
HAL Id: tel-02952954
https://theses.hal.science/tel-02952954

Submitted on 29 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Intrusion detection and prevention for IoT systems
using Machine Learning

Nadia Chaabouni

To cite this version:
Nadia Chaabouni. Intrusion detection and prevention for IoT systems using Machine Learning. Sys-
tems and Control [cs.SY]. Université de Bordeaux, 2020. English. �NNT : 2020BORD0070�. �tel-
02952954�

https://theses.hal.science/tel-02952954
https://hal.archives-ouvertes.fr

THESIS PRESENTED

TO OBTAIN THE QUALIFICATION OF

DOCTOR OF

THE UNIVERSITY OF BORDEAUX

DOCTORAL SCHOOL OF MATHEMATICS AND COMPUTER SCIENCE

SPECIALIZATION COMPUTER SCIENCE

By CHAABOUNI Nadia

INTRUSION DETECTION AND PREVENTION FOR IOT

SYSTEMS USING MACHINE LEARNING

Under the supervision of: MOSBAH Mohamed and ZEMMARI Akka

Defended on 13/07/2020

Members of the examination panel:

Mr. AHMED, Touf ik Professor, Bordeaux INP President
Mr. DRIRA Khalil Research Director at CNRS, LAAS Toulouse Examiner

Mr. CUPPENS, Frédéric Professor, IMT Atlantique Recorder
Mr. GHAMRI-DOUDANE, Yacine Professor, University of La Rochelle Recorder
Mr. MOSBAH, Mohamed Professor, Bordeaux INP Supervisor

Mr. ZEMMARI, Akka Associate Professor, University of Bordeaux Supervisor
Mr. SAUVIGNAC, Cyrille R&D Manager, Atos Supervisor

Titre : Détection et prévention des intrusions pour les

systèmes IoT en utilisant des techniques d’apprentissage

Résumé : Avec l'expansion de l'Internet des objets (IoT) et l'évolution des

techniques d'attaque, la sécurité de l'IoT est devenue une préoccupation très
importante. OneM2M est une initiative de standardisation mondiale pour l'IoT. Par

conséquent, sa sécurité implique la sécurité de l'écosystème IoT. C'est pourquoi nous
concentrons nos travaux sur la sécurité de ce standard. Dans cette thèse, nous
proposons un système de détection et de prévention des intrusions (IDPS), basé sur

les techniques d’apprentissage, pour les systèmes IoT utilisant oneM2M. Afin
d'adopter les technologies émergentes et surtout avec ses résultats intéressants déjà

éprouvés dans le domaine de la sécurité, les techniques d’apprentissage sont utilisées
dans notre stratégie IDPS. Notre système oneM2M-IDPS détecte les menaces
potentielles et y répond immédiatement. Il détecte et classifie les menaces sur trois

niveaux d’apprentissage différents et réagit rapidement par des actions appropriées.
OneM2M-IDPS ne traite pas seulement les menaces connues (attaques de sécurité et

comportements anormaux), il est également capable de détecter les menaces
inconnues (zero-day). De plus, l'IDPS est équipé d'un module d'apprentissage continu
qui lui permet d'apprendre en permanence de nouveaux comportements afin d'être à

jour.

Mots clés : Internet des objets (IoT), Techniques d’apprentissage, Détection

d’intrusions, Prévention d’intrusions

Title: Intrusion detection and prevention for IoT systems

using Machine Learning

Abstract: With the expansion of the Internet of Things (IoT) and the evolution of

attack techniques, IoT security has become a more critical concern. OneM2M is a
global standardization initiative for the IoT, therefore its security implies the security of

the IoT ecosystem. Hence, we focus our work on the security of the oneM2M standard.
In this thesis, we propose an Intrusion Detection and Prevention System (IDPS) based
on Machine Learning (ML) for the oneM2M-based IoT systems. In order to adopt

emerging technologies and especially with its interesting results already proven in the
security domain, ML techniques are used in our IDPS strategy. Our oneM2M-IDPS

detects potential threats and responds immediately. It detects and classifies threats on
three different ML levels and reacts quickly with appropriate actions. OneM2M-IDPS
not only handles known threats (security attacks and abnormal behaviors), it is also

able to detect unknown/zero-day threats. In addition, the IDPS is equipped with a
continuous learning module that allows it to continuously learn new behaviors in order

to be up to date.

Keywords: Internet of Things (IoT), Machine Learning, Intrusion Detection,

Intrusion Prevention

3

Acknowledgements

This PhD has been an enriching and tough journey, full of ups and downs, full of joy
and tears and especially full of wealthy lessons. Fortunately, I was surrounded by many
supportive people, who have given me strength to go through the difficult times. So, it is a
great pleasure to thank them all for their positive impact during this quest.

Naturally, my first thanks come back to my supervisors Mohamed Mosbah, Akka Zem-
mari and Cyrille Sauvignac, for the chance they gave me to integrate their teams and work
on a subject of remarkable importance with both scientific and industrial openness. I am
grateful for their trust and their technical, emotional and financial support over these three
years. Their advices at scientific, industrial and personal levels have resulted in the pro-
duction of this work. Thanks for having shown my weaknesses and also congratulated me
every time I achieve a milestone.

I would also like to thank the jury members of my defence. Many thanks to Mr. Toufik
Ahmed, Professor at Bordeaux INP and Mr. Khalil Drira, Research Director at CNRS LAAS
Toulouse, for agreeing to evaluate my work. I would also like to express my gratitude to Mr.
Frédéric Cuppens, Professor at IMT Atlantique and Mr. Yacine Ghamri-Doudane, Professor
at the University of La Rochelle, who agreed to read and review my thesis. I thank them in
advance for all the attention they are willing to give to my work as well as their valuable
feedback. It is really my utmost honor to have all these experts reviewing my work.

I would like to thank Atos for funding my research experience, with special gratitude
to Mr. Dominique Parguel for his trust and support to make the PhD happen. In addi-
tion, I would like to express my sincere gratitude to all members of the Atos Innovation
laboratory team for the friendly atmosphere in the team. I thank my colleagues Darius
Matboo-Raftarhaghi, Vivien Achet, Arnaud Casteler and Nafissa Harrouz for all the de-
bates, discussions, remarks and guidance, for their emotional support as well as the good
mood that we share each day at the office. A special and deepest gratitude goes to my
old colleagues Craig Josse and Charlie Huynh for their technical assistance and their wise
recommendations. I would also like to thank all the people with whom I have the chance
to discuss from the administration who helped with the administrative procedures.

Regarding my laboratory, the LaBRI, I am grateful for all its members that welcomed
me. I would like to thank in particular Chahrazed Ksouri with whom I have had moments
of complicity during this tough period. Thanks to all members of my office room as well as
the members of the lab for the ups and downs that we have shared all together during this
journey. I would also like to thank all the people from the administration and the system
team who helped me many times and definitely contribute to the good mood at the LaBRI,
thank you all.

4

Moreover, I would like to thank the "Association Nationale de la Recherche et de la
Technologie" (ANRT) for CIFRE funding (N◦ 2017/0122).

Last but not least, I cannot finish without expressing all the gratitude I have for my
loving family for their support and their love and comfort in the good and the bad, and for
bringing joy to my soul even though we are always far away. My sincere thanks and love to
my precious parents, my father Mounir, my mother Zineb and my beloved brothers Amine,
Hamdi and Majdi. I am eternally indebted to them and to all my family members.

Furthermore, I would like to thank my friends. A special gratitude goes to Amel Raboudi
with whom, despite the distance, I shared not only difficult and joyful moments but also
reflections around the world of academic and industrial research. My sincere gratitude to
all my dearest friends: (in alphabetical order) Amin, Amira, Hafsa, Houssem, Ibtihel, Ines,
Salma, Yasmina and Yassine for their support and their true friendship and love, for their
listening and their support in difficult times.

Finally, I am grateful to all my loved ones, all those who helped me during this PhD and
whom I had the privilege of meeting during this journey.

5

Abstract

Pervasive growth of Internet of Things (IoT) is visible across the globe. Since the 2016
Dyn cyberattack caused by the infamous Mirai IoT botnet, IoT security has become a
critical concern. The attack exposed the critical fault-lines among smart networks. The
danger exposed by infested Internet-connected things not only affects the security of
IoT, but also threatens the complete Internet ecosystem which can possibly exploit the
vulnerable Things (smart devices) deployed as botnets. In the recent decade, security
attack vectors have evolved bothways, in terms of complexity and diversity. Hence, to
detect and prevent new attacks, it is important to enhance the security mechanisms
with emerging technologies like Artificial Intelligence (AI) and Machine Learning (ML).
Intrusion Detection Systems (IDS) are one of the strategies for using ML techniques in
threat detection.

Moreover, with the increasing deployment of IoT in all areas such as healthcare,
transportation, industrial automation, smart homes, etc., manufacturers tend to use
proprietary solutions with customized hardware and software. Such a trend favours
a fast time-to-market without sufficient embedded security and verification. OneM2M
is a global standard initiative designed to satisfy the need for a common horizontal
platform for the multi-industry Machine-to-Machine (M2M) / IoT applications. It aims
to satisfy the need for a common M2M service layer that guarantees the communication
between heterogeneous devices and applications. Various security mechanisms have
been proposed in the oneM2M specifications to protect the IoT solutions. However, none
of the specified techniques protect the IoT systems once the malicious user has gained
access to the system and bypassed the first-line security measures. This represents a
critical and unexplored topic for the oneM2M standard.

In this thesis, we decided therefore to propose an ML-based Intrusion Detection
and Prevention System (IDPS) as a second line of security for IoT systems based on
the oneM2M standard to detect and prevent intrusions. To the best of our knowledge,
our proposal is the first IDPS for the oneM2M service layer. In order to embrace the
emerging technologies and especially with its interesting results already proven in the
security field, we have chosen to use ML techniques in our IDPS strategy. Our oneM2M-
IDPS detects and responds immediately to potential threats as soon as they are carried
out. It detects and classifies threats on three different ML levels and responds quickly
with appropriate actions. OneM2M-IDPS not only deals with known threats (security
attacks and abnormal behaviors), it is also able to detect zero-day/unknown threats.
In addition, the IDPS is equipped with a continuous learning module that allows it to
continuously learn new behaviours in order to be up to date. In order to achieve our
goal, we have gone through several steps from the complete state of the art of IDPS
with or without ML, to the definition of oneM2M attacks, to the creation of a dataset of
these attacks, to the experimentation of different ML strategies in order to find the best
ones for our proposed IDPS architecture.

6

Résumé

L’expansion de l’internet des objets (IoT) est visible dans le monde entier. Depuis la
cyberattaque de Dyn en 2016, causée par le tristement célèbre botnet Mirai IoT, la
sécurité de l’IoT est devenue une préoccupation plus importante. L’attaque a mis en
évidence les failles critiques des réseaux intelligents. Le danger que représentent les
objets contaminés connectés à Internet n’affecte pas seulement la sécurité de l’IoT,
mais menace également l’ensemble de l’écosystème Internet qui peut éventuellement
exploiter les objets vulnérables (dispositifs intelligents) déployés en tant que botnets.
Au cours de la dernière décennie, les techniques d’attaques de sécurité ont évolué en
termes de complexité et de diversité. Par conséquent, pour détecter et prévenir les
nouvelles attaques, il est important de renforcer les mécanismes de sécurité avec des
technologies émergentes comme l’intelligence artificielle et l’apprentissage automa-
tique (Machine Learning). Les systèmes de détection d’intrusion (IDS) sont l’une des
stratégies permettant d’utiliser les techniques d’apprentissage dans la détection des
menaces.

En outre, avec le déploiement croissant de l’IoT dans tous les domaines tels que la
santé, les transports, l’automatisation industrielle, les maisons intelligentes, etc., les
fabricants ont tendance à utiliser des solutions propriétaires avec des matériels et des
logiciels personnalisés. Cette tendance favorise une commercialisation rapide, avec
moins de vérification et moins de sécurité intégrée. OneM2M est une initiative de stan-
dardisation mondiale conçue pour répondre au besoin d’une plate-forme horizontale
commune pour les applications multi-secteurs Machine-to-Machine (M2M) / IoT. Elle
vise à satisfaire le besoin d’une couche de service M2M commune qui garantit la com-
munication entre des dispositifs et des applications hétérogènes. Divers mécanismes de
sécurité ont été proposés dans les spécifications oneM2M pour protéger les solutions
IoT. Cependant, aucune des techniques spécifiées ne protège les systèmes IoT une fois
que l’utilisateur malveillant a accédé au système et contourné les mesures de sécurité de
première ligne. Ceci représente un sujet critique et inexploré pour le standard oneM2M.

