N

N

Contribution of actin cytoskeleton to C. elegans
embryonic elongation

Alicia Lardennois

» To cite this version:

Alicia Lardennois. Contribution of actin cytoskeleton to C. elegans embryonic elongation. Develop-
ment Biology. Sorbonne Université, 2019. English. NNT: 2019SORUS236 . tel-02951816

HAL Id: tel-02951816
https://theses.hal.science/tel-02951816

Submitted on 29 Sep 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://theses.hal.science/tel-02951816
https://hal.archives-ouvertes.fr

'\ SORBONNE

I r
S UNIVERSITE
CREATEURS DE FUTURS

INSTITUT DE
BIOLOGIE

PARIS = SEINE

SORBONNE UNIVERSITE

Ecole doctorale 515 - Complexité du Vivant

Laboratoire de Biologie du Développement - UMR7622 - IBPS

Contribution of actin cytoskeleton to C. elegans embryonic elongation

Contribution du cytosquelette d’actine

lors de I’élongation embryonnaire de C. elegans

Theése présentée par:
Alicia LARDENNOIS

Soutenue publiquement le 27 Septembre 2019

Pour obtenir le grade de : Docteur de Sorbonne Université

Discipline/Spécialité : Biologie du développement

Thése dirigée par :
Dr. LABOUESSE Michel Directeur de Recherche, Sorbonne Université, IBPS

Rapporteur INTERNE/
Présidente de Jury :
Dr. PLASTINO Julie Directrice de Recherche, Sorbonne Université, Institut Curie

Rapporteurs EXTERNES :
Dr. MANGO Susan Professeur, Université de Bale, Biozentrum
Dr. HEISENBERG Carl-Philipp Professeur, Institute of Science and Technology Austria

Membre invité :
Dr. LLENSE Flora Maitre de conférences, Sorbonne Université, IBPS






ACKNOWLEDGMENTS

It had been quite some journey for me. Science was not my first career choice, but life decided it
otherwise. | learned to make the most of it and today | am very happy of the result.

| wish to thank, first and foremost, my thesis director, Michel, for handing me over such a wonderful
and challenging project, and for trusting me to carry it out. Thank you for your patience, motivation,
enthusiasm, and immense knowledge. Your guidance helped me in all the time of research and writing of this
thesis. It has not been easy every day, but it was totally worth it. Thank you also for encouraging me when |
needed it, for finding the right words.

| consider it an honor to work with Flora, my supervisor in the lab, and | am extremely thankful for her
support and guidance during these four intense years. Thank for encouraging me all the way, especially during
the difficult moments. Thank you for your help with the experiments, your scientific advices, and very
stimulating discussions (scientific or else).

| also would like to express my profound gratitude to Teresa. Without your scientific contribution, my
thesis would not have been the same. Thank you for your support, various scientific discussions and also
everyday talks.

Along with Michel, Flora and Teresa, | would also like to thank all present and past members of
Labouesse and Robin teams: Frangois for insightful scientific discussions (especially about cytoskeleton) but
also for precious life hacks - Saurabh for teaching some basics about C. elegans and how to design CRISPRs -
Shashi for being available each time | had questions about protocols or else (especially about CRISPR or VAB-
10...) - Loan for many shared laughs at the bench and in the office, and his kind help with injections - Serena for
great scientific discussions (as well as cats related and United Wizard discussions) - Asma for her kindness and
for being a Potterhead just like me - Camille, Thanh, Xinyi, Vlad and Dilyana for nice conversations about
science and life. | want to thank students who helped me with bench work: Antoine, Leila and Camille. Thank
you also to the Galy team members for their kind welcome whenever we go for injections. And most
importantly, thank you to all for just being there, it was great sharing such a nice time with all of you during
these last four years.

I cannot find words to express my gratitude to Emma, Manon and Dylan, who had been there for me all
along particularly in the very difficult times. You bear with me anytime | discussed my PhD project, my paper,
the difficulties | was facing and most of all the frustration that came with it. | really owe you a lot (and that
bottle of Champagne | promised you!).

Special regards to Michel, Flora and Teresa for correcting the science of my thesis, as well as to Emma
and my parents, for editing my thesis, tracking orthograph and layout mistakes of the documents during the
last days.

Finally, | deeply thank my family, and Nounoutte, my beloved cat. Thank you, Mom and Dad, for your
unconditional support and love and always standing next to me whenever | need. It has been fifteen years that
you trust me with the life choices | make, even the hardest ones. Your trust made me who | am today, | could
not have done it without you. | will never be grateful enough.






REMERCIEMENTS

Cette expérience a été déterminante pour moi. La science n'était pas mon premier choix de carriére,
mais la vie en a décidé autrement. J’en ai tiré le meilleur parti et aujourd'hui, je suis treés heureuse du résultat.

Je tiens avant tout a remercier mon directeur de thése, Michel, de m'avoir confié un projet aussi
intéressant et stimulant et de m'avoir fait confiance pour le mener a bien. Merci pour ta patience, ta
motivation, ton enthousiasme et tes immenses connaissances. Tes conseils m'ont aidé tout au long de cette
these et de son écriture. Cela n’a pas été facile tous les jours, mais cela en valait la peine. Merci également de
m'avoir encouragée lorsque j'en ai eu besoin et d'avoir trouvé les mots justes.

Ce fut un honneur de travailler avec Flora, ma superviseure dans I'équipe, et je suis extrémement
reconnaissante de ton soutien et de tes conseils au cours de ces quatre années intenses. Merci de m'avoir
encouragée jusqu'au bout, surtout pendant les moments difficiles. Merci pour ton aide pour les expériences,
tes conseils scientifiques et nos discussions trés stimulantes (scientifiques ou autres).

Je voudrais également exprimer ma profonde gratitude a Teresa. Sans ta contribution scientifique, ma
these n'aurait pas été la méme. Merci pour ton soutien, nos diverses discussions scientifiques et celles plus
légeres.

En plus de Michel, Flora et Teresa, je voudrais également remercier tous les anciens membres et
membres actuels des équipes Labouesse et Robin: Frangois pour nos échanges scientifiques approfondis (en
particulier sur le cytosquelette) mais aussi pour tes précieux conseils - Saurabh pour m’avoir appris quelques
manipulations de base sur C. elegans et la conception des CRISPRs - Shashi pour ta disponibilité a chaque fois
gue j'avais des questions sur les protocoles ou autres (en particulier sur les CRISPR ou VAB-10...) - Loan pour
avoir supporté avec bonne humeur de partager la paillasse avec moi pendant deux ans et pour ton aide avec
les injections - Serena pour nos grandes conversations scientifiques (ainsi que celles sur les chats et United
Wizard) - Asma pour ta gentillesse et notre passion partagée pour Harry Potter - Camille, Thanh, Xinyi, Vlad et
Dilyana pour nos conversations sur la science et le reste en général. Je tiens a remercier les étudiants qui m'ont
aidée sur les expériences : Antoine, Leila et Camille. Merci également aux membres de I'équipe Galy pour leur
accueil chaleureux chaque fois que nous injectons. Et surtout merci a tous d’avoir été présents, j'ai beaucoup
apprécié votre compagnie au cours de ces quatre derniéres années.

Je n’ai pas de mots pour exprimer ma gratitude envers Emma, Manon et Dylan, qui ont toujours été la
pour moi, particulierement dans les moments tres difficiles. Vous m’avez supportée a chaque fois que je parlais
de ma thése, de mon papier, de mes difficultés et surtout de la frustration qui en découlait. Je vous dois
beaucoup (nous sabrerons le champagne bient6t !).

Merci particulierement a Michel, Flora et Teresa pour la correction de ma these, ainsi qu'Emma et mes
parents pour en avoir perfectionné la mise en page au cours des derniers jours.

Enfin, je remercie profondément ma famille, et Nounoutte, mon chat adoré. Merci, papa et maman,
pour votre soutien inconditionnel et votre amour et pour étre a mes cotés a chaque fois que j'en ai eu besoin.
Cela fait quinze ans que vous me faites confiance, quel que soient mes choix de vie, méme les plus difficiles.
Votre confiance a fait de moi ce que je suis aujourd'hui, je n'aurais pas pu le faire sans vous. Je ne serai jamais
assez reconnaissante.






TABLE OF CONTENTS

ACKNOWLEDGEMENTS / REMERCIEMENTS.......coicrerereiiicnsssnnneeeessiesssssnnneesssssssssssnnsssssssssssssnnnnasssssanes |
TABLE OF CONTENTS ...uuiiuiiiuiiiuiieniieniieniioniiacisersisrsssrsisssssssssssssossisssssssssssssssssssssssssssssssssssssssssssssssssssnns ]
ABBREVIATIONS ... iuiiitiiitiiieiiieiieniieiiaiiaeisieiaiersisrsisssisesiiessiosstosssasstasstsssssssssssssssssstssssssssssssssssasssnsssnns 1]
Common abbreviations for mutant phenotypes in C. elegans
Most commonly mentioned genes in this work
ABSTRACTS (in ENglish and FreNCh) ....cccuuuiiiieiiiiiiiciieecccireeeieereeaseeseeassesseenssesssennssessennssessesnnssnsssnnnes 1
ABSTRACT ...ceeiiiuiiiiiiiiiiiiseuuessisetirtrenasssssssssstmrersasssssssssssmresasssssssssssssnesssssssssssssssesssssssssssssssssnesas 3
RESUIME COURT ......couiuetrueuetsaetesecssetesetssssetsse st s et sas st s et sse e st sae st es e et saestessnssssssnsssenssssns 4
RESUIME LONG......c.couiueteueuentsuetesetsssaetssetssssetssest s et sasssssssestssestssssestssssenssssntessasssssenssssnssssns 5
1. Phénotype de rétraction et activité MuSCUIRIre ........cccoeeveiiiiriiiiie e 7
2. Remodelage et dynamique du cytosquelette d’acting .........cccceeeceeeeeciiee e 7
2.a. 0Organisation de I'aCHINE .....cocciiii i eraee e 7
2.b. Remodelage durant '€longatioNn..........ccuieiiiiieiiiiiie e 8
3. Modélisation de I'EloNGatioN.........ccueiiiiiiie i e e 9
V1= g oo [T O O OO O OO PO PPRPTRTOPPRIO 10
0] o] o 1A o] =Y A o T4} =T Y ol Y 10
(0oT 0] 00 [F] o] Tor= 14T T =1 =T3RS 10
POSTOIS ettt ettt a b — bbbt et et et e et e e s e reeeeeeaens 10
INTRODUCGTION ..oiiiiiiiiiiniieniieniieniieiiaeisieisisesssessissssssssssstssssssessssssssssssssssssssssssssssssssssssssssnsssnsssnsssnsesnsss 11
I. Epithelia in MOrphogeNESiS .....cccciiiiiiiiiiiiiiiiiiiiiiieiieres st ssesssssssesssssssesssssssennsss 15
1. General characteristics and function of the epithelia.........cccceeeiiiiiiiiiie e, 17
2. The organization of an epithelial Cell ... e 18
2.1, Epithelial JUNCLIONS ... et e e ee e 19
2.2. Extracellular matriX (ECM) ....ooociieiiie ettt e ettt ve e s te s s baeevaeeeane e 22
e T O 01 (=1 =] o TR PR 22
e T8 O Yo f [ =T Vo ' 4170 1Y IR 23
2.3.2. MIICTOTUDUIES ...t e e s e e s s e e e s bae e s s naeeeeas 28
2.3.3 Intermediate filameEnts ......ceieiiiiriie e s s 29
Il. Epithelia remodeling during Morphogenesis........ccccciiieiiiieiiiiiiiieciiieniicirresc e reeeseesenes 31
1. Contractility and intrinsiC fOrCES ....uiiiiiiiiiiiiiee e saaee s 33
00 AV or=Y oo Y 3 4 o Lo TP RS 33
1.2, Cell MIGIatioN . .ccceeiie et e e et e e e e ba e e e e ate e e e eabae e e entaeeeenrenas 35
1.3, CoNVErgENT EXTENSION ceeiiiiiiiiiiiieee e ettt e e e erirte e e e e e sttt e e e s s e stabaeeeeessssarraaeeesesanas 38
2. Extrinsic forces — MechanotranSAUCTION.........ocviiiiericiiiiiiieieeie e s 41
2.1. Matrix control of stem Cell fate ....c.cevvviiiiiiiii e 41
2.2. Role of cytoskeleton in mechanotransduction ...........cceeeeciieeeeciieeccciee e, 43
2.3. Protein unfolding under force: in vitro example, spectrin.......ccccccceevcieeeeiiieeeccnennn, 44
2.4. Protein unfolding under force: in vivo example, talin ......ccccccevviieeiiceencciee e, 46
2.5. The plasma membrane as a teNSION SENSOF ......ccccveieeiiieeeeiiiee e et e e rree e e aaeee s 48

2.6. Importance of stiffness during morphogenesis.......cccoccuvevivcieeiiiiee e 50



lil. Introduction to our model: the nematode Caenorhabditis elegans...................ccervvvueierievnnncnns 53

1. C. elegans general @NatOMY .......ccccciiiiiiiiie et e e e e st e e e e bre e e e sbae e e s abaeeeesteeesnaseeas 54

R O] = 1o [ K 4 110 1 (=TSP 55

I O =T To T K1 o1 o [=Y 1 0] PSRRI 56

3.1. C. elegans Adherens JUNCLIONS (CEAJS) ...iiiuiriiireiieecieeciteectte et e ete e et eebeeesiaeesaeeens 57

3.2. C. elegans hemidesmosomes (CEHDS) ....cccueeeciieeciieeiiieceee e eree e 58

3.3. C. elegans extra-cellular MatriX .......ccoeecuieiiciieee e e aaee e 61

B @Y o 1 =] 1= o o USSR 62

N I o 11 o BT TP PP P PP PPPPPP 62

4.2. Actin remodeling Prot@INS ...ccccuiiie ittt enaeas 64

0 R o1 41 411 TR PP PP PR UPUPPPPPPTRIR 64

A CT=Y (Yo [ o ISP USP 66

B.2.3. VLN ettt ettt st ettt e s e s b e e bte e nat e e nabeesbe e e bt e enabeeas 67

I T [ Tol g U] o0 1= PSSR 68

4.4, SPeCtrin CYtOSKEIBLON ..eoieiiiiiciiie e e 69

4.4.1. BG-SPECLIIN/UNC-70.....cecueeirieeiieeiecieeie e eteesteesteeteeteesseesteesteessaesseessaessans 71

4.4.2, BH-SPECLIIN/SIMIA-L....cveiiieiitie ettt ettt et eve v esbeesteeste e asesteenaeas 72

4.4.3. A-SPECEIINISPC-1 ..ottt ettt e e tre e reeeteeeteeeneeen 73

4.4.4 The spectrin heterotetramers ........cccviviee i eccciiieeee e 74

5. C. elegans life cycle and its embryonic development .........cooccciveeeeeiiecciiieeeeec e 76

5.1. Overview of the embryonic elongation ...........cceecuviiieiiiie e 78

oI Yo (V= [0 o == 14T o IR 80

R R I | LN =Y (o] o= - 4o o PSPPI 81

IV. Aim Of this thesis .....ceuuiiiiiiiiiiiiiiiiiiiiii e rssasse s e sssssssssssssssnesannnes 83
MATERIAL AND METHODS .....ccoetuuuiiiiiiiiiiniennneiiisiiineresssessssiisimmmesssssssssisssimessssssssssssssssssesssssssssssssssases 85
Animal strains, conditions of MAINtENANCE..........vviiiiii i e e earrre e e e e e 87
N I o RVl V] o To BT ¢ Y=Y o 11 V=P 87
RIN AT SCIEENS . ..ciiie ettt ettt e ettt e e e e s ettt e e e e e st te et e e ee s s s s b eeeeeeesaassbbaaeeeeesnnssbaeeesesassnraaaeeenenn 87
Fluorescent translational reporter CONSTIUCES. ......uuiiiiiiiii i s e 88
SPC-1::GFP and PAK-1:imMKGEE ......oeeeieeeiieeeieeeieeeiee ettt et esieestee sttt s site e siteesteastessssessssteenseanas 88
FHOD-1 full length and alternative CONSTIUCES........ccuiiiiiiiiieeciee et e 89
LifeAct::mMaple3 photoconvertible CONSLIUCT .........cvviiiiiiii i 89
ACT-1::GFP OVEIEXPIESSION ..vvviieeeieeiiiiteeeeeeesiiittreeeesssastssaeeesssssssrteeeesssssssssseeeesssnssssseseeessssssnsne 90
PAPY-7::GFP OVEIEXPIESSION ..eeieiviieeeeiieeeeitieeeeeteeeeeitteeeesteeaeeisaeeeeanteeeeeseeeeessseeessseessssssesesssens 90
CRISPR/Cas9 fluorescent knock-in transgenic Worm generation..........cccueeeeeeereeeieeecveecieecreesveesveenneens 91
F Yo I A Y S A > s RS URRT 91
UNGC-70 ittt ettt st e st e st e s bt e st e e s teesaae e e st e e sabeesabeesabaesaseeesabaesabeeenbaesnbaeennsaesaseesnsaeensns 92

Table recapitulating the different strategies USEd.........cccuuvieeiii it 93
e U ToY T o=y Vol TN T o= V=4 T o = SR 94
TIRF=SIM <.ttt ettt ettt ettt s bt e sa e s be e s bt e e bt e e bt e e abeesabeesabeeeabaeeabeesabeesabeesabaesabaeesabeesabeens 94

Image analysis and quantification of actin filament contraction,
CONLINUILY @Nd OFIENTATION ..eiiiiiiiiie ettt e et e e e et e e e st e e e e ebaeeesnteeesenteeeesantasaesssneanns 95
(60T 0111 181 4 V2O PP TP PPPRUPP 96



Anisotropy of the OrieNTAtioON ........oei i e e e e e 96

Y 1 1= a1 1T R SR 96
BUNAIE OrZaNIZatiON .. ..viiieiiiie ettt e e e et e e et a e e e st e e e sntaeeeeataeeeannaees 97
Y L A [0 T AN F= 1AV USRS 97
RESULT S .. iiiiiiiiiiiiieiiiiieieieicttetttetaestetsessessessessessestessestestasssssassastassassassastassassassassassasssssasssssasssssassssssnses 929
L. Introduction tO the reSUILS .......cceeeeeiiiiiiiiiiiiieniiiiiiniinreissniiireessassssisssreersssssssssssssssesssses 101
Il. Previous work: molecular and functional screens identify SPC-1 as a potential PAK-1 partner . 102
1. SPC-1 and PAK-1 loss leads to a retraction of the embryo.........cccceeeciieiecciiccciee e, 103
2. This retraction phenotype depends on the muscle iNput.......cccccccveeiicciii e, 105
lll. PAK, SPC-1, SMA-1 co-localize with actin near the epidermal cell membrane..........ccccceaueuenenne 106
1. PAK-1 and SPC-1 localize along the actin filaments ........cccoccevieciiee e, 106
2. Super-resolution shows precise co-localization of actin and spectrin cytoskeletons............. 108
3. Other tools have been developed to investigate actin dynamics........cccceeecveeeeecieecccieecenee, 109
IV. Genetic interactions of pak-1, sma-1, unc-70, vab-10b affects elongation .........cccceveuerenncreannns 112
V. The organization and remodeling of actin filaments is a key element of the retraction.............. 115
1. Spinning-disk characterization of the actin disorganization in spc-1 pak-1 embryos............. 115
2. Enhanced visualization of actin filament abnormalities in spc-1 pak-1 defective embryos...119
3. The intensity of actin varies over time in spc-1 pak-1 defective embryos..........ccccccecuveeenneen. 122
VI. The embryo diameter decreases during elongation.........c.ccccereeuereeniiiinicreneriecrteenerenncrenseennnnes 123
VII. Muscle contractions bend actin filaments leading to the recruitment of severing proteins..... 125
1. Actin filaments are bend at very sharp angles upon muscle input.........ccccccceeeviieeeecieeecnee. 125
2. GSNL-1 and VILN-1 are involved in the remodeling of actin in our system ........cccccevvveeeennnee. 127
VIII. A Kelvin-Voigt model recapitulates the elongation of the embryos of various phenotypes.... 130
IX. Combined loss of FHOD-1 and SPC-1 leads to the same retraction phenotype......................... 137
1. fhod-1 spc-1 retracts and their actin show the same abnormalities as spc-1 pak-1.............. 137
2. FHOD-1 bundling activity is important for the remodeling .........cccceeveieeirciiicee e, 141
3. FHOD-1 and PAK-1 localization are affected the same way by the lack of SPC-1.................... 142
DISCUSSION AND PERSPECTIVES......cccitiitiiiiieiiiiieiieiieiieiieiieiieieissssssesssssesssssesssssesssssossassossassassassassanse 145
I. Identification of a novel morphogenetic ratchet .......cccccooiiiuiiiiiiiiiiiiiiiiinic e, 150
Il. Modelization of our ratchet mechanism ........cccceiiiiiiiiiiniiiniiiii s esaes 152
lll. Unraveling the internal organization of actin ..........ccccvvvrreeciiiiiiniinnneinnienee, 154
IV. Interaction of actin and spectrin cytoskeleton..........cccccceiieeeiiiieniiiiienciiinrerrcr e s e eenens 156
V. SPC-1 as a major player in a mechanotransduction pathway .......cccccceiiieiiiiiiiiiciiiniicniennennee. 157
VI. Identification of other players that could also be involved ............ccoorrrrrmeiiiiiiiiininnneciniinnnnn 159
APPENDIX I. Caption for movies and tables........c.cccceieeiiieiiiiiiieiiiinciricrencrrneeerenerennesenseesenserensensnnens 163
02X o o L0 G | TR - o = 167
APPENDIX Ill. An actin-based viscoplastic lock ensures progressive body axis elongation ...................... 175

REFERENCES






ABBREVIATIONS






ABBREVIATIONS

A/P
ABD
ABP
ABS
AFM
Al
BMD
C. elegans
CeAl
CeHD
CH
CRIB
CRISPR
DIC
DLG-1
DNA
D/V
ECM
FA

FH
FRAP
FRET
GAS2
GBD
GFP
GIT

L1-14
MHC
MLC
MSC
MT
MTOC
NGM
NMYII
PAK
PAM
PCR
PH
PIP2
PIX
PR
RLC
RNA
RNAI
ROCK
ROI
sgRNA
SH3
SR

Anterior/Posterior

Actin Binding Domain

Actin Binding Protein

Actin Binding Site

Atomic Force Microscopy

Adherens Junctions

Body Morphology Defect
Caenorhabditis elegans

C. elegans Adherens Junctions

C. elegans Hemidesmosomes

Calponin Homology (domain)
Cdc42/Rac Interactive Binding (domain)
Clustered Regularly Interspaced Short Palindromic Repeats
Differential Interference Contrast
(Drosophila) Discs-Large (homologue)-1
Deoxyribonucleic Acid

Dorsal/Ventral

Extracellular Matrix

Focal Adhesions

Formin Homology (domain)
Fluorescence Recovery After Photobleaching
Forster Resonance Energy Transfer
GrowthArrest-Specific protein 2

GTPase Binding Domain

Green Fluorescence Protein

G protein-coupled receptor kinase InTeractor
Intermediate Filament

Larval stages of C. elegans development
Myosin essential Heavy Chain

Myosin essential Light Chain
Mesenchymal Stem Cells

Microtubule

Microtubule Organizing Center
Nematode Growth Medium
Non-muscle Myosin-II

p21-Activated Kinase

Protospacer Adjacent Motif

Polymerase Chain Reaction

Plecktrin Homology (domain)
Phosphatidylinositol-4,5-bisphosphate
PAK interacting exchange factor

Plectin Repeat

Regulatory Light Chain (of non-muscle myosin-Il)
Ribonucleic Acid

RNA interference

Rho-associated Kinase

Region Of Interest

single guide RNA

Src Homology (domain)

Spectrin Repeat (domain)



TIRF-SIM

VBS
Y2H
ZP

Total Internal Reflection Fluorescence Microscopy - Structured Illlumination
Microscopy

Vinculin Binding Site

Yeast Two Hybrid

Zona Pellucida

Common abbreviations for mutant phenotypes in C. elegans

Dpy
Let
Pat
Sma
Unc
Vab

Dumpy

Lethal

Paralysed at two-fold

Small size

Uncoordinated movement
Variable abnormal Morphology

Most commonly mentioned genes in this work

fhod-1

gsnl-1

pak-1

spc-1

sma-1

unc-70

unc-112

vab-10

viln-1

encodes for C. elegans formin.
mutants are viable and fertile although they show some body wall muscle defects.

encodes for C. elegans gelsolin.
mutants are viable and fertile.

encodes for C. elegans p21-activated kinase-1.
mutants are viable and fertile, slight BMD (enlarged head) in L1 larvae.

encodes for C. elegans a-spectrin.
mutants show embryonic lethality and fails to elongate beyond 2-fold.

encodes for C. elegans Bu-spectrin.
mutants display a Sma phenotype with shortbody length.

encodes for C. elegans Be-spectrin.

mutants are short and paralyzed; the defects develop gradually through the larval

stages. However embryonic elongation is not affected.

encodes for a C. elegans dense body component, vertebrate kindlin-homologue
mutants display a Pat phenotype: embryonic arrest due to muscle dysfunction and

paralyzation at the 2-fold stage.

encodes for C. elegans spectraplakin.

mutants have defects in embryonic elongation, body morphology, uterus-vulva

connection, and gonad arm migration, the animals have poor mating efficiency.

generates isoforms related either to plectin (VAB-10A) or to microtubule actin cross-

linking factor plakins (VAB-10B) that have distinct functions and localizations.

encodes for C. elegans villin.
mutants are viable and fertile.



ABSTRACTS
(in English and in French)






ABSTRACT

Body axis elongation is a fundamental morphogenetic process, involving cell shape changes
powered by mechanical forces through small incremental steps which need to be stabilized. During
my PhD, | studied C. elegans embryonic elongation to define how the embryo, an elastic material,
lengthens progressively upon muscle contractions. Previously, the lab found a kinase, PAK-1, to be
mediator of an epidermal mechanotransduction pathway downstream of muscles. Two screens in a
pak-1(@) background identified a-spectrin SPC-1 as an interactor of PAK-1. spc-1(-)pak-1(-) embryos
elongate up to 1.5-fold and then retract to 1-fold in a muscle dependent manner. | used super-
resolution microscopy to show that epidermis circumferential actin bundles are highly disorganized
in these embryos; suggesting that actin rearrangement could be the lock counteracting elasticity.
With a screen in spc-1(-)pak-1(-) background, | identified two severing proteins helping break actin
filaments when muscle activity bends them at sharp angles. In addition, the actin bundling formin
FHOD-1, was also shown to induce retraction in fhod-1(-);spc-1(-) embryos. | overexpressed a C-
terminally truncated FHOD-1(AFH2/DAD) that partially rescued the spc-1(-)pak-1(-) retraction
suggesting that FHOD-1 blocks further actin depolymerization at each cycle of contraction. To test it,
we modeled the embryo as a Kelvin-Voigt material under acto-myosin force from the epidermis and
muscle tension. We predicted embryo lengthening using a viscoplastic component accounting for
actin shortening. Altogether | characterized a cellular network conferring mechanical plasticity to

stabilize cell shape during a morphogenetic process.



RESUME COURT

Les processus morphogénétiques impliquent des changements de forme de cellules, via des
forces mécaniques, qui doivent étre stabilisés. Ma thése vise a élucider comment I'embryon de
C. elegans, matériau élastique, s'allonge progressivement sous I'effet des contractions musculaires.
Un crible ARNi en fond pak-1(d), kinase de I'épiderme impliquée dans une cascade de
mécanotransduction en aval des muscles, a identifié SPC-1/a-spectrine, comme partenaire probable.
Les embryons spc-1(-)pak-1(-) s'allongent jusqu'a 1.5-fold, puis reviennent a leur taille initiale sous
I’effet des muscles. Avec la microscopie a super-résolution, j’ai montré que leurs faisceaux d'actine
épidermiques sont trés désorganisés ; suggérant que le remodelage de l'actine pourrait contrer
|'élasticité des cellules. Avec un crible en fond spc-1(-)pak-1(-), j'ai identifié deux protéines de
fragmentation aidant a rompre les filaments d'actine quand les muscles les courbent fortement. Par
ailleurs, la formine de “pontage” FHOD-1 induit aussi une rétraction dans des embryons fhod-1(-
);spc-1(-). V'ai surexprimé une construction FHOD-1(AFH2/DAD) tronquée en C-terminal qui a
partiellement sauvé la rétraction spc-1(-)pak-1(-) suggérant que FHOD-1 bloque la dépolymérisation
de l'actine a chaque cycle de contraction. Pour tester cela, j'ai modélisé I'embryon en tant que
matériau Kelvin-Voigt soumis a une force épidermique et a la tension musculaire et prédit son
allongement en utilisant un composant viscoplastique symbolisant le raccourcissement de I'actine.
J'ai donc caractérisé un réseau cellulaire conférant une plasticité mécanique et stabilisant la forme

des cellules dans un processus morphogénétique.



RESUME LONG

En tant qu'organismes vivants, nous interagissons avec notre monde grace a nos sens. Nous
sommes continuellement exposés a des signaux mécaniques, et il en va de méme pour nos cellules.
Ces dernieres ont la capacité de détecter leur environnement physique en traduisant des forces
mécaniques et des déformations en signaux biochimiques. A leur tour, ces signaux peuvent ajuster
les structures cellulaires et extracellulaires. Au cours des deux dernieres décennies, de nombreux
processus biologiques répondant a des stress mécaniques ont été mis en évidence tels que : le
changement de pression de turgescence dans la réponse au toucher chez Mimosa pudica, la
différenciation variable des cellules souches mésenchymateuses en fonction de la rigidité du milieu
de croissance sous-jacent, la cicatrisation des plaies ou encore la prolifération et la dissémination des
cellules cancéreuses. Les différents mécanismes par lesquels le tissu cellulaire convertit le stimulus
mécanique en une activité électrochimique ou biochimique sont appelés mécanotransduction. La
mécanotransduction est a I'origine d'un certain nombre de sens et de processus physiologiques dans
le corps, notamment la proprioception, le toucher, I'équilibre et I'audition. Au niveau cellulaire, elle
est importante pour de nombreuses fonctions telles que I'adhésion, la migration, la prolifération, la
différenciation et I'apoptose et elle est essentielle au développement d'organes.

Une étape clé du développement de I'animal est la mise en place de I'axe du corps définissant
sa forme finale lors de la morphogenése. Ce processus détermine la forme et la structure des tissus,
des organes et des organismes. Plus spécifiquement, la morphogenése embryonnaire désigne des
modifications de la forme et de la position des cellules dans I'embryon, en particulier de I'épithélium.
L'importance de la morphogenese épithéliale a été rapportée dans des processus de développement
cruciaux tels que la gastrulation (étudiée de maniére approfondie dans les ascidies, la drosophile, le
poisson zébre ou le xénope) ou dans la formation du tube neural. Cette étape dépend de maniere
critique des changements de forme de cellules, eux-mémes dépendants de l'interaction entre les
forces intrinseques et extrinséques aux cellules. Comprendre comment les forces mécaniques
influencent la morphogenese au niveau cellulaire et moléculaire reste un défi majeur.

Pour étudier la mécanotransduction et son importance dans la morphogenése a I'échelle d'un
organisme, nous travaillons avec un modele simple, le nématode C. elegans. Depuis son introduction,
par Sydney Brenner, dans les laboratoires a la fin des années 1960, C. elegans est utilisé comme
organisme modele en biologie du développement, génétique et biologie moléculaire grace a sa
progéniture abondante, son développement rapide, son corps transparent et son génome
complétement séquencé. Son épiderme est un épithélium a monocouche séparé des muscles par
une mince membrane au niveau basal. Les muscles sont disposés en quatre rangées, deux attachées

a I'épiderme dorsal et deux a I'épiderme ventral via les hémidesmosomes, rendant |'épiderme
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sensible au stress mécanique résultant de leurs cycles de contraction. Au cours de son élongation
embryonnaire, le nématode C. elegans voit sa longueur multipliée par un facteur 4 et sa
circonférence réduite par un facteur 2,5. Il s’agit d’'un processus rapide (trois heures environ) qui a
lieu sans réarrangement ni division cellulaire, seulement permis par la déformation des cellules
latérales et dorso-ventrales de son épiderme. Cette élongation est initialement activée par la
contractilité de I'acto-myosine dans les cellules latérales, via la régulation de la Rho kinase. A partir
du stade « 2-fold », la tension fournie par les contractions musculaires permet le recrutement de la
protéine adaptatrice GIT-1 aux hémidesmosomes, permettant la seconde phase de I'élongation
notamment via activation de la kinase PAK-1. Lorsque I'activité musculaire est inhibée, les embryons
sont paralysés a un stade « 2-fold » et GIT-1 n’est plus recrutée. Pourtant les mutants git-1 et pak-1
sont viables, suggérant qu'une autre voie agit en parallele. Par ailleurs, chez C. elegans, la
contribution du cytosquelette d’actine a la morphogenése embryonnaire a été rapportée depuis la
fin de la gastrulation. Au début, I'actine forme un maillage prés du cortex épidermique, et au fur et a
mesure elle se réorganise pour former des faisceaux circonférentiels et paralleles d'abord dans les
cellules dorso-ventrales, puis dans les cellules latérales. Une fois I'élongation embryonnaire

terminée, les faisceaux se désassemblent.

Dans ce contexte, I'objectif de mon projet de thése a été de caractériser de maniere plus
détaillée I'apport du cytosquelette d'actine pendant I'élongation embryonnaire de C. elegans et la

fagon dont les cables d'actine sont remodelés au cours de ce processus.

De précédents travaux de I'équipe ont montré que PAK-1 fait partie d’'une voie de
mécanotransduction induisant le remodelage des hémidesmosomes, structures de couplage entre
les muscles et I'épiderme sus-jacent. Deux cribles ont alors été réalisés en fond sensible pak-1(-) pour
rechercher de potentiels partenaires de PAK-1 et l'a-spectrine SPC-1 s'est révélée étre un fort
candidat. Les spectrines ont été décrites pour la premiére fois dans les érythrocytes en 1968 par
Marchesi et Steers. Elles sont un des composants majeurs du cytosquelette de la membrane
cellulaire et sont responsables des propriétés mécaniques (stabilité, plasticité et déformabilité) de
celle-ci.

A l'aide d'outils génétiques et d'approches d'imagerie in vivo, une ancienne doctorante de
I’équipe, Gabriella Pasti, a montré que I'a-spectrine et PAK-1 interagissent génétiquement. En effet,
elle a constaté que chez les mutants spc-1 (-) pak-1 (-), les embryons s’allongent jusqu’a « 1,5-fold »,
puis se rétractent jusqu’a leur taille initiale (phénotype de rétraction). Fait intéressant, ce phénotype
avait déja été décrit suite a la dépolymérisation massive de l'actine, via l'usage d’une drogue,

suggérant que le réarrangement de l'actine pourrait fonctionner comme un verrou lors de la
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morphogenese embryonnaire. Mon travail a donc consisté a caractériser plus en détail cette

interaction entre le cytosquelette d'actine et I'a-spectrine en répondant aux questions suivantes :

— Comment fonctionne le mécanisme de verrou au niveau moléculaire ?

— Comment les cables d'actine sont-ils remodelés au cours du temps ?

— Quels sont les réles des différents acteurs identifiés ?

— Peut-on modéliser I'allongement progressif de 'embryon pour comprendre comment les
forces contribuent au remodelage de I'actine ?

1. Phénotype de rétraction et activité musculaire

Sachant que les embryons spc-1(-) pak-1(-) amorcent leur rétraction lorsque les muscles
comment a étre actifs, j'ai essayé de déterminer la maniere dont |'apport musculaire affecte la
rétraction des embryons. Précédemment, Gabriella a montré que si I'activité musculaire était
bloquée que chez des mutants spc-1(-) pak-1(-), grace I'utilisation d’un ARNi contre unc-112 (kindlin
homologue et composant essentiel des muscles), cela empéchait la rétraction des embryons. J'ai
terminé cette expérience en ajoutant plusieurs contréles supplémentaires en mesurant I’élongation
des vers unc-112(-); pak-1(-) et unc-112(-); spc-1(-). lls ont montré une croissance plus lente tres
semblable aux vers unc-112(-) seuls. Pour comprendre comment les contractions musculaires
contribuent au phénotype de rétraction, j'ai quantifié la différence de comportement entre
embryons de type sauvage et mutants en utilisant des points de repére sur l'actine épidermique. J'ai
mesuré le temps de contraction / relaxation et I'ampleur de la contraction / relaxation. Les doubles
mutants ont présenté des contractions plus rapides et plus profondes que les embryons de type
sauvage et pak-1(-). Ces deux expériences ont montré que I'apport musculaire est crucial pour le

phénotype de rétraction bien qu'il soit perturbé dans le double mutant spc-1(-) pak-1(-).

2. Remodelage et dynamique du cytosquelette d’actine

2.a. Organisation de I'actine

En plus de contracter plus rapidement, les embryons spc-1(-) pak-1(-) présentent également
des défauts d'organisation de I'actine : les cables d'actine ne sont plus complétement paralléles, ils se
regroupent et semblent parfois discontinus. Pour mieux caractériser ces défauts observés avec un
microscope « spinning-disk », j'ai effectué une analyse de texture développée dans I'équipe avec
|'aide de notre ingénieure, Teresa Ferraro. Nous avons analysé des images d'embryons anesthésiés a
différents stades («1,7-fold», «2-fold» et «3-fold») pour obtenir une résolution plus élevée de
I'actine. L'analyse du signal de fluorescence associé aux filaments d'actine dans I'épiderme dorso-
ventral a révélé davantage de discontinuité dans les embryons spc-1(-) pak-1(-) par rapport aux

témoins ; de plus, leur degré d'anisotropie par rapport a I'axe circonférentiel était anormal. Avant
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que les muscles commencent a se contracter, aucune différence significative n'est visible. Des que
I"activité musculaire est établie, I'organisation de I'actine devient significativement différente entre
les contréles et les spc-1(-) pak-1(-) mais également entre spc-1(ARNi) et spc-1(-) pak-1(-). Dans un
second temps, j'ai utilisé la microscopie a super résolution pour affiner ces observations et
éventuellement accéder a des évenements de remodelage en temps réel. L'analyse de segmentation
du signal de fluorescence associé aux filaments d'actine a été confirmée et méme améliorée puisque
nous avons pu faire une différence entre la zone de I'épiderme située juste au-dessus des muscles et
celle située a coté : les défauts d’organisation sont plus prononcés au niveau des muscles, la ou la
tension est plus forte. Par ailleurs, l'intensité du signal entre les faisceaux d'actine adjacents était

également moins nette chez les embryons spc-1(-) pak-1(-) et ils étaient plus souvent courbés,

indiquant que les faisceaux pourraient s'étre partiellement défasciculés.

Ces phénotypes apparaissent une fois que les muscles entament leur activité suggérant que les
contractions musculaires contribuent au remodelage de I'actine. Pour étudier plus en détail leur réle
dans ce processus, nous avons examiné les filaments d'actine spécifiquement lors de la contraction
des muscles. De maniére frappante, la microscopie « spinning-disk » a révélé que les contractions
musculaires sont suffisamment fortes pour courber localement des faisceaux d'actine avec un angle
moyen de 57 °, ce qui induirait une cassure du filament d'actine d’aprés des analyses réalisées in
vitro. Les cycles répétés d'activité musculaire pourraient avoir pour effet d'induire localement la
rupture du filament d'actine épidermique, suivie de leur stabilisation. Dans les doubles mutants spc-
1(-) pak-1(-), des contractions musculaires plus courtes pourraient faire pencher la balance entre

rupture et stabilisation conduisant ainsi a leur désorganisation.

2.b. Remodelage durant I’élongation

Tous ensemble, les résultats décrits ci-dessus établissent un lien entre I'activité musculaire et
désorganisation de I'actine chez les embryons spc-1(-) pak-1(-). L’hypothése la plus simple est que
I’activité musculaire induit chez les embryons normaux une rupture et une stabilisation de I'actine
bien contrélée qui se détériore chez les embryons spc-1(-) pak-1(-). En effet, une autre analyse sur
ces images a montré que la circonférence de I'embryon diminuait de 20% au cours de |'allongement,
impliqguant que les filaments d'actine dans les cellules dorso-ventrales doivent également se
raccourcir. Pour comprendre au niveau moléculaire comment ce remodelage pourrait se produire,
j'ai effectué un crible ARNi en fond sensible spc-1(-) pak-1(-) a la recherche d'un sauvetage du
phénotype de rétraction. De maniére remarquable, avec l'aide de Flora Llense, maitre de
conférences dans I'équipe, nous avons identifié des homologues de deux « protéines de

fragmentation » de l'actine, la gelsoline et la villine suggérant que les contractions musculaires
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induisent une possible rupture du filament d'actine et donc une stimulation directe ou indirecte de
I'activité des protéines.

Pour aller plus loin dans cette caractérisation moléculaire, Gabriella a effectué un dernier
crible ARNi en fond sensible spc-1(-) pour trouver d’autres partenaires potentiels permettant de
reproduire le phénotype de rétraction. Nous avons identifié une protéine de « cablage », la formine
atypique FHOD-1. Pour évaluer le lien entre PAK-1, SPC-1 et FHOD-1 dans le phénotype de rétraction,
Flora a cloné plusieurs constructions de FHOD-1 basées sur la littérature existante. Il a en effet été
démontré que FHOD-1 est initialement inactive en raison d’une interaction auto-inhibitrice entre son
domaine autorégulateur en C-terminal et son domaine inhibiteur en N-terminal (DID). Des
expériences in vitro ont montré qu’en supprimant le domaine DAD, l'auto-inhibition est levée et
conduit a une forme constitutivement active de la protéine. L'objectif était de savoir si je pouvais
sauver le phénotype de rétraction d'embryons spc-1(-) pak-1(-) en surexprimant FHOD-1.
Effectivement j'ai observé que 2/3 des embryons exprimant la construction FH2/DAD ne se

rétractent plus et qu'ils sont significativement plus longs que les doubles mutants spc-1(-) pak-1(-).

3. Modélisation de I’élongation

Pour rendre compte de I’élongation du ver a I’échelle mésoscopique, nous avons développé un
modele physique prédictif. Changer le statut d'une entité physique nécessite l'intervention d'une
force (mécanique ou chimique) et I'embryon de C. elegans n'échappe pas a cette regle de la
physique. Pendant la premiére phase d'élongation et jusqu'a ce que les muscles deviennent actifs,
I'élongation est permise par une force active dans I'épiderme latéral et par une force passive exercée
par les cellules épidermiques dorsales et ventrales suffisante pour allonger I'embryon jusqu'au stade
« 2-fold ». Cependant, cette force n'est pas suffisante pour expliquer I'allongement jusqu'au stade
« 4-fold », puisque les embryons avec des muscles non fonctionnels ne s'allongent pas au-dela du
stade « 2-fold ». Par conséquent, les muscles fournissent une deuxieme force motrice d’allongement.
Considérant cela, nous avons décidé de modéliser 'embryon de C. elegans comme un matériau de
Kelvin-Voigt soumis a deux forces actives principales : la force épidermique, qui est une force positive
continue, et la force musculaire, qui est une force pulsatile puisque les muscles se contractent
alternativement. En utilisant un ensemble d'équations mathématiques, nous avons pu prédire
I'allongement de I'embryon en introduisant un composant viscoplastique dans le systéme,
symbolisant le raccourcissement de |'actine. Grace a cela, nous avons également pu modéliser la
rétraction des doubles mutants spc-1(-) pak-1(-). Comme la continuité des filaments d'actine est
modifiée chez ces mutants, leur résistance au stress provenant des cellules latérales ne serait pas

maintenue et la force épidermique diminuerait progressivement, ce qui réduirait la longueur du



systeme. L'absence combinée de SPC-1 et de PAK-1 coincide avec l'incapacité d'étendre

plastiquement la longueur du tissu.

Globalement, nos résultats identifient deux groupes de protéines impliquées dans la
stabilisation de la forme des cellules dans un épiderme soumis a un stress répété : SPC-1, PAK-1 et
FHOD-1 qui stabilisent les cables d’actine lors du remodelage, GSNL-1 et VILN-1 qui les sectionnent
pour les aider a raccourcir. Ce réseau cellulaire confere une plasticité mécanique (en termes
physiques, il implique une déformation irréversible sous contrainte) stabilisant la forme des cellules
pendant la morphogenése. Comprendre comment les cellules s'adaptent a un stimulus mécanique
est essentiel et pourrait aider a élucider les derniéres étapes de la morphogenése chez C. elegans.
Dans un contexte plus médical, la dérégulation de PAK-1 et des spectrines a été décrite dans de
nombreuses pathologies. PAK-1 apparait surexprimée dans de multiples formes de cancers humains
tels que le cancer du pancréas, de la prostate, du sein ou encore les mélanomes. De nombreuses
études ont montré que la capacité a détecter une entrée mécanique, sa transduction dans la cellule
et sa réponse sont défectueuses dans les cellules cancéreuses. In fine, nos résultats pourraient aider

a mieux comprendre la dérégulation de la réponse a un stress mécanique lors de maladies.
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Analyse génétique, ARN interférent pour inhiber 'expression de génes, Construction de plasmides, Edition du
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temps, Micro-injection, Analyse d’images, Modélisation mathématique
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INTRODUCTION

The range of animal forms is immense, both in terms of obvious external appearances and in
terms of the internal anatomies of organs and tissues. Observing the vast number of different
shapes, we can wonder how does this diversity arise? Morphogenesis means the generation of form,
and usually in the context of developmental biology it means the generation of tissue organization
and shape in animal and plant embryos. It is one of three fundamental aspects of developmental
biology along with the spatio-temporal control of cell growth and cellular differentiation. The process
controls the organized spatial distribution of cells during the embryonic development of an organism.

Morphogenesis can also take place in a mature organism, in cell culture or inside tumor cell masses.

Some of the earliest ideas and mathematical descriptions on how physical processes and
constraints affect biological growth, and hence natural patterns such as the spirals of phyllotaxis,
were written by D'Arcy Wentworth Thompson (Thompson, 1917; Montell, 2008) and Alan Turing
(Turing, 1952). Thompson explained animal body shapes as being created by varying rates of growth
in different directions, for instance to create the spiral shell of a snail. Turing correctly predicted a
mechanism of morphogenesis, the diffusion of two different chemical signals, one activating and one
deactivating growth, to set up patterns of development, decades before the formation of such
patterns was observed (Hiscock and Megason, 2015). The first major approach to investigating
morphogenesis was to look at the intrinsic morphogenetic properties of cells. It showed that
randomized aggregates of cells from a mix of amphibian embryonic tissues would not only sort
themselves out into their cell types but also generate some structure (Townes and Holtfreter, 1955).
They demonstrated that the cells themselves had morphogenetic properties that they could use and
stimulated a great deal of work in the '60 '70s and '80s on the morphogenetic abilities of cells. A
second approach was to analyze cell behavior in tissues that that will develop in culture where they
can be experimentally manipulated. As chick and amphibian embryos are large and accessible, they
have been the model species of choice for studying morphogenesis (e.g. neural crest and nerve
migrations, corneal development, gastrulation, and epithelial morphogenesis) (Trelstad et al., 1967;
Summerbell and Wolpert, 1972; Summerbell and Wolpert, 1973; Meier, 1981; Heasman et al., 1984;
Weliky et al., 1991). The mouse Mus musculus, the zebrafish Brachidanio rerio, the fruitfly Drosophila
melanogaster and the roundworm Caenorhabditis elegans have also supplied continuous and
extensive insights into cellular and molecular aspects of morphogenesis (Knust and Miller, 1998;

Chisholm and Hardin, 2005; Ellertsdéttir et al., 2010; Rivera-Pérez and Hadjantonakis, 2014).
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Morphogenesis was a major area of research in the 70s and early '80s, but activity then
declined as the focus of research in development moved to discovering and studying the genes
involved in networks that regulate differentiation. However the discovery of molecules controlling
tissue organization and the development of transgenic animals led to an enormous amount of work
in the first decade of the 21st century that has explained much about the molecular basics of

morphogenesis, but less is known about how these are integrated at the cellular level.

For decades, the morphogenesis of epithelial tissues has fascinated scientists at the interface
of cell, developmental, and molecular biology. Epithelial morphogenesis includes the various
processes by which epithelia contribute to organ formation and body shape. During embryonic
development, definitive epithelial organs often arise from preexisting epithelial tissues. Indeed,
epithelia form transient structures, such as the neural tube, somites, and the precardiac epithelium,
that serve as progenitors for the development of more complex organs (Affolter et al., 2003; Mango,
2007; Bryant and Mostov, 2008). Different epithelia acquire diverse morphological forms appropriate
for their specific functions, such as the kidney tubules or the complex branching structures found in
the lung for example (Miura, 2015; Marciano, 2017). Recently, the characterization of some of the
molecular mechanisms involved in epithelial morphogenesis has provided an abundance of new
information on the role and regulation of the cytoskeleton, cell-cell adhesion, and cell-matrix
adhesion in these processes (Ding et al., 2004; Blankenship et al., 2006; Armenti and Nance, 2012;
Bosveld et al., 2012, Chauhan et al, 2015).

Here | will first discuss the epithelia as layers of cells and their cellular characteristics. Then |
will detail the dramatic change they undergo to drive morphogenetic processes, such as shape
changes, increase in number, or rearrangements. Finally, | will talk about the mechanical forces,

generated by acto-myosin and transmitted by adhesive junctions, driving most of these changes.

14



I. Epithelia in morphogenesis

Maintaining the homeostasis of a multicellular organism requires compartmentalization of
the internal environment of the external environment. In metazoans, the epithelial tissues fulfill this
function. These tissues consist of epithelial cells that line the entire body and cavities of the body. In
addition, these cells are histologically compact and rest on a basal lamina. Nevertheless, the
epithelium denomination includes tissues with vastly different forms and functions within the same
organism. Thus, the different epithelia can first be classified empirically according to the overall
morphology of their cells (squamous morphology, cubic or cylindrical). Epithelia can also be
distinguished by the number of layers of the tissue: layered epithelia consisting of several stacked
cell layers (eg. skin epithelium), pseudo-stratified epithelia (eg. tracheal epithelium) and simple
epithelia, consisting of a single layer of epithelial cells light (ex: epithelium of the jejunum) (Marieb,

1995; Guillot and Lecuit, 2013).

Biologically, epithelia support the structures of organs and protect the body from the outside
pathogens. They separate the interior from the exterior environment as a barrier or control the
substance exchange across the plasma membrane as a regulated barrier. They also take part in
sensing the environment, repairing wounds, contributing to various steps of development, and
playing a pivotal role in shaping organs. To fulfill these roles, the epithelial cells can present
additional specific structures, such as microvilli (eg intestinal epithelium), vibratile eyelashes (eg
bronchial epithelium) or stereocilia (eg inner ear cells). However, despite this morphological and
functional diversity, epithelial cells have a set of molecular characteristics that define them. They
have an apico-basal polarity that allows polarized secretion, communication, and uptake of material
from extracellular sources. This epithelial polarity is central in the biology of epithelia (Munro et al.,
2004; Houk et al., 2012; Von Stetina and Mango, 2015) (Fig. 1). Indeed, its implementation precedes
and is required for the morphogenesis of epithelial tissues and the maintenance of their

homeostasis.
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Figure 1: Morphological and functional diversity of epithelia.

Epithelial cells can form tissues of very different shapes and functions within the same organism. Nevertheless,
their apico-basal polarization is required for morphogenesis to take place.

Adapted from Kévin Sollier’s thesis.

In addition, they also have several cytoskeletal elements with distinct functions that allow
both their shape maintenance and force generation. Finally, they have multiple sets of junctions and
attachment structures that allow them to form layers with each other and to set up connection with
neighboring tissues. These contacts do not solely serve structural and barrier functions: they allow
intra- and inter-tissular communication in two ways. One is the classical, chemical signaling. The
other one involves physical forces generated in one cell or tissue, which are transmitted and turned
into biochemical signals in another cell or tissue. This way of communication is termed as
mechanotransduction that is a well-characterized process in sensory mechanisms. On the other
hand, a relatively new and dynamically developing research field establishes its role in various
developmental processes, as for instance epithelial morphogenesis. This crossing point of epithelial

morphogenesis and mechanotransduction stands in the very center of our research limelight.
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I.1. General characteristics and function of the epithelia

Epithelia, along with the connective, the muscle, and the nervous tissue, are one of the four
basic animal tissue types. Epithelia are continuous sheets of cells (one or more layers thick) that
cover the exterior surfaces of the body, line internal closed cavities and body tubes that
communicate with the outside environment (the alimentary, respiratory and genitourinary tracts),
make up the secretory portions of glands and their ducts, and are found in the sensory receptive
regions of certain sensory organs (e.g. ear & nose). Epithelia cover and lining surfaces (e.g. skin), take
part in absorption (e.g. the intestine), secretion (e.g. glands), can be sensory (e.g. neuroepithelium)
or contractile (e.g. myoepithelial cells). They secrete a basement membrane which supplies a site of
attachment for the epithelium, and acts as a selective filtration barrier. There is little intercellular
material. Epithelia do not have their own blood supply (avascular), they rely on diffusion for
exchange of oxygen and metabolites. Epithelia hold specialized cell-cell junctions that bind adjacent
cells to each other. They also have communicating junctions (gap junctions) that allow
communication between adjacent cells. Cells in epithelia show a polarity along the axis between the
external and internal environment, called apical-basal polarity. When organized in epithelial sheets,
they can also exhibit a planar polarity, defined as polarity in a plane other than the apicobasal axis.

All the three germ layers, the endoderm, mesoderm, and ectoderm can give rise to epithelial tissues.

The main functions of an epithelial tissue are:

to protect the tissues that lie beneath from radiation, desiccation, toxins, invasion by
pathogens, and physical trauma

- the regulation and exchange of chemicals between the underlying tissues and a body cavity

- the secretion of hormones into the circulatory system, as well as the secretion of sweat,
mucus, enzymes, and other products that are delivered by ducts (Quitin et al., 2016)

- to provide sensation (Takeichi, 2014)

Beyond that, the epithelium oversees the formation of the invertebrate exoskeleton as well
(e.g. cuticle in worms and arthropods, mineralized shell in molluscs). The role of the exoskeleton is
isolation and protection. But it also serves as an insertion for the muscles that enables the active
movements and displacement of these animals (Wolpert et al., 1998). In vertebrates the epidermis
can be keratinized and can form various structures like hair, nails and claws or protective structures

(like spines, scales, or carapaces).
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1.2. The organization of an epithelial cell

Epithelial cells have evolutionary conserved features at the level of their structural
organization. First, they have an apicobasal polarization that enables polarized secretion, helps to
better fulfill their barrier function, and allows polarized communication with their environment
(Johnston and Ahringer, 2010). This polarization divides the epithelial cells into an apical side that is
most commonly in contact with the environment and could have various surface structures
(membrane protrusions, microvilli or sensory structures) and a basolateral side that is in contact with

the internal environment, with the neighboring tissues and it also secretes the basal lamina (Fig. 2).
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Figure 2: Features of the polarized epithelial phenotype.

