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Chapter 0. Thesis presentation.

W s loc (γ) ∪ W u loc (γ).

Consider a compact annulus A smoothly embedded in the interior of a quadrant, which is transverse to the vector field X and is vertical, in the sense that a closed curve in A generating its fundamental group is homotopic to γ inside W . The orbit γ can be enclosed with a compact tubular neighbourhood N A with smooth boundary, such that A ⊂ ∂N A and such that the flow points outward the manifold N A along the annulus. This is depicted 2 in figure 2. Define M A = M \int(N A ).

) will consist in separate the manifold M into the two pieces M A and N A , and then re-glue them using an appropriate diffeomorphism ϕ : ∂N A → ∂M A = ∂N A that produces an Anosov vector field X in the manifold M = M A ϕ N A . The diffeomorphism ϕ will have support contained in the annulus A and, topologically, it will be a Dehn twist.
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RÉSUMÉ

Cette thèse porte sur les chirurgies de Dehn et les structures différentielles associées aux flots d'Anosov transitifs en dimension trois. Les flots d'Anosov constituent une classe très importante des systèmes dynamiques, par leurs propriétés chaotiques persistantes par perturbations, autant que par leur riche interaction avec la topologie de la variété ambiante. Bien que beaucoup soient connus sur le comportement dynamique et ergodique de ces flots, il n'y a pas une compréhension assez claire sur la classification de ses différentes classes d'équivalence orbitale. Jusqu'à ce moment, les plus grands progrès ont été fait en dimension trois, où il y a une famille de techniques pour la construction d'exemples de flots d'Anosov connue comme chirurgies Pendant la réalisation de cette thèse, dans un premier temps nous nous sommes intéressés à une chirurgie en particulier, connue comme la chirurgie de Goodman. Cette procédure consiste à choisir une orbite périodique du flot et réaliser une chirurgie de Dehn autour de cette orbite, adaptée au flot d'une façon telle qu'on obtient une nouvelle variété munie d'un flot d'Anosov. La problématique que soulève cette technique est que, pour la réalisation de la chirurgie, un des paramètres à choisir est une surface plongée dans la 3-variété et un difféomorphisme défini sur elle. De ce fait, l'espace de paramètres est, a priori, de dimension infinie et, pourtant, ce n'est pas facile d'avoir un contrôle sur la classe d'équivalence du flot obtenu par cette méthode. Il existe une deuxième procédure, qui peut-être interprétée comme une version infinitésimale de celle qui précède, connue comme la chirurgie de Fried. Celle-ci consiste à éclater l'orbite périodique, obtenant de ce fait un flot défini sur une variété à bord, puis collapser cette composante de bord d'une façon non-triviale et produire un nouveau flot. Cette chirurgie produit des flots univoquement définis, mais ceux-ci ne sont pas munis d'une structure hyperbolique naturelle. Ils sont, par construction, flots topologiquement d 'Anosov. Notre contribution consiste à montrer que, si on assume de plus que les flots sont transitifs, alors une chirurgie de Goodman et une chirurgie de Fried autour de la même orbite périodique produisent des flots équivalents, à égal élection de paramètres entiers.

Dans un second temps nous avons travaillé sur une question un peu plus abstraite, mais qui est naturellement liée à certaines procédures techniques dans la construction de flots hyperboliques. C'est le problème de savoir si tout flot dit topologiquement d'Anosov (i.e. expansif et qui satisfait la propriété de shadowing de Bowen) correspond à un flot hyperbolique différentiable, à équivalence orbitale près. Dans le cas particulier où le flot est transitif, il est connu depuis très longtemps qu'il peut être muni d'une structure non-uniformément hyperbolique définie dans le complémentaire d'un ensemble fini d'orbites périodiques. La plus grande difficulté est de construire des modèles (globalement) hyperboliques associés au flot original.

Dans ce contexte, notre contribution consiste à montrer que tout flot topologiquement d'Anosov et transitif, défini dans une variété de dimension trois, est orbitalement équivalent à un flot d'Anosov de classe C 1 .

iii RESUMEN La presente tesis es acerca de cirugías de Dehn y estructuras diferenciables asociadas a flujos de Anosov transitivos en dimension tres. Los flujos de Anosov constituyen una clase muy importante de sistemas dinámicos, tanto por sus propiedades caóticas y persistentes bajo perturbaciones, así como también por su rica relación con la topología de la variedad ambiente. Si bien mucho es conocido acerca de las propiedades dinámicas y ergódicas de estos flujos, no existe una comprensión clara acerca de cómo clasificar sus distintas clases de equivalencia orbital. Hasta ahora los mayores avances han sido hechos en dimensión tres, donde existe una familia de técnicas para la construcción de ejemplos de flujos de Anosov conocidas como cirugías.

ABSTRACT

The present thesis is about Dehn surgeries and smooth structures associated with transitive Anosov flows in dimension three. Anosov flows constitute a very important class of dynamical systems, because of its persistent chaotic behaviour, as well as for its rich interaction with the topology of the ambient space. Even if a lot is known about the dynamical and ergodic properties of these systems, there is not a clear understanding about how to classify its different orbital equivalence classes. Until now, the biggest progress has been done in dimension three, where there is a family of techniques intended for the construction of Anosov flows called surgeries.

During the realization of this thesis, in a first time we have been interested in a particular surgery method, known as the Goodman surgery. This method consists in make a Dehn surgery on a chosen periodic orbit, but adapted to the flow, in such a way to obtain a new manifold equipped with an Anosov flow. For making this surgery, one of the parameters that has to be chosen is an embedded surface in the 3-manifold and a diffeomorphism defined on it. Thus, the parameter space is, a priori, of infinite dimension and it is not easy to have control on the orbital equivalence class of the obtained flow. There exists a second method, that can be interpreted as an infinitesimal version of the previous one, known as the Fried surgery. It consists in making a blow-up of the flow along the periodic orbit, obtaining in this way a flow in a manifold with boundary, for then blowing-down the boundary component in a non-trivial way and produce a new flow. This surgery produces flows defined in a unique way, but they are not equipped with a natural uniformly hyperbolic structure. They are, by construction, topological Anosov flows.

Our contribution is to show that, if we assume that the flow is transitive, then a Goodman surgery or a Fried surgery performed on a periodic orbit produce orbitally equivalent flows, for the same choice of integer parameters.

In a second time, we have been interested for a more abstract question, but which is also related to some technical issues in the construction of hyperbolic flows. It is the problem of determining if every topologically Anosov flow (i.e. expansive and satisfying the Bowen shadowing property) correspond to a smooth hyperbolic flow, up to orbital equivalence. In the particular case that the flow is transitive, it has been known that there exists a non-uniformly hyperbolic structure defined in the complement of a finite set of periodic orbits. The main difficulty is the construction of (global) hyperbolic models associated to the original flow.

In this setting, our contribution is to show that every transitive topologically Anosov flow on a closed manifold is orbital equivalent to a smooth Anosov flow. vii

Thesis presentation.

Consider a closed, smooth, Riemannian manifold M and a non-singular vector field X of class C r , where r ≥ 1. The flow φ t generated by the vector field X is said to be an Anosov flow if its natural action on the tangent bundle of M preserves a hyperbolic splitting

T M = E s ⊕ span{X} ⊕ E u ,
where span{X} is the sub bundle of T M generated by X and dim(E s ), dim(E u ) = 0. The splitting being hyperbolic means that the Riemannian length of the vectors in the bundle E s is exponentially contracted by the forward action of Dφ t , and the symmetric conditions holds for the E u bundle in backward time.

The paradigmatic example of an Anosov flow is the geodesic flow of a closed Riemannian manifold with negative sectional curvature. For hyperbolic surfaces with constant negative curvature, the study of the geodesic flow has begun more than one hundred years ago with the works of Birkhoff, Cartan, Hadamard, Hopf and Poincaré, among others. The main novelty of this dynamical system (with respect to other well-known examples as the 2-body Newtonian problem) that attracted the attention of some scientists is its wild qualitative behaviour, which constitutes an intrinsic obstruction to make accurate predictions of its evolution in time. This kind of dynamical behaviour is known nowadays as chaotic.

Some notable characteristics of these geodesic flows are the sensitivity to initial conditions, the existence of a dense set formed by periodic orbits, the existence of a dense trajectory, and the existence of an ergodic invariant volume. The main cause behind these properties is the existence of a hyperbolic splitting, and it is also related to a stronger property satisfied by the flow, that is the persistence of the chaotic behaviour under perturbations of the flow. Based on the definition of structurally stability introduced by Andronov and Pontrjagin in the 30s, in 1961 Smale was able to prove this persistence phenomena in a chaotic discrete time dynamical system nowadays known as the horseshoe map, and in 1962 Anosov gave the proof of structural stability of the geodesic flow in negative curvature.

Anosov flows are named after the foundational work [START_REF] Anosov | Geodesic flows on closed Riemannian manifolds of negative curvature[END_REF] of D. V. Anosov. In that work, the author explains from a unified point of view the general mechanisms by which a hyperbolic splitting produces complexity in the orbit space, being at the same time the main cause behind structural stability and, in many cases, good ergodic properties. 1 General Facts of Anosov flows.

Qualitative dynamical behaviour.

The works of Anosov and Smale in the 60s have led to the developing of a more general theory called hyperbolic dynamics, that includes the Anosov flows (and its discrete time analogues called Anosov diffeomorphism) as a particular case.

The hyperbolic dynamical systems are among the simplest examples of chaotic dynamics. This class of systems has been widely studied and a lot is known about its dynamical behaviour, both from the topological and measure theoretic point of view. In particular, for the case of Anosov flows we remark the following:

(i) Expansivity: Anosov flows are orbitally expansive.

(ii) Axiom A: The non-wandering set of the flow is hyperbolic, and the periodic trajectories are dense on this set. This condition, known as axiom A, implies a lot of interesting consequences. For instance, the spectral decomposition theorem of Smale applies, and the non-wandering set of the flow can be decomposed as a finite union of compact invariant sets, each one constituting a homoclinic class.

On each of these sets the flow is transitive, and it has positive topological entropy.

(iii) C 1 -structural stability: The flow generated by a non-singular C 1 -vectorfield on a closed manifold M is said to be C 1 -structurally stable if all the vector fields contained in a small C 1 -neighbourhood produce orbitally equivalent flows. As we pointed out before, Anosov vector fields are C 1 -structurally stable.

(iv) Ergodic Properties: Despite the topological complexity of the orbit structure of an Anosov flow, it is possible to put in practice statistical treatments of the orbit behaviour due to the existence of accurate measures well related to the dynamic. For instance, there always exists a measure of maximal entropy. If the flow has at least C 2 -regularity, we can find others interesting measures as the so-called SRB-measures, physical measures, Margulis measures, etc.

Other fundamental property of Anosov flows is given by the stable manifold theorem. This theorem asserts that the bundles E s and E u integrate into globally defined foliations of the ambient space, respectively called the stable and the unstable foliations. For for each point x in the phase space, the stable leaf through x is homeomorphic to euclidean space and coincides with the set of points whose orbit approaches the orbit of x under forward time iteration. An analogous statement is valid for the unstable foliation, but with backward time iteration. As well, the bundles E s ⊕ span{X} and span{X} ⊕ E u integrate into a pair of transverse foliations that intersect along the flow lines. They will be called center-stable and center-unstable foliations, respectively. These invariant foliations are strongly related with the dynamical behaviour of an Anosov flow and, at the same time, with its interaction with the topology of the ambient space.

1. General Facts of Anosov flows.

xv

Classification up to orbital equivalence.

The C 1 -structural stability implies that the set of different equivalence classes of Anosov flows in a given closed manifold is at most countable. Thus, it is reasonable to search for a classification of these classes in terms of a finite number of invariants.

Even if we have a good description of the qualitative behaviour of the Anosov flows, the problem of its classification up to orbital equivalence rest a major subject nowadays. The main advance until now is done in dimension three, the smallest possible dimension for an Anosov flow. One impediment to advance in the comprehension of these flows up to orbital equivalence is the lack of examples. Apart from the geodesic flow of a negatively curved manifold or the suspension flow generated by a hyperbolic matrix acting on a torus, it is not easy to construct Anosov flows. Here is where the study splits in dimension three and bigger. For dimension three there is a battery of techniques called surgeries which allow to construct a wide variety of Anosov flows. In higher dimensions, it is also possible to construct more complicated Anosov flows using surgeries, but the setting is much more delicate. We invite the reader to compare [START_REF] Barthelmé | Anomalous anosov flows revisited[END_REF] and [START_REF] Franks | Anomalous Anosov flows[END_REF].

In all this text we will concentrate only in the 3-dimensional case. We will not make an account of classification results, but we want to point out that some progress has been done if we restrict to some special families of 3-manifolds, or if we look at Anosov flows with some extra property. For instance:

• If a 3-manifold M admits an Anosov flow then the fundamental group π 1 (M ) has exponential grow, see [START_REF] Plante | Anosov flows and the fundamental group[END_REF];

• There is a complete classification of Anosov flows on 3-manifolds with solvable fundamental group, see [START_REF] Plante | Anosov flows, transversely affine foliations, and a conjecture of Verjovsky[END_REF] and [START_REF] Barbot | Géométrie transverse des flots d'Anosov[END_REF];

• There is a complete classification of Anosov flows on circle bundles over hyperbolic surfaces, see [START_REF] Ghys | Flots d'Anosov sur les 3-variétés fibrées en cercles[END_REF], [START_REF] Barbot | Géométrie transverse des flots d'Anosov[END_REF]. Recently, in [START_REF] Fenley | New contact anosov flows[END_REF] the authors have announced a more accurate description of the isotopy classes of Anosov flows on these manifolds.

• There exist big advances for Anosov flows having additional properties. For instance, see [START_REF] Barbot | Plane affine geometry and Anosov flows[END_REF];

• The existence of an Anosov flow on a 3-manifold implies that the fundamental group induces a faithful action on the circle by orientation preserving homeomorphisms. This imposes obstructions to the existence of such a flow, since not every group can be endowed with an invariant left-order. We refer to [START_REF] Fenley | Anosov flows in 3-manifolds[END_REF] for more precisions on these results.

As we remarked before, one fundamental tool for relating the topology of the phase space and the dynamic of an Anosov flow is the existence of the invariant foliations. In the 3-dimensional case, the center-stable and center-unstable foliations are codimension one foliations belonging to a very important class, the class of taut foliations. This enables to use other techniques in 3-manifold topology, as the Novikov theorem. For instance, we can see from this that the universal cover of the ambient space must be homeomorphic to R 3 .

Examples of Anosov flows on 3-manifolds.

For a long time, the only two known families of Anosov flows were the geodesic flows of hyperbolic manifolds and the suspension flows generated by Anosov diffeomorphisms. These two kinds of flows can be constructed as a one-parameter group, acting in the cosets of a Lie group modulo some cocompact subgroup. For these reason they are referred to as algebraic Anosov flows. In [START_REF] Tomter | Anosov flows on infra-homogeneous spaces[END_REF], Tomter showed that the only algebraic Anosov flows in dimension three are suspensions of hyperbolic automorphisms of the torus and geodesic flows of hyperbolic surfaces (or, more generally, hyperbolic 2orbifolds). Suspensions and geodesic flows are transitive, and the manifolds supporting the flow are sol-manifolds and Seifert manifolds, respectively.

The first examples of non-algebraic Anosov flows were constructed by Handel and Thurston ([37]) and Franks and Williams ( [START_REF] Franks | Anomalous Anosov flows[END_REF]) using surgery methods. The first authors constructed a transitive Anosov flow in a graph manifold, while the second gave the first example of a non-transitive Anosov flow. Since then, surgeries have been reinterpreted in many ways and they became an important tool for creating a diversity of examples. In particular, surgeries allow to construct:

• Transitive Anosov flows possessing transverse tori which do not intersect all the orbits ( [START_REF] Bonatti | Un exemple de flot d'Anosov transitif transverse à un tore et non conjugué à une suspension[END_REF], [START_REF] Brunella | On the discrete Godbillon-Vey invariant and Dehn surgery on geodesic flows[END_REF], [START_REF] Barbot | Generalizations of the Bonatti-Langevin example of Anosov flow and their classification up to topological equivalence[END_REF], [START_REF] Béguin | Building Anosov flows on 3-manifolds[END_REF]);

• Anosov flows in a wide class of manifolds, including hyperbolic manifolds ( [START_REF] Goodman | Dehn surgery on Anosov flows[END_REF]);

• Manifolds having transitive and non-transitive Anosov flows ( [START_REF] Béguin | Building Anosov flows on 3-manifolds[END_REF]);

• Manifolds having an arbitrary finite number of non-equivalent transitive Anosov flows ( [START_REF] Béguin | Building Anosov flows on 3-manifolds[END_REF]).

• Anosov flows preserving some additional structure, like contact structures ( [START_REF] Foulon | Contact Anosov flows on hyperbolic 3-manifolds[END_REF])

Recently, in [START_REF] Bowden | c 0 stability of boundary actions and inequivalent anosov flows[END_REF] it has been announced the construction of hyperbolic 3-manifolds having an arbitrary number of non-equivalent Anosov flows. It is an open question to know if a manifold can admit infinitely many non-equivalent Anosov flows.

Transitive Anosov flows and Birkhoff sections.

Given a flow on a closed 3-manifold, a Birkhoff section is a compact surface, usually with non-empty boundary, immersed in the phase space in such a way that: The interior of the surface is embedded and transverse to the flow lines, the boundary components are periodic orbits of the flow, and every orbit intersects the surface in a uniformly bounded time. These sections come equipped with a first return map defined on the 2. Dehn surgeries adapted to Anosov flows. xvii interior of the surface, so the flow is a suspension on the complement of a finite set of periodic orbits. We refer to 5 for more precise statements and definitions.

In [START_REF] Fried | Transitive Anosov flows and pseudo-Anosov maps[END_REF], Fried has proved that every transitive Anosov flow admits a Birkhoff section whose first return map is pseudo-Anosov (in a non-closed surface). This extraordinary fact, later generalized by Brunella to any transitive expansive flow in [START_REF] Brunella | Expansive flows on three -manifolds[END_REF], opens the possibility of reducing much of the analysis of transitive Anosov flows to the theory of pseudo-Anosov maps.

2 Dehn surgeries adapted to Anosov flows.

We will be concerned with two surgery operations available for Anosov flows, called the Goodman surgery and the Fried surgery. These two methods can be understood as a counterpart of Dehn surgeries but adapted to the pairs (flow, 3-manifold). Given an Anosov flow (φ t , M ) and a periodic orbit γ, Fried and Goodman surgeries allow to construct a new flow in a manifold obtained by Dehn surgery on the curve γ. We give here a brief description of these two methods.

Let φ t : M → M be an Anosov flow generated by a smooth vector field X and consider a periodic orbit γ whose local invariant manifolds are orientable. 1Goodman surgery.
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(a) Vertical annulus A ⊂ W . 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 11 [START_REF] Béguin | Quelques questions de Dynamique, Relativité Générale, Dynamique en relativité Générale[END_REF] 000 000 000 000 000 000 000 000 000 000 000 000 000 111 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 Let W be a tubular neighbourhood of γ. Since the local invariant manifolds of γ are orientable, the neighbourhood splits naturally in four quadrants determined by The blow-up of M along γ is an operation that consists in replace the curve γ ⊂ M with its unitary normal bundle N 1 X (γ) and compactify with an adequate topology, producing in this way a manifold M * with boundary. The interior M * \∂M * is homeomorphic to M \γ and ∂M * N 1 X (γ) is a torus with a circle bundle map ∂M * → γ. The flow φ t can be lifted to a flow φ * t : M * → M * , which leaves the boundary invariant. It is Morse-Smale on the boundary with two attracting and two repelling periodic orbits.

2. Dehn surgeries adapted to Anosov flows. xix Choose a simple closed curve σ ⊂ ∂M * which is a transverse section for the flow restricted to the boundary, and intersects once each periodic orbit. Choose a foliation F σ of ∂M * by simple closed curves isotopic to σ. A blow down of M * is a 3-manifold M obtained from M * by collapsing each curve of F σ into a point. So ∂M * is transformed into a curve γ = ∂M * /F σ , while its complement is not altered in this operation. By taking a suitable reparametrization of φ * t near ∂M * , this operation induces a flow φ t : M → M on the blow-down manifold.

The surgery of Fried (Fried,[START_REF] Fried | Transitive Anosov flows and pseudo-Anosov maps[END_REF]) will consist in make a blow-up of the manifold M along the curve γ, and then blow-down the boundary using a foliation F σ as described before to produce a flow φ t : M → M . Topologically, this operation correspond to a Dehn twist of the manifold M on the curve γ.

Equivalence between Goodman and Fried surgeries.

At the topological level, both Fried and Goodman surgeries are Dehn surgeries on the manifold M , along the simple closed curve γ. We remark that the local invariant manifolds define a canonical framing along the curve γ by meridians and longitudes, so we can use this frame to express the coordinates of the Dehn surgeries. We remark here some technical differences between the two procedures:

• The Goodman Surgery, 1. Starts with a C 1 -Anosov flow and produces a C 1 -Anosov flow;

2. The orbital equivalence class of the obtained flow depends a priori on the particular choice of annulus and glueing map (ϕ, A). By changing this pair for another one, it is not clear how this alters the equivalence class of the resulting flow.

• The Fried surgery, 1. It produces a flow which is topologically Anosov (cf. 1.2 or discussion below). But, it is not clear that this flow can be endowed with C 1 -Anosov structure in a natural way.

2. In the complement of the orbit γ the operation does not alter the foliation by flow orbits. Moreover, the orbitally equivalence class of the flow obtained by Fried surgery is uniquely determined by the integer twist parameter.

We encounter that, from the one hand, Goodman surgeries produce C 1 -Anosov flows, but it is not obvious that these are uniquely determined by the combinatorial parameters of the surgery. From the other hand, a Fried surgery, that can be understood as an infinitesimal version of the previous one, produce a new flow in a unique way, actually without changing anything on the complement of γ. That is, the original flow and the one obtained by Fried surgery are equivalent in the complement of one periodic orbit. 3 Thus, the Fried flow is naturally endowed with a smooth atlas in the complement of one orbit, and it preserves a uniformly hyperbolic splitting in this (open) manifold. This structure is a kind of non-uniformly hyperbolic structure, but it is not clear that it could be extended onto the whole manifold in an appropriate way.

The first main objective of this work is to give a unified point of view for these two surgeries. This will be done in chapter 3, where we will prove the following theorem: Theorem B (Theorem 3.1.). If we assume that (φ t , M ) is in addition transitive, then there exists a neighbourhood W of the periodic orbit γ such that all the flows (φ 1 t , M 1 ) obtained by Goodman surgery on an annulus A ⊂ W with twist parameter m ∈ Z produce orbitally equivalent flows. Moreover, all of them are orbital equivalent to the corresponding flow (φ 2 t , M 2 ) obtained by Fried surgery on γ and the same twist parameter.

As a consequence, the Fried surgery provides a unified model for the orbital equivalence class of the flows obtained by the Goodman technique. As well, observe that this shows that the Fried surgeries preserve the class of smooth Anosov flows up to C 0orbital equivalence. (Nevertheless, we will also achieve this results by other methods. See below.)

It is interesting to remark that we assume transitivity as an essential condition in our proof. It is not known if the statement is valid in the non-transitive case.

3 Smooth models for transitive topological Anosov flows.

One major technique for the qualitative study of the orbits of a general dynamical system is the symbolic description. Roughly speaking, the method consists in choose a finite partition of the phase space into some well-behaved sets, and associate to every point (in the phase space) the sequence of elements of the partition that its orbit visit under time evolution. This method is particularly useful when the system that we want to study presents some chaotic related behaviour, such as expansivity. It has been a useful approach for describing chaotic phenomena present in some Hamiltonian flows or in the Nbody problem. The point of view of symbolic dynamics allows to develop a deep understanding of the topological and measure theoretic properties of the action of the dynamical system on the phase space, and allows to explain and predict some phenomenons that are not at all direct to deduce from the equations defining the system.

If we recall that differential equations were born as an attempt to describe (some part of) the physical universe, there is a theoretical problem issued from the abstract construction that we described above. The problem is to determine if an abstract dynamical behaviour, constructed from a symbolic description, actually corresponds to the behaviour of a smooth dynamical system on a manifold, preferably of physical 3. Smooth models for transitive topological Anosov flows. xxi origin. (E.g. a system preserving a smooth measure, or defined via Euler-Lagrange equations, etc.) Expansive dynamics in low dimensions. In the particular case of expansive homeomorphisms on closed surfaces and expansive non-singular flows on closed 3-manifolds, after many works on the subject (starting with Sinai in the 60s and going through Ratner, Thurston, Handel, Fathi et al., Katok, Lewowicz, Hiraide, Paternain, Inaba, Matsumoto, among others) we have nowadays an accurate description of the symbolic aspects of this class of systems. They can be given a very special symbolic codification, that is called a Markovian partition.

The way how Markovian partitions arise in Anosov or expansive dynamics in low dimensions is very interesting. In the case of smooth Anosov dynamical systems (discrete or continuous), they can be constructed using a finite number of stable and unstable leaves. In the case of general expansive homeomorphisms on surfaces or expansive flows on 3-manifolds, a big part of the work referred above consists in show that, under the only assumption of expansivity, the partitions of the phase space by stable/unstable sets are, in fact, a pair of transverse invariant foliations, possibly with singularities, but of a very precise kind. In concrete, every expansive homeomorphism on a surface or expansive flow on a 3-manifold is equivalent to a pseudo-Anosov homeomorphism or pseudo-Anosov flow, respectively. In an analogous way to that of Anosov dynamics, expansive systems can be codified via accurate Markovian partitions, constructed from the stable and unstable foliations. We will give a more detailed account of these results later in 1.1.

Topologically Anosov flows on 3-manifolds.

A distinction between general pseudo-Anosov and smooth Anosov flows on dimension three must be done. The local product structure of the invariant foliations of a smooth Anosov flow allows to show the pseudoorbits tracing property of Bowen. But, in the more general class of pseudo-Anosov flows, this is no longer true, due to the singularities of the invariant foliations. These constitute an obstruction. An analogue remark is valid in the case of pseudo-Anosov homeomorphisms on closed surfaces. This leads to consider an intermediate class of dynamical systems, called topologically Anosov. In dimension three, a non-singular flow is said to be topologically Anosov if it is expansive, and the invariant foliations have no singularities. It can be seen that this class of systems satisfy the pseudo-orbits tracing property and their general dynamical behaviour is very similar to that encountered in a smooth Anosov flow, at least from the point of view of topological dynamics.

Translating the previous theoretical problem into this setting, the main concern of this thesis work is with the problem of determining if a topological Anosov flow on a closed 3-dimensional manifold is, in fact, realized as a smooth Anosov flow.

In this context, we are able to give a partial answer, constructed under the assumption of transitivity. The main theorem in this thesis consists in show the following: Theorem C. Let (φ t , M ) be a transitive topological Anosov flow on a closed 3-manifold. Then, there exists a smooth Anosov flow (ψ t , M ) that is C 0 -orbitally equivalent to the previous one.

In more topological terms, this means that given a transitive topological Anosov flow on a closed 3-manifold, it is possible to endow the manifold with a smooth atlas, such that the foliation by flow orbits is tangent to a smooth Anosov vector field. 4Unfortunately, a proof for the non-transitive case is still missing, and the techniques presented here do not extend to the more general setting of non-transitive topological Anosov flows. See comments below.

Connection with the construction of Anosov flows. We want to underline another reason that have lead to consider the problem of the topologically Anosov flows, apart from the theoretical problem that we have already discussed.

We have already pointed out the Fried surgery, a central tool in the study of smooth Anosov flows that naturally goes through the construction of a topological Anosov one. Some other techniques on Anosov flows rely on construction of an abstract topological toy model, starting from a given Markov codification. To cite an example, we can refer the reader to the works of Béguin, Bonatti, Yu, et al., where much of the job consists in construct Anosov basic pieces starting from a given combinatorial description. The reader could appreciate that, in general, there are at least two steps to complete: First, to construct the topological model toys that look like hyperbolic flows, and second, to actually prove that these models are hyperbolic. 5 In recent years, a lot of new developments in 3-dimensional Anosov flows and non-uniformly hyperbolic diffeomorphisms have been done supported on this kind of techniques, that goes through the construction of topological Anosov models. We invite the reader to consult [START_REF] Barthelmé | Partially hyperbolic diffeomorphisms homotopic to the identity in dimension 3[END_REF], [START_REF] Bonatti | Transitive partially hyperbolic diffeomorphisms on 3-manifolds[END_REF] pag. 478, and [START_REF] Barthelmé | Anosov flows in dimension 3[END_REF].

Thus, the necessity of clarifying this distinction between topological Anosov and smooth Anosov is, as well, a question of technical order.

Approach to the problems and further questions

The objective of the present thesis is to prove theorems B and C stated above. The main technique behind our analysis is the reduction of the problems to pseudo-Anosov dynamics on surfaces, which is possible under the assumption of transitivity due to the previously referred theorem of Fried and Brunella ([31] and [START_REF] Brunella | Expansive flows on three -manifolds[END_REF]). The key point to approach theorems B and C is a technical property that we have stated under the form of theorem A (theorem 2.16) in chapter 2.

We give here some explanations and sketch of proof of these theorems.

Theorem A: Criterion for orbital equivalence.

There is a well-known property in surface dynamics, which states that two isotopic pseudo-Anosov homeomorphisms on a closed surface are conjugated by a homeomorphism isotopic to the identity. In turn, this property means that the conjugacy class of a pseudo-Anosov in a closed surface is determined by the action of the homeomorphism on the fundamental group of the space. Cf. 7 on this thesis for a more precise statement and comments. We also refer to [START_REF] Fathi | Thurston's work on surfaces[END_REF] or [START_REF] Farb | A primer on mapping class groups[END_REF] for proofs and more accurate information.

In chapter 2 we will show that, given a transitive topological Anosov flow, then its C 0 -orbital equivalence class is determined by the action of the induced first return map onto a given tame Birkhoff section, plus some combinatorial information about how this surface embeds in the phase space. This will be the content of theorem A (theorem 2.16), we refer to that chapter for a precise statement. This theorem can be interpreted as an analogue to the former property, but in the context of flows. Both statements have the shape of an expectable property, being the techniques to actually prove them the major step.

First, observe that given two non-singular flows equipped with Birkhoff sections, if the first return maps are conjugated then the flows are orbitally equivalent in the complement of some finite sets of periodic orbit. For understanding if the two flows are (globally) orbitally equivalent, there is an essential difficulty coming from the fact that the conjugation is defined only on the interior of the Birkhoff sections, and in general it does not extend to the boundary. For instance,

• It is no longer true that the action on the fundamental group determines the conjugacy class of a pseudo-Anosov homeomorphism in a surface with boundary (cf. 7).

In addition, if we look at the germ of the flow near a boundary component of a Birkhoff section, the way in which this surface embeds in the 3-manifold has an effect on the topology of the ambient manifold.

To overcome this issue, we have based our proof of theorem A on techniques coming from [START_REF] Bonatti | Axiom A diffeomorphisms derived from Anosov flows[END_REF]. Motivated by the study of axiom A diffeomorphisms on closed 3-manifolds, those authors provide a precise analysis of the germ of a hyperbolic flow in the neighbourhood of a boundary component of an embedded Birkhoff section. In particular, if the Birkhoff section satisfies a property that they call tameness, they can describe the germ of the first return map onto a local transverse section in function of the one corresponding to the Birkhoff section. Remark 0.1. One motivation for writing theorem A is to complement a previous result of Brunella. In [START_REF] Brunella | Expansive flows on three -manifolds[END_REF] and [START_REF] Brunella | On the topological equivalence between Anosov flows on threemanifolds[END_REF] the author gives a criterion for orbital equivalence between transitive topologically Anosov flows which is more general than theorem A, that was later applied in other works as [START_REF] Brunella | Expansive flows on Seifert manifolds and on torus bundles[END_REF]. One aim of theorem A is to complement lemma 7 on page 468 of [START_REF] Brunella | On the topological equivalence between Anosov flows on threemanifolds[END_REF].

As a final comment about theorem A, we find at least curious the fact that theorem 2.16 requires so much detail in the proof, even assuming our general strong hypothesis of Anosov-like behaviour.

Even if it is not of our interest to study this property out of the Anosov context, we point out that it seems a technical issue to give general criterions for determining when a general almost equivalence between two flows actually implies a global equivalence.

Theorem B: Fried and Goodman surgeries are equivalent.

The criterion stated in theorem A gives an appropriate frame to study theorem B. The proof consists in find appropriate Birkhoff sections associated to each the Goodman and the Fried flow, with conjugated first return maps and compatible combinatorial data on the boundary.

Given a transitive Anosov flow (φ t , M ) and a periodic orbit γ with orientable invariant manifolds, it is always possible to consider a Birkhoff section Σ such that γ intersects transversally the interior of this surface (cf. [START_REF] Brunella | Expansive flows on three -manifolds[END_REF]). We will proceed in the following steps: (ii) The Goodman surgery does not produce a Birkhoff section after surgery but, at least, it does not modify the original section out of a neighbourhood of the periodic orbit. In proposition 3.14 we will show that this part of the original section that is not altered can be extended onto a global Birkhoff section for the new flow, which has the periodic orbit as boundary component. In addition, it has the same combinatorial parameters than the one corresponding to the Fried flow. This is the hardest part of the proof, and is given in section 4.

(iii) To finish, we will see that the first return maps to each of the Birkhoff sections act in an equivalent way on the fundamental group of the surface. We can deduce (see 7) that the first return maps are conjugated on the interior, and we can conclude theorem B using theorem A.

We remark that, even if two Goodman annulus are very closed to each other, cutting and connecting again the orbits of a flow along different regions is a process that, a priori, will not produce the same flows. For instance, consider the case of two Goodman surgeries, with the same twist parameter, but with supporting annuli placed on different 4. Approach to the problems and further questions xxv quadrants. Since there is no isotopy between these annuli preserving the transversality with the stable/unstable foliations, it is not at all direct that these two surgeries should lead to the same flow. In 3 we will see that the orbital equivalence guaranteed in theorem B rarely coincides with the identity out of a neighbourhood of the periodic orbit.

Theorem C: Smooth structures for transitive topologically Anosov flows.

One strategy for the problem of finding a smooth representative of a given topological dynamic is as follows: First, to construct a smooth model expected to be equivalent to the original dynamical system, and second, to prove that the smooth model is actually equivalent to the original one.

We can put this in practice in the case of transitive topological Anosov flows due to the existence of Birkhoff sections. The existence of these surfaces imply that, in the complement of a finite set of periodic orbits, the flow is orbitally equivalent to the suspension generated by a pseudo-Anosov map on a non-closed surface. In consequence, every transitive topological Anosov flow comes naturally equipped with a smooth structure defined in the complement of a finite number of periodic orbits. These structures will be called almost Anosov structures, see 2.

For constructing the smooth Anosov models in the present work, we will use Goodman approach to Dehn surgeries, and then we will conclude using theorem A. More precisely:

(i) Pick one of these almost Anosov structures defined in just an open and dense region of the space. We will obtain a smooth model by making a surgery of the flow supported in a neighbourhood of the singular regions. Then, using the so-called cone field criterion, we will show that this flow preserves a uniformly hyperbolic splitting.

(ii) We will show that both the original flow and the smooth model are equipped with Birkhoff sections satisfying the criterion for orbital equivalence stated in theorem A. This completes the proof.

Remark. There are other contexts in expansive dynamics where we encounter similar strategies as the one used in theorem C. See for example [START_REF] Gerber | Smooth models of Thurston's pseudo-Anosov maps[END_REF], [START_REF] Lewowicz | Analytic models of pseudo-Anosov maps[END_REF], [START_REF] Lewowicz | Expansive homeomorphisms of surfaces[END_REF] and [START_REF] Hiraide | Expansive homeomorphisms of compact surfaces are pseudo-Anosov[END_REF]. It is important to make a comment on the first of these articles written by Gerber and Katok.

In that work, the existence of smooth models for pseudo-Anosov homeomorphisms is showed. Observe that as a direct consequence of its definition, a pseudo-Anosov homeomorphism is smooth in the complement of its singular set. The construction of the smooth model is done by perturbing the given pseudo-Anosov map in a neighbourhood of its singularities. But to show the equivalence with the original map is not at all direct. (Remark that the pseudo-Anosov homeomorphisms are not structurally stable.) Moreover, it is possible to show that no conjugation between the pseudo-Anosov map and the obtained model is differentiable in an open region of the surface. This phenomenon can be interpreted in the following way:

Given a pseudo-Anosov homeomorphism on a closed smooth surface, it is possible to change the smooth atlas of the surface for a new one, such that the map is a smooth diffeomorphism. However, the new smooth atlas is nowhere compatible with the original one.

The proof of the equivalence between the two homeomorphisms goes along the construction of an adequate Markov partition for the smooth model, that allows to compare with the original map.

Further questions.

The methods presented here for proving theorems B and C cannot be extended to the non-transitive case. Probably, these methods could be used to prove the same statements about Dehn surgeries and smooth structures as above in some special families of hyperbolic transitive attractors derived from pseudo-Anosov. But there exists some transitive hyperbolic attractors constructed in [START_REF] Béguin | Building Anosov flows on 3-manifolds[END_REF] and [START_REF] Christy | ANOSOV FLOWS ON THREE-MANIFOLDS (TOPOLOGY, DY-NAMICS[END_REF], called incoherent attractors, where the dynamic cannot be reduced to a first return on a surface.

Question. Are theorems B and C still valid without the hypothesis of transitivity?

More generally, observe that Fried and Goodman surgeries can be performed in a big class of smooth flows on closed 3-manifolds having periodic orbits. This could be the case of smooth flows with homoclinic tangencies, Lorenz-like flows (with singularities) or more general non-uniformly hyperbolic flows.

Question.

Are there analogues of theorems B and C for these more general classes of flows?

Description of the content.

The thesis is divided in fourth chapters.

Chapter 1 is dedicated to present the general definitions and properties that will be used along the thesis, as those of Birkhoff section, pseudo-Anosov homeomorphism or Anosov flow. In particular, for completeness of the subsequent theorems, we have added in this chapter some properties and proofs that will be correspondingly referred. It is intended for a fast reading.

Chapter 2 contains the proof of theorem A. The chapter is dived in two sections: First, we summarize all the material needed from [START_REF] Bonatti | Axiom A diffeomorphisms derived from Anosov flows[END_REF] to carry out the proof. In the following section we give the complete statement and proof of the theorem.

Chapter 3 is dedicated to the proof of theorem B. In the first two sections we summarize the constructions of Fried and Goodman. The proof of theorem B is given 5. Description of the content. xxvii in the last two sections. The hardest part concerns the construction of a Birkhoff section for the Goodman flow, and is completely contained in the fourth section.

Chapter 4 is dedicated to the proof of theorem C and is divided in three sections. In the first, we have added a small survey of results concerning topological Anosov dynamics. Our results are stated in 1.2, and the proof of theorem C is given in the third section. In the middle section we have added a description of the germ of an almost Anosov structure near the singular orbits, that will be used along the proof.

Chapters 3 and 4 are independent between them. For a complete proof of theorem B or C it suffices to consult chapter 2 and then chapter 3 of 4, respectively.

Chapter 1

Preliminaries 1 Flows on 3-manifolds and equivalence.

In all what follows we will be concerned with non-singular, continuous, regular flows on connected 3-manifolds. We introduce here the basic notions and definitions that will be used throughout the text.

The phase space will always be assumed to be a connected 3-dimensional manifold M . The main theorems that we will state in next chapters involve flows defined on closed 3-manifolds, i.e. boundaryless and compact. Nevertheless, along the proofs we will be forced to consider flows (and related objects) defined in non-closed regions of our manifolds.

With respect to regularity, we can always assume that the manifold M is equipped with a smooth structure, as it is a general fact of dimension three. But the flows (and related objects) that we will take into account are not necessarily smooth. 1Let (φ t , M ) be a non-singular continuous flow on a 3-manifold M . The flow is said to be regular if the associated partition into orbits is a one dimensional foliation of M . In this case, each orbit is an immersed 1-dimensional topological submanifold. In general, we will say that an object is regular if it is a topological submanifold of the ambient space.

The action at time t ∈ R of the flow over a point x ∈ M will be indistinctly denoted by φ t (x) or φ(t, x). Given two points x, y ∈ M such that y = φ t (x) for some t > 0, we will denote by [x, y] the orbit segment

[x, y] = {φ s (x) : 0 ≤ s ≤ t}.
Since we consider non-singular flows (i.e. orbits not reduced to singletons) observe that this segments are never reduced to points. The orbit of x under the flow φ t will be denoted by O(x), and we will use O + (x) and O -(x) to denote the positive and negative semi-orbits respectively. (Observe that the orbits of a flow are naturally oriented by the direction of the flow.) Given a non empty open set U ⊂ M and a point x ∈ U we will denote by O U (x) the connected component of O(x) ∩ U that contains x. The partition of the phase space by φ t -orbits induces a 1-dimensional oriented foliation that we simply denote by O, and we use O U for the induced foliation on any non-empty open subset U ⊂ M .

We recall from the basic theory of differential equations that if X is a non-singular vector field of class C k in M , where k ≥ 1, then the flow φ t associated to the system of ordinary differential equations

d dt x = X(x)
is a non-singular flow of class C k . In this case, the foliation by flow orbits is of class C k and its leaves are immersed 1-dimensional manifolds tangent to the vectorfield X.

The principal notion of equivalence between flows that we will consider throughout the text is orbital equivalence2 , which requires for orientation preserving equivalence between the induced orbit foliations.

For i = 1, 2 let φ i t : M i → M i be a regular flow of class C k on a manifold M i ,
where k ≥ 0.

Definition 1.1 (Orbital equivalence). The flows (φ 1

t , M 1 ) and (φ 2 t , M 2 ) are C rorbitally equivalent, where r ≥ 0, if there exists a C r -diffeomorphism H : M 1 → M 2 such that, for every x ∈ M 1 , it sends the orbit O 1 (x) homeomorphically onto the orbit O 2 (H(x)), preserving the orientation of these orbits. We denote it by

H : (φ 1 t , M 1 ) → (φ 2 t , M 2 ).
For technical reasons, we will be also interested in a weaker notion that we explain here: Consider a non-empty open subset U ⊂ M . The foliation by φ t -orbits on M induces a foliation on U but, in general, the action R × M → M provided by φ t does not restrict onto an R-action on the set U . Instead, what we obtain is a pseudo-flow on U . That is, a map (t, x) → φ t (x) defined for some couples (t, x) ∈ R × U . This pseudo-flow generates a partition of U into orbits, which coincides with the foliation O U previously defined. This restriction pseudo-flow will be simply denoted by (φ t , U ).

For each i = 1, 2 consider a non-empty open subset U i ⊂ M i .

Definition 1.2 (Local orbital equivalence).

The pseudo-flows (φ 1 t , U 1 ) and (φ 2 t , U 2 ) are C r -locally orbitally equivalent, where r ≥ 0, if there exists a C r -diffeomorphism

H : U 1 → U 2 such that, for every x ∈ U 1 , it sends the orbit O 1 U 1 (x) homeomorphically onto the orbit O 2 U 2 (H(x))
, preserving the orientation of these orbits. We denote it by

H : (φ 1 t , U 1 ) → (φ 2 t , U 2 ).
If γ is a periodic orbit of (φ t , M ) and W, W are two neighbourhoods of γ, the pseudo-flows obtained by restriction onto these sets are the same, in the sense that they coincide over their common domain of definition W ∩ W . The germ of φ t at γ is the equivalence class of the pseudo-flows {(φ t , W ) : W neighbourhood of γ} under this relation, and we denote it by (φ t , M ) γ or (φ t , W ) γ . 3For i = 1, 2, consider a periodic orbit γ i of (φ i t , M i ). 

: (φ 1 t , W 1 ) γ 1 → (φ 2 t , W 2 ) γ 2 .
There is another equivalence relation, called almost orbital equivalence, that appears naturally associated with some surgery procedures, and will appear in this text.

Definition 1.4 (Almost orbital equivalence). The flows (φ 1

t , M 1 ) and (φ 2 t , M 2 ) are C r -almost orbitally equivalent, where r ≥ 1, if for each flow φ i t there exists a finite set of periodic orbits Γ i , such that the restricted flows (φ i t , M \Γ i ) are C r -orbitally equivalent. Remark. When we use the word orbital equivalence without making any reference to the regularity degree r ≥ 0, it must be understood that r = 0, unless specified. This is, we just care about homeomorphisms preserving the oriented foliations by orbit segments, no matter the degree of regularity of the flows.

We finish with two other related notion that will appear throughout the text.

Conjugation of flows.

Definition 1.5.

For i = 1, 2 let φ i t : M i → M i be a regular flow of class C k on a manifold M i , where k ≥ 0. 1. The flows (φ i t , M i ) are C r -conjugated, where r ≥ 0, if there exists a C r diffeo- morphism H : M 1 → M 2 such that φ 2 t (H(x)) = H(φ 1 t (x)), for every x ∈ M 1 and t ∈ R. 2. Let U i ⊂ M i be a non-empty open set, for each i = 1, 2. The the restricted pseudo-flows (φ i t , U i ) are C r -locally conjugated if there exists a C r -diffeomorphism H : U 1 → U 2 , such that φ 2 t (H(x)) = H(φ 1 t (x)
), for every x ∈ U 1 and t ∈ R satisfying that (s, x) → φ s (x) is well-defined for every 0 ≤ s ≤ t.

