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A B S T R A C T

Nanotechnologies rely on the introduction of strain engineering to enhance semi-

conductor devices performances. As a consequence, non-invasive characterization

methods with high spatial resolution and strain sensitivity on low-amount-of-matter

samples are required. This PhD work focuses on methodology of X-ray diffraction

techniques performed in the Bragg geometry, which allows probing the structural

properties of crystalline samples. Firstly, the Scanning X-ray Diffraction Microscopy

technique, developed on a fast-timescale at the ESRF ID01 undulator beamline, is

described through a thorough analysis of an experiment performed on ultra-thin

strained SiGe-on-insulator patterns. Secondly, this manuscript focuses on two co-

herent diffraction imaging techniques, namely Bragg CDI, which yields complex

density and strain map of nano-meso crystalline objects, and Ptychography, which

use translational diversity to produce quantitative maps of complex transmission

function of non-crystalline objects. The motivation developed in this PhD work is

to combine these two techniques that both promote highly sensitive phase-contrast

properties, in order to provide ultra-high resolution on complex/extended samples.

Bragg Ptychography is thus introduced, along with algorithmic descriptions and

considerations on the X-ray beam characterization, the latter being still a key com-

ponent for successful reconstructions.

vii





C O N T E N T S

1 introduction 1

i strain and x-rays interaction with matter 5

2 strain - definitions 7

2.1 Introduction 7

2.2 Definitions 8

2.2.1 Misfit strain 8

2.2.2 Strain tensor 8

2.2.3 Strain matrix 9

2.2.4 Strain ε 9

2.3 Elastic strain in epitaxial layers to increase carriers mobility 10

2.3.1 Theory of elasticity 10

2.3.2 Elastic strain in epitaxial layers 11

2.3.3 Impact of strain on silicon properties 14

bibliography 16

3 coherent x-ray diffraction 19

3.1 X-rays 19

3.2 Synchrotron radiation 20

3.3 Crystal definitions 23

3.3.1 Crystal lattice 23

3.3.2 Bragg’s Law 24

3.3.3 Ewald sphere 26

3.4 Classical scattering 27

3.4.1 Scattering from perfect crystals 27

3.4.2 Scattering from crystals in the presence of strain 29

3.5 Coherence 31

3.6 Note on Imaging Regimes 33

3.6.1 Propagation of a complex field 33

3.6.2 Three imaging regimes 34

3.7 Coherent Imaging principles 35

3.7.1 The phase problem 37

3.7.2 Oversampling 38

3.7.3 Field of view and pixel size 39

3.7.4 General formalism of phase retrieval algorithms 40

3.7.5 Recent advances in phase retrieval 44

ix



x contents

3.8 Coherent Bragg Imaging 48

3.8.1 Definition 48

3.8.2 From detection to direct space 48

3.9 ESRF ID01 beamline set-up 51

3.9.1 Optics 51

3.9.2 Nanofocusing endstation 52

bibliography 55

ii experimental works 63

4 scanning x-ray diffraction microscopy on ultra-thin sgoi 65

4.1 Introduction 65

4.1.1 Strained SiGe on Silicon-Oxide Insulator 65

4.1.2 Condensation process 67

4.2 Sample Design and Fabrication 68

4.2.1 Sample design 68

4.2.2 DIVA mask 70

4.3 Strain measurement and simulation 72

4.3.1 Comsol modeling 72

4.3.2 µRaman measurements 77

4.3.3 Nano-Beam Electronic Diffraction (NBED) measurements and

modeling 80

4.4 Scanning X-ray Diffraction Microscopy 81

4.4.1 Principle 81

4.4.2 Quick mapping 81

4.4.3 Experimental protocols 82

4.5 SXDM analysis 87

4.5.1 Introduction 87

4.5.2 Assessing and addressing issues 87

4.5.3 Typical analysis road-map 91

4.6 Results and Discussion 95

4.6.1 Comparison between samples obtained by condensation and by

standard smart-cut process 95

4.6.2 2 x 2 µm2 Silicon-Germanium On Insulator (SGOI) squares (D4) 97

4.6.3 5 x 5 µm2 SGOI squares (D6) 111

4.6.4 500 x 500 nm2 SGOI squares (D2) 119

4.6.5 Discussion 128

4.7 Conclusion 133

bibliography 134



contents xi

5 bcdi and dct on zirconia embedded grains 141

5.1 Introduction 141

5.1.1 A matter of scale 141

5.1.2 Sample details 142

5.2 Diffraction Contrast Tomography 143

5.2.1 Principle 143

5.2.2 Setup geometry 144

5.2.3 Implementation on ID01 and results 145

5.3 Bragg Coherent Diffraction Imaging 149

5.3.1 Experimental setup and probe measurements 149

5.3.2 Embedded grain alignment and characterization 158

5.3.3 Phase retrieval process 163

5.3.4 Results 168

5.3.5 Discussion and outlook 174

5.4 Strain sensitivity in BCDI reconstructions 175

5.4.1 Resolution from BCDI dataset 175

5.4.2 “Strain shell correlation” for strain sensitivity 176

5.4.3 Outlook 183

5.5 Conclusion 183

bibliography 186

6 bragg ptychography 191

6.1 Introduction 191

6.2 Principles of Ptychography 191

6.2.1 Ptychographic Iterative Engine 193

6.2.2 Difference Map 195

6.2.3 Assumptions in ptychographic algorithms and experimental con-

straints 197

6.3 Ptychography in Bragg condition 198

6.3.1 Bragg Projection Ptychography: a 2D case 199

6.3.2 3D Bragg Ptychography: numerical and experimental studies

in the literature 203

6.3.3 3D Bragg Ptychography: limitations 210

6.3.4 3D Bragg Projection Ptychography 214

6.4 Numerical tests of PyNX Bragg ptychography library 218

6.4.1 Strained Si layer, simple model 219

6.4.2 Strained SiGe layer, from Comsol modeling 233

6.5 Experimental results 241

6.5.1 2D Bragg Projection Ptychography on sSiGeOI 241



xii contents

6.5.2 2D Bragg Projection Ptychography on GeSn micro-disks 247

6.6 Conclusion 253

bibliography 256

iii conclusion 263

7 conclusion 265

iv appendix 269

a sxdm on ultra-thin 13 nm-thick ssigeoi without sin (sample

c) - detailed analysis 271

b orthonormalization matrix for bragg ptychography 277

b.1 3D Bragg Projection 277

b.2 3D Bragg Ptychography 278

c gradient minimization for the object update in single-angle

3d bragg projection ptychography 281

d resume en francais 283

d.1 Introduction 283

d.2 Déformation cristalline - Définitions 285

d.3 Diffraction cohérente de rayons X 286

d.3.1 Rayons X 287

d.3.2 Rayonnement synchrotron 287

d.3.3 Définitions cristallographiques 288

d.3.4 Diffusion classique 289

d.3.5 Cohérence 289

d.3.6 Note sur les régimes d’imagerie 290

d.3.7 Principes d’imagerie cohérente 290

d.3.8 Imagerie cohérente en condition de Bragg 291

d.4 Microscopie à Balayage par diffraction de rayons X 291

d.4.1 Introduction 292

d.4.2 Design de l’échantillon - fabrication 292

d.4.3 Mesures de déformations, simulations 293

d.4.4 Microscopie à Balayage par diffraction de rayons X (SXDM) 293

d.4.5 Analyse générique 294

d.4.6 Résultats et discussion 295

d.5 BCDI et DCT sur des grains incorporés dans un cylindre de zircone 296

d.5.1 Introduction 296

d.5.2 DCT 297

d.5.3 BCDI 298

d.5.4 Sensibilité à la contrainte dans les reconstructions de BCDI 300



contents xiii

d.6 Ptychographie en condition de Bragg 301

d.6.1 Introduction 301

d.6.2 Principes de la ptychographie 302

d.6.3 Ptychographie en condition de Bragg 302

d.6.4 Essais numérique de PyNX 304

d.6.5 Résultats expérimentaux 306

d.7 Conclusion 309



L I S T O F F I G U R E S

Figure 2.1 Evolution of the critical thickness of a smooth strained SiGe

layer on (001) Si, depending on the Ge content. 12

Figure 2.2 Scheme of epitaxial formation of SiGe on Si substrate. 12

Figure 2.3 Diamond lattice structure, as it is the case for silicon. 13

Figure 2.4 (left) Equivalent Young’s Modulus and (right) Poisson’s ratio

of Si and SiGe (with 25% Ge content), according to the crystal

orientation. 14

Figure 2.5 Electrons mobility enhancement with tensile strain in Si tran-

sistor. 15

Figure 3.1 Usual synchrotron magnetic structures: Bending Magnet and

Undulator 22

Figure 3.2 Miller indices and reciprocal lattice vector. 24

Figure 3.3 Bragg law. 25

Figure 3.4 Ewald’s sphere construction in 2D. 26

Figure 3.5 Hexagonal crystal and simulated diffraction maps. 28

Figure 3.6 Scattering from crystals in the presence of strain 30

Figure 3.7 Strained hexagonal crystal and simulated diffraction maps. 31

Figure 3.8 Coherence lengths. 33

Figure 3.9 Impact of the Fresnel number on diffraction regime. 36

Figure 3.10 Error-reduction and finite support 41

Figure 3.11 Bragg Coherent Diffraction Imaging setup, exploration of Fourier

space. 49

Figure 3.12 Experimental hutch at ID01. 53

Figure 4.1 SiGe condensation process. 68

Figure 4.2 Samples investigated. 70

Figure 4.3 The DIVA litography mask. 70

Figure 4.4 Scheme of one particular DIVA structure. 71

Figure 4.5 Scanning Electron Microscopy image of square patterns. 72

Figure 4.6 Geometrical model and COMSOL mesh for a pseudomorphic

SiGe grown on a Si substrate. 73

xiv



List of Figures xv

Figure 4.7 3D representation of out-of-plane strain of the SiGe epitaxial

layer, with the corresponding deformation of the layer, dis-

played with a 10 fold magnification. From this, one can clearly

see the bending of the layer at its edge, and the relative uni-

form strain at its center. On this figure, the island of width

Lact =1 µm reaches an out-of-plane strain of 1.6% at its center.

75

Figure 4.8 Profiles of the out-of-plane strain εzz and the in-plane strain

εxx, at three different thicknesses of the SiGe layer, for three

different widths Lact = 250, 500 and 1000 nm. 76

Figure 4.9 Impact of a SiN layer on top of sSiGeOI. Profiles of out-of-

plane and in-plane strains, for three different case : without

any SiN layer, with an unstressed SiN layer and with a tensely

stressed SiN layer at σ =1.2 GPa. 77

Figure 4.10 Strain from µRaman measurements for sSGOI 79

Figure 4.11 Relative deformation after etching from NBED measurement

and analytical model for an active length of 800 nm. 80

Figure 4.12 Experimental setup of a SXDM experiment. 83

Figure 4.13 Incident beam profiles from a KB focusing mirrors. 85

Figure 4.14 Rocking curve on a Si(004) reflection and evolution of the most

intense pixel’s position. 86

Figure 4.15 Pixels redistribution for a Maxipix detector. 88

Figure 4.16 Reciprocal space image from the (113) reflection of a 13-nm

thick SGOI sample, and the impact of the Si substrate scatter-

ing. 92

Figure 4.17 From Cartesian to spherical coordinate system. 92

Figure 4.18 Projections of 3D reciprocal space map intensity from the (113)

asymmetric reflection of 13 nm-thick SGOI. 93

Figure 4.19 Example of projection fits for three different locations on a 2 x

2 µm2 square pattern of 13 nm-thick SGOI. 95

Figure 4.20 Comparison of the diffraction maps between samples obtained

by condensation and by standard smart-cut process 97

Figure 4.21 Map of a 12 x 12 µm2 area of 20 nm-thick SGOI, from both

(113) and (004) Bragg reflection. 99

Figure 4.22 Statistical repartition of strain at the center of the 2 x 2 µm2

squares of 20 nm-thick SGOI. 100

Figure 4.23 Interplanar distances from experimental measurement along a

SGOI pattern. 102



xvi List of Figures

Figure 4.24 Map of a 8 x 8 µm2 area of 20 nm-thick SGOI w\o nitride, from

(113) Bragg reflection. 104

Figure 4.25 Statistical repartition of strain at the center of the 2 x 2 µm2

squares of 20 nm-thick SGOI w\o nitride. 105

Figure 4.26 Detector frame from a rocking curve with 0.1 second expo-

sure on the SiGe (113) reflection of the full sheet 13 nm-thick

SGOI. 106

Figure 4.27 Map of a 8 x 8 µm2 area of 13 nm-thick SGOI w\o nitride, from

(113) Bragg reflection. 107

Figure 4.28 Statistical repartition of strain at the center of the 2 x 2 µm2

squares of 13 nm-thick SGOI w\o nitride. 108

Figure 4.29 (113) strain map and profiles of 13 nm-thick SGOI w\o nitride,

2 x 2 µm2 pattern. 109

Figure 4.30 Map of a 4 x 8 µm2 area of bilayer 20 nm-thick-SiGe/Si/BOX

from (113) Bragg reflection. 110

Figure 4.31 Histogram of SiGe strain of bilayer 20 nm-thick-SiGe/Si/BOX

with respect to bulk Silicon lattice from the (113) reflection. 111

Figure 4.32 Map of 20 nm-thick SGOI w\ nitride, 5 x 5 µm2 pattern, from

both (004) and (113) Bragg reflection. 113

Figure 4.33 Histograms of strain from 20 nm-thick SGOI w\ nitride, 5 x

5 µm2 pattern. 115

Figure 4.34 Map of 13 nm-thick SGOI w\o nitride, 5 x 5 µm2 pattern, from

(113) Bragg reflection. 116

Figure 4.35 Histograms of strain from 13 nm-thick SGOI w\ nitride, 5 x

5 µm2 pattern. 117

Figure 4.36 (113) strain map and profiles of 13 nm-thick SGOI w\o nitride,

5 x 5 µm2 pattern. 118

Figure 4.37 Map of two 8 x 8 µm2 areas of 20 nm-thick SGOI w\ ni-

tride, 500 x 500 nm2, from both (113) and (004) Bragg reflec-

tions. 120

Figure 4.38 Intensity map from (004) Bragg reflection of 20 nm-thick SGOI

w\ nitride. 121

Figure 4.39 (004) Reciprocal space projections along a 500 x 500 nm2 pat-

tern of a 20 nm-thick SGOI w\ nitride. 122

Figure 4.40 Intensity map from (113) Bragg reflection of 20 nm-thick SGOI

w\ nitride. 124

Figure 4.41 (113) Reciprocal space projections along a 500 x 500 nm2 pat-

tern of a 20 nm-thick SGOI w\ nitride. 125



List of Figures xvii

Figure 4.42 Strain distribution of a 500 x 500 nm2 pattern of a 20 nm-thick

SGOI w\ nitride, from (004) and (113) Bragg reflections. 126

Figure 4.43 Map of 8 x 8 µm2 areas of 13 nm-thick SGOI w\o nitride, from

the (113) Bragg reflection. 127

Figure 4.44 Strain distribution of a 500 x 500 nm2 pattern of a 13 nm-thick

SGOI w\o nitride, from (113) Bragg reflections. 128

Figure 4.45 Distribution of (113) strain for SGOI made of 20 nm-thick w\

nitride, 20 nm-thick w\o nitride, 13 nm-thick w\o nitride, and

20 nm-thick-SiGe/Si/BOX (bilayer). 131

Figure 4.46 Typical relaxation lengths modeling for (113) strain profiles

extracted on different patterns from sample C (13 nm-thick

SGOI). 132

Figure 5.1 Example of 3D grain map in a large grained sample of Ti al-

loy 143

Figure 5.2 Schematic of the DCT setup. 145

Figure 5.3 Microscope’s camera calibration by image registration. 146

Figure 5.4 ZrO2 cylinder viewed from the beamline’s microscope, dur-

ing a 300
◦ horizontal rotation of the sample stage in order to

retrieve a ϕ lookup table for DCT scanning. 147

Figure 5.5 Diffractometer confusion circle. 149

Figure 5.6 BCDI setup for Zirconia cylinder on ID01. 150

Figure 5.7 Forward ptychographic scan on Zirconia cylinder to retrieve

beam shape. 152

Figure 5.8 Zirconia grain CDI’s probe reconstruction using a siemens star

pattern. 153

Figure 5.9 Effect on the optical configuration (coherent slits size, defocus

distance) on the beam wavefront. 154

Figure 5.10 Comparison between probe reconstructions obtained from ob-

ject with defocus and at focus. 156

Figure 5.11 Beam caustic retrieved from ptychographic reconstruction. 157

Figure 5.12 Decomposition of probe into coherent modes. 158

Figure 5.13 SXDM for grain localization. 160

Figure 5.14 Diffraction patterns of a unique grain, from three independent

Bragg reflection. 162

Figure 5.15 Rocking curve from the (111) Bragg reflection of a given ZrO2

grain. 163

Figure 5.16 Intensity auto-correlation from (200) Bragg reflection superim-

posed onto the beam profile. 164



xviii List of Figures

Figure 5.17 Isosurfaces and cross-sections of a reconstructed gold nanocrys-

tal with different considerations on coherence. 166

Figure 5.18 PRTF example from a gold nanocrystal reconstruction, taking

into account partial coherence. 168

Figure 5.19 Comparison of the first mode solution from a BCDI reconstruc-

tion versus the probe used to collect the reciprocal space. 170

Figure 5.20 3D reconstruction from the (200) Bragg reflection of a ZrO2

grain, in the orthogonal frames of both the laboratory and the

grain. 171

Figure 5.21 Local displacement and strain fields at different cross-sections

(plane containing ~q) of a ZrO2grain. 173

Figure 5.22 Average strain measured on three different grains, from two

different set of Bragg reflection, with different probe position

onto the grain. 174

Figure 5.23 Test from simulated datasets of Strain Shell Correlation re-

sponse versus total number of photons. 178

Figure 5.24 Displacement field on a 3D rendering from the (200) reflection

of a low-dose FIB exposed gold nanocrystal. 180

Figure 5.25 Strain Shell Correlation on reconstructions from the (200) re-

flection of a low-dose FIB exposed gold nanocrystal. 181

Figure 5.26 Evolution of the Strain Shell Correlation curves with respect to

the total number of photons. 182

Figure 5.27 Evolution of the Strain Shell Correlation curves with respect

to the total number of photons in the diffraction pattern used

for phasing. From several angular scans performed on the

(002) reflection of a low-dose FIB exposed gold nanocrystal,

four different datasets were created. The solutions were then

interpolated so that the scattering vector (whose coordinates

are qz = −0.92−1, qy = 2.64−1, qx = −1.29−1 in the laboratory

frame) is aligned with the first axis of the 3D solution. The

Strain Shell Correlation was then evaluated for four different

total number of photons, coming from the sum of either 2, 4, 8

or 15 angular scans. 184

Figure 6.1 Scheme of Ptychographic data collection setup. The sample is

scanned in the vertical plane (xy) with overlapping illumina-

tion steps, while the far-field diffraction pattern is collected for

each position with a 2D pixel detector. 192



List of Figures xix

Figure 6.2 2D Bragg Projection Ptychography. Relationship between a

sample displacement and the related displacement in the pro-

jected detector plane. 200

Figure 6.3 Detailed geometry for the calculation of the displacement in

the ~k f -normal plane associated to a translation of the sample

along its normal. 201

Figure 6.4 Conjugated spaces involved in Bragg CDI imaging. 205

Figure 6.5 3D Bragg diffraction geometry. 208

Figure 6.6 X-ray radiation damage on SOI sample. 213

Figure 6.7 Bragg projection geometry. 215

Figure 6.8 Geometry and beam of numerical 3D BPP simulation. 220

Figure 6.9 Representative nanofocused coherent X-ray diffraction patterns

from a strained Si layer. 221

Figure 6.10 Cross-sections of the support for a thin layer. 222

Figure 6.11 Route for kinematic simulation versus Bragg Ptycho class, us-

ing the PyNX library. 223

Figure 6.12 Comparison of two methods of computation of diffraction pat-

tern from a partially illuminated object. 224

Figure 6.13 Cross-sections of the reconstructed object using DM and AP

on simulated diffraction patterns with a support constraint in

real space. 225

Figure 6.14 Comparison of the retrieved diffraction patterns with the ob-

served ones. 226

Figure 6.15 Vertical cross-sections of the retrieved Si thin layer. 228

Figure 6.16 Horizontal cross-sections of the retrieved Si thin layer. 230

Figure 6.17 Simulated probe for numerical 3D BPP simulation on SiGeOI

ultra thin layer. 233

Figure 6.18 3D view of the geometry of simulated 3D BPP on ultra-thin

sSiGeOI. 234

Figure 6.19 Simulated diffraction patterns from the strained SiGeOI com-

sol model for a 3D Bragg Projection ptychographical dataset. 235

Figure 6.20 Support initialization for an ultra thin SiGeOI layer. The sup-

port’s density is displayed in the reference frame, hence ap-

pears tilted, and the cross-sections are taken at X = 0, Y =

0, Z = 0. 236

Figure 6.21 3D BPP retrieved object from numerical simulation of 20 nm-

thick sSiGeOI with implementation of displacement fields from

Comsol modeling. 237

Figure 6.22 Horizontal views of the retrieved Si thin layer. 238



Figure 6.23 Horizontal views of the retrieved Si thin layer. 240

Figure 6.24 NanoMax (Max IV synchrotron, Lund, Sweden) experimental

hutch. 241

Figure 6.25 Retrieved X-ray beam wavefront at the NanoMax beamline. 242

Figure 6.26 Diffraction patterns from coherent highly focused beam. SiGe

(113) Bragg reflection. 243

Figure 6.27 SXDM analysis from Bragg diffraction patterns of a 20 nm-

thick strained SiGe island 244

Figure 6.28 2D results of forward ptychography applied to a scan of the

sample in Bragg condition. (Left) Retrieved density, where

the resolution is clearly affected along x, with a pixel size

of 235 nm, whereas in the other direction the edges of the

structure are retrieved with sharpness. (Right) 1D profiles of

both phase and amplitude of the retrieved 2D complex object.

245

Figure 6.29 2D BPP on a 20 nm-thick sSiGe : vertical profiles of displace-

ment and strain, comparison with the model. 246

Figure 6.30 GeSn micro-disk, optical microscope top view and SEM images. 248

Figure 6.31 Integrated intensity map from a spiral scan on a GeSn micro-

disk. 249

Figure 6.32 Diffraction patterns from a step-graded GeSn micro-disk. 250

Figure 6.33 2D BPP reconstruction on a micro-disk “isostrain band”. 251

Figure 6.34 Extracted displacement and strain from vertical cut on the re-

trieved phase. 252

Figure 6.35 Unwrapped phase from 2D BPP reconstruction of isostrain

GeSn micro-disk, extraction of in-plane strain. 253

Figure A.1 Intensity map from (113) Bragg reflection of sample C, cen-

tered on a pattern. 272

Figure A.2 (113) Qx Reciprocal space projections along a 500 x 500 nm2

pattern of a 13 nm-thick SGOI w\o nitride. 273

Figure A.3 (113) Qy Reciprocal space projections along a 500 x 500 nm2

pattern of a 13 nm-thick SGOI w\o nitride. 274

Figure A.4 (113) Qz Reciprocal space projections along a 500 x 500 nm2

pattern of a 13 nm-thick SGOI w\o nitride. 275

Figure A.5 Strain and Qz projections center of Gaussian fit, across one

500 nm width pattern of 13 nm sSiGeOI. 276

xx



L I S T O F TA B L E S

Table 2.1 Elastic constants of silicon and germanium. 13

Table 4.1 Carrier mobility at 300K for crystalline structures of Si, Ge, C,

GaAs, InAs and InP. 66

Table 4.2 Material mechanical properties used for FEM simulations. 74

Table 4.3 Table summarizing the (113) strain (in percent), for each char-

acteristic pattern of each sample. 129

Table 4.4 Table summarizing the Ge-content (in percent), for each char-

acteristic pattern of each sample. 130

Table 5.1 Table of indexed Zirconia grains, with associated Bragg reflec-

tions and corresponding angles. 148

Table 5.2 Table of BCD-measured Zirconia grains, with associated Bragg

reflections and corresponding angles. 159

Table 5.3 Average strain along multiple direction for a given ZrO2 grain. 173

L I S T I N G S

Listing 5.1 Example of python code for BCDI reconstruction using PyNX

operator-based API. 165

Listing 6.1 Building the 3D Bragg Projection Ptychography analysis with

the PyNX library. 232

A C R O N Y M S

AFM Atomic Force Microscopy

AP Alternating Projection

BPP Bragg Projection Ptychography

BOX Buried OXide

CDI Coherent Diffraction Imaging

xxi



xxii acronyms

CMOS Complementary Metal Oxide Semiconductor

COM Center Of Mass

DCT X-ray Diffraction Contrast Tomography

DFT Discrete Fourier Transform

DM Difference Map

FDSOI Fully Depleted Silicon On Insulator

FEM Finite Element Method

pFET p-type Field Effect Transistor

FFDXM Full-Field Diffraction X-ray Microscopy

FT Fourier Transform

FWHM Full Width at Half Maximum

FZP Fresnel Zone Plate

HIO Hybrid Input Output

KB Kirkpatrick-Baez

MOSFET Metal Oxide Semiconductor Field Effect Transistor

NBED Nano-Beam Electronic Diffraction

nMOS n-type Metal Oxide Semiconductor

pMOS p-type Metal Oxide Semiconductor

OSA Order Sorting Aperture

PIE Ptychographic Iterative Engine

PDF Probability Distribution Function

RP-CVD Reduced Pressure-Chemical Vapor Deposition

RTO Rapid Thermal Oxidation

ROI Region Of Interest

SEM Scanning Electron Microscopy

SGOI Silicon-Germanium On Insulator

SIFT Scale-Invariant Feature Transform

SOI Silicon On Insulator

sSOI Strained-SOI

sSGOI Strained-SGOI

SMT Stress Memorization Technique

STXM Scanning Transmission X-Ray Microscopy

SXDM Scanning X-Ray Diffraction Microscopy

UTBB Ultra-Thin Body and Buried oxide

UVL Ultra-Violet Litography



1
I N T R O D U C T I O N

The last decades have seen the emergence of a new parameter to tune materials

properties and performance: strain. Strain engineering has expanded the devel-

opment of nanosciences, when down-scaling reached its limits. Indeed, it is now

possible to enhance e. g., carrier mobility within transistor semiconductors, by the

deliberate introduction of strain to locally modify the band structure and optimize

device performances. However, the control and prediction of such modifications

are difficult, as the lattice responses depend on the complete environment and pro-

cessing history of the device. Precise nanoscale characterization while mitigating

potential perturbations of the boundary conditions has become crucial for nanotech-

nologies.

X-ray coherent diffraction imaging in Bragg geometry is the perfect versatile tool

that steps in to provide high spatial resolution combined with high strain sensitivity

in three dimensions. Intrinsically, X-rays allow for atomic resolution and fourth gen-

eration light sources offer the prospect of pushing CDI lensless imaging to its limit,

i. e., wavelength limited resolution. As the Bragg geometry allows imaging strain,

its combination with CDI methods was key for nanoscale strain characterization.

This PhD work is dedicated to the development and numerical test of charac-

terization methods based on X-ray diffraction in Bragg condition. This way, it is

focused on methodology and applied to samples identified as potential references

in the frame of nanotechnologies which is thriving and will take advantage of the

new opportunities offered by the ESRF EBS upgrade.

The first part of this manuscript is devoted to theoretical explanations on the

basics of X-ray, coherence and lattice structure of crystalline material. In chapter

2, the nomenclature and symbols related to strain and elasticity are presented. A

focus on the strain-stress relationship is made, with the particular case of strain in

Silicon detailed.

In chapter 3, X-ray scattering theory is introduced, with a particular emphasis on

Bragg diffraction. The coherence properties of X-rays produced from synchrotron

radiation are discussed in order to introduce CDI techniques, along with a review

of the associated phase retrieval algorithms and the recent advances in the field. A

typical experimental setup is finally depicted through the example of the undulator

beamline ID01 at the ESRF - the European Synchrotron.

1



2 introduction

In a second part, the manuscript focuses on the experimental works conducted

throughout this Ph.D. work, including descriptions of the experiments, details on

the analysis roadmaps, results and discussions.

Chapter 4 is dedicated to the case study of ultra-thin (13 to 20 nm thicknesses)

strained silicon germanium layers on insulator (sSiGeOI), developed in order to be

integrated as channels in Fully Depleted Silicon On Insulator p-type Field Effect

Transistor. A particular attention is given to the condensation process used to grow

such strained SiGe layers. The principal interrogation that remains relates to the be-

havior of strain when free boundary conditions are introduced by etching. Results

of simulations from Finite Element Method are first presented, then characteriza-

tions performed with Raman spectroscopy from the work of R. Berthelon are re-

called. Finally, a thorough description of the Scanning X-ray Diffraction Microscopy

technique is given, along with point-by-point analysis. The results of the experi-

ments carried on at ID01 are finally presented and discussed : not only a statistical

characterization is extracted but also the strain relaxation length is measured.

Chapter 5 provides a description of an innovative experiment aiming to combine

the large scale imaging technique of Diffraction Contrast Tomography allowing in-

dexation of embedded grain within a Zirconia cylinder, with the nanoscale resolu-

tion and strain sensibility of Bragg Coherent Diffraction Imaging. A focus is made

on the essential beam characterization, which had to be done in order to obtain a

beam size of the same order than the grain. Finally, the chapter concludes with

the presentation of an innovative numerical tool to assess the strain sensitivity of a

Bragg CDI reconstruction.

Last but not least, Chapter 6 introduces the Ptychography method. Firstly, a short

summary of the development of the technique is introduced, followed by a detailed

description of the main algorithms used to recover both the illuminated object and

the scanning probe. Then, the adaptation of such algorithms to the Bragg geometry

is considered. This is of crucial importance for imaging strain with nanoscale spatial

resolution within an extended object. Furthermore, a review of the publications

related to ptychography in Bragg condition is given, from 2D Projection to multi-

angle 3D Projection Bragg ptychography, providing a grasp of how to deal with

the complex datasets that Bragg Ptychography experiments will inevitably provide.

Finally, tests of the different approaches, as they were introduced in the ESRF’s

PyNX python library, are performed and the results discussed. Firstly, numerical

simulations are carried on ultra-thin layers of sSiGeOI, with the implementation

of displacement fields from finite element method (COMSOL) modeling. Then,

experimental datasets from sSiGeOI are reconstructed, both with single-angle 3D

BPP and 2D BPP. In the end, the efficiency of 2D BPP is demonstrated through the
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reconstruction of the phase of a strained micro-disk of multi-graded layers of GeSn,

using an isostrain approach.





Première partie

S T R A I N A N D X - R AY S I N T E R A C T I O N W I T H M AT T E R





2
S T R A I N - D E F I N I T I O N S

In this chapter, we introduce strain and related concepts, such as misfit and relax-

ation, in order to set the nomenclature and symbols that will be used consistently

throughout this manuscript. Then, a particular focus on the strain-stress relation-

ship is given through the theory of elasticity. Finally, the impact of strain on the

band structure of Silicon is detailed.

2.1 introduction

Strain is a response of a system to an applied force or system of forces over area

called stress. These forces will tend to deform the material, and engineering strain

is defined as the amount of deformation in the direction of the applied force on to

the initial length of the material. Due to lattice mismatch, almost all thin layers of

material deposited on to a substrate will experience strain, which leads to cracking,

blistering or even peeling and cause eventual failure of the material. That is why

for many years the main goal of crystal heteroepitaxy - the deposition of a different

crystalline material onto a crystalline substrate - was to avoid strain in order to

produce long-lived devices.

However, on Dec. 29, 1959, Richard Feynman gave a talk entitled “There’s Plenty

of a Room at the Bottom” Feynman, 1960, in which he envisioned a future in which

all of the 24 volumes of the Encyclopedia Britannica are written and read on the head

of a pin using an electron microscope. It was the founding of a field now known

as nanoscience and nanotechnology, together with the related fundamental physi-

cal and mechanical challenges arising with miniaturization. At the root of better

lasers, faster transistors or better catalysts, in the mechanics of materials the mantra

“smaller is stronger” prevails Zhu and Li, 2010. Not only researchers found out that

nanomaterials are much stronger, at low temperature at least Tian et al., 2013, but

with so-called “ultra-strength materials” Zhu and Li, 2010 tuning the elastic strain

directly enable s one to tailor their electronic, magnetic, optical.. properties. There-

fore, heteroepitaxy is now often used to engineer strained layers. This is achieved

practically via the growth of layers containing atoms of different nature, so that the

lattice constants of the layer material and substrate do not match.

In the scope of this thesis, the effect of strain on the band structure of semicon-

ductors is essentially a reduction of degeneracy at the top of the valence band,

7
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leading to a reduction of the density of states. This results in scattering effects in

the conduction mechanism in transistors, or in energy level tuning in optoelectronic

devices. As an example, Patel et al. Patel et al., 1973 recognized very early that

this would improve the efficiency of laser diodes cite, before Eliseev et al. Eliseev

et al., 1984 gave a demonstration in 1984. Hence, the electronic properties of semi-

conductor nanostructures are strongly influenced by their strain state, and many

examples have already shown that strain engineering was an efficient tool to boost

microelectronics technologies Dunstan, 1997.

Dunstan gave an excellent review of strain ibid., that serves as a basis for the

following definitions of the relevant concepts related to the strain.

2.2 definitions

2.2.1 Misfit strain

When the material of a layer has a lattice parameter al that differs from the one of

the substrate as, then the misfit or misfit strain is defined as :

ε0 =
al − as

as
(2.1)

Note that this misfit strain can be anisotropic in a non-cubic material. Using

Vegard’s law Vegard, 1921, one can derive equation 2.1 as a function of the alloy

composition. If the layer lattice parameter is larger than the one of substrate

(al > as), the misfit is positive, as for the example of Si1−xGex grown on Si :

ε0(x) =
a(x)− aSi

aSi
=

xaGe + (1− x)aSi − aSi

aSi

=
x(aGe − aSi)

aSi
= 0.0418x (2.2)

2.2.2 Strain tensor

The strain tensor ε is a 3×3 matrix that describe the full deformation of the unit

cell from its natural shape and orientation. Usually, the tensor is symmetrized by

averaging εjk and εkj, leading to a loss of information concerning the orientation of

the unit cell. Note that compressive strain has a negative sign.
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2.2.3 Strain matrix

The strain matrix εJ is reduced from the symmetrized strain tensor using the Voigt

notation (i. e. xx → 1; yy → 2; zz → 3; yz → 4; xz → 5 and xy → 6). This 6×1

matrix describes the deformation but not the orientation of the unit cell. Note that

the components J ≥ 4 are twice the off-diagonal elements of the symmetrized ejk :

εJ =




εxx

εyy

εzz

2εyz

2εxz

2εxy




(2.3)

2.2.4 Strain ε

One has to emphasize the different notation used in this work. The use of εmeans

real strain, i.e. the deformation of the material (here SiGe) with respect to its relaxed

lattice parameter. On the other hand, ε stands for the deformation with respect to

the lattice of relaxed Silicon, which is in most cases used as a reference in strain

characterization techniques. The real strain in a layer of lattice constant a′l is the

strain by which it is deformed from its natural lattice constant al . It is important to

note that compressive strain is positive and that even in a pseudomorphic layer, i. e.
when the layer is strictly epitaxial on its substrate with a coherent interface and is

thermodynamically stable, the real strain ε differs from the misfit strain ε0, as :

ε =
al − as

al
=

as

al
· ε0 =

1
1 + ε0

ε0 (2.4)

In this particular case of a pseudomorphic layer, the difference between the two

strains is normally insignificant. Note that the difference corresponds to the dis-

tinction drawn by Birch Birch, 1947 between the Lagrangian and the Eulerian def-

initions of strain, in which the strain is described respectively; with the initial or

unstrained coordinates as the independent variables, or with the coordinates of the

strained state being taken as independent. For infinitesimal strains, both definitions

are equal to the classical linear theory.
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2.3 elastic strain in epitaxial layers to increase carriers mobil-

ity

In this section, the theory of elasticity will be briefly presented, with a focus

made on the particular case of a silicon germanium layer grown on a silicon (110)

substrate, as it will be the main sample studied in Part ii.

2.3.1 Theory of elasticity

Hooke’s law describes the relationship between stress σ and strain ε :

σ = C · ε⇐⇒ ε = S · σ, (2.5)

where σjk and ejk are the tensors of stress and strain, respectively, and C and S the

fourth rank tensors of stiffness and compliance, respectively. By using the symmetry

properties of strain and stress, Hooke’s law can be derived :

σij = Cijklεkl (2.6)

Using the Voigt notation, one can expressed Hooke’s law in a matrix form, using

the strain matrix introduced earlier :



σxx

σyy

σzz

σyz

σxz

σxy




=




C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66




·




εxx

εyy

εzz

2εyz

2εxz

2εxy




(2.7)

where Cij are the elastic constants, related to the material’s properties. For a more

detailed derivation of the theory behind strained crystal, readers are invited to look

at Nye’s book Nye, 1985. In the case of an isotropic material, the elasticity matrix
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can be reduced and expressed with the Young’s Modulus E = C11 and the Poisson’s

ratio ν = −E/C12 :




εxx

εyy

εzz

2εyz

2εxz

2εxy




=
1
E




1 −ν −ν 0 0 0

−ν 1 −ν 0 0 0

−ν −ν 1 0 0 0

0 0 0 2(1 + ν) 0 0

0 0 0 0 2(1 + ν) 0

0 0 0 0 0 2(1 + ν)




·




σxx

σyy

σzz

σyz

σxz

σxy




(2.8)

2.3.2 Elastic strain in epitaxial layers

2.3.2.1 Critical thickness

When a crystalline material is grown by epitaxy on a crystalline substrate, the dif-

ference in lattice parameters will lead to a misfit strain 2.2.1. The strained epitaxial

layer will then start to accumulate elastic energy. However, there exists a critical

thickness, above which the main process minimizing the total stored elastic energy

in the layer becomes the generation of dislocations, so that the lattice parameter

can relax to its natural value. This critical thickness depends on the misfit strain

: the higher the misfit, the smaller the thickness. The case of SiGe layers grown

on a Si substrate has been widely studied, and Figure from Bruel, 1995 on Si/Ge

nanostructures shows the evolution of the critical thickness for dislocation forma-

tion depending on Ge content.

2.3.2.2 Biaxial strain

Considering epitaxial layer grown along the <001> direction, the stress-strain re-

lationship hence can be simplified since the boundary condition at the free surface

requires σzz to vanish, and symmetry rules out the shear stresses components. The

material is then experiencing biaxial strain, which can be compressive as in the case

of Si0.75Ge0.25 grown on Si (see Figure 2.2). In the case of pseudomorphic structures,

the in-plane strain εxx and εyy will be the same and equal to the misfit strain. If

plastic relaxation occurs, through the introduction of suitable dislocation at the in-

terface, these two in-plane strains no longer need to remain equal. In the growth

direction, εzz directly derived from the Poisson’s ratio :

εzz = −2
C12

C11

εxx + εyy

2
= −2

ν

1− ν
εaverage (2.9)
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Figure 2.1 – Evolution of the critical thickness of a smooth strained SiGe layer on (001) Si,
depending on the Ge content, at high and moderate substrate temperature dMB
and dDT . According to calculations of Matthews and Blakesley Matthews and
Blakeslee, 1974 or Dodson and Tsao Dodson and Tsao, 1987 respectively.

Silicon

Silicon (75%) - Germanium (25%) 

Si

Ge

Biaxially strained SiGe 

Figure 2.2 – Scheme of epitaxial formation of Si0.75Ge0.25 under biaxial strain, on top of a Si
substrate. As the Si0.75Ge0.25 lattice parameter is larger than the one of Si, the
epitaxial layer is under compressive biaxial strain in the epitaxial plane, and
under tension in the perpendicular direction.
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Material C11 C12 C44

Silicon (GPa) 165.7 63.9 79.6

Germanium (GPa) 129.2 47.9 67.0

Table 2.1 – Elastic constants of silicon and germanium. From Mason, 1956; Wortman and
Evans, 1965

(0;0;0) (¼;¼;¼)
Figure 2.3 – Diamond lattice structure, as it is the case for silicon.

Now consider the particular case of silicon. Silicon is an anisotropic material and

therefore cannot be described solely by the values of Young’s Modulus and Pois-

son’s ratio. Nonetheless, the silicon lattice is similar to cubic diamond (see Figure

2.3), hence its stiffness matrix can be reduced, in the reference frame (<100>,<010>,<001>),

to :

C<100> =




C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44




(2.10)

As an example, Table 2.1 gives the value of the elastic constants C11, C12 and

C44 for silicon and germanium. Note that Vegard’s law also applies for the elastic

constants, meaning that the linear variation with the alloy composition can be used

as an approximation.

However, strained layers grown on orientations other than <001> present a differ-

ent elasticity matrix, as the fourth rank stiffness tensor C is rotated to the growth

orientation. In the particular case of a <110> orientation of the substrate, an in-plane

rotation of α =45
◦ is performed. Let R be the rotation matrix, then the stiffness co-

efficients read :

C<110>
ijkl = RigRjhC<100>

ghmn RkmRln (2.11)



14 strain - definitions

36 Chapter 1 Boosting sub-20nm CMOS technology performance: the relevance of strain

orientation, for a (001) plane. The Young’s modulus has been derived according to:

𝐸 = 1
𝑆11

= 1
𝐶−111

which is equivalent to 𝐸 = 1
𝑆22

= 1
𝐶−122

(1.46)

and the Poisson’s ratio:

𝜈 = −𝑆12 · 𝐸 (1.47)

Figure 1.27: Lattice of Silicon.
Silicon has a diamond cubic lat-
tice structure.

Figure 1.28: Equivalent (left) Young’s Modulus and (right) Poisson’s
ratio of Silicon and SiGe with 25% of Germanium according to the
crystal orientation. The plane is (001) oriented.

1.3.2 The impact of strain on Silicon properties

1.3.2.a Band structure of Silicon

The band structure of a solid describes the range of allowed energies for an electron. In the Silicon
conduction band, the relation of dispersion 𝐸(𝑘), where 𝑘 is the wave vector of the electron, can be
written for the Δvalley 𝑖 as:

𝐸𝐶𝑖(𝑘) = ~2

2𝑚𝑙
(𝑘𝑖 − 𝑘0)2 + ~2

2𝑚𝑡

(︀
𝑘𝑗

2 + 𝑘𝑘
2)︀ (1.48)

where 𝑖, 𝑗, 𝑘 correspond to the x, y, z orientations and 𝑚𝑙 (≈ 0.92𝑚0) and 𝑚𝑡 (≈ 0.19𝑚0) are the
longitudinal and transverse effective masses (see 1.1.3.g). According to equation 1.48, the shape
of the energy iso-surfaces is ellipsoidal, as shown in Figure 1.29. The minimum of energy is given
by the center of the ellipsoid, at the position 𝑘=𝑘0 along the Δ-direction (i.e. <100> orientation).
The six equivalent valleys are called Δ-valleys. One differ the out-of-plane valleys oriented along the
direction of confinement, so-called Δ2, from the in-plane ones, so-called Δ4.

The valence band of Silicon is more complex. By considering the coupling between the first two
subbands at the top of the valence band (Γ point), Bir and Pikus derived the expression of the
valence band [Bir74]:

𝐸𝑉1,2(𝑘,𝜀) = 𝐴𝑘2 ±
√︀
𝐸𝑘 𝐸𝑘 = 𝐵2𝑘4 + 𝐶2(𝑘2

𝑥𝑘
2
𝑦 + 𝑘2

𝑥𝑘
2
𝑧 + 𝑘2

𝑦𝑘
2
𝑧) (1.49)

where 𝐴, 𝐵 and 𝐶 parameter values in units of ~2

2𝑚0
are 𝐴=-4.27 , 𝐵=-0.63 and 𝐶=4.93 [Hen63].

Figure 2.4 – (left) Equivalent Young’s Modulus and (right) Poisson’s ratio of Si and SiGe
(with 25% Ge content), according to the crystal orientation.

In its new basis, the stiffness matrix derives :

C<110> =




C′11 C′12 C′13 0 0 0

C′12 C′11 C′13 0 0 0

C′13 C′13 C′33 0 0 0

0 0 0 C′44 0 0

0 0 0 0 C′44 0

0 0 0 0 0 C′66




(2.12)

with : 



C′11 = C11+C12+2C44
2 ; C′12 = C11+C12−2C44

2 ; C′13 = C12

C′33 = C11; C′44 = C44; C′66 = C11−C12
2

(2.13)

Rewriting the stiffness matrix in the correct orientation is crucial for the coming Fi-

nite Element Method (FEM) mechanical simulation that will be used with COMSOL

AB, n.d.

The evolution of both Young’s Modulus and Poisson’s ratio with respect to the

orientation, for a (001) plane is shown in Figure 2.4. Both the case of pure silicon

and a silicon germanium alloy (25% content of germanium), are presented, as it will

be of particular interest in Chapter 4.

2.3.3 Impact of strain on silicon properties

In solid-state physics, the band structure defines the electronic levels in crystal

structures, i.e. the range of allowed energies for an electron within the crystal -

energy bands - and forbidden ranges of energies - bands gap Wikipedia, n.d. By

modifying the symmetries within a crystal, strain can modify band structure. The

degeneracies of both valence and conduction bands may be lifted, as well as the
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Figure 2.5 – Electron mobility enhancement with tensile strain in FET transistor. At high
stress levels, a uniaxial stress along <110> is more effective than a biaxial stress
because of a change in the effective mass. From Uchida et al., 2005

energy gap modified. Note that the shape of the energy isosurfaces is also affected,

and the effective masses are modified. It is the deformation potential theory that

accounts for band structure modification due to strain Bardeen and Shockley, 1950;

Shockley and Bardeen, 1950; Herring and Vogt, 1957.

As a result, three mechanisms can occur with the introduction of strain :

— Band shift, resulting from change in the volume of the lattice,

— Band split, occuring in case of uniaxial stress.

— Band warping, that appears when the valence band curvature gets modified

by the strain.

Within the effective mass assumption, the mobility of the carriers can be written as :

µe f f =
qτ

m∗
(2.14)

where q is the charge of the carriers, 1/τ is the collision frequency of the carriers,

and m∗ is the conductivity effective mass. As the latter is inversely proportional to

the band curvature, one can increase the mobility of the carriers by the introduction

of strain in the structure Mohta and Thompson, 2005. Figure 2.5 shows the evolution

of electron mobility within Silicon depending on the strain level of the structure.

The strain integration methods in material such as silicon, in order to increase the

performance of semiconductor nanostructures, will be discussed further in Chapter

4.
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3
C O H E R E N T X - R AY D I F F R A C T I O N

Considering the crystallography of three-dimensional crystal structures, the scat-

tering of X-rays by atoms produces sharp peaks in directions determined by the

orientation and the symmetry of the crystal. As these Bragg peaks originate from

constructive interferences between the sets of discrete atomic parallel planes consti-

tuting the sample, they contain information about the atomic arrangement within

the sample. This is also the basics of Coherent X-ray Diffraction, the central tech-

nique of the experiments presented in this manuscript. In order to understand it,

this chapter defines X-rays and synchrotron radiation, then introduces some crystal-

lographic definitions to explain the scattering from a crystal. Finally the concept of

coherence is discussed, along with the basic principles of imaging regimes.

In section 3.7 Coherent X-ray Diffraction Imaging and the associated phase re-

trieval algorithm are presented, with details on the concept of oversampling, theo-

retical resolution and recent advances in the field. The particular case of the Bragg

geometry is introduced, and a typical experimental setup is depicted through the de-

scription of the ESRF ID01 beamline, which has welcomed most of the experiments

performed throughout this PhD.

3.1 x-rays

Since the discovery of “a new kind of rays” by Wilhelm Conrad Röntgen in 1895

(Röntgen, 1895), there has been tremendous progress on the understanding of what

X-rays are and how they interact with matter. X-rays are electromagnetic waves with

typical wavelengths ranging from 0.01 nm to 10 nm, which correspond to energies in

the range of 100 keV to 100 eV. The wavelength associated with a photon is linked

to its energy through the Planck constant, according to the De Broglie equation

(Feynman, 2006):

λ[Å] =
hc
E

=
12.398
E[keV]

(3.1)

where h is Planck’s constant and c the speed of light. One usually distinguishes

soft X-rays (6-100 Å) from hard X-rays (0.1-6 Å) as higher energies imply deeper

19



20 coherent x-ray diffraction

penetration of the radiations capable of probing the electron density of matter and

determining atomic structure. 1

Electromagnetic waves are made of synchronized oscillations of electric (~E) and

magnetic (~H) fields that are perpendicular to each other but also to the direction of

energy and wave propagation (~k). The frequency of oscillation ω defines the wave

number k =
∣∣∣~k
∣∣∣ = ω/c = 2π/λ and the mathematical expression of such waves at

a position ~R in space and t in time is:

~E(~R, t) = ~E0 exp i(~k · ~R−ωt)

~H(~R, t) = ~H0 exp i(~k · ~R−ωt)
(3.2)

where ~E0 and ~H0 are the two constant vectors (whose amplitudes are the electric

and magnetic field magnitudes) representing the direction of polarization.

When X-rays interact with atoms, three different situations can happen. First case

scenario, atoms absorb the photon which will generate electronic or phonon excita-

tion of the atom. Secondly, the X-ray photon is inelastically scattered, with a loss of

energy resulting in a scattered photon with lower frequency than the incident one.

Finally, the X-ray photon is elastically scattered and the kinetic energy is conserved.

To introduce the methods using third generation Synchrotron sources radiation, we

make the assumption that an X-ray photon, after being scattered by an electron,

cannot be scattered by another electron again, which is known as the “kinematic”

approximation. We will also neglect the effects of the magnetic field and the spin

of an electron as magnetic scattering is much weaker than charge scattering (Als-

Nielsen and McMorrow, 2001).

3.2 synchrotron radiation

Since the discovery of X-rays, the main limitation has remained the X-ray source.

X-rays photons generation have always relied on conversion of the kinetic energy

of electrons. Before the first synchrotron radiation source was observed in 1947, the

first X-ray source was achieved using the Coolidge tube that employed the principle

of thermionic emission. It consists of a tungsten filament that is heated to produce

electrons which are then accelerated towards a water-cooled anode by the strong

tube voltage. Upon hitting the anode, the electrons decelerate quickly, and lose

their excess kinetic energy mostly as heat, and partly as X-ray radiation. In order to

cope with the low output intensity caused by the cooling rate, rotating anodes were

introduced in the 1960’s, and the liquid metal anode in 2000 (Harding et al., 2003).

However the difference made by synchrotron radiation devices is still tremendous.

1. In this thesis, the experiments described use hard X-rays with a wavelength of 1.5498 Å (8 keV).
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Synchrotron radiation describes radiation from charged particles accelerated to

relativistic speed along curved trajectories (Elder et al., 1947). Indeed, any particle

moving in a non-uniform fashion produces an electromagnetic field, and at rela-

tivistic speed the radiation produced is in the X-ray energy range. This kind of

X-ray source is of exceptional intensity and spectral brightness, especially at short

wavelengths. In the so-called 2nd generation synchrotron rings, the introduction of

bending electromagnets allowed a shrewd exploitation of these radiations in numer-

ous kind of experiments. As described in Figure 3.1a, the application of an uniform

magnetic field perpendicularly to the orbital plane forces the relativistic electrons to

travel in closed circular path, leading to radiation emission governed by the Lorentz

force. In the storage ring, these bending magnets are followed by radio-frequency

cavities in order to replenish the loss of energy inherent to the radiation process.

The radio-frequency cavities are shaped specifically to achieve resonance and the

build up in intensity of the electromagnetic waves. Hence, the charged particles

that pass by this oscillating field receive an electrostatic speed boost. Compared to

an X-ray tube, the emitted radiation from a bending magnet is highly collimated

and covers a broad spectral range. The cone of emission is defined by its angular

divergence of 1/γ where γ is the electron energy in units of the rest mass energy :

γ =
Ee

mc2

At the European Synchrotron - ESRF, the rest mass energy is of 6 GeV, leading to

γ = 11.8× 103 and a radiation cone of 0.08 mrad. Note that γ can also be expressed

as 1√
1− v2

c2

where v is the particle velocity. This formulation highlights the importance

of accelerating electrons as close as possible to the speed of light. This is done in a

two-step process. First, high energy electrons are emitted by an electron gun and

packed in bunches; then they are accelerated by a pulsed electric field : a race-track

shaped booster accelerator, 300 m long, is used to make them reach the final energy

of 6 GeV.

The third-generation synchrotrons have introduced a new kind of insertion device

(ID) in order to deal with the main disadvantages of bending magnets, the limited

coverage of hard X-rays and the relative lack of photon flux : undulators (or simi-

larly, wigglers). As depicted in Figure 3.1b, they are magnetic multipole structures

placed within the straight sections of the storage ring, and by alternating vertical

polarity of magnets they force the electrons to travel in a sinusoidal manner that

produces synchrotron radiation. The more periods (N) of dipole, the higher the

intensity and the narrower the radiation cone, which is equal to 1
γ
√

N
. Such ID have
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electronorbit
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uniform magnetic field
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1/γ
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Figure 3.1 – Usual synchrotron magnetic structures. Green blocks represent North magnetic
polarity magnets, red ones represent South magnetic polarity magnets. The
white arrows depict the direction of the magnetic field generated by the magnet.
(a) Schematic of the fan radiation emitted by a bending magnet. Electrons are
bent around a quasi circular path and produce a cone of radiation with an
opening angle of 1/γ where γ = Ee

mc2 is the electron energy. Typically, 1/γ ≈
0.1 mrad. (b) Schematic of the radiation emitted by an undulator insertion
device (or equivalently a wiggler). Relativistic electrons following a linear path
(dashed line) enter the array of 2N dipole magnets that point alternately up and
down. The alternating dipole field creates a sinusoidal wave and the electrons
radiate at the Lorentz contracted wavelength λ′ = λu

γ where λu is the period
of the magnets, also called the undulator wavelength. The cone of radiation is
characterized by an opening angle of 1

γ
√

N
, which is typically around 40 μrad.

two different modes of operation that are distinguished by the deflection parameter,

which depends on the magnetic field :

K =
eB0λu

2πmec
(3.3)

where B0 is the magnetic field strength, e and me are the charge and mass of the

electrons and λu is the period of the ID, also called ID wavelength. ID with K � 1

have large oscillation amplitude, wide spectrum, and are called Wigglers, whereas

ID with K � 1 have small oscillation amplitude, produce sharp peaks at the harmon-

ics of the fundamental wavelength and are called Undulators. Hence, Undulators

are ideal for coherent diffraction experiments where a highly monochromatic and

in-phase photon number is needed. It is the constructive interferences within the

radiation cone that leads to the undulator equation (Als-Nielsen and McMorrow,

2001) :

λn(θ) =
λu

2nγ2

(
1 +

K2

2
+ γ2θ2

)
= λn(0)

[
1 +

γ2θ2

1 + K2/2

]

≡ λn(0) [1 + εθ ] (3.4)
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Equation 3.4describes the radiation harmonic λn(θ) of order n, that is emitted

under the angle θ with respect to the optical axis.

In the ESRF storage ring, which is 844 m long in circumference, a current of

200 mA circulates through 43 Bending Magnets and IDs. Most of the Coherent

Diffraction Imaging experiments take place at ID01, ID10, ID13 and ID16 beamlines.

3.3 crystal definitions

3.3.1 Crystal lattice

A crystal is a three-dimensional periodic structure, characterized by its unit cell.

The unit cell is the minimal group of atoms representing the periodicity of the

crystal, and gets repeated at each point of a regular lattice. The location of each unit

cell in “direct space” is defined by a set of vectors ~Rm as :

~Rm = xm~a + ym~b + zm~c (3.5)

where xm, ym, zm are integers and ~a,~b,~c are the primitive unit cell vectors. Each

atom within the unit cell can be described as :

~rn = xn~a + yn~b + zn~c (3.6)

where xn, yn, zn are fractional values between 0 and 1. Then the position of an

atom within the whole crystal can be expressed as :

~Rn
m = ~Rm + ~rn (3.7)

Lattice planes (hkl) describe a set of parallel planes whose intersections with the

lattice are periodic. The integer Miller indices h, k and l are defined so that the (hkl)
planes intersect the crystal principal axes at a/h, b/k and c/l as illustrated in Figure

3.2. For a cubic crystal, the interplanar distance dhkl is easily calculated as :

dhkl =
a√

h2 + k2 + l2
(3.8)

And one defines a “reciprocal space” lattice with reciprocal basis vectors ~a∗, ~b∗

and ~c∗ as :
~a∗ = 2π

~b×~c
~a·(~b×~c)

~b∗ = 2π ~c×~a
~b·(~c×~a)

~c∗ = 2π ~a×~b
~c·(~a×~b)

(3.9)
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a⃗

b⃗

c⃗

b/k

c/l
a/h

plane (hkl)

G⃗⃗hkl

Figure 3.2 – Miller indices and reciprocal lattice vector. The (hkl) plane is defined as the
plane that intercepts crystallographic axes~a,~b and~c at a/h, b/k and c/l respec-
tively, where a, b and c are the lattice constants. The normal to the (hkl) plane
defines the direction of the reciprocal lattice vector ~Ghkl , whose norm is equal
to 2π/dhkl .

2

The location of reciprocal lattice point can be defined by the reciprocal lattice

vector ~Ghkl :
~Ghkl = h~a∗ + k~b∗ + l~c∗ (3.10)

which is perpendicular to the direct space plane (hkl), and whose length is
∣∣∣ ~Ghkl

∣∣∣ =
2π
dhkl

.

3.3.2 Bragg’s Law

Consider a set of parallel (hkl) planes separated by spacing dhkl . Two parallel

incident plane waves of X-rays are scattered from different planes with a path length

difference of 2dhklsin(θ), where 2θ is the angle between the incident and the exit

wave. Hence, as geometrically explained from Figure 3.3, the only way to observe

constructive interferences between the two scattered spherical waves is when their

phases are equal, i. e. when the path length difference is equal to a multiple of λ.

This corresponds to Bragg’s Law (Bragg, 1929):

λ = 2dhklsinθ (3.11)

The 2θ angle describes the experimental geometry of constructive interference.

Every 2θ angle at which interference occurs is called a Bragg peak. However, Bragg’s

Law expressed in equation 3.11 only contains scalar information and nothing about

2. Note that the presence of 2π in the expression of basis vectors is written in agreement with the
“physicist convention”, and not the “crystallographic convention”.
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dhkl sinθ

θ

d hklsinθdhkl

q⃗hkl

incident X-rays scattered X-raysλ

Figure 3.3 – Bragg’s Law. Scheme of Bragg Scattering Geometry for a symmetric diffraction
experiment. Constructive interference between X-rays incident on a set of par-
allel (hkl) planes only occurs when the path length difference 2dhklsinθ is equal
to the incident wavelength λ, see equation 3.11.

directional components. To address this, we introduce the wavevector transfer ~qhkl

local to the Bragg peak :

~qhkl = ~k f − ~ki (3.12)

where ~ki, ~k f are the incident and scattered wavevectors, with
∣∣∣~ki

∣∣∣ =
∣∣∣~k f

∣∣∣ =
∣∣∣~k
∣∣∣ =

2π
λ from the kinetic energy conservation. Since the reciprocal lattice vector ~Ghkl is

by definition perpendicular to the scattering (hkl) planes, one can write the lattice

plane locations as ~r = dhkl
~Ghkl

| ~Ghkl| . From Figure 3.3, one can see that there is a path

length difference between the two scattered waves, that is :

~k f ·~r
|k| −

~ki ·~r
|k| =

1∣∣∣~k
∣∣∣

[
(~k f − ~ki) ·~r

]
=

1∣∣∣~k
∣∣∣
( ~qhkl ·~r)

That path length results in a phase difference, equals to 1
|~k| ( ~qhkl ·~r)× 2π

λ = ~qhkl ·~r.

From Bragg’s law, the phase difference must be equal to some multiple of 2π for

constructive interference to occur :

~qhkl ·~r = ~qhkl ·
~Ghkl

| ~Ghkl| = 2π

=⇒ ~qhkl ·
~Ghkl

| ~Ghkl| =
2π
dhkl

=⇒ ~qhkl · ~Ghkl = 2π| ~Ghkl |2

(3.13)

Therefore, constructive interference only occurs when ~qhkl = 2π ~Ghkl which is

known as the Laue condition.
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k⃗i=2π/λ

k f⃗

O  (0,0,0)

2θ

Ewald's sphere
Reciprocal lattice points

q⃗hkl

detector

hk

projected detector

Figure 3.4 – Ewald sphere construction in 2D. The Bragg condition is satisfied for any recip-
rocal lattice point that lies on the circle (~q = 2π ~Ghkl). The origin of reciprocal
space is denoted as O∗ and is defined as the intersection of the Ewald sphere of
radius 2π

λ = |~ki| = |~k f | , and the incident wavevector~ki. The detector is place so
that it is perpendicular to the scattered wavevector ~k f and the intersected part
of the diffraction pattern with the detector is considered flat.

3.3.3 Ewald sphere

In order to get a geometrical understanding of the Bragg condition in reciprocal

space and its experimental consequences, the Ewald’s sphere construction must be

understood. As shown in Figure 3.4, Ewald’s sphere is centered on the crystal,

of radius 2π
λ in reciprocal space, where the incident wavevector ~ki, and scattered

wavevector ~k f , are equal in norm to the radius. The origin of reciprocal space is

defined as the intersection of sphere and ~ki. Since
∣∣∣~ki

∣∣∣ =
∣∣∣~k f

∣∣∣ = 2π
λ any point (h,k,l

integers) of the discrete reciprocal lattice lying on the Ewald’s sphere envelope will

fulfill the Bragg condition (~q = ~k f −~ki = 2π ~Ghkl) and a detector located on this spot

will record the corresponding diffraction pattern. With today’s detector sizes and

with an X-ray energy around 8 keV, the discrepancy between the Ewald’s sphere

and the detector plane is about one pixel at the very edges of the detector, thus

the recorded cross-section through the diffraction pattern can be considered flat.

Indeed, the maximal distortion ∆ at the edge of the detector is defined as a function

of the half solid angle of the detector Ω :

∆ =
2π

λ
(1− cos(Ω))

at 8 keV, λ = 0.155 nm and with a 55 μm pixel size detector of 516 pixels, placed

at a distance of 1.2 m from the sample, the maximal distortion is approximately

2.8×10
−3 nm−1, which corresponds to the reciprocal extent of about 1.5 pixel.
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3.4 classical scattering

Readers interested in a full derivation are invited to look at texts by Warren (War-

ren, 1990), Als-Nielsen and McMorrow (Als-Nielsen and McMorrow, 2001), Cop-

pens (Coppens et al., 1992) or Guinier(Guinier, 1994).

3.4.1 Scattering from perfect crystals

The scattering amplitude A of a crystal is described by the summation of the

atomic scattering factors f j of each atom j, which is the Fourier Transform (FT) of the

electron density of an atom, multiplied by a phase factor ei(~q· ~Rn
m) taking into account

the phase difference introduced by the atom’s location ~Rn
m within the crystal.

A(~q) =
N

∑
j

f j(~q)ei(~q· ~Rn
m) (3.14)

By using equation 3.7, we can rewrite the scattering taking into account that the

total number of atoms within the crystal N can be expressed as Na × Nc where Na

is the number of atoms in each unit cell and Nc the number of unit cells :

A(~q) =
Nc

∑
m

Na

∑
n

fn(~q)ei~q·( ~Rm+~rn) =

(
Nc

∑
m

ei~q· ~Rm

)

︸ ︷︷ ︸
Lattice

(
Na

∑
n

fn(~q)ei~q·~rn

)

︸ ︷︷ ︸
Structure

(3.15)

Thus, the scattering amplitude is made of two components, being a form factor

L(~q) and a structure factor Fhkl . The former is directly related to the envelope of

the crystal, its shape, and lead the shape of the resulting intensity distribution. The

latter is the FT of the electron density inside the unit cell and gives the relative

intensity of the reflections. The structure factor is evaluated at Bragg condition

~qhkl = 2π ~Ghkl and thus gives information about the allowed reflections, known as

the selection rules 3. If waves scattered from the atoms in the unit cell interfere de-

structively, Fhkl = 0, there will be no intensity, hence the reflection is “forbidden”.

