AOAMC Amplify One Application entity Multiple Containers AOAOC Amplify One Application entity One Container API Application Programming Interface

Keywords: Internet des objets (IoT), Techniques d'apprentissage, Détection d'intrusions, Prévention d'intrusions Internet of Things (IoT), Machine Learning, Intrusion Detection, Intrusion Prevention 6LoWPAN IPv6 over Low-power Wireless Personal Area Network AIS Artificial Immune System AI Artificial Intelligence SMO Sequential Minimal Optimization SVM Support

Titre : Détection et prévention des intrusions pour les systèmes IoT en utilisant des techniques d'apprentissage

Résumé : Avec l'expansion de l'Internet des objets (IoT) et l'évolution des techniques d'attaque, la sécurité de l'IoT est devenue une préoccupation très importante. OneM2M est une initiative de standardisation mondiale pour l'IoT. Par conséquent, sa sécurité implique la sécurité de l'écosystème IoT. C'est pourquoi nous concentrons nos travaux sur la sécurité de ce standard. Dans cette thèse, nous proposons un système de détection et de prévention des intrusions (IDPS), basé sur les techniques d'apprentissage, pour les systèmes IoT utilisant oneM2M. Afin d'adopter les technologies émergentes et surtout avec ses résultats intéressants déjà éprouvés dans le domaine de la sécurité, les techniques d'apprentissage sont utilisées dans notre stratégie IDPS. Notre système oneM2M-IDPS détecte les menaces potentielles et y répond immédiatement. Il détecte et classifie les menaces sur trois niveaux d'apprentissage différents et réagit rapidement par des actions appropriées. OneM2M-IDPS ne traite pas seulement les menaces connues (attaques de sécurité et comportements anormaux), il est également capable de détecter les menaces inconnues (zero-day). De plus, l'IDPS est équipé d'un module d'apprentissage continu qui lui permet d'apprendre en permanence de nouveaux comportements afin d'être à jour.

This PhD has been an enriching and tough journey, full of ups and downs, full of joy and tears and especially full of wealthy lessons. Fortunately, I was surrounded by many supportive people, who have given me strength to go through the difficult times. So, it is a great pleasure to thank them all for their positive impact during this quest.

Naturally, my first thanks come back to my supervisors Mohamed Mosbah, Akka Zemmari and Cyrille Sauvignac, for the chance they gave me to integrate their teams and work on a subject of remarkable importance with both scientific and industrial openness. I am grateful for their trust and their technical, emotional and financial support over these three years. Their advices at scientific, industrial and personal levels have resulted in the production of this work. Thanks for having shown my weaknesses and also congratulated me every time I achieve a milestone. I would also like to thank the jury members of my defence. Many thanks to Mr. Toufik Ahmed, Professor at Bordeaux INP and Mr. Khalil Drira, Research Director at CNRS LAAS Toulouse, for agreeing to evaluate my work. I would also like to express my gratitude to Mr. Frédéric Cuppens, Professor at IMT Atlantique and Mr. Yacine Ghamri-Doudane, Professor at the University of La Rochelle, who agreed to read and review my thesis. I thank them in advance for all the attention they are willing to give to my work as well as their valuable feedback. It is really my utmost honor to have all these experts reviewing my work.

I would like to thank Atos for funding my research experience, with special gratitude to Mr. Dominique Parguel for his trust and support to make the PhD happen. In addition, I would like to express my sincere gratitude to all members of the Atos Innovation laboratory team for the friendly atmosphere in the team. I thank my colleagues Darius Matboo-Raftarhaghi, Vivien Achet, Arnaud Casteler and Nafissa Harrouz for all the debates, discussions, remarks and guidance, for their emotional support as well as the good mood that we share each day at the office. A special and deepest gratitude goes to my old colleagues Craig Josse and Charlie Huynh for their technical assistance and their wise recommendations. I would also like to thank all the people with whom I have the chance to discuss from the administration who helped with the administrative procedures.

Regarding my laboratory, the LaBRI, I am grateful for all its members that welcomed me. I would like to thank in particular Chahrazed Ksouri with whom I have had moments of complicity during this tough period. Thanks to all members of my office room as well as the members of the lab for the ups and downs that we have shared all together during this journey. I would also like to thank all the people from the administration and the system team who helped me many times and definitely contribute to the good mood at the LaBRI, thank you all.

Moreover, I would like to thank the "Association Nationale de la Recherche et de la Technologie" (ANRT) for CIFRE funding (N • 2017/0122).

Last but not least, I cannot finish without expressing all the gratitude I have for my loving family for their support and their love and comfort in the good and the bad, and for bringing joy to my soul even though we are always far away. My sincere thanks and love to my precious parents, my father Mounir, my mother Zineb and my beloved brothers Amine, Hamdi and Majdi. I am eternally indebted to them and to all my family members.

Furthermore, I would like to thank my friends. A special gratitude goes to Amel Raboudi with whom, despite the distance, I shared not only difficult and joyful moments but also reflections around the world of academic and industrial research. My sincere gratitude to all my dearest friends: (in alphabetical order) Amin, Amira, Hafsa, Houssem, Ibtihel, Ines, Salma, Yasmina and Yassine for their support and their true friendship and love, for their listening and their support in difficult times.

Finally, I am grateful to all my loved ones, all those who helped me during this PhD and whom I had the privilege of meeting during this journey.

Abstract

Pervasive growth of Internet of Things (IoT) is visible across the globe. Since the 2016 Dyn cyberattack caused by the infamous Mirai IoT botnet, IoT security has become a critical concern. The attack exposed the critical fault-lines among smart networks. The danger exposed by infested Internet-connected things not only affects the security of IoT, but also threatens the complete Internet ecosystem which can possibly exploit the vulnerable Things (smart devices) deployed as botnets. In the recent decade, security attack vectors have evolved bothways, in terms of complexity and diversity. Hence, to detect and prevent new attacks, it is important to enhance the security mechanisms with emerging technologies like Artificial Intelligence (AI) and Machine Learning (ML). Intrusion Detection Systems (IDS) are one of the strategies for using ML techniques in threat detection.

Moreover, with the increasing deployment of IoT in all areas such as healthcare, transportation, industrial automation, smart homes, etc., manufacturers tend to use proprietary solutions with customized hardware and software. Such a trend favours a fast time-to-market without sufficient embedded security and verification. OneM2M is a global standard initiative designed to satisfy the need for a common horizontal platform for the multi-industry Machine-to-Machine (M2M) / IoT applications. It aims to satisfy the need for a common M2M service layer that guarantees the communication between heterogeneous devices and applications. Various security mechanisms have been proposed in the oneM2M specifications to protect the IoT solutions. However, none of the specified techniques protect the IoT systems once the malicious user has gained access to the system and bypassed the first-line security measures. This represents a critical and unexplored topic for the oneM2M standard.

In this thesis, we decided therefore to propose an ML-based Intrusion Detection and Prevention System (IDPS) as a second line of security for IoT systems based on the oneM2M standard to detect and prevent intrusions. To the best of our knowledge, our proposal is the first IDPS for the oneM2M service layer. In order to embrace the emerging technologies and especially with its interesting results already proven in the security field, we have chosen to use ML techniques in our IDPS strategy. Our oneM2M-IDPS detects and responds immediately to potential threats as soon as they are carried out. It detects and classifies threats on three different ML levels and responds quickly with appropriate actions. OneM2M-IDPS not only deals with known threats (security attacks and abnormal behaviors), it is also able to detect zero-day/unknown threats. In addition, the IDPS is equipped with a continuous learning module that allows it to continuously learn new behaviours in order to be up to date. In order to achieve our goal, we have gone through several steps from the complete state of the art of IDPS with or without ML, to the definition of oneM2M attacks, to the creation of a dataset of these attacks, to the experimentation of different ML strategies in order to find the best ones for our proposed IDPS architecture.

Résumé

L'expansion de l'internet des objets (IoT) est visible dans le monde entier. Depuis la cyberattaque de Dyn en 2016, causée par le tristement célèbre botnet Mirai IoT, la sécurité de l'IoT est devenue une préoccupation plus importante. L'attaque a mis en évidence les failles critiques des réseaux intelligents. Le danger que représentent les objets contaminés connectés à Internet n'affecte pas seulement la sécurité de l'IoT, mais menace également l'ensemble de l'écosystème Internet qui peut éventuellement exploiter les objets vulnérables (dispositifs intelligents) déployés en tant que botnets. Au cours de la dernière décennie, les techniques d'attaques de sécurité ont évolué en termes de complexité et de diversité. Par conséquent, pour détecter et prévenir les nouvelles attaques, il est important de renforcer les mécanismes de sécurité avec des technologies émergentes comme l'intelligence artificielle et l'apprentissage automatique (Machine Learning). Les systèmes de détection d'intrusion (IDS) sont l'une des stratégies permettant d'utiliser les techniques d'apprentissage dans la détection des menaces.

En outre, avec le déploiement croissant de l'IoT dans tous les domaines tels que la santé, les transports, l'automatisation industrielle, les maisons intelligentes, etc., les fabricants ont tendance à utiliser des solutions propriétaires avec des matériels et des logiciels personnalisés. Cette tendance favorise une commercialisation rapide, avec moins de vérification et moins de sécurité intégrée. OneM2M est une initiative de standardisation mondiale conçue pour répondre au besoin d'une plate-forme horizontale commune pour les applications multi-secteurs Machine-to-Machine (M2M) / IoT. Elle vise à satisfaire le besoin d'une couche de service M2M commune qui garantit la communication entre des dispositifs et des applications hétérogènes. Divers mécanismes de sécurité ont été proposés dans les spécifications oneM2M pour protéger les solutions IoT. Cependant, aucune des techniques spécifiées ne protège les systèmes IoT une fois que l'utilisateur malveillant a accédé au système et contourné les mesures de sécurité de première ligne. Ceci représente un sujet critique et inexploré pour le standard oneM2M.

Dans cette thèse, nous avons donc décidé de proposer un système de détection et de prévention des intrusions (IDPS) basé sur les techniques d'apprentissage comme deuxième ligne de sécurité pour les systèmes IoT basés sur le standard oneM2M pour détecter et prévenir les intrusions. À notre connaissance, notre proposition représente le premier IDPS pour la couche de service oneM2M. Afin d'adopter les technologies émergentes et surtout avec ses résultats intéressants déjà éprouvés dans le domaine de la sécurité, les techniques d'apprentissage sont utilisées dans notre stratégie IDPS. Notre oneM2M-IDPS détecte les menaces potentielles et y répond immédiatement. Il détecte et classifie les menaces sur trois niveaux d'apprentissage différents et réagit rapidement avec des actions appropriées. OneM2M-IDPS ne traite pas seulement les menaces connues (attaques de sécurité et comportements anormaux), il est également capable de détecter les menaces inconnues/zero-day. En outre, l'IDPS est équipé d'un module d'apprentissage continu qui lui permet d'apprendre en permanence de nouveaux comportements afin d'être à jour. Afin de réaliser notre objectif, nous sommes passés par plusieurs étapes allant de l'état de l'art des IDPS munis ou non des techniques d'apprentissage, à la définition des attaques oneM2M, à la création d'une base de données de ces attaques, jusqu'à l'expérimentation de différentes stratégies d'apprentissage afin de trouver les meilleurs pour notre architecture IDPS.

Contributions

La principale contribution de cette thèse est la conception et la mise en oeuvre d'un IDPS basé sur les techniques d'apprentissage pour protéger les objets qui utilisent le standard oneM2M. Pour atteindre cet objectif, un examen complet de l'écosystème de la sécurité de l'IoT est réalisé dans un article publié dans la revue IEEE Communications Surveys & Tutorials intitulé "Network intrusion detection for IoT security based on learning techniques" [CMZ + 19]. L'article porte sur trois domaines importants : i) l'IoT, ii) les mécanismes de sécurité et iii) les techniques d'apprentissage automatique. Il guide le lecteur dans la découverte de l'intersection de ces trois domaines en fournissant tous les détails nécessaires pour comprendre la sécurité des systèmes IoT. Le document commence par présenter et catégoriser les menaces de sécurité contre l'IoT ainsi que les techniques de défense traditionnelles en mettant l'accent sur les types d'IDS. Ensuite, il énumère et examine les outils disponibles qui peuvent être utilisés pour développer et/ou évaluer les IDS déployés niveau réseau (NIDS): i) les corpus de données gratuits, ii) les renifleurs de réseau gratuits et open source et iii) les NIDS open source. En outre, le document traite les NIDS conçus pour l'IoT, leurs architectures, leurs déploiements et leurs applications dans les systèmes hétérogènes. Les techniques d'apprentissage sont présentées. Ensuite, les NIDS pour les systèmes IoT déployés via des techniques d'apprentissage sont détaillés, comparés et évalués. Nous avons examiné en détail l'état de l'art actuel, comparé et évalué les performances des systèmes NIDS basés sur les techniques d'apprentissage et déployés pour sécuriser les réseaux IoT. Enfin, le document s'est conclu par un résumé et une liste des orientations futures possibles.

Compte tenu de la nécessité d'un écosystème IoT standardisé, en particulier avec la croissance significative du nombre de dispositifs connectés, nos travaux se concentrent sur le standard oneM2M. Nous avons donc défini les attaques de sécurité qui menacent la couche de service oneM2M et proposé une abstraction pour les flux oneM2M appelée GFlow. Afin de mettre en oeuvre un mécanisme de sécurité basé sur l'apprentissage, l'abstraction GFlow est utilisée pour la création d'un corpus de données de sécurité oneM2M. Ce corpus a été créé avec une plate-forme réelle et contient les attaques oneM2M ainsi que les GFlows légitimes. Grâce aux données générées, nous avons proposé le premier IDS générique pour la couche de service oneM2M basé sur l'apprentissage "à la frontière" ou ce qu'on appelle edge machine learning. Afin de choisir le meilleur algorithme d'apprentissage pour nos besoins, divers algorithmes sont expérimentés pour des classifications binaires et multiples. Toutes ces études ont fait l'objet de la publication "An Intrusion Detection System for the OneM2M Service Layer Based on Edge Machine Learning" [START_REF] Chaabouni | An Intrusion Detection System for the OneM2M Service Layer based on Edge Machine Learning[END_REF] dans la conférence internationale Ad-Hoc Networks and Wireless (Adhoc-Now).

Un système de détection et de prévention des intrusions oneM2M (oneM2M-IDPS) basé sur l'apprentissage automatique était au centre de notre article "A OneM2M Intrusion Detection and Prevention System based on Edge Machine Learning" [START_REF] Chaabouni | A OneM2M Intrusion Detection and Prevention System based on Edge Machine Learning[END_REF] publié dans IEEE/IFIP Network Operations and Management Symposium (NOMS). Dans le cadre de ce travail, une architecture pour le oneM2M-IDPS est proposée. Chaque module de notre stratégie IDPS est détaillée en commençant par le module d'acquisition de données et d'extraction de caractéristiques. Ensuite, un nouvel IDS basé sur trois niveaux de détection est proposé. De plus, cet IDS est enrichi de deux nouveaux modules : i) un module de prévention pour agir contre les menaces détectées et ii) un module d'apprentissage continu pour fournir un IDPS à jour qui évolue avec l'évolution et l'émergence de nouvelles menaces.

Dans les travaux précédents, le module IDS utilisait des algorithmes d'apprentissage pour les trois différents niveaux de détection en mode classification binaire et multiple. Dans notre article de revue "Anomaly and Novelty Detection and Prevention for IoT Security: A Continuous Machine Learning Approach", soumis à la fin de la thèse, nous détectons les anomalies dans le standard oneM2M d'une part, et les nouveautés en termes de menaces d'autre part, dans une plateforme de détection et de prévention des intrusions. En ce qui concerne la détection des anomalies, les algorithmes de classification à une classe (OCC) sont examinés pour détecter les comportements qui diffèrent de la norme. De plus, une nouvelle méthode de détermination de seuil basée sur l'algorithme de l'arbre de décision est proposée. Toutefois, pour la détection des nouveautés, l'approche OCC est étendue pour i) détecter les nouvelles menaces non connues et ii) classer celles qui sont déjà connues auparavant. En outre, le flux de travail du module de prévention est spécifié et les actions de prévention sont précisées. De plus, les différents scénarios qui activent le module d'apprentissage continu, de manière autonome ou à la demande de l'Homme, sont décrits en détails. Ils permettent la mise à jour permanente du système IDPS.

Organisation de la thèse

La thèse est organisée en six chapitres qui sont eux-mêmes divisés en plusieurs sections. Le chapitre 1 présente l'écosystème de la sécurité des objets connectés. La section 1.1 commence par la présentation et la classification des catégories de menaces de sécurité de l'IoT ainsi que des techniques de défense traditionnelles afin de fournir au lecteur le contexte de sécurité nécessaire pour une meilleure compréhension de ce manuscrit. Dans la section 1.2, notre motivation pour ce travail ainsi que les problé-matiques auxquelles nous essayons de répondre sont détaillées. Dans la section 1.3, les différentes contributions apportées aux problématiques étudiées durant la thèse sont présentées.

Dans le chapitre 2, la littérature traitant les IDPS, déployés au niveau réseau dans les systèmes IoT, est présentée et discutée. La section 2.1, commence par l'état de l'art des IDPS pour l'IoT qui ne sont pas basés sur des techniques d'apprentissage. Ces travaux se concentrent davantage sur l'architecture de déploiement et la stratégie de détection. Après avoir détaillé chaque travail séparément, nous les discutons et les comparons sur la base de leurs architectures (si elle est distribuée, centralisée ou hybride), de leurs méthodologies de détection (basées sur les signatures, les anomalies ou hybrides), de leurs stratégies de validation (simulation ou émulation) ainsi que des menaces traitées. Une importance a également été accordée aux forces et faiblesses de chacune des propositions. La section 2.2 concerne les IDPS basés sur les techniques d'apprentissage. Comme dans la première partie, nous fournissons une brève description de chaque travail, puis nous comparons et discutons leurs déploiements, leurs méthodologies, les corpus de données qu'ils ont utilisés, les menaces qu'ils ont traitées et les algorithmes d'apprentissage qu'ils ont employés.

Dans le chapitre 3, un aperçu du standard oneM2M (section 3.1) est fourni: son architecture et ses mécanismes de sécurité définis dans ses spécifications. Ensuite, dans la section 3.2, nous nous concentrons sur les menaces oneM2M liées à la disponibilité des services puisque oneM2M concerne par définition les services pour les systèmes M2M et IoT. Une taxonomie et une mise en oeuvre des menaces oneM2M sont proposées. Ce chapitre se termine par la section 3.3 qui détaille la création d'un corpus de données de sécurité oneM2M. Elle commence par l'état de l'art des corpus de données libres utilisés pour la création des IDS IoT déployés au niveau réseau. Comme il n'existe pas de corpus de données pour le standard oneM2M, nous créons nos propres données en respectant la taxonomie des menaces oneM2M présentée dans la section précédente. Ce jeu de données est basé sur une nouvelle proposition d'abstraction pour les flux oneM2M. Cette abstraction est le fondement de notre IDPS.

Dans le chapitre 4, nous présentons les différents défis et objectifs respectés et garantis avec notre proposition oneM2M-IDPS : l'interopérabilité, l'autonomie, l'extensibilité et le respect des contraintes de ressources, la modularité dans la conception, l'adaptabilité et l'extensibilité et enfin la réaction active et en temps réel (section 4.1). De plus, la section 4.2 détaille la stratégie ainsi que l'architecture de l'IDPS et la conception de chacun de ses quatre modules : i) le module d'acquisition de données et d'extraction de caractéristiques, ii) le module IDS, iii) le module IPS ainsi que iv) le module d'apprentissage continu et d'annotation humaine.

Le chapitre 5 se focalise sur l'aspect d'apprentissage automatique de notre IDPS. Notre module de détection est mis en oeuvre avec ses trois niveaux d'apprentissage en utilisant le corpus de données oneM2M décrit dans le chapitre 3. Différents algorithmes d'apprentissage et d'apprentissage profond Deep Learning sont expérimentés pour chaque niveau de détection afin de choisir les plus appropriés et les plus efficaces. Ce chapitre commence par la section 5.1 qui explique notre choix d'adoption des techniques d'apprentissage pour les niveaux de détection. Ensuite, nous présentons les métriques sur lesquelles nous nous sommes appuyés pour évaluer l'efficacité de chaque algorithme dans notre contexte de détection d'intrusion oneM2M, ainsi que l'environnement expérimental. De plus, deux approches principales sont étudiées: i) la détection basée sur des algorithmes d'apprentissage supervisés (section 5.2) et ii) la détection basée sur une approche de classification à une classe (section 5.3). Pour chacun des deux, les algorithmes expérimentés (définitions et outils) sont présentés, les différentes étapes de la mise en place des expériences sont expliquées, puis les résultats sont exposés, comparés et discutés. En ce qui concerne la première approche, l'apprentissage supervisé est choisi vu que les expériences menées dans la section correspondante s'inscrivent dans le contexte de la classification où nous disposons de données annotées et labélisées. Dans cette section, les trois niveaux de détection de notre IDS sont expérimentés, puis l'effet de la taille et de l'équilibre du jeu des données d'entraînement sur le processus de détection est étudié. Dans la dernière section de ce chapitre, nous examinons l'approche de classification à classe unique pour le premier et le deuxième niveau de détection. Dans le premier niveau, nous mettons en évidence la détection de tout comportement différent de la normale (connu pour la détection d'anomalies) ainsi que les techniques permettant de déterminer le seuil de normalité. Dans le deuxième niveau, l'approche de classification à une classe est adaptée pour permettre la détection des menaces inconnues ainsi que la multiclassification des menaces déjà connues (détection de nouveauté et multi-classification).

Le chapitre 6 conclut la thèse avec un résumé des principales contributions et une proposition détaillée de quelques pistes de recherche qui peuvent être suivies pour traiter davantage les problématiques exposées. For example, Smart-homes can be remotely controlled by cyber-criminals and Smart vehicles can be hijacked and remotely controlled to create panic among citizens.

The danger exposed by these Internet-connected Things does not only affect the security of IoT systems, but also the complete eco-system including web-sites, applications, social networks and servers, via controlled smart device as robot networks (botnet). In other words, compromising a single component and/or communication channel in IoT-based systems can paralyze the part or complete Internet network. In 2016, the Dyn cyberattack [START_REF] Kephart | The DDoS Attack on Dyn's DNS Infrastructure[END_REF] harvested connected devices installed within smarthomes and conscripted them into "botnets" (also referred to as a "zombie army") via a malware called Mirai. In addition to IoT systems vulnerabilities, attack vectors are evolving in terms of complexity and diversity. Consequently, more attention should be paid to the analysis of these attacks, their detection as well as the infection prevention and recovery of systems after the attacks.

Overview of Threats and Security Mechanisms in

IoT

Since security of pervasive IoT systems is critical, it is important to identify IoT threats and specify existing defense strategies. In this section, we introduce and categorize the IoT security threat categories as well as traditional defense techniques in order to provide the reader with the security necessary background for a better understanding of the dissertation.

IoT security threatens the security of traditional systems; However, IoT security mechanisms are different from those used in traditional systems, mainly for the following reasons:

• IoT systems are constrained in terms of computational capability, memory capacity, battery life and network bandwidth. Hence, it is not possible to deploy existing traditional security solutions which are often resource intensive.

• IoT systems are heavily distributed and heterogeneous systems. Thus, centralized traditional solutions may not be suitable. Moreover, the distributed aspect of IoT adds more difficulties and constraints in their protection.

• IoT systems are deployed in a physical environment which is unpredictable. Thus, physical attacks have joined the list of traditional security threats.

• IoT systems are connected to the Internet since each device can be accessed with its IP address. There is therefore an additional range of Internet-related threats.

• IoT systems are composed of a large number of constrained objects that generate huge amount of data. So it is easy to flood and attack these small devices on the one side, and the limited bandwidth of the networks on the other side.

• IoT systems cover a large number of heterogeneous protocols and technologies in the same system. Hence, the proposed IoT security solutions must take into consideration the large panel of these protocols and technologies in the same proposal Two main topics are covered in the rest of this section: the categorization of IoT threats and traditional defence mechanisms.

Categorization of IoT threats

Since the IoT systems are varied and are facing multiple challenges, IoT threats can be categorized into two types. The first type is about categorization depending on the layers of the IoT systems' architecture, while the second one deals with IoT threats categorization based on their design challenges. which are perception (physical) layer, network (transport) layer and application layer.

IoT threats categorization by layers

First, the perception layer is the hardware layer. It is composed of the different sensors and actuators that send and receive data using different communication standards such as Bluetooth, RFID and 6LowPAN. Second, the network layer is the one which ensures the effective routing/transmission of data/information. It uses communication protocols like WiFi, 3G, 4G, 5G, GSM, IPv6, etc. Third, the application layer, also called the software layer, is the top layer that provides systems with the business logic and offers the user interfaces to the end users (traffic monitoring, smart classroom, etc.).

Each layer may present multiple vulnerabilities [BSP + 11] as illustrated in Figure 1.1.

Since devices are placed at different physical locations, they may be exposed to environmental hazards [START_REF] Ida | A survey on security of IoT in the context of eHealth and clouds[END_REF] like rain/snow/wind or malicious attacks or unintentional damage. Also, stored data may be stolen via physical access. Sensors are tiny Things so, they suffer from resource constraint issues [START_REF] Ida | A survey on security of IoT in the context of eHealth and clouds[END_REF] (computational resources, memory or energy, etc. The-Middle).

IoT threats categorization by challenges

To understand IoT security attacks first, we introduce some IoT attack technical terms, then we present IoT challenges-based categorization.

