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RESUME

Cette theése porte sur les chirurgies de Dehn et les structures différentielles associées aux flots
d’Anosov transitifs en dimension trois. Les flots d’Anosov constituent une classe trés importante
des systemes dynamiques, par leurs propriétés chaotiques persistantes par perturbations, autant
que par leur riche interaction avec la topologie de la variété ambiante. Bien que beaucoup soient
connus sur le comportement dynamique et ergodique de ces flots, il n’y a pas une compréhension
assez claire sur la classification de ses différentes classes d’équivalence orbitale. Jusqu’a ce
moment, les plus grands progres ont été fait en dimension trois, ou il y a une famille de
techniques pour la construction d’exemples de flots d’Anosov connue comme chirurgies

Pendant la réalisation de cette theése, dans un premier temps nous nous sommes intéressés a
une chirurgie en particulier, connue comme la chirurgie de Goodman. Cette procédure consiste
a choisir une orbite périodique du flot et réaliser une chirurgie de Dehn autour de cette orbite,
adaptée au flot d’'une facon telle qu’on obtient une nouvelle variété munie d’un flot d’Anosov.
La problématique que souléve cette technique est que, pour la réalisation de la chirurgie, un des
parameétres a choisir est une surface plongée dans la 3-variété et un difféomorphisme défini sur
elle. De ce fait, I’espace de parameétres est, a priori, de dimension infinie et, pourtant, ce n’est pas
facile d’avoir un contréle sur la classe d’équivalence du flot obtenu par cette méthode. Il existe
une deuxiéme procédure, qui peut-étre interprétée comme une version infinitésimale de celle
qui précede, connue comme la chirurgie de Fried. Celle-ci consiste a éclater 1'orbite périodique,
obtenant de ce fait un flot défini sur une variété a bord, puis collapser cette composante de
bord d’une fagon non-triviale et produire un nouveau flot. Cette chirurgie produit des flots
univoquement définis, mais ceux-ci ne sont pas munis d’une structure hyperbolique naturelle.
Ils sont, par construction, flots topologiquement d’Anosov.

Notre contribution consiste a montrer que, si on assume de plus que les flots sont transitifs,
alors une chirurgie de Goodman et une chirurgie de Fried autour de la méme orbite périodique
produisent des flots équivalents, a égal élection de parametres entiers.

Dans un second temps nous avons travaillé sur une question un peu plus abstraite, mais
qui est naturellement liée a certaines procédures techniques dans la construction de flots hyper-
boliques. C’est le probleme de savoir si tout flot dit topologiquement d’Anosov (i.e. expansif
et qui satisfait la propriété de shadowing de Bowen) correspond & un flot hyperbolique dif-
férentiable, & équivalence orbitale pres. Dans le cas particulier ou le flot est transitif, il est
connu depuis trés longtemps qu’il peut étre muni d’une structure non-uniformément hyper-
bolique définie dans le complémentaire d’un ensemble fini d’orbites périodiques. La plus grande
difficulté est de construire des modeéles (globalement) hyperboliques associés au flot original.

Dans ce contexte, notre contribution consiste a montrer que tout flot topologiquement
d’Anosov et transitif, défini dans une variété de dimension trois, est orbitalement équivalent a
un flot d’Anosov de classe C!.
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RESUMEN

La presente tesis es acerca de cirugias de Dehn y estructuras diferenciables asociadas a flu-
jos de Anosov transitivos en dimension tres. Los flujos de Anosov constituyen una clase muy
importante de sistemas dindmicos, tanto por sus propiedades cadticas y persistentes bajo per-
turbaciones, asi como también por su rica relacion con la topologia de la variedad ambiente. Si
bien mucho es conocido acerca de las propiedades dindmicas y ergddicas de estos flujos, no ex-
iste una comprensién clara acerca de como clasificar sus distintas clases de equivalencia orbital.
Hasta ahora los mayores avances han sido hechos en dimension tres, donde existe una familia
de técnicas para la construccién de ejemplos de flujos de Anosov conocidas como cirugias.

Durante la realizacién de esta tesis, en un primer momento nos hemos interesado por una
cirugia en particular, conocida como la cirugia de Goodman. Este procedimiento consiste en
elegir una 6rbita peridédica y realizar una cirugia de Dehn alrededor de esta curva, adaptada
al flujo de forma tal de obtener una nueva variedad equipada con un flujo de Anosov. La
problematica que nos hemos planteado es que, para realizar la cirugia, uno de los pardmetros a
elegir es una superficie encajada en la 3-variedad y un difeomorfismo definido sobre ésta. Esto
hace que el espacio de pardmetros sea, a priori, de dimension infinita, y no tengamos un control
claro sobre la clase de equivalencia orbital del flujo obtenido. Existe un segundo procedimiento,
que puede ser interpretado como una version infinitesimal del anterior, conocido como cirugia
de Fried. Este consiste en realizar un blow-up de la curva peridédica, obteniendo asi un flujo
en una variedad con borde, para luego colapsar este borde de una forma no trivial y producir
un nuevo flujo. Esta cirugia produce flujos definidos de manera univoca, pero éstos no vienen
acompaniados de una estructura uniformemente hyperbédlica natural. Son, por construccion,
flujos topoldgicamente Anosov.

Nuestro aporte consiste en probar que, asumiendo que el flujo es transitivo, una cirugia de
Goodman y una cirugia de Fried en una érbita periddica producen flujos equivalentes, a igual
elecciéon de pardmetros enteros.

En un segundo tiempo nos hemos interesado por una pregunta mas abstracta, pero que
aparece naturalmente ligada a ciertos procedimientos técnicos en la construccién de flujos
hiperbdlicos. Es el problema de saber si todo flujo topolégicamente Anosov (i.e. flujo or-
bitalmente expansivo que satisface la propiedad de sombreado de Bowen) corresponde, a menos
de equivalencia orbital, a un flujo hiperbdlico diferenciable. En el caso particular de que el
flujo sea transitivo, es conocido desde hace tiempo que éste puede ser munido de una estructura
no-uniformemente hiperbdlica, definida en el complemento de una cantidad finita de Orbitas
periédicas. La mayor dificultad radica en encontrar modelos (globalmente) uniformemente
hiperbélicos asociados al flujo original.

En este contexto, nuestro aporte consiste en probar que todo flujo topolégicamente Anosov
y transitivo en una variedad de dimension tres es orbitalmente equivalente a un flujo de Anosov.
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ABSTRACT

The present thesis is about Dehn surgeries and smooth structures associated with transitive
Anosov flows in dimension three. Anosov flows constitute a very important class of dynamical
systems, because of its persistent chaotic behaviour, as well as for its rich interaction with
the topology of the ambient space. Even if a lot is known about the dynamical and ergodic
properties of these systems, there is not a clear understanding about how to classify its different
orbital equivalence classes. Until now, the biggest progress has been done in dimension three,
where there is a family of techniques intended for the construction of Anosov flows called
surgeries.

During the realization of this thesis, in a first time we have been interested in a particular
surgery method, known as the Goodman surgery. This method consists in make a Dehn surgery
on a chosen periodic orbit, but adapted to the flow, in such a way to obtain a new manifold
equipped with an Anosov flow. For making this surgery, one of the parameters that has to be
chosen is an embedded surface in the 3-manifold and a diffeomorphism defined on it. Thus, the
parameter space is, a priori, of infinite dimension and it is not easy to have control on the orbital
equivalence class of the obtained flow. There exists a second method, that can be interpreted as
an infinitesimal version of the previous one, known as the Fried surgery. It consists in making
a blow-up of the flow along the periodic orbit, obtaining in this way a flow in a manifold with
boundary, for then blowing-down the boundary component in a non-trivial way and produce a
new flow. This surgery produces flows defined in a unique way, but they are not equipped with
a natural uniformly hyperbolic structure. They are, by construction, topological Anosov flows.

Our contribution is to show that, if we assume that the flow is transitive, then a Goodman
surgery or a Fried surgery performed on a periodic orbit produce orbitally equivalent flows, for
the same choice of integer parameters.

In a second time, we have been interested for a more abstract question, but which is also
related to some technical issues in the construction of hyperbolic flows. It is the problem
of determining if every topologically Anosov flow (i.e. expansive and satisfying the Bowen
shadowing property) correspond to a smooth hyperbolic flow, up to orbital equivalence. In the
particular case that the flow is transitive, it has been known that there exists a non-uniformly
hyperbolic structure defined in the complement of a finite set of periodic orbits. The main
difficulty is the construction of (global) hyperbolic models associated to the original flow.

In this setting, our contribution is to show that every transitive topologically Anosov flow
on a closed manifold is orbital equivalent to a smooth Anosov flow.
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Thesis presentation.

Consider a closed, smooth, Riemannian manifold M and a non-singular vector field X
of class C”, where r > 1. The flow ¢, generated by the vector field X is said to be
an Anosov flow if its natural action on the tangent bundle of M preserves a hyperbolic
splitting

TM = E* @ span{X} & E,

where span{X} is the sub bundle of TM generated by X and dim(E?®),dim(E") # 0.
The splitting being hyperbolic means that the Riemannian length of the vectors in the
bundle F* is exponentially contracted by the forward action of D¢;, and the symmetric
conditions holds for the £* bundle in backward time.

The paradigmatic example of an Anosov flow is the geodesic flow of a closed Rieman-
nian manifold with negative sectional curvature. For hyperbolic surfaces with constant
negative curvature, the study of the geodesic flow has begun more than one hundred
years ago with the works of Birkhoff, Cartan, Hadamard, Hopf and Poincaré, among
others. The main novelty of this dynamical system (with respect to other well-known
examples as the 2-body Newtonian problem) that attracted the attention of some sci-
entists is its wild qualitative behaviour, which constitutes an intrinsic obstruction to
make accurate predictions of its evolution in time. This kind of dynamical behaviour
is known nowadays as chaotic.

Some notable characteristics of these geodesic flows are the sensitivity to initial con-
ditions, the existence of a dense set formed by periodic orbits, the existence of a dense
trajectory, and the existence of an ergodic invariant volume. The main cause behind
these properties is the existence of a hyperbolic splitting, and it is also related to a
stronger property satisfied by the flow, that is the persistence of the chaotic behaviour
under perturbations of the flow. Based on the definition of structurally stability intro-
duced by Andronov and Pontrjagin in the 30s, in 1961 Smale was able to prove this
persistence phenomena in a chaotic discrete time dynamical system nowadays known
as the horseshoe map, and in 1962 Anosov gave the proof of structural stability of the
geodesic flow in negative curvature.

Anosov flows are named after the foundational work [1] of D. V. Anosov. In that
work, the author explains from a unified point of view the general mechanisms by which
a hyperbolic splitting produces complexity in the orbit space, being at the same time
the main cause behind structural stability and, in many cases, good ergodic properties.

xiii



Xiv Chapter 0. Thesis presentation.

1 General Facts of Anosov flows.

Qualitative dynamical behaviour.

The works of Anosov and Smale in the 60s have led to the developing of a more general
theory called hyperbolic dynamics, that includes the Anosov flows (and its discrete time
analogues called Anosov diffeomorphism) as a particular case.

The hyperbolic dynamical systems are among the simplest examples of chaotic
dynamics. This class of systems has been widely studied and a lot is known about its
dynamical behaviour, both from the topological and measure theoretic point of view.
In particular, for the case of Anosov flows we remark the following:

(i) Expansivity: Anosov flows are orbitally expansive.

(ii) Axiom A: The non-wandering set of the flow is hyperbolic, and the periodic
trajectories are dense on this set. This condition, known as axiom A, implies a
lot of interesting consequences. For instance, the spectral decomposition theorem
of Smale applies, and the non-wandering set of the flow can be decomposed as a
finite union of compact invariant sets, each one constituting a homoclinic class.
On each of these sets the flow is transitive, and it has positive topological entropy.

(iii) O'-structural stability: The flow generated by a non-singular C'-vectorfield
on a closed manifold M is said to be Cl-structurally stable if all the vector fields
contained in a small C'-neighbourhood produce orbitally equivalent flows. As we
pointed out before, Anosov vector fields are C'-structurally stable.

(iv) Ergodic Properties: Despite the topological complexity of the orbit structure
of an Anosov flow, it is possible to put in practice statistical treatments of the
orbit behaviour due to the existence of accurate measures well related to the
dynamic. For instance, there always exists a measure of maximal entropy. If the
flow has at least C2-regularity, we can find others interesting measures as the
so-called SRB-measures, physical measures, Marqgulis measures, etc.

Other fundamental property of Anosov flows is given by the stable manifold theo-
rem. This theorem asserts that the bundles £® and E“ integrate into globally defined
foliations of the ambient space, respectively called the stable and the unstable foliations.
For for each point x in the phase space, the stable leaf through x is homeomorphic to
euclidean space and coincides with the set of points whose orbit approaches the orbit
of  under forward time iteration. An analogous statement is valid for the unstable
foliation, but with backward time iteration. As well, the bundles E® & span{X} and
span{ X } ® E" integrate into a pair of transverse foliations that intersect along the flow
lines. They will be called center-stable and center-unstable foliations, respectively.

These invariant foliations are strongly related with the dynamical behaviour of an
Anosov flow and, at the same time, with its interaction with the topology of the ambient
space.
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Classification up to orbital equivalence.

The C'-structural stability implies that the set of different equivalence classes of Anosov
flows in a given closed manifold is at most countable. Thus, it is reasonable to search
for a classification of these classes in terms of a finite number of invariants.

Even if we have a good description of the qualitative behaviour of the Anosov
flows, the problem of its classification up to orbital equivalence rest a major subject
nowadays. The main advance until now is done in dimension three, the smallest possible
dimension for an Anosov flow. One impediment to advance in the comprehension of
these flows up to orbital equivalence is the lack of examples. Apart from the geodesic
flow of a negatively curved manifold or the suspension flow generated by a hyperbolic
matrix acting on a torus, it is not easy to construct Anosov flows. Here is where the
study splits in dimension three and bigger. For dimension three there is a battery of
techniques called surgeries which allow to construct a wide variety of Anosov flows. In
higher dimensions, it is also possible to construct more complicated Anosov flows using
surgeries, but the setting is much more delicate. We invite the reader to compare [9]
and [30].

In all this text we will concentrate only in the 3-dimensional case. We will not make
an account of classification results, but we want to point out that some progress has
been done if we restrict to some special families of 3-manifolds, or if we look at Anosov
flows with some extra property. For instance:

e If a 3-manifold M admits an Anosov flow then the fundamental group 71 (M) has
exponential grow, see [48];

e There is a complete classification of Anosov flows on 3-manifolds with solvable
fundamental group, see [47] and [5];

e There is a complete classification of Anosov flows on circle bundles over hyper-
bolic surfaces, see [33], [5]. Recently, in [26] the authors have announced a more
accurate description of the isotopy classes of Anosov flows on these manifolds.

e There exist big advances for Anosov flows having additional properties. For in-
stance, see [7];

e The existence of an Anosov flow on a 3-manifold implies that the fundamental
group induces a faithful action on the circle by orientation preserving homeomor-
phisms. This imposes obstructions to the existence of such a flow, since not every
group can be endowed with an invariant left-order. We refer to [27] for more
precisions on these results.

As we remarked before, one fundamental tool for relating the topology of the phase
space and the dynamic of an Anosov flow is the existence of the invariant foliations. In
the 3-dimensional case, the center-stable and center-unstable foliations are codimension
one foliations belonging to a very important class, the class of taut foliations. This
enables to use other techniques in 3-manifold topology, as the Novikov theorem. For
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instance, we can see from this that the universal cover of the ambient space must be
homeomorphic to R3.

Examples of Anosov flows on 3-manifolds.

For a long time, the only two known families of Anosov flows were the geodesic flows of
hyperbolic manifolds and the suspension flows generated by Anosov diffeomorphisms.
These two kinds of flows can be constructed as a one-parameter group, acting in the
cosets of a Lie group modulo some cocompact subgroup. For these reason they are
referred to as algebraic Anosov flows. In [49], Tomter showed that the only alge-
braic Anosov flows in dimension three are suspensions of hyperbolic automorphisms of
the torus and geodesic flows of hyperbolic surfaces (or, more generally, hyperbolic 2-
orbifolds). Suspensions and geodesic flows are transitive, and the manifolds supporting
the flow are sol-manifolds and Seifert manifolds, respectively.

The first examples of non-algebraic Anosov flows were constructed by Handel and
Thurston ([37]) and Franks and Williams ([30]) using surgery methods. The first authors
constructed a transitive Anosov flow in a graph manifold, while the second gave the first
example of a non-transitive Anosov flow. Since then, surgeries have been reinterpreted
in many ways and they became an important tool for creating a diversity of examples.
In particular, surgeries allow to construct:

e Transitive Anosov flows possessing transverse tori which do not intersect all the
orbits ([14], [21], [6], [12]);

e Anosov flows in a wide class of manifolds, including hyperbolic manifolds ([35]);
e Manifolds having transitive and non-transitive Anosov flows ([12]);

e Manifolds having an arbitrary finite number of non-equivalent transitive Anosov
flows ([12]).

e Anosov flows preserving some additional structure, like contact structures ([28])

Recently, in [16] it has been announced the construction of hyperbolic 3-manifolds
having an arbitrary number of non-equivalent Anosov flows. It is an open question to
know if a manifold can admit infinitely many non-equivalent Anosov flows.

Transitive Anosov flows and Birkhoff sections.

Given a flow on a closed 3-manifold, a Birkhoff section is a compact surface, usually
with non-empty boundary, immersed in the phase space in such a way that: The interior
of the surface is embedded and transverse to the flow lines, the boundary components
are periodic orbits of the flow, and every orbit intersects the surface in a uniformly
bounded time. These sections come equipped with a first return map defined on the
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interior of the surface, so the flow is a suspension on the complement of a finite set of
periodic orbits. We refer to 5 for more precise statements and definitions.

In [31], Fried has proved that every transitive Anosov flow admits a Birkhoff section
whose first return map is pseudo-Anosov (in a non-closed surface). This extraordinary
fact, later generalized by Brunella to any transitive expansive flow in [17], opens the
possibility of reducing much of the analysis of transitive Anosov flows to the theory of
pseudo-Anosov maps.

2 Dehn surgeries adapted to Anosov flows.

We will be concerned with two surgery operations available for Anosov flows, called
the Goodman surgery and the Fried surgery. These two methods can be understood
as a counterpart of Dehn surgeries but adapted to the pairs (flow,3-manifold). Given
an Anosov flow (¢, M) and a periodic orbit v, Fried and Goodman surgeries allow to
construct a new flow in a manifold obtained by Dehn surgery on the curve v. We give
here a brief description of these two methods.

Let ¢ : M — M be an Anosov flow generated by a smooth vector field X and
consider a periodic orbit v whose local invariant manifolds are orientable.!

Goodman surgery.
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(a) Vertical annulus A C W. (b) Tubular neighbourhood Ny4.

Figure 2: The Goodman surgery.

Let W be a tubular neighbourhood of v. Since the local invariant manifolds of
~ are orientable, the neighbourhood splits naturally in four quadrants determined by

'In general applications it is enough to work in this setting.
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Wit () UWe (7).

Consider a compact annulus A smoothly embedded in the interior of a quadrant,
which is transverse to the vector field X and is vertical, in the sense that a closed curve
in A generating its fundamental group is homotopic to = inside W. The orbit v can be
enclosed with a compact tubular neighbourhood N4 with smooth boundary, such that
A C ON4 and such that the flow points outward the manifold N4 along the annulus.
This is depicted? in figure 2. Define M4 = M\int(Ny4).

The surgery of Goodman (Goodman, [35]) will consist in separate the manifold M
into the two pieces M4 and N4, and then re-glue them using an appropriate diffeomor-
phism

<,0:8NA%8MA=3NA

that produces an Anosov vector field X’ in the manifold M’ = My U, Na. The
diffeomorphism ¢ will have support contained in the annulus A and, topologically, it
will be a Dehn twist.

Fried Surgery.

Blow-up Blow-down /£
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Figure 3: A picture of the Fried surgery.

The blow-up of M along 7y is an operation that consists in replace the curve v C M
with its unitary normal bundle N3 (y) and compactify with an adequate topology,
producing in this way a manifold M* with boundary. The interior M*\OM* is homeo-
morphic to M\y and 9M* ~ N (v) is a torus with a circle bundle map OM* — +. The
flow ¢; can be lifted to a flow ¢j : M* — M™, which leaves the boundary invariant. It
is Morse-Smale on the boundary with two attracting and two repelling periodic orbits.

2We remark that in the figure the boundary of N4 has edges, but it can be smoothed along them.
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Choose a simple closed curve o C dM™* which is a transverse section for the flow
restricted to the boundary, and intersects once each periodic orbit. Choose a foliation
F, of OM™* by simple closed curves isotopic to . A blow down of M* is a 3-manifold M’
obtained from M™* by collapsing each curve of F, into a point. So M ™ is transformed
into a curve v/ = OM*/F,, while its complement is not altered in this operation.
By taking a suitable reparametrization of ¢} near dM™, this operation induces a flow
¢, : M' — M’ on the blow-down manifold.

The surgery of Fried (Fried, [31]) will consist in make a blow-up of the manifold M
along the curve v, and then blow-down the boundary using a foliation F, as described
before to produce a flow ¢ : M” — M". Topologically, this operation correspond to a
Dehn twist of the manifold M on the curve ~.

Equivalence between Goodman and Fried surgeries.

At the topological level, both Fried and Goodman surgeries are Dehn surgeries on
the manifold M, along the simple closed curve v. We remark that the local invariant
manifolds define a canonical framing along the curve v by meridians and longitudes,
so we can use this frame to express the coordinates of the Dehn surgeries. We remark
here some technical differences between the two procedures:

e The Goodman Surgery,

1. Starts with a C'-Anosov flow and produces a C'-Anosov flow;

2. The orbital equivalence class of the obtained flow depends a priori on the
particular choice of annulus and glueing map (p, A). By changing this pair
for another one, it is not clear how this alters the equivalence class of the
resulting flow.

e The Fried surgery,

1. Tt produces a flow which is topologically Anosov (cf. 1.2 or discussion below).
But, it is not clear that this flow can be endowed with C'-Anosov structure
in a natural way.

2. In the complement of the orbit v the operation does not alter the foliation
by flow orbits. Moreover, the orbitally equivalence class of the flow obtained
by Fried surgery is uniquely determined by the integer twist parameter.

We encounter that, from the one hand, Goodman surgeries produce C'-Anosov
flows, but it is not obvious that these are uniquely determined by the combinatorial
parameters of the surgery. From the other hand, a Fried surgery, that can be understood
as an infinitesimal version of the previous one, produce a new flow in a unique way,
actually without changing anything on the complement of «. That is, the original
flow and the one obtained by Fried surgery are equivalent in the complement of one
periodic orbit.? Thus, the Fried flow is naturally endowed with a smooth atlas in the

3This condition is called almost orbital equivalence, see 1.4
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complement of one orbit, and it preserves a uniformly hyperbolic splitting in this (open)
manifold. This structure is a kind of non-uniformly hyperbolic structure, but it is not
clear that it could be extended onto the whole manifold in an appropriate way.

The first main objective of this work is to give a unified point of view for these two
surgeries. This will be done in chapter 3, where we will prove the following theorem:

Theorem B (Theorem 3.1.). If we assume that (¢+, M) is in addition transitive, then
there exists a neighbourhood W of the periodic orbit v such that all the flows (¢f, M)
obtained by Goodman surgery on an annulus A C W with twist parameter m € 7
produce orbitally equivalent flows. Moreover, all of them are orbital equivalent to the
corresponding flow (¢?, My) obtained by Fried surgery on ~ and the same twist param-
eter.

As a consequence, the Fried surgery provides a unified model for the orbital equiv-
alence class of the flows obtained by the Goodman technique. As well, observe that
this shows that the Fried surgeries preserve the class of smooth Anosov flows up to C°-
orbital equivalence. (Nevertheless, we will also achieve this results by other methods.
See below.)

It is interesting to remark that we assume transitivity as an essential condition in
our proof. It is not known if the statement is valid in the non-transitive case.

3 Smooth models for transitive topological Anosov flows.

One major technique for the qualitative study of the orbits of a general dynamical
system is the symbolic description. Roughly speaking, the method consists in choose a
finite partition of the phase space into some well-behaved sets, and associate to every
point (in the phase space) the sequence of elements of the partition that its orbit visit
under time evolution.

This method is particularly useful when the system that we want to study presents
some chaotic related behaviour, such as expansivity. It has been a useful approach
for describing chaotic phenomena present in some Hamiltonian flows or in the N-
body problem. The point of view of symbolic dynamics allows to develop a deep
understanding of the topological and measure theoretic properties of the action of
the dynamical system on the phase space, and allows to explain and predict some
phenomenons that are not at all direct to deduce from the equations defining the
system.

If we recall that differential equations were born as an attempt to describe (some
part of) the physical universe, there is a theoretical problem issued from the abstract
construction that we described above. The problem is to determine if an abstract
dynamical behaviour, constructed from a symbolic description, actually corresponds
to the behaviour of a smooth dynamical system on a manifold, preferably of physical
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origin. (E.g. a system preserving a smooth measure, or defined via Euler-Lagrange
equations, etc.)

Expansive dynamics in low dimensions. In the particular case of expansive home-
omorphisms on closed surfaces and expansive non-singular flows on closed 3-manifolds,
after many works on the subject (starting with Sinai in the 60s and going through
Ratner, Thurston, Handel, Fathi et al., Katok, Lewowicz, Hiraide, Paternain, Inaba,
Matsumoto, among others) we have nowadays an accurate description of the symbolic
aspects of this class of systems. They can be given a very special symbolic codification,
that is called a Markovian partition.

The way how Markovian partitions arise in Anosov or expansive dynamics in low di-
mensions is very interesting. In the case of smooth Anosov dynamical systems (discrete
or continuous), they can be constructed using a finite number of stable and unstable
leaves. In the case of general expansive homeomorphisms on surfaces or expansive flows
on 3-manifolds, a big part of the work referred above consists in show that, under the
only assumption of expansivity, the partitions of the phase space by stable/unstable
sets are, in fact, a pair of transverse invariant foliations, possibly with singularities,
but of a very precise kind. In concrete, every expansive homeomorphism on a surface
or expansive flow on a 3-manifold is equivalent to a pseudo-Anosov homeomorphism or
pseudo-Anosov flow, respectively. In an analogous way to that of Anosov dynamics,
expansive systems can be codified via accurate Markovian partitions, constructed from
the stable and unstable foliations. We will give a more detailed account of these results
later in 1.1.

Topologically Anosov flows on 3-manifolds. A distinction between general pseudo-
Anosov and smooth Anosov flows on dimension three must be done. The local product
structure of the invariant foliations of a smooth Anosov flow allows to show the pseudo-
orbits tracing property of Bowen. But, in the more general class of pseudo-Anosov
flows, this is no longer true, due to the singularities of the invariant foliations. These
constitute an obstruction. An analogue remark is valid in the case of pseudo-Anosov
homeomorphisms on closed surfaces.

This leads to consider an intermediate class of dynamical systems, called topologi-
cally Anosov. In dimension three, a non-singular flow is said to be topologically Anosov
if it is expansive, and the invariant foliations have no singularities. It can be seen that
this class of systems satisfy the pseudo-orbits tracing property and their general dy-
namical behaviour is very similar to that encountered in a smooth Anosov flow, at least
from the point of view of topological dynamics.

Translating the previous theoretical problem into this setting, the main concern of
this thesis work is with the problem of determining if a topological Anosov flow on a
closed 3-dimensional manifold is, in fact, realized as a smooth Anosov flow.

In this context, we are able to give a partial answer, constructed under the assump-
tion of transitivity. The main theorem in this thesis consists in show the following:
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Theorem C. Let (¢, M) be a transitive topological Anosov flow on a closed 3-manifold.
Then, there exists a smooth Anosov flow (v, M) that is C°-orbitally equivalent to the
previous one.

In more topological terms, this means that given a transitive topological Anosov
flow on a closed 3-manifold, it is possible to endow the manifold with a smooth atlas,
such that the foliation by flow orbits is tangent to a smooth Anosov vector field.*

Unfortunately, a proof for the non-transitive case is still missing, and the techniques
presented here do not extend to the more general setting of non-transitive topological
Anosov flows. See comments below.

Connection with the construction of Anosov flows. We want to underline an-
other reason that have lead to consider the problem of the topologically Anosov flows,
apart from the theoretical problem that we have already discussed.

We have already pointed out the Fried surgery, a central tool in the study of smooth
Anosov flows that naturally goes through the construction of a topological Anosov one.
Some other techniques on Anosov flows rely on construction of an abstract topological
toy model, starting from a given Markov codification. To cite an example, we can refer
the reader to the works of Béguin, Bonatti, Yu, et al., where much of the job consists
in construct Anosov basic pieces starting from a given combinatorial description. The
reader could appreciate that, in general, there are at least two steps to complete: First,
to construct the topological model toys that look like hyperbolic flows, and second, to
actually prove that these models are hyperbolic.? In recent years, a lot of new devel-
opments in 3-dimensional Anosov flows and non-uniformly hyperbolic diffeomorphisms
have been done supported on this kind of techniques, that goes through the construc-
tion of topological Anosov models. We invite the reader to consult [10], [15] pag. 478,
and [8].

Thus, the necessity of clarifying this distinction between topological Anosov and
smooth Anosov is, as well, a question of technical order.

4 Approach to the problems and further questions

The objective of the present thesis is to prove theorems B and C stated above. The
main technique behind our analysis is the reduction of the problems to pseudo-Anosov
dynamics on surfaces, which is possible under the assumption of transitivity due to

4Remark that this condition is stronger than just having a smooth atlas for which the flow is smooth.
It is possible to have a smooth flow, topologically Anosov, which is not Anosov since the action of its
derivative does not preserve a hyperbolic splitting.

°It is important to remark that, from many points of view (for example that of the smooth ergodic
theory or C'-generic dynamics) the definition of smooth hyperbolic dynamical system is stronger than
the one corresponding to topologically Anosov. To actually guarantee that a system is hyperbolic, the
existence of a corresponding dominated splitting must be shown. This is done, in general, using a fized
point method called the cone field criterion.
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the previously referred theorem of Fried and Brunella ([31] and [17]). The key point
to approach theorems B and C is a technical property that we have stated under the
form of theorem A (theorem 2.16) in chapter 2.

We give here some explanations and sketch of proof of these theorems.

Theorem A: Criterion for orbital equivalence.

There is a well-known property in surface dynamics, which states that two isotopic
pseudo-Anosov homeomorphisms on a closed surface are conjugated by a homeomor-
phism isotopic to the identity. In turn, this property means that the conjugacy class of
a pseudo-Anosov in a closed surface is determined by the action of the homeomorphism
on the fundamental group of the space. Cf. 7 on this thesis for a more precise statement
and comments. We also refer to [25] or [23] for proofs and more accurate information.

In chapter 2 we will show that, given a transitive topological Anosov flow, then
its CY-orbital equivalence class is determined by the action of the induced first return
map onto a given tame Birkhoff section, plus some combinatorial information about
how this surface embeds in the phase space. This will be the content of theorem A
(theorem 2.16), we refer to that chapter for a precise statement. This theorem can be
interpreted as an analogue to the former property, but in the context of flows. Both
statements have the shape of an expectable property, being the techniques to actually
prove them the major step.

First, observe that given two non-singular flows equipped with Birkhoff sections,
if the first return maps are conjugated then the flows are orbitally equivalent in the
complement of some finite sets of periodic orbit. For understanding if the two flows are
(globally) orbitally equivalent, there is an essential difficulty coming from the fact that
the conjugation is defined only on the interior of the Birkhoff sections, and in general
it does not extend to the boundary. For instance,

e [t is no longer true that the action on the fundamental group determines the
conjugacy class of a pseudo-Anosov homeomorphism in a surface with boundary
(cf. 7).

In addition, if we look at the germ of the flow near a boundary component of a Birkhoff
section, the way in which this surface embeds in the 3-manifold has an effect on the
topology of the ambient manifold.

To overcome this issue, we have based our proof of theorem A on techniques coming
from [13]. Motivated by the study of axiom A diffeomorphisms on closed 3-manifolds,
those authors provide a precise analysis of the germ of a hyperbolic flow in the neigh-
bourhood of a boundary component of an embedded Birkhoff section. In particular,
if the Birkhoff section satisfies a property that they call tameness, they can describe
the germ of the first return map onto a local transverse section in function of the one
corresponding to the Birkhoff section.
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Remark 0.1. One motivation for writing theorem A is to complement a previous result
of Brunella. In [17] and [18] the author gives a criterion for orbital equivalence between
transitive topologically Anosov flows which is more general than theorem A, that was
later applied in other works as [19]. One aim of theorem A is to complement lemma 7
on page 468 of [18].

As a final comment about theorem A, we find at least curious the fact that theorem 2.16 requires
so much detail in the proof, even assuming our general strong hypothesis of Anosov-like behaviour.
Even if it is not of our interest to study this property out of the Anosov context, we point out that
it seems a technical issue to give general criterions for determining when a general almost equivalence

between two flows actually implies a global equivalence.

Theorem B: Fried and Goodman surgeries are equivalent.

The criterion stated in theorem A gives an appropriate frame to study theorem B. The
proof comnsists in find appropriate Birkhoff sections associated to each the Goodman
and the Fried flow, with conjugated first return maps and compatible combinatorial
data on the boundary.

Given a transitive Anosov flow (¢, M) and a periodic orbit « with orientable in-
variant manifolds, it is always possible to consider a Birkhoff section ¥ such that ~
intersects transversally the interior of this surface (cf. [17]). We will proceed in the
following steps:

(i) The Fried surgery transforms ¥ into a Birkhoff section for the new flow, with some
extra boundary components due to the intersection v N 3. The homology coordi-
nates of this new section in a neighbourhood of the periodic orbit are determined
by the integer parameter of the surgery as Dehn twist. (See 8)

(ii) The Goodman surgery does not produce a Birkhoff section after surgery but,
at least, it does not modify the original section out of a neighbourhood of the
periodic orbit. In proposition 3.14 we will show that this part of the original
section that is not altered can be extended onto a global Birkhoff section for the
new flow, which has the periodic orbit as boundary component. In addition, it
has the same combinatorial parameters than the one corresponding to the Fried
flow. This is the hardest part of the proof, and is given in section 4.

(iii) To finish, we will see that the first return maps to each of the Birkhoff sections act
in an equivalent way on the fundamental group of the surface. We can deduce (see
7) that the first return maps are conjugated on the interior, and we can conclude
theorem B using theorem A.

We remark that, even if two Goodman annulus are very closed to each other, cutting
and connecting again the orbits of a flow along different regions is a process that, a
priori, will not produce the same flows. For instance, consider the case of two Goodman
surgeries, with the same twist parameter, but with supporting annuli placed on different
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quadrants. Since there is no isotopy between these annuli preserving the transversality
with the stable/unstable foliations, it is not at all direct that these two surgeries should
lead to the same flow. In 3 we will see that the orbital equivalence guaranteed in theorem
B rarely coincides with the identity out of a neighbourhood of the periodic orbit.

Theorem C: Smooth structures for transitive topologically Anosov flows.

One strategy for the problem of finding a smooth representative of a given topological
dynamic is as follows: First, to construct a smooth model expected to be equivalent to
the original dynamical system, and second, to prove that the smooth model is actually
equivalent to the original one.

We can put this in practice in the case of transitive topological Anosov flows due
to the existence of Birkhoff sections. The existence of these surfaces imply that, in the
complement of a finite set of periodic orbits, the flow is orbitally equivalent to the sus-
pension generated by a pseudo-Anosov map on a non-closed surface. In consequence,
every transitive topological Anosov flow comes naturally equipped with a smooth struc-
ture defined in the complement of a finite number of periodic orbits. These structures
will be called almost Anosov structures, see 2.

For constructing the smooth Anosov models in the present work, we will use Good-
man approach to Dehn surgeries, and then we will conclude using theorem A. More
precisely:

(i) Pick one of these almost Anosov structures defined in just an open and dense
region of the space. We will obtain a smooth model by making a surgery of
the flow supported in a neighbourhood of the singular regions. Then, using the
so-called cone field criterion, we will show that this flow preserves a uniformly
hyperbolic splitting.

(ii) We will show that both the original flow and the smooth model are equipped with
Birkhoff sections satisfying the criterion for orbital equivalence stated in theorem
A. This completes the proof.

Remark. There are other contexts in expansive dynamics where we encounter similar
strategies as the one used in theorem C. See for example [32], [43], [42] and [38]. It is im-
portant to make a comment on the first of these articles written by Gerber and Katok.
In that work, the existence of smooth models for pseudo-Anosov homeomorphisms is
showed. Observe that as a direct consequence of its definition, a pseudo-Anosov home-
omorphism is smooth in the complement of its singular set. The construction of the
smooth model is done by perturbing the given pseudo-Anosov map in a neighbourhood
of its singularities. But to show the equivalence with the original map is not at all
direct. (Remark that the pseudo-Anosov homeomorphisms are not structurally sta-
ble.) Moreover, it is possible to show that no conjugation between the pseudo-Anosov
map and the obtained model is differentiable in an open region of the surface. This
phenomenon can be interpreted in the following way:
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Given a pseudo-Anosov homeomorphism on a closed smooth surface, it is
possible to change the smooth atlas of the surface for a new one, such that
the map is a smooth diffeomorphism. However, the new smooth atlas is
nowhere compatible with the original one.

The proof of the equivalence between the two homeomorphisms goes along the construc-
tion of an adequate Markov partition for the smooth model, that allows to compare
with the original map.

Further questions.

The methods presented here for proving theorems B and C cannot be extended to
the non-transitive case. Probably, these methods could be used to prove the same
statements about Dehn surgeries and smooth structures as above in some special fam-
ilies of hyperbolic transitive attractors derived from pseudo-Anosov. But there exists
some transitive hyperbolic attractors constructed in [12] and [22], called incoherent
attractors, where the dynamic cannot be reduced to a first return on a surface.

Question. Are theorems B and C still valid without the hypothesis of transitivity?

More generally, observe that Fried and Goodman surgeries can be performed in a
big class of smooth flows on closed 3-manifolds having periodic orbits. This could be the
case of smooth flows with homoclinic tangencies, Lorenz-like flows (with singularities)
or more general non-uniformly hyperbolic flows.

Question. Are there analogues of theorems B and C for these more general classes of
flows?

5 Description of the content.

The thesis is divided in fourth chapters.

Chapter 1 is dedicated to present the general definitions and properties that will
be used along the thesis, as those of Birkhoff section, pseudo-Anosov homeomorphism
or Anosov flow. In particular, for completeness of the subsequent theorems, we have
added in this chapter some properties and proofs that will be correspondingly referred.
It is intended for a fast reading.

Chapter 2 contains the proof of theorem A. The chapter is dived in two sections:
First, we summarize all the material needed from [13] to carry out the proof. In the
following section we give the complete statement and proof of the theorem.

Chapter 3 is dedicated to the proof of theorem B. In the first two sections we
summarize the constructions of Fried and Goodman. The proof of theorem B is given
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in the last two sections. The hardest part concerns the construction of a Birkhoff
section for the Goodman flow, and is completely contained in the fourth section.

Chapter 4 is dedicated to the proof of theorem C and is divided in three sections.
In the first, we have added a small survey of results concerning topological Anosov
dynamics. Our results are stated in 1.2, and the proof of theorem C is given in the
third section. In the middle section we have added a description of the germ of an
almost Anosov structure near the singular orbits, that will be used along the proof.

Chapters 3 and 4 are independent between them. For a complete proof of theorem
B or C it suffices to consult chapter 2 and then chapter 3 of 4, respectively.
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Chapter 1

Preliminaries

1 Flows on 3-manifolds and equivalence.

In all what follows we will be concerned with non-singular, continuous, regular flows on
connected 3-manifolds. We introduce here the basic notions and definitions that will
be used throughout the text.

The phase space will always be assumed to be a connected 3-dimensional manifold
M. The main theorems that we will state in next chapters involve flows defined on
closed 3-manifolds, i.e. boundaryless and compact. Nevertheless, along the proofs we
will be forced to consider flows (and related objects) defined in non-closed regions of
our manifolds.

With respect to regularity, we can always assume that the manifold M is equipped
with a smooth structure, as it is a general fact of dimension three. But the flows (and
related objects) that we will take into account are not necessarily smooth.!

Let (¢, M) be a non-singular continuous flow on a 3-manifold M. The flow is said
to be regular if the associated partition into orbits is a one dimensional foliation of
M. In this case, each orbit is an immersed 1-dimensional topological submanifold. In
general, we will say that an object is regular if it is a topological submanifold of the
ambient space.

The action at time ¢ € R of the flow over a point x € M will be indistinctly denoted
by ¢¢(x) or ¢(t,x). Given two points x,y € M such that y = ¢;(x) for some t > 0, we
will denote by [x,y] the orbit segment

[2,y] = {¢s(2) : 0 < s <t}

!Moreover, in chapter 4, they will appear some (natural) smooth structures associated with transitive
topological Anosov flows, which are defined in an open and dense region of the phase space, but not in
the whole.
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Since we consider non-singular flows (i.e. orbits not reduced to singletons) observe that
this segments are never reduced to points. The orbit of z under the flow ¢; will be
denoted by O(z), and we will use O (z) and O~ () to denote the positive and negative
semi-orbits respectively. (Observe that the orbits of a flow are naturally oriented by
the direction of the flow.) Given a non empty open set U C M and a point =z € U
we will denote by Oy (x) the connected component of O(z) N U that contains z. The
partition of the phase space by ¢;-orbits induces a 1-dimensional oriented foliation that
we simply denote by O, and we use Oy for the induced foliation on any non-empty
open subset U C M.