Space groups, or groups of symmetry, are defined from atoms arrangement within

the crystal lattice, for which the selection rules are the same and independent of the

chemical composition of the crystal. The knowledge of the selection rules is of fun-

3. For material with diamond structure (two identical, interpenetrating face-centered-cubic
lattices - i. e. atoms at each corner of the cube and six atoms at each face of the
cube - offset by 1

4 [111]) as silicon and germanium, the structure factor derives Fhkl =

fatom

(
1 + eiπ(k+l) + eiπ(h+l) + eiπ(h+k)

) (
1 + eiπ(h+k+l)/2

)
. This leads to the selection rules: for hkl

all even/all odd; if h + k + l = 4n then Fhkl = 8 fatom, if h + k + l = 2(n + 1) then Fhkl = 0 and if
h + k + l = 2n + 1 then Fhkl = 4 fatom(1± i). It results in three kind of qualitative reflection peaks:
strong, medium and null. Note that at 8 KeV fSi = 14.26 + 0.32i, fGe = 30.9 + 0.92i.
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Figure 3.5 – Hexagonal crystal (left) and the results of the simulation of its normalized
diffraction map, both without (middle) and with (right) Poisson noise. The
diffracted intensity consists of a series of Fourier Transforms of the shape of
the crystal located at finite reciprocal lattice points.

damental importance in the determination of the crystal symmetry in a diffraction

experiment. (Warren, 1990; Stangl et al., 2013)

In the case where the crystal lattice can be described by a parallelepipedic en-

velope made of N1, N2 and N3 unit cells along each direction ~a1, ~a2 and ~a3, the

corresponding intensity I(~q) = |A(~q)|2 ∝ |L(~q)|2 can be derived with the help of a

geometric series approach :

I(~q) = F2
hkl |L(~q)| 2α

∣∣∣∣∣
Nc

∑
m

ei~q· ~Rm

∣∣∣∣∣

2

α

∣∣∣∣∣

(
N1−1

∑
m1=0

eim1~q·~a1

)(
N2−1

∑
m2=0

eim2~q·~a2

)(
N3−1

∑
m3=0

eim3~q·~a3

)∣∣∣∣∣

2

=

∣∣∣∣∣∣

3

∏
j=1




sin
(

Nj
~q·~aj

2

)

sin
(
~q·~aj

2

)



∣∣∣∣∣∣

2

(3.16)

Note that the Laue condition is found again as the intensity is maximized when
~q·~aj

2 = nπ, which is another way to find the construction of the reciprocal lattice base

vectors (equation 3.9).

Let us remind that a crystal is a three-dimensional periodic structure made from

the repetition of unit cells, which are the basis repeated at each point of a uniform

lattice. This is basically the definition of a convolution operator, known as folding,

that lays the foundations of Fourier theory. Let f and g be two functions defined in

space, then their convolution is defined as :

( f � g)(x) =
−∞∫

∞

f (x′)g(x− x′)dx (3.17)
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Taking the FT of such an operation leads to the useful convolution theorem: the

FT of the convolution of two functions is the point-wise product of their FTs, or

equivalently, the FT of the product of two functions is equal to the convolution of

their FTs :
F ( f � g) = F ( f )F (g)

F ( f · g) = F ( f )�F (g)
(3.18)

Hence, as the crystal is a convolution of a basis and an envelope function, its

diffraction pattern is the product of the FT of the unit cell and the FT of the crys-

tal’s shape. The resulting periodic function exhibits local inversion symmetry at the

origin of reciprocal space. Figure 3.5 shows a hexagonal crystal and its simulated

diffraction map, both with and without photon noise. The streaks in the reciprocal

space are clear signature of the facets of the crystal. Because the hexagonal crys-

tal has no defects, the intensity distribution at each Bragg peak is the same and

centrosymmetric.

3.4.2 Scattering from crystals in the presence of strain

In the case of a perfect crystal, the electron density is real 4 and its FT thus hermi-

tian. We already showed that the scattering amplitude from a crystal is proportional

to the FT of the crystal’s electron density :

A(~q) ∝ F [ρ(~r)] =
∫

ρ(~r)ei~q·~rdV (3.19)

Scattering from a strained crystal can in theory be described as the FT of its elec-

tron density, but it would require a subatomic resolution which we cannot achieve.

Thus, we describe the scattering by adding a complex factor which describes the

displacement, either for an atom or for a group of atom (e. g. inside a voxel). A

strained region within a crystal is basically a block of material displaced from its

original location by a displacement vector ~u(~r). As depicted in Figure 3.6, this dis-

placement induces a phase difference between scattered X-rays, of ~qhkl · ~u(~r). Then

the scattered amplitude of the whole crystal can be rewritten by multiplying the

scattered amplitude of each atom by an additional phase factor ei ~qhkl ·~u(~r), which is

still a FT:

4. This is not strictly true : in resonant scattering, one takes into account the resonance between
the photon and the bound electron that leads to an imaginary atomic scattering factor f = f 0 + f ′ +
i f ”, where f 0 is the Thomson scattering, which is energy-independent, f ′ and f ” are the resonant
scattering terms. Generally | f ′| � f 0 and | f ”| � f 0, hence the assumption of a real electron density.
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dhkl

q⃗hklincident X-rays scattered X-raysk⃗i k⃗ f
u⃗(r⃗)

Figure 3.6 – Displacement ~u(~r) in the crystal lattice leads to the introduction of a phase
shift between the scattered X-rays. This phase shift is derived from the optical
path length difference and is equal to ~k f · ~u(~r) − ~ki · ~u(~r) = ~qhkl · ~u. Thus, by
retrieving the phase one also probes the projected displacement fields from the
Bragg scattered intensity when shinning X-rays on a crystal in Bragg condition.
Adapted from (Robinson and Harder, 2009)

A(~q) ∝
∫

ρ(~r)ei~q·~u(~r)dVei ~qhkl ·~u(~r) = F
[
ρ(~r)ei ~qhkl ·~u(~r)

]

= F [ρ′(~r)] (3.20)

The complex-valued quantity ρ′(~r) is sometimes called the effective electron den-

sity (Stangl et al., 2013). Note that, by specifying ~r = ~Rn
m + ~u(~r), the derivation

above is equivalent to rewriting the phase factor of equation 3.19 as :

~q ·~r = ~q · ( ~Rn
m + ~u(~r)) = ~q · ~Rn

m + ~qhkl · ~u(~r) + (~q− ~qhkl) · ~u(~r) (3.21)

Since the scattering is measured close to a Bragg peak, |(~q− ~qhkl) · ~u| � 1, the

third term of equation 3.21 can be neglected. This approximation is known as the

Takagi’s approximation (Takagi, 1969), which is equivalent to assuming small distor-

tions of the lattice. Ultimately, the phase retrieved from nanobeam experiments in

Bragg geometry only contains information about the projection of the displacement

onto the ~q direction:

φhkl = ~qhkl · ~u(~r) = | ~qhkl | ( ˆqhkl · ~u(~r)) = | ~qhkl | uhkl (3.22)

Moreover, from equation 3.13 we write | ~qhkl | = 2π
dhkl

and finally:

φhkl = 2π
uhkl

dhkl
(3.23)

Note that there are two ways of calculating scattering maps around a Bragg re-

flection from strained nanostructures, either by using approximations and Discrete
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Figure 3.7 – Crystal of hexagonal shape with a displacement field - scatter plot - (left) and
the results of the simulation of its normalized diffraction map, both without
(middle) and with (right) Poisson noise. Note the effect of the added strain on
the intensity distribution, which now depends on the Bragg reflection. All the
peaks carrying apart the (00) transmission reflection are affected by the strain
field inside the crystal.

Fourier Transform (DFT) or via individual atomic positions. Equation 3.20 is gener-

ally used to compute scattering near Bragg reflections (Pfeifer et al., 2006; Minke-

vich et al., 2007; Labat et al., 2007; Harder et al., 2007). The main advantage is

that it allows the use of fast implementations of the FT, significantly increasing the

computing speed of the scattering, which is in practice required for phase retrieval

algorithms (Fienup, 1982; R. W. Gerchberg, 1972) due to the large number of FT

these require.

Figure 3.7 shows the same hexagonal crystal as in Figure 3.5 with some displace-

ment fields introduced on both direction. Now we see a change in the intensity :

the shape of the scattered intensity changes according to the Bragg peaks and is

no longer centrosymmetric. Only the (00) reflection remains the same, as it is only

dependent on the shape of the crystal and not sensitive to any displacement.

3.5 coherence

X-ray beams are not fully coherent because the relationship between phases of the

complex field at any two points in space and time is not predictable, i. e. the beam

does not consist simply of an “ideal” plane wave and is always coherent up to a

certain degree. A general way to quantify coherence of an electromagnetic field is

the mutual coherence function (Born and Wolf, 2013):

Γ( ~R1, ~R2, τ) =
〈

E( ~R1, t)E∗( ~R2, t + τ)
〉

(3.24)

where the brackets denote time-averaging and E∗ the complex conjugate of E.

Therefore, the mutual coherence is the autocorrelation in time and space of the elec-
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tromagnetic field. From it, the complex degree of coherence (or mutual coherence

function) is derived:

γ( ~R1, ~R2, τ) =
Γ( ~R1, ~R2, τ)√〈

I( ~R1, t)
〉 〈

I( ~R2, t)
〉 (3.25)

where I(~R, t) is the intensity, i. e. the square modulus of E. Then
〈

I(~R, t)
〉

is the

expectation value of the intensity at position R. The complex degree γ has values

between 0, where points R1 and R2 are mutually incoherent, and 1, where full

coherence is achieved. However, this 7-dimensional dataset, 2× 3 space coordinates

and 1 time coordinate, is not easily expressed and one would rather refer to scalar

quantities such as coherence lengths which are more easily calculated, for what one

can consider a “nice” beam (e. g. Gaussian shape), as for instance the half-width at

half maximum (Lin et al., 2003).

The framework of geometrical optics also provides a definition of such coherence

lengths, as in Figure 3.8. In the direction of the beam propagation, the longitudinal

(or temporal) coherence length is related to the monochromaticity of the X-ray beam:

ΛL =
λ2

2δλ
(3.26)

where δλ defines the spectral width and thus comes from the bandwidth of the

monochromator ( δλ
λ ). The transverse coherence length is limited by the source size.

Consider a source of incoherent emitters confined to a transverse area of diameter

S. Two points within the sample located at a distance D from the source will see it

with the same relative phase up to a separation distance ΛT:

ΛT =
λD
2S

(3.27)

For an undulator and E = 8 keV photons, using a double Silicon (111) monochro-

mator, the longitudinal coherence length equals to ΛL = 0.5 μm. On the ID01 ESRF

beamline (Leake, G. A. Chahine, et al., 2019), the source size equals to 12 μm (V) ×
120 μm (H) and is located 118 m ahead of sample, leading to transverse coherence

lengths of 800 μm (V) × 80 μm (H). The consequence of these lengths is that most

samples are not fully illuminated by the coherent portion of the beam. Typically, the

coherent portion of the beam is selected and then focused onto a sample. Inevitably

the introduction of any optical component in the beam path provides an opportu-

nity to degrade the coherence, therefore typically optics are kept to a minimum.
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Δλ

ΛL

A B

(a) Longitudinal coherence

S

D

B A

P
Δθ ΛT

λ

λ

(b) Transverse coherence

Figure 3.8 – Coherence lengths. (a) Longitudinal coherence length, ΛL is defined as the
length over which two waves of wavelengths λ and λ + ∆λ, propagating along
the same direction, become out of phase. ΛL = AB as at point A, they are
in phase, whereas at point B they become out of phase. Adapted from (Veen
and Pfeiffer, 2004). (b) Transverse coherence is limited by the source size. Two
waves A and B of equal wawelength, radiated by a source of size S, propagate
in slightly different directions and coincide at the point P. The transverse coher-
ence length is defined as the distance traveled along wavefront A from point
P in both directions (vertical and outboard) at which destructive interference
occurs. One can extract the geometric relationship tan∆θ = λ

2ΛT
= S

D . Adapted
from (Als-Nielsen and McMorrow, 2001).

3.6 note on imaging regimes

3.6.1 Propagation of a complex field

Let a square aperture of size a be illuminated by a monochromatic plane wave of

unit amplitude. The distribution of complex field immediately behind the aperture

is :

U (η, ξ , z = 0) = rect
(η

a

)
rect

(
ξ

a

)
(3.28)

The Fresnel diffraction equation can be used in its convolution form (Winthrop

and Worthington, 1966) to express the propagation of the complex field, yielding :

U (x, y, z) =
eikz

iλz

∫∫ a/2

−a/2
exp

{
i

π

λz

[
(x− η)2 + (y− ξ)2

]}
dηdξ (3.29)

The two dimensions being separable, the expression can be written as the product

of two separated one-dimensional integrals :

U (x, y, z) =
eikz

iλz
IX (x) IY (y) (3.30)

with :
IX (x) = 1√

λz

∫ a/2
−a/2 exp

[
i π

λz (η − x)2
]

dη

IY (y) = 1√
λz

∫ a/2
−a/2 exp

[
i π

λz (ξ − y)2
]

dξ
(3.31)
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These two integrals being identical, one can focus on one of them, IX (x), and

make the following substitution: η′ = η/
√

λz, yielding :

IX (x) =
∫

exp
[

iπ
(

η′ −
√

NF
x
a

)2
]

dη′ (3.32)

where the Fresnel number has been introduced as the dimensionless quantity NF

describing the geometry of the problem :

NF =
(a/2)2

λz
(3.33)

We then define the Fresnel distance z f for which NF = 1 :

zF =
(a/2)2

λ
(3.34)

Note that, for fixed a and λ, as the propagation distance z increases, the Fresnel

number NF decreases and the normalized space coordinate
√

2NF
x
a enlarges the

width of the diffraction pattern.

3.6.2 Three imaging regimes

Let the distance between the source and the sample be Do and the detector-to-

sample distance be D. The defocusing distance is introduced as :

Dd =
DoD

Do + D
(3.35)

The distance Do is fixed, at a value large enough (D0 � D) to approximate the

incident X-rays as plane waves, so that the defocussing distance is Dd ≈ D. The dif-

ferent scattering elements within the sample interact with the incident X-rays acting

as sources of spherical waves. Before discussing imaging using a coherent source,

the different imaging regimes in which diffraction experiments can be conducted,

are introduced. One discriminates three regimes : contact, Fresnel and Fraunhofer,

according to the Fresnel number, or equivalently to the distance between the sample

and the detector.

In the contact regime, the detector is set right behind the sample, NF � 1 i. e.
Dd � z f and the phase difference between the scattered waves is negligible. It

is the absorption difference between the volume elements within the sample that

creates the contrast of the recorded image which appears edge-enhanced.

In the Fresnel regime, also named near-field, the distance between detector and

sample is Dd . z f and NF ≈ 1. Interferences between scatterers inside the sample
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will build up and the intensity distribution of the recorded image will lose resem-

blance to the original sample. The scattered amplitude conveys the information of

the spherical curvature of the emitted waves.

In the Fraunhofer regime, or far-field, the detector is placed far away from the

sample Dd � z f and NF � 1. In such case, the spherical curvature of the emitted

waves can be neglected. Therefore the derivation of scattered amplitude above holds

true, and will be used as framework for the remainder of this work.

Figure 3.9 shows a series of graphs of the intensity distribution along the x axis

(y = 0) for various normalized distances from the aperture, as represented by differ-

ent Fresnel numbers, depicting the differences between the three imaging regimes

defined above.

3.7 coherent imaging principles

Coherent beams are especially needed for techniques relying on far-field diffrac-

tion in order to probe the atomic structure. In simple words, coherence is an ideal

property of wave packets that enables stationary (i. e. temporally and spatially con-

stant) interference. Thus, the notion of “coherent scattering” can sound odd as any

X-ray scattering experiment relies on interferences between X-rays scattered by dif-

ferent parts of the studied material. Nonetheless, there are limitations to coherent

X-rays scattering.

On the one hand, the finite size of the source along with monochromaticity yield

finite values for the transverse and longitudinal coherence lengths (see 3.5). On the

other hand, samples are not “coherent” with the dimension of the beam, as most

crystals are not perfect, due to the presence of grains and mosaicity. Moreover,

different micro-grains inside the same crystal can contribute to interferences, but

given a large enough number of contributions, only the average scattering will re-

main. That is why in practice Coherent Diffraction Imaging (CDI) experiments will

be performed on objects smaller than the coherent volume of the beam. However,

at short wavelength the photon degeneracy Dphoton yielding the number of photons

present in the coherent volume is highly dependent on the brilliance of the source :

Dphoton = (8.3× 10−25)Bλ3 (3.36)

where B is the brilliance and λ is in units of Å. Therefore, CDI requires a high

brilliance and thus the technique relies on the development of undulator-based

third generation synchrotron radiation sources. With the emergence of free-electron

laser (FEL) sources, even higher brilliance can be obtained with the opportunity to

reach photon degeneracy of approximately ten orders of magnitude higher than
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Figure 3.9 – Profiles of diffraction patterns at different distances from a square aperture of
size a. The width of the diffraction pattern increases as the Fresnel number
NF shrinks. For cases where NF ≈ 1, the regime is the Fresnel regime or near-
field. When NF � 1, it is Fraunhofer diffraction or far-field where interference
fringes from the width of the aperture are easily visible. And for NF � 1, the
propagation distance is small enough to stay in the contact regime, providing a
direct image of the aperture.
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undulator-based synchrotron radiation. However, FELs deliver a sufficiently high

power to destroy most samples in only one shot thus the “Diffract and Destroy”

technique (Spence and Hawkes, 2008; Schmidt et al., 2008). Moreover, FELs are

mostly interesting for the time-resolution, not necessarily for the average flux.

CDI gathers the 3D non-destructive and lens-less probing techniques that enable

structure determination of noncrystalline specimens and nanocrystals with theoreti-

cal resolution only limited by the wavelength of the X-ray beam. Experimentally, the

number of scattered photons and the recorded extent of the diffraction in reciprocal

space limit the resolution. Diffraction microscopy, holography and ptychography

are typical examples of CDI techniques that exploit the transverse coherence prop-

erties of third-generation synchrotron X-ray to encode image information and over-

come the technical limitations caused by imperfect X-ray optics. Ptychography is an

extension of classical CDI where instead of recording the diffracted intensities from

one sample of size smaller than the X-ray beam, multiple diffraction patterns are

recorded from overlapping areas of the sample that is bigger than the X-ray beam

(Hoppe, 1969; Rodenburg and Bates, 1992; Rodenburg, Hurst, et al., 2007; Thibault,

Dierolf, Menzel, Bunk, David, et al., 2008). With a first successful result from by

Miao et al. in 1999 on gold dots of around 500 nm diameter with resolution of

approximately 75 nm (Miao, Charalambous, et al., 1999), CDI has widely benefited

from the developments of X-ray focusing optics (Snigirev and Snigireva, 2008) such

as compound refractive lenses (CRL)(Snigirev, Kohn, et al., 1998), Kirckpatrick-Baez

mirrors (KB)(Kirkpatrick and Baez, 1948) and Fresnel-zone plate (FZP)(Baez, 1961;

High-efficiency multilevel zone plates for keV X-rays | Nature n.d.) in order to collect the

scattering of single objects with a size smaller than 100 nm, and allows reconstruc-

tion with resolution around ∼ 10 nm (Sakdinawat and Attwood, 2010).

3.7.1 The phase problem

As derived earlier, within the kinematical approximation, if we neglect the spatial

variation of amplitude and phase of the X-ray wavefield at its focal point, a crystal’s

structural information ρ(~r) is directly related to its scattering amplitude A(~q) in the

far-field via a FT :

A(~q) = F [ρ(~r)] (3.37)

Then the intensity recorded on a detector is the square modulus of the amplitude :

I(~q) = |A(~q)|2 (3.38)

which differs from the complex waveform of A (~q) = |A (~q)| eiφ(~q) itself, and all

phase information, φ = ~q ·~r is thus lost : the inherent ’Phase Problem’ of X-ray Crys-
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tallography, which is a classic inverse problem. Retrieving these information then

requires additional constraints and the use of iterative methods. Before presenting

these methods, the fundamental notion of oversampling has to be derived.

3.7.2 Oversampling

Oversampling is defined by the Nyquist-Shannon theorem (Shannon, 1949) which

states that in order to correctly retrieve a signal from a set of sample points, the sam-

pling frequency must be higher than the Nyquist sampling frequency. For instance,

diffraction from a slit can be described by the FT of a step function, i. e., a sinc, and

the associated Nyquist frequency corresponds to at least one point per sinc fringe.

In order to understand how this theory can be extended to the phase problem, con-

sider a one dimensional object with a complex-valued density f (x) = | f (x)| eiφ(x)

and its FT F(q) = F [ f (x)]. Experimentally, only the magnitude of the FT is mea-

sured :

|F [ f (x)]| = |F(q)| =
∣∣∣∣
∫

f (x)eiqxdx
∣∣∣∣ (3.39)

where x is the real space coordinates and q the reciprocal (Fourier) space coordi-

nates. One can sample x and q into N number of pixels from 0 to (N − 1). Let δx
be the width of each real space pixel, the total extent of the real space is ∆x = Nδx.

The pixel size in Fourier space is by definition δq = 2π
∆x = 2π

Nδx . Equation 3.39 can

thus be rewritten as its discrete Fourier transform equivalent, a set of N equations

with 2N unknowns (| f (x)| and φ(x) for each q) :

|F(qi)| =
∣∣∣∣∣

N−1

∑
j=0

f (xj)eiqixi/Ndx

∣∣∣∣∣ , ∀i ∈ [0, N] (3.40)

This factor of 2 follows through to 2D and 3D objects as the total number of equa-

tions will be N2 and N3 with a total number of unknowns of 2N2 and 2N3 respec-

tively. Thus the problem of phase retrieval is in general underdetermined by a factor

of 2 (Miao, Sayre, et al., 1998).

Following this derivation, the condition σ of oversampling is defined as the ratio

between the total number of measured points and the number of unknown values.

For a 2D object, the condition σ > 2 corresponds to oversample in each direction by

> 21/2 and by > 21/3 for a 3D object. Though, a higher oversampling ratio is better

as it leads to a more accurate reconstructed result (Veen and Pfeiffer, 2004).
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3.7.3 Field of view and pixel size

From a defined detector pixel size and its distance from the sample, the spatial

resolutions are defined both in reciprocal space and real space. To retrieve them,

consider the propagation of a wave in free-space, using the Huygens-Fresnel prin-

ciple. An electromagnetic wave A of wavelength λ propagating from a point P
of coordinates (x, y, 0) to a point M of coordinates (x1, y1, z) reads, discarding pre-

factors :

AM(x1, y1) ∝
∫

AP(x, y)ei 2π
λ |PM|dxdy (3.41)

In the far field regime, the paraxial approximation holds : the propagation dis-

tance |PM| is considered to be close enough to the optical axis, i. e. z �
√

x2 + y2

and z �
√

x2
1 + y2

1. Thus, the propagation distance can be rewritten in the first

order as |PM| ≈ z + 1
2z

[
(x1 − x)2 + (y1 − y)2], and leads to :

AM(x1, y1) ∝
∫

Ap(x, y)ei 2π
λ

x2+y2
2z ei 2π

λ

x2
1+y2

1
2z e−i2π(x x1

λz +y y1
λz )dxdy (3.42)

Let qx = 2πx1/λz and qy = 2πy1/λz. Equation 3.42 derives:

AM(x, y) ∝ ei 2π
λ

x2
1+y2

1
2z F

[
AP(η, ξ)ei 2π

λ
x2+y2

2z

]

(qx ,qy)

(3.43)

As the detector describes a discrete set of pixels, equation 3.43 has to be dis-

cretized as well, involving a discrete FT. Given the detector pixel sizes δx1 and δy1,

the pixel sizes in reciprocal space δqx and δqy are :





δqx = 2π δx1
λz

δqy = 2π
δy1
λz

(3.44)

Moreover, one can use the discrete FT relationship and write :





δqx = 2π
Nxδx

δqy = 2π
Nyδy

(3.45)

Therefore, one has the equivalent representation in real-space units on the detec-

tor: 



δx1 = λz
Nxδx = λz

∆x

δy1 = λz
Nyδy = λz

∆y

(3.46)
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In a CDI experiment, the pixel size of the detector δx1 = pdet is fixed, thus only

the detector distance z = D can be tweaked in order to comply with oversampling.

For instance, if the maximum extent l of the sample in e. g the x-direction is known,

then an oversampling ratio of σ > 2 leads to the necessity of having a real-space

pixel size such as Nxδx ≥ 2l, which derives:

D =
pdet

λδqx
= Nδx

pdet

λ
=⇒ D ≥ 2l

pdet

λ
(3.47)

For instance, collecting the diffraction pattern on a 516×516 pixels (55 μm in size)

detector from a gold crystal (a = 0.408 nm) whose longest dimension is ∼ 300 nm,

illuminated by a 8 keV beam (λ = 0.155 nm), requires a distance to the detector of

D ≥ 0.21 m.

3.7.4 General formalism of phase retrieval algorithms

From an oversampled diffraction dataset together coming from an isolated sam-

ple, smaller than the coherent beam size, the phase of the sample can be in prin-

ciple recovered. This is done through the use of a combination of the following

algorithms.

3.7.4.1 Error reduction

The basic phase retrieval algorithm, known as Error reduction (ER) works by

Fourier-transforming the measured intensity data back and forth between real and

reciprocal space, while applying a constraint in each space. ER starts with a guess

of the shape of the scattering sample, for example by calculating the auto correla-

tion of the diffraction pattern. The first iteration consists of taking an initial guess

at the scattering amplitude A(~q) by multiplying the square root of the recorded in-

tensities with a random phase factor φrandom(~q) so that A(~q) =
√

I(~q)eiφrandom(~q). This

way, the reciprocal space constraint is applied, by enforcing the measured diffracted

amplitude while retaining the current phase. The inverse FT F−1 is then applied to

obtain a guess on the electron density ρ(~r). This is when real space constraints are

applied, consisting in setting ρ(~r) equals to zero everywhere outside the “support”

area. This notion of support was first introduced by Fienup (Fienup, 1978) and de-

scribes the area where the object is expected to be. Let ρk(~r) be the k-th guess, then

the support condition can be written as following :





ρk+1(~r) = ρk(~r) if~r ∈ Support

ρk+1(~r) = 0 if~r /∈ Support
(3.48)
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Figure 3.10 – Schematic illustrating the Error-reduction algorithm together with the finite
support constraint in order to retrieve real space objects from coherent x-ray
diffraction patterns. On the right, a Siemens star object is illuminated with
a coherent beam and its scattered signal is recorded on a two-dimensional
detector. These intensities are used during the Error-reduction algorithm to
navigate using Fourier transforms back and fourth between the real and the
reciprocal space, as sketched on the left. Adapted from (Yau, 2018).

The updated electron density ρk+1(~r) can then be FT to reciprocal space to form

a new guess of the complex scattering amplitude, for which the reciprocal space

constraint is applied while the updated phase information is kept. The scheme

presented in Figure 3.10 charts the global process.

The likeness between the retrieved amplitude and the measured intensities can be

evaluated by the simple error metric consisting in the mean squared error :

E2
r =

∑(
∣∣∣F [ρk(~r)]−

√
I(~q)

∣∣∣
2
)

∑ I(~q)
(3.49)

Even though this metric can be used to monitor the convergence of the algorithm,

often the error-metric will stop decreasing and the algorithm gets stuck in a local

minimum. Indeed, ER is proven to be closely related to the steepest-descent method

(Fienup, 1982).
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3.7.4.2 Hybrid input-output

In order to tackle these problems of stagnation, an enhanced algorithm was intro-

duced by Fienup (Fienup, 1982), based on a non-linear feedback control theory : the

Hybrid input output (HIO). Contrary to ER, the retrieved informations outside the

support are kept and substracted during the k + 1 iteration, while being multiplied

by a feedback parameter β :





ρk+1(~r) = ρk(~r) if~r ∈ Support

ρk+1(~r) = ρk(~r)− βρk(~r) if~r /∈ Support
(3.50)

With β constant and such that 0 < β < 1, with typical value around 0.9. Ef-

fectively, this modification allows faster convergence by smoothly putting the area

outside the support to zero, acting as small perturbations in order to enable the

algorithm to leave a local minimum. Usually, both ER and HIO are used together

as their combination leads to particularly robust results (Marchesini, 2007).

Note that these iterative algorithms can be approached as a set of mathematical

projections operators (Levi and Stark, 1984; Sezan and Stark, 1987), which allow to

create an unify description (Marchesini, 2007). Introducing the projection onto a set

as the projector PS :

PSρ(~r) =





ρ(~r) if~r ∈ S

0 otherwise
(3.51)

One can also defines a representation of the projector in reciprocal space :

Pm = F−1P̃mF (3.52)

where P̃m is the projection of a point in each complex plane onto the correspond-

ing circle :

P̃mρ̃(~q) = P̃m |ρ̃(~q)| eiφ(~q) =
√

I(~q)eiφ(~q) (3.53)

With these notations, the k + 1 iterations for ER and HIO can be rewritten easily :

ER PsPmρk(~r)

HIO





Pmρk(~r) if~r ∈ S

(I − βPm)ρk(~r) otherwise

(3.54)
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By introducing the reflector operator as R = I + 2 [P− I] = 2P − I , with I

being the identity operator, these notations also allow us to introduce the Relaxed

Averaged Alternating Reflectors (RAAR) algorithm (Luke, 2005) :

RAAR
[ 1

2 β(RsRm + I) + (1− β)Pm
]

ρk (3.55)

It behaves somewhere in between ER and HIO for similar β, but reaching the

solution much earlier.

3.7.4.3 Difference Map

Elser (Elser, 2003) introduced the Difference map (DM) algorithm which takes

two instances of the Fourier modulus update, in order to avoid traps, i. e. regions

of the search space where the distance between the two constraint spaces is a local

minimum (Thibault, 2007). With the projection operators formalism, one can write

the DM algorithm as :

DM [I + (1 + β)PsPm − Ps − βPm] ρk (3.56)

This algorithm, which is also a variant from HIO, has been successfully adapted

to ptychography (Menzel et al., 2008; Thibault, Dierolf, Menzel, Bunk, and Pfeiffer,

2009; Hruszkewycz et al., 2012), where the constraints become the Fourier projec-

tions and the overlap projections.

3.7.4.4 Support determination and shrink wrap algorithm

In order to estimate the support of the object, either one uses other techniques

(such as Scanning Electron Microscopy (SEM) or Atomic Force Microscopy (AFM)

for instance) that give the knowledge of the shape and dimensions of the sample,

or, in case of complete lack of information, one uses the autocorrelation function

(Marchesini et al., 2003) on the diffraction signal which leads to a rough estimate

of the support. The latter is based on the Patterson function, the inverse FT of the

recorded intensities, which is equivalent to the electron density convolved with its

inverse :

Patterson(~r) = F−1 [I(~q)]

= F−1 [A(~q)A∗(~q)]

= F−1 [F [ρ(~r)]F [ρ(−~r)]]
= ρ(~r)⊗ ρ(−~r) (3.57)
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From equation 3.57, it is clear that the Patterson function contains information

about the shape of the object. However, while most CDI experiments deal with

weakly strained objects, there are systems with so much inhomogeneous strain that

the shape has no obvious impact on the diffraction pattern (Beutier et al., 2013),

e. g. loss of symmetry and interference streaks disappearing. Furthermore, the

Patterson function overestimates the size by a factor of 2, thus most algorithms use

a thresholding around 2% to 4% of the maximum (Marchesini et al., 2003).

In order to cope with the unknown shape of the object, Marchesini et al. (ibid.)

introduced a novel algorithm to be used in combination with e. g HIO + ER, the

shrink-wrap (SW) algorithm which is now routinely used in CDI. It allows to up-

date the support during the object reconstruction, by smoothing it with a Gaussian

convolution at certain iterations and then applying a threshold of a typical 10% of

the maximum value of the amplitude.

3.7.5 Recent advances in phase retrieval

Even though the combination of Hybrid input-output, Error reduction and Shrink

wrap has proven to converge, there is no guarantee of a successful reconstruction,

especially in the case of highly strained sample (Beutier et al., 2013; Diaz et al., 2010).

Moreover, the noise level, diffuse scattering, substrate scattering and positioning

errors can also be the source of phase retrieval stagnation in non-global minimum.

Here we introduce some improvements that have been recently proposed in order

to improve the convergence of the phase retrieval procedure.

3.7.5.1 Guided phase retrieval

Introduced with the traditional HIO method by Chen et al. (Chen et al., 2007)

in 2007, the guiding algorithm uses the concept of optimization by guiding search-

ing direction to locate the global minimum. As explained deeper by Ulvestad et al.
(Ulvestad, Nashed, et al., 2017) and Colombo et al. (Colombo et al., 2017), the pro-

cedure relies on the generation of several initial random guesses as starting points

that will enable to select a set of solutions, designed as the best one according to a

specific criteria such as the error metric. These solutions will then guide the next

round of iteration. Thanks to the breeding in successive generations, the algorithm

will converge regardless of the initial starts. This procedure leave the algorithms

unmodified, and have produced consistent experimental results (Clark, Ihli, et al.,

2015; Ulvestad, Singer, et al., 2015; Ulvestad, Welland, et al., 2017; Liu et al., 2017)

since 2015.
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3.7.5.2 Taking into account partial coherence

The classical methods for phase retrieval in CDI are limited to a either complete

or partial a priori knowledge of the coherence properties of the illumination. Clark

et al. (Clark, Huang, et al., 2012) demonstrated in 2012 the successful inversion of

three-dimensional partially coherent diffraction patterns. Actually, as described by

the Schell model (Schell, 1967), the recorded intensity patterns are partially coherent

as they are the result of a blurring of the coherent intensity by a convolution with

the Fourier transform of the normalized mutual coherence function (introduced

in section 3.5, see equation 3.25). Hence, the recorded partially coherent intensity

reads :

Ipc(~q) = Ic(~q)⊗ γ̃(~q) (3.58)

In order to accommodate partial coherence, the modulus constraint is modified

by introducing modal techniques (Thibault and Menzel, 2013), relying on the fact

that the recorded diffraction pattern is effectively made up of the incoherent sum

of a given number of modes. Moreover, the iterative Richardson-Lucy algorithm

(Richardson, 1972; Lucy, 1974) is employed to get numerical update of γ̃k(~q), us-

ing the measured partially coherent intensity Ipc(~q) and a linear combination of

the current and the previous iterates estimate of the coherent intensity, I∆k(~q) =

2Ik(~q)− Ik−1(~q) :

γ̃k,i+1(~q) = γ̃k,i(~q)
(

I∆k(−~q)⊗ Ipc(~q)
I∆k(~q)⊗ γ̃k,i(~q)

)
, (3.59)

where i is the sub iteration number relating to the coherence function determina-

tion.

3.7.5.3 Metrics

As described earlier, the use of the conventional χ error-metric (mean squared

error between the measured and the retrieved amplitude) sometimes does not cor-

respond to a successful reconstruction. In order to promote desirable features in the

final image, different fitness metrics have been introduced and tested. For instance,

as the width of a diffraction peak of a crystal depends on both the size of the crystal

and on the level of strain, a large strained crystal and a smaller unstrained crystal

can lead to the same Bragg peak width. That way, a solution with underestimated

crystal dimensions could originate from a local minimum of the phase retrieval al-

gorithm. Promoting larger real space extent can be done through a fitness metric

that promotes more uniformity of diffracted amplitudes, the Sharp metric :

Es = ∑
r
|ρ(~r)|4 (3.60)
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Moreover, in (Ulvestad, Nashed, et al., 2017), the Sharp norm metric Esn =(
∑r |ρ(~r)|

1/4
)4

which is based on the Sharp metric while preserving the units of ρ is

performing best when the signal-to-noise ratio of the data is low. In the same study,

they introduced the Max Volume metric in order to favor “anti-sparsity” directly by

choosing the largest crystal. The Max Volume metric is defined as following :

EMV = ∑r |ρ(~r)| /max |ρ(~r)| with




|ρ(~r)| = 0 if |ρ(~r)| < 0.2

|ρ(~r)| = 1 if |ρ(~r)| ≥ 0.2
(3.61)

In this metric, the maximum is selected as best solution. The aim of using this

metric is to counterweight the effect of the shrink wrap algorithm that usually de-

creases the total volume of the reconstructed object.

3.7.5.4 Maximum-likelihood

All CDI techniques rely on experimental data that are by nature probabilistic be-

cause of noise and measurement uncertainties. From a broader perspective, recon-

struction from noisy data is a classic problem in experimental sciences, and standard

tools have been developed in order to solve it. Among them, likelihood maximiza-

tion is one of the most general and robust. Maximum-likelihood (ML) concepts

were evoked for CDI methods and introduced in ptychography by Thibault and

Guizar-Sicairos (Thibault and Guizar-Sicairos, 2012) as a refinement step after a re-

construction that is close to a solution. ML has been particularly demonstrated on

ptychography as it has been shown in (Guizar-Sicairos and Fienup, 2009) that pty-

chography can be stated as a phase retrieval problem with transverse translation

diversity, a case for which gradient-based minimization approaches are particularly

well adapted.

However, ML can be extended to any CDI technique, and we will derive the re-

lated equations within the frame of classical CDI, where the diffraction patterns

come from one crystalline sample illuminated by a wider X-ray beam. As described

in equation 3.38, in the absence of noise or any other experimental errors, each of

the N intensity in the far-field plane is :

Icalc
j =

∣∣F
[
ρ(rj)

]∣∣2 (3.62)

However, in a realistic experimental dataset, the presence of photon noise results

in degradation of the measured data set. Depending on the assumption made on

the noise model, the criterion that links the unknown object to the measured data

will change. The detector collects only a finite number of photons instead of the

real-numbered far-field intensity quantity. The integer photon counts per pixels can
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be considered as a random variable which Probability Distribution Function (PDF)

is the Poisson probability law. Assuming N independent measurements Iobs
j , the

probability that the entire data set Iobs is collected reads :

p(Iobs, ρ) =
N

∏
j=1

(Icalc
j )Iobs

j

Iobs
j !

e−Icalc
j (3.63)

The negative log-likelihood function associated with this PDF is then :

Lp = − log p(Iobs, ρ) = − 1
N

N

∑
j=1

log
(Icalc

j )Iobs
j

Iobs
j !

e−Icalc
j (3.64)

Then, the maximisation of the likelihood, equivalent to the minimization of L,

passes by the calculation of its gradient, which can be written analytically and ef-

ficient minimization procedures such as conjugate gradient descent (Nocedal and

Wright, 2006; Shewchuk et al., 1994) are readily available (Jones et al., 2001–). Note

that another noise model can be used, by considering that the detector data are cor-

rupted by an additive Gaussian thermal noise (Godard et al., 2012). Such a model

can be built the following way :

(Iobs
j )1/2 = (Icalc

j )1/2 + Gj, ∀j (3.65)

where Gj is an independent centered fluctuation from a Gaussian distribution of

variance σ2
j . The PDF of the transformed data set

{√
Iobs
j

}
is also Gaussian and now

reads :

g(Iobs, ρ) = ∏
j
(2πσ2)−1/2e

− 1
2


 (Iobs

j )
1/2
−(Icalc

j )
1/2

σ




2

(3.66)

The corresponding negative log-likelihood is, up to an additive constant :

Lg ≈∑
j

1
2σ




(
Iobs
j

)1/2
−
(

Icalc
j

)1/2

σ




2

(3.67)

It appears to be identical to the cost function formulated as a Euclidean metric

in the reciprocal space. In the case where the number of expected counts
{

Icalc
j

}

is large enough, the Central Limit Theorem states that the Gaussian PDF is a good

approximation of the Poissonian PDF derived earlier. The difference between the

two models is hence significantly higher for low photon counts in the pixel detector

(less than 10 counts), where the Poissonian approach should be adopted (ibid.).
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3.8 coherent bragg imaging

3.8.1 Definition

CDI in the Bragg geometry allows one to probe displacement fields inside crystals,

which, as derived in section 3.4.2, corresponds to the phase of the complex electron

density. It is useful to remember that (from eq 3.20), at a given Bragg reflection with

its diffraction vector ~qhkl , the scattered amplitude of the crystal derives :

A(~q) = F
[
ρ(~r)ei ~qhkl ·~u(~r)

]
(3.68)

One should emphasize once again that a single BCDI measurement is limited to

the direction parallel to the scattering vector: a successful object reconstruction will

yield ~q · ~u as the phase of the reconstructed density.

Even if the basics of CDI measurements is pretty simple, the case of Bragg ge-

ometry is delicate, especially since it involves small (from nano-size to micron-size)

crystals with specific experimental setups that are to be handled with care. As

shown in Figure 3.11, the sample and the detector are oriented in order to fulfill

the Bragg conditions, requiring to rotate the two dimensional detector, sometimes

to angles above 60 degrees. Bragg geometry allows directly a 3D investigation of

reciprocal space.

3.8.2 From detection to direct space

As only a slice of the three-dimensional diffraction pattern is recorded by the two

dimensional detector, one efficient manner to obtain the full 3D intensity is to rotate

the sample, with ∆θ / 1◦ total angle rotation, which is actually transformed into

a linear scan along q3 (see Figure 3.11). Hence, the 3D intensity is obtained from

consecutive 2D acquisitions at different δθ positions. This is known as the rocking

curve method. As the 3D matrix obtained is sampled homogeneously along the

3 axis of the detector basis, fast Fourier transform (FFT) routine can be directly

applied on the raw data, allowing a large gain of computational time. In addition,

the use of FFT goes along with some relations between the resulting direct space and

the reciprocal - Fourier - space, including the notions of sampling and extent. These

have been discussed earlier (see section 3.7.3), but can be derived using vectorial

conjugation relations. Considering that the components of the scanned ~q vectors are
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x

FZP

detector

x y z
Figure 3.11 – Bragg Coherent Diffraction Imaging setup. The inset shows the 3D exploration

of Fourier space with angular scanning ∆θ. The convention for space orien-
tation definition in both real and reciprocal space is shown as well. Adapted
from (Stangl et al., 2013).
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noted ~q1, ~q2 in the detector plane and ~q3 perpendicular to ~qhkl , then the unit vectors

of the direct space ~r1, ~r2 and ~r3 are obtained using Fourier conjugation relation :

~ri = 2π
~qj × ~qk

V
(3.69)

where V is the volume defined by ~qi · ~qj × ~qk and where the {i, j, k} indexes are

given by the circular permutation of the {1,2,3} indexes. In the case where (~qi,~qj, ~qk)

represents an orthogonal basis, the smallest spatial element δ~ri along the i direction

is given by :

δ~ri =
2π

~qmax,i
(3.70)

where ~qmax,i is the maximal recorded frequency, or reciprocal space maximum

exploration, along the i direction. The extent of the direct space ∆~ri along the i
direction is hence defined by :

∆~ri = Ni
2π

~qmax,i
=

2π

δ~qi
(3.71)

where Ni is the number of detector pixels along the i direction and δ~qi is the recip-

rocal space resolution. It is worth noting that all these expressions can be simplified

using the geometrical distances of an experimental setup, i.e.,follows introducing

the detector-to-sample distance D and the detector pixel size pdet,i along the i direc-

tion (i = {1, 2}), as we have the relation :

D| ~qmax,i| = Ni pdet,i| ~k f |
⇐⇒ | ~qmax,i| = 2π

Ni pdet,i
λD

(3.72)

It derives that in the plane of the detector (i = {1, 2}), the smallest element in

direct space is given by :

|δ~ri| =
λD

Ni pdet,i
(3.73)

Moreover, one can note that in the third dimension of reciprocal space, along the

scanning direction ~q3, the resolution is defined by the angular step δθ = ∆θ
N3

where

N3 is the number of sample rotation. Hence, the smallest element in direct space is

given by :

δr3 =
λ

N3δθ
(3.74)

Note that the effective spatial resolution of the reconstruction is in general larger

than the size of the pixel elements, which can in principle always be reduced as they

are inversely proportional to the extent of the reciprocal space. Indeed, the imaging
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process is very likely to be degraded by uncertainties in the dataset, level of photon

noise, or even data analysis itself.

3.9 esrf id01 beamline set-up

The ID01 beamline of the ESRF is dedicated to three kinds of experiments : Bragg

Coherent Diffraction Imaging (Fernández et al., 2019), Scanning X-ray Diffraction

Microscopy (KMAP) (G. Chahine et al., 2015) and Full-Field Diffraction X-ray Mi-

croscopy (FFDXM) (Hilhorst et al., 2014). That way, ID01 combines the lattice pa-

rameter resolution supplied by X-ray diffraction with the resolution in direct space

facilitated by current imaging techniques using the most advanced X-ray optics

technology. Recently, Schülli et al. published a review thoroughly describing the

nanodiffraction beamline, from the X-ray source to the sample stage and its applica-

tions (Leake, G. A. Chahine, et al., 2019). ID01 presents the special feature of being

adapted to operando experiments on functional devices, being particularly flexible

while offering high beam stability.

Due to its total length of 118 m, ID01 is among the five longest beamline of the

ESRF and is optimized to produce highly focused micro- to nano- size X-ray beams.

The X-ray source itself is made from up to three undulators, a single 27 mm period

(U27), a single 35 mm period (U35) and a revolver which offers either of the afore-

mentioned periods. The fundamental harmonic of the U27 yields a first brilliance

maximum in the energy regime from 6.5 to 11 keV, while the third harmonic pro-

duces a second brilliance maximum in the energy from 19.5 to 22 keV. The U35 pro-

vides the possibility to tune the energy in between the gap represented by the first

and third harmonic of the U27. The main operating regime is at 8 keV, where the

Full Width at Half Maximum (FWHM) of the source amounts to 12 μm (V)×120 μm

(H) at a beam divergence of 20 μrad (V) ×170 μrad (H) (FWHM).

3.9.1 Optics

Before reaching the endstation inside the experimental hutch, the X-ray photons

pass through three optics hutch:

— The first optic hutch contains the main beam-conditioning components such

as monochromators and mirrors. In the first optic hutch, high-power slits are

introduced to shape the white beam as a function of required illumination of

the optics. Then, the primary optics are made of 900 mm long reflective mir-

rors chosen to reflect in the horizontal plane as there is higher tolerance of the

horizontal source size. Two monochromators are available: a channel-cut sili-

con crystal monochromator in order to get the most stable incident beam and
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a double-crystal monochromator to work with wavefront-sensitive techniques.

In horizontal geometry, the two are superimposed on an in-vacuum rotation

table with vertical axis, a translation in height enabling to interchange between

systems. The bandpass of the resulting Si(111) monochromator is of the order

of 10−4, however a multilayer monochromator with 10−3 bandwidth is also

available for samples that are thin enough to tolerate a broader bandwidth,

hence a gain in incident intensity (two order of magnitude compared to the

Si(111) monochromator). This multilayer will be used in Chapter 4 in order

to reach a maximum flux on ultra-thin semiconductor nanostructures. Typical

beam longitudinal coherence length is of 800 nm, set by the monochromator

(Leake, Newton, et al., 2009).

— The second and third optic hutches serve as secondary optical elements, host-

ing respectively a transfocator device and a virtual source. The transfocator,

located at 55 m from the source, is made of two sets of Be lenses and is used to

either condense a significant fraction of the beam, or pre-focusing the incident

beam. A virtual secondary source can also be used to tune the compromise

between beam spot size and beam flux on the sample.

— The experimental endstation contains the focusing optics.

3.9.2 Nanofocusing endstation

The endstation is designed to deliver nanofocused beams with high stability on a

sample stage with high accuracy and precision relative to the reference laboratory

frame (see Figure 3.12). It contains a large granite table physically supporting both

the focusing optic and sample environment. Two main focusing optics are available,

on the one hand Fresnel zone plates (FZPs) (Baez, 1961; Fabrizio et al., 1999) and on

the other hand Kirkpatrick-Baez (KB) mirrors (Kirkpatrick and Baez, 1948).

FZP is a diffractive focusing device that needs small working distances (below

20 mm) at 8 keV to focus the beam below 200 nm in both horizontal and vertical

direction. The available FZPs have 300/200/120 μm diameter with 70/60 nm outer

zone width or 200 μm diameter with 45 nm outer zone width (Leake, Favre-Nicolin,

et al., 2017). The KB mirror has a 200 μm × 176 μm clear aperture, and at a working

distance of 70 mm can focus the beam to a few hundred nm. Combined with the

multilayer, this KB will be used to get the brightest 200 x 200 nm2 beam to illuminate

ultra-thin semiconductor nanostructures in chapter 4. FZP will also be used with

proper defocus in order to maximize the size of the beam and shine on microsized

Zirconia grains in chapter 5.

Note that in order to control the beam size and its coherence properties, an ad-

ditional set of slits is used right before the focusing optics. The aperture of these



3.9 esrf id01 beamline set-up 53

Figure 3.12 – Solid work sketch of the experimental hutch of the ID01 ESRF beamline. The
PI-Mars piezo stage, providing a few nanometer resolution, sits on top of a
BORA Hexapod.
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slits defines both the transverse dimensions of the focal spot and the focal depth,

but also impacts the flux inversely to the coherent fraction of the beam. In order to

increase the size of the focal spot, the opening of the slits has to be decreased but it

will also lead to a decrease of the flux (Mastropietro et al., 2011).

The sample stage is made of a heavy load 3+2-circles diffractometer together with

a tripod of motors controlling a z-translation and a y-translation, a Symmetric BORA

hexapod with three axes of translation with right-handed rotation for each axis, and

finally a PI-Mars three axis piezo. The three Huber circles of rotation, all left-handed

rotation, give rise to a sphere of confusion of less than 10 μm, while the sphere of

confusion of the hexapod is less than 50 μm, thus being the limiting factor for

alignment. The detector arm is uncoupled from the sample, with two left-handed

rotation axes around z (denoted ν) and y (denoted δ). A Maxipix detector (Ponchut

et al., 2011) is available on the arm, with a 55 μm pixel size and limits of up to

2.36 m and to δ 68
◦, and 1.76 m to δ 120

◦.
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Deuxième partie

E X P E R I M E N TA L W O R K S

This part gathers all the experiments that have been carried during the

Ph.D. work, along with the results and discussions they led to.

In the first part, we present the Scanning X-ray Diffraction Microscopy

experiments done on ultra-thin SiGe-on-insulator nanostructures in the

scope of imaging the strain fluctuations. Secondly, we deal with the

study of embedded ZrO2 grains with the combination of Diffraction

Contrast Tomography - to locate them - and Bragg Coherent Diffraction

Imaging - to retrieve their strain fields. The last part is dedicated to X-ray

Ptychography.





4
S C A N N I N G X - R AY D I F F R A C T I O N M I C R O S C O P Y T O I M A G E

S T R A I N F L U C T U AT I O N S I N U LT R A - T H I N

S I G E - O N - I N S U L AT O R N A N O S T R U C T U R E S F O R

E L E C T R O N I C S

This chapter provides an introduction to the historical development of strain

engineering in Complementary Metal Oxide Semiconductor (CMOS) channels to

boost the materials performance. A particular attention is drawn to the conden-

sation process, which is used to grow silicon germanium ultra thin (below 20 nm

thickness) layers to be integrated as channels in Fully Depleted Silicon On Insula-

tor (FDSOI) p-type Field Effect Transistor (pFET). The Scanning X-Ray Diffraction

Microscopy (SXDM) method is presented and used in order to assess the level and

relaxation of strain in patterned SiGe directly on insulator. Finally, the empirical

model proposed by R. Berthelon Berthelon, 2018 is adjusted so that it fits better

with the measured relaxation lengths.

4.1 introduction

4.1.1 Strained SiGe on Silicon-Oxide Insulator

Electronic properties of semiconductor nanostructures are strongly influenced by

their strain state, and many examples have already shown that strain engineering

is an efficient tool to boost microelectronics technologies, in particular to improve

carrier transport. In order to maintain Moore’s law, stating in 1965 that the number

of transistors per Silicon area would double every two years, the microelectronics

industry had to introduce new ways to boost performance. Thus, enhancement

of CMOS circuits has become an important issue, and with it much attention has

been paid to MOS channel materials. Down-scaling of devices was replaced by the

introduction of strain in materials, as tensile strain increases the electron mobility,

while compression of the lattice improves the hole mobility Sun et al., 2007.

Different technologies have been tested and developed to locally modify the me-

chanical strain during the fabrication of transistors. In a general way, the mechanical

loading of the transistor channel can be performed by four methods. Firstly, via the

integration of tensile (respectively compressive) contact etch stop layers for n- (p-)

Metal Oxide Semiconductor Field Effect Transistor (MOSFET)s Pidin et al., 2004, e.g

65
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an amorphous layer typically made of Silicon nitride. Secondly, with the use of

Stress Memorization Technique (SMT), depositing a high tensile stressed SiN layer

on top of the source and drain, the whole structure is then recrystallized and fi-

nally the SiN removed. A similar technique, known as “Buried OXide (BOX) creep”,

based on the creep of a BOX at high temperature in order to transfer the strain from

a SiN layer, has been assessed recently Berthelon, Andrieu, Mathieu, et al., 2017.

Thirdly, by Pseudomorphic Epitaxy of the source and drain in a material with dif-

ferent lattice parameter than the Silicon substrate Yeo, 2006. Ultimately, Substrate

Engineering aims to use a modified substrate by epitaxy or bonding transfer of a

set of non-matching materials, such as the Silicon-Germanium On Insulator (SGOI),

which will be studied in this section.

The latter prestrained semiconductor substrates have been adopted, in particu-

lar for the formation of high mobility channels for the ultrathin FDSOI technology

Weber et al., 2015. FDSOI forms a new substrate made of an ultra thin body of

buried Silicon oxide, lowering losses and reducing parasitic currents. On the one

hand, the Silicon On Insulator (SOI) substrate, fabricated by the smart-cut technique

which relies on direct bonding Bruel, 1995, has to be thin enough to be fully de-

pleted. In the other hand, in order to mitigate the coupling effect between the

drain and the channel through the BOX Ernst et al., 2007, the very same BOX has

to be as thin as possible Gallon et al., 2006. Thus, the electrostatic control is max-

imized for thin Silicon film and BOX, hence the Ultra-Thin Body and Buried ox-

ide (UTBB)-FDSOI Schwarzenbach et al., 2016. The FDSOI technology has been de-

veloped at the 28 nm node Planes et al., 2012 and 14 nm node Weber et al., 2015

by STMicroelectronics/CEA-LETI/SOITEC, and heavily relies on a strained channel

Berthelon, Andrieu, Ortolland, et al., 2017.

Silicon has long been the first choice material for CMOS technology, due to the

high-quality of low-cost Si substrates and the stability of its associated oxide SiO2.

Nowadays, to increase the mobility of carriers, Germanium and III-V materials are

considered Kuhn, 2012. However, as the CMOS technology relies on the concomi-

tant use of p-type Metal Oxide Semiconductor (pMOS) and n-type Metal Oxide

Semiconductor (nMOS) transistors featuring similar performances, III-V materials

low hole mobilities struggle to compete with the well-balanced carrier mobility of

Germanium (see Table 4.1).

Si Ge C GaAs InAs InP

Electron mobility (cm2.V−1.s−1) 1600 3900 2800 9200 40000 5400

Hole mobility (cm2.V−1.s−1) 430 1900 1500 400 400 200

Table 4.1 – Carrier mobility at 300K for crystalline structures of Si, Ge, C, GaAs, InAs and
InP. D.W.Palmer, 2019
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Then, Silicon Germanium alloy has appeared as a first choice to build the new

pMOSFET transistors. Thanks to the development of deposition processes on Silicon

substrates, industries have adopted the binary alloy SixGe1−x to be introduced in

pMOSFET. SiGe presents a diamond-like crystalline structure, made of two face-

centered cubic lattices, shifted by a quarter of the diagonal of one lattice. A 4.2%

lattice mismatch between Si and Ge occurs from the difference in lattice parameters,

being 5.431 Å and 5.658 Å respectively. The lattice parameter of a virtual SixGe1−x

crystal can be approximated by Vegard’s law Vegard, 1921 :

aSiGe(x) = (1− x)a0
si + xa0

Ge (4.1)

Or more precisely thanks to the empirical parabolic law J.P.Dismukes, 1964, de-

scribing the bowing effect :

aSiGe(x) = 5.431 + 0.20x + 0.027x2 (4.2)

By tweaking the stoichiometry, one can modify the properties of the current car-

riers while varying continuously the electronic and crystalline properties of the ma-

terial. The FDSOI specifications target a 20% to 30% range of Germanium content

within the SiGe channel. Strained SiGe channels enable a significant increase of elec-

tron and hole mobility, as it was proposed by calculations and also demonstrated

by experimental measurements DeSalvo et al., 2014. For instance, the effective hole

mobility for SiGe channel with 34% Germanium is twice that of SOI Berthelon, 2018;

Andrieu et al., 2005, p. 53.

4.1.2 Condensation process

In comparison to the other growth techniques, the condensation method exhibits

three main assets: firstly, it allows integration of compressively strained SiGe in

p-type channels, secondly, it enables the manufacture of highly crystalline and

strained SiGe films directly on insulator (Strained-SGOI (sSGOI)) with a Germa-

nium concentration up to 50%, and finally, it presents the possibility of using only

conventional manufacturing processes.

From an original idea of Tezuka et al. Tezuka, Sugiyama, et al., 2001, from the

Toshiba-MIRAI group, in 2001, to produce high-quality Germanium-On-Insulator

(GeOI) or SGOI buffer layers for the growth of tensely strained Si channels, the

condensation technique has since been studied by numerous research groups, such
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as CEA-LETI Vincent, J. F. Damlencourt, et al., 2008, IBM Bedell et al., 2006, Stanford

University Gunji et al., 2011... The first publication on the use of condensation in

order to form a defect-free and compressively strained SiGe channel on insulator

saw the light of day in 2003 Nakaharai et al., 2003. One can note that the name

“condensation” can be misleading, as it refers not to a phase change from gaseous

to liquid, but to the fact that the final SiGe layer can be “enriched” in Ge, i.e., a final

Ge concentration higher than the one of the initial epitaxial layer.

The condensation technique is described in Figure 4.1. Starting from a Silicon-

On-Insulator, a 5 nm to 20 nm-thick fully strained SiGe layer is epitaxially grown

on Si. Then, thermal oxidation is performed. Si-selective oxidation occurs and Ge

atoms are rejected into the underlying SiGe film. Thanks to the interdiffusion of Si

and Ge in the underlying film and the presence of the BOX as a diffusion barrier,

the Ge concentration is homogenized. During the last step, the sSGOI layer tends to

shrink because some Si is incorporated into the growing oxide during the oxidation

process. This technique results in a naturally strained and highly crystalline SiGe

layer, whose thickness and Ge content can be precisely controlled within 7 to 20 nm

and from 0% to 50% respectively Boureau, Benoit, et al., 2016.

Figure 4.1 – SiGe condensation process.

This process remains difficult to control, hence leaving a number of open ques-

tions. We will try to address the issues of crystalline quality, in-depth homogeneity

and particularly the accuracy and behavior of strain with respect to the initial target.

4.2 sample design and fabrication

4.2.1 Sample design

As described in Remy Berthelon’s PhD thesis Berthelon, 2018, the reference pro-

cess is as follows : starting from a SOI substrate (SOITEC supplier) with a 20 nm-

thick BOX, the SiGe layer is grown by heteroepitaxy by Reduced Pressure-Chemical

Vapor Deposition (RP-CVD). The thickness of the deposited SiGe is 20 nm with a

targeted Ge-concentration of 24 atomic %. Then, the SiGe layer on insulator is ob-

tained by the condensation process at 1050
◦C (Rapid Thermal Oxidation (RTO)),
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taking advantage of the preferential oxidation of Silicon over Germanium 1. The

upper SiO2 oxide (designed as padox) is then removed by wet etching. To perform

the lithography process, a hard mask has to be deposited first by Plasma Enhanced

CVD with TEOS (TetraEthylOrthoSilicate). To protect the surface, a 4 nm-thick ox-

ide pad is deposited before a 55 nm-thick SiN hard mask by Low Pressure-CVD.

In order to achieve a uniform SiGe layer directly on insulator, an anneal of 30 min

at 1050
◦C under N2 is performed to allow Silicon-Germanium atom interdiffusion.

The SiGe is then patterned by Ultra-Violet Litography (UVL) and a deep etching

step. The SiN hard mask is then removed by selective H3PO4 assisted etching. This

reference sample (Figure 4.2, SGOI) is compared with samples of different integra-

tion schemes. In order to study the role of the SiN hard mask, a sample is studied

prior to the SiN removal (Figure 4.2, SiN/SGOI). Another sample did not undergo

the condensation process neither the annealing, yielding a SiGe/Si bilayer.

The samples are then patterned with a special mask. As the SiGe layer thicknesses

are well below the critical thickness, there is no plastic relaxation People and Bean,

1985; Tezuka, Nakaharai, et al., 2006. However this patterning will enable elastic

relaxation of the SiGe layers. What drives us to characterize these samples is the

need for a strain control and the evaluation of the strain relaxation. The use of an X-

ray nanobeam will allow us to study a large number of structures in a given sample

and thus get statistical information on the growth process used.

The four different kind of samples depicted in Figure 4.2, and studied in the

following, are labeled as follow:

— Sample A - SGOI with nitride on top, 20 nm-thick SiGe layer,

— Sample B - SGOI without nitride on top, 20 nm-thick SiGe layer,

— Sample C - SGOI without nitride on top, 13 nm-thick SiGe layer,

— Sample D - Bilayer: SiGe/Si/BOX without nitride on top, 20 nm thick SiGe

layer.

1. This high temperature favors the oxidation mechanisms with respect to atomic diffusion.
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Figure 4.2 – Sketches of the three kinds of samples investigated. Light gray stands for Si,
blue for oxide, dark gray for SiGe and green for nitride. From left to right :
first appears the condensed SiGe directly on insulator before SiN hard mask
removal (sample A), then the same SGOI after the SiN removal (sample B & C)
and finally the SiGe/Si bilayer case, i.e. without condensation (sample D). The
X direction is along the [110] direction, and the vertical Z direction is oriented
along the [001] direction.

4.2.2 DIVA mask

The special mask for patterning developed at CEA-LETI to investigate geometry

effects, contains 103 structures, each of 2 mm x 2 mm (see Figure 4.3). 102 structures

are grid patterns of either lines, squares or rectangles.

Figure 4.3 – Scheme of the DIVA mask and the different structures it holds (coordinates
system from A to M and 1 to 10 enables precise location). Blue areas are ebeam
lithographed and yellow areas are deep uv (DUV) lithographed. Each structure
is 2 x 2 mm2 and the studied ones are enlighten by a red circle.
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The presence of a strip above each structure, containing information about co-

ordinates and characteristic sizes of the grid pattern, enables a clear and efficient

location with a microscope (see Figure 4.4). Note that these labels will be very useful

for the next experiments carried out at synchrotron sources.

Figure 4.4 – Scheme of one particular DIVA structure.

Thanks to e-beam lithography, some structures can reach characteristic lateral size

as small as 45 nm. On this study, we focused on a limited set of structures with a

square-based geometry :

— D2 : squares of 500 nm x 500 nm, spaced by 500 nm,

— D4 : squares of 2 µm x 2 µm, spaced by 2 µm,

— D6 : squares of 5 µm x 5 µm, spaced by 5 µm.

And a line-based structure was also selected in order to have a quasi-bulk reference

:

— C6 : horizontal lines of 50 µm width, spaced by 20 µm, which can be seen as a

full sheet layer relative to the size of the nanobeam of our experiments.
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(a) (b)

Figure 4.5 – SEM image of patterns from different structures. (a) D2 structure - squared pat-
tern of 500 nm x 500 nm. On this caption, taken after the experiment described
in the following section, one can notice the deposition of carbon on the central
pattern, due to beam exposition; (b) D4 structure - squared pattern of 2 µm x 2

µm. Note also the rounded shape of the corner due to the etching process.

4.3 strain measurement and simulation

4.3.1 Comsol modeling

Finite Element Method (FEM) mechanical simulations using COMSOL AB, n.d.

were performed in order to have the theoretical evolution of the strain inside the

SiGe layer, according to the channel’s length. The “structural mechanics” module

was used to model a 3D structure, under stationary study.