A typical vertebrate epithelial cell is shown with components of the polarized vesicle sorting machinery and the
apical junctional complex depicted. Note that invertebrate (for example in Drosophila) epithelial cells lack
primary cilia and the junctional complex is organized differently with adherens junctions (Als) located more
apically than the sealing junction (named septate junction instead of tight junction). In C. elegans, Als and
sealing junctions are combined into a single structure.

Adapted from Rodriguez-Boulan and Macara, 2014.

Second, epithelial cells have multiple sets of cell junctions that are relatively conserved in form
and to some extent also in function throughout the evolution. They set the barrier between the
apical and the basolateral side of the cell, this way promoting polarity maintenance. Furthermore,

they are the elements that hold together the epithelial cells. They are important in resisting and
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transmitting forces within an epithelial sheet, which is pivotal during the different morphogenetic

processes (Lecuit and Yap, 2015).

Epithelial cells also possess four main interconnected cytoskeletal systems. Microtubules

III

(MTs), intermediate filaments (IFs), and actin are the commonly discussed “classical” cytoskeletal
networks, shared by all animal cells. Although there is a fourth skeletal network, the spectrin
skeleton. It has been initially characterized and extensively studied in red blood cells and its role was
little understood in non-erythroid cells for long. Nevertheless, recent research efforts started to
recognize the impact of non-erythroid spectrins that seem to be just as important as the first three

cytoskeletal entities (Machnicka et al., 2012).

1.2.1. Epithelial junctions

Epithelial cells are tightly connected to form a sheet. This tight connection is achieved
through specialized junctions. They interconnect the membrane of adjoining cells, or between a cell
and the extracellular matrix (ECM). They also build up the paracellular barrier. The primary function
of cell-cell junctions is to resist the external forces that pull cells apart. For instance, epithelial cells
must remain tightly linked when they are stretched and pinched. These junctions are dynamic to

accommodate the changes in cellular environment such as growth and remodeling.

In epithelia, junctions can be divided into six distinct types, tight junctions, adherens
junctions (Als), desmosomes, gap junctions, hemidesmosomes (HDs), and focal adhesions (FAs) (Fig.

3). At the apical pole, some types of junctions can even combine to form junction complexes.

The apical-most junction in vertebrates is the tight junction or zonula occludens, responsible
of the paracellular gating function (Hartsock and Nelson, 2008; Meng and Takeichi, 2009). The
intercellular space where tight junction happens is very narrow and filled with this dense junction
material. Therefore, the passage of substances between epithelial cells is impossible because the
intercellular space is sealed (Sullivan-Brown and Goldstein, 2012). Its analogous structure in
Drosophila is the septate junction (Hall and Ward, 2016), while in C. elegans the paracellular gating is
established through different mechanisms and the zonula occludens ortholog protein functions

differently (Labouesse, 2006).
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Below the tight junction can be found the cadherin-catenin-based Als: ubiquitous type of
linkage between epithelial cells, responsible for maintaining cell-cell adhesions. These junctions
employ cadherins and catenins to link the cytoskeleton of one cell to that of its neighbor, in the
presence of calcium (Lecuit and Yap 2015). In C. elegans, AJ are composed of two complexes
commonly referred to as the C. elegans Apical Junction (CeAl) (Labouesse, 2006). First, the cadherin-
catenin complex (CCC) is the most apical within the CeAl (Koppen et al., 2001; McMahon et al.,
2001). It is analogous in composition and to a large extent in function to the cadherin-catenin
complex found in flies and vertebrates (Costa et al., 1998). Second, the DLG-1/AJM-1 complex (DAC)
is formed by two membrane-associated proteins: a Drosophila Discs-large homologue (DLG-1), and a
coiled-coil protein AJM-1 (Bossinger et al., 2001; Firestein and Rongo, 2001; Koppen et al., 2001;
McMahon et al., 2001). They are mutually dependent on each other for proper localization in vivo

(Koppen et al., 2001; McMahon et al., 2001; Segbert et al., 2004).

Another complex has a key role in resisting shear stress, the desmosomes. Like Als, they are
attached to cytoskeleton IFs and allow the transmission of tensile forces between epithelial cells
(Delva et al., 2009). However, the desmosomes do not form a continuous belt, but circular patches
randomly arranged on the lateral side of the cells, to increase the stress resistance of the intra-
epithelial attachments (Wolpert et al. 1998). They are also located more basally compared to Als:
they are distributed over the lateral membranes, with an up limit of Als. Desmosomes are absent in

Drosophila and in C. elegans.

Unlike all other types of junctions, gap junctions connect the cytoplasm of two neighboring
cells directly. As implied in its name, a gap junction allows the direct pass of various molecules, ions,
and electrical impulses between two cells. One gap junction includes two connections, also called
hemichannels, to form a homodimer in the intercellular space. The homodimer of connections can
undergo a conformational change between close and open in different conditions and thus functions
as a regulating gate between cells. Gap junctions are found in many tissues, especially in neurons and

nerves, where they are called an electrical synapse (Kelsell et al., 2001; Willecke et al., 2002).

Focal adhesions (FAs) serve as the mechanical linkages to the ECM, and as a biochemical-
signaling hub to concentrate and direct numerous signaling proteins at sites of integrin binding and
clustering. Within the cell, the intracellular domain of integrin binds to the cytoskeleton via adapter
proteins such as talin, a-actinin, filamin, vinculin and tensin. Other intracellular signalling proteins,
such as focal adhesion kinase, also bind to and associate with this integrin-adapter protein-

cytoskeleton complex. FAs are highly dynamic structures that grow or shrink due to the turnover of
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their component proteins in response to changing mechanical stresses (e.g. actomyosin-generated
forces, external forces exerted by or through the surrounding matrix)(Zamir et al., 2000; Ballestrem
et al., 2001; Rid et al., 2005; Holt et al., 2008). For example, new adhesions are formed at the leading
edge of migrating cells and grow and mature as the cells move over them (Partridge and
Marcantonio, 20006). In stationary cells, they serve as anchorage devices that maintain the cell
morphology. In Drosophila embryos FAs mediate surface-rigidity dependent development (Brown et
al. 2000; Delon and Brown, 2006). C. elegans present dense bodies similar to vertebrate focal

adhesions but only in muscles cells not in the epithelia (Cox and Hardin, 2004).

Vertebrates Drosophila C. elegans
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Figure 3: Epithelial junctions in vertebrates, Drosophila and C. elegans.

Schematic representation of the several types of epithelial junctions. Vertebrates present all six types of
junctions: tight junctions, adherens junctions, desmosomes, gap junctions, hemidesmosomes and focal
adhesions. Drosophila does not have tight junctions but instead present a sub-apical region and septate
junctions. C. elegans only has adherens junctions-like complexes (CCC and DAC), gap junctions and
hemidesmosomes.

Finally, the HDs are the most basal junctions. Under the electron microscope, they have a
similar structure as desmosomes. However, while desmosome links two epithelial cells together, HDs
link the cell to the ECM. HDs are asymmetric as they connect the basal face of the cell to the basal
lamina. They include two rivet-like plaques. The plaques and the anchoring fibrils and filaments are
collectively called HD-stable adhesion complex. The HD-stable adhesion complex forms a continuous
link between the epithelia and the underlying basement membrane zone (Bornslaeger et al., 1996;

Walko et al., 2015). Therefore, HDs can transmit the forces between them, like the Als.
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1.2.2. Extracellular matrix (ECM)

The extracellular matrix is an evolutionary conserved, ancient structure present in all the
metazoans. The ECM participates in keeping tissues separated, providing structural support or
providing a structure for cells to migrate on. It is a complex network of macromolecules (collagen,
laminin, and fibronectin, among others) that are secreted locally and assembled into sheets, fibers,
and gels. Multi-subunit transmembrane receptors called integrins are used to bind to the ECM.
Integrins bind extracellularly to fibronectin, laminin, or other ECM components, and intracellularly to
microfilament-binding proteins a-actinin and talin to link the cytoskeleton with the outside. Integrins
also serve as receptors to trigger signal transduction cascades when binding to the ECM (Frantz et al.,
2010; Theocharis et al., 2016). Different organisms have evolved different macromolecules for ECM,
yet they are not so different in their functions. For instance, ECM related integrins have roles during
neural development of Drosophila such as axonal growth and synapse formation (Broadie et al.,
2011). Another example is the Drosophila zona pellucida (ZP) domain protein, dumpy, located in the
apical ECM of epithelial cells. It has been shown to interact with numerous proteins notably during
embryonic tracheal development and wing development (Prout et al., 1997; Walsh and Brown, 1998;
Carmon et al., 2010). In C. elegans, the apical ECM promotes elongation. The ZP domain proteins
NOAH-1 and NOAH-2 are important for muscle anchoring and mechanical input from muscle
contractions, which are essential for elongation (Vuong-Brender et al., 2017). The matrix can also

become calcified and hard as rock in case of bones and teeth or produce carapace as in turtles.

1.2.3. Cytoskeleton

The cytoskeleton is present in all type of cells in the body. It organizes cells in space and helps
cells to interact mechanically with each other and with the environment. It is a complex network in a
remarkable system of filaments that extend throughout the cytoplasm, from the plasma membrane
to the nucleus (Fisher and Fowler, 2015). The structure, function, and dynamics of cytoskeleton can
vary. They depend on the behavior of three families of filaments: intermediate filaments (IFs), actin
filaments, and microtubules (MTs). Each type differs in their composition, biological role, dynamics,
and mechanical properties. Actin filaments determine the shape of the cell's surface and are
necessary for whole-cell locomotion and cell membrane pinching during cell division. MTs determine
the positions of the membrane bound organelles, direct intracellular transport, form and orient the

mitotic spindle that segregates the chromosomes. IFs supply the mechanical strength.
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A network of proteins regulates the cytoskeleton. Accessory proteins, which include a variety
of motor proteins such as myosins or kinesins control the assembly of cytoskeletal filaments in

specific locations. (Howard, 1997; Fehon et al., 2010).

1.2.3.1. Actin and myosin

Actin is a family of globular multi-functional proteins that form microfilaments. It is found in
essentially all eukaryotic cells. Its mass is about 42-kDa, with a diameter of 4 to 7 nm. An actin
protein is the monomeric subunit of two types of filaments in cells: microfilaments, one of the three
major components of the cytoskeleton, and thin filaments, part of the contractile apparatus in
muscle cells. It can be present as either a free monomer called G-actin (globular) or as part of a linear
polymer microfilament called F-actin (filamentous), both of which are essential for cellular functions
(Alberts, 2002, Amon, 2012). F-actin is a semi-flexible polymer with a bending stiffness much greater
than that of flexible biopolymers such as DNA, but significantly more flexible than rigid rod-like
macromolecules such as MTs. It has very high compressive strength however actin binding proteins
(ABPs) decrease this and allow bending. These physical properties suggest that F-actin itself may
function as a highly dynamic tension sensor (Galkin et al., 2012). Its interaction with various ABPs
allow the actin cytoskeleton to promptly adapt to intracellular and extracellular mechanical forces

affecting its structure and dynamics (Harris et al, 2018).

While providing mechanical support to the cells, the actin network is also connected to trans-
membrane adhesion proteins (Doherty and McMahon, 2008). This connection eases the transduction
of intracellular and extracellular mechanical signals, which allow cells to detect and respond to both
chemical and mechanical signals from their extra-cellular environment. Indeed, the actin skeleton
conducts a broad range of functions in epithelial cells, including muscle contraction, cell motility, cell
division and cytokinesis, vesicle and organelle movement, cell signaling, and the establishment and
maintenance of cell junctions and cell shape (Huber et al., 2013; Xu et al., 2013; Suraneni et al., 2015;

Tsopoulidis, et al. 2019).
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In vertebrates, three main groups of actin isoforms, a, B, and y have been identified. The a-
actins, found in muscle tissues, are a major constituent of the contractile apparatus. The B and y
actins coexist in most cell types as components of the cytoskeleton, and as mediators of internal cell
motility. Although the amino acid sequences and in vitro properties of the isoforms are highly similar,
these isoforms cannot completely substitute for one another in vivo (Khaitlina, 2001). Actin has been
one of the most highly conserved proteins throughout evolution because it interacts with a large
number of other proteins. It has 80.2% sequence conservation at the gene level between Homo
sapiens and Saccharomyces cerevisiae, and 95% conservation of the primary structure of the protein

product (Gunning et al., 2015).

Although the monomers of actin assemble the helical rope-like filaments, these filaments are
modified by and interact with other proteins to carry essential cellular functions (Sackman, 2015).
This process is called actin remodeling. It is a cyclic pattern allowing the dynamic alterations of
cellular organization (Fig. 4). During the remodeling process, actin monomers polymerize in response
to signaling cascades that stem from environmental cues (Stossel et al., 2006). The cell's signaling
pathways cause actin to affect intracellular organization of the cytoskeleton and often, the cell
membrane. Over the course of the cycle, actin begins as a monomer, elongates into a polymer with
the help of attached actin-binding-proteins, and disassembles back into a monomer so the
remodeling cycle may commence again (Stossel et al., 2006; Rottner and Stradal, 2011). The dynamic
function of actin remodeling is directly correlated to the immense variability of cell shape, structure,
and behavior. First, there is uncapping of the barbed end by the removal of barbed end capping
proteins and ABPs that sever actin filaments (Stossel et al., 2006). This step is followed by de novo
nucleation of new actin microfilaments from the existing sides of F-actin by the Arp2/3 complex and
formins (Begg et al, 1978). It is helped by polymerization promoters and barbed end capping
inhibitory proteins. The elongation phase begins when the concentration of short, F-actin polymers is
significantly larger than at equilibrium. At this point, both termini accept the addition of new
monomers (although primarily at the barbed end) and the actin microfilament lengthens (Kuhn and

Pollard, 2005). It results in the overall stabilization of the actin filament network.
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Figure 4: The dynamic steady state of actin.

The minimal steps needed to reach a dynamic steady state of different actin architectures are illustrated.
Sequestered and polymerizable actin represent the pool of actin monomers. Nucleation is the formation of
actin dimers or trimers. Elongation and capping modulate controlled growth of the different forms of actin
organization (branched networks that are generated by the Arp2/3 complex or bundles generated by formins).
Disassembly and depolymerization results in the breakdown of actin structures to monomer subunits. Recycling
renews the pool of actin monomers that are charged with ATP. The different nucleotide states of actin barbed
and pointed ends and different proteins, or complexes are represented by the indicated symbols. The arrows at
barbed (B) and pointed (P) ends indicate depolymerization, with larger arrows representing faster dissociation.
Adapted from Plastino and Blanchoin, 2018.

The cell uses crosslinking proteins of diverse sizes to carry out different means of stability
within the binding network. Small ABP's such as scruin, fimbrin, and espin function by solidifying
actin filament bundles (Stossel et al., 2006). Larger ABPs that exhibit coil-like qualities such as filamin
function in the promotion of orthogonal organization. Actin crosslinking provides a framework for
which the cell may transport signaling intermediates needed for other steps within the actin
remodeling cycle (Begg et al, 1978; dos Remedios, 2003; Winder and Ayscough, 2005; Lappalainen,
2016).
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After a while, the immobilization by interpenetration of actin filaments results from two
distinct ABP families. The gelsolin protein family is believed to be the most efficient in the disruption
of actin filaments and is considered a strong severing protein. These proteins respond to an increase
in Ca?* and cap the barbed end of the recently severed F-actin (Kalwat and Thurmond, 2013). The
increased level of Ca** may also destabilize the actin-filament network by interfering with the binding
of crosslinking proteins (Nicholson-Dykstra et al, 2005). The ADF/cofilin protein family also serves to
severe actin-filament networks through the weak severing of actin networks. This form of weak
severing does not tightly cap the barbed ends but does allow for the disassociation of actin
monomers and thus the disassembly of F-actin (Begg et al, 1978). Finally, thymosin and profilin
prevent the spontaneous nucleation of new actin trimers. Actin filaments break back down into
monomers and the cycle is completed. Despite its complexity, actin remodeling may result in

complete cytoskeletal reorganization in under a minute (Lodish et al., 2013).

Apart of the actin remodeling proteins, other regulators can also contribute to actin dynamics.
Indeed, in the epithelial cells the internal force generation occurs through an actomyosin contractile
system, with the contribution of non-muscle myosins: molecular motors that convert chemical
energy by ATP hydrolysis into mechanical force generation. To note, several non-muscle myosins, like
non-muscle myosin | and VI could also contribute to epithelial contractility (Dai et al., 1999; Biro et

al., 2013), but the most relevant force generator is non-muscle myosin II.

Non-muscle myosin Il is composed of a pair of heavy chains (MHC), a pair of essential light
chains (MLC) and a pair of regulatory light chains (RLC). The MLC contain calcium-binding EF-hand
domains, interacting with the neck region of the MHC (Fig. 5a). The MLC are responsible for the
structural integrity of the motor domain, while the regulatory light chains regulate the myosin Il
ATPase activity (Ruff et al., 2001). Together they form an hexameric protein complex so-called
positive end motor: its progressive movement is directed towards the plus end of the actin filament
(Fig. 5b). The motor part of the protein is situated in the N-terminal globular head domain of the
MHC, containing the actin- and ATP-binding sites, required for motor activity. ATP-binding and
hydrolysis causes conformational changes in the head domain which results in displacement. Myosin
Il motors by their own are unipolar and hardly processive, they do not perform a contractile activity.
But following their activation, they form bipolar complexes, consisting of several NMYIl hexamers in
an antiparallel organization, interacting through the MHC tails. In this arrangement NMYIl mini-
filaments become highly processive, their motor domains associate with oppositely oriented,
antiparallel actin filaments and pull them together. The attachment and detachment of NMYIl and

actin happens in a cyclic manner and is coupled to the ATPase activity of NMYIl. The phosphate
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release upon ATP hydrolysis produces the energy for the conformational change, which triggers the
actin movement. At the end of the movement ATP replaces ADP at the motor domain and NMYII
detaches from actin. This mechanism is the heart of the actomyosin contractility that creates cortical

tension in the epithelial cells (Krendel and Mooseker, 2005; Levayer and Lecuit, 2012).
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Figure 5: Domain structure of NM II.

(a) The subunit and domain structure of NM Il forms a dimer through interactions between the a-helical coiled-
coil rod domains. The globular head domain contains the actin-binding regions and the enzymatic Mg?*-ATPase
motor domains. The ELCs and the RLCs bind to the heavy chains at the lever arms that link the head and rod
domains. In the absence of RLC phosphorylation, NM Il forms a compact molecule through a head to tail
interaction. This results in an assembly in competent form (10S; left) that is unable to associate with other NM
Il dimers. On RLC phosphorylation, the 10S structure unfolds and becomes an assembly-competent form (6S).
S-1is a fragment of NM Il that contains the motor domain and neck but lacks the rod domain and is unable to
dimerize. Heavy meromyosin (HMM) is a fragment that contains the motor domain, neck and enough of the
rod to effect dimerization. (b) NM Il molecules assemble into bipolar filaments through interactions between
their rod domains. These filaments bind to actin through their head domains and the ATPase activity of the
head enables a conformational change that moves actin filaments in an anti-parallel manner. Bipolar myosin
filaments link actin filaments together in thick bundles that form cellular structures such as stress fibers.
Adapted from Vicente-Manzanares, M. et al., 2009.

In Drosophila, a single gene encodes for each subunit: zipper for MHC, spaghetti squash (sgh)
for MLC and milc-c essential light chain (Yamashita et al., 2000). C. elegans has two MHC genes (nmy-
1, nmy-2), a single MLC gene (mlc-4) and a single essential MLC gene (mlc-5) (Chisholm and Hardin,
2005; Gally et al., 2009). In vertebrates at least one regulatory light chain (MRLC2) and three MHC
isoforms can be found: NMHC-IIA-C (Conti and Adelstein, 2008).
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Actin forms contractile structures with myosin motor proteins to form cross-links and to slide
compared to one another. As epithelial cells do not need to generate a high amount of contractile
tension compared to muscle cells, they only have a small amount of actomyosin Il bundles. The
regulation of these contractile bundles’ activity is through the phosphorylation of myosin light chain.
One important function of these contractile bundles is to provide mechanical support for cells.
Actomyosin bundles can assemble into cortical stress fibers to connect epithelial cells to adjoining
cells or ECM through Als (Sackman, 2015). Also, acto-myosin can generate forces inside epithelial
cells for their remodeling, as well as the regulation of cell adhesion and migration during

morphogenesis (Zelenka, 2004; Blaser et al., 2006; Wirshing and Cram, 2017).

1.2.3.2. Microtubules (MTs)

MTs are complex and highly dynamic cytoskeletal components. The subunits of MTs are
tubulins, which are heterodimers formed by two closely related globular proteins: a- and - tubulins.
Assembly of tubulins forms hollow, helical tubes of MTs, which can grow up to 50um long tubes of
24nm in diameter (Weisenberg, 1972; Pilhofer et al., 2011). These tubes are assembled of short (8nm
long) protofilaments. Thirteen such protofilaments line up side by side to close a concentric tube, but
the neighboring filaments are not completely aligned: there is a 0.9 nm shift between them, which
gives the tube a spiral structure. MTs exist in a dynamic instability and are quasi constantly
remodeled: there is a fast-growing plus end, where filament polarization and depolymerization
happen, and a minus end often anchored to the centrosome or the microtubule organizing center
(MTOC) (Desai and Mitchison, 1997; Marshall and Rosenbaum, 1999). The dynamics instability that
MTs undergo is profoundly influenced by the binding and hydrolysis of GTP. The dynamics and
organization of MTs are also modulated by the polymer-stabilizing/destabilizing drugs and MT-
binding proteins (Weisenberg, 1972; Weisenberg, et al., 1976). Apart of a and B tubulins, y units also
exist, but they do not contribute to such tube formation. These units are acting as nucleators that
cap the minus end of the tubes. They are found at the highest concentration in the nucleus, but they

are present within the whole cell architecture, at several nucleation sites of the MTs network.

A major function of MTs is to enable motor proteins to transport cargos within the cells. Two
families of MT-based motors, kinesins, and dyneins move along MTs to transport vesicles and even
organelles during interphase (Berg et al., 2002). This MT-mediated transport is an essential element
of various cellular processes and it plays a significant role during cellular movements and shape

changes as well (Alberts et al., 2002). It is well established that MTs are central components of cell
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mechanics during tissue morphogenesis (Kirschner and Mitchison, 1986; Mathur and Hilskam, 2002;
Cearns et al., 2016; Singh et al., 2018). Our lab has recently discovered that MTs also contribute to
the process of embryonic morphogenesis as transport machinery (Quitin et al., 2016). Another
example is the neuronal morphogenesis in the developing brain. The MT cytoskeleton provides
physical support to shape the fine structure of neuronal processes. MT-based motors play important
roles in nucleokinesis and centrosomal positioning (Sakakibara et al., 2013). The centrosome, as
major organizer of MTs, also has essential functions in regulating cell shape, polarity, cilia formation
as well as the position of cellular structures, including the mitotic spindle. Therefore, centrosomes
and MTs have important roles during morphogenesis by controlling cell fate decision during tissue
and organ development (Tang and Marshall, 2012). However, MTs still play key roles in development
even when they are not centrosomally organized. For example, during early Drosophila wing
epithelium development, individual cells are mechanically autonomous. They contain a polarized
apical non-centrosomal MT cytoskeleton that bears compressive forces. In these cells, the Fat planar
cell polarity signaling pathway couples MTs at Als and patterns MT-based forces across a tissue via
polarized transcellular stability. These results provide a physical basis to explain how global
patterning of MTs controls cell mechanics to coordinate collective cell behavior during tissue

remodeling (Singh et al., 2018).

Despite of their obvious importance, there is still a lot left to understand about the role of MTs
at the level of complex epithelial behavior, which serves as an interesting future research direction in

cell biology.

1.2.3.3. Intermediate filaments (IFs)

Unlike actin and tubulin, IFs are not present in all eukaryotic cells. In the most exposed
epithelia, such as the skin, and the cells undertaking mechanical stress, IFs are chemically modified
and fill the cell in a massive amount. This implies that IFs endure mechanical tension, provide
mechanical stability to the cells and tissues and maintain their integrity (Kolega, 1986; Loranger et al.,
1997; Hesse et al., 2000; Fisher and Fowler, 2015). IFs are flexible and extensible structures. Most
types of IFs (like neurofilaments, keratins or desmins) are cytoplasmic but nuclear IFs (lamins) also
exist. They assemble into filaments of 8-12nm in diameter. These filaments assemble in antiparallel
tetramers, combination of two dimers with a tripartite structure: flexible N- and C-terminal domains
that flank a central coiled coil domain. The functions of IFs include organizing the internal structure

of epithelial cells and maintaining the cell shape by bearing mechanical tensions (Kolega, 1986;
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Bornslaeger et al., 1996). They are proposed to be able to resist a significantly higher level of
longitudinal strain than actin or MTs (Kreplak and Fudge, 2007). Their ability to rapidly change their
organization in response to injury is a crucial part in tissue repair. Instead of treadmilling like actin
and MTs, their dynamic structural changes are achieved through post-translational modifications, like
phosphorylation or sumoylation (DePianto and Coulombe, 2004; Pasti and Labouesse, 2014). As
mentioned in the paragraph about junctions, IFs also take part in cell-cell desmosomes and cell-
matrix HDs. Therefore, they also play a role in tension transmission between epithelial cells and
contribute to shear stress resistance (Hahn and Labouesse 2001). They are important during
development as well: in the elongating C. elegans embryo their phosphorylation is at the final step of
a mechanotransduction pathway and it leads to HDs remodeling, needed for the proper completion

of the C. elegans embryonic development (Zhang et al., 2011).

In this section, | reviewed the general characteristics and structure of the epithelia. Epithelial
cells by their own are already very smartly designed small entities, possessing a series of useful
molecular features that help their cellular functions, enable self-organization and a dynamic crosstalk
with their environment. These functions and crosstalk imply to a large extent mechanical forces that
can already drive cell shape changes in a single cell. But if cells cope up at a higher level through
tissue interplay, it can lead to morphological changes that are crucial in development and in various
other biological processes. The upcoming section aims to summarize the mechanisms underlying cell
shape changes and epithelial morphogenesis, with an outlook on mechanotransduction as it is a key

mechanism in this PhD work.
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Il. Epithelia remodeling during morphogenesis

Tissue organization arises from cells showing a set of well-defined morphogenetic behaviors
that include movement, shape change, differential growth, and apoptosis. Morphogenetic events
extend from the organization of subcellular structures through migration of single cells to the
coordinated activity of the thousands of cells that achieves the complex folding. Collective and
coordinated epithelial cell shape changes have been reported in numerous biological processes. The
classical examples are crucial developmental processes like gastrulation (studied extensively in
Ascidians, Drosophila, zebrafish or Xenopus), primitive gut tube formation in Xenopus formation
(Reed et al., 2009) and several organogenetic aspects (neural tube formation, mammary gland,
kidney or lung tubulogenesis) (Colas and Schoenwolf, 2001; Rogers et al., 2003; Ewald et al., 2008;
Davidson, 2012). Recent research also explores new models, where not the entire organ, but some
parts of it have an epithelial origin and therefore contribute to morphogenesis. Such systems are for
instance teeth morphogenesis in zebrafish (Verstraeten et al., 2010) or eye morphogenesis in mice
(Chauhan et al., 2015), but the impact of epithelial pouches and clefts that contribute to the

patterning of the vertebrate face are also subjects of intense research (Choe and Crump, 2015).

At a tissue level, morphogenesis arises because of cellular proliferation and motility. Detailed
analyses of morphogenetic events in a variety of animals suggests that most morphogenetic events
are in fact driven by only few basic cellular mechanisms, used in different combinations and
sequences. For example, cell proliferation is driven by cell division, giving rise to two daughter cells,
while apoptosis results in the disappearance of the dying cell. Changes in cell position are brought
about by either cell migration or cellular rearrangements, such as cell intercalations and neighbor
exchanges. Tissue separation can also occur via more dramatic cellular differentiation events during
which epithelial cells become mesenchymal. Mesenchymal cells typically leave the epithelial tissue
because of changes in cell adhesive and contractile properties and migrate away from the epithelium
to associate with other similar cells in a new location (Yu and Elble, 2016). Coordinated changes in
position of individual cells can trigger tissue rotations, spatially controlled cell proliferation, cell
division orientation and cell death within multicellular tissues can give rise to global changes in tissue

shape (Heisenberg and Bellaiche 2013).
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However there is another of central importance for tissue morphogenesis during
development: shape changes. Cell shape is the product of a cell's material and active properties
balanced by external forces. Control of cell shape, therefore, relies on both tight regulation of
intracellular mechanics and the cell's physical interaction with its environment. Indeed, throughout
the lifespan of an organism, shape changes are necessary for cells to carry out their essential
functions. Nowhere is this more dramatic than embryonic development, when cell shape changes
drive large-scale rearrangements in tissue architecture to establish the body plan of the organism. A
longstanding question for both cell and developmental biologists has been how are forces generated

to change cell shape?
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Figure 6: Regulation of cell shape.

(a) Cell shape is the result of the mechanical forces exerted on the cell surface. These forces can also be
described by a set of interrelated physical properties, which include cellular adhesion, cortical tension and the
cell's rheological properties. Physical properties are regulated at the protein level and are likely to feedback on
protein activity and/or gene expression. (b) Example of the interaction between cortical tension and cellular
adhesion during the formation of cell-cell contacts. Red lines, cortical cytoskeleton; black lines, plasma
membrane; purple rods, adhesion sites; arrows, direction of forces.

Adapted from Paluch and Heisenberg, 2009.
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Two principal factors contribute to cellular deformation and mechanical stresses that are
experienced by cells and influence cell behavior in early development—the mechanical stiffness of
the local tissue environment (extrinsic force) and the contractile activity of the cells pulling on that
environment (intrinsic force). Extrinsic forces are applied on cells by the neighboring tissues or by
other external factors, often by force transmission through the ECM (Engler et al., 2006). But
epithelial cells are also able to deform autonomously, by intrinsic force generation through
actomyosin contractility, without any application of external stress (Murrell et al., 2015). Cell
deformation triggered by extrinsic forces is more like a passive response, while internal force
generation can be considered as an active process. A proper balance between extrinsic and intrinsic
forces is a key component of finely controlled cell shape changes and needs to be strictly regulated,
both by cellular mechanical properties and by biochemical signaling (Paluch and Heisenberg, 2009).
In development, understanding the interplay between cellular contractile activity, stiffness of
surrounding tissues, and the resultant deformations and mechanical stresses is critical for refining

model of embryogenesis (Fig. 6).

11.1. Contractility and intrinsic forces

Various internal forces also contribute to mechanical stresses during embryogenesis. These
internal forces refer to contractile forces generated internally by the actomyosin cytoskeleton. There
are several strategies to develop tissue dynamics. Such as cortical tension or basolateral protrusions,
as reported in the case of gut organogenesis, notochord formation in ascidians, amphibians and fish,

or dorsal intercalation in C. elegans embryos (Pilot and Lecuit 2005).

11.1.1. Apical constriction

In epithelial sheets, the mechanical coupling of cells via Als allows individual cell behaviors to
propagate change across the tissue, leading to tissue morphogenesis. A common epithelial cell shape
change that participates in morphogenetic events throughout development is apical constriction
(Sawyer et al., 2009; Martin and Goldstein, 2014; An et al., 2017). Apical constriction reduces the
apical surface area of the epithelial cell, which contains Als, and often expands at the basal end,
transforming a columnar-shaped cell to a wedge or cone shape (Fig. 7). Due to the symmetrical
constriction of actomyosin, the apical side of epithelial cells contracts resulting in cells taking on a

wedged shape (Takeichi, 2014).
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Figure 7: Steady state control of contractility during Drosophila epithelial morphogenesis.

Schematic of Drosophila mesoderm cells undergoing apical constriction and the pathway regulating RhoGEF2
delivery at the medial apical site of the cell.

Adapted from Levayer and Lecuit, 2012.

Gastrulation or neurulation for instance are spectacular examples of it. For example,
mesoderm invagination during gastrulation in Drosophila is driven by the coordinated apical
constriction of mesodermal cells. Myosin spots and fibers are formed at the apical cortex of
invaginating mesodermal cells, which results in apical constriction. The myosin structures increase in
intensity and move towards the center of cell apex, resulting in pulsatile centripetal actin-myosin
flows. Actin-myosin network coupling to apical junctions leads to myosin organizing into a supra-
cellular network that connects each cell to transmit forces across the tissue (Martin et al., 2010;

Bosveld et al., 2012; Heisenberg and Bellaiche, 2013).

Apical constriction and Myo-Il contraction in mesoderm cells are not continuous but occur as a
series of constriction pulses that are often asynchronous in neighboring cells (Martin et al., 2009).
Individual cells undergo three to five pulses before invagination that exhibit a periodicity of about 90
seconds. Importantly, mesoderm cells maintain their contracted state between contraction pulses,
which allows these cells to rapidly (5-10 min) reduce their apical area by 75% in an incremental
manner (Mason and Martin, 2011). This stabilization of the contracted state between pulses occurs
despite the fact that apical constriction generates levels of tension along the length of the furrow
that are high enough to influence the directionality of the cell shape change (Martin et al., 2010).
Thus, it appears that apical constriction also occurs in a ratchet-like manner: pulses of actomyosin
contraction drive apical area reduction and cell shape is stabilized between pulses to prevent apical

relaxation (Fig. 8). (Mason and Martin, 2011).
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Figure 8: Ratchet mechanism and Myoll pulses during apical constriction of epithelial cells.

Top view of an epithelial cell undergoing apical constriction. The accumulation of Myoll pulls on actin filaments
(centripetal red arrow) and constricts the cell apical surface (black arrows). Contraction is either stabilized
(further Myoll pulses lead to an incremental decrease of cell surface) or unstabilized (the cell returns to its
initial conformation).

Adapted from Levayer and Lecuit, 2012.

11.1.2. Cell migration

Cell migration is critical to the development of most animals, being responsible for the
dispersal of cells from one place to others (eg cells originating in the neural crest that disperse to
form melanocytes, some neural tissue and much of the face, or primordial germ cells that migrate to
the developing gonads) and also being responsible for the extension of neural axons and dendrites to
their targets. Cell migration is driven mainly by organization of a motile leading edge (lamellipodium)
in one part of the cell, this leading edge being based on polymerization of F-actin filaments, mostly
oriented with their growing (plus or barbed) ends facing the plasma membrane (Svitkina and Borisy,
1999; Pollard and Borisy, 2003; Ponti et al., 2004; Koestler et al., 2008). They are controlled by
ARP2/3 complexes themselves regulated, via proteins such as WASP, by small GTPases such as Rac
and cdc42. Contractile forces are generated by a Myo-lI-containing network of longer oriented actin
filaments behind the lamellipodium, called the lamella, and by actomyosin bundles called stress
fibers (Verhovsky et al., 1995; Svitkina et al., 1997; Koestler et al., 2008; Aratyn-Schaus et al., 2011).
The range of the periodic contractions of Myo-Il can vary from about 25 seconds to several minutes
(Giannone et al., 2004; Giannone et al., 2007; Vicente-Manzanares et al., 2007; Meili et al., 2010;
Burnette et al., 2011).

Cell motility is possible because actin filaments are semi-flexible polymers that, in
conjunction with the molecular motor myosin, can act as biological active springs or "dashpots" able

to exert or resist against force in a cellular environment (Blanchoin et al., 2014). To modulate their
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mechanical properties, actin filaments can organize into a variety of architectures generating a
diversity of cellular organizations including branched or crosslinked networks in the lamellipodium,
parallel bundles in filopodia, and antiparallel structures in contractile fibers. These different
architectures can be envisioned as a series of interconnected active springs and dashpots that act as

mechanical elements to drive cell shape changes and motility (Fig. 9) (Blanchoin et al., 2014).

contractile elements

visco-elastic elements

rigid rods

Figure 9: Schematic representation of mechanical elements driving cell shape changes.

Overlay of the actin architecture and its mechanical profile. The red rectangles are the shock absorbers
(dashpots) that represent the actin network, while the green circles are active springs due to myosin motor
activity.

Adapted from Blanchoin et al., 2014.
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Signal transduction cascades can regulate the activity of these proteins allowing cells to be
guided by gradients of attractive or repulsive extracellular molecules, in a process called chemotaxis.
The migration of cells can also be controlled by differences in substrate adhesion, generally choosing
more adhesive surfaces when presented with a choice, for biophysical reasons (Lautscham et al.,
2014; Simsek et al., 2019). Adhesion to substrates depends on the ECM molecules within the
substrate and the repertoire of matrix receptors (for example, integrins) expressed by the cells
themselves. Different cells express different combinations of integrins, and therefore can respond in
a cell type-specific manner to the same ECM cues of a substrate. This coupling to the underlying
substrate via adhesions allows the F-actin network to adapt and modulate cell shape. It is locally
regulated and has been characterized as a molecular ‘clutch’ (Gardel et al. 2010; Stricker et al.,

2010).
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Figure 10: Oscillatory behavior of the cell leading edge and ratchet-like movement.

The leading edge alternates between phases of protrusion (3—4-1) and retraction (2-3). Phase 1:
polymerization of actin generates the pushing force (red arrow) that drives leading-edge progression (grey
arrow). At the same time, Myoll is progressively recruited in the mesh concomitantly with new focal adhesion
point creation. Phase 2: backward-pulling forces, generated by Myoll and its anchorage to distal focal
adhesions, progressively increase (green spring) while the actin polymerization rate decreases. Once the
backward-pulling force overtakes the polymerization pushing force, the cell edge starts to retract (grey arrow).
Phase 3: retraction is limited by focal adhesions (ratchet-like mechanism). Concomitantly, the high pulling-force
breaks the actin mesh—cell-front connection. This could be reinforced by Myoll-induced actin
depolymerization. Phase 4: actin mesh—cell-front detachment leaves space for a new wave of actin
polymerization. The backward-pulling force is close to zero. (Bottom graph) Progression of the leading edge
over time. Displacement is higher during protrusion phases compared to retraction phases, hence allowing net
movement of the cell.

Adapted from Levayer and Lecuit, 2012.
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Indeed, on one hand Myo-Il contractile force causes the leading edge of the migrating cell to
periodically retract, while on the other hand coupling of actin arcs with focal adhesions prevents
further retraction by stopping the retrograde flow of actin arcs and functioning as the ‘clutch’ to
anchor arcs relative to the substrate (Burnette et al., 2011). The hypothesis is that leading edge
advance acts in a cyclical and ratchet-like manner: membrane extension initiates new focal adhesions
that engage actin arcs and establish a new base for membrane protrusion (Fig. 10). A proper balance
between contractility and cell-substrate adhesion is required for optimal cell migration. Indeed, cells
require traction to move, but too much adhesion results in drag forces that resist actomyosin

contraction (Gupton and Waterman-Storer, 2006, Mason and Martin, 2011).

11.1.3. Convergent extension

Convergent extension is a mechanism that allows a structure to become long and thin without
any net increase in cell volume or number. This process plays a crucial role in shaping the body plan
during embryogenesis and occurs during gastrulation, neurulation, axis elongation, and
organogenesis in both vertebrate and invertebrate embryos (Keller et al., 1985; Shih and Keller,
1992; Topczewski et al., 2001; Keys et al., 2002; Munro and Odell, 2002; Williams et al., 2014; Shindo,
2018). Xenopus gastrulation serves as an excellent example of the role of convergent extension in
embryogenesis. The driving force of convergent extension is the morphogenic activity of the
presumptive dorsal mesodermal cells (Keller et al., 2008). If the convergent extension is interrupted
or incomplete, the resulting organism will have a short anteroposterior axis, wide notochord, and

broad, open neural tube (Wallingford et al., 2002).

In Drosophila, after the initial infolding of gastrulation, the ventral region of the embryo
undergoes a rapid elongation called germband extension. This elongation is produced by
intercalation of the more lateral cells as they move toward the ventral midline (Fig. 11). The cells
achieve convergent extension movements by treating their boundaries differently. Boundaries that
lie within the plane of the epithelium but perpendicular to the axis of elongation shorten, under the
action of acto-myosin contraction. In many respects, the process is very similar to the convergent
extension, which occurs during amphibian gastrulation (Wieschaus et al., 1991; Irvine and
Wieschaus, 1994; da Silva and Vincent, 2007; Collinet et al., 2017; Kong et al., 2017; Siang et al.,
2018).
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Figure 11: Drosophila germ band extension.

(Top) Schematic view of an early Drosophila embryo during germ band extension. The germ band (orange)
elongates by convergent extension (black arrows). A, anterior; P, posterior; D, dorsal; V, ventral. (Middle)
Convergent extension is induced by cell—cell intercalation along the dorso-ventral (D/V) axis. Blue labeled cells
will form new contacts with pink labeled cells, whereas the number of junctions shared by yellow cells will be
reduced. Green lines symbolize the polarized enrichment of Myoll and the resulting high contractility. (Bottom)
Cell—cell intercalation is driven by polarized junction remodeling, including T1 transitions (left) and rosette
formation (right). D/V junctions (green) shrink, give rise to four-way vertices (yellow) and resolve irreversibly
into a new AP junction (red). Rosette formation is induced by the shrinkage of multiple DV junctions.

Adapted from Levayer and Lecuit, 2012.

Although anisotropic tension itself could explain cell rearrangements observed during
germband extension (Rauzi et al., 2008), live imaging of Myo-Il revealed that pulsatile contractions
are also present in the medial network spanning the apical surface (Rauzi et al., 2010; Fernandez-
Gonzalez and Zallen, 2011; Sawyer et al., 2011). The shrinkage of dorsal-ventral-oriented junctions
during germband extension is known to require planar polarized junctional contractility by Myosin Il
(Bertet et al., 2004; Blankenship et al., 2006; Rauzi et al., 2008; Fernandez-Gonzales et al., 2009).
However, junctional Myosin Il itself does not produce this shrinkage, but the polarized flow of medial
actomyosin pulses towards vertical junctions does. Therefore, the proposed mechanism is the
following: the Myo-Il cable along interfaces serves as the ‘catch’ in a ratchet-like mechanism that
incrementally shrinks interfaces of a given orientation, resulting in cell rearrangements (Fig. 12).
Importantly, tension promotes the formation of multicellular Myo-Il cables during rosette formation,
suggesting that mechanical feedback regulates this activity to coordinate cellular behavior and

generate tissue-level forces (Fernandez-Gonzalez et al., 2009, Mason and Martin, 2011).
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Figure 12: Cell—cell intercalation and junction remodeling induced by polarized Myoll flow and stabilization
of junction shrinkage.

Ratchet model for cell interaction. Actomyosin contractions on the medial apical surface reduce apical area and
shrink vertical interfaces (red edges). Flow of Myo-Il into the vertical junctions increases Myo-Il intensity in the
junctional cable. This stabilizes the interface by preventing it from lengthening. The process repeats to
incrementally bring cells closer along the dorsal—ventral axis.

Adapted from Mason and Martin, 2011.

The conservation of the ratchet-like behavior observed during cell migration, constriction
and intercalation establishes the importance of this molecular machine. However, many questions
still remain about this mechanism. While it is clear that dynamic and stable actomyosin networks are
important for inducing and sustaining cell shape change, the connections between these distinct

types of networks is still unclear.
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11.2. Extrinsic forces — Mechanotransduction

As living organisms, we interact with our world through our senses. We are continuously
exposed to mechanical cues and so are our cells. They can sense their physical environment by
translating mechanical forces and deformations into biochemical signals such as changes in
intracellular calcium concentration or activation of diverse signaling pathways. In turn, these signals
can adjust cellular and extracellular structures. This process is called mechanotransduction and it is
responsible for several senses and physiological processes in the body, including proprioception,
touch, balance, and hearing. It is a multistep process that includes (1) mechano-coupling
(transduction of mechanical forces into signals sensed by sensor cells), (2) biochemical coupling
(conversion of mechanical signal into a biochemical signal to elicit a cellular response such as gene
activation), (3) transfer of a signal from sensor to effector cells, and (4) the effector cell response.
Mechanosensitivity in one form or another appears to be a property shared by all cells of the body

and by all phyla from mammals to bacteria.

11.2.1. Matrix control of stem cell fate

Mechanotransduction has been found to occur in all corners of the biological realm and with
an extremely rich and diverse set of mechanisms (Jansen et al., 2015). Some of these mechanisms
are very similar across all domains of life, as in the case of the mechanosensitive channels that allow
physical stimuli on or across membranes to control the flow of molecules across these membranes:
flow that can in turn release osmotic pressure or trigger another signaling pathway (Kloda and
Martinac, 2001; Martinac, 2008). Some are more specific to a given subset of cells, like the response

of mammalian cells’ cytoskeletons.

Mechanotransduction is intimately associated to cell adhesion processes targeting primarily
cell-matrix and cell-cell contacts. The traction forces developed and transmitted via integrins by cells
toward the extracellular matrix and substratum have high incidence on cell shape, migration and
differentiation. A very well-studied example is the variable differentiation of mesenchymal stem cells
(MSCs). Young MSCs differentiate in response to the stiffness of the underlying matrix. Softer
matrices lead to the differentiation of MSC’s into neuronal cells, i.e. brain, and are neurogenic, stiffer
matrices that mimic muscles lead the MSC’s to differentiate into muscles and are therefore
myogenic, whereas rigid matrices that mimic bones differentiate the MSC’s into osteocytes and are
eventually osteogenic. (Flanagan et al., 2002; Neuhuber et al., 2004; Garcia and Reyes, 2005; Engler
et al., 2006) (Fig. 13).
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Figure 13: Tissue elasticity and differentiation of naive MSCs.

(a) Solid tissues exhibit a range of stiffness, as measured by the elastic modulus, E. (b) The in vitro gel system
allows for control of E through crosslinking, control of cell adhesion by covalent attachment of collagen-I, and
control of thickness, h. Naive MSCs of a standard expression phenotype are initially small and round but
develop increasingly branched, spindle, or polygonal shapes when grown on matrices respectively in the range
typical of Ebrain (0.1-1 kPa), Emusce (8—17 kPa), or stiff crosslinked-collagen matrices (25-40 kPa). Scale bar,
20mm.

Adapted from Engler et al., 2006.

Other work also showed that decreasing substrate stiffness appears to dramatically alter cell
structure in many cell types, reducing cell spreading against the substrate, the formation of focal
adhesions, and stress fibers (Pelham and Wang, 1997). Indeed, cytoskeletal filaments can propagate
stresses over long distances (Ingber, 2005; Wang and Suo, 2005), while structures such as focal
adhesions, desmosomes and junctions provide both tensile strength and effective transmission of

stress.
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11.2.2. Role of cytoskeleton in mechanotransduction

The role of the mammalian cell cytoskeleton in responding to physical cues such as the
rigidity of its environment is one of the most studied examples of mechanotransduction (Johnson et
al., 2007). Thanks to their cytoskeleton, mammalian cells can easily exert forces in the nanoNewton
range on their surroundings and sense the mechanics of cells or substrates around them (du Roure et
al., 2005). For mammalian cells, physical forces play a direct role in important biological choices such
as stem cell differentiation, motility or tumor formation (Weaver et al., 1997; Engler et al., 2006;

Vogel and Sheetz, 2009, Paluch et al., 2015).

Cytoskeletal filaments are proposed as a means to focus force upon molecules that can
transmit mechanotransduction (Chen, 2008). The way mechanical stimuli are transmitted into the
cell depends on the coordinated activity of mechanosensors, influenced by resting tension levels
within the cell, which are set by the cytoskeletal system (Chen et al., 2003; Polte et al., 2004, Ingber,
2006). The adaptive cytoskeleton deforms through assembly and disassemby of its filaments in
response to an applied force. ABPs also help to dynamically organize F-actin into many different
structural forms such as lamellipodia, stress fibers, filopodia, podosomes, actin asters, vortices, and
stars (Fritzche et al., 2017; Wang, 2017; Harris et al., 2018). These different architectures serve

specialized roles in the cell’s multiplex response to mechanical stimulation.
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Figure 14: Actin cytoskeleton and transduction of mechanical forces.

Mechanical loads induce a: 1. Conformational change in F-actin (left schematic); 2. Conformational change in
ABPs that uncovers previously concealed binding sites (middle schematic); and 3. Alterations in ABP-mediated
actin polymerization dynamics (right schematic).

Adapted from Cytoskeleton Newsletter, News from Cytoskeleton inc., 2018.
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FRET, AFM microscopy and optical traps experiments revealed that actin filaments in the
various actin-based structures bear a mechanical load (per filament) (Wang and Kanchanawong,
2016; Wang, 2017). These different actin structures are associated with specific mechanical loading
that are optimized for the structure’s specialized cellular functions. Mechanical loading (increased
tension) of filaments alters their conformation (Shimozawa and Ishiwata, 2009), and how ABPs bind

and affect filaments (Harris et al., 2018) (Fig. 14).

In the case of cofilin, a F-actin severing protein, changes in filament length affect its binding
and function. Tensile forces that stretch a cell correspondingly increase the length of filaments
parallel to the direction of the stretch. Under these conditions, the binding affinity of cofilin is
reduced and that of myosin Il is increased (Hayakawa et al., 2011; Uyeda et al, 2011; Hayakawa et al.,
2014). This mechanical-induced change in F-actin length and binding partners results in stabilized F-
actin which can more easily form stress fibers, an essential part of a cell’s mechanotransduction
processes (McGough et al., 1997; Hayakawa et al., 2011; Uyeda et al, 2011; Hayakawa et al., 2014;
Ohashi et al., 2017) (Fig. 14). Tension-induced changes in actin structural dynamics also affect the
binding of actin-nucleating proteins such as Arp2/320 (Risca et al., 2012). Mechanically induced
changes in actin-based structures can also affect gene expression in at least some cell types. As more
stress fibers form during mechanical stimulation, the transcriptional coactivator YAP translocates to
the nucleus where it is activated. YAP is integral in Hippo signaling and mediates increased
expression of genes involved in cell proliferation and differentiation. Thus, the response of the actin
cytoskeleton to extracellular mechanical forces can result in processes that have both physiological

and pathophysiological relevance (Dupont et al., 2011; Halder et al., 2012; Ohashi et al., 2017).

11.2.3. Protein unfolding under force: in vitro example, spectrin

Similar to F-actin, ABPs and other actin-associated proteins directly respond to mechanical
stresses. Common responses include conformational changes, which expose previously concealed
protein binding sites. Indeed, in many contexts, mechanosensory molecules have a broad set of
structural regions or motifs that can be altered over a range of mechanical forces (Weaver et al.,
1997; Maritnac et al., 2008; Vogel and Sheetz, 2009). Such proteins link the integrins or IFs of the
structure to cytoskeleton. These proteins consist of tandem-repeat sequences such as spectrin-family
members (a-actinin, dystrophin), talin, titin, fibronectin and cadherins. Forces can either unravel a
domain or hinder the movement of a specific domain, both resulting in change of the ligand binding

topology (Rohs et al., 1999; Adhikari et al., 2018).
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How proteins sense forces and cellular geometry to create the correct morphology is not
understood in detail but protein unfolding appears to be a major component in force and
displacement sensing. Thus, the crystallographic structure of a protein domain provides only a
starting point to then analyze what will be the effects of physiological forces through domain

unfolding or catch-bond formation (Yan et al.,, 1993; Anthis et al., 2009; Elliott et al., 2010;
Yogesha.et al., 2012).
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Figure 15: Linker-mediated elasticity of spectrin.

Mechanical unfolding of a double-repeat b spectrin from human erythrocytes (adapted from Paramore and
Voth, 2006). Each spectrin repeat (labeled 8 and 9) is made of three a-helices denoted as A, B, and C. The
unfolding sequence shows how the linker region unfolds first. (Inset) Force extension curves for a B-beta
spectrin repeat construct (adapted from Law et al., 2003). The bottom trace shows cooperative unfolding.

Mutations weakening the linker region of spectrin have been shown to cause hereditary spherocytosis
(Johnson et al., 2007).

Adapted from Sotomayor and Schulten, 2007.

A well-known example is the spectrin. The erythrocytes are able to rapidly adapt to wide
arteries and narrow capillaries thanks to their discoidal shape and mechanical properties. Diseases,
such as hereditary spherocytosis and elliptocytosis, causing hemolytic anemia are associated with a
lack of an elastic, adaptable shape are caused by mutations affecting the red blood cell cytoskeletal

network made of spectrin, ankyrin, and associated proteins (Bennett and Baines, 2001; Discher and
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Carl, 2001; Johnson et al., 2007). Crystal structures of spectrin revealed building blocks made of
three-helix bundles repeated in series and forming part of heterotetrameric assemblies arranged in
elongated filaments (Bennett and Baines, 2001; Kusunoki et al., 2004). The structures also revealed
an a-helical linker. Moreover, AFM experiments suggested that spectrin repeats mechanically unfold
predominantly one by one in an independent, all-or-none fashion (Rief et al., 1999) (Fig. 15). Force
peaks were found to be substantially smaller than those observed for other proteins made of B

strands instead of a helices.

Further AFM experiments confirmed the relative weakness of spectrin and the one-by-one
unfolding pathway but also revealed that different sets of spectrin repeats may exhibit intermediates
and cooperative unfolding events involving more than one repeat (Altmann et al., 2002; Law et al.,
2003; Randles et al. 2007) (Fig. 14, inset). In addition, recent work identified mutations at the linker
regions of spectrin causing disease, thereby corroborating the relevance of linkers in the mechanical

response of this protein as indicated by simulations (Johnson et al., 2007).

Single-molecule force experiments in vitro enable the characterization of the mechanical
response of biological matter at the nanometer scale but they do not reveal the molecular
mechanisms underlying mechanical function. in silico experiments, despite their limitations, have
resolved the molecular mechanisms underlying the elastic response of biomolecules. However, as
force sensing and generation at the tissue and cellular scale is central to many biological events,
there is a growing interest in modern cell biology for methods enabling force measurements in vivo.
Fortunately, the development of new single molecule and super-resolution imaging methods enable
the analysis of single molecule mechanics in physiologically relevant conditions (Jun et al., 2014;

Backholm et al., 2019).

11.2.4. Protein unfolding under force: in vivo example, talin

In the few cases where single molecule mechanics are studied under physiological conditions
such, as titin and talin, there are rapid cycles of stretch-relaxation that produce mechanosensing
signals. Talin is one of the best-studied FA adaptor proteins. In addition to FAs, talin has been
reported in podosomes, invasive structures, immunological synapses, cytotoxic synapses and so forth
(Nolz et al., 2007; Ham et al., 2013). In FAs, talin is under tension and work as direct bridges between
actin and integrin and as recruiters for other FA proteins (Kumar et al., 2016). It is composed of an N-

terminal globular head, a flexible rod domain and C-terminal helices (Martino et al., 2018) (Fig. 16a).