Technical terms of the attacks

• Spoofing [START_REF] Atamli | Threat-Based Security Analysis for the Internet of Things[END_REF][START_REF] Conti | A Survey of Man In The Middle Attacks[END_REF] path. Regarding selective forwarding attack [START_REF] Wallgren | Routing Attacks and Countermeasures in the RPL-Based Internet of Things[END_REF], it is a data forwarding misbehavior where an attacker selectively forwards malicious packets while discarding genuine and important packets. Furthermore, blackhole attack [START_REF] Bostani | Hybrid of anomaly-based and specificationbased IDS for Internet of Things using unsupervised OPF based on MapReduce approach[END_REF] aims to disrupt normal data flow within a network. Initially, the attack fudges one or more faulty nodes as the best route(s); then, starts to drop data pack-Introduction and IoT Security Overview ets routed through the faulty path. On the other hand, wormhole attack [START_REF] Bostani | Hybrid of anomaly-based and specificationbased IDS for Internet of Things using unsupervised OPF based on MapReduce approach[END_REF] needs at least two faulty nodes strategically located in the network and connected via wired or wireless link. These malicious nodes tunnel the packets faster than normal track. They claim their route, to the rest of the nodes in the network, as the shortest way to transfer their information. Moreover, replay attack [START_REF] Atamli | Threat-Based Security Analysis for the Internet of Things[END_REF] considers the re-transmission or the delaying of valid data to gain unauthorized access within already established session.

• Tampering attack [START_REF] Atamli | Threat-Based Security Analysis for the Internet of Things[END_REF] is categorized into: i) Device tampering; and ii) Data tampering. The device tampering can be easily performed especially when an IoT device spends most of the time unattended. It can be easily stolen without being noticed and so used maliciously. The device can be stolen as hardware or just as software. The data tampering involves malicious modification of data. This can be data stored in databases or data transiting between two devices.

• Repudiation [START_REF]The STRIDE Threat Model[END_REF] is about devices doing a malicious action and then denying performing it. It is the case when a device sends a virus on the network without leaving any trace to identify it. This attack particularly threatens systems that do not have the ability to track and record prohibited transactions.

• Information disclosure [START_REF] Atamli | Threat-Based Security Analysis for the Internet of Things[END_REF] deals with unauthorized information access. • User privacy [AM14, ADMC17] is like information disclosure. Besides, a hacker does not necessarily need to have access to unauthorized information to learn about a user. This can be done by analyzing metadata and traffic.

• Cloning Nodes [GR14, SJS15, BJCF + 18] concerns reintroducing a clone of a node in the network or a component in a system after capturing the credentials and the characteristics of the original one. Such an attack enables the malicious user to control the system, insert false information, disable functions, etc. Once an object is under the control of the attacker without the knowledge of its owner (botnet), the entire network can be infected. • Connectivity: in IoT, connectivity between different components of the system is required whether physical or in terms of availability of services. For the first case, data from peripheral devices (sensors for example) have to be connected to an IP network with bridging devices which may be the cause for routing attacks as well as MITM attacks. For the connectivity in terms of services, changes in the availability of services should be notified to the respective devices so that the latter do not flood the system unknowingly with repetitive and non-available requests. As a result, isolation of malicious node(s) and detection of spoofing and repudiation attacks are difficult. Further, the node(s) can attempt to access unauthorized privileges without being screened from the outside network (elevation of privilege).

• Spatio-temporal services: events in IoT can be characterized by the amplitude of spatio-temporal impulse [START_REF] Basu | Design challenges and security issues in the Internet of Things[END_REF]. As a result, data from IoT devices of same systems should have reasonable temporal behavior and spatial geolocation. However, these spatio-temporal tags must be protected from malicious users to avoid replay attacks [START_REF] Basu | Design challenges and security issues in the Internet of Things[END_REF]. Also, the user's location data must not be revealed to unauthorized users. In the following, we discuss scenario after the intrusion has happened. A good detection system is the one which identifies the compromised situation and minimizes the loss by quickly identifying the attack(s).

There is a variety of IDSs. In [START_REF] Kasinathan | Denial-of-Service detection in 6lowpan based internet of things[END_REF], detection methodologies are categorized into i) misuse detection; ii) anomaly detection; iii) specification detection; and iv) hybrid detection.

• Misuse detection or signature detection (knowledge based) is a set of predefined rules (such as bytes sequence in network traffic or known malicious instructions sequence used by a malware) that are loaded and matched with events. When a suspicious event is detected, an alert is triggered. This type of IDS is efficient for known attacks; unfortunately it cannot detect zero-day [BHDA14] / unknown / unseen attacks [START_REF] Casas | Unsupervised Network Intrusion Detection Systems: Detecting the Unknown without Knowledge[END_REF] due to lack of signatures. Cyber security solutions prefer signature based detection as it is simple to implement and effective for identifying known attacks (high detection rate with low false alarm rate).

• Anomaly detection (behavior based) [START_REF] Patcha | An overview of anomaly detection techniques: Existing solutions and latest technological trends[END_REF] compares a normal recorded behavior with current input. Initially, normal network and system behavior are modeled.

In case of deviation from normal behavior, the detector considers it as an attack.

Introduction and IoT Security Overview

Anomaly is identified with statistical data analysis, mining and algorithmic learning approaches. Anomaly detectors are successful in preventing unknown attacks.

However, they tend to generate high false positive rate since previously unseen (yet legitimate) behaviors may be classified as anomalous. Anomaly IDSs make attacks more difficult to succeed since normal profile activities are customized for each system, each application and each network. It is difficult to know exactly which activities can be undetected.

• Specification detection has the same logic as anomaly detection. It defines anomaly as deviation from normal behavior. This approach is based on manually developed input specifications to capture legitimate (rather than those previously seen) behavior and its deviations. However, specifications require the user to give input. This method reduces high false alarm rate as compared to anomaly detectors.

• Hybrid detection is a combination of previous methods, especially signature and anomaly based detection. Hybrid detector improves accuracy by reducing false positive events. Most of the existing anomaly detection systems are in reality hybrid ones. They start with an anomaly detection, then try to relate it with the correspond signature.

Sixth, prevent intrusions with IPS (Intrusion Prevention System). An IPS is an

IDS which responds to a potential threat by attempting to prevent it from succeeding.

An IPS responds immediately and stops malicious traffic to pass before it responds by either dropping sessions, resetting sessions, blocking packets, or proxying traffic.

However, an IDS responds after detecting passed attacks. There are many types of IPS [START_REF] Patil | IDS vs IPS[END_REF] mainly in-line detection, layer seven switches, deceptive systems, application firewalls and hybrid switches. To get more details about IPS types, please refer to Patil et al. paper [START_REF] Patil | IDS vs IPS[END_REF].

Motivation and Problem Statement

With the increasing deployment of IoT systems and the fact that their security affects IoT systems themselves as well as other systems connected to the Internet, we focus our research on IoT security.

The traditional mechanisms presented in Section 1.1.2 can be used to protect IoT systems. However, some of them like encryption and authentication are insufficient and inadequate [START_REF] Raza | SVELTE: Real-time intrusion detection in the Internet of Things[END_REF] to protect IoT. IDSs are more suitable for this case of systems.

They can be considered as the last line of defense when other tools are broken. Another advantage of IDS is that they are variated and adaptable depending on needs.

They can be enhanced with learning logic such as Machine Learning (ML) and Artificial Intelligence (AI) techniques in addition to other advanced technologies. IPSs are also important for IoT systems in order to act after the detection of a threat (using an IDS) and thus prevent the infection and the shutdown of these systems and their connections. Moreover, day by day, researchers are devoting more and more effort to ML-based IDSs, particularly for their ability to detect unknown/zero day threats as well as their low false alarm rate. Therefore, we focus in this thesis on the study and the implementation of an Intrusion Detection and Prevention System (IDPS) based on ML for the IoT ecosystem in order to immediately detect and respond to potential threats as soon as they occur. Such an IDPS must respect the different challenges imposed by the IoT context presented in Section 1.1.1.2.2 especially heterogeneity, interoperability, connectivity and resource constraints.

With the unbridled growth in the number of IoT devices and their deployment in all areas, for all industries in all sectors, the need to move from the use of proprietary solutions with custom hardware and software to a multi-industry standard solution is more necessary than ever. We are therefore focusing our security framework towards the oneM2M standard [START_REF] Onem2m | oneM2m -Home[END_REF] which is an international partnership project launched in 2012 by eight of the world's leading ICT standards bodies. OneM2M standard enables the communication between heterogeneous devices and applications by defin-Introduction and IoT Security Overview ing a common M2M Service Layer for the multi-industry M2M applications. OneM2M standardizes the IoT ecosystem with respect to the exiting worldwide networks and standards. Therefore, securing the IoT ecosystem can be done through securing the oneM2M standard. Indeed oneM2M provides a large panel of security mechanisms to protect the service layer itself as well as the communication between the oneM2M architecture layers. However, none of the specified techniques protect the IoT systems once the malicious user has gained access to the system and bypassed the first-line security measures. This represents a critical and unexplored topic for the oneM2M standard. We decided therefore to make our ML-based IDPS a second line of security for IoT systems based on the oneM2M standard to detect and prevent intrusions. To the best of our knowledge, the ML-based IDPS proposal detailed and discussed in this thesis represents the first one for the oneM2M service layer.

Contributions

The main contribution of this work is the design and the implementation of an IDPS based on ML to protect the oneM2M standard. As discussed in Section 1.2, considering the need for a standardized IoT ecosystem especially with the significant growth in the number of connected devices, we focus our work on the oneM2M standard. Therefore, we defined the security attacks that threaten the oneM2M service layer and proposed an abstraction for the oneM2M flows named

GFlow. In order to implement a security mechanism based on ML, we used the GFlow abstraction for the creation of a oneM2M security dataset. This dataset was created with a real world platform and contains the oneM2M attacks as well as legitimate GFlows.

Thanks to the generated dataset, we proposed the first generic IDS for the oneM2M service layer based on edge ML. In order to choose the best ML algorithm for our needs, we experimented various shallow algorithms in a binary and multiple classification. All these studies have been the subject of the publication "An Intrusion Detection System for the OneM2M Service Layer Based on Edge Machine Learning" [START_REF] Chaabouni | An Intrusion Detection System for the OneM2M Service Layer based on Edge Machine Learning[END_REF] in the

International Conference on Ad-Hoc Networks and Wireless (Adhoc-Now).

A oneM2M IDPS based on ML was the focus of our paper "A OneM2M Intrusion Detection and Prevention System based on Edge Machine Learning" [START_REF] Chaabouni | A OneM2M Intrusion Detection and Prevention System based on Edge Machine Learning[END_REF] published in IEEE/IFIP Network Operations and Management Symposium (NOMS). In this work, we proposed an architecture for the oneM2M-IDPS. We detailed each module of our IDPS strategy. First, we described the data acquisition and features extraction module. Then, we proposed a new IDS based on three levels of ML detection. Furthermore, we enriched the IDS with two new modules: i) a prevention module to act against the detected threats and ii) a continuous learning module to provide an up-to-date IDPS that evolves with the evolution and emergence of new threats.

In the previous works, the IDS module used shallow or deep ML algorithms for the three different levels of detection in a binary and a multi-classification mode. In our journal paper "Anomaly and Novelty Detection and Prevention for IoT Security: A

Introduction and IoT Security Overview

Continuous Machine Learning Approach", submitted at the end of the PhD, we detect anomalies in the oneM2M standard on the one hand, and detect novelties in terms of threats on the other hand, in an intrusion detection and prevention platform. Regarding anomaly detection, we examined one-class classification algorithms (OCC) to detect behaviors that differ from the norm and we propose a new threshold determination method based on the decision tree algorithm. However, for the novelty detection, we extended the OCC's approach to i) detect new, unseen threats and ii) classify the already known ones. In addition, we designed the prevention workflow and we specified the prevention actions. Furthermore, we described in details the different scenarios that, autonomously or at human request, activate the continuous learning module which enables the continuous update of the IDPS system.

Organization of the dissertation

The rest of the dissertation is organized in five chapters which are further divided into multiple sections. An overview of these chapters is provided below:

In Chapter 2, we present and discuss the literature proposals dealing with the network IDPS in IoT systems. In Section 2.1, we start with the state of the art of IDPS for IoT that are not based on machine learning techniques. These works focus more on the deployment architecture and the detection strategy. After detailing each work separately, we discuss and compare them on the basis of their architectures (if it is distributed, centralized or hybrid), their detection methodologies (signature-based, anomaly-based or hybrid), their validation strategies (simulation or emulation) as well as their treated threats. Importance was also given to the strengths and weaknesses of each one of proposals. In Section 2.2, we dived into the IDPS based on ML techniques.

As in the first part, we provide a brief description for each work, then compare and discuss their deployments, their methodologies, the datasets they used, the threats they dealt with, and the ML algorithms they employed.

In Chapter 3, we give an overview of the oneM2M standard (Section 3.1): its archi-

Introduction and IoT Security Overview

tecture and its security mechanisms defined in its specifications. Then, in Section 3.2, we concentrate on the oneM2M threats related to the service availability since oneM2M is, first and foremost, about services for M2M and IoT systems. We propose the taxonomy and implementation of the oneM2M threats. We finish this chapter with details about the creation of the oneM2M security dataset. We start Section 3.3 by presenting the state of the art of free datasets used for the IoT NIDS creation. As no datasets exist for the oneM2M standard, we create our own dataset with respect to the taxonomy of oneM2M threats presented in the section before. The dataset is based on a new abstraction proposal for the oneM2M flows. This abstraction is the foundation of our IDPS.

In Chapter 4, we present the different challenges and aims respected and guaranteed with our oneM2M-IDPS proposal namely interoperability, autonomy, scalability and resource constraints respect, modularity in design, adaptability and extensibility and finally the active and real-time reaction (Section 4.1). Moreover, in Section 4.2, we detail its strategy as well as the architecture and the design of each of its four modules: i) the data acquisition and features extraction module, ii) the IDS module, iii) the IPS module and iv) the continuous learning module.

In Chapter 5, we concentrate on the ML aspect of our IDPS. We implement our detection module with its three ML levels using the oneM2M dataset described in Chapter 3. We experiment with different ML and Deep Learning (DL) algorithms for each detection level in order to choose the most appropriate and efficient ones. We start this chapter (Section 5.1) by explaining our choice to adopt ML and DL techniques for the detection levels. Then, we present the metrics we relied on to evaluate the effectiveness of each algorithm in our oneM2M intrusion detection context, as well as the experimental environment. Furthermore, we study two main approaches: i) detection based on supervised ML algorithms (Section 5.2) and ii) detection based on one-class classification approach (Section 5.3). For each one we introduce the experimented algorithms (definitions, tools and frameworks), we explain the different stages of setting up the experiments and then report, compare and discuss the results. Regarding the Introduction and IoT Security Overview first approach, we chose supervised ML because the experiments conducted in the corresponding section fall within the context of classification where we know already the classes into which the model should categorize the inputs. This section experiments supervised ML for the three levels of our IDS, then study the effect of size and balance of training dataset on the detection process. In the last section of this chapter, we examine the one-class classification approach for both the first and second ML detection levels.

In the first level, we highlight the detection of any behaviour different from normal (known for anomaly detection) as well as the techniques for determining the threshold of normality. In the second level, the one-class classification approach will be used to allow the detection of unknown threats as well as the multi-classification of already known threats (multi-class novelty detection).

In Chapter 6, we conclude the dissertation by summarizing the key contributions and discussing some directions for future work that can be followed to continue researching the exposed problems.

Introduction

As discussed in Chapter 1, our goal is to build an IDPS based on ML for the oneM2M standard. To our knowledge, there is no work in the state of the art that proposes an IDS or an IPS for the oneM2M service layer. Thus, we focus on the literature proposals dealing with the network IDPS as these are the works closest to our problematic. It is important to mention that most of the studies deal with intrusion detection and that few of them propose a prevention system; we will therefore use the term Network Intrusion Detection System (NIDS) more often to express even those with a prevention strategy.

This chapter is divided into two main sections: the first one treats the state of the art of NIDSs for IoT that are not based on machine learning techniques. We will focus more on the architectures and the strategies of the proposed systems. Works are detailed and compared with a special focus on the advantages and disadvantages of each one. The second part will deal with the literature of NIDSs that use learning techniques in their detection process.

Network Intrusion Detection Systems

To get a better idea about IoT NIDS architectures and deployments, we discuss, in the following, relevant works from the state of the art of NIDS IoT security. We focus on their detection mechanisms, architectures and validation strategies. The reviewed IoT NIDS papers provide a comprehensive overview of the evolution of the domain from the first proposed solution [START_REF] Raza | SVELTE: Real-time intrusion detection in the Internet of Things[END_REF] to the present days. We start with detailed description of the authors' solutions. Then we summarize them in a comparative Table 2.1 with the advantages and disadvantages of each solution.

State of the art of NIDS for IoT

This section details each IoT NIDS proposal with a special focus on architectures, detection methodologies and treated threats. • Intrusion Detection Model: compares the result of Action Flows Abstraction Model with the Abnormal Action Library. If it matches, the action flow is marked intrusive; otherwise, an anomaly detection method will be applied. For the latter, if the input transition sequence does not match entries of the Normal Action Library then an expert manual verification is needed (to avoid the false positives). If it is finally marked as safe, then the record is added to the Normal Library, otherwise, it is added to the Abnormal Action Library.

Regarding the Response Unit, it reports three types of attacks (jam-attack, false-attack and reply-attack) to a management station. Fu et al. experimented their solution on

IoT experiment environment but unfortunately, they did not present detection rates.

Midi et al. [MRMB17]

proposed Kalis which is claimed to be "the first approach to intrusion detection for IoT that does not target an individual protocol or application, and adapts the detection strategy to the specific network features". Kalis is a "network-based, hybrid signature/anomaly-based, hybrid centralized/distributed, online IDS that adapts to different environments". It can be deployed as a standalone tool on a separate external device (to overcome the fact that most IoT devices does not support software changes). It is an automatic knowledge-driven IDS which means that it chooses automatically detection techniques depending on collected network's features. Precisely, each attack could be done only in some IoT systems and not in others depending on the system features. For example, it is not possible to have replication attack in a single hop system. Kalis identifies even the presence, or not, of prevention techniques such as the use of cryptographic functions. Hence, it is effective and efficient regarding resource consumption. Kalis was implemented using Java on an Odroid level. 6LoWPAN packets are analyzed on the basis of the IP source address and the number of messages received over a particular time frame. When an undesired message is detected, it is quickly dropped by the attacked device and in parallel a notification is sent to the 6LBR which enables various types of security measures like denying further messages originated at a particular address and warning other sensors to also start blocking the attacker. Hence, with respect of the security policy, the 6LBR decided if an action must be triggered. The proposed framework has been evaluated with the Contiki OS and examined mainly its impact on the memory of sensing devices, the energy consumption, the computational effort and the delay in reaction against attacks.

Aldaej [Ald19] paper is one of the studies that focuses more on prevention strategy than on intrusion detection. The author proposes a prevention scheme based on the results of an existing IDS in order to actively defend and prevent the intrusions from

State of the Art of Network Intrusion Detection Systems for IoT

bandwidth attacks and more specifically DDoS. After each defined time threshold, the IDS nodes in the network send the collected information to a centralized IDS where log files are manipulated using forensic analysis and a report is generated. An Active Profile Database (APD) that provides a statistical analysis of each malicious node is updated continuously and used as input to the IPS algorithm. Depending on the malicious magnitude of the nodes and the predefined threshold, the prevention module updates and organizes its blacklist table. Aldaej's proposal contains also a reaction module that is invoked each time the blacklist is updated in order to react and maintain the performance on the IoT network. The most severe action is to isolate the malicious nodes.

Comparison and Discussion

In the following, a comparison of previously reviewed proposals for IoT NIDS is given (Table 2 have been deployed as practical solutions.

Regarding the validation strategy, two important parameters are identified: simulation and emulation. Simulation models the behavior of the target system in a different environment. It provides the basic behavior of a system; it may not necessarily adhere to the rules of the original system. Emulation duplicates the exact same target behavior of the original system operating in a different environment.

Therefore, emulation is more close to real life situation when compared with simulation [KCK + 13, FYC + 17, MRMB17]. Simulation is acceptable in IoT since the implementation of an IoT system requires a large number of physical devices to get closer to reality which is not an easy task for experimental research. The second point to discuss about validation is the evaluation metrics. Findings of the review show that researchers does not always provide the same metrics [Kum14, FEE + 18] in their works evaluation which does not allow a fair comparison. Some of works did not provide experimental results like in [KCK + 13] or did not even experiment their solution like in [START_REF] Jun | Design of Complex Event-Processing IDS in Internet of Things[END_REF].

Evaluation metrics need to be fixed and processed in each work to have a reliable comparison even if the used metrics depend on the objectives and aspects on which each study focuses.

About the treated attacks in reviewed papers, as in

Network Intrusion Detection Systems based on

Learning Techniques

Before moving from NIDSs for IoT to the ones based on learning techniques, we briefly introduce the machine learning ecosystem. Then, IoT NIDSs powered by learning techniques are surveyed, compared and discussed.

Learning Techniques

In year 1959 Arthur Samuel, a pioneer of Machine Learning, defined ML as "field of study that gives computers the ability to learn without being explicitly programmed" • Supervised learning is based on learning from labeled training data which means that training data includes both the input and the desired results.

• Unsupervised learning describes hidden structures from "unlabeled" data (no predefined classification or categorization in the observations).

• Semi-supervised learning is a combination of supervised and unsupervised ma-

chine

State of the art of NIDS for IoT based on ML

Since our main focus is towards the deployment of intelligent IDS in IoT, we now singularly discuss NIDSs for IoT employing learning techniques. The rest of the chapter gives detailed description of each proposal and in the next section, researchers choices and results will be discussed. Thing [START_REF] Thing | IEEE 802.11 Network Anomaly Detection and Attack Classification: A Deep Learning Approach[END_REF] + 19] proposed a fog-to-things architecture for their IDS. They deploy the detection process on two levels: the fog and the cloud layers of the system.

Illy et al. [IKMM

State of the Art of Network Intrusion Detection Systems for IoT

This architecture allows the authors, on the one hand, to address their computationally intensive ML detection caused by ensemble learning (a combination of ML algorithms).

On the other hand, it allows low latency detection thanks to fog detection and thus fast response. Therefore, an anomaly detection is first performed in the fog layer, if the traffic is identified as an attack, an alert will be sent to the security administrator and an additional analysis is processed in the cloud in order to classify the type of attack and provide it to him/her.

Comparison and Discussion

Conclusion

As shown in this chapter, many IDS solutions for IoT are possible with or without ML, although ML techniques allow the detection of unknown threats and reduce the false alarms rate. NIDSs literature shows that many criteria could influence the IDSs results: i) the deployed architecture (centralized or distributed), ii) the detection methodology (signature-based, anomaly-based or hybrid), iii) the validation strategy, iv) the detected threats, v) the used dataset for training ML models, vi) the used ML algorithm for anomaly-based detection and finally and most importantly the whole strategy of de-

State of the Art of Network Intrusion Detection Systems for IoT

tection and prevention. The IoT context is a challenging one with several constraints that need to be respected such as heterogeneity, resource constraints and connectivity.

To our knowledge, despite the many IDS solutions, there are no works in the state of the art that propose an IDS or an IPS for the oneM2M service layer. OneM2M standard is an important path towards a standardized IoT ecosystem with respect to the exiting worldwide networks and standards. Thus, it is important to guarantee its protection.

Consequently, we will focus in this thesis on the proposal of an IDPS for the oneM2M service layer while respecting the IoT constraints and addressing multiple gaps that were neglected in the state of the art of NIDSs for IoT. We will try to benefit from the strengths of the works presented in this chapter and combine the various advantages into a single IDPS solution while avoiding their weaknesses. We will work on the autonomy, the scalability, the modularity and other aspects of the IDS. We will also focus on the prevention strategy (which has been underestimated in the state of the art) and, most importantly, we will deal with the continuous learning and improvement of the IDPS throughout the lifetime of the IoT system. Before tackling the strategy and deployment of the IDPS, it is important to start by analyzing the oneM2M standard that we intend to protect.

Introduction

The number of connected Things is growing at a frantic pace, which has led to vertical, proprietary IoT solutions. To ensure a horizontal IoT cross-industry interoperability, OneM2M Standard Security and Dataset Creation eight of the word's leading ICT standards bodies introduce the oneM2M standard. Its main goal is to satisfy the need for a common Machine-To-Machine (M2M) Service Layer that guarantees the communication between heterogeneous devices and applications.

Since oneM2M is an international standard for IoT, its security implies the security of the IoT ecosystem. Hence, we focus our work on the security aspect of the oneM2M standard. In order to protect oneM2M-based IoT systems, we need to understand and examine its architecture. Moreover, we have to identify and study the attacks/scenarios we need to protect against.

This chapter starts with an overview of the oneM2M standard (Section 3.1): its architecture and the security mechanisms defined in its specifications. Section 3.2 details the proposed taxonomy of the threats related to the oneM2M standard. Moreover, Section 3.3 describes and discusses the dataset created related to the proposed taxonomy that would be used for our IDS proposal presented in Chapters 4 and 5.

OneM2M Standard and Security

OneM2M [START_REF] Onem2m | oneM2m -Home[END_REF] is a global standard initiative designed to converge towards an horizontal common platform for the multi-industry M2M applications (Figure 3.1) such as e-Health, intelligent transportation, industrial automation, smart homes, etc. Today,

OneM2M Architecture

The functional architecture of oneM2M is mainly composed of three layers as presented in Figure 3.3. First, the application layer provides functions related to the logic of the end-to-end M2M applications (e.g. remote blood sugar monitoring). Hence, an OneM2M Standard Security and Dataset Creation application is represented by an Application Entity (AE). Furthermore, the common service layer exposes all the functions specific to the M2M environment such as data management, notification and subscription management, message handling, etc. The service layer relies on the Common Services Entity (CSE) as defined by the oneM2M team (with no dependence with the underlying networks). CSE takes a request as input (RequestPrimitive) and gives a response as output (ResponsePrimitive). Finally, the network layer relates the underlying network services (e.g. device management) to the layer of common services with the Network Services Entities (NSE). Thus, a node is composed of a network layer, an application layer consisting of zero to several AE(s) and optionally a common services layer. However, a node without a CSE must be connected to another node that has one. Nodes only communicate together through the service layer or the application layer. Thus, there are several types of nodes: i) Infrastructure Node (IN) is the main node in a oneM2M domain and is unique in a multi-node architecture. Therefore, it contains all three functional layers and is characterized by additional features, such as its capacity to manage identifiers for all other nodes that are linked to it; ii) Middle Node (MN) represents a transition node and has all three layers; iii) Application Service Node (ASN) is like the MN except that no other node can connect to it (but it can connect to other nodes); and iv) Application Dedicated Node (ADN) looks like ASN but without the service layer. An M2M/IoT system is composed of a unique IN (as a main server), one or more MN (as gateways), many ASN (as devices) and many ADN (as constrained/small devices). used by the M2M system to communicate with a CSE on a M2M node. Typically, a poa contains information related to the network address.