The growth direction is along z, and the (x, y) plane defines the epitaxial plane.

As the calculation were not specially computationally intense, we decided not to

reduce the system although a quarter of the structure could have been considered

given the symmetry of the model. The SiGe layer, containing 24% of Ge, is centered

on the geometrical frame so that the point of coordinate (0, 0, 0) is at the center of

the SiGe/BOX interface plane. Figure 4.6 shows the refined mesh, along with the

complete geometry of the model.
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Figure 4.6 – Geometrical model and COMSOL mesh. Si substrate is 300 nm thick and 3

times the width of the SiGe island. A 20 nm-thick oxide layer is present in-
between the substrate and the island. Units are in meter.

At x, y = Lact/2, a free boundary condition is introduced to account for the etch-

ing process. The latter is performed at low temperature, therefore the elastic domain

assumption is valid 2. Table 4.2 gives a review of the material mechanical properties

used within the scope of the simulations.

2. SiO2 creeping does not happen below ≈960
◦C EerNisse, 1977
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material young’s modulus poisson’s ratio

Si0.75Ge0.25
Anisotropic material: C<110>

ij [GPa]


184.6 31.8 60 0 0 0
31.8 184.6 60 0 0 0
60 60 156.5 0 0 0
0 0 0 76.4 0 0
0 0 0 0 76.4 0
0 0 0 0 0 48.2




Si
Anisotropic material: C<110>

ij [GPa]


194.5 35.3 63.9 0 0 0
35.3 194.5 63.9 0 0 0
63.9 63.9 165.8 0 0 0

0 0 0 79.6 0 0
0 0 0 0 79.6 0
0 0 0 0 0 51




Oxide 70 GPa 0.17

Table 4.2 – Material mechanical properties used for FEM simulations.

The proper way to simulate a pseudomorphic SiGe layer with COMSOL is to

introduce an “initial stress and strain” for the SiGe “linear elastic material”. As a

result, the initial stress is set to zero, while the initial strain in all 3 directions (x, y
and z) must be set to ε‖(xGe) = 0.94%, the true misfit strain. This can be considered

as an initial force coming from the lattice mismatch between SiGe and Si, driving

the SiGe to expand. During the epitaxy, at least far from the edges of the wafer,

the epitaxial SiGe layer is free to expand only in the z direction. Therefore, the

pseudomorphic SiGe experience a compressive in-plane strain.

First, we investigate the scenario when no SiN layer is present. Figure 4.7 shows

a 3D visualization of the resulting out-of-plane strain εzz of the SiGe layer, with a 10

times magnification of the deformation in oder to visualize the impact of the strain

on the bending of the island. Note that the values of strain extracted from COM-

SOL are relative to the silicon substrate lattice parameter, hence not “real strain” as

defined in section 2.2.
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Out-of-plane strain (%)
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Figure 4.7 – 3D representation of out-of-plane strain of the SiGe epitaxial layer, with the
corresponding deformation of the layer, displayed with a 10 fold magnification.
From this, one can clearly see the bending of the layer at its edge, and the rela-
tive uniform strain at its center. On this figure, the island of width Lact =1 µm
reaches an out-of-plane strain of 1.6% at its center.

In order to understand the evolution of the relative strain with respect to the

width of the channel, we investigated three different active widths : 250, 500 and

1000 nm. For the three different widths, profiles of strain have been extracted at

three different depths of the layer, namely at the interface between the SiGe and the

BOX, at halfway up the SiGe and at its last atomic plane, i. e. in contact with the

padox. Figure 4.8 shows these profiles of both (a) out-of-plane εzz and (b) in-plane

strain εxx. A few comments have to be made on these results. Firstly, the behavior of

both strains at the SiGe/BOX interface is not accurate as the software constrains the

strain to be equal to zero at the very edges of the channel. This is most likely due to

the mesh and may lead to the creation of “bounces” just before the edges, as a result

these profiles at the substrate interface will not be further analysed. Secondly, the

mirror behavior of out-of-plane strain and in-plane strain that respectively decreases

and increases at the edges of the channel, demonstrates the lattice relaxation of the

layer at the edges, thanks to the free-boundary conditions introduced by the etching

step of the process : the lattice tends to the one of SiGe, larger than the one of the Si

substrate. Finally, the maximum (respectively minimum) of the out-of-plane strain

(respectively in-plane strain) is reached at the center (x = 0) of the channel, and

decreases (respectively increases) while the active width decreases. Therefore, the

SiGe layer is no longer in fully-constrained when its width is smaller than 500 nm.

This gives us a hint concerning the relaxation length, that has to be around 250 nm

(i. e. half of the 500 nm-wide channel).
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(b) Evolution of in-plane strain

Figure 4.8 – Profiles of (a) the out-of-plane strain εzz and (b) the in-plane strain εxx, at
three different thicknesses of the SiGe layer, and for three different widths
Lact = 250, 500 and 1000 nm. The profiles are extracted along the width of
the pseudomorphic layer, at either the SiGe/BOX interface (blue curves), the
middle of the SiGe layer (green curves) or at the top of the SiGe layer (magenta
curves). One should notice the difference between the wider island and the
narrower one : the out-of-plane strain no longer reach its fully-strained value
of 1.6% when the island is narrow. This indicates that the relaxation length of
such SiGe should be at least larger than the half width, i. e. larger than 125 nm.
Note that the interface is disturbed most likely because of the mesh, which may
not be fine enough for such an ultra-thin layer. However, this does not affect
the behavior of strains at higher z profiles.

Then, the impact of a tensely stressed SiN layer on top of the SiGeOI was assessed

on a 1 µm wide SiGe layer. The role of the SiN is to conserve the strain of the

underlying SiGe by preventing it to expand its in-plane lattice and thus relax its

strain 3. Figure 4.9 shows the evolution of both the in-plane strain and the out-of-

plane strain, with respect to the Si substrate lattice parameter, for three different

conditions : without any SiN layer, with an unstressed SiN layer and with a tensely

stressed SiN layer at σ =1.2 GPa. The strains are extracted at the mid-height of the

SiGe layer, and its profile is displayed from the center to one edge of the channel.

Concerning the in-plane strain, the SiN layer allows to maintain it at 0% until 200 nm

3. The relaxation of the full stacking can be obtained by the “BOX-creep” technique, introduced in
section 4.1.1.
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from the edge (150 nm when the SiN is tensely stressed at 1.2 GPa), and to halve it

at the very edge.
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Figure 4.9 – Impact of a SiN layer on top of a 1 µm-wide sSiGeOI. Profiles of out-of-plane
and in-plane strains, for three different case : without any SiN layer, with an
unstressed SiN layer and with a tensely stressed SiN layer at σ =1.2 GPa.

In conclusion, the FEM simulations give an insight on the relaxation process of

the sSiGeOI, and demonstrate the impact of adding a SiN layer to prevent this re-

laxation. However, the elastic simulation is probably lacking a physical mechanism

as the relaxation lengths seem to be underestimated compared with the results of

the experimental measurements described later.

4.3.2 µRaman measurements

The patterning-induced strain relaxation of these samples has been assessed by

means of µRaman spectroscopy in the work of R. Berthelon Berthelon, 2018. The

monochromatic laser source used during the measurement reached a spatial resolu-

tion of around 500 nm, and the analysis assumed a biaxially strained pseudomor-

phic SiGe film. Within these assumptions, the measured Raman shift only depends

on the Ge-concentration x Anastassakis et al., 1990; Wong et al., 2005; Wolf, 1999:

∆ωSi−Si =
p

2ω0

[(
1− 2

C12(x)
C11(x)

ε�(x)
)

aSiGe(x)
aSi

− 1
]

(4.3)

where ε�(x) = a�
SiGe−aSiGe(x)

aSiGe(x) is the in-plane strain for growth along the (001) direc-

tion, aSiGe(x) is derived from 4.2, the Cij(x) are the elastic constants of Si1−xGex, ω0

is the peak position of Silicon and p is the deformation potential (p = −1.85ω2
0)

As a result, the Raman measurement of wide (50 µm) stripes provides quantitative

evaluation of the Ge-concentration. This is made possible through the assumption
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that the stripes are made of pseudomorphic SiGe, i. e., a�
SiGe = aSi. Furthermore the

Ge-concentration is presumed to be the same for all the structures within a same

sample (see Figure 4.2). As a result, the Ge-content is found to be equal to 22.2% for

all samples but the bilayer sample; the latter features a slightly higher concentration

of 23.7%. The most likely explanation of this difference is the spatial fluctuation

of Ge-concentration during the epitaxy of SiGe. Indeed, on the one hand, all the

samples with a 20 nm-thick SiGe layer are grown on the same Si wafer and on the

other hand, Ge-enrichment is only possible when the (at least quasi-) totality of Si in

the starting SOI substrate has been consumed by oxidization. That way, the bilayer

stack with SOI remaining in-between the SiGe layer and the BOX is less likely to

experience an increase of the Ge-concentration.

However, these assumptions do not take into account process variability (e. g. com-

pletion of the condensation process) or any other dependence on the thickness or

strain. That way, it is likely that slight in-depth inhomogeneities or sliding at the

SiGe/BOX interface arise, leading to a deviation of the SiGe in-plane lattice parame-

ter from the Si substrate lattice parameter. For instance, one should note that a 0.1%

error in the assumed in-plane lattice parameter (i. e. a�
SiGe = 1.001× aSi in equation

4.3) of the pseudomorphic SiGe leads to a 1.1% difference in the Ge-concentration.

In addition, it is assumed that the error on peak position is ±0.1cm−1 which leads

to an uncertainty on the Ge-concentration calculation of ±0.3%. The case of per-

fectly matching interface sets a conservative lower bound of the Ge-concentration,

of 22.2%±0.3%, whereas the case of slight mismatch at the interface, with the same

error coming from the Raman measurement, sets a conservative upper bound of

23.3%±0.3%. All in all, if one the Ge-concentration of the SGOI sample of reference

can safely be said to be between 21.9% and 23.6%.

Then, when the SiGe layer is patterned in one direction (x-axis from Figure 4.2),

a free boundary condition is introduced and allows unidirectional strain relaxation,

breaking the biaxial configuration. Studying 2 mm-long SiGe stripes makes it possi-

ble to extract the partially relaxed strain in the transverse direction. With the knowl-

edge of the Ge-concentration, the fully-relaxed SiGe lattice parameter is known, as

well as the elastic constants of Si1−xGex (interpolated using Vegard’s law Vegard,

1921) and the initial strain before patterning ε�. As a result, the Raman shift only

depends on the strain in the transverse direction εXX. On 5 and 2 µm wide stripes,

µRaman scans of 200 nm step size (with a 500 nm spot size) have been performed.

The results are showing an increase of the Raman shift towards the negative values,

which means a compressive strain reduction. However, the measurements at the

edge of the stripes still exhibit a high εXX strain, whereas it should theoretically

tend to zero for very small width (note that one deals with real strain, i.e. deforma-
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tion of the material with respect to its relaxed lattice parameter). This is attributed

to the spot size being too large to give sufficient resolution.

In order to get more sensitivity to the strain relaxation, it has been decided to

perform µRaman measurements on arrays of stripes. This way, the spot covers

several stripes, the frequency shift is thus related to the mean strain in the stripes.

Stripes of width 100 nm, 250 nm and 500 nm have been measured. The narrower

the SiGe stripe, the lower the value of SiGe Raman frequency peak i.e., the lower

the εXX strain. This is expected as a finer stripe should be made of more relaxed

lattices than a wider one.
98 Chapter 3 Strain-induced layout effects in SiGeOI pMOSFETs

Figure 3.29: Extracted mean strain 𝜀𝑋𝑋 accord-
ing to the stripe width 𝑤 for SiGeOI and SiGe/Si
bilayer. The lines correspond to FEM mechanical
simulations. The SiGe compressive strain decreases
when the stripe width is reduced for both samples
because of the relaxation on edges. The SOI of the
bilayer shows an increased uniaxial tensile strain
for reduced stripe widths.

Figure 3.30: Extracted mean strain 𝜀𝑋𝑋 accord-
ing to the stripe width 𝑤 for SiGeOI with and with-
out SiN. The SiN layer enables to better maintain
the compressive strain in the SiGe layer, especially
for 𝑤=100nm. The lines correspond to FEM simu-
lations assuming an unstressed (solid) and a 1GPa
tensely stressed (dashed) SiN layer.

layer in tension. The more the SiGe loses its compressive strain, the more tensile strain is transferred
into the SOI.

The impact of the SiN is shown in Figure 3.30. The compressive strain in the SiGe layer is better
maintained for narrow stripes with the presence of the SiN layer, especially for 𝑤=100nm. This is
expected from simulation since the SiN layer mechanically acts as a spring in parallel, preventing the
SiGe to relax. This is even more true when considering that the SiN layer deposited by LPCVD
exhibits an intrinsic tensile stress of 1GPa. Nevertheless, the strain experimentally extracted for the
500nm-wide stripe is lower than expected from simulations, like for the SiGeOI sample.

The role of the pad oxide between the SiGe and the SiN is found to be insignificant, showing same
strain relaxation with or without this layer.

3.2.4.e Conclusion on µRaman measurements

In this section, a methodology to assess the patterning-induced relaxation of the stress in SiGe is
presented. This methodology relies on µRaman measurements, which has the advantage of being a
non-destructive physical characterization technique. Different patterned SiGe samples have been
fabricated. The lateral strain relaxation in SiGeOI seems stronger than in a SiGe/Si case, even though
the difference is not obvious. The role of the SiN hard mask layer is also investigated, preventing the
SiGe relaxation.
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Figure 3.29: Extracted mean strain 𝜀𝑋𝑋 accord-
ing to the stripe width 𝑤 for SiGeOI and SiGe/Si
bilayer. The lines correspond to FEM mechanical
simulations. The SiGe compressive strain decreases
when the stripe width is reduced for both samples
because of the relaxation on edges. The SOI of the
bilayer shows an increased uniaxial tensile strain
for reduced stripe widths.

Figure 3.30: Extracted mean strain 𝜀𝑋𝑋 accord-
ing to the stripe width 𝑤 for SiGeOI with and with-
out SiN. The SiN layer enables to better maintain
the compressive strain in the SiGe layer, especially
for 𝑤=100nm. The lines correspond to FEM simu-
lations assuming an unstressed (solid) and a 1GPa
tensely stressed (dashed) SiN layer.

layer in tension. The more the SiGe loses its compressive strain, the more tensile strain is transferred
into the SOI.

The impact of the SiN is shown in Figure 3.30. The compressive strain in the SiGe layer is better
maintained for narrow stripes with the presence of the SiN layer, especially for 𝑤=100nm. This is
expected from simulation since the SiN layer mechanically acts as a spring in parallel, preventing the
SiGe to relax. This is even more true when considering that the SiN layer deposited by LPCVD
exhibits an intrinsic tensile stress of 1GPa. Nevertheless, the strain experimentally extracted for the
500nm-wide stripe is lower than expected from simulations, like for the SiGeOI sample.

The role of the pad oxide between the SiGe and the SiN is found to be insignificant, showing same
strain relaxation with or without this layer.

3.2.4.e Conclusion on µRaman measurements

In this section, a methodology to assess the patterning-induced relaxation of the stress in SiGe is
presented. This methodology relies on µRaman measurements, which has the advantage of being a
non-destructive physical characterization technique. Different patterned SiGe samples have been
fabricated. The lateral strain relaxation in SiGeOI seems stronger than in a SiGe/Si case, even though
the difference is not obvious. The role of the SiN hard mask layer is also investigated, preventing the
SiGe relaxation.

Figure 4.10 – From R.Berthelon Berthelon, 2018. Extracted mean strain εXX according to
the stripe width w for SGOI with and without SiN, and for SiGe/Si bilayer.
The lines correspond to FEM mechanical simulations. The SiGe compressive
strain decreases when the stripe width is reduced for both samples because of
the relaxation on edges. The SOI of the bilayer shows an increased uniaxial
tensile strain for reduced stripe widths. The SiN layer enables to maintain the
compressive strain in the SiGe layer, especially for w=100 nm.

Figure 4.10 shows the mean strain εXX deduced from Raman analysis for all sam-

ples compared with FEM simulations. One can derive two conclusions from the two

subplots. Firstly, the impact of the SiN: the compressive strain in the SiGe layer

remains even for stripes of width 100 nm, which matches with the simulation since

the SiN mechanically prevents the SiGe from relaxing. Secondly, the strain extracted

experimentally for stripes of width 500 nm is lower than expected from simulations:

the relaxation length is higher than expected, and should reach at least 250 nm as

a 500 nm-wide stripe exhibits the same averaged strain as a 100 nm-wide, that is

fully-relaxed.
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4.3.3 NBED measurements and modeling

The patterning-induced strain relaxation of the samples has also been assessed by

means of NBED in the work of R. Berthelon Berthelon, 2018. NBED measurements

give the relative deformation of the SiGe with respect to the lattice of relaxed Silicon,

by comparing the SiGe diffraction pattern with the one of the bulk Silicon lying

underneath.

Furthermore, as the self-consistent force-distributed model of Hu Hu, 1979, 1991

failed to be consistent with the observations 4, they propose an empirical description

of the stress relaxation occurring in patterned SGOI. Starting from a simple expo-

nential decay with only one parameter, the typical relaxation length λ, and taking

into account the impact of two edges plus the fact that this function must cancel at

both edges, the relaxation can finally be written as ::

frelax = 1− exp
( x

λ

)
− exp

(
−Lact − x

λ

)
+ exp

(
−Lact

λ

)

where Lact is the active area length. One just needs to integrate σ0(xGe)× frelax(x, Lact)

to derive the mean stress 〈σ〉.

Figure 4.11 – From R. Berthelon Berthelon, 2018. Relative deformation after etching from
NBED measurement and analytical model for an active length of 800 nm. The
model from Berthelon, 2018 assumes a typical relaxation length λ = 84 nm
(black line) while our model is using a typical relaxation length of λ = 220 nm
(blue line)

4. The Hu’s model neglects the strain variation of the film along the surface normal (very thin film
approximation) and considers a distributed force in the film resulting from the coupling of the film
relaxation with the substrate. For the model to be valid, the substrate and the film should also be
perfectly adherent.
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Figure 4.11 shows the relative deformation profile on a SGOI of active length

Lact = 800 nm. The profile is confronted with the empirical model, translated into

relative deformation assuming a Ge-concentration of xGe = 25% and with a typical

relaxation length λ = 84 nm. One could note that the slope of the model looks

sharper than the slope of the actual dataset, and the model’s plateau is 400 nm-

long while the plateau of the dataset is less than 200 nm-long. This would indicate

that the typical relaxation length used is underestimated. As seen in Figure 4.11, a

model using a relaxation length λ = 220 nm, depicted by the blue line, looks far

more consistent with the dataset.

4.4 scanning x-ray diffraction microscopy

4.4.1 Principle

The technique of SXDM is a powerful method to characterize small features com-

bining the lattice parameter resolution supplied by hard X-ray diffraction with the

beam size available in real space. Scanning X-ray diffraction microscopy is a scan-

ning probe technique that allows the study of individual nanostructures, giving

access to qualitative and quantitative characterization of the structural properties,

e.g. lattice parameters and orientations Mocuta et al., 2008; Hanke et al., 2008. Con-

trary to transmission electron microscopy, SXDM needs no a priori preparation of

the sample and can be used for both embedded structures or in situ experiments. As

a result, SXDM can be sometimes called “non-destructive”, although care should be

taken with the number of photons interacting with the sample as they may impact

it.

However, the technique is limited by two main experimental difficulties. Firstly,

the nanoscopic size of the sample makes its localization very difficult. Secondly,

scanning a structure with a nano-focused beam and steps of a few hundred nanome-

ters may take a long time.

4.4.2 Quick mapping

The beamline control program at the ESRF, SPEC, allows performing step scans

: each step requires an amount of time which is determined in the one hand by

the exposure time, intrinsically related to the diffraction power of the sample and

limited by the least necessary counting statistics, and on the other hand by a fixed

holding and settling time, which includes data transfer and connection between

program and motors/detector. At the ID01 beamline, this latter time is of the order

of 1 s per frame when using a 2D detector, and represents the lower limit of the
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total time required for each step. With exposure time of the order of milliseconds

for samples such as nanomaterial thin-films and photon counting pixel detectors

enabling exposure time shorter than a millisecond, it is clear that the weakness of

step scans is the positioning time of the hardware and software.

These difficulties were overcome thanks to the development of a continuous quick

mapping scanning mode (Kmap) Chahine et al., 2014. The development and inte-

gration of a multipurpose unit for synchronization sequencing and triggering card

provided the means to combine high-speed continuous motion with precise and

continuous readout, together with high-frequency image recording. In other terms,

it enables reducing the overhead and parallelizing positioning, exposure, and data

handling.

Thanks to this fast-continuous two-dimensional mapping, a 100 x 100 µm2 space

map with 500 nm step size (40 000 frames) with 10 ms exposure time went from 10

hours of measurement down to 7 minutes. The benefits are two-fold. Firstly, this

makes possible precise and fast localization of the target sample by mapping real

space at only a few angles. Secondly, reciprocal space maps can now be obtained

within a few hours of beamtime instead of days. For example, a spatial map at each

angle of a 20-points rocking curve that would require approximatively nine days of

measurement in a basic step-scan mode is now feasible in less than 2.5 hours. A full

dataset I(x, y, Qx, Qy, Qz), which is then five-dimensional, often represents approxi-

mately 0.3TB of uncompressed data (and few tens of GB once compressed). These

features will be still improved by the extremely brilliant source project presently

under way at the ESRF, that will increase the brilliance by a factor of about 40 and

the coherence of the beam by two orders of magnitude.

4.4.3 Experimental protocols

In this subsection, the general principle of SXDM is described, followed by the

definition of key parameters and typical applications. The experimental setup is

then detailed carefully, with a point-by-point “how to” of a SXDM experiment at the

ID01 beamline.

The general principle of SXDM is to record, on each position of a scanned sample,

three-dimensional Bragg peaks by rotating the sample and recording frames on a

two-dimensional detector. By adding a third dimension to the 2D detector data, a

precise location of the center of mass of the Bragg peak is achievable and thus gives

access to the local structure variations.
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ki kf

Figure 4.12 – Sketch of the experimental setup of a SXDM experiment. KB mirrors focus a
beam on a sample that is raster scanned on a piezo stage, at a certain Bragg
angle in order to record the corresponding diffraction on a 2D detector. Both
real space (x,y) and reciprocal space (Qx,Qz) axes are depicted to understand
the coordinate systems that are used during SXDM. The figure also depicts
the incident and exit wavevectors (ki, kf) and all the angular motor to set the
sample in Bragg condition (η, φ, χ).

That way, SXDM yields information on tilt and strain at each position of a 2D

sample by generating 5D dataset that can be represented by two map, one in real

space with a resolution limited by the size of the X-ray beam on the sample, and

one in reciprocal space, formed by slices of 2D diffraction pattern from each illumi-

nated spot, whose resolution is then limited by the beam divergence. The typical

setup of a SXDM experiment with KB mirrors is depicted in Figure 4.12. In theory,

Abbe’s diffraction limit sets the relation between the focal spot size S and the beam

convergence angle 2α to be S = λ/(2 sin α) which indicates that the wavelength λ

should be the fundamental resolution limit. However, the achievable spot size in

real-life experiment is most of the time limited by the source size combined with

the working distance which defines the maximum demagnification ratio that can be

reached.

The photon yield of the X-ray source combined with the scattering power of the

sample are key parameters to define the working regime of the technique. Pene-

tration depth and robustness of the sample usually define the X-ray energy regime

and maximum counting time of illumination.

Some typical applications are:

— orientation/strain/composition mapping in semiconductor devices,

— imaging of ferroelectric/ ferromagnetic domains,

— imaging of phase coexistence,

— tracing crystallization paths in e. g. phase change memories.
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A fast readout two-dimensional Maxipix photon counting, mounted at 96 cm from

the sample, with 516 x 516 pixels of 55 µm size, was used to record the diffracted

intensities. The sample (Figure 4.2) was mounted on a fast scanning piezoelectric

stage with a 2 nm resolution and a 200 µm range.

To be able to get reasonable counting statistics from the ultra thin SiGe layers

along with high lateral resolution, a specific setup has been used with no monochro-

mator but a 0.4% bandwidth pink beam illumination at 8 keV. The X-ray beam was

then focused down to a 380 nm (horizontal) x 170 nm (vertical) spot size using KB

mirrors, with coherent slits opened at 200 µm x 60 µm, in order to reach 3.5x106

photons/sec/nm2. This flux density was possible thanks to the use of a pink-beam.

After aligning the beam on the center of rotation of the diffractometer 5, the inci-

dent beam was characterized using two methods. The first one consists in scanning

a Silicon wedge on the sample stage vertically, while the beam is aligned with the

horizontal direction of the sample stage, so as to go from a state where the beam is

fully illuminating the detector to a state where no photon reaches it. This enables

to get a grazing incidence onto the sample stage and one can then move the sample

rotation to 0.2◦ and the detector arm to 0.4◦ in order to get the reflected beam on

the detector. Another vertical scan of the Silicon wedge gives a good estimation of

the beam profile of around 220 nm (see Figure 4.13). The second method is more

complete. Using direct ptychography on a reference sample (Siemens Star 6), the

incident beam is fully characterized in amplitude and phase, within a few tens of

minutes - alignment, scan and data analysis Leake et al., 2019. This task is per-

formed using a python library developed at the ESRF Favre-Nicolin, 2019; Mandula

et al., 2016. From this second method, one can derive the beam size at the focal

plane to be 385 nm in the horizontal and 170 nm in the vertical directions (see Fig-

ure 4.13). After a first series of alignment scans, the coherent slits of the KB mirrors

were opened to their maximum (i.e. 200 µm x 200 µm) in order to get even more

flux, and reducing the horizontal size to 220 nm.

5. The COR of the diffractometer is done using image registration of a feature registered with the
beamline microscope Diffractometer COR alignment on the intranet of the ESRF (accessible to ESRF
users).

6. Siemens star sample, on the intranet of the ESRF (accessible to ESRF users)

http://wikiserv.esrf.fr/id01/index.php/Diffractometer_COR
http://wikiserv.esrf.fr/id01/index.php/Diffractometer_COR
http://wikiserv.esrf.fr/id01/index.php/Siemens_star_-_calibration_chart
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Figure 4.13 – KB incident beam (probe) profiles. On the left-hand side, the dotted black
line represents a scan of the beam in the vertical direction, and the red line
is the associated Gaussian fit that leads a 226 nm FWHM. On the right-hand
side, both vertical (blue line) and horizontal (red line) profiles from the recon-
structed beam via ptychographic scan of a reference pattern (Siemens Star) are
depicted, leading to a beam size of 385 nm (horizontal) x 172 nm (vertical).

Once the beam is aligned and characterized, one needs to find out the structure

of interest on the sample. Thanks to the DIVA lithography mask, the different areas

of one sample are easily identifiable with the beamline optical microscope, at the

time mounted vertically on top of the sample. Then, a finer alignment is helped by

the fast continuous mapping at a Bragg angle: once the sample is put in diffraction

condition, a raster scanning of a zone with just a detector integrated intensity map

gives clear location of the features of interest.

The next important step is to optimize the Bragg diffraction angles for both the

substrate, so that a clear reference can be used, and the SiGe layer, by radial scans

at each reflection of interest. For instance, the (004) reflection of the buried bulk Si

provides an absolute reference for the further calculated lattice parameters. From

Figure 4.14, the center of mass of the Si peak on the detector, at the incident angle

giving rise to the maximum of intensity can be estimated to be at (X = 220, Y =

266) in pixels. This, combined with the known position of the direct beam and

the angles of the diffractometer, provides ameasured
Si = 4λ/(2 sin θ) = 5.441Å. This

value corresponds to a 0.19% absolute error relative to the tabulated Silicon bulk

lattice parameter at room temperature (aSi = 5.431Å for an incidence angle of 34.8◦),

which gives rise to a normalization factor that will be applied throughout the entire

analysis of the data. Note that the approximation made by rounding on the pixel

corresponds to around 0.005% of the absolute error relative to the tabulated Silicon

lattice parameter.
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Figure 4.14 – (Left) Rocking curve on the (004) reflection of the Silicon substrate with a 0.01◦

angular step. The drop around the middle of the curve is due to the gaps of
the Maxipix detector (see 4.5.2.2 for more insights) that were not properly
corrected, but has no influence in the estimation of the center of mass of the
rocking curve, displayed as a vertical dotted blue line. One can note that
the COM in η (the incidence angle) does not corresponds with the theoretical
value for the tabulated (004) reflection of Silicon bulk (34.8◦). The cause is
the absence of numerical correction of the η offset for this scan, but also it also
indicates that the measured Silicon lattice parameter is going to differ and will
have to be corrected for all future calculations. (Right) Position on the detector
of the center of mass of the Silicon Bragg peak for each frame of the rocking
curve, in the horizontal (red dotted curve) and vertical (blue dotted curve)
direction. The vertical dotted blue line indicates the position of the center of
mass of the rocking curve.

The (004) SiGe reflection, as Germanium has a larger lattice parameter than Silicon

(aGe = 5.658Å), will appear at a lower incident angle, thus at a lower scattering

vector (Q = 4.589Å−1). Each detector frame corresponds to a two-dimensional

slice of the reciprocal space, defined by the wavelength and the direction of the

incident and scattered X-ray beam. Once this Bragg peak is found on the detector,

one can start performing two-dimensional scans of the sample while rocking it in

order to record the 3D reciprocal space of the scattered intensity from the (004)

SiGe crystalline planes. Thanks to the spectral divergence of the pink beam, this is

achieved by a 0.4◦ rotation of incident angles between 34.28◦ and 34.68◦with a 0.01◦

angular step.

The same method was used to analyse the asymmetric (113) reflection, which is

quite well separated from the contribution of the Si substrate and has also the advan-

tage to be almost tangential to the Ewald’s sphere at 8 keV. In order to acquire strain

and tilt information from the (113) reflection, 3D scanning is performed for incident

angles varying between 53.99◦ and 54.39◦ with a 0.01◦ angular step, collecting the

diffracted beam at 2θ = 55.7◦. This reflection thus also presents the advantage of be-

ing closer to a normal incidence on the sample, hence providing a smaller footprint

yielding a higher spatial resolution.
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One can note that the 0.4% energy bandwidth of the pink beam can be transcribed

into an angular bandwidth thanks to Bragg’s law :

2d sin θ = λ⇒ ∆λ

λ
=

∆θ

tan θ
⇔ ∆θ = tan θ

∆λ

λ
(4.4)

From equation 4.4, it derives a 0.45% angular bandwidth, i.e 0.12◦ for θ = 28◦

(004) and 0.16◦ for θ = 34.8◦ (113). This shows that the angular bandwidth of the

incident beam is larger than the angular step of the rocking curves, meaning that

the data is oversampled.

More information about the strain tensor can be retrieved on samples which have

been measured at the two (004) and (113) reflections. It could also be extrapolated

for the thinner samples assuming that the out-of-plane strain, deduced from the

(004) reflection measurement, would not change from one sample to the other.

4.5 sxdm analysis

4.5.1 Introduction

When dealing with SXDM, some problems come into play, both for the measure-

ment step and the analysis step. Part of them are linked to the acquisition of

diffracted data, which is necessarily limited by the scan ranges but also deeply

linked to the quality and calibration of the detector: gaps, flatfield, hot pixels have

to be corrected. Then another unavoidable uncertainty comes from the parasitic

motion of the sample due to misalignment. Last but not least, the shape of the re-

ciprocal space can be very misleading, and one has to distinguish peak overlapping

and background noise for instance. Often, the signal coming from the substrate of

an epitaxial layer is the main issue.

4.5.2 Assessing and addressing issues

Before going into more details about the typical analysis procedure, the following

elucidates the problems that have been listed above.

4.5.2.1 Scan ranges

Finite scan ranges create virtual boundaries in each of the 5 dimensions. This

means that both the real space, i.e. the scanned area of the sample, and the recipro-

cal space, i.e. the intensity distribution of scattered radiation, have limited extents.

In order to cope with the limited field of view in real space, an optical microscope

is used. For samples with patterns of few microns in size, the microscope is suffi-
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cient to localize the region of interest. By the time of the experiment, this optical

microscope was mounted on top of the sample stage and had to be removed after

alignment, as it was impeding the rocking movement of the diffractometer for high

δ angle. Hence, a precise map of the sample was first built from microscope images,

using the patterns of the DIVA mask as references (see Figures 4.4 and 4.3).

However, in reciprocal space, a rocking curve at one particular point of the sam-

ple is not enough to know the extent of the diffracted intensity and as soon as

strong tilt is present, the beam may leave the detector window. Correctly assessing

the center of mass of a partially known intensity distribution requires a thorough

measurement with wide ranges and many points in rocking scan.

4.5.2.2 Detector gaps, flatfield, hot pixels

Gaps in the detector will distort the center of mass analysis if not considered (as

seen in Figure 4.14). For ID01’s Maxipix detector, gaps between the four modules

can be filled, and hence intensity redistributed (see Figure 4.15). The same is true

for dead pixels, which should not be set to zero but either interpolated or masked.

Physical pixels :
Measured distribution :
Corrected distribution :

Figure 4.15 – Pixels redistribution for Maxipix. First line represents the physical reparti-
tion of the pixels, with two being three times bigger than their neighbor to
compensate the physical gap separating two modules. Second line is the ac-
tually measured distribution, with three virtual pixels taking the place of the
big physical one: the first contains all the intensity, whereas the two next are
empty. Third line shows the corrected distribution, involving a redistribution
from the first virtual pixel towards the two after.

4.5.2.3 Parasitic motions

There are three different and independent source of parasitic motions. Firstly, the

confusion sphere of the motors limits the precision of the displacements, and even

after good optical alignment from the start of an experiment, a 1 µm per degree shift

is the minimum. Indeed, due to the confusion sphere, it is not possible to make

simultaneously the focus of the beam, the surface of the sample and the center

of rotation of the stage coincide on a same spot. Secondly, noise in mechanical

stability is coming from e. g. temperature fluctuations and mainly from gravity

nduced drifts. As we work at Bragg angles, the stage has to stay rotated at high

angles during several hours, leading to a slow “sinking” of the sample as a function
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of time. Last but not least, systematic drift will always be present and the only way

to get rid of it is by applying Bond method requiring to redo several time the same

acquisition. This is in practice difficult, hence parasitic motions will be present.

Hence, the problem becomes how to assess the actual amount of drift induced by

this misalignment.

Drifts evaluation is usually not possible without looking at the full 5D SXDM

dataset, and the challenge is complicated by the fact that sample waviness will

produce apparent drift in diffraction which is not related to the physical drift. In

other words, natural tilt of the sample will make it diffract at a large range of angle,

thus there might not be any clear extinction of the diffraction while rocking the

sample.

There are two methods to assess drift in an efficient way. On the one hand, one

may look at the sum of intensity over η (the rocking angle) - over a certain Region

Of Interest (ROI) of the detector to eliminate parasitic diffraction - and vary the

shift per angle. If the sample presents a sharp interface in the scanning plane,

the minimization of the sum of all discrete differences along the axis of the given

interface, with respect to the shift per angle, will give a good estimation of the real

drift. On the other hand, if the sample presents a strongly scattering feature, one

would rather try to identify manually this feature at all the different angles from

the rocking curve. The latter will be more robust in situations where the beam

size is similar to the size of the pattern of interest, or if the tails of the beam are

too extended. Once the drift is retrieved, a subpixel correction is used. This is

done with a linear shift and not higher polynomial interpolation, because even if it

would preserve resolution, it would mainly produce negative intensity values and

make the future fit impossible. Finally, we were able to determine that during our

experiment on SGOI layers, drift has varied up to a maximum of 2 µm per degree.

4.5.2.4 Diffractometer misalignment

In a general case, for a thorough and complete evaluation of strain and composi-

tion, absolute values are required from SXDM. Indeed, the δ angle (detector arm)

and the energy define the d-spacing. However, in a case where we are not inter-

ested in getting the full strain tensor the solution for absolute values assessment is

eased. First, one has to measure a reference reflection for a known component (e.g.

the substrate). Then compare macroscopic measurements (e.g. powder diffraction

in a lab) with the sample-average of SXDM : a simple tweaking of the δ offset for

each measurement in order to meet reference values is enough. Note that from

the growth condition of the SGOI layers, shear strain is not expected in our sam-

ple configuration hence this simple method based on a reference measurement is

enough.
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4.5.2.5 Peak overlap, background issue

When dealing with epitaxial films, the presence of a substrate with a lattice pa-

rameter close to the one of the film leads to the generation of two Bragg peaks in

reciprocal space close to each other, and often overlapping.

In the best case scenario, there is only a slight overlap and maxima of both peaks

are still separated. Then it is possible to use only a ROI on the detector to virtually

cut off the substrate peak and calculate the center of mass of the selected distribu-

tion. But often this center of mass will be distorted and not really representative

of the actual lattice parameter of the probed layer. To tackle this issue, one can

calculate the center of mass using a threshold or instead perform a peak fit with

background removal, i.e., assessing the signal coming from the substrate alone, on

an area of the real space with no epitaxial layer.

In the worst case scenario, when the overlap is strong enough that the ROI bound-

aries need to be adapted for each point of the SXDM map, a realistic fitting of the

whole distribution is required and this has no general recipe. The best way is then

to fit projections of reciprocal space, using non-linear least-square minimization as-

sociated to a Gaussian function. Indeed, a 3D fit is not robust enough, particularly

as it demands interpolation which becomes probelematic with small intensities.

4.5.2.6 Full strain tensor

Retrieving the full strain tensor is possible only if three non-coplanar Bragg re-

flections are scanned in order to disentangle tilt and strain. A further complicating

factor for that is the correct matching of the surface coordinates of the three different

datasets. This can be done by correlating either real space features clearly visible or

reciprocal space angular components as each reflection contains partially redundant

information about tilts of unit cells Hofmann et al., 2017. Then, the general equa-

tion relating the diffraction vector Q from a certain reflection [hkl] with the crystal

parameters is :
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In which the U matrix is the orthogonal matrix that defines the crystal orientation

with respect to the diffractometer coordinate system and the B matrix is the recipro-

cal metric tensor, determined uniquely by the unit cell of the crystal. The U and B

matrices are often combined into a single matrix UB, sometimes referred to as the

“orientation matrix”. With three non-coplanar reflections, the nine unknowns from

eq 4.5 can be solved for each position on the sample locally.
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4.5.3 Typical analysis road-map

4.5.3.1 Introduction

In an ideal experiment, with all necessary references and measurements, the work-

flow of analysis could follow this:

— Correct whatever is possible to correct (detector, motion, background...);

— Get an overview of the 5D data: merge, convert, visualize (with the correct

choice of coordinate system);

— Reduce the dataset to three 2D dataset Q(x, y) from the extraction of the aver-

age peak position for each point;

— Combine data from 2 to 3 reflections to obtain the complete crystallographic

metric (a, b, c, α, β, γ)

— Interpret the obtained results

4.5.3.2 Example on the (113) Bragg reflection for 13 nm-thick SGOI

merging and first visualization

The first step of the analysis is to merge all the real space scan from each an-

gle into the full 5D dataset, and correct and convert the raw detector images to

reciprocal-space slices. Then, one has to take a closer view of the data, by looking

at detector-average, surface projections and average Q-space. The detector average

enables to determine ROI of scattering coming from the target sample (in our case,

to distinguish the SiGe scattering from the Silicon substrate scattering). For instance,

Figure 4.16 shows the averaged reciprocal space along the Qx direction, i.e. normal

to the detector. The Silicon substrate scatters more than the 13 nm-thick SiGe, gener-

ating a strong peak on the top part of the detector, combined with diffuse scattering

and a truncation rod all along Qz. A first correction is made by masking the pixels

of the detector receiving the most flux from Si scattering, and Figure 4.16b makes

the SiGe scattering visible.
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Figure 4.16 – (113) Reciprocal space averaged along the direction normal to the detector (Qx)
from all positions on the sample (C, D4) : (a) without any mask applied on
the detector, the strongest signal at Qz ' 3.43Å−1comes from the Si substrate
and is convoluted with the beam. (b) After masking on each detector pictures
the same areas, i.e. Si peak, and its truncation rod (vertical stripe around 160),
the signal coming from the SiGe is finally visible, spreading along Qz because
of the thickness of the sample.

Surface projections at each rocking angle will make it possible to identify drift of

the sample during the η-rocking.

To visualize the reciprocal space projections, one has the choice between Cartesian

coordinates that is suitable for fully strained, pseudomorphic layers, and spherical

coordinates that is efficient for relaxed layers, as the Q-modulus will directly be

the inter-planar spacing (|Q| = 2π/d) and the angles will account for tilts in two

orthogonal planes (φ the azimuthal tilt and θ the planar tilt).

θ

(r,θ,ϕ)

r

Qz 

Qx 

Qy 
φ 

Figure 4.17 – From Cartesian to spherical coordinate system.

q-space projections

In order to reach the (113) Bragg peak, Qz has been aligned close to the [00l]
reciprocal lattice vector (i.e. along the sample normal) and Qx to the [110] reciprocal

lattice vector, as the SGOI pattern is <110> oriented.

Figure 4.18 shows the reciprocal space intensity projected along the spherical axes,

summed over the full scanned area. Here, Two different maxima can be distin-
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guished, one coming from the Si substrate at higher |Q| and giving rise to a silicon

truncation rod, and the other one, extended in |Q|, coming from the strained SGOI.
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Figure 4.18 – Projections of 3D reciprocal space map intensity from the (113) asymmetric re-
flection of SiGe (sample C), for the sample average (“large-beam” equivalent).
Intensities are in arbitrary units, spherical coordinate system, (a) without any
mask on the detector, (b) with masking of the Si substrate scattering. Mosaic-
ity clearly appears from the elongated shape along θ, synonym of planar tilt,
and from the spread in φ, related to azimuthal tilt. Note however that the
planar tilt measurement is limited to ±0.5◦ due to the limited angular scan
range, and that the azimuthal tilt measurement is restricted to the spanning
of the detector. Once again, the finite thickness of the sample is reflected in
the stretching along the radial component|Q|: ∼ 0.5Å−1 translates into 125 Å,
which fits with the 13 nm thickness of sample C.

On Figure 4.18b, one can see the same projections of Q-space calculated from the

masked detector images, i.e. with a mask applied on the pixels recording mainly

scattering from the Si substrate, and hence the SiGe scattering appears more clearly,

with an adapted colorbar. In the (φ, θ) plane, two streaks originating from the cen-

tral diffraction peak of SiGe are visible and are the signature of high tilt of the crystal

lattice at the edges of the square patterns. In the (φ, |Q|) plane, the diffraction width

reflects the finite thickness of the sample, which thus can be retrieved: a ∼ 0.5Å−1

reciprocal spanning translates into 125 Å in real space, which is in accordance with

the 13nm thickness of the probed layer.
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Note however that this serves only visualization purpose, as it has been observed

that masking Si scattering prior to Q-space conversion impairs fitting of SiGe peak,

as some pixels were also recording SiGe scattering, possibly at a different η angle.

In order to cope with the issue of substrate scattering, background estimation is

necessary. It is possible to do this by monitoring positions on the sample where

no SGOI is present. The signal from a significant number of SiGe-free positions can

be averaged and then subtracted. Another way to eliminate substrate scattering

from the analysis is to set a ROI in reciprocal space. For certain samples with high

background noise, both methods have been used. After removing Si signal and

cropping, Q-space can be integrated in order to get local peak positions, for each

location of the sample.

Figure 4.19 shows an example of the fitting of the projections for three different

locations on a 2 x 2 µm2 SiGe pattern. The locations are depicted with red, green

and blue crosses on the intensity map on the bottom right. In order to highlight

the edge-effect on the analysis and on the strain, these three locations have been

chosen at borders of the square, one only along the direction of the beam (Y) as the

symmetry along this direction might be broken due to the rocking of the sample,

and two on the (X) border for clarity, as the symmetry along the horizontal axis is

respected. On the left side of Figure 4.19, from left to right, appear projections along

each of the three principal Cartesian axes (Qx, Qy, Qz) along with the position of the

center of mass (COM, plain vertical line) and the center of the Gaussian fit (dotted

vertical line). These give us insight about the accuracy of the analysis, and a first

glance at the behavior of strain and tilts from different locations on the sample. For

instance, the variations in Qcen
x and Qcen

y from one location to an other show us that

the azimuthal tilt (φ = arctan
(

Qy
Qx

)
≈ Qy

Qx
as Qy

Qx
→ 0) varies from ±0.01

◦.
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Qx Å−1

0

10000

20000

0.00 0.05

Qy Å−1
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Figure 4.19 – Example of projection fits for three different locations on a 2 x 2 µm2 square

pattern. The three locations are depicted with colored cross on the intensity
map (red, blue, green) to show the differences in the intensity projections
along Cartesian axes for typical area of the sample. Each column represents
projection onto one axis (Qx , Qy, Qz) for the three locations : bullet marked
line are coming from data, straight vertical line depicts the position of the
COM, dotted vertical line the position of the center of a Gaussian fit (and for
the third column, an other point dotted line depicting the data after correction
of the substrate scattering). Note that the effect of substrate scattering is 10

times more important for Qz higher than the right-most abscissa, hence the
choice of plotting a limited range. A difference between COM and Gaussian
fits is clearly visible for the Qz axis, with a shift on lower Qz values for COM,
hence the Gaussian fit is preferred for this axis. Note also the variations of the
COM on Qx according to the position on the sample, as Qx is aligned with the
<110> sample direction and is also parallel to the direction of the scattering
beam: the COM varies accordingly to the bending of the sample.

4.6 results and discussion

4.6.1 Comparison between samples obtained by condensation and by standard smart-cut
process

As described earlier, the specificity of the samples studied lies in the particu-

lar process of condensation. This technique has to be compared with the tradi-

tional smart-cut molecular bonding technique that is conventionally used to obtain

strained Silicon-On-Insulator layers. An experiment conducted in 2015 at the ESRF

gave us indications about the homogeneity of samples made by molecular bonding,
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which can now be compared with the results of the SXDM on SGOI (sample A), on

a structure which can be assimilated to a full sheet layer (C6).

Figure 4.20 depicts the comparison between these two approaches. The first row

is made up of results from the condensation process, while the second row shows

the results from the process of smart-cut and transfer of a strained Si layer. Each row

presents the deviation from the Bragg angle (at the symmetrical (004) reflection), the

azimuthal tilt and the planar tilt.

Figure 4.20a & a’ give information on the homogeneity of the crystalline layer,

which is comparable for the two techniques, except that clear gradual undulations

along both directions appear on the bottom row. This so-called “cross-hatch” pat-

tern, attributed to the graded structure which results from the relaxation process of

two orthogonal non regular networks (oriented along the <110> directions) coming

from the epitaxy of strained Si on SiGe before the transfer Hartmann et al., 2007;

Kimura et al., 2006; Kutsukake et al., 2004. The existence of “cross-hatch” pattern is

long known Kishinû et al., 1972 and has been quantitatively studied with e.g. scan-

ning force microscopy Hsu et al., 1992, and SXDM Zoellner et al., 2015Richard et al.,

2015.

Tilt maps depicted in Figure 4.20b,c & b’,c’ refer to the angular deviation of the

diffracted beam in the direction either perpendicular or parallel to the scattering

plane. Thus, they relate how locally bent the structure is. Once again, the cross-

hatch pattern is visible on the second row, whereas the scale for the first row is

an order of magnitude lower, and clearly demonstrates the absence of underlying

inhomogeneities. Indeed, the mosaicity is about 0.1◦ and the standard deviation of

both azimuthal and in-plane tilt is σ = 0.08◦ for the second row, against σ = 0.004◦

for the first row. Note that the ranges are not identical between the two rows.

Furthermore, one can distinguish on Figure 4.20b’ a clear vertical defect on the

sample made by traditional molecular bonding, at X = 80 µm.

All in all, the effectiveness of the condensation method to lower tilt fluctuations

and defect is well shown. Nonetheless, it can be stressed that the map of the Ge

enriched structure only covers a 8 x 8 µm2 area, compared with 100 x 100 µm2 for

the other structure.
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Figure 4.20 – Comparison of the diffraction maps recorded on a 13 nm-thick SiGe layer
obtained by the condensation Tezuka, Sugiyama, et al., 2001; Nakaharai et al.,
2003; Gourhant et al., 2014; Vincent, J.-F. Damlencourt, et al., 2007; Glowacki et
al., 2014; Morin et al., 2015 method (a,b,c) and on a 70 nm-thick sSOI layer ob-
tained by the traditional smart-cut and molecular bonding Bruel, 1995 (a’,b’,c’):
(a-a’) measured Bragg angle 2ϑ. (b-b’) (resp. (c-c’)) angular deviation of the
diffracted beam in the direction perpendicular (resp. parallel) to the scatter-
ing plane. The sSOI sample (second line) shows a vertical defect positioned
at about X=80 µm and the vertical and horizontal stripes appearing on the tilt
maps are related to the cross-hatch pattern Kishinû et al., 1972. These stripes
are not present in the condensation sample (note the different color scales for
(b-b’) and (c-c’)), demonstrating the effectiveness of the condensation method
to lower tilt fluctuations.

4.6.2 2 x 2 µm2 Silicon-Germanium On Insulator (SGOI) squares (D4)

The 2 x 2 µm2 structures have been scanned on samples A, B and C. Map of 12 x

12 µm2 or 6 x 6 µm2 have been performed with a 100 nm step size in each direction

of the piezo motors.

4.6.2.1 20 nm-thick layer with SiN (Sample A)

Concerning sample A, the role of the silicon nitride layer on top as a protective

layer was checked, by observing a long-lasting stability under the X-rays: no sig-

nificant evolution of the diffracted intensity during the measurement was observed

below 250 s of continuous exposure. This sample has also been probed for both
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the (004) and the (113) Bragg reflections, in order to determine a part of the strain

tensor.

Figure 4.21 shows the maps for these two reflections. The first map of both Fig-

ure 4.21a and 4.21b depicts the 2D integrated intensity over the detector frame that

corresponds to the most intense slice of the SiGe Bragg peak. This gives a clear indi-

cation of the square SGOI patterns and is used as reference to determine a threshold

that enables us to separate the square islands from the substrate underneath. In

practice, it is used to generate the white mask of the other maps.

Note that the squares appear less straight for the (004) measurements than for the

(113), because for this reflection: (i) the Silicon substrate peak is closer to the SiGe

one (i.e. the overlap is higher) and (ii) the projected beam onto the sample is wider,

causing a blurring effect. Indeed, as the incident angle for the (004) (respectively

(113)) reflection is 34.5◦ (resp. 53.2◦), the vertical beam footprint on the sample is

300 nm (resp. 212 nm).

It is also important to stress out that the quality of the results is poorer in the

vertical (Y) direction due, not to the asymmetry of the incoming beam, but to the

artifacts induced by the movement of the sample which sinks over time. Hence, the

expected four-fold symmetry of strain and tilt is reduced to a two-fold symmetry, in

the direction of the highest spatial resolution (X). Note that the four-fold symmetry

is due to the crystallographic symmetry, as the boundaries are parallel to the in-

plane 〈110〉 crystallographic directions, within ≈ 1◦.
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Figure 4.21 – Map of a 12 x 12 µm2 area of sSiGe-on-insulator layer of thickness 20 nm
(sample A), for both 4.21a the (004) and 4.21b the (113) Bragg reflection. (Left)
Maximum of intensity integrated on the whole detector for each pixel. (Cen-
ter) RMS tilt angle, taking into account both the perpendicular and parallel
angular deviation with respect to the scattering plane. (Right) (above) Out-of-
plane strain εzz distribution, (below) strain ε113 distribution, both calculated
with respect to the bulk Si lattice parameter. High tilt (up to 0.5◦) and strain
variations on the edges of the patterns are clear evidence of the side relaxation
of the islands.

The center maps of Figure 4.21 show the square-root of the sum of the squared

azimuthal and planar tilts (Root Mean Square, RMS). These clearly demonstrate

the bending of the squares at the edges, intrinsically linked to the relaxation of the

lattice parameter. The latter mentioned relaxation is exhibited in the last column

of maps through strain distribution. Suppose that we focus on the out-of-plane

strain (Figure 4.21a) which is the most intelligible as it is just the expression of

the expansion of the cubic lattice in the growth direction. As the in-plane lattice

parameter at the interface between the Silicon substrate and the SiGe layer is fixed
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at the Silicon lattice parameter, the SiGe tends to expand in the growth direction in

order to get back to the relaxed SiGe lattice parameter. When looking at the edge,

the SiGe has the possibility to expand in the plane perpendicular to the growth

direction, hence its normal lattice parameter will shrink. This is observed as the

mean out-of-plane strain ε004 = εzz w 1.52% at the center of each square whereas at

the edge, the lowest value measured is ε004 = εzz w 1.48%.

As it can be seen from the above results, the footprint of the beam on the sample

was too large to allow precise analysis of the relaxation at the edges, only an average

value can be extracted. However, interesting statistical information can be drawn

from the fact that nine squares are probed within one scan. By defining an area

of 300 x 300 nm2 at the center of each square, one can assess the homogeneity

inside one square and from one square to another. Figure 4.22 depicts the strain

distribution at the center of each square for both the (004) and (113) Bragg reflections.

On a subset of nine squares, one can observe that the strain distribution is fairly

homogeneous, ε004 spanning from 1.5% to 1.53% (2% fluctuation) and ε113 from

1.218% to 1.233% (1.2% fluctuation) average. Furthermore, within one square the

quadratic mean of the strain distribution is smaller than 0.01%, indicating that each

square pattern is homogeneous.
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Figure 4.22 – Statistical repartition of strain at the center of the 2 x 2 µm2 squares of 20 nm-
thick sSGOI w\ nitride. (a) Out-of-plane strain from the (004) Bragg reflection,
which averages across all squares to 1.52%. (b) Strain from the (113) Bragg
reflection, whose average is of 1.227%. Each column regroups all the points
within the 300 nm x 300 nm area at the center of a square. The light blue error
bars span from the average strain to ±σε, the root mean square of the strain
distribution within a square, found to be lower than 0.01% each time.
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Combining information from the two reflections, one can retrieve the in-plane

strain at the center of the squares. Indeed, the inter-planar spacing d113 is directly

linked to the dimensions of the unit cell:

d2
113 =

(
1
a2 +

1
b2 +

9
c2

)−1

(4.6)

Hence, assuming that the symmetry of the system leads to a = b = a�, measure-

ments of d113 and d004 = c/4 allow calculation of the in-plane lattice parameter:

a� =

√
2
(

1
d2

113
− 9

(4d004)2

)−1

(4.7)

This result should hold at least at the center of the squares, where the biaxial

stress is maintained even after etching.
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Figure 4.23 – (Top) Interplanar distances extracted from a horizontal profile on three squares
(from the (113) reflection in blue, from the (004) reflection in red). (Bottom)
In-plane lattice parameter extracted from the measurements. Note that the
border and void regions (corresponding to d004 < 0.1378 nm) are invalid due
to either low intensity, higher tilt than covered by the reciprocal scan range
or simply because it is an area without any SiGe structure. Moreover, one
should keep in mind the horizontal footprint of the beam of 220 nm, which
limits the spatial resolution. Nonetheless, on the in-plane lattice parameter
profile, a slight increasing trend at the edges is noticeable, the marker for side
relaxation.

Figure 4.23 shows an example of profile plots over three different squares. The

bottom row is obtained by feeding Equation 4.7 with the two measured interplanar

distances, whose behaviour is depicted on the top row. Obviously, the data are in-

valid as soon as they are no longer measured on a SiGe square, whose edges are

well visible on the first row. The corresponding in-plane lattice parameter calculated
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in the center of the squares oscillates around 5.435 Å, i.e. a 0.08% strain with respect

to the Silicon substrate. It is important to note that 0.08% strain falls within the as-

sumption made in 4.3.2 about defects at the back interface, modifying the expected

Si/SiGe in-plane lattice matching.

One can also observe that the layer geometry leads necessarily to the absence of

stress in the out-of-plane direction :

σzz = 0 = C31εxx + C32εyy + C33εzz (4.8)

Since C31 = C32 = C12 in an isotropic and cubic material like SiGe, and taking into

account that the distortions are assumed to be biaxial, Equation 4.8 can be reduced

to:

εzz = −
2C12

C11
εaverage = −

2ν

(1− ν)
εaverage (4.9)

where εaverage =
(εxx+εyy)

2 and ν is the Poisson’s ratio of the SiGe, which depends on

the Ge content x in Si1−xGex. For a given content, the Poisson’s ratio can be derived

by linear interpolation of Silicon and Germanium’s known Poisson ratio. The same

goes for a0(x) = b0(x) = c0(x) the crystal lattice constants for zero strain. Once

again, by assuming the local symmetry of the cubic crystal bearing biaxial stress,

one can write εaverage =
a−ao(x)

a0(x) = b−bo(x)
b0(x) =

a�−a�,o(x)
a�,0(x) . Hence, Equations 4.7 & 4.9 can

be combined in order to recover the Ge-content x inside the layer: xmean
Ge = 21.98%

averaged on the nine probed squares. This is in good agreement with the target

Ge-content of the process, but nonetheless valid only for the homogeneous central

part of the pattern.

Note however that this result can be further analysed by taking into account

the propagation of the uncertainties on the calculated interplanar distances. The

precision of the calculations from the projections fitting reaching approximatively

10−5, one can estimate that the variations from the variety of strain will mostly im-

pact the precision of the Ge-concentration. By probing several patterns over one

map, and by acquiring many points within a central area on each of these pat-

terns, a statistical standard deviation can be evaluated: εmean
004 = 1.52%± 0.01% and

εmean
113 = 1.227%± 0.004%. This leads to mean Ge-concentration ranging between

21.41% and 22.55%.

4.6.2.2 20 nm-thick layer without SiN (Sample B)

For this sample, we perform a map of 8 x 8 µm2 with a 100 nm step size in

each direction of the piezo motors and only the (113) reflection has been probed.

The same analysis as for sample A is used and Figure 4.24 shows the intensity,

RMS tilt and strain maps. The (Y) direction is less reliable than the horizontal (X)
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one, and the same method of masking from intensity thresholding is applied. The

RMS tilt denotes a four-fold symmetry with up to 0.1◦of inclination on the very

borders while the upper part of each square’s strain breaks this symmetry. This can

be explained again by the continuous drift induced by the sinking of the sample

during the measurement time.
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Figure 4.24 – Map of a 8 x 8 µm2 area of strained SiGe-on-insulator layer of thickness 20 nm
without nitride on top (sample B), for the (113) Bragg reflection. (Left) Max-
imum of intensity integrated on the whole detector for each pixel. (Center)
RMS tilt angle, taking into account both the perpendicular and parallel angu-
lar deviation with respect to the scattering plane. (Right) strain ε113 distribu-
tion, calculated with respect to the bulk Si lattice parameter. Drift in the (Y)
direction, along the beam propagation, is visible from the strain map. In the
transverse (X) direction, the decrease of the strain towards the edges of the
patterns indicates relaxation.

The substrate’s contribution for this sample is very high, as fifty times more

summed counts (over the forty-one points of the rocking curve) are coming from

the Si than from the SiGe, on a central part of a square. This number jumps to a

few hundred on the borders of the square, where the quantity of SiGe matter lit by

the beam drops quickly. Analysis on the edges is thus made difficult as the signal

is largely disturbed and substrate subtraction imprecise. Nonetheless, one can still

rely on the analysis at centers, where the (113) averaged strain is found to be around

1.125%± 0.007%.

Fig 4.25 shows the statistical repartition of strain across the four scanned squares,

highlighting the fact that there is less than 0.02% variation on the area, with a

standard deviation smaller than 0.007%. Note that the average strain of 1.125% is

0.1% lower than the one found on the same kind of 2 x 2 µm2 structure grown on

sample A. In order to check if the out-of-plane value at the center of the square

is homogeneous from one sample to another, we first use the average out-of-plane

lattice parameter found for the sample A to calculate the Ge-content of sample B,

leading to xmean
Ge,B = 15.96%± 0.4%. Compared to the Ge-concentration found for

sample A, this value is less in accordance with the target Ge-content of the process,
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demonstrating that the value of the out-of-plane lattice parameter measured on

sample A cannot be extended to other samples.
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Figure 4.25 – Statistical repartition of ε113 strain at the center of the D4 squares of 20 nm-
thick sSGOI w\o nitride. Each column regroups all the points within the
300 nm x 300 nm area at the center of a square. The light blue error bars span
from the average strain to ±σε, the root mean square of the strain distribution
within a square. The average strain over all squares is found to be 1.125%,
with a RMS error of 0.007%, illustrating the accuracy of the measurements.

Yet, to determine the Ge-concentration of the SiGe layer, one can start from an-

other assumption: the rigidity of the back SiGe/Si interface fixes the SiGe lattice in

the in-plane direction, hence a�
SiGe = aSi. Equation 4.7 can then be used to express

d004 as a function of a�
SiGe and the measured d113. Finally, equation 4.9 is inverted

to retrieve the x content of Germanium inside the SiGe biaxially strained layer, the

result holding only for the central part of a square: xmean
Ge = 20.6%. The latter is then

in accordance with the specifications of the growth process. Moreover, note that the

variations of εmean
113 over the centers of the patterns lead to a standard deviation of

0.139%. In addition, the impact of sliding or in-depth inhomogeneities can be eval-

uated. Indeed, the assumption of a defect at the back interface results in up to a

0.1% increase of the in plane lattice parameter a�
SiGe from Bulk Silicon and hence

modifies the Ge-concentration. This way, replacing a�
SiGe = aSi by a�

SiGe = 1.001× aSi

leads to a new Ge-concentration of xmean
Ge = 21.39%± 0.139% (note that the standard

deviation of the measurements is not impacted by this new assumption, as the latter

mainly derives into a translation of the mean).

4.6.2.3 13 nm-thick layer without SiN (Sample C)

For this sample, we perform a map of 8 x 8 µm2 area with a 100 nm step size

in each direction of the piezo-motors. This sample is made of a lower quantity
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of matter than the previous ones, as the SiGe layer is only thirteen nanometers

thick. This translates into a small number of counts from the SiGe scattering (mean

counting of 7 photons/pixel/0.1s) as compared to Si substrate scattering (mean

counting of 1.8 x 103 photons/pixel/0.1s), as it is depicted in Figure 4.26, and makes

the analysis more challenging.

These measurements correspond to state-of-the-art nanobeam diffraction on Si -

with quite low Z number - at this ultra-low thickness. Figure 4.27, in which the

squares appear in a visible way from the contrast of the intensity map, shows that

with the chosen optics (KB mirrors, with coherent slits opened at 200 µm x 200 µm

to optimize the flux) we can still obtain accurate results.
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Figure 4.26 – Detector frame from a rocking curve with 0.1 second exposure on the SiGe
(113) reflection of the full sheet 13 nm-thick SGOI SGOI (sample C). Two ROI
have been drawn, one in red centered on the SiGe peak, and one in white
centered on the Si scattering, in order to estimate the mean counting value
of the two scattering layers caught by the detector. With that, one founds
the SiGe to scatter a mean value of 7 photons/pixel/0.1s, when Si scatters a
mean value of 1800 photons/pixel/0.1s. Note that the colorbar depicting the
number of photons per 0.1s has been intentionally capped to 30 in order to
make the SiGe scattering visible.

Both tilt and strain denote a four-fold symmetry that was not clearly evidenced

in sample B, possibly a sign of better alignment of the sample with respect to the

center of rotation of the experimental stage. Tilt increases uniformly from the center

to edges, where it does not exceed 0.14◦. The strain of the (113) crystalline planes

looks homogeneous on the center part of each of the four square, where it reaches

an average value of ε113 = 1.391% ± 0.01%. Calculated with the same method

of averaging a set of around fifteen points located at the center of a square, the

standard deviation of the strain is below 0.01%, proving good homogeneity of the

measurement. Fig 4.28 shows the repartition of strain over the scanned area, with

an averaged value over the center of one square oscillating between 1.382% and

1.407%.
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Figure 4.27 – Map of a 8 x 8 µm2 area of strained SGOI layer of thickness 13 nm without
nitride on top (sample C), for the (113) Bragg reflection. (Left) Maximum
of intensity integrated on the whole detector for each pixel. (Center) RMS
tilt angle, taking into account both the perpendicular and parallel angular
deviation with respect to the scattering plane. (Right) strain ε113 distribution,
calculated with respect to the bulk Si lattice parameter. The behaviour of both
strain and RMS tilt demonstrates the side relaxation of the islands.