3. Let γ i be a periodic orbit of φ i t , for each i = 1, 2. The germs (φ i t , M i ) γ i are C r -locally conjugated if there exists neighbourhoods W i of each γ i such that the restricted pseudo-flows (φ i t , W i ) are C r -locally conjugated.

We remark here that, in the case where the flows (φ i t , M i ) are generated by a vector field X i of class C 1 and the conjugation is at least C 1 , then conjugation between (pseudo)-flows is equivalent to the condition

X 2 (z) = H * (X 1 )(z) = DH(H -1 (z)) • X 1 (H -1 (z)), for all z ∈ U 2 .

Conjugation of homeomorphisms.

Definition 1.6. For i = 1, 2 let

P i : Σ i → Σ i be a C k -diffeomorphism on a manifold Σ i , where k ≥ 0. 1. The diffeomorphisms (P i , Σ i ) are C r -conjugated, where r ≥ 0, if there exists a C r -diffeomorphism h : Σ 1 → Σ 2 such that h • P 1 = P 2 • h. We will denote it by h : (Σ 1 , P 1 ) → (Σ 2 , P 2 ).
2. For each i = 1, 2 let x i ∈ Σ i be a fixed point of P i . The germs (P i , Σ i )

x i are C r -locally conjugated if there exists open neighbourhoods U i ⊂ V i of each x i , and a C r -diffeomorphism h : V 1 → V 2 such that P i (U i ) ⊂ V i , i = 1, 2 and h • P 1 (u) = P 2 • h(x), for every x ∈ U 1 .
We denote it by

h : (P 1 , V 1 ) x 1 → (P 2 , V 2 ) x 2 .
As before, we remark that we will consider in general C 0 -conjugation, unless specified.

Transverse sections and first return maps.

Let φ t : M → M be a non-singular regular flow on a 3-manifold M .

Definition 1.7 (Transverse section).

A transverse section for the flow φ t is a boundaryless, regular,4 embedded surface Σ ⊂ M , satisfying that:

(i) The surface Σ is topologically transverse to the flow lines. That is, ∀ x ∈ Σ there exists a neighbourhood W of x inside M and some δ > 0 such that:

• Σ ∩ W is connected and W \Σ has two connected components;

• Σ ∩ [φ -δ (x), φ δ (x)] = {x} and it is verified that int ([φ -δ (x), x]) is contained in one component of W \Σ and int ([x, φ δ (x)]
) is contained in the other.

(ii) The surface is proper with respect to the flow lines. That is, every compact orbit segment [φ t 1 (x), φ t 2 (x)] intersects Σ in a compact set, where t 1 , t 2 ∈ R and x ∈ M .

In the case that the orbits of the flow are tangent to a continuous vector field, we say that Σ is a C r -transverse section, r ≥ 1, if, in addition, it is a submanifold of class C r and T x M = T x Σ ⊕ T x O(x) for every x ∈ M . In general we will just talk about transverse sections without reference to the regularity, unless it is necessary.

Observe that conditions (i) and (ii) in the definition actually imply that every compact orbit segment cuts the transverse section in a finite set.

First return map.

Let Σ ⊂ M be a transverse section for a flow φ t and assume that there exists a non empty open subset U ⊂ Σ where there is a well defined first return map P : U → Σ. That is, for every x ∈ U there exists τ (x) = min{t > 0 : φ t (x) ∈ Σ} and

• The function τ : U → (0, +∞) is continuous,
• The first return map is given by P (x) = φ τ (x) (x).

Observe that, if x is a point in Σ satisfying that there exists some t > 0 such that φ t (x) ∈ Σ, then from the continuity of the flow it follows that there exists a first return map defined in a neighbourhood of x. Recall that a first return map as above is always a homeomorphism from its domain onto its image. Moreover, as it follows from the implicit function theorem, it is a C l -diffeomorphism, where l is the minimum between the regularities of φ t and Σ. Definition 1.8. The first return saturation of U is the set

U = {x ∈ M : ∃ t ≤ 0 such that φ t (x) ∈ U and int ([φ t (x), x]) ∩ Σ = ∅}.
This set is the union of all the compact orbits segments joining each point in U with its first return to Σ, as we see in figure 1.1. For every x ∈ U there exists u ∈ U and v Proof. For each i = 1, 2 take the maps

= P (u) ∈ Σ such that x ∈ [u, v], so we define σ(x) = [u, v].
ϕ i : Ûi → U i defined by ϕ i (u, s) = φ i s (u), where Ûi = {(u, s) ∈ U i × [0, +∞) : 0 ≤ s ≤ τ i (u)}. Take a continuous function θ : U 1 × [0, +∞) → [0, +∞) such that, for any u ∈ U 1 the restriction θ(u, •) : R → R is an orientation preserving homeomorphisms satisfying • θ(u, 0) = 0, • θ(u, τ 1 (u)) = τ 2 (h(u)).
Any such a function provides a continuous family of orientation preserving homeomorphisms [0, τ 1 (u)] → [0, τ 2 (h(u))] parametrized over u ∈ U . Define Ĥ : Û1 → Û2 by Ĥ(u, s) = (h(u), θ(u, s)). This map Ĥ is a homeomorphisms between Û1 and Û2 and for every u ∈ U 1 it takes the segment {u} × [0, τ 1 (u)] homeomorphically onto the segment {h(u)} × [0, τ 2 (h(u))] preserving orientation.

The maps ϕ i and Ĥ allow to construct a map H : U 1 → U 2 satisfying that the following diagram commutes Û1 Û2

U 1 U 2 ϕ 1 Ĥ ϕ 2 H
in the following way: For any x ∈ U 1 take (u, s) ∈ Û1 such that ϕ 1 (u, s) = x and define

H(x) = ϕ 2 ( Ĥ(u, s)) = φ 2 (h(u), θ(u, s)).
Then, over the set U 1 \Σ 1 this map is well defined and it is a homeomorphism between U 1 \Σ 1 and U 2 \Σ 2 , which clearly preserves the orbit segments. For the points in Σ 1 , we have just to take care of those points u ∈ U 1 for which there exists v ∈ U 1 such that P 1 (v) = u, being those points the only ones with more than one preimage by ϕ 1 . For a point u satisfying this, observe that it has exactly two preimages by ϕ 1 which are (u, 0) and (v,

τ 1 (v)). Observe that Ĥ(u, 0) = (h(u), θ(u, 0)) = (h(u), 0) and Ĥ(v, τ 1 (v)) = (h(v), θ(v, τ 1 (v))) = (h(v), τ 2 (h(v))). Since ϕ 2 (h(v), τ 2 (h(v))) = ϕ 2 (P 2 (h(v)), 0) = P 2 (h(v)) and P 2 • h(v) = h • P 1 (v) = h(u) we have that ϕ 2 ( Ĥ(u, 0)) = ϕ 2 ( Ĥ(v, τ 1 (v))
) and so H(u) is well defined and equal to h(u). This also shows that H is a homeomorphisms between our two sets U 1 and U 2 which, by construction, take the orbit segment σ 1 (x) into the segment σ 2 (H(x)) and coincides with h over U 1 .

In addition observe that the facts that H coincides with h over U 1 and P 2 •h = h•P 1 implies that, for any point x ∈ U 1 , the map H take the orbit segment O U 1 (x) onto O U 2 (H(x)), since each of these orbit segments are a concatenation of segments of the form σ i (u k ) = [u k , u k+1 ] where u k+1 = P i (u k ) and k = 1, . . . , n.

Local and global transverse sections.

Definition 1.10 (Local and global transverse sections.). Let φ t : M → M be a continuous non-singular flow on a 3-manifold, 1. A global transverse section Σ for the flow φ t is a transverse section that is properly embedded in M and for which there exists T > 0 such that [x, φ T (x)] ∩ Σ = ∅, for every x ∈ M . In this case, the first return map is a homeomorphism P Σ : Σ → Σ.

2. Given a periodic orbit γ of the flow, a local transverse section at γ is a transverse section D, homeomorphic to a disk, such that {x 0 } = γ ∩ D contains exactly one point. Given a local transverse section D there always exists a neighbourhood U ⊂ D of x 0 and a first return map P D : U → D that fixes x 0 .

A basic fact that follows from lemma 1.9 above is stated in the next proposition. 

U i → D i a first return map defined in a neighbourhood U i ⊂ D i of the intersection point x i = γ i ∩ D i . If there is a homeomorphism h : D 1 → D 2 such that h(U 1 ) ⊂ U 2 and h•P D 1 (x) = P D 2 •h(x), ∀ x ∈ U 1 ,
then there exists a tubular neighbourhood W i of each γ i and a homeomorphism H : W 1 → W 2 such that:

(a) H is a local orbital equivalence between the respective germs at each γ i , (b)

H| D 1 ∩W 1 = h| D 1 ∩W 1 .

Flow isotopies.

Let φ t : M → M be a continuous flow on a 3-manifold M . Definition 1.12 (Flow isotopy). A flow isotopy or φ t -isotopy between two non-empty open sets U, V ⊂ M is a homeomorphism ψ : U → V of the form ψ : x → φ(τ (x), x), for every x ∈ U, where τ : U → R is a continuous and bounded function, such that ψ sends each oriented obit segment O U (x) onto O V (ψ(x)) preserving orientation. In addition we define:

1. A φ t -isotopy between two arbitrary non-empty sets A, B ⊂ M is a homeomorphism ψ : A → B obtained as the restriction of a φ t -isotopy ψ : U → V , where U and V are open sets containing X ans Y , respectively.

2. Two transverse sections Σ i , i = 1, 2 are said to be φ t -isotopic if there exists a φ t -isotopy ψ :

Σ 1 → Σ 2 .
We remark that some conditions must be satisfied on τ to actually define a flow isotopy. The set of these maps has a natural pseudo-group structure, and they have a regularity degree that can be expressed in terms of that of φ t and τ .

A first return map P : U → Σ, defined on a non-empty open set U inside a transverse section Σ is, by itself, a flow isotopy. We state the following basic property: Lemma 1.13. Consider two φ t -isotopic transverse sections Σ i , i = 1, 2, and let ψ : Σ 1 → Σ 2 be a flow isotopy between them. Let P 1 : U 1 → Σ 1 be a first return map, defined on some non-empty open set U 1 ⊂ Σ 1 , and let U 2 = ψ(U 1 ). Then, there is a well-defined first return map P 2 : U 2 → Σ 2 and it is satisfied that

P 2 • ψ(x) = ψ • P 1 (x), ∀ x ∈ U 1 .

Surgeries along transverse surfaces.

Let φ t : M → M be a non-singular regular flow of class C k , k ≥ 0, on a 3-manifold.

Roughly speaking, a surgery along a transverse surface on the flow (φ t , M ) is an operation that produces a new flow on a new manifold, and consists in cut M along a given transverse surface and re-glue the pieces with a non-trivial homeomorphism.

Let Σ be a regular compact surface C k -embedded in M , possibly with boundary, and satisfying that Σ = Σ\∂Σ is transverse to the flow lines. We require topologically transversality if k = 0, see definition 1.7. Observe that this condition implies that every small flow-box neighbourhood of Σ is partitioned into two component by Σ.

Set Σ = Σ 0 and consider another transverse surface Σ 1 disjoint from Σ 0 , that is φ t -isotopic to Σ 0 . We will assume that there exists a φ t -isotopy ψ : Σ 0 → Σ 1 of the form ψ(p) = φ τ (p) (p), where τ : Σ 0 → (0, +∞) is a bounded C k -function, and such that ∀ p ∈ Σ 0 the orbit segment between p and φ τ (p) (p) intersects Σ 0 ∪ Σ 1 just in its extremities {p, ψ(p)}. Consider the compact set

K = p∈Σ 0 {φ t (p) : 0 ≤ t ≤ τ (p)}.
Then K ⊂ M is a regular submanifold (with corners on the boundary when k ≥ 1) and homeomorphic to Σ × [0, 1]. Its boundary contains the two disjoint surfaces Σ 0 and Σ

1 . The complement of Σ 0 ∪ Σ 1 in ∂K is a surface S homeomorphic to ∂Σ 0 × [0, 1].
The flow is tangent to ∂K along S, is transverse to ∂K along Σ 0 and points inward the interior of K, and is transverse to ∂K along Σ 1 and points outward. See figure 1.2. 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000 Let's define M K = M \int(K). Then M is is the union of the two submanifolds M K and K which have disjoint interiors and intersect along the set ∂M K = ∂K.

Consider some C k -diffeomorphism f : Σ → Σ satisfying that f ≡ id in a small neighbourhood of ∂Σ. We will define a C k -diffeomorphisms F : ∂K → ∂K in the following way:

F (x) =      f (x) if x ∈ Σ 0 x if x / ∈ Σ 0 .
The map F coincides with f in Σ 0 and is the identity in the complement. We can consider this map as a map from ∂K → ∂M K , and construct the manifold

M = M K F K.
We denote by ι M k , ι K the canonical inclusions of M K and K into M , respectively.

The following is a classical result in differential topology: Proposition 1.14. There is a C k regular flow φ t : M → M induced on M , such that the canonical inclusions of M K and K in M send the foliations O M K and O K onto O M K and O K , respectively. Moreover, when k ≥ 1, denote by X the generating vector field for φ t . Then, there exists a smooth structure on M such ι M K , ι K are smooth diffeomorphisms onto their respective images, and φ t is generated by a C k -vector field

X such that ι * M K (X ) = X| M K and ι * K (X ) = X| K .
This structure is unique, up to smooth diffeomorphisms.

We say that the flow (φ t , M ) is obtained by surgery on (φ t , M ) along the transverse surface Σ. Observe that, at the topological level, it is a direct fact the existence of the induced flow. For a proof about the differentiability statement above see [].

Observe as well that the flow obtained by surgery is independent of the auxiliary surface Σ 1 chosen above. In fact, there is no need to consider this surface for defining (φ t , M ). The reason why we have chosen this explanation is the technical lemma below, that we will use later.

Surgeries along parallel surfaces.

The homeomorphism class of the manifold M is not altered by small perturbations of the map f , as it is constant along all the isotopy class of f . Nevertheless, observe that the orbital equivalence class of the induced flow is not, a priori, preserved by this sort of operations. There is a particular case where this is indeed true. As before, set f 0 = f . The flow isotopy ψ :

Σ 0 → Σ 1 induces a C k -diffeomorphism f 1 : Σ 1 → Σ 1 of the form f 1 = ψ • f 0 • ψ -1 .
We will define two diffeomorphisms F i : ∂K → ∂K, i = 1, 2 in the following way

F i (x) =      f i (x) if x ∈ Σ i x if x / ∈ Σ i .
So each map F i coincides with f i on Σ i and is the identity in the complement. For each i = 1, 2 construct the manifolds

M i = M K F i K.
As before, each manifold M i is equipped with a corresponding flow φ i t of class C k . It follows that:

Lemma 1.15. The flows (φ i t , M i ), i = 1, 2 are C k -orbitally equivalent.
Proof. The foliation by orbit segments in K is equivalent to the product Σ × [0, 1]. Thus, it suffices to define H : M 0 → M 1 to be the identity on M K , and

H f × id on K Σ × [0, 1]
Definition 1.16 (Parallel surgeries). We say that two surgeries using pairs (f i , Σ i ) related by flow isotopy as above are parallel surgeries.

Birkhoff sections.

In general, a First Return Section or Poincaré Section for a flow in a 3-manifold is an embedded surface, transverse to the flow, with a continuous first return map defined on some open subset of it. If the first return map preserves some closed invariant subset, then its saturation by flow's orbits corresponds to some closed invariant subset for the flow, and the study of the dynamical behaviour of the latter one, which is a flow in a 3-dimensional object, can be reduced to the study of a surface map. The idea of reducing the study of (at least some part of) a 3-dimensional flow to a surface discrete dynamical system leads back to Poincaré, who used this technique for the study of the the 3-body problem. As basic examples of first return sections we have the local Poincaré sections around periodic trajectories and the global Poincaré sections.

The first ones just provides information about the local behaviour of the flow around a periodic trajectory, while the second one, despite of providing a lot of information about the flow (it reduces de whole dynamic of the flow to that of a surface homeomorphism), imposes very strong conditions about the topology of the supporting manifold (which must be a surface bundle over the circle) and to the flow itself (which must be topologically euivalent to a suspension flow). So, in the hope of reducing a very large part of the dynamic of a flow to a surface discrete dynamic, the local sections are too inefficient because they just describe the dynamic around a periodic trajectory, while the global sections will rarely exist. A Birkhoff section is a compact embedded surface, with boundary, such that its interior is transverse to the flow, its boundary components are periodic trajectories and every orbit of the flow will meet this surface in an uniformly bounded time. The existence of a Birkhoff section implies that in the complement of a finite set of periodic trajectories (the boundary of the section) the flow is, up to reparametrization, the suspension of a surface homeomorphism (the first return map defined on the interior of the section). Observe that this is also a very important topological fact, because in the complement of a finite set of simple closed curves our manifold is a surface bundle over the circle. This, in combination with the homotopy class of the embedding of the surface, could provide strong information about the topology of the manifold and how it is related to the flow. As is explained in [START_REF] Fried | Transitive Anosov flows and pseudo-Anosov maps[END_REF], this sections where introduced for the first time by Birkhoff, for the study of the geodesic flow of a closed hyperbolic surface. In this article Fried proved that any transitive Anosov flow in a closed 3-manifold admits a Birkhoff section, a result which turns these objects into powerful tools for the study of these flows.

Let φ t : M → M be a non-singular regular flow on a 3-manifold.

Definition 1.17. A Birkhoff section for the flow (φ t , M ) is an immersion ι : (Σ, ∂Σ) → (M, Γ), where Σ is a compact surface, sending ∂Σ onto a finite set Γ ⊂ M of periodic orbits, such that:

1. The restriction of ι to each boundary component of ∂Σ is a covering map onto a curve in Γ, 2. The restriction of the map ι to the interior of Σ is an embedding and the submanifold ι( Σ) is topologically transverse to the flow, 3. There exists a real number

T > 0 such that [x, φ T (x)] ∩ ι (Σ) = ∅, ∀ x ∈ M .
In general, we will denote a Birkhoff section just by Σ. In all what follows, we will indistinctly use the notation Σ to denote Σ\∂Σ or its inclusion inside M . We will also denote M Γ = M \Γ.

If the flow is generated by a C k -vector field and the map ι is a C k -immersion for some k ≥ 1, we say that it is a C k -Birkhoff section, provided T x M = T x Σ ⊕ X(x) for every x ∈ Σ. If the immersion is just continuous, we will say that it is a topological Birkhoff section. In general we will just talk about Birkhoff sections and we will stress their regularity properties if needed.

First return map.

Condition 3. in the definition above implies that for every x ∈ Σ there is a well defined first return point P Σ (x) ∈ Σ. Thus, there is a first return map defined in the whole interior of Σ. We can view this map as a homeomorphism

P Σ : Σ → Σ.
In particular, the surface Σ is a global transverse section for the flow restricted on M Γ . By proposition 1.11 this implies that (φ t , M Γ ) is topologically equivalent to the suspension flow generated by P Σ : Σ → Σ. Remark. In general, the associated first return to a Birkhoff section does not extend to the boundary. In some literature it is shown that, by modifying the embedding of the surface near the boundary, it is possible to have Birkhoff sections where this map does extend. Nevertheless, we will not make any use of this fact.

Local Birkhoff sections.

Definition 1.18. Let γ be a periodic orbit of a flow φ t : M → M . A local Birkhoff section at γ is an immersion ι : [0, 1) × R/Z → M such that:

1. γ = ι ({0} × R/Z);
2. The restriction of the map ι to (0, 1) × R/Z is an embedding and the submanifold ι ((0, 1) × R/Z) is transverse to the flow lines;

3. The exists a real number T > 0 and a neighbourhood

W of γ such that [x, φ T (x)]∩ ι ([0, 1) × R/Z) = ∅, ∀ x ∈ W .
Let B ⊂ M be the image of ι : [0, 1) × R/Z → M . When confusion is not possible, we will just use B for referring to the local Birkhoff section. We will denote by B the set B\γ.

Concerning regularity, we can make the same considerations as we did for the general case.

Given a local Birkhoff section B at γ, the last property in the previous definition implies that there exists a collar neighbourhood U ⊂ B of γ and a first return map P B : Ů → B, where Ů = U \γ. In general we will be concerned with the germ of the first return map to a local Birkhoff section, that is, we will consider the map P B up to changing its domain of definition U for another collar neighbourhood if needed.

As a last remark, observe that if γ is a periodic orbit in the boundary of some Birkhoff section Σ, then the intersection of a small tubular neighbourhood of γ with Σ can be used to provide a local Birkhoff section.

Combinatorial parameters associated to the boundary.

Consider a (global) Birkhoff section as defined above and let Γ = {γ 1 , . . . , γ k }. We remark that the preimage of any curve γ i could consist in many boundary components of Σ. Let's denote them by C i 1 , . . . , C i p i , in order to have

∂Σ = C 1 1 ∪ • • • ∪ C 1 p 1 ∪ • • • ∪ C n 1 ∪ • • • ∪ C n pn .
For each γ i consider a small tubular neighbourhood of W i , in such a way that W i ∩Σ splits as p i different local Birkhoff sections B i 1 , . . . , B i p i at γ i . It can be seen (cf.4.1 below) that the first return map (in the complement of γ i ) induces a cyclic permutation of these surfaces. Thus, it induces a cyclic permutation on each set {C i 1 , . . . , C i p i }.

On the other hand, let α ⊂ W i \γ i be a simple closed curve, that is the boundary of an embedded disk in W i . This is called a meridian curve. Without loss of generality, we can assume that α intersects transversally each B i j . Then, independently of j = 1, . . . , p i , the modulus |α ∩ B i j | is a natural number m i .

Definition 1.19 (Multiplicity and local number of connected components.).

We say that p i is the number of connected components of Σ at γ i , and we denote it by p(γ i , Σ). We define as well the multiplicity of Σ at γ as the quantity m i , and which will be denoted by m(γ i , Σ).

Remark 1.20. We remark a (local) Birkhoff section is embedded if and only if m = 1.

The number m coincides with the covering degree of the immersion, when restricted to corresponding the boundary curve.

In the special case that an orbit γ i is a topological saddle type periodic orbit, we encounter another important parameter that is called the linking number of Σ at γ i . We will properly state its definition in section 4.1.

Blow-down operation.

Associated to the first return map P Σ : Σ → Σ, there is a construction called Blowdown, that consists in the following: Let Σ be the surface obtained by collapsing each boundary component of Σ into a point, and denote by x i j the point obtained when collapsing C i j . Then, observe that there is an associated homeomorphism P Σ : Σ → Σ and, by the previous remarks, each set {x i 1 , . . . , x i p i } constitutes a periodic orbit.

Definition 1.21. The homeomorphism P Σ : Σ → Σ is called the blow-down associated to ι : (Σ, ∂Σ) → (M, Γ).

An example.

To finish this section we give some simple examples of Birkhoff sections, that can give a pictorial flavour of how does these objects look like.

Let S be a closed surface, D ⊂ S an embedded closed disk, and let S 0 = S\int(D). Consider the manifolds S 0 × R/Z 1 and D × R/Z 1 . On each one there is a flow, all whose orbits are periodic and coincides with the fibers {x} × R/Z 1 . If we glue the boundaries of these 3-manifolds using a fiber preserving homeomorphism, then we get a closed manifold equipped with a periodic flow.

In figure 1.3a, the three different surfaces Σ 0 , Σ 1 and Σ 2 in S 0 × R/Z 1 are glued with three helicoids H 0 , H 1 , and H 2 . We get then a Birkhoff section where Γ = {γ}, p(γ, Σ) = 3 and m(γ, Σ) = 1. By the same procedure, in figure 1.3b we see an example with p(γ, Σ) = 1 and m(γ, Σ) = 3. We give here the definition of Anosov flow, as well as other definitions and properties that will be used throughout the text. Definition 1.22 (Anosov flow). Let M be a closed, smooth, 3-manifold and let φ t : M → M be a flow generated by a non-singular C k -vectorfield X, where k ≥ 1. The flow is Anosov if there exist a Riemannian metric • and decomposition of the tangent bundle of M as Whitney sum of three line bundles T M = E s ⊕ E c ⊕ E u , where E c = span{X}, satisfying that:

1. The splitting is invariant by the action Dφ t : T M → T M , 2. There exist constants C > 0 and 0 < λ < 1 such that

Dφ t (x) • v ≤ Cλ t v , ∀ v ∈ E s (x), t ≥ 0, x ∈ M ;
(1.1)

Dφ t (x) • v ≤ Cλ -t v , ∀ v ∈ E u (x), t ≤ 0, x ∈ M.
Observe that, from the compactness of the ambient space, it follows that the vectors in E s or E u will satisfy property (1.1) above for any chosen Riemannian metric on M , up to modifying the constants C > 0 and 0 < λ < 1 if necessary. Thus, the definition of Anosov flow makes an auxiliary use of a Riemannian metric, but it only depends on the C 1 equivalence class of the flow. It is not difficult to check that the decomposition of T M must be unique and continuous. The bundle E s is called the stable bundle, E u is called the unstable bundle and E c , the one who is tangent to the flow lines, is called the central bundle. The two dimensional bundles E cs = E s ⊕ E c , E cu = E c ⊕ E u and E su = E s ⊕ E u are respectively called the center-stable bundle (or cs-bundle), the center-unstable bundle (or cu-bundle) and the stable-unstable bundle (or su-bundle).

Invariant foliations.

One of the fundamental properties of these flows is the integrability of its (center-)stable and (center-)unstable bundles into foliations which are preserved by the flow can be merely defined by dynamical properties. This fact is expressed by the so called stable manifold theorem: Theorem (Stable manifold theorem.). Each 1-dimensional bundle E s or E u is uniquely integrable, and the partition of M by integral curves respectively determines a pair of 1-dimensional foliations F s and F u , invariant by the action of the flow. Moreover, for every x ∈ M it is satisfied that

F s (x) = W s (x) = {y ∈ M : dist(φ t (y), φ t (x)) → 0, t → +∞}, F u (x) = W u (x) = {y ∈ M : dist(φ t (y), φ t (x)) → 0, t → -∞}.
On the other hand, each 2-dimensional bundle E cs or E cu is uniquely integrable, and integrate into a 2-dimensional foliation F cs and F cu , respectively. Moreover, for every x ∈ M it is satisfied that:

F cs (x) = {y ∈ M : ∃ s ∈ R, s.t. dist(φ t (y), φ t+s (x)) → 0, t → +∞}, F cu (x) = {y ∈ M : ∃ s ∈ R, s.t. dist(φ t (y), φ t+s (x)) → 0, t → -∞}.

Expansivity.

Anosov flows are orbitally expansive, according to the following definition: Definition 1.23. Let φ t : M → M be a regular non-singular flow on a closed, Riemannian, 3-manifold. The flow is said to be orbitally expansive if for every α > 0 there exists ε = ε(α) > 0 such that: If two points x, y satisfy that

dist(φ t (x), φ h(t) (y)) ≤ α, ∀ t ∈ R,
where h : (R, 0) → (R, 0) is some increasing homeomorphism, then y = φ s (x) for some |s| ≤ ε.

General expansive flows on closed 3-manifolds have been studied by Paternain, Inaba and Matsumoto. In [START_REF] Paternain | Expansive flows and the fundamental group[END_REF] and [START_REF] Inaba | Nonsingular expansive flows on 3-manifolds and foliations with circle prong singularities[END_REF] it is shown that every orbitally expansive flow is equivalent to a pseudo-Anosov flow, see [START_REF] Brunella | Expansive flows on three -manifolds[END_REF] or the referred works for precise statement and definitions. We will refer again these results in chapter 4.

Transitivity and Birkhoff sections.

Anosov flows on 3-manifolds can be transitive or not. One remarkable property of transitive 5 Anosov flows is the following theorem, due to D. Fried: Theorem 1.24 (Fried,[START_REF] Fried | Transitive Anosov flows and pseudo-Anosov maps[END_REF]). Every transitive Anosov flow admits a Birkhoff section, whose first return map is pseudo-Anosov.

This property, later generalized by Brunella in [START_REF] Brunella | Expansive flows on three -manifolds[END_REF] to every transitive expansive flow, allows to reduce some part of the analysis of these flows to the theory of pseudo-Anosov maps on surfaces.

Pseudo-Anosov Homeomorphisms.

Let Σ be a closed orientable surface. Definition 1.25. A homeomorphism f : Σ → Σ is pseudo-Anosov if there exists a pair of transverse f -invariant foliations F s and F u on Σ, respectively equipped with transverse measures µ s and µ u , and a constant λ > 1 such that

f * (F s , µ s ) = (F s , λµ s ) and f * (F u , µ u ) = (F u , λ -1 µ u ).
The transverse measures are required to be non-atomic and with full support.

If the genus of Σ is greater than one, then the two foliations necessarily have singularities. If this is the case, in the previous definition we just allow singularities whose local model is a k-prong singularity (see figure 1.4a) and with k ≥ 3. Since the foliations must be transverse between them, then F s and F u share the same (finite) set of singularities, and in a small neighbourhood of each singularity the two foliations intersect as in the local model 1.4b. By the Euler-Poincaré formula (see [START_REF] Fathi | Thurston's work on surfaces[END_REF]), the sphere is excluded from having a pseudo-Anosov homeomorphism and in the torus the foliations are non-singular. If gen(Σ) ≥ 2, observe that the set of singularities S f is necessarily included in the set of periodic points of f . The definition of pseudo-Anosov homeomorphism can be extended to the case of non-closed surfaces. We will not talk about this concept in its wide generality, but we will just stay in the case that we will need later, which is that of orientable compact surfaces. We postpone this definition until the subsection 7.4.

Dynamical properties.

For higher genus surfaces, pseudo-Anosov homeomorphisms can be seen as a counterpart of linear hyperbolic automorphisms of the torus. In view of the singularities, they can never be hyperbolic diffeomorphisms, but they share some properties with linear Anosov maps. In particular, for every pseudo-Anosov homeomorphism f : Σ → Σ we have that:

• f is transitive, • f is expansive,
• the set Per(f ) of the periodic points is dense in Σ,

• the topological entropy of f is positive.

More generally, the dynamic of a pseudo-Anosov map can be encoded using a Markovian partition constructed from its invariant foliations, as is shown in [START_REF] Fathi | Thurston's work on surfaces[END_REF]. From the symbolic point of view these maps are equivalent to subshifts of finite type.

In [START_REF] Lewowicz | Expansive homeomorphisms of surfaces[END_REF] and [START_REF] Hiraide | Expansive homeomorphisms of compact surfaces are pseudo-Anosov[END_REF] it is shown that the pseudo-Anosov maps are the only expansive homeomorphisms in a closed orientable surface. More precisely, if f : Σ → Σ is an expansive homeomorphism then gen(Σ) ≥ 1 and if gen(Σ) = 1 then f is C 0 -conjugated to a linear Anosov map, and in higher genus f is C 0 -conjugated to some pseudo-Anosov homeomorphism.

There exist smooth models for general pseudo-Anosov maps (see below). But in contrast to Anosov diffeomorphisms, these smooth models are not C r -structurally stable. Nevertheless, the chaotic behaviour of a pseudo-Anosov homeomorphism persists all along the isotopy class of this map as a homeomorphism of Σ, see [START_REF] Handel | Global shadowing of pseudo-Anosov homeomorphisms[END_REF].

Differentiability.

If f : Σ → Σ is a pseudo-Anosov homeomorphism, the system of transverse foliations equipped with transverse measures defines a translation atlas in the complement of the singularities, and in a local coordinate system of this atlas the action of f corresponds to an affine transformation with derivative

Df = λ 0 0 λ -1 .
With this translation structure the map f : Σ\S f → Σ\S f is a smooth diffeomorphism. But observe that this smooth structure can not be extended to the singularities in such a way that f : Σ → Σ is a smooth diffeomorphism.

Nevertheless, there exists a smooth structure on Σ for which f is a smooth diffeomorphism. This is proved in [START_REF] Gerber | Smooth models of Thurston's pseudo-Anosov maps[END_REF], by showing that any given pseudo-Anosov f is conjugated to some smooth diffeomorphism g : Σ → Σ. (See also [START_REF] Lewowicz | Analytic models of pseudo-Anosov maps[END_REF] for an analytic version.) One interesting remark in connection to our work is that this smooth structure is nowhere compatible with the atlas defined by the system of invariant foliations. In order to obtain a smooth model for a pseudo-Anosov, the structure defined by the translation atlas must be globally changed, as is explained in the referred work.

Conjugacy classes of pseudo-Anosov homeomorphisms.

Let Σ be a closed orientable surface of genus greater than zero. A remarkable property about pseudo-Anosov homeomorphisms is that if two of these maps are isotopic, then they are conjugated by a homeomorphism isotopic to the identity. Theorem 1.26 ([25], Exposé XII, theorem 12.5). Let Σ be a closed orientable surface and let f and g be two pseudo-Anosov homeomorphisms. If g is isotopic to f then there exists a homeomorphism h : Σ → Σ, isotopic to the identity, such that f

• h = h • g.
This theorem, in combination with the Dehn-Nielsen-Baer theorem about mapping class groups, allows to decide if two pseudo-Anosov homeomorphisms are conjugated by looking at their actions on fundamental groups.

The action on the fundamental group.

Let x 0 be a point in Σ. Every homeomorphism f ∈ Homeo(Σ) induces an automorphism of π 1 (Σ, x 0 ) in the following way: Let β : [0, 1] → Σ be an arc that connects

x 0 = β(0) with f (x 0 ) = β(1). Given a class [γ] ∈ π 1 (Σ, x 0 ) represented by a curve γ : [0, 1] → Σ we define f β * : [γ] → β • f (γ) • β , where β is β parametrized with inverse sense.
The map f β * is a well-defined automorphism of π 1 (Σ, x 0 ) which depends on the particular election of the arc β. If we choose another arc

β connecting x 0 = β (0) with f (x 0 ) = β (1), then f β * = [α] -1 • f β * • [α] where [α] = [ β • β ] ∈ π 1 (Σ, x 0 )
. Thus, changing the arc β has the effect of conjugate f β * by an inner automorphism of the fundamental group π 1 (Σ, x 0 ). Definition 1.27. Given a pair of homeomorphisms f i : Σ i → Σ i , i = 1, 2, where Σ 1 and Σ 2 are two homeomorphic closed orientable surfaces, we say that f 1 and f 2 are π 1conjugated if there exist points

x i ∈ Σ i , induced actions (f i ) β i * : π 1 (Σ i , x i ) → π 1 (Σ i , x i ) and an isomorphism φ : π 1 (Σ 1 , x 1 ) → π 1 (Σ 2 , x 2 ) such that (f 2 ) β 2 * • φ = φ • (f 1 ) β 1 * .
Observe that if f 1 and f 2 are π 1 -conjugated then, for every pair of points x i , every pair of induced actions (f i )

β i * on π 1 (Σ i , x i ) are conjugated by an isomorphism φ : π 1 (Σ 1 , x 1 ) → π 1 (Σ 2 , x 2 ). Proposition 1.28. For i = 1, 2 consider a pseudo-Anosov homeomorphism f i : Σ i → Σ i defined in a closed orientable surface Σ i . If f 1 and f 2 are π 1 -conjugated, then there exists a homeomorphism h : Σ 1 → Σ 2 such that f 2 • h = h • f 1 .
The outer automorphisms of π 1 (Σ, x 0 ) are the elements of the quotient space of Aut(π 1 (Σ, x 0 )) by the normal subgroup Inn(π 1 (Σ, x 0 )) of inner automorphisms. The map Homeo(Σ)

→ Out (π 1 (Σ, x 0 )) := Aut(π 1 (Σ, x 0 ))/Inn(π 1 (Σ, x 0 )),
which sends each f to the conjugacy class of f β * by inner automorphisms, is a morphism. The theorem of Dehn-Nielsen-Baer says that this is a surjective morphism whose kernel is the group Homeo 0 (Σ) of homeomorphisms isotopic to the identity. See [START_REF] Farb | A primer on mapping class groups[END_REF], chap. 8 for an explanation. As a consequence, the mapping class group of Σ is isomorphic to the group of outer automorphisms of π 1 (Σ, x 0 ). That is, MCG(Σ) := Homeo(Σ)/Homeo 0 (Σ) ∼ = Out(π 1 (Σ, x 0 )).

Proof of proposition 1.28. Assume that Σ 1 = Σ 2 = Σ and x 1 = x 2 = x 0 . By Dehn-Nielsen-Baer theorem, there exists a homeomorphism h φ : Σ → Σ which induce in π 1 (Σ, x 0 ) the same outer automorphism as φ does. Consider

g = h -1 φ • f 2 • h φ .
Then, g is a pseudo-Anosov homeomorphism and its action on the fundamental group is conjugated to the action of f 1 by an inner automorphism. It follows that f 1 and g are two isotopic pseudo-Anosov maps, and by theorem 1.26 they are conjugated by some homeomorphism h • isotopic to the identity. Then, the map h = h φ • h • realizes a conjugation between f 1 and f 2 .

We will use proposition 1.28 in the course of the proofs of theorems 4.1 and 4.1. By the way, since we will be working with non-closed surfaces, we make some remarks in what follows.

Punctured surfaces.

Consider two pseudo-Anosov homeomorphisms f i : Σ i → Σ i , where i = 1, 2, defined in two closed, orientable, homeomorphic surfaces. For each f i consider a finite collection of periodic orbits O i 1 , . . . , O i N . That is, for each k = 1, . . . , N ,

O i k = {x i k1 , . . . , x i kp k } where x i kn = f n-1 i (x i k1
) and p k ≥ 1 is the period of the orbit. We are interested in knowing when f 1 is conjugated to f 2 by a homeomorphism h : Σ 1 → Σ 2 , with the additional property that h sends each orbit O 1 k to the orbit O 2 k . We explain this in the following paragraphs.

A finite type punctured surface is the data of a compact surface Σ together with a finite subset O ⊂ Σ. In this text we just consider the case where the surface is closed. The mapping class group of the punctured surface (Σ; O) is defined to be the set homeomorphisms f : Σ → Σ preserving the set O, modulo isotopies fixing O.

Denote by π 1 (Σ, x 0 ; O) to the fundamental group of Σ\O based in a point x 0 not in O. If f is a homeomorphism of Σ preserving O, then it induces a permutation of this finite set as well as an action on π 1 (Σ, x 0 ; O), uniquely defined up to conjugation by inner automorphisms. As before, the mapping class group injects into Out(π 1 (Σ, x 0 ; O)). But there is an essential difference with the case of closed surfaces. The fundamental group of Σ\O is a free group and in most cases we can exhibit outer automorphisms which are not induced from any homeomorphism.

Denote for the moment O = {x 1 , . . . , x R }. For each of the points x l consider a closed curve homotopic to the puncture x l and joined to x 0 with an arbitrary path. This curve determines an element of π 1 (Σ, x 0 ; O) that we denote by c l . We denote by Γ(O) to the set of conjugacy classes of the elements c l . That is,

Γ(O) = {γ • c l • γ : where l = 1, . . . , R and γ ∈ π 1 (Σ, x 0 ; O)}.
The action f * leaves invariant the set Γ(O), since it comes from a homeomorphism of the surface. Define Out * (π 1 (Σ, x 0 ; O)) to be the set of outer automorphisms that preserves Γ(O). Then, the theorem of Dehn-Nielsen-Baer states that the morphism

MCG(Σ; O) → Out * (π 1 (Σ, x 0 ; O)) is an isomorphism.
This statement can be sharpened in the following way:

Consider N finite sets O 1 , . . . , O N ⊂ Σ. Define MCG(Σ; O 1 , . . . , O N ) to be the set of homeomorphisms f : Σ → Σ such that f (O k ) = O k , ∀ k = 1, . . . , N , modulo isotopies fixing O 1 ∪ • • • ∪ O N . Define Out * (π 1 (Σ, x 0 ; O 1 , . . . , O N )) to be the subgroup of outer automorphisms of the fundamental group of Σ\O 1 ∪ • • • ∪ O N that preserve each set Γ(O k ). Then, we have an isomorphism MCG(Σ; O 1 , . . . , O N ) → Out * (π 1 (Σ, x 0 ; O 1 , . . . , O N ).
We come back now to the case of pseudo-Anosov maps stated in the first paragraph. For simplicity we will omit the reference to the base point in the following statement. Proposition 1.29. For i = 1, 2 consider a pseudo-Anosov homeomorphism f i : Σ i → Σ i defined in a closed orientable surface Σ i and a finite collection of periodic orbits O i 1 , . . . , O i N of periods p 1 , . . . , p N , respectively. Assume there exists an isomorphism

φ : π 1 (Σ 1 ; O 1 1 ∪ • • • ∪ O 1 N ) → π 1 (Σ 2 ; O 2 1 ∪ • • • ∪ O 2 N ) such that • It conjugates the actions (f i ) * induced in fundamental groups of Σ i \O i 1 ∪• • •∪O i N , • φ(Γ(O 1 k )) = Γ(O 2 k ) for every k = 1, . . . , N .
Then, there exists a homeomorphism h :

Σ 1 → Σ 2 such that f 2 • h = h • f 1 which in addition satisfies h(O 1 k ) = O 2 k , ∀ k = 1, . . . , N . Proof. Assume that Σ 1 = Σ 2 = Σ and O 1 k = O 2 k = O k , ∀ k = 1, . . . , N .
Following the Dehn-Nielsen-Baer theorem for punctured surfaces, there exists a homeomorphism

h φ : (Σ; O 1 , . . . , O N ) → (Σ; O 1 , . . . , O N ) which induce in π 1 (Σ; O 1 ∪ • • • ∪ O N ) the same outer automorphism as φ does. Consider g = h -1 φ •f 2 •h φ .
We will show that there exists a homeomorphism h :

(Σ; O 1 , . . . , O N ) → (Σ; O 1 , . . . , O N ) such that h • g = f 1 • h. Then, the homeomorphism h • h φ gives the conjugation claimed in the proposition.
We start with the case of just one periodic orbit O which which consists in one fixed point x 1 . In this case the action of g on π 1 (Σ; {x 1 }) is conjugated to the action of f 1 by an inner automorphism and it follows that there exists an isotopy

ϕ t : [0, 1/2] → Homeo (Σ) such that ϕ 0 = f 1 , ϕ 1/2 = g and ϕ t (x 1 ) = x 1 for every t.
On the other hand, g is pseudo-Anosov and its action on π 1 (Σ) (forgetting the puncture) is conjugated to the action of f 1 by an inner automorphism, so there exists a homeomorphism h : Σ → Σ, isotopic to the identity, such that g • h = h • f 1 . Take an isotopy h t : Σ → Σ such that h 1/2 = id Σ and h 1 = h. This allows to construct another isotopy

ψ t : [1/2, 1] → Homeo (Σ)
by the expression

ψ t = h -1 t • g • h t which verifies that ψ 1/2 = g and ψ 1 = f 1 . Consider now the path Π t : [0, 1] → Homeo (Σ)
defined by concatenation of ϕ and ψ. This is a closed path verifying Π 0 = f 1 = Π 1 . We will use know the following two facts:

Fact 1: The space Homeo + 0 (Σ) is contractible.

Fact 2: Any lift of a pseudo-Anosov map to the universal cover can have at most one fixed point.

Let Σ be the universal cover of Σ and consider a lift x 1 of x 1 and a lift f 1 of f 1 which fixes x 1 . There is a unique lift ϕ t of the path ϕ t such that ϕ 0 = f 1 and ϕ

t ( x 1 ) = x 1 , ∀ 0 ≤ t ≤ 1/2. This is possible since the path ϕ t is an isotopy fixing the point x 1 . The map ϕ 1/2 = g is a lift of g. Consider now a lift h t of h t starting at h 1/2 = id Σ . Then ψ t = h -1 t • g • h t is a lift of ψ t starting at g. The concatenation of ϕ t and ψ t is a lit of the closed path Π t and, since the connected component of f 1 in Homeo(Σ) is contractible, necessarily we have that Π 0 = Π 1 = f 1 . Now, the curve h t ( x 1 ) in the universal cover is a path joining x 1 = h 1/2 ( x 1 ) with another point x 1 = h 1 ( x 1 ). Since each h t ( x 1
) is a fixed point for ψ t then x 1 is a fixed point for f 1 , so necessarily it must be satisfied that x 1 = h 1 ( x 1 ). We conclude that h(x 1 ) = x 1 .

If we consider now a finite set O 1 , . . . , O N of periodic orbits each one consisting in a fixed point x k , then the same argument can be carried out individually for each x k . That is, for each k = 1, . . . , N we have to consider a lift f 1 of f 1 that fixes some pre-image x k and apply the same reasoning to conclude that h must fix each x k .

Non-closed surfaces.

We will use proposition 1.29 in the course of the proofs of theorems 4.1 and 4.1. By the way, since we will be working with non-closed surfaces, we make some remarks in what follows. Let Σ be a compact orientable surface. Definition 1.30 (pseudo-Anosov in non-closed surfaces.). Let f : Σ → Σ be a homeomorphism. Let Σ the surface obtained by collapsing each boundary component into a point and let f be the corresponding induced map. We say that f is pseudo-Anosov if f is pseudo-Anosov according to definition 1.25.