• The AE refers to an application registered under the corresponding CSE. It has a poa attribute and can only have a CSEBase as a parent.

• The Container controls the data of an application. It is used to share information with other entities. Possible parents are AE and other Containers.

• The ContentInstance is a data instance that contains the useful data of a Container resource. The content of the ContentInstance can be encrypted. Unlike other resources, this resource shall not be modified once created. It can only be created, retrieved or deleted. Its only parent is a Container.

• The Subscription resource concerns subscription information about the oneM2M resource to which it is subscribed. NotificationURI (nu) refers to the list of one or more targets that the hosting CSE shall send notifications to when the corresponding Container has new data.

• The RemoteCSE is a representation of the CSE of a remote node. It can only have a CSEBase as a parent.

• The ACP refers to accessControlPolicy. It represents a set of access control rules

[One16] defining which entities have the privilege to perform certain operations within specified contexts and are used by the CSEs in making access decision to specific resources. An ACP can be defined mainly for a CSEBase resource, an AE or a RemoteCSE. For resources like Container, ContentInstance and Subscription, they inherit the ACP of their parent/ancestor resource.

After having detailed the oneM2M architecture structure, we summarize the available security mechanisms proposed in the specifications of the project.

OneM2M Security

Among the specification documents of the oneM2M standard, the oneM2M community is the process of verifying the validity of the identity that asks to authenticate (e.g. if an AE (Application Entity) or CSE (Common Services Entity) fits a certificate). Then comes the authentication step where the validated identity needs to be associated to a trustworthy credentials (for example in the case of certificate authentication, it is a digital signature that needs to be checked). In oneM2M, it is possible to use a centralized key distribution server hosted by a 3rd party or by M2M Service Provider with a symmetric key access. In the second place, authorization function (b) regulates services and data access authorizations for already authenticated entities. This security mechanism is based on ACPs (Section 3.1.1) which are sets of conditions that reflect permitted accesses and role based access control which can be a token based framework (e.g. OAuth). Moreover, identity management (c) guarantees the anonymity of the entities in the oneM2M systems. In fact, oneM2M provides pseudonyms that play the role of temporary identifiers to protect the true identity of the nodes which is considered as sensitive data in the oneM2M architecture [START_REF][END_REF]. This mechanism is used independently of authentication and authorization functions. Furthermore, security association (d) is about equipping communicating entities with security services such as confidentiality and integrity of the exchanged information thanks to keys provided during the identification and authentication phase (a). Hence, the exchanged contents of resources are encrypted. As an example, at the service layer, exchanged messages be-OneM2M Standard Security and Dataset Creation tween adjacent AE/CSE can be protected with a TLS or DTLS session. Last but not least, the sensitive data handling service (e) is mainly for the security of the application layer.

It provides sensitive functions which enable secure storage, cryptographic operations and bootstrapping methods for initial secrets (e.g. GBA). Consequently, an isolated secure environment is guaranteed for data storing and retrieving such as credentials, subscriptions, personal information and for functions including security algorithms. Finally security administration (f) is introduced to manage all of the sensitive resources (data and functions) as well as to configure and extend the security services themselves.

Indeed oneM2M provides a large panel of security mechanisms to protect the service layer itself as well as the communication between the oneM2M architecture layers. However, none of the specified techniques protect the IoT systems once the malicious user has gained access to the system and bypassed the first-line security measures.

Therefore, a second security line is required to detect and prevent intrusions from affecting the IoT systems. For this purpose, we have first to identify the attack scenarios we need to protect against.

OneM2M Threats

In order to protect the oneM2M standard, we decided to concentrate on threats related to the service availability in oneM2M which is, first and foremost, about services for M2M and IoT systems. Hence, we need to distinguish the related security threats. To do that, we specify threats by analogy with DoS taxonomy [DM04, SU14] since this type of attack is the one that corresponds to the availability of services in the network layer. We propose a taxonomy for service threats of the oneM2M standard. These attacks are based on legitimate behaviors that were exploited in malicious strategies.

An attacker or a defective device could overwhelm, consciously or unconsciously, the resources and/or the network until bringing down the system. Hence, we assume in the attack descriptions that the malicious user has previously gained access to the system.

Proposed Taxonomy for OneM2M Threats

OneM2M threats could be classified into four types as shown in Figure 3.5. to create or retrieve a huge number of AE or Container resources in a target node thus, a target will dedicate all its resources to respond to the fake operations instead of real legitimate needs.

• Amplification attacks have the same goals as the flooding attacks. However, they differ in terms of strategy. In flooding attacks we specify direct actions that will occur during the attack, although in the amplification attacks, we put in place simple legitimate actions that will be later amplified to generate massive service operations. This could be based on amplification or reflection tactics. Let's take the example of "announceTo" mechanism in the oneM2M standard. An announced resource (let's say AE1, we consider AE1 as a child resource of CSE1) [One18a] AEAnnc1 maintains some of the characteristics of AE1. Hence, changes in these AE1 characteristics will be transfered / notified to all the remote presentations of AE1 which means to all the elements of the list in the "announceTo" (in our example to AEAnnc1). Consequently, as represented in Figure 3.7, if we put a large list in the "announceTo" and each element of the list will announce, in cascade, to another list, this will amplify the traffic when changes will be made on the first resource AE1.

• Protocol Exploit Attacks have a different strategy to consume resources. They exploit specific features or implementation bugs of the oneM2M protocol operations to overwhelm and/or bring down the device. An example of protocol exploit is the creation of loopholes/deadlocks in the notification system. It occurs when two resources register to the changes of each other. Hence, if a resource A has changes, a notification will be sent to resource B that will make changes as a result to the notification received from A. Since B has been changed, a notification will be sent OneM2M Standard Security and Dataset Creation Figure 3.7: OneM2M amplification attack to A to make new changes as well. Such a loop will consume resources in vain.

• Zero-day Attacks correspond to unknown or new abnormal behaviors which are not previously seen or at least analyzed. This term is widely used in the security community since it refers to unpredictable threats.

Attacks Implementation

In this part, we proposed examples of the implementation of each oneM2M attack category presented previously. These examples were set up to create our oneM2M security dataset, as well as to implement and test our IDS oneM2M solution proposal later. Regarding flooding attacks and amplification attacks, two parameters have been changed

over the executions to have different instances in each type: N_OP which corresponds to the number of actions and N_TH which refers to the number of threads running the attack. Each type of attacks was running in centralized and distributed environments.

Some of the attacks cause slowdown in the response to legitimate requests, others bring the target down.

OneM2M Standard Security and Dataset Creation

Flooding Attacks

For this category of attack, we developed six types. The notation N_OP α N_TH stands for the expression "N_OP times with N_TH threads".

• AE Flooding (AF): In this attack we retrieve an AE resource N_OP α N_TH.

• Containers Flooding (CsF): In this attack we retrieve all the Container resources of a given AE N_OP α N_TH.

• Container Flooding (CF): In this attack we retrieve one Container resource of a given AE N_OP α N_TH.

• ContentInstance Flooding (CIF): We retrieve one ContentInstance resource of a given Container of a given AE N_OP α N_TH.

• Subscription Flooding (SF): In this attack we retrieve one Subscription resource of a given Container of a given AE N_OP α N_TH.

• Various Flooding (VF): In this attack we retrieve various resources from a given

CSEBase N_OP α N_TH.

Amplification Attacks

For this category of attack, we need each time at least two AE resources under the same CSEBase or in two different related CSE nodes (e.g. A and B). We developed three types:

• • Amplify Discovery AE (ADA): This attack is also based on the same principle as AOAOC, however it concerns all the contained AE under the same CSEBase resource as A. Thus B subscribes to all the Containers of all the AE resources at the same level as A.

Protocol Exploit Attacks

For this category, we implemented a loophole attack that is based on the poa attribute.

We have an AE resource A with a poa value for example "http://foo:8181". A is registered under a CSEBase with the same value of poa as A ("http://foo:8181"). We have also another AE resource named B (under the same CSEBase as A or in a remote CSE nodes). A will subscribe to a Container of B. Hence, for each new value under this Container, A will be notified thanks to the declared poa address. Since both the CSEBase and the AE node A have the same poa, the notification will be received by the AE A that will redirect it to the CSEBase and hence we create a loop (Figure 3.9). Figure 3.9: OneM2M loophole attack

OneM2M Dataset

After having analyzed the different threat scenarios against oneM2M standard, we present in this section the state of the art of free datasets used for the IoT NIDS creation. In addition, as no datasets exist for the oneM2M standard, we detail our own dataset creation.

State of the Art of Free Datasets

Free datasets can be used for NIDS implementation and/or validation. Unfortunately, there are no datasets created specifically for IoT networks. Hence, two strategies are possible: download an available dataset targeting traditional systems or deploy sniffing software in networks.

The most widely adopted datasets for NIDS are KDD99, and NSL-KDD which is an improved version of KDD99. Public datasets like PREDICT [pre], CAIDA [Ana], DEFCON -1-9: Basic features of individual TCP connections.

-10-22: Content features within a connection suggested by domain knowledge.

-23-31: Traffic features computed using a two-second time window.

-32-42: Host features are designed to assess attacks which last for more than two seconds.

KDD99 is popular and is the most used by the researchers for experimental analysis. Different works [CN12, KH05, SSJ14, AOF + 10, NFP10, AAD10] were established to reduce the number of features by selecting the most relevant ones from the initial 41 features. However, many researches have reported disadvantages of KDD99 like [START_REF] Gogoi | Packet and Flow Based Network Intrusion Dataset[END_REF], [START_REF] Vasudevan | SSENet-2011: A Network Intrusion Detection System dataset and its comparison with KDD CUP 99 dataset[END_REF]. Some of the important ones are [ANMH16, MS15, MC03]:

-The probability distribution of the testing and training sets are different, because of adding new attack records in the testing set [START_REF] Moustafa | UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set)[END_REF]. In other words, KDD99 suffers from unbalanced classification methods. Balance between the types of attacks and normal traffic is not maintained anymore.

-The dataset is out of date (1999).

OneM2M Standard Security and Dataset Creation

-There is evidence of simulation artifacts that could result in over-estimations of anomaly detection performances.

• NSL-KDD [START_REF] Moustafa | UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set)[END_REF][START_REF]NSL-KDD[END_REF] is the upgraded version of KDD99 to overcome its limitations. First, duplicated records in the training and test sets are removed. Second, there are a variety of records selected from the original KDD99 to achieve reliable results from classifier systems. Third, the problem of unbalanced probability distribution is eliminated. The major problem that persists in this dataset is the lack of modern low foot print attack scenarios.

• UNSW-NB15 [START_REF] Moustafa | UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set)[END_REF] In the following, the presented free network datasets are discussed. As shown in the comparison Table 3.1, KDD99 is the most popular network dataset. It has been used

OneM2M Standard Security and Dataset Creation

Datasets Advantages Drawbacks KDD99 [START_REF] Hettich | KDD Cup 1999 Data -The UCI KDD Archive[END_REF] • KDD99 is popular and the most used.

• Labeled data.

• It is based on 41 features for each connection along with the class label.

NSL-KDD [noa16]

• It is a better version of KDD99. • Labeled network flows.

• For machine and deep learning purpose.

• Provides network traffic (PCAP) and CSV files.

• Implements attacks such as Brute Force FTP, Brute Force SSH, DoS, Heartbleed, Web Attack, Infiltration, Botnet and DDoS.

• Not public.

• Not for IoT systems.

CSE-CIC-IDS2018

[noa18]

• Labeled network flows.

• For machine and deep learning purpose.

• Provides network traffic (PCAP), CSV and log files. However, it is designed for IoT devices proliferation and not for intrusion detection.

CICIDS and CSE-CIC-IDS2018 have labeled records but are not targeting IoT systems security despite their up-to-date attack list.

OneM2M Dataset Creation

As discussed previously, no dataset exists for the oneM2M standard, hence we decided to create our own dataset with respect to the taxonomy of oneM2M threats presented in Section 3.2.

OneM2M Dataset Features: GFlows Abstraction

We start by analyzing the communication model of the oneM2M service layer to decide about the features that will be stored for our dataset. OneM2M information exchange is [START_REF][END_REF]. Requests from an originator to a receiver contain mandatory and optional parameters depending on the requested operation and the involved oneM2M tree resources. As we need to create a dataset that could be used by all implementations of the oneM2M specifications, we need fixed characteristics to store. Therefore, our dataset is built only on the basis of the following mandatory parameters of the oneM2M messages:

OneM2M Standard Security and Dataset Creation

• requestIdentifier (rqi) is a string key that enables the correlation between a request and its corresponding response.

• From (fr) is a string parameter that identifies the originator of the request. It is needed for the receiver to verify the originator identity in terms of access privilege.

• To (to) refers to the identity of the receiver.

• Operation (op) integer parameter reflects the operation to be executed at the receiver: CREATE, RETRIEVE, UPDATE, DELETE and NOTIFY.

• responseStatusCode indicates the result status of the requested operation if it has been successfully or unsuccessfully processed. For example 2000 corresponds to OK status, 2001 refers to CREATED, 2002 is DELETED, etc. There is a large amount of values of responseStatusCode that are specified in the oneM2M specifications

[One16].
In analogy with the network IDS [CMZ + 19], we notice that considering only basic features (only the mandatory attributes of each request / response) will not give a global and detailed information on the threat in progress. Consequently, we introduce a new abstraction of the oneM2M standard flows that we named GFlows for Generated Flows. We built these GFlows on the messaging mechanism. GFlows will be the inputs to our IDS. A GFlow encompasses multiple oneM2M original flows on the basis of the key {from, to, op and responseStatusCode}. Such aggregation of flows makes the analyses (presented in the rest of this thesis) lighter, which is important in the context of IoT.

Thus, for each n exchanged flows, a set of GFlows is generated. Besides the GFlow key attributes, we generate the properties detailed in Table 3.2. To propose this flow abstraction, we have tried to cover as many combinations and properties as we think relevant to allow maximum threat detection. The final dataset considers all the GFlow properties except for From and To to respect anonymity. So in total we ended up with 26 features: op and responseStatusCode from the mandatory parameters and the 24 3.2 plus the label which could be either "NORMAL" or the exact name of the threat.

OneM2M Dataset Generation

In the rest of the thesis, we will concentrate mainly on oneM2M flooding and amplification attacks (previously detailed). To generate the threats dataset that will be used later in the IDS construction, we apply the different types of flooding and amplification at-

tacks

Conclusion

IoT is increasingly widespread. Hence, industrials tend to put in place proprietary solutions. OneM2M is an international standard created to ensure horizontal IoT crossindustry interoperability. In this chapter, we start by presenting the oneM2M standard architecture as well as the security mechanisms already introduced in the oneM2M specifications. Moreover, we propose a threat taxonomy of the oneM2M standard and then we define and implement the threats scenarios. We conclude this chapter by presenting the state of the art of free datasets used for the creation of IDS and we detail our dataset creation. To create our oneM2M dataset, we define an abstraction of the oneM2M exchanged flows.

In the next chapter, we propose an intrusion detection and prevention system (IDPS)

to secure the IoT systems based on the oneM2M standard.

Introduction

Due to the limitation of the security techniques presented in Section 3.1, in terms of detection and prevention of the IoT systems threats, we decided to propose an IDPS for the oneM2M service layer based on machine learning (oneM2M-IDPS). An IDPS [CMZ + 19] is a system which detects and responds immediately to potential threats as soon as they are carried out. It is mainly composed of two phases: i) the detection phase and ii) the response phase. We present in this chapter the different challenges respected and guaranteed with our IDPS proposal, then we point out its main goals. Moreover, we detail its strategy as well as the architecture and the design of each component / module of the implemented oneM2M-IDPS.

Before diving into this chapter, it is important to insist on our definition of the term "threat" as being either a security attack or abnormal/anomalous behavior that could lead to the bug or shutdown of the IoT system. Thus, for the rest of the dissertation, the words "threat", "attack", "abnormal behavior" and "anomaly" are used interchangeably to express any behavior that could affect the IoT system.

OneM2M-IDPS Challenges and Aims

Since we are in the context of security and IoT which are challenging domains as presented in Section 1.1.1.2.2, many characteristics need to be taken into consideration in order to build an efficient, effective and resilient IDPS system. We establish our proposal on the following features and goals:

• Interoperability: One of the strengths of our proposal is its interoperability with the other platforms implementing the oneM2M standard. In other words, any new device that wishes to join an existing IoT system or even any new platform using oneM2M that wishes to communicate with the already secured platform can easily be secured with our oneM2M-IDPS.

• Autonomy, scalability and resource constraints respect: We combine the fog and the cloud computing paradigms in our proposal (Section 4.2.2). Fog nodes are autonomous, scalable and have fast reaction in terms of detection and prevention.

In other words, each device protects itself independently from the rest of the system. Moreover, the IDPS respects resource constraints and therefore deals with resource-consuming steps in the cloud. Consequently , the oneM2M-IDPS intelligence is distributed between the fog and the cloud. The fog is for autonomous detection and prevention and the cloud is for retraining and continuous learning.

• Modularity in design: We decide to subdivide our IDPS into separate and independent modules in order to ensure better organization, separate functionalities and easier maintenance (modifications, evolutions, replacement, etc.).

• Adaptability and extensibility: It is about having an adaptable and easily extensible intrusion detection and prevention. The oneM2M-IDPS detection and prevention capabilities should not be frozen on known threats. First, the IoT threats are whether security attacks or abnormal behaviors that could lead to the IoT system bug or shutdown. Second, the solution should not only protect the system from already known oneM2M threats, but also be able to learn unknown threats over time. In other words, the system needs to be able to self-learn and adapt itself to new threats and new configurations of the IoT system. The IDPS is destined to supervise the environment and adjust itself according to every change.

• Active and real-time reaction: The prevention strategy against the detected threats should be through immediate and appropriate actions. It needs to be an active, real time prevention to assure the oneM2M services availability.

OneM2M-IDPS Strategy

Our oneM2M-IDPS strategy detects and responds immediately to potential threats as soon as they are carried out. It has the ability of the threat controlling in real time. It is composed of four main modules as shown in Figure 4.1:

• the data acquisition and features extraction module where the oneM2M messages are prepared to be injected to the IDS module,

• the IDS module to detect the threats,

• the IPS to prevent the threats from damaging the system, We detail each module in the rest of this section.

Data Acquisition and Features Extraction

This module captures the oneM2M messages to be analyzed, processed and enriched.

It sniffs the oneM2M flows composed of a pair of Request and Response messages as mentioned in Section 3.3. Then, features are extracted and processed to construct the GFlows that are fed to the intrusion detection module.

OneM2M Messages Sniffing

To sniff the oneM2M flows, there are two possibilities. The first uses existing network sniffing tools and the second is built on the oneM2M standard implementation platform. which reads Tcpdump pcap files enabling an easy-to-use, user friendly interface.

Free, Open Source Network Sniffers

• Wireshark [noaf, HBB + 14, AP12] is a popular, free and open source packet analyzer, under the GNU license. It is used for network sniffing and network analysis.

It captures live packet data from a network interface. Wireshark runs on Unix-like operating systems, Solaris, and Microsoft Windows. It uses libpcap as a library to capture and filter packets; then displays records with its GUI. This tool enables reading Tcpdump outputs. Wireshark decodes a large panel of protocols (> 400).

It supports preliminary inspection of attacks in the network. Its command line version is "tshark".

• Ettercap [noac, HBB + 14] is a multi-platform network sniffer. It is "a multipurpose sniffer/interceptor/logger for switched LANs" [noac] written by Alberto Ornaghi and Marco Valleri. Ettercap is known for its powerful ability in launching several different types of man-in-the-middle attacks. In addition, it provides users with many separate classic attacks and reconnaissance techniques within its interface.

It sniffs live connections and filters packets as well as many other features in both active or passive way.

• As a first step in our work, we used Wireshark as a convenient, easy-to-use tool to get a graphical overview. Then, we switched to Tcpdump since we do not need a graphical user interface for the final use.

Network sniffers

Advantages Drawbacks

Tcpdump [FK05, AP12, HBB + 14]

• Long product life with different updates and plenty of features.

• Well documented with a good community support.

• Easy remote access with Telnet connection.

• Cross-platform (has even been ported to Windows too).

• Less intrusive compared to Wireshark.

• Captures live packet data from a network interface.

• Saves captured packet data.

• Lightweight in terms of installation.

• Lacks critical analysis.

• Discards invalid packets (Not helpful for detecting broken packets) . • No real GUI or administrative console.

Wireshark [FK05, AP12, HBB + 14]
• Well documented with a good community support.

• Cross-platform.

• Supports large number of protocols.

• Graphical tool.

• Captures live packet data from a network interface.

• Saves and open packet data files.

• Provides detailed protocol information.

• No abnormal behavior notifications (Not an IDS). • Gathers information but cannot manipulate the network. • Resource consuming in terms of installation.

Ettercap

[noac, HBB + 14]

• Cross-platform.

• Can be used for LAN hacking techniques.

• Decodes several protocols.

• Collects passwords for multiple applications • Manipulates the network by killing connections, by injecting packets and commands into active connection(s). • Extensible with additional plug-ins.

• Sniffing is a secondary feature.

• Can be used as a hacker tool.

• Can be detected by other network tools (for example by Ettercap itself).

Argus

[noa17a, HBB + 14]

• Cross-platform.

• Decodes several protocols.

• Generates reports and audits about the network.

• Native file system as well as MySQL support.

• Efficient in large amount of network traffic analyzing.

• Not too obvious to master.

EtherApe [noab, HBB

• Displays graphics for network activity with a color coded protocols mode. • Hosts and links change in size with traffic.

• Can filter packets.

• Supports multiple frames and packet types.

• Supports file and real-time network traffic.

• Good reputation among the system administrator community.

• Supports only Unix OS.

• No command line version.

• Captures only packet headers. This implementation of the oneM2M standard is based on OSGi1 which is a framework that allows to isolate each component of a Java application and to manage its lifecycle independently: installation, start-up, shutdown, update and uninstallation. Each component is called a bundle. To sniff the exchanged flows, we used the publish/subscribe communication paradigm [START_REF] Eugster | The many faces of publish/subscribe[END_REF]. It is a messaging pattern that connects the producers of an information/event called publishers with the consumers of this same information called subscribers. In other words, the producers publish messages asynchronously through a communication channel called broker (previously set up for that purpose) and the consumers receive messages by listening synchronously to that channel. Publishers do not program the messages to be sent directly to specific subscribers, but instead categorize published messages into classes without knowledge of which subscribers, if any, there may be. Similarly, subscribers express interest in one or more classes and only receive messages that are of interest, without knowledge of which publishers, if any, there are.

To put in place this paradigm, we used the Java Message Service (JMS) API [Ora] which is a Java message-oriented middleware API that handles the producer-consumer problem. So we started by preparing an ActiveMQTopic [Fou] as a message broker (a topic unlike a queue allows the use of many subscribers to receive a copy of the message). Then, we modified the core bundle of the platform to publish the primitive requests/responses in transit. And we implemented a bundle for data acquisition and features extraction as a consumer. The architecture of this component is detailed in Fig-

OneM2M Features Extraction

The goal of this component is the extraction of the necessary information from the primitive requests/responses and the generation of the features composing the GFlow.

As presented in Section 3.3.2.1, GFlow is a new abstraction for the oneM2M messages introduced in [CMZS19] based on the mandatory parameters of the primitive requests/responses. A GFlow encompasses multiple oneM2M flows on the basis of a key from, to, op and responseStatusCode. For each n exchanged flows, a set of GFlows is generated. n is a dynamic parameter that needs to be fixed by the user. A GFlow is composed of 2 properties from the key which are op and responseStatusCode and 24 generated features (such as flags and counters) as presented in Table 3.2. We do not base our final GFlow properties on the from and to for purpose of respect of the anonymity of the IoT devices' identities. Hence, even if a malicious person try to hack or sniff these GFlows, no identity is revealed.

As explained before, we implement a bundle that will subscribe to the exchanged primitive requests/responses, extract the key properties and generate the 26 features of the GFlow.

We summarize the workflow of the oneM2M features extraction module in Figure 4.3. For the rest of the chapter, we use oneM2MFlowsBroker as the name of our bro-ker. counterFlows reflects the number of valid exchanged flows, knowing that a flow is considered as valid when request and response are not null and that the keys from, to, op and responseStatusCode are not null, as well. The flowCacheMap is the Java map where we aggregate the GFlows and store the different features. We start with an empty If the extracted key exists already in the flowCacheMap, we just update it's properties. If it does not exist, then we create a new GFlow with its key and its properties and finally add it to the flowCacheMap.

Intrusion Detection

The data acquisition and the features extraction phase has generated a list of GFlows which is the input to the IDS module. In order to have an efficient detection, we treat the GFlows in a "last in first out" (LIFO) order (Figure 4.4). In other words, we start by analyzing the last captured GFlow to quickly detect the threat and to get a real-time view of what's going on. All the GFlows will be analyzed in the end but with a notion of priority for the most recent exchanged messages. The processing of all GFlows is important in order to have a complete trace of the devices status over time.

After each analysis of a GFlow, the state "NORMAL", "UNKNOWN THREAT" or the exact type of the threat, is sent to the cloud in a Json format. The message contains the device identifier, the message identifier, the GFlow timestamp, the state as well as a description if needed. The cloud receives the state messages from the different devices as shown in Figure 4.4 and displays, thanks to the Codex Data Platform IoT, an overview of the devices in our IoT system, their current state as well as the history of their change of state. All these information are stored in the cloud for two main reasons.

First, because we are in the context of resource-constrained devices, so we do not want The IDS module is built on a fog-to-things architecture where we push the intelligence and the processing logic down near to data sensors. Fog computing concept was first introduced by Cisco [Cis12] to extend cloud computing at the network layer.

The fog layer is between the IoT sensors and the cloud. Fog computing places the intelligent processing and the computing power in the local area network level of the network architecture which means in hubs, routers or gateways (fog nodes). Consequently, building our IDS with a fog strategy guarantees the autonomy of the devices in their security with low latency. Given the effectiveness of machine learning algorithms for intrusion detection in general and zero-day attacks in particular compared to the traditional systems [CMZ + 19], we have chosen to rely on them.