The 1.391% strain of the (113) direction is slightly higher than the one measured

on samples A & B. From the back interface rigidity assumption (see 4.6.2.2) a higher

ε113 induces a higher out-of-plane lattice parameter and thus necessarily results into

a higher concentration in Germanium. By following the same method, inversion of

equation 4.9 allows extracting xmean
Ge = 25.35%± 0.158%. 7

Besides, one could note that a 0.1% relaxation at the back interface leads to

xmean
Ge = 26.11%± 0.177%.

7. Note that the method consisting in reusing the out-of-plane lattice parameter measured on
sample A to calculate the Ge-concentration leads in this case to a mean value of 32.35%, consolidating
the idea of leaving this method on the side for further analysis.
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Figure 4.28 – Statistical repartition of ε113 strain at the center of the D4 squares of 13 nm-
thick SGOI without nitride on top (sample C). Each column regroups all the
points within the 300 nm x 300 nm area at the center of a square. The light
blue error bars span from the average strain to ±σε, the root mean square of
the strain distribution within a square. The average strain is of 1.391% with a
0.01% root mean square error.

On this sample, it is of interest to notice that strain profiles can be extracted along

the squares, thanks to the good quality of the diffracted data and the lack of drift

during the scanning. Figure 4.29 shows horizontal and vertical strain profiles, along

the four scanned squares. The impact of the edges is clear, with a diminution of

strain which is synonym of tensile strain reduction.
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Figure 4.29 – (113) strain map and profiles of 2 x 2 µm2 pattern of 13 nm-thick sSGOI, with-
out nitride on top. The colored stripes on the strain map depict the area of
integration for respective profile. On the right-hand side sits vertical strain
profiles from the four squares (red and green lines), and on the top side sits
horizontal strain profiles from the four squares (orange and blue lines).

Finally, the highly similar strain profiles from one square to the other, both hor-

izontally and vertically, and together with similar average strain values from the

center of each square, show the high accuracy and reproducibility of the measure-

ments and also the good homogeneity of the SGOI and its strain relaxation.

4.6.2.4 Bilayer: 20 nm-thick-SiGe/Si/BOX without nitride on top (sample D)

For this sample, a map of a 4 x 8 µm2 area was performed with a 100 nm spacing

in each direction with the piezo motors. The Si layer in between the SiGe and the

BOX is not of concern for the experiment, as it has been found to diffract at the same

position as the Si substrate. Indeed, the diffraction pattern of the SiGe did not look
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as if it was polluted by a signal coming from the Si underneath. Hence the same

analysis method has been employed. Figure 4.30 depicts the repartition of tilt and

strain over two squared patterns. Note that the (Y) direction suffers this time from

the drifts hence provides results of lower quality than in the (X) direction.
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Figure 4.30 – Map of a 4 x 8 µm2 area of the bilayer 20 nm-thick-SiGe/Si/BOX (sample D)
from the (113) Bragg reflection. (Left) Maximum of intensity integrated on the
whole detector for each pixel. (Center) RMS tilt angle, taking into account both
the perpendicular and parallel angular deviation with respect to the scattering
plane. (Right) strain ε113 distribution, calculated with respect to the bulk Si
lattice parameter. The (Y) direction is clearly impacted by drifts issues hence
providing results of lower quality than in the (X) direction, along which the
strain evidences relaxation on the edges of the pattern, at the same time as the
RMS tilt increases.

In the (X) direction, the decrease of the ε113 strain from the center to the edges

of the squares proves relaxation of both the tensile out-of-plain and compressive

in-plane strain. Strain relaxation is paralleled by an increase of tilts on the very

edges, up to 0.1◦. A finer analysis comparing the repartition of strain, comparing

the trend over both squares and the trend over the central area of both squares

is presented in Figure 4.31. Areas of 300 x 300 nm2 centered on each square has

been used to draw the red histogram, which results in a mean value of deformation

of 1.247%± 0.002%. Note that this standard deviation error results only from the

statistical collection, and not from the accuracy of the measurement method.
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Figure 4.31 – Histogram of 20 nm-thick-SiGe/Si/BOX with respect to bulk Silicon lattice
for the (113) reflection. Blue histogram presents the repartition over the entire
square. Red histogram depicts the repartition over a portion centered on the
square, made of approximately 15 points which correspond to an area of 300 x
300 nm2. The average strain from the latter distribution is shown by a dotted
dark red line. The behaviour of the histogram follows the expected trend: the
higher frequency is around the center-pattern-mean value of 1.247%, and as
the strain decreases, the frequency decreases as well, showing the homogene-
ity of the layer at the same time as the tensile out-of-plane strain relaxation
and compressive in-plane strain relaxation.

Associating this mean value with the biaxial strain hypothesis and the back inter-

face rigidity assumption, one can retrieve the Germanium of the 20 nm-thick SiGe

layer to be xmean
Ge = 22.78%± 0.04%. This value can rise up to 23.56%± 0.04% if

one assumes a 0.1% mismatch between SiGe and Si at the interface. However, one

should emphasize that this bilayer sample has undergo nor the condensation pro-

cess neither the annealing. Thus, the perfect rigidity of the back interface is even

more likely than for the other samples.

4.6.3 5 x 5 µm2 SGOI squares (D6)

The 5 x 5 µm2 structures have been scanned on the samples A and C. Maps of

∼10 x 10 µm2 have been performed with a 100 nm step size in each direction of the

piezo motors, again performing a rocking curve made of 40 η angles with a 0.01◦

step, around the same angles as described in section 4.4.3.
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4.6.3.1 20 nm-thick layer with SiN (Sample A)

Both (004) and (113) Bragg reflections have been scanned over sample A, allow-

ing precise measurement of out-of-plane lattice parameter and interpolation of Ge-

content. The intensity maps observed in Figure 4.32 evidence clear localization of

the square pattern from both reflections, even though a small gradient is noticeable

in the (Y) direction, due to sample drift. This causes blurring in the (Y) direction

and discards the edge analysis.

Concerning the analysis from the (004) reflection, one can focus on what happens

along the (X) direction, with a clear sharp tilt increase on the edges, i. e., a bending

of the layer at this location. Nonetheless, the behaviour of the out-of-plane strain

is not as expected while going from the center to the borders. Indeed, progressive

relaxation of the SGOI layer is expected, from a fully strained state up to 300 nm

close to the edge, to a relaxed state on the edge, i.e. an increase of the in-plane

strain which is exactly a decrease of the out-of-plane strain. On the other hand, the

trend of the out-of-plane strain is to increase on the (X) borders.

One of the argument for choosing the (113) Bragg reflection during the experiment

is the possibility to reach it by a simple η displacement, i.e. by rotating only one

motor and staying within the same scattering plane since all the SiGe layers are

<110> oriented. A drawback is that the analysis for the (113) Bragg reflection suffers

from the same issue of sample drift, along the same direction as the other samples.

Figure 4.32b still evidences a 0.1◦ tilt on the (X) borders and high homogeneity of

the strain at the center of the 5 x 5 µm2 square.
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Figure 4.32 – Map of strained SGOI, 20nm thickness, with nitride on top (sample A). The
pattern is a 5 x 5 µm2 square. From left to right, intensity map from detector
integrated images with a ROI (region of interest) centered on the SiGe Bragg
peak, RMS tilt map and map of strain with respect to the lattice of bulk Silicon.
The top row (a) comes from the analysis of the data collected during the (004)
Bragg reflection probing, giving insight to the out-of-plane behaviour of the
layer, whereas the bottom row (b) is obtained from the (113) Bragg reflection.
The striking information is the very high uniformity of both tilt and strain a
few hundred nanometers from the edges, sign of homogeneity and defect-free
aspect of the crystalline layer.

Furthermore, as the pattern is wider than the ones from the previous section

(4.6.2), a more detailed analysis of the strain distribution around the center of the

square pattern can be led. Figure 4.33 depicts this distribution for the two Bragg
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reflections. When looking at the distribution throughout the entire square (blue

histogram), one can notice that the strain spreads over 0.2%, from 1.4% to 1.6% and

from 1% to 1.2% for (004) planes and (113) planes respectively. This large spread is

attributable to the specific behaviour at the edges, thus one can discard it to focus

on the repartition of strain within a smaller portion of the square, i.e., from a set

of around 400 probed points, covering an area of approximately 2 x 2 µm2 centered

on the square pattern. Then, the homogeneous distribution is evidenced by the red

histograms of figure 4.33 which highlights a 0.02% spread of the strain, around a

mean value of 1.5% for the out-of-plane strain and 1.15% for the (113) strain.

As both the (004) and the (113) Bragg reflections are measured for this sample,

it is possible to combine the results of strain analysis with equation 4.7 to evaluate

the in-plane lattice parameter. Then, the measured out-of-plane strain is combined

with the extracted in-plane strain, assuming biaxial strain as in equation 4.9 in order

to get access to an averaged Ge-content: xmean
Ge = 18.13%± 0.393%. Note that with

the assumption of the rigidity of the back interface (i. e. a�
SiGe = aSi), the use of

only d004 leads to a Ge-concentration of 23.45%± 0.05%, whereas the use of only

d113 leads to 21.06%± 0.12%. These discrepancies probably indicate either that the

SiGe/Si back interface of the sample suffers from inhomogeneities and sliding, or

that the condensation process has not been homogeneous throughout the depth of

the sample.
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Figure 4.33 – Histograms of SGOI strain with respect to bulk Silicon lattice, for (a) the (004)
and (b) the (113) Bragg reflections. Blue histogram presents the repartition
over the entire square (more than 2000 points are taken into consideration).
Red histogram depicts the repartition over a portion centered on the square,
made of approximately 400 points which corresponds to an area of 2 x 2 µm2.
The average strain from the latter distribution is shown by a dotted dark red
line.

4.6.3.2 13 nm-thick layer without SiN (Sample C)

On this sample, only the (113) Bragg reflection has been probed. Even though the

sample C contains less matter than the other, due to it being ultra thin - 13 nm thick

- the analysis gives better results. From Figure 4.34, on the one hand, the square’s

corners appear less right-angled (but this can be real, as it can be seen in some TEM

images, see Figure 4.5) and on the other hand, the dimensions are well respected.

More importantly, the four-fold symmetry of both the RMS tilt and the strain is

clearly visible in this pattern. Homogeneous tilt, up to 0.09% on the very edges,

evidences the good uniformity of the layer, the absence of defects and the relaxation

on the borders. Same goes for the (113) strain, which is fairly homogeneous in the

center.
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Figure 4.34 – Map of strained SiGe-on-insulator, 13 nm thickness, without nitride on top.
The pattern is a 5 x 5 µm2 square probed with (113) reflection. From left to
right, intensity map from detector integrated images with a ROI centered on
the SiGe Bragg peak, RMS tilt map and map of strain with respect to the lattice
of bulk Silicon. A few hundred nanometers from the edges both tilt and strain
present very high uniformity, sign of homogeneity and defect-free aspect of
the crystalline layer. The RMS tilt reaches almost 0.1◦ on each of the very
edges, while the strain decreases from 1.39% at the center down to 1.20% at
the edges, showing tensile out-of-plane strain relaxation.

In terms of statistics, Figure 4.35 depicts the distribution of the (113) strain over

the square. Considering a set of approximately 400 points taken at the center of the

square, an averaged value of 1.392%± 0.008% is found. This, combined with the

back interface rigidity and equation 4.9, enables one more time to estimate the Ge-

concentration of the layer: xmean
Ge = 25.36%± 0.153%, which is 3% higher than the

target of the process. Note that this Ge-concentration is in agreement with the one

measured on the same sample but different patterns (see section 4.6.2.3), providing

assurance towards the measurements on this sample.
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Figure 4.35 – Histogram of SGOI strain with respect to bulk Silicon lattice from the (113) re-
flection. Blue histogram presents the repartition over the entire square (more
than 2000 points are taken into consideration). Red histogram depicts the
repartition over a portion centered on the square, made of approximately 400

points which correspond to an area of 2 x 2 µm2. The average strain from
the latter distribution is shown by a dotted dark red line. The behaviour
of the histogram follows the expected trend: the higher frequency is around
the center-pattern-mean value of 1.392%, and as the strain decreases, the fre-
quency decreases as well, showing the homogeneity of the layer at the same
time as the tensile out-of-plane strain relaxation and compressive in-plane
strain relaxation.

The same goes for this sSGOI sample as in section 4.6.2.3, the good analysis quality

allows for an extraction of the strain profile. Figure 4.36 shows such strain profiles
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in both parallel-beam direction and orthogonal-beam direction. On the edges, the

tendency for a decrease of the strain is clear, meaning diminution of the tensile out-

of-strain as expected due to the free-boundary conditions introduced by the etching

of SGOI around the square.
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Figure 4.36 – Strain map and profiles. The two colored stripes on the strain map depict
the area of integration for respective profile. On the right-hand side sits the
vertical strain profile (red line), and on the top side sits the horizontal strain
profile (blue line). Integrations have been performed on wide enough stripes
to average small variations of strain and minimize errors from the step-by-step
scanning method. The strain relaxation is then evidenced: the strain remains
around a plateau of 1.39% from the center of the square until a few hundred
of nanometers from the edges, where its value drops in a qualitative way. The
quantitative value of strain at the very borders is not reliable as their location
is approximative and because of the decrease of the signal. Nonetheless, we
can still claim that there is at least a 0.1% decrease in strain.



4.6 results and discussion 119

4.6.4 500 x 500 nm2 SGOI squares (D2)

For these 500 x 500 nm2 patterns, the beam size becomes almost similar to the

size of the pattern, hence the spatial resolution decreases. In order to get statistical

information of the average strain & Ge-concentration, scans of 8 x 8 µm2 have been

performed on samples A and B.

4.6.4.1 20 nm-thick layer with SiN (Sample A)

Information from the reference 20 nm-thick SiGe sample has been gathered for

the (004), the (113) and the (11̄3) reflections. Figure 4.37 depicts the intensity, RMS

tilt and strain maps from both the (004) and the (113) reflections. One should note

that the lack of intensity from the (004) reflection in a wide area of the scan may be

attributed to the degradation of the layer after multiple scans (the (113) Bragg peak

has been scanned first, then the (11̄3) and finally the (004)). Even if this affects the

quality and quantity of information from the (004) reflection, two dozen patterns

still provide compelling information.
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Figure 4.37 – Map of two 8 x 8 µm2 areas of strained SiGe-on-insulator layer of thickness
20 nm (sample A), from both (113) (a) and (004) (b) Bragg reflections. The two
rows depicts the same information: (Left) Maximum of intensity integrated on
the whole detector for each pixel. (Center) RMS tilt angle, taking into account
both the perpendicular and parallel angular deviation with respect to the scat-
tering plane. (Right) (a) strain ε113 distribution, both calculated with respect to
the bulk Si lattice parameter, (b) Out-of-plane strain εzz distribution. The (004)
reflection (b) evidences clear drops of scattering, hence the patterns located
in areas associated with the lowest intensities are discarded from the analy-
sis. The red insets show the location of the pattern that is used for detailed
analysis (see Figures 4.38 & 4.40).

In order to show the behaviour of the strain over a pattern, in the direction trans-

verse to the propagation of the beam, i.e. along (X), the Q-space projections from

the (004) reflection (respectively from the (113) reflection) along Qz (respectively Qx

and Qz) are displayed in Figure 4.39 (respectively Figure 4.41), for the positions de-

picted in Figure 4.38 (respectively Figure 4.40). Projections appear both with and

without the Silicon substrate scattering correction, and are displayed along with the

center value from the associated fit function (Center of mass or Gaussian).
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Figure 4.38 – Intensity map from (004) Bragg reflection of sample A, centered on a pattern.
The crosses are related to the projections of Figure 4.39, and the white frame
gives a reference of a 500 nm square. Note that the black mask has been set to
values below the 65

th percentile of the intensity.
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Figure 4.39 – (004) Qz projections from 7 locations extracted along a given squared pattern
(see Figure 4.38 for locations (1) to (7)). On the right-hand side sits a zoomed
view of the left hand-side. Black lines depict the scattering integrated over
the detector for a full rocking curve on one point of the scan, while gray lines
depict the same scattering freed from the Silicon substrate part. Cyan lines
show the Gaussian fit of the associated corrected projection and red vertical
dotted lines signal the center of the Gaussian fit. From the left-hand side, one
can note that the substrate scattering removal enables to smooth the projec-
tions for Qz ≥ 4.56 Å−1, while the zoom-in view shows that the variations of
the center of the Qz Gaussian fit are within 0.001 Å−1 but their trend do not
match the expected trend for relaxation. Indeed, the out-of-plane strain being
inversely proportional to Qcenter

z , we expect to have minimum Qcenter
z -value

from diffraction at the center of the square [i. e. positions (3-4)] and maximum
Qcenter

z -value at the edges [i. e. positions (1) and (7)].

For the (004) reflection, only the Qz projections are meaningful as Qx w Qy w 0 .

As the out-of-plane strain is inversely proportional to the norm of the Q vector, we

have:

ε004 ∝ 1/ |Q| ' 1/Qcenter
z

Hence, the position of the center of the Gaussian peak, Qcenter
z , directly gives us

insight about strain. In order to assess the evolution of strain across the width
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of a pattern, we extracted the Qz projections of the diffraction coming from seven

points located from left to right on a pattern, as depicted on Figure 4.38. Figure

4.39 shows that through all the locations on the pattern, the variations of the norm

of the Q vector are within 0.001 Å−1. This amplitude translates into a 0.02% strain

variation. Moreover, the behaviour of the strain across the square does not appear

as expected. In the center of the square the out-of-plane strain is expected to be

maximum whereas at the borders it should decrease due to relaxation from etching.

Hence, one should expect minimum Qcenter
z -values at positions (3)-(5) and maximum

Qcenter
z -values at position (1) & (7). From Figure 4.39b, it is clear that the center of

the Gaussian fit from position (1) to (7) does not follow the trend of strain relaxation.

This can be explained either by the method or by the material. On the one hand,

the size of the incident beam probe is about half the the size of the pattern, making

it difficult to measure reliable strain information without averaging. On the other

hand, if the typical relaxation length of the SiGe layer is around 250 nm, i. e. half the

pattern size, it is likely that most of the pattern experiences the same strain state.

One possible conclusion is that no supplementary strain relaxation at the edges

happens, as most of the SiGe layer is in the same strain state and is very likely to

reach its maximally relaxed lattice parameter. One should note that this maximally

relaxed lattice parameter is likely to differ from the fully relaxed lattice parameter

of the SiGe as the presence of the SiN layer prevent the SiGe from fully relaxing.

For the (113) reflection, |Q| '
√

Q2
x + Q2

z . Figure 4.41 shows that the variations

of Qx are within 0.001 Å−1 while the variations of Qz are within 0.002 Å−1 for

eight points located from left to right on a pattern (depicted on Figure 4.40). This

translates into strain varying between 1.11% and 1.06%. Thus, as for the (004) Bragg

reflection analysis, it is very likely that most of the SiGe layer is in the same strain

state and is at its maximally relaxed lattice parameter. Thus, it is fully relaxed.
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Figure 4.40 – Intensity map from (113) Bragg reflection of sample A, centered on a pattern.
The crosses are related to the projections of 4.41, and the white frame shows
the allegedly position of the squared pattern according to the intensity reparti-
tion. Note that the black mask has been set to values below the 65

th percentile
of the intensity.
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Figure 4.41 – (113) (a) Qx and (b) Qz projections from 8 locations extracted along a given
squared pattern (see Figure 4.40 for locations (1) to (8)). Black lines depict the
scattering integrated over the detector for a full rocking curve on one point
of the scan, while gray lines depict the same scattering freed from the Silicon
substrate part. Cyan lines show the Gaussian fit of the associated corrected
projection and red vertical dotted lines signal the center of the Gaussian fit.
Vertical dotted blue lines signal the center of mass of the corrected projections.
Firstly, one can note that the substrate scattering removal enables to smooth
the projections (for Qz ≥ 3.42 Å−1 and Qx ≤ 1.673 Å−1) as the Si and SiGe
peaks are slightly shifted one to each other. Then, from (1) to (8), the Qz center
moves within 0.002 Å−1 and the center of mass of Qx varies within 0.001 Å−1,
accounting for a total variation of strain of 0.05%.

By taking an average over 5 points centered on each pattern, the repartition of

strain through the entire scanned area can be evaluated. Figure 4.42 depicts the

repartition for the (004) and the (113) reflections. As mentioned above, the strain

over one pattern does not vary more than 0.05% thus the variations of the his-

tograms must be related to variations of SiGe properties from a pattern to another,

for instance slight changes of Ge-concentration. The mean value of the out-of-

plane strain is ε004 ' 1.430 ± 0.067% and for the (113) planes the mean strain is

ε113 ' 1.101%± 0.027%. Note that independent measurements from the (11̄3) re-
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flection give the same strain ε11̄3 ' 1.101%± 0.043%, confirming the biaxial assump-

tion. It is worth pointing out that the measured variations, of both ε113 and ε004, are

very small. This denotes the performance levels achieved by the SXDM method with

optimized beam, and demonstrates the accuracy of this method of measurement.
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Figure 4.42 – Strain distribution from (004) Bragg reflection (a) and (113) Bragg reflection (b).
Values are taken from a selection of 5 points from the center of every squared
pattern appearing on the map. The dotted red lines depict the average value
of the distribution. The 13% variations over ε004 are due to the poorer quality
of the scan, on an area that already spent 4 hours under the X-ray beam.

Finally, with the knowledge of both ε113 and ε004, Equations 4.7 & 4.9 can be com-

bined in order to recover the Ge-content x inside the layer: xmean
Ge = 17.47%± 1.65%.

This value is lower than the ones found previously on sample A, but one should note

that a 0.05% increase of the ε113 values leads to xmean
Ge = 20.44%± 1.64% thus the Ge-

concentration is very sensitive to the strain measurements precision. Moreover, one

could notice that by assuming the back interface rigidity hypothesis, and consider-

ing the ε113 measurements, the Ge-concentration becomes xmean
Ge = 20.16%± 0.5%

or xmean
Ge = 20.94%± 0.5% for a slight mismatch at the interface (aSiGe = 1.001× aSi).

One can suppose that the variation of the Ge-composition induced by the gas phase

growth process can also be in the 1-2% range at the wafer scale. This result provides

again a good indicator about the quality of the measurements.
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4.6.4.2 13 nm-thick SiGe without SiN (sample C)

For these 500 x 500 nm2 pattern, map of 8 x 8 µm2 area has been performed for

the (113) reflection. Figure 4.43 shows the intensity, RMS tilt and strain maps. On

this sample, the patterns are easily discernible but the spatial resolution is limiting

the analysis. One can still note a RMS tilt of 0.07
◦ on the edges of the pattern

and especially an homogeneous strain across the area, with variations smaller than

0.05%.
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Figure 4.43 – Map of 8 x 8 µm2 areas of strained SiGe-on-insulator layer of thickness 13 nm
(sample C), from the (113) Bragg reflection. (Left) Maximum of intensity inte-
grated on the whole detector for each pixel. (Center) RMS tilt angle, taking
into account both the perpendicular and parallel angular deviation with re-
spect to the scattering plane. (Right) strain ε113 distribution, both calculated
with respect to the bulk Si lattice parameter. As both tilt and strain present
restricted variations, the patterns are probably in their fully relaxed state. De-
tailed analysis of the square located inside the red inset is given in the Ap-
pendix A.

By performing the same analysis as for the preceding sample, the strain along a

pattern is found to vary less than 0.03%, and the mean (113) strain averaged over

a small area centered on each pattern is found to be 1.224%. Taking into account

the order of magnitude of the strain variations and the fact that the strain does not

exhibit significant decrease when reaching the edges of a pattern, one concludes that

the area is made of patterns that have also reached their maximally relaxed state.

This statement is in accordance with the small characteristic size and the absence of

SiN. Figure 4.44 depicts the aforementioned strain repartition.

From the mean strain value, using the back interface rigidity assumption, one

finds the Ge-concentration of this area to be xmean
Ge = 22.36%± 0.55% for perfect lat-

tice matching, or xmean
Ge = 23.14%± 0.55% for a 0.1% mismatch. Note that this value
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does not match the one found on wider patterns (2 x 2 µm2, see section 4.6.2.3 and

5 x 5 µm2, see section 4.6.3.2) from the same sample. This difference in Ge-content

within a sample, at the wafer scale, can be explained either by intrinsic growth fluc-

tuations (around 1%), but as the pattern are separated by a maximum of 8 mm (see

Figure 4.3) it is more likely that the difference in Ge-content implies the center of

the 500 x 500 nm2 patterns is already relaxing and the pseudomorphic assumption

does not hold anymore: the in-plane lattice parameter can not be considered equal

to the one of Silicon. Thus, one could use the Ge-concentration calculated for wider

patterns (25.3%), along with the (113) interplanar spacing, to derive the in-plane

and out-of-plane strain of the relaxed SiGe layer. Therefore amean
001 = 5.5078 Åand

amean
100 = 5.4520 Åthat translate into εXX = −0.57% and εZZ = 0.44%. Note that

these are the “real deformation” i.e., with respect to the lattice parameter of a fully

relaxed Si0.75Ge0.25, meaning that the center of the patterns still exhibits a compres-

sive in-plane strain.
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Figure 4.44 – Strain distribution from (113) Bragg reflection. Values are taken from a selec-
tion of 5 points from the center of every squared pattern appearing on the
map. The dotted red lines depict the average value of the distribution.

4.6.5 Discussion

Firstly, a quantitative analysis can be carried on the center of the patterns, as they

have a homogeneous area in contrary to the edges, where the introduction of free
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boundaries modifies the strain state. The (113) strain of the samples, measured at

the center of each of the characteristic patterns, is gathered in Table 4.3. This gives

us an insight into the role of the nitride layer, the impact of thickness and the width

of a pattern.

The tensor role of the nitride cap is evidenced by comparing sample A and sample

B. For the same 2 x 2 µm2 pattern, the (113) strain is lower in the absence of SiN

(1.125% without, 1.227% with). The SiN layer hence maintains compressive in-plane

strain.

Compared to the reference 20 nm-thick SGOI (sample A), thinner material (sample

C) appears to undergo more strain (+0.16%).

A first understanding of the relaxation length is given by comparing the 2 x 2 µm2

and 5 x 5 µm2 patterns to the 500 x 500 nm2 ones. Indeed, the 2 x 2 µm2 and 5 x

5 µm2 patterns experience higher strain than 500 x 500 nm2 patterns, which hence

are already in some relaxed state. This suggests that, as we are only considering

the center area of the patterns, the relaxation length is close to half the width of

the smallest patterns. Finally, the probing of the (004) Bragg reflection from the

reference 20 nm-thick SGOI (sample A) gives us confidence about our interpretations

as ε004 =1.43% for the 500 x 500 nm2 patterns, ε004 =1.52% for the 2 x 2 µm2 patterns

and ε004 =1.51% for the 5 x 5 µm2 patterns. However, the (113) strain from the wider

patterns of sample A does not fit with our expectations.

sample/ a : b : c : d :
pattern size 20 nm-thick 20 nm-thick 13 nm-thick Bilayer

w\ SiN w\o SiN w\o SiN SiGe/Si

500 x 500 nm2
1.101±0.027% X 1.224±0.03% X

2 x 2 µm2
1.227±0.004% 1.125±0.007% 1.391±0.01% 1.247±0.002%

5 x 5 µm2
1.151±0.02% X 1.392±0.008% X

Table 4.3 – Table summarizing the (113) strain (in percent) extracted from the (113) Bragg
reflections, averaged over the center of the different scanned patterns for each
sample. The precision represents the root mean square from the statistical distri-
bution of extracted strain.

Secondly, the Ge-concentration calculated from the (113) strain assuming back in-

terface rigidity, i. e. a�
SiGe = aSi, is presented in Table 4.4. The Ge-content values

enable to get a different perspective on the strain differences observed in Table 4.3.

From this sight, it looks like epitaxial growth control can be an issue for an ultra-thin

layer. Indeed, with the assumption of perfect lattice matching at the SiGe/Si inter-

face, higher (113) strain of the SiGe layer leads to higher Ge-concentration. That

way, the 13 nm-thick SGOI contains more germanium (25.35%) than the reference
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20 nm-thick SGOI (≈22%). Note that Ge-enrichment is only possible when the (at

least quasi-) totality of Si in the starting SOI substrate has been consumed by oxi-

dization. Hence the Ge-content that arises from the heteroepitaxial growth of SiGe

prior to condensation is very likely higher for the 13 nm-thick sample than for the

20 nm-thick. Of course, these conclusions rely on the back interface rigidity assump-

tion and any defect, or gliding, at this interface would break the assumption. In case

of total oxidation of the Si layer, the final stack is made of an interface between a

strained SiGe crystal and an amorphous SiO2 material. Thus, it is very likely that

the in-plane lattice parameter of SiGe is free from being different than that of initial

Si lattice on which the SiGe grown.

sample→ a : b : c : d :
↓pattern size 20 nm-thick 20 nm-thick 13 nm-thick Bilayer

w\ SiN w\o SiN w\o SiN SiGe/Si

500 x 500 nm2
20.16±0.5% X 22.36±0.55% X

2 x 2 µm2
22.42±0.09% 20.6±0.14% 25.35±0.16% 22.78±0.042%

5 x 5 µm2
21.06±0.12% X 25.36±0.15% X

Table 4.4 – Table summarizing the Ge-content (in percent) averaged over the center of the
different scanned patterns for each sample. The Ge-content is extracted from the
(113) strain (see Table 4.3) together with two assumptions: biaxial approximation
and back interface rigidity. The precision represents the root mean square.

Nonetheless, another way to extract the Ge-content from the reference 20 nm-

thick SGOI is available since both the (004) and the (113) Bragg reflections have been

probed, leading to the knowledge of the in-plane SiGe lattice parameter without

rigidity assumption. Though, the biaxial assumption, confirmed as the additional

probing of the (11̄3) reflection of the 500 x 500 nm2 patterns gave ε113 = ε11̄3, is

still necessary to derive the Ge-content from equation 4.9. It results in Ge-content

of 17.5% for the 500 x 500 nm2 patterns, 21.98% for the 2 x 2 µm2 patterns and

18.13% for the 5 x 5 µm2 patterns. These variations are attributed to the intrinsic

fluctuations of each step of the process, from epitaxial growth to condensation.
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Figure 4.45 – Distribution of (113) strain from the center of all the probed patterns on each
sample. The dotted lines depict the average strain over the entire distribu-
tion. (a) 500 x 500 nm2 patterns, probed on sample A (20 nm-thick SGOI with
nitride cap) and C (13 nm-thick SGOI without nitride cap). (b) 5 x 5 µm2

patterns, probed on sample A (20 nm-thick SGOI with nitride cap) and C (13

nm-thick SGOI without nitride cap). (c) 2 x 2 µm2 patterns, probed on sample
A (20 nm-thick SGOI with nitride cap), sample B (20 nm-thick SGOI without
nitride cap), C (13 nm-thick SGOI without nitride cap) and sample D (bilayer
SiGe/Si/BOX).

Figure 4.45 summarises the behaviour of the (113) strain throughout the four

different samples and the probed patterns. Histograms of strain are presented by

pattern size.

In a second part, the strain measurement by SXDM on patterned SGOI has evi-

denced side strain relaxation. In order to assess the strain relaxation at the edges,

we compared the extracted strain profiles of the 13 nm-thick SGOI. The choice of

sample was driven by the fact that the mean value of ε113 did not change from the

5 x 5 µm2 patterns and the 2 x 2 µm2 patterns, plus the fact that less parasitic drift
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occurred. Figure 4.46 presents strain profiles along both (X) and (Y) directions, to-

gether with an empirical model adapted from Berthelon, 2018 in order to derive a

typical relaxation length consistent with what have been observed so far; the relax-

ation is expanding until 300 nm from the edges. The relaxation function we used

allows both the edges and the center of the active zone to behave freely:

frelax = fmin + ( fmax − fmin)

[(
1− exp

(
− x

λ

))
−
(

exp
(
− (Lact − x)

λ

))]
(4.10)
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Figure 4.46 – (113) strain profiles from 5 x 5 µm2 and 2 x 2 µm2 paterns of 13 nm-thick
SGOI (sample C) and corresponding curves from the analytical model (see
equation 4.10). The typical relaxation lengths obtained with the analytical
model (lines) are in good agreement with the data (dots) and are between
234 nm and 377 nm.

This model reproduces faithfully the relaxation occurring on both edges, with typ-

ical relaxation lengths between 234 nm and 377 nm. Such relaxation is not consistent

with elasticity simulations ibid. As the precision of the SXDM measurement is high

enough, the intrinsic fluctuations of the two main steps of the reference process can

be incriminated : heteroepitaxy of SiGe on a SOI substrate and condensation by

RTO. The condensation being a kinetic process, doubts on depth homogeneity and

defects/sliding at the SiGe/Si interface have to be tackled once more.
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Recent electron holography measurements tend to validate the interface gliding

assumption Boureau, Reboh, et al., 2019. To analyse these data, a "thin elastic inter-

face" is defined as a boundary in-between the SiGe and the BOX. A relative displace-

ment between them is added, and normal and tangential stiffnesses of this layer are

used to model the in-plane displacement fields. FEM calculations with this model

(adding three parameters) are in quantitative agreement with the holographic mea-

surements. The maximal relaxation of the edge of the SiGe layer is about 3.8 nm

and is not attributed to extended defects (such as dislocations), but rather to the

propagation of defects from the edges (e.g. punctual) that are driven by the stress

at the interface.

4.7 conclusion

In this chapter, details on the evolution of strain engineering for a performance

boost of CMOS transistor have been provided, with a focus on the condensation

technique developed in order to integrate strain in FDSOI. The step of patterning in

order to define active area is key in the appearance of strain relaxation at the edges

of the SiGeOI pattern.

The SXDM technique has been described thoroughly, with a point-by-point pro-

tocol detailing the important steps of both the experimental data collection and its

advanced analysis. From this, the most accurate and precise quantitative results

have been achieved. Advantages and limitations of the technique have also been

given throughout the chapter. In order to gather a complete statistical analysis,

different epitaxial systems have been studied, with different characteristic sizes of

patterns. As a result, the limits of strain sensitivity, or of the equivalent composition

sensitivity, were investigated.

This relaxation has been observed and qualitatively assessed by means of SXDM,

a powerful method giving access to high resolution strain fluctuations (up to 10−5)

with X-ray beam size limited spatial resolution (around 100 nm). Fluctuations

in Ge-content have also been evidenced, suggesting that intrinsic fluctuations of

hetero-epitaxy and likely of the condensation process are to blame. The strong re-

laxation measured have to come from a specific behavior of the interface between

the strained SiGe layer and the underlying amorphous BOX. Lastly, the typical relax-

ation length over which the SiGe is not fully constrained has revealed to be higher

than expected by standard elasticity calculations (below 100 nm Berthelon, 2018),

reaching values comprised between 200 and 300 nm. These measurements are in

agreement with the modeling of electron holography experiments based on an in-

terface gliding at the edge of the patterns Boureau, Reboh, et al., 2019.
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5
B R A G G C O H E R E N T D I F F R A C T I O N I M A G I N G , A P P L I C AT I O N

O N E M B E D D E D G R A I N S I N Z I R C O N I A U S I N G D I F F R A C T I O N

C O N T R A S T T O M O G R A P H Y

This chapter provides a description of an experiment aiming to combine Diffrac-

tion Contrast Tomography and Bragg Coherent Diffraction Imaging on Zirconia

embedded grains.

After stressing the gain of the combination of both technique applied to the

described sample, Diffraction Contrast Tomography, a non-coherent imaging tech-

nique that allows for indexing sample volumes of several micrometers, containing

hundreds up to a few thousand grains and gives access to their crystallographic

orientation, position, and average elastic strain tensor, is explained and the experi-

mental conditions detailed.

Then, a focus is made on the Bragg Coherent Diffraction Imaging experiment,

with a review of the experimental setup and the essential beam characterization.

Results of the phase retrieval procedure are presented, together with statistical in-

formation on average strain.

Finally, the question of the strain precision of Bragg Coherent Diffraction Imaging

dataset is tackled, with the introduction of a new tool to assess the strain precision.

5.1 introduction

5.1.1 A matter of scale

Residual stresses and strains resulting from differences and anisotropy of ther-

mal expansion coefficients have a large impact on the mechanical properties of ce-

ramic materials, affecting their ultimate strength and fatigue properties. However,

although the macroscopic and microscopic relationship between stress and strain

has long been studied, the study of strain fields at the micrometer grain level with

nanoscale strain resolution is still being developed. By combining 3D location of em-

bedded grains in a polycrystalline sample volume trough a non-coherent imaging

technique known as Diffraction Contrast Tomography (DCT) with Bragg Coherent

Diffraction Imaging (BCDI), the complete determination of the 3D strain tensor in a

single grain can be achieved.
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During the last 15 years, several techniques have been developed for grain and

strain mapping: polycrystal indexing routines used in 3D X-ray Diffraction, also

called Diffraction Contrast Tomography (3DXRD/DCT), allow indexing sample vol-

umes containing hundreds up to a few thousand grains and give access to their

crystallographic orientation, position and average elastic strain tensor. Reischig

et al., 2013; Lyckegaard et al., 2011 On the other hand, BCDI allows recovering

the 3D strain in an isolated grain with spatial resolution down to 20 nm but the

technique has proved its worth mainly on isolated objects of size smaller than

the beamRobinson et al., 2001, while recent improvements in Bragg Ptychogra-

phy paved the way for extended objects, such as grains/domains at a sample sur-

faceMastropietro et al., 2017.

The ability to link information concerning the 3D grain neighborhood (position,

orientation and average strain tensor of all grains from 3DXRD) and the elastic strain

distribution inside a (subset of selected) grain(s) can be considered a prerequisite for

future investigations on the complex interplay of local texture and residual strain

on processes like phase transformations and nucleation of damage in this important

class of functional materials.

5.1.2 Sample details

Ceramics are solid materials comprising an inorganic compound of metal, non-

metal or metalloid atoms primarily held in ionic and covalent bonds. Residual

micro-stresses are generally very high in ceramics, as their Young’s modulus is

larger than that of metals and because they can hardly accommodate thermal ex-

pansion mismatches between grains by plasticity. Therefore, residual stresses play

a pivotal role on ceramics mechanical behavior, especially their fracture and their

long-term behavior. It has been shown in some Zirconia ceramics that they can

reach about 1 GPa Gremillard et al., 2000 around triple junctions between grains.

In the particular case of Zirconia, they can also trigger the tetragonal to monoclinic

phase transformation Deville et al., 2006 and are even more crucial than applied ex-

ternal stress fields. Thus, a detailed 3D knowledge of strain at the grain level would

prove highly useful.

The project of combining DCT and BCDI on embedded ceramic grains was con-

ducted in collaboration between Dr. Wolfgang Ludwig (INSA Lyon/ESRF), visiting

scientist at the ID11 ESRF beamline, Dr. Jerome Chevalier (INSA Lyon) and Dr.

Vincent Favre-Nicolin (ESRF).

A cylindrical sample with 10 μm diameter and 80 μm height has been FIB ma-

chined from Yttrium stabilized Zirconia (YZrO2, 8% of Yttrium). The grain size in

the material ranges from 500 nm to 5 μm and the miniature sample has then been
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x 10-3

Figure 5.1 – From Reischig et al., 2013. Example of 3D grain map in a large grained (50-
100 μm) sample of Ti alloy. The sample exhibits a strong texture and is loaded
in compression. The 3D grain map is colored according to the orientations in
the inverse pole figure (left). The same grain locations, orientations and sizes
are represented by heaxagonal unit cells and colour coded according to the
normal strain along the rotation axis and loading direction (right). Applied
to small-grained ceramic materials, it is not be possible to resolve 3D grain
shapes. Nevertheless, the center of mass, orientation and average elastic strain
information is still accessible and can be compiled into schematic 3D sample
representations as shown in this figure.

mounted on a thin steel pin (200 μm diameter) such that it could be positioned at

less than 1 mm distance from the scintillation screen of a high-resolution imaging

detector.

5.2 diffraction contrast tomography

5.2.1 Principle

X-ray Diffraction Contrast Tomography (DCT) is part of the three-dimensional X-

ray diffraction microscopy techniques allowing fast and non-destructive structural

characterization of crystalline element, as grains or subgrains, of millimeter-sized

polycrystalline specimens. By combining the principle of projections reconstruc-

tion (tomography) and X-ray diffraction imaging (topography), DCT provides high-

resolution grain maps along with orientation and average elastic strain tensor of the

individual grains with an accuracy of 10−4.

First introduced as a variant of the 3D XRD methodology Poulsen, 2004, DCT

aims to simultaneously reconstruct the absorption and crystalline orientation of a

material. As described by Ludwig et al. Ludwig, Schmidt, et al., 2008, during acqui-

sition of an optimized tomographic scan, undeformed grains embedded in the bulk

of a polycrystalline sample give rise to distinct diffraction contrasts which can be

observed in the transmitted beam each time a grain fulfills the Bragg diffraction con-

dition. By extracting and sorting these contrasts into groups belonging to individual
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grains, one is able to reconstruct the three-dimensional grain shapes by means of

parallel beam, and algebraic reconstruction techniques (ARTs; Gordon et al., 1970).

The development of an innovative Friedel pair method for analyzing diffraction

data Ludwig, Reischig, et al., 2009 enabled the indexing and reconstruction proce-

dures to be solely based on the analysis of diffracted beams. The logic of the pro-

cessing route can be summarized as demonstrated by Reischig et al Reischig et al.,

2013: Friedel pairs are used as a basis for finding grain positions and orientation by

indexing diffraction spots. The grains are then reconstructed individually in three

dimensions and assembled to create a space-filling grain map under a mask found

from the absorption reconstruction. The DCT processing route can be summarized

with the following steps:

1. Preprocessing of the image stack

2. Segmentation of diffraction spots

3. Matching of Friedel pairs

4. Indexing of grains from Friedel pairs; alternatively fitting strain tensors

5. Selection of diffraction spots for grain reconstruction

6. Reconstruction of grain shapes

7. Assembly of the grain map

5.2.2 Setup geometry

As the needs for DCT are similar to those of standard synchrotron microtomog-

raphy, any beamline dedicated to imaging and diffraction can be considered for

the experiments. The sample lies on a rotation stage and is illuminated by a par-

allel monochromatic X-ray beam. The 1.6 μm pixel size high-resolution detector

is located closely behind the sample and records the absorption contrast radio-

graph while the sample is being continuously rotated through 360◦ (with typically

0.05◦angular increments) around an axis perpendicular to the incident beam. Dur-

ing this rotation, grains will find themselves in a Bragg diffraction condition and

will cause part of the direct beam intensity to be diffracted and recorded on the

detector.

Figure 5.2 depicts a scheme of the setup, and introduces the notion of Friedel pair

of a specific grain. They are at the basis of the efficiency and the accuracy of the

processing route. A specific crystal plane will find itself in diffraction condition a

maximum four times during a full 360◦ rotation, which make up two pairs, each

separated by a 180◦ rotation of the sample. As the two spots of a single Friedel pair

define the optical path of the diffracted beam which must pass through the grain,
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Figure 5.2 – From Ludwig, Reischig, et al., 2009. Schematic of the DCT setup, also repre-
senting a Friedel pair in the reference fixed to the sample: diffraction spot A
appears at ω and its pair, spot B, is shown on the opposite imaginary detector
plane at ω + 180◦. The diffraction path connecting both diffraction spots passes
through the corresponding grain.

they allow for the retrieval of the diffraction angle related to the (hkl) and (hkl)
lattice planes and lead to the knowledge of the associated scattering vector.

5.2.3 Implementation on ID01 and results

This setup has been used on the Zirconia cylinder in order to get a map of as

many grains as possible, together with their individual orientation. On the ESRF

ID01 beamline, the transfocator, made of one 2D Be lens of radius 500 μm located

56.4 m from the X-ray source, was used to focus the beam to 28 μm×48 μm. Then,

a 20x objective was inserted in-between the sample and the high-resolution detector

in order to perform phase-contrast tomography on the sample.

As a large rotation of the sample is needed to get a complete orientation ma-

trix of as many grains as possible, the precision of the rotation stage was carefully

examined. In order to create a precise lookup table for the ϕ-angle, we used the

microscope’s camera, looking at the sample stage from above. Firstly, we calibrated

the microscope’s camera images by translating a Si wedge sample by 100 μm in both

in-plane directions with the Hexapod. The correct orientation of the camera images

with the right scaling factor of the pixel size were retrieved from Scale-Invariant

Feature Transform (SIFT) registration Lowe, 2004 between the translated images 1,

represented in Figure 5.3.

Then, the studied sample, a Zirconia cylinder of 20 μm diameter, was used to

monitor a ∼300
◦ rotation around ϕ (around the vertical axis of the diffractometer)

1. The registration was performed using the dedicated toolkit of the SILX library VINCENT et al.,
2019; al., n.d.
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Figure 5.3 – Calibration of the microscope’s camera images on a Si wedge sample. The
Hexapod motors thx and thy were used to translate the sample by 100 μm in
orthogonal directions. From SIFT registration Lowe, 2004, the micorscope was
found to be titled with respect to the Hexapod in-plane orientation and the
pixel size of the images were calibrated.
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Figure 5.4 – Microscope’s camera images of the sample stage while the ϕ-angle is rotated in
order to create a lookup table. Note that only the tip of the cylinder is visible,
as a single point on the left image, and as a few pixels on the right image. On
the left hand side is represented the first image at ϕ = −150◦ with a blue circle
around the location of the ZrO2 cylinder. The right hand side shows a zoom on
the last image at ϕ = 150◦. The scatter plot depicts the complete evolution of
the position of the cylinder during the ϕ-scan.

with a 0.05
◦ angular step. The microscope was focused on the tip of the Zirconia

cylinder, and this position was tracked during the 6000 positions of the angular

scan. Figure 5.4 shows the microscope’s camera image of the sample at both start

and end of the scan. As the tip of the cylinder is a few microns in diameter and the

field of view of the microscope of few hundred micrometers, the sample appears as

a single point in the first image. On the image recorded at the end of the φ-scan,

a zoom into a 20 × 20 μm2area is displayed, in which the motion of the tracked

cylinder throughout the scan is represented. It results that the sample has moved

during the scan because of the confusion circle of the diffractometer, preventing one

from having the sample exactly aligned with the center of rotation.

A cleaner plot of the confusion circle around the ϕ-axis, from -150
◦ to 150

◦ is

shown in Figure 5.5. The δx and δy offset values were used to correct the sample

position during the experimental DCT scan.

From the DCT analysis, the orientation matrix information of a number of grains

have been retrieved. This is detailed in table 5.1: the orientation of seven grains is

given, with the detail of the Bragg reflection, the Bragg angle, the ϕ-angle of the

sample, and the ν and δ angles of the detector. This table only displays part of the

relevant information extracted from the DCT scan.
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grain bragg bragg phi nu delta

reflection angle (◦) (◦) (◦) (◦)

#6 (111) 15.08 36.18 30.14 -0.9
(200) 17.48 10.53 25.97 24.27

(220) 25.14 68.79 45.6 24.01

#18 (111) 15.08 30.29 20.26 24.06

(200) 17.48 109.37 28.39 23.03

(220) 25.14 63.69 48.12 20.47

#22 (111) 15.07 69.59 30.44 1.09

(200) 17.48 41.25 25.59 25.27

(220) 25.13 44.42 50.56 0.07

#42 (111) 15.08 34.37 31.15 0.52

(200) 17.48 2.04 28.0 23.51

(220) 25.14 64.88 45.14 27.46

#51 (111) 15.08 77.08 22.93 21.63

(200) 17.48 31.66 35.90 2.49

(220) 25.14 43.59 35.76 39.33

#102 (111) 15.08 99.74 17.45 24.99

(200) 17.48 10.53 25.97 24.27

(220) 25.14 68.79 45.60 24.01

#141 (111) 15.08 18.38 31.06 2.90

(200) 17.48 67.08 23.11 28.20

(220) 25.14 63.94 51.09 5.43

Table 5.1 – DCT-indexed Zirconia grains, with different Bragg reflections along with the
corresponding angular orientation. Phi is the in-plane angle of the sample, nu
and delta are the in-plane and out-of-plane detector angles.
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Figure 5.5 – Confusion circle of the diffractometer at the ID01 beamline, for its rotation
around the vertical axis, from -150

◦ to 150
◦. The white boxes indicate the ϕ

angle. The displacements in the x- and y- axis were used as a look-up-table
during DCT analysis to recenter the sample.

Then, we switched to a Bragg Coherent Diffraction Imaging setup, with the newly

acquired ability to travel from one grain to another and reach any Bragg diffraction

spot. This is detailed in the following section.

5.3 bragg coherent diffraction imaging

As CDI and its specificities in the Bragg geometry were presented in sections 3.7

and 3.8, Bragg Coherent Diffraction Imaging was conducted in order to retrieve the

3D strain map in a single grain. This part describes the setup used at ID01, the way

we carried the second part of the experiment, how we handle the analysis and the

hurdles we encountered.

Thanks to the previous DCT, we were able to orient the sample and the detector to

specific angles and immediately reach a Bragg peak associated with one embedded

gain of the ZrO2 volume, and then assess its visibility and its eligibility for a full

rocking curve scan.

5.3.1 Experimental setup and probe measurements

The general layout of ID01 is described in section 3.9. We used a Maxipix detector

Ponchut et al., 2011, mounted at 1.2 m and a Fresnel Zone Plate to focus a 7.938 keV

beam. As depicted in Figure 5.6, the diffractometer stage enabled rotation of the
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Figure 5.6 – Scheme of the experimental setup for BCDI on a Zirconia cylinder. The three
main components of the experiment are present, namely the Fresnel Zone plate
focusing the beam onto a Zirconia cylinder of 80 micrometers in height, con-
taining a grain in Bragg condition which scatters light onto a Maxipix detector
located about 1.2 m away from the sample. During the experiment, in order to
avoid any gravity-related drifts, the η-angle was kept to zero, and the ϕ-angle
rotation was used to perform angular scans while the detector ν and δ-angles
were used to orient the selected Bragg reflection from a grain in diffraction
condition.

sample in the vertical diffraction plane (η-angle rotation) and horizontal diffraction

plane (ϕ-angle rotation), while the detector arm’s rotations δ and ν allow to reach a

particular reciprocal space area.

5.3.1.1 Ptychography for beam characterization

Prior to moving to Bragg geometry, the tip of the Zirconia cylinder was used as

a reference object to characterize the beam in forward scattering, δ = ν = 0. By

performing spiral scan in the plane normal to the beam propagation, the complex

wavefront of the beam could be retrieved using ptychographic algorithms imple-

mented in the PyNX library Favre-Nicolin, 2019; Mandula et al., 2016. Available

as a python script already parametrized to match the ID01 geometrical parameters,

forward ptychography with PyNX leads to quick and robust results.

The key aspect of the beam calibration was to find the right combination of Fresnel

Zone Plate (FZP) coherent slits sizes and defocus distance in order to make the beam

size fit with the grain size. Starting with “coherent slits” of 200 × 60 μm2 (VxH)

placed right before the FZP, we performed spiral scans on the sample while varying

its location along the beam propagation. Defocusing enables increasing the beam
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size, but it also allow retrieving the radius of curvature of the beam wavefront hence

the possibility to find the focus position, where the beam size is minimal.

As an example, Figure 5.7 shows the reconstruction of both the 2D object and

the probe, obtained with a sequence of 40 iterations of Difference Map, followed by

setting the probe as the multi-modal object to update, followed by 200 iterations of

Difference Map and 100 iterations of Maximum Likelihood (see 6.2.2 and 3.7.5.4).

It is important to stress out that only a few iterations are needed with update per-

formed only on the sample in order to get a first good estimate. Then, both the

sample and the probe are being updated at each iteration, with the particularity

that the probe is considered as a multi-modal array. The following line gives an

example of the use of the PyNX script to perform this kind of rectonstruction:

pynx− id01pty.py spec f ile = siemens.spec scan = 57 detectordistance = 1.3

ptychomotors = pix, piz,−x, y probe = 60e− 6x200e− 6, 0.09

algorithm = analysis, ML ∗ ∗100, DM ∗ ∗200, nbprobe = 3, probe = 1, DM ∗ ∗40

loadmask = maxipix verbose = 10 save = all saveplot liveplot
(5.1)

In the command-line, one has to set an initial probe, that is in 5.1 implemented as a

focused wavefront from given slits size of 200 × 60 μm2 (V×H) at a focal distance

of 9 cm. The key chain after “algorithm =” sets the algorithm sequence for the

optimization, from right to left. By setting probe = 1, the probe gets updated

and nbprobe = 3 adds two mode to the initial probe. On Figure 5.7, the shape of

the cylinder is clearly visible and consistent with its expected shape. The beam

displayed on the right hand side is the probe retrieved at the object position, i .e.,
approximately 1800 μm away from the focus position.

Note that in order to confirm our probe’s reconstruction from the tip of the Zirco-

nia cylinder, we also performed the same kind of ptychographic scan on a reference

object, a Siemens star Pfeiffer, 2018 with a very fine structure. Figure 5.8 shows

both the reference object and probe reconstructions using ptychography for slits of

30 × 30 μm2, performed at the focus position.

All in all, the beam was retrieved from several combinations of coherent slits size

and defocus distances, and a selection is presented in Figure 5.9. One can note that

the FWHM extracted from the peak intensity of each retrieved wavefront is given,

with a maximum of 567 × 500 nm2 (VxH) obtained from a focused beam with slits

closed down to 30 × 30 μm2 (VxH). This will be the configuration used to perform

BCDI angular scans on the embedded grains. Indeed, large grain size requires the

largest illumination. It is interesting to note that this retrieved beam (bottom right

subplot of Figure 5.9) exhibits some variation with respect to the one retrieved from

ptychography on a Siemens star with the same configuration (Figure 5.8). This is
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Figure 5.7 – Reconstructions of object (2D cut of a Zirconia cylinder) and probe at sample
position, from a forward ptychographic scan. The coherent slits before the FZP
focusing optics are opened at 60 × 60 μm2 and the cylinder was moved 1800 μm
away from the known focal position. The forward ptychography analysis was
performed with the PyNX python library. The spiral scan performed on the
plane perpendicular to the beam propagation is made of 513 frames and the re-
constructed pixel size is 8.2 nm. The area covered by the spiral scan is described
by the black circle. The spatial scale for both subplots are identical, and they use
the same colorbar, described by the HSV colorwheel on the top right. Therefore,
brightness represents the amplitude and colour the phase of the image. Once
the complex wavefront of the probe is retrieved, it can be back-propagated up
to the FZP focus position, where it shape is of 219 × 273 nm2 (FWHM). On the
figure, both the width at 20% of the maximum intensity (FW20%) and the width
at half of the maximum intensity (FWHM) are given for the beam wavefront at
the sample position.
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Figure 5.8 – Reconstruction of the probe used to illuminate the ZrO2 grain, from ptycho-
graphic reconstruction of a reference Siemens Star pattern. The spatial scales
are the same for both plots. (Left) Siemens star reconstruction, (right) probe
reconstruction. The black circle on the object depicts the limits of the area cov-
ered by the spiral scan performed on the sample. The pixel size is 8.2 nm on
both reconstructions.
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Figure 5.9 – Effect on the optical configuration (coherent slits size, defocus distance) on
the beam wavefront. Reducing the slits size as well as increasing the defocus
distance of the sample enable to increase the beam FWHM. This is demon-
strated through several beam reconstructions. All the probe wavefronts have
been retrieved from ptychographic scans performed on either the tip of the
ZrO2 sample or a reference Siemens star (the strength of Ptychography being
to retrieve both the object and the probe, the only difference between these two
kinds of scan is that the reconstructions from the Siemens star should in prin-
ciple be slightly better as this reference object introduces more diversity in the
diffraction).

actually explained by the fact that the latter pytchographic scan has been performed

with the presence of a transfocator lens (one 2D Be lens of 500 μm, 56.4 m away

from the source): the effect is a slight defocusing, estimated to be of 800 μm from

simulation achieved with the SRW package Chubar and Elleaume, 1998.

5.3.1.2 Beam propagation

As mentioned above, there is another interest for retrieving the probe from a de-

focus position, that is retrieving the radius of curvature of the beam’s wavefront.

Indeed, although the change in beam radius is often regarded as the actual end-

function of a lens, its first action is to change the curvature of the transmitted

wavefront: between the lens and the beam focus, the light converges because of the
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wavefront curvature, whereas after the focus, the light diverges due to the wavefront

being curved in the opposite direction. Measuring the beam out-of-focus allows one

to retrieve the curvature, which can be seen from the phase gradient. Figure 5.10

shows two retrieved wavefront, one from a scan at a defocus position and the second

from a scan at the focus. In the first row, the unwrapped phase of each wavefront

is shown, and the second row presents horizontal profiles of both the amplitude

and the unwrapped phase. The green vertical spans locate the “center” of the wave-

front, from a FWHM estimation, and serve as a reference: within this vertical span,

the unwrapped phase is parabolic on the left hand side and flat on the right hand

side.

From this, a wavefront retrieved at a defocus position holds its curvature informa-

tion and can be propagated in order to find the focus position, where the radius of

curvature is null and the size of the wavefront (FWHM) is minimal. This is depicted

in Figure 5.11, a beam from slits opened at 60 x 60 μm2 has been retrieved at a defo-

cus position of approximately 1800 μm upstream and then propagated over a 2 mm

range. The left hand side of Figure 5.11 represents the caustics both in horizontal

and vertical direction, with the marker of the focus position, while the right hand

side depicts the evolution along the propagation range of either the FWHM at 20%

of the peak intensity or the statistical FWHM (evaluated from the standard deviation

assuming Gaussian distribution of the probe FWHM = 2
√

2 ln(2)σ ' 2.35
√

∑|P|2
2π|P|2max

).

A clear minimum of the FWHM is obtained at a propagation of z ' 1700 μm. At this

position, the FWHM of the beam is found to be of approximatively 220 x 272 nm2

(HxV).

5.3.1.3 Probe modes

During the ptychographic reconstruction, the probe can be decomposed in an

arbitrary number of coherent modes. Indeed, the only requirement is that the in-

coherent sum of the contribution of each of the multiple probe mode has to be

compliant with the recorded diffraction data :

Ij(~q) = ∑
n

∣∣∣∣
∫

Pn(~r)O(~r +~rj)ei~q·~rdr
∣∣∣∣
2

(5.2)

Where O(~r) is the diffracting object, Pn(~r) the multiple probe modes and Ij(~q)
the recorded diffraction pattern at he jth scanning position. Thibault and Menzel

Thibault and Menzel, 2013 showed that the redundancy in a ptychographic dataset

can be high enough in order to solve for this mixture of modes without additional

a priori knowledge.

That way, the weight of the first mode conveys information about the coherent

fraction of the beam. When the first mode represents 80% or more of the total
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Figure 5.10 – Comparison between probe reconstructions obtained from object with defo-

cus and at focus. The figure depicts both the (top row) unwrapped phase of
the retrieved beam wavefront, with the same amplitude in phase, and (bottom
row) horizontal profiles of phase and amplitude at y = 0. The green verti-
cal spans on the bottom row are visual markers delimiting the FWHM of the
Gaussian-like amplitude shape. On the left hand side, the wavefront has been
retrieved at a defocused position and exhibits a parabolic phase within the in-
tensity peak, whereas on the right hand side, the wavefront has been retrieved
at the focus, and its corresponding unwrapped phase is flat within the peak
intensity. This shows that the radius of curvature of the wavefront is retrieved
when the ptychographic scan is performed at a defocus position.
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Figure 5.11 – On the left hand side, beam caustic retrieved from the ptychographic recon-
struction, in each horizontal (top) and vertical (bottom) direction. On the right
hand side, evolution of either the FWHM at 20% of the peak intensity (top) or
the statistical FWHM, evaluated from a Gaussian approximation of the beam
shape. The dashed lines indicate the focal plane position, at which the FWHM
is minimum .
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Figure 5.12 – Probe modes decomposition. The beam wavefront has been retrieved from
a ptychographic scan on a Siemens star positioned in the focal plane, and
decomposed in three coherent modes. Because the first mode accounts for
more than 80% of the accumulated intensity, the probe is considered coherent
and the FWHM of the central lobe in the two directions can be used as a good
approximation of the transverse coherence lengths.

intensity of the beam, the first mode can be used as a good approximation of the

beam and the latter is said to be coherent. As an example, Figure 5.12 shows three

modes of the probe retrieved from a ptychographic performed in the focal plane.

The first mode accounts for 81.25% of the total intensity of the beam, hence high

enough to treat the probe as coherent.

Moreover, the probe decomposition into modes enables one to evaluate the trans-

verse coherence lengths of such a coherent beam. In an ideal case, the beam is fully

coherent and its first mode accounts for 100% of the intensity, hence the coherence

length is then slightly smaller than the beam size. The main question is how to

evaluate the beam size. A valid reasoning relies on the integrated intensity of the

beam. On experimental retrieved probe of Figure 5.12, the secondary lobes of the

first mode account for less than 5% of the total intensity of the beam, concentrated

in the central lobe. Hence, the central lobe can be used as an accurate definition

of the beam, and its size characterized by its FWHM. As a result, the FWHM of the

central peak can be assimilated to the transverse coherence length of the beam.

5.3.2 Embedded grain alignment and characterization

After thorough characterization of the probe, the detector was oriented to reach

one of the Bragg reflections from one of the indexed grains. Note that the cylinder

was put at η = 0◦, i. e. angular scans were performed on the ϕ-angle solely, in

order to avoid any of the gravity-related drifts of the sample stage. The fast SXDM
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grain bragg bragg phi nu delta

reflection angle (◦) (◦) (◦) (◦)

#42 (111) 15.08 34.37 31.15 0.52

(111) 15.05 -78.13 21.09 23.37

(200) 17.48 2.04 28.0 23.51

#141 (111) 15.08 18.38 31.06 2.90

(111) 15.08 89.20 31.06 2.92

(111) 15.08 -33.19 18.46 25.36

(200) 17.48 67.08 23.11 28.20

Table 5.2 – The two DCT-indexed Zirconia grains, with different Bragg reflections along
with the corresponding angular orientation, that have been measured for Bragg
CDI. Phi is the in-plane angle of the sample, nu and delta are the in-plane and
out-of-plane detector angles. For each reflection, the angular scan consisted in
462 angles with 2 seconds exposure and 0.0026◦ angular step.

method (see section 4.4.2) was then used to get its precise location over the cylinder,

allowing us to align it with the beam and take a closer look at the diffraction pattern

on the detector.

The intensity map of a quick scan of the cylinder is shown on the left part of

Figure 5.13. A grain is clearly visible on the bottom part of the cylinder. Indeed, the

intensity collected by the detector is higher when the beam shines on this grain, as

the detector is located closely to the grain’s Bragg reflection.

The scanning X-ray diffraction maps of three independent Bragg reflections, namely

(111), (111̄) and (200), are represented on the right part of Figure 5.13. Note how-

ever that the contours obtained by this method are projections along the given re-

flections, not the actual shape, and give the maximal - potential - extent of the grain.

Hence, it looks like the projection of the grain onto any axis should not exceed 3 μm.

This length is already an indication that the beam size will be the limiting factor. As

a comment, even if this grain was not the only one identified from the DCT analysis,

the others were unfortunately not smaller and their diffraction pattern presented

less visibility, leading us to discard them from further measurements. Indeed, we

needed to focus on the grains giving rise to the more contrasted diffraction pattern

as we knew that the BCDI phase retrieval process was already impinged on by the

coherence conditions - beam smaller than the embedded grains. All in all, two

grains have been measured thoroughly at multiple reflections that are described in

table 5.2.

