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Résumé

Cette these traite de trois sujets en trois parties.

Dans la premiere partie, nous étudions les points S-entiers de la courbe modu-
laire Xo(p). Yuri Bilu a montré qu’en utilisant la méthode de Baker, on peut donner
une borne effective de la hauteur de ces points en fonction de p, du corps de base et
de I'ensemble de places S.

Min Sha a rendu ce résultat explicite. avec une borne doublement exponentielle
en dans p. Nous améliorons considérablement dans cette these le résultat de Sha, en
obtenant une borne simplement exponentielle. Cela se fait en utilisant une version
tres explicite du principe de Chevalley-Weil basée sur des travaux de Qing Liu et
Dino Lorenzini. Notre borne est non seulement plus nette que celle de Sha, mais
également explicite en tous les parametres.

Dans la deuxiéme partie, nous considérons des modules singuliers de courbes
elliptiques. Pour un module singulier fixe &, nous donnons une borne supérieure
effective de la norme de x — a pour un autre module singulier x avec un grand
discriminant.

Dans la troisieme partie, nous donnons une relation entre les conducteurs d’Artin
d’un modele Werestrass Y et ceux de deux modeles de Weierstrass donnés Y7, Y>.
Avec cette relation, nous déduisons que 'inégalité conducteur-discriminant est val-
able pour Y si elle est valable pour Y7 et Y>.

Mots-clefs

Points entiers; courbe modulaire; module singulier; courbe hyperelliptique; conduc-
teur d”Artin.
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Abstract

This thesis discusses three topics, so it includes three parts.

In the first part, we study S-integral points on the modular curve Xy(p). Bilu
showed that, using Baker’s method, they can be effectively bounded in terms of p,
the base field and the set of places S. Sha made this result explicit, but the bound he
obtained is double exponential in p. We drastically improve upon the result of Sha,
obtaining a simple exponential bound. This is done using a very explicit version of
the Chevalley-Weil principle based on the work of Liu and Lorenzini. Our bound is
not only sharper than that of Sha, but is also explicit in all parameters.

In the second part, we consider singular moduli. For a fixed singular modulus «,
we give an effective upper bound of norm of x — a for another singular modulus x
with large discriminant.

In the third part, we give a relation between Artin conductors of a Weierstrass
model Y and the ones of two given Weierstrass models Y7, Y>. With this relation, we
know that the conductor-discriminant inequality holds for Y if it holds for Y; and
Ys.

Keywords

integral point; modular curve; singular modulus; hyperelliptic curve; Artin conduc-
tor.
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Introduction

Cette these se concentre sur trois sujets différents, elle est donc divisée en trois par-
ties. Dans la premiére partie, nous considérons les points entiers sur les courbes
modulaires. La deuxieme partie est consacrée a donner une borne de différence de
deux modules singuliers en termes de discriminants. La troisiéme partie est plus
algébrique, nous étudions les conducteurs d’Artin et discriminants des courbes hy-
perelliptiques.

Points entiers sur les courbes modulaires

Soit X une courbe algébrique projective, lisse et connectée définie sur un corp de
nombres K, et que x € K(X) soit une fonction rationnelle, non constante sur X.
Si R est une sous-anneau de K, nous désignons par X(R, x) ’ensemble des points
K-rationnels de X qui sont R-entiers par rapport a la coordonnée x:

X(R,x) = {P € X(K) | x(P) € R}.

En particulier, si S est un ensemble fini de places de K (y compris toutes les places
infinies), nous considérons 1’ensemble de points S-entiers X(Og, x), ot Og = Og i est
I'anneau de S-entiers en K.

Selon le théoreme classique de Siegel [57] (voir aussi [33] Part D] pour une ex-
position moderne), ’ensemble X(Os, x) est fini si au moins 1'un des les conditions
suivantes est remplie:

g§(X)=1; ey
x admet au moins 3 poles dans X(Q). ()

Le théoreme de Faltings [24] (voir aussi [33, Part E]) affirme que X(K) est fini si
¢(X) > 2. Malheureusement, toutes les preuves connues de théoreme de Siegel et
Faltings ne sont pas efficaces, ce qui signifie qu’elles n'impliquent aucune expression
explicite bornant les hauteurs de points entiers ou rationnels.

A partir des travaux révolutionnaires d’A. Baker en 1960, des preuves efficaces
du théoreme de Siegel ont été découvertes, par Baker et d’autres, pour de nom-
breuses paires (X, x), voir [4, 5] et les références dedans.

Un cas intéressant est lorsque X = Xt est la courbe modulaire correspondant
a un sous-groupe de congruence I' de I'(1) = SLy(Z), et x = j est la fonction ra-
tionnelle définie par le j-invariant. Ce probleme a été examiné par Bilu [5], Bilu et
Parent [9] [10], Sha [55] [54] et bien d’autres. En particulier, Bilu et Parent résol-
vent le cas dit "de Cartan deloyé" du probléme d’uniformité de Serre dans [10] en
considérant ce probléeme pour Xt

Bilu [4}, Section 5] (voir aussi [5], Section 4]) a fait 1’observation suivante.

Proposition 1. Soit I un sous-groupe de congruence de SLy(Z) de niveau N ayant au
moins 3 cuspides. Soit K un corp de nombres tel que Xr admet un modele géométriquement
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irréductible sur K et tel que j € K(Xr). Soit S un ensemble fini de places de K contenant
toutes les places infinies. 1l existe alors une constante effective c = c(N, K, S) telle que pour
tout P € Xr(Og, j) nous avons h(j(P)) < c.

(Ici h(-) est la hauteur logarithmique définie sur 'ensemble Q de nombres al-
gébriques.)

En d’autres termes, si la condition (2) est satisfaite pour le paire (X, j), alors le
théoreme de Siegel est efficace pour ce paire.

Sha [55] a rendu le borne dans la proposition[Itotalement explicite. Pour énoncer
son résultat, nous introduisons quelques notations. Pour un sous-groupe de congru-
ence I' comme ci-dessus, le nombre de cuspides sur Xr est indiqué par v (I'). Pour
un corp de nombres K, soit Mk I'ensemble de toutes les places de K, et S C Mg un
sous-ensemble fini contenant toutes les places infinies. Nous mettons d = [K : Q] et
s = #S. Soit Ok I'anneau d’entiers de K. Nous définissons la quantité suivante

#(N)

A(N) := 1/ N4N|D|2(N) (log (NN | D|#(N)))de(N) 5 [ TlogN/q(v)

veS
vfoo
en fonction de N € INT, out D est le discriminant absolu de K, ¢(N) est la fonc-
tion totiente d’Euler, et la norme N ,q(v) d'une place v, par définition, est égal a
#(Ok/py|) lorsque v est fini et p, est son idéal premier correspondant, et est fixé a 1
si v est infini.
Sha [55] a prouvé le théoréme suivant.

Théoréem ([55] Theorem 1.2). Soit T de niveau N et Xr la courbe modulaire cor-
respondante sur un corp de nombres K avec d = [K : Q] et S C My un ensemble fini
contenant tous les places infinis. Si v (I') > 3, alors pour tout P € Xr(Os, j),

h(j(P)) < (CdsM*)*M (log(dM))*M (™A (M),

ot C est une constante effective, £ est le nombre premier maximal tel qu’il existe v € S avec
v | £, ou l = 1siS§ ne contient que 'infini places, et M est défini comme suit:

N si N n'est pas une puissance premiere;
M = 3N si N est une puissance de 2;
2N si N est une puissance d’un nombre impair.

Ici, nous remarquons seulement que la borne de Sha est de la forme c(K, S)N1°8N,
ot c(K, S) est une constante efficace ne dépendant que de K et S. En gros, nous avons
ici une dépendance de type exponentielle dans N.

Pour certaines applications, il est utile d"avoir une valeur explicite de la constante
C de Théoréme Dans cette partie, nous prouvons le résultat suivant.

Théorém La constante C dans Théoréme peut étre considérée comme 214,

Dans la preuve, nous suivons les idées principales de Sha, avec quelques modifi-
cations mineures. Nous calculons explicitement les constantes implicites qui y sont
présentes, y compris I'inégalité de Baker, Théoreme[1.3.1}

Proposition s’applique également dans de nombreux cas importants: voir [5, 8]
pour plus de détails. En particulier, elle s’applique a la courbe modulaire Xy(N)
de niveau composite N. Cependant, elle ne s’applique pas directement a la courbe
Xo(p) du niveau premier p, car elle n’a que 2 cuspides.

Néanmoins, en utilisant un argument de recourvement, Bilu [5, Theorem 10] a
prouvé que le théoreme de Siegel est également efficace pour Xy(p). Notez que la
courbe Xo(N) a un modele géométriquement irréductible standard sur Q.

2



Théorem 1 (Bilu). Soit p un nombre premier distinct de 2,3,5,7,13. Soit K un champ
numérique et S un ensemble fini de places de K contenant toutes les places infinies. 1l existe
alors une constante effective c = c(p, K, S) telle que pour tout P € Xo(p)(Os, j) nous avons
h(j(P)) <.

L'outil principal est Principe de Chevalley-Weil, ou Théoreme de Chevalley-Weil
dans cette thése, utilisé sous la forme suivante.

Proposition 2 (Principe de Chevalley-Weil). Soit X = X un morphisme non constant
étale de courbes algébriques projectives définies sur un champ numérique K. Il existe alors
un ensemble fini T de places de K tel que le suivant soit valable. Soit P € X(K) et P € X(K)

tels que 7t(P) = P. Soit v une place finie du corp K(P) ramifié en K(P). Alors v étend une
place de T.

Nous discuterons de ce théoreme dans la section [1.5l

Bilu a trouvé un sous-groupe I de Ty (p) tel que le morphisme naturel Xz — Xo(p)
is étale et X} a au moins trois cuspides, voir Proposition[3.3.2pour les détails. Principe
de Chevalley-Weil permet maintenant de réduire le probleme de Xo(p) a X;, oit
Proposition (1| s’applique.

Dans [54] Sha a donné une version explicite du Théoreme Nous ne repro-
duisons pas ici la déclaration complete de Sha, qui est tres compliquée, et nous nous
concentrons uniquement sur la dépendance au niveau p. On peut s’attendre ici a une
dépendance de type exponentielle dans p, mais Sha obtient une borne supérieure de
la forme c(K, §)®P(P°1087) doublement exponentielle dans p.

Laborne de Sha est si grande parce qu’il utilise une version quantitative d Théoreme
de Chevalley-Weil de [12], voir Proposition [1.5.4} qui fournit des bornes supérieures
extrémement grandes pour les quantités impliquées.

Dans cette these, nous allons prouver une autre version du théoreme de Chevalley-
Weil, proposition combinée avec le théoreme d’Igusa, voir [22, Section 8.6],
nous parvenons a améliorer le résultat de Sha. Nous prouverons le théoreme suiv-
ant.

Théorem[3.3.1, Gardons les notations de Théoremel[l} Alors pour P € Xo(p)(Os,j), ona
h(j(P)) < ™7 8PC(K,S)P",

oit C(K,S) peut étre effectivement déterminé en termes de K et S. Plus explicitement,
C(K, S) peut étre choisi comme

C(K,S) = 2%°d*s*¢*|D|(log (| D| + 1)) H log Nx,q(v),
vES
ot infty

oitd = [K : Q|, D est le discriminant absolu de K, s = #S et { est le premier maximal tel
qu’il existe v € S avec v | L.

Pour un corps de nombres K, v € Mg, nous définissons la valorisation | - |, sur K
comme suit: pour tout a € K:

la|p :=|o(a)], siv estinfini avec plongement o;
]y == N (v) 0@/ KQil i ¢ est fini.

3



Modules singuliers

Soit H le demi-plan de Poincaré, un point T € H est appelé un point CM si End (E;)
est un ordre dans un corps quadratique imaginaire , out E; est la courbe elliptique
sur C correspondant a 7. Il est bien connu que T € H est CM si et seulement si T est
un nombre algébrique de degré 2. Nous appelons j(7) un module singulier si T € H
est CM. De la théorie CM classique, nous savons que chaque module singulier est
un entier algébrique. On appelle j(T) unité singuliére s'il est un module singulier et
une unité algébrique.

Dans [31], Habegger a prouvé qu’il y a au plus un nombre fini d'unités sin-
gulieres. Cependant sa preuve est inefficace. Apres cela, dans [7], Bilu, Habegger
et Kithne prouvent qu’il n’y a pas d’unités singulieres. En effet, leur méthode peut
étre généralisée pour donner une borne effective de norme de différence entre deux
modules singuliers, c’est exactement ce que nous faisons dans cet thése.

D’autre part, Gross et Zagier [27] ont énoncé une formule explicite pour la norme
absolue de différence entre deux modules singuliers. Avec leurs travaux, Li [37] a
également réussi a donner une borne de norme de différence entre deux modules
singuliers, sa borne est un nombre strictement positif, ce qui lui permet de prouver
une version généralisée du résultat principal de Bilu, Habegger et Kiihne [7]. Cepen-
dant, il n’est pas clair comment son borne se comporte comme A — —oo. Dans cet
thése, nous allons prouver le résultat suivant:

Théorém Soit a, x deux modules singuliers de discriminants Ay, A respectivement,
et K=Q(a,x).

(1) Si Ay # —3,—4et |A] > max{e312(C(Ay)|Ax|*e®)3,10'5 - C(A,)®}, puis

A1
> L.

log [N /q(x — a)| > 12—

(2) Si Ny = —4, c'est-a-dire « = 1728 et |A] > 10", puis

A
log |NK/Q(X — 1728)| > 5 ;
(3) Si Ay = =3, c'est-a-dire a = 0 et |A| > 102, puis
A

Les notations sont expliquées dans la section 5.1}

L’'idée de prouver Théoreme Vient de [7]]. Premiérement, nous donnons une
borne inférieure effective de C;(7, A), voir Section[5.2 pour la définition et le résultat.
Ensuite, en utilisant cette borne et la borne inférieure pour la différence de deux
modules singuliers de [6], nous parvenons a donner une borne supérieure pour la
hauteur de la différence, voir Corollary dans Section La limite inférieure
de la hauteur de la différence provient de [7], voir la Section Avec ces deux
bornes, en estimant chaque terme des deux cdtés, on en déduit Théoreme voir
Section[5.5] 5.6, 5.7

Voici une remarque, puisque Bilu, Habegger et Kiithne [7] ont donné la plupart
des résultats dont nous avons besoin pour le cas out T = (4, c’est-a-dire A, = —3
dans Théoreme (3), nous utiliserons directement leur résultat et nous concen-
trerons principalement sur le cas ot T # (.
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Les conducteurs d’Artin et les discriminants des courbes hy-
perelliptiques

Soit R un anneau de valuation discrete avec valuation v, corps residuel k parfait
et corps de fraction K, X un schéma propre, plat et régulier sur R. Le conducteur
d’Artin de X est défini comme

Art(X) == x(Xk) — x(Xk) — 6(X),

ot x(Xk) et x(Xx) sont les caractéristiques d’Euler de respectivement Xk et Xy par
rapport a la topologie étale, et §(X) est le conducteur de Swan associé a représenta-
tion (-adique Gal(K/K) — Autg,(HL (Xk,Qy)), £ # Car(k), voir Section [7.1| pour
plus de détails. Le conducteur Artin est une quantité pour mesurer la dégénéres-
cence de X: c’est un entier non positif et Art(X) = 0 si et seulement si X/R est lisse
ou g(Xk) = 1 et (Xi)req est lisse. Il est également utilisé pour construire 1’équation
fonctionnelle de la fonction L associée a X, voir [52] ou [13] pour plus de détails.

Pour une courbe elliptique C, considérons son modele régulier minimal X, nous
avons la formule d’Ogg-Saito [48]:

—Art(X) = 0(A(C)),

ot v(A(C)) estle valeur du discriminant minimal de C. Pour une courbe hyperellip-
tique C, nous avons également la définition du discriminant minimal v(A(C)), voir
Définition Cependant, cette formule n’est pas vraie pour toutes les courbes
hyperelliptiques. Dans [39], Liu a prouvé que si Car(k) # 2 et le genre g(C) = 2,
alors

—Art(X) <o(A(C)),

et 1’égalité peut ne pas tenir dans certains cas. Dans [61] et [62], Srinivasan a montré
que l'inégalité est vraie dans les cas suivants:

(1) les points de Weierstrass de C sont K-rationnels;

(2) Car(k) > 2¢(C) +1.

Enfin, Obus et Srinivasan [47] ont montré que cette inégalité est valable pour toute
les courbes hyperelliptiques lorsque Car(k) # 2.

Dans cette partie, nous prouvons en fait le processus inductif dans le article
d’Obus et Srinivasan [47].

Théorem Soit R un anneau de valuation discréte avec corps de fraction K et corps
residuel k parfait. Supposons que R est strictement hensélien et Car(k) # 2. Soit Y, Y; et
Y, des modéles de Weierstrass sur R définis par des équations de Weierstrass intégrales dans
l'un des cas suivants:

LY:y=fi(x)fa(x) Y1:92 = fi(x) et Yo : y* = fo(x),

2. Yy =nfi(x)fa(x), Yi: 2 = mhi(x) et Yo : y? = fa(x),
oil, dans les deux cas, deg(f;) = deg(f,) > 1 pouri=1,2et f,, f, € k[x] sont coprimes.
Sipouri=1,2,

—Art(X;) —6(X;) < v(A(Y3)),
puis
—Art(X) — §(X) < v( Delta(Y)),

ot X, Xj et Xy sont les désingularisations minimales de Y, Y1 et Yo respectivement. De plus,
si I'égalité est valable pour Y; et Y3, elle est également valable pour Y.
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C’est un travail indépendant et la méthode est différente de celle du article d’Obus
et Srinivasan [47]. Avec ce résultat, nous pouvons prouver le cas (1) des resultats de
Srinivasan. Bien que ce résultat soit plus faible que celui d’Obus et de Srinivasan
dans [47], nous avons encore quelque chose d’intéressant dans la preuve. Nous pou-
vons calculer certaines quantités importantes de Y dans Théoréme a partir de
celles de Yj et Y3, telles que le rang abélien, le rang torique, etc., voir Théoréme
et Théoréeme

Chapitre [f] est le premier chapitre de cette partie, il donne des résultats de base
pour les courbes hyperelliptiques. Dans la premiere section de Chapitre [7} nous
définissons les conducteurs d”Artin des variétés arithmétiques a partir de ses représen-
tations /-adic correspondantes, et collectons quelques résultats pour les conducteurs
d’Artin. Le reste de Chapitre [7] est consacré a prouver Théoreme et Corol-
laire[7.2.4} nous construisons des recourvements étale pour associer ces trois courbes
hyperelliptiques et donner des relations entre quantités correspondantes.



Introduction

This Thesis focuses on three different topics, so it is divided into three parts. In
the first part, we consider the integral points on modular curves. The second part
is devoted to giving a bound of difference of two singular moduli in terms of dis-
criminants. The third part is more algebraic, we study the Artin conductors and
discriminants of hyperelliptic curves.

Integral Points on Modular Curves

Let X be a smooth, connected projective algebraic curve defined over a number
field K, and let x € K(X) be a non-constant rational function on X. If R is a sub-
ring of K, we denote by X(R, x) the set of R-integral K-rational points of X with
respect to the coordinate x:

X(R,x) ={P € X(K) | x(P) € R}.

In particular, if S is a finite set of places of K (including all the infinite places), we con-
sider the set of S-integral points X(Os, x), where Og = Og i is the ring of S-integers
in K.

According to the classical theorem of Siegel [57] (see also [33, Part D] for a mod-
ern exposition), the set X(Os, x) is finite if at least one of the following conditions is
satisfied:

§(X)=1; ©)
x admits at least 3 poles in X(Q). 4)

The theorem of Faltings [24] (see also [33, Part E]) asserts that X (K) is finite if g(X) > 2.
Unfortunately, all known proofs of the theorem of Siegel and Faltings are non-effective,
which means that they do not imply any explicit expression bounding the heights of
integral or rational points.

Starting from the ground-breaking work of A. Baker in 1960th, effective proofs
of Siegel’s theorem were discovered, by Baker and others, for many pairs (X, x), see
[4), 5] and the references therein.

One interesting case is when X = Xr is the modular curve corresponding to a
subgroup I' of I'(1) = SLy(Z), and x = j is the rational function defined by the j-
invariant. This problem has been considered by Bilu[5], Bilu and Parent[9] [10], Sha
[55][54] and many others. In particular, Bilu and Parent solve the split Cartan case
of Serre’s uniformity problem in [10] by consider this problem for Xt

Bilu [4, Section 5] (see also [5] Section 4]) made the following observation.

Proposition 1. Let T' be a congruence subgroup of SLy(Z) of level N having at least 3
cusps. Let K be a number field such that Xt admits a geometrically irreducible model over K
and such that j € K(Xr). Let S be a finite set of places of K containing all the infinite places.
Then there exists an effective constant ¢ = ¢(N, K, S) such that for any P € Xr(QOs, j) we
have h(j(P)) < c.



(Here h(-) is the standard absolute logarithmic height defined on the set Q of
algebraic numbers.)

In other words, if condition @) is satisfied for the couple (Xr,j), then Siegel’s
theorem is effective for this couple.

Sha [55] made the bound in Proposition [I| totally explicit. To state his result,
we introduce some notations. For a congruence subgroup I as above, the number of
cusps on Xt is denoted by ve (I'). For a number field K, let Mk be the set of all places
of K, and S C Mk a finite subset containing all infinite places. We putd = [K : Q]
and s = |S|. Let Ok be the ring of integers of K. We define the following quantity

#(N)

A(N) := /NN |DJ2(N) (log(NN|D|?(N)))3¢(N) 5 | TT logNk 0 (v)

vES
vfoo

as a function of N € INT, where D is the absolute discriminant of K, ¢(N) is Eu-
ler’s totient function, and the norm Ny ,q(v) of a place v, by definition, is equal to
#(Ok/p») when v is finite and p, is its corresponding prime ideal, and is set to be 1
if v is infinite.

Sha [55] proved the following theorem.

Theorem [3.2.1] ([55] Theorem 1.2). Let T be of level N and Xt be the corresponding mod-
ular curve over a number field K with d = [K : Q], and S C Mk be a finite set containing
all infinite places. If veo (I') > 3, then for any P € Xr(Os, j),

h(j(P)) < (CdsM*)*M (log(dM))*M (™A (M),

where C is an absolute effective constant, { is the maximal prime such that there exists v € S
with v|{, or £ = 1if S only contains infinite places, and M is defined as following:

N if N is not a power of any prime;
M = 3N if N is a power of 2;
2N if N is a power of a odd prime.

Here we only notice that Sha’s bound is of the shape ¢(K, S )NIogN where ¢(K, S)
is an effective constant depending only on K and S. Roughly speaking, we have here
exponential type dependence in N.

For certain applications it is useful to have an explicit value of the constant C
from Theorem 3.2.1] In this part we prove the following result.

Theorem The constant C in Theorem can be taken to be 21%.

In the proof, we follow the main lines of Sha’s argument, with some minor mod-
ifications. We calculate explicitly the implicit constants occurring therein, including
the Baker’s inequality, Theorem[1.3.1}

Also Proposition[I|applies in many important cases: see [5, 8] for further details.
In particular, it applies to the modular curve Xo(N) of composite level N. However,
it does not directly apply to the curve Xy(p) of prime level p, because it has only 2
cusps.

Nevertheless, using a covering argument, Bilu [5, Theorem 10] proved that Siegel’s
theorem is effective for Xo(p) as well. Note that the curve Xo(N) has a standard ge-
ometrically irreducible model over Q.



Theorem 1 (Bilu). Let p be a prime number distinct from 2,3,5,7,13. Let K be a number
field and S be a finite set of places of K containing all the infinite places. Then there exists an
effective constant ¢ = c(p, K, S) such that for any P € Xo(p)(Os, j) we have h(j(P)) < c.

The main tool is the classical Chevalley-Weil Principle, or so-called Chevalley-Weil
Theorem in this thesis, used in the following form.

Proposition 2 (Chevalley-Weil Principle). Let X 7> X be a non-constant étale morphism
of projective algebraic curves defined over a number field K. Then there exists a finite set T
of places of K such that the following holds. Let P € X(K) and let P € X(K) be such that
7t(P) = P. Let v be a finite place of the field K(P) ramified in K(P). Then v extends a place
fromT.

We will discuss this theorem in Section[1.5

Bilu found a subgroup T of Ty(p) such that the natural morphism Xz — Xo(p)
is étale and X; has at least three cusps, see Proposition for the details. The
Chevalley-Weil principle now allows one to reduce the problem from Xy(p) to X5,
where Proposition 1] applies.

In [54] Sha gave an explicit version of Theorem |1 We do not reproduce here
Sha’s full statement, which is very involved, and only focus on the dependence on
the level p. One can expect here exponential type dependence in p, but Sha obtains
an upper bound of the form ¢(K, §)®P(¥*1°87), doubly exponential in p.

Sha’s bound is so big because he uses a quantitative version of the Chevalley-
Weil Theorem from [12], see Proposition[I.5.4, which provides extremely high upper
bounds for the quantities involved.

In this thesis, we will prove another version of the Chevalley-Weil Theorem,
Proposition combined with Igusa’s theorem, see [22} Section 8.6], we manage
to improve the result of Sha. We will prove the following theorem.

Theorem[3.3.1 Keep the notations of Theorem([I} Then for P € Xo(p)(Os, j), we have
h(j(P)) < *7198PC(K, 5)"",

where C(K, S) can be effectively determined in terms of K and S. More explicitly, C(K, S)
can be chose as

C(K,S) = 229Sd9sszs€d|D|(log (|D| +1))4 HlogNK/Q(v),
vES
vfoo

where d = [K : Q|, D is the absolute discriminant of K, s = #S, and { is the maximal prime
such that there exists v € Swith v | {.

For a number field K, v € Mg, we define the valuation | - |, on K as following:
for any a € K:

lal, := |o(a)]|, if v is infinite with embedding c;

||y := Ny (v) 0@/ IKiQ] i 4 is finite.

Singular Moduli

Let H be the upper half plane, a point T € H is called a CM-point if End(E;) is
an order in an imaginary quadratic field, where E: is the ellptic curve over C corre-
sponding to 7. Itis well-known that T € H is CM if and only if 7 is algebraic number
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of degree 2. We call j(7) a singular modulus if T € H is CM. From the classical CM-
theory, we know that every singular modulus is an algebraic integer. We call j(7)
singular unit if it is a singular modulus and an algebraic unit.

In [31]], Habegger proved that there is at most finitely many singular units. How-
ever his proof is ineffective. After this, in [7], Bilu, Habegger and Kiihne prove that
there is no singular units. Indeed, their method can be generalized to give a effective
bound of norm of difference between two singular moduli, that is exactly what we
do in this thesis.

On the other hand, Gross and Zagier [27] stated explicit formula for absolute
norm of difference between two singular moduli. With their works, Li [37] also
managed to give a bound of norm of difference between two singular moduli, his
bound is a strictly positive number, which allows him to prove a generalized version
of the main result of Bilu, Habegger and Kiihne [7]. However, it is not clear how his
bound behaves as A — —oco. In this thesis, we are going to prove the following
result:

Theorem Let w, x be two singular moduli of discriminants Ay, A respectively, and
K =Q(a,x).

(1) If Ay # —3, —4and |A| > max{e>12(C(Ay)|Ax]*eM®)3,105 - C(A,)®}, then

A2
log Wi/q(x — )| > 21
(2) If Ay = —4,i.e. & = 1728, and |A| > 105, then

’A’1/2
log |[Nk/q(x —1728)| > 5
(3) If Ay = —3,ie. . = 0,and |A| > 102, then

A2

log [ Nk/q ()] > 55

The notations are explained in Section

The idea of proving Theorem is from [7]. Firstly, we give an effective lower
bound of C.(7,A), see section for the definition and result. Then by using this
bound and the lower bound for the difference of two singular moduli from [6], we
manage to give an upper bound for the height of difference, see Corollary in
section The lower bound for height of difference comes from [7], see section
With these two bounds, by estimating each term in the both sides, we deduce
Theorem 5.1.1] see section[5.5]

Here is a remark, since Bilu, Habegger and Kiihne [7] have given most of results
we need for the case where T = (¢, i.e. Ay = —3 in Theorem (3), we will use
their result directly and focus mainly on the case where T # (s.

The Artin Conductors and Discriminants of Hyperelliptic Curves

Let R be a discrete valuation ring with valuation v, perfect residue field k and fraction
field K, X a proper, flat, regular scheme over R. The Artin conductor of X is defined
as

Art(X) = x(Xi) = x(X¢) = 5(X),
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where x(Xk) and x(Xg) are Euler’s characteristic of Xk and Xy with respect to étale
topology respectively, and §(X) is the Swan conductor associated to ¢-adic represen-
tation Gal(K/K) — Autq, (H},(Xk,Q¢)), ¢ # Char(k), see Section|7.1|for full details.
Artin conductor is quantity to measure degeneracy of X: it is a non-positive integer
and Art(X) = 0if and only if X/R is smooth or g(Xx) = 1 and (Xj)req is smooth.
It is also used to construct the functional equation of L-function associated to X, see
[52] or [13] for details.

For an elliptic curve C, consider its minimal regular model X, we have the Ogg-
Saito formula [48]:

—Art(X) = 0(A(C)),

where v(A(C)) is the valuation of minimal discriminant of C. For a hyperelliptic
curve C, we also the definition of minimal discriminant v(A(C)), see Definition[6.3.2}
However, this formula is not true for all hyperelliptic curves. In [39], Liu proved that
if Char(k) # 2 and the genus g(C) = 2, then

—Art(X) < v(A(C)),

and the equality may fail to hold for some cases. In [61] and [62], Srinivasan showed
that the inequality hold for following cases:

(1) the Weierstrass points of C are K-rational;
(2) Char(k) >2g(C) +1.

Finally, Obus and Srinivasan [47] showed that this inequality holds for any hyperel-
liptic curve when Char(k) # 2.
In this part, we actually prove the inductive process in Obus and Srinivasan’s

paper [47].

Theorem Let R be a discrete valuation ring with fraction field K and perfect residue
field k. Assume that R is strictly henselian and Char(k) # 2. Let Y, Y1 and Y, be the
Weierstrass models over R defined by integral Weierstrass equations in one of the following
cases:

L Y:y*= fi(x)fa(x), Y1:y* = fi(x) and Yz : y* = fo(x),
2. Yy =nfi(x)fa(x), Y1 : y? = mfi(x) and Yy : y* = mtfa(x),

where, in both cases, deg(f;) = deg(f.) > 1fori =1,2,and f,, f, € k[x| are coprime. If
fori=1,2,
—Art(X;) —0(X;) < U(A(Yi)>,

then
—Art(X) — 6(X) < v(A(Y)),

where X, Xy and X; are the minimal desingularizations of Y, Y1 and Y, respectively. More-
over, if the equality holds for Y1 and Y», it also holds for Y.

It is an independent work and the method is different from the one in Obus and
Srinivasan’s paper [47]. . With this result, we can prove the case (1) of Srinivasan’s
result. Although this result is weaker than Obus and Srinivasan’s result in [47], we
still have something interesting in the proof. We are able to calculate some important
quantities of Y in Theoremfrom the ones of Y; and Y5, such as the abelian rank,
the toric rank etc, see Theorem[7.2.2]and Theorem[7.2.3]

Chapter [f]is the first chapter of this part, it gives basic results for hyperelliptic
curves. In first section of Chapter [/, We define the Artin conductors of arithmetic
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varieties from its corresponding ¢-adic representations, and collect some results for
Artin conductors. The rest of Chapter[/]is devoted to prove Theorem[7.2.TJand Corol-
lary we construct étale converings to associate these three hyperelliptic curves
and give relations between corresponding quantities.
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Notations

We will use the N,IN",Z,Q, R and C for the set of non-negative integers, the set
of positive integers, the ring of integers, and the fields of rational, real and complex
numbers, respectively.

For a field K, we denote K* the set of nonzero elements of K, K a fixed algebraic
closure of K, Gk the absolute Galois group of K. In particular, Q is the field of all
algebraic numbers. We also denote Z the ring of all algebraic integers.

For a (commutative) ring R (with identity), and n a positive number, we use
M, (R),GL,(R),SL,(R) for the set of n x n matrices over R, the general linear group
of degree n over R, the special linear group of degree n over R, respectively.

For x € R, we set

|x],[x] — the maximal integer which is smaller than or equal to x;
[x] — the minimal integer which is bigger than or equal to x.

Since Part 3 has a rather different topic than Part 1 and Part 2, we would like to

separate their notations to avoid misunderstanding.

In Part 1 and Part 2, for a number field K, denote:

dx = [K:Q];
Ok = thering of integers of K;
Dk — the absolute discriminant of K;
Mk — the set of all places of K;
My — the set of all Archimedean places of K;
MIO< — the set of all non-Archimedean places of K;
Ck — the class number of K (in order to distinguish the notation of height);
Ky —  the completion of K with respect to a place v;
Nk/o(v) — thenorm of v.
For a finite set S of place of K containing all archimedean places, denote:

Os = thering of S-integers of K;
R(S) — the S-regulator, see Definition

For a finite extension L/ K, denote
dyx = [K:QJ;
Dy,x — therelative discriminant of L/K (which is an ideal of Ok);
Nk — therelative norm map of L/K;

For an order O in K, denote:
I(O) — the group of invertible fractional O-ideals;
Cl(O) = theclass group (or Picard group) of O;

For an element « € Q, denote h(a) its absolute height function, see Defini-

tion[T.1.1]

We will use H for the upper half plane, and H* = H{JQ J{o}. For positive
integers N € IN™ and k > 2 denote:

13



€N — 2mi/N.
Z(s) — the Riemann zeta function;

a b a b\ _ (10 ]
['(N) = {(c d> € SLy(Z) : <c d) = (0 1) modN},

a b a b\ _ (1 x )
Fl(N) = {(C d> ESI_Q(Z). <C d) = (0 1) modN},

a b a b\ _ [(* x )
ro(N) = { (C d> S SLZ(Z) : <C d) =10 *> modN ;;
Gr(t) — the k-th Eisenstein series, see Definition [2.1.10
(t) = 60G4(7);

Qa(t) = 140Ge(7);
A(t) — thediscriminant function, i.e. A(T) = (g2(7))% — 27(g3(7))?;
j(t) — the j-invariant, i.e. j(T) = 1728 (gi((?f.
For T € H, and a lattice A in C,
Ar = (1,1), alattice in C generated by 7 and 1;
pr(z) — the Weierstrass function with respect to A;
o(z;A) — the Weierstrass sigma function with respect to a lattice, see Definition '
{(z;A) — the Weierstrass zeta function, see also Definition '
n(z;A) — the Weierstrass eta function, see also Definition 3.1.1}
In Part 3, we use the following notations:
Z, = UWmZ/("Z
T
7Z = limZ/nZ
G
Gk — Abosolute Galois Group of a field K
When K is a field with discrete valuation:
UK — the discrete valuation K;
Ok — the ring of integer of K;
m — the maximal ideal of Ok;
k(vg) — the residue field of Ok;
Gk — the absolute Galois group.
For a projective curve C over a field K, we set:
n(C) — the number of irreducible components of C;
po(C) — the arithmetic genus of C;
a(C) — theabelian rank of C;
t(C) — the toric rank of C;
u(C) — the unipotent rank of C.
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Part1

Integral Points on Modular Curves
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Chapter 1

Integral Points on Algebraic
Curves

This chapter provides some results we need in Diophantine approximation, the
monograph [14] of Bombieri, Gubler and the doctoral thesis [3] of Bilu will be good
references. The new results in this chapter will be an explicit version of Baker’s
inequality, Theorem and a quantitative Chevalley-Weil Theorem for curves,

Proposition

1.1 Heights on Q

We recall some notations in algebraic number theory. For a number field K, v € Mk,
the norm of v is defined as

#(Ok/p,) if vis finite;
Nisa(o) :={ (O

1 if v is infinite.
The normalized valuation || - ||, on K as following: for any a € K:
[ () |KeRI if v is infinite with embedding ¢;
o NK/Q(U)_Ord”(”‘) if v is finite.