An Intrusion Detection and Prevention System for the Service Layer

Therefore, in order to ensure a light detection given the resource constraints of the IoT devices, we have divided the detection into three levels of ML. As shown in Figure 4.5, a GFlow is first analyzed in a binary classification. It is either a benign input or a threat. If it is a benign GFlow, no action is taken. However, if it is a threat, further analysis is needed. By abandoning the in-depth analysis of normal flows as soon as possible, overloading and unnecessary consumption of resources is avoided. If the GFlow was identified as a threat to the IoT system, the GFlow needs to be analyzed more deeply to identify the exact type of the threat. It is where the second and third levels of detection come in. The GFlow can be classified as one of the main classes of oneM2M attacks (oneM2M flooding, oneM2M amplification, etc.). Otherwise, this

GFlow is considered as a new threat that will be analyzed and added to the threats database in the next step of the IDPS flow. Finally, if the GFlow is classified as oneM2M flooding or amplification, further classification needs to be carried out by the third level to identify the exact type of the attack. This detailed classification allows the identification of the subclass of the threat in addition to its main family.

Such a fog three-level detection allows on the one hand the autonomy and the fast response in order to reduce the potential damage a threat can cause. On the other hand, it allows stopping the analysis as soon as possible, especially for benign inputs, which represents an interesting strategy for a better resource consumption in the context of IoT. The choice of the ML algorithms for the three levels as well as details about their deployment in the IoT system will be the main subject of the next Chapter 5.

Intrusion Prevention

This module allows to warn the security administrator when an intrusion is detected and to apply the appropriate countermeasures in order to protect the system. The ultimate goal is to prevent infection of targeted devices and to avoid the corruption of the entire system caused by security attacks or abnormal behaviour. We detail in this section the prevention workflow as well as the defensive actions against the known threats.

Prevention Workflow

This prevention phase consists of two types of response depending on the detected threat: passive prevention and active prevention. As soon as a threat is detected at the first ML detection level (locally in the fog node), an early warning is sent to the security administrator as shown in the prevention workflow in Figure 4.6. This first alert warns the administrator about an in-progress threat against the concerned device. The threat alert is sent as soon as possible so that the operating environment can be prepared in advance in case of a serious matter. Once the second ML level detection is complete and the threat is identified as a known one, the device gets the exact type of threat from the third ML level and autonomously apply the already associated security action. The prevention actions (of the threats already taken into consideration by the ML models) are stored in the fog. A new status alert will be sent to the administrator to inform them of the current status of the device. These first steps are part of the passive phase that does not require human intervention. The IoT system is capable of protecting itself autonomously against the already known threats.

If the second ML level tagged the GFlow as unknown, the active prevention phase starts. For this phase, we need the threats database which contains the different GFlows that were identified previously as unknown and had not yet been processed by the continuous learning module. They can be already annotated by the administrator. In this case, the threats name is updated. If the administrator had also defined a security action for this threat, the table associating threat name to action will be also updated.

This database is stored in the cloud to avoid the memory consumption of the fog layer.

It is also shared for the entire IoT system.

The fog node verifies if the GFlow exists in the threats database. If it is annotated then it verifies if there is an associated action. In this case, the action is applied and a status alert is raised as explained in Figure 4.5. If no annotation is provided then an annotation alert is raised and if it is the same for the prevention action then it is the action alert that is sent to the security administrator.

In case the unknown GFlow does not exist in the database, it will be added and an annotation alert is triggered to capture the attention of the IoT human operator for an urgent intervention. The annotation procedure of the GFlow as well as the definition of the associated action need to be performed. The security administrator conducts his inspection about the suspicious GFlow by examining in detail the logs as well as the various provided indicators. The GFlow is enriched, on the one hand, by the source and destination addresses as well as the timestamp of the incident. On the other hand, data related to the device resource consumption / use are displayed in the Codex Data Platform IoT such as the disk, the memory, the network, the processes, the processor and the usb ports. The annotation is divided into families of threats and its sub-types such as flooding and amplification and their sub-types. The threat family must first be specified. If there are several threat types in the same family, then the exact type must be mentioned. Once the annotation is done and the prevention is defined, the action will be applied and the database will be updated.

Therefore, if the GFlow is unknown and no action is taken after five minutes, the infected device will be isolated from the network in order to avoid the whole system infection.

Prevention Actions

In order to protect the IoT system against the already known threats (flooding and amplification), we use the ACP tool which is a security mechanism that regulates services and data access authorizations for already authenticated entities (Section 3.1.2). As presented in Section 3.1.1, the ACPs are a set of access control rules defining which entities (defined as accessControlOriginators) have the privilege to perform certain operations (defined as accessContolOperations) within specified contexts (defined as accessCon-trolContexts) and are used by the CSEs in making access decision to specific resources.

An ACP resource is composed of two main fields namely privileges and selfPrivileges. The field privileges control just the permissions of one resource over another with a list of access control rules. Similarly, the selfPrivileges are included in the ACP resource, but the rules present are only applied to the resource itself (the ACP itself). A rule consists of:

• a list of resources for which the rule applies: accessControlOriginators (O),

• and authorized operations : accessContolOperations (Op).

The value to be applied for the permitted operations is the sum of the corresponding values presented in In the rest of this section, we define the prevention actions against the oneM2M flooding and amplification threats detailed in Section 3.2.2. The general idea is to define (or modify) an ACP for the threatened resource R against the originator O of the threat in order to prevent misused operations Op from compromising the target device.

Since an ACP can be defined mainly for a CSEBase resource, an AE or a RemoteCSE, the resources Container, ContentInstance and Subscription inherit the ACP of their parent/ancestor resource.

We make the following assumptions for the remainder of this section:

• the author of the threat O does not have the rights to create, update or delete the selfPrivileges of the ACP in R if it exists,

• R itself has full rights on the selfPrivileges of the ACP if it exists,

• the proposed preventive actions are carried out by R itself.

For each threat, we need first to verify if there is an ACP that is already defined for O in R as detailed in Figure 4 In the following, we examine flooding and amplification cases one by one to demonstrate the exact actions (summary in Table 4.3). We consider that there is already a defined ACP with the operations at risk that are allowed (which is the most common case). The core of AF, CF, CIF and SF attacks is the excessive retrieving of an AE resource A or its children resources. Hence, the Op that must be blocked is the retrieve.

So we need to subtract 2 from the original ACP value for O in A (since the Container, ContentInstance and Subscription resources inherit the ACP of their parent). In CsF, unlike the latter, it is about retrieving all the Container resources of an AE. To do that, it is the discovery operation that is used and not the retrieve so we need to subtract 32 from the original Op. VF is about retrieving various resources (with retrieve or discovery operations) from a given CSEBase. Therefore, we subtract 34 to block both the retrieve (2) and discovery (32) for the CSEBase resource. The same action needs to be processed for children if they have their own ACP. If they do not, they will inherit those of the CSEBase. Regarding the amplification threats, they involve two resources A and B to set up the attacks. In AOAOC, B will subscribe multiple times to the same adaptation of the system over time. It is true that machine learning techniques have the generalization power to detect threats similar to those already learned. However, it is less effective against significant changes. Consequently, we decided to add a module to our IDPS strategy to allow the system to autonomously learn about new threats and continuously update itself. This module uses the human annotation of the IPS phase to update the ML models of the different levels of the IDS module. We distinguish different cases where the ML models need to be updated. Depending on the case, the concerned ML level that requires updates differs. Before detailing the update cases, it is important to mention that there are two types of updates: ML training, the continuous learning module checks whether the data is sufficient and balanced between the different classes to be learned since imbalanced data degrades efficiency [START_REF] Krawczyk | Learning from imbalanced data: open challenges and future directions[END_REF]. Once a GFlow of the threats database has been considered in the models training, it will be deleted from the threats database and inserted in the learning database which is the one storing all the data used for training the models. This module will be activated in the following cases;

• When a new family of threats has been introduced by the security administrator while annotating the unknown GFlows, it is the second ML level that needs to be retrained or extended to take this new family of threats into consideration.

Consequently, the old model that was able to differentiate only between unknown • When different types of threats emerge within the same family, this time it is the third level of ML that needs to be expanded with a new model that will classify these different types of threats. So like the sub-types of flooding and amplification in the third level, we will have a new model that will differentiate the sub-types of an other family as presented in Figure 4.9 with the dashed shapes. This case also will be initiated automatically with no human intervention.

• When the definition of normal GFlow changes, it is the first level of detection that needs to be updated. There are two possible cases:

a GFlow that was detected as threat in the first ML level, was annotated as normal by the security administrator. In this case, the first ML level needs to be automatically retrained to improve its efficiency.

the administrator has made changes in the parameters of the device which To conclude, the proposed approach continuously integrates knowledge of newly discovered threats as well as changes, evolutions and new configurations into the basic behavior of the IoT system.

Conclusion

In this chapter we have presented the different challenges and goals of our IDPS proposal, namely interoperability, autonomy, scalability and resource constraints respect, modularity in design, adaptability and extensibility and finally the active and real-time reaction. Furthermore, we explained our strategy and detailed each module of our IDPS. We revealed the two possible ways to acquire oneM2M data after having presented the state of the art of the existing open source tools. We detailed the feature extraction approach. Moreover, we specify the detection methodology and the different steps and principles. Then, we described in details the prevention procedure. Finally, we presented the idea of continuous learning that characterizes our IDPS. The next chapter will concentrate on the experimentation of machine learning algorithms in the intrusion detection module.

Introduction

In the previous chapter, we detailed the strategy of our oneM2M-IDPS. It starts by collecting and analyzing the exchanged messages in order to generate the needed abstraction (GFlow). Second, it detects and classifies threats on three different levels. It responds immediately to potential threats with appropriate actions and finally continuously learns new behaviors in order to be up to date. We concentrate in this chapter on the detection module (introduced in Section 4.2.2) with its three Machine Learning (ML) levels. We experiment with different ML and DL algorithms for each detection level in order to choose the most appropriate and efficient ones. We start this chapter by explaining our choice to adopt ML and Deep Learning (DL) techniques for the detection levels. Then, we present the metrics we relied on to evaluate the effectiveness of each algorithm in our oneM2M intrusion detection context, as well as the experimental environment. Furthermore, we concentrate on each detection level experiments; we introduce the used ML and DL algorithms (definitions, tools and frameworks), display the results and compare them with each other to finally choose the most appropriate one for each detection level. In addition, we are conducting some experiments on the effect of training data size and balance on detection results. In the last section of this chapter, we examine the one-class classification approach for both the first and second ML detection levels. For the first level which is the most crucial one that will affect the overall oneM2M-IDPS performance, such an approach highlights the detection of any behaviour different from normal (known for anomaly detection). For the second level, the one-class classification approach will be used to enable the unknown threats detection (called novelty detection).

123

Machine Learning and Deep Learning for OneM2M Intrusion Detection

Learning Techniques Adoption and Metrics

As presented in Section 2.2.1, there are mainly three types of ML algorithms:

• Supervised learning is based on learning from labeled training data.

• Unsupervised learning is based on clustering the input data into classes on the basis of their statistical properties. It uses unlabeled data.

• Semi-supervised learning is a combination of supervised and unsupervised machine learning methods. Thus, training data includes both labeled and unlabeled data.

ML Adoption

Researchers are putting more and more energy in exploiting ML algorithms in IDS for many reasons [CMZ + 19]:

• Unknown/zero day attacks bypass traditional signature-based IDS; whereas supervised machine learning algorithms have an interesting potential in detecting new attacks.

• Traditional IDSs suffer from high false recognition rate which can be reduced with machine learning techniques. Compared to Signature/Non-Signature IDS, an ML equipped IDS employs statistical, genetic and heuristics or a combination of them to disseminate complex attack pattern to improve the detection rate with reduced False Negatives.

• Traditional solutions struggle with attacks that have complex properties, while machine learning can improve their detection accuracy and speed.

• Slight variations in attacks can not be effectively detected with traditional IDSs.

Even a Heuristic detector can be evaded by inverting the attack pattern. However, ML equipped IDSs learn recent traffic pattern continuously; hence, they effectively identify minor variations in traffic patterns. In other words, ML algorithms are efficient against the detection of variants [START_REF] Mishra | A Detailed Investigation and Analysis of using Machine Learning Techniques for Intrusion Detection[END_REF].

• Cyber criminals deploy evolving attack patterns to evade the detectors. Traditional IDSs, especially signature-based IDSs require continuous updates. However, ML IDSs based on clustering and outlier detection do not necessitate regular updates.

• Traditional solutions and more precisely signature based IDSs match each signature with IDS database. The process is CPU consuming (large signature database which grows exponentially [START_REF] Leung | Unsupervised Anomaly Detection in Network Intrusion Detection Using Clusters[END_REF]); whereas, ML based IDS consume low to medium processing. Hence, the processing element can be used effectively.

Consequently, learning techniques seem to be a suitable solution especially with the good results that they achieve in the different domains.

ML Metrics and Experimental Environment

In machine learning, there are numerous metrics that could be used to compare the performance of the ML algorithms. All the metrics are calculated from the basis of the standard confusion matrix of the ML theory which is represented in Figure 5.1 (in its binary version) with:

• TP: True Positive which represents the correct classification of the oneM2M GFlows threats as threats.

• TN: True Negative which represents the correct classification of the normal oneM2M GFlows as normal.

• FP: False Positive which represents incorrect classification where the normal oneM2M GFlow were classified as threats. High FP value increases the computation time since these false alarms need time to be processed (to no avail). How-ever, it is less harmful than the high FN value (defined below) especially in the security context.

• FN: False Negative which represents incorrect classification where oneM2M

GFlows threats are predicted as normal flows. The high FN is a serious problem because it means that the threat has managed to get through the IDS. In our study, we concentrate on the following metrics:

• Recall or detection rate reflects the samples that should have been identified as threats. Recall is one of the most important metrics in the security context. In addition to its ability to calculate successfully detected threats, it also reflects the rate of false negatives (FNR), i.e. intrusions that are missed. We will not present FNR in our results comparison since it can be deduced from the recall (as shown below).

Recall = T P/(T P + F N) = 1 -F N R = 1 -(F N/(T P + F N)) (5.1)
• Accuracy estimates the ratio of the correctly predicted flows to the entire dataset.

Accuracy = (T P + T N)/(T P + T N + F P + F N) (5.2)

• Precision estimates the ratio of the correctly predicted threats to the number of all predicted threat records.

P recision = T P/(T P + F P) (5.3)

• False Postive Rate (FPR) represents the false alarms: the ratio of the normal benign flows predicted as threats to all the actual normal inputs.

F P R = F P/(T N + F P) (5.4)

• Model Size is the size (in kilobytes) of the generated model that needs to be injected in the IoT devices for the ML classification. The smaller the models are the better is since we are in the context of tiny devices (IoT).

• CPU Training Time represents the time needed to build the ML model. This metric is important for the continuous learning module of Section 4.2.4.

The higher the first three metrics are, the better the ML model is. The lower the last three metrics are, the better the ML model is. The ML classifications were made offline (on a machine with Intel(R) Xeon(R) CPU E3-1225 v3 @ 3.20GHz and 16Go of RAM).

Experimentation of Supervised Learning Algorithms for Intrusion Detection in OneM2M

In this section, we examined different supervised ML algorithms for the three ML detection levels. We chose supervised ML because the experiments conducted in this section fall within the context of classification where we know already the classes into which the model should categorize the GFlow. This section will be divided into two main parts.

The first section will treat supervised ML detections for the three levels. In the second one, we study the effect of size and balance of training dataset on the detection process.

Supervised ML Detections

We begin this part with the definition of the experienced ML algorithms as well as the used tools. Then, for each detection level, we display the results, compare them and choose the most appropriate for each one.

Description of the Algorithms

It is important to remind that our generated oneM2M dataset is labeled as presented in Section 3.3. We chose to experiment four different shallow ML algorithms and a DL network.

• Naïve Bayes (NB) [START_REF] Witten | Data mining: practical machine learning tools and techniques with Java implementations[END_REF] is a probabilistic classifier based on Bayes' theorem. It is called "naïve" since the inputs features are simply assumed to be independent of each other, whereas in practice it is rarely true. This hypothesis of feature independence may be the cause of poor results when the data are not really independent of each other. NB classifier can handle continuous and categorical data.

• Support Vector Machine (SVM) [START_REF] Vapnik | The Nature of Statistical Learning Theory[END_REF] • Random Forest (RF) is one of the popular ensemble classifiers that combines many DT. Each tree picks randomly a data features as input, processes DT algorithm, then by majority or weighted voting, the forest generates the prediction result.

Unlike DT, RF is less humanly interpretable. from the output to the input. This step is about adjusting the different weights of the different neurons composing the network.

Used Tools and Frameworks

For the four first ML algorithms, we use Weka 3 tool [HFH + 09] (developed in Java) which offers a collection of ML algorithms for data mining tasks in an easy-to-use software. It supports different modes of use: command line, GUI, Java API, and so on.

We first use the GUI mode to facilitate the testing of the algorithms, then once the best algorithm is chosen, we integrate it into our IDPS using the Java API since the used oneM2M implementation (Codex Data Platform IoT) is developed in Java. Implementations of the NB and RF classifiers in Weka are named after the original algorithms.

However, for DT, we work with J48 [START_REF] Salzberg | C4.5: Programs for Machine Learning by J. Ross Quinlan[END_REF] which is an open source Java implementation to generate a pruned or unpruned DT. For SVM, we adopt SMO [ZYX + 08] which is the implementation of John Platt's Sequential Minimum Optimization algorithm for the SVM classifier.

Regarding the parameters of the algorithms, we tried different configurations, either for the first, or for the last detection level. In the end, as there are no big changes in results, we chose the default parameters as proposed by Weka.

For the DL, we used the Python Deep Learning library Keras [START_REF] Keras | Guide to the Sequential model -Keras Documentation[END_REF]. In order to obtain good detection results with DNN, different hyper-parameters have to be adjusted until the best combination is found. There are two types of hyper-parameters:

• hyper-parameters for the layers:

the number of hidden layers reflects the number of layers deployed outside the input and output layers, -the number of units in each layer which is an integer hyper-parameter that represents the dimensionality of the output space, -the activation function [START_REF] Dayan | Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems[END_REF] for each layer is an important feature in the artificial neural networks. It decides the relevance of the neuron information with a non linear transformation.

Machine Learning and Deep Learning for OneM2M Intrusion Detection

the kernel initializer [START_REF] Keras | Initializers -Keras Documentation[END_REF] for each layer defines the way to set its initial weights,

• hyper-parameters for the learning process [Ker19b]:

the loss function which represents the objective function that the model will try to minimize by changing the parameters (weights) of the model, -the optimizer in machine learning is a function that describes how to adjust the parameters of the model for the loss minimization.

Scikit-learn library [noae], a general ML library built on top of NumPy1 , was also used for pre-processing operations such as the standardization and scaling of data.

The First Level of ML Detection

Our first experiments in the search for the best algorithm have been applied to our oneM2M dataset (Section 3. Consequently, by process of elimination, we decide to use the J48 model for the first level of intrusion detection of our strategy.

The Second Level of ML Detection

As we have discussed in Section 2.1, the second ML level detection identifies the threat family of an incoming GFlow if it is a known threat (flooding or amplification). If it is a new one that we have not seen before, the model needs to classify it as unknown.

In this section, we will experiment only the classification of known family threats. The whole model with unknown threats detection will be discussed later in this chapter.

In this part, we use only the GFlows that are considered as threats in the oneM2M dataset (Section 3.12) with the labels corresponding to either flooding or amplification.

In Table 5 Amplification Classification Regarding the amplification classification (Table 5.5), the J48 algorithm achieves only the best accuracy (65.04%). SMO seems to have better and the percentages of data removed were chosen randomly. Both experiments were conducted on oneM2M dataset without redundant entries. In addition, we use the J48 algorithm since it had the best results in terms of threat detection for the first ML level as discussed in Section 5.2.1.3

Effect of Training Dataset Size

As presented in Figure 5.2 (left side), while decreasing the size of the training data, we note that the measures remain stable at the beginning until only 20% of the initial data remains. After 20%, the FPR starts to increase significantly. As expected, the size of the models decreases as the dataset decreases (Figure 5.2 right side). Consequently, for an acceptable ML performance, we can update the models with only 20% of the total oneM2M dataset size (only 44 654 GFlows instead of 223 273).

Effect of Balanced / Imbalanced Training Dataset on the Detection Results

We continued our experimentation with the J48 algorithm. Since with only 20% of the initial data, J48 succeeded to have acceptable performances, we experimented our data balance on that basis. We describe the imbalance of classes in terms of a ratio, i.e. 1 : 100 means that for every one example of normal GFlow, there are 100 examples of the other class which is threats. As shown in Figure 3.12, the oneM2M dataset is already imbalanced. First, in Figure 5.3, we fixed the amount of normal GFlows in the dataset and started to decrease the size of threat inputs. We found that the performance of the J48 remained acceptable up to the 100 : 160 ratio. After that, the recall and accuracy start to drop significantly.

In Figure 5.4, we experimented the opposite. We started from the stable point of the last experiment which is a ratio of 100 : 160, we fixed the threat GFlows and started to decrease the number of normal inputs. We found that the most stable results are with ratios 100 : 160 and 80 : 160. Consequently, it is better to update the models starting from a ratio of 80 : 160.

One-Class Methods

There are three main categories of OCC [Tax02]:

• Probability density estimation relies on estimating the density of the training target class and setting a threshold on this estimation to obtain a target and an outlier region. Several distributions can be assumed [START_REF] Barnett | Outliers in statistical data[END_REF], such as a Gaussian or a Poisson distribution, etc.

• Boundary methods are about optimizing a closed boundary around the target set instead of estimating a complete data density as in the first category of OCC. Unlike binary classification where the decision limit is supported from both classes, the OCC has to decide how narrow the limit should be around the data with only data from one class, which is not always obvious. Some boundary algorithms are nearest neighbor and one-class SVM.

• Reconstruction methods have not been primarily constructed for OCC. Their main goal is to model the data. In the context of OCC, these methods use prior knowledge to generate a model that best matches the target class data in order to classify new entries that belong to the same learned description. The auto-encoder networks are one of the best known examples.

We consider only four OCC algorithms for our oneM2M dataset. One of the boundary category which is one-class SVM (OC-SVM) and three of the reconstruction category namely the auto-encoder (AEnc), the sparse auto-encoder (SAE) and the variational auto-encoder (VAE). We will detail each algorithm in the rest of the section. To apply these methods we used the already splitted dataset used in Section 5.

AEnc, SAE and VAE

Since DNN was one of the best algorithms in Section 5.2.1.3, we decided to experiment neural networks in their one-class version which comes to the use of auto-encoders. We present, in the following, the different AEnc variations that we have examined for our use-case.

Algorithms Description

An AEnc [JMG95] is a neural network approach created to build identity for the training data while trying to compress the features space into smaller representation as shown in SAE [START_REF] Ng | Sparse autoencoder[END_REF] is a type of AEnc where we add a sparsity constraint on the hidden layers. In other words, the weights of the AEnc are penalized in the cost function.

This technique is mainly used to avoid overfitting. In AEnc, the number of neurons in hidden layers is less than the neurons of the input/output layers. Meanwhile, in SAE, the number could be less or greater. However, thanks to the sparsity constraint, not all the neurons will be "active". Some of them will be disabled as in Figure 5.6 (gray links). A neuron is considered "active" or as "firing" if its output value is close to 1. If it is close to 0, then it is being "inactive". Mathematically, an extra penalty term (penalizing activations of hidden layers) will be added to the optimization objective (the cost function) so that only a few nodes are encouraged to activate when a single sample is fed into the network. Many choices of the penalty term exist in the literature Thus, the encoder learns a data generating distribution that allows the decoder to take random samples from the latent space and generate outputs with similar characteristics to the inputs.

Threshold Determination

Apart from the training phase, we need to determine the threshold of the RE above which GFlows are considered as threats. In other words, the training phase consists in learning how to minimize the RE for the "normal" GFlows as much as possible so that when we have an abnormal GFlow, its RE will be high. In order to identify the threshold, we use the validation dataset.

Threshold State of the Art According to the literature, the threshold is typically set as the maximum of the RE of the training set [START_REF] Dau | Anomaly Detection Using Replicator Neural Networks Trained on Examples of One Class[END_REF]. However, experimentally, we remarked that such method is not appropriate for our use-case. Other threshold methods have been proposed in the state of the art, such as the three standard deviations search for hyperparameter optimization. We evaluate the AEnc and the SAE with one, three and five hidden layers (with the reflective mirror effect as in Figure 5.5). For the VAE, we experimented one and two layered encoder/decoder with and without sparsity (SVAE). We fix the same hyperparameters for all the networks and search only for the best combinations of the number of neurons (units). These choices have been made after multiple tests: the activation function is ReLu, the kernel initalizer is glorot_uniform, the loss function is the MSE and the optimizer is Adam. For SAE, we use L1 regularizer as activity regularizer and L2 regularizer as kernel regularizer both with 1e -4 as a regularization factor. For the VAE, we examined also sparse VAE with the same details as SAE and we use the sigmoid activation function for the latent layer. The number of the explored combinations varied from 25 (for the one-layered AEncs) to more than 100 combinations for the five-layered ones. We present in the presented results, the sparsity for SAE and for sparse VAE was added only to the first layer. The columns "Dim1", "Dim2" and "Dim3" reflect the number of neurons in the first, second and third layer respectively (Figure 5.5). Our AEncs are all symmetric so for example for the three-hidden-layered AEnc we will have a first input layer with the initial 26 features of a GFlow, then the first hidden layer with "Dim1" neurons, the second hidden layer with "Dim2" neurons (the latent layer), the third layer with "Dim1" neurons and finally the output layer with 26 features. For the VAE, "Dim1" is for the first layer and "Dim2" is for the latent layer. For the two layered encoder/decoder VAE, the second layer is composed of "Dim1 / 2" neurons.

As presented in Table 5.6, the best recall is achieved by an AEnc of 5 hidden layers with 85.20% which remains less than J48 binary classifier (about 10% less). This model has a high FPR of 48,74%. It is SAE with 1 hidden layer that has the lowest FPR of 19.48% but its recall is not very high (61.97%). An in-between results model is the 3 hidden layered AEnc and 5 hidden layered SAE. Both of them have acceptable recalls (greater than 71%) and a comparable FPRs (less than 35%) which remain close to the FPR of the binary DNN classifier. Both have also comparable accuracy and precision.