Dans cette thèse, nous avons donc décidé de proposer un système de détection et de
prévention des intrusions (IDPS) basé sur les techniques d’apprentissage comme deux-
ième ligne de sécurité pour les systèmes IoT basés sur le standard oneM2M pour détecter
et prévenir les intrusions. À notre connaissance, notre proposition représente le premier
IDPS pour la couche de service oneM2M. Afin d’adopter les technologies émergentes et
surtout avec ses résultats intéressants déjà éprouvés dans le domaine de la sécurité,
les techniques d’apprentissage sont utilisées dans notre stratégie IDPS. Notre oneM2M-
IDPS détecte les menaces potentielles et y répond immédiatement. Il détecte et classifie
les menaces sur trois niveaux d’apprentissage différents et réagit rapidement avec des
actions appropriées. OneM2M-IDPS ne traite pas seulement les menaces connues (at-
taques de sécurité et comportements anormaux), il est également capable de détecter les
menaces inconnues/zero-day. En outre, l’IDPS est équipé d’un module d’apprentissage

7

continu qui lui permet d’apprendre en permanence de nouveaux comportements afin
d’être à jour. Afin de réaliser notre objectif, nous sommes passés par plusieurs étapes
allant de l’état de l’art des IDPS munis ou non des techniques d’apprentissage, à la
définition des attaques oneM2M, à la création d’une base de données de ces attaques,
jusqu’à l’expérimentation de différentes stratégies d’apprentissage afin de trouver les
meilleurs pour notre architecture IDPS.

Contributions

La principale contribution de cette thèse est la conception et la mise en œuvre d’un IDPS
basé sur les techniques d’apprentissage pour protéger les objets qui utilisent le standard
oneM2M. Pour atteindre cet objectif, un examen complet de l’écosystème de la sécurité
de l’IoT est réalisé dans un article publié dans la revue IEEE Communications Surveys &
Tutorials intitulé "Network intrusion detection for IoT security based on learning
techniques" [CMZ+19]. L’article porte sur trois domaines importants : i) l’IoT, ii) les
mécanismes de sécurité et iii) les techniques d’apprentissage automatique. Il guide le
lecteur dans la découverte de l’intersection de ces trois domaines en fournissant tous
les détails nécessaires pour comprendre la sécurité des systèmes IoT. Le document
commence par présenter et catégoriser les menaces de sécurité contre l’IoT ainsi que les
techniques de défense traditionnelles en mettant l’accent sur les types d’IDS. Ensuite,
il énumère et examine les outils disponibles qui peuvent être utilisés pour développer
et/ou évaluer les IDS déployés niveau réseau (NIDS): i) les corpus de données gratuits,
ii) les renifleurs de réseau gratuits et open source et iii) les NIDS open source. En outre,
le document traite les NIDS conçus pour l’IoT, leurs architectures, leurs déploiements
et leurs applications dans les systèmes hétérogènes. Les techniques d’apprentissage
sont présentées. Ensuite, les NIDS pour les systèmes IoT déployés via des techniques
d’apprentissage sont détaillés, comparés et évalués. Nous avons examiné en détail
l’état de l’art actuel, comparé et évalué les performances des systèmes NIDS basés sur
les techniques d’apprentissage et déployés pour sécuriser les réseaux IoT. Enfin, le
document s’est conclu par un résumé et une liste des orientations futures possibles.

Compte tenu de la nécessité d’un écosystème IoT standardisé, en particulier
avec la croissance significative du nombre de dispositifs connectés, nos travaux se
concentrent sur le standard oneM2M. Nous avons donc défini les attaques de sécurité
qui menacent la couche de service oneM2M et proposé une abstraction pour les flux
oneM2M appelée GFlow. Afin de mettre en œuvre un mécanisme de sécurité basé sur
l’apprentissage, l’abstraction GFlow est utilisée pour la création d’un corpus de données
de sécurité oneM2M. Ce corpus a été créé avec une plate-forme réelle et contient les
attaques oneM2M ainsi que les GFlows légitimes. Grâce aux données générées, nous
avons proposé le premier IDS générique pour la couche de service oneM2M basé sur
l’apprentissage "à la frontière" ou ce qu’on appelle edge machine learning. Afin de
choisir le meilleur algorithme d’apprentissage pour nos besoins, divers algorithmes sont

8

expérimentés pour des classifications binaires et multiples. Toutes ces études ont fait
l’objet de la publication "An Intrusion Detection System for the OneM2M Service
Layer Based on Edge Machine Learning" [CMZS19] dans la conférence internationale
Ad-Hoc Networks and Wireless (Adhoc-Now).

Un système de détection et de prévention des intrusions oneM2M (oneM2M-IDPS)
basé sur l’apprentissage automatique était au centre de notre article "A OneM2M
Intrusion Detection and Prevention System based on Edge Machine Learning"
[CMZS20] publié dans IEEE/IFIP Network Operations and Management Symposium
(NOMS). Dans le cadre de ce travail, une architecture pour le oneM2M-IDPS est
proposée. Chaque module de notre stratégie IDPS est détaillée en commençant par le
module d’acquisition de données et d’extraction de caractéristiques. Ensuite, un nouvel
IDS basé sur trois niveaux de détection est proposé. De plus, cet IDS est enrichi de deux
nouveaux modules : i) un module de prévention pour agir contre les menaces détectées
et ii) un module d’apprentissage continu pour fournir un IDPS à jour qui évolue avec
l’évolution et l’émergence de nouvelles menaces.

Dans les travaux précédents, le module IDS utilisait des algorithmes d’apprentissage
pour les trois différents niveaux de détection en mode classification binaire et multiple.
Dans notre article de revue "Anomaly and Novelty Detection and Prevention for IoT
Security: A Continuous Machine Learning Approach", soumis à la fin de la thèse,
nous détectons les anomalies dans le standard oneM2M d’une part, et les nouveautés
en termes de menaces d’autre part, dans une plateforme de détection et de préven-
tion des intrusions. En ce qui concerne la détection des anomalies, les algorithmes de
classification à une classe (OCC) sont examinés pour détecter les comportements qui
diffèrent de la norme. De plus, une nouvelle méthode de détermination de seuil basée
sur l’algorithme de l’arbre de décision est proposée. Toutefois, pour la détection des
nouveautés, l’approche OCC est étendue pour i) détecter les nouvelles menaces non
connues et ii) classer celles qui sont déjà connues auparavant. En outre, le flux de tra-
vail du module de prévention est spécifié et les actions de prévention sont précisées. De
plus, les différents scénarios qui activent le module d’apprentissage continu, de manière
autonome ou à la demande de l’Homme, sont décrits en détails. Ils permettent la mise
à jour permanente du système IDPS.

Organisation de la thèse

La thèse est organisée en six chapitres qui sont eux-mêmes divisés en plusieurs sec-
tions. Le chapitre 1 présente l’écosystème de la sécurité des objets connectés. La sec-
tion 1.1 commence par la présentation et la classification des catégories de menaces
de sécurité de l’IoT ainsi que des techniques de défense traditionnelles afin de fournir
au lecteur le contexte de sécurité nécessaire pour une meilleure compréhension de ce
manuscrit. Dans la section 1.2, notre motivation pour ce travail ainsi que les problé-

9

matiques auxquelles nous essayons de répondre sont détaillées. Dans la section 1.3, les
différentes contributions apportées aux problématiques étudiées durant la thèse sont
présentées.

Dans le chapitre 2, la littérature traitant les IDPS, déployés au niveau réseau dans les
systèmes IoT, est présentée et discutée. La section 2.1, commence par l’état de l’art des
IDPS pour l’IoT qui ne sont pas basés sur des techniques d’apprentissage. Ces travaux
se concentrent davantage sur l’architecture de déploiement et la stratégie de détection.
Après avoir détaillé chaque travail séparément, nous les discutons et les comparons sur
la base de leurs architectures (si elle est distribuée, centralisée ou hybride), de leurs
méthodologies de détection (basées sur les signatures, les anomalies ou hybrides), de
leurs stratégies de validation (simulation ou émulation) ainsi que des menaces traitées.
Une importance a également été accordée aux forces et faiblesses de chacune des
propositions. La section 2.2 concerne les IDPS basés sur les techniques d’apprentissage.
Comme dans la première partie, nous fournissons une brève description de chaque
travail, puis nous comparons et discutons leurs déploiements, leurs méthodologies, les
corpus de données qu’ils ont utilisés, les menaces qu’ils ont traitées et les algorithmes
d’apprentissage qu’ils ont employés.

Dans le chapitre 3, un aperçu du standard oneM2M (section 3.1) est fourni: son ar-
chitecture et ses mécanismes de sécurité définis dans ses spécifications. Ensuite, dans la
section 3.2, nous nous concentrons sur les menaces oneM2M liées à la disponibilité des
services puisque oneM2M concerne par définition les services pour les systèmes M2M
et IoT. Une taxonomie et une mise en œuvre des menaces oneM2M sont proposées. Ce
chapitre se termine par la section 3.3 qui détaille la création d’un corpus de données
de sécurité oneM2M. Elle commence par l’état de l’art des corpus de données libres
utilisés pour la création des IDS IoT déployés au niveau réseau. Comme il n’existe pas
de corpus de données pour le standard oneM2M, nous créons nos propres données en
respectant la taxonomie des menaces oneM2M présentée dans la section précédente.
Ce jeu de données est basé sur une nouvelle proposition d’abstraction pour les flux
oneM2M. Cette abstraction est le fondement de notre IDPS.

Dans le chapitre 4, nous présentons les différents défis et objectifs respectés
et garantis avec notre proposition oneM2M-IDPS : l’interopérabilité, l’autonomie,
l’extensibilité et le respect des contraintes de ressources, la modularité dans la concep-
tion, l’adaptabilité et l’extensibilité et enfin la réaction active et en temps réel (section
4.1). De plus, la section 4.2 détaille la stratégie ainsi que l’architecture de l’IDPS et la
conception de chacun de ses quatre modules : i) le module d’acquisition de données
et d’extraction de caractéristiques, ii) le module IDS, iii) le module IPS ainsi que iv) le
module d’apprentissage continu et d’annotation humaine.

Le chapitre 5 se focalise sur l’aspect d’apprentissage automatique de notre IDPS.
Notre module de détection est mis en œuvre avec ses trois niveaux d’apprentissage en
utilisant le corpus de données oneM2M décrit dans le chapitre 3. Différents algorithmes

10

d’apprentissage et d’apprentissage profond Deep Learning sont expérimentés pour
chaque niveau de détection afin de choisir les plus appropriés et les plus efficaces.
Ce chapitre commence par la section 5.1 qui explique notre choix d’adoption des
techniques d’apprentissage pour les niveaux de détection. Ensuite, nous présentons
les métriques sur lesquelles nous nous sommes appuyés pour évaluer l’efficacité de
chaque algorithme dans notre contexte de détection d’intrusion oneM2M, ainsi que
l’environnement expérimental. De plus, deux approches principales sont étudiées: i)
la détection basée sur des algorithmes d’apprentissage supervisés (section 5.2) et ii)
la détection basée sur une approche de classification à une classe (section 5.3). Pour
chacun des deux, les algorithmes expérimentés (définitions et outils) sont présentés,
les différentes étapes de la mise en place des expériences sont expliquées, puis les
résultats sont exposés, comparés et discutés. En ce qui concerne la première approche,
l’apprentissage supervisé est choisi vu que les expériences menées dans la section
correspondante s’inscrivent dans le contexte de la classification où nous disposons
de données annotées et labélisées. Dans cette section, les trois niveaux de détection
de notre IDS sont expérimentés, puis l’effet de la taille et de l’équilibre du jeu des
données d’entraînement sur le processus de détection est étudié. Dans la dernière
section de ce chapitre, nous examinons l’approche de classification à classe unique
pour le premier et le deuxième niveau de détection. Dans le premier niveau, nous
mettons en évidence la détection de tout comportement différent de la normale (connu
pour la détection d’anomalies) ainsi que les techniques permettant de déterminer le
seuil de normalité. Dans le deuxième niveau, l’approche de classification à une classe
est adaptée pour permettre la détection des menaces inconnues ainsi que la multi-
classification des menaces déjà connues (détection de nouveauté et multi-classification).

Le chapitre 6 conclut la thèse avec un résumé des principales contributions et une
proposition détaillée de quelques pistes de recherche qui peuvent être suivies pour
traiter davantage les problématiques exposées.

