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Abstract v

Integrated design of Additive Manufacturing based on Design For Manufacturing and skin-
skeleton models

Abstract

Nowadays, Additive Manufacturing (AM) evolves the manufacturing world by its capabilities for production
of the complex shapes layer by layer. Design For Manufacturing (DFM) approach helps to overcome
the AM constraints and mastering product features in product lifecycle. Several studies are devoted
to integrated design approach for AM, but there is no approach that considers all product life cycle
steps in optimization level for product and manufacturing process. So, this thesis provides a DFM
approach for AM to investigate simultaneously different attributes, constraints, and criteria of design and
manufacturing in product definition. Skin-Skeleton approach models the first definition of product and
AM. It contains functional analysis, usage model, and manufacturing model. In this work, a novel interface
processing engine as an interface between product and manufacturing model is developed through analysis
of AM technologies and their parameters and criteria. This engine relies on a bi-objective optimization
problem to minimize production time and material mass under limitation of mechanical properties and
roughness of the product to obtain the optimal manufacturing parameters. This methodology permits to
define the product model. The approach is implemented into Fused Deposition Modeling to verify the
methodology through two case studies.

Keywords: rapid prototyping, technical design, manufacturing processes, life cycle analysis, multi-
criteria decision making, mathematical optimization

Résumé

Aujourd’hui, la fabrication additive (FA) fait évoluer le monde de la fabrication grace a ses capacités
de production de formes complexes couche par couche. L’approche de conception pour la fabrication
(DFM) aide & considérer les contraintes de FA et & maitriser les caractéristiques du produit dans la
gestion de son cycle de vie. Plusieurs études sont consacrées a 'approche de conception intégrée pour
la FA, mais aucune approche ne prend en compte toutes les étapes du cycle de vie du produit dans le
niveau d’optimisation de sa conception et de sa fabrication. Ainsi, cette theése fournit une approche DFM
pour la FA afin d’étudier simultanément différents attributs, contraintes et critéres de conception et
de fabrication des la définition du produit. L’approche Peau-Squelette modélise la premiére définition
du produit. Il contient une analyse fonctionnelle, un modéle d’usage et un modele de fabrication. Dans
ce travail, un nouveau moteur de résolution, qui agit a l'interface du modeéle de produit et du modele
de fabrication, est proposé grace a I’analyse des technologies FA et de leurs parameétres et criteres. Ce
moteur repose sur un probleme d’optimisation bi-objectif pour minimiser le temps de production et la
masse du matériau en proposant les solutions optimales pour les propriétés mécaniques et la rugosité du
produit. Cette méthodologie permet de définir le modele de produit. L’approche est mise en ceuvre a
travers une premiere technologie de dépé6t par fil fondu (FDM) pour la production de deux études de cas.

Mots clés : prototypage rapide, conception technique, procédés de fabrication, analyse du cycle de vie,
décision multicritere, optimisation mathématique

Institut Charles Delaunay (ICD)- Laboratory of Mechanical Systems and Simulta-
neous Engineering (LASMIS)
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Background and motivation

Nowadays, it is essential to respond to industrial challenges towards shorter lead times, lower
cost, higher product quality, and better customer satisfaction. Concurrent Engineering (CE)
became more important in the success of the companies as a solution for these issues. CE is a
systematic approach which performs different tasks in the product and production development
process which are then integrated and performed at the same time in parallel rather than in
sequence. Integration of design and manufacturing constraints makes it possible to decrease the
development lead time and enhances the product quality [1].

On the other hand, Additive Manufacturing (AM) which is derived from rapid prototyping,
revolutionizes the industrial world. It creates the possibility to produce different versions of a
product with a range of material with specific technologies. The product is manufactured from a
3D model through layer-by-layer manufacturing technology. The unique characteristics of AM
encourage the producers to use these technologies, but there are some drawbacks that affect the
production performance [2].

The product design and manufacturing for AM are different compared to the traditional
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manufacturing processes and it creates new issues and concerns for industrial implementation.
Until now, the link between design and manufacturing of additive techniques is often a STL format
which does not contain the fabrication information. So, it is necessary to find a methodology to
consider all these aspects together.

In the context of Concurrent Engineering and AM, this thesis is motivated to present an

integrated design approach of AM.

Problem statement

In the research area of manufacturing of the products by AM, it is intended to investigate the

following general problems:

e Suggest a general approach to formulate how to take into account the usage and AM

constraints simultaneously in the product definition level.
e Provide an approach to analyze and model the AM process.
To investigate these problems, we encounter some questions:
e How to model and optimize the product to fulfill the customer’s requirements?

e How to integrate the manufacturing step and its constraints in the design step to improve

the product model in terms of cost, time, and quality?

e Which attributes and criteria are important in the product development process of the

fabrication with AM?

e Which parameters of additive technologies have significant effects on the AM attributes,

criteria and constraints and how to find the best manufacturing parameters?

e How to integrate all steps of the product development process in a general integrated design

approach?

To handle the defined problems and answer to all these questions, it is necessary to present an
integrated and complete approach addressing the attributes, capabilities, criteria, and constraints

concurrently to provide an interoperable process in product life cycle management for AM.
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Integration of design and manufacturing related to AM can facilitate its implementation as it is
intended to consider the manufacturing process early in the product definition as an integrated
design approach. The product model is completed through a 3D model, manufacturing information,
and defined attributes through Design For Manufacturing (DFM) approach.

For this purpose, it is necessary to find a methodology toward an integrated design approach
for AM. DFM approach was applied to traditional manufacturing processes through Skin-Skeleton
approach in some studies [3, 4]. In this study, this skin-skeleton approach is chosen to model
the first definition of the product as a usage model and manufacturing process as manufacturing
model. This approach will be completed through an interface processing engine which is an
interface between design and manufacturing in order to define the final product model. It is
developed through the analysis of all AM technologies and identification of their parameters,

criteria, and drawbacks to find the optimized product model.

Objectives
The objectives of this study are summarized as follows:

e Study and analysis of scientific researches related to concurrent engineering, design process
and integrated design, Design For Manufacturing, and modeling the product in a general

way.
e Investigate the different performed studies related to AM and its technologies.

e Present the contribution regarding the method and new scientific and technological directions
in the integrated design approach for AM. The integrated design approach is provided in
the product definition level and it gradually maps the product sepecifications to the final
product model. It creates an interface between product model and manufacturing model
which is a support for the designer in order to select the manufacturing process and to
integrate its constraints and attributes as soon as possible during product development

process.

e Implement the proposed approach into some case studies to verify it.
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Dissertation outline

This thesis is presented in the following four chapters:

Chapter 1: Integrated Design and Additive Manufacturing: State of the art

This chapter introduces the Additive Manufacturing and Integrated Design as the basic concepts
of this thesis including background and status of the Concurrent Engineering, AM and product
development in the industry. The presented approaches of Integrated Design for AM as the
solutions to integrate AM attributes and constraints in design step to define a product model,
as well as optimization approaches of AM criteria, are reviewed in this chapter. The literature
analysis on the other proposed approaches is prepared which guides the research to the problems

and research gaps.

Chapter 2: DFM-Skin and Skeleton approach for AM: Proposed methodology

This chapter describes the proposed methodology as DFM-Skin and Skeleton approach for AM.
It provides an integrated approach for AM to consider simultaneously the AM characteristics,
criteria, and drawbacks to find the final product model which consists of 3D model and the
best manufacturing parameters for production. Skin-Skeleton approach is used to model the
first definition of the product and manufacturing process. This methodology is developed based
on two propositions. The propositions are different in terms of the methodes that are used for
defining usage, manufacturing and interface models. They are developed through analysis of the
requirements, design step, AM technologies and finally integration of these steps together to define
the product through multi-criteria decision-making methods and multi-objective optimization

approach.

Chapter 3: Application into Fused Deposition Modeling

The reliability of the proposed approach is highlighted through two case studies which will
be produced by Fused Deposition Modeling as one of the most AM technologies. Firstly, this
approach is verified through a case study as a bag hook, then, a more complex case study as a

wheel spindle of a child car will be studied to utilize the AM capability to reuse a product by
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replacing its broken part. The second case study shows the reliability of our proposed approch
P g p y y prop pPp

for other products.

Chapter 4: Conclusion
To complete this research, the discussion section will be provided to analyze the proposed approach.
Then, the key conclusions and perspectives are given in this chapter to guide other researchers to

continue their studies in this domain.
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1.1 Introduction

Nowadays, Additive Manufacturing (AM) and its different technologies bring a new approach to
produce many complex products with different materials. This manufacturing method is derived
from Rapid Prototyping and it manufactures the products based on the 3D model in layer-by-layer
manufacturing process through different technologies to process the material [5]. The advantages
of AM encourage the manufacturers to use additive technologies, while it has some disadvantages
and constraints [2]. These unique characteristics, advantages, disadvantages, and constraints
require new design tools and practices in order to manage the design and manufacturing process.
Also, designers are not completely free to create geometric shapes in this method, that is why
several issues must be taken into account during design and manufacturing steps. It is necessary
to choose the correct method of design and manufacturing simultaneously in Product Life Cycle
Management. Also, it is essential to respond to industrial challenges towards shorter lead times,
lower cost, higher product quality, and better customer satisfaction. For this aim, designers must
utilize Concurrent Engineering aspects in AM implementation [6]. Concurrent Engineering (CE)
helps to integrate design and manufacturing constraints to decrease the development lead time
and enhances the product quality [3, 1]. Design For Manufacturing (DFM) as one of the basic
concept of CE helps designer and manufacturer to investigate the constraints and attributes of
the manufacturing process in the design stage. Finally, it provides a product model by analysis of
all attributes and constraints of functional analysis, design and manufacturing concurrently [7].

The remainder of this chapter is organized as follows: firstly, Product Life-cycle Management is
described in section 1.2. Concurrent Engineering, Design process and Design for Manufacturing are

explained consequently in section 1.3 and 1.4. Then, section 1.5 discusses Additive Manufacturing
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and its characteristics and technologies. Finally, Design for Additive Manufacturing approaches
are reviewed in section 1.6. According to this literature analysis, the reserach gaps are identified

in section 1.7. Finally, this chapter will be finished by a summary of this chapter (section 1.8).

1.2 Product Life-cycle Management (PLM)

Modern manufacturing systems are facing several challenges like shortened innovation lead-times,
reduction of time to market, cost reduction, mass customization demands, more complex products,
improving product quality, inventories subject to rapid depreciation and rapid fulfillment needs [8,
9]. New information systems are enabled to tackle the different challenges and allow them to show
the product information over the whole product life cycle. The emergence of the PLM concept
has generated these information systems. PLM is an information technology platform which is
able to respond to the needs like reducing time-to-market, enhancing collaboration for global
engineering teams, reducing development costs, improving customer satisfaction, and increasing
the value of product portfolios [10].

The PLM concept links different product development stages including Computer Aided
Engineering (CAE), Computer Aided Design (CAD), Product Data Management (PDM), Manu-
facturing Process Management (MPM), Enterprise Resources Planning (ERP), etc. in a unique
numerical chain. The target is to improve the manufacturing systems criteria like time-to-market,
cost, and quality. Actually, there is no unique method which allows managing a project for the
development of a product. It is very difficult because of the vast amount of information which
comes from different trades [9].

The catchword of PLM is collaborative work within product design processes to integrate all
the partners and all associated knowledge efficiently. Design needs to be defined as a collaborative
process and can be optimized by allowing upstream integration of data, resources and knowledge.
The actual collaborative design is often reduced to asynchronous data exchanges through Product
Data Management (PDM), even if some people prefer to speak about "sharing" since the product
is a mutual creation. Modeling design activities implies to take into account not only product
but also process planning and the processes themselves [9].

The product life cycle goes by a functional definition to a CAD design before being simulated
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and manufactured. The principal strategy which modified the sequential organization of work is
called Concurrent Engineering (CE) [11]. Concurrent Engineering provides a vision to organize

the product development as described in the next section.

1.3 Concurrent Engineering

Concurrent Engineering (CE) is an ideal environment for product development. One of the first
general definitions of simultaneous engineering is that of Sohlenius, 1992 [1] who postulates that:
"Concurrent engineering means a way of work where the various engineering activities in the
product and production development process are integrated and performed as much as possible
in parallel rather than in sequence ".

CE is the process of taking into account the needs of each different stages of the product
life cycle simultaneously. It aims to integrate product life cycle knowledge earlier during the
design process and different engineering activities must be integrated together and performed in
parallel [3]. So, the iteration between the design activities which create the advantages in time,
quality and cost is reduced. The strategy of CE is to integrate the material and manufacturing
constraints into the design procedure as well as, tool utilization must be computer-based to ensure
the desired accuracy [12].

CE involves two main areas including design process of the product and the constraints of the
product life cycle arising from manufacturing, assembly, recycling, and maintenance. It allows
investigating the entire life cycle of the product, from the first expression of the need to final
service [3] in order to define a product. So, this approach reduces the iterations between design
activities which create the advantages in time, quality, and the cost. The strategy of Concurrent
Engineering is to integrate the material and manufacturing constraints into the design procedure
by computer-based tool utilization to ensure the accuracy [12].

The CE objectives include improving quality, reducing cost, compressing cycle times, raising
productivity and efficiency, and improving the social image. For achieving these objectives, a
cooperative teamwork is needed between multiple disciplinary functions to consider all interacting
issues in designing product, processes, and systems [7]. The strategies are used to integrate life

cycle constraints into the early stages of the design process.
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To manipulate the concepts and mechanisms of Concurrent Engineering, the scientific commu-
nity formalizes them with design methods and they are provided according to the product design
process. In the rest of this chapter, the design process will be presented in a general way with
the different types of design including systematic and integrated design. Also, it is continued

with the section of design methods for manufacturing.

1.4 Design process

The design is the most important stage in the product life cycle and Concurrent Engineering. It
is essential to determine the design step in detail to define a product. Also, optimizing the design
stage can reduce the total cost up to 70% thereby the production cost is optimized significantly
[12].

There are several approaches for design. Firstly, the design is defined as a systematic process
which includes the successive steps that performed without evaluation and considering the
feedbacks. The second one is an integrated design which provides the design process as the

integrated steps [12]. These types of design are defined as follow:

1.4.1 Systematic design

The systematic design is introduced by Beitz et al. 1996 [13] which classified the design process

in four evaluation levels:

¢ Requirement analysis: This approach is started with the determination of the customer

requirements and product specifications.

e Conceptual design: This step consists of definition of the specifications, determination

of functional structure, functional principles, and evaluation of conception choices.

e Embodiment design: It is including the definition of size and form, model and analysis
of these aspects of the product with together, optimizing the functions, evaluating and

choosing the plots.

e Detailed design: It contains the detailed analysis of the components, selecting the
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Figure 1.1 — Comprehensive version of general integrated design model [15]

fabrication methods, optimizing the performance and cost, preparing detailed drawing

definition.

1.4.2 Integrated design

Integrated design is an approach considering all aspects of the product life cycle in its design like
functions, analysis, manufacturing, assembly, recycling, etc. [14]. The general model of integrated
design contains two activities of analysis and synthesis as loops. The analysis loop concerns the
reasons which analyze and provide the design features due to the product specifications and
functional constraints, and the synthesis loop is related to the identification of possible design
solutions, as well as evaluation of the validity of the solutions due to the functional requirements
[15]. This general model consists of a lot of iterations for designer which should returns to the
back for developing the design regarding product specifications as shown in Figure 1.1.

In this approach, the design solution is based on the material constraints, attributes, and
designer experiences. Compared to the traditional design process, the integrated design needs
less iterations due to the intervention of an actor in all the stages. This integrated design is
illustrated in Figure 1.2.

According to Figure 1.2, indeed the simultaneity is demonstrated by overlapping stages of the
design process and integration through the involvement of professional actors and stakeholders
on each step. Part a and b of this figure are related to systematic design and integrated design

respectively. In part c, the integrated design approach is presented according to the work of
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Figure 1.2 — Different design process- a) Systematic Design b) integrated Design ¢) Integrated
design presented by LASMIS [12]

the Laboratory of Mechanical Systems and Simultaneous Engineering (LASMIS). The latter
emphasizes the intervention of different expertise profession in the product definition. This
approach is known as Design For X (DFX) where X represents the different professional activities.
These approaches are classified into two groups of life cycle and virtue (Table 1.1). They provide
qualitative design guidelines for a specific stage in product life cycle (e.g. Design for Manufacturing
(DFM), Design For Assembly (DFA), Design For recyclability) as DF Xj; tephase, Or a specific
virtue (e.g. Design For Environment, Design For Safety (DFS)) as DF X ity [16].

Therefore, DFX which is linked to the Concurrent Engineering and it is used for assessing and
integrating "x-field" information independently. Figure 1.3 shows the status of DFX in Concurrent
Engineering framework. This DFX approach provides an information model due to design and
manufacturing analysis, as well as an interface model which is an interface between design and
manufacturing model. Collaborative activities are used in terms of mechanical optimization and
analysis to provide this information and interface model.

The problems and defects of product quality are derived from three factors of design, material,

and process. These problems are including part fracture, tolerance defects, manufacturing diffi-
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Design For X (lifephase) | Design For X (Virtue)
Design For Quality Design For Assembly
Design For Reliability Design For Manufacturing
Design For Environment Design For Service
Design For Logistics Design For Disassembly
Design For Maintainability Design For Recycling
Design For Safety
Design For Re-manufacturing
Design For User-friendliness

Table 1.1 — Design For X classification [17, 16, 18]
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Figure 1.3 — Design For X [3]
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culties, assembly difficulties, quality and ergonomic problems, etc. Integrated design approaches
can help us to solve these problemes in the design stage. Also, since manufacturing is a sequence
of processes for transforming raw or partially processed material into a final product that has
value for the customer [19], the manufacturing process is chosen during the conceptual design of
the product. All predefined design constraints including the manufacturability of the part, using
the companies or suppliers existing machines and processes must be met in the design phase [20].
Also, various studies demonstrated that detecting and rectifying the errors in the design phase of
the product cost less than when rectifying at manufacturing or further downstream stages. So,
manufacturing must be taken into account during product design as early as possible in the design
cycle [12]. Since, about 70% of manufacturing costs of a product (cost of materials, processing,
and assembly) are determined by design decision, therefore, handling manufacturing problems in
the design stage has an influences on cost, time, and quality. These issues put emphasis on the
need for approach of Design For Manufacturing (DFM) to integrate the product design, process
planning and manufacturing into one common activity to design a product that is easily and

economically manufactured [21]. So, the DFM approach will be explained in the next section.

1.4.3 Design For Manufacturing (DFM)

Design For Manufacturing (DFM) involves simultaneously considering design goals and manufac-
turing constraints in order to identify manufacturing problems while parts are being designed;
thereby reducing the lead time for product development and improving product quality [22, 23].
Actually, it as a methodology which aims to simplify the manufacturing process, increase the
productivity and minimize cost while maintaining the product quality in a desirable level [20].
This technique is used to optimize the product and process concepts during the design phase of a
product to ensure ease of manufacture [24] by optimizing the manufacturing, quality, productivity,
reliability, cost, time of production, and time to market [12]. Generally, the products which are
designed based on the DFM approach contains less number of parts that can be assembled more
easily in a shorter time and with higher quality [12]. The benefits of DFM can be summarized as
follow [12]:

e Improving the product quality during product life cycle development including design,
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Figure 1.4 — Design For Manufacturing [3]

technology, manufacturing, service, etc. [25].

e Cost reduction, including the cost of design, technology, manufacturing, delivery, technical

support, discarding, etc. [25].

e Reduction in development time for new products including the time of design, manufacturing,

preparing, and calculation [25].
e The manufacturer participation in the upstream process [26].
e Improving the communication between the departments [24].

DFM is considering the limitations related to the manufacturing at the early stage of the
design; the design engineer can make the selection among the different materials, technologies,
and schemes to estimate the manufacturing time and the product cost quantitatively. They
compare all kinds of the design plans and technology plans, then, design team will make revision
as soon as possible at the early stage of the design period according to this feedback information
and determine the most satisfied design and technology plan [25].

The systematic DFM approach involves the range of activities such as process selection,
material selection, and manufacturability evaluation of a product which is shown in Figure 1.4.

This systematic DFM contains some steps as follow:

e Material and process selection: Selection of the process and material are the most
important factors in providing the design solutions for manufacturing. It is necessary to

consider the design optimization during the selection of process activities [27, 12].



1.4. Design process 19

e Manufacturability evaluation: The evaluation of manufacturability consists of analysis
and evaluation of the ability to produce and design with the necessary requirements by
spending minimum cost and time. For this purpose, it is necessary to decompose the
product to sub-elements (for example, the surface, dimension, tolerance, etc.) due to the

manufacturing data. This evaluation is performed through three steps as follow:

— Verification: This step is determining the product manufacturability including
identification of the design and manufacturing capacities, accepting the compatible
design with the existed solutions of manufacturing for the complex products, and

rejecting the design which requires expensive changes in the production system [28].
— Quantification: The parameters like cost, time, and quality must be quantified [26].

— Optimization: Optimization must be performed in three levels of human (compe-

tence), means (machines, tools and software) and product (design) [29].

The Skin-Skeleton approach, which has been used in some studies [3, 4] and is applied for the
traditional manufacturing processes, can be used to implement the DFM approach. In the next
section, skin-skeleton approach as the basic concept to provide a product definition with an

integrated design approach is described.

DFM Implementation: Skin-Skeleton approach

In the product development process, several tasks should be performed to gradually map the
customer requirements to the final product model. The product is designed according to the
constraints related to the whole product life cycle (materials, structural analysis, recycling, etc.).
Hence, Concurrent Engineering can help to consider and analyze manufacturing constraints in
the product development. This integration in product definition is carried out from sub-model
representing common design and manufacturing modeling [30]. For this purpose, a skin-skeleton
approach is used to depict the product features by usage model and the information model
for manufacturing process by manufacturing model, provide an interface model which allows
to synthesize and compare the usage and manufacturing model in order to define the product
model. Actually, the product model is an evolved usage model that is developed by considering

the manufacturing model information through an interface model.
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The Skin-Skeleton approach allows modeling the product and manufacturing process from
functional analysis to production step. Generally, skins must describe the product’s functional
surfaces and skeleton shows the flow trajectory as shown in Figure 1.5. This Figure illustrates
an example of usage and manufacturing skins and skeletons to define the product model of a
"U" magnet. The usage model coming from customer requirements and manufacturing one is an
information model for manufacturing. The required solution is not totally determined and it
is constrained by manufacturing model, as well as interface modeling coming from the design
and manufacturing. Several design solutions are then available. Specific sets of attributes are
associated with the skin such as shape, tolerance, roughness, and material direction which is
dependent on the form. Skeleton attributes are initial section form, final section form, section
variation, and neutral fiber (line, curve, plate, etc.). Also, an extra attribute defines the material
flow direction for manufacturing skeletons. According to this simple concept, final product
definition will be provided and analyzed based on manufacturing process selection. Indeed,
the final 3D model of a product (made of manufacturing skins) is constructed by sweeping or
deforming the skeleton section on the skeleton trajectory. The initial model described with "usage"
skin and skeleton must be compared to the "manufacturing" one [3].

This approach consists of Function-Behavior-Structure (FBS) model, usage model (i.e. design
requirements), manufacturing model (manufacturing features) and interface model which are

described comprehensively as follow:

Function-Behavior-Structure (FBS) model: Gero et al. [32] conceptualizes the design
objects as Function (F), Behavior (B), and Structure (S) as FBS model as shown in Figure 1.6.
According to the FBS model, designing a product involves a series of elementary steps including
transformation of the desired product function into its expected behavior and the expected
behavior into a structure [32]. The basis FBS framework is formed by three classes of variables

to describe the different aspects of a design object:

e Function (F): The object must be described by its function, i.e. what it is for.

e Behavior (B): It depicts the attributes that are derived or expected from the structure

(S) variables of the object, i.e. what it does.
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Figure 1.5 — Skin and Skeleton illustration for a "U" Magnet [31]

e Structure (S): It describes the components of the object and their relationships, i.e. what

it is.

The connections between the function, behavior, and structure of a design object can be
created through experience. Specifically, the designer ascribes the function to behavior and derives
the behavior from the structure. There is a direct connection between function and structure,
however, is not established. The FBS framework represents designing through a set of processes
linking function, behavior, and structure together, which can now be seen as different states of
the developing design. In this framework, the behavior derived from structure must be compared
to the expected behaviors.

The eight processes depicted in the FBS framework (Figure 1.6) are claimed as (1). Formulation,
(2). Synthesis, (3). Analysis, (4). Evaluation, (5). Documentation, (6). Reformulation type 1,
(7). Reformulation type 2, (8). Reformulation type 3 [32].

In this approach, FBS model provides an initial structure for the product which satisfies its

function and behavior. So, it helps to recognize the material flow and identify the usage skin and
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Figure 1.6 — FBS model framework [32]

skeleton by its initial design space.

Usage model: The usage model is used to make a simplified presentation of the product which
consists of usage skin and skeleton. Usage skin is defined as a functional surface which energetic
flow circulates through it. It supports the geometrical attributes and design specifications. Usage
skeleton is an energetic flow that can be mechanical, electrical, magnetic, etc. which circulates in
the product. It is specified according to the special required behavior of the product. So, the
initial forms must be determined. Then, the possible morphology of the skeleton is proposed by

the designer [33, 30, 3].

Manufacturing model: Manufacturing model contains manufacturing process selection in-
formation. This information contains process type and its related parameters. Manufacturing
skin is just the surfaces which are produced during manufacturing process. The skin features are
created from manufacturing skeletons by a sweeping operation. Skeleton is the flow trajectory of
material and it is supposed that every manufacturing process is based on the material flow. From
a manufacturing point of view, the manufacturing process can be realized due to the forms and

surface qualities that the process can perform [33, 30, 3].
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Interface model: Identification of usage and manufacturing skin-skeleton allows determining
their different parameters and attributes. Finally, integration of manufacturing constraints in
the product definition is done gradually as an interface model. Interface model is an output of
this approach which demonstrates the relations between the parameters of the manufacturing
procedure. In fact, it presents required information that supports the synthesis of design and
manufacturing. It provides functional data, the technological solution as material and process
selection, and the attributes values.

Therefore, this skin-skeleton approach defines the desired product as a set of usage skin and
skeleton. The desired product is a subset of produced product that is a covered manufacturing
skeleton, as well as the skin that is manufactured. The product is produced by comparison of

usage model and fabrication one as follow [33, 3]:

Desired product= Set (usage skeleton+ usage skin) C
produced product = Set (covered manufacturing skeleton)

= Set (manufactured skin)

Generally, the main benefit of these modeling concepts is that the manufacturing knowledge
is taken into account very early in the product development process and CAD modeling instead
of waiting for an initial CAD model which would be modified afterward. The results of this
methodology are used in the product model including manufacturing parameters in order to define
the best solution(s) for manufacturing. In this research, it is supposed to adapt this methodology
for AM as an integrated design approach for AM. So, AM as our determined manufacturing

process will be explained in section 1.5.

1.5 Additive Manufacturing

Additive Manufacturing (AM) which is derived from Rapid Prototyping revolutionizes the ways
that the products are designed, manufactured, and distributed to the users in the academic and
industrial environment over the last three decades [34].

AM is defined by the American Society for Testing Materials (ASTM) as a "process of joining

the materials to make the object from 3D model data, usually layer upon layer, as opposed to
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subtractive manufacturing methodologies" [35, 36].

It is known as 3D printing and free-form fabrication is commonly used for modeling, prototyping,
and tooling through an exclusive machine or 3D printer in the various material types like polymers,
metals, etc [37].

The main capability of AM is creating the complex geometries based on a Computer-Aided
Design (CAD) model or reverse engineering methodology through layer-by-layer construction
manner [37].

Overall, the 3D model must be converted to the AM standard format and it is sliced based
on the manufacturing parameters in the appropriate resolution. Different technologies exist to
produce the product in the different material through layers accumulation manner [37, 5].

The stage involved in the product design and AM illustrates that the cycle development is

specific as shown in Figure 1.7. The engineering and manufacturing cycle is decomposed as [37]:

Part design in CAD or reverse engineering by 3D scanning.

Skill optimization in CAE (Computer-Aided Engineering) in order to adapt the part and

its geometry to the selected manufacturing technology based on the knowledge of experts.

e Conversion of part geometry in exchange format (STL, AMF,...).

Exchange file implementation into the specific software of the AM machine.

Configuration and orientation of the set (parts and supports).

In the next section, the standard format and different AM technologies are described.

1.5.1 AM standard formats

As a link between the design and manufacturing stage, AM uses the standard formats which are
compatible with design softwares and AM manufacturing softwares.

There are several types of files like STL (Standard Tessellation Language), Additive Manufac-
turing File (AMF), stereolithography contour (SLC) and SLI from 3D Systems, CLI from EOS,

Hewlett-Packard graphics language (HPGL) from Hewlett-Packard, stereolithography contour
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from Stratasys, and F-S from Fockele and Schwarze, and initial graphics exchange specifica-
tions (IGES) [38, 39]. STL and AMEF files are the most used format which will be explained

comprehensively in the following:

STL:

STL (Standard Tessellation Language) becomes a standard format for 3D models as the input
for AM technologies and software and it can be easily created through all CAD software. The
STL file creation process is to convert the continuous geometry as CAD file into small triangles
as STL format [37]. The data flow in the STL creation is shown in Figure 1.8. The accuracy of
this process is dependent on the triangle numbers. A large number of triangles creates the more
closed STL file to the CAD model [40]. In terms of accuracy, A as shown in Figure 1.9 is chordal
error that illustrates the deviation between 3D model and STL format.

As shown in Figure 1.9, a normal vector 77 and three vertices of A, B and C are used to define
each STL facet and two vertices are common in adjacent facets. The facets are the surfaces of
3D objects which consist of an unordered list of triangles [41]. Facet is a part of the boundary
between the interior and exterior of the object [37, 42]. STL format is very simple to read, write

and process but it contains information only about a surface mesh and has no provisions for
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Figure 1.9 — STL format and its triangles [37]

representing colour, texture, material, etc.
STL file contains the coordinates related to the vertices and normal vector as 12 floating point
numbers [41]. STL contains redundant information, as the surface normal can be calculated from
the order and location of the three vertices. By default, the right-hand rule is used to define the
direction of the normal based on the order that the points are encoded. Since each triangle is
represented separately, each vertex must be written repeatedly for every triangle that shares that
vertex (three or more times).
Also, the physical units are not defined in the STL, and AM pre-processing software determines its
units between inches or mm depending on the build size of the machine but it is still ambiguous.
An additional point of confusion regarding the STL file is that in fact there are two separate
file formats that may be used: binary and ASCII. The ASCII version exists to make the format
human readable, but the binary version is often used by mature programs to minimize the storage
space. A summary of the advantages and disadvantages of the STL file format is mentioned in
Table 1.2 [41].

These disadvantages encourage the researchers to provide the other formats like AMF for AM

which are explained as follow.

AMEF:

The new Additive Manufacturing File (AMF) format is an XML-based file format which is used

to handle the complex structure and micro-structures. This format overcomes the shortcomings
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Advantages \ Disadvantages
Simple Geometry leaks
Sequential memory access™ No specific units
Portable Unnecessary redundancy

- Incompatible with colour, multiple materials,etc
- Poor scalability
* Does not require large amount of RAM Lacks auxiliary information

Table 1.2 — STL format advantages and disadvantages

of the STL file including leaks, lack of multi-material support, and no provisions for surface data,
with a flexible XML-based format and it has a native support for colour, materials, lattices, and
constellations [41].
AMF defines the regions geometrically either using a triangle mesh, using functional representations
or through a voxel bitmap. Each region is associated with a material, which may be defined as a
base (single) material or hierarchically by a combination of other materials, either functionally
(enabling smooth gradients) or voxel-wise (for arbitrary micro-structure). Files can be self-
contained or refer to external or on line material libraries. The flexibility of the XML structure
enables the additional features to be adopted as needed by CAD programs and future AM
processes [41].
It is independent of the technology and it contains the target object but not how to make it. It is
easy to understand and implement, as well as it is compatible with STL file for both forward and
backward conversions [41].

Until now, AM is described generally and in the rest of this section, the advantages and

disadvantages of AM will be discussed.

1.5.2 Additive Manufacturing advantages and disadvantages

The advantage of AM over conventional subtractive or formative manufacturing methods is coming
from its great design freedom. These design freedoms enabled by AM capabilities are described
in the four categories of shape complexity, hierarchical complexity, material complexity, and
functional complexity as described in the following. It must be mentioned that these four aspects

are not independent, e.g. functional complexity can be also achieved by adopting hierarchical
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structures [43, 36].

e Shape complexity: It is possible to manufacture virtually any shape, which facilitates

customized geometries, and shape optimization.

e Hierarchical complexity: Hierarchical multi-scale structures enables design and manufac-
turing of the parts from the micro-structure through geometric meso-structure (0.1-10 mm)
to the part-scale macro-structure. It enables design and manufacturing of the features at
one size scale that can have smaller features added to them, and each of those smaller

features can have smaller features added.

e Material complexity: In AM, the material can be processed in one point or one layer, at
a time, which enable the fabrication of the parts with complex material compositions and

designed property gradients.

e Functional complexity: Since in AM manufacturing manner for building the parts, the
inside of the part is always accessible. This capability makes it possible to integrate multiple
design domains to realize multi-functionalities. For instance, operational mechanisms and
embedded components can be manufactured directly to achieve multi-functional parts [43,

36].
There are other benefits that create appropriate status for AM as a new method for manufacturing
between different methods of production which are explained as follow:
AM advantages:

e Direct translation of design to component: The input for fabrication with AM

technologies is a 3D model that comes from the design stage [44].

e Design flexibility: Layer-by-layer production creates a capability for AM to produce the

complex shapes [45, 5].

e Personalized production: AM facilitates producing the different personalized products

[45, 5] due to its capability of producing any complexe shapes.
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e Material choice: AM technologies can process a large range of materials including

polymers, metals, ceramics, and composites.
e Cost reduction [45, 5]:

— Low buy-to-fly ratio which is a ratio of the amount of material purchased to the
amount of material found in the final component reduces the material consumption

and consequently cost.

— There is no startup tooling required for AM production contrary to the traditional

methods which reduce the cost.

— AM creates an opportunity to produce the products closer to the consumption point
by geographically delocalized production and reducing the risk of supply chain source

which reduce the transportation costs.

