ( , ) = 0, which is a reasonable assumption saying that when the scale of industrial production explodes, the overwhelming negative effect of pollution will wipe out the natural resource. Thus it makes sense to hypothesise that ( , •) is convex with respect to the second argument. For simplicity let us assume that the regenerating function is separable:

( , ) = ( )ℎ( ).

(5.10) Assumption 5.4. i) The function is strictly increasing, strictly concave, satisfying

ii) The function ℎ is strictly decreasing and convex.

The "production function" of the modified problem, the function defined in (5.9) is strictly increasing but not necessarily concave. To ensure concavity, we add the following mild condition.

Define by

the solution to ( ) = and the solution to ( ) = . Let = + .

Assumption 5.5. For any 0 ≤ ≤ ≤ , we have i)

Under 5.5, the function is strictly concave. There is thus unique solution to ′ ( ) = 1 , and hence 5.3 is satisfied.

Proposition 5.7. Assume 5.2, 5.4, and 5.5. The steady state ( , ) is unique and for any ( 0 , 0 ), there exists an optimal path beginning from ( 0 , 0 ) which converges to ( , ).

Observe that for any functions , and ℎ, for or sufficiently small, Assumption 5.5 is verified, and the economy converges in the long term.

In the case where the inequality in part ( ) of Assumption 5.5 is satisfied without the presence of ′′ ( ), ( ) implies ( ) and we obtain the following corollary.

Corollary 5.1. Assume 5.2, 5.4. Assume that for any 0 ≤ ≤ ≤ , we have

The steady state ( , ) is unique and for any ( 0 , 0 ), there exists an optimal path beginning from ( 0 , 0 ) which converges to ( , ).

Furthermore if ℎ is exponential so that ℎ( ) = -, then 5.5 can be reduced to a simple condition on .

Assumption 5.6. For any 0 ≤ ≤ , we have

Under 5.6, it is easy to verify that the conditions in 5.5 are satisfied. Proposition 5.8

below is obtained as a direct consequence of Proposition 5.5.

Proposition 5.8. Consider the case ( , ) = ( ) -. Assume 5.2, 5.4, and 5.6. The steady state ( , ) is unique and for any ( 0 , 0 ), there exists an optimal path beginning from ( 0 , 0 ) which converges to ( , ).

Assumptions 5.5 and 5.6 may raise the concern that we can only obtain a good description for the long-term behaviour of the economy for small values of or , i.e.

Appendix of Proofs

Proof of Lemma 5.2

The uniqueness of solution of modified problem is assured using the concavity of and . From the strictly concavity of and , the function is strictly concave.

) Consider solution of the initial problem, {( * , * )} ∞ =0 satisfying for any , * > 0 and 0 < * +1 < ( * ). By Euler equations, we have ′ ( * ) = ′ ( * ). Since et are concave functions, this implies

Hence we have for any , ′ ( * ) = ′ ( * ) = ′ ( * ), or the sequence { * } ∞ =0 satisfies Euler equation: for any ,

From the transverlity condition of the initial problem, we have:

Hence the transversality condition is satisfied. The sequence { * } ∞ =0 is solution of the modified problem.

=0 is a feasible sequence of the initial problem. By the Lemma 5.1, for any ≥ 0, we have for any ≥ 1, ′ ( ˜ ) = ′ ( ˜ ) = ′ (˜ ).

From the Euler equations:

Observe that for any ≥ 1, ˜ ≤ ˜ and ˜ ≤ ˜ . From the transversality condition of the modified problem:

The sequence {( ˜ , ˜ )} ∞ =0 satisfies Euler equations and transversality condition of the POLLUTION initial problem, hence this sequence is the optimal problem.

Proof of Proposition 5.2

) From Inada conditions, one has ′ ( ) = ′ ( ) = ′ ( ) = 1 . This implies 0 < < ( ). Hence the sequence {( * , * )} ∞ =0 with * = and = for any satisfies Euler equations and transversality condition for the initial problem with initial state

) Take a neighborhood of such that if 0 ∈ , the optimal sequence { * } ∞ =0 is subset of and converges to . Define ˜ the set of ( 0 , 0 ) such that 0 = -1 ( 0 + 0 ) belongs to .