We recall from the basic theory of differential equations that if X is a non-singular
vector field of class C* in M, where k > 1, then the flow ¢; associated to the system
of ordinary differential equations

d
—z=X(z
o (z)
is a non-singular flow of class C*¥. In this case, the foliation by flow orbits is of class
C* and its leaves are immersed 1-dimensional manifolds tangent to the vectorfield X.

The principal notion of equivalence between flows that we will consider throughout
the text is orbital equivalence?, which requires for orientation preserving equivalence
between the induced orbit foliations.

For i = 1,2 let ¢i : M; — M; be a regular flow of class C* on a manifold M;, where
k > 0.

Definition 1.1 (Orbital equivalence). The flows (¢f, M;) and (¢?, M3) are C'-
orbitally equivalent, where r > 0, if there exists a C"-diffeomorphism H : M; — M
such that, for every o € My, it sends the orbit O'(x) homeomorphically onto the orbit
O?(H(x)), preserving the orientation of these orbits. We denote it by

H : (¢}, My) — (¢7, Ma).

For technical reasons, we will be also interested in a weaker notion that we explain
here: Consider a non-empty open subset U C M. The foliation by ¢;-orbits on M
induces a foliation on U but, in general, the action R x M — M provided by ¢; does
not restrict onto an R-action on the set U. Instead, what we obtain is a pseudo-flow
on U. That is, a map (t,x) — ¢(x) defined for some couples (¢,z) € R x U. This
pseudo-flow generates a partition of U into orbits, which coincides with the foliation
Oy previously defined. This restriction pseudo-flow will be simply denoted by (¢, U).

For each ¢ = 1,2 consider a non-empty open subset U; C M;.

Definition 1.2 (Local orbital equivalence). The pseudo-flows (¢}, U1) and (47, Us)
are C"-locally orbitally equivalent, where r > 0, if there exists a C"-diffeomorphism
H : Uy — Us such that, for every x € Uy, it sends the orbit C)lUl (z) homeomorphically

2In other literature it is called topological equivalence between flows.
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onto the orbit OF, (H(z)), preserving the orientation of these orbits. We denote it by

H: (¢}, U1) = (67, V).

If ~ is a periodic orbit of (¢, M) and W, W’ are two neighbourhoods of 7, the
pseudo-flows obtained by restriction onto these sets are the same, in the sense that
they coincide over their common domain of definition W N W’. The germ of ¢; at v is
the equivalence class of the pseudo-flows {(¢¢, W) : W neighbourhood of v} under this
relation, and we denote it by (¢, M) or (¢, W),.2

For i = 1,2, consider a periodic orbit v; of (¢, M;).

Definition 1.3 (Local orbital equivalence of germs). The germs (¢}, Mi),, and
(67, Ma),, are C"-locally orbitally equivalent, where r > 0, if there exists a C"-local
orbital equivalence H : (¢, W1) — (¢?, Ws) defined between some neighbourhoods W;
of ;. We denote it by

H: (‘b%? WI)M - (¢?v WQ)%'

There is another equivalence relation, called almost orbital equivalence, that appears
naturally associated with some surgery procedures, and will appear in this text.

Definition 1.4 (Almost orbital equivalence). The flows (¢}, M1) and (¢?, Ms) are
C"-almost orbitally equivalent, where r > 1, if for each flow ¢! there exists a finite set of
periodic orbits T;, such that the restricted flows (¢}, M\I';) are C"-orbitally equivalent.

Remark. When we use the word orbital equivalence without making any reference
to the regularity degree » > 0, it must be understood that r = 0, unless specified.
This is, we just care about homeomorphisms preserving the oriented foliations by orbit
segments, no matter the degree of regularity of the flows.

We finish with two other related notion that will appear throughout the text.

Conjugation of flows.

Definition 1.5. For i = 1,2 let ¢! : M; — M; be a regular flow of class C* on a
manifold M;, where k& > 0.

1. The flows (g%, M;) are C"-conjugated, where r > 0, if there exists a C" diffeo-
morphism H : M; — M such that ¢?(H(z)) = H(¢;(x)), for every x € My and
teR.

2. Let U; € M; be a non-empty open set, for each ¢« = 1,2. The the restricted
pseudo-flows (¢y, U;) are C"-locally conjugated if there exists a C"-diffeomorphism

8By abuse of terminology, we will use the word germ for referring to a given pseudo-flow (¢¢, W),
instead of its equivalence class. Through applications, it will be understood that the neighbourhood
W can be freely replaced by a smaller one if needed.
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H : Uy — Uy, such that ¢?(H(x)) = H(¢}(x)), for every z € U; and t € R
satisfying that (s,z) — ¢s(x) is well-defined for every 0 < s < ¢.

3. Let v; be a periodic orbit of ¢i, for each i = 1,2. The germs (¢}, M;), are
C"-locally conjugated if there exists neighbourhoods W; of each ~; such that the
restricted pseudo-flows (g%, W;) are C-locally conjugated.

We remark here that, in the case where the flows (¢, M;) are generated by a vector
field X; of class C' and the conjugation is at least C'', then conjugation between
(pseudo)-flows is equivalent to the condition

Xo(2) = Hy(X1)(2) = DH(H(2)) - X1 (H™'(2)), for all z € U.

Conjugation of homeomorphisms.

Definition 1.6. For i = 1,2 let P, : ¥; — X; be a C’k—diffeomorphism on a manifold
>, where k£ > 0.

1. The diffeomorphisms (P;, %;) are C"-conjugated, where r > 0, if there exists a
C"-diffeomorphism h : 31 — Yo such that ho P, = P, o h. We will denote it by

h: (Zl,Pl) — (E2,P2).
2. For each i = 1,2 let x; € ¥; be a fixed point of P;,. The germs (P;, %;),, are
C"-locally conjugated if there exists open neighbourhoods U; C V; of each x;,

and a C"-diffeomorphism h : V3 — Vs such that P;(U;) C V;, i = 1,2 and
ho Pi(u) = Py o h(z), for every x € U;. We denote it by

h: (Pl"/l)xl — (P2aV2)gcg-

As before, we remark that we will consider in general C%-conjugation, unless spec-
ified.

2 Transverse sections and first return maps.

Let ¢ : M — M be a non-singular regular flow on a 3-manifold M.

Definition 1.7 (Transverse section). A transverse section for the flow ¢, is a bound-
aryless, regular,* embedded surface ¥ C M, satisfying that:

(i) The surface X is topologically transverse to the flow lines. That is, V z € 3 there
exists a neighbourhood W of x inside M and some § > 0 such that:

4Regular: V p € ¥ there exists a neighbourhood W of p in M and a homeomorphism ¢ : W — R?
such that R(W N X) = R? x 0.
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e XN W is connected and W\ has two connected components;

o XN[p_s(x),ps(x)] = {z} and it is verified that int ([¢_s(x),x]) is contained
in one component of W\X and int ([x, ¢5(z)]) is contained in the other.

(ii) The surface is proper with respect to the flow lines. That is, every compact orbit
segment [¢y, (x), ¢r, (x)] intersects ¥ in a compact set, where t1,t2 € Rand x € M.

In the case that the orbits of the flow are tangent to a continuous vector field, we
say that ¥ is a C"-transverse section, r > 1, if, in addition, it is a submanifold of class
C" and T, M = T,X & T,O(z) for every x € M. In general we will just talk about
transverse sections without reference to the regularity, unless it is necessary.

Observe that conditions (i) and (i7) in the definition actually imply that every
compact orbit segment cuts the transverse section in a finite set.

2.1 First return map.

Let ¥ C M be a transverse section for a flow ¢; and assume that there exists a non
empty open subset U C X where there is a well defined first return map P : U — X.
That is, for every x € U there exists 7(z) = min{t > 0: ¢(z) € £} and

e The function 7: U — (0,+400) is continuous,

e The first return map is given by P(z) = ¢, (7).

Observe that, if  is a point in ¥ satisfying that there exists some ¢ > 0 such that
¢¢(x) € ¥, then from the continuity of the flow it follows that there exists a first return
map defined in a neighbourhood of z. Recall that a first return map as above is always
a homeomorphism from its domain onto its image. Moreover, as it follows from the
implicit function theorem, it is a C'-diffeomorphism, where [ is the minimum between
the regularities of ¢, and X.

Definition 1.8. The first return saturation of U is the set

U={xe M:3t<0such that ¢;(x) € U and int ([¢(z),z]) N X = 0}.

This set is the union of all the compact orbits segments joining each point in U
with its first return to X, as we see in figure 1.1. For every = € U there exists u € U
and v = P(u) € ¥ such that x € [u,v], so we define o(x) = [u,v]. The following lemma
will be used several times in what follows.

Lemma 1.9. Consider two continuous flows qb% cM; — M;,i=1,2. Let ¥; C M; be a
transverse section for each flow and assume there exists a first return map P; : U; — %
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§ (u, 7(u))

@0

U U

Figure 1.1: U is the union of all the compact orbit segments o joining points u € U
with its first return v € 3.

defined in an open set U; C 3;. If there exists a homeomorphism h : 31 — Yo such that
h(U1) = Uy and ho Pi(x) = Pyo h(zx), ¥V x € Uy, then there exists a homeomorphism
H : Uy — Uy such that:

1. For every point x € Uy the map H takes the orbit segment Oy, (z) onto Oy, (H(x)),

2. The restriction map H|y, coincides with h|y, .
Proof. For each i = 1,2 take the maps ¢; : Ui — U; defined by @;(u,s) = ¢ (u),
where U; = {(u,s) € U; x [0,+00) : 0 < s < 7%(u)}. Take a continuous function
6 : Uy x [0,400) — [0,+00) such that, for any u € U; the restriction 6(u,-) : R — R is
an orientation preserving homeomorphisms satisfying

o 9(u,0) =0,

o O(u, 7! (u)) = 7°(h(u)).

Any such a function provides a continuous family of orientation preserving homeo-
morphisms [0, 71 (u)] — [0, 72(h(u))] parametrized over u € U. Define H : Uy — Us by
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H(u, s) = (h(u),0(u, s)). This map H is a homeomorphisms between ¢; and U, and for
every u € Uj it takes the segment {u} x [0,7!(u)] homeomorphically onto the segment
{h(u)} x [0,72(h(u))] preserving orientation.

The maps ¢; and H allow to construct a map H : Uy — Uy satisfying that the
following diagram commutes

A~ H A
Uy —— U

o e

Z/{1L>Z/{2

in the following way: For any x € U take (u, s) € U; such that ¢;(u,s) = z and define
H(z) = @a(H(u, s)) = ¢2(h(u), 0(u, s)). Then, over the set ;\X; this map is well de-
fined and it is a homeomorphism between U\ X1 and Us\ X2, which clearly preserves the
orbit segments. For the points in X1, we have just to take care of those points v € Uy
for which there exists v € U; such that P (v) = u, being those points the only ones with
more than one preimage by 1. For a point u satisfying this, observe that it has ex-
actly two preimages by o1 which are (u,0) and (v, 7 (v)). Observe that H(u,0) =
(h(w),0(1,0)) = (h(u),0) and H(v,7'(v)) = (h(v),0(v,7'(v))) = (A(v),72(h(v)).
Since @a(h(v), 72({1(0))) = ¢2(P2(h(v)),0) = P2(h(v)) and P2 o h(v) = ho P(v) = h(u)
we have that ¢o(H (u,0)) = p2(H (v, 7}(v))) and so H(u) is well defined and equal to
h(u). This also shows that H is a homeomorphisms between our two sets U; and Us
which, by construction, take the orbit segment o!(z) into the segment o?(H(x)) and
coincides with h over Uj.

In addition observe that the facts that H coincides with h over Uy and P,oh = ho P}
implies that, for any point = € U, the map H take the orbit segment Oy, (x) onto
Ou, (H(x)), since each of these orbit segments are a concatenation of segments of the
form o®(uy) = [uk, uky1] where upy 1 = Pi(uy) and k =1,...,n. O

2.2 Local and global transverse sections.

Definition 1.10 (Local and global transverse sections.). Let ¢ : M — M be a
continuous non-singular flow on a 3-manifold,

1. A global transverse section 3 for the flow ¢, is a transverse section that is properly
embedded in M and for which there exists T > 0 such that [z, ¢ (z)|NE # 0, for
every x € M. In this case, the first return map is a homeomorphism Py, : ¥ — >.

2. Given a periodic orbit v of the flow, a local transverse section at 7y is a transverse
section D, homeomorphic to a disk, such that {zo} =N D contains exactly one
point. Given a local transverse section D there always exists a neighbourhood
U C D of zg and a first return map Pp : U — D that fixes xy.

A basic fact that follows from lemma 1.9 above is stated in the next proposition.

Proposition 1.11. Let ¢} : M; — M;, i = 1,2, be two non-singular continuous flows.
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1. Assume there exists a global transverse section Y; for each flow ¢% and let P; :
i — X; be the first return map. If there exists a homeomorphism h : X1 — X9
such that ho Py = Py o h, then there exists a homeomorphism H : My — Ms such
that:

(a) H is an orbital equivalence between the flows,
(b) Hl|s = h.

2. Let ; be a periodic orbit of each flow ¢i, D; a local transverse section and Pp, :
U; — D; a first return map defined in a neighbourhood U; C D; of the intersection
point x; = ~; N D;. If there is a homeomorphism h : Dy — Dy such that h(Uy) C
Us and hoPp, (z) = Pp,oh(x), ¥ x € Uy, then there exists a tubular neighbourhood
W; of each v; and a homeomorphism H : W1 — Wy such that:

(a) H is a local orbital equivalence between the respective germs at each 7,

(b) H|D10W1 = h’DlﬂWr

3 Flow isotopies.

Let ¢+ : M — M be a continuous flow on a 3-manifold M.

Definition 1.12 (Flow isotopy). A flow isotopy or ¢4-isotopy between two non-empty
open sets U,V C M is a homeomorphism v : U — V of the form

Y x— ¢(r(x),x), for every z € U,

where 7 : U — R is a continuous and bounded function, such that ¢ sends each oriented
obit segment Oy (x) onto Oy (1(x)) preserving orientation. In addition we define:

1. A ¢r-isotopy between two arbitrary non-empty sets A, B C M is a homeomor-
phism ¢ : A — B obtained as the restriction of a ¢s-isotopy ¥ : U — V| where U
and V are open sets containing X ans Y, respectively.

2. Two transverse sections Y;, ¢ = 1,2 are said to be ¢s-isotopic if there exists a
¢-isotopy Y : X1 — M.

We remark that some conditions must be satisfied on 7 to actually define a flow
isotopy. The set of these maps has a natural pseudo-group structure, and they have a
regularity degree that can be expressed in terms of that of ¢; and 7.

A first return map P : U — X, defined on a non-empty open set U inside a transverse
section X is, by itself, a flow isotopy. We state the following basic property:

Lemma 1.13. Consider two ¢.-isotopic transverse sections ¥;, i = 1,2, and let 9 :
Y1 — X9 be a flow isotopy between them. Let Py : Uy — X1 be a first return map,
defined on some non-empty open set Uy C X1, and let Uy = (Uy). Then, there is a
well-defined first return map Ps : Us — ¥o and it is satisfied that Pao(x) = o Pi(x),
VxelU.
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4 Surgeries along transverse surfaces.

Let ¢; : M — M be a non-singular regular flow of class C*, k > 0, on a 3-manifold.

Roughly speaking, a surgery along a transverse surface on the flow (¢, M) is an
operation that produces a new flow on a new manifold, and consists in cut M along a
given transverse surface and re-glue the pieces with a non-trivial homeomorphism.

Let ¥ be a regular compact surface C*-embedded in M, possibly with boundary,
and satisfying that ¥ = ¥\0X is transverse to the flow lines. We require topologically
transversality if k = 0, see definition 1.7. Observe that this condition implies that every
small flow-box neighbourhood of ¥ is partitioned into two component by .

Set 3 = 3y and consider another transverse surface ¥ disjoint from >, that is
¢-isotopic to Xg. We will assume that there exists a ¢;-isotopy ¥ : X9 — 31 of the
form ¥(p) = ¢-()(p), where 7 : ¥g — (0,+00) is a bounded C*-function, and such
that V p € Yo the orbit segment between p and ¢, (p) intersects Xp U Xq just in its
extremities {p,1(p)}. Consider the compact set

K= |J{ap):0<t <7(p)}.

pEXo

Then K C M is a regular submanifold (with corners on the boundary when k£ > 1) and
homeomorphic to ¥ x [0,1]. Its boundary contains the two disjoint surfaces ¥y and
Y;. The complement of ¥y U X in K is a surface S homeomorphic to 9%y x [0, 1].
The flow is tangent to 0K along S, is transverse to 0K along ¥y and points inward the
interior of K, and is transverse to 0K along ¥; and points outward. See figure 1.2.

Figure 1.2: The set K.

Let’s define Mg = M\int(K). Then M is is the union of the two submanifolds Mg
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and K which have disjoint interiors and intersect along the set OMg = 0K.

Consider some Ck-diffeomorphism f : ¥ — ¥ satisfying that f = id in a small
neighbourhood of 9¥. We will define a C*-diffeomorphisms F : 0K — 0K in the
following way:

f(l’) if zelg

x if x¢ X

The map F' coincides with f in Xy and is the identity in the complement. We can
consider this map as a map from 0K — O0Mg, and construct the manifold

M =M x Up K.
We denote by tar, , ti the canonical inclusions of Mk and K into M, respectively.

The following is a classical result in differential topology:

Proposition 1.14. There is a C* regular flow ¢, : M' — M’ induced on M', such that
the canonical inclusions of My and K in M’ send the foliations Oy, and Ok onto
Of\/lK and O, respectively. Moreover, when k > 1, denote by X the generating vector
field for ¢r. Then, there exists a smooth structure on M’ such vy, i are smooth
diffeomorphisms onto their respective images, and ¢, is generated by a C*-vector field
X' such that vy, (X') = X|my and 13 (X') = X|k. This structure is unique, up to
smooth diffeomorphisms.

We say that the flow (¢, M") is obtained by surgery on (¢, M) along the transverse
surface 3. Observe that, at the topological level, it is a direct fact the existence of the
induced flow. For a proof about the differentiability statement above see [].

Observe as well that the flow obtained by surgery is independent of the auxiliary
surface 1 chosen above. In fact, there is no need to consider this surface for defining
(¢, M"). The reason why we have chosen this explanation is the technical lemma below,
that we will use later.

4.1 Surgeries along parallel surfaces.

The homeomorphism class of the manifold M’ is not altered by small perturbations
of the map f, as it is constant along all the isotopy class of f. Nevertheless, observe
that the orbital equivalence class of the induced flow is not, a priori, preserved by this
sort of operations. There is a particular case where this is indeed true. As before, set
fo = f. The flow isotopy v : X9 — ¥; induces a C*-diffeomorphism f; : 31 — % of
the form f; = 1o foo1p~!. We will define two diffeomorphisms F; : 0K — 0K, i = 1,2
in the following way

filz) if ze¥;

Fi (a;) =
x it x¢3;.
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So each map F; coincides with f; on X; and is the identity in the complement. For each
1 = 1,2 construct the manifolds

M, = Mg Ug, K.

As before, each manifold M; is equipped with a corresponding flow ¢¢ of class C*. It
follows that:

Lemma 1.15. The flows (¢}, M;), i = 1,2 are C*-orbitally equivalent.

Proof. The foliation by orbit segments in K is equivalent to the product ¥ x [0, 1].
Thus, it suffices to define H : My — Mj to be the identity on My, and H ~ f X id on
K ~ % x[0,1] O

Definition 1.16 (Parallel surgeries). We say that two surgeries using pairs (f;, 2;)
related by flow isotopy as above are parallel surgeries.

5 Birkhoff sections.

In general, a First Return Section or Poincaré Section for a flow in a 3-manifold is an
embedded surface, transverse to the flow, with a continuous first return map defined
on some open subset of it. If the first return map preserves some closed invariant
subset, then its saturation by flow’s orbits corresponds to some closed invariant subset
for the flow, and the study of the dynamical behaviour of the latter one, which is a
flow in a 3-dimensional object, can be reduced to the study of a surface map. The
idea of reducing the study of (at least some part of) a 3-dimensional flow to a sur-
face discrete dynamical system leads back to Poincaré, who used this technique for the
study of the the 3-body problem. As basic examples of first return sections we have the
local Poincaré sections around periodic trajectories and the global Poincaré sections.
The first ones just provides information about the local behaviour of the flow around
a periodic trajectory, while the second one, despite of providing a lot of information
about the flow (it reduces de whole dynamic of the flow to that of a surface homeomor-
phism), imposes very strong conditions about the topology of the supporting manifold
(which must be a surface bundle over the circle) and to the flow itself (which must
be topologically euivalent to a suspension flow). So, in the hope of reducing a very
large part of the dynamic of a flow to a surface discrete dynamic, the local sections
are too inefficient because they just describe the dynamic around a periodic trajectory,
while the global sections will rarely exist. A Birkhoff section is a compact embedded
surface, with boundary, such that its interior is transverse to the flow, its boundary
components are periodic trajectories and every orbit of the flow will meet this surface
in an uniformly bounded time. The existence of a Birkhoff section implies that in the
complement of a finite set of periodic trajectories (the boundary of the section) the
flow is, up to reparametrization, the suspension of a surface homeomorphism (the first
return map defined on the interior of the section). Observe that this is also a very
important topological fact, because in the complement of a finite set of simple closed
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curves our manifold is a surface bundle over the circle. This, in combination with
the homotopy class of the embedding of the surface, could provide strong information
about the topology of the manifold and how it is related to the flow. As is explained
in [31], this sections where introduced for the first time by Birkhoff, for the study of
the geodesic flow of a closed hyperbolic surface. In this article Fried proved that any
transitive Anosov flow in a closed 3-manifold admits a Birkhoff section, a result which
turns these objects into powerful tools for the study of these flows.

Let ¢y : M — M be a non-singular regular flow on a 3-manifold.

Definition 1.17. A Birkhoff section for the flow (¢, M) is an immersion ¢ : (X,0%) —
(M,T), where X is a compact surface, sending 9% onto a finite set I' C M of periodic
orbits, such that:

1. The restriction of ¢ to each boundary component of 9% is a covering map onto a
curve in I',

2. The restriction of the map ¢ to the interior of ¥ is an embedding and the sub-
manifold ¢(X) is topologically transverse to the flow,

3. There exists a real number T > 0 such that [z, ¢p(x)|Ne(X) # 0,V 2z € M.

In general, we will denote a Birkhoff section just by 3. In all what follows, we will
indistinctly use the notation ¥ to denote ¥\0X or its inclusion inside M. We will also
denote Mp = M\T.

If the flow is generated by a C*-vector field and the map ¢ is a C*-immersion for
some k > 1, we say that it is a C*-Birkhoff section, provided T, M = .5 & X(z) for
every x € Y. If the immersion is just continuous, we will say that it is a topological
Birkhoff section. In general we will just talk about Birkhoff sections and we will stress

their regularity properties if needed.

5.1 First return map.

Condition 3. in the definition above implies that for every = € 3 there is a well defined
first return point Px(z) € ¥. Thus, there is a first return map defined in the whole
interior of ¥. We can view this map as a homeomorphism

lei%i.

In particular, the surface Y is a global transverse section for the flow restricted on
Mry. By proposition 1.11 this implies that (¢, Mr) is topologically equivalent to the
suspension flow generated by P : IS 3)

Remark. In general, the associated first return to a Birkhoff section does not extend
to the boundary. In some literature it is shown that, by modifying the embedding of
the surface near the boundary, it is possible to have Birkhoff sections where this map
does extend. Nevertheless, we will not make any use of this fact.
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5.2 Local Birkhoff sections.

Definition 1.18. Let v be a periodic orbit of a flow ¢ : M — M. A local Birkhoff
section at v is an immersion ¢ : [0,1) x R/Z — M such that:

L y=:({0} xR/Z);

2. The restriction of the map ¢ to (0,1) x R/Z is an embedding and the submanifold
t((0,1) x R/Z) is transverse to the flow lines;

3. The exists a real number 7' > 0 and a neighbourhood W of  such that [z, ¢ (x)]N
t([0,1) x R/Z) £ 0,V € W.

Let B C M be the image of ¢ : [0,1) x R/Z — M. When confusion is not possible,
we will just use B for referring to the local Birkhoff section. We will denote by B the
set B\7.

Concerning regularity, we can make the same considerations as we did for the general
case.

Given a local Birkhoff section B at «, the last property in the previous definition
implies that there exists a collar neighbourhood U C B of v and a first return map
Pg:U— B , where U=U \7. In general we will be concerned with the germ of the
first return map to a local Birkhoff section, that is, we will consider the map Pg up to
changing its domain of definition U for another collar neighbourhood if needed.

As a last remark, observe that if + is a periodic orbit in the boundary of some
Birkhoff section ¥, then the intersection of a small tubular neighbourhood of ~ with X
can be used to provide a local Birkhoff section.

5.3 Combinatorial parameters associated to the boundary.

Consider a (global) Birkhoff section as defined above and let I' = {y1,...,7}. We
remark that the preimage of any curve ~; could consist in many boundary components

of 3. Let’s denote them by C%, ..., C;i, in order to have

X =Clu---UC, U---UCTU---UC}.

For each ~; consider a small tubular neighbourhood of W;, in such a way that
W;N% splits as p; different local Birkhoff sections B%, ey B;,i at ;. It can be seen (cf.4.1
below) that the first return map (in the complement of ;) induces a cyclic permutation
of these surfaces. Thus, it induces a cyclic permutation on each set {C1, ... ,Cf,i}.

On the other hand, let & C W;\~; be a simple closed curve, that is the boundary of
an embedded disk in W;. This is called a meridian curve. Without loss of generality,
we can assume that « intersects transversally each BJZ Then, independently of j =
1,...,ps, the modulus |aN B;| is a natural number m;.
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Definition 1.19 (Multiplicity and local number of connected components.).
We say that p; is the number of connected components of ¥ at ~y;, and we denote it by
(7, X). We define as well the multiplicity of ¥ at v as the quantity m;, and which will
be denoted by m(vy;, X).

Remark 1.20. We remark a (local) Birkhoff section is embedded if and only if m = 1.
The number m coincides with the covering degree of the immersion, when restricted to
corresponding the boundary curve.

In the special case that an orbit ; is a topological saddle type periodic orbit, we
encounter another important parameter that is called the linking number of ¥ at ~;.
We will properly state its definition in section 4.1.

5.4 Blow-down operation.

Associated to the first return map P : > - 203, there is a construction called Blow-
down, that consists in the following: Let 3 be the surface obtained by collapsing each
boundary component of ¥ into a point, and denote by a:; the point obtained when

collapsing C'JZ Then, observe that there is an associated homeomorphism Py:Y - 5
and, by the previous remarks, each set {z},... ,x;i} constitutes a periodic orbit.

Definition 1.21. The homeomorphism 132 : 3 = 3 is called the blow-down associated
tov: (X,08) — (M,I).

5.5 An example.

To finish this section we give some simple examples of Birkhoff sections, that can give
a pictorial flavour of how does these objects look like.

Let S be a closed surface, D C S an embedded closed disk, and let Sy = S\int(D).
Consider the manifolds Sy x R/Z! and D x R/Z'. On each one there is a flow, all
whose orbits are periodic and coincides with the fibers {z} x R/Z!. If we glue the
boundaries of these 3-manifolds using a fiber preserving homeomorphism, then we get
a closed manifold equipped with a periodic flow.

In figure 1.3a, the three different surfaces Yo, X1 and X in Sy x R/Z! are glued
with three helicoids Ho, H1, and Ha. We get then a Birkhoff section where I' = {~},
p(7v, %) = 3 and m(y,X) = 1. By the same procedure, in figure 1.3b we see an example
with p(v,X) =1 and m(y, %) = 3.
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Figure 1.3: Birkhoff sections
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6 Anosov Flows on 3-manifolds.

We give here the definition of Anosov flow, as well as other definitions and properties
that will be used throughout the text.

Definition 1.22 (Anosov flow). Let M be a closed, smooth, 3-manifold and let
¢; : M — M be a flow generated by a non-singular C*-vectorfield X, where k& > 1.
The flow is Anosov if there exist a Riemannian metric || - || and decomposition of the
tangent bundle of M as Whitney sum of three line bundles TM = E°*® E¢® E*, where
E° = span{ X}, satisfying that:

1. The splitting is invariant by the action D¢, : TM — T M,

2. There exist constants C' > 0 and 0 < A < 1 such that

xr € M; (1.1)

[Dgr() - v]| < CXoll, Vv € E*(x), t >0,
,t<0, ze M.

D¢ (z) - v|| < CAX7Holl, Vv € E%(x)

Observe that, from the compactness of the ambient space, it follows that the vectors
in E® or E* will satisfy property (1.1) above for any chosen Riemannian metric on M,
up to modifying the constants C' > 0 and 0 < A < 1 if necessary. Thus, the definition
of Anosov flow makes an auxiliary use of a Riemannian metric, but it only depends on
the C' equivalence class of the flow.

It is not difficult to check that the decomposition of T'M must be unique and
continuous. The bundle E? is called the stable bundle, E" is called the unstable bundle
and F¢, the one who is tangent to the flow lines, is called the central bundle. The
two dimensional bundles F*° = FE°* ¢ E¢, E* = EF°® E* and F** = E° ¢ E" are
respectively called the center-stable bundle (or cs-bundle), the center-unstable bundle
(or cu-bundle) and the stable-unstable bundle (or su-bundle).

6.1 Invariant foliations.

One of the fundamental properties of these flows is the integrability of its (center-)stable
and (center-)unstable bundles into foliations which are preserved by the flow can be
merely defined by dynamical properties. This fact is expressed by the so called stable
manifold theorem:

Theorem (Stable manifold theorem.). Each 1-dimensional bundle E® or E" is
uniquely integrable, and the partition of M by integral curves respectively determines
a pair of 1-dimensional foliations F* and F“, invariant by the action of the flow.
Moreover, for every x € M it is satisfied that

!
—
8
~
I

W?(z) ={y € M : dist(¢(y), ¢e(z)) = 0, t — +o0},
Fix) =W"(x) ={y € M : dist(¢¢(y), pt(x)) — 0, t = —o0}.
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On the other hand, each 2-dimensional bundle E or E“ is uniquely integrable, and
integrate into a 2-dimensional foliation F and F, respectively. Moreover, for every
x € M it is satisfied that:

Fx)={ye M:3seR, st dist(¢:(y), pr+s(x)) = 0, t = 400},
FUz)={ye M:3seR, st dist(pi(y), pr+s(x)) — 0, t - —o0}.

6.2 Expansivity.

Anosov flows are orbitally expansive, according to the following definition:

Definition 1.23. Let ¢ : M — M be a regular non-singular flow on a closed, Rie-
mannian, 3-manifold. The flow is said to be orbitally expansive if for every a > 0 there
exists € = e(«) > 0 such that: If two points x, y satisfy that

dist(¢t(), oy (y)) < o, YVt ER,

where h : (R,0) — (R,0) is some increasing homeomorphism, then y = ¢5(x) for some
|s| <e.

General expansive flows on closed 3-manifolds have been studied by Paternain,
Inaba and Matsumoto. In [46] and [40] it is shown that every orbitally expansive
flow is equivalent to a pseudo-Anosov flow, see [17] or the referred works for precise
statement and definitions. We will refer again these results in chapter 4.

6.3 Transitivity and Birkhoff sections.

Anosov flows on 3-manifolds can be transitive or not. One remarkable property of
transitive® Anosov flows is the following theorem, due to D. Fried:

Theorem 1.24 (Fried, [31]). Every transitive Anosov flow admits a Birkhoff section,
whose first return map is pseudo-Anosov.

This property, later generalized by Brunella in [17] to every transitive expansive
flow, allows to reduce some part of the analysis of these flows to the theory of pseudo-
Anosov maps on surfaces.

7 Pseudo-Anosov Homeomorphisms.

Let ¥ be a closed orientable surface.

5 Also non-transitive Anosov flows have strong connections with the topology of the ambient mani-
fold. See [20].
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Definition 1.25. A homeomorphism [ : ¥ — X is pseudo-Anosov if there exists a
pair of transverse f-invariant foliations F* and F" on X, respectively equipped with
transverse measures s and p,,, and a constant A > 1 such that

f*(fsvﬂs) = (fsa)‘ﬂs) and f*(Fuvﬂu) = (Fu7)‘71,uu)'
The transverse measures are required to be non-atomic and with full support.

If the genus of X is greater than one, then the two foliations necessarily have singu-
larities. If this is the case, in the previous definition we just allow singularities whose
local model is a k-prong singularity (see figure 1.4a) and with & > 3. Since the foli-
ations must be transverse between them, then F* and F* share the same (finite) set
of singularities, and in a small neighbourhood of each singularity the two foliations
intersect as in the local model 1.4b.

(a) k-prong singularity, k = 3. (b) Transverse foliations at k-prong, k = 4.

Figure 1.4: Local model of k-prong singularities

By the Euler-Poincaré formula (see [25]), the sphere is excluded from having a
pseudo-Anosov homeomorphism and in the torus the foliations are non-singular. If
gen(X) > 2, observe that the set of singularities Sy is necessarily included in the set of
periodic points of f.

The definition of pseudo-Anosov homeomorphism can be extended to the case of
non-closed surfaces. We will not talk about this concept in its wide generality, but we
will just stay in the case that we will need later, which is that of orientable compact
surfaces. We postpone this definition until the subsection 7.4.

7.1 Dynamical properties.

For higher genus surfaces, pseudo-Anosov homeomorphisms can be seen as a counter-
part of linear hyperbolic automorphisms of the torus. In view of the singularities, they
can never be hyperbolic diffeomorphisms, but they share some properties with linear
Anosov maps. In particular, for every pseudo-Anosov homeomorphism f : ¥ — ¥ we
have that:
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f is transitive,

e f is expansive,

the set Per(f) of the periodic points is dense in X,

the topological entropy of f is positive.

More generally, the dynamic of a pseudo-Anosov map can be encoded using a Marko-
vian partition constructed from its invariant foliations, as is shown in [25]. From the
symbolic point of view these maps are equivalent to subshifts of finite type.

In [42] and [38] it is shown that the pseudo-Anosov maps are the only expansive
homeomorphisms in a closed orientable surface. More precisely, if f : ¥ — X is an
expansive homeomorphism then gen(X) > 1 and if gen(X) = 1 then f is C°-conjugated
to a linear Anosov map, and in higher genus f is C°-conjugated to some pseudo-Anosov
homeomorphism.

There exist smooth models for general pseudo-Anosov maps (see below). But in
contrast to Anosov diffeomorphisms, these smooth models are not C"-structurally sta-
ble. Nevertheless, the chaotic behaviour of a pseudo-Anosov homeomorphism persists
all along the isotopy class of this map as a homeomorphism of X, see [36].

7.2 Differentiability.

If f:3¥ — ¥ is a pseudo-Anosov homeomorphism, the system of transverse foliations
equipped with transverse measures defines a translation atlas in the complement of the
singularities, and in a local coordinate system of this atlas the action of f corresponds
to an affine transformation with derivative

Df = (3 /\91>'

With this translation structure the map f : ¥\S;y — ¥\ is a smooth diffeomorphism.
But observe that this smooth structure can not be extended to the singularities in such
a way that f: X — ¥ is a smooth diffeomorphism.

Nevertheless, there exists a smooth structure on ¥ for which f is a smooth dif-
feomorphism. This is proved in [32], by showing that any given pseudo-Anosov f is
conjugated to some smooth diffeomorphism g : ¥ — . (See also [43] for an analytic
version.)

One interesting remark in connection to our work is that this smooth structure is
nowhere compatible with the atlas defined by the system of invariant foliations. In
order to obtain a smooth model for a pseudo-Anosov, the structure defined by the
translation atlas must be globally changed, as is explained in the referred work.
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7.3 Conjugacy classes of pseudo-Anosov homeomorphisms.

Let X be a closed orientable surface of genus greater than zero. A remarkable property
about pseudo-Anosov homeomorphisms is that if two of these maps are isotopic, then
they are conjugated by a homeomorphism isotopic to the identity.

Theorem 1.26 ([25], Exposé XII, theorem 12.5). Let 3 be a closed orientable surface
and let f and g be two pseudo-Anosov homeomorphisms. If g is isotopic to f then there
exists a homeomorphism h : ¥ — X, isotopic to the identity, such that foh =hog.

This theorem, in combination with the Dehn-Nielsen-Baer theorem about mapping
class groups, allows to decide if two pseudo-Anosov homeomorphisms are conjugated
by looking at their actions on fundamental groups.

The action on the fundamental group.

Let x¢ be a point in ¥. Every homeomorphism f € Homeo(X) induces an auto-
morphism of 71 (X, zg) in the following way: Let /5 : [0, 1] — X be an arc that connects
zo = F(0) with f(xo) = B(1). Given a class [7] € (X, x0) represented by a curve
v :[0,1] — X we define

18 [v] — [B ~f(y) - ﬁ} , where /3 is B parametrized with inverse sense.

The map ff is a well-defined automorphism of 71 (X%, zg) which depends on the par-
ticular election of the arc 5. If we choose another arc 8’ connecting xy = '(0) with
f(zo) = B'(1), then 1= (]t £ ]a] where [o] = [3-f'] € m1 (X, ). Thus, changing
the arc 8 has the effect of conjugate f*ﬁ by an inner automorphism of the fundamental
group 71 (X, o).

Definition 1.27. Given a pair of homeomorphisms f; : ¥; — ¥;, ¢ = 1,2, where ¥
and Yo are two homeomorphic closed orientable surfaces, we say that f; and fy are -
conjugated if there exist points x; € ¥;, induced actions (f,)fl s (2, xp) — w1 (X, 24)
and an isomorphism ¢ : m1 (X1, 1) — 71 (X2, x2) such that (fg)f2 op=¢o (fl)fl.

Observe that if f; and fs are m-conjugated then, for every pair of points z;,
every pair of induced actions ( fz)f’ on 71(%;, x;) are conjugated by an isomorphism
(;5 : 7'['1(21,:E1) — 7'('1(22,%2).

Proposition 1.28. For i = 1,2 consider a pseudo-Anosov homeomorphism f; : 3; —
Y defined in a closed orientable surface ;. If f1 and fo are mw-conjugated, then there
exists a homeomorphism h : 31 — Yo such that fooh="ho fi.

The outer automorphisms of 71(X,xg) are the elements of the quotient space of
Aut(m1 (X, zp)) by the normal subgroup Inn(m (X, zp)) of inner automorphisms. The
map

Homeo(X) — Out (71 (X, z0)) == Aut(m (X, x0))/Inn(m (2, 20)),
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which sends each f to the conjugacy class of ff by inner automorphisms, is a morphism.
The theorem of Dehn-Nielsen-Baer says that this is a surjective morphism whose kernel
is the group Homeop(X) of homeomorphisms isotopic to the identity. See [23], chap. 8
for an explanation. As a consequence, the mapping class group of ¥ is isomorphic to
the group of outer automorphisms of 71 (%, zg). That is,

MCG(Y) := Homeo(X)/Homeog (%) = Out(m (X, zg)).

Proof of proposition 1.28. Assume that 31 = Y9 = ¥ and z1 = x93 = x9. By Dehn-
Nielsen-Baer theorem, there exists a homeomorphism hg : ¥ — X which induce in
m1(2, o) the same outer automorphism as ¢ does. Consider g = h(;l o fa o hg. Then,
g is a pseudo-Anosov homeomorphism and its action on the fundamental group is
conjugated to the action of f; by an inner automorphism. It follows that f; and g are
two isotopic pseudo-Anosov maps, and by theorem 1.26 they are conjugated by some
homeomorphism h, isotopic to the identity. Then, the map h = hgy o ho realizes a
conjugation between fi; and fo. O

We will use proposition 1.28 in the course of the proofs of theorems 4.1 and 4.1. By
the way, since we will be working with non-closed surfaces, we make some remarks in
what follows.

Punctured surfaces.

Consider two pseudo-Anosov homeomorphisms f; : 3; — ¥;, where i = 1,2, defined in
two closed, orientable, homeomorphic surfaces. For each f; consider a finite collection
of periodic orbits Of,...,O%. That is, for each k =1,..., N,

O}Lc = {ZL‘}‘cla s 71‘}‘9;0;?}

where 2t = fI""!(2%,) and p; > 1 is the period of the orbit. We are interested in
knowing when f; is conjugated to fo by a homeomorphism h : ¥; — Xo, with the
additional property that h sends each orbit (’),ﬁ to the orbit (’),%,. We explain this in the
following paragraphs.

A finite type punctured surface is the data of a compact surface ¥ together with
a finite subset @O C Y. In this text we just consider the case where the surface is
closed. The mapping class group of the punctured surface (3;0) is defined to be the
set homeomorphisms f : ¥ — ¥ preserving the set O, modulo isotopies fixing O.

Denote by 71 (3, 2g; O) to the fundamental group of ¥\ O based in a point xg not in
O. If f is a homeomorphism of ¥ preserving O, then it induces a permutation of this
finite set as well as an action on 7 (X, z9; O), uniquely defined up to conjugation by in-
ner automorphisms. As before, the mapping class group injects into Out (1 (X, z9; O)).
But there is an essential difference with the case of closed surfaces. The fundamental
group of ¥\O is a free group and in most cases we can exhibit outer automorphisms
which are not induced from any homeomorphism.
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Denote for the moment O = {x1,...,zg}. For each of the points x; consider a
closed curve homotopic to the puncture x; and joined to xg with an arbitrary path.
This curve determines an element of 71 (3, zg; O) that we denote by ¢;. We denote by
I'(O) to the set of conjugacy classes of the elements ¢;. That is,

NO)={y-¢-v: wherel=1,...,Rand v € m (X, z9; O)}.