— Contrary to traditional methods which by adding geometrical complexity the cost will

be increased, AM produces almost any complex shapes without any additional cost.

e Flexible and lightweight component: AM allows manufacturing of the components

with hollow or lattice structures which create flexible and light-weight designs [44].

e Excellent scalability: The path for utilizing AM and scaling them for use in production
relies on new design tools for AM. AM is capable of working along the entire spectrum of

build sizes in multi-scale, from the nanoscale, mesoscale, and macroscale [44, 5].

e Time reduction: A great reduction in overall product development and manufacturing

time leading to quicker transfer to market [44] and no tooling,.

e On-demand manufacturing: This technology can be used for the products that are

demanded separately by customers [44].

e Colour: Full-colour products can be manufactured through some AM processes. These
characteristics can be done by adding colour to the raw materials (e.g. by ink jet printing
on paper or powder), by using different colour feedstocks for different parts of the model, or

by inducing the colour change in a single feedstock (e.g. resin) by in-process activation of
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pigments. AM parts in colour can reduce or eliminate downstream painting and decoration

steps during production and reduce chipping and flaking [46].

e Positive impact on sustainability: Reducing the material mass and energy with additive

technologies can have positive impacts on sustainability [45, 5].

e Recyclability: Some of the AM technologies are useful to facilitate recycling and disposal,
they can permit repairing or remanufacturing, refurbishment, redesigning of ancient and
obsolete or failed product and tooling rather than being replaced or disposed of with the

new tooling production [45, 5].

e No additional tooling and re-fixturing: AM needs no additional tooling and re-fixturing

for production of the product in the different geometries [45, 5].

e Need for assemblage: AM is enabling to produce the ’single-part assemblies’ that feature
integrated mechanism. The parts and joints are printed in place and are suspended by

support material that must be removed in post-processing [45, 5].

While AM seems to have unlimited potential, it does not have un-limited capabilities. Like other
manufacturing technologies, utilization of AM is encountered with different difficulties that can
create the disadvantages for this type of production and designers must take into account many

kinds of constraints which are described comprehensively in section 1.5.2.

AM disadvantages:

e Interdependency between material and physical process: Different technologies
exist for different types of material. Fach material requires a specific resolution and

dedicated components which limit the choice of the technology type [45, 5].

¢ Knowledge driven-based productivity improvement: Improving the AM productiv-
ity is knowledge driven and it is related to the CAD designer-makers and it needs the high
skill level [45, 5].

e Long design process: The design process of a complex product is more time consuming

than manufacturing step [45, 5].
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e Machine constraints: Machine-specific capabilities and requirements are the input and

data file like the minimum build resolution, maximum build dimensions, the available and
compatible materials, the process parameters, and the post-processing parameters. These

characteristics can create limitation for production [46].

Process constraints: Process-specific characteristics determine warpage, shrinkage, accu-
racy, and precision of the part, the dimensional stability of the part, the surface roughness of
the part in x, y, and z, the minimum feature size in x, y, and z, the minimum spacing between
features, the maximum aspect ratio of a feature, and the unsupported and supported feature
shapes and sizes that can be produced. So, designers must choose an AM process which

produces the specific part in the specific material with the required quality [46].

Material constraints: In many cases, the raw material can be used for processing but
some materials must be adapted before using like changing the alloy of gold for selective
laser sintering to overcome evaporating. Also, AM processing can modify the material
properties of the final part as increasing in tensile strength and reduction in breaking
elongation for Ti-6Al-4V ELI in fabrication with DMLS than bulk material. Moreover,
recycling process can affect due to material properties. Thus, the cost and waste related to

AM must be weighed against any potential degradation in quality [46].

CAD and digitalization constraints: Complete and comprehensive digital models of
the product model must be created by the designer. It is little or no human intervention
in the translation of digital models to the physical product, AM CAD models must be in
higher quality and contain more complete information than the models which have been

traditionally needed for other process technologies [46].

The impact of discretization and orientation on surface roughness and material
properties: The boundaries between the pieces, lines, surfaces, or layers of AM parts
are rarely or seamless. Roughness characteristic has added a characteristic at the length
scales associated with the discretization. The characteristic lengths of the raw material and
process parameters such as layer thickness are often at different length scales, the surface

roughness is also often multi-scale. The boundary between newly created and existing
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material can act as an interface where cracks and other types of failure can initiate. Since
the discretization in modern AM processes is rarely isotropic, the surface roughness and
resulting material properties are also usually anisotropic [47]. One method to analyze and
reduce these impacts is parameter analysis like part orientation and layer thickness which is
performed by several researchers [48, 49]. Other methods include finishing operations after
each layer [50], finishing operations such as chemical [51] or mechanical polishing, or post

machining after the build is complete.

e The need for support structures during production: Unlike traditional manufactur-
ing process, AM parts are usually strongest when complete. The orientation of the part can
typically compensate these mechanical effects to maximize its strength during the build,
by adding support structures to the part, or by designing the part to be self-supporting
throughout the printing process, but all of these strategies can increase production cost and
time. There are different methods to remove the support part that have the impact on the

final part quality [46].

e Quality control constraints: These constraints are related to the verification of materials,
geometries, and surfaces. AM parts must be inspected for defects in bulk material like

undesirable grain characteristics, unexpected porosity, and larger internal void [46].

e Through-life constraints (maintenance, repair, and recycling): Capabilities of
AM including production embedded objects and assembly parts create the constraints
for maintenance, repair, and assembly as these parts cannot be disassembled for routine
maintenance or repair. These problems are increased for objects with embedded components
and multi-material assemblies. If part of an assembly breaks and it cannot be disassembled
and reassembled, the whole assembly must be replaced. These constraints increase the cost

and waste associated with the product throughout its usable life [52].

o External and regulatory constraints: The AM benefits led to widespread interest and
early adoption of AM for end-use parts in the aerospace and medical industries [46]. These
industries are highly regulated and require parts to gain regulatory approval before being

put into use. Thus, the need for testing and documentation to support the certification and
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approval process creates the constraints for the designer and design [46].

These AM capabilities encourage the manufacturer to use it. So, AM applications will be explained

in section 1.5.3.

1.5.3 Additive Manufacturing applications

AM is applicable to the different sectors as follow:
¢ Automotive and industrial manufacturing [53]:

— Consolidate many components into a single complex part.

Create production tooling.

— Produce spare parts and components.

Faster product development cycle with rapid prototyping, form and its testing.

e Pharmacy-health care [53]:

Surgery by using the anatomical models based on CT scans and MRI.

— Custom orthopedic implants and prosthesis.

Medical training by using 3D printed cadavers.

— Bio-print live tissues for testing for drug development.

e Retail [53]:

— Producing custom toys, jewelry, games, home decoration.

— Printing spare or replacement for auto and home repairs.

The AM applications are independent to the material and consequently the AM technology which
will be used for material processing. In the section 1.5.4, the AM technologies are classified
as Laser technologies, Flash technologies, Extrusion technologies, binder jetting technologies,

Lamination and cutting technologies.
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1.5.4 Additive Manufacturing technologies

There are different technologies of AM that are used to process the material and producing the
product based on the CAD model. These technologies vary in terms of material type, printing
ink, power source, and characteristics. These technologies are classified in ASTM international

standard shown in Table 1.3.



CHAPTER 1. Integrated Design and Additive Manufacturing: state of the art

36

[7¢] prepuess WISV 4Aq popraoid uoreoyisse[) NV — €1 9[RL

surgoew surssaooid-jsod armbay
Sunutid [elIajeul papeis AJ[euonoung
syred wrom paSeurep Jo medayy

1500 ssa001d “3UTYORW “[EIIA)BIE MO
ysIuy 20e1ms ysiy
sured paystuij uo senisorod YSTH
UOTIOI[2S [BLISEWE SPIM
Burssaooid 1sod Surmp uonenyiur armbay

Izpmod
TBISIA] T21[OTAL
ade] otmrela)

1991 QT[RRI
‘Wi onseld

weay 12se]

weag 1258

(1epmod Te1eIL
‘IBpmOd JTWRIS) “UIsay]

(mgH) Swpep weag uonos[g
(gNT1) Suideyg 1aN pareamidug 1ase]  ASIaug 10211

SunmloeInuey 102[qQ paleurmre]

uonisodag

(WO uo
-2]BUTIUE] 129Y%

Sunutid 102[qo 10700 [N AS10uq [eWISYL ‘121sBd) Ispmod IewAlod  (ddg 1epulg) Sunuiid 1ofug 1oa1pu]  Sunler Iepuig
[e1I21BW JISUAIIS-MOT
[STUT] 20BLMS Y3IH Burmo ojoyd/AS1eug
Sunuiid [erI1BW-TNAL [euIay L xem/IamwATodoloyd Sunuiid 12Mur=liog Suniar [elI1eAL
sfenrajews pue sa1jddns 0] 1500 ST
adeys aur] pauueog
“Burmo 1240 (1zd
ToNN[0sal 1Ied poon) ‘RIUODIIZ “BUTUN]Y ) (Vv7IS) uoneziswAjod
paadg Suipring ystg 1ase7] 19[0TARII[ ) sotweIa) wAodoloyd AyderSoqioans o101d 1A
Iopmod orueIa)
SSIUFLs pue ﬁmnmhm\om_om@m YSIH weag wonoalq (Ap-V9IL) wniwent
syred asuap ATng WNIUIOIYD 1[BqO)D) T ——pm——
aImjons Ioyoue pue uoddng [9215 ssauIRlg :
SurpoLoar 2p Surjpuel Iemod (Hd¥ (§7TS) Sun[epy 1o5e] 2a1103[35
SSeUIING 2 YISuans o1y1oads ysiyg -L1) Iepmod [ejawi paziwoly  (STIAI() SULIRIUIS JaseT [BlRN 102Ii(]
sired asuep A[ng weag IowA[od uotsng
S[Tela(] PUB ADBINOOY USIH Iase] paramod-ysSiyg sapreAjod (S718) SulIaquIg Iase] AA1}02[aS pag remod
[STUI] 208JINS 100J
uonn[osal 1red pajimr] sased [e1eI
Sunuiig [erI21RW-T[NIA SALLIN[S JTWIRID)) Suryer) mojuo) TOISNLIXT
JUIYOBUI UOISTLIJXa 2AISHdXaU] ASIouy [euiIe] sonsepdowiIay L (IN@A) Surjepoly uenisodwood(] pasng [BLIIBIN
SIPISUMOP/STPFUITY 32.mos TPMoJ I peILig SIFO[OMIA T, saLIoSae))




1.5. Additive Manufacturing 37

In this thesis, these technologies are categorized as Laser technologies, Flash technologies,
Extrusion technologies, Binder jetting technologies, Lamination and cutting technologies [37] as

follows:

Laser technologies:

Stereolithography (SLA): Stereolithography (SLA) is the first AM technology which has
been commercially available to tackle the difficulty and bottleneck of the prototyping as well
as, faster and better design needs and it is the most used AM technologies currently. In this
technology, the layers are created through a selective exposure of a resin vat to ultraviolet (UV)
light which converts the liquid photosensitive resin to a solid state. A CAD model is sliced into
layers, each layer is scanned by the UV light to cure the resin selectively for each cross-section.
After a layer is built through scanning by the UV light to cure the resin selectively for each
cross-section, the platform descends by one layer thickness. Then, a resin-filled blade sweeps
across the part’s cross-section, re-coating it with one layer of fresh resin. The subsequent layer
then is scanned, adhering to the previous layer as shown in Figure 1.10. The materials that can
be developed by SLA are the ceramics and photo-polymers like alumina and silica [55, 37]. The
prototypes which are created by SLA have the higher stiffness than a standard part and their
temperature resistance are over 200 °C.

Micro-stereolithography systems are developed for having the high resolution which can create
the layers with the thickness of less than 10 um [38]. This technology utilizes the same principle
like macro-stereolithography but in the different dimension and the UV laser beam is focused to
1-2 um to solidify the thin layer of 1-10 pm in thickness to have a 3D complex micro-structures
[37]. There are some errors which are occurred during this process. Since there is no fusing with
a bottom layer, over curing occurs to overhang parts. Another one is the scanned line shape
which is introduced by the scanning process. As the resin has high viscosity, this one can create
a problem in border position control, as well as the error occuring if the part needs a surface
finishing process that is normally done by hand. However, all of these errors can be minimized by

using high-quality equipment during this process [39].
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Selective Laser Melting (SLM): The process for this technology is started by applying a
thin layer of the powder materials which is spread by a roller on the building platform, then a
powerful laser is used to fuse the powder at the point which is determined by component design
data exactly. The platform is then lowered and another layer is applied. Therefore, successive
layers of metal powder are fully melted and consolidated on the top of each other during the
process. This manufacturing can be performed by powerful double or multi-laser technologies
with layers from 75 to 10 um in thickness. The materials which can be processed by this method

include steel, stainless steel, cobalt chrome, titanium and aluminum [37].

Selective Laser Sintering (SLS): Selective Laser Sintering (SLS) is a technology invented
by Dr. Carl Robert Deckard in 1988 and uses a high power laser-like carbon dioxide laser beam
[39] in order to fuse the small particles from the materials like polyamide, steel, titanium, alloys
and ceramic powders. The SLS process is like SLM and it is repeted to complete the model by
adding the layer of powder, but sintering is different with melting because the sintering does not
fully melt the powder but it heats it until the powder can fuse together on a molecular level. The
porosity of the material can be controlled and this porosity needs post-treatment by infiltration
to harden the final model like the bronze use steel [37]. This technology is more accurate than
the PolyJet and 3DP [56] but its accuracy is limited to the size of the material particles. As
the main advantage of this technology, this process offers the variety of materials that could be
used like plastics, metals and their combination, the combination of metals and polymers, metal
and ceramic composition, moreover, the unused powder can be recycled [39]. Therefore, as the
disadvantage of this process can be mentioned the accuracy based on the size of particles and
also, oxidation needs to be avoided by executing the process in an inert gas atmosphere and for
the process to occur at the constant temperature near the melting point [39, 37].

These AM technologies which are known as laser technologies are illustrated in Figure 1.10.

Direct Metal Laser Sintering (DMLS): This technology is similar to the SLS but it has
some differences, DMLS uses powder bed fusion process by melting the metal powder locally using
the focused laser beam. The product is manufactured layer-upon layer like the other technologies

and this production is a long the x-axis and the powder is deposited via a scraper moving in
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Figure 1.10 — Laser technologies (SLA-SLM-SLS) [37]

the XY plane. This process is used to fabricate the net shapes prototypes and short series
tooling for plastic injection molding [37]. The DMLS is applied to metal alloys for manufacturing
direct parts in industries like aerospace, dental, medical, and other industries from small to
medium size for complex products and the tooling industries to make direct tooling. Nowadays,
the recent developments in the powder coupled with the material durability are extending the
direct manufacturing of functional prototypes for powder metallurgical and cast component [57].
Support structures are used for most geometries as powder is not enough for holding in place the
liquid phase which is scanned by the laser. This power is composed of two particles which have
two different melting points, the high melting point particle is used to generate the solid matrix

and the low point is for binding the matrix after being melted by the laser energy [58, 37].

Flash technologies:

The new technology which is based on the flashlight power as a source is emerged to reduce the
lead time and increase the building speed. This new technology is derived from SLA and it is

presented by Pomerantz [37].

Digital Light Processing (DLP)-Film Transfer Imaging (FTI): Digital Light Processing
(DLP) which is also known as Film Transfer Imaging (FTI) is the kind of photomask system

that is used for producing 3D models by using UV photo-polymerized materials. As shown in
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Figure 1.11, the film is coated in resin which is then cured by a UV flash of light from a projector
for each slice of product. This DLP projector projects the entire layer including the line and
points. This technology is quicker than other methods due to the scanning time of laser. In DLP,
the part is pulled upward out of the resin but in SLA the part descends downward into the resin.
Also, in DLP the part must attach much more firmly to the building platform to prevent damage
when newly formed layers are peeled from the basement plate after each exposure [59]. So, this
technology is popular for high speed and resolution which is able to produce the layers with the

thickness down to 30 pm [37].

Continuous Liquid Interface Production (CLIP): This technology is another type of flash
technologies which is close to the DLP principally. It uses the photo-polymerization working
continuously. The projector is able to control the oxygen levels throughout an oxygen-permeable

membrane. This technology and process are 30 times faster than SLS and MJM [37].

Extrusion technologies:

This kind of technology is categorized in four groups which are explained in the following:

Fused Deposition Modeling (FDM): This technology was invented by Scott Crump in the

1980s. It is a layer AM process that uses thermoplastics filament by fused depositing. FDM is
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also known as Fused Filament Fabrication (FFF). The process is printing the one cross-section of
an object through a nozzle which extrudes the filament and the process is repeated to produce
the layers vertically as illustrated in Figure 1.12. The materials which are used in FDM are
ABS (Acrylonitrile Butadiene Styrene), PPSF (Pholyphenylsulfone), PLA (PolyLactic Acid), PC
(polycarbonate) like PC-ABS blend and PC-ISO as a medical grade PC [39] and, the blend of
wood and stone, as well as the filament with rubbery characteristics. The disadvantage which can
be mentioned for this type of technology is the low resolution of z-axis (25 mm) compared to the
other AM technologies. Therefore, a finishing process is needed to improve surface quality and
thus it can takes a long time to build large complex parts by FDM. In order to save time, some
models are permitted two modes, one is fully dense mode and another one is the spare mode that
saves the time but the mechanical properties are reduced [39]. Since this technology is not so

expensive, it is a most popular desktop 3D printer [37].

Directed Energy Deposition (DED): This technology covers a range of technologies which

are described in the following:
e LENS (Laser Engineered Net Shaping)
e Directed light fabrication-Ion Fusion Formation (IFF)
e Direct Metal Deposition (DMD)
e 3D laser cladding

The printing process is complex and it is used for repairing or adding of additional material to
existing components [43]. The melting methods are different for these technologies.

For LENS, the surface is melting of the target point and IFF melt the wire or powder with a
plasma welding torch to form an object and it uses a very hot ionized gas to deposit a metal in
small amount which is demonstrated in the Figure 1.12 and the materials solidify after cooling
down. This process uses a high variety of metals and their combinations like stainless steel,
nickel-based alloys, alumina, titanium-6, aluminum-4 vanadium, tool steel copper alloys, and
so forth. This process is also used for repairing parts that by the other process is impossible

or expensive to do. One problem with this process is residual stress by the uneven heating and
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Figure 1.12 — Extrusion technologies [37]

cooling process that is important for high precision process such as turbine blades repair [39, 37].
In the DMD process (Figure 1.12), the metal is melted by an electron beam as feedstock to form
an object within a vacuum chamber. Parts produced by DMD can be larger, even up to several
feet long.

Dough Deposition Modeling (DDM) groups the marginal processes which is a technology based
on the FDM but it uses a syringe to deposit a dough material such as silicone, food, chocolate,
etc. (Figure 1.12). This technology presents a new method for the deposition of biopolymers in

high-resolution structures.

Binder jetting technologies:

Multi Jet Modeling (MJM): This process deposits the photopolymer droplets of materials
with multi jets on a building platform in ultra-thin layers until the part is completed (Figure 1.13).
The different materials can be used in this technology for building actual model [60, 37]. The
polymer layers are cured by UV lamps and a gel-like polymer supports the complexity in wrapping
it and the soluble support materials are removed by water jet. This technology reproduces details
more accurately with a very good surface finish [56] and smoothness. Therefore, this accuracy
can reach the thickness from 50 to 25 pm and the part is produced in high resolution. Thermo-jet

is also a system to produce a wax model in jetting tiny melted liquid material droplets which
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harden and cool on impact to form the solid objects.

Three-Dimensional Printing (3DP)- Colour Jet Printing (CJP): The process of this
technology is to combine the powders and binders which is an MIT-licensed process. The layers
are created by spreading a thin layer with a roller and this powder is linked together by ink-jet
printing of a binder and the build tray goes down to create the next layer (Figure 1.13). The layer
thickness is between 90 pm and 200 pm. The materials which are produced by this technology
are metal, ceramic, silica and polymeric component of any geometry [61]. In another research,
the other powder is used to produce a green product in wood [62]. The multicolor parts can be
printed directly by this technology by entering the colors from a colour cartridge. The final model
is extracted from the powder bed in order to perform infiltration with liquid glue. Mechanical
behavior and colour definition are improved by infiltration. Also, 3DP is used for providing

architects as a useful tool to quickly create a realistic model [37].

Prometal: It is a kind of 3D printing process which is useful for building rapid tools and dies.
This is a kind of powder-based process which stainless steel is used. The printing process is
performed when a liquid binder is spared out into jets to steel powder [39]. Final treatments such

as sintering, infiltration, and finishing process are required to solidify the part [37].
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Liquid Metal Jetting (LMJ): This technology of AM is developed at the university of Texas
Arlington. This process involves the jetting of molten metal in a process like an ink jet printing.
Thus, the individual droplets are ejected and connected to each other [63]. This process is not

commercially available as of yet [37].

Lamination and Cutting technologies:

Laminated Object Manufacturing (LOM): LOM is a kind of process of rapid prototyping
that the parts are built from paper layers sequentially. The process includes thermal adhesive
bonding and laser patterning of uniformly-thick paper layers [64]. The system includes an x-y
plotter device which is positioned above a work table and it is moved vertically. This plotter also
includes a forming tool in order to create a layer from a sheet of material on the work table which
is shown in Figure 1.14. A heat-sensitive adhesive is provided on the side thereof to bond the
layers to each other and a bonding tool or fuser is mounted to translate across the work table
and apply a lamination force and heat to each of the layers. Finally, the layers are superimposed
to create the final object. The layer resolution is determined by the thickness of the paper sheet.
Also, this printer can produce the parts in full colors [37].

The advantage of this process is low cost, no post processing and supporting structure required,
no deformation or phase change during the process, and the possibility of building of the large
parts. The disadvantages that can be mentioned are that the material is subtracted thus it is
wasting, low surface finishing and need for machining, low mechanical properties, and complex
internal cavities and hard to build. This process is used for the models with papers, composites

and metals [40, 39].

Stratoconception: This is a type of rapid prototyping process with layers of sheets as shown
in Figure 1.15. It consists in decomposition of the model by calculating a set of elementary
layers called "strata" and by placing reinforcing pieces and inserts in strata. Rapid milling or
laser cutting are used to manufacture the elementary layers and the strata are assembled with
inserts in order to rebuild the final object [66]. This process is useful for milling the low cost raw

materials (wood, MDF, PVC, aluminum, etc.) [37].
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Technology \ Layer thickness (pm)

SLA <10 pm
MicroSLA 1-10 pm
SLM 75-150 pm
SLS 25-92 pm
DLP/FTI 30-100 pm
FDM 100-250 pm
DDM <1000 pm
MJM 16-30 pm
3DP 100-400 pm

Table 1.4 — AM technologies accuracy [37]

1.5.5 Additive Manufacturing attributes and criteria

In this section, the attributes and criteria of printing a 3D object will be reviewed that are

important considerations for selecting an appropriate AM technology and a corresponding build

layout, and manufacturing parameters. The attributes that are listed along with factors including

machine selection, processes and materials, orientation and position of the geometry, and finishing

can alter the resulting quality of the printed part [5].

e Build Time: Build time for an individual model or an assembly depends on printing speed,

part size, layer thickness, and build orientation. It takes a long time to print a product in
the larger object’s height in the lay-up direction. Therefore, to reduce the build time, it is

necessary to make the overall built height low for the given print speed and object size [5].

Feature resolution: Feature resolution on AM systems is primarily dependent on the
energy/material patterning principle [5]. The accuracy of AM system can be determined by

layer thickness values as illustrated in Table 1.4.

Surface quality: The quality of the printed parts surface is mainly determined by the

thickness of each printed layer and part orientation [5].

Support material: Creating complex geometries such as overhangs, undercuts, and printed
part assemblies with moving components, all AM systems must provide some means of
supporting the printed features of subsequent layers. It is obvious that support structure

affects the material mass required for printing.
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e Post-processing: Printed objects with built-in support material need post-processing
operations that separate them. The methods and ease of removal are different based on the
printing methods and build materials. For water-soluble materials as support, it can be
washed away by gentle scrubbing. For non-soluble support materials, it can be broken and
peeled away from the model using pliers or conventional cutting tools. To ensure a smooth

surface finish, printed parts often need to be polished using sanding or vapor smoothing.

Therefore, several issues are coming from AM utilization, so, it is necessary to choose the
correct method for design and manufacturing simultaneously in Product Life Cycle Management.
For this aim, designers must consider the Design For Manufacturing (DFM) in AM implementation
[6]. Several researchers proposed DFAM approach as Design For Additive Manufacturing which

will be explained in the section 1.6.

1.6 Design For Additive Manufacturing

Generally, Design For Manufacturing (DFM) is used to consider manufacturing constraints and
attributes in the design stage as an integrated design approach to eliminate the manufacturing
difficulties and minimize costs. However, the emergence of Additive Manufacturing (AM) tech-
nologies provides an opportunity to re-think DFM to take advantage of the unique capabilities of
these technologies. The term DFM has been transferred to AM and it is called 'Design For Addi-
tive Manufacturing’ (DFAM). Therefore, recently different researchers have presented a DFAM
approach as Design for AM approach with the objectives of maximizing the product performance
through the synthesis of shapes, sizes, hierarchical structures, and material compositions, subject
to the capabilities of AM technologies [67].

DFAM approaches are classified by Laverne et al. [68] as DFAM concept assessment including
qualitative and quantitative analysis, and DFAM decision making which consists of DFAM
guideline, design optimization, geometrical validation, and product properties. However, this
classification is not mutually exclusive and there is no clear distinction between general process-
focused and design-focused approaches.

Another classification was created by Kumke et al. [69] as "DFAM in the strict sense" and

"DFAM in the board sense". The first one is concerned with the design process which utilizes AM
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Functional DFAM

Manufacturability DFAM

‘ Material and Process selection ‘

Combinational DFAM

Rosen 2007a [70]
Rosen, 2007 [74]
Chu et al. 2008 [77]
Vayre et al. 2012 [80]
Arisoy et al. 2015 [84]
Yang et al. 2015 [36]
Jiang et al. 2017 [90]
Vogiatzis et al. 2017 [93]
Pradel et al. 2017 [96]
Leary et al. 2014 [99]
Rodrigue and Rivette, 2010[101]
Ariadi et al. 2012 [104]
Walton et al. 2017[107]
Tao 2016 [110]

Burton 2005 [71]
Bernard, 2008 [75]
Thomas, 2009 [52]
Kerbrat el. 2011 [81]
Doubrovski et al. 2011 [85]
Seepersad et al. 2012 [88]
Seepersad et al. 2014 [91]
Wegner and Witt, 2012 [94]
Adam and Zimmer, 2014 [97]
Boyard et al. 2013 [100]
Kranz et al. 2015 [102]
Bin et al. 2012 [105]

Ko et al. 2015 [108]
Atzeni and Salmi 2012 [111]
Boschetto and Bottini 2016 [113]
Barclift et al. 2017 [115]

D’antonio et al. 2015 [72]
Thompson et al. 2016 [46]
Salonitis and Zarban, 2015 [78]
Zamen et al. 2017 [82]
Zamen et al. 2018 [86]

Yim 2007 [73]
Ponche et al. 2012 [76]
Ponche et al. 2014 [79)
Zhang et al. 2014 [83]

Tang et al. 2014 [87]
Hallgren et al. 2016 [89]
Klahn et al. 2014 [92]
Klahn et al. 2015[95]
Primo et al. 2017 [98]
Kumke et al. 2016 [69]
Salonitis, 2016 [103]
Emmelmann et al. 2011 [106]
Hague et al. 2003 [109]
Hague et al. 2004 [112]
Dhokia et al. 2017 [114]
Zhang et al. 2016 [116]
Zhang et al. 2016 [117]
Essink et al. 2017 [118]
Vo et al. 2017 [119]

Table 1.5 — DFAM approach classification

characteristics and is focused on the AM design rule. The board consists of strict one and process
selection and production strategy, selection of parts (application), and manufacturability analysis.

According to the DFM process defined by Skandar et al. 2006 [12], DFM consists of material
and process selection, manufacturability evaluation including verification, quantification, and
optimization, as well as the importance of customer requirements in the product life cycle, the
DFAM approaches which are presented in these researches are categorized as Functional DFAM,
Manufacturability DFAM, material and process selection, and combinational approaches which

are explained in the following. These different approaches are presented in Table 1.5:

1.6.1 Functionality DFAM:

The AM capabilities have inspired many people to maximize the performance of their designs,
while minimizing their weight. This type of design problem could be called "functionality DFAM"
and these approaches are based on the functional analysis of the product and it provide a
DFM approach for AM defined by customer requirements. The design objectives are defined
mathematically and typically an optimization method is used to search in a mathematically

defined design space [67]. The three main types of optimization problem have been explored as:
e Size optimization: This type determines the product dimensions [67].

e Shape optimization: In this optimization type, the shapes of the part surface are changed
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typically by changing control vertex positions for a curve or surface [67].

e Topological optimization: This optimization method permits to fulfill the design require-
ments like mechanical behavior and functionality, in addition, to optimize mass, structure,

time and cost [120] and it explores the distribution of the materials [67].

Some researchers [80, 79, 87, 78, 98] used topological optimization in their DFAM approach to
present an optimized initial model of the product. To date, no one has attempted a comprehensive
solution method that integrates the AM capabilities and limitations into a topology optimization
algorithm, thus, this is a research scope.

Lattice structure is also used in the DFAM approach to provide a light-weight design [77,
87, 89, 98, 110]. A lattice structure is an architecture which is formed by an array of spatial
periodic unit cells including edges and faces. These structures exist in two and three-dimensions
which are often linked to cellular solids [121, 110]. It is also known as lattice material as the
micro architecture permits it to be viewed as a monolithic material with its own set of effective
properties [122, 110]. Lattice structures have many superior properties, which make it a promising
solution for various applications, such as a lightweight structure due to its high specific stiffness
and strength, a heat exchanger due to its large surface area, an energy absorber due to its ability
to undergo great deformation at a relatively low stress level, and an acoustic insulator due to its
large number of internal pores [110].

Other approaches are also provided to consider the functional analysis in the DFAM approach.

Rosen et al. [70, 74] defined a DFAM method which supports the part and specification modeling,
process planning and manufacturing solution. It introduces a CAD system for DFAM which
is particularly designed for the utilization of meso-structured materials. It contains a mapping
between process, structure, property, and behavior, incorporating both geometry and material of
an AM product.
A new design for AM approach is proposed by [77] based on the process-structure-property-
behavior model like the approach which is provided in [74] and Unit Cell-Based Design approach
is used to achieve the minimum weight, desired compliance distribution in order to find the
optimal size by using Particle Swarm Optimization (PSO).

The limitations of SLS are investigated regarding minimal sizes of geometric features depending
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on their orientation in the study of [75].

According to the initial input of design models, the DFAM methodology [36] is divided into
two main steps of function integration which consists of an analysis of initial CAD model and
part consolidation in functional level regarding the functional requirements and performance
requirements. The second step is applying the structure optimization method in order to achieve
the better performance such as lighter weight, better heat dispatch, or dynamic properties under
performance requirement. The process constraints must be considered in both of these steps.
Then, the design solution is found. [36]

A DFAM approach is presented in [84] as a unified computer-aided framework for design, Computer-
Aided Engineering analysis (CAE) of solids with lattice structures, and topology optimization
within the CAD system that enables a seamless work flow.

an Assembly-Level Design for AM is developed in [101] to optimize the functionality of the
product. This approach is provided through part consolidation enabled by AM design freedom
based on assembly concepts.

An investigation into the potential for the consumers designing and manufacturing of the products
is prepared by using a combination of "Computer Aided Consumer Design" (CaCODE) and AM
[104].

A DFAM methodology including topological optimization and genetic algorithm is used in [123]

to achieve the high-strength light-weight design.

1.6.2 Manufacturability DFAM:

According to the DFM approach defined in [3], manufacturability evaluation is performed in
three levels of verification, quantification, and optimization. Thus, manufacturability DFAM is

categorized into these three levels:

Manufacturability verification:

As DFM aims to consider the manufacturing constraints and capabilities in the design stage, the
researchers investigate the product model due to the manufacturability of AM technologies.

AM creates design potentials but geometric freedom is limited. There are restrictions which arise
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from the technological principle, the processed material, and machine. This DFAM approach
proposed the design rule to ensure manufacturability. These rules have been developed for various
AM technologies like Selective Laser Melting (SLM), Selective Laser Sintering (SLS), and Fused
Deposition Modeling (FDM) and it ranges from general qualitative guidelines, such as build
orientation, to specific quantitative limitations, such as minimal wall thickness [69].

Geometric limits imposed by SLM are investigated based on the series of experiments [52]. Various
quantitative constraints for geometric elements are found like radii and minimum gap features, as
well as general recommendations for high-quality results like surface roughness as a function of
build orientation [52].

Another method is proposed for applying the DFAM regarding AM constraints and capabilities.
The approach is performed in four steps of, specification analysis, preparing the initial shape,
definition of the parameters’ set, parametric optimization, and validation of the shape [80].
Some studies [91, 94, 75] analyzed the limitations of SLS due to minimal sizes of geometric
features such as holes, cylinders, walls, and graven fonts depending on their orientation. Moreover,
the durability of functionally integrated parts like hinges and snap-fits is investigated by [94].
The experiments are performed by Adam et al. 2014 [97] on SLM, SLS, and FDM machines
based on test specimens with predefined standard elements including basic geometric elements,
element transitions, and aggregated structures. A comprehensive catalog is developed which is
applicable to all three technologies and it is depicted that numerical values are only valid for the
respective boundary conditions as the machine, material, parameter set, layer thickness, etc.

A design rule catalog was presented by [102] for the SLM-based production of [71] utilized a
questionnaire approach due to the responses to questions in different design areas and it suggests
part redesigns to exploit AM potentials, for example, through part consolidation. Another paper
[105] is built based on this approach and it develops a digital design feature database which
provides a higher number of features and an easier access.

The approach developed in [85] is presented by [105, 124] as a knowledge-based support tool as a
DFAM approach. This documentation is based on the new opportunities of fabrication process,
relationships between structure, performance, and optimization approaches. They provided a
Wiki for documentation and using DFAM knowledge.

Customized Design For AM (CDFAM) was presented in [108] based on the formal representation
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of design knowledge by considering AM constraints.

A design for rapid prototyping approach is proposed in [100]. It allows the design of parts
satisfying both DFA and DFM in the earliest phase of the design but this possibility will limit a
priori costly late changes.

Most DFM systems are not capable of handling multiple processes and they can focus just on
one specific manufacturing. There is a need to develop a new DFM approach to handling multi-
process manufacturing systems. A DFM approach which combines AM with machining process
is presented by [81] in a hybrid modular vision. In fact, AM technologies must be compared to
High-Speed Machining (HSM) process to choose the best way to obtain each module. Two points
of manufacturability evaluation and hybrid modular optimization must be taken into account in
the DFM methodology to decrease the manufacturing difficulties.

Special design rules were determined according to printability in [96]. To assess the potential
quality of the products made by AM [125], a visual design for AM worksheet is utilized to identify
the AM mistakes.

Topological Optimization (TO) provides an optimal product model due to functional analysis
of the product by optimizing structure and mass regarding mechanical behavior of the product as
its functionality. This method is used as a functional analysis methodology in several researches
[78, 107, 98, 89, 87, 80, 79, 103, 106].