46



R7 R9 R10

3 R11 R12 R13
J U_HD IIII]/:-C

Dimerization
Domain

R8

Talin head Talin rod

Key : — E %
Vinculin Binding Actin Binding Actin Binding
Site (VBS) Site (ABS2) Site (ABS3)

Talin Vinculin

(Unstretched) (Auto-inhibition)
W\..f M Talin k_' Vinculin

(Stretched) (Activated)

Integrin Complex F-actin

Figure 16: Talin-vinculin mechanosensitivity.

(a) lllustration of the domain structure of full-length talin. The talin head domain contains a FERM domain,
followed by a flexible “neck” which connects the head domain to its C-terminal rod domain. The rod domain
contains 11 cryptic VBS (drawn in blue). The dimerization domain is a single helix that sits at the end of the rod.
(b) Schematics of the talin structure and interaction of the talin dimer with vinculin in cells. (left) In the initial
stage of FA formation, the talin dimer binds to actin and integrin. At this stage, the cryptic VBSs remain buried
among the a-helical bundles. (right) As the actin filament starts to pull on talin, the formerly buried VBS are
revealed to allow vinculin binding and cause more actin filament recruitment.

Adapted from Hu et al., 2017.

Talin rod contains an additional binding site for integrin, and two sites for actin, as well as
several binding sites for vinculin, its main partner at the FA site (Gingras et al., 2005; Gingras et al.,
2009). When forces are applied to talin, it unfolds to expose cryptic hydrophobic binding sites to host
vinculin head (del Rio et al., 2009; Hirata et al., 2014; Maki et al., 2017; Rahikainen et al., 2017). Talin
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has been shown to displays stepwise unfolding dynamics due to the characteristic transition kinetics
of its mechanosensitive rod subdomains. In the absence of force, talin rod remains fully structured,
and no vinculin binding sites (VBS) are available. Under low-force regimes, only the weakest bundle
unfolds revealing its VBS. This activates one vinculin molecule, releasing it from its autoinhibited
state. As the force applied to talin increases, more bundles are unfolded, revealing more VBSs and
thus activating an increasing number of vinculin molecules (Haining et al., 2016). Moreover, FRET
experiments have shown the increase of tension on talin by vinculin depends mainly on actin-binding
site 2 (ABS2) within the middle of the rod domain, rather than ABS3 at the far C terminus (Kumar et
al., 2016). This process is called talin-vinculin mechanosensitivity (Fig. 16b). The successful binding of
vinculin to talin is considered essential to stabilize talin-F-actin interaction and thus transfer the

mechanical signal inward (Humpbhries et al., 2007).

11.2.5. The plasma membrane as a tension sensor

The physical tension of the plasma membrane can also play a role as an orchestrator of many
cellular events. By forming a physical boundary between cells and their environment that is also a
biochemical platform, the plasma membrane is a key interface mediating both cellular response to
mechanical stimuli, and subsequent biochemical responses. Its physical state and integrity are crucial
for cell survival, and one of its major functions is to preserve its integrity and enable changes in cell
shape. These changes occur in response not only to cell processes such as division, migration or
spreading, but also to the constant external mechanical forces present in physiological scenarios. In
this context, the membrane constitutes a crucial interface, since mechanical forces will result in a
change of its state. Accordingly, extensive work has addressed how membrane tension interplays
with the actin cytoskeleton to regulate cell shape (Chugh et al., 2017; Pontes et al., 2017; Simon et
al., 2018), motility (Gauthier et al., 2011; Lieber et al., 2013; Lieber et al., 2015; Hetmanski et al.,
2018) and polarity (Houk et al.,, 2012; Tsujita et al., 2015), as well as the feedback between
membrane mechanical properties, cytoskeleton organization and cell dynamics (Keren, 2011;
Gauthier et al., 2012; Diz-Munoz et al., 2013; Calrk et al., 2014; Sens and Plastino, 2015; Pontes et al.,
2017; Diz- Muioz et al., 2018; Saha et al., 2018).

For example, fibroblasts employ membrane tension as a global master regulator of overall
shape by ‘sensing’ tension changes and adjusting the actomyosin cytoskeleton and membrane
trafficking accordingly (Parton and Simons, 2007; Gauthier et al., 2011; Hamada et al., 2011; Simon et

al., 2018) (Fig. 17). Considering a cell contacting a new substrate, first, the rounded up cell shows
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weak cell-substrate attachment but higher membrane tension than interphase cell (Fig. 17a). Then
the cell goes through a rapid and non-contractile phase of spreading. In this phase, membrane
tension is at a high but constant level compared with the interphase cell (Fig. 17b). Once the
membrane reservoirs of the cell are totally unfolded, it give rise to an increase in membrane tension
due to area limitation. This is followed almost immediately by activation of exocytosis and myosin II-
mediated contraction. The cell enters the contractile spreading phase (Fig 17c). As the cell spread,
the leading edge becomes more heterogeneous with alternating protrusive and retractile regions
along the boundary. Activation of contraction enables stable adhesions to mature and global
remodeling of the cytoskeleton with formation of actin bundles. The cell starts to exert strong forces
onto the substrate at this point. As a consequence of exocytosis and further spreading, the
membrane area progressively increases whereas membrane tension progressively decreases (Fig.
17d). When the cell is fully spread, alternating protrusive and retractile activities reduce drastically.
Meanwhile actin bundles have matured into strong and clearly identifiable stress fibers linking focal
adhesions. Endocytosis and exocytosis balance maintains a constant membrane area. The membrane
tension is now at its low resting level (Fig. 17e). Finally, the cell polarizes. Lamellipodia protrude on
one side of the cell, whereas the other side of the cell shrinks. Due to protrusion, membrane tension

increases and the higher tension seems to help to maintain polarity (Fig. 17f).

P1 (non-contractile spreading) P2 (contractile spreading)

X
> <«
Membrane area

Myosin Il + exocytosis

Y

Key: =3 Membrane tension
== Tension on the substrate a» Focal adhesions

Figure 17: Model of cell spreading and polarization.

When encountering a new substrate, the cell will go from round shape with weak cell-substrate attachment to
a polarized shape in several steps. It will increase tension on the substrate, as it membrane sense and adapt to
the substrate, while cytoskeleton remodel.

Adapted from Gauthier et al., 2012.
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11.2.6. Importance of stiffness during morphogenesis

Mechanotransduction has been extensively studied in cells and tissues in culture but it has also
become increasingly clear that mechanosensation and transduction play important roles in many
developmental and disease-related processes, such as embryo morphogenesis and cell spreading

during metastasis (Jaalouk and Lammerding, 2009; Chanet and Martin, 2014).

In vivo there is also evidence that stiffness is important during embryogenesis. For example,
during Xenopus laevis gastrulation, convergence and extension movements can only occur if the
mesoderm and notochord remain stiff enough to resist buckling (Adams et al., 1990; Keller and
Jansa, 1992). In addition, during this same process, the involuting marginal zone actively stiffens so
that this tissue does not collapse or deform during gastrulation (Moore et al., 1995). Tissue stiffness
may arise from several different factors such as the stiffness of the cells, usually regulated by the
cytoskeleton (Pasternak et al., 1989), the strength of cell-ECM or cell-cell contacts, the biochemical
identity of ECM proteins, and ECM organization and maturation. It is proposed that during
convergence and extension movements in X. laevis, stiffness arises primarily from changes in the
cytoskeleton and the ECM (Moore et al., 1995). Considering the dramatic changes in cell-cell and cell-
matrix adhesion occurring during this complex rearrangement of cells, it is likely that changes in

adhesion also contribute to tissue stiffness.

However, because experiments targeting either cytoskeleton, cell adhesions, or ECM often
affect all three, it has been difficult to develop an appropriate in vivo model for how these numerous
factors independently contribute to a tissue’s stiffness. Similarly, because of the technical challenges
of accurately measuring mechanical parameters in vivo, only a few studies have directly measured
embryo stiffness (Vuong-Brender et al., 2017). Nevertheless, laser ablations are a good technique to
give insight into the forces required for embryogenesis (Priess and Hirsh, 1986; Hardin, 1988;
Williams-Masson et al., 1997; Kiehart et al, 2000; Hutson et al, 2003; Davidson and Keller, 2007;
Peralta et al, 2007). In C. elegans and Drosophila melanogaster, it helped reporting changes in global
movements that are too fast to be explained by signal transduction cascades, suggesting such

movements are mechanical in nature (Hardin, 1988; Suppato et al., 2005; Peralta et al, 2007).
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For example, recent work from our lab showed that myosin-ll-dependent force anisotropy
within the lateral epidermis of C. elegans embryos, and stiffness anisotropy within the fiber-
reinforced dorso-ventral (D/V) epidermis are critical in driving their elongation. By measuring the
opening shape of the epidermal actin cortex after laser nano-ablation, we assessed the
spatiotemporal changes of actomyosin-dependent force and stiffness along the antero-posterior and
D/V axis. We proved that the actomyosin cortex preferentially squeezes the embryo
circumferentially, and that the stress anisotropy is tightly linked to the geometry of the embryo
(Vuong-Brender et al., 2017). This work showed that tissue elongation relies on two fundamental
physical quantities (mechanical stress and tissue stiffness), and provided the most advanced
mesoscopic understanding to date of the mechanics at work during the first steps of C. elegans

embryonic elongation (Fig. 18).

Drosophila germband extension C. elegans embryo elongation
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Figure 18: Actin filament organization correlation with stress and stiffness anisotropy pattern.

(Left) The anisotropy of mechanical stress generated by the polarized actomyosin network and medial myosin
pulses promote Drosophila germband extension. (Right) The interplay of stress anisotropy (generated in seam
cells - red) and stiffness anisotropy (DV cells — white) promote C. elegans embryo elongation. Note that,
although myosin 1l does not display a polarized distribution within individual C. elegans epidermal cells as it
does in Drosophila germband epithelial cells, its enrichment in seam cells along the circumference is
reminiscent of the localized myosin Il enrichment at vertical junctions in Drosophila. A, anterior; P, posterior.
Adapted from Vuong-Brender et al., 2017.
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Epithelial tissues define the boundary that separates our bodies from of our world. They
protect us from microbial pathogens and secrete proteins that help to digest our food and feed our
young. Epithelia absorb nutrients from what we consume and excrete waste to detoxify our
bloodstream. Therefore, epithelial cells are one of the most important cell types in organ and body.
The reshape and rearrangement of epithelial cells at the cell-scale and the tissue-scale drive the
process of morphogenesis. Cellular components such as the cytoskeleton and the adhesion complex
can trigger and regulate the morphogenetic process by generating intercellular forces and
transmitting them among cells. Actomyosin contractions at tissue-scale morphogenetic processes are
complex, characterized by pulses and flows. Certainly, if a contractile system would only pulse back
and forth, no developmental progress could be achieved. To progress in development cell shape also
needs to be maintained between consecutive contractile cycles. Such questions around cell shape
maintenance allowed the discovery of morphogenetic ratchet mechanisms that are interesting new
research perspectives in developmental biology and biophysics. Moreover, it is now well established
that mechanical cues—either extrinsic from the cell environment or intrinsic from cellular
structures—can also be control cell and tissue migration, proliferation, differentiation, homeostasis
and by extend play important roles in many developmental processes, such as embryo
morphogenesis. Overall, understanding how mechanical forces remodel epithelia, as well as how
they contribute to large-scale tissue shape change are essential to understand embryonic

morphogenesis in development.

To tackle such questions during my PhD, | focused on a specific step of C. elegans

morphogenesis, its embryonic elongation. But before describing the details of this process, | will first

introduce C. elegans as a model system in biology.
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lll. Introduction to our model: the nematode Caenorhabditis elegans

C. elegans is small free-living soil nematode. In 1963, Sydney Brenner proposed research into
C. elegans primarily in neuronal development. In 1974, he began research into the molecular and
developmental biology of C. elegans, which has since been extensively used as a model organism
(Brenner, 1974). This pioneer work has been rewarded by two Nobel Prizes in physiology and
medicine. The first was awarded to Sydney Brenner, John Sulston and Robert Horvitz for genetics and
organ development and programmed cell death, in 2002. The second went to Craig Mello and
Andrew Fire for describing the mechanism of RNA interference, in 2006. A Nobel Prize in chemistry
for discovery and development of green fluorescent protein is also associated to C. elegans — one of
the laureates, Martin Chalfie, used C. elegans to conduct his research. Since then C. elegans became
one of the most popular model organisms in the field of genetics, cell and developmental biology,

host-parasitic interactions, evolution, and ageing.

C. elegans worms are multicellular eukaryotic organisms, that have a quick generation time
including embryonic development, four larval stages and adulthood. Newly hatched larvae are 0.25
mm long and adults are 1 mm long. Numerous evolutionary conserved cellular and molecular
processes (metabolism, organelle structure and function, gene regulation) can be studied in these
little roundworms. They are easy to handle and breed under laboratory conditions. They easily grow
on NGM (nematode growth media) plates, fed with Escherichia coli — OP50 (Brenner, 1974). Their
growth can be controlled, either by incubating it at 12 or 15°C which slows the development or
accelerating the growth at 25°C. In the lack of food, larvae can get arrested in development and
enter in a protective state (called dauer), which enables them to survive even for several months.
The L1 larvae of the organism can be frozen, just like bacteria at -80°C and stored for long-term
(Brenner, 1974). It is possible to synchronize the animals and grow them in bulk in liquid medium,
which enables large-scale biochemistry and screenings. They also have a large brood size, and a rapid
development. In favorable environments, C. elegans undergoes reproductive development and
progresses rapidly from embryo to adult in 3-5 days (15°C—20°C). The embryogenesis takes about 16
hours and the embryo grows from a comma stage to 2-fold and then 4-fold before hatching (see Fig.
28, will be detailed later). The newly hatched larva develops through four larval stages (L1-L4). Adults
then live another 2—-3 weeks. Moreover, their transparent body that eases in vivo microscopy with

little dissection.
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C. elegans was the first multicellular organism to have its whole genome sequenced, allowing
genetic manipulations and offering a wide array of mutants, and as of 2012, is the only organism to
have its connectome completed (White et al., 1986; White et al., 2013; Cook et al., 2019). It is also
reassuring that C. elegans, unlike several other Nematodes, is benign to humans and no C. elegans-
related allergic reactions have been documented. Another advantage is that adult worms are self-
fertilizing hermaphrodites, but males also occur naturally in 0.1-0.2% of the total progeny. Strains can
be kept as hermaphrodites but building new strains through genetic crossing is also possible. C.
elegans strains follow the Mendelian segregation rules. The developmental fate of every single
somatic cell (959 in the adult hermaphrodite; 1031 in the adult male) has been mapped (Sulston and
Horvitz, 1977; Kimble and Hirsh, 1979, Long et al., 2009; Giurumescu and Chisholm, 2015). These
patterns of cell lineage are invariant between individuals, whereas in mammals, cell development is
more dependent on cellular cues from the embryo. C. elegans has five pairs of autosomes and one
pair of sex chromosomes. The worms display sexual dimorphism and X0 sex determination: self-
fertilizing hermaphrodites, which are XX and males, which are X0. Males are rare and only 0.1-0.2 %
of the progeny, which is a result of a rare meiotic non-disjunction of the X chromosome (Hodgkin et
al., 1978). The percentage of males can be increased by starving the plates or by temperature shock.
As all systems, C. elegans also has its drawbacks: some experiments can be challenging due to its

small size, not all metazoan genes are present in C. elegans and few cell culture lines are available.

lll.1. C. elegans general anatomy

C. elegans is an unsegmented roundworm and bilaterally symmetrical that belongs to the
Nematoda phylum, a phylogenic group assembling early evolved and simple metazoans. Despite its
simplicity, C. elegans has almost all the main tissues that higher multicellular organisms have. It has a
cuticle (a tough outer covering, as an exoskeleton), an epidermis secreting the cuticle (also called
hypodermis), four rows of muscle cells, and a fluid-filled pseudocoelom (body cavity). It also has
some of the same organ systems as larger animals. Its basic anatomy includes a mouth, pharynx,
intestine, gonad, and collagenous cuticle. Like all nematodes, they have neither a circulatory nor a
respiratory system. The four bands of muscles that run the length of the body are connected to a
small but complex neural system that allows the muscles to move the animal's body only as dorsal
bending or ventral bending, but not left or right, except for the head, where the four muscle

guadrants are wired independently from one another (Corsi et al., 2015) (Fig. 19).
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Figure 19: Schematic representation of the 2-fold embryo

On the left: 2-fold embryo represented from a side view. The red dotted rectangle represents the transversal
cut through the embryo. On the right: open section of the embryo. In yellow, D/V epidermis. In blue, lateral
cells also called seam cells. In pink are represented the four quadrants of muscles tightly connected to the D/V
epidermis through the C. elegans hemidesmosomes (CeHDs), in dark blue. Running from one lateral junction to
the other, the actin bundles are represented in green. A/P, Anterior/Posterior.

In the following sections, | will first describe in more details the internal organization of the
embryo, the different tissues and the molecular players involved, with a special focus on the
cytoskeleton as it will be of main interest in the results. Then | will discuss the different step of C.

elegans embryonic elongation.

111.2. C. elegans muscles

As found in most of the animals, muscles exist in the simple invertebrate C. elegans. Its 95
somatic muscle cells are particular, they are striated but mono-nucleated, having multiple
sarcomeres per cell (Sulston and Horvitz, 1977; Waterston, 1988, Bird and Bird, 1991). The most
abundant are the body wall muscles that are responsible for locomotion and contribute to a fully
accomplished embryonic elongation. They are arranged in four quadrants, two dorsally and two
ventrally, beneath the D/V epidermal cells, along the full length of the body. Each quadrant is a
double row of muscle cells (Moerman and Fire, 1997). Muscle cells in each longitudinal quadrant are
separated from epidermal cells by a basal lamina. Their innervation is peculiar, it plays a role only
during the post-embryonic life, since mutations affecting neuronal function do not affect muscles
during embryogenesis (Saifee et al., 1998). The muscle fibers consist of myofibrils that primarily
contain actin filaments and myosin. They generate contractions that may change their length or/and

their shape or maintain their shapes against extrinsic tensions. To establish coordinated movements
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in the full body, the force generated by muscle contractions must be transmitted both between the
neighboring muscle cells and between the muscle and the epidermis. The muscle-muscle adhesion
plaques link the neighboring cells together (Francis and Waterston, 1991; Coutu Hresko et al., 1994).
Two muscle-epidermal structures, the dense bodies and the M-lines, connect the actin filaments and
myosin filaments, respectively, to the epidermis through the muscle plasma membrane and then the
basal lamina to transmit the contractile forces out from muscle cells (Barstead et al., 1991). The force
passes first from the actin filaments of the dense bodies, through cytoskeletal adaptor proteins into
extracellular receptors, PAT-2/PAT-3 integrins (Gettner et al., 1995), which then transmit the force
into the ECM between the muscles and the epidermis. The complex of UNC-112/Kindlin, PAT-4/ILK
and PAT-6/actopaxin is another important component of the muscle attachment assembly, as it
bridges the muscular actin filaments with the PAT-3 integrin: the lack of any of these proteins
prevents the proper recruitment of actin to the muscle membrane (Rogalski et al., 2000; Mackinnon
et al., 2002; Lin et al., 2003). Muscle membranes connect to the cuticle through the epidermis via cell
basement membrane junction called fibrous organelle (FO) (Waterston, 1988; Francis and
Waterston, 1991; Moerman and Fire, 1997; Coutu Hresko et al., 1999; Hahn and Labouesse, 2001;
Cox and Hardin, 2004).

Myoblasts are born after the end of gastrulation. At this stage, muscle cells lie in two lateral
rows next to the seam cells, and some muscle cells have not yet undergone their terminal divisions.
Around 1.5-fold stage, they migrate dorsally and ventrally to contact the ventral and dorsal
epidermis. All muscle cells finish their divisions before assuming their final positions. Around the 2-
fold stage they become flattened and their attachment to the epidermis begins (Hresko et al., 1994;
Williams and Waterston, 1994; Moerman and Williams, 2006). Therefore, the alternated contractions
and relaxations of the opposing dorsal and ventral muscle quadrants can start. This contraction

pattern provides the sinusoidal movement of the worms after hatching.

111.3. C. elegans epidermis

The morphogenesis of the C. elegans embryo is controlled by the development of the
epidermis (also known as the hypodermis) a single epithelial layer that surrounds the animal. In wild-
type embryos, epidermal cells are generated on the dorsal side of the embryo (Chisholm and Hardin,
2005). A hierarchy of transcription factors regulates specification of epidermal fate. After
specification, dorsal epidermal cells rearrange, a process known as dorsal intercalation (Sulston et al.,

1983; Williams-Masson et al., 1998). Then ventral epidermis undergoes epiboly to enclose the rest of
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the embryo in a process known as ventral enclosure. Following enclosure, the epidermis elongates,
and most epidermal cells fuse to generate a multi-nucleated syncytial tissue, consisting of polarized
epithelial cells (Podbilewicz, 2000). It enables communication with the external environment and
bridges the cuticle (that the epidermis secretes apically to serve for protection and as an
exoskeleton) and the muscles. The epidermis and the muscles are tightly coupled, though separated
by the basal lamina, secreted also by the epidermis (Francis and Waterston, 1991; Hresko et al.,
1994). Morphogenesis of the epidermis involves both autonomously generated changes in epidermal
cell shape and position, and interactions with internal tissues, including the developing nervous
system and body wall muscles. Molecules required for epidermal morphogenesis thus include
components of the epidermal cytoskeleton, MTs, IFs, epidermal cellular junctions, cell signaling
pathways running between the epidermal cells and underlying tissues, and of the ECM (Priess and
Hirsh, 1986; Costa et al., 1997; Costa et al., 1998; Williams-Masson et al., 1997; Williams-Masson et
al., 1998; Antoshechkin and Han, 2002).

111.3.1. C. elegans Adherens Junctions (CeAls)

Adherens junctions (Als) in vertebrates and invertebrates are essential for cell adhesion. By
the onset of embryonic elongation, the epidermis organizes into three zones: one dorsal cell row and
one ventral cell raw, connected on both sides by one lateral cell rows, also called seam cells. These
cells are connected to each other through Al-like, referred to as C. elegans apical junctions (CeAls). C.
elegans epithelia only has this type of apical junction (Podbilewicz and White, 1994; Costa et al.,
1998; Mohler et al., 1998; Raich et al., 1999, Armenti and Nance, 2012). They have been shown to be
key components of the embryonic development from several aspects (Hardin and Lockwood 2004).
They not only seal the epidermal layer and maintain its integrity but also provide a mechanical link
between cells. They help to transmit forces between the individual cells. Therefore, they orchestrate
the epidermal morphogenetic movements. At the same time, they provide mechanical stability and
resistance against forces, generated by actomyosin contractility, muscles or other factors, like

hydrostatic pressure.

As in vertebrates and Drosophila, CeAls contains two sets of proteins, the cadherin/catenin
complex (CCC) (Costa et al., 1998) and the DLG-1/AJM-1 (DAC) complexe (Priess and Hirsh, 1986;
Francis and Waterston, 1991; Podbilewicz and White, 1994; Mohler et al., 1998). They have been
reported to localize to CeAls, based on their subapical localization and analogy with other systems.

The apically localized polarity proteins PAR-3 and PAR-6 mediate formation and maturation of
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junctions, while the basolaterally-localized regulator LET-413/Scribble ensures that junctions remain
apically positioned (Legouis et al., 2000; Armenti and Nance, 2012). PAR-6 is also essential for
epithelial polarization (Von Stetina and Mango, 2015). In contrast to vertebrates, CeAJ proteins are

not essential for general cell adhesion or for epithelial cell polarization.

111.3.2. C. elegans hemidesmosomes (CeHDs)

The intra-epidermal junctions are not the only epithelial attachments. Another key element of
proper muscle-epidermis attachment is the C. elegans hemidesmosomes (CeHD). They connect the
dorsal and ventral (but not the lateral) epidermal cells to the underlying muscles basally and to the
cuticular exoskeleton apically. The CeHDs are electron dense plaques that resemble ultra-
structurally, functionally and molecularly to vertebrate HDs, epidermis-ECM attachment structures
(Nievers et al., 1999; Litjens et al., 2006; Zhang and Labouesse, 2010). They are also interconnected
by the IFs, forming trans-epidermal attachment structures called fibrous organelles (FOs). FOs
function as tendon-like structures, bridging between the muscles and the cuticle exoskeleton
through the epidermis (Cox and Hardin, 2004, Francis and Waterston, 1985; Francis and Waterston,
1991). The IFs IFB-1/IFA-3 and IFB-1/IFA-2 are a principal component of the CeHD (Bosher at al.,
2003; Sonnenberg and Liem, 2007). IFs provide extra strength to cells, which experience a lot of
tension. They are predicted to be anchored to CeHDs through a core protein: VAB-10A (Fig. 20). It is a
plakin homologous to vertebrate plectin and BPAG1le. In its absence all the other components
disperse, aggregate, detach or form ectopic bundles (Bosher et al., 2003; Zhang and Labouesse, 2010;
Zhang et al., 2011). As it will be of importance in the results section, | will shortly discuss the

spectraplakin in C. elegans.

Spectraplakins are enormous multi-domain cytoskeletal proteins named after their features
resembling both the spectrin and the plakin family. C. elegans possesses two categories of
spectraplakin isoforms encoded by a single locus: vab-10 (Variable ABnormal morphology) (Roper at
al., 2002; Bosher et al., 2003; Suozzi et al., 2012). VAB-10A and VAB-10B share a common region with
a pair of calponin-homology (CH) domains and nine spectrin repeats (SRs) forming a plakin domain
(Suman et al., BioRxiv). When fused to GFP, The N-terminal CH-domain region of VAB-10 co-localizes
nicely with actin filaments in vivo and can be used as a fluorescent probe to visualize actin
organization (Gally et al., 2009). It means that the two CH domains serve as an actin-binding domain
(ABD) in VAB-10. The second CH domain expressed in epidermis also appears to be localized in the

CeHDs (Kim et al., 2011). Among these SRs, the SR5 of VAB-10 contains a Src Homology 3 (SH3)
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domain like the SR5 of vertebrate plectin, which is a feature shared by all plakin members
(Sonnenberg et al., 2007; Ortega et al., 2011; Gally et al., 2016, Suman et al., BioRxiv). It was
proposed that the accessibility of the SH3 embedded in a SR domain is determined by intramolecular
interaction with other SR domains, indicating complex regulation of protein interactions within these
domains (Hermann and Wiche, 1987; Ortega et al., 2011; Valencia et al., 2013). The VAB-10A-specific
region contains sixteen plectin repeats (PRs) following a small coiled-coil domain (Bosher at al., 2003;
Gally et al., 2016). The VAB-10B-specific domains contain 20 SRs, an EF-Hand domain and a
MT-binding domain called Growth-arrest specific protein 2 (GAS2)-related homology (Fig. 20).
Therefore, the predicted function of VAB-10A might be to crosslink actin and IFs cytoskeletons, while

VAB-10B might mediate interaction between actin and MTs.
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Figure 20: Schematic diagrams of C. elegans VAB-10 isoforms.

VAB-10A and VAB-10B each possesses a pair of calponin homology domains (CH1 and CH2) specialized for actin
binding. Recent work from our lab updated the number of spectrins domains in C. elegans VAB-10 by homology
to Human plectin plakin domain (Suman et al., BioRxiv). They are situated right after the CH domains (two light
purple domains). Therefore, VAB-10A and VAB-10B share a plakin domain including nine SRs (SR1-8), among
which the fifth SR also contains a SH3 domain. The PR 11-15 of VAB-10A is predicted for IFs binding. The GAS2-
related homology domain of VAB-10B binds to MTs.

Adapted from Fu et al., 2017.

Along with VAB-10A, a series of other adhesion molecules contribute to proper CeHD
maintenance. Apically there are MUA-3 and MUP-4, two homologs, essential for embryonic epithelial

morphogenesis and maintenance of muscle position (Gatewood and Bucher, 1997; Bercher et al.,
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2001; Hong et al., 2001). mua-3 shares high homology with human FBN1. It is predicted to have
collagen binding activity and IF binding activity. Similarly, mup-4, shares high homology with human
MATN4 (matrilin 4), and encodes a transmembrane protein required for attachments between the
apical epithelial surface and the cuticular matrix (Fig. 21). Basally, there is LET-805/myotactin, a
single transmembrane protein connecting the CeHDs to muscles and helping relay the contractile
information of muscles to epidermis (Hresko et al., 1999; Bercher et al., 2001; Hong et al., 2001). LET-
805 is functional anal, although molecularly different, to the mammalian a6B4-integrin. Muscle
detachment is observed in myotactin mutants, once muscles become active. Other associated
molecules are found around the CeHDs, like the nematode-specific coiled-coil protein PAT-12A,
which might contribute to the apical stabilization of IFs and VAB-10A (Hetherington et al., 2010), or
tumor suppressor Kank-homolog VAB-19, which contains C-terminal ankyrin repeats. vab-19 mutants
show muscle detachment and display aberrant actin organization. Lastly, GIT-1, a scaffolding and
GTPase associated protein (GAP), recruits other proteins such as PAK-1 and PIX-1. It is maintained at
the level of CeHDs once muscles become active (Zhang et al., 2011). The initial recruitment of these
CeHD components happens independently from each other, but they help each other in their fine

patterning at the muscle - epidermis interface (Zhang and Labouesse, 2010).
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Figure 21: Schematic representation of the C. elegans hemidesmosomes (CeHDs)

On the left: open section of the embryo. The red rectangle highlights two CeHDs, one on the apical side and
one on the basal side. On the right: structure of the CeHDs connecting muscles to epidermis. NOAH-1 and
NOAH-2 are proteins of the embryonic sheath that will become the cuticule in the larva. MUA-3 and MUP-4 are
at the apical side of the CeHD. VAB-10 and VAB-19 are present at both apical and basal sides, while IFs hold the
structure. LET-805 is localized at the basal side. A/P, Anterior/Posterior.

Adapted from Zahreddine et al., 2010 and Saurabh Tak’s thesis.
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The CeHDs start to assemble as foci at the apical and basal membranes prior to elongation and
progressively start to form circumferential bundles above the muscles during elongation. The process
depends on the presence of the underlying muscle precursors, and muscles also play a significant
role in their maturation during elongation. Indeed, muscle contractions induce a
mechanotransduction pathway that triggers the phosphorylation of IFs and therefore promotes the

further elongation of embryos beyond 2-fold (Zhang et al., 2011).

111.3.3. C. elegans extracellular matrix

As muscle contractions are essential for the elongation, they need to be properly transmitted
to the epidermis. This depends partially on the ECM, apically and basally, between the two tissues.
Therefore, the ECM can also affect elongation, especially through coordinating shape changes
between the muscles and the epidermis (Labouesse, 2012). Some ECM components influence
elongation indirectly, through affecting muscle sarcomere assembly. Other act more directly: for
instance, even a slight reduction of UNC-52 perlecan, coupled to weakened CeHDs affects the fibrous
organelle structure (Zahreddine et al., 2010). To conduct a normal embryonic development, not only
proper ECM composition is important, but also the proper attachment of the epidermis and the
muscles to the ECM. The tissues connect to the basement membrane through ECM receptors,
integrins. The muscle-specific perlecan receptors presumed to be PAT-2/PAT-3 and their lack causes
a pat phenotype. (In C. elegans, only two a- (INA-1, PAT-2) and one B-integrin chain (PAT-3) are
present). The supposed epidermal perlecan receptor is LET-805/myotactin, which can also severely
compromise elongation, when disrupted (Williams and Waterston, 1994; Hresko et al., 1994;
Rogalski et al., 1995; Hresko et al., 1999; Moerman and Williams, 2006; Zahreddine et al., 2010).
Recent work from our lab showed another key role of the apical ECM embryonic morphogenesis. It
helps preserving the integrity of the embryos and distributes tension throughout the embryo during
elongation. The leucine-rich repeat (LRR) proteins SYM-1, EGG-6 and LET-4, and the zona pellucida
(zP) domain protein FBN-1/Fibrillin have already been proposed to be part of the embryonic sheath.
They line the outer part of the embryo and/or are secreted in the extra-embryonic space. SYM-1,
EGG-6 and LET-4 were shown essential to organize the apical extracellular matrix and maintain
epithelial junction integrity (Mancuso et al., 2012). In addition, FBN-1 mediates pharynx attachment
and resistance of the epidermis to mechanical deformation during C. elegans embryogenesis (Kelley
et al., 2015). SYM-1 might also help attach muscles to the cuticle (Davies et al., 1999). Recently, along

with these already described players, we identified two ZP proteins, NOAH-1 and NOAH-2, acting in
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the same pathway, and in parallel to SYM-1, LET-4 and FBN-1/Fibrillin. NOAH-1 and NOAH-2 preserve
the embryonic integrity together with the p21-activated kinase PAK-1 via maintaining and relaying
the actomyosin contractile tension before muscle contraction. Also, during late elongation, these
ECM proteins are essential for muscle-epidermis anchorage and the input of muscle contraction

transduction to epithelia (Vuong-Brender et al., 2017).

111.4. Cytoskeleton

C. elegans has all the main cytoskeletal networks (actin, MTs, IFs, spectrins) and junctional
components that higher organisms have. IFs can be found at the level of CeHDs, establishing the
trans-epithelial connection between the apical and the basolateral CeHDs structures. Actin forms a
meshwork near the epidermal cortex that rearranges to form circumferential, parallel bundles first in
the D/V cells, followed by its rearrangement in the lateral cells (Priess and Hirsh, 1986; Costa et al.,
1997; Costa et al., 1998). As they will be of major interest in the results of this thesis, | will specify
what is inferred by bundles. They correspond to the cortical actin filaments that bias the growth of
the epithelial cell membranes and coincide with the pattern of circumferentially oriented, parallel
furrows on the cuticle of the first larval stage (Costa et al., 1997). They are constituted of several

actin filaments, as it will be discussed later.

The organization of MTs before, during and after elongation is very similar that of actin, they
are even intermingled, though MTs are still a little less regular than actin bundles (Priess and Hirsh,
1986; Quintin et al, 2016). The spectrin cytoskeleton attaches to the actin network and to the cell
membrane, to which it is apically and basolaterally linked. It is this organization that we will depict in

the following sections.

111.4.1. Actin

Actin is well conserved among different eukaryotes (Elzinga, 1973). Small differences in actin
sequences can lead to changes in their function. The actin network consists of filamentous or F-actin.
The actin filaments are righthanded helical polymers of the protein G-actin. The monomers of G-actin
are 375-amino acid polypeptides. They are single units allowing the formation of flexible structures
of diameter 4-7nm that have the capacity to organize into anything from a simple filament to a 3-

dimensional sheet (Reisler, 1993; Graceffa and Dominguez, 2003).
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The F-actin polymer has a structural polarity: the end that possesses an actin subunit that has
its ATP binding site exposed is called the (-) end or pointed end, while the opposite end where the
cleft is directed at a different adjacent monomer is called the (+) end or barbed end (Lodish et al.,
2013). Although polymerization and depolymerization can also occur at both ends, in general there is
a dynamic equilibrium between the two poles and the faster growing end is the barbed end, while
the actin monomers can dissociate mostly at the pointed end in an ATP-dependent manner (Begg,
1978, Hollenbeck et al., 1989; Jarhaus et al., 2001). Actin dynamics are influenced by the availability
of actin monomers and remodeling proteins. This group contains various proteins such as nucleating
factors which accelerate actin polymerization and are responsible for branched filaments, filament
stabilizing proteins such as capping proteins, severing proteins such as gelsolin and depolymerization
factors as cofilin (Kovar et al., 2005, Nomura and Ono, 2013). Therefore, the structural organization
of different actin networks such as bundles, dendritic networks and web like structures depends on
specialized accessory proteins. These proteins also control the interactions of other proteins such as
myosin with actin filaments. Some of these proteins will be discussed in the next paragraph. Due to
its dynamics, actin becomes a central player in various biological processes related to dynamic
cellular movements and shape changes: endocytosis, cytokinesis, organelle transport or cellular
motility (e.g. filopodia at the leading edge of lamellipodia in migrating cells) (Pollard and Cooper,

2009).

C. elegans has five closely related actins (ACT-1-5). They contribute to an apically organized
actin skeleton essential for cell shape changes and for shape maintenance during morphogenesis
(Priess and Hirsh, 1986; Costa et al., 1997). The contribution of actin to embryonic morphogenesis
has been reported from the end of gastrulation (Marston and Goldstein, 2006). Starting at the 1.5-
fold stage, the cortical actin network reorganizes dramatically and forms parallel bundles of 5-10
filaments (Labouesse, 2006). The bundles are present all over the embryonic epidermis, having a
more regular organization in the D/V cells. They are associated with non-muscle myosin I, closely
attached to the membrane, below the furrows of the embryonic sheath and they have strong
attachment to CeAls in DV cells (Priess and Hirsh, 1986). The non-muscle myosin Il subunits include
the heavy chains NMY-1 and NMY-2, the regulatory light chain MLC-4 and the essential light chain
MLC-5 (Fyrberg, et al., 1994; Shelton et al., 1999; Piekny, et al., 2003; Gally, et al., 2009). The
phosphorylation of MLC-4%8 and MLC-4™° control the activity of myosin Il in epidermal cells of C.
elegans (Gally, et al., 2009). During elongation, the number of bundles does not change, but the
spacing between them increases (Priess and Hirsh, 1986; Costa et al., 1997). Such an epidermal actin
skeleton becomes the guiding structure of C. elegans early embryonic elongation, until the start of

muscle contractions at mid-elongation, (Shelton et al., 1999; Piekny et al., 2003; Gally et al., 2009).
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Though we increased greatly our knowledge about the role of the actin cytoskeleton and
actomyosin contractility during C. elegans development, several poorly understood issues about the
organization of this network remain. Within the dorsal and ventral epidermal cells, the specific
molecular composition, the organization, and the polarity of filaments within bundles has not been
established. It is not known whether actin polymerizes as long filaments running from one dorsal-
seam CeAl to the other, whether they run from one CeAl to a CeHDs, or whether they make several
short-intermingled filaments of similar or opposite polarity. The occurrence of apparent actin bundle
discontinuities at the level of CeHDs in some backgrounds could indicate that CeHDs represent an
intermediate anchoring structure between CeAls. Another important question is the nature of the
cues that trigger the formation and orientation of these bundles. As they are present in the entire
epidermis, their organizing factors must include common features in all epidermal cells. Both polarity

and mechanical cues have been suspected to be such possible factors.

111.4.2. Actin remodeling proteins

Actin cytoskeleton is essential for a wide variety of cellular functions, such as cell motility,
phagocytosis, cell division, and muscle contraction. A tremendous number of molecules regulate the
function of actin cytoskeleton. Regulation of polymerization and depolymerization of actin is crucial

for the function of the actin cytoskeleton.

111.4.2.1. Formin

Nucleation of actin is the rate-limiting step of actin filament assembly (Cherasone et al., 2010;
Sit and Manser, 2011;). Members of the formin family nucleate unbranched microfilaments. Formins
stabilize the first actin dimer, recruit profilin, an actin monomer binding protein and then remain
bound to the growing (+) end of the filament and prevent capping proteins from terminating filament
extension. The resultant long, unbranched actin filaments can be bundled into stress fibers
(Taniguchi et al., 2009; Iskratsch et al., 2010; Kan-O et al., 2012; Breitsprecher and Goode, 2013;
Bechtold et al., 2014). Formins participate in multiple cellular processes (Goode and Eck, 2007;
Cherasone et al., 2010) including cytokinesis, cell movement and changes in cell shape. The

mammalian genome encodes fifteen formins while in C. elegans there are seven formins.
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cyk-1 acts during embryonic cytokinesis and in the excretory cell (Severson et al., 2002; Mi-Mi
et al., 2012; Shaye and Greenwald, 2016). daam-1 and frl-1 participate in Wnt-mediated cell polarity
of the B cell (Wu and Herman, 2006). fozi-1 encodes a divergent formin required in cell fate
specification of muscles and neurons (Johnston et al., 2006; Amin et al., 2007). In addition to the
spermatheca, exc-6 functions in the excretory cell, as does the second inverted formin, inft-2 (Shaye
and Greenwald, 2015; Hegsted et al., 2016; Shaye and Greenwald, 2016). And fhod-1 encodes the
only C. elegans member of the FHOD subfamily of formins and is related to the human and mouse
FHOD1 and FHOD3 (Mi-Mi et al., 2012; Pruyne, 2016). It has a characteristic proline-rich formin
homology FH1 domain, recruiting profilin-bound actin. The FH2 domain engages in formin
dimerization, forming a ring that is involved in the nucleation/processive capping of actin. Like many
formins, it is initially inactive due to an autoinhibitory interaction between the formin’s C-terminal
diaphanous autoregulatory domain (DAD) with the N-terminal diaphanous inhibitory domain (DID,
sometimes referred to as FH3). FHOD1 also contains an N-terminal GTPase-binding domain (GBD). A
coiled-coil domain is found between the FH1 and FH3 domains (Vanneste et al., 2013) (Fig. 22). It can
be activated by binding a Rac GTPase in a nucleotide-independent manner or by phosphorylation of
the DAD domain by Rho-binding kinase, although the latter does not appear to be essential in C.

elegans (Vanneste et al., 2013).

FHOD-1 (C. elegans)
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Identity to human FHOD-1

Figure 22: Schematic diagram of C. elegans FHOD-1.

Domain assignments are based on those of Schulte et al., 2008, for human FHOD1. Amino acid similarities to
corresponding domains of human FHOD1 are indicated.

Adapted from Vanneste et al., 2013.

FHOD-1 has nucleating (Patel et al., 2017) and bundling functions (Schénichen et al., 2013;
Kutscheidt et al., 2014) and may also contribute to lateral vs. dorsal/ventral differences. FHOD-1 also
functions in C. elegans muscle, where it is partially redundant with CYK-1 for formation of striated
body wall sarcomeres (Mi-Mi et al., 2012; Mi-Mi and Pruyne, 2015). FHOD-1 is localized near the Z
lines within the contractile lattice, and along the edges of growing body wall muscle cells. Actin thin
filaments still form in fhod-1 mutants, but muscles are narrower and further apart, and Z lines

attachments are defective.
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111.4.2.2. Gelsolin

Gelsolin-related proteins and actin depolymerizing factor (ADF)2/cofilin are the two major
classes of actin filament-severing proteins that enhance actin filament turnover by severing and
depolymerizing actin filaments and take part in several cell biological processes. The gelsolin family
of proteins is a major class of actin regulatory proteins that sever, cap, and nucleate actin filaments
in a calcium-dependent manner (Yu et al., 1992) and are involved in various cellular processes
(Becker et al. 2003; Feldt et al., 2019). Typically, gelsolin-related proteins exhibit three to six repeats
of homologous domains of 100—-120 amino acids, which are designated as gelsolin-like (G) domains
and each domain plays a distinct role in severing, capping, and nucleation (Sun et al., 1999;

Ghoshdastider, 2013; Feldt et al., 2019).

In C. elegans there are three genes encoding for gelsolin-related proteins: gsnl-1, fli-1 and viln-
1. fli-1 encodes a homolog of Flightless-1 (Goshima et al., 1999). FLI-1 is widely expressed in many
tissues, and fli-1 mutations cause several developmental defects (Deng et al., 2007). Little is known

about viln-1.

gsnl-1 (gelsolin-like protein-1) encodes an unconventional gelsolin-related protein. It is
ortholog of several human genes including AVIL (advillin), GSN (gelsolin), and VIL1 (villin 1). It has
four gelsolin-like (G) domains (G1-G4), unlike typical gelsolin-related proteins with three or six G
domains. It has been shown that G1 and the linker between G1 and G2 were sufficient for actin
filament severing, whereas G1 and G2 were required for barbed end capping. A PIP2-sensitive
domain was mapped to G1 and G2. At least two actin-binding sites were detected: a calcium-
dependent G-actin-binding site in G1 and a calcium-independent G- and F-actin-binding site in G3
and G4. (Liu et al., 2010) (Fig. 23). Sequence alighment suggests that GSNL-1 lacks two G domains
that are equivalent to fourth and fifth G domains of gelsolin. In vitro, GSNL-1 severed actin filaments
and capped the barbed end in a calcium-dependent manner (Pardee and Spudich, 1982; Choe et al.,
2002; Klaavuniemi et al., 2008), like gelsolin. However, unlike gelsolin, GSNL-1 stays bound to the
side of F-actin with a submicromolar affinity and did not nucleate actin polymerization, although it
bound to G-actin with high affinity (Klaavuniemi et al., 2008). It localizes to the actin cytoskeleton

and striated muscle dense body and is expressed in the epidermis.

66



(© sigangy <~ D~ DD

Severing —

Capping

PIP2 binding

Actin binding
Ca?*sensitive Ca%*insensitive
G-actin binding G/F-actin binding

(mammals)

Severing —

Capping

PIP2 binding —

Actin binding > - -
Ca“*sensitive Ca“‘insensitive Ca“*sensitive
G-actin binding  F-actin binding G-actin binding

Figure 23: Schematic diagrams of C. elegans GSNL-1 and mammalian gelsolin.

Gelsolin-like (G) domains are numbered from G1 to G6 in the order of appearance from the N-termini but not
necessarily representing sequence homology. Indeed, G4 of GSNL-1 is most closely related to G6 of gelsolin.
Functional domains of C. elegans GSNL-1 were adapted from Klaavuniemi et al., 2008 and Liu et al., 2010.
Functional domains of mammalian gelsolin were adapted by Liu et al., 2010, from Sun et al., 1999, with
modifications based on the following references: severing (Kwiatkowski et al., 1989), capping (Weber et al.,
1991 ; Sun et al., 1994), PIP2 binding (Janmey et al., 1992 ; Yu et al., 1992 ; Feng et al., 2001), calcium-sensitive
G-actin binding in G1 (Way et al., 1990), calcium-insensitive F-actin binding in G2 (Sun et al., 1994), and
calcium-sensitive G-actin binding in G4 (Pope et al., 1995).

111.4.2.3. Vilin

viln-1 is an ortholog of human SVIL (supervillin) (Pope et al., 1998; Liu et al., 2010). Supervillin
is a 205-kDa F-actin binding protein, tightly associated with both actin filaments and plasma
membranes, suggesting that it forms a high-affinity link between the actin cytoskeleton and the
membrane (Pestonjamasp et al., 1997; Ghoshdastider et al., 2013). C. elegans viln-1 is predicted to
also have actin filament binding activity. viln-1 encodes a villin-like protein with six G domains and a
C-terminal villin headpiece. It has a NH2-terminal region with one putative nuclear targeting region,
three potential protein kinase A phosphorylation sites. Its vilin-like conserved COOH-terminal domain
contains also one putative nuclear targeting region, three potential F-actin binding sites and one
potential tyrosine phosphorylation (Pope et al., 1998; Liu et al., 2010) (Fig. 24). viln-1 function is still
unknown but at the adult stage, it is expressed in the head and the tail (McKay et al., 2003; Hunt-
Newbury et al., 2007).
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Figure 24: Schematic diagrams of the villin superfamily.

Representation of the domains structure for human supervillin, C. elegans VILN-1, Dictyostelium protovillin, and
mammalian villin and gelsolin.

Adapted from Pope et al., 1998, and Liu et al., 2010.

111.4.3. Microtubules

MTs are known to form structures such as cilia and flagella, the motile and sensory whips, or
sensory devices on the surface of the cell (Haimo and Rosenbaum, 1981; Lodish et al., 2000). They
can organize themselves as tracks for the transport of materials in the cell. They are long hollow
cylinders made of protein tubulin. The outer diameter is 25 nm and these structures are rigid
compared to actin microfilaments and are more complex than actin. MTs are long with often one end
attached to a MTOC (Desai and Mitchison, 1997; Marshall and Rosenbaum, 1999). The roles of MTs

are diverse and comparatively more dynamic than actin.

The nematode C. elegans has 20 kinesins. Most kinesins walk towards the plus end of the MTs.
Some isoforms of kinesins walk towards minus end, while some do not move and depolymerize MTs
(Vale et al., 1985). MTs are circumferentially oriented in D/V cells in epidermis. They have been
proposed to provide a passive response to help elongation in the dorsal and ventral epidermis (Priess
and Hirsch, 1986; Ciarletta et al., 2009). However, recent work has indicated that MTs are more likely
to function as a transport key structure to favor the morphogenesis process (Quintin et al., 2006).
Before elongation, they are found in complex cytoplasmic networks in interphase cells or associated
with the spindle apparatus in mitotic cells. In the DV cells, they undergo a remarkable transition in
pattern at the start of elongation in C. elegans embryo and become circumferentially oriented (Priess
and Hirsh, 1986). They might be intermingled with actin microfilament bundles. In the lateral
epidermis, they remain less well-organized during the whole elongation. In DV cells they appear to be
attached to MTOC linked to membranes while the ones in seam cells are distributed throughout their

cytoplasm (Feldman and Priess, 2012). MTs function during embryogenesis and elongation was
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assessed using drugs preventing mitosis: colcemid and griseofulvin. These embryos developed
abnormalities such as depressions and constrictions and could not elongate fully. The microfilament
pattern was not affected (Priess and Hirsh, 1986). Recent data from our lab showed that during C.
elegans embryogenesis, MTs promote elongation process in parallel to the actomyosin activation
pathway LET502/ ROCK (Quintin et al., 2016). MTs are shown to be essential for elongation in a LET-
502/ROCK partially impaired background. MTs promote the transport of E-cadherin and LET-805 to
CeAls.

111.4.4. Spectrin cytoskeleton

Spectrin denotes the family of a-helical, high molecular weight, multifunctional ABPs, usually
found in association with the plasma membrane of mature cells (Marchesi and Steers, 1968; Hartwig,
1995). They are ubiquitous cytoskeletal proteins, forming two dimensional networks under the
membrane as a-B heterotetramers (Isparo et al., 2010; Brown et al., 2015). They are part of the
spectrin superfamily along with a-actinin or dystrophin (Broderick and Winder, 2005). The main
characteristic they share is the presence of SRs. Some special domains allow to distinguish some of
them such as actin binding CH domains, EF hand domains, SH3 domain or proline-rich regions, which
are potential platforms for protein interactions (Broderick and Winder 2005; Gushchina et al., 2011).
Spectrins have been first and so far, best described in red blood cells (Stokke et al., 1986; Greenquist
et al., 1978; Bodine et al., 1984; Bennett and Baines, 2001; Lux, 2016). They are concentrated just
beneath the plasma membrane, forming a 2-dimensional structure held together by actin filaments
and interacting with several membrane-bound proteins. This network provides elasticity to the cell
cortex and red blood cells can spring back to their original size after passing through a capillary.
However, for the past 10-15 years, we have started to better understand their role in non-erythroid
contexts as well. The function of spectrins in non-erythrocyte cells was unclear to a large extent for
long, but recent research highlighted their many roles in various processes, like mitotic spindle
orientation, DNA repair, cell signalling, or protein trafficking (De Matteis and Morrow, 2000, Phillips
and Thomas, 2006; Johansson et al., 2007; Kizhatil et al., 2007; Machnicka et al., 2012; Fletcher et al.,
2015).

However, one of the most evident roles of spectrins is related to membrane organization and
stabilizing membrane proteins at their right place. Spectrins are helping ion channel and cell
adhesion molecule recruitment in the endoplasmic reticulum, in the cell, Golgi and muscle

membrane or also in the nervous system. Defects in this membrane organization can lead to
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neurodegenerative diseases like spinocerebellar ataxia type 5 (Lorenzo et al. 2010; Stankewich et al.
2010), hearing loss with mislocalized voltage-gated channels at the Ranvier node in mice (Parkinson
et al. 2001; Komada and Soriano 2002) or loss of Na+ K+-ATPase from the basolateral domain in

Drosophila epithelium (Dubreuil et al. 2000).

The impact of spectrins in the mechanical stabilization of cells or tissues is also among their
most important functions. This role is evident and pivotal in erythrocytes, but growing evidence
shows that it is just as important in epithelia. For instance, mammalian BIl spectrin is needed to
maintain the proper separation between the apical and basolateral sides of epithelial cells (Kizhatil et
al. 2007). In Drosophila BH-spectrin contributes to eye morphogenesis through mediating the
interaction between cadherin junctions and the cell adhesion molecule Roughest (Lee et al. 2010).
Recent work showed that the scaffold big bang (Bbg) binds to B-heavy—Spectrin/Karst subunit at the
apical cortex and promotes Yorkie activity, F-actin enrichment, and the phosphorylation of the
myosin |l regulatory light chain Spaghetti squash. They proposed a model in which the spectrin
cytoskeleton recruits Bbg to the cortex, where Bbg promotes actomyosin contractility to regulate
epithelial tissue growth of Drosophila wing discs (Forest et al., 2018). Another example is the
Drosophila photoreceptor morphogenesis, during which Spectrins are required to control the process

through the modulations of cell membrane domains (Chen et al., 2009).

Finally, spectrins are also important during C. elegans embryonic morphogenesis and | will

detail it in the following section.

C. elegans contains three spectrins, each of them encoded by a single gene: BG-spectrin (unc-
70), BH-spectrin (sma-1) and a-spectrin (spc-1). All these three spectrins have been shown to be
essential for morphogenesis and/or muscular and neuron formation. BG and BH-spectrin probably
have distinct roles and can’t substitute for each other’s activity as neither their spatiotemporal
expression, nor their subcellular localization overlap. However, the localization of a-spectrin overlaps
with both and they form a-p heterotetramers. SPC-1 loss displays the strongest phenotype and it can
be recapitulated by the joint loss of UNC-70 and SMA-1 (Norman and Moerman, 2002; Praitis et al.,
2005). It suggests that SPC-1 is present everywhere as a crucial element when UNC-70 and SMA-1
have different spatiotemporal functions. Yet, the presence of an intact a-B-spectrin heterotetramer

skeleton, having all the three spectrins is necessary to accomplish its full function.
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111.4.4.1. BG-spectrin/UNC-70

BG-spectrin/UNC-70 is a 262kDa protein, 54,2% identical to human SPTBNL1. It is the C. elegans
ortholog of the conventional non-erythrocyte B-spectrin in vertebrates and in Drosophila (Hu et al.,
1992; Hammarlund et al., 2000). UNC-70 includes 17 SRs onsisting of 106 amino acids, a conserved
region in the first two SRs (possible adducin and/or ankyrin binding motif), two N-terminal CH
domains and a C-terminal plectrin homology (PH) domain (Hammarlund et al., 2000; Moorthy et al.,
2000) (Fig. 25). SRs are flexible rod domains consisting of triple a-helices (one parallel and two non-
parallels) that are attached through flexible linker regions. The helices are stabilized by interactions
between hydrophobic residues and are folded in a coiled coil structure. They are supposed to be the
key components in the molecular flexibility and elasticity within the entire spectrin superfamily and
they have a special characteristic to fulfill this role. CH-domains are responsible for the actin binding
ability of the protein. A PH domain allows the interaction with phospholipids; therefore, it provides a

direct attachment to the cell membrane (Broderick and Winder 2005).