The action f, leaves invariant the set ['(O), since it comes from a homeomorphism
of the surface. Define Out™(m1(3, zo; O)) to be the set of outer automorphisms that
preserves I['(O). Then, the theorem of Dehn-Nielsen-Baer states that the morphism

MCG(3; 0) — Out™(m1 (X, zo; O))
is an isomorphism.

This statement can be sharpened in the following way: Consider N finite sets
O1,...,0n C 3. Define MCG(X; Oy, ...,0n) to be the set of homeomorphisms f :
Y — ¥ such that f(Or) = Ok, V k =1,..., N, modulo isotopies fixing O; U--- U Op.
Define Out™(71 (X, z9; O1,...,0On)) to be the subgroup of outer automorphisms of the
fundamental group of ¥\O; U --- U Oy that preserve each set I'(Oy). Then, we have
an isomorphism

MCG(Z;Ol, .. .,ON) — Out*(m(E,xg;(’)l, .. .,ON).

We come back now to the case of pseudo-Anosov maps stated in the first paragraph.
For simplicity we will omit the reference to the base point in the following statement.

Proposition 1.29. For i = 1,2 consider a pseudo-Anosov homeomorphism f; : 3; —
Y defined in a closed orientable surface X; and a finite collection of periodic orbits
1,..., 0% of periods p1,...,pN, respectively. Assume there exists an isomorphism

¢:m(E1;01 U - UOY) = m(S2; 01 U--- U O%)

such that

e [t conjugates the actions (f;). induced in fundamental groups of $;\O4U---UOY,
e $(I'(0})) =T(O3) for every k=1,...,N.

Then, there exists a homeomorphism h : 31 — Yo such that fo o h = h o f; which in
addition satisfies h(O}) = O3,V k=1,...,N.

Proof. Assume that ¥ = X9 = ¥ and Oi =02 =0, Vk=1,...,N. Following the
Dehn-Nielsen-Baer theorem for punctured surfaces, there exists a homeomorphism

h¢>:(E;Ol,...,ON)—>(Z;01,...,ON)
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which induce in 7 (2; O1U- - -UOy) the same outer automorphism as ¢ does. Consider
g= h;lofgoh¢. We will show that there exists a homeomorphism & : (3; Oq,...,0n) —
(3;04,...,0n) such that ho g = fi o h. Then, the homeomorphism h o hy gives the
conjugation claimed in the proposition.

We start with the case of just one periodic orbit @ which which consists in one fixed
point z1. In this case the action of g on 71(X;{z1}) is conjugated to the action of f;
by an inner automorphism and it follows that there exists an isotopy

¢t :[0,1/2] — Homeo (X)
such that g = f1, p1/2 = g and @¢(x1) = z1 for every t.

On the other hand, g is pseudo-Anosov and its action on m(X) (forgetting the
puncture) is conjugated to the action of f; by an inner automorphism, so there exists
a homeomorphism A : 3 — 3, isotopic to the identity, such that goh = ho f;. Take an
isotopy hy : 3 — 3 such that hy/p = idy and hy = h. This allows to construct another
isotopy

Yy 2 [1/2,1] — Homeo (X)

by the expression ¢; = h; ' o g o hy which verifies that Y12 = g and ¢y = f1.

Consider now the path
IL; : [0, 1] — Homeo (X)

defined by concatenation of ¢ and . This is a closed path verifying IIy = f; = 11
We will use know the following two facts:

Fact 1: The space Homeog () is contractible.

Fact 2: Any lift of a pseudo-Anosov map to the universal cover can have at most one
fixed point.

Let 3 be the universal cover of ¥ and consider a lift 71 of z; and a lift fl of f1 which
fixes Z1. There is a unique lift @; of the path ¢; such that @y = f1 and @ (71) = &1,
V 0 <t < 1/2. This is possible since the path ¢; is an isotopy fixing the point x;.
The map @1/, = g is a lift of g. Consider now a lift hy of hy starting at El/Q = idg.
Then ;Z)vt = ?fl ogo hy is a lift of 1y starting at g. The concatenation of ¢; and ;j)vt
is a lit of the closed path II; and, since the connected component of f; in Homeo(X)

is contractible, necessarily we have that Ho =1, = f1 Now, the curve ht(ml) in the
universal cover is a path Jommg I = hl/Q(xl) with another point 7} = hl(azl) Since

each ht(:nl) is a fixed point for ¢t then 7 is a fixed point for fl, so necessarily it must
be satisfied that 71 = hy (Z1). We conclude that h(z1) = z;.

If we consider now a finite set Oq,...,On of periodic orbits each one consisting
in a fixed point z, then the same argument can be carried out individually for each
x,. That is, for each k = 1,..., N we have to consider a lift f; of f; that fixes some
pre-image T and apply the same reasoning to conclude that h must fix each xy.
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0

7.4 Non-closed surfaces.

We will use proposition 1.29 in the course of the proofs of theorems 4.1 and 4.1. By
the way, since we will be working with non-closed surfaces, we make some remarks in
what follows. Let ¥ be a compact orientable surface.

Definition 1.30 (pseudo-Anosov in non-closed surfaces.). Let f : ¥ — ¥ be a homeo-
morphism. Let S the surface obtained by collapsing each boundary component into a
point and let f be the corresponding induced map. We say that f is pseudo-Anosov if
f is pseudo-Anosov according to definition 1.25.

Let C be a boundary component of ¥ and p € S the point obtained after collapsing
C. Each invariant foliation of f has a finite number of leaves which accumulate on p,
which are usually called branches. When lifted to X, these branches do not necessarily
converge to a point in C, as is depicted in figure 1.5b. We say that the foliations are
tame if the local model in a neighbourhood of the boundary component C' is as in figure
1.5a. In this case, each branch converge to a point in C, which is necessarily periodic
for f.

(a) Tame (b) Wild

Figure 1.5: Local model of k-prong singularities

According to our definition, each foliation has at least two branches at each bound-
ary component. In more general definitions 1-prong singularities are allowed. See [23],
chap. 13.3.

Collapsing each boundary component into a point provides a semi-conjugation from
f to f , which is actually a conjugation on the interior of the surface. So, most of the
dynamical properties of f are also available for f. However, we want to point out the
following;:

Remark 1.31 (Conjugacy classes of pseudo-Anosov in non-closed surfaces.). Theorem
1.26 as well as proposition 1.28 are no longer available in the case of non-closed surfaces.

In particular, we want to point out an obstruction to conjugacy which depends on
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the behaviour of the map in a neighbourhood of the boundary. We illustrate this in
the following example.

W*(p) W(q)

fi

Figure 1.6: The homeomorphisms in example 1.32.

Example 1.32. Consider two C'-diffeomorphisms f and g defined in the band [—1, 1] x
[0,4+00), whose phase portrait is as follows:

The non-wandering set consists in the corner points p = (—1,0) and ¢ = (1,0),
which are saddle type hyperbolic fixed points.

W2(p) = {=1} x [0, +00),
W(q) = {1} x [0, +00),

The segment [—1,1] x {0} is a saddle connection between p and gq.

This is illustrated in figure 1.6. For each fixed point x = p, ¢ we have that

Dite) = (Axéf) ux(()f)> and Dg(z) = (Axég) ux(zg))

Proposition 1.33. If there exists a homeomorphism h : [—1,1] x [0, +00) — [—1,1] X
[0, 400) such that goh =ho f, then

log(pq(f)) _ 10g(1q(9))
log(up(f))  log(up(g))

(1.2)

In particular, general homeomorphisms (even C!-diffeomorphisms) whose phase
portrait is as in example 1.32 are not C%-conjugated. Observe that there always exists
a conjugation between these dynamics in the complement of the segment [—1,1] x {0}.



26 Chapter 1. Preliminaries

This can be seen by dividing the band into adequate fundamental domains for the
action of each map. The obstruction appears when we try to extend the conjugation
to the segment that connects the two saddles.

This dynamical behaviour is what we encounter in the neighbourhood of a boundary
component of a surface >, when we look at the action of a pseudo-Anosov map. If
we choose a power of f that fixes the boundary component, then we can decompose
a neighbourhood of this component into a finite number of bands homeomorphic to
[—1,1] x [0, +00) where the dynamic looks like in the example 1.32.

As a final remark, observe that if f N5 Sisa pseudo-Anosov in a closed surface,
we can construct a pseudo-Anosov f : ¥ — X in a non closed surface by blowing up f
along a periodic orbit. But, in view of 1.32, different ways of blowing up could lead to
non-conjugated maps, even if all the actions on 71 (X) are the same.

8 Topological saddle type periodic orbits.

A periodic orbit of a C' flow is said to be saddle type hyperbolic if the derivative of
the first return map to a local transverse section on the fixed point is a saddle type
hyperbolic matrix. That is, it has eigenvalues 0 < |A| < 1 < |pul.

Let ¢ : M — M be a non-singular regular flow on a 3-manifold.

Definition 1.34. A periodic orbit v of (¢, M) is said to be topologically saddle type
if its germ (¢¢, M), is orbitally equivalent to the germ of a saddle type hyperbolic
periodic orbit of some flow of class C!.

In the case that the flow ¢; is generated by a vector field X of class C' and 7 is
actually a saddle type hyperbolic periodic orbit, there is a natural of decomposition
of TM]|, into three line bundles E® @ E¢ @ E* that is invariant by D¢;. Here, E¢
is collinear with the generating vector field, E* is uniformly contractive and E" is
uniformly expansive.

The classical stable manifold theorem allows to see that, given some adequate € > 0,
the sets

Wise(v) ={y € M : dist(¢4+(y),7) <&, Vt >0},
Wiee(v) ={y € M : dist(¢¢(y),7) < e, ¥Vt <0},

are two C'-embedded surface, tangent to E° @ E¢ and E° @ E“ respectively, that
intersect transversally along the periodic orbit.

These sets are called the local invariant manifolds of v and, from the definition
1.34 above, we see that these are also available for topologically saddle type periodic
trajectories.

Remark 1.35. We remark that the difference between topologically saddle type and
hyperbolic saddle type is not a matter of differentiability. One could have a a smooth
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flow with a topologically saddle type periodic orbit, whose derivative on a transverse
section is, for example, the identity matrix.

From now on, we will assume that the eigenvalues of the derivative of the first return
are positive. In this case, the bundles £° and E* are orientable along v and the local
invariant manifolds are embedded cylinders.

8.1 Normal Coordinates.

Consider a vector field X, in R? x R/Z defined by
Xo(z,y,s) = (az, by, c),

where a < 0 < b, c are constants. The non-wandering set of the associated flow ¢; °
consists of one saddle type hyperbolic periodic orbit, namely, the curve 0 x R/Z.

Definition 1.36 (Normal coordinates.). A system of normal coordinates for the
germ (¢, M), of a topological saddle type periodic orbit is a continuous local orbital
equivalence

U (o, W) = (972, V),

defined between a neighbourhood W of 4 and a neighbourhood V' of 0 x R/Z, where
X, is described above.

Remark 1.37. By definition, a topological saddle type periodic orbit is one that comes
equipped with a system of continuous normal coordinates in a neighbourhood. By the
way, we remark that it rarely exists a system of C*-normal coordinates for k > 1, even
assuming a high regularity of the flow (¢¢, M). One direct obstruction to have C*
coordinates is the non-hyperbolicity of the action of D¢y on T'M|,,. But this condition
is far from being enough to guarantee C*-orbital equivalence with a hyperbolic saddle.

See [3].

In general, a normal form for the germ of a periodic orbit is a system of normal
coordinates of class C* as above, k > 0, which in addition satisfies that the orbital
equivalence in 1.36 is a conjugation. In subsequent chapters the definition provided
here will be enough for our purposes. We will consider a kind of normal form just on
the course of the proof of theorem 4.12.

8.2 Homology of a punctured tubular neighbourhood.

When a periodic orbit « is topologically saddle type, then its local invariant manifolds
(assumed here to be cylinders) allow to define a canonical basis of the first homology
group Hi(W\7), where W is any tubular neighbourhood containing v on the interior.
Let’s explain how it works.

In the following construction the curve + will always be regarded as an oriented
curve, its orientation being the one induced by the flow direction. Consider a tubular
neighbourhood W of ~.
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W

Wis.(7)

s

W,
Wi

Figure 1.7: Neighbourhood of a topologically saddle type periodic orbit.

e Orientation: Since we are requiring the two invariant manifolds W} (y) and

WL () to be orientable, it follows that the tubular neighbourhood is orientable.
Thus, from now on we will fix an orientation of W. This induces an orientation
in the boundary O0W, which is a 2-dimensional torus.

Homology: Since W retracts by deformation over v, the homology group H; (W)
is isomorphic to Z and the homology class of 7 is a generator. Observe that W
is a deformation retract of W\~. Therefore, the spaces H;(OW) and H;(W\7)
are canonically isomorphic and isomorphic to Z2.

Longitude: As explained before, W} () is obtained as an embedding (—¢,¢) x
R/Z — M that takes the curve {0} x R/Z homeomorphically onto v and, without
loss of generality, we can assume it preserves the orientation of these curves. If
we choose a sufficiently small real ¢ty # 0 the embedding will take the curve
{to} x R/Z! into an oriented curve 8 C W\~y. The homology class

b=[8] € Hi(W\v)
will be called the longitude, and it is independent of the particular choice of tg.

Meridian: Consider now an embedded closed disk D C W which is transverse to
~ and intersects it in one interior point. Then, the orientation of v together with
the orientation of W defines an orientation on D and a boundary orientation on
« = 0D. The homology class

a=[a] € Hi(W\y)
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with the given orientation will be called the meridian.

Definition 1.38 (Meridian-longitude basis). The basis {a, b} constructed above is
called a canonical meridian-longitude basis of the homology of a punctured neighbour-
hood of ~.

Let’s recall that the algebraic intersection number between oriented curves in W
defines an anti-symmetric bi-linear form in H;(OW) ~ H;(W\7), and for two homology
classes z and y it is satisfied that x -y > 0 if and only if {z,y} is a positive basis. If we
push the curves a and § by homotopy onto W we can see that the algebraic intersection
number a-b equals one, so in particular {a, b} is a positive basis for H;(W\7). Observe
also that the map ¢, : H1(W\vy) — Hi(W) induced by the inclusion ¢ : W\y — W
sends b — [y] and a — 0, so in particular the meridian can be characterized as the
generator a of the kernel of ¢, which satisfies that {a, b} is a positive basis for Hy (W\~).
This means in particular that a is independent of the particular choice of the disk D.

Finally, if we are given another tubular neighbourhood W' of 7, then it is possible
to construct a continuous family of embeddings s : W — M such that

e g =id and 1 (W) = W',

o Us(Wige (7)) € Wige(7), ¥s(Wige(7)) € Wig.(7) for every s.
This implies that all the homology groups H;(W'\7y) are canonically isomorphic for

different choices of W, and this isomorphism preserves the basis given by the longitude
and the meridian of each tubular neighbourhood.
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Chapter 2

Orbital equivalence and Birkhoff
sections.

Consider two non-singular regular flows ¢! : M; — M;, i = 1,2, each one defined on a
closed 3-manifold M;.

For each flow let ¢; : (3;,0%;) — (M;,T';) be a Birkhoff section and let P, : PIFES 3}
be the first return map. Assume that there exists a homeomorphism h : Zoll — 2032 that
conjugates the first return maps. The embedding of the surface ¥, inside M; is a global
transverse section for the restricted flow ¢§' s M\I'; — M;\I';. So, the existence of h
implies that there is an orbital equivalence

H : (¢¢, Mi\I'1) = (67, M2\T'2) (2.1)

in the complement of the boundary curves. That is, the flows (¢%, M;) are almost orbital
equivalent, according to definition 1.4 in the previous chapter.

One question is weather or not this condition implies that (¢}, M7) and (47, My) are
actually orbitally equivalent, and at which extent we can expect an orbital equivalence
that extends (2.1) above.

Obstructions to the orbital equivalence.

The first obstruction is topological in nature. For example, consider a closed Seifert
3-manifold and a flow where the partition into orbits coincides with the fibration by
circles. Following the examples that we showed in 5, this flow can be endowed with
Birkhoff sections whose first return is the identity, independently of the Euler class.
Thus, an almost orbital equivalence like (2.1) above need not to extend to the whole
manifold.

There are other obstructions that depend on the flow dynamic and the way the
Birkhoff section embeds in a neighbourhood of each boundary curve. For example,
assume that the two flows are C! and, for simplicity, assume that 0%; has only one
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boundary component that embeds onto a hyperbolic saddle type periodic orbit ~; C
M;. The restriction of each embedding ¥; < M; onto a collar neighbourhood of the
boundary provides a local Birkhoff section, that we call B;. It is not hard to see that
the (local) first return map into B; = B;\; looks like the germ that we have described
in 7.4, that appears as well for the pseudo-Anosov maps on surfaces with boundary and
we see in the figure below.

v v
Figure 2.1: Two dynamics with this phase diagram need not to be conjugated. In

general they are conjugated on the interior, but there are obstructions for extending to
the boundary.

As is explained in [17], we can assume that the Birkhoff sections are well-positioned
near the boundary, in such a way that the first return map extends onto the boundary
as a Morse-Smale like homeomorphism. But, by the remarks made in 7.4, we can
see that in general, even if the first return maps (Pg,, BZ) are conjugated on éi, the
conjugation rarely extends to the boundary.

We can deduce that, in general, an orbital equivalence on M;\I'ty — M>\I'y does
not extend continuously over I'y — I's.

Sufficient conditions for equivalence.

This chapter is devoted to prove theorem 2.16, which gives a positive answer for this
technical problem when the boundary curves of the Birkhoff sections are saddle type
hyperbolic periodic trajectories, and the local combinatorial data of the two Birkhoff
sections around its boundary components (linking number, multiplicity and number
of boundary components) is compatible. In this setting we will prove not just that
the two flows are orbitally equivalent, but that there exists an orbital equivalence that
coincides with the previous H outside a neighbourhood of the boundary of the Birkhoff
sections.
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The new orbital equivalence can be described as a perturbation of the given H along
the flow lines, supported in a neighbourhood of the periodic orbits in the boundary.
But the approach will be indirect. In particular, we will make use of a detailed analysis
about the first return map onto a local Birkhoff section, for the case of saddle type
periodic orbits, that we found in [13]. Most of the statement in the referred work are
made for the special case of embedded Birkhoff sections. Since we will need them in
the general case, in section 1 we resume the results that we will need later, and we
outline some of the proofs as well.

In section 2 we give the proof of 2.16.

1 Local Birkhoff sections at saddle type periodic orbits.

We will be interested in a combinatorial description of the first return map onto a local
Birkhoff section in a topological saddle typer periodic orbit, that was developed in [13],
and that we explain in the following subsections.

Let ¢y : M — M be a regular flow defined on a 3-manifold, which has a topologically
saddle type periodic orbit . We will assume that its local invariant manifolds W;J .(v)
and W}% () are orientable. Consider a local Birkhoff section ¢ : ([0,1)xR/Z,0xR/Z) —
(M,~) at v. We will denote:

B=1:([0,1) xR/Z), 0B=.(0xR/Z), B=B\dB. (2.2)

We start assuming that the immersion of the Birkhoff section is well-positioned with
respect to the invariant manifolds, according to the following definition:

Definition 2.1 (Tameness). The local Birkhoff section B is tame if there exists a
collar neighbourhood U C B of v such that the sets UNW}? (v) and UNW}%_(y) consists
of the union of v with finitely many compact segments, each of them intersecting -~y
exactly at one of its extremities.

Given a (global) Birkhoff section ¥ such that every boundary component ~y of 0% is
a saddle type hyperbolic periodic orbit, we will simply say that > is tame if it is tame
at each boundary component.

An arbitrary Birkhoff section is not necessarily tame, but it can be changed for a
tame one in a proper way that suffices to apply the techniques exposed here. We will
refer these results a the end of the section.

1.1 Linking number and multiplicity.

By definition, the restriction of the immersion ¢ to (0,1) x R/Z is an embedding into
M\, and is a covering map on the boundary. We will fix the standard orientation on



34 Chapter 2. Orbital equivalence and Birkhoff sections.

R/Z and we will assume that {0} x R/Z — ~y is an orientation preserving map.

Consider a small tubular neighbourhood W of v such that the inclusion B W\~
is a proper embedding. Let ty > 0 be some small real such that the oriented curve
o = 1({to} x R/Z) is contained in W\~. Observe that, since B is topologically an
annulus, the homology class [0] € Hi(W\7) of this curve does not depend on the
particular choice of o and it is a generator of Hi(B). Then, the coordinates of [o]
in the meridian-longitude basis {a,b} of Hi(W\7y) are two integers n = n(v, B) and
m = m(v, B) satisfying that

] =n(v,B)-a+m(v,B)-b.

Definition 2.2. The integers n(vy, B) and m(vy, B) are called the linking number® and
the multiplicity of B at -y, respectively.

Observe that this value of the multiplicity coincides with the one defined in the
previous chapter. We state some basic facts.

Proposition 2.3. It is satisfied that:

e m(vy,B) > 1 and m(vy,B) =1 if and only if B is embedded;
e n(y,B) #0;
e ged(n(y, B),m(v,B)) = 1.

Remark 2.4. The construction of the linking number depends on a chosen orientation
of W. Changing the orientation of W has the effect of changing the sign of the linking
number.

Before proving the proposition, we establish a lemma.

Lemma 2.5. Consider the relative homology group Ho(W,0W U~). Then, there exists
an isomorphism

q: Ho(W,0W U~y) — Hy(0W), q:[] = [N W]

which sends the class [¥] of a proper surface (3,0%) — (W,0W U~) into the homology
class of XN OW oriented as the boundary of X. Moreover, this map satisfies that the
algebraic intersection number [X] - [n] of a class [X] € Ho(W,0W U ~) with a class
[n] € Hi(W\7) equals the algebraic intersection number q([X]) - [n] in H1(OW).

Proof. An application of the long exact sequence of relative homology groups for the
space W and the subspace W U provides a sequence

D Hy (W) 2 Hy(W,0W Uy) —2 H(OW Un) —=s Hy (W) —— ---

'In other literature this number is called the self-linking number.
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The space H1(OW U~) is the free abelian group generated by a, b and [y], and the
map ¢, satisfies that t.(a) = 0 and ¢.(b) = t«([7]) = [y]. This means that Im(9,) =
ker(e) ={n-a+m-b—m- [y]:n,m € Z}. Let ¢ : H;(OW U~) — H1(0W) be defined
by ¢ :(n-a+m-b+c-[y]) = n-a+m-b. Since Hy(W) = {0} the homomorphism 0,
is injective, and it follows that the map ¢ defined as ¢ = ¢ 0 0, is an isomorphism. The
claim about the intersection number follows by evaluating the intersection number of

an arbitrary class [n] with a meridian disk and with a local stable manifold. O
T
T DZ-
\ o N
(a) Proof 2.3. (b) Proof 2.7.

Figure 2.2: Local Birkhoff Sections.

Proof of proposition 2.3. For the multiplicity observe that the map ¢, : Hi(W\7y) —
Hy(W) induced by the inclusion of the corresponding spaces sends b — [v] and a +— 0.
So this map sends [o] = n-a+m-b — m-[y]. Since the Birkhoff section is a covering map
which preserves orientation when restricted to {0} x R/Z and {to} x R/Z is homotopic
to {0} x R/Z, it follows that there exists an orientation preserving homotopy between
the curve o and a positive multiple of v inside W. This implies that m > 1, and that
m = 1 if and only if B is embedded.

Now, for the linking number, we will show that item 3. in the definition 1.17 of
Birkhoff section, implies that n # 0.
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The intersection form in H;(W\7) is given in the basis {a, b} by the relations
a-a=0, b-b=0, a-b=1.

In terms of the intersection form on H;(W\~) the linking number of B satisfies that
n = [o] - b. Observe that since the flow is transverse to B and we have chosen an
orientation in W, then the flow induces an orientation on B. Consider the relative
homology class [B] € Ho(W,0W U ~) of the local Birkhoff section B oriented in this
way. Since B N OW is homologous to +[o] an application of lemma 2.5 above shows
that |n| = |[B] - b|.

To finish, we have to prove the existence of a closed curve £ in W\~ in the homology
class b whose intersection number with the surface B is not zero. Take a local transverse
section D at v and choose a point x € D N (W} .(v)\7y) sufficiently close to v such that
the orbit segment [z, Pp(x)] is totally contained in W\~y, where Pp is the first return
to the transverse section. Let’s recall that, by definition of local Birkhoff section, there
exists some T > 0 such that every orbit segment of length T sufficiently close to v will
intersect B. This means that if the point x is suitably chosen then for some positive
integer k it will be satisfied that [z, PE(x)] N B # (), as in figure 2.2a. If we define a
curve f3 concatenating [z, Pf(z)] with the segment inside D N W}, (v) joining Pg(z)
with = then [3] = k-b € Hy(W\7). Observe that the segment [z, Pf(x)] cuts B always
with the same orientation because it is an orbit segment. So, by a suitably small
perturbation of the curve B if necessary we can conclude that the intersection number
[B] - [A] is not zero, from where we derive our second claim.

For the last claim observe that B is an embedded surface in the complement of ~y
and so BN OW is a simple curve in OW. Since [o] = £[BNOW] € H1(OW) and this

curve has no auto-intersections it follows that ged(n, m) = 1. O

Homological intersection number in a punctured neighbourhood. We finish
this subsection with a formula that is useful to calculate the homological intersection
of closed curves (usually obtained as the concatenation of orbit segments with small
arcs) and the surface B. The intersection number of a closed curve n C W\~ with B
can be expressed in terms of the linking number and the multiplicity, according to the
following statement.

Lemma 2.6. Let [B] € Hy(W,0W U~) be the homology class of B endowed with the
orientation induced by the transverse flow and the chosen orientation of W, and let
M =i-a+j-b€ H(W\y) be the homology class of a closed curve n. Let n = n(~, B)
and m = m(vy, B) be the linking number and the multiplicity of B. Then, it is satisfied
that:
—im+nj ifn >0,
[B] - [n] = { im—nj  ifn<0.

For a proof see [13]. The proof there is done just for the case m = 1, but it can be
adapted to the more general case.
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1.2 Partition into quadrants.

Let’s assume that W is small enough such that the union of the local stable and unstable
manifolds separate W in four quadrants. Observe that the orientation of the meridian
a € Hi(W\y) induces a cyclic order on this set of connected components. The four
quadrants will be denoted by W;, + = 1,...,4, where the indices will be chosen to
respect the cyclic order of the quadrants. Each quadrant W; is homeomorphic to a
solid torus, and the map Hy(W;) — Hi(W\~) induced by the corresponding inclusion
sends a generator of Hy(W;) to the longitude class b € H (W\7).

Let D C W be a local transverse section and xp its intersection point with . Then,
the quadrants W1, ..., Wy determines four quadrants D; = DNW; in D. Observe that
the first return map Pp : V — D defined in a neighbourhood V of xp preserves the
quadrants, i.e. Pp(V N D;) C D; for every i =1,...,4.

Let B C W be a tame local Birkhoff section at v with linking number n and
multiplicity m. Then, because of the tameness hypothesis the four quadrants W; also
determine a partition of the annulus B into quadrants. Each of these quadrants can be
though of as a rectangle, whose boundary contains a segment of v and two segments
which are connected components of B N (Wj, () UW (7). Observe that the first
return map Pgp : U — B defined in a collar neighbourhood U of v sends any quadrant
of B into another quadrant.

Lemma 2.7. There are exactly 4|n| quadrants of B, and each quadrant W; contains
|n| of them.

If we choose a quadrant of B which lies in W7 and we call it B, then we can
inductively label the quadrants of B as By, ..., By, by declaring that Vj = 1,...,4|n/,
if W; is the quadrant that contains B; then Bj,1 is the quadrant adjacent to B; which
lies in Wiy1, @ = 1,...,4. We will always use this labelling for the quadrants of a
Birkhoff section.

Proof. For this proof we will consider that the boundary component B({1} x R/Z) of
the Birkhoff section as well as the boundary 9D of the transverse section are contained
in the boundary W of the tubular neighbourhood. This can be done by replacing W
by a suitable smaller tubular neighbourhood and then consider the corresponding the
intersections with B and D.

Let W; be a quadrant of W, Q C W, be a quadrant of B and D; C N; be the
corresponding quadrant of D. The surfaces ) and D; are properly embedded disks
inside the solid torus Wj, i.e. embeddings of the form (Q, 9Q), (D;, 0D;) — (W;, OW;).
So @ and D; are meridian disks in W; and they are properly isotopic. In each of these
surfaces we will consider the orientation induced by the transverse flow. Let x € int(D;)
be a point sufficiently close to y such that the orbit segment [z, Pp(z)] is contained in
int(W;). Choose a segment o¢ C int(D;) connecting Pp(x) with x and let’s define 5y as
the closed curve obtained by concatenation of [x, Pp(z)] with o, as illustrated in figure
2.2b. Since this curve is obtained by concatenation of an orbit segment with a segment
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inside D;, we can make a small perturbation of this curve around the segment oy and
obtain a curve {, which is transverse to the quadrant D; and cuts it once, with positive
orientation. So we have that the intersection number D; - 3 as oriented submanifolds
of W; equals one. We can further assume that the curve §) cuts any quadrant of B
transversely, with positive orientation. Since all the quadrants @) are properly isotopic
to D;, it follows that the curve /3, cuts once each quadrant of B inside W;. The fact
that D; - ) = 1 means that the homology class [3)] € H1(W;) ~ Z is a generator of
this group, and inside W\v the homology class [3y] € H1(W\7y) coincides with the
longitude b. Since the homological intersection number satisfies that |[B] - [5j]| = |n| it
follows that there are |n| quadrants of B inside W;. O

1.3 Projections Along the flow lines.

The main tool for our analysis of the first return map to a local Birkhoff section around
a topologically saddle type periodic orbit will be the projection along the flow over a
transverse section. The idea is to project in the complement of v the local Birkhoff
section B along the flow lines over a local transverse section D, to obtain a conjugacy
between the first return map Pp and some power of Pg. However, observe that pro-
jecting along the flow lines will never provide a continuous map from B to D because
these two surfaces are not homotopic as proper surfaces of W\~v. Nevertheless, under
the hypothesis of tameness for our local Birkhoff section it is possible to find a neigh-
bourhood U C B of v and construct a projection along the flow lines 7, defined from
U = U\y onto D\{zp}, where w C B is a segment which is a connected component
of the intersection of B with a local stable manifold, m, is a local homeomorphism in
the complement of the segment w, and the discontinuity defect over w is quantified by
some power of the first return map to D.

Let w be a segment which is the closure of a connected component of
B0 (Wipe(7) UWige(7)) -

Since the Birkhoff section is an immersed annulus B : [0,1] x R/Z — W which is an
embedding out of the boundary component that is mapped onto 7y, we can cut this
annulus along w and obtain an immersed compact strip, with two opposite sides that
are naturally identified with w. We will denote this strip by B,,.

Consider the universal cover W of W. Consider the pseudo-flow ¢; on W which is
the lift of ¢;. Let B, and D be a lift of B, and a lift of D respectively, and let 5 be the
lift of the orbit . Then, by the continuity of the flow there exists some neighbourhood
O of the compact segment 4 N B, and some T > 0 such that, for every z € O, the
orbit segment [p_7(z), dr(x)] intersects the disk D and exactly in one point. This
allows to consider a collar neighbourhood U of 4 N B,, inside O N B,, and to define a
map 7, : U — D of the form 7, (z) = ¢(s(x),z), where s : U — R is continuous and
bounded. Observe that all the points in 4 N U are mapped over the intersection point
Zp of D with 7, but we will not be interested in these points. So, we will just consider
the restriction 7, : (U\) — (D\{Zp}).
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Figure 2.3: Projection along the flow lines from a local Birkhoff section onto a transverse
disk. The discontinuity defect can be seen by projecting an essential curve inside B
onto D.

Since the universal covering map provides identifications of the section D with D
and of the strip B,, with B,,, we can regard 7, as a map m, : U — (D\{zp}) of the
form m,(z) = ¢(s(z),z), where U C B is a collar neighbourhood of «, and which is
bi-valuated over the segment w. A map 7, constructed in this way will be called a
projection along the flow from B to D.

Definition 2.8. Let B be a tame local Birkhoff section at «, D a local transverse
section which intersects + at the point xp, and let w be a connected component of
Bn (Wi (v) UWE.(7)). A local projection along the flow of B over D is a map my, :
Uw — (D\{zp}) of the form 7, (2) = ¢(s(x), z), where U C B is a collar neighbourhood
of ~, U, denotes U = U \y after being cut along w and s : U, — R is continuous and
bounded.

Every projection along the flow according to the previous definition arises as in the
previous construction. Observe that a projection along the flow depends on a particular
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choice of the segment w as well as particular choices of the lifts of D and B,,. For
notational simplicity we will often denote a projection along the flow as m : U— D
without making reference to the segment w, and to the fact that xp is not contained
in the image of this map.

Proposition 2.9. Let B be a tame local Birkhoff section at v with linking number n
and multiplicity m, and let D be a local transverse section. Let w be a segment of the
intersection of B with Wi () UWE (7). Letm =y, : U — D be a projection along the
flow defined as before, where U C B is a collar neighbourhood of v. We will enumerate
the quadrants of B as B, ..., By, in such a way that By and By, intersect along w.
Observe that for all the quadrants Bj contained in N; it is satisfied that j = i + 4r,
where 0 <r < |n|—1and 1 <i<4. Then, we have that:

1. The map Pp permutes cyclically all the quadrants of B that are contained in the
same quadrant N;, and in particular we have that PJ;' preserves each quadrant
Bj. Moreover, in the case that |n| > 1, let 1 < k,1 < |n| —1 be such that k =m
(mod |n|) and | = m~' (mod |n|). Then, the first return map to B permutes the
quadrants in the following fashion:

(a) Pp takes the quadrant Bj into { Bjia ifn >0,

Bj74l zfn < 0.
. B; ifn>0
k A j+4 )
(b) Pg takes the quadrant B; into { Bj4 ifn<o.

2. Let Bj be a quadrant of B where j =i+4r, 1 <i <4 and 0 <r < [n| -1
Let’s denote by U =Un Bj and 7 the restriction 7r|U Then, the m; takes U

homeomorphically onto its image in D; — {xp} and it is satisfied that:

(a) The homeomorphism 7 induces a local conjugacy between Pg” and Pp. That
is, for all z sufficiently close to v it is satisfied that m; OPW( ) = Ppom;(z),

Vi=1,...,4|n|;
(b) Let z € w= BN Biay| be a point. Then the discontinuity defect over w is
described by:

) Py omi(z) ifn>0,
7T4|n|(2) - { PBL O7T1(Z) if n < 0.

3. The projection along the flow depends on w and on a particular choice of a lift
of By to the universal cover. For a fix segment w we have that if m, and ),
are two projections then 3 k € Z such that w, = 7y o P}é, in a suitable common
neighbourhood of definition.

This proposition is a summary of many properties stated in [13]. We just provide
a proof of the first item above, and we refer to that article for a complete proof. The
main difference with the referred work is that they use m = 1, so the proofs can be
carried with the same arguments but taking care of the new combinatorics that appears
for general values of the multiplicity.
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Proof of item 1. We will first show that, given a quadrant of B, the points which are
sufficiently close to v will return to the same quadrant after |n| iterations of Pp, and
will touch once any other quadrant of B inside N; in the middle iterations. Let B; be
a quadrant of B contained in some quadrant N; of N, and let D; be the corresponding
quadrant of D. Let ﬁj =Un Bj and 7; : (ofj — D; be the restriction to the quadrant
Bj of the projection along the flow. The map ; is a homeomorphism onto its image.
Let’s consider a point z € U ; and define x = m;(2) € int(D;). If we choose z sufficiently
close to v then we can assume that:

o There exists a first return Pp(x) € int(D;) of the point z, and the segment
[z, Pp(z)] is contained in int(N;);

o Pp(x) € Wj(ﬁj) and if we define 2z’ = 7TJ-_1(PD($)) then the orbit segments con-
necting z with z and 2’ with Pp(z) are contained in int(N;).

The curve obtained as the concatenation of the orbit segment joining z with x followed
by [z, Pp(z)] and then by the orbit segment joining Pp(z) with 2’ is a curve contained
in an orbit segment, and contained in int(Nj;). It follows that z and 2z’ belongs to the
same orbit, and the orbit segment [z, 2'| is contained in int(N;). We want to show that
2= Pg‘(z). Take a segment oy : [0, 1] — int(D;) N 7;(U;) joining 0¢(0) = Pp(x) with
oo(1l) = x, and define a curve fy concatenating [z, Pp(z)] with og. Then, exactly as
in the proof of 2.2b, the homology class of this curve in Hj(N\7) is the longitude b
and we have that [B] - [fo] = |n|. Let o1 : [0,1] — ifj be the segment joining z’ with z
defined as o1 (t) = 7rj_1 ooy(t), and let 51 be the closed path obtained by concatenation
of [z, 2'] with o1. Observe that the map 7; can be realized as a homotopy that preserves
orbit segments by the formula 7%(u) = ¢(u,ts(u)), 0 < ¢t < 1, and this implies that
Bo is homotopic to f; inside int(N;). Then [B] - [f1] = |n|. Since the curve f; is a
segment of orbit contained in int(N;) followed by a segment inside the quadrant B;, we
can make a small perturbation of this curve supported in a neighbourhood of B; which
cuts B always with positive orientation, so in particular it will intersect B exactly |n|
times. So we have that the open orbit segment int([z, 2’]) cuts the surface B at |n| — 1
points, once for each quadrant contained in /V; and different from Bj;. It follows that
the point 2’ is the |n|-th intersection point of the positive orbit segment starting at
z with B, so 2/ = Pg'(z). Also, observe that the orbit segment [z,2] cuts all the
quadrants inside N; before returning to the starting quadrant Bj, so the first return
map permutes cyclically all the quadrants inside N;.

In order to prove 1(a), consider a point z € int(B;) sufficiently close to v such
that Pgb'(z) € int(Bj). To prove 1(a) let’s assume first that n > 0. Since the orbit

segment [z, sz | (z)] intersects once each quadrant in N; we know that there exists some
1 <1< |n|—1such that Pg(z) € int(Bjt4), and we want to determine [. Let [Pp(z), 2]
denote the curve that is obtained by reparametrizing with inverse orientation the orbit
segment joining z with Pg(z). Consider a curve « : [0,1] — B; U Bj11 U---U Bj g
connecting «(0) = z with a(1) = Pp(z) and let’s define 7 as the closed path that is
obtained as a concatenation of a with [Pg(z),z]. We claim that the homology class
of n in Hy(N\7) ~ Z? is (I,q) in the basis given by the meridian and the longitude,
where ¢ is some integer. To see this, observe that we can assume that there exist



42 Chapter 2. Orbital equivalence and Birkhoff sections.

to =0 <t <--- <ty =1such that a(t,) € int(Bj;,) and each segment «([t,,t,41])
intersects the boundary of the two quadrants it connects in exactly in one point, and
has no intersections with the boundary of any other quadrant. Let S be a connected
component of W} (v)\y. Then, since the curve 7 is the concatenation of a with a
segment contained in int(N;), it cuts S exactly [ times and with positive orientation,
from where it follows the claim. Also, since the segment [Pp(z), z] is transverse to B
at its endpoints and cuts it with negative orientation, and since « is tangent to B,
then the homological intersection number satisfies [B] - [n] = —1. Using 2.6 we can
see that [B] - [n] = =1 = —l-m + ¢-n. So we conclude that [ = m™! (mod |n|)
when n > 0. For negative linking number the reasoning is analogous, but instead of
a we will consider a curve o : [0,1] — Bj U Bj_1 U---U Bj_y such that ¢/(0) = =
and /(1) = Pp(z), and we will define ' = o' - [P(z),2]. In this case it follows that
'] = (=, q), and using the formula in 2.6 corresponding to negative linking number
we see that [B] - [n/] = —1 = (=I') - m — q - n, from where we conclude that I’ = m~1
(mod |n|) also for the case n < 0.

The proof of 1(b) is similar to the previous one. Assume first that n > 0. We now
that there exists some 1 < k < |n| — 1 such that PE(z) € int(Bji4), and we want
to determine k. Let [PE(2),2] denote the curve that is obtained by reparametrizing
with inverse orientation the orbit segment joining z with Pg(z). Consider a curve
a:[0,1] = BjUBj11UBj12UBj43U Bjy4 connecting a(0) = z with a(1) = P(z) and
let’s define 7 as the closed path that is obtained as a concatenation of a with [PE(z), 2].
It follows that the homology class of n in Hi(N\v) is (1,q), where ¢ is some integer,
and [B] - [n] = —k. Applying 2.6 we get that [B]-[n] = —k = —m + ¢ - n, which implies
that k = m (mod |n|). When n < 0, there exists 1 < k' < |n| — 1 satisfying P§ (2) €
int(Bj_4). In this case we will consider o : [O, 1] — Bj U Bj_l U Bj_g U Bj_g U Bj_4
such that o/(0) = z and /(1) = PE (2) and 7/ = o/ - [PE (2), 2]. Proceeding in the same
fashion as before we can see that k£’ = m. This concludes the first item. t

1.4 Deformation by flow isotopies, equivalence and existence of tame
Birkhoff sections.

Observe that the combinatorial description that we have made in the previous para-
graphs depends just on the homology coordinates of the embedding (B,9B) < (W, 7).
That is, if we change the local Birkhoff section for an isotopic one that is also tame,
then we obtain the same relations between projections along the flow and first return
maps as described in proposition 2.9. Here, isotopy must be understood in the sense
of flow-isotopy defined in 3. Let’s explain this more precisely.