Once the grain was localized, the detector positioned at a Bragg reflection and the

beam adjusted to a suitable size, rocking curves of horizontal scattering diffraction

were recorded. By rocking the ϕ angle of the diffractometer with steps of 0.0026◦
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Shadow of the ZrO2 cylinder Diffracted intensity maps of three independents reflections from the same grain
(111)

Figure 5.13 – SXDM for grain localization, and higher resolution SXDM on the grain at
three different Bragg conditions. On the left hand side, the whole cylinder
is visible, with the dotted blue line indicating its shadow. The purple circle
signals the grain within the cylinder: as it is positioned in Bragg condition, its
scattering recorded by the detector is more intense than from the rest of the
sample. On the right hand side is displayed the high-resolution mapping of
three independent reflections, namely (111), (111̄) and (200), of the detected
grain. Note the scale bar of 2 μm, common to the three maps, given us insight
about the projected size of the grain.
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and ∆ϕ = 0.6◦ around the maximum intensity of the Bragg reflection, we collected

462 frames, each of 2 seconds exposure, for the three independent reflections. Figure

5.14 depicts the sums of all frames for each probed reflection. The total intensity of

any Bragg peak accounts for more than 1.5× 108 photons.

As an example, Figure 5.15 shows a portion of the ϕ-angle scan from the (111)

Bragg reflection in a semilog scale. The geometrical configuration described up to

now enables us to know what is the maximal extent of the sample in order to respect

the oversampling ratio of at least two (see section 3.7.2). Equation 3.47 relates the

detector distance D to the maximal extent of the crystal l in the plane parallel to the

one of the detector, hence we have :

l ≤ Dλ

2pdet
= 1.7 µm (5.3)

Moreover, the oversampling requirement also impacts the angular step size δϕ. In-

deed, it can be derived geometrically, using small angle approximation (sin
(

δϕ
2

)
≈

δϕ
2 ), that the maximum extent in the scanning direction is defined by :

l ≤ 1
2dhklδϕ

= 3.3 µm, (5.4)

for a {111} Bragg reflection, given that a = 0.5135 nm is the lattice parameter of

Zirconia. From these calculations, it appears that the data we collected are well

oversampled for grain of size equivalent to the beam, at least in the plane parallel

to the detector. In this plane, the transverse coherence components of the X-ray

beam are comparable to the size of the first coherent mode (see Figure 5.12 and the

associated subsection), hence the main central spot of the beam will be used as a

support for phase retrieval.

Concerning the third dimension, one should now raise the question of the longitu-

dinal coherence length of the X-ray beam. Indeed, the longitudinal coherence length

of the X-ray beam at ID01 is of the order of 780 nm (see section 3.9), and depending

on the Bragg reflection the optical path length difference (OPLD) between incident

X-rays scattered from the extents of the crystal will change. When the OPLD is

larger than the longitudinal coherence length, the sample is said to be under partial

illumination, and the visibility of the interference fringes will drop, notably along

~q direction S. J. Leake et al., 2009. For a Bragg angle of θ =15.24
◦ ((111) Bragg re-

flection of Zirconia), the maximum extent is equal to OPLDmax/2 sin θ = 1.48 μm. This

value is smaller than any of the projected length of the grain as measured with

SXDM, and hence will complicate the reconstruction process.
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Figure 5.14 – Diffraction patterns from a unique grain, at different Bragg reflection, namely
(111), (111̄) and (200). (a) The displayed intensity is taken from the sum
of all 462 detector frames recorded during a rocking curve with a 2 seconds
exposure and a 0.0026◦ angular step. Streaks are visible and are different from
one reflection to another, indicating potentially some faceting of the grain. (b)
Intensities at the maximum of each rocking curve, where fringes are clearly
visible along certain streaks, a signature of the coherent interferences between
the scattered X-ray from the grain at a given reflection. Note that for each
row, the colorbar is the same for the three subplots, and the scale bar is given
in reciprocal units (resolution in reciprocal space is 2πpdet

λD = 1.8× 10−3Å−1 =

0.18 μm−1).
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Figure 5.15 – Rocking curve from the (111) Bragg reflection of a given ZrO2 grain, zoomed
on a 0.6◦ portion, displaying the integrated intensity recorded on the detector.

5.3.3 Phase retrieval process

The phase retrieval procedure for this dataset was performed entirely using the

open-source software library PyNX, using Graphical Processing Units, which also

provides tools to easily compute scattering maps around a Bragg reflection Favre-

Nicolin, Coraux, et al., 2011. PyNX lies at the heart of this work as it now also en-

ables to perform fast Bragg Coherent Diffraction Imaging reconstruction algorithms,

in 2D or 3D, for small-angle or Bragg diffraction data.

In order to start a phasing process, the first step is to set a support for the object.

In the case of the grain presented in Figures 5.13 (direct space) and 5.14 (reciprocal

space), we could estimate the real space projections onto the (111), (111̄) and (200)

reflections to be at least 2 μm. However, the probe we used was characterized via
forward ptychography on a reference Siemens Star object, and its FWHM is found

to be around 500 x 500 nm2, as depicted in Figure 5.8. Hence, the complete grain is

very likely to be under partial illumination. For instance for a given Bragg reflection,

Figure 5.16 shows the comparison between the shape obtained from the relative

0.1 threshold of the intensity auto-correlation and the beam size, in the detector

plane. Nevertheless, as it was mentioned above (from the coherent modes probe

decomposition, see section 5.3.1.3), the slits being small enough (30 x 30 μm2) before

the focusing optics and the retrieved probe wavefront being at its focus position, one

can legitimately assume that the FWHM of the central lobe of the probe is equivalent

to the coherence length in the two vertical and horizontal directions: it will thus be

used as an initial support for the phase retrieval.

Then, the phase retrieval procedure consisted in performing 200 cycles of ER and

600 cycles of RAAR, and run this 1000 times from random initial phases to generate

1000 independent reconstructions. Obviously the number of cycles indicated are
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Figure 5.16 – Intensity auto-correlation from (200) Bragg reflection superimposed onto the
beam profile. The beam appears in the background, while the auto-correlation
is translucent. This depicts that the shape of the central lobe of the probe is
comparable with the shape defined by the 10% threshold of the intensity auto-
correlation, strengthening the use of the central lobe as an initial support for
the phase retrieval.

the total number of iterations performed for each algorithm, but the actual chain of

algorithms is described in 5.1. The algorithm are represented by operators (as intro-

duced in section 3.7.4), as it is the most convenient way to use them in a readable

script. During the complete process, the cycles were interrupted by updates of the

support (operator SupportUpdate). In order to avoid any twinned solution, where

two symmetrical solutions get superimposed, we used a temporarily halved sup-

port Guizar-Sicairos and Fienup, 2008 (operator DetwinRAAR). In addition, partial

coherence refinement (see section 3.7.5.2, denoted as the EstimatePSF operator) is

applied when the solution comes close to convergence. Finally, the chain is ended

with some Error Reduction (operator ER) as it is the best converging method, as

long as possible local minima have been avoided on the way.

In order to keep the object in a volume similar to the initial support, we enforce the

following condition for the support update: the only pixels affected by the support

update lie within ±5 pixels around the outer border of the support, and this for

each update so the support can slowly grow. For each independent reconstruction,

the fixed relative threshold for the support update was randomly chosen in the

interval [0.2, 0.4]. As a result, 1000 reconstructions were carried out from the same

chain of algorithms, each starting with random phases, in order to collect the 50

reconstructions with the best metric. The choice of the metric will be discussed in

5.3.3.1.

In order to tackle the limitations of partial coherence, the principles described

in section 3.7.5.2 are applied in PyNX. Let us remind that partial coherence correc-
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Algorithm 5.1 Example of python code for BCDI reconstruction using PyNX
operator-based API.

from pynx.cdi.cl_operator import ER, SupportUpdate, RAAR, DetwinRAAR,\
EstimatePSF, ShowCDI, ScaleObj
from pynx.cdi.cdi import CDI
# Load diffraction patterns, detector mask, wavelength..
# diffraction_pattern = np.load(’file’)...
# Set an initial support from auto-correlation of the object
tmp = np.abs(fftshift(fftn(diffraction_pattern.astype(np.complex64))))
thres = tmp.max() * 0.1
_support = (tmp > thres).astype(np.int8)

# Create a CDI python object
cdi = CDI(fftshift(diffraction_pattern), obj=None, support=fftshift(_support),

mask=None,
detector_distance=1,
wavelength=wavelength,
pixel_size_detector=55e-6)

# Initial scaling, required by mask
cdi = ScaleObj(method= ’F ’) * cdi

# Apply chains of algorithms to the CDI object
# Do 50 cycles of RAAR, followed by support update, repeated 3 times
cdi = (SupportUpdate(threshold_relative=0.25, force_shrink=False) * RAAR() **

50) ** 3 * cdi

# Do 10 cycles of DetwinRAAR (ie RAAR with a temporary halved support)
cdi = DetwinRAAR() ** 10 * cdi

# Do 50 cycles of RAAR, followed by support update, repeated 5 times
cdi = (SupportUpdate(threshold_relative=0.25, force_shrink=False) * RAAR() **

50) ** 5 * cdi

# Do 50 cycles of RAAR, followed by support update, then
# calculate partial coherence point-spread function
# with 100 cycles of Richardson-Lucy, repeat this 4 times
cdi = (EstimatePSF() ** 100 * SupportUpdate(threshold_relative=0.25,

force_shrink=False) * RAAR() ** 50) ** 4 * cdi

# Do 50 cycles of ER, followed by support update, then
# calculate partial coherence point-spread function
# with 100 cycles of Richardson-Lucy, repeat this 3 times
cdi = (EstimatePSF() ** 100 * SupportUpdate(threshold_relative=0.25,

force_shrink=False) * ER() ** 50) ** 3 * cdi

# Finish with 50 cycles of ER, followed by support update
cdi = SupportUpdate(threshold_relative=0.25, force_shrink=False) * ER() ** 50 *

cdi

Listing 5.1 Example of python code for BCDI reconstruction using PyNX operator-
based API.
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Figure 5.17 – Isosurfaces and cross-sections of a reconstructed gold nanocrystal with differ-
ent considerations on coherence, from data collected at the 34-ID-C beamline,
APS. On the left, transparent isosurfaces (20-60% of the maximum) of the
reconstructed nanocrystal, and related cross-sections in the three laboratory
frame orthogonal planes, taken from the center of the nanocrystal. (a) Images
from the reconstruction assuming full coherence and (b) using the partially
coherent modulus constraint.

tion relies on the introduction of a blurring kernel in a blind deconvolution step.

To demonstrate the robustness of the partial coherence correction implemented in

PyNX, Figure 5.17 shows a typical reconstructed image of a single gold nanocrystal,

of few micrometers in size, from an angular scan performed in the Bragg geometry

on 34-ID-C at the Advanced Photon Source in Chicago Energy Office of Science User

Facility, n.d., comparing the amplitude without (a) and with (b) the accommodation

of partial coherence.

5.3.3.1 Free Log-Likelihood as an unbiased metric

As discussed in section 3.7.5, several figures of merit for CDI analysis can be used.

However, Favre-Nicolin et al. Favre-Nicolin, S. Leake, et al., 2019 proposed recently

a new metric in order to evaluate the validity of solutions. Indeed, they showed

that most figures of merit strongly rely on a priori knowledge of the object, and

that some of them can even get worse while approaching a better solution (from

a known sample). For instance, the Poisson Log-Likelihood (see section 3.7.5.4 for

definition) gets worse when the support is tightened around the true solution.
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To tackle this issue, they proposed to set aside a small percentage of diffraction

data - the ’free’ set - and refine the structure against the remaining set of diffrac-

tion data. Then the Poisson log-likelihood is evaluated by comparing the calculated

diffraction data against the ’free’ set, hence producing an unbiased figure of merit,

LLK f ree. This method was inspired from the jack-knifing approach, that was orig-

inally developed for unbiased statistical evaluation Quenouille, 1949; Efron and

Stein, 1981. Note that this approach is even more appealing in the case of CDI, as

the uncertainty in the support area can be large, contrary to refinement in crystal-

lography that relies on a known atomic sequence or chemical formula.

The LLK f ree metric has been implemented in the PyNX toolkit, in the following

way. Firstly, approximately 5% of the observed diffraction dataset is set aside to

constitute the ’free’ set. In order to get ride of the correlations between neighbouring

pixels that would create a strong relationship between the working set and the ’free’

set, the latter is made of groups of islands of radius 3 pixels. Then, the ’free’ pixels

are randomly scattered around the dataset, with the only constraint that the area

within 5% of the maximum radius, at the center of the diffraction pattern, must

remain unaffected. Indeed, this area generally contains a large number of photons

and needs to stay unmasked to generate a good initial estimate of the object. Finally,

through the projection algorithms, during the application of the reciprocal space

constraints, pixels belonging to the ’free’ set are considered masked and keep their

calculated complex value, with no update on the amplitude.

During the experiment, we followed the strategy of Favre-Nicolin et al. to focus

on the Poisson Log-Likelihood LLK f ree as the photon counting properties of the

Maxipix detector theoretically make Poisson distribution the natural choice (see

section 3.7.5.4 for comparison of Gaussian and Poisson distributions). Therefore,

from the 1000 reconstructions performed, the 50 with the lowest Poisson LLK f ree

were kept, after subpixel alignment Guizar-Sicairos, Thurman, et al., 2008 and phase

matching of the solutions. They had up to 778100 points in the support, i. e. 0.89% of

the total volume generated from the number of pixels in the reciprocal space, and a

LLK f ree up to 0.156. However, note that the LLK f ree is not an absolute figure of merit,

hence its single value from one reconstruction does not indicate its validity, but it

is the generation of a number high enough (typically 50-100) of reconstructions and

their combination that make the metric robust. Here, 1000 reconstructions were

used due to the low coherence of this experiment.

5.3.3.2 Orthonormal mode decomposition

The usual way to deal with a set of best solutions is to average them and then

compare the average against the diffraction data, e. g. by plotting the Phase Retrieval

Transfer Function (PRTF) Chapman et al., 2006; Shapiro et al., 2005; Chushkin et al.,
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Figure 5.18 – Phase Retrieval Transfer Function of the reconstructed gold nanocrystal, using
the partial coherence correction (blue line). The dotted horizontal line corre-
sponds to PRTF = 0.5. From the intersection between the PRTF line and the
dotted line, one can estimate the resolution to be around 7.6 nm.

2014. The PRTF is the ratio of the calculated amplitude to the measured amplitude

as a function of the resolution ring, which is a fraction of the sampling frequency of

the dataset. The relative frequency at which the PRTF is equal to 0.5, or to 1/e, can

be used as an estimate resolution of the reconstruction. Figure 5.18 shows the PRTF

calculated for the gold nanocrystal reconstruction from Figure 5.17, with taking into

account the partial coherence correction.

Another solution proposed in Favre-Nicolin, S. Leake, et al., 2019 is to compute

eigenvectors for the selected best solutions, yielding a set of orthonormal eigen-

solution. This method offers two advantages compared to averaging: firstly, the

outlier solutions will only contribute to secondary modes of the eigenvector decom-

position, and secondly, the overall squared amplitude of each eigen-solution yields

a weight that can be used as a gauge of the correlation between solutions, with the

ideal case being that the first - in terms of weight - eigen-solution be as close to

100% as possible.

5.3.4 Results

Reconstruction from most of the angular scans performed on different grains,

different reflections were only partially successful. As well, scans were performed

on three parts of a unique grain with the idea of stitching the results in order to

get a full grain reconstruction, but unfortunately it was not possible to evaluate the
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precision of the distance between the center of two scans, as no features between

the reconstructions were easily identifiable.

However, the most intense mode from the reconstructions from one scan (#271,

reflection (200)) looks consistent enough to be presented. The first mode of the

orthonormal eigen-solutions represents 81.5% of the 50 solutions. The phase ramp

of the final data is then removed by subtracting the mean value of the phase gradient

along each direction. Indeed, a slight mis-centering of the diffraction dataset prior

phase retrieval leads to a linear phase ramp. This comes from the basic properties

of modulation of the FT that for any real number ξ0, if h(x) = e2πixξ0 f (x), then

F (h)(ξ) = F ( f )(ξ − ξ0).

In order to get a first look on the solution, one can consider checking its shape in

comparison to the one of the probe. Figure 5.19 gives this comparison by displaying

a cross-section of the normalized amplitude of the reconstructed grain in the plane

transverse to the beam’s propagation. The cross-section of the solution (left hand

side) is divided by the probe (right-hand side) and a semi translucent mask, taken

from the central lobe of the probe, is superimposed on the solution for visualization

purpose. That way, it is clear that the normalization by the probe tends to homoge-

nize the reconstructed amplitude, consolidating the idea that the solution is actually

a fraction of the total volume of the grain.

Figure 5.20 depicts the 3D representation of the final solution, both in the labora-

tory reference frame, and within a frame relative to the grain itself, with the Z-axis

being aligned with the ~q Bragg vector. The volume is taken from a 50% threshold

of the amplitude and mapped with the retrieved phase. On the facets of the cube

axis are displayed 2D normalized amplitude cuts from the center of the grain, with

white contours depicting the 50% threshold. From the laboratory frame, the probe’s

profile is quite recognizable (see Figure 5.8) on the (ZY) plane, and its secondary

lobes also looks to appear on the (XY) and (XZ) planes, along the propagation di-

rection. This suggests that the probe is indeed limiting the reconstruction and only

the illuminated volume of the grain is potentially retrieved. From the grain frame,

one has a better understanding of the displacement field along the ~q vector, as it is

aligned with the Z axis.
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Figure 5.19 – Comparison of the first mode solution versus the probe, in the plane transverse
to the beam propagation ((YZ) in the 3D figure 5.20). On the left hand side,
the square subplot is a cut of the amplitude at the center of the grain, averaged
over 10 pixels in the X-axis direction, and normalized by the probe. This probe
being represented on the right-hand side square subplot. For both amplitude
cuts, the 1D lines represent extracted profiles from the Y=0 (top, magenta) and
Z=0 (right, dark blue). Note that the side lobes from the probe create artifacts
in the normalized grain amplitude.
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(a) Orthogonal Grain frame: ~q is aligned with the Z-axis (b) Orthogonal laboratory frame: X downstream, Y vertical
and Z inboard

Figure 5.20 – 3D reconstruction from the (200) Bragg reflection of a ZrO2 grain, in the or-
thogonal frames of both (a) the grain and (b) the laboratory. The grain’s frame
is as ~q is along the Z-axis. Note the convention of the laboratory axes: X down-
stream, Y vertical and Z inboard. For both subplots the grain is represented
by an isosurface of 50% of the amplitude’s maximum, mapped with the phase.
The displacement along the Bragg vector behaves as the phase, as they are
both proportional. The projections depict the normalized amplitude of the
reconstruction, taken from the center of the volume.

This gives a good confidence that the reconstructions are correct, even if the partial

coherence introduces severe limitations on the resolution of the reconstruction.

In order to extract quantitative information from the reconstruction, the displace-

ment field along ~q is calculated from the phase φ and the norm of ~q :

uhkl =
φ

‖~q‖ , (5.5)

with ~q being evaluated from the center of mass of the 3D diffraction pattern, taking

into account the exact location of the “direct beam” onto the detector :

~q = 2π
λ




cos(δ′)cos(ν′)− 1

sin(δ′)

−sin(ν′)cos(δ′)


 , with





δ′ = δ− (ycom − y0)/pixperdeg

ν′ = ν− (xcom − x0)/pixperdeg
(5.6)

where δ′ and ν′ are the corrected angles of the diffraction pattern. They take into

account the robot arm angles δ and ν, the “central pixel” position (x0, y0) of the

“direct beam”, i. e. the position of the center of mass of the beam onto the detector
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while all the diffractometer & robot arm angles are set to zero, and the position of

the center of mass of the diffraction pattern (xcom, ycom).

From the displacement field, the strain inside the grain can be evaluated by calcu-

lating the displacement gradient :

εhkl = ∂hkluhkl (5.7)

The grain frame from Figure 5.20 provides an insight into how the projected dis-

placement u200 (being directly proportional to the phase) behaves. Some corners

are in tension while others in compression. However, the displacement remains

extremely small, from −d200/20 to +d200/20 Å. Figure 5.21 shows cross-sections of

the grain displacement and strain fields along the X-axis of the grain frame. Note

that the contours are defined by setting a threshold on the amplitude of the recon-

struction, equals to 35% of the maximum amplitude. The strain field appears to be

close to the limits of sensitivity of BCDI, varying between −10−4 and 10−4, with

some modulations clearly visible, probable artifacts of the reconstruction. Thus, the

solution holds little information about the inhomogeneous strain.

Furthermore, having collected full rocking curves from different grains allows to

get an idea of the inter-grain mean deformation. From the knowledge of the direct

beam, that gives us precise calibration of the detector positioning, the center of

mass of each of the collected Bragg peak onto the detector can be transformed into

an absolute value of the inter-planar distance of the lattice planes in Bragg condition.

Relative to aZrO2 = 5.135 Å, the lattice parameter of Zirconia, the different measured

grains present between -0.25% and +0.05% strain (extrapolated with respect to any

of the probed Bragg reflections). Figure 5.22 shows the average strain measured

on each grain, for each Bragg reflection. A trend is visible: the grains located at

the bottom of the cylinder exhibit an averaged strain around −0.2% whereas the

grain located at the top of the sample is almost unstrained, reaching some kind

of relaxation. For more details, Table 5.3 gathers the strain collected on a given

grain, from three distinct locations on this one grain. At each of the three Bragg

reflection, the grain was illuminated at three distinct location by translating the

beam of ±500 nm along the direction transverse to the scattering plane. That way,

the center of mass of the averaged diffraction pattern (along the angular scan) gives

insight into the strain at each of the locations. As depicted in Table 5.3, the strain

does not vary more than 0.23% within this grain, and even more particularly the

strain along the (111) and (200) present negligible variations (below 0.05%). Overall,

these results show that the small strain present at the bottom of the cylinder tends

to vanish along the height of the sample, whereas within a grain the intrinsic strain

variations are at a very low scale.



5.3 bragg coherent diffraction imaging 173

0.50

0.25

0.00

0.25

0.50

Y 
[

m
]

X=-77 nm X=-46 nm X=-15 nm X=15 nm X=46 nm X=77 nm

0.50.00.5

Z [ m]

0.50

0.25

0.00

0.25

0.50

Y 
[

m
]

X=-77 nm

0.50.00.5

Z [ m]

X=-46 nm

0.50.00.5

Z [ m]

X=-15 nm

0.50.00.5

Z [ m]

X=15 nm

0.50.00.5

Z [ m]

X=46 nm

0.50.00.5

Z [ m]

X=77 nm

-d200/20

d200/20
u200

-1×10 4

1×10 4200u200

Figure 5.21 – Local displacement and strain fields at different cross-sections of a ZrO2 grain
along the X-axis (See Figure 5.20 for frame reference). The [200] direction is
along the Z-axis. On the top row, the evolution of the u200 local displace-
ment field for selected cross-sections. On the bottom row, the change in the
∂200u200 local strain field for the same cross-sections. Note that the strain is
defined relative to the average lattice constant measured on this same Bragg
reflection. The scale of the local displacement is within −d200/20 to +d200/20
i. e., between -0.013 and 0.013 Å and the scale of the strain is between −10−4

and 10−4, showing the very small deformation inside the portion of the illumi-
nated grain. However, it is worth pointing out that 10−4 is usually the limit of
strain sensitivity for BCDI, hence these results have to considered with great
care. Moreover, the fluctuations in the strain cross-sections are likely due to
phase retrieval artifacts.

strain on a grain along (111) along (200) along (11̄1)

Left-side -0.256% -0.205% -0.185%

Center -0.256% -0.21% -0.162%

Right-side -0.256% -0.21% -0.168%

Table 5.3 – Average strain evaluated from the center of mass of the diffraction pattern at dif-
ferent Bragg reflection, from the same grain but at different location (by moving
the beam for ±500 nm along the direction transverse to the scattering plane).
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Figure 5.22 – Average strain measured on three different grains, from different Bragg reflec-
tions, with different probe position onto the grain (for grain #42 and #141, the
beam has been translated by ±500 nm from a central position, along the direc-
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(the shadow of the cylinder is in gray, while the colored markers match the
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5.3.5 Discussion and outlook

We used a combination of two X-ray imaging techniques that has never been

tested before in order to observe strain fields at a nanometer scale in non-isolated

grains, embedded in a polycrystalline sample volume. The non-coherent Diffraction

Contrast Tomography technique was found to be easily implemented on a setup

which would then require small changes to meet the requirements of Bragg Coher-

ent Diffraction Imaging. These two techniques are quite mature, thanks to a decade

of developments, so there is strong belief that they will be used again in more suc-

cessful way. Indeed, even if the DCT was quite prolific in term of reliable orientation

matrices for different grains, we did not succeed to find grain of satisfactory sizes

(below 500 nm of diameter). Several probe sizes have been studied, by defocusing

the sample and tweaking the coherent slits aperture, but the identified grains all re-

mained partially illuminated, either because of transverse or longitudinal coherence

lengths of the probe.

Longitudinal coherence length is a limit that could be overcome after the up-

grade of the ESRF. With a 100 times more brilliant source, the efficiency of the

monochromator will not be the first concern and the use of Diamond(400) could

be taken into consideration. Experimental measurements Khounsary et al., 1993
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have shown that the Darwin widths of Diamond(400) and Silicon(111) are similar

(around 5 arcsec at 12.6 keV) but as the Bragg angle of Diamond(400) is a factor

3.6 larger than the one of Silicon (111), the energy resolution ∆E
E ∝ ∆θ

θ of such a

monochromator would be improved by the same factor. Thus, the gain in the longi-

tudinal coherence length λ2

2∆λ would also be increased. Moreover, not only the gain

from the ESRF EBS upgrade will be a more parallel beam, but also coherent slits

are, until the upgrade, limited by the divergence of the beam which prevents from

opening them wider. Indeed, before the EBS upgrade, the electron beam within

the storage ring presents a strong asymmetry with, for the low-β straight sections

presenting a size of σe =114.4 × 8.24 μm2 (FWHM, H × V) and a divergence of

σ′e =251.7 × 2.82 μrad2 (FWHM, H × V). The undulator natural photon source size

and divergence are given by Onuki and Elleaume, 2003:

σu = 2.74
4π (λL)1/2 ≈ 1

2π (λL)1/2

σ′u = 0.69(λ/L)1/2 ≈ (λ/2L)1/2
(5.8)

where λ is the emitted wavelength, L = NΛu is the undulator length with Λu the

magnetic period and N the number of magnetic periods. Then, the photon source

size and divergence are approximately given by the convolution of the electron

beam sizes and the undulator natural sizes. For the ID01 U35 undulator, this leads

to photon source sizes (in μm) and divergences (in μrad) of:

ΣH,V =
[
σ2

e(H,V) + σ2
u

]1/2
= (114.4, 8.25), Σ

′
H,V =

[
σ
′2
e(H,V) + σ

′2
u

]1/2
= (255.85, 45.97)

(5.9)

The EBS upgrade of the storage will impact the electron beam source size and di-

vergence, leading to a change of the photon source size and divergence. The new

values will be of (in μm and μrad):

ΣH,V = (71.4, 8.5), Σ
′
H,V = (47, 46) (5.10)

Hence, a more symmetrical divergence of the photon beam. These are promising

prospects for developing BCDI on a wider range of sample size.

5.4 strain sensitivity in bcdi reconstructions

5.4.1 Resolution from BCDI dataset

Bragg Coherent Diffraction Imaging yields information about two different scale:

on the one hand, spatial resolution and on the other hand, strain sensitivity. In-

deed, if the spatial resolution can often be given a rough estimate, as it will depend
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on the maximal extent in reciprocal space of the recorded diffraction pattern, the

reconstructed strain arises from the retrieved phases hence its resolution is not obvi-

ous. The principal asset of Coherent Diffraction Imaging techniques is the ability to

reach high-resolution imaging. The theoretical spatial resolution is given from four

parameters of the experiment, namely the energy of the X-ray beam, the detector-

to-sample distance, the number of pixels in each direction of the diffraction pattern

and the detector pixel size. However, as mentioned in Chapter 3, the actual spatial

resolution is limited by the quality of the recorded diffraction patterns, uncertainties

in the dataset, or the data analysis, and has to be quantified by mathematical tools.

That way, two criterion are mostly used: the phase-retrieval transfer function (PRTF)

Chapman et al., 2006 and the Fourier Shell Correlation (FSC) Heel and Schatz, 2005;

Harauz and Heel, 1986. While the PRTF relies on the Fourier amplitude of the fi-

nal solution, the FSC measures the normalized cross-correlation coefficient between

two 3D volumes and hence depends on two reconstructions that has to be the re-

sult of independent datasets. Both methods are widely used in the literature when it

comes to give the spatial resolution of the reconstruction Vila-Comamala et al., 2011;

Ulvestad et al., 2015, but the scientific community still lacks a common criterion to

assess the strain precision of the reconstruction.

5.4.2 “Strain shell correlation” for strain sensitivity

5.4.2.1 Models

In order to cope with strain precision from a Bragg CDI dataset, we proposed

to discuss two methods. For both of them, strain sensitivity is evaluated from the

comparison between two reconstructions of the same object, but from two indepen-

dent datasets. Then, the reconstructed objects have to be aligned and with similar

shape, so that they can be mapped on a common regular grid of N voxels. The main

feature, common to both methods, is the ’strain difference’ matrix. Evaluated for

each reconstruction, this N2 symmetric matrix is constructed as follows : for each

voxel, the absolute difference of strain is computed with all other voxels in the same

object :

Dij =
∣∣ε i − ε j

∣∣ , ∀(i, j) ∈ [0, N − 1]2 (5.11)

where ε i is the strain evaluated at the ith voxel of either reconstruction.

Next, the first method is inspired from the Fourier Shell Correlation, as it relies

on the computation of the correlation between the two strain difference matrices,

as a function of the difference shell. Hence, it becomes a “strain shell correlation”
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method, where for a set of n shells {s1, . . . , si, . . . , sn} of strain interval, the strain

shell correlation value v is calculated as:

vi =
∑ D1D2√
∑ D2

1D2
2

(5.12)

where the D1 and D2 are the “strain difference” matrices, taken at the indices

(j, k) so that
∣∣ε j − εk

∣∣ ∈ si, the strain shell where vi is evaluated. The precision of the

strain can then be evaluated as the value for which the correlation is of 0.5.

For the second method, more straightforward, the per-voxel standard deviation

between the two strain difference matrices is computed. It yields a map of the noise

level at each voxels, and should be more sensitive to surface issues, e. g. when the

support is slightly incorrect and induces errors near its borders, and could also be

computed from more than two datasets.

5.4.2.2 Numerical validation

In order to evaluate these methods, simulations were performed to generate

datasets from a simple 2D model. It illustrates the effect of the integrated inten-

sity on the level of correlation, assuming that the model (i. e. the phases) are known

with Poisson noise.

Starting from a 80× 80 array simulating a cross section into a layer of Si, two stan-

dard BCDI datasets are generated by adding phase ripples to the array, calculating

its FT, applying Poisson noise to produce two different datasets with altered ampli-

tudes and then calculating the inverse FT of the two datasets. Figure 5.23 shows the

result of the correlation curve with respect to the absolute strain difference range

contained in the datasets, while varying the total number of photons. This Strain

Shell Correlation method shows that for very high number of photons, e. g. 108,

the strain precision can be as fine as 1.5× 10−6, whereas this value drops to around

10−4 when the total photons count drops to 103. Note that this 10−4 value for the

strain sensitivity is used as a reference from the community, but rarely mentioned.

5.4.2.3 Application to real datasets

To test the analysis method, works were carried on in collaboration with the F. Hof-

mann group (University of Oxford) on real datasets acquired at 34-ID-C of the Ad-

vance Photon Source Energy Office of Science User Facility, n.d., Argonne National

Lab, USA in August 2014, consisting of multi-reflection BCDI on gold microcrystals

with varying Focussed Ion Beam (FIB) doses for imaging or sample preparation

Hofmann, Tarleton, et al., 2017. The aim of the experiment was to spatially-resolve

the full lattice strain tensor and hence examine the defects caused by FIB in initially
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Figure 5.23 – Simulation of the Strain Shell Correlation for varying number of photons.
Starting from one 2D array with phase ripples, two different datasets are pro-
duced by performing FT, then adding random Poisson noise, and finally ap-
plying an inverse FT, this for different levels of total number of photons. On
the left hand is plotted the strain shell correlation between those two datasets,
for total intensity varying between 103 and 108 photons. On the right hand
side, the initial test array with its phase (top), and the corresponding strain
map (bottom). From this, one can clearly see that the strain precision drops
from 1.5× 10−6 at 108 photons, to 10−4 at 103 photons.
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pristine objects. Prior to coherent X-ray diffraction measurements, the gold crys-

tals lattice orientations were determined by Synchrotron X-ray micro-beam Laue

diffraction at beamline 34-ID-E at the APS Hofmann, Phillips, et al., 2017.

The full dataset that was shared with us consists in data from two different crys-

tals. On the one hand, a crystal which was exposed to a Ga+ dose just sufficient

to image the sample (30 keV, 50 pA, 4.5×10
4 ions/μm2), and on the other, a crystal

into which a central hole was FIB-machined. For each crystal, a maximum of six

reflections have been measured, with roughly twenty angular scans performed for

each reflection. Each set of scans was divided in two, taking either the odd or the

even scans, and in order to evaluate the Strain Shell Correlation as a function of the

total intensity, we also aligned and summed 2, 4, 8 and up to 15 scans.

Then, 100 reconstructions starting from different random phases, and random

threshold for the support update (between 0.2 and 0.3) were computed using PyNX.

The same recipe was applied, with a total of 1000 cycles of RAAR and 40 cy-

cles of ER, using the partial coherence modulus constraint when the number of

scans summed up was larger than 2. Similarly to what was carried out in section

5.3.3, only the 20 reconstructions with the lowest LLK f ree were kept, and the eigen-

solution with the highest relative intensity was selected as the final solution. As an

example, Figure 5.24 shows the reconstruction result for the (200) reflection of the

crystal exposed to low-dose FIB, with a 3D rendering colored by the retrieved lattice

displacement magnitude. The reconstruction is in excellent agreement with the one

presented in Figure 2 of Hofmann, Tarleton, et al., 2017, giving us good confidence

to apply our strain sensitivity tools on our reconstructed datasets.

From two independent solutions, retrieved by phasing a dataset made of either

the even or the odd indexes of a scan, or a sum of scans, we were able to test the

Strain Shell Correlation method. Figure 5.25 shows cross-sections of the phase (first

column), the strain (second column) together with the standard deviation map (top

right) of the strain differences and the Strain Shell Correlation curve. A maximum

standard deviation of 10
−4 is found, and the correlation curve is of 0.5 at |∆ε| '

2.5× 10−5, showing quite good strain sensitivity.

This Strain Shell Correlation curve was obtained from the comparison of two re-

constructions coming from the sum of 8 scans, hence with the total intensity of about

1.5× 107 photons. Figure 5.26 depicts the evolution of the Strain Shell Correlation

with respect to the total intensity in the diffraction pattern. One can see that there

is no clear shift of the strain correlation curve to higher |∆ε| when increasing the

number of photons. This is most likely due either to the lower effective resolution

achieved with less scans summed, washing out details, or to the fact that even the

smallest total intensity in our dataset is already comparable with the level at which

significant strain precision is reached.



180 bcdi and dct on zirconia embedded grains

Figure 5.24 – 3D rendering of a crystal after low-dose FIB exposure, colored by lattice dis-
placement magnitude. Note that the displacement scale is in nm, while the
crystal is around 900 nm large. The (200) ~q vector direction is shown by a
black arrow.
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Figure 5.25 – Strain Shell Correlation measurement on reconstructions from the (200) re-
flection of a low-dose FIB exposed gold nanocrystal. 8 angular scans were
aligned in reciprocal space and summed up prior to phase retrieval, leading
to approximately 1.5× 107 photons in the raw diffraction data. The first col-
umn shows cross-sections of the RGBA solutions, while the second column
depicts cross-sections of the strain, ranging from -0.15% to +0.15%. On the
top right is displayed the standard deviation of the absolute strain differences
between each dataset, reaching maximal value of 10

−4 in the neighborhood of
some borders. On the bottom right, the Strain Shell Correlation curve (black
line), together with the number of |∆ε| pairs (red dots), are shown. From this,
a strain precision of 2.5× 10−5 is demonstrated.
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Figure 5.26 – Evolution of the Strain Shell Correlation curves with respect to the total num-
ber of photons in the diffraction pattern used for phasing. From several an-
gular scans performed on the (002) reflection of a low-dose FIB exposed gold
nanocrystal, four different datasets were created. The Strain Shell Correlation
was then evaluated for four different total number of photons, coming from
the sum of either 2, 4, 8 or 15 angular scans.
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Nonetheless, a last comment can be made on the way strain is calculated. Indeed,

in the results presented so far, we used an arbitrary direction along which the gradi-

ent of the retrieved phase was calculated, so that it did not thoroughly correspond

to the direction of the scattering vector. Actually, in order to calculate the phase

gradient along the scattering direction, a rotation of the 3D solution is needed, and

this implies interpolation. Figure 5.27 shows the Strain Shell Correlation versus the

total number of photons, when the phase gradient is calculated after rotation of the

3D solution so that the scattering vector is aligned with the first axis of the array.

The interpolation was performed with the regular grid interpolate class from the

SciPy Python library Virtanen et al., 2019, using a linear method Wikipedia, n.d. In-

terpolating the data will necessarily lead to a degradation of the quality of the data,

and this might be the reason why the strain precision decreases from approximately

2×10
−5 to 5×10

−5, for a same total number of photons, when evaluating the strain

along the scattering direction. Note also that the interpolation also accentuates the

unexplained behaviors of the Strain Shell Correlation curves around higher |∆ε|i. e.,
low-strain sensitivity, where a sharp decrease can be observed.

5.4.3 Outlook

Note that in the case where multiple independent reflections have been probed,

the back calculation of the expected strain from the experimentally retrieved full

strain tensor should not only be more complete, but also would not depend on

systematic errors, e. g. angular position, crystal centering, detector non-uniformity...

Nonetheless, the Strain Shell Correlation method presents the advantage of requir-

ing only two “independently” measured dataset, while giving a good quantitative

evaluation of the strain precision.

5.5 conclusion

In this chapter, we first demonstrated that the Diffraction Contrast Tomography

method proves to be a strong support for conducting Bragg Coherent X-ray Diffrac-

tion Imaging on embedded samples. The combination of these two techniques is

robust enough to be considered on a wider scale of samples, especially when it is

possible to tweak the X-ray beam size in order to make it match with the sample’s

grains size. Using forward ptychography is undoubtedly an asset for this task, and

allows for a good characterization of the coherence properties of the X-ray beam.

Note however that great care should be given to alignment of the DCT setup, as

the resulting grains orientation matrix are crucial for the ability to navigate quickly

between the embedded grains.
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Figure 5.27 – Evolution of the Strain Shell Correlation curves with respect to the total num-
ber of photons in the diffraction pattern used for phasing. From several an-
gular scans performed on the (002) reflection of a low-dose FIB exposed gold
nanocrystal, four different datasets were created. The solutions were then in-
terpolated so that the scattering vector (whose coordinates are qz = −0.92−1,
qy = 2.64−1, qx = −1.29−1 in the laboratory frame) is aligned with the first
axis of the 3D solution. The Strain Shell Correlation was then evaluated for
four different total number of photons, coming from the sum of either 2, 4, 8

or 15 angular scans.
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Even if it was not possible to obtain complete reconstructions of Zirconia embed-

ded grains, due to partial coherence limitations and beam size, not only we could

demonstrate that displacements within a one grain remain very small (a twentieth

of the interplanar distances) but also we were able to get statistical information

about different grains and different Bragg reflections, showing us little discrepancy

from one grain to another. Moreover, the upgrade of the ESRF-EBS shows promis-

ing capability for these kind of techniques, with the possibility to increase the beam

size without being impacted by lateral divergence, or by using the very high flux to

replace the silicon (111) monochromator by a Diamond (400) that would lead to a

longitudinal coherence length almost 4 times longer.

Finally, we discussed a new tool that enable to evaluate the strain precision of

Bragg Coherent X-ray Imaging reconstructions. Despite BCDI becoming a mature

technique, detailed understanding of the strain sensitivity remains elusive. We tried

to tackle this issue by proposing a method, inspired by Fourier Shell Correlation,

relying on two independently measured datasets, that evaluates the correlation be-

tween the absolute strain difference of the two datasets. Applied to experimental

measurements, the Strain Shell Correlation shows that a strain precision of 10−4

might be a bit conservative in certain cases, but remains a good approximation for

BCDI.
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6
B R A G G P T Y C H O G R A P H Y

6.1 introduction

Ptychography is a recent method allowing the reconstruction of an extended ob-

ject from the measurement of its diffraction pattern at multiple positions of the

sample, while ensuring some degree of overlap of the illumination. As a result,

Ptychography copes with the main limitation of the CDI lensless techniques, that

struggles to reconstruct non-isolated objects, whose size is preferably smaller than

the illuminating beam size.

First introduced in the 1970’s in order to increase the resolution of electron micro-

scopes Hegerl and Hoppe, 1970, Ptychography is now widely used and developed

for both visible light and X-rays, and for both reflection and transmission geome-

tries. From the redundancy introduced by the overlapping in the sample plane,

phase retrieval algorithms lead to reconstruction with spatial resolution better than

the probe size or even the scanning step size, reaching near-wavelength spatial res-

olution Maiden and J. M. Rodenburg, 2009.

Besides its ability to retrieve arbitrarily large sample, Ptychography also presents

the strong asset of reconstructing not only the sample’s complex-valued density

function, but also the profile of the incoming wavefield.

6.2 principles of ptychography

Being part of the group of CDI techniques, Ptychography relies on the same coher-

ence properties that have been described earlier. The major difference that prevails

is the ability to discard the isolated-object requirement, hence to a certain extent the

oversampling requirement in Fourier space. The real space support constraint is re-

placed by a condition of overlapping of the real space scanning positions, meaning

that the probe illumination has to be scanned with a step smaller than the probe’s

size. In practice, it is usually the sample that is scanned and the beam fixed, for obvi-

ous reasons at synchrotron facilities. Indeed, translating the focusing optics instead

of the sample is limited by the weight of those optics. The FZP mount at ID01 being

around 2.5 kg, it would require a recalibration of the PI motor PID parameters and

191
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will inevitably lead to a lot of vibrations 1. Moreover, it is crucial for Ptychography

that the incident illumination remains constant throughout the entire scan. Figure

6.1 depicts a typical transmission setup for ptychography.

Beam

x
y

z
detector imageFar-field

SampleFZP

Figure 6.1 – Scheme of Ptychographic data collection setup. The sample is scanned in
the vertical plane (xy) with overlapping illumination steps, while the far-field
diffraction pattern is collected for each position with a 2D pixel detector.

All in all, Ptychography is a resourceful combination of CDI and Scanning Trans-

mission X-Ray Microscopy (STXM), two methods benefiting from coherence proper-

ties of an illumination but have been developed independently. On the one hand,

The former brings its promise of very high spatial resolution, together with its limi-

tation to isolated sample, on the other the latter provides a transmission map of an

isolated object from a scanned probe, while limited by the extent of the focal spot.

Reconstruction techniques used for Ptychographic dataset have been through

three major stages. At the very beginning of the technique, the reconstruction tech-

nique allowed a one-step reconstruction called Wigner distribution deconvolution

Bates and J. M. Rodenburg, 1989; Chapman, 1996; McCallum and J. M. Roden-

burg, 1993; J. M. Rodenburg and Bates, 1992, but required a very tight scanning

grid. Then, Faulkner and Rodenburg were the first to introduce a real space im-

plementation of Ptychography using iterative projection-based algorithms Maiden

and J. M. Rodenburg, 2009; Faulkner and J. M. Rodenburg, 2004; Thibault, Dierolf,

Bunk, et al., 2009, that were significantly less stringent on the measurements. More

recently, non-linear optimization algorithms such as maximum-likelihood optimiza-

tion including noise statistics Thibault and Guizar-Sicairos, 2012; Godard, Allain,

1. Note that the cSAXS beamline, PSI, has recently developed the ability to scan the FZP instead
of the sample Odstrcil et al., 2019.
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Chamard, and J. Rodenburg, 2012 (see 3.7.5.4) have been including as refinement

steps to boost the quality of reconstructions.

At first sight, the reconstruction procedure relying on iterative algorithms is sim-

ilar to that of all CDI methods, alternating constraints between real and reciprocal

space via the use of discrete FT. Actually, the difference lies in the way the update

of the object guess is made, i. e. taking into account all the diffraction patterns

that contain redundant information. In addition to allow studying extended objects,

Ptychography intrinsically solves two of the problems commonly associated with

phase retrieval : defocus and twin image. Indeed, when a non-negativity constraint

on the object cannot be used, both the reconstruction of the true object and a slightly

out of focus image can fit inside a slightly larger-than-the-object support and satisfy

the far-field intensity constraint Chapman et al., 2006. Otherwise, thanks to the

translation diversity, in Ptychography there is only one plane where the translating

object and illumination functions can be expressed as a product of one another. The

well-known twin image problem of CDI for centrosymmetric supports Fienup and

Wackerman, 1986, originating from the fact that both ψ(~r) and ψ∗(−~r) have the

same Fourier intensity pattern, is also removed by translational diversity and the

knowledge of the transverse shifts imposed on the sample.

6.2.1 Ptychographic Iterative Engine

The translation-diverse phase retrieval approach was originally brought up by

Rodenburg and Faulkner with the introduction of the Ptychographic Iterative En-

gine (PIE) J. M. Rodenburg and Faulkner, 2004. In Ptychography, one assumes that

the interaction of an object and a probe can be modeled by a complex multiplication,

leading the expression of the intensity at the j-th scan position to be :

Ij(~q) =
∣∣∣F
[
O(~r)P(~r− ~Rj)

]∣∣∣
2

, (6.1)

where~r and ~q are suitable real-space and reciprocal-space coordinate vectors, and

the probe and object two-dimensional wavefronts are denoted by P(~r) and O(~r),

respectively. The aim of a ptychographic reconstruction is to retrieve a unique object

that agrees with all the measurements, giving the known positions ~Rj, the scanning

probe P(~r) and the diffraction patterns Ij(~q). The convergence is inevitably favored

by the overlapping constrained illumination, because the latter implies multiple

updates of the different object realizations within a single iteration.

The PIE process is recalled as the following :

1. A real space function Oj,n(~r) is set as a first guess of the object function, where

the subscript g, n accounts for a guessed function at the n-th iteration.
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2. The guess function is multiplied by the illumination function, shifted at the

current position ~Rj, producing a guessed exit wave function :

ψg,n(~r, ~Rj) = Og,n(~r)P(~r− ~Rj) (6.2)

3. The exit wave is propagated to the detector by applying a Fourier Transform :

Ψg,n(~q, ~Rj) = F
[
ψg,n(~r, ~Rj)

]
=
∣∣∣Ψg,n(~r, ~Rj)

∣∣∣ eiφn,g(~q, ~Rj), (6.3)

where φn,g(~q, ~Rj) is the (guessed-probably incorrect) phase in reciprocal space

at iteration n, for position ~Rj.

4. Apply the Fourier constraints, from the measured intensities Ij :

Ψc,n(~q, ~Rj) =
√

Ijeiφn,g(~q, ~Rj) (6.4)

5. Inverse Fourier transform back to real space to obtain an updated guess at the

exit wave function :

ψc,n(~r, ~Rj) = F−1
[
Ψc,n(~q, ~Rj)

]
(6.5)

6. Update the guessed object, in the area covered by the probe, using the update

function :
Og,n+1(~r) = Og,n(~r) +

|P(~r−~Rj)|
|Pmax(~r−~Rj)|

P∗(~r−~Rj)(
|P(~r−~Rj)|2+α

)

×β
(

ψc,n(~r, ~Rj)− ψg,n(~r, ~Rj)
)

,
(6.6)

where α is a term used to avoid division by zero when P(~r− ~Rj) ' 0 , and β

is a feedback parameter, usually between 0.5 and 1.

7. Move to the next position ~Rj+1.

8. The steps (2)→(7) are repeated over all positions ~R to update the complete

object. Completion is achieved after n iterations, where one iteration is defined

as one pass over all scan positions.

Convergence of the algorithm is typically monitored computing the sum squared

error in the reciprocal space. In 2009, Maiden and Rodenburg developed a revised

version of PIE, called extended PIE, so that the requirement for an accurate model

of the illumination is not longer required. The algorithm relies on the same steps as

described above, until step 6 where the update function is split into an update for

the object and an update of the probe. The two update functions are really similar

to the one of equation 6.6, as it basically reverses the role of the two unknowns.
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However, Guizar-Sicairos and Fienup noticed in 2008 that the PIE algorithm can be

expressed as a steepest decent algorithm Guizar-Sicairos and Fienup, 2008. Indeed,

the update step of equation 6.6 can be expressed as ;

ψg,n+1(~r, ~Rj)− ψg,n(~r, ~Rj) = β

∣∣∣P(~r− ~Rj)
∣∣∣

∣∣∣Pmax(~r− ~Rj)
∣∣∣

(
ψc,n(~r, ~Rj)− ψg,n(~r, ~Rj)

)
, (6.7)

where we used equation 6.2 and :

P∗(~r− ~Rj)P(~r− ~Rj)(∣∣∣P(~r− ~Rj)
∣∣∣
2
+ α

) =

∣∣∣P(~r− ~Rj)
∣∣∣
2

(∣∣∣P(~r− ~Rj)
∣∣∣
2
+ α

) ' 1 (6.8)

Then, using the derivation provided by Fienup in his pioneering paper on phase

retrieval algorithms Fienup, 1982, the direction of steepest descent for a squared-

error metric for
√

Ij with respect to ψg,n(~r, ~Rj) is found to be given by :

− ∂

∂ψg,n(~r, ~Rj)

{
∑
~q

[∣∣∣Ψg,n(~q, ~Rj)
∣∣∣−
√

Ij(~q)
]2
}

= 2
(

ψc,n(~r, ~Rj)− ψg,n(~r, ~Rj)
)

(6.9)

As a result, by comparing the right-hand sides of equation 6.7 and 6.9, it becomes

clear that the update step of PIE can be seen as a steepest descent algorithm with a

spatially variant step size of :

β

∣∣∣P(~r− ~Rj)
∣∣∣

∣∣∣Pmax(~r− ~Rj)
∣∣∣

(6.10)

Observing that conjugate-gradient is an other gradient search algorithm superior

to the one steepest descent, Guizar-Sicairos suggested the use of a non-linear opti-

mization algorithm to simultaneously optimize the object, the illumination and the

translation parameters. The analytical expressions of the algorithm are provided

in Guizar-Sicairos and Fienup, 2008; Guizar-Sicairos, 2010 but will not be detailed

here. Not only the algorithm proved to be superior to PIE when the system is not ac-

curately known, but also allowed including nonidealities, e. g. transverse coherence,

detector misalignments, finite pixel size...

6.2.2 Difference Map

In parallel to the work of Guizar-Sicairos and Fienup, Thibault et al. published a

new reconstruction approach that can also extract both the specimen’s transmission
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function and the illumination profile, but based on the difference map algorithm,

intended to solve constraint-based problems Thibault, Dierolf, Bunk, et al., 2009.

Difference map is an iterative algorithm originally developed for phase retrieval

Elser, 2003, but now has a wide range of applications Elser et al., 2007.

As illustrated by Thibault, the difference map algorithm aims to find the inter-

section point between two constraint sets. When it comes to Ptychography, all the

“views” of the object can be regrouped into a state vector Ψ = {ψ1(~r), ψ2(~r), . . . , ψN(~r)}
that then must comply with two simultaneous constraints: the Fourier constraint for

compliance with the measured intensities , and the overlap constraint stating that

each view has to be factorized as a multiplication between the probe and object. On

the one hand, the Fourier constraint ΠF consists of applying the Fourier projection

Pm on each individual view, and can be written, reusing the formalism from section

3.7.4 :

ΠF(Ψ) : ψj → ψF
j = Pm(ψj) (6.11)

Note that ψF
j is the same object as ψc,n(~r, ~Rj) in the last section considering PIE,

i. e. the updated view whose Fourier magnitudes have been replaced by the mea-

surement
√

Ij of the diffraction at the j-th position corresponding to a ~Rj translation.

On the other hand, the overlap projection ΠO can be computed from the minimiza-

tion of the distance ‖Ψ−ΠO(Ψ)‖2, which results in finding estimates P̂ and Ô that

minimizes :

‖Ψ−ΠO(Ψ)‖ = ∑
j

∑
~r

∣∣∣ψj(~r)− P̂(~r− ~Rj)Ô(~r)
∣∣∣
2

, (6.12)

Setting to zero the derivative of equation 6.12 with respect to P̂ and Ô gives the

solution as a system of the following equations :

Ô(~r) = ∑j P̂∗(~r−~Rj)ψj(~r)

∑j

∣∣∣P̂(~r− ~Rj)
∣∣∣
2

P̂(~r) = ∑j Ô∗(~r+~Rj)ψj(~r+~Rj)

∑j

∣∣∣Ô(~r+ ~Rj)
∣∣∣
2

(6.13)

These equations need to be solved simultaneously in the case P̂ is unknown or

need refinement, as the system 6.13 can not be decoupled analytically. By introduc-

ing the overlap projection ΠO as :

ΠO(Ψ) : ψj → ψO
j (~r) = P̂(~r− ~Rj)Ô(~r), (6.14)

the iterative procedure of Difference map can be readily written in a form close

to the Hybrid Input Output (HIO) :

Ψn+1 = [I + (1 + β)ΠF −ΠO − βΠF]Ψn (6.15)
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The evolution of the procedure is monitored by the squared absolute difference

between the current and previous updates :

εn+1 = ‖Ψn+1 −Ψn‖ (6.16)

However, the choice of the error metric is not limited to the one of equation 6.16.

Firstly because this metric is a good convergence criterion but gives no indication

of the fit quality. Secondly, because of noise and experimental limitations, the con-

straints sets are never perfectly compatible. As a result, the iteration never reaches

a stop, rather a steady state regime where the error is small but non-zero. Nonethe-

less, DM has proven its fast early convergence, and the use of Maximum Likelihood

(described in section 3.7.5.4) for refinement as a final step makes the combination of

DM and ML an efficient choice for ptychographic reconstructions.

Both DM and ML are implemented as operators in the PyNX library, allowing for

efficient and quick resolution of the ptychographic problem. These operators are

routinely used, via a very handy script, to solve the probe’s profile at the beginning

of every experiment performed on the ID01 ESRF beamline. A siemens star pattern,

with a very fine “cheesy” structure is used as a reference object to enable switching

to update the probe during the algorithms chain. See section 5.3.1.1 for examples

of siemens star reconstruction and associated probes. Note that a third algorithm,

namely the Alternating Projection (AP) introduced by Marchesini et al. Marchesini

et al., 2016, can be used with an accurate initial guess.

6.2.3 Assumptions in ptychographic algorithms and experimental constraints

There are two major assumptions required for Ptychography. The first one con-

cerns the relationship between the object and probe functions, that needs to be

a multiplication providing the exit-wave. The validity of this wave factorization

assumption has been investigated by Rodenburg and Bates as a reciprocal space

argument J. M. Rodenburg and Bates, 1992, and in real space by Thibault et al. in

the supplementary material of Thibault, Dierolf, Menzel, et al., 2008. Introducing

the resolution R of the imaging system, which has to be replaced by the “intrinsic

resolution” as soon as the object is a weak scatterer producing narrower angular

range of intensity, Thibault et al. gave the maximum depth of the sample, Z, for

which the assumption is valid :

Z =
Ra
λ

, (6.17)

where λ is the wavelength of the illumination, whose spatial extent is defined by

a. Z represents the “depth of field” of the method. Moreover, as Ptychography’s

main feature is the overlapping between the adjacent illuminations, a is typically
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much larger than R, hence the depth of focus of the illumination, a2/λ, is larger than

Z and one can legitimately assume that the probe is constant within the depth of

the object.

The second assumption of Ptychography is the fact that the illumination function

should remain constant over all scanned positions. It is clear for the original PIE

algorithm, where no update is performed on the probe and has to be supplied

from the very beginning. In the difference map algorithm, even if the probe can

be updated, it is still assumed that from one position to another both probe and

object are the same, but translated, meaning that if there is a modification of the

illumination during the entire scan, it will result in an average of the initial and

final probe state.

Then, the quality of a ptychographic reconstruction depends highly on the scan-

ning process. Indeed, very accurate knowledge of the positions of the probe with

respect to the sample is required, as any discrepancy can have a severe negative

impact on the quality of the reconstruction, lowering resolution and blurring the

smallest features Shenfield and J. M. Rodenburg, 2011. As a result, a high accu-

racy sample stage is needed, such as the PImars piezo stage of the ID01 beamline

that is driven in close loop operation. The detector distance needs to be precisely

known, as it is directly linked to the pixel size of the object reconstruction (see equa-

tion 3.46). In the case where the step size of the ptychographic scan is significantly

different from an integer number of pixels, use of subpixel registration algorithms

Guizar-Sicairos, Thurman, et al., 2008 can be used to increase the reconstruction’s

quality.

Last but not least, the symmetries emerging from raster scanning can lead to

artefacts in the reconstructed data. Indeed, the factorization of the views into P and

O can add an uncontrolled degree of freedom Thibault, Dierolf, Bunk, et al., 2009,

as we recall here : if P(~r) and O(~r) are solutions to the ptychographic problem,

then so are the functions O′(~r) = f (~r)O(~r) and P′(~r) = f (~r)−1P(~r) if and only

if f (~r) = f (~r − ~Rj) for all positions j. The only solution is the trivial f = cste,

unless the points ~Rj lie on a lattice, i. e., the scan is on a raster grid, where any

periodic function on this lattice would be solution. Therefore, there are an infinity

of solutions for the Ptychographic dataset. However, this “raster grid pathology”

can be trivially solved by breaking the symmetry of the scan by choosing different

probe positions for the measurement, such as a spiral scan (Wikipedia, n.d.).

6.3 ptychography in bragg condition

Ptychography has been widely developed for the transmission geometry, together

with the use of other techniques such as tomography to generate ultra high resolu-
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tion reconstruction of 3D volume Holler et al., 2017. However, when it comes to

crystalline material where the interest lies in imaging not only the density but also

the displacement fields within the sample, the only solution is to use the Bragg

geometry. As a result, scientists of the CDI field started looking into the applicabil-

ity of ptychography in the Bragg scattering condition since 2011Chamard, Dollé, et

al., 2010; Hruszkewycz, Holt, Proffit, et al., 2011; Hruszkewycz, Holt, Tripathi, et al.,

2011; Godard, Allain, and Chamard, 2011. Numerous techniques in Bragg geometry

have been derived from the basis of ptychography, namely the collection of diffrac-

tion patterns from overlapping illumination areas. A review of these techniques

together with the main associated limitations are given in the following.

6.3.1 Bragg Projection Ptychography: a 2D case

Prior to considering the case of 3D reconstructions, a projection version of Bragg

Ptychography is discussed. It relies on a ptychographical scan performed at one

Bragg angle, preferentially at the exact Bragg condition. In comparison to the 3D

case, no angular scan of the sample is needed, and the inversion process does not

need any constraint. All in all, this yields a technique with rapid throughput and

high-resolution 2D imaging capabilities, that can be used as a premier structural

characterization tool for nanocrystalline samples.

The particularity of this method is that it enables to reconstruct the projection

along the exit wave vector. Indeed, the far-field 2D coherent diffraction pattern

measured at the Bragg condition from a locally illuminated crystal is the FT of the

projection of the crystalline volume along the exit wave vector ~k f . Thus, using

standard Ptychography algorithms, the sample projection can be reconstructed by

assuming that the illumination is an infinite plane wave, apertured by the complex

sample shape function. For instance, the combination of 2D Ptychography algo-

rithms enables one to reconstruct both the projected incident beam and a projection

of the sample density and phase.

In 2D Bragg Projection Ptychography (BPP), the retrieved object lies within a plane

parallel to the detector, thus a strong assumption needed is that the sample is ho-

mogeneous in depth. The projection assumption along the exit wave vector also

implies a change in the geometry of the scan, as it has to be seen with respect to this

projection unlike in the case of forward Ptychography. Indeed, the final solution is

obtained in a plane normal to the exit wave vector, and each illumination position

has to be evaluated according to this final geometry.
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Projection at second probe position
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Figure 6.2 – 2D Bragg Projection Ptychography. Relationship between a sample displace-
ment and the related displacement in the projected detector plane. In (a), the
orange portion represents the illuminated sample volume, which is then inte-
grated along ~k f . All the angles related to the Bragg scattering geometry are
depicted, together with the frame associated to the sample (x, y, z) and the one
associated with the detector (x, y′). The light orange area represents the projec-
tion of the illuminated sample area onto the ~k f -normal plane (x, y′). In (b), the
sample has been translated in the direction along its normal, and the new illumi-
nated sample volume is indicated in blue. Again, the light blue area represents
the projection onto the ~k f -normal plane. Finally, the A and B points account
for the displacement magnitude of the beam projection. This figure shows that
in the case where the exit angle is small compared to the Bragg angle, a large
displacement of the sample along its normal derives into a small displacement
in the ~k f -normal plane. This results in an anisotropic pixel size, larger in the y′

direction. (Inspired from supplementary informations of Hruszkewycz, Holt,
Murray, et al., 2012 )

Figure 6.2 depicts the relationship between a movement of the sample, along

its normal y, and the related displacement projected in the detector plane (x, y′).
During an experiment, the beam stays still and the sample is scanned along two

orthogonal directions, through a piezo stage mounted beneath it. this way, the usual

scanning is performed in the (x, y) plane. Because the x direction vector is common

to both the ~k f -normal and ~ki-normal planes in most cases, displacements along this

direction are equivalent in both frames. However, the displacement along the y
direction vector, normal to the sample, changes the projection position on the ~k f -

normal plane in a complicated way. Figure 6.3 shows a more detailed construction
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in order to calculate the magnitude of the corresponding displacement along ~y′,
given a specific translation a along ~y :

y′ = sin(β) · 1
tan(α)

· a, (6.18)

where β is the exit angle and α the incident angle. When the exit angle becomes

shallow, the projection geometry creates an “elongated” solution, where the pixel

size in the y′ direction can become 10 times bigger than the one in the x direction.

Sample normal

ki

kf exit angle β 

AB
C

D

y z
x kf normal

y'

incident angle α

Figure 6.3 – Detailed geometry for the calculation of the displacement in the ~k f -normal
plane associated to a translation of the sample along its normal. The blue and
orange lines depict the illuminated sample “areas” before and after translation,
respectively (see Figure 6.2 ). The translation of the sample is represented by
the ~DC vector and the A and B points depicts the projection of the first point of
the illuminated sample “areas”, before and after translation respectively. Then,

the magnitude of ~AB can be calculated using
∥∥∥ ~CB

∥∥∥, the exit angle β and the in-

cident angle α, in the two triangles (ABC) and (BCD):
∥∥∥ ~AB

∥∥∥ =
∥∥∥ ~DC

∥∥∥ sin β/tan α.
Note also that the direction of the two displacements are the same.

In 2012, Hruszkewycz et al. published the first paper describing the use of this

new 2D BPP method, applied to the quantitative imaging of lattice distortions in

epitaxial semiconductor heterostructure Hruszkewycz, Holt, Murray, et al., 2012.

At the Hard X-ray Nanoprobe beamline (APS), they focused a 11.2 keV beam to a

85 nm spot onto a rectangular multilayer heterostructure made of a 15 nm etched

SOI layer capped with a 65 nm thick epitaxial SiGe stressor layer. In order to collect

a ptychographic dataset, the beam was scanned along the sample onto a 101 × 3

grid, with step size of 25 nm, while the detector, located at 65 cm from the sample,

collected the diffraction patterns at the exact (004) Bragg reflection of SiGe. Various

numerical simulation were performed in order to compare the measured diffraction

dataset to the model of ~k f -projection of the illuminated thin films. Moreover, care

was taken in order to establish the very center of the experimental Bragg angular
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scan before scanning, as it is a key parameter for the reliability of the CDI reconstruc-

tion I. K. Robinson, Vartanyants, et al., 2001; Vartanyants and I. K. Robinson, 2001;

I. K. Robinson and Vartanyants, 2001. The 13 μm-width pixels of the 1024 × 1024

detector were binned 2 × 2, as the oversampling factor was high enough to shrink

down the size of the diffraction array, which leads to a reduction of the computa-

tional time. Hence, the pixel size of the reconstruction was of 2.68 nm. Then, the PIE

algorithm was used with a simulated beam in order to reach a first estimation of the

sample, which was in turn implemented as an initial guess for the DM algorithm.