UNC-70 is expressed in all tissues, including the lateral membrane of the epidermis, starting in
early embryos (Moorthy et al., 2000). Strong unc-70 mutants show that larvae cannot survive beyond
the L1 stage and present an uncoordinated coiling, which severely harm the mobility of the larvae
(Hammarlund et al., 2000). The defects of moving ability in unc-70 larva are due to the progressive
disorganization of myofilaments and the discontinuities in the dense bodies. In body wall muscles, a
reduction or loss of the sarcoplasmic reticulum is also observed. unc-70 larvae are lethal at the L1
stage, but the embryos complete the development process and hatch, meaning that UNC-70 is
dispensable for embryogenesis. UNC-70 has also been shown important for neuron formation
(S6nnichsen et al., 2005; Hammarlund et al., 2007, Schmitz et al., 2007). Depletion of UNC-70 in early
larvae leads to multiple defects in nervous system. Abnormally enlarged neuronal bodies, apparent
vacuolation in amphid neurons, abnormal axon outgrowth and ectopic displacement of neuronal
bodies can be observed in these larvae (Hammarlund et al., 2007). unc-70 mutants lose the ability to
develop sensory neurons under stress in moving larvae. Atomic force spectroscopy experiments on
isolated neurons, in vivo laser axotomy and fluorescence resonance energy transfer (FRET) imaging,
showed that UNC-70 is held under continuous tension, to transmit the pre-stress to touch receptor
neurons. Genetic manipulations that decrease such spectrin-dependent tension also selectively
impair touch sensation, suggesting that such pre-tension is essential for efficient responses to
external mechanical stimuli (Hammarlund et al., 2000; Moorthy et al., 2000; Krieg et al., 2014, Krieg
etal., 2017).
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111.4.4.2. BH-spectrin/SMA-1

BH-spectrin/SMA-1 is a 470kDa protein, C. elegans ortholog of Drosophila BH-spectrin. SMA-1
contains 30 SRs, two CH domains, a SH3 domain and a C-terminal PH domain (McKeown et al., 1998)
(Fig. 25). SH3 domains have been characterized in the protein Src and are widely known for their
contribution to signal transduction and for acting as protein interaction platforms. The SH3 domain
of SMA-1 is buried within a loop between two a-helices of the SR and they acquire a folding
transition state that can be switched when mechanical force is applied on it (Martinez and Serrano,
1999; Jagannathan et al., 2012). SMA-1 also shows an ankyrin-binding sequence present in B-spectrin
(Dubreuil et al., 1990; Thomas and Kiehart, 1997) and resembles more to Drosophila BH-spectrin at

the level of homology (McKeown et al., 1998).

SMA-1 has not been reported to impact on muscle structure or neuronal morphology. Its role
is related to epithelial cell shape changes that the epidermis, gut, pharynx, pharyngeal gland and
excretory canal cell undergo (McKeown et al., 1998; Buechner et al., 1999; Norman and Moerman,
2002; Praitis et al., 2005; Raharjo et al., 2011). sma-1(rul8) null mutants elongate at a lower rate
resulting in shorter larva with round heads (McKeown et al., 1998; Praitis et al., 2005). SMA-1 is
expressed from the early embryos, at the apical part of epithelial tissues, and is required to
determine cell shape in multiple epithelial tissues during morphogenesis (McKeown et al., 1998).
SMA-1 apical localization does not require the presence of its tetramerizing partner SPC-1, though its
organization becomes weaker and more punctate in spc-1 mutants (Praitis et al. 2005). As an actin-
binding cytoskeletal protein, SMA-1 plays a role in actin organization: in its absence the actin remains
intact at the cell boundaries and apically at the early embryonic stages but its association to the
apical membrane gets disrupted during elongation (Praitis et al., 2005). Another defect of sma-1
mutants is the expanded distribution of muscle bands, basement membrane and CeHDs structures
(Norman and Moerman 2002). Although sma-1 is clearly required for normal morphogenesis, it is not
an essential gene. It was hypothesized that SMA-1 might be a downstream target of regulatory
interactions affected by the muscle-epidermis interaction or serve as a cytoskeletal binding site for

signal transduction molecules (McKeown et al., 1998).
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Figure 25: Schematic diagrams of the three C. elegans spectrins.

Domain structure of UNC-70, SMA-1 and SPC-1.

Adapted from SMART (a Simple Modular Architecture Research Tool, http://smart.embl-heidelberg.de/)
website.

111.4.4.3. a-spectrin/SPC-1

The single a-spectrin in C. elegans is a 240kDa protein, SPC-1. It shows 61% identity and 76%
similarity to Drosophila a-spectrin, while it is 57% identical and 72% similar to human non-erythroid
a-spectrin SPTAN (Norman and Moerman, 2002). SPC-1 consists of 21 SRs, an SH3 domain and two C-
terminal EF hand domains, one domain being calcium-dependent, the other one calcium-

independent (Fig. 25).

SPC-1 is ubiquitously expressed all over the life cycle and it is recruited to the cell membrane.
Animals lacking functional spectrin do not complete embryonic elongation and die just after
hatching. Proper differentiation of the body wall muscles is also affected, myofilaments of muscles
are oriented abnormally from the longitudinal anterior/posterior (A/P) direction of the embryo, and
the width of the CeHDs is increased (Norman and Moerman, 2002). During embryogenesis, SPC-1
localizes to the cell membrane in most if not all cells, starting at the first cell stage. In epithelia, SPC-1
is localized both apically like SMA-1 and basolaterally, overlapping with UNC-70. When SPC-1 is
absent, SMA-1 localization itself is normal. On the other hand, SPC-1 localization is dependent on
UNC-70 but not SMA-1 (Norman and Moerman, 2002). spc-1 mutants also have defects in the

organization of the epidermal apical actin cytoskeleton that is needed for elongation.
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Therefore, it seems that the SPC-1/SMA-1 heterotetramers are required for a proper actin
organization in the embryonic epidermis. Overall, these reports on the role of the spectrin skeleton
in C. elegans embryonic elongation suggest that spectrins could have an important role in
development, in the maintenance of cellular structures and probably such properties as elasticity in

non-erythroid cells as well.

111.4.4.4. The spectrin heterotetramers

Spectrins do not fulfill their role as single molecules. They form a-B heterotetramers,
assembling laterally aside each other to form a dimer first. This lateral association is highly
conserved. The a- and B-spectrins show high affinity to each other and to date, no independently
existing a- or B-spectrins have been reported yet. The head to head assembly occurs through the
partial triple-helical repeats at the C-terminus of the B-spectrin and the N-terminal part of the a-
spectrin, resembling to the assembly between triple helices within a SR. In this assembly, the EF-hand
domain of the a-spectrin and the CH-domains of the B-spectrin are juxtaposed to each other. Actin
binding of the heterotetramers happens through B-spectrins. No actin binding activity has been
reported in a-spectrins, though they are required to support their B partners, possibly to promote
their proper activity (Norman and Moerman 2002). Such a heterotetramer is about 3-6nm in
diameter, 55-65nm at its resting length but it can reach 200-260nm when stretched (Bennett and
Baines, 2001; Machnicka et al., 2012).

Recent work tried to answer how such a three to five-fold extension could be achieved with
the maintenance of the heterotetramer’s structural integrity. They modeled how the spectrin
heterotetramer could function (Brown et al., 2015). Their model has been based on recent
knowledge on spectrin heterotetramers and proposes that it can undergo a seamless threefold

extension under forces and can stay linear because it functions like a Chinese finger trap (Fig. 26).
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Figure 26: The “Chinese Finger Trap” model of spectrin.

Cartoon representation depicting the domain organization of (a) erythroid and (b) nonerythroid spectrin
tetramers (a-spectrin—brown SRs; B-spectrin—yellow SRs). The pink pentagons labeled CH are the actin
binding domains other known spectrin domains are labeled EF, SH3 and PH. (c) End and side views of the SRs
that comprise each tetramer are arranged in a similar fashion to the geometry reported by McGough &
Josephs, 1990. (d) The proposed mechanism by which spectrin can undergo a threefold extension, while
remaining a linear filamentous polymer.

Adapted from Brown et al., 2015.
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At its shorter “resting” state, the heterotetramer forms a hollow cylinder. During its extension
in length, the pitch of the SRs increases and the internal diameter of the cylinder decreases (Brown et
al., 2015). Apart of modeling, the authors confirmed their hypothesis with experimentally supported
data: by the crystal structure of chicken a-spectrin tandem SRs, by structural mass spectroscopy and
by electron micrographs of the full spectrin dimers and heterotetramers from erythrocytes (Yan et
al., 1993; Pascual et al., 1997; Isparo et al., 2010; Mehboob et al., 2010). Nevertheless, this model
still leaves unanswered questions behind. For instance, it is not based on a native, full
heterotetramer and it does not address either the alternative SR-SH3 conformations in a- or BH-
spectrins. However, it proposes an interesting alternative that could help to reach a more detailed

understanding on the complexity of the spectrin skeleton.

l1.5. C. elegans life cycle and its embryonic development

The life cycle of C. elegans consists of the embryonic stage, four larval stages (L1-L4) and
adulthood (Fig. 27). C. elegans embryogenesis takes places after ventral enclosure and lasts for 12-16
hours at 20°C. The L1 larva hatches with 558 nuclei and many immature tissues (Sulston and Horvitz,
1977; von Ehrenstein and Schierenberg, 1980; Sulston et al, 1983; Bird, and Bird, 1991). At this point
the L1 larva will begin postembryonic development where it will grow five-fold in length and ten-fold
in breadth before achieving adulthood (Slack and Ruvkun, 1997, Ambros, 2000). The L1 larval stage
lasts for 16h, each of the following three stages (L2-L4) last for 10-12h. Each larval stage is separated
by a molting event, where the larva forms a new cuticle (apolysis) and sheds the old cuticle (ecdysis).
12h after molting from L4, young adults start egg production that they continue for 2-3 days (until
they run out of the self-produced sperm). After their fertile period they can live for several more
weeks before their senescence and death. In case of challenging conditions (crowd or starvation) C.
elegans can activate an alternative life cycle: L2 molts into an alternative L3 larva called “dauer”, that
has a completely sealed cuticle with enhanced resistance against external perturbation until
conditions get optimized (Cassada and Russell, 1975). Then they shed the dauer cuticle and continue

as slightly different L4 larvae (Corsi et al., 2015).
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Figure 27: Schematic representation of the life cycle of C. elegans at 20°C.

C. elegans life cycle starts with fertilization and numerous cell divisions. First cleavage occurs at about 40 min.
post-fertilization. Eggs are laid outside at about 150 min post-fertilization and during the gastrula stage. The
embryonic elongation is highlighted in green, as it will be of main interest for the following work. After
hatching, the larva goes through four larval stages before becoming an adult. Numbers in blue along the arrows
indicate the length of time the animal spends at a certain stage.

Adapted from WormAtlas (wormatlas.org).

C. elegans embryogenesis is divided into, first, a proliferative phase (350 minutes), which
covers formation of embryonic founder cells and gastrulation and second, the
organogenesis/morphogenesis (490 minutes) during which the embryo gains a vermiform shape
(Schierenberg et al., 1980; Sulston et al., 1983). | will first briefly describe the proliferative phase and

then focus in more details on the elongation phase.
After fertilization, the single cell embryo begins a series of highly stereotyped cell divisions

(Sulston et al., 1983). Proliferation events take place within the uterus and then continue in later

stages, including gastrulation and morphogenesis after the embryo is laid.

77



The C. elegans epidermis consists of 71 major and 11 minor epidermal cells, rising after the 9th
and 10th round of cell divisions, respectively. Minor epidermal cells form the extreme head and tail
epidermis; major ones form most of the epidermis (Gendreau et al., 1994; Page et al., 1997; Page
and Johnstone, 2007). Terminal divisions of the epidermis precursors lead to the following
organization: dorsally two rows of ten cells, along the antero-posterior axis; flanking both sides of the
dorsal cells one row of lateral or “seam” cells; and two rows of ventral epidermal cells at the very
lateral edges. Only 10 minutes after these divisions of epidermal precursors, the two rows of dorsal
epidermal cells also undergo a morphogenetic event, called dorsal intercalation, to line up in a single
row. They develop pointed basolateral protrusions towards the midline, intercalate with their
contralateral neighbors and elongate until they reach the seam cells of the opposite side (Sulston et
al. 1983; Williams-Masson et al., 1998). Shortly after the beginning of dorsal intercalation, at the 30
cells stage, the ventral epidermal cells on both edges also start their morphogenetic process, called
ventral enclosure. Ingressing cells become internalized and create a depression, called the ventral
cleft that needs to disappear to enable further development. They migrate into the center of the
embryonic mass to eventually create separate ectodermal, endodermal, and mesodermal
compartments. Surrounding ventral neuroblasts move therefore towards the ventral midline after
230-290 minutes after the first cleavage, to close the ventral cleft. About an hour following ventral

cleft closure, early epidermal morphogenesis can start (Chisholm and Hardin 2005).

111.5.1. Overview of the embryonic elongation

The beginning of morphogenesis overlaps with the end of gastrulation, when most cells have
ended proliferation and are joining tissue subgroups. Cells become structurally specialized to adopt
shapes and cell contents that reflect their eventual cell fates within specialized tissue compartments
(Ding et al., 2004; Chisholm and Hardin, 2005). Most epidermal cells begin to form multinucleated
syncytia, with the disappearance of intervening cell membranes (Podbilewicz, 2000). Epidermal cell
fusions normally follow a well-defined order and timing, though it can vary (Mohler et al., 1998).
Once the embryo’s developing tissues begin to form a longer worm-like shape, they become folded
within the eggshell. Early elongation events begin around 350 min after the first cleavage and involve
both microfilaments and MTs. Moving through the comma, two-fold and finally the three-fold stage,
the embryo increases its length along the A/P axis by four times and decreases its circumference by

three times until it is ready for hatching (Fig. 28).
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Figure 28: Schematic representation of the embryonic elongation of C. elegans.

During its embryonic elongation, the length of the embryo is multiplied by a factor 4 and its circumference is
reduced by a factor 2.5. This 3-hour process is affected only by cell shape changes and not by the division or
intercalation of cells. The first phase (or early elongation) depends on a ROCK-promoted actomyosin force in
seam cells (blue) and actin-promoted stiffness in D/V cells (yellow). The second phase then requires repeated
muscle contractions (yellow arrow), which induce a PAK-1-dependent mechanotransduction pathway. A/P,
Anterior/Posterior.

It is important to mention that, unlike in Drosophila and zebrafish embryonic development,
there is no cell division, cell intercalation nor cell migration (Sulston et al., 1983) but only cell shape
changes of the D/V and lateral epidermis. These changes are allowed by two main driving forces of C.
elegans embryonic elongation: the epidermal actomyosin contractility in the lateral cells throughout
the entire process and muscle activity beneath the epidermis observed at 475 min after fertilization
(around 1.7-fold stage) (Aridel et al., 2017; Gieseler et al., 2017). The elongation can thus be divided
into two phases: the early elongation — before muscles become active and the late elongation — after
muscles become active (Chisholm, 2015) (Fig. 28). Thus, it requires the interplay of not only epithelial
cell groups, but also of different tissue layers. Terminal differentiation occurs without many
additional cell divisions ((Sulston et al., 1983). In rare cases, specific cells undergo a delayed

apoptotic cell death in the embryo or in the L1 larva after fulfilling their role in tissue morphogenesis.
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111.5.2. Early elongation

Early elongation refers to the period between comma and 2-fold stages before muscles
become active. During early elongation, the epidermis starts to go through shape changes, as can be
most easily observed in the lateral epidermis: they shorten themselves along the dorsal/ventral (D/V)
direction and lengthen themselves along the A/P direction. However, the perimeter of these lateral
epidermal cells stays the same during early elongation (Vuong-Brender et al., 2017). Genetic and
pharmacological studies have shown that epidermal actomyosin contractility is crucial for elongation
since the beginning of this process. The actin filaments and the MTs start to organize into more and
more regular, circumferential, parallel bundles in the DV cells, associated to the membrane (Priess
and Hirsh, 1986; Costa et al., 1997; Williams-Masson et al., 1997; Costa et al., 1998;). This
organization also happens in the lateral cells but with a slight delay and to a less regular extent.
Interestingly, epidermal actomyosin contractility is mostly needed in the lateral cells, the DV cells
seem to passively accommodate to the early embryonic lengthening (Chisholm and Hardin, 2005;
Diogon et al., 2007). Epidermal actomyosin contractility driving this first phase of elongation is
regulated by the Rho kinase, LET-502, and the serine/threonine p21 activated kinase PAK-1. An
evolutionary conserved, actin microfilament associated Rho-GAP/RGA-2 behaves as a negative
regulator of LET-502/ROCK. RGA-2 is needed only in the D/V cells and co-localizes with the
circumferential actin bundles. Its lack unleashes myosin contractions in the DV cells, which exert
pulling forces on the circumferential bundles and indirectly on the CeAls as well. This effect can be
clearly seen on hypercontracted rga-2 mutants. The small GTPase RHO-1 is the preferred target of
RGA-2 in vitro, and acts between RGA-2 and LET-502 in vivo (Diogon et al., 2007). Moreover, the
assembly of myosin Il filaments, but not actin microfilaments, depends on the myosin regulatory light
chain (MLC-4) and essential light chain MLC-5. Earlier work showed that phosphorylation of two
evolutionary conserved MLC-4 serine and threonine residues is important for myosin Il activity and
organization. Myosin Il filaments can be inactivated through their dephosphorylation by the myosin
phosphatase, MEL-11. Additionally, the joint loss of ROCK-PAK, or ROCK-MRCK, completely
prevented embryonic elongation. It suggests that ROCK and MRCK regulate MLC-4 (Wissmann et al.,
1999; Piekny et al., 2003; Gally et al., 2009). The presence of both these regulators is vital for proper
elongation: /et-502 null mutants fail to elongate, while mel-11 mutation causes a “hypercontracted”
phenotype with bulges and rupture. On the other hand, simultaneous lack of let-502 and mel-11
suppress each other, showing that they are antagonists and argue, for the need for another kinase
activity in parallel to ROCK (Wissmann et al., 1997; Wissmann et al., 1999). In vertebrate smooth
muscle, this redundant pathway is activated by Calmodulin and myosin light chain kinase (Somlyo

and Somlyo, 2000). However, in C. elegans, there is no obvious myosin light chain kinase homolog
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(Batchelder et al., 2007). The C. elegans redundant also pathway includes FEM-2 (PP2c phosphatase).
Indeed, fem-2 mutations genetically enhance and suppress mutations of let-502 and mel-11,
respectively. Although fem-2 mutations alone show only weak elongation defects, no elongation
occurs in let-502; mel-11; fem-2 triple mutants because both redundant pathways are inactive

(Piekny et al., 2000).

Overall, C. elegans embryonic epidermal cells to undergo a smooth muscle-like actin/myosin-
based contraction redundantly controlled by LET- 502/Rho kinase and MEL-11/myosin phosphatase
in one pathway and FEM-2/PP2c phosphatase and PAK-1/p21-activated kinase in a parallel
pathway(s). In addition, it has also been shown that early elongation can be regulated, not only
through myosin, but also through the remodeling of actin filaments. Although actin microfilaments
surround the embryo, the force for contraction is generated mainly in the lateral epidermal cells
whose actin microfilaments appear qualitatively different from those in their dorsal/ventral
neighbors. The actin nucleator FHOD-1, a formin homologue, has been shown to be specifically
involved in organizing actin filaments in the contractile lateral cells (Vanneste et al., 2013, Refai et al.,
2018). Indeed, fhod-1 mutants show microfilament defects in these cells. fhod-1 also genetically
interacts with let-502, mel-11, fem-2 and pak-1. However, fhod-1 regulation of microfilaments
preferentially acts with let-502 and mel-11, and in parallel to fem-2 and pak-1. Thus, FHOD-1 may
contribute to the qualitative differences in microfilaments found in the contractile lateral epidermal
cells and their non-contractile dorsal and ventral neighbors (Vanneste et al., 2013). In mammalian
systems, autoinhibition of FHOD1 is relieved by Rho kinase, after which the FHOD1-nucleated actin
filaments, in turn, respond to Rho kinase-mediated contraction (Gasteier et al., 2003; Hannemann et
al., 2008; Takeya et al., 2008; Iskratsch et al., 2013). However, since fhod-1-like actin defects are
absent in let-502/Rho kinase mutants (Norman and Moerman, 2002; Piekny et al., 2003, Gally et al.,

2009). C. elegans FHOD-1 appears not to require Rho kinase activation during elongation.

111.5.3. Late elongation

When C. elegans embryos reach 1.7-fold to 1.8-fold, muscles located beneath the dorsal and
ventral epidermis start to become active. The actomyosin contractility is still present but is thought
to become less important for elongation (Diogon et al., 2007). The epidermis, the ECM and muscles
form a feedback network that controls embryonic elongation. In this network CeHDs are well
positioned to integrate multiple signals and influence other cellular processes. Previous work from

our laboratory unraveled a mechanotransduction pathway in which muscle contractions indeed
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trigger the elongation beyond the 2-fold stage. It transforms the mechanical input, provided by
muscle contractions into a biochemical signaling pathway acting in the D/V epidermis that leads to
CeHD remodeling (Zhang et al., 2011). Muscles strongly contract and stretch the epidermis, exerting
longitudinal stress upon it. In turn, the epidermis senses this mechanical input by a yet unidentified
molecular component that induces the recruitment of GIT-1 adaptor protein, which in turn activates
its binding partner guanine-nucleotide exchange factor PIX-1, CED-10 and PAK-1 to the CeHDs. As a
result, PAK-1, as a terminal effector of the pathway phosphorylates the IFs, which promotes CeHD
remodeling. PAK-1 is a particularly important player in our system. It is one of the three PAK proteins
found in C. elegans that are CePAK1 (PAK-1, related to the mammalian group | PAKs), CePAK2 (PAK-2,
related to the mammalian group Il PAKs) and MAX-2 (related to Drosophila DPAK3). Among them
PAK-1 is the best studied. It has a highly conserved, catalytic C-terminal kinase domain and a prolin-
rich N-terminal regulatory domain, also called GTPase-binding CRIB domain or p21-binding domain
(PBD). As already mentioned, PAK-1 forms a signaling module along with PIX-1 (PAK interacting
exchange factor) and GIT-1 (G protein-coupled receptor kinase interactor). Within this complex, PAK-
1 is most commonly activated in a GTPase-dependent way by CED-10 (C. elegans RAC1 homolog) and
CDC-42. Its localization near the junctions and the muscle attachment sites positions PAK-1 at the
very center of force transmission within the C. elegans embryonic epidermis, where this highly
conserved kinase functions as a terminal effector of elongation in multiple pathways (Gally et al.
2009; Zhang et al. 2011). As it regulates embryonic elongation relying both on chemical and physical
signals, PAK-1 is an ideal starting point to understand the interplay of epithelial morphogenesis and
mechanotransduction in development. Therefore, the idea to gain a better view on the molecular
landscape around PAK-1 during C. elegans embryonic elongation became the initial motivation of this
project. Indeed, while muscle defective mutants with no effective tension on the epidermis arrest
midway through elongation at the two-fold stage (paralyzed at two-fold stage or Pat phenotype), git-
1, pix-1 and pak-1 mutants are viable, suggesting that parallel pathways must also exist for this

regulation. It is these parallel pathways that | investigated during my PhD.
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IV. Aim of this thesis

Our understanding of C. elegans embryonic elongation largely increased in the past twenty
years. Muscle activity is a key player for C. elegans morphogenesis during late elongation, however
how it promotes embryo elongation is not entirely understood yet. Our laboratory identified a
mechanotransduction pathway downstream of muscle input but also investigated redundant
signaling pathways that could contribute to late elongation. As PAK-1, effector kinase, is an
important regulator of both early and late elongation, it became the starting point of our interaction
tests. The work of Gabriella Pasti, former PhD student, identified SPC-1, the a-spectrin as a strong
interactor of PAK-1. The joined loss of function of the two genes leads to a drastic phenotype of
elongation failure that we qualified as « retraction ». Thus, this interaction became the starting point

of my PhD project aiming to answer:

- How do SPC-1 and PAK-1 interact to the “lock” the elongation?

- Are there other players involved in this process?

As it is also well described that actin cytoskeleton plays a key role cell shape changes and that
the ratchet mechanism emerged as a general feature of epithelial mechanics, we wondered if it

could be applicable to our system. Therefore, | also tried to answer:

- To which extend is the actin cytoskeleton important for elongation?
- How do actin cables get remodeled over time?
- Can we model the progressive elongation of the embryo to understand how the

forces contribute to the remodeling of the actin?
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MATERIAL AND METHODS






Animal strains, conditions of maintenance

The list of strains used is presented in Table 5. Animals were propagated on NGM agar plates
as described previously (Brenner, 1974). Animals were held at a standard 20°C temperature except
for the measurements of hatchlings implicating sma-1(ru18), in which case L4 animals were shifted
to 15°C before egg laying and measures were performed on their offsprings. However, the growth
curves of sma-1(rul8) were performed at 20°C. The gsnl-1(tm2730) and viln-1(2413) were

outcrossed three times.

Yeast Two Hybrid Screening

Yeast two-hybrid screening was performed by Hybrygenics Services (Paris, France). The bait
component was the N-terminal 294 amino acids of PAK-1 (including the regulatory region of the
protein) fused as a C-terminal fusion to LexA. The construct was used as a bait to screen at saturation
a highly complex, random-primed C.elegans embryo cDNA library (Gomes et al., 2013). Screening
involved a mating approach on a medium lacking Trp, Leu and His, supplemented with 0.5 mM 3-
aminotriazole (Fromont-Racine, Rain and Legrain, 1997). The strongest hits of the screen can be
found in Supplementary Table 1. Reciprocal screens using the spectrin repeat #9 or the SH3 domains
of SPC-1 as baits identified PAK-1 region 160-206, and no other meaningful prey in the context of the

present study.

RNAi screens

A RNAi screen was performed in the pak-1(tm403) mutant along with a wild-type control. A
collection of 356 essential genes from the Ahringer RNAI library (Kamath et al., 2003), including
adhesion proteins, signaling proteins, phosphatases, kinases, cytoskeleton-associated proteins and
proteins important in epithelial morphogenesis, was assembled (Table 1), based on a previous screen
performed in the git-1(tm1962) background (C. Gally and M. Labouesse, unpublished). The screen
was performed in liquid culture on 96-well plates and RNAi knockdown was induced by feeding as
described (Gally, Zhang and Labouesse, 2015). The primary screen was based on enhanced lethality
and body morphology defects; the secondary screen focused on very short larvae and elongation
defects. Gabriella Pasti, former PhD student, took DIC images for body length measurements and
performed DIC time-lapse imaging for the strongest candidates. She and | performed two additional
RNAI screens. First, she used a spc-1(ra409) mutant carrying an unstable extrachromosomal rescuing
spc-1::gfp marker to look for potential enhancers of the spc-1(ra409) elongation defects. She

selected for this enhancer screen genes that had given the strongest defects in the initial screen with
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356 genes (Table 4). In both cases, young L1 hatchlings were inspected for the presence/absence of a
fluoresent spc-1::GFP signal and photographed using either a Leica DMI4000 (1* screen) or Leica
DM6000 (2™ screen) microscope. Length of the young larvae was measured using the Image)
software. Second, with the help of Flora Llense, associate professor in the team, | likewise used
a spc-1(ra409) pak-1(tm403) strain carrying an unstable extrachromosomal rescuing spc-
1::gfp marker to look for potential suppressors of the retraction phenotype. | selected 13 actin
related proteins from the Ahringer RNAI library (Kamath et al., 2003), including that were recently
reported to modulate actin remodelling in the early embryo (Naganathan et al., 2018) (Table 3). RNAi
was induced by RNAi feeding on L4 larvae maintained at 20°C, and the progeny was analyzed 20h to
30h post-feeding; for early acting essential genes (cyk-1, pfn-1, unc-60), animals were maintained at
15°C, and the progeny was analyzed 16h to 20h post-feeding still inducing more than 14% early
embryonic defects.

For specific genes (spc-1, pak-1, fhod-1, vab-10b, unc-112), RNAi was induced by injection after
preparing the double-stranded RNA (dsRNA) with the Ambion mMessage mMachine® Kit and
purifying the dsRNA with the Qiagen RNeasy’ MinElute® Cleanup Kit (Bosher et al., 2003). The
embryos were analyzed from 24h to 48h post-injection. In one case, experiments involving the strain
spc-1(ra409) pak-1(tm403); mcEx1016[spc-1(+)::GFP; Pmyo-2::RFP] (displayed in Figs. ), RNAi against
unc-112 was induced by feeding because the strain barely survived the regular microinjection

procedure.

Fluorescent translational reporter constructs

SPC-1::GFP and PAK-1::mKate

A 12633 bp genomic sequence including the spc-1 coding sequence and a 3 kb promoter was
inserted in frame with the GFP coding sequence present in the pPD95.75 vector (Addgene,
Cambridge USA). To create the Ppak-1::pak-1::mKate reporter construct, first an mKate-containing
backbone was created by exchanging the GFP-coding sequence of the pML1572, Plin-26::vab-
10(ABD)::GFP plasmid (Gally et al., 2009). In a following cloning step a 8204 bp genomic sequence,
including the pak-1 coding sequence and a 4.5 kb promoter was inserted in frame with the mKate
coding sequence present in the vector.

To test if SPC-1::GFP could rescue the function of SPC-1, Gabriella and | first crossed the different
transgenic animals of a wild-type background with mnDp33; spc-1(ra409) animals (strain DM3409),
and F1 transgenic males again with DM3409 to establish mnDp33; spc-1(ra409); Ex[spc-1::GFP].

Rescuing transgenes were recognized because all viable progeny was GFP-positive and all (or most)

88



non-viable progeny was GFP-negative, reflecting the loss of the mnDp33 balancer. To attempt
mnDp33 segregation, she repeatedly transferred single GFP-positive mothers over four generations
and examined their progeny, starting from at least two independent extrachromosomal arrays per
construct. Thereby, she successfully obtained viable spc-1(ra409); Ex[Pspc-1::spc-1(+)::gfp] animals,
and then viable spc-1(ra409) pak-1(tm403); Ex[Pspc-1;::spc-1(+)::gfp] animals through crossing and

meiotic recombination, which segregated very short retracted GFP-negative embryos.

FHOD-1 full length and alternative constructs

For the FHOD-1 constitutively active construct, Flora deleted part of the FH2 domain and the
DAD domain of a 8283 bp genomic sequence of fhod-1 (gift from David Pruyne, (Mi-Mi et al., 2012))
and inserted it under the control of the epidermis-specific 432 bp dpy-7 promoter. Deletion of the
DAD alone was obtained by inserting back the FH2 domain in the FH2/DAD deleted construct using
Hifi DNA assembly cloning Kit (New England Biolabs); the FH1/FH2 deleted construct was obtained by
deleting the FH1 domain using the Q5@ site directed mutagenesis Kit protocol (New England Biolabs).
All cloning steps relied on the use of the Phusion High-Fidelity DNA Polymerase reaction Kit (Fisher
Thermo-Scientific); the constructs were subsequently verified by sequencing. The constructs were
injected at 10 ng/ul plasmid construct, with 150 ng/ul pBSK + 5 ng/ul pCFI90 (P myo-2::mcherry) as co-
injection markers for the spc-1::gfp constructs, or 100 ng/ul pRF4 (rol) co-injection marker for pak-

1::mKate.

LifeAct::mMaple3 photoconvertible construct

For LifeAct::mMaple3, | amplified LifeAct from the pML36 plasmid (Pdpy-7::LifeAct::GFP
generated by a previous post-doc of the lab, Thanh Vuong-Brender) and mMaple3 from the pCU97
plasmid (which was codon optimized for C. elegans by Saurabh Tak, a former PhD student of the lab).
Both fragments were assembled by Gibson technique (Gibson et al., 2009 ; Gibson, 2011) using the
NEBuilder® HiFi DNA Assembly Gibson Cloning Kit and then were purified using Qiaprep® Spin
Miniprep Kit. The sequence was verified by GATC sequencing. First | wanted to use this construct to
generate a transgenic line by mosl-mediated Single Copy Insertion (mosSCl), a method to insert a
single copy of a transgene into a well-defined location in the C. elegans genome. (Frgkjaer-Jensen et
al., 2008; Frgkjer-Jensen et al., 2014). However | decided to use a more recent approch, derived
from the classical CRISPR-Cas9 system, that allows to produce integrations from extra- chromosomal
arrays (Yoshina et al., 2015). The first injection mixture consisted of 10ng/ul of the template,

100ng/ul of pBSK, and 50ng/uL of pFR60 (dpy-10 repair template, courtesy of the Robin Lab) and was
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injected into N2 hermaphrodites. After a few days, Flora proceeded to a second injection into the
progeny deriving from the first injection. The second injection mixture consisted of 70ng/ul of
pDD162, 100ng/uL of pFR61 (dpy-10 sgRNA, courtesy of the Robin Lab) and 100ng/ul of pPRF4
(roller). Then she screened for roller worms and separated this F1 them in single plates. She finally
screened the F2 for plates where Dpy/Roller worms could be spotted and single cultured these
worms. We succesfully obatined the desired strain, unfortunately its level of expression turned out

to be too low to be used.

ACT-1::GFP overexpression

To build an extrachromosomal Pdpy-7::ACT-1::linker::GFP construct, | amplified multiple
fragments separatly first and assembled them in two steps. First, pJET, Pdpy-7, act-1 and linker::GFP
have been amplified by PCR respectively from pJET blunt (NEB), pML36, genomic DNA and the
plasmid act-1::linker::GFP (that will be described in the next paragraph). Then, pJET, Pdpy-7 and act-1
were assembled first and a second Gibson inserted linker ::GFP in the previously obtained plasmid.
All constructs were purified using Qiaprep® Spin Miniprep Kit. | chose to use a linker as it was shown
that small flexible linker contribute not only to the expression efficiency of the protein, but also to
the correct folding and corresponding biological activities, especially for polymerizing proteins such
as actin (Zhang et al., 2009; Klein et al., 2014). The small linker comes from the GFP::ACT-1 from
Erin’s Cram lab (Dixon and Roy, 2005; Wirshing and Cram, 2018). This linker is 17 aa long and is about
50% GS. Gs and Ss are usually added to linker to give them better flexibility. The full construction was
injected in the worms at a concentration of 10ng/uL with the co-injection markers PRF4 (roller) at
100ng/ul and pCFJ90 (red pharynx) at 2.5ng/ul. The strain obtained was viable but very difficult to
work with due to the low transmission of the extrachromosomal array. It was again injected at a

concentration of 1ng/uL but we were not able to amplify the strain.

Pdpy-7::GFP overexpression

To build an extrachromosomal Pdpy-7::GFP construct, | amplified the desired portion from
Pdpy-7::ACT-1::linker::GFP described just above by using Q5 technique and Q5°® Site-Directed
Mutagenesis Kit. The construct has been purified using Qiaprep® Spin Miniprep Kit and its sequence
verified by GATC sequencing. Then Flora injected it in the young hermaphrodites in the following
concentrations: 5ng/ul of Pdpy-7::GFP, 100ng/ul of pRF4 (roller) and 2.5ng/ul of pCFJ90 (red
pharynx). We easily amplified the strain by picking the bright green worms at the fluorescent

dissecting microscope.
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CRISPR/Cas9 fluorescent knock-in transgenic worm generation

For the following constructs, Saurabh designed some of the different templates needed.
Flora, cloned and injected for SMA-1::GFP. And Loan Bourdon, technician of the lab, injected the

mixes in the worms for the other constructs.

| followed the established protocols for genome editing by use of CRISPR/Cas9.

ACT-1/SMA-1/SPC-1

| first used the method described in (Dickinson et al., 2013). We used the Megawhop or
Gibson techniques (Miyazaki and Takenouchi, 2002; Gibson et al., 2009; Gibson, 2011) to build the
homology repair template. | first amplified a 2 kb segment on the Carboxy-terminus or the Amino-
terminus of the target gene from genomic DNA and cloned it into the pJET1.2 vector (from Thermo
Fisher Scientific). | then inserted the fluorescent tag sequence (GFP, mMaple, mCherry or
wrmScarlet) in a way that 1500 bp are before it and 500 bp are after it for a construction in C-
terminal or the reverse for a construction in N-terminal. These 1500 bp and 500 bp segments
function as homology arms. Additionally, | inserted the same small linker as mentioned above
between the target gene sequence and the fluorescent tag sequence for ACT-1 and SPC-1. The small
linker was amplified from the GFP::ACT-1 from Erin’s Cram lab (Dixon and Roy, 2005; Wirshing and
Cram, 2018) and then was cloned into the repair template plasmids by Gibson with the NEBuilder®
HiFi DNA Assembly Gibson Cloning Kit. As the linker was extremely small (51bp) compared to the
plasmid (between 5.5kb and 8kb) | tried to insert it into; | had to adjust several times the Gibson mix.
| used www.crispr.mit.edu to select a Protospacer Adjacent Motif (PAM) site. PAM site in the
template was mutated (without changing the protein sequence) to prevent the plasmid and the
repaired genomic locus from being cleaved by Cas9. For the synthesis of single guide RNA (sgRNA),
two strategies were used. Either | cloned the sgRNA sequence in pDD162 plasmid (that also encodes
Cas9 under a germline promoter) by Gibson cloning. Or | cloned the sgRNA sequence in the pML2840
plasmid and used the pDD162 expressing the Cas9. pML2840 was derived from PIK198 (from
AddGene), Shashi Kumar Suman, a post-doc from the lab, modified it so it would be compatible to
easily insert the sgRNA sequence by PCR. This second strategy allowed me tune the sgRNA
concentration (especially decrease it when it seems that it is toxic) in the injection mix without
changing the Cas9 concentration (Katic, Xu and Ciosk, 2015). All constructs were purified using
Invitrogen Purelink™ Quick Plasmid miniprep Kit or Qiaprep® Spin Miniprep Kit. The injection mixture
consisted of 50-100ng/ul of the repair template, 25-50ng/ul of the sgRNA-Cas9, the injection markers
100ng/ul of pRF4 (roller) and 2.5ng/ul of pCFJ90 (red pharynx). When they were synthetized
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separated, the sgRNA was injected at 25ng/uL and the Cas9 at 50ng/pL. Young adults were then
injected into both gonades with this mixture and kept at 20°C. The F1 progeny was screened for
roller and/or red pharynx, which were separated and genotyped by PCR to look for positive
insertions after egg laying. A positive hit was defined by the specific band amplified from a
fluorescent marker internal primer and a primer outside of the repair template. GATC sequencing of
the transgenic lines was performed to confirm the CRISPR events. The CRISPR generated strains were

further tested for fluorescence using dissecting microscope.

Sequence of the linker: TGCCCGGGGGATCGGTGGAGCTCCACCGGTGGCGGCCGCTCTAGAACTAGT

UNC-70

| also used the method based on Self-excising drug selection cassette (Dickinson et al., 2015). |
amplified 700 bp arms flanking the site of insertion from genomic DNA by using Thermo Scientific
Phusion High-Fidelity DNA polymerase. The plasmids pJJR82 and pJJR83 were predigested with Avrll
and Spel for Carboxy terminal insertion and with Clal and Spel for Amino terminal insertion. The left
and right arm were assembled with the digested plasmid by using NEBuilder® HiFi DNA Assembly
Gibson Cloning Kit. As for the first strategy, | used www.crispr.mit.edu to select a PAM site and then
mutate it. | synthetized the sgRNA by cloning its sequence into the pDD162 plasmid. The resulting
plasmids were then injected in the gonads of young adult worms. The F1 progeny was screened
specifically for rollers with no red pharynx. Screening in the F2 generation allowed to separate the
homozygotes rollers. They were then given a temperature shock at 32°C for 4-5 hours to excise the

cassette. The insertion of the fluorescent tag was confirmed by GATC sequencing.
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Table recapitulating the different strategies used

Repair template Injected
CRISPR . .
successfully sgRNA in the CRISPRs events in worms
strategy
cloned worms
Homology- Yes, in Yes but the worms never
ACT-1::GFP Y, Y
¢ G directed repair es pDD162 es showed any fluorescence
" . Homology- Yes, in Yes but the worms never
ACT-L::linker::GFP directed repair Yes pDD162 Yes showed any fluorescence
. Homology- Yes, in
GFPACT-1 directed repair No pDD162 No
Yes, in
P pML2840 v
B Homology- Yes, in
ACT-1::mMaple3 directed repair Yes oDD162 Yes No
" . Homology- Yes, in
ACT-1::linker::mMaple3 directed repair Yes oDD162 No
. Homology- Yes, in
mMaple3::ACT-1 directed repair ves pDD162 No
ol . Homology- Yes, in
mMaple3::linker::ACT-1 directed repair Yes pDD162 No
Homology- Yes, in Yes. Strain viable and
SMA-1::GFP Y Y
directed repair es pDD162 s working well
Homology- Yes, in
-1::
SPC-1:GFP directed repair ves pML2840 No
Homology- Yes, in
PC-1::mCh Y N
SPC-1::mCherry directed repair es pML2840 °
B Homology- Yes, in Yes, but wrmScarlet is not
SPC-1iwrmScarlet directed repair ves pML2840 Yes fluorescent in the embryo
Self-excising . .
UNC-70::mCherry drug selection Yes Yes, in Yes No, due to screening
pDD162 errors
cassette
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Fluorescence imaging

DIC images for time-lapse videos were obtained using a Leica DM6000 microscope with a Leica
LAS-AF software, using a Leica DMRXA2 upright microscope equipped with a Peltier platform.
Observations were done under a 40X oil immersion objective. Mothers were cut up to gain early-
staged embryos, which were then transferred onto thin 5% soft agarose pads in a drop of M9. Z stack
image series with a 1,5 um Z step distance were taken in every 5 minutes during 6 to 10 hours.
Imagel software was used to quantify the embryonic length from the end of ventral enclosure/onset
of elongation, by taking a “segmented line” through the midline of the embryos from head to tail. To
image the coupling between actin bundles displacement in the epidermis and muscle contractions,
Gabriella used a double reporter strain carrying the epidermal Pdpy-7::LifeAct::GFP and muscle
Pmyo-3::his-24::mCherry transgenes (ML2113, see Table 5), and a spinning-disk DMI6000 Leica
microscope equipped with an Andor software (experiments for Fig. 1). Series of five Z planes (1
epidermal + 4 muscle) were imaged continuously for 5 min, with 0,5 um Z steps and no averaging.
The time interval between two Z series was 360 ms. | measured the actin displacement according to
the same strategy, using a CSUX1-Al spinning-disk mounted on a Zeiss Axio Observer Z1 inverted
microscope with a Roper Evolve camera controlled by the Metamorph software, and a 100x oil
immersion objective (experiments for Fig. S9). A Z-stack of 4 focal planes with 0,5 um step size was
acquired using a streaming acquisition mode. The time between two acquisitions was 0.41 second
during 300 time frames. To synchronize embryos, mothers were put on an empty NGM agar plate to
lay eggs for a short time window, and embryos were left to develop until the stage of interest. (For
the analyse of the contraction see next section on Image analysis. To analyse the in vivo o-
localisation between PAK-1::mKate, ABD::mcherry and SPC-1::GFP, Gabriella used the Zeiss/Roper
spinning-disk microscope under a 100X oil immersion objective, keeping the laser intensity at a
constant level throughout the experiments. Image processing and computing the co-localisation

coefficient was done using the Volocity software.

TIRF-SIM imaging

Embryos were mounted between 22 mm square cover glasses (thickness of 0.170+05 um, Carl
Zeiss Microscopy GmbH, Jena, Germany) and 25x75 mm teflon-coated glass slides with three
depression wells. Embryos were embedded in 2 pul water containing Polybeads® acrylate
microspheres of 15.4+1.43 um diameter (Polysciences, Inc). Wild-type embryos were at 1.8 to 2-fold
stage; spc-1(RNAi) pak-1(tm403) embryos were aged between 2-fold and 3-fold equivalent for a
control embryo. TIRF-SIM images (Gustafsson, 2000; Kner et al., 2009) were acquired on a

DeltaVision OMX SR imaging system from GE Healthcare Life Sciences equipped with a 60x oil
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immersion objective from Olympus (PlanApo N 60x 1.42 NA). To minimize spherical aberrations,
Pierre and | used Cargille labs immersion oil with a np at 25°C (5893 A) = 1.5140 + 0.0002. Imaging
was performed using the excitation at 488 nm with laser transmission ranging from 75 to 100% and
integration time ranging from 2 to 3 ms. For each embryo, time series of 50 to 100 TIRF-SIM images
of 256 x 256 pixels (pixel size of 80 nm) were acquired. Each TIRF-SIM image corresponds to a set of 9
images (3 phases at 3 angles) acquired within 90.6 to 99.6 ms. Reconstruction of TIRF-SIM images
(final pixel size after reconstruction is 40nm) were performed with the softWoRx software (Applied
Precision, Inc) which in turn enables a resolution enhancement by a factor of 2 leading to a final

lateral resolution in the order of 100 nm.

Image analysis and quantification of actin filament contraction, continuity and orientation

The analysis of mechanical displacement in the epidermis was performed on the movies of the
dorso-ventral actin layer by measuring the distance over time between two landmarks across the
region of contraction. The landmarks were set manually on a frame showing relaxed tissue and
tracked all over the contraction till the subsequent relaxed state. Landmarks tracking was performed
using a statistical template matching approach (Mathhews, Ishikawa and Baker, 2004). The method

was implemented as an Image) plugin (http://sites.imagej.net/Julienpontabry/), giving as output the

landmarks locations, their distance across time and the Kymographs. The curves show a pre-
contraction state, a minimum (the maximal contraction point) and an ending part where the distance
progressively increases again (see Fig. 1B and Fig. S9). After a smoothing and interpolation of the
curves, the starting, ending and maximal contraction points were extracted by studying the time
derivative of the distance and by setting a threshold on the distance itself. Finally the contraction
time was computed as the difference between the ending time and the initial time. The
quantification of bending angles was done using a similar strategy; the angles were measured on
single bundles at the frame of maximal deformation in a contraction cycle (see figure S5). The
analysis of the curves and statistics were done using a MATLAB script. All images were analysed using

the Imagel (Fili) software (NIH, Bethesda, Maryland, USA; http://rsb.info.nih.gov/ij/) and MATLAB

R2015b (The MathWorks Inc., Natick, MA). To study the features of actin pattern, | imaged embryos
that were put to sleep by oxygen deprivation through a high concentration of bacteria with the
Zeiss/Roper spinning-disk using a 100X oil immersion objective. For each experiments, a Z-stack of 16
focal planes with 0,2 um step size was acquired. On the original maximum z projection created by
imagel, a manual Region of Interest (ROI) was defined on the dorso-ventral cells (Fig. 2 and Fig. S3)
from which a high pass filter in the Fourier space was applied to select only structures smaller than

10 pixel of diameter (Fig. 2 and Fig. S3).
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Continuity: The filtered ROIs were binarized by setting to one all the pixels with a value bigger then
zero and setting to zero all the other pixels. The resulting structures were then fitted by ellipses from
which the length of the Major axis was extracted as a measure of the length of the actin filament.
The longer actin filaments are those presenting a more uniform fluorescence along their length
(showing higher continuity). By contrast, short segments result from discontinuity in the fluorescence

signal. To avoid noise only segments longer than 4 pixels have been considered for the analysis.

Anisotropy of the orientation: The same filtered ROI used for continuity measurements were used
to measure the distribution of cable orientation. Fast Fourier Transform (FFT) of these ROIs was
computed in order to work in the frequency domain and more easily identify repetitive patterns. The
resulting power spectrum of the ROIs was represented in polar coordinates in order to extract the
distribution of angles of ROI pattern (Gonzalez and Woods, 2006). The method was implemented in

an Imagel) plugin (http://sites.imagej.net/Julienpontabry/), giving as output the angular distribution.

In order to compare the distributions coming from different images the distributions were
normalized by their integral (Fig. 2 and Fig. S3). The more the pattern consists in structures oriented
in a preferred direction (the more anisotropic), the highest is the peak of the distribution in that
direction. In the case of an isotropic pattern, the angular distribution should show a flat behavior. As
an estimate of the pattern anisotropy, the prominence of the highest peak of the angular distribution
was considered (Fig. 2 and Fig. S4). The analysis of the angular distributions and statistics was
performed by a MATLAB script. All images were analysed using the Imagel (Fili) software (NIH,
Bethesda, Maryland, USA; http://rsb.info.nih.gov/ij/) and MATLAB R2015b (The MathWorks Inc.,

Natick, MA). All MATLAB scripts used for the present analysis are available upon request.

Straightness: For each embryo Teresa Ferraro, engineer in the team, selected an ROI containing the
region above the muscles based on a contraction pattern. She selected ROIs containing about ten
actin bundles, and she segmented manually seven of them for each ROI (the number of bundles that
were on average well resolved). For each bundle she computed the ‘Straightness’ as the ratio
between the length of the segmented bundle and the distance between the initial and final points of
the bundle. This quantity has an upper limit equal to one for perfectly straight lines. The manual

segmentation and ‘Straightness’ calculation were performed with a custom made MATLAB interface.
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Bundle organization: For each embryo, we measured the relative contrast in the image between the
regions occupied by actin filaments and those in-between as a proxy for bundle composition and
organization. The reasoning was that in the extreme case where bundles defasciculate to generate
individual filaments, each filament is likely to have a lower intensity than a bundle made of several
filaments, and the contrast between filaments and the intervening space would be less sharp. This
should result in a lower variance or standard deviation of the image intensity compared to a wild-

type bundle image. To do so we divided the standard deviation by the average intensity.

Statistical Analysis

For elongation curves, standard deviation was measured. For L1 length measurement and
rescue experiments | perform unpaired t-test using GraphPad Prism 5.00 (San Diego, California, USA)
and Excel. For contraction time, actin continuity and orientation, Teresa and | applied for all

genotypes a paired t-test using MATLAB.
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RESULTS

I. Introduction to the results

Morphogenesis is a process determining the shape, structure of tissues, organs and developing
organisms. More specifically, embryonic morphogenesis refers to changes in the shape and position
of cells within the embryo, especially in the epithelium. The importance of epithelial morphogenesis
has been reported in crucial developmental processes like gastrulation or neural tube formation
(Chisholm and Hardin, 2005; Colas and Schoenwolf, 2001; Davidson, 2012). A primary component of
morphogenesis is the actin cytoskeleton, which drives the cell shape changes, cell division or
migration characterizing morphogenesis. Recent studies have emphasized the role of the mechanical
forces powered by actomyosin contractility and of cortical tension in driving cell shape change
(Lecuit and Lenne, 2007; Salbreux et al., 2012). In other organisms, actin and myosin Il filaments
undergo rapid and dramatic apical flows in the minute range (Martin et al., 2009; Munro et al., 2004)
and in different tissues (He et al., 2010; Kim et al., 2011; Munro et al., 2004; Rauzi et al., 2010; Roh-
Johnson et al., 2012; Solon et al., 2009). The pulsatile activity of myosin Il induces cell deformations
because they are interspersed with phases of cell shape stabilization, in a process analogous to a
mechanical ratchet (Martin et al., 2009; Mason et al., 2011). However, C. elegans elongation does
not involve myosin Il pulsatile flows, but instead requires the input of muscle contractions providing
the necessary mechanical force (Waterston et al., 1989; Williams and Waterston, 1994). Moreover,
C. elegans muscles contract every few seconds (Zhang et al., 2011), at a time scale where cells exhibit
a mostly elastic behavior (Salbreux et al., 2012) whereas in Drosophila the ratchet powered by
actomyosin flows occurs every few minutes (Martin et al, 2009; Rauzi et al., 2010; Solon et al., 2009)
at a time scale where cells mainly exhibit a viscous behavior. Together, the fact that tension changes
are causes by an extrinsic factor and are rapid could mean that the mechanism involved in stabilizing

epidermal cells are different from those observed in Drosophila.

Therefore, C. elegans provides an anatomically simple and integrated model to study the
cellular impact of mechanical forces, which does not depend on pulsatile actomyosin flows (Vuong-
Brender et al., 2017) as described in other cells (Munro et al., 2004; Martin et al., 2009; Rauzi et al.,

2010; Gilmour et al., 2017).

We investigated how the epidermis, an elastic material, acquires progressively its shape
through cycles of muscle contractions, while extending only in the antero-posterior (A/P) direction.

More precisely, we characterized how cells adapt in response to mechanical input from muscles and
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how the cytoskeleton remodels during this process. Previous work of the lab had shown that these
contractions promote the remodeling of the CeHDs (structures connecting the epidermis to the
muscles) through a mechanotransduction pathway involving the kinase PAK-1 (Zhang et al., 2011,
Labouesse, 2011). Through genetic and molecular screens, we identified SPC-1, the alpha-spectrin, as
a partner of PAK-1 and showed that together they stabilize the shape of the full embryo by impacting

on actin remodeling through several actin-related proteins.

Il. Previous work: molecular and functional screens identify SPC-1 as a potential PAK-1 partner

During C. elegans embryonic elongation, the length of the embryo increases while its
circumference decreases. As we already discussed it in the introduction, muscular activity is crucial
for the elongation to proceed beyond the 2-fold stage. Because of their tight mechanical coupling to
the epidermis through the hemidesmosomes (CeHD), muscle contractions mechanically impact on
the epidermis. To prove it, a former PhD student of the lab, Gabriella Pasti, manually tracked the
displacement of both actin and muscle nuclei. She chose landmarks on the two tissues that she could
track for a full cycle of contraction on short spinning-disk time-lapses, at the 2-fold stage of wild-type
embryos. She developed a semi-automated analysis of the recordings to generate kymographs. From
this tracking she extracted the distance between landmarks and normalized it to the maximal length
(relaxation state). From the curves, she extracted the starting, ending and maximal contraction. She
observed that the A/P displacement of circumferentially oriented epidermal actin filaments closely
mirrors that of muscle nuclei (Fig. 1a-a”’). Importantly, all muscles do not contract simultaneously;
when some areas of the epidermis were longitudinally compressed (red line), others were stretched
(green line) before eventually relaxing (Fig. 1b-b”). The relaxation observed after each muscle
contraction raises a conundrum: how can muscle activity power embryonic elongation from 100 um
to 200 um within an hour if cell elasticity brings cells back to their initial length after each
contraction. One simple hypothesis would be that some mechanism stabilizes the transient cell
shape induced by muscle activity. For instance, during Drosophila gastrulation and germband
extension actomyosin pulsatile flows are thought to modify junctions (Rauzi et al., 2010; Simoes et

al., 2014; Vasquez et al., 2014).
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Figure 1: Muscle contractions deform the epidermis due to their mechanical coupling.

(a-a’”’) Spinning-disk micrograph of epidermis actin filaments (green) and muscle nuclei (red) in a wild-type 2-
fold embryo. Scale bar: 10 um. (a’) Kymographs (yellow rectangle area in a) illustrate the concurrent
displacement of epidermal actin and muscle nuclei. (a”’) Quantification of the area below the resulting
displacement curves (pink box) (n=11, contractions=33). (b-b") A muscle contraction/relaxation cycle
illustrating its local impact on epidermal actin filaments in a wild-type 2-fold embryo (timing above). Yellow
(relaxation), red (compression), green (stretching) distances between four landmarks (denoted 1-4): (b) [1-2],
7.8 um; [2-3], 19.8 um; [3-4], 24.6 um. (b') [1-2], 9.4 um; [2-3], 13.6 um; [3-4], 26.2 um. (b"") [1-2], 8.0 um; [2-
3], 19.2 um; [3-4], 25.0 um.