A computational framework is defined for computational design and AM of spatial free-form
periodic meta surfaces in study of [93]. It focused on the level-set based topology approach and the
conformal mapping theory. This framework creates a solution to increasing applications involving
innovative meta-material designs on free-form surfaces and there is no need for reconstruction of
the CAD model.

An integrated computational framework is suggested by synthesizing the parametric level set-based
topology optimization method for a DLP-based SLA process [90]. This framework can be used

for single material structures, multi-scale, multi-functional structures.

After verification, manufacturability evaluation must be continued in the quantification level.



1.6. Design For Additive Manufacturing 53

Manufacturability quantification:

The best solutions for exploiting all the benefits of AM techniques by considering the limitations
is focused on the study of [111]. Cost analysis is used to the compare AM and conventional
processes. Finally, it concludes that AM can be economically convenient and competitive to
traditional process for small to medium batch size of production.

Boschetto et al. 2016 [113] proposed a DFM approach to overcome the poor dimensional accuracy.
The mathematical formulation is used to formalize the dimensional deviations as the function
of layer thickness and deposition angle to operate an anisotropic offspring of the virtual model
surface based on the [126, 127]. This approach allows redesigning of the component knowing
the prediction of the obtainable dimensional deviation. The modifications are carried out in
the design step to compensate for the deviations to improve the accuracy and this methodology
is applied to the mathematical definition of the surface. For this method, there is no need to
fabricate the part and perform measurement to gain the model, it is just needed to apply this

method directly before CAM environment.

To complete this collaborative DFM process, it is necessary to pass from the quantification

level and reach the optimization level.

Manufacturability optimization:

Optimization concerns almost all scientific fields, sciences in the living, chemistry, physics,

mathematics, economics and of course engineering, in the broad sense [128].

In the rest of this section, a synthesis of some principles and methods of optimization in
relation to this research problem in design and manufacturing will be explained. This section
is limited to non-linear constrained multi-objective optimization with a discrete and continuous

problem space.

There are various methods to formulate an optimization problem mathematically. A gen-

eral formulation of a non-linear multi-objective optimization problem with mixed-variables in
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engineering is as follow [129]:

Minimizing
.f(w) = [fl(x)v 7fz(w)7 ) fp(w)]

Under the constraints:
Prruition; =

xeR" f(x) € RP,cj(x) €R

In this formulation, « is the variable vector of optimization which consists of n continuous scalar
variables. Vector of f(x) is the set of p objective functions that must be minimized. Limitation
on the optimization variables are expressed by constraint functions. These constraint functions
(¢j(x)) are divided into m inequality constraint functions for j = 1,...,m and [ equality functions
for j =m+1,...,m+[. Solution set of this problem (D) contains variable set of x which are

defined by satisfying constraint functions of ¢;(x).

Actually, the nature of the physical models are utilized in formulation of the objective and
constraint functions which determine the solving methods, time for searching the problem solutions.
It is essential to evaluate the objective and constraint functions on the solution space (D). This
space can be determined by lower and upper bound (7., gup) of the decision variables. The
evaluation speed of these models is an essential element which affect the computation time of
solving an optimization problem. Indeed, the optimization algorithms are iterative by nature,

most of the computing time is consumed by the evaluation time of the physical models.

All the optimization algorithms proceed by successive iterations so that from an initial
configuration which consists of different solutions of optimization variables (), algorithm operators
evaluate the solution into an optimal one.

One of the fundamental properties of an optimization algorithm is global convergence, its ability

to converge towards a local optimum x* by evaluation of the initial solutions.

In optimization, many basic algorithms have been developed for searching the local minimum

of a scalar function of several variables f(x) without constraint functions. In the following, a
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synthesis of the available operators is presented, synthesized in two categories according to the

iterative principles put into play (deterministic and stochastic).

e Deterministic algorithms: In these algorithms, the operators have deterministic behavior
by using objective function and constraint values, their gradient, even the Hessians of these
functions. Operators manipulate a solution in the iterative process and thus generate a
sequence of solutions in the space of the admissible values and converge to optimal solutions

(z*). Actually, the efficient combinations for solving these problems are as follow:

— Augmented Lagrangian method is a combination method of penalty and Lagrange
multiplier. A constrained optimization problem is replaced by a series of unconstrained
problems and add a penalty term to the objective. It is based on an approximation on

the second Taylor ser.

— An approximation of the second Taylor series of Augmented Lagrangian method which

Hessian is calculated by the gradients of the Quasi-Newton method.

These algorithms are fast in convergence to the global convergence. It can be converged
into local optimum due to initial configuration of the solutions. It is sensitive to the quality

of gradient, as well as objective and constraint functions.

e Stochastic algorithms: In this algorithm, the initial solution is evaluated by heuristic
operators. These algorithm can be classified in two types. The first category manipulates
one solution in each iteration and in second one, a set of solutions are re-manipulated in each
iteration. Tabu search, simulated annealing are the algorithms of the first category and the
second group is related to the evolutionary algorithms which are inspired by evolutionary
phenomena in biology and swarm intelligence inspired by the mode of movement of insect

groups [129].

In a multi-objective optimization problem, the target is to simultaneously minimize often conflict-
ing optimization criteria. Generally, this problem does not have a unique solution (even if it is a
convex problem) and it has a set of solutions as a Pareto front which is the best compromise in
the sense of the Edge worth-Pareto criterion and there is no difference between them in terms of

optimization [129].
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Figure 1.16 illustrates the Pareto front for a bi-objective optimization problem. The Pareto
front corresponds to a part Dy frontiers, the image of the solution D of the optimization problem.

As shown in Figure 1.16, it is illustrated that any decrease in f1(z) and result in an increase of

fa(x) for [Py, Pj] and [Py, P].
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Figure 1.16 — Pareto front of a bi-objective optimization problem

There are different methods including direct and indirect method to find the optimal Pareto:

Direct methods:

e Weighted sum method: In this method, the special weights are assigned to the objective
functions to linearize the objectives and convert the problem as a single objective to optimize

the weighted sum of m objectives.

min  f(z) = Zwifi(l‘) (L.1)

e c-constraint method: In this method, the problem is solved by one objective and another
ones are considered as an inequality constraints to find the lower and upper bound of

the objectives value. This method is better than the weighted sum technique because it
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overcomes some of the convexity problems.

min fp(z)

Under the constraint:

fi(z) <e

e Goal attainment method: This involves expressing a set of design goals which is

associated with a set of objectives to minimize the slackness of objectives to goal.

Indirect methods: There are different methods as meta-heuristic algorithms like Multi-
Objective Genetic algorithm (MOGA), Non-Dominated Sorting Genetic algorithm-IT (NSGA-IT),
Strength Pareto Evolutionary Algorithm (SPEA). These methods are the heuristic and evolution-
ary algorithms which are used to obtain Pareto front iteratively by appropriate mechanisms the
least close to the Pareto front are replaced progressively by the closest individuals (the dominant
ones). These methods usually have no guarantee of providing a good approximation of this front,
but the tests done on many problems show an average good results [130, 131]. One of the most
popular meta-heuristic algorithm which is used in this thesis is the NSGA-IT algorithm, described

below:

Non-Dominated Sorting Genetic algorithm-IT (NSGA-ITI): NSGA-II is a popular
modified genetic algorithm that can be used for solving multi-objective optimization problems and
it is based on the non-dominating strategy. In the procedure of this algorithm (see Figure 1.17),
the initial population is created and this population must be sorted based on the non-domination
strategy into each front (set of solutions). The fronts are compared with together and the ranks
are assigned to each individual according to the fitness value to find the optimal Pareto (as a set

of non-dominated optimal solutions) [132].

1.6.3 Meta-Models, Design Of Experiments (DOE):

As the evaluation of the physical model and optimization of the process are more time consuming

in calculations, there are "model of the models" or meta-models which are more simple and less
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Figure 1.17 — Non-dominated Sorting Genetic Algorithm-II (NSGA-II)

expensive to evaluate. To build these meta-models, it is necessary to have a number of evaluations
of the physical model to build a meta-model sufficiently close to the physical model over the
entire field of D solutions of the optimization problem [133].

These evaluations needs to design the experiments as Design Of Experiments (DOE) approaches.
There are several techniques to define these experiments as "Full factorial design" which permit to
systematically explore the space of solutions D for large spaces, also, there are different techniques
to reduce the experiment numbers which are explained in [134]. Three categories are identified to

build a meta-model as regression, interpolation, and mixed techniques [133].

These meta-models can be utilized in optimization algorithms to optimize and formulate
the physical models and processes. DOE can be used to define the solution space (D) and
meta-models are used to formulate the physical model and finally optimization of the process
based on the evaluations of meta-models [133].

Modefrontier ! is a software for process integration and design optimization. It provides a
multi-objective optimization and design environment that can easily couple with almost any CAE

and CAD package. It utilizes lots of optimization algorithms and tools including response surface

Thttps://www.esteco.com/modefrontier
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modeling tool, MOGA, NSGA, NASH and B-BFGS in a hybrid form instead of a single algorithm
[135].

This software controls the design process and the user must create the parameterized model and
specify the objectives, which they wish to attain. Therefore, Modefrontier modifies the design
variables to achieve the user-specified objectives. It can be used to put forward as a mechanism
for mediating conflicts. Also, there are some modules that are presented for Modefrontier
including Design of Experiment (DOE) techniques, standard applications such as Excel, Matlab,
Robust design optimization, Multi Criteria Decision Making (MCDM), Statistical analysis tools,
mechanical software like CATTA, ANSYS, etc [135].

Design Of Experiments (DOE) permits us to define some experiments. The experiment is a
series of tests, in which changes are made in the input variables in order to identify the reasons
for changes in the output responses. Design of Experiment (DOE) method is used to explain the
variation of information under conditions that are hypothesized to reflect the variation. Also,
it is important to obtain maximum realistic information with the minimum numbers of well
designed experiments. Experiments are often used to evaluate which process inputs have a
significant impact on the process outputs, and what the target level of those inputs should be to
achieve the desired results (outputs). Therefore, DOE techniques enable designers to determine
simultaneously the individual and interactive effects of many factors that could affect the output
results in any design. DOE also provides a full insight of interaction between design elements
[136]. Therefore, this method permits us to create a continuous space for our input variables and

their responses.

This optimization methodologies are used to evaluate the manufacturability of Additive
Manufacturing (AM) in optimization level in different studies. A DFAM approach for metal is
developed by [115] which consists of cost estimation and part orientation optimization. This
approach is applied through a commercial 3D solid modeling program. Part orientation, functional

optimization and path optimization in DFAM approaches are analyzed by Ponche et al. 2014 [79].

Also, an optimization method is presented by [99] to find the optimal build orientation by

assessing manufacturing time and component mass.
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1.6.4 Material and process selection based DFAM:

The importance of material type in functional analysis and specification of a product, as well
as the dependency between AM technologies and material types, encourage the researchers to
provide the DFAM approach in this context. Recently, Zamen et al. [86, 82] defined an integrated
product-process design including material and manufacturing process selection for AM by using
multi-criteria decision-making based on the functional specification, cost, and environment.
Different technologies exist for AM that create the different characteristics and attributes of AM
products which must be taken into account in the DFAM approaches. A new two-dimensional
approach is presented by [46] for process chains modeling for AM to support the process selection
of DFAM in the early phase of design. This approach is used to investigate how AM can be
incorporated into traditional manufacturing process chains. As a result, it is shown that combining
AM technologies into conventional process chains increases cost and complexity and should only
be done when the advantages outweigh the disadvantage of the combined methods.

A set of methods and tools which is helpful to design a product and its manufacturing process
taking into account AM specificities in [72] from the early design stages with the integration
of DFAM and Manufacturing Execution System (MES). This information framework is able
in real-time acquire, analyze and synthesize process and product data. This framework allows
improving of the product quality and process performance, and to better deal with possible

criticalities, both in the prototyping and in the mass production phases.

1.6.5 Combination of functionality and manufacturability DFAM:

DFAM guidelines are presented by [109, 112] based on a comprehensive materials data survey
and different analysis of AM criteria like cost and mechanical behavior.

A framework for DFM and SLA are considered in [73] which consists of four main process
components and two pre-built components of the information model for representing design
requirements and meta-rule taxonomy. The process components consist of representing design
requirements (manual procedures), determining manufacturing rules coming from the requirements,
structure the problem repository, retrieving and ranking of the DFM problems.

A multi-level design method is developed by Tang et al. 2014 [87] for AM inspirade by the work
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of Rosen et al. 2007 [70]. In this approach, the topological optimization in macro-level and lattice
structure in meso-level are consequently adapted. Not only the CAD models which are generated
by using a CMM (Coordinate Measuring Machine) and CT scan (Computed Tomography scan)
are considered as the input, but also the design requirements and manufacturability are the inputs
to find the optimal structure.

A process plan for AM is suggested by [83] which includes macro and micro plan. Also, a
framework for evaluating the AM is developed to analyze the design for AM. The indicators
like adaption and discrimination indicators as well as, the threshold values are determined to
a suitable scenario of additive process to help designers better benefit the advantages of AM
processing and to avoid some potential difficulties or problems derived from the constraints or
limitations in AM simultaneously to improve their designs.

Some DFAM approaches combine manufacturability analysis, functional DFAM and material
selection. Salonitis et al. [78] presented a framework for re-design of Additive Layer Manufacturing
(ALM) to examines the principles of AM, design guidelines, capabilities of the manufacturing
processes and structural optimization using topology optimization. This approach provides
different solutions for design but the optimal one must be selected based on the appropriate
criteria including light-weight, strength and minimum displacements, manufacturing cost and
surface quality. For this purpose, multi-criteria decision making (MCDM) method like AHP
approach is used to find the best solution for design of ALM parts.

A novel approach is suggested for laser AM to create a lightweight design by incorporating
structural optimization tools as topological optimization, bionic structures, and AM guidelines
into one design process in [106].

A product/process optimization was studied to expand the design freedom allowed by AM for a
case study through an approach combining topological optimization and lattice structures in [98].
While the results of their combined approach did not yield a global optimum solution (considering
criteria such as weight, stress, displacement, etc.), at least it illustrated the feasibility of mixing
these methods.

A systematic search to identify the components in series products is prepared by [92, 95] which can
be designed for AM due to the criteria including integrated design, individualization, lightweight

design, and efficiency. After selecting the components, the component must be analyzed due
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to the different requirements for each criterion to develop the design for manufacturing in both
technological and economical directions in the product development. Therefore, by this systematic
search for appropriate components and by fully utilizing the geometric freedom in the re-design,
performance of serie production can increase impressively.

Ponche et al. 2012 [76] proposed the novel approach with considering the new aspect to define a
part’s design from its functional specifications and process restrictions (particularly manufacturing
direction and manufacturing trajectories) instead of using an initial CAD model for an AM-specific
improvement. This approach consists of three main steps, the first one is global analysis for finding
the geometrical dimensions due to the dimension constraints, the second step permits the fulfillment
of the dimensional and geometrical specifications due to the AM process characterizations and
capabilities, and finishing process characteristics to determine the functional volumes. Finally,
the last one is determining the physical and assembly requirements based on the AM process
capabilities to determine the linking volumes including Functional Volume (FV) and Manufacturing
Direction (MD).

Ponche et al. 2014 [79] provided a DFAM methodology to optimize the manufacturing process
through process simulation. The optimization consists of three steps which covers part orientation,
functional optimization, and path optimization to balance functional requirements and process
specifications. With an improved paths generation depending on process parameters and part
geometry, it is possible to minimize the gap between the virtual model and manufactured part.
The geometry is assessed in terms of functionality and manufacturability with defining the
functional indicators and manufacturing indicators to compare the different manufacturing path.
Also, the DFAM approach is classified by [89] as Process driven shape and Designer driven
shape. Process-driven shape is performed through topological optimization and it focuses on
reducing manual interaction with a human designer to reduce design time and/or improve design
performance. Designer one is a process with a human designer driving the shape, contributing
with knowledge about manufacturing to avoid costly production of the parts and it is presented
through lattice structure analysis in the manufacturing domain to reduce the volume and thus
printing time and part cost in this research.

AM design rules and topology optimization are combined as a DFAM approach by Leary et al.

2014 [99]. This approach illustrated that topological optimization can be modified to ensure
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manufacturability without any additional support structures. The optimal build orientation is
determined by assessing the manufacturing time and component mass.

Another approach on the axiomatic design method is provided based on mapping the customer
needs on functions as Functional Requirements (FRs). Design parameters are determined to
indicate how the object can satisfy such FRs. Finally, process variables are described for
manufacturing through zigzag decomposition [103].

Previous DFAM approaches are investigated in [69] and they present a comprehensive DFAM
approach which is a combination of functional and manufacturability DFAM, as well as process
selection by considering the AM potential.

Multi-part production with AM is also another interesting subject that is investigated by the
researchers [116, 117] to fabricate different parts simultaneously without using tools or fixtures.
An optimization problem is defined to find how to optimally place multi parts into a specific
two-dimensional build space by using parallel nesting algorithm. AM feature-based orientation
optimization method” to optimize each build orientation to guarantee the production quality and
to decrease the total build time and cost [116, 137, 138]. Also, a facet cluster-based method is
used to generate alternative build orientations [139], as well as, a modified feature and rule based
orientation optimization method for a new developing composite AM process [140].

Dhokia et al. 2017 [114] present a design method that mimics the behavior of termites as they
build their nests, to concurrently design, structurally optimize and appraise the manufacturability
of AM parts. This DFM approach is inspired by termite nest building.

A novel and disruptive approach is proposed by [118] to consider the simultaneous design
and structural refinement of parts manufactured by describing the known part constraints and
the mechanisms (limitations) of constituent manufacturing processes, parts are designed using a
bio-inspired multi-agent system called "Hybrid Ants".

Vo et al.2017 [119] proposed a DFAM approach based on the DRM methodology. DRM is
a generic and systematic methodology for improving the quality of design research. The DRM
model includes 4 phases: "Research Clarification (RC)", "Descriptive Study—I (DS-I), Prescriptive
Study (PS) and Descriptive Study—II (DS-II) [141]. This study contains the important steps to
take into account in a design process for AM. Generally, it provided the initial 3D model based

on topological optimization and Finite Element Analysis is also performed to evaluate the 3D
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model. Also, the definitions of the terms "virtual model","physical model" and "Prototype" are
proposed. In addition, the characteristics of a design situation are defined which will guide the
choice between them in the evaluation phase of the performance of parts based on a Case Based
Reasoning model.

For several years, great effort has been devoted to the study of important AM parameters like
tool path optimization [142, 143], infill optimization [144], surface roughness [145, 49], dimensional
accuracy [146, 147], time [148, 149], and cost [51]. According to these studies, the important
parameters are build orientation, layer thickness, infill pattern and density, building temperature,
material properties and process parameters like nozzle diameter,print and travel speed.

Due to AM characteristics including layer-by-layer fabrication, interior structure, part orienta-
tion, and environmental factors (building temperature, platform temperature), AM parts do not
have the same mechanical properties as the products produced by the traditional manufacturing

processes [150, 151].

1.7 Research gaps:

In this thesis, a statistical analysis of the performed researches is provided as shown in Figure 1.18.
It is depicted that most of the studies are related to combinational DFAM (35%) which combines
functionality and manufacturability analysis, so, it is the most complete and cited approach
existed in literature. 30% of the researches are devoted to the manufacturability DFAM which are
the studies that performed a manufacturability analysis without considering functional analysis.
Manufacturability evaluation must be performed in three levels of verification, quantification, and
optimization. Most of the studies are performed in level of verification (65%) but studies on the
quantification and optimization levels are still lacking as 20% and 15% of all the manufacturability
DFAM approaches and combinational DFAM. Also, Functional DFAM is another significant
approach for DFAM which includes 26% of the studies.

According to this literature analysis it can be concluded that:
The Design For Manufacturing approach for AM is not complete like DFM approach proposed

for classical manufacturing process as:
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Figure 1.18 — Statistical analysis of DFAM approaches

e There is no DFAM approach in product definition level.

e There is a lack of quantification and optimization of manufacturability in the existed DFAM

approaches.

Therefore, it is necessary to consider the AM criteria and parameters in the DFAM approaches to
verify, quantify and optimize the manufacturability of AM as the DFM approach.

According to this literature analysis, the most important criteria which must be analyzed,
quantified and optimized include time, material mass as production system cost and surface
roughness as a factor of surface quality, dimensional accuracy, as well as the mechanical behavior of
AM products. These criteria will be analyzed in this study through a multi-criteria decision-making
approach. So, this proposed approach is the combination of functional and manufacturability
DFAM by considering the AM criteria and attributes to provide an integrated approach that
encompasses all the steps of the product life cycle from functional analysis to manufacturing

concurrently.

1.8 Summary

Although several approaches were studied in DFM for AM with considering different criteria,
the studies on the product definition level are still lacking. Since design and manufacturing of
the product with AM are quite different compared to the traditional manufacturing process, it
creates new issues and concerns for industrial implementation. Thus, these new studies illustrate

the importance of managing the design and manufacturing process for AM technology in order to
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guide the engineer and designer to an optimal solution. Therefore, it is essential to propose an
integrated and complete approach addressing all attributes, capabilities, criteria, and constraints
concurrently to provide an interoperable process in product life cycle development for AM.

Previous studies merely use the DFM to add manufacturing impact on the 3D model and
initial design, but the process of product definition is more complex than CAD model analysis.
Also, it is necessary to provide a methodology to optimize the product model through optimization
of the 3D model, as well as quantify and optimize the manufacturing parameters. The design and
manufacturing process of AM is quite different compared to the traditional processes. Contrary
to the early promise made by some researchers, designers are not free in designing the products
with every complex geometry and many analysis and investigation have to be considered in
the design of products for AM processes. Therefore, it creates a major issue for the industrial
implementation of AM. It is crucial to integrate the usage, design, and manufacturing attributes
inside the product definition to take into account the requirements and constraints of an AM
complex system.

The main objective is to propose an approach to help the designer and manufacturer in order
to present an optimal solution for production with AM by managing design and manufacturing
concurrently as an integrated approach of DFM for AM. Therefore, this thesis focuses on providing
an integrated design approach for AM during product definition to find an optimal product
model by considering all the attributes and constraints coming from the first step of design to
manufacturing.

Therefore, the proposed methodology will be described in the next chapter (chapter 2) as an

integrated design approach for AM through DFM-skin and skeleton approach.
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2.1 Introduction

In the product development process, several tasks should be performed to define the final product
model based on the customer requirements. The product is designed according to the constraints
related to the whole product life cycle (materials, structural analysis, recycling, etc.). Hence,

concurrent engineering can help to consider and analyze the manufacturing constraints in the

67
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product development. Importance of considering manufacturing constraints and attributes in
the product definition gives the restrictions to integrate design and manufacturing as Design For
Manufacturing (DFM) approach. This integration in the product definition is carried out from
sub-model representing a common design and manufacturing modeling [30].

For this purpose, a skin-skeleton approach, which was used before for providing the DFM
approach for classical manufacturing process, is selected to represent the usage and manufacturing
model as the parts of product model simultaneously. This skin-skeleton approach is used to
implement DFM approach for AM as a DFAM approach which is an integrated design approach
for AM. To develop this approach for AM, the features must be adapted to AM characteristics and
attributes. Two propositions are provided to implement this approach into Additive Manufacturing
(AM). These propositions are different in terms of the way that usage and manufacturing skeleton

are determined.

1. Proposition 1: To implement this approach, the usage model includes skin and skeleton
are obtained by topological optimization. Then, an intermediate representation of the
3D model is achieved. Finally, the product model is the evolution of this usage model
which is obtained regarding manufacturing model and interface processing engine results.
In this method, manufacturing skin is layer contours and manufacturing skeleton as part
orientation is determined through an optimization strategy in interface processing engine

(see Figure 2.1).

2. Proposition 2: According to this proposition (Figure 2.2), the usage skin is obtained by
topological optimization, then the skeleton is obtained by power crust algorithm based on
this optimized usage skin. Consequently, an intermediate representation of the 3D model is
achieved. Finally, the product model is the evolution of this usage model which is determined
regarding the manufacturing model and interface processing engine results. In this method,
manufacturing skin is layer contours and manufacturing skeleton as part orientation is
defines based on the usage skeleton which is derived from topological optimization and
power crust algorithm. It must be mentioned that the main objective of this proposition is
considering geometrical constraints imposed by AM, as well as AM unique characteristics

like anisotropic material and non-homogeneous structure of the product interior (different
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Figure 2.1 — Proposition 1
infill structure).

Firstly, the first proposition is used to implement the DFM-skin and skeleton approach for AM.

Then, proposition 2 permits to define the proposed approach. In the following, the proposed

approach due to the first proposition is described.
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2.2 DFM-Skin and Skeleton approach for AM: Proposition

1

The first proposition allows providing the proposed methodology which relies on several models:
FBS model, Usage model, Manufacturing model, and Interface Processing Engine which is a
developed in section 2.2.4. Figure 2.3 illustrates the structure of the methodology. In this
methodology, material data sheets and different types of AM technologies as AM database (part e
and f) are important information that must be analyzed to find the desired material and suitable
AM technology for production, this data must be considered in all steps of this approach. FBS
model (part a) is achieved by analysis of the product specifications which are predefined due
to the customer requirements. It helps to provide an initial model by analysis of the product
function, behavior, and its structure. Therefore, it helps to recognize the usage model. Usage
and manufacturing models are identified simultaneously as part b and ¢ which consists of skin
and skeleton. The usage model demonstrates the product features which is created through an
optimized model due to mass and structure optimization regarding product function. Then, this
optimized model will be modified as our 3D draft of the product due to the product features. As

AM is used to fabricate the parts, the 3D model must convert to STL file as standard format
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for AM. In parallel, the manufacturing model determines the process parameters and rules due
to AM database. Therefore, this usage and manufacturing models help to determine usage and
manufacturing attributes and criteria which are needed in providing an interface processing engine.
An interface processing engine (part d) is proposed which plays an important role in completing
and defining the product model by considering design and manufacturing attributes, criteria,
and constraints concurrently. The main difference that distinguishes this research from other
researches is the interface processing engine. This engine is derived from an interface model as an
interface between design and manufacturing. This interface processing engine is a decision-making
tool for the user that help to find the best manufacturing parameters in product definition
regarding the manufacturing system criteria and constraints. In this thesis, it is proposed to
evaluate the manufacturability in quantification and optimization levels. So, this engine contains
different calculations and optimization tools to complete the final product model. This engine
needs the inputs including the 3D draft of the product (which will be entitled “3D model” in
this manuscript) derived from the usage model and its STL file, manufacturing parameters, and
important criteria for fabrication by AM technology. It allows for defining of the manufacturing
parameters for the machine to fabricate the 3D model.

Finally, this skin and skeleton concept helps to define a product. This product model derived
from FBS model and usage model which define the 3D model, selected material and technology,
as well as the attributes of product and the results of interface engine related to the product
criteria. Therefore, it allows providing a functional DFAM and evaluation of manufacturability
in the levels of verification, quantification, and optimization of AM criteria, constraints, and
parameters. The product needs a redesign if the desired values of the considered criteria do not
correspond to the customer requirements and product specifications, but the structure of this
methodology is always fixed.

To better illustrate the proposed methodology, Structured Analysis and Design Technique
(SADT) diagram is presented (see Figure 2.4) to define the activities for producing a product with
AM based on DFM-Skin and skeleton approach. Node A represents the principal activity which
contains sub-activities. This activity will be finished by performing all these sub-activities. This
diagram consists of some activities that show how an interface processing engine is constructed

to define our product model. When this engine is developed, the designer can use it even when
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the product design must be modified. These activities are as follow:
e Al: Provide functional Analysis and FBS model
e A2: Provide initial product volume
e A3: Identify Usage model
e A4: Provide CAD model
e A5: Convert CAD model to STL file
e A6: Identify Manufacturing model
e AT: Identify manufacturing parameters
e AR: Provide interface processing engine
e A9: Provide Product model

All of these activities also contain the sub-activities that will be described in the rest of this chapter
in different sections of the proposed approach: Functional analysis, usage model, manufacturing

model, and interface processing engine which is derived from interface model.
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2.2.1 Functional analysis

The product specifications are already defined due to the customer requirements. The specifications
consists of the mechanical performance, size and shape, weight, aesthetic aspects, and product
functionality. The first step of this approach is functional analysis and requirement engineering
which is determined as A1l activity in SADT diagram. In this study, Function-Behavior-Structure
(FBS) model which was developed by Gero et al. [152] is considered to provide functional analysis.
Design objects are conceptualized as Function (F), Behavior (B), and Structure (S) as FBS model.
According to FBS model, designing a product involves a series of elementary steps including
the transformation of the desired product function into its expected behavior and the expected
behavior into a structure [152]. As shown in Figure 2.5, the Al activity contains four sub-activities
which are used to identify product function, behavior and structure which help us to complete
the FBS model.

This FBS model is used to provide an initial volume of the product. As initial form and
structure for the product must satisfy its function and behavior, also it helps to identify usage
model including skin and skeleton by its initial design space. Therefore, it is necessary to provide
an initial product volume as input for identifying usage model. This activity is shown in SADT

diagram as A2 activity (Figure 2.6).

2.2.2 Usage model

Usage model is derived from product specifications, attributes, and FBS model. This model is
used to make a simplified presentation of the product which consists of usage skin and skeleton.
Usage skin is defined as a functional surface which energetic flow circulates through it. It supports
the geometrical attributes and design specifications.

Since AM is used for almost all different shapes without any restriction, topological optimization
is selected to obtain the usage model between various methods of optimization, such as parametric
shape optimization and geometric shapes optimization. This optimization method permits to
fulfill the design requirements like mechanical behavior and functionality, in addition, to optimize
mass, structure, time, and cost [120]. Therefore, usage model is determined through topological

optimization regarding the product function by optimization of mass and structure.
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This optimized model contains the usage skin and skeleton. Usage skeleton is an energetic
flow that can be mechanical, electrical, magnetic, etc. which circulates in the product. This
step as identification of usage model is presented in SADT diagram as the A3 activity. As
shown in Figure 2.8, this A3 activity (node A3) is constituted from sub-activities which are
needed to apply this optimization as illustrated in Figure 2.8. These activities are preparing
support parts as non-design space, applying the force, determining raw material, symmetrical
consideration, mechanical analysis which provides the preconditions for optimization regarding
maximum stiffness of the product.

After optimization of the initial structure, the optimized usage model is a draft that must be
converted to the 3D model. This optimized usage model is modified in CATIA-v5 based on the
functional requirements and product functionality, as well as the AM constraints and capabilities.
It is worth mentioning that products can be presented in a large diversity and the designer can
select between these possible models.

Until now, one part of the product model as a 3D model is determined, but it is necessary
to define the process and its parameters for production with AM technologies. Accordingly, a
manufacturing model will be predicted to gather the essential information for manufacturing. In

the next section, manufacturing model will be explained.

2.2.3 Manufacturing model

Manufacturing model contains manufacturing process selection information. This information
contains process type and its related parameters. From a manufacturing point of view, the

manufacturing processes can be realized due to forms and surface qualities that the process can
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perform [33, 30, 3].

In this thesis, it is supposed that product must be fabricated by AM technologies. AM
produces layer-by-layer the complex products based on the CAD model. This 3D model must be
converted to STL (Standard Tessellation Language) file as standard and suitable format for AM
which consists of small triangles [37]. This conversion must be performed in high resolution to
reduce the deviation from 3D model which is defined as the activity of A5 in SADT. Then, slicing
is performed with specific software which is compatible with the machine and its technology as
shown in Figure 2.9.

In this step, firstly the manufacturing model must be identified through skin-skeleton concept as
illustrated in Figure 2.10 by activity A6. This identification permits to recognize the manufacturing
criteria and parameters. Different parameters are identified based on these criteria through
analysis of technologies, literature, and different softwares. Finally, the significant parameters
of AM technology are recognized to utilize in the interface model. This steps are described
comprehensively in the rest of this section. According to Skin-skeleton approach, manufacturing

model consists of skin and skeleton:
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Manufacturing skin: Manufacturing skin is a surface which is produced during this step.
The skin features are created from manufacturing skeletons by a sweeping operation. Due to
AM strategy as layer by layer production, the products produced by AM are constituted of
layer accumulations. Nozzle starts the layer production from the contours of layers which are
considered as manufacturing skin, then, interior structure is created that can be determined by

manufacturing skeleton as described in the following.

Manufacturing skeleton: Skeleton is the flow trajectory and every manufacturing process is
supposed based on the material flow.

Manufacturing tool-path shows how a product is constructed during manufacturing. Part
orientation and infill structure are the parameters which determine the AM manufacturing tool-
path. In this thesis, manufacturing skeleton is specified as the product orientation in the machine
build platform. It is supposed that orientation is defined as an axis which is perpendicular to
build platform. Orientation is presented through the angles between part and x,y and z-axis. It
is worth mentioning that orientation along z-axis creates the various infill patterns at different
angles.

This slicing strategy and machine tool path are defined as G-code file for the machines. This
G-code file is like a machine language that demonstrates the fabrication tool-path and parameters.
Actually, it is a common numerical control planning language which is specified by the instructions
on where to move, motion speed, and motion path. It is developed to guide computerized machine
tools and describe the instructions about which tool-paths should be followed for AM [153].

Identification of manufacturing model helps us to recognize manufacturing parameters and

significant criteria A6 activity in SADT diagram (Figure 2.11).

Additive Manufacturing parameters: To analyze manufacturing system, manufacturing
parameters and produced product by AM techniques must be identified as shown in SADT
diagram (Figure 2.11). The structure of the produced product by AM is illustrated in Figure 2.12.

As illustrated in Figure 2.11, identifying manufacturing parameters is performed by three
activities of analysis of AM technologies, analysis of AM softwares and machines, as well as

literature analysis.
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Parameters

Technology

Layer thickness
Orientation
Infill density (air gap) and pattern
Raster angle and width
Shell width and number
Support characteristics
Raft characteristics
Print speed
Travel Speed
Cooling speed
Extruder and platform temperature
Laser Power
Scanning velocity
Hatch spacing
Spot size
Scan pattern
continuous wave
Pulsed wave which are defined
Heater Temperature
Platform retract
Heater speed
Platform speed
Laser speed
Feeder speed
Beam width

All AM technologies
All AM technologies
All AM technologies
All AM technologies
All AM technologies
All AM technologies
All AM technologies
All AM technologies
All AM technologies
All AM technologies

FDM
SLM, SLS and SLA
SLM, SLS and SLA

SLM and SLS

SLS

SLS

SLS

SLS

LOM

LOM

LOM

LOM

LOM

LOM

SLA

Table 2.1 — Different AM technologies parameters

Different AM technologies are analyzed based on their processes. Also, various slicing
software like Cura, Slic3r, and MakerBot which are shown in Appendix II are investigated.
Moreover, analysis of other researches [49, 156, 48, 126, 127, 157] help to find the parameters of
manufacturing. These studies allow for determining of the manufacturing parameters. The most
important parameters for these criteria are as follow (Table 2.1):

To find the significant parameters which affect the important criteria and constraint of
AM, a literature analysis is performed on several studies (30 article) which investigate the AM
technologies generally. This analysis also helps us to recognize AM criteria and constraints, as
well as the parameters that affect these criteria. Table 2.2 shows the criteria, and the parameters

that are evaluated, as well as the number of times that are investigated in these researches. These

numbers present the importance degree of parameters on the desired criteria and constraints.
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As shown in this table, layer thickness and orientation are the most important parameters
of manufacturing and these two parameters are common between all AM technologies. They
have significant effects on manufacturing system criteria and the constraints as described in the

following:

Additive Manufacturing criteria and constraints

These criteria and constraints are taken into account separately in other researches [49, 48, 158,
156, 159, 160, 161, 113]. In this research, they will be analyzed together to find a solution for
design and manufacturing that satisfies all these important criteria and constraints simultaneously.