AEncs results with Statistically based Threshold

We compare in this paragraph our DT-based threshold to some statistically-based ones. To do that, we retrieve the AEncs models that have achieved more than 60% of recall and less than 50% of FPR in • the upper quartile q3_normal which is also called the 75th empirical quartile where 75% of the normal data lies,

• the inter-quartile iqr_normal which is the difference between the upper quartile and the lower quartile (where 25% of the normal data lies) of the normal data,

• and the absolute difference between the inter-quartile and the lower quartile abs(iqr_normal -q1_normal).

The fourth statistically-based threshold uses only the anomalous RE of the validation data namely the lower quartile q1_anomalous. The best recall is of 75.05% achieved by the first model with q1_anomalous threshold, however its FPR is the worst. The second and third models have almost the same recall of 74% but the third one that uses our DT threshold has the best accuracy, the best precision as well as the second best FPR of about 34% (2% more than the best FPR). The model number 5 which uses abs(iqr_normal -q1_normal) threshold has the best FPR. It has also the best precision as well as a comparable recall (2% less than the best recall).

Consequently, we can consider that the threshold based on DT and abs(iqr_normal -q1_normal) give the best results for our oneM2M use-case with 3 hidden layers AEnc of 7, 3 and 7 neurons for each one. Therefore, in the case where anomalous validation data are available, it is preferable to use DT-based threshold; however, when only normal data are available, abs(iqr_normal -q1_normal) seems more appropriate.

Final Choice for the First Level of ML Detection

As we can notice in detection. This being so, it is important to remember that learning only from normal behaviors enables a better generalization for the unknown and zero-day threats, thus models necessitate less updates. This is also essential, especially when no abnormal data are initially available for the models training (which is the case most of the time in the field of security).

In order to have a better basis for comparison regarding the generalization of the models, we decided to test both of them with new attack data that we had never seen before. This test is crucial for our final choice. Therefore, we recorded new oneM2M

GFlows data where we changed the frequency of sending GPS data of a position sensor in our system. Changing the sending frequency (two times less) is considered abnormal behaviour. To do that, we collected 11 349 new GFlows which are labeled as threats.

J48 was not able to detect this zero-day threat (0.1% of recall), however, AEnc achieves 97%. Since the generalization of the model for the detection of zero-day threats is really crucial, our final choice for the first level of detection will be the use of the AEnc model.

One possible way to improve AEnc results (regarding the test set) is to choose a higher threshold value, which will unfortunately lead to an increase in FPR (which will bother the administrator with false alarms) but could at least be a guarantee that we will not miss any threats. This increase in FPR could be compensated by the continuous learning module after a period of time.

One-Class Approach for Multi-Classification

This section concentrates on the second level of ML detection of our IDS (Section 4.2.2).

In order to classify a threat as one of the already known threats or as an unknown one Machine Learning and Deep Learning for OneM2M Intrusion Detection as presented in Figure 4.5, we need a model capable of:

• classifying the threats into the different known classes (flooding, amplification, etc.),

• detecting new threats (novelties) that are not available during the training stage.

To do this, we have opted to adapt the OCC approach to the multi-classification task, which is called multi-class novelty detection [START_REF] Jumutc | Multi-Class Supervised Novelty Detection[END_REF]. • AEnc + DT: we start with an AEnc that classifies a GFlow as known or unknown (novelty). If it is known then it will be analyzed with the DT model to get the exact threat family (Figure 5.10 (left side)). We chose DT since J48 had the best results in Section 5.2.1.4. The AEnc will be trained on the known threats as one class. So in the prediction phase, if the reconstruction error of the GFlow is greater than the fixed threshold, it is considered as a novelty. Regarding the DT model, it is trained only on the known threats (flooding and amplification at the starting point like in Section 5.2.1.4).

Techniques Description

• AEnc: same as above, we begin with novelty detection using the same AEnc.

However, if it is a known GFlow, the exact threat family will be determined thanks to a deep neural network composed of the same encoder function of the initial AEnc followed by fully connected layers as shown in Figure 5.10 (right side).

This DNN loaded the weights of the AEnc encoder and trained only the new fully connected layers, making the training phase light. 1. We consider that we know only the flooding attack (at the starting point) and we try to detect the amplification threat (as unknown) with an AEnc.

2. We consider that thanks to the continuous learning module of Section 4.2.4, our model knows at this second stage both flooding and amplification, and needs to be able to detect a new unknown threat that we have never seen before. For this use case, we use the recorded oneM2M GFlows data where we changed the frequency of sending GPS data (introduced in Section 5.3.3.3). Changing the sending frequency (two times less) is considered abnormal.

We start this section by finding the best AEnc model for the unknown threats detection (since it is common for both multi-class novelty detection techniques as well as for both use cases) then we compare the two different techniques for the multi-classification step.

For the first use case, we need to detect amplification threats with an AEnc trained only on flooding threats. The best results have been achieved by a three-layered AEnc with 20 neurons for the hidden layer. Regarding the threshold, we assumed that we

Conclusion

This chapter was about the experimentation of machine learning and deep learning algorithms for the different layers of our intrusion detection system. We started by explaining our choice to adopt learning techniques and we presented the used metrics as well as the experimental environment. Moreover, we described the different algorithms experimented for each layer of our IDS and we presented their detection results. Furthermore, we focused in the last section on the one-class classification approach that we have experimented for anomaly detection in the first level of our IDS. In addition, we have proposed, compared and discussed our DT-based threshold method for the OCC approach. And finally, we adapted it (OCC) to enable multi-classification as well as novelty detection in the context of unknown threats.

153

Chapter 6

Conclusion and Perspectives

In recent years, the spread of IoT devices throughout the world has been advancing rapidly. The connected devices are now deployed in all areas such as healthcare, smart-cities, education, etc. To integrate this rapid commercialization flow, little attention has been paid to the safety and security of IoT devices and networks which endangers IoT users and in turn disrupts the entire Internet-connected ecosystem including web-sites, applications, social networks and servers. In addition, security attack vectors have evolved bothways, in terms of complexity and diversity. Therefore, more attention needs to be paid to the analysis of these attacks, their detection, as well as to infection prevention and system recovery after attacks.

In this thesis, we have studied and proposed an Intrusion Detection and Prevention System (IDPS) based on Machine Learning (ML) for the IoT ecosystem in order to immediately detect and respond to potential threats as soon as they occur. We focused our security framework towards the international oneM2M standard which enables the communication between heterogeneous devices and applications by defining a common M2M Service Layer for the multi-industry M2M applications. To the best of our knowledge, our proposal is the first IDPS for the oneM2M service layer. It represents a consistent framework with a complete security workflow, from data collection to Conclusion and Perspectives threat detection and activation of appropriate actions. It also has a continuous learning module that provides an up-to-date IDPS, evolving with the evolution and emergence of new threats. Our proposal is also characterized by its interoperability, autonomy, scalability and respect for resource constraints, modularity in design, adaptability and extensibility, as well as active and real-time response.

The thesis was organized in six chapters. In Chapter 1, we presented the IoT security ecosystem and categorized its threats as well as its traditional defense mechanisms.

We had also detailed our motivation and the different paper contributions made during the PhD. In Chapter 2, we detailed and discussed the literature proposals dealing with the network IDPS in IoT systems, based or not on ML techniques. We compared their strategies, their architectures as well as their results and many other characteristics. In Chapter 3, we gave an overview of the oneM2M standard and its security mechanisms.

Then, we focused on oneM2M threats related to service availability, for which we proposed a taxonomy and various implementations. We finished this chapter with details about the creation of our oneM2M security dataset which is based on a new abstraction for the oneM2M flows. In Chapter 4, we exposed the different challenges and aims respected and guaranteed with our oneM2M-IDPS proposal. Furthermore, we detailed its strategy as well as the architecture and the design of each of its four modules: i) the data acquisition and features extraction module, ii) the IDS module, iii) the IPS module and iv) the continuous learning module. In Chapter 5, we concentrated on the ML aspect of our IDPS. We implemented our detection module with its three ML levels using the oneM2M dataset. We experimented with different ML and Deep Learning (DL) algorithms for each detection level. We studied two main approaches: i) detection based on supervised ML algorithms and ii) detection based on one-class classification (OCC) approach.

In the rest of this chapter, we will detail the main contributions of this study. We will then discuss their limitations and propose some directions for the future.

Contributions of Research

The key contributions of this research are as follows.

• The review of the literature proposals dealing with the network IDPS in IoT systems, with a special focus on those based on ML techniques: we provided a brief description for each work then we discussed and compared them on the basis of the architectures, detection methodologies, validation strategies, treated threats as well as the used ML algorithms and datasets.

• The proposal of an abstraction (GFlow) for the oneM2M messages: we proposed this abstraction by aggregating oneM2M flows (request/response) on a dynamic basis (the number of flows to be combined as a parameter). This aggregation avoids the resources consumption, which is important in the context of IoT. It also respects the anonymity of the IoT devices' identities.

• The design of a oneM2M dataset: with respect to the proposed threats taxonomy, we created a oneM2M dataset with a real IoT system. This dataset is based on the GFlow abstraction. It is labeled and composed of benign inputs as well as real oneM2M threats.

• The design of a oneM2M-IDPS: it is a complete security framework for the oneM2M standard composed of four main modules: i) the data acquisition and features extraction module where the oneM2M messages are treated and the GFlows are generated and prepared to be injected to the IDS module, ii) the IDS module to detect the threats, iii) the IPS to prevent the threats from damaging the system and iv) the continuous learning module to guarantee the update of the IDPS against the new threats. The last two modules have been neglected by most state of the art works. OneM2M-IDPS is characterized by its interoperability, autonomy, scalability and respect for resource constraints, modularity in design, adaptability and extensibility, as well as active and real-time response.

• The design and testing of a three-level Intrusion Detection module (IDS): it guarantees a light detection by eliminating the in-depth analysis of normal GFlows as soon as possible, which respects the resource constraints of the IoT devices. It avoids overloading and unnecessary consumption of resources.

• The proposal and experimentation of two different detection strategies for the IDS module: we studied i) detection based on supervised ML algorithms and ii) detection based on one-class classification approach. For each strategy, different ML algorithms were implemented, tested and compared.

• The proposal and testing of a new threshold determination method for anomaly detection based on the decision tree (DT) algorithm: it is based on the validation dataset which contains both normal and abnormal GFlows.

• The adaptation of one-class classification for a multi-class novelty detection: in the second level of IDS, we use the OCC approach to enable the detection of unknown threats as well as the multi-classification of already known threats.

These contributions were accompanied throughout the PhD by the implementation and deployment of our oneM2M-IDPS proposal on the IoT system that we have in the Atos Innovation Aquitaine Lab.

Limitations and Future directions

Obviously, improving the efficiency of machine learning detection results remains an open research topic. The IoT security community must always strive for 100% detection with zero false alarms while respecting IoT constraints. In this section, we will outline some limitations of our contributions and propose future directions to address them.

• The created oneM2M dataset contains only few service availability threats. It would be interesting to incorporate new varieties of threats, whether related to

Conclusion and Perspectives

the service availability or to another type. This will allow better training for the models on the one hand, and better testing for the models chosen for the three levels of ML detection on the other hand. Another interesting direction regarding the oneM2M dataset is to extend it with the values sent by the connected devices (payload). This would be a difficult task because each device has its own data type or data structure. It will therefore be challenging to have a common format or to find an adaptation of the ML algorithms so that they can take into account the different heterogeneous formats.

• Our IDPS is only proposed for the oneM2M service layer, which mainly allows only oneM2M-related threats to be handled. First, it would be curious to test if with the current framework it is possible to detect threats other than those related to the oneM2M standard. Second, it would be interesting to extend our oneM2M-IDPS to take into consideration the different layers of the IoT stack such as the network layer.

• OneM2M-IDPS deals not only with security attacks but also with abnormal behaviors. However, the notion of abnormal behavior is related to device types or so-called device profiles. Therefore, the design of an identification tool capable of autonomously building and detecting device profiles will be a promising enhancement for our IDPS.

• Regarding the learning process as well as model updates, the proposed oneM2M-IDPS builds the models offline from a database that is frozen at the time of training and then replaces the old models completely with the new ones. An important line of research for our proposal would be to enhance our continuous learning module with an incremental online learning mechanism to enable real-time learning. In other words, the models will be updated dynamically each time a new data is available.

• The deployment of the proposed oneM2M-IDPS in large-scale applications with Conclusion and Perspectives a federated learning strategy [KMY + 17], which is a communication-efficient and privacy-preserving approach, also appears to be a challenging research topic. This will first of all check the scalability of our proposal. In addition, the federated learning approach will enable distributed model learning from multiple clients (without sending data to a remote server or sharing local training data). Each client trains a local model and sends only updates to a centralized entity for aggregation. This approach highlights edge and fog computing that we have adopted in our proposal. 160

Contents 1. 1 1. 2

 12 Overview of Threats and Security Mechanisms in IoT 24 1.1.1 Categorization of IoT threats 25 1.1.2 Traditional defense mechanisms 34 Motivation and Problem Statement 39 1.3 Contributions . 40 1.4 Organization of the dissertation . 42 Internet of Things (IoT) is considered as the third industrial revolution [Rif14]. It is defined as "the interconnection, via the Internet, of computing devices embedded in everyday objects, enabling them to send and receive data" [Gra14]. IoT market is growing at a breathtaking pace, starting with 2 billion objects in the year 2006 to projected 200 billion by 2020 [IDC15]. IoT sensors/devices often collect and process spatial and temporal information for specific events and environment tackling various challenges [GBMP13], [STJ14]. The IoT objects or Things have become smarter, treatment is more intelligent and communications have turned instructive. Therefore, IoT is used in almost all fields: domestic, education, entertainment, energy distribution, finances, healthcare, smart-cities, tourism and even transportation [VF14]. Consequently, indus-Introduction and IoT Security Overview try, academia and individuals are trying to integrate the flow of fast commercialization with seldom attention to the safety and the security of IoT devices and networks. Such a neglect can possibly endanger the IoT users and in turn disrupt the vibrant ecosystem.

Figure 1 . 1 :

 11 Figure 1.1: IoT architecture & layer wise attacks

 or impersonation attack sneaks authentication credentials to gain unauthorized service access. Credentials can be stolen directly from a device, via eavesdropping the communication channel or by phishing. Spoofing can be categorized into: i) IP address spoofing; ii) ARP spoofing; and iii) DNS server spoofing. IP address spoofing refers to the falsification of content in the source IP header to mask sender's identity or to launch a reflected distributed denial of service (DDoS) attack. ARP spoofing attacks typically address resolution protocol (ARP). The spoofing attack resolves IP addresses to Media Access Control (MAC) addresses. When an attacker sends spoofed ARP messages across the Local Introduction and IoT Security Overview Area Network (LAN), attacker's MAC address will be linked with the IP address of a legitimate member of the network. Consequently, malicious parties can steal data, modify data in-transit or even stop traffic on a LAN. DNS server spoofing modifies a DNS server (a system that associates to each domain name an IP address) reroutes a specific domain name to unauthorized IP address of the infected server.

Figure 1 . 2 :

 12 Figure 1.2: IoT threats categorization by design challenges

 Figure2.1 is based on Suricata IDS5 . The proposed architecture is considered centralized despite the distributed IDS probes. In fact, IDS probes which are external modules, sniff the network in promiscuous mode then send data to the main NIDS (based on Suricata) via wired connection. When the latter matches traffic with an attack signature, an alert is launched to the DoS protection manager. The protection manager analyzes the attempt with additional data collected from other ebbits managers. Moreover, it reduces the false alarm (incorrect detection genuine data: false positives plus false negatives) rate. This solution overcomes SVELTE limitations since the IDS mechanism does not depend on the network architecture so it cannot be affected by DoS attacks against the IoT network. The suggested framework DEMO in [KCK+ 13], is scalable and real-word applicable for most IoT systems. This work was evaluated using a penetration testing (PenTest) system called Scapy [KCK+ 13] which is more light-weight then

Figure 2 .

 2 Figure 2.1: DEMO architecture

 xu3 development board and evaluated with real-world IoT devices. The system includes "small WSN 12 of six TelosB nodes, a Nest Thermostat, an August SmartLock, a Lifx smart State of the Art of Network Intrusion Detection Systems for IoT lightbulb, an Arlo security system, and an Amazon Dash Button". To sniff intermediate hops of data packets, Kalis was located near the middle portion of the WSN. Midi et al. replayed actual traces of network traffic of the prototype and added additional packets with 50 different symptom instances for each attack. The DR of Kalis is 91% with 100% accuracy, 0.19% CPU usage and 13978.62 KB memory consumption. Here, it is important to note that the traditional IDS use have around 48% DR with 75% accuracy, 0.22% CPU usage and 23961.06 KB RAM. Granjal and Pedroso proposal [GP18] deals with the combination of detection and reaction to various attacks (especially DoS attacks) in Internet-integrated CoAP 13 WSN. Unlike most of the IDSs for WSN, their framework is applicable to IoT systems based on 6LoWPAN protocol. The IDPS considers different requirements like cross-layered detection, detection of external and internal threats, quick reaction and attackers blocking, the extensibility of the system, its reconfigurability as well as the interoperability between communication technologies. Authors proposed a hybrid, collaborative detection design where both WSN devices and 6LoWPAN border router collaborate in the protection process. Resource consuming tasks are executed at the border routers (6LBR)

[

 Pug16]. It consists in the deployment of algorithms in order to obtain a predictive analysis from data (learning from examples). Deep Learning (DL) [SHM + 16] is part of a particular family of ML methods based on learning high-level abstract representations. DL groups generic algorithms mimicking the biological functioning of a brain without being intended for a specific task. Technically, DL is the application of artificial neural State of the Art of Network Intrusion Detection Systems for IoT networks (ANNs) with multiple hidden layers. There are mainly three types of ML algorithms:

 Bostani and Sheikhan[START_REF] Bostani | Hybrid of anomaly-based and specificationbased IDS for Internet of Things using unsupervised OPF based on MapReduce approach[END_REF] suggested a real-time hybrid of anomaly-based and specification-based IoT IDS. It enables the detection of sinkhole and selectiveforwarding attacks in 6LowPAN networks and can be extended to detect blackhole, rank and wormhole attacks. This IDS works mainly in two steps: specification detection in the router level and anomaly detection in the root level. For the first one, the routers analyze features locally from network traffic and host nodes. The results on the first step are sent to the root node for the second step and removed from routers to ensure lower consumption of memory and CPU cycles. The second step is the global intrusion detection where anomaly-based analysis is performed on incoming data packets at the root node. This step employs the unsupervised optimum-path forest algorithm (OPF)[START_REF] Rocha | Data clustering as an optimum-path forest problem with applications in image analysis[END_REF] to create clustering models for each source node router. With a MapReduce architecture platform, a parallel, distributed execution of anomaly detection according to clustering models is ensured. The final decision about tagging a suspicious behavior as an attack is done with a voting mechanism. The proposed system neither uses additional control messages, nor makes use of additional infrastructure. Consequently, it saves on communication and setting cost compared to other IDS. Authors evaluated the proposed technique on their own simulation tool. They prove appropriate real-time detection results with three main experiments each one done with ten simulations: the first experiment deals with values of evaluation criteria, the second experiment tackles the scale of the networks (small and medium size) to confirm independent scale-network IDS and the third one proves the possibility of extending the detected attacks such as wormhole. The experimental results of simulated scenarios showed that when both sinkhole and selective-forwarding attacks were launched simultaneously, the proposed hybrid method can achieve true positive rate of 76.19% and FPR of 5.92%. However, for wormhole attack the rates are 96.02% and 2.08%, respectively. Bostani and Sheikhan resumed in [SB16, SB17] the same architecture as given in [BS17] (i.e., based on distributed MapReduce Model). They proposed an anomaly and misuse agents with supervised and unsupervised optimum-path forest model instead of anomaly and specification based detection. They also reduced dataset features with a hybrid feature selection algorithm which is built on mutual information and binary gravitational search algorithm. Pajouh et al. [PJK + 16] presented an anomaly IDS built with Two-layer Dimension Reduction and Two-tier Classification (TDTC) for IoT Backbone. They concentrated mainly on low-frequency, common attacks: User to Root and Remote to Local attacks while their experiments were based on NSL-KDD 18 dataset [noa16]. Pajouh et al. deployed a two-layer dimension reduction to limit dataset's high dimensionality: • The first layer benefits from an unsupervised technique which is Principal Component Analysis (PCA) for feature dimension reduction (combine dataset features to construct new ones). So for NSL-KDD, the overhead complexity was reduced in TDTC since only 35 out of 41 data set features were used. • The second layer uses a supervised technique: Linear Discriminant Analysis (LDA) to make PCA reduced features better for classification and to improve the speed of intrusion detection. After analyzing the dataset classes, LDA finishes with two dimension dataset for NSL-KDD. This dimension reduction decreases the false positive, the DR and the computational complexity. The second step is the multilayer classification where TDTC uses Naive Bayes (NB) and Certainty Factor version of K-Nearest Neighbor (CF-KNN) to classify inputs. Pajouh et al. started with NB for anomaly detection then results are refined with CF-KNN. Their work proved computation reduction of about ten times with faster detection and less resource requirements. They achieved a DR of about 84.86% for binary classification with 4.86% of false alarm. Lopez-Martin et al. [LMCSEL17] claimed ID-CVAE to be the first to apply conditional variational auto-encoder (CVAE) and the first to perform feature recovery in NIDS. CVAE, which is considered as an unsupervised technique, was trained in a supervised strategy where class labels are integrated within the decoder layers. Instead of using a threshold to identify intrusions, their anomaly-based method is based on a discriminative framework that utilizes intrusion labels to reduce the reconstruction error. Another key strength in their study is that ID-CVAE performs only a single training step to generate only one model from multiple trainings depending on the number of different labels like in variational auto-encoder (VAE). This characteristic makes the ID-CVAE a suitable option for IoT systems due to the efficiency in computation time, flexibility and accuracy results. The selected dataset for ID-CVAE training and testing was a refined version of NSL-KDD. It ended with 116 features and 23 possible labels. Lopez-Martin et al. achieved 80.10% of accuracy and recall and 81.59% of precision, which they show to be better than the results of well-known algorithms like random forest (RF), linear SVM, multinomial logistic regression and multi-layer perceptron. The authors insisted on the efficiency of their feature reconstruction algorithm and proved that the recovery of missing categorical features reached 99%, 92% and 71% of accuracy with three, 11 and 70 values, respectively.

3 .

 3 Rathore et Park[START_REF] Rathore | Semi-supervised learning based distributed attack detection framework for IoT[END_REF] deployed a novel fog detector using ELM-based Semisupervised Fuzzy C-Means (ESFCM) NIDS. This distributed IDS handles geographically distributed and low-latency IoT detection for limited resources and networks via fog computing. Supervised ML does not detect unknown attacks despite its good accuracy. Unsupervised ML has lower accuracy but, has the capability to detect unknown / zero-day attacks. Hence, Rathore et Park proposed a semi-supervised approach using the supervised and unsupervised ML for labeled and unlabeled inputs. For the unsupervised learning, Fuzzy C-Means (FCM) was the chosen algorithm (one of the widely used in clustering). FCM selects unlabeled data and assigns each input to one or more clusters with several degrees of membership. While the supervised part deploys Extreme Learning Machine (ELM) for effective and efficient detection. Hence, the authors proposed an ESFCM classification where Semi-supervised Fuzzy C-Means (SFCM) works with ELM classifier for a faster detection of known and unknown attacks. The IDS starts by generating a model (M) after having trained the ELM classifier on labeled dataset. Then, SFCM algorithm learns from both, labeled and unlabeled data to assign a degree State of the Art of Network Intrusion Detection Systems for IoT of membership to the unlabeled inputs. The unlabeled instances that have better opportunity to belong to one class, are then classified using the trained model M and added to labeled data according to defined threshold. Moreover, the remaining unlabeled data are re-clustered with SFCM and retrained with ELM until all instances are assigned. Finally, a trained model is generated for labeled and unlabeled data. Two types of evaluation for the proposed algorithm were established using the NSL-KDD dataset after scaling and preprocessing; i) a comparison between the authors' distributed solution and a centralized cloud-based framework; and ii) the effectiveness of the ESFCM was compared with traditional machine learning methods in terms of standard measures. Results show better performance of 11 ms in terms of detection time and 86.53% accuracy. Moustafa et al. [MTC18] proposed an ensemble network intrusion detection technique based on established statistical flow features to mitigate malicious events, particularly botnet attacks against DNS, HTTP and MQTT protocols utilized in IoT networks. Their solution can be divided into three steps: 1. A set of features are extracted from the network traffic protocols MQTT, HTTP and DNS protocols via deep analysis of the TCP/IP model. Authors employed Bro-IDS tool for the basic features and developed a novel extractor module (which works simultaneously with Bro-IDS) to generate additional statistical features of the transactional flows. 2. A feature selection step where correlation coefficient is applied on result features to extract the most important ones. This step enables the reduction of computational cost of NIDS. An ensemble method where the network data is distributed with AdaBoost (Adaptive Boosting) algorithm. Then, Decision Tree (DT), NB and ANN ML algorithms are deployed to detect attacks. The choice of the classification techniques is justified by calculating the correntropy measure. The AdaBoost method enhances the performance of the detection compared to separate ML algorithms. It can deal with the small differences of the feature vectors via computing an error function. The error function is assigned to each instance of the distributed input data to learn and decide which learners can correctly classify each instance. To extract the best features and evaluate the proposed ensemble technique, Moustafa et al. used the UNSW-NB15 19 [MS15] and NIMS botnet datasets [noad] with simulated IoT sensor data. Experiments results have high DR and a low FPR compared to existing state-of-the-art techniques. The ensemble strategy achieved between 95.25% and 99.86% of DR and 0.01% to 0.72% of FPR. Nguyen et al. [NMM + 19] came with an autonomous self-learning anomaly-based IDS (DÏoT). Their solution is composed of a Security Gateways that monitor the system devices and an IoT Security Service (which could be a service provider) responsible for detecting anomalies in a device-type-specific mode. In other words, devices of the network are autonomously clustered into types on the basis of their manufacturer's hardware and software configurations. Then anomaly models will be generated for each device type. Nguyen et al. claimed to be the first to use the distributed federated learning approach in anomaly IDS. Models are trained locally in each Security Gateway then aggregated into a global model at the Security Service. The used ML algorithm is Gated Recurrent Units (GRU) which is an recurrent neural network (RNN) able to train efficiently with few training data according to the authors. Consequently, final GRU models are the result of a collective learning collected from the different Security Gateways while preserving privacy. This IDS solution is communication-efficient and seems to be suitable for distributed systems like IoT. The authors evaluate their proposal in a real-world smart home deployment (with more than 30 off-the-shelf IoT devices) in the detection of the Mirai malware. They show that DÏoT has a DR of 95.6% with no false alarm in 257ms (which is fast).