We also define | - |, := || - Hzli/[Kv:QU].

Definition 1.1.1. Let K be a number field, we define the (logarithmic) K-height hx : K —
R> as following: for « € K,

hg(a) = Z log max{1, ||a||»} = Z [Ky : Qy]logmax{1,|al,},

vEMg veEMg

where My is the set of places of K. B o
We define the absolute (logarithmic) height h : Q — R as following: for a € Q,

h(a) = &K:(g] ,

where K is a number field containing «, and h(w) is independent of the choice of K.

We collect the main properties about the height function, the proofs can be found
in [14}, section 1.5].

Proposition 1.1.2. Let h : Q — R be the height function.
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CHAPTER 1. INTEGRAL POINTS ON ALGEBRAIC CURVES

(1) (Galois action) If «, B € Q are conjugate over Q, then h(a) = h(B).

(2) (Height of a quotient) Let K be an number field, and «, p € K with B # 0. Then

Ly logmax{|[allo, [IBl.}-

h(a/B) = K:Q L

If moreover, a, B are algebraic integers, then

LY togmax{|e(a)], [o(B)]}-

ha/P) < [K:Q] .~

(3) (Heights of sums and products) Let f € Z[Xy,-- -, Xy] be a non-zero polynomial,
and &y, -+ , &, € Q. Then

h(f(ar,- - ) < log L(f) +i_i1degxi (F)ha),
where L(f) is the sum of the modulus of the coefficients of f. In particular,
h(ay---a,) <h(ar) +---+h(ay,)
h(a; + -+ +ay) <h(ay) +--- +h(a,) +logn.

(4) (Height of power) For any « € Q" and n € Z, we have

h(a") = |n|h(a).

b

(5) (Height of a linear fraction) Let [Z q

} € GL,(Q), then for any x € Q with x # —%,

we have
ax—+b

cx +d

h( ) =h(x) +C(a,b,c4d),
where C(a,b,c,d) is an effective constant.

(6) (Northcott’s finiteness theorem) For any C > 0, there exist only finitely many alge-
braic number « of degree and height bounded by C.

(7) (Kronecker’s first theorem) For & € Q, then h(a) = 0 ifand only ifa = O or aisa
root of unity.

(8) (Kronecker’s second theorem) For any positive integer d, there exists e(d) > 0 with the
following property: for any « € Q of deg(a) < d, we have h(a) = 0or h(a) > ¢(d).

(9) (Liouwville’s inequality) For a number field K, a subset S C Mg and « € K*, we have

Y loglla|ls > —[K: QJh(a).

veS
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1.2. SIEGEL'S THEORY OF CONVENIENT UNITS

1.2 Siegel’s Theory of Convenient Units

In this section, we recall some useful results on S-units when we use Baker’s method
to calculate integral points on algebraic curves, see [3, section 1.4] for more details.

For a number field K, and a finite subset S C Mg containing all archimedean
places, we putd = [K: Q] and s = |S|, r = s — 1. Let Ok (resp. Os) be the ring of
integers (resp. S-integer) in K.

Definition 1.2.1. If s > 2, we fixa vy € S, set S = S\ {vo} = {v1,---, v}, the
S-requlator R(S) is defined as

R(S) = | det(dy, log |1;]v;)1<ij<rl,

where d,, = [Ky, : Qy,| is the local degree of v; for each i, and {91, - - - , 1, } is a fundamental
system of the S-units.

If s = 1, then there is no fundamental system, and we define R(S) = 1.

If S consists of all archimedean places, then the S-requlator is the requlator R of K.

The value R(S) is a positive number which is independent of the choice ot vy and
the fundamental system of S-units. We also set wk the number of roots of unit in K.

By Kronecker’s second theorem, see (8) of Proposition we can take { > 0
such thath(a) > d% for any a € K\ {0} which is not a root of unity. By [65, Theorem
and the Corollary 2], { can be taken to be

log 2 ifd=1

3
[ = (1082@ ifd=2
g losd ’ ifd>3
loglogd -

LEMMA 1.2.2. Let B1,---,Bm € K be multiplicatively independent elements such that
|Bilo=1foranyi=1,--- ,mandv ¢ S. Then

(1) the group T = {B}" --- B | n1,- - -y € Z} is a free abelian group of rank m, and
m <'s;

(2) forany w = B2 - B € T, we have
max{|b1|, -, |bm|} <2dCh(a),

where C = C(B1,-- -, Bm) is a constant. More precisely, if O € My, (R) (which
is in GLy,(R) in fact) is any submatrix of (dy, 108 |Bjlo,Jo<i<ri<j<m with Q71 =
(aij)1<ij<m, then C can be taken to be max {]a;;|}.

- 1<i,j<m

Proof. Since I’ is torsion free, so I' is free. Consider
[:T — IRS, [ (dvl- log |‘X‘vi)i:0,---,rr
which is a injective map of groups. Indeed, if log|a|,, = 0 forany 0 < i < 7,

then h(x) = J i dy; max{0,log|a|,,} = 0, which means that & is root of unity by
i=0

Kronecker’s first theorem. Since T is free,son = 1.
Let w; = (dy,10g|Bilv;)i=1,-.rs j = 1,---,m. To show that the rank of T is m,
it is sufficient to show that wy, - - - ,w,, are linearly independent over Q. Indeed, if
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m
'):1 kiw; = 0, for some k; € Q. After multiplying an integer, we can assume that
]:

m m .
121 kidy, log |Bils; = 0 for some k; € Z. Let B = Hl 57 As before, we know that
J= =

B=1,s0k; =0forany 1 < j < m.Since [(T) is a lattice in R*, so m <'s.
For (2), let T = (dy, 1og |Bilv; )o<i<ri<j<m € Msxm(R). Then

dy, log |y, by
: =T :
dy, log ||, by,

s0 Q € GL,(R). Let Q7! (a1])1<1]<m, and C = max {|a1]|} Then

1<i,;<
dvtl log ‘Mwl by
ot : =1 :
d'(]tm log |DC |Utm bm

m r
|bi| < C) dy |loglal, | < C) dy|logl|als| =2dCh(a),
] ]
j=1 i=0

forany 1 <i < m,where(0 <t; <--- <t, <r and we used the fact

h(a) = 5 1 dol log als .

veS

Remark. (1) We have
0 <h(a) <max{|b1], -, |bm |}Zh

0 <max{|bi|,- -+, |bm|} < 2dCh(x),
so bounding h(«) and bounding max{|b1|,- - - , |bm|} are equivalent if %‘, h(B;) and
i=1
C given above are bounded.
Proposition 1.2.3 ([23] Proposition 4.3.9). Let s > 2. Then there exists a fundamental
system of S-units 11, -, 1, satisfying the following properties:

(r)?
(1) h(y)---h(p) < 5 drR<5>;

2) (d0)~' <h(y) < mm{ } —C IR(S) for1 <i<r;

2 zr "w—1
(3) ify = 517 . "€ O3 with by, - -+ ,b, € Z and ¢ a root of unity, then

h(7) < max{bal, -+ b} -min{3, o7} rSER(S),

2
max{|b1],---,|br]} < dé’g;!)zh(ﬂ)-
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1.2. SIEGEL'S THEORY OF CONVENIENT UNITS

Proof. Fixavg € S,setS" = S\ {vo} = {v1, -, v}, and define
1205 = R, 1 = (dy, log 1[0, )i=1,... -

Then the image of [ is a lattice A of rank r with determinant R(S). By [17, Chapter V
4, Lemma 8], [17, Chapter VIII 1.2 Lemma 1] and [17, Chapter VIII 4.3, Theorem V],
or [23, Theorem 4.3.1] and [23] Theorem 4.3.3], for function F(x) = |x1| + -+ + |x/],
x € R", there exists a basis {wy, - - - ,w,} C A such that

F(w;j) < max{l,é})\j, j=1,---,1,

R(S)
VOl(B]:[l (0))

where Ay, - -+, A, are the successive minima of F with respect to A, and Br1(0) =
{x € R"| F(x) < 1}, here we use the fact Vol(Br1(0)) = %.

Let w; = (dy, log |1i]v,)i=1,... » for some y7; € O¢,j=1,---,r. Then {5y, - - - , 7} is
a fundamental system of the S-units, and

Ao Ay <27 = rIR(S),

ie.

! N2
[T ogln) < "R (s).
j=1 i=

Notice that h(1;) = 5 Z dy|log |7j]o| and

r 7
dvo‘ log ‘77]'|Uo‘ = ’ Zdvi log ‘77]'|Ui‘ < Zdvi| log ’77]"271'|1
i=1 i=1

then .
Zd ’ log |17]|771
i=1

r

2
[Thn) < ;1‘[ zdv,rlog\mm_zi ToR(S).

j=1 j=1 i=1

For (2), by [17, Chapter VIII 1.2 Lemma 1], there exist r linearly independent points
zj = (dy;log|eilv,)i=1,.r € R, ej € O, j=1,---,r,such that

Then as before, we have

1 1

which implies that /\j >1/7. Hence, forany 1 <i <,
5 S

s!
F(w;) < —A; < IR(S) < —=7""'R(S).
(wl) — 24" — 2dAq - “AiqAigq - )\yr (S) - ng (S)

qUl

h(n;) <
On the other hand, since h(7;) > dgf then forany 1 <1 <,

() < (a0~ A R(s) = I
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Combining these two bounds, we have (2).
It remains to prove (3). By (3) of Proposition[1.1.2)

< ) |bifh(ns)
i—1
< max{|by|, -, |br|} Zh(ﬂi>

< max{|bi|,- -, |bs|} - mm{ —CrflR(S).

2’ Zr 21 }

For the second inequality, let QO = (Qj)1<ij<r := (dy,; 10g|7j]v;)0<ij<r which is in-
det(Q,

vertible, and let Q! = (a;j)1<; j<,, where a;; = %%”)) and Q) is the (i, j)-th entry of

the adjoint of (). By Hadamard’s inequality,

| det(Q) \<H ZQ <H Z\qu\

p=1 p=1 g=1

p#i q#] p#i q#j

Since
Z ’qu| = Zdvq| log ’Wp’vq’ < 2 dvq|log ’UP’Uq’
q#] q#]
SO
B |det(Qz’-‘j)\
Idet( |
H ( Z do, | 10g |11p]o, )
P— q=1
( 21 dy,| 10g |1i|0,|) R(S)
q:

(r?2/2r-1R(S)
= ORG)

| 2
- (27;)1 e

|ajj]

By Lemma([.2.2]

(r)?
- < . < Jris
max by, -+, [bn|} < 2d max {la;| }h(y) < dg 575 h(y).

Remark. (1) In [23| Proposition 4.3.9], by [43| Theorem 3], we have

() < 2967 =100 log" (@)R(S)

for1 <i < rwhens >3, wherelog” (d) = max{1,log(d)}.
Proposition 1.2.4. We have
0.1 < R(S) < CKRKHIOgNK/Q(U)r

veES
vfoo
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o= (2)" (2) VB T

veS
vfco

where Ck is the class number of K, ry is the number of complex embeddings of K, and D is
the absolute discriminant of K.

Proof. For the first inequality see [16, Lemma 3]; one may remark that the lower
bound R(S) > 0.1 follows from Friedman’s famous lower bound [26, Theorem B]
for the usual regulator Rg. The second one follows from Siegel’s estimate [58], or see
[44, Theorem 1]

2\" (elog|D|\*'
cere< 5 (2) (5E0)) VipiTogNiclo)

veS
vfco

here, we replace (1/d —1)%~! with 1 whend = 1. O
We will use the following lemma.
LEMMA 1.2.5. wy < 2d%. Moreover, wy < d? if {y = e*™/N € K for some N > 6.

Proof. 1t’s sufficient to show that ¢(n) > /n for n # 2,6.
For k > 1, set fi(x) := x% — =1 — xK/2, g1 (x) := x* — x*=1 — \/2x*/2. Then

fi(x) = 202 =12 1) — 5 1/2) > x 1 - x1/2 > 0,
if x > 3. Similarly, gx(x) > 0if x > 50rk > 2,x > 3.

Let n = 2" []p®, where p runs through all odd prime numbers. If m = 0, then
p

o) = [T(p —p») > ] p/2 = V.

ep>1 ep>1

It is similar for the case where m > 2.
If m = 1, then there exists a prime g such thatg > 5,¢; > 1 orq = 3,¢e; > 2.

Hence
o(n) = [T(pr —po~") = Vg2 TT p#/? = V.
ep=1 P71
ep>1

O]

Proposition 1.2.6 ([4] Proposition 1.4.6). For any « € K there exists 1 € Uk such that
B = an~! satisfies

1 slrl 4
- _ | < 4 .
di:zldvz|log’13|vz‘ — 2r71d€ R(S)

Proof. Let 11, -, 17, be a fundamental system of S-units in Proposition Denote
T = (dy, log ’ﬂj’vi)lﬁi,jgrr

al dyl lOg |IX|7;1
a= — T*l .

ai’ dvr log ’0(|Ur
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Let b; be the nearest integer of 2;, 1 < i < r,and 57 = 17 -n¥. Then by Proposi-
tlon_(Z) B = an~! satisfies

r
2 Y do | 10g|Bla| = & Y doTog al, ~ log 7l
i=1
1 r r
szv |a; — bi||10g|’7i|vj|
i=1j=1
< 57 2. 2 oyl 1og7ilo|

2
<h(m)+---+h(n)
7IR(S).

2r 1d

1.3 Baker’s Inequality

In this section, we state Baker’s inequality in the following explicit form.

Theorem 1.3.1 (Baker’s inequality). Let n be a positive integer bigger than 2, K be a num-
ber field of degree d. Let oy, - - - , a0, € K*, and by, - - - , b, € Z be such that ucll’l . -az" # 1.
We define A1, - - - , An, Bo by
log A; := max{h(x;),1/d},1 <j<mn;
By := max{3,|b1], - -, |bul|}-

Then for any v € Mg, we have

|¢x?1 ooabr — 1], > exp{—Ylog A; - - -log A, log By}, (1.1)
where

210n10 . 2n2 g3t pd i1y < oo (1.2)

v {28n+29dn+2 log(ed) lfU|OO
The proof of this theorem is based on [45, Corollary 2.3] and [67, Main Theo-
rem,page 190-191].
For the convenience of readers, we state their results here.

Theorem 1.3.2 ([45], Corollary 2.3). Let n € INT, K be a number field of degree d,
ay, -+, 0y € K¥,and by, - - - , by, € Z such that A := byloga; + - - - + by loga, # 0. We
define A3,--- , A}, Bby

' | log a|
log A7 = max{h(;), y 1,

B = max{3, og A, <j<mn}.
Then
log | A| > ~C(n, )"+ log(ed) log A; -~ log A log B,
where C(n, 3¢) = min{L (len)*30" 3135, 26n+20}
7= {1 ifag, - ,an €R

2 otherwise
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1.3. BAKER'S INEQUALITY

Theorem 1.3.3 ([67] consequence of Main Theorem). Let n € INT, K be a number field
of degree d, q,--- , 0y, € K*, and by,--- ,b, € Z such that (xll’l - -oc,li” # 1. We define
A]/' o /AHIB by

log A; = max{h(oc]-), 1<j<n,

1
16ed}'
By = max{3, [bj| : 1 < j < n}.

Then for each prime number p, and a prime ideal p C Q(ay, - - - , &y ) over p, we have

ord, (zx?l --aln —1) < Co(n,d,p)log Ay - - -log A, log By,

ple

where Co(n,d,p) = (16ed)2"*Vy5/210g(2nd) log(2d) - egW,

ramification index and the residue degree of p respectively.

and ey, f, are the

Now we prove Theorem the idea comes from [66, subsection 9.4.4].
Proof. If v|p, for some prime p;, then from Theorem we have

jabt -l — 1), > exp{—Ci(n,d,p)log A; - - - log A, log By},

where C;(n,d,p) = (fylog po)Co(n,d,p) = (16ed) 2(n+1)p5/2 log(2nd)log(2d) - e
We have

P fo logpy

Ci(n,d,p) < (16e)2 D d2+25/2 . opd . 2d . " . p?
S 210n+10 . eZn+2d3n+4pv,

since n’/2 < 4",
If v|oo, set log z = log |z| 4+ iarg z, with —7r < argz < 7. For |z| < 1, we have

00 n—1
log(1 + z) Z
n=1

and if |z| < 1/2, we have
5 1
T+ lz|+ [z +- = <2,
1—|z|
[log(1+2)| < |z[(1 4 [z +[z]* +---) < 2[z]. (1.3)

To prove the corollary, without loss of generality, we may assume that b; # 0 for
1<i<mn,and A; <--- SAn,andsetzx:ocll’] ---ucz” —1.
(a) If By < 2nd, with Liouville’s inequality, we have

n
h(a) <log2-+ Y |bi|h(a;
i=1
log |a| > —dh(x) > —d(log2 + nBylog A,),

that is
l«| > exp{—(dlog2 +2n*d*log A,)}.

Since1 < dlog A; for1 <i <n,and
log2 +2n? < 28"t og(ed)

dlog2 + 2n’d? log A, < (log2+ nz)d2 log A, < YlogA; - - -log A, log By.
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Hence we have inequality

(b) If By > 2nd, and |a| > 1/2, since log2 < 28729 log(ed), it is easy to deduce
inequality [1.1| from this as above.

(c) If By > 2nd, and |a| < 1/2, this is main part of the proof. By (1.3 we have

1 1
| > 5 |log(1+a)| = Z|log(ay' -~ a))| =

where A = bplog(—1) + bylogay + - -+ + by loga,, by = 2k for some integer k.
Hence, it is sufficient to bound |A|.
To use Theorem for1l <i<n, we set

log A} = V72 +1-log A;,
z

d,

B = B3

log Ay =

We will show that for 1 < i < n, we have

log A7 > max{h(«;), |IO§ 2| +
log Ay > max{h(—l),mg;_m} = g,
b:|log | A%

B Zmax{B,M:OSjg n}t.

log A,

Indeed, notice that for 1 < i < n, we have
|logo¢i|2 <+ (log |ai|)?,

10%)“1“ <h(a;) <logA; <logAj,

SO
lloga;| < (72 +d*(log A)*)V? < /72 +1-dlog A;.

For log Aj, it’s obvious.
For B, we bound by first. Since |a| < 1/2,s0 |A| < 1and
m|bg| < |A|+ |bilogay + - - - + by log ay|

<1+ nByv 2+ 1dlog A,
< 27mtndBglog Ay,

for the final one, we use the fact that V712 +1 < w+1,1 < (71 — 1)ndBj log Ay.
Obviously, B > 3, and since By > 2nd > 2n,so0 B = BS > 2nBy,

B=B;>ed,

|bo|log A5 7T| by | 27
log A}, Vi24+1-dlogA, ~ V241
\bl\logAl* _ |bl’10gA1
log A% log Ay,

nBy < 2nBy < B,

§|bi|§Bo<B
forl <i<mn.
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By applying Theorem we have
log |A| > —C(n+ 1, 3)d" ™ log(ed) log A} log A} - - -log A’ log B
= 271(m? 4+ 1)"2C(n 41, )d" 2 log(ed) - log Ay - - - log A, log By,
1
la| > 5 |A] > exp{—(27(m® +1)"2C(n+1, ) +log2)d"*1log(ed) -log A; - - - log A, log By}
Hence it’s sufficient to show that

271(72 +1)"2C(n 41, 2) 4+ log2 < 22"+3C(n 41, ) < 287+%,

Indeed,
4 8
22+ D)2 (2 (—)" — 1)C(n+ 1, 3¢) > 2(* + NV (— — 71)C(2,
( )((712+1) )C( ) > 2( )(712+1 )C(2, %)
> 11.28 - C(2, »)
> log?2,

since C(2, ») > min{22%¢ - 30°,232} > log2, and we have

C(n + 1, %) — min{ % (%en)%30n+3n35/ 26n+20}

< 26n+20'

The following lemma will be used when we apply Theoremm

LEMMA 1.3.4 ([49] Lemma 2.2). Letb > 0,h > 1,a > (e?/h)", and let x € RY such
that
x —a(logx)" —b <0,

then x < 2"(bY" + al/"log(h"a))". In particular, if h = 1, then x < 2(b + aloga).

1.4 Baker’s Method on Algebraic Curves

One of the method to use Baker’s inequality to solve Diopantine equations is to use
S-unit equations. We will not go to it in this thesis, for more details about it, see [2]
and [23].

In this section, we state Yu.Bilu’s results and idea to calculate integral points on
algebraic curves, see [5] and [4].

Definition 1.4.1. Let X be a geometrically integral projective curves over a field K, and
Y. C X(K) a finite subset. A function z € K(X) is a Z-unit (over K) if Supp(z) C X. We
denote the group of Z-units (over K) by Uy .

Remark. 1. Fora function z € K(X) on an integral algebraic variety X, the support of
z is defined as

Supp(z) = {}
LEMMA 1.4.2. Keep the notations in Definition then

Usx ~ K" & Z°,
where p = p(X, K) satisfies 0 < p(X, K) < #XL.
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Proof. LetX = {p1, -+ ,pn}, U= X\Z, and

H .= {illa,[r)l] S éZ[Pl] ‘ illal‘ = 0} - DiVO(X).
i= i=1 =

1

Then H is a free abelian group of rank n — 1, and we have
div: Ugx — H,
with kernel K™ and free image of rank p = p(Z,K) < n — 1. Hence
Us g ~ K" & ZF.
O

Remark. (1) Forany field extension L/ K, we have that Us,x C Uy, and 0 < p(%,K) <
p(%,L) < #X. Hence p(%,L) = p(%, K) for some finite extension L/K. In this case,
if L* and uy,--- ,u, € K(X) generates Us,1, where p = p(X,L), then K" and
u, -+, up € K(X) generates Uy z. In particular, if o(X, K) = #X, then p(%,K) =
p(%,K).

For a non-constant function x € K(X), we denote ¥, C X(K) the set of support
of x. Using the Baker’s inequality, Yu.Bilu [4] proved the following result:

Theorem 1.4.3 ([4], Theorem 1B). Let X be an algebraic curve defined over a number field

K, x € K(C) non-constant such that p(Xx, K) > 2, then for any finite set S of places of K,
containing all infinity places, we have

h(x(P)) < c(X,x,K,S),
forany P € X(Og, x), where c is effective.

We give the idea of the proof, which is useful when we want to calculate c in
practice, see [5, section 3]: we can assume that X, C X(K) and p(X,,K) > 2. Set
d=[K:Q],s=|S|andr =s—1.

(1) Forany P € X(Og, x), we have
1
h(x(P)) = 5 ) dolog™ [x(P)[o < slog™ |x(P)l.,
veS
for some v € S, so it’s sufficient to bound |x(P)|, or h(x(P)) for some v € S.

(2) Forv € S, and Q € Supp(x)«, take a neighborhood V, of Q, and a large
Ay > 0, such that
{PeX(K):|x(P)|, > A}t C | Vo
QeXy
We can take Vo, = {P € X(K) : dyg(P) < By}, where d, ¢ is a v-adic "dis-
tance" around Q, e.g. do(P) = (x(P))~'/%¢ and B, = A0

It is sufficient to bound h(x(P)) for P € Vg, for fixed Q.

(3) There exists a Xx—unit z = zg, such that z(Q) = v # 0. Such z exists, since
p(Xx —Q,K) > p(Xx,K) —1 > 1. We should bound h(7), and suppose that
h(y) < ¢1. Moreover, since h(z(-)) and h(x(-)) are "quasi-equivalence", we
will have

h(x(-)) <ah(z(-)) +b

for some positive constant a, b.
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(4) Consider u = 7~ 'z(P), there exists a suitable py € K such that u = pgy with
n € Us. We may apply Proposition or calculate yo explicitly to bound
h(po), and suppose that h(y) < co.

(5) Apply Proposition to take a fundamental system 771, - - - , 7, of S-units, and

up to a root of unity, we set 7 = 17?1 e 1755:11. We should get a upper bound of
| — 1| in the following form:

oy -+ =1 < e,
where B = max{|b|,- -, |bs-1]};

(6) Apply Baker’s inequality to get a upper bound of B, and apply Proposition
to bound h(7), i.e.

(7) Bound h(z(P)) with the inequality
h(z(P)) <h(y) +h(po) +h(y).
and bound h(x(P)) with
h(x(P)) < ah(z(P)) + b.

Remark. (1) Before this calculating process, we should calculate p(Z, K) first. In some
cases, we have p(Xy, K) = |Zx| — 1, for example, when X is a modular curve and x is
the j-invariant. If so, we only need that x has at least 3 poles. Otherwise, we may use
the Chevalley-Weil Theorem in the next section.

(2) Which method to generate such z in (3) in the process depends on what kind of infor-
mation we have. For example, in [4], Bilu used the theory of Puiseux series, in [55]],
Sha used Siegel functions.

1.5 The Chevalley-Weil Theorem

The main reference of this section is [14, section 10.3]. There is an analogous state-
ments for S-integral points without the completeness hypothesis for varieties.

1.5.1 Local Chevalley-Weil Theorem

Recall some notations: for a finite field extension L/K with discrete valuations, we
denote Dy /k the discriminant of Op / Ok, i.e.

Dy/k := {det(Try/k(a;bj))|ai, -+ ,an, by, by € OL},

where Ok, Oy are the ring of integers of K and L respectively and n = [L : K].
We also denote Ok, vk and K for the ring of integer, the discrete valuation and the
completion of K with respect to the discrete valuation, respectively.

Proposition 1.5.1 ([14], Proposition 10.3.3). Let K be a field with a non-archimedean

absolute value | - | on the algebraic closure K > K. Let X = X be a finite unramified
morphism of varieties defined over K. If X complete, then there is & € Ok \ {0} such that

VS D@/K whenever P € X(K) and P := 71(P) € X(K), where K(P) and K(P) are the

residue fields of P and P respectively. In other words, UK(DK/(?)/K) < ok (w).
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1.5.2 Global Chevalley-Weil Theorem

Recall some notations: for a finite field extension L/K of number fields, we denote
Dy /k the discriminant of L/ K, and 91 /x the normalized logarithmic relative discrim-
inant of L/K, i.e.
ok = log Nk/@(Dr/k)
[L:Q]

To fully understand Global Chevalley-Weil principle, we demonstrate the fol-
lowing lemma.

LEMMA 1.5.2. Let L/ K be a finite extension of number fields and T be a finite set of prime
numbers such that every ramified place is above a prime from T. Then

[L:Q]2
|Nkso(Dr/k)| < (H P) ,

peT
where Dy /g is the discriminant of L over K.

Proof. The “Dedekind Discriminant Formula” [14, Theorem B.2.12] implies that

Vp(DL/K)Zzll(em/p(“r%)—l)fm/p [K: Q] Zleiﬁ/pf‘ﬁ/t? [L:K][L:Q],
Yo Yo

where p is a prime of K ramified in L, the sum is over the primes of L above p, and
0 < 6y < vplepsy) < [K : Qlegyp. For every such p we have |Nx/qp| = p/v/7,
where p is the prime number below p. Hence

[L:K][L:Q] [L:K][L:Q] [L:Q]?
|Niso(Dryk)| < (H PZ"”fP/’”> < <H P[K:Q}> = (H P) :

peT peT peT
]

Theorem 1.5.3 ([14], Theorem 10.3.11). Let X > X be a finite unramified morphism of
varieties defined over a number field K. If X is complete, then there exists a finite extension
L/K such that P € X(L) for any P € X(K) and P := n(P) € X(K).

Remark. (1) Under the hypothesis of the Proposition, the following statements are equiv-
alent:

(i) there exists a finite field extension L/K such that P € X(L) for any P € X(K)
and P = rt(P) € X(K);
(i) there exi?‘s an o € Ok \ {0} such that & € Dy p) i for any P € X(K) and
P = n(P) € X(K);
(iii) there exist a finite set T of places of K such that K(P)/K is unramified outside T
forany P € X(K) and P = 7(P) € X(K);
(iv) there exfts constant C > 0 such that oy ), < C for any P € X(K) and
P = n(P) € X(K).
Hence the global Chevalley-Weil Theorem may be demonstrated in these four forms,

and the quantitative Chevalley-Weil Theorem in general means to find T in (iii) or C
in (iv).
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Proof. Obviously, (i) implies (ii).
Since a place of K is ramified over L if and only if the corresponding prime
divides Dy /k, and Dy /x| (), so (ii) implies (iii).
If (iii) holds, let S be the restriction of T on Q. Then by Lemma(1.5.2
(B /K < [K(P) : Q] Y logp <n[K:Q])_ logp,
peSs peSs
where [K(P) : K] < n = ma}z({dimk(x) Ox (Xy)} is bounded. Hence (iii) im-
xe X
plies (iv).
By the transitivity rule of discriminant,

K(P):K K(P):Qld, 5 K(P):K .
DK(ﬁ)/Q = NK/Q(DK(I;)/K)'Dk/(Q) e KU’)/QDI[(/(Q) | < (e[KQ]CDK/Q)n,

where 7 is defined as above. Then by the Hermite’s dischiminant theorem, see
[14, Theorem B.2.14], there are finite possibilities of K(P). Hence (iv) implies
(1). O

1.5.3 The first version of quantitative Chevalley-Weil Theorem for curves

One version of quatitative Chevalley-Weil Theorem for curves is given in [12]].

Proposition 1.5.4 ([12], Theorem 1.3). Let C 5 C be a non-constant, unramified mor-
phism of geometrically integral projective curves defined over a number field K. Let x €

K(C) C K(C) be a non-constant function on C,and f(X,Y), f(X,Y) € K[X, Y] such that

K(C) ~K(x)[Y]/(f(x,Y))and K(C) ~ K(x)[Y]/(f(x,Y)). We put

i (ihy (f) 4 mhy(f)).
Then for any P € Y(K) and P := 71(P) € X(K), we have

With quantitative Riemann’s existence theorem, see [11], we can calculate f(X,Y),
f(X,Y) and get a bound in terms of invariants of C and C.

1.5.4 The second version of quantitative Chevalley-Weil Theorem for curves

Another version of quantitative Chevalley-Weil Theorem for curves is given alge-
braically. To do this, we need a result from [42].

Proposition 1.5.5 ([42] Corollary 4.10). Let K be a discrete valuation field with ring of
integers Ok, and f : X — Y be a finite morphism of smooth, connected projective curves
over K. Assume that g(Y) > 1, and that X admits a smooth projective model X. Then Y
admits a smooth projective model ), and f extends to a finite morphism X — ).
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The following proposition is an explicit form of Chevalley-Weil Principle under
some conditions.

Proposition 1.5.6. Let C = C be a non-constant, unramified morphism of smooth, con-
nected projective curves over a number field K with ¢(C) > 1, and let p C Ok be a non-zero
prime with residue field k(p). Suppose that

(1) C admits a smooth projective model at p;
(2) [K(C) : K(C)] < Char(k(p)) or K(C)/K(C) is Galois of degree prime to Char(k(p)).

Then for every point P € C(K) and P € '(P), we have that p is unramified in the residue
field K(P) of P.

Proof. We should notice that 77 is finite and étale.

Suppose that & is the smooth model of C over Spec(Ok,). Since f is finite, and
g(C) > 1, then by Proposition C admits a smooth model Y and 7 is extended
to a finite morphism & — ). We still denote the extended morphism by 7.

We endow the closure {P} of {P} in ) with structure of reduced closed sub-
scheme. It is a section of ) over Spec(Ok,), that is because P € C(K), and {P}
is finite, birational over Spec(Ok,). Consider X xy {P}. It is finite over {P} ~
Spec(Ok), hence affine, denoted by Spec(A). Its underlying space is 77 ({P}). If
X — ) is étale, then after the base change {P} — ), Spec(A) — SpeC(OKp) is also

étale. Since Ok, is regular, so A is regular too. Suppose that A = EB A; such that A;

is connected for each i. The fact that A is regular and finite over (’) Kp 1mp11es that A;
is normal and finite over Ok, for each i. In particular, the affine ring corresponding
to {P} is the integral closure of Ok, in K (P) Any closed point x on {P} is also a
closed point on Spec(A). We know that {P} and Spec(A) have the same local rings
at x, so {P} — {P} is étale at x. Hence p is unramified in K(P).

It remains to show that X — ) is étale. Let Z be the set of points in X" at
which f is not étale, then Z is closed in X. If Z # @, since Z # X, by Zariski-
Nagata purity theorem in [29, Théorém de pureté 3.1], it is purely of codimension
1. Any irreducible component W of Z is vertical, because C 75 C is étale. Let 7
be the generic point of W, then { = 7(57) € Y is also a generic point in &; from
the fact that 7r is dominant and finite, where X; is the special fiber of X'. Consider
7'[‘,[; : Oy¢ — Oy . We claim that the maximal ideals of Oy and Oy, are pOy s and
pOy,, respectively. Indeed, we have that Oy, , = Ox,,;/pOx,, and the special fiber
X; is smooth, so Oy, , is integral with only one prime ideal. Hence Oy, , is a field,
and pOy , is the maximal ideal of Oy . It is similar for Oys. On the other hand,
[k(17) : k(&)] < [K(C) : K(C)] and [k(7) : k(&)]|[K(C) : K(C)] if C 5 C is Galois. By
the assumption (2), the residue degree [k(7) : k()] < Char(k(p)) or [k(y) : k()]
prime to Char(k(p)), so k(1) /k(¢) is separable. Hence Oy — Oy, is unramified.
It is also flat since it is injective and Oy ¢ is a Dedekind domain, hence also étale.
Contradiction. O

Corollary 1.5.7. Let C 5 C be a non-constant, unramified morphism of smooth, connected
projective curves over a number field K with g(C) > 1. We set

T = {p € Spec(Ox) | Char(k(p)) < [K(C) : K(C)] or C has bad reduction at p}.