11

12

Acronyms and Abbreviations

6LoWPAN IPv6 over Low-power Wireless Personal Area Network

ACP Access Control Policy

ADA Amplify Discovery Application entity

ADN Application Dedicated Node

AEnc Auto-Encoder

AE Application Entity

AF Application entity Flooding

AIS Artificial Immune System

AI Artificial Intelligence

AOAMC Amplify One Application entity Multiple Containers

AOAOC Amplify One Application entity One Container

API Application Programming Interface

ASN Application Service Node

CF Container Flooding

CIF ContentInstance Flooding

CSE Common Services Entity

CsF Containers Flooding

DDoS Distributed Denial of Service

DL Deep Learning

DoS Denial of Service

13

Acronyms and Abbreviations

DR Detection rate

DT Decision Tree

ELM Extreme Learning Machine

ESFCM Semi-supervised Fuzzy C-Means

FPR False Positive Rate

GUI Graphical User Interface

IDPS Intrusion Detection and Prevention System

IDS Intrusion Detection System

IN Infrastructure Node

IoT Internet of Things

IPS Intrusion Prevention System

KNN K Nearest Neighbors

LDA Linear Discriminant Analysis

LR Logistic Regression

M2M Machine-To-Machine

MITM Man-In-The-Middle

MLP Multi Layer Perceptron

ML Machine Learning

MN Middle Node

N_OP Number of OPerations

N_TH Number of THreads

NB Naive Bayes

NIDS Network Intrusion Detection System

NSE Network Services Entity

OC-SVM One-Class SVM

OCC One-Class Classification

14

Acronyms and Abbreviations

OPF Optimum Path Forest

Op Operation

OS-ELM Online Sequential Extreme Learning Machine

O Originator

PCA Principal Component Analysis

R2L Remote-to-Local

RBF Radial Basis Function

RF Random Forest

RPL Routing Protocol for Low-Power

R Resource

SAE Sparse Auto-Encoder

SF Subscription Flooding

SMO Sequential Minimal Optimization

SVM Support Vector Machines

TPR True Positive Rate

U2R User-To-Root

VAE Variational Auto-Encoder

VF Various Flooding

15

16

List of Figures

1.1 IoT architecture & layer wise attacks . 26

1.2 IoT threats categorization by design challenges 28

2.1 DEMO architecture . 48

2.2 CEP-based IDS architecture for IoT . 49

2.3 State of the art intrusion detection results 67

3.1 OneM2M commun service layer . 77

3.2 OneM2M service layer in the TCP/IP layer 78

3.3 OneM2M architecture . 79

3.4 OneM2M resource tree . 80

3.5 OneM2M threats taxonomy . 84

3.6 OneM2M flooding attack . 85

3.7 OneM2M amplification attack . 86

3.8 AOAOC attack . 88

3.9 OneM2M loophole attack . 89

3.10 How to generate UNSW-NB15 dataset 91

3.11 OneM2M flow . 94

3.12 OneM2M dataset . 97

4.1 OneM2M IDPS strategy . 102

4.2 Architecture oneM2M platform-based sniffer 107

4.3 Workflow of the oneM2M features extraction module 108

4.4 Fog to cloud state message . 110

4.5 Flow chart detection . 112

4.6 Flow chart prevention . 114

17

List of Figures

4.7 Prevention action workflow . 116

4.8 Continuous learning of families of threats 119

4.9 Continuous learning of new threat types under the same family 120

5.1 Confusion matrix . 126

5.2 Effect of training dataset size . 136

5.3 Effect of data imbalance (decrease threat GFlows) 137

5.4 Effect of data imbalance (decrease normal GFlows) 137

5.5 Auto-encoder architecture . 142

5.6 Sparse auto-encoder architecture . 142

5.7 Variational auto-encoder architecture . 143

5.8 Reconstruction errors of the validation dataset with an AEnc 145

5.9 Box plot of the reconstruction errors quartiles with thresholds 147

5.10 Multi-classification with AEnc . 151

18

List of Tables

2.1 Comparison of NIDS for IoT . 54

2.2 Summary of NIDS for IoT based on learning techniques 68

3.1 Comparison between free datasets . 93

3.2 OneM2M GFlows properties . 96

4.1 Comparison between free, open-source network sniffers 105

4.2 Possible operations in an ACP . 115

4.3 Prevention actions for flooding and amplification 117

5.1 Comparison of the results of the binary classification before the removal

of duplicates . 132

5.2 Comparison of the results of the binary classification after the removal of

duplicates . 133

5.3 Comparison of the results of the classification of threat families 134

5.4 Comparison of flooding-classification results 135

5.5 Comparison of amplification-classification results 135

5.6 Best AEncs results with DT-based threshold 146

5.7 Best AEncs results with the associated thresholds 148

5.8 Comparison of detection results on the initial test set for the first detec-

tion level . 149

5.9 Final comparison of ML techniques for the second detection level 152

19

Contents

Acknowledgements 4

Abstract 6

Résumé 7

1 Introduction and IoT Security Overview 23

1.1 Overview of Threats and Security Mechanisms in IoT 24

1.1.1 Categorization of IoT threats . 25

1.1.1.1 IoT threats categorization by layers 26

1.1.1.2 IoT threats categorization by challenges 27

1.1.2 Traditional defense mechanisms 34

1.2 Motivation and Problem Statement . 39

1.3 Contributions . 40

1.4 Organization of the dissertation . 42

2 State of the Art of Network Intrusion Detection Systems for IoT 45

2.1 Network Intrusion Detection Systems . 46

2.1.1 State of the art of NIDS for IoT 46

2.1.2 Comparison and Discussion . 53

2.2 Network Intrusion Detection Systems based on Learning Techniques . . . 56

2.2.1 Learning Techniques . 56

2.2.2 State of the art of NIDS for IoT based on ML 57

2.2.3 Comparison and Discussion . 67

20

Contents

3 OneM2M Standard Security and Dataset Creation 76

3.1 OneM2M Standard and Security . 77

3.1.1 OneM2M Architecture . 78

3.1.2 OneM2M Security . 82

3.2 OneM2M Threats . 83

3.2.1 Proposed Taxonomy for OneM2M Threats 84

3.2.2 Attacks Implementation . 86

3.2.2.1 Flooding Attacks . 87

3.2.2.2 Amplification Attacks 87

3.2.2.3 Protocol Exploit Attacks 88

3.3 OneM2M Dataset . 89

3.3.1 State of the Art of Free Datasets 89

3.3.2 OneM2M Dataset Creation . 94

3.3.2.1 OneM2M Dataset Features: GFlows Abstraction 94

3.3.2.2 OneM2M Dataset Generation 97

4 An Intrusion Detection and Prevention System for the Service Layer 99

4.1 OneM2M-IDPS Challenges and Aims . 100

4.2 OneM2M-IDPS Strategy . 101

4.2.1 Data Acquisition and Features Extraction 102

4.2.1.1 OneM2M Messages Sniffing 102

4.2.1.2 OneM2M Features Extraction 107

4.2.2 Intrusion Detection . 109

4.2.3 Intrusion Prevention . 111

4.2.3.1 Prevention Workflow 112

4.2.3.2 Prevention Actions . 114

4.2.4 Continuous Learning . 117

5 Machine Learning and Deep Learning for OneM2M Intrusion Detection 122

5.1 Learning Techniques Adoption and Metrics 124

5.1.1 ML Adoption . 124

5.1.2 ML Metrics and Experimental Environment 125

5.2 Experimentation of Supervised Learning Algorithms for Intrusion Detec-

tion in OneM2M . 127

21

Contents

5.2.1 Supervised ML Detections . 128

5.2.1.1 Description of the Algorithms 128

5.2.1.2 Used Tools and Frameworks 130

5.2.1.3 The First Level of ML Detection 131

5.2.1.4 The Second Level of ML Detection 133

5.2.1.5 The Third Level of ML Detection 134

5.2.2 Effect of Dataset Size on Detection Results 135

5.2.2.1 Effect of Training Dataset Size 136

5.2.2.2 Effect of Balanced / Imbalanced Training Dataset on the

Detection Results . 136

5.3 One-Class Classification Approach . 138

5.3.1 One-Class Methods . 139

5.3.2 OC-SVM . 140

5.3.3 AEnc, SAE and VAE . 140

5.3.3.1 Algorithms Description 141

5.3.3.2 Threshold Determination 143

5.3.3.3 Final Choice for the First Level of ML Detection 148

5.3.3.4 One-Class Approach for Multi-Classification 149

6 Conclusion and Perspectives 155

6.1 Contributions of Research . 157

6.2 Limitations and Future directions . 158

Bibliography 162

22

Chapter 1

Introduction and IoT Security Overview

Contents

1.1 Overview of Threats and Security Mechanisms in IoT 24

1.1.1 Categorization of IoT threats 25

1.1.2 Traditional defense mechanisms 34

1.2 Motivation and Problem Statement 39

1.3 Contributions . 40

1.4 Organization of the dissertation . 42

Internet of Things (IoT) is considered as the third industrial revolution [Rif14]. It

is defined as "the interconnection, via the Internet, of computing devices embedded in

everyday objects, enabling them to send and receive data" [Gra14]. IoT market is grow-

ing at a breathtaking pace, starting with 2 billion objects in the year 2006 to projected

200 billion by 2020 [IDC15]. IoT sensors/devices often collect and process spatial

and temporal information for specific events and environment tackling various chal-

lenges [GBMP13], [STJ14]. The IoT objects or Things have become smarter, treatment

is more intelligent and communications have turned instructive. Therefore, IoT is used

in almost all fields: domestic, education, entertainment, energy distribution, finances,

healthcare, smart-cities, tourism and even transportation [VF14]. Consequently, indus-

23

Introduction and IoT Security Overview

try, academia and individuals are trying to integrate the flow of fast commercialization

with seldom attention to the safety and the security of IoT devices and networks. Such

a neglect can possibly endanger the IoT users and in turn disrupt the vibrant ecosystem.

For example, Smart-homes can be remotely controlled by cyber-criminals and Smart

vehicles can be hijacked and remotely controlled to create panic among citizens.

The danger exposed by these Internet-connected Things does not only affect the

security of IoT systems, but also the complete eco-system including web-sites, appli-

cations, social networks and servers, via controlled smart device as robot networks

(botnet). In other words, compromising a single component and/or communication

channel in IoT-based systems can paralyze the part or complete Internet network. In

2016, the Dyn cyberattack [Kep16] harvested connected devices installed within smart-

homes and conscripted them into “botnets” (also referred to as a “zombie army”) via

a malware called Mirai. In addition to IoT systems vulnerabilities, attack vectors are

evolving in terms of complexity and diversity. Consequently, more attention should be

paid to the analysis of these attacks, their detection as well as the infection prevention

and recovery of systems after the attacks.

1.1 Overview of Threats and Security Mechanisms in

IoT

Since security of pervasive IoT systems is critical, it is important to identify IoT threats

and specify existing defense strategies. In this section, we introduce and categorize

the IoT security threat categories as well as traditional defense techniques in order to

provide the reader with the security necessary background for a better understanding

of the dissertation.

IoT security threatens the security of traditional systems; However, IoT security

mechanisms are different from those used in traditional systems, mainly for the fol-

lowing reasons:

24

Introduction and IoT Security Overview

• IoT systems are constrained in terms of computational capability, memory capac-

ity, battery life and network bandwidth. Hence, it is not possible to deploy existing

traditional security solutions which are often resource intensive.

• IoT systems are heavily distributed and heterogeneous systems. Thus, centralized

traditional solutions may not be suitable. Moreover, the distributed aspect of IoT

adds more difficulties and constraints in their protection.

• IoT systems are deployed in a physical environment which is unpredictable. Thus,

physical attacks have joined the list of traditional security threats.

• IoT systems are connected to the Internet since each device can be accessed with

its IP address. There is therefore an additional range of Internet-related threats.

• IoT systems are composed of a large number of constrained objects that generate

huge amount of data. So it is easy to flood and attack these small devices on the

one side, and the limited bandwidth of the networks on the other side.

• IoT systems cover a large number of heterogeneous protocols and technologies

in the same system. Hence, the proposed IoT security solutions must take into

consideration the large panel of these protocols and technologies in the same

proposal

Two main topics are covered in the rest of this section: the categorization of IoT

threats and traditional defence mechanisms.

1.1.1 Categorization of IoT threats

Since the IoT systems are varied and are facing multiple challenges, IoT threats can

be categorized into two types. The first type is about categorization depending on the

layers of the IoT systems’ architecture, while the second one deals with IoT threats

categorization based on their design challenges.

25

Introduction and IoT Security Overview

1.1.1.1 IoT threats categorization by layers

Figure 1.1: IoT architecture & layer wise attacks

IoT systems relate physical environment to the virtual one. A standard representa-

tion of IoT architecture is shown in Figure 1.1. IoT consists of three main layers [KU14]

which are perception (physical) layer, network (transport) layer and application layer.

First, the perception layer is the hardware layer. It is composed of the different sen-

sors and actuators that send and receive data using different communication standards

such as Bluetooth, RFID and 6LowPAN. Second, the network layer is the one which

ensures the effective routing/transmission of data/information. It uses communication

protocols like WiFi, 3G, 4G, 5G, GSM, IPv6, etc. Third, the application layer, also called

the software layer, is the top layer that provides systems with the business logic and

offers the user interfaces to the end users (traffic monitoring, smart classroom, etc.).

Each layer may present multiple vulnerabilities [BSP+11] as illustrated in Figure 1.1.

Since devices are placed at different physical locations, they may be exposed to envi-

ronmental hazards [IJL16] like rain/snow/wind or malicious attacks or unintentional

damage. Also, stored data may be stolen via physical access. Sensors are tiny Things

so, they suffer from resource constraint issues [IJL16] (computational resources, mem-

ory or energy, etc.). While data/commands are exchanged (network layer), they can

26

Introduction and IoT Security Overview

face different network vulnerabilities such as data interchange vulnerabilities [IJL16]

(data transfer can be shut down because of network floods or malicious gateway ac-

cess), unauthorized access [IJL16] (impersonation attack, communication interception,

password guessing attacks, etc.) and multifarious connectivity vulnerabilities [IJL16]

(data integrity violation, bad Quality-Of-Service (QoS), etc.). Moreover, the application

layer is mainly exposed to software problems [IJL16] such as account enumeration,

insecure account credentials and lack of account suspension after a limited number of

password guessing. Cloud applications [MPB+13, MPVT17] can be attacked by viruses,

trojan horses, worms, etc.. Since IoT is based on low computational capability devices,

transport encryption is sometimes neglected or used in a weak version. Therefore, com-

munications are easily traceable and easily discovered (Cipher text-only attack, Man-In-

The-Middle).

1.1.1.2 IoT threats categorization by challenges

To understand IoT security attacks first, we introduce some IoT attack technical terms,

then we present IoT challenges-based categorization.