Let C be a boundary component of Σ and p ∈ Σ the point obtained after collapsing C. Each invariant foliation of f has a finite number of leaves which accumulate on p, which are usually called branches. When lifted to Σ, these branches do not necessarily converge to a point in C, as is depicted in figure 1.5b. We say that the foliations are tame if the local model in a neighbourhood of the boundary component C is as in figure 1.5a. In this case, each branch converge to a point in C, which is necessarily periodic for f . According to our definition, each foliation has at least two branches at each boundary component. In more general definitions 1-prong singularities are allowed. See [START_REF] Farb | A primer on mapping class groups[END_REF], chap. 13.3.

Collapsing each boundary component into a point provides a semi-conjugation from f to f , which is actually a conjugation on the interior of the surface. So, most of the dynamical properties of f are also available for f . However, we want to point out the following: Remark 1.31 (Conjugacy classes of pseudo-Anosov in non-closed surfaces.). Theorem 1.26 as well as proposition 1.28 are no longer available in the case of non-closed surfaces.

In particular, we want to point out an obstruction to conjugacy which depends on the behaviour of the map in a neighbourhood of the boundary. We illustrate this in the following example. • The non-wandering set consists in the corner points p = (-1, 0) and q = (1, 0), which are saddle type hyperbolic fixed points.

W s (p) f i W u (q) q p
• W s (p) = {-1} × [0, +∞), • W u (q) = {1} × [0, +∞),
• The segment [-1, 1] × {0} is a saddle connection between p and q. This is illustrated in figure 1.6. For each fixed point x = p, q we have that

Df (x) = λ x (f ) 0 0 µ x (f ) and Dg(x) = λ x (g) 0 0 µ x (g) . Proposition 1.33. If there exists a homeomorphism h : [-1, 1] × [0, +∞) → [-1, 1] × [0, +∞) such that g • h = h • f , then log(µ q (f )) log(µ p (f )) = log(µ q (g)) log(µ p (g)) . (1.2)
In particular, general homeomorphisms (even C 1 -diffeomorphisms) whose phase portrait is as in example 1.32 are not C 0 -conjugated. Observe that there always exists a conjugation between these dynamics in the complement of the segment [-1, 1] × {0}.

This can be seen by dividing the band into adequate fundamental domains for the action of each map. The obstruction appears when we try to extend the conjugation to the segment that connects the two saddles. This dynamical behaviour is what we encounter in the neighbourhood of a boundary component of a surface Σ, when we look at the action of a pseudo-Anosov map. If we choose a power of f that fixes the boundary component, then we can decompose a neighbourhood of this component into a finite number of bands homeomorphic to [-1, 1] × [0, +∞) where the dynamic looks like in the example 1.32.

As a final remark, observe that if f : Σ → Σ is a pseudo-Anosov in a closed surface, we can construct a pseudo-Anosov f : Σ → Σ in a non closed surface by blowing up f along a periodic orbit. But, in view of 1.32, different ways of blowing up could lead to non-conjugated maps, even if all the actions on π 1 (Σ) are the same.

8 Topological saddle type periodic orbits.

A periodic orbit of a C 1 flow is said to be saddle type hyperbolic if the derivative of the first return map to a local transverse section on the fixed point is a saddle type hyperbolic matrix. That is, it has eigenvalues 0 < |λ| < 1 < |µ|.

Let φ t : M → M be a non-singular regular flow on a 3-manifold.

Definition 1.34. A periodic orbit γ of (φ t , M ) is said to be topologically saddle type if its germ (φ t , M ) γ is orbitally equivalent to the germ of a saddle type hyperbolic periodic orbit of some flow of class C 1 .

In the case that the flow φ t is generated by a vector field X of class C 1 and γ is actually a saddle type hyperbolic periodic orbit, there is a natural of decomposition of T M | γ into three line bundles

E s ⊕ E c ⊕ E u that is invariant by Dφ t .
Here, E c is collinear with the generating vector field, E s is uniformly contractive and E u is uniformly expansive.

The classical stable manifold theorem allows to see that, given some adequate ε > 0, the sets

W s loc (γ) = {y ∈ M : dist (φ t (y), γ) ≤ ε, ∀ t ≥ 0} , W u loc (γ) = {y ∈ M : dist (φ t (y), γ) ≤ ε, ∀ t ≤ 0} , are two C 1 -embedded surface, tangent to E s ⊕ E c and E c ⊕ E u respectively, that
intersect transversally along the periodic orbit.

These sets are called the local invariant manifolds of γ and, from the definition 1.34 above, we see that these are also available for topologically saddle type periodic trajectories.

Remark 1.35. We remark that the difference between topologically saddle type and hyperbolic saddle type is not a matter of differentiability. One could have a a smooth flow with a topologically saddle type periodic orbit, whose derivative on a transverse section is, for example, the identity matrix.

From now on, we will assume that the eigenvalues of the derivative of the first return are positive. In this case, the bundles E s and E u are orientable along γ and the local invariant manifolds are embedded cylinders.

Normal Coordinates.

Consider a vector field

X • in R 2 × R/Z defined by X • (x, y, s) = (ax, by, c),
where a < 0 < b, c are constants. The non-wandering set of the associated flow φ X• t consists of one saddle type hyperbolic periodic orbit, namely, the curve 0 × R/Z. Definition 1.36 (Normal coordinates.). A system of normal coordinates for the germ (φ t , M ) γ of a topological saddle type periodic orbit is a continuous local orbital equivalence Ψ : (φ t , W ) → (φ X• t , V ), defined between a neighbourhood W of γ and a neighbourhood V of 0 × R/Z, where X • is described above. Remark 1.37. By definition, a topological saddle type periodic orbit is one that comes equipped with a system of continuous normal coordinates in a neighbourhood. By the way, we remark that it rarely exists a system of C k -normal coordinates for k ≥ 1, even assuming a high regularity of the flow (φ t , M ). One direct obstruction to have C k coordinates is the non-hyperbolicity of the action of Dφ t on T M | γ . But this condition is far from being enough to guarantee C k -orbital equivalence with a hyperbolic saddle. See [START_REF] Arnold | Geometrical methods in the theory of ordinary differential equations[END_REF].

In general, a normal form for the germ of a periodic orbit is a system of normal coordinates of class C k as above, k ≥ 0, which in addition satisfies that the orbital equivalence in 1.36 is a conjugation. In subsequent chapters the definition provided here will be enough for our purposes. We will consider a kind of normal form just on the course of the proof of theorem 4.12.

Homology of a punctured tubular neighbourhood.

When a periodic orbit γ is topologically saddle type, then its local invariant manifolds (assumed here to be cylinders) allow to define a canonical basis of the first homology group H 1 (W \γ), where W is any tubular neighbourhood containing γ on the interior. Let's explain how it works.

In the following construction the curve γ will always be regarded as an oriented curve, its orientation being the one induced by the flow direction. Consider a tubular neighbourhood W of γ. 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 000 000 111 111 • Orientation: Since we are requiring the two invariant manifolds W s loc (γ) and W u loc (γ) to be orientable, it follows that the tubular neighbourhood is orientable. Thus, from now on we will fix an orientation of W . This induces an orientation in the boundary ∂W , which is a 2-dimensional torus.

γ W u loc (γ) β W 4 W 1 W 2 W 3 W s loc (γ) α = ∂D
• Homology: Since W retracts by deformation over γ, the homology group H 1 (W ) is isomorphic to Z and the homology class of γ is a generator. Observe that ∂W is a deformation retract of W \γ. Therefore, the spaces H 1 (∂W ) and H 1 (W \γ) are canonically isomorphic and isomorphic to Z 2 .

• Longitude: As explained before, W s loc (γ) is obtained as an embedding (-ε, ε) × R/Z → M that takes the curve {0} × R/Z homeomorphically onto γ and, without loss of generality, we can assume it preserves the orientation of these curves. If we choose a sufficiently small real t 0 = 0 the embedding will take the curve

{t 0 } × R/Z 1 into an oriented curve β ⊂ W \γ. The homology class b = [β] ∈ H 1 (W \γ)
will be called the longitude, and it is independent of the particular choice of t 0 .

• Meridian: Consider now an embedded closed disk D ⊂ W which is transverse to γ and intersects it in one interior point. Then, the orientation of γ together with the orientation of W defines an orientation on D and a boundary orientation on α = ∂D. The homology class

a = [α] ∈ H 1 (W \γ)
with the given orientation will be called the meridian.

Definition 1.38 (Meridian-longitude basis).

The basis {a, b} constructed above is called a canonical meridian-longitude basis of the homology of a punctured neighbourhood of γ.

Let's recall that the algebraic intersection number between oriented curves in ∂W defines an anti-symmetric bi-linear form in H 1 (∂W ) H 1 (W \γ), and for two homology classes x and y it is satisfied that x • y > 0 if and only if {x, y} is a positive basis. If we push the curves α and β by homotopy onto ∂W we can see that the algebraic intersection number a • b equals one, so in particular {a, b} is a positive basis for H 1 (W \γ). Observe also that the map ι * :

H 1 (W \γ) → H 1 (W ) induced by the inclusion ι : W \γ → W sends b → [γ]
and a → 0, so in particular the meridian can be characterized as the generator a of the kernel of ι * which satisfies that {a, b} is a positive basis for H 1 (W \γ). This means in particular that a is independent of the particular choice of the disk D.

Finally, if we are given another tubular neighbourhood W of γ, then it is possible to construct a continuous family of embeddings ψ s : W → M such that

• ψ 0 = id and ψ 1 (W ) = W ; • ψ s (W s loc (γ)) ⊂ W s loc (γ), ψ s (W u loc (γ)) ⊂ W u loc (γ) for every s.
This implies that all the homology groups H 1 (W \γ) are canonically isomorphic for different choices of W , and this isomorphism preserves the basis given by the longitude and the meridian of each tubular neighbourhood.

Chapter 2

Orbital equivalence and Birkhoff sections.

Consider two non-singular regular flows

φ i t : M i → M i , i = 1, 2, each one defined on a closed 3-manifold M i .
For each flow let ι i : (Σ i , ∂Σ i ) → (M i , Γ i ) be a Birkhoff section and let P i : Σi → Σi be the first return map. Assume that there exists a homeomorphism h : Σ1 → Σ2 that conjugates the first return maps. The embedding of the surface Σi inside M i is a global transverse section for the restricted flow φ i t : M i \Γ i → M i \Γ i . So, the existence of h implies that there is an orbital equivalence

H : (φ 1 t , M 1 \Γ 1 ) → (φ 2 t , M 2 \Γ 2 ) (2.1)
in the complement of the boundary curves. That is, the flows (φ i t , M i ) are almost orbital equivalent, according to definition 1.4 in the previous chapter.

One question is weather or not this condition implies that (φ 1 t , M 1 ) and (φ 2 t , M 2 ) are actually orbitally equivalent, and at which extent we can expect an orbital equivalence that extends (2.1) above.

Obstructions to the orbital equivalence.

The first obstruction is topological in nature. For example, consider a closed Seifert 3-manifold and a flow where the partition into orbits coincides with the fibration by circles. Following the examples that we showed in 5, this flow can be endowed with Birkhoff sections whose first return is the identity, independently of the Euler class. Thus, an almost orbital equivalence like (2.1) above need not to extend to the whole manifold.

There are other obstructions that depend on the flow dynamic and the way the Birkhoff section embeds in a neighbourhood of each boundary curve. For example, assume that the two flows are C 1 and, for simplicity, assume that ∂Σ i has only one Chapter 2. Orbital equivalence and Birkhoff sections. boundary component that embeds onto a hyperbolic saddle type periodic orbit γ i ⊂ M i . The restriction of each embedding Σ i → M i onto a collar neighbourhood of the boundary provides a local Birkhoff section, that we call B i . It is not hard to see that the (local) first return map into Bi = B i \γ i looks like the germ that we have described in 7.4, that appears as well for the pseudo-Anosov maps on surfaces with boundary and we see in the figure below. As is explained in [START_REF] Brunella | Expansive flows on three -manifolds[END_REF], we can assume that the Birkhoff sections are well-positioned near the boundary, in such a way that the first return map extends onto the boundary as a Morse-Smale like homeomorphism. But, by the remarks made in 7.4, we can see that in general, even if the first return maps (P B i , Bi ) are conjugated on Bi , the conjugation rarely extends to the boundary.

We can deduce that, in general, an orbital equivalence on

M 1 \Γ 1 → M 2 \Γ 2 does not extend continuously over Γ 1 → Γ 2 .

Sufficient conditions for equivalence.

This chapter is devoted to prove theorem 2.16, which gives a positive answer for this technical problem when the boundary curves of the Birkhoff sections are saddle type hyperbolic periodic trajectories, and the local combinatorial data of the two Birkhoff sections around its boundary components (linking number, multiplicity and number of boundary components) is compatible. In this setting we will prove not just that the two flows are orbitally equivalent, but that there exists an orbital equivalence that coincides with the previous H outside a neighbourhood of the boundary of the Birkhoff sections.

The new orbital equivalence can be described as a perturbation of the given H along the flow lines, supported in a neighbourhood of the periodic orbits in the boundary. But the approach will be indirect. In particular, we will make use of a detailed analysis about the first return map onto a local Birkhoff section, for the case of saddle type periodic orbits, that we found in [START_REF] Bonatti | Axiom A diffeomorphisms derived from Anosov flows[END_REF]. Most of the statement in the referred work are made for the special case of embedded Birkhoff sections. Since we will need them in the general case, in section 1 we resume the results that we will need later, and we outline some of the proofs as well.

In section 2 we give the proof of 2.16.

1 Local Birkhoff sections at saddle type periodic orbits.

We will be interested in a combinatorial description of the first return map onto a local Birkhoff section in a topological saddle typer periodic orbit, that was developed in [START_REF] Bonatti | Axiom A diffeomorphisms derived from Anosov flows[END_REF], and that we explain in the following subsections.

Let φ t : M → M be a regular flow defined on a 3-manifold, which has a topologically saddle type periodic orbit γ. We will assume that its local invariant manifolds W s loc (γ) and W u loc (γ) are orientable. Consider a local Birkhoff section ι : ([0, 1)×R/Z, 0×R/Z) → (M, γ) at γ. We will denote:

B = ι ([0, 1) × R/Z) , ∂B = ι (0 × R/Z) , B = B\∂B. (2.2)
We start assuming that the immersion of the Birkhoff section is well-positioned with respect to the invariant manifolds, according to the following definition: Definition 2.1 (Tameness). The local Birkhoff section B is tame if there exists a collar neighbourhood U ⊂ B of γ such that the sets U ∩W s loc (γ) and U ∩W u loc (γ) consists of the union of γ with finitely many compact segments, each of them intersecting γ exactly at one of its extremities.

Given a (global) Birkhoff section Σ such that every boundary component γ of ∂Σ is a saddle type hyperbolic periodic orbit, we will simply say that Σ is tame if it is tame at each boundary component.

An arbitrary Birkhoff section is not necessarily tame, but it can be changed for a tame one in a proper way that suffices to apply the techniques exposed here. We will refer these results a the end of the section.

Linking number and multiplicity.

By definition, the restriction of the immersion ι to (0, 1) × R/Z is an embedding into M \γ, and is a covering map on the boundary. We will fix the standard orientation on R/Z and we will assume that {0} × R/Z → γ is an orientation preserving map.

Consider a small tubular neighbourhood W of γ such that the inclusion B → W \γ is a proper embedding. Let t 0 > 0 be some small real such that the oriented curve σ = ι({t 0 } × R/Z) is contained in W \γ. Observe that, since B is topologically an annulus, the homology class [σ] ∈ H 1 (W \γ) of this curve does not depend on the particular choice of σ and it is a generator of H 1 (B). Then, the coordinates of [σ] in the meridian-longitude basis {a, b} of H 1 (W \γ) are two integers n = n(γ, B) and m = m(γ, B) satisfying that

[σ] = n(γ, B) • a + m(γ, B) • b.
Definition 2.2. The integers n(γ, B) and m(γ, B) are called the linking number 1 and the multiplicity of B at γ, respectively.

Observe that this value of the multiplicity coincides with the one defined in the previous chapter. We state some basic facts.

Proposition 2.3. It is satisfied that: • m(γ, B) ≥ 1 and m(γ, B) = 1 if and only if B is embedded; • n(γ, B) = 0; • gcd(n(γ, B), m(γ, B)) = 1.
Remark 2.4. The construction of the linking number depends on a chosen orientation of W . Changing the orientation of W has the effect of changing the sign of the linking number.

Before proving the proposition, we establish a lemma. Lemma 2.5. Consider the relative homology group H 2 (W, ∂W ∪ γ). Then, there exists an isomorphism

q : H 2 (W, ∂W ∪ γ) → H 1 (∂W ), q : [Σ] → [Σ ∩ ∂W ] which sends the class [Σ] of a proper surface (Σ, ∂Σ) → (W, ∂W ∪ γ) into

the homology class of Σ ∩ ∂W oriented as the boundary of Σ. Moreover, this map satisfies that the algebraic intersection number

[Σ] • [η] of a class [Σ] ∈ H 2 (W, ∂W ∪ γ) with a class [η] ∈ H 1 (W \γ) equals the algebraic intersection number q([Σ]) • [η] in H 1 (∂W ).
Proof. An application of the long exact sequence of relative homology groups for the space W and the subspace ∂W ∪ γ provides a sequence

• • • H 2 (W ) H 2 (W, ∂W ∪ γ) H 1 (∂W ∪ γ) H 1 (W ) • • • p * ∂ * ι *
The space H 1 (∂W ∪ γ) is the free abelian group generated by a, b and [γ], and the map ι * satisfies that ι * (a) = 0 and ι *

(b) = ι * ([γ]) = [γ]. This means that Im(∂ * ) = ker(ι) = {n • a + m • b -m • [γ] : n, m ∈ Z}. Let ϕ : H 1 (∂W ∪ γ) → H 1 (∂W ) be defined by ϕ : (n • a + m • b + c • [γ]) → n • a + m • b. Since H 2 (W ) = {0} the homomorphism ∂ *
is injective, and it follows that the map q defined as q = ϕ • ∂ * is an isomorphism. The claim about the intersection number follows by evaluating the intersection number of an arbitrary class [η] with a meridian disk and with a local stable manifold. 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
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[σ] = n•a+m•b → m•[γ].
Since the Birkhoff section is a covering map which preserves orientation when restricted to {0} × R/Z and {t 0 } × R/Z is homotopic to {0} × R/Z, it follows that there exists an orientation preserving homotopy between the curve σ and a positive multiple of γ inside W . This implies that m ≥ 1, and that m = 1 if and only if B is embedded. Now, for the linking number, we will show that item 3. in the definition 1.17 of Birkhoff section, implies that n = 0.

The intersection form in H 1 (W \γ) is given in the basis {a, b} by the relations

a • a = 0, b • b = 0, a • b = 1.
In terms of the intersection form on To finish, we have to prove the existence of a closed curve β in W \γ in the homology class b whose intersection number with the surface B is not zero. Take a local transverse section D at γ and choose a point x ∈ D ∩ (W s loc (γ)\γ) sufficiently close to γ such that the orbit segment [x, P D (x)] is totally contained in W \γ, where P D is the first return to the transverse section. Let's recall that, by definition of local Birkhoff section, there exists some T > 0 such that every orbit segment of length T sufficiently close to γ will intersect B. This means that if the point x is suitably chosen then for some positive integer k it will be satisfied that [x,

P k D (x)] ∩ B = ∅, as in figure 2.2a. If we define a curve β concatenating [x, P k D (x)] with the segment inside D ∩ W s loc (γ) joining P k D (x) with x then [ β] = k • b ∈ H 1 (W \γ). Observe that the segment [x, P k D (x)
] cuts B always with the same orientation because it is an orbit segment. So, by a suitably small perturbation of the curve β if necessary we can conclude that the intersection number [B] • [ β] is not zero, from where we derive our second claim.

For the last claim observe that B is an embedded surface in the complement of γ and so B ∩ ∂W is a simple curve in ∂W . Since [σ] = ±[B ∩ ∂W ] ∈ H 1 (∂W ) and this curve has no auto-intersections it follows that gcd(n, m) = 1.

Homological intersection number in a punctured neighbourhood. We finish this subsection with a formula that is useful to calculate the homological intersection of closed curves (usually obtained as the concatenation of orbit segments with small arcs) and the surface B. The intersection number of a closed curve η ⊂ W \γ with B can be expressed in terms of the linking number and the multiplicity, according to the following statement. γ,B) and m = m(γ, B) be the linking number and the multiplicity of B. Then, it is satisfied that:

Lemma 2.6. Let [B] ∈ H 2 (W, ∂W ∪ γ) be the homology class of B endowed with the orientation induced by the transverse flow and the chosen orientation of W , and let

[η] = i • a + j • b ∈ H 1 (W \γ) be the homology class of a closed curve η. Let n = n(
[B] • [η] = -im + nj if n > 0, im -nj if n < 0.
For a proof see [START_REF] Bonatti | Axiom A diffeomorphisms derived from Anosov flows[END_REF]. The proof there is done just for the case m = 1, but it can be adapted to the more general case.

Partition into quadrants.

Let's assume that W is small enough such that the union of the local stable and unstable manifolds separate W in four quadrants. Observe that the orientation of the meridian a ∈ H 1 (W \γ) induces a cyclic order on this set of connected components. The four quadrants will be denoted by W i , i = 1, . . . , 4, where the indices will be chosen to respect the cyclic order of the quadrants. Each quadrant W i is homeomorphic to a solid torus, and the map H 1 (W i ) → H 1 (W \γ) induced by the corresponding inclusion sends a generator of

H 1 (W i ) to the longitude class b ∈ H 1 (W \γ).
Let D ⊂ W be a local transverse section and x D its intersection point with γ. Then, the quadrants W 1 , . . . , W 4 determines four quadrants

D i = D ∩ W i in D. Observe that the first return map P D : V → D defined in a neighbourhood V of x D preserves the quadrants, i.e. P D (V ∩ D i ) ⊂ D i for every i = 1, . . . , 4.
Let B ⊂ W be a tame local Birkhoff section at γ with linking number n and multiplicity m. Then, because of the tameness hypothesis the four quadrants W i also determine a partition of the annulus B into quadrants. Each of these quadrants can be though of as a rectangle, whose boundary contains a segment of γ and two segments which are connected components of B ∩ (W s loc (γ) ∪ W u loc (γ)). Observe that the first return map P B : Ů → B defined in a collar neighbourhood U of γ sends any quadrant of B into another quadrant.

Lemma 2.7.

There are exactly 4|n| quadrants of B, and each quadrant W i contains |n| of them.

If we choose a quadrant of B which lies in W 1 and we call it B 1 , then we can inductively label the quadrants of B as B 1 , . . . , B 4|n| by declaring that ∀j = 1, . . . , 4|n|, if W i is the quadrant that contains B j then B j+1 is the quadrant adjacent to B j which lies in W i+1 , i = 1, . . . , 4. We will always use this labelling for the quadrants of a Birkhoff section.

Proof. For this proof we will consider that the boundary component B({1} × R/Z) of the Birkhoff section as well as the boundary ∂D of the transverse section are contained in the boundary ∂W of the tubular neighbourhood. This can be done by replacing W by a suitable smaller tubular neighbourhood and then consider the corresponding the intersections with B and D.

Let W i be a quadrant of W , Q ⊂ W i be a quadrant of B and D i ⊂ N i be the corresponding quadrant of D. The surfaces Q and D i are properly embedded disks inside the solid torus W i , i.e. embeddings of the form (Q, ∂Q), (D i , ∂D i ) → (W i , ∂W i ). So Q and D i are meridian disks in W i and they are properly isotopic. In each of these surfaces we will consider the orientation induced by the transverse flow. Let x ∈ int(D i ) be a point sufficiently close to γ such that the orbit segment [x, P D (x)] is contained in int(W i ). Choose a segment σ 0 ⊂ int(D i ) connecting P D (x) with x and let's define β 0 as the closed curve obtained by concatenation of [x, P D (x)] with σ 0 , as illustrated in figure 2.2b. Since this curve is obtained by concatenation of an orbit segment with a segment inside D i , we can make a small perturbation of this curve around the segment σ 0 and obtain a curve β 0 which is transverse to the quadrant D i and cuts it once, with positive orientation. So we have that the intersection number D i • β 0 as oriented submanifolds of W i equals one. We can further assume that the curve β 0 cuts any quadrant of B transversely, with positive orientation. Since all the quadrants Q are properly isotopic to D i , it follows that the curve β 0 cuts once each quadrant of B inside W i . The fact that

D i • β 0 = 1 means that the homology class [β 0 ] ∈ H 1 (W i )
Z is a generator of this group, and inside W \γ the homology class [β 0 ] ∈ H 1 (W \γ) coincides with the longitude b. Since the homological intersection number satisfies that

|[B] • [β 0 ]| = |n| it follows that there are |n| quadrants of B inside W i .

Projections Along the flow lines.

The main tool for our analysis of the first return map to a local Birkhoff section around a topologically saddle type periodic orbit will be the projection along the flow over a transverse section. The idea is to project in the complement of γ the local Birkhoff section B along the flow lines over a local transverse section D, to obtain a conjugacy between the first return map P D and some power of P B . However, observe that projecting along the flow lines will never provide a continuous map from B to D because these two surfaces are not homotopic as proper surfaces of W \γ. Nevertheless, under the hypothesis of tameness for our local Birkhoff section it is possible to find a neighbourhood U ⊂ B of γ and construct a projection along the flow lines π w defined from Ů = U \γ onto D\{x D }, where w ⊂ B is a segment which is a connected component of the intersection of B with a local stable manifold, π w is a local homeomorphism in the complement of the segment w, and the discontinuity defect over w is quantified by some power of the first return map to D.

Let w be a segment which is the closure of a connected component of

B ∩ (W s loc (γ) ∪ W u loc (γ)) .
Since the Birkhoff section is an immersed annulus B : [0, 1] × R/Z → W which is an embedding out of the boundary component that is mapped onto γ, we can cut this annulus along w and obtain an immersed compact strip, with two opposite sides that are naturally identified with w. We will denote this strip by B w .

Consider the universal cover W of W . Consider the pseudo-flow φt on W which is the lift of φ t . Let Bw and D be a lift of B w and a lift of D respectively, and let γ be the lift of the orbit γ. Then, by the continuity of the flow there exists some neighbourhood O of the compact segment γ ∩ Bw and some T > 0 such that, for every x ∈ O, the orbit segment [ φ-T (x), φT (x)] intersects the disk D and exactly in one point. This allows to consider a collar neighbourhood Ũ of γ ∩ Bw inside O ∩ Bw and to define a map πw : Ũ → D of the form πw (x) = φ(s(x), x), where s : Ũ → R is continuous and bounded. Observe that all the points in γ ∩ Ũ are mapped over the intersection point xD of D with γ, but we will not be interested in these points. So, we will just consider the restriction πw : ( Ũ \γ) → ( D\{x D }). Since the universal covering map provides identifications of the section D with D and of the strip B w with Bw , we can regard πw as a map π w : Ů → (D\{x D }) of the form π w (x) = φ(s(x), x), where U ⊂ B is a collar neighbourhood of γ, and which is bi-valuated over the segment w. A map π w constructed in this way will be called a projection along the flow from B to D. Every projection along the flow according to the previous definition arises as in the previous construction. Observe that a projection along the flow depends on a particular choice of the segment w as well as particular choices of the lifts of D and B w . For notational simplicity we will often denote a projection along the flow as π : Ů → D without making reference to the segment w, and to the fact that x D is not contained in the image of this map. Proposition 2.9. Let B be a tame local Birkhoff section at γ with linking number n and multiplicity m, and let D be a local transverse section. Let w be a segment of the intersection of B with W s loc (γ) ∪ W u loc (γ). Let π = π w : Ů → D be a projection along the flow defined as before, where U ⊂ B is a collar neighbourhood of γ. We will enumerate the quadrants of B as B 1 , . . . , B 4|n| in such a way that B 1 and B 4|n| intersect along w.

Observe that for all the quadrants B j contained in N i it is satisfied that j = i + 4r, where 0 ≤ r ≤ |n| -1 and 1 ≤ i ≤ 4. Then, we have that:

1. The map P B permutes cyclically all the quadrants of B that are contained in the same quadrant N i , and in particular we have that

P |n| B preserves each quadrant B j . Moreover, in the case that |n| > 1, let 1 ≤ k, l ≤ |n| -1 be such that k ≡ m (mod |n|) and l ≡ m -1 (mod |n|).
Then, the first return map to B permutes the quadrants in the following fashion:

(a) P B takes the quadrant B j into B j+4l if n > 0, B j-4l if n < 0. (b) P k B takes the quadrant B j into B j+4 if n > 0, B j-4 if n < 0.
2. Let B j be a quadrant of B where j = i + 4r, 1 ≤ i ≤ 4 and 0 ≤ r ≤ |n| -1.

Let's denote by Ůj = Ů ∩ B j and π j the restriction π| Ůj . Then, the π j takes Ůj homeomorphically onto its image in D i -{x D } and it is satisfied that:

(a) The homeomorphism π j induces a local conjugacy between P |n| B and P D . That is, for all z sufficiently close to γ it is satisfied that

π j • P |n| B (z) = P D • π j (z), ∀j = 1, . . . , 4|n|; (b) Let z ∈ w = B 1 ∩ B |4n|
be a point. Then the discontinuity defect over w is described by:

π 4|n| (z) = P -m D • π 1 (z) if n > 0, P m D • π 1 (z) if n < 0.
3. The projection along the flow depends on w and on a particular choice of a lift of B w to the universal cover. For a fix segment w we have that if π w and π w are two projections then

∃ k ∈ Z such that π w = π w • P k B , in a suitable common neighbourhood of definition.
This proposition is a summary of many properties stated in [START_REF] Bonatti | Axiom A diffeomorphisms derived from Anosov flows[END_REF]. We just provide a proof of the first item above, and we refer to that article for a complete proof. The main difference with the referred work is that they use m = 1, so the proofs can be carried with the same arguments but taking care of the new combinatorics that appears for general values of the multiplicity.

Proof of item 1. We will first show that, given a quadrant of B, the points which are sufficiently close to γ will return to the same quadrant after |n| iterations of P B , and will touch once any other quadrant of B inside N i in the middle iterations. Let B j be a quadrant of B contained in some quadrant N i of N , and let D i be the corresponding quadrant of D. Let Ůj = Ů ∩ B j and π j : Ůj → D i be the restriction to the quadrant B j of the projection along the flow. The map π j is a homeomorphism onto its image. Let's consider a point z ∈ Ůj and define x = π j (z) ∈ int(D i ). If we choose z sufficiently close to γ then we can assume that:

• There exists a first return P D (x) ∈ int(D i ) of the point x, and the segment [x, P D (x)] is contained in int(N i );

• P D (x) ∈ π j ( Ůj ) and if we define z = π -1 j (P D (x)) then the orbit segments connecting z with x and z with P D (x) are contained in int(N i ).

The curve obtained as the concatenation of the orbit segment joining z with x followed by [x, P D (x)] and then by the orbit segment joining P D (x) with z is a curve contained in an orbit segment, and contained in int(N i ). It follows that z and z belongs to the same orbit, and the orbit segment [z, z ] is contained in int(N i ). We want to show that

z = P |n| B (z). Take a segment σ 0 : [0, 1] → int(D i ) ∩ π j (U j ) joining σ 0 (0) = P D (x) with σ 0 (1) = x,
and define a curve β 0 concatenating [x, P D (x)] with σ 0 . Then, exactly as in the proof of 2.2b, the homology class of this curve in H 1 (N \γ) is the longitude b and we have that

[B] • [β 0 ] = |n|. Let σ 1 : [0, 1] → Ůj be the segment joining z with z defined as σ 1 (t) = π -1 j • σ 0 (t)
, and let β 1 be the closed path obtained by concatenation of [z, z ] with σ 1 . Observe that the map π j can be realized as a homotopy that preserves orbit segments by the formula π t j (u) = φ(u, ts(u)), 0 ≤ t ≤ 1, and this implies that

β 0 is homotopic to β 1 inside int(N i ). Then [B] • [β 1 ] = |n|.
Since the curve β 1 is a segment of orbit contained in int(N i ) followed by a segment inside the quadrant B j , we can make a small perturbation of this curve supported in a neighbourhood of B j which cuts B always with positive orientation, so in particular it will intersect B exactly |n| times. So we have that the open orbit segment int([z, z ]) cuts the surface B at |n| -1 points, once for each quadrant contained in N i and different from B j . It follows that the point z is the |n|-th intersection point of the positive orbit segment starting at z with B, so z = P |n| B (z). Also, observe that the orbit segment [z, z ] cuts all the quadrants inside N i before returning to the starting quadrant B j , so the first return map permutes cyclically all the quadrants inside N i .

In order to prove 1(a), consider a point z ∈ int(B j ) sufficiently close to γ such that P |n| B (z) ∈ int(B j ). To prove 1(a) let's assume first that n > 0. Since the orbit segment [z, P |n| B (z)] intersects once each quadrant in N i we know that there exists some 1 ≤ l ≤ |n|-1 such that P B (z) ∈ int(B j+4l ), and we want to determine l. Let [P B (z), z] denote the curve that is obtained by reparametrizing with inverse orientation the orbit segment joining z with P B (z). Consider a curve α :

[0, 1] → B j ∪ B j+1 ∪ • • • ∪ B j+4l connecting α(0) = z with α(1) = P B (z)
and let's define η as the closed path that is obtained as a concatenation of α with [P B (z), z]. We claim that the homology class of η in H 1 (N \γ) Z 2 is (l, q) in the basis given by the meridian and the longitude, where q is some integer. To see this, observe that we can assume that there exist

t 0 = 0 < t 1 < • • • < t 4l = 1 such that α(t r ) ∈ int(B j+r ) and each segment α([t r , t r+1 ])
intersects the boundary of the two quadrants it connects in exactly in one point, and has no intersections with the boundary of any other quadrant. Let S be a connected component of W s loc (γ)\γ. Then, since the curve η is the concatenation of α with a segment contained in int(N i ), it cuts S exactly l times and with positive orientation, from where it follows the claim. Also, since the segment [P B (z), z] is transverse to B at its endpoints and cuts it with negative orientation, and since α is tangent to B, then the homological intersection number satisfies

[B] • [η] = -1. Using 2.6 we can see that [B] • [η] = -1 = -l • m + q • n. So we conclude that l ≡ m -1 (mod |n|)
when n > 0. For negative linking number the reasoning is analogous, but instead of α we will consider a curve α :

[0, 1] → B j ∪ B j-1 ∪ • • • ∪ B j-4l
such that α (0) = z and α (1) = P B (z), and we will define η = α • [P (z), z]. In this case it follows that [η ] = (-l , q), and using the formula in 2.6 corresponding to negative linking number we see that

[B] • [η ] = -1 = (-l ) • m -q • n
, from where we conclude that l ≡ m -1 (mod |n|) also for the case n < 0.

The proof of 1(b) is similar to the previous one. Assume first that n > 0. We now that there exists some 1

≤ k ≤ |n| -1 such that P k B (z) ∈ int(B j+4
), and we want to determine k. Let [P k B (z), z] denote the curve that is obtained by reparametrizing with inverse orientation the orbit segment joining z with

P k B (z). Consider a curve α : [0, 1] → B j ∪ B j+1 ∪ B j+2 ∪ B j+3 ∪ B j+4 connecting α(0) = z with α(1) = P k B (z
) and let's define η as the closed path that is obtained as a concatenation of α with [P k B (z), z]. It follows that the homology class of η in H 1 (N \γ) is (1, q), where q is some integer, and [B]

• [η] = -k. Applying 2.6 we get that [B] • [η] = -k = -m + q • n, which implies that k ≡ m (mod |n|). When n < 0, there exists 1 ≤ k ≤ |n| -1 satisfying P k B (z) ∈ int(B j-4
). In this case we will consider α :

[0, 1] → B j ∪ B j-1 ∪ B j-2 ∪ B j-3 ∪ B j-4 such that α (0) = z and α (1) = P k B (z) and η = α • [P k B (z), z].
Proceeding in the same fashion as before we can see that k ≡ m. This concludes the first item.

Deformation by flow isotopies, equivalence and existence of tame

Birkhoff sections.

Observe that the combinatorial description that we have made in the previous paragraphs depends just on the homology coordinates of the embedding (B, ∂B) → (W, γ).

That is, if we change the local Birkhoff section for an isotopic one that is also tame, then we obtain the same relations between projections along the flow and first return maps as described in proposition 2.9. Here, isotopy must be understood in the sense of flow-isotopy defined in 3. Let's explain this more precisely.

Definition 2.10. Let φ t : M → M be a non-singular regular flow.

1. If ι : (Σ, ∂Σ) → (M, Γ) and ι : (Σ , ∂Σ ) → (M, Γ ) are two Birkhoff sections, we will say that they are

φ t -isotopic if Σ = ι(Σ)\Γ is φ t -isotopic to Σ = ι (Σ )\Γ .
2. If B and B are two local Birkhoff sections at γ, we will say that they are φ tisotopic if there exist neighbourhoods U ⊂ B and U ⊂ B of γ and a continuous and bounded function s : Ů → R such that the map ψ given by ψ(x) = φ(s(x), x), x ∈ Ů , defines a homeomorphism between Ů and Ů . Recall the notation Ů = U \γ.

If two transverse sections are equipped with first return maps, then a φ t -isotopy between the transverse sections allow to construct a conjugation between the first return maps, and different φ t -isotopies differ in the application of some power of the first return map. The following lemmas assert this for the case of Birkhoff sections, and can be deduced from lemma 1.13 in the first chapter.

Lemma 2.11. Let Σ and Σ be two Birkhoff sections for the flow φ t which are φ tisotopic, and let ψ : Σ → Σ be a φ t -isotopy. Then:

1. ψ • P Σ = P Σ • ψ, 2. If ψ is another φ t -isotopy then ∃ N ∈ Z such that ψ = ψ • P N Σ .
Lemma 2.12. Let B and B be two local Birkhoff sections at γ which are φ t -isotopic, and let ψ : Ů → Ů be a φ t -isotopy. Let's also assume that the first return map P B is defined for every point in Ů . Then:

1. Up to shrinking the neighbourhoods U and U if necessary, it is satisfied that

ψ • P B (x) = P B • ψ(x), for every x ∈ Ů ; 2. If ψ is another φ t -isotopy then ∃ N ∈ Z such that ψ (x) = ψ • P N B (x)
, for every x ∈ Ů sufficiently close to γ.

Let's come back now to the case when γ is a saddle type hyperbolic periodic orbit. Let B and B be two tame local Birkhoff sections at γ. If there is a φ t -isotopy between these two sections it follows that they have the same linking numbers and the same multiplicities. It turns out that the linking number and the multiplicity completely determine the classes of tame local φ t -isotopies of local Birkhoff sections at γ. Lemma 2.13 (Lemma 3.6 from [START_REF] Bonatti | Axiom A diffeomorphisms derived from Anosov flows[END_REF]). Let B and B be two local Birkhoff sections on a saddle type periodic orbit γ.

Then B is φ t -isotopic to B if and only if n(γ, B) = n(γ, B ) and m(γ, B) = m(γ, B ).
For a proof of this lemma see [START_REF] Bonatti | Axiom A diffeomorphisms derived from Anosov flows[END_REF], Lemma 3.6. In this reference the proof is done just for the case when m(γ, B) = 1, but can be adapted to our more general setting.

The following proposition will be used for the proof of theorem 2.16. It states that given two φ t -isotopic local Birkhoff sections B and B at γ, it is possible to interpolate them to create a new local Birkhoff section that coincides with B near γ and with B outside a neighbourhood of γ. Observe that tameness is not demanded in the hypothesis.

Proposition 2.14 (Lemma 3.7 from [START_REF] Bonatti | Axiom A diffeomorphisms derived from Anosov flows[END_REF]). Let B and B be two tame local Birkhoff sections on a saddle type periodic orbit γ, with the same linking number and the same multiplicity. Then, there exists a neighbourhood W of γ such that: For any neighbourhood O ⊂ W there exist another neighbourhood O ⊂ O and a continuous and bounded function s : W \γ → R such that the map ψ(u) = φ(s(u), u) defines an φ t -isotopy onto its image, and

1. ψ(u) ∈ B , for all u ∈ B ∩ O , 2. ψ(u) = u, for all u ∈ B ∩ W \O.
To finish this section, we make some comments about the tameness condition defined at the beginning. General (local) Birkhoff sections need not to be tame. Nevertheless, the techniques in the previous proposition allow to modify any given Birkhoff section in a neighbourhood of the boundary components and obtain a tame one. We state it as a proposition. See the work referred at the beginning for a proof. Proposition 2.15. Let ι : (Σ, ∂Σ) → (M, Γ) be a Birkhoff section for such that all its boundary components are topologically saddle type periodic orbits of (φ t , M ). Then, given any neighbourhood W of Γ (that one can think as a finite union of tubular neighbourhoods around each curve in Γ) there exists a Birkhoff section ι : (Σ, ∂Σ) → (M, Γ), with image Σ = ι (Σ), satisfying that:

1. Σ ∩ (M \W ) ≡ Σ ∩ (M \W ),

Σ is tame,

Moreover, in the case that the flow φ t is C k , k ≥ 1, the section Σ can be chosen to be of class C k near the boundary.

Orbital equivalence and Birkhoff sections.

For i = 1, 2 consider a non-singular regular flow (φ i t , M i ) defined on a closed 3-manifold M i .

Let ι i : (Σ i , ∂Σ i ) → (M, Γ i ) be a tame Birkhoff section, equipped with a first return map P i : Σi → Σi . In the same way as in 5, we denote Γ i = {γ i 1 , . . . , γ i K } and we denote

∂Σ i = C i 11 ∪ • • • ∪ C i 1p 1 ∪ • • • ∪ C i K1 ∪ • • • ∪ C i 1p K , in such a way that C i k1 ∪ • • • ∪ C i kp k = ι -1 i (γ i k )
. Given a homeomorphism h : Σ1 → Σ2 , even if h is not defined on the boundary, it defines a bijective correspondence h * :

C i kj → h * (C i kj )
between the components of ∂Σ 1 and ∂Σ 2 .

Theorem 2.16 (Theorem A). Assume that every γ i k is a topologically saddle type closed orbit whose local stable and unstable manifolds are orientable. If there exists a homeomorphism h : Σ1 → Σ2 that conjugates the first return maps, and if it is satisfied that:

m(γ 1 k , Σ 1 ) = m(h * (γ 1 k ), Σ 2 ), n(γ 1 k , Σ 1 ) = n(h * (γ 1 k ), Σ 2 ), for every γ 1 k in Γ 1
, then for every neighbourhood W of Γ 1 there exists a homeomorphism

H W : M 1 → M 2 such that: (a) H W is a topological equivalence between (φ 1 t , M 1 ) and (φ 2 t , M 2 ); (b) H W (x) = h(x), for every x ∈ Σ 1 \W .
Remark 2.17. The first return map P i : Σ1 → Σ2 defines a permutation of the boundary components of Σ i , and the orbits of this permutation are the sets {C i k1 , . . . , C i kp k }. Recall as well that

p k = p(γ i k , Σ i ) is the number of local connected components of Σ i at γ i k . Thus, if a homeomorphism h conjugates the two first return maps, it is implicit that p(γ 1 k , Σ 1 ) = p(h * (γ 1 k ), Σ 2 ), for every k = 1, . . . , K.
Theorem 2.16 follows from a local version that we immediately state.

The local version

For i = 1, 2 consider a topologically saddle type periodic orbit γ i of a flow φ i t : M i → M i such that their local stable and unstable manifolds are orientable. Let B i → M i be a tame local Birkhoff section at γ i , and assume that there exists a local conjugation h : (B 1 , P B 1 ) γ 1 → (B 2 , P B 2 ) γ 2 between the first return maps P B i . By lemma 1.9, we have that for every sufficiently small neighbourhood W 1 of γ 1 , the homeomorphism h induces a homeomorphism

H : W 1 \γ 1 → W 2 \γ 2 ,
where W 2 is a neighbourhood of γ 2 , which is an orbital equivalence between the pseudoflows φ i t obtained by restriction to sets W i \γ i , and whose restriction to B1 ∩W 1 coincides with h. Theorem 2.18. Consider a homeomorphism H : W 1 \γ 1 → W 2 \γ 2 , where W 1 and W 2 are neighbourhoods of γ 1 and γ 2 respectively, which verifies that

(a) H : (φ 1 t , W 1 \γ 1 ) → (φ 2 t , W 2 \γ 2 ) is an orbital equivalence, (b) H(x) = h(x) for every x ∈ B1 ∩ W 1 . If it is satisfied that m(γ 1 , B 1 ) = m(γ 2 , B 2 ) and n(γ 1 , B 1 ) = n(γ 2 , B 2 ),
then for every neighbourhood N ⊂ W 1 there exists a homeomorphisms

H N : W 1 → W 2 such that: (a) H N is a local orbital equivalence between (φ 1 t , W 1 ) γ 1 and (φ 2 t , W 2 ) γ 2 , (b) H N (x) = H(x), for every x ∈ W 1 \N .
Remark 2.19. In general, an orbital equivalence H : (φ 1 t , W 1 \γ 1 ) → (φ 2 t , W 2 \γ 2 ) that coincides with h over the Birkhoff sections B i does not extend to a homeomorphism between W 1 and W 2 . This is because, in general, the homeomorphism h : B1 → B2 does not extend to the boundary. (cf. the comment on the introduction.)