Definition 2.10. Let ¢ : M — M be a non-singular regular flow.
1. If 0 : (2,0%) — (M,T) and / : (¥,0%) — (M,TI”) are two Birkhoff sections, we
will say that they are ¢s-isotopic if X2 = +(X)\I is ¢¢-isotopic to X' = /(X)\I".

2. If B and B’ are two local Birkhoff sections at ~y, we will say that they are ¢; —
isotopic if there exist neighbourhoods U C B and U’ C B’ of vy and a continuous
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and bounded function s : U — R such that the map ¢ given by P(x) = gb(s(:n);x),
x € U, defines a homeomorphism between U and U’. Recall the notation U =

U\y.

If two transverse sections are equipped with first return maps, then a ¢;-isotopy
between the transverse sections allow to construct a conjugation between the first return
maps, and different ¢;-isotopies differ in the application of some power of the first return
map. The following lemmas assert this for the case of Birkhoff sections, and can be
deduced from lemma 1.13 in the first chapter.

Lemma 2.11. Let ¥ and X' be two Birkhoff sections for the flow ¢; which are ¢;-
isotopic, and let ¢ : ¥ — X! be a ¢4-isotopy. Then:

1. wOPZ:PE/O¢7

2. If ' is another ¢;-isotopy then 3 N € Z such that ¢’ =) o Pév.

Lemma 2.12. Let B and B’ be two local Birkhoff sections at v which are ¢;-isotopic,
and let ¢ : U — U’ be a ¢s-isotopy. Let’s also assume that the first return map Pg is
defined for every point in U. Then:

1. Up to shrinking the neighbourhoods U and U’ if necessary, it is satisfied that
o Pg(x) = Pp o(x), for every x € U;

2. If 9’ is another ¢y-isotopy then I N € Z such that ' (z) = 1 o PY (), for every
x € U sufficiently close to ~.

Let’s come back now to the case when v is a saddle type hyperbolic periodic orbit.
Let B and B’ be two tame local Birkhoff sections at ~y. If there is a ¢;-isotopy between
these two sections it follows that they have the same linking numbers and the same
multiplicities. It turns out that the linking number and the multiplicity completely
determine the classes of tame local ¢ -isotopies of local Birkhoff sections at ~.

Lemma 2.13 (Lemma 3.6 from [13]). Let B and B’ be two local Birkhoff sections on
a saddle type periodic orbit v. Then B is ¢-isotopic to B’ if and only if n(vy, B) =
n(vy, B") and m(vy, B) = m(y, B’).

For a proof of this lemma see [13], Lemma 3.6. In this reference the proof is done
just for the case when m(~y, B) = 1, but can be adapted to our more general setting.

The following proposition will be used for the proof of theorem 2.16. It states that
given two ¢-isotopic local Birkhoff sections B and B’ at +, it is possible to interpo-
late them to create a new local Birkhoff section that coincides with B’ near v and
with B outside a neighbourhood of 7. Observe that tameness is not demanded in the
hypothesis.
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Proposition 2.14 (Lemma 3.7 from [13]). Let B and B’ be two tame local Birkhoff
sections on a saddle type periodic orbit v, with the same linking number and the same
multiplicity. Then, there exists a neighbourhood W of v such that: For any neighbour-
hood O C W there exist another neighbourhood O C O and a continuous and bounded
function s : W\y — R such that the map ¥(u) = ¢(s(u),u) defines an ¢ -isotopy onto
its image, and

1. (u) € B, for allue BN O/,

2. (u) = u, for allu e BNW\O.

To finish this section, we make some comments about the tameness condition defined
at the beginning. General (local) Birkhoff sections need not to be tame. Nevertheless,
the techniques in the previous proposition allow to modify any given Birkhoff section
in a neighbourhood of the boundary components and obtain a tame one. We state it
as a proposition. See the work referred at the beginning for a proof.

Proposition 2.15. Let ¢ : (X,0%) — (M,I") be a Birkhoff section for such that all
its boundary components are topologically saddle type periodic orbits of (¢, M). Then,
given any neighbourhood W of I' (that one can think as a finite union of tubular neigh-
bourhoods around each curve in T') there exists a Birkhoff section /' : (X,0%) — (M,T),
with image X' = /(X), satisfying that:

1. SN (M\W) =3 N (M\W),

2. Y is tame,

Moreover, in the case that the flow ¢; is C*, k > 1, the section ¥! can be chosen to be
of class C* near the boundary.

2 Orbital equivalence and Birkhoff sections.
For i = 1,2 consider a non-singular regular flow (¢!, M;) defined on a closed 3-manifold
M;.

Let ¢; : (X;,0%;) — (M,T;) be a tame Birkhoff section, equipped with a first return
map P; : 3; — ;. In the same way as in 5, we denote I'; = {+4,...,7%} and we denote

0% =CjU---UCt, U UCK U---UCH,
in such a way that C{, U---U Clipk = 1;'(vi). Given a homeomorphism h : 1 — Do,

even if h is not defined on the boundary, it defines a bijective correspondence h, :
C; = h«(Cy;) between the components of 9%1 and 9¥,.
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Theorem 2.16 (Theorem A). Assume that every 'y,i is a topologically saddle type
closed orbit whose local stable and unstable manifolds are orientable. If there exists a
homeomorphism h : 31 — X9 that conjugates the first return maps, and if it is satisfied
that:

m(v, $1) = m(hi(74), S2),
n(vk, 51) = n(ha (1), S2),

for every fy,% in 'y, then for every neighbourhood W of I'y there exists a homeomorphism
Hyy : My — My such that:

(a) Hyw is a topological equivalence between (¢, M) and (¢?, Ms);

(b) Hy(x) = h(x), for every x € ¥1\W.

Remark 2.17. The first return map P, : 2011 — 2012 defines a permutation of the bound-
ary components of ;, and the orbits of this permutation are the sets {C}, ... ,C,ipk}.
Recall as well that p, = p(fy,i, Y;) is the number of local connected components of ¥;

at 7,1. Thus, if a homeomorphism h conjugates the two first return maps, it is implicit
that

p(’)/li?zl) = p(h*(’)/li)a EZ)v for every k=1,..., K.

Theorem 2.16 follows from a local version that we immediately state.

The local version

For i = 1,2 consider a topologically saddle type periodic orbit 4% of a flow ¢% : M; —
M; such that their local stable and unstable manifolds are orientable. Let B; — M;
be a tame local Birkhoff section at ¢, and assume that there exists a local conjugation
h: (B1, Pp,)yt — (B2, Pp,)2 between the first return maps Pp,. By lemma 1.9, we
have that for every sufficiently small neighbourhood W; of 4!, the homeomorphism h
induces a homeomorphism

H : Wl\’}/l — WQ\’)/Q,

where Wj is a neighbourhood of 42, which is an orbital equivalence between the pseudo-
flows d)f; obtained by restriction to sets Wi\'yi, and whose restriction to B1NW7 coincides
with h.

Theorem 2.18. Consider a homeomorphism H : W1\71 — W2\727 where W1 and Wo
are neighbourhoods of v* and v? respectively, which verifies that

(a) H: (¢}, Wi\!) — (¢2, Wo\y?) is an orbital equivalence,

(b) H(z) = h(z) for every x € By NWy.

If it is satisfied that
m(~t, By) = m(~y?%, Bs) and
n(,‘yl7 Bl) = n(,YZ? B2)7
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then for every neighbourhood N C W1 there exists a homeomorphisms Hy : W1 — Wy
such that:

(a) Hy is a local orbital equivalence between (¢f, W1).,1 and (¢F, Ws).2
(b) Hy(z) = H(x), for every x € Wi\N.

Remark 2.19. In general, an orbital equivalence H : (¢}, Wi\!) — (67, W2\¥?) that
coincides with h over the Birkhoff sections B; does not extend to a homeomorphism
between W7 and Ws. This is because, in general, the homeomorphism A : By — By
does not extend to the boundary. (cf. the comment on the introduction.)

We will show that, given some neighbourhood N C W of 4!, it is possible to modify
H inside this neighbourhood and obtain a new homeomorphism Hy that extends as
an orbital equivalence over the whole sets W;.

Proof of theorem 2.16. Take two flows ¢! as in the statement of 2.16. The homeo-
morphism h : ¥ — 3 that conjugates the first return maps P; gives a topological
equivalence

H : (¢}, M{\T'1) = (67, M2\TI'3), (2.3)

which satisfies that H(z) = h(z), for every = € 3 (cf. section 4.1).

We will prove the theorem assuming that I'; consists of exactly one periodic orbit
4% € M;. Since the argument that we will do is purely local, the general case can be
deduced by applying this argument in a small neighbourhood of each period orbit in
r;.

Let CY,... ,C’;, denote the boundary components of 3;, all of them mapped onto
~'. Let W C M, be a neighbourhood of '. Then, up to shrinking W if necessary
it follows that ¢1(31) N W has p connected components Bi, ..., By, each one a local
Birkhoff section.

Let Wi = W, Wy := H(W;\y') U+? and consider the restriction H : Wi\y! —
Wo\v2. Then, this homeomorphism is an orbital equivalence between the open sets
W;\~v*. More over, if By is one of the components of ¢1(X1) N W7 and B? = h(B}), then
H coincides with h over Bi\y! and h is a local conjugation between the return maps
to the sections Bj. So we are in the hypothesis of theorem 2.18. Given an arbitrary
neighbourhood N C Wi, there exists a local orbital equivalence Hy : W7 — Wy such
that Hy(z) = H(x), for every x € Wi\N. We define Hyy : M; — M such that

Hy (x), if x € Wi
Hw () = { H(z), ifze M\N.

Then Hy is a well defined homeomorphism, and is clearly an orbital equivalence.
Observe that, since Hyy coincides with H outside N, then Hy (z) = h(x), for every
x e X \W. O
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2.1 Proof of theorem 2.18.

All this section is devoted to prove theorem 2.18. Let’s consider an orbital equivalence

H: (Qb%a Wl\’yl) - (QZ)%’ W2\72) (24)

such that its restriction to the interior of the Birkhoff section Bj coincides with h :
By — éz, as in the hypothesis of 2.18. Observe that if we replace the neighbourhoods
W; by smaller neighbourhoods W/ C Wj, then it is enough to prove the theorem for
these new neighbourhoods. We will shrink the size of the W; several times in the course
of the proof. Theorem 2.18 relies in the following proposition.

Proposition 2.20. For ¢ = 1,2 consider a topologically saddle type periodic orbit
vt of a flow ¢ : M; — M; such that their local stable and unstable manifolds are
orientable. Let B; be a tame local Birkhoff section at ~' and assume that there exists a
local conjugation h : (B, P, )1 — (B2, Pp,),2 between the first return maps Pp, .

For each orbit 4% let D; be a local transverse section. Let x* = yi N D; and let
71 (Bi)i = (Di)i be a projection along the flow. If it is satisfied that:

m(’yl,Bl) = m(’y2,Bg) and
n(,.)/l?Bl) = TL(’Y2,B2)7

then there exists a homeomorphism hp : D1 — Dsy satisfying that:

(a) hp is a local conjugation between (D1, Pp, )1 and (D2, Pp,),2,

(b) 3 a collar neighbourhood Uy C By of the curve ' such that hp o wl(x) = 72 o h(x),
Vxel.

For each orbit 4% consider a local transverse section D; and a projection along the
flow 7' : (B;).i — (Ds),i, as defined in 2.8. Because of our hypothesis about linking
numbers and multiplicities we can apply proposition 2.20 and obtain a homeomorphism
hp : D} — D4 satisfying (a) and (b), where D) C D; are smaller transverse sections.
Using proposition 1.11 we see that there exist a tubular neighbourhood W/ of each ~*
and a local orbital equivalence

Hp : (¢7, Wi)p — (67, W3)y2 (2.5)

such that Hp(z) = hp(x), for every x € Dj N W/{. Without loss of generality we can
assume that Wi = W{. That is, we can assume that the two homeomorphisms H and
Hp have the same domain.

Theorem 2.18 follows directly from the following proposition.

Proposition 2.21. For every neighbourhood N C Wy of v' there exists another neigh-
bourhood N' C N and a local orbital equivalence Hpy : (¢%,W1)71 — (qb%,Wg),yz such
that:
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(a) Hy(x) = H(x) for every x € W1\N,
(b) Hy(z) = Hp(x), for every z € N'.

We dedicate the rest of this section to prove 2.21. The proof of 2.20 will be post-
poned to section 2.2.

Proof of 2.21

We start by writing a scheme of the steps in the proof, and then we show each step.

Scheme of the proof.

Consider a neighbourhood N C Wj. Let’s denote N; = N.

Step 1 For every neighbourhood O; C W of 4! we can find a smaller neighbourhood
O} C Oy and an orbital equivalence F : (¢f, Wi\v!) — (¢7, Wa\7?) such that:

(a) F(x) = H(x) for every z € By N (W1\01),
(b) F(z) = Hp(z) for every z € B; N O).

Step 2 We will find a collection of neighbourhoods

e Nj COj COy CNy CWy,
e N, C O, C Oy C Ny C W

Let’s define V; = N;\O; and V/ = O;\N/. If these neighbourhoods are suitably chosen,
we will be able:

e to make an interpolation along the flow lines between H and F' supported in the
region V1, and obtain an orbital equivalence Hy : (¢f, V1) — (67, Va) satisfying
that:

(a) Hy(x) = H(x) for every x € ONy,
(b) Hy(z) = F(x) for every z € 00q;

e to make an interpolation along the flow lines between Hp and F supported in the
region V{, and obtain an orbital equivalence H{, : (¢, V{) — (¢7, VJ) satisfying
that:

(a) H{ () = F(x) for every z € 901,
(b) H{,(z) = Hp(x) for every x € ONJ.
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Step 3 We will define Hy in the following way:

H(x) if xe Wi\,

Hy(z) if z e Nj\Oq,

Hy(z) =< F(z) if xze€0\0}, (2.6)

Hi(z) if xe€O\N],

HD(x) if :EEN{.

Observe that Hy is well defined in all the boundaries N7, 00}, 001, N, and gives
rise to a local orbital equivalence satisfying the conclusion of 2.21.

Step 1: The construction of F

Lemma 2.22. Let O C Wy be a tubular neighbourhood of 4. Then, there exists
another tubular neighbourhood Oy & O1 and a homeomorphism F : Wi\y! — Wo\~?
satisfying that:

(a) F:(¢f, Wi\7Y) — (92, Wa\y?) is an orbital equivalence,

(b) F(x) = H(x) for every x € B1\O1,

(¢) F(z) = Hp(z) for every z € BN O.

Let’s define
S={Hp(z):z € BiNnWi}. (2.7)

Then S is a local Birkhoff section at 2. Observe in addition that S satisfies that
m(y',S) = m(+2, By) and n(y',S) = n(y?, Bs). Following proposition 4.1 we see that
By and S are ¢?-isotopic. Our next goal is to deform By pushing along flow lines
and obtain a new local Birkhoff section Bj, that coincides with By outside a tubular
neighbourhood O, of the orbit 4% and coincides with S in a smaller neighbourhood
0/2 C Os.

Lemma 2.23. Let Oy C Wy be a neighbourhood of v2. Then, there exist a smaller
neighbourhood Oy C Oa, a local Birkhoff section BY at v* and a homeomorphism 1) :
By — B!, such that

1. B5\Og = B2\O2 and B, N O4Y = SN 04,

2. 1 is an isotopy along the ¢?-orbits and satisfies that 1(y) =y, ¥V y € B2\Oo,

3. if v € By satisfies that h(x) € By N Ol then (h(z)) = Hp(x).
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Proof. As usual we will denote S=9 \2. Let’s start by constructing a ¢?-isotopy from
By to S. By proposition 2.13 there exists a collar neighbourhood U, C Bs of the curve
72 and a continuous and bounded function s : Uy — R such that the map

¢ : Uy — S\y* defined by p(y) = ¢*(y, s(y)) (2.8)

is a ¢?-isotopy from U into S.

Consider U; = h='(Uy) C B;. We will chose the neighbourhoods U; sufficiently
small, such that they are contained in the domain of definition of the projections 7 :
(Bi)yi = (Di)gi- Let Ps be the first return to the local Birkhoff section S.

Lemma 2.24. There exists k € Z such that ¢(h(z)) = Pk o Hp(x), for every x € U).

We postpone the proof of this lemma to the end. As a consequence this lemma, up to
shrinking the size of U; if necessary and composing with some power of Pg on the left,
we can assume that p(h(z)) = Hp(x) for every z € Uj.

Given a neighbourhood Oy C W5 of 42, we can use proposition 2.14 and find another
neighbourhood O) C O and a continuous and bounded function s : ég — R, such
that the map .

vy 2y, s'(y), y € By (2.9)

satisfies the following

1. The image Bj = )(By) is a local Birkhoff section and 1 : By — B is a flow
isotopy,

2. Y(y) =y for every y € Bs\Os,
3. Y(y) = @(y) for every y € By N O},

The neighbourhood 0%, the section B) and the map v satisfy the properties claimed
in lemma 2.24. To complete the proof it rest to prove 2.24.

Proof of lemma 2.24. Recall that the homeomorphism hp satisfies properties (a) and
(b) of 2.20 and that Hp coincides with hp over the transverse section D; N W;. Recall
also that for every point z € W; we denote the connected component of O%(z) N W;
that contains z as O%,Vz(z) We claim that if 2 € Uy then Ofy, (Hp(z)) coincides with
(9‘2,[,2(11(:6)). Since the projections along the flow preserve orbit segments, it is satisfied
that ‘ ‘ ‘
Ow, (2) = Oy, (7'(2)), Vz € U;.
So we have that
Oy, (Hp()) = Hp(Oy, (2)) = Hp(Oy, (z'(2))) = Ofy,(Hp o ' ().

Since Hp o w!(z) = hp o 7l(x) and by 2.20-(b), the last term of the previous equality
is equal to
Oy, (hp o' (z)) = Oy, (1% 0 h(z)) = O, (h(x)),
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so the claim follows. Now, since ¢(h(z)) is a point in S whose orbit segment inside
Wy equals that of Hp(x) we deduce that ¢(h(z)) = P¥ o Hp(x) for some k € Z. By
the continuity of the flow this integer must vary continuously with respect to x, so it
is constant. This completes the lemma. ]

As a corollary of 2.23 we have the proof of 2.22.

Proof of 2.22. Let V C Bj be a collar neighbourhood of ! contained in the domain
of definition of the first return map Pp,. Let V be the union of all the compact orbit
segments connecting each point in V' with its first return to B;. Up to shrinking the
size of the neighbourhoods W; if necessary, we can assume that Wy C int(V).

Given Op C Wi consider Oy = H(Op). Then, 2.23 gives another neighbourhood
Ol C Oy, a section Bh and a ¢Z-isotopy ¢ : By — Bj. Let’s define O) = Hp'(0})
and k' : By — B} given by h'(z) = 1 o h(z). Then, the homeomorphism A is a
local conjugation between the first return maps to the Birkhoff sections B; and B
respectively. So it induces an orbital equivalence F' with domain V\7! that coincides
with &’ over B; NV. Since Wy C int(V) we can consider its restriction to Wi\~2, that
is F: Wi\y! — Wa\y2. It is direct that F coincides with H over B;\O; and with Hp
over B; N 0. O

Step 2: The interpolation

We start by describing how to choose the neighbourhoods N/ ¢ O} € O; C N;.
Given a regular tubular neighbourhood O; C Nj of 4! consider the annulus A =
B; N N1\O;. We claim that if O; is sufficiently small, then there exists a compact
annulus K with non empty interior and contained in int(A), such that Pp, (K) C int(A).
The claim follows directly by examining the first return map in By.

A tubular neighbourhood is said to be regular if its closure is a submanifold home-
omorphic to a compact disk times an interval. Given N1 = N we will chose a family of
regular tubular neighbourhoods N{ C O] C O C Nj in the following way:

1. Choose O; C Nj such that there exists a compact annulus K with non-empty
interior contained in A; = By N N1\O1, which satisfies that Pp, (K) C int(A;),
2. Choose O] C Oq given by 2.22,

3. Choose Ni C O] such that there exists a compact annulus K’ with non-empty
interior contained in A} = By N O}\Nj, which satisfies that Pp, (K') C int(A}).
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Let F: Wi\y' — Wa\y? given by 2.22 for the chosen neighbourhood O;. We will
define as well:

1. Ny = H(Ny),
2. 02 = F(Ol) and Oé = F(Oll),

3. Ny = Hp(N)).

Let’s define V; = N;\int(O;) C M; and V/ = O/\int(N}) C M;. Since the neighbour-
hoods that we consider are regular tubular neighbourhoods it follows that V; and V; are
homeomorphic to a closed annulus times a circle. The topological equivalence Hy will
be an interpolation between H and F' over the set V; and between Hp and F' over the
set V/. We describe first the topology of these interpolating sets and then we indicate
how to make these interpolations over V; and V5.

The Interpolating Neighbourhoods.
Consider the compact sets

V; = N;\int(O;) C M; (2.10)
V! = O)\int(N}) C M;. (2.11)

From now on we will concentrate just in V;, ¢ = 1,2, since all the arguments will be
analogous for V/. The boundary components of each V; are dN; and O;. The compact
annulus A; = B; NV, is a properly embedded surface in V;. Consider the compact
annuli with non empty interior K7 = K C int(A4;) and K = h(K) C int(Asz). Each K;
divides A; into three annuli as in figure 2.4. We will name the boundaries of K; as «;
and (; according to this figure. The map h restricts to a homeomorphism h : A; — Ao
which defines a conjugacy between the return maps Py, : K; — A;.

As in definition 1.8 in the first chapter, we will consider the set
Ki={¢i(u) :ue K;,0 <t <7(u)} (2.12)

where 7¢(u) is the time of the first return to B; of a point v € K;. This set is the
union of all the compact orbit segments joining a point v € K; with its first return
Pk, (u) = ¢*(u, 7% (u)). Observe that these orbit segments are disjoint from the boundary
components of V; so it is satisfied that IC; C int(V;). Since we have that H|g, = F|g, =
h|k, then it is verified that Ko = H(K1) = F(Ky).

The annulus A; is an essential surface in V; and the complement of IC; U A; has
two connected components. We will call C; and D; to the closure of these components,
where the first one is the component that contains dN; in its boundary and the second
one is the one that contains 0O; in its boundary. So, we have a decomposition

V. =C; UK; UD;
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Figure 2.4: The sets V; and the annuli A;.

of the neighbourhood Vj into three closed sets.

If we cut the set V; along A; we obtain a manifold V; homeomorphic to the product of
A; with a closed interval that we have depicted in figure 2.5. This manifold is equipped
with a map ‘7, — V; which corresponds to glue back the two copies of A;. The three
sets C;, KC; and D; lift into 171 and gives a decomposition

Vi =C;UK; UD;

into three compact sets, each one homeomorphic to an annulus times an interval. The
components C; and D; are disjoint, and they intersect ; along the annuli L, and Lg,
respectively, as in figure 2.5.

Observe that the foliation by orbit segments in V; lift into a foliation by segments
in V; which are transverse to the copies of A;. Let’s denote by E? to the copy of A;
where the lifted orbits point inward the manifold V; and by ﬁzl to the other one where
the orbits point outward. For every point u € K; the orbit segment connecting u with
its first return to A; is parametrized by s +— ¢'(u, s), s € [0,7¢(u)], and it lifts into K;
as a compact interval connecting the two copies of A; inside ‘71 So the set IAC, is a union
of compact segments joining the two copies of A;, and we can put coordinates

Ki — {(u,s) € Ki x [0,400) : 0 < 5 < 7%(u)}. (2.13)

The Construction of Hy and Hj,.

Lemma 2.25. For the neighbourhoods N} C O} C O; C N; previously chosen, there
exists homeomorphisms Hy : Vi — Va and H{, : V] — V3 satisfying that:
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Figure 2.5: The sets V;. We have depicted two orbits segments lifted into VZ, one inside
the set K; which connects AO with Al and the other one inside the components C;.

(a) Hy : (¢1,V1) — (¢2,Va) is an orbital equivalence,
(b) Hy(x) = H(x) for every x € Ny,

(¢) Hy(z) = F(zx) for every x € 00;;
and

(a) Hi, : (¢1,V]) — (¢2,V3) is an orbital equivalence,

(b) Hy,(z) = F(x) for every x € 00},

(¢) Hy(xz) = Hp(x) for every x € ONj.

Proof. We will just do the construction of Hy, being analogous the other one. The key
fact to prove 2.25 is that H(x) = F(z) = h(x) for every x € B; N V. Observe that,

since Ko U Ag = H(K; U A1) = F(K1UA;) and H|a, = Fl|a, = h|a,, it follows that
H(Cy) = Cy and F(D;) = Dy. We will be interested in the homeomorphisms

H:CTUKi = C UK,
F:KiUD; — KaUDy
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obtained by restriction of H and F' to the sets C; U K1 and K; U Dy, respectively. We
will interpolate them over the closed set K. Let

f]:éleiél —)52Ui€2

F:’ElUﬁl —>l€2uﬁ2
be the lifts of these maps to f/z Since H and F' preserve the oriented orbit segments
and coincide with h over Ky, we can use the coordinates 2.13 and write, for every point
(u,s) € Ky,

H(u,s) = (h(u),0(u, 5)) (2.14)

F(u, s) = (h(u),n(u, s)), (2.15)
where each function 0(u,-), n(u,-) is an increasing homeomorphism between the seg-
ments [0, 7! (u)] and [0, 72(h(u))], continuously parametrized over u € K;. Observe that

for every 0 < r <1, it follows that the convex combination r - 6(u,-) + (1 — ) - n(u, -)
is also an increasing homeomorphism from [0, 71(u)] to [0, 72(h(u))].

Let p : K1 — [0,1] be a continuous function such that p = 1 in a neighbourhood
of @y and p = 0 in a neighbourhood of ;. We will define a map Hy : Vi = Vs in the
following form: for every Z € Vi,

H(%) if 7€,

Hy(#) = { (h(w), plu) - 0(u, ) + (1 - p(w) -n(u.s)) if &= (u,s) €Ky, (216)

F(%) if ieD.

The map H v is a well defined homeomorphisms that preserves the foliations by (the lifts
of the) orbit segments. It coincides with H over 51 and with F over 251 Observe also
that, because of the particular election of the function p, it follows that Hy coincides
with H in a , neighbourhood of Lo, = C1 N Ky and with F in a neighbourhood of
Lg, = IC1 N D1 By construction, over the union AO U A1 the map HV coincides with
the homeomorphism 7 : AO U A]L — AO U Al that is obtained by lifting h : A1 — As to
Vi So, if we glue back the two copies of A; inside V; then Hy induces a homeomorphism

S VR 74 (2.17)
which satisfies that:
(a) for each 2 € V; the map Hy takes each oriented orbit segment Oy, (x) homeomor-
phically onto the orbit segment (’)‘2/2 (Hy (z)) preserving orientations,
(b) Hy coincides with H over the set Cj,

(¢) Hy coincides with F' over the set D;.
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Step 3: The construction of Hy

To finish the proof of 2.21 just observe that the original neighbourhood Wj can
be decomposed as the union of five compact manifolds which intersect along boundary
tori, i.e.

Wi = Wl\Nl uWiuJ 01\0,1 U ‘/1/ U N{

The homeomorphisms H, Hy, F, H{, and Hp match well along the boundaries and
give rise to the homeomorphism Hpy as we defined in 2.6. It is an orbital equivalence,
since it is when restricted to each piece of the decomposition of W7, and clearly satisfies
the properties stated in 2.21. This concludes the proof of 2.21 as well as the proof of
2.18.

2.2 Proof of proposition 2.20

We recall from section 2.8 that a projection along the flow
o (Bi),yi — (.Dl)xz
is a map of the form 7 : Ul\wl — D;, where:

o

e w; is a connected component of (Wj,.(v*) UWE.(v")) N B;,
e U; C B; is a collar neighbourhood of 7¢,

° Ul\wz denotes the annulus Uz = U,;\'yi cut along w;.

This map is obtained by lifting B;|w; and D; to the universal cover of a tubular neigh-
bourhood of 4% and then projecting along the flow lines in a neighbourhood Ul|wl We
can think 7% as a map U; — D;\{z'} which is bi-valuated over the segment w;. If we
call m; and n; to the multiplicity and the linking number of B;, then 7’ induces a (local)
conjugation between ng and Pp, and the discontinuity defect over w; is quantified by
Py, See proposition 4.1.

Proof of 2.20. Let n = n(y', B1) = n(y?, Bs) and m = m(y, B1) = m(v?, B2). Let
U; C B be a collar neighbourhood of ! and let Us = h(U;). We will choose Uj
sufficiently small such that each U; = U;\"* is contained in the domain of definition of
Pp, and in the domain of definition of 7'. Let’s denote by w; to the segment in By
that we use to cut off and define 7!, and let wo C By be the segment that corresponds
by h. We will assume that each segment wj is a connected component of B; N W (7).
Consider the segment v; C D; that equals the intersection of D; with the branch of
W .(v') that contains w;. Observe that 7¢ projects the points in the segment w; into
the segment v;.

We will prove first the proposition when n = m = 1, and then we will comment
how to deduce the general case using proposition 2.9.
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Casen=m=1

Since n = 1 we have that each Birkhoff section B; can be partitioned into four
quadrants. Following the convention of proposition 2.9, we will label the quadrants of
D; and the quadrants of B; as

D;, s=1,...,4,
B, s=1,...,4

in such a way that D} and D? intersect along the segment v; and B} and Bf intersect
along w;. See figure 2.6. We will consider as well the boundaries of the quadrants

v :UZ-l = D{n D}, UZ-Q = DinD?, U? =DInD?, U?:D?DD%

w; = w} = B{ N B}, w? =B NB} w}=BnNB: w!=B}nNB}.
Observe that for every s = 1,...,4 the map h takes points in Bf, Df, wi and v{ into
B3, D3, w; and v3, respectively. The restriction of 7* to the quadrant B} gives a map

7l B NU; — Di\{x'}

which is a homeomorphism onto its image and takes points in w; into v;. Let’s denote
by 7s to the inverse map

Ns = (7751)_1 VN Df\{ml} — Bj.

Let V C n'(U1) U{2'} be a neighbourhood of z!. We will start by constricting hp
in each quadrant V' N Df. For every s = 1,...,4 let h}, : V. N D{ — D3 be defined in
the following way:

n2ohons(x) if z#zl,
hp(x) = (2.18)
x? if »=al.
We claim that each hf, is a homeomorphism onto its image. Observe that n, takes
points in D\ {z'} into the quadrant Bf, h takes points in B§ into the quadrant Bj
and then 72 projects Bj into the punctured quadrant D3\{z?}. Since each map is a
homeomorphism onto its image then h%, takes V N D{\{x!'} homeomorphically onto
its image in D§\{22}. Since the projections along the flow send points near 4% in the
Birkhoff section to points near ! we see that h$, is continuous in z! and the claim
follows.

We define now hp : V — Ds such that
hp(x) = hp(z) ifz € D}, s=1,...,4. (2.19)

We will show that h is a well defined map, that is a homeomorphism onto its image
and conjugates the first return maps Pp, for points close to z*. To see that hp is well
defined we have to check the definition of hp over the boundaries v{, s = 1,...,4 of
the quadrants Dj. If x belongs to some segment v for s = 2,3,4 then we have that
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O
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1 2
\Dl %
2l U% .

Dy Dy

Figure 2.6: The closed curve starting at = € v} lift by the maps 7, to a curve that
connects y = n1(x) with Ppg, (y) = na(x).

ns—1(w) = ns(x). This is because the maps 7i_; and 7 coincides over the segment w;
which separates the quadrants Bf_l and B;. It follows that

Ry (x) = w2 o hons(z) = m2_y o hons_1(z) = hiy L (z), for every z € v,

so the map hp is well defined in the segments v?, v? and v7.

We will use now proposition 2.9 to show that hp is well defined and continuous over
the segment vi. By this proposition we have that 7i(z) = PD_il omi(z) =} o Pgil(z),
for every z € wi. So it follows that ny(z) = Pp, o n1(z) for every x € v}, as we have

illustrated in figure 2.6. Using that h conjugates the maps Pp, we have that
hh(z) = 75 o hony(xz) = 72 o ho P, on(x) (2.20)
=720 Pp,0ohomn(z) =7}ohon(x)=hh(x). (2.21)

Since h},(z) = hi(x) for every x € v}, we conclude that hp : V' — Dy is well defined,
and is a homeomorphism onto its image.

To finish the proof, consider a disk D} C V that contains ! and define D} = h(D}).
We have to show that the homeomorphism h : D] — DJ is a local conjugation between
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Pp, and Pp,. Let = € D} be a point which belongs to some quadrant Dj. Then

hp o Pp,(xz) =72 ohonso Pp,(x) =72 o ho Pg, ons(z) (2.22)
=nlo Pp, ohons(z) = Pp, o 72 ohon(z) = Pp, o hp(z). (2.23)

General case

The general case follows the same proof that the previous case, the only difference
is when checking the continuity along the segment v! and the conjugation. Using
proposition 2.9 we can see how to modify equations (2.20) and (2.22) above and obtain
the desired result.

0
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Chapter 3

Fried and Goodman Surgeries.

In this chapter we study the relationship between Goodman and Fried surgeries. This
two procedures turn out to be equivalent in the class of transitive Anosov flows, when
we chose the obvious equivalent parameters.

In what follows M will always be a smooth, closed, orientable, 3-manifold. When we
say that (¢, M) is Anosov this means that ¢; is generated by a C! vector field and D¢y
preserves a hyperbolic splitting TM = E°*@®span{X }®E". The stable (or the unstable)
foliation of ¢; provides a global frame transverse to the flow, so in particular provides
a transverse frame on every periodic curve. For simplicity, we always assume that the
local stable/unstable manifolds of v are orientable. There always exists periodic orbits
like this, see [17]. Recall that a flow is transitive if there is a point with dense orbit.
There exist transitive Anosov flows, and also there exists non-transitive Anosov flows.

Given an Anosov flow (¢, M), a periodic orbit v and some m € Z, the two surgeries
allow to construct a new flow in a new 3-manifold, that is homeomorphic to the manifold
M (~,m) obtained by performing an integral Dehn surgery on the curve v C M with
surgery coefficient m. The surgery coefficient m is expressed in the meridian/longitude
basis associated to the local frame by stable manifolds.

Let (¢, M) be an Anosov flow and consider the flows
((ﬁ,}, Ml) = Goodman surgery (¢, M,~, A, f,m) (3.1)
<¢§a MQ) = Fried surgery (th, Ma s m) (32)

where A is a Goodman annulus parallel to v and f : A — A is a Dehn twist with
twist parameter m € Z as in theorem 3.6. We recall from this theorem that, in order
to obtain an Anosov flow with a Goodman surgery, m must be positive or negative,
depending on the position of A.

As we said before, the manifolds M; and My are both homeomorphic to M (y, m).
Let’s point out the following facts about the flows (3.1) and (3.2):

61
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Goodman surgery:

e The flow (3.1) depends on the particular choice of f : A — A in a non-trivial way.
If we change the pair (f, A) for another which is not ¢-equivalent, then the new
flow is not orbitally equivalent to ¢} by a homeomorphism that is the identity
away from . See 3.1. out of a neighbourhood of . See 3.1.

e By construction M; is equipped with a smooth structure and (éf, M) is an
Anosov flow.

Fried surgery:

o The flow (3.2) is almost equivalent to (¢¢, M\1y) in the complement of ;.

e It is topologically Anosov, but it is not clear that the smooth structure in the
complement of 79 induced by the almost equivalence with the original flow can
be extended onto a global smooth structure, for which the flow is Anosov.

Let’s also point out that both surgeries preserve the transitivity or non-transitivity
of the flow (¢, M). The purpose of this chapter is to prove the following theorem:

Theorem 3.1 (Theorem B). Let (¢¢, M) be a transitive Anosov flow in a closed,
orientable, 3-manifold and let v C M be a periodic orbit with orientable invariant
manifolds. Then, there exists a tubular neighbourhood N of the curve v such that, if
A C N then the Goodman flow (3.1) is orbitally equivalent to the Fried flow (3.2).

There are two immediate consequences of this theorem.

Corollary 3.2. Let (¢, M) be a transitive Anosov flow. Then:

(a) All the Goodman surgeries (with the same twist parameter) performed in a neigh-
bourhood of a periodic orbit produce orbitally equivalent flows.

(b) The Fried surgeries preserve the class of Anosov flows, up to orbital equivalence.!

The proof of theorem 3.1 consists in reduce the problem of orbital equivalence
between flows to the conjugacy problem between first return maps to Birkhoff section.
Since in our case we will be working with pseudo-Anosov maps, the proof proceed by
applying classical techniques in pseudo-Anosov theory that we have described in section
7, with the aid of the techniques that we have presented in 2.16 and 3.19.

It is for the previous reason that the theorem depends on the transitivity property,
because Birkhoff sections exists just for Anosov flows under this hypothesis (see [31]
and also [17]).

"'We will also arrive to item (b) in theorem 4.12, where we will show that every topologically Anosov
flow is orbitally equivalent to a C''-Anosov flow.
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Remark 3.3. It is not known if theorem 3.1 is valid without the hypothesis of transi-
tivity.

For non-transitive Anosov flows there are no Birkhoff sections, or even reasonable
analogues. For example, in [12] it is shown the construction of some particular kind on
transitive hyperbolic attractors, called non-coherent attractors, for which the attractor
can not be obtained as the suspension of a surface attractor plus surgery. See also [11]
and [22].

The chapter is organized as follows: In sections 1 and 2 we explain the surgery
procedures of Goodman and Fried. The proof of theorem 3.1 is given in section 3.
Following the proof we explain in 3.1 that the equivalence constructed in theorem 3.1
cannot be obtained by a local procedure in a neighbourhood of the surgery. The main
technical step is proposition 3.14, that we postpone to section 4.

1 Goodman surgeries.

Let ¢ : M — M be an Anosov flow generated by a C” vector field X, » > 1, and
consider a periodic orbit v whose local invariant manifolds are orientable.

Let W be a tubular neighbourhood of v and let W;, i = 1,...,4 be the four quad-
rants of W determined by W (v) U W} (7).

Consider a compact annulus A smoothly embedded in the interior of a quadrant,
which is transverse to the vector field X and is parallel to 7, in the sense that a closed
curve in A generating its fundamental group is homotopic to v inside W. This is shown
in figure 3.1a.

The orbit « can be enclosed with a compact tubular neighbourhood N4 C W with
smooth boundary, such that A C dN4 and such that the flow points outward the
manifold N4 along the annulus. This is depicted? in figure 3.1b.

Let’s define My = M\int(N4). The surgery of Goodman will consist in separate
the manifold M into the two pieces M4 and N4, and then re-glue them using an
appropriate diffeomorphism

¢:6NA—>8MA:8NA

that produces an Anosov vector field X’ in the manifold M’ = My U, Na. The
diffeomorphism ¢ will have support contained in the annulus A and, topologically, it
will be a Dehn twist. We explain the steps in this construction in what follows.

2We remark that in the figure the boundary of N4 has edges, but it can be smoothed along them.
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Dy

/l\ [ ]
JA )

—_— A

(a) The parallel annulus A C W.  (b) The tubular neighbourhood Ny4.
1.1 Steps in the Goodman surgery

Let D be a smooth local transverse section at v, let g =yN D and let Pp : U — D
be the first return map defined in an open neighbourhood of xy. There exists a smooth
reparametrization of ¢, supported in a neighbourhood of 7, such that the returning
time to D satisfies 7p(z) = 1, V o € U, so we will assume this is satisfied by our original
flow.

Choice of a tubular neighbourhood W. Consider a tubular neighbourhood W of
«v included in the interior of the set U = {¢s(z) : € U,0 < s < 1}. The family of disks

Dy =¢s(U)NW, 0<s<1

define a smooth foliation of W by meridian disks. The intersection of each disk Dy
with the center-stable/unstable foliations of the flow determines a pair of transverse
foliations F7, , F5_ on the disk.

On the boundary 0W, the intersections OWND,; = 0Ds and OWNW} () determine
a meridian class a and a longitude class b in Hy(0W') ~ H;(W\), respectively. Exactly
as in 8, we will orient the longitude with the same orientation of v as an orbit of the
flow, and we will orient the meridian in such a way that {a,b} is a positive basis
of Hi(OW). (Here, OW must be oriented as boundary of W.) The four quadrants
Wi, Wa, W3, Wy will be cyclically oriented by the meridian a. We will call Wi, W3 to
the two quadrants satisfying that the meridian a enters the quadrant along the stable
manifold, and W, Wy to the other two.

Choice of the Annulus A. Let W; be one of the four quadrants of W. We will
choose a smoothly embedded compact annulus A C int(W;) satisfying the following
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five conditions:

(i) A is parallel to v, i.e. an essential closed curve in A is isotopic to 7 inside W,

)
(ii) A is transverse to the flow,
(iii) A is transverse to the disks Dj.
(iv) Each intersection segment o3 = AN Dy is contained in the corresponding quadrant

Dy = Ds N W;. At each point z € Dy the leaves F}, (z) and Fp (z) determine

four sub-quadrants in D?, one of them containing the point z¢g. We will require
that o is transverse to the foliations F7, , Fj and, at each point z € o5, this
segment traverses from the sub-quadrant that contains xy to the sub-quadrant
that is not adjacent, as in figure 3.2.