Figure 2 . 3 :

 23 Figure 2.3: State of the art intrusion detection results

Figure 3 . 1 :

 31 Figure 3.1: OneM2M commun service layer

Figure 3 . 2 :

 32 Figure 3.2: OneM2M service layer in the TCP/IP layer

Figure 3 . 3 :

 33 Figure 3.3: OneM2M architecture

Figure 3 .

 3 3 schematizes the OneM2M Standard Security and Dataset Creation main node types. As detailed earlier, oneM2M is mainly about the service layer. Hence, at this point, we concentrate on the CSE. It allows to manage the resources of the node through oneM2M requests that follow the CRUD+N model (C for CREATE, R for RETRIEVE, U for UPDATE, D for DELETE and N for NOTIFY).

Figure 3 . 4 :

 34 Figure 3.4: OneM2M resource tree

 focuses on security and privacy aspects in TS-0003 [One18b]. OneM2M contributions in terms of information security seem to be an interesting step [TKG + 17] to provide a sustainable development for both M2M and IoT applications while facing the challenges of M2M security and privacy. The oneM2M security strategy is based on six main categories: a) identification and authentication, b) authorization, c) identity management, d) security association, e) sensitive data handling and f) security administration. To start with, identification (a)

Figure 3 . 5 :

 35 Figure 3.5: OneM2M threats taxonomy

Figure 3 . 6 :

 36 Figure 3.6: OneM2M flooding attack

 Figure 3.8: AOAOC attack

[

 def], ADFA IDS [noaa], KYOTO [STO+ 11] and ISCX 2012 [isc] attack datasets are available for evaluation and testing. The latest are either composed of unlabeled data, or are inaccessible from some countries or are specific domain data. Moreover, datasets suffer from i) privacy issues; ii) the heavy inputs anonymization; and iii) the non reflection of current security attacks.OneM2M Standard Security and Dataset Creation• KDD99 [HB99] is a dataset used for detection of "bad" connections from the "good" ones at the Third International Knowledge Discovery and Data Mining Tools Competition[START_REF] Xiang | Design of Multiple-Level Hybrid Classifier for Intrusion Detection System[END_REF] for building the robust NIDS. The dataset is the feature extracted version of DARPA dataset [dar] (DARPA is a base raw dataset). KDD99 contains records from military network environment with injected attacks which can be categorized into: i) Denial of Service; ii) Remote to User; iii) User to Root; and iv) Probing. KDD99 is based on 41 features for each connection along with the class label using Bro-IDS tool (presented lately). The features are grouped into 4 types [HB99]:

 was created in 2015 by the Cyber Range Lab of the Australian Centre for Cyber Security (ACCS) with IXIA PerfectStorm tool. Its goal is to generate hybrid real modern normal activities and synthetic contemporary attack behaviors. It is about two million and 540,044 records which are stored in four csv files. Those records are generated from 100GB captured raw traffic with tcpdump tool [tcp17] (in pcap files). This dataset has nine types of attacks, namely, Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic, Reconnaissance, Shellcode and Worms. Fig. 3.10 illustrates steps to generate UNSW-NB15 dataset.

Figure 3 .

 3 Figure 3.10: How to generate UNSW-NB15 dataset

Figure 3 .

 3 Figure 3.11: OneM2M flow

Figure 3 .

 3 Figure 3.12: OneM2M dataset

Figure 4 .

 4 Figure 4.1: OneM2M IDPS strategy

 A sniffing tool [HBB + 14] aims to monitor the network transit traffic from source to destination. It can be used to capture, examine, analyze and visualize packets or frames. The idea behind such tool in the oneM2M-IDPS is to extract the oneM2M flows from the sniffed network packets. Since many sniffers exist in the state of the art, we choose to detail and compare the free, open source ones. • Tcpdump [tcp17, HBB + 14] is the most popular, powerful and widely used packet analyzer. It is a TCP/IP command-line tool which enables capturing, analyzing, saving and viewing packet data. Van Jacobson, Craig Leres, and Steven McCan-neIt develop Tcpdump at the Lawrence Berkeley Laboratory, UC, Berkeley. Tcpdump captures live packet data from a network interface. An interesting feature in Tcpdump is the possibility to save the captured packets in a pcap file for a further analysis. Tcpdump uses the libpcap library to capture packets. Libpcap, is frequently used by other capture programs. Tcpdump tool is available for most of the Linux/Unix based operating systems. The most popular open source GUI (Graphical User Interface) based on Tcpdump is Wireshark (third-party software)

ure 4 . 2 Figure 4 . 2 :

 4242 Figure 4.2: Architecture oneM2M platform-based sniffer

oneM2MFlowsBroker.

 As soon as a new exchange of request/response flow takes place, we verify if the counterFlows has reached n. If it is the case, we remove from and to and send the GFlow to the IDS module. At the same time, we initialize the flowCacheMap and the counterFlows. If counterFlows has not yet reached n, then we increment it by 1.

Figure 4 . 4 :

 44 Figure 4.4: Fog to cloud state message

Figure 4 . 5 :

 45 Figure 4.5: Flow chart detection

Figure 4 . 6 :

 46 Figure 4.6: Flow chart prevention

Figure 4 . 7 :

 47 Figure 4.7: Prevention action workflow

 1. re-training or extending an existing ML model to take into account new behaviors / inputs (the new model will extend or replace the old one), 2. training a new model, previously non-existent, to have a new type of classification (the new model will be added next to the old ones). Both the retraining and the training of a new model are carried out in the cloud (using threats database) to avoid the exhaustion of the devices resources. Once the models are ready, they are automatically injected in the corresponding devices (the size of the models will be studied in the next chapter). It is important to specify that before any

Figure 4 . 8 :

 48 Figure 4.8: Continuous learning of families of threats

Figure 4 . 9 :

 49 Figure 4.9: Continuous learning of new threat types under the same family

Figure 5 .

 5 Figure 5.1: Confusion matrix

 is a classifier based on finding the best hyperplane (in the feature space) separating two data classes by maximizing the distance between the hyperplane and the closest data points of each class. The support vectors (from where comes the name of the classifier) are data points that lie on the margin of optimum separating hyperplane. If this hyperplane decision boundary has succeeded in separating the two classes well, it means that the resolution of the classifier is a linear combination of the support vectors. However, if the classes are not linearly separable, then one solution could be to map the data to a higher feature (dimensional) space where SVM can define a better separating hyperplane. This technique considers the kernel functions. Various types of dividing surfaces can be defined thanks to the kernel method, such as linear, polynomial, Gaussian Radial Basis Function (RBF), etc.• Decision Tree (DT) is a tree-like structure composed of decision nodes, branches and leaf nodes. A decision node represents feature (or attribute), the branch represents the conjunction of features that lead to the leaf nodes which represent the classification classes. DT can work with discrete as well as continuous value attributes. It learns to partition on the basis of the attribute value. There are many DT algorithms. The best known are ID3[START_REF] Quinlan | Induction of decision trees[END_REF] and C4.5[START_REF] Quinlan | C4.5: Programs for Machine Learning[END_REF] that build the tree automatically using the concept of information entropy. Each node of C4.5 chooses the best attribute to split the set of data samples into subsets with the highest possible information gain (entropy). This operation is performed recursively on the smaller subsets until all the training examples have been classified.

•

 Deep Neural Networks (DNN) [SHM + 16] is an application of artificial neural networks (ANNs) with multiple hidden layers. It consists of at least three layers [BPS + 02]. The input layer represents the beginning of the ANN workflow. It brings the input data into the network. The output layer decides or predicts the input. And finally one or more hidden layers are between the input and the output. They perform the needed computations for the ANN. The nodes of the hidden and the output layers are neurons with a nonlinear activation function. DNN is capable of approximating any continuous function and distinguish non-linearly separable data. It uses backpropagation technique for training. Hence, its training is about feedforward and back-propagation phases. In the first one, the hidden and output nodes calculate their activation functions. The second phase aims to propagate back the error (the difference between the output and the target value)

Figure 5 . 2 :

 52 Figure 5.2: Effect of training dataset size

Figure 5 . 3 :Figure 5 . 4 :

 5354 Figure 5.3: Effect of data imbalance (decrease threat GFlows)

Figure 5 . 5 .

 55 Hence, an AEnc should be able to reproduce the inputs at the output layer. An AEnc[START_REF] An | Variational autoencoder based anomaly detection using reconstruction probability[END_REF] is composed of two main components: an encoder that maps the input to a hidden representation and a decoder that reconstructs the original input space from the hidden representation by the same transformation as the encoder. The smallest hidden representation is called the latent space, the bottleneck. The training of the AEnc aims to minimize the difference between the input and the output i.e. minimize the reconstruction error (RE). After being trained, the model must be able to rebuild previously unseen instances that are of the same data distribution as the training set. If the new input does not belong to the same distribution, the RE will be high. So the idea behind using this type of algorithms is to train the model to learn only about the distribution of normal GFlows. Once an anomalous GFlow is given to the network, it will have a high RE. Many reconstruction error functions could be used such as the Mean Squared Error (MSE) which reflects the average squared difference between the estimated values (the output of the AEnc) and the actual value (the input).

Figure 5 . 5 :

 55 Figure 5.5: Auto-encoder architecture

Figure 5 . 7 :

 57 Figure 5.7: Variational auto-encoder architecture

Figure 5 . 8 :

 58 Figure 5.8: Reconstruction errors of the validation dataset with an AEnc

Figure 5 . 9 :

 59 Figure 5.9: Box plot of the reconstruction errors quartiles with thresholds

Figure 5 .

 5 9 shows the quartiles of the distribution of anomalous and normal entries in the validation data set. It displays also the different experimented thresholds. The presented reconstruction errors are associated to the three-layered AEnc of

 Different studies have been proposed for multi-class novelty detection but they are mostly based on support vectors algorithms [LTVNF16] or on clustering based techniques [DLBM14]. In our work, we propose to adapt the AEnc of the one-class classification approach to the multi-classification issue. We have considered two solutions. The first one use two different models: the AEnc with a decision tree model, however the second one is based mainly on the AEnc.

Figure 5 .

 5 Figure 5.10: Multi-classification with AEnc

2 State of the Art of Network Intrusion Detection Systems for IoT

 Prevention action workflow . 4.8 Continuous learning of families of threats 4.9 Continuous learning of new threat types under the same family 5.1 Confusion matrix . 5.2 Effect of training dataset size . 5.3 Effect of data imbalance (decrease threat GFlows) 5.4 Effect of data imbalance (decrease normal GFlows) 5.5 Auto-encoder architecture . 5.6 Sparse auto-encoder architecture . OneM2M Standard and Security . 3.1.1 OneM2M Architecture . 3.1.2 OneM2M Security . 3.2 OneM2M Threats . 3.2.1 Proposed Taxonomy for OneM2M Threats 3.2.2 Attacks Implementation . 3.2.2.1 Flooding Attacks . 3.2.2.2 Amplification Attacks

	Acronyms and Abbreviations List of Figures 4.7 Contents DR Detection rate 3 OneM2M Standard Security and Dataset Creation
	DT ELM Extreme Learning Machine Decision Tree ESFCM Semi-supervised Fuzzy C-Means FPR False Positive Rate 3.1 Chapter 1 List of Figures
	GUI Graphical User Interface
	IDPS Intrusion Detection and Prevention System IDS Intrusion Detection System Introduction and IoT Security Overview
	IN	Infrastructure Node
	IoT Internet of Things
	IPS Intrusion Prevention System
	KNN K Nearest Neighbors
	LDA Linear Discriminant Analysis
	LR	Logistic Regression
	M2M Machine-To-Machine
	MITM Man-In-The-Middle
	MLP Multi Layer Perceptron
	ML Machine Learning
	MN Middle Node
	N_OP Number of OPerations
	N_TH Number of THreads
	NB	Naive Bayes
	NIDS Network Intrusion Detection System
	NSE Network Services Entity
	OC-SVM One-Class SVM
	OCC One-Class Classification
		11

1.1 IoT architecture & layer wise attacks . 26 1.2 IoT threats categorization by design challenges 28 2.1 DEMO architecture . 48 2.2 CEP-based IDS architecture for IoT . 49 2.3 State of the art intrusion detection results 67 3.1 OneM2M commun service layer . 77 3.2 OneM2M service layer in the TCP/IP layer 78 3.3 OneM2M architecture . 79 3.4 OneM2M resource tree . 80 3.5 OneM2M threats taxonomy . 84 3.6 OneM2M flooding attack . 85 3.7 OneM2M amplification attack . 86 3.8 AOAOC attack . 88 3.9 OneM2M loophole attack . 89 3.10 How to generate UNSW-NB15 dataset 91 3.11 OneM2M flow . 94 3.12 OneM2M dataset . 97 4.1 OneM2M IDPS strategy . 4.2 Architecture oneM2M platform-based sniffer 4.3 Workflow of the oneM2M features extraction module

.

4.4 Fog to cloud state message . 4.5 Flow chart detection . 4.6 Flow chart prevention . 5.7 Variational auto-encoder architecture . 5.8 Reconstruction errors of the validation dataset with an AEnc 5.9 Box plot of the reconstruction errors quartiles with thresholds 5.10 Multi-classification with AEnc . 1 Introduction and IoT Security Overview 1.1 Overview of Threats and Security Mechanisms in IoT 1.1.1 Categorization of IoT threats . 1.1.1.1 IoT threats categorization by layers 1.1.1.2 IoT threats categorization by challenges 1.1.2 Traditional defense mechanisms 1.2 Motivation and Problem Statement . 1.3 Contributions . 1.4 Organization of the dissertation . 2.1 Network Intrusion Detection Systems . 2.1.1 State of the art of NIDS for IoT 2.1.2 Comparison and Discussion . 2.2 Network Intrusion Detection Systems based on Learning Techniques . . . 2.2.1 Learning Techniques . 2.2.2 State of the art of NIDS for IoT based on ML 2.2.3 Comparison and Discussion . 3.2.2.3 Protocol Exploit Attacks 3.3 OneM2M Dataset . 3.3.1 State of the Art of Free Datasets 3.3.2 OneM2M Dataset Creation . 3.3.2.1 OneM2M Dataset Features: GFlows Abstraction 3.3.2.2 OneM2M Dataset Generation 4 An Intrusion Detection and Prevention System for the Service Layer 4.1 OneM2M-IDPS Challenges and Aims . 100 4.2 OneM2M-IDPS Strategy . 101 4.2.1 Data Acquisition and Features Extraction 102 4.2.1.1 OneM2M Messages Sniffing 102 4.2.1.2 OneM2M Features Extraction 107 4.2.2 Intrusion Detection . 109 4.2.3 Intrusion Prevention . 111 4.2.3.1 Prevention Workflow 112 4.2.3.2 Prevention Actions . 114 4.2.4 Continuous Learning . 117 5 Machine Learning and Deep Learning for OneM2M Intrusion Detection 5.1 Learning Techniques Adoption and Metrics 124 5.1.1 ML Adoption . 124 5.1.2 ML Metrics and Experimental Environment 125 5.2 Experimentation of Supervised Learning Algorithms for Intrusion Detection in OneM2M . 127

 Introduction and IoT Security Overviewtarget CPU time and/or bandwidth of legitimate users by flooding the system with rogue and amplified traffic. To conduct an efficient DDoS attack, botnets are used.

	Introduction and IoT Security Overview
	• Elevation of privilege [Mic05, AM14] is about obtaining or elevating privileges
	to access a device/service while not having a legal right. Such an attack can
	They are networks of infected/controlled internet-connected devices. As men-lead to dangerous situation especially when the attacker becomes a trusted part
	tioned in [KKSG16], DDoS attacks are the most frequent attacks especially in IoT system. User-To-Root (U2R) and Remote-to-Local (R2L) [HB99, AOF + 10] are two
	/ Fog networks related to social IoT such as smart cities, etc. DDoS attacks can be examples of elevation of privilege attack. U2R is about gaining root privileges
	categorized into the following types [ZFS17, PJ14]: (superuser) on a node when the attacker initially has only a normal user account.
	1. Flooding attacks are based on bombarding a victim's system with a large R2L occurs when an attacker does not have an account on the victim node, hence
	number of packets, mainly UDP or ICMP packets [Cis12], which causes com-exploits vulnerabilities to gain local access as a user via password guessing or
	promise of network bandwidth. Flooding attack can be easily launched using breaking.
	botnets. • MITM [AM14, CDL16], Man-In-The-Middle attack which represents interception
	of communication between two systems by an adversary to eavesdrop a conversa-
	tion. MITM attacks are classified as ARP Cache poisoning, DNS spoofing, session
	hijacking, ICMP redirect, port stealing, etc.
	5. Logical/software attacks are related to application protocols. An example
	is Ping of Death [KU14] where an attacker sends simple fragmented ICMP
	ECHO request packet, larger than maximum IP packet size so that the victim
	fails to reassemble it. In Teardrop [Cis12] attack, the adversary sends two
	fragments that do not reassemble by the offset value of the packet.

An attacker achieves the same by attaching snooping devices, by snooping the network channel or by getting physical access to a device; e.g Probe [AOF + 10, BHDA14] is when attackers try to gather information about a target node and its vulnerabilities by scanning connections (Port scanning, etc.). With information disclosure comes sensitive information leakage such as side channel attack [AIZ + 17]. • DDoS [KU14], the Distributed Denial of Service attack, is performed by multiple compromised nodes together from different geographic locations. Besides, DoS attack implicates a malicious attacker that attempts to consume network resources, 2. Amplification attacks can be established by exploiting reflection mechanism and spoofing the IP sources. Attackers send packets to reflector servers with a source IP address set to their victim's IP therefore indirectly overwhelming the victim with the response packets. To resume, hackers exploit vulnerabilities in different protocols to turn small queries into huge number of requests to slowdown and/or crash the victim's server(s). For examples, there are smurf, fraggle attacks [PJ14] and DNS, SSDP amplification [Hen16, Ros14] distributed attacks. 3. Protocol exploit attacks are built on malicious exploit of different protocols. As examples, there are SYN flood [Hen16], TCP reset [Hen16] and water torture attack [Lir16, Hol16]. 4. Malformed attacks are based on malformed network packets such as using the same IP address for source and destination addresses [PJ14, Hen16].

1.1.1.2.2 IoT threats categorization by design challenges Because

	Introduction and IoT Security Overview
	Object identification, Authentication and IoT privacy, etc. in IoT networks. A catego-
	rization based on IoT systems' design challenges is presented in Figure 1.2 and detailed
	below.
	• Heterogeneity and Interoperability: the backend IoT solutions consider the use
	of sensors, actuators and gateways provided by different vendors and may have
	different versions. To do so, the use of a dispositive managing interoperability
	between heterogeneous devices is needed. Such a component can be bombarded
	with fake requests that can lead to DoS attacks. In such a heterogeneous environ-
	ment, spoofing, routing attacks as well as MITM are more likely to occur compared
	to the homogeneous systems. It is easier for a malicious node to impersonate a
	genuine Thing, gain unauthorized access to data and/or relay communication be-
	tween two nodes message injection. As we can see from Figure 1.1, IoT might be
	considered as the term which references a world of large variety of heterogeneous
	protocols and standards [GMS15]. Their consideration makes IoT security solu-
	tions more and more complex. Al-Fuqaha et al. provide a good survey about these
	technologies in [AFGM + 15].
	of different
	challenges related to IoT systems' design, developers as well as industries should
	pay attention to many potential threats. Many research papers surveyed IoT security
	challenges and research opportunities such as Zhang et al. [ZCW + 14], Mahmoud et
	al. [MYAZ15] and Hossain et al. [HFH15]; they detail IoT security challenges such as

.2 Traditional defense mechanisms

	Introduction and IoT Security Overview Introduction and IoT Security Overview
	tion and detection technique entitled "Low Complexity Parity Check (LCPC)", to conventional IT security solutions have covered servers, networks and cloud storage. the resource limits the devices. Therefore, the use of light cryptographic solutions such
	improve the quality of futuristic IoT networks. Most of these solutions can be deployed for security of IoT systems. Defense mecha-as proposal from Al-Turjman et al. [ATA18a] is an interesting approach. They propose
	• Data Interchange: before data interchange begins, it must be encrypted at the nisms can be separate, or combined depending on the treated threats [CBO17]. In this a platform based on confidential cloud-assisted wireless sensor networks (WSN) 1 .
	source IoT nodes. The encryption mechanisms, depend on the type of hardware, section, traditional mechanisms that can be used to protect IoT systems are described. It preserves confidentiality, integrity and access privileges (CIA). The proposed ag-
	their computational capability and storage capacity. Inappropriate selection leads ile framework ensures integrity of collected sensor data with elliptic curve cryptography.
	to security vulnerabilities such as information leakage (i.e., keys are being shared First, filter packets [Tan03], with firewalls and proxies for example, represent
	between multiple devices when encrypted packets are decrypted and repacked at an important defense against IP spoofing attacks (and consequently DDoS attacks). Third, employ robust password authentication schemes. This involves limiting
	multiple points in the communication chain). Additionally, nodes that encrypt Two types of filtering are possible: i) ingress filtering; and ii) egress filtering. Ingress access to data by assigning appropriate privileges to resources. The use of One-Time
	data can be attacked via denial of service or resource exhaustion attacks. For this filtering on incoming packets is about blocking packets from outside the network with a Password (OTP) can be an interesting solution. Spoofing, tampering, information
	reason, end to end encryption is desirable. source address inside the network to protect against outside spoofing attacks. However, disclosure, elevation of privileges and MITM can be avoided by the above mecha-
	egress filtering on outgoing packets is about blocking packets within the network with nisms. For IoT networks, authentication strategies need to be lightweight such as in
	• Resource and service discovery: in IoT systems, mechanisms of resource and a source address that is not inside to prevent an internal hacker from attacking external [BJMYZ15, BJMYZ13, ATEE + 17, ATA18b].
	service discovery should be deployed to enable autonomy and self-discovery of machines.
	the devices. These mechanisms should be protected with two way authentication Fourth, audit and log activities on web servers, database servers and application
	to avoid spoofing and restrict the malware component from flooding the system Second, adopt encryption with cryptographic protocols, data storage encryption servers. Due to these traces, anomalies can be detected. More specifically, log key
	with feigned requests to thwart DoS attacks. or virtual private networks (VPNs). Using cryptographic network protocols (i.e., events such as transaction, login/logout, access to file system or failed resource access
	• Trust and privacy: IoT smart sensor devices manage private / sensitive user in-Transport Layer Security (TLS), Secure Shell (SSH), HTTP Secure (HTTPS), etc.) attempt(s) can detect anomalous behavior. A good practice to protect these files is to
	formations (e.g. user habits, patients data, civil protection data etc.); hence, con-leads to the encryption of data/code/updates before sending and authenticating back up them, regularly analyze them for detection of suspicious activity and relocate
	fidentiality and data protection are extremely important. In fact, trust and pri-them. The defense is based on digital signatures/certificates (pair of public and system log files from their default locations. Further, secure the log files by using
	vacy [SRGCP15, YWY + 17] are fundamental issues for IoT based networks. Users, private keys) to ensure, in one hand, that data/code/update was sent by the le-restricted ACLs (Access Control List: a list of permissions attached to an object) and
	Things and devices are required to authenticate via reliable services for miti-gitimate device/service and was never modified. On the other hand, it guarantees ecrypt the transaction log. These techniques prevent IoT systems from repudiation and
	• Resource constraints: most peripherals IoT devices are tiny, which means that are getting more attention with smartphones equipped for example with Android individual. Cryptographic network protocols [FMA + 18] can be used to protect things gating spoofing, tampering and information leakage attacks. Trust and privacy that data/code/updates are encrypted and cannot be read or used by unauthorized privilege elevation attacks.
	they are resource constrained in terms of computing power, onboard memory, OS [SAU17, FBL + 15, GLT + 18, SLSGZ19, BBJJ + 17, GAL + 20, BHL + 17]. against IP spoofing, tampering, repudiation, MITM, user privacy compromising attacks Fifth, detect
	network bandwidth and energy availability. Tampering, information leakage and and node cloning. Moreover, encrypting data storage helps prevent information
	node cloning are possible attacks since the smart devices and sensors are resource disclosure and maintains user privacy. Regarding VPN, it is a secure communication
	constrained. The constrained resources limit the deployment of cryptographic solutions hence, lightweight solutions are foremost concern. For example, in tunnel between two or more devices. It encrypts the communication by creating a 1.1After detailing and categorizing IoT threats, in the following we discuss attack mit-virtual private link over the existing unsecure network. Encryption is a good solution
	[AAT18], authors overcome such limitations and propose a novel error correc-igation techniques which protects existing IoT systems and networks. Over time, to preserve confidentiality and privacy. However, IoT networks are vulnerable since

intrusions using IDS (Intrusion Detection System). An IDS

	Introduction and IoT Security Overview
	to i) deployment; and ii) detection methodology.
	IDS deployment is categorized as i) HIDSs; and ii) NIDSs. Host-based Intrusion
	Detection Systems (HIDSs) are installed on a host machine (i.e., a device or a Thing).
	They monitor and analyze activities related to system application files and operation
	system. HIDSs are preferred against insider intrusion deterrence and prevention.
	Network-based Intrusion Detection Systems (NIDSs) capture and analyze packet flow
	in the network. In other words, they are scanning sniffed packets. NIDSs are strong
	against external intrusion attacks. Since our interest is towards security of resource
	constrained IoT systems, the rest of the chapter will focus on NIDSs solutions.
	[PKRM12] is a combination of software and hardware which monitors network or
	systems to identify malicious activities and provide immediate alerts. IDSs have been
	adopted [ANMH16] since 1970 [HHS + 17]. They are generally categorized according

Tutorials entitled "Network intrusion detection for IoT security based on learning techniques" [CMZ + 19

	Introduction and IoT Security Overview
	deployed via learning techniques were reviewed, compared and evaluated. We compre-
	hensively discussed existing state of the art, compared and evaluated performance of
	ML based IoT systems deployed to secure the networks. Finally, the paper concluded
	with a summary and a list of possible future directions.
	To achieve this goal, we began by con-
	ducting a comprehensive review of the IoT security ecosystem in a paper published
	in the journal IEEE Communications Surveys &]. This paper tar-
	geted three important areas: i) IoT, ii) security mechanisms and iii) machine learning
	techniques. It guides the reader in discovering the intersection of the three areas by
	providing all the necessary details to understand the security in IoT. The paper started
	by presenting and categorizing the IoT security threats as well as the traditional defense
	techniques with a focus on IDSs types. Then, it listed and discussed available tools that
	can be used to develop and/or evaluate NIDS: i) free datasets, ii) free and open source
	network sniffers and iii) open source NIDSs. Moreover, the paper discussed IoT powered
	NIDS, their architectures, deployments and implications for the heterogeneous systems.
	Learning techniques via ML classifiers were introduced. Then, NIDSs for IoT systems

Table 2 .