We will show that, given some neighbourhood N ⊂ W 1 of γ 1 , it is possible to modify H inside this neighbourhood and obtain a new homeomorphism H N that extends as an orbital equivalence over the whole sets W i .

Proof of theorem 2.16. Take two flows φ i t as in the statement of 2.16. The homeomorphism h : Σ1 → Σ2 that conjugates the first return maps P i gives a topological equivalence

H : (φ 1 t , M 1 \Γ 1 ) → (φ 2 t , M 2 \Γ 2 ), (2.3) 
which satisfies that H(x) = h(x), for every x ∈ Σ1 (cf. section 4.1).

We will prove the theorem assuming that Γ i consists of exactly one periodic orbit γ i ⊂ M i . Since the argument that we will do is purely local, the general case can be deduced by applying this argument in a small neighbourhood of each period orbit in Γ i .

Let C i 1 , . . . , C i p denote the boundary components of Σ i , all of them mapped onto γ i . Let W ⊂ M 1 be a neighbourhood of γ 1 . Then, up to shrinking W if necessary it follows that ι 1 (Σ 1 ) ∩ W has p connected components B 1 1 , . . . , B 1 p , each one a local Birkhoff section.

Let W 1 = W , W 2 := H(W 1 \γ 1 ) ∪ γ 2 and consider the restriction

H : W 1 \γ 1 → W 2 \γ 2 .

Then, this homeomorphism is an orbital equivalence between the open sets W

i \γ i . More over, if B 1 1 is one of the components of ι 1 (Σ 1 ) ∩ W 1 and B 2 1 = h(B 1 1 )
, then H coincides with h over B 1 \γ 1 and h is a local conjugation between the return maps to the sections B i 1 . So we are in the hypothesis of theorem 2.18. Given an arbitrary neighbourhood N ⊂ W 1 , there exists a local orbital equivalence

H N : W 1 → W 2 such that H N (x) = H(x), for every x ∈ W 1 \N . We define H W : M 1 → M 2 such that H W (x) = H N (x), if x ∈ W 1 H(x), if x ∈ M 1 \N.
Then H W is a well defined homeomorphism, and is clearly an orbital equivalence.

Observe that, since H W coincides with H outside N , then H W (x) = h(x), for every x ∈ Σ 1 \W .

Proof of theorem 2.18.

All this section is devoted to prove theorem 2.18. Let's consider an orbital equivalence

H : (φ 1 t , W 1 \γ 1 ) → (φ 2 t , W 2 \γ 2 ) (2.4)
such that its restriction to the interior of the Birkhoff section B 1 coincides with h : B1 → B2 , as in the hypothesis of 2.18. Observe that if we replace the neighbourhoods W i by smaller neighbourhoods W i ⊂ W i , then it is enough to prove the theorem for these new neighbourhoods. We will shrink the size of the W i several times in the course of the proof. Theorem 2.18 relies in the following proposition.

Proposition 2.20. For i = 1, 2 consider a topologically saddle type periodic orbit γ i of a flow φ i t : M i → M i such that their local stable and unstable manifolds are orientable. Let B i be a tame local Birkhoff section at γ i and assume that there exists a local conjugation h : (B 1 , P B 1 ) γ 1 → (B 2 , P B 2 ) γ 2 between the first return maps P B i .

For each orbit γ i let D i be a local transverse section. Let

x i = γ i ∩ D i and let π i : (B i ) γ i → (D i ) x i be a projection along the flow. If it is satisfied that: m(γ 1 , B 1 ) = m(γ 2 , B 2 ) and n(γ 1 , B 1 ) = n(γ 2 , B 2 ),
then there exists a homeomorphism h D :

D 1 → D 2 satisfying that: (a) h D is a local conjugation between (D 1 , P D 1 ) x 1 and (D 2 , P D 2 ) x 2 , (b) ∃ a collar neighbourhood U 1 ⊂ B 1 of the curve γ 1 such that h D • π 1 (x) = π 2 • h(x), ∀ x ∈ U 1 .
For each orbit γ i consider a local transverse section D i and a projection along the flow π i : (B i ) γ i → (D i ) x i , as defined in 2.8. Because of our hypothesis about linking numbers and multiplicities we can apply proposition 2.20 and obtain a homeomorphism h D : D 1 → D 2 satisfying (a) and (b), where D i ⊂ D i are smaller transverse sections. Using proposition 1.11 we see that there exist a tubular neighbourhood W i of each γ i and a local orbital equivalence

H D : (φ 1 t , W 1 ) γ 1 → (φ 2 t , W 2 ) γ 2 (2.5) such that H D (x) = h D (x), for every x ∈ D 1 ∩ W 1 .
Without loss of generality we can assume that W 1 = W 1 . That is, we can assume that the two homeomorphisms H and H D have the same domain.

Theorem 2.18 follows directly from the following proposition.

Proposition 2.21. For every neighbourhood N ⊂ W 1 of γ 1 there exists another neighbourhood N ⊂ N and a local orbital equivalence

H N : (φ 1 t , W 1 ) γ 1 → (φ 2 t , W 2 ) γ 2 such that: (a) H N (x) = H(x) for every x ∈ W 1 \N , (b) H N (x) = H D (x), for every x ∈ N .
We dedicate the rest of this section to prove 2.21. The proof of 2.20 will be postponed to section 2.2.

Proof of 2.21

We start by writing a scheme of the steps in the proof, and then we show each step.

Scheme of the proof.

Consider a neighbourhood N ⊂ W 1 . Let's denote N 1 = N .
Step 1 For every neighbourhood O 1 ⊂ W 1 of γ 1 we can find a smaller neighbourhood

O 1 ⊂ O 1 and an orbital equivalence F : (φ 1 t , W 1 \γ 1 ) → (φ 2 t , W 2 \γ 2 ) such that: (a) F (x) = H(x) for every x ∈ B 1 ∩ (W 1 \O 1 ), (b) F (x) = H D (x) for every x ∈ B1 ∩ O 1 .
Step 2 We will find a collection of neighbourhoods

• N 1 ⊂ O 1 ⊂ O 1 ⊂ N 1 ⊂ W 1 , • N 2 ⊂ O 2 ⊂ O 2 ⊂ N 2 ⊂ W 2 . Let's define V i = N i \O i and V i = O i \N i .
If these neighbourhoods are suitably chosen, we will be able:

• to make an interpolation along the flow lines between H and F supported in the region V 1 , and obtain an orbital equivalence

H V : (φ 1 t , V 1 ) → (φ 2 t , V 2 ) satisfying that: (a) H V (x) = H(x) for every x ∈ ∂N 1 , (b) H V (x) = F (x) for every x ∈ ∂O 1 ;
• to make an interpolation along the flow lines between H D and F supported in the region V 1 , and obtain an orbital equivalence

H V : (φ 1 t , V 1 ) → (φ 2 t , V 2 ) satisfying that: (a) H V (x) = F (x) for every x ∈ ∂O 1 , (b) H V (x) = H D (x) for every x ∈ ∂N 1 .
Step 3 We will define H N in the following way:

H N (x) =                                H(x) if x ∈ W 1 \N 1 , H V (x) if x ∈ N 1 \O 1 , F (x) if x ∈ O 1 \O 1 , H V (x) if x ∈ O 1 \N 1 , H D (x) if x ∈ N 1 .
(2.6)

Observe that H N is well defined in all the boundaries ∂N 1 , ∂O 1 , ∂O 1 , ∂N 1 and gives rise to a local orbital equivalence satisfying the conclusion of 2.21.

Step 

F : W 1 \γ 1 → W 2 \γ 2 satisfying that: (a) F : (φ 1 t , W 1 \γ 1 ) → (φ 2 t , W 2 \γ 2 ) is an orbital equivalence, (b) F (x) = H(x) for every x ∈ B 1 \O 1 , (c) F (x) = H D (x) for every x ∈ B1 ∩ O 1 .
Let's define

S := {H D (x) : x ∈ B 1 ∩ W 1 } . (2.7)
Then S is a local Birkhoff section at γ 2 . Observe in addition that S satisfies that m(γ 

B2 → B 2 such that 1. B 2 \O 2 ≡ B 2 \O 2 and B 2 ∩ O 2 ≡ S ∩ O 2 ,
2. ψ is an isotopy along the φ 2 t -orbits and satisfies that ψ(y

) = y, ∀ y ∈ B 2 \O 2 , 3. if x ∈ B1 satisfies that h(x) ∈ B 2 ∩ O 2 then ψ(h(x)) = H D (x).
Proof. As usual we will denote S = S\γ 2 . Let's start by constructing a φ 2 t -isotopy from B2 to S. By proposition 2.13 there exists a collar neighbourhood U 2 ⊂ B 2 of the curve γ 2 and a continuous and bounded function s : Ů2 → R such that the map ϕ : Ů2 → S\γ 2 defined by ϕ(y) = φ 2 (y, s(y))

(2.8) is a φ 2 t -isotopy from Ů2 into S.

Consider

U 1 = h -1 (U 2 ) ⊂ B 1 .
We will chose the neighbourhoods U i sufficiently small, such that they are contained in the domain of definition of the projections π i : (B i ) γ i → (D i ) x i . Let P S be the first return to the local Birkhoff section S.

Lemma 2.24. There exists

k ∈ Z such that ϕ(h(x)) = P k S • H D (x), for every x ∈ Ů1 .
We postpone the proof of this lemma to the end. As a consequence this lemma, up to shrinking the size of U i if necessary and composing with some power of P S on the left, we can assume that ϕ(h(x)) = H D (x) for every x ∈ Ů1 . The neighbourhood O 2 , the section B 2 and the map ψ satisfy the properties claimed in lemma 2.24. To complete the proof it rest to prove 2.24.

Given a neighbourhood O 2 ⊂ W 2 of γ 2 ,
Proof of lemma 2.24. Recall that the homeomorphism h D satisfies properties (a) and (b) of 2.20 and that H D coincides with h D over the transverse section D 1 ∩ W 1 . Recall also that for every point z ∈ W i we denote the connected component of

O i (z) ∩ W i that contains z as O i W i (z). We claim that if x ∈ Ů1 then O 2 W 2 (H D (x)) coincides with O 2 W 2 (h(x)
). Since the projections along the flow preserve orbit segments, it is satisfied that

O i W i (z) = O i W i (π i (z)), ∀z ∈ Ůi . So we have that O 2 W 2 (H D (x)) = H D (O 1 W 1 (x)) = H D (O 1 W 1 (π 1 (x))) = O 2 W 2 (H D • π 1 (x)).
Since

H D • π 1 (x) = h D • π 1 (x)
and by 2.20-(b), the last term of the previous equality is equal to

O 2 W 2 (h D • π 1 (x)) = O 2 W 2 (π 2 • h(x)) = O 2 W 2 (h(x)),
so the claim follows. Now, since ϕ(h(x)) is a point in S whose orbit segment inside W 2 equals that of H D (x) we deduce that ϕ(h(x)) = P k S • H D (x) for some k ∈ Z. By the continuity of the flow this integer must vary continuously with respect to x, so it is constant. This completes the lemma.

As a corollary of 2.23 we have the proof of 2.22.

Proof of 2.22. Let V ⊂ B 1 be a collar neighbourhood of γ 1 contained in the domain of definition of the first return map P B 1 . Let V be the union of all the compact orbit segments connecting each point in V with its first return to B 1 . Up to shrinking the size of the neighbourhoods W i if necessary, we can assume that W 1 ⊂ int(V).

Given O 1 ⊂ W 1 consider O 2 = H(O 1 ). Then, 2.23 gives another neighbourhood O 2 ⊂ O 2 , a section B 2 and a φ 2 t -isotopy ψ : B2 → B 2 . Let's define O 1 = H -1 D (O 2 ) and h : B1 → B 2 given by h (x) = ψ • h(x).
Then, the homeomorphism h is a local conjugation between the first return maps to the Birkhoff sections B 1 and B 2 respectively. So it induces an orbital equivalence F with domain V\γ 1 that coincides with h over B1 ∩ V. Since W 1 ⊂ int(V) we can consider its restriction to

W 1 \γ 2 , that is F : W 1 \γ 1 → W 2 \γ 2 . It is direct that F coincides with H over B 1 \O 1 and with H D over B1 ∩ O 1 .

Step 2: The interpolation

We start by describing how to choose the neighbourhoods

N i ⊂ O i ⊂ O i ⊂ N i . Given a regular tubular neighbourhood O 1 ⊂ N 1 of γ 1 consider the annulus A = B 1 ∩ N 1 \O 1 .
We claim that if O 1 is sufficiently small, then there exists a compact annulus K with non empty interior and contained in int(A), such that P B 1 (K) ⊂ int(A). The claim follows directly by examining the first return map in B1 .

A tubular neighbourhood is said to be regular if its closure is a submanifold homeomorphic to a compact disk times an interval. Given N 1 = N we will chose a family of regular tubular neighbourhoods

N 1 ⊂ O 1 ⊂ O 1 ⊂ N 1 in the following way: 1. Choose O 1 ⊂ N 1 such
that there exists a compact annulus K with non-empty interior contained in

A 1 = B 1 ∩ N 1 \O 1 , which satisfies that P B 1 (K) ⊂ int(A 1 ), 2.
Choose O 1 ⊂ O 1 given by 2.22,

3.

Choose N 1 ⊂ O 1 such that there exists a compact annulus K with non-empty interior contained in

A 1 = B 1 ∩ O 1 \N 1 , which satisfies that P B 1 (K ) ⊂ int(A 1 ).
Let F : W 1 \γ 1 → W 2 \γ 2 given by 2.22 for the chosen neighbourhood O 1 . We will define as well:

1. N 2 = H(N 1 ), 2. O 2 = F (O 1 ) and O 2 = F (O 1 ), 3. N 2 = H D (N 1 ). Let's define V i = Ni \int(O i ) ⊂ M i and V i = Ō i \int(N i ) ⊂ M i .
Since the neighbourhoods that we consider are regular tubular neighbourhoods it follows that V i and V i are homeomorphic to a closed annulus times a circle. The topological equivalence H N will be an interpolation between H and F over the set V 1 and between H D and F over the set V 1 . We describe first the topology of these interpolating sets and then we indicate how to make these interpolations over V 1 and V 2 .

The Interpolating Neighbourhoods.

Consider the compact sets

V i = Ni \int(O i ) ⊂ M i
(2.10)

V i = Ō i \int(N i ) ⊂ M i . ( 2.11) 
From now on we will concentrate just in V i , i = 1, 2, since all the arguments will be analogous for V i . The boundary components of each V i are ∂N i and ∂O i . The compact annulus A i = B i ∩ V i is a properly embedded surface in V i . Consider the compact annuli with non empty interior K 1 = K ⊂ int(A 1 ) and K 2 = h(K) ⊂ int(A 2 ). Each K i divides A i into three annuli as in figure 2.4. We will name the boundaries of K i as α i and β i according to this figure. The map h restricts to a homeomorphism h : A 1 → A 2 which defines a conjugacy between the return maps

P K i : K i → A i .
As in definition 1.8 in the first chapter, we will consider the set

K i = {φ i t (u) : u ∈ K i , 0 ≤ t ≤ τ i (u)} (2.12)
where τ i (u) is the time of the first return to B i of a point u ∈ K i . This set is the union of all the compact orbit segments joining a point u ∈ K i with its first return

P K i (u) = φ i (u, τ i (u)).
Observe that these orbit segments are disjoint from the boundary components of V i so it is satisfied that

K i ⊂ int(V i ). Since we have that H| K 1 = F | K 1 = h| K 1 then it is verified that K 2 = H(K 1 ) = F (K 1 ).
The annulus A i is an essential surface in V i and the complement of K i ∪ A i has two connected components. We will call C i and D i to the closure of these components, where the first one is the component that contains ∂N i in its boundary and the second one is the one that contains ∂O i in its boundary. So, we have a decomposition If we cut the set V i along A i we obtain a manifold V i homeomorphic to the product of A i with a closed interval that we have depicted in figure 2.5. This manifold is equipped with a map V i → V i which corresponds to glue back the two copies of A i . The three sets C i , K i and D i lift into V i and gives a decomposition

V i = C i ∪ K i ∪ D i
V i = C i ∪ K i ∪ D i
into three compact sets, each one homeomorphic to an annulus times an interval. The components C i and D i are disjoint, and they intersect K i along the annuli L α i and L β i respectively, as in figure 2.5.

Observe that the foliation by orbit segments in V i lift into a foliation by segments in V i which are transverse to the copies of A i . Let's denote by A 0 i to the copy of A i where the lifted orbits point inward the manifold V i and by A 1 i to the other one where the orbits point outward. For every point u ∈ K i the orbit segment connecting u with its first return to A i is parametrized by s → φ i (u, s), s ∈ [0, τ i (u)], and it lifts into K i as a compact interval connecting the two copies of A i inside V i . So the set K i is a union of compact segments joining the two copies of A i , and we can put coordinates

K i → {(u, s) ∈ K i × [0, +∞) : 0 ≤ s ≤ τ i (u)}.
(2.13)

The Construction of H V and H V .

Lemma 2.25. For the neighbourhoods (a)

N i ⊂ O i ⊂ O i ⊂ N i previously chosen, there exists homeomorphisms H V : V 1 → V 2 and H V : V 1 → V 2 satisfying that:
H V : (φ 1 t , V 1 ) → (φ 2 t , V 2 ) is an orbital equivalence, (b) H V (x) = H(x) for every x ∈ ∂N 1 , (c) H V (x) = F (x) for every x ∈ ∂O 1 ; and (a) H V : (φ 1 t , V 1 ) → (φ 2 t , V 2 ) is an orbital equivalence, (b) H V (x) = F (x) for every x ∈ ∂O 1 , (c) H V (x) = H D (x) for every x ∈ ∂N 1 .
Proof. We will just do the construction of H V , being analogous the other one. The key fact to prove 2.25 is that

H(x) = F (x) = h(x) for every x ∈ B 1 ∩ V 1 . Observe that, since K 2 ∪ A 2 = H(K 1 ∪ A 1 ) = F (K 1 ∪ A 1 ) and H| A 1 ≡ F | A 1 ≡ h| A 1 , it follows that H(C 1 ) = C 2 and F (D 1 ) = D 2 .
We will be interested in the homeomorphisms

H : C 1 ∪ K 1 → C 2 ∪ K 2 F : K 1 ∪ D 1 → K 2 ∪ D 2
obtained by restriction of H and F to the sets C 1 ∪ K 1 and K 1 ∪ D 1 , respectively. We will interpolate them over the closed set K 1 . Let

H : C 1 ∪ K 1 → C 2 ∪ K 2 F : K 1 ∪ D 1 → K 2 ∪ D 2
be the lifts of these maps to V i . Since H and F preserve the oriented orbit segments and coincide with h over K 1 , we can use the coordinates 2.13 and write, for every point (u, s) ∈ K 1 ,

H(u, s) = (h(u), θ(u, s)) (2.14) F (u, s) = (h(u), η(u, s)), (2.15) 
where each function θ(u, •), η(u, •) is an increasing homeomorphism between the segments [0, τ 1 (u)] and [0, τ 2 (h(u))], continuously parametrized over u ∈ K 1 . Observe that for every 0 ≤ r ≤ 1, it follows that the convex combination r • θ(u,

•) + (1 -r) • η(u, •) is also an increasing homeomorphism from [0, τ 1 (u)] to [0, τ 2 (h(u))].
Let ρ : K 1 → [0, 1] be a continuous function such that ρ ≡ 1 in a neighbourhood of α 1 and ρ ≡ 0 in a neighbourhood of β 1 . We will define a map

H V : V 1 → V 2 in the following form: for every x ∈ V 1 , H V (x) =              H(x) if x ∈ C 1 , (h(u), ρ(u) • θ(u, s) + (1 -ρ(u)) • η(u, s)) if x = (u, s) ∈ K 1 , F (x) if x ∈ D 1 .
(2.16)

The map H V is a well defined homeomorphisms that preserves the foliations by (the lifts of the) orbit segments. It coincides with H over C 1 and with F over D 1 . Observe also that, because of the particular election of the function ρ, it follows that H V coincides with H in a neighbourhood of L α 1 = C 1 ∩ K 1 and with F in a neighbourhood of

L β 1 = K 1 ∩ D 1 . By construction, over the union A 0 1 ∪ A 1 1 the map H V coincides with the homeomorphism h : A 0 1 ∪ A 1 1 → A 0 2 ∪ A 1 2 that is obtained by lifting h : A 1 → A 2 to V 1 . So, if we glue back the two copies of A i inside V i then H V induces a homeomorphism H V : V 1 → V 2 (2.17)
which satisfies that:

(a) for each x ∈ V 1 the map H V takes each oriented orbit segment O 1 V 1 (x) homeomor- phically onto the orbit segment O 2 V 2 (H V (x)) preserving orientations, (b) H V coincides with H over the set C 1 ,
(c) H V coincides with F over the set D 1 .

Step 3: The construction of H N

To finish the proof of 2.21 just observe that the original neighbourhood W 1 can be decomposed as the union of five compact manifolds which intersect along boundary tori, i.e.

W 1 = W 1 \N 1 ∪ V 1 ∪ O 1 \O 1 ∪ V 1 ∪ N 1 .
The homeomorphisms H, H V , F , H V and H D match well along the boundaries and give rise to the homeomorphism H N as we defined in 2.6. It is an orbital equivalence, since it is when restricted to each piece of the decomposition of W 1 , and clearly satisfies the properties stated in 2.21. This concludes the proof of 2.21 as well as the proof of 2.18.

Proof of proposition 2.20

We recall from section 2.8 that a projection along the flow

π i : (B i ) γ i → (D i ) x i
is a map of the form π i : Ůi |w i → D i , where:

• w i is a connected component of W s loc (γ i ) ∪ W u loc (γ i ) ∩ Bi , • U i ⊂ B i is a collar neighbourhood of γ i ,
• Ůi |w i denotes the annulus Ůi = U i \γ i cut along w i . This map is obtained by lifting B i |w i and D i to the universal cover of a tubular neighbourhood of γ i and then projecting along the flow lines in a neighbourhood Ůi |w i . We can think π i as a map Ůi → D i \{x i } which is bi-valuated over the segment w i . If we call m i and n i to the multiplicity and the linking number of B i , then π i induces a (local) conjugation between P n i B i and P D i and the discontinuity defect over w i is quantified by

P m i D i . See proposition 4.1. Proof of 2.20. Let n = n(γ 1 , B 1 ) = n(γ 2 , B 2 ) and m = m(γ 1 , B 1 ) = m(γ 2 , B 2 ). Let U 1 ⊂ B 1 be a collar neighbourhood of γ 1 and let U 2 = h(U 1
). We will choose U 1 sufficiently small such that each Ůi = U i \γ i is contained in the domain of definition of P B i and in the domain of definition of π i . Let's denote by w 1 to the segment in B 1 that we use to cut off and define π 1 , and let w 2 ⊂ B 2 be the segment that corresponds by h. We will assume that each segment w i is a connected component of B i ∩ W s loc (γ i ). Consider the segment v i ⊂ D i that equals the intersection of D i with the branch of W s loc (γ i ) that contains w i . Observe that π i projects the points in the segment w i into the segment v i .

We will prove first the proposition when n = m = 1, and then we will comment how to deduce the general case using proposition 2.9.

Case n = m = 1

Since n = 1 we have that each Birkhoff section B i can be partitioned into four quadrants. Following the convention of proposition 2.9, we will label the quadrants of D i and the quadrants of B i as

D s i , s = 1, . . . , 4, B s i , s = 1, . . . , 4
in such a way that D 1 i and D 4 i intersect along the segment v i and B 1 i and B 4 i intersect along w i . See figure 2.6. We will consider as well the boundaries of the quadrants

v i = v 1 i = D 4 1 ∩ D 1 1 , v 2 i = D 1 1 ∩ D 2 1 , v 3 i = D 2 1 ∩ D 2 1 , v 4 i = D 3 1 ∩ D 4 1 w i = w 1 i = B 4 1 ∩ B 1 1 , w 2 i = B 1 1 ∩ B 2 1 , w 3 i = B 2 1 ∩ B 2 1 , w 4 i = B 3 1 ∩ B 4 1 .
Observe that for every s = 1, . . . , 

4
π i s : B s i ∩ Ůi → D s i \{x i }
which is a homeomorphism onto its image and takes points in w s i into v s i . Let's denote by η s to the inverse map

η s = (π 1 s ) -1 : V ∩ D s 1 \{x 1 } → B s 1 .
Let V ⊂ π 1 ( Ů1 ) ∪ {x 1 } be a neighbourhood of x 1 . We will start by constricting h D in each quadrant V ∩ D s 1 . For every s = 1, . . . , 4 let h s D : V ∩ D s 1 → D s 2 be defined in the following way:

h s D (x) =      π 2 s • h • η s (x) if x = x 1 , x 2 if x = x 1 .
(2.18)

We claim that each h s D is a homeomorphism onto its image. Observe that η s takes points in D s 1 \{x 1 } into the quadrant B s 1 , h takes points in B s 1 into the quadrant B s 2 and then π 2 projects B s 2 into the punctured quadrant D s 2 \{x 2 }. Since each map is a homeomorphism onto its image then h s D takes V ∩ D s 1 \{x 1 } homeomorphically onto its image in D s 2 \{x 2 }. Since the projections along the flow send points near γ i in the Birkhoff section to points near x i we see that h s D is continuous in x 1 and the claim follows.

We define now h

D : V → D 2 such that h D (x) = h s D (x) if x ∈ D s 1 , s = 1, . . . , 4. (2.19)
We will show that h is a well defined map, that is a homeomorphism onto its image and conjugates the first return maps P D i for points close to x i . To see that h D is well defined we have to check the definition of h D over the boundaries v s 1 , s = 1, . . . , 4 of the quadrants D s 1 . If x belongs to some segment v s 1 for s = 2, 3, 4 then we have that

B 3 1 B 1 2 B 2 2 B 3 2 B 4 2 
D 3 1 B 4 1 B 1 1 B 2 1 D 2 1 D 1 1 D 4 1 D 3 2 D 2 2 D 1 2 D 4 2 h h D x y P B 2 • h(y) x 1 P B 1 (y) h(y) x 2 π 2 h D (x) π 1 γ 2 γ 1 w 1 1 v 1 1 w 1 2 v 1 2
Figure 2.6: The closed curve starting at x ∈ v 1 1 lift by the maps η s to a curve that connects y = η 1 (x) with P B 1 (y) = η 4 (x). η s-1 (x) = η s (x). This is because the maps π i s-1 and π i s coincides over the segment w s i which separates the quadrants B s-1 i and B s i . It follows that

h s D (x) = π 2 s • h • η s (x) = π 2 s-1 • h • η s-1 (x) = h s-1 D (x), for every x ∈ v s 1 ,
so the map h D is well defined in the segments v 2 1 , v 3 1 and v 4 1 .

We will use now proposition 2.9 to show that h D is well defined and continuous over the segment v 1 1 . By this proposition we have that

π i 4 (z) = P -1 D i • π i 1 (z) = π i 1 • P -1 B i (z), for every z ∈ w 1 i . So it follows that η 4 (x) = P B i • η 1 (x) for every x ∈ v 1
1 , as we have illustrated in figure 2.6. Using that h conjugates the maps P B i we have that

h 4 D (x) = π 2 4 • h • η 4 (x) = π 2 4 • h • P B 1 • η 1 (x) (2.20) = π 2 4 • P B 2 • h • η 1 (x) = π 2 1 • h • η 1 (x) = h 1 D (x). (2.21) Since h 4 D (x) = h 1 D (x) for every x ∈ v 1 1
, we conclude that h D : V → D 2 is well defined, and is a homeomorphism onto its image.

To finish the proof, consider a disk D 1 ⊂ V that contains x 1 and define D 2 = h(D 1 ). We have to show that the homeomorphism h : D 1 → D 2 is a local conjugation between P D 1 and P D 2 . Let x ∈ D 1 be a point which belongs to some quadrant D s 1 . Then

h D • P D 1 (x) = π 2 s • h • η s • P D 1 (x) = π 2 s • h • P B 1 • η s (x) (2.22) = π 2 s • P B 2 • h • η s (x) = P D 2 • π 2 s • h • η s (x) = P D 2 • h D (x).
(2.23)

General case

The general case follows the same proof that the previous case, the only difference is when checking the continuity along the segment v 1 s and the conjugation. Using proposition 2.9 we can see how to modify equations (2.20) and (2.22) above and obtain the desired result.

Chapter 3

Fried and Goodman Surgeries.

In this chapter we study the relationship between Goodman and Fried surgeries. This two procedures turn out to be equivalent in the class of transitive Anosov flows, when we chose the obvious equivalent parameters.

In what follows M will always be a smooth, closed, orientable, 3-manifold. When we say that (φ t , M ) is Anosov this means that φ t is generated by a C 1 vector field and Dφ t preserves a hyperbolic splitting T M = E s ⊕span{X}⊕E u . The stable (or the unstable) foliation of φ t provides a global frame transverse to the flow, so in particular provides a transverse frame on every periodic curve. For simplicity, we always assume that the local stable/unstable manifolds of γ are orientable. There always exists periodic orbits like this, see [START_REF] Brunella | Expansive flows on three -manifolds[END_REF]. Recall that a flow is transitive if there is a point with dense orbit. There exist transitive Anosov flows, and also there exists non-transitive Anosov flows.

Given an Anosov flow (φ t , M ), a periodic orbit γ and some m ∈ Z, the two surgeries allow to construct a new flow in a new 3-manifold, that is homeomorphic to the manifold M (γ, m) obtained by performing an integral Dehn surgery on the curve γ ⊂ M with surgery coefficient m. The surgery coefficient m is expressed in the meridian/longitude basis associated to the local frame by stable manifolds.

Let (φ t , M ) be an Anosov flow and consider the flows

φ 1 t , M 1 = Goodman surgery (φ t , M, γ, A, f, m) (3.1) φ 2 t , M 2 = Fried surgery (φ t , M, γ, m) (3.2)
where A is a Goodman annulus parallel to γ and f : A → A is a Dehn twist with twist parameter m ∈ Z as in theorem 3.6. We recall from this theorem that, in order to obtain an Anosov flow with a Goodman surgery, m must be positive or negative, depending on the position of A.

As we said before, the manifolds M 1 and M 2 are both homeomorphic to M (γ, m). Let's point out the following facts about the flows (3.1) and (3.2):

Goodman surgery:

• The flow (3.1) depends on the particular choice of f : A → A in a non-trivial way.

If we change the pair (f, A) for another which is not φ t -equivalent, then the new flow is not orbitally equivalent to φ1 t by a homeomorphism that is the identity away from γ. See 3.1. out of a neighbourhood of γ. See 3.1.

• By construction M 1 is equipped with a smooth structure and (φ 1 t , M 1 ) is an Anosov flow.

Fried surgery:

• The flow (3.2) is almost equivalent to (φ t , M \γ) in the complement of γ 2 .
• It is topologically Anosov, but it is not clear that the smooth structure in the complement of γ 2 induced by the almost equivalence with the original flow can be extended onto a global smooth structure, for which the flow is Anosov.

Let's also point out that both surgeries preserve the transitivity or non-transitivity of the flow (φ t , M ). The purpose of this chapter is to prove the following theorem: The proof of theorem 3.1 consists in reduce the problem of orbital equivalence between flows to the conjugacy problem between first return maps to Birkhoff section. Since in our case we will be working with pseudo-Anosov maps, the proof proceed by applying classical techniques in pseudo-Anosov theory that we have described in section 7, with the aid of the techniques that we have presented in 2.16 and 3.19.

It is for the previous reason that the theorem depends on the transitivity property, because Birkhoff sections exists just for Anosov flows under this hypothesis (see [START_REF] Fried | Transitive Anosov flows and pseudo-Anosov maps[END_REF] and also [START_REF] Brunella | Expansive flows on three -manifolds[END_REF]).

Remark 3.3. It is not known if theorem 3.1 is valid without the hypothesis of transitivity.

For non-transitive Anosov flows there are no Birkhoff sections, or even reasonable analogues. For example, in [START_REF] Béguin | Building Anosov flows on 3-manifolds[END_REF] it is shown the construction of some particular kind on transitive hyperbolic attractors, called non-coherent attractors, for which the attractor can not be obtained as the suspension of a surface attractor plus surgery. See also [START_REF] Béguin | Quelques questions de Dynamique, Relativité Générale, Dynamique en relativité Générale[END_REF] and [START_REF] Christy | ANOSOV FLOWS ON THREE-MANIFOLDS (TOPOLOGY, DY-NAMICS[END_REF].

The chapter is organized as follows: In sections 1 and 2 we explain the surgery procedures of Goodman and Fried. The proof of theorem 3.1 is given in section 3. Following the proof we explain in 3.1 that the equivalence constructed in theorem 3.1 cannot be obtained by a local procedure in a neighbourhood of the surgery. The main technical step is proposition 3.14, that we postpone to section 4.

Goodman surgeries.

Let φ t : M → M be an Anosov flow generated by a C r vector field X, r ≥ 1, and consider a periodic orbit γ whose local invariant manifolds are orientable.

Let W be a tubular neighbourhood of γ and let W i , i = 1, . . . , 4 be the four quadrants of W determined by W s loc (γ) ∪ W u loc (γ).

Consider a compact annulus A smoothly embedded in the interior of a quadrant, which is transverse to the vector field X and is parallel to γ, in the sense that a closed curve in A generating its fundamental group is homotopic to γ inside W . This is shown in figure 3.1a.

The orbit γ can be enclosed with a compact tubular neighbourhood N A ⊂ W with smooth boundary, such that A ⊂ ∂N A and such that the flow points outward the manifold N A along the annulus. This is depicted 2 in figure 3.1b.

Let's define M

A = M \int(N A ).
The surgery of Goodman will consist in separate the manifold M into the two pieces M A and N A , and then re-glue them using an appropriate diffeomorphism ϕ : ∂N A → ∂M A = ∂N A that produces an Anosov vector field X in the manifold M = M A ϕ N A . The diffeomorphism ϕ will have support contained in the annulus A and, topologically, it will be a Dehn twist. We explain the steps in this construction in what follows. 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 11 [START_REF] Béguin | Quelques questions de Dynamique, Relativité Générale, Dynamique en relativité Générale[END_REF] 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 

Steps in the Goodman surgery

Let D be a smooth local transverse section at γ, let x 0 = γ ∩ D and let P D : U → D be the first return map defined in an open neighbourhood of x 0 . There exists a smooth reparametrization of φ t , supported in a neighbourhood of γ, such that the returning time to D satisfies τ D (x) = 1, ∀ x ∈ U , so we will assume this is satisfied by our original flow.

Choice of a tubular neighbourhood W . Consider a tubular neighbourhood W of γ included in the interior of the set U = {φ s (x) : x ∈ U, 0 ≤ s ≤ 1}. The family of disks

D s := φ s (U ) ∩ W, 0 ≤ s ≤ 1
define a smooth foliation of W by meridian disks. The intersection of each disk D s with the center-stable/unstable foliations of the flow determines a pair of transverse foliations F s Ds , F u Ds on the disk.

On the boundary ∂W , the intersections ∂W ∩D s = ∂D s and ∂W ∩W s loc (γ) determine a meridian class a and a longitude class b in H 1 (∂W ) H 1 (W \γ), respectively. Exactly as in 8, we will orient the longitude with the same orientation of γ as an orbit of the flow, and we will orient the meridian in such a way that {a, b} is a positive basis of H 1 (∂W ). (Here, ∂W must be oriented as boundary of W .) The four quadrants W 1 , W 2 , W 3 , W 4 will be cyclically oriented by the meridian a. We will call W 1 , W 3 to the two quadrants satisfying that the meridian a enters the quadrant along the stable manifold, and W 2 , W 4 to the other two.

Choice of the Annulus A.

Let W i be one of the four quadrants of W . We will choose a smoothly embedded compact annulus A ⊂ int(W i ) satisfying the following five conditions: (i) A is parallel to γ, i.e. an essential closed curve in A is isotopic to γ inside W , (ii) A is transverse to the flow, (iii) A is transverse to the disks D s .

(iv) Each intersection segment σ s = A∩D s is contained in the corresponding quadrant

D i s = D s ∩ W i . At each point x ∈ D i
s the leaves F s Ds (x) and F u Ds (x) determine four sub-quadrants in D i s , one of them containing the point x 0 . We will require that σ s is transverse to the foliations F s Ds , F u Ds and, at each point x ∈ σ s , this segment traverses from the sub-quadrant that contains x 0 to the sub-quadrant that is not adjacent, as in figure 3.2.

(v) The intersection of the center-stable/unstable manifolds with annulus determine two transverse foliations F s A and F u A on it. We will require that it the leaves of these foliations are segments that connects the two boundaries of A, as in figure 3 

x 0 x F s D s (x) F u D s (x) σ s

Coordinates in A. The family of segments

σ s = A ∩ D s , 0 ≤ s ≤ 1
constitutes a smooth foliation of A by oriented segments. The orientation in each σ s is induced from the orientation of the meridian α s . We will call them the meridian segments. Choose a smooth coordinate system

A → [0, 1] × R/Z
that takes each meridian segment σ s to [0, 1] × {s} preserving orientation. The closed curves l r given in coordinates by l r = {r} × R/Z define a foliation of A by curves homologous to the longitude b. We will call these curves the longitudes and they will be oriented with the same orientation as b.

In these coordinates, the intersection of A with the stable and unstable foliations and the foliations by meridians and longitudes are depicted on the right side of figure 3.3 for the case A ⊂ int(W 1 ). If we change the annulus for another in an adjacent quadrant it has the effect of switching the intersection with the stable/unstable foliations in this figure .   The glueing diffeomorphism. Consider some m ∈ Z and some strictly increasing smooth function h : [0, 1] → [0, 1] satisfying that h(0) = 0, h(1) = 1 and h (0) = h (1) = 0. Consider the diffeomorphism f : A → A given in the meridian/longitude coordinates by f (r, s) = (r, s + m • h(r)). We will define

ϕ : ∂N A → ∂M A given by ϕ(p) =      f (p) if p ∈ A p if p / ∈ A. (3.3)
Note that, since h (0) = h (1) = 0 then ϕ is a smooth diffeomorphism.

The Goodman flow.

Let M = M A ϕ N A be the manifold obtained as the quotient of the disjoint union M A N A by the map ϕ : ∂N A → ∂M A . There are two natural inclusions M A → M and N A → M . Since ϕ is a smooth diffeomorphism, this quotient space can be endowed with a differentiable structure such that the inclusion maps are diffeomorphisms onto their respective images. Moreover, since ϕ is supported in int(A) and the vectorfield X is transverse to A, the differentiable structure on M can be chosen in such a way that the push forward by the inclusion of the vectorfields X| M A and X| N A coincides over ι(M A ) ∩ ι(N A ) ⊂ M and gives rise to a C r vector field X in M , where r ≥ 1 is the differentiability class of X. See for example [START_REF] Milnor | Lectures on the h-cobordism theorem[END_REF].

[0, 1] 1 0 1 l R/Z σ W s loc (γ) W u loc (γ) A l σ Figure 3.3:
The intersection of A with the stable/unstable foliations.

Definition 3.4. We say that the flow φ t : M → M generated by X is obtained by a Goodman surgery of (φ t , M ) at γ. Since the surgery depends on the election of A, k and h we will denote:

(φ t , M ) = Goodman surgery(φ t ,

M, γ, A, h, m). (3.4)

The annulus A satisfying the previous conditions is called a Goodman annulus.

Remark 3.5. The diffeomorphism ϕ is a Dehn twist supported in the annulus A that preserves the foliation by longitudes. The action in homology, in the meridian/longitude basis described before, is given by the matrix 1 0 m 1 So, topologically, cutting off the neighbourhood N A from M and re-glueing with ϕ corresponds to make an integral Dehn surgery on M of parameter m ∈ Z along the framed knot γ.

Theorem of Goodman

Theorem 3.6 (Goodman,[START_REF] Goodman | Dehn surgery on Anosov flows[END_REF]). Let γ be a periodic orbit of an Anosov flow and consider some α > 0. Then, there exists a tubular neighbourhood W of γ such that, if we choose a Goodman annulus contained in the first quadrant W 1 satisfying that the angles

(F s A , σ), (F s A , l), (F u A , σ), (F u A , l)
are, in modulus, uniformly bounded from below by α, then for every m ∈ Z + the vector field X obtained by the Goodman surgery (3.4) generates an Anosov flow φ t in M .

Moreover, the same is true if we consider A ⊂ int(W 3 ), and if we consider A ⊂ int(W 2 ) or A ⊂ int(W 4 ) but with m ∈ Z -. Remark 3.7. The statement of this theorem in [START_REF] Goodman | Dehn surgery on Anosov flows[END_REF] does not make reference to the angles between stable/unstable foliations and meridian/longitudes on A, nor to the proximity of the annulus with the periodic orbit. This is essentially because, in that work, they consider a very precise family of annuli. For enunciating the theorem as in 3.6 above, we have to add these requirements. (Cf. proof of theorem 4.12.) Also, in [START_REF] Goodman | Dehn surgery on Anosov flows[END_REF] the statement is for annuli contained in the first or third quadrant and parameter m > 0. We have added the assertion about annuli contained in the second or four quadrant and m < 0, which follows directly by examining in the proof of [START_REF] Goodman | Dehn surgery on Anosov flows[END_REF] how they change the orientations of the stable/unstable manifolds and the orientations of the meridians in the annulus when we change the quadrant. It is possible to show that if A is contained in the first quadrant and m < 0, then the obtained flow can be Anosov, provided that the annulus A is placed sufficiently close to the curve γ.

The proof of this theorem is based on the cone field criterium (see [START_REF] Katok | Introduction to the modern theory of dynamical systems[END_REF]). The idea is that the future φ t -orbit of a point x in M travels alternately between the manifolds M A and N A and traverse the common boundary in a discrete set of times. So the action of Dφ t (x) on T M can be seen as an alternate application on T M of Dφ tn (x n ) (for some sequences t n , x n which depends on x) and Dϕ or Dϕ -1 , depending if the orbit enters in M A or N A , respectively. When the orbit enters in M A we have that Dϕ is a parabolic matrix, and when it escapes Dϕ -1 = id. Therefore, the action of Dφ t on the tangent bundle is a combined action of Dφ t and Dϕ. Since φ t is Anosov, there exists a distribution of cones K u in T M which is positively invariant by Dφ t and is exponentially contracted. The key fact is that, if m is positive, it is possible to find a cone field that is positively invariant and exponentially contracted for the combined action of Dφ tn and Dϕ.

Surgery on different annuli. Given an Anosov flow (φ t , M ), a closed orbit γ ⊂ M and an integer m, the Goodman surgery provides a method to find an Anosov flow φ t in a manifold M , that is obtained by Dehn surgery on M over the curve γ with twist parameter m. We have to place the annulus A on different quadrants according to the sign of m. Observe that the flow φ t depends on the particular election of the annulus A as well as the twist map f : A → A. 
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A natural question that arises is whether different choices for A and f give rise to orbitally equivalent flows. Theorem 3.1 implies that for different elections of A and f all the flows obtained are orbitally equivalent. For instance, if we consider two annulus A 1 ⊂ W 1 and A 2 ⊂ W 2 and we perform a surgery with parameter m > 0 over A 1 and with parameter -m over A 2 , the flow obtained is orbitally equivalent to the original (φ t , M ).

Fried surgeries.

In this section we explain Fried surgeries with some detail. We will explain how to construct the surgery in a model germ of a saddle type periodic orbit, that then can be adapted to any flow having a periodic orbit of this kind. Then we will concentrate in the case of topologically Anosov flows.

Fried surgeries on the germ of a periodic orbit.

Integral Fried surgeries on saddle type periodic orbits.

Here we will explain Fried's procedure for the germ of a topologically saddle type periodic orbit. So let's consider Observe that:

• The non-wandering set of φ t consists of one topologically saddle type periodic orbit γ.

• The manifold N is homeomorphic to an open solid torus, and [γ] generates H 1 (N ) Z.

• By our assumptions on f , the stable and unstable manifolds of γ are orientable.

The manifolds W s (γ) and W u (γ) are properly embedded cylinders in N , and their union divides N in four quadrants. In what follows, we will consider a basis {a, b} of H 1 (N \γ) formed by a meridian class a and a longitude class b as described in 8. We will consider as well a fixed transverse section D → N determined by the projection in the quotient of the disk D × {0}. The orbit γ is parametrized as

γ(t) = φ t (p 0 ) with 0 ≤ t ≤ 1.
00000000 00000000 00000000 00000000 00000000 11111111 11111111 11111111 11111111 11111111 Observe that:

M * M

Blow-up

• If γ i ∈ Per(φ * t | ∂N * ) is repelling (attracting) then there is a stable (unstable) manifold W s (γ i ) → N * (W u (γ) → N * ) that intersects transversally ∂N * along γ i . This manifold is a half-cylinder properly embedded in N * .
• There is a basis of H 1 (∂N * ) where the meridian is a = [∂D * × {s}] and the longitude is b = [γ i ].