Obviously, ˜ contrains a neighborhood of ( , ). For any ( 0 , 0 ) ∈ , define 0 = ( 0 ) + ( 0). The optimal solution { ˜ } ∞ =0 of the modified problem with inital 0 satisfies ∈ for any and converges to . Moreover, since 0 < < ( ), the corresponding sequence {( ˜ , ˜ )} ∞ =0 satisfies 0 < ˜ +1 < ( ) for any and hence ′ ( ˜ ) = ′ ( ˜ ) = ′ (˜ ). Obvisouly, this sequence satisfies transversality condition. By Lemma 5.2, the sequence {( ˜ , ˜ )} ∞ =0 is solution of the initial problem and from the convergence of { ˜ } ∞ =0 to , this sequence converges to ( , ).

Proof of Lemma 5.4

First, observe that for any ,

Assume that for any ≥ 0, we have Ψ( * , * ) ≤ Ψ( 0 , 0 ). This implies

Hence by the concavity of :

We will prove that the hypothesis Ψ( * , * ) ≤ Ψ( 0 , 0 ) for any ≥ 0 implies that ( 0 , 0 ) ∈ Γ( 0 , 0 ). Indeed, assume the contrary. Since 0 ≤ ( 0 ), we have

The direct consequence of this inequality is that 0 > ( 0 ). Denote by the solution to ( ) = . By the concavity of , < 0 . Consider the sequence {( ˆ , ˆ )} ∞ =0 such that ˆ 0 = 0 , ˆ = for any ≥ 1, and ˆ = 0 for any ≥ 0. This sequence is feasible.

Since < 0 ,

For any ≥ 1, since ( ) = , we have

Since {( * , * )} ∞ =0 is the unique optimal path, this implies * = 0 and * = 0 for any ≥ 0. The optimal sequence is constant.

For the case the optimal sequence is not constant, the above arguments imply the existence of such that Ψ( * , * ) > Ψ( 0 , 0 ).

Proof of Proposition 5.3

The proof is divided in some intermediary steps.

i) There exists such that * < ( * ) for any ≥ .

ii) The equality sup ≥0 Ψ( * , * ) = Ψ( , ).

iii) The convergence of the optimal path.

( ) First, we prove the existence of some such that * < ( * ). Suppose the contrary, then for any ≥ 0 we have * +1 ≤ ( * ) ≤ * . POLLUTION By the continuity of the problem, there is a neighborhood of ( * , * ) such that for any

Since the sequence {( * , * )} ∞ =0 converges to ( * , * ), there is sufficiently big such that ( * , * ) ∈ . We have

a contradiction. This contradiction comes from the hypothesis that sup ≥0 Ψ( * , * ) < Ψ( , ).

( ) Hence sup ≥0 Ψ( * , * ) = Ψ( , ). For any neighborhood of ( , ), there is some such that ( * , * ) ∈ . Using Proposition 5.2, we obtain:

5.5.5 Proof of Proposition 5.5

( ) Fix any ( 0 , 0 ) ∈ . First we prove that the constant sequence beginning from ( 0 , 0 ) is feasible. Indeed, we have only to prove that 0 ≤ 0 , ( 0 ) . Suppose the contrary, 0 , ( 0 ) < 0 . Since 1 (0, ( 0 )) = ∞, there exists sufficiently small such that < , ( 0 ) . This implies ( , 0 ) > ( 0 , 0 ): a contradiction. Consider an optimal path {( * , * )} ∞ =0 beginning from ( 0 , 0 ). By the choice of ( 0 , 0 ), for any we have Ψ ( * , * ) ≤ Ψ ( 0 , 0 ). Using the same arguments as in the proof of Proposition 5.3, we have

which implies that the constant sequence {( 0 , 0 )} ∞ =0 is also an optimal path beginning from ( 0 , 0 ). Hence ( 0 , 0 ) is a steady state of the economy.

( ) We follow the same line of arguments of the proof of Proposition 5.3. Fix ( 0 , 0 ) and an optimal path {( * , * )} ∞ =0 beginning from ( 0 , 0 ). We have

161 5.5. APPENDIX OF PROOFS Assume that for any ≥ 0, Ψ ( * , * ) ≤ Ψ ( 0 , 0 ). By the concavity of , one has

This is equivalent to

We prove that ( 0 , 0 ) ∈ Γ( 0 , 0 ). In the contrary case, this implies 0 > ( 0 ). Hence 0 > , the solution to the equation ( ) = . The sequence {( ˆ , ˆ )} ∞ =0 with ˆ = and ˆ = 0 for any ≥ 1 is feasible.