1.1.1.2.1 Technical terms of the attacks

• Spoofing [AM14, CDL16] or impersonation attack sneaks authentication creden-

tials to gain unauthorized service access. Credentials can be stolen directly from

a device, via eavesdropping the communication channel or by phishing. Spoofing

can be categorized into: i) IP address spoofing; ii) ARP spoofing; and iii) DNS

server spoofing. IP address spoofing refers to the falsification of content in the

source IP header to mask sender’s identity or to launch a reflected distributed de-

nial of service (DDoS) attack. ARP spoofing attacks typically address resolution

protocol (ARP). The spoofing attack resolves IP addresses to Media Access Control

(MAC) addresses. When an attacker sends spoofed ARP messages across the Local

27

Introduction and IoT Security Overview

Area Network (LAN), attacker’s MAC address will be linked with the IP address

of a legitimate member of the network. Consequently, malicious parties can steal

data, modify data in-transit or even stop traffic on a LAN. DNS server spoofing

modifies a DNS server (a system that associates to each domain name an IP ad-

dress) reroutes a specific domain name to unauthorized IP address of the infected

server.

Figure 1.2: IoT threats categorization by design challenges

• Routing attacks [KW03] target routing protocols where the exchanged routing in-

formation are spoofed, altered or replayed to generate fictitious routing behaviors

(i.e., false network traffic attraction). Sinkhole attack [BS17] concerns a malicious

node attracting huge traffic by presenting imaginary path as an optimal routing

path. Regarding selective forwarding attack [WRV13], it is a data forwarding

misbehavior where an attacker selectively forwards malicious packets while dis-

carding genuine and important packets. Furthermore, blackhole attack [BS17]

aims to disrupt normal data flow within a network. Initially, the attack fudges

one or more faulty nodes as the best route(s); then, starts to drop data pack-

28

Introduction and IoT Security Overview

ets routed through the faulty path. On the other hand, wormhole attack [BS17]

needs at least two faulty nodes strategically located in the network and connected

via wired or wireless link. These malicious nodes tunnel the packets faster than

normal track. They claim their route, to the rest of the nodes in the network, as

the shortest way to transfer their information. Moreover, replay attack [AM14]

considers the re-transmission or the delaying of valid data to gain unauthorized

access within already established session.

• Tampering attack [AM14] is categorized into: i) Device tampering; and ii) Data

tampering. The device tampering can be easily performed especially when an IoT

device spends most of the time unattended. It can be easily stolen without being

noticed and so used maliciously. The device can be stolen as hardware or just as

software. The data tampering involves malicious modification of data. This can

be data stored in databases or data transiting between two devices.

• Repudiation [Mic05] is about devices doing a malicious action and then denying

performing it. It is the case when a device sends a virus on the network without

leaving any trace to identify it. This attack particularly threatens systems that do

not have the ability to track and record prohibited transactions.

• Information disclosure [AM14] deals with unauthorized information access. An

attacker achieves the same by attaching snooping devices, by snooping the net-

work channel or by getting physical access to a device; e.g Probe [AOF+10,

BHDA14] is when attackers try to gather information about a target node and

its vulnerabilities by scanning connections (Port scanning, etc.). With infor-

mation disclosure comes sensitive information leakage such as side channel at-

tack [AIZ+17].

• DDoS [KU14], the Distributed Denial of Service attack, is performed by multiple

compromised nodes together from different geographic locations. Besides, DoS at-

tack implicates a malicious attacker that attempts to consume network resources,

29

Introduction and IoT Security Overview

target CPU time and/or bandwidth of legitimate users by flooding the system with

rogue and amplified traffic. To conduct an efficient DDoS attack, botnets are used.

They are networks of infected/controlled internet-connected devices. As men-

tioned in [KKSG16], DDoS attacks are the most frequent attacks especially in IoT

/ Fog networks related to social IoT such as smart cities, etc. DDoS attacks can be

categorized into the following types [ZFS17, PJ14]:

1. Flooding attacks are based on bombarding a victim’s system with a large

number of packets, mainly UDP or ICMP packets [Cis12], which causes com-

promise of network bandwidth. Flooding attack can be easily launched using

botnets.

2. Amplification attacks can be established by exploiting reflection mechanism

and spoofing the IP sources. Attackers send packets to reflector servers with

a source IP address set to their victim’s IP therefore indirectly overwhelming

the victim with the response packets. To resume, hackers exploit vulnerabili-

ties in different protocols to turn small queries into huge number of requests

to slowdown and/or crash the victim’s server(s). For examples, there are

smurf, fraggle attacks [PJ14] and DNS, SSDP amplification [Hen16, Ros14]

distributed attacks.

3. Protocol exploit attacks are built on malicious exploit of different protocols.

As examples, there are SYN flood [Hen16], TCP reset [Hen16] and water

torture attack [Lir16, Hol16].

4. Malformed attacks are based on malformed network packets such as using

the same IP address for source and destination addresses [PJ14, Hen16].

5. Logical/software attacks are related to application protocols. An example

is Ping of Death [KU14] where an attacker sends simple fragmented ICMP

ECHO request packet, larger than maximum IP packet size so that the victim

fails to reassemble it. In Teardrop [Cis12] attack, the adversary sends two

fragments that do not reassemble by the offset value of the packet.

30

Introduction and IoT Security Overview

• Elevation of privilege [Mic05, AM14] is about obtaining or elevating privileges

to access a device/service while not having a legal right. Such an attack can

lead to dangerous situation especially when the attacker becomes a trusted part

system. User-To-Root (U2R) and Remote-to-Local (R2L) [HB99, AOF+10] are two

examples of elevation of privilege attack. U2R is about gaining root privileges

(superuser) on a node when the attacker initially has only a normal user account.

R2L occurs when an attacker does not have an account on the victim node, hence

exploits vulnerabilities to gain local access as a user via password guessing or

breaking.

• MITM [AM14, CDL16], Man-In-The-Middle attack which represents interception

of communication between two systems by an adversary to eavesdrop a conversa-

tion. MITM attacks are classified as ARP Cache poisoning, DNS spoofing, session

hijacking, ICMP redirect, port stealing, etc.

• User privacy [AM14, ADMC17] is like information disclosure. Besides, a hacker

does not necessarily need to have access to unauthorized information to learn

about a user. This can be done by analyzing metadata and traffic.

• Cloning Nodes [GR14, SJS15, BJCF+18] concerns reintroducing a clone of a node

in the network or a component in a system after capturing the credentials and the

characteristics of the original one. Such an attack enables the malicious user to

control the system, insert false information, disable functions, etc. Once an object

is under the control of the attacker without the knowledge of its owner (botnet),

the entire network can be infected.

1.1.1.2.2 IoT threats categorization by design challenges Because of different

challenges related to IoT systems’ design, developers as well as industries should

pay attention to many potential threats. Many research papers surveyed IoT security

challenges and research opportunities such as Zhang et al. [ZCW+14], Mahmoud et

al. [MYAZ15] and Hossain et al. [HFH15]; they detail IoT security challenges such as

31

Introduction and IoT Security Overview

Object identification, Authentication and IoT privacy, etc. in IoT networks. A catego-

rization based on IoT systems’ design challenges is presented in Figure 1.2 and detailed

below.

• Heterogeneity and Interoperability: the backend IoT solutions consider the use

of sensors, actuators and gateways provided by different vendors and may have

different versions. To do so, the use of a dispositive managing interoperability

between heterogeneous devices is needed. Such a component can be bombarded

with fake requests that can lead to DoS attacks. In such a heterogeneous environ-

ment, spoofing, routing attacks as well as MITM are more likely to occur compared

to the homogeneous systems. It is easier for a malicious node to impersonate a

genuine Thing, gain unauthorized access to data and/or relay communication be-

tween two nodes message injection. As we can see from Figure 1.1, IoT might be

considered as the term which references a world of large variety of heterogeneous

protocols and standards [GMS15]. Their consideration makes IoT security solu-

tions more and more complex. Al-Fuqaha et al. provide a good survey about these

technologies in [AFGM+15].

• Connectivity: in IoT, connectivity between different components of the system

is required whether physical or in terms of availability of services. For the first

case, data from peripheral devices (sensors for example) have to be connected to

an IP network with bridging devices which may be the cause for routing attacks

as well as MITM attacks. For the connectivity in terms of services, changes in the

availability of services should be notified to the respective devices so that the latter

do not flood the system unknowingly with repetitive and non-available requests.

Such a flood can lead to a DoS attack. Moreover, the QoS in IoT networks can be

crucial specially in emergency situations. Thus, robust packet routing and a good

QoS in data delivery should be ensured even in highly dynamic topologies [AT18].

• Mobility and Scalability: devices of IoT systems can be in continuous mobility

in the field area; hence, they can change bridges they are connected to. This

32

Introduction and IoT Security Overview

often causes disruption of discontinuity and/or connections to unauthorized ser-

vices. Attacks like repudiation, MITM, DoS, sinkhole and wormhole become

potentially possible. To mitigate such risks, security solutions not only con-

sider mobile devices, but also network components such as the switches and the

routers [AATD18].

• Addressing and Identification: field devices in IoT applications use usually low

power radios for short distance connection (less than 1 kilometer). For that, coor-

dinator nodes allocate local addresses that do not follow a common standard, to

peer devices [BTC15]. Consequently, these addresses remain hidden behind the

FAN gateway/bridge; hence, malicious behaviors become untraceable [BTC15].

As a result, isolation of malicious node(s) and detection of spoofing and repudia-

tion attacks are difficult. Further, the node(s) can attempt to access unauthorized

privileges without being screened from the outside network (elevation of privi-

lege).

• Spatio-temporal services: events in IoT can be characterized by the amplitude

of spatio-temporal impulse [BTC15]. As a result, data from IoT devices of same

systems should have reasonable temporal behavior and spatial geolocation. How-

ever, these spatio-temporal tags must be protected from malicious users to avoid

replay attacks [BTC15]. Also, the user’s location data must not be revealed to

unauthorized users.

• Resource constraints: most peripherals IoT devices are tiny, which means that

they are resource constrained in terms of computing power, onboard memory,

network bandwidth and energy availability. Tampering, information leakage and

node cloning are possible attacks since the smart devices and sensors are resource

constrained. The constrained resources limit the deployment of cryptographic

solutions hence, lightweight solutions are foremost concern. For example, in

[AAT18], authors overcome such limitations and propose a novel error correc-

33

Introduction and IoT Security Overview

tion and detection technique entitled "Low Complexity Parity Check (LCPC)", to

improve the quality of futuristic IoT networks.

• Data Interchange: before data interchange begins, it must be encrypted at the

source IoT nodes. The encryption mechanisms, depend on the type of hardware,

their computational capability and storage capacity. Inappropriate selection leads

to security vulnerabilities such as information leakage (i.e., keys are being shared

between multiple devices when encrypted packets are decrypted and repacked at

multiple points in the communication chain). Additionally, nodes that encrypt

data can be attacked via denial of service or resource exhaustion attacks. For this

reason, end to end encryption is desirable.

• Resource and service discovery: in IoT systems, mechanisms of resource and

service discovery should be deployed to enable autonomy and self-discovery of

the devices. These mechanisms should be protected with two way authentication

to avoid spoofing and restrict the malware component from flooding the system

with feigned requests to thwart DoS attacks.

• Trust and privacy: IoT smart sensor devices manage private / sensitive user in-

formations (e.g. user habits, patients data, civil protection data etc.); hence, con-

fidentiality and data protection are extremely important. In fact, trust and pri-

vacy [SRGCP15, YWY+17] are fundamental issues for IoT based networks. Users,

Things and devices are required to authenticate via reliable services for miti-

gating spoofing, tampering and information leakage attacks. Trust and privacy

are getting more attention with smartphones equipped for example with Android

OS [SAU17, FBL+15, GLT+18, SLSGZ19, BBJJ+17, GAL+20, BHL+17].

1.1.2 Traditional defense mechanisms

After detailing and categorizing IoT threats, in the following we discuss attack mit-

igation techniques which protects existing IoT systems and networks. Over time,

34

Introduction and IoT Security Overview

conventional IT security solutions have covered servers, networks and cloud storage.

Most of these solutions can be deployed for security of IoT systems. Defense mecha-

nisms can be separate, or combined depending on the treated threats [CBO17]. In this

section, traditional mechanisms that can be used to protect IoT systems are described.

First, filter packets [Tan03], with firewalls and proxies for example, represent

an important defense against IP spoofing attacks (and consequently DDoS attacks).

Two types of filtering are possible: i) ingress filtering; and ii) egress filtering. Ingress

filtering on incoming packets is about blocking packets from outside the network with a

source address inside the network to protect against outside spoofing attacks. However,

egress filtering on outgoing packets is about blocking packets within the network with

a source address that is not inside to prevent an internal hacker from attacking external

machines.

Second, adopt encryption with cryptographic protocols, data storage encryption

or virtual private networks (VPNs). Using cryptographic network protocols (i.e.,

Transport Layer Security (TLS), Secure Shell (SSH), HTTP Secure (HTTPS), etc.)

leads to the encryption of data/code/updates before sending and authenticating

them. The defense is based on digital signatures/certificates (pair of public and

private keys) to ensure, in one hand, that data/code/update was sent by the le-

gitimate device/service and was never modified. On the other hand, it guarantees

that data/code/updates are encrypted and cannot be read or used by unauthorized

individual. Cryptographic network protocols [FMA+18] can be used to protect things

against IP spoofing, tampering, repudiation, MITM, user privacy compromising attacks

and node cloning. Moreover, encrypting data storage helps prevent information

disclosure and maintains user privacy. Regarding VPN, it is a secure communication

tunnel between two or more devices. It encrypts the communication by creating a

virtual private link over the existing unsecure network. Encryption is a good solution

to preserve confidentiality and privacy. However, IoT networks are vulnerable since

35

Introduction and IoT Security Overview

the resource limits the devices. Therefore, the use of light cryptographic solutions such

as proposal from Al-Turjman et al. [ATA18a] is an interesting approach. They propose

a platform based on confidential cloud-assisted wireless sensor networks (WSN)1.