Then K(P) /K is unramified outside T for any P =€ C(K) and P € 7w~ 1(P).
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Chapter 2

Automorphic Forms and Modular
Curves

This chapter defines the modular curves analytically and algebraically. Another im-
portant object of this Chapter is Corollary[2.5.3]in Section[2.5] This corollary implies
that the automorphic forms over a number field are exactly the fractional functions
on the modular curves as algebraic curves, which provides a theoretic support for
studying modular units to bound integral points on modular curves. The main ref-
erences are [22]] and [56]].

2.1 Automorphic Forms

In this section, we state basic properties of modular forms, see [22, Chapter 1] for
full details.

2.1.1 Congruence subgroups

Proposition 2.1.1. The group SLy(Z) is generated by <(1) 1) and <(1) _01>

Definition 2.1.2. Let N € INT, the principal congruence subgroup of level N is defined as

T(N) := {(Z Z) € SLy(Z) : (”Cl Z) = (é 2) modN}.

It is a normal subgroup of SLy(Z).
A subgroup T of SLy(Z) is a congruence subgroup of level N if I'(N) C T. In particular,
we have the following congruence subgroups of level N:

T1(N) := {(i Z) €Sy (Z) : <ch Z) = <é 1‘) modN},
To(N) == {(Z Z) €SLy(Z) : <Z Z) <; I) rnodN}.

LEMMA 2.1.3. The canonical morphism SLy(Z) — SL(Z/NZ) is surjective. Conse-
quently, it induces a bijection

{congurence subgroups of SL,(Z) of level N'} <> {subgroups of SLo(Z/NZ)}
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There is a left SL,(Z)-action on H defined as: for any v = <Z Z) € SLy(2),

TeH,
at+b
v(T) =

Toet+d
Indeed, this action can be extended on H* = H U Q U {oo} and induces the action

of PSL(Z) = S{Li(? on H*.

2.1.2 Automorphic forms and modular forms

Definition 2.1.4. Let M (IH) be the field of meromorphic functions on H, k € Z. Then the
weight-k action SLy(Z) on M(IH) is a right action defined as

Flrl(e) = i 1) M0, £ € M)y = (1 ]) eLa(@),

where j(y,T) = ¢T +d.

Definition 2.1.5. Let I' C SL,(Z) be a congruence subgroup, k € Z, a meromorphic
function f € M(IH) is weakly modular of weight k with respect to vy if

fIle= £,
forany vy € T.

Remark. (1) If f is weakly modular of weight k with respect to a congruence subgroup
T, then f(t+h) = f(7) for some h € N*.

(2) If f is weakly modular of weight k with respect to T', then for any « € SLy(Z), the
function f|a]y is weakly modular of weight k with respect to a 1T a.

Definition 2.1.6. Let T C SLy(Z) be a congruence subgroup, k € N, and f be a weakly
modular function of weight k. If h is the minimal positive integer such that <(1) ?) el
then we can write

[ee]

fO)=glan) = 3 andiy, qn=e"""",
n=—N
and call this the Fourier qu-expansion of f at infinity. The coefficients a, are called the
Fourier coefficients of f with respect toI'. If a_n # 0, we call —N the order of f at infinity,
and denote it by v (f). For any T € H, we denote the order of f at T by v.(f).
We shall say that f is meromorphic (resp. holomorphic) at infinity (or at ico) if g is
meromorphic (resp. holomorophic) at 0.

Remark. (1) In fact, to show that f(T) is meromorphic or holomorophic at oo, it is suf-
1 h

ficient to take any positive integer h such that <O 1

) € I, and consider the qj-

expansion of f(T).

Definition 2.1.7. Let T C SL,(Z) be a congruence subgroup, we have a T-action on H*
defined as before. A T-equivalence class of points in Q |J{oo} is called a cusp of T.

Remark. (1) IfT = SLy(Z), there is only one cusp. In general, for a congruence sub-
group I C SLy(Z),
#{cusps of T'} < [SLp(Z) : T].

34



2.1. AUTOMORPHIC FORMS

Proof. We have {cusps of I'} = {T'y(c0) | v € SLp(Z)}, which implies a sur-
jection
r\5Z — {cusps of T'}.

Hence #{cusps of T'} < [SL»(Z) : T]. O

Definition 2.1.8. Let I' C SL,(Z) be a congruence subgroup, k € N*t. A function f :
H — C is an automorphic (resp. modular) form of weight k with respect to I if

(a) f is meromorphic (resp. holomorphic);

(b) f is weakly mordular of weight k with respect to I';

(c) fla] is meromorphic (resp. holomorphic) at ico for any « € SLy(Z).
If f is a modular form and in addition

(d) ag = 0 in the Fourier expansion of f |l for any v € SLy(Z),

then fis called a cusp form of weight k with respect to T
The set of automorphic (resp. modular, resp. cusp) forms of weight k with respect to I’ is
a C-vector space, denoted by Ay(T) (resp. My (T'), resp. Sg(T)).

Remark. (1) If [a(co)]isa cusp of T, w € SLy(Z), we say a weakly modular function f
is meromorphic (resp. holomorphic) at [a(o0)] if f|]x is meromorphic (resp. holomor-
phic) at ico, it is independent of the choice of «. Hence the condition (c) becomes that
f is meromorphic (resp. holomorphic) at all cusps of T'.

IfSLo(Z) = UTw;j is a left coset decomposition, then condition (c) holds if and only if
flaj]iis meror]norphic (resp. holomorphic) at ico for each j.
(2) IfT" C T are congruence subgroups, then
A (T) = {f € A(T") | f is T-invariant},
My (T) = {f € M(T") | f is T-invariant},
Sk(T) = {f € S(I") | f is T-invariant}.
(3) Ifkisodd and —1 € T, then Ax(T) = 0.

Proposition 2.1.9. Let T' C SL,(Z) be a congruence subgroup of level N, gy = e*™ for
T € H, and f be a weakly modular function of weight k with respect to I'. Suppose that f
is holomorphic on H and at ico, and there exists some constants C and r such that for any
n>0,

la,| < Cn',

where a, is the n-th coefficients of the Fourier qy-expansion of f. Then f € My(T).
Proof. Let T = x + iy, then
f(T) < ’a0’ +C Z nrefZTmy/N.
n=1

Forr > 1, set g(t) = t'e 2™/N t > 0, then ¢/(t) = (r — 2mty/N)t'~le 2"/N

Hence g(t) is increasing when t € [0, %], and is decreasing when t € [%, o). For

N
any n > 2r7y + 1, we have
nre—Znny/N < /n tre—Znty/th
— nil 7
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(e 0]

Y e < [ g
m—1

where m —1 = [ -| the minimal integer which is bigger than 7. N . There exists

Co > 0 such that

2ty |7

F(T) < Co+C /0 " o(r)dt

/ / 27'(ty/ th

:/ Ye —2nt/Nd(y)

=y (r+1)/ treme‘/th

N r+1,,—(r+1) /Oo r —t
(5" , te

_ Cly—(H—l)’

We have

since [;° t"e~"dt is the value of Gamma function I'(z) for z = r. Hence

1f ()] < Co+ Cry HD,

when we replace CC; by C;.
For any a € SL,(Z), to show that f[a];(7) is holomorphic at ico, it is sufficient to
show that 1im0|qu[¢x]k(T)| = 0. Indeed,
IN—

Im(lx(T) = ﬁ,

CT—I—dH'l .
|ﬂ()M<C+Q’y+JSQ@wH,

flalk(D)] = (et +d)~*fa(1))] < Ca(x)y",

where C,(x) and C3(x) are positive constants only depending on x. Hence

: < T rfk —2nny/N __ 27rny/N: ]
S lan f [a]k(T)| < Jim Cs(x)y"e = Ga(x )yLITOOy 0

2.1.3 Eisenstein series and j-invariant

We will define some important modular forms and cusp forms.
Definition 2.1.10. Let k > 2 be an integer. We define the Eisenstein series of weight k to be
1
Gr(T) := ) ————, TEH.
a2 ooy (T+4)
We set g2(T) = 60G4(T),g3(T) = 140G4(T), and define the discriminant function and
j-invariant (or modular invariant) as

A7) = (82(7))* = 27(g3(7) )%,

T 3 T 3
i(t) = 1728gz((T)) - (ui'é))) ,

respectively.

36



2.2. MODULAR CURVES AS MODULI SPACES

Remark. (1) Obviously, if k is odd, then Gi(t) = 0.
We have the following classical results.

Proposition 2.1.11. Let k > 2 be an integer, g = e*™*. Then the following statements
hold:

(1) The function Gy (T) absolutely converges and converges uniformly on compact subsets
of H. In particular, Gy is holomorphic on H.

(2) We have
Gr € Mi(SL2(2)),
A e S12(SL2(Z)),
j € Ao(SLa(2)).
Moreover, Ay(SL2(Z)) = C(j).
(3) We have the Fourier expansions:
_ (Zﬂi)k 9] . (27‘[i)k o 7,lkflqn
Gk(T) - zg(k) +2(k — 1)| ;kalcl - zg(k) +2(k — 1)' nZ::l 1_ g ’

A(T) = (2m)12 ib(n)q",

j(t)=q7"+ Y c(n)g" == q7" + 744 + 196884 + 214937604 + - - - ,
n=0

where b(n),c(n) € Zand b(1) =1,b(2) = —24, - - -

(4) Forany T, v € H, j(t) = j(t') ifand only if T = y(7) for some y € SLy(Z). The
function j has a simple pole at ico and j(i) = 1728,j(3) = 0.

2.2 Modular curves as Moduli Spaces

We do not intend to discuss too much about the theory of arithmetic moduli of el-
liptic curves. For readers who are interested in this theory, [21], [34] and [19] will be
good references to read. Here we follow [22, Section 1.5 ] to give a rough sense that
modular curses are moduli spaces.

Definition 2.2.1. Let N € IN™ be a positive integer. An enhanced elliptic curve for To(N)
is an ordered pair (E, C) with E a complex elliptic curve and C a cyclic subgroup of E(C)
of order N. Two such pairs (E,C) and (E’,C") are equivalent, written (E,C) ~ (E',C'),
if there is an isomorphism E — E' of group varieties taking C to C'. The set of equivalent
classes is denoted by So(N), an element of So(N) is denoted by [E, C].

An enhanced elliptic curve for To(N) is an ordered pair (E, Q) with E a complex elliptic
curve and Q an element in E(C) of order N. Two such pairs (E, Q) and (E', Q") are equiva-
lent, written (E, Q) ~ (E', Q’), if there is an isomorphism E — E’ of group varieties taking
Q to Q'. The set of equivalent classes is denoted by S1(N), an element of S1(N) is denoted
by [E, QJ.

An enhanced elliptic curve for To(N) is an ordered pair (E, (P, Q)) with E a complex
elliptic curve and (P, Q) a pair of element in E(C) that generates E[N](C) with Weil pairing
en(P, Q) = e2™/N. Two such pairs (E, (P,Q)) and (E', (P',Q")) are equivalent, written
(E,(P,Q)) ~ (E',(P',Q")), if there is an isomorphism E — E' of group varieties taking
C to C'. The set of equivalent classes is denoted by S(N), an element of S(N) is denoted by
E,(P,Q)].
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Definition 2.2.2. Let I' C SLy(Z) be a congruence subgroup acting on H*, we define
YF = IH/F,

Xr:=H"/T,

the quotient spaces of orbits under I', and call Xr the modular curves for I. A point in
Xr/Yr is called a cusp on Xr.

The modular curves for To(N), T'1(N) and T'(N) are denoted by Xo(N), X1(N) and
X(N) respectively.

For T € H, we denote E; the elliptic curve corresponding to lattice A = (7, 1),
and via C/ A+ <+ E;, we don’t distinguish the corresponding points.

Theorem 2.2.3 ([22], Theorem 1.5.1). Let N € IN™. Then the following statements hold:

(1) So(N) = { [ET, <11] —|—AT>} | T € H—I},andforanyT,T/ cH, [ET, <;] —|—AT>} =
[E <;] + AT/>] ifand only if To(N)T = To(N)T'. Thus there is a bijection

So(N) <> Yp(N),
(LYo oo

1
(2) S1(N) = { [ET'N —i—AT] | T e ]I—I},andforanyT,T/ € H, [ET N N
ifand only if T1(N)T = T'1(N)7'. Thus there is a bijection

1 1
/+AT:| - [Er/r +AT/:|

S1(N) < Y1(N),
1

ET/ N

1

+ AT:| — rl(N)T

(3) So(N) = {[E (N+AT, )] \TE]H} and for any 7,7 € H,

T 1 T 1 . .
{Er, (N +AT,N+AT>} = [ <N + Ay, — +AT/>] if and only if T(N)T =
['(N)7'. Thus there is a bijection

So(N) e Yo(N),

T 1
|:ETI (N + AT/ N + AT>:| '_> ].—‘(N)T.

2.3 Modular curves as Riemann surfaces

With suitable charts, for any congruence subgroup I' C SL»(Z), Xr is a Riemann
surfaces, and so is Yr.
For further discussion, we fix some notations. For T € H*, we set

I'e={y eTlly(r) =1}

Definition 2.3.1. Let I C SLy(Z) be a congruence subgroup. Each T € H has an associ-
ated positive integer,

4T, {#g if —1 €T;
he = =

{£I}  \#r. if—-1¢T.
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1t is called the period of T.
Fors € QU{oo}, we define the width of s to be

hs := [SLp(Z)s : £T).

Proposition 2.3.2 ([22], Proposition 2.4.2). Let I' C SL,(Z) be a congruence subgroup,
then the modular curve Xt is a Hausdorff, connected and compact Riemann surface.

Proof. We give a sketch of the proof. Set 77 : H* — Xr. For any 7 € H, we can find a
neighborhood U of 7 in H such that

(i) forany y € T, if y(U)NU # @, theny € T,

(i) U has no elliptic point except possibly 7, i.e. if z € U such that T, # {£I},
thenz = 1.

We set 6:(z) = 2

induces a homeomorphism 7t(U) — p(d-(U)), which is a local coordinates around
(7).

For s € QJ{oo}, there exists ds € SL,(Z) such that 55(s) = co. Let U = 6; 1 ({z €
H | Im(z) > 2}(J{co}) which is an open neighborhood of s in H*. Set ¢ : U —
C, T+ e2™(1)/hs This will induce a homeomorphism 71(U) — ¢(U) C C, which is
a local coordinates around 7(s). O

z, and p: C — C,z — z'. Then pody : U — p(6:(U)) € C

Remark. (1) For T € H*, m : H* — X, the ramification index of the morphism
Xr — X(1) at 7w(7) is hr. When there is no confustion, we will write h instead

of h.
Definition 2.3.3. Let I' C SLy(Z) be a congruence subgroup, k € Z, m : H* — Xr and
f € Ay(T'). Forany T € H, we define
v (f) := the order of f at T € H,

_ o(f)
Ur(t) <f) = T/

where hy = # (i[

Fors € QU{oo} and o € SLy(Z) such that a(co) = s, let <(1) II) € a~1Ta be such
that h > 0 and minimal. In fact h is the width of co with respect to a~'Ta. The function
flalx € Ax(a~1Ta) has Fourier expansion

> is the width of T.

f[“]k(T) = Z aan
with g, = ¥/ and a,, # 0. We define
vs(f) :=m,

0s(F) e ipy o (Y Py ke
Ve (f) =4 2 ifaTa = { (0 1)>ﬂ d k is odd,

vs(f) otherwise,

where hs = [+SLy(Z) o : a~Tsa] is the width of s.
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Remark. (1) The values vy and v, may not be integers, but they have close connec-
tion with the orders for corresponding differential on Xr.

The following proposition builds a connection between automorphic forms on H
and differential forms on modular curves. With this, we can calculate the dimension
of M (T) and Sk (I') with Riemann-Roch Theorem, see details in [22, Chapter 3].

Proposition 2.3.4 ([22], Theorem 3.3.1). Let k € IN an even non-negative integer, I' C
SL,(Z) be a congruence subgroup and Qx, be the sheaf of meromorphic forms on Xr. Then
we have an isomorphism of C-verctor spaces:

Ar(T) = QF*(Xr),

f—uw,

where w is a rational section of O®*/2 such that 7w*w = f(t)(d7)¥/?, and 7w : H* — Xr
is the natural map. Under this isomorphism,

ML) = {w € OF/2(X0) 0r(0)(@) = —3 (1= 1), 00y (@) = —+ for T € Hs € QU {0},

T

ST = {w € QLX) [ore) (@) = — 2 (1= 1), 0 (@) > 1 g fort € H,s € QU {oo}}.

Remark. (1) In particular, we have
Ap(T) ~ C(Xr),
S2(T) 2 Oy (Xr),
where Q) | (Xr) the C-vector space of holomorphic forms on Xr.

(2) fT=T(N), f € A(T(N))ands € QU{oo} witha(oo) = s forsomew € SLy(Z),
then

vs(f) = voo (f [a]i)-

Corollary 2.3.5. Keep the notations in Proposition If kis even , f € Ax(T) corre-
sponds to w € Q%‘/Z(Xr). Then

(1) forany T € H, the order Ord (1) (w) of w at 71(T) € Xr is V(o) (f) — 5 (1 — —);

N =

(1) forany s € QJ{oo}, the order Ord (s (w) of w at 7t(s) € Xr is vs(f) —

2.4 Modular curves as Algebraic Curves
By Riemann’s existence Theorem, we know that every compact Riemann is indeed a
smooth algebraic curve. Moreover, a modular curve is defined over a number field,

Corollary 2.4.11} see also [22, Theorem 7.6.3].
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2.4.1 Function fields over C

This subsection describes the function fields for the curve X(N), X;(N) and X,(N),
where N € N*.
Recall the definition of g»(7) and g3(7) in Definition 2.1.10|and

1 1 1
@T(Z):?+ ) ((z—(cr+d))2_ (cr+d)2>'

(c.d)€Z\{(0,0)}
Definition 2.4.1. Let N € Nt,t € H.

(1) For each non-zero element o € Z%/ NZ2, we set

5 (%)

f3(r) =

fio(z) = (D),
for (1) = (7)== £V (x),

where (cy,dy) € Z? is a representative of T.

(2) For each non-zero element d € 7./ NZ., we set

e =200 (5) = ),

where d € Z.is a representative of d.

(3) We set

- gz(T) N-1 i _Nfl 7
Al = gy L wely) = LA

7)

LEMMA 2.4.2. Keep the notations in Definition Then

f5(1) € C(X(N)) = Ao(T(N)),

Proof. 1t is not hard to show that they are weakly modular of weight 0 with respect
to corresponding congruence subgroups, i.e. invariant under corresponding actions.
It’s sufficient to show that f7, 4, fo are meromorphic on H and at the cusps. Firstly,
we consider fJ.

For v = (cy,dy) € Z2 with v Z (0,0) mod N, the function f¥(t) is meromorphic
on H since ¢>(7), g3(T) are meromorphic on H, and g+ (z) is meromorphicon H x C.

For any v = (Z Z) €SLy(Z)and T € H,letm = (ct +d)~!, we have

oma, (mz) = m ™ >p-(2),
m Y (coy(t) +d) = (ac, + cdy)T + (bey + ddy).
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Then

v _ %0(()  (wr(r)+d
0(7(7)) - 2( (T))p’7< N )
(t) +d

(’L') coY(T) +dy
m=bgs(7) " ( N )
22(7) 5 <(acv +cdy)T +

(

m=2gy(t) " T N

= fo (7).

Hence, it is sufficient to show that f¢ is meromorphic at ico. We will show that

g2

(bey + ddv))

CoT+d 7 .
lim . ( 0Tt U> exists, which implies that fj is meromorphic at ico.
Imt—00 N

lim CoT + dv = lim Niz_’_
ImTt—00 pr N C Imtoe (CUT + dv)Z

N? 1
lim — lim ——
(c,d)EZZ:\{(O o} <Imraoo ((Cv — NC)T + (dv — Nd))2 Im 7—00 (CT + d)Z

N? 1
2 2 < - =
. (@, = Nd)  d
-2 Z z if c;, Z 0mod N.
d=1

> if c, = 0mod N;

—20(2)+2N%? ¥ lz if c, =0mod N;
= n=d, mod N 1
—27(2) if ¢, # 0mod N.
Since fg (1) = f@ (t) for any non-zero element d € Z/NZ, so fg (7) is mero-
morphic on ]H and fg((7)) is meromorphic at ico for any «y € SLy(Z). It is similar

for fo(7) = Z (). O

Remark. (1) For any v € SLy(Z), | J(1) = fo(v(7)). In particular, f;°(t) =
)

f3(t) € C(X(N)). Similarly, f;%(t) = fé(t) € C(X1(N)). More generally, for
0,W € Z*/NZ?¢,d € Z/NZ,

(1) = f&(1) &= v = fwmod N,
FA(7) = f5(1) <= c = +dmod N.
We also have
N2 —
#{f810#£0€ Z?/NZ?} = 2

2
l—|—1 if N is even,

if N is odd,

#{f110+40€Z/NZ} = [Nz_l] +1.

Proof. 1t is sufficient to show that f(7) = f{(t) = v = fwmod N. Indeed,

notice that p(z) = p(z’) if and only if z = z’ mod A+, hence
CpT+d CwT +d
v N = N “ mod Ax.

Thatis N|(v — w) or N|(v + w), i.e. v = +w. O
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To make the following statement clearer, for a field extension L/K, we will let
Autg (L) right act on L, and an element x € L acted by ¢ € Autg(L) is denoted by
x7. By the way, if Autg (L) left acts on L, we will use the notation o (x).

Proposition 2.4.3. Keep the notations in Definition Then the following statements
hold:

. 5 .- (Z/NZ)*\ {(0,0 ,
w coron = ({1 sne EVEOMNY oo

coa) =c (i {7 1 e EEELY) g
C(Xo(N)) = C(j, fo) = C(j, jn), where jn(T) = j(NT).
(2) The fields extensions C(X(N))/C(X(1)), C(X(N))/C(X1(N))and C(X(N))/C(Xo(N))
are Galois extensions, and

6" : Gal(C(X(N))/C(X(1))) = SLZ({Z?[Z) = ier((ﬁ))

is an isomorphism of groups, where 0 is defined as following: for any [y] € SL,(Z)/ £ T(N)
with v € SLy(Z), and f € C(X(N)),

fG([“r]) = for.

Moreover, 0~ induces isomorphisms

Gal(C(X(N))/C(Xl(N)))z{i <(1) f{) SLM/NZ)} SLy(Z)

{1} +T;(N)’
Gal(C(X(N))/C(Xo(N))) =~ {i (g Z) c SLz({i/I?IZ)} N iLri((ZN)y

Proof. By previous lemma, we have

C (]{ H| 15 ¢ (Z/N@;\}i(o’o)}}) C C(X(N)).

We define
0:SLy(Z) — Autc(j) (C(X(N))),

1= for=flrlo
It is well-defined since I'(N) C SLy(Z) is normal. It defines a left group action of
SLy(Z) on C(X(N)).

We claim that Ker = +I'(N). Obviously, £I'(N) C Kerf. Conversely, if ¢ €
Ker 6, then for any non-zero element @ € (Z/NZ)?, f§ = f¥ oy = f,". Hence vy =
+T forany 0 € (Z/NZ)?. Takes = (0,1), (1,0), then we know thaty = +1,i.e. 7 =

Ly (Z
Imod N, v € £T'(N). Hence 6 induces an injection j:l“z((N)) — Aute(j) (C(X(N))).

Before further discussion, we recall a fact: for a field extension L/K, if G C
Autg(L) is a subgroup such that L® = K, then L/K is Galois and G = Autg(L)
is the Galois group of L/K. This is because that K ¢ LAU«(L) ¢ L6 = K.

SL,(Z)

To prove that C(X(N))/C(X(1)) is Galois with Gal(C(X(N))/C(X(1))) ~ LT (N)’

it is sufficient to show that the fixed subfield of 6(SLy(Z)) is contained C(j). This is
from the fact that f oy = f for any v € SL,(Z) if and only if f is weakly modular
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with respect to SL,(Z), and the fact that f € C(X(N)) = Ay(T'(N)) is automatically
meromorphic on H and at all cusps.
We have C(j, f1,0, fon) € C(X(N)) and

Gal(C(X(N))/C(j, fuo. fo1)) = {7 € SLa(Z)|fro0 v = for, foror = fo1}/ £T(N).

b . (1,0) a (1,0)
betr = (? d> € SLy(Z) with frgoy = " oy = 4" = "7 and fo 0y =

Y 0y = £ = £°V. Then = +Imod N. Hence Gal(C(X(N))/C(j, f0, fo1))

is trivial and

(Z/NZ)*\ {(0,0)
{=1})

For X;(N), the proof is similar. We define a left group action of SL,(Z) on
C(X1(N)) by

C(X(N)) = C(j, fip, for) = C(j, L £ € ).

0: SLz(Z) — Autc(]') (C(XI(N)))'
7= foy=flr.

We can prove that Ker 6 = £T'1(N) by the fact that C(j, {foial +d e ENDOy -

C{Ey
C(X1(N)) and fg = f§ifand only if d = +¢. Then we have iIEZ((ZN)) ~ 6§(SLy(Z)) C
1

Autc(jy (C(X1(N))). Moreover, as before, we can show that the fixed subfield of
6(SLy(Z)) is C(j), which implies that C(X;(N))/C(j) is Galois and

cucyaon =is(} ) ST « 25

We have C(j, f1) C C(X;1(N)) and

Gal(C(X1(N))/C(j, 1)) = {r € SLa(Z)|fro v = fi}/ £T1(N),

Let v = <Z Z) € SLy(Z) with fioy = féOT)oy = féc’d) = féOT). Then ¢ =
O0mod N, and d = £1mod N. Hence Gal(C(X;(N))/C(j, f1)) is trivial and

COa(N) = € ) = G (£ £ « ELEERAY)

It is similar for Xo(N). O

Remark. (1) This proposition tells us that X1 (N) (resp. Xo(N)) is birationally equiva-
lent to a plane curve defined by the complex polynomial @1 (resp. @o) € C[X, Y] such
that ¢1(j, f1) = 0 (resp. @o(j, fo)) in C(X1(N)) (resp. C(Xo(N))). We will see that
the polynomials have rational coefficients.

Corollary 2.4.4. Forany N € N, there is a bijection

{Xr | T C SL2(Z) congruence subgroup of level N} <> {subgroups of SLth/I?TZ)} ,
=ad |
r ﬂ(N)
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SL,(Z/NZ)

{£1}
tient map.
In general, if T C I" C SLy(Z) are congruence subgroups of level N, then C(Xy+) /C(Xr)
is Galois if and only if £I" C =T is normal. In this case, we have

and Gal(C(X(N))/C(Xr)) =~ i, where 1t : SLy(Z) —

TN is the quo-

=nd |
+T7°

Gal(C(Xr)/C(Xr)) =~

Proof. The bijection is obviously from Lemma Let0 : SLo(Z) — Aute(j) (C(X(N)))

define as in the Proposition|2.4.3} Then for any subgroup I' C SLZ({i/I;\IZ), we have
C(X(N))?T) = C(X(I)). Indeed, this comes from the fact that for any f € C(X(N)),
for

() = foy = f for any'y € I'if and only if f € C(Xr) = Ao(T). Hence
Gal(C(X(N)) /€ (X)) =T = .

In general, if I' C I” C SLy(Z) are congruence subgroups of level N, then by
Galois theory, C(Xy)/C(Xr) is Galois if and only if +I" C +T is normal i.e. £I" C

+T is normal. In this case, Gal(C(X)/C(Xr)) ~ ;t; O
We have seen that Gal(C(X(N))/C(j)) ~ Sng:/li\IZ) and C(X(1)) = C(j),

we may wonder if we can find a Galois extension K/C(j) such that Gal(K/C(j)) =~
SL,(Z/NZ). The answer is yes. With the construction of such K, we can see the
field C(X(N)) from a different point of view.

Definition 2.4.5. For T € H \ j~1({0,1728}), we define the universal elliptic curve by
Weierstrass equation:

27j
s G

Remark. (1) We can view E; as an elliptic curve over C(j), so we can talk about its
N-torsion points.

Proposition 2.4.6. For any T € H \ j=1{0,1728}, we have isomorphisms of Riemann
surfaces
(2 C/AT ~ E](T),

where Ar = (1,1) C C is a lattice. Moreover, the j-invariant of Ej) is j(T), and for any

1
N +Arof C/Arto

- - 3/2 /
o (e ) == (200 (1), (25) 7 ().

(o) =or= (550 (3)-(5) (7))

3/2
where (gZ(T) ) is fixed with respect to ¢.

N € N7, ¢ takes the canonical genemtors N +Ar, —

45



CHAPTER 2. AUTOMORPHIC FORMS AND MODULAR CURVES

Proof. Without confusion, for T € H, we denote E; : y* = 4x® — ¢»(7)x — g5(7), the

1/2
elliptic curve over C defined by the affine equation. We fix u = <§2E3> which
3
is in C* since T ¢ j~1({0,1728}) = {C3,i}, and we take an admissible change of

variables

2

(x,y) — (12, 1y).

which is

3 3
Then we get the elliptic curve defined by y?> = 4x3 — 82(7) X — 82(7)

3 ()3 (1) ol oo
. . % . (T 27j(t S
E, , = , L.e. — . Th h
j(r), since j(t) 2272 e (0?2~ j(r) —1728 e morphism is given as

following:

2 (Pp(2), 179 (2)),
1
N

Recall that for an elliptic curve E : y* = x> +ax + b over a field K, the x-
coordinates of N-torsion points are characterized by a polynomial ¥x(a,b,x) = 0
with ¢ € Z[a, b, x].

SO @ maps % + A, — + A to Py, Q; respectively. O

Corollary 2.4.7. Let N € IN™, and E; be the universal elliptic curve. Then the non-zero

x-coordinates of points in Ej[N](C(j)) are {f;°| 7 € %}. Moreover, if

P,Q € E;[N](C(j)) such that x(P) = f§ and x(Q) = f{, then x(P + Q) = f§™™".

Proof. Let g = ]._2?728, and (g, g x) € Z[g, x| be such that the x-coordinates

points in E;[N] are characterized by (g, g, x) = 0. For v = (v1,02) € Z/NZ\ {0},
consider ¢n(g, g, f7°) € C(X(N)). We claim that Yn(g, g, f5°) = 0. Indeed, for
any T ¢ j71({0,1728}), we have yn(g(7),8(7), f;°(T)) = 0, since f;°(7) is the
x-coordinate of 71P; + 1,Q; € Ejx) [N](C), where P, Q; are defined in Proposi-
tion Hence Y (g, g, f5°) = 0 since it has infinitely many zeros on X(N), and
X(N) is compact.

Toprove {f5°| £ € W} = {x-coordinates of points in E;[N] Cc()},

{+1}}
it remains to show that they have the same cardinality. This comes from the remark

of Lemma and the fact that #E;[N] ~ Z?/NZ? and the zero of E; is the infinity
which has no x-coordinate. O

Proposition 2.4.8. Let N € N™, and E; be the universal elliptic curve. Then
C(X(N)) = C(j, x(E;[N])).
In particular,

Gal(C(j x(Ej[N])) /() ~ 2ENE)

{1}
Proof. It comes from Proposition and Corollary O

Proposition 2.4.9. Let N € IN*, and E; be the universal elliptic curve. Then the field
extension C(j, E;j[N])/C(j) is Galois and there is an isomorphism

0~ : Gal(C(j, Ej[N])/C(j)) ~ SLo(Z/NZ).
Moreover, this isomorphism is compatible with 6~ in Proposition
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Proof. Let o : C(j, Ej[N]) — C(j) be a embedding fixing C(j). Then ¢ permutes
points in E;[N](C(j)), hence C(j, E;[N])/C(j) is Galois.

Denote Gal(C(j, E;[N])/C(j)) by H. Fix an ordered basis (Pr, Qr) of E;[N], we
define a homomorphism of groups:

p:H — GLy(Z/NZ)

(etan) =r@ (&)

If o € H such that p(0) = I, then 0(P;) = Pr, and 0(Q+) = Q+. Notice that o
induces a endomorphism of E;[N], so c(P) = P forany P € Ej[N] and ¢ = id € H.
This proves the injectivity.

We claim that p(H) = SLy(Z/NZ). For any ¢ € H, consider the Weil pairing:
since en(Pr, Q) € C is a primitive N-th root of unity, so

en(Pr, Qr) = o(en(Pr), Qr) = en(0(Pr),0(Qr)) = en(Pr, QT)detP(V),

which implies detp(c) € SLy(Z/NZ), p(H) C SLy(Z/NZ).
We have that [SLy(Z/NZ) : p(H)| < 2. To prove this, we set

W := Gal(C(j, E;[N])/C(j, x(Ej[N]))).

For any ¢ € W, we have 0(P) = %P for any P € E;[N], then p(¢) € {£I} C
SLy(Z/NZ),ie. W C p~1({£I}). On the other hand, if ¢ € H such that p(¢’) = %I,
we also know that o fixes x(Ej[N]). Hence W = p~}({£1}),

_SLy(Z/NZ)

H/W = Gal(C(j, x(Ej[N]))/C(j)) =~ ——7—

such that

2 #(SLy(Z/NZ))
W #H
If [SLy(Z/NZ) : p(H)] = 2, then #W = #p 1({£I}) and —I ¢ p(H). Hence

(—p(H))Up(H) =SL2(Z/NZ). One of ((1) _01), — <(1) _01> belongs to p(H), so

= [SLo(Z/NZ) : p(H)] < 2.

2
—1= <i <O _01>) € p(H). Contradiction. This proves that p(H) = SL,(Z/NZ).

1
U

2.4.2 Function Fields over Q

Proposition 2.4.10. Let N € IN*, and E; be the universal elliptic curve. Then
(1) Zn € Q(j, Ej[N]) and QN Q(j, E{[N]) = Q({n)-
(2) Q(j, Ej[N1)/Q(j) is Galois with

Gal(Q(j, EjIN))/Q(j)) * GLx(Z/NZ),
where (g%) = p(0) (gT), (Pr,Qx) is an ordered basis of Ej[N] over Z/NZ, and

o(Cn) = G for any o € Gal(Q(j, Ej[N))/Q(j)). Hence (f5)” = fi* for any
0 # 7 € Z/NZ. Moreover, p induces an isomorphism of exact sequences:

1 —Gal(Q(j, Ej[N])/Q(Zn, j)) — Gal(Q(j, Ej[N]) /Q(j)) — Gal(Q(¢n)/Q) —1

l | |

SL,(Z/NZ) GLy(Z/NZ) (Z/NZ)*

47



CHAPTER 2. AUTOMORPHIC FORMS AND MODULAR CURVES

(3) for any subgroup G C GLp(Z/NZ), we have KNQ = Q({n)%tC, where K is the
intermediate field with Gal(Q(j, E;[N])/K) ~ G via p. Thus K is a fraction field of a
geometrically integral smooth projective curve over Q({n)%t¢ = KN Q.