Nowadays in this industrial world, time and material mass are the important criteria for
all manufacturing systems as the factors that determine the manufacturing system cost. Also,
mechanical behavior, surface quality, and dimensional accuracy are identified as the major
issues and constraints for the industrial sectors of AM. AM characteristics like layer by layer
production and the interior structure of AM products create the difference between AM products
and other products which are fabricated by traditional manufacturing methods. These criteria
and constraints are affected by manufacturing parameters, thereupon, final product model
characteristics will be changed. In the following, these criteria and constraints are explained

comprehensively:

Manufacturing time and material mass: Manufacturing time and material mass are the
first criteria that should be analyzed for all production systems. For AM, these criteria are affected
directly by modifying manufacturing parameters. Their modification trends can be simulated
through special additive software for each machine and technology. These softwares simulate the
tool-path before starting the printing according to the product geometry, build orientation, and
manufacturing parameters. It creates the G-code file that contains the required time and amount

of extruded material to estimate the elapsed time and material mass for printing.

Surface quality: As consequence of layered manufacturing, the surface finish of AM parts is
excessively rough. Since this surface quality has the influence on the material functional properties

including mechanical behavior, optical properties, and frictional behavior, the surface controlling
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Figure 2.13 — (a) Chordal error [166]- (b) Staircase error [167]

of AM products is necessary [49, 162].

To investigate the surface quality as AM constraints, roughness can be analyzed. As described
in ASME B46.1 [163]," R, (roughness) is the arithmetic average of the absolute values of the
profile height deviations from the mean line, recorded within the evaluation length. Simply put,
R, is the average of a set of individual measurements of a surfaces peaks and valleys."

Surface roughness (R,) is defined as Equation (2.1):

1
Ra:%/o | y(z) — ye | dz (2.1)

where y(z) is roughness profile value, [ is the evaluation length, and y. is the center line position.
The areas above and below the line are equal. Therefore, R,represents the summation of the areas
above and below the line, divided by the evaluation length [164]. In AM process, poor surface
roughness can be created by tessellation of the original CAD model (converting from CAD model
to STL file) which is known as chordal error and the slicing procedure which is employed during
the building process that creates the staircase effect that is created by layer deposition and it
affects the surface roughness [49, 165] as shown in Figure 2.13. In this research, it is supposed
that STL conversion is performed in high quality with large numbers of the triangle and its effect

is ignored.

Mechanical behavior: Mechanical behavior of the AM products is not like a product that
is produced by the traditional manufacturing process because of the material processing, layer

by layer production, and filling structure of the additive parts. Different types of infill pattern
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product and values of layer thickness create the different levels of product resistance [168]. Also,
there are other parameters of manufacturing like air gap, raster width, shell number and width,
raster angle and part orientation which affect the product mechanical behavior. For mechanical
behavior, Ultimate Tensile Strength (UTS) is taken into account. It is measured by the maximum

stress that a material can withstand during stretching or pull before breaking.

Dimensional accuracy: Obtainable desired accuracy for AM and specially FDM technology
is a critical drawback which inhibits in AM utilization. A lot of parameters affect the accuracy of

the product as material withdrawal and process parameters like layer thickness and orientation.

Until now, Functional analysis, recognition of usage model, and defining 3D model, as well
as identifying manufacturing models include its significant parameters, criteria and constraints
help to construct our novel interface model as an interface processing engine to consider design,
manufacturing, and analysis of their criteria and constraints, as well as important parameters

which affect them. In the following, this novel interface processing engine will be presented:

2.2.4 Interface Processing Engine

Identification of usage and manufacturing skin-skeleton allows for determining of their different
parameters and attributes. Finally, integration of manufacturing constraints in the product
definition is done gradually as an interface model. Interface model is an output of this approach
for defining the product which demonstrates the relations between the parameters of the manu-
facturing procedure. In fact, it presents the required information that supports the synthesis of
design and manufacturing. It provides the functional data, technological solution as material and
process selection, and attributes values.

The usage and manufacturing models must be analyzed together to create the final product
model by using the interface model. To define this interface model for AM and utilize these
models for creating the manufacturing procedure, a novel interface processing engine is developed
which is derived from the interface model but it is more complex and it contains information,
models, and tools. It is a decision-making tool for the user that manages AM and product

characteristics with any knowledge of its internal workings. It consists of calculation tools which
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are used to integrate manufacturing constraints and attributes in the product definition. The

objective is to find the suitable manufacturing parameters for production through a multi-criteria

decision-making approach. Therefore, interface engine helps to complete the product model

by selecting the process, machine, and manufacturing parameters for production regarding the

criteria such as time, material and constraints like surface quality, and mechanical behavior of

the products.

Overall, the goal is to define a generic model to be adapted to the other AM processes. This

engine requires the 3D

model coming from usage model, manufacturing parameters, important

criteria of manufacturing, product features, and the relationships between these attributes. This

interface processing engine is illustrated in SADT diagram (Figure 2.14) as activity of A7 which

consists of different sub

-activities. Necessary information for presenting the interface processing
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engine are identified by FBS, usage and manufacturing models. 3D model of the product is also
created through usage model. Moreover, analysis of AM technologies and several slicing software
like slic3r, Cura, and MakerBot allow for determining of manufacturing parameters. Furthermore,
it is essential to analyze the important criteria like production time, material, mechanical behavior,
and the surface roughness of AM products. STL file is the main input for this interface engine.

To investigate all these criteria and constraints simultaneously, a multi-criteria decision-
making approach can be helpful. To utilize this approach, this interface processing engine must be
constructed as shown in Figure 2.14. As shown in Figure 2.14, the results obtained by usage and
manufacturing skin-skeleton are necessary to construct this interface processing engine. There are
calculation tools for time, material, and roughness. Time and material are computed by simulation
through Cura software in MATLAB and generating G-code files. Roughness is presented through
a mathematical model which is defined based on the geometrical study of filament, produced
surface and experimental data. UTS values are collected for mechanical behavior due to layer
thickness and orientation as important parameters of AM. To manufacture a product by AM,
it is necessary to select the suitable values for manufacturing parameters. Parameter analysis
shows that the number of variables as manufacturing parameters are more than the existed
relationships between these variables. So, it is necessary to define an optimization problem to
find an optimal solution of manufacturing parameters as fabrication setting by considering these
criteria simultaneously.

It is decided to provide a bi-objective optimization to analyze this multi-criteria decision-
making problem. This optimization is described as the fourth sub-activity of providing an interface
engine in SADT diagram (Figure 2.14) to find the optimal solution for manufacturing with AM.
Manufacturing time and material as the major criteria of the manufacturing system cost are
considered as the objective functions for this optimization problem to minimize the total cost of
the system. According to the importance of mechanical behavior and surface roughness as the
drawbacks of AM products, they are considered as the constraints for optimization.

As mentioned before, layer thickness and orientation are the most important manufacturing
parameters of all AM technologies, these parameters are determined as decision variables.

Decision variables, objective functions, and constraints are common for all AM technologies,

this interface processing engine can be applied to all AM technologies as a general interface
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processing engine.
In the following, the mathematical formulation of the bi-objective optimization problem is

explained.

Bi-objective optimization problem

A continuous bi-objective optimization problem is defined inside this engine to optimize time,
material mass by considering the product roughness and mechanical behavior as the constraints.

As layer thickness and orientation are identified as significant parameters of manufacturing
which affect the manufacturing criteria and constraints, they are selected as decision variables.
Orientation can be defined through three angles (6, 6,, 6.) in space. Therefore, the four
component vector of decision variables (x) is presented which contains the layer thickness and

orientation angles as follow:

T = {0m76y7927Lt}
where :
e [;: Layer thickness.

® 0,0, 0,: define the orientation, i.e. the angle between part and the axis of «, y, and 2
(see Figure 2.15). These angles demonstrate the orientation of the part in platform as well

as, infill angle of the part which is determined through rotation along the z-axis by 6,.
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These different orientations are shown in Figure 2.16. This figure shows specific orientation

types like flat, on-edge and up-right in different raster direction (+45°, 0/90°).
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The bi-objective optimization problem is written as:

Minimize:
f1(@) = Time(w)
f2(x) = Material(x)
Under the constraints:
9r.(T) < Ramax (2.2)

guTs(T) > OMax (2.3)

€T = {gzaeyvevat}
Iy = {~180°,0°, —180°, Lyniin}

up = {180°,180°, 180°, Lintax }

As shown by mathematical formulation, the first objective is the time that machine requires for
fabrication. The second objective is the mass of material that is consumed for manufacturing.

The optimal solution for manufacturing will be provided by minimizing these objectives.

The vectors of lower and upper bound of the decision variable components are lp and wuy
which show their minimum and maximum allowable values. Layer thickness value is between
Livin and Lyvin- To consider all possible orientations for product in the space, the angle of
and z are between —180° and 180°, and y is in the range of 0° and 180°. It must be mentioned

that rotation along z-axis determines the filling angle.

The objective functions are calculated through simulation of additive procedure for each
orientation and layer thickness value by the additive simulation software for each technology and

machine.

The first constraint (Equation (2.2)) provides a relation between layer thickness and orientation

to estimate the surface roughness to satisfy the surface quality of the product.

Equation (2.3) is used to present the mechanical behavior of AM products. Resistance is
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formulated with the maximum mechanical stress in the product (opax) and Ultimate Tensile
Strength (UTS) of the material that depends on the manufacturing parameters (orientation,
layer thickness, infill angle, etc.). This constraint shows that the AM product must be more
resistant than the desired behavior. The UTS values for different orientations and layer thickness
are obtained by analysis of several experiments performed by other researchers like [156, 171,
172, 157, 170]. It must be mentioned that these experiments must be performed in the same
experimental conditions including material type, specimen kind, and temperature. Moreover,
other manufacturing parameters for fabrication of the specimens must be identical.

Before solving this optimization problem, it is necessary to formulate this bi-objective opti-
mization problem including objectives and constraints.

As shown in Figure 2.14, time and material mass are calculated through simulation of tool-path
by AM software and analysis of the G-code file. Roughness is formulated as a roughness model,
this model is obtained by geometric analysis of the filament and experimental measurements are
used to validate this roughness model. Mechanical behavior of the AM products are analyzed
through experimental methodologies, The UTS values are collected through a tensile tester for
different values of layer thickness and orientation types. These formulations are the calculation
tools for time and material, as well as roughness, and the UTS database provide the preconditions

for solving this optimization problem.

Solving Procedure

To solve this bi-objective optimization problem, two methods are used in this thesis:

1. UTS data are obtained by analysis of experimental approaches. Time and material values
are calculated through software simulation of printing for these data. Also, roughness values
are coming from roughness formulation. These data permit to create a meta-models to

provide the models which formulate time and material, roughness, and UTS data.

In this study, Modefrontier which is a software for process integration and design optimization
is utilized. It provides a multi-objective optimization problem and design environment
that can be easily integrated with almost any CAE and CAD package. It utilizes a lot of

optimization algorithm and tools including response surface modeling tool, MOGA and
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NSGA [135]. The environment of this software is illustrated in Appendix II. Response

Surface Methodology (RSM) helps to provide these meta-models by polynomial function.

This software helps us to determine the optimal Pareto of manufacturing parameters (layer
thickness, orientation type) by optimization of time and material regarding to product
roughness and mechanical properties. A work-flow of this bi-objective optimization problem
is shown in Figure 2.17. As shown in this work flow, layer thickness and orientation types
are the decision variables of discrete problem. To define DOE, the results of time, material,
roughness, and UTS which are required. This DOE is used for meta-modeling and RSM
is used to formulate the response of the criteria for different values of layer thickness and

orientation types. Moreover, the NSGA-II algorithm is used to find the optimal Pareto.

It seems that the data which are used as DOE are not sufficient to create a meta-model
and in the next step of this thesis, it is decided to use another methodology for solving and
formulating this bi-objective optimization problem. In the following, this methodology will

be described.

Execution of Cura as an open source software in MATLAB permits finding the production
time and material mass values for all possible orientations in space and all allowable values

of layer thickness by simulation of printing procedure as G-code file.
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Figure 2.18 — NSGA-II procedure for solving the optimization problem

Not only, this bi-objective optimization problem is a combinational optimization problem
and it is categorized as an Non-linear Polynomial problem, NP-hard problem, but also,
simulation of AM procedure through AM software and creating the G-code files are time-
consuming. Therefore, to find the feasible solutions for this continuous optimization problem
in a reasonable time, a meta-heuristic algorithm seems helpful. So, Non-Dominate Sorting

Genetic Algorithm-IT (NSGA-II) is used to find the optimal solutions for manufacturing.

The essential inputs of this problem are the STL file, execution file of additive software,
roughness calculation method, UTS data, and algorithm parameters. By this algorithm, the
solutions are presented and improved in some generations as Pareto front. The implemen-
tation procedure of this algorithm into the optimization problem is shown in Figure 2.18.
Finding the optimal manufacturing parameters permits to provide the essential information

for our product model that is explained in the next section.
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2.2.5 Product model

Analysis of FBS model, usage model, manufacturing model, and interface processing engine allow
providing the product model. This product model is the result of proposed approach that is
shown in SADT diagram (Figure 2.19). This product model consists of required information to
fabricate the 3D model by AM technology. It contains the selected material and AM technology,
manufacturable usage model as CAD model and STL file, the optimal values of manufacturing

parameters and criteria, as well as the optimal G-code for fabrication as shown in Figure 3.24.

2.3 DFM-Skin and skeleton approach for AM: Proposition
2:

The second proposition permits for implementing the DFM-skin and skeleton approach for AM.

According to this proposition, this proposed approach contains several steps:
1. Functional analysis and providing FBS model.

2. Identification of usage model contains skin and skeleton: According to the first proposi-
tion, optimized usage model, including skin and skeleton, is created through topological

optimization, but this proposition permits defining the skin and skeleton separately:

Usage skin: It is defined through topological optimization and it is a surface that material

flow on it.
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Usage skeleton: Two methods are presented to determine this skeleton as follow:
Power crust algorithm: Power crust algorithm is used to define the skeleton based on the
optimized usage skin. This algorithm needs an STL file as input but it must be mentioned
that this STL file must be enriched with point numbers through modification in meshing
(Figure 2.20).

This usage skeleton provides the approximate medial axis of part as an overview of product
and its general schema that can be presented in several possible geometry solutions which
satisfies the physical constraints and functional requirements. Power crust is an algorithm
which is used to construct surface mesh and approximate medial axis. Power crust takes the
points derived from STL file as input. Then, Medial Axis Transform (MAT) as a skeletal
shape representation of object is approximated and surface representation is created by
inverse transform [173, 33]. The procedure of this algorithm which is shown in Figure 2.21

is described as follow:

e STL file is converted to sample of points as pts format.

e Medial Axis Transform is a skeletal shape representation which is approximated by
Voronoi diagram which is a computational geometry concept that represents partition
of the given space onto regions, with bounds determined by distances to a specified

family of objects.
e Polar balls approximate maximal balls contained in interior or exterior of balls.

e Power diagram is used to divide space into polyhedral cells by inverse transform.
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Figure 2.21 — Power Crust algorithm procedure on a two dimensional example (a) An object with
its medial axis-(b) The Voronoi diagram-(c) Inner and outer pollar balls-(d) The power diagram
cells of the poles-(e) power crust and power shape of its interior solid [173]
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e Finally, the subset of two-dimensional polygonal faces of power diagram is power crust

[173].

So, the initial forms must be created. Then, the possible morphology of the skeleton is

proposed by the designer [33, 30, 3].

Manually: Skeleton is specified according to the special required behavior of the product as
its functionality. According to the form obtained by topological optimization, the material

flow as the skeleton can be specified easily.

. Manufacturing model is defined in section 2.2.3, it consists of skin as contours of layer

and part orientation as skeleton. According to proposition 2, manufacturing skeleton must
be determined based on the usage skeleton. In this proposition, the main objective is
considering the AM geometrical constraints, as well as AM unique characteristics such as
anisotropic material, non-homogeneous structure of produced part by AM (different infill
pattern and density), etc. In this thesis, there is no possibility to create the part orientation

and continuing the DFM-skin and skeleton approach.

. The optimization approach as an interface processing engine will be created by considering

other parameters without considering the part orientation as decision variable.

. Defining the product model based on the results of interface engine and skin-skeleton

approach.

2.4 Summary

Generally, the SFM-skin and skeleton approach for AM provides a general and integrated approach

for AM to consider usage, design and manufacturing attributes simultaneously. This approach

addresses an integrated design methodology as Design For Additive Manufacturing (DFAM). This

method allows defining a product model by investigation of many AM attributes, constraints, and

criteria. This methodology is developed through a skin-skeleton approach which help us to create

the final product model based on the functional requirement. FBS model, usage and manufacturing

skin-skeleton models describe the initial information for design and manufacturing, as well as 3D
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model simultaneously. As the main contribution of this thesis, a novel interface processing engine
is developed to investigate the usage, design, and manufacturing attributes simultaneously to
suggest a product model. This black box permits engineers to find the manufacturing parameters
by analysis of AM procedure, calculation tools, and optimization model. It contains a multi-
criteria decision-making approach that handles a large number of criteria. Thus, a continuous
bi-objective optimization problem is presented to minimize manufacturing time and material
regarding product roughness while targets a desired mechanical behavior and it prepares an
integrated product model with optimization solutions before designing the product as a CAD
model. It creates a possibility to redesign a product through comparison of the desired criteria
and product specifications. Thus, this methodology is used to find the optimal product model
including 3D model, optimal manufacturing parameters, G-code file for fabrication.

In the next chapter, this approach will be implemented into a popular AM technology, Fused
Deposition Modeling (FDM), and two case studies are used to show the reliability of this approach

for industrial implementation.
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3.1 Introduction

Fused Deposition Modeling (FDM), developed by Stratasys in Eden Prairie, Minnesota, is one
of the most extensively used Additive Manufacturing (AM) technique which has substantially
shortened the product development time and cost. The application has been extended to the
various industries as medical ones like fabrication of biomedical implants or prosthesis through
investment casting process, use by hobbyists, inventors, and small business owners, etc. [37].

FDM is a layer AM process that uses a thermoplastic filament (ABS, PLA,...) by fused
depositing. The layers are fabricated by extrusion of the filament which is extruded by a nozzle.
The nozzle contains resistive heaters that keep the plastic at a temperature just above its
melting point so that it flows easily through the nozzle and forms the layer. The plastic hardens
immediately after flowing from the nozzle and bonds to the layer below. It traces the part’s cross
sectional geometry layer by layer, then moving up vertically to repeat the process to produce
the layers from down to up for finishing the part fabrication [37, 174] as shown in Figure 3.1.
The layer thickness and vertical dimensional accuracy are determined by the extruder diameter
which is different for each machine. A range of materials is available including ABS, polyamide,
polycarbonate, polyethylene, polypropylene, and investment casting wax [40, 174].

Nowadays, the extensive usability of FDM technology and effects of the manufacturing process
and especially unique characteristics of AM technologies encourage the researcher to analyze this
manufacturing process. The integrated design approach is helpful to analyze the product which is
produced by AM technologies from the first step of product life cycle development to final one to
define a product model. Therefore, the proposed methodology as an integrated design approach
for AM technologies, described in the chapter 2, will be verified through an FDM technology

which fabricates two case studies. The study is started by a case study as a bag hook and this
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Copyright @ 2008 CustomPartMet

study will be continued to apply in another case study as a wheel spindle which is more complex
and useful. This second case study can show the ability of AM techniques in bringing life to the
broken parts and re-utilizing the product.

In this chapter, the application of this proposed approach into FDM technology based on two
hypotheses through a bag hook will be described in section 3.2 and the second case study will be

explained in section 3.4.

3.2 DFM-skin and skeleton approach based on proposition

1 for case study 1: Bag hook

In this research, a bag hook is investigated as case study to verify the proposed approach. The
bag hook is an accessory that is used to hang a handbag on a table. It must be slim, light and
fits into even the smallest bag. As summarized in Table 3.1, the requirement analysis shows
that ABS (Acrylonitrile Butadiene Styrene) is a suitable choice as the raw material for bag hook

because of its characteristics like recyclability, availability, and cost. FDM (Fused Deposition
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Material ABS
Technology FDM
Weight As light as possible
Functionality Tolerate 7.5kg
Initial size 45%90*10 cm

Table 3.1 — Bag hook specifications
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Figure 3.2 — FBS model defined for bag hook

Modeling) as the technologies of AM is chosen to manufacture the product on ABS [34]. The
initial dimensions of hook are defined equal to 45*90*10 cm which will be optimized through this
proposed approach.

The proposed methodology will be applied to present the optimal solutions of 3D model by
using usage model and analysis of manufacturing system as manufacturing model to create an

interface processing engine to provide a product model for this bag hook.

3.2.1 Functional analysis for bag hook

The first activity that must be performed in this approach is the functional analysis based on
the defined customer requirements as A1l activity in SADT diagram (Figure 2.4). As required
product specifications depend on the customer requirements, it is supposed that bag hook must
be as light as possible to put in the bag and it can tolerate 7.5 kg as its functionality (Table 3.1).

As illustrated in FBS model, bag hook must tolerate the bag weight as its function, the table is

considered as support to help it for its function. So, table, hook, and bag are connected together
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in this model. Actually, bag weight and gravity create a force which is transmitted to the hook.
Hook must contain boundary as skin, as well as internal structure which is shown by arrows as
material flow conduction which shows the part skeleton. This hook is hung to the table which
plays the role of support in order to maintain the hook and bag with together. There is a surface
that connect hook and table, as well as a pin to connect the bag to hook. This model is utilized
to identify usage skin and skeleton due to boundary and material flow inside the hook.

The Function-Behavior-Structural (FBS) model (illustrated in Figure 3.2) is used to determine
the initial structure according to desired function and behavior of the product. Therefore, this
FBS model defines the part functionality which provides the initial volume of the part that can
be created by CATIA-V5 (Activity A2) due to FBS model which contains functional surface,
the relation between support and material flow conduction, product function as applied force,
and mechanical performance. This initial volume must be converted to STL file as input for

identification of the usage model. This procedure will be explained in section 3.2.2.

3.2.2 From usage model to 3D model for bag hook

Identification of usage model is the second step that must be performed in this approach. This
model is determined based on the desired product characteristics and requirements as defined by
FBS model in section 3.2.1. This step is related to the A3 activity in SADT diagram (Figure 2.4)

which is identifying usage model:

Usage model identification of bag hook:

The topological optimization is used to optimize initial volume as an innovative form that supports
the hook functionality regarding optimizing mass and structure. To apply this optimization into
the case study, Inspire ! as a topological optimization software is chosen and STL file of bag hook
is needed as input of this optimization software.

Inspire is an industry’s most powerful and easy-to-use generative Design/Topology Opti-
mization software. It provides a rapid simulation solution for design engineers for creating and
investigating structurally efficient concepts quickly and easily. The topological optimization

procedure is as follows:

Thttps://solidthinking.com /inspire2018.html
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Figure 3.3 — First definition of hook for topological optimization

1. Firstly, the STL file as input is loaded in software which is the design space.

2. Table as support and weight bag as force source must be applied to the design space. This

support and load parts are the non-design spaces as shown in Figure 3.3.

3. The material must be chosen for this bag hook. ABS is supposed as raw material for bag

hook (Figure 3.5).

4. To optimize this bag hook, some constraints must be defined like stress constraint as safety
factor, frequency constraint, and thickness constraint. Inspire analyzes the materials used
in the model to determine which has the lowest yield stress then divides by its minimum
safety factor to calculate the stress constraint.

In this optimization, minimum safety factor is considered equal to 1.2 and minimum

thickness is determined as 5.4 mm and there is no frequency constraint.

5. Speed of the optimization must be determined between fast and accurate one. To increase

the speed of optimization fast option as default value is considered.



3.2. DFM-skin and skeleton approach based on proposition 1 for case study 1: Bag hook 107

6. There are different types of contact between the part as sliding only and sliding with

separation. In this optimization, sliding is considered as a type of contact.
7. There is an option to apply gravity force. This option must be active along -Y-axis.

8. Load case is considered as 7.5 kg and the software calculates the pressure applied to the

contact surface of hook automatically.

9. The objective of this optimization must be determined. There are several options including
maximum stiffness and minimum mass. Minimizing mass produces a part that is as light
as possible, this is a good choice when a displacement constraint and stress targets need
to be met. Maximizing stiffness creates a part that is as stiff as possible. This is a good
starting choice to find out the load paths in the part. Stiffness is considered as objective of
optimization to help in the hook functionality. Both objectives need to be combined with
constraints and targets to fully define an optimization problem which is presented in next

step.

10. Mass target is another parameter of optimization which is presented as total percent of
mass. If maximizing stiffness is considered, mass target is set, either as a percentage of the
design space or as the total mass for the entire model. This percentage is determined as

30 % in this optimization (default value).

11. The symmetric tool on the structure ribbon is used to apply symmetry planes to a design

space (Figure 3.4). Symmetric plans are valid for optimization but not for analysis.

12. All these steps are shown in Figure 3.5 and the final result is obtained through running

optimization.
Recognition of this usage model, consists of skin and skeleton, helps us to determine the 3D

model of the product which will be described in the next section.

3.2.3 Optimized 3D model

This usage model permits to recognize the skin and skeleton in order to create the product 3D

model. According to this usage model, the final 3D models is provided between different possible
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Usage model 3D model

Figure 3.6 — CAD model obtained according to usage model

forms. Actually, this optimized model will be modified as the 3D draft of the product (which
will be entitled “3D model” in this thesis). This 3D model is defined according to usage model
through 3D modeling in CATIA-V5 as shown in Figure 3.6. Several factors are considered in this

definition as follow:

Functionality

Minimum required wall thickness

Using fillet instead of sharp edge to improve product strength.

e Minimizing the surface like the surface which is connected to table and hand bag.

After defining the 3D model, it is necessary to determine the manufacturing model for FDM
as process for fabrication of the product. This model will be described in the next section

(section 3.2.4).
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Figure 3.7 — Manufacturing Skin-Skeleton

3.2.4 FDM manufacturing model

In this step, the manufacturing model must be identified for FDM process. In this process, the
layer production is started by creating the contours and interior structure. Actually, the produced
contours of layers create the manufacturing skin. The interior structure and the path that nozzle
crosses for filling the layers are the important parts of manufacturing. Orientation is another
significant parameter that determines the tool-path including filling angle and build part direction
which is considered as manufacturing skeleton. As shown in Figure 3.7, this model defines layer
with its contours and the part orientation which is perpendicular to the build platform.

To fabricate the hook with AM, the CAD model must be converted to STL file as suitable AM
format which is shown in Figure 3.8. This STL file is created in high resolution and with many
triangles to minimize dimensional inaccuracy and roughness. Identification of manufacturing skin
and skeleton permits to identify the manufacturing parameters. These manufacturing parameters
must be analyzed according to important criteria and constraints like time, material, UTS, and
roughness.

The attributes related to FDM are identified through analysis of technology and its related
software like Cura, Slic3r, and Makerbot desktop, which are shown in Appendix II, and several

machine types like Makerbot Replicator 2x, Zortrax, and Ultimaker. These attributes come from
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Figure 3.8 — STL file of bag hook
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Figure 3.9 — Different parts of produced bag hook

machine settings as manufacturing parameters defined by software.

Analysis of FDM technology illustrates that the manufactured part by FDM consists of
different sections of infill structure, roof and floor layers, as well as raft and support parts.
This structure is illustrated in Figure 3.9. A comprehensive literature analysis is performed on
the studies (131 articles) related to the evaluation of manufacturing parameters and criteria in
FDM technology. A summary of this analysis is demonstrated in Table 3.2. This table contains
the parameters that affect the product and manufacturing system criteria and constraints. A
number is devoted to each parameters which is the number that this parameter is investigated
in the studies. This number shows the importance degree of these parameters. The analysis
demonstrates that layer thickness and part orientation in build platform are the most significant

parameters for manufacturing.
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The important attributes, criteria, and constraints related to FDM technology are defined
comprehensively as follow, some of these attributes and criteria as part volume, part build
direction, layer thickness, print speed, and part interor structure are common between all AM

technologies.

e Part volume: It is restricted due to machine capacity. The suitable machine must be

chosen due to the part volume.

e Part build orientation: Orientation is the inclination of the part in a build platform due
to x, y and y axis. ® and y axis are parallel to build platform and z-axis is considered

along with the part build direction [176].

e Layer thickness: For each machine, the defined range for layer thickness is different.
These values are restricted by the nozzle diameter. It affects the criteria like production

time and material, roughness, and mechanical behavior of AM parts.

e Print speed: Printing at high speed reduces the production time but it has a negative

influence on the product quality but this influence deponds on the machine type.

e Print temperature: Print temperature must be determined due to the material and
machine characteristics. It affects the surface quality, as well as the dimensional accuracy

of the produced product by FDM.

e Shell structure: Shell or wall is a parameter related to manufacturing that produces the
contours as the manufacturing skin. According to the obtained results by other researchers
[177], the wall thickness must be at least twice the layer thickness to avoid walls which are
subject to do buckling and enhance the product strength. Thus, shell is created two times
(number of shells=2) in the manufacturing setting that not only, it satisfies the buckles
constraint, but also, it satisfies product resistance. Moreover, it must be mentioned that it
is defined as minimum value regarding time and material constraints. Owing to increasing

shell number, time and material consummation will be increased.

e Raft structure: Raft structure is one part of printing as a surface that is printed as the

first layer below the desired 3D model. This structure permits to have a better bottom
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surface and it creates a larger adhesion area to keep the object stable during printing. Also,

it reduces the possibility of deforming [178].

e Infill structure: Infill structure and density are the parameters related to the interior
structure of AM parts. There are various patterns including linear, hexagonal, moroccan
star, catfill, sharkfill, diamond, etc. According to the research performed by [179] various
patterns provide the different levels of mechanical resistance. It is concluded that rectilinear
pattern in a 100 % infill shows the highest tensile strength. Then, the honeycomb pattern
under the same density creates a better tensile strength, although the difference between the
patterns is less than 5%. The change into the infill density determines mainly the tensile

strength and stiffness, especially between 20 % and 50 % [179].

e Support structure: The complex geometries or the curved surfaces needed to be main-
tained with a support material [37]. There are some attributes that must be determined
to define support structure like support density, threshold angle for support, and its layer

thickness and dimension.
These attributes create different levels of criteria and constraints which are described as follow:

e Production time: Manufacturing parameters affect the manufacturing time. For example,
time is increased by reducing layer thickness and it is proved by AM simulation software.

Also, print speed affects the manufacturing time.

e Material mass: Fabrication by different manufacturing parameter values modifies the
required amount of mass for fabrication. The most important parameters which have
influence on the required material mass for production are layer thickness, part orientation,

infill density and pattern, support density and pattern, and raft structure.

e Strength: Mechanical behavior of the AM products are not like a product that is produced
by the traditional manufacturing process because of the material processing, layer-by-layer
production, and filling structure of additive parts. In this study, linear is considered as infill
pattern to enhance the product resistance. Layer thickness values affect the different levels
of resistance for product [168]. Filament direction must be perpendicular to load direction

in order to improve the strength of the product [33, 180]. Moreover, It is better to avoid
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sharp edge and use fillets in the product structure due to tool path and infill structure to

improve the product strength [33].

e Dimensional inaccuracy: Deviation for AM can be derived from conversion of3D model
into STL file, as well as manufacturing system. However, it is supposed that STL conversion
is performed in the high level of quality through increasing the numbers of triangles in order
to reduce the deviation. So, this deviation is ignored in this study. Temperature difference
as thermal stress and strain can produce inaccuracy between the produced product and
3D model [33]. Temperature is another important factor in the deviation that increasing
extrusion and platform temperature decrease the deviation amount. Moreover, fabrication in
the low level of layer thickness can reduce the deviation. Part orientation can be considered

as deposition angle which affects the dimensional accuracy of the produced products [127].

e Roughness: Roughness is a criterion to investigate the surface quality of the product. The
staircase effect creates the rough surface for AM due to layer thickness value and orientation
type through deposition angle. In the same orientation, increasing layer thickness reduces

the roughness as surface quality.

After recognition of usage and manufacturing model by skin and skeleton approach, the required
information for design and manufacturing are provided, but it is essential to find the best
manufacturing parameter values for fabricating the 3D model (derived from FBS and usage
model). An interface processing engine is developed to investigate this information, attributes,
parameters, and criteria concurrently. So, the interface processing engine is applied to the bag

hook in the following (section 3.2.5).

3.2.5 Interface processing engine for bag hook to fabricate by FDM:

the interface processing engine plays an important role in this proposed methodology. The status
of interface processing engine is depicted in Figure 3.10 which illustrates the DFM-Skin and
Skeleton approach for the selected technology (FDM). According to this approach, FBS, usage
and manufacturing model contain essential information to provide the interface processing engine
to find the optimal final product model. This figure shows that the manufacturing model contains

some attributes related to skin and skeleton that must be determined before fabrication. Layer
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thickness as an attribute related to skin and part orientation for skeleton are the significant
factors for fabrication. Usage skin attributes specifies design features like product dimensions and
material type and skeleton attributes are material flow and its direction. Also, product model
will be constituted through integration of FBS and usage model to find the CAD model, as well
as the desired values of parameters and criteria that come from the interface processing engine
results. This engine contains calculation and optimization tools to determine the manufacturing
parameters. Actually, this engine shows the relationships between the parameters related to usage
and manufacturing model attributes as shown in Table 3.3. This table contains usage skin and
skeleton attributes and manufacturing skin and skeleton attributes. Also, the product criteria
and constraints are mentioned as usage attributes. These attributes are related to each other and
they determine the product and manufacturing criteria and constraints. For example, this table
determines that material mass depends on manufacturing attributes as like layer thickness and
number, prototype dimensions, infill density and air gap, raster density and pattern, roof and floor
structure, raft structure, support structure, shell structure, and nozzle diameter. Printing and
travel speed are also manufacturing attributes that determine the production time. Manufacturing
system temperature is also dependent to the material properties. It is worth noting that there
are relationships between the usage attributes together, as well as manufacturing attributes. For
instance, material properties like young modulus affect the part strength.