(v) The intersection of the center-stable/unstable manifolds with annulus determine
two transverse foliations F3 and F on it. We will require that it the leaves of
these foliations are segments that connects the two boundaries of A, as in figure
3.3.

In figures 3.1a, 3.1b the annulus is contained in the first quadrant.

Figure 3.2: The segment A N D% must intersect F* and F* as in the figure.

Choice of the neighbourhood N,. It is possible to choose a compact tubular
neighbourhood N4 of « contained in the interior of W and satisfying that:

(i) ON4 is smooth and A C ONy,

(ii) the vector field X points outward N4 along A.
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The curves
as ‘= ONyg N Dy

determine a foliation of dIN4 by meridian curves. The curves as and the intersection
of ON4 with the local stable manifold W} _(v) determine an oriented meridian class a
and an oriented longitude class b in H;(ON4), respectively. See figure 3.1b.

Coordinates in A. The family of segments
cs=AND,, 0<s<1

constitutes a smooth foliation of A by oriented segments. The orientation in each oy
is induced from the orientation of the meridian ay. We will call them the meridian
segments. Choose a smooth coordinate system

A—[0,1] xR/Z

that takes each meridian segment o to [0, 1] x {s} preserving orientation. The closed
curves [, given in coordinates by I, = {r} x R/Z define a foliation of A by curves
homologous to the longitude b. We will call these curves the longitudes and they will
be oriented with the same orientation as b.

In these coordinates, the intersection of A with the stable and unstable foliations
and the foliations by meridians and longitudes are depicted on the right side of figure 3.3
for the case A C int(W7). If we change the annulus for another in an adjacent quadrant
it has the effect of switching the intersection with the stable/unstable foliations in this
figure.

The glueing diffeomorphism. Consider some m € Z and some strictly increasing
smooth function h : [0,1] — [0, 1] satisfying that A(0) = 0, h(1) = 1 and A/(0) = /(1) =
0. Consider the diffeomorphism f : A — A given in the meridian/longitude coordinates
by f(r,s) = (r,s +m- h(r)). We will define

flp) it peA
@ : ONy — OM 4 given by ¢(p) = (3.3)

D if pé¢A.

Note that, since h'(0) = h/(1) = 0 then ¢ is a smooth diffeomorphism.

The Goodman flow. Let M’ = My L, N4 be the manifold obtained as the quotient
of the disjoint union M4 LI Ny by the map ¢ : INy — OMy4. There are two natural
inclusions M4 < M’ and N4 < M’. Since @ is a smooth diffeomorphism, this quotient
space can be endowed with a differentiable structure such that the inclusion maps are
diffeomorphisms onto their respective images. Moreover, since ¢ is supported in int(A)
and the vectorfield X is transverse to A, the differentiable structure on M’ can be
chosen in such a way that the push forward by the inclusion of the vectorfields X |,
and X|y, coincides over ¢(M4) Ne(N4) C M’ and gives rise to a C” vector field X’ in
M’ where r > 1 is the differentiability class of X. See for example [44].
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) 0 [0, 1] 1
Figure 3.3: The intersection of A with the stable/unstable foliations.

Definition 3.4. We say that the flow ¢, : M’ — M’ generated by X’ is obtained by
a Goodman surgery of (¢¢, M) at 7. Since the surgery depends on the election of A, k
and h we will denote:

(¢}, M") = Goodman surgery(¢, M,~, A, h,m). (3.4)

The annulus A satisfying the previous conditions is called a Goodman annulus.

Remark 3.5. The diffeomorphism ¢ is a Dehn twist supported in the annulus A that
preserves the foliation by longitudes. The action in homology, in the meridian/longitude
basis described before, is given by the matrix

(o)

So, topologically, cutting off the neighbourhood N4 from M and re-glueing with ¢
corresponds to make an integral Dehn surgery on M of parameter m € Z along the
framed knot ~.
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1.2 Theorem of Goodman

Theorem 3.6 (Goodman, [35]). Let v be a periodic orbit of an Anosov flow and con-
sider some a > 0. Then, there exists a tubular neighbourhood W of v such that, if we
choose a Goodman annulus contained in the first quadrant W1 satisfying that the angles

L(Fa,0), L(Fal), L(Fi,0), £(F4,1)

are, in modulus, uniformly bounded from below by c, then for every m € Z the vector
field X' obtained by the Goodman surgery (3.4) generates an Anosov flow ¢} in M.

Moreover, the same is true if we consider A C int(W3), and if we consider A C
int(Ws) or A C int(Wy) but with m € Z~.

Remark 3.7. The statement of this theorem in [35] does not make reference to the
angles between stable/unstable foliations and meridian/longitudes on A, nor to the
proximity of the annulus with the periodic orbit. This is essentially because, in that
work, they consider a very precise family of annuli. For enunciating the theorem as in
3.6 above, we have to add these requirements. (Cf. proof of theorem 4.12.)

Also, in [35] the statement is for annuli contained in the first or third quadrant and
parameter m > 0. We have added the assertion about annuli contained in the second
or four quadrant and m < 0, which follows directly by examining in the proof of [35]
how they change the orientations of the stable/unstable manifolds and the orientations
of the meridians in the annulus when we change the quadrant. It is possible to show
that if A is contained in the first quadrant and m < 0, then the obtained flow can be
Anosov, provided that the annulus A is placed sufficiently close to the curve +.

The proof of this theorem is based on the cone field criterium (see [41]). The idea
is that the future ¢j-orbit of a point x in M’ travels alternately between the manifolds
M,y and N4 and traverse the common boundary in a discrete set of times. So the
action of D¢}(x) on TM' can be seen as an alternate application on T'M of D¢y, (zy,)
(for some sequences t,,z, which depends on z) and Dy or Dy~ !, depending if the
orbit enters in M 4 or N4, respectively. When the orbit enters in M4 we have that Dy
is a parabolic matrix, and when it escapes Dy ~! = id. Therefore, the action of D¢}
on the tangent bundle is a combined action of D¢, and D¢y. Since ¢, is Anosov, there
exists a distribution of cones K" in T'M which is positively invariant by D¢, and is
exponentially contracted. The key fact is that, if m is positive, it is possible to find
a cone field that is positively invariant and exponentially contracted for the combined
action of D¢y, and De.

Surgery on different annuli. Given an Anosov flow (¢, M), a closed orbit v C M
and an integer m, the Goodman surgery provides a method to find an Anosov flow ¢
in a manifold M’, that is obtained by Dehn surgery on M over the curve v with twist
parameter m. We have to place the annulus A on different quadrants according to the
sign of m. Observe that the flow ¢, depends on the particular election of the annulus
A as well as the twist map f: A — A.
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A natural question that arises is whether different choices for A and f give rise to
orbitally equivalent flows. Theorem 3.1 implies that for different elections of A and f
all the flows obtained are orbitally equivalent. For instance, if we consider two annulus
Ay C Wy and As C Ws and we perform a surgery with parameter m > 0 over A; and
with parameter —m over As, the flow obtained is orbitally equivalent to the original

(¢¢, M).

2 Fried surgeries.

In this section we explain Fried surgeries with some detail. We will explain how to
construct the surgery in a model germ of a saddle type periodic orbit, that then can
be adapted to any flow having a periodic orbit of this kind. Then we will concentrate
in the case of topologically Anosov flows.

2.1 Fried surgeries on the germ of a periodic orbit.
Integral Fried surgeries on saddle type periodic orbits.

Here we will explain Fried’s procedure for the germ of a topologically saddle type
periodic orbit. So let’s consider

(¢, N) = suspension flow generated by f: D — D, (3.5)

where D is an open disk and f : D — D a homeomorphism conjugated to a saddle type
hyperbolic linear transformation of R? with positive eigenvalues. Denote {pg} = Fix(f).
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By definition, (3.5) is the flow induced by the action ¢ - (p,s) — (p,s + ¢) on the
quotient manifold

N =D xR/(f(p),s) ~ (p,s+1).
Observe that:

e The non-wandering set of ¢; consists of one topologically saddle type periodic
orbit ~.

e The manifold N is homeomorphic to an open solid torus, and [y] generates
Hi(N) ~Z.

e By our assumptions on f, the stable and unstable manifolds of v are orientable.

The manifolds W*(y) and W*(~) are properly embedded cylinders in N, and their
union divides N in four quadrants. In what follows, we will consider a basis {a,b} of
H(N\v) formed by a meridian class a and a longitude class b as described in 8. We
will consider as well a fixed transverse section D < N determined by the projection
in the quotient of the disk D x {0}. The orbit ~ is parametrized as v(t) = ¢+(po) with
0<t< 1.

o

N
L
o

I\

/

Blow-up

o

\
J

<

:

Figure 3.4: The blow up I : (¢;, N*) — (¢, N).

Blow-up along v. Since pg is a saddle type fixed point there is a corresponding
blow-up of f at py. This construction consists in a triple (f*, D*, ) where:
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(i) D* is a surface homeomorphic to R/Z! x [0, 1),

(ii) m: D* — D is a map that consists in collapse the boundary component dD* onto
the singleton {pp} and is a homeomorphism on the complement,

(iii) f*: D* — D* is a homeomorphism satisfying that o f* = f ow. The restriction
of f* to the boundary dD* is conjugated to a Morse-Smale map on the circle with
two attracting and two repelling fixed points.

Define
(¢7, N*) = suspension flow generated by f*: D* — D*. (3.6)

By definition this is the flow induced by the action t- (p, s) — (p, s +t) on the quotient
manifold

N* = D* xR/(f*(p),s) ~ (p,s +1).

The map II : D* x R — D x R defined by II = 7 x id induces a map II : N* — N
on the quotient. Observe that the flow (¢f, N*) and the map II satisfy the following:

(i) N* is homeomorphic to D* x R/Z,

(ii) II : N* — N satisfies that [I(ON*) = v and II : N*\ON* — N\v is a home-
omorphism. Moreover, the map Il : ON* — ~ is a circle bundle with fibers
I-1(9(s)) = OD* x {s},

(iii) ¢f : N* — N* is a flow satisfying that IT o ¢; = ¢, o II, for every ¢t € R. In

particular, ¢; preserves ON* and the restriction to the boundary is a topologically
Morse-Smale flow with two attracting and two repelling periodic orbits.

Definition. The triple (¢;, N*,II) is called the blow-up of the flow (¢, N) along the
pertodic orbit v. The map II is called the blow-down projection.

Observe that:
o If v; € Per(¢f|on+) is repelling (attracting) then there is a stable (unstable)

manifold W#(~;) — N* (W"(y) — N*) that intersects transversally ON* along
~;. This manifold is a half-cylinder properly embedded in N*.

e There is a basis of H;(ON*) where the meridian is a = [0D* x {s}] and the
longitude is b = [;].

e In the complement of ON*, the map II provides an orbital equivalence

(¢, NNONT) = (61, N\).
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Blow-down. Let o C ON* be a global transverse section for the restricted flow
¢; : ON* — ON™* that intersects once each periodic orbit in ON*. In what follows we
will produce a blow-down of the flow (¢;, N*) that depends on the curve ¢ and is not
equivalent to the previous one.

The first return map f, : ¢ — o is conjugated to a Morse-Smale map with two
attracting and two repelling fixed points. Observe that for every curve ¢ C ON¥,
being a transverse section that intersects once each periodic orbit in the boundary is
equivalent to say that o is a simple closed curve, transverse to the flow, with homology

coordinates
[o]=a+m-be H(ON¥)

for some m € Z.

Let ¢7* be a reparametrization of the flow ¢}, supported in small neighbourhood
of ON*, verifying that ¢7*(p) = f-(p), ¥V p € 0. Then, the action of ¢J* on o induces
a foliation F, on the torus dN* by simple closed curves isotopic to o. Namely, F, =
[¢7"(0) s0 <t < 1}.

Let
I, : N*—- N, :=N*"/F,

be the quotient projection onto the space N,, obtained from N* by collapsing each leaf
of the foliation F, into a point. Topologically N, is an open solid torus. Restricted
to the boundary, this quotient operation produces a circle 7, = dN*/F, and the map
I, : 9N* — 4, is a circle bundle projection. If we denote 7, (t) = I, (¢7* (o)), then it
is verified that

ON* —t __, ON*
I, e

s—s+1
Yo —————— Yo

Following the previous paragraph, there exists a flow ¢7 : N, — N, induced on the
quotient manifold that verifies

Definition 3.8. We say that the flow (¢f, N,) is obtained from (¢, N) by an integral
Fried surgery on the curve v. We denote it by

(¢7, Ny) = Fried surgery(¢¢, N,~,m), (3.7)
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where m € Z is given by [o] =a +m - b.3

Given two curves oy, i = 1,2 in the hypothesis of the previous construction we will
denote by II,, to the corresponding blow-down maps, and we will denote IIy = II. We
will establish the following simple facts about (¢7, N, ).

Lemma 3.9. The flows constructed as in (3.7) satisfy the following:

a) Each (¢f, Ny) is orbitally equivalent to the suspension flow generated by a saddle
type hyperbolic linear transformation on R?, with positive eigenvalues.

b) The map 11, o Hal transforms D into a Birkhoff section B, — N, with linking
number satisfying |n(vs, By)| = 1 and multiplicity m(v,, Ny) = |m]|.

¢) For every pair of sections o;, the map 1l,, o H;ll defines an orbital equivalence
(07", Noy \Voy) = (7%, Noy \Vop) @n the complement of the periodic orbits.

d) If [o1] = [o2] € H1(ON*) then there exists a topological equivalence H : (¢7', Ny, ) —
(972, No,) that coincides with Il,, o H;ll in the complement of a neighbourhood of
Yo -

Proof. Let’s check first that the orbit ~, has stable and unstable manifolds, home-
omorphic to cylinders, that disconnect N, in four quadrants. Let Per(¢f|on+) =
{71,72,73,74} labelled in such a way that 1, 73 are the repelling orbits. Then, W*(v;)
and W*(q3) are half-cylinders (i.e. homeomorphic to R/Z! x [0, +00)) contained in

3The surgery is integral in the sense that the slope of [¢] is an integer in the meridian/longitude
basis.
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N*, tangent to the flow, such that W#(y;) b ON* = ~;, i = 1,3. Clearly, each of
these half-cylinders projects by II, homeomorphically onto its image. Consider a curve
a C N*\ON* homotopic to o. By construction this curve projects onto a meridian
curve in Ny\7, (i.e. Il;(a) < N, is homotopically trivial) and it intersects once
the image of each W#(~;), so this half cylinders have multiplicity one. It follows that
I, (W (y1))UIL, (W*#(y3)) is an embedded cylinder in N, tangent to the flow, that con-
tains 7, and every orbit inside converges to 7, in forward time. The analogue statement
is true for the attracting orbits 2, 74 and their unstable manifolds. Since the dynamic is
wandering in the complement of v, it follows that W*(v,) == 1o (W?(71)) UIl- (W?(73))
and W"(vy) = Iy (W"(y2)) UL, (W"(74)) constitute stable and unstable manifolds for
7o homeomorphic to cylinders. This cylinders turn out to be properly embedded in N,
and W*(~,) U W"(v,) disconnects N, in four quadrants, as claimed at the beginning.

Let B, := II,(D*). Then B, is the continuous image of an annulus [0, 1) x R/Z! —
N, with 0B, = II,(0 x R/Z') = v,. It is an embedding on the interior, and B, is a
global transverse section for ¢7 restricted to N,\7,. It follows that B, is a topological
Birkhoff section. Observe that II, : 0D* — =, could be non-monotonous, but the
section is, by construction, tame.

The Birkhoff section B, is divided in four quadrants by W#(v,) U W%(~,). By
projecting B, along the flow lines onto transverse disk (as explained in 1) we deduce
item a) of the lemma. For item b) observe that since B, has four quadrants, it follows
that |n(vy, Bs)| = 1. If we choose a simple closed curve o C N*\ON* homotopic to o,
then this curve is mapped onto a meridian curve in N,\v, and since |[B,] - [a]| = |m|
it follows that m(v,, By) = |m|. According to the conventions stated in 8 it is verified
that n(y,, Bs) = +1if m > 0 and n(v,, By) = —1 when m < 0. Item c) follows directly
from the definition. Finally, we can deduce item d) by applying theorem 2.18. O

Remark 3.10. All the flows (¢f, N,) are pairwise orbitally equivalent because they
are the germ of a saddle type periodic orbit. But we will be interested in orbitally
equivalences that coincides with II,, o H;ll out of a neighbourhood of the periodic
orbits. In this sense, item d) says that each flow (¢7, N,) just depends on m € Z. This
justifies the notation Fried surgery(¢, N,~v, m).

Rational Fried surgeries on k-prong periodic orbits.

The previous surgery can be easily redefined for the more general class of k-prong
periodic orbits following the same arguments. For example, start with a saddle type
periodic orbit v with orientable stable/unstable manifolds and choose a curve o which
is a transverse section for the blow-up flow on the boundary, but with homology coor-
dinates [0] = n-a+ m-b. Then, blowing-down with a foliation by curves parallel to
o produces a k-prong periodic orbit v,. Since there are two attracting curves in the
boundary of the blow-up of the saddle, then we see that kK = 2n. The obtained flow is
the suspension of a 2n-prong local model f : D — D (2n stable prongs and 2n unstable
prongs), and the action of f on the set of stable prongs is a permutation defining two
cosets. Observe that a transverse section for v is transformed into a Birkhoff section
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Figure 3.5: A picture of the Fried surgery.

for v,. This section has multiplicity |m/|, and has four quadrants (we have not defined
linking number for Birkhoff sections at k-prong periodic orbits).

2.2 Fried surgeries in topologically Anosov flows.

We describe here the Fried surgeries for topologically Anosov flows. Recall that a
regular flow in a closed 3-manifold is topologically Anosov if it is expansive and its
invariant foliations have no circle prongs.

So let (¢¢, M) be a topologically Anosov flow in a closed, orientable 3-manifold.
Consider a finite set I' = {v1,...,7x} of periodic orbits with orientable local invariant
manifolds. (There always exists periodic orbits with local invariant manifolds, cf. [17].)
Choose my,...,my € Z. Since the germ of the flow at each periodic orbit ~; is locally
equivalent to the suspension of a saddle type hyperbolic linear transformation in R?
with positive eigenvalues, we can apply the surgery defined in (3.7) at each periodic
orbit +; with parameter m;.

The procedure consists in choosing local coordinates around each +; and construct
a blow-up flow

IT: (7, M™) — (¢, M).

The boundary of M* is formed by k tori T}, each one projecting onto the corresponding
v;. For an adequate reparametrization of ¢}, we collapse each boundary component
T; using the foliation F,, induced by a transverse section o; with coordinates [o;] =
(1,m;) € Hi(T;). The result is a manifold M’ equipped with a flow ¢;, and a blow-down

IT': (67, M) — (¢}, M').
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Each torus 7; maps onto a periodic saddle type periodic curve 7, in M'. We set
I'={y, -, "%}

Definition 3.11. We say that the flow (¢}, M') is obtained from (¢;, M) by a Fried
surgery with parameters (v;,m;), i = 1,...k. We will denote

(¢}, M) = Fried surgery (¢, M, (y1,m1), - ., (Yr, mg))- (3.8)

The flow (¢}, M') verifies the following direct facts, that we state as a proposition.

Proposition 3.12. The Fried surgery described above satisfies the following:

a) Topologically, the integral Fried surgery (3.8) corresponds to make an integral
Dehn surgery on M at each curve v;, with twist parameter m; € Z in the local
frame around ~; determined by the stable and unstable foliations of ¢;.

b) The restriction flows (¢r, M\I') and (¢y, M'\I'') are orbitally equivalent.

c) The flow (¢y, M') is topologically Anosov.

Proof. Ttems a) and b) are clear from the definitions. To conclude that (¢}, M) is topo-
logically Anosov, just observe that the Fried surgery preserves the the class of orbitally
expansive flows, and that ¢, preserves a pair of non-singular transverse foliations, since
the integral surgeries on saddle type periodic orbits do not generate prongs for the new
foliations. 0

Fried surgeries can thus be interpreted as a counterpart of Dehn surgeries, but
adapted to the pairs (flow,3-manifold), provided the flow has some periodic orbits.
Since the surgery process just depends on the germ of the flow in a neighbourhood of
the periodic orbits, clearly this surgery can be performed in a very wide class of flows
having periodic orbits, provided we define a way to blow-up the orbits.

One notable characteristic about this surgery is item b) of the previous proposition,
which says that in the surgery process the foliation by flow orbits remains unchanged
in the complement of the periodic orbit. Thus Fried surgeries do not change the almost
equivalence class of the original flow.

The integral Fried surgeries preserve the class of topologically Anosov flows. Given
a flow of this kind, we can construct many others examples using Fried surgeries, and
all of them are almost equivalent to the first one. Thus Fried surgeries become an
important tool for the study of topologically Anosov flows. It is relevant to remark as
well that rational Fried surgeries preserve the class of expansive flows (or equivalently
pseudo-Anosov flows).
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3 Proof of theorem B (thm. 3.1).

For showing that the flows obtained by Fried or Goodman surgery (along the same
periodic orbit and with the same integer parameters) are equivalent, we will endow each
one with an adequate Birkhoff section and we will use theorem 2.16. Fried surgeries
naturally transforms Birkhoff sections of the original flow in Birkhoff sections for the
new flow, but this is not the case with Goodman surgeries. Thus, we will have to show
the existence of an adequate Birkhoff section associated with this latter procedure.
This will be the content of proposition 3.14, which is the most technical step and its
proof will be postponed to the next section. We explain here how does this proposition
works, and we will give the proof of theorem 2.16 assuming this statement.

Consider first some regular tubular neighbourhood N of v and a Goodman annulus
A C N. The complement of int(N) will be denoted by My . Given the two flows (4%, M;)
defined in (3.1) and (3.2), obtained by Goodman and Fried surgery respectively, we will
make the following definitions:

e For each i = 1,2 let 7; be the periodic orbit of (¢, M;) that corresponds to
after surgery.

e There is a natural inclusion ¢; : My — M; = My LUy N. We will denote M}V =
U1 (MN>

e Since M\~ ~ Ms\7, there is a natural inclusion v : My — Ms. We will denote
M]2V = LQ(MN).

Consider the homeomorphism Hy : M 11\/ — MJQV defined by Hy == 19 0 Lfl. Since
the foliation by the orbits of ¢; restricted to M\int(N) is not altered by any of these
surgeries, we have an orbital equivalence

Hy : (97, My) = (¢, MY) (3.9)
between the complement of a neighbourhood of 7; and the complement of a neighbour-

hood of ~s.

Remark 3.13. We will use this orbital equivalence in the course of the present proof.
However, we want to remark that Hy cannot be extended into a global orbital equiv-
alence (¢}, M7) — (¢?, Mz). We show this fact in 3.16 at the end of this section.

Proposition 3.14. Consider an Anosov flow (¢y, M) and a periodic orbit v with ori-
entable local invariant manifolds. Let v : (X,0%8) — (M,T") be a Birkhoff section trans-
verse to y. Then, there exists a tubular neighbourhood N of v such that every Goodman
surgery supported in an annulus A C N satisfies:

(i) The flow (¢}, My) obtained by surgery has_a Birkhoff section j : (31,0%1) —
(Mq,T1) with v1 € Ty and p(71,%1) = [y NX|.

(1) M N (1) = 1 (B\int(N)).
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Figure 3.6: The two surgeries.

Proof of theorem 3.1. We will fix now a tubular neighbourhood N as described in
proposition 3.14 above. Consider a Birkhoff section ¢ : (£,0%) — (M,I") for the flow
¢ such that yNT = (. We have that v N X is a periodic orbit of the first return map
Py, whose period is p(y,%) = |y N X|. There always exist sections with this property,
see [17], pag. 15. We define

Yy = S\int(N), 2§ = 11(Zy) and T% = 15(Zn).

From the one side, the Birkhoff section ¥ is transformed by the Fried surgery into
a Birkhoff section j3 : (32,0%2) — (Mz,I's) for the Fried flow ¢7, and it is clear that
j2(X2) N M% = ¥3%. From the other side, by proposition 3.14 there exists a Birkhoff
section j : (X1,0%1) — (My,T) for the Goodman flow ¢} that extends the section X}
and has 7; as a boundary component. That is, j1(21) N M = 3&. We remark that,
as abstract surfaces, each ¥; has p(v,X) boundary components more than ¥, that are
mapped onto ;.

Let P, : ¥ — 3 be the first return map of the flow ¢! to the interior of each
Birkhoff section ;. Our next step is to show the following:

Lemma 3.15. There exists a homeomorphism h : 2031 — ig such that Pooh = ho P.

In this way, each flow has a Birkhoff section where the first return map is conjugated
to the other. On the periodic orbits 7; none of the surgeries change the modulus of



3. Proof of theorem B (thm. 3.1). 79

the linking number, which equals one. Since we use the same twist parameter for
both, it follows that n(vy1,31) = n(y2,32) and m(vy1,31) = m(y2,X2) = |m|. Since
the combinatorial data on the boundary is compatible for every orbit in I';, then by
theorem 2.16, there exists an orbital equivalence (¢}, M) — (¢?, Ms). This completes
the proof of theorem 3.1, up to 3.15.

To finish we show the conjugacy between the first return maps P;.

Proof of lemma 3.15. By construction, each surface ¥; has p = p(y, ¥) boundary com-
ponents more than the original ¥, each of them mapped onto ~; by the immersion
Y; < M;. We will assume for this proof that 0X = (). The reader could appreciate
that the general case follows the same argument, but with a heavier notation.

Fori=1,2let ]3Z : f]z — flz be the blow-down of the first return map P;. Since the
linking number equals one at each boundary component, the blowing down originates
a saddle type periodic orbit 0% = {1, ... ,l‘;)} for P;. We will consider P; as a pseudo-
Anosov on the punctured surface (X, 0") and apply proposition 1.29 from 7.3.

Claim. There exist an isomorphism ¢ : m1(31\O') — m1(X2\0?) which conjugates the
corresponding actions on fundamental groups

(P)s s m(B\O") = m(2:\0Y), i =1,2,

and which preserves the sets I'(O?) of the conjugacy classes of the curves homotopic to
the punctures.

By construction the homeomorphism Hy sends E}V homeomorphically onto ¥3,, so
we will define

hy : =& — 2% given by hy = Hyls - (3.10)

Since Hy is a topologically equivalence (¢1, M1,) — (¢7, M%) then it follows that hy is
a local conjugacy between the maps P;, in the sense that: For every U C E}V satisfying
that P (U) C X} and U C My it is verified that Py o hy(x) = hy o Pi(z), V o € U,
where the set U consists in the union of the orbits segments starting in points x € U
and ending at the firs return to Xy. (Cf. sections 1 and 2.)

Each surface El}v can be seen as embedded in ii, and the boundary components
determine disk-shaped neighbourhoods of the punctures xj,.

There exists a neighbourhood W; C M; of ~;, that contains V; in the interior,
and big enough such that P;i(x) € %L and ¢%([0,7%(z)],x) C M;\N; for every x €
¥ N (M;\W;). By retracting the boundary components of X% we can consider a
subsurface E%,V C int (Eﬁv) and entirely contained in the complement of W;. For¢ = 1,2
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these surfaces can be chosen in such a way that there is a commutative diagram:

I SIS R AVG}

hN P

x2, 2 5,02

Let C%,... ,C; be the boundary components of E%/V and ¢; their corresponding
free homotopy classes in 3;\{x{,...,z,}. Since the first return P; permutes cyclically
the connected components of ¥; N NV, it follows that (P;). permutes the set I'(O") of
conjugacy classes of the curves ¢i. If v is any closed curve in £;\0%; can be homotoped
onto a closed curve ¥ C E%/V that has a first return contained in ¥%. It follows that
the map hy induces a conjugation between the actions of the maps P; on the group of
free homotopy classes of curves in 3;\0%;, sending T'(O!) to T'(0?).

We conclude that hy induce an isomorphism ¢ : 7 (X1;0) — 71(Z9; 0?) as
claimed. Since the actions of the first return maps on the punctured surfaces (;, O%)
are mi-conjugated by an isomorphism that preserves the class of the punctures, propo-
sition 1.29 implies that P; and P» are conjugated by a homeomorphism that preserves
the punctures.

This finish the lemma. O

3.1 Goodman and Fried surgeries are not equivalent in a canonical
way.

Consider the homeomorphism Hy : M}, — M3 defined in (3.9). It is an orbital
equivalence

(61, My) — (87, MYy)

between the complement of a neighbourhood of «; and the complement of a neighbour-
hood of s.

Proposition 3.16. There is no orbitally equivalence (¢y, My) — (¢7, Mo) that extends
Hy.

Proof. Without loss of generality we can assume that N is a compact, regular, tubular
neighbourhood of =y, that contains A in the interior.

Consider a point r € A. Since r is in the interior of some quadrant, then the orbit
segment On(r) is also contained in the quadrant, and its extremities are contained
in ON. Let p € ON be the extremity where Oy (p) enters inside N and ¢ € ON the
extremity where it escapes.
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e

Figure 3.7: Breaking the orbits in a neighbourhood of ~.

For each i = 1,2 define p; = ¢;(p) and ¢; = ¢;(¢). This two points belong to OMY
and by definition Hy(p1) = p2, Hn(q1) = q2. See figure 3.7.

Assume there is a topological equivalence H : M1 — M> that extends Hy. Let’s call
N; = M;\Mj};, so H takes the neighbourhood N; homeomorphically onto Ny preserving
oriented orbit segments.

Since the Fried flow ¢? is equivalent to ¢; in the complement of 72, then the points
p2 and g2 belong to the same ¢7-orbit segment in No. Since H is an orbital equivalence,
then p; and ¢ must be in the same ¢}-orbit segment in Nj.

Now since the Goodman flow is an alternated composition of iterates ¢;; of the flow
and the glueing map f: A — A, it follows that the orbit segment that enters through
p1 must escape Np through a point ¢ = ¢4, o f o ¢y (p) = ¢4y o f(r). Since f has
non-empty support, then r and f(r) are in different orbit segments inside N, and this
means that ¢ # ¢q1. So, there exists no extension H from Hy to the whole M. O

Remark 3.17.

(i) Observe that the same statement of 3.16 is true if we replace Hy for another
topologically equivalence H}, obtained as a small perturbation of Hy by some
flow isotopy. So, the non-extensibility property of Hy can not be destroyed by
bounded perturbations in the flow direction.

(ii) The same argument shows that, if (f, A) and (f’, A’) are two Goodman annulus
in the same quadrant which are not ¢;-isotopic, then the obtained flows cannot
be equivalent by a homeomorphism that is the identity in the complement of a
neighbourhood of ~.
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4 Birkhoff sections and Goodman surgeries.

Let v be a periodic orbit of an Anosov flow (¢, M) with orientable invariant manifolds.
Consider a local transverse section D < M for the orbit v, homeomorphic to a disk.
Let W be a compact tubular neighbourhood of v verifying that W is transverse to
D and that Dy = DN W is a closed disk contained in int(D). This is depicted in the
figure below.

Let A be a compact annulus, parallel to «y, transverse to the flow and contained in
some quadrant of W. Choose some twist map f: A — A and consider a flow

(6, M) = Goodman surgery(¢y, M, 7, A, f) (3.11)

obtained by a Goodman surgery on (¢, M). Here and for the rest of the section,
f:A— A will be a twist map with parameter m € Z.

Remark 3.18. Observe that this surgery does not transform the surface D into a
surface in M’. In particular, no Birkhoff section for (¢, M) transforms into a Birkhoff
section for (¢}, M') by a Goodman surgery.

The manifold M’ is defined to be a glueing M4 Ly, Na, where N, is a tubular
neighbourhood of v and My = M\int(N,4), as we described in 4.1. We will state the
following notations:

(i) We call 4 to the periodic orbit in M’ that corresponds to 7 after surgery. That
is, 7/ equals the image of the inclusion v < N4 < M’.

(i) We call W’ to the set in M’ obtained as W\N4 U, N4. This is a tubular neigh-
bourhood of 4/ that contains (the image by inclusion of) Nag.
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(iii) We call S to the surface induced by the inclusion D N M\int(W) < My < M’.

The part of D that lies outside W is not altered by the surgery and induces the surface
S in M’. This surface is a compact annulus. The purpose of this section is to show the
following proposition:

Proposition 3.19. There exists a tubular neighbourhood N C W of the orbit v such
that: If the Goodman annulus A is contained in N, and if the sign of the twist parameter
m is positive when A is placed in the first or third quadrant, or is negative when A is
placed in the second or fourth quadrant, then the flow (¢, M') admits a local Birkhoff
section (B,0B) — (M',~") satisfying that:

(Z) ’)”L(B,"y/) =1, m<B77/) =m,
(i) BAMA\W' = §

As a corollary we can prove proposition 3.14 stated in the previous section:

Proposition. Consider an Anosov flow (¢¢, M) and a periodic orbit -y with orientable
local invariant manifolds. Let v : (X,0%) — (M,T") be a Birkhoff section transverse to
~v. Then, there exists a tubular neighbourhood N of v such that every Goodman surgery
supported in an annulus A C N satisfies:

(i) The flow (¢;, M) obtained by surgery has a Birkhoff section /' : (¥',0%") —
(M, T") with ~" € T' and p(v,X') = |y N .

(11) X'\int(N) = X\int(N).

Proof of proposition 3.14. Given a Birkhoff section ¢ : (X,0%) — (M,T') such that
|E M | = p > 0, consider a tubular neighbourhood N as given in proposition 3.19,
small enough such that the intersection 3 N N is transverse and consists in p disjoint
disks in .

The surface X\int(N) naturally embeds inside M’. The previous proposition says
that each of the p boundary components in XN JN can be individually extended inside
N as a local tame Birkhoff section. If these surfaces are not disjoint in N\~/, since
they are tame and with equal linking number and multiplicity, using the techniques
presented in section 1 we can perturb them by flow isotopies and make them disjoint.

We obtain in this way an immersion
(Y08 — (M, TU{Y'}),

where ¥’ is obtained by removing p disjoint closed disks on Y. The image of this
immersion coincides with ¥ in the complement of N and is transverse to the vector
field on the interior. Thus, to conclude that it is a Birkhoff section, it rest to show that
every orbit intersect ¥ in uniformly bounded time.
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For this, consider two tubular neighbourhoods Oy and O; of +' satisfying that

1. Op C N C O; and ON is contained in the interior of O1\Op,

2. There exists T1,Tp > 0 such that [p, ¢7, (p)] N X" # 0 for every p € Op and
[p, Y7, (p)] N E\int(N) # 0 for every p € M'\O;.

This is possible, since ¥/ is a local Birkhoff section near 7/ and coincides with ¥ outside
the biggest neighbourhood O;. Then, since the neighbourhoods O; C Og are nested
germs of a saddle type periodic orbit, we see that there exits some T5 > 0 such that
[p, ¥, (p)] is not contained in Op\O1, for every p € Op\O;. Then, taking T' > max{Tp+
Ty, Ty + To}, we deduce that [p, 7 (p)] Y’ # 0, for every p € N. O

The proof of proposition 3.19 will take the rest of the section. We are going to show
first in 4.1 that the surgery can be replaced for a more convenient surgery, placed in a
normal position. Then, in 4.2 we will show how to construct the Birkhoff section B for
this new surgery.

4.1 Replace the surgery for a normal surgery.

The flow (¢}, M') is obtained by a Goodman surgery supported on the annulus A
with glueing homeomorphism f. The objective of this subsection is to show that we
can replace the annulus A (and the homeomorphism f) for another annulus A; (and
a corresponding glueing homeomorphism f;) and obtain the same flow up to orbital
equivalence. The advantage of this new annulus with respect to the first is that it will
be better positioned in the neighbourhood W for the purpose of finding a local Birkhoff
section. This will be the content of lemma 3.20.

Normal Coordinates:

Consider the vector field Y in R? x R/Z defined by Y (x,y, s) = (—Az, Ay, 1), where X is
some positive constant. The non-wandering set of the flow ¢; generated by Y consists
of one saddle type hyperbolic periodic orbit, namely, the curve 0 x R/Z. We recall that
a system of normal coordinates for ¢, around + is a local orbital equivalence

U (¢, V)y = (0 V )oxryz- (3.12)

defined between a neighbourhood V' of « and a neighbourhood V' of 0 x R/Z. We
remark that it always exists C° normal coordinates in a neighbourhood of a saddle
type periodic orbit, but not necessarily C' normal coordinates.

Definition (Normal neighbourhood). Choose a system of normal coordinates defined
in an open neighbourhood of ~, as in (3.12). A normal neighbourhood of 7 is a tubular
neighbourhood of the form

N =¥ (T,), (3.13)
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where T, = {(z,,5) : 0 < 2% 4+ y? < r?} is the solid torus of radius r > 1.

A normal neighbourhood N is a regular, compact, tubular neighbourhood of ~, con-
tained in W. Observe that, in the case that the coordinate system is not differentiable,
the boundary N could be just a topological surface. It is foliated by the meridian
disks Dy =D x {s}, s € R/Z. If we set r = 1 then, in normal coordinates we have that:

(i) The boundary is ON = {(x,y,s) : 22 +y*> = 1}.

(ii) The meridians and the longitudes of ON are, respectively, the following families
of curves

o ay={(z,y,2) 1 2? +y> =1, 2 = s}, with s € R/Z;
o By = {(cos(0),sin(f), s) : s € R/Z}, with 6 € [0, 27].

(iii) The first quadrant of N is the set Ny = {(z,y,s) : 0 <22 +y? <1, 0 < 2,9 }.

(iv) Define ON; := ON N N;. The vector field Y is tangent to 9N along the longitude
Br /4. This longitude separates dN; into the following two regions, where Y points
inward and outward respectively:

o ON{" = {(z,y,8):2® +y> <1, 0<y <z <1}
o IN{" ={(z,y,8) 2> +y* <1, 0 <z <y <1}

(v) It is possible to reparametrize ¢; in a neighbourhood of « in such a way that,
if p € N is a point with coordinates (r,y,s) and the orbit segment ¢y ,(p) is
contained in N, then

We will always assume that ¢, has been reparametrized in order to satisfy this.

Replace the annulus A for another contained in ON.

Consider the flow (¢, M) from the beginning of this section. We will choose a fixed
system of normal coordinates W around +, as described in (3.12), defined in an open
neighbourhood that contains W, and which satisfies the following:

1. ¥(D) C R? x {0};
2. The solid torus T of radius one is contained in the interior of W (/).
As before we define N = ¢~ 1(T). Assume that the Goodman annulus 4 is contained

in the interior of the first quadrant Ny. The positive ¢;-orbit of every point in A has a
first intersection point with ON. Let p : A — (0, +00) be the function that assigns to
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Figure 3.8: The ¢;-isotopy between A and Aj;.

each point in A its time of first intersection with dIN. We remark that, if the coordinate
system is not differentiable, this function could be just continuous. The map

Vix = Gpe)(2)

is then a ¢s-isotopy from the annulus A onto its image. The image of v is an annulus
A; contained in ON. Observe that A; is (topologically) transverse to the flow and is
contained in ON{“. See figure 3.8.

Normal Surgery.

Let (¢;, M') be a flow obtained by a Goodman surgery supported on A, as defined in
(3.11). In the same way as in 4, the ¢s-isotopy allows to push forward the glueing map
f onto a homeomorphism f; : Ay — Ay, defined by f; =1 o f oty~!. Observe that fi
is the identity on the boundary of A;. Consider the homeomorphism ¢ : N — OMy
defined by

filp) if peA

p1(p) =

D if pd¢A.
where My = M\int(N) and we he have tautologically identified OMy with ON. Since
the flow ¢, is transverse to N along the support of 1, then the quotient manifold

M":= My U, N (3.14)
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is endowed with a (continuous) flow ¢} : M"” — M”. It turns out that (¢}, M") is
orbitally equivalent to (¢}, M').

Definition (Surgery in normal position.). A Goodman surgery is in normal position
if it is constructed as in (3.14): it supported in an annulus contained in N, where N
is a normal neighbourhood.

Lemma 3.20. The flows (¢;, M') and (¢}, M") are orbitally equivalent. Moreover,
there exists an orbital equivalence H : M' — M" such that

Hol(p)=/"(p), Vpe My,

where ' : My — M’ and " : My — M" are the canonical inclusions.

Remark 3.21. If the system of normal coordinates (3.12) is C!, then ON is a C'! surface
and the maps f; and ¢ are also C1. In this case, the flow (¢}, M") is a C! flow and
the orbital equivalence is C'. But in general, the surgery (3.14) is just a C° surgery
and the orbital equivalence with (¢}, M’) is just C°.

Proof. Consider the set
K ={¢(p):p€Aand 0 <t < p(p)}.
The boundary of K can be decomposed into the annuli A and A; where the flow is

transverse, and two other annuli where the flow is tangent. See figure 3.8.

Consider the two homeomorphisms F, F} : 0K — 0K defined by

R I S R o

Define M = M\int(K). Since the supports of F' and F; are contained in the
region where the flow is transverse to the boundary, there exist two induced flows

(6f , Mi Ur K) and (g7, Mi U, K).

Since f; is conjugated to f by a ¢.-isotopy, then proposition 4 implies that there
exists an orbital equivalence h between these two flows, which in addition is equivariant
with respect to the natural inclusions of Mg in each manifold. That is,

hO(MK;)MKUFK):(MKL)MKUFlK)

Observe that, since supp(F) = supp(¢) = KN Ny = A and Flg = ¢la = f
then there exists an orbitally equivalence h' : (¢;, M') — (qbf Mg Up K ) which is
equivariant with respect to the inclusions M4 < M’ and M4 — Mg Up K.