• In the complement of ∂N * , the map Π provides an orbital equivalence

(φ * t , N * \∂N * ) → (φ t , N \γ).
Blow-down. Let σ ⊂ ∂N * be a global transverse section for the restricted flow φ * t : ∂N * → ∂N * that intersects once each periodic orbit in ∂N * . In what follows we will produce a blow-down of the flow (φ * t , N * ) that depends on the curve σ and is not equivalent to the previous one.

The first return map f σ : σ → σ is conjugated to a Morse-Smale map with two attracting and two repelling fixed points. Observe that for every curve σ ⊂ ∂N * , being a transverse section that intersects once each periodic orbit in the boundary is equivalent to say that σ is a simple closed curve, transverse to the flow, with homology coordinates

[σ] = a + m • b ∈ H 1 (∂N * )
for some m ∈ Z.

Let φ σ * t be a reparametrization of the flow φ * t , supported in small neighbourhood of ∂N * , verifying that φ σ * 1 (p) = f σ (p), ∀ p ∈ σ. Then, the action of φ σ * 1 on σ induces a foliation F σ on the torus ∂N * by simple closed curves isotopic to σ. Namely, 

F σ = {φ σ * 1 (σ) : 0 ≤ t ≤ 1}. Let Π σ : N * → N σ := N * /

Blow-down

where m ∈ Z is given by [σ] = a + m • b. 3Given two curves σ i , i = 1, 2 in the hypothesis of the previous construction we will denote by Π σ i to the corresponding blow-down maps, and we will denote Π 0 = Π. We will establish the following simple facts about (φ σ t , N σ ). 

c) For every pair of sections σ

i , the map Π σ 2 • Π -1 σ 1 defines an orbital equivalence (φ σ 1 t , N σ 1 \γ σ 1 ) → (φ σ 2 t , N σ 2 \γ σ 2 ) in the complement of the periodic orbits. d) If [σ 1 ] = [σ 2 ] ∈ H 1 (∂N * ) then there exists a topological equivalence H : (φ σ 1 t , N σ 1 ) → (φ σ 2 t , N σ 2 ) that coincides with Π σ 2 • Π -1 σ 1 in the complement of a neighbourhood of γ σ 1 .
Proof. Let's check first that the orbit γ σ has stable and unstable manifolds, homeomorphic to cylinders, that disconnect N σ in four quadrants. Let Per(φ * t | ∂N * ) = {γ 1 , γ 2 , γ 3 , γ 4 } labelled in such a way that γ 1 , γ 3 are the repelling orbits. Then, W s (γ 1 ) and W s (γ 3 ) are half-cylinders (i.e. homeomorphic to R/Z 1 × [0, +∞)) contained in N * , tangent to the flow, such that W s (γ i ) ∂N * = γ i , i = 1, 3. Clearly, each of these half-cylinders projects by Π σ homeomorphically onto its image. Consider a curve α ⊂ N * \∂N * homotopic to σ. By construction this curve projects onto a meridian curve in N σ \γ σ (i.e. Π σ (α) → N σ is homotopically trivial) and it intersects once the image of each W s (γ i ), so this half cylinders have multiplicity one. It follows that Π σ (W s (γ 1 ))∪Π σ (W s (γ 3 )) is an embedded cylinder in N σ , tangent to the flow, that contains γ σ and every orbit inside converges to γ σ in forward time. The analogue statement is true for the attracting orbits γ 2 , γ 4 and their unstable manifolds. Since the dynamic is wandering in the complement of γ σ it follows that W s (γ σ ) :

= Π σ (W s (γ 1 ))∪Π σ (W s (γ 3 )) and W u (γ σ ) := Π σ (W u (γ 2 )) ∪ Π σ (W u (γ 4
)) constitute stable and unstable manifolds for γ σ homeomorphic to cylinders. This cylinders turn out to be properly embedded in N σ and W s (γ σ ) ∪ W u (γ σ ) disconnects N σ in four quadrants, as claimed at the beginning.

Let B σ := Π σ (D * ). Then B σ is the continuous image of an annulus [0, 1) × R/Z 1 → N σ with ∂B σ = Π σ (0 × R/Z 1 ) = γ σ .
It is an embedding on the interior, and Bσ is a global transverse section for φ σ t restricted to N σ \γ σ . It follows that B σ is a topological Birkhoff section. Observe that Π σ : ∂D * → γ σ could be non-monotonous, but the section is, by construction, tame.

The Birkhoff section B σ is divided in four quadrants by W s (γ σ ) ∪ W u (γ σ ). By projecting Bσ along the flow lines onto transverse disk (as explained in 1) we deduce item a) of the lemma. Remark 3.10. All the flows (φ σ t , N σ ) are pairwise orbitally equivalent because they are the germ of a saddle type periodic orbit. But we will be interested in orbitally equivalences that coincides with Π σ 2 • Π -1 σ 1 out of a neighbourhood of the periodic orbits. In this sense, item d) says that each flow (φ σ t , N σ ) just depends on m ∈ Z. This justifies the notation Fried surgery(φ t , N, γ, m).

Rational Fried surgeries on k-prong periodic orbits.

The previous surgery can be easily redefined for the more general class of k-prong periodic orbits following the same arguments. For example, start with a saddle type periodic orbit γ with orientable stable/unstable manifolds and choose a curve σ which is a transverse section for the blow-up flow on the boundary, but with homology coordinates [σ] = n • a + m • b. Then, blowing-down with a foliation by curves parallel to σ produces a k-prong periodic orbit γ σ . Since there are two attracting curves in the boundary of the blow-up of the saddle, then we see that k = 2n. The obtained flow is the suspension of a 2n-prong local model f : D → D (2n stable prongs and 2n unstable prongs), and the action of f on the set of stable prongs is a permutation defining two cosets. Observe that a transverse section for γ is transformed into a Birkhoff section for γ σ . This section has multiplicity |m|, and has four quadrants (we have not defined linking number for Birkhoff sections at k-prong periodic orbits).

Fried surgeries in topologically Anosov flows.

We describe here the Fried surgeries for topologically Anosov flows. Recall that a regular flow in a closed 3-manifold is topologically Anosov if it is expansive and its invariant foliations have no circle prongs. So let (φ t , M ) be a topologically Anosov flow in a closed, orientable 3-manifold. Consider a finite set Γ = {γ 1 , . . . , γ k } of periodic orbits with orientable local invariant manifolds. (There always exists periodic orbits with local invariant manifolds, cf. [START_REF] Brunella | Expansive flows on three -manifolds[END_REF].) Choose m 1 , . . . , m k ∈ Z. Since the germ of the flow at each periodic orbit γ i is locally equivalent to the suspension of a saddle type hyperbolic linear transformation in R 2 with positive eigenvalues, we can apply the surgery defined in (3.7) at each periodic orbit γ i with parameter m i .

The procedure consists in choosing local coordinates around each γ i and construct a blow-up flow Π :

(φ * t , M * ) → (φ t , M ).
The boundary of M * is formed by k tori T i , each one projecting onto the corresponding γ i . For an adequate reparametrization of φ * t , we collapse each boundary component T i using the foliation F σ i induced by a transverse section σ i with coordinates

[σ i ] = (1, m i ) ∈ H 1 (T i ).
The result is a manifold M equipped with a flow φ t , and a blow-down

Π : (φ * t , M * ) → (φ t , M ).
Each torus T i maps onto a periodic saddle type periodic curve γ i in M . We set Γ = {γ 1 , . . . , γ k }.

Definition 3.11. We say that the flow (φ t , M ) is obtained from (φ t , M ) by a Fried surgery with parameters (γ i , m i ), i = 1, . . . k. We will denote (φ t , M ) = Fried surgery(φ t , M, (γ 1 , m 1 ), . . . , (γ k , m k )).

(3.8)

The flow (φ t , M ) verifies the following direct facts, that we state as a proposition.

Proposition 3.12. The Fried surgery described above satisfies the following: a) Topologically, the integral Fried surgery (3.8) corresponds to make an integral Dehn surgery on M at each curve γ i , with twist parameter m i ∈ Z in the local frame around γ i determined by the stable and unstable foliations of φ t .

b) The restriction flows (φ t , M \Γ) and (φ t , M \Γ ) are orbitally equivalent.

c) The flow (φ t , M ) is topologically Anosov.

Proof. Items a) and b) are clear from the definitions. To conclude that (φ t , M ) is topologically Anosov, just observe that the Fried surgery preserves the the class of orbitally expansive flows, and that φ t preserves a pair of non-singular transverse foliations, since the integral surgeries on saddle type periodic orbits do not generate prongs for the new foliations.

Fried surgeries can thus be interpreted as a counterpart of Dehn surgeries, but adapted to the pairs (flow,3-manifold), provided the flow has some periodic orbits. Since the surgery process just depends on the germ of the flow in a neighbourhood of the periodic orbits, clearly this surgery can be performed in a very wide class of flows having periodic orbits, provided we define a way to blow-up the orbits.

One notable characteristic about this surgery is item b) of the previous proposition, which says that in the surgery process the foliation by flow orbits remains unchanged in the complement of the periodic orbit. Thus Fried surgeries do not change the almost equivalence class of the original flow.

The integral Fried surgeries preserve the class of topologically Anosov flows. Given a flow of this kind, we can construct many others examples using Fried surgeries, and all of them are almost equivalent to the first one. Thus Fried surgeries become an important tool for the study of topologically Anosov flows. It is relevant to remark as well that rational Fried surgeries preserve the class of expansive flows (or equivalently pseudo-Anosov flows).

Proof of theorem B (thm. 3.1).

For showing that the flows obtained by Fried or Goodman surgery (along the same periodic orbit and with the same integer parameters) are equivalent, we will endow each one with an adequate Birkhoff section and we will use theorem 2.16. Fried surgeries naturally transforms Birkhoff sections of the original flow in Birkhoff sections for the new flow, but this is not the case with Goodman surgeries. Thus, we will have to show the existence of an adequate Birkhoff section associated with this latter procedure. This will be the content of proposition 3.14, which is the most technical step and its proof will be postponed to the next section. We explain here how does this proposition works, and we will give the proof of theorem 2.16 assuming this statement.

Consider first some regular tubular neighbourhood N of γ and a Goodman annulus A ⊂ N . The complement of int(N ) will be denoted by M N . Given the two flows (φ i t , M i ) defined in (3.1) and (3.2), obtained by Goodman and Fried surgery respectively, we will make the following definitions:

• For each i = 1, 2 let γ i be the periodic orbit of (φ i t , M i ) that corresponds to γ after surgery.

• There is a natural inclusion ι 1 :

M N → M 1 = M N ∂ N . We will denote M 1 N = ι 1 (M N ). • Since M \γ M 2 \γ 2 there is a natural inclusion ι 2 : M N → M 2 . We will denote M 2 N = ι 2 (M N ).
Consider the homeomorphism

H N : M 1 N → M 2 N defined by H N := ι 2 • ι -1 1 .
Since the foliation by the orbits of φ t restricted to M \int(N ) is not altered by any of these surgeries, we have an orbital equivalence

H N : (φ 1 t , M 1 N ) → (φ 2 t , M 2 N ) (3.9)
between the complement of a neighbourhood of γ 1 and the complement of a neighbourhood of γ 2 .

Remark 3.13. We will use this orbital equivalence in the course of the present proof. However, we want to remark that H N cannot be extended into a global orbital equivalence (φ 1 t , M 1 ) → (φ 2 t , M 2 ). We show this fact in 3.16 at the end of this section.

Proposition 3.14. Consider an Anosov flow (φ t , M ) and a periodic orbit γ with orientable local invariant manifolds. Let ι : (Σ, ∂Σ) → (M, Γ) be a Birkhoff section transverse to γ. Then, there exists a tubular neighbourhood N of γ such that every Goodman surgery supported in an annulus A ⊂ N satisfies:

(i) The flow (φ 1 t , M 1 ) obtained by surgery has a Birkhoff section j :

(Σ 1 , ∂Σ 1 ) → (M 1 , Γ 1 ) with γ 1 ∈ Γ 1 and p(γ 1 , Σ 1 ) = |γ ∩ Σ|. (ii) M 1 N ∩ j(Σ 1 ) ≡ ι 1 (Σ\int(N )). γ N M N M 1 N M 2 N γ 1 N 1 N 2 H N γ 2 Σ N

Goodman Surgery

Fried Surgery

p 1 q 1 p 2 q 2
Figure 3.6: The two surgeries.

Proof of theorem 3.1. We will fix now a tubular neighbourhood N as described in proposition 3.14 above. Consider a Birkhoff section ι : (Σ, ∂Σ) → (M, Γ) for the flow φ t such that γ ∩ Γ = ∅. We have that γ ∩ Σ is a periodic orbit of the first return map P Σ , whose period is p(γ, Σ) = |γ ∩ Σ|. There always exist sections with this property, see [START_REF] Brunella | Expansive flows on three -manifolds[END_REF], pag. 15. We define

Σ N := Σ\int(N ), Σ 1 N := ι 1 (Σ N ) and Σ 2 N := ι 2 (Σ N ).
From the one side, the Birkhoff section Σ is transformed by the Fried surgery into a Birkhoff section j 2 : (Σ 2 , ∂Σ 2 ) → (M 2 , Γ 2 ) for the Fried flow φ 2 t , and it is clear that

j 2 (Σ 2 ) ∩ M 2 N ≡ Σ 2 N .
From the other side, by proposition 3.14 there exists a Birkhoff section j 1 : (Σ 1 , ∂Σ 1 ) → (M 1 , Γ 1 ) for the Goodman flow φ 1 t that extends the section Σ 1 N and has γ 1 as a boundary component. That is,

j 1 (Σ 1 ) ∩ M 1 N ≡ Σ 1 N .
We remark that, as abstract surfaces, each Σ i has p(γ, Σ) boundary components more than Σ, that are mapped onto γ i .

Let P i : Σi → Σi be the first return map of the flow φ i t to the interior of each Birkhoff section Σ i . Our next step is to show the following:

Lemma 3.15. There exists a homeomorphism

h : Σ1 → Σ2 such that P 2 • h = h • P 1 .
In this way, each flow has a Birkhoff section where the first return map is conjugated to the other. On the periodic orbits γ i none of the surgeries change the modulus of the linking number, which equals one. Since we use the same twist parameter for both, it follows that n(γ 1 , Σ 1 ) = n(γ 2 , Σ 2 ) and m(γ 1 , Σ 1 ) = m(γ 2 , Σ 2 ) = |m|. Since the combinatorial data on the boundary is compatible for every orbit in Γ i , then by theorem 2.16, there exists an orbital equivalence (φ 1 t , M 1 ) → (φ 2 t , M 2 ). This completes the proof of theorem 3.1, up to 3.15.

To finish we show the conjugacy between the first return maps P i .

Proof of lemma 3.15. By construction, each surface Σ i has p = p(γ, Σ) boundary components more than the original Σ, each of them mapped onto γ i by the immersion Σ i → M i . We will assume for this proof that ∂Σ = ∅. The reader could appreciate that the general case follows the same argument, but with a heavier notation.

For i = 1, 2 let P i : Σ i → Σ i be the blow-down of the first return map P i . Since the linking number equals one at each boundary component, the blowing down originates a saddle type periodic orbit O i = {x i 1 , . . . , x i p } for P i . We will consider P i as a pseudo-Anosov on the punctured surface (Σ, O i ) and apply proposition 1.29 from 7.3.

Claim.

There exist an isomorphism φ : π 1 (Σ 1 \O 1 ) → π 1 (Σ 2 \O 2 ) which conjugates the corresponding actions on fundamental groups

( P i ) * : π 1 ( Σ i \O i ) → π 1 ( Σ i \O i ), i = 1, 2,
and which preserves the sets Γ(O i ) of the conjugacy classes of the curves homotopic to the punctures.

By construction the homeomorphism H N sends Σ 1

N homeomorphically onto Σ 2 N , so we will define

h N : Σ 1 N → Σ 2 N given by h N ≡ H N | Σ 1 N . (3.10) Since H N is a topologically equivalence (φ 1 t , M 1 N ) → (φ 2 t , M 2 N
) then it follows that h N is a local conjugacy between the maps P i , in the sense that: For every

U ⊂ Σ 1 N satisfying that P 1 (U ) ⊂ Σ 1 N and U ⊂ M N it is verified that P 2 • h N (x) = h N • P 1 (x), ∀ x ∈ U
, where the set U consists in the union of the orbits segments starting in points x ∈ U and ending at the firs return to Σ N . (Cf. sections 1 and 2.) Each surface Σ i N can be seen as embedded in Σ i , and the boundary components determine disk-shaped neighbourhoods of the punctures x i k .

There exists a neighbourhood W i ⊂ M i of γ i , that contains N i in the interior, and big enough such that

P i (x) ∈ Σ 1 N and φ i ([0, τ i (x)], x) ⊂ M i \N i for every x ∈ Σ i N ∩ (M i \W i )
. By retracting the boundary components of Σ i N we can consider a subsurface Σ i W ⊂ int Σ i N and entirely contained in the complement of W i . For i = 1, 2 these surfaces can be chosen in such a way that there is a commutative diagram:

Σ 1 W Σ 1 \O 1 Σ 2 W Σ 2 \O 2 P 1 h N P 2 P 2
Let C i 1 , . . . , C i p be the boundary components of Σ i W and c i their corresponding free homotopy classes in Σ i \{x i 1 , . . . , x i p }. Since the first return P i permutes cyclically the connected components of Σ i ∩ N i , it follows that (P i ) * permutes the set Γ(O i ) of conjugacy classes of the curves c k . If γ is any closed curve in Σ i \∂Σ i can be homotoped onto a closed curve γ ⊂ Σ i W that has a first return contained in Σ i N . It follows that the map h N induces a conjugation between the actions of the maps P i on the group of free homotopy classes of curves in Σ i \∂Σ i , sending Γ(O 1 ) to Γ(O 2 ).

We conclude that h N induce an isomorphism φ : π 1 (Σ 1 ; O 1 ) → π 1 (Σ 2 ; O 2 ) as claimed. Since the actions of the first return maps on the punctured surfaces (Σ i , O i ) are π 1 -conjugated by an isomorphism that preserves the class of the punctures, proposition 1.29 implies that P 1 and P 2 are conjugated by a homeomorphism that preserves the punctures. This finish the lemma.

Goodman and Fried surgeries are not equivalent in a canonical

way.

Consider the homeomorphism

H N : M 1 N → M 2 N defined in (3.9). It is an orbital equivalence (φ 1 t , M 1 N ) → (φ 2 t , M 2 N
) between the complement of a neighbourhood of γ 1 and the complement of a neighbourhood of γ 2 .

Proposition 3.16. There is no orbitally equivalence

(φ 1 t , M 1 ) → (φ 2 t , M 2 ) that extends H N .
Proof. Without loss of generality we can assume that N is a compact, regular, tubular neighbourhood of γ, that contains A in the interior.

Consider a point r ∈ A. Since r is in the interior of some quadrant, then the orbit segment O N (r) is also contained in the quadrant, and its extremities are contained in ∂N . Let p ∈ ∂N be the extremity where O N (p) enters inside N and q ∈ ∂N the extremity where it escapes. For each i = 1, 2 define p i = ι i (p) and q i = ι i (q). This two points belong to ∂M i N and by definition

H N (p 1 ) = p 2 , H N (q 1 ) = q 2 . See figure 3.7.
Assume there is a topological equivalence H :

M 1 → M 2 that extends H N . Let's call N i = M i \M i
N , so H takes the neighbourhood N 1 homeomorphically onto N 2 preserving oriented orbit segments.

Since the Fried flow φ 2

t is equivalent to φ t in the complement of γ 2 , then the points p 2 and q 2 belong to the same φ 2 t -orbit segment in N 2 . Since H is an orbital equivalence, then p 1 and q 1 must be in the same φ 1 t -orbit segment in N 1 .

Now since the Goodman flow is an alternated composition of iterates φ t j of the flow and the glueing map f : A → A, it follows that the orbit segment that enters through

p 1 must escape N 1 through a point q 1 = φ t 1 • f • φ t 0 (p) = φ t 1 • f (r)
. Since f has non-empty support, then r and f (r) are in different orbit segments inside N , and this means that q 1 = q 1 . So, there exists no extension H from H N to the whole M 1 . Remark 3.17.

(i) Observe that the same statement of 3.16 is true if we replace H N for another topologically equivalence H N , obtained as a small perturbation of H N by some flow isotopy. So, the non-extensibility property of H N can not be destroyed by bounded perturbations in the flow direction.

(ii) The same argument shows that, if (f, A) and (f , A ) are two Goodman annulus in the same quadrant which are not φ t -isotopic, then the obtained flows cannot be equivalent by a homeomorphism that is the identity in the complement of a neighbourhood of γ.

S D W A γ N A Remark 3.18.
Observe that this surgery does not transform the surface D into a surface in M . In particular, no Birkhoff section for (φ t , M ) transforms into a Birkhoff section for (φ t , M ) by a Goodman surgery.

The manifold M is defined to be a glueing M A ϕ N A , where N A is a tubular neighbourhood of γ and M A = M \int(N A ), as we described in 4.1. We will state the following notations:

(i) We call γ to the periodic orbit in M that corresponds to γ after surgery. That is, γ equals the image of the inclusion γ → N A → M .

(ii) We call W to the set in M obtained as W \N A ϕ N A . This is a tubular neighbourhood of γ that contains (the image by inclusion of) N A .

(iii) We call S to the surface induced by the inclusion

D ∩ M \int(W ) → M A → M .
The part of D that lies outside W is not altered by the surgery and induces the surface S in M . This surface is a compact annulus. The purpose of this section is to show the following proposition: Proposition 3.19. There exists a tubular neighbourhood N ⊂ W of the orbit γ such that: If the Goodman annulus A is contained in N , and if the sign of the twist parameter m is positive when A is placed in the first or third quadrant, or is negative when A is placed in the second or fourth quadrant, then the flow (φ t , M ) admits a local Birkhoff section (B, ∂B) → (M , γ ) satisfying that:

(i) n(B, γ ) = 1, m(B, γ ) = m, (ii) B ∩ M \W = S
As a corollary we can prove proposition 3.14 stated in the previous section:

Proposition. Consider an Anosov flow (φ t , M ) and a periodic orbit γ with orientable local invariant manifolds. Let ι : (Σ, ∂Σ) → (M, Γ) be a Birkhoff section transverse to γ. Then, there exists a tubular neighbourhood N of γ such that every Goodman surgery supported in an annulus A ⊂ N satisfies: (ii) Σ \int(N ) ≡ Σ\int(N ).

Proof of proposition 3.14. Given a Birkhoff section ι : (Σ, ∂Σ) → (M, Γ) such that | Σ γ| = p > 0, consider a tubular neighbourhood N as given in proposition 3.19, small enough such that the intersection Σ ∩ N is transverse and consists in p disjoint disks in Σ.

The surface Σ\int(N ) naturally embeds inside M . The previous proposition says that each of the p boundary components in Σ ∩ ∂N can be individually extended inside N as a local tame Birkhoff section. If these surfaces are not disjoint in N \γ , since they are tame and with equal linking number and multiplicity, using the techniques presented in section 1 we can perturb them by flow isotopies and make them disjoint.

We obtain in this way an immersion

ι : (Σ , ∂Σ ) → (M , Γ ∪ {γ }),
where Σ is obtained by removing p disjoint closed disks on Σ. The image of this immersion coincides with Σ in the complement of N and is transverse to the vector field on the interior. Thus, to conclude that it is a Birkhoff section, it rest to show that every orbit intersect Σ in uniformly bounded time.

For this, consider two tubular neighbourhoods O 0 and O 1 of γ satisfying that

1. O 0 ⊂ N ⊂ O 1 and ∂N is contained in the interior of O 1 \O 0 , 2. There exists T 1 , T 0 > 0 such that [p, φ T 0 (p)] ∩ Σ = ∅ for every p ∈ O 0 and [p, ψ T 1 (p)] ∩ Σ \int(N ) = ∅ for every p ∈ M \O 1 .
This is possible, since Σ is a local Birkhoff section near γ and coincides with Σ outside the biggest neighbourhood O 1 . Then, since the neighbourhoods O 1 ⊂ O 0 are nested germs of a saddle type periodic orbit, we see that there exits some

T 2 > 0 such that [p, ψ T 2 (p)] is not contained in O 0 \O 1 , for every p ∈ O 0 \O 1 . Then, taking T > max{T 0 + T 2 , T 1 + T 2 }, we deduce that [p, φ T (p)] ∩ Σ = ∅, for every p ∈ N .
The proof of proposition 3.19 will take the rest of the section. We are going to show first in 4.1 that the surgery can be replaced for a more convenient surgery, placed in a normal position. Then, in 4.2 we will show how to construct the Birkhoff section B for this new surgery.

Replace the surgery for a normal surgery.

The flow (φ t , M ) is obtained by a Goodman surgery supported on the annulus A with glueing homeomorphism f . The objective of this subsection is to show that we can replace the annulus A (and the homeomorphism f ) for another annulus A 1 (and a corresponding glueing homeomorphism f 1 ) and obtain the same flow up to orbital equivalence. The advantage of this new annulus with respect to the first is that it will be better positioned in the neighbourhood W for the purpose of finding a local Birkhoff section. This will be the content of lemma 3.20.

Normal Coordinates:

Consider the vector field Y in R 2 × R/Z defined by Y (x, y, s) = (-λx, λy, 1), where λ is some positive constant. The non-wandering set of the flow φ Y t generated by Y consists of one saddle type hyperbolic periodic orbit, namely, the curve 0 × R/Z. We recall that a system of normal coordinates for φ t around γ is a local orbital equivalence .12) defined between a neighbourhood V of γ and a neighbourhood V of 0 × R/Z. We remark that it always exists C 0 normal coordinates in a neighbourhood of a saddle type periodic orbit, but not necessarily C 1 normal coordinates.

Ψ : (φ t , V ) γ → (φ Y t , V ) 0×R/Z . ( 3 
Definition (Normal neighbourhood). Choose a system of normal coordinates defined in an open neighbourhood of γ, as in (3.12). A normal neighbourhood of γ is a tubular neighbourhood of the form

N := Ψ -1 (T r ), (3.13) 
where T r = {(x, y, s) : 0 ≤ x 2 + y 2 ≤ r 2 } is the solid torus of radius r > 1.

A normal neighbourhood N is a regular, compact, tubular neighbourhood of γ, contained in W . Observe that, in the case that the coordinate system is not differentiable, the boundary ∂N could be just a topological surface. It is foliated by the meridian disks D s = D × {s}, s ∈ R/Z. If we set r = 1 then, in normal coordinates we have that:

(i) The boundary is ∂N = {(x, y, s) : x 2 + y 2 = 1}.
(ii) The meridians and the longitudes of ∂N are, respectively, the following families of curves

• α s = {(x, y, z) : x 2 + y 2 = 1, z = s}, with s ∈ R/Z; • β θ = {(cos(θ), sin(θ), s) : s ∈ R/Z}, with θ ∈ [0, 2π].
(iii) The first quadrant of N is the set

N 1 = {(x, y, s) : 0 ≤ x 2 + y 2 ≤ 1, 0 ≤ x, y }. (iv) Define ∂N 1 := ∂N ∩ N 1 .
The vector field Y is tangent to ∂N 1 along the longitude β π/4 . This longitude separates ∂N 1 into the following two regions, where Y points inward and outward respectively:

• ∂N in 1 = {(x, y, s) : x 2 + y 2 ≤ 1, 0 < y < x < 1}, • ∂N out 1 = {(x, y, s) : x 2 + y 2 ≤ 1, 0 < x < y < 1}.
(v) It is possible to reparametrize φ t in a neighbourhood of γ in such a way that, if p ∈ N is a point with coordinates (x, y, s) and the orbit segment φ [0,t] (p) is contained in N , then

φ t (x, y, s) = φ Y t (x, y, s) = e -λt
x, e λt y, s + t .

We will always assume that φ t has been reparametrized in order to satisfy this.

Replace the annulus A for another contained in ∂N .

Consider the flow (φ t , M ) from the beginning of this section. We will choose a fixed system of normal coordinates Ψ around γ, as described in (3.12), defined in an open neighbourhood that contains W , and which satisfies the following:

1. Ψ(D) ⊂ R 2 × {0};
2. The solid torus T of radius one is contained in the interior of Ψ(W ).

As before we define N = ψ -1 (T). Assume that the Goodman annulus A is contained in the interior of the first quadrant N 1 . The positive φ t -orbit of every point in A has a first intersection point with ∂N . Let ρ : A → (0, +∞) be the function that assigns to

N A N K γ A A 1 Figure 3.8: The φ t -isotopy between A and A 1 .
each point in A its time of first intersection with ∂N . We remark that, if the coordinate system is not differentiable, this function could be just continuous. The map

ψ : x → φ ρ(x) (x)
is then a φ t -isotopy from the annulus A onto its image. The image of ψ is an annulus A 1 contained in ∂N . Observe that A 1 is (topologically) transverse to the flow and is contained in ∂N out 1 . See figure 3.8.

Normal Surgery.

Let (φ t , M ) be a flow obtained by a Goodman surgery supported on A, as defined in (3.11). In the same way as in 4, the φ t -isotopy allows to push forward the glueing map f onto a homeomorphism f 1 :

A 1 → A 1 , defined by f 1 = ψ • f • ψ -1 .
Observe that f 1 is the identity on the boundary of A 1 . Consider the homeomorphism ϕ 1 : ∂N → ∂M N defined by

ϕ 1 (p) =      f 1 (p) if p ∈ A 1 p if p / ∈ A 1 .
where M N = M \int(N ) and we he have tautologically identified ∂M N with ∂N . Since the flow φ t is transverse to ∂N along the support of ϕ 1 , then the quotient manifold

M := M N ϕ 1 N (3.14)
is endowed with a (continuous) flow φ t : M → M . It turns out that (φ t , M ) is orbitally equivalent to (φ t , M ).

Definition (Surgery in normal position.). A Goodman surgery is in normal position if it is constructed as in (3.14): it supported in an annulus contained in ∂N , where N is a normal neighbourhood.

Lemma 3.20. The flows (φ t , M ) and (φ t , M ) are orbitally equivalent. Moreover, there exists an orbital equivalence H : M → M such that

H • ι (p) = ι (p), ∀ p ∈ M N ,
where ι : M N → M and ι : M N → M are the canonical inclusions. Remark 3.21. If the system of normal coordinates (3.12) is C 1 , then ∂N is a C 1 surface and the maps f 1 and ϕ 1 are also C 1 . In this case, the flow (φ t , M ) is a C 1 flow and the orbital equivalence is C 1 . But in general, the surgery (3.14) is just a C 0 surgery and the orbital equivalence with (φ t , M ) is just C 0 .

Proof. Consider the set

K = {φ t (p) : p ∈ A and 0 ≤ t ≤ ρ(p)}.
The boundary of K can be decomposed into the annuli A and A 1 where the flow is transverse, and two other annuli where the flow is tangent. See figure 3.8.

Consider the two homeomorphisms F, F 1 : ∂K → ∂K defined by

F (p) = f (p) if p ∈ A p if p / ∈ A. and F 1 (p) = f 1 (p) if p ∈ A 1 p if p / ∈ A 1 .
Define M K = M \int(K). Since the supports of F and F 1 are contained in the region where the flow is transverse to the boundary, there exist two induced flows

φ F t , M K F K and φ F 1 t , M K F 1 K .
Since f 1 is conjugated to f by a φ t -isotopy, then proposition 4 implies that there exists an orbital equivalence h between these two flows, which in addition is equivariant with respect to the natural inclusions of M K in each manifold. That is,

h • (M K → M K F K) = (M K → M K F 1 K) . Observe that, since supp(F ) = supp(ϕ) = K ∩ N A = A and F | A = ϕ| A = f then there exists an orbitally equivalence h : (φ t , M ) → φ F t , M K F K which is equivariant with respect to the inclusions M A → M and M A → M K F K. Analogously, since supp(F 1 ) = supp(ϕ 1 ) = K ∩ N = A 1 and F 1 | A 1 = ϕ 1 | A = f then there exists an orbitally equivalence h : (φ t , M ) → φ F 1 t , M K F 1 K which is equivariant with respect to the inclusions M N → M and M N → M K F 1 K. Finally, since N A ⊂ N , the lemma follows by defining H = (h ) -1 • h • h .

Proof of proposition 3.19.

Following the previous subsection, up to orbital equivalence we can assume now that the flow (φ t , M ) is constructed from a surgery placed in normal position. Since the equivalence given in lemma 3.20 commutes with the natural inclusions of the complement of the normal neighbourhood, then it suffices to prove 3.19 in this case. We proceed now to restate proposition 3.19 in a more convenient way.

For constructing the Birkhoff section it will be important to take care about the sign of the twist and the quadrant in which is placed the surgery. Therefore, for the rest of the section we will set the following:

(i) The neighbourhood N is oriented with our general convention stated in section 8.

(ii) The annulus A is contained in the first quadrant of N .

(iii) The twist m ∈ Z is positive, as stated in theorem 3.6.

We consider a flow φ t constructed by glueing M N and N along their boundaries, using the homeomorphism ϕ 1 : ∂N → ∂M N defined in (3.14), which has support in an annulus A 1 ⊂ ∂N 1 . The neighbourhood N is equipped with a system of normal coordinates such that N corresponds to the solid torus or radius one and the local section D corresponds to a disk in R 2 × 0 that contains the unit disk in the interior. Observe that the intersection of ∂N with D is the meridian curve α 0 = {(x, y, 0) : x 2 + y 2 = 1}, that separates D into the disk D × {0} and an annulus S = D\D × 0.

The curve α 0 is a meridian curve (boundary of a disk) when seen as a subset of ∂N , and is a boundary component of the surface S when seen as a subset of ∂M N . As a subset of ∂M N it is mapped onto a simple closed curve

η = ϕ -1 1 (α 0 ) (3.15) 
by the glueing operation, as depicted on figure 3.9.

Proposition 3.19 will follow by showing that η is the boundary of a local Birkhoff section contained in N , as we state in the next proposition.

Proposition 3.22 (Restatement of 3.19.). There exists a local Birkhoff section

B : [0, 1] × R/Z → N such that B(0 × R/Z) = 0 × R/Z and B(1 × R/Z) = η.
Since we set m > 0, the curve η has coordinates (1, -m) in the meridian/longitude basis. From now on we will fix a parametrization η :

[0, 1] → ∂N of the curve satisfying that η(u) ∈ A 1 iff ε 0 ≤ u ≤ ε 1 , for some fixed 0 < ε 0 < ε 1 < 1. The arc of η that lies inside A 1 is the image by f -1 1 of a meridian A 1 ∩ α 0 , so it twists -m times in the R/Z-direction. Let η(u) = (η 1 (u), η 2 (u), η 3 (u)) N γ A 1 α 0 S N γ η Q Figure 3
.9: The curve η.

be the expression of this parametrization in normal coordinates. Since the coordinate system is not necessarily C 1 these coordinate functions could be just continuous. The following lemma asserts that, in any case, we can replace the curve η for another whose coordinates are C 1 .

Lemma 3.23. Let 0 < R < 1. Then, there exists a C 1 simple closed curve µ ⊂ ∂T R and a properly embedded surface L ⊂ T\T R , homeomorphic to an annulus, transverse to the vector field Y , such that ∂L = µ ∪ η.

Proof. Observe that, since the R/Z-component of the vector field Y equals one, there exists a compact annulus L embedded in T, transverse to the flow lines, such that one boundary component is ∂T ∩ L = η and the other boundary component is a curve µ ⊂ int(T). Without loss of generality we can assume that µ ⊂ ∂T R . If the curve µ is not differentiable, it is possible to make a small perturbation of L by isotopies, fixing the boundary component η, and make the boundary component

µ of class C 1 .
The previous lemma says that the surface S can be extended into a surface S ∪ L, transverse to the flow, with one boundary component µ ⊂ T R which has coordinates of class C 1 . Then, it suffices to prove proposition 3.22 assuming that the coordinates of the curve η are C 1 .

In what follows we will make use of an auxiliary annulus Q ⊂ ∂N , constructed as follows: The compact annulus A 1 is contained in the open annulus ∂N out 1 = {(x, y, s) : x 2 + y 2 = 1, x ≥ 0, x < y < 1}. So, there exists some 1 < θ 0 < θ 1 such that the set

Q = Q(θ 0 , θ 1 ) = (x, y, s) : x 2 + y 2 = 1, x ≥ 0, θ 0 x ≤ y ≤ θ 1 x (3.16) is a compact annulus satisfying that A 1 ⊂ int(Q) and Q ⊂ ∂N out 1 .
Its boundary is the union of the longitudes β θ 0 and β θ 1 corresponding to the angles π/4 < arctan(θ 0 ) < arctan(θ 1 ) < π/2. See figure 3.9.

We say that η is monotonous in the R/Z-component if η 3 (u) < 0, for every u ∈ (ε 0 , ε 1 ). We remark that, in general, it is not possible to assume that η is monotonous in the R/Z-component. Even if the original Dehn twist f : A → A is monotonous in the longitude component, the projection of the surgery over the annulus A 1 may produce a non-monotonous Dehn twist f 1 .

We divide the proof two cases: (i) We prove 3.22 assuming that η is monotonous; (ii) We prove the general case.

Case 1: η is monotonous in the R/Z-component.

We assume that the coordinates (η 1 (u), η 2 (u), η 3 (u)) of the parametrization η : [0, 1] → N satisfy that:

1. η 3 (u) < 0, ∀ ε 0 < u < ε 1 and η 3 (ε 0 ) = η 3 (ε 1 ) = 0; 2. η 3 (u) = 0, if u ∈ [0, ε 0 ] ∪ [ε 1 , 1].
The proof is done in three steps, as follows:

Step (i) -The surface H R : For some small R > 0 we will find a local Birkhoff section H R , contained in the solid torus T R , and whose exterior boundary is isotopic to η.

Step (ii) -The region K: We will define a special region K ⊂ T 1 that is trivially foliated by the flow.

Step (iii) -Connect S with H R : We will connect the boundary of H R with the curve η, using a band transverse to the flow and contained in T\T R . For doing this we are going to make use of the region K previously defined.

We develop these steps in what follows.

Step (i): The surface H R .

We will define a 1-parameter family of maps T r : N → N , 0 ≤ r ≤ 1, satisfying that

• T 1 = id, T 0 (N ) = γ and T r is a diffeomorphism onto its image ∀ r > 0, • T r 1 (N ) ⊂ T r 2 (N ) if r 1 < r 2 .
Moreover, it will be verified that T r (N ) ⊂ T r , for every r. For this purpose, choose some fixed angle ρ such that arctan(θ 0 ) < ρ < arctan(θ 1 ) and consider the unitary vectors v, w ∈ R 2 defined as v = (cos(ρ), sin(ρ)) w = (-sin(ρ), cos(ρ)).

The vector w is obtained by a rotation of angle π/2 of v. We can define a system of coordinates in R 2 × R/Z in the following way

Ψ ρ : R 2 × R/Z → R 2 × R/Z such that Ψ ρ : ((av + bw), s) → (a, b, s). ( 3.17) 
Definition. Given 0 ≤ r ≤ 1 we define T r : R 2 × R/Z → R 2 × R/Z to be the map given in coordinates (3.17 Observe that T r sends the disk D × {0} into an ellipse contained in its interior, whose major and minor axes are collinear with v and w, respectively. See figure 3.10a. The properties of T r stated in the previous items follow directly from the definition.

Definition.

For every R > 0 we define the surface

H R = {T r • η(u) : 0 ≤ r ≤ R, u ∈ [0, 1]} . (3.19)
Each surface H R is constructed as the image of a 1-parameter family of isotopies applied to the curve T R (η), as in figure 3.10b.

Lemma 3.24.

There exists R 0 > 0 such that the surface H R is a local Birkhoff section at γ, for every R ≤ R 0 .

Proof. In the previous paragraphs we have set a parametrization η : [0, 1] → ∂N with normal coordinates n(u) = (η 1 (u), η 2 (u), η 3 (u)). Now we will denote by

ν(u) = (ν 1 (u), ν 2 (u), ν 3 (u)) (3.20)
to the expression of this parametrization in coordinates (3.17). We recall that η

3 (u) = ν 3 (u), ∀ u ∈ [0, 1] and ν(u) ∈ A 1 if and only if u ∈ [ε 0 , ε 1 ].
The surface H R is parametrized in coordinates (3.17) with the map [0

, R] × [0, 1] → H R given by (r, u) → (rν 1 (u), r 2 ν 2 (u), ν 3 (u)).
Consider a point p ∈ H R . The tangent space of H R at p is generated by the vectors

∂ ∂r (p) =(ν 1 (u), 2rν 2 (u), 0) ∂ ∂u (p) =(rν 1 (u), r 2 ν 2 (u), ν 3 (u))
The vector field Y is given by Y (x, y, s) = (-λx, λy, 1) in normal coordinates. We need to express it in the coordinate system (3.17). Observe that the change from the (a, b, s)-coordinates to the (x, y, s)-coordinates is the rotation induced by the matrix

   cos(ρ) -sin(ρ) 0 sin(ρ) cos(ρ) 0 0 0 1    .
So the R 2 -component of Y in the (a, b, s)-coordinate system is given by the matrix cos(ρ) sin(ρ) -sin(ρ) cos(ρ)

-λ 0 0 λ cos(ρ) -sin(ρ) sin(ρ) cos(ρ) = λ sin 2 (ρ) -cos 2 (ρ) 2 cos(ρ) sin(ρ) 2 cos(ρ) sin(ρ) cos 2 (ρ) -sin 2 (ρ)
Let's set λ 1 = (sin 2 (ρ) -cos 2 (ρ))λ and λ 2 = 2 cos(ρ) sin(ρ)λ, which are positive constants. Then, in the coordinate system (3.17) the vector field Y is written as

Y (a, b, s) = (λ 1 a + λ 2 b, λ 2 a -λ 1 b, 1). ( 3.21) 
We want to check that for small values of r > 0, the vectors ∂ ∂r (p), ∂ ∂u (p) and Y (p) are linearly independent. It is equivalent to check that the following quantity does not vanish:

ν 1 (u) 2rν 2 (u) 0 rν 1 (u) r 2 ν 2 (u) ν 3 (u) λ 1 rν 1 (u) + λ 2 r 2 ν 2 (u) λ 2 rν 1 (u) -λ 1 r 2 ν 2 (u) 1 = = r -ν 3 (u) λ 2 ν 2 1 (u) -3λ 1 rν 1 (u)ν 2 (u) -2λ 2 r 2 ν 2 2 (u) + r ν 1 (u)ν 2 (u) -2ν 2 (u)ν 1 (u) . (3.22)
Consider the set of points

S 0 = {T r • ν(u) : 0 ≤ r ≤ 1 u / ∈ (ε 0 , ε 1 )} . ( 3.23) 
Since ν 3 (u) = 0 this is a surface contained in R 2 × {0} and is clearly transverse to the vector field Y , independently of r. Anyway, to see that the quantity between brackets in (3.22) does not vanish on the points p ∈ S 0 , observe that it reduces to

r ν 1 (u)ν 2 (u) -2ν 2 (u)ν 1 (u) . The curve ν : [0, ε 0 ] ∪ [ε 1 , 1] → R 2 × R/Z is an arc contained in the unit circle of R 2 ,
so it admits some reparametrization of the form u → (cos(Au + B), sin(Au + B), 0). It follows that

ν 1 (u)ν 2 (u) -2ν 2 (u)ν 1 (u) = A cos 2 (Au + B) + 2A sin 2 (Au + B) = 0.
It is possible to enlarge a little the surface S 0 in the following way: Since Y is transverse to S 0 on the boundary points T r (ν(ε i )) and Y (p) forms a positive angle with T p S 0 , there exist ε 0 < ε 0 < ε 1 < ε 1 such that the set

S 0 = T r • ν(u) : 0 ≤ r ≤ 1, u / ∈ ε 0 , ε 1 is also a surface transverse to Y . Assume now that p = T r • ν(u) with ε 0 ≤ u ≤ ε 1 .
We will see that there exists R 0 such that if r < R 0 then Y (p) is transverse to the surface H R 0 . We will examine the quantity between brackets in (3.22). First, observe that since ν 1 (u) > 0 for every ε 0 ≤ u ≤ ε 1 , then there exists R 1 > 0 such that

λ 2 ν 2 1 (u) -3λ 1 rν 1 (u)ν 2 (u) -2λ 2 r 2 ν 2 2 (u) ≥ κ 1 > 0 for every r < R 1 , for some constant κ 1 . Let κ 2 = max{|ν 1 (u)ν 2 (u) -2ν 2 (u)ν 1 (u)| : u ∈ [ε 0 , ε 1 ]}.
By the monotonicity of η, it follows that ν 3 (u) ≤ κ 3 < 0 for every ε 0 < u < ε 1 , for some constant κ 3 . Then (3.22) is bounded from below by

-ν 3 (u)κ 1 -rκ 2
and it does not vanish if r < R 0 where

R 0 < min R 1 , -κ 3 κ 1 κ 2 . The parametrization [0, R 0 ] × [0, 1] → H R 0 given by (r, u) → T r • ν(u)
is the immersion of an annulus with boundary components 0 × R/Z and T R 0 (ν), which is an embedding outside 0 × R/Z, and is contained in T R 0 . Since the exterior boundary is homotopic to η ⊂ N this immersion has linking number equal to 1 and multiplicity equal to m (the twist parameter of ϕ 1 ). Since it is transverse to Y in the complement of 0 × R/Z it follows that it is a local Birkhoff section. This completes the construction of the surface H R near γ. For each 0 < r ≤ 1 we will consider the closed curve

l r = L 1 ∩ T r . ( 3.25) 
Then the family of curves {l r : 0 < r ≤ 1} constitutes a foliation of L1 by longitudes.