 2 1: Comparison of NIDS for IoTState of the Art of Network Intrusion Detection Systems for IoTRegarding detection methodology, both signature and anomaly detection are deployed. Each method has its advantages and drawbacks. Signature-based detection is efficient for known attacks; however, it cannot detect unknown attacks since the signature database must be updated which is time consuming. When the size of signature database increases, NIDS is required to compare the input with all the existing signatures. Anomaly-based methodology detects unknown / unseen attacks; however, it suffers from high false alarms. Consequently, hybrid detection such as [FYC+ 17, MRMB17]

	References IDS	de-	Detection	Validation	Treated	Advantages	Disadvantages
			ployment	Methodol-	Strategy	Threats
					ogy		
	Raza et al.	Distributed Hybrid		Simulation Routing	• Resource constraints challenge is taken	DoS attack can affect
	[RWV13,			(signa-			attacks	into consideration	SVELTE
	AO17]				ture	and		like spoof-	• Distributed mini-firewall for the IP-
					anomaly		ing	and	connected IoT devices is integrated
					based)			sinkhole,	• Flexible and can be extended to detect
								selective	more attacks
								forwarding
								and	in-
								formation
								alteration
	Kasinathan	Centralized Signature-	Emulation DoS attack • False alarms reduction	Detected attacks depend on
	et	al.			based			• IDS is deployed on additional infrastruc-	declared rules
	[KPSV13,						ture
	KCK + 13]						• Scalable and real-word applicable
	Jun	and	Centralized Signature-	-	-	• Real-time detection	• CPU intensive
	Chi [JC14]			based			• Better real-time performance	• Detected attacks depend
								• Low memory consumption	on declared rules
								• IoT Massive data are taken into consider-
								ation
	Cervantes	Distributed Hybrid		Simulation Sinkhole	• INTI takes into consideration node mobil-	IDS placements change
	et	al.			(trust and		attack	ity and network self-repair	over the time which can
	[CPNS15]			reputation		• Less false positive and false negative rate	consume more resources.
					strategy)		than SVELTE
	Surendar	Distributed Specification-Simulation Sinkhole	• Resource constraints challenge is taken	Cannot detect unknown at-
	and Uma-			based			attack	into consideration	tacks
	makeswari						• Low average energy consumption
	[SU16]							• Low packet drop ratio
								• Instant network response against de-
								tected attacks
	Fu et al.	Distributed Hybrid		Emulation Jam-	• Heterogeneity of IoT networks is taken	• The state based algo-
	[FYC + 17]			(signa-			attack,	into consideration	rithm may cause "state
					ture	and		false attack	• Resource constraints challenge is taken	space explosion"
					anomaly		and reply	into consideration	• Human intervention is
					based)			attack	• Low false positive rate	needed for false positive
								alarms
								• DoS attack can affect the
								solution
	Midi et al.	Hybrid		Hybrid		Emulation DoS, rout-	• Real-time detection	• High level perspective
	[MRMB17]	(cen-		(signa-			ing	and	• Lightweight in terms of CPU and RAM re-	may not suitable for con-
			tralized		ture	and		conven-	quirements	strained compute objects
			and	dis-	anomaly		tional	• Dynamic self-adapting IDS	• Kalis proposes compile
			tributed)	based)			network	• Automatic knowledge-driven IDS	time deployment which
								attacks	• Different IoT communication protocols	may not be feasible for
								and applications are taken into consider-	resource constrained sen-
								ation	sors which may even
								• Deployable on border router or as a stan-	be resource constrained
								dalone tool	in comparison to WSN
								nodes
	Granjal	Hybrid		Signature-	Simulation Attacks	• Cross-layered detection	Detected attacks depend on
	and	Pe-	(cen-		based			against	• Detection of external and internal threats	declared rules
	droso		tralized					6LoWPAN	• Quick reaction and attackers blocking
	[GP18]		and	dis-				and CoAP,	• Extensibility and Reconfigurability of the
			tributed)				as well as	system
								DoS	• Interoperability between communication
								technologies
	Aldaej		Centralized Anomaly-	Simulation DDoS	• Magnitude of DDoS attack is taken into	Cannot detect unknown at-
	[Ald19]			based			consideration	tacks
								• Prevention and Action module could iso-
								late malicious nodes

.1). As it can be noticed, most of the works deploy distributed architectures [RWV13, CPNS15, SU16, FYC

+ 17]

. This type of deployment is more suitable for IoT systems than centralized strategies [KCK + 13, JC14] since the distribution of devices is an important IoT characteristic. However, centralized IDS detect better security attacks that involve a group of devices operating silently (without directly shutting down the network) than the distributed ones. For example, DDoS attacks are difficult to detect in a distributed deployment. For such attacks, a hybrid architecture such as in [MRMB17, GP18] is more appropriate. Hence, a distributed network analysis with a centralized general inspection is guaranteed (called also hierarchical strategy). Moreover, deployment of NIDS on the IoT system itself or in a separate external device is important. Kasinathan et al. [KCK + 13] and Midi et al.

[START_REF] Midi | Kalis A System for Knowledge Driven Adaptable Intrusion Detection for the Internet of Things[END_REF]

are the only ones who proposed their NIDS as a standalone tool. The adoption of such a strategy overcomes the lack of resources in IoT devices as well as the problem of proprietary IoT software that can not be changed. This protects the IoT system against overload. However, employing additional infrastructure adds complexity in case of network maintenance and system protection.

Table 2

 2 State of the Art of Network Intrusion Detection Systems for IoT more than the experimented attacks. IoT is an environment of coexisting protocols and technologies. Despite the heterogeneity aspect of IoT, [JC14, FYC + 17, MRMB17, GP18] have the capability to detect attacks against multiple protocols. [RWV13, KCK + 13, CPNS15, GP18] focus on intrusions in 6LoWPAN and RPL which are important techniques for IoT networks. Furthermore, complexity is high due to heterogeneity. Moreover, resource constraints challenge is considered by [RWV13, KCK + 13, SU16, FYC + 17, MRMB17, GP18]. Scalability, on the other hand, has been a subject of study in [KCK + 13, JC14]. For [JC14], it was more

	.1, there is no work

[START_REF] Raza | SVELTE: Real-time intrusion detection in the Internet of Things[END_REF]

is the only work which mentions that the solution could be expanded to detect concerning data scalability. Finally,

[START_REF] Cervantes | Detection of sinkhole attacks for supporting secure routing on 6lowpan for Internet of Things[END_REF]

is the only proposal which considers mobility and connectivity. Strengths and weaknesses for each NIDS solution have been identified and illustrated in Table

2

.1.

 Hodo et al. [HBH+ 16] used Multi-Layer Perceptron (MLP) which is a type of supervised ANN in an off-line IoT IDS. It is composed of three-layers with sigmoid transfer function in each of the hidden and output layers' neurons. The authors' analysis is built on internet packet traces and tends to detect DoS and DDoS attacks in IoT network.The NIDS was tested on a simulation composed of four clients nodes and a server relay node. DOS/DDoS attacks were performed on the server node with 10 million UDP packets sent from a single host for DoS attack and with three hosts at wire speed for DDoS. Detection of silent attacks such as botnet attacks using smart data strategy16 ; and iv) detection of unknown and zero-day attacks via AIS based on an online self training method with unsupervised machine State of the Art of Network Intrusion Detection Systems for IoT learning. Two datasets have been used to evaluate the lightweight IDS efficiency which are KDD-Cup99 17[START_REF] Hettich | KDD Cup 1999 Data -The UCI KDD Archive[END_REF] and SSH Brute Force from ISCX dataset[START_REF] Shiravi | Toward developing a systematic approach to generate benchmark datasets for intrusion detection[END_REF]. Accord-

	Hosseinpour et al. [HVAP + 16] proposed a novel real-time, distributed and
	lightweight IDS based on Artificial Immune System (AIS), in an effective combination
	of edge, fog 15 and cloud computing. It allows intelligent data processing at an interme-ing to experimental results, the three-layered proposed solution achieve 3.51% of false
	The training dataset was composed of 2313 samples, out of which 496 samples were diary level and thus reduces data transport to the cloud. Consequently, the processing positive rate (FPR) with 98.35% of accuracy and 97.83% of precision.
	deployed for validation and 496 samples were used for testing. Overall attack detection takes place in hubs, routers or gateways. The AIS architecture of the IDS is composed
	accuracy was 99.4% with 0.6% false positive. Such results guarantee early detection of of three parts:
	attacks and thus good network stability.
	1. A training engine: learns from an initial learning dataset and trains detectors
	Nobakht et al. [NSB16] proposed a host-based IDS framework IoT-IDM for user-(initialization phase of the AIS). This step is treated in the cloud layer since it
	needs complex and powerful processing units.
	In unauthorized detection, the first one gives 94.25% of accuracy rate and 85.05% of
	recall rate against 98.53% and 95.94% for SVM.

chosen smart devices in smart homes environment. IoT-IDM monitors traffic going through the devices to identify threats. The framework takes benefit of Software Defined Networking (SDN

14

) architecture with ML techniques to detect compromised hosts and mitigate these attacks by pushing the appropriate actions (like blocking the intruder or redirecting the malicious traffic) to underlying routers/switches. The SDN technology offers the opportunity of remotely managing the security which leads to provide the user of IoT-IDM with a Security as a Service (SaaS). Nobakht et al.'s solution is characterized with modularity in design. It is composed of five separate modules (Device Manager, Sensor Element, Feature Extractor, detection Unit and Mitigation Unit). Consequently, there is a flexibility to choose an ML algorithm from a set of given techniques. ML algorithms use learned signature patterns of known attacks to train the model. Besides the wide range of detected attacks, one of the drawbacks of IoT-IDM is that technically it cannot survey all home IoT devices due to high volume of network traffic with the detail that sensor elements are positioned on top of SDN controller. Consequently, IoT-IDM can only inspect chosen IoT devices that do not overload the SDN controller. Nobakht et al. tested IoT-IDM on a real IoT device which is the smart light bulb (Hue lights) and compare logistic regression and SVM (support vector machines).

2. An analyzer engine: analyzes anomalies reported by the detectors to alert and reject the false positive signals. The authors use memory cell detectors and genetic algorithms as presented in previous works [HMR

+ 13, HAFP14]

to improve precision. This step requires more communication between the infected edge nodes and the main engine, hence the analyzer engine is deployed at the fog layer.

3. Detector sensors: detection logic is inserted in each node monitoring the network.

The proposed IDS is doted with an intelligent and distributed detection where each type of attack, could be detected by a number of different detectors. If a threshold is reached, the anomaly will be reported to the analyzer engine, thus a deep intrusion alert is generated.

Following are the important work strengths: i) Fog computing enabled quality of service with low latency in data analysis; ii) Combination of lightweight analysis in fog layer with an advanced analysis in the cloud; iii)

 attacks are crafted with small mutations in the old ones. Therefore, multi-layer deep networks enhance small changes awareness (in a self taught algorithm with compression capabilities) compared to shallow learning classifiers. Distributed DL approach is based on distributing the dataset to train each sub-dataset locally and rapidly than share and coordinate the learning parameters with neighbors. So the architecture ends with a master IDS which updates the parameters values of the down distributed IDSs and keeps synchronization. The studies show that the distributed parallel DL approach realize better results in accuracy than centralized DL NIDS and also than shallow ma-The IoT network is divided into virtual clusters where each cluster corresponds to a group of IoT devices under a single fog node. The OS-ELM classifies the incoming packets as normal or an attack. ELM is a single hidden layer feedforward neural network characterized by its fast learning phase. The input layer weights and hidden layer bias values are randomly selected to analytically deduce the output weights using simple matrix computations. However the online State of the Art of Network Intrusion Detection Systems for IoT nature of OS-ELM favors a streaming detection of IoT attacks.2. Summarization at cloud server: to have a general idea about the global security state of the IoT system, detected intrusions are sent from the fog node to the cloud server. After the analysis and the visualization of the current state, Prabavathy et al. propose two actions; i) predict next attacker action using the attacker plan recognition approach; or ii) identify fog node geographical position based multistage, and DDoS attacks. Hence, an intrusion response can be activated.

	Office Home Office (SOHO) infrastructure. He achieved an overall accuracy of 98.66%
	in a 4-class classification (legitimate traffic, flooding type attacks, injection type attacks
	and impersonation attacks).

analyzed IEEE 802.11 network threats and proposed an anomaly network IDS to detect and classify attacks in IEEE 802.11 networks. This work is considered as the first work that employ deep learning algorithms for IEEE 802.11 standard. Thing experimented Stacked Auto-encoder (SAE) architecture with both two and three hidden layers. The author experienced different activation functions for the hidden neurons. To test his strategy, he used a dataset generated from a lab emulated Small Diro et al. [DC17] proposed a DL approach based on fog computing to detect known and unseen intrusion attacks. Known attacks represent 99% which leads to affirm that zero-day chine learning algorithms. To train the models and evaluate the IDS, Diro et al. used NSL-KDD dataset after adding some modification on it to finish with 123 input features and 1 label. As results, they obtained multi-class detection consisting 4 labels (normal, DoS, Probe, R2L.U2R) to achieve 96.5% DR and 2.57% of false alarms for deep model in comparison to shallow classifier achieving 93.66% detection and 4.97% false DR. They also noted an increase in the overall detection accuracy while adding the number of fog nodes from 96% to 99%. The proposed approach took longer training time; however, real detection was fast and accurate. Prabavathy et al. [PSS18] proposed a novel fog computing based intrusion detection technique using Online Sequential Extreme Learning Machine (OS-ELM). The distributed security mechanism respects interoperability, flexibility, scalability and heterogeneity aspects of IoT systems. The proposed system is composed of the following two major parts: 1. Attack detection at fog nodes: Prabavathy et al. use OS-ELM algorithm to detect intrusions in fog nodes. Prabavathy et al. proposed a proof of concept to evaluate their proposal. They implemented OS-ELM using MATLAB and NSL-KDD as benchmark dataset. Authors claimed high accuracy and response time. They achieve 97.36% accuracy with reduced false alarm rate 0.37%. The DR with the fog node strategy was 25% faster when compared with cloud based implementation. An important advantage is that new online data can be incorporated in the learning process, which is not the case for ANN and NB.

 Illy et al. tested different ML combinations in a multiexpert mode as well as in a multistage strategy. Their evaluation was made on the NSL-KDD

dataset and achieved 85.81% and 84.25% of overall accuracy for binary and attack classification respectively.

Table 2

 2

	References IDS	deploy-	Detection Methodology	Used		Treated Threats	ML algorithms
			ment		Dataset
	Hodo et al.	-		Anomaly-based	Simulation DoS / DDoS	Multi-Layer Perceptron (MLP)
	[HBH + 16]					
	Nobakht	-		Anomaly-Host based	Real	IoT	Unauthorized access Logistic Regression vs SVM
	et	al.				devices
	[NSB16]					(Hue	
						lights)	
	Hosseinpour Distributed	Anomaly-based	KDD99 and	Botnet attack	Artificial Immune System (AIS)
	et	al.				SSH Brute
	[HVAP + 16]				Force from
						ISCX	
	Bostani		Centralized	Hybrid: Anomaly-based for	Proprietary	Sinkhole / Selective	Unsupervised Optimum Path Forest
	and		/	Distributed	the centralized part and	Simu-		Forwarding in 6LoW-	(OPF) in [BS17]
	Sheikhan	(Big	Data	specification-based for the	lator	+	PAN and can be ex-
	[BS17,		architecture	distributed part [BS17]	NSL-KDD	tended to Blackhole
	SB16,		MapReduce)				rank and Wormhole
	SB17]						
					Hybrid: Anomaly-based for			Supervised & Unsupervised Opti-
					the centralized part and			mum Path Forest (OPF) in [SB16,
					misuse-based for the dis-			SB17]
					tributed part [SB16, SB17]		
	Pajouh		-		Anomaly-based	NSL-KDD Low frequency attacks	{Unsupervised Principal Component
	et	al.						(such as U2R, R2L)	Analysis (PCA) + Supervised Lin-
	[PJK + 16]						ear Discriminant Analysis (LDA)} for
								Feature Reduction,
								&
								{Naive Bayes (NB) + Certainty Fac-
								tor version of K Nearest Neighbors
								(CF-KNN)} for Classification
	Lopez-		-		Anomaly-based	NSL-KDD DoS / R2L / U2R /	Conditional	Variational	Auto-
	Martin							Probe	Encoder (CVAE)
	et	al.					
	[LMCSEL17]				
	Thing		-		Anomaly-based	Generated	IEEE 802.11 attacks	Stacked Auto-Encoder (SAE)
	[Thi17]					Dataset	(flooding,	injection
						from	lab	and impersonation)
						SOHO	
	Diro et al.	Distributed	Anomaly-based	NSL-KDD DoS / R2L.U2R / Probe Multi-Layer Deep Learning
	[DC17]						
	Prabavathy	Distributed	Anomaly-based	Emulation	Probe / R2L / U2R /	Online Sequential Extreme Learning
	et	al.				+	NSL-	DoS	Machine (OS-ELM)
	[PSS18]					KDD	
	Rathore		Distributed	Anomaly-based	Simulation	Probe / R2L / U2R /	ELM-based Semi-supervised Fuzzy
	and Park				+	NSL-	DoS	C-Means (ESFCM)
	[RP18]					KDD	
	Moustafa	Distributed	Anomaly-based	UNSW-	Botnet attack	AdaBoost ensemble method using
	et	al.				NB15	+	three techniques of DT, NB and ANN
	[MTC18]				NIMS	+
						Simulation
	Nguyen		Distributed	Anomaly-based	Real-world	Mirai Malware	Gated Recurrent Units (GRU)
	et	al.				smart	
	[NMM + 19]				home	
	Illy et al.	Distributed	Anomaly-based	NSL-KDD DoS / R2L.U2R / Probe Different ML combinations in a mul-
	[IKMM + 19]						tiexpert mode as well as in a multi-
								stage strategy

.2 where we focus mainly on IDS deployment, detection methodology, used dataset, treated threats and ML used algorithms.

Table 2 .

 2 2: Summary of NIDS for IoT based on learning techniques State of the Art of Network Intrusion Detection Systems for IoT While reviewing [HBH + 16, NSB16, PJK + 16, LMCSEL17, Thi17], we observe a lack of details on the architecture deployments. The above proposals concentrate on ML mechanisms for intrusion detection without discussing the architecture designs. Solutions of Hosseinpour et al. [HVAP + 16], Bostani and Sheikhan [BS17, SB16, SB17], Diro et al. [DC17], Prabavathy et al [PSS18], Rathore and Park [RP18], Moustafa et al. [MTC18], Nguyen et al. [NMM + 19] and Illy et al. [IKMM + 19] deployed distributed architecture for intrusion detection, most suitable for IoT needs. In fact, IoT systems are distributed since they are composed of geographically distributed nodes. Such a criterion plays an important role when choosing the ML algorithm. Depending on where and how we want to deploy our NIDS, researchers have to pay attention and identify the al-Fog and edge concepts enable autonomic and parallel distributed attack detection [DC17]. [RP18, HVAP + 16] claimed that, their proposals can be deployed in distributed IoT systems but they concentrated more on the distribution of traffic network data. Regarding the datasets, recent information is necessary to train and evaluate IoT NIDS. Proposals such as [PJK + 16, LMCSEL17, DC17, IKMM + 19] are based on NSL-KDD dataset; non IoT dataset. NSL-KDD neither support IoT protocols like 6LowPAN, Zigbee, CoAP, nor IoT architecture and principles like mobility and heterogeneity. Details about the existant datasets are in Section 3.3.1. Unfortunately, no IoT-dedicated NIDS dataset exists which explains the use of NSL-KDD. [HBH + 16, NSB16, Thi17, NMM + 19] evaluate their proposal with their own data. However, [HVAP + 16, BS17, PSS18, RP18, MTC18] used a combination of real and synthetic data or simulate the environment. Moreover, most of the studied researches are made to protect IoT systems from precise types of attacks mainly DoS, U2R, R2L and Probe since they get inspired from NSL-KDD dataset. Thing is the only proposal which concentrate specially on IEEE 802.11 attacks. However, unsupervised and semi-supervised ML solutions are evaluated against specific attacks. Meanwhile, they are able to detect unknown attacks such as in [HVAP + 16, SB17, LMCSEL17], and [RP18]. The accuracy of the obtained linear model with LR was less interesting than the non linear model of SVM (96.2% for LR whereas SVM achieves 100%). For Hosseinpour et al. [HVAP + 16], they used AIS which is an unsupervised ML algorithm that is inspired from human immune system. It is characterized by a multi-layered protection structure. First line of defense responses immediately to previously seen problems then a non specific protection for unknown attacks is processed. It does not need prior knowledge of specific outsiders. Another important point for AIS is the memory aspect; AIS is efficient in unknown attacks detection. Authors achieve 98.35% of accuracy and State of the Art of Network Intrusion Detection Systems for IoT 97.83% of precision which are remarkable results as noticed in Figure 2.3. However, AIS training needs resource which is why Hosseinpour et al. proceed it in the cloud layer. Prabavathy et al. [PSS18] took advantage of ELM algorithm in their intrusion detection proposal. They operated an online version of ELM (OS-ELM) for a real time analysis. Compared to ANN and NB, authors achieved better accuracy (97.36%) with lower FPR (0.37%) in a lower period of time (25% faster). A major advantage of OS-ELM is that it can incorporate new data online for learning which is not possible with the other compared algorithms. Regarding the solutions with DL [LMCSEL17, DC17, Thi17, NMM + 19], the good results (as we can notice in Figure 2.3) could be justified with the following DL ad-It is true that training phase takes longer time, but real-time detection is faster and more accurate. The authors chose multi-layer DL since it is the most prevalent form of DL. It shows training stability with a significant scalability on big data concept. Moreover, Diro et al. compared DL with ML in the distributed context and proved that accuracy of the deep model is greater than that of shallow model (multi-class detection accuracy increase from 96.75% to 98.27%) and false alarms rate are lower for DL (from 4.97% for ML to 2.57% with DL in multi-class detection). About the DL used version of Thing [Thi17], he experimented SAE with two and three hidden layers but does not provide any primary choice arguments. SAE is a neural network built by stacking multiple layers of sparse auto-encoders. The output of each layer forms the input to the successive layer. Its hidden layers reduce the feature dimensionality and produce new set of features [AK16]. These new features are learned in cascade depths to improve precision. Nodes in the input and the output layer of SAE are the same [MVTP18]. The proposed solution achieved good accuracy results KNN) for more exact class labels. NB is applied in the first place to identify anomalies. Then normal behaviors will be analyzed with KNN to refine normal instances. NB assumes the independence of all the characteristics of each sample in the given class label. It has the ability to measure good similarities of rare instances in the aim to handle imbalanced data. KNN uses a bucketing technique [FBF77] to accelerate the classification task. On the other side, Pajouh et al. applied dimension reduction before running the classification. To do so, they deployed both LDA (a supervised dimension reduction technique) and PCA (an unsupervised dimension reduction State of the Art of Network Intrusion Detection Systems for IoT technique). PCA provides a lower feature space by generating uncorrelated features from the initial correlated ones. LDA reduces the dimension of large working datasets by examining class labels. Hence, these two dimension reduction techniques represent a good strategy to i) reduce computational needs which is perfect for IoT systems and ii) fast the detection with less errors which is perfect for intrusion detection. Pajouh et al. achieved 84.86% of DR on NSL-KDD however Moustafa et al. [MTC18] succeeded to have 99.86% which is an impressive value. Their idea is based on an AdaBoost ensemble learning method which uses three ML techniques, namely DT, NB and ANN.

	computational time with a good flexibility though generating one model from multiple
	trainings in only one single training step. They proved better accuracy 80% than linear
	SVM (75%), MLP (78%) and RF (73%) algorithms. Meanwhile, Diro et al. [DC17] used
	Multi-layer DL algorithm in a distributed strategy which gives better results compared
	to centralized DL (99% vs 96% of accuracy).

gorithm for resource constrained smart objects. Hence, training an intensive algorithm on a limited node may not be feasible. However, the intensive task can be transferred to the fog or cloud layer. The best strategy is to process resource consuming tasks in cloud/server part, and execute lightweight parts in the IoT edge. It is the case in fog computing based NIDS such as in [HVAP + 16, BS17, SB17, DC17, PSS18, IKMM

+ 19]

.

The proposed solutions take advantage of the cloud or the fog layer for ML model training and use fog nodes and/or edge nodes for intrusion detection. Fog and edge based intrusion detection enables coordination for better, low latency detection (near to the source of data). It reduces network bandwidth consumption since partial data is sent at cloud. Only some details are reported to the centralized, source-intensive part of the IoT system to summarize and detect distributed attacks.