Il. 1. SPC-1 and PAK-1 loss leads to a retraction of the embryo

To uncover this mechanism, she focused on the kinase PAK-1, which mediates
mechanotransduction (Zhang et al., 2011) and regulates myosin Il (Gally et al., 2009; Vuong-Brender
et al., 2017; Campbell et al., 2019). Two screens were performed: a feeding RNAi screen in a strong
pak-1 yet viable mutant, looking for enhanced embryonic lethality (Fig. 2a) and a yeast-two hybrid
screen taking the N-terminal domain of PAK-1 as a bait (Fig. 2b). The RNAi screen identified the gene
spc-1 encoding a-spectrin as a strong pak-1 genetic enhancer. Indeed, spc-1 pak-1 embryos elongate
up to 1.5- fold and then retract to 1-fold. These short hatchlings (~¥58 um) were significantly shorter
than pak-1(tm403) (~178 um) or spc-1(RNAi) (~91 um) hatchlings (Fig. 2c, Table 1). The yeast two-
hybrid screen identified the central Src Homology 3 domain (SH3) of SPC-1, embedded within the
large, 9th spectrin repeat domain (SR9), as an interactor of the N-terminal domain of PAK-1 (Fig. 2b,
Table 2). Together, both screens pointed to a functional interaction between SPC-1 and PAK-1 during

axis elongation.
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To understand why pak-1(tm403) spc-1(RNAi) embryos are shorter than spc-1(RNAi) embryos,
she examined their elongation rate using DIC microscopy. Wild-type and pak-1(tm403) embryos
initially elongated at the same rate, while spc-1 defective embryos elongated slower and stopped
around the 2-fold stage as previously described (Norman and Moerman, 2002) (Fig. 2d). By contrast,
spc-1(ra409) pak-1(tm403) and spc-1(RNAi) pak-1(tm403) embryos reached =65 um at a slow rate,
but then could not maintain their shape, retracting back to =50 um, which neither spc-1(ra409) nor

pak-1(tm403) embryos did (Fig. 2d,h, Movie 1).
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Figure 2: Combined loss of PAK-1 and SPC-1 triggers embryo retraction.

(a) RNAi screen in a pak-1 mutant identified spc-1 as an enhancer (Table 1). (b) A yeast two-hybrid screen using
the PAK-1 N-term domain as a bait identified the SPC-1 SH3 domain as a prey (orange background) (Table 2).
(c) DIC pictures and quantification of newly hatched wild-type body length (n=38), pak-1(tm403) (n=32), spc-
1(RNAI) (n=26) and spc-1(RNAi) pak-1(tm403) (n=36). Scale bar: 25 um (wt and pak-1), 10 um (spc-1 and spc-1
pak-1). Data represent mean values = SD. Two-sided paired t-test. (d-j) Loss of the proteins GIT-1 and PIX-1,
acting upstream of PAK-1 in the mechano-transduction pathway promoted by muscle contractions, in the
absence of spc-1 also triggers a retraction phenotype. (d) Elongation curves and (e-j) terminal phenotypes of
wild-type (n=12), (e) pak-1(tm403) (n=11),(f) git-1(tm1962) (n=10), (g) pix-1(gk416) (n=10), spc-1(RNAi) (n=8),
(h) spc-1(RNAi) pak-1(tm403) (n=9), (i) spc-1(RNAI) git-1(tm1962) (n=11), (j) spc-1(RNAi) pix-1(tm416) (n=8).
Pink box, period of muscle activity. Scale bar: 17 um. Data represent mean values + SEM.
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As mentioned earlier, muscle tension is important for embryonic elongation (Williams and
Waterston, 1994; Zhang et al., 2011). When muscle activity is inhibited, elongation is halted, and
embryos are paralyzed at 2-fold stage. Muscle tension is responsible for compressing and squeezing
the epidermis laterally. As a result, epidermis experiences a tension inducing the recruitment of GIT-
1 and PIX-1, acting upstream of PAK-1, to the CeHDs. Therefore, CeHD remodel via PAK-1 / PIX-1 /
GIT-1 signaling promoting embryonic elongation. We could have expected mutants for these three
genes to be arrested at 2-fold. However, git-1(tm1962), pix-1(gk416) and pak- 1(tm403) mutants are
viable although shorter than wild-type at hatching (Fig. 2d-g) suggesting the existence of at least a
parallel pathway to the one described before (Zhang, Landmann et al. 2011). This idea was confirmed
by spc-1 knockdown in git-1 or pix-1 mutants, which induced retraction phenotype as the one just

described in spc-1 pak-1 embryos (Fig. 2d-j).

Il. 2. This retraction phenotype depends on the muscle input

This last observation led her to think that the retraction phenotype could be linked to muscle
activity. This idea was supported by the fact that spc-1(RNAi) pak-1(tm403) embryos started to
retract at the onset of muscle contractions in control embryos (box in Fig. 2d). To directly prove this,
she abrogated muscle function in spc-1(ra409) pak-1(tm403) embryos by knocking-down the kindlin
homolog UNC-112 (Rogalski et al., 2000). When UNC-112 is absent in wild-type background, it leads
to disruption of myofilament attachment structure, causing a 2-fold arrest. Strikingly, spc-1(ra409)
pak-1(tm403) embryos defective for unc-112 no longer retracted (Fig. 3a,f ; Movie 2). In addition, |
verified that the joint loss of SPC-1 or PAK-1 along with UNC-122 would not lead to short embryos
similar to a retraction phenotype due to the loss of muscle activity. Indeed, unc-112(RNAI); pak-
1(tm403) and unc-112(RNAi) spc-1(ra409) behaved very similarly to unc-112(RNAi) (Fig. 3a,c,d);
supporting the rescue of the retraction by unc-112(RNAi) in spc-1 pak-1 background. We conclude
that the mechanical input provided by muscles to the epidermis induces the retraction phenotype

observed in spc-1 pak-1 double mutants.
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Figure 3: spc-1 pak-1 retraction is muscle dependent.

(a) Elongation curves and (b-g) DIC pictures showing the terminal phenotypes of (b) unc-112(RNAi) (n=14), (c)
unc-112(RNAi); pak-1(tm403) (n=8), (d) unc-112(RNAIi); spc-1(ra409) (n=4), (e) spc-1(ra409) (n=8), (f) unc-
112(RNAi); pak-1(tm403) spc-1(ra409) (n=7), (g) spc-1(ra409) pak-1(tm403) (n=8). Pink box, period of muscle
activity; bracket, extent of retraction. (d) Terminal phenotype of unc-112(RNAi); spc-1(ra409) obtained by
inducing unc-112(RNAJ) in the strain ML2436 bearing a rescuing extrachromosomal spc-1::gfp array and looking
for embryos having lost the array; we could only obtain a few embryos of the desired phenotype despite
numerous repeats (n=4), which all had the phenotype illustrated here and is similar to that of spc-1(ra409)
alone. Scale bar: 17 um. Data represent mean values + SEM.

lll. PAK, SPC-1, SMA-1 co-localize with actin near the epidermal cell membrane

lll. 1. PAK-1 and SPC-1 localize along the actin filaments

A previously proposed role of SPC-1 is the maintenance of proper actin distribution (Norman
and Moerman, 2002). SPC-1 is supposed to ensure this role through forming heterotetramers with -
spectrins. In C. elegans embryos, the apical localization of BH-spectrin and the lateral localization of
BG-spectrin both have been reported (Praitis et al., 2005; Hammarlund et al., 2000). To examine how
SPC-1/PAK-1/actin physical interaction could occur in the epidermis, we first looked at the potential
co-localization of these actors. New constructs of SPC-1::GFP and PAK-1::mKate have been developed
by Gabriella. Her spinning-disk images of the new PAK-1::mKate reporter allowed to see a more
subtle, previously less-described localization of PAK-1 near the cortex in C. elegans embryos (Fig. 4a).
Image processing and computing the co-localization coefficient was done using the Volocity
software. The XZ and YZ projections better highlighted these regions of co-localization at the level of
the apical cortex. They showed a high level of in vivo co-localization at the uppermost apical region of

the epidermis, near the cell membrane and at the level of junctions. This localization pattern was
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highly reminiscent to actin expression (Fig. 4a,c). As the interaction between the spectrin and actin
cytoskeleton has been reported both in erythroid and non-erythroid cells, in several model
organisms (including C. elegans embryos) (Baines, 2009; Bennett and Baines, 2001; Korsgren and Lux,
2010; Korsgren et al., 2010 ; Machnicka et al., 2012), it was reasonable to suspect that PAK-1 and
SPC-1 also co-localize with actin. Therefore, under the same conditions just described, she performed
an in vivo co-localization test between our SPC-1::GFP and an ABDyag-10::mKate reporter. Although a
strong intestinal and cytoplasmic expression of SPC-1::GFP on maximal Z-projection images made it
difficult to observe the most apical SPC-1 localization, on the single Z merge images and on the co-
localization channel a clear co-localization can be detected between SPC-1 and actin at the cortical

regions, near the cell membrane and the junctions (Fig. 4b,d).

¢ PAK-1:mKATE + SPC-1:GFP d SPC-1::GFP + ACTIN (ABD::mKATE)

co-localization co-localization

Figure 4: PAK-1 and SPC-1 colocalize with actin filaments.

(a-b) Distribution of (a) PAK-1::mKate (n=20) and (b) SPC-1::GFP (n=13) in a late embryo. Enlarged pictures of
PAK-1 and SPC-1 showing a filamentous distribution in the dorso-ventral (D/V) epidermis similar to actin
filaments. Scale bar: 10 um. (c) Fluorescence pictures of PAK-1::mKate (red) and SPC-1::GFP (green) (n= 20): the
panel shows the colocalization image for the most apical focal planes (top image), and full XZ (green panel) and
YZ (red panel) projections. The level of co-localization is high based on Pearson’s correlation coefficient (0.7-
0.9, n=20). The highest level of co-localization is detected at the apical cortex. (d) Fluorescence pictures of Plin-
26::VAB-10(ABD)::mKate (red) and SPC-1::GFP (green) (n=8): the panel shows the colocalization image for the
most apical focal planes (top image), and full XZ (green panel) and YZ (red panel) projections. The level of co-
localization is high based on Pearson’s correlation coefficient (0.7-0.9, n=8). The co-localization is almost
exclusively detected at the apical cortex. The gene lin-26 drives expression in the epidermis; VAB-10(ABD)
corresponds to the two actin-binding domains (calponin homology) of the protein VAB-10. Scale bar: 10 um.
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I1l. 2. Super-resolution shows precise co-localization of actin and spectrin cytoskeletons

As it has also been shown that SMA-1 maintains the association between actin and the apical
membrane via interactions at its N-terminus (Praitis et al., 2005), | tried to probe it further thanks to
Flora Llense, associate professor in the lab, who developed a SMA-1 reporter using CRISPR-Cas9
technology. With this new reporter, | used SIM-TIRF super resolution microscopy to unravel a more
detailed organization of the spectrin/actin cytoskeletons. TIRF microscopy allowed us to illuminate
our embryos only at the level of the epidermis and SIM microscopy uses spatially structured
illumination light in three directions. The reconstruction of TIRF-SIM images requires the acquisition
of a minimum of three phase shifts per pattern rotation. Therefore, one final image corresponds to a

set of 9 images (3 phases at 3 angles).

To perform the experiment | used a strain combining our SMA-1::GFP to the ABDyag-10::mKate
reporter described in the previous experiment. | acquired short movies of 50 to 100 TIRF-SIM images
(about 5-10 seconds) of embryos at the 2-fold stage, when their muscles start to be active. The
imaging revealed to be difficult as the embryo would often move faster than the temporal resolution
of the microscope. Nevertheless, | could observe colocalization of SMA-1 along actin cables, with a
dotted pattern (Fig. 5b). Indeed SMA-1 did not seem to form a continuous signal along the actin

cables but rather a succession of small dots.

a SMA-1::GFP + ACTIN (ABD::mKate) b SPC-1:YFP + ACTIN (ABD::mKate)
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Figure 5: SPC-1 and SMA-1 colocalization with actin filaments is highlighted by TIRF-SIM microscopy.
(a-b) TIRF-SIM snapshots of grouped Z movies to emphasize the colocalization of (a) SMA-1 (SMA-1::GFP)
(n=20) and (b) SPC-1 (SPC-1::YFP) (n=6) with actin bundles (ABDvag-10::mKate). Scale bar: 2 um.
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Then, | also wondered if TIRF-SIM microscopy could help refine the colocalization between
actin and SPC-1 compared to spinning-disk imaging. For this experiment, | used a CRISPR strain of
SPC-1 (SPC-1::YFP, ordered from SunyBiotech) instead of the extrachromosomal overexpression
strain Gabriella used before. Once again, | crossed this new reporter to ABDvyag-10::mKate.
Unfortunately, the signal of SPC-1::YFP appeared very fuzzy and was difficult to work with (Fig. 5a). It
seemed that SPC-1 still colocalized with actin but it did not significantly improve our knowledge

compare to spinning-disk imaging.

By lack of time | could not perform a lot of acquisitions with these two strains, but | still want
to better understand how spectrins and actin interact in vivo. Therefore, | am planning more
acquisitions using a different approach. | would like to image anesthetized embryos by using sodium
sulfite that mimics hypoxic stress (Jiang et al. 2011). It would allow me to image the embryos with
more ease and at later stages of development (3-fold), when the actin and spectrins pattern will be
sharper. | am also planning to work with other reporters. | am currently crossing another SPC-1
CRISPR strain (SPC-1::mKate, courtesy of Erin Cram’s lab) to SMA-1::GFP and to LifeAct::GFP (another
actin reporter that will extensively be discussed in the following results). By changing the reporters, |
hope to obtain a better signal and maybe access to the localization of the two spectrins in respect to
each other. SMA-1 appears as a succession of dots along the cables and it would be interesting to see
if SPC-1 intercalate in between or if it perfectly colocalizes with SMA-1. Overall it would give us a

clearer picture of the two spectrins localize and interact with actin during C. elegans elongation.

lll. 3. Other tools have been developed to investigate actin dynamics

To better understand the interaction between actin and the spectrin cytoskeletons, | examined
their localization and dynamics by in vivo imaging and super resolution microscopy as presented
above. However, the original goal was even more ambitious: further elaborate the internal
organization of these actin cables and their precise interaction with the spectrin cytoskeleton.
Indeed, the circumferential actin bundles are formed of 5-10 individual filaments of about 7nm each
(Priess and Hirsh, 1986; Pasti and Labouesse, 2014). However, nothing is known about the length of
the individual filaments and their orientation inside the bundle. Considering data collected from in
vitro experiments and other systems (Burlacu et al., 1992; Edelstein-Keshet and Ermentrout, 1998;
Cooper, 2000; Haine et al., 2015), it seems unlikely that actin filaments could run uninterrupted from

one side of the DV cell to the other.
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Therefore, we can imagine several scenarios raising the following questions (Fig. 6):

- Are they all orientated in the same direction (either from the junction to the CeHD or the contrary)?
- Are they organized as anti-parallel filaments?
- Can the filaments run uninterrupted from the junction to the CeHD or is the bundle subdivided in

more mini-filaments?

DV / lateral
cell junction

1]
[
____“

Hypothesis 1 Hypothesis 2 Hypothesis 3 Hypothesis 4 Hypothesis 5

Figure 6: Schematic representations of the different hypothesis about actin organization inside a bundle.
Hypothesis 1 and 2: actin bundles are constituted of long filaments going from one DV/lateral cell junction to
the CeHDs. Hypothesis 3 and 4: actin bundles are constituted of several smaller filaments all orientated in the
same direction. Hypothesis 5: actin bundles are constituted of several smaller filaments in anti-parallel
disposition.

It was to address these questions that | initially turned to developing new reporter tools and
use super resolution microscopy. To do so, | developed different strategies but most of them
remained unsuccessful or unfinished. Here is an overview of what has been tried, what worked and

what could be used for experiments in the future.

| tried to build fluorescent marker knock-in of actin and spectrins using CRISPR Cas-9 genome
editing strategy. In C. elegans, there are five genes encoding for actin: act-1, act-2, act-3 (redundant,
controlling cytoplasmic microfilament function in the early embryo, expressed in the epidermis), act-
4 (expressed in body wall and vulval muscles and the spermatheca), act-5 (expressed only in
intestinal cells and in the excretory cell). Since | am interested in the localization and organization of
actin in the epidermis through the embryonic elongation of the worm, | chose to work with ACT-1 to
design 8 different constructions, with the help of Saurabh Tak. | started to couple ACT-1 either to GFP
or to mMaple3 (photo-convertible protein) at C-terminus or at N-terminus. Once | obtained the four
possible combinations, | inserted a linker between ACT-1 and the fluorescent reporter. This linker has
been shown to ease the interaction of the tagged proteins as actin forms polymers (Dixon and Roy,
2005; Zhang et al., 2009; Klein et al., 2014; Wirshing and Cram, 2018). Then, with the help of the

technician of the lab, Loan Bourdon, | proceeded to injections to obtain CRISPR events in worms. We
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tried various injections mixes and although we did not get insertions for all the constructs, we did
obtain many CRISPR events visible by genotyping. Unfortunately, | have never been able to spot
fluorescence of the constructs in the embryos by spinning-disk imaging. | never obtained a functional
tagged protein expression, probably due to the redundancy of the act genes. In parallel, | also
worked on developing an extrachromosomal ACT-1::GFP construct, that has been successfully
injected in the worms at a concentration of 10ng. The strain obtained was viable but very difficult to
work with due to the low transmission of the extrachromosomal array. Therefore, with the help of
Flora, we tried to generate another strain injected at a lower concentration of 1ng and this time we
failed to amplify a viable strain. By lack of time | did not pursue in that direction. However, it could
still be interesting to try injections again at different concentrations to generate a viable strain.
Similarly, for the actin CRISPR, | did not have enough time to troubleshoot and develop alternative

constructs, maybe with other types of linkers or other locations of insertions.

| also worked on building an alternative LifeAct reporter, in case no viable CRISPR strain could
be generated for actin. | combined LifeAct to mMaple3, a photoconvertible protein, which turns to
red from green on being illuminated by UV light (Wang, Moffitt et al. 2014). The goal was to use it for
FRAP analysis using spinning microscopy, to get an idea of the dynamics of actin in our system. To
generate this strain, with the help of Flora, we used a locus-specific integration of extrachromosomal
transgene based on the CRISPR/Cas9 system (Yoshina et al., 2015). We successfully obtained the

strain; however, the expression level was not sufficient to perform the experiment we had planned.

In parallel, we used the same CRISPR technology with the three spectrins: the a-spectrin SPC-1
(required for body morphogenesis, formation of body wall muscles, locomotion, and larval
development), the Rg-spectrin UNC-70 (required for normal body curvature and shape, normal
movement, and correct localization of the a-spectrin SPC-1) and the Ry-spectrin SMA-1 (required for
a normal rate of elongation and thus, for a wild-type body length upon hatching). As mentioned
above, thanks to Flora, we easily obtained a functional SMA-1::GFP, that could be used for super-
resolution. For UNC-70::mCherry the cloning has been done and the plasmids are ready to be
injected, if needed in the future. For SPC-1::wrmScarlet, | did obtain a viable strain nicely expressing
the tagged SPC-1, but | was really disappointed to realize that wrmScarlet, although extremely bright
in the larvae (El Mouridi et al., 2017), is not expressed at all in the embryo. Since this strain turned
out to be useless, the cloning for alternative SPC-1::mCherry and SPC-1::GFP constructs has been
completed, but again by lack of time, they have not been injected in the worms and we requested
the SPC-1::mKate2 strain developed by Erin Cram’s lab (Wirshing and Cram, 2018), as mentioned

earlier.
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Overall, | tried to develop new reporters for actin and spectrin visualization. Unfortunately,
most of them were unsuccessful and by lack of time | could not try other strategies. Therefore, all the
work that will be discussed later, have been performed using our already existing dpy-7::LifeAct::GFP

construct.

IV. Genetic interactions of pak-1, sma-1, unc-70, vab-10b affects elongation

In most systems, spectrins can fulfill their role only if they form a-B heterotetramers.
Therefore it was important to address if, similarly to spc-1, C. elegans B-spectrin coding genes, sma-1
(encoding for BH-spectrin, the apical partner of a-spectrin) and unc-70 (encoding for BG-spectrin, the

lateral partner of a-spectrin) could be involved in a genetic interaction with pak-1.

As reported previously, the loss of unc-70 does not affect embryonic elongation; L1 larvae look
almost normal (Fig. 7b). The serious larval defects due to the absence of unc-70 develop gradually
during the larval life caused by neuronal problems, adults get paralyzed and dumpy (Hammarlund et
al. 2000). unc-70(RNAi); pak-1(tm403) double mutants were similar to pak-1 single mutants (Fig.
7c,e). Similarly, to unc-70, sma-1(rul8) L1 show a 2.5-fold arrest but are viable (Fig. 7d). When unc-70
is simultaneously downregulated with sma-1, they recapitulate, but do not enhance the ~1.7-2fold
embryonic elongation arrest of spc-1 single deficient embryos (Norman and Moerman 2002). And
when sma-1 and spc-1 are both downregulated, the result is not significantly different from spc-1
single mutants. Therefore, | wondered if | could recapitulate the retraction phenotype with R-subunit
mutants. But even the triple deficient unc-70(RNAi) sma-1(rul8); pak-1(tm403) arrested around the
2-fold stage and never showed a retracted phenotype as spc-1(RNAi) pak-1(tm403) does (Fig. 7f-k).
Hence, in the absence of PAK-1, the knockdown of each B-subunit had a milder phenotype than in
the absence of SPC-1, even though the By-spectrin SMA-1 appeared more important than the Re-
spectrin UNC-70. It suggested that SPC-1 functions in interaction with PAK-1 to stabilize embryonic

shape independently of B-spectrin subunits.
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Figure 7: Genetic interactions of pak-1, spc-1, sma-1 and unc-70 affect elongation.

(a) Quantification of L1 hatchling length and DIC pictures showing the terminal phenotypes of wild-type (n=65),
unc-70(RNAi) (n=23) (b), pak-1(tm403) (n=47) (c), sma-1(rul8) (n=28) (d), unc-70(RNAi) ; pak-1(tm403) (n=16)
(e), sma-1(rul8); pak-1(tm403) (n=52) (f), unc-70(RNAi) sma-1(rul8) (n=33) (g), unc-70(RNAi) sma-1(rul8) ;
pak-1(tm403) (n=26) (h), spc-1(RNAi) (n=27) (i), sma-1(rul8); spc-1(RNAi) (n=28) (j), spc-1(RNAi) pak-1(tm403)
(n=) (k),. Scale bar: 25 um. Data represent mean values + SD. Two-sided paired t-test. P-values: *<0,05;
**<0,001; ***<0,0001; ns, not significant.

However, one of the isoforms of the spectraplakin VAB-10 showed a genetic interaction with
both SPC-1 and SMA-1. Indeed, as seen in the introduction, vab-10 generates isoforms related either
to plectin (VAB-10A) or to microtubule actin cross-linking factor (VAB-10B) and have been reported
to have specific localizations and functions in the epidermis (Bosher et al., 2003). The loss of VAB-10A
impairs the integrity of FOs, leading to epidermal detachment from the cuticle and muscles, while
VAB-10B loss increases epidermal thickness during embryonic morphogenesis when epidermal cells

change shape, suggesting that it protects cells against tension that builds up within the epidermis.

| focused on VAB-10B and | examined elongation rate of different genotypes using DIC
microscopy. As previously described, sma-1(rul8) elongated until 2.5-fold and survived after
hatching (Fig. 8a,b). vab-10b(mc44) also elongated but were slightly shorter and stopped around 2.3-
fold (Fig. 8a,c). However, vab-10b(RNAi); sma-1(rul8) showed a 2-fold arrest quite similar to spc-
1(409) embryos (Fig. 8a,d, Movie 3). In addition, vab-10b(mc44); spc-1(RNAi) showed two different
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behaviors. About 60% of the embryos were shorter than spc-1(ra409) and stopped their elongation
around 1.7-fold (Fig. 8a,e, Movie 3). The 40% others first elongated and could not maintain their
shape when muscles started to contract. They retracted in a very similar fashion to that of spc-

1(ra409) pak-1(RNAi) (Fig. 8a,f,g, Movie 3).

a sma-1(ru18) vab-10b(mc44)  vab-10b(RNAI); sma-1(ru18)
spc-1(ra409) vab-10b(mc44); spc-1(RNAI)
vab-10b(mc44); spc-1(RNAI) spc-1(ra409 pak-1(tm403)

150 .
muscle contractions

100

Length (um)

0 30 60 90 | 120 150 180 210 240 , ~
Time (minutes) vab-10b(mc44); spc-1(RNAI)  spc-1(RNAI) pak-1(tm403)

Figure 8: Combined loss of SPC-1 and VAB-10B also triggers embryo retraction.

(a) Elongation curves and (b-g) DIC pictures showing the terminal phenotypes of (b) sma-1(ru18) (n=8), (c) vab-
10b(mc44) (n=6), (d) vab-10b(mc44); sma-1(rul8) (n=10), spc-1(RNAi) (n=8), (e) vab-10b(mc44); spc-1(RNAI)
(n=11) that do not retract, (f) vab-10b(mc44); spc-1(RNAi) (n=8) that retract and (g) spc-1(RNAi) pak-1(tm403)
(n=8). Pink box, period of muscle activity. Scale bar: 17 um. Data represent mean values + SEM.

These results suggested that VAB-10B may also play a role in stabilizing the shape of the
embryos during elongation. Recent work from our lab showed that VAB-10 acts as a CeHDs
mechanosensor and could be the molecular component that induces the recruitment of GIT-1,
therefore the activation of the mechanotransduction pathway downstream of muscles (Suman et al.,
BioRxiv). | also mentioned that although muscle defective mutants show a strong phenotype (2-fold
arrest), git-1, pix-1 and pak-1 mutants are viable, suggesting the existence of parallel pathways for
this regulation. The retraction of spc-1 pak-1, git-1; spc-1 and pix-1; spc-1 embryos confirmed this
idea. The enhanced phenotypes of vab-10b combined to either sma-1 or spc-1 strengthened it even

more.
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V. The organization and remodeling of actin filaments is a key element of the retraction

V. 1. Spinning-disk characterization of the actin disorganization in spc-1 pak-1 embryos

The simplest interpretation of the retraction phenotype observed in spc-1 pak-1 embryos is
that a cellular structure maintaining embryo shape fails to emerge or collapses in spc-1 pak-1 double
mutants once muscles contract. Two arguments suggest that this structure corresponds to the
bundles of 3-5 actin filaments present in the dorso-ventral (D/V) epidermis (Costa et al., 1997; Priess
and Hirsh, 1986). First, SPC-1/a-spectrin and its binding partner SMA-1/Ry-spectrin (apical) or UNC-
70/ Bg-spectrin (basolateral) form an actin-binding hetero-tetramer co-localizing with actin (Praitis et
al., 2005) and partially with PAK-1 in epidermal cells (Fig. 4). Second and foremost, treating C.
elegans embryos with the actin-depolymerizing drug cytochalasin-D induces a retraction phenotype

very similar to that presented herein (Priess and Hirsh, 1986).

Thus, with the help of Teresa Ferraro, engineer in the lab, we characterized actin filaments
organization, by imaging a LifeAct::GFP probe expressed specifically in the epidermis under the
promotor dpy-7. In C. elegans, the contribution of actin to embryonic morphogenesis has been
reported from the end of gastrulation (Marston and Goldstein, 2006). Actin forms a meshwork near
the epidermal cortex but prior to embryonic elongation it rearranges to form circumferential, parallel
bundles first in the D/V cells, followed by its rearrangement in the lateral cells. Once the embryonic
elongation is completed, the circumferential bundles disassemble (Priess and Hirsh, 1986). Thus, we
first performed some texture analysis (Fig. 9a-a’’) on spinning-disk images. We chose manually ROIs
of a constant size in the D/V area for all genotypes. On these ROIs we performed a Fourier transform
analysis with a high pass filter to select only small structures. After this treatment, the ROl were
either binarized and fit by ellipses to extract the continuity of the actin filaments or directly used to

77

measure the distribution of cable orientation (Fig. 9a”’). These analyses were done on anesthetized
embryos (put to sleep by oxygen deprivation through a high concentration of bacteria) at different
stages (1.7-fold, 2-fold and 3-fold) to get higher resolution of the actin compared to live imaging.
Segmentation analysis of the fluorescence signal associated with actin filaments in the D/V epidermis
revealed more discontinuity in spc-1 pak-1 double deficient embryos (Fig. 9d-d’””’) compared to the

177

control genotypes (Fig. 9a-c””’). Moreover, Fourier transform analysis indicated that their degree of

anisotropy relative to the circumferential axis was abnormal (Fig. 9d"’-d""’).
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Figure 9: Actin filaments show organization defects in spc-1 pak-1 defective embryos.

(a-e) Epidermal actin filaments visualized with the Pdpy-7::LifeAct::GFP reporter construct in wild-type (a-a’),
pak-1(tm403) (b-b’), unc-112(RNAi) (c-c’), spc-1(RNAi) (d-d’), spc-1(RNAi) pak-1(tm403) (e-e’) (at mid-
elongation (2-fold equivalent) stage. Yellow rectangle, region of interest (ROI). (a’-e’) ROI after binarisation
(green) and major axis detection (red), based on (a’”’) three steps of image treatment for continuity and
orientation analysis. (a”’) Actin continuity: distribution of actin segments based on their length. Scale bar: 10
pum (a-e). Scale bar: 1 um (a’-e’).

In more details, at 1.7-fold — thus before muscles start to contract — the actin is still organized
as a meshwork for all genotypes. At 2-fold the actin cable anisotropy has decreased and
circumferential parallel actin bundles run through the DV cells from one DV/ lateral cell junction to
the other. Later, this pattern becomes even sharper and all genotypes get more organized with time,
differences among them become less significant (Figs. 10-11). Overall pak-1 and unc-112 display
similar organization through time. spc-1 and spc-1 pak-1 are constantly less organized than wild-type

but the difference between themselves tends to disappear with time.
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Figure 10: Actin filament continuity varies during development.

Quantification of actin filament continuity ; the graph represents the length (in pixels) along the circumferential
axis of actin filaments in early, mid and late (corresponding to 1.7-fold, 2-fold and 3-fold equivalent stages in a
wild-type embryo, respectively) embryos of wild-type (early n=12, mid n=19, late n=16), pak-1(tm403) (early
n=16, mid n=21, late n=16), spc-1(RNAi) (early n=15, mid n=21, late n=20), spc-1(RNAi) pak-1(tm403) (early
n=12, mid n=17, late n=26), unc-112(RNAi) (early n=8, mid n=13, late n=12), spc-1(ra409) pak-1(tm403) (mid
n=14, late n=20) and unc-112(RNAI) ; spc-1(ra409) pak-1(tm403) (early n=8, mid n=15, late n=19) genotypes.
Graphs represent median values, 25th and 75th percentiles; whiskers extend to the most extreme data points
not considered outliers. Two-sided paired t-test. P-values: *<0,05; **<0,001; ***<0,0001; ns, not significant.
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Figure 11: Actin filament orientation varies during development.

Actin filament orientation based on Fast Fourier Transform and binarisation. Wild-type (early n=12, mid n=18,
late n=14), pak-1(tm403) (early n=16, mid n=20, late n=16), spc-1(RNAI) (early n=14, mid n=18, late n=18), spc-
1(RNAI) pak-1(tm403) (early n=12, mid n=18, late n=21), unc-112(RNAi) (early n=8, mid n=13, late n=12), spc-
1(ra409) pak-1(tm403) (mid n=14, late n=19) and unc-112(RNAi) ; spc-1(ra409) pak-1(tm403) (early n=8, mid
n=15, late n=19) genotypes. Note that the characteristics of actin filaments in spc-1(RNAi) pak-1(tm403)
embryos differ mostly at the equivalent of the two-fold stage when muscles become active. At ealier and later
stages, spc-1(RNAi) embryos and spc-1(RNAi) pak-1(tm403) embryos become similar. Graphs represent median
values, 25th and 75th percentiles; whiskers extend to the most extreme data points not considered outliers.
Two-sided paired t-test. P-values: *<0,05; **<0,001; ***<0,0001; ns, not significant.
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As we showed that spc-1(ra409) pak-1(tm403) embryos also defective for unc-112 no longer
retracted | wondered whether the abnormalities in filament organization observed in the spc-
1(RNAI); pak-1(tm403) embryos only appear in the presence of muscle activity. This experiment
turned out to be technically challenging. | started again by isolating a new spc-1(ra409) pak-1(tm403)
strain maintained by an extrachromosomal spc-1(+)::GFP construct marked by a red pharynx marker
(Pmyo-2::mCherry), which | then crossed with our integrated LifeAct::GFP construct, hoping that the
new combination would be less stable. | succeeded and recovered about 20% embryos after
segregation of the spc-1(+)::GFP construct tracked by loss of the red pharynx marker and absence of
SPC-1::GFP fluorescence (which is significantly different from that of LifeAct). The quantifications
showed that the actin defects in unc-112(RNAi); spc-1(ra409) pak-1(tm403) embryos were
statistically comparable to those of spc-1(ra409) pak-1(tm403) embryos, although the bundles
seemed less damaged by eye. From this experiment it is very difficult to conclude weather the actin
disorganization of spc-1 pak-1 embryos depend on muscle input or not. Most probably, we reached
the limit of our analysis and we are limited by the resolution of the pictures we can obtain with

spinning-disk imaging.

V. 2. Enhanced visualization of actin filament abnormalities in spc-1 pak-1 defective embryos

As the embryo elongates, its circumference decreases, implying that the length of actin
filaments in D/V cells should decrease and therefore the actin cables should remodel. To understand
how this remodeling could happen, | tried to catch it live by again using TIRF-SIM super-resolution

microscopy of the same LifeAct::GFP probe, focusing only on wild-type and spc-1 pak-1 genotypes.

As mentioned earlier, this approach allowed me to illuminate only the cortex of the embryos
and | tried to follow the actin re-organization upon muscles contractions. Although it is a significant
improvement in spatial resolution compared to spinning-disk microscopy, TIRF-SIM stays challenging
once the embryo starts to move as it often moves faster than the temporal resolution of the
microscope. Nevertheless, super-resolution confirmed our first observations according to which actin
filaments in spc-1 pak-1 double mutants are more interrupted and do not show the same degree of

anisotropy as control embryos.
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Figure 12: Actin filament abnormalities are highlighted by TIRF-SIM microscopy in spc-1 pak-1 embryos.
TIRF-SIM super-resolution images of actin filaments (Pdpy-7::LifeAct::GFP reporter). (a-a”’) Wild-type and (b-b")
spc-1(RNAJ) pak-1(tm403) embryos at the 2-fold stage or equivalent. Grey and orange rectangles, region of
interest (ROI) above muscles (area of higher bending in time-lapse images); black and bordeaux rectangles, ROI
taken elsewhere. Scale bar: 5 um. (c) Actin continuity estimated as the segment length in binarised ROl images,
and (d) peak value of the angular coefficient calculated after Fast Fourier Transformation as a proxy for actin
bundle anisotropy. Defects are significantly more pronounced above muscles. (e) Coefficient of variation
(SD/mean) of the fluorescence signal in ROIs above muscles as a proxy for actin bundle organization. (f) Actin
bundle straightness (f) calculated as the ratio between the actual length of a bundle (black line in ) and the
shortest distance between its endpoints (red line in f'). Graphs represent median values, 25th and 75th
percentiles; whiskers extend to the most extreme data points not considered outliers. Two-sided paired t-test.
P-values: *<0,05; **<0,001; ***<0,0001; ns, not significant.

120



Thanks to the increased spatial resolution, we slightly adapted our earlier analysis. We
distinguished two different types of ROl on the actin pattern: ROIs above muscles (area of higher
bending in time-lapse images) (Fig. 12a”,b”’; grey and orange rectangles) and ROIs closer to the
DV/lateral cell junction (Fig. 12a’,b’; black and bordeaux rectangles). It revealed that the defects are
more prominent in the area that is over the muscles (putative CeHDs, Fig. 12a-d, 13a,b), which |
could not detect with spinning-disk microscopy. The actin appears even more fragmented (Fig. 12c)
and more disorientated (Fig. 12d) in the areas submitted to a more direct stress from muscles
underneath. Moreover, by performing a line-scan intensity profile on the ROIs above muscles, the
signal intensity between adjacent actin bundles appeared less sharp in spc-1 pak-1 deficient embryos
(Fig. 12e) and they were more often bent (Fig. 12f), indicating that the bundles might have partially
defasciculated from the main bundle (Fig. 13a,b). Importantly these phenotypes became apparent

once muscles became active, suggesting that muscle contractions contribute to actin remodeling.

a wild-type b

Figure 13: Actin filament abnormalities are highlighted by TIRF-SIM microscopy in spc-1 pak-1 embryos.

(a-b) TIRF-SIM snapshots of grouped Z movies with Fire LUT to emphasize the actin bundle defects of spc-
1(RNAi) pak-1(tm403) embryos compared to wild-type. P-values: *<0,05; **<0,001; ***<0,0001; ns, not
significant.

Unfortunately, | could not use TIRF-SIM microscopy to examine more precisely the defects in
unc-112(RNAi); spc-1(ra409) pak-1(tm403) and check if the non-significance of the analysis with the
spinning-disk could be due to a lack of resolution. In fact, the spontaneous segregation of the
extrachromosomal spc-1(+)::GFP was low (20%) making useful embryos difficult to spot. Another
limitation in our experiment was the fact that the SIM-TIRF setup offered by the Beaurepaire
laboratory does not come with a low magnification objective to first find embryos. These two
problems combined made the experiment nearly impossible to perform, or it would have taken too

much time.
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Yet, we infer that after strong bending some circumferential actin filaments within bundles get
severed, then probably partially depolymerized upon severing and rebundled. Indeed, we assume
that criss-crossed and curved filaments observed in spc-1 pak-1 defective embryos, but not in control
embryos, could correspond to severed filaments that did not get repaired/stabilized. However, | am
remaining careful on that statement, because even TIRF-SIM did not resolve how shortening events
occurred. Indeed, the LifeAct::GFP signal, although very stable at the spinning-disk, bleached very
fast due to the very high laser power used. Hence the movies acquired are short (10 seconds max).
Combined with the fact that the embryo often moves faster than the temporal resolution of the
microscope, very few contractions could be fully captured, and it did not allow me to clearly see live

remodeling events.

V. 3. The intensity of actin varies over time in spc-1 pak-1 defective embryos

From the spinning-disk and super-resolution microscopy results, | concluded that the
disorganization of actin observed in spc-1 pak-1 embryos could be due to the severing of filaments
that did not get repaired properly. Therefore, it would mean that actin polymerization may be
defective in these embryos. To investigate this hypothesis, | followed over time the intensity of actin.
With the help of Teresa, we made global measurements of Pdpy-7::LifeAct::GFP fluorescence
intensity from the spinning-disk images shown earlier. We found that whether measured on the
entire embryo (Fig. 14a) or along the filaments in a small ROI (Figs. 12-13), the fluorescence in spc-1
pak-1 defective embryos was lower than in control embryos (Fig. 14c). To ensure that this does not
reflect a lower efficiency of the dpy-7 promoter used to drive LifeAct::GFP in mutants, we generated
transgenic lines carrying a Pdpy-7::GFP construct showing fluorescence in the cytoplasm and nucleus
(Fig. 14b). We observed that the average fluorescence of the reporter was very similar in both
genotypes over time (Fig. 14d). Comparing the intensity ratio of Pdpy-7::GFP to Pdpy-7::LifeAct::GFP
fluorescence clearly indicates that the activity of the Pdpy-7 promoter is not affected in mutants, and
that the LifeAct signal was significantly lower in spc-1 pak-1 compared to control embryos (Fig. 14e).
While we know that LifeAct provides only an indirect measure to actin polymerization, we showed
that the intensity variation we observed in our double mutants does not depend on the epidermal
promotor, or on the stage of the embryos. Therefore, it suggests that in spc-1 pak-1 double mutants
the balance between polymerization and depolymerization is significantly tilted in favor of

depolymerization.
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Figure 14: Variation of actin intensity over time in wild-type and spc-1 pak-1 embryos

(a-b) Spinning-disk images of wild-type embryos expressing the Pdpy-7::Lifeact::GFP (a) and the Pdpy-7::GFP (b)
contsructs in the epidermis at the 2-fold stage. Scale bar: 10um. (c-d) Quantifications of the Pdpy-
7::LifeAct::GFP (c) and the Pdpy-7::GFP (d) intensity in the entire embryo (ROl in yellow on the images) at
threes stages early, middle and late (corresponding to 1.7-fold, 2-fold and 3-fold equivalent stages in a wild-
type embryo, respectively) in wild-type and spc-1(RNAi) pak-1(tm403) embryos. Graphs represent median
values, 25th and 75th percentiles; whiskers extend to the most extreme data points not considered outliers. (e)
Ratio between the signal in spc-1(RNAi) pak-1(tm403) and wild-type embryos for the Pdpy-7::Lifeact::GFP and
the Pdpy-7::GFP constructs at threes stages. Data represent mean values and SD. (c-e) Two-sided paired t-test.
P-values: *<0,05; **<0,001; ***<0,0001; ns, not significant.

VI. The embryo diameter decreases during elongation

By using the same spinning-disk anesthetized embryos as for the texture analysis, with the
help of Teresa, we also observed that as wild-type embryos lengthen, their circumference decreases
by roughly 20% due to embryo volume conservation (Fig. 15a,c,d), implying that the length of actin
filaments in D/V cells should decrease and therefore that the cables should remodel. In spc-1(RNAj)
pak-1(tm403) embryos, the trend is opposite; the circumference tends to increase by about 10%,
leading to longer actin cables (Fig. 15b-d). Interestingly, in unc-112(RNAi); spc-1(ra409) pak-1(tm403)
the lateral seam cells did not become circumferentially as narrow. In this respect they behaved more
like unc-112 single mutants than spc-1 pak-1. Thus, although the spinning-disk quantification of the
actin defects in unc-112(RNAI); spc-1(ra409) pak-1(tm403) did not suggest a statistical difference
compared to the spc-1(ra409) pak-1(tm403) embryos, this result lead us to believe that their actin

filaments were less damaged and significantly stiffer than in spc-1(ra409) pak-1(tm403) embryos.
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Figure 15: Embryo diameter varies during elongation.

(a-b”’) Spinning-disk images of embryos expressing the Pepid::Lifeact::GFP construct in the epidermis at three
elongation stages early, middle and late (corresponding to 1.7-fold, 2-fold and 3-fold equivalent stages in a
wild-type embryo, respectively) for wild-type (a-a’’) and spc-1(RNAi) pak-1(tm403) embryos (b-b”). Scale bar:
10 um. The Pepid promoter corresponds to Pdpy-7. The yellow lines correspond to the segments used to
measure the D/V width of the V1 seam cell. (c) Quantification of the average V1 cell circumferential width
normalized to the initial width during elongation, and (d) of the average D/V circumferential width at the level
of the V1 seam cell, which was calculated using the measured embryo length and V1 cell width, taking into
consideration the conservation of the total embryo volume, in wild-type (early n=38, mid n=10, late n=14), pak-
1(tm403) (early n=26, mid n=8, late n=20), spc-1(RNAi) (early n=24, mid n=26, late n=18), spc-1(RNAi) pak-
1(tm403) (early n=22, mid n=30, late n=38), unc-112(RNAi) (early n=8, mid n=9, late n=8), and unc-112(RNAi) ;
spc-1(ra409) pak-1(tm403) (early n=7, mid n=12, late n=17) genotypes. Error bars, SEM. A notable feature of
spc-1(RNAi) pak-1(tm403) embryos is that the circumferential dimension of the seam cells decreased much
more than that of their DV cell, which most likely reflects the actin filament integrity defects combined with a
Fseam force largely unchanged.
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Altogether, we suggest that the circumferential actin bundles remain damaged when muscle
activity is prevented in spc-1 pak-1 double mutants due to the absence of SPC-1 and PAK-1, but less

than in spc-1 pak-1 mutants alone.

VII. Muscle contractions bend actin filaments leading to the recruitment of severing proteins

VII. 1. Actin filaments are bend at very sharp angles upon muscle input

In wild-type embryos, muscle contractions promote embryonic elongation from the 2-fold to
the final 4-fold stage. During this time, junctions must lengthen along the A/P direction, while the
length of the stress fiber-like actin bundles present in dorsal and ventral cells must get shorter as the
embryo diameter gets reduced. The next step | took was to further understand how this remodeling
of the actin cables could happen in wild-type condition and how it is impaired in spc-1 pak-1
mutants. To do so, | acquired short spinning-disk time-lapses. With Teresa, we examined the
behavior of actin filaments upon muscle contractions. Strikingly, live imaging revealed that muscle
contractions are strong enough to locally bend actin bundles with an angle greater than 57° (Fig.
16a,c), which has been reported to induce actin filament severing in vitro (McCullough et al., 2011).
To be more specific, when muscles locally contract, we observed that they locally squeeze the
embryo along the A/P axis producing an increased circumferential stress due to volume
conservation. Moreover, during these contraction phases, the actin bundles get bent to angles that
match the local extent of muscle contractions. This could lead to a local severing of the cables and
help their shortening through the elongation in wild-type condition. Interestingly, we observed
similar bending of the actin cables in the spc-1 pak-1 embryos with angles in the same range as the

wild-type (Fig. 16b,d).

This last result supports the hypothesis developed after the actin pattern analysis presented
earlier. Both in control and in spc-1 pak-1 muscles can mechanically affect the epidermis and
eventually promote actin severing. In control embryos, this severing would be quickly stabilized and
would help the cables shorten through elongation as its circumference decreases. In spc-1 pak-1
embryos, the criss-crossed and curved filaments observed would be severed filaments that did not

get stabilized.

125



a_ 1=0.00s @ 1=3.28s ~ a” t=7.38s

wild-type Pdpy-7::LifeAct::GFP

t=0.00s  t=0.82s t=1.64s {=2.46s t=3.285s 1=4.10s  t=4.92s {=5.74s  {=6.56s  1=7.38s
" S T

b t=0.00s

spc-1(RNAI) pak-1(tm403)

t=0.00s t=0.41s t=0.82s {=1.23s {=1.64s 1=3.28s  1=3.69s
c wild-type d spc-1(RNAI) pak-1(tm403)
S 0.20 S 0.20
g average: g average:
© ©
e} ie)
.q';l) 0.10 .g 0.10
© ©
£ 005 € 005
o o
z z
0 0
0 50 100 0 50 100
Angles (degrees) Angles (degrees)

Figure 16: Actin bundles strongly bend during muscle contractions.

(a-d) Spinning-disk time-lapse images of epidermal actin filaments (Pdpy-7::LifeAct::GFP reporter) and
quantification of their bending angles in wild-type (n=23, contractions=101) (a, ¢) and spc-1(RNAi) pak-
1(tm403) (n=134, contractions=131) (b, d) embryos at mid-elongation (2-fold equivalent) stage; kymographs of
the region boxed in yellow are displayed below. Scale bar: 10 um.
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VII. 2. GSNL-1 and VILN-1 are involved in the remodeling of actin in our system

Because muscles are strong enough to bend the actin cables at high angles, leading to a local
severing of the cables, | investigated which proteins could be involved in this process. Therefore, |
reasoned that compromising severing genetically might partially rescue the retraction of spc-1 pak-1
defective embryos. With the help of Flora, we performed a RNAI screen using the same spc-1(ra409)
pak-1(tm403), spc-1(+)::GFP strain as described earlier, and focused on actin-binding proteins known
to modulate actin remodeling in early C. elegans embryos (Fig 17a). Remarkably, among thirteen
genes tested (Table 3), the screen identified two proteins whose vertebrate homologs have known

actin-severing activity, gelsolin and villin (Fig. 17b, Movie 4).
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Figure 17: Identification of two severing proteins rescuing the retraction phenotype.

(a) Principle of the RNAi screen performed to identify proteins mediating actin remodeling; the recipient strain
carried a rescuing but frequently lost spc-1(+) transgene (noted +). (b) Quantification of L1 hatchling length
after down-regulation or mutation of the indicated genes. spc-1(ra409) pak-1(tm403) (n=92), spc-1(ra409) pak-
1(tm403); spc-1::GFP (n=81), plst-1(RNAi); spc-1(ra409) pak-1(tm403) (n=55), plst-1(RNAI); spc-1(ra409) pak-
1(tm403); spc-1::GFP (n=30), unc-60(RNAi); spc-1(ra409) pak-1(tm403) (n=16), unc-60(RNAi); spc-1(ra409) pak-
1(tm403); spc-1::GFP (n=19), gsnl-1(RNAi); spc-1(ra409) pak-1(tm403) (n=64), gsnl-1(RNAIi); spc-1(ra409) pak-
1(tm403); spc-1::GFP (n=68), viln-1(RNAIi); spc-1(ra409) pak-1(tm403) (n=69), viln-1(RNAI); spc-1(ra409) pak-
1(tm403); spc-1::GFP (n=52), gsnl-1(tm2730); spc-1(RNAi) pak-1(tm403) (n=57), viln-1(ok2413); spc-1(RNAI)
pak-1(tm403) (n=55). Control animals fed on L4440 bacteria. Data represent mean values * SD. Two-sided
paired t-test. P-values: *<0,05; **<0,001; ***<0,0001; ns, not significant.
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The partial rescues observed by using gelsolin and villin RNAi were confirmed with gelsolin
and villin mutation (Figs. 17b, 18a-g). As for spc-1 pak-1 when we first observed the retraction
phenotype, we examined the elongation rate of the triple deficient embryos gsnl-1(tm2730); spc-
1(ra409) pak-1(tm403) and viln-1(ok2413); spc-1(ra409) pak-1(tm403) using DIC microscopy. They
initially elongated at the same rate as spc-1(RNAi) pak-1(tm403), but once muscles started to be

active, they could maintain their shape compared to the retracting embryos (Fig. 18a-g).
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Figure 18: Combined loss of severing proteins, SPC-1 and PAK-1 rescues the retraction phenotype.

(a-g) Elongation curves and DIC pictures showing the terminal phenotypes of (b) pak-1(tm403) (n=11), (c) gsnl-
1(tm2730); pak-1(tm403) (n=9), (d) viln-1(ok2413); pak-1(tm403) (n=9), (e) gsnl-1(tm2730); spc-1(RNAi) pak-
1(tm403) (n=5), (f) viln-1(0k2413); spc-1(RNAi) pak-1(tm403) (n=11) and (g) spc-1(RNAi) pak-1(tm403) (n=9)
(a). Pink box, period of muscle activity. Scale bar: 25 um. Data represent mean values + SEM. (h) Quantification
of the L1 hatchling body length of wild-type (n=65), gsnl-1(tm2730) (n=52), viln-1(0ok2413) (n=43), viln-
1(0k2413); gsnl-1(tm2730) (n=41), pak-1(tm403) (n=47), gsnl-1(tm2730); pak-1(tm403) (n=51), viln-1(ok2413);
pak-1(tm403) (n=70), viln-1(ok2413); gsnl-1(tm2730); pak-1(RNAi) (n=35), spc-1(RNAi) (n=27), and viln-
1(ok2413); gsnl-1(tm2730); spc-1(RNAi) (n=41). Data represent mean values + SD. Two-sided paired t-test. P-
values: *<0,05; **<0,001; ***<0,0001; ns, not significant.
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The finding that depleting GLSN-1 and VLN-1 can partially rescue elongation in spc-1; pak-1
mutants was intriguing. Until now, | addressed their role in mediating a loss of network integrity in
the absence of SPC-1/PAK-1 function, but | did not address their other possible role in the cycle of
filament bending, disassembly and network remodeling that leads to shortening of circumferential
filament bundles. If VLN-1 and GLSN-1 had key roles in the disassembly step, then one would predict
that depleting VLN-1 and GLSN-1 or perhaps both together, in wild-type embryos, would affect
elongation. To do so, we requested single and double gsn/-1 and viln-1 very strong or null mutations,
previously characterized by Shoichiro Ono and his colleagues. | found that gsn/-1 and viln-1 single
mutants and gsnl-1; viln-1 embryos had an almost normal elongation, although their final length was
slightly and significantly shorter than that of control embryos (Fig. 18c, d, h). Removing pak-1 or spc-
1 in addition did not significantly modify their length compared to single pak-1 or single spc-1
embryos (Fig. 18c,d,h), although gsnl-1(tm2730); pak-1(tm403) and viln-1(ok2413); pak-1(tm403) did
displayed a lower rate elongation compared to pak-1(tm403) (Fig. 18a). | concluded that the reason
wild-type embryos are not more severely affected by the loss of zygotic GSNL-1 and VILN-1 activity

could be that they rely on more than one process to remodel actin.

| also considered to test whether the retraction rescue provided by viln-1 or gsnl-1 would
modify actin filament damage in gsnl-1 or viln-1; spc-1(RNAi) pak-1(tm403) triple deficient embryos.
Unfortunately, the viln-1; Pepid::LifeAct::GFP; pak- 1(tm403) combination was not viable for reasons
that | did not explore, while the gsnl-1 locus falls at about the same position as the LifeAct::GFP

insertion point making a double recombination difficult to obtain.

Although spinning-disk microscopy did not reveal the precise remodeling mechanism, it
suggests that muscle contractions induce actin filament bending and hence, direct or indirect
stimulation of severing protein activity. Furthermore, we propose that this process goes uncontrolled
in the absence of SPC-1 and PAK-1. The severing activity mediated by villin and gelsolin might act in
parallel to some other process since villin gelsolin double deficient embryos show only minor

elongation defects (Fig. 17h).
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VIII. A Kelvin-Voigt model recapitulates the elongation of the embryos of various phenotypes

To rationalize the role of muscles in epidermal remodeling, we decided to use a mathematical
model. The aim was to give a mesoscopic physical description and interpretation of embryo
elongation, rather than a detailed mechanistic formulation. Thus, we described the C. elegans
embryo under elongation as a visco-elastic body: a solid that deforms permanently when it is
submitted to mechanical stress. The model that will be described now has been fully implemented by
Teresa. The model is considering:

- the elongation profiles described in this work,

- the results of our previously published laser ablation experiments (Vuong-Brender et al, 2017),

- the data on the organization of the actin cytoskeleton described in this work as an indirect measure
of its stiffness,

- the duration of muscle contractions described in this work.

Our model is summarized in four main equations (Fig. 19). Even if the scheme is very simple,
the parameters have a strong connection with biological entities. The parameters playing a
fundamental role in the equations that account for the elongation curves are:
- oDV, which is positively related to actomyosin stiffness in the D/V cells;
- B, which expresses the global activity of the remodeling factors SPC-1, PAK-1 and FHOD-1;

-y, which represents the accumulation of cytoskeleton damage.
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Figure 19: Equations supporting the mechanical model.
(a) System equations for the viscoplastic mechanical model of embryo elongation. The embryo is represented
as a Kelvin-Voigt solid (spring stiffness k, resting length A, viscosity n) submitted to forces Fepia and Fmuscie.