If we push l r using the negative action of the flow we can define a surface Σ r in the following way Σ r = {φ(p, t) : p ∈ l r and τ 0 (p) ≤ t ≤ 0} (3.26)

Then, the family of surfaces {Σ r : 0 < r ≤ 1} constitutes a foliation of E. For each r < 1 the surface Σ r separates E into two components. We will define This claim follows from the previous claim. For the set F observe that all the points p in the edge β 1 hit L 0 in some constant time τ 0 < 0. Define

E r =
E r A × 1 F ⊂ F Σ 1 Σ r l 1 Q A × 1 l r
F = {φ(p, t) : p ∈ Q, τ 0 ≤ t ≤ 0}. (3.28)
Then there is a homeomorphism from 

F , O F to [0, 1]×A which takes Q onto {1}×A, Σ 1 onto [0, 1] × {0} × R/Z

∂T R

2 Σ R 1 Σ 1 R 0 Q S 1 S 2 E R 1 S 3 F G η ∩ Q ρ µ ρ Figure 3.13: Connecting H R 2 with S inside K.
Now, we will connect the arcs T R 2 (η ∩ Q) with η ∩ Q using three bands S 1 , S 2 and S 3 , contained in K and transverse to the flow. We will complement the following explanation with figure 3.13. Observe that the boundary points of the arcs are already connected by segments in the boundary of S 0 . Recall that we have a decomposition of K as the union

(E\E R 1 ) ∪ E R 1 ∪ F . The surface T R 2 (Q) is an annulus that disconnects E\E R 1 . Let's call G to the connected component that contains Σ 1 and T R 2 (Q) as opposite faces. Let's define S 1 = H R 0 ∩ G. (3.30) Then, S 1 is a band that connects the arc T R 2 (η ∩ Q) ⊂ T R 2 (Q) with another arc µ = H R 0 ∩ Σ R 1 ⊂ Σ R 1 ,
and is transverse to the flow lines. See figure 3.13.

Recall that E R 1 [0, 1] × A with a homeomorphism that sends the orbit segments in E R 1 onto the segments of the form [0, 1] × p. In this correspondence we have that

Σ R 1 [0, 1] × {0} × R/Z and Σ 1 [0, 1] × {1} × R/Z.
The curve µ is contained in Σ R 1 and is transverse to the orbit segments that foliates this surface. This implies that there exists a band S 2 contained in E R 1 , transverse to the flow, that connects the two faces Σ R 1 and Σ 1 , such that S 2 ∩ Σ R 1 = µ. The surface S 2 is defined to be

S 2 {(x, y, s) ∈ [0, 1] × A : 0 ≤ y ≤ 1, (x, 0, s) ∈ µ}. ( 3.31) 
It remains to see what happens in the region F . Let's call ρ to the arc ρ = S 2 ∩ Σ 1 . We have to find a surface S 3 contained in F that connects ρ with the arc η ∩Q, being at the same time transverse to the orbit segments. For that we will consider the auxiliary region F [0, 1] × A defined in (3.28). In this region, the set F corresponds to the prism defined by {(x, y, s) : 3.12. The surfaces Σ 1 and Q correspond to the faces [0, 1] × {0} × R/Z and {1} × [0, 1] × R/Z, respectively. Without loss of generality, it is possible to assume that:

x ≥ y} ⊂ [0, 1] × [0, 1] × R/Z as in figure
• the meridians of the annulus Q (recall they are defined by the intersections

Q ∩ D × {s} with s ∈ R/Z) correspond to the segments {1} × [0, 1] × {s},
• the orbit segments contained in Σ 1 correspond to the segments [0, 1] × {0} × {s}.

Choose a parametrization

ρ : [a, b] → Σ 1 [0, 1] × {0} × R/Z of the form ρ(u) = (ρ 1 (u), 0, ρ 3 (u)). Choose choose a parametrization δ : [a, b] → Q {1} × [0, 1] × R/Z of the arc η ∩ Q, of the form δ(u) = (1, δ 2 (u), δ 3 (u)). Define the surface S 3 = {ρ(u) + t (δ(u) -ρ(u)) : 0 ≤ t ≤ 1, u ∈ [0, 1]}. (3.32) 
This surface is depicted in figure 3.14. By the previous assumptions, we have that ρ 3 , δ 3 : [a, b] → R/Z are monotonous functions. The monotonicity of these functions imply that S 3 is transverse to the foliation by segments [0, 1] × {p}. Finally, the surface S 3 can be pushed with a φ t -isotopy (fixing ρ and δ) onto a surface S 3 contained in the region F and transverse to the orbit segments.

This completes the proof of lemma 3.22 assuming that η is monotonous in the R/Z-component.

Case 2: η is not monotonous.

In the general case, when the curve η is not monotonous in the R/Z-coordinate, we have the following lemma, that allows to reduce the construction to the previous case: Lemma 3.25. For some 0 < R < 1, there exists a surface S properly embedded in T\T R , transverse to the flow, such that

Q A × 1 A × 0 Σ 1 ρ η ∩ Q Figure 3.14: The surface S 3 ⊂ F . 1. ∂S = (S ∩ ∂T R ) ∪ (S ∩ ∂T) = µ ∪ η, 2. The curve µ is monotonous in the R/Z-direction.
Proof. First of all, observe that if 0 < R < 1 is sufficiently close to 1, then

∀ p ∈ Q, ∃ ρ(p) < 0 such that φ ρ(p) (p) ∈ ∂T R
and all the orbit segment {φ t (p) : ρ(p) ≤ t ≤ 0} is contained in T\T R . So we will fix some R satisfying this condition. Consider the set

V = {φ t (p) : p ∈ Q and ρ(p) ≤ t ≤ 0} . ( 3.33) 
This set is depicted in figure 3.15a. The boundary of V can be decomposed into the union of two annuli transverse to the flow and two tangent annuli. The annuli transverse to the flow are Q and

Q R = {φ ρ(p) (p) : p ∈ Q} ⊂ ∂T R .
The proof will consist in:

(i) Construct a surface B ⊂ V homeomorphic to a band, transverse to the flow, that connects η ∩ Q with a curve µ ⊂ Q R that cuts the meridians of Q R in a monotonous way;

(ii) By adding a band B contained in (T\T R ) ∩ V c and transverse to the flow, we obtain the desired surface We develop these steps below:

S = B ∪ B . N γ T R Q R Q η ∩ Q V (a) q µ (1, 1, 0) (0, 1, 0) (0, 0, 0) (0, 0, 1) (1, 1, 0) (1, 1, 1) ν η ∩ Q L 0 × A 1 × A T η [ 0 , 1 ] × q (b) Coordinates V → [0, 1] × A.
Step (i):

The annulus Q R is delimited by two vertical longitudes of the torus ∂T R , so there exists a parametrization A = [0, 1] × R/Z → Q R of the form (u, s) → (R cos(Au + B), R sin(Au + B), s). In the coordinates defined by this parametrization each meridian Q R ∩ D × {s} corresponds to the segment [0, 1] × {s}.

For every q = φ ρ(p) (p) ∈ Q R define τ (q) = -ρ(p). Consider the parametrization Ψ R : [0, 1] × A → V defined by Ψ Ψ R (t, u, s) = φ tτ (u,s) (R cos(Au + B), R sin(Au + B), s).
In the coordinates defined by this parametrization Q R corresponds to 0 × A, Q corresponds to 1 × A, and ∀ q ∈ Q R the orbit segment {φ t (q) : 0 ≤ t ≤ τ (q)} corresponds to the segment [0, 1] × q.

Let's consider a parametrization η : [a, b] → Q of the arc η ∩ Q. In the coordinates defined by Ψ R , this curve has an expression of the form η

(u) = (1, ν 2 (u), ν 3 (u)) ∈ 1 × A.
Consider the curve ν ⊂ 0×A defined by ν(u) = (0, ν 2 (u), ν 3 (u)), a ≤ u ≤ b, and consider the surface

T η = {(t, ν 2 (u), ν 3 (u)) : 0 ≤ t ≤ 1, a ≤ u ≤ b}.
This surface is a band tangent to the flow, that connects the segments η and ν. See figure 3.15b.

First case:

We will assume that ν ⊂ Q R [0, 1] × R/Z satisfies the following:

(i) ν(a) = (0, 0), ν(b) = (1, 0); (ii) the segment ν twist once in the R/Z direction, (iii) ν ∩ ([0, 1] × {0}) = {ν 0 (a), ν 0 (b)}.
Thus we assume that ν looks like the green curve in the front face 0 × A of picture 3.15b. Consider the universal cover

Q R = [0, 1] × R → Q R = [0, 1] × R/Z. For every k ∈ Z let ν k : [a, b] → Q R be a lift of ν such that ν k (a) = (0, k). Condition (ii) says that ν k (b) = (1, k + 1). Let R k ⊂ Q R be
the compact band delimited by the two curves ν k and ν k+1 .

Claim. There exists a curve

µ : [a, b] → R 0 satisfying that (a) µ(a) = ν 0 (a) = (0, 0), µ(b) = ν 0 (b) = (1, 1); (b) µ ∩ ν 0 = {(0, 0), (1, 1)}; (c) µ 3 (u) > 0, ∀ a < u < b.
To see this, observe that condition (iii) implies that each ν k is entirely contained the fundamental domain

[0, 1] × [k, k + 1] of Q R .
Then the segment ν 0 divides the square [0, 1] × [0, 1] in a top and a bottom triangle, and in each of them there exists a curve µ satisfying the claim. See figure 3.16a. We make a comment on which of the two possibilities must be chosen at the end of this proof.

Since µ and ν 0 intersect just in its extremities, there exists a surface L ⊂ [0, 1]×[0, 1] delimited by these two curves. Let µ, L ⊂ Q R be the corresponding projections of µ and L.

Consider the surface B ⊥ ⊂ V defined as the union B ⊥ = L ∪ T η . Then, B ⊥ is a surface, homeomorphic to a band, that connects η ∩ Q with µ. It is transverse to the flow along L and is tangent along the band T η that connects η ∩ Q with ν, as depicted in 3.15b. Observe that in some small flow-box neighbourhood of T η , it is possible to perturb this surface fixing the side η ∩ Q and make it transverse to the flow lines. So, by a small perturbation of B ⊥ it is possible to find a band B ⊂ V transverse to the flow, that connects η ∩ Q with µ, and the curve µ cuts the meridians of Q R in a strictly monotonous way.

Finally, observe that there are two possibilities for selecting µ. There is only one of them that makes the union of the band B with the surface that lies outside T to be transverse to the flow lines.

Second case: We will assume now that the twist number is still one (condition (ii) of the previous case), but the lifts ν k are not necessarily contained in a fundamental (0, -1)

(1, 0) (1, -1) µ ν 0 ν -1 ν 1 µ R 0 (a) (0, 0) (1, 1) (0, 2) (1, 2) (0, 1) (1, 0) 
(1, -1) µ (0, -1) 

ν 0 ν -1 ν 1 R 0 (b)
( ν k ) = max n∈Z {n : ν k (u) ∈ [0, 1] × [n, n + 1]} i( ν k ) = min n∈Z {n : ν k (u) ∈ [0, 1] × [n, n + 1]}.
Observe that the quantity a(ν) := s( ν k ) -i( ν k ) is independent of the lift ν k .

Claim. There exists a curve µ :

[a, b] → R 0 satisfying that (a) µ(a) = ν i (a) = (0, i), µ(b) = ν i (b) = (0, i + 1) for some i = 0, 1; (b) µ ∩ ν i = {(0, i), (0, i + 1)}; (c) s( µ) -i( µ) < s( ν i ) -i( ν i ).
Proof of the Claim. Consider a segment constructed as a concatenation of of segments in ν 0 , ν 1 and horizontal segments, exactly as shown in figure 3.16b. Then, a small perturbation of this segment gives the desired curve. The way how the union of segments were chosen implies that the quantity a is strictly smaller.

Exactly as in the first case, the curves µ and ν i enclose a surface L contained in the region R 0 , that projects into a surface L ⊂ Q R . We can proceed analogously and, by deforming B ⊥ = L ∪ T η , we find a band B ⊂ V , transverse to the flow, that connects η ⊂ Q ⊂ T with µ ⊂ Q R ⊂ ∂T R . This time, µ is not necessarily monotonous in the third R/Z-coordinate, but we have that

a(µ) = s( µ) -i( µ) < a(ν). If a(η) = l, we can divide the region V [0, 1] × A in l cubes of the form V i [ i l , i+1 l ] × A separated by annuli Q i = i l × A, i = 0, . . . , l -1.
Then, defining µ 1 = µ, we can find a band B 1 ⊂ V l that connects µ 1 with to µ 2 ⊂ Q l-1 . We can apply the same process inductively on the sets V i until arrive to a monotonous curve µ l ⊂ ∂T R . The union of the bands

B 1 ∪ • • • ∪ B l gives the desired B.
Remark. The bands B i and the curves µ i must be chosen to extend the transversality along the union of the bands. Exactly as before, at each step two possibilities for constructing the next band arise, and only one is useful.

Third case:

The general case is when the segment η ∩ Q twists m = 1 times in the R/Z-direction. The proof of this case can be carried out by analogy to the previous two cases.

Step (ii):

Let L 0 , L 1 be the two faces of ∂V which are tangent to the flow. Let σ i = B ∩L i , i = 0, 1. The last step of the proof consists in finding a rectangular band B ⊂ (T\T R )∩V c , transverse to the flow, verifying that:

1. Two opposite sides coincide with the segments σ i , 2. The other two sides coincide with η\Q and with a curve µ ⊂ ∂T R \Q R .

Consider the surface defined as Σ = (D\D R ) × {0} ∩ V c in normal coordinates. Then, in a small flow box of each annulus L i it is possible to connect the boundaries of Σ with σ 0 and σ 1 , in such a way that the obtained surface is transverse to the flow lines. See figure 3.17. 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

W s ε (x) = {y ∈ M : d(f n (x), f n (y)) < ε, ∀ n ≥ 0}, W u ε (x) = {y ∈ M : d(f n (x), f n (y)) < ε, ∀ n ≤ 0}
, are a pair of C r -embedded disks, contained in F s (x) and F u (x) respectively, whose intersection is transverse and consists in the singleton {x}. Every point in M has a neighbourhood which is bi-foliated by the local invariant manifolds and has a Cartesian product structure.

From the existence of these contracting/expanding invariant foliations with local product structure we can derive most of the topological properties of an Anosov diffeomorphism. In particular, it follows that Anosov diffeomorphisms satisfy the following two properties (A) : They are expansive;

(B) : They satisfy the pseudo-orbits tracing property.

These two fundamental properties are involved in important consequences about the topological dynamic of Anosov diffeomorphisms, such as the C r -structural stability.

Topologically Anosov Homeomorphisms.

One attempt to characterize Anosov dynamics from a strictly topological point of view is via the class of homeomorphisms which are expansive and have the global shadowing property. Definition 4.1 (Topologically Anosov, [START_REF] Aoki | Topological theory of dynamical systems[END_REF]). Let X be a compact metric space. A homeomorphism f : X → X is said to be topologically Anosov if it is expansive and has the global shadowing property.

In [START_REF] Aoki | Topological theory of dynamical systems[END_REF] it is shown that much of the topological properties of Anosov diffeomorphisms are shared with these broader category of homeomorphisms. For example, topologically Anosov homeomorphisms on compact metric spaces have well-behaved local stable and unstable sets, which induce a partition of the space into stable and unstable sets with local product structure. Moreover, the chain recurrent set of such a diffeomorphism admits a Smale spectral decomposition in basic pieces as in a the Axiom A case, and on each basic piece it is possible to codify the dynamic using a Markov partition. They prove as well that topologically Anosov homeomorphisms are topologically stable.

C r -Anosov structures.

Let M be a closed manifold equipped with some smooth differentiable structure D, and consider an Anosov diffeomorphism f ∈ Diff r (M, D) (here r ≥ 1) preserving a hyperbolic splitting

T M = E s ⊕ E u .
The hyperbolicity condition of the invariant splitting is a property expressed in terms of a Riemannian metric. For being hyperbolic it is required that, for some Riemannian metric on (M, D), there are constants C > 0 and 0 < λ < 1 such that

Df n | E s (x) ≤ Cλ n and Df -n | E u (x) ≤ Cλ n for n ≥ 0,
where • denotes the norm induced by the metric. Since the manifold is compact, if E s ⊕ E u verifies the definition of hyperbolicity for some Riemannian metric then it will satisfy the same for any other chosen metric, up to modifying the constants C > 0 and 0 < λ < 1.

This means that being Anosov is not a property about how does f act on M as a metric space, but about how it acts as a diffeomorphism of (M, D). If D is another smooth structure on M and there exists a C r -diffeomorphism h : (M, D) → (M, D ),

then g = h • f • h -1 is a C r -Anosov diffeomorphism on (M, D
). Thus, we can think about f as being a homeomorphism on M , for which there exists a smooth differentiable structure D such that f is a C r -Anosov diffeomorphism. This is a property that depends just on the C r -diffeomorphism class of D. 

Existence of smooth models.

One principal question about general topological dynamics is whether or not the dynamic of a given homeomorphism can be realized, up to conjugation, by a model that is regular in some sense. In this spirit, we encounter the following two questions concerning expansive dynamics: Question 4.3. Let M be a closed topological manifold and f ∈ Homeo(M ),

(1) If f is expansive, does it exists some differentiable structure on M such that f is a diffeomorphism of class C r ?

(2) If f is topologically Anosov, does it exists some differentiable structure on M such that f an Anosov diffeomorphism of class C r ? Some remarks are in order.

Remark 4.4. Let f ∈ Homeo(M ) and let g ∈ Diff r (N ). If there exists a homeomorphism h : M → N that conjugates f and g then, using h, we can pull-back the differentiable structure of N onto a differentiable structure on M . With this structure f is a diffeomorphism. Thus, determining whether or not f preserves a differentiable structure is equivalent to determining if f is C 0 -conjugated to a diffeomorphism in some differentiable manifold. In this way, the differentiable structures preserved by f can be described as the differentiable conjugacy classes of diffeomorphisms g which are topologically conjugated to f . Remark 4.5. In general, it is not true that a homeomorphism is conjugated to some diffeomorphism. Many examples of this can be given, in any class of regularity varying from Lipschitz to smooth or analytic. For instance, a homeomorphism with infinite topological entropy in a compact manifold can never be endowed with a smooth differentiable structure.

Remark 4.6. If dim(M ) ≤ 3 then all the different smooth structures on M are diffeomorphic. Thus, we can assume that M is already endowed with a fixed smooth structure and ask if f is conjugated to some diffeomorphism on M .

Remark 4.7. In question ( 2) the important step is to go from topologically Anosov to

C 1 -Anosov structures. If f ∈ Diff 1 (M, D
) is an C 1 -Anosov diffeomorphism then there exists another smooth structure E for which f is a C ∞ -Anosov diffeomorphism. To see this, just observe that f can be approximated very close in the C 1 -topology by some smooth diffeomorphism g ∈ Diff ∞ (M, D). Then, by C 1 -structural stability we know that f is C 0 -conjugated with g by a homeomorphism h : M → M . The structure E = h * (D) is a C ∞ -Anosov structure for f . Nonetheless, observe that the smooth structure E is rarely compatible with D.

Questions (1) and ( 2) are open in general. In dimension two the answer is positive for the two questions, as follows from the works of Lewowicz, Hiraide, and Gerber-Katok.

As we already cited in section 7, in [START_REF] Lewowicz | Expansive homeomorphisms of surfaces[END_REF] and [START_REF] Hiraide | Expansive homeomorphisms of compact surfaces are pseudo-Anosov[END_REF] it is shown that any expansive homeomorphism in a compact surface is conjugated to a pseudo-Anosov homeomorphism. Then, in [START_REF] Gerber | Smooth models of Thurston's pseudo-Anosov maps[END_REF] it is shown that any pseudo-Anosov homeomorphism is in fact conjugated to a smooth diffeomorphism (result that was extended later to the analytic case in [START_REF] Lewowicz | Analytic models of pseudo-Anosov maps[END_REF]), answering in this way to question (1) in dimension two. We notice as well that the smooth models of Gerber-Katok are in the ergodic class of Bernoulli shifts with respect to some smooth measure in the surface.

For question [START_REF] Aoki | Topological theory of dynamical systems[END_REF] in the surface case, the Anosov diffeomorphisms are the only pseudo-Anosov maps that satisfies the pseudo-orbits tracing property, so they are the only topological Anosov homeomorphisms up to conjugation.

In greater dimensions less in known. In [START_REF] Vieitez | Expansive homeomorphisms and hyperbolic diffeomorphisms on 3-manifolds[END_REF] and [START_REF] Artigue | Local product structure for expansive homeomorphisms[END_REF] it is shown that, under certain strong hypothesis about the set of periodic points, every expansive homeomorphism in a compact n-manifold is necessarily C 0 -conjugated to an Anosov diffeomorphisms on the n-dimensional torus. In [START_REF] Aoki | Topological theory of dynamical systems[END_REF] it is shown that topological Anosov homeomorphisms on the n-torus are conjugated to Anosov diffeomorphisms. We remark another interesting result found in [START_REF] Farrell | Anosov diffeomorphisms constructed from π 1 Diff (S n )[END_REF] concerning exotic differentiable structures: In dimension n > 4 there exist topologically Anosov homeomorphisms on the n-torus, which are C ∞ -Anosov diffeomorphisms with a certain smooth structure that is not diffeomorphic to the standard one (and they are not Anosov with the standard smooth structure on T n ).

Remark 4.8. The existence of a C 1 -Anosov structure preserved by a homeomorphism f is more restrictive than the condition of being just a diffeomorphism for some differentiable structure. It is not hard to construct examples of expansive diffeomorphisms on the n-torus, C 0 -conjugated to some linear Anosov automorphism, but which are not Anosov for the standard smooth structure. See for instance [START_REF] Aoki | Topological theory of dynamical systems[END_REF], theorem 1.2.2 and remark 1.2.3.

The main difficulty to prove that an expansive or topologically Anosov homeomorphism preserves a differentiable structure is to construct differentiable model to compare with. In most of the cases the strategy consists in show that the homeomorphism preserve a pair of transverse foliations, may be defined in just an open and dense subset of M , and then use this to impose conditions on the topology of M . General expansive maps in compact metric spaces preserve partitions by stable/unstable sets, but it is not clear whether they should constitute foliations or something similar. In view of this we can make the following definition: 

F u (x) = {y ∈ M : lim n→-∞ d(f n (x), f n (y)) = 0}.
Adding this extra hypothesis we can see in [START_REF] Ghys | Sur l'invariance topologique de la classe de Godbillon-Vey[END_REF] an elementary proof that every strong topological Anosov homeomorphism in the two dimensional torus is conjugated to a linear Anosov map. Also, from the classical result of Franks and Newhouse about codimension one Anosov diffeomorphisms ( [START_REF] Newhouse | On codimension one Anosov diffeomorphisms[END_REF], [START_REF] Franks | Anosov diffeomorphisms on tori[END_REF]) it follows that every strong topological Anosov homeomorphism is conjugated to a linear Anosov automorphism on the n-torus, provided one of the two foliations has dimension one.

Topologically Anosov flows in dimension three.

The problem of smooth models for expansive or topologically Anosov dynamics can be translated to the context of flows. We discuss it for the case of regular flows in three dimensional closed manifolds. Let φ t : M → M be an orbitally expansive regular flow, defined in a closed, smooth, Riemannian 3-manifold M . In the same way that expansive homeomorphisms in closed surfaces are conjugated to pseudo-Anosov homeomorphisms, in [START_REF] Paternain | Expansive flows and the fundamental group[END_REF] and [START_REF] Inaba | Nonsingular expansive flows on 3-manifolds and foliations with circle prong singularities[END_REF] it is shown that every expansive flow in a closed 3-manifold is orbitally equivalent to a pseudo-Anosov flow. 1 Thus, the theorems in [START_REF] Lewowicz | Expansive homeomorphisms of surfaces[END_REF], [START_REF] Hiraide | Expansive homeomorphisms of compact surfaces are pseudo-Anosov[END_REF], [START_REF] Paternain | Expansive flows and the fundamental group[END_REF] and [START_REF] Inaba | Nonsingular expansive flows on 3-manifolds and foliations with circle prong singularities[END_REF] say that, in the smallest possible dimension (two for homeomorphisms and three for flows), pseudo-Anosov dynamics are the only expansive dynamics. A very complete account on these theorems and definitions is found in [START_REF] Brunella | Expansive flows on three -manifolds[END_REF]. Definition 4.10 (Topological Anosov flows). Let (φ t , M ) be a regular flow defined in a closed 3-manifold M . We say that φ t is a topological Anosov flow if it is expansive and the invariant foliations have no singularities.

By the stable manifold theorem we have that every C r -Anosov flow is, in particular, topologically Anosov. In analogy to question 4.3 we have the following problem: Then, the theorem stated above says that given a transitive topological Anosov flow, there exists some reparametrization of the flow and a smooth atlas on the ambient manifold for which the flow is C 1 -Anosov. By the remark 4.7 above, we can choose the smooth atlas in such a way that the flow becomes C r -Anosov, for any 1 ≤ r ≤ ∞. Theorem 4.12 proceeds by reducing the dynamic of the flow to a first return map onto a Birkhoff section, and is for this reason that the proof presented here is valid just in the transitive case. As we remarked on the introduction, there are hyperbolic basic sets for flows in dimension three which cannot be constructed from the suspension of any surface map, (cf [START_REF] Béguin | Building Anosov flows on 3-manifolds[END_REF], non-coherent attractors), which constitutes an obstruction to extend our techniques. Question 4.11 is open in the non-transitive case.

2 Almost Anosov Structures.

Let (φ t , M ) be a transitive topological Anosov flow.

In the complement of some finite collections of periodic orbits, it is possible to define a smooth atlas and a Riemannian metric such that the restriction of the flow onto this set is orbitally equivalent to a smooth flow preserving a uniformly hyperbolic splitting. This follows from the theorem of Fried [START_REF] Fried | Transitive Anosov flows and pseudo-Anosov maps[END_REF] and Brunella [START_REF] Brunella | Expansive flows on three -manifolds[END_REF]. Since φ t is transitive, there exists a Birkhoff section ι : (Σ, ∂Σ) → (M, Γ).

(4.1)

In the complement of Γ the restriction of the flow is orbitally equivalent to the suspension of the first return map P : Σ → Σ. The pseudo-Anosov character of P allow to define a convenient smooth structure and Riemannian metric on the (open) manifold M \Γ, as we explain below. Before, we recall the general construction of Fried.

Fried's Construction.

Let Σ be the closed surface obtained by collapsing each boundary component of the Birkhoff section (4.1) into a point, and let ∆ be the set of all these points.

There is a homeomorphism P : Σ → Σ that preserves ∆, induced by the blow-down operation, which is generalized2 pseudo-Anosov and has no singularities on Σ = Σ\∆. The set of singularities of P (i.e. the set of singularities of the invariant foliations) is contained in ∆. Since P is induced from the first return map to a Birkhoff section in a topological Anosov flow (no circle-prongs), we encounter some restrictions on the kind of k-prong local models that are available at the singularities of P ; see [START_REF] Fried | Transitive Anosov flows and pseudo-Anosov maps[END_REF]. pseudo-Anosov flow, and the orbits in Γ that correspond to singular points for P will be circle-prongs of the invariant foliations.

It follows that ( φ t , M ) is almost equivalent to (φ t , M ). That is:

• There exists an orbital equivalence H Γ : (φ t , M \Γ) → ( φ t , M \ Γ),

• (φ t , M ) is obtained by Fried Surgery on ( φ t , M ) along the periodic orbits in Γ.

Almost Anosov smooth structure associated to a Birkhoff section.

From now on we will denote M Γ = M \Γ and, in general, we will use Γ as a sub-index for referring to the objects associated to the restriction of φ t onto M Γ .

The flow (φ t , M Γ ) is equivalent to the suspension flow generated by P : Σ → Σ. As a consequence, we can state the following proposition: Proposition 4.14. The manifold M Γ is equipped with a smooth structure D Γ such that:

(i) The foliation by flow orbits O Γ on M Γ is tangent to a smooth non-singular vector field X Γ .

(ii) 

Dφ X Γ t : T M Γ → T M Γ preserves a splitting T M Γ = E s Γ ⊕ E c Γ ⊕ E u Γ ,
|Dφ X Γ t (p) • v| Γ = λ t • |v| Γ , ∀ v ∈ E s and t ≥ 0, |Dφ X Γ t (p) • v| Γ = λ -t • |v| Γ , ∀ v ∈ E u and t ≤ 0,
where 0 < λ < 1 is the stretching factor of P .

In analogy to [START_REF] Hu | Conditions for the existence of SBR measures for "almost Anosov" diffeomorphisms[END_REF] we define: Proof. To prove the proposition, observe that since P : Σ → Σ is pseudo-Anosov it has an associated pair (F s , µ s ) and (F u , µ u ) of transverse foliations equipped with transverse measures and a stretching factor 0 < λ < 1. Since there are no singularities on the open surface Σ = Σ\∆, this pair of transverse foliations provides a translation atlas

D ∆ = {ϕ i : U i → R 2 } i∈I , where {U i } i∈I is an open cover of Σ,
such that, on each coordinate neighbourhood, the foliations F s and F u correspond to the foliations of the plane by horizontal and vertical lines, and the transverse measures µ s and µ u correspond to the 1-forms |dx| and |dy| in R 2 , respectively. This translation atlas defines a smooth structure in Σ and a Riemannian metric

| • | 2 = dx 2 + dy 2 .
In the local coordinates of this atlas, the first return P : Σ → Σ takes the form of a homeomorphism The DP -invariant splitting on the surface induces an invariant splitting of the form

ϕ i • P • ϕ -1 j : (x, y) → ± λ 0 0 λ -1 (x, y) + τ ij between open sets in R 2 .
T M = E s ⊕ E u ⊕ span{∂/∂t}
for the derivative of the suspension flow. Moreover, for each point (z, t) of Σ × R, the expression

| • | 2 = λ -2t dx 2 + λ 2t dy 2 + dt 2
defines a Riemannian metric that pushes-down to the quotient manifold M and induces a metric | • | • that coincides with the metric on Σ along a fixed global transverse section Σ → M . The invariant splitting defined above is uniformly hyperbolic with respect to this metric, and it follows from its definition that

|Dφ t | E s | • = λ t and |Dφ t | E u | • = λ -t .
Since (φ t , M Γ ) is orbitally equivalent to ( φt , M ), this completes the proof.

Normal form in a neighbourhood of γ ∈ Γ.

We describe here a normal form for the vector field X Γ in a neighbourhood of each γ ∈ Γ. Before, in 2.2, we will make a small digression about a normal form for the suspension of a saddle type hyperbolic linear transformation on R 2 . In 4.20 and 4.24 we will define a family of tubular neighbourhoods, that we call cross-shaped neighbourhoods, and that will be used in the course of the proof of theorem 4.12.

Affine local model.

Given 0 < λ < 1 consider the matrix A = λ 0 0 λ -1 .

Lemma 4.18. Let φ λ t : M λ → M λ be the flow obtained as the suspension of A : R 2 → R 2 . Then, there exists a smooth conjugation

H : (φ λ t , M λ ) → (φ X λ t , R 2 × R/Z),
where X λ : R 2 ×R/Z → R 3 is the vector field given by X λ (x, y, z) = (log(λ)x, -log(λ)y, 1).

Thus, the flow φ X λ t provides a time-preserving smooth model for the germ of the periodic orbit in the suspension of A. We will outline some facts about this flow in what follows.

The action of φ X λ t in coordinates. The flow φ X λ t acts on the solid torus R 2 × R/Z by affine transformations, and in the standard (x, y, z) coordinates is given by φ X λ t (x, y, z) = (λ t x, λ -t y, z + t). So, its action can be decomposed as the product of two flows:

(i) The flow φ A t : R 2 → R 2 given by φ A t (x, y) = exp(tA)(x, y), (ii) The flow R/Z → R/Z given by z → z + t.

The action of Dφ X λ t on R 3 preserves a splitting E s ⊕ E c ⊕ E u into three line bundles

E s = R × {0} × {0}, E c = span{X λ } and E u = {0} × R × {0},
and for every p ∈ R 2 × R/Z we have that

Dφ X λ t (p) • v = λ t • v , ∀ v ∈ E s and t ≥ 0, Dφ X λ t (p) • v = λ -t • v , ∀ v ∈ E u and t ≤ 0, where • is the standard Euclidean norm.
Plane cross-shaped region. Start with the standard partition {D i : i = 1, . . . , 4} of the plane R 2 into four quadrants, and consider the corresponding restrictions φ A t :

D i → D i . Given two parameters 0 < r 2 < r 1 < 1 consider the region Q 1 = Q 1 (r 1 , r 2 ) ⊂ D 1
delimited by the segments:

(1)

w s 1 = [0, r 1 ] × {0} (2) w u 1 = {0} × [0, r 1 ] (3) J 1 in = {(r 1 , 0)} × [0, r 2 ] (4) J 1 out = [0, r 2 ]
× {(0, r 1 )} ( 5) l 1 = the orbit segment of φ A t that connects (r 1 , r 2 ) with (r 2 , r 1 ). The boundary ∂Q 1 is composed of one segment contained W s (0), one segment contained in W u (0), an entrance boundary J 1 in , an exit boundary J 1 out , and an orbit segment. See Figure 4.1a.

By analogy we define the corresponding regions

Q i ⊂ D i in each quadrant i = 2, 3, 4.
The union of these four regions determines a compact neighbourhood

Q = Q(r 1 , r 2 ) of 0 ∈ R 2 . See Figure 4.1b.
There is a diffeomorphism ψ : J 1 in \{(r 1 , 0)} → J 1 out \{(0, r 1 )} of the form ψ : p → q = φ A τ (p) (p), which sends each entrance point p onto the point q determined by the intersection J 1 out ∩ O + (p). The same holds for the other regions Q i , i = 2, 3, 4. Cross-Shaped neighbourhood Let γ 0 = 0 × R/Z be the periodic orbit of the flow φ X λ t defined in lemma 4.18 and let {W i : i = 1, . . . , 4} be the partition of the solid torus R 2 × R/Z into four quadrants determined by the invariant manifolds of γ 0 . Definition 4.20. Given two parameters 0 < r 2 < r 1 < 1 define the regions

1 w u 1 w s 1 (0, 0) (R 1 , 0) (R 1 , R 2 ) (R 2 , R 1 ) J 1 out J 1 inn (0, R 1 ) (a) D 4 D 1 Q 1 Q 2 D 2 Q 3 D 3 Q 4 (b)
V i = V i (r 1 , r 2 ) ⊂ W i and V = V (r 1 , r 2 ) ⊂ R 2 × R/Z by V i (r 1 , r 2 ) := Q i (r 1 , r 2 ) × R/Z, for i = 1 . . . , 4 (4.4) V (r 1 , r 2 ) := Q(r 1 , r 2 ) × R/Z. (4.5) 
The region V (r 1 , r 2 ) is a compact, regular, tubular neighbourhood of the periodic orbit γ 0 . We call it a cross-shaped neighbourhood. It is decomposed as the union of the four regions V i , each one contained in a quadrant of the solid torus. See figure 4.2.

Each of V i is homeomorphic to a solid torus and its boundary is composed of five annuli:

(1)

L s i = w s i × R/Z (2) L u i = w u i × R/Z (3) A i in = J i in × R/Z (4) A i out = J i out × R/Z (5) L c = l i × R/Z.
The annuli L s i , L u i and L c i are tangent to the flow, being the first two contained in the weak stable and unstable manifolds respectively. The annuli A i in and A i out are the entrance and exit annuli, respectively. For i = 1,this two annuli corresponds to the sets

V 1 V 2 V 3 V 4 γ 0 (b)
A 1 in = {(r 1 , r, z) : 0 ≤ r ≤ r 2 , z ∈ R/Z} A 4 in = {(r 1 , r, z) : -r 2 ≤ r ≤ 0, z ∈ R/Z}.
There is a diffeomorphism ψ : A 1 in \W s (0) → A 1 out \W u (0) of the form

ψ : p → q = φ X λ τ (p) (p),
which sends each entrance point p onto the point q determined by the intersection A 1 out ∩O + (p). The same holds for the other entrance-exit pair of annuli on the boundary.

Lemma 4.21. Given 0 < r 2 < r 1 < 1 consider the map ψ :

{r 1 } × (0, r 2 ] × R/Z → (0, r 2 ] × {r 1 } × R/Z associated to the flow φ X λ t . Let p = (r 1 , r, z), then ψ(p) = (r, r 1 , z + τ (p)) and τ (p) = τ (r) = log(r/r 1 ) log(λ) .
Normal form in a neighbourhood of Γ.

Given a periodic orbit γ ∈ Γ consider some small tubular neighbourhood W . In this section we will assume that the invariant local manifolds are orientable, so every small tubular neighbourhood W is partitioned in four quadrants W i , i = 1, . . . , 4. The following lemma gives a normal form for the vector field X on the punctured neighbourhood W \ γ.

Recall that the first return to Σ is pseudo-Anosov and we denote by 0 < λ < 1 its stretching factor. Also recall that γ is the image of a number p = p(γ, Σ) of connected components of ∂Σ. This means that in a small neighbourhood W of γ the surface Σ ∩ W splits as p different local Birkhoff sections at γ, each of them with the same linking number n = n(γ, Σ) and multiplicity m = m(γ, Σ). Then, for every γ ∈ Γ there is a small tubular neighbourhood W , divided in four quadrants W i , i = 1, . . . , 4, and a systems of smooth charts

Π i : W i \ γ → (D i \ {0}) × R/Z, i = 1, . . . , 4 satisfying that: 1. DΠ * (X Γ ) = X (λ,p,n) , where X (λ,p,n) : R 2 × R/Z → R 3 is the vector field X (λ,p,n) (x, y, z) = log(λ)x, -log(λ)y, 1 |np| . (4.6) 2. The charts Π i send each connected component of Σ ∩ (W \γ) isometrically onto a surface of the form U ∩ (D i \{0}) × { k |np| }, where U is an open neighbourhood of 0 ∈ R 2 and k ∈ {0, . . . , |np| -1}.

It is verified that:

Π 1 (W 1 ) = Π 2 (W 2 ) = {0} × (0, +∞) × R/Z Π 2 (W 2 ) = Π 3 (W 3 ) = (-∞, 0) × {0} × R/Z Π 3 (W 3 ) = Π 4 (W 4 ) = {0} × (-∞, 0) × R/Z Π 4 (W 4 ) = Π 1 (W 1 ) = (0, +∞) × {0} × R/Z and Π 2 • Π -1 1 : (0, y, z) → (0, y, z) Π 3 • Π -1 2 : (x, 0, z) → (x, 0, z) (4.7) Π 4 • Π -1 3 : (0, y, z) → (0, y, z) Π 1 • Π -1 4 : (x, 0, z) → x, 0, z + m n .
Remark 4.23. The charts defined in lemma 4.22 send the orbit segments of φ t that lie inside each punctured quadrant W i \ γ onto the orbit segments of the flow generated by the vector field (4.6) inside the quadrant D i × R/Z, preserving the time parameter. Thus, we can reconstruct the vector field X Γ in W \γ by glueing the four pieces

X (λ,p,n) , (D i \{0}) × R/Z , i = 1, . . . , 4
along their boundaries in the way specified in (4.7). Since the vector field X (λ,p,n) is invariant by vertical translations, the glueing map Π 1 • Π -1 4 preserves X (λ,p,n) and we get a well defined vector field in the quotient manifold, which is homeomorphic to a solid torus with an essential closed curve on the interior removed. Let γ ∈ Γ be the periodic orbit of the associated flow ( φ t , M ), that is in correspondence with γ under surgery. For every small tubular neighbourhood W there is an associated tubular neighbourhood W of γ of the form

W := H Γ (W \γ) ∪ γ, ( 4.8) 
together with a local orbital equivalence H Γ : (φ t , W \γ) → ( φ t , W \ γ). Recall that the germ of φ t on γ is saddle type while, in general, the germ of φ t on γ will be a circle-prong, as in figure 4.3. We go from one to the other doing a Fried surgery.

Since the local invariant manifolds of γ are orientable it is verified that:

1. W s ε (γ) ∪ W u ε (γ) partitions the neighbourhood W in four quadrants W i , i = 1, . . . , 4. 2. W s ε ( γ) ∪ W u ε ( γ) partitions the neighbourhood W in four quadrants W i , i = 1, . . . , 4, each one defined by W i = H Γ (int(W i )).
Local Birkhoff section. The way these four quadrants are glued together to form the germs of (φ t , W ) γ or ( φ t , W ) γ can be combinatorially described using the Birkhoff section Σ. Assume that C is a component of ∂Σ such that γ = ι(C). There exists a collar neighbourhood B [0, 1) × R/Z 1 of C which immerses in W as a local Birkhoff section at γ, with linking number n = n(B, γ) and multiplicity m = m(B, γ).

We recall from section 4.1 that this local section B is partitioned by the local invariant manifolds into 4|n| quadrants B k , k = 1, . . . , 4|n|, and each quadrant W i contains |n| of them, like in the left part of figure 4.3. We fix a way of labelling the surfaces B k as follows: Let α ⊂ B \∂B be a generator of π 1 (B\∂B), that we may assume it is a closed simple curve, constructed by concatenating straight paths contained on each B k . Orient this curve in such a way that [α] = n•a+m•b ∈ H 1 (W \γ) has coordinate m > 0 in the meridian/longitude basis {a, b}. Then, this curve induces a cyclic order on the set of quadrants. We chose the indices k = 1, . . . , 4|n| in such a way that each B k+1 is the adjacent quadrant that follows B k in the cyclic ordering.

For each fixed i = 1, 2, 3, 4, in the quadrant W i there are contained |n| of these surfaces. There are two ways for ordering them. From the one hand, without lose of generality we may assume that the B k are enumerated in such a way that:

B k is contained in the quadrant W i iff k = i + 4j, with i = 1, . . . , 4, j = 0, . . . , n -1.
From the other hand, if we consider a simple closed curve in the interior of W i that is homotopic to the longitude γ and is transverse to B (a longitude), the orientation of this curve induces a cyclic ordering of the quadrants contained in W i .

Observe that the local first return P : B → B induces a cyclic permutation of all the quadrants contained in W i that preserves this cyclic ordering. In fact, in proposition 4.1 it is shown that, for each k = 1, . . . , 4|n|

P : B k → B k+4l → B k+4(2l) → • • • → B k+4(n-1)l → B k , ( 4.9) 
where l ≡ m -1 (mod n).

Let B be the disk obtained by collapsing ∂B into a point q ∈ Σ. This disk is a transverse section for φ t : W → W with first return map P : B → B. The partition into quadrants of B induce a partition of B in quadrants B 1 , . . . , B 4n . These 4|n| quadrants intersect alternately along stable and unstable segment, and therefore the map P : B → B is a 2n-prong-saddle at the singularity q. By the previous remarks, the map P permutes the quadrants in the same way as (4.9) before.

Proof of Lemma 4.22. We assume first that p(γ, Σ) = 1. Thus, for a small tubular neighbourhood W the surface B = Σ ∩ W is a connected local Birkhoff section.

Let B defined as before. The smooth atlas for (φ t , W \γ) is obtained as the germ of the suspension of ( P , B\{q}), so it suffices to study the germ ( φ t , W \ γ).

On each W i , i = 1, . . . , 4 there are contained exactly n quadrants of the form B i+4j , j = 0, . . . , n -1. All of these quadrants share the common vertex q. Consider the sets In addition, since P is pseudo-Anosov with stretching factor λ and q is a 2n-prong, there exists a chart ϕ q : ( B, q) → (R 2 , 0) that is smooth outside {q} and satisfies:

B * i+4j = B i+4j \
1. ϕ q : B \ {q} → R 2 \ {0} is a n-fold covering, 2. A • ϕ q (p) = ϕ q • P (p)
, for every p in a neighbourhood of q, where A = λ 0 0 λ -1 .

3. For every i = 1, . . . , 4, the chart ϕ q sends B i+4j isometrically onto its image in

D i ⊂ R 2 .
In particular, the chart ϕ q provides a smooth conjugation quadrant by quadrant:

B i+4j B i+4j D i D i P n ϕq ϕq A n
for every i = 1, . . . , 4.