Analogously, since supp(F1) = supp(¢1) = K NN = A; and Fi|a, = ¢ila = f
then there exists an orbitally equivalence h” : (¢], M") — ( Mg Up, K ) which is
equivariant with respect to the inclusions My — M" and My — Mg Up, K.

Finally, since No C N, the lemma follows by defining H = (b))t o ho K. O
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4.2 Proof of proposition 3.19.

Following the previous subsection, up to orbital equivalence we can assume now that
the flow (¢, M') is constructed from a surgery placed in normal position. Since the
equivalence given in lemma 3.20 commutes with the natural inclusions of the comple-
ment of the normal neighbourhood, then it suffices to prove 3.19 in this case. We
proceed now to restate proposition 3.19 in a more convenient way.

For constructing the Birkhoff section it will be important to take care about the
sign of the twist and the quadrant in which is placed the surgery. Therefore, for the
rest of the section we will set the following:

(i) The neighbourhood N is oriented with our general convention stated in section 8.
(ii) The annulus A is contained in the first quadrant of N.

(iii) The twist m € Z is positive, as stated in theorem 3.6.

We consider a flow ¢} constructed by glueing My and N along their boundaries,
using the homeomorphism ¢; : ON — OMy defined in (3.14), which has support in
an annulus A; C ON;. The neighbourhood N is equipped with a system of normal
coordinates such that N corresponds to the solid torus or radius one and the local
section D corresponds to a disk in R? x 0 that contains the unit disk in the interior.
Observe that the intersection of ON with D is the meridian curve ag = {(z,y,0) :
x? 4+ y? = 1}, that separates D into the disk D x {0} and an annulus S = D\D x 0.

The curve o is a meridian curve (boundary of a disk) when seen as a subset of
ON, and is a boundary component of the surface S when seen as a subset of M py. As
a subset of My it is mapped onto a simple closed curve

=1 (ao) (3.15)

by the glueing operation, as depicted on figure 3.9.

Proposition 3.19 will follow by showing that 7 is the boundary of a local Birkhoff
section contained in N, as we state in the next proposition.

Proposition 3.22 (Restatement of 3.19.). There exists a local Birkhoff section B :
[0,1] Xx R/Z < N such that B(0 x R/Z) =0 x R/Z and B(1 x R/Z) = n.

Since we set m > 0, the curve 7 has coordinates (1, —m) in the meridian/longitude
basis. From now on we will fix a parametrization 7 : [0, 1] — 0N of the curve satisfying
that n(u) € Ay iff g < u < g1, for some fixed 0 < g9 < £1 < 1. The arc of 7 that
lies inside A; is the image by f; L of a meridian A; N ag, so it twists —m times in the
R/Z-direction.

Let
n(u) = (m(u),n2(u),n3(w))
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Figure 3.9: The curve 7.

be the expression of this parametrization in normal coordinates. Since the coordinate
system is not necessarily C' these coordinate functions could be just continuous. The
following lemma asserts that, in any case, we can replace the curve 7 for another whose

coordinates are C1.

Lemma 3.23. Let 0 < R < 1. Then, there exists a C' simple closed curve n C OTg
and a properly embedded surface L C T\Tg, homeomorphic to an annulus, transverse
to the vector field Y, such that OL = pUn.

Proof. Observe that, since the R/Z-component of the vector field Y equals one, there
exists a compact annulus L embedded in T, transverse to the flow lines, such that one
boundary component is T N L = n and the other boundary component is a curve
w C int(T). Without loss of generality we can assume that p C 0Tg. If the curve p is
not differentiable, it is possible to make a small perturbation of L by isotopies, fixing
the boundary component 7, and make the boundary component p of class C1. g

The previous lemma says that the surface S can be extended into a surface S U L,
transverse to the flow, with one boundary component u C Tgr which has coordinates of
class C'. Then, it suffices to prove proposition 3.22 assuming that the coordinates of

the curve n are C.

In what follows we will make use of an auxiliary annulus Q C 0N, constructed as
follows: The compact annulus A; is contained in the open annulus ON{“ = {(x,y, s) :
2> +y?=1, >0, x <y < 1}. So, there exists some 1 < #y < 0 such that the set

Q = Q(00,60:1) = {(m,y,s) 2l 4yt =1, 2>0, Oz <y <0z } (3.16)
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is a compact annulus satisfying that A; C int(Q) and Q C ONY“!. Its boundary is the
union of the longitudes Sy, and By, corresponding to the angles 7/4 < arctan(fy) <
arctan(f;) < m/2. See figure 3.9.

We say that 7 is monotonous in the R/Z-component if n5(u) < 0, for every u €
(€0,€1). We remark that, in general, it is not possible to assume that 1 is monotonous
in the R/Z-component. Even if the original Dehn twist f : A — A is monotonous in the
longitude component, the projection of the surgery over the annulus A; may produce
a non-monotonous Dehn twist fi.

We divide the proof two cases: (i) We prove 3.22 assuming that 7 is monotonous;
(ii) We prove the general case.

Case 1: 7 is monotonous in the R/Z-component.

We assume that the coordinates (11 (u), n2(u), n3(w)) of the parametrization 7 : [0, 1] —
N satisfy that:
1. nh(u) <0, Veo <u<erand ns(eo) = ni(e1) = 0;

2. n3(u) =0, if u € [0,e0] U [e1, 1].
The proof is done in three steps, as follows:

Step (i) - The surface Hp: For some small R > 0 we will find a local Birkhoff sec-
tion Hp, contained in the solid torus T g, and whose exterior boundary is isotopic
to 7.

Step (ii) - The region K: We will define a special region K C T; that is trivially
foliated by the flow.

Step (iii) - Connect S with Hr: We will connect the boundary of Hr with the
curve 7, using a band transverse to the flow and contained in T\Tg. For do-
ing this we are going to make use of the region K previously defined.

We develop these steps in what follows.

Step (i): The surface Hpy.

We will define a 1-parameter family of maps T;. : N = N, 0 < r < 1, satisfying that

o 71 =id, To(IN) = v and T, is a diffeomorphism onto its image V r > 0,

o T, (N)CT,(N)if r <ra.
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Moreover, it will be verified that T,,(N) C T,, for every r. For this purpose, choose
some fixed angle p such that arctan(fy) < p < arctan(f;) and consider the unitary
vectors v, w € R? defined as

v = (cos(p), sin(p))
w = (= sin(p), cos(p)).

The vector w is obtained by a rotation of angle 7/2 of v. We can define a system of
coordinates in R? x R/Z in the following way

U, :R*x R/Z — R* x R/Z such that ¥, : ((av + bw), s) + (a, b, s). (3.17)

Definition. Given 0 < r < 1 we define T, : R? x R/Z — R? x R/Z to be the map
given in coordinates (3.17) by

T,(a,b,s) = (ra, b, s). (3.18)

n

(a) The homeomorphism T;. in the xy-plane. (b) The surface Hg.

Figure 3.10:

Observe that T, sends the disk D x {0} into an ellipse contained in its interior,
whose major and minor axes are collinear with v and w, respectively. See figure 3.10a.
The properties of T, stated in the previous items follow directly from the definition.

Definition. For every R > 0 we define the surface

Hp={T,on(u):0<r <R, uel0,1]}. (3.19)

Each surface Hp is constructed as the image of a 1-parameter family of isotopies
applied to the curve Tr(n), as in figure 3.10b.

Lemma 3.24. There exists Ry > 0 such that the surface Hg is a local Birkhoff section
at ~y, for every R < Ry.



92 Chapter 3. Fried and Goodman Surgeries.

Proof. In the previous paragraphs we have set a parametrization 7 : [0,1] — ON with
normal coordinates n(u) = (n1(u), n2(u),n3(u)). Now we will denote by

v(u) = (v1(u), va(u), vs(u)) (3.20)

to the expression of this parametrization in coordinates (3.17). We recall that n3(u) =
v3(u), Vu € [0,1] and v(u) € A; if and only if u € [gg, £1].

The surface Hp is parametrized in coordinates (3.17) with the map [0, R] x [0, 1] —
Hpg, given by
(ryu) = (rva(u), v (u), vs(u)).

Consider a point p € Hr. The tangent space of Hg at p is generated by the vectors

%(p) =(v1(u), 2rva(u), 0)
2 () =(ruh ()P, )

The vector field Y is given by Y (z,y,s) = (—Az, Ay, 1) in normal coordinates. We
need to express it in the coordinate system (3.17). Observe that the change from the
(a,b, s)-coordinates to the (z,y, s)-coordinates is the rotation induced by the matrix

cos(p) —sin(p) 0
sin(p) cos(p) O
0 0 1

So the R2-component of Y in the (a, b, s)-coordinate system is given by the matrix

(cos(p) sin(p)) (—)\ O) <cos(p) —sin(p)) 1y (Sinz(p) —cos?(p)  2cos(p)sin(p) )

—sin(p) cos(p) 0 A/ \sin(p) cos(p) 2cos(p)sin(p)  cos?(p) — sin?(p)

Let’s set A\; = (sin(p) — cos?(p))A and Ao = 2cos(p)sin(p)A, which are positive
constants. Then, in the coordinate system (3.17) the vector field Y is written as

Y(a, b, S) = ()\1& + Aob, Aoa — A1 D, 1) (321)

We want to check that for small values of r > 0, the vectors %(p), 8%(19) and Y (p)
are linearly independent. It is equivalent to check that the following quantity does not

vanish:
v1(u) 2rve(u) 0

vy (u) r2vh(u) va(u)| =

(Arvr(w) + Aar?va(u))  (Narvr(u) — Ar?ve(u)) 1

=7 [—Vé(u) ()\guf(u) — 3wy (u)ve(u) — 2)\2r21/22(u)) + 7 (v1 () vy (u) — 2V2(u)1/1(u))} .
(3.22)
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Consider the set of points
So={T,ov(u):0<r<1ué¢(e9,e1)}. (3.23)

Since v3(u) = 0 this is a surface contained in R? x {0} and is clearly transverse to the
vector field Y, independently of r. Anyway, to see that the quantity between brackets
in (3.22) does not vanish on the points p € Sy, observe that it reduces to

r (v (w)va(u) = 2vp(u) (u)) .

The curve v : [0,e0] U [e1,1] — R? x R/Z is an arc contained in the unit circle of R?,
so it admits some reparametrization of the form u +— (cos(Au+ B),sin(Au+ B),0). It
follows that

vi(u)vh(u) — 2va(u)vy (u) = Acos®(Au+ B) + 2Asin?(Au + B) # 0.
It is possible to enlarge a little the surface Sy in the following way: Since Y is

transverse to Sp on the boundary points 7, (v(g;)) and Y (p) forms a positive angle with
TS0, there exist eg < £ < €] < &1 such that the set

So={Trov(u):0<r<1, uég (g}
is also a surface transverse to Y.

Assume now that p = T, o v(u) with g < u < &]. We will see that there exists
Ry such that if r < Ry then Y(p) is transverse to the surface Hg,. We will examine
the quantity between brackets in (3.22). First, observe that since vq(u) > 0 for every
gy < u < g], then there exists Ry > 0 such that

Aov2(u) — 3A1rvy (W) (u) — 2007203 (u) > Ky > 0

for every r < Ry, for some constant 1. Let k2 = max{|v1(u)vh(u) — 2va(u)v)(u)| : u €
(€0, €1]}. By the monotonicity of 7, it follows that v4(u) < k3 < 0 for every e, < u < &},
for some constant k3. Then (3.22) is bounded from below by

—v4(u)ky — TR

and it does not vanish if r < Ry where

—KR3K
R0<min{R1, 3 1}.
K2

The parametrization [0, Rp] x [0,1] — Hp, given by (r,u) — T, o v(u) is the im-
mersion of an annulus with boundary components 0 x R/Z and Tg,(v), which is an
embedding outside 0 x R/Z, and is contained in Tg,. Since the exterior boundary is
homotopic to n C N this immersion has linking number equal to 1 and multiplicity
equal to m (the twist parameter of ¢1). Since it is transverse to Y in the complement
of 0 x R/Z it follows that it is a local Birkhoff section. O

This completes the construction of the surface Hg near ~.
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Step (ii) - The region K.
Consider the annulus @ defined in (3.16), delimited by two longitudes 5y and /3;. Define
K={T,(0):0<r<1 peqQ} (3.24)

The region K is a manifold with edges in the boundary. The boundary consists of the
union of three annuli L; = Uy<,<; T(B:), i = 0,1 and Q, while the edges are the curves
v, Bo and (1. See figure 3.11a.

Define I; = L;\7y. The vector field Y is transverse to I‘:o, Ly and Q. It points
inward the region K along Ly and points outward along L; U Q.

Claim. For every p € K\7, there exist 79(p) < 71(p) such that the orbit of p enters

°

the region K through a point ¢(p, 79(p)) in Lo, and escapes through a point ¢(p, 71(p))
in L; UQ. In fact, 79(p) < 71(p) unless p is in the edge fBo.

This claim follows directly by examining the vector field Y on the set K. It allows
to decompose K'\7 as the union of two sets F and F', where

(i) E is the union of the orbit segments {¢(p,t) : 7o(p) < ¢ < 0} where p € Ly,

(ii) F is the union of the orbit segments {¢(p,t) : 7o(p) <t < 0} where p € Q.

These two sets are foliated by orbit segments?, and they intersect along a surface ¥;
tangent to the flow. See figure 3.11b.

D2

)
— v
/%\ ]
\\ E, F
(a) (b) The sets E, and F.

Figure 3.11: The region K

For each 0 < r <1 we will consider the closed curve

I, =L NT,. (3.25)

“In fact, for the set F the foliation singularizes on the edge Lo N Q, but we will not take care about
this.
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Then the family of curves {l, : 0 < r < 1} constitutes a foliation of I by longitudes.
If we push [, using the negative action of the flow we can define a surface X, in the
following way

Y, ={o(p,t) : p €l and 19(p) <t <0} (3.26)

Then, the family of surfaces {¥, : 0 < r < 1} constitutes a foliation of E. For each
r < 1 the surface X, separates E into two components. We will define

E, = the closure of the connected component of F\X, which does not accumulate on ~.
(3.27)

Ax1 Q~Ax1

Figure 3.12: Foliations by orbit segments in E, and F.

The sets E, and F' are depicted in figure 3.11b. Denote by Op, and OF to the
foliations by orbit segments induced on E, and F', respectively. Denote A = [0, 1] xR/Z.
Then we have the following,

Claim. Consider the foliated sets (E,, O, ) and (F,Of). Then,

1. (E,,Og,) is isomorphic to [0,1] x A equipped with the foliation by segments
[0,1] x {p}.

2. (F,Op) is isomorphic to the set {(x,y,s):x >y} C [0, 1] X A equipped with the
restriction of the foliation by segments [0, 1] x {p}.

This claim follows from the previous claim. For the set I’ observe that all the points
p in the edge £ hit Lg in some constant time 79 < 0. Define

F={¢(p,t):peQ,m<t<0}. (3.28)

Then there is a homeomorphism from (ﬁ , Og) to [0, 1] x A which takes @ onto {1} x A,
¥ onto [0, 1] x {0} x R/Z and sends the foliation by orbit segments onto the foliation
by segments of the form (z,y) x [0,1]. Since the function 79(p) is constant along the
longitudes in @) and approaches to zero when p — [y then it follows item (2) from the
claim. See figure 3.12.
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Step (iii) - Connecting S with Hpg,.

The goal now is to connect the surface S, that lies outside Ty, with a surface Hp for
some adequate 0 < R < Ry, that lies inside the solid torus Tg,. We will make the
following choices of constants:

1. Choose Ry given by lemma 3.24.
2. Choose Ry < Ry such that X, C int(Tg,).

3. Choose Ry < R such that Xg, C int (Tgr,\Tg,).
Consider the surface Hg,. In the region N\int(K) we define
So={(2,5,0):2% +4* <1, (2,,0) ¢ K UTg,(N)}. (3.29)
Then Sy has the shape of a band and is transverse to the flow. This surface extends

Hp, in the complement of K and connects the arc 7\ @ with the arc 0Hpg,\ K. We refer
again to figure 3.10b.

aIRz 21‘31 Ry 21 Q

S5

G En

1

Figure 3.13: Connecting Hp, with S inside K.

Now, we will connect the arcs Tg,(n N Q) with N Q using three bands S, So
and S3, contained in K and transverse to the flow. We will complement the following
explanation with figure 3.13. Observe that the boundary points of the arcs are already
connected by segments in the boundary of Sy. Recall that we have a decomposition of
K as the union (E\Eg,) U Eg, UF.

The surface Tg,(®) is an annulus that disconnects E\EFR,. Let’s call G to the
connected component that contains 3; and Tg,(Q) as opposite faces. Let’s define

Sy =Hg,NG. (3.30)
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Then, S7 is a band that connects the arc Tg,(n N Q) C Tg,(Q) with another arc
= Hp, NXR, CXpg,,and is transverse to the flow lines. See figure 3.13.

Recall that Er, ~ [0,1] x A with a homeomorphism that sends the orbit segments
in Er, onto the segments of the form [0,1] x p. In this correspondence we have that
Yr, >~ [0,1] x {0} x R/Z and ¥; ~ [0,1] x {1} x R/Z. The curve yu is contained in
YR, and is transverse to the orbit segments that foliates this surface. This implies that
there exists a band S contained in Eg,, transverse to the flow, that connects the two
faces X r, and Xj, such that So N Xk, = p. The surface Ss is defined to be

So ~{(z,y,s) €[0,1] x A: 0<y <1, (z,0,8) € u}. (3.31)

It remains to see what happens in the region F'. Let’s call p to the arc p = SN 3y.
We have to find a surface S3 contained in F' that connects p with the arc nN(Q, being at
the same time transverse to the orbit segments. For that we will consider the auxiliary
region F' ~ [0,1] x A defined in (3.28). In this region, the set F corresponds to the
prism defined by {(x,y,s) : x >y} C [0,1] x [0,1] x R/Z as in figure 3.12. The surfaces
Y1 and @ correspond to the faces [0,1] x {0} x R/Z and {1} x [0, 1] x R/Z, respectively.
Without loss of generality, it is possible to assume that:

e the meridians of the annulus @ (recall they are defined by the intersections @ N
D x {s} with s € R/Z) correspond to the segments {1} x [0,1] x {s},

e the orbit segments contained in ¥; correspond to the segments [0, 1] x {0} x {s}.

Choose a parametrization p : [a,b] — 31 ~ [0,1] x {0} x R/Z of the form p(u) =
(p1(u),0, p3(u)). Choose choose a parametrization ¢ : [a,b] — Q ~ {1} x [0,1] x R/Z
of the arc n N Q, of the form §(u) = (1,02(u), d3(u)). Define the surface

Sy = {p(u) +t(0(u) —p(u)) : 0<t <1, uel01]} (3.32)

This surface is depicted in figure 3.14. By the previous assumptions, we have that
p3,03 : [a,b] — R/Z are monotonous functions. The monotonicity of these functions
imply that S3 is transverse to the foliation by segments [0,1] x {p}. Finally, the surface
S3 can be pushed with a ¢p-isotopy (fixing p and d) onto a surface S3 contained in the

region F' and transverse to the orbit segments.

This completes the proof of lemma 3.22 assuming that 7 is monotonous in the
R/Z-component.

Case 2: 7 is not monotonous.

In the general case, when the curve n is not monotonous in the R/Z-coordinate, we
have the following lemma, that allows to reduce the construction to the previous case:

Lemma 3.25. For some 0 < R < 1, there exists a surface S properly embedded in
T\Tg, transverse to the flow, such that
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ne

4 A x0

Figure 3.14: The surface S3 C F.

1. 05 =(SNITRr)U(SNIT) =pnUn,

2. The curve p is monotonous in the R/Z-direction.

Proof. First of all, observe that if 0 < R < 1 is sufficiently close to 1, then
VpeQ, 3p(p) <0 such that ¢,y (p) € ITg

and all the orbit segment {¢:(p) : p(p) <t < 0} is contained in T\Tg. So we will fix
some R satisfying this condition. Consider the set

V ={¢:(p) : p € Qand p(p) <t <0}. (3.33)

This set is depicted in figure 3.15a. The boundary of V' can be decomposed into the
union of two annuli transverse to the flow and two tangent annuli. The annuli transverse
to the flow are ) and

Qr={9pp(p) :p € Q} C ITg.

The proof will consist in:

(i) Construct a surface B C V homeomorphic to a band, transverse to the flow,
that connects n N Q with a curve p C @Qp that cuts the meridians of Qr in a
monotonous way;

(ii) By adding a band B’ contained in (T\Tg) N V¢ and transverse to the flow, we
obtain the desired surface S = BU B'.
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(a) (b) Coordinates V' — [0, 1] x A.

Figure 3.15: The set V.

We develop these steps below:

Step (i):

The annulus Qg is delimited by two vertical longitudes of the torus dTg, so there
exists a parametrization A = [0,1] x R/Z — Qg of the form (u,s) — (Rcos(Au +
B), Rsin(Au+ B), s). In the coordinates defined by this parametrization each meridian
QrND x {s} corresponds to the segment [0,1] x {s}.

For every q¢ = ¢,;)(p) € Qg define 7(q) = —p(p). Consider the parametrization
Upr:[0,1] x A — V defined by ¥

VR(t, u,s) = Qpr(u,s) (R cos(Au+ B), Rsin(Au + B), s).

In the coordinates defined by this parametrization Qg corresponds to 0 x A, Q) corre-
sponds to 1 x A, and V ¢ € Qp the orbit segment {¢;(q) : 0 <t < 7(q)} corresponds to
the segment [0, 1] x g.

Let’s consider a parametrization 7 : [a,b] — @ of the arc n N Q. In the coordinates
defined by Up, this curve has an expression of the form n(u) = (1, v2(u), v3(u)) € 1 X A.
Consider the curve v C 0xA defined by v(u) = (0, v2(u), v3(u)), a < u < b, and consider
the surface

T, = {(t,va(u),v3(u)) : 0 <t <1, a <u<b}.

This surface is a band tangent to the flow, that connects the segments 1 and v. See
figure 3.15Db.
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First case: We will assume that v C Qg ~ [0, 1] x R/Z satisfies the following:

(i) v(a) = (0,0), v(b) = (1,0);

(ii) the segment v twist once in the R/Z direction,

(iil) v N ([0, 1] x {0}) = {ro(a), vo(b)}.

Thus we assume that v looks like the green curve in the front face 0 x A of picture
3.15b. Consider the universal cover Qg = [0,1] x R — Qg = [0,1] x R/Z. For every
k € Zlet 7, : [a,b] = Qg be a lift of v such that 7;(a) = (0, k). Condition (i) says
that 7 (b) = (1,k+1). Let R C Qg be the compact band delimited by the two curves
l7k and §k+1-

Claim. There exists a curve [ : [a,b] — Ry satisfying that

(a) fi(a) = o(a) = (0,0), a(b) = o(b) = (1,1);
(b) /j Ny = {(07 0)7 (17 1)};

(c) fh(u)>0,Va<u<b.

To see this, observe that condition (4i7) implies that each 7y is entirely contained
the fundamental domain [0,1] x [k, k + 1] of Qr. Then the segment  divides the
square [0,1] x [0, 1] in a top and a bottom triangle, and in each of them there exists a
curve [ satisfying the claim. See figure 3.16a. We make a comment on which of the
two possibilities must be chosen at the end of this proof.

Since [i and 7y intersect just in its extremities, there exists a surface L € [0,1]x [0, 1]
delimited by these two curves. Let p, L C Qg be the corresponding projections of x
and L.

Consider the surface B+ C V defined as the union B+ = L U T,. Then, Bl isa
surface, homeomorphic to a band, that connects n N Q with u. It is transverse to the
flow along L and is tangent along the band T, that connects n N @ with v, as depicted
in 3.15b. Observe that in some small flow-box neighbourhood of T;), it is possible to
perturb this surface fixing the side n N @ and make it transverse to the flow lines. So,
by a small perturbation of Bt it is possible to find a band B C V transverse to the
flow, that connects nNQ with p, and the curve p cuts the meridians of Qg in a strictly
monotonous way.

Finally, observe that there are two possibilities for selecting fi. There is only one
of them that makes the union of the band B with the surface that lies outside T to be
transverse to the flow lines.

Second case: We will assume now that the twist number is still one (condition (i)
of the previous case), but the lifts 7 are not necessarily contained in a fundamental
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Figure 3.16: Choosing an adequate boundary.

domain [0, 1] x [k, k + 1] (condition (4¢7)). In this case, the previous claim is no longer
true. Given a lift v, we define

s(7g) zrylllg%{n : Ug(u) € 0,1] x [n,n+ 1]}

i(og) zanel%{n : Ug(u) €10,1] x [n,n+ 1]}.

Observe that the quantity a(v) := s(vy) — i(7) is independent of the lift 7.

Claim. There exists a curve [i : [a,b] — Ry satisfying that

(a) p(a) = v(a) = (0,1), a(b) = v;(b) = (0,7 + 1) for some i = 0, 1;

(b) /jﬁ ﬁi = {(O7i)7 (07i + 1)};
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(c) s(p) —i(n) <s(@i) —i(w).

Proof of the Claim. Consider a segment constructed as a concatenation of of segments
in g, 71 and horizontal segments, exactly as shown in figure 3.16b. Then, a small per-
turbation of this segment gives the desired curve. The way how the union of segments
were chosen implies that the quantity a is strictly smaller. O

Exactly as in the first case, the curves i and v; enclose a surface L contained in the
region Ry, that projects into a surface L C Qr. We can proceed analogously and, by
deforming B+ = LU T, we find a band B C V, transverse to the flow, that connects
n C Q C T with p C Qr C 0Tg. This time, p is not necessarily monotonous in the
third R/Z-coordinate, but we have that

If a(n) = [, we can divide the region V ~ [0,1] x A in [ cubes of the form V; ~
(7, %] x A separated by annuli Q; = ; x A, i =0,...,l — 1. Then, defining p; = p, we
can find a band By C V; that connects p1 with to pe C @Q;—1. We can apply the same
process inductively on the sets V; until arrive to a monotonous curve y; C dTgr. The

union of the bands By U --- U B; gives the desired B.

Remark. The bands B; and the curves u; must be chosen to extend the transversality
along the union of the bands. Exactly as before, at each step two possibilities for
constructing the next band arise, and only one is useful.

Third case: The general case is when the segment n N Q twists m # 1 times in the
R/Z-direction. The proof of this case can be carried out by analogy to the previous
two cases.

Step (ii):

Let Lo, L1 be the two faces of 9V which are tangent to the flow. Let o; = BNL;, i =
0,1. The last step of the proof consists in finding a rectangular band B’ C (T\Tg)NV*,
transverse to the flow, verifying that:

1. Two opposite sides coincide with the segments o;,

2. The other two sides coincide with n\@ and with a curve p/ C dTg\QR.
Consider the surface defined as ¥ = (D\Dg) x {0} N V¢ in normal coordinates. Then,
in a small flow box of each annulus L; it is possible to connect the boundaries of X

with og and o1, in such a way that the obtained surface is transverse to the flow lines.
See figure 3.17.

0
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Chapter 4

Transitive topological Anosov
flows in dimension three.

In this chapter we prove that every transitive topological Anosov flow on a closed 3-
manifold is orbitally equivalent to a smooth Anosov flow. In section 1 we survey some
results and definitions about topological Anosov dynamics and then we state our main
result (theorem 4.12). In section 2 we describe the almost Anosov structures associated
to a given transitive topological Anosov flow, following the existence of Birkhoff sections
proved by Fried and Brunella. Finally, we prove theorem 4.12 in section 3.

1 Topological Anosov Dynamics.

1.1 Expansive and topologically Anosov homeomorphisms.
Topological properties of Anosov Diffeomorphisms.

Recall that for r > 1 a diffeomorphism f € Diff "(M) in a closed, smooth, Riemannian,
manifold is Anosov if Df : TM — T M preserves a hyperbolic splitting TM = E* & E™.

A fundamental property of the hyperbolic splitting preserved by an Anosov diffeo-
morphism is that the bundles F® and E" integrate into globally defined foliations F*
and F* on M, which are of class C%", transverse between them, and with a very precise
dynamical meaning: For every x € M we have that:

o F*(z) equals the stable set W*(z) = {y € M : limy, 1o d(f"(z), f"(y)) = 0},

o FU(x) equals the unstable set W*(z) ={y € M : lim,,_~ d(f"(z), f"(y)) = 0}.

This is the content of the very classical stable manifold theorem. For some € > 0 not

105
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depending on z, the local invariant sets
We(x) ={y € M :d(f"(z), ["(y)) <&, Vn >0},
We(z) ={y € M :d(f"(z), f"(y)) <e, Vn <0},

are a pair of C"-embedded disks, contained in F*(x) and F“(z) respectively, whose
intersection is transverse and consists in the singleton {z}. Every point in M has a
neighbourhood which is bi-foliated by the local invariant manifolds and has a Cartesian
product structure.

From the existence of these contracting/expanding invariant foliations with local
product structure we can derive most of the topological properties of an Anosov diffeo-
morphism. In particular, it follows that Anosov diffeomorphisms satisfy the following
two properties

(A) : They are expansive;

(B) : They satisfy the pseudo-orbits tracing property.

These two fundamental properties are involved in important consequences about the
topological dynamic of Anosov diffeomorphisms, such as the C"-structural stability.

Topologically Anosov Homeomorphisms.

One attempt to characterize Anosov dynamics from a strictly topological point of view
is via the class of homeomorphisms which are expansive and have the global shadowing

property.

Definition 4.1 (Topologically Anosov, [2]). Let X be a compact metric space. A
homeomorphism f : X — X is said to be topologically Anosov if it is expansive and
has the global shadowing property.

In [2] it is shown that much of the topological properties of Anosov diffeomorphisms
are shared with these broader category of homeomorphisms. For example, topologically
Anosov homeomorphisms on compact metric spaces have well-behaved local stable and
unstable sets, which induce a partition of the space into stable and unstable sets with
local product structure. Moreover, the chain recurrent set of such a diffeomorphism
admits a Smale spectral decomposition in basic pieces as in a the Axiom A case, and on
each basic piece it is possible to codify the dynamic using a Markov partition. They
prove as well that topologically Anosov homeomorphisms are topologically stable.

C"-Anosov structures.

Let M be a closed manifold equipped with some smooth differentiable structure D,
and consider an Anosov diffeomorphism f € Diff "(M, D) (here r > 1) preserving a
hyperbolic splitting TM = E° & E“.
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The hyperbolicity condition of the invariant splitting is a property expressed in
terms of a Riemannian metric. For being hyperbolic it is required that, for some
Riemannian metric on (M, D), there are constants C' > 0 and 0 < A < 1 such that

IDf"gs@)ll < CA" and [[Df™"|guy) || < CA" for n > 0,

where || - || denotes the norm induced by the metric. Since the manifold is compact, if
E° @ E" verifies the definition of hyperbolicity for some Riemannian metric then it will
satisfy the same for any other chosen metric, up to modifying the constants C' > 0 and
0<A<L

This means that being Anosov is not a property about how does f act on M as a
metric space, but about how it acts as a diffeomorphism of (M, D). If D’ is another
smooth structure on M and there exists a C"-diffeomorphism h : (M,D) — (M,D'),
then g = ho foh™! is a C"-Anosov diffeomorphism on (M, D’). Thus, we can think
about f as being a homeomorphism on M, for which there exists a smooth differentiable
structure D such that f is a C"-Anosov diffeomorphism. This is a property that depends
just on the C"-diffeomorphism class of D.

Definition 4.2. Let f € Homeo(M) and let » > 1. A C"-Anosov structure for f is a
smooth differentiable structure D on M which satisfies that

(i) f:(M,D) — (M,D) is a C"-diffeomorphism,

(ii) f preserves a hyperbolic splitting.

Existence of smooth models.

One principal question about general topological dynamics is whether or not the dy-
namic of a given homeomorphism can be realized, up to conjugation, by a model that
is regular in some sense. In this spirit, we encounter the following two questions con-
cerning expansive dynamics:

Question 4.3. Let M be a closed topological manifold and f € Homeo(M),

(1) If f is expansive, does it exists some differentiable structure on M such that f is
a diffeomorphism of class C"7

(2) If f is topologically Anosov, does it exists some differentiable structure on M
such that f an Anosov diffeomorphism of class C"?

Some remarks are in order.

Remark 4.4. Let f € Homeo(M) and let g € Diff "(N). If there exists a homeo-
morphism h : M — N that conjugates f and g then, using h, we can pull-back the
differentiable structure of IV onto a differentiable structure on M. With this structure
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f is a diffeomorphism. Thus, determining whether or not f preserves a differentiable
structure is equivalent to determining if f is C%-conjugated to a diffeomorphism in
some differentiable manifold. In this way, the differentiable structures preserved by f
can be described as the differentiable conjugacy classes of diffeomorphisms g which are
topologically conjugated to f.

Remark 4.5. In general, it is not true that a homeomorphism is conjugated to some
diffeomorphism. Many examples of this can be given, in any class of regularity varying
from Lipschitz to smooth or analytic. For instance, a homeomorphism with infinite
topological entropy in a compact manifold can never be endowed with a smooth differ-
entiable structure.

Remark 4.6. If dim(M) < 3 then all the different smooth structures on M are dif-
feomorphic. Thus, we can assume that M is already endowed with a fixed smooth
structure and ask if f is conjugated to some diffeomorphism on M.

Remark 4.7. In question (2) the important step is to go from topologically Anosov to
C'-Anosov structures. If f € Diff'(M, D) is an C'-Anosov diffeomorphism then there
exists another smooth structure £ for which f is a C*°-Anosov diffeomorphism. To see
this, just observe that f can be approximated very close in the C'-topology by some
smooth diffeomorphism g € Diff**(M, D). Then, by C'-structural stability we know
that f is CY-conjugated with ¢ by a homeomorphism h : M — M. The structure
E = h*(D) is a C°-Anosov structure for f. Nonetheless, observe that the smooth
structure £ is rarely compatible with D.

Questions (1) and (2) are open in general. In dimension two the answer is positive
for the two questions, as follows from the works of Lewowicz, Hiraide, and Gerber-
Katok.

As we already cited in section 7, in [42] and [38] it is shown that any expansive
homeomorphism in a compact surface is conjugated to a pseudo-Anosov homeomor-
phism. Then, in [32] it is shown that any pseudo-Anosov homeomorphism is in fact
conjugated to a smooth diffeomorphism (result that was extended later to the analytic
case in [43]), answering in this way to question (1) in dimension two. We notice as well
that the smooth models of Gerber-Katok are in the ergodic class of Bernoulli shifts
with respect to some smooth measure in the surface.

For question (2) in the surface case, the Anosov diffeomorphisms are the only
pseudo-Anosov maps that satisfies the pseudo-orbits tracing property, so they are the
only topological Anosov homeomorphisms up to conjugation.

In greater dimensions less in known. In [50] and [4] it is shown that, under certain
strong hypothesis about the set of periodic points, every expansive homeomorphism in
a compact n-manifold is necessarily C°-conjugated to an Anosov diffeomorphisms on
the n-dimensional torus. In [2] it is shown that topological Anosov homeomorphisms
on the n-torus are conjugated to Anosov diffeomorphisms. We remark another in-
teresting result found in [24] concerning exotic differentiable structures: In dimension
n > 4 there exist topologically Anosov homeomorphisms on the n-torus, which are
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C*°-Anosov diffeomorphisms with a certain smooth structure that is not diffeomorphic
to the standard one (and they are not Anosov with the standard smooth structure on
).

Remark 4.8. The existence of a C'-Anosov structure preserved by a homeomorphism
f is more restrictive than the condition of being just a diffeomorphism for some differ-
entiable structure. It is not hard to construct examples of expansive diffeomorphisms
on the n-torus, C%-conjugated to some linear Anosov automorphism, but which are

not Anosov for the standard smooth structure. See for instance [2], theorem 1.2.2 and
remark 1.2.3.

The main difficulty to prove that an expansive or topologically Anosov homeo-
morphism preserves a differentiable structure is to construct differentiable model to
compare with. In most of the cases the strategy consists in show that the homeomor-
phism preserve a pair of transverse foliations, may be defined in just an open and dense
subset of M, and then use this to impose conditions on the topology of M. General
expansive maps in compact metric spaces preserve partitions by stable/unstable sets,
but it is not clear whether they should constitute foliations or something similar. In
view of this we can make the following definition:

Definition 4.9 (Strongly topologically Anosov). Let M be a closed manifold equipped
with some distance d. A topologically Anosov homeomorphism f € Homeo(M) is strong
if it preserves two regular foliations F° and F* such that

(1) The two foliations have local product structure,
(2) For every x € M
F@)={ye M: lim_d(/"(@), /")) = 0},

Fi@)={y e M: lim_d(f"(). f"(y)) = 0}.

Adding this extra hypothesis we can see in [34] an elementary proof that every
strong topological Anosov homeomorphism in the two dimensional torus is conjugated
to a linear Anosov map. Also, from the classical result of Franks and Newhouse about
codimension one Anosov diffeomorphisms ([45], [29]) it follows that every strong topo-
logical Anosov homeomorphism is conjugated to a linear Anosov automorphism on the
n-torus, provided one of the two foliations has dimension one.

1.2 Topologically Anosov flows in dimension three.

The problem of smooth models for expansive or topologically Anosov dynamics can be
translated to the context of flows. We discuss it for the case of regular flows in three
dimensional closed manifolds.

Let ¢y : M — M be an orbitally expansive regular flow, defined in a closed, smooth,
Riemannian 3-manifold M. In the same way that expansive homeomorphisms in closed
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surfaces are conjugated to pseudo-Anosov homeomorphisms, in [46] and [40] it is shown
that every expansive flow in a closed 3-manifold is orbitally equivalent to a pseudo-
Anosov flow. 1 Thus, the theorems in [42], [38], [46] and [40] say that, in the smallest
possible dimension (two for homeomorphisms and three for flows), pseudo-Anosov dy-
namics are the only expansive dynamics. A very complete account on these theorems
and definitions is found in [17].

Definition 4.10 (Topological Anosov flows). Let (¢, M) be a regular flow defined in
a closed 3-manifold M. We say that ¢ is a topological Anosov flow if it is expansive
and the invariant foliations have no singularities.

By the stable manifold theorem we have that every C"-Anosov flow is, in particular,
topologically Anosov. In analogy to question 4.3 we have the following problem:

Question 4.11. Is every topological Anosov flow in a closed 3-manifold C°-orbitally
equivalent to a C'-Anosov flow?

In contrast to the case of 2-dimensional homeomorphisms, the class of topologically
Anosov flow is divided into the transitive and the non-transitive ones. The objective of
this chapter is to prove the following theorem:

Theorem 4.12 (Theorem C). Ewvery transitive topological Anosov flow in a closed
3-manifold is C°-orbitally equivalent to a C*-Anosov flow.

Theorem 4.12 can be expressed in terms of differentiable structures. Consider the
following definition:

Definition 4.13. Let (¢, N) be a non-singular regular flow in a closed 3-manifold and
let 1 <7 <oo. A C"-Anosov structure for (14, N) is a smooth differentiable structure
D on N which satisfies that

(i) ¢ : (N,D) — (N, D) is a flow generated by a C"-vector field,

(ii) D1y preserves a hyperbolic splitting TN = E* @ E°® E*, E€ generated by the
vector field.

Then, the theorem stated above says that given a transitive topological Anosov
flow, there exists some reparametrization of the flow and a smooth atlas on the ambient
manifold for which the flow is C''-Anosov. By the remark 4.7 above, we can choose the
smooth atlas in such a way that the flow becomes C"-Anosov, for any 1 < r < oco.

Theorem 4.12 proceeds by reducing the dynamic of the flow to a first return map
onto a Birkhoff section, and is for this reason that the proof presented here is valid just

The flow ¢ is pseudo-Anosov if it preserves a pair of codimension one transverse foliations F°*,
F, possibly with singularities of circle-prongs type, satisfying that: Given z and y in the same
cs leaf, there exists an increasing reparametrizing homeomorphism p : (R,0) — (R,0), such that
dist(¢¢(x), pn)(y)) — 0 for t — +oo, and the symmetric condition is satisfied for the cu leaves in
backwards time.
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in the transitive case. As we remarked on the introduction, there are hyperbolic basic
sets for flows in dimension three which cannot be constructed from the suspension of
any surface map, (cf [12], non-coherent attractors), which constitutes an obstruction to
extend our techniques. Question 4.11 is open in the non-transitive case.

2 Almost Anosov Structures.

Let (¢, M) be a transitive topological Anosov flow.

In the complement of some finite collections of periodic orbits, it is possible to define
a smooth atlas and a Riemannian metric such that the restriction of the flow onto this
set is orbitally equivalent to a smooth flow preserving a uniformly hyperbolic splitting.

This follows from the theorem of Fried [31] and Brunella [17]. Since ¢, is transitive,
there exists a Birkhoff section

L1 (2,08) — (M,T). (4.1)

In the complement of I" the restriction of the flow is orbitally equivalent to the suspen-
sion of the first return map P : > — 3. The pseudo-Anosov character of P allow to
define a convenient smooth structure and Riemannian metric on the (open) manifold
MA\T', as we explain below. Before, we recall the general construction of Fried.

Fried’s Construction.

Let 3 be the closed surface obtained by collapsing each boundary component of the
Birkhoff section (4.1) into a point, and let A be the set of all these points.