Observe that ( ) < ( 0 ). We have

For any ≥ 1, since ( ) = , we have

Hence ( 0 , 0 ) ∈ Γ( 0 , 0 ), which implies that the sequences { * } ∞ =0 and {Ψ ( * , * )} ∞ =0 are constant. Hence for any ,

For any , we have

Let converges to infinity, we get for any , * + * = Δ 1 -

Hence for any ≥ 0 we have * + * = 0 + 0 .

Since the consumption sequence is constant, we get for any ≥ 0, ( * ) + * , ( * ) = ( 0 ) + 0 , ( 0 ) .

These two equalities prove that ( 0 , 0 ) is a steady state.

The conclusion that ( 0 , 0 ) belongs to the set of steady states comes from the hypothesis that Ψ ( * , * ) ≤ Ψ ( 0 , 0 ) for any ≥ 0. Hence if ( 0 , 0 ) is not a steady state, there exists such that Ψ ( * , * ) > Ψ ( 0 , 0 ).

Proof of Lemma 5.5

By 5.3, the unicity of steady state is ensured. For each 0 ≤ ′ ≤ ( ), define ( , ′ ) = ( ( ) -′ ). The function plays a role of indirect utility function of the modified economy.

By the concavity of and the monotonicity of , indirect utility function has increasing differences (see [START_REF] Amir | Sensitivity analysis of multisector optimal economic dynamics[END_REF]). Every optimal path of the modified problem is hence monotonic.

We will prove the following claim: for any initial state 0 > 0, every optimal path beginning from 0 converges monotonically to . Precisely, let { * } ∞ =0 an optimal path beginning from 0 . If 0 ≤ then this path is increasing and converges to . Other-163 5.5. APPENDIX OF PROOFS wise, if 0 ≥ , this path is decreasing and converges to .

Indeed, consider the case 0 < 0 < . Assume that the sequence { * } ∞ =0 is strictly decreasing. For fixed < , consider the following function with variable ′ belonging to [0, ]:

We have, by the concavity of :

This implies that the function is strictly increasing in [0, ]. hence we have

for any 0 ≤ ′ ≤ .

The hypothesis such that { * } ∞ =0 is decreasing implies

Hence ( 0 , 0 , . . . ) is also an optimal path, which implies that 0 = : a contradiction.

Hence the sequence { * } ∞ =0 is increasing and converges to . For 0 > , using the same arguments, we prove that any optimal path beginning from 0 is decreasing and POLLUTION converges to .

Proof of Proposition 5.6

( ) The proof follows the same arguments as Section 5.2. We know that for any 0 , the optimal path of the modified problem converges monotonically to the steady state .

We have = + .

For optimal path of the modified problem { * } ∞ =0 the optimal path beginning from 0 = 0 + 0 , define ( * , * ) as

), for ( 0 , 0 ) belonging to a neighborhoood of ( , ), the corresponding sequence {( * , * )} ∞ =0 satisfied * +1 < ( * )ℎ( * ) for any ≥ 0. This implies the sequence {( * , * )} ∞ =0 is feasible and hence it is an optimal path of the initial problem. This sequence converges to ( , ).

( ) Fix ( 0 , 0 ) and an optimal path {( * , * )} ∞ =0 beginning from ( 0 , 0 ). Take the sub-sequence

Without loss of generality, we can assume that this sub-sequence converges: lim →∞ ( * , * ) = ( ˜ , ˜ ).

We state that ( ˜ , ˜ ) = ( , ).

Assume the contrary. Consider the "sequence of sequences" {k } ∞ =0 , where for each , k = {( * + , * + )} ∞ =0 . By the compactness of the set of feasible sequences, we can assume that the sequence of sequences {k } ∞ =0 converges to {( ˜ , ˜ )} ∞ =0 , which is also feasible.

Since lim →∞ ( * , * ) = ( ˜ , ˜ ), the sequence {( ˜ , ˜ )} ∞ =0 is an optimal path beginning from ( ˜ , ˜ ). By Proposition 5.5, there is some such that

Hence for sufficiently big, we have

Proof of Proposition 5.9

By Proposition 5.6, we just have to prove the satisfaction of 5.3. Consider the following system

The second function implies

We must prove that the following equation has unique solution:

where 1 , 2 and are positive constants.