To provide an interface processing engine for bag hook which is produced by FDM, the

hypotheses are investigated:

Initial fixed parameters for interface processing engine of bag hook

To provide the calculation tools inside this engine, some initial hypotheses are considered to

define a final product model through crossing from design stage to manufacturing.

e The MakerBot Replicator 2X is selected as the desired machine to fabricate the part.
The platform dimension of this machine is 246 mmx 152 mmx 155 mm that supports the
case study dimensions. This machine is an experimental 3D printer which makes three-
dimensional objects solid by melting filament. The STL file is translated by the MakerBot

software. Then, this machines starts its work by heating the filament and squeeze it out
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Figure 3.10 — DFM-Skin and Skeleton approach for FDM
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Material Mass * * * * * * * * * * * * * *
Material properties * * | *
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Usage Skin
g Part strength ol I T B L B B * *
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Surface roughness| * * *
Accuracy * * *
Time * * * * * * * * * * * * * * * *
Cost * * * * * * * * * * * * * * * *
Usage skeleton .
& . Material Flow * ol I O R B * | *
attributes

Table 3.3 — Relation between usage and manufacturing attributes
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through a nozzle onto the heated platform in order to build solid object layer by layer as
FDM.

e As the interior structure, infill structure is selected as the linear pattern and part is fabricated

in full density (100 %) to create more resistant structure.

e Nozzle diameter is 0.4 mm which permits to print the part by the layer thickness between
0.1 mm and 0.4 mm that corresponds to the minimum and maximum values of layer thickness

in the defined optimization problem.

e The extruder and platform temperature are considered due to ABS characteristics as 230 °C

and 110 °C respectively.

e The number of shell is considered equal to two that supports wall structure of the part

(shell number=2).

o Part orientation can be defined in three angles of 0,,60,, and 6.. These elements are the
angles between related axis and product normal. This orientation shows the build direction

and filling angle of the interior structure.

e Support structure is enabled in setting to create the desired structure for product. Support
is created in 20 % density and for the angles greater than 68° as its default values. The

other parameters are also defined as the default values for the machine settings.

e Ralft is enabled by its predefined parameters settings.

FDM criteria

The required information for interface processing engine is collected by calculation tools for the
considered criteria. These calculation tools are used in performing A7 activity as providing
interface processing engine as the activities in SADT diagram (Figure 2.4 and 2.14). These

criteria and how they are calculated are described in the following:

Manufacturing time and material mass: Manufacturing time and material mass calculation
are described as a sub-activity of A71 and A72 in Figure 2.14. These activities are generation of

G-code files and calculation of production time and material mass based on these files.
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Production time and material mass are calculated through Cura 2.5 simulation by MATLAB
for different layer thickness and orientation. Cura is a slicing software which processes 3D model

into 3D printing structure for Ultimaker and other G-code based 3D printers.

Since Cura is an open source software, the soures codes which are JSON files as the data
format in javaScript are modified due to the print settings and desired machine. In this study,
the characteristics of MakerBot replicator 2x are defined for Cura like machine specifications in
machine definition as its related JSON file. Also, the settings which are the default values for
working with MakerBot are defined in the Cura sthece code.

MATLAB is used to automate and execute Cura to find different G-code files for the decision
variables values (layer thickness and orientation). Each orientation is created by rotation matrix
in 3D space as mesh rotation matrix in Cura as presented in Equation (3.1). Cura provides

different G-code files for each value of layers thickness and orientation.

1 0 0 cosfy, 0 sinf, cosf, —sinf, 0

R, =10 cosf, —sinb,| By= 0 1 0 R.= |sinf, cosf, O

0 sinf, cosf, —sinf, 0 cosf, 0 0 1
R=R, xR, xR, (3.1)

Each G-code is a tool-path as coordinate points that the nozzle must cross, as well as the
amount of extruded material (used filament) which are shown as the letter E in G-code file
(Figure B.2 and B.1 in Appendix IT). These F values are calculated through Equation (3.2). This
equation is based on the reality that the volume of extruded material coming from the nozzle is
equal to the volume of extrusion path crossed by the nozzle. So, the E value is dependent on the
distance between coordinates (L), extrusion width (e), layer thickness (L;) and filament diameter
(d). In this case, d as filament diameter is 1.75 mm and extrusion width (e) for Cura is considered
equal to nozzle diameter value (0.4mm). The material mass is calculated due to this E value
and the volume of extruded material and material density (paps = 1.04g/cm?) (Equation (3.3)).

The manufacturing time is calculated according to the distance between the coordinates and
speed as shown by the letter F' in G-code for all parts. This manufacturing time is mentioned

as elapsed time in the G-code files. It must be mentioned that there are other movements like
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Tangent vertical(z)

o Normal (n)
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L,: Layer thickness

Figure 3.11 — Roughness parameters [182]

retraction, travel, and their speeds that affect the E values and manufacturing time.

AL.e.L;
. 3.2
wd? (3:2)

d2
M = pABsﬂ'ZE (33)

Surface roughness of part fabricated by FDM: Different researchers [48, 164, 181] pre-
sented several models for roughness estimation. Vahabli et al. [49] estimated the roughness (R,
in pm) through hybrid methodology based on geometrical model of the filament and analysis of
staircase effect. This model is verified through comparison of the existed models in the literature
and experimental data. In this formulation (Equation (3.4)), « is defined as the angle between
the tangent vector of parts and vertical direction (Figure 3.11). In this formulation, W = 0.2,
R; = 0.045 as the radius of the fillet in the FDM systems, R = 0.01 as radius of the corner,
are the fixed dimensionless parameters in roughness calculation for FDM that are illustrated in
Figure 3.12. Figure 3.13 shows the roughness function that different values of deposition angle

and layer thickness create the different levels of surface quality through roughness value.

To analyze the roughness in the interface processing engine according to these relations as A83
activity (calculate roughness), a code including these relations as roughness which is the function
of layer thickness and orientation is written in MATLAB. The written algorithm is summarized

as follow:
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Roughness(pm)

YTy i

Figure 3.12 — Ry and Ry [164]
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Figure 3.13 — Roughness values for different deposition angles and resolution
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Ly

0<a<T70°

cos(a)

1000L; sin (2572 ) tan(90° — a) 0° < a < 90°

L,
MN——1+W 90° < 135°
Ra(a, Ly) = cos(a — 902") (2 W) Sas (3.4)
L (R1+R3)(1—Z)sin(90° —«)
1(002072_ ' )22 IOO?)Lt +
(Ri—R3)(1-%))" sin®(90° —a ° °

1(10020L,~,)34 cos((90°7a)) 135% < a <160

10004t cos(90° — «) 160° < a < 180°

e The normal (n) of each triangle j (7;) of STL file (ng;) is obtained for different orientations

through normal mesh computation for each facet of a triangular mesh.

e The orientations are created due to the same rotation matrix (R) and normal and tangent
vector are rotated along the rotation angles (6, 6, 6,). This rotation matrix is calculated
through Equation (3.5).

Orientation along the rotation angles rotates the normal vector of each facet of STL model,

as well as deposition angle which changes the value of roughness for each triangle facet (73).

1 0 0 cosfy, 0 sinf, cosf, —sinf, O

R: =10 cosf, —sinb,| By= 0 1 0 R.= |sinf, cosf, O

0 sinf, coséb, —sinf, 0 cosb, 0 0 1
R=R, xRy X R, (3.5)

e a7, as the angle between the tangent vector of part and the vertical direction z is calculated

through the vector algebra for each orientation (Equation (3.6)).

nr .z

ar, = 90° — arccos (3.6)

A

Ing;|.|2|

e For each value of ar; and layer thickness, the roughness value is calculated due to the
presented equations (Equation (3.4)) for each triangle.

e The maximum value of roughness for triangles is selected as the maximum roughness of the

product surface for each orientation and layer thickness.
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Deviation of the products fabricated by FDM: Deviation of the fabricated part is impor-
tant when the parts need to be assembled for required functionality. These mechanical parts must
have high dimensional accuracies in order not to have loose connections between the connecting
parts. Corresponding dimensions may have clearance, transition and interference fit tolerances
which are standardized by ISO System of Limits and Fits depending on the assembly function
[183]. Obtainable desired accuracy for AM and especially FDM technology is a critical drawback
which inhibits AM utilization. A lot of parameters affect the accuracy of the product as material
withdrawal and process parameters like layer thickness and orientation. There are only a few
indications, relating the dimensional deviations that exist, and they are conflicting each other,
not allowing a reliable prediction. However, Boschetto et al. 2014 [127] developed a geometrical
model of the filament [126], dependent upon the deposition angle and layer thickness, in order
to predict the obtainable part dimensions. In this study, physical aspects related to material
characteristics and unexpected effects are ignored. The proposed method employs the findings of a
previous study in which they developed a deterministic model able to predict the part dimensional
deviation from the given shape as a function of layer thickness and deposition angle [113].

Filament profile is described by a sequence of circumference arcs characterized by a radius r and
spaced by f. According to this geometry, a new model is developed to predict the deviation from
the nominal value. A schematic of the filament section, for a generic and 90° deposition angles, is
shown in Figure 3.14. The semicircle € illustrates the filament in vertical wall configuration. In
this figure, f is the spacing and r is the radius that corresponds to the layer thickness L;. The
height of this profile as L;/2 represents the nominal value. The semicircle ¥ is related to an
inclined surface. The modification of the deposition angle o determines r and f increments: the
height h of the profile increases by a Ah value, which corresponds to the dimensional deviation

[127]. The filament height of a surface inclined of « angle is as follows (Equation (3.7)):

a7Lt)

ha, L) = r(a, Ly) — \/T(Oz7 L)? — (f( 5 )2 (3.7)
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Figure 3.14 — (a) Schematic of filament section (b) Deposited filament parameters [127]

The deviation from nominal value, as the deviation of the fabricated product rather than 3D

model, is stated as follows (Equation (3.8)):

f(a,Lt) 2 Lt

Ah(a, Ly) = h(er, Ly) — % =r(a, L) - \/T(aaLt>2 - (=) -5

The experiments are performed for two angles («) of 30° and 90° and two different values of layer
thickness have been employed: 0.254 and 0.331 mm. The results of these experiments which are
measured by a profilometer show that the acceptable results compared to the results generated
from the predicted model. Figure 3.15 demonstrates the value of dimensional deviation for
different values of layer thickness and deposition angle. This deviation value is modified between
—0.1 and 0.5 mm for the values of layer thickness between 0.1 and 0.4 mm and deposition angle

in the range of 0 and 180°.
Ah(a, Ly) = 2.21(L; — 0.168) cos?(a) (3.9)

To calculate the deviation of the produced product than its 3D model, the starting model needs
the STL format as input. The STL file consists of an unordered list of triangular facets which

represent the object skin. This formulation (Equation (3.10)) can be applied for each triangle of
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STL file to calculate the deviation of each facet (T}) and it is presented as Equation (3.10):
Ahgy(ary, L) = 2.21(L; — 0.168) cos®(argy) (3.10)

Each triangle 7T} is composed by a triplet of the vertices (V1, Va, V3) and each vertex is shared by
several triangles. The normal of the triangle (ng;) can be calculated by the following normalized

vector product (Equation (3.11)).

Vi Vaj x Vo, V3;

nr = 3.11
BT Vi Vaj x Va; Vs (3.1
where
O[Tj — arccos ————— .
In.|b|

In this formulation, ar, is the deposition angle as the angle between normal vector of each triangle
ng, and stratification direction b as shown in Figure 3.16.

Orientation along the rotation angles (6, 6, 0.) as shown in Figure 3.17 changes the normal
vector of each facet of the STL model, as well as deposition angle which changes the value of
deviation for each triangle facet. The rotation matrix is defined as Equation (3.5) which is used
also for roughness calculation.

Therefore, the deviation for the STL file of bag hook which is orientated can be calculated for
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Figure 3.16 — Deposition angle for the triangle [184]
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Figure 3.17 — Oriented facet of triangles STL of a FDM product [185]
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Figure 3.18 — Hook facet deviation

different layer thickness. Figure 3.18 illustrates the value of deviation for the hook as orientated

by 6, =90°, 6, =0°, 6, =45° with the layer thickness of (L, =0.2mm).

Mechanical behavior of the product fabricated by FDM: As shown by mathematical
formulation, there is a relation between layer thickness, orientation, and Ultimate Tensile Strength
(UTS). Several experiments performed by some researchers [156, 171, 157, 170, 186] with the
same experimental conditions are analyzed to obtain these parameters values for ABS specimens
fabricated by FDM. So, tensile test specimens were made using ABS-M30 and characterized
according to ASTM D638-03 [187] "Standard Test Method for Tensile Properties of Plastics"
in the different orientations and values of layer thickness. The Instron as a materials testing
hardware is used to obtain the desired data for each specimen.

Orientation types and the data consist of the UTS values for some values of layer thickness
(L; in mm) in special types of orientation including flat, up-right, and on-edge for filling angle of
+45° and 0/90° for a standard specimen are shown in Table 3.4. These UTS values are compared
together in Figure 3.19. This figure shows that the FDM parts do not have the same mechanical
behavior in each orientation types. Also, no rule can not be found to estimate the UTS values.

Therefore, it is necessary to complete the study on this criteria by experimental approaches.

Bi-objective optimization problem: Until now, a bi-objective optimization problem was

presented mathematically and calculation tools were provided to formulate time, material mass,
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Orientation | Flat Flat  Onedge Onedge Upright Up right
+45°  0/90°  +45° 0/90° +45° 0/90°
02 | 0° 0° 0° 0° 90° 90°
0, | 0° 0° 90° 90° 0° 0°
0. | 0° 45° 0° 45° 0° 45°
L; [mm] | UTS values [MPa] for different orientation
0.1 | 328 30 31.9 33.5 30.7 30.9
013 | 278 30 29.6 25.7 29.11 30
0.2 | 27.5 - - - - -
025 | 273 327 25.4 29 - -
033 2894 - - 31.64 - 24.72
0.35 | 2022 27.35 - 22.7 - -

Table 3.4 — Orientation types and its UTS data for different layer thickness

UTS data for each value of layer thickness and orientation type
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Figure 3.19 — UTS data for different values of layer thickness and orientation derived from

literature



CHAPTER 3. Application into Fused Deposition Modeling

Nozzle Temperature 230°C
Platform Temperature 110°C

Nozzle Diameter 0.4 mm

Infill 100 % - linear
Shell number 2

Travel speed 130mms—!
Infill speed 90 mms !
Outline speed 40mms—!
Floor-Roof speed 90 mm st
Support (20 %) 0.2mm
Support Angle 68°
Retraction speed 25mms !

Table 3.5 — Bi-objective optimization problem parameters

and roughness, as well as the data for considering mechanical behavior of the parts were collected.
So, it is necessary to find the best manufacturing parameters including layer thickness and

orientation via optimization in order to fabricate the product.

This required information and calculation tools provide the preconditions for creating a
bi-objective optimization problem and solving it. As mentioned in section 2.2.4, this problem
is used to find the optimal manufacturing parameters by optimization of time and material by

considering UTS and roughness as the constraint functions to fabricate the bag hook by FDM.

The fixed parameters of production must be defined in Cura source code file which are
considered as the parameters of optimization problem. a summary of these parameters are

presented in Table 3.5.

The value of 20 pm is assumed as the maximum desired roughness. The maximum obtained
value of roughness for each triangle is considered as the desired value of roughness for each layer

thickness and orientation.

Figure 3.20 illustrates the bag hook dimensions that permit to estimate the maximum stress
OMax in the hook. Based on beam theory and knowing the applied force F, this stress can be
easily estimate by Equation (3.13), where My = Fa is the bending moment, I the second moment
of the cross section (b X h).

My h

R

12Faﬁ _ 6Fa
bh3 2~ bh2

— OMax =

(3.13)
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Figure 3.20 — Bag hook structure and function

In this application, with the real dimensions of the bag hook, h = 8 mm, b = 4.6 mm, a = 20.9 mm

and Fpro = 58.9N, the maximum stress value is opax = 25 MPa.

In this thesis, two methods are considered to solve this bi-objective optimization problem in-

cluding meta-modeling by Modefrontier, as well as providing continuous and discrete optimization

problem:

¢ Meta-modeling by ModeFrontier: As shown in Table 3.4, the UTS values exist for some

values of layer thickness and orientation types. The material mass and time are calculated
for these values by printing simulation through Makerbot replicator 2x. Roughness is also

calculated through its formulation by coding in MATLAB.

This data is gathered together as input for meta-modeling in Modefrontier. Layer thickness
and orientation types are decision variables. In Design Of Experiment (DOE), 20 experiments
are created in a random sequence. It fills randomly, with a uniform distribution, the design
space. RSM, by considering polynomial functions, is used to provide the meta-model by
formulation of the criteria based on the layer thickness values and orientation types. NSGA-
IT is used to solve this optimization problem to obtain a feasible solution in a reasonable
time. The parameters for this algorithm are summarized in Table 3.6 and finally the optimal

solution is obtained as shown in Figure 3.22:

As the data, which are the inputs for the meta-modeling, is not sufficient to provide a
continuous optimization problem and have a reliable solution, Cura is used to provide a

continuous bi-objective optimization problem which will be described as follow:
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e Continuous and discrete bi-objective optimization problem: As the data for inves-
tigation the UTS constraint function is not sufficient, this optimization is performed for
two types of optimization problems as the continuous and discrete problems. Ignoring the
UTS constraint function permits to define a continuous bi-objective optimization problem

for AM.

— Continuous bi-objective optimization problem: The continuous bi-objective
optimization problem is used to optimize time and material regarding roughness as
a constraint function. Layer thickness and orientation angles (6,0, and 6,) are the

decision variables.

To solve this problem, the essential inputs for NSGA-II algorithm are STL file, execution
file of Cura, and algorithm parameters. In this algorithm, the parents are selected from
the first random population by binary tournament selection based on the rank and
crowding distance. This selection is based on their fitness values that reflect the quality
of an individual. Then, the off-springs are produced by genetic operators including
crossover and mutation. A single point crossover technique and polynomial mutation
with given probabilities are adopted to generate the new solutions. The rank of an
individual is generally determined by its Pareto dominance in the present populations.
NSGA-II algorithm is completed in 50 generations (iteration number=50) to find the

Pareto front as the solutions.

The decision variables including layer thickness, 6,,0,, and 6, are assumed as the
genes of the chromosomes. This kind of character string makes it possible to generate
the feasible chromosomes in the continuous problem space. The chromosomes are
evaluated by genetic operators. Firstly, the initial solutions are created randomly and
considered as parents. Then, non-dominated sorting strategy is used to rank these
parents. Crossover and mutation as genetic operators are used to generate different
populations. Finally, crowding distance strategy is used to find the optimal solutions

as Pareto front.

The data which is collected for UTS constraint function is not sufficient to analyze

this problem as a continuous optimization problem. This data consists of the UTS
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Figure 3.21 — Defined orientation for bag hook in discrete problem

values for some values of layer thickness in specific types of orientation including flat,
upright, and on-edge for filling angle of £45° and 0/90° for a standard specimen. To
investigate UTS constraint function, the discrete optimization problem is extracted
from continuous space for specific kinds of orientation and specific values of layer

thickness which are described in the next section.

— Discrete bi-objective optimization problem: The discrete optimization problem
is a part of the continuous optimization problem. The discrete problem space is
extracted from the continuous space. Layer thickness as the first decision variable is
defined between 0.1 mm and 0.4 mm. The orientations include three main orientations
of flat, on-edge and up-right. Also, rotation around the z-axis provides different filling
angles. The rotation angle is +45° to convert default infill structure from +45° to
0/90°. These orientation types are illustrated for the bag hook in Figure 3.21 with

different raster angle. Moreover, the maximum roughness is determined to be 20 pm.

The discrete solutions are extracted from the continuous space due to the angle
values for the special types of orientation. Also, UTS constraint function and op.x are
specified for the problem to provide the feasible discrete problem space. Non-dominated
sorting strategy and crowding distance strategy are implemented to find the optimal

Pareto.

In the next section, the results related to NSGA-II are presented and discussed.
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Run Number 1
Population numbers 1000
Iteration numbers 100
Crossover Index 20
Mutation Index 20

Crossover Probability 0.9
Mutation Probability 1

Table 3.6 — NSGA-II defined parameters in Modefrontier

Optimal Pareto solution
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Figure 3.22 — Result obtained by Modefrontier

Final results and discussions for bag hook

1. Firstly, Modefrontier is used to solve the optimization problem through meta-modeling. The
defined parameters for NSGA-II algorithm are summarized in Table 3.6. This algorithm

provides the optimal solutions as Pareto front which is shown in Figure 3.22.

2. To obtain the results for a continuous and discrete optimization problem, a computer with
3.2 GHz Intel(R) Xeon(R) processor and 12 GB RAM is used to solve this problem. Total
run time for this algorithm is 9 hours and 13 minutes. The genetic operators and their

criteria are defined in Table 3.7.

The obtained Pareto solutions for continuous and discrete optimization problem are presented
in Figure 3.23. This figure illustrates all the feasible solutions as the continuous solutions by

stars. The feasible solutions for discrete problem as squares are extracted from the feasible
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Run Number 2
Population numbers 100
Tteration numbers 50
Crossover index 20
Mutation index 10

Mutation Probability 0.25

Table 3.7 — NSGA-II defined parameters

populations. NSGA-II provides the Pareto front as the optimal solutions for continuous and
discrete optimization problem which are shown by stars and circles respectively. These 14
optimal solutions for the continuous problem are numbered and the solutions for discrete
optimization problem have been named alphabetically. These optimal solutions are described

in Table 3.8 and 3.9.



CHAPTER 3. Application into Fused Deposition Modeling

136

0FL

ooy Seq 10f wejqoxd uoryeziurydo aA1399[qo-1q I10J [[-YHSN £Aq paurejqo suonnjos fewnd() — €g°¢ 9In3rg

(umu) oun T,

0elL 0oL og 09 0f

ojaled 81810510 o
suopnjog @RS m

Em.__n_o.:_ Lo_ﬁmu_:._._«n_o m«_m:um_a

]

501

LI

Y]

SZ1

[3p]
-

SEL

¥l

Sl

Sl

(umu) ouar T,

09l orl och 0ol 0g 09 oy

(18) ssepy [euLR)efy

0z

suomog episiad w | *
Ojaled snoujuon @
SUORN|OS SNOURUOD 4

(18) ssely [RL2)eIy

Gl

E.._u._n_o._n__ :o_ﬁmN_E_ﬁ_..._o m:_o_.._E._uo



3.2. DFM-skin and skeleton approach based on proposition 1 for case study 1: Bag hook 137

According to the obtained results, it is finding that:

e Fabrication in different orientations and resolutions (different values of layer thickness)

affects the material mass and manufacturing time.

e For the continuous optimization problem, optimal values of time are varied between
33.66 and 113.99 min and optimal mass is changed in the range between 9.91 and
10.12g. These ranges for the discrete problem are not the same as the continuous
problem. The fabrication in flat, on-edge and up-right positions causes more changes in
the time and material consumption. The range of time is comprised between 41.73 and
103.82 min and mass is between 10.31 and 13.14 g. In continuous case, mass varied by
2% and time is varied by a factor of 2.38 (238 %) and for discrete, the mass variation
is 20 % and this factor for time is 1.48 (148 %). Therefore, the variation of mass and
time are more important for the defined orientations of the discrete problem rather

than continuous possible orientations.

e There is an antagonism between mass and time as the main principle of the multi-
objective optimization problems. The maximum mass is related to the solution with

minimum time and conversely, the maximum time is for the minimum mass.

e The difference in time and mass are imposed because of the layer construction, raft,
and support structure. Layer thickness values affect the number of layers to produce
the product due to its volume (product height for the considered orientation). Since
the number of layers is decreased by increasing layer thickness, it needs less time for
manufacturing of a product. So, the trade-off between these parameters illustrates the
required material and time for fabrication. In the same orientation, increasing layer
thickness decreases the manufacturing time. Support and raft mass are dependent on

the product geometry and its orientation in build platform.

e The results for continuous optimization problem demonstrates that its optimal solutions
do not consist of flat, on-edge, and up-right orientations as they require more mass of

material and time rather than other orientation types.

e Among defined orientation types for the discrete problem, the up-right position is

more time consuming than others. This orientation uses more material for support
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Sol. L, 0, 0y 0, Time Material R,

e i N A T - I

1 0.11 132.89 125.75 —87.31 113.99 9.91 19.53
2 0.11 133.12  125.44 —87.31 112.08 9.91 19.80
3 0.11 133.25 125.55 —87.19 112.00 9.92 19.74
4 0.11 133.22 125.88 —87.64 111.31 9.93 19.79
5 0.11 133.05 125.90 —87.65 111.26 9.94 19.87
6 0.12 141.90 125.38 —88.20 103.08 9.95 18.51
7 0.12 141.93 125.41 —88.21 101.37 9.98 18.50
8 0.12 141.96 125.42 —88.24 101.14 9.98 18.59
9 0.12 141.99 125.42 —88.25 101.12 9.99 18.48
10  0.12 141.90 125.37 —88.20 102.25 9.96 18.56
11 0.12 141.92 125.41 —88.21 101.91 9.97 18.54
12 0.18 40.00 147.91 —25.01 70.45 10.00 19.69
13 0.18 39.04 148.03 —24.95 69.81 10.01  19.06

14 0.19 44.33 169.90 —45.05  66.06 10.03  19.60
15 0.2 143.36  150.35 —88.75  65.56 10.03  19.91
16 0.2 143.34 151.53 —88.75  64.48 10.05 19.76
17 0.26 140.40 156.61 —73.35  51.60 10.10 19.60
18  0.28 —179.84 0.26 —4.48  33.66 10.12  19.56

Table 3.8 — Optimal solutions for continuous bi-objective optimization problem

oL, L, Orientation Time Material UTS R,
o] min]  [g]  [MPa] [um
a 0.1 On-edge +45° 103.82 12.01 31.90 19.04
b 0.1 On-edge 0/90° 130.24 10.31 33.50 19.04
c 0.13 Flat 0/90° 70.18 13.05 30.00 9.10
d 0.25 Flat 0/90° 41.73 13.14 32.70 17.50

Table 3.9 — Optimal solutions for discrete bi-objective optimization problem
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construction. So, fabrication in this position is not optimal. Fabrication in the flat

and on-edge direction require less time and material.

e The third and fourth solutions (solution ¢ and d) are related to the flat position that
needs less time but more material, as the construction of raft structure for the hook in

flat orientation consumes more amount of material.

e As mentioned, fabrication in different orientations makes the differences in material
mass by creating support and raft structures, and layer thickness modification changes
the numbers of layers for production that modify the material mass. So, orientation

types impose more difference in material mass than layer thickness value.

e From the comparison of solution a and b, it can be concluded that fabrication in raster

angle £45° is faster than 0/90° but it consumes more material.

e Roughness is changed based on the resolution and orientation types. AM layer by
layer production imposes a staircase error which is the origin of a large value of surface
roughness. Producing with the thicker layer (low resolution) increases the roughness
values and the surface quality is decreased. Besides, orientation has an influence on the
surface quality due to the angle between tangent vector of parts and vertical direction
for each orientation. Roughness value is independent of raster (filling) angle, as the
top and bottom layers of AM parts are filled as the default setting (+45°). The best
surface quality of product among these solutions is provided by fabrication in the flat

for resolution of 0.13 mm.

e Different layer thickness affects the mechanical behavior of the product. Fabrication
in on-edge position with filling angle 0/90° and the resolution of L; = 0.1 mm creates
the highest mechanical strength. Fabrication in filling angle 0/90° produces the more

resistant product rather than +45°.

Both results, meta-modeling in Mode frontier and continuous bi-objective optimization problem,
illustrate that the material mass are not varied in a large interval while the production time is

varied in a wide range for the optimal solutions.
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3.2.6 Final bag hook product model

Since the meta-modeling with insufficient data is not reliable, the results that are obtained
through continuous bi-objective optimization problem are used to define the product model as

A9 activity (Figure 2.4).

The product model is created through the information collecting based on the skin-skeleton
model and interface processing engine results. This product model consists of FBS model, usage
model, 3D model, optimal parameters and criteria, and optimal G-code file which illustrates

manufacturing tool-paths (see Figure 3.24).

The results obtained from interface processing engine permit to find the optimal solutions
for manufacturing. Pareto front as the non-dominated solutions are the different compromises
of manufacturing parameters which are optimal and the producer should select between these
solutions. All the solutions of the Pareto front are optimal but to find the best one between
these optimal solutions, other criteria must be analyzed. In this study, mechanical behavior is a
factor that must be investigated. According to the defined product specification, the bag hook
must tolerate until 7.5 kg that creates the stress of 31.34 MPa. As solution ¢ does not satisfy the
constraint related to the UTS value, fabrication through this solution requires redesign of the

product.

There are other criteria which could be analyzed to find the best compromise for production,
as cost which consists of the expenses imposed to the manufacturer during production and the
material price. Also, batch production and fabrication on the same machine simultaneously are

others important factors that affect the manufacturers in their solution.

In this study, it is decided to fabricate through solution d as one of the solutions of the discrete
optimization problem with considering the mechanical behavior of the hook, and it is faster than
other solutions and provides a better surface quality rather than solution a and b. the bag hook
is fabricated with a layer thickness of L; = 0.25 mm in the flat orientation by raster angle 0/90°.
This fabrication takes 41.73 min by consuming 13.14 g of ABS as material. The manufactured
product roughness is 17.5 pm with the UTS value of 32.7 MPa. It is fabricated by using the

MakerBot Replicator 2x and the manufactured product is shown in Figure 3.24.

In the rest of this chapter, the proposed methodology will developed through second proposi-
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Figure 3.24 — Final product fabricated by AM

tion.
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3.3 DFM-skin and skeleton approach based on proposition

2 for case study 1: Bag hook

As described in the introduction of this chapter, two propositions are provided to create the
DFM-skin and skeleton approach for FDM technology. In this section, proposition 2 is assumed
to help in implication of the proposed approach for defining a bag hook which will be fabricated

by FDM. This approach contains several steps:

e Functional analysis and providing FBS model based on the product specifications and
customer requirements which is the same step of the approach based on proposition 1. This

FBS model helps to identify usage model.

e In this step, the usage model must be determined based on the product features and initial

structure coming from FBS model. This usage model consists of usage skin and skeleton:

— Usage skin identification: The usage skin is the surface of the product which
material as skeleton circulates on it. Topological optimization is used to determine

this usage skin.
— Usage skeleton identification: There are two methods to obtain usage skeleton:

1. Power crust algorithm: It is applied into STL file of bag hook and obtained
result is shown in Figure 3.25. The obtained result of determining usage skeleton
is dependent to the meshing of the STL file. The numbers of points in STL file
must be sufficient to define the skeleton. Also, the hook does not have a complex

structure and the skeleton can be determined easily as follow:

2. Manually: If the geometry of the product is simple, usage skeleton as material

flow can be identified manually (Figure 3.25).

e Manufacturing model as defined in section 2.2.3, consists of skin as contours of layer and
part orientation as skeleton. In second proposition, the manufacturing skeleton must be
determined based on the usage skeleton. In this thesis, there is no possibility to create the

part orientation as manufacturing skeleton based on the usage skeleton and continuing the
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(a) Nzl (b)

Figure 3.25 — (a) Usage Skeleton by power crust algorithm (b) Usage skeleton as material flow
(manually)

DFM-skin and skeleton approach based on this proposition. Also, the 3D model of the

product must be defined by comparison of usage and manufacturing skin and skeleton.

Therefore, the proposed approach will be developed based on the first proposition in order to
define the product model. According to this proposition, the part orientation is determined
through an optimization approach regarding the criteria of manufacturing system and

product features.

In the following, the proposed approach will be applied to another case study in order to utilize

AM capability to reuse a product that has a broken part.

3.4 DFM-skin and skeleton approach under proposition 1
for case study 2: Wheel spindle

Another characteristic that encourages manufacturers to use AM as a new technique for production
is bringing life into the products that are broken in some parts. This technique bring the
opportunity to reuse the products by " Re-manufacturing" the broken part.

In this study, a child car is considered that it is broken in the spindle of front wheel through a
shock as shown in Figure 3.26. Therefore, it is supposed that this shock creates a force against
wall and it causes the spindle to break.

To produce this spindle for re-utilizing the car, as well as enhancing the product quality and
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Figure 3.26 — Broken spindle as problem statement in the second case study

its performance, DFM skin and skeleton approach as the proposed methodology in this thesis
will be used.

Firstly, as essential input for this approach and all the product development cycle for design
and manufacturing, the product specifications must be prepared according to the customer
requirements. For this purpose, firstly the dimensions and functionality of the product are
investigated. Figure 3.27 illustrates the car dimensions and functionality. As shown in this figure,
two forces of Fr and Fpg are the forces that are applied to the front and back wheels. Also, G is
a force that is created due to the child weight. It is supposed that child creates the force equal to
G =m x g as m = 20kg. To calculate the applied force, the statistic analysis is performed in the

following:

Statistic analysis: This spindle is broken while the child had an shock with the wall. This
shock imposes a force to the wheel and spindle which breaks the spindle. Therefore, the force
is applied to wheel for shocked situation against wall. This force is shown in Figure 3.28. It is

supposed that G is applied along the longitudinal axis. Therefore, these forces can be calculated
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Figure 3.27 — Vehicle dimensions and functionality
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Figure 3.28 — The force applied to wheels
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Figure 3.29 — The force applied to spindle
as follow:
2Fp +2Fp —G =0 (3.14)
Q(J,FF72bFBfG:O (315)

According these equations, Fr and Fpg are obtained through Equation(3.16) and(3.17):

a,G

bG

Figure 3.27 depicts the car dimensions, by = 200mm and a; = 275mm, as bs < ag, it can be
determined that the force which is applied to the back wheel is bigger than front one (| Fr |<| Fg |).

According to these equations, the back and front force are Fr = 56.79N and Fg = 41.30N.

To avoid breaking again the spindle when child has an accident, the statistic analysis is also
performed to produce a stronger spindle. This force is transfered to the wheel axis and spindle as
a distributed force (Fr). The spindle dimensions are measured as e = 43.42mm, f = 39.8 mm,

L = 33.6 mm, these values are shown in Figure 3.29.
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This triangular distributed force (Ff) applied on the spindle along L is calculated as equation:

6€FF - 2LFF N
Fr = - E— (E) (3.18)

This triangular distributed force applied along L is equal to F, = —7072.1 Nm~! and total force

which is applied to the spindle is computed through Equation (3.19) and Frs = —118.81N.