There is a homeomorphism P:3 ¥ that preserves A, induced by the blow-down
operation, which is generalized® pseudo-Anosov and has no singularities on Y= f]\A
The set of singularitics of P (i.e. the set of singularities of the invariant foliations) is
contained in A. Since P is induced from the first return map to a Birkhoff section in a
topological Anosov flow (no circle-prongs), we encounter some restrictions on the kind
of k-prong local models that are available at the singularities of 13; see [31].

Consider the flow
(¢1, M) = suspension (]3 I f]) . (4.2)

Each point in A generates a periodic orbit for this suspension flow. Let T be the set
of all the periodic orbits associated to points in A. The flow (4.2) defined above is a

2Here, the adjective generalized stands for pseudo-Anosov maps with possibly 1-prong singulari-
ties. This could be the case if some of the orbits in I' have non-orientable local invariant manifolds.
Nevertheless, as it was observed by Brunella, there always exist Birkhoff sections such that the local
invariant manifolds of every orbit in I" are orientable and embedded (i.e. multiplicity equal one). This
observation can be useful to simplify technicalities along proofs.
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pseudo-Anosov flow, and the orbits in [ that correspond to singular points for P will
be circle-prongs of the invariant foliations.

It follows that (ggt, M\) is almost equivalent to (¢, M). That is:

e There exists an orbital equivalence Hr : (¢, M\T) — (¢, ]\/J\\f‘),

e (¢¢, M) is obtained by Fried Surgery on (QAﬁt, M ) along the periodic orbits in L.

2.1 Almost Anosov smooth structure associated to a Birkhoff section.

From now on we will denote Mp = M\I" and, in general, we will use I" as a sub-index
for referring to the objects associated to the restriction of ¢; onto Mr.

The flow (¢, M) is equivalent to the suspension flow generated by P : > 3. As
a consequence, we can state the following proposition:

Proposition 4.14. The manifold Mr is equipped with a smooth structure Dr such
that:

(i) The foliation by flow orbits Or on My is tangent to a smooth non-singular vector
field Xp.

(ii) D¢;T : TMy — TMyp preserves a splitting TMp = Et @© Ef © EY, where P T
denotes the flow generated by Xt and the bundle Ef is collinear with this vector-
field.
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(iii) There exists a Riemannian metric |- | in the (open) manifold My for which the
splitting is uniformly hyperbolic and

DT (p) - vlr = A - Jolp, Y v € B and t >0,
|DG T (p) vl = A"+ [olp, ¥ v € E* and t <0,

where 0 < XA < 1 is the stretching factor of P.

In analogy to [39] we define:

Definition 4.15. The smooth structure Dr stated in proposition 4.14 above is called
an almost Anosov structure for ¢; on Mr.

Remark 4.16. For proving theorem 4.12 we will start with one of these almost Anosov
structures and we will construct a global Anosov structure for a transitive topological
Anosov flow. Nevertheless, in the same way as in subsection 3.1, the new structure is
not compatible with the almost Anosov one in a the complement of a neighbourhood
of the singular periodic orbits. It seems reasonable to be aware of a possible extension
of these almost Anosov structures onto the singular set.

Remark 4.17. Not every finite set I' of periodic orbits bounds a Birkhoff section.
For example, this is the case of a single periodic orbit in a suspension Anosov flow,
since it represents a non-trivial homology class on the phase space. This says that
the almost Anosov structures associated to a given topological Anosov flow are not
arbitrary objects, but they have some intricate relation with the topology of the flow.

Proof. To prove the proposition, observe that since P:¥ 5 3is pseudo-Anosov it
has an associated pair (F*, pus) and (F", u,) of transverse foliations equipped with
transverse measures and a stretching factor 0 < A < 1. Since there are no singularities
on the open surface 3= f]\A, this pair of transverse foliations provides a translation
atlas

Da = {p;i : Ui = R?}ier, where {U;}ics is an open cover of 3,

such that, on each coordinate neighbourhood, the foliations F* and F* correspond to
the foliations of the plane by horizontal and vertical lines, and the transverse measures
s and g, correspond to the 1-forms |dz| and |dy| in R?, respectively. This translation
atlas defines a smooth structure in ¥ and a Riemannian metric |- |2 = da? + dy*.

In the local coordinates of this atlas, the first return P : Y — 3 takes the form of
a homeomorphism

_ A0
@iopo%l (@ y) = £ (0 )\—1> (z,y) + 7ij

between open sets in R2. It follows that P is smooth and DP : TS — TY preserves
a splitting T = E° @ E" given in local coordinates by F* =R x 0 and E* = 0 x R.
Moreover, with the metric | - | this splitting is uniformly hyperbolic.
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With this structure of smooth Riemannian manifold on i, the suspension flow
(¢4, M) = suspension (P 3 — 2) (4.3)
is the flow generated by the smooth vector field 9/0t on the smooth (open) manifold

M=% xR/(z,t) ~ (P(2),t —1).

The D P-invariant splitting on the surface induces an invariant splitting of the form
TM = E° & E" & span{0/0t}

for the derivative of the suspension flow. Moreover, for each point (z,t) of ¥ x R, the
expression

|2 = A" da? + N dy? + dt?

defines a Riemannian metric that pushes-down to the quotient manifold M and induces
a metric |- |, that coincides with the metric on 3 along a fixed global transverse section
> < M. The invariant splitting defined above is uniformly hyperbolic with respect to
this metric, and it follows from its definition that |Dey¢|ps|o = ' and |Déy|gulo = A4
Since (¢, Mr) is orbitally equivalent to (qgt, M ), this completes the proof. O

2.2 Normal form in a neighbourhood of v €T

We describe here a normal form for the vector field Xt in a neighbourhood of each v € T'.
Before, in 2.2, we will make a small digression about a normal form for the suspension
of a saddle type hyperbolic linear transformation on R?. In 4.20 and 4.24 we will define
a family of tubular neighbourhoods, that we call cross-shaped neighbourhoods, and that
will be used in the course of the proof of theorem 4.12.

Affine local model.

Given 0 < A < 1 consider the matrix A = <8 )\(_)1>.

Lemma 4.18. Let gbf‘ : My — M, be the flow obtained as the suspension of A : R? —
R2. Then, there exists a smooth conjugation

H : (67, My) = (6, R? x R/Z),
where X, : R2xR /7 — R3 is the vector field given by Xx(x,y, z) = (log(\)z, —log(\)y, 1).

Thus, the flow ¢f( * provides a time-preserving smooth model for the germ of the
periodic orbit in the suspension of A. We will outline some facts about this flow in
what follows.
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The action of ¢;* in coordinates. The flow ¢;* acts on the solid torus R? x R/Z
by affine transformations, and in the standard (z,y, z) coordinates is given by
M (,y,2) = (Vo Ay, 2+ 1),

So, its action can be decomposed as the product of two flows:

(i) The flow ¢ : R? — R? given by ¢} (x,y) = exp(tA)(z,y),
(ii) The flow R/Z — R/Z given by z — z + t.

The action of ngiﬁ on R? preserves a splitting £ @ E¢® E* into three line bundles
E® =R x {0} x {0}, E°=span{X,} and E* = {0} x R x {0},
and for every p € R? x R/Z we have that
IDG @) - vl = X - Joll, ¥ v € B* and >0,
IDE @) -l = A~ - fjoll, Vv € B* and ¢ <0,

where || - || is the standard Euclidean norm.

Plane cross-shaped region. Start with the standard partition {D; : i = 1,...,4} of
the plane R? into four quadrants, and consider the corresponding restrictions ¢7! : D; —
D;. Given two parameters 0 < ro < r; < 1 consider the region Q1 = Q1(r1,r2) C Dy
delimited by the segments:
) wi =[0,m] x{0}
) wi’ ={0} x[0,7]
3) Jin ={(r1,0)} x [0,72]

) Jour = [0,72] x {(0,71)}
5) I; = the orbit segment of ¢* that connects (r1,r) with (r,r1).

The boundary 9Q); is composed of one segment contained W*(0), one segment contained

in W*(0), an entrance boundary J} , an exit boundary J},;, and an orbit segment. See
Figure 4.1a.

By analogy we define the corresponding regions ); C ID; in each quadrant ¢ = 2, 3, 4.
The union of these four regions determines a compact neighbourhood @ = Q(r1,72) of
0 € R2. See Figure 4.1b.

There is a diffeomorphism 1 : J1\{(r1,0)} — JL,;\{(0,71)} of the form
bip =g =i, D),

which sends each entrance point p onto the point ¢ determined by the intersection
JL,; N OT(p). The same holds for the other regions Q;, i = 2,3, 4.

=

Lemma 4.19. Given 0 < ry < r1 < 1 consider the map 1 : {r1}x(0,r2] — (0,7r2] x{r

associated to the flow ¢{t. Let p = (r1,7), then ¥(p) = (r,71) and 7(p) = 7(r) =
log(r/r1)
log(A) -
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0 R, .

(0,0)

Figure 4.1: The region Q.

Cross-Shaped neighbourhood Let 79 = 0 x R/Z be the periodic orbit of the flow
gth* defined in lemma 4.18 and let {W; : i = 1,...,4} be the partition of the solid torus
R? x R/Z into four quadrants determined by the invariant manifolds of 7.

Definition 4.20. Given two parameters 0 < ro < r; < 1 define the regions V; =
Vi(ri,m9) C Wi and V = V(ry,72) C R?2 x R/Z by

‘/;(7“1,7’2) = Qi(rl,T2> XR/Z, fOI‘i: 1...,4 (4.4)
V(ry,r2) = Q(r1,m2) x R/Z. (4.5)

The region V(r1,72) is a compact, regular, tubular neighbourhood of the periodic
orbit 9. We call it a cross-shaped neighbourhood. 1t is decomposed as the union of the
four regions V;, each one contained in a quadrant of the solid torus. See figure 4.2.

Each of V; is homeomorphic to a solid torus and its boundary is composed of five
annuli:

(1) L = w} xR/Z
(2) LY = w!xR/Z
(3) AL =J. xR/Z
(4) Af)ut = Jéut xR/Z
(5) L¢ =1; xR/Z

The annuli L7, L} and L§ are tangent to the flow, being the first two contained in
the weak stable and unstable manifolds respectively. The annuli A}, and A}, are the
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Figure 4.2: Cross-shaped neighbourhood.

entrance and exit annuli, respectively. For ¢ = 1,this two annuli corresponds to the sets

Ajy ={(r1,7,2) : 0<r <7y, z € R/Z}

wmn T

Al ={(r1,m,2): —ra <7 <0, 2 € R/Z}.

There is a diffeomorphism 1 : AL \W*(0) — AL \W%(0) of the form
X
Yip—g= ¢T(>I;)(p)a
which sends each entrance point p onto the point ¢ determined by the intersection
AL,NO*(p). The same holds for the other entrance-exit pair of annuli on the boundary.

Lemma 4.21. Given 0 < rg < 11 < 1 consider the map ¢ : {r1} x (0,72] x R/Z —
(0,79] x {r1} x R/Z associated to the flow ;. Letp = (r1,r,z), then ¥(p) = (r,7r1, 2+

7(p) and 7(p) = 7(r) = SE.

Normal form in a neighbourhood of T'.

Given a periodic orbit v € I' consider some small tubular neighbourhood W. In this
section we will assume that the invariant local manifolds are orientable, so every small
tubular neighbourhood W is partitioned in four quadrants W;, i = 1,...,4. The follow-
ing lemma gives a normal form for the vector field X on the punctured neighbourhood

W\ 7.

Recall that the first return to X is pseudo-Anosov and we denote by 0 < A < 1 its
stretching factor. Also recall that 7 is the image of a number p = p(, X) of connected
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components of 9%. This means that in a small neighbourhood W of ~ the surface
XN W splits as p different local Birkhoff sections at -, each of them with the same
linking number n = n(y, ) and multiplicity m = m(y, X).

Lemma 4.22. Let (¢, M) be transitive topological Anosov flow and v : (X,0%) —
(M,T") a Birkhoff section. Consider the smooth atlas Dr and the smooth vector field
Xr on M\T" induced by the Birkhoff section.

Then, for every v € I' there is a small tubular neighbourhood W, divided in four
quadrants Wi, i = 1,...,4, and a systems of smooth charts

HZWZ\W%(DZ\{O}) XR/Z, 1=1,...,4
satisfying that:

1. DU(XT) = X(xpn), where X pp) R? x R/Z — R3 is the vector field

1
Xovpn) (Y, 2) = (log()\)x, —log(\)y, |np|> . (4.6)

2. The charts II; send each connected component of XN (W\7) isometrically onto a
surface of the form U N (D;\{0}) x {ﬁ}, where U is an open neighbourhood of

0€R? and k € {0,...,|np| — 1}.
3. It is verified that:

Hl(Wl) = HQ(WQ) = {O} X (0, +OO) X R/Z

HQ(WQ) = H3(W3) = (—O0,0) X {0} X R/Z

Hg(Wg) = H4(W4) = {0} X (—O0,0) X R/Z

I, (Wy) =11 (Wy) = (0, +00) x {0} x R/Z

and

H2 OHl : (ana Z) = (O,Q, Z)
M3 oIl;" : (2,0, 2) — (z,0, 2) (4.7)
Iy oIl : (0,y,2) — (0,9, 2)
IT; oII, " : (,0,2) — (ﬂs,O,z—i— 7:) .

Remark 4.23. The charts defined in lemma 4.22 send the orbit segments of ¢; that lie
inside each punctured quadrant W; \ v onto the orbit segments of the flow generated
by the vector field (4.6) inside the quadrant I; x R/Z, preserving the time parameter.
Thus, we can reconstruct the vector field Xp in W\~ by glueing the four pieces

(X(A,p,m , (D:\{0}) x R/Z) Li=1,...,4

along their boundaries in the way specified in (4.7). Since the vector field X, ) is
invariant by vertical translations, the glueing map II; o Hzl preserves X(y ,,) and we
get a well defined vector field in the quotient manifold, which is homeomorphic to a
solid torus with an essential closed curve on the interior removed.
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B

vyC W yCW

Figure 4.3: The germs of v and #.

Let v € T be the periodic orbit of the associated flow (ggt, M ), that is in correspon-
dence with v under surgery. For every small tubular neighbourhood W there is an
associated tubular neighbourhood W of 74 of the form

W = He(W\) U3, (4.8)

together with a local orbital equivalence Hp : (¢, W\7vy) — (QASt,I//IZ\?) Recall that
the germ of ¢; on ~ is saddle type while, in general, the germ of ¢; on 7 will be a
circle-prong, as in figure 4.3. We go from one to the other doing a Fried surgery.

Since the local invariant manifolds of v are orientable it is verified that:

1. W2(vy) U WX(v) partitions the neighbourhood W in four quadrants W;, i =
1,....4.

2. Wi(H) U WX(7) partitions the neighbourhood W in four quadrants W;, i =
1,....4,
each one defined by

Local Birkhoff section. The way these four quadrants are glued together to form
the germs of (¢, W), or (o1, I//[\/)Q can be combinatorially described using the Birkhoff
section 3. Assume that C is a component of 0¥ such that v = ¢(C). There exists a
collar neighbourhood B ~ [0,1) x R/Z! of C' which immerses in W as a local Birkhoff
section at 7, with linking number n = n(B,~) and multiplicity m = m(B, 7).

We recall from section 4.1 that this local section B is partitioned by the local
invariant manifolds into 4|n| quadrants

Bk, k= 1,...,4|n|,
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and each quadrant W; contains |n| of them, like in the left part of figure 4.3. We fix a way
of labelling the surfaces By, as follows: Let o« C B\ 0B be a generator of 71 (B\0B), that
we may assume it is a closed simple curve, constructed by concatenating straight paths
contained on each By. Orient this curve in such a way that [o] = n-a+m-b € Hi(W\7y)
has coordinate m > 0 in the meridian/longitude basis {a, b}. Then, this curve induces
a cyclic order on the set of quadrants. We chose the indices k = 1,...,4|n| in such a
way that each By is the adjacent quadrant that follows By in the cyclic ordering.

For each fixed i = 1,2,3,4, in the quadrant W; there are contained |n| of these
surfaces. There are two ways for ordering them. From the one hand, without lose of
generality we may assume that the By are enumerated in such a way that:

By, is contained in the quadrant W; iff k =i+ 45, withi=1,...,4, j=0,...,n—1.

From the other hand, if we consider a simple closed curve in the interior of W; that is
homotopic to the longitude v and is transverse to B (a longitude), the orientation of
this curve induces a cyclic ordering of the quadrants contained in W;.

Observe that the local first return P : B — B induces a cyclic permutation of all the
quadrants contained in W; that preserves this cyclic ordering. In fact, in proposition
4.1 it is shown that, for each k =1,...,4|n|

P By v Biyai = Bryay & = Bryam-1y — B, (4.9)
where [ = m~!(mod n).

Let B be the disk obtained by collapsing OB into a point ¢ € $. This disk is a
transverse section for qSt W — W with ﬁrst return map P:B— § The partition
into quadrants of B induce a partition of B in quadrants Bl, .. B4n These 4|n|
quadrants intersect alternately along stable and unstable segment, and therefore the
map P B — Bis a 2n- prong-saddle at the singularity q. By the previous remarks,
the map P permutes the quadrants in the same way as (4.9) before.

Proof of Lemma 4.22. We assume first that p(y,>) = 1. Thus, for a small tubular
neighbourhood W the surface B = % N W is a connected local Birkhoff section.

Let B defined as before. The smooth atlas for (¢, W\7y) is obtained as the germ of
the suspension of (P,B\{q}), so it suffices to study the germ (¢, W\9).

On each I//I\/i, 1 =1,...,4 there are contained exactly n quadrants of the form Ei+4j,
j=0,...,n—1. All of these quadrants share the common vertex ¢. Consider the sets

B;+4j = §i+4j \ {a},

that we call punctured quadrants. These are a collection of pairwise disjoint surfaces,
properly embedded in the manifold W \¥, each one homeomorphic to a disk. The first
return map permutes cyclically these surfaces sending and pn preserves each of them.
So each Bl t4; Is a transverse section for gbt on W \ 7. Observe that the flow qSt projects
the points of a surface B, ,; onto the following in constant time equal to one. It follows
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that there is a smooth time-preserving conjugation between (qgt , T//I\Q \ ﬁ) and the flow
induced by z — z +t in R
Bivaj X R/ (o tyes (P 2y (4.10)

In addition, since Pis pseudo-Anosov with stretching factor A and ¢ is a 2n-prong,
there exists a chart ¢, : (B,q) — (R%,0) that is smooth outside {q} and satisfies:

1. pq: B\ {q} = R2\ {0} is a n-fold covering,

2. Aopy(p) = pq0 P(p), for every p in a neighbourhood of ¢, where A = <())\ )\91)

3. For every @ = 1,...,4, the chart ¢, sends §i+4j isometrically onto its image in
D; C R2.

In particular, the chart ¢, provides a smooth conjugation quadrant by quadrant:

By -2 B
i+4j i+4j
qu J% for every i = 1,...,4.

D, — D,

This implies that the flow in (4.10) above is conjugated to the flow generated by z +— z+t¢
in
R? X R/ (2 t)s (A (2) 4 ) (4.11)

Since this latter flow is smoothly time-preserving equivalent to the germ of the vector
field Xy n(7,y,2) = (log(A\)x, —log(\)y,1/n) on the quadrant D; x R/Z (cf.4.22), we
obtain a family of charts

I : W\y — (D\{0}) x R/Z, j=0,...,n—1,

satisfying the desired properties. Each chart is induced from one of the maps pn .
B;'k+4j - Bz+4j

Fix a surface B in a quadrant W;. According to (4.9) before, the first return P
projects Bk onto the surface Bk 44+ By definition of gb, this projection along the flow
lines is in constant time, and it induces a cyclic permutation of the surfaces contained
in W;. Moreover, this map is conjugated to the linear map A in the coordinates defined

by ¢4. So we may assume that the coordinate charts II; send the surfaces BZ ay to
planes of the form D; x { } for every j =0,...,n — 1. Chose B1 in the quadrant W,
and II; such that II; : B — Dy x {0}. Observe that the chart ¢, extends over the
union

B UBsUB;UB;
sending each B onto D; x {0}. Thus, we can coherently extend II; to the adjacent
quadrants W \fy, i = 2,3,4, in such a way that each II; sends the surface B* to
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D; x {0}. The quadrant EZ contained in W; is adjacent to a quadrant é;; in Wy. The
combinatorial data on the boundary of the Birkhoff section determines that this surface
B? coincides with D x =, provided I1,(B}) = D; x {0}. Thus, the holonomy defect of
II4 0 Hl_1 on the common boundary 17[\/4 N I//I\/'l is a vertical translation by %

This completes the proof of the lemma assuming that p(v, %) = 1. If there are more
than one boundary components of ¥ that cover «, the argument is the same but the
first return map to each E;kHj changes by ]373(%2)'", so we must modify the parameters
of Y in the appropriated way. ]

Prong-Shaped Neighbourhood: For each v € I', the local coordinates defined in
lemma 4.22 allow to construct a regular, compact, tubular neighbourhood R = R(r1,r2)
of the orbit «, which depends on two parameters 0 < ro < ry < 1, in the following way:

Definition 4.24. For each i = 1,...,4 consider the sets V;(r1,72) in R? x R/Z defined
in 4.20. Let 0 < 79 < r; < 1 be such that each Vj(r1,r2) is contained in the image of
II;. Define

Ri(’l“l, 7‘2) = {p € Wi\’}/ : Hi(p) S Vi(’l"l,rg)}. (4.12)
R(Tl,Tg) :URi(Tl,TQ),i: 1,...,4. (4.13)

Figure 4.4: The neighbourhood R(r1,r2), obtained by glueing the four pieces V;(ry,72).
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We call R a prong shaped neighbourhood. We can describe the vector field Xr on
R\ v in the following way: Consider the four pairs

(Vz’(h,m),y()\m)) ci=1,...,4.

Consider the manifold obtained by glueing:

1. V; with Vs along the boundary LY — LY with the map (0,y, z) — (0,y, z),
2. V5 with V3 along the boundary Lj — L§ with the map (z,0, 2) — (2,0, 2),
3. V3 with V4 along the boundary LY — L§ with the map (0,y, z) — (0, v, 2),

4. V4 with V; along the boundary Lj — L7 with the map (0,y,2) — (0,5, 2+ ).

In figure (4.4b) we see this for m = 1 and n = —2. The associated quotient space is a
solid torus. Observe that the curve 0 x R/Z is a n-fold covering of its image under the
quotient projection. In the complement of this curve, the vector field X ;) is invariant
by z-translations, so we get a well defined vector field on the quotient manifold.

Remark 4.25. Observe that if [n| = 1 then we simply obtain that the vector field Xt
in ¢, on R\ is equivalent to Xy, in V(ry,72), and B\7y corresponds to D\{0}.

The boundary OR is decomposed in eight smooth annuli, four of them tangent to
the vectorfield, two where Xt is transverse and points inward the neighbourhood and
two other where X is transverse and points outward. Using the coordinates II; we can
identify the sets

I :ORNR; — VNV, = A, UL'UA’, CD; x R/Z.

In particular, the union Al U A} is one of the eight annuli that forms R, where the
flow traverse inwardly. In coordinates given in lemma 4.22, this two annuli corresponds
to the sets

glued along the boundary with a translation.

3 The smooth model.

Consider a transitive topologically Anosov flow (¢¢, M). In this section we construct
another flow (¢;, N) which is C'-Anosov and orbitally equivalent to the first one. We
start by sketching the general argument, and we develop the steps in the following
subsections.
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3.1 Proof of theorem C (thm. 4.12).

Start with a Birkhoff section ¢ : (X,0%) — (M,T) with first return P : 3 — 3. Then,

the construction in 2 associates:

1. A smooth atlas Dp and a Riemannian metric | - | on the manifold M \ T' such
that, up to reprametrization, ¢; is generated by a smooth vector field Xr and
preserves a uniformly hyperbolic splitting Ef © Ef & Ef. Moreover,

|D¢s(v)|r = M|vlp, Vv e EE >0,
|Do¢(v)|r = X "o|p, Vo e BEt <0

where 0 < A < 1 is the stretching factor of the first return map to the Birkhoff

section.

2. For every orbit v € I" there is a small tubular neighbourhood W, divided in four
quadrants W;, ¢ = 1,...,4, and a system of smooth charts

called normal coordinates, verifying that:

(a) DIL; : Xr = X () np), Wwhere X(y ) is the vector field in R? x R/Z defined

by

1
X gy (@9, 2) = (logmx, “log(V)y, W) :

(b) The charts II; send the quadrants of the local Birkhoff section XNW isomet-
rically onto surfaces of the form (ID; \ {0}) x {L} with k =0,...,|np| —1;

[npl

(c) Along the corresponding domains of intersection between the four quadrants,

we have

z,y,2) = (2,9, 2)
z,y,2) = (2,9, 2)
z,y,2) = (2,9, 2)
x,y,z) (az,y,z+ ) ;

where p = p(v, %), n = n(y,2) and m = m(y, ) are the combinatorial parame-

ters of the Birkhoff section at 7.

Assumption: For simplicity, from now on we assume that 9% consists in one boundary
component, and so does I', which consists in one saddle type periodic orbit v. The
general case with many boundary components can be derived from the present case, by
applying the following construction on a neighbourhood of each curve v € I'. We will
denote by n = n(vy,%) and m = m(y, ), and remark that p(v,X) = 1.

For some parameters 0 < 79 < r1 < 1, consider the tubular neighbourhood
R(ry,m2) C M of «y defined in 4.24. Let’s consider:
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e The manifold Mg(ry,r2) obtained from M by removing the interior of R(ry,72),

equipped with the restricted vector field Xp.

e The cross-shaped neighbourhood V(ry,72) in R? x R/Z defined in 4.20, equipped

with the vector field

1
Xoun(@.9:2) = (1og(N)a. ~ 1oy, o).

The idea of the construction is the following:

(1)

(2)

(3)

3.2

In 3.2, using the system of normal coordinates of lemma 4.22 we will define a
diffeomorphism
@ : 8MR(7“1, 7‘2) — (9V(7"1, Tz)

from the boundary of Mg(r1,r2) to the boundary of V(ry,rs), that will depend
on the signature of the linking number n(y, ). Glueing along the boundaries
with this diffeomorphism, we will produce a manifold

N = N(ri,r2) = Mg(r1,72) Uy V(r1,72)

endowed with a smooth atlas. We will show that the vector fields Xp on Mp(r1,72)
and Xy ,p) on V(r1,r2) fit together and induce a smooth vector field Y on the
quotient manifold N. This will be the content of lemma 4.27.

Let (¢4, N) be the flow generated by the vector field Y. Then, in 3.3 we will show
that, for sufficiently small values of the parameters 0 < 1o < 71 < 1, this flow is
Anosov.

Finally, in 3.4, we show that (¢, N) is orbitally equivalent to the original topo-
logical Anosov flow (¢, M).

Theorem 4.12 follows from the statements (1),(2),(3) above.

Construction of the smooth model.

In this subsection we construct the smooth model associated to a topological Anosov

flow.

We will as well state some facts about this smooth flow.

Let n = n(y,%) and m = m(v,%) be the linking number and multiplicity of ~.
Consider a smooth decreasing function p : [0, 1] — [0, 1] such that:

e p(t)=1,for 0 <t <4,

e P(t) <0, for + <t<2,

e p(t) =0, for 2 <t<1.
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Definition 4.26. Define ¢ : OMpg(r1,r2) — OV (r1,72) in the following way: For every
p € OMRg(r1,m2) choose 1 < i < 4 such that p belongs to the i-th quadrant and denote
its coordinates by (z,v, z) = IL;(p) € R? x R/Z.

1. If n =n(y,%) <0 then

) (@,y,2) pifp ¢ A, (4.14)
PV (s 2 e (L)) sifpe Al and (rr,y,2) = h(p).
2. If n =n(v,X) > 0 then
w\p) = (rl NETIR z+‘%b|p <f%)) ;if pe A and (r1,y,2) = H4(p).
(4.15)

In figure 4.5 we illustrate the map ¢ in normal coordinates for the case of negative
linking number, defined in (4.15). Observe that, in normal coordinates, this maps looks
like the identity for every point not in A},. In the figure the depict the action of ¢
along the first quadrant.

/_—_—__ ]
X
eg |7
i >
£ €9
T olp)
X
eg
I,’ //— //’_’_
1
€1 ‘/;) €2 Aaut
¥
,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,>
Al
n
1 ]
ow ,
— R(rLT2) — Vl(rLrQ)
r9 9

Figure 4.5: Glueing map in the first quadrant for negative linking number.
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Lemma 4.27. For every couple of small parameters 0 < ro < ry < 1 the map ¢ defined
above is a well-defined diffeomorphism. Moreover, consider the manifold

N(ri,re) = Mg(ri,re) Uy V(ri,72).

Then, there exists a smooth atlas D and a smooth vector field Y on N(ri,r2) such that:

(i) The inclusion v : Mp(r1,72) < N(r1,7m2) is a diffeomorphism onto its image and
txy : Xp—Y,

(ii) The inclusion v : V(r1,r2) < N(r1,72) is a diffeomorphism onto its image and
Ly @ X()\,n) — Y.

Definition. We denote by
Y : N > N (4.16)

the flow generated by the vector field Y on the smooth manifold N = N(rq,r2) given
by lemma 4.27.

Notation: For notational simplicity we will set My = Mg(r1,72) and My = V(ry,72),
and for each j = 0,1 we denote by ¢7, X;, TM; = E; @ ES & EY and | - |; the
corresponding flow, vector field, splitting and Riemannian metric. Denote by N =
My Uy, My and by ¢j : M; — N the natural inclusion maps. The two components
are glued along the subset My N M; ~ 0My ~ dM; that is homeomorphic to a two
dimensional torus.

Proof. Observe that, when written in coordinates 4.22, the map ¢ consists in apply a
twist map, supported on the annuli A} or A} | depending on the signature of the linking
number. This assumption will be important in 3.4 for the purpose of constructing a
Birkhoff section. Along this proof we will stay in the case n < 0, being analogous the
other one.

Observe that the partition of the neighbourhood W in quadrants decomposes OR
in four regions, individually homeomorphic to the annulus. To show that ¢ is well-
defined we have to check its definition along the intersections of these four regions. It
is well-defined over the intersections AL, N A2%,,, A2 N A} and A3, N A%, because
41 0 Hl_1 = 1id, for + = 1,2,3. To check that it is well-defined on the intersection
Al N A} observe that if p € Al has coordinates II;(p) = (r1,0,2) then p(p) =
(r1,0,z — 7). In particular, we have that

I oI N (p) = ¢(p), Ype A, NAL.

Thus ¢ is a well-defined smooth bijection between the boundary of R(r1,72) (see the
description following 4.24) and the boundary of V(ry,re).

Recall that to associate a smooth atlas on the quotient N = My L, M consists in
adding, for each point p = ¢(p) in 1o(Mp) N ¢1(My), a local parametrization o, : U C
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R? — 0,(U) C N in a neighbourhood of p satisfying that ap_l cop(U) N My — U and

o, 1 6,(U)N My — U are diffeomorphisms onto their respective images.

If p¢ Al and U C R? x R/Z is an open neighbourhood of (z,y, z) = II;(p) then

m

the map o, : U — N given by

_ (ZE,y,Z) ; if (SC,y,Z) EV(Tl’TQ)v
%WW“{mwm@;ﬁ@wmwmm, (4.17)

works as parametrization.

In the region A}, (where Xy and X; are transverse to the boundary) we choose the
map o} : (—¢,6) x R x R/Z — N defined by

o (I (rors)) 5 ift<0,

4.18
¢%(r1,r,s—%p(£)) s if ¢ > 0. ( )

O',L-ln(t, r,Ss) = {

Then, the family D = {0, : p ¢ AL} U {0o},} provides a compatible atlas on
to(Mo) M e1 (M) that extends the differentiable structures on each component Mj,
1 = 1,2. In addition observe that, by construction, for every p € 0Mj this atlas gives
an identification

(I)p : TpM() — T¢(p)M1

that satisfies ®, : Xo(p) — Xi(¢(p)). This means that the vector fields on each
component My and M; match together along the boundary and define a smooth a
vector field Y in NV, in the coordinates of the atlas D. O

Smooth atlas near My N M;.

It will be convenient to give an expression in the local coordinates 4.22 for the trans-
formations

(I)p : TpMO — T@(p)Ml (4.19)
defined above. We will always assume negative linking number, so ¢ is given by the

formula (4.15).

By definition the chart ®, is given by (4.18) for points p € Al and by (4.17)
otherwise. Observe that for every p € Al with normal coordinates p = (r1,r, s) there

is a basis C(p) = {X(x»)(p), e2(p), e3(p) }, where

1
X (p) = (10g(>\)7"1,—10g(/\)r > € R3,

T
calp) = 5 (6) = (0.1.0) €
es(p) = 5-(p) = (0,0,1) € B

It follows that
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Lemma 4.28.

1. If p € OMy is not in Al then p(p) = p and ®, is just the identity on R3.

2. If p € A}, has coordinates (r1,r,s) we have that

1 0 0
(®p), = 0 1 01, where k(r) = M ’p/(r/rz)’ . (4.20)
0 k(1) 1 ‘n‘

T2

There is another basis defined for every point p € My N M; given by B(p) =
{Xon) (), e1(p), e2(p)}, where e1(p) = (1,0,0). The vectors e; and ey are unitary

X
vectors contained in the stable and unstable bundles of the flow ¢, ™. It will be
convenient to express the transformations (4.19) in the basis B(p) for the points p €

AL (p).

Lemma 4.29. Let p € Al with coordinates (r1,7,s). Then,

1 _ K()[n|r _&(r)|n]

r2

(®)5 = |0 K()Inllog(VZ +1  (r)lnllog(N) 22
0 —w(lnllog(N) 55 —(r)|n] log(n); + 1

T2

The action of the flow v, : N — N:

The action of the flow 1); on a point p in the manifold N = Mg U, M; can be described
as an alternated composition of the flows ¢] on each component M; and the glueing
map .

More precisely, consider a point p € int(My) and some t > 0 such that ¢4(p) €
int(My). If all the orbit segment [p,1:(p)] is contained in My then we simply have
Vi(p) = ¢Y(p). If not, there is a first intersection point

P = gb?l (p), for some 0 < t; < t,

of the orbit segment with the set MyM M, necessarily contained in a region of where the
vector field X is transverse to dMy and points outward My. At this point the positive
semi-orbit of p traverses from the component My to M; and the negative ¢9-orbit of
p1 is connected with the positive ¢;-orbit of ¢(p;). In the same way, since we assume
Yy(p) € int(My), the positive ¢}-obit starting at (p1) must leave the component M;
on a point

a1 = ¢4 (¢(p1)), for some 0 < s1 < t.

When going from M; to My the glueing of semi-orbits is similar, but we have to use
¢~ ! instead. We remark here that:

Remark. There exists a constant T > 0 such that, for both j = 0,1,

min {t > 0:3p € 0M; such that ¢l(p) € OM; and ¢ (p) € int(M;), ¥ 0 < s < t} >T.
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It follows that:

Lemma 4.30. There exist 0 < t1,...,t41 <t and 0 < s1,...,8 < t satisfying that
t, > T fork=2,...,1, s, > T fork =1,...,1, their sum is Zi,:otk+2§€:15k =t
and

i) =6, 0 (¢ ol op) oo (T ogl, 00) 0l 0 (97 00l o) 0, ().
(4.21)

These quantities ¢, and s, are defined in order to satisfy that the y-orbit of p
traverse from one component to the other at times Ty = t1, Tp, = t1+81+- -+ Sp_1+ 1k
and Sy = Ty + s, for k = 1,...,l. Define the sequence of points py = (T, p) and
qrx = ¥(Sk, p), which are points in MyN M. Then, the positive semi-orbit of p traverses
from My to M, at the points p, and from M; to My at the points g.

There is a straightforward analogue of statement (4.21) above for any chosen con-
figuration of points p € M;, j = 0,1 and times ¢ € R.

The action on the tangent bundle Dvy; : TN — T'N:

On each component M the action of D(;S{ can be described using the invariant splitting:
Consider p € M; and ¢ > 0 such that ¢(p) € M; and all the orbit segment [p, ¢](p)]
is contained in M;. Let el(p) and € (p) be two unitary vectors contained in E7(p) and
E}(p), respectively. By pushing these vectors with D@l(p) we obtain a frame

{X(04(p)), eh(¥d(p)), el (dh(p))}, 0<s <t
where
el(d1(p)) = AT Dgl(p) - el (p)
el (¢l (p)) = A "Dl (p) - el (p).
It follows that for j = 0,1 we have

Dol (p) : aX (p) + bel(p) + cel,(p) — aX (#](p)) + A'bel(¢] (p)) + A "cel (4] (p)(). |
422

Framing on TN. To study the action D on T'N, we define a (non-continuous)
splitting of T'N by

Ei(p) ® Ef(p) ® EY(p), if p € M,
E§(p) © E§(p) © E§(p), if p € N\ int(M),
(4.23)

T,N = H*(p) ® H(p) ® H"(p) = {

for all p € M. We can see how does Ej® E§® Ej matches EY @ E{ @ EY along MyNM;
using the identifications (4.19). For every p € My the map ®, send Xo(p) — X1(¢(p)),
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so it follows that the bundle H¢ = span{Y'} is continuous. By lemma 4.28 we have that,

for every point p not in A}n, this transformation is the identity in normal coordinates,
thus

Eg(p) = Ei(e(p)),

Py : E§(p) = Ef(¢(p)),

Eg(p) = EY(o(p))-

Nevertheless, the bundles on each side can be not identified by ®, for points p € Al
so the decomposition (4.23) may be non-continuous on this set.

Moreover, consider some p € N and some t > 0 such that the orbit segment
[p, ¥+(p)] does not intersect AL . Given a basis {Y(p),es(p), eu(p)} of T,N satisfying
that es(p) € H*(p) and e,(p) € H"(p) are unitary vectors, there exists an extension
into a continuous frame

{Y(¢s(p)), es(¥s(p)), eutbs(p))}, 0 < s <t (4.24)

defined along the orbit segment [p, 1:(p)], where es(5(p)), en(¢:(p)) are unitary vec-
tors.

Following the discussion in the previous paragraphs, given p € N and t > 0 let
{p1,...,m} be the set of intersection points between the orbit segment 1 4 (p) and the
annulus A%n. Then, we have that

Lemma 4.31. There exist 0 < t1,...,t141 < t, uniformly bounded away from zero by
a constant T > 0, such that Dy is an iterated composition of the form:

Dy (p) = Uy 0®@p oWy --0®y, oWy, 0P, o Uy, (p), (4.25)

where Wy denotes the application T,N — Ty, )N, defined for all the couples (t,p)
satisfying that [p,v+(p)] N AL, =0, by the expression:

Uy aY (p) + bes(p) + ceu(p) = aY (Yi(p)) + A'bes(vr(p)) + A ceu (¥ (p)).  (4.26)

Here, {Y,es, ey} is a continuous frame as defined in (4.24).

3.3 The smooth model (¢, N) is Anosov

Proposition 4.32. If0 < ro < 71 < 1 are sufficiently small, then the flow s : N — N
defined in (4.16) is Anosov.

The proof of proposition 4.32 proceeds by applying the cone field criterion; see [41]
for a precise statement. We will show first in corollary 4.36 that the natural action
of ¥ on the tangent bundle T'N preserves a pair of center-stable and center-unstable
2-dimensional plane fields by application of this criterion. Then, in corollary 4.41 we
apply the same criterion inside the center-stable and center-unstable planes to conclude
the existence of a hyperbolic splitting preserved by D).
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Existence of the center-stable and center-unstable invariant distributions.

In the construction of ¢ there are an auxiliary smooth function p and two parameters
0 < rg <ry < 1. The maximum size of these real parameters depend on the charts II;,
but they can be chosen arbitrarily small. We assume from now on that p is fixed and
we will adjust the parameters rq, 79 to satisfy the proposition.

Stable and unstable slopes. Given a point p € N, we consider a positively oriented
basis of T, N of the form {Y (p), es(p), ew(p)}, where es(p) and e, (p) are unitary vectors
contained in the spaces H*(p) and H"(p) of the decomposition (4.23), respectively.
Given a vector v = aY (p) + bes(p) + cey(p) in T,N we define its u-slope and s-slope
respectively as

Ay(v) = b and Ag(v) = °

& b

Observe that we have two possibilities for choosing a positive basis as before, but the
slope is unchanged by switching this election, so the u,s-slopes are well defined. We
remark as well that these slope functions do not vary continuously over the set Al ,
due to the discontinuity of the bundles H®, H".

Cone distributions. Given a pair of continuous functions dg,d; : N — R satisfying
that —oo < dg(p) < d1(p) < +oo for every p € N, we define two cone distributions

C(p; d0(p), 01(p)) = {v € TpN = do(p) < Au(v) < d1(p)} (4.27)
C(p; o(p), 61(p)) = {v € TpN : do(p) < As(v) < é1(p)}- (4.28)

At each point p this is a pair of 2-dimensional cones, with axis determined by the
vector Y (p). Observe that for adequate values of d;(p) these cones are complementary,
i.e. their intersection is just H¢(p). We remark that these cone distributions do not
vary continuously as a function of p, the possible discontinuities being on the set A} .
But this posses no obstructions to apply the cone field criterion on this family of cones.

In what follows we will show that for some adequate slope functions 4,4} and
03,07 there is a pair of complementary cones satisfying the cone field criterion under
the action of Dy, : TN — TN.

Lemma 4.33. Let §§,03,6%,07 : N — R be the functions defined in (4.33) below. If
0 <7y <11 <1 are sufficiently small, then there exists T > 0 such that: For every
p € N then

Dipr (C* (p 5 05(p), 0

1(p) ) € C* (Yr(p) 5 0547 (p)), o1 (Wr(p) ),
Dipp (C (p 5 05(p), 07 )01

(p) ) € C(-r(p) 5 5(¢-1(p)), 01 (V-1 (p) ).