It preserves confidentiality, integrity and access privileges (CIA). The proposed ag-

ile framework ensures integrity of collected sensor data with elliptic curve cryptography.

Third, employ robust password authentication schemes. This involves limiting

access to data by assigning appropriate privileges to resources. The use of One-Time

Password (OTP) can be an interesting solution. Spoofing, tampering, information

disclosure, elevation of privileges and MITM can be avoided by the above mecha-

nisms. For IoT networks, authentication strategies need to be lightweight such as in

[BJMYZ15, BJMYZ13, ATEE+17, ATA18b].

Fourth, audit and log activities on web servers, database servers and application

servers. Due to these traces, anomalies can be detected. More specifically, log key

events such as transaction, login/logout, access to file system or failed resource access

attempt(s) can detect anomalous behavior. A good practice to protect these files is to

back up them, regularly analyze them for detection of suspicious activity and relocate

system log files from their default locations. Further, secure the log files by using

restricted ACLs (Access Control List: a list of permissions attached to an object) and

ecrypt the transaction log. These techniques prevent IoT systems from repudiation and

privilege elevation attacks.

Fifth, detect intrusions using IDS (Intrusion Detection System). An IDS

[PKRM12] is a combination of software and hardware which monitors network or

systems to identify malicious activities and provide immediate alerts. IDSs have been

adopted [ANMH16] since 1970 [HHS+17]. They are generally categorized according

1A WSN is wireless geographically distributed network of sensors to monitor physical or environmental
conditions.

36

Introduction and IoT Security Overview

to i) deployment; and ii) detection methodology.

IDS deployment is categorized as i) HIDSs; and ii) NIDSs. Host-based Intrusion

Detection Systems (HIDSs) are installed on a host machine (i.e., a device or a Thing).

They monitor and analyze activities related to system application files and operation

system. HIDSs are preferred against insider intrusion deterrence and prevention.

Network-based Intrusion Detection Systems (NIDSs) capture and analyze packet flow

in the network. In other words, they are scanning sniffed packets. NIDSs are strong

against external intrusion attacks. Since our interest is towards security of resource

constrained IoT systems, the rest of the chapter will focus on NIDSs solutions.

In the following, we discuss scenario after the intrusion has happened. A good

detection system is the one which identifies the compromised situation and minimizes

the loss by quickly identifying the attack(s).

There is a variety of IDSs. In [KPSV13], detection methodologies are categorized

into i) misuse detection; ii) anomaly detection; iii) specification detection; and iv)

hybrid detection.

• Misuse detection or signature detection (knowledge based) is a set of predefined

rules (such as bytes sequence in network traffic or known malicious instructions

sequence used by a malware) that are loaded and matched with events. When a

suspicious event is detected, an alert is triggered. This type of IDS is efficient for

known attacks; unfortunately it cannot detect zero-day [BHDA14] / unknown /

unseen attacks [CMO12] due to lack of signatures. Cyber security solutions prefer

signature based detection as it is simple to implement and effective for identifying

known attacks (high detection rate with low false alarm rate).

• Anomaly detection (behavior based) [PP07] compares a normal recorded behav-

ior with current input. Initially, normal network and system behavior are modeled.

In case of deviation from normal behavior, the detector considers it as an attack.

37

Introduction and IoT Security Overview

Anomaly is identified with statistical data analysis, mining and algorithmic learn-

ing approaches. Anomaly detectors are successful in preventing unknown attacks.

However, they tend to generate high false positive rate since previously unseen

(yet legitimate) behaviors may be classified as anomalous. Anomaly IDSs make

attacks more difficult to succeed since normal profile activities are customized for

each system, each application and each network. It is difficult to know exactly

which activities can be undetected.

• Specification detection has the same logic as anomaly detection. It defines

anomaly as deviation from normal behavior. This approach is based on manu-

ally developed input specifications to capture legitimate (rather than those previ-

ously seen) behavior and its deviations. However, specifications require the user

to give input. This method reduces high false alarm rate as compared to anomaly

detectors.

• Hybrid detection is a combination of previous methods, especially signature and

anomaly based detection. Hybrid detector improves accuracy by reducing false

positive events. Most of the existing anomaly detection systems are in reality

hybrid ones. They start with an anomaly detection, then try to relate it with the

correspond signature.

Sixth, prevent intrusions with IPS (Intrusion Prevention System). An IPS is an

IDS which responds to a potential threat by attempting to prevent it from succeeding.

An IPS responds immediately and stops malicious traffic to pass before it responds

by either dropping sessions, resetting sessions, blocking packets, or proxying traffic.

However, an IDS responds after detecting passed attacks. There are many types

of IPS [PKRM12] mainly in-line detection, layer seven switches, deceptive systems,

application firewalls and hybrid switches. To get more details about IPS types, please

refer to Patil et al. paper [PKRM12].

38

Introduction and IoT Security Overview

1.2 Motivation and Problem Statement

With the increasing deployment of IoT systems and the fact that their security affects

IoT systems themselves as well as other systems connected to the Internet, we focus our

research on IoT security.

The traditional mechanisms presented in Section 1.1.2 can be used to protect IoT

systems. However, some of them like encryption and authentication are insufficient and

inadequate [RWV13] to protect IoT. IDSs are more suitable for this case of systems.

They can be considered as the last line of defense when other tools are broken. An-

other advantage of IDS is that they are variated and adaptable depending on needs.

They can be enhanced with learning logic such as Machine Learning (ML) and Artifi-

cial Intelligence (AI) techniques in addition to other advanced technologies. IPSs are

also important for IoT systems in order to act after the detection of a threat (using

an IDS) and thus prevent the infection and the shutdown of these systems and their

connections. Moreover, day by day, researchers are devoting more and more effort to

ML-based IDSs, particularly for their ability to detect unknown/zero day threats as well

as their low false alarm rate. Therefore, we focus in this thesis on the study and the

implementation of an Intrusion Detection and Prevention System (IDPS) based on ML

for the IoT ecosystem in order to immediately detect and respond to potential threats

as soon as they occur. Such an IDPS must respect the different challenges imposed by

the IoT context presented in Section 1.1.1.2.2 especially heterogeneity, interoperability,

connectivity and resource constraints.

With the unbridled growth in the number of IoT devices and their deployment in

all areas, for all industries in all sectors, the need to move from the use of proprietary

solutions with custom hardware and software to a multi-industry standard solution is

more necessary than ever. We are therefore focusing our security framework towards

the oneM2M standard [One19] which is an international partnership project launched

in 2012 by eight of the world’s leading ICT standards bodies. OneM2M standard en-

ables the communication between heterogeneous devices and applications by defin-

39

Introduction and IoT Security Overview

ing a common M2M Service Layer for the multi-industry M2M applications. OneM2M

standardizes the IoT ecosystem with respect to the exiting worldwide networks and

standards. Therefore, securing the IoT ecosystem can be done through securing the

oneM2M standard. Indeed oneM2M provides a large panel of security mechanisms to

protect the service layer itself as well as the communication between the oneM2M archi-

tecture layers. However, none of the specified techniques protect the IoT systems once

the malicious user has gained access to the system and bypassed the first-line security

measures. This represents a critical and unexplored topic for the oneM2M standard. We

decided therefore to make our ML-based IDPS a second line of security for IoT systems

based on the oneM2M standard to detect and prevent intrusions. To the best of our

knowledge, the ML-based IDPS proposal detailed and discussed in this thesis represents

the first one for the oneM2M service layer.

1.3 Contributions

The main contribution of this work is the design and the implementation of an IDPS

based on ML to protect the oneM2M standard. To achieve this goal, we began by con-

ducting a comprehensive review of the IoT security ecosystem in a paper published

in the journal IEEE Communications Surveys & Tutorials entitled "Network intrusion

detection for IoT security based on learning techniques" [CMZ+19]. This paper tar-

geted three important areas: i) IoT, ii) security mechanisms and iii) machine learning

techniques. It guides the reader in discovering the intersection of the three areas by

providing all the necessary details to understand the security in IoT. The paper started

by presenting and categorizing the IoT security threats as well as the traditional defense

techniques with a focus on IDSs types. Then, it listed and discussed available tools that

can be used to develop and/or evaluate NIDS: i) free datasets, ii) free and open source

network sniffers and iii) open source NIDSs. Moreover, the paper discussed IoT powered

NIDS, their architectures, deployments and implications for the heterogeneous systems.

Learning techniques via ML classifiers were introduced. Then, NIDSs for IoT systems

40

Introduction and IoT Security Overview

deployed via learning techniques were reviewed, compared and evaluated. We compre-

hensively discussed existing state of the art, compared and evaluated performance of

ML based IoT systems deployed to secure the networks. Finally, the paper concluded

with a summary and a list of possible future directions.

As discussed in Section 1.2, considering the need for a standardized IoT ecosystem

especially with the significant growth in the number of connected devices, we focus our

work on the oneM2M standard. Therefore, we defined the security attacks that threaten

the oneM2M service layer and proposed an abstraction for the oneM2M flows named

GFlow. In order to implement a security mechanism based on ML, we used the GFlow

abstraction for the creation of a oneM2M security dataset. This dataset was created with

a real world platform and contains the oneM2M attacks as well as legitimate GFlows.

Thanks to the generated dataset, we proposed the first generic IDS for the oneM2M

service layer based on edge ML. In order to choose the best ML algorithm for our needs,

we experimented various shallow algorithms in a binary and multiple classification. All

these studies have been the subject of the publication "An Intrusion Detection System

for the OneM2M Service Layer Based on Edge Machine Learning" [CMZS19] in the

International Conference on Ad-Hoc Networks and Wireless (Adhoc-Now).

A oneM2M IDPS based on ML was the focus of our paper "A OneM2M Intrusion De-

tection and Prevention System based on Edge Machine Learning" [CMZS20] pub-

lished in IEEE/IFIP Network Operations and Management Symposium (NOMS). In this

work, we proposed an architecture for the oneM2M-IDPS. We detailed each module of

our IDPS strategy. First, we described the data acquisition and features extraction mod-

ule. Then, we proposed a new IDS based on three levels of ML detection. Furthermore,

we enriched the IDS with two new modules: i) a prevention module to act against the

detected threats and ii) a continuous learning module to provide an up-to-date IDPS

that evolves with the evolution and emergence of new threats.

In the previous works, the IDS module used shallow or deep ML algorithms for the

three different levels of detection in a binary and a multi-classification mode. In our

journal paper "Anomaly and Novelty Detection and Prevention for IoT Security: A

41

Introduction and IoT Security Overview

Continuous Machine Learning Approach", submitted at the end of the PhD, we detect

anomalies in the oneM2M standard on the one hand, and detect novelties in terms of

threats on the other hand, in an intrusion detection and prevention platform. Regarding

anomaly detection, we examined one-class classification algorithms (OCC) to detect

behaviors that differ from the norm and we propose a new threshold determination

method based on the decision tree algorithm. However, for the novelty detection, we

extended the OCC’s approach to i) detect new, unseen threats and ii) classify the already

known ones. In addition, we designed the prevention workflow and we specified the

prevention actions. Furthermore, we described in details the different scenarios that,

autonomously or at human request, activate the continuous learning module which

enables the continuous update of the IDPS system.

1.4 Organization of the dissertation

The rest of the dissertation is organized in five chapters which are further divided into

multiple sections. An overview of these chapters is provided below:

In Chapter 2, we present and discuss the literature proposals dealing with the

network IDPS in IoT systems. In Section 2.1, we start with the state of the art of

IDPS for IoT that are not based on machine learning techniques. These works focus

more on the deployment architecture and the detection strategy. After detailing each

work separately, we discuss and compare them on the basis of their architectures (if it

is distributed, centralized or hybrid), their detection methodologies (signature-based,

anomaly-based or hybrid), their validation strategies (simulation or emulation) as well

as their treated threats. Importance was also given to the strengths and weaknesses of

each one of proposals. In Section 2.2, we dived into the IDPS based on ML techniques.

As in the first part, we provide a brief description for each work, then compare and

discuss their deployments, their methodologies, the datasets they used, the threats they

dealt with, and the ML algorithms they employed.

In Chapter 3, we give an overview of the oneM2M standard (Section 3.1): its archi-

42

Introduction and IoT Security Overview

tecture and its security mechanisms defined in its specifications. Then, in Section 3.2,

we concentrate on the oneM2M threats related to the service availability since oneM2M

is, first and foremost, about services for M2M and IoT systems. We propose the taxon-

omy and implementation of the oneM2M threats. We finish this chapter with details

about the creation of the oneM2M security dataset. We start Section 3.3 by present-

ing the state of the art of free datasets used for the IoT NIDS creation. As no datasets

exist for the oneM2M standard, we create our own dataset with respect to the taxon-

omy of oneM2M threats presented in the section before. The dataset is based on a new

abstraction proposal for the oneM2M flows. This abstraction is the foundation of our

IDPS.