Indeed, let ( ) = 1 1--2 . We can verity that (0) = ∞ and (∞) = 0. The equation ( ) = 1 has solution. Denote by * its smallest one. We have

Since ( ) > 0 for < * , the derivative of at * is negative: ′ ( * ) < 0. We will prove that ′ ( ) ≤ 0 for any > * . Indeed, this is equivalent to

A Stochastic orders

This chapter serves as a brief review of commonly used stochastic ordering concepts in economics. In particular, we will be discussing the notion of stochastic dominance of order , with particular emphasis on the first and second order. Then, we will be looking at stochastic dominance in the likelihood ratio and the hazard ratio, which are stronger notions of stochastic dominance than first-order stochastic dominance (FSD).

The interested readers are recommended to consult a number of key references, including [START_REF] Mas-Colell | Microeconomic theory[END_REF], [START_REF] Laffont | Economie de l'incertain et de l'information. 2. Cours de théorie microéconomique[END_REF], [START_REF] Levy | Stochastic dominance: Investment decision making under uncertainty[END_REF] and [START_REF] Wolfstetter | Topics in microeconomics: Industrial organization, auctions, and incentives[END_REF]. The content of this chapter is primarily drawn from these sources. for all ∈ with strict inequality in some subset of positive measure of .

Proof. We prove necessity by contradiction. Suppose there exists * ∈ such that ( * ) > ( * ). We can define an increasing function as For sufficiency, consider the case where is differentiable. Integration by parts (IBP) allows us to write (A.1) as: FSD concerns the ranking of distributions according to "levels" 2 while second-order stochastic dominance (SSD), the concept to be discussed next, concerns the ranking of distributions according to relative dispersion. When distributions of the same mean are under consideration, SSD turns out to be an equivalent ordering criterion to the concepts of increasing risk or mean-preserving spread (MPS) in the pioneering work of Rothschild and Stiglitz (1970b). ∫ ¯ 0 ( ) to each side of (A.6) establishes the sufficiency part of the proposition. For necessity, see [START_REF] Levy | Stochastic dominance: Investment decision making under uncertainty[END_REF].

As mentioned above, SSD is equivalent to the concepts of mean preserving spread (MPS) and elementary increase in risk in the sense of Rothschild and Stiglitz (1970b) 2. (•) is a MPS of (•).

(•) is an elementary increase in risk from (•).

In general, the definition of stochastic dominance needs not invoke the common mean requirement. Furthermore, FSD and SSD are merely two particular cases of a more general notion of stochastic dominance. Indeed, the definition of ℎ -order stochastic dominance (NSD) is given in [START_REF] Laffont | Economie de l'incertain et de l'information. 2. Cours de théorie microéconomique[END_REF]: with strict inequality for at least some ∈ .

The case = 3 (third-order stochastic dominance (TSD) is another special case of interest. It can be shown that a DM with ′ ≥ 0, ′′ ≤ 0, and ′′′ ≥ 0 (prudent) prefers (•) to (•) iff (•) 3 (•). Furthermore, if such a DM is also temperant 3 ( ′′′′ ≤ 0), then she prefers (•) to (•) iff (•) 4 (•), and so on. We state without proof the following proposition which sums up the link between the higher order derivatives of the utility function and stochastic dominance. 2. Let ( ) denotes the ℎ derivative of . For all -time differentiable function satisfying (-1) -1 ( ) ≥ 0 for all = 1, . . . , , we have:

Finally, we also state without proof a proposition linking different orders of stochastic dominance.

Proposition A.5. For all integers ≥ ≥ 1, we have

(A.7) Proposition A.5 suggests that FSD is a rather strong assumption. Nevertheless, in numerous economic applications such as in the principal-agent problem, even stronger notions of stochastic dominance are needed. We shall now discuss two of them, namely the likelihood ratio dominance (LRD) and the hazard ratio dominance (HRD). 4 An alternative way to think about stochastic ordering can be explored via the concept of logsupermodular functions. See [START_REF] Gollier | The economics of risk and time[END_REF] and [START_REF] Athey | Monotone comparative statics under uncertainty[END_REF] for a detailed exposition on the properties of log-supermodular functions and their various applications, such as in game theory and the standard portfolio problem.