FiL
Fro = % (3.19)

The forces of Xy and Y7 which is applied to the pivot section can also be calculated through

Equation (3.20) and (3.21). Therefore, This forces are equal to X; = 45.05 N and Y; = 41.30N.

X; = ;FF (3.20)

X = Fg (3.21)

The proposed methodology, DFM-Skin and Skeleton approach for AM, is used to define a
product model for this spindle which contains the functional analysis as the FBS model, usage

model, manufacturing model, and interface processing engine.

3.4.1 Functional analysis for wheel spindle

As mentioned before, two types of force are imposed to the axis and spindle which are derived
from the child weight and the force which is imposed at the time of shock which are shown in
Figure 3.30. As illustrated in this figure, the spindle is in connection with axis and steering tie
rod directly. There is a complete linkage as housing between axis and spindle. The force created
through shock situation is applied directly to the axis and it is transformed to spindle. The axis
is the support for this spindle. The steering tie rod is in connection with spindle via a pivot as
linkage. The car body tolerates the force imposed by child weight. As mentioned before, this
model depicts the shock situation, so, the force which is applied from the wall is also shown. the
wheels create the force that is transformed to the axis. These wheels are in connection with

ground. So, this FBS model permits to determine the product functionality and recognize usage
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Figure 3.30 — FBS model for wheel spindle

model in the following. The initial part volume is created in CATIA based on this FBS model

and the initial broken part. This initial volume is shown in Figure 3.31.

3.4.2 From usage model to 3D model for wheel spindle

In this section, the usage model and consequently 3D model will be provided in the following:

1. As mentioned, the initial model is created in CATTA which is derived from the initial form

of the current product is the input for topological optimization.

2. The 3D model is converted to STL file.
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Figure 3.31 — Initial spindle volume

3. This STL file is loaded in Inspire to provide an optimal structure through topological

optimization.
4. ABS is selected as material for this spindle.
5. The axes as non-design spaces are prepared in Inspire.

6. The product functionality is determined as applied force to these axes. The support as

bearing surface is fixed in this structure. These forces are calculated before in section 3.4.
7. An analysis is performed to determine the mechanical behavior of the product.

8. The optimization with objective of maximizing the stiffness is performed and optimized
usage model is provided. In this optimization, a minimum safety factor is 1.2 and minimum
thickness is considered equal to 5.4 mm. For optimization, the fast option is used to increase
the optimization speed. Also, a mass target of 30% is selected which shows the percentage

of total mass for the entire model.
9. Smoothing is applied to the optimized usage model.

This smoothed usage model is converted to the STEP file and it is loaded in CATIA. The initial
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Initial model
- Design space

. Non-Design space

Optimized Usage model

Topological
Optimization

Product functionality

Figure 3.32 — Usage model for spindle coming from topological optimization

3D model is modified based on this optimized usage model as shown in Figure 3.33. This 3D
model is obtained based on the product functionality. As it is necessary to add functional parts
of the product to the 3D model like axis surface contact (a) and groove for this spindle (b), the

3D model is modified based on these functionalities (Figure 3.34).

3.4.3 FDM manufacturing model

Since AM is used to fabricate the spindle, 3D model of the product must be converted to the
STL file as the standard format for AM technologies. As mentioned in chapter 2 and due to
AM layer construction manner, nozzle starts the layer production from the contours of layers
which are considered as manufacturing skin, then, interior structure is created that can be
determined by manufacturing skeleton as part orientation which are shown in Figure 3.36. The
same manufacturing parameters also exist for production with FDM technology which allow

defining the interface processing engine.
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Usage model 3D model

Figure 3.33 — 3D model of spindle

Figure 3.34 — Spindle functional parts
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Figure 3.35 — Spindle STL file

3.4.4 Interface Processing Engine of wheel spindle

As described in section 2.2.4 of chapter 2, this interface processing engine is an interface be-
tween usage and manufacturing model which helps to provide the product model based on the
optimization of the manufacturing parameters regarding the desired criteria and constraints.

For this purpose, the bi-objective optimization problem is solved through utilization of
NSGA-II algorithm. The input file of this algorithm is the STL file of the 3D model.

Moreover, it is necessary to determine the minimum value of oyax for the wheel spindle. For
this purpose, a Finite Element Analysis (FEA) is performed on this case study. To perform this
analysis, firstly, Octree Tetrahedron Mesher is used to create a 3D mesh. ABS as a new material
is added to the material library of CATIA and its characteristics during printing is considered as
desired characteristics. These characteristics are presented in Appendix II. The calculated force
(Fr2) must be imposed to the axis. The steel axis is created to define the product functionality.
Two rigid virtual parts are also provided in order to apply pivots (Figure 3.37).

The FEA result is demonstrated in Figure 3.38. This analysis shows that the axis tolerates
the imposed force and it can tolerate until 17.5 MPa, and the spindle as case study tolerates the
5.24 MPa. These values are less than the tensile stress at yield of the material (0yicla(aBs) =
39 MPa,0yicld(Steel)=250 MPa ), DUt it is necessary to consider the effects of the decision variables

(layer thickness and orientation) on the AM product model.
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Figure 3.37 — The initial model for Finite Element Analysis
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Figure 3.38 — Finite Element Analysis of new wheel spindle
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Like the first case study, the optimization problem is performed in two types of continuous
and discrete problems. Firstly, the continuous one is solved and the discrete space is extracted
from this continuous space. The obtained results of this optimization problem including optimal

manufacturing parameters as Pareto front are described in section 2.

Results

To obtain Pareto front for continuous and discrete optimization problem, NSGA-II algorithm is
used. The same parameters are considered and total run time is 8 hours 33 min. The obtained
Pareto are shown in Figure 3.39. This figure illustrates all the feasible solutions for continuous
and discrete problem as stars and squares. The optimal Pareto for continuous and discrete one are
also shown by squares. The 26 solutions of continuous problem as its Pareto front are illustrated
in circles. The Pareto front for discrete is shown alphabetically. All these solutions are presented

in Table 3.10 and 3.11:
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According to these obtained results:

e Manufacturing criteria and constraints are variable due to layer thickness and orientation

angles.

e For continuous case, the optimal values for time are between 72.8 min and 147.38 min, and
mass values are in the range of 22.44 g and 25.39 g, while this range is different for discrete
problem. Time values are varied between 91.31 min and 226.17 min and mass values are
in the range of 23.59 g and 25.35g. For continuous case, mass varied 13% and this factor
for time is 1.02 (102%). In the discrete problem, mass and time factor are 7.4% and 1.47
(147%). Therefore, variation of time and mass for discrete problem are more important

rather than the continuous one.

e Like the Pareto front obtained for the bag hook, there is an antagonism between mass
and material as the main principle of multi-objective optimization problem. Solution with

minimum time consume maximum material.

e The continuous solutions (solution 16 and 17) are produced in a flat orientation. Solution

18 is related to up-right orientation with infill angle of 90°.

e Solution a and b are fabrication in flat orientation which is more faster than other solutions

but it consumes more material to create the raft and initial structure of product.

e On-edge orientation consumes less material but fabrication in this orientation is longer than

others.

e Solution e and f show that increasing layer thickness in the same orientation reduces the

fabrication time but mass depends on nozzle feature.

e This results shows that product roughness is dependent to the layer thickness and deposition
angle which is determined by the orientation angles. The best surface roughness can be

produced by solution f which is fabrication in high resolution (L; = 0.1 mm).

e According to the FEA analysis and UTS values for discrete solutions, all the solutions can

satisfy the mechanical behavior of the product.
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ol L 0, 0y 0, Time Material R,

mm] ][] [ fmin] [ [um]

1 014  —47.89 143.60 —176.54 147.38 22.44 19.02
2 0.15  —4833 142.78 —176.54 144.93 22.47 19.77
3 0.16 —140.29 38.06 —113.90 143.32 22.51 18.65
4 0.17 —140.29 38.06 —113.90 134.78 22.52 19.82
5 0.18 162.42  45.05 —19.12 125.84 22.67 19.73
6 0.19 175.93  45.22 —31.41 116.04 22.71 19.94
7 0.19 176.45 4524  —31.44 116.00 22.72  19.94
8 0.19 176.43 45.24 —31.43 115.98 22.72  19.94
9 0.19 179.35  45.04  —31.26 116.06 22.71 19.85
10 0.19 175.69  45.04  —31.24 116.32 22.69 19.91
11 0.19 175.61  45.06 —31.24 117.29 22.68 19.92
12 0.19 175.68 45.04 —31.25 116.51 22.70 1991
13  0.19 175.66  45.05 —31.24 116.76 22.70 19.92
14 0.2 178.43  44.92 —30.93 115.48 22.74 19.87
15  0.23 156.25  40.51 83.70 100.18 23.00 25.92
16 0.24 0.00 0.00 —180.00  76.92 25.03 48.64
17 0.24 0.00 0.00 45.00  75.29 25.04 48.64
18  0.24 90.00 0.00 90.00  90.35 23.94  49.07
19 0.24 90.00  90.00 90.00  90.06 23.95 48.64
20  0.25 148.80  41.49 53.64  95.73 23.54  26.86
21 0.25 149.05 41.31 54.43 95.55 23.57 26.82
22 0.26 —170.60 144.50 24.87  90.38 23.67 31.33
23 0.26 179.97 60.54 —13.48 91.84 23.63 37.66
24 0.31 —34.59 143.31 60.90  78.84 24.51 36.39
25 0.32  —34.35 144.33 64.60  77.57 24.55 37.98
26  0.34 —151.86  40.98 —149.95  72.80 25.39 36.13

Table 3.10 — Pareto front for wheel spindle for continous optimization problem
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oL, L; Orientation Time Material UTS R,

[mm] min] [ [MPa] [um
a 0.2 Flat £45° 91.31 25.35  32.80 40.53
b 0.13 Flat 0/90° 129.04 25.12  30.00 26.35
c 0.13 Up-right £45° 161.74 24.32  29.11 26.58
d 0.13 Up-right 0/90° 171.83 23.68  30.00 26.58
e 0.13  On-edge 0/90° 175.52 23.61  26.35 25.70
f 0.1 On-edge 0/90° 226.17 23.59  33.35 20.27

Table 3.11 — Pareto front for wheel spindle for discrete optimization problem

The obtained results for these two case studies show that the product features and its manu-
facturing criteria and constraints depend on product geometry. There is no optimal solution
which is common for all products and product geometry plays an important role to find the best
solution for fabrication. It is not possible to define a rule for these criteria that can be applied
for all products. Therefore, this interface processing engine helps to find the best manufacturing

parameters for all 3D model and consequently, preparing the final product model.

3.4.5 Final spindle product model

The results obtained from optimization permit to define the best manufacturing parameters. As
mentioned before, Pareto front as non-dominated solutions are the different compromises for
production and the producer must select between these solutions. Considering other criteria like
cost which includes the costs of production and material price, as well as considering the other
criteria like, batch production, can help to select between these parameters.

In this thesis, it is decided to select between the fast solution of a and b of discrete solutions
to consider the product mechanical behavior. Solution a is faster than b but its surface is rougher.
Fabrication through solution b is fast and it has a good surface quality. Therefore, this wheel
spindle is fabricated with a layer thickness of L; = 0.13 mm in flat orientation with infill angle of
0/90°. This fabrication takes 129.04 min and 25.12¢g of ABS is consumed. Makerbot Replicator

is used to fabricate this spindle and the manufactured product is shown as Figure 3.40.
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Figure 3.40 — Produced wheel spindle by FDM

3.5 DFM-skin and skeleton approach based on proposition

2 for case study 2: Wheel spindle

As described, two proposition are provided to develop the DFM-skin and skeleton approach for
FDM technology. In this section, proposition 2 is assumed to help in implication of the proposed
approach for defining the spindle which will be fabricated by FDM. This approach contains several

steps:

e Functional analysis and providing the FBS model based on the product specifications and
customer requirements which is the same step of the approach in proposition 1. This FBS

model helps to identify the usage model.

e In this step, the usage model must be determined based on the product features and initial

structure coming from the FBS model. This usage model consists of usage skin and skeleton:

— Usage skin identification: Topological optimization is performed to determine

usage skin.
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Medial Axis Transform

Power crust .-
algorithm .

Figure 3.41 — Usage Skeleton of wheel spindle by power crust algorithm

— Usage skeleton identification: Power crust algorithm is applied into STL file of
wheel spindle. This STL file is reinforced in meshing. This reinforcement add the
triangles and consequently their points which can define the medial axis as the output
of power crust algorithm. This obtained result as manufacturing skeleton is shown in

Figure 3.41.

e Manufacturing model as defined in section 2.2.3, consists of skin as contours of layer and part
orientation as skeleton. In proposition 2, manufacturing skeleton must be determined based
on the usage skeleton. In this thesis, there is no possibility to create the part orientation and
continue the DFM-skin and skeleton approach. Moreover, the 3D model must be prepared

by comparison of usage and manufacturing skin and skeleton.

Therefore, the proposed approach developed based on proposition 1 is used to define a
product model. In this proposition, the part orientation is determined through optimization
approach regarding the criteria and constraints of the manufacturing system and product

features.

In the next section, a summary of this chapter will be presented.
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3.6 Summary

In this chapter, the proposed methodology is implemented into Fused deposition Modeling and
two case studies are considered to verify this methodology. The proposed methodology helps
designer to provide the 3D model by using FBS and usage model. The manufacturing model
is proposed for Fused Deposition Modeling (FDM) as a common and useful technology of AM.
After identification of the 3D model and manufacturing model, the 3D model is converted into
a STL file. Interface processing engine is developed to determine the optimal manufacturing
parameters for all 3D models regarding the desired criteria and constraints like time, material
mass, roughness, and mechanical properties of the produced product by FDM.

Therefore, this skin-skeleton approach helps to determine an optimized 3D model due to
the functional requirements, as well as to find the manufacturing parameters by optimization of
manufacturing criteria like time and material mass regarding mechanical behavior of product and
its surface quality. There are two limits in this approach. Firstly, it is not capable of analysis
different diversity of the products, so, the approach must be further developed to provide and
compare these possible solutions. Mechanical behavior of the AM products is not still clear which
is the second limit of this approach. Interface processing engine as the main contribution of this
thesis permits to optimize the manufacturing process and find the best manufacturing parameters
for production of all 3D models through its optimization problems and calculation tools.

Validation of the DFM-skin and skeleton into the case studies illustrates the efficiency of this

approach for all the 3D model and AM technologies.



Conclusions

Outline of the current chapter

4.1 Conclusions 165
4.2 Perspectives and future works 165
4.2.1 Short-term perspectives . . . . . . . .. ... L 166
4.2.2 long-term perspectives . . . . . . .. ... 167

Finally in this chapter, a summary of this thesis will be described and the contribution is
highlighted. A brief conclusion is presented in this chapter, then perspectives is discussed to help
other researchers to continue this work.

This thesis presented a methodology to master and define the AM products in the product life
cycle. This thesis aims to provide a DFM approach for AM to investigate concurrently different
attributes, constraints, and criteria of design and manufacturing in the product definition level.
The Integrated Design approach used to create a final optimal product model based on the
product specifications.

For this purpose, firstly a complete study of Additive Manufacturing (AM) and its technologies
have been performed. The benefits and disadvantages of this new technology were described
in chapter 1. To improve the fabrication through this technology, Concurrent Engineering and
Integrated Design and their application in product life cycle management is helpful. Concurrent

engineering and integrated design, as well as DFM approach were described respectively in

163
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section 1.3 and 1.4. Skin-skeleton approach as a methodology to implement DFM for different
manufacturing processes were presented in section 1.4.3. Different studies have been investigated
to analyze the approaches as Design For AM (DFAM) in section 1.6. According to DFM
definition, these proposed approaches were categorized into four categories of functional DFAM,
manufacturability DFAM, material and process selection, as well as a combinational approach.
Analysis of these approaches illustrated that there is no integrated and complete approach
that considers manufacturing constraints of AM in the design stage. Also, it is necessary to
develop a combinational approach by considering functional analysis and manufacturability
analysis by focusing on verification, quantification, and optimization of the manufacturing
process and manufactured products. For this purpose, an integrated methodology of Design For
Manufacturing for AM due to Concurrent Engineering was presented in chapter 2. This method
allows for considering of all attributes, constraints, and criteria of AM as soon as possible in the
product definition. This methodology is used to create the final product model based on the
functional requirements through Function-Behavior-Structure (FBS) model, skin-skeleton model
and onterface processing engine. The first step of product life cycle management is requirement
engineering and FBS model helps to analyze the product behavior and function, as well as to
provide the initial volume of the product. The skin-skeleton model was defined in two types of
usage and manufacturing models which depict initial information for design and manufacturing
simultaneously. The usage is related to product specifications and analysis of this model allow
providing a draft of the product. Also, manufacturing one contains the essential information
for manufacturing. A novel interface processing engine has been developed in section 2.2.4 to
consider the usage, design, and manufacturing attributes simultaneously in the product definition
as an integrated approach of Design For Manufacturing. It is like a decision-maker tool for a user
which find the manufacturing parameters (layer thickness, orientation, infill pattern). It consists
of calculation and optimization tools to analyze the AM procedure, it handles a large number of
criteria and constraints related to AM like time, material, roughness, and mechanical behavior in
order to propose an integrated product model with optimization solutions before designing the
product as a CAD model and it creates a possibility to redesign a product through comparison of
the desired criteria and product specifications. Therefore, this methodology was used to find the

optimal product model as presented in section 2.2.5 including 3D model, optimal manufacturing
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parameters, G-code file, and all important issues of the product manufacturing.
Chapter 3 was devoted to the validation of the proposed methodology into two case studies. This
chapter illustrated that this methodology can be applied to all products which will be fabricated

by AM technologies.

4.1 Conclusions

Overall, this thesis provided a methodology to define a product by optimization of the 3D model,
and manufacturing parameters for fabrication. The main conclusion that can be mentioned for

this thesis is as follows:
e This thesis presented a DFAM approach in the product definition level.

e This thesis focused on quantification and optimization of manufacturability by considering

significant AM criteria and constraints together.
e AM and product features were modeled simultaneously by skin-skeleton model.

e A manufacturing model for Additive Manufacturing was presented by analysis of the

technologies and related software.

e A novel interface processing engine as a decision-making tool for designer and manufacturer
was presented. This engine contains a bi-objective optimization problem which optimizes
layer thickness and orientation angles by minimizing production time and material mass

regarding the surface quality of FDM product and mechanical behavior of the material.

In the following, the next step of the research will be presented as perspectives and future works

to help other researchers to continue their researches in this domain.

4.2 Perspectives and future works

This thesis provided a product model through an integrated design and a multi-objective op-
timization approach. The improvements in this methodology can be performed regarding the

following aspects as short-term and long-term perspectives:
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4.2.1 Short-term perspectives

e User-friendly software: Interface processing engine can be presented as a software which

can be used to find optimal manufacturing parameters for all STL files.

e Developing DFM-skin and skeleton approach due to Proposition 2: According
to the second proposition assumed in this thesis, the manufacturing skeleton must be
determined based on the usage skeleton. In this study, usage skeleton was found through
the power crust algorithm, but it is necessary to complete the approach by determining the
manufacturing skeleton (part orientation). It must be mentioned that power crust-algorithm
is dependent on the meshing of the STL file. The numbers of point in STL file must be
sufficient to define the skeleton. This approach must be continued, but until now, no possible
solution for continuing this approach is found. Moreover, the 3D model must be created

through comparison of usage and manufacturing skin and skeleton.

e Evaluation of different possible geometries: Usage model prepared the preconditions
to define a 3D model. This possible forms can be obtained by analysis of usage skin and

skeleton.

e Mechanical properties of AM parts: As AM produces the products layer by layer as
a non-homogeneous structure, the study on mechanical behavior of the AM products is
different with other products fabricated by classic manufacturing processes. Experimental
approach can be a method to construct a meta-model to formulate the mechanical behavior

regarding manufacturing parameters

e Dimensional accuracy: Translation from STL file to CAD model and layer by layer
production create the deviation between 3D model and manufactured one. This criteria
must be considered as a constraint in this multi-objective optimization problem. In this
thesis, this constraint was analyzed but no reliable formulation is found that investigates

both physical and geometrical aspects which create the dimensional deviation.

e Another AM technology: This DFM-skin and skeleton approach can be applied to
another AM technology like SLM, SLS, etc.
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4.2.2 long-term perspectives

e Developing DFM-skin and skeleton approach due to proposition 2: It is necessary
to consider the geometrical constraints related to AM technologies to define 3D model of the
product. Also, AM unique characteristics such as anisotropic material, non-homogeneous
structure of produced part by AM (different infill pattern and density), etc. must be

considered in developing this proposed approach.

e Enhancing the topological optimization results: In this study, inspire as topological
optimization software is used but, there is some limits in this application in defining the
product functionality, as it is not possible to determine the functional parts that must be
fixed during optimization. Also, it is not possible to create the different types of force in

order to provide an analysis and optimization near product real function.

e Hybrid manufacturing: Development in this methodology can be performed by consid-
ering hybrid manufacturing of AM with other traditional processes in order to utilize all

advantages of the manufacturing technologies simultaneously.

e Mechanical properties of AM parts: It is useful for analysis of the mechanical behavior
of AM parts by finding a method to create the structure of AM parts in a 3D format can

help to analyze their mechanical properties through Finite Element Analysis.

e Applicable to all AM technologies: The presented usage, manufacturing, and interface

processing engine must be applied to all AM technologies.

e Material and process selection: This approach must be completed to help the producer

from the first step of material and technology selections regarding product specifications.
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Introduction

De nos jours, la fabrication additive (FA ou Additive Manufacturing en anglais) fait évoluer le
monde de la fabrication par ses avantages et sa capacité a produire des formes complexes. Une
technologie de FA met en forme une piece couche par couche en utilisant des matériaux spécifiques
[37]. Ces caractéristiques uniques induisent de nouveaux critéres de conception et de fabrication

mais introduisent des limites d’utilisation dans 'industrie. Donc, il est essentiel d’intégrer dés que

171



172 French Summary

possible les contraintes et les attributs de fabrication au sein de la phase de conception.

Ainsi, 'ingénierie simultanée est une méthodologie indispensable pour considérer les attributs
de conception et de fabrication dans le cycle de gestion du produit afin d’aider les concepteurs et
les fabricants a trouver un modéle de produit intégré. Cette méthode englobe toutes les activités
d’analyse fonctionnelle et d’ingénierie des exigences, de conception et de fabrication pendant la
phase de définition du produit en utilisant I’approche de conception pour la fabrication (ou DFM
pour Design For Manufacturing en anglais) pour évaluer la fabricabilité du produit. Le DFM
repose sur des activités de sélection des matériaux et des processus, ainsi que ’évaluation de la
fabricabilité & trois niveaux de vérification, de quantification et d’optimisation [3].

La conception et la fabrication du produit par FA sont trés différentes de celles des procédés
de fabrication traditionnels et créent de nouveaux problémes et de nouvelles problématiques dans
leur mise en ceuvre industrielle. Le lien entre la conception et la fabrication est peu formalisé
et est encore difficile & systématiser en FA due a la nouveauté des pratiques et des applications.
Ainsi, ce travail de theése propose de définir une méthodologie pour considérer tous ces aspects

simultanément.

Problématique et objectifs de I’étude :

Pour aborder ce champ d’étude, nous commengons par quelques questions :

Comment intégrer I’étape de fabrication et ses contraintes dans I’étape de conception pour

améliorer le modele de produit en termes de cofit, de temps et de qualité?

Comment modéliser et optimiser le produit pour répondre aux exigences du client ?

Quels attributs et critéres de FA influencent le processus de développement du produit ?

Quels parametres technologiques ont des effets significatifs sur les attributs et les criteres

de FA et comment trouver les meilleurs parametres de fabrication ?

Comment intégrer toutes les étapes du processus de conception et de fabrication dans une

approche générale ?

Il est nécessaire de présenter une approche intégrée et complete traitant la plupart des attributs,

capacités, critéres, et contraintes simultanément pour fournir un processus interopérable dans la
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gestion du cycle de vie du produit. L’intégration de la conception et de la fabrication liées a la
FA peut faciliter sa mise en ceuvre. Il est prévu de considérer le processus de fabrication au début
de la définition du produit comme une approche de conception intégrée. Le modele de produit
est complété par un modele 3D, des informations de fabrication et des attributs définis grace a
I’approche DFM. Dans ce but, il est nécessaire de fournir une approche générale pour formaliser
la prise en compte des contraintes d’usage et de fabrication lors de la définition du produit.
Pour atteindre ce but, il est primordial de trouver une méthodologie pour une approche de
conception intégrée dédiée & la FA. L’approche DFM a été appliquée aux processus de fabrication
traditionnels par ’approche peau et squelette dans plusieurs études [3, 4]. Dans cette étude,
cette approche peau-squelette semble utile pour modéliser la premiere définition du produit et
du processus de fabrication. Ce modele sera complété par un moteur de résolution qui est une
interface qui traite des informations provenant simultanément du domaine de la conception et du
domaine de la fabrication qui sont interdépendants. L’étude analyse les technologies de FA et

identifie les parametres et critéres pour trouver le ou les modeéles de produit optimisé.

Dans le contexte de l'ingénierie simultanée et de la fabrication additive, cette these est motivée
par la proposition d’une nouvelle approche de conception intégrée dédiée aux solutions reposant
sur I'utilisation de la fabrication additive. Ainsi, il est nécessaire de fournir une approche générale
pour formuler et prendre en compte simultanément les contraintes d’usage et de fabrication lors

de la définition du produit.

Cette these est organisée comme suit :

Organisation du mémoire

Le manuscrit est structuré en quatre chapitres. Le premier chapitre présente les principales
technologies, méthodes et approches telles que la fabrication additive, 'ingénierie simultanée et
la conception intégrée. Une analyse de la littérature présente les recherches existantes dans ce
domaine. Le deuxieme chapitre décrit la méthodologie proposée en tant qu’approche DFM-peau
et squelette pour la fabrication additive grace a une approche d’optimisation multi-objectif.
Dans le chapitre 3, 'approche proposée est appliquée a travers deux études de cas qui utilisent

Iimpression 3D par dép6t de fil chaud (ou FDM pour Fused Deposition Modeling en anglais).
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Enfin, ce manuscrit se termine sur une conclusion et des perspectives.

Conception intégrée et fabrication additive : état de P’art

La Fabrication Additive (FA) évolue dans un monde ou l'industrie a des attentes tres fortes sur ce
nouveau principe de fabrication. On parle souvent de quatriéme révolution industrielle a propos
des technologies de FA. Le principe de la FA repose sur une fabrication couche par couche avec
des matériaux tres différents qui aboutit une structure anisotrope tres différente d’une technologie
a une autre ([37]). Le comportement physique d’une piéce se rapproche d’une piece composite. Il
est donc essentiel d’étudier dés que possible les contraintes et les attributs de fabrication pendant
la phase de définition du produit afin de concevoir des composants fiabilités [54, 33]. A cette fin,
I’ingénierie concurrente est une méthodologie utile pour considérer simultanément des attributs
d’usage, de conception et de fabrication afin d’aider les concepteurs et les fabricants de définir un
modele de produit maitrisé.

La Figure II.1 montre différentes configurations du processus de conception. Selon cette figure,
la simultanéité est démontrée par le chevauchement des étapes du processus de conception et
d’intégration a travers I'implication des acteurs professionnels et des parties prenantes. Les parties
a et b de cette figure sont respectivement liées a la conception systématique et a la conception
intégrée. Dans la partie ¢, 'approche de conception intégrée est présentée en fonction du travail de
notre équipe de recherche (ICD-LASMIS). Ce dernier met I’accent sur I'intervention de différents
métiers d’expertise dans la définition du produit. Cette approche est connue sous le nom de
Design For X (DFX) ou X représente les différentes activités de fabrication, d’assemblage, de la
qualité, ou de cofit.

La conception pour la fabrication (ou DFM pour Design For Manufacturing en anglais) est
I'un des concepts qui aide le concepteur et le fabricant & étudier les contraintes et les attributs du
processus de fabrication dans la phase de conception [33]. Enfin, il fournit un modeéle de produit
par l'analyse fonctionnelle, la conception et la fabrication de produit en méme temps [33]. La
DFM repose sur certaines activités de sélection des matériaux et des processus, et I’évaluation de
la fabricabilité a trois niveaux de vérification, de quantification et d’optimisation (Figure I1.2) [3].

Selon cette définition, ’'approche de conception intégrée existante pour la FA (ou DFAM pour
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FIGURE I1.2 — Définition schématique de la conception pour la fabrication (DFM) [12]
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Design For Additive Manufacturing) sont analysées et catégorisées comme suit :

1. Approche de sélection des matériaux et des processus : L’importance du type de
matériau sur la spécification du produit et les technologies de FA encouragent les chercheurs

a fournir une approche DFAM dans le contexte de sélection des matériaux et des processus.

2. DFAM fonctionnel : Les capacités de la FA ont inspiré de nombreux chercheurs a
optimiser les performances de conception et de fabrication tout en minimisant les poids
des pieces fabriquées. Cette catégorie est basée sur 'analyse fonctionnelle du produit et
les exigences du client. L’optimisation topologique (TO) [80] est utilisée pour satisfaire les
exigences de conception, y compris le comportement mécanique, la fonctionnalité, la masse,
la structure, le temps et le cofit. La structure en treillis [110, 77]), I'analyse de modéles
CAO [36, 104], la consolidation de piéces [36] et la conception basée sur les fonctions sont

également utilisées dans les solutions DFAM.

3. DFAM fabricabilité : La fabricabilité doit étre évaluée dans ’'approche DFM. Certaines
études [80, 52, 97, 102, 71, 105, 94, 88, 91, 96, 188, 189] ont discuté de I’analyse utilisée
au niveau de la vérification comme les régles de conception AM. Des études existent sur le
niveau de quantification des critéres et contraintes de fabrication, cotit [111, 51], de précision
dimensionnelle [146, 147, 127], de rugosité [48, 49, 113], et de comportement mécanique
des produits [156, 171, 157, 170, 186, 172] mais ces aspects doivent étre étudiés dans des
approches DFM comme le décrit [113].

Pour compléter ce processus DFM collaboratif, il est nécessaire de passer du niveau de
quantification et d’atteindre le niveau d’optimisation. L’optimisation dans les approches
combinatoires [79, 115] seront expliquées dans la section suivante mais elle présente des
solutions intéressantes pour traiter de nombreux attributs afin de proposer une ou des
solutions optimales.

Ces méthodologies d’optimisation sont utilisées pour évaluer la fabricabilité de la fabrication
additive (FA) au niveau d’optimisation dans différentes études. Une approche DFAM
pour le métal est développée par [115] qui consiste en une estimation des colits et une
optimisation de I'orientation des pieces. L’orientation des pieces, 'optimisation fonctionnelle

et l'optimisation de la trajectoire dans I'approche DFAM sont analysées par Ponche et al.
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DFAM fabricabilité

‘ Sélection des matériaux et des processus ‘

Approche combinée

Rosen 2007a, [70]
Rosen 2007b [74]
Chu et al. 2008 [77]
Vayre et al. 2012 [80]
Arisoy et al. 2015 [84]
Yang et al. 2015 [36]
Jiang et al. 2017 [90]
Vogiatzis et al. 2017 [93]
Pradel et al. 2017 [96]
Leary et al. 2014 [99]
Rodrigue and Rivette, 2010[101]
Ariadi et al. 2012 [104]
Walton et al. 2017[107]
Tao 2016 [110]

Burton 2005 [71]
Bernard 2008 [75]
Thomas, 2009 [52]
Kerbrat el. 2011 [81]
Doubrovski et al. 2011 [85]
Seepersad et al. 2012 [88]
Seepersad et al. 2014 [91]
Wegner and Witt, 2012 [94]
Adam and Zimmer 2014 [97]
Boyard et al. 2013 [100]
Kranz et al. 2015 [102]
Bin et al. 2012 [105]
Ko et al. 2015 [108]
Atzeni and Salmi 2012 [111]

D’antonio et al. 2015 [72]
Thompson et al. 2016 [46]
Salonitis and Zarban, 2015 [78]
Zamen et al. 2017 [82]
Zamen et al. 2018 [86]

Yim 2007 [73]
Ponche et al. 2012 [76]
Ponche et al. 2014 [79)
Zhang et al. 2014 [83]
Tang et al. 2014 [87]

Hallgren et al. 2016 [89]
Klahn et al. 2014 [92]
Klahn et al. 2015[95]
Primo et al. 2017 [98]
Kumke et al. 2016 [69]
Salonitis, 2016 [103]

Emmelmann et al. 2011 [106]

Hague et al. 2003 [109]

Hague et al. 2004 [112]

Boschetto and Bottini 2016 [113]
Barclift et al. 2017 [115]

Dhokia et al. 2017 [114]
Zhang et al. 2016 [116]
Zhang et al. 2016 [117]
Essink et al. 2017 [118]
Vo et al. 2017 [119)]

TABLEAU 4.1 — Classification d’approche DFAM

2014 [79)].
Ainsi, une méthode d’optimisation est présentée par [99] pour trouver 'orientation de

construction optimale en évaluant le temps de fabrication et la masse des composants.

4. Approche combinée : Certaines études ont combiné des approches fonctionnelles et
fabricabilité. Ces approches fournissent des solutions de conception grace aux principes de
FA, objectifs de conception, capacités de processus de fabrication et optimisation structurelle
[78], optimisation topologique [79, 78, 76, 98, 84, 89], et la structure réticulaire [110, 98,
84, 89, 87, 190, 191], ainsi que l’analyse des critéres comme le poids [87, 106], force et
déplacements [98], temps et cotit [115, 89, 99], qualité de surface [79], optimisation de l'outil
de fabrication [79, 115, 76].

Depuis plusieurs années, de grands efforts ont été consacrés a I’étude des parameétres de FA
comme l'optimisation du chemin d’outil [142, 143], l'optimisation de remplissage [144], la
rugosité de surface [145, 49], la précision dimensionnelle [146, 147], le temps [148, 149] et
la maitrise des cofits [51]. Selon ces études, les parameétres importants sont 1’orientation
de la pieéce a fabriquer, I’épaisseur des couches, les motifs de remplissage et la densité,
la température de ’enceinte de fabrication, les propriétés du matériau et des parametres

comme le diametre de la buse et la vitesse de déplacement.