This implies that the flow in (4.10) above is conjugated to the flow generated by z → z+t in R 2 × R/ (z,t) →(A n (z),t-|n|) . (4.11)

Since this latter flow is smoothly time-preserving equivalent to the germ of the vector field X (λ,n) (x, y, z) = (log(λ)x, -log(λ)y, 1/n) on the quadrant D i × R/Z (cf.4.22), we obtain a family of charts

Π j i : W i \ γ → (D i \{0}) × R/Z, j = 0, . . . , n -1,
satisfying the desired properties. Each chart is induced from one of the maps P n :

B * i+4j → B * i+4j .
Fix a surface B * i in a quadrant W i . According to (4.9) before, the first return P projects B * k onto the surface B * k+4l . By definition of φ, this projection along the flow lines is in constant time, and it induces a cyclic permutation of the surfaces contained in W i . Moreover, this map is conjugated to the linear map A in the coordinates defined by ϕ q . So we may assume that the coordinate charts Π i send the surfaces B * i+4lj to planes of the form D i × { j n }, for every j = 0, . . . , n -1. Chose B * 1 in the quadrant W 1 and Π 1 such that Π 1 : B * 1 → D 1 × {0}. Observe that the chart ϕ q extends over the union

B * 1 ∪ B * 2 ∪ B * 3 ∪ B * 4 
sending each B * i onto D i × {0}. Thus, we can coherently extend Π 1 to the adjacent quadrants W i \ γ, i = 2, 3, 4, in such a way that each Π i sends the surface B * i to

Proof of theorem C (thm. 4.12).

Start with a Birkhoff section ι : (Σ, ∂Σ) → (M, Γ) with first return P : Σ → Σ. Then, the construction in 2 associates:

1. A smooth atlas D Γ and a Riemannian metric | • | Γ on the manifold M \ Γ such that, up to reprametrization, φ t is generated by a smooth vector field X Γ and preserves a uniformly hyperbolic splitting

E s Γ ⊕ E c Γ ⊕ E u Γ . Moreover, |Dφ t (v)| Γ = λ t |v| Γ , ∀ v ∈ E s Γ , t ≥ 0, |Dφ t (v)| Γ = λ -t |v| Γ , ∀ v ∈ E u
Γ t ≤ 0 where 0 < λ < 1 is the stretching factor of the first return map to the Birkhoff section.

2. For every orbit γ ∈ Γ there is a small tubular neighbourhood W , divided in four quadrants W i , i = 1, . . . , 4, and a system of smooth charts

Π i : W i \ γ → (D i \ {0}) × R/Z, i = 1, . . . , 4 called normal coordinates, verifying that: (a) DΠ i : X Γ → X (λ,n,p)
, where X (λ,n,p) is the vector field in R 2 × R/Z defined by

X (λ,n,p) (x, y, z) = log(λ)x, -log(λ)y, 1 |np| ; 
(b) The charts Π i send the quadrants of the local Birkhoff section Σ∩W isometrically onto surfaces of the form (D i \ {0}) × k |np| with k = 0, . . . , |np| -1; (c) Along the corresponding domains of intersection between the four quadrants, we have

Π 2 • Π -1 1 : (x, y, z) → (x, y, z) Π 3 • Π -1 2 : (x, y, z) → (x, y, z) Π 4 • Π -1 3 : (x, y, z) → (x, y, z) Π 1 • Π -1 4 : (x, y, z) → x, y, z + m n ;
where p = p(γ, Σ), n = n(γ, Σ) and m = m(γ, Σ) are the combinatorial parameters of the Birkhoff section at γ.

Assumption:

For simplicity, from now on we assume that ∂Σ consists in one boundary component, and so does Γ, which consists in one saddle type periodic orbit γ. The general case with many boundary components can be derived from the present case, by applying the following construction on a neighbourhood of each curve γ ∈ Γ. We will denote by n = n(γ, Σ) and m = m(γ, Σ), and remark that p(γ, Σ) = 1.

For some parameters 0 < r 2 < r 1 < 1, consider the tubular neighbourhood R(r 1 , r 2 ) ⊂ M of γ defined in 4.24. Let's consider:

• The manifold M R (r 1 , r 2 ) obtained from M by removing the interior of R(r 1 , r 2 ), equipped with the restricted vector field X Γ .

• The cross-shaped neighbourhood V(r 1 , r 2 ) in R 2 × R/Z defined in 4.20, equipped with the vector field

X (λ,n) (x, y, z) = log(λ)x, -log(λ)y, 1 |n| .
The idea of the construction is the following:

(1) In 3.2, using the system of normal coordinates of lemma 4.22 we will define a diffeomorphism

ϕ : ∂M R (r 1 , r 2 ) → ∂V(r 1 , r 2 )
from the boundary of M R (r 1 , r 2 ) to the boundary of V(r 1 , r 2 ), that will depend on the signature of the linking number n(γ, Σ). Glueing along the boundaries with this diffeomorphism, we will produce a manifold

N = N (r 1 , r 2 ) := M R (r 1 , r 2 ) ϕ V(r 1 , r 2 )
endowed with a smooth atlas. We will show that the vector fields X Γ on M R (r 1 , r 2 ) and X (λ,n,p) on V(r 1 , r 2 ) fit together and induce a smooth vector field Y on the quotient manifold N . This will be the content of lemma 4.27.

(2) Let (ψ t , N ) be the flow generated by the vector field Y . Then, in 3.3 we will show that, for sufficiently small values of the parameters 0 < r 2 < r 1 < 1, this flow is Anosov.

(3) Finally, in 3.4, we show that (ψ t , N ) is orbitally equivalent to the original topological Anosov flow (φ t , M ).

Theorem 4.12 follows from the statements (1),( 2),(3) above.

Construction of the smooth model.

In this subsection we construct the smooth model associated to a topological Anosov flow. We will as well state some facts about this smooth flow.

Let n = n(γ, Σ) and m = m(γ, Σ) be the linking number and multiplicity of γ. Consider a smooth decreasing function ρ : [0, 1] → [0, 1] such that:

• ρ(t) = 1, for 0 ≤ t ≤ 1 3 , • ρ (t) < 0, for 1 3 < t < 2 3 ,
• ρ(t) = 0, for 

, z) = Π i (p) ∈ R 2 × R/Z. 1. If n = n(γ, Σ) < 0 then ϕ(p) = (x , y , z) ; if p / ∈ A 1 in , r 1 , y , z + m |n| ρ y r 2 ; if p ∈ A 1 in and (r 1 , y, z) = Π 1 (p). (4.14) 2. If n = n(γ, Σ) > 0 then ϕ(p) = (x , y , z) ; if p / ∈ A 4 in , r 1 , y , z + m |n| ρ -y r 2 ; if p ∈ A 4 in and (r 1 , y, z) = Π 4 (p). (4.15) 
In figure 4.5 we illustrate the map ϕ in normal coordinates for the case of negative linking number, defined in (4.15). Observe that, in normal coordinates, this maps looks like the identity for every point not in A 1 in . In the figure the depict the action of ϕ along the first quadrant. Lemma 4.27. For every couple of small parameters 0 < r 2 < r 1 < 1 the map ϕ defined above is a well-defined diffeomorphism. Moreover, consider the manifold

(p) X X V 1 (r 1 , r 2 ) ϕ ∂W R (r 1 , r 2 ) r 2 r 1 r 2 r 1 A 1 in A 1 out e 3
N (r 1 , r 2 ) = M R (r 1 , r 2 ) ϕ V(r 1 , r 2 ).
Then, there exists a smooth atlas D and a smooth vector field Y on N (r 1 , r 2 ) such that:

(i) The inclusion ι : M R (r 1 , r 2 ) → N (r 1 , r 2 ) is a diffeomorphism onto its image and ι * : X Γ → Y , (ii) The inclusion ι : V(r 1 , r 2 ) → N (r 1 , r 2 ) is a diffeomorphism onto its image and ι * : X (λ,n) → Y .
Definition. We denote by

ψ t : N → N (4.16)
the flow generated by the vector field Y on the smooth manifold N = N (r 1 , r 2 ) given by lemma 4.27.

Notation: For notational simplicity we will set M 0 = M R (r 1 , r 2 ) and M 1 = V(r 1 , r 2 ), and for each j = 0, 1 we denote by φ j t , X j , T M j = E s j ⊕ E c j ⊕ E u j and | • | j the corresponding flow, vector field, splitting and Riemannian metric. Denote by N = M 0 ϕ M 1 and by ι j : M j → N the natural inclusion maps. The two components are glued along the subset M 0 ∩ M 1 ∂M 0 ∂M 1 that is homeomorphic to a two dimensional torus.

Proof. Observe that, when written in coordinates 4.22, the map ϕ consists in apply a twist map, supported on the annuli A 1 in or A 4 in , depending on the signature of the linking number. This assumption will be important in 3.4 for the purpose of constructing a Birkhoff section. Along this proof we will stay in the case n < 0, being analogous the other one.

Observe that the partition of the neighbourhood W in quadrants decomposes ∂R in four regions, individually homeomorphic to the annulus. To show that ϕ is welldefined we have to check its definition along the intersections of these four regions. It is well-defined over the intersections

A 1 out ∩ A 2 out , A 2 in ∩ A 3 in and A 3 out ∩ A 4 out because Π i+1 • Π -1 1 = id, for i = 1, 2, 3.
To check that it is well-defined on the intersection

A 1 in ∩ A 4 in , observe that if p ∈ A 1 in has coordinates Π 1 (p) = (r 1 , 0, z) then ϕ(p) = (r 1 , 0, z -m n ).
In particular, we have that

Π 4 • Π -1 1 (p) = ϕ(p), ∀ p ∈ A 1 in ∩ A 4 in .
Thus ϕ is a well-defined smooth bijection between the boundary of R(r 1 , r 2 ) (see the description following 4.24) and the boundary of V(r 1 , r 2 ).

Recall that to associate a smooth atlas on the quotient N = M 0 ϕ M 1 consists in adding, for each point p

= ϕ(p) in ι 0 (M 0 ) ∩ ι 1 (M 1 ), a local parametrization σ p : U ⊂ R 3 → σ p (U ) ⊂ N in a neighbourhood of p satisfying that σ -1 p : σ p (U ) ∩ M 0 → U and σ -1 p : σ p (U ) ∩ M 1 → U are diffeomorphisms onto their respective images. If p / ∈ A 1 in and U ⊂ R 2 × R/Z is an open neighbourhood of (x, y, z) = Π i (p) then the map σ p : U → N given by σ p (x, y, z) = (x, y, z) ; if (x, y, z) ∈ V(r 1 , r 2 ), Π -1 i (x, y, z) ; if (x, y, z) / ∈ V(r 1 , r 2 ), (4.17) 
works as parametrization.

In the region A 1 in (where X 0 and X 1 are transverse to the boundary) we choose the map σ

1 in : (-ε, ε) × R × R/Z → N defined by σ 1 in (t, r, s) = φ 0 t Π -1 1 (r 1 , r, s) ; if t ≤ 0, φ 1 t r 1 , r, s -m n ρ( r r 2 ) ; if t ≥ 0. (4.18)
Then, the family D = {σ p : p / ∈ A 1 in } ∪ {σ 1 in } provides a compatible atlas on ι 0 (M 0 ) ∩ ι 1 (M 1 ) that extends the differentiable structures on each component M j , i = 1, 2. In addition observe that, by construction, for every p ∈ ∂M 0 this atlas gives an identification Φ p :

T p M 0 → T ϕ(p) M 1 that satisfies Φ p : X 0 (p) → X 1 (ϕ(p))
. This means that the vector fields on each component M 0 and M 1 match together along the boundary and define a smooth a vector field Y in N , in the coordinates of the atlas D.

Smooth atlas near M 0 ∩ M 1 .

It will be convenient to give an expression in the local coordinates 4.22 for the transformations Φ p :

T p M 0 → T ϕ(p) M 1 (4.19) 
defined above. We will always assume negative linking number, so ϕ is given by the formula (4.15).

By definition the chart Φ p is given by (4.18) for points p ∈ A 1 in and by (4.17) otherwise. Observe that for every p ∈ A 1 in with normal coordinates p = (r 1 , r, s) there is a basis C(p) = {X (λ,n) (p), e 2 (p), e 3 (p)}, where

X (λ,n) (p) = log(λ)r 1 , -log(λ)r, 1 |n| ∈ R 3 , e 2 (p) = ∂ ∂y (p) = (0, 1, 0) ∈ R 3 , e 3 (p) = ∂ ∂z (p) = (0, 0, 1) ∈ R 3 .

It follows that

Lemma 4.28.

1. If p ∈ ∂M 0 is not in A 1 in then ϕ(p) = p and Φ * p is just the identity on R 3 .

If p ∈ A 1

in has coordinates (r 1 , r, s) we have that 

(Φ p ) C =    1 0 0 0 1 0 0 -κ(r) r 2 1    , where κ(r) = |m| |n| ρ (r/r 2 ) . ( 4 
(Φ p ) B =    1 -κ(r)|n|r r 1 r 2 -κ(r)|n| r 2 0 κ(r)|n| log(λ) r r 2 + 1 κ(r)|n| log(λ) r 1 r 2 0 -κ(r)|n| log(λ) r 2 r 1 r 2 -κ(r)|n| log(λ) r r 2 + 1    .
The action of the flow ψ t : N → N :

The action of the flow ψ t on a point p in the manifold N = M 0 ϕ M 1 can be described as an alternated composition of the flows φ j t on each component M j and the glueing map ϕ.

More precisely, consider a point p ∈ int(M 0 ) and some t > 0 such that ψ t (p) ∈ int(M 0 ). If all the orbit segment [p, ψ t (p)] is contained in M 0 then we simply have ψ t (p) = φ 0 t (p). If not, there is a first intersection point

p 1 = φ 0 t 1 (p), for some 0 < t 1 < t,
of the orbit segment with the set M 0 ∩M 1 , necessarily contained in a region of where the vector field X 0 is transverse to ∂M 0 and points outward M 0 . At this point the positive semi-orbit of p traverses from the component M 0 to M 1 and the negative φ 0 t -orbit of p 1 is connected with the positive φ 1 t -orbit of ϕ(p 1 ). In the same way, since we assume ψ t (p) ∈ int(M 0 ), the positive φ 1 t -obit starting at ϕ(p 1 ) must leave the component M 1 on a point q 1 = φ 1 s 1 (ϕ(p 1 )), for some 0 < s 1 < t. When going from M 1 to M 0 the glueing of semi-orbits is similar, but we have to use ϕ -1 instead. We remark here that:

Remark. There exists a constant T > 0 such that, for both j = 0, 1, min t > 0 : ∃ p ∈ ∂M j such that φ j t (p) ∈ ∂M j and φ j s (p) ∈ int(M j ), ∀ 0 ≤ s ≤ t ≥ T.

It follows that:

Lemma 4.30. There exist 0 < t 1 , . . . , t l+1 < t and 0 < s 1 , . . . , s l < t satisfying that t k ≥ T for k = 2, . . . , l, s k ≥ T for k = 1, . . . , l, their sum is l k=0 t k + l k=1 s k = t and

ψ t (p) = φ 0 t l+1 • ϕ -1 • φ 1 s l • ϕ • • • • • ϕ -1 • φ 1 s 2 • ϕ • φ 0 t 2 • ϕ -1 • φ 1 s 1 • ϕ • φ 0 t 1 (p). (4.21) 
These quantities t k and s k are defined in order to satisfy that the ψ t -orbit of p traverse from one component to the other at times

T 1 = t 1 , T k = t 1 + s 1 + • • • + s k-1 + t k and S k = T k + s k for k = 1, . . . , l.
Define the sequence of points p k = ψ(T k , p) and q k = ψ(S k , p), which are points in M 0 ∩ M 1 . Then, the positive semi-orbit of p traverses from M 0 to M 1 at the points p k and from M 1 to M 0 at the points q k . There is a straightforward analogue of statement (4.21) above for any chosen configuration of points p ∈ M j , j = 0, 1 and times t ∈ R.

The action on the tangent bundle Dψ t : T N → T N :

On each component M j the action of Dφ j t can be described using the invariant splitting: Consider p ∈ M j and t > 0 such that φ j t (p) ∈ M j and all the orbit segment [p, φ Framing on TN. To study the action Dψ t on T N , we define a (non-continuous) splitting of T N by

T p N = H s (p) ⊕ H c (p) ⊕ H u (p) = E s 1 (p) ⊕ E c 1 (p) ⊕ E u 1 (p), if p ∈ M 1 , E s 0 (p) ⊕ E c 0 (p) ⊕ E u 0 (p), if p ∈ N \ int(M 1 ), (4.23) 
for all p ∈ M . We can see how does (4.19). For every p ∈ ∂M 0 the map Φ p send X 0 (p) → X 1 (ϕ(p)), so it follows that the bundle H c = span{Y } is continuous. By lemma 4.28 we have that, for every point p not in A 1 in , this transformation is the identity in normal coordinates, thus

E s 0 ⊕ E c 0 ⊕ E u 0 matches E s 1 ⊕ E c 1 ⊕ E u 1 along M 0 ∩ M 1 using the identifications
Φ p :      E s 0 (p) → E s 1 (ϕ(p)), E c 0 (p) → E c 1 (ϕ(p)), E u 0 (p) → E u 1 (ϕ(p)).
Nevertheless, the bundles on each side can be not identified by Φ p for points p ∈ A 1 in , so the decomposition (4.23) may be non-continuous on this set. Moreover, consider some p ∈ N and some t > 0 such that the orbit segment [p, ψ t (p)] does not intersect A Following the discussion in the previous paragraphs, given p ∈ N and t > 0 let {p 1 , . . . , p l } be the set of intersection points between the orbit segment ψ [0,t] (p) and the annulus A 1 in . Then, we have that Lemma 4.31. There exist 0 < t 1 , . . . , t l+1 < t, uniformly bounded away from zero by a constant T > 0, such that Dψ t is an iterated composition of the form: This matrix has determinant equal to one and trace equal to two, thus it has a double eigenvalue equal to one. The vector w1 = -ē s + r r 1 ēu is an eigenvector for this matrix in the Hsu plane. Consider the vector w2 = r r 1 ēs + ēu . In the orthogonal basis { w1 , w2 } the transformation (4.30) takes the form

Dψ t (p) = Ψ t l+1 • Φ p l • Ψ t l • • • • Φ p 2 • Ψ t 2 • Φ p 1 • Ψ t 1 (p), ( 4 
(Φ q ) { w1 , w2 } = 1 η(r) r 1 r 2 0 1 (4.31) for some bounded function η : [0, r 2 ] → [0, ∞), with support in [ r 2 3 , 2r 2 
3 ]. We illustrate the action of the matrix (4.30) in figure 4.6.

We prove now the three lemmas stated above. Fix some p ∈ N and t > 0, and let 0 < t 1 , . . . , t l+1 < 1 and {p 1 , . . . , p l } as given by (4.21). Write the action of ψ t on T N as Dψ

t (p) = Ψ t l+1 • Φ p l • Ψ t l • • • • • Φ p 1 • Ψ t 1 (p). ( 4 

.32)

We consider now the cones C cu (p; δ u 0 (p), δ u 1 (p)) and C cs (p; δ s 0 (p), δ s 1 (p)), defined for all p ∈ N .

Proof of lemma 4.33. We make the proof for the cu-case, being analogous the other one. We will show that we can chose 0 < r 2 < r 1 < 1 sufficiently small such that the cone distribution C cu satisfies the invariance property of the lemma.

We start by pointing out that there exists a constant ε < 0, which depends just on the ratio r 2 /r 1 , such that the cone C cu (q; ε, 0) is sent inside C cu (ϕ(q); δ u 0 (q), 0), for every q ∈ A 1 in .

To see this, consider a point q ∈ A 1 in with coordinates (r 1 , r, s). By (4.31) the vector Φ q (ē u ) satisfies r 1 r = ∆ u ( w1 ) < ∆ u (Φ q (ē u )) = --K(r, r 2 ) 1 -K(r, r 2 )

r 1 r < 0.
Then, by continuity there exist -∞ < ε < 0 such that, for every q = (r 1 , r, s) ∈ A 1 in and for every v ∈ T q N with ε < ∆ u (v) ≤ 0, it follows that r 1 r = δ u 0 (q) < ∆ u (Φ q (v)) < 0. (4.37)

The expression above for the u-slope of the image of ēu shows that depends just on the ratio r 2 /r 1 . That is, if we change r 1 and r 2 for smaller values keeping constant its ratio, then property (4.37) is still valid with the same constant ε. To see this, observe that K(r, r 2 ) is equal to r/r 2 , up to multiplication by a bounded continuous function that depends just on r and is null if r/r 2 / ∈ [1/3, 2/3]. Thus, the slope of Φ q (ē u ) above has a bound of the form (cte) • r 1 /r 2 . Thus allows to consider a constant ε < 0 of small modulus, just depending on r 2 /r 1 .

Consider now an auxiliary vector v ∈ Hsu (q) of slope ∆ u (v) ≥ min(δ) = -3r 1 /r 2 . By (4.30) we have that

∆ u (Φ q (v)) ≥ - 3r 1 r 2 • K(r, r 2 )(1 -r 2 3r ) + 1 -K(r, r 2 )(1 -3r r 2 ) + 1
.

Since the function between parenthesis on the right side of the previous equation is bounded as a function of the parameters 0 < 1 3 r 2 ≤ r ≤ 2 3 r 2 < r 1 < 1 (recall that K(r, r 2 ) = (cte) • r/r 2 ), we have that there exists a constant C > 0, independent of r, r 2 , r 1 , such that -C • r 1 r 2 ≤ min ∆ u (Φ q (v)) : q ∈ A 1 in and - Let T 0 = T 0 (r 1 , r 2 ) > 0 such that ε =< -Cλ 2T 0 r 1 /r 2 < 0. Defined in this way, T 0 (r 1 , r 2 ) is the time needed for a transformation Ψ t to send a cone of the form C cu (p; -Cr 1 /r 2 , 0) inside the cone C cu (ψ t (p); ε, 0), and depends just on the ratio r 1 /r 2 .

To prove the claim consider r 2 < r 2 and r 1 < r 1 satisfying that r 2 /r 1 = r 2 /r 1 . Then, the manifold N (r 1 , r 2 ) is obtained replacing the original cross-shaped region for a smaller V(r 1 , r 2 ) in R 2 × R/Z. See figure 4.8. Let p = (r 1 , r, s) be a point in the entrance annulus r 1 × [0, r 2 ] × R/Z. Observe that if the future orbit of p comes back to the same annulus, it must traverse the regions D in , D out in the present figure. This means that the returning time T + 1 (r 1 , r 2 ) is bounded from below by twice the time τ for traversing each of these regions. In addition, observe that the time for traversing each D i from the entrance boundary to the exit one is given by λ τ r 1 = r 1 . Therefore, we obtain For the center-stable cone distributions, the same reasoning apply. This completes the first lemma. For a point q ∈ A 1 in consider two vectors v i = b i ēs + c i ēu in Hsu (q) and let (r 1 , r, s) be the coordinates of q. From the expression of Φ q is su-coordinates in (4. Denote by x → f (x; r, r 2 , r 1 ) the family of rational functions obtained in (4.41) above. Using that 0 < r 2 3 ≤ r ≤ 2r 2 3 < r 2 < r 1 , and using that K(r, r 2 ) equals r r 2 up to multiplying by a bounded function of the variable r, it is possible to see that 0 < ∂f ∂x (x; r, r 2 , r 1 ) < 1, ∀ -r 1 r < x < +∞, independently of r, r 2 , r 1 . In particular we obtain that, if v 1 , v 2 ∈ C cu (q; δ u 0 (q), δ u 1 (q)), in which case -r 1 /r < b i /c i < ∞, then

T 1 (
|∆ u (Φ q (v 2 )) -∆ u (Φ q (v 1 ))| ≤ |∆ u (v 2 ) -∆ u (v 1 )| .
(4.42)

Given p ∈ N , by lemma 4.31 there exists sequences t n ≥ T > 0 and p n ∈ A 1 in , k ≥ 1, such that the action of Dψ t (p) on T N decomposes as a product of transformations Ψ tn and Φ pn , as defined in (4.32). Then,

• If O + (p; ψ t ) ∩ A 1
in is empty or contains at most one point, then the property follows simply by (4.40).

• If O + (p; ψ t )∩A 1 in contains at least two points, for each i = 1, 2 define v 1 i = Ψ t 1 (v i ) and, for n ≥ 2,

v n i = Ψ tn • Φ p n-1 (v n-1 i
). Then, for n ≥ 2 we have t n ≥ T 0 and this implies that v n i has u-slope bigger than the constant ε < 0 from the proof of lemma 4. This completes the cu-case. The analogous reasoning applies for C cs (p; δ s 0 , δ s 1 ) and the backward action of the flow. From the one hand, observe that if p ∈ A 1 in and v ∈ T p N , then by the Jordan form (4.31) and since the u-slope of the eigenspace of this matrix is bounded between -3r 1 /r 2 and -3r 1 /2r 2 , it follows that Φ p (v) su > v su , ∀ v with -3r 1 /r 2 ≤ ∆ u (v) ≤ 2r 2 /3r 1 .

(4.43)

Let's call δ = ∆ u (v) = b/c and assume that -∞ < δ < ∞. From the one hand, since the transformations Ψ t on the su-plane correspond to the hyperbolic matrices (4.29), it follows that for every v ∈ T N there exists a constant 0 < Q(δ) ≤ 1 such that Ψ t (v) su ≥ Q(δ)λ -t v su , ∀ t ≥ 0.

(4.44)

To see an expansion on the su-norm by an application of Ψ t on v, we need to wait some time depending on the slope of v. It can be seen that, if |δ| ≤ 1/2 then |Ψ t (v)| su > |v| su , ∀ t ≥ 0, and if |δ| > 1/2 then |Ψ t (v)| su > |v| su if and only if ∆ u (Ψ t (v)) > 1/|δ|. Thus, taking into account the action of Ψ t on u-slopes of the matrices (4.29), given a vector of u-slope δ greater than 1/2 we need to wait time of order t log(1/|δ|)/ log(λ) to see an expansion under the action of Ψ t .

Consider T 0 = T 0 (r 1 , r 2 ) > 0 such that

- 1 C r 2 r 1 < -λ 2T 0 (r 1 ,r 2 ) C r 1 r 2 < 0 < λ 2T 0 (r 1 ,r 2 ) 2r 2 3r 1 < λ 2T 0 (r 1 ,r 2 ) 3r 1 2r 2 ,
where C > 0 is the constant defined along the proof of lemma 4.33. For such a choice of T 0 we have that

Ψ T 0 (v) su ≥ Q 0 λ -T 0 v su > v su , for all -Cr 1 /r 2 < ∆ u (v) < 2r 2 /3r 1 ,
where Q 0 = min {Q(-Cr 1 /r 2 ), Q(2r 2 /3r 1 )}. Thus, we define µ = Q 1/T 0 0 λ -1 , which satisfies 1 < µ < 1/λ, in order to have Ψ T 0 (v) su ≥ µ T 0 v su , for all -Cr 1 /r 2 < ∆ u (v) < 2r 2 /3r 1 , (

Since T 0 (r 1 , r 2 ) depends just on r 1 /r 2 , we can shrink both r 1 and r 2 , keeping constant its ratio, in such a way that the minimal returning time T 1 = T 1 (r 1 , r 2 ) of points in the support of the surgery to itself is greater that T 0 (r 1 , r 2 ), cf. proof of lemma 4.33.

Assuming this condition, let p ∈ N and in the cone C cu (p; δ u 0 (p), δ u 1 (p)) consider a vector v ∈ T p N . For t ≥ 0 consider the decomposition (4.32) of the action Dψ t (p) as an alternated product of transformations Ψ t k and Φ p k . As in the previous lemma, let v 1 = Ψ t 1 (v) and for k = 2, . . . , l define v k = Ψ t k • Φ p k-1 (v k-1 ). Then,

• If the positive ψ t -orbit of p does not intersect A 1 in , using (4.44) it follows that

Dψ t (p) • v ≥ Q 0 λ -t v su ≥ (cte) • µ t v .
• If the orbit segment [p, ψ t (p)] has non-empty intersection with A 1 in , observe that, since t k ≥ T 0 for every k = 2, . . . , l, using (4.43) and (4.45) we get that for every vector u ∈ T p k N satisfying -3r 1 /r 2 < ∆ u (u) < 2r 2 /3r 1 then

Ψ t k • Φ p k-1 (u) su ≥ Q 0 λ -t k u su .
Since v 1 already satisfies these bounds on slope, by induction we get that

v l su ≥ Q l 0 λ -(t 2 +•••+t l ) v 1 su .
Since Ψ t 1 and Ψ t l+1 stretch distances at least by a factor of the form (cte) • λ t 1 and (cte) • λ t l+1 respectively, we get that

Dψ t (p)•v ≥ (cte)•Q l 0 λ -(t 1 +•••+t l+1 ) v = (cte)•µ lT 0 λ -lT 0 λ -t v su ≥ (cte)•µ t v .
In From its own definition it follows that these sets are cones (intersection of cones) and they are Dψ t -invariant. If we consider the projective space associated to each Hsu (p), then the slope function ∆ u provides a chart that identifies each cone C cu (p; δ u 0 (p), δ u 1 (p)) with the closed interval [δ u 0 (p), δ u 1 (p)] ⊂ R. Lemmas 4.33 and 4.34 say that F cu (p) is obtained as a nested intersection of compact segments whose diameter tends to zero in the projective space, so it is a non-empty cone that in fact reduces to a two dimensional plane. The same considerations apply for F cs (p). Observe that F cu (p) ∩ F cs (p) = span{Y (p)}, because the families of cones are point-wise complementary. Finally, from lemma 4.35 we deduce the expansion/contraction properties stated above.

The continuity of the bundles p → F cu (p) and p → F cs (p) is automatic: This property is true for every pair of invariant plane bundles satisfying 1., 2. and 3. above. (More generally, for every pair of invariant plane bundles satisfying a domination property. See [].)

Existence of the strong-stable and strong-unstable invariant distributions.

We prove now that, for small values of 0 < r 2 < r 1 < 1, the flow (ψ t , N ) defined in (4.16) preserves a hyperbolic splitting of the form T N = F s ⊕ H c ⊕ F u , where H c = span{Y } as before.

We will show that each plane F cu and F cs has a decomposition F cu = H c ⊕ F u and F cs = F s ⊕ H c , respectively, where F s and F u are Dψ t -invariant one dimensional bundles, contacting and expanding respectively. For doing this, inside each plane F cu and F cs we will chose a cone distribution that satisfy the cone field criterion. Since the method is analogous to the previous one, we do not complete all the proof, but we sketch the general arguments. We will make the argument just for cu-case, being analogous the other case.

We will still make use of the decomposition T N = H s ⊕ H c ⊕ H u defined in (4.23). It is convenient to recall that, if we see N as the union of M 0 and M 1 , by definition this decomposition coincides with the splitting E s i (p) ⊕ E c (p) i ⊕ E u i (p) associated to the vector field X i when p ∈ M i , i = 1, 2. This shows that there are some restrictions on the values of α i (p) at the boundary.

Recall that the change of coordinate Φ p from T p M 0 to T ϕ(p) M 1 is the identity on these basis when p is not in A 1 in . Thus, we will consider the slope as a function α : N → [min(δ u 0 ), max(δ u 1 )], continuous on the complement of this annulus.

Framing on F cu For every p ∈ N the subspace H s (p) is transverse to both H c (p) ⊕ H u (p) and F cu (p). Thus, there exists an isomorphism where Hu (p) is the pull-back bundle of H u (p) by P s (p). Recall that the line bundle H c is collinear with the vector field Y , thus continuous. As before, it can be seen that the bundle Hu does not varies continuously as a functions of p, the discontinuity set being contained in the support of the surgery (contained in A 1 in ).

Let p ∈ N and t ≥ 0. Since the distribution F cu is invariant under the action of Dψ t , using lemma 4.31 we can write This follows simply by the fact that α(ψ t (p)) = λ 2t α(p).

(Dψ t | F cu ) (p) = Ψ t l+1 | F cu • (Φ p l | F cu ) • (Ψ t l | F cu ) • • • • • (Φ p 1 | F cu ) • (Ψ t 1 | F cu ) (p).
• If q ∈ A 1 in is a point with normal coordinates q = (r 1 , r, s), then using (4.25) we can see that (Φ q | F cu ) cũ = 1 A(r, r 1 , r 2 ) 0 B(r, r 1 , r 2 ) , (

where    A(r, r 1 , r 2 ) = -1 r 2 log(λ) K(r 1 , r 2 ) α(q) r r 1 + 1 B(r, r 1 , r 2 ) = -K(r 1 , r 2 ) α(q) r r 1 + 1 + 1.

We remark here that this formula imposes more restrictions on the values of α i on ∂M i , i = 1, 2, since the expression B can never be zero.

We are interested in the alternated actions of (4.48) and (4.49) on the F cu bundle, that we have depicted in figure 4.9. We will define the ũ-slope of a vector v = ae c (p) + cẽ u (p) in F cu (p) as ∆ ũ(v) = a c .

Given a fixed real number δ > 0, for every p ∈ N define the cone To prove this observe that, using (4.49), for every v ∈ F cu (q) we have ∆ ũ (Φ q (v)) = A(r, r 1 , r 2 ) B(r, r 1 , r 2 ) + ∆ ũ(v) B(r, r 1 , r 2 ) = 1 r 2 log(λ) -K(r 1 , r 2 )(α(q)r/r 1 + 1) -K(r 1 , r 2 )(α(q)r/r 1 + 1) + ∆ ũ(v) 1 -K(r 1 , r 2 )(α(q)r/r 1 + 1)

.

By construction, the slope α(q) takes values on the interval [-3r 1 /r 2 , 2r 1 /3r 2 ]. In addition, K(r 1 , r 2 ) equals r/r 2 up to multiplication by a bounded function. Since the parameter r satisfies r 2 /3 ≤ r ≤ 2r 2 /3 we can conclude the inequality above, because the expressions between parenthesis have bounds which depend only on the ratio r 2 /r 1 .

Let T 1 (r 1 , r 2 ) be the minimal returning time (to itself) of points contained in the annulus {r 1 } × [r 2 /3, 2r 2 /3] × R/Z, as defined in the course of the proof of lemma 4.33. We claim that Claim. If we shrink sufficiently the parameters 0 < r 2 < r 1 < 1 keeping constant its ratio r 2 /r 1 , then it follows that

λ T 1 (r 1 ,r 2 ) D 0 r 2 + D 1 δ < 1 2 δ.
Assuming this claim, we can proceed to prove the three lemmas stated above. Start with some model (ψ t , N ) corresponding to two fixed parameters 0 < r 2 < r 1 < 1. If we shrink the parameters keeping constant the ratio in order to satisfy the claim, we encounter that, since t k ≥ T 1 (r 1 , r 2 ) for k = 2, . . . , l in the decomposition (4.47), each map

(Ψ t k | F cu ) • Φ p k-1 | F cu
sends the cone C u (p; δ) inside C u (ψ t k (p); δ), for k = 2, . . . , l. Thus, if we choose T ≥ 2T 1 (r 1 , r 2 ), we can conclude in the same way as in 4.33.

For the second lemma, observe that the transformations Φ p k satisfy that, for every pair of vectors

v 1 , v 2 in F cu , ∆ ũ Φ p k-1 (v 2 ) -∆ ũ Φ p k-1 (v 1 ) ≤ D 1 |∆ ũ(v 2 ) -∆ ũ(v 1 )| .
This can be seen using the matrix form in (4.49). Since the transformations Ψ t k contract slopes at an exponential rate, we can adjust r 1 , r 2 in order to have a big enough T 1 (r 1 , r 2 ) such that the alternated composition of this transformations satisfy the conclusion of the lemma.

For the third lemma observe that, for every vector v ∈ F cu in the cone -δ ≤ ∆ ũ(v) ≤ δ, from the one side we have that Ψ t k (v) ≥ (cte) • λ -t k . From the other side, the minimum d = d(r 2 /r 1 ) = min Φ q (v) : q ∈ A 1 in depends only on the quantity r 2 /r 1 and is positive, as can be seen from the of the quantities participating in formula (4.49). We obtain Φ q (v) ≥ d v , independently of q. Thus, shrinking r 1 and r 2 in the appropriate way if necessary, we have that the action of Dψ t on T N is expanding as stated in the lemma.

To prove the claim, start with two fixed values 0 < r 2 < r 1 < 1 and let β = r 2 /r 1 . Let 0 < r 2 < r 1 < 1 satisfying that 0 < r 2 < r 2 , 0 < r 1 < r 1 and r 2 /r 1 = β. As in the proof of lemma 4.33, the returning time T 1 (r 1 , r 2 ) satisfies that T 1 (r 1 , r 2 ) ≥ τ (r 1 , r 1 ) = 1 log(λ) log (r 1 ) 2 r 2 1 .

Thus,

λ T 1 (r 1 ,r 2 ) D 0 r 2 + D 1 δ ≤ λ τ (r 1 ,r 1 ) D 0 r 2 + D 1 δ ≤ (r 1 ) 2 r 2 1 D 0 βr 1 + D 1 δ ,
which can be made smaller than δ/2 if r 1 is small enough. We can conclude that, for small values of r 1 , the couple r 1 , r 2 satisfies the claim.

Remark 4.40. We point out two differences with the case of the center-stable/unstable spaces.

First, in that case, for defining the cones we had to choose slopes that depended on the point p ∈ N , while in the present case we consider constant slopes. This is due to the difference in the matrices (4.30) and (4.49). The first is a matrix with determinant one of parabolic type, and its eigenspace has a bounded non-constant u-slope. The second is not parabolic, but the line of slope = ∞ is an eigensapce with eigenvalue equal to one, independently of q ∈ A 1 in .

Second, in the center-unstable case we had cones of whose diameter has a bound or the form (cte) • r 2 /r 1 , while in the strong-unstable case the bounds are of the form (cte) • 1/r 2 . In any case, choosing r 1 , r 2 small, when an orbit segment traverses the cross-shaped region V(r 1 , r 2 ) we can ensure a sufficiently strong contraction on slopes. 

3.4

The smooth model (ψ t , N ) is orbitally equivalent to the original flow (φ t , M ).

The general setting at the beginning of section 3 is that we have a transitive topological Anosov flow (φ t , M ) and a Birkhoff section ι : (Σ, ∂Σ) → (M, Γ) which, for simplicity, Let β = ϕ(α), which is a piecewise smooth, simple, closed curve contained in ∂M 1 . In an analogous fashion, the curve β can be decomposed in a concatenation of compact segments β i+4j in , β i+4j tg , β i+4j out ; i = 1, . . . , 4, k = 0, . . . , 4|n| -1 , as in the right part of figure 4.10. Since ϕ restricts to a monotonous twist on the annulus A 1 in and restricts to the identity on ∂R(r 1 , r 2 )\A 1 in , we find that:

• Each segment β 1+4j in = ϕ(α i+4j in ) admits a parametrization with monotonous R/Zcoordinate;

• For all the other segment, we have

β i+4j * = ϕ(α i+4j * ) = α i+4j * has constant R/Z- coordinate.

We claim that:

Claim. There exists an immersion (S, ∂S) → (V(r 1 , r 2 ), γ 0 ), where S is a surface homeomorphic to the compact annulus [0, 1] × R/Z, satisfying that: This set can be decomposed as the union of some smooth horizontal surfaces, each one isometric to the region Q(r 1 , r 2 ) defined in 2.2 at the beginning of the chapter, and some smooth non-horizontal bands, as we see in figure 4.11. Each segment β 1+4j in belongs to the boundary of a band, and all the other segments composing β are contained in the boundaries of the horizontal parts.

In the complement of γ 0 , the surface is transverse to the vector field X 1 . To see this, recall that X 1 is defined to be the vectorfield (x, y, z) → (log(λ)x, -log(λ)y, 1/|n|) in R 2 × R/Z. Since the third component is nowhere zero, it follows that it is transverse to S along the horizontal parts.

For the transversality along the bands, consider a point p = (r 1 , r, s) ∈ S ∩ A 1 in . On A 1 in there is a parametrization r → β(r) = r 1 , r, z 0 + |m| |n| ρ(r/r 2 ) , where z 0 is some constant.

From the definition of S we have that T p S is generated by the vectors . Then, since the surface S is the image of a 1-parameter family of horizontal homotheties (x, y, z) → (θx, θy, z), and since X 1 is invariant under these transformations, this implies the transversality of X 1 with T S along all the interior of the band. 3From its definition we can see that the surface is orientable, and the arguments in the previous paragraphs allow to check that the vectorfield traverse each band or horizontal surface always in the same sense. Thus, orbits of the vector field are everywhere (topologically) transverse to the interior of S. Therefore, we deduce the linking number and multiplicity of S. Since n(γ, Σ) = 0, we deduce that S is in fact a local Birkhoff section. That is, there exists a neighbourhood tubular O of γ 0 such that every point in O intersects the surface S in a uniformly bounded time.

This completes the claim.

To complete the lemma, consider now the set Σ := Σ 0 ∪ S that is contained in N . Without loss of generality we can assume this set is the continuous image of a map ζ : Σ → N , which is an embedding on int(Σ) and coincides with ι over Σ 0 . Observe that if we co-orient Σ 0 and S\γ 0 with the vectorfield X 1 , then under the glueing operation we obtain an oriented surface, and the oriented ψ t -orbit segments traverse the surface in the positive sense. Thus, int(Σ ) is (topologically) transverse to the flow lines.

To prove that this is actually a Birkhoff section, it rest to show that all the ψ t -orbits intersect Σ in a uniformly bounded time. For this, consider two tubular neighbourhoods O 1 ⊂ O 0 ⊂ N of γ 0 satisfying that 1. M 0 ∩ M 1 is contained in the interior of O 0 \O 1 , 2. There exists T 1 , T 0 > 0 such that [p, ψ T 1 (p)] ∩ S = ∅ for every p ∈ O 1 and [p, ψ T 0 (p)] ∩ Σ 0 = ∅ for every p ∈ N \O 0 .

Then, since the neighbourhoods O 1 ⊂ O 0 are nested germs of a saddle type periodic orbit, we see that there exits some T 2 > 0 such that [p, ψ T 2 (p)] is not contained in O 0 \O 1 , for every p ∈ O 0 \O 1 . Then, taking T > max{T 0 + T 2 , T 1 + T 2 }, we deduce that [p, ψ T (p)] ∩ Σ = ∅, for every p ∈ N .

This completes the lemma.

We have now two flows (φ t , M ) and (ψ t , N ), each one equipped with a Birkhoff section ι : (Σ, ∂Σ) → (M, γ) and ζ : (Σ, ∂Σ) → (N, γ 0 ), respectively. We call P : Σ → Σ and P : Σ → Σ the corresponding first return maps.

Lemma 4.44.

There exists a homeomorphism h : Σ → Σ such that P • h = h • P .

Proof. Denote by Σ the blow-down surface and by P and P the corresponding pseudo-Anosov homeomorphisms acting on it. By construction the surface Σ has only one boundary component, originating a point x ∈ Σ that is fixed for both maps. We will consider x as a puncture for both pseudo-Anosov maps.

To prove that there exists a conjugation between the first return maps, it suffices to show that they induce conjugated actions on the fundamental group of the punctured surface ( Σ, x). More precisely, it suffices to show that there exists an isomorphism π 1 (Σ\x) → π 1 (Σ\x) that conjugates the actions on fundamental groups P * , P * : π 1 (Σ\x) → π 1 (Σ\x), which in addition preserves the conjugacy class in π 1 (Σ\x) of the simple loops homotopic to the puncture.

Recall that

M = M 0 ∪ R(r 1 , r 2 ) N = M 0 ∪ V (r 1 , r 2 ),
so we can consider M 0 as simultaneously embedded in M and N . Denote Σ 0 = ι(Σ) ∩ M 0 = ζ(Σ) ∩ M 0 . For both dynamics, the foliation by orbits on the component M 0 is the one determined by the original flow φ t . This is, id : (φ t , M 0 ) → (ψ t , M 0 ) is a local orbital equivalence.

Let U ⊂ Σ 0 be a collar neighbourhood of ∂Σ 0 and consider the subsurface Σ U = Σ 0 \U . If we take U big enough, then it is satisfied that every point p ∈ Σ U has a first return in φ τ (p) ∈ int(Σ 0 ) and all the orbit segment [p, φ τ (p)] is contained in M 0 . Following the previous paragraph, we see that the identity map on Σ U satisfy Σ U Σ 0 Σ U Σ 0 P id id P Since Σ 0 retracts by deformation onto Σ U , and since Σ 0 is a deformation retract of the surface Σ\x, then the identity isomorphism on π 1 ( Σ\x) is a conjugation between P * and P * , that trivially preserves the conjugacy class of the puncture.

By proposition 1.29 we conclude that there exists a homeomorphism ĥ : ( Σ, x) → ( Σ, x) such that P • ĥ = ĥ • P . The lemma follows by restricting these maps to the complement of the puncture.

Proof of proposition 4.42. Following the two lemmas above, the two flows are equipped with Birkhoff sections having conjugated first return maps and compatible data on the boundary. Then, by theorem 2.16, we conclude that (φ t , M ) and (ψ t , N ) are orbitally equivalent flows.

  Tubular neighbourhood N A .
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 2 Figure 2: The Goodman surgery.
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 3 Figure 3: A picture of the Fried surgery.

  (i) The Fried surgery transforms Σ into a Birkhoff section for the new flow, with some extra boundary components due to the intersection γ ∩ Σ. The homology coordinates of this new section in a neighbourhood of the periodic orbit are determined by the integer parameter of the surgery as Dehn twist. (See 8)
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  (a) Three connected components in a neighbourhood of the boundary (b) One connected component in a neighbourhood of the boundary
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 13 Figure 1.3: Birkhoff sections

  (a) k-prong singularity, k = 3. (b) Transverse foliations at k-prong, k = 4.
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 14 Figure 1.4: Local model of k-prong singularities
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 15 Figure 1.5: Local model of k-prong singularities
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 16 Figure 1.6: The homeomorphisms in example 1.32.
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 17 Figure 1.7: Neighbourhood of a topologically saddle type periodic orbit.
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 21 Figure 2.1: Two dynamics with this phase diagram need not to be conjugated. In general they are conjugated on the interior, but there are obstructions for extending to the boundary.
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 22 Figure 2.2: Local Birkhoff Sections.