Proof. (1) will come from the proof of (2) and (3).

For (2), since P’ € E;[N] for any embedding o : Q(j, E;[N]) — Q(j) fixing Q(j)
and P € E;[N], so x(P7),y(P”) € Q(j, Ej[N]). Hence Q( E;[N]) is normal and
separable over Q(j), i.e. Galois.

We set Hg = Gal(Q(¢n,j, Ej[N])/Q(j)) and a representation

p: HQ — GL2(Z/NZ)

(&) =e(g):

where(Pr, Q) is a fixed basis of E;[N] over Z/NZ. Then we claim {3, = dEtp( ) for
any ¢ € Hg. Indeed, since Weil paring is bilinear and commutes with Ga101s actions,
so en(Pr, Q:)” = en(P7, Q%) = en(Pr, Qr)%t(?). Combining this with the fact that
there exists k € IN such that { = en(Pr, QT)k, we have our claim. Hence

Gal(Q(Zn. j, Ej[N])/Q(j, Ej[N])) =1,

such that

i.e. for any ¢ € Hg fixing E; [ 1, ¢ = }i\ftp = {n. We conclude that {n €
Q(j, E;[N]) and Hq = Gal(Q(j, E{[N)/Q(j)).

Firstly, we prove that p is 1n1ect1ve If o € Kerp, and P = aP; +bQ: € Ej[N],
then P7 = aP{ + bQS = aPr + bQ: = P, since the map E — E induced by ¢ is a
homomorphism of elliptic curves. Hence ¢ = id and p is injective.

Next we will show that p is surjective. We have the following diagram of field

extensions: .
C(j, Ej[N])

C(j) Q(j, Ej[N]).-
AN /
Q(gNr])

By the restriction lemma in Galois theory, we have an injective homomorphism in-
duced by restriction

Gal(C(j, Ej[N])/C(j)) = Hg(g) := Gal(Q(j, Ej[N])/Q(¢N, f))-

Notice that Gal(Q(Cn,j)/Q(j)) = Hq/Hg(y), i-e. (Z/NZ)* ~ Imp/Hg,), and
by Proposition then

#(Im p) #(GL2(Z/NZ))
#(SLa(Z/NZ)) < #(H, <
(SLo(2/N2)) < #Haew) < grz/Nzy) < #(2/NZ))
Thus they all equal and Imp = GL2(Z/NZ), Hy(¢,) =~ SL2(Z/NZ). Again, by the
restriction lemma, we deduce that C(j) N Q(j, E;[N]) = Q(Zn, j).
To prove the isomorphism of exact sequences, we have the following commuta-
tive diagram:

#(SL,(Z/NZ)).

Gal(Q(j, Ej[N])/Q(j)) — Gal(Q(¢n)/Q)

b P

GLy(Z/NZ) — % (Z/NZ)*
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where [, = C N ) for any o € Gal(Q({n)/Q). Since the vertical maps are isomor-
phisms, then the morphism of exact sequences is an isomorphism.

To show that (f§)7 = ( ) for any 0 # 0 = (01,72) € Z/NZ, we take P,

Q: € Ej[N] such that x(PT) = fo10 ,x(Qr) = fo01 We set T = 71 P; +7,0Q+, then
x(Tr) = f§ by Corollary 2.4.7] Hence
TU'

F=7(Gr) =) (o)

In particular, (f§)7 = x(T?) = (?P(U).
For (3), we have that Q({n)*¢ C Q(j, E;[N])¢ = K. -

Remark. (1) From the proof, we have C(j) N Q(j, E;[N]) = Q({n, j) and the following
commutative diagram:

Gal(C(j, Ej[N]) /C(j)) ~ Gal(Q(j, Ej[N])/Q(Cn, )

SL,(Z/NZ)

where 0~ is the map in Proposition Basically, 0~ and p are the same.
(2) For sub-extension Q(j, x(E;[N]))/Q(j), the inverse of the isomorphism

Gal(Q(j, x(Ej[N]))/Q(j)) = GLa(Z/NZ) /{+1},
is similar with 6 in Proposition That is, for any v € GLy(Z) and f €
Q(j, x(Ej[N])) € C(X(N)),
fM = fol]

Corollary 2.4.11. For any congruence subgroup T C SLy(Z) of level N, let X be the
corresponding projective curves of T C SLy(Z/NZ) C GLy(Z/NZ) in (3) of Propo-
sition Then X is a model of modular curve Xr over Q({n), i.e. X(C) ~ Xr as
Riemann surfaces. Moreover, we have the following commutative diagram

Gal(C(Xr)/C(j Gal(K/Q(Cn,7]))

\/

SL2

We will still denote X by Xr aig, or simply by Xr if there is no confusion.
Proof. By (2) of Proposition [2.4.10

Gal(K/Q(Zy, j)) =~ S Z/NZ)

+T ’
and we have the following diagram of field extensions:

CK
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Notice that C(j) N K = Q({n,]), so Gal(CK/C(j)) ~ Gal(K/Q({n,])). Hence we
have the following commutative diagram

Gal(CK/C(})) - Gal(K/Q(¢n,J))
g-1
aﬂm“/{/
1T
SL,(Z)

. Hence

On the other hand, by Corollary 2.4.4, 6~! : Gal(C(Xt)/C(j)) =~ T

CK = C(Xr). The fact that X is geometrically integral over Q({x) implies that the
function field of X¢ := X Xgpec(q(zy)) SPeC(C) is exactly K ®q;,) C = CK. Hence
X(C) and Xr have the same functional fields as projective Riemann surfaces, which
implies that X(C) ~ Xr. O

Remark. (1) In general, a model of Xr over Q({n) is not unique.

(2) The model Xt 51, may be defined over a subfield of Q. For example, Xo(N) is defined
over Q. In general, if there exists a subgroup G C GLa(Z/NZ) such that T =
GNSL2(Z/NZ), then X g is defined over Q({n )¢,

(3) Notice that the models X(N), X1(N) and Xo(N) correspond to the fields Q(j, x(E;[N])) =
Q. fro, fo1), QUj, f1) and Q(j, fo) respectively.
We know that X (N) is defined over Q({n), and

Gal(Q(Ex) (X(N)) /(7)) = SEELND)

Example 2.4.12 (T.Weston). X(11) : y?> +y = x> — x> — 10x — 20.

2.5 The Field of Modular Functions over a Number Field

This is main part we want to discuss in this Chapter, the main reference is [56, Section
6.2].

Definition 2.5.1. Let N € NT,k € Z,and T C SLy(Z) be a congruence subgroup of level
N. We say an automorphic form f € A (T') is defined over a field K C C if the coefficients
of its qn-expansion lie in K, where gy = ™/ N,

We denote the set of automorphic forms (resp. modular forms, resp. cusp forms) of weight
k (with respect to T') defined over K by Ay (K,T) (resp. My (K,T), resp. Sg(K,T)), and set

Ak(K) = LrJAk(K/T),
M (K) = LrJMk(K/F),
Se(K) = LFJSk(K,F).
Remark. (1) Since Ax(T') C Ax(T'(N)) for some N, we mainly consider automorphic
forms with respect to T(N). For a automorphic form f € A, = QA;((F(N)) =

N Ax(T), whether fis defined over K or not is independent of the choice of N.
r
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Proof. If f € Ax(T(N)), we take minimal 1 € N such that f € Ax(T'(h)), then
h|N and the assertion comes from the fact q;, = q%/ h, O

(2) IfT C SLy(Z) is a congruence subgroup of level N, we easily have
Ap(K,T) ={f € A(K,T'(N))|f is T-invariant }.

In algebraic geometry, for a geometrically integral variety X defined over a num-
ber field K, we say that a rational function f € C(X) is defined over K if f € K(X) C
C(X). We have know that, for a modular curve Xr, C(X) = Ay(I'). Hence we may
wonder, when Xr is defined over K, if the field of rational functions K(XT') is exactly
Ao(K,T) or not. If the answer is yes, then there is no confusion with the definition
above and the one in algebraic geometry. Although I cannot find the answer for
general cases we still have the following Proposition, see [56| Proposition 6.9] for the
proof.

Proposition 2.5.2. Let N € IN*. Then we have
(1) A(Q(¢n), T(N)) = Q(n)(X(N));
(2) Ao(Q,T(N)) =Q(j,jn, fr0) € Q(IN)(X(N)) with

Gal(Q(Ew) (X(N)/QUijw. fro) = () Iv € @/N2)') /1),

where jN(T) = j(NT).

Corollary 2.5.3. Let I' C SLy(Z) is a congruence subgroup of level N, K be a field contain-
ing Q(Cn). Then K(Xr) = Ao(K,T).

Proof. By the proposition above, the corollary holds for I'(N), i.e. Ao(K,T(N)) =
K(X(N)). We have

Ao(K,T) = {f € Ay(K,T(N)) | f is I'-invariant}.

On the other hand, since Q({x) C K, so Gal(K(X(N))/K(Xr)) ~ +T, where +T
is the image of I in SL,(Z/NZ). Notice that the right +I'-action on K(X(N)) is
defined as following: for an element [y] € £T with y € £T,

(H™M = flvo.

K(Xr) = K(X(N))*T = {f € K(X(N)) | f is I-invariant} = Ay(K,T(N)).
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Chapter 3

Integral Points on Modular Curves

In this chapter, we are going to prove our main results of the first part, Theorem[3.2.2]
and Theorem by using Baker’s method and Chevalley-Weil principle.

3.1 Modular Units

In order to use Baker’s inequality to bound integral points on an algebraic curve,
one important step is to know its group of X,-units. For a modular curve, that is the
group of modular units.

In this section, we recall some ingredients to define modular units and some facts
about them. The main references are [35] and [36], see also [1]].

3.1.1 The Weierstrass sigma and zeta functions

Definition 3.1.1. Let A C C be a lattice, we write down the Weierstrass sigma function,
which has zeros of order 1 at all lattice points, by the Weierstrass product

o(z;A) =z H (1- Z/w)ez/wH/Z(Z/w)z_
0£weA

Taking the logarithmic derivative of o (z; \) formally yields the Weierstrass zeta function

o' (z; A 1 1 1 z
U(z:A) = (' )_1, Y, (——+ =+ ).
c(z; )  z Ofmen Z-W W W

We see that, for any w € A, {(z +w; A) — {(z; A) is independent of the choice of z € C. It
is denoted by 17(w; A), called the Weierstrass eta function.

For T € H, we will denote 0(z; Ar), {(z; A¢) and n(w; Ac) by 0(z;7), {(z;T) and
1(w; T) respectively.

Remark. (1) By the Weierstrass factorization Theorem, see [|64, Theorem 2.2.2], it is easy
to see that o (z; A\) uniformly converges on any compact subset of C, and it is analytic
on C. Its zeros (of order 1) are the points on A.

(2) From above, {(z; A) converges absolutely and uniformly on any compact subset of C
not containing any lattice point. We also have

g/(Z;A) =—p(zA)=—=5— Z (m - =)
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(3) Forany A € C* and z € C, we have

c(Az; AN) = Ao (z; ),

((AzAA) = 10(5A).
In particular, 0({; A) and {(z; \) are odd functions.

(4) For any w € A, the function {(z + w; A) — {(z; A) is independent of the choice of
z € C, i.e. n(w; A) is well-defined.

Proof. We fix wg € A, then

L@+ w0,A) ~ (2, A) = '+ A) I (5:A)

= —p(z+wy A)+ p(z; A)
=0,

since the Weierstrass elliptic function p(z; A) is A-periodic. Hence {(z 4+ wg, A) —
{(z, \) is a constant for a fixed wy. O

(5) Forany A € C* and w € A, we have
1
n(Aw; AN) = XW(W;A)'

The map y(-; A) : A — C is a homomorphism of groups. Hence, it can be extended to
an R-linear map y(-; A) : C — C.

Proof. By definition, for A € C*, w,w’ € A,
N(Aw, AN) = (Az + Aw; AN) — {(Az; AA)
1 1
= Xg(Z‘Fw,A) — Xg(Z,A)

— Jnwin)

nw+w;A)=Cz+w+w;A)—(z4+w;A)+ ((z+w;A) —{(zA))

= (
=n(w; A) +7n(w'; A).
]

For simplicity, when there is no confusion, we will omit A in o(z; A), {(z; A) and
n(w; A\).

Theorem 3.1.2. Let A C C be a lattice. Then for any z € Cand w € A

U(Z(—Z)w) _ l[J(ZU)EW(w)(Z+w/2),
where
1 dfw/2 €A,
plw) = {—1 ifw/2 & A.
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Proof. Forz € Cand w € A, we have

% 1o <"(j(+zf")> — {(z+w) — {(z) = y(w),

dz

hence log( (Z(JF;U) ) = 1(w)z + c(w) for some function c(w), i.e. o (z+w) = o (z)el@z+e(@),

By

o(z+2w) o(z+2w)o(z+w)

cz)  o(z+w) o(z)
_ eiy(w)(z+w)+c(w)er](w)z+c(w)

— er](Zw)z—i-c(Zw),
if we putz = —w, then e—1(@)w+2c(w) — ,—nQw)w+c(2w) Set 11’1(7,0) — efq(w)wfrmfeJrc(w)’
then ¥(w)? = ¥(2w) and
TEHW) _ oy (gp)ent)e+orz)

o(z)
It remains to calculate ¢(w). Since 0(z) is odd, if w/2 ¢ A, then o(—w/2) # oo, and

_o(w/2)
= o(—w/zy

If w/2 € A, there exists n > 1 such that w/2" € A, w/2"1 ¢ A. Hence

(W) =p(w/2)? = = p(w/2")*" = (-1)*" = 1.

Proposition 3.1.3. Fort € H,z € C, let g = e2miT, gz = e2™z Then

o) — N1 lqz gl/2 — 712 (1—4g%92)(1 — q7/4:)
o(z;t) = (27wi) ez LI (—qi ,

where 1 = 1(1; 7).

Proof. We give a sketch of the proof, see [36, Page 247, Theorem 4] for full details.
For fixed 7, we set
1
9(z) = e*f"*q“z (z7),

(o]

g(z) = (2mi)~ U qr(qz)(qr> 7t/q:)

It is sufficient to show that ¢(z) = g(z). We have the following claims without
proofs:

(i) g(z) uniformly converges on any compact subset of C, and it is analytic on C. Its
zeros (of order 1) are the points on Ax;

(i) (z+1) =¢(z),9(z+ 1) = —qlqo(z), and it is similar for g(z);

(iii) limg(z)/g(z) =
If these claims hold, notice that the zeros (of order 1) of ¢(z) are also the points
on A, then ¢(z)/g(z) has a period lattice A; and is holomorphic on C. THis imply
that ¢(z)/g(z) is a constant, which is 1 by (iii).
O
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For a lattice A C C, we write A = (w1, wy) if A is generated by wy, w, € C, and
wi/wy € H.

Definition 3.1.4. Let A = (w1, wz) C C bealattice. We call 1 = n(w1) and 1z = (wz)
a pair of basic quasi periods of (.

Remark. (1) Foranyay,a; € R, we have nj(ajwy + a,ws) = aiy1 + axi.

Theorem 3.1.5 (Legendre Relation). Keep the notations in Definition we have

Nawi — Nrwy = 27Ti.

Proof. Let P be a fundamental parallelogram with vertexes a, & 4+ wo, & + w1 + wo, & +
wy € C and arrows s, 5,53, 54. We have 0 € P. By residue theorem,

7g | £(@)dz = 2mi ¥ Res, (§(2) = 27

peP
On the other hand,
$t@tz= [ @zt [ o
JP S1+83 Sp+S4

:/s(g(z)—g(z+w1))dz+/sz(6(z)—C(Z—WZ))dZ

= —11w2 + 1rwq.

3.1.2 The Klein forms and Siegel functions

Definition 3.1.6. Let A C C be a lattice, we define the Klein forms as

t(z; A) := e 1ENF26(z, A) : C — C.

Leta = (mq,ap) € RZ, and W = (Zl> such that wy/wy € H, we set
2

ta(W) = €(aW; (w1, wn)).

For T € H, we set

where W, = <I>

Remark. (1) The zeros of £(z; A) are the points on A, and they are of order 1. In partic-
ular, ,(t) =0ifa € Z?%, and €,(t) # 0 forany T € Hifa € R\ Z2.

t.(7) :=t(aWr; (T, 1)),

Proof. Notice that ¢(z; A) = 0 if and only if o(z; A) = 0, whose zeros are the
points on A. ]

We call a positive integer N the denominator of a = (a1,42) € Q2 if Nay, Nay €
Z and gcd(Najy, Nap) = 1. It is exactly the order of a in Q?/Z2.

Proposition 3.1.7. Let a = (ay,a;) € Q*\ Z2. Then the following statements hold:
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(1) The Klein form €,(7) does not vanish on H.

(2) Forany vy = (LCI Z) € SLy(Z) and T € H, we have

ta(1(7)) = (cT+d) " Hay (7).
In particular, t_,(7) = —¢,(7).
(3) Let N > 2 be the denominator of a = (ay,a3). Let b = (by,by) € Z2. Then
taip(T) = €(a,b)ta(7),
where e(a,b) = (—1)hb2tbitba . prrilmba=asb1) js g DN-th root of unity.
(4) Let N > 2 be the denominator of a = (ay,a2) = (r/N,s/N). Then for any v =

a b
(c d) € I'(N), we have

ta(v(7)) = €'(a,7)(cT +d)"Ma (1),

where 8/(a, ,)/) — _(_1)((a—l)r/N+cs/N+1)(br/N+(d—1)s/N+1) . eni(br2+(d—a)rs—csz)/N2 is a

2N-th root of unity.
Proof. (1) comes from the remark of Definition

For (2), we claim: for W = <Zl> such that wy/w, € H, we have
2

(i) ta(AW) = Aty(W) forany A € C*;
(i) €a(YW) =ty (W) for any y € SLy(Z).
Indeed, let A = (w1, w»), z = aW. Then
B (AW) = e TN 2G Q7 AN) = Ae1EN 25 (2 A) = Ak (W).

/
Let W = w} =W,z :=aW'. Then A =< «!,w), > and
W) 1, Wa

B (YW) = e 1ENZ25(5/; A)
_ e—q(ayw;A)aAW/za(a,YW;A)
= tay (W).
These claims implies that
ta(7(7)) = ta((cT +d) yWe) = (cT +d) " a(YWr) = (cT +d) "y (7).
For (3), under the notations in (3), it is sufficient to prove the following claim: for

W= <Zl> such that wy/w;, € H, we have
2

ta b (W) =e(a,b)e,(W).
Indeed, again, let A = (wy, w,). Then by Theorem

Ea—‘—b(w) = e_ﬂ((a+b)w;A)(a+b)W/2 . cT((a +b)W,A)
= o 1(@EP)WN @ED)W/2 . (q ;A ) (bW )t (PWiA) (a+B)W/2
— e*iy(aW;A)(aer)W/Z . er](bW;A)aW/ZU_(aW; A)lIJ(bW)
= lP(bW)E(a)(W)e—’Y(aW;A)bW/Z—&-r](bW;A)aW/z.
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It is sufficient to show that e(a,b) = (bW )e 1@WAPW/24n(bW:A)aW/2 T et 17y =
n(w1; A), 72 = y(wz; A). Then by Theorem i.e. Legendre Relation,

n(bW; A)aW /2 —n(aW; A)bW /2
=(bym + bana) (a1w1 + axwr) /2 — (a1 + aan2) (biwy + bawy ) /2

=(a1bamaw1 + axbri1wr — a1batiwr — axbinawy) /2
:7Ti(LI1b2 — azbl).

Also notice that
1 if2*b101‘2+b2,

bW) =
y(EW) {—1 if2 | by,2]| by,

ie. Y(bW) = (—1)Lrt Dbt +1 — (_1)bibatbi+b2 Hence we have our claim.
For (4), by (1), it is sufficient to prove that, for any v € T'(N),

tay (1) = €'(a, 7)ta (7).

Indeed, a7y = (a1a + axc, a1b + a,d) and

a—1)r «cs
a1a + ac = a; + <( N ) +N) cem+7Z,
br  (d—1)s
= il Z.
a1b + ard 112+<N+ N )Gllz-f-
Hence by (3),
B (a—Dr  cs br  (d—1)s
Ea’Y(T) - S(a’( N + N’ N + N ))Ea(T)/
(a—1)r cs br (d—1)s o . _ .
and ¢(a, (g S %+ %)) = €(a,7) is a 2N-th root of unity. O

Corollary 3.1.8. Let N be a positive integer and a € (35Z)*\ Z>. Then 2N () depends
onlyona € (§2Z)?/22, and 2N (1) € A_n(T(N)).

Proof. This statement directly comes from (3) and (4) of Proposition[3.1.7} O
Next we will study another type of functions, the Siegel functions.

Definition 3.1.9. For a € Q?, we define the Siegel function (associated to a) as

ga(7) := & (T)AY2 (1) : H — C,

where AY2(t) = 2mi - 4*(7), and 5(t) = g'/* ﬁ (1 —g") with g = €*™7 is the
n=1
Dedekind eta function.

Remark. (1) Recall that, for any v = (i Z) € SLy(Z), we have

AR (y(1)) = e(y) (et +d)AV (1),
where €(7y) is a 12-th root of unity.

Proposition 3.1.10. Let a = (a1, ap) € Q? \ Z2. Then the following statements hold:
(1) The Siegel function g,(T) does not vanish on H.
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(2) Forany vy = (Z Z) € SLy(Z) and T € H, we have

8a(7(7)) = €(7)8ay (1),
where €(7y) is a 12-th root of unity..
(3) Let N > 2 be a denominator of a = (ay,a3), and b = (by,by) € Z2. Then
8atb = £(a,b)ga(7),
where e(a,b) = (—1)hbatbitba . o=27i(b1a2=b201)/2 g g D N-th root of unity.

Proof. For (1), notice that £,(7)andA?(7) don’t vanish on H, then so does g (7).
For (2), by (2) of Proposition and the remark of Definition we have

ga(1(7)) = ta(7(7)) A2 (7(1))
= (cT+d) May (1) - e(7) (cT + )V (1)
= &(7)8a(7),

where €(7y) is a 12-th root of unity.
Similarly, (3) comes from (3) of Proposition[3.1.7 O

Proposition 3.1.11. For a € Q?\ Z2, we have the g-product for the Siegel function:
ga(T) — _qB o (a1) /2 tiay(a1—1) lo—OI n+a162ma2>(1 _ qn—i-l—ale—zmuz)’

where q = ¢*™% and By(T) = T? — T + 1/6 is the 2-nd Bernoulli polynomial. In partic-
ular, g, has zeros at ico of order €, := By(ay — |a1])/2, ie. lim g %g,(7) exists and is
nonzero. i

Proof. Set g, = e¥(mTt®) — gme2eni By gproduct of o(z; T) in Proposition [3.1.3]
and of AY12(T),

ga(7) = ta(1)A (1)

= e*%’7(”17+a2;1’)(aITJrﬂz)a-(alT + ay; T) . Al/lZ( )

— o z(an(TiT)+aay) (a1 7+az) .e%r](alrjtaz) 1/2 71/2 ﬁ (1—9"92)(1—qg"/q2)

n=1 (1 - qn)Z
WRT0
n=1
=e —31(T0)ay (ayT+az)+ 3y (a3t +4111127)q1/12(qu—1/2€a2ﬂi _ q—lh/Ze—azm‘)
. ﬁ(l _ q"+a162azm')(1 _ qn—ale—Zazni)
n=1

By Legendre relation, we have (7; T) = ¢ — 27i, so

1 1
- EU(T; T)ay (T +ay) + 517(61%’[2 + ma,7)

1 , 1
:Eal(Zm — 1) (m T+ a2) + Eq(a%TZ + a1a,7)

1 .
=271 - Ea% + rriaqas.
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Hence
L@ —a141/6) -
_ 5(as—a1+1/6 ﬂiuzal—maz a 27Tza2 n+a1 20y 7Ti n—ay ,—2ay i
8a(T) = —q2' e ) TT(1 e ) (1 — g" e
n=1
o .
— _qB 2 (a1)/2 maz (a1-1) H n+a162ma2)(1 o qn—&-l—ale—thzz).

Ifo<ay,a < 1anda%+a% > 0, since for any n > 0

lim(l o qn+u162m’a2> ?é O,
q—0

Ii 1— n+1—ay ,—27iay
Lim(1 —4 e T) #0,

SO .
lim g g, (1) = —e™R(m=1 L,

T—i00

3.1.3 Modular units

Definition 3.1.12. Let ' C SLy(Z) be a congruence subgroup of level N, we know that
Q(j) € Q(Cn)(Xr) = Ao(Q(¢N),T). Let Ry be the integral closure of Z[j] in Q({n)(Xr),
and QRr N be the integral closure of Q[j] in Q({n)(Xr). Elements in (QRr,N)* will be
called modular units, and elements in (Ry n)* will be called modular units over Z.

Remark. (1) The ring QRr n is exactly Q ®z Rr n.

(2) Notice that QRr y is also the closure of Q({n)[j] in Q(In) (Xr), and Spec(Q(¢n)[j]) C
X (1) is the affine open subset not containing the cusp, where we view X (1) as a pro-
jective line over Q({n). Hence Spec(QRrn) C Xr is the affine open subset not
containing the cusps. We conclude that (QRr n)* is the group of ¥.j-units of Xr over
Q(Cn), ie. Us, @y = (QRr,N)*. Here we view X(1) and Xr as smooth projective
curves over Q({n).

Proof. Since Spec(QRr,y) C Xr is the affine open subset not containing the
cusps, then

QRrn = {f € Q(¢n)(Xr) | the only possible poles of f are cusps},
which implies that (QRr,x)* is the group of X;-units of Xr. O

LEMMA 3.1.13. If f € Ay(SLy(Z)) is holomorphic on H with g-expansion f(t) =
_ZNcnq”, g =e¥% then f € Z[c_n,c_n+1,- ][] € C[j]-

Proof. Induction on N. If N = 0, then f is holomorphic on X(1). That means that
f = co is a constant, and f € Z[co][j].
For N > 1, assume that the lemma holds for N — 1. Let g(7) = f(7) —c_nj(T)N =
Y. bug" € Ao(SL2(Z)). Then by the inductive hypothesis, the function g €
=N+l
Z[b_N+1,b_N+2, s ] []] C Z[CN, C_N+1,""" ] []] Hence f € Z[CN, C_N+1," " ] []] ]

Remark. (1) Inparticular, from this lemma, we can also know that, for f € Ay(SLp(Z)),
f is holomorphic on H if and only if f € C[j].
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LEMMA 3.1.14. Let f € Ao(T(N)) which is holomorphic on H. If for each -y € SL,(Z)
the coefficients of qn-expansion of f o [y] are algebraic integers. Then f is integral over Z.[j).

Proof. The coefficients of F(X) := I1 (X — foly]) are in Ay(SL2(Z)) and
YErn) \SL2(Z)

holomorphic on H. To verify the coefficients of their g-expansions are algebraic in-

tegers, it is sufficient to notice that § = gX and consider their gy expansions. Indeed

the coefficients of F(X) are in Z[j] by Lemma3.1.13] m 3| If follows that f is integral over

Z[j], hence over Z[j]. O

From Section we know that in order to bound integral points on modular
curves Xr, we should calculate the group Us, k of ¥j-units of Xr. We will construct
its generator out of Siegel functions.

We fix some notations. Let I be a congruence subgroup of level N, T be the image
of T'in SLy(Z/NZ) and Xt be the corresponding modular curve. We set

An:={a€ (Z/NZ)?|ord(a) = N},

then T acts on Ay naturally, and we have |Ax/T| = vs(T), where ve(T) is the
cardinality of cusps on Xr. We can identify Ay and the set {a € (N~1Z/Z)? |
ord(a) = N}. Moreover, for a representative element of a = (a1,a2) € (N"'Z/Z)?
satisfying 0 < a;,a, < 1, and let g, be the corresponding Siegel function.

Definition 3.1.15. Keep the notations as Definition [3.1.12, Let a € (N~'Z/Z)?, we
denote ¢1?N by u,.
Let T be any subset of Ay, we define

ur = [ | ua.

acT

Let © € An/T be an orbit, we have

up = Hua.

acO

LEMMA 3.1.16. We have u, € Ao(Q(In),T(N)) = Q(¢n)(X(N)) foranya € (N~1Z/Z)>.
Moreover, viap~' : GLo(Z/NZ)/{+I} = Gal(Q(Zn)(X(N))/Q(j)) in Proposztzon-

uz = Ua© [')’] = Uay

for any v € GLy(Z).

Proof. By Corollary and Proposition 3.1.11} u, € Ao(Q({n),T(N)). By Propo-
sition Corollary 2.4.11)and Proposition 3.1.10(2), we have

ul =uaofy] = g™ o] = 827" = ttay.

O]

Remark. (1) With this lemma, for any T C Ay, ur € Q({n)(Xr) if and only T is
invariant under T-action.

Proposition 3.1.17. Keep the notations as Definition|3.1.12| We have the following proper-
ties:
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()

[1 wuo==xon1)N =

OcAn/T

+p2Nif N is a power of a prime p,
+1 if N has at least two distinct prime factors,

where @y is the N-th cyclotomic polynomial.

(2) Put A = (1—gn)"2N'¢WN), then the functions ue and Aug! are integral over Z|j,
where ¢ is Euler’s totient function.

(3) For the cusp coo € Xt at infinity, we have

Ord. (uo) = 12Nh,, Z l,.
acO
where he, is the width of c, see definition For any cusp c, we have |Ord.(1p)| <
N4,

(4) up is a modular unit on Xy, moreover, the group generated by the principal divisor
(uo), where O runs over the orbits of An /T, is of rank ve(T') — 1. In particular,
Uy, o(y) = (QRr,N)* is generated by {up | O € Ax/T}and p(X;,Q(0n)) =
Veo(T) — 1.

Proof. By Lemma 3.1.16] we have up € Ay(Q(¢n),T) = Q({n)(Xr) for any O €
An/T. For (1), let u := T[] u,. Then we have u € Q({y)(X(1))by Lemma above.

ac Ay
Since u doesn’t vanish outside the cusp of X(1) by Proposition|3.1.10/(1), then it must

be a constant. By Proposition [3.1.11} we have

M(T) — H (q6NB2(u1 12N7tiaz(a;—1) H n+a162mu2)12N(1 _ qn+1fa1672m‘a2)12N)
(lll,az)EAN n=0

g 4 H (1 B 627'51'112)12

(ﬂl,ﬂZ)GAN

El[):O

= 4+ H (1 o eZniu2)12

1<k<N

ged(k,N)=1
= 4y (1)1,
(2) is [10, Proposition 2.2], we prove it here. We have
Uy = q6NB2(a1)612Nniaz(u171) ﬁ(l _ qn+a162m'u2)12N(1 - anrlfaleme'az)lZN,
n=0

so the coefficients of the gn-expansion is algebraic integers. By Lemma and
Lemma U, is integral over Z[j].

For Au, ', we consider the product expansion of u,!. The only problem is the
term (1 — gq"*"1?72)~12N wwhen n = 0 and a; = 0. If it is not this case, we can take

expansion of each term by the fact 1/(1 —z) = ¥ z¥, |z| < 1. If it is this case, i.e.
k=0

n =0,a; =0, then r := Nay is coprime with N. Hence we know that (1
is integral over Z[j]. Since ged(r,N) =1, s0 (1 —},)/(1 — {n) is a unit in Z[{n],
and (1 — Zn)"*Nu; ! is integral over Z[j]. Hence (1 — IN) 12NNy ) i integral over
Z[j.

For (3), notice that the ramification index of 77 : Xr — X(1) at ¢ is k. and the
order of 1o at c on Xr equals to the order is it comes from Corollary [2.3.5.and Propo-
sition[3.1.111

(4) comes from [35 Theorem 3.1]. O

— 03) g !
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3.1.4 Bounding modular units
In this subsection, we set

ertin2(m-1) if a1 #0,
Ya = e,niaz(l _ 62711'112) if a = 0.

Let T be any subset of Ay, we define

Yr = H'Ya-

acT

Let O be an orbit of the left group action Ay /G, we have

Yo = H’)’a'

acO

Proposition 3.1.18 ([55], Proposition 3.1). Let a € Ay, v € Mg. If q € K, satisfies
lqlo < 1, then we have

[oe]

—q 78a(g) =1+ Y ¢a(k)g"/N,
k=1

where
|pa (k)]0 < ekf
for each k > 0.

Corollary 3.1.19. Let ay, - -+ ,a, € An. If q € K, satisfies |q|, < 1, then we have

(=1)"TTq ™28 (a) =1+ Y p(k)g*/N,
i=1 k=1

where
(k) |o < 2°F7ek,
Proof.
(D" TTa ™7a'8a@ =1+ Y ¢a(it) - ¢a,(in))g/",
i=1 k=1 ij4--+is=k
Yo}

0K o= Y Parlit) - Pa,(in)]o < 2"Fe".

i1+ +in=k
O

For each cusp ¢ of Xr, let t. be its local parameter defined in [9][Section 3], and

ge = tﬁ’c, where h. is the width of c, that is ramification index of the covering Xr —
X(1), see Definition and Remark of Proposition Moreover, for v € Mg,
Q. is a neighborhood of ¢ on Xr(K,) defined in [9] Section 3].

Proposition 3.1.20 ([9] Proposition 3.1, or [55], Proposition 3.3). Put

)
)

{P e Xr(
{P (S Xr(

i(P)]o > 3500} ifv e M;

Xr(Ko)" = { j(P)le>1}  ifve My

Ko) [
Ko) [
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Then
Xr(K,)" C U O
ceXr(Ky) cusp

with equality for the non-Archimedean v. Moreover, for P € Q) , we have

P < 13:(P) Mo < 21PN

ifv € Mg, and |j(P)|o = |q:(P) [0 if v € My.

For any cusp c, recall that the the vanishing order of up at c is denoted by
Ord.(up). For a number field K and v € Mk, define

12N3log N ifv | oo,

0 ifvfooand |N|, =1, @3.1)

12N°log po
po—1

Po =
ifv|p, <ocoand p, | N.

Proposition 3.1.21 ([55], Proposition 3.6). Let K be a number field where the modular
curve Xr is defined. We have the following properties:

(1) Let ¢ be a cusp of Xr, v € Mg, and P € Q. Assume that |q.(P)|, < 107N, Then
we have
— _ 3
e (P)~Ortelo) By luo (P) — 1]y < 42N g (PN,

where o . € Q({n) and h(vo ) < 12N°log 2.
(2) Let c be a cusp of Xr and v € Mg. For P € Q.,, we have

_ Ordc(uo)

2 log [q¢(P)]o] < po.