In Chapter 4, we present the different challenges and aims respected and guaran-

teed with our oneM2M-IDPS proposal namely interoperability, autonomy, scalability

and resource constraints respect, modularity in design, adaptability and extensibility

and finally the active and real-time reaction (Section 4.1). Moreover, in Section 4.2, we

detail its strategy as well as the architecture and the design of each of its four modules:

i) the data acquisition and features extraction module, ii) the IDS module, iii) the IPS

module and iv) the continuous learning module.

In Chapter 5, we concentrate on the ML aspect of our IDPS. We implement our

detection module with its three ML levels using the oneM2M dataset described in Chap-

ter 3. We experiment with different ML and Deep Learning (DL) algorithms for each

detection level in order to choose the most appropriate and efficient ones. We start

this chapter (Section 5.1) by explaining our choice to adopt ML and DL techniques for

the detection levels. Then, we present the metrics we relied on to evaluate the effec-

tiveness of each algorithm in our oneM2M intrusion detection context, as well as the

experimental environment. Furthermore, we study two main approaches: i) detection

based on supervised ML algorithms (Section 5.2) and ii) detection based on one-class

classification approach (Section 5.3). For each one we introduce the experimented al-

gorithms (definitions, tools and frameworks), we explain the different stages of setting

up the experiments and then report, compare and discuss the results. Regarding the

43

Introduction and IoT Security Overview

first approach, we chose supervised ML because the experiments conducted in the cor-

responding section fall within the context of classification where we know already the

classes into which the model should categorize the inputs. This section experiments su-

pervised ML for the three levels of our IDS, then study the effect of size and balance of

training dataset on the detection process. In the last section of this chapter, we examine

the one-class classification approach for both the first and second ML detection levels.

In the first level, we highlight the detection of any behaviour different from normal

(known for anomaly detection) as well as the techniques for determining the threshold

of normality. In the second level, the one-class classification approach will be used to

allow the detection of unknown threats as well as the multi-classification of already

known threats (multi-class novelty detection).

In Chapter 6, we conclude the dissertation by summarizing the key contributions and

discussing some directions for future work that can be followed to continue researching

the exposed problems.

44

Chapter 2

State of the Art of Network Intrusion

Detection Systems for IoT

Contents

2.1 Network Intrusion Detection Systems 46

2.1.1 State of the art of NIDS for IoT 46

2.1.2 Comparison and Discussion . 53

2.2 Network Intrusion Detection Systems based on Learning Techniques 56

2.2.1 Learning Techniques . 56

2.2.2 State of the art of NIDS for IoT based on ML 57

2.2.3 Comparison and Discussion . 67

Introduction

As discussed in Chapter 1, our goal is to build an IDPS based on ML for the oneM2M

standard. To our knowledge, there is no work in the state of the art that proposes an

IDS or an IPS for the oneM2M service layer. Thus, we focus on the literature proposals

dealing with the network IDPS as these are the works closest to our problematic. It is

45

State of the Art of Network Intrusion Detection Systems for IoT

important to mention that most of the studies deal with intrusion detection and that few

of them propose a prevention system; we will therefore use the term Network Intrusion

Detection System (NIDS) more often to express even those with a prevention strategy.

This chapter is divided into two main sections: the first one treats the state of the art of

NIDSs for IoT that are not based on machine learning techniques. We will focus more

on the architectures and the strategies of the proposed systems. Works are detailed and

compared with a special focus on the advantages and disadvantages of each one. The

second part will deal with the literature of NIDSs that use learning techniques in their

detection process.

2.1 Network Intrusion Detection Systems

To get a better idea about IoT NIDS architectures and deployments, we discuss, in the

following, relevant works from the state of the art of NIDS IoT security. We focus on

their detection mechanisms, architectures and validation strategies. The reviewed IoT

NIDS papers provide a comprehensive overview of the evolution of the domain from the

first proposed solution [RWV13] to the present days. We start with detailed description

of the authors’ solutions. Then we summarize them in a comparative Table 2.1 with the

advantages and disadvantages of each solution.

2.1.1 State of the art of NIDS for IoT

This section details each IoT NIDS proposal with a special focus on architectures, detec-

tion methodologies and treated threats.

Raza et al. [RWV13, AO17] designed and implemented SVELTE, the first IoT IDS.

It is a real time intrusion detection system based on a hybrid signature accompa-

nied by an anomaly based detection technique. The work meets the requirements of

IPv6-connected IoT and concentrates on routing attacks such as spoofing and sinkhole.

SVELTE considers IoT challenges and deploys lightweight IDS modules in resource con-

46

State of the Art of Network Intrusion Detection Systems for IoT

strained nodes and resource-intensive IDS modules at the Border Router (BR). It inte-

grates three main modules: i) 6Mapper (6LoWPAN1 Mapper) which gathers information

about the RPL2 network and reconstructs the network in the 6BR3, ii) Intrusion Detec-

tion component that analyzes mapped data and iii) a mini-firewall (whitelist firewall

for the IP-connected IoT that uses RPL as a routing protocol in 6LoWPAN networks)

which is distributed and designed to offload nodes by filtering unwanted traffic before

it enters the resource constrained network. SVELTE was implemented in the Contiki OS.

It detects sinkhole attacks with 90% true positive rate (TPR) in a small lossy network

and almost 100% TPR for a lossless network configuration. Unfortunately, DoS attacks

can affect the solution [KCK+13] as well. Since IDS nodes use the network to transmit

attack information, once DoS affects the network, detection of the attack fails.

Kasinathan et al. [KPSV13, KCK+13] studied DoS detection for 6LoWPAN devel-

oped as a part of ebbits, a EU FP7 project4. The supported architecture presented in

Figure 2.1 is based on Suricata IDS5. The proposed architecture is considered central-

ized despite the distributed IDS probes. In fact, IDS probes which are external modules,

sniff the network in promiscuous mode then send data to the main NIDS (based on Suri-

cata) via wired connection. When the latter matches traffic with an attack signature,

an alert is launched to the DoS protection manager. The protection manager analyzes

the attempt with additional data collected from other ebbits managers. Moreover, it

reduces the false alarm (incorrect detection genuine data: false positives plus false

negatives) rate. This solution overcomes SVELTE limitations since the IDS mechanism

does not depend on the network architecture so it cannot be affected by DoS attacks

against the IoT network. The suggested framework DEMO in [KCK+13], is scalable and

real-word applicable for most IoT systems. This work was evaluated using a penetra-

tion testing (PenTest) system called Scapy [KCK+13] which is more light-weight then

1IPv6 over Low-power Wireless Personal Area Network
2Routing Protocol for Low-Power
36LoWPAN Border Router
4The ebbits project is a European research project which deals with architecture, technologies and

processes to enable mainstream enterprise incorporate IoT eco-system.
5Suricata [Fou17] is an open-source, multi-threaded signature-based NIDS.

47

State of the Art of Network Intrusion Detection Systems for IoT

Metasploit [noa17b]. The IDS adapts existing open source technologies. It starts with

Suricata which is an open-source IDS and modifies it with IEEE 802.15.4 and 6LoWPAN

decoders. Further, an additional detection module; FAM consists on frequency agility

manager which analyzes channel occupancy states in real time to allow the network

to become aware of the interference level and monitors attacks on Prelude which is a

security incident and event management system (SIEM) to monitor the attack events

or alerts. The Suricata engine triggers alerts according to the programmed rules; this

solution could therefore detect different attacks depending on the rules developed.

Figure 2.1: DEMO architecture

Jun and Chi [JC14] proposed an IDS for IoT systems based on Complex Event Pro-

cessing (CEP) technology which is an emerging and efficient technology to filter and

process real-time events6. It is a good solution for large volumes of messages with low

latency and therefore, such a technology can be adapted to IoT needs. Jun and Chi

evaluated on-line performance rather than off-line. The architecture of this solution is

schematized in Figure 2.2. The system starts with collecting data (network traffic and

event usage) from IoT devices, extracts events from sensed data, then performs secu-

rity events detection using Event Processing Repository EPR7 and CEP engine8. Finally,

actions are performed by the action engine. Jun and Chin implemented their event-

6CEP technologies merge multiple data sources to interpret real time actions from complicated events
or patterns.

7EPR is a repository of Event Processing Model statement EPM (a collection of events correlation).
8CEP engine analyzes a mass of events, identifies the most important ones, and produces actions.

48

State of the Art of Network Intrusion Detection Systems for IoT

processing IDS architecture using Esper (CEP engine for complex event processing and

event series analysis). Their approach is CPU intensive, but consumes less memory. In-

deed, it proved better real-time performance. For example, for 800k of data, CEP-based

IDS consumes 62% of CPU, 730MB of memory and 422 millisecond processing time.

However, traditional IDS like utilizes 57% of CPU, 1064MB of memory and 8688ms for

processing 800k of data. It is interesting to note that, the framework is designed but

not evaluated for any kind of attack detection.

Figure 2.2: CEP-based IDS architecture for IoT

Cervantes et al. [CPNS15] detect the dangerous sinkhole attack on the routing

services in IoT. They proposed Intrusion detection of SiNkhole attacks on 6LoWPAN

for InterneT of ThIngs (INTI). It combines watchdog [WOM14], reputation [PTPB10]

and trust strategies for detection of attackers. First, as a hierarchical structure, the

nodes (grouped or separated) are classified as leaders. Then, the nodes can change

role over the time based on network requirements. Each node monitors a number of

transmissions performed by a superior node. If an attack is detected, an alert message

is broadcast and a cooperative isolation of the malicious node is performed. Cervantes

et al. gave importance for node mobility and network self-repair, which are limitations

with Raza et al. [RWV13] approach. Their simulation results show sinkhole detection

rate (DR) of 92% on 50 fixed nodes scenario and of 75% for 50 mobile nodes. Also,

authors reported low false positives and false negatives compared to SVELTE.

Surendar and Umamakeswari [SU16] set up an Intrusion Detection and Response

IoT System (InDReS) with 6LowPAN. InDReS uses constraint based specification tech-

49

State of the Art of Network Intrusion Detection Systems for IoT

niques to detect sinkhole attacks in RPL networks. In InDReS, sensor nodes are grouped

into clusters under the supervision of an observer node. Observer nodes count the

dropped packets of their adjacent nodes and assign a score to each of them using

Dempster Shafer theory [Dem08, Sha76] to detect malicious node. The latter will be

announced so that all the nodes co-operate to isolate it. Finally, the network recon-

structs itself. Authors’ strategy improves efficiency of some critical QoS metrics over the

existing INTI scheme which is limited by the energy consumption and the packed drop

ratio. Authors simulated their proposal on NS2 simulator.

Fu et al. [FYC+17] presented uniform intrusion detection system while considering

the following two important points: i) varied heterogeneity of IoT networks; ii) IoT

sensor and smart device resource constraint. Authors claimed that, their solution is the

first one that benefits from automata theory to model and detect the intrusions of IoT

networks. Based on an extension of Labelled Transition Systems [Tre96], they provided

a uniform description of the IoT systems network traffic flows then compared the real-

time action flows with Standard Protocol Libraries to detect and report: jam-attack,

false-attack and reply-attack. The intrusion detection and prevention strategy uses an

Event Monitor (which collects the network traffic and transmits data into digital files

to the IDS Event Analyzer) and an Event Database (which implements three databases

stored on the cloud: i) Standard Protocol Library9; ii) Abnormal Action Library10; and

iii) Normal Action Library11.). The intrusion detection is maintained by the IDS Event

Analyzer which is composed of the following three basic models:

• Network Structure Learning Model: considers packet data as input, builds a gen-

eral view of the network topology, distinguishes IoT devices IDs and sends them

to the Action Flows Abstraction Model.

• Action Flows Abstraction Model: classifies the collected real-time packets from IoT

9Standard Protocol Library describes the standard protocols through Glued-IOLTS [FK14].
10Abnormal Action Library recognizes anomaly actions flows for the system.
11Normal Action Library contains possible action flows created from the Standard Protocol Libraries

using the techniques of Fuzzing [TDB12] and Robustness Testing [LLL+10]

50

State of the Art of Network Intrusion Detection Systems for IoT

into message sequences then translates these messages to abstract action flows

with the help of Standard Protocol Library.

• Intrusion Detection Model: compares the result of Action Flows Abstraction Model

with the Abnormal Action Library. If it matches, the action flow is marked intru-

sive; otherwise, an anomaly detection method will be applied. For the latter, if

the input transition sequence does not match entries of the Normal Action Library

then an expert manual verification is needed (to avoid the false positives). If it is

finally marked as safe, then the record is added to the Normal Library, otherwise,

it is added to the Abnormal Action Library.

Regarding the Response Unit, it reports three types of attacks (jam-attack, false-attack

and reply-attack) to a management station. Fu et al. experimented their solution on

IoT experiment environment but unfortunately, they did not present detection rates.