Toutes les approches DFAM sont classées dans le tableau suivant (Tableau 4.1). Cette classification
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Conception pour la Fabrication Evaluation de la fabricabilité
Additive

B DFAM fonctionnel e .
W Verification de

fabricabilité
W DFAM fabricabilité

d Sélection des matériaux
et des processus

m Approche combinée

H Quantification de
fabricabilité

Optimisation de
fabricabilité

Fi1cURE I1.3 — Analyse statistique des approches DFAM

nous permet de fournir une analyse statistique des recherches effectuées, comme indiqué sur la
figure I1.3. 1l est représenté que la plupart des études sont liées DFAM combinatoire (35 %)
qui combine fonctionnalité et analyse de fabricabilité. 30 % des recherches sont consacrées a
la DFAM de fabricabilité qui est les études qui ont effectué une analyse de fabricabilité sans
considérer I’analyse fonctionnelle. Ces études se concentrent sur la vérification (70%) et I’étude
sur les niveaux de quantification et d’optimisation manque encore de 20% et 10% de toutes les
approches DFAM de manufacturable et DFAM combinatoire. DFAM fonctionnelle est une autre
approche significative pour DFAM qui comprend 26% des recherches. Le bilan de cette recherche
bibliographique nous indique qu’il est primordial de maitriser les criteres et les parametres de
la FA dans les approches DFAM pour vérifier, quantifier et optimiser la fabricabilité en tant
qu’approche DFM. Selon cette analyse, les criteres les plus importants a analyser, quantifier et
optimiser sont le temps et la masse du matériau, le cotit du systéeme de production, la rugosité
de surface comme facteur de qualité de surface, la précision dimensionnelle et le comportement
mécanique des pieces. Ces criteres et contraintes seront analysés dans cette étude a travers
une approche décisionnelle multicritéres. De plus, notre approche est la combinaison de DFAM
fonctionnelle et manufacturable en considérant les criteres et les attributs de FA pour fournir une

approche intégrée qui englobe toutes les étapes du cycle de vie du produit.

Toutes les études utilisent le DFM pour analyser le modele 3D et la conception initiale, mais le
processus de définition du produit est situé plus en amont et pourrait contenir plus d’informations
utiles au concepteur. Ainsi, il est nécessaire de fournir une méthodologie pour optimiser le modele

de produit par I'optimisation du modele 3D, ainsi que de quantifier et d’optimiser les parametres
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de fabrication. Le processus de conception et de fabrication de FA sont assez différentes par
rapport aux processus classiques. Contrairement aux discours entourant la FA, les concepteurs ne
sont pas libres de concevoir les produits avec toutes les géométries. De nombreuses analyses et
investigations doivent étre prises en compte dans la conception des produits pour les processus de
FA. Par conséquent, il crée un probléeme majeur pour la mise en ceuvre industrielle de la FA. 11
est crucial d’intégrer les attributs d’usage, de conception et de fabrication dans la définition du

produit pour prendre en compte les exigences d’un systeme complexe.

L’objectif principal est de proposer une approche pour aider le concepteur et le fabricant
afin de présenter une solution optimale pour la production avec FA en gérant simultanément la
conception et la fabrication comme une approche intégrée de DFM pour FA. Par conséquent, cette
these se concentre sur la définition d’'une méthodologie de conception intégrée pour la fabrication
additive au niveau du processus de définition du produit afin de trouver un modeéle de produit
optimal en considérant tous les attributs et contraintes de la premiere étape de conception a la

fabrication.

Plusieurs taches doivent étre effectuées pour faire correspondre graduellement les exigences du
client au modeéle de produit final dans le processus de développement du produit. Le produit doit
étre congu en raison des contraintes de fabrication. Cette intégration dans la définition du produit
est réalisée a partir d’un sous-modele représentant une conception commune et une modélisation
de fabrication sous la forme d’une approche peau et squelette. Cette approche peau et squelette
permet de modéliser simultanément les processus de conception et de fabrication pour créer un
modele de produit. Cette approche définit le produit désiré comme un ensemble de peau d’usage
et de squelette qui est un sous-ensemble du produit et également un squelette de fabrication,

ainsi que sa peau.

Par conséquent, la méthodologie proposée sera décrite dans la section suivant (section II)

comme une approche de conception intégrée pour la FA par 'approche DFM-peau et squelette.
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L’approche DFM-peau et squelette pour FA :
Méthodologie proposée

Dans le processus de développement du produit, plusieurs taches doivent étre effectuées pour faire
correspondre graduellement les exigences du client au modele de produit final. Le produit est
congu en fonction des contraintes liées a ’ensemble du cycle de vie du produit (matériaux, analyse
structurelle, recyclage, etc.). Par conséquent, l'ingénierie simultanée peut aider a considérer
et analyser les contraintes de fabrication dans le développement du produit. L’importance de
considérer les contraintes et les attributs de fabrication dans la définition du produit apporte des
restrictions pour les intégrer dans ’approche de conception pour la fabrication (DFM). Cette
intégration dans la définition du produit est réalisée a partir d’un sous-modele représentant une
modélisation de conception et de fabrication commune [30].

Pour développer cette approche pour les technologies AM, les fonctionnalités doivent étre
adaptées aux caractéristiques et attributs de FA. Deux proposition sont supposées orienter cette

approche. Ces propositions sont différentes en termes de détermination du squelette de fabrication.

e Proposition 1 : Pour implémenter ’approche peau et squelette, les modeles d’usage incluant
peau et squelette sont obtenus par optimisation topologique. Ensuite, une représentation
intermédiaire du modele 3D est obtenue. Enfin, le modeéle de produit correspond a 1’évolution
de ce modele d’utilisation obtenu en ce qui concerne les résultats du modele de fabrication et
du moteur de traitement d’interface. Dans cette méthode, la peau de fabrication correspond
aux contours des couches et le squelette de fabrication en tant qu’orientation des piéces
est déterminée par le biais d’une stratégie d’optimisation dans le moteur de traitement

d’interface (voir Figure 77).

e Proposition 2 : Selon cette proposition (Figure ??), Penveloppe d’utilisation est obtenue
par optimisation topologique, puis le squelette est obtenu par ’algorithme de Power Crust
basé sur ce modele d’usage optimisée. Par conséquent, une représentation intermédiaire
du modele 3D est obtenue. Enfin, le modele de produit correspond a I’évolution de ce
modele d’usage obtenu en fonction du modele de fabrication et des résultats du moteur de

traitement d’interface. Dans cette méthode, la peau de fabrication correspond aux contours
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des couches et le squelette de fabrication en tant qu’orientation des pieces est déterminée en
fonction du squelette d’utilisation obtenu par ’optimisation topologique et 1’algorithme de
la crotite de puissance. Il convient de mentionner que ’objectif principal de cette proposition
est de prendre en compte les contraintes géométriques imposées par AM, ainsi que les
caractéristiques uniques de I’AM, telles que le matériau anisotrope et la structure non

homogene de 'intérieur du produit (structure de remplissage différente).

Premierement, la proposition 1 est considérée comme mettant en ceuvre I’approche DFM-peau
et squelette pour la fabrication additive. Ensuite, la proposition 2 nous permet de définir notre

approche proposée. Dans ce qui suit, ’approche due a la proposition 1 est décrite.

DFM-peau et squelette pour FA basé sur la proposition 1 :

L’approche peau et squelette permet de modéliser le produit et le processus de fabrication de
I’analyse fonctionnelle a I’étape de production. Généralement, les peaux doivent décrire les surfaces
fonctionnelles du produit et le squelette montre la trajectoire du flux.

La solution requise pour le modele de produit n’est pas totalement déterminée par la conception
et elle est contrainte par le modele de fabrication, ainsi que par la modélisation d’interface issue
de la conception et de la fabrication. Plusieurs solutions de conception sont alors disponibles.
Des ensembles spécifiques d’attributs sont associés a la peau, tels que la forme, la tolérance, la
rugosité et la direction du matériau qui dépend du formulaire. Les attributs du squelette sont les
suivants : forme de section initiale, forme de section finale, variation de section, et fibre neutre
(ligne, courbe, plaque, etc.). Un attribut supplémentaire définit la direction du flux de matériau
pour la fabrication des squelettes. Selon ce concept simple, la définition finale du produit sera
fournie et analysée en fonction de la sélection du procédé de fabrication. En effet, le modele 3D
final d’un produit (fabriqué & partir de peaux de fabrication) est construit en balayant ou en
déformant la section du squelette sur la trajectoire du squelette. Le modele initial décrit avec la
peau et le squelette "d’usage" doit étre comparé a celui de "fabrication".

L’approche DFM-peaux et squelettes pour FA consiste en un modele FBS (Function-Behavior-
Structure) pour 'analyse fonctionnelle, le modele d’usage, le modeéle de fabrication et le moteur

de traitement de l'information dérivés du modele d’interface.
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Modele FBS

Nous supposons dans la suite du manuscrit que le cahier des charges est déja défini. Le cahier des
charges comprend la performance mécanique, la taille et la forme, le poids, les aspects esthétiques
et la fonctionnalité du produit. Modele FBS qui est développé par Gero et al. [152] est considéré
comme fournissant une analyse fonctionnelle ; par conséquent, la forme initiale et la structure du
produit qui satisfait sa fonction et son comportement seront présentées. Ainsi, il aide a identifier
le modele d’usage, y compris la peau et le squelette par son espace de conception initiale.

Les objets de conception sont conceptualisés en tant que fonction (F), comportement (B ou
Behavior en anglais) et structure (S) en tant que modele FBS. Selon le modeéle FBS; la conception
d’un produit implique une série d’étapes élémentaires incluant la transformation de la fonction de

produit désirée en son comportement attendu et le comportement attendu dans une structure

[152].

Modéele d’usage

Le modele d’usage est utilisé pour faire une présentation simplifiée du produit qui consiste en
une peau d’usage et un squelette. La peau d’usage est définie comme une surface fonctionnelle
dans laquelle circule un flux énergétique. Il prend en charge les attributs géométriques et les
spécifications de conception. Le squelette d’usage est un flux énergétique qui peut étre mécanique,
électrique, magnétique, etc. qui circule dans le produit. Il est spécifié en fonction du ou des
comportement(s) spécifique(s) requis du produit. Ainsi, les formes initiales doivent étre déterminées.
Ensuite, la morphologie possible du squelette est proposée par le concepteur [33, 30, 3].

Le modele d’usage est dérivé des spécifications du produit, des attributs et du modele FBS.
L’optimisation topologique est sélectionnée pour obtenir un modele d’usage.

Cette méthode d’optimisation permet de répondre aux exigences de conception comme le
comportement mécanique et la fonctionnalité, en plus d’optimiser la masse, la structure, le temps
et le colit [120]. Donc, le modeéle d’usage est déterminé par 'optimisation topologique de la
fonction du produit par I'optimisation de la masse et de la structure.

Apres optimisation de la structure initiale, le modele d’usage optimisé doit étre converti en

modele 3D. Ce modele d’usage optimisé est modifié dans CATIA-V5 en fonction des besoins du



L’approche DFM-peau et squelette pour FA : Méthodologie proposée 183

client et des fonctionnalités du produit, ainsi que des contraintes et capacités de FA. Il est a noter
que le produit peut étre présenté dans une grande diversité et le concepteur peut choisir entre ces
modeles possibles.

Jusqu’a présent, une partie du modele de produit en tant qu’ébauche 3D est déterminé, mais
il est nécessaire de définir le processus et ses parameétres pour la production avec les technologies
de FA. En conséquence, un modele de fabrication sera prévu pour recueillir les informations

essentielles pour la fabrication. Le modeéle de fabrication sera expliqué dans la section suivante.

Modéle de fabrication

Le modele de fabrication contient des informations de sélection de processus de fabrication. Cette
information contient le type de processus et ses parametres associés. Du point de vue de la
fabrication, les processus de fabrication peuvent étre réalisés en raison des formes et des qualités
de surface que le processus peut effectuer [33, 30, 3].

11 est supposé que le produit doit étre fabriqué par les technologies de FA. La Fabrication
additive produit couche par couche les produits complexes basés sur le modele CAO. Ce modele
3D doit étre converti en fichier STL (Standard Tessellation Language) en format standard et
approprié pour la FA qui se compose de petits triangles [37]. Cette conversion doit étre effectuée
en haute résolution pour réduire les écarts entre le modele CAQO initial et le modele discrétisé
STL.

Ensuite, le tranchage est réalisé avec un logiciel spécifique compatible avec la machine et sa
technologie. Le modele de fabrication doit étre identifié par le concept de peau-squelette qui est

constitué de la peau et du squelette de fabrication :

Peau de fabrication La peau de fabrication est la surface qui est produite durant cette étape.
Les caractéristiques de la peau sont créées a partir de squelettes de fabrication par une opération
de balayage. Du fait de la stratégie de FA en tant que production couche par couche, les produits
fabriqués par FA sont constitués d’accumulations de couches. La buse commence la production
de la couche a partir des contours des couches qui sont considérées comme la peau de fabrication,
puis une structure intérieure est créée qui peut étre déterminée par le squelette de fabrication

comme décrit dans ce qui suit.
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Squelette de fabrication : Le squelette est la trajectoire d’écoulement et chaque processus
de fabrication est supposé basé sur le flux de matiere.

Le chemin d’outil de fabrication montre comment un produit est construit pendant la fabrica-
tion. L’orientation de la piece et la structure de remplissage sont les parameétres qui déterminent
le trajet d’outil de fabrication additive. Dans cette thése, le squelette de fabrication est spécifié
comme 'orientation du produit dans la plate-forme de construction de la machine. On suppose
que l'orientation est définie comme un axe qui est perpendiculaire & la plate-forme de construction.
L’orientation est présentée a travers les angles entre la partie et les axes «, y et z. Il convient de
mentionner que l'orientation le long de 'axe z crée les différents motifs de remplissage a différent
angles.

Cette stratégie de découpage et le chemin de la machine-outil sont définis comme des fichiers
de G-code pour les machines. Ce fichier G-code est un langage machine qui définit le chemin de
Poutil de fabrication et les parameétres. En fait, il s’agit d’un langage commun de planification
de contrdle numérique qui est spécifié par les instructions sur ’endroit ou se déplacer, la vitesse
de mouvement et le chemin de mouvement. Il est développé pour guider les machines-outils
informatisées et décrire les instructions sur les chemins d’outils & suivre pour la FA [153].

L’identification du modele de fabrication nous aide a reconnaitre les parametres de fabrication

et les criteres significatifs :

Les parameétres de fabrication : L’identification des parameétres de fabrication est réalisée
par trois activités d’analyse des technologies de FA, 'analyse des logiciels et des machines de FA,
ainsi que l'analyse de la littérature.

Différentes technologies de FA sont analysées en fonction de leur processus. Ainsi, divers
logiciels de découpage comme Cura, Slic3r et MakerBot. De plus, I’analyse d’autres recherches [49,
156, 48, 126, 127, 157] nous aide & trouver les parameétres de fabrication. Ces études permettent
de déterminer les parametres de fabrication.

Pour trouver les parametres significatifs qui affectent les critéres et contraintes importants,
une analyse approfondie de la littérature est effectuée sur plusieurs études. Cette analyse nous
aide également a reconnaitre les criteres de FA et les parametres qui affectent ces criteres. Le

tableau 4.2 montre les critéres et contraintes, et les parameétres qui sont évalués, ainsi que le
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nombre de fois qui sont étudiés dans ces recherches. Ces chiffres présentent le degré d’importance

des parameétres sur les criteres souhaités.
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L’épaisseur de la couche et l'orientation de la piece sont les parametres les plus importants
entre ces parameétres de fabrication et ces deux parametres sont communs a toutes les technologies
de FA. Ces parametres ont des effets importants sur les critéeres et contraintes du systéme de

fabrication décrits ci-dessous :

Les critéres et contraintes de fabrication : De nos jours dans ce monde industriel, le
temps et la masse de matériau sont importants pour tous les systemes de fabrication en tant que
facteurs qui déterminent le colit du systéme de fabrication. Ainsi, le comportement mécanique,
la qualité de surface et la précision dimensionnelle sont identifiés comme étant les principaux
probléemes pour les secteurs industriels. Les caractéristiques telles que la production couche par
couche et la structure intérieure des produits créent la différence entre les produits réalisé par FA
et les autres produits qui sont fabriqués selon des méthodes de fabrication classiques. Ces criteres
sont impressionnés par les parametres de fabrication, sur quoi les caractéristiques du modele
de produit final seront modifiées. Dans ce qui suit, ces critéres et contraintes sont expliqués de

maniere exhaustive :

e Temps de fabrication et masse de matériau : Le temps de fabrication et la masse de
matériau sont les premiers critéres a analyser pour tous les systemes de production. Pour
FA, ces criteres sont impressionnés directement en modifiant les parametres de fabrication.
Leurs tendances de modification peuvent étre simulées grace a un logiciel additif spécial
pour chaque machine et technologie. Ces logiciels simulent le parcours de ’'outil avant de
lancer I'impression en fonction de la géométrie du produit, de I'orientation de la construction
et des parametres de fabrication. Il créée le fichier G-code qui contient le temps requis et la
quantité de matériau extrudé pour estimer le temps écoulé et la masse de matériau pour

I’impression.

e Qualité de surface : En conséquence de la fabrication en couches, la finition de surface
des pieces de FA est excessivement rugueuse. Puisque cette qualité de surface a une influence
sur les propriétés fonctionnelles du matériau, y compris le comportement mécanique, les
propriétés optiques et le comportement de frottement, le contrdle de surface des produits

est nécessaire [49, 162].
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Pour étudier la qualité de la surface, la rugosité peut étre analysée. Comme décrit dans
ASME B46.1 [163], "R, (rugosité) est la moyenne arithmétique des valeurs absolues des
écarts de hauteur de profil par rapport a la ligne moyenne, enregistrés dans la longueur
d’évaluation. R, est la moyenne d’un ensemble de mesures individuelles de surfaces pics et
vallées."

Dans le processus de AM, une faible rugosité de surface peut étre créée par la tessellation
du modele CAO original (conversion du modele CAO au fichier STL) qui est connue sous
le nom d’erreur d’accord et la procédure de découpage utilisée pendant le processus de
construction crée l'effet escalier par le dépdt de couche et il impressionne la rugosité de
surface [49, 165]. Dans cette recherche, il est supposé que la conversion STL est effectuée en

haute qualité avec de grands nombres du triangle et son effet est ignoré.

e Comportement mécanique : Les différents types de remplissage et les valeurs d’épaisseur
de couche créent les différents niveaux de résistance du produit [168]. Aussi, il existe d’autres
parametres de fabrication tels que 'entrefer, la largeur de trame, le nombre et la largeur de la
coque, 'angle de trame et 'orientation de la piece qui affectent le comportement mécanique
du produit. Pour le comportement mécanique, la résistance maximale & la traction (UTS)
est prise en compte. Il est mesuré par la contrainte maximale qu'un matériau peut supporter

au plus haut de la courbe de traction.

e Précision dimensionnelle : La précision obtenue pour la technologie de FA est un
inconvénient dans 'utilisation de FA. Un grand nombre de parametres affectent la précision
du produit comme le retrait et les parameétres du processus comme 1’épaisseur et ’orientation

de la couche.

L’analyse fonctionnelle, la reconnaissance du modele d’usage et la définition du modele 3D, ainsi
que l'identification de modeéles de fabrication incluant ses parametres et critéres significatifs nous

aident & construire notre nouveau modeéle d’interface en tant que moteur de traitement d’interface.

Moteur de traitement d’interface :

Enfin, I'intégration des contraintes de fabrication dans la définition du produit se fait progressive-

ment en tant que modele d’interface. Le modele d’interface est un résultat de cette approche pour
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définir le produit qui démontre les relations entre les parametres de la procédure de fabrication.
En effet, il présente les informations nécessaires a la synthése de la conception et de la fabrication.
Il fournit les données fonctionnelles, la solution technologique en tant que sélection de matériaux

et de processus et les valeurs d’attributs.

Les modeles d’usage et de fabrication doivent étre analysés ensemble pour créer le modele
de produit final en utilisant le modele d’interface. Pour définir le modele d’interface pour la FA
et utiliser ces modeles pour créer la procédure de fabrication, un nouveau moteur de traitement
d’interface est développé, dérivé du modele d’interface mais plus complexe et contenant des
informations, des modeles et des outils. C’est une boite noire pour l'utilisateur qui gere les
caractéristiques FA et les produits avec toute connaissance de son fonctionnement interne. Il est
constitué d’outils de calcul utilisés pour intégrer les contraintes et les attributs de fabrication
dans la définition du produit. L’objectif est de trouver les parametres de fabrication appropriés
pour la production a travers une approche décisionnelle multicriteres. Par conséquent, le moteur
d’interface permet de compléter le modele de produit en sélectionnant le processus, la machine et
les parametres de fabrication en fonction des critéres tels que le temps, le matériau, la qualité de
surface et le comportement mécanique des produits. Dans ’ensemble, 1’objectif est de définir un
modele générique & adapter aux autres processus de FA. Ce moteur nécessite I’ébauche 3D (appelée
modele 3D dans la suite de ce manuscrit) du modele d’usage, des parametres de fabrication,
des criteres de fabrication importants, des caractéristiques du produit et des relations entre ces

attributs.

Pour étudier simultanément ces criteres, une approche décisionnelle multicritére semble utile.
Il est décidé de fournir une optimisation bi-objective pour analyser notre probléeme de décision
multicriteres. Le temps de fabrication et le matériau comme principaux critéres du coit du systeme
de fabrication sont considérés comme les fonctions objectives de ce probléme d’optimisation pour
minimiser le coiit total du systeme. Selon 'importance du comportement mécanique et de la
rugosité de surface comme inconvénients des produits AM, ils sont supposés étre des contraintes
pour 'optimisation. Comme mentionné précédemment, I’épaisseur de la couche et ’orientation
sont les parametres de fabrication les plus importants de toutes les technologies de FA, ces

parameétres sont déterminés en tant que variables de décision.
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Probléme d’optimisation bi-objectif : Un probleme d’optimisation bi-objective continue
est défini & I'intérieur de ce moteur pour optimiser le temps, la masse du matériau et la rugosité
tout en ciblant un comportement mécanique souhaité.

Le vecteur & quatre composantes des variables de décision (x) est présenté qui contient 1’épaisseur

de la couche et les angles d’orientation comme suit :

x={0;,0,0,, L} (4.1)

e L, : Epaisseur de couche.
o 0,0y, 0, : définit 'orientation, c’est-a-dire ’angle entre la partie et I'axe de x, y, et 2.
Le probleme d’optimisation bi-objectif est écrit comme :
Minimize :
fi(x) = Time(x)

fa(x) = Material(x)

Sous les contraintes :

IR, (%) < Ramax (4.2)
gUTS(w) Z OMax (43)
Iy <x<uy

avec
T = {awveyvemlft}
Iy = {—180°,0°,—180°, Lypin }

up = {180°,180°, 180°, Lyntax }

Comme le montre la formulation mathématique, le premier objectif est le temps nécessaire a la
machine pour la fabrication. Le deuxieme objectif est la masse de matiére consommée pour la

fabrication. Une solution optimale pour la fabrication sera fournie en minimisant ces objectifs.
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les vecteurs des bornes inférieure et supérieure des composantes de la variable de décision,
lp et up, montrent leurs valeurs minimum et maximum admissibles. La valeur de 1’épaisseur de
couche est comprise entre Liin €t Livin. Les angles d’orientation montrent 'orientation de la
piéce dans la plate-forme ainsi que ’angle de remplissage de la piéce qui est déterminé par la
rotation au long de 'axe z par 6,. Pour considérer toutes les orientations possibles du produit
dans l'espace, 'angle de x et z est compris entre —180° et 180°, et y est dans 'intervalle de 0°

et 180°.

Les fonctions objectives sont calculées par simulation de procédure additive pour chaque
orientation et valeur d’épaisseur de couche par le logiciel de simulation additive pour chaque

technologie et machine.

La premiere contrainte (équation (4.2)) fournit une relation entre ’épaisseur de la couche et

I’orientation pour estimer la rugosité de surface afin de satisfaire la qualité de surface du produit.

L’équation (4.3) est utilisée pour présenter le comportement mécanique des produits AM. La
résistance est formulée avec la contrainte mécanique maximale du produit (oMmax) et la résistance
maximale & la traction (UTS) du matériau qui dépend des parametres de fabrication (orientation,
épaisseur de couche, angle de remplissage, etc.). Cette contrainte montre que le produit de FA doit
étre plus résistant que le comportement souhaité. Les valeurs UTS pour différentes orientations et
épaisseurs de couches sont obtenues par 'analyse de plusieurs expériences réalisées par d’autres
chercheurs comme [156, 171, 172, 157, 170]. Il faut mentionner que ces expériences doivent étre
effectuées dans les mémes conditions expérimentales, y compris le type de matériau, le type
d’éprouvette et la température. De plus, d’autres parametres de fabrication pour la fabrication

des éprouvettes doivent étre identiques.

Avant de résoudre ce probléeme d’optimisation, il est nécessaire de formuler ce probléme

d’optimisation bi-objectif incluant objectifs et contraintes.

Le temps et la masse du matériau sont calculés grace a la simulation du parcours de 1'outil par
le logiciel FA et a I’analyse du fichier g-code. La rugosité est formulée grace a des mesures expéri-
mentales et le comportement mécanique des produits FA est analysé a travers des méthodologies
expérimentales. Ces formulations en tant qu’outils de calcul et données collectées fournissent les

conditions préalables pour résoudre ce probléme d’optimisation.
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Procédure de résolution : Pour résoudre ce probléeme d’optimisation bi-objectif, ’exécution
de Cura en tant que logiciel open source dans MATLAB nous permet de trouver le temps de
production et les valeurs de masse du matériau pour toutes les orientations possibles dans ’espace
et toutes les valeurs admissibles de I’épaisseur de couche.

Non seulement, ce probléeme d’optimisation bi-objectif est un probléme d’optimisation com-
binatoire et il est classé comme un probleme NP-difficile, mais aussi, la simulation a travers le
logiciel de FA et la création des fichiers g-code prennent beaucoup de temps. Par conséquent,
pour trouver les solutions réalisables pour ce probleme d’optimisation continue dans un délai
raisonnable, un algorithme méta-heuristique semble utile. Ainsi, I'algorithme de NSGA-IT est
utilisé pour trouver les solutions optimales pour la fabrication.

Les entrées essentielles de ce probleme sont le fichier STL, le fichier d’exécution du logiciel
additif, la méthode de calcul de la rugosité, les données UTS et les parametres de I'algorithme. Par
cet algorithme, les meilleures solutions sont présentées et améliorées dans quelques générations
comme le front de Pareto.

La recherche des parameétres de fabrication optimaux permet de fournir les informations

essentielles pour notre modele de produit qui sont expliquées dans la section suivante.

Modéle du produit

L’analyse du modele FBS, du modele d’usage, du modele de fabrication et du moteur de traitement
d’interface permet de fournir le modele de produit. Ce modele de produit comprend les informations
requises pour fabriquer le modele 3D par la technologie de FA. Il contient le matériau sélectionné
et la technologie, le modele d’usage manufacturable comme fichier CAO et fichier STL, les valeurs

optimales des parametres et critéres de fabrication, ainsi que le code G optimal pour la fabrication.

L’approche DFM-peau et squelette pour FA basée sur la proposition 2 :

Considérer la deuxieme proposition pour implémenter 'approche DFM-peau et squelette crée une

différence dans cette approche. L’approche proposée contient plusieurs étapes :

e Analyse fonctionnelle et fourniture du modele FBS.
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e L’identification du modele d’usage contient la peau et le squelette : Selon la premiere propo-
sition, le modele d’usage optimisé, incluant la peau et le squelette, est créé par optimisation

topologique, cette proposition permet de définir la peau et le squelette séparément :

— Peau d’usage : Elle est définie par I'optimisation topologique et c’est une surface sur

laquelle le matériau circule.

— Squelette d’usage : Les méthodes sont présentées pour déterminer ce squelette

comme suit :

x Algorithme de Power crust : Ce squelette d’usage fournit I’axe médian approximatif
de la piece comme une vue d’ensemble du produit et de son schéma général
pouvant étre présenté dans plusieurs solutions géométriques possibles qui satisfont
aux contraintes physiques et aux exigences fonctionnelles. Power crust est un
algorithme qui est utilisé pour construire le maillage de surface et I’axe médian
approximatif. Power crust prend les points dérivés du fichier STL en entrée. Ensuite,
la transformation de ’axe médian (MAT) en tant que représentation de forme
squelettique de I'objet est approximée et la représentation de surface est créée par

la transformation inverse [173, 33].

x Manuellement : Squelette est spécifié en fonction du comportement spécial requis
du produit en tant que fonctionnalité. Selon la forme obtenue par optimisation

topologique, le flux de matiere comme le squelette peut étre facilement spécifié.

— Le modeéle de fabrication : Il se compose de la peau en tant que contours de
Porientation de la couche et de la piéce en tant que squelette. Selon la proposition 2,
le squelette de fabrication doit étre déterminé en fonction du squelette d’usage. Dans
la these, il n’y a aucune possibilité de créer I'orientation de la piece et de poursuivre
I’approche DFM-peau et squelette. Le modele 3D doit étre défini en comparant de la

peau et du squelette du usage et de la fabrication.

— L’approche d’optimisation en tant que moteur de traitement d’interface sera créée en
considérant d’autres parametres pour la variable de décision sans considérer ’orientation

de la piece comme variable de décision.
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— Définir le modele de produit en fonction des résultats du moteur d’interface et de

I’approche peux-squelette.

Ce modele fournit une approche générale et intégrée permettant a la méthodologie de
considérer simultanément les attributs d’usage, de conception et de fabrication. Cette
approche aborde une méthodologie intégrée dans la Conception pour la fabrication additive
(DFAM ou Design For Additive Manufacturing en anglais). Cette méthode permet de
définir un modele de produit en examinant de nombreux attributs, contraintes et critéres
de FA. Cette méthodologie est développée a travers une approche peux-squelette pour créer

graduellement le modele de produit final.

Dans la section suivant, cette approche proposée sera mise en oeuvre dans la technologie
de FA la plus populaire sous la forme de modélisation par dépo6t de fil chaude (FDM) et
deux études de cas sont utilisées pour montrer la fiabilité de cette approche pour la mise en

ceuvre industrielle.

L’application et validation dans la modélisation des dé-

pots de file chaude

La méthode de dépdt de file chaude (FDM), développée par Stratasys & Eden Prairie, au
Minnesota, est I'une des techniques de la fabrication additive les plus largement utilisées qui
a considérablement réduit le temps et le coiit de développement du produit. L’application a
été étendue aux diverses industries comme les industries médicales comme la fabrication
d’implants biomédicaux ou de protheses par le biais de procédés de moulage de précision,
I'utilisation par des amateurs, des inventeurs, des bricoleurs et des propriétaires de petites

entreprises, etc.

FDM est un procédé de AM qui utilise un filament thermoplastique (ABS, PLA, ...) par
dépdt fondu. Les couches sont fabriquées par extrusion du filament qui est extrudé par
une buse. La buse contient des éléments chauffants résistifs qui maintiennent le plastique a

une température juste au-dessus de son point de fusion, de sorte qu’il s’écoule facilement a
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travers la buse et forme la couche. Le plastique durcit immédiatement apres I’écoulement
de la buse et se lie a la couche inférieure. Il trace la géométrie en coupe transversale de la
piece couche par couche, puis se déplace verticalement pour répéter le processus et produire

les couches de haut en bas pour terminer la fabrication de la piéce [37, 174].

La grande facilité d’utilisation de la technologie FDM et les effets du processus de fabrication,
en particulier les caractéristiques uniques des technologies de FA, encouragent le chercheur
a analyser ce processus de fabrication. L’approche de conception intégrée est utile pour
analyser le produit qui est produit par les technologies FA depuis la premiere étape du
développement du cycle de vie du produit jusqu’a la derniére étape pour définir un modele
de produit. Par conséquent, ’étude est commencée par une étude de cas comme un crochet
de sac et cette étude continuera a s’appliquer dans une autre étude de cas comme une fusée
de roue qui est plus complexe et utile. Cette deuxieme étude de cas peut montrer la capacité

des techniques FA & apporter de la vie aux pieces brisées et a réutiliser le produit.

Etude de cas 1 : crochet de sac

Dans cette recherche, un crochet de sac est étudié comme notre étude de cas pour valider
I’approche proposée. Le crochet de sac est un accessoire utilisé pour accrocher le sac & main
sur une table. Il doit étre mince, léger et s’intégre méme dans le plus petit sac. L’analyse
des besoins montre que PABS (Acrylonitrile Butadiéne Styréne) est un choix approprié
comme matiere premiere pour le crochet de sac en raison de ses caractéristiques telles
que la recyclabilité, la disponibilité et le cotit. FDM (ou Fused Deposition Modeling en
anglais) comme les technologies de AM est choisi pour fabriquer le produit sur ABS [34].
Les dimensions initiales de crochet sont définies égales a 45 x 90 x 10cm qui sera optimisé
grace a cette approche proposée.

La méthodologie proposée sera appliquée pour présenter les solutions optimales de modéle
3D en utilisant le modele d’usage et ’analyse du systéeme de fabrication comme modele
de fabrication pour créer un moteur de traitement d’interface pour fournir un modele de

produit pour ce crochet de sac. Les étapes de cet approche pour le crochet est comme suite :

— Analyse fonctionnelle pour le crochet de sac : On suppose que le crochet doit
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FIGURE I1.4 — Modele FBS de crochet

tolérer un maximum de 7.5kg et il doit étre aussi léger que possible pour pouvoir
facilement le mettre dans le sac. L’analyse fonctionnelle est fournie par le modele FBS
a travers la détermination de la structure initiale en fonction de la fonction et du
comportement souhaités du produit. Le crochet de sac doit tolérer le poids du sac
comme fonction principale et la table est un support pour l'aider dans cette fonction.
Ce modele identifie la peau d’usage et le squelette, ainsi que le volume initial de la
piéce ; par conséquent, le volume initial de la piéce est obtenu en considérant la surface
fonctionnelle, la relation entre le support et la conduction du flux de matériau, la
fonction du produit en tant que force appliquée et la performance mécanique. Le
modele FBS (illustré dans la figure I1.4) est utilisé pour déterminer la forme initiale

(structure) en fonction de la fonction et du comportement souhaités du produit.

Du modéle d’usage au modeéle 3D : L’optimisation topologique est sélectionnée
pour fournir un modele d’usage optimisé en optimisant la masse et la structure du
produit en raison de son comportement mécanique. Le peau d’usage est optimisé et
le squelette est déterminé & travers cette peau et la fonctionnalité du crochet (voir
Figure I1.5). 11 est nécessaire de définir le modele 3D entre plusieurs morphologies
possibles. La forme finale en tant que modele 3D et fichier STL est préparée (Figure IL.5)
concernant le modele d’usage présenté, la fonctionnalité et différentes questions comme

I’épaisseur de paroi minimum requise et ['utilisation des congés.
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Usage model 3D model

F1GURE I1.5 — Du modele d’usage au modele 3D

— Modeéle de fabrication : Le modele de fabrication est déterminé en parallele. Les
contours de la couche et I'orientation de la piéce sont la peau de fabrication et le
squelette respectivement. L’orientation spécifie ’angle de remplissage et la direction de
la piece. Ce modele de fabrication contient les couches avec ses contours et l'orientation

de la piéce qui est perpendiculaire & la plate-forme de construction (Figure I1.6).