[ log [uo(P)[o

(3) Forv € My and P € Xr(Ky), we have

| log [uo(P)]s] < Nlog(|j(P)|o + 2400) + pe.

3.2 Integral Points on Modular Curves

For a number field K, and S C Mk a finite subset containing all infinite places. We
putd = [K: Q] and s = |S|. We define the following quantity

@(N)

A(N) := 1/ NIN|D[o(N) (1og (NN D[#™)))W ) 5 | [T logNi/q(v)

veS
vfoo

as a function of N € INT, where D is the absolute discriminant of K, ¢(N) is Eu-
ler’s totient function, and the norm Ny ,q(v) of a place v, by definition, is equal to
#(Ok/py) when v is finite and p, is its corresponding prime ideal, and is set to be 1
if v is infinite.

Sha [55] proved the following theorem:
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Theorem 3.2.1 ([55] Theorem 1.2). Let T be of level N. If veo(I') > 3, then for any
P e XF(OS,j),

h(j(P)) < (CdsM?)*M (log(dM))*M¢™MA(M),

where C is an absolute effective constant, { is the maximal prime such that there exists v € S
with v|€, or £ = 1if S only contains infinite places, and M is defined as following:

N if N is not a power of any prime;
M = ¢ 3N if N is a power of 2;
2N if N is a power of an odd prime.

(Here h(-) is the standard absolute logarithmic height defined on the set Q of
algebraic numbers.)

For certain applications it is useful to have an explicit value of the constant C
from Theorem In this note we prove the following result.

Theorem 3.2.2. The constant C in Theorem can be taken to be 2.

In the proof, we follow the main lines of Sha’s argument, with some minor mod-
ifications. We calculate explicitly the implicit constants occurring therein.

3.2.1 Proof of Theorem [3.2.2]

We only consider the case of mixed level, i.e Theorem since if N is a power
of some prime p, we can replace N by 3N if p = 2, and by 2N if p # 2. From the
assumption, we have that N > 6.
We consider the case where Q({n) C K at first, then consider the general case.
For P € Xr(Qs, ), since j(P) € Os, we have

h(j(P)) =d™" ) dolog" [j(P)|o < }_log" |j(P)]o < slog[j(P)lw,

vES vES

for some w € S. Hence, it suffices to bound log |j(P) .

If [j(P)|w < 3500, then h(j(P)) < 16s, which is a better bound than that given in
Theorem 3.2.1](1) when C = 214,

If [j(P)|w > 3500, then by [55, Proposition 3.3] or [9, Proposition 3.1], we have
P € Q4 for some cusp ¢, and |j(P)|w < 2|gc(P) ], where Q. 4, and g, are defined
in [9, Section 3]. Hence, we only need to bound log |g.(P)~!|,.

Notice that if moreover |gc(P)|, > 107V, then log|j(P)|, < 2Nlog10 and
h(j(P)) < 6sN, which is better than that given in Theorem 3.2.]]when C = 2'%.

In the sequel, we consider the case where P € Q) and |g.(P)|,» < 107V,

We have the following lemma:

LEMMA 3.2.3. There exists a modular unit W on Xr which is integral over Z[j|, and a
constant 7y, € Q({n) such that

172 W(P) = 1], < 42V |q.(P) |V,

h(yy) < 24N7 log 2.

If moreover P € Xr(QOs, j) for some S C Mg containing all infinity places, then W (P) can
be a unit of Os.
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Proof. After taking a transformation, we can suppose that c is the infinity cusp.

We fix an orbit O of the group action of G on Ay. Put U = up, where up is
defined in Definition

If Ord.U # 0, by Proposition (1)(4) and the assumption that v, (G) > 3,
we can choose O with Ord.U < 0 and another orbit O’ with Ord.V > 0, where
V = up, moreover U and V are multiplicatively independent modulo constants.

Define the following function:

woJu if Ord.U =0,
| yOrdVy—Ordel if Ord U £ 0.

So we always have Ord.W = 0 and W is integral over Z[j] since U,V is integral
over Z[j] by Proposition[3.1.17](2). If P € Xr(Os, j) for some S C Mg containing all
infinity places, then W(P) € Og, and by Proposition[3.1.17)(1) and (2), W(P) is a unit
of Os. Moreover, W is not a constant by Proposition [3.1.17(4).

If W = U, the bounds follow from Proposition 1).
If W = UOrdVy—Ordl then by Corollary position 3), Proposi-
tion[3.1.21(1), and
[ AN/GI < N*TJA—-p%) < N*—1,

pIN
we have -
Y VAGEIW =1+ 3 (R,
k=1
where
\cp(k) o < 2k+12N3(OrdCVfOrdcu)ek 024
Hence
”Y(}SrdCV’YgficuW(m . 1’w < 212N3(OrdCVfOrdCU)‘qC<P) Z10/1\128 ok5—k . p—24
k=0
7
< 4NV g (P) |/,
h(1 9V 7o) < Ord.Vh(y0,) + OrdeUh(70,c)
< 24N log2.
Combine these two cases, we set
)0 if Ord .U = 0,
Tw ygfffvyagrdcu if Ord .U # 0;
then the lemma is proved. ]

Hence W(P) = wiyfl . -175’ for some by, --- ,b, € Z, where w is a root of unity
and {#1,---,1,} is a fundamental system of S-units from [55, Proposition 4.1]. We
set

- b
A=7" W(P) =" -1y,
where 770 = wv,!. Then we have
(A= 1) < 2. (P) /. (32)

If A # 1, we will use this upper bound and the lower bound from Theorem to
get a bound of |g.(P)|, which gives an upper bound of h(j(P)). For the case where
A =1, see [55), Section 8].

To state the following lemma, we set ¥ = 1 whenr = 0,i.es = 1.
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LEMMA 3.24. IfQ({n) C Kand A # 1, then we have
h(j(P)) < 40dsr* " N®YR(S) log(d*sr* Z°N®YR(S)),

where Y = 2134224254304 and { has been defined in Section
Proof. We define Ay,---, A;, By by

log A; := max{h(n;),1/d},0<i<r;

By := max{3, |b1|,- -, |br|}.
Since A = 17017f1 ol #£1, by Theorem we have
A —1]y > exp{—Ylog Ag---log A, log By},

where

28s+29ds+2 1 d if
Y= { og(ed), if w|oo, (3.3)

210s+10 . eZs+2d35+3pZ)’ if w|Pw < 0.

Obviously 210s+19 . 935433543 pd — p13s+22435+3¢d jg Jarger than Y in each case since
d>2,5 > 1,50 we can take Y = 21357223s+3d,

By (3.2), we have
exp{—Ylog Ay ---log A;log By} < 424N7]qC(P) }U/N,
that is
log |g.(P) !, < NYlog Ag - - - log A, log By + 48N®log 2. (3.4)
By [55, Proposition 4.1], we have Ch(yx) > 1/dand { > 1, so

logAk S gh(]’lk), k = 1/' T,

log Ay ---log A, <d " "R(S).
Notice that the both sides are 1 when r = 0. On the other hand, since
h(10) = h(yw) < 24N”log?2,
we have
log Ap < 24N’ log 2.
For By, we set B* = max{|b1|,---,|b,|} if r > 1, and B* = 0if r = 0. By [55,
Corollary 4.2 and Proposition 6.1] we have
B* < 2dr*’Th(W(P)) 35)
< 2dr¥7(2sN®log |g. 1 (P) | + 94sN®log N), .

SO
By < 2dr¥7(2sN®1og |q. ' (P) |, + 94sN®log N).

We write
§ = 4dsr2r§N8,

B = 188dsr”’{N®log N = 47axlog N,
Ci =aNYlogAp---logA,,
Cy = 48aN®log2 + B.
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Hence, inequalities and yield

alog |9¢(P) " w + B < Crlog(alog|ge(P) " fw + B) + Ca-

By Lemma we obtain
alog |QC(P)71|W + B <2(Clog C1 + Cy).

Hence,
log |q¢(P) ' < 2a7'Cylog Cy 4+ a1 (2C2 — B),

log [j(P)|w < 1log2|g:(P) ™| < 2a71Cylog Cy +a~1(2C, — B) +1og?2,

so we have
h(j(P)) < 2sa'Cylog Cy +sa~1(2C; — B) +slog?2.

Next we bound each term on the right-hand side:

2sa~1Cy log C; =2sNYlog Ap- - -log A, log(4dsr2r§N9Ylog Ag---logAy)
< 48log?2-d"sr ' N¥YR(S)log(96log2 - d~"1sr¥ 7 FIN16YR(S))
< 39d "sr* T"NBYR(S) log(d " sr¥ T FINTOYR(S)),

here we use the fact that 48log2 x log(96log2) < 140 < 5log(d~"*1Y); we also

have
sa1(2C, — B) +slog2 = 961log?2 - sN® 4 47slog N + slog 2

< 98log2 - sN®.
After replacing d—5Y = 2135+22425+3¢4 by ¥, we have

h(j(P)) < 40dsr* " N®YR(S) log(d*sr* *N'®YR(S)).

We will use the bound ¢ < 23(log d)? subsequently. If d = 2,

log6)3 log, 6)3
g:( f; > g22 ) (logd)® < 2*(logd)?;
if d > 3, then

IA
VN

—
% |5
’5'00
Q9 | &

w
N———
w

< 4809(logd)®
< 2B(logd)3.

By Lemma and Lemma we have
wk 1 -1 /
R(S) < TWG%IDD |D\Hlog/\/}</Q(U),

vES
vfoo

wi < 24%,
logR(S) < log(%) +dlog|D| + slog(dl)
< 2logd +dlog|D| + slog(dl).

68



3.2. INTEGRAL POINTS ON MODULAR CURVES

We have d < 2s and logs < s/2. Then we have

log Y = (13s +22)log2 + (25 + 3) logd + dlog ¢
< (155 +25)log2 + (2s + 3) logs + dlog ¢
<285+ (s+2)s+ s
< 328%¢

and

log(d?sr* " TIN'®YR(S)) < 2logd + 4slogs + 13slog2 + 3sloglogd + 161og N + log Y
+2logd + dlog |D| + slog(d¢)
< 25+ 25 4 10s + 25> + 16log N + 325*¢ + 25 + 2slog | D| + s*/
< 8N + 2slog |D| + 51s%¢
< 61s*(Nlog|D|
< 2%6*N/log |D|.

Hence combining with Lemma we have

h(j(P)) < 2°-ds* 1Z"NBYR(S) log(d*sr* " TIN6YR(S))

265415  125+4 3r_25—1 a8 yd WK 1 -1
< 2 P log d) 5N s (og D) /1D T TIog Asa(o)

veS
vfco

- (2%s*N/log | D|)
— 226s+20d25+4(1 d)3r 25+1N9£d+1 1 (1 D )d D 1 N )
0og 5 wK(d—l)dfl Og’ ’ ’ ’H 0og K/Q<U

veS
Voo

N N (3.6)
Next we deal with the general case. Set K = K- Q({n) = K({n). Let S be the set
consisting of the extensions of the places from S to K, that is,

S~:{5€Mlzzz7|v,v€S}.

Then P € Xr(Og,j). Putd = [K: Q],5 = |S|, # = 5 — 1, and let D be the absolute
discriminant of K.

LEMMA 3.2.5.
N—-¢(N)>4

§<s@(N),
d <dg(N),
wg < 24°¢(N)?,
D] < NN |D|#Y,

@(N)
[Tlog Vi o(v) < 4™ | TTlog Nicsq(v) ,
Ufg Ufs
V{00 V10

Proof. The first three inequalities come directly from the definition of K and S and
N > 6 has at least two prime factors. The fourth inequality comes from w g < 242 <
2d%p(N)>2.
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Let Dy /K be the relative discriminant of K /K. We have
D= NK/Q(DE/K)D[K:K]'

We denote by Ok and Oy the ring of integers of K and K, respectively. Since K =
K({n), we have
OK C OK(éN) C OK

Note that the absolute value of the discriminant of the polynomial x¥ — 1is NV, we
obtain
Dg,xINY,
SO
[Nk /(Dg )l < NN
Hence, N
|D| < NN|D|?(N),

Notice that K/K is Galois. LNet v be a non-Archimedean place of K, and let
v1,...,0q be all its extensions to K with residue degree f over K. Then gf < [K :

K] < ¢(N), which implies glog, f < gf < @(N), ie. f& < 2¢(N). Note that
2log Ni/q(v) > 1and Ny o (vx) = Ni/q(v)f for1 <k < g, ¢ < ¢(N), we have

8
[Tlog Ng o (ve) < 27N (log Ni/q(v))$
k=1

< 290 (21og Nig/q(v))?
< 49(N) (logNK/Q(v))¢(N).

Hence
#(N)

[Tlog N q(v) < 4™ [ TTlog Ni/q(v)

veS vES
vfoo ofeo

Combine the lemma above with the bound (3.6), we have

; § 5 737 525 I 1 N
h(j(P)) < 2265420254 (Jog 4)%7 5> +1N9£d+1wkm(log |D|)4\/|D| Hlog/\/}z/Q(v)
vES

vfoo
< 22854)(N)+21d25(p(N)+6 (10gdqo(N))35(p(N)SZSq)(N)+1¢(N)4S(p(N)+7N9£dq)(N)+1A(N)
< 2285Nd25N (log dN)3SNSZSNN4SN£dNA(N)
< (2MdsN?)*N(log dN)>N¢INA(N).

This completets the proof of Theorem when A # 1.

A=1

In this subsection, we keep the assumptions as last subsection and follow the idea
of [55, Section 8]. For the convenience of readers, I illustrate them here: N is not a
prime power, I is a congruence subgroup of level N with v, (I") > 3, and as before,
firstly, we will assume that Q({n) C K and S C Mk containing all infinity places,
w € S. Let P € Qr N Xp(Os, ) with |g:(P)|» < 107N and ¢ a cusp, and W, 7y, are
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those in Lemma that is, W is a modular unit on Xr which is integral over Z[j],
and v, € Q({n) such that W(P) is a unit of Og

Iy YW (P) = 1| < 4%V |g.(P)|Y/N,

h(7s) < 24N log?2.

We further assume that A = y,'W(P) = 1.
In the following, we view W as a function of 4.

LEMMA 3.2.6. There exists an integer-valued function f with respect to qc and A{, A5, A5 - - - €

Q({n) such that the following identity holds in v-adic sense:

W -
tog ") — a7 f(qe)i + Y Agql/
Yw k=1
and
A<, = k|1 if v is finite,
KT 48NS(k+ N) i v is infinite,

and Ay, # 0 for some k < N 10 1 particular, for every k > 1, we have
h(Af) < log(48N7 + 48kN°®) + logk.

Proof. Firstly, we show that for any U = up, O is an orbit of the action of I' on Ay,
there exists f and an integer-valued function f with respect to gc and A{, A5, A§ - - €
Q(¢n) such that

u e
tog — ) = 2fu(ga)ic+ Y ALt
YO,cqc e k=1
and
. k|1 if v is finite,
|A LI|U < 2 . e e e s
24N*(k+ N) if v is infinite,

If so, when W = (©rdeVy —OrdU

10gwr§qC) = 27(fu(qc)OrdcV — fy(qc)OrdcU)i Z AuOrdcV — /\,C(,VOrdCU)qlé/N
w k=1

=27f(qo)i+ Y AL/,
k=1

where fiy and fy, Arr and Ay y are functions and constants for U and V respectively
and

f(qc) = fu(qe)Ord.V — fv(q.)Ord U,
)\Ii - /\]i,uordcv - /\]irvordcu
Hence, if v is finite,
|Aflo < max{]/\,‘;uOrdCV\v, |Ai,VOrdCU|U}
= ’k‘zjll
since |Ord.V|,, |Ord U], < 1; and if v is infinite,
[Aflo < A% yord: V], + Mi/vordcll\v
= 48N°®(k + N),
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since |Ord.V|,, |Ord.U|, < N* by Proposition (3). In this case,
1
h(A}) = PIE)) Y. [QEN)o: Qo]log™ [Aflo
PN vemgey
< log(48N7 + 48N°k) + Z [Q(IN)o : Qo] log™ k71,

0
UEMQ(QN)

?(N)

< log(48N” + 48N°k) + h(k™1)
= log(48N” + 48N°k) + log k.

We will prove our assertion. By definition, we have

U(qcfr?icu — H H (1 o qzeraleZm'az)lZN H(l o q?Jrlfaleme'@)lZN‘

r)’(’),c‘]cT aco ang&O n=0
Hence
U(qc) .
log 7175& = 27f(qc)i
YO,c4c «
+ Y ¥ 12Nlog(l—gitme? @) + Y~ 12Nlog(1 — it e 272),
acO n=0 n=0
n—+ax 750

where by default f(g.) is always equal to 0 if v is finite. Applying the Taylor expan-
sion of the logarithm function to the right-hand side of the above formula, we obtain

U(qc)

OrdcU *

he
YO,c4c
For a fixed nonnegative integer n(where we assume n > 0, if a; = 0), write

log(1 —gtme?™) = 3 " age M.
k=1

the desire formula for log

An immediate verification shows that

gl < lk|;1 if v is finite,
=1 if v is infinite.

Same estimates hold for the coefficients of the g-series for log(1 — g T~ "e=27in),

For each a € O, the number of coefficients in the g-series for log(1 — g/ " e?7%2)
which may contribute to A} (those with 0 < n < k/N) is at most k/N + 1, and
the same true for the g-series for log(1 — g/ t! =% ¢~2mia2
follows by summation.

Finally, we will show that A{ # 0 for some k < N 10. Since W is not a constant,
there must exist some A; # 0. Since Ord.W = 0, then by Corollary we
have W(c) = 7y, then f(gc(c)) = 0. We extend the additive valuation Ord, from

the field K(Xr) to the field of formal power series K((gL/")). Then Ord.qt/" = 1,
Ord gk/N = kﬁc < k, and min{k | A{ # 0}};\; = Ord.(—27f(4c)i + log W /7) <

Ord.(log W/ vw) = Orde(W /7, — 1). The latter quantity is bounded by the degree
of W/ — 1, which is equal to the degree of W.
The degree of W is equal to 1/2)"|Ord,,W|, here the sum runs through all the
Co

). The bound for |A{ ;|» now

cusps of Xr. From Proposition 3.1.17 (3), for W = U, |Ord,,W| < N*%; for W =
UOrdeVy—0rdU 10rd, W| < 2N®. Notice that the number of cusps is | My /G|, see
section 3, which is bounded by N2. Hence we get the result. O
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Proposition 3.2.7. For P € Q4 such that W(P) = vy, we have
log [qc(P) | < No(N)log(48N% + 48N') + Nlog(96N®(N' + N +1)).
Proof. Let n be the smallest k such that Ay # 0. Thenn < N 10 We assume that
19:(P)]» < 107N, otherwise, log|g.(P)|;' < Nlog10, there is nothing to prove.
Since W(P) = 4, it follows from last lemma that 27tf(q.(P))i + Y A¢qe(P)*/N = 0.
k=1
Suppose that f(g.(P)) = 0. Then |ASqc(P)¥N|, = | ¥ Afqc(P)¥N|,. On the
1

k=n+
one hand, we have

‘ Z /\iQC(P)k/N‘w < Z ‘Ai’v’qC(P)‘IZ(U/N
k=n+1 k=n+1

< Y 48NO(N ) lac(P) ™
k=n+1
g (PN g (p)lg N G
1- ]qC(P)\}U/N 1—|gc(P) zlu/N
< 48N®(n + N +11/10) - 10/9|g.(P)|{ VN

< 96N®(n+ N +1)|g.(P) |V,

=48N°(n+ N +1+

On the other hand, using Liouville’s inequality, we obtain
IAS | > e~ QeI > (481 N7 + 481 N®)—¢(N),
Then we have

96N (11 + N +1)[qc(P)|5 VN < |qe(P) [/ N (48nN7 + 48n2N®) o),

SO

log |g:(P) |, < No(N)log(48N%® 4 48N') 4+ Nlog(96N®(N™ + N +1)).

Suppose that f(g.(P)) # 0. Then27 < | OZQ: Afqe(P)K/N|y < 96N®(n+ N)|qe(P)|2/N
k=n
by inequality [3.7] Then we obtain

N N
log |9:(P) o < - log(2m) + o log(96N° (N + N))
< Nlog(96N°(N'’ 4+ N))
m

For general number field K, we set K = K({x), and § as before. With the propo-
sition above and N > 6, we have

h(j(P)) < 8(log |9c(P) | +log 2)
< sN(N¢(N)log(48N?® + 48N') + Nlog(96N®(N' + N + 1)) + log2)
< sN®-2log(192N2°)
< 58sN°log(N),

which is obviously better than the result in Theorem
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3.3 Integral Points on X;(p)

Theorem 3.3.1. Let p be a prime number other than 2,3,5,7,13, K be a number field, and
S C Mgk be a finite set containing all archimedean places. Then for P € Xo(p)(Os, j), we

have - ,

h(j(P)) < '8P C(K, )7,
where C(K, S) can be effectively determined in terms of K and S. More explicitly, C(K,S)
can be chose as

C(K,S) = 2295d955256d|D\ (log (|D| + 1))d HlogNK/Q(v),
vES
vfoo

where d = [K : Q], D is the absolute discriminant of K, s = |S|, £ is the maximal prime q
such that there exists v € S with v|q.

Let T be the subgroup of T'y(p) defined as follows: set A = {a € F; | a'? =1},
and

f:{[i Z} El"o(p)\amodpeA}. (3.8)

Itis not hard to see that the curve Xy and the natural morphisms X; (p) — X5 5 Xo(p)
are defined over Q.

-1
Proposition 3.3.2. 1. We have deg t < pT

2. When p ¢ {2,3,5,7,13}, the curve Xy has at least 3 cusps.
3. The morphism Tt is étale.

Proof. Set T the image of I in SL,(IF,), then we have

degr = [To(p) : T] = [ST2(F,) : T) = plp — 1)/ (pla]) < P52

The second assertion is proved in [5, page 84].
About the third assertion, it is only proved in [5] that 7t is étale outside the cusps.

In fact, 77 is étale at the cusps as well. Indeed, the j-map X(p) 5 IP! has ramification
index p at every cusp. Hence 1 and p are the only possible ramification indices for 7.
Since deg 7t < (p —1)/2 < p, the ramification indices at the cusps are all 1. ]

Corollary 3.3.3. Let K be a number field, P € Xo(p)(K) and P € =" (P). Then
_ —1
K:K] < pT’ (3.9)
[Nk/a(Dg )| < p* =178, (3.10)
where K = K(P), the residue field of P, and d = [K : Q).
Proof. It follows from Proposition and the formula
degm = Z [K(Q) : K]
Qen1(P)
that _
[K:K]<degm < (p—1)/2.
We know that the modular curve X;(p) has good reductions outside p by Igusa’s
Theorem, see [22, Section 8.6]. Now by Proposition X5 also admits good re-
duction outside p. Combining this with Proposition 3.3.2) Lemma [1.5.6{and the fact
that [K(X5) : K(Xo(p))] = degm < pT_l, we apply Lemma|[l.52(with T = {g: q <
(p—1)/2,qis prime} U {p}, we obtain (3.10). O
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3.3. INTEGRAL POINTS ON Xy (P)

3.3.1 Calculations

For a number field K, and a finite subset S C Mk containing all infinite places, we
putd = [K : Q] and s = |S|. Let Ok be the ring of integers of K. We define the
following quantity

#(N)

Ao(N) := /NN D|#(N) (1og(N™N|D|*™))) 4N | T logNk/q(v)

veS
vfco

as a function of N € IN*, where D is the absolute discriminant of K, ¢(N) is the
Euler’s totient function, and the norm N ,q(v) of a place v, by definition, is equal
to |Ok /p»| when v is finite and py, is its corresponding prime ideal, and is set to be 1
if v is infinite.

With these notations above, the main tool to prove Theorem 3.3.1]are Chevalley-
Weil Principle, Theorem and Theorem 3.2.2}

Proof. Recall the congruence subgroup I' C T(p) defined in subsection ie.

f:{[z Z] €To(p) |amod p € A},
where A = {a € FF; : a'> = 1}, and the natural map 77 : Xz — Xo(p). For any P €

Xo(p)(Os, j), there exist a finite extension K of K and P € Xg(K) such that 7r(P) = P.
For a non-constant morphism between projective curves, it’s always dominant and
finite, so 71(Xgz) = Xo(p). Obviously, h(j(P)) = h(j(P)), so it’s sufficient to bound
h(j(P)). Hence we consider the points in X3(0Oyg,j), where

S = {v € Mg : v|w for some w € S}.

By Proposition|3.3.2) we know that X; has at least three cusps.
_ Toapply Theorem 1| for h(j(P )) we should bound some invariants of K and
S. We fix some notatlons before proceeding with the proof, we set

p—1

Ao =1/ (2p)2%| D|P~1(log((2p) 2| D[P~ 1))4r=1) x Hlog/\/g/@(v) ,
veS
vfoo

32 (l’*sl) | ‘ le

D*:=p

(p-1)2
2

A(p) ==/ @p) 1| D* [P (log((2p) P~V D* 712" x | [Tlog N/ ()

veS
vfoo

where d := [K : Q], and D is the absolute discriminant of K.
Follow the idea of [55]. Let § = |S|, then 5 < [K : K]s < P s and d < dp
For the absolute discriminant D of K, we have
ID| = |NK/Q(DIZ/K)HD|[K:K]
< p* D) E

= D*.
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Now let w be a non-Archimedean place of K, and vy, ..., v, be all its extensions
to K with residue degrees fi, ..., fi respectively over K. Then f; +--- + f,, < [K

P—l . . . p—l

K] < T which implies log, fi + --- +1log, fu < fi+ -+ fu < , 1e.

- 2
fiooifm < 2’7 S1nce/\/K/Q( vr) = Ni/o(w)f for 1 < k < m, we have
-1
[TlogNgo(v) <2 (log Ni/q(w)) = .
v|w
Hence
p-1
2
L
HlogNIZ/Q(U) 7 [ [Tlog Nk/q(v) ,
ves ves
vfoo vfoo
and
p—1
Ao = \/(2p)2¥|D|r=1 (log((2p)*?| D[P~ 1))7r=1 x [Tlog Nz o (0)
veS
vfco
2 12
</ (2p) =D |D*[p= (log((2p) PP~V D* [P 2 w222
(p-1?
2
x | TTlog Nk/q(v)
vES
vfoo
_1\2
=23 A(p).
By Theorem [3.2.T) we have

h(j(P)) = h(j(P))
< (Cds(2p)?)*F (log(2dp))*F (2 Ay
2 (Cds(p — 1)2p2) 277D (log dp(p — 1)) ¥ =D vV A (p)

where / is the maximal prime such that there exists v € S with v|/.
This bound can be made clearer. Indeed, we have the inequalities

<25(

D* < ed2P3/81°gp|D|p/Z,

A(p) < P8P (20| D) - (Pp*log p + p*log |D|)¥/2 x | T]log Nq(v)
VES
v)(oo

< e Vosr (21| D))” - (dp°/210g(ID| + 1)) x | T log Niso(©)

vES
vfoo
e
< 77087 | (@ log(|D| +1))?|D| [T log Nk (0)
veS
vfoo

= ¢75P'lo8rCy (K, S)P,
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3.3. INTEGRAL POINTS ON Xy (P)

and

h(j(P)) < 257 (Cdsp*)*¥ (log d + 2log p)>¥ ¢4r° 7P logrCy (K, )V
< 7P logp 5P (Cds) 2P (24) 3 ¢4P° Cy (K, S )V

< #Hlosp | 95 C2%5% 04| D| (log (D] +1))* [ [ log N /q ()
veS
vfoo

= 7' losPC (K, S)V.

Hence we get Theorem if we take C = 2!4 by Theoremm
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Part 11

Singular Moduli
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Chapter 4

Complex Multiplication

There is nothing new in this Chapter, but it provides the background for the study
of singular moduli in the next chapter. The main reference is [59, Chapter II]. For
elliptic curves over C, we refer to [60, Chapter VI] or [22, Section 1.3, Section 1.4].
Because of the aim of this chapter, we will just give sufficient results for the next
chapter.

4.1 CM Elliptic Curves over C

For a lattice A C C, we denote by E, the corresponding elliptic curve. For T € H,
we denote Ar = (1,1), and E; = E A, - For a homomorphism of elliptic curves (over
C), we mean a morphism of algebraic varieties which is also a homomorphism of
groups. For elliptic curves E5 and E/, we have

Hom(Ex, Epn) ~{A € C|AA € A'}.

Theorem 4.1.1. Let E be an elliptic curve over C. Then exactly one of the following state-
ments is true:

(1) End(E) ~ Z.
E)

(2) End(E) ~ O, where O is isomorphic to an order in some imaginary quadratic field

Q(v-D)/Q, D> 1.

Proof. Let E ~ C/A with A = (w1, wy), w1/wy € H. We have End(E) = {A € C |
Awq, Awy € A}. If End(E) # Z, there exists « € End(E) \ Z such that

xwq = mwq + nwy,

AWy = 1wy + swy,

for some m,n,r,s € Z. Let T = w1/ wy, s0O
XT = mT +n,

X =7rT+S.

Sincet € Rand r # 0,s0a ¢ R, and
124 (s —m)T —n =0,

Hence r7 is integral over Z of degree 2, K = Q(7) is a imaginary quadratic field,
and Q(«) = Q(7), « € Ok. We have that End(E) C Ok and End(E) ®,Q = K, so
End(E) is an order in K. O
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CHAPTER 4. COMPLEX MULTIPLICATION

Definition 4.1.2. An elliptic curve E /C is said to have complex multiplication if End(E) ®z Q
is an imaginary quadratic field when embedded into C. We will call E a CM elliptic curve
for abbreviation.

Remark. (1) From the theorem above, we have bijections

{CM elliptic curves over C} <>g1,(z) \{T € H | T is algebraic of degree 2}
« {1 € F | tisalgebraic of degree 2}

where F is the standard fundamental domain.

Proof. Tt is sufficient to show the first bijection. If E; = C/A. with A = (7,1)
is of CM, then from proof of the theorem above, T is algebraic of degree 2.
Hence the map is well-defined and injective. Conversely, for every T € H
algebraic of degree 2, suppose that at’> + bt +c = 0witha,b,c € Z,a # 0. Let
& = at. Then

AT = at’ = —bT —c € Ay,
a=at € A;.
Hence a« € End(E;) \ Z, E; is a CM elliptic curve. O

(2) For an order O in some imaginary quadratic field K, we set
ELL(O) := {elliptic curve E/C with End(E) ~ O}/ ~¢,

here quotient by ~¢ means taking isomorphic class over C. Notice that, for a lattice
N, Ep € ELL(Ok) ifand only if Ok A = A.

For a CM elliptic curve E, since End(E) is an order of an imaginary quadratic
field, then there are two ways to embed the order End(E) into C. We can pin down
one of these embeddings in a canonical way.

Proposition 4.1.3. Let E/C be an elliptic curve with complex multiplication by the ring O.
Then there exists a unique isomorphism

[[]: O — End(E)
such that for any differential form w € H°(E,Qg) on E, and &« € O
[a]*w = aw.
We say in this case that the pair (E, [-]) is normalized.
Proof. Let A C C be a lattice such that E ~ E5. Then
O={aecC|aAC A}
Set [a] : EA — E such that
c.c

EA *>EA
[#]

commutes, where 77 : C — E, is the quotient map, and ¢,(z) = az for any z € C.
We claim that [a]*w = & - w for any w € H(EA, Qf, ). Indeed,

™ a]'w = gpmiw = antw = 7 (aw),

and 7* : HY(Ep, Qp, ) — H%(C, Q¢) is injective. Hence we have our claim. O
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Corollary 4.1.4. Let (Eq,[-]1) and (Ey, [-]2) be normalized elliptic curves with complex
multiplication by O, and let ¢ : E; — E, be an isogeny. Then

polali =[a20¢
foranya € O.
Proof. Let A1, A2 C C be lattices such that E; ~ Ex, and E; ~ E,,. We can lift

¢ : En, — Epn,toamap ¢p: C — C,z — Bz, ie. the diagram

c " ¢

EA] TEAZ

commutes. Similarly, let @1, Ps2 be the lifts of [a], [a]o. Then ¢p o ¢p1 = ¢u2 0 Pp,
and ¢ o [a]; = [a]p 0 ¢. O

4.2 Integrality of j

For a positive integer n, we define S,,, D, C M(Z) as

Dy ::{(i Z) EMZ(Z)|ad—bc:n},

Sn;:{<g Z)GMZ(Z)]ad:n,d>O,O§b<d}.

We have left SL,(Z)-action on D, by multiplication on left, and obviously

#5, =) d=oq(n).
dn

Proposition 4.2.1. For n € INT, S, is a complete set of orbits of the left SL,(Z)-action on
Dy, i.e. the natural map Sy — (s, (z)\Dn) is bijective.

Proof. At first, we prove that the map is injective. If #; = (%1 Zl> S = <%2 Zz) €
1 2

S, such that there exists v € SL,(Z) with a1 = yay, then

a1 (ﬂldz axby — a1by

may =y ond ) € SL,(Z).

Hence n | (aby — a1bp) and a1d, = apd; = +n. Notice that ay,a3,d1,dy > 0 and
aidy = n, then a; = a,,dy = dp. Since |b1 — b2| < di =dp,and n ‘ al(bl — bz) <
a1d1 = n, so by = by. Thatis a1 = ay.

Fora = <z Z) € D, such that ¢ # 0, we will prove that there exists y € SLy(Z)
such that ya € S;,. We can reduct to the case where ¢ = 0 and a,d > 0. Indeed, let

- Z with ged(p,q) = 1, and let s,# € Z be such that ps +qr = 1. We set

c

v = (—rp ;) € SLy(Z), then y'a = (W E)’— e —b;p—:—djlq)' Then we replace a by

v« and multiply by —I if necessary. Let 7, = Lm

0 1> € SLy(Z) for m € Z. Then
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Yk = <g b —l—ddm>. Hence, there exists an m € Z such that 0 < b+dm < d, i.e.
Tme € Sy. That proves the surjectivity. O

Definition 4.2.2. For n € INT, the modular polynomial of order n is defined to be

@, (X) = [[(X—joa) € C[jX].

QES,

We will write sy, (t), m =1, - - ,#S, to denote the m-th elementary symmetric function of
the (jowa)(T), i.e.