Midi et al. [MRMB17] proposed Kalis which is claimed to be "the first approach

to intrusion detection for IoT that does not target an individual protocol or applica-

tion, and adapts the detection strategy to the specific network features". Kalis is a

"network-based, hybrid signature/anomaly-based, hybrid centralized/distributed, on-

line IDS that adapts to different environments". It can be deployed as a standalone

tool on a separate external device (to overcome the fact that most IoT devices does

not support software changes). It is an automatic knowledge-driven IDS which means

that it chooses automatically detection techniques depending on collected network’s

features. Precisely, each attack could be done only in some IoT systems and not in oth-

ers depending on the system features. For example, it is not possible to have replication

attack in a single hop system. Kalis identifies even the presence, or not, of prevention

techniques such as the use of cryptographic functions. Hence, it is effective and effi-

cient regarding resource consumption. Kalis was implemented using Java on an Odroid

xu3 development board and evaluated with real-world IoT devices. The system includes

"small WSN12 of six TelosB nodes, a Nest Thermostat, an August SmartLock, a Lifx smart

12Wireless Sensor Network

51

State of the Art of Network Intrusion Detection Systems for IoT

lightbulb, an Arlo security system, and an Amazon Dash Button". To sniff intermediate

hops of data packets, Kalis was located near the middle portion of the WSN. Midi et al.

replayed actual traces of network traffic of the prototype and added additional pack-

ets with 50 different symptom instances for each attack. The DR of Kalis is 91% with

100% accuracy, 0.19% CPU usage and 13978.62 KB memory consumption. Here, it is

important to note that the traditional IDS use have around 48% DR with 75% accuracy,

0.22% CPU usage and 23961.06 KB RAM.

Granjal and Pedroso proposal [GP18] deals with the combination of detection and

reaction to various attacks (especially DoS attacks) in Internet-integrated CoAP13 WSN.

Unlike most of the IDSs for WSN, their framework is applicable to IoT systems based on

6LoWPAN protocol. The IDPS considers different requirements like cross-layered detec-

tion, detection of external and internal threats, quick reaction and attackers blocking,

the extensibility of the system, its reconfigurability as well as the interoperability be-

tween communication technologies. Authors proposed a hybrid, collaborative detection

design where both WSN devices and 6LoWPAN border router collaborate in the pro-

tection process. Resource consuming tasks are executed at the border routers (6LBR)

level. 6LoWPAN packets are analyzed on the basis of the IP source address and the num-

ber of messages received over a particular time frame. When an undesired message is

detected, it is quickly dropped by the attacked device and in parallel a notification is

sent to the 6LBR which enables various types of security measures like denying fur-

ther messages originated at a particular address and warning other sensors to also start

blocking the attacker. Hence, with respect of the security policy, the 6LBR decided if an

action must be triggered. The proposed framework has been evaluated with the Con-

tiki OS and examined mainly its impact on the memory of sensing devices, the energy

consumption, the computational effort and the delay in reaction against attacks.

Aldaej [Ald19] paper is one of the studies that focuses more on prevention strategy

than on intrusion detection. The author proposes a prevention scheme based on the

results of an existing IDS in order to actively defend and prevent the intrusions from

13CoAP: Constrained Application Protocol

52

State of the Art of Network Intrusion Detection Systems for IoT

bandwidth attacks and more specifically DDoS. After each defined time threshold, the

IDS nodes in the network send the collected information to a centralized IDS where log

files are manipulated using forensic analysis and a report is generated. An Active Profile

Database (APD) that provides a statistical analysis of each malicious node is updated

continuously and used as input to the IPS algorithm. Depending on the malicious mag-

nitude of the nodes and the predefined threshold, the prevention module updates and

organizes its blacklist table. Aldaej’s proposal contains also a reaction module that is in-

voked each time the blacklist is updated in order to react and maintain the performance

on the IoT network. The most severe action is to isolate the malicious nodes.

2.1.2 Comparison and Discussion

In the following, a comparison of previously reviewed proposals for IoT NIDS is given

(Table 2.1). As it can be noticed, most of the works deploy distributed architec-

tures [RWV13, CPNS15, SU16, FYC+17]. This type of deployment is more suitable

for IoT systems than centralized strategies [KCK+13, JC14] since the distribution of

devices is an important IoT characteristic. However, centralized IDS detect better secu-

rity attacks that involve a group of devices operating silently (without directly shutting

down the network) than the distributed ones. For example, DDoS attacks are difficult

to detect in a distributed deployment. For such attacks, a hybrid architecture such as

in [MRMB17, GP18] is more appropriate. Hence, a distributed network analysis with a

centralized general inspection is guaranteed (called also hierarchical strategy). More-

over, deployment of NIDS on the IoT system itself or in a separate external device is im-

portant. Kasinathan et al. [KCK+13] and Midi et al. [MRMB17] are the only ones who

proposed their NIDS as a standalone tool. The adoption of such a strategy overcomes

the lack of resources in IoT devices as well as the problem of proprietary IoT software

that can not be changed. This protects the IoT system against overload. However, em-

ploying additional infrastructure adds complexity in case of network maintenance and

system protection.

53

State of the Art of Network Intrusion Detection Systems for IoT

References IDS de-
ployment

Detection
Methodol-
ogy

Validation
Strategy

Treated
Threats

Advantages Disadvantages

Raza et al.
[RWV13,
AO17]

Distributed Hybrid
(signa-
ture and
anomaly
based)

Simulation Routing
attacks
like spoof-
ing and
sinkhole,
selective
forwarding
and in-
formation
alteration

• Resource constraints challenge is taken
into consideration

• Distributed mini-firewall for the IP-
connected IoT devices is integrated

• Flexible and can be extended to detect
more attacks

DoS attack can affect
SVELTE

Kasinathan
et al.
[KPSV13,
KCK+13]

Centralized Signature-
based

Emulation DoS attack • False alarms reduction
• IDS is deployed on additional infrastruc-

ture
• Scalable and real-word applicable

Detected attacks depend on
declared rules

Jun and
Chi [JC14]

Centralized Signature-
based

— — • Real-time detection
• Better real-time performance
• Low memory consumption
• IoT Massive data are taken into consider-

ation

• CPU intensive
• Detected attacks depend

on declared rules

Cervantes
et al.
[CPNS15]

Distributed Hybrid
(trust and
reputation
strategy)

Simulation Sinkhole
attack

• INTI takes into consideration node mobil-
ity and network self-repair

• Less false positive and false negative rate
than SVELTE

IDS placements change
over the time which can
consume more resources.

Surendar
and Uma-
makeswari
[SU16]

Distributed Specification-
based

Simulation Sinkhole
attack

• Resource constraints challenge is taken
into consideration

• Low average energy consumption
• Low packet drop ratio
• Instant network response against de-

tected attacks

Cannot detect unknown at-
tacks

Fu et al.
[FYC+17]

Distributed Hybrid
(signa-
ture and
anomaly
based)

Emulation Jam-
attack,
false attack
and reply
attack

• Heterogeneity of IoT networks is taken
into consideration

• Resource constraints challenge is taken
into consideration

• Low false positive rate

• The state based algo-
rithm may cause "state
space explosion"

• Human intervention is
needed for false positive
alarms

• DoS attack can affect the
solution

Midi et al.
[MRMB17]

Hybrid
(cen-
tralized
and dis-
tributed)

Hybrid
(signa-
ture and
anomaly
based)

Emulation DoS, rout-
ing and
conven-
tional
network
attacks

• Real-time detection
• Lightweight in terms of CPU and RAM re-

quirements
• Dynamic self-adapting IDS
• Automatic knowledge-driven IDS
• Different IoT communication protocols

and applications are taken into consider-
ation

• Deployable on border router or as a stan-
dalone tool

• High level perspective
may not suitable for con-
strained compute objects

• Kalis proposes compile
time deployment which
may not be feasible for
resource constrained sen-
sors which may even
be resource constrained
in comparison to WSN
nodes

Granjal
and Pe-
droso
[GP18]

Hybrid
(cen-
tralized
and dis-
tributed)

Signature-
based

Simulation Attacks
against
6LoWPAN
and CoAP,
as well as
DoS

• Cross-layered detection
• Detection of external and internal threats
• Quick reaction and attackers blocking
• Extensibility and Reconfigurability of the

system
• Interoperability between communication

technologies

Detected attacks depend on
declared rules

Aldaej
[Ald19]

Centralized Anomaly-
based

Simulation DDoS • Magnitude of DDoS attack is taken into
consideration

• Prevention and Action module could iso-
late malicious nodes

Cannot detect unknown at-
tacks

Table 2.1: Comparison of NIDS for IoT

54

State of the Art of Network Intrusion Detection Systems for IoT

Regarding detection methodology, both signature and anomaly detection are de-

ployed. Each method has its advantages and drawbacks. Signature-based detection is

efficient for known attacks; however, it cannot detect unknown attacks since the signa-

ture database must be updated which is time consuming. When the size of signature

database increases, NIDS is required to compare the input with all the existing signa-

tures. Anomaly-based methodology detects unknown / unseen attacks; however, it suf-

fers from high false alarms. Consequently, hybrid detection such as [FYC+17, MRMB17]

have been deployed as practical solutions.

Regarding the validation strategy, two important parameters are identified: sim-

ulation and emulation. Simulation models the behavior of the target system in a

different environment. It provides the basic behavior of a system; it may not nec-

essarily adhere to the rules of the original system. Emulation duplicates the exact

same target behavior of the original system operating in a different environment.

Therefore, emulation is more close to real life situation when compared with simu-

lation [KCK+13, FYC+17, MRMB17]. Simulation is acceptable in IoT since the imple-

mentation of an IoT system requires a large number of physical devices to get closer to

reality which is not an easy task for experimental research. The second point to discuss

about validation is the evaluation metrics. Findings of the review show that researchers

does not always provide the same metrics [Kum14, FEE+18] in their works evaluation

which does not allow a fair comparison. Some of works did not provide experimen-

tal results like in [KCK+13] or did not even experiment their solution like in [JC14].

Evaluation metrics need to be fixed and processed in each work to have a reliable com-

parison even if the used metrics depend on the objectives and aspects on which each

study focuses.

About the treated attacks in reviewed papers, as in Table 2.1, there is no work

that takes into consideration all the threats at the same time. Normally NIDS based on

anomaly or hybrid detection methodology should be able to detect all types of attacks

but no one of the reviewed works concentrate on detecting the maximum attack types.

[RWV13] is the only work which mentions that the solution could be expanded to detect

55

State of the Art of Network Intrusion Detection Systems for IoT

more than the experimented attacks.

IoT is an environment of coexisting protocols and technologies. Despite the hetero-

geneity aspect of IoT, [JC14, FYC+17, MRMB17, GP18] have the capability to detect at-

tacks against multiple protocols. [RWV13, KCK+13, CPNS15, GP18] focus on intrusions

in 6LoWPAN and RPL which are important techniques for IoT networks. Furthermore,

complexity is high due to heterogeneity. Moreover, resource constraints challenge is

considered by [RWV13, KCK+13, SU16, FYC+17, MRMB17, GP18]. Scalability, on the

other hand, has been a subject of study in [KCK+13, JC14]. For [JC14], it was more

concerning data scalability. Finally, [CPNS15] is the only proposal which considers mo-

bility and connectivity. Strengths and weaknesses for each NIDS solution have been

identified and illustrated in Table 2.1.

2.2 Network Intrusion Detection Systems based on

Learning Techniques

Before moving from NIDSs for IoT to the ones based on learning techniques, we briefly

introduce the machine learning ecosystem. Then, IoT NIDSs powered by learning tech-

niques are surveyed, compared and discussed.

2.2.1 Learning Techniques

In year 1959 Arthur Samuel, a pioneer of Machine Learning, defined ML as "field of

study that gives computers the ability to learn without being explicitly programmed"

[Pug16]. It consists in the deployment of algorithms in order to obtain a predictive

analysis from data (learning from examples). Deep Learning (DL) [SHM+16] is part of

a particular family of ML methods based on learning high-level abstract representations.

DL groups generic algorithms mimicking the biological functioning of a brain without

being intended for a specific task. Technically, DL is the application of artificial neural

56

State of the Art of Network Intrusion Detection Systems for IoT

networks (ANNs) with multiple hidden layers. There are mainly three types of ML

algorithms:

• Supervised learning is based on learning from labeled training data which means

that training data includes both the input and the desired results.

• Unsupervised learning describes hidden structures from "unlabeled" data (no pre-

defined classification or categorization in the observations).

• Semi-supervised learning is a combination of supervised and unsupervised ma-

chine learning methods. A semi-supervised algorithm learns from a training data

that includes both labeled and unlabeled data. It is more like unsupervised learn-

ing with some prior knowledge about clusters / classes.

With the evolution, complexity and diversity of security attacks, researchers are fo-

cusing more on the use of artificial intelligence and machine learning for security threats

detection. To do that, IDS must embed the machine intelligence and improve decision

making capabilities [DLY+18]. Many studies apply ML in IDSs for traditional systems

and prove promising results [AA15, BG16, FTM+17, HBH+17, WJ17, MVTP18]. Which

is also the case for IoT IDSs as detailed in the different surveys [CMZ+19, ZMKdA17,

BWH18].

2.2.2 State of the art of NIDS for IoT based on ML

Since our main focus is towards the deployment of intelligent IDS in IoT, we now sin-

gularly discuss NIDSs for IoT employing learning techniques. The rest of the chapter

gives detailed description of each proposal and in the next section, researchers choices

and results will be discussed.

Hodo et al. [HBH+16] used Multi-Layer Perceptron (MLP) which is a type of super-

vised ANN in an off-line IoT IDS. It is composed of three-layers with sigmoid transfer

function in each of the hidden and output layers’ neurons. The authors’ analysis is built

on internet packet traces and tends to detect DoS and DDoS attacks in IoT network.