Lemma 4.34. For the parameters 0 < ro < 11 < 1 given in the previous lemma, it is
satisfied the following: There exists a constant Lo > 0 such that, for every p € N and
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every t > 0 then

| Au(Dty(p) - va) — Au(Dibe(p) - v1) | < AN Lo, ¥ v1,v2 € C(p; 65 (p), 04 (p)),
|As(DY_i(p) - v2) — Ag(DYp—y(p) - v1)| < A Lo, ¥ v1,v2 € C(p; 65(p), 55 (p)).

Lemma 4.35. By shrinking the parameters 0 < ro < r1 < 1 of the previous lemmas
if necessary, it is satisfied that: There exist constants L > 0 and p > 1 such that, for
every p € N and every t > 0 then

IDe(p) v || = Lp|[oll, ¥ v € O™ (p: 5 (p), 01 (p) \ HE(p),
IDY—t(p) - vl = L' [loll, ¥ v € C™(p; 65(p), 63 () \ H (p)-

Action on the su-bundle. To study the action of D on cone distributions, it is
convenient to consider the vector bundle H** — N defined by the quotient

H*"(p) :=T,N/H"(p), ¥ p €N,

which carries an induced action of D). Observe that there is a decomposition of this
bundle, of the form H** = H® @ H*, induced by the spaces H* and H*. We remark
that this decomposition does not vary continuously along the set Al . Exactly as in
(4.24) above, along every orbit segment disjoint from Al there is a continuous frame
{€s, €y}, induced by a continuous frame {es, e, }. By lemma 4.31, the action of ¢, on
the bundle H** is an alternated composition of transformations of the form ¥; and D,
We have that:

1. If p ¢ AL and t > 0 satisfies that [p,¢:(p)] N AL = 0, by lemma 4.31 we see that
the matrix associated to the action Dy on the su-bundle, on in a basis {és, €, },

is given by
A0
(‘llt)su = (0 )\—t) . (429)

2. Let ¢ € Al,. We want to see how ®, transforms cones in T, N into cones in Ty N-
In the system of normal coordinates (4.1) the annulus A}, corresponds to the set
{r1} x [0,r2] x R/Z, so let (r1,7,s) be the coordinates of ¢q. In lemma 4.29 there
is a matrix for this transformation in the basis {X(y ), €1, 2} of R?. Recall that
in normal coordinates span{ Xy} = H¢, span{e1} = H® and span{ez} = H".

By this lemma we have that the action of ®, in the su-bundle is given by the

= (SEE ). (430

matrix

T
Y
where K(r,r2) = £(r)n|log(A);Z, and £ : [0,r2] :— [0,00) is the continuous
bounded function given in 4.28. Remark the K is a non-positive function. Thus,
we obtain a family of transformations parametrized over 0 < r < r9. Observe
that ®, is non-trivial just for points ¢ = (r1,7,s) with 2 <r < 2%, due to the
definition of p : [0,1] — R.
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Figure 4.6: The map ®, in su-coordinates.

This matrix has determinant equal to one and trace equal to two, thus it has a
double eigenvalue equal to one. The vector w; = —es + %éu is an eigenvector
for this matrix in the Hs% plane. Consider the vector wy = ﬁés + €,. In the
orthogonal basis {w;, w2} the transformation (4.30) takes the form

e (41

for some bounded function 1 : [0,72] — [0,00), with support in [%2, 222]. We

illustrate the action of the matrix (4.30) in figure 4.6.

We prove now the three lemmas stated above. Fix some p € N and t > 0, and let
0<ty,...,t;41 <1and {p1,...,p} as given by (4.21). Write the action of ¥, on TN
as

Diy(p) = Uy, 0Py 0000, oWy, (p). (4.32)
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CC’LL

Figure 4.7: Cones in the su-plane

At each point ¢ = (r1,7,s) € Al the transformation ®, has an eigenvector w1 (q)
whose slope is A, (w1(q)) = —r1/r < 0. For having the invariance property in the
first lemma we need, at each ¢ € Al where ®, is non-trivial, the sector determined
by the vectors {w;(q), e4(q)} to be contained in the cone C“(q;d{, d}'), and the sector
determined by the vectors {—es(q),w1(q)} to be contained in C(g;dj, 7). Since P,
is non-trivial only when 2 < r < 2%, we encounter that the slope of an eigenvector
corresponding to a non-trivial ®, is bounded between — 3” and — 3” . See figure 4.7a.

Choice of slope functions. We define two distributions of cones on TN in the
following way: Consider a continuous bounded function § : N — (—o00,0) satisfying
that:

(i) 6(p) = —r1/r for every p € A}, with 22 <r < 72,

(ii) min(d) = —% and max(J) = —g%.
Define
dg : N — (—00,0) such that o5 (p) = d(p), (4.33)
5+ N — (0, +oo) such that 67 (p) = —1/4(p), (4.34)
68 ,0) such that d5(p) = 1/6(p), (4.35)
+0<>) (4.36)

— (=00
=

~ —

0, such that d7(p

= —0(p).
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We consider now the cones C(p; 3§ (p), 01 (p)) and C°(p;d5(p), I;(p)), defined for all
pE N.

Proof of lemma 4.33. We make the proof for the cu-case, being analogous the other
one. We will show that we can chose 0 < ro < r; < 1 sufficiently small such that the
cone distribution C'“* satisfies the invariance property of the lemma.

We start by pointing out that there exists a constant ¢ < 0, which depends just
on the ratio ro/r1, such that the cone C(q;¢,0) is sent inside C“(p(q); 0§ (q),0), for
every q € Al .

To see this, consider a point ¢ € A}, with coordinates (11,7, s). By (4.31) the vector
®,(e,) satisfies

—— = Ay(wr) < Au(Py(en)) = — ( e > 7

1— K(r,ro) 7<0‘

Then, by continuity there exist —oo < & < 0 such that, for every ¢ = (r1,r,s) € Al
and for every v € T,N with ¢ < A, (v) <0, it follows that
1

— L = 5¥(q) < Ay(®4(v)) < 0. (4.37)

r

The expression above for the u-slope of the image of e, shows that € depends just on
the ratio ro/r1. That is, if we change r; and 7o for smaller values keeping constant its
ratio, then property (4.37) is still valid with the same constant e. To see this, observe
that K (r,rs) is equal to r/rg, up to multiplication by a bounded continuous function
that depends just on r and is null if r/ry ¢ [1/3,2/3]. Thus, the slope of ®,(e,) above
has a bound of the form (cte) - 71 /re. Thus allows to consider a constant ¢ < 0 of small
modulus, just depending on 72/71.

Consider now an auxiliary vector v € H*"(q) of slope A, (v) > min(d) = —3ry /ro.
By (4.30) we have that

Ay (Py(v)) > U3 < K(r,r)(1—%2)+1 ) |

n \“K(rr)(1— )+ 1

Since the function between parenthesis on the right side of the previous equation is
bounded as a function of the parameters 0 < %7“2 <r< %1"2 < 11 < 1 (recall that
K(r,r2) = (cte) - r/r2), we have that there exists a constant C' > 0, independent of
r,T9, 71, such that
r1 . 1 3r1
—C'- — < min (Au(q)q(v)) tq€ A, and — — < Ay(v) < 0> . (4.38)

2 T2

Let Ty = To(ri,m2) > 0 such that ¢ =< —CA?Tory/ry < 0. Defined in this
way, To(r1,r2) is the time needed for a transformation ¥; to send a cone of the form
C(p; —C'r1/re,0) inside the cone C*(¢(p); e,0), and depends just on the ratio r1 /7.
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Let T35 = T (1, 72) be defined by

T9 2’1“2 T9 27‘2

Ty (r1,79) = min {t >0:dpe{r}x [3, ] X R/Z s.t. (p) € {r1} x [ ] X ]R/Z}.

3 373
This is the minimal returning time of points in the region {r;} x [%2, 2%} xR/Z C A},
(where ®, is non-trivial) onto itself. We claim that:

Claim. If we shrink r and ry keeping constant the ratio ro/r1, then T 1+ (r1,72) tends
to infinity.

Assuming this claim, fix some 0 < ro < ry such that T} (r1,72) > To(r1,72) and
chose some T' > 2T, 1+ (r1,72). Without loss of generality we can assume that, in addition,

37“1

max(dy) = —— < —)\2Tﬁ

2r r
< <0< N2 - 22

- = min(d7). 4.39
27“2 T9 37“1 37"3 mln( 1) ( )

Let’s show that 11 preserves the cone distribution C(p;d§(p), 61 (p)). Let p € N and
consider the associated decomposition (4.32) of D)y as products of ¥;, and ®,,. Then,

e If [p,9r(p)] N Al = 0 the action of Dy on T'N is just the transformation Uy
By (4.29) and (4.39) we have that

U (C(p; 6 (p), 01 (p)) C ¥r <Cw (p5 - %>)

9 ’ 37“1

= 07 (r(p); T NT S ) € 7 () B3 (). Y (r ()

9 37“1

e If [p,¥r(p)] N AL, has only one point p1, then Dir(p) = ¥y, o @), o Uy, , where
either t; > T or to > Ty. By (4.37) and the particular choice of 7' > 0 we have
that, in the first case

By, 0 Wi (O (i 35(9), 51 (9)) € By, (O (pric X752
C o) B 9), 3 (0(0).

while in the second

ry 2r
Wy, 0 @y, (C(p156g (1), 07 (p1))) C Wy, (CC“ <80(p1); _Oé’ 3;))

c oo (wt2<so<p1>>;a, A?ngj) C O Wy (p1); 62 (e (1)), 62 (4 (p1))).

o If [p,vr(p)] N AL, contains more than one point, then again by (4.37) and the
property that e < —CA?Try/ry, we have that each map Wy, o @, preserves the
cones C(p; oy, 0%) for k=1,...,1.

We have that Dir sends the cone C“(p; 6§ (p), 6} (p)) inside C*(¢r(p); 6 (p), 01 (p)) in
any case. This proves that the C* cones satisfy the invariance property for adequate
values of 0 < ro < ry < 1, up to the previous claim.
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To prove the claim consider 75 < 79 and r] < 71 satisfying that r5/r] = ra/r1.
Then, the manifold N(r], 7)) is obtained replacing the original cross-shaped region for
a smaller V(r{,75) in R? x R/Z. See figure 4.8. Let p = (r},7,s) be a point in the
entrance annulus 7 x [0,75] X R/Z. Observe that if the future orbit of p comes back
to the same annulus, it must traverse the regions D;;,,, D,y in the present figure. This
means that the returning time T} (r],75) is bounded from below by twice the time 7
for traversing each of these regions. In addition, observe that the time for traversing
each D; from the entrance boundary to the exit one is given by A7r; = r}. Therefore,
we obtain

2 r
Ty(ry,rh) > 27(r,m) = m log (é) ,

which proves the claim.

0 ! 1
T(r}, )

Figure 4.8: The returning time to the annulus at position 71 x [0,73] X R/Z increases
when r9/r1 — 0.

For the center-stable cone distributions, the same reasoning apply. This completes
the first lemma. O

Proof of lemma 4.34. Let vi,va € C(p;d§(p),d}(p)). By (4.29) the action of each
transformation W; has the effect of contract the difference of slopes between v1 and v
by a ratio exponential in t. More precisely,

|AL (T4 (1)) — Au(Ty(v1))| = A AL (v2) — Ay(v1)], for all t > 0. (4.40)

For a point g € A,}n consider two vectors v; = b;és + ¢;é, in H*"(q) and let (r1,7,s)
be the coordinates of ¢. From the expression of ®, is su-coordinates in (4.30) we have
that

Ay(vi) = (bi/ci) (K (r,ra) +1) + K (1, r2) &

— —(bi/ci)K(r, 7“2)% +(1—K(r,r)) (4.41)
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Denote by x — f(x;7,72,71) the family of rational functions obtained in (4.41)
above. Using that 0 < 2 <7 < 2% < rg < ry, and using that K (r,r2) equals % up to
multiplying by a bounded function of the variable r, it is possible to see that

0
0< —f(x;r,rg,m) <1,V _n <x < 400,
ox r

independently of r,r9,71. In particular we obtain that, if vi,ve € C(g; 0§ (q), 01 (q)),
in which case —r1/r < b;/¢; < 0o, then

[Au(®q(v2)) = Au(@q(v1))] < |Au(v2) = Au(v1)]- (4.42)

Given p € N, by lemma 4.31 there exists sequences t, > T > 0 and p, € AL |k > 1,

such that the action of D (p) on TN decomposes as a product of transformations W,
and ®,,, as defined in (4.32). Then,

o If OF(p;efy) N Al is empty or contains at most one point, then the property
follows simply by (4.40).

o If OF(p;11)NAL, contains at least two points, for each i = 1,2 define v} = Uy, (v;)
and, for n > 2, vP = U, o ®,  (v*"1). Then, for n > 2 we have t,, > Ty and
this implies that v]* has u-slope bigger than the constant ¢ < 0 from the proof of
lemma 4.33. In particular, both vectors v}* belong to C“(py; 6§ (pn), 01 (pr)) and

by (4.42) none of the transformations ®,, increases slopes, for every n > 2.

Since by (4.40) each map W, , contracts the difference of the slopes
|[Au(Pyp, (v3)) = Au(Pp, (v7))]

by a factor of A2»+1 we obtain that
| Au(Dy(p) - va) = Au(Depr(p) - v1)] < (A1) max(61) —min(5)[)-A*, ¥Vt > t1+t.

This completes the cu-case. The analogous reasoning applies for C“*(p; d,07) and
the backward action of the flow. O

Proof of lemma 4.35. Let p € N,
(4.23), write v = aY (p) + bes(p)
[oll = [lv]lsu-

v € T,N and t > 0. Using the basis defined in
cey(p). Define ||v||sy = \/m, and remark that

From the one hand, observe that if p € A}, and v € T,N, then by the Jordan
form (4.31) and since the u-slope of the eigenspace of this matrix is bounded between
—3r1/r9 and —3r1/2r9, it follows that

1Py (V)| su > [|]|su, ¥V v with —3ri/ro < Ay(v) < 2r9/3r;. (4.43)

Let’s call § = Ay (v) = b/c and assume that —oo < § < oo. From the one hand,
since the transformations ¥; on the su-plane correspond to the hyperbolic matrices
(4.29), it follows that for every v € T'N there exists a constant 0 < Q(d) < 1 such that

19:(0)[[su > QAN 0]|sus ¥ > 0. (4.44)
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To see an expansion on the su-norm by an application of ¥; on v, we need to
wait some time depending on the slope of v. It can be seen that, if |§] < 1/2 then
Ui ()|su > |v|su, ¥V & > 0, and if |6] > 1/2 then |¥¢(v)|sy > |v|sy if and only if
Ay (Ue(v)) > 1/|8]. Thus, taking into account the action of ¥; on u-slopes of the
matrices (4.29), given a vector of u-slope ¢ greater than 1/2 we need to wait time of
order t ~ log(1/]d])/log(\) to see an expansion under the action of ¥,.

Consider Ty = Ty(r1,r2) > 0 such that

A < _\2To(rm) oL g - )\ZTO(TMQ)% < )\QTO(TMQ)%

Cr T9 3ry 2r9

Y

where C > 0 is the constant defined along the proof of lemma 4.33. For such a choice
of Ty we have that

197, (0)l|su = QuA™ " [vllsu > [[0llsu, for all — Cry/ry < Ay(v) < 2r2/3r1,

where Q9 = min{Q(—Cr1/r2),Q(2r2/3r1)}. Thus, we define p = Qé/TO)Fl, which
satisfies 1 < p < 1/A, in order to have

197, (0)lsu > g0 [v]lus for all — Cri/ry < Ay(v) < 2r2/3r1, (4.45)

Since Ty(r1,72) depends just on 71 /79, we can shrink both r and 79, keeping con-
stant its ratio, in such a way that the minimal returning time 77 = T} (r1,72) of points
in the support of the surgery to itself is greater that Ty(r1,72), cf. proof of lemma 4.33.

Assuming this condition, let p € N and in the cone C(p; d§(p), d}'(p)) consider a
vector v € T,N. For t > 0 consider the decomposition (4.32) of the action Dy (p) as
an alternated product of transformations ¥;, and ®,, . As in the previous lemma, let
v! = Wy, (v) and for k = 2,...,1 define v* = ¥, o @, (v*~1). Then,

Pr—1

e If the positive 14-orbit of p does not intersect A’ , using (4.44) it follows that

1D (p) - vll = QoA [[vllsu = (cte) - u'[lv].

e If the orbit segment [p,¥:(p)] has non-empty intersection with A}n, observe that,

since t, > Ty for every k = 2,...,1, using (4.43) and (4.45) we get that for every
vector u € Tp, N satisfying —3r1/ry < Ay(u) < 2r2/3r; then

W, 0 Dy (u)|su = QoA [|u|su-
Since vy already satisfies these bounds on slope, by induction we get that

”UZHSU > Qol)‘i(tfrmﬂl)Hlesw

Since Wy, and U, stretch distances at least by a factor of the form (cte) - A"t
and (cte) - \l+1 respectively, we get that

1De(p)-v]| = (cte)- Qo A~ Fs0)|[u]| = (cte)- p AN vl = (cte)-p'|lu].
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In any case, we have that Dy (p) expands vectors in C“(p; ¢ (p), d{'(p)) exponen-
tially in ¢. The same applies for vectors in the es-distribution C*(p; §5(p), 95 (p)) and
backward time iteration of D). O

Following lemmas 4.33, 4.34 and 4.35, we have that:

Corollary 4.36. There exist two continuous plane distributions F° and F in the
tangent bundle TN satisfying that:

1. Dyy(p) (F(p)) = F(¢¢(p)) and Dipy(p) (F**(p)) = F*(¢e(p)), for everyp € N
and t € R;

2. F(p)N F(p) = span{Y (p)}, for everyp € N;
3. There exists constants L > 0 and p > 1 such that

IDYe(p) v || = Li|lvll, ¥ p € N, v e F"(p), t =0,

| D—¢(p) - v|| > Lyf|jvl|, V p € N, ve F*(p), t > 0.

Proof. The lemmas 4.33, 4.34 and 4.35 say that the cone distributions defined before
satisfy the cone field criterion, which guarantees the existence of the plane distributions.
Just for completion, we sketch the arguments.

Define

Fe(p) = (] Dtwr ( C( Wiz (p) 3 65 (¥-1(p)), 01 (V-1 (p)) ) ),

k>0

F(p) = () Dy—rr ( C°( iz (p) 585 (Y (), 61 (Yar(p) ) ) -

k>0

From its own definition it follows that these sets are cones (intersection of cones) and
they are Diy-invariant. If we consider the projective space associated to each H*% (p),
then the slope function A,, provides a chart that identifies each cone C“(p; 64 (p), 01 (p))
with the closed interval [d§(p), 0} (p)] C R. Lemmas 4.33 and 4.34 say that F<“(p) is
obtained as a nested intersection of compact segments whose diameter tends to zero in
the projective space, so it is a non-empty cone that in fact reduces to a two dimensional
plane. The same considerations apply for F°(p). Observe that F'“(p) N F(p) =
span{Y (p)}, because the families of cones are point-wise complementary. Finally, from
lemma 4.35 we deduce the expansion/contraction properties stated above.

The continuity of the bundles p — F(p) and p — F°*(p) is automatic: This prop-
erty is true for every pair of invariant plane bundles satisfying 1., 2. and 3. above.
(More generally, for every pair of invariant plane bundles satisfying a domination prop-
erty. See [].) O
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Existence of the strong-stable and strong-unstable invariant distributions.

We prove now that, for small values of 0 < ro < 1 < 1, the flow (¢y, N) defined
in (4.16) preserves a hyperbolic splitting of the form TN = F*% & H® & F", where
H¢ = span{Y'} as before.

We will show that each plane F** and F“® has a decomposition F** = H® @ F“
and F'*° = F° @ H€, respectively, where F* and F'" are Di-invariant one dimensional
bundles, contacting and expanding respectively. For doing this, inside each plane F“*
and F°° we will chose a cone distribution that satisfy the cone field criterion. Since
the method is analogous to the previous one, we do not complete all the proof, but
we sketch the general arguments. We will make the argument just for cu-case, being
analogous the other case.

We will still make use of the decomposition TN = H*® H¢@® H" defined in (4.23).
It is convenient to recall that, if we see N as the union of My and Mj, by definition
this decomposition coincides with the splitting E?(p) & E€(p); ® E}*(p) associated to
the vector field X; when p € M;, i =1, 2.

Slope function. Given a point p € M;, since each plane F“(p) is contained in the
cone C“(p;dy(p), o1 (p)), there exists a slope value 6§ (p) < ai(p) < 6§(p), verifying
that

Fp) = {v € T,M; : v = aX;(p) + a;(p)cel(p) + ce'(p) : a,c € R} :
Since the plane distribution is continuous as a function of p € N, then each «; :

M; — R, ¢ = 1,2 is continuous. Moreover, at each p € My N M; the chart &, defined
in (4.28) sends

{aXo(p) + ao(p)ecd(p) + el (p) : a,c € R} > {aXi(p) + a1 (p(p))ees (p) + cel(p) : a,c € R}
This shows that there are some restrictions on the values of «;(p) at the boundary.

Recall that the change of coordinate ®, from T,My to T,y M is the identity
on these basis when p is not in A}n. Thus, we will consider the slope as a function
a: N — [min(dy), max(d}")], continuous on the complement of this annulus.

Framing on F** For every p € N the subspace H*(p) is transverse to both H¢(p) @
H"(p) and F**(p). Thus, there exists an isomorphism

P*(p) : F*(p) — H"(p) ® H"(p),

obtained by projecting F*(p) onto H¢(p) ® H"(p) in the direction of H*(p). This
allows to define a decomposition

Fe(p) = H°(p) & H"(p), (4.46)
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where H%(p) is the pull-back bundle of H%(p) by P*(p). Recall that the line bundle
H¢ is collinear with the vector field Y, thus continuous. As before, it can be seen that
the bundle H" does not varies continuously as a functions of p, the discontinuity set
being contained in the support of the surgery (contained in A}).

Let p € N and t > 0. Since the distribution F* is invariant under the action of
D1fy, using lemma 4.31 we can write

(DYt pen) (p) = (Wt |pen) © (p|pen) © (W |pen) 0 -+ 0 (D, [pen) o (Wi | peu) (p)-
(4.47)

for some py,...,p € AL and t; > 0, uniformly bounded from below for k = 2,...,1.
For every point p € N we consider a basis {ec(p),éu(p)}, where e.(p) = Y(p) and
éu(p) = a(p)es(p) + eu(p) is a vector in H"(p). It follows that:

e If the orbit segment segment [p, 1/;(p)] does not intersect the annulus A} , then

m?

(Wil o). = (3 ;L) - (445)

This follows simply by the fact that a(y(p)) = M a(p).

e If g € A}, is a point with normal coordinates ¢ = (r1,, s), then using (4.25) we
can see that

_ 1 A(T, 1, 712)
(‘I)q|Fcu)cg - (0 B(T, 7"1,7'2)) ) (4.49)
where | ACTLTE) = ~mmgmK(um2) (a@F +1)
B(r,ri,re) = —K(r1,m2) (a(q)ﬁ + 1) +1.

We remark here that this formula imposes more restrictions on the values of «;
on OM;, i = 1,2, since the expression B can never be zero.

We are interested in the alternated actions of (4.48) and (4.49) on the F** bundle,
that we have depicted in figure 4.9. We will define the @-slope of a vector v = ae.(p) +
céy(p) in F(p) as

Given a fixed real number § > 0, for every p € N define the cone
CUp;d) ={v e F"p) : =0 <Az(v) <d}. (4.50)

It follows that:

Lemma 4.37. If0 < ry <11 < 1 are sufficiently small, then there exists T > 0 such
that: For every p € N then

Dipr (C*(p; 9)) € C% (¢ (p); 6) -
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H"(q)
-

He(q)

(a) Uy

Figure 4.9: Action on the F* plane distribution.

Lemma 4.38. For the parameters 0 < ro < 11 < 1 given in the previous lemma, it is
satisfied the following: There exists a constant Ly > 0 such that, for every p € N and
every t > 0 then

| Aa(De(p) - v2) — Aa(De(p) - v1) | < A'Lo, V v1,v2 € C(p; ).

Lemma 4.39. By shrinking the parameters 0 < ro < r1 < 1 of the previous lemmas
if necessary, it is satisfied that: There exist constants L > 0 and i > 1 such that, for
every p € N and every t > 0 then

1DYe(p) v || > Li[loll, ¥ v € C*(p;0).

Proof of lemmas 4.37, 4.38 and 4.39. Acting on F“, each transformation W, of the
decomposition (4.47) satisfies

Wy, (C*(p;6)) = C*(p; A'6), (4.51)
as follows simply by (4.48) above.

For the transformations ®, with ¢ = (r1,7,s) € Al we can stablish the following:
Given 0 > 0, there exist positive constants Dy = Dg(r2/r1) and Dy = Dy(ry/r1) such
that

Az (Pg(v))] < % + D16, for every ¢ € Al and v € C"(p; ). (4.52)
2
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To prove this observe that, using (4.49), for every v € F(q) we have

§r/r1 T 1>> T Aa() (—K<r1,r2><c1v<q>r/n T 1)) '

By construction, the slope «a(q) takes values on the interval [—3ri/re,2r1/3r2]. In
addition, K (r1,r2) equals r/re up to multiplication by a bounded function. Since the
parameter r satisfies ro/3 < r < 2ry/3 we can conclude the inequality above, because
the expressions between parenthesis have bounds which depend only on the ratio /7.

Let T1(r1,7r2) be the minimal returning time (to itself) of points contained in the
annulus {r1} x [r2/3,2ry/3] x R/Z, as defined in the course of the proof of lemma 4.33.
We claim that

Claim. If we shrink sufficiently the parameters 0 < ro < r; < 1 keeping constant its
ratio r9/71, then it follows that

ATi(rir2) (DO + D15> <L
ro 2

Assuming this claim, we can proceed to prove the three lemmas stated above. Start
with some model (¢, N) corresponding to two fixed parameters 0 < ro < r; < 1. If
we shrink the parameters keeping constant the ratio in order to satisfy the claim, we
encounter that, since t > T(r1,r2) for k = 2,...,1 in the decomposition (4.47), each
map

(W, |pew) o (Ppy_y | o)

sends the cone C%(p;d) inside C*(¢, (p); ), for k = 2,...,1. Thus, if we choose T' >
2T (r1,72), we can conclude in the same way as in 4.33.

For the second lemma, observe that the transformations ®,, satisfy that, for every
pair of vectors vy, vy in FY,

|Aa (P, (v2)) = Aa (Pp,_, (v1))| < D1 |Aa(va) — Au(vr)].

This can be seen using the matrix form in (4.49). Since the transformations ¥y, contract
slopes at an exponential rate, we can adjust 71, 2 in order to have a big enough T} (11, r2)
such that the alternated composition of this transformations satisfy the conclusion of
the lemma.

For the third lemma observe that, for every vector v € F° in the cone —§ <
Az(v) < 4, from the one side we have that || U, (v)|| > (cte)- A7 . From the other side,
the minimum

d = d(rz/r1) = min {||,(v)] : q € AL}

depends only on the quantity re/r; and is positive, as can be seen from the of the
quantities participating in formula (4.49). We obtain ||®4(v)|| > d||v||, independently
of g. Thus, shrinking r; and ro in the appropriate way if necessary, we have that the
action of D, on T'N is expanding as stated in the lemma.
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To prove the claim, start with two fixed values 0 < ro <71 < 1 and let 8 = ry/7q.
Let 0 < 7 < r} < 1 satisfying that 0 < 7§ < r9, 0 <7} <ry and r5/r] = 5. As in the
proof of lemma 4.33, the returning time 77 (r1,72) satisfies that

r! 2
T1(7“1,?”2) Z T(T'll,Tl) = 1 1)\) log <( 12) ) .

og( 1
Thus,
Ti(r1,r2) Do T(ri,r) Dy (Tll)2 Dy
A ’ — + Do) < ATV —+ D) < —— (55 +D1d),
T2 T2 ri \Br
which can be made smaller than §/2 if ] is small enough. We can conclude that, for
small values of 7, the couple |, r satisfies the claim. O

Remark 4.40. We point out two differences with the case of the center-stable/unstable
spaces.

First, in that case, for defining the cones we had to choose slopes that depended on
the point p € N, while in the present case we consider constant slopes. This is due to
the difference in the matrices (4.30) and (4.49). The first is a matrix with determinant
one of parabolic type, and its eigenspace has a bounded non-constant u-slope. The
second is not parabolic, but the line of slope = oo is an eigensapce with eigenvalue
equal to one, independently of ¢ € A} .

Second, in the center-unstable case we had cones of whose diameter has a bound
or the form (cte) - r9/r1, while in the strong-unstable case the bounds are of the form
(cte) - 1/ry. In any case, choosing ri,ry small, when an orbit segment traverses the
cross-shaped region V(ri,72) we can ensure a sufficiently strong contraction on slopes.

Corollary 4.41. There exist two continuous line distributions F'°* and F* in the tangent
bundle TN satisfying that:

1. Dipy(p) (F(p)) = F“(¢e(p)) and Dyy(p) (F*(p)) = F*(4u(p)), for every p € N
and t € R;

2. T,N = F*(p) @ span{Y (p)} & F*“(p), for every p € N;
3. There exists constants L > 0 and p > 1 such that

| Dyye(p) v || = Lpt|v]l, ¥V p €N, veF“p), t=>0,

| Dy—y(p) - v|| > Lpf|jvl|, Vp € N, ve F(p), t>0.

3.4 The smooth model (¢, N) is orbitally equivalent to the original
flow (qbta M).

The general setting at the beginning of section 3 is that we have a transitive topological
Anosov flow (¢, M) and a Birkhoff section ¢ : (X,0%) — (M,T') which, for simplicity,
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we have assumed to have only one boundary component that is mapped onto a periodic
orbit ~.

Then, in subsection 3.2, we have defined a flow (¢;, N'), whose construction depends
on the combinatorial parameters of the Birkhoff section and on two real parameters
0 < rg <11 < 1. In particular, recall that we use expression (4.15) or (4.14) for defining
(14, N'), depending on the signature of the linking number.

We show here that the flow (¢4, N) is orbitally equivalent to (¢, M), independently
of the parameters 0 < ry <1 < 1.

Proposition 4.42. The flow (¢, N) defined in (4.16) is orbitally equivalent to the
original flow (¢g, M).

The proof of this proposition follows the same lines that the proof of theorem 3.1.
Given that (¢y, M) is already endowed with a Birkhoff section, the proof is nothing but
to show that (¢4, V) is also endowed with a Birkhoff section, that carries the same first
return map and combinatorial data on the boundary. In this way, the theorem follows
from the techniques that we have presented in chapter 2, since this last condition is
enough to guarantee orbitally equivalence between the flows.

Lemma 4.43. There exists an immersion ¢ : 32 — N wverifying that:

i. ¢:(%,0%) — (N,70) is a Birkhoff section that sends the (unique) boundary com-
ponent of ¥ onto the curve v = 0 x R/Z contained in My = V(ry,rs).

ii. If we call X' = ((¥), then n(y0, %) = n(v, %), m(y0,E’) = m(v,X) and p(y0,¥’) =
p(7,%).

119, C(E) NMy= L(E) N M.

It will be convenient to recall the general construction that we have made. In a
neighbourhood W C M of the curve v we have defined, quadrant by quadrant, a set of
charts II; : W; — D; x R/Z, i = 1,...,4, that we called normal coordinate system, cf.
4.22. These charts can be chosen in order to satisfy the combinatorial condition 4.7.

Using these charts, in 4.24 we have constructed a neighbourhood R(ri,r9) C W
of v, defined quadrant by quadrant. This neighbourhood is composed of four regions
R;i(ri,m2), i =1,...,4, cach one identified with the set V;(ry,72) C R? x R/Z defined
in 4.20, by the corresponding chart.

The construction of (¢4, N) consists in take the manifold My, obtained by removing
the interior of R(ry,r2), and glue its boundary with the boundary of M; = V(ry,rs).
The glueing diffeomorphism ¢ is given in definition 4.26 in terms of the chosen system
of normal coordinates. Observe that its support is contained in the annulus A} in
the first quadrant or in A? in the fourth quadrant, depending on the signature of
n=n(vy,X).
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Figure 4.10: Glueing map from dMy to OM;.

Proof. We will make the proof for the case n = n(v,X) < 0, being analogue the other
case.

Define Xy = ¢(X) N My, which is the part of the original Birkhoff section that lies
outside the neighbourhood R(71,7r2). From now on, we will consider this surface as
embedded in N by the natural inclusion My < N. To prove the lemma, we will show
that this surface can be extended inside the manifold M7, adding an helicoidal-like
surface that connects 0%y with 7, in such a way to obtain the desired Birkhoff section.

Let a« = 0%¢. By construction (cf. ?7?), this curve is a piecewise smooth, simple,
closed curve in M, that coincides with ¥ N 0My. Let’s remark that Y intersects
transversally the surface OMy. The partition into quadrants of the neighbourhood
R(ry,72) originates a partition of o (as a submanifold of dMj) into segments

{aii, aff, alfli=1,..,4, k=0,... 4n| - 1}

of constant R/Z-coordinate. We use the supra-index i + 4j exactly in the same way
as we have used it in 4.22 for labelling the quadrants of ¥ N R(ry,r2), and we use the
sub-index in, tg, out to indicate if the segment belongs to the region of OR(r1,12)
where the flow enters, is tangent or escapes the neighbourhood R(r1,72), respectively.
This situation is depicted in the left part of figure 4.10. Observe that the combinatorial
patron for concatenating the segments o™ is determined by the combinatorics 4.7 of
the system of charts II;, i = 1,...,4.
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Let 8 = ¢(«), which is a piecewise smooth, simple, closed curve contained in dMj.
In an analogous fashion, the curve 8 can be decomposed in a concatenation of compact
segments

in > Mtg o Fout

{5”43' R gL 4, kzo,...,4yny—1},

as in the right part of figure 4.10. Since ¢ restricts to a monotonous twist on the
annulus A}, and restricts to the identity on OR(r1,72)\ A}, , we find that:

e Each segment @f 4=
coordinate;

i+4j

m ) admits a parametrization with monotonous R/Z-

p(a

e For all the other segment, we have 8.7 = p(a™™) = al™ has constant R/Z-
coordinate.

We claim that:

Claim. There exists an immersion (S,0S5) — (V(ri,72),7%), where S is a surface
homeomorphic to the compact annulus [0, 1] x R/Z, satisfying that:

1. Tt is a local Birkhoff section at vy for the flow ¢, with n(yg,S) = n(v, %) and
m(70,5) = m(y, ¥);

2. aS:/BU"}/O.

Proof of the claim. Define S = {(0z,0y,2) € R?/ xR/Z : (z,y,2) € B, 0< 6 < 1}.
Then, S is the surface obtained by joining with a straight segment each point (z,y, z) €
B with the point (0,0, 2) € 79. It is homeomorphic to a compact annulus and clearly

dS = B U .

This set can be decomposed as the union of some smooth horizontal surfaces, each
one isometric to the region Q(r1,r2) defined in 2.2 at the beginning of the chapter, and
some smooth non-horizontal bands, as we see in figure 4.11. Each segment 611; 4 belongs
to the boundary of a band, and all the other segments composing 5 are contained in
the boundaries of the horizontal parts.

In the complement of g, the surface is transverse to the vector field X;. To see
this, recall that X is defined to be the vectorfield (x,y, z) — (log(\)z, —log(N)y, 1/|n|)

in R? x R/Z. Since the third component is nowhere zero, it follows that it is transverse
to S along the horizontal parts.

For the transversality along the bands, consider a point p = (r1,7,s) € SN AL . On
Azln there is a parametrization

|m

r— B(r) = <r1, T, 20 + |p(r/r2)> , where 2 is some constant.

id

From the definition of S we have that 7,5 is generated by the vectors

51 0) = 0L, =(r)) and 2 (9) = (r1,7,0), where x(r) = "1 16/(r/ra)| 2 0.
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Ml = V(T‘l, 7“2)
Figure 4.11: Glueing map from 0My to OM;.

It follows that

IRTACA RN MO i
Xi1(p) A =—(p) A =(p) = |—log(N)r 1 r| =
ST o0 Ylnl —k(r) 0

—% + 2k(r) log(A)rir < 0,

so we conclude that X; is transverse to T'S along the the arc ﬁ~1+4j

i, . Then, since the
surface S is the image of a l-parameter family of horizontal homotheties (z,y,z)
(0x,0y, z), and since X; is invariant under these transformations, this implies the

transversality of X; with 7'S along all the interior of the band.?

From its definition we can see that the surface is orientable, and the arguments in the
previous paragraphs allow to check that the vectorfield traverse each band or horizontal
surface always in the same sense. Thus, orbits of the vector field are everywhere
(topologically) transverse to the interior of S.

Following the previous paragraph, S is a local Birkhoff surface tangent to 9. By

31t is here that it is important to consider a separated definition 4.26 for ¢, discriminating by the
signature of the linking number. Observe that if we apply the same formula for ¢ in the first quadrant
with positive n, then the bands switch to a bad position and transversality cannot be guaranteed.
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construction, in the canonical meridian/longitude basis {a, b} of the saddle type periodic
orbit 7g, the coordinates of the curve g are

Bl =n(v,%)-a+m(y,X)-be Hi(Mi\).

Therefore, we deduce the linking number and multiplicity of S. Since n(v,X) # 0, we
deduce that S is in fact a local Birkhoff section. That is, there exists a neighbourhood
tubular O of vy such that every point in O intersects the surface S in a uniformly
bounded time.

This completes the claim. 0

To complete the lemma, consider now the set
Y= YoUS

that is contained in N. Without loss of generality we can assume this set is the
continuous image of a map ¢ : ¥ — N, which is an embedding on int(X) and coincides
with ¢ over ¥y. Observe that if we co-orient 3y and S\~ with the vectorfield X, then
under the glueing operation we obtain an oriented surface, and the oriented ;-orbit
segments traverse the surface in the positive sense. Thus, int(X') is (topologically)
transverse to the flow lines.

To prove that this is actually a Birkhoff section, it rest to show that all the i-orbits
intersect ¥’ in a uniformly bounded time. For this, consider two tubular neighbour-
hoods O1 € Og C N of g satisfying that

1. My N M is contained in the interior of Op\O1,

2. There exists 17,7y > 0 such that [p,vp, (p)] NS # O for every p € Oy and
[p, Y1, (p)] N Eg # O for every p € N\Oy.

Then, since the neighbourhoods O; C Oy are nested germs of a saddle type periodic
orbit, we see that there exits some T5 > 0 such that [p, ¢, (p)] is not contained in
Op\O41, for every p € Op\O;. Then, taking T' > max{Ty + T5,T1 + T2}, we deduce that
[p, vr(p)] N # O, for every p € N.

This completes the lemma. ([l

We have now two flows (¢, M) and (¢4, N), each one equipped with a Birkhoff
section ¢ : (X,0%) — (M,~) and ¢ : (£,0%) — (N, 70), respectively. We call P : 3 — 3
and P’ : ¥ — X the corresponding first return maps.

Lemma 4.44. There exists a homeomorphism h : > — 3 such that P'oh =ho P.

Proof. Denote by S the blow-down surface and by P and P’ the corresponding pseudo-
Anosov homeomorphisms acting on it. By construction the surface ¥ has only one
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boundary component, originating a point & € S that is fixed for both maps. We will
consider & as a puncture for both pseudo-Anosov maps.

To prove that there exists a conjugation between the first return maps, it suffices to
show that they induce conjugated actions on the fundamental group of the punctured
surface (i,i‘) More precisely, it suffices to show that there exists an isomorphism
m1(X\2) — 71 (X\2) that conjugates the actions on fundamental groups

P., P, : m(2\2) — m(Z\2),

which in addition preserves the conjugacy class in 1 (X\Z) of the simple loops homo-
topic to the puncture.

Recall that

M = Myu R(Tl,’l“g)
N = Myu V(T‘l,’l“g),

so we can consider My as simultaneously embedded in M and N. Denote ¥ = «(X) N
My = ¢(X2) N My. For both dynamics, the foliation by orbits on the component My is
the one determined by the original flow ¢;. This is, id : (¢, My) — (3¢, My) is a local
orbital equivalence.

Let U C g be a collar neighbourhood of 9% and consider the subsurface >y =
Yo\U. If we take U big enough, then it is satisfied that every point p € Xy has a
first return in ¢,(p) € int(Xy) and all the orbit segment [p, ¢ (p)] is contained in M.
Following the previous paragraph, we see that the identity map on Xy satisfy

Yy —25 %,

b Lo

EULEO

Since ¥ retracts by deformation onto ¥, and since ¥y is a deformation retract of
the surface ¥\, then the identity isomorphism on 71 (X\#) is a conjugation between
P, and P., that trivially preserves the conjugacy class of the puncture.

By proposition 1.29 we conclude that there exists a homeomorphism h (i, z) —
(32, 2) such that P’ o h = h o P. The lemma follows by restricting these maps to the
complement of the puncture.

0

Proof of proposition 4.42. Following the two lemmas above, the two flows are equipped
with Birkhoff sections having conjugated first return maps and compatible data on the
boundary. Then, by theorem 2.16, we conclude that (¢, M) and (¢, N) are orbitally
equivalent flows. O
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