#S,
D, (X) = X*n Y (—1)"s, (1) XP .
m=1
Remark. (1) For1 < m < #S,, s, € CJj], i.e. s, € Ao(SL2(Z)) and is holomorphic

on H.
Proof. Theset {joa | a € S,} has a SL,(Z)-action on right:

(joa)y:=jo(ay)

for v € SLy(Z) and & € S,,. It is well-defined, since there uniquely exists 7/ €
SLy(Z) such that y'ary € S,, by Proposition[4.2.1] which implies that (joa)y =
jo (7'a7y). Forany ¢ € SLy(Z), y induces a permutation on {joa | « € S, }.
Since s,, is the m-th polynomial in terms of jow, & € Sy, 50 55, (T) = sy (7y7T) for
any y € SLy(Z), and s,, € Ao(SL2(Z)).

For any o = g Z) € Sy, since a(t) = (at +b)/d, so j o a is holomorphic on
H. Hence s, is holomorphic on H. O

(2) We have deg @, (X) =#S, =o1(n) = Y d.
dln

LEMMA 4.2.3. Letn € N and 1 < m < #S,,. Then s,, € Z[j|. In particular, the Fourier
coefficients ay in the q-expansion

(e ¢]

sm(t) = Y ag*

——N

are integers, and ®, € Z[j, X].

Proof. By Lemma [3.1.13) it is sufficient to show that the gy € Z. Let a = (g Z) €

Sn, j(T) = g1 f ckgt. Then
k=0

ab a?/n

qoa(t) =gy -q""",
joa(t) = g;abqfaz/n + i declab/nqkaz/n.
k=0
Theset {joa |a € S, } has a Gal(Q({,)/Q)-action on the left:

o(joa)(t) == 0(Z;)g " /" + Y ko (Z) gk,
k=0
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for o € Gal(Q(n)/Q). It is well-defined. Indeed, for any ¢ € Gal(Q({,)/Q),

there exists G(0) € (Z/nZ)* such that 0({,) = 789 We view G(o) € Z such
that 0 < G(0)b < d and let B, = <g G(g)b
joBs € {joa | @ € S,}. Ttis obviously a group action on the left. Since any o €
Gal(Q(Zn)/Q) isa permutationon {joa | « € S, },s00(s) = sy. Hence the Fourier
coefficients a; € Q. Notice that they are also Z[(,], so ay € QN Z[,] = Z. O

> € S,. Then obviously o(joa) =

Corollary 4.2.4. Let p € My(Z) with detp € IN*. Then j o B is integral over Zj).

Proof. Let n = det . By Proposition 4.2.1], there exists ¥ € SLy(Z) such that v =
& € S;,80jop = joa. By Lemma ®,(X) € Z[j][X] and it is monic with
P, (joa)=0. O

We are ready to prove the integrality of j(E) for an elliptic curve E with CM.
Theorem 4.2.5. Let E be an elliptic over C with CM. Then j(E) is an algebraic integer.

Proof. For n € INT which is not a square, by Lemma there exists F,(X,Y) €
Z[X,Y]suchthat F,(j, X) = ®,(X). We claim that F, (X, X) is a non-zero polynomial

with leading coefficient —1 or 1. To show our claim, let &« = <g Z € S,.. Then
n=uad,a+#d,and

) . 1 > 2

j(T) —joa(t) = - + chq [l Y ey

The leading coefficient is a root of unity, i.e either 1 if a> < n or —,;*". Let F,(j,j) =
I[1(G—joa) =bmjM+---+by € Z[j]. Notice that by, is the product of leading

aES,
coefficients of each j — j o a, then by € Z is a root of unity, i.e. by = £1.

Let T € H be such that E ~ C/(7,1), and d € N be a square-free integer such
that End(E) ®7z Q ~ Q(v/—d) = Q(7). Set K = Q(1).
If End(E) = Ok, there exists « € O such that n := Ny ,q(«) > 01is not a square

(eg. a=+v—difd #1landa =i+1ifd =1). Lety = <Z b) € M;(Z) be such

()-()

Since Nx,o(a) = dety = n, so v € D,. By Proposition and Lemma
j o is integral over Z[j], i.e. ®,(joy) = F,(j,jo ) = 0. Notice that y(t) = T, so
F.(j(7),j(v(7))) = F.(j(7),j(T)) = 0. Hence j(t) = j(E) is an algebraic integer.

In general case, End(E) ~ O with O an order in K. Let wi, wy € Ok such
that wy/wp, € Hand E ~ C/{wy,ws). Such w; and w; exist, since E ~ C/(7,1)
with r72 +st+t =0and r,5,t € Z,r # 0,s0 r7,r € O C Ok and we can take
w1 = rT,wy = r. Let T € H such that Og = (7/,1). Then

(@) =)

where = ; Z) € MZ(Z). Let n = det p which is a positive integer. Then € D,
J(E) = j(w1/w2) = j(B(T")) and F,(j(7’),j(B(7"))) = 0. Since j(7') integral over Z
from the discussion above, then so is j(E). O
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4.3 Group Actionson ELL(O)

Recall that for an order O in a number field K, an fractional O-ideal, i.e finitely
generated sub-O-module of K, a is said to be proper if O = {x € K | xa C a}, see
[20, Page 122]. We say that a invertible if it is locally free O-module, see [20, Page
122] or [46, Page 74]. This is equivalent to say that there exist another fractional
O-ideal b such that ab = O, and such b is denoted by a1

We will denote by Z(O) the group of invertible fractional O-ideals, and by C1(O)
is the class group of O, or the Picard group of O, see [46| Definition 1.12.5].

LEMMA 4.3.1 ([20], Lemma 7.5). Let K = Q(1) be a quadratic field, and aX? + bX +c €
Z[X] be the minimal polynomial of T with gcd(a,b,c) = 1. Then Z + Z7 is a proper
fraction ideal for the order Z. + Z 7 in K.

Proof. Let O = Z + Z - at. Obviously, O is an order of K and OQ = K. Set a =
Z +Z7. Forany p = m+nt € K, Ba C aifand only if m,n € Z and

b
ﬁrzmt+nr2:—%+(—7n+m)T€a,

i.e. alcnand albn. Since ged(a, b, ¢) = 1, this is also equivalent to that m,n € Z and
aln,ie. p € O.Hence, O = {x € K| xa C a}. O

Proposition 4.3.2 ([20], Proposition 7.4). Let O be an order in a quadratic field K, and let
a be a fractional O-ideal. Then a is proper if and only if a is invertible O-module. In this
case, a C C is a lattice.

Proof. Since a is an O-module, so O C {x € K | xa C a}. If a is invertible, then for
any B € K such that fa C a, we have BO = Baa™! Caa~! = 0,508 € O.

Conversely, if a C K is a proper fractional O-ideal, then a C is a lattice, i.e. a free
Z-module of rank 2 and Ra = C. Indeed, notice that aa C O for some a € Z, and
O is a free Z-module of rank 2, so a is a free Z-module whose rank is less than 2.
Also, since «O C a for any non-zero & € a, we conclude that the rank of a ia more
than 2, hence exactly 2 and C = aRO C Ra C C. Leta = Za +Zp = a(Z + Z7),
where T = B/a, and aX? + bX + ¢ € Z[X] be the minimal polynomial of T with
gcd(a, b, c) = 1. Then by Lemma we have

O={xeK|xaCa}
={xeK|x(Z+2Z7) CZ+Z71}
=Z+Z-art.

We consider @ = ®(Z + Z7), it is easy to see that it is also proper fractional O-ideal.
We have

aaa = and(Z + 27t + Z7T + Z7T)
= Nxo@)(aZ+Z -at+Z - (—b) + Zc)
= Nk/Q(Z +Z-at)
= Nk/o(@)O,

which means that a is invertible. O

Remark. (1) In the proof, we have a C C is a lattice for an invertible fractional O-
module.
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Proposition 4.3.3. Keep the notations as Proposition We have a well-defined and
bijective map
Cl(O) = ELL(O),

[a] — E,,
where the invertible ideal a C C is viewed as a lattice. In particular, the class number
Cx = #ELL(Ok).

Proof. For any invertible ideal a, we have

End(E;) = {a € C |aa C a}
={a€K|aaCa}
— 0,

ie. E; € ELL(O). Obviously, E; ~ E, for any ¢ € K*. Hence the map is well
defined.

The map is surjective: every E € ELL(O) is isomorphic to E; for some T € K¥,
and {a« € K| aAr C Ar} = O. Hence A; C K is a proper fractional O-ideal. That
proves the surjectivity of the map.

The map is injective: for any invertible O-ideals a, b, E; ~ E; if and only if there
exist ¢ € C* such that a = cb, that is exactly means that [a] = [b] € C1(O). O

Via this bijection, the multiplication on C1(O) defines an action on ELL(O).

Proposition&Definition 4.3.4. Keep the notations as Proposition We have a C1(O)-
action on ELL(O) as following:
Cl(O) x ELL(O) = ELL(O)
([a], EA) — Ea—lA.

This action is free and transitive.

Proof. The bijection in Proposition will induce the following commutative dia-
gram:

Cl(O) x ELL(O) — ELL(O)

l |

Cl(0) x CL(0) Cl(0),

(a,b) — a tb.

Obviously, the Cl(O)-action on itself is free and transitively, then is the one on

ELL(O). O
Before going further, we set
ELLS(0) = {elliptic curve E/Q with End(E) =~ O}/ ~g,
here ~¢ means taking isomorphic classes over Q.
Proposition 4.3.5. Keep the notations as Proposition Then the natural map
ELLA(O) = ELL(O)
is a bijection.
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Proof. For an elliptic curve E with CM, by Proposition j(E) € Q. Then there
exists an elliptic curve E’/Q such that j(E’) = j(E) and E’ ~ E over C, see [60,
Proposition III.1.4 (b),(c)]. This proves the surjectivity of the map. The injectivity
also comes from [60, Proposition III.1.4 (b)]. O

Without confusion, we will always identify these two set. Hence ELL(O) has a
Gg-action on left via this bijection.

LEMMA 4.3.6. Let O be an order in a number field K, a a invertible fractional ideal of O
and M a torsion free O-module. Then the natural map

¢ :a'M — Homp(a, M)
X = (Px 1 — ax),

is an isomorphism of R-modules.

Proof. Recall thata™! = {a € Frac(R) | aa C R} and a~!M = {a € Frac(R) Qx M |
ax C M}. Then ¢ is a well-defined morphism of R-modules.

If x,y € a M such that ax = ay for any a € a, we take one & # 0. Then there
exist a € R such that ax € R. Hence aax = aay will imply that x = y, since a 1M is
also a torsion free R-module. This prove injectivity.

For surjectivity, let ¢ € Homg(a, M), and x = ¢(a)/a € Frac(R) @ M for some
0 # « € a. Then ¢(B) = Bx for any B € a. Indeed, there exists 2 € R such that
aB/a € R, so

B.
p(B) = p(E -0y = 2 P oy py
Hence we have x € a~!M and ¢(B) = Bx for any B € a. O

Proposition 4.3.7. Keep the notations as Proposition Let E € ELLGH(O) —
ELL(O), [a] € CI(O) and o € Gg. Then

o([a] - E) = [oa] - o(E) € ELL(O).

Proof. See proof of [59, Proposition 2.5]. Here we give a sketch of the proof. We have
E ~ E for some lattice A. For an invertible O-ideal a, [a] - E = E, 1, and we have
an exact sequence:

omn_A_om a 0,

where A is an m X n matrix with coefficients in O. Furthermore, we have the follow-
ing diagram:

0 —— Homp(a, A) Homo(a,C)

Homp(a, E)

0 —— Homp (0", A) —— Hom (0",C) —— Homp(O",E) ——0

0 —— Homp (O™, A) —— Homp(O",C) — Homp (O™, E) —0
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For any O-module M, we have Hom(O, M) ~ M". By Lemma and K ®¢
C =C,weget
Homp (a,A) = a A,

Homg(a,C) = a~!C = C.

Then the diagram becomes

0 0 0
0 a A C Homp(a, E)
0 A" c” E" 0
tA tA tA
0 A™ c" E™ 0

Here t4 is the transpose of the matrix of A. Hence we see that Homp(a, E) ~

Ker(E" 4 E™), which is an algebraic group defined Q.
By the snake lemma, we have

0— a'A = C — Ker(E" 2 E™) — A"/t AA™,

We view E as an elliptic curve over Q and E” — E™ a morphism over Q.

On the other hand, A"/!AA™ is discrete and C/a"'A = [a] - E is connected.
Hence

[a] - E = identity component of Ker(E" A4 E™).

Acted by 0 € Gg, we have

o([a] - E) = o(identity component of Ker(E" 4 E™))

= identity component of Ker(c(E") 74 a(E™))

=oa-0(E).

O]

Proposition 4.3.8. Keep the notations as Proposition Then there exists a homomor-
phism

uniquely characterized by the condition: for any o € Gg and E € ELL(O),

Proof. Since the action is free and transitive, so for a fixed element E € £LL(O)
and ¢ € Gk, there uniquely exists [a] € CI(O) such that ¢(E) = [a] - E. Then we
define F(c) := [a]. This map is independent of the choice of E. Consider another
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element E' € ELL(O), there exists [b] € CI(O) such that E’ = [b] - E. Then by
Proposition[4.3.7/for any ¢ € Gk and F(¢) defined as above, we have

It remains to show that F is a homomorphism. For any ¢, T € Gk, and E as above,
F(ot)-E=0(t(E)) = F(0)(F(t) - E) = (F(0)F(1)) - E,
so F(ot) = F(0)F(7) by the uniqueness. O

Remark. (1) The map F : Gx — Cl(O) is also characterized by the condition: for any
o € Gk, and lattice A C C such that E 5 is with CM,

o(j(A)) = j(F(o)7'A).

Proof. Notice that for any two lattices A and A’, Ex ~ E if and only if j(A) =
j(A"), also we have j(0(Ep)) = 0(j(EA)), then 0(Ep) = F(0) - Ep = Erg)-1a
if and only if (j(A)) = j(F(o) A). O

(2) We know that the map in the proposition will induce a homomorphism
Gal(K"/K) — C1(0),

it is natural to guess that it induces the inverse of Artin maps in some cases.

4.4 The Ring Class Fields for Imaginary Quadratic Fields

Recall that, for a number field K and an order O C K with f as its conductor, we set
T;(K) as the group of ideals which are coprime to f. The ring class group of O is the
class field for Z;(K), see [18, Page 53]. We have

Z;(K) ~ Z(0),

Cli(K) ~ Cl(0),

where Z(0O) is the group of invertible fractional O-ideals, and Cl;(K) is the ray class
group with respect to the modulus f. By global class field theory, see [46, Chapter
VI], there exists a unique Abelian extension L/K such that the Artin map

(L/K> : Cli(K) — Gal(L/K)

is an isomorphism. Such extension L/K is call the ring class field of the order O.

Theorem 4.4.1 (First Main Theorem, [60], Theorem 4.3). Let K be imaginary quadratic
field, and O C K an order with conduct §. Let E/C be an elliptic curve representing an
isomorphism class in ELL(O). Then the following statements hold:

(1) The field L = K(j(E)) is the ring class group of O.
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(2) We have

where h = #C1(O).

(3) Let Ey,- - -, Ej, bea complete set of representatives for ELL(O). Then j(Eq), - - -

is a complete set of Gg-conjugates for j(E).

(4) For every prime ideal of Ox with p [f, we have

(%) U = il ).

More generally, for any [a] € Cl;(K), we have

(£5x) 6N = i(al- ).
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Chapter 5

The Difference of Singular Moduli

In this chapter, we prove the main result of Part 2, Theorem It gives an explicit
lower bound of norm difference of two singular moduli. In particular, this implies
that the difference of two singular moduli is not a unit when their discriminants are
large.

5.1 Main theorem and general setting

Recall that a point T € H a CM-point if its corresponding elliptic curve E; over C is
a CM elliptic curve. We have known that T € H is CM if and only if 7 is algebraic
number of degree 2, see the remark of Definition[4.1.2] We call j(7) a singular mod-
ulus if T € H is CM. We have known that every singular modulus is an algebraic
integer, see Theorem We call j(7) singular unit if it is a singular modulus and
an algebraic unit.

As we said in the introduction, the main result of this part is the following theo-
rem, and we will explain notations afterwards:

Theorem 5.1.1. Let «, x be two singular moduli of discriminants A, A respectively, and

K =Q(a,x).
(1) If Ay # —3, —4and |A] > max{e>12(C(Ay)|Ax]*eM)3,10'5 - C(A4)°}, then

‘A‘l/Z
log [ Nk/q(x = )| > ——;
(2) If Ay = —4,i.e. & = 1728, and |A| > 105, then

NG
10g ‘NK/Q(X — 1728)| > T;

(3) If Ay = —3,i.e. . = 0, and |A| > 105, then

A1

log [Nk/o(x)| > 0

In this theorem, the bound is effective. Next, we will explain notations.
For a number field K, x € K, we denote N ,0(x) the absolute norm of x.
Let A be a negative integer satisfying A = 0,1 mod 4 and

Or = Z[(A+VD)/2],
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the imaginary quadratic order of discriminant A. We suppose that D is the discrimi-
nant of Q(v/A), and f = [Op : O4] is the conductor of Oy, so we have A = f2D. We
also denote the class number of the order Op by C(A), since h is used for height of
an algebraic number. For further uses, we define the modified conductor f of Op by

]?_ f, D =1mod4,
~ |2f, D=0mod4.

On the other hand, let F be the standard fundamental domain in the Poincaré
plane, that is, the open hyperbolic triangle with vertices {3,(s , and ico, together
with the geodesics [i, 4] and [Zg, ic0); here {3 = ¢2™/3 and s = ¢’"/3. Then the Klein
j-invariant j : IH — C induces a bijection

j: F—>C.

For each CM-point 7 in the standard fundamental domain F, i.e. quadratic imagi-
nary number in F, the discriminant A; of T is defined to be the discriminant of the
primitive polynomial of T over Z, it is also the discriminant of the order End(C/A~),
i.e. End(C/A¢) = Op., where A is the lattice generated by 1 and 7. Since the j-
invariant j : F — C is a bijection, we call A; the discriminant of « = j(7), also
denoted by A,.

By classical CM-theory, we know that Q(v/A¢, j(7)) is the ring class field of O, _,
?er(w(e ;Q)(\/%,j(r))/Q(\/E) is Galois and C(Ar) = [Q(VA,j(1)) : Q(VAL)] =
Q(j(1)) : QJ.

For n € N, we denote

=Y1, oo(n)=)1, nn)=)d

pln dln dln

5.2 An Estimate for C.(7,A)

Foreach T € Fand ¢ € (0,1/2), we define
Se(7,A) = {z € H | zis a imaginary quadratic number of discriminant A and |z — 7| < €},
Ce(T, A) = #5(T, A),

here # means the cardinality of a set.
Let Sp be the set of primitive positive definite forms of discriminant A, that is, a
quadratic form ax? + bxy + cy® € Sp if a,b,c € Z and

a>0, ged(a,b,c) =1, A="b*>—4ac <0
For ax? + bxy + cy* € Sp, we set

b++A
T(a,b,c) = P
Notice that v/A = i/]A|, then the map ax? + bxy + cy? + T(a,b,c) defines a bijec-
tion from Sy to the set of imaginary number on H of discriminant A.
We will prove the following theorem and corollary:

Theorem 5.2.1. Let T € Fand e € (0,1/4), then

48 +1 F 12+ 4 A1/
cgu,A)SP( NG

7 W (f>€+2>,

where
F=F(A) = max{2°@ | a < |A['/?}. (5.1)
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Corollary 5.2.2. In the set-up of Theorem assume that |A| > 10'4. Then

Ce(T,A) < F (46.488\A\1/252 log log |A|"/2 +7.752|A|*/ 2% + 2)

5.2.1 Some lemmas

We say that d € Z is a quadratic divisor of n € Z if d* | n. We denote by gcd, (m, 1)
the greatest common quadratic divisor of integers m and n.

We will use some lemmas from [7], for the reader’s convenience, we restate them
here:

LEMMA 5.2.3 ([7Z], Lemma 2.4). Let a be a positive integer and A a non-zero integer. Then
the set of b € Z. satisfying b* = Amod a consists of at most 2<(?/ 8°d(@M)+1 yesidye classes
modulo a/ ged,(a, A), where.

LEMMA 5.2.4 ([7], Lemma 2.5). Let a, 3 € R be such that « < B, and m a positive
integer. Then every residue class modulo m has at most (B — a)/m + 1 elements in the
interval [w, B].

LEMMA 5.2.5. Let T € F,and e € (0,1/4), and let ax? + bxy + cy2 € Sp be such that
|t(a,b,c) — | < e Then

A2 NG
) 5.2
2(Imtte) " 2(Imt_e) (5-2)
2a(Ret —¢) < b < 2a(Ret +¢). (5.3)
Proof. Setz = t(a,b,c), then from |z — 7| < ¢, we have
| Imz —Im 7| <¢ |Rez—Ret| <e¢,
that is,
’A|1/2 b
' o Imt| <eg, o Ret| < ¢,
so we have[5.2land 5.3 O

5.2.2 Proof of Theorem [5.2.1]

Set

IR it
I =
<2(Imr+s)’2(lmr—s)> !

b+ VA
T(a,b,c) = P
By Lemma if T(a,b,c) € Se(t,A), thena € I and b € (2a(Ret — ¢),2a(Ret +

€)).
For a fixed a, by Lemma and Lemma and w(a/ ged(a,A)) < w(a),
there are at most (4eged,(a,A) + 1) - 290+ possible b’s. Since ¢ < 1/4,ImT >

V3/2, then -2 < |A]'/2, Hence

2(Imt—¢)
Ce(T,A) <8 Y geda(a,A)-29@ 42 ¥ 2¢@)
aclnZ aclNZ
< 8F Y  gcda(a,A)+2F#(INZ).
aelnNZ
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Note that

and the length of I is

‘A‘l/z . ‘A’1/2 _ | ‘1/2 €
2(Imt—¢) 2(ImT+e) (ImTt+¢)(ImT—¢)
NG

€
V3/2(V/3/2-1/2)
— 6+2\/|A|1/2

When d > (\}i‘%, we have z(ﬁlr/;) < d?. Combine this with Lemma [5.2.4, we

have 6+2v/3 | \/ A
6+2 A A
#(IﬂdZZ) S { 3 e+1 d (\/‘17'1141/2/
0 d> e

Since A/ f? is square-free, so for a positive integer d, d* | A if and only if d | f, hence

Zd.#([ﬂdZZ) < Z d<6+2f‘A‘1/2 +1>

a2|A d|f 3 a?
1/4
dgﬁ'il;m
< 6+32\[|A|1/2 eY1/d+ Y d
A
alg(f'A‘ﬁ
6+2ﬁ01<~f)|A|1/28+ ‘ ’1/4 (f)
R -1
Again, by Lemma we have
#1INZ) < 6+2\[|A|l/2 + 1.
Hence,
6+2vV3a1(f) 1,2 A |1/4 7 6+2\[ 1/2,
A) < 8F e 7AY _— 2F A 1
(81650 s 1z+4f R44VE e AT e
AU BTN

5.2.3 Proof of Corollary

The following lemma estimate 0y (f) and o1 (f) in terms of |A|:

LEMMA 5.2.6 ([7], Lemma 2.8). For |A] > 10, we have
oo(f) < |A[%*%,
o1 (f)/f < 1.8421loglog |A|Y2.
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With this lemma, we have

48 +16v/3 o1 (f) - 48 +16+/3
3 - 3

A 1/4 B
8| | O_O(f) < 8 |A|0.442 < 8 ’A|1/2 < 1442|A|1/2

(\/5_1)1/2 (\/5_1)1/2 - (\/5_1)1/2,100.812
12443

3
With these bounds and Theorem we have Corollary

-1.8421oglog |A| < 46.4881oglog |A|,

+1.442 < 7.752

5.3 An Upper Bound for the Height of the difference of Sin-
gular Moduli

Let « = j(t),x = j(z) be two different singular moduli with 7,z € F, and A,,
A = A, be their discriminants respectively. Let K = Q(x —«), d = [K : Q], then
we have K = Q(&, x), see [25, Theorem 4.1]. Hence we can assume that d = sC(A+),
where A, is the discriminant of T and s = [K : Q(«)]. Notice that Q(a)/Q and
Q(x)/Q are Galois, so is K/Q. We suppose that Gal(K/Q) = {3, - - ,04}. For each
k, set ap = oy (a) = j(1) with 1, € F, and set x;y = ox(x) = j(zx) such that z; € H
is the nearest point to 7x among SL,(Z)z; with respect to the absolute norm. Then
a # xi for each k, and we have

1¢ 1
h(x —a) =h((x —a)™1) = Y log*® ]xk—zxk|_1+Hlog\./\/}</Q(x—oc)|, (5.4)
k=1

QU

where log™ (-) = max{1,-}.
In this section, we are going to prove that following theorem and corollary:

Theorem 5.3.1. Let « = j(T),x = j(z) be two different singular moduli with T,z € F,
and Ny, A = A, be their discriminants respectively. Let K = Q(x — ), d = [K : Q],

(1) if T #1i,lgand 0 < e < min{g'Al—a‘Z,lO_S}, then

h(x—a) < )] 4C€(Z“A) log(max{|A|,|As|}) +log(e™!) + 2log |As| — 7.783
1<k<C(Ay)

1
+ - log [Ni/q(x —a)|;

(2) ifT:iandO<e§7-10*3,then

Ce(i, A)
C(A)

1
c(a)

h(x —1728) <2 log |A| +2loge™! —9.9 + log |N,q(x — 1728)|.

We don’t discuss the case where T = (g, since the bound for this case in the
following corollary can be get directly from [7].

Corollary 5.3.2. In the setup of Theorem assume that |A| > 104,
(1) if T # i, (e, then

_ BAC(A)

AC(Ay)|A]V?
h(x—a) < d 4

1
+log( )+410g|Aa|+0.33+Hlog|./\/}</Q(x—oc)];
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(2) if T =i, then

4A A|AV? 1
— < = 9. - _ .
h(x —1728) < ) +2log CA) 2.68 + ca) log | Nk o(x —1728)|;
(3) if T = ¢, then
12A A|A|1/? 1
< —3.
h(x) < @) +3log C(a) 377—|—C(A) log [Nk/o(x)],

where A = Flogmax{|A|, |Ac|} and F is defined in[5.1|

5.3.1 Proof of Theorem [5.3.1

The following lemmas and theorems are needed.
LEMMA 5.3.3. In the set-up of Theorem
1) if Im T > 1.3, then there exist z/ € H with x = j(z") such that

|x — a| > " min{0.4|z' — 7|,0.04};

2) ifImt < 1.3 and T # i,{e, then there exist z’ € H with x = j(z') such that

|x —a| > min{5-1077,800|A,| %, 2400|A,| 2|z’ — 7|}

Proof. Combine Proposition 4.1 and Proposition 4.2 in [6]. O
Theorem 5.3.4 ([6] Theorem 1.1). In the set-up of Theorem we have

|x — | > 800max{|A|, |Ay} %

LEMMA 5.3.5. Fori # z € JF with discriminant A, we have
lj(z) — 1728| > 20000 min{|z — i|,0.01}?,

j(z) — 1728| > 2000|A| 2.

Proof. Combine Proposition 3.7 and Corollary 5.3 in [6]]. ]

We start to prove Theorem (1). Let T, zk, ak, X be as the begining of this
section. Then we have

d
Yolog v —ax|™ = Y logTlmi—al '+ ), log"|xx — a7
k=1 1<k<d 1<k<d
21 €Se (Th, ) 21 €Se (T, )

For the first sum, by Theorem each term in the sum has

log‘L |k —zxk|_1 < max{0,4log(max{|A|, |A«|}) —1og(800)} < 4log(max{|A[, |A«l}),
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so we have

Z logJr |xg — ocklfl < Z 4C: (1, A) log(max{|A|, |Axl}). (5.5)
1<k<d 1<k<C(Aq)
zkeSe(Tk,A)

For the second sum, we claim that if |z — ;| > ¢, then
| — ag| > 2400]A, | 2.
In fact, we can replace T by 7 and z’ by z; in Lemma then
|xx — x| > min{e*® - 0.4¢,5-1077,800|A, | ~*,2400| A, | ~2e}.

Notice that |A,| > 7 and e < min{alAl—‘z, 1078}, then

2400|A,| % < 800|Ay |74,

24
2400|A,| % < % 1078 <5.1077,

24
2400|A,| % < @Oos < 1410 < €*°7 - 0.4e,

so we have our claim. Hence

2
log™ |x; — ax| ! < log <|2€LD(()‘O £_1> <log(e ') +2log|A,| —7.783,
Y log" |xk— |t < d(log(e!) +21log|As| — 7.783). (5.6)
1<k<d
Zkgss(Tk/A)

Combine and the equality 5.4] we have the bound in (1).
For (2), the proof is similar as above. Since j(7) = 1728, then d = C(A) and

c(a)
Y logt|x—1728] "' = Y logt|x—1728]"'+ Y log" |xc—1728|7!
k=1 1<k<C(A) 1<k<C(A)

21 E€5:(i,A) zk€Se (i,00)
For the first sum, by Lemma[5.3.5,
log™ |x; — 1728 ! < max{0,2log|A| — log2000} < 2log |A|,

Y log" |xp —1728] 7! < 2C.(i,A) log |A|.
1<k<C(A)
ZkESg(i,A)

For the second sum, since ¢ < 7-1073, 72 > 20000 and |z — i| > ¢, we have
|x¢ — 1728|1 < 20000~ min{e, 0.01} 2 = 20000 2,

log™ |x; — 1728 ! < max{0,2loge ! —1og(20000)} < 2loge™* —9.9,

Y log" | —1728]7' < C(A)(2loge ' —9.9).
1<k<C(A)
zk¢58(i,A)

Hence, as above, we have

CS(ZIA) 1 1
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CHAPTER 5. THE DIFFERENCE OF SINGULAR MODULI

5.3.2 Proof of Corollary

We will use the following lemmas from [7].

LEMMA 5.3.6 ([7] Lemma 3.5). Assume that |A| > 1014, Then F > |A|0-34/ loglog(IA]"/2)
and F > 18.54loglog(|A['/?).

LEMMA 5.3.7 ([Z] Lemma 3.6). For A # —3, —4, we have

C(A) < 1 A]Y2(2 +1og |A|).

To prove (1), by Corollary we have

AC(A,) (46.488| A1 22 1og log |A|Y2 + 7.752|A|Y/ 26 + 2
¥ 4%l g mmaf] ], ]} < 42610 (AN loglog AT 77521 e + 2
1<k<C(As)

(5.7)
We can take ¢ = 0.000BW, then e < min{ﬁ, 1078}, Indeed, F >
256 if |A| > 10'*, and by Lemma and Lemma we have

3C(A) < 6 + 3log(10'4) 'L<

<
(A2)|A]/2 = 10000F|A[1/21og [A] — 100007 log(10™) ~ 256

7

W/ =

0.0003
AC

d 6+3log(10™) 1 < 10-8
(AL)|A[V/2|Ag |2 — 4900007 log(1014) 256 — '
We estimate each term in the left of 5.7l with our e:
46.488AC(A,)|A|M 262 1og log |A|1/2 B dloglog |A
4 (&) |d Bl 1A < 36.19 8-46.488AC(A§)‘§”1/2|A“’4
<36 1078 . 46.488 loglog |A|/2  C(A)
- |Ag]* F |A[1/21og |A
- 36-107%-48.488 - (2 +1og(10M)) 1
- 18.54 - rlog(1014) 74
< 0.0005;

0.0003
AC

|1/2

47.752AC(A0¢)]A|1/28

y < 0.0003 - 31.008| A, | 2

< 0.0005.

With above, we have

_ 8AC(A)

1/2 2
h(x—a) < AC(AL)|A[V2] A, 10000

) +21log | Au| +0.001 + log(—5—) — 7.783

7 + log( F

1
+ 5 log [Ni/q(x —a)]
1/2
< 8AC(Aq) +1og(AC(A“)|A|
d d
For (2), the proof is similar. We set ¢ = 0.3%, then ¢ < 7-1073. Indeed, since
|A] > 10, so F > 256, hence

c(A) c(A) 1 2 +log(10M) 1 .
03— —03———2 .- <03 —o . _ <5.707%
A|A|172 IA[72log|A] F =~ mlog(10™%) 256 —

1
) +4log |AL] +0.33 + Elog|/\/}</Q(x —a)l.
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By Corollary Theorem 2), Lemma and Lemma we have

Ce(i,N) 4 1
cia) log |A| +21loge 9.9+mlog|NK/Q(x 1728)]

A (46.488|A|Y/2e2 loglog |A|Y/2 + 7.752|A|'/2e + 2)
c(a)

1
+ m log |NK/Q(X — 1728)|

h(x —1728) <2

IN
N

+2loge ' —9.9

12 c(A) . 4A
+2-0.3 7.752+—C<A)

loglog |A
< 2-46.488-0.37
<2.46.488-0.3 e R

1
c(a)

A|A|1?

C(a)
4A A|A]M?

< —+2lo
(a) 8
1

+ mlog |Nx/q(x —1728)|
A A|AV? 1

< -2 — —1728)].

_C(A)+210g Cio) 268+C(A)log|NK/Q(x 1728)]

+2log

—21l0g03—-99+ log [Nk, q(x — 1728)|

1046488032 27 log(10)

C(A) 18.54 - log(1014) 2.84

For (3), see [7, Corollary 3.2], without assuming that x is a singular unit, we add
the term ﬁ log |[Nk/q(x)].
5.4 Lower Bounds for the Height of a Singular Modulus
We have these propositions from [7]:

Proposition 5.4.1 ([7] Proposition 4.1). Let x be a singular modulus of discriminant A.
Assume that |A| > 16. Then

| A2 —0.01
h(x) > —————
Proposition 5.4.2. Let x be a singular modulus of discriminant A. Then

h(x) > 35 log |A| — 9.79;

h(x) > 1

log |A| — 5.93.
=W g lA|

Proof. The first one see [7, Proposition 4.3], the second one see [32, Lemma 14 (ii)] [

We can use the inequalilty h(x — a) > h(x) —h(a) —log2 and the results above
to give the lower bounds of h(x — «) for an fixed a.
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5.5 Proof of Theorem 5.1.1 (1)

As the set-up in section.3} Proposition and allow us to give lower bounds
of the height of x — a:

h(x—a) > h(x) — h(x) — log2 > W “h(a)—log2,  (58)
h(x —a) > h(x) —h(a) —log2 > \% log |A] —h(a) —9.79 —log 2. (5.9)

For (1), recall the upper bound of x — « in Corollary (1) when |A| > 10
1/2
h(x—a) < 8ACd(AT) —i—log(AC(A“d”M) +4log |Ay| +0.33+ % log [Nk ,q(x —a)],
(5.10)
Throughout the proof of (1), denote the discriminant of a singular modulus x = j(z)
by A, and we assume that X = |A| > max{e>'2(C(A,)|Ax[*e"®)3,10%5 . C(A,)°}.
Hence |A| > |A,], since h(a) > 0.