The last important point to discuss is about ML used algorithms. ML algorithms such as SVM, NB and ANN were deployed separately and combined to improve outcome in general systems

[START_REF] Feng | Mining network data for intrusion detection through combining SVMs with ant colony networks[END_REF][START_REF] Lin | CANN: An intrusion detection system based on combining cluster centers and nearest neighbors[END_REF]

. As evoked in

[START_REF] Moustafa | An Ensemble Intrusion Detection Technique based on proposed Statistical Flow Features for Protecting Network Traffic of Internet of Things[END_REF]

, science started with applying each machine leaning algorithm separately than the trade on combining the algorithms in the same system takes place. Hodo et al. [HBH + 16], Nobakht et al. [NSB16], Hosseinpour et al. [HVAP + 16], Lopez-Martin et al. [LMCSEL17], Thing [Thi17], Diro et al. [DC17], Prabavathy et al. [PSS18] and Nguyen et al. [NMM + 19] use ML algorithms separately. However, all the rest use a combination of algorithms. Hodo et al. [HBH + 16] use MLP, a part of ANN family in an off-line detection. Nobakht et al. [NSB16] executed a feature reduction heuristically and experimented two ML algorithms; LR and SVM for intrusion detection. LR is gradient descent which aims to find out the optimal parameters of a LR model. vantages: i) training stability and generalization of DL; ii) its ability to reach a high accuracy rate if there is enough data and time [MRB + 18]; iii) DL is a self-learning algorithm which means that it does not need manual feature engineering [RP18]; iv) DL extracts complex and non linear hierarchical features from training data of high dimension [DC17]. Lopez-Martin et al. [LMCSEL17] used CVAE which is a generative model based on VAE concepts. CVAE relies on two inputs: i) the intrusion features and ii) the intrusion class labels, instead of using only the intrusion features as input as in VAE. CVAE is better in flexibility and performance. The authors chose CVAE for its ability in feature reconstruction: its ability to retrieve missing features from incomplete dataset. Despite their use for an unsupervised DL algorithm, they benefit from labeled data in training phase for a deviation-based NIDS. Martin-Lopez et al. ensured a good (98.66%) compared to J48 (an implementation of DT). The 2-hidden-layer model had a better performance over the 3-hidden-layer model. Nguyen et al. [NMM + 19] are the only researchers that use federated learning for NIDS. It is an interesting strategy in DL that enables the learning from a distributed architecture since it guarantees the aggregation of the learned patterns. The authors deploy GRU as a DL network in the edges of the system for its efficiency in training with few data. GRU is a computationally less expensive RNN [WAB + 17]. Thanks to this strategy, Nguyen et al. achieve 95.6% of DR. This was about DL proposals. Another strategy in the use of ML algorithms that is taking more and more attention is the combination of different algorithms in the same system [PJK + 16, MTC18, RP18, SB16, SB17, IKMM + 19]. Pajouh et al. [PJK + 16] used two simple ML techniques which are NB and K-nearest networks (

The combination of these algorithms is done in a distributed parallel way. Data is divided into N sets (according to an error function) and each data subset will be treated with a chosen algorithm to finally update the distribution. Such a logic is guaranteed thanks to AdaBoost flow. Moustafa et al. applied also feature selection before starting the classification. By analyzing the treated attacks using correntropy, authors noticed that there are small variations between legitimate and suspicious vectors. Thus the ML algorithms to be used, should classify these small differences. That's how DT, NB and ANN were chosen. DT

[START_REF] Moustafa | An Ensemble Intrusion Detection Technique based on proposed Statistical Flow Features for Protecting Network Traffic of Internet of Things[END_REF]

has multiple advantages while classifying network data. It selects important feature, prepare learning data points easily and manipulates directly the values of features. Even if a non-linear relations exist between parameters, DT performance is not affected. DT could be extended to better take into account unknown threats as proposed in

[START_REF] Bouzida | Detecting Known and Novel Network Intrusions[END_REF]

: it proposed a solution to deal with new instances that are not taken into account in training by assigning a new default class to OPF which is an efficient graph-based ML. They used two variants of OPF; i) OPFC (OPF Clustering) which is an unsupervised ML and ii) MOPF (Modified OPF) which is a supervised algorithm. OPF main strength

[START_REF] Papa | A Learning Algorithm for the Optimum-Path Forest Classifier[END_REF]

is that it does not make any assumption about the shape of classes. The authors use OPFC to project clustering models on a MapReduce architecture. MOPF is used in a misuse-based detection engine with a feature selection module. The proposed solutions are simple and fast classifiers, they are parameter independent and originally support multi-class problems [PF09]. Finally, Illy et al. [IKMM + 19] apply ensemble learning in a multiexpert combination as well as in a multistage strategy with different algorithms like DT, KNN, MLP, etc. and succeeded to reach 85.81% of accuracy.

 • Implements Denial of Service, Remote to User, User to Root and Probing attacks. • Provides network traffic (PCAP).

	• KDD99 suffers from
	unbalanced classification
	methods.
	• The dataset is out of
	date.
	• Not for IoT systems.

 • It overcomes KDD99 limitations. • No duplicated records in the training and test sets. Network traffic IoT dataset. • It reflects real world IoT systems. • Provides network traffic (PCAP) and CSV files.

				• Lack of modern low foot
				print attack scenarios.
				• Not for IoT systems.
	UNSW-		• It provides hybrid real modern normal activities and	• It is more complex than
	NB15		synthetics contemporary attack behaviors.	the KDD99 dataset due
	[MS15]		• Provides network traffic (PCAP) and CSV files.	to the similar behaviors
			• It has nine types of attacks, namely, Fuzzers, Analy-	of the modern attack and
			sis, Backdoors, DoS, Exploits, Generic, Reconnaissance,	normal network traffic.
			Shellcode and Worms.
	Sivanathan	• • Unlabeled data.
	et	al.		• For IoT devices prolifera-
	Dataset			tion and traffic character-
	[SSG + 17]		izing.
				• No attack data.
	CICIDS		
	[fCC17]		

Table 3 .

 3 1: Comparison between free datasets since 1999. Unfortunately, it is out of date. To overcome KDD99 limitations, NSL-KDD was created. It has balanced data with no duplicate records. Since NSL-KDD lacks modern attacks, UNSW-NB15 was proposed. It is a well reputed dataset with recent attacks. Meanwhile, it is more complex than KDD99 in terms of similarity between OneM2M Standard Security and Dataset Creation the new attacks and the normal behaviors. As more recent network datasets, there are i) Sivanathan et al. dataset; ii) CICIDS and iii) CSE-CIC-IDS2018. Sivanathan et al. work is the only IoT network traffic dataset compared to the other presented ones.

Table 3 . 2

 32

: OneM2M GFlows properties

 Argus [noa17a, HBB + 14] is a tool to capture and analyze network flow data. It runs on several OS like like Linux and Windows. It focuses on developing network activity audit strategies. Moreover, Argus treats live and captured traffic data to generate status reports / audits on detected flows with a semantic analysis. It processes libpcap and Endaces's ERF packet data to enable the user having an idea about what is going on a network. This tool provides information on almost all packet parameters like duration, rate, load, retransmission, delays, etc. • EtherApe [noab, HBB + 14] authored by Juan Toledo and Riccardo Ghetta in 2000 is a graphical packet sniffer and network monitoring tool. It supports only Unix platforms. EtherApe aims to represent packets, connections and data-flows visually with color coded hosts and links for the protocols. The tool also facilitates network troubleshooting. Furthermore, it supports real-time display of network packets via standard formats. Traffic may be consulted on one's own network, end-to-end (IP)Wireshark is a cross platform sniffer which is not the case for EtherApe supporting only Unix platform. Moreover, unlike EtherApe, Wireshark takes into account both header and payload details. About Argus, it is more a tool to audit network activities. It decodes several protocols for reports and audits. Regarding Ettercap, apart from network data in sniffer, interceptor and logger mode, it can manipulates the network and launch different MITM attacks. It is able to collect passwords, kill connections, inject packets and commands in active connections. Hence, it can be considered more of a hacker tool than a network sniffer.

or port-to-port (TCP).

In the following, the different free and open-source network sniffers are compared in Table

4

.1. As it can be noticed, Tcpdump is the most popular network sniffer (all the other sniffers try to support its outputs). It is a long life product often updated and extended with multiple features. It is well documented and enjoys community support. However, Tcpdump is primarily developed for data capture unlike other tools equipped for network analysis. It is a command line tool with no real GUI. While the strength of Wireshark and EtherApe is in their graphical features, both can display realtime and captured network files. Wireshark is better known than EtherApe. Besides,

Table 4

 4

.1: Comparison between free, open-source network sniffers 4.2.1.1.

2 OneM2M platform-based Sniffer

 The second solution for oneM2M messages sniffing is based on the standard implementation platform. For our case, we use the Codex Data Platform IoT initiated in May 2017 by Atos Innovation Aquitaine Lab.

Table 4

 4 .2. For example, if the ACP value is 20 then the authorized operations are updating resources and receiving notifications since 20=16+4.

	Value	Operation
	1	Create
	2	Retrieve
	4	Update
	8	Delete
	16	Notify
	32	Discover
	Table 4.2: Possible operations in an ACP

 .7. If it does not exist, then we create a new ACP with 0 for both selfPrivileges and privileges for O in R to block all operations that O is trying to process. If an ACP is already defined, then we start by blocking all actions on selfPrivileges. After that, we verify if the threatening Op is allowed for O in R. If yes, we update the ACP with the old value minus the value of Op. We do not update the ACP with 0 for this exact case to guarantee the continuity of the rest of the services between O and R. However, if we find that Op is already not allowed, this means that there is an

Table 5 .

 5 1: Comparison of the results of the binary classification before the removal of duplicates As we can notice inTable 5.1, SMO achieves the best attack detection rate (recall) of 98.60%, followed by DNN and J48 with 97.41% and 95.40% respectively. However, SMO has the worst CPU training time. NB has the fastest learning phase and the smallest model compared to the rest. It reaches 800ms with 10Ko. Unfortunately, NB has the poorest accuracy. It is J48 which has the best results in terms of accuracy and precision, with 87.81% and 88.90%. It is true that it has a larger model than the NB but 301Kois still acceptable for IoT fog nodes. In addition, J48 is the second fastest algorithm to train. Regarding FPR, it is DNN which achieves the lowest rate with 13.39%, followed The new results are compared in Table5.2. As always, we use the default parameters for NB, SMO, J48 and RF. For DNN, we find that the best results were achieved by a network of three layers, as for the first case, however, the hidden layer is composed of 24 neurons with a ReLu activation function and we use categorical_crossentropy as a loss function and Adam as an optimizer. The network was trained for 200 epochs with a

	tialized by normally distributed weights (random_normal initializer) and has a Rectified
	Linear Unit [Ker19a] (ReLu) activation function. The second layer is composed of eight
	units with a random_normal as a kernel initializer and the sigmoid [Ker19a] function
	for the activation. Regarding the output layer, it is a two units layer since we are in
	the context of binary classification. Softmax was the used activation function to guar-
	antee a probability between 0 and 1 for each classification. The used loss function was
	the binary_crossentropy and the optimizer was the Stochastic Gradient Descent (SGD)
	optimizer.

3)

. We divide it into two files: the training dataset which is composed of 66% randomly chosen inputs and the test dataset which contains the 34% remaining values. The GFlows in both files are labeled as normal or threat. As discussed earlier, the parameters of shallow algorithms were the default ones proposed by Weka. However, for DNN we explored different combinations and the best results were achieved by a network of three fully connected layers. The input layer was initionally compared to Table

5

.1 (with a special enhancement for RF). However, DNN has

Table 5 .

 5 2: Comparison of the results of the binary classification after the removal of duplicates poorer recall and FPR compared to its results with data containing redundant entries (especially for PFR: from 13.39% to 36.93%).

 .3, we compare the results of different ML algorithms for threat family clas-The third ML level tends to identify the exact sub-type of a threat. At this point, we have flooding and amplification threats in the oneM2M dataset (Figure3.12). As presented below, we experienced four shallow ML algorithms with Weka tool and DNN with Keras.

	ML algo-	Recall	Accuracy	Precision	False Positive	Model Size	CPU Training
	rithm	(%)	(%)	(%)	Rate (%)	(Ko)	Time (ms)
	NB	95.30	95.30	95.60	3.30	11	1 080
	SMO	99.90	99.88	99.90	0.20	15	556 710
	J48	100	99.97	100	0	22	11 230
	RF	100	99.98	100	0	1 761	113 850
	DNN	99.87	99.90	99.97	0.05	16	15 696
	Table 5.3: Comparison of the results of the classification of threat families
	5.2.1.5 The Third Level of ML Detection			
	DT algorithms use the entropy computation [WS84] technique for the features re-
	duction. Tree based models calculate feature importance to keep the best performing
	features as close to the root of the tree. By analyzing the generated tree of J48 algo-
	rithm for flooding types classification, we remark that it eliminates 6 features from the
	oneM2M dataset features (Table 3.2): isSameFromTo, isToRemote, fromResourceType,
	sification experiments. J48 and RF achieve the best recall (100%), accuracy (99.98%) counterSameFromOperationResponseType, counterSameToResponseType and counter-
	and precision (100%) with zero FPR. However, J48 is lighter and faster to train. DNN SameOperationResponseCategory. To inject a lighter model into the fog nodes, we
	has close results (two fully connected layers with 2 neurons for the output layer, softmax trained the flooding models with only the relevant features.
	as an activation function and categorical_crossentropy as a loss function). Regarding NB,
	it has the fastest CPU training time (1 080ms) and the smallest model (1Ko). Mean-

while, it has the worst results in terms of the remaining metrics.

Flooding Classification

For this experiment, we use only the flooding GFlows with the sub-types labels. As reported by Table

5

.4, the J48 algorithm achieves the best results with 93.80%, 92.32%, 92.95% and 1.53% of detection rate, accuracy, precision and FPR, respectively. Even though, the NB algorithm is the one which generates the smaller model, 290 Ko (the size of the J48 model) is still always acceptable for the IoT context. Hence, we decide to adopt the J48 algorithm for the flooding classification.

 2.1.3 (without redundant entries). We extract 67% of the normal GFlows of the training dataset for the OCC algorithms training and use the remaining 33% of the normal GFlows with the whole threat GFlows of the training dataset for the validation process and the threshold setting (for algorithms in the reconstruction category). The testing phase is accom-plished with the same test set of Section 5.2.1.3, thus on 34% of the initial dataset. We always use the same test set in order to have comparable results.OC-SVM [SWS + 00], as the name suggests, is based on the binary classifier SVM. It is used for novelty detection in imbalanced datasets. OC-SVM is an unsupervised algorithm that learns a decision boundary in the feature space that contains all targets. More precisely[START_REF] Pimentel | A review of novelty detection[END_REF], "it defines the novelty boundary in the feature space corresponding to a kernel, by separating the transformed training data from the origin in the feature

	5.3.2 OC-SVM

space, with maximum margin". It provides non-linear kernel functions such as the Radial Basis Function (RBF). We use the class OneClassSVM of the scikit-learn library for this experiment. OneClassSVM has mainly three important hyperparameters to configure: the kernel to use, the kernel coefficient gamma and the nu hyperparameter that controls the sensitivity of the support vectors. So to find the best configuration for our oneM2M dataset, we varied the hyperparameters and tuned the model until identifying the best results. We use the RBF as a kernel with gamma = 1/number_of _f eatures and nu = 0.038. Unfortunately, the results are far from being good in terms of FPR (96.30%). For the rest of metrics, we had acceptable results: 97.96% of recall, 74.16% of accuracy and 75.07% of precision.

Table 5

 5 .6 the best results for each type of AEnc and for each number of layers. It is important to mention that in

	ML algorithm	Dim1	Dim2	Dim3	Recall(%) Accuracy(%) Precision(%) FPR(%)
	AEnc (1 hidden layer)	18			79.34	69.81	80.09	58.38
	AEnc (3 hidden layers) 7	3		74.53	72.18	86.38	34.76
	AEnc (5 hidden layers)	15	13	7	85.20	76.63	83.80	48.74
	SAE (1 hidden layer)	11			61.97	66.66	90.40	19.48
	SAE (3 hidden layers)	19	13		62.73	66.82	89.80	21.08
	SAE (5 hidden layers)	25	12	6	71.14	71.42	88.35	27.76
	SAE (5 hidden layers)	15	10	5	85.13	77.21	84.49	46.25
	VAE (1 hidden layer)	25	4		65.87	66.90	86.64	30.06
	SVAE (1 hidden layer)	13	7		83.19	76.27	84.78	44.21
	SVAE (1 hidden layer)	20	4		64.32	67.61	89.36	22.65
	VAE (3 hidden layers)	14	5		66.67	67.21	86.35	31.20
	SVAE (3 hidden layers)	10	4		71.50	69.86	85.81	35.00

Table 5 .

 5 6: Best AEncs results with DT-based threshold

Table 5

 5 .6.

	ML algorithm	Dim1 Dim2 Dim3 Threshold	Threshold	Recall(%) Accuracy(%) Precision(%) FPR(%)
					Type					
	1 SAE (5 hidden layers)	19	15	14	q1_anomalous	0.00060799	75.05	71.32	84.83	39.73
	2 SAE (5 hidden layers)	11	9	3	q1_anomalous	0.01196436	74.86	71.74	85.53	37.48
	3 AEnc (3 hidden layers) 7	3		DT	0.01204153	74.53	72.18	86.38	34.76
	4 SAE (5 hidden layers)	19	15	14	iqr_normal	0.00061692	73.89	70.85	85.15	38.14
	5 AEnc (3 hidden layers) 7	3		abs(iqr_normal	0.01317281	73.19	71.69	86.87	32.75
					-q1_normal)					
	6 AEnc (5 hidden layers) 19	12	11	iqr_normal	5.054e-05	70.49	68.04	84.18	39.19

Table 5 .

 5 7: Best AEncs results with the associated thresholds In Table5.7, we present the best AEncs results with their associated thresholds. The table is ordered in ascending order of recall and only models that achieve more than 70% of recall and less than 40% of FPR are shown.

Table 5

 5 .8, J48 has the best results in terms of recall, accuracy, precision and FPR but the AEnc has a lighter model and a faster training time. These results are related to the initial test set that we have prepared in Section 5.2.1.3. Since the model size as well as the training time of J48 remain acceptable for IoT context and considering the important difference between the two models especially with 20% less in terms of recall for AEnc, we first choose J48 as our algorithm for the first level of ML

	ML algo-	Recall	Accuracy	Precision	False Positive	Model Size	CPU Training
	rithm	(%)	(%)	(%)	Rate (%)	(Ko)	Time (ms)
	J48	94.90 89.28	91.10	27.30	285	30 950
	AEnc	74.53	72.18	86.38	34.76	20	22 532

Table 5 .

 5 8: Comparison of detection results on the initial test set for the first detection level

A WSN is wireless geographically distributed network of sensors to monitor physical or environmental conditions.

IPv6 over Low-power Wireless Personal Area Network

Routing Protocol for Low-Power

6LoWPAN Border Router

The ebbits project is a European research project which deals with architecture, technologies and processes to enable mainstream enterprise incorporate IoT eco-system.

Suricata [Fou17] is an open-source, multi-threaded signature-based NIDS.

CEP technologies merge multiple data sources to interpret real time actions from complicated events or patterns.

EPR is a repository of Event Processing Model statement EPM (a collection of events correlation).

CEP engine analyzes a mass of events, identifies the most important ones, and produces actions.

Standard Protocol Library describes the standard protocols through Glued-IOLTS[START_REF] Fu | Security and Robustness by Protocol Testing[END_REF].

Abnormal Action Library recognizes anomaly actions flows for the system.

Normal Action Library contains possible action flows created from the Standard Protocol Libraries using the techniques of Fuzzing[START_REF] Tsankov | SecFuzz: Fuzz-testing Security Protocols[END_REF] and Robustness Testing [LLL + 10]

Wireless Sensor Network

CoAP: Constrained Application Protocol

SDN abstracts network services. It separates control plane (the decision maker about data forwarding) from data plane (the responsible of sending the data).

Cisco introduced Fog computing concept to extend cloud computing at the network layer. The fog layer is between the IoT sensors and the cloud.

Smart data strategy is "an active and intelligent data structure which facilitates the management of Big Data in IoT" [HVAP+ 16]

More details about KDD-Cup99 are in Section 3.3.1

More details about NSL-KDD are in Section 3.3.1

More details about UNSW-NB15 are in Section 3.3.1

https://atos.net/

The OSGi technology[All] facilitates the componentization of software modules and applications and assures remote management and interoperability of applications and services over a broad variety of devices.

NumPy is the fundamental package for scientific computing with Python.

Acknowledgements

Contents

State of the Art of Network Intrusion Detection Systems for IoT processing IDS architecture using Esper (CEP engine for complex event processing and event series analysis). Their approach is CPU intensive, but consumes less memory. Indeed, it proved better real-time performance. For example, for 800k of data, CEP-based IDS consumes 62% of CPU, 730MB of memory and 422 millisecond processing time.

However, traditional IDS like utilizes 57% of CPU, 1064MB of memory and 8688ms for processing 800k of data. It is interesting to note that, the framework is designed but not evaluated for any kind of attack detection. for InterneT of ThIngs (INTI). It combines watchdog [START_REF] Wahab | A cooperative watchdog model based on Dempster-Shafer for detecting misbehaving vehicles[END_REF], reputation [START_REF] Perez-Toro | RDAS: Reputation-Based Resilient Data Aggregation in Sensor Network[END_REF] and trust strategies for detection of attackers. First, as a hierarchical structure, the nodes (grouped or separated) are classified as leaders. Then, the nodes can change role over the time based on network requirements. Each node monitors a number of transmissions performed by a superior node. If an attack is detected, an alert message is broadcast and a cooperative isolation of the malicious node is performed. Cervantes et al. gave importance for node mobility and network self-repair, which are limitations with Raza et al. [START_REF] Raza | SVELTE: Real-time intrusion detection in the Internet of Things[END_REF] approach. Their simulation results show sinkhole detection rate (DR) of 92% on 50 fixed nodes scenario and of 75% for 50 mobile nodes. Also, authors reported low false positives and false negatives compared to SVELTE.

Surendar and Umamakeswari [SU16] set up an Intrusion Detection and Response

IoT System (InDReS) with 6LowPAN. InDReS uses constraint based specification tech-Container of A. Each time a new ContentInstance is created under A, B will be notified.

To stop this threat, the creation of subscriptions needs to be blocked for B (so minus 1) and both notification and creation mechanisms need to be denied for A (minus 17 for the ACP of A). Same for AOAMC expect that we need to block discovery also for A since B will discover all the Container resources of A in order to subscribe to them at the beginning (so in total minus 49). ADA has the same principle as AOAMC however, it concerns all the contained AE under the same CSEBase resource as A. Thus B subscribes to all the containers of all the AE resources at the same level as A. Consequently, the minus 49 should be applied to both the CSEBase of A and all the AE resources at the same level as A.

Effect of Dataset Size on Detection Results

In this section, we consider two different cases related to data size that can affect the continuous learning module presented in Section 4.2.4. As detailed, this module needs to update ML detection models. For a quick training as well as an efficient consideration of new upcoming GFlows (without waiting for a large data availability), we need to find the minimum data size necessary to generate a reliable model. Fast training with a small amount of data generates lightweight and easily updatable models which is important in the security domain and interesting in the context of IoT and fog computing. First, we study the evolution of the models performances in binary classification (first ML

One-Class Classification Approach

In order to have a better intrusion detection at the first ML level of our IDPS, as well as to enable the detection of unknown threats at the second ML level, we wanted to experiment one-class classification algorithms (OCC). For the first level, OCC reflection seems to be more intuitive for this type of binary classification. Since the main goal of this IDS level is to detect any behavior that is different from the normal one (whether it is security attack or just an abnormal functioning of the system), learning only from the normal behavior without considering the threat inputs appears to have more sense. Regarding the second ML level, the main goal is to detect unknown (never seen before) threats on the one hand, and to classify the known threats on the other hand. Consequently, we need to adapt the OCC approach for multi-classification.

We start this section with a presentation of the categories of OCC algorithms, focusing on those that we have experimented for our IDS. Then, we detail our experimentation process for the choice of the best algorithm and parameters. Moreover, we discuss the results and the final choice of the ML algorithm for the first detection level. We conclude this section, with details and experiments about multi-class novelty detection for the second level of ML detection.

For better consistency in definitions and discussions, most of the details in this section will be presented for the first level of the IDS. The second level will only be covered by Section 5.3.3.4.

Machine Learning and Deep Learning for OneM2M Intrusion Detection

method in [START_REF] Erfani | Highdimensional and large-scale anomaly detection using a linear one-class Bibliography SVM with deep learning[END_REF] and the reduced reconstruction error in [START_REF] Khan | Detecting unseen falls from wearable devices using channel-wise ensemble of autoencoders[END_REF] which are both based on statistics of the training data set such as the mean, the standard deviation as well as quartiles. There is also the inlier reconstruction error method based on TP and FP proposed in [START_REF] Khan | Detecting unseen falls from wearable devices using channel-wise ensemble of autoencoders[END_REF] and a density estimation strategy detailed in [START_REF] Cao | A Hybrid Autoencoder and Density Estimation Model for Anomaly Detection[END_REF].

Decision Tree based Threshold

In our work, we propose a new threshold determination method based on the use of a decision tree algorithm on the validation dataset.

Since the latter contains both normal and abnormal inputs, we can compute the RE for both classes. Applying a DT on the results will enable to find the best RE that separates the normal RE values from the anomalous ones.

We start by training our AEncs models on the training dataset trying to minimize the loss function as much as possible. Once our model is ready, we evaluate it on the validation dataset which is composed of the remaining 33% of the normal GFlows with the whole threat GFlows (as detailed in the beginning of Section 5.3). At the end of this step, we will have a map of the input initial classes (the true class of the entry: normal or anomalous) with the associated RE (the prediction of the AEnc model). As presented in Section 5.2.1.1, a DT chooses the best attribute value to split the set of data samples into subsets with the highest possible information gain (entropy). So when we apply this algorithm on our map (true_class / RE), it will determine the best RE value that can split the validation dataset into normal and anomalous. DT performs the operation recursively until the leaves. However, in our threshold determination process, we will stop at the first data split and retrieve the separation RE value (root of the tree) that we will use as threshold for the test dataset. Figure 5.8 illustrates, as an example, the REs of the validation dataset (for both classes) with the threshold computed by our DT-based solution.

The only disadvantage of this method is that it needs a validation dataset that contains instances from both classes which is the case of our validation dataset (it contains normal and anomalous GFlows).

ML algorithm