After 500 iterations, the final solution was conserved. Note that no constraint was

needed to achieve an accurate reconstruction. Moreover, they were able to estimate

the spatial resolution of the reconstruction using the sharp edge of retrieved density:

16 nm. To conclude, the retrieved phase allowed them to extract the lattice slope

evolution approaching the edge of the sample.

In 2014, Holt et al. developed further the analysis of 2D BPP reconstruction and

presented a method to extract separately the components of lattice strain and rota-

tion from the retrieved object Holt et al., 2014. The investigated sample consisted

in a semiconductor device prototype, composed of SOI lithographically etched into

parallel 100 μm-long, 60 nm-wide strips separated by 460 nm. SiGe with 20 at. %

Ge stressor were deposited into the etched trenches, inducing in-plane compressive

stress in the SOI channel regions. The respective thicknesses of SiGe and SOI were

60 nm and 75 nm. At the Hard X-ray Nanoprobe beamline (APS), a FZP was used to

focus a 9 keV beam down to 35 nm FWHM. They used the homogeneity of the sam-

ple along the stripes direction to perform “unwound” spiral scans, introducing in

this direction an offset of 60 nm to each point in addition to the spiral pattern. Hence

structural damage were mitigated and the recorded intensity was ≈10 times higher

than in a normal scan mode. The “virtual step” of the spiral scans was of 13 nm.

However, the spatial variations of strain or morphology of the reconstructed images

will only represent an average in the lines direction. The (004) Bragg reflection of

both SiGe and SOI structures were recorded and sufficiently separated in reciprocal

space to be reconstructed independently. Neither insights on the algorithms used

for the 2D BPP reconstruction are given, nor considerations on the spatial resolu-

tion achieved, but the reconstruction are in very good agreement with numerical

Boundary Element Method models, notably because of the particular geometry of

the sample and the experiments.

To conclude this review of 2D BPP, one should note that only three more pa-

pers were published at the time of this thesis, namely the work of Takashi et al.
on nanoscale dislocation strain fields in thick silicon crystal Takahashi et al., 2013
and those of Hruszkewycz’s group of research, on imaging local polarization in fer-

roelectric thin films Hruszkewycz, Highland, et al., 2013 and on imaging domain
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patterns in epitaxial thin films Hruszkewycz, Zhang, et al., 2016. As a result, this

shows the wide range of applications of 2D BPP, an imaging that can reach high-

resolution reconstruction of spatial variations, such as strain, tilt or polarization.

Nonetheless, the technique is limited to well-defined geometries, and assumptions

have to be made in order to quantitatively exploit the results.

6.3.2 3D Bragg Ptychography: numerical and experimental studies in the literature

numerical demonstration Firstly, 3D X-Ray Bragg Ptychography was in-

troduced by Godard, Allain and Chamard Godard, Allain, and Chamard, 2011 as a

technique that would particularly tackle the case of highly non-homogeneous strain

fields through a numerical demonstration. Starting from a simulated strained two-

dimensional sample, the ptychographical problem is solved for both the known

illumination case and the most difficult case of unknown illumination.

In order to do so, the authors developed a constrained PIE (cPIE) algorithm, that

introduces a regularization constraint applied on the exit wavefield modulus inside

the main loop of PIE. This regularization constraint comes from a very accurate

estimate of the strained sample, obtained from the monitoring of the diffraction

patterns measured at each beam position. In a first step, the shape of the object is

estimated. As in a SXDM experiment, the integrated intensity at each position leads

to a good estimate of the object modulus, which then need to be interpolated on a

grid whose step matches the inverse of the Fourier space extent, and deconvoluted

by the probe distribution to compensate the broadening introduced from the finite

beam size. In a second step, the phase of the object is estimated. As the center of

mass of the Bragg diffraction pattern is mostly governed by the phase associated

with the effective electron density of the sample, mapping the relative shift of the

Bragg peak with regard to a reference reciprocal space position gives rise to a first

order approximation of the gradient of the phase of the object. Indeed, a peak shift

of M pixels along a given direction on the detector is produced by a linear phase

with a slope of 2π M
N radians per pixel, N being the number of pixel on the detector

along the considered direction. After an other interpolation of the retrieved phase

gradients, integration can be performed and a good estimate of the strained object

provided.

Using approximately 2500 inversion steps and a known illumination, the cPIE

leads to a much more satisfying solution whereas the PIE is far form converging to

the true solution. When introducing noise in the diffraction patterns, the retrieved

phase is still satisfactory with cPIE, while the retrieved modulus starts showing

voids and irregularities. With an unknown illumination, the cPIE leads to reason-

able phase field retrieval, but requires twice the average intensity on the whole
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detector at each illumination position. Note that the algorithm was tested for two

overlapping ratio O quantifying the redundancy of the ptychographical dataset,

46% and 35%, with increasing quality observed in the results for larger O. Within

the assumption that the probe can be assimilated to a Gaussian of radius r0, the

surface overlapping ratio - preferred over the linear one - is given by the analytical

expression :

O = r0


2r0arccos

(
R

2r0

)
− R

√
1−

(
R

2r0

)2

 /

(
πr2

0
)

(6.19)

where R is the step distance. It is worth stressing out that this numerical demon-

stration has been performed in a simplified case, where the diffraction patterns are

acquired at only one Bragg angle, hence no depth information is recovered but only

a 2D slice. However, the authors claim that by using the same technique as in Bragg

CDI, i.e. the angular scanning of the sample to explore a 3D volume of the re-

ciprocal space, the 2D approach can easily be extrapolated to 3D without need for

tomographic methods Guizar-Sicairos and Fienup, 2008.

6.3.2.1 First experimental reconstruction

After this numerical introduction, a first publication with results from an actual

ptychographic dataset was published by Godard et al. Godard, Carbone, et al., 2011,

dealing with patterned Silicon-on-insulator wafer composed of two 40 nm thick Si

<110> lines.

A particular focus is going to be put on the experimental conditions. A one-

dimensional line scan with a 300 nm step size was performed along a direction

transverse to the parallel lines, and at each scan position a 0.4◦ wide rocking curve

was performed, scanning the incident angle with steps of 0.04
◦. The acquisition

time was set to 50 s by frame with a detector mounted 1.17 m downstream, and

the illumination FWHM was of 200 x 600 nm2 at the focus, impacting on the sample

with a 22.35
◦ incident angle at 8 keV. These figures are recalled here to act as a

reference point to compared with the ones used during the experiments carried on

in the scope of this thesis. Within the experimental conditions of the experiment,

the elongated footprint of the illumination onto the sample is evaluated to give rise

to a probe of radius 300 nm, hence the overlapping ratio derived from equation

6.19 is of 39%. As the measurement-sampling rate was too small in the rocking

curve direction, with only 0.4◦ explored, the authors increased by a factor of 2

along the corresponding real space direction. All in all, the reciprocal space voxel

size resulting from the experimental conditions is of 1.9 x 1.8 x 11 x (10
−3)3 nm−3.

Furthermore, the resolution claimed in the real space direction corresponding to the
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rocking curve is of 40 nm, which is actually the expected size of the sample. Hence,

the representation of the results may have to be considered with care.

6.3.2.2 Dealing with undersampled dataset

Nonetheless, these two first publications paved the way for more trials of 3D

Bragg Ptychography experiments. Firstly, Berenguer et al. showed that 3D X-ray

Bragg Ptychography could also be used to retrieve an elongated sample from under-

sampled dataset in the rocking curve direction Berenguer et al., 2013. Introducing a

penalization on the reconstructed density through the addition of a regularization

term containing a priori information, typically about the object thickness, to the cost

function of a scaled gradient algorithm. Interestingly, they stressed that, given the

particular framework of a Bragg CDI measurement, a constraint on the thickness

of the object actually provides a constraint along the two real-space direction of

the scattering plane. This is due to the non-orthogonality of the conjugated frames,

depicted in Figure 6.4.

q3 q2 

q1 q k⃗ fki⃗θBragg

δq3

ki⃗
θBragg

r3
r2 

r1x
y

z conjugated spaces
Wr

Figure 6.4 – Conjugated spaces involved in Bragg CDI imaging. The (~x,~y,~z) basis is the
fundamental one of the laboratory, while the sample is rotated with a θBragg
angle around the x-direction. (Top) Reciprocal space measurement basis is
(~q1, ~q2, ~q3) with (~q1, ~q2) in the detector plane and ~q3 being the direction probed
along the angular scan (rocking curve). (Bottom) The conjugate basis, in real
space, where the object is reconstructed, is (~r1, ~r2, ~r3). The blue frame Wr is the
smallest numerical window which fully contains the exit field, represented in
dark blue. (reused from Berenguer et al., 2013)

Numerical and experimental demonstrations are given in the paper, applied to

a set of two parallel silicon lines, of thickness and width of 180 nm and 950 nm

respectively, spaced by 2 μm and assumed to be strain free on average. The ptycho-

graphical dataset was obtained in the vicinity of the (220) Bragg reflection, by scan-

ning the sample transversely to the lines, with a total of 11 positions separated by
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approximately 500 nm. The rocking curve, willingly undersampled, was made of 8

steps of 0.01
◦ and each frame was taken from a 50 s-long exposure. Data acquisition

was performed at CRISTAL beamline (Soleil synchrotron), with a monochromatic

beam at 8.5 keV, whose central spot at focus reached 3 x 1 μm2, and an Andor de-

tector (1024 x 1024 pixels of size 13 x 13 μm2) located 2 m away from the sample.

From the regularized ptychographical procedure, the claimed resolution was about

80 nm. Finally, a description of the crystalline properties is lacking, restricting the

demonstration to the imaging of the 3D density solely.

6.3.2.3 Exploitable description of the 3D crystalline properties

“strain in a silicon-on-insulator nanostructure revealed by 3d

x-ray bragg ptychography” Then, Chamard et al. demonstrated that 3D

X-ray Bragg Ptychography could quantify in 3D a displacement field in a litho-

graphically patterned silicon-on-insulator nanostructure Chamard, Allain, et al.,

2015. Willing to overcome the limitations of 2D reconstruction and lack of crystalline

properties information, the authors developed a highly controlled experimental pro-

cedure allowing for higher robustness and better sensitivity of a 3D reconstruction,

based on not only an accurate definition of the X-ray illumination but also on an

optimized inversion procedure.

The key demonstration of the article is performed on a shot-noise corrupted nu-

merical dataset, created from a meticulous pre-analysis of the experimental diffrac-

tion patterns. The experimental conditions are the following. At the ID13 beamline

(ESRF), a 12 keV beam was focused down to 0.31 x 0.23 μm2 (H x V) and char-

acterized with a method inspired by Quiney and detailed in the paper Quiney et

al., 2006
2. A 180 nm thick silicon-on-insulator, mounted in the horizontal scatter-

ing condition, was scanned along the vertical direction, normal to the scattering

plane, with 15 illumination-to-sample positions each separated by 50 nm. Using

equation 6.19, the overlapping ratio is found to be around 72.5%. The scanning

was performed at 21 different incident angles, covering a 0.28
◦ angular range, in

the vicinity of the (220) Bragg reflection of silicon (θB =15.1◦), while the diffraction

patterns were recorded on a Maxipix detector (516 x 516 pixels of size 55 μm) at

a distance of 2.25 m from the sample. All these experimental conditions lead to a

voxel size in the conjugate direct space of 7.9 x 7.9 x 21 nm3, assuming no cropping

nor padding.

The retrieval procedure relied on a conjugate gradient algorithm chosen to opti-

mize the Poissonian likelihood, with the introduction of a regularization term aim-

ing at constraining the object within a film-like support. The initial guess was the

2. Note that this Quiney method leads to probe with phases that are quite continuous, and does not
provide a mode decomposition. For these reasons, the probe retrieval with Siemens star reconstruction
using forward ptychography could be preferred.
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strain-free model, with a shape close to the SOI pattern nominal shape. The fi-

nal reconstruction yields a good accuracy with the nominal object shape studied

by scanning electron microscopy, even if some density fluctuations remain. From

the 3D plot of the retrieved density presenting sharp edges in all three direction of

space, the authors claim a resolution of 50 x 45 x 15 nm3. However, the resolution

being smaller than voxel size in the last direction, this implicitly suggests that some

padding and/or interpolation of the diffracted intensity along the rocking curve

direction have been performed. Nonetheless, the specific behavior of the displace-

ment field component u220, notably at the bottom interface and at the in-plane edge,

is in good agreement with the model made to fit with the particular behavior of the

diffraction patterns.

“non-destructive three-dimensional imaging of crystal strain and

rotations in an extended bonded semiconductor heterostructure”

In Pateras et al., 2015, Pateras et al. managed to obtain an accurate reconstruction

of bonded semiconductor heterostructure, imaging strain and tilt of the crystalline

lattice at the interface of an InP stack and a 40-nm thick InGaAs layer. At the ID13

beamline at the ESRF, they performed a 180-frames rocking curve (of 0.54
◦ angular

range) at the (004) Bragg reflection, repeating it at each position of a 11 x 9 steps

scan of the sample. In order to avoid saturating the detector and to increase signal-

to-noise ratio, the same ptychographical scan was performed 3 times, and summed

up prior to the reconstruction. From a 2D Maxipix detector mounted at 1.38 m

from the sample, the author claims a voxel size in the orthogonal direct space of

15.5 x 16.5 x 9 nm3 (in x,y,z, see Figure 6.5 for axes reference) which accounts for a

3D window in reciprocal space of 130 x 120 x 180 pixels. In order to characterize

the X-ray illumination, the Quiney method was used, based on the simple and fast

measurement of the overfocused direct beam intensity pattern performed with a

high-resolution camera.
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Figure 6.5 – Bragg diffraction geometry. The detector orientation depicted here follows the
default CXI convention with a ’top, left’ origin as seen from the sample. Note
the inversion of the x and y axis between the ’laboratory’ reference frame (O, x,
y, z) and the detector reference frame (which points towards the detector and
follows the ’top, left’ origin for pixels).

Then, the retrieval process of the object relied heavily on a very accurate pre-

modeling of the sample, which was used as an initial guess of the iterative algorithm

plus as a regularization term throughout both of the 1000 iterations of ordered-

subset and 1000 iterations conjugated scaled-gradient, applied in that order. More-

over, a finite-thickness planar support (353 nm thick along the out-of-plane direction

of the sample) was key for the algorithm to converge. Finally, prior to a detailed

discussion about crystal plane tilts, the author estimates the resolution to be about

9 nm in the (001) direction from the broadening of the out-of-plane strain at the

InP/InGaAs interface. One could also stress that the computing time to perform

the whole inversion, rarely given in publications, was about 117 hours.

“revealing crystalline domains in a mollusc shell single-crystalline

prism .” Finally, the example of crystalline domains in a mollusc shell single-

crystalline prism retrieved by 3D X-ray Bragg Ptychography was published by Mas-

tropietro et al. Mastropietro, Godard, et al., 2017. Prior to the Bragg Ptychography

experiment at the ID13 beamline, the authors investigated the structure of the sam-

ple by means of Coherent Anti-Stokes Raman Scattering microscopy Cheng and Xie,

2004. This gave them additional insight, notably about the fluctuations in carbonate

density. An analysis of the speckle patterns allowed the authors to estimate the

presence of several domains and their shape within the elongated sample, hence to
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build a numerical sample as close as possible to the real object, which is key for the

iterative cPIE to converge.

For the Ptychography experiment, a 15 keV probe was focused down to 80 x 100 nm2

(H x V, FWHM) and characterized with an approach derived from the Quiney

method Chamard, Allain, et al., 2015. The longitudinal coherence of the beam was

found to be large enough to ensure full illumination of a sample of thickness up to

1.9 μm, at the (110) Bragg reflection. As the calcite prism thickness has been esti-

mated to 1.75 μm, the sample was considered under coherent illumination along its

width. The diffraction dataset was recorded at a Bragg angle of 9.6◦ on a 2D detec-

tor located 2.6 m from the sample while scanning the sample across the beam with

steps of 45 nm, over a 9 x 9 point mesh. Using equation 6.19, and a beam radius

defined as half of the FWHM characteristic size, one gets an overlapping ratio of 45%

(resp. 32%) in the horizontal direction (resp. vertical). The step size of the angular

scan was set to 0.007
◦ with an exposure time of 30 s by frame. In order to reduce

the computing time, the 3D volume of reciprocal space was reduce to 286 x 286 x 94

pixels, i. e. cropping the detector array and dividing the number of points in the

rocking curve by 3. This results in a direct space pixel size of 13.7 x 13.7 x 7.2 nm3.

As in the previous paper from Chamard et al. ibid., the inversion was then per-

formed with an optimized procedure, extensively tested on numerical data simu-

lating as closely as possible the experimental conditions and sample. In order to

constrain the thickness of the solution, a regularization term was introduced in the

criterion. A serie of reconstructions was performed with different thicknesses in

the regularization term while monitoring the error-metric. When the regularization

thickness was too thin, the error-metric was found to diverge, whereas when the

regularization thickness was too thick, the error-metric would shrink up to a point

where the regularization would not impact the reconstruction anymore. That way,

the inflection point of the L-curve (monitoring the error-metric versus the thickness)

gave the authors the optimal thickness according to the dataset. The final recon-

struction was obtained after 100 cycles of ordered-subset algorithm, which was then

followed by 100 cycles of conjugated gradient algorithm.

A relevant discussion on the spatial resolution of the solution is given in the sup-

plementary information of the paper. Obviously, the voxel size of the reconstructed

object in direct space does not account for an estimation of the spatial resolution.

Three different approaches are given to estimate the latter. First, the extent of the

diffraction patterns in the three directions of the dataset volume gives an upper limit

of the spatial resolution, estimated to 35 nm in this case from a 2-photon threshold.

However, this does not take into account the quality of the inversion process. To

do so, the authors proposed to calculate the extent of the ratio of the square of the

reconstructed diffracted amplitude and the experimental intensity recorded on the
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detector and integrated along all ptychographical positions. From a threshold of

10%, the 3D spatial resolution is estimated to 48 x 62 x 54 nm3. Finally, the thick-

nesses of the boundaries between two adjacent mis-oriented domains can give a

third estimation of the resolution, estimated here at 40 ± 10 nm along the three

directions. Note that this last method requires the presence of sharp interfaces, and

that the Fourier Shell Correlation approach is out-of-reach from the narrowness of

the data, which prevents from extracting two still-converging sub-data sets, as it

will be the case in most of ptychographical datasets.

6.3.3 3D Bragg Ptychography: limitations

The previous section investigated the development of the 3D Bragg Ptychography

technique, but although the success of several experiments, one has to stress out

that the technique suffers from many limitations, which can even corrupt an entire

dataset.

To begin with, it is the quality of the dataset that will define the success of a 3D

Bragg Ptychography reconstruction. As for a Bragg CDI experiment, visibility and

extent of fringes in the diffraction patterns are key to consider phasing a dataset.

Diffuse scattering, from e. g., a substrate, can also be a source of struggles for the

algorithms to converge, no matter the size of the beam and the overlapping ratio of

the scan. As a result, all the reconstructions that have been published so far emanate

from high SNR Bragg peak with very small background scattering. During the

coherence diffraction experiments conducted on the ultra-thin sSiGe nanostructures,

the thickness of the sample was another source of limitations, both for a numerical

point-of-view (pixelation of a 2-voxels thick object that will be discussed in section

6.4) and regarding the scattered intensity. Moreover, it is important to evaluate how

that the nanofocused beam, carrying a high flux density, can damage the sample

throughout time.

One can divide in two categories the usual difficulties that arise during a nanoprobe

experiment involving scanning and diffraction: setup instabilities and beam-to-

sample misalignment. The setup instabilities are of two kinds: short-time-scale

vibrations and long-time-scale drifts. The former can be assessed from the vari-

ations of the low count intensity pixels, when comparing two adjacent beam-to-

sample positions, at the same Bragg angle. A knowledge of the sample is then

vital to be able to differentiate structural variations from setup vibrations impacting

the diffraction pattern. Long-time-scale drifts are more difficult to assess in case

of extended sample. Mainly, temperature fluctuations or mechanical drifts will fall

within this category. In a typical synchrotron experimental hutch, thermal isolation

is present to avoid temperature fluctuations, but sometimes a continuous air flow
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at a particular frequency is enough to create visible drifts of the sample. On the

other hand, mechanical drifts are a result of the accuracy of the translation stage.

Indeed, in order to ensure redundancy in the dataset, translation steps smaller than

about a fraction of the beam size have to be chosen. This becomes delicate as soon

as the beam reaches characteristic sizes below a few tens of nanometers. Besides,

while piezoelectrical translation stages are able to provide such specifications in an

horizontal setup, vertical scattering geometry requires the stage to be tilted. As a

result, mechanical stresses arise and decrease the translation performance. One has

to stress that a 3D Bragg Ptychography experiment can lead to measurement time

of several hours (a typical process composed of ≈100 scan positions, repeated at

up to 200 incident angles, with 0.8 s exposure time, can last more than 4 h without

considering the dead times) whereas the scan positions have to remain the same

while rocking the incident angle.

The second category relates to the impact of beam-to-sample misalignment. Firstly,

it has been showed that the shrinkage of the beam footprint during the rocking

curve can be neglected. Indeed, the reduced extent of the angular scan, of less than

a degree Pfeifer et al., 2006, leads to a footprint shrinkage that is smaller than the

typical size of one voxel (10 nm). Hence, the illuminated volume throughout the

angular scan can be considered constant. However, the main issue is the alignment

of the beam-to-sample position with respect to the center of rotation of the experi-

mental stage. In practice, because of the sphere of confusion of the diffractometer,

this condition is never fully fulfilled. As a result, any shift of the illuminated vol-

ume from the center of rotation of the stage will lead to the illumination of different

volumes during the rocking curve. This can be analytically derived. For a shift lCOR,

an angular scan of amplitude ∆θ around an incidence angle α, the corresponding

motion of the illuminated volume will be :

∆x =
lCOR∆θ

tan α
(6.20)

For an angular extent of less than a degree, at incident angle above 20
◦, a dis-

crepancy between the center of rotation and the beam-to-sample position of up to

500 nm is bearable as it will induce a shift of less than 15 nm, comparable with the

typical voxel sizes.

In conclusion, the use of 3D Bragg Ptychography is appealing as it allows imag-

ing structural variations within an extended sample, but the necessity of a nanofo-

cused beam together with rotation stages prevents the technique from being robust

enough to be use routinely. The mechanical difficulties and the extensive acquisi-

tion time that arise from the particular geometry make of 3D Bragg Ptychography

a technique limited by sample positional drifts and radiation damage. The latter
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limitation is common to all techniques involving X-ray scanning as was addressed

by Howells et al. Howells et al., 2009. For instance, a too long exposure under X-rays

at 8 keV can bend and tilt 60 nm-thick SOI lines as illustrated in Figure 6.6. After

a full 3D Bragg ptychographical scanning was performed, with 256 positions at 14

different incident angles, with 2 seconds exposure by scanning point (beam size of

450 nm (H) × 75 nm (V)), the diffraction from the SOI lines (004) Bragg peak is

diverted on the sides of the detector, as a result of tilting of the lattice. This can

be due to a volume expansion of the thin oxide layer below the Si lines, as already

discussed in Mastropietro, Eymery, et al., 2013.
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(a) Integrated diffracted intensity map before X-ray exposure.
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(b) Integrated diffracted intensity and diffraction patterns at selected locations, after X-ray exposure.

Figure 6.6 – X-ray radiation damage on SOI sample. A 60 nm thick SOI layer made of reg-
ularly spaced 500 nm-width lines is damaged by a 12 hours-long exposure to
X-rays. 6.6a Integrated diffracted intensity space map before performing spi-
ral scan of 256 points, 2 s exposure per point at 14 incident angles. 6.6b The
same region of the sample, after performing a spiral scan, with the diffraction
patterns at different locations on the sample. The colored frame (green, orange,
purple) around the diffraction patterns are related to the corresponding col-
ored points on the real space map, where the lines are clearly modified by the
radiation damage. The footprint of the spiral scan is visible on the real space
map. The diffraction is shifted to the edges of the detector depending on the
beam-to-sample position.
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6.3.4 3D Bragg Projection Ptychography

6.3.4.1 Single-angle

In order to cope with the main limitations of 3D Bragg Ptychography, the idea was

to reduce the full Bragg ptychographical dataset, i. e., a set of diffraction patterns

recorded at each position of a spiral scan for different incident angles describing

an angular scan, to the same as in 2D BPP, with diffraction patterns recorded at

solely the exact Bragg angle. Then, as demonstrated by Hruszkewycz et al., while

two dimensions of the problem are encoded in reciprocal space by the diffraction in

the detector, the information about the third dimension is actually encoded in real

space, by the displacement of the beam towards the detector Hruszkewycz, Allain,

et al., 2017. Indeed, translating the beam in real space in two directions (into/out

of the page, towards/away from the detector) actually results in diffraction patterns

that yield structure profiles within different columns of the 3D object.

After gathering a ptychographical dataset collected at a given HKL-index Bragg

reflection, the major operator that lies at the heart of single-angle 3D BPP is the

back-projection operator. At this Bragg condition and at a given beam-to-sample

position j, the diffracted wave Ψ̃j is related to the 3D diffracting object O and the

probe Pj according to:

Ψ̃j = FRPjO (6.21)

where R is the 3D X-ray projection operator along the exit beam direction. This

projection operator is borrowed from computed tomography. Then, its adjoint R†

is the back-projection operator that allows converting the 2D diffracted wave back

to the 3D object. The main question is then how to calculate the back-projection.

Mathematical explanations of the “beam deconvolution” approach for single-angle

Bragg Projection Ptychography can be found in the Supplementary information of

ibid. In the PyNX library, three different approaches were implemented. In order

to present them, one can recall the algebraic problem of BPP. In order to obtain the

two-dimensional wavefront Ψj, the product of the probe times the object has to be

summed along the propagation direction, for all the volume that falls within the

object-probe domain (see Figure 6.7). This domain is discretized into N layers along

the Z direction, leading to the expression:

Ψj(~r) =
ZN

∑
Z=z1

P(~r−~rj)O(~r) (6.22)
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Figure 6.7 – Bragg projection geometry, with the back-propagated wavefront and the in-
cident wavefront of the illumination. The ’laboratory’ orthonormal reference
frame is (O, x, y, z), whereas the ’detector’ reference frame is the laboratory
one, after a rotation to point towards the detector, and inversion of both x and
y axis (because in the laboratory reference frame y points upwards, whereas on
the detector the origin is at the ’top, left’, so Y is oriented downwards).

Note that this expression is equivalent to RPjO, i. e., the wavefront is a 2D object,

in the real space and still needs to be Fourier transformed in order to be in reciprocal

space. Then, similarly to forward Ptychography, once an updated Ψj wavefront has

been obtained, updated values for object and probe must satisfy:

min ∑
j

∣∣∣∣∣Ψj(~r)−∑
z

P(~r−~rj)O(~r)

∣∣∣∣∣

2

Generally speaking, this is an ill-posed problem, similar to tomography. It follows

that for a unique minimum to exist, there must be more (linearly-independent)

illuminations than the number N of Z-layers in the probed object. Then, searching

for an optimal value for the object, three approaches were considered: object update

via replication, object update via incremental update and object update via gradient

minimization.

object update via replication : Once the Ψj wavefront has been back-propagated

to object space, the simplest way to spread this wavefront along the Z-layers of the

object is to replicate the wavefront along Z (taking into account the support), and
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then normalize. In the case of a single illumination j, a trivial solution can be writ-

ten:

O(~rZ) =
P∗(~rz −~rj)Ψj(~r)

∑Z
∣∣P(~rz −~rj)

∣∣2 (6.23)

However, since for a given object voxel the illumination is not the same for all

probe positions, equation 6.23 can be weighted depending on the probe amplitude,

e. g., minimizing:

∑
j

∣∣P(~rz −~rj)
∣∣2
∣∣∣∣∣O(~rZ)−

P∗(~rz −~rj)Ψj(~r)

∑Z
∣∣P(~rz −~rj)

∣∣2

∣∣∣∣∣

2

(6.24)

thus:

∑
j

{
∣∣P(~rz −~rj)

∣∣2 O∗(~rZ)−
∣∣P(~rz −~rj)

∣∣2 P(~rz −~rj)Ψ∗j (~r)

∑Z
∣∣P(~rz −~rj)

∣∣2

}
= 0

=⇒ O(~rZ) =
1

∑j
∣∣P(~rz −~rj)

∣∣2 ∑
j

∣∣P(~rz −~rj)
∣∣2 P∗(~rz −~rj)Ψj(~r)

∑Z
∣∣P(~rz −~rj)

∣∣2 (6.25)

However, this weight is not unique, and one could for instance weight by the sum

of the probe intensity along the entire stack of layers.

object update via incremental update : Two major issues arise while

calculating the 3D object at each iteration when performing object update via repli-

cation. Firstly, the uncertainty of the breakdown of Ψ into the contribution from all

individual layers makes it impossible to reconstruct the object in a single projection,

even in the case where all the computed phases are correct. Secondly, as the update

recomputes the entire object at each iteration, there is little chance to learn from the

previous iteration: the phases will get better, but there is no clear way to improve

the partitioning of Ψ into the contribution from all individual layers. One way to

improve this is to only perform incremental updates of the object, by considering

the difference between the calculated and back-propagated Ψ:

∆Ψj = (Pm − 1)∑
Z

P(~r−~rj)O(~r) = (Pm − 1)Ψj,calc (6.26)

where Pm is the modulus projection operator, consisting of a propagation to the

detector (Fourier transform and quadratic phase factor), applying the amplitudes

from the observed diffracted intensity and back-propagating to object space. Then,
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the object can be updated in a similar way to what was derived earlier. The quantity

to minimize is:

∑
j

∣∣∣∣∣∆Ψj(~r)−∑
Z

P(~r−~rj)∆O(~r)−∑
Z

∆P(~r−~rj)O(~r)

∣∣∣∣∣

2

(6.27)

Ignoring ∆P, the incremental probe, one can get the same relationship as in the

object update via replication, but on the incremental update of the object.

object update via gradient minimization : The object derivative can be

used as a search direction, and then a gradient minimization algorithm (single-step

or full conjugate gradient) can be used. Starting from the derivative versus the

object:

∂

∂Or,z0
∑

j

∣∣∣∣∣Ψj(~r)−∑
Z

P(~r−~rj)O(~r)

∣∣∣∣∣

2

= −∑
j

P(~rz0−~rj)

(
Ψ∗j (~r)−∑

Z
P∗(~r−~rj)O∗(~r)

)

(6.28)

If the search direction ∆O is known, the optimal value for the object is O + γ∆O,

which can easily be minimized against γ (see Appendix C).

The tests carried on with the PyNX library tend to show that the gradient min-

imization is the method that is leading to the best results, however it is also the

more computationally demanding method, as both the object gradient and the γ-

determination require looping over all calculated and observed frames.

6.3.4.2 Multi-angle

Not only the single-angle BPP suffers from the complexity of the object update,

but also requires high-diffraction angles (>∼ 60◦) as the effectiveness of localizing

sample structure along the beam propagation direction is maximized for 2θ = 90◦

and vanishes when 2θ = 180◦ or 0◦. In order to cope with the limitations of single-

angle BPP without falling back into those of 3D Bragg Ptychography, Hill et al.
developed a generalized 3D multiangle BPP approach (maBPP) Hill et al., 2018.

This approach is based on the measurement of far-field diffracted intensities at a

set of angles about a given Bragg peak of the crystalline sample. According to the

authors, it allows relaxing experimental constraints as incommensurate positions

from one angle to the other can be incorporated into the phase retrieval. As a result,

position and angle are two degrees of freedom that maBPP enables to introduce.

The main difference with respect to single-angle BPP lies in the expression of the

small angular deviations from the Bragg condition as ~Q = ~q − ~GHKL, where ~q is

the scattering vector and ~GHKL is the Bragg reciprocal lattice vector. This vector ~Q
encodes changes in a coherent diffraction pattern due to angular variations along a
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Bragg rocking curve. Then, the diffracted waves at the detector can be expressed in

a similar fashion as in equation 6.21, using the same notations:

Ψ̃j = FRQθj PO (6.29)

where the term Qθj = exp
(

i~r · ~Qθj

)
is a 3D real-space complex-valued phase

term that encodes spatial frequencies corresponding to angular deviations from

the exact Bragg angle. Introduced in equation 6.22, this factor allows decoupling

the object values along the same Z-layers, which will have different coefficients for

different angles. Authors used equation 6.29 to derive a gradient minimizing the

sum squared error and introduced it into the PIE algorithm. Note that only strongly

scattering angles were used, for a total of 8 angles, and 25 iterations were enough to

reach a satisfying solution. The implementation of maBPP into the PyNX library is

still under development, hence no examples will be presented, but this technique is

essential in solving the uniqueness problem of the distribution of amplitude along

Z-layers of the object.

6.4 numerical tests of pynx bragg ptychography library

Orthonormalization matrix

Before looking at numerical simulation and trial on real dataset, it is important to

stress out that the particular geometry of 3D Bragg Ptychography, whether single-

angle or not, implies to deal with the conjugated spaces very carefully. Indeed,

multiple frames are interacting and rigorous definitions are needed. This is done

by following the NeXus convention Könnecke et al., 2015, which defines that the

basis frame should be the one of the laboratory with ~z along the direct X-ray beam

propagation, ~y up and ~x horizontal, going left as seen from the X-ray source, as

depicted in Figure 6.5. Then, the detector is characterized by two rotation angles,

the out-of-plane angle, denoted δ and rotating around ~x, and the in-plane angle ν

rotating around ~y. Moreover, note that the default convention of the detector, with

a ’top, left’ origin as seen from the sample, is such that its frame (~X, ~Y) has opposite

sign than the laboratory frame. From this, one is able to define an orthonormal-

ization matrix, that will be used for converting back and forth the object (or probe)

coordinates (pixel coordinates in the detector reference frame) to/from orthonormal

ones in the reference laboratory frame. A thorough derivation is given in Appendix

B
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6.4.1 Strained Si layer, simple model

In order to test the algorithms implemented in the PyNX library, this section de-

scribes a numerical demonstration of 3D BPP. To begin with, a basic check of all the

orientations involved in a complete experiment, from the motion of the sample onto

the stage to the reconstructed object, through the reciprocal space, was performed

via a controlled numerical simulation. A parallelepidic object, 300 nm wide (along

x and z) and 60 nm thick (along y), was created with a limited resolution, i. e., a

discrete grid with a step being an integer multiple of the basic lattice parameter

of Si (here, the step was 5 times aSi =5.4309 Å), resulting in 37632 scatterers. A

strain bump was added within the layer through the modification of the vertical

coordinate. A displacement u(y) was implemented such as :

u(y) =
y

1000
exp

(
−
(

x
300e− 9

)2
)

(6.30)

A simple wavefront at 8 keV propagating trough a FZP of 300 μm diameter an

9.8 cm focal length, was used as the illuminating probe. The spiral scan consisted

in 320 positions, calculated from an Archimedes spiral with a step size of 20 nm. In

order to simulate a (004) Bragg reflection geometry, the coordinates of both the spiral

scan positions and the 3D object were rotated around the x-axis of the laboratory

frame, with an angle of θB = 33.53◦, corresponding to the Bragg angle of Silicon

at this X-ray energy. The detector located 1 m away from the sample was modeled

with a shape of 256 × 256 pixels, of size 55 μm, and its pixels position at a δ = 2θB =

67.06◦ angle were converted to scattering vector coordinates in the reference frame.

Based on the FWHM of the beam, the overlaping ratio for this setup is of 66% in

the horizontal direction, and of 81.1% in the vertical direction because of the beam

footprint. Figure 6.8 shows a top view of the sample and the related scan positions,

along with a projection of the FZP focused beam on the sample surface.
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Figure 6.8 – Geometry and beam of numerical 3D BPP simulation. Both subplots are top
views, within the sample frame (i. e., the z-axis is rotated by θB = 33.53◦ around
the laboratory z-axis). On the left hand side, the gray area indicates the extent
of the SiGe layer, while the blue crosses indicate the 320 beam-to-sample posi-
tions. Three distinct positions are highlighted as they will serve as reference
for diffraction patterns. Illumination wavefront focused from a FZP of 300 μm
diameter and 9.8 cm, at 8 keV. On the right hand side, the projection of the
beam onto the sample is depicted. A FZP is considered to be fully illuminated
by a plane wavefront originating from a source located 90 m upstream, and an
OSA of radius 30 μm is placed 0.2 mm before the focal plane. Both amplitude
and phase are represented, described by the HSV colorwheel on the right.

Then, the 320 diffraction patterns were computed numerically using the kinemat-

ical sum from each scatterer, after interpolation of the illuminating probe on the

scattering positions, assuming the width of the object was small enough to neglect

the probe propagation. This was done on a GTX 1060 graphic card, reducing the

computational time down to approximately 13 s. A Poisson noise was added to

the dataset, assuming a total number of photons of 108 over all the frames. Figure

6.9 shows three diffraction patterns, recorded at three different spiral scan positions

depicted in Figure 6.8. At the center of the Si layer, the diffraction pattern is cen-

tered and symmetric about the qx, qy origin of the detector (H, K reciprocal lattice

directions). As the beam approaches the edges of the sample, the diffraction pat-

tern gets completely modified, notably the tilt present at the edges elongates the

diffraction along H. As a result, the beam samples the lattice distortions within the

layer, leading to a modification of the shape and position of the diffraction patterns

during the ptychographical scan.
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Figure 6.9 – Representative nanofocused coherent X-ray diffraction patterns from a strained
Si layer. The position number relates to the ones of Figure 6.8, and differences
are evident in the intensity distribution of diffraction images taken from the
edge of the square island (position #281) compared to the center of the island
(position #1). The effect of out-of-plane strain is also visible as soon as the beam
illuminates a volume shifted from the center (such as position #101).

Next, the 3D Bragg Projection module of the PyNX library comes into play. Firstly,

one has to create a python class Bragg2DPtychoData for the two-dimensional ptycho-

graphic dataset, including the observed diffraction, probe positions, wavelength of

the illumination and detector parameters (distance, number of pixels, size of pixels

and angles). Secondly, the main class Bragg2DPtycho is initialized, with both the in-

formation about the probe, in the reference frame, and from the Bragg2DPtychoData
class. One of the attributes of this main class is to calculate the voxel size of the

object in the orthonormal frame. In the case of this simulation, it is found to

be of 10.65 nm in all directions. This comes from the fact that the detector win-

dow is symmetric and the voxel size in the back-projection direction is set to be

equal to the smallest voxel size in the two other directions. The following step

is to define a support for the 3D object. Indeed, it is crucial to constrain the ob-

ject reconstruction within a support that confines the extent of the object along

the surface-normal direction. This step can be done using a simple equation (e. g.,
(abs(x) < 200e− 9)× (abs(y) < 200e− 9)× (abs(z) < 30e− 9)) and a Monte-Carlo

integration. In the resulting array, a value of 0 indicates a voxel completely outside

the support, while 100 means that the voxel is fully inside, and any value in be-

tween is partially inside the support. This floating-point support has been defined

in order to avoid step-like issues for the initial object when modeling thin layers

that are only a few pixels thick. In the case of the Si layer, a parallelepiped object,

slightly larger than the initial object in the horizontal plane and 60 nm thick was

used and is shown in Figure 6.10. For the numerical study, the initial object of the

3D BPP was chosen to be strictly equal to its support.
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Figure 6.10 – Cross-sections of the support for a thin layer. The (X, Y, Z) frame is the one
of the laboratory, following the NeXuS convention, hence the support appears
rotated around the X-axis. Note that the cross-sections are taken at the center
of the volume. Only the density of the support is displayed, as it has no phase.
Moreover, the choice was made to set the initial object strictly equal to the
support.

It is of interest to stress out that the set of diffraction patterns of this simulation

could also have been calculated using a classical FT approach. Figure 6.11 describes

the processes for the two methods, with the advantages that they present. Indeed,

using the Bragg2DPtycho class, one can create a support that has the same dimen-

sions as the reference object, and then add the strain to the object, using the relation

between phase and displacement (equation 3.23) :

Objstrained = Objunstrained × exp

[
2iπ

y
1000

1
4aSi

exp

(
−
(

x
300e− 9

)2
)]

(6.31)
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FFT approachKinematic sum process

Define a grid with given spacing to model the atomic positions (x,y,z)
Rotate the meshgrid to put the crystal into Bragg condition

Create a detector, i.e. a 2D grid of reciprocal lattice coordinates, taking into account the Ewald's sphere curvature (sx, sy, sz)
interpolate a 2D probe onto given scan positions

Compute the scattering of the illuminated volume for each scan position:  

Create Bragg2DPtychoData and  
Bragg2DPtycho PyNX classes, with the detector, scan and probe parameters
Generate a 3D object in the right  frame (i.e., taking into account the Bragg angle within the reference frame)
Compute the 3D product of probe and object, project into a 2D image and Fourier transform to get the diffracted intensity: this is done with the Calc2Obs PyNX operator

proscons
No aliasing, accurate modeling of the Ewald's sphere curvatureComputational time

Fast computation
Aliasing, detector curved
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ss ma

p

Figure 6.11 – Route for kinematic simulation versus Bragg Ptycho class, using the PyNX
library.

Then, the PyNX operator Calc2Obs computes diffraction pattern for given object,

probe and beam-to-sample positions, using a FT of the product of the beam with the

object, and a Poissonian distribution to add noise. Figure 6.12 shows the compari-

son between two diffraction patterns calculated at the exact same beam-to-sample

position, from the kinematical method and the direct FT method. Obviously, the

difference between the two methods can only arise from the difference in the step

of the grid used to compute scatterers in the kinematical method, compared to the

voxel size of the 3D BPP object. However, in the case described here, there is a factor

2 between the two steps, and no noticeable differences arise. This strengthen the

reliability of the FT method, which is in this example 100 times faster.
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Figure 6.12 – Comparison of two methods of computation of diffraction pattern from a par-
tially illuminated object. On the left column, the computation was performed
using a kinematical sum from all the scatterers within the object, whereas the
right column shows the results from a FT of the illuminated object created
from a 3D BPP experiment, i. e., limited by the voxel size obtained from the
particular Bragg geometry. (a) Diffraction patterns from the central position
of the scan, (b) Diffraction patterns from the last position of the spiral scan.

Once the initial object and corresponding support are initialized, a key step is to

scale the object with respect to the probe. This is performed through the operator,

so that the 3D arrays of object and probe have the same magnitude, and that the

product of object times the probe matches the observed intensity (i. e., ∑ abs(O ×
P)2 = ∑ Iobs) . This step is crucial as it will prevent the algorithms from diverging

in the early steps. Then, the adapted DM and AP algorithm are used in order to

retrieve a solution. 40 iterations of DM are followed by 40 iterations of AP to give

the result described in Figure 6.13.
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Figure 6.13 – Cross-sections of the reconstructed object using DM and AP on simulated

diffraction patterns with a support constraint in real space. The (X, Y, Z)
frame is the one of the laboratory with a rotation around the X-axis so that
the object appears square. Note that the cross-sections are taken at the center
of the volume. (Top) Density and (bottom) phase of the retrieved object. The
shape of the object has been retrieved and the phase displays a gradient in the
vertical directions, but remains flat in the horizontal plane. This is expected as
the numerical phase introduced in the diffracting object, from equation 6.30, is
strictly proportional to y, hence the (XZ) cross-section at Y = 0 has no phase
variations.

In order to evaluate the quality of the reconstruction, one compares the calculated

diffraction patterns from the retrieved object to the observed ones. Figure 6.14

shows the comparison between these two sets, at the first and the last beam-to-

sample position. The good agreement between the retrieved diffraction patterns

and the observed ones strengthens the retrieval process.
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Figure 6.14 – Comparison of the retrieved diffraction patterns with the observed/simulated
ones. On the left column, the diffraction patterns result from a FT of product
of the retrieved object time the beam, while the right column depicts the kine-
matical diffraction patterns with Poisson noise. (a) Diffraction patterns from
the central position of the scan, (b) Diffraction patterns from the last position
of the spiral scan.

Lastly, a finer analysis on the reconstructed density and phase can be performed.

First, the object is rotated around the X-axis of the laboratory reference frame by

θB so that its sides are parallel to the reference axes. Figure 6.15a shows a cross-

section of the retrieved object in the (XY) plane, at Z = 0. Corresponding profiles

along the Y-axis, at X = 0, are depicted in Figure 6.15b. In this direction, the nu-

merical sample is very thin (60 nm) and one can see that the algorithm struggles to

determine clear edges, as the pixel size of 10.6 nm limits the resolution. From the

profile of Figure 6.15b, the spatial resolution using the edge sharpness is estimated

to be ±1 pixel. Moreover, the phase shows only slight variations, which can be

transposed to a corresponding displacement field along the (001) direction. This is
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depicted in Figure 6.15c, along with the equivalent strain with respect to an unde-

formed Si lattice. The input value of 0.12%, homogeneous along the thickness of the

object, is quite comparable with the retrieved strain.
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Figure 6.15 – Vertical cross-sections of the retrieved Si thin layer. 6.15a (XY) cross sections
of (right) density and (left) phase of the retrieved object, 6.15b profiles of phase
and density along the Y-axis, 6.15c corresponding displacement and strain. In
6.15a, the phase is plotted with a mask hiding the pixels where the density is
less than 10% of the maximum density within the cross-section. One can see
from the density that the edges have been well retrieved along X, starting from
a support that was 1.3 times longer than the true object. In 6.15b & 6.15c, the
gray vertical spans serve as visual support to locate the extent of the true object
(60 nm thick). The quasi-linear trend of the displacement is expected from the
input 6.30. Indeed, in 6.16c, the retrieved values of displacement and strain
(circles) are compared to the model (triangles), and there is a strong agreement
of the retrieved displacement with the model. Note that the retrieved strain is
the real strain εyy, the out-of-plane strain.
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The same analysis is then performed in the horizontal (XZ) plane, where the

displacement should be of the form of exp
(
−
( x

300e−9

)2
)

. Figure 6.16a shows a

cross-section of the retrieved object in the (XZ) plane, at Y = 10 nm, phase and

density separated, and the corresponding profiles along the X-axis, at Z = 0, are

depicted in Figure 6.16b. Figure 6.16b represents the corresponding displacement

field and strain. What strikes out is that the expected behavior of the displacement

is retrieved, and that except for some oscillations along the Z-axis, the density of

the retrieved object is in very good agreement with the numerical sample. From the

edge sharpness, one can estimate the spatial resolution to be around ±1 pixel again.

This numerical example demonstrates the ability of the PyNX’s version of the 3D

BPP algorithm to be efficient and extremely fast. Indeed, the mean time elapsed

during one cycle (AP and DM) is ≈ 0.11 s, accounting for a total time of less than

10 seconds to perform the 80 cycles.
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Figure 6.16 – Horizontal cross-sections of the retrieved Si thin layer. 6.16a(XZ) cross sec-
tions of (right) density and (left) phase of the retrieved object, 6.16b profiles
of phase and density along the X-axis, 6.16c corresponding displacement and
strain. In 6.16b, the phase is plotted with a mask hiding the pixels where
the density is less than 50% of the maximum density within the cross-section.
One can see from the density that the edges have been well retrieved along X,
starting from a support that was 1.3 times longer than the true object. In 6.16b
& 6.16c, the gray vertical spans serve as visual support to locate the extent of
the true object (300 nm wide). In 6.16c, the retrieved values of displacement
and strain (circles) are compared to the model (triangles). Note that the strain
εyx is a shear strain.
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To conclude, the PyNX process to deal with 3D Bragg Projection ptychographical

dataset has proved to be working reliably with simulated dataset, where the input

strain is manually controlled. The listing 6.1 shows a simplified route for using the

PyNX library and reconstructing a 3D object from a scanning diffraction dataset at

the Bragg angle of the sample.
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Algorithm 6.1 Building the 3D BPP analysis with the PyNX library.

from pynx.wavefront import Wavefront
from pynx.ptycho.bragg2d import *
# Load experiment parameters
wavelength, angles, pixel_size_detector, ny, nx, detector_distance = ...
nb = ... # number of spiralscan positions
xs, ys, zs = ...# piezo motors! have to comply with the laboratory frame
Iobs = ... # observed intensities
# take care of the signs ! reference frame follows nexus convention i.e., z //

beam direction, y vertical and x outboard
detector = { ’ r o t a t i o n _ a x e s ’:(( ’ x ’, -delta), ( ’ y ’, nu)), ’ p i x e l _ s i z e ’:

pixel_size_detector, ’ d i s t a n c e ’: detector_distance}

# Create Bragg 2D Ptycho data object
data = Bragg2DPtychoData(iobs=Iobs, positions=(xs, ys, zs), mask=...,wavelength

=wavelength, detector=detector)

# Load or create a probe
pr = Wavefront(d=np.fft.fftshift(d[ ’ probe ’],axes=(-2,-1)), z=0, pixel_size=d[ ’

p i x e l s i z e ’], wavelength=wavelength)

# Create main Bragg Ptycho object
p = Bragg2DPtycho(probe=pr, data=data, support=None)

# Init the support
x0, x1, y0, y1, z0, z1 = ... # Base parallelepiped object
rs = 1.0 # Create a support. Larger than the object, or not...
# Equation for GPU init of support using Monte-Carlo integration
eq = " ( x >= %g ) * ( x <= %g ) * ( y >= %g ) * ( y <= %g ) * ( z >= %g ) * ( z

<= %g ) " %(rs * x0, rs * x1, rs * y0, rs * y1, rs * z0, rs * z1)
s = InitSupport(eq, rotation_axes=[( ’ x ’, eta)], shrink_object_around_support=

True)
p = s * p

# Set object starting point, equals to the support
p.set_obj(p.support/100 * np.random.uniform(.2,1.0, p.support.shape))
# Need to recompute optimal centering of frames
p = CalcCenterObjProbe() * p
# Scale object and probe with observed intensity before any optimisation
p = ScaleObjProbe() * p

# Solve !
p = DM(update_object=True, update_probe=False, calc_llk=5, show_obj_probe=0,

reg_fac_obj_a=0, reg_fac_obj_c=0) ** 40 * p
p = AP(update_object=True, update_probe=False, calc_llk=5, show_obj_probe=0,

reg_fac_obj_a=0, reg_fac_obj_c=0) ** 40 * p

p = ShowObj() * p

Listing 6.1 Building the 3D Bragg Projection Ptychography analysis with the PyNX
library.
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6.4.2 Strained SiGe layer, from Comsol modeling of 4.3.1

After a successful first trial with a 60 nm-thick Si layer, the sample studied in

Chapter 4, 20 nm-thick strained SiGe on Insulator, is used as a new test object. The

Comsol elastic simulations of 4.3.1 were used to implement an accurate model of

displacement fields within the 3D object. A grid of 3× 3× 2 nm3 was used to model

a 250 nm square SiGe island, resulting in the creation of 77616 scattering points. In

order to create the beam of the ptychographical scan, a FZP of 300 μm diameter

and 14 cm focal length was illuminated with a single 8 keV monochromatic point

source located 90 m upstream. Coherence slits of 200 × 200 μm2 were implemented

to create the final probe, depicted in Figure 6.17. The FWHM at the focal plane is of

153 × 130 nm2 (H×V).
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Figure 6.17 – Simulated probe for numerical 3D BPP simulation. The illumination wave-
front is focused from a FZP of 300 μm diameter and 9.8 cm focal length, at
8 keV, with coherent slits of 200 × 200 μm2. Moreover, an OSA of radius
30 μm is placed 0.2 mm before the focal plane. Both amplitude and phase are
represented, described by the HSV colorwheel on the right.

Then, a spiral scan with a step size of 40 nm and 43 positions was used to calculate

the kinematic diffraction patterns of the ptychographical dataset, at the (004) Bragg

reflection of the theoretical lattice of Si0.76Ge0.24. The detector was simulated with

516 pixels of 55 μm size, positioned 1.2 m away from the sample, at an angle δ =

2θSiGe
B = 66.38◦ in the vertical scattering plane. Figure 6.18 depicts the geometry of

the simulation in the laboratory reference frame, with the beam-to-sample positions

on a 3D object represented with one scatterer every 50 ones. The incident and

exit wavevectors are also shown, together with the projection of the beam onto the

sample, at the first scan position.
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Figure 6.18 – 3D view of the geometry, including the tilted sample and the positions of
the scan. The projection of the FZP focused beam onto the sample is also
represented, at the first scan position. Note that the sample and the beam
are at the same scale. Some positions are highlited as they will be used as
references later. The incident and exit wavevectors of the geometry are shown,
to remind the reader that the reference frame is the one of the laboratory, with
the direct beam propagating along z and the detector, positioned in the vertical
scattering geometry, has an angle of 66.38◦ with the x-axis.

Next, the same process as in the previous subsection 6.4.1 is used to compute

numerically the diffraction patterns at each beam-to-sample position. The resulting

detector image are shown for three distinct positions in Figure 6.19. Note that

the corresponding locations of the beam during the scan are indicated in Figure

6.18. From the first spiral scan position, at the very center of the ultra-thin layer,

one can clearly evidence the effect of the layer thickness, whereas in the two side

positions, the diffraction patterns extend on the side of the detector, as a result of tilt

in the sample. This is expected from the strain analysis performed either from the

Comsol modeling or evidenced through SXDM experiments (see chapter 4). All the

diffraction patterns are then centered on the center of mass of the diffraction from

the first scan position, and cropped. The final window size has to match two rules:
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first the window has to be symmetrical and its width must be so that its largest

prime divider is lower than 13, as it is required for the GPU computations. As a

result, the 3D size of the diffraction data set is of 48 × 440× 440.
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Figure 6.19 – Simulated diffraction patterns from the strained SiGeOI comsol model, with
respect to the beam-to-sample position on the layer. Locations of the different
probe positions are depicted in Figure 6.18. The probe used for the simula-
tion is smaller than the square SiGe pattern, hence different behaviors can be
observed. At the central position (#1), the diffraction patterns encodes the
information from the thickness of the layer, and the extension of the central
lobe towards lower L values indicate that strain is affecting the layer. At posi-
tion #39, the probe impinges on the very edge of the square island, thus the
diffraction pattern is shifted to the left of the detector as a result of the high
tilt coming from the strain relaxation. At position #46, the probe illuminates
both the edge and a central part of the layer, hence a combination of the effects
described previously are visible.

Then, following the same point-by-point process described in , a support is built

to initialize the 3D BPP object. Within the simulated geometrical conditions, the

voxel size of the 3D array is a cube of size 7.3 × 7.3 × 7.3 nm3. The support is

initialized as a parallelepipedic object of width 500 nm and thickness 20 nm. As a

result, in the layer thickness direction, less than 3 voxels have to be used, leading

to step-like effect as the sample is rotated in the reference frame. Figure 6.20 shows

the cross-sections of the support in the laboratory frame, with the clear pixelisation

effect in the (ZY) plane.
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Figure 6.20 – Support initialization for an ultra thin SiGeOI layer. The support’s density is
displayed in the reference frame, hence appears tilted, and the cross-sections
are taken at X = 0, Y = 0, Z = 0.

Next, 40 cycles of DM are performed in order to reach an accurate guess that is

then used to perform 40 cycles of AP. In order to reduce the Poissonian LogLikeli-

hood figure of merit, another 40 cycles of DM and 40 cycles of AP are performed 3.

The reconstruction is finished with 40 cycles of ML. Figure 6.21 shows the cross-

sections in the laboratory frame of the rotated retrieved object, both in density and

in phase. Fluctuations in the density are noticeable, particularly along the Z-axis,

which is the projection direction, normal to the detector, for which only the deconvo-

lution by the probe gives spatial resolution. Morevoer, it is clear that the algorithm

struggles to define the thickness of the layer, as it supposed to be only 3 pixels thick.

Nonetheless, the edges along the X-axis are well retrieved, and phase variations can

be observed, that are yet to be compared with the model.

3. When the support is tight, i. e., has the same shape as the initial object, a regularization term
can then be introduced in order to enforce continuity of the object density inside the support area.
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Figure 6.21 – Retrieved object from numerical simulation of 3D BPP. Cross-sections of (top

row) object density and (bottom row) object phase. The voxel size if 7.3 nm in
every direction, which shows that in the thickness direction (Y-axis) the object
is constraint with difficulty. Along the Z-axis, one can note the struggles of
the algorithm that result in fluctuations from one line of pixels to another.
Nonetheless, the size along the X-axis is retrieved even with a wider initial
support (500 nm wide support), and phase gradients can be observed, that
most likely are true representations of the tilt and strain within the initial
object.

In order to extract more quantitative information from the reconstruction, Figure

6.23 shows an analysis of density, phase, associated displacement and strain in the

(XY) plane, at Z = 0 nm. In this vertical plane, only two pixels are falling entirely

inside the object, which makes the extraction of strain less reliable. No strong varia-

tions of phase are visible, and the scale of the associated displacement fields along

the (001) direction slightly diverges from the Comsol simulation, with a retrieved

value at the interface of around 0.3 Å compared to 1 Å from the model. More-

over, the retrieved out-of-plane strain εyy (according to the notation of the frame),

obtained from the derivative of the phase, is also different from the expected one

(0.25% compared to 0.5%). These discrepancies can be imputed to the ultra small

thickness of the object, which forces the reconstruction to have only two pixels in

this direction, thus increasing the uncertainty.
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Figure 6.22 – Analysis of the out-of-plane components of the retrieved SiGe ultra-thin layer.
6.22a(XY) cross sections of (right) density and (left) phase of the retrieved
object, 6.22b profiles of phase and density along the Y-axis, 6.22c correspond-
ing displacement and strain. In 6.22b, the phase (in radians) is plotted with
a mask hiding the pixels where the density is less than 10% of the maximum
density within the cross-section. One can see from the density that the edges
have been well retrieved along X, starting from a support that was twice wider
than the true object. However, along the Y-axis, the reconstruction is impinged
on by the limited voxel size, which is very close to the actual thickness of the
sample. In 6.15b & 6.22c, the gray vertical spans serve as visual support to lo-
cate the extent of the true object (250 nm wide). This way, only two pixels are
really inside the true object, and two straddle the edges. Hence, it is difficult
to estimate the quality of the displacement field along this direction.
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The same analysis is performed in the (XZ) plane, at Y = 10 nm. Figure 6.23

presents the different cross-sections and profiles. In Figure 6.23a, the density of the

retrieved object in the (XZ) plane presents a lot of fluctuations along the Z-axis, but

a clear square is still visible, with sharp edges along the X-axis. However, the size

of the pattern looks to have shrank from the expected width. The phase of Figure

6.23a has been unwrapped, but there are still some residuals of what looks like

wrapped phase in the displayed profiles of Figure 6.23b. As a result, a seemingly

parabolic profile of the phase is observed, with sharp increases when approaching

the edges of the structure. This is in good agreement with the expected deformation

of the strained SiGe island. The (004) probed Bragg reflection gives insight into the

projection of the displacement field onto the out-of-plane direction, which is in

this case along the thickness of the object (Y-axis). Hence, here one retrieved the

shear strain εyx, with respect to the lattice parameter of SiGe, which is in very good

agreement with the extracted gradient of the uy displacement along the X direction

from Comsol. However, the corresponding displacement could not be extracted

from Comsol hence no comparison can be made for the retrieved displacement.
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Figure 6.23 – Analysis of the in-plane components of the retrieved SiGe ultra-thin layer.
6.23a(XZ) cross sections of (right) density and (left) phase of the retrieved
object, 6.23b profiles of phase and density along the X-axis, 6.23c correspond-
ing displacement and strain. In 6.23b, the phase (in radians) is plotted with
a mask hiding the pixels where the density is less than 25% of the maximum
density within the cross-section. One can see from the density that the edges
have been well retrieved along X, starting from a support that was twice wider
than the true object. In 6.15b & 6.23c, the gray vertical spans serve as visual
support to locate the extent of the true object (250 nm wide). From the ampli-
tude profiles, one can see that the quality is poorer along the Z-axis than along
the X-axis. The phase profiles seem to exhibit a symmetrical behavior with
strong variations towards the edge, however the calculation of corresponding
displacement fields and strain is deteriorated by the small-scale fluctuations.
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In conclusion, the simulations performed in order to test the reliability and the

robustness of the 3D BPP algorithm have shown the actual limitations of the method.

Indeed, strain and characteristic sizes of the object are the two major issues. When

the strain field is small enough to keep the diffraction patterns well contrasted and

confined, the algorithms retrieve quickly and quantitatively the diffracting object

whereas the phasing of distorted diffraction patterns that expand on most of the

detector results in poor reconstruction. This is strongly coupled with the size of the

object, as the algorithm is inherently limited by a certain voxel size, itself defined

by the particular Bragg geometry parameters. For this reason, it may be better

to treat the ultra-thin objects as 2D layer, and hence use the 2D Bragg Projection

Ptychography, putting aside strain resolution in the thickness dimension for the

moment.

6.5 experimental results

6.5.1 2D Bragg Projection Ptychography on sSiGeOI

Experiments have been performed at the NanoMax beamline of the Max IV syn-

chrotron, Lund, Sweden, in order to further characterize the ultra-thin strained SiGe

sample of chapter 4. The ability of focusing X-ray beam down to 100 × 100 nm2

was used to map the strain variation with a theoretical spatial resolution of a few

nanometers. Figure 6.24 depicts a view of the experimental hutch of the NanoMax

beamline, including the particular robot arm for the detector, which is independent

from the sample diffractometer.

detector robot arm 

X-rays Sample stage
Focusing optics

Figure 6.24 – NanoMax (Max IV synchrotron, Lund, Sweden) experimental hutch.
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Using a pair of KB mirrors, an 8 keV X-ray beam was focused down, and its

wavefront retrieved using the standard beam characterization i. e., a forward ptycho-

graphic scan on a reference Siemens star object. The object was placed 500 μm be-

fore the estimated focal plane (upstream) and a Pilatus detector was located 4.01 m

after the sample stage (downstream). The result of the probe retrieval from the

ptychographical scan is shown in Figure 6.25, where both the beam caustic in the

horizontal plane and the beam wavefront at the retrieved focal plane are depicted.

Note that the FWHM of the beam is found to be of 102 × 109 nm2 (H×V) at focus.
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Figure 6.25 – Retrieved X-ray beam wavefront at the NanoMax beamline. (Left) Probe caus-
tic in the horizontal propagation plane, where the horizontal focusing plane
is found to be around 500 μm upstream. (Right) Probe wavefront at the focal
plane, where it reaches a FWHM size of 102 × 109 nm2 (H×V). Note that both
plots are related to the same HSV colorwheel, depicting the phase with colors
and the amplitude in brightness.

A Merlin detector was mounted on the robot arm in order to reach Bragg reflec-

tions of the sample. The radius of the arm was set to 0.89 m and the (113) Bragg

reflections of both Si and SiGe were investigated. Firstly, angular scan were per-

formed around the Bragg angle of the silicon substrate, i. e., θ113
Si = 28.24◦, in order

to calibrate the experiment. From an analysis similar to 4.4.3, a lattice parameter

of Si was found to be of 5.428 Å, which is only 0.05% lower than the tabulated Si

lattice parameter at room temperature (300 K). After noticing strong spatial drifts of

the sample while in vertical scattering geometry from SXDM maps, the decision was

taken to put the sample vertically and use an horizontal scattering geometry. An-

other angular scan was performed around an incident angle of α = 54.57◦ while the

detector was rotated in-plane to an angle of 2θ113
Si = 56.5◦. This time the measured

lattice parameter of Si was 5.431 Å. Next, the detector angle was lowered to 55.5◦

and the incident angle to 52.4◦ in order to catch the (113) Bragg peak of the strained
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SiGe layer. Optimization of the Bragg angle was performed through the search of

the angle leading to the maximum integrated intensity in the detector.