5.5.1 The main inequality

Recall that A = Fmax{|A[,|A«|} = FlogX. Minding 0.01 in 5.8 we deduce from
the inequality

8AC(A AX1/2
; ) + log( 7

1
) +C+ log[Njglx —a)[ 2 Y

where
C =1log(C(Ay)) +4log |As| +h(a) +1.04,

X2 3
Y = max{——, —=1log X —9.78}.
We rewrite this as
8AC(Ay)/d N logA+C N log(X1/2/d) N log |[Nk/o(x —a)|/d >

= ~ ~ Y 1.  (5.11)

Note that C > 3.11 > 0, log A > 0 because C > 4log7 + 41% log7 —5.93 +1.04 >
3.11. Hence, we may replace Y by % log X — 9.78 in the second term of the left-hand

sidein Similarly, in the 1st term and 4th term we may replace Y by 7X'/2/C(A),
and in the 3rd term we may replace X'/2C(A) by 7t~'Y. Notice that d > C(A), we
obtain

8AC(Ay) logA+C n log(m~1Y) n log [Nk, (x — a)|

nX12 " SlogX —9.78 Y nX1/2

>1.  (5.12)

To obtain a lower bound of log |Np,o(a)|, we will bound from above each of the
three terms in its left-hand side.
From the results in [7, Section 5.2 and Section 5.3], we know that, when X > 10%?,

log2 log X
2 loglog X —c1 —log2

log A < +loglog X, (5.13)

where ¢; < 1.1713142.
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5.5.2 Bound the first term in[5.12|

From above, easy to know that when X > 105, we have

log(AX~1/2)

<
log X < uo(X),

where
_ log2 1 loglog X' 1

to(X) 2 loglog X —c; —log2 log X 2

which is decreasing for X > 10'°. Hence

log(AX~1/2)

< up(X) < up(10%) < —0.1908,
log X < up(X) < up(107) <

SO

8

BAC(Ar) _ 8C(Ac) 01908 - 8 1 y15:(~0.1908) « () 0035
— T - 4

X2 — r

since X > C(A;)® - 10.

5.5.3 Bound the second term in

Obviously, by 5.13]
i log A+ C < g (X)ua(X),
7 log X —9.78
where
1y (X) = log 2 1 loglog X + C
BT T2 Toglog X — ¢ — log 2 logX 7
3 9.78 | _
uz(X) = (\ﬁ - @) !

which are decreasing for X > 1010,
Since X > e312(C(Ay)|Ax]*eM®)3 = ¢3C, we have

loglog X +C <

Tog X < 0.6.

Indeed, set g(x) = logx — 0.6x + C, which is decreasing for x > 5/3. Let xo = 3C >
9.33 > 5/3, since C > 3.11. Hence

g2(x) < g(x0) =1log3 +1log C —0.8C < log3+log(3.11) —0.8-3.11 < 0.

With this we have

log 2 1

<
i (X)uz(X) = ( 2 loglog(10'%) —1.1713142 — log 2

+0.6) - u2(10%°) < 0.7621.

5.5.4 Bound the third term in

For this term, we directly use the bound from [7, subsection 5.5]

log(m~1Y)

0.0672.
Y <

103



CHAPTER 5. THE DIFFERENCE OF SINGULAR MODULI

5.5.5 Summing up

log [Nk/q(x — a)|
nX1/2

We can combine the above estimates and bound by

log [ Ni/q(x — a)]
nX1/2

> 1— (0.0035 + 0.7621 + 0.0672) = 0.1672,

SO

A2
log [ Nic/q(x — )| > 1=

5.6 Proof of Theorem 5.1.1 (2)

As in the last section, we assume that X = |A| > 10", By inequality and
Corollary (2), we have

4 AX1/2

A
m‘f’ZlOg( C(A)

1
— >
)+C+C(A) log | Nk q(x —1728)| > Y

where
C =h(1728) +log2 —2.68 + 0.01 = log(3456) — 2.67 > 0,

X% 3
Y = max{m, 7 log X —9.78}.

We rewrite this as

4A/C(A) N 2log A+C N log(X'/2/C(A)) N log [Nx,q(x —1728)|/C(A)

> 1.
Y Y Y Y -
Hence,
4A 2logA+C log(t~1Y)  log|Nx,q(x —1728)]
> 1. 5.14

Using the similar method to estimate each term when X > 10'°, we have

44
—i7s < 0.0018,

2logA+C

% log X —9.78

< 0.7337,

log(rt1Y)

0672
Y < 0.0672,

log [Ni/q(x — 1728)|
aX1/2

> 1— (0.0018 + 0.7337 + 0.0672) = 0.1973.

Hence,
‘ A ’ 1/2

log |Nk,/q(x —1728)| > 0.197371X'/2 > 5

104



5.7. PROOF OF THEOREM 5.1.1 (3)

5.7 Proof of Theorem 5.1.1 (3)

As before, we assume that X = |A| > 10%°. By Proposition Proposition m
and Corollary (3), we have

12A AX1/2 1
et - __ _3 - >
C(A)—i—?)log ) 376—|—C(A)log]./\/}</Q(x)]_Y,
where 2
X 3
Y = max{————, —=log X — 9.78},

We rewrite this as

12A/C(A) N 3log A —3.76 N 3log(X'/2/C(A)) N log [Nx,o(x)|/C(A)
Y

> 1.
Y Y Y 21

(5.15)
Noe that 3log A — 3.76 > 0 because A > log X > log(10'>) > 30. Hence, we obtain

12A 3logA—3.76  3log(m 1Y) N log |Nk,q(x)] -
X1/2 %ng —~9.78 Y nxi/2 =

From the results in [7, Page 23 to Page 25], we know that, when X > 1015,

AX 12 <0.0014,

3log A —3.76

\% log X —9.78

log(t~1Y)
Y

< 0.7734,

< 0.0672.

log |Nk/q (%)

We can combine the above estimates and bound
nX1/2

by
log [Nk, q(x)]

i > 1- (12771 -0.0014 + 07734 + 3 0.0672) > 0.019,

SO
A2

log [N/a(x)| > 55

105



CHAPTER 5. THE DIFFERENCE OF SINGULAR MODULI

106



Part 111

The Artin Conductors and
Discriminants of Hyperelliptic
Curves

107






Chapter 6

Hyperelliptic Curves

This chapter provides sufficient background about hyperelliptic curves for our study.
The main references are [40] and [41]].

6.1 Basic Definition

This section comes from [41), Section 7.4]. In this section, k is a field, and we denote
the function field of IP; by k(x). For an integral projective curve C over k and a
Cartier divisor D on C, we denote

L(D) ={f € k(C) | D+div(f) > 0},

¢(D) = dimy L(D).
We also denote K¢ the canonical divisor of C.

Definition 6.1.1. Let C be a smooth, geometrically connected, projective curve over a field
k of genus g > 1. We say C is a hyperelliptic curove if there exists a finite morphism C — P}
of degree 2.

Remark. (1) The extension k(C)/k(x) of fraction fields is Galois of deg = 2.

LEMMA 6.1.2 ([41], Lemma 7.4.8). Let C be a smooth, geometrically connected, projective
curves over a field k of genus ¢ > 1. Then C is hyperelliptic if and only if there exists a Cartier
divisor D on C such that ¢(D) = deg D = 2.

Corollary 6.1.3 ([41], Proposition 7.4.9). Let C be a smooth, geometrically connected,
projective curves over a field k. If C is elliptic or of genus g = 2. Then C is hyperelliptic.

Proof. Tt suffices to find a Cartier divisor on C such that /(D) = deg D = 2.
If C is elliptic, then ¢ = 1 and there is a rational point O € C(k). We have
deg(20) = 2 and
£(20) = deg(20) + x(C) =2

by Riemann-Roch Theorem.
If g=2,thendegKc =29 —2=2and ¢{(Kc) = g = 2.. O

Definition 6.1.4. Let C be a hyperelliptic curve over a field k with a separable morphism f :
C — P} of degree 2. Let o € Gal(k(C)/k(x)) be the generator. It induces an automorphism
of order 2 of C, also denoted by . We will call it a hyperelliptic involution of C (associated
to f).
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CHAPTER 6. HYPERELLIPTIC CURVES

6.2 Hyperelliptic Equations

Proposition 6.2.1 ([41], Proposition 7.4.24). Let C be a hyperelliptic curve of genus g > 1
over a field k with a separable morphism f : C — P} of degree 2. Then

(1) k(C) = k(x)[y] with a relation
y* +Q(x) = P(x), Q(x), P(x) € k[x]

with 2¢ +1 < max{2degQ(x),degP(x)} < 2g+2. We can take Q(x) = 0 if
Char(k) # 2.

(2) The curve C is the union of two affine open subschemes
U’ = Spec(k[x,Y])/(Y?> + Q(x)Y — P(x)),

V' = Spec(k[w, Z]) /(Z* + Q1(w)Z — P1(w)),
where Q1(w) = Q(1/w)ws™, Py (w) = P(1/w)w?+2 and two open subschemes
glue along D(x) ~ D(w) with relation x = 1/w and Y = x871Z.

(3) The ramification points of f are those V (4P(x) + Q(x)?) C U’, plus the point {w =
0} € V'ifdeg(4P(x) + Q(x)?) <2¢+1.

Definition 6.2.2. Let C be a hyperelliptic curve of genus g > 1 over a field k, with a
separable morphism f : C — P} of degree 2. Let x,y € k(C) satisfying the following
condition:

(a) k(P1) = k(x) C k(C);

(b) y* + Q(x)y = P(x) with P(x),Q(x) € k[x] and deg Q(x) < g+ 1,degP(x) <
29 +2;

(c) the equation above is normal.

We call {1,y} a standard base of C and y* + Q(x)y = P(x) a hyperelliptic equation of C.
Such x,y exist due to Proposition[6.2.1}

When C is an elliptic curve, a hyperelliptic equation of C is called an elliptic equation of
CifdegQ(x) < 1and degP(x) < 3.

Remark. (1) From Proposition (2), we know that C can be covered by two affine
scheme of hyperelliptic equations.

Corollary 6.2.3 ([41], Proposition 7.4.33). Let C be a hyperelliptic curve of genus g > 1
over a field k. Let

(€) 142+ Q(x)y = P(x), (€"): 0>+ R(u)o = S(u)

be two hyperelliptic equations of C.

(1) Suppose that g > 2, then there exist (? b> € GLy(k), e € k*, H(x) € k[x],

d
deg H < g + 1, such that

u_ax—l—b o H(x) +ey
Coox+d T (ex+d)stl

110



6.3. INTEGRAL MODELS OF HYPERELLIPTIC CURVES OVER A DISCRETE
VALUATION FIELD

(2) If Cis an elliptic curve and the two equations are elliptic with the same origin. Then we
have the same conclusion as above, with moreover ¢ = 0,d = 1 and deg H(x) < 1.

Definition 6.2.4. Let C be a hyperelliptic curve of genus ¢ > 1 over a field k. Let

(&) 1y + Qx)y = P(x)
be a hyperelliptic equation of C. Let R(x) := Q(x)? + 4P(x) with leading coefficient c.
Then the discriminant of (£) is defined as

AE) = 2-48+disc(R(x))  ifdegR(x) =2g+2,
T | 27*8 ) 2dise(R(x))  if deg R(x) = 2¢ + 1.

Remark. (1) If (£), (") is as Corollary with the change of coordinates, then

A(E) = A(E")e ™) (ad — be) X TDETD),

6.3 Integral Models of Hyperelliptic Curves over a Discrete
Valuation Field

LEMMA 6.3.1 ([40], Lemma 1). Let A bea PID, and F /FracA|x| be a separable extension
of deg = 2 with integral closure B of A[x] in F. Then we have the following properties:

(1) The A[x]|-module B is free and there exists y € B such that {1,y} is a base of B.

(2) Suppose that F is the function field of a smooth projective curve of genus g over
FracA[x]. We can choose a base {1,y } such that y* + Q(x)y = P(x) with deg Q(x) <
g+ 1and deg P(x) < 2¢+2.

In the rest of this section R is a discrete valuation ring with valuation v, residue
field k and fraction field K.

Definition 6.3.2. Let C be a hyperelliptic curve of genus g > 1 over K. An integral equation
of C is a hyperelliptic equation

(€):y* +Qx)y = P(x)

such that {1,y} a base of the integral closure of R[x] C K(x) = K(PPk) in K(C).

An integral equation (E) of C is said to be minimal if v(A(E)) is minimal for all integral
equations of C, where v is the discrete valuation on K. The integer v(A(E)) is called the
minimal discriminant of C (in R), and denoted by v(C).

Remark. (1) Notice that a hyperelliptic equation (£) is an integral equation if and only
if Q(x), P(x) € R[x], and R[x,Y]/(Y? + Q(x)Y — P(x)) is normal.

(2) The minimal (integral) equation of C always exists, but not unique in general.

LEMMA 6.3.3 ([40], Lemma 2). Let B = R[x,Y]/(Y?>+ Q(x)Y — P(x)) with P(x), Q(x) €
R[x]. Assume that B @ K is normal. Then the following statements hold:

(1) If B®g k is reduced, then B is normal.
(2) The ring B ®g k is not reduced if and only if 4P(x) + Q(x) = 0 and —P is not a

square in k[x].
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(3) If B®g k is not reduced, then B is normal if and only if there exists T(x) € R[x] such
that v(P(x) + Q(x)T(x) — T(x)) = 1.

(4) If Char(k) # 2, then B is normal if and only if v(4P(x) + Q(x)?) < 1.

Next we talk about the Weierstrass models of a hyperelliptic curve.

Proposition 6.3.4. We have a bijection:

{generators of K(IPk) over K}/ ~ <— {smooth, proper, flat models of P} over R},
x — PL(:= Spec(R[x]) U Spec(R[1/x])),

where x ~ u for two generators x,u if there exists (Z Z> € GLy(R) such that u =
ax +b
cx+d

Proof. Obviously, this map is well-defined.
It is injective. Indeed, if P1 ~ P} as models, we view P} = Proj(R[Uo, U4]), u =
Uy / Up. Then via this isomorphism, Spec(R[x]) = D, (cU;y + dUy) for some c,d € R.

Hence there exists a4,b € R such that x = ?5;1358 and ([Z Z) € GLy(K). Since

b
d

. . . C 1 a
it induces isomorphism on special fibers, then <c

a b
<C d> S GLz(R).
It is surjective. Notice that every smooth, proper, flat model of IP}< is isomorphic
to PY = Proj(R[Xo, X1]), so we can take x = % O

) € GLy(k), which implies

Definition 6.3.5. Let C be a hyperelliptic curve over K with a fixed hyperelliptic involution
o : C — C. A Weierstrass model W of C is a nomral, proper, flat model of C over R such
that W /(o) is smooth over R.

Corollary 6.3.6. Let C be a hyperelliptic curve over K with a fixed hyperelliptic involution
o : C — C. Then we have the following bijections:

{Integral equations of C}/ ~<— {Weierstrass models of C} <—

{smooth, proper, flat models of P} over R}

where (y*> + Q(x)y = P(x)) ~ (w? + Q1(z) = Py(2)) for two integral equations if there
ax +b

. a b . )
exists <c d) € GLy(R) such that z = v In particular, every Weierstrass model

of C is projective over R, and two Weierstrass models Wy, W are isomorphic if and only if
Wy /{(c), Wa/{c) are isomorphic.

Proof. The map

{Integral equations of C}/ ~ — {smooth, proper, flat models of P} over R},
(y? +Qx)y = P(x)) = I,

is well-defined and injective by Proposition[6.3.4} To show it is surjective, we should
show that for any generator x € K(IP}), there exists {1,y} C K(C) such that y> +
Q(x)y = P(x) and the normalization of R[X] in K(C) is R[x] + R[x]y. This comes
from Lemma (1).
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For a generator x € K(P}), we take the normalization 77 : Wy, — PL of Pl in
K(C), which is finite. Hence W, is a proper, normal, flat over R. Moreover, Wy x ~ C,
since K(Wy x) = K(C) and W, k, C are smooth projective over K. That implies that
W, is a model of C. To show that W, is a Weierstrass model of C, it is sufficient to
show that W,/ (o) ~ PL. Indeed, 7~ !(Spec(Rk[x])) = Spec(B), where B = R[x] +
R[x]y for some y € K(C) such that y*> + Q(x)y = P(x). We have ¢(y) = —y — Q(x),
so o(ax + by) = ax + by if and only if b = 0. Hence (Spec(B))/(c)Spec(B?) =
Spec(R|[x]). It is similar for 7~ !(Spec(Rk[1/x])).

On the other hand, for a Weierstrass model W of C, W/(c) is a proper, smooth,
flat model of P} over R. Indeed, W/ () is smooth over R, and on generic fiber,

(W/{o))x = Wi/ (o) = C/(c) ~PL.

It is proper, since for Spec(B) C C with B = R[x,y]/(y* + Q(x)y — P(x))),R C B’ C
B, which implies that BY finite R-module and Spec(B)/(c) finite over Spec(R). By
Proposition W/ (o) ~ P for some generator x € K(PL), and W — [Pl is finite.
Hence W is is the normalization of IP in K(C).

O

Remark. (1) With the first bijection and the remark of Definition [6.2.4) we know that the
discriminant of a Weierstrass model is well-defined.

For our uses in Chapter [/, we will projective line have an equation similar to
hyperelliptic equations, so we give the following definition.

Definition 6.3.7. Assume that Char(K) # 2, an integral (Weierstrass) equation over R is
of the form

v =f(x)
with f(x) € R[x| such that deg(f) > 1, f(x) = 0 has no multiple root and v(f(x)) < 1.
For such integral Weierstrass equation, let x = 1/z,y = x8w, where ¢ = [deg J

we get another integral Weierstrass equation w* = z?8*2f(1/z), the scheme over R glued
by affine schemes defined by these two equations is called a Weierstrass model.

Remark. (1) Compare to Definition and Definition [6.3.5) Corollary- this def

inition just wants to include the case where deg(f) = 1 or 2. By Lemma [6.3.3(d),
for y* = f(x), deg(f) > 3, which defines a hyperelliptic curve, Definition |6. and

Definition [6.3.7)coincide. It is similar for Weierstrass models.
(2) Notice that if deg(f) = 1, v(f) = 1, then R[x,y]/ (y*> — f(x)) is not normal.
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Chapter 7

Artin Conductors of Hyperelliptic
Curves

In this chapter, we are going to prove Theorem It is the inductive process,
Corollary 3.3, in Obus and Srinivasan’s paper [47]. Our proof is different from theirs.
In a word, they consider a specific regular scheme for an integral (Weierstrass) equa-
tion y2 = f(x) of a hyperelliptic curve, but we consider the minimial desingulariza-
tion of the corresponding Weierstrass model.

7.1 Conductors of Arithmetic Curves

Definition 7.1.1. Let (R, k) be a DVR with fraction field K and perfect residue field k,
S = Spec(R). Let X — S be a regular, proper, flat S-scheme whose generic fiber X, is a
smooth, geometrically connected curve of genus g > 1. For a prime { which is different to
p = Char(k), we have a (-adic Galois representation

po: GaI(Ksep/K) — Ath/(Vg>,

where V; = HL(X7,Qy), X5 = X, X spec(k(y)) Spec(k(n)). Set 6 = d(p), the Swan
conductor of p, see [[15, Section 2]. We define the Artin conductor of X as

Art(X/R) = x(X,) — x(X:) —&,

where X is the special fiber of X, and x is the Euler’s characteristic for étale topology. When
there is no confusion, we simply denote Art(X/R) by Art(X).

The conductor of p in the definition is well-defined, since p is potentially semi-
stable, see [30, Théoreme 3.5].
We collect some results for Artin conductors.

Proposition 7.1.2 ([51], Theorem 3 and [41], Theorem 10.4.47). Keep the notations as
Definition Suppose that the genus of X, > 2, and X is the relative minimal regular
normal crossing divisor model of X,;. Then the follwoing conditions are quivalent.

(1) The action of the wild inertia group Px on Hy (X5, Q) is trivial.

(2) Every irreducible component C of X whose multiplicity in X; is divisible by p satisfies
the following condition: C is isomorphic to Py and intersects with other components
of X, at exactly two points and these components have p-prime multiplicities in X.

If R is strictly Henselian and Char(k) > 0, they also equivalent to
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(3) The curve X, has stable reduction over a tamely ramified extension of K.
In particular, in this case, the Swan conductor 6(p) = 0.

One of the important cases is the one where X is the minimal regular model of
X, Let R*M be the strict henselization of R, K" = Frac(R*"). Then Xpan := X X Spec(R)

Spec(R*) is the minimal regular model of X, x Spec(K) Spec(K*") and Art(Xgen /R") =
Art(X/R). Hence to study the conductors, we can suppose R strictly henselian.

Corollary 7.1.3. Let (R, k) be a DVR with fraction field K and perfect residue field k. Let C
be a smooth, projective, geometrically connected curve of genus g > 2 over K. We suppose
that Char(k) > 2¢ + 1. Then the Swan condutor §(p) = 0, where p is the (-adic Galoi
representation as Definition [7.1.1}

Proof. We can assume that R is strictly henselian. Then the corrollary is a conse-
quence of Proposition and [41, Proposition 10.4.45]. O

Proposition 7.1.4 ([39], Proposition 1). Keep the notations as Definition Suppose
that the gcd of the multiplicities of irreducible component of X; is 1. Then we have

—Art(X) =n—-1+4fF,

where f is the Artin conductor of the (-adic representation H}, (X, Qy) as defined in Defi-
nition n is the number of irreducible components of Xs = Xs Xspec(k(s)) Spec(k(s)).

Remark. (1) The condition on the gcd of multiplicities is satified if X, (K) # @ or if the
genus of Xy is 2.

(2) If we denote the abelian rank and the unipotent rank of Xs by a and u respectively,
then by [53, Lemma 1, Lemma 2], f = 2u +t + 6, where ¢ is the Swan conductor of
the (-adic representation H},(Xy, Q) as defined in Definition m

Theorem 7.1.5 (Ogg’s formula). Keep the notations as Definition If X, is an elliptic
curve and X is the minimal regular model of X,,. Then we have

—Art(X) = 0(),
where v(A) is the minimal discriminant of of X,,.

This equality isn’t true for general hyperelliptic curves. In [39], Liu proved that
—Art(X) < v(A) when X, is a projective curve of genus 2. Unitil recently, Obus and
Srinivasan [47] showed that this inequality holds for any hyperelliptic curve when
Char(k) # 2, i.e. the following theorem

Theorem 7.1.6 ([47], Theorem 1.1). Keep the notations as Definition If k is perfect
and Char(k) # 2, X, is a hyperelliptic curve of genus g > 1, X is the minimal regular
model of X,,. Then we have

—Art(X) < o(A),
where v(A) is the minimal discriminant of X,,.
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7.2 Main Results

From now on, R is a strictly henselian, discrete valuation ring with valuation v,
fraction field K and residue field k of Char(k) # 2. Let 7t be a uniformizer of R,
S = Spec(R). For a projective curve C over K (or k), we set

n(C): the number of irreducible components of C,
pa(C): the arithmetic genus of C,

a(C): the abelian rank of C,

t(C): the toric rank of C,

u(C): the unipotent rank of C.

The definition of these quantities can be found in [41, Section 7.5]. Notice that, if C
is smooth and geometrically connected, the arithmetic genus and geometric genus
of C coincide. Hence we also denote p,(C) by g(C).

For a Noetherian scheme X, the set of regular points (resp. singular points) on
X is denoted by Reg(X) (resp. Sing(X)). If X is a regular fibered surface over R, i.e.
regular, proper, flat scheme over R of dimension 2, the Artin conductor (resp. Swan
conductor) of X is denoted by Art(X) (resp. J(X)). The special fiber and generic
fiber of X is denoted by X, and X, respectively. For a Weierstrass model Y over
R of a hyperelliptic curve, we denote v(A(Y)) the valuation of the discriminant of
Y. To simplify the notation, we denote this nonnegative integer —Art(X) — 6(X) by
— Artiame (X), which is (a(X;s) 4+ 2u(Xs)) + n(Xs) — 1.

We are going to prove the following inductive process for Artin Conductors and
discriminant of hyperelliptic curves.

Theorem 7.2.1. Let Y, Y1 and Y, be the Weierstrass models over R of hyperelliptic curves.
Suppose that they are defined by integral Weierstrass equations in one of the following cases:

1L Y:y?>=fi(x)fa(x), Yi: 9> = fi(x) and Yy : y* = fo(x),
2. Yy =nfi(x)fa(x), Y1 : y? = mfi(x) and Yy : y* = rtfa(x),

where, in both cases, deg(f;) = deg(f;) > 1fori =1,2,and f,, f, € k[x] are coprime. If
fori=1,2,

—Artiame (X)) < v(A(Y;)),
then

—Arttame(X) < U<A(Y)>’

where X, Xy and X; are the minimal desingularizations of Y, Y1 and Y, respectively. More-
over, if the equality holds for Y1 and Y>, it also holds for Y.
Remark. (1) Notice that if deg(f) = 1, we define its valuation of discriminant to be 0.

(2) The assumption that deg f; = degf; for i = 1,2 can always be achieved for a
Weierstrass model Y : y*> = f1(x)f2(x) after a suitable change of coordinates, e.g
x =1/(x" — a) for some a € R. Here, this assumption can make our result cleaner.

Theorem comes directly from the following two theorems.

Theorem 7.2.2. Let C be a hyperelliptic curve over K with an integral Weierstrass equation

y? = fi(x)fa(x), where deg(f;) = deg(f;) > 1fori = 1,2, and f,f, € k[x] are
coprime. Let Cy,C; be the hyperelliptic curves over K determined by Weierstrass equations
y? = f1(x) and y*> = fo(x) respectively. Then y* = f1(x) and y* = f»(x) define respective
Weierstrass models Y1, Yo of C1, Ca, and

o(A(Y)) = o(A(V7)) +v(A(Y2)),
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n(X ) — n(Xl,S) +1’1(X2,5) -1 lfn(Yl,s) = n(YZ,s) = 1/
’ n(Xys) +n(Xys) —2  otherwise,

a(X.) = a(Xys) +a(Xas) ifn(Yis) = n(Yas) = 1 and one of deg(f1), deg( f2) is even,
Y \a(Xys) +a(Xos) + 1 otherwise,

() = (100 +Xas)  ifn(ng) =n(t) =1,
’ t(X15) +t(Xps) +1  otherwise,
u(Xs) = u(Xys) +u(Xzs)
_Arttame(X) - _Arttame(Xl) - Arttame(XZ)

where Y, Y and Y, are the Weierstrass models defined by y> = f1(x) fa(x), y*> = fi(x) and
y? = fo(x) with X/S, X1/S and X,/ S as the minimal desingularizations respectively, and
Xs, X1, and Xo s are the special fibers of X, X1 and X, respectively.

Theorem 7.2.3. Let C be a hyperelliptic curve over K with an integral Weierstrass equation
y? = nfi(x)f2(x), where deg(f;) = deg(f;) > 1fori = 1,2, and f, f, € k[x] are
coprime. Let Cy,C; be the hyperelliptic curves over K determined by Weierstrass equations
y? = ntf1(x) and y* = 1ifa(x) respectively. Then y* = rifi(x) and y* = 7fa(x) define
respective Weierstrass models Y1, Y of C1, Ca, and

v(A(Y1)) +v(A(Y2)) +2 ifdeg(f1) or deg(f2) is even,
v(A(Y7)) +0(A(Y2)) —2 ifdeg(f1),deg(f2) are both odd,

o(A(Y)) = {
n(X;) =n(Xys) +n(Xps) — 1,

a(Xs) = a(Xl,s) + a(XZ,s)/

t(Xs) = t(Xq5) + t(Xos),

u(Xs) = u(Xys) +u(Xos)

—Artiame(X1) — Artiame (X2) +2  if deg(f1) or deg(f2) is even,

—Artame(X) =
Thame(X) {—Arttame(Xl) — Artiame(X2) —2  if deg(f1), deg(f2) are both odd,

where Y, Y1 and Y, are the Weierstrass models defined by y> = f1(x) fa(x), y*> = f1(x) and
y? = fo(x) with X/S, X1/S and X,/ S as the minimal desingularizations respectively.

With these theorems, we have the main result of [61, Theorem 1.2]:

Corollary 7.2.4. Let Y be a Weierstrass model over R defined by y> = f(x) or y> = ntf(x)
with f(x) = (x—by) - - (x —b,) and by,--- ,b, € R, n > 1. Then

—Artame (X) < v(A(Y)),

where X is the minimal desingularization of Y. If moreover, Char(k) > 2¢(Yx) + 1, then
the Conductor-discriminant inequality holds for corresponding hyperelliptic curve C. i.e.

—Art(X) < o(A(C)),

where X is the minimal proper reqular model of C, and v(A(C)) is the valuation of the
minimal discriminant of C.
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7.3 Lemmas

In this section, we prove some lemmas that are going to be used later, they may have
been proved somewhere, but I cannot find the proofs, so we prove them here.
We will use [38] Corollary 27.3] to prove the following lemmas.

LEMMA 7.3.1. Let X be a two dimensional Noetherian scheme with finite closed singular
points. Then a morphism T : X — X of finite type is a minimal desingularization if and
only if X x x Spec(Ox ) — Spec(Ox y) is a minimal desingularization for each x € X.
In particular, they are also equivalent to that X x x U — U is a minimal desingularization
for any open subset U of X.

Proof. Suppose thatxy, - -+, x, € X areall singular points of X. Denote 7Py ,, ... 11
the category of morphisms f : Y — X of finite presentation which induce an isomor-
phism f~1(U) — U, where U = X\ {x1,---,x,}. The morphisms in FPy ry, .. 1
are morphisms of schemes over X. For each i we set X; = Spec(Ox,) and V; =
X; \ {x;}. Similarly, we can define the category F Px, .. Then by [63| Lemma 51.6.1],
the functor defined by base change

F: ‘F,PX,{M,'“,Xn} — ]:'lelxl X X .F'P)(n,xn

is an equivalence of categories. Furthermore, if f : Y — X corresponds to f; :
Y; — X; under F, then f is proper if and only if f; is proper fori = 1,---,n, see
in [63] Lemma 51.6.2]. It is obvious that Y is regular if and only if Y; is regular for
i=1,---,nbecause of our choice of x1, - - -, xy,.

If 7, : X xx Spec(Ox) — Spec(Ox ) is a minimal desingularization for each
x € X, then for any x & {x1,---,x,}, Ty is an isomorphism, hence we can find an
open neighborhood Uy of x such that T=!(U,) — Uy is an isomorphism, which
means that T € FPyx(, .. ) and T is a desingularization of X. To show that
it is minimal, we take any integral exceptional curve E on X relative to 7, and
the image of E is a close point x € X, it is also an integral exceptional curve on
X x x Spec(Ox ), and by [38, Corollary 27.3], we have the self-intersection number
(E,E) < —2x(E), where x(E) is the Euler-Poincére characteristic of O. Hence 7 is
minimal by [38| Corollary 27.3] again.

The converse statement is similar by [38, Corollary 27.3]. O

LEMMA 7.3.2. Let A be a two dimensional Noetherian local ring. Assume that the only
singular point of Spec(A) is the closed point. Then a morphism T : X — Spec(A) is a
minimal desingularization if and only ifT: X=X X spec(4) Spec(A A) — Spec(A) isa

minimal desingularization, where A is the completion of A.

Proof. If T : X — Spec(A) is a minimal desingularization, then by [63, Lemma
51.11.2], and because A — A faithfully flat, we know that X is regular if and only
if X is regular, and 7 is proper if and only if T is proper. Notice that X and X have
isomorphic fibers over closed points, so they have same integral exceptional curves.
By [38, Corollary 27.3], it suffices to show that the equality of intersection (E, E) =
(E,E) for any 1ntegral exceptional curve of X over 71, where E is the correspondmg
exceptional curve on X. Indeed, if 7 is the sheaf of ideal of E, then =1 Oy is the
correspondent sheaf of ideal, it’s the pullback of 7 along X = X,s0Tlg~T Ozlg

via E ~ E, so we get the equality we want.
O
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LEMMA 7.3.3. Let A be a discrete valuation ring with an algebraically closed residue field,
and f : X — Y be an étale morphism of integral curves over A, i.e. schemes X,Y are inte-
gral, of finite type over A and of relative dimension 1. Assume that Y is normal, and Y — Y
is a minimal desingularization of Y, then X := X xy Y — X is a minimal desingularization
of X.

Proof. Firstly, we claim that X, Y have finite singular point, which are closed points
on their special fibers. Indeed, since X and Y are integral, of dimension two, flat and
of finite type over A, and A is a discrete valuation ring, then the singular points on
X, Y are closed, by [41} Corollary 8.2.38]. Furthermore, since Y is normal, hence we
know that Y has finite many singular point, which are closed points on its special
fibers. The same result is true for X, since X — Y is étale.

By Lemm we check the statement locally. If y € Y is regular, then Y xy
Spec(Oy,y) ~ Spec(Oy,), so X xy Y xy Spec(Oy,) ~ X Xy Spec(Oy,,). For each
x € X above y, we have x is regular and Spec(Ox,x) Xy Spec(Oy,;) = Spec(Ox),
s0 Spec(Ox x) Xx X ~ Spec(Ox,x) xx (X Xy Y) ~ (Spec(Ox,x) xy Spec(Oy,,)) Xy
Y =~ Spec(Ox,). If y € Y is singular, then y € Y; is a closed point, and Y xy
Spec(@y,y) — Spec(@y,y) is the minimal desingularization of Spec(@y,y). For each
x € X above y, since the residue fields k(x) = k(y) = k, and f is étale, so Ox , ~
@y,y by [41], Proposition 4.3.26]. Hence Spec(Ox ) xx (X xy Y) ~ Spec(Ox ) Xy
Y — Spec(@xlx) is a minimal desingularization, so is Spec(Ox ) xx (X xy Y) =~
Spec(Ox ) xy Y — Spec(Ox ) by Lemm O

Recall that, a morphism f : X — S is said to be a fibered surface, if with S is
a Dedekind scheme and f is projective and flat, and X normal of dimension 2. As
usual, the generic fiber is denoted by Xy.

LEMMA 7.34. Let f : X — S be a normal fibered surface with S Dedekind scheme of
dimension 1. Suppose that X, is geometrically integral. Let s € S be a closed point such that
one of the following conditions holds:

(1) Char(k(s)) =0;

(2) dis prime to Char(k(s)), where d is the greatest common divisor of the multiplicities
of the irreducible components of X.

Then f is cohomologically flat at s. In particular, for any i > 0.
dim H'(X,, Ox,) = dimH'(X,, Ox, ).
Moreover, if S = Spec(A) is affine, then the canonical map
H (X, 0x) ®4k(s) — H (X;, Ox.)
is an isomorphism for each i > 0.