Pour fabriquer le crochet, le modele CAO doit étre converti en fichier STL comme
format de FA approprié. Ce fichier STL est créé en haute résolution et avec un grand

nombre de triangles pour minimiser I'imprécision dimensionnelle et la rugosité.

une analyse compléte est effectuée sur la littérature (131 articles) pour identifier les
parametres et les critéres significatifs (tableau 4.3). Les parameétres de fabrication
importants sont identifiés comme 1’épaisseur de la couche, 'orientation, la température
d’impression, la structure de la coque, la structure intercalaire, le radier et la structure
de support, ainsi que la vitesse d’impression, de déplacement et de rétraction. Différentes

valeurs de parametres créent le niveau différent de critéres de fabrication.
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Nozzle Manufacturing Orientation

Manufacturing
Skeleton

Usage Skeleton

F1GURE I1.6 — Le modéle peux-squelette de fabrication
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Température de buse 230°C
Température de la plateforme 110°C
Diametre de la buse 0.4mm
Remplissage 100 % - linéaire
Nombre de contour 2
Vitesse de déplacement 130mms—!
Vitesse de remplissage 90 mms '
Vitesse du contour 40mms— T
Vitesse plancher-toit 90 mm st
Support (20%) 0.2mm
Angle de support 68°
Vitesse de rétraction 25mms !

TABLEAU 4.4 — Fabrication parameétres

— Moteur de traitement d’interface : Apres reconnaissance du modele d’usage et

de fabrication simultanément, le moteur de traitement d’interface est présenté. Les
parametres de fabrication sont supposés dans ce moteur comme tableau 4.4. Ce
moteur contient des outils de calcul, un modele d’optimisation et une méthodologie de

résolution.

Les logiciels de génération de trajectoire comme Cura et Makerbot fournissent une
simulation avant 'impression, le temps et la masse du matériau sont également estimés
en fonction des parametres. Dans cette étude, Cura en tant que logiciel open source
est modifié en fonction du parametre Makerbot. L’exécution de Cura dans MATLAB
permet de créer un fichier de G-code et de calculer le temps et la masse de matériau

pour chaque épaisseur de couche et toutes les orientations possibles.

Les fichiers de G-code illustrent le chemin de 1’outil, chemin définit par les coordonnées
des points de passage de la buse pour fabriquer le produit. Ce chemin d’outil est créé
en raison de l'extrusion matérielle dans FDM. Le matériau extrudé comme valeur £
dans le fichier G-code permet de calculer la masse du matériau par Equation (4.4) et
(4.5) en raison de cette réalité que le volume de matériau extrudé provenant de la buse
est égal au volume d’extrusion chemin parcouru par la buse. Dans ces équations, L
est la distance entre les coordonnées et e est la largeur d’extrusion qui est égale aux
diameétres des buses (0.4 mm), le diameétre des filaments (d) est 1.75 mm et paps est

la densité ABS (1.04g/cm?). F est un autre paramétre du fichier G-code en tant que
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L
- 0<a<70°
cos(a)
1000L; sin (2572 ) tan(90° — a) 0° < a < 90°
L,
0O———1+W 90° < 135°
Ra(a, Ly) = cos(a — 902") (2 W) Sas (4.6)
L (R1+R3)(1—Z)sin(90° —«)
1(002072_ . )22 IOO?)Lt +
(R1—R3)(1-7%))" sin?(90° —a) o o
1(10020L,~,)34 cos(90° — ) 135% < a <160
10004t cos(90° — «) 160° < a < 180°
vitesse pour calculer ’heure écrite en tant que temps écoulé.
4L.e. 1Ly
E= 4.4
7Td4 ( )
4
M = pABs.ﬂ'ZE (45)

Une estimation hybride est réalisée par [49] par Panalyse et la comparaison d’autres

modeles existait dans la littérature [48, 164, 181] et des données expérimentales. Ce

modele estime la rugosité de surface en fonction de I’angle de dépot différent (o) et de

I’épaisseur de la couche. Dans cette équation, w = 0.2 est le parametre d’ajustement

fixe sans dimension pour les facettes supportées basé sur une mesure expérimentale

pour tous les systémes FDM. Dans cette formulation, Ry = 0.045 et R = 0.01 sont

respectivement des congés et des rayons de coins [182]. Un algorithme est écrit pour

appliquer cette formulation dans le modeéle mathématique :

* Normal (nr;) de chaque facette du fichier STL est obtenu par calcul de maillage

normal pour chaque maillage triangulaire.

* L’orientation est créée par la matrice de rotation (R). Cette matrice de rotation

fait tourner le vecteur normal et tangent de chaque facette le long des axes x, y et

z par les angles de rotation de ., 6, et 6, (Equation (4.7)).
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1 0 0 cos, 0 sind, cosf, —sinf,
R, =10 cosf, —sind,| Ry = 0 1 0 | R:= |sinf, cosb,
0 sinf, cosb, —sinf, 0 cosf, 0 0
R=R, x Ry X R, (4.7)

* L’angle de dépdt (ar;) est calculé par 1'équation (4.8), car c’est I'angle entre le

vecteur tangent et le vecteur vertical (z) comme direction de stratification.

’I’L'IB.Z

ar, = 90° — arccos (4.8)

Inr|.|2|

« La valeur de rugosité est calculée par Equation (4.6) pour chaque facette. La

valeur de rugosité maximale est prise comme rugosité du produit.

Le comportement mécanique des produits AM a été analysé par des approches expéri-
mentales réalisées par [156, 171, 157, 170, 186]. Les données souhaitées sont recueillies
a partir de ces recherches en considérant les mémes conditions expérimentales, y
compris le type de matériau, le type d’éprouvette, la température et les parametres de
fabrication des spécimens. Selon ASTM "Méthode d’essai standard pour les propriétés
de traction des plastiques", les échantillons sont fabriqués dans différentes orientations
et valeurs d’épaisseur de couche sur ABS-M30. Le testeur de traction Instron est utilisé
pour obtenir les données expérimentales. Les valeurs UTS collectées pour différentes
valeurs d’épaisseur de couche et types d’orientation spécifiques (voir la figure I1.7) sont

résumées dans le tableau 4.5.

Cette information nécessaire et les outils de calcul préparent les conditions préalables a
la création d’un probleme d’optimisation bi-objectif. Le comportement mécanique des
produits en tant que critere significatif ne doit pas étre ignoré, mais les données UTS ne
sont pas suffisantes pour développer un méta-modele et les utiliser dans un probléme
d’optimisation continue. Par conséquent, le probleme est défini dans deux types de
problémes continus et discrets. Le probleme d’optimisation continue bi-objectif est

utilisé pour optimiser le temps et le matériau en ce qui concerne la rugosité en tant

0
0
1
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I’Orientation | Plat Plat  sur le bord surle bord Vertical vertical

+45°  0/90° +45° 0/90° +45°  0/90°
0. | 0° 0° 0° 0° 90° 90°
0, | 0° 0° 90° 90° 0° 0°
0. | 0° 45° 0° 45° 0° 45°

L; [mm] | UTS values [MPa] for different orientation

0.1 | 328 30 31.9 33.5 30.7 30.9
0.13 | 278 30 29.6 25.7 29.11 30
0.2 | 27.5 - - - - -
0.25 | 273 327 25.4 29 - -
0.33 | 2894 - - 31.64 - 24.72
0.35 | 2022 27.35 - 22.7 - -

TABLEAU 4.5 — Types d’orientation et ses données UTS pour différentes épaisseurs de couche

Az Printer bed orientation

Printed up-right
[0/90] upright

— Printing raster direction

Printing 1 o

 raster
direction

Printed on-edge

Printed flat Printing
raster directio_n

[0/90] on-edge [0/90] flat

[+45/-45] upright

45°

[+45/-45] flat ‘ o
Printer bed orientation

FIGURE II.7 — Types de orientation [170]
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que fonction de contrainte. Ensuite, un probléme discret lié aux valeurs de UTS est

extrait du continu et il est résolu.

Pour résoudre ce probléeme d’optimisation, 1’algorithme NSGA-II nécessite un fichier
STL, un fichier d’exécution Cura, un calculateur de rugosité et des données UTS.
La valeur maximum désirée pour la rugosité est considérée comme (Rapiay = 20 pm)
et omax est calculé en raison de la théorie du faisceau, de la force appliquée et de
la dimension du crochet (opax = 31 MPa). L’algorithme NSGA-IT est complété en

quelques générations pour trouver le front de Pareto comme solutions optimales.

Un ordinateur avec le processeur Intel (R) Xeon (R) et 12 Go de RAM est utilisé
pour obtenir les résultats pendant 6 heures et 45 minutes comme durée d’exécution
totale. Les parametres de l'algorithme sont : Numéros d’exécution = 2, Numéros de
population = 100, Numéros d’itération = 50, Indice de croisement = 20, Indice de

mutation = 10, Probabilité de mutation = 0.25.

Les solutions Pareto obtenues pour les problemes d’optimisation continue et discrete
sont indiquées sur la figure I1.8, le tableau 4.6 et 4.7. Toutes les solutions réalisables
comme les solutions continues sont montrées par des étoiles et son Pareto optimal
comme des cercles sont numérotés. Les solutions réalisables pour le probléeme discret
sont démontrées par des carrés. Le front de Pareto pour le probleme discret est illustré

par des cercles et nommé alphabétiquement.
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Selon les résultats obtenus, il est conclu que :

x Dans un cas continu, la masse et le temps sont modifiés par 2% et le facteur de
2,38 (238 %) respectivement. Pour un probléme discret, la variation de masse est
20% et le facteur temps est de 1.48 (148 %). Ainsi, le probléme discret fournit une
plus grande variation pour la masse et la rugosité du matériau.

* Les solutions (a) et (b) démontrent que la fabrication de crochets dans lorientation
de £45° nécessite plus de matiére alors qu’elle est plus rapide que Pangle de 0/90°.
Les solutions (c) et (d) montrent que le crochet est fabriqué plus rapidement dans
une orientation plate, mais qu’il consomme plus de matériau pour la structure du
radier.

* Dans le probleme discret, ’orientation vers le haut n’est pas optimale car elle
consomme plus de temps et de matériel que d’autres en raison de la construction
du support.

* Le Pareto continu n’inclut pas les orientations discrétes car elles nécessitent plus

de matériel et de temps que les autres.

Enfin, la solution (d) comme une solution plus rapide est sélectionnée pour fabriquer
le crochet par Makerbot Replicator 2X, non seulement, elle satisfait la contrainte de
comportement mécanique, mais aussi, elle est moins rugueuse que la solution (a) et
(b). La solution (c) ne satisfait pas non plus la résistance souhaitée et nécessite une
nouvelle conception du crochet.

— Modéle de produit : Le modele de produit est créé grace a la collecte d’informations
basée sur le modele peau-squelette et les résultats du moteur de traitement d’interface.
Ce modele de produit se compose d’'un modele FBS, d’'un modele d’usage, d’'un modele
3D, de parametres et critéres optimaux et d’un fichier G-code optimal qui illustre le
chemin d’outil de fabrication. Enfin, le crochet est fabriqué en utilisant le MakerBot

Replicator 2x.

Pour définir cette approche pour le crochet basée sur la proposition 2, optimisation
topologique et 'algorithme Power crust sont utilisés pour définir respectivement la peau

et le squelette d’usage, mais aucune méthode n’est trouvée encore pour poursuivre notre
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Sol. L 0., 8, 0. Time Material R,

mm] ] P[] fmin]  [g ]

1 0.11 132.89 125.75 —87.31 113.99 9.91 19.53
2 011 133.12 12544 —87.31 112.08 9.91 19.80
3 0.11 133.25 125,55 —87.19 112.00 9.92 19.74
4 0.11 133.22 125.88 —87.64 111.31 9.93 19.79
5 0.11 133.05 125.90 —87.65 111.26 9.94 19.87
6 0.12 141.90 125.38 —8R8.20 103.08 9.95 18.51
7 0.12 141.93 125.41 —88.21 101.37 9.98 18.50
8 0.12 141.96 12542 —88.24 101.14 9.98 18.59
9 0.12 141.99 12542 —8R8.25 101.12 9.99 18.48
10  0.12 141.90 125.37 —8R8.20 102.25 9.96 18.56
11 0.12 141.92 12541 —88.21 101.91 9.97 18.54
12 0.18 40.00 14791 —25.01 70.45 10.00 19.69
13 0.18 39.04 148.03 —24.95 69.81 10.01 19.06
14  0.19 44.33 169.90 —45.05 66.06 10.03 19.60
15 0.2 143.36 150.35 —88.75 65.56 10.03 19.91
16 0.2 143.34 151.53 —8R8.75 64.48 10.05 19.76
17 0.26 140.40 156.61 —73.35 51.60 10.10 19.60
18  0.28 —179.84 0.26 —4.48 33.66 10.12 19.56

TABLEAU 4.6 — le front Pareto de probleme d’optimisation continue bi-objectif pour le crochet

L . . Time Material UTS R,

Sol. fmm] Orientation [min] ] MPa]  [pm]
a 0.1 On-edge +45° 103.82 12.01  31.90 19.04
b 0.1 On-edge 0/90° 130.24 10.31  33.50 19.04
c 0.13 Flat 0/90° 70.18 13.05  30.00 9.10
d 0.25 Flat 0/90° 41.73 13.14 32.70 17.50

TABLEAU 4.7 — le front Pareto de probleme d’optimisation discrete bi-objectif pour le crochet
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FIGURE I1.9 — Fusée de la roue cassée

approche proposée.

Etude de cas 2 : fusée de la roue

Une autre caractéristique qui encourage les fabricants a utiliser la fabrication additive
comme nouvelle technique de production donne vie aux produits qui sont cassés dans

certaines parties. Cette technique apporte I'opportunité de réutiliser les produits.

Dans cette étude, on considére qu'un véhicule pour enfant est brisé dans la fusée de la roue

avant par un choc comme le montre la figure I1.9.

Pour produire cette fusée pour la réutilisation du véhicule, ainsi que pour améliorer la qualité
du produit et ses performances, I’approche de DFM-peau et squelette comme méthodologie

proposée dans cette these sera utilisée.

Premieérement, en tant qu’intrant essentiel de cette approche et de tout le cycle de déve-
loppement du produit pour la conception et la fabrication, les spécifications du produit
doivent étre préparées en fonction des exigences du client. A cet effet, d’abord la dimension
et la fonctionnalité du produit est étudiée. La figure I1.10 illustre les dimensions et la
fonctionnalité du véhicule. Comme le montre la figure II.11, deux forces de Fr et Fg

sont les forces qui sont appliquées aux roues avant et arriere. De plus, G est une force
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FIGURE I1.10 — Dimensions du véhicule et fonctionnalité

créée en raison du poids de I’enfant. Dans cette étude, on suppose que kid crée la force
égale a G = m x g comme m = 20kg. Pour calculer la force appliquée, 'analyse statique
est effectuée cet analyse est fait pour éviter de casser a nouveau la fusée lorsque ’enfant
crée un choc. les analyse statique nous permette de calculer la force applique au fusée

(Fr = 118.81N). Cet analyse nous permettre de commencer notre approche :

— Modele FBS : Analyse statistique montre que deux types de force sont imposés a
l'axe et la fusée qui sont dérivés du poids du gamin et de la force qui est imposée
au moment de l'accident qui sont représentés sur la figure I1.12. Comme illustré sur
cette figure, la fusée est en relation directe avec ’axe et la biellette de direction. Il y
a une liaison compléte comme logement entre ’axe et la fusée. La force créée par la
situation de choc est appliquée directement a ’axe et elle est transformée en fusée.
L’axe est le support de cette fusée. Le tirant de direction est relié a la fusée par un pivot
comme liaison. La carrosserie tolére la force imposée par le poids des enfants. Comme
mentionné précédemment, ce modele décrit la situation de choc, donc, la force qui est
appliquée a partir de la paroi est également montré. Les roues sont également créées
la force qui est transformée en axe. Ces roues sont en relation avec le sol. Ainsi, ce

modele FBS nous permet de déterminer la fonctionnalité du produit. Par conséquent,
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Wall

wa

FI1GURE II.11 — La force appliquée aux roues

ce modeéle FBS nous aide a reconnaitre le modele d’usage dans ce qui suit.

Du modele d’usage au modéle 3D : Le modele d’usage et, par conséquent, le
modele 3D est une ébauche 3D du modele d’usage (appelée modele 3D dans la suite
de ce manuscrit) seront fournis dans certaines étapes : Le modele initial est créé dans
CATTA qui est dérivé de la forme initiale du produit existant. Puis, ce fichier STL
est chargé dans Inspire pour fournir une structure optimale grace a 'optimisation
topologique. Ce modele d’usage est converti dans le fichier STEP et il est chargé
dans CATIA. Le modeéle 3D initial est modifié sur la base de ce modele d’usage
optimisé comme le montre la figure I1.13. Ce modele 3D est obtenu en fonction de la

fonctionnalité du produit.

Modeéle de fabrication de FDM : Comme la FA est utilisé pour fabriquer la fusée,
le modele 3D du produit doit étre converti en fichier STL en tant que format standard
pour les technologies de FA.

En raison de la manieére de construction de la couche, la buse commence la production
de la couche a partir des contours des couches qui sont considérées comme la peau

de fabrication, puis, la structure intérieure est créée qui peut étre déterminée par
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FIGURE I1.12 — Modelé FBS de la fusée de la roue
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FIGURE I1.13 — Modéle 3D de la fusée
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le squelette de fabrication comme orientation de la piece. Les mémes parameétres de
fabrication existent également pour la production de la technologie de FA avec FDM

qui nous permet de définir le moteur de traitement d’interface.

Traitement d’interface Moteur de la fusée de roue : Ce moteur de traitement
d’interface est une interface entre 1'usage et le modele de fabrication qui nous aide a
fournir le modele de produit basé sur 'optimisation des parametres de fabrication en
fonction des criteres souhaités.

Pour cette étude de cas, il est supposé que la valeur maximale de la rugosité est de
Raniax = 50pum et Panalyse des éléments finis est effectuée pour calculer la valeur de
Omaz €gale a 5.24 MPa.

A cette fin, notre probleme d’optimisation bi-objectif est résolu grace a l'utilisation de
lalgorithme NSGA-II. Le fichier d’entrée de cet algorithme est le fichier STL du modeéle
3D et les mémes parametres sont considérés pour 'algorithme. Comme la premiere
étude de cas, le probleme d’optimisation est réalisé dans deux types de problemes
continus et discrets. Premierement, le continu est résolu et I’espace discret est extrait
de cet espace continu. Les résultats obtenus de ces problemes d’optimisation, y compris
les parametres de fabrication optimaux en tant que front de Pareto, sont décrits dans
la section suivante :

Reésultats :

Pour obtenir des solutions Pareto pour un probléme d’optimisation continue et discrete,
les mémes parametres et I’algorithme sont pris en compte et le temps d’exécution total
est de 8 heures 33 minutes. Les pareto obtenus sont représentés sur la figure 11.14.
Cette figure illustre toute la solution réalisable pour les problémes continus et discrets
sous forme d’étoiles et de carrés. Les Pareto optimaux pour continu et discret sont
également représentés par des carrés. Toutes ces solutions sont présentées dans le

tableau 4.8 et 4.9 :
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Les résultats montrent que les criteres de fabrication sont variables en raison de

I’épaisseur de la couche et des angles d’orientation.

— Modéle de produit : pour compléter notre modele de produit, il est décidé de choisir
entre la solution rapide de a et b de solutions discretes pour considérer le comportement
mécanique du produit. La solution a est plus rapide que b mais sa surface est plus
rugueuse. La fabrication par la solution b est rapide et elle a une bonne qualité de

surface. Donc, Makerbot Replicator est utilisé pour fabriquer cette fusée.

Pour définir cette approche pour le crochet basée sur la proposition 2, 'optimisation topologique
et I'algorithme Powercrust sont utilisés pour définir respectivement la peau et le squelette d’usage,
mais aucune méthode n’est trouvée encore pour poursuivre notre approche proposée.

la méthodologie proposée est mise en ceuvre dans la modélisation des dépdts fondus et deux
études de cas sont considérées comme validant cette méthodologie. La méthodologie proposée
aide le concepteur a fournir le modele 3D en utilisant FBS et le modele d’usage. Le modele de
fabrication est proposé pour la modélisation par dépot en fusion (FDM) en tant que technologie
commune et utile de la fabrication additive. Aprés identification du modele 3D et du modeéle
de fabrication, le modele 3D est converti en fichier STL en format standard AM. Le moteur de
traitement d’interface est développé pour déterminer les parametres de fabrication optimaux
pour tous les modeles 3D en ce qui concerne les critéres souhaités tels que le temps, la masse du
matériau, la rugosité et les propriétés mécaniques du produit de FDM.

La validation de la peau DFM et du squelette dans les études de cas illustre lefficacité de
cette approche pour tous les modeles 3D et les technologies AM.

Dans la suite, la these est résumée dans des conclusions et les perspectives sont présentées.
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Sol. L, 0., 6, 0, Time Material R,

O I N R N I

1 0.14 —47.89 143.60 —176.54 147.38 22.44  19.02
2 0.15 —48.33 142.78 —176.54 144.93 22.47 19.77
3 0.16 -—140.29 38.06 —113.90 143.32 22.51 18.65
4 017 —-140.29  38.06 —113.90 134.78 22.52 19.82
5 0.18 162.42 45.05 —19.12 125.84 22.67 19.73
6 0.19 175.93  45.22 —31.41 116.04 22.71 19.94
7 0.19 176.45  45.24 —31.44 116.00 22.72 19.94
8 0.19 176.43  45.24 —31.43 115.98 22.72 19.94
9 0.19 179.35 45.04 —31.26 116.06 22.71 19.85
10  0.19 175.69  45.04 —31.24 116.32 22.69 19.91
11 0.19 175.61 45.06 —31.24 117.29 22.68 19.92
12 0.19 175.68  45.04 —31.25 116.51 22.70 19.91
13 0.19 175.66 45.05 —31.24 116.76 22.70 19.92
14 0.2 178.43 44.92 —30.93 115.48 22.74 19.87
15  0.23 156.25  40.51 83.70 100.18 23.00 25.92
16  0.24 0.00 0.00 —180.00 76.92 25.03 48.64
17 0.24 0.00 0.00 45.00  75.29 25.04 48.64
18  0.24 90.00 0.00 90.00  90.35 23.94 49.07
19  0.24 90.00  90.00 90.00  90.06 23.95 48.64
20 0.25 148.80  41.49 53.64  95.73 23.54 26.86
21 0.25 149.05 41.31 54.43 95.55 23.57 26.82
22 0.26 —170.60 144.50 24.87  90.38 23.67 31.33
23 0.26 179.97  60.54 —13.48 91.84 23.63 37.66
24  0.31 —34.59 143.31 60.90 78.84 24.51 36.39
25  0.32 —34.35 144.33 64.60  77.57 24.55 37.98
26 0.34 —151.86  40.98 —149.95 72.80 25.39 36.13

TABLEAU 4.8 — Le front Pareto pour fusée de roue pour un probleme d’optimisation continue
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3ol L, Orientation Time Material UTS R,
" [mm] [min] [g] [MPa]  [jm)]
0.2 Flat +£45° 91.31 25.35  32.80 40.53

0.13 Flat 0/90° 129.04 25.12  30.00 26.35
0.13 Up-right +45° 161.74 2432 29.11 26.58
0.13 Up-right 0/90° 171.83 23.68  30.00 26.58
0.13  On-edge 0/90° 175.52 23.61  26.35 25.70

0.1 On-edge 0/90° 226.17 23.59  33.35 20.27

O |0 |T

TABLEAU 4.9 — Le front Pareto pour fusée de roue pour un probleme d’optimisation discrete

Conclusions

Cette these présente une méthodologie de conception intégrée dédiée a la fabrication additive.
Cette méthode permet de prendre en compte tous les attributs, contraintes et critéres de fa-
brication additive des que possible dans la définition du produit. Cette méthodologie établit
une correspondance entre les besoins des clients et le modele de produit final grace au mo-
dele Function-Behavior-Structure (FBS), au modéle peau-squelette et au moteur de traitement
d’interface proposé. La premiere étape de gestion du cycle de vie du produit est 'ingénierie
des exigences et le modele FBS pour nous aider & analyser le comportement et la fonction du
produit, ainsi que il aide & definir la structure initiale du produit. Le modele peau-squelette est
défini dans deux types de modeles d’usage et de fabrication qui fournissent des informations
initiales pour la conception et la fabrication. Le modele d’usage est lié a la spécification du
produit et analyse de ce modele permet de fournir ’ébauche 3D du produit. Ainsi, la fabrication
contient les informations essentielles pour déterminer le résultat final du produit. Un nouveau
moteur de traitement de 'information ou d’interface de traitement est présenté pour considérer
simultanément les attributs d’usage, de conception et de fabrication dans la définition de produit
en tant qu'approche intégrée de conception pour la fabrication. Elle s’apparente a une boite noire
ou se trouve les parametres d’usage, de conception et de fabrication combinés pour proposer
une ou des solutions optimales au concepteur. Composé d’outils de calcul et d’optimisation pour
analyser la procédure de FA, elle traite un grand nombre de critéres et contraintes liés au temps,

au matériau, a la rugosité et au comportement mécanique afin de proposer un modeéle de produit
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intégré avec des solutions d’optimisation. Par conséquent, cette méthodologie est utilisée pour
trouver le modeéle de produit optimal, y compris le modele 3D, les parametres de fabrication
optimaux, le fichier G-code et toutes les information importantes de la fabrication d’un produit.

Pour les travaux futurs, la mise en ceuvre de ce moteur de traitement dans un logiciel est
la prochaine étape de cette recherche. Il serait intéressant de fournir une méthodologie pour
la fabrication hybride impliquant la Fabrication Additive et d’autres procédés traditionnels.
Les études sur le comportement mécanique des produits réalisés par FA sont actuellement en
cours due a la complexité de certaines géométries (nouvelles formes de treillis, nouvelle approche
multi-matériaux par optimisation topologique...). En outre, d’autres critéres importants pour la
FA sont la précision et le colit qui doivent étre analysés. De plus, le modele d’usage, de fabrication
et de traitement d’interface présentés seront utilisés pour toutes les technologies de FA et aidera
les concepteurs et les fabricants. Deux proposition sont considérées dans cette these, ’étude basée

sur la seconde fait encore incompleéte et 1’étude peut étre poursuivie dans ce domaine.
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Appendix A: FDM softwares

The significant parameters of Fused deposition Modeling (FDM) are identified by analysis of
softwares which are used for preparing the STL file for printing. Three famous softwares of FDM
are Makerbot, Cura, and Slic3r. The FDM parameters which is derived from Software settings
are shown in Figure A.1, A.2 and A.3.
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Material:

Profile:

Print Setup

= Quality
Layer Height
Initial Layer Height
JT Shell
Wall Thickness
Wall Line Count
Top/Bottom Thickness
Top Thickness
Top Layers
Top/Bottom Pattern
©4 Infill
Infill Density
Infill Pattern
[l Material
(") speed
Y% Cooling
L' Support
= Build Plate Adhesion
/K Dual Extrusion
2l Special Modes

Please load a 3d model

ABS N
Low Quality * v

Recommended Custom
v
*210.3 mm
2 (0.3 mm
v
)| 0.4 mm

Di|2
0.8 mm
0.8 mm
0

Lines v
i v
¥ 1100 %
Lines v
<
<
<
<
<
<
<

Figure A.2 — Cura 2.5 custom setting
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File Plater Object Window Help

Plater | Print Settings | Filament Settings | Printer Settings

- default - M ]E Layer height

'@l Layers and perimeters Layer height: 0.3 mm

7 nfill

- Infl First layer height: 0.35 mm or %

Skirt and brim
L=l Support material

&) Speed Vertical shells
¥ Multiple Extruders Perimet 3 = (mini )
: erimeters: minimum
& Advanced =
= Output options Spiral vase: O
.| Notes
Horizontal shells
Solid layers: Top: 3 : Bottom: 3

Quality (slower slicing)

Extra perimeters if needed:
Avoid crossing perimeters:
Detect thin walls:

Detect bridging perimeters:

Advanced

Seam position: Aligned -

DI REOE

External perimeters first:

Figure A.3 — Slic3r custom setting



Appendix B: G-code files

G-code is a language in which people tell computerized machine tools how to make something. It
shows the tool path that machine crossed. Figure B.1 shows the code letters and their meanings.
Also, an example of g-code file which is created by Cura is illustrated in Figure B.2 to show haw
the manufacturing time and material mass through E value is calculated in MATLAB.
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Print
speed

Ll A/ .L1D2Y YI..49D

GO F9000 X-7.752 Y9.217

Gl F1800 X-8.949 v8.021 E148.99295

Gl X-8.977_Y7.993 Coordinate boint
GO F9000 [X=8 0949 y§ 587 |« “oordinate points
Gl F1800 X-8.318 v9.217 E149.03644

Gl _X-8.29 Y9.245

GO [E9000|X-8.884 v9.217
Gl F1800 X-8.949 v9.152 E149.04092
GO F9000 X-8.729 Y8.998

[ TIME ELAPSED:58.090162 J« Manufacturing Time
Gl F1500 Material value
M104 SO ; turn off extruders
M140 SO ; heated bed heater off
G91 ; relative positioning

Gl E-2 F5000; retract Z2mm

G28 Z; move bed down

G90 ; absolute positioning

M84 ; disable motors

M104 S0

:End of Gcode

Figure B.2 — G-code file
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Appendix C: modeFRONTIER

As mentioned in this thesis, modeFRONTIER is our software to provide meta-moodelling.
ModeFRONTIER combines third-party computer-aided design (CAD) with computer-aided
engineering (CAE) tools to allow for multi-objective and multidisciplinary optimizations. It is a
powerful optimization environment that integrates with all calculation and simulation tools to
enable multi-objective and multidisciplinary optimization. Figure C.1 illustrated its enviroment
which dacilitate modeFRONTIER integration, process automation within a workflow-based
environment, design space exploration, real and RSM based optimization, RSM model creation
and training, robust design and reliability, as well as a set of post processing tools for data
analytics and visualization and decision making [192, 193].
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Appendix D: Finite Element Analysis for wheel spindle

To analyze the mechanical behavior of our spindle, Finite Element Analysis is performed. Firstly,
axis and the pivots must be created to provide the functionality of the product. The steel axis
is created to define the product functionality and two rigid virtual parts are also provided in
order to apply pivots. To perform this analysis, firstly, Octree Tetrahedron Mesher is used to
create a 3D mesh. ABS as a new material is added to the material library of CATIA and its
characteristics during printing is supposed as desired characteristics (FigureD.2). The force must
be imposed to the axis.
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Technical
data
sheet ABS

Mechanical properties (*)

Tensile modulus

Tensile stress at yield

Tensile stress at break

Elongation at yield

Elongation at break

Flexural strength

Flexural modulus

lzod impact strength, notched (at 23°C)
Charpy impact strength (at 23°C)

Hardness

Figure D.2 — ABS characteristics

Injection molding

Typical value

2030 MPa

43.6 MPa

48%

34 %

58 kJ/m?

97 (Shore A)

Test method

IS0 527

(1 mm/min}

1SO 527

{50 mm/min)

1SO 527

{50 mm/min}

1SO 527

{50 mm/min)

IS0 179

Ultimaker

3D printing
Typical value

1681.5 MPa

39.0 MPa

33.9 MPa

35%

48 %

70.5 MPa
2070.0 MPa

10.5 kd/m?

Test method

IS0 527

(1 mm/min)

1SO 527

{50 mm/min)

1SO 527

{50 mm/min}

IS0 527

{50 mm/min}

1SO 527

{50 mm/min)

1SO 178

ISO 178

1SO 180
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ALSACE CHAMPAGNE-ARDENNE LORRAINE

Elnaz ASADOLLAHIYAZDI
Doctorat : Matériaux, Mécanique, Optique et Nanotechnologie

Conception intégrée pour les procédés
de fabrication additive basée sur les
modeles DFM de peaux-squelettes

Aujourd'hui, la fabrication additive (FA) fait évoluer
le monde de la fabrication griace a ses capacités de
production de formes complexes couche par couche.
L'approche de conception pour la fabrication (DFM)
aide a considérer les contraintes de FA et & maitriser
les caractéristiques du produit dans la gestion de
son cycle de vie. Plusieurs études sont consacrées a
I'approche de conception intégrée pour la FA, mais
aucune approche ne prend en compte toutes les
étapes du cycle de vie du produit dans le niveau
d'optimisation de sa conception et de sa fabrication.
Ainsi, cette thése fournit une approche DFM pour la
FA afin d'étudier simultanément différents attributs,
contraintes et critéres de conception et de fabrica-
tion dés la définition du produit. L'approche Peau-
Squelette modélise la premiére définition du produit.
Il contient une analyse fonctionnelle, un modéle
d'usage et un modéle de fabrication. Dans ce travail,
un nouveau moteur de résolution, qui agit a
I'interface du modéle de produit et du modéle de
fabrication, est proposé grace a I'analyse des tech-
nologies FA et de leurs paramétres et critéres. Ce
moteur repose sur un probléme d'optimisation bi-
objectif pour minimiser le temps de production et la
masse du matériau en proposant les solutions opti-
males pour les propriétés mécaniques et la rugosité
du produit. Cette méthodologie permet de définir le
modéle de produit. L'approche est mise en ceuvre a
travers une premiére technologie de dépdt par fil
fondu (FDM) pour la production de deux études de
cas.

Mots clés : prototypage rapide - conception tech-
nique -procédés de fabrication - analyse du cycle de
vie - décision multicritére — optimisation mathéma-
tique.

Integrated Design of Additive Manufac-
turing Based on Design for Manufactur-
ing and Skin-skeleton Models

Nowadays, Additive Manufacturing (AM) evolves the
manufacturing world by its capabilities for produc-
tion of the complex shapes layer by layer. Design For
Manufacturing (DFM) approach helps to overcome
the AM constraints and mastering product features
in product lifecycle. Several studies are devoted to
integrated design approach for AM, but there is no
approach that considers all product life cycle steps
in optimization level for product and manufacturing
process. So, this thesis provides a DFM approach for
AM to investigate simultaneously different attrib-
utes, constraints, and criteria of design and manu-
facturing in product definition. Skin-Skeleton ap-
proach models the first definition of product and AM.
It contains functional analysis, usage model, and
manufacturing model. In this work, a novel interface
processing engine as an interface between product
and manufacturing model is developed through
analysis of AM technologies and their parameters
and criteria. This engine relies on a bi-objective
optimization problem to minimize production time
and material mass under limitation of mechanical
properties and roughness of the product to obtain
the optimal manufacturing parameters. This meth-
odology permits to define the product model. The
approach is implemented into Fused Deposition
Modeling to verify the methodology through two
case studies.

Keywords: rapid prototyping - technical design -
manufacturing processes - life cycle analysis -
multi-criteria decision making - mathematical
optimization.
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