Then, the beam was scanned over several sample areas in order to acquire pty-

chography datasets. At the time of the experiment, the scanning was performed in

the following way : a combination of classic scan, at low velocity in one direction,

with fly-scan at high velocity in the other direction. This enabled 2D map of up to

3 × 3 μm2 area with step sizes of 20 nm in the fast direction and 40 nm in the other

direction, with exposure time varying between 0.1 and 0.01 s. Figure 6.26 shows the

integrated intensity over an entire set of scan positions over a 20 nm-thick 2 × 2 μm2

SiGe island, together with the frame of maximum intensity. The very low count by

frame strikes out, as well as the impact of the truncation rod of the silicon substrate.
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Figure 6.26 – Diffraction patterns from coherent highly focused beam from a SiGe (113)
Bragg reflection. (Left) Sum of all the frames acquired during a scan over
a 20 nm-thick sSiGe sample, with 0.01 s exposure. (Right) Frame with maxi-
mum integrated intensity from the same scan. Note that the scale is in number
of counts, and that the chosen geometry is the horizontal scattering, contrarily
to the previous experiments. Hence, the high 2θ values are located on the
right-hand side of the detector.

Another interesting feature that arises from a ptychographical dataset is the abil-

ity to perform integration of the diffracted intensity within some region of interest

in the detector with respect to the beam-to-sample position, and hence access real

space map with information about the location of scatterers. Figure 6.27 depicts the

results of a 101 × 100 points scan with 40 nm× 30 nm step size over a 20 nm-thick

2 × 2 μm2 strained SiGe island, with real space maps obtained from three differ-

ent regions of interest on the detector. Some interesting analysis can be discussed.

Firstly, the shape of the SiGe island is well defined from the integrated map from
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the ROI number 1 (See the blue rectangle in Figure 6.27). Secondly, one can see that

only the upper edge of the square island gives raise to the intensity integrated from

the ROI number 2 (See the purple rectangle in Figure 6.27), which only takes into

account half of the vertical extent of the diffraction patterns. This is a clear sign

of the tilt of the sample. Finally, selecting only the part of the diffraction patterns

that is located in between fringes, such as ROI number 3 (See the orange rectangle

in Figure 6.27), gives raise to some strange real space map. Indeed, stripes appear

as well as extinctions of intensity along vertical (along y) lines, on both side of the

island.
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Figure 6.27 – SXDM analysis from Bragg diffraction patterns of a 20 nm-thick strained SiGe
island, with a highly-focused beam. On the upper right side, detector image of
the summed diffraction patterns over the 10100 positions of a 101 × 100 points
scan with 40 nm× 30 nm step size over a 20 nm-thick 2 × 2 μm2 strained SiGe
island. The Bragg angle was optimized from an angular scan around the (113)
Bragg reflection of Si0.76Ge0.24. On the same plot are depicted three ROIs that
are used to perform an integration of the diffraction patterns at each scan
position, leading to three real space maps of the sample. ROI #2 shows the
impact of the tilted edges on the diffraction, while ROI #3 demonstrates an
interesting behavior that is yet to be explained.

Then, the diffraction patterns recorded at one Bragg angle from this previous scan

are implemented in a 2D BPP routine, while taking care of the coordinate system

as derived in section 6.3.1. In the geometry of the experiment, the exit angle β is
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extremely shallow i. e., 3.1◦ hence the resolution along the horizontal axis will be

increased, from 9.8 nm to 235 nm. Indeed, the coordinate of the scan along the

horizontal direction has to be corrected by the factor sin(β)
tan(α) = 0.0416. Nonetheless,

the algorithm chain composed of 800 cycles of AP converges to a good solution de-

picted in Figure 6.28. Note that the spatial resolution, obviously degraded along the

projection direction i. e., along the x-axis, is high in the y-axis direction as indicated

from the step-like shape of the amplitude profile. The width of the retrieved object,

taken at 20% of the maximum amplitude, is estimated to be of 1.95 μm.
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Figure 6.28 – 2D results of forward ptychography applied to a scan of the sample in Bragg
condition. (Left) Retrieved density, where the resolution is clearly affected
along x, with a pixel size of 235 nm, whereas in the other direction the edges
of the structure are retrieved with sharpness. (Right) 1D profiles of both phase
and amplitude of the retrieved 2D complex object.

From the reconstructed 2D object, one can also extract the displacement fields.

Note that the retrieved displacement fields are projections onto the (113) direction,

which still exhibits a particular behavior as the sample relaxes its out-of-plane strain

by expanding its in-plane lattice parameter, leading to strong edge effects that the

(113) Bragg reflection has sensitivity to. Figure 6.29 shows the vertical profiles of

displacement and strain, extracted at x = 1.1 μm. Here, the retrieved strain is the

real (113) shear strain (see 2.2.4), defined as the deformation of the layer along the

horizontal direction :

ε113,y =
∂u[113]

∂y[11̄0]
(6.32)

It is extremely interesting to stress out that the bounce effect on the displacement

near the edges clearly agrees with the elastic simulations. Indeed, Figures 6.29a and

6.29b show a close agreement of the strain profile behavior towards the edge of the

structure, which reaches a minimal value of around -0.05% just before increasing

right before the edge. Moreover, one can evidence that the layer is relaxed on its
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central area, but that strain comes into play around 250 nm from the edges. That

is in good agreement with the results from the SXDM analysis of chapter 4. This

demonstrates the ability of the technique to image low-scale variations of strain,

even when the geometry is not favorable (shallow exit angle).
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Figure 6.29 – 6.29a 2D BPP on a 20 nm-thick sSiGe: vertical profiles of displacement and
strain. The gray horizonal span delimits the extent of the reconstructed density.
6.29b Extracted (113) shear strain from Comsol modeling in the presence of
SiN on top of the sSiGe layer or not. The (113) real shear strain is defined as
∂u[113]
∂y[11̄0]

. The strain profile of 6.29a follows the same trend as the corresponding

case of 6.29b, i. e., a strained SiGe island with a tensely stressed SiN capping
layer.
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6.5.2 2D Bragg Projection Ptychography on GeSn micro-disks

The 2D Bragg Projection Ptychography code was further tested on suspended

Germanium (Ge) Tin (Sn) micro-disks. This section describes the sample realization

and the context of the study, then the experimental setup is introduced, and finally

a new approach is presented in order to use the 2D BPP method on these strongly

strained microsized disks.

The microelectronics industry is actively looking for a CMOS-compatible material

with a direct bandgap that could be used to fabricate an efficient monolithic laser

source integrated on a Si platform, as an alternative to the transfer of III-V based

structures. Ge1−xSnx has been identified as a novel, viable candidate, with prop-

erties somewhere between its pure components : the direct bandgap of Ge is only

slightly higher than its indirect bandgap, while the direct bandgap of α-Sn (lattice

parameter 6.4892 Å) is zero. High Sn concentrations in Ge that were initially diffi-

cult to achieve due to the low Sn solubility in Ge (<1%), large lattice mismatch (15%)

and surface segregation of Sn, can now be reached thanks to the recent progress in

Chemical Vapor Deposition (CVD) growth Aubin et al., 2017. Laser operation has

subsequently been demonstrated in GeSn structures Wirths et al., 2015; Al-Kabi et

al., 2016, highlighting the attractiveness of this CMOS-compatible material for Si

photonics. Yet, at that time the laser regime was only observed at cryogenic temper-

ature.

Strain engineering is used to modify the material’s properties and thus raise the

operating temperature. The initial epitaxial growth of Ge1−xSnx layer on Ge sub-

strates usually results in a compressive strain in the layer. This is detrimental since

larger Sn concentrations are required to achieve a direct bandgap if the layer is

compressed: a direct bandgap Ge1−xSnx layer under −0.5% compressive strain (re-

laxed) requires x > 0.11 (x > 0.08). The development of etching recipes selective

against Ge and GeSn, even at low Sn contents (few %) Al-Kabi et al., 2016; Milord et

al., 2017, has allowed to consider suspended structures, that can relax the epitaxial

strain. Laser effect with lower Sn content were thus recently achieved in suspended

Ge0.915Sn0.085 micro-disks Stange et al., 2016 and in micro-disks made by collabora-

tors at the CEA.

An important question that is still open is the relationship between the actual

anisotropic strain distribution in the micro-disk and its optical properties. The strain

distribution has so far only been estimated using FEM, using mechanical parame-

ters that are linearly interpolated between Ge and Sn, and Raman spectroscopy with

Raman strain shift coefficients which are only known for biaxial stress in GeSn, and

a known composition Gassenq, Milord, Aubin, Pauc, et al., 2017. However, devia-

tions from linearity are expected in GeSn, as was already observed for the largely
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non-linear dependence of the bandgap (bowing of 2.4 eV) Gassenq, Milord, Aubin,

Guilloy, et al., 2016. Since the optical properties are highly dependent on the elec-

tronic band structure which in turn is dictated by the strain state, an accurate strain

measurement is necessary to achieve a complete understanding of the properties of

this very promising new material. To this end, an experiment was performed at the

ID01 beamline of the ESRF in order to map the strain using coherent X-ray Bragg

Ptychography imaging, together with SXDM.

Figure 6.30 shows a typical sample: from top to bottom, it consists of a 8 μm

diameter disk made of a 480 nm-thick GeSn bilayer (decomposed in a 225 nm-thick

layer with 13% Sn, a transition layer of 90 nm thickness, and a 120 nm-thick layer

with 11% Sn), a Ge pillar of 3 μm diameter, 2.5 μm height, and a Si substrate.

GeSn 13% 225 nm 
GeSn 11% 120 nm 

Ge
Si

2.5 μm 

Figure 6.30 – GeSn micro-disk, optical microscope top view, SEM images and schematic of
the layers. The disk is 8 μm in diameter and made of a 480 nm-thick GeSn
bilayer (decomposed in a 120 nm-thick layer with 11% Sn, a transition layer of
90 nm thickness, and a 225 nm-thick layer with 13% Sn). The Ge pilar is 3 μm
in diameter, and 2.5 μm in height. Strong bending of the top layer is clearly
visible from the SEM images.

With a focused 8 keV beam (360 × 180 nm2 FWHM H × V), spiral scans were

performed on such a sample with an incident angle around α = 31.5◦ ≈ θ
GeSn (004)
B

and a 516 × 516 pixels detector located 1 m away recorded the (004) diffraction

patterns. Figure 6.31 shows the beam-to-sample positions during a 283 points long

spiral scan, with steps of 0.1 μm and exposure time of 1 s. The colorbar is taken

from the integrated intensity over the entire detector, normalized by the maximum

over the scan. As a result, one can see that even by scanning a 2 × 2 μm2 area,

strong variation of diffracted intensity are visible. This indicates that the strong

bending of the micro-disk lead to the creation of isostrain areas, over which the

diffraction of the layer remains within the detector area for the same sample and

detector orientations. In the example of Figure 6.31, one can highlight a 500 nm-

width “horizontal band” that is in Bragg condition, whereas the diffraction coming

from the surrounding parts of the micro-disk is not caught by the detector.

This can be interpreted using an isostrain description Kegel et al., 2001; I. Robin-

son and Harder, 2009: as the disc is curved and can be approximated to a portion
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of a sphere of radius, e. g., R = 100 μm, when illuminated, only a small layer will

be in Bragg diffraction condition. If the natural FWHM of the diffraction from GeSn

is e. g. ∆ω = 0.01◦ = 1.8× 10−3 rad, this corresponds to a diffracting thickness of

R× ∆ω = 17 nm, effectively making the beam see a quasi 2D isostrain layer. Note

however that the geometry of the layer is not strictly plane, due to the spherical

curvature.
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Figure 6.31 – Integrated intensity map from a spiral scan on a GeSn micro-disk. A 283

points spiral scan is performed with steps of 100 nm on a 8 μm diameter
GeSn disk, in (004) Bragg reflection condition. The diffraction patterns of
each beam-to-sample position are integrated to create a real-space map of the
sample, according to its diffraction. Three specific locations are highlighted as
they will be used as reference for Figure 6.32. Note that an “horizontal band”
is in diffraction condition whereas the remaining of the disk does not diffract
onto the detector: this is a clear indication of the bending of the micro-disk,
that leads to have only portion of the micro-disk in diffraction condition for a
specific incident angle.

The corresponding diffraction patterns are shown in Figure 6.32, for three differ-

ent locations on the micro-disk. Firstly, it is clear that the diffraction gets deviated

while moving on the surface of the micro-disk, with a maximum intensity reached

on the central part of the scan, that was preferentially aligned prior to scanning.

Secondly, the diffraction from the central area exhibits two spatially separated be-

haviors: it is split between a clear line-spread diffraction around qZ = 4.33 Å−1

and a more disturbed spot with many speckles around qZ = 4.35 Å−1. These lower

spot is coming from the top GeSn @13% Sn layer, that has a larger lattice parameter,

whereas the upper spot comes from the bottom GeSn @11% Sn layer. Moreover, the
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fact that the upper diffraction pattern looks more disturbed is in good agreement

with the expectation, as the bottom GeSn layer is more strained and contains more

defects than the upper layer.
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Figure 6.32 – Diffraction patterns from a step-graded GeSn micro-disk, at different beam-to-
sample from a spiral scan performed with the central part of the sample being
carefully aligned in Bragg condition. By illuminating areas away from the
central position (#0), a completely different behavior of the diffracted intensity
is recorded. The total intensity decreases and gets shifted on the side of the
detector. This indicates that, away from the central position, the micro-disk is
bent and no longer in Bragg condition.

The 3D BPP reconstructions on such sample were not satisfactory, mainly due to

the wide extension of the diffraction patterns, that actually spread from one side

of the detector to another during scanning. The low contrast between diffracted

intensities inside and outside the “isostrain band” is also preventing the algorithm

from reaching accurate results. Last but not least, because of the huge bending of

the micro-disk, precise alignment of the center of rotation of the sample stage with

the micro disk was extremely difficult, leading angular scans to span over several

degrees. As a result, the decision to perform 2D BPP on a single-angle dataset was

taken. Using the fact that the “isostrain band” enables to have only a width-limited

part of the micro-disk that is actually in diffraction condition, the 2D BPP should

be able to retrieve an in-depth slice of such an “isostrain band”. As discussed

in section 6.3.1, the algorithm just needs an adjustment of the coordinates system,

which in this case amounts to a correction of the vertical coordinates by a factor of
sin(δ−α)

tan(α) = 0.907. The process was found to be successful with the same recipe as

in the previous section, i. e., 800 iterations of AP, combined with a simultaneous

optimization on the probe. Figure 6.33 depicts the 2D solution in both amplitude

and phase of the solution, together with 1D vertical profiles. Not only the solution

retrieves a total thickness of approximately 500 nm, that is in good agreement with
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the expectation, but also it seems that the interface at the transit layer is retrieved.

Indeed, a gap in the amplitude is associated with a clear change of slope sign of

the phase’s vertical profile, suggesting a strongly deformed interface as it is the case

between the two GeSn layers of the micro-disk. Moreover, the retrieved thickness

of both layer is around 200 nm, matching with the nominal characteristic widths.

The fact that the amplitude of the lower layer is more disturbed than the top one is

likely to be a sign of a larger defect density, due to several defects coming from the

growth that are attenuated by the step-graded buffer. Indeed, the idea of the step

buffer is to decrease this density, although the composition is increased, a necessary

condition to tune the optoelectronic properties. Then, a detailed analysis of phase

along both direction can be made.
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Figure 6.33 – 2D BPP reconstruction on a micro-disk “isostrain band”. On the left-hand
side, the 2D solution is displayed, in amplitude and in phase, while the bot-
tom subplot depicts the unwrapped phase. It is interesting to stress that the
unwrapped phase is parabolic along x. On the right-hand side, 1D vertical
profiles of phase (purple) and amplitude (blue) obtained at x = −0.35 μm. Af-
ter 800 iterations of AP, the solution raises a 500 nm-thick layer that is marked
by a clear interface around y = 0.5 μm. The sharp decrease in amplitude goes
along with a change of sign in the phase’s slope, delimiting two areas that
would correspond to the two GeSn layer with different Sn concentration and
different purity. Moreover, the lower layer looks to hold more defects than the
top one, which is in good agreement with the expectations.
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Firstly, Figure 6.34 presents the derivation of displacement fields and strain from

the 1D vertical profile of retrieved phase. Two distinct area, depicted as gray spans,

can be differentiated from the slope of the phase or equivalently from the averaged

strain value. Indeed, the first area, with an average strain of -0.26%±0.04% (stan-

dard deviation) can be assimilated to the lower Ge0.89Sn0.11 layer, whereas the second

area, with an average strain of 0.13%±0.06%, is likely to be the upper Ge0.87Sn0.13

layer. Note that the strain is calculated from the lattice parameter corresponding to

the maximum diffraction peak over the scan (∼ 5.78 Å), which was used to center

the reciprocal space window during the reconstruction.
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Figure 6.34 – Extracted displacement and strain from vertical cut on the retrieved phase.

Secondly, another interesting feature that can be extracted from the 2D BPP result

is the curvature of the dome-like micro-disk. Indeed, as it can be seen directly

from the SEM images (Figure 6.30) or from the behavior of the rocking curve, that

spans other ∼ 6◦ around the Bragg angle, the micro-disk is so bent that it can be

assimilated to a portion of a sphere. As the unwrapped phase along x is a parabola,

it sounds reasonable to fit the radius of the sphere which would approximates the

parabola around the apex position. In order to do so, a linear regression of the strain

εyx = dhkl
2π

∂ϕ
∂x is performed. By assuming a parametric relation of the displacement

uyx = R cos (ω(x)), where R is the radius of curvature, with ω = x
R one has:

uyx = R cos
x
R
≈ R

(
1− x2

2R2

)
(6.33)

Hence, the strain εyx reads:

εyx =
∂uyx

∂x
= − x

R
(6.34)
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Figure 6.35 shows the unwrapped phase of the 2D solution, along with an hori-

zontal profile of strain. It is remarkable how linear the strain is over a wide area,

with a slope of −9599 m−1 and a correlation coefficient of more than 99%. This

leads to a radius of curvature of approximately 104 μm for the GeSn micro-disk,

which is well in agreement with what one can expect: for a radius of 100 μm, an arc

length of 8 μm is seen with an angle of 5.7◦.
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Figure 6.35 – (top) 2D BPP unwrapped phase, (bottom) horizontal cut of the associated
strain εyx (at the location of the blue line above) and corresponding linear
regression. The unwrapped phase exhibits a clear parabolic shape horizon-
tally, and the analysis of the extracted strain confirms this behavior. Indeed,
the linear regression yields a slope of s = −9.59× 103 m−1 with a coefficient
of determination of more than 99%. This allow to estimate the radius of cur-
vature of the micro-disk at x = 0, which is equals to −1

s = 104 μm.

6.6 conclusion

In this chapter focused on Ptychography, the method itself was first detailed, in

the usual transmission geometry. This technique, first introduced in the 1970’s, has

benefited from major improvements in the early 2000. Thanks to the combined

efforts of the coherent diffraction imaging community, Ptychography in forward
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geometry has reached a mature state and demonstrated to be extremely robust. Se-

tups enhancements allowed to reach just a few nanometers of spatial resolution, and

the combination of Ptychography with other imaging technique, e. g., tomography,

allowed to image 3D volume to unprecedented levels of resolution.

Then, the two main algorithms that has proven to converge towards satisfying

solutions, namely the PIE and the Difference Map (DM) algorithm, have been thor-

oughly recalled, in order to set the nomenclature and symbols of a typical Ptycho-

graphical experiment. However, the assumptions required in order to apply the

classical ptychographical algorithm have not to be forgotten: the validity of the

wave factorization of object and probe and the fact that the illumination should

remain constant over all scanned positions.

The highlight of this chapter is the ability to implement the Bragg geometry into

Ptychography. Indeed, accessing the Bragg condition for a crystalline material al-

lows getting insight into the crystalline properties of the sample, such as displace-

ment fields. This high sensitivity to 3D crystalline displacement fields is key for

the ongoing development of nanoscience, that relies on the new material properties

arising when the dimensions of the structure reach the nanometer scale. Adapting

Ptychography to the Bragg case was first considered ten years ago, with a straight-

forward use of the classical ptychographic algorithm to dataset acquired in the vicin-

ity of a crystal Bragg reflection, leading to 2D solutions with strain sensitivity. Math-

ematically speaking, the only modification is related to the scan coordinates, that

have to be expressed in the frame parallel to the detector. However, as the solutions

are back-projection of the detector within the actual sample, strong assumptions on

the homogeneity of the sample have to be introduced.

In the early 2010s, 3D Bragg Ptychography was developed, as illustrated by the

literature review of section 6.3.2. A few papers were published, but the limita-

tions introduced by mechanical drift and radiation damage over the long-lasting

scans make most of the datasets really difficult to reconstruct. Next, the 3D Bragg

Projection Ptychography was introduced: a method aiming at coping with these

limitations while getting 3D information on crystalline properties. In theory, the

information about the “third dimension”, i. e., along the direction normal to the

detector, that is usually acquired by rocking the sample slightly around its Bragg

condition (in 3D Bragg CDI and 3D Bragg Ptychography), is actually encoded in

the real-space scanning of the sample. The challenge is thus to deconvolve this in-

formation from the set of 2D diffraction patterns at the Bragg angle. Section 6.3.4

describes several ways to achieve this decomposition.

One of the aim of this PhD thesis was to develop and test Bragg Ptychography

algorithms within the ESRF python library, PyNX. In 6.4, several numerical sim-

ulation and experimental reconstructions are presented, along with some typical
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roadmap for using the PyNX library. The latter is consistent for simulated datasets,

however the experimental datasets gathered during this work presented intrinsic

limitations. On the one hand, the ultra-thin sSiGeOI layers are actually so thin that

a 2D-layer approximation is more meaningful. This way, the 2D BPP approach was

tested and led to accurate results. On the other hand, the GeSn samples diffraction

patterns were so disturbed because of strain and tilt that the 3D algorithms failed to

retrieve a good solution. For this case, the 2D BPP approach was actually found to

be applicable to GeSn micro-disk. Indeed, this micro-disk are bent to such an extent

that an isostrain approximation can be made on thin volume within the sample,

leading to accurate reconstruction of the step-graded layers.

In conclusion, improvements are still needed for the single-angle 3D BPP im-

plemented in the PyNX library, but the implementation of multi-angle BPP holds

promising insights. Indeed, introducing angular diversity will help the algorithm

to converge, while overcoming mechanical issues as the Back-projection operator

allows incorporating incommensurate positions from one angle to the other.
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C O N C L U S I O N

Coherent Diffraction Imaging (CDI) techniques are keys in the exploitation of

hard X-rays produced at synchrotron facilities. These techniques, based on lensless

microscopy, aim at imaging nanoscale properties of a sample by the means of a

highly coherent beam. By using reciprocal space patterns diffracted by the sample,

algorithms are used to retrieve the phases that have been lost while reaching high

spatial resolution. Even if the majority of the techniques that fall into this category

are mature, there is still a lot of room for improvement, notably when the Bragg

geometry is incorporated. Users that come to a synchrotron facility often seek the

advices and help of scientists of the field, as no standard algorithm is available for

techniques such as Bragg CDI (BCDI) and Bragg Ptychography. In this work, we

studied the implementation of various X-ray diffraction techniques analysis in order

to increase their availability to a wider range of users, notably in the context of the

EBS upgrade at the ESRF.

The first part of this manuscript gives a detailed description of the theoretical

background necessary for the understanding of the samples and methods carried

out. Firstly, strain and its impact on a crystal and its scattering was explained. As

strain breaks the crystal symmetry, it modifies the band structure of a material and

changes its carrier mobility. In chapter 2, a rapid introduction to the related concepts

is given, with a particular focus on the theory of elasticity that is primordial for the

understanding of the sample of interest: from strained SiGe on Insulator aimed at

becoming the channel for the new transistor mode, to GeSn micro-structures paving

the way for new laser applications, strain engineering has to be understood.

In chapter 3, a thorough description of X-rays is done along with the explana-

tion of how synchrotron facilities can produce coherent X-rays. In the case of crys-

talline materials, shining a coherent X-rays beam onto the sample and collecting

the scattered intensity around Bragg peaks allows recording information about the

deformation of the crystal. This is the motivation for the development of Bragg

Coherent X-ray Imaging, which became an essential tool for the understanding of

structural properties. During the last twenty years, coherent X-ray scattering has

seen very significant progress, notably through the use of better focusing optics,

producing a smaller beam size with a much higher photon flux, allowing the study

of objects smaller than 100 nm. Moreover, a particular highlight is made on some re-

cent algorithmic improvements such as taking into account the partial coherence of
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the incident beam, and maximum log-likelihood refinement, leading to significant

increases in the reconstruction accuracy and resolution.

Then, the second part of this manuscript is devoted to the description of the

experiments carried on during this PhD thesis. Firstly, chapter 4 presents a case

study of strain mapping on strained sSiGeOI ultra-thin patterns, with the demon-

stration that 100 nm spatial resolution can be obtained using SXDM. This technique

yields high-resolution map with high sensitivity to strain and tilt of a crystalline

sample, providing careful analysis of the huge amount of diffraction data. In that

perspective, a detailed point-by-point road-map is given in the chapter, aiming at

guiding users throughout the entire experiment, from data acquisition to analysis.

Moreover, the chapter shows that SXDM can also be used a statistical tool, as the

numerous patterns present in the studied sample all hold significant interest and

provide a general understanding on how the strain relax with respect to the length

of a channel. Indeed, the results show that the recently developed technique of

condensation, allowing the growth of ultra-thin (13 to 20 nm thickness) SiGe on

SOI, yields layers that have a strain relaxation length higher than predicted by the

elasticity theory. These results were confirmed by the recent electron holography ex-

periments Boureau et al., 2019, suggesting gliding at the SOI/SiGe interface. Hence,

SXDM was demonstrated to be also compatible with the state-of-the-art electronic

materials. Last but no least, the SXDM technique developed at the ID01 beamline

will benefit from the EBS upgrade, as a higher flux will e. g. allow even reducing

the exposure time and speed up the whole measurement.

Next, chapter 5 focuses on an innovative combination of two imaging techniques,

namely Bragg CDI and Diffraction Contrast Tomography (DCT). Indeed, the two

different length-scale of the two techniques were combined to show the ability to

switch from a micrometer-scale imaging of a ZrO2 sample, yielding information on

the average strain, into the fine study of an embedded grain within the volume, with

nano-scale spatial resolution. As a result, DCT can be used as a tool to register and

index grains within a sample and BCDI then comes into play to give quantitative

result at the grain scale. The combination of these two techniques is very promising

in the future horizons opened by notably the EBS upgrade, that will enable finer

tuning of the beam: defocusing a beam to adapt its size to the one of the observed

grain in BCDI is key. Besides, the question of strain sensitivity in BCDI reconstruc-

tions was addressed, as it is a topic that has been left aside since the beginning

of the technique. A method, inspired by Fourier Shell Correlation, was proposed

and evaluated on both simulated and real datasets. As a result, Strain Shell Cor-

relation is believed to be an accurate tool for evaluating the strain sensitivity of a

reconstruction.
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Finally, a method that holds a lot of promises in the search for high-resolution

imaging of extended sample is presented in chapter 6. First, the traditional forward

transmission Ptychography method is introduced, along with its associated classical

algorithms. Then, the case of Bragg geometry is discussed, as the potential ability of

Bragg Ptychography to image lattice distortions within a crystal at nanometer-scale

spatial resolution in 3D is particularly attracting. The technique, which relies on the

collection of diffraction patterns in the vicinity of Bragg peaks, from spatially over-

lapping position on the sample, has been first developed in 2D, yielding accurate

reconstructions of objects presenting enough homogeneities. 2D Bragg Projection

Ptychography (BPP) uses standard ptychographical algorithms, with a correction of

the scan positions and the assumption that the illumination is an infinite plane wave

apertured by the complex sample shape function, in order to recover the sample pro-

jection with phase information. The application of 2D BPP to ultra-thin sample, or to

isostrain volume within a highly bent sample, leads to accurate results, able to e. g.
characterize strain variations with high spatial resolution or estimate the curvature

of the sample.

Then, the case of complete 3D reconstructions was tackled, using the Ptycho-

graphic Iterative Engine (PIE) algorithm with the incorporation of a crucial regu-

larization term. However, full 3D measurements involve performing long-lasting

scan at multiple angles of rotation of the sample, and thus suffer from many lim-

itations, particularly long-time mechanical drifts of the stage or radiation damage

of the sample. The back-projection operator was then introduced to overcome these

experimental limitations, nonetheless, its implementation is not simple. Multiple

ways were tested, but so far reconstructions from real dataset still need improve-

ments (ultra thin layers, strongly strained nano-objects). Adding a small number of

angles to the set of diffraction data was found to help the convergence, but further

complicates the algorithms. One should also stress that these methods relying on

back-projection are heavily dependent on a precise support, at least in the direction

normal to the detector. Besides, quantitative metric has still to be defined, as small

log-likelihood of squared error values are not necessarily synonym of reaching the

true solution.

Despite the apparent robustness of the 3D Bragg Ptychography method, next ex-

periments will require much greater knowledge of the experimental regime, as well

as exceptional control and stability. Furthermore, highly strained or tilted objects,

that will see their diffraction patterns shift to one edge of the detector to the other

while scanning, still cause problem of convergence. Last but not least, ultra-thin

samples are yet difficult to reconstruct for the embarrassingly simple reason that the

voxel size of the reconstruction is currently limited by the experimental conditions

(wavelength, detector distance, size and pixel size, getting below 5 nm is hardly
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possible). However, stress can be made on the fact that the 2D BPP approach actu-

ally holds much outlooks since it is well suited for ultra-thin objects and strongly

strained objects that contain volumes which can be approximated with the isostrain

approach. Indeed, it has been shown in chapter 6 that firstly ultra-thin object can

be approximated to 2D layers, leading the 2D BPP to yield a strain distribution

matching closely the elastic simulations, and secondly that the new approach with

isostrain extraction of 2D layers from strongly strained micro-disk allow to recover

interfaces and phase gradient.



Quatrième partie

A P P E N D I X





A
S X D M O N U LT R A - T H I N 1 3 N M - T H I C K S S I G E O I W I T H O U T S I N

( S A M P L E C ) - D E TA I L E D A N A LY S I S

The finer analysis of (113) reciprocal space projections at several points on a spe-

cific 500 × 500 nm2 pattern is presented below. Firstly, Figure A.1 recalls the inte-

grated intensity real-space map of the sample of interest, probed at its (113) Bragg

reflection, where 8 different locations of the beam onto the sample are highlighted.

Then, the corresponding reciprocal space projections along each direction (Qx, Qy,

Qz) are depicted in Figures A.2, A.3 and A.4.

In order to exhibit the strong relation between the Qz component and the strain,

but also to show the variation of strain across the pattern, Figure A.5 displays the

1D evolution of both strain and the center of the Gaussian fit on the Qz projections.

The relaxation of strain, which is maximal around the central part of the square

island, is visible on both edges.
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Figure A.1 – Intensity map from (113) Bragg reflection of sample C, centered on a pattern.
The crosses depict the location of the reciprocal space projections. Note that
the black mask has been set to values below the 65th percentile of the intensity.
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Figure A.2 – (a) (113) Qx projections from 8 locations extracted along a given squared pat-
tern (see Figure for locations (1) to (8)). (b) Zoomed views. Black lines depict
the scattering integrated over the detector for a full rocking curve on one point
of the scan, while gray lines depict the same scattering freed from the Silicon
substrate part. Blue dotted lines show the center of mass of the corrected pro-
files, while the center of the associated Gaussian fit is indicated by vertical
dotted red lines. Firstly, one can note that the substrate scattering removal en-
ables to smooth the projections for Qx ≥ 1.665 Å−1, as the Si and SiGe peaks
are slightly shifted one to each other. Then, from (1) to (8), the center of mass
of Qx hardly varies.
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Figure A.3 – (a) (113) Qy projections from 8 locations extracted along a given squared pat-
tern (see Figure for locations (1) to (8)). (b) Zoomed views. Black lines depict
the scattering integrated over the detector for a full rocking curve on one point
of the scan, while gray lines depict the same scattering freed from the Silicon
substrate part. Blue dotted lines show the center of mass of the corrected pro-
files, while the center of the associated Gaussian fit is indicated by vertical
dotted red lines. From (1) to (8), one can see that the profiles are not well
defined, leading to wider changes in COM than in Gaussian fit. However, the
center of mass of Qy varies within ±0.006 Å−1 which is negligible in term of
impact on the strain value.
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Figure A.4 – (a) (113) Qz projections from 8 locations extracted along a given squared pat-
tern (see Figure for locations (1) to (8)). (b) Zoomed views. Black lines depict
the scattering integrated over the detector for a full rocking curve on one point
of the scan, while gray lines depict the same scattering freed from the Silicon
substrate part. Cyan lines depicts the associated Gaussian fit, performed up to
a certain limit in Qz in order to avoid any interference from the Si substrate.
The corresponding Gaussian center is indicated by vertical dotted red lines. It
is clear that the Si diffusive scattering has a huge contribution to the projection,
for Qz ≥ 3.43 Å−1. From (1) to (7), one can see that the center of the Gaussian
fits follow a trend: from higher values at the edges (i. e., positions (1) and (7)) to
a minimum at what could be the center of the nano-island (position (5). These
changes are at the origin of strain variations, from 1.14% to 1.21%, as the (113)
Bragg reflection is mainly governed by its Qz component.
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Figure A.5 – Strain and Qz projections center of Gaussian fit, across one 500 nm width
pattern of 13 nm sSiGeOI.
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O RT H O N O R M A L I Z AT I O N M AT R I X F O R B R A G G

P T Y C H O G R A P H Y

This appendix details the calculation of the orthonormalization matrix for the par-

ticular geometry of Bragg Ptychography, within the NeXuS convention Könnecke et

al., 2015, which defines that the basis frame should be the one of the laboratory with

~z along the direct X-ray beam propagation, ~y up and ~x horizontal, going left as seen

from the X-ray source. The two separate cases of 3D Bragg Projection Ptychography

and complete 3D Bragg Ptychography are given.

b.1 3d bragg projection

For a Bragg Projection experiment, two axes are defined by the back-projection

from the detector. These axes are parallel to the detector plane, and with basis

vector determined by the inverse FT from the detector pixels. If (x1, y1, z1) are

the coordinates after back-projection in the reference frame parallel to the detector

frame, the coordinates in the 3D reference frame (x, y, z) are such that :




x

y

z


 = RνRδ




x1

y1

z1


 (B.1)

where Rν and Rδ are rotation matrices respectively of angle ν around ~y and of

angle δ around ~x. This derives :




x

y

z


 =




cosν sinδ sinν −sinν cosδ

0 cosδ sinδ

sinν −sinδ cosν cosδ cosν







x1

y1

z1


 (B.2)

Hence, the 2D basis (for 1 pixel) for the back-projected image is :



−λD
NXPX




cosν

0

sinν


 ,
−λD
NXPX




sinδ sinν

cosδ

−sinδ cosν





 =


px




−cosν

0

−sinν


 , py




−sinδ sinν

−cosδ

sinδ cosν







(B.3)
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with again, λ the wavelength of the incident X-ray beam, D the detector-to-sample

distance, NX and NY the number of pixels in the detector along ~X and ~Y of size PX

and PY, and px, py the 2D basis of the reconstructed object.

As for the third axis, since the 2D wavefront which will be propagated to the

detector must be summed along the propagation direction, this axis must lie along

the sample-detector axis, i.e. perpendicular to the other two axis :

~pz ‖ RνRδ




0

0

1


 =




−sinν cosδ

sinδ

cosδ cosν


 (B.4)

The dimension of pz can be chosen arbitrarily. A suitable size can be so that its

projection on the laboratory z-axis matches the probe’s pixel size pp :

pz =
pp

sinδ
(B.5)

Other size can be chosen for pz , i.e. to match the displacements of the probe, or

an horizontal geometry :

pz = min
( py

sinδ
,

px

sinν

)
(B.6)

b.2 3d bragg ptychography

For a rocking-curve-based 3D Bragg geometry, one has to consider Ψ the rotation

angle around the starting diffraction angle. Typically Ψ will vary ±0.5◦. The step

along the rotation is ψ, so that :

Ψ = IΨψ (B.7)

where IΨis the integer index of the rotation along Ψ. In the particular case of a

rotation around the x-axis (denoted η in PSIC geometry), the rotation matrix is :

RΨ =




1 0 0

0 1 Ψ

0 −Ψ 1


 (B.8)

where a linear approximation was used as Ψ� π.
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Starting from the coordinates (X, Y) onto the detector, the corresponding coordi-

nates (x∗, y∗, z∗) of the 3D projection to reciprocal space are such that :




x∗

y∗

z∗


 = R−1

Ψ




1
λD

RνRδ




−X

−Y

D


−




0

0

1/λ





 (B.9)

Indeed, the pixel detector first has to be put into the reference frame and then

projected onto the Ewald’s sphere of radius 1/λ under the flat sphere approximation.

Next, a translation of the origin to (0, 0, 1/λ) is necessary to express the coordinates

in the reciprocal space. Finally, as one wants to compute the part of reciprocal

space which falls onto the Ewald’s sphere, the inverse of the Ψ rotation matrix is

applied. One can introduce




IX

IY

IΨ


 the pixel coordinates onto the detector so that




X

Y

Ψ


 =




IXPX

IYPY

IΨΨ


. This way, equation B.9 writes :




x∗

y∗

z∗


 =

1
λD




−PXcosν −PYsinδ sinν 0

0 −PYcosδ −ΨD(cosδ cosν− 1)

−PXsinν PYsinδ cosν ΨDsinδ







IX

IY

IΨ




+
1
λ




−sinν cosδ

sinδ

cosδ cosν− 1


 (B.10)

This transformation matrix enables the expression of the three basis vectors of

reciprocal space :

[
~e∗1 ~e∗2 ~e∗3

]
=

1
λD




−PXcosν −PYsinδ sinν 0

0 −PYcosδ −ΨD(cosδ cosν− 1)

−PXsinν PYsinδ cosν ΨDsinδ


 (B.11)
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and the definition of the center of diffraction ~k0 :

~k0 =
1
λ




−sinν cosδ

sinδ

cosδ cosν− 1


 (B.12)

so that : 


x∗

y∗

z∗


 = IX~e∗1 + IY~e∗2 + IΨ~e∗3 + ~k0 (B.13)

This derivation is of major importance as it leads to the creation of the orthonor-

malization matrix and its inverse. After inversion of the 3D array along the (X, Y, Ψ)

directions by FFT, the resulting array in real (object) space is non-orthonormal, with

basis vectors
[
~e1 ~e2 ~e3

]
being reciprocal to

[
~e∗1 ~e∗2 ~e∗3

]
. For a discrete FT, the

dimensions of the basis vectors after transformation are related to the total domain

size, i. e.,
[
~e1 ~e2 ~e3

]
being reciprocal to

[
NX~e∗1 NY~e∗2 NΨ~e∗3

]
. This can be

solved numerically in matrix form by :

[
~e1 ~e2 ~e3

]
=

([
NX~e∗1 NY~e∗2 NΨ~e∗3

]−1
)T

(B.14)



C
G R A D I E N T M I N I M I Z AT I O N F O R T H E O B J E C T U P D AT E I N

S I N G L E - A N G L E 3 D B R A G G P R O J E C T I O N P T Y C H O G R A P H Y

The object derivative can be used as a search direction, and then a gradient min-

imization algorithm (single-step or full conjugate gradient) can be used. Starting

from the derivative versus the object:

∂

∂Or,z0
∑

j

∣∣∣∣∣Ψj(~r)−∑
Z

P(~r−~rj)O(~r)

∣∣∣∣∣

2

= −∑
j

P(~rz0−~rj)

(
Ψ∗j (~r)−∑

Z
P∗(~r−~rj)O∗(~r)

)

(C.1)

If the search direction ∆O is known, the optimal value for the object is O + γ∆O,

with:

∑
j

∣∣∣∣∣Ψj −∑
Z

P(O + γ∆O)

∣∣∣∣∣

2

=∑
j

∣∣∣∣∣Ψj −∑
Z

PO− γ ∑
Z

P∆O

∣∣∣∣∣

2

(C.2)

=∑
j





∣∣∣∣∣Ψj −∑
Z

PO

∣∣∣∣∣

2

+ γ2

∣∣∣∣∣∑Z
P∆O

∣∣∣∣∣

2

− 2γRe

[(
Ψj −∑

Z
PO

)∗
∑
Z

P∆O

]


(C.3)

For a quadratic expression Aγ2 + Bγ +C, the minimum is at the center of the two

roots: γmin = −B
2A , so that:

γmin =
Re
[
∑j

{(
Ψj −∑Z PO

)∗
∑Z P∆O

}]

∑j |∑Z P∆O|2
(C.4)
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D
R E S U M E E N F R A N C A I S

d.1 introduction

L’ingénierie des contraintes révolutionne actuellement le monde de la nanotech-

nologie, en ce qu’elle permet d’améliorer les performances de dispositifs tels que

les structures semi-conductrices, en manipulant les propriétés physiques des matéri-

aux à travers une déformation élastique. Dans ce contexte, la déformation élastique

traduit le déplacement à l’échelle atomique, en prenant comme référence la position

d’équilibre d’un arrangement d’atomes d’un réseau cristallin parfait. La déforma-

tion peut être le résultat d’une croissance par épitaxie de deux cristaux, ou bien

d’une différence de coefficient de dilatation, une contrainte résiduelle ou encore

une force extérieure.

Dans le domaine des nanotechnologies, l’introduction de contraintes est utilisée

principalement dans le but d’améliorer la mobilité des porteurs de charge dans un

canal de transistors, pour des systèmes consistant en une extrêmement fine couche

semi-conductrice épitaxiée sur un substrat ou pour ajuster les propriétés optoélec-

troniques. Cependant, le contrôle et la compréhension de telles modifications à

l’échelle atomique sont rendus complexes par l’intéraction directe entre d’une part

l’environnement des couches actives d’intérêt pour le procédé complet de fabrica-

tion, et d’autre part la réponse du réseau cristallin.

Par conséquent, il est important de développer des techniques de caractérisation

précise à l’échelle nanométrique qui introduisent un minimum de perturbations

potentielles. Si la Microscopie Electronique en Transmission est la technique pou-

vant atteindre la plus haute résolution spatiale (sub-nanométrique), elle nécessite

en contrepartie une préparation minutieuse de l’échantillon à même d’altérer la

contrainte et reste limitée en terme de résolution de contraintes (jusqu’à 10−3): la

technique est fondamentalement limitée par la profondeur de pénétration des élec-

trons. A l’inverse, le développement des méthodes dites d’Imagerie par Diffraction

Cohérente de rayons X en condition de Bragg a permis d’obtenir une technique de

caractérisation ultra-sensible à la déformation cristalline (jusqu’à 10−5) avec une ré-

solution spatiale limitée en théorie uniquement par la longueur d’onde du faisceau

sonde. L’utilisation d’un faisceau de rayons X cohérents permet en effet de retrou-

ver numériquement l’information de phase encodée dans l’intensité diffractée. Les

reconstructions tridimensionnelles ainsi obtenues sont limitées principalement par
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les conditions expérimentales (longueur d’onde, degré de cohérence du faisceau,

précision des moteurs, rapport signal sur bruit de l’intensité diffractée, qualité et

taille du détecteur) mais aussi par l’échantillon lui-même. En effet, les échantillons

présentant des contraintes très inhomogènes ainsi que les échantillons très étendus

(ne serait-ce que dans une direction) posent problème. Dans le but de fournir une

technique capable de répondre à ces problématiques, la Ptychographie en condition

de Bragg a été introduite au début des années 2010.

Ces travaux de thèse sont consacrés à l’étude et au développement de ces méth-

odes de caractérisation basées sur la diffraction de rayons X en condition de Bragg.

Ainsi, la méthodologie est au coeur de ce manuscrit, notamment dans le but de

tester et d’implémenter des solutions numériques faciles d’appréhension, efficaces

et robustes, notamment via la librairie python PyNX, développée à l’ESRF. Le manuscrit

de thèse, rédigé en anglais, se compose de deux parties distinctes. La première est

constituée de deux chapitres ayant pour but de présenter les concepts théoriques à

propos des notions cristallographiques de contrainte et déformation, ainsi que sur la

notion de diffraction cohérente, avec des précisions sur le principe de la géométrie

de Bragg. Les techniques et configurations expérimentales sont détaillées, avec un

accent particulier sur le formalisme de reconstruction de phase.

La seconde partie du manuscrit se concentre sur la description de l’application des

méthodes de caractérisation, à travers trois chapitres. Ainsi, le chapitre 4 est dédié

à l’étude de couches gravées de silicium-germanium ultra-minces (de 13 à 20 nm

d’épaisseur) et contraintes (sSiGeOI, en anglais strained silicon germanium on insu-

lator), qui sont actuellement développées afin d’être intégrées comme canaux pour

la technologie CMOS à base de Silicium complètement déserté sur isolant (FDSOI).

L’état de contrainte de ces couches minces revêt un intérêt particulier, d’autant plus

que c’est le procédé novateur dit "de condensation" qui a été utilisé pour la crois-

sance du silicium-germanium en une couche ultra-mince avec (quasiment) aucun

défaut cristallin. La principale interrogation à élucider réside dans le comportement

de la contrainte lorsque des conditions libres sont introduites aux bords des couches

par gravure. Une première approche est réalisée par des simulations reposant sur la

méthode d’éléments finis (FEM), puis les caractérisations effectuées à l’aide de spec-

troscopie Raman par le Dr R.Berthelon sont évoqués. Enfin, ce chapitre détaille une

description complète de la technique de Microscopie à Balayage par Diffraction de

Rayons X (SXDM), ainsi que de la méthode d’analyse associée. Les résultats obtenus

grâce à l’utilisation de cette technique sur la ligne de lumière ID01 de l’ESRF sont

présentés puis discutés : non seulement il est possible d’extraire une information

statistique sur les multiples canaux mesurés, mais encore il est possible d’inférer

une longueur moyenne de relaxation de la contrainte.
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Le chapitre 5 est dédié la présentation d’une expérience innovante menée à l’ESRF

sur la ligne de lumière ID01, couplant la capacité d’indexation de grains micro-

scopiques de la technique d’imagerie de Tomographie par Contraste de Diffrac-

tion de rayons X (DCT), avec la résolution spatiale nanoscopique et la sensibilité

à la déformation cristalline de la technique d’Imagerie par Diffraction Cohérente

en condition de Bragg (BCDI). Un intérêt particulier est porté sur la méthode de

caractérisation du faisceau sonde puisqu’il est primordial de faire correspondre la

taille transverse du faisceau avec celle du grain étudié. Enfin, la conclusion de ce

chapitre sert de proposition pour une nouvelle méthode numérique pour évaluer la

sensibilité à la déformation cristalline d’une reconstruction obtenue par BCDI.

Enfin et surtout, le chapitre 6 introduit la méthode dite de ptychographie. D’abord,

un court résumé du développement de la technique est introduit, puis les algo-

rithmes principaux utilisés pour reconstruire à la fois l’objet illuminé et le fais-

ceau sonde sont décrit minutieusement. Ensuite, l’étape clé est la transposition

de ces algorithmes, originalement crées pour une géométrie dite "directe", où le fais-

ceau, l’objet et le détecteur sont alignés, dans un contexte de géométrie de Bragg.

Dans un souci de clarté et d’exhaustivité, le chapitre contient ensuite un portfo-

lio de l’ensemble des publications scientifiques à propos de la ptychographie par

diffraction de rayons X en condition de Bragg, depuis les débuts en "Projection 2D"

jusqu’aux récentes avancées ayant conduit à la "Projection 3D par angles multiples".

De cette façon, le lecteur se voit fournir les outils pour appréhender la complexité

des jeux de données produits par une expérience de ptychographie en condition

de Bragg. Enfin, les différentes méthodes numériques développées et implémen-

tées dans la libraire Python PyNX sont testées et discutées. En premier lieu, à

travers des simulations d’expériences et de reconstructions sur les échantillons de

couches ultra-minces de SiGeOI, utilisant notamment les champs de déplacement

cristallins obtenus par modélisation d’éléments finis (COMSOL) pour une représen-

tation adéquate des échantillons. En second lieu, ce sont des données provenant

d’expériences conduites en synchrotron qui sont analysées à l’aide de ces méthodes

numériques. En conclusion, l’efficacité particulière de la ptychographie en condi-

tion de Bragg par Projection 2D est démontrée par la reconstruction de la phase

d’un micro-disque de multi-couches à gradient de composition en GeSn sous con-

trainte.

d.2 déformation cristalline - définitions

La déformation est la réponse d’un système à l’application d’une force par unité

de surface, appelée contrainte. Par exemple, à cause de la différence de paramètre
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de maille entre deux matériaux cristallins, la croissance d’une fine couche sur un

substrat conduit inévitablement à une déformation de cette couche.

Depuis l’introduction de la miniaturisation par Richard Feynman comme une sci-

ence d’avenir, la nanoscience et la nanotechnologie sont en plein essor. En effet, les

scientifiques ont découvert qu’en plus d’être plus robustes, du moins à basse tem-

pérature, les nanomatériaux présentent l’avantage d’un contrôle précis de leurs pro-

priétés électronique, optique, magnétique... directement par un ajustement précis de

leur déformation élastique. Notamment, les matériaux semi-conducteurs voient leur

structure de bande modifiée par l’ajout de déformation élastique, plus précisément

une possible levée de dégénérescence de la bande de valence et donc une réduction

de la densité d’états. En conclusion, les propriétés électroniques des nanostruc-

tures semi-conductrices peuvent être fortement modifiées par l’introduction d’une

déformation cristalline, menant à des applications aussi bien dans le domaine des

transistors que des systèmes optoélectroniques.

La loi de Hooke définit la relation liant la déformation à la contrainte, en fonc-

tion de quantités appelées tenseurs, des constantes élastiques, spécifiques à chaque

matériau. Cette relation est à la base de tout calculs de déformation élastique. Elle

permet notamment de s’intéresser à la réaction d’un matériau cristallin en crois-

sance par épitaxie sur un substrat cristallin. En particulier, on retiendra que la re-

lation contrainte-déformation d’un matériau peut se simplifier en faisant intervenir

le ratio de Poisson : dans la direction de croissance (verticale), la déformation est

directement proportionnelle à la déformation moyenne dans le plan horizontal.

d.3 diffraction cohérente de rayons x

Dans le cadre de la cristallographie des structures cristallines à trois dimensions,

la diffusion de rayons X par des atomes produit des pics bien définis dans les direc-

tions déterminées par l’orientation ainsi que les symétries du cristal. Ces pics sont

appelés pics de Bragg et proviennent des interférences constructives entre les ensem-

bles discrets de plans atomiques parallèles qui constituent le cristal. Ainsi, ils conti-

ennent des informations directement liées à l’agencement atomique de l’échantillon.

Ces considérations sont à la base de la diffraction cohérente, la technique au cen-

tre des expériences présentées au long de ce manuscrit. Ce chapitre tend à définir

les rayons X et comment ils peuvent être obtenus sous forme de rayonnement syn-

chrotron, puis introduit certaines définitions cristallographiques aidant à la com-

préhension de la diffusion par un cristal. Enfin, le concept de cohérence est discuté,

ainsi que les principes de bases des régimes d’imagerie. Le chapitre se clôt sur une

longue présentation de la technique d’imagerie par diffraction cohérente de rayons

X (CDI). Pour cela, les algorithmes de reconstruction de la phase sont explicités,
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avec des rappels sur les notions de sur-échantillonnage, résolution théorique ainsi

que sur les récentes avancées dans le domaine de CDI. Enfin, le cas particulier de

CDI en condition de Bragg est introduit, notamment à l’aide de la description d’une

expérience typique.

d.3.1 Rayons X

Les rayons X furent découverts en 1895 par Wilhelm Conrad Rontgen, et de nom-

breux progrès ont depuis lors été effectués sur la compréhension dont ils interagis-

sent avec la matière. Ce sont des ondes électromagnétiques dont l’énergie se situe

entre 100 keV et 100 eV. Les travaux de cette thèse ont été fait avec des rayons X

qualifiés de "dur" dont la longueur d’onde est comprise entre 0.1 et 6 Angström,

leur plus grande énergie permettant une meilleure pénétration des radiations. Pour

simplifier, trois scénarios peuvent se produire lorsque des rayons X interagissent

avec des atomes. Premièrement, le photon X est absorbé par l’atome, ce qui génère

une excitation électronique ou phonique de l’atome. Deuxièmement, le photon X

est diffusé de manière inélastique, de l’énergie est perdue par le photon et par con-

séquent le photon diffusé possède une fréquence plus basse que le photon incident.

Troisièmement, le photon X est diffusé de manière élastique, l’énergie cinétique est

donc conservée. Dans l’approche théorique développée ci-après de la production

de rayonnements synchrotron dans les sources de troisième génération, on fera en

outre l’approximation dite cinématique, signifiant qu’un photon X ne peut pas subir

d’autre diffusion après avoir rencontré un premier électron.

d.3.2 Rayonnement synchrotron

Depuis la découverte des rayons X, la principale limitation a toujours été la

source de lumière. La première source de rayons X a été réalisée grâce au tube

Coolidge, utilisant le principe d’émission thermoïonique. Un filament de tungstène

est chauffé, de façon à produire des électrons qui sont accélérés grâce à l’application

d’une tension dans le tube, en direction d’une anode refroidie à l’eau. En heur-

tant l’anode, les électrons subissent une forte décélération et perdent leur excès

d’énergie cinématique. Cette perte se traduit majoritairement sous forme de chaleur,

mais aussi en partie sous forme d’émission de rayons X. Bien sûr, la différence

produite par la création des synchrotrons est phénoménale. Un rayonnement syn-

chrotron décrit un rayonnement émis par des particules chargées et accélérées à

une vitesse relativiste le long d’une trajectoire courbe. Cela produit une source

d’une intensité et d’une brillance spectrale toutes deux exceptionnelles, particulière-

ment à très courte longueur d’onde. La particularité des sources synchrotron de
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troisième génération, telle que l’ESRF - the European Synchrotron, réside dans

l’introduction d’un nouveau genre d’éléments d’insertion, en remplacement des

classiques aimants de courbure, les ondulateurs. Ces structures magnétiques mul-

tipôle permettent de faire subir aux électrons de nombreuses accélérations succes-

sives, conduisant à un rayonnement synchrotron bien plus intense que celui émis

par un aimant de courbure. L’intensité de la source augmente et le cône d’émission

se rétrécit lorsque le nombre de période du multipôle augmente. A l’ESRF, l’anneau

de stockage où circulent des paquets d’électrons fait 844 m de circonférence. Un

courant de 200 mA circule à travers 43 aimants de courbure et éléments d’insertion.

La majorité des expériences d’imagerie par diffraction cohérente ont lieu sur les

lignes de lumière ID01, ID10, ID13 et ID16.

d.3.3 Définitions cristallographiques

Un cristal est une structure périodique tri-dimensionnelle, répétant un empile-

ment ordonné ou motif. La périodicité du motif est exprimée par un réseau con-

stitué de nœuds qui représentent les sommets de la maille. Les arêtes de la maille

élémentaire définissent les vecteurs de la base. Les plans définis par trois nœuds

du réseau, et les directions définies par deux nœuds du réseau sont qualifiés de

"nodaux" (plan nodal, direction nodale) ou mieux encore “réticulaires” Les indices

de Miller sont utilisés pour désigner l’orientation des plans cristallins dans un cristal.

Ainsi, les plans réticulaires (hkl) décrivent l’ensemble de plans parallèles dont les

intersections avec le réseau cristallin sont périodiques. Pour un cristal cubique, de

largeur de maille a, la distance interréticulaire entre deux plans réticulaires succes-

sifs de la famille (hkl) est:

dhkl =
a√

h2 + k2 + l2

Pour n’importe quel cristal, on peut aussi convenablement définir un réseau ré-

ciproque, dont la base (~a∗, ~b∗, ~c∗) est défini par:

~a∗ = 2π
~b×~c

~a·(~b×~c)
~b∗ = 2π ~c×~a

~b·(~c×~a)
~c∗ = 2π ~a×~b

~c·(~a×~b)

Ainsi, la position d’un noeud du réseau réciproque est défini par le vecteur ~Ghkl =

h~a∗ + k~b∗ + l~c∗ qui est perpendiculaire aux plans réticulaires de la famille (hkl). Il

convient alors d’introduire la loi de Bragg, qui dicte que pour une radiation inci-

dente de longueur d’onde lambda, illuminant un ensemble de plans réticulaires
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séparés par une distance dhkl , il y aura des pics d’intensité diffractant dans les direc-

tions 2θ de l’espace vérifiant:

nλ = 2dhklsinθ

avec: dhkl la distance interréticulaire, θ l’angle de Bragg, ou demi angle de déviation,

n l’ordre de diffraction (entier) et λ la longueur d’onde des rayons X incidents. Une

compréhension géométrique de la loi de Bragg peut être obtenue grâce à la sphère

d’Ewald. La sphère d’Ewald est centrée sur le cristal, son rayon est de 2π/λ dans

l’espace réciproque, où les vecteurs d’ondes incidente et diffractée sont de même

norme, égal au rayon. L’origine de l’espace réciproque se situe à l’intersection de

la sphère et du vecteur d’onde incident. Alors, tout point (h,k,l entiers) du réseau

réciproque coïncidant avec l’enveloppe de la sphère d’Ewald se trouve en condition

de diffraction de Bragg.

d.3.4 Diffusion classique

Cette partie de la thèse reprend les calculs de diffraction par des cristaux, qu’ils

soient parfaits ou avec des champs de déplacements. En résumé, l’amplitude diffrac-

tée par un cristal est décrit par la somme des facteurs de diffusion atomique de

chaque atome constituant le cristal, multipliés par un facteur de phase prenant en

compte la différence de phase introduite par la position spatiale de chaque atome.

Il est alors possible d’exprimer l’amplitude diffuse comme le produit de deux ter-

mes, le facteur de forme et le facteur de structure. Le premier est directement relié

à l’enveloppe du cristal, c’est-à-dire sa forme, et définit la forme de la distribution

d’intensité résultante. Le second n’est autre que la transformée de Fourier de la

densité électronique de la maille élémentaire, et dicte l’intensité relative de chaque

réflexion. Lorsqu’un champ de déplacement est présent à l’intérieur du cristal, c’est-

à-dire qu’un bloc de matière, atome ou groupe d’atomes, est déplacé de sa position

originale par un vecteur ~u(~r), une différence de chemin optique est introduite entre

les rayons X diffus, égale à ~qhkl · ~u(~r). L’amplitude diffuse par le cristal en entier

est alors réécrite en multipliant par un facteur de phase additionnel l’amplitude

diffuse par chaque atome. Le résultat final reste une transformée de Fourier, mais

contenant des informations sur les déplacements de chaque atome.

d.3.5 Cohérence

Les rayons X ne sont jamais complètement cohérents puisque la relation de phase

d’un champ complexe entre deux points différents spatialement et temporellement

n’est pas prévisible, c’est-à-dire que le faisceau X ne consiste pas en une onde plane
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"parfaite" et possèdera nécessairement un certain degré de cohérence. La manière

globale d’évaluer la cohérence d’un champ électromagnétique passe par le calcul de

la fonction de cohérence mutuelle (ou degré complexe de cohérence), nécessitant le

calcul de la cohérence mutuelle, autocorrélation dans le temps et l’espace du champ

électromagnétique. Le degré complexe de cohérence consiste en un jeu de données

à 7 dimensions (2× 3 coordonnées spatiales et une coordonnée temporelle) qui est

difficile à calculer. Cependant, le cadre de l’optique géométrique fournit une autre

définition de la cohérence, se divisant en une cohérence longitudinale le long de

la direction de propagation, et une cohérence transverse. La cohérence longitudi-

nale dépend de la longueur d’onde, alors que la cohérence transverse dépend de

la longueur d’onde, de la taille de la source et de la distance entre la source et

l’échantillon. Typiquement, sur la ligne de lumière ID01, lorsque l’ondulateur est

réglé pour émettre un faisceau X d’énergie 8 keV, la cohérence longitudinale est de

0.5 µm alors que la cohérence transverse, asymétrique, est de 800 µm x 80 µm. La

principale conséquence est que la plupart des échantillons ne sont pas sous une il-

lumination complètement cohérente. En pratique, la portion cohérente du faisceau

est sélectionnée à l’aide de fentes puis focalisée sur l’échantillon.

d.3.6 Note sur les régimes d’imagerie

La principale information à retenir est que les expériences conduites au cours de

cette thèse ont été faites dans le cadre du régime en champ lointain, ou régime

de Fraunhofer, où le détecteur est placé suffisamment loin de l’échantillon pour

négliger la courbure sphérique des ondes émises par la diffusion atomique, justifiant

ainsi l’utilisation de Transformées de Fourier.

d.3.7 Principes d’imagerie cohérente

Les techniques d’imagerie par diffraction cohérente (CDI) reposent sur l’utilisation

de source possédant une brillance très élevée (nombre de photons par seconde

par unité de crosse-section par divergence angulaire par 0.1% de la gamme spec-

trale) qui peut être produite dans un synchrotron de troisième génération. Le

terme CDI regroupe les techniques d’imagerie 3D non-destructive et ne nécessi-

tant pas l’usage d’optique permettant de déterminer la structure de spécimens à

une résolution théoriquement limitée uniquement par la longueur d’onde du fais-

ceau incident. En pratique, la résolution se trouvera limitée par le nombre de pho-

tons diffusés, l’étendue de la diffraction dans l’espace réciproque captée par le dé-

tecteur, mais aussi par les algorithmes de reconstruction eux-mêmes. Après les

premières expériences réussies de Miao et al en 1999, le CDI a profité des avancées
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en optique des rayons X, qui permettent aujourd’hui d’illuminer des échantillons

plus petits que 100 nm, et rendent possible à l’heure actuelle la reconstruction

de ces échantillons avec une résolution allant jusqu’à 10 nm. Le principal prob-

lème auquel le CDI répond est le problème de Phase, inhérent à la cristallographie

sous rayons X : l’intensité enregistrée par le détecteur n’est que le module carré

de l’amplitude diffractée par l’échantillon, par conséquent l’information de phase,

contenant les informations de champs de déplacement, est perdue. Le CDI utilise

des contraintes additionnelles couplées à des algorithmes itératifs pour "retrouver"

la phase. Ce manuscrit contient davantage de détails concernant les besoins de sur-

échantillonnage, les relations entre le champ de vue et les tailles de pixel (detecteur

vs reconstruction) ainsi que sur le formalisme général du concept de "récupération

de phase" (phase retrieval). En outre, cette partie propose un rapide panorama des

dernières avancées réalisées dans ce domaine.

d.3.8 Imagerie cohérente en condition de Bragg

L’intérêt du CDI en condition de Bragg est de sonder les champs de déplace-

ment atomiques à l’intérieur de cristaux, qui correspondent à la phase de la densité

électronique complexe évoquée plus tôt. En mesurant l’intensité diffractée autour

d’un pic de Bragg donné, il est possible de recouvrir l’information de déplacement

le long du vecteur de diffraction. Cependant, le cas de la diffraction de Bragg

est délicat à traiter, d’autant plus que les cristaux étudiés sont extrêmement petits

(nano ou microscopiques) grâce à des configurations expérimentales très sensibles

qui doivent être manipulées avec une grande attention. Cette partie du manuscrit

présente l’ensemble des calculs nécessaires à la compréhension de la relation entre

l’espace réciproque (de détection) à l’espace direct.

d.4 microscopie à balayage par diffraction de rayons x - imagerie

des fluctuations de contraintes d’une nanostructure de sigeoi

ultra mince pour application électronique

Ce chapitre fournit une introduction à l’historique des développements de l’ingénierie

des contraintes dans les canaux de technologie CMOS (Complementary Metal Ox-

ide Semiconductor) qui permit une amélioration des performances. En particulier,

la méthode dite de condensation est détaillée, puisqu’elle a été choisie récemment

pour la croissance de couche ultra mince de silicium germanium, structure étant

amenée à être intégrée en tant que canal de transistor à FDSOI (silicium pleinement

déserté sur isolant, ou en anglais, Fully Depleted Silicon On Insulator). Ensuite la

méthode de microscopie à balayage par diffraction de rayons X (SXDM) est présen-
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tée en détail, puis utilisée pour évaluer l’état de contrainte dans des couches ultra

minces de SiGe directement sur isolant.

d.4.1 Introduction

L’ingénierie des contraintes est maintenant perçue comme l’une des meilleures so-

lutions pour continuer à suivre le chemin tracé par la loi de Moore, étant donné que

la diminution de la taille des semiconducteurs a atteint ses limites. La technologie

retenue dernièrement pour mener à bien l’amélioration continue des performances

consiste en l’utilisation de substrats précontraints pour former des canaux ultra

minces à très haute mobilité de porteurs. C’est la naissance de la technologie UTTB

(Ultra thin Body and Buried Oxide)-FDSOI, combinant un contrôle électrostatique

maximal via un oxyde enterré et une réduction des pertes et des courants parasites

via une couche ultra mince complètement désertée. Le choix pour cette dernière

s’est porté sur l’alliage silicium germanium puisqu’il permet une augmentation sig-

nificative de mobilité des porteurs. La technique dite de condensation présente trois

intérêts : d’abord elle permet d’obtenir une couche de SiGe intrinsèquement sous

compression, ensuite elle conduit à des couches à très haute qualité cristalline et

enfin elle ne repose que sur des procédés de manufacture déjà conventionnels. La

cible de la condensation utilisée pour les échantillons étudiés est une couche de

SiGe de 13 (et 20) nm d’épaisseur avec 25 % de germanium.

d.4.2 Design de l’échantillon - fabrication

L’empilement des échantillons est le suivant : à partir d’un substrat de silicium

sur isolant (SOI, fournisseur : SOITEC) avec une couche d’oxyde enterré (BOX) de

20 nm, une couche de SiGe est crû par épitaxie cohérente par RPCVD. La couche de

SiGe sur isolant est ensuite obtenue par condensation, en se servant de l’oxydation

préférentielle du silicium. Le résidu de dioxyde de silicium se créant au-dessus du

SiGe est supprimé par une gravure mouillée. Ensuite, une gravure est effectuée par

lithographie. Pour cela, un masque est déposé par Plasma Enhanced CVD après une

protection faite d’une couche d’oxyde de 4 nm d’épaisseur surmontée d’une couche

de nitrure de silicium de 55 nm. Pour obtenir un SiGe uniforme en composition

de germanium, un réchaud de 30 minutes à 1050 °C sous N2 est effectué. Ensuite,

les motifs de SiGe sont obtenus par lithographie ultraviolette après une étape de

gravure profonde. Enfin, le SiN est retiré par une gravure sélective au H3PO4.