Proof. It is a statement in the introduction of [50]

We can suppose that S = Spec(A) is affine, furthermore, suppose that A is a dis-
crete valuation ring. We have to check that Ox(X) = A. Indeed, Ox(X) is finite over
A, and since X, is geometrically integral, so Ox(X) C Ox, (Xy) = Frac(A), hence
Ox(X) = A. By the assumption on k(s) and [50], we know that f is cohomologically
flat.

The rest statements come from [28, Proposition 7.8.4 (e)] and [41, Theorem 5.3.20
(a)]. O
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7.4 Proof of Theorem 7.2.2

We fix some notations during this section. Set ¢ = p.(Yk), & = pa(Yik), i = 1,2,
then we have

| g1+g +1 ifdeg(fi)ordeg(fz)iseven, 1)
$ g1+ 4 if deg(f1), deg(f2) are both odd. ’

Let

r_ R[x,y]
Y= Seeel e AR

Rlw, z] )
(22 —wX+2f1(1/w) f2(1/w))

withw = 1/x,z = y/x8*1. Then Y is covered by Y’ and Y”. Similarly, fori = 1 or 2,
Y; is covered by Y/ and Y/, where

Y" = Spec(

Rx,y]
Y/ = Spec(———2- ),
F= el )
Rlw, z] )
(22 — wit2f;(1/w))
with w = 1/x,z = y/x8*1. We also set X/, X", X! and X/’ the minimal desingular-
ization of Y’,Y”,Y; and Y/’ respectively, i = 1, 2.

Y = Spec(

7.4.1 Discriminants

Since that y> = f;(x) f2(x) is an integral Weierstrass equation of C, then v(f; (x) f2(x)) =
v(fi(x)) +v(f2(x)) = 0, so v(fi(x)) = 0 and v(f2(x)) = 0, which means that
y?> = fi(x) and y? = fo(x) are integral Weierstrass equations, Definition[6.3.7]

The equality v(A(Y)) = v(A(Y1)) + v(A(Y2)), follows directly from the fact that
f1, f, € k[x] are coprime and the leading coefficients of f; and f, are units.

7.4.2 Singular points

We analyze the singular points on Y. Since Y is normal of dimension 2 and Reg(Y)
is open, so Sing(Y) is finite. Moreover, Sing(Y) C Ys.

Notice that R is strictly henselian with k perfect, so k = k and every singular
closed point on Y;, Y1 s and Y» s is rational. We also know that Sing(Y) C Sing(Ys),
then by Jacobian criteria for smoothness and the fact that deg(f1) = deg(f,), deg(f2) =
deg(f,), we have Sing(Y) is contained in Y/, moreover, contained in

_ kx, _ . - - — —-
{<x—a,y> 7 —f[l(x]g]f2(x)) |7 € kwith 7,(a) = F(a) = 0 or Fy(a) = Fo(@) = 0

It’s similar for Y7 and Y,. We set
_ . - -
S1 ={(x—ay) € Sing(Y) | f,(a) = f,(a) = 0},

Sy = {(x —a,y) € Sing(Y) | f,(@) = f,(a) = 0},

notice that S; an S; are disjoint, since f,, f, € k[x] are coprime.

—
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7.4.3 Ftale coverings around singular points

In this subsection, we construct an étale covering around singular points on Yi,
which is also an étale covering near corresponding singular points on Y. It’s sim-
ilar for Y5.

We set

W = Spec(R[x,y,z]/ (v* — fi(2) fa(x), 2 — fa(x)),

and we have an obvious morphism W — Y’. We claim that the induced morphism

Dw(z) — Dy/(fa(x)) is étale. Indeed, =T (xl)a};(}ycf;_ FAE) is a free 7@2—2[(2)@2(3;))'

module of rank 2, and for each P € Dy/(f2(x)), we have an isomorphism of k(P)-
algebras

KB ipy < k(p),
(22 = f2(x))
since f>(x) # 0in k(P) and Char(k(P)) # 2.
On the other hand, the morphism of R-algebras

R[x,y] R[x,y,z]

%

(¥? = f1(x)) ((yz — [i(x) f2(x), 22 = fa(x))

induces an étale morphism Dy (z) — Dy;(f2(x)). Indeed, notice that

< Rx,y, 7] ) ~ ( Rlx,w, 7] ) XX, Y 2ZW, 2+ Z
(P~ A2 -AF)). " (@ = A2 - AE)) 77

via this isomorphism, the morphism in[7.2]is induced by

) , X=X, y—=y/z (7.2)

R[x,v] R[x,w,z]
VP —A®) @ fx),2— f(x)

We can see that > ff([;)zgzzl 5y s a free %—module of rank 2. We consider

the scheme W' = Spec((wz_flR([;C)’fg;Zlfz(x))), then Dy(z) = Dw(f2(x)) — Dy:(fa(x))
is flat, moreover, it is étale as before.

Set V1 = Dy/(fz(x)), LIl = Dylf(fz(x)) and Vl =X Xy Vl,l:ll = X{ Xyll ul, and
replace W by Dy (z). Notice that the singular poins of Y in S; are on V; and all
singgular points of Y7 are on U;. Hence the étale morphisms W — V; and W — U
induce a bijection between Sing(Y;) and S;, and corresponding points have isomor-
phic completions of local rings. This is essential when we count the number of irre-
ducible components of X;.

On the other hand, let W be the minimal desingularization of W. Then by
Lemma and Lemmawe have W ~ W X1 Vi ~ W x u, UI;. Moreover, via
W — V3, every point in V; has two preimages. This fact will be used afterwards.

It’s similar for Y, and we can set V,, U; similarly as we do to V3, Uy.

Notice that Sing(Y) C Vi U Va, Sing(Xs) C V15U Vas, and it is similar for Y3, Yz,
we indeed have proved the following lemma:

LEMMA 7.4.1. (1) There is a bijection
Sing(Y) — Sing(Y1) | Sing(Y2)

,X = XY = w.

such that the corresponding points have the same completion of local rings.
(2) There is a bijection
Sing(Xs) — Sing(Xj5) U Sing(X>5)

such that the corresponding points have the same completion of local rings.
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7.4.4 Calculations
Irreducible components

There are inequalities between n(Ys), n(Y1s) and n(Yzs). It is easy to see thatn(Y;) =
1if and only if f, f, is not a square in k[x]. Moreover, it is also equivalent to that f,
or f, is not a square, since f,, f, € k[x] are coprime. Hence n(Y;) = 1 if and only
ifn(Y1s) = lorn(Yzs) =1, and n(Ys) = 2if and only if n(Y35) = n(Yos) = 2. We
have the follwoing inequalities:

n(Y,) = min{n(¥;.), n(Y2.)} = {“(Y“) S
n(Y1s) +n(Yzs) —2 otherwise.
(7.3)

We have that the genric points of these curves are reduced, hence they are regular
and Sing(Y5), Sing(Y15), Sing(Y2,¢) are finite sets of closed points. Indeed, if Y; has a
generic point that is not reduced, then y? — f,(x)f,(x) = (v — g(x))? in k(x)[y], so
f1(x)f,(x) = 0, since Char(k) # 2, but f,(x)f,(x) are coprime in k[x], hence we get
a contradiction. Similar for Y7 ; and Y.

For each singular point y € Y, by Lemma7.3.2) and Lemmad.3.T) we have that
Z — Spec(Oy,) and Z — Spec(@y,y) are the minimal desingularizations, where
Z = X xySpec(Oy), @y/y is the completion of Oy, and 7Z=17x Spec(Oy.,) Spec(@y,y).
Note that Oy, and @y,y have the same residue field, so the fibers over closed points

are same, that is 2y = X,, where Zg =7 x (Oy,) Spec(k(y)), i is the close point

Spec
on Spec(@y,y) and X, is the fiber on X over y. Similar results are true for Y7 and Y.
Hence, by Lemma we have

n(X;) =n(Y;) + Z n(Xy)

y€Sing(Y)

=n(Ys)+ ). n(Z
y€Sing(Y)

= n(Ys) + Z n(Zﬁl) + Z n(Zﬁz)
y1€Sing(Y1) y2€8Sing(Y2)

=n(Y;) + Z n(XLyl) + Z n(XZ,yz)
y1€Sing(Y1) Y2€Sing(Y>)

Combining this With then
n(X,) = n(Xys) +n(Xps) —1 if n(YLS') =n(Yas) =1, 7.4)
n(Xys) +n(Xzs) —2 otherwise.

Ranks

We demonstrate the method to calculate the ranks firstly. From [41, Lemma 7.5.11,
Lemma 7.5.18 and Theorem 7.5.19], for a connected projective curve C (not neces-

sarily reduced) over an algebraically closed field k with the normalization o : C' =
ﬁ[ C! — C and C; connected components of C’, we have the following formulas
i=1

t(C) = y(C) — n(C) +1, (7.5)
a(C) = ). pa(C), (7.6)
1<i<n
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u(C) = dim; HY(C, Oc) —a(C) — t(C), (7.7)

where u(C) = Y (my—1),and m, = |o~1(x)]|. For m,, by [41, Theorem 8.2.39(c)],
xeC(k)

we know that O¢, is excellent, and m, is the number of maximal ideals of (Déj o

where O , is the normalization of O, which is finite over O¢ , by [41} Proposition

8.2. 41(b)] By (c) of this proposmon the number m, also equals to the number of the

irreducible components of Spec(Oc ,/ \f 0) = Spec((’)c /00 Oc x), which is exactly
the number of irreducible components of Spec((’)c x), where (’)c x is the completion
of OC,x
Notice that R is a discrete valuation ring, X, X; and X are projective over R with
geometrically connected generic fibers, see [63, Lemma 51.16.11], then X, X; ; and
Xy ¢ are connected by Zariski’s connectedness principle, see [41, Theorem 5.3.15].
By Lemma (2), we have

Z (my—1) = Z (my—1)+ Z

xeX;(k) x€Xys(k) x€Xp (k)

and

{(X,) = {t(Xl,s) +t(Xys) ifn(Yis) =n(Yas) =1, -

t(X1s) +t(X2s) +1 otherwise.
Notice that Y; is reduced, so the greatest common divisor of the multiplicities of
the irreducible components of X; is 1. Hence by Lemma we have
dimk I—I1 (XS, OXS) = dimK I—I1 (XK, OXK) = pa(XK) = g, (79)

and it is similar for X; ¢ and X5 .

Next, we calculate the abelian ranks. We only consider the irreducible compo-
nents of X, that dominate the irreducible components of Y;, since other components
are the same as the corresponding ones of X; ; and X5,

If Y; is irreducible, then there is only one irreducible component of Xs which
dominant Y;, denoted by C. Let C" — C be the normalization, hence C' — Y; is also
the normalization of Y;. Suppose that

dy
x) = by [ J(x—x1,),
i=1

do
X) = bz H(.’X — lej)ezrf’
i=1
with x1; and x,,; all distinct. Then C’ will be defined by

w* = byby H (x —x1,0) H (x —x2).

ej;odd ey jodd

Letm; = Y landmy = Y 1, thenm; = deg(f;) = deg(f1) (mod2) and

erodd e jodd
deg(fz) = deg(f2) (mod2). Since Y; irreducible, we have n + ny > 0
and pa \‘mﬁ-mz 1J It n(Yls) = n(YZs) =1, then pa(c/) _ mlz—lJ and
pa(C) = Lmz 1J In this case, with easy calculation andﬂ I 7 7)7.8 we have

() [Po(C)+pu(C) +1 it deg(f) or deg(f2) iseven,
pa Pa(C1) +pa(Ch) if deg(f1) and deg( f2) are both odd,
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a(X,) = {:(?'S) X; +1 ifdeg(fi) or deg(fy) is even,
) =

+a(
(X15) +a(Xos if deg(f1) and deg( f2) are both odd,
u(Xs) = u(Xy,s) +u(Xos).
If exactly one of n(Y15), n(Yas) equals to 2, we assume thatn(Y;s) = 1and n(Ya,) =
2. In this case, mp = 0,pa(Ch) =0, so
Pa(C’) = pa(C1) + Pa(C2),
a(Xs) = a(Xys) +a(Xos),
u(Xs) = u(Xys) +u(Xps).
If Y; is not irreducible,we suppose that
71 (x) = El(x)zf
fa(x) = ha(x)*.

Then Z; : y = hy(x)ha(x) and Z, : y = —hy(x)hy(x) are the irreducible components
of Y;, they are normal and have genus 0. It’s similar for Y; s and Y, s. Hence we have
a(Xs) = a(X1s) +a(Xas),

and
u(Xs) = u(Xys) +u(Xas)
Combining these two cases, we have the equalities in Theorem Notice that
the final inequality follows from Proposition[7.1.4}
—Artame(X) = n(Xs) — 14 2u(X;) + t(X;)
=2u(Xs) + u(Xs).

7.5 Proof of Theorem 7.2.3

The idea is almost the same as the proof of Theorem but we will encounter
more difficult situation. As before, we fix some nations. Set ¢ = p,(Yx), & =
pa(Yik), i = 1,2, then we have the following simple but important fact

_J&sit&et 1 if deg(f1) or deg(f>) is even,
§ 81+ 82 if deg(f1),deg(f2) are both odd.

We call the case where deg(f1) or deg(f2) is even case 1, and the other case case 2.

Let
R[x,y] )
(y* — mfi(x) fa(x)”
Rlw, z]
(= w2, (1) (1))
withw = 1/x,z = y/x8*1. Then Y is covered by Y’ and Y”. Similarly, for i = 1 or 2,
Y; is covered by Y/ and Y]’, where

(7.10)

Y" = Spec(

Y" = Spec(

: Rlx,y]
Yo =Speelim_p )
Rlw, z]
(2= w2 (1))
withw = 1/x,z = y/x&T1. We also set X/, X", X! and X!’ the minimal desingular-
ization of Y/, Y”,Y! and Y/’ respectively, i = 1,2.
For the convenience of readers, we mention some claims which are not exactly
the same as section

Y/’ = Spec(
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7.5.1 Discriminants

The proof of that y> = 7f1(x) and y> = 7tf2(x) are integral Weierstrass equation is
Zx] b2d

the same as the one in Subsection [7.4.1} By Definition |6.2.4, and the fact that f,, f,
are coprime, we have

0(A(Y)) = 1 — (=182 to(dise(nfif2))
=1—(~1)%8U12) 1 2(deg(f1) +deg(f2) — 1) + o(dise(f1)) + v(dise(f2))
=1— (—1)%8lhf) 4 2 4 o(disc(rf1)) + v(disc(7f))
=0(AM1)) +0(A(Y2)) + 2+ ((—1)e8U) 4 (—1)deslf2) _ (_1)deg(fi)Hdeg(f2) _ 1)
= 0(A(11)) + 0(A(Y2)) +2 — (1 = (~1)E0) (— 1% — 1),
B(A(Y)) = {’(J(A(Yl)) +o(A(Y2)) +2 %f deg(f1) or deg(f2) is even;
v(A(Y1)) +v(A(Y2)) —2 if deg(f1),deg(f2) are both odd.

7.5.2 Singular points

Firstly, let f(x) = f1(x) f2(x), then a close point P € Y’ with corresponding maximal
ideal (x —a,y, ) is singular if and only if f(a) = 0 in k. Indeed, a singular point
must be on the special fibers, so the maximal ideal m has the form (x —a,y, ) C
R[x,y]. Set

[i=m? 4 (2 7f(x) = ((x — a2, 7%, m(x — a), 7y, y(x — ), 2 — ef()).

Notice that (x —a,7) +1 # mand (y,r) + I # m, so P is singular if and only
if (x —a,y) +1 # m, thatis (x —a,y, 7%, 7tf(a)) # m, which is equivalent to that
f(a) =0ink.

We set Q € Y” corresponding to the ideal (w,z,71) and B = {Q} ifw = 0isa
zero of w?+2f(1/w) = 0,1i.e. deg(f) is odd. Otherwise, we set B = @. Hence,

Sing(Y) = {(x —a,y,m) CY' |a€kwith f,(@) =0 or f,(a) = o} |JB.

It’s similar for Y; and Y5, and we can define Q1, Q», By and B; in the similar way.

7.5.3 FEtale coverings around singular points

We replace W in Subection [7.4.3|to be
W = Spec(R[x,y,2]/ (y* — mfi(x) f2(x),2* = fo(x)),

then we have étale morphisms. Similarly, we have the following lemma:

LEMMA 7.5.1. (1) There is a bijection
Sing(Y’) — Sing(Y{) | JSing(Y3)
such that the corresponding points have the same completion of local rings.
(2) There is a bijection
Sing(X.) — Sing(X1,) | JSing(X5,)

such that the corresponding points have the same completion of local rings.
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With this lemma, we can deduce the similar lemma for Y.
LEMMA 7.5.2. In case 1, the following statements hold:

(1) There is a bijection
Sing(Y) — Sing(Y7) |_JSing(Y2)

such that the corresponding points have the same completion of local rings.

(2) There is a bijection

Sing(X;) — Sing(Xy,s) | JSing(Xa,)

such that the corresponding points have the same completion of local rings.

LEMMA 7.5.3. In case 2, the following statements hold:

(1) There is a bijection
Sing(Y) — Sing(Y7) | J Sing(Y3)

such that the corresponding points have the same completion of local rings.
(2) There is a bijection
Sing(X,) — Sing (X1 ) | JSing(X5,)

such that the corresponding points have the same completion of local rings.
Hence, in case 2, there is no point corresponding to Q1 and Q.

7.5.4 Calculations
A special case

For the calculation in case 2, we will need to know some quantities of the Weierstrass
model defined by y?> = 7x and its minimal desingularization. The results in this
subsection are also useful in the proof of Corollary

If Y : y> = 7x, then Y is covered by the affine open subschemes Spec( (ylz[fg]x))
and Spec( (ZIE[,ZU;]U)) withw = 1/x,z = y/x. We know that Y has two singular points

(x,y, ) and (z,w, ), the blowup of Spec(%) at (x,y, ) is glued by 3 affine

R[xy]

open subsets: Spec( =) ), Spec(ﬂ%) and Spec(%). Obviously, the

first one is smooth over R, for the second and third, they are regular. Indeed, for
klxy.z]
(y*—xxz)

each b € k, the point (x,y,z — b) is singular on special fiber Spec(

), so we
consider m = (x,y,z — b, ) € Spec(R[x,y,z]), and set

[=m>+ (y2 —X, 7T —Xz) = (x2, yZ, (z— b)z, %, mtx, my, t(z—0b),xy,x(z—b),y(z — b),y2 — X, 7T — X2).

With calculation, we have I + (y,z — b) = m, so m is regular on Spec(%).
As for Spec(%), easy to check that it’s smooth over R. Hence after blowing

up Y at (x,y, 7r) and (z, w, 7r), we get a regular model X, which is minimal desingu-
larization of Y. With calculation the exceptional curve over (x, y, 77) is isomorphic to
]P}(, hence we have n(X;) = 3, and the normalization of X; is 0 : ]P,l U IP,l U IP}c — X,
and X; has two singular points, and each has two preimage via o, so u(X;) = 2,
t(Xs) = 0,a(X;) =0, u(X;) = 0and —Artgume(X) = 2 by Proposition[7.1.4]
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Irreducible components

Since Ys, Y15 and Ys s all have only one irreducible component, so we have
n(Ys) =n(Y1s) +n(Yas) — 1.
Hence in case 1, as Subsection 4.4, we have

n(Xs) =n(Ys) + Z n(Xy)
y€Sing(Y)

=n(Ys) + 2 n(Xl,yl) + Z n(XZ,yz)
y1€Sing(Y1) y2€Sing(Y2)

=)+ ), nX))+ 0+ ), n(Xp)) -1
y1€Sing(Y) y2€Sing(Y2)
= Il(XLS) + Il(XLS) —1.

In case 2, Q; € Y7 and Q; € Y, are singular. We only consider Qq, it is similar

for Q. We know that Q; is on Y{' : z2 = w?§12f,(1/w), and corresponds to the sin-
. Rlw,z]

gular point of Spec( )

desingularization X; over Q; is isomorphic to IP,. Then

n(X;)=n(Ys)+ Y, n(X,)
y€Sing(Y)

=n(Y;) + Z n(Xy,,) + E n(Xzy,)
Y1 ESing(Yl/ ) 12 ESing(Yé)
= (n(Yy,s) + Z n<X1,y1>) + (n(Yas) + Z n(X2,y2)) -3
y1€Sing(Y1) y2€Sing(Y2)
= n(Xl,s) + n(Xl,s) - 3.

) by Lemma 7.5.1} Hence the fiber Xj g, on the minimal

Ranks
We also consider case 1 at first. By Lemma

nX)= ), (me—1)= 3} (me—1)+ )} (mx—1)=pu(Xys)+ p(Xa).

xeX; (k) x€Xy (k) xeXps(k)

Hence
t(XS) = ‘u(Xs) - n(Xs) +1

= (0(X15) —=n(Xas) +1) + (p(X2s) —n(Xos) +1)
= t(X1,5) + t(X2s).
The normalizations of Y5, Y1 s and Y5 are the projective line which has genus 0, so

a(Xs) = a(Xus) +a(Xops).

Since the multiplicities of the irreducible components of Y5 is 2, then the greatest
common divisor of the multiplicities of the irreducible components of X is 1 or 2,
and Char(k) # 2, so by Lemma we also have

dim; H(X;, Ox.) = pa(Yx) = &,
dim H' (X315, Ox,.) = g1,

dimy H' (X5, Ox,.) = g2,
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g§=s1++1L

Hence

( ) 88— (Xs) - t(Xs)
= (g1 —a(X1s) —t(X1s)) + (82 —a(Xas) — t(X2s)) +1
=u(Xys) +u(Xos)+1,

—Art(X) — 8(X) = n(Xy) — 1+ 2u(Xs) + t(Xs)

= 2u(X;) + p(Xs)
= (—Art(Xy) — 0(X1)) + (—Art(X2) — 5(X2)) +2.

For case 2, by the discussion in the end of the case y*> = 77x and Lemma we
know that X o, intersects with the other irreducible components ofXj ; at only one
point x; and my, = 2. Itis similar for X,. Hence we have

H(Xs) = Z (my—1)

xeX; (k)
= Z (my —1) + Z

xeX| (k) xeX} (k)
=( ), (m-1)-1)+( ) (m—1)-1)
xeXqy4(k) x€X,(k)

- V(Xl,s) =+ ]’[(XZ,S) - 2/

t(Xs)

u(Xs) —n(Xs) +1
= (u(X1s) —n(Xys) +1) + (1(Xas) —n(Xps) +1)
t(Xls) +t(X25)

Since the normalization of Y5, Yi 5, Y2, : are the projective line which has genus 0, and
X1,0,, X2,0, are both isomorphic to Pl %7 SO

a(Xs) = a(X1s) +a(Xas)-
As the discussion in case 1, we have
dim H' (X, Ox,) = pa(Yx) = g,
dimy H' (X5, Ox,,) = g1,
dimy H' (X2, Ox,,) = g2,

§ =81t &.

Hence

u(X;)

g —a(Xs) —t(Xs)
= (81 —a(X1;s) — t(X1s)) + (82 — a(Xs) — t(X2s))
U(Xl s) +u(X25)

—Artame (X) = n(Xs) — 1+ 2u(X;) + t(X;)
= 2u(Xs) + pu(Xs)
= _Arttame(Xl) - Arttame(XZ) —2.
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7.6 Proof of Corollary 7.2.4

For a Weierstrass model Y, we set
h(Y) :=v(A(Y)) 4+ Artiame (X),

where X is minimal desingularization of Y. Then with the notations in Theorem
we have
h(Y) = h(Y1) + h(Y2)

Hence, after a change of coordinates, sufficient to prove the inequality that
h(Y) >0, (7.11)

for Y : y> = m€f(x) with f(x) = ux" € k[x], where f(x) = x(x —by) - (x — by)
withn >4, v(b;) > 1 for each i, and € = 0 or 1. We can suppose that u = 1 since R is
strictly henselian. We will prove this by induction on 7, so we consider all cases for
n > 1. Before that, let us determine the singular points on Y.

Notice that Y = Spec(ﬂ%) U Spec( (wLnezI;L[(Zn’z]l])/ZJf(%)) ), where x = 1,y =
x[(n+1)/2j w.

Ife =0,n > 2o0re = 1,nis even, the Y has only one singular point (x,y, ) €

Spec( (yﬂi‘/ﬁ)) ). Firstly, a point of the form P = (z,w — b, 1) on Y is regular: if ¢ = 0,

and P is singular, then b = 0, and easy to check that z = 0 not a multiple root of
ZZL(”H)/ZJ]‘(%) = 0, so it’s not singular; if € = 1,7 is even, then z = 0 is not a root
of z''f (%) = 0, and any point of the form (z,w — b, 1) is regular, see Section
Hence, in both cases, the possible singular pointis m = (x,y, 77) € Spec((yzﬂf%).
Next, we prove that m is singular. If € = 1,7 is even, see Section if e = 0, the
proof is similar: consider m = (x,y, 7t) € Spec(R[x,y]), and set

[=mw?+ (- f(x)) = (&% v, 7%, mx, y, xy, y° — f (%)),

then I + (x, ) = (x,y%, ) #m, [+ (x,y) = (x,y, %) # m, so m is singular if and
onlyif I + (y, ) = (x%,y, 7, x") # m, thatis n > 2. It also shows thatIfe = 0,n = 1,
then Y is regular.

If e = 1,n is odd, then Y has two singular points (x,y, ) € Spec(%) and
Rlz,w]
(w?—mz"t1£(2))
We prove the inequality by induction on n. For n = 1,if Y : 4> = x, we have
that Y is smooth, hence the minimal desingularization is exactly Y, and easy to know
that Ys >~ Py, so u(Ys) = pa(Ys) = t(Ys) = a(¥s) = u(Ys) = 0, so —Artame(Y) =0,
ie h(Y)=0.
For Y : y? = mx, we know that /(Y) = 0 in the proof of Theorem [7.2.3]
If n > 2, suppose that v(b,) = max {v(b;)}, then after change of coordinates

(z,w, ) € Spec( ), see Section|7.5.2

x ="k
y= nt(”m*‘e)/ﬂg,
(

t—2)... (£ — &), where & = 0

we get another Weierstrass model Y : y”z =T =

or 1. We claim that
h(Y) > h(Y) +2m(n —2). (7.12)

If so, then by inductive hypothesis and Theorem [7.2.1, we have h(Y) > h(Y) > 0.
Hence, to show the first statement of Corollary [7.2.4 hold, it is sufficient to prove
following lemma:
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LEMMA 7.6.1. Let Y : y?> = mt€x(x — by) - - - (x — by ) be a Weierstrass model of a hyper-
elliptic curve withn > 2,v(b;) > 1,€ =0o0r 1, via

X =X
y= n[(”+€)/2J y"’

O

we have another Weierstrass model Y : > = nf%(% — 2) .- (% — %) withé =n+e€—
2|(n+e€)/2| Then

h(Y) > h(Y)+2(n—2)
Proof. Obviously, we have v(A(Y)) — v(A(Y)) = (2n —2)e — (2n — 2)é + 2(}), and

5(X) = §(X), wheren X (resp.X) are the minimal desingularization of Y (resp.Y).

_ Rlxy]
Set U = Spec((yz_nex(x_bzy)m(x_bn))) cY.
If n is even, then € = &, and Y has only one singular point (x,y, 77) €

Spec( = (ff[xbzy)] ) ), and the all singular points of Y are on

R[xy]

(P—ex(x— 2 ) (x— L))
by some affine open subsets.

If nis even and € = € = 0, we can know that W is glued by

). Suppose that W is the blowup of Y at (7, x, y), it's glued

Spec(

Rz, 7]
W =S5 ’
v=Speel T 2) (T - h#)))
Rlx, 7T, ]
W, =S '
’ peC((?z—x”*z(l—%ﬁ)' (1—%’7%)/”_7”))
R[y, 7, 1]
W3 = Spec( - . . - ~ )
( _xyn—Z(x_%an)- <x—b—7_'(77'[),7'[—7'[]/>

and take the normalization W of W. we can check that Wj is regular by using the
standard methpgl as before. We know that the normalization W; of Wj is
Spec(—— Rb[x’y ] - ), which is an open subset of Y, and the normalization W, of
(P2 —%(3—2)~ (T 1))
R[x,7t,7]

(P—(=27)-(1- % 7),m—x7))
each of them are regular on Wj: by Jacobian criteria, the possible singular points on
V(7t) are corresponding ideals (71, 7,7+ 1,x), setm = (7, 7, — 1,x) C Rx, 7T, 7]
and

W, is Spec( ). We consider the closed points on V(7t) C W,

by b

2 ~2 n ~ ~
I=m"+ (7" - (1 7_[71)---(1 7_[71),71 x7t),
easy to check that I + (77,7 — 1) = m, so the point corresponding to m is regular on
W,, and similar for another point. We use this process to check if a point is regular
or not in the following proof. Hence the singular points of W are on W;. With
calculation, we know that the preimage of (77, x,y) € Y on W is isomorphic to Y.,
then

n(W;) = n(Y;) +n(Y;),

i.e. n(W;) —n(Y;) = n(Y;) = 2. Since the minimal desingularization can be obtained
by a series of normalized blowups at singular points, and W, Y have the same singu-
lar points, so we have n(X;) — n(X;s) = n(W;) — n(Y;) = 2, and with the fact that Y
and Y have the isomorphic generic fiber, we have that Art(X) — Art(X) = 2. Hence

h(Y)—=h(Y)—-2(n—2)=n(n—1)—-2-2(n—2)= (n—1)(n—2) > 0.
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If nis even and € = € = 1, then W is glued by

Wi = Spec(

=
|
S
N
N—
—
=
|
=
N
SN—
SN—

(72— 715

Rx, 7T, 7]
W, =S5 ’
2 pec((y..z_ﬁ.xn_l(l_%ﬁ)...(l—%ﬁ),ﬂ—ﬁX>)
W3 = Spec( F——, 5[?INIX]~ b
(1—7Azy" Y% — 27)--- (¥ — 2A), 7~ 7y)

and W is the normalization of W. Similarly, we have that Wj is regular, the normal-
R[%,7]

(P -re(i= ) (- )

the normalization W, of W, is Spec(

ization Wy of W is Spec( ), which is an open subset of Y, and

Rx,7,7]
(P—x(1= 2 ) (1= 7))
before, we know that (7, x, 7, 7) is the only point on V(7t) and singular on W,. To
resolve it, it’s sufficient to consider the completion of its local ring, that is

R[[x, 7,9)]
(P = Ax(1 = 27) - (1=

zn
T

). With calculation as

7

7T), 7T — 7TX)

where R is the completion of R. Notice that this ring is isomorphic to the completion

oflocalring of T = Spec(%) at (71, x, 71, ), which is the only singular point

on T. Take the blowup Tof T at (71, x, 7, 7), and with calculation, we know that T is
regular and the fiber on T over (7T, x, 7T, ¥) is isomorphic to P! which means that

n(T;) = n(T;) + 1.

Except (7, x, 71, ) € Wy, the rest of singular points on W are on W;. With calculation,
we know that the preimage of (77, x,) on W is exactly isomorphic to Y;, then

n(W;) =n(Y;) +n(Ys),

ie. n(W;) —n(Y;) = n(Y;) = 1. Hence n(X;) — n(X;) = n(W;) —n(Y;) + (n(T:s)
n(T;)) =2, and Art(X) — Art(X) = 2. It is similar as above, we have h(Y) — h(Y)
2(n—2).
If nis odd, € = 0, then € = 1, and Y has only one singular point (77,x,y) €
Spec( o (flzzy)] =) ), but Y has a singular point that is not on affine open sub-
Rlxy] . Rlz,w]
Bty Mt (maw) € Specl e ey ) A

above, suppose that the normalized blowup of Y at (77, x,y) is W, which is glued by

>

set Spec(

) R[%,7]
Wi = Spec ’
1=9p ((92—713?(3?—%) "(f_bﬁ)))
N, = Spec Klxg.7]
W = e = BA) . (1= BA), = )
s — Spec Rly, 7%, %]

(1—zy2(x—27). - (x-ba),n—7ry)”

and we can check that every point on V(7t) C W, is regular on W,, similar for W3.
Hence, singular points of W are on W;, which is isomorphic to an open subset of Y.
With calculation, we know that the preimage of (7, x,y) on W is exactly Y;, then

n(W;) = n(Y;s) +n(Ys),
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(Ws) —n(Ys) = n(Y;) = 1. Since Y has to resolve (71,z,w), so n(X;) — n(X;) <

ie.n
n(Ws) —n(Y;) —1 =0, and Art(X) — Art(X) < 0. Hence

h(Y)=h(Y)—=2(n—2)> —4(n—-1)+nn—-1)-2(n—-2)=(n-3)(n—2) > 0.

If nis odd, € = 1, then € = 0, and all singular points of Y are on

Spec( (yz—x(x—ng )y ]”(% W) ) ,R but Y has two singular point, one of which is not on affine
) : Rlz,
open subset Spec( (yZ—nx(x—[;g]m(x—bn)) ), thatis (71, z, w) on Spec( (wZ—nz(l—ézzzu)]]m(1—b,lz)) ).

Take the blowup Y’ of Y at P = (71, z, w), then Y’ will resolve this singular point. In-
deed, take the completion Rz, w]p = R[[z,w]] of R[z, w]p, by Hensel’s Lemma, there
exists T € (Rm )* such that T? = (1 — byz) - - - (1 — byz), s0 6; ~ (i[zz’wh’) and

") is obtain by blow-

we have seen that the minimal desingularization of Spec( Rlzt w]P

ing up at P, with fiber P! over P, hence it is same for Oy, p and Y. Suppose that W is
the normalized blowup of U at (x,y, ), then W is glued by

Wy =S - %
= G ) - B
B Rlx, 7, 7]
_Spec(<y~2_ﬁ(1_%ﬁ) (1_%7?)’7_[_7”)),
. Rly, 4
W3 = SPEC( (1 - ﬁ_.:fyn72(j — b—f?ﬁ,’) (32 —bu ﬂ) T— 7~T}/) '

and we can check that W is regular, and every point on V(7) C W, is regular on
W,. Hence, singular points of W are on Wy, which is isomorphic to an open subset of
Y. With calculation, we know that the preimage of (7, x,y) on W is exactly Y;, then

n(W;) = n(Y;) +n(Ys),

o
=3
=
|
=3
=
Il
=3

YS) = 1. Hence n(X;) — n(X;) = 1 +n(W;) —n(Ys) = 2, s0
ence, we have

>
=1
>
|
>
=1
E¥
I
N
T

h(Y)—=h(Y)=2(n—-1)+nn—-1)—-2-2(n—-2)=n(n-1) >0.

The second statement comes from the first statement and Corollary
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