130



We chose to use a Kelvin-Voigt system represented by a spring in parallel to a dashpot,
subject to two main active forces (Fig. 20). First, the epidermal force Fepig is a continuous positive
force, allowing the embryo to elongate. The elongation will stop when the resistance of the spring
will equalize the intensity of Fepig. Since muscle-defective mutants cannot elongate beyond 2-fold the
presence of Fepig is tuned can capture the first phase of elongation. Second, the muscle force Fruscies is
a pulsatile force since muscles alternatively contract and relax, starting from the 1.7-fold stage. We
want to stress out that while the embryo extends along its A/P axis, actin bundles shorten along the
DV axis due to volume conservation. We chose to model with a resting length increase only for
positive rates for two reasons: 1) it is simple in terms of modeling; 2) it captures the mechanism we
hypothesize for actin shortening. The model has free parameters, but we constrained the parameter
space by using the experimental observations of the different phenotypes. Based on the mechanism
of elongation that we hypothesized, a resting length that responds to stretching ensures elongation.

To simplify its comprehension, it will now be developed step by step.

We started with the simplest version of the model represented by a regular spring and a
dashpot, only submitted to the force from the epidermis Fepis (Fig. 20a). In terms of physics, we
represented the Kelvin-Voigt viscoelastic model in the first equation where k is the body stiffness, A is
the spring resting length and n is the coefficient of viscosity (Fig. 19a). It captures the behavior of
viscoelastic solids under stress. Fepiq is the result of an active force in the lateral epidermis (also called
seam cells), and a passive force exerted by the dorsal and ventral epidermal cells (called DV cells)
adjacent to the seam cells. The seam cells have a high concentration of non-muscle myosin Il, which
has a non-polarized distribution and does not display pulsatile flow (Vuong-Brender et al., 2016;
Vuong-Brender et al., 2017). Therefore, the stress generated by the seam cells is anisotropic and
globally oriented along the DV axis. On the other hand, the DV epidermal cells do not contribute to
generate active stress, as their myosin Il is kept mostly silent through the activity of the RhoGAP
RGA-2 (Vuong-Brender et al., 2016; Vuong-Brender et al., 2017; Diogon et al., 2007), but the
presence of circumferential F-actin filament bundles creates a global stiffness anisotropy. Thus, we
described, in a second equation, Fepig as the product of an active force, Fseam, and a passive
component, aDV, resulting from actin bundle stiffness (Fig. 19b). It recapitulates the first phase of
elongation before reaching a plateau that depends on aDV (Fig. 20a’). The parameter aDV is
positively related to the stiffness of the cytoskeleton in the D/V cells, with its initial value, aDV being
the one set at the 2-fold stage. In our model aDV can evolve in time by decreasing if there is tearing.
We constrained aDV to be constant for wild-type embryos, since we observed that their actin
cytoskeleton integrity and straightness is maintained over time. Likewise, we assume that aDV is

constant in the muscle-defective unc-112 background, since muscles do not exert any stress. By
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contrast, we allowed aDV to change for spc-1 single and spc-1 pak-1 double mutants, considering
that their cytoskeleton is less organized and more compliant to stress. Moreover, based on our
measurements we constrained aDV (0) for all the genotypes to be inferior to the one obtained for
wild-type. We would like to point out that when fitting the parameters in absence of this constraint

we obtained the same results.

The second step was to introduce the force from the muscles into the system (Fig. 20b). As the
muscles allow the elongation beyond the 2-fold stage, we represented Fmuscies Stronger than Fepig. The
muscles contract in a cyclic manner, so the force they deploy oscillates between positive and
negative values (Fig. 20b’, blue rectangle). Because of this behavior, the net contribution to
elongation is null; the simulated curve obtained is very similar to the first situation, except constant

oscillations when the plateau is reached.
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Figure 20: Time-dependent length of a Kelvin-Voigt model in different conditions.

(a-a') A generic Kelvin-Voigt system exposed to a constant force Fepig, and (') its predicted elongation change
for Fseam =0.85 and four different values of aov based on the equation Fepig = Fieqm @py. (b-b') A similar
system exposed to two forces, Fepis and an oscillating force ﬁmuscles, and (b’) predicted elongation change using
Fepia=0.85 and ﬁmuscleswith an amplitude equal to 1 and the behavior depicted in the blue-boxed inset. For
simplicity, we will refer to the amplitude of ﬁmuscles by Fmuscles. As the pulsatile force induces both compression
and stretching (see Fig. 1c), its net input on elongation is transient and the system oscillates around the
maximal value reached without ﬁmuscles- In all other panels (except in a), ﬁmusdes was set as a periodic
function with positive and negative steps of duration 6 seconds modulated by a cosine function, alternating
with periods of null value of duration 15 seconds (b’-inset). In (a-b’) the elastic constant of the spring is k=1,
the initial resting length has the value A(t=0)=1, and the viscosity value is n=10.
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Despite having introduced the two forces submitting our system to stress, yet we could not
recapitulate the elongation of the wild-type embryos as the curves rapidly reached a plateau. Thus,
to introduce a positive contribution to embryo lengthening, we allowed some plasticity, in the
physical sense, or ability of the system to get reorganized. In terms of biology, it corresponds to a
permanent rearrangement as it has been already observed and modeled in systems undergoing
stresses (Doubrovinski et al., 2017; Munoz and Albo, 2013). In terms of modeling, it means adding a
“plasticity factor” B to the spring and a ratchet in the system, which can be done by a simple
mathematical solution: having an adjustable resting length A described in a third equation (Figs. 19c,
21a). The simulated curves displayed an increase of the length with time. The speed of the growth
(angle of the curve) can be adapted either by modulating either B or Fmusces (Fig. 21a’,a”). The
“plasticity factor” B is constrained between 0 and 1, 0 corresponding to no plasticity, therefore no
elongation beyond the 2-fold stage. We chose the tearing factor, B, to be null in control embryos as a
mean to simplify the equations and to avoid adding a positive polymerization factor. We view the
“plasticity factor” as an indirect measure of actin bundle shortening, thus of stiffness maintenance,
as they are related. Our measurements show that the circumferential length of dorsal-ventral cells in
spc-1 pak-1 defective embryos is almost unchanged during the first elongation phase and increases
during the second phase of elongation. We interpret this as evidence that spc-1 pak-1 defective
embryos are unable to remodel their cytoskeleton at the level of D/V cells in order to reduce the
length of actin bundles and to resist the tension created by actomyosin in lateral cells. The moderate
gain in length of the embryo during the first elongation phase is only due to myosin Il acting in the
seam epidermal cells to reduce their circumferential dimension. The result of the fit is coherent with
this picture since we found the plasticity factor to be close to zero. From a cellular standpoint, having
a changing resting length at each cycle of contractions means that body elasticity does not bring the

embryo back to its initial shape upon muscle relaxation, enabling progressive lengthening.

Regarding the force produced by muscles, which is essential for elongation, the growth rate
is predicted to be an increasing function of Fmusces. We could not directly test the behavior of an
intermediate muscle force, since the available muscle mutants totally suppress muscle activity and
show a Pat phenotype. To highlight the predicted effect of increasing Fmusces, We considered the
length of the embryo as increasing function of the intensity of the muscle force Fmusces. TO link
muscles activity and cytoskeleton remodeling, we showed that they locally squeeze the embryo
along the A/P axis producing an increased circumferential stress due to volume conservation. And,
during these contraction phases, the actin bundles get bent to angles that match the local extent of

muscle contractions. It has been demonstrated by in vitro experiments that actin can get severed
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when bent at an angle distributed around 57° (McCullough et al, 2011). Interestingly, we frequently

observed that muscle contractions resulted in actin bending at angles greater than 57°.
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Figure 21: Time-dependent length of a Kelvin-Voigt model in different conditions.

(a-a”’) A Kelvin-Voigt system with mechanical plasticity introduced according to Egs. (1, 4, 6, 7), and (a')
predicted elongation change using Fepi¢=0.85, Fc=0, Fmuscies =3 and four distinct values of the plasticity factor B,
or (@) using Fepia=0.85, Fc=0, B =0.10 and four distinct values of Fmuscies. (b-b') A Kelvin-Voigt system in which
the plasticity is defective (B=0), and in which there is actin tearing according to Eq. (7) inducing a progressive
reduction of Fepiq, and (b’) predicted elongation change with an initial value of Fepis=0.85, the tearing factor
v=0.15 and Fmuscles =3; the blue-boxed inset (b’) shows the behavior of Bov(t) over time. In (a-b”) the elastic
constant of the spring is k=1, the initial resting length has the value A(t=0)=1, and the viscosity value is n=10. (c)
Result of the fit for the following genotypes: wt, unc-112 alone spc-1 alone, spc-1 pak-1 double, unc-112; spc-1
pak according to Egs. (1, 4, 9-11). The values of the parameters are specified in paragraphs 1.5 and 1.6. The
shallow decrease in length for the curve of unc-112; spc-1 pak-1 after 150 minutes is due to a deformation of
the embryos under the effect of unc-112 knock-down but not to retraction, which is why the fit has been
evaluated on the first 150 minutes of the curve.

134



After modeling the wild-type elongation, we wondered how we could reproduce the retraction
of the double spc-1 pak-1 mutant embryos. We showed that the loss of SPC-1 and PAK-1, affects the
integrity of the actin cables in the DV cells, which provide stiffness and define aDV (Figs 8-13). Thus,
we defined a “tearing factor” y as described in the fourth equation (Fig. 19d). When y is equal to 0, it
corresponds to an absence of tearing, as in wild-type embryos. It leads to a decrease of aDV over
time (Fig. 21b’ blue rectangle) and therefore a similar decrease of Fepid. All these characteristics
combined with a “plasticity factor” B equal to 0 generate a simulated curve that first grows and

rapidly decreases; mimicking the retraction phenotype observed in the embryos.

To also further constrain the model by additional measurements we tried to follow over time
the intensity of actin and its organization. Using TIRF-SIM super-resolution imaging, we could clearly
observe criss-crossing occurrences in spc-1 pak-1 deficient embryos right above muscles.
Furthermore, by performing a line-scan intensity profile of adjacent actin filaments, we observed
that their intensity was more irregular in those double mutants consistent with some individual
filaments defasciculating from the main bundles - we are remaining careful on that statement,
because even TIRF-SIM did not resolve shortening events. Accordingly, we infer that after strong
bending some circumferential actin filaments within bundles get severed, then probably partially
depolymerized upon severing and re-bundled. Furthermore, it suggests that the criss-crossing plus
potential defasciculation of individual actin filaments in spc-1 pak-1 defective embryos, but not in

control embryos, could correspond to severed filaments that did not get repaired/stabilized.

Thanks to the developed model, we could accurately predict the elongation pattern of wild-
type embryos but also of several mutant conditions, notably the retraction pattern of spc-1 pak-1
and the triple deficient unc-112 spc-1 pak-1 (Fig. 21c). Note that for this last mutant, the simulated
curve is less accurate, mostly due to the collapsing of the worms as the muscle input is removed and
their epidermis is damaged / weaker. Nevertheless, the predictions of our model are strongly
connected with some experimental findings. Fitting the parameters predicts a value close to zero for
the plasticity factor of spc-1 pak-1 mutants associated with a tearing factor different from zero. It
means that spc-1 pak-1 mutants are unable to remodel their cytoskeleton to reduce the
circumferential size of the actin filaments in the D/V epidermal cells. Consistent with this view, we
showed that the circumferential size of spc-1 pak-1 defective embryos increases once muscles
become active, showing that the actin filaments did not shorten. The model also predicts a small
plasticity factor but with a low tearing factor for single spc-1 mutants. These mutants can slightly

decrease their circumference, meaning that their actin filaments have a small ability to remodel.
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To conclude on this part, we propose that SPC-1/a-spectrin and PAK-1 regulate a cellular
process of mechanical plasticity. When muscles contract, they locally squeeze the embryo along the
AP axis, which generates an increased circumferential stress due to volume conservation. As shown
before, circumferential actin cables become bent (Fig. 16), which certainly introduces a state of
increased stress along their length and induce their severing (Figs. 17-18). Overall it creates the
conditions for actin filament remodeling toward filament shortening, as the embryo elongates and its
circumference decreases. In spc-1 pak-1 defective embryos, the continuing stress on weakened actin
filaments leads to their disorganization and reduces their stiffness. The remodeling process becomes

less efficient and does not allow the embryo to stabilize their shape.
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IX. Combined loss of FHOD-1 and SPC-1 leads to the same retraction phenotype

IX. 1. fhod-1 spc-1 retracts and their actin show the same abnormalities as spc-1 pak-1

Next, we wanted to mechanistically define how cell shapes are maintained at the molecular
level when cells are exposed to repeated mechanical strain and further define the molecular basis of
viscoplasticity. Thus, Gabriella searched for gene knockdowns inducing retraction of spc-1(ra409)
embryos (Fig. 22a; Table 4). The screen was limited to ninety essential genes, among phosphatases,
cytoskeleton/cell cortex-related and junctional/attachment-related genes, shortlisted from the initial
enhancer screen mentioned earlier. It identified the atypical formin FHOD-1 (Fig. 22a,b; Movie 5),
which has previously been linked to actin dynamics in the epidermis (Vanneste et al., 2013). |

confirmed that fhod-1(tm2363); spc-1(RNAi) embryos also showed a penetrant retraction phenotype

(Fig. 22j).
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Figure 22: Combined loss of SPC-1 and PAK-1 or SPC-1 and FHOD-1 leads to comparable retraction
phenotypes.
(a) A retraction screen in a spc-1 mutant identifies fhod-1; (b) quantification of spc-1(ra409) L1 hatchling body
length after feeding on L4440 control (n=21) or fhod-1(RNAi) (n=25) bacteria. Scale bar: 15 um. Data represent
mean values + SD. Two-sided paired t-test. P-values: *<0,05; **<0,001; ***<0,0001; ns, not significant. (c)
Elongation curves and (d-j) corresponding DIC pictures showing the terminal phenotypes at hatching of (d)
wild-type (n=12), (e) fhod-1(tm2363) (n=10), (f) fhod-1(RNAi) (n=10), (g) pak-1(tm403) (n=11), (h) fhod-
1(RNAI); pakl1(tm403) (n=10), (i) spc-1(RNAi) pak-1(tm403) (n=8), and (j) fhod-1(tm2363); spc-1(RNAi) (n=9).
Pink box, period of muscle activity. Note that the elongations curves of spc-1(RNAi) pak-1(tm403) and fhod-
1(tm2363); spc-1(RNAi) completely overlap. Scale bar: 25 um. Data represent mean values + SEM.
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Then, with Teresa, we performed the same texture analysis as described before. Again, |
acquired pictures of anesthetized embryos at different stages (1.7-fold, 2-fold and 3-fold) by

spinning-disk imaging (Fig.23).

fhod-1(tm2363) fhod-1(tm2363); spc-1(RNAI)

Figure 23: Actin filaments show organization defects in fhod-1; spc-1 defective embryos.

(a,b) Epidermal actin filaments visualized with the Pdpy-7::LifeAct::GFP reporter construct in fhod-1 (a-a’), and
fhod-1(tm2363) spc-1(RNAi) (b-b’) at mid-elongation (2-fold equivalent) stage. Yellow rectangle, region of
interest (ROI). Scale bar: 10 um. (a’-b’) ROI after binarisation (green) and major axis detection (red).

Segmentation analysis of the fluorescence signal associated with actin filaments in the D/V
epidermis revealed more discontinuity in fhod-1; spc-1 double deficient embryos compared to wild-
type embryos, with no significant difference from spc-1 pak-1 embryos (Fig. 24). Moreover, like in
spc-1 pak-1 again, Fourier transform analysis showed that the degree of anisotropy relative to the

circumferential axis of fhod-1,; spc-1 was abnormal (Fig.25).

Both parameters followed the same trend over time, as described earlier. Actin cable
anisotropy decreases with time and at 2-fold, the difference between the different genotypes
reaches its maximum. As the embryos elongate, differences among them become less significant
(Figs. 24-25). Nevertheless, spc-1 pak-1 and fhod-1; spc-1 show similar defects over time and are

constantly less organized than wild-type.
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Figure 24: Actin filaments show continuity defects in fhod-1; spc-1 defective embryos.

Quantification of actin filament continuity ; the graph represents the length (in pixels) along the circumferential
axis of actin filaments in early, mid and late (corresponding to 1.7-fold, 2-fold and 3-fold equivalent stages in a
wild-type embryo, respectively) embryos of wild-type (early n=12, mid n=19, late n=16), spc-1(RNAi) (early
n=15, mid n=21, late n=20), spc-1(RNAi) pak-1(tm403) (early n=12, mid n=17, late n=26), fhod-1(tm2363) (early
n=12, mid n=14, late n=10), fhod-1(tm2363); spc-1(RNAi) (early n=7, mid n=11, late n=8) genotypes. Graphs
represent median values, 25th and 75th percentiles; whiskers extend to the most extreme data points not
considered outliers. Two-sided paired t-test. P-values: *<0,05; **<0,001; ***<0,0001; ns, not significant.
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Figure 25: Actin filaments show orientation defects in fhod-1; spc-1 defective embryos.

Actin filament orientation based on Fast Fourier Transform and binarisation. Wild-type (early n=12, mid n=18,
late n=14), spc-1(RNAi) (early n=14, mid n=18, late n=18), spc-1(RNAi) pak-1(tm403) (early n=12, mid n=18, late
n=21), fhod-1(tm2363) (early n=12, mid n=14, late n=10), fhod-1(tm2363); spc-1(RNAi) (early n=7, mid n=11,
late n=8) genotypes. Note that the characteristics of actin filaments in spc-1(RNAi) pak-1(tm403) embryos differ
mostly at the equivalent of the two-fold stage when muscles become active. At ealier and later stages, spc-
1(RNAi) embryos and spc-1(RNAi) pak-1(tm403) embryos become similar. Graphs represent median values,
25th and 75th percentiles; whiskers extend to the most extreme data points not considered outliers. Two-sided
paired t-test. P-values: *<0,05; **<0,001; ***<0,0001; ns, not significant.
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IX. 2. FHOD-1 bundling activity is important for the remodeling

FHOD-1 identification was intriguing as, in addition to nucleation, vertebrate FHOD1 promotes
actin capping and bundling (Schonichen et al., 2013). This raised the tantalizing possibility that FHOD-
1 activity stabilizes the actin cytoskeleton after severing. Furthermore, the genetic interaction

suggested that FHOD-1 acts with SPC-1 and PAK-1.

To examine this possibility, Flora built several constructions of FHOD-1 based on what was
known from the literature. Indeed it has been shown that the formin FHOD-1 is initially inactive due
to an autoinhibitory interaction between its C-terminal diaphanous autoregulatory domain (DAD)
with the N-terminal diaphanous inhibitory domain (DID)*. By deleting the DAD domain, the
autoinhibition is removed and was shown to generate a constitutively active form of the protein in
vertebrate tissue cells. | wanted to test if a similar approach would work in our system and whether
FHOD-1 derivatives removing the C-terminal DAD domain could rescue the retraction phenotype of

spc-1 pak-1 deficient embryos.

spc-1(RNAI) =1

spc-1(RNAI) pak-1(tm403) |34 < |

Su

spc-1(RNAI) pak-1(tm403); FHOD-1(Full Length) | |I|" 0
| | [ [ — ]

XX¥

spc-1(RNAI) pak-1(tm403); FHOD-1(ADAD)
I I [ [

spc-1(RNAI) pak-1(tm403); FHOD-1(AFH2/DAD)

[ | | m
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Figure 26: FHOD-1 construction lacking FH2 and DAD domains rescues the retraction phenotype.

Pdpy-7 driven epidermis expression of truncated FHOD-1 variants and terminal body length at hatching: spc-
1(RNAI)(n=26); spc-1(RNAi) pak-1(tm403) with no transgene (n=36), with FHOD-1(full length) (n=16), FHOD-
1(ADAD) (n=17), FHOD-1(AFH2-DAD) (n=38) transgenes or non-transgenic siblings (n=78), FHOD-1(AFH1-FH2-
DAD) transgene (n=18). Data represent mean values + SD. Two-sided paired t-test. P-values: *<0,05; **<0,001;
**%<0,0001; ns, not significant.
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Strikingly, after epidermis-specific expression of a form lacking the FH2 and DAD domains,
transgenic spc-1(RNAi) pak-1(tm403) embryos reached the length of spc-1 single mutants without
retracting; rescue was better than with the full-length protein. By contrast, the DAD deleted
construct failed to rescue, while deletion of the FH1-FH2-DAD domains and other forms marginally
rescued retraction (Fig. 26), arguing that the FH2 F-actin nucleation domain is dispensable for rescue
while the FH1 is not. Importantly, a mammalian FHOD1 lacking the FH2-DAD domains can still bundle
actin (Schonichen et al., 2013), thereby emphasizing that FHOD-1 bundling activity matters. It further
suggests that he atypical formin-homologue responsible for actin capping and bundling is involved in
the same regulatory pathway as PAK-1. The retraction of spc-1 pak-1 deficient embryos could mainly
result from a lack of FHOD-1 activation downstream of the muscle-induced mechanotransduction
pathway. This result raises the possibility that this direct activation could be mediated by a
phosphorylation of FHOD-1 by PAK-1. In conclusion, | suggest that the actin filament severing
initiated by muscle contractions (Figs. 17-18) followed by FHOD-1-dependent bundling or capping

(Fig. 26) represent a ratchet-like mechanism, providing a molecular basis for viscoplasticity.

IX. 3. FHOD-1 and PAK-1 localization are affected the same way by the lack of SPC-1

Several factors could contribute to alter PAK-1 and FHOD-1 activity. First, Gabriella noticed
that inducing spc-1(RNAi) in embryos expressing PAK-1::GFP, disturbed PAK-1 localization and lead to
the formation of ectopic PAK-1 aggregates (Fig. 27a,a’). Interestingly Flora observed the same defect
in FHOD-1::GFP expressing embryos upon spc-1(RNAi) downregulation (Fig. 27b,b’). Additionally,

FHOD-1 localizes at the same sites as PAK-1, SPC-1 and actin at the level or the epidermal cell cortex.

FHOD-1::GFP

PAK-1::GFP

spc-1(RNAi) PAK-1::GFP
m
A

Figure 27: PAK-1 and FHOD-1 form aggregates in spc-1(RNAIi) loss of function.

(a-a') PAK-1::GFP localisation in wild-type and spc-1(RNAi) embryos. Yellow box, area enlarged below the panel.
Note the punctae in SPC-1 deficient embryos. (b-b') FHOD-1 localization in wild-type and spc-1(RNAi) embryos.
Note the aggregates (arrowheads). Note also that FHOD-1::GFP displayed a filamentous organization
reminiscent of actin filaments. Scale bar: 10 um.

FHOD-1::GFP ; spc-1(RNAI)
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These results strongly suggest that FHOD-1, the atypical formin, responsible for actin capping
and bundling, is involved in the same regulatory pathway as PAK-1 and SPC-1 during the embryonic

developmental process we characterized and SPC-1 could help recruit these proteins.

Second, by using the short spinning-disk time-lapses and tracking landmarks on the actin as
described at the beginning, | found that muscle contractions in spc-1(RNAi) pak-1(tm403) embryos
were almost twice as short as those in pak-1(tm403) and wild-type controls (3 sec against 5.7 sec;
Fig. 28, Movie 6). Although, muscles can strongly bend actin cables even in spc-1 pak-1, as shown
earlier, such shorter contractions might not give enough time for FHOD-1 to stabilize actin filaments.
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Figure 28: Tracking of the actin displacement reveals duration of the muscle contractions.

(a-d) Spinning-disk microscopy tracking of actin filaments visualized with a Pdpy-7::Lifeact::GFP marker
specifically expressed in the epidermis. Individual displacement tracks of wild-type (a), pak-1(tm403) (b), spc-
1(RNAI) (c) and spc-1(RNAi) pak-1(tm403) (d) embryos at a stage equivalent to 2-fold in a wild-type embryo.
Scale bar: 10 um. (e) Typical kymographs of the Lifeact::GFP—labeled actin filaments in wild-type and spc-
1(RNAI) pak-1(tm403) embryos from which the tracks in a-d were derived. Time interval between two images is
0.41 second. Yellow dots correspond to landmarks for quantitative analysis. (f) Quantification of the
displacement duration in (N=embryo/ n=contraction): wild-type, N=11/n=51; pak-1(tm403), N=11/n=26; spc-
1(RNAI), N=11/n=73; spc-1(RNAi) pak-1(tm403), N=11/n=89. Graphs represent median values, 25th and 75th
percentiles; whiskers extend to the most extreme data points not considered outliers. Two-sided paired t-test.
P-values: *<0,05; **<0,001; ***<0,0001; ns, not significant.
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To conclude, we uncovered a novel machinery involving a-spectrin/SPC-1, the kinase PAK-1
and several actin remodeling proteins involved in stabilizing cell shapes in a system submitted to
repeated external mechanical stress. When SPC-1 and PAK1 are both absent, the embryo starts to
elongate then retracts to its initial length, A key aspect of our results is that embryonic retraction is
triggered only when muscles start to contract, exposing the overlying epidermis to changes in
tension every few seconds. In wild-type embryos, muscle contractions promote embryonic
elongation from the 2-fold to the final 4-fold stage. As the embryo elongates and its diameter
reduces, actin bundles present in D/V cells must shorten. Our data show that the molecular
machinery enabling actin filament remodeling is at the heart of the defects observed in spc-1 pak-1
deficient embryos. We propose that the progressive shortening of actin filaments under the control
of these factors mediates a cellular viscoplastic process promoting axis elongation. A similar
viscoplastic process might operate in vertebrate tissues comprising an epithelial layer surrounded by

a contractile layer, such as our internal organs.
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DISCUSSION AND PERSPECTIVES

To study mechanotransduction and its importance in morphogenesis at the scale of an
organism, | worked with a simple model, the nematode C. elegans. My thesis aimed to give a better
understanding of the role of the actin cytoskeleton and its remodeling during C. elegans elongation
as it would provide finer details of how cells adapt and respond to mechanical input. The work
presented here is mostly included in a letter published in Nature. The full version of the paper

including all the supplementary information is available in the annex of the thesis.

The focus of this work was directed to the second phase of C. elegans embryonic elongation.
This process does not involve cell divisions or rearrangements and relies entirely on epidermal cell
shape changes. The second phase of elongation starts at the onset of muscle contractions: from this
point the epidermal cells are submitted to regular cycles of intense mechanical input. The epidermis
needs to meet two requirements for the maintenance of a proper embryonic development. On the
one hand, it must be able to mechanically resist to this force input that exerts cyclic physical stress
on the epidermis. On the other hand, this input provides a crucial development signal at the same
time: it induces a biochemical signaling pathway that promotes hemidesmosome remodeling and
further elongation through a tension-induced mechanotransduction pathway. The molecular
components of the epidermis need to be able to properly sense and translate this signal and execute

the necessary developmental changes.

In the frame of this thesis project we extended our understanding on the molecular landscape
around that complex process. We identified a novel morphogenetic ratchet mechanism that is
responsible for the stabilization and remodeling not only of the epidermal cells, but also, of the
entire embryonic body under cyclic stress from the second elongation phase. We equally identified
the main molecular players of this morphogenetic ratchet through the interaction of PAK-1, p-21
activated kinase and SPC-1, a cytoskeletal component, important for the maintenance of cellular

mechanical properties.

Through genetic and reciprocal molecular screens, we established both an in vivo genetic and
in vivo physical interaction between these two players. The combined loss of SPC-1 and PAK-1 lead
the embryos to first elongate and then retract to their initial shape. We considered that together
SPC-1 and PAK-1 function as a locking mechanism of the elongation. When they are absent, the
system is not locked and goes awry. We provided evidence that this interaction takes place in the

epidermis. To characterize the defects underlying the retraction, we developed a novel approach for
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the dynamic and simultaneous acquisitions of epidermal actin filaments and the underlying muscles.
We developed a corresponding novel approach for image analysis and quantification of this coupling.
This way we were able to establish that the two neighboring tissues, epidermis and muscles, are
properly coupled, even in the spc-1 pak-1 deficient embryos. Using different translational reporters,
co-localization tests and super-resolution microscopy we showed that the physical interaction might
take place between these players also in vivo as we established a co-localization of a PAK-1/SPC-
1/actin network at the epidermal cell cortex at the level of cell junctions and the circumferential
actin bundles. We also know that, at the level of the epidermal components, the retraction process
does not affect the proper recruitment and localization neither of the adherens junctions nor the
microtubules (data not shown, Gabriella Pasti’s thesis). A key aspect of our results is that embryonic
retraction is triggered only when muscles start to contract, exposing the overlying epidermis to
changes in tension every few seconds. The mechanical properties of a biological material are
dominated by an elastic behavior at low timescales (seconds), which allows the propagation of
tension between the cells in a tissue. Hence, the retraction phenotype most likely relies on the elastic
properties of the epidermis. That is why we focused our attention to the actin cytoskeleton. Indeed,
we observed a muscle dependent disorganization of the actin filaments in the combined loss of PAK-
and SPC-1. Super-resolution microscopy showed that epidermis circumferential actin filament
bundles are discontinuous and not fully oriented perpendicular to adherens junctions in spc-1(-) pak-
1(-) embryos. The actin defects could be best observed in the region that overlaps with the muscle
attachment zone. Additionally, spinning-disk microscopy revealed that muscle contractions are
strong enough to locally bend actin bundles at great angles, which has been reported to induce actin
filament severing in vitro (McCullough et al., 2011). We observed this strong bending of the actin

cables both in spc-1 pak-1 and wild-type embryos.

Strikingly, Priess & Hirsh (1986) found that actin depolymerization induces embryo retraction,
suggesting that actin rearrangement could account for the lock counteracting elasticity. In wild-type
embryos, muscle contractions promote embryonic elongation from the 2-fold to the final 4-fold
stage. During this time, since the embryo diameter gets reduced, the actin bundles present in dorsal
and ventral cells must get shorter, hence they need to remodel. Therefore, we reasoned that on one
hand severing proteins might help breaking the actin cables, on the other hand, capping proteins
should help stabilizing the cables. Two additional RNAi screens were then performed to identify
which severing and capping proteins could be involved in our system. We first looked for players that
might partially rescue the retraction of spc-1 pak-1 defective embryos. Remarkably, among thirteen
actin binding genes tested, the screen identified homologs of two actin-severing proteins, gelsolin

and villin. Mutations in villin and to a lesser degree gelsolin confirmed this partial rescue. Second, we
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searched for gene knockdowns inducing retraction of spc-1(-) embryos. This screen identified the
atypical formin FHOD-1, which has previously been linked to actin dynamics in the epidermis. We
confirmed that fhod-1(-); spc-1(-) embryos also showed a penetrant retraction phenotype with
damaged actin. Furthermore, overexpressing in the epidermis a C-terminally truncated FHOD-
1(AFH2/DAD) construct, predicted from vertebrate studies to only bundle actin, partially rescued the
spc-1(-) pak-1(-) retraction phenotype. We thus suggest the following scenario in normal embryos:
(1) muscle activity bends at a sharp angle actin bundles which with the help of severing proteins
could break them, (2) the formin FHOD-1 with actin bundling properties blocks further actin
depolymerization until the next cycle of muscle activity (Fig. 1a). We propose this goes uncontrolled
in spc-1 pak-1 double mutants (Fig. 1b). A possible molecular mechanism could be that upon the
muscle-induced epidermal cell deformation SPC-1 somehow activates PAK-1 kinase activity, which in

turn modulates the remodeling of actin filaments via bundling and severing proteins.

wild-type spc-1 (-) pak-1 (-)
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Figure 1: Cellular model of embryo elongation.

(a-b’) Cellular model of embryo elongation based on volume conservation in normal embryos, in which an
increase in axial length implies a decrease in circumferential length. (a-a’) Proposed model: in control embryos,
muscle contractions (red arrows) induce actin filament bending and their severing, followed by SPC-1/PAK-1-
dependent stabilization; whether spectrin is found along (scenario 1) or between (scenario 2) actin filaments is
unknown. (b-b’) In spc-1 pak-1 deficient embryos, actin remodeling goes uncontrolled. A-P, Anterior-Posterior.

To back our results with theory, we modeled the embryo as a Kelvin-Voigt material
experiencing acto-myosin force from the epidermis plus muscle tension. We could predict embryo
lengthening by introducing a viscoplastic component in the system, which we propose corresponds

to actin shortening.

Altogether, we uncovered a novel machinery involving the a-spectrin SPC-1, the kinase PAK-1,

an atypical formin FHOD-1 and two actin severing proteins, GSNL-1 and VILN-1, which confers

mechanical plasticity to stabilize cell shapes during a ratchet morphogenetic process.
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I. Identification of a novel morphogenetic ratchet

Based on our results we propose a novel morphogenetic ratchet mechanism, relying on PAK-
1/spectrin/actin/actin-remodeling system that is different from previously known molecular ratchet

of three reasons.

First, previously described ratchets stabilize cell shape against internally generated forces,
originating from epithelial actomyosin contractions. For example, mesoderm invagination during
Drosophila gastrulation does require a whole-body coordination of the mechanics of tissue behavior
but cell shape changes of cells belonging to different tissues is driven by their apical actomyosin
contractility (Rauzi et al., 2010). Similarly, the Drosophila dorsal closure is influenced by forces
generated by two different embryonic tissues: the dorsally positioned amnioserosa and the lateral
epidermis (Kiehart et al., 2000; Hutson et al., 2003, Sawyer et al., 2010). Cells at the leading edge of
the dorsally migrating epidermis assemble an acto-myosin cable at the interface between these two
tissues, exhibiting tension perpendicular to the direction of movement (Young et al., 1991; Kiehart et
al., 2000; Hutson et al., 2003). Thus, contractile activity of the actin-myosin cable of the epidermis
could function like a supracellular purse-string that helps pull the epidermis dorsally (Edwards et al.,
1997; Franke et al., 2005, Martin and Goldstein, 2014). During C. elegans elongation, acto-myosin
contractility is present in lateral cells and drives the first phase of elongation until muscle become
active. The mechanism we describe in this work is a stabilization occurring to answer an extrinsic

force, provided by the cyclic contractility of the underlying muscle tissue.

Second, the timescale of stabilization is different. In already described ratchets in Drosophila,
the frequency occurs in minutes. For example, prior to dorsal closure, actin-myosin networks
undergo cell shape fluctuations with large amplitudes and a periodicity of about 4 min (Blanchard et
al., 2010; Sokolow et al., 2012; Hayes and Solon, 2017). During dorsal closure, cell shape fluctuations
become more frequent with a smaller amplitude. This transition is associated with increased apical
myosin levels and a transition from cycles of actin-myosin network assembly and disassembly to
more persistent apical actin-myosin networks (Blanchard et al., 2010; David et al., 2010, David et al.,
2013). In the process we described, the frequency is considered at the scale of seconds. Indeed, we
showed that wild-type embryos contract with an average timing of 6 seconds and a considerable
proportion of their contractions are even shorter. In the scenario we proposed muscle activity bends
at a sharp angle actin bundles which with the help of GSNL-1 and VILN-1 could break them and
FHOD-1 blocks further actin depolymerization until the next cycle of muscle activity. It means that

the stabilization mechanism happens at each contraction, in a narrow time window.
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Finally, the previously described ratchets used different stabilization mechanisms. For
instance, during Drosophila embryonic germband extension, tissue elongation is driven by cell
intercalation, requiring the shrinkage of dorsal-ventral-oriented junctions during this process. The
polarized flow of medial actomyosin pulsing towards junctions allows the irreversible and planar
polarized remodelling of epithelial cell junctions (Rauzi et al., 2010; Munjal et al., 2015). At the
beginning of Drosophila dorsal closure, a supracellular actin cable that surrounds the opening
provides the contractile force. Amnioserosa cells that fill the opening produce an additional critical
force pulling on the surrounding epidermal tissue. As we already mentioned, this force is not gradual
but pulsed and occurs long before dorsal closure starts. The actin cable function as a ratchet to
counteract ventral-ward epidermis relaxation after force pulses. The dorsal closure proceeds thanks
to the interplay of pulsatile actomyosin flows in one tissue and a continuous purse string constriction
in the surrounding tissue (Solon et al., 2009). During Drosophila gastrulation, cycles of Myo-Il and
apical Rok pulses are associated with apical constriction. The dynamic coupling of Myo-lI
phosphorylation to upstream signals organizes contractile Myo-Il pulses in both space and time. This
pulsatile nature of apical constriction is required for the stable transmission of intercellular forces
during tissue morphogenesis. Additionally, the polarized localization of Rok to medioapical foci
results in the persistence of medioapical actomyosin fibers stabilizing cell shape between pulses

(Vasquez et al., 2014).

Here, we propose that SPC-1/a-spectrin and PAK-1 regulate a cellular process of mechanical
plasticity. When muscles contract, they generate a stress. Circumferential actin cables are bent which
induce their severing. It creates the conditions for actin filament remodeling toward filament
shortening, as the embryo elongates and its circumference decreases. This actin filament severing
initiated by muscle contractions followed by FHOD-1-dependent bundling or capping represent a

ratchet-like mechanism, providing a molecular basis for viscoplasticity.
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1. Modelization of our ratchet mechanism

The model developed by Teresa aims to describe the embryo under elongation as a solid that
deforms permanently when it is submitted to mechanical stress. It gives a mesoscopic physical
description and interpretation of embryo elongation, rather than a detailed mechanistic formulation.
We choose to describe the C. elegans embryo under elongation as a visco-elastic body: a solid that
deforms permanently when it is submitted to mechanical stress. We took in account our previous
and already published work, data on the organization of the actin cytoskeleton described in this work
and the duration of muscle contractions also described in this work. There are three main
parameters: oDV positively related to actomyosin stiffness in the D/V cells, B expressing the global
activity of the remodeling factors SPC-1, PAK-1 and FHOD-1, and y, which representing the

accumulation of cytoskeleton damage.

Because the model we proposed has several free parameters, we tried to narrow it down as
possible. To do so, we extracted some of them from experimental data. For example, for Fmusces, we
specified its details on the basis of the measured contraction durations for embryos at the 2-fold
stage. For wild-type embryos, the duration of positive and negative periods has been set to 6
seconds while for spc-1 mutants and spc-1 pak-1 double mutants the duration of non-null activity has
been set to 3 seconds. And the muscle force amplitude for spc-1 and spc-1 pak-1 mutants has been
set to 50% of the wild-type intensity according to our experimental observations. However, it was
more difficult for aDV which is related to the stiffness in the D/V cells. As mentioned in the
introduction, accessing the stiffness of a tissue in vivo is challenging. Laser ablation experiments
could have been an added value to measure the relative stress and/or stiffness in our system.
However, as we model the elongation of the embryo, process enabled by muscle contractions, it
would have been interesting to access the stiffness of the epidermis at 2-fold and beyond.
Unfortunately performing laser ablation in a moving embryo is in our experience extremely
challenging, because the embryo rotates once muscles start to twitch and reacts to the laser by
stronger contractions, making it almost impossible to track the recoil process. Therefore, we used
our previous work showing that prior to muscle contractions, actin bundles in D/V cells provide
stiffness due to their high anisotropy in the circumferential direction, by using laser ablation (Vuong-
Brender et al, 2017). It allowed us to constrain the time behavior of Fepig (the epidermal force

introduced by the shrinking of the seam cells).
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We are also aware that the general form we propose is one of some other possibilities to
capture the phenomenology of the process. We know that our model leads to non-trivial
consequences about the speed of the applied deformation: fast-applied deformations will induce
strong plastic response and very slow deformations will leave the system almost elastic. Indeed, we
did not apply our model to a large range of deformation speeds, because the average speed of
deformation is of the order of ~1 um/s for all genotypes, making the value of the deformation speed

uniform across our genotypes and not crucial for their description.
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Figure 2: Time-dependent length of a Kelvin-Voigt model in different conditions.

(a-e) A Kelvin-Voigt system with mechanical plasticity introduced according to Egs. (1, 4 discussed here, 6, 7),
and predicted elongation change (a-c) using F.=0.7, three distinct values of B, and three disctint values of
Fmuscies for each B, or (d-f) three distinct values of B, and three disctint values of Fmuscies for each B.

Nevertheless, we investigated other possibilities to verify that the model we propose is the
best to describe our system. A more standard way to introduce plasticity would be trough the
following equation:
=—=B(I-A) H(apv) if =——>0 and [-A >%

dA_ dl
dt dt
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Using different values of Fmuscies, the yield stress Fc and B, we observed a regime of elongation
with some parameters (Fig. 2d-f), but it remains that elongation is predicted to occur when Fmuscles=0
irrespective of the parameters (Fig. 2a-c), which is contradictory with the fact that Pat mutants
(which have no muscle force) fail to elongate beyond the 2-fold stage. Furthermore, some curves are
predicting a poor relationship between the level of Fnusdes and the speed of elongation (Fig. 2a-c),

whereas some of our ongoing work point towards a direct relationship.

Overall this alternative is contradictory with the phenomenology observed in our data. In
order to respect the biological phenomenology, the muscle force needs to contribute positively to
elongation and elongation needs to arrest in the absence of this force even if the epidermal force is
still present. On the other hand, our model properly recapitulates the elongation arrest in the
absence of muscle activity. However, we do not pretend that it is easy to generalize it to other
contexts, and that we are not aware of other work where it has been used. In principle, this model
could be useful in a framework that requires a plastic deformation that saturates. We find it useful to
rationalize a complex biological process such as the elongation of an embryo under the influence of
two cooperating tissues. We think that our choice is appropriate to describe the phenomenology of

the process, although we do recognize some of its limitations.

Ill. Unraveling the internal organization of actin

In the work, we describe a morphogenetic racthet in which actin bundles counteract the
elasticity of the cells. As mentioned in the results, these circumferential actin bundles are formed of
5-10 individual filaments (Pasti and Labouesse, 2014). But nothing is known about the length of the
individual filaments and their orientation inside the bundle. It does not seem too risky to rule out
that they would run uninterrupted from one side of the DV cell to the other. Moreover, super
resolution revealed that the actin organization defects observed in spc-1 pak-1 were more prominent
in the area over the muscles, most probably where hemidesmosomes are located. This trend was
also verified in wild-type embryos where the well-organized pattern seemed less sharp in the areas
submitted to a more direct stress from muscles underneath. These results may point to an important
role for CeHDs probably in anchoring the actin filaments, as relay in the DV cells. However, even
super resolution and the potential defasciculation of individual actin filaments in spc-1 pak-1

defective embryos did not tell us anything about the internal organization of actin bundles.
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As described in the figure 6 of the results section, we could image different scenarios.
Bundles could be formed of filaments running uninterrupted from the junction to the CeHD or could
be subdivided in more mini-filaments. Their orientation is also a pending question. | started to tackle
this by developing new reporter tools to look at actin. | tried to obtain ACT-1 CRISPR reporters, in C-
ter and N-ter, with and without linker. | also created an extrachromosomal ACT-1::GFP construct,
that was viable but very difficult to work with due to the low transmission of the extrachromosomal
array. And | built an alternative LifeAct::mMaple3, for FRAP analysis using spinning microscopy,
which expression level was not sufficient to perform the experiment we had planned. All these
approaches were focused on actin. However, to answer this big question, we could also focus on

actin related proteins with specific binding to the filaments.

For example, we could imagine tagging a processive myosin motor that walk along the
filament. Knowing that myosins move along the actin filament in the direction of the plus end, it
would give us insight on the orientation of the filaments inside the bundle. TIRF imaging would help
follow the displacement of the myosin and if the myosin stops and detach from the filament, its
disappearance could indicate where the end of the filament stands. Therefore, at single molecule
level, we may be able to track both the direction of the displacement and the length of the mini-

filaments.

Another way to do it could be to use an optogenetic tool as it is already has been extensively
used for neurobiology (Husson et al., 2013; Fang-Yen et al., 2015; Bergs et al., 2018). We could even
combine it to a new approach, the use of unnatural amino acids (Greiss and Chin, 2011; Bianco et al.,
2012; Elliott et al., 2013; Han et al., 2017; Italia et al. 2017; Vinson 2017). The use of unnatural amino
acids had been limited to single celled systems until very recently, when it has been extended to C.
elegans (Davis and Greiss; 2018). There are photo-caged amino acids already available for the design
of light-activatable proteins. As actin is incredibly challenging to tag, we would imagine targeting
actin related proteins. This would allow us to dissect their dynamic inside living cells with great

precision and great temporal resolution.
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IV. Interaction of actin and spectrin cytoskeleton

To better understand the interaction between actin and spectrin cytoskeletons, | examined
their localization and dynamics by in vivo imaging and super resolution microscopy. | used CRISPR
strains for SMA-1 and SPC-1 both combined to our well characterized ABDvyag-10::mKate reporter.
SMA-1 was present along actin cables, with a dotted pattern, while SPC-1::YFP reporter turned out to
be difficult to work with. Therefore, as | already briefly mentioned in the results, | propose an
alternative imaging strategy. First, | am crossing a SPC-1::mKate reporter to SMA-1::GFP and to
LifeAct::GFP. Second, with these two new strains, | would image anesthetized embryos by using
sodium sulfite that mimics hypoxic stress (Jiang et al. 2011). Indeed, | cannot use the same strategy
as for spinning-disk imaging, put to sleep the embryos by oxygen deprivation through a high
concentration of bacteria. The bacteria produce a strong autofluorescence that would interfere with
the signal | would like to acquire, as with TIRF-SIM we only illuminate the plans very close to the
cover slip. However, anesthetizing the embryos seem a good option because it would allow me to
image the embryos with more ease and at later stages of development (3-fold), when the actin and

spectrins pattern will be sharper.

Indeed, it would be interesting to see if SPC-1 intercalate in between SMA-1 or if it perfectly
colocalizes with SMA-1. It has been shown that the interaction between SMA-1, actin, and the apical
membrane is independent of SPC-1 (Praitis et al., 2005). As actin reorganizes into parallel bundles
during morphogenesis, SMA-1 is required to maintain the localization of actin at the apical
membrane. When the embryo elongates, the SMA-1 network stretches to accommodate changes in
cell shape. To stabilize these changes, it dynamically reorganizes, returning to its relaxed state.
Therefore, the authors propose the following model. At the beginning of cell elongation, SMA-1
interacts with SPC-1 forming a tetrameric network that cross-links actin to the apical membrane.
When cells elongate, the actin bundles move apart from each other (Costa et al., 1997), causing the
associated SMA-1 network to shift from a relaxed to a stretched state. Because SMA-1 tetramer is
not sufficiently long to accommodate the maximum distance between the actin fibers (Costa et al.,
1997, Dubreuil et al., 1990), SMA-1 tetramer would dissociate from the apical membrane and returns
to a relaxed state. This association between the spectrin tetramer and the apical membrane may
require SPC-1. Following this hypothesis, by super resolution microscopy, | would expect at least a
partial colocalization of SPC-1 and SMA-1 along the actin bundles but also in the interspace between

the bundles.
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V. SPC-1 as a major player in a mechanotransduction pathway

As a crucial component of our morphogenetic locking mechanism, the spectrin cytoskeleton
could play a major role in sensing the force exerted by muscles on the epidermis. It forms a
ubiquitous 2D network, crosslinking the cell membrane, actin filaments and membrane-associated
proteins. The contribution of spectrins to cellular mechanical properties, more precisely to cellular
elasticity gained wide acceptance in multiple tissues. Recent studies showed that spectrins play a
crucial role in cell morphology, protein localization, cellular motility and in the mechanical
stabilization of both erythroid and non-erythroid tissues (like epithelia, neurons or other tissues
exposed to mechanical stress and deformation). In this work, we provided evidence that C. elegans
alpha-spectrin SPC-1 contributes to the elasticity of the cells during embryonic elongation. However,
we did not investigate its behavior under force exertion. Special conformational changes are also in
the focus of our interest as we suspect them to be important in the establishment of a PAK-1 - SPC-1

interaction.

Spectrins have been shown to form functional units only as alpha-RB heterotetramers and as
such they attach to the membrane and to the actin filaments. The alpha and R-spectrins show high
affinity to each other and their lateral association is highly conserved. The heterotetramers are
around 60nm at their resting length but they can reach up to a three-to-five-fold extension

(Sotomayor and Schulten, 2007; Mehboob et al., 2010; Brown et al., 2015).

A recent model (relying on crystal structures, electron micrographs, mass spectroscopy results
and modeling approaches) proposes that the heterotetramers behave like Chinese finger traps that
form a hollow cylinder at their resting length and during their extension the pitch of the spectrin
repeats increases while the cylinder's internal diameter decreases. This way the heterotetramers can
remain linear and maintain their structural integrity. Moreover, a-spectrin and RB-spectrin
heterotetramers are modular proteins including several so called spectrin-repeats (SR), which can
unfold under tension (Rief et al., 1998). Interestingly, they both possess an unconventional spectrin
repeat domain that includes an alternative Src-homology domain-3 (SH3). Our work highlighted that
this domain is a crucial element of the morphogenetic locking process we revealed. Based on our
reciprocal yeast two-hybrid screens, the SH3 domain is the predicted interaction site between PAK-1
and SPC-1. It is a part of an evolutionary conserved site, located between the B and C helices of the

unusually large triple a-helical SR9 spectrin repeat.
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Previous work performed by Gabriella Pasti examined whether the SH3 or the SR9 could be
critical for the interaction between SPC-1 and PAK-1. In addition, she wondered whether the SH3
domain was easily accessible to interact with PAK-1, or whether it required SR9 to unfold under
mechanical stress, as many spectrin repeats can do. To test these possibilities, she used spc-1(ra409)
transgenic animals expressing alternative SPC-1::GFP constructs with either the SH3 domain alone or
the SR9 domain alone. She found that the SPC-1(ASH3)::GFP transgene failed to rescue the
elongation defects of spc-1(ra409) mutants. When pak-1 was knocked down in these transgenic spc-
1(ra409) embryos, they retracted nearly to their initial length. By contrast, the SPC-1(ASR9)::GFP
transgene, could rescue the elongation of spc-1(ra409). When combined with pak-1(RNAi), these
embryos did not retract. Instead, they arrested at 2-fold, resembling to spc-1 single mutant animals.
These results could indicate that SPC-1 might interact through its SH3 domain not only with PAK-1,
but possibly with other molecular players in a molecular locking mechanism that relies behind the
retraction. Therefore, the SH3 domain of SPC-1 possibly serves as an interaction site for SPC-1
binding partners and it is crucial for a-spectrin function, including the maintenance of the embryonic

shape, when challenged by repeated mechanical stress.

This idea is supported by numerous studies that already proved the importance of the SH3
domain in interacting with signaling proteins (Bialkowska et al., 2005; Bournier et al., 2006; Machkina
et al., 2014; Desrochers et al., 2017). Indeed, they participate in the regulation of important cellular
pathways, such as cell proliferation, migration and cytoskeletal modifications. For example, Human
proteome contains ~300 different SH3 domains and many more SH3 ligand proteins, creating an
enormous number of theoretically possible SH3 interactions. Therefore, knowing which of these
interactions actually take place and are biologically meaningful would greatly increase our
understanding about the signaling networks that regulate normal cellular behavior and become
deregulated in many important diseases (Kazlauskas et al.,, 2016). Moreover, recognition of
polyproline and a number of noncanonical sequences by SH3 domains has been extensively studied
by crystallography, nuclear magnetic resonance, and other methods. High-affinity peptides that bind
SH3 domains are used in drug development as candidates for anticancer treatment (Kurochkina and

Guha, 2013).

To probe further this hypothesis and to assess the cortical tension experienced by the
epidermis once muscles are active, we developed a FRET tension sensor inserted within SPC-1. Based
on the recent use of TSMod within the linker separating SR8 and SR9 of the neuronal C. elegans -
spectrin UNC-70, which is neutral for function and provides a good tension sensor (Krieg et al., 2014),

the TSMod have been inserted at the linker regions separating adjacent SRs. Four regions have been
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chosen, two before the SR9 and two after, plus one in C terminal as a negative control. More
specifically, we chose the linkers located around the SR9 of SPC-1 because some of our previous data
showed that the SH3 domain of SPC-1 is essential for elongation, but not the surrounding SR9.
Furthermore, as SPC-1 and PAK-1 cooperate to maintain embryo shape during elongation, it raises
the possibility that the SPC-1 SH3 domain defines a mechanotransduction pathway. Therefore, we
started to work with this SPC-1 FRET strain. First, we obviously need to image it alone to verify that
the sensor works. Then, it would be of interest to introduce it in different mutant backgrounds such

as sma-1 or vab-10b, to see how the cortical tension is affected.

Additionally to our first yeast two hybrid screen showing that PAK-1 interacts with the
conserved SH3 embedded within the central SR domain of SPC-1 (SR9), another one showed that
FHOD-1 interacts with that of the B-spectrin SMA-1 embedded within its SR4. Furthermore, we found
that epidermis expression of a truncated derivative of FHOD-1 predicted to be constitutively active
fully rescues the retraction phenotype observed in defective spc-1 pak-1 mutants, raising the
possibility that FHOD-1 is the terminal player in a mechanotransduction pathway induced by muscles
to bring actin remodeling. Hence, we could test whether PAK-1 phosphorylates FHOD-1 to activate it,
and/or if the protein becomes properly localized by SPC-1 and PAK-1, and whether it depends on the
muscle input as we previously did for CeHDs remodeling (Zhang et al., 2011). SPC-1 might also act
redundantly with another component during this process, as spc-1 single mutant embryos do not
retract. Such possible partners could be for instance SMA-1 or also VAB-10, with which one of our

Y2H screen also yielded as a result. We started to investigate both of these possibilities.

VL. Identification of other players that could also be involved

Finally, it is important to underline that there must be several aspects that avoided our
attention. It is also possible that there exist other molecular elements of the ratchet mechanism.
Several lines of evidence indicate that the actin cytoskeleton is an important component of cell
shape maintenance. For example, in erythrocytes the actin-spectrin-based membrane skeleton is
responsible for the shape maintenance of the red blood cells. Spectrins link short actin filaments in a
polygonal network to the membrane (Bennett, 1989; Pan et al., 2018). Besides the attachment of the
actin filaments, their stabilization is just as important. In this role adducin helps by capping the fast-
growing end of actin and helps its association with spectrins. Non-muscle tropomyosin sets the
length of the actin filaments within the meshwork and tropomodulin caps the slow-growing actin
end to optimize actin dissociation (Bennett and Baines 2001). This actin-spectrin membrane skeleton

is crucially needed in erythrocytes to ensure their flexible mechanical support in the bloodstream.
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Insufficient lateral association of the spectrin-actin system, disruption of the tetramers or improper

support of the membrane bilayer leads to diseases (Zhang et al., 2013; Smith et al., 2015).