C’est cet empilement qui sert alors de référence. En outre, pour étudier le rôle du

masque de SiN, un lot est étudié avant la suppression de la couche de SiN. Un

masque spécial a été développé par le CEA-LETI pour comprendre les effets de
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géométrie. Ainsi, chaque échantillon contient plusieurs motifs de SiGe, notamment

des structures carrées de 500 nm ×500 nm, 2 µm ×2 µm et 5 µm ×5 µm.

d.4.3 Mesures de déformations, simulations

Premièrement, la simulation élastique de la couche de SiGe a été réalisée à l’aide

du logiciel COMSOL permettant d’utiliser la méthode d’éléments finis. En util-

isant une maille de calcul suffisamment fine pour évaluer l’évolution de la déforma-

tion aux bords des structures, couplée aux propriétés élastiques correspondant à la

géométrie de la maille cristalline (direction principale 110), ces simulations perme-

ttent de connaître la déformation théorique de la structure de SiGe, la principale

variable étant la largeur de la zone active. Il ressort de ces simulations que, pre-

mièrement, quelle que soit la largeur du SiGe, la contrainte se relâche aux bords, et

en second lieu, le centre des plus petites structures (500 nm) présente une relaxation.

Cette dernière information permet d’inférer que la longueur de relaxation du SiGe

est au moins de 250 nm, c’est-à-dire que pour des structures dont la largeur est in-

férieure à 500 nm, l’état de déformation au centre n’est plus en accord avec l’objectif

de compression. Les simulations, réalisées avec et sans SiN, mettent aussi en avant

l’effet de cette couche, qui permet donc en théorie de maintenir la contrainte en

compression. En effet, les simulations montrent que la déformation hors du plan, à

l’approche d’un bord de la structure, est maintenue quasiment identique à celle du

centre de la structure, uniquement lorsque la couche de SiN est présente. Ensuite,

les résultats de microscopie Raman par R.Berthelon sont synthétisés, avec le rappel

qu’ils ont été obtenus avec un faisceau sonde de 500 nm, c’est-à-dire une résolution

spatiale d’au mieux 500 nm. Ainsi, les résultats obtenus sont des moyennes des dé-

formations sur une grande plage du matériau, mais ils montrent tout de même que

la déformation en compression dans le SiGe diminue lorsque la largeur de la struc-

ture diminue, ce qui ne peut être imputé qu’à une relaxation des bords. Enfin, un

modèle analytique se basant sur les résultats de mesures par diffraction d’électrons

avec nanofaisceau (NBED) obtenus par R.Berthelon, montre que la longueur de re-

laxation d’une structure de 800 nm de largeur se situe autour de 220 nm.

d.4.4 Microscopie à Balayage par diffraction de rayons X (SXDM)

La technique de microscopie à balayage par diffraction de rayons X (SXDM) est

une méthode puissante permettant la caractérisation d’échantillons nano et mi-

croscopiques, en combinant la résolution dans l’espace réciproque fournie par la

diffraction à rayons X durs avec la taille du faisceau sonde dans l’espace direct. La

SXDM permet la caractérisation aussi bien d’un point de vue qualitatif que quanti-
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tatif des propriétés structurelles de nanostructures individuelles, c’est-à-dire leurs

paramètres de maille et orientations. La préparation de l’échantillon est minimal-

iste, dans le sens où elle ne requiert aucune destruction ou modification de l’état,

ce qui ouvre la porte à des études in situ ou bien des structures enterrées. Par

conséquent, la technique SXDM peut être considérée non destructive, même s’il

convient de garder à l’esprit qu’un nombre trop important de photons interagissant

avec l’échantillon peut modifier l’état de contrainte de ce dernier. La technique de

SXDM a été développée particulièrement pour la ligne de lumière ID01 à l’ESRF. En

effet, les délais des moteurs et du temps de lecture du détecteur ont été optimisés

pour fournir des balayages rapides en continu. En bref, une cartographie de 40

000 points de l’échantillon, répétée à 20 angles d’incidence légèrement différents,

nécessitait auparavant 9 jours de mesures mais est maintenant faisable en 2 heures

et demie. Le principe du SXDM repose sur l’acquisition, en chaque point d’une

cartographie, du pic de Bragg 3D en basculant l’échantillon et en enregistrant les

images de diffraction avec un détecteur 2D. En rajoutant une troisième dimension

aux données 2D du détecteur, il est possible de suivre précisément la position du

centre de masse du pic de Bragg, et par conséquent cela donne accès aux variations

de la structure locale de l’échantillon. La position du pic de Bragg dans l’espace ré-

ciproque est directement liée à la déformation et à l’orientation de la maille sondée.

Dans l’espace direct, c’est la taille du faisceau sonde qui définit la résolution, mais

dans l’espace réciproque, la résolution est théoriquement limitée par la longueur

d’onde des rayons X. Dans le cas d’étude de ces travaux, le flux du faisceau sonde

a dû être maximisé (3.5 ×10
6 photons/sec/nm2) en utilisant 0.4% de la gamme

spectrale d’émission de l’ondulateur à 8 keV. En effet, l’épaisseur ultra mince de

SiGe nécessite un maximum de photons pour produire suffisamment d’intensité

diffractée. Le faisceau X est ensuite focalisé à 220 nm ×170 nm. L’angle d’incidence

aura bien sûr une influence sur la taille réelle dans le repère de l’échantillon. Une

étape cruciale de la technique est l’optimisation des angles de diffraction. L’objectif

est donc de fournir une référence fiable pour calibrer les angles de Bragg. Cela est

effectué en localisant le pic de Bragg du substrat de silicium, qui est dans son état re-

laxé et donc dont la valeur du paramètre de maille à température ambiante est bien

connue. Cette mesure permet de connaître la correction systématique à appliquer

dans les calculs.

d.4.5 Analyse générique

Certains problèmes, bien identifiés, s’immiscent régulièrement dans l’analyse d’un

jeu de données obtenu par SXDM. Une partie d’entre eux proviennent de la manière

dont les intensités diffractées sont acquises, nécessairement limitée par la plage du
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balayage angulaire, mais aussi de la qualité et calibrage du détecteur. De plus,

les erreurs de mauvais alignement de l’échantillon sont courantes et génèrent des

mouvements parasites. Enfin et surtout, la forme de la diffraction dans l’espace

réciproque peut s’avérer trompeuse et très compliquée à analyser, puisque par ex-

emple le bruit de fond peut cacher une superposition des pics provenant à la fois

de la couche d’intérêt et du substrat. Cette partie s’attarde sur une description de la

voie à suivre pour s’affranchir d’une majorité de ces problèmes. Ensuite, il convient

d’exposer les grandes étapes de l’analyse typique. Après avoir corrigé un maximum

d’artefacts, il faut prendre une vue d’ensemble sur le jeu de données 5D : fusionner

et convertir les données brutes en une cartographie 3D de l’espace réciproque pour

chaque point du balayage. Dès lors, il est possible de réduire les données à trois

jeux de données 2D, en extrayant la position 3D moyenne du pic de diffraction pour

chaque point du balayage. En utilisant un repère sphérique de l’espace réciproque,

chaque coordonnée peut être facilement interprétée comme une composante signi-

ficative de la maille cristalline : paramètre de maille, inclinaison et twist. Ainsi, il

existe une cartographie 2D de l’échantillon pour chacune de ces composantes. Ces

cartographies sont alors suffisantes pour comprendre les variations locales de struc-

ture. Toutefois, si trois réflexions de diffraction ont été enregistrées, il est possible de

les combiner pour obtenir le tenseur complet des déformations, mais cela nécessite

un alignement ou du moins une correction précise de la position de l’échantillon

lorsqu’il est basculé pour passer d’une direction de diffraction à une autre.

d.4.6 Résultats et discussion

Les échantillons ont été mesurés aux réflexions (004) et (113), pour chacun des

différents types de motifs évoqués plus tôt, avec un pas de 100 nm pour le balayage

et un champ de vue allant de 6 µm ×6 µm jusqu’à 12 µm ×12 µm. Cependant,

l’intensité diffractée par le substrat de silicium était tellement intense et proche

de celle diffractée par la couche de SiGe que l’analyse s’en est retrouvée très com-

pliquée. Les détails de cette superposition se retrouvent dans le corps de ce manuscrit

ainsi qu’une présentation détaillée des résultats pour chaque échantillon, chaque

motif et chaque réflexion de Bragg. Les résultats se présentent principalement sous

deux formes distinctes : d’abord les cartographies de déformation & orientation

cristalline, et ensuite une analyse statistique de la déformation dans les zones con-

sidérées "centrales" sur chacun des motifs. La première forme des résultats permet

de montrer que la relaxation de la déformation sur les bords des différents motifs est

visible, et s’accompagne d’une inclinaison de la maille cristalline. L’analyse statis-

tique non seulement montre l’homogénéité entre les motifs d’une même largeur et

d’un même échantillon, mais permet aussi de comparer les motifs de différentes
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largeurs. La déformation moyenne au centre des motifs est la plus petite pour les

motifs les plus étroits. Puisque cette moyenne est extraite au centre des motifs, cela

signifie que les motifs les plus étroits sont dans un état que l’on peut considérer

relaxé, et non plus pleinement contraint : la longueur de relaxation de la déforma-

tion élastique est au moins égale à la moitié de la largeur des plus motifs, soit 250

nm. Enfin, à partir des cartographies il est possible d’extraire les profils de défor-

mation. Cette analyse est réalisée sur les motifs les plus larges, étant donné qu’ils

offrent l’avantage d’une part d’une plus grande plage de valeur de déformations

et d’autre part de fournir les mesures les moins corrompues par des dérives para-

sites. Le modèle analytique élaboré à partir des mesures NBED est réutilisé pour

évaluer la longueur de relaxation à partir de ces profils de déformations. Le modèle

prouve être en bonne adéquation avec les mesures, et conduit à des longueurs de

relaxation comprises entre 230 et 380 nm. Même s’il convient de garder à l’esprit

que la taille du faisceau produit indéniablement un effet de flou - moyennage de

la déformation sur toute la zone illuminée, donc la taille du faisceau est au moins

la résolution spatiale des cartographies - ces valeurs de longueurs de relaxation ne

sont pas en accord avec les simulations élastiques. Ainsi, ce sont probablement les

fluctuations intrinsèques des deux étapes principales du procédé de croissance qui

sont incriminables : l’épitaxie cohérente de SiGe sur substrat de SOI et la condensa-

tion. Puisque la condensation est un processus cinématique, il est légitime d’émettre

des doutes sur l’homogénéité en profondeur et surtout sur la présence potentielle

de défaut ou plus probablement de glissement à l’interface SiGe/Si. Il est très in-

téressant de remarquer que de récentes mesures réalisées par holographie à électron

par V.Bourreau produisent des résultats en accord avec un modèle de glissement à

l’interface.

d.5 bcdi et dct sur des grains incorporés dans un cylindre de zir-

cone

Ce chapitre fournit la description d’une expérience dont le but est de combiner

la technique de Diffraction Contrast Tomography (DCT) avec celle de BCDI, pour

caractériser des grains encastrés dans un cylindre de zircone.

d.5.1 Introduction

Dans les matériaux céramiques, les propriétés mécaniques sont largement influ-

encées par les contraintes et déformations résiduelles provenant des différences en-

tre les coefficients d’expansion thermique. Bien que les relations macroscopiques

et microscopiques entre contrainte et déformation aient longuement été étudiées,
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l’étude des champs de déformation à l’échelle microscopique du grain avec une ré-

solution nanoscopique est encore à développer. La technique de DCT permet de

localiser les grains présents dans un volume 3D tout en récupérant leur orientation

cristalline. Il s’agit ensuite d’utiliser la technique de BCDI sur n’importe lequel de

ces grains pour déterminer son tenseur 3D de déformation. Cette capacité à collecter

des informations à la fois à l’échelle de l’échantillon - orientation et localisation de

grains - et à l’échelle même du grain peut être considérée comme un préalable à

toutes investigations sur les interactions complexes entre texture locale et déforma-

tion résiduelle. L’échantillon étudié consiste en un cylindre de 10 µm de diamètre et

80 µm de hauteur, préparé à l’aide d’une sonde ionique focalisée (FIB) à partir d’un

bloc de zircone stabilisé à l’yttrium (YZrO2, avec 8% d’yttrium). La taille typique

des grains dans l’échantillon s’étend de 500 nm à 5 µm. Ce projet d’imagerie a été

réalisé en collaboration entre le Dr. Wolfgang Ludwig (INSA Lyon / ESRF), visiteur

scientifique sur la ligne de lumière ID11 de l’ESRF, le Dr. Jérôme Chevalier (INSA

Lyon) et le Dr. Vincent Favre-Nicolin (ESRF).

d.5.2 DCT

La DCT est une technique d’imagerie basée sur la diffraction en champ proche

(Fresnel) qui fournit des cartographies à haute résolution de grains dans échan-

tillons polycristallins. Pour chaque grain individuel, la technique peut fournir

l’orientation ainsi que le tenseur de déformation élastique avec une précision de

quelques 10
−4. La technique combine les concepts de reconstruction de volume à

partir de projection (tomographie) avec l’imagerie par diffraction de rayons X (to-

pographie). En particulier, la technique s’appuie sur une méthode innovante de

paire de Friedel pour analyser les données de diffraction : en indexant les tâches

de diffractions il est possible de trouver une base constituée des paires de Friedel

et ainsi remonter à la position et orientation du grain donnant lieu à ces paires.

Les grains sont ensuite reconstruits individuellement en trois dimensions puis as-

semblés pour combler les vides à l’intérieur du masque de l’échantillon, lui-même

obtenu à partir de l’absorption en géométrie directe. L’installation expérimentale

nécessite la possibilité de faire tourner l’échantillon sur lui-même sur 360°, autour

d’un axe perpendiculaire à la direction du faisceau incident. Un détecteur dont

les pixels font 1.6 µm est placé juste après l’échantillon. Lors de la rotation, les

grains constituant l’échantillon se retrouveront en condition de diffraction de Bragg

et dévieront une partie du faisceau incident vers une tâche de diffraction, dont la

position est enregistrée par le détecteur. Un plan cristallin réticulaire spécifique se

retrouvera en condition de diffraction de Bragg un maximum de quatre fois durant

une rotation complète, formant ainsi deux paires, séparées par une rotation de 180°
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de l’échantillon. Comme les deux tâches d’une seule paire de Friedel définissent

le chemin optique du faisceau diffracté qui passe nécessairement à travers le grain,

elles permettent de retrouver l’angle de diffraction associé aux plans réticulaires

(hkl) et ( ¯hkl) et ainsi le vecteur de diffraction associé. Sur la ligne de lumière ID01,

la technique de DCT a été mise en place après avoir réalisé une LUT (Look Up Ta-

ble) de l’erreur sur le moteur de rotation autour de l’axe vertical du diffractomètre.

L’analyse des données obtenues, par un algorithme MATLAB développé par le Dr.

Wolfgang Ludwig, permet d’obtenir rapidement l’orientation précise de 7 différents

grains à l’intérieur de l’échantillon. Cela se traduit par la connaissance des angles

exacts auxquels orienter l’échantillon pour placer un de ces grains en condition

de diffraction de Bragg, information primordiale pour réaliser sans encombres une

expérience de BCDI.

d.5.3 BCDI

Ces paragraphes présentent l’installation expérimentale utilisée sur la ligne de lu-

mière ID01 pour effectuer la partie imagerie par diffraction cohérente sur le même

échantillon. Un détecteur Maxipix est monté à 1.2 m de l’échantillon et le faisceau

de rayons X à 8 keV est focalisé à l’aide d’une lentille de Fresnel. Avant de passer en

géométrie de Bragg, des contrôles sont effectués en géométrie directe, dans le but

de calibrer la taille du faisceau sonde. C’est la technique de ptychographie en trans-

mission, en combinaison avec les algorithmes développés dans la libraire PyNX, qui

est utilisée, avec d’abord le sommet de l’échantillon lui-même puis avec un objet de

référence, l’étoile de Siemens, dont la granularité et le gradient de motifs permet

une reconstruction extrêmement précise du front d’onde des rayons X. Il est aussi

possible de procéder à une décomposition orthonormale du front d’onde complexe,

qui permet de quantifier l’aspect cohérent du faisceau : plus le mode principal con-

centre une grande quantité de l’intensité du front d’onde (supérieure à 80%), plus le

faisceau peut être considéré comme cohérent. La subtilité consiste à faire correspon-

dre la taille transverse du faisceau avec le plus petit des grains indexés, c’est-à-dire

un faisceau gaussien dont le lobe central fait 500 nm de diamètre, tout en concen-

trant le maximum de front d’onde cohérent dans ce lobe. Les détails relatifs aux

considérations de cohérence longitudinale se retrouvent dans le manuscrit. Notons

toutefois que l’utilisation de la technique de SXDM dans différentes orientations

d’un même grain permet d’obtenir la projection de la forme du grain dans chacune

de ces orientations, qui s’avère être parfois plus grande que la cohérence longitudi-

nale. Par conséquent, les conditions d’illumination n’étaient pas idéales vis-à-vis de

la taille des grains présents dans l’échantillon.
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La méthode de reconstruction des grains est présentée en détail dans le corps du

manuscrit, et peut être résumée de la manière suivante. S’appuyant uniquement sur

les algorithmes de reconstruction de phase présents dans la librairie PyNX, tournant

sur le processeur d’une carte graphique (gpu) NVidia Titan X, le processus fait

d’abord intervenir une étape d’initialisation. En effet, il est nécessaire de trouver

un support qui délimite les contours de l’objet à reconstruire. Ici, les projections

le long de trois réflexions indépendantes ont pu être évaluées grâce à l’utilisation

de la technique de SXDM. Cependant, la taille du lobe central du faisceau incident

s’avère être légèrement inférieure à ces projections : le grain n’est pas en condition

d’illumination complètement cohérente, et seulement la portion du grain illuminée

de façon complètement cohérente pourra être reconstruite. C’est donc le lobe central

du faisceau qui sert de support à la reconstruction.

Ensuite, 1000 reconstructions différentes, partant de phases aléatoires, sont obtenues

en performant, pour chacune d’entre elles, 200 cycles d’Error Reduction (ER) suivis

de 600 cycles de RAAR (Relaxed Averaged Alternating Reflectors). Ces deux al-

gorithmes itératifs sont raffinés à l’aide d’un algorithme permettant d’éviter toute

"solution double", où deux solutions symétriques se retrouvent superposées en une

seule, et d’un algorithme de prise en considération de la cohérence partielle lorsque

la solution se rapproche de son point de convergence. Enfin, le Free Log-Likelihood

est utilisé comme figure de mérite pour extraire 50 reconstructions, et ces recon-

structions servent alors de base pour une décomposition orthonormale en modes

propres. Puisque le premier mode représente plus de 80% des 50 solutions, il est

conservé comme solution finale au problème. Le volume est alors tronqué au-dessus

de 50% de sa valeur en amplitude la plus intense. L’analyse de la phase complexe

de ce volume donne directement accès au champ de déformation le long de la

direction du vecteur de diffraction. Il en ressort que le champ de déformation à

l’intérieur d’un même grain est similaire à la limite de sensibilité de la méthode

de BCDI. Cela signifie soit que le champ de déformation ne provient que du bruit

dans la reconstruction, soit que le grain est très homogène et ne présente pas de

déformation significative. Globalement, cela se comprend puisqu’un tel matériau

céramique devrait contenir uniquement des dislocations franches ou bien très peu

de déformation à l’échelle microscopique. Il est intéressant de noter en outre que

les mesures semblent indiquer qu’un gradient de déformation est présent, non pas

à l’échelle d’un grain, mais bien à l’échelle du cylindre lui-même : les grains situés

à la base du cylindre sont mesurés avec une déformation moyenne d’environ -0.2%

par rapport à la valeur tabulée du paramètre de maille de zircone, alors qu’un grain

situé quasiment au sommet du cylindre (soit 50 µm plus haut que les précédents)

présente une déformation moyenne quasi nulle par rapport au zircone (inférieure à

0.05%).
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d.5.4 Sensibilité à la contrainte dans les reconstructions de BCDI

L’imagerie par diffraction cohérente de rayons X en condition de Bragg donne ac-

cès à de l’information dans deux domaines bien différents : d’un côté, la reconstruc-

tion donne lieu à un objet de l’espace direct, auquel il faut associer une résolution

spatiale, de l’autre côté, la résolution du problème de phase permet d’obtenir une

caractérisation de la déformation de l’objet, ainsi il convient de définir la sensibilité

de la méthode à la déformation. Alors que la résolution spatiale possède main-

tenant deux techniques bien identifiées et validées par la communauté, c’est-à-dire

la PRTF (Phase Retrieval Transfer Function) et La FSC (Fourier Shell Correlation), il

n’existe pas de consensus pour ce qui est de la sensibilité de la méthode à la mesure

des déformations.

Deux méthodes sont proposées dans ce manuscrit. La méthode la plus détaillée

est dérivée de la méthode de FSC, dans le sens où elle reprend le principe de corréla-

tion entre deux reconstructions obtenues à partir de la même chaîne d’algorithmes

sur deux jeux de données indépendants du même échantillon, ainsi que le principe

de "shells". Les deux reconstructions sont alors réalignées et tronquées à la même

taille, pour être cartographiées sur une seule grille commune de N voxels. L’élément

central est la matrice des "différences de déformation". Pour chaque reconstruction,

une matrice de taille N2 est construite de la manière suivante : pour chaque voxel,

la différence absolue des déformations par rapport à tous les voxels de la recon-

struction :

Dij =
∣∣ε i − ε j

∣∣ , ∀(i, j) ∈ [0, N − 1]2

où ε i est la déformation évaluée au i-ième voxel d’une reconstruction. Ensuite, pour

un ensemble de n coquilles {s1, . . . , sk, . . . , sn} d’intervalle de déformation, la valeur

de "strain shell correlation" est calculée comme :

vk =
∑ D1D2√
∑ D2

1D2
2

où D1 et D2 sont les matrices des "différences de déformation", sommées aux in-

dices (m, l) tels que |εm − ε l | ∈ sk, la coquille de déformation pour laquelle vk est

calculé. Ainsi, la valeur de sk pour laquelle vk vaut 0.5 peut être considérée comme

la sensibilité à la déformation obtenue par la technique.

Une première validation est réalisée de manière numérique, où un jeu de don-

nées de diffraction est simulé en incluant un bruit de poisson. Pour un nombre de

photons incidents de l’ordre de 10
3, la méthode de strain shell correlation conduit

à une sensibilité à la déformation de l’ordre de 10
−4. On retrouve là la valeur par

défaut communément utilisée par la communauté comme référence. En outre, cette
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simulation montre qu’en augmentant le nombre de photons incidents, la sensibilité

à la déformation peut augmenter jusqu’à 1.5 × 10
−6.

Ensuite, cette méthode est testée sur des données expérimentales, obtenues par le

groupe de recherche de F.Hofmann (Université d’Oxford) sur la ligne de lumière 34-

ID-C de l’Advance Photon Source, USA en août 2014. Les échantillons consistent en

plusieurs cristaux d’or après exposition à différentes doses de sonde ionique focal-

isée. Plusieurs réflexions de Bragg ont été mesurées pour deux cristaux différents,

avec environ 20 balayages angulaires pour chacune de ces réflexions. Aussi, en som-

mant 2, 4, 8 et 15 scans, il est possible de faire varier artificiellement le nombre de

photons incidents et ainsi évaluer l’effet du nombre de photons sur la sensibilité à la

déformation. Pour 8 scans, la valeur de sensibilité trouvée par la technique de strain

shell correlation est de 2.5 × 10
−5. Toutefois, il n’y a pas de signe net d’une amélio-

ration de la sensibilité lorsque le nombre de photons incidents est "artificiellement

gonflé". Deux explications potentielles peuvent être apportées : soit la résolution

spatiale obtenue avec peu de scans additionnés est trop faible et efface donc des dé-

tails, soit le jeu de données avec la plus faible intensité produit une reconstruction

qui atteint déjà le niveau de sensibilité signifiant.

d.6 ptychographie en condition de bragg

Ce chapitre se penche sur la technique de ptychographie, depuis ses principes

jusqu’à son utilisation en condition de Bragg avec un faisceau cohérent de rayons X.

Après une description de la méthodologie, des simulations sont réalisées dans le but

de tester le bon fonctionnement des algorithmes implémentés durant la thèse sur la

librairie python PyNX. Puis les résultats d’analyses de jeux de données obtenus de

manière expérimentale sur les lignes de lumière ID01 à l’ESRF et Nanomax à Max

IV, Lund, sont présentés.

d.6.1 Introduction

La ptychographie permet la reconstruction d’un objet étendu, c’est-à-dire plus

grand que le faisceau qui l’illumine, à partir des images de diffraction obtenues

en balayant l’objet avec le faisceau, tout en s’assurant qu’il existe un certain degré

de recouvrement entre deux positions d’illuminations successives. Introduite dans

les années 1970 dans le domaine de la microscopie électronique, la ptychographie

est maintenant largement utilisée et développée pour la lumière visible ainsi que

les rayons X, dans les géométries de transmission et de réflexion. De plus, la pty-

chographie présente deux avantages concrets. Premièrement, grâce à la redondance

introduite par le recouvrement, la résolution spatiale d’une reconstruction peut être
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meilleure que la taille du faisceau ou le pas du balayage. En second lieu, la pty-

chographie permet de recouvrir la phase complexe à la fois de l’objet illuminé et

aussi du champ d’ondes.

d.6.2 Principes de la ptychographie

La ptychographie fait partie des techniques d’imagerie par diffraction cohérente,

et s’appuie donc sur les mêmes notions de cohérence que décrites plus haut. La

différence majeure réside dans le fait que la condition d’objet isolé est purement

abolie, puisque l’objet sera balayé par l’illumination. C’est la condition de recou-

vrement qui remplace alors la contrainte de support dans l’espace direct. Les

dernières avancées en terme de méthodes de reconstruction permettent d’utiliser

des algorithmes d’optimisation non-linéaire telle que l’optimisation du maximum

de vraisemblance (maximum likelihood, ML) pour améliorer la qualité finale d’une

reconstruction. Comme dans les méthodes de CDI, la procédure de reconstruction

se base sur des algorithmes itératifs, qui alternent entre des contraintes dans l’espace

réciproque et dans l’espace direct grâce à l’utilisation de Transformées de Fourier.

Dans les faits, la principale différence se situe dans la façon dont la mise à jour de

l’objet est faite, c’est-à-dire que cette mise à jour prend en compte l’ensemble des

clichés de diffraction, contenant des redondances. Le premier algorithme mettant

en place la reconstruction d’une phase complexe à partir d’une diversité introduite

via translation d’une illumination fut introduit par Rodenburg et Faulkner, avec la

création du Ptychographic Iterative Engine (PIE) en 2004. En 2008, Guizar-Sicairos

et Fienup remarquent que l’algorithme de PIE peut en fait être exprimé comme

un algorithme de plus forte pente (steepest descent en anglais), et par conséquent

proposent de le réécrire sous la forme d’un algorithme du gradient conjugué, qui

s’avère plus efficace et plus robuste tout en permettant aussi de reconstruire le front

d’onde incident. En parallèle à ce travail, Thibault et al développent une nouvelle

approche permettant aussi de récupérer à la fois l’objet complexe et l’illumination

complexe, basée cette fois sur l’utilisation de l’algorithme de Difference Map (DM).

d.6.3 Ptychographie en condition de Bragg

Le principal intérêt des matériaux cristallins réside dans la compréhension non

seulement de la densité mais surtout des champs de déformation présents à l’intérieur

des structures. La géométrie de Bragg apporte la possibilité d’imager de tels champs.

Par conséquent, il apparaît évident de transposer les méthodes de ptychographie

pour qu’elles soient applicables en condition de Bragg. C’est en 2011 que la com-

munauté scientifique s’est donc intéressée au problème.
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Cette partie du manuscrit s’attelle à reprendre de manière exhaustive toutes les

publications relevant du domaine, en suivant la chronologie des avancées. Ainsi,

les premières tentatives se concentrèrent sur la reconstruction en 2D d’échantillon,

transposant directement les algorithmes ptychographiques existant pour la géométrie

de transmission directe, avec la particularité que la reconstruction est une projection

le long du vecteur d’onde diffracté. En effet, le cliché 2D de diffraction cohérente

obtenu à la condition de Bragg d’un objet partiellement illuminé n’est autre que la

transformée de Fourier de la projection du volume cristallin illuminé, le long du

vecteur d’onde diffractée. Par conséquent, l’objet reconstruit est 2D et dans un plan

parallèle au détecteur, c’est-à-dire avec un angle de 2theta par rapport à la normale

à l’échantillon. Cela nécessite donc une forte hypothèse concernant l’homogénéité

de l’échantillon en profondeur. En outre, un soin particulier doit être apporté à

l’évaluation de la nouvelle géométrie qui influe sur la position du faisceau incident

vis-à-vis de l’objet, tel qu’il est vu par le détecteur. Il est intéressant de noter que

la demi-douzaine d’articles scientifiques publiés, utilisant ou développant la tech-

nique, l’éventail d’applications est large : dislocation dans un cristal épais, polarisa-

tion locale d’une couche ferroélectrique ou imagerie de domaine dans des couches

épitaxiées.

En parallèle, le groupe de P. Godard, V. Chamard et M. Allain entreprenaient de

résoudre le problème mathématique de ptychographie 3D en condition de Bragg.

Pour cela, ils développent un algorithme dérivé du PIE, y ajoutant une contrainte

de régularisation sur le module du front d’onde de sortie. A cette époque, cette

contrainte est évaluée à partir d’un modèle de la déformation à l’intérieur du cristal

qui lui-même provient de l’analyse des clichés de diffraction. En effet, la position du

barycentre du volume de diffraction émis par chaque position de l’illumination sur

l’objet est directement liée à la déformation locale de l’objet : il est possible d’obtenir

une estimation de l’échantillon. Une publication est dédiée à la présentation de

l’algorithme et à des tests numériques, puis une seconde publication propose une

reconstruction 3D d’un échantillon réel mesuré expérimentalement. Cependant, les

résultats manquent de résolution : elle semble être égale à la taille de l’échantillon

le long d’une de ses directions principales, 40 nm. C’est en 2017 qu’une expérience

réalisée sur une coquille cristalline de mollusque par F. Mastropietro et al. pro-

pose une reconstruction convaincante des domaines 3D de l’échantillon, avec une

résolution toujours de l’orde de 40 nm mais sur un objet de 1.75 µm.

Enfin, en 2017 Hruszkewycz et al. montrent que, si deux dimensions sont en-

codées trivialement dans l’espace réciproque par le détecteur 2D, la troisième di-

mension quant à elle, est encodée dans le déplacement du couple illumination/ob-

jet lorsqu’elle a lieu en direction du détecteur (et non parallèlement au plan du

détecteur). Ainsi, en translatant le faisceau dans deux directions pour balayer
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l’objet, et en collectant les clichés de diffraction à un seul angle d’incidence, les

données contiennent de l’information de l’objet 3D. Pour la récupérer, il faut intro-

duire l’opérateur de rétro-projection, qui transforme un objet 2D en un objet 3D,

inspiré de la tomographie assistée par ordinateur. Ceci marque les débuts de la "3D

Back-Projection Ptychography" (3D BPP). L’étape complexe est l’implémentation de

la rétro-projection dans le processus algorithmique. Trois méthodes sont utilisées

dans la librairie PyNX : réplication de l’objet, mise à jour incrémentale de l’objet et

minimisation du gradient. Ce manuscrit présente aussi la proposition d’incorporer

"quelques" angles au lieu d’un seul, pour aider la convergence de la reconstruc-

tion, mais souligne le fait que l’implémentation algorithmique dans PyNX n’est pas

encore réalisée.

d.6.4 Essais numérique de PyNX

Il est primordial de procéder à des essais numériques des algorithmes dévelop-

pés et implémentés dans la librairie PyNX. Cette librairie visant à faciliter l’usage

des techniques de diffraction cohérente telles que présentées jusqu’alors, tout en

proposant des calculs rapides effectués sur carte graphique, elle a pour objectif de

fournir des outils pratiques et robustes pour analyser directement des clichés de

diffraction cohérente.

Tout d’abord, un modèle simple, d’un cristal de silicium contraint, est utilisé pour

simuler une expérience de 3D Back-Projection Ptychography. Le cas de la réflexion

(004) d’un volume parallélépipédique (300 nm ×300 nm ×60 nm) est étudié. En

prenant en compte une maille de 5.4309 Å, l’angle de Bragg correspondant à cette

réflexion (004) vaut θB = 33.53°. Un champ de déformation est introduit le long de

la direction verticale. L’illumination est simulée à partir d’une Fresnel Zone plate

de 300 µm de diamètre, focalisant un faisceau de 8 keV à 9.8 cm de distance focale.

Le balayage consiste en un mouvement décrivant une spirale d’Archimède, faite de

320 positions avec un pas de 20 nm. Le détecteur est simulé par une grille de 256

×256 pixels, chacun mesurant 55 µm, et placée à 1 m de l’objet. L’angle entre le

faisceau direct et le faisceau diffracté est de 2θB = 67.06◦. Ensuite, les 320 clichés

de diffraction sont calculés numériquement en utilisant une somme cinématique

de chaque "diffuseur" présent dans le volume de silicium. Grâce au transfert sur

gpu, en l’occurrence une carte graphique NVidia GTX 1060, le calcul prend 13 sec-

ondes, sachant qu’il y a 37632 diffuseurs (le pas choisi pour simuler l’échantillon

par une grille discrète étant de 5 nm). Un bruit de Poisson est ajouté au jeu de

données obtenu, en faisant l’hypothèse que la totalité des clichés contient 10
8 pho-

tons. Les clichés montrent clairement que la résolution est suffisante pour visualiser

l’influence du champ de déformation sur la diffraction par le cristal. La suite du
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manuscrit présente en détails comment mettre en place la dreconstruction de l’objet

à partir du jeu de données de diffraction en utilisant les classes disponibles dans la

librairie PyNX. Après avoir initialisé le support, comme un objet parallélépipédique

plus large que l’objet à reconstruire mais de même épaisseur, et l’objet initial, stricte-

ment identique à son support, 40 cycles de Difference Map, suivis de 40 cycles

d’Alternating Projections sont appliqués pour parvenir à une reconstruction fiable.

Notons que cette reconstruction est obtenue extrêmement rapidement, en l’espace

d’une dizaine de secondes. En comparant la diffraction simulée à partir de la recon-

struction avec celle ayant servi de point de départ, il est clair que les algorithmes ont

réussi à reproduire fidèlement la diffraction de l’objet déformé. Ensuite, en terme de

densité reconstruite dans l’espace direct, il est aussi visible que les bords francs de

la densité reconstruite coïncident avec ceux de l’échantillon. A partir de ces bords

francs, la résolution spatiale est estimée à ± 1 pixel (10 nm). Ces bords francs sont

néanmoins présents uniquement dans les directions parallèles au plan du détecteur.

En effet, quelques oscillations de densité sont présentes le long de la direction nor-

male au détecteur, c’est-à-dire le long de la direction de rétro-projection. Enfin, le

long des directions parallèles au plan du détecteur, la phase complexe, et donc les

champs de déformation, est bien reconstruite.

En second lieu, une autre simulation est réalisée, à partir d’un échantillon ayant

cette fois la même épaisseur que les couches minces de SiGe expérimentalement

étudiées : 20 nm. Les modélisations aux éléments finis provenant de COMSOL

sont utilisées pour modéliser l’échantillon et simuler les clichés de diffractions cor-

respondant à 43 illuminations. Les positions d’illumination suivent une spirale

d’Archimède, avec un pas de 40 nm. La taille du faisceau simulée est de 153

nm ×130 nm (Horizontale ×Verticale). Le même procédé de reconstruction est

ensuite mis en place, générant un voxel cubique d’arrête 7.3 nm. Il est important

de souligner à cet instant que l’épaisseur de la couche étant de 20 nm, le long de

l’épaisseur de l’objet à peine 3 voxels sont disponibles pour créer la reconstruc-

tion. Cette limitation engendre un effet d’escalier, ou de discrétisation, puisque

l’échantillon est reconstruit dans le repère du laboratoire, c’est-à-dire avec une rota-

tion de 2 thetaB autour de l’axe horizontal et perpendiculaire au faisceau incident

(axe X). Le résultat obtenu après 40 cycles de DM et 40 cycles d’AP montre de clairs

signes de difficultés dans la direction normale au plan du détecteur. Les résultats

de phase reconstruite le long de cette direction ne sont pas utilisables puisque seule-

ment 2 voxels sont présents. En outre, dans la direction X, les bords ne sont pas

aussi francs que lors de la précédente simulation. Cependant, la phase complexe

dans cette direction correspond totalement avec le modèle, ce qui démontre la ro-

bustesse de la technique quant à la mesure du champ de déformation (déformation
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de la maille le long du vecteur de diffraction de Bragg) le long de la direction paral-

lèle au plan du détecteur.

En conclusion, ces simulations mettent en exergue les limitations de la technique

de 3D BPP. En effet, la taille de l’échantillon reste une limite fondamentale de la

technique, puisque cette dernière est intrinsèquement liée aux conditions expéri-

mentales, fixant ainsi une taille minimale de voxel de reconstruction : il est com-

pliqué d’envisager une reconstruction complète 3D d’un objet ne faisant que 2 vox-

els en épaisseur. Cependant, la technique laisse entrevoir qu’une approximation 2D

de ces couches ultra minces pourraient déboucher sur des résultats interprétables.

En effet, dans la direction parallèle au plan du détecteur, il est possible d’obtenir

une reconstruction fidèle de l’évolution du champ de déformation. C’est pourquoi

l’approche 2D BPP a été privilégiée pour reconstruire les données expérimentales

obtenues durant cette thèse.

d.6.5 Résultats expérimentaux

D’abord, les résultats des expériences menées sur les échantillons de SiGeOI ul-

tra mince sont présentés. C’est le jeu de données obtenu sur la ligne de lumière

NanoMax du synchrotron Max IV situé à Lund, en Suède, qui a été retenu, car le

faisceau utilisé sur NanoMax a l’avantage d’être plus petit (102 nm ×109 nm) que

celui utilisé lors de nos expériences sur ID01 à l’ESRF. La réflexion étudiée est la

(113), nécessitant un angle d’incidence de 28.24°. L’expérience est réalisée dans une

géométrie de diffraction horizontale. Le balayage est réalisé sur une zone de 3 µm

×3 µm, suivant une grille discrète avec un pas de 20 nm dans la direction rapide

des moteurs, et de 40 nm dans la direction orthogonale. Le balayage est centré sur

un motif de SiGeOI contraint de 20 nm d’épaisseur et de 2 µm ×2 µm de large. Le

temps d’exposition par point est de 0.02 seconde, ce qui conduit à un très faible

coût de photon diffracté par cliché. Cependant, la diffraction venant du substrat de

silicium est tellement intense qu’il est préférable de la limiter par un faible temps

d’exposition. Une routine de 800 cycles d’AP est appliquée au jeu de données de

diffraction, en prenant en compte la géométrie particulière du scan : l’angle de sor-

tie, entre la surface de l’échantillon et la direction du vecteur d’onde diffracté, est

très faible (β= 3.1°) ce qui fait que la résolution spatiale le long de l’axe horizon-

tal est très faible. En effet, il faut corriger la position des illuminations dans cette

direction par un facteur 0.0416 (égal à sin(β)/ tan(α) où α est l’angle d’incidence).

Comme la résolution dans la direction verticale reste la même que lors d’une expéri-

ence de ptychographie en transmission classique, soit λD
nbpixel Taillepixel

= 9.8 nm, elle est

de 9.8/0.0416 = 235 nm dans la direction horizontale. Cependant, le résultat obtenu

dans la direction horizontale est largement satisfaisant. On retrouve une largeur de
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1.95 µm et les sauts de phase à l’approche des bords de l’échantillon. Cette recon-

struction donne accès à la déformation le long du vecteur de diffraction (113) et son

évolution le long de l’axe horizontal du cristal de SiGe, c’est donc une mesure de

cisaillement. Il est particulièrement intéressant de constater que l’évolution de ce ci-

saillement correspond parfaitement avec la simulation aux éléments finis, et qu’elle

est mesurée pour un échantillon avec une couche protectrice de nitrure de silicium.

Ainsi, le rôle de cette couche est à nouveau confirmé : elle permet de maintenir la

compression dans le plan.

Dans un second temps, c’est un échantillon d’un micro-disque suspendu d’un

alliage de germanium étain qui est étudié. Le GeSn est un candidat viable pour

l’industrie microélectronique souhaitant développer un matériau compatible CMOS

à gap direct pour fabriquer une source laser monolithique intégrée sur une plate-

forme de silicium. Cependant, la croissance par épitaxie de GeSn sur substrat de

germanium crée nécessairement une contrainte en compression dans la couche de

GeSn. Or, plus la déformation est grande et plus la quantité d’étain dans l’alliage

doit être grande pour garder un gap direct. C’est grâce au développement d’une

technique de gravure sélective de Ge et GeSn, même à basse composition en Sn, qu’il

est dorénavant possible de considérer des structures suspendues qui ont l’avantage

de relaxer la contrainte épitaxiale. La question qui reste ouverte est celle de la dis-

tribution de la déformation anisotropique sur l’ensemble du disque. Cette question

est déterminante puisque les propriétés optiques de la couche de GeSn sont intrin-

sèquement liées à l’état de contrainte. C’est pourquoi une expérience de diffrac-

tion cohérente a été réalisée sur la ligne de lumière ID01 à l’ESRF. Le micro-disque

étudié consiste en un empilement relativement simple : de haut en bas se trouvent

un disque de 8 µm de diamètre, fait d’une bicouche de 480 nm d’épaisseur de GeSn

(qui se décompose en une couche de 225 nm d’épaisseur de GeSn à 13 % de Sn, une

couche de transition de 90 nm d’épaisseur, et une couche de 120 nm d’épaisseur de

GeSn à 11% de Sn), un pilier de Ge de 3 µm de diamètre et 2.5 µm de hauteur, puis

un substrat de silicium. Avec un faisceau de rayons X à 8 keV, focalisé à 360 nm x 180

nm (H x V), un balayage, suivant une spirale de 283 points avec un pas de 100 nm,

a été réalisé sur l’échantillon incliné à un angle thetaB = 31.5°. Un détecteur de 516

x 516 pixels, situé à 1 m de distance, enregistre les clichés de diffraction de la raie

(004) du GeSn. Il est tout de suite remarquable que le centre de masse des clichés de

diffraction varie fortement suivant la position de l’illumination, signature de la forte

courbure présente sur le disque. Il est ainsi possible d’utiliser une approximation

d’iso-contrainte: comme le disque est courbé et peut être approximé par une por-

tion de sphère de rayon, e.g., R = 100 µm, une seule couche mince sera en condition

de Bragg. Si la FWHM naturelle de la diffraction du GeSn est DeltaOmega = 0.01°

= 1.8 x 10^-3 rad, cela correspond à une épaisseur diffractante de R x Deltaomega =
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17 nm, telle que le faisceau ne voit qu’une couche d’iso-contrainte au lieu de toute

la surface du disque. Il est donc logique d’essayer de reconstruire cette "tranche" de

disque en condition de diffraction, en utilisant directement l’algorithme de 2D BPP.

La même méthode de correction que celle évoquée précédemment donne un fac-

teur de 0.907 (on rappelle que la géométrie de diffraction est ici verticale, et l’angle

de sortie moins petit). Après 800 cycles d’AP, la reconstruction semble fiable. Pre-

mièrement, un saut d’amplitude est clairement visible, signe de la séparation entre

les deux couches du bicouche de SiGe. A partir de l’amplitude reconstruite, chacune

de ces couches semble être d’une épaisseur de 200 nm, ce qui correspond bien aux

spécifications de l’échantillon. En outre, la phase extraite dans la direction verticale

permet elle aussi de souligner cette interface. En effet, la phase possède deux pentes

bien distinctes le long de la direction verticale. Comme la déformation est directe-

ment proportionnel au gradient de la phase, il est clair que la reconstruction fait

apparaître deux couches, différenciées spatialement et par leur état de contrainte

respectif. Enfin, il est aussi possible d’extraire la phase le long de la direction hori-

zontale pour remonter à la courbure du micro-disque en forme de dôme. En effet,

que ce soit par les images SEM de l’échantillon, ou par l’étendue de la courbe de

balancement de la diffraction, sur plus de 6° autour de l’angle de Bragg, il est clair

que le micro-disque est courbé de telle façon à être assimilable à une portion de

sphère. Cela est vérifié par le fait que la phase "déroulée" le long de la direction

horizontale suit une parabole. Ainsi, la déformation est remarquablement linéaire

sur une étendue de quasiment 2 µm dans cette direction. Le coefficient directeur de

la régression linéaire étant proportionnel à la courbure de la parabole, on trouve un

rayon de courbure de 104 µm. Cette valeur est en accord avec les attentes : pour un

rayon de 100 µm, un arc de longueur 8 µm est vu par un angle de 5.7°.

En conclusion, il a été démontré qu’il est possible d’utiliser la ptychographie en

géométrie de Bragg tout en s’appuyant sur des algorithmes robustes et extrême-

ment rapide, disponibles dans la librairie PyNX. Toutefois, ceci n’est possible qu’à

condition de prendre énormément de précautions dans la stabilité de la configura-

tion expérimentale, dans la taille de l’échantillon par rapport aux conditions expéri-

mentales et enfin dans l’état de contrainte de l’échantillon : trop de déformations

empêcheront la convergence des algorithmes. La question du nombre d’angles in-

cidents à utiliser reste ouverte puisque, d’abord, pour une courbe de balancement

complète (20 à 40 angles) le risque prépondérant est la dérive des moteurs qui

corrompt l’ensemble des données, ensuite, pour un seul angle c’est l’opérateur

de rétro-projection qui nécessite de nombreuses assistances et reste approximatif

dans la direction de rétro-projection, enfin, pour quelques angles, la méthode est

trop récente pour être évaluée dans ces travaux de thèse. Cependant, cette méth-

ode aux multiples angles s’avère vraiment prometteuse, puisque la diversité angu-
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laire devrait améliorer grandement la convergence des algorithmes tout en profi-

tant de la flexibilité de l’opérateur de rétro-projection qui permet d’incorporer des

positions d’illuminations qui varient d’un angle à l’autre. Enfin, par sa simplicité

d’approche, la méthode 2D BPP devrait s’imposer comme une méthode intéressante

pour réaliser une caractérisation rapide d’un échantillon en 2D, à condition que son

homogénéité soit assez grande.

d.7 conclusion

Les techniques d’imagerie par diffraction cohérente sont essentielles pour ex-

ploiter pleinement les rayons X durs qui sont générés dans les instruments syn-

chrotrons. Ces techniques, assimilables à de la microscopie sans optique, ont pour

but d’imager les propriétés nanoscopiques d’échantillons à l’aide d’un faisceau ex-

trêmement cohérent. Des algorithmes itératifs, naviguant entre l’espace réciproque

des intensités diffractées et l’espace direct de l’objet illuminé, permettent de retrou-

ver la phase complexe de l’objet, perdue lors de l’acquisition par le détecteur, et

ce avec une résolution spatiale élevée (jusqu’à 10 nm). Même si la majorité des

techniques qui sont cataloguées comme des techniques d’imagerie par diffraction

cohérente sont considérées comme étant matures, il reste encore beaucoup de place

pour des améliorations sur certaines d’entre elles, notamment lorsqu’elles utilisent

la géométrie de Bragg, donnant ainsi accès aux déformations cristallines à l’échelle

quasi-atomique. Aussi, il n’est pas rare que les utilisateurs des installations syn-

chrotron demandent conseil aux scientifiques travaillant au développement de la

technique, puisqu’il n’existe pas encore d’algorithmes standards pour les techniques

telles que la Bragg CDI ou la Bragg ptychographie. Dans ce travail de thèse, l’im-

plémentation et la méthodologie de nombreuses techniques de diffraction X ont été

étudiées, notamment dans le but de les rendre plus accessibles à un plus vaste éven-

tail d’utilisateurs, encore plus particulièrement dans le contexte du programme am-

bitieux de modernisation, "l’Upgrade Programme", dans lequel s’est engagé l’ESRF.

Le programme de Source de Lumière Extrêmement Brillante (EBS en anglais) est

un projet innovant et unique, représentant un investissement de 150 millions d’eu-

ros sur la période 2015 - 2022, qui doit dessiner une nouvelle génération de syn-

chrotron : des performances 100 fois supérieures à celles existant dans les syn-

chrotrons actuels. La première partie du manuscrit de thèse fournit une description

détaillée du contexte théorique nécessaire à la bonne compréhension des échantil-

lons et des techniques de diffraction utilisées. D’abord, la déformation cristalline,

ainsi que son effet sur les propriétés structurelles, est rappelée, ainsi que la diffu-

sion par un cristal, qu’il soit parfait ou déformé. Comme la déformation brise la

symétrie d’un cristal, elle modifie aussi la structure de bandes du matériau et par
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conséquent influe sur la mobilité des porteurs de charge. Dans le chapitre 2, une

introduction relative aux concepts d’élasticité est donnée dans le but de compren-

dre le fonctionnement des différents échantillons étudiés : depuis le SiGe contraint

sur isolant visant à devenir le canal de transistor dernière génération, jusqu’aux mi-

cro structures de GeSn ouvrant la voie à de nouvelles applications laser, il est en

effet primordial de comprendre l’ingénierie des déformations. Le chapitre 3 four-

nit une description détaillée des rayons X et de leurs propriétés, ainsi que de la

façon dont un synchrotron produit un faisceau cohérent. Dans le cas des matériaux

cristallins, en illuminant un échantillon avec une illumination cohérente, il est pos-

sible de collecter l’intensité diffractée à différents pics de Bragg et ainsi de remonter

à la déformation locale dans l’échantillon. C’est la raison pour laquelle les tech-

niques d’imagerie par diffraction cohérente ont été adaptées en condition de Bragg,

permettant alors de sonder les propriétés structurelles d’un échantillon. Pendant

les vingt dernières années, de grands progrès dans le champ de la diffraction co-

hérente ont été réalisés, notablement grâce à l’introduction de meilleures optiques

de focalisation, produisant un faisceau de taille plus petite mais avec un flux de

photons plus grand : l’étude d’échantillons de taille inférieure à 100 nm est devenu

réalisable. En outre, la fin de ce chapitre 3 met l’accent sur les dernières avancées

algorithmiques, comme la prise en compte de la cohérence partielle ou l’utilisation

du maximum de vraisemblance pour optimiser la qualité d’une reconstruction. En-

suite, la seconde partie du manuscrit est consacrée à l’étude expérimentale réalisée

pendant la thèse. En premier lieu, le chapitre 4 présente une étude de cas : la

cartographie des déformations cristallines de motifs ultra minces de SiGeOI sous

contrainte. En particulier, l’utilisation de la technique SXDM est expliquée en dé-

tails. Cette technique apporte une haute résolution spatiale couplée à une haute

sensibilité à la déformation et à la désorientation d’un échantillon cristallin, sous

réserve que l’analyse soit réalisée avec une attention toute particulière étant don-

née d’une part la grande quantité de données brutes générées par la technique, et

d’autre part la présence de nombreux obstacles. Dans ce but, le chapitre fournit

une feuille de route au point par point pour mener à bien l’analyse des données

et guider l’utilisateur potentiel à travers l’entièreté de l’expérience. Par ailleurs, ce

chapitre montre que le SXDM peut aussi être utilisé comme un outil statistique,

puisque dans le cas étudié le grand nombre de motifs mesurés sert aussi pour la

compréhension de la relaxation de la déformation, en fonction de la taille du motif.

Ainsi, les résultats montrent que la technique de condensation récemment dévelop-

pée, qui permet de faire croitre des couches ultra minces (13 à 20 nm) de SiGe

sur SOI, produit des couches très homogènes mais dont la longueur de relaxation

est plus grande que celle prédite par la théorie élastique. Ces résultats sont confir-

més par une récente expérience d’holographie à électrons, qui suggère qu’il existe
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un glissement à l’interface SiGe/SOI. Par conséquent, il est démontré que la tech-

nique de SXDM est compatible avec les matériaux électroniques de pointe. Enfin

et surtout, cette technique de SXDM développée particulièrement sur la ligne de

lumière ID01 de l’ESRF bénéficiera du programme EBS, tout comme un flux plus

important de photons permettra, par exemple, de réduire le temps d’exposition du

détecteur et ainsi d’accélérer la vitesse de balayage, réduisant ainsi le temps global

d’une expérience. Ensuite, le chapitre 5 se concentre sur un couplage innovant de

deux techniques d’imagerie matures, la Bragg CDI et la DCT. En effet, l’intérêt est

de combiner les deux échelles proposées par chacune des techniques pour montrer

qu’il est possible de passer de l’échelle microscopique d’un échantillon de ZrO2, où

l’information moyenne de la déformation est disponible, à l’échelle fine d’un grain

incrusté à l’intérieur de l’échantillon, avec une résolution nanoscopique. Ainsi, la

DCT est utilisé comme outil d’indexation des grains à l’intérieur d’un échantillon

et la BCDI intervient ensuite pour fournir des résultats quantitatifs à l’échelle du

grain. La combinaison de ces deux techniques est prometteuse, particulièrement

dans le contexte d’upgrade de l’ESRF qui permettra d’ajuster encore plus finement

la taille du faisceau : défocaliser le faisceau pour faire en sorte que sa taille s’ajuste

à celle d’un grain est la clé de la réussite de cette technique. Du reste, la fin de

ce chapitre propose une méthode pour répondre à la question de la sensibilité à la

déformation d’une reconstruction obtenue par BCDI. Ce sujet est souvent mis de

côté depuis que la technique existe, à tel point qu’aujourd’hui aucune technique ne

permet d’évaluer cette sensibilité. La méthode proposée ici, inspirée de la Fourier

Shell Correlation, est testée sur un jeu de données simulé ainsi que sur un jeu de

données expérimentales, en collaboration avec le groupe du Dr Felix Hofmann (Ox-

ford). Cette méthode, Strain Shell Correlation, pourrait servir d’outil pour évaluer

la sensibilité à la déformation de n’importe quelle reconstruction de BCDI. Enfin, le

chapitre 6 présente la méthode de ptychographie et son lot de promesses dans la

quête d’une technique d’imagerie haute résolution d’objets étendus. Tout d’abord,

la méthode "traditionnelle" de ptychographie en transmission est introduite, avec les

algorithmes classiques qui y sont associés. Ensuite, le cas particulier de la géométrie

de Bragg est discuté, puisque la capacité potentielle de la Bragg ptychograhie à im-

ager les déformations cristallines avec une résolution de l’ordre du nanomètre en

3 dimensions est particulièrement recherchée. La technique repose sur l’acquisi-

tion des clichés de diffraction au voisinage de pics de Bragg, tout en balayant un

objet avec des illuminations se recouvrant partiellement d’une position à l’autre.

A l’origine, la Bragg ptychographie a été développée en 2D, générant de promet-

teuses reconstructions à condition que l’échantillon soit suffisamment homogène.

Ainsi, la "2D Bragg Projection Ptychography" (BPP) a recours à des algorithmes pty-

chographiques standards, c’est-à-dire utilisés dans le cadre de transmission directe,
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couplés avec d’une part, une correction de la position des illuminations, et d’autre

part l’hypothèse que le faisceau incident est une onde plane infinie. La partie 6.5

démontre que l’application de 2D BPP à des échantillons ultra minces, ou à des vol-

umes d’iso-déformation à l’intérieur d’un plus grand échantillon, permet d’obtenir

des résultats fiables et robustes, tels que la caractérisation des fluctuations de défor-

mation avec une haute résolution. Dans la continuité, le cas des reconstructions en

3D est abordé. Une revue exhaustive de l’état de l’art est présentée, mettant l’accent

sur le fait que la quasi totalité des publications d’alors s’appuient sur l’algorithme

du "Ptychographie Iterative Engine" (PIE) enrichi d’un terme crucial de régularisa-

tion. Cependant, l’acquisition de données complètes pour une reconstruction 3D

nécessite des balayages très précis et très couteux en temps, à de multiples angles

d’incidences, et par conséquent souffre de nombreuses limitations. En particulier,

les dérives mécaniques lentes et les dommages causés par une exposition prolongée

de l’échantillon à un flux intense de rayons X sont les obstacles principaux à la

technique. C’est afin de remédier à ces limites que l’opérateur de rétro-projection

a été introduit dans le processus algorithmique. Le jeu de données est alors ré-

duit à un seul angle d’incidence, cet opérateur de rétro-projection permet donc de

s’affranchir de la nécessité de basculer l’échantillon, réduisant considérablement le

temps d’illumination de l’échantillon. Cependant, l’implémentation de cet opéra-

teur n’est pas aisée. Les différentes possibilités d’implémentation sont présentées

dans ce manuscrit, mais leur application sur des jeux de données expérimentales

n’est, pour l’instant, pas satisfaisante. Considérer quelques (par exemple 5) angles

d’incidence pour compléter les données de diffraction (au lieu d’une quarantaine

pour un jeu de données 3D complètes), permet en théorie d’augmenter la conver-

gence des algorithmes mais se révèle être une approche difficile à implémenter. En

outre, il convient de rappeler que ces méthodes reposant sur un algorithme de rétro-

projection dépendent fortement du support de l’objet, au moins dans la direction

normale au détecteur. Enfin, ces méthodes nécessitent aussi un consensus en ce qui

concerne le choix de la figure de mérite, indispensable à l’évaluation de la conver-

gence. Malgré la robustesse apparente de la méthode de 3D Bragg Ptychography,

les prochaines expériences auront besoin d’un maximum de contrôle et stabilité,

puisque ce sont au final ces paramètres qui dictent la qualité des données de diffrac-

tion. De plus, les objets fortement contraints ou courbés, qui voient leurs clichés

de diffraction balancés d’un bord du détecteur à l’autre au cours du balayage, sont

encore source de difficulté de convergence. Enfin et surtout, les échantillons ultra

minces sont encore aujourd’hui compliqués à reconstruire, pour la simple raison

que la taille du voxel de la reconstruction est limitée par les conditions expérimen-

tales (longueur d’onde, distance du détecteur, sa taille et la taille de ses pixels) : il

est quasiment impossible de générer des voxels inférieurs à 5 ×5 ×5 nm3. Toutefois,
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il faut souligner que l’approche en 2D BPP est très prometteuse pour l’étude de ces

échantillons ultra minces ou très déformés, tant qu’une approche d’iso-contrainte

est disponible. En effet, il est montré dans la dernière partie du chapitre 6 que

les couches ultra minces peuvent être approximées à des couches 2D, menant à

des reconstructions par 2D BPP en accord avec l’holographie par électrons, et que

l’approche d’iso-contrainte pour des micro-disques fortement déformés permet de

retrouver les interfaces de l’échantillon ainsi que le gradient de phase qui s’y trouve.
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Development of Bragg coherent X-ray diffraction and
Ptychography methods, application to the study of semi-
conductor nanostructures
Nanotechnologies rely on the introduction of strain engineering to enhance
semiconductor devices performances. As a consequence, non- invasive
characterization methods with high spatial resolution and strain sensitivity
on low- amount-of-matter samples are required. This PhD work focuses
on methodology of X-ray diffraction techniques performed in the Bragg ge-
ometry, which allows probing the structural properties of crystalline sam-
ples. Firstly, the Scanning X- ray Diffraction Microscopy technique, de-
veloped on a fast-timescale at the ESRF ID01 undulator beamline, is de-
scribed through a thorough analysis of an experiment performed on ultra-
thin strained SiGe-on-insulator patterns. Secondly, this manuscript focuses
on two coherent diffraction imaging techniques, namely Bragg CDI, which
yields complex density and strain map of nano-meso crystalline objects,
and Ptychography, which use translational diversity to produce quantitative
maps of complex transmission function of non-crystalline objects. The mo-
tivation developed in this PhD work is to combine these two techniques that
both promote highly sensitive phase-contrast properties, in order to provide
ultra-high resolution on complex/extended samples. Bragg Ptychography
is thus introduced, along with algorithmic descriptions and considerations
on the X-ray beam characterization, the latter being still a key component
for successful reconstructions.

Keywords : Coherent X-ray diffraction imaging, nanostructures, strain,
synchrotron radiation

Développement des méthodes de Ptychographie et diffrac-
tion cohérente des rayons X en géométrie de Bragg, ap-
plication à l’étude de nano-structures
L’ingénierie des contraintes révolutionne actuellement le monde de la nan-

otechnologie, en ce qu’elle permet d’améliorer les performances de dis-
positifs tels que les structures semiconductrices, en manipulant les pro-
priétés physiques des matériaux à travers une déformation élastique. La
nécessité de méthodes de caractérisation non-invasives, précise à l’échelle
nanométrique et ultra-sensible aux déformations, s’en trouve donc accrue.
Les nanostructures étudiées servent d’étalons pour le développement d’une
méthodologie basée sur la diffraction de rayons X en condition de Bragg.
Dans ce travail, la technique de Microscopie par balayage de diffraction
X (SXDM) est d’abord détaillée et appliquée à des couches ultra minces
de SiGe contraint sur isolant, démontrant être un puissant outil statis-
tique pour évaluer la relaxation de la contrainte après gravure. Ensuite,
le manuscrit décrit les techniques d’imagerie par diffraction de rayons X
cohérents (CDI) en condition de Bragg, qui permet de reconstruire la den-
sité électronique complexe 3D d’un cristal, et de Ptychographie, qui se
base sur l’introduction d’une diversité par translation du faisceau sonde.
L’objectif est de combiner ces deux techniques pour développer une tech-
nique de haute précision spatiale et ultra- sensible aux déformations, sur
des objets pouvant être étendus. Par conséquent, la Ptychographie en
condition de Bragg est introduite, ainsi que les algorithmes associés qui
permettent de reconstruire à la fois l’échantillon et le faisceau probe, ce
dernier étant essentiel pour obtenir des reconstructions concluantes. Il est
démontré qu’une approche 2D par projection est suffisante et quantitative
dans les cas limites auxquels la thèse se confronte : matériaux ultra- fin
approximés par des couches 2D et matériaux ultra-deformés pour lesquels
seuls les sous- volumes dans lesquels la déformation varie peu (isostrain)
peuvent être reconstruits.

Mots-clés :Imagerie par diffraction X cohérente, nanostructures,
contrainte, rayonnement synchrotron
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