  H 1 (W \γ) the linking number of B satisfies that n = [σ] • b. Observe that since the flow is transverse to B and we have chosen an orientation in W , then the flow induces an orientation on B. Consider the relative homology class [B] ∈ H 2 (W, ∂W ∪ γ) of the local Birkhoff section B oriented in this way. Since B ∩ ∂W is homologous to ±[σ] an application of lemma 2.5 above shows that |n| = |[B] • b|.

Figure 2 . 3 :

 23 Figure 2.3: Projection along the flow lines from a local Birkhoff section onto a transverse disk. The discontinuity defect can be seen by projecting an essential curve inside B onto D.

Definition 2 . 8 .

 28 Let B be a tame local Birkhoff section at γ, D a local transverse section which intersects γ at the point x D , and let w be a connected component of B ∩ (W s loc (γ) ∪ W u loc (γ)). A local projection along the flow of B over D is a map π w : Ůw → (D\{x D }) of the form π w (x) = φ(s(x), x), where U ⊂ B is a collar neighbourhood of γ, Ůw denotes Ů = U \γ after being cut along w and s : Ůw → R is continuous and bounded.

. 9 ) satisfies the following 1 .

 91 we can use proposition 2.14 and find another neighbourhood O 2 ⊂ O 2 and a continuous and bounded function s : B2 → R, such that the map ψ : y → φ 2 (y, s (y)), y ∈ B2 (2The image B 2 := ψ(B 2 ) is a local Birkhoff section and ψ : B2 → B 2 is a flow isotopy, 2. ψ(y) = y for every y ∈ B 2 \O 2 , 3. ψ(y) = ϕ(y) for every y ∈ B2 ∩ O 2 .
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 24 Figure 2.4: The sets V i and the annuli A i .

Figure 2 . 5 :

 25 Figure 2.5:The sets V i . We have depicted two orbits segments lifted into V i , one inside the set K i which connects A 0 i with A 1 i and the other one inside the components C i .

Theorem 3 . 1 (Corollary 3 . 2 .

 3132 Theorem B). Let (φ t , M ) be a transitive Anosov flow in a closed, orientable, 3-manifold and let γ ⊂ M be a periodic orbit with orientable invariant manifolds. Then, there exists a tubular neighbourhood N of the curve γ such that, if A ⊂ N then the Goodman flow (3.1) is orbitally equivalent to the Fried flow (3.2).There are two immediate consequences of this theorem. Let (φ t , M ) be a transitive Anosov flow. Then:(a) All the Goodman surgeries (with the same twist parameter) performed in a neighbourhood of a periodic orbit produce orbitally equivalent flows.(b) The Fried surgeries preserve the class of Anosov flows, up to orbital equivalence.1 

  The parallel annulus A ⊂ W .

  The tubular neighbourhood N A .

Figure 3 . 2 :

 32 Figure 3.2: The segment A ∩ D i s must intersect F s and F u as in the figure.

(

  φ t , N ) = suspension flow generated by f : D → D, (3.5) where D is an open disk and f : D → D a homeomorphism conjugated to a saddle type hyperbolic linear transformation of R 2 with positive eigenvalues. Denote {p 0 } = Fix(f ). By definition, (3.5) is the flow induced by the action t • (p, s) → (p, s + t) on the quotient manifold N = D × R/(f (p), s) ∼ (p, s + 1).

Figure 3 . 4 :

 34 Figure 3.4: The blow up Π : (φ * t , N * ) → (φ t , N ).

Lemma 3 . 9 .

 39 The flows constructed as in (3.7) satisfy the following: a) Each (φ σ t , N σ ) is orbitally equivalent to the suspension flow generated by a saddle type hyperbolic linear transformation on R 2 , with positive eigenvalues. b) The map Π σ • Π -1 0 transforms D into a Birkhoff section B σ → N σ with linking number satisfying |n(γ σ , B σ )| = 1 and multiplicity m(γ σ , N σ ) = |m|.

  For item b) observe that since B σ has four quadrants, it follows that |n(γ σ , B σ )| = 1. If we choose a simple closed curve α ⊂ N * \∂N * homotopic to σ, then this curve is mapped onto a meridian curve in N σ \γ σ and since |[ Bσ ] • [α]| = |m| it follows that m(γ σ , B σ ) = |m|. According to the conventions stated in 8 it is verified that n(γ σ , B σ ) = +1 if m > 0 and n(γ σ , B σ ) = -1 when m < 0. Item c) follows directly from the definition. Finally, we can deduce item d) by applying theorem 2.18.
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 35 Figure 3.5: A picture of the Fried surgery.
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 37 Figure 3.7: Breaking the orbits in a neighbourhood of γ.

( i )

 i The flow (φ t , M ) obtained by surgery has a Birkhoff section ι : (Σ , ∂Σ ) → (M , Γ ) with γ ∈ Γ and p(γ , Σ ) = |γ ∩ Σ|.

2 Q

 2 ) by T r (a, b, s) = (ra, r 2 b, s).(3.18)(a) The homeomorphism T r in the xy-plane. The surface H R .
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 3 Figure 3.10:

  The sets E r and F .

Figure 3 . 11 :

 311 Figure 3.11: The region K

Figure 3 . 12 :

 312 Figure 3.12: Foliations by orbit segments in E r and F .

  and sends the foliation by orbit segments onto the foliation by segments of the form (x, y) × [0, 1]. Since the function τ 0 (p) is constant along the longitudes in Q and approaches to zero when p → β 0 then it follows item (2) from the claim. See figure3.12.
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 315 Figure 3.15: The set V .

Figure 3 . 16 :

 316 Figure 3.16: Choosing an adequate boundary.

Figure 3 . 17 :

 317 Figure 3.17: The band B .

Definition 4 . 2 .

 42 Let f ∈ Homeo(M ) and let r ≥ 1. A C r -Anosov structure for f is a smooth differentiable structure D on M which satisfies that (i) f : (M, D) → (M, D) is a C r -diffeomorphism,(ii) f preserves a hyperbolic splitting.

Definition 4 . 9 (

 49 Strongly topologically Anosov). Let M be a closed manifold equipped with some distance d. A topologically Anosov homeomorphism f ∈ Homeo(M ) is strong if it preserves two regular foliations F s and F u such that (1) The two foliations have local product structure, (2) For every x ∈ M F s (x) = {y ∈ M : lim n→+∞ d(f n (x), f n (y)) = 0},

Question 4 . 11 .Definition 4 . 13 .

 411413 Is every topological Anosov flow in a closed 3-manifold C 0 -orbitally equivalent to a C 1 -Anosov flow?In contrast to the case of 2-dimensional homeomorphisms, the class of topologically Anosov flow is divided into the transitive and the non-transitive ones. The objective of this chapter is to prove the following theorem: Theorem 4.12 (Theorem C). Every transitive topological Anosov flow in a closed 3-manifold is C 0 -orbitally equivalent to a C 1 -Anosov flow.Theorem 4.12 can be expressed in terms of differentiable structures. Consider the following definition: Let (ψ t , N ) be a non-singular regular flow in a closed 3-manifold and let 1 ≤ r ≤ ∞. A C r -Anosov structure for (ψ t , N ) is a smooth differentiable structure D on N which satisfies that (i) ψ t : (N, D) → (N, D) is a flow generated by a C r -vector field, (ii) Dψ t preserves a hyperbolic splitting T N = E s ⊕ E c ⊕ E u , E c generated by the vector field.

  Consider the flow( φ t , M ) = suspension P : Σ → Σ . (4.2)Each point in ∆ generates a periodic orbit for this suspension flow. Let Γ be the set of all the periodic orbits associated to points in ∆. The flow (4.2) defined above is a

  It follows that P is smooth and DP : T Σ → T Σ preserves a splitting T Σ = E s ⊕ E u given in local coordinates by E s = R × 0 and E u = 0 × R. Moreover, with the metric | • | this splitting is uniformly hyperbolic. With this structure of smooth Riemannian manifold on Σ, the suspension flow ( φt , M ) = suspension P : Σ → Σ (4.3) is the flow generated by the smooth vector field ∂/∂t on the smooth (open) manifold M = Σ × R/(z, t) ∼ (P (z), t -1).

Lemma 4 . 19 .

 419 Given 0 < r 2 < r 1 < 1 consider the map ψ : {r 1 }×(0, r 2 ] → (0, r 2 ]×{r 1 } associated to the flow φ A t . Let p = (r 1 , r), then ψ(p) = (r, r 1 ) and τ (p) = τ (r) = log(r/r 1 ) log(λ) .
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 41 Figure 4.1: The region Q.

Figure 4 . 2 :

 42 Figure 4.2: Cross-shaped neighbourhood.

Lemma 4 . 22 .

 422 Let (φ t , M ) be transitive topological Anosov flow and ι : (Σ, ∂Σ) → (M, Γ) a Birkhoff section. Consider the smooth atlas D Γ and the smooth vector field X Γ on M \Γ induced by the Birkhoff section.
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 43 Figure 4.3: The germs of γ and γ.
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 45 Figure 4.5: Glueing map in the first quadrant for negative linking number.

Figure 4 . 6 :

 46 Figure 4.6: The map Φ q in su-coordinates.

3r 1 r 2 ≤

 2 ∆ u (v) ≤ 0 . (4.38)

2 Figure 4 . 8 :

 248 Figure 4.8: The returning time to the annulus at position r 1 × [0, r 2 ] × R/Z increases when r 2 /r 1 → 0.

Proof of lemma 4 . 34 .

 434 Let v 1 , v 2 ∈ C cu (p; δ u 0 (p), δ u 1 (p)). By (4.29) the action of each transformation Ψ t has the effect of contract the difference of slopes between v 1 and v 2 by a ratio exponential in t. More precisely,|∆ u (Ψ t (v 2 )) -∆ u (Ψ t (v 1 ))| = λ 2t |∆ u (v 2 ) -∆ u (v 1 )| , for all t ≥ 0.(4.40)

  [START_REF] Franks | Anomalous Anosov flows[END_REF] we have that∆ u (v i ) = (b i /c i )(K(r, r 2 ) + 1) + K(r, r 2 ) r 1 r -(b i /c i )K(r, r 2 ) r r 1 + (1 -K(r, r 2 )).(4.41) 

33 .

 33 In particular, both vectorsv n i belong to C cu (p n ; δ u 0 (p n ), δ u 1 (p n ))and by (4.42) none of the transformations Φ pn increases slopes, for every n ≥ 2.Since by (4.40) each map Ψ t n+1 contracts the difference of the slopes|∆ u (Φ pn (v n 2 )) -∆ u (Φ pn (v n 1 ))| by a factor of λ 2t n+1 we obtain that|∆ u (Dψ t (p) • v 2 ) -∆ u (Dψ t (p) • v 1 )| ≤ (λ -2(t 1 +t 2 ) | max(δ u 1 )-min(δ u 0 )|)•λ 2t , ∀ t ≥ t 1 +t 2 .

Proof of lemma 4 . 35 .

 435 Let p ∈ N , v ∈ T p N and t ≥ 0. Using the basis defined in (4.23), write v = aY (p) + be s (p) + ce u (p). Define v su = √ b 2 + c 2 , and remark that v ≥ v su .

34 and 4 .

 4 [START_REF] Goodman | Dehn surgery on Anosov flows[END_REF] say that the cone distributions defined before satisfy the cone field criterion, which guarantees the existence of the plane distributions. Just for completion, we sketch the arguments. DefineF cu (p) = k≥0 Dψ kT ( C cu ( ψ -kT (p) ; δ u 0 (ψ -T (p)), δ u 1 (ψ -T (p)) ) ) , F cs (p) = k≥0Dψ -kT ( C cu ( ψ kT (p) ; δ u 0 (ψ kT (p)), δ u 1 (ψ kT (p)) ) ) .

Slope function .

 function Given a point p ∈ M i , since each plane F cu (p) is contained in the cone C cu (p; δ u 0 (p), δ u 1 (p)), there exists a slope value δ u 0 (p) ≤ α i (p) ≤ δ u 0 (p), verifying that F cu (p) = v ∈ T p M i : v = aX i (p) + α i (p)ce i s (p) + ce i u (p) : a, c ∈ R .Since the plane distribution is continuous as a function of p ∈ N , then each α i :M i → R, i = 1,2 is continuous. Moreover, at each p ∈ M 0 ∩ M 1 the chart Φ p defined in (4.28) sends aX 0 (p) + α 0 (p)ce 0 s (p) + ce 0 u (p) : a, c ∈ R → aX 1 (p) + α 1 (ϕ(p))ce 1 s (p) + ce 1 u (p) : a, c ∈ R .

P

  s (p) : F cu (p) → H c (p) ⊕ H u (p), obtained by projecting F cu (p) onto H c (p) ⊕ H u (p) in the direction of H s (p). This allows to define a decomposition F cu (p) = H c (p) ⊕ Hu (p), (4.46)

(4. 47 )

 47 for some p 1 , . . . , p l ∈ A 1 in and t k > 0, uniformly bounded from below for k = 2, . . . , l. For every point p ∈ N we consider a basis {e c (p), ẽu (p)}, where e c (p) = Y (p) and ẽu (p) = α(p)e s (p) + e u (p) is a vector in Hu (p). It follows that: • If the orbit segment segment [p, ψ t (p)] does not intersect the annulus A 1 in , then (Ψ t | F cu ) cũ = 1 0 0 λ -t . (4.48)

CLemma 4 . 37 .

 437 u (p; δ) = {v ∈ F cu (p) : -δ ≤ ∆ ũ(v) ≤ δ} . If 0 < r 2 < r 1 < 1 aresufficiently small, then there exists T > 0 such that: For every p ∈ N then Dψ T (C u (p; δ)) ⊂ C u (ψ T (p); δ) .

Corollary 4 . 41 . 1 .

 4411 There exist two continuous line distributions F s and F u in the tangent bundle T N satisfying that:Dψ t (p) (F u (p)) = F u (ψ t (p)) and Dψ t (p) (F s (p)) = F s (ψ t (p)), for every p ∈ N and t ∈ R; 2. T p N = F s (p) ⊕ span{Y (p)} ⊕ F u (p), for every p ∈ N ;3. There exists constants L > 0 and µ > 1 such thatDψ t (p) • v ≥ Lµ t v , ∀ p ∈ N, v ∈ F u (p), t ≥ 0, Dψ -t (p) • v ≥ Lµ t v , ∀ p ∈ N, v ∈ F s (p), t ≥ 0.

1 .

 1 It is a local Birkhoff section at γ 0 for the flow ψ t , with n(γ 0 , S) = n(γ, Σ) and m(γ 0 , S) = m(γ, Σ);2. ∂S = β ∪ γ 0 . Proof of the claim. Define S = (θx, θy, z) ∈ R 2 / × R/Z : (x, y, z) ∈ β, 0 ≤ θ ≤ 1 .Then, S is the surface obtained by joining with a straight segment each point (x, y, z) ∈ β with the point (0, 0, z) ∈ γ 0 . It is homeomorphic to a compact annulus and clearly ∂S = β ∪ γ 0 .

  ∂ ∂r (p) = (0, 1, -κ(r)) and ∂ ∂θ (p) = (r 1 , r, 0), where κ(r) = |m| |n| |ρ (r/r 2 )| ≥ 0.

Figure 4 . 11 :

 411 Figure 4.11: Glueing map from ∂M 0 to ∂M 1 .

Following

  the previous paragraph, S is a local Birkhoff surface tangent to γ 0 . By construction, in the canonical meridian/longitude basis {a, b} of the saddle type periodic orbit γ 0 , the coordinates of the curve β are[β] = n(γ, Σ) • a + m(γ, Σ) • b ∈ H 1 (M 1 \γ 0 ).

Lemma 1.9. Consider

  two continuous flows φ i t : M i → M i , i = 1, 2. Let Σ i ⊂ M i be a transverse section for each flow and assume there exists a first return map P i : U i → Σ i

			x
	(u, τ (u))		
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	Figure 1.1: U is the union of all the compact orbit segments σ joining points u ∈ U
	with its first return v ∈ Σ.		
	defined in an open set U i ⊂ Σ i . If there exists a homeomorphism h : Σ 1 → Σ 2 such that
	h(U 1 ) = U 2 and h • P 1 (x) = P 2 • h(x), ∀ x ∈ U 1 , then there exists a homeomorphism
	H : U 1 → U 2 such that:		
	1. For every point x ∈ U 1 the map H takes the orbit segment O U 1 (x) onto O U 2 (H(x)),
	2. The		
		The following lemma
	will be used several times in what follows.		

restriction map H| U 1 coincides with h| U 1 .

  

Proposition 1.11. Let φ i

  . Assume there exists a global transverse section Σ i for each flow φ i t and let P i : Σ i → Σ i be the first return map. If there exists a homeomorphism h : Σ 1 → Σ 2 such that h • P 1 = P 2 • h, then there exists a homeomorphism H : M 1 → M

	2 such
	that:
	(a) H is an orbital equivalence between the flows,
	(b) H| Σ = h.
	2. Let γ i be a periodic orbit of each flow φ i t , D i a local transverse section and P D

t : M i → M i , i = 1,

2, be two non-singular continuous flows.

1i :

  Our next goal is to deform B 2 pushing along flow lines and obtain a new local Birkhoff section B 2 , that coincides with B 2 outside a tubular neighbourhood O 2 of the orbit γ 2 and coincides with S in a smaller neighbourhood O 2 ⊂ O 2 . Let O 2 ⊂ W 2 be a neighbourhood of γ 2 . Then, there exist a smaller neighbourhood O 2 ⊂ O 2 , a local Birkhoff section B 2 at γ 2 and a homeomorphism ψ :

	Lemma 2.23.

1 

, S) = m(γ 2 , B 2 ) and n(γ 1 , S) = n(γ 2 , B 2 ). Following proposition 4.1 we see that B 2 and S are φ 2 t -isotopic.

  .3.In figures 3.1a, 3.1b the annulus is contained in the first quadrant.

	

  the closure of the connected component of E\Σ r which does not accumulate on γ.

		(3.27)
		

  where φ X Γ There exists a Riemannian metric | • | Γ in the (open) manifold M Γ for which the splitting is uniformly hyperbolic and

	(iii)
	t Γ is collinear with this vector-denotes the flow generated by X Γ and the bundle E c
	field.

  Definition 4.15. The smooth structure D Γ stated in proposition 4.14 above is called an almost Anosov structure for φ t on M Γ . Remark 4.16. For proving theorem 4.12 we will start with one of these almost Anosov structures and we will construct a global Anosov structure for a transitive topological Anosov flow. Nevertheless, in the same way as in subsection 3.1, the new structure is not compatible with the almost Anosov one in a the complement of a neighbourhood of the singular periodic orbits. It seems reasonable to be aware of a possible extension of these almost Anosov structures onto the singular set. Remark 4.17. Not every finite set Γ of periodic orbits bounds a Birkhoff section. For example, this is the case of a single periodic orbit in a suspension Anosov flow, since it represents a non-trivial homology class on the phase space. This says that the almost Anosov structures associated to a given topological Anosov flow are not arbitrary objects, but they have some intricate relation with the topology of the flow.

  {q}, that we call punctured quadrants. These are a collection of pairwise disjoint surfaces, properly embedded in the manifold W i \ γ, each one homeomorphic to a disk. The first return map permutes cyclically these surfaces sending and P n preserves each of them. So each B * i+4j is a transverse section for φ t on W i \ γ. Observe that the flow φ t projects the points of a surface B * i+4j onto the following in constant time equal to one. It follows that there is a smooth time-preserving conjugation between φ t , W i \ γ and the flow induced by z → z + t in B * i+4j × R/ (z,t) →( P n (z),t-|n|) .

	(4.10)

  Define ϕ : ∂M R (r 1 , r 2 ) → ∂V(r 1 , r 2 ) in the following way: For every p ∈ ∂M R (r 1 , r 2 ) choose 1 ≤ i ≤ 4 such that p belongs to the i-th quadrant and denote its coordinates by (x, y

2 3 ≤ t ≤ 1. Definition 4.26.

  .20) There is another basis defined for every point p ∈ M 0 ∩ M 1 given by B(p) = {X (λ,n) (p), e 1 (p), e 2 (p)}, where e 1 (p) = (1, 0, 0). The vectors e 1 and e 2 are unitary vectors contained in the stable and unstable bundles of the flow φ

	X (λ,n) t	. It will be
	convenient to express the transformations (4.19) in the basis B(p) for the points p ∈
	A 1 in (p).	

Lemma 4.29. Let p ∈ A 1

in with coordinates (r 1 , r, s). Then,

  1 in . Given a basis {Y (p), e s (p), e u (p)} of T p N satisfying that e s (p) ∈ H s (p) and e u (p) ∈ H u (p) are unitary vectors, there exists an extension into a continuous frame {Y (ψ s (p)), e s (ψ s (p)), e u (ψ s (p))}, 0 ≤ s ≤ t (4.24)

defined along the orbit segment [p, ψ t (p)], where e s (ψ s (p)), e u (ψ t (p)) are unitary vectors.

  The proof of proposition 4.32 proceeds by applying the cone field criterion; see[START_REF] Katok | Introduction to the modern theory of dynamical systems[END_REF] for a precise statement. We will show first in corollary 4.36 that the natural action of ψ t on the tangent bundle T N preserves a pair of center-stable and center-unstable 2-dimensional plane fields by application of this criterion. Then, in corollary 4.41 we apply the same criterion inside the center-stable and center-unstable planes to conclude the existence of a hyperbolic splitting preserved by Dψ t .
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[START_REF] Fathi | Thurston's work on surfaces[END_REF] 

where Ψ t denotes the application T p N → T ψt(p) N , defined for all the couples (t, p) satisfying that [p, ψ t (p)] ∩ A 1 in = ∅, by the expression:

Ψ t : aY (p) + be s (p) + ce u (p) → aY (ψ t (p)) + λ t be s (ψ t (p)) + λ -t ce u (ψ t (p)). (4.26)

Here, {Y, e s , e u } is a continuous frame as defined in

(4.24)

.

3.3 The smooth model (ψ t , N ) is Anosov

Proposition 4.32. If 0 < r 2 < r 1 < 1 are sufficiently small, then the flow ψ t : N → N defined in (4.16) is Anosov.

  r 1 , r 2 ) ≥ 2τ (r 1 , r 1 ) =

	2 log(λ)	log	r 1 r 1	,
	which proves the claim.			
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  any case, we have that Dψ t (p) expands vectors in C cu (p; δ u 0 (p), δ u 1 (p)) exponentially in t. The same applies for vectors in the cs-distribution C cs (p; δ s 0 (p), δ s 1 (p)) and backward time iteration of Dψ t . Following lemmas 4.33, 4.34 and 4.35, we have that: Corollary 4.36. There exist two continuous plane distributions F cs and F cu in the tangent bundle T N satisfying that: 1. Dψ t (p) (F cu (p)) = F cu (ψ t (p)) and Dψ t (p) (F cs (p)) = F cs (ψ t (p)), for every p ∈ N and t ∈ R;

2. F cs (p) ∩ F cu (p) = span{Y (p)}, for every p ∈ N ; 3. There exists constants L > 0 and µ > 1 such that

Dψ t (p) • v ≥ Lµ t v , ∀ p ∈ N, v ∈ F cu (p), t ≥ 0, Dψ -t (p) • v ≥ Lµ t v , ∀ p ∈ N, v ∈ F cs (p), t ≥ 0.

Proof. The lemmas 4.

33, 4.

Durante la realización de esta tesis, en un primer momento nos hemos interesado por una cirugía en particular, conocida como la cirugía de Goodman. Este procedimiento consiste en elegir una órbita periódica y realizar una cirugía de Dehn alrededor de esta curva, adaptada al flujo de forma tal de obtener una nueva variedad equipada con un flujo de Anosov. La problemática que nos hemos planteado es que, para realizar la cirugía, uno de los parámetros a elegir es una superficie encajada en la 3-variedad y un difeomorfismo definido sobre ésta. Esto hace que el espacio de parámetros sea, a priori, de dimensión infinita, y no tengamos un control claro sobre la clase de equivalencia orbital del flujo obtenido. Existe un segundo procedimiento, que puede ser interpretado como una versión infinitesimal del anterior, conocido como cirugía de Fried. Este consiste en realizar un blow-up de la curva periódica, obteniendo así un flujo en una variedad con borde, para luego colapsar este borde de una forma no trivial y producir un nuevo flujo. Esta cirugía produce flujos definidos de manera unívoca, pero éstos no vienen acompañados de una estructura uniformemente hyperbólica natural. Son, por construcción, flujos topológicamente Anosov.Nuestro aporte consiste en probar que, asumiendo que el flujo es transitivo, una cirugía de Goodman y una cirugía de Fried en una órbita periódica producen flujos equivalentes, a igual elección de parámetros enteros.En un segundo tiempo nos hemos interesado por una pregunta más abstracta, pero que aparece naturalmente ligada a ciertos procedimientos técnicos en la construcción de flujos hiperbólicos. Es el problema de saber si todo flujo topológicamente Anosov (i.e. flujo orbitalmente expansivo que satisface la propiedad de sombreado de Bowen) corresponde, a menos de equivalencia orbital, a un flujo hiperbólico diferenciable. En el caso particular de que el flujo sea transitivo, es conocido desde hace tiempo que éste puede ser munido de una estructura no-uniformemente hiperbólica, definida en el complemento de una cantidad finita de órbitas periódicas. La mayor dificultad radica en encontrar modelos (globalmente) uniformemente hiperbólicos asociados al flujo original.En este contexto, nuestro aporte consiste en probar que todo flujo topológicamente Anosov y transitivo en una variedad de dimensión tres es orbitalmente equivalente a un flujo de Anosov. v vi

In general applications it is enough to work in this setting.

We remark that in the figure the boundary of NA has edges, but it can be smoothed along them.

This condition is called almost orbital equivalence, see 1.4

Remark that this condition is stronger than just having a smooth atlas for which the flow is smooth. It is possible to have a smooth flow, topologically Anosov, which is not Anosov since the action of its derivative does not preserve a hyperbolic splitting.

It is important to remark that, from many points of view (for example that of the smooth ergodic theory or C 1 -generic dynamics) the definition of smooth hyperbolic dynamical system is stronger than the one corresponding to topologically Anosov. To actually guarantee that a system is hyperbolic, the existence of a corresponding dominated splitting must be shown. This is done, in general, using a fixed point method called the cone field criterion.

Moreover, in chapter 4, they will appear some (natural) smooth structures associated with transitive topological Anosov flows, which are defined in an open and dense region of the phase space, but not in the whole.

In other literature it is called topological equivalence between flows.

By abuse of terminology, we will use the word germ for referring to a given pseudo-flow (φt, W ), instead of its equivalence class. Through applications, it will be understood that the neighbourhood W can be freely replaced by a smaller one if needed.

Regular: ∀ p ∈ Σ there exists a neighbourhood W of p in M and a homeomorphism ϕ :W → R 3 such that h(W ∩ Σ) = R 2 × 0.

Also non-transitive Anosov flows have strong connections with the topology of the ambient manifold. See[START_REF] Brunella | Separating the basic sets of a nontransitive Anosov flow[END_REF].

In other literature this number is called the self-linking number.

Chapter 2. Orbital equivalence and Birkhoff sections.

We will also arrive to item (b) in theorem 4.12, where we will show that every topologically Anosov flow is orbitally equivalent to a C 1 -Anosov flow.

The surgery is integral in the sense that the slope of [σ] is an integer in the meridian/longitude basis.

In fact, for the set F the foliation singularizes on the edge L0 ∩ Q, but we will not take care about this.

The flow φt is pseudo-Anosov if it preserves a pair of codimension one transverse foliations F cs , F cu , possibly with singularities of circle-prongs type, satisfying that: Given x and y in the same cs leaf, there exists an increasing reparametrizing homeomorphism ρ : (R, 0) → (R, 0), such that dist(φt(x), φ h(t) (y)) → 0 for t → +∞, and the symmetric condition is satisfied for the cu leaves in backwards time.

Here, the adjective generalized stands for pseudo-Anosov maps with possibly 1-prong singularities. This could be the case if some of the orbits in Γ have non-orientable local invariant manifolds. Nevertheless, as it was observed by Brunella, there always exist Birkhoff sections such that the local invariant manifolds of every orbit in Γ are orientable and embedded (i.e. multiplicity equal one). This observation can be useful to simplify technicalities along proofs.

It is here that it is important to consider a separated definition

4.26 for ϕ, discriminating by the signature of the linking number. Observe that if we apply the same formula for ϕ in the first quadrant with positive n, then the bands switch to a bad position and transversality cannot be guaranteed.

Contents

Thesis presentation. xiii

00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

4 Birkhoff sections and Goodman surgeries.

Let γ be a periodic orbit of an Anosov flow (φ t , M ) with orientable invariant manifolds. Consider a local transverse section D → M for the orbit γ, homeomorphic to a disk. Let W be a compact tubular neighbourhood of γ verifying that ∂W is transverse to D and that D 0 = D ∩ W is a closed disk contained in int(D). This is depicted in the figure below.

Let A be a compact annulus, parallel to γ, transverse to the flow and contained in some quadrant of W . Choose some twist map f : A → A and consider a flow (φ t , M ) = Goodman surgery(φ t , M, γ, A, f ) (3.11) obtained by a Goodman surgery on (φ t , M ). Here and for the rest of the section, f : A → A will be a twist map with parameter m ∈

Step (ii) -The region K.

Consider the annulus Q defined in (3.16), delimited by two longitudes β 0 and β . Define

The region K is a manifold with edges in the boundary. The boundary consists of the union of three annuli L i = 0≤r≤1 T r (β i ), i = 0, 1 and Q, while the edges are the curves γ, β 0 and β 1 . See figure 3.11a.

Define Li = L i \γ. The vector field Y is transverse to L0 , L1 and Q. It points inward the region K along L0 and points outward along L1 ∪ Q.

Claim. For every p ∈ K\γ, there exist τ 0 (p) ≤ τ 1 (p) such that the orbit of p enters the region K through a point φ(p, τ 0 (p)) in L0 , and escapes through a point φ(p, τ

This claim follows directly by examining the vector field Y on the set K. It allows to decompose K\γ as the union of two sets E and F , where (i) E is the union of the orbit segments {φ(p, t) : τ 0 (p) ≤ t ≤ 0} where p ∈ L1 , (ii) F is the union of the orbit segments {φ(p, t) : τ 0 (p) ≤ t ≤ 0} where p ∈ Q.

These two sets are foliated by orbit segments 4 , and they intersect along a surface Σ 1 tangent to the flow. See figure 3.11b.

Step (iii) -Connecting S with H R 0 .

The goal now is to connect the surface S, that lies outside T 1 , with a surface H R for some adequate 0 < R < R 0 , that lies inside the solid torus T R 0 . We will make the following choices of constants:

1. Choose R 0 given by lemma 3.24.

Choose

Consider the surface H R 2 . In the region N \int(K) we define

Then S 0 has the shape of a band and is transverse to the flow. This surface extends H R 2 in the complement of K and connects the arc η\Q with the arc ∂H R 2 \K. We refer again to figure 3.10b.

Chapter 4

Transitive topological Anosov flows in dimension three.

In this chapter we prove that every transitive topological Anosov flow on a closed 3manifold is orbitally equivalent to a smooth Anosov flow. In section 1 we survey some results and definitions about topological Anosov dynamics and then we state our main result (theorem 4.12). In section 2 we describe the almost Anosov structures associated to a given transitive topological Anosov flow, following the existence of Birkhoff sections proved by Fried and Brunella. Finally, we prove theorem 4.12 in section 3.

1 Topological Anosov Dynamics.

Expansive and topologically Anosov homeomorphisms.

Topological properties of Anosov Diffeomorphisms.

A fundamental property of the hyperbolic splitting preserved by an Anosov diffeomorphism is that the bundles E s and E u integrate into globally defined foliations F s and F u on M , which are of class C 0,r , transverse between them, and with a very precise dynamical meaning: For every x ∈ M we have that:

This is the content of the very classical stable manifold theorem. For some ε > 0 not This completes the proof of the lemma assuming that p(γ, Σ) = 1. If there are more than one boundary components of Σ that cover γ, the argument is the same but the first return map to each B * i+4j changes by P p(γ,Σ)•n , so we must modify the parameters of Y in the appropriated way.

Prong-Shaped Neighbourhood: For each γ ∈ Γ, the local coordinates defined in lemma 4.22 allow to construct a regular, compact, tubular neighbourhood R = R(r 1 , r 2 ) of the orbit γ, which depends on two parameters 0 < r 2 < r 1 < 1, in the following way: Definition 4.24. For each i = 1, . . . , 4 consider the sets 
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Figure 4.4: The neighbourhood R(r 1 , r 2 ), obtained by glueing the four pieces V i (r 1 , r 2 ).

3. The smooth model.

123

We call R a prong shaped neighbourhood. We can describe the vector field X Γ on R \ γ in the following way: Consider the four pairs

Consider the manifold obtained by glueing:

In figure (4.4b) we see this for m = 1 and n = -2. The associated quotient space is a solid torus. Observe that the curve 0 × R/Z is a n-fold covering of its image under the quotient projection. In the complement of this curve, the vector field X (λ,n) is invariant by z-translations, so we get a well defined vector field on the quotient manifold.

Remark 4.25. Observe that if |n| = 1 then we simply obtain that the vector field X Γ in φ t on R\γ is equivalent to X (λ,n) in V(r 1 , r 2 ), and B\γ corresponds to D\{0}.

The boundary ∂R is decomposed in eight smooth annuli, four of them tangent to the vectorfield, two where X Γ is transverse and points inward the neighbourhood and two other where X Γ is transverse and points outward. Using the coordinates Π i we can identify the sets

In particular, the union A 1 in ∪ A 4 in is one of the eight annuli that forms ∂R, where the flow traverse inwardly. In coordinates given in lemma 4.22, this two annuli corresponds to the sets

glued along the boundary with a translation.

3 The smooth model.

Consider a transitive topologically Anosov flow (φ t , M ). In this section we construct another flow (ψ t , N ) which is C 1 -Anosov and orbitally equivalent to the first one. We start by sketching the general argument, and we develop the steps in the following subsections.

Existence of the center-stable and center-unstable invariant distributions.

In the construction of ϕ there are an auxiliary smooth function ρ and two parameters 0 < r 2 < r 1 < 1. The maximum size of these real parameters depend on the charts Π i , but they can be chosen arbitrarily small. We assume from now on that ρ is fixed and we will adjust the parameters r 1 , r 2 to satisfy the proposition. 

Observe that we have two possibilities for choosing a positive basis as before, but the slope is unchanged by switching this election, so the u,s-slopes are well defined. We remark as well that these slope functions do not vary continuously over the set A 1 in , due to the discontinuity of the bundles H s , H u .

Cone distributions. Given a pair of continuous functions δ 0 , δ 1 : N → R satisfying that -∞ < δ 0 (p) < δ 1 (p) < +∞ for every p ∈ N , we define two cone distributions

At each point p this is a pair of 2-dimensional cones, with axis determined by the vector Y (p). Observe that for adequate values of δ i (p) these cones are complementary, i.e. their intersection is just H c (p). We remark that these cone distributions do not vary continuously as a function of p, the possible discontinuities being on the set A 1 in . But this posses no obstructions to apply the cone field criterion on this family of cones.

In what follows we will show that for some adequate slope functions δ u 0 , δ u 1 and δ s 0 , δ s 1 there is a pair of complementary cones satisfying the cone field criterion under the action of Dψ t : T N → T N . Lemma 4.33. Let δ u 0 , δ s 0 , δ u 1 , δ s 1 : N → R be the functions defined in (4.33) below. If 0 < r 2 < r 1 < 1 are sufficiently small, then there exists T > 0 such that: For every p ∈ N then

Lemma 4.34. For the parameters 0 < r 2 < r 1 < 1 given in the previous lemma, it is satisfied the following: There exists a constant L 0 > 0 such that, for every p ∈ N and every t ≥ 0 then

Lemma 4.35. By shrinking the parameters 0 < r 2 < r 1 < 1 of the previous lemmas if necessary, it is satisfied that: There exist constants L > 0 and µ > 1 such that, for every p ∈ N and every t ≥ 0 then

Action on the su-bundle. To study the action of Dψ t on cone distributions, it is convenient to consider the vector bundle Hsu → N defined by the quotient

which carries an induced action of Dψ t . Observe that there is a decomposition of this bundle, of the form Hsu = Hs ⊕ Hu , induced by the spaces H s and H u . We remark that this decomposition does not vary continuously along the set A 1 in . Exactly as in (4.24) above, along every orbit segment disjoint from A 1 in there is a continuous frame {ē s , ēu }, induced by a continuous frame {e s , e u }. By lemma 4.31, the action of ψ t on the bundle Hsu is an alternated composition of transformations of the form Ψ t and Φ p . We have that:

If p /

∈ A 1 in and t > 0 satisfies that [p, ψ t (p)] ∩ A 1 in = ∅, by lemma 4.31 we see that the matrix associated to the action Dψ t on the su-bundle, on in a basis {ē s , ēu }, is given by

2. Let q ∈ A 1 in . We want to see how Φ q transforms cones in T q N into cones in T ϕ(q) N . In the system of normal coordinates (4.1) the annulus A 1 in corresponds to the set {r 1 } × [0, r 2 ] × R/Z, so let (r 1 , r, s) be the coordinates of q. In lemma 4.29 there is a matrix for this transformation in the basis

By this lemma we have that the action of Φ q in the su-bundle is given by the matrix

where K(r, r 2 ) = κ(r)|n| log(λ) r r 2 , and κ : [0, r 2 ] :→ [0, ∞) is the continuous bounded function given in 4.28. Remark the K is a non-positive function. Thus, we obtain a family of transformations parametrized over 0 ≤ r ≤ r 2 . Observe that Φ q is non-trivial just for points q = (r 1 , r, s) with r 2 3 ≤ r ≤ 2r 2 3 , due to the definition of ρ : [0, 1] → R. At each point q = (r 1 , r, s) ∈ A 1 in the transformation Φ q has an eigenvector w1 (q) whose slope is ∆ u ( w1 (q)) = -r 1 /r < 0. For having the invariance property in the first lemma we need, at each q ∈ A 1 in where Φ q is non-trivial, the sector determined by the vectors { w1 (q), ēu (q)} to be contained in the cone C cu (q; δ u 0 , δ u 1 ), and the sector determined by the vectors {-ē s (q), w1 (q)} to be contained in C cs (q; δ s 0 , δ s 1 ). Since Φ q is non-trivial only when r 2 3 ≤ r ≤ 2r 2 3 , we encounter that the slope of an eigenvector corresponding to a non-trivial Φ q is bounded between -3r 1 r 2 and -3r 1 2r 2 . See figure 4.7a.

Choice of slope functions. We define two distributions of cones on T N in the following way: Consider a continuous bounded function δ : N → (-∞, 0) satisfying that:

Define

)

.36)

Let T + 1 = T + 1 (r 1 , r 2 ) be defined by

This is the minimal returning time of points in the region

(where Φ q is non-trivial) onto itself. We claim that:

Claim. If we shrink r 1 and r 2 keeping constant the ratio r 2 /r 1 , then T + 1 (r 1 , r 2 ) tends to infinity.

Assuming this claim, fix some 0 < r 2 < r 1 such that T + 1 (r 1 , r 2 ) > T 0 (r 1 , r 2 ) and chose some T > 2T + 1 (r 1 , r 2 ). Without loss of generality we can assume that, in addition,

Let's show that ψ T preserves the cone distribution C cu (p; δ u 0 (p), δ u 1 (p)). Let p ∈ N and consider the associated decomposition (4.32) of Dψ t as products of Ψ t k and Φ p k . Then,

in = ∅ the action of Dψ T on T N is just the transformation Ψ T . By (4.29) and (4.39) we have that

, where either t 1 > T 0 or t 2 > T 0 . By (4.37) and the particular choice of T > 0 we have that, in the first case

while in the second

in contains more than one point, then again by (4.37) and the property that ε < -Cλ 2T r 1 /r 2 , we have that each map Ψ t k • Φ p k preserves the cones C cu (p; δ u 0 , δ u 1 ) for k = 1, . . . , l.

We have that Dψ T sends the cone C cu (p; δ u 0 (p), δ u 1 (p)) inside C cu (ψ T (p); δ u 0 (p), δ u 1 (p)) in any case. This proves that the C cu cones satisfy the invariance property for adequate values of 0 < r 2 < r 1 < 1, up to the previous claim.

.9: Action on the F cu plane distribution.

Lemma 4.38. For the parameters 0 < r 2 < r 1 < 1 given in the previous lemma, it is satisfied the following: There exists a constant L0 > 0 such that, for every p ∈ N and every t ≥ 0 then

Lemma 4.39. By shrinking the parameters 0 < r 2 < r 1 < 1 of the previous lemmas if necessary, it is satisfied that: There exist constants L > 0 and μ > 1 such that, for every p ∈ N and every t ≥ 0 then For the transformations Φ q with q = (r 1 , r, s) ∈ A 1 in we can stablish the following: Given δ > 0, there exist positive constants D 0 = D 0 (r 2 /r 1 ) and D 1 = D 1 (r 2 /r 1 ) such that

we have assumed to have only one boundary component that is mapped onto a periodic orbit γ.

Then, in subsection 3.2, we have defined a flow (ψ t , N ), whose construction depends on the combinatorial parameters of the Birkhoff section and on two real parameters 0 < r 2 < r 1 < 1. In particular, recall that we use expression (4.15) or (4.14) for defining (ψ t , N ), depending on the signature of the linking number.

We show here that the flow (ψ t , N ) is orbitally equivalent to (φ t , M ), independently of the parameters 0 < r 2 < r 1 < 1.

Proposition 4.42. The flow (ψ t , N ) defined in (4.16) is orbitally equivalent to the original flow (φ t , M ).

The proof of this proposition follows the same lines that the proof of theorem 3.1. Given that (φ t , M ) is already endowed with a Birkhoff section, the proof is nothing but to show that (ψ t , N ) is also endowed with a Birkhoff section, that carries the same first return map and combinatorial data on the boundary. In this way, the theorem follows from the techniques that we have presented in chapter 2, since this last condition is enough to guarantee orbitally equivalence between the flows. iii.

It will be convenient to recall the general construction that we have made. In a neighbourhood W ⊂ M of the curve γ we have defined, quadrant by quadrant, a set of charts Π i : W i → D i × R/Z, i = 1, . . . , 4, that we called normal coordinate system, cf. 4.22. These charts can be chosen in order to satisfy the combinatorial condition 4.7.

Using these charts, in 4.24 we have constructed a neighbourhood R(r 1 , r 2 ) ⊂ W of γ, defined quadrant by quadrant. This neighbourhood is composed of four regions R i (r 1 , r 2 ), i = 1, . . . , 4, each one identified with the set V i (r 1 , r 2 ) ⊂ R 2 × R/Z defined in 4.20, by the corresponding chart.

The construction of (ψ t , N ) consists in take the manifold M 0 , obtained by removing the interior of R(r 1 , r 2 ), and glue its boundary with the boundary of M 1 = V(r 1 , r 2 ). The glueing diffeomorphism ϕ is given in definition 4.26 in terms of the chosen system of normal coordinates. Observe that its support is contained in the annulus A 1 in in the first quadrant or in A 4 in in the fourth quadrant, depending on the signature of n = n(γ, Σ). 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 Proof. We will make the proof for the case n = n(γ, Σ) < 0, being analogue the other case.

Define Σ 0 = ι(Σ) ∩ M 0 , which is the part of the original Birkhoff section that lies outside the neighbourhood R(r 1 , r 2 ). From now on, we will consider this surface as embedded in N by the natural inclusion M 0 → N . To prove the lemma, we will show that this surface can be extended inside the manifold M 1 , adding an helicoidal-like surface that connects ∂Σ 0 with γ 0 , in such a way to obtain the desired Birkhoff section.

Let α = ∂Σ 0 . By construction (cf. ??), this curve is a piecewise smooth, simple, closed curve in ∂M 0 , that coincides with Σ 0 ∩ ∂M 0 . Let's remark that Σ 0 intersects transversally the surface ∂M 0 . The partition into quadrants of the neighbourhood R(r 1 , r 2 ) originates a partition of α (as a submanifold of ∂M 0 ) into segments α i+4j in , α i+4j tg , α i+4j out ; i = 1, . . . , 4, k = 0, . . . , 4|n| -1 of constant R/Z-coordinate. We use the supra-index i + 4j exactly in the same way as we have used it in 4.22 for labelling the quadrants of Σ ∩ R(r 1 , r 2 ), and we use the sub-index in, tg, out to indicate if the segment belongs to the region of ∂R(r 1 , r 2 ) where the flow enters, is tangent or escapes the neighbourhood R(r 1 , r 2 ), respectively. This situation is depicted in the left part of figure 4.10. Observe that the combinatorial patron for concatenating the segments α i+4j * is determined by the combinatorics 4.7 of the system of charts Π i , i = 1, . . . , 4.