In C. elegans, it has been shown that actin capping by tropomodulin, UNC-94, is important in
the epithelial and intestinal lumen morphogenesis. In epithelia, UNC-94 is enriched within a HMP-1-
dependent junctional actin network at epidermal adherens junctions subject to stress during
morphogenesis. Loss of UNC-94 leads to discontinuity of this network, and hmp-1; unc-94 embryos
present large junctional displacements. In vitro, UNC-94 acts in combination with HMP-1, leading to
longer actin bundles than with HMP-1 alone. It suggests that tropomodulin protect actin filaments
recruited by a-catenin from minus-end subunit loss, enabling them to withstand the stresses of
morphogenesis (Cox-Paulson et al., 2012). In the intestine, UNC-94, localizes at the F-actin rich
terminal web at the intestinal apical membrane, along with non-muscle NMY-1. In the lack of UNC-94
the F-actin amount is reduced, and the intestinal lumen is flatter, but this phenotype can be rescued
by increased actomyosin contractility. This work points out that actin capping coupled to actomyosin
contractility at the level of the apical cytoskeleton can influence epithelial morphogenesis and lumen

shape maintenance in the C. elegans intestine (Cox-Paulson et al. 2014).

In our system, we showed that actin cables are important to stabilize cell shape changes but
the mechanism of formation of actin cables during C. elegans embryonic elongation is still unknown.
We wanted to probe it further and examined the contribution of other predicted C. elegans actin-
binding proteins (formins, filamins, tropomodulin ...) as described in the examples above. We used a
candidate-gene approach screening for retraction phenotype and/or actin organization defects, in
single pak-1(-), spc-1(-) and fhod-1(-) backgrounds. We tested thirty-three actin-binding candidates
(Nishikawa et al., 2017). Only seven gave phenotypes different from the wild-type (ANI-1, CYK-1,
INFT-1, FLN-1, DGN-1, TMY-1 and UNC-60), and only two (DGN-1 and CYK-1) showed high embryonic
lethality (greater than 20%) in a pak-1(-) and fhod-1(-) backgrounds. They are promising considering
their function. CYK-1 is a formin essential for cytokinesis embryonic and cortical assembly of actin
filaments independent of the Arp2/3 complex. DGN-1 is involved in the dystroglycan complex located
at the cell membrane, allowing interactions between cellular components like actin filaments and
extracellular matrix via laminins. Further quantification of these potential interactions would be
needed. However, this screen has not been performed following a robust protocol and would need

to be repeated.
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To conclude, my four years of PhD lead to the identification of several proteins involved in
stabilizing cell shapes in a system submitted to repeated external mechanical stress. We propose that
the progressive shortening of actin filaments under the control of these factors mediates a cellular
viscoplastic process promoting axis elongation. We described this ratchet mechanism both at the

cellular/molecular level and in term of physics.
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CAPTIONS FOR MOVIES

Movie 1: Embryonic elongation and retraction profiles.
Combined DIC timelapse movie. Image acquisition was every 5 minutes in wild-type, pak-1(tm403), spc-
1(RNAI), spc-1(RNAI) pak-1(tm403) embryos. Scale bar: 10 um.

Movie 2: Muscle-dependence of the retraction profile.
Combined DIC timelapse movie of unc-112(RNAi) and unc-112(RNAI); spc-1(RNAi) pak-1(tm403) embryos. Scale
bar: 10 um.

Movie 3: Elongation profile of vab-10b; sma-1 defective embryos.
Combined DIC timelapse movies of vab-10b(mc44); sma-1(rul8) embryos. Scale bar: 10 um.

Movie 4: Elongation profile of vab-10b; spc-1 defective embryos.
Combined DIC timelapse movies of the two populations of vab-10b(mc44); spc-1(RNAi) embryos.
Scale bar: 10 um.

Movie 5: Severing proteins rescuing the retraction profile.
Combined DIC timelapse movies of gsnl-1(tm2730); spc-1(RNAi) pak-1(tm403) and viln-1(ok2413); spc-1(RNAI)
pak-1(tm403) embryos. Scale bar: 10 um.

Movie 6: Retraction profile of fhod-1; spc-1 defective embryos.
Combined DIC timelapse movies of spc-1(ra409) and fhod-1(RNAi); spc-1(ra409) embryos. Scale bar: 10 um.

Movie 7: Epithelial actin displacement in mutants.

Fluorescence movie showing the displacement of actin filaments labelled with Pdpy-7::lifeact::GFP in the
epidermis in wild-type, pak-1(tm403), spc-1(RNAi) and spc-1(RNAi) pak-1(tm403) embryos. Time interval:
0.41s. Scale bar: 10 um.

CAPTIONS FOR TABLES

Table 1: Primary enhancer RNAi screen in pak-1(-) background.

RNAi screen was performed in the pak-1(tm403) mutant along with a wild type control, testing a collection of
356 essential genes from the Ahringer RNAi library.

The table recapitulates all the genes tested and the score of their interactions for the strongest.

Table 2: Primary and secondary Yeast Two-Hybrid (Y2H) screens.

Yeast two-hybrid screening performed by Hybrygenics Services (Paris, France) using the N-terminus of PAK-1
up to the kinase domain as a bait (Primary Screen), or two different regions of the SPC-1 protein spanning the
SH3 domain (Secondary Screens). The table recapitulates the strongest interactions.

Table 3: Secondary RNAI screen in spc-1(ra409) pak-1(tm403) mutants.

Additional RNAi screen in a spc-1(ra409) pak-1(tm403) mutant maintained by an exctrachromosomal spc-
1(+)::GFP transgene of 13 actin related proteins from the Ahringer RNAI library that were recently reported to
modulate actin remodeling in the early embryo (see text).

Table 4: Secondary enhancer RNAI screen in spc-1(ra409) mutants.

Additional RNAi screen in a spc-1(ra409) mutant maintained by an exctrachromosomal spc-1(+)::GFP transgene.
Genes that gave the strongest defects in the initial RNAi screen (Supplementary Table 1) were tested again.

Table 5: List of strains used in this work.

Table 6: List of Extrachromosomal constructs and Insertions used in this work.
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Table 1 | Primary enhancer RNAi screen in pak-1(-) background

A Reproducible 50-100% enhanced defect* compared to wild-type

B Reproducible 20-50% enhanced defect* compared to wild-type

C  Reproducible 5-20% enhanced defect* compared to wild-type

* Defect refers to lethality and body morphology defects

Targeted gene Function Strength of interaction
() ani-1 Anilin A
(IV) cap-1 F-actin capping protein a subunit A
(ll) cap-2 B subunit of actin capping protein A
(V) cdc-25.2 Putative homolog of Cdc25 phosphatase A
() cdc-42 RHO GTPase A
() dic-1 Dynein light chain A
(IV) epi-1 Laminin a chain A
(I) hmp-2 B-catenin A
(IV) lam-1 Laminin B A
(1) let-502 Rho-binding Ser/Thr kinase A
(1) mlc-5 Myosin Il essential light chain ortholog A
(1) pfn-1 Profilin A
(V) sma-1 BH-spectrin A
(X) spc-1 a-spectrin A
() sur-6 Regulatory subunit of serine/threonine protein phosphatase 2A A
(X) tni-1 Troponin A
(ll) dsh-2 Dishevelled (Dsh) homolog B
() goa-1 Ortholog of the heterotrimeric G protein a subunit Go B
() hmr-1 Cadherin B
() kin-10 Putative regulatory (8) subunit of casein kinase I B
(V) mom-2 Member of the Wnt family B
(I) mpk-2 Mitogen activated protein (MAP) kinase B
(1) pfd-3 Putative prefoldin, orthologous to human VBP1 B
(ll) aakg-5 AMP kinase C
(V) arx-2 Subunit of the actin related protein of the conserved Arp2/3 complex C
() arx-3 Subunit of the actin related protein of the conserved Arp2/3 complex C
() bub-1 Serine/threonine kinase C
(V) chk-1 CHK1-like serine threonin protein kinase C
(l) chp-1 Protein containing two CHORD domains C
() csnk-1 Ortholog of human CSNK1G3, CSNK1G1 and CSNK1G2 C
(ll) ect-2 Putative RHO guanine nucleotide exchange factor (RhoGEF) C
() ekl-1 Ortholog of members of the human TDRD C
(Iv) fin-1 Filamin C
(X) ifa-3 Intermediate filament protein C
(1) kip-19 Plus-end-directed microtubule motor protein C
() lie-1 Serine threonine protein kinase C
() mei-2 Novel protein containing a region similar to the p80-targeting subunit of katanin ~ C
(V) mrck-1 Serine/threonine-protein kinase C
(lll) par-2 Protein containing a C3HC4-type RING-finger C
(lll) pfd-5 Putative prefoldin 5 subunit C
(1) sys-1 Novel protein that contains three divergent armadillo repeats C
() spv-1 Ortholog of human GMIP C
(1) tbed-1 Puatative B-tubulin folding cofactor D (¢}
() usp-5 Ortholog of human USP5 and USP13 C
C

(Il) Y19D2B.1

Structural constituent of cytoskeleton
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Table 1 | Primary enhancer RNAi screen in pak-1(-) background

No enhanced defect* compared to wild-type

* Defect refers to lethality and body morphology defects

(1) afd-1 (ll) aak-1 (Ill) abce-1 (Iv) arp-11 (V) air-1 (X) aakb-1
arx-7 arp-1 abi-1 ced-5 cet-7 aakg-2
aspm-1 C27H5.4 arf-1.2 dli-1 F14H3.12 abl-1
chs-1 cacn-1 cct-5 dnc-1 gck-2 dyn-1
col-53 cal-2 cct-6 dyci-1 knl-3 efn-3
cpn-1 ccm-3 cls-1 eps-8 mig-6 F20B6.1
cutl-13 cct-1 cls-2 frk-1 noca-1 frm-9
dhc-1 cct-2 col-94 gex-2 pak-2 hpk-1
dlc-6 cct-4 col-97 gex-3 par-1 ifa-2
eak-6 cdc-25.4 cra-1 kip-10 rbx-1 kin-29
egg-5 cpn-2 cyk-4 klp-11 spas-1 lam-2
egg-6 dep-1 daf-4 klp-5 sun-1 lin-18
ekl-4 ebp-2 fem-2 let-60 syx-5 Ipr-3
erm-1 eff-1 frm-2 let-92 unc-112 nck-1
fhod-1 egg-3 gei-4 M116.5 unc-70 pak-1
gei-17 evl-20 gop-3 nsp-1 pfn-2
ofi-2 F59A6.5 ina-1 par-5 pfn-3
gsa-1 frm-5.2 inft-1 pfd-1 pqn-34
gsk-3 glb-12 kin-18 pld-1 unc-97
gsp-3 gpb-1 kip-6 pmk-2
gsp-4 klp-1/unc-104 kip-7 pmk-3
kca-1 kip-17 let-805 ptp-4
lim-9 let-268 mpk-1 rac-1/ced-10
mel-26 Irr-1 mtm-3 rack-1
mfap-1 max-2 nfm-1 unc-33
mom-5 mel-11 pef-1 wsp-1
nab-1 mig-5 plk-1 zen-4
ned-8 mit-8 pph-6
nkb-1 nsy-1 ptp-1
nmy-2 pfd-2 pxl-1
npp-4 pink-1 -1
ocrl-1 pir-1 tbb-2
pes-7 ptc-3 ten-1
pfd-6 ptp-2 tik-1
ppk-1 ptp-3 trd-1
rga-2 saps-1 unc-116
rsa-1 scpl-2 wrm-1
smgl-1 sds-22
spad-1 spdl-1
tba-2 tac-1
ttx-7 tha-4
unc-35 unc-52
unc-59 vab-19
unc-73 vab-9
unc-94 vhp-1
vab-10 vps-11
viln-1 vps-32
vps-20 Wo761.1
wve-1 zyg-9
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Table 2 | Primary and secondary Y2H screens

Global Predicted Biological Score (categories computed and established by Hybrigenics, to assess the interaction reliability)

A Very high confidence in the interaction

High confidence in the interaction

B
C  Good confidence in the interaction
D

Moderate confidence in the interaction
(either due to false-positive interactions or due to interactions that are hardly detectable by the Y2H technique)

Strongest candidates
(Prey library: C. elegans embryo)

Primary Yeast Two Hybrid Screen
(Bait: CePAK-1 N-terminal amino acids: 1-294)

* Positive controls (PAK-1 itself + its known interactors)

Secondary Yeast Two Hybrid Screen
1 Bait I: CeSPC-1 SR8-10(aa:796-1243)
1 Bait Il: CeSPC-1 SH3 (aa:986-1041)
§ Common hits using Bait | and Bait II

Interactor

candidate

SPC-1

F47B10.1

CHW-1

GCK-1

NCK-1

PIX-1*

CDC-42 *

PAK-1 *

CED-10 *

POD-2

Y39E4A.3

EEL-1

NPP-21

TAG-143

UNC-44

HIPR-1

TO5C1.4

Y53F4B.13

PTP-3

COGC-6

DAF-21

GCK-1
variant

Protein
Function

a-spectrin

B-chain succinyl-co-A ligase
RhoU homolog
STE20-family kinase

NCK adaptor

ARHGEF7 homolog

B-Pix

Small GTPase
P21-activated Ser/Tre kinase
(multiple hits through kinase domain)
Rac-1/Small GTPase
Predicted acetyl-coA
carboxylase

Transketolase
HECT-ubiquitin ligase
Nuclear pore protein
Transcription factor

Ankyrin

SLA2 and Hip related
Conserved calmodulin-
binding TFs

RNA methyltransferase
LAR-like receptor tyr-protein

phosphatase

Conserved Oligomeric Golgi
(COG) Component

Hsp90 molecular chaperone
family member

STE20-family kinase

Global
PBS

A

Interactor
candidate
PAK-1%
LIM-8 §
Fa4.E2.3%
CSN-5F
DEB-1*
DnaJ i
cyLD-1*
VAB-3/ T
VAR-1
GRL-4*
UNC-34*
To4F8.6 "
ALR-1T
ATN-1 T
Mmcm-1 1
UNC-70"
VAB-10"
F2sA10.2*
F43C1.1*
ALP-1*
CIT-1.2%
FLH-1*

SHW-1#

Protein
Function

p21-activated kinase

LIM domain muscle
component

ARGLU1 ortholog

COP9-subunit ortholog
E3 ubiquitin ligase interactor

Vinculin

DNAJ/ZRF1/MPP11 ortholog
ribosome-associated chaperone

Human CYLD1 ortholog
NF-kB signalling interactor

Homeodomain protein PAX6
ortholog

Hedgehog-like protein
Enabled/VASP homolog
Human ninein and ninein-like
(GSK3B interactor) ortholog

Human ARX (aristaless) ortholog
homeodomain transcription factor
a-actinin homolog
Methylmalonyl-CoA mutase
Ba-spectrin

Spectraplakin

Zinc-finger containing protein

Human PHLPP1&PHLPP2 ortholog

Enigma family member ALP

(a-actinin associated LIM Protein) ortholog

Cyclin T ortholog

FLYWCH zinc finger
transcription factor homolog

Human KCNC3 voltage-gated

SHaW family potassium channel ortholog

Global
PBS

A
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Table 3 | Secondary RNAi screen in spc-1(ra409) pak-1(tm403) background

A Longer compared to spc-1(-) pak-1(-) (no retraction phenotype)

B Not longer compared to spc-1(-) pak-1(-) (retraction phenotype)

Targeted gene

Function

Strength of interaction

(1) viln-1
(V) gsnl-1
(X) tth-1
() pfn-1
(I) cap-2
(1) ani-1
(lll) cyk-1
() fli-1
(IV) cap-1
(Iv) fin-1
(IV) plst-1
(V) arx-2
(V) unc-60

Ortholog of human SVIL (supervillin)
Gelsolin-related proteins

Thymosin beta ortholog

Profilin

Beta subunit of actin capping protein

Anillin

Formin homologous to Drosophila diaphanous and human DIAPH1

Orthologous to Drosophila and human Flightless |
F-actin capping protein alpha subunit
Ortholog of human filamin A

Ortholog of human PLS1, PLS3 and LCP1

Subunit of the actin related protein of the conserved Arp2/3 complex

Actin depolymerizing factor(ADF)/cofilin

T W W D W W W W W W > > >

Table 4 | Secondary enhancer RNAi screen in spc-1(ra409) background

A Shorter compared to spc-1(-)

B Not shorter compared to spc-1(-)

Targeted gene Function Strength of interaction
(l) fhod-1 Formin A
() hmr-1 Cadherin A
(I) hmp-2 B-catenin A
() cdc-42 RHO GTPase A
() spdl-1 Coiled-coil protein A
(ll) vps-11 Ortholog of human VPS11 A
(lll) mtm-3 Myotubularin lipid phosphatase A
(lll) mlc-5 Myosin Il essential light chain ortholog A
(IV) dnc-1 Ortholog of the dynactin complex subunit p150/GLUED/DCTN1 A
(IV) epi-1 Laminin a chain A
() goa-1 Ortholog of the heterotrimeric G protein a subunit Go B
() kin-10 Putative regulatory (8) subunit of casein kinase I B
(I) mec-8 mRNA processing factor B
(I) nmy-2 Non-muscle myosin Il B
() unc-94 Tropomodulin B
(I) cap-2 8 subunit of actin capping protein B
(1) evl-20 Ortholog of human ADP-ribosylation factor-like protein 2 B
(ll) spv-1 Ortholog of human GMIP B
(ll) unc-52 Perlecan B
() kip-7 Ortholog of human KIF2A, 2B and 2C B
() mup-4 Transmembrane protein B
(IV) cap-1 F-actin capping protein a subunit B
(IV) eps-8 Cell signaling adaptor protein B
(IV) frk-1 Non-receptor tyrosine kinase B
(IV) unc-33 Conserved member of the CRMP/TOAD/Ulip/DRP family B
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Table 5 | List of strains used in this work

Name Genotype

DM3409 mnDp33 (X;IV)/+ IV.; spc-1(ra409) X.

DWP10 fhod-1(tm2363) I.; qals8001 [unc-119(+) fhod-1.:gfp]

ML1694 pix-1(gk416)X.

ML1822 sma-1(ru18)V.; pak-1 (tm403)X.

ML1911 git-1(tm1962)X.

ML2113 mcls67 [dpy7p::LifeAct::GFP; unc-119(+)] V.; stls10088[hlh-1::his-24::mCherry, unc-119(+)]
ML2129 pak-1(tm403) X.

ML2200 pak-1(tm403) X.; mcls67 [dpy7p::LifeAct::GFP; unc-119(+)] V; stls10088[hlh-1::his-24::mCherry, unc-119(+)]
ML2419 mcEx915[ppak-1::pak-1::mkate;pR4(rol),pBSK]

ML2428 sma-1(ru18)V.

ML2436 spc-1(ra409) X.; mcEx636 [spc-1p::spc-1::GFP]

ML2446 pak-1(tm403) X.; spc-1(ra409) X.; mcEx636 [spc-1p::spc-1::GFP]
ML2465 mcls91[linc26p::ABD::mkate; myo-2p::mcherry]

ML2537 vab-10b(mc44) I. / hT2 [bli-(€937), let-?(q782) qIS48] IlI.

ML2684 mcEx1008 [fhod-1AFH2/DAD]

ML2688 pak-1(tm403) X.; mcEx1009 [fhod-1AFH2/DAD]

ML2853 pak-1(tm403) X.; mcEx1002 [fhod-1AFH1/FH2/DAD]

ML2854 pak-1(tm403) X.; mcEx1003 [fhod-1ADAD]

ML2855 pak-1(tm403) X.; mcEx1004 [fhod-1 full length]

ML2856 mcEx1005 [fhod-1AFH1/FH2/DAD]

ML2857 mcEx1006 [fhod-1ADAD]

ML2858 mcEx1007 [fhod-1 full length]

ML2896 mcEx1014 [dpy7p::GFP]

ML2898 fhod-1(tm2363) I.; mcls67 [dpy7p::LifeAct::GFP; unc-119(+)] V.

ML2903 spc-1(ra409) X.; pak-1(tm403) X.; mcEx1016 [spc-1p::spc-1::GFP] line 1
ML2904 spc-1(ra409) X.; pak-1(tm403) X.; mcEx1016 [spc-1p::spc-1::GFP] line 3
ML2906 spc-1(ra409) X.; pak-1(tm403) X.; mcEx1016 [spc-1p::spc-1::GFP] line 4
ML2907 pak-1(tm403) X.; mcEx 1014 [dpy7p::GFP] line 1

ML2929 mcls67 [dpy7p::LifeAct::GFP; unc-119(+)] V.; spc-1(ra409) X.; pak-1(tm403) X.; mcEx1016 [spc-1p::spc-1.:GFP]
ML2931 viln-1(ok2413) I.; pak-1(tm403) X.

ML2932 gsnl-1(tm2730) V.; pak-1(tm403) X.

ON204 gsnl-1(tm2730) V. (3x outcrossed)

ON206 viln-1(ok2413) I. (3x outcrossed)
ON218 viln-1(0k2413) I.; gsnl-1(tm2730) V.
N2 Bristol

XA8001 fhod-1(tm2363) .
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Table 6 | List of Extrachromosomal constructs and Insertions used in this work

Name Genotype

mcEx636 [spc-1p::spc-1::GFP]

mcEx1002 [fhod-1AFH1/FH2/DAD]

mcEx1003 [fhod-1ADAD]

mcEx1004 [fhod-1 full length]

mcEx1005 [fhod-1AFH1/FH2/DAD]

mcEx1006 [fhod-1ADAD]

mcEx1007 [fhod-1 full length]

mcEx1008 [fhod-1AFH2/DAD]

mcEx1009 [fhod-1AFH2/DAD]

mcEx1014 [dpy7p::GFP]

mcEx1016 [spc-1p::spc-1::GFP]

mcls55 [pak-1::GFP;pRF4]

mcls67 [dpy7p::LifeAct::GFP; unc-119(+)] V.
mcls91 [lin26p::ABD::mkate; myo-2p::mcherry]
stls10088 [hlh-1::his-24::mCherry, unc-119(+)]
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An actin-based viscoplastic lock ensures
progressive body-axis elongation

Alicia Lardennois"®, Gabriella P4sti>°, Teresa Ferraro!, Flora Llense!, Pierre Mahou?, Julien Pontabry>“, David Rodriguez?,
Samantha Kim?, Shoichiro Ono®, Emmanuel Beaurepaire?, Christelle Gally? & Michel Labouesseb?*

Body-axis elongation constitutes a key step in animal development,
laying out the final form of the entire animal. It relies on the
interplay between intrinsic forces generated by molecular
motors!=3, extrinsic forces exerted by adjacent cells*” and
mechanical resistance forces due to tissue elasticity or friction31°.
Understanding how mechanical forces influence morphogenesis at
the cellular and molecular level remains a challenge’. Recent work
has outlined how small incremental steps power cell-autonomous
epithelial shape changes!~3, which suggests the existence of
specific mechanisms that stabilize cell shapes and counteract cell
elasticity. Beyond the twofold stage, embryonic elongation in
Caenorhabditis elegans is dependent on both muscle activity’ and
the epidermis; the tension generated by muscle activity triggers a
mechanotransduction pathway in the epidermis that promotes axis
elongation’. Here we identify a network that stabilizes cell shapes
in C. elegans embryos at a stage that involves non-autonomous
mechanical interactions between epithelia and contractile cells.
We searched for factors genetically or molecularly interacting with
the p21-activating kinase homologue PAK-1 and acting in this
pathway, thereby identifying the o-spectrin SPC-1. Combined
absence of PAK-1 and SPC-1 induced complete axis retraction,
owing to defective epidermal actin stress fibre. Modelling predicts
that a mechanical viscoplastic deformation process can account
for embryo shape stabilization. Molecular analysis suggests that
the cellular basis for viscoplasticity originates from progressive
shortening of epidermal microfilaments that are induced by
muscle contractions relayed by actin-severing proteins and from
formin homology 2 domain-containing protein 1 (FHOD-1)
formin bundling. Our work thus identifies an essential molecular
lock acting in a developmental ratchet-like process.

C. elegans provides an anatomically simple and integrated model to
study the cellular effect of mechanical forces; however, unlike other
such models, morphogenesis in C. elegans is not dependent on pulsa-
tile actomyosin flows! >!!1, Because the muscles are tightly mechan-
ically coupled to the epidermis through epidermal hemidesmosomes!?
(Fig. 1a, Supplementary Information), their contractions also displace
the epidermis. Indeed, the anterior-posterior displacement of circum-
ferentially oriented epidermal actin filaments closely mirrors that of
muscle nuclei (Fig. 1b). Notably, the muscles do not all contract simul-
taneously; when some areas of the epidermis were longitudinally com-
pressed (red line in Fig. 1c), others were stretched (green line) before
eventually relaxing. The relaxation that follows each muscle contraction
raises the conundrum of how muscle activity can power embryonic
elongation from 100 pm to 200 pm if cell elasticity brings cells back to
their initial length during relaxation. A simple hypothesis would be that
some mechanism stabilizes the transient cell shapes induced by muscle
activity. For instance, during Drosophila gastrulation and germband
extension, actomyosin pulsatile flows are thought to progressively mod-
ify junctions™'*!*. To uncover such a mechanism, we focused on the

kinase PAK-1, which mediates mechanotransduction’ and regulates
myosin [1'>16, We first performed a feeding RNA-mediated interference
(RNAI) screen in a strong but viable pak-1 mutant, looking for enhanced
embryonic lethality (Extended Data Fig. 1a). The gene spc-1—
which encodes a-spectrin—behaved as a strong genetic enhancer of
pak-1, producing short hatchlings (approximately 58 pm long), sig-
nificantly shorter than pak-1(tm403) (approximately 178 pum long)
or spc-1(RNAi) (approximately 91 pm long) hatchlings (Extended
Data Fig. 1b, Supplementary Table 1). Moreover, a yeast two-hybrid
screen identified the central Src homology 3 domain (SH3) of SPC-1
as an interactor with the PAK-1 N terminus (Extended Data Fig. 1c,
Supplementary Table 2). Thus, both screens indicate a functional inter-
action between SPC-1 and PAK-1 during axis elongation.

Next, differential interference contrast (DIC) video microscopy
showed that spc-1(ra409) pak-1(tm403) and spc-1(RNAi) pak-1(tm403)
embryos could reach about 65 pum at a slow rate, but then failed to
maintain their shape and retracted back to about 50 um (Figs 1d-h,
Extended Data Fig. 1d-j, Supplementary Video 1). Two observations
suggest that muscle activity accounts for this phenotype. First, spc-1
knockdown in git-1 or pix-1 mutants, which act upstream of pak-1 in
mediating mechanotransduction’, also induced retraction (Extended
Data Fig. 1d-j). Second, spc-1(RNAi) pak-1(tm403) embryos started
to retract at the onset of muscle contractions in control embryos
(Fig. 1d, Extended Data Fig. 1d). We abrogated muscle function in
spc-1(ra409) pak-1(tm403) embryos by knocking down the kind-
lin homologue UNC-112Y7; the spc-1(ra409) pak-1(tm403) embryos
defective for unc-112 no longer retracted (Fig. 1d-n, Supplementary
Video 2). Therefore, we conclude that the mechanical input provided
by muscles to the epidermis induces the retraction phenotype observed
in spc-1 pak-1 double mutants.

The simplest interpretation of this retraction phenotype is that a cel-
lular structure that maintains embryo shape fails to emerge or collapses
when muscles contract. Two arguments suggest that this structure corre-
sponds to the bundles of 3-5 actin filaments present in the dorsoventral
epidermis'®!. First, SPC-1 and its binding partner SMA-1 (3-spectrin)
form an actin-binding heterotetramer, colocalizing with actin®® and par-
tially with PAK-1 in epidermal cells (Extended Data Fig. 2). Second,
treating C. elegans embryos with the actin-depolymerizing drug cyto-
chalasin D induces a retraction phenotype very similar to the one
described above'®. We therefore characterized actin filaments using
super-resolution microscopy of a LifeAct::GFP probe!’. Segmentation
analysis of the resulting images in the dorsoventral epidermis (Fig. 2a,
b) revealed more discontinuity in spc-1 pak-1 double-deficient embryos
compared with control genotypes, particularly over the area in which
muscles contract (putative hemidesmosomes) (Fig. 2¢, Extended Data
Fig. 3). Fourier transform analysis indicated that their degree of ani-
sotropy relative to the circumferential axis was abnormal (Fig. 2d,
Extended Data Fig. 3). Moreover, the signal intensity between adjacent
actin bundles was less sharp in spc-1 pak-1 deficient embryos and they
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time  Fig. 1| Combined loss of PAK-1 and SPC-1
l triggers muscle-dependent embryo retraction.

a, C. elegans embryonic elongation requires a
ROCK-dependent actomyosin force in lateral
cells (blue) and actin-promoted stiffness in
dorsoventral cells (yellow), followed by repeated
muscle contractions (red flash), which induce

a PAK-1-dependent mechanotransduction
pathway. Open sections (bottom), muscle
positions; A-P, anterior-posterior. b, Spinning-
disc micrograph (top left) and kymographs (top
right; yellow rectangle area from top left) of
epidermis actin filaments (green) and muscle
nuclei (red) in a wild-type twofold embryo,
showing their concurrent displacement. Scale
bar, 10 pm. Bottom, quantification of the area
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below the resulting displacement curves (pink
box) (n = 11 embryos, 33 contractions). ¢, Local
effect of a muscle contraction-relaxation cycle on
epidermal actin filaments in a wild-type twofold
embryo (timing shown above each panel).

Yellow (relaxation), red (compression) and green
(stretching) distances were measured between
four landmarks (denoted 1-4). Left, 7.8 pm (1-2),
19.8 um (2-3), 24.6 pm (3-4); middle, 9.4 pm
(1-2), 13.6 pum (2-3), 26.2 pm (3-4); right, 8.0 pm
(1-2), 19.2 pm (2-3), 25.0 pm (3-4). In b, ¢, the
Pepidermis promoter is Pdpy-7. d-h, Elongation
profiles (d) and DIC images showing the terminal
phenotypes of unc-112 (RNAI) (e; n = 14
embryos), spc-1(ra409) (f; n = 8 embryos),
spc-1(ra409) pak-1(tm403) (g; n = 8 embryos)
and unc-112(RNAI) spc-1(ra409) pak-1(tm403)
(h; n =7 embryos). Scale bar, 17 pm. Colours in
d correspond to genotypes in f-h. Pink box,
period of muscle activity; bracket, extent of
retraction. Data are mean =+ s.e.m.
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Fig. 2 | Actin-filament abnormalities in spc-1 pak-1 defective embryos.
a, b, Total internal reflection fluorescence-structured-illumination
microscopy (TIRF-SIM) super-resolution images of actin filaments
(Pdpy-7::LifeAct::GFP reporter) from wild-type (a) and spc-1(RNAi)
pak-1(tm403) (b) embryos at the twofold stage or equivalent. Grey

and orange rectangles, region of interest (ROI) above muscles (area of
higher bending in time-lapse images); black and burgundy rectangles,
ROI elsewhere. Scale bar, 5 pm. ¢, d, Actin continuity estimated as the
segment length in binarized ROI images (c) and actin-bundle anisotropy
calculated from the peak value of the angular coefficient after fast Fourier
transformation (d) (Extended Data Fig. 3). Defects are more pronounced
above muscles. Colours of dots correspond to those of the boxes in a and
b; images are representative of a wider sampled group of images (c and d;
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above muscles, wild type n = 12, spc-1 pak-1 n = 15; elsewhere, wild

type n =12, spc-1 pak-1 n = 16; e: wild type n = 8, spc-1 pak-1 n = 14;

f: wild type n = 12, spc-1 pak-1 n = 14). e, Coefficient of variation
(s.d./mean) of the fluorescence signal in ROIs above muscles as a proxy for
actin-bundle organization. f, Left, actin-bundle straightness, calculated as
the ratio of the actual length of a bundle (black line in the sketch (right))
and the shortest distance between its endpoints (red line in the sketch).

g, h, Snapshots of TIRF-SIM reconstructed images with Fire LUT to
emphasize the actin-bundle defects of spc-1(RNAi) pak-1(tm403) embryos
compared with wild-type controls. Scale bar, 2 pm. Graphs show median
and 25th and 75th percentiles; whiskers extend to the most extreme

data points not considered outliers. Two-sided paired ¢-test. *P < 0.05;
*##P < 0.001; **#*P < 0.0001; NS, not significant.
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Fig. 3 | Muscle contractions are linked to severing of epidermal actin
filaments. a-d, Spinning-disc images of epidermal actin filaments
(Pdpy-7::LifeAct::GFP reporter) and quantification of bending angles in
wild-type (n = 23 embryos, 101 contractions) (a, ¢) and spc-1(RNAi)
pak-1(tm403) (n = 14 embryos, 131 contractions) (b, d) embryos at
twofold-stage equivalent (kymographs in Extended Data Fig. 5). Scale
bar, 10 pm. e, Elongation profiles of spc-1(RNAi) (n = 8 embryos),
spc-1(RNAi) pak-1(tm403) (n = 9 embryos), viln-1(0k2413); spc-1
(RNAI) pak-1(tm403) (n = 11 embryos) and gsnl-1(tm2370); spc-1(RNA1)

were more frequently bent (Fig. 2e-h), indicating that the bundles might
have partially defasciculated. Of note, these phenotypes became appar-
ent once muscles became active (Extended Data Fig. 3), which suggests
that muscle contractions contribute to actin remodelling.

To further investigate this phenomenon, we examined actin fila-
ments during muscle contraction. As wild-type embryos lengthen, their
circumference decreases by roughly 20% owing to embryo-volume con-
servation (Extended Data Fig. 4); thus, the length of actin filaments
in dorsoventral cells would be expected to decrease. Spinning-disc
microscopy revealed that muscle contractions are strong enough to
locally bend actin bundles with an angle greater than 54° (Fig. 3a-d,
Extended Data Fig. 5a, b), which has previously been reported to induce
severing of actin filaments in vitro?!. Therefore, we reasoned that com-
promising severing genetically might partially rescue the retraction of
defective spc-1 pak-1 embryos (Extended Data Fig. 5¢, d). Among 13
genes tested (Supplementary Table 3), our screen identified homologues
of 2 actin-severing proteins, gelsolin and villin (Fig. 3e). Mutations
in villin and, to a lesser degree, gelsolin confirmed this partial res-
cue (Fig. 3e, Extended Data Fig. 5d-1). Together, these data suggest
that muscle contractions induce actin-filament bending, and directly
or indirectly stimulate the activity of severing proteins. We propose
that this is uncontrolled in spc-1 pak-1 double mutants (Fig. 3f, g).
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pak-1(tm403) (n = 5 embryos). Pink box, period of muscle activity. Data are
mean =+ s.e.m. f, g, Cellular model of embryo elongation based on volume
conservation in normal embryos, in which an increase in axial length
implies a decrease in circumferential length. f, Proposed model. In control
embryos, muscle contractions (red arrows) induce actin-filament bending
and their severing, followed by SPC-1-PAK-1-dependent stabilization;
whether spectrin is found along or between actin filaments is unknown.

g, In spc-1 pak-1 deficient embryos, actin remodelling is uncontrolled.

This model predicts that preventing muscle activity should improve
actin organization in spc-1 pak-1 mutants, and that viln-1; gsnl-1 double
mutants should exhibit defective elongation. First, we found that actin
filaments in spc-1 pak-1 mutants were probably stiffer when muscles
were inactive, as lateral cells were wider (Extended Data Fig. 4c, d)—
although continuity defects remained (Extended Data Fig. 3b, c).
Second, villin—gelsolin double-deficient embryos showed only minor
elongation defects (Extended Data Fig. 51), which suggests that addi-
tional parallel processes might contribute to actin remodelling.

To rationalize the role of muscles in remodelling, we described
the C. elegans embryo as a Kelvin-Voigt material (a spring in paral-
lel with a dashpot) submitted to forces acting in the epidermis and
muscles (Fepidermis and Fiyscles> Tespectively) (equations (1) and (2);
see Supplementary Information for details).

dl
UE: —k(=X) + Fepidermis + quscles (1)
Fepidermis = FseamaDV (2)

Note that Fepigermis is written as the product of an active force, Foeam,
which corresponds to the contractile force produced by myosin-2 in
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Fig. 4| An actin-remodelling network providing mechanical plasticity
ensures embryo elongation. a-c, Viscoplastic mechanical model of embryo
elongation. The embryo is represented as a Kelvin-Voigt solid with spring
stiffness k, resting length ), viscosity 7, submitted to forces Fepidermis and
Fiusde> defined by equations (1) to (4). a, Wild-type case. An increasing
resting length during stretching phases imparts mechanical plasticity.

b, spc-1 pak-1 mutants. Fepigermis progressively decreases. ¢, Comparison

of experimental and predicted elongation curves using the constitutive
equations (1) to (4). d, DIC snapshots at three time points of spc-1 deficient

seam epidermal cells, and a passive component, apy; which results from
actin-bundle stiffness in dorsal and ventral epidermal cells'®. Fepidermis
can extend embryo length only up to twofold, as muscle-defective
mutants cannot elongate more than this (Extended Data Fig. 6a,a").
The force Fpyscles Should not trigger any further extension, because it
oscillates between a positive and a negative input (Fig. 1b, ¢, Extended
Data Fig. 6b,b").

Several studies have suggested that systems exposed to a mechan-
ical stress can undergo a permanent rearrangement that can be
described as a plastic deformation®? or as a change in the spring resting
length*?%. Accordingly, we imposed the condition that the spring rest-
inglength X in equation (1) changes linearly with positive elongation
rates (equation (3), Fig. 4a).

%>o
D ) HILY)  iflo<g<1 3)
a .
I-A>-=<

k

Conversely, in spc-1 pak-1 defective embryos, the continuing damage to
actin filaments should reduce their stiffness (component apy in equa-
tion (2)). We accounted for this by including a tearing factor y in the
equation for stiffness (equation (4), Fig. 4b).

dapy __dl

4
dt dt @

dl
if — < 0andapy >0
a DV
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embryos on control, pak-1 or fhod-1 backgrounds, and of a fhod-1 mutant
after spc-1(RNAI). e, Pdpy-7-driven epidermis expression of truncated
FHOD-1 variants and terminal body length at hatching: spc-1(RNAi) (n = 26
hatchlings); spc-1(RNAi) pak-1(tm403) with no transgene (n = 36 hatchlings),
with full-length FHOD-1 (n = 16 hatchlings), FHOD-1(ADAD) (n = 17) and
FHOD-1(AFH2-DAD) (n = 38 hatchlings) transgenes, or non-transgenic
siblings (n = 78 hatchlings) and FHOD-1(AFH1-FH2-DAD) transgene

(n = 18 hatchlings). Data are mean = s.d. Two-sided paired t-test. *P < 0.05;
#%P < 0.001; ***P < 0.0001; NS, not significant. Scale bars, 15 um.

Using equations (1) to (4), we could accurately predict both the elon-
gation pattern of wild-type embryos and the retraction pattern of spc-1
pak-1 embryos (Fig. 4c, Extended Data Fig. 6d, e). Further, the model
predicts that the plasticity factor of the spc-1 pak-1 embryos is zero
(Supplementary information). We propose that SPC-1 and PAK-1 regu-
late a cellular process of mechanical plasticity. From a cellular perspec-
tive, we suggest that elasticity does not fully bring the embryo back to
its initial shape on muscle relaxation, enabling progressive lengthening.

To further define the molecular basis of viscoplasticity, we searched
for gene knockdowns that induced retraction of spc-1(ra409) embryos
(Extended Data Fig. 7a, Supplementary Table 4). This screen iden-
tified the atypical formin FHOD-1 (Fig. 4d, Extended Data Fig. 7,
Supplementary Video 3), which has been linked to actin dynamics
in the epidermis*>. We confirmed that fhod-1(tm2363) spc-1(RNAi)
embryos also showed a penetrant retraction phenotype with damaged
actin (Fig. 4d, Extended Data Figs. 3, 7). Of note, vertebrate FHOD1
promotes actin capping, bundling and nucleation?, raising the possi-
bility that FHOD-1 activity stabilizes the actin cytoskeleton after actin
severing (Fig. 3). Furthermore, the genetic interaction suggests that
FHOD-1 acts with SPC-1 and PAK-1. To investigate this possibility, we
tested whether FHOD-1 derivatives that lack the C-terminal diapha-
nous autoregulatory domain (DAD), predicted to release the autoinhi-
bition characteristic of formins?’, could rescue the retraction phenotype
of spc-1 pak-1 deficient embryos. After epidermis-specific expression of
a form that lacks the FH2 and DAD domains, transgenic spc-1(RNAi)
pak-1(tm403) embryos reached 90 pm in length without retracting;
this was longer than embryos that express the full-length protein. By
contrast, longer FHOD-1 forms that include the FH2 domain rescued



poorly or not at all (Fig. 4e), which suggests that the FH2 F-actin nucle-
ation domain is dispensable for the rescue. Of note, a mammalian
FHOD1 lacking the FH2 and DAD domains can still bundle actin®.
Collectively, our data underline that FHOD-1 bundling activity is
key, and that the retraction phenotype mainly results from a lack of
FHOD-1 activation downstream of the muscle-induced mechanotrans-
duction pathway. We conclude that actin-filament severing initiated by
muscle contractions (Fig. 3) followed by FHOD-1-dependent bundling
or capping (Fig. 4) represents a ratchet-like mechanism, providing a
molecular basis for viscoplasticity.

Several factors could contribute to alter PAK-1 and FHOD-1 activ-
ity. First, SPC-1 could help recruit these proteins, as FHOD-1-GFP
and PAK-1-GFP formed small aggregates in SPC-1 defective embryos
(Extended Data Fig. 8). Second, muscle contractions in spc-1(RNAi)
pak-1(tm403) embryos were decreased in duration by almost half com-
pared with pak-1(tm403) or wild-type control embryos (3 s against
5.7 s) (Extended Data Fig. 9, Supplementary Video 4). These shorter
contractions may mean that there is insufficient time for FHOD-1 to
stabilize actin filaments.

In sum, our results identify several proteins that are involved in stabi-
lizing cell shapes in a system subjected to repeated external mechanical
stress. We propose that the progressive shortening of actin filaments
under the control of these factors mediates a cellular viscoplastic pro-
cess that promotes axis elongation. A similar viscoplastic process might
operate in vertebrate tissues comprising an epithelial layer surrounded
by a contractile layer, such as the internal organs in humans. Notably,
high FHOD1 expression correlates with poor prognosis of patients
with breast cancer?®, Such a process might therefore also influence the
metastatic properties of tumour cells juxtaposed with contractile cells.
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METHODS

No statistical methods were used to predetermine sample size. The experiments
were not randomized. The investigators were not blinded to allocation during
experiments and outcome assessment.

Worm strains and conditions of maintenance. The list of strains used is pre-
sented in Supplementary Table 5. Worms were propagated on NGM agar plates as
previously described?, maintained at a standard 20 °C. The gsnl-1(tm2730) and
viln-1(2413) worms were outcrossed three times.

Yeast two-hybrid screening. Yeast two-hybrid screening was performed by
Hybrygenics Services. The bait component was the N-terminal 294 amino acids of
PAK-1 (including the regulatory region of the protein) fused as a C-terminal fusion
to LexA. The construct was used as a bait to screen at saturation a highly complex,
random-primed C. elegans embryo cDNA library®. Screening involved a mating
approach on a medium lacking Trp, Leu and His, supplemented with 0.5 mM
3-aminotriazole®!. The strongest hits of the screen can be found in Supplementary
Table 2. Reciprocal screens using the spectrin repeat no. 9 or the SH3 domains of
SPC-1 as baits identified PAK-1 region 160-206, and no other meaningful prey in
the context of the present study.

RNAi screens. A RNAi screen was performed in the pak-1(tm403) mutant along
with a wild-type control. A collection of 356 essential genes from the Ahringer
RNAi library*>—including adhesion proteins, signalling proteins, phosphatases,
kinases, cytoskeleton-associated proteins and proteins important in epithelial mor-
phogenesis—was assembled (Supplementary Table 1), based on a previous screen
performed in the git-1(tm1962) background (C.G. and M.L., unpublished). The
screen was performed in liquid culture on 96-well plates and RNAi knockdown
was induced by feeding as previously described®. The primary screen was based
on enhanced lethality and body morphology defects; the secondary screen focused
on very short larvae and elongation defects. We took DIC images for body-length
measurements and performed DIC time-lapse imaging for the strongest candi-
dates. We performed two additional RNAi screens. First, we used a spc-1(ra409)
pak-1(tm403) strain carrying an unstable extrachromosomal rescuing spc-1:gfp
marker to look for potential suppressors of the retraction phenotype. We selected
13 actin-related proteins from the Ahringer RNAi library®? that were recently
reported to modulate actin remodelling in the early embryo® (Supplementary
Table 3). RNAi was induced by RNAi feeding on L4 larvae maintained at 20°C,
and the progeny was analysed 20 h to 30 h after feeding; for early-acting essential
genes (cyk-1, pfn-1, unc-60), worms were maintained at 15°C, and the progeny
was analysed 16 h to 20 h after feeding still inducing more than 14% early embry-
onic defects. Second, we likewise used a spc-1(ra409) mutant carrying an unstable
extrachromosomal rescuing spc-1::gfp marker to look for potential enhancers of
the spc-1(ra409) elongation defects. We selected for this enhancer screen genes that
had given the strongest defects in the initial screen with 356 genes (Supplementary
Table 4). In both cases, young L1 hatchlings were inspected for the presence or
absence of a fluoresent spc-1::GFP signal and photographed using either a Leica
DMI4000 (first screen) or Leica DM6000 (second screen) microscope. Length of
the young larvae was measured using Image] software.

For specific genes (spc-1, pak-1, fhod-1 and unc-112), RNAi was induced by

injection after preparing the double-stranded RNA (dsRNA) with the Ambion
mMessage mMachine kit and purifying the dsRNA with the Qiagen RNeasy
MinElute Cleanup kit®*. The embryos were analysed from 24 h to 48 h after injec-
tion. In one case, experiments involving the strain spc-1(ra409) pak-1(tm403);
mcEx1016[spc-1(+)::GFP; Pmyo-2::RFP] (shown in Extended Data Figs. 3, 4),
RNAi against unc-112 was induced by feeding because the strain barely survived
the regular microinjection procedure.
Fluorescent translational reporter constructs. A 12,633-bp genomic sequence
including the spc-1 coding sequence and a 3-kb promoter was inserted in frame
with the GFP coding sequence present in the pPD95.75 vector (Addgene). To
create the Ppak-1::pak-1::mKate reporter construct, first an mKate-containing
backbone was created by exchanging the GFP-coding sequence of the pML1572,
Plin-26::vab-10(ABD)::GFP plasmid"®. In a following cloning step, a 8,204-bp
genomic sequence, including the pak-1 coding sequence and a 4.5-kb promoter
were inserted in frame with the mKate coding sequence present in the vector.

To test whether SPC-1::GFP could rescue the function of SPC-1, we first crossed
the different transgenic worms of a wild-type background with mnDp33; spc-
1(ra409) worms (strain DM3409), and F1 transgenic males again with DM3409
to establish mnDp33; spc-1(ra409); Ex[spc-1::GFP. Rescuing transgenes were rec-
ognized because all viable progeny was GFP-positive and all (or most) non-viable
progeny was GFP-negative, reflecting the loss of the mnDp33 balancer. To attempt
mnDp33 segregation, we repeatedly transferred single GFP-positive mothers over
four generations and examined their progeny, starting from at least two independ-
ent extrachromosomal arrays per construct. Thereby, we successfully obtained
viable spc-1(ra409); Ex[Pspc-1::spc-1(+)::gfp worms, and then viable spc-1(ra409)
pak-1(tm403); Ex[Pspc-1;:spc-1(+)::gfp worms through crossing and meiotic
recombination, which segregated very short retracted GFP-negative embryos. For

the FHOD-1 constituvely active construct, a 8,283-bp genomic sequence of fhod-1
(gift from D. Pruyne®) deleted for part of the FH2 domain and the DAD domain
was inserted under the control of the epidermis-specific 432-bp dpy-7 promoter.
Deletion of the DAD alone was obtained by inserting back the FH2 domain in the
FH2/DAD deleted construct using Hifi DNA assembly cloning kit (New England
Biolabs); the FH1/FH2 deleted construct was obtained by deleting the FH1 domain
using the Q5 site directed mutagenesis kit protocol (New England Biolabs). All
cloning steps relied on the use of the Phusion High-Fidelity DNA Polymerase
reaction kit (Fisher Thermo Scientific); the constructs were subsequently verified
by sequencing. The constructs were injected at 10 ng pl~! plasmid construct, with
150 ng I ™! pBSK + 5 ng pl ™! pCFJ90 (P,y,y,.2::mcherry) as co-injection markers
for the spc-1::¢fp constructs, or 100 ng pl~! pRF4 (rol) co-injection marker for
pak-1::mKate.

Fluorescence imaging. DIC images for time-lapse videos were obtained using a
Leica DM6000 microscope with Leica LAS-AF software. Observations were done
under a 40 x oil immersion objective. Mothers were cut up to gain early-staged
embryos, which were then transferred onto thin 5% soft agarose pads in a drop
of M9. Z-stack image series with a 1.5-pum Z-step distance were taken in every 5
min during 6 to 10 h. Image] software was used to quantify the embryonic length
from the end of ventral enclosure/onset of elongation, by taking a segmented line
through the midline of the embryos from head to tail. To image the coupling
between actin-bundle displacement in the epidermis and muscle contractions,
we used a double reporter strain carrying the epidermal Pdpy-7:LifeAct::GFP and
muscle Pmyo-3::his-24::mCherry transgenes (ML2113, Supplementary Table 5),
and a spinning-disc DMI6000 Leica microscope equipped with an Andor software
(experiments for Fig. 1). Series of five Z planes (1 epidermal + 4 muscle) were
imaged continuously for 5 min, with 0.5-pm Z steps and no averaging. The time
interval between two Z series was 360 ms. The measurement of actin displace-
ment was done according to the same strategy, and was done using a CSUX1-A1
spinning disc mounted on a Zeiss Axio Observer Z1 inverted microscope with
a Roper Evolve camera controlled by the Metamorph software, and a 100x oil
immersion objective (experiments for Extended Data Fig. 9). A Z stack of 4 focal
planes with 0.5-pum step size was acquired using a streaming acquisition mode. The
time between two acquisitions was 0.41 s during 300 time frames. To synchronize
embryos, mothers were put on an empty NGM agar plate to lay eggs for a short
time window, and embryos were left to develop until the stage of interest. For the
analysis of the contraction see Tmage analysis and quantification of actin filament
contraction, continuity and orientation’ To analyse the in vivo co-localization
between PAK-1::mKate, ABD::mcherry and SPC-1::GFP, we used the Zeiss—Roper
spinning-disc microscope under a 100 oil immersion objective, keeping the laser
intensity at a constant level throughout the experiments. Image processing and
computing the co-localization coefficient was done using the Volocity software.
TIRF-SIM. Embryos were mounted between 22-mm square cover glasses (thick-
ness of 0.170 = 05 um, Carl Zeiss Microscopy) and 25 x 75-mm teflon-coated glass
slides with three depression wells. Embryos were embedded in 2 pl water contain-
ing Polybeads acrylate microspheres of 15.4 £ 1.43-pum diameter (Polysciences).
Wild-type embryos were at 1.8- to 2-fold stage; spc-1(RNAi) pak-1(tm403) embryos
were aged between twofold and threefold equivalent for a control embryo. TIRF-
SIM images®”*® were acquired on a DeltaVision OMX SR imaging system from
GE Healthcare Life Sciences equipped with a 60 x oil immersion objective from
Olympus (PlanApo N 60x 1.42 NA). To minimize spherical aberrations, we used
Cargille labs immersion oil with a np at 25°C (5893 A) = 1.5140 + 0.0002. Imaging
was performed using the excitation at 488 nm with laser transmission ranging
from 75 to 100% and integration time ranging from 2 to 3 ms. For each embryo,
time series of 50 to 100 TIRF-SIM images of 256 x 256 pixels (pixel size of 80 nm)
were acquired. Each TIRF-SIM image corresponds to a set of 9 images (3 phases at
3 angles) acquired withing 90.6 to 99.6 ms. Reconstruction of TIRF-SIM images
(final pixel size after reconstruction is 40 nm) were performed with the soft WoRx
software (Applied Precision), which in turn enables a resolution enhancement by
a factor of 2 that leads to a final lateral resolution in the order of 100 nm.

Image analysis and quantification of actin-filament contraction, continuity
and orientation. The analysis of mechanical displacement in the epidermis was
performed on the videos of the dorsoventral actin layer by measuring the distance
over time between two landmarks across the region of contraction. The land-
marks were set manually on a frame showing relaxed tissue and tracked all over the
contraction till the subsequent relaxed state. Landmarks tracking was performed
using a statistical template matching approach®. The method was implemented
as an Image] plugin (http://sites.imagej.net/Julienpontabry/), giving as output the
landmarks locations, their distance across time and the kymographs. The curves
show a pre-contraction state, a minimum (the maximal contraction point) and
an ending part where the distance progressively increases again (Fig. 1b, bottom,
Extended Data Fig. 9). After a smoothing and interpolation of the curves, the
starting, ending and maximal contraction points were extracted by studying the
time derivative of the distance and by setting a threshold on the distance itself.



Finally the contraction time was computed as the difference between the ending
time and the initial time. The quantification of bending angles was done using
a similar strategy; the angles were measured on single bundles at the frame of
maximal deformation in a contraction cycle (Extended Data Fig. 5). The analysis
of the curves and statistics were done using a MATLAB script. All images were
analysed using the Image] (FIJI) software (NIH; http://rsb.info.nih.gov/ij/) and
MATLAB R2015b (MathWorks). To study the features of actin pattern, we imaged
embryos that were put to sleep by oxygen deprivation through a high concentration
of bacteria with the Zeiss—Roper spinning-disc using a 100 x oil immersion objec-
tive. For each experiments, a Z-stack of 16 focal planes with 0.2-pum step size was
acquired. On the original maximum Z projection created by image], a manual ROI
was defined on the dorsoventral cells (Fig. 2, Extended Data Fig. 3), from which a
high-pass filter in the Fourier space was applied to select only structures smaller
than 10 pixels in diameter (Fig. 2, Extended Data Fig. 3).

Continuity. The filtered ROIs were binarized by setting to one all the pixels with
a value higher than zero, and setting to zero all the other pixels. The resulting
structures were then fitted by ellipses from which the length of the major axis
was extracted as a measure of the length of the actin filament. The longer actin
filaments are those presenting a more-uniform fluorescence along their length
(showing higher continuity). By contrast, short segments result from discontinuity
in the fluorescence signal. To avoid noise, only segments longer than four pixels
have been considered for the analysis.

Anisotropy of the orientation. The same filtered ROI used for continuity measure-
ments was used to measure the distribution of bundle orientation. Fast Fourier
transform (FFT) of these ROIs was computed to work in the frequency domain
and more-easily identify repetitive patterns. The resulting power spectrum of the
ROIs was represented in polar coordinates to extract the distribution of angles of
ROI pattern®. The method was implemented in an Image] plugin (http://sites.
imagej.net/Julienpontabry/), giving as output the angular distribution. To compare
the distributions coming from different images the distributions were normalized
by their integral (Fig. 2, Extended Data Fig. 3). The more the pattern consists in
structures oriented in a preferred direction (the more anisotropic), the highest is
the peak of the distribution in that direction. In the case of an isotropic pattern,
the angular distribution should show a flat behaviour. As an estimate of the pattern
anisotropy, the prominence of the highest peak of the angular distribution was
considered (Fig. 2, Extended Data Fig. 4). The analysis of the angular distributions
and statistics was performed by a MATLAB script. All images were analysed using
the Image]J (FIJI) software and MATLAB R2015b (MathWorks).

Straightness. For each embryo, we selected an ROI containing the region above
the muscles based on a contraction pattern. We selected ROIs containing about
ten actin bundles, and we segmented manually seven of them for each ROI (the
number of bundles that were on average well-resolved). For each bundle we com-
puted the straightness as the ratio between the length of the segmented bundle and
the distance between the initial and final points of the bundle. This quantity has
an upper limit equal to one for perfectly straight lines. The manual segmentation
and straightness calculation were performed with a custom MATLAB interface.

Bundle organization. For each embryo, we measured the relative contrast in
the image between the regions occupied by actin filaments and those in between
the filaments as a proxy for bundle composition and organization. The reasoning
was that in the extreme case in which bundles separate to generate individual
filaments, each filament is likely to have a lower intensity than a bundle made of
several filaments, and the contrast between filaments and the intervening space
would be less sharp. This should result in a lower variance or standard deviation
of the image intensity compared to a wild-type bundle image. To do so we divided
the standard deviation by the average intensity.

Statistical analysis. For elongation curves, s.e.m. was measured. For L1 length
measurement and rescue experiments we performed paired t-test using Prism
v.5.00 (GraphPad) and Excel. For contraction time, actin continuity and orienta-
tion, we applied for all genotypes a paired ¢-test using MATLAB.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.
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Extended Data Fig. 1 | Genes required to maintain embryonic
elongation. a, RNAI screen in a pak-I mutant identified spc-1 as an
enhancer (Supplementary Table 1). b, DIC images and quantification of
newly hatched wild-type body length (n = 38 embryos), pak-1(tm403)
(n = 32 embryos), spc-1(RNAi) (n = 26 embryos) and spc-1(RNAi)
pak-1(tm403) (n = 36 embryos). Scale bars, 25 um (WT and pak-1),

10 pm (spc-1 and spc-1 pak-1). Data represent mean values =+ s.d.
Two-sided paired t-test. ¢, A yeast two-hybrid screen using the PAK-1
N-terminal domain as a bait identified the SPC-1 SH3 domain as a prey
(orange background) (Supplementary Table 2). d-j, Loss of the proteins
GIT-1 and PIX-1, acting upstream of PAK-1 in the mechanotransduction
pathway promoted by muscle contractions, in the absence of spc-1 also
triggers a retraction phenotype. d-j, Elongation curves (d) and terminal
phenotypes of wild type (n = 12 embryos), pak-1(tm403)

240

(e; n =11 embryos), git-1(tm1962) (f; n = 10 embryos), pix-1(gk416)
(g; n = 10 embryos), spc-1(RNAi) pak-1(tm403) (h; n = 9 embryos),
spc-1(RNAI) git-1(tm1962) (i; n = 11 embryos), spc-1(RNAi) pix-1
(tm416) (j; n = 8 embryos). Data represent mean =+ s.e.m. k-n, Elongation
curves (k) and DIC pictures showing the terminal phenotypes of
unc-112(RNAi) embryos (I; n = 14) and unc-112(RNAIi) pak-1(tm403)
(m; n = 8 embryos). n, Terminal phenotype of unc-112(RNAi)
spc-1(ra409) obtained by inducing unc-112(RNAI) in the strain ML2436
bearing a rescuing extrachromosomal spc-1::¢fp array and looking for
embryos having lost the array; we could only obtain a few embryos of
the desired phenotype despite numerous repeats (n = 4 embryos), all

of which had the phenotype illustrated here, which is similar to that

of spc-1(ra409) alone. Data represent mean = s.e.m. Scale bars in
e—j,1-n, 17 pm. *P < 0.05; **P < 0.001; ***P < 0.0001.
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PAK-1::mKATE + SPC-1::GFP d SPC-1:GFP + ACTIN (ABD::mKATE)
co-localization co-localization

Extended Data Fig. 2 | PAK-1and SPC-1 colocalize with actin filaments.  apical cortex. d, Fluorescence images of Plin-26::VAB-10(ABD)::mKate
a, b, Distribution of PAK-1::mXKate (a; n = 20 embryos) and SPC-1::GFP (red) and SPC-1::GFP (green) (n = 8 embryos). The panel shows the

(b; n = 13 embryos) in a late embryo. Enlarged images of PAK-1 and colocalization image for the most-apical focal planes (top image),

SPC-1 showing a filamentous distribution in the dorsoventral epidermis and full XZ (green panel) and YZ (red panel) projections. The level of
similar to actin filaments. ¢, Fluorescence images of PAK-1::mKate colocalization is high based on Pearson’s correlation coefficient (0.7-0.9,
(red) and SPC-1::GFP (green) (n = 20 embryos). The panel shows the n = 8 embryos). The colocalization is detected almost exclusively at
colocalization image for the most-apical focal planes (top image), and the apical cortex. The gene lin-26 drives expression in the epidermis;
full XZ (green panel) and YZ (red panel) projections. The level of VAB-10(ABD) corresponds to the two actin-binding domains (calponin
co-localization is high based on Pearson’s correlation coefficient (0.7-0.9, homology) of the protein VAB-10. Scale bar, 10 pm.

n = 20 embryos). The highest level of colocalization is detected at the
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Extended Data Fig. 3 | See next page for caption.



Extended Data Fig. 3 | Actin-filament continuity and orientation at
three elongation stages. a, d-i, Epidermal actin filaments visualized with
the Pdpy-7::LifeAct::GFP reporter construct in wild type (a), pak-1(tm403)
(d), spc-1(RNAI) (e), spc-1(RNAI) pak-1(tm403) (f), unc-112(RNAi)

(8), fhod-1(tm2363) (h) and fhod-1(tm2363) spc-1(RNAI) (i) at mid-
elongation (twofold equivalent) stage. Yellow rectangle, ROL Scale bar,

10 pm. ROI after binarization (green) and major axis detection (red)

(a, top middle, d-i, bottom), based on three steps of image treatment

for continuity and orientation analysis (a, right). Actin continuity:
distribution of actin segments based on their length (a, bottom middle).
b, Quantification of actin-filament continuity; the graph represents the
length (in pixels) along the circumferential axis of actin filaments in early,
mid and late (corresponding to 1.7-fold, 2-fold and 3-fold equivalent
stages in a wild-type embryo, respectively) embryos of wild-type (early

n =12, mid n = 19, late n = 16), pak-1(tm403) (early n = 16, mid n = 21,
late n = 16), spc-1(RNAI) (early n = 15, mid n = 21, late n = 20),
spc-1(RNAI) pak-1(tm403) (early n = 12, mid n = 17, late n = 26),
unc-112(RNAi) (early n = 8, mid n = 13, late n = 12), fhod-1(tm2363)
(early n = 12, mid n = 14, late n = 10), fhod-1(tm2363); spc-1(RNAI)

LETTER

(early n =7, mid n = 11, late n = 8), spc-1(ra409) pak-1(tm403) (mid

n = 14, late n = 20) and unc-112(RNAI) ; spc-1(ra409) pak-1(tm403) (early
n =8, mid n = 15, late n = 19) genotypes. ¢, Actin-filament orientation
based on FFT and binarization. Wild-type (early n = 12, mid n = 18, late

n = 14), pak-1(tm403) (early n = 16, mid n = 20, late n = 16), spc-1(RNA1i)
(early n = 14, mid n = 18, late n = 18), spc-1(RNAI) pak-1(tm403) (early

n =12, mid n = 18, late n = 21), unc-112(RNAIi) (early n = 8, mid n = 13,
late n = 12), fhod-1(tm2363) (early n = 12, mid n = 14, late n = 10), fhod-
1(tm2363); spc-1(RNAI) (early n = 7, mid n = 11, late n = 8), spc-1(ra409)
pak-1(tm403) (mid n = 14, late n = 19) and unc-112(RNAi) spc-1(ra409)
pak-1(tm403) (early n = 8, mid n = 15, late n = 19) genotypes. Note

that the characteristics of actin filaments in spc-1(RNAi) pak-1(tm403)
embryos differ mostly at the equivalent of the twofold stage when muscles
become active. At earlier and later stages, spc-1(RNAi) embryos and
spc-1(RNAI) pak-1(tm403) embryos become similar. Each graph
represents median values, 25th and 75th percentiles. The whiskers extend
to the most extreme data points not considered outliers. Two-sided paired
t-test. *P < 0.05; **P < 0.001; ***P < 0.0001; n.s, not significant.
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Extended Data Fig. 4 | Changes in embryo diameter during
elongation. a, b, Fluorescence micrographs of embryos expressing the
Pepid::Lifeact::GFP construct in the epidermis at three elongation stages
early, middle and late (corresponding to 1.7-fold, 2-fold and 3-fold
equivalent stages in a wild-type embryo, respectively) for wild-type

(a) and spc-1(RNAIi) pak-1(tm403) embryos (b). Scale bar, 10 pm. The
Pepid promoter corresponds to Pdpy-7. The yellow lines correspond to the
segments used to measure the dorsoventral width of the V1 seam cell.

¢, d, Quantification of the average V1 cell circumferential width
normalized to the initial width during elongation (c), and of the average
dorsoventral circumferential width at the level of the V1 seam cell

(d), which was calculated using the measured embryo length and V1 cell

Q.

Wild type pak-1(tm403) spc-1(RNAI)
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width, taking into consideration the conservation of the total embryo
volume, in wild-type (early n = 38, mid n = 10, late n = 14), pak-1(tm403)
(early n = 26, mid n = 8, late n = 20), spc-1(RNAIi) (early n = 24, mid

n =26, late n = 18), spc-1(RNA1i) pak-1(tm403) (early n = 22, mid n = 30,
late n = 38), unc-112(RNAI) (early n = 8, mid n =9, late n = 8), and
unc-112(RNAIi) spc-1(ra409) pak-1(tm403) (early n = 7, mid n = 12, late
n = 17) embryos. Error bars, s.e.m. A notable feature of spc-1(RNA1)
pak-1(tm403) embryos is that the circumferential dimension of the seam
cells decreased much more than that of their dorsoventral cells, which
most probably reflects the actin-filament integrity defects combined with
a Fyeam force largely unchanged.
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Extended Data Fig. 5 | Bending and severing of actin bundles during
muscle contractions. a, b, Kymographs of the regions boxed in yellow

in Fig. 3a, b after spinning-disc time-lapse imaging of epidermal actin
filaments (Pdpy-7::LifeAct::GFP reporter) in wild-type (a) and spc-1(RNAi)
pak-1(tm403) (b) embryos at mid-elongation (twofold equivalent) stage.
Scale bar, 5 pm. ¢, Principle of the RNAI screen performed to identify
proteins mediating actin remodelling; the recipient strain carried a
rescuing, but frequently lost, spc-1(+) transgene (green). d, Quantification
of L1 hatchling length after downregulation or mutation of the indicated
genes; the presence of the spc-1::¢fp transgene is denoted +. Control
worms fed on L4440 bacteria. e-k, Elongation curves (e) and DIC images
showing the terminal phenotypes of pak-1(tm403) (f; n = 11 embryos),
gsnl-1(tm2730); pak-1(tm403) (g; n = 9 embryos), viln-1(ok2413);

pak-1(tm403) (h; n = 9 embryos), gsnl-1(tm2730); spc-1(RNAIi) pak-1
(tm403) (i; n = 5 embryos), viln-1(0k2413); spc-1(RNAI) pak-1(tm403)
(j; n = 11 embryos) and spc-1(RNAi) pak-1(tm403) (k; n = 9 embryos).
Pink box in e, period of muscle activity. Data represent mean =+ s.e.m.
Scale bar, 25 pm. 1, Quantification of the L1 hatchling body length of
wild type (n = 65 hatchlings), gsnl-1(tm2730) (n = 52 hatchlings), viln-1
(0k2413) (n = 43 hatchlings), viln-1(0k2413); gsnl-1(tm2730) (n = 41
hatchlings), pak-1(tm403) (n = 47 hatchlings), gsnl-1(tm2730); pak-1
(tm403) (n = 51 hatchlings), viln-1(0k2413); pak-1(tm403) (n =70
hatchlings), viln-1(0k2413); gsnl-1(tm2730); pak-1(RNAi) (n = 35),
spc-1(RNAI) (n = 27 hatchlings) and viln-1(0k2413); gsnl-1(tm2730);
spc-1(RNAI) (n = 41 hatchlings). Data represent mean =+ s.d. Two side
paired t-test. *P < 0.05; **P < 0.001; ***P < 0.0001; n.s, not significant.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Time-dependent length of a Kelvin-Voigt model
in different conditions. a, A generic Kelvin-Voigt system exposed to a
constant force Fepig, and its predicted elongation change for Fyeom = 0.85
and four different values of apy based on the equation Fepid = F.oom Qpy-

b, A similar system exposed to two forces, Fepiq and an oscillating force
Frnuscless and predicted elongation change using Fepig = 0.85 and Fryscles
with an amplitude equal to 1 and the behaviour depicted in the blue-boxed
inset. For simplicity, we will refer to the amplitude of Fiuscles @5 Fruscles: AS
the pulsatile force induces both compression and stretching (see Fig. 1c),
its net input on elongation is transient and the system oscillates around the
maximal value reached without Fyscies- In all other panels (except in

a), Fruscles Was set as a periodic function with positive and negative steps
of duration 6 s modulated by a cosine function, alternating with periods of
null value of duration 15 s (b, inset). ¢, A Kelvin-Voigt system with
mechanical plasticity introduced according to equations (1), (4), (6) and
(7) in the Supplementary Information, and predicted elongation change
using Fepig = 0.85, Fc = 0, Fusdes = 3 and four distinct values of the

plasticity factor 3, or using Fepig = 0.85, F. = 0, 3 = 0.10 and four distinct
values of Fpyscies- d, A Kelvin-Voigt system in which the plasticity is
defective (8 = 0), and in which there is actin tearing according to equation
(7) in the Supplementary Information, inducing a progressive reduction of
Fepig> and predicted elongation change with an initial value of Feyig = 0.85,
the tearing factor v = 0.15 and Fpysces = 3; the inset outlined in blue shows
the behaviour of apy(t) over time. In a-d, the elastic constant of the spring
is k = 1, the initial resting length has the value A(t = 0) = 1, and the
viscosity is 77 = 10. e, Result of the fit for the following genotypes: WT,
unc-112(—) alone spc-1(—) alone, spc-1(—) pak-1(—) double, unc-112(—);
spe-1(—) pak(—) according to equations (1), (4), (9) to (11) in

the Supplementary Information. The values of the parameters are specified
in paragraphs 1.5 and 1.6 in the Supplementary Information. The shallow
decrease in length for the curve of unc-112(—); spc-1(—) pak-1(—) after
150 min is due to a deformation of the embryos under the effect of unc-112
knockdown but not to retraction, which is why the fit has been evaluated
on the first 150 min of the curve.
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1-Supplementary Mechanical Modeling

1.1 Background information. During its momphogenesis, the C. elegans embryo undergoes
a process of elongation whereby it becomes four times as long as the eggshell long axis
(50 um). Cell proliferation and cell intercalation are absent, therefore the process of axis
elongation relies only on the abilty of the embryo to extend in the anterior-posterior
direction. The outer epithelium (epidemis) playsan essential role in this process.

Changing the status of any physical entity requires the involvement of a force
(mechanical or chemical), and the C. elegans embryo is no exception to this rule of
physics. During the first phase of elongation and until muscles become active, the
machinery driving elongation involves an active force in the lateral epidemmis (also called
seam cells), and a passive force exerted by the dorsal and ventral epidemal cells (called
DV cells) adjacent to the seam cells (Fig. 1a). Seam cells have a high concentration of
non-muscle myosin ll, which hasa non-polarized distribution and doesnot display pulsatile
flows*42, as observed for instance during Drosophila gemmband elongation.
Nevertheless, the stress generated by the seam cells is anisotropic and globally oriented
along the DV axis (see cyan box in Fig. 1a)#2. The stress anisotropy results mainly from the
presence of cicumferential F-actin filament bundles in DV epidemal cells, which create
a global stiffness anisotropy (see yellow box in Fig. 1a). Electron microscopy suggests that
these bundlesare made of three to five actin filaments*4.

The DV epidemal cells do not contribute to generate active stress (Fig. 1la), as their
myosin Il is kept mostly silent through the activity of the RhnoGAP RGA-2414246, The intemplay
between stress anisotropy in seam cells, stiffness anisotropy from the DV epidemmis, and
hydrostatic pressure resulting from the reduction of embryo diameter, induces a force
oriented along the AP direction that is sufficient to extend the embryo until it reachesthe
2-fold stage4. Note that here as well as in the main text we refer to each elongation
phase based on the ratio between the actual embryo length and that of the eggshell
long axis (50 um), i.e. 1.7-fold or 2-fold meansthat the embryo hasreached roughly 85 um
or 100 um, respectively. Importantly, in mutant embryos which extend slower, we refer to
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embryo stages based on the length that a wild-type embryo would reach afterthe same
time duration, with to comesponding to the beginning of elongation (see extension curves
in Fig. 2d).

During embryogenesis, muscles organize and assemble in four rows located under the
epidemis (Fig. 1a). Muscles are attached to the extracellular matrix that separates them
from the epidemis, and that in tum serves to anchor the epidemnis through
hemidesmosome-like junctions®. Muscle organization and maturation is a progressive
process, such that muscle activity starts with small contractions at the 1.7-fold, which
progressively become more robust. The mechanical activity of muscles can be
summarized as an altemation of contractions followed by relaxation. Since muscles are
tightly connected to the epidemnis, their contractions locally and repeatedly induce an
anterior-posterior compression and extension of the epidemis, which can be visualized
through the displacement of the actin cables (Fig. 1b-c, Extended Data Fig. 7). The stress
exerted by muscle contractions on the epidemis induces a mechanotransduction
pathway (2d yellow box in Fig. 1a), which is essential to promote hemidesmosome
maturation and embryo elongation4’. Of note, when embryos reach the 3.5-fold stage,
they start secreting a collagenous cuticle acting as a rigid exoskeleton that limits further
musc le-driven elongation.

1.2 Viscoplastic model. For simplicity, let us call the net force in the AP direction produced
by the epidemis the epidemal cell force (Fepit). This force is not enough to explain the
elongation up to the 4-fold stage, since genetic analysis has established that embryos
with non-functional muscles do not elongate beyond the 2-fold stage (Fig. 2b)2.
Therefore, muscles provide a second active force driving elongation beyond the 2-fold
stage, which we will call Frmuscies.

The C. elegansepidemiscan be modelled asa visco-elastic body, more specifically asa
Kelvin-Voigt system with a spring and dashpot in parallel, subject to two main active
forces: the epidemal force Fepiz, Which isa continous positive force, and the muscle force
Fmuscles, Which is a pulsatile force since muscles altematively contract and relax. The first
force is present since the beginning of elongation, whereas the second force starts only
after the 1.7-fold stage. The elastic reaction of the epidemmis to active forces can be
captured by Hooke’s law; the damped nature of the reaction can be expressed by a
viscous term. Overall the length of the embryo over time I(t) can be captured by the
equation:
7]%= —k (Z_A)+Fepid+ quscles (1)

where k is the body stiffness, £ is the wom resting length and 7 is the coefficient of
visc osity. Inertia has been neglected given the low Reynolds number of the system. Eq.
(1) comesponds to the so-called Kelvin-Voigt viscoelastic model#?30 that captures the
behavior of viscoelastic solidsunder stressor deformation. For constant forces, the solution
of Eg. (1) isgiven by:



l(t) — Fepiat Zmuscles (1 _ e_t/T) +1 (2)

meaning that the length of the system relaxes to the plateau value ezt fmusdes 45 in 4

relaxation time of r = n/k.

Fepia can promote elongation until the 2-fold stage (Extended Data Fig. 6a’). Beyond, the
pulsatile force originating from muscles, Fmusres, altemates periods of positive, negative or
null contribution, so thatitstemporal average < F,yscies >o iSNull:
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< Fruscles >6= ;fo Fruscles(t) dt = 0,for 6 = nT (3)

where 0 is the integration period, T is the period and n is a positive integer. As a
consequence, on average, FmusclesWill not contribute to the steady state length (I ) of the

embryo (see Extended Data Fig. 6a-a’) that isset by Is, =~ + 2,

A way to introduce a positive contribution to embryo lengthening is to allow some
plasticity, in the physical sense, orability of the system to get reorganized. Forexample, let
consider a stretching pulse due to muscle activity during which the embryo increases its
length I(t) with an increment d/, such that the embryo will be temporarily I(t)+d/ long at
the end of the pulse. During the subsequent relaxation phase, due to elasticity in the
system, the embryo should retum to the initial length /(t) it had before muscleshad locally
extended it. However, if it undergoesa pemanent plastic deformation, then the body will
pemanently keep a portion of the stretched length. This situation comesponds to a
pemanent reamangement, and it has been observed and modeled in biological systems
undergoing stresses’’32, In biological terms we imagine the reamangement process as
follows: during the compression phases, muscle contractions locally squeeze the embryo
along the AP axis, which generates an increased circumferential stress due to volume
conservation. In particular, cicumferential actin cables become bent, which certainly
introduces a state of increased stress along their length. As argued in the main text, our
new results (Figs 2 and 3), together with published results on the effect of actin filament
bending>3, suggest that the compression phases will induce actin filament severing. Thus,
muscle contractions create the conditions for actin filament remodeling in the
subsequent relaxation and stretching phases toward filament shortening, hence they
create the conditions for plasticity.

Similary to3?, a simple mathematical solution to introduce plasticity consists in having an
adjustable resting length 2. We impose that /(7) evolves with the same law asthe length

I(t) according to:

da dl o dl F,
— =B —H(apy) if —>0and l-2>"¢/ (4)

where 0<p<l is a proportionality factor called ‘plasticity factor; the case of B3 =0
comesponds to an absence of plasticity. The condition %>0 ensures that there is

reamangement only during the extension phases; the conditionl—21> FC/k means that

the reamangement takes place only if the applied force exceeds a crtical force F.. The
term H(apy) is the Haevisde step function, which expresses that dorso-ventral
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reamangement is possible only in presence of resistance. For the description of the
apytemm, see next paragraph. Given the form of Eq. 4, the resting length will not increase
indefinitely foran applied constant positive force since it is proportional to the derivative
of [, which evolves asa spring. This equation also implies that the ability to remodel to an
applied force isfinite, which isthe case for natural systems. Indeed Eq. (4) is equivalent to
A=2100) (1 —-pB)+plassuming that 1(0) is the length and the resting length at time O ,
F. =0and ap, > 0. With these choicesand with a constant positive force F, Eq. (1) hasthe
following solution:

L P —t(f)
r-e )+ A(0) (5)

1(t) =

Hence, the plasticity condition effectively reduces the body stiffness k to k(1 —-p8)
enabling the system to reach a longer final size compared to the one allowed by the
Kelvin-Voigt system alone, and increasing the relaxation time. By introducing a plasticity
factor like in Eq. (4), the body progressively gains length at each stretching phase (Fig
S5d-d’). Indeed, the length I(t) is an increasing function of the plasticity factor g
(Extended Data Fig. 6¢’).

We are aware that the general form of Eq. 4 is one of some other possibilities to capture
the phenomenology of the process. It potentially implies an important plasticity response
for very fast-applied deformations and an almost elastic behavior for very slowly applied
deformation. We did not explore a large range of deformation speedsin our system since
it wasin the ~1 um/srange for all of the mutants we examined (Extended Figure 9). Thus
deformation speed doesnot discriminate any mutant.

There are other options to express the equation giving the deformation of a Kelvin-Voigt
material under stress than our choice for Eq. 4. Indeed, according to the classical
formulation of plasticity reported in our ref. 24 (Munoz and Albo, PRE 88, 012708)}, the
resting length could evolve proportionally to the deformation according to:

Y= B~ DH(apy) if %> 0and 1-2> "/, (4 bis)

For Fc bigger than a limit value and for large values of Fmusles, this equation accounts for
elongation and positive dependency on Fmustes; for example by posing Fc=1 Fmuscies>10
with all parameters set to n =10, k =1, Fepid = 0.85, and [(0) = A(0) = 1. On the
other hand, for smaller values of Fc and B, elongation takes place also in absence of
Fmuscles. Which is contradictory with the experimental data. Therefore, we decided to
privilege the Eq. 4 for plasticity (see above), since its qualitative behavior recapitulates
the experimental phenomenology in a parameter independent manner. We discuss the
linearversion of Eq. 4bisin section 1.8.

1.3 The consequences of actin stability defects. As reminded above, the intensity of Fepid
relies on two components: the constant contractility of the seam cell actomyosn
network, and the stiffness of the actin cablesin DV cells. We can then represent it like:



Fepid = Feam %py (6)

where the force F,.,, represents the active force generated by myosin Il in the lateral
cellsand apy isthe passive component given by the presence of actin filament bundlesin
the DV cells. The biomechanical significance of equation (6) is that both F,,,,, and ap,
positively contribute to Fepid, and that if one isabsent Fepia=0. This capturesthe factthatin
the absence of myosin Il there will be no pulling force because the active component is
absent, and that if actin cables are lost myosin Il is missing the resistance structure onto

which it can pull, resulting in a null epidermis AP force. From Eq. 2 the size of Fse‘"’;{& sets

the maximal elongation that the embryo can achieve in the absence of muscle activity
(Extended Data Fig. 6a-a’).

As shown in the main text (Fig. 3), the absence of SPC-1 and PAK-1, combined with the
mechanical input from muscles, induces actin integrity defectsin DV cells. To trandate this
situation in mathematical terms, we chose to write the passive component «,, asfollows:

daDV _ dl

. dl
at ]/E lf E<0andaDV20 (7)

where y=0 is a proportionality factor defined as a ‘tearing factor. The condition %(:) <0

implies that ap, decreases at each cycle of muscle activity (a cycle is a sequence of
positive and negative net force). In addition, we are imposing that y=0 cormespondsto an
absence of tearing, as in wild-type embryos. The biological significance of this choice is
the following (see section 1.2 for further details). When muscles contract and locally
squeeze the embryo along the A/P axis (Extended Data Fig. 4, Video 1), they bend actin
filaments (Fig. 3) and produce an increased circumferential stress. As a consequence,
their integrity in response to the stress originating from muscle activity is not maintained in
spc-1 pak-1 double mutants (see Fig. 3). Forthisreason, ap, should progressively decrease
at each cycle. The condition ap, = 0 prevents ap, from assuming negative values. Thus
with ap, decreasing, Fepia Will progressively decrease, and as consequence the system
length will shorten (see Extended Data Fig. 5e and Fig. 4e).

1.4 Equations summary. In summary, we describe the embryo body as a plastic Kelvin-
Voigt solid according to the following system of equations:

- Kelvin-Voigt with adjusting resting length subject to FepidHmuscies

dl
n a —k (= + Fepid + Fnuscies (1)

- Plasticity condition

di dl . dl F,
2 = B o Hlaoy) if >0, 0=B<landi-1> C/k (4)

- Tearing condition

dapy _ ﬂ . ﬂ
= V' if dt<Oand“DV20 (7)

- Equation of epidemal force




Fepia = Feeam apy @asdescribed in Eq. (6).

We assume that y=0 for wild-type, meaning that the resistance of dorso-ventral actin
flament bundles remains unaffected by the body length changes caused by muscle
activity, and that y=0 forunc-112 defective embryos, which are muscle-defective.

The equations (1), (4), (5), (6) and (7) have seven parameters: 5, K, Fseam, apy(0), Fmuscies 8
and y.In orderto reduce the parameterspace we fixed some of them:

- forsimplicity we set k=L;

- fromthe laserablation experiments performed in reference#, the relaxation time of
epidemal actin filaments following the laser cut is in the order of a few seconds.
Being the relaxation time in a Kelvin-Voigt system given byt =n/k, we set =3 so
that the relaxation time is 3 seconds.

- Fepia is the multiplication of two parameters, and thus from the parameter point of
view can be considered as a single parameter that we formally set t0 Fseam=1
letting apy (0) asa free parameter.

- The size of the critical force F. hasbeen chosen to be half Fseam (F. = 0.5). Thereby,
we considerthat low intensity forcescannot triggera plastic response.

- Regarding Fmuscies, we specified its details on the basis of the measured contraction
durations for embryos between 1.7 and 2-fold stages (Extended Data Fig. 7). For
wild-type embryos, the duration of positive and negative periodshasbeen setto 6
seconds and the period of null contribution has been set to 15 seconds, whereas
forspc-1 mutantsand spc-1 pak-1 double mutants the duration of non-null activity
hasbeen setto 3 secondsand the duration of null contribution isset to 15 seconds.
In wild-type embryos, the intensity of Fmusxes has been left as a fit parameter
together with ap,, g and y in orderto be determined by comparing with the data.
The muscle force amplitude for spc-1 and spc-1 pak-1 mutants has been set to
50% of the wt intensity according to our experimental observations. In our model,
the length of the embryo is an increasing function of the intensity of the muscle
force Fnuscies (Extended Data Fig. 6¢’’).

To better adapt to the experimental observations, both Fsam and Fmusxies have been
modified by introducing an initial transient that sets their behavior from zero to the regime
of maximal intensity; the detailed form of these transients are reported in the paragraph
‘Refining model details'.

1.5 Rtting procedure. In order to detemrmine the remaining four free parameters: intensity
of Fmuscles, apy (0) (the initial value of actin strength), g (the plasticity factor) and y (the
tearing factor) we fitted different genotypes. We started with muscle-defective unc-112
and wild-type embryos. Asshown in Figs. 2 and S3, theirelongation rate is quite similar until
the 2-fold stage, at which point unc-112 embryos have no muscle force (Fmuses=0), and
they both have an identical actin pattem (y=0). Therefore, we fitted together the two
elongation curves to find the values of the three parametersap,(0), # and Fmusxies that
capture the main features of the two genotypes; we then refined the minor differences
by allowing a 20% tolerance with respect to the parameters values detemined through
the common fit. To estimate the value of Fmusres intensity in spc-1 and spc-1 pak-1

6



embryos, we considered that it was half the wild-type value, based on the observation
that the muscle contraction/relaxation cycles were roughly twice shorter in these
embryos (Extended Data Fig. 7). The notion that Fmusces islowerin spc-1 mutant embryosis
consistent with the observation that muscles make an angle of 20° with the anterior-
posterior axis, instead of 6° in wild-type embryos, predicting that their input should be
reduced>*. The wild-type value of the plasticity factor was used as the upper limit for the
varability mnge of g for spc-1 and spc-1 pak-1 embryos. We then proceeded by fitting
the spc-1 and spc-1 pak-1 elongation curvesto detemmine the values of apy, (0), # and the
tearing factory (see below forthe method).

The best fit parameterswere determined by minimalizing the following cost function:
§ = Zg 2il(curvegarq (D) — Curvemodel(i))z]g (8)

where curveg,:,(i) is the value of the data elongation curve at the time point i and
curve,,q01 (1) is the solution of the model interpolated at the time point j; g refers to the
genotypes considered for a fit To minimize the cost function, a Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) algorithm was used. The algorithm has an
available MATLAB code at http://www.Iri.fr/ ~hansen/cmaes inMATLAB.html.

In the Supplementary Table 7, we report the values of the fitted parameters for the
different genotypes presented in the Fig. 1d and Extended Data Fig. 6e. Enors have been
obtained by fitting the mean curves plus and minus their standard enors respectively and
by taking the maximal deviation from the parametersobtained from the mean.

1.6 Refining model deftails. Ablation experiments in seam cells*2 have shown that the
circumferential stressis not constant during development but increases from the 1.3-fold
to 1.7-fold stages. To better adapt our model to this observation, we introduced a time
dependent function for Fepis that saturatesto a plateau value within a time zs:

Fepid (t) = Feeam apy (1 —exp (_ T_ts))hs (9)

where hs is an exponent that sets the steepness of the function in reaching the plateau
and Fqm apy isthe plateau value. We set =50 min and hs=4, since this choice produces
slow elongation for the first 50 minutes, as was observed for all the genotypes (see Fig. 2).
Much like the epidemis force, the muscle force Fmusles also starts at a small amplitude,
then progressively evolves with a behavior similarto equation (8):

A 0(t) (1 — exp (— %))hm fort >t,

Frnuscles (t) = (10)

0 otherwise

where A is the maximum amplitude, O(t) is the periodic function made of a composition
of cosines described in Extended Data Fig. 5¢; hm sets the steepness of the function to
reach the plateau; tois the time at which muscles get active and mis the time necessary
forthe function to reach itsplateau.



We started to measure the elongation curves immediately before the comma stage,
which represents our initial time. We set tnt=90 min, since around this point of elongation
wild type embryos are 1.7-fold long and they start to contract muscles;, we also assume
that after the 2-fold stage the muscle force hasreached its maximum amplitude, which is
why we fixed tm=15 min (the time necessary for a wild type embryo to go from 1.7 to 2
fold; hm hasbeen arbitrarely set to 1).

The model summarized in Egs. (5) and (9) has no plateau; however C. elegans embryos
extend up to 4-fold whithin <150 minutes, then stay at this length for ~100 additional
minutes before hatching. We do not know why the body length stops at 4-fold and this
issue is not the focus of this work. We can speculate that the ability of the body to
remodel is not ilimited and may also be restricted by cuticle secretion. In this framework,
we can modify Eq.(5) by introducing a multiplicative term under the form of a Hill function
to account forthe saturation of the elongation:

ar

dl . oodl F,
£ =p = Hlap)Hill() if £>0,0<p<1andl-1>"/ (11)

where Hill(1) = % with L upper threshold for the resting length and d an exponentss,
We set L=3.2 and d=15 to account for a rapid saturation of elongation after the 3.2-fold
stage, since the wild type embryos show, after this length, a rapid reduction of the
elongation rate. By introducing these aditional functions, we can improve the agrement
between the data and the model results (Fig. 4j). The Equations presented above have
been solved numerically by the Euler method implemented in a MATLAB script, with the

choice of intitial length 1(0) = A(0) = 1.

The Supplementary Table 8 isa summary of the parameter values that we fixed on the
basis of experimental observationsand therefore were not used asfree parameters.

1.7 Predictive value of the model. The aim of the modelisto give a mesoscopic physical
description and interpretation of embryo elongation, ratherthan a detailed mechanistic
formulation. Neverthelessits predictions are strongly connected with some experimental
findings.

Fitting the parameters as described in section 1.5 predicts a value close to zero for the
plasticity factor of spc-1 pak-1 mutants associated with a tearing factor different from
zero (see Table 1). It means that sgpc-1 pak-I mutants are unable to remodel their
cytoskeleton to reduce the circumferential size of the actin filaments in the dorso-ventral
epidemal cells. Consistent with this view, Extended Data Fig. 4 shows that the
circumferential size of spc-1 pak-1 defective embryos actually increases once muscles
become active, showing that the actin filaments did not shorten. The model also predicts
a very small plasticity factor but with a low tearing factor for single spc-1 mutants. These
mutants can dightly decrease their cicumference (Extended Data Fig. 4), meaning that
their actin filaments have a small ability to remodel. Finally, we note that equations (1)
and (7) predict that there should be no retraction if Fmusxles €quals zero, which is what we
observed for spc-1 pak-1 embryos in which muscle activity is compromised by knocking-

8



down unc-112 (Fig. 1). In those embryos, fitting the unc-112; spc-1 pak-1 elongation curve
gives a value of ap, = 0.66 + 0.01, which is very similar to that predicted for spc-1 pak-1
double mutants.

1.8 Kelvin-Voigt-type model versus other models. In the present work we decided to
model the C. elegansembryo asa viscoelastic solid with the ability to reamange its resting
length during elongation, and using this model we show that changing the behavior of
the epidemal force can account both for elongation and retraction. The Maxwell
model?, asa dashpotand a spring in series, would also account for elongation when the
system is under a positive force. The solution for the length ((¢t) would be of the form>2

1) =1,(1 +£(1 +%)), with [, initial length, F a constant force, k the elastic constant of the

spring and n the viscosity of the dashpot. A Maxwell-type material would keep extending
over time as soon as a positive force actson it; such a behavior would not account for
the elongation amest of muscle-defective embryos. We have also considered an
altemative model suggested in refs 5152, in which the rate of change of resting length is
proportional to the difference between the length and the resting length. The dynamic
system would obey the following equations:

”%z kA=) +F (12) (same type asourEq. 1)

% =gU-2) (13) (instead of our Eq. 4)
where F is a positive constant and 1(0) = 2(0) = ;. The solution of this system has the
following form:

F((k (1—exp[~(B+7)ED+L(B*n+B))
(Bn+k)?

I(t) =y + (14)

F(Bn(exp[~(B—1)t|-D+t(B*n+Bk))
(B +k)?

When time t tends to «, the forms of equations (14) and (15) imply a linear increase for
both I(t)and A(t). Again, this behavior cannot account for the muscle-defective amest of
elongation, unlessg = 0.
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Supplementary Table 1 | Enhancer RNAi screen in a pak-1(-) mutant RNAi screen was performed in the pak-1(tm403) mutant along with a
wild type control, testing a collection of 356 essential genes from the Ahringer RNAI library. The table recapitulates all the genes tested and the
score of their interactions for the strongest.

A Reproducible 50-100% enhanced defect* compared to wild-type
B Reproducible 20-50% enhanced defect* compared to wild-type
C Reproducible 5-20% enhanced defect* compared to wild-type

* Defect refers to lethality and body morphology defects

Targeted gene Function Strength of interaction
(1) ani-1 Anilin A
(IV) cap-1 F-actin capping protein a subunit A
() cap-2 3 subunit of actin capping protein A
(V) cdc-25.2 Putative homolog of Cdc25 phosphatase A
() cdc-42 RHO GTPase A
(1) dic-1 Dynein light chain A
(1V) epi-1 Laminin a chain A
(I) hmp-2 B-catenin A
(IV) lam-1 Laminin B A
(1) let-502 Rho-binding Ser/Thr kinase A
(ll) mic-5 Myosin Il essential light chain ortholog A
() pfn-1 Profilin A
(V) sma-1 BH-spectrin A
(X) spc-1 a-spectrin A
(1) sur-6 Regulatory subunit of serine/threonine protein phosphatase 2A A
(X) tni-1 Troponin A
(ll) dsh-2 Dishevelled (Dsh) homolog B
() goa-1 Ortholog of the heterotrimeric G protein a subunit Go B
() hmr-1 Cadherin B
() kin-10 Putative regulatory (8) subunit of casein kinase Il B
(V) mom-2 Member of the Wnt family B
(l) mpk-2 Mitogen activated protein (MAP) kinase B
() pfd-3 Putative prefoldin, orthologous to human VBP1 B
() aakg-5 AMP kinase (e}
(V) arx-2 Subunit of the actin related protein of the conserved Arp2/3 complex C
(M) arx-3 Subunit of the actin related protein of the conserved Arp2/3 complex C
() bub-1 Serine/threonine kinase C
(V) chk-1 CHK?1-like serine threonin protein kinase C
() chp-1 Protein containing two CHORD domains (e}
() csnk-1 Ortholog of human CSNK1G3, CSNK1G1 and CSNK1G2 C
(ll) ect-2 Putative RHO guanine nucleotide exchange factor (RhoGEF) C
() ekl-1 Ortholog of members of the human TDRD (e}
(IV) fin-1 Filamin (e}
(X) ifa-3 Intermediate filament protein (e}
(M) Kip-19 Plus-end-directed microtubule motor protein (e}
() lit-1 Serine threonine protein kinase (e}
(I) mei-2 Novel protein containing a region similar to the p80-targeting subunit of katanin (e}
(V) mrck-1 Serine/threonine-protein kinase (e}
(M) par-2 Protein containing a C3HC4-type RING-finger (e}
() pfd-5 Putative prefoldin 5 subunit C
() sys-1 Novel protein that contains three divergent armadillo repeats (e}
() spv-1 Ortholog of human GMIP (e}
(1) tbed-1 Puatative B-tubulin folding cofactor D (e}
() usp-5 Ortholog of human USP5 and USP13 (e}
(Il) Y19D2B.1 Structural constituent of cytoskeleton (e}




Supplementary Table 1 | Enhancer RNAi screen in a pak-1(-) mutant

No enhanced defect* compared to wild-type

* Defect refers to lethality and body morphology defects

() afd-1
arx-7
aspm-1
chs-1
col-53
cpn-1
cutl-13
dhc-1
dlc-6
eak-6
egg-5
egg-6
ekl-4
erm-1
fhod-1
gei-17
gfi-2
gsa-1
gsk-3
gsp-3
gsp-4
kca-1
lim-9
mel-26
mfap-1
mom-5
nab-1
ned-8
nkb-1
nmy-2
npp-4
ocrl-1
pes-7
pfd-6
ppk-1
rga-2
rsa-1
smgl-1
spd-1
tba-2
ttx-7
unc-35
unc-59
unc-73
unc-94
vab-10
viln-1
vps-20
wve-1

() aak-1
arp-1
C27H5.4
cacn-1
cal-2
ccm-3
cct-1
cct-2
cct-4
cdc-25.4
cpn-2
dep-1
ebp-2
eff-1
egg-3
evl-20
F59A6.5
frm-5.2
glb-12
gpb-1
klp-1/unc-104
kip-17
let-268
Irr-1
max-2
mel-11
mig-5
mit-8
nsy-1
pfd-2
pink-1
pir-1
ptc-3
ptp-2
ptp-3
saps-1
scpl-2
sds-22
spdl-1
tac-1
tha-4
unc-52
vab-19
vab-9
vhp-1
vps-11
vps-32
Wo761.1
zyg-9

(1) abce-1
abi-1
arf-1.2
cct-5
cct-6
cls-1
cls-2
col-94
col-97
cra-1
cyk-4
daf-4
fem-2
frm-2
gei-4
gop-3
ina-1
inft-1
kin-18
klp-6
kip-7
let-805
mpk-1
mtm-3
nfm-1
pef-1
plk-1
pph-6
ptp-1
pxI-1
-1
tbb-2
ten-1
tlk-1
trd-1

unc-116

wrm-1

(Iv) arp-11 (V) air-1
ced-5 cct-7
dli-1 F14H3.12
dnc-1 gck-2
dyci-1 knl-3
eps-8 mig-6
frk-1 noca-1
gex-2 pak-2
gex-3 par-1
klp-10 rbx-1
kip-11 spas-1
kip-5 sun-1
let-60 syx-5
let-92 unc-112
M116.5 unc-70
nsp-1
par-5
pfd-1
pld-1
pmk-2
pmk-3
ptp-4
rac-1/ced-10
rack-1
unc-33
wsp-1
zen-4

(X) aakb-1
aakg-2
abl-1
dyn-1
efn-3
F20B6.1
frm-9
hpk-1
ifa-2
kin-29
lam-2
lin-18
Ipr-3
nck-1
pak-1
pfn-2
pfn-3
pgn-34
unc-97




Supplementary Table 2 | Primary and secondary Y2H screens Yeast two-hybrid screening performed by Hybrygenics Services (Paris, France) using the N-terminus of
PAK-1 up to the kinase domain as a bait (Primary Screen), or two different regions of the SPC-1 protein spanning the SH3 domain (Secondary Screens). The table
recapitulates the strongest interactions.

Global Predicted Biological Score (categories computed and established by Hybrigenics, to assess the interaction reliability)
A Very high confidence in the interaction

B High confidence in the interaction

C  Good confidence in the interaction
D

Moderate confidence in the interaction
(either due to false-positive interactions or due to interactions that are hardly detectable by the Y2H technique)

Strongest candidates
(Prey library: C. elegans embryo)

Primary Yeast Two Hybrid Screen Secondary Yeast Two Hybrid Screen
(Bait: CePAK-1 N-terminal amino acids: 1-294) t Bait I: CeSPC-1 SR8-10(aa:796-1243)
1 Bait II: CeSPC-1 SH3 (aa:986-1041)
* Positive controls (PAK-1 itself + its known interactors) § Common hits using Bait | and Bait Il
Interactor Protein Global Interactor Protein Global
candidate Function PBS candidate Function PBS
SPC-1 a-spectrin A PAK-1§ p21-activated kinase A
F47B10.1 B-chain succinyl-co-A ligase A LiM-8 § LIM domain muscle A
component
CHW-1 RhoU homolog A F44.E2.3 i ARGLU1 ortholog A
GCK-1 STE20-family kinase A CSN-5 * COP9-subunit ortholog A
E3 ubiquitin ligase interactor
NCK-1 NCK adaptor A DEB-1* Vinculin A
PIX-1* ARHGEF7 homolog A DnaJ ¥ DNAJ/ZRF1/MPP11 ortholog B
B-Pix ribosome-associated chaperone
CDC-42 * Small GTPase A CYLD-1* Human CYLD1 ortholog B
NF-kB signalling interactor
PAK-1 * P21-activated Ser/Tre kinase A VAB-3/ 1 Homeodomain protein PAX6 B
(multiple hits through kinase domain) VAR-1 ortholog
CED-10 * Rac-1/ Small GTPase B GRL4* Hedgehog-like protein C
POD-2 Predicted acetyl-coA B UNC-34I Enabled/VASP homolog C
carboxylase
Y39E4A.3 Transketolase B TO4F8.6 ' Human ninein and ninein-like D
(GSK3B interactor) ortholog
EEL-1 HECT-ubiquitin ligase C ALR-1T Human ARX (aristaless) ortholog D
homeodomain transcription factor
NPP-21 Nuclear pore protein C ATN-1 T a-actinin homolog D
TAG-143 Transcription factor (e} MMCM-17 Methylmalonyl-CoA mutase D
UNC-44 Ankyrin D unc-7ot Be-spectrin D
HIPR-1 SLA2 and Hip related D vAB-10" Spectraplakin D
TO5C1.4 Conserved calmodulin- D F26A10.2 * Zinc-finger containing protein D
binding TFs
Y53F4B.13  RNA methyltransferase D F43C1.1% Human PHLPP1&PHLPP2 ortholog D
PTP-3 LAR-like receptor tyr-protein D ALP-1* Enigma family member ALP D
phosphatase (a-actinin associated LIM Protein) ortholog
COGC-6 Conserved Oligomeric Golgi D cIT-1.2% Cyclin T ortholog D
(COG) Component
DAF-21 Hsp90 molecular chaperone D FLH-1* FLYWCH zinc finger D
family member transcription factor homolog
GCK-1 STE20-family kinase D SHW-1* Human KCNC3 voltage-gated D

variant SHaW family potassium channel ortholog




Supplementary Table 3 | Secondary RNAi screen in spc-1(ra409) pak-1(tm403) background Additional RNAi screen in a spc-1(ra409) pak-1(tm403)
mutant maintained by an exctrachromosomal spc-1(+)::GFP transgene of 13 actin related proteins from the Ahringer RNAi library that were recently reported to
modulate actin remodeling in the early embryo (see text).

A Longer compared to spc-1(-) pak-1(-) (no retraction phenotype)
B Not longer compared to spc-1(-) pak-1(-) (retraction phenotype)

Targeted gene Function Strength of interaction
(1) viln-1 Ortholog of human SVIL (supervillin) A
(V) gsni-1 Gelsolin-related proteins A
(X) tth-1 Thymosin beta ortholog A
() pfn-1 Profilin B
(ll) cap-2 Beta subunit of actin capping protein B
(1) ani-1 Anillin B
(1) cyk-1 Formin homologous to Drosophila diaphanous and human DIAPH1 B
mn fli-1 Orthologous to Drosophila and human Flightless | B
(IV) cap-1 F-actin capping protein alpha subunit B
(IV) fin-1 Ortholog of human filamin A B
(1V) plst-1 Ortholog of human PLS1, PLS3 and LCP1 B
(V) arx-2 Subunit of the actin related protein of the conserved Arp2/3 complex B
(V) unc-60 Actin depolymerizing factor(ADF)/cofilin B

Supplementary Table 4 | Secondary RNAi screen in spc-1(ra409) background Additional RNAi screen in a spc-1(ra409) mutant maintained by an
exctrachromosomal spc-1(+)::GFP transgene. Genes that gave the strongest defects in the initial RNAi screen (Supplementary Table 1) were tested again.

A Shorter compared to spc-1(-)
B Not shorter compared to spc-1(-)

Targeted gene Function Strength of interaction
(1) fhod-1 Formin A
() hmr-1 Cadherin A
() hmp-2 B-catenin A
(I) cdc-42 RHO GTPase A
(1) spdl-1 Coiled-coil protein A
(1) vps-11 Ortholog of human VPS11 A
(1) mtm-3 Myotubularin lipid phosphatase A
(Il) mic-5 Myosin Il essential light chain ortholog A
(V) dnc-1 Ortholog of the dynactin complex subunit p150/GLUED/DCTNA1 A
(IV) epi-1 Laminin a chain A
() goa-1 Ortholog of the heterotrimeric G protein a subunit Go B
(1) kin-10 Putative regulatory () subunit of casein kinase Il B
(I) mec-8 mRNA processing factor B
(I) nmy-2 Non-muscle myosin Il B
(1) unc-94 Tropomodulin B
(l) cap-2 B subunit of actin capping protein B
() evl-20 Ortholog of human ADP-ribosylation factor-like protein 2 B
() spv-1 Ortholog of human GMIP B
(I) unc-52 Perlecan B
(1) kip-7 Ortholog of human KIF2A, 2B and 2C B
(1) mup-4 Transmembrane protein B
(IV) cap-1 F-actin capping protein a subunit B
(IV) eps-8 Cell signaling adaptor protein B
(IV) frk-1 Non-receptor tyrosine kinase B
(IV) unc-33 Conserved member of the CRMP/TOAD/Ulip/DRP family B




Supplementary Table 5 | List of strains used in this study

Name Genotype

DM3409 mnDp33 (X;IV)/+ IV.; spc-1(ra409) X.

DWP10 fhod-1(tm2363) I.; qals8001 [unc-119(+) fhod-1::9fp]

ML1694 pix-1(gk416)X.

ML1725 mcEX567 [spc-1::GFP, myo-2p::mcherry]

ML1943 mcls55[pak-1::GFP;pRF4]

ML1911 git-1(tm1962)X.

ML2113 mcls67 [dpy7p::LifeAct::GFP; unc-119(+)] V.; stls10088[hlh-1::his-24::mCherry, unc-119(+)]
ML2129 pak-1(tm403) X.

ML2200 pak-1(tm403) X.; mcls67 [dpy7p::LifeAct::GFP; unc-119(+)] V; stls10088[hlh-1::his-24::mCherry, unc-119(+)]
ML2419 mcEx915[ppak-1::pak-1::mkate;pR4(rol);pBSK]

ML2436 spc-1(ra409) X.; mcEx636 [spc-1p::spc-1::GFP]

ML2446 pak-1(tm403) X.; spc-1(ra409) X.; mcEx636 [spc-1p::spc-1::GFP]
ML2465 mcls91[linc26p::ABD::mkate; myo-2p::mcherry]

ML2684 mcEx1008 [fhod-1AFH2/DAD]

ML2688 pak-1(tm403) X.; mcEx1009 [fhod-1AFH2/DAD]

ML2853 pak-1(tm403) X.; mcEx1002 [fhod-1AFH1/FH2/DAD]

ML2854 pak-1(tm403) X.; mcEx1003 [fhod-1ADAD]

ML2855 pak-1(tm403) X.; mcEx1004 [fhod-1 full length]

ML2856 mcEx1005 [fhod-1AFH1/FH2/DAD]

ML2857 mcEx1006 [fhod-1ADAD]

ML2858 mcEx1007 [fhod-1 full length]

ML2898 fhod-1(tm2363) I.; mcls67 [dpy7p::LifeAct::GFP; unc-119(+)] V.

ML2903 spc-1(ra409) X.; pak-1(tm403) X.; mcEx1016 [spc-1p::spc-1::GFP] line 1
ML2904 spc-1(ra409) X.; pak-1(tm403) X.; mcEx1016 [spc-1p::spc-1::GFP] line 3
ML2906 spc-1(ra409) X.; pak-1(tm403) X.; mcEx1016 [spc-1p::spc-1::GFP] line 4
ML2929 mcls67 [dpy7p::LifeAct::GFP; unc-119(+)] V.; spc-1(ra409) X.; pak-1(tm403) X.; mcEx1016 [spc-1p::spc-1::GFP]
ML2931 viln-1(0k2413) I.; pak-1(tm403) X.

ML2932 gsnl-1(tm2730) V.; pak-1(tm403) X.

ON204 gsnl-1(tm2730) V. (3x outcrossed)

ON206 viln-1(0k2413) 1. (3x outcrossed)

ON218 viln-1(0k2413) I.; gsnl-1(tm2730) V.

N2 Bristol

XA8001 fhod-1(tm2363) .




Supplementary Table 6 | List of Ex and Is used in this study

Name Genotype

mcEx567 [spc-1::GFP, myo-2p::mcherry]
mcEx636 [spc-1p::spc-1::GFP]

mcEx915 [ppak-1::pak-1::mkate;pR4(rol);pBSK]
mcEx1002 [fhod-1AFH1/FH2/DAD]

mcEx1003 [fhod-1ADAD]

mcEx1004 [fhod-1 full length]

mcEx1005 [fhod-1AFH1/FH2/DAD]

mcEx1006 [fhod-1ADAD]

mcEx1007 [fhod-1 full length]

mcEx1008 [fhod-1AFH2/DAD]

mcEx1009 [fhod-1AFH2/DAD]

mcEx1016 [spc-1p::spc-1::GFP]

mcls55 [pak-1::GFP;pRF4]

mcls67 [dpy7p::LifeAct::GFP; unc-119(+)] V.

mcls91 [lin26p::ABD.:mkate; myo-2p::mcherry]




Supplementary Table 7 | Results of model fit Values of the fitted parameters for the different genotypes

wild-type
(n=12 embryos)

unc-112
(n=14 embryos)

spc-1
(n=8 embryos)

spc-1 pak-1
(n=7 embryos)

unc-112; spc-1 pak-1
(n=7 embryos)

Initial actin stiffness 14 £ 0.2 1.04 + 0.02 0.93 + 0.04 0.68 + 0.02 0.66 + 0.02

apy (0)

Plasticity factor 0.11 £ 0.01 0.10 + 0.03 0.040 + 0.015 0.03 + 0.03 0.02 £ 0.01
Intensity

F 39+ 0.1 (0] 1.95 1.95 (%]
‘muscles

Tearing factor y [%] (%] 0.02 £ 0.01 0.15 + 0.01 [%]




Supplementary Table 8 | Model parameters Summary of the parameter values

Spring k=1
Dashpot n=3

Fepid Fseam =1, Ts =50, hs=4
F muscles Tm=15 hy=1, t;;=90

Saturation function

L=32 d=15

Critical force Fc

0.5
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