57

State of the Art of Network Intrusion Detection Systems for IoT

The NIDS was tested on a simulation composed of four clients nodes and a server relay

node. DOS/DDoS attacks were performed on the server node with 10 million UDP pack-

ets sent from a single host for DoS attack and with three hosts at wire speed for DDoS.

The training dataset was composed of 2313 samples, out of which 496 samples were

deployed for validation and 496 samples were used for testing. Overall attack detection

accuracy was 99.4% with 0.6% false positive. Such results guarantee early detection of

attacks and thus good network stability.

Nobakht et al. [NSB16] proposed a host-based IDS framework IoT-IDM for user-

chosen smart devices in smart homes environment. IoT-IDM monitors traffic going

through the devices to identify threats. The framework takes benefit of Software De-

fined Networking (SDN14) architecture with ML techniques to detect compromised hosts

and mitigate these attacks by pushing the appropriate actions (like blocking the intruder

or redirecting the malicious traffic) to underlying routers/switches. The SDN technol-

ogy offers the opportunity of remotely managing the security which leads to provide

the user of IoT-IDM with a Security as a Service (SaaS). Nobakht et al.’s solution is

characterized with modularity in design. It is composed of five separate modules (De-

vice Manager, Sensor Element, Feature Extractor, detection Unit and Mitigation Unit).

Consequently, there is a flexibility to choose an ML algorithm from a set of given tech-

niques. ML algorithms use learned signature patterns of known attacks to train the

model. Besides the wide range of detected attacks, one of the drawbacks of IoT-IDM is

that technically it cannot survey all home IoT devices due to high volume of network

traffic with the detail that sensor elements are positioned on top of SDN controller. Con-

sequently, IoT-IDM can only inspect chosen IoT devices that do not overload the SDN

controller. Nobakht et al. tested IoT-IDM on a real IoT device which is the smart light

bulb (Hue lights) and compare logistic regression and SVM (support vector machines).

In unauthorized detection, the first one gives 94.25% of accuracy rate and 85.05% of

recall rate against 98.53% and 95.94% for SVM.

14SDN abstracts network services. It separates control plane (the decision maker about data forward-
ing) from data plane (the responsible of sending the data).

58

State of the Art of Network Intrusion Detection Systems for IoT

Hosseinpour et al. [HVAP+16] proposed a novel real-time, distributed and

lightweight IDS based on Artificial Immune System (AIS), in an effective combination

of edge, fog15 and cloud computing. It allows intelligent data processing at an interme-

diary level and thus reduces data transport to the cloud. Consequently, the processing

takes place in hubs, routers or gateways. The AIS architecture of the IDS is composed

of three parts:

1. A training engine: learns from an initial learning dataset and trains detectors

(initialization phase of the AIS). This step is treated in the cloud layer since it

needs complex and powerful processing units.

2. An analyzer engine: analyzes anomalies reported by the detectors to alert and re-

ject the false positive signals. The authors use memory cell detectors and genetic

algorithms as presented in previous works [HMR+13, HAFP14] to improve pre-

cision. This step requires more communication between the infected edge nodes

and the main engine, hence the analyzer engine is deployed at the fog layer.

3. Detector sensors: detection logic is inserted in each node monitoring the network.

The proposed IDS is doted with an intelligent and distributed detection where

each type of attack, could be detected by a number of different detectors. If a

threshold is reached, the anomaly will be reported to the analyzer engine, thus a

deep intrusion alert is generated.

Following are the important work strengths: i) Fog computing enabled quality of ser-

vice with low latency in data analysis; ii) Combination of lightweight analysis in fog

layer with an advanced analysis in the cloud; iii) Detection of silent attacks such as

botnet attacks using smart data strategy16; and iv) detection of unknown and zero-day

attacks via AIS based on an online self training method with unsupervised machine

15Cisco introduced Fog computing concept to extend cloud computing at the network layer. The fog
layer is between the IoT sensors and the cloud.

16Smart data strategy is "an active and intelligent data structure which facilitates the management of
Big Data in IoT" [HVAP+16]

59

State of the Art of Network Intrusion Detection Systems for IoT

learning. Two datasets have been used to evaluate the lightweight IDS efficiency which

are KDD-Cup9917 [HB99] and SSH Brute Force from ISCX dataset [SSTG12]. Accord-

ing to experimental results, the three-layered proposed solution achieve 3.51% of false

positive rate (FPR) with 98.35% of accuracy and 97.83% of precision.

Bostani and Sheikhan [BS17] suggested a real-time hybrid of anomaly-based

and specification-based IoT IDS. It enables the detection of sinkhole and selective-

forwarding attacks in 6LowPAN networks and can be extended to detect blackhole,

rank and wormhole attacks. This IDS works mainly in two steps: specification detection

in the router level and anomaly detection in the root level. For the first one, the routers

analyze features locally from network traffic and host nodes. The results on the first

step are sent to the root node for the second step and removed from routers to ensure

lower consumption of memory and CPU cycles. The second step is the global intrusion

detection where anomaly-based analysis is performed on incoming data packets at the

root node. This step employs the unsupervised optimum-path forest algorithm (OPF)

[RCF09] to create clustering models for each source node router. With a MapReduce ar-

chitecture platform, a parallel, distributed execution of anomaly detection according to

clustering models is ensured. The final decision about tagging a suspicious behavior as

an attack is done with a voting mechanism. The proposed system neither uses additional

control messages, nor makes use of additional infrastructure. Consequently, it saves on

communication and setting cost compared to other IDS. Authors evaluated the pro-

posed technique on their own simulation tool. They prove appropriate real-time detec-

tion results with three main experiments each one done with ten simulations: the first

experiment deals with values of evaluation criteria, the second experiment tackles the

scale of the networks (small and medium size) to confirm independent scale-network

IDS and the third one proves the possibility of extending the detected attacks such as

wormhole. The experimental results of simulated scenarios showed that when both

sinkhole and selective-forwarding attacks were launched simultaneously, the proposed

hybrid method can achieve true positive rate of 76.19% and FPR of 5.92%. However,

17More details about KDD-Cup99 are in Section 3.3.1

60

State of the Art of Network Intrusion Detection Systems for IoT

for wormhole attack the rates are 96.02% and 2.08%, respectively.

Bostani and Sheikhan resumed in [SB16, SB17] the same architecture as given

in [BS17] (i.e., based on distributed MapReduce Model). They proposed an anomaly

and misuse agents with supervised and unsupervised optimum-path forest model in-

stead of anomaly and specification based detection. They also reduced dataset features

with a hybrid feature selection algorithm which is built on mutual information and

binary gravitational search algorithm.

Pajouh et al. [PJK+16] presented an anomaly IDS built with Two-layer Dimension

Reduction and Two-tier Classification (TDTC) for IoT Backbone. They concentrated

mainly on low-frequency, common attacks: User to Root and Remote to Local attacks

while their experiments were based on NSL-KDD18 dataset [noa16]. Pajouh et al. de-

ployed a two-layer dimension reduction to limit dataset’s high dimensionality:

• The first layer benefits from an unsupervised technique which is Principal Compo-

nent Analysis (PCA) for feature dimension reduction (combine dataset features to

construct new ones). So for NSL-KDD, the overhead complexity was reduced in

TDTC since only 35 out of 41 data set features were used.

• The second layer uses a supervised technique: Linear Discriminant Analysis (LDA)

to make PCA reduced features better for classification and to improve the speed

of intrusion detection. After analyzing the dataset classes, LDA finishes with two

dimension dataset for NSL-KDD.

This dimension reduction decreases the false positive, the DR and the computational

complexity. The second step is the multilayer classification where TDTC uses Naive

Bayes (NB) and Certainty Factor version of K-Nearest Neighbor (CF-KNN) to classify

inputs. Pajouh et al. started with NB for anomaly detection then results are refined

with CF-KNN. Their work proved computation reduction of about ten times with faster

detection and less resource requirements. They achieved a DR of about 84.86% for

binary classification with 4.86% of false alarm.
18More details about NSL-KDD are in Section 3.3.1

61

State of the Art of Network Intrusion Detection Systems for IoT

Lopez-Martin et al. [LMCSEL17] claimed ID-CVAE to be the first to apply con-

ditional variational auto-encoder (CVAE) and the first to perform feature recovery in

NIDS. CVAE, which is considered as an unsupervised technique, was trained in a su-

pervised strategy where class labels are integrated within the decoder layers. Instead

of using a threshold to identify intrusions, their anomaly-based method is based on a

discriminative framework that utilizes intrusion labels to reduce the reconstruction er-

ror. Another key strength in their study is that ID-CVAE performs only a single training

step to generate only one model from multiple trainings depending on the number of

different labels like in variational auto-encoder (VAE). This characteristic makes the

ID-CVAE a suitable option for IoT systems due to the efficiency in computation time,

flexibility and accuracy results. The selected dataset for ID-CVAE training and testing

was a refined version of NSL-KDD. It ended with 116 features and 23 possible labels.

Lopez-Martin et al. achieved 80.10% of accuracy and recall and 81.59% of precision,

which they show to be better than the results of well-known algorithms like random for-

est (RF), linear SVM, multinomial logistic regression and multi-layer perceptron. The

authors insisted on the efficiency of their feature reconstruction algorithm and proved

that the recovery of missing categorical features reached 99%, 92% and 71% of accu-

racy with three, 11 and 70 values, respectively.

Thing [Thi17] analyzed IEEE 802.11 network threats and proposed an anomaly net-

work IDS to detect and classify attacks in IEEE 802.11 networks. This work is consid-

ered as the first work that employ deep learning algorithms for IEEE 802.11 standard.

Thing experimented Stacked Auto-encoder (SAE) architecture with both two and three

hidden layers. The author experienced different activation functions for the hidden

neurons. To test his strategy, he used a dataset generated from a lab emulated Small

Office Home Office (SOHO) infrastructure. He achieved an overall accuracy of 98.66%

in a 4-class classification (legitimate traffic, flooding type attacks, injection type attacks

and impersonation attacks).

Diro et al. [DC17] proposed a DL approach based on fog computing to detect known

and unseen intrusion attacks. Known attacks represent 99% which leads to affirm that

62

State of the Art of Network Intrusion Detection Systems for IoT

zero-day attacks are crafted with small mutations in the old ones. Therefore, multi-layer

deep networks enhance small changes awareness (in a self taught algorithm with com-

pression capabilities) compared to shallow learning classifiers. Distributed DL approach

is based on distributing the dataset to train each sub-dataset locally and rapidly than

share and coordinate the learning parameters with neighbors. So the architecture ends

with a master IDS which updates the parameters values of the down distributed IDSs

and keeps synchronization. The studies show that the distributed parallel DL approach

realize better results in accuracy than centralized DL NIDS and also than shallow ma-

chine learning algorithms. To train the models and evaluate the IDS, Diro et al. used

NSL-KDD dataset after adding some modification on it to finish with 123 input features

and 1 label. As results, they obtained multi-class detection consisting 4 labels (normal,

DoS, Probe, R2L.U2R) to achieve 96.5% DR and 2.57% of false alarms for deep model in

comparison to shallow classifier achieving 93.66% detection and 4.97% false DR. They

also noted an increase in the overall detection accuracy while adding the number of fog

nodes from 96% to 99%. The proposed approach took longer training time; however,

real detection was fast and accurate.

Prabavathy et al. [PSS18] proposed a novel fog computing based intrusion de-

tection technique using Online Sequential Extreme Learning Machine (OS-ELM). The

distributed security mechanism respects interoperability, flexibility, scalability and het-

erogeneity aspects of IoT systems. The proposed system is composed of the following

two major parts:

1. Attack detection at fog nodes: Prabavathy et al. use OS-ELM algorithm to detect

intrusions in fog nodes. The IoT network is divided into virtual clusters where each

cluster corresponds to a group of IoT devices under a single fog node. The OS-ELM

classifies the incoming packets as normal or an attack. ELM is a single hidden layer

feedforward neural network characterized by its fast learning phase. The input

layer weights and hidden layer bias values are randomly selected to analytically

deduce the output weights using simple matrix computations. However the online

63

State of the Art of Network Intrusion Detection Systems for IoT

nature of OS-ELM favors a streaming detection of IoT attacks.

2. Summarization at cloud server: to have a general idea about the global security

state of the IoT system, detected intrusions are sent from the fog node to the cloud

server. After the analysis and the visualization of the current state, Prabavathy et

al. propose two actions; i) predict next attacker action using the attacker plan

recognition approach; or ii) identify fog node geographical position based multi-

stage, and DDoS attacks. Hence, an intrusion response can be activated.

Prabavathy et al. proposed a proof of concept to evaluate their proposal. They imple-

mented OS-ELM using MATLAB and NSL-KDD as benchmark dataset. Authors claimed

high accuracy and response time. They achieve 97.36% accuracy with reduced false

alarm rate 0.37%. The DR with the fog node strategy was 25% faster when compared

with cloud based implementation. An important advantage is that new online data can

be incorporated in the learning process, which is not the case for ANN and NB.

Rathore et Park [RP18] deployed a novel fog detector using ELM-based Semi-

supervised Fuzzy C-Means (ESFCM) NIDS. This distributed IDS handles geographically

distributed and low-latency IoT detection for limited resources and networks via fog

computing. Supervised ML does not detect unknown attacks despite its good accu-

racy. Unsupervised ML has lower accuracy but, has the capability to detect unknown /

zero-day attacks. Hence, Rathore et Park proposed a semi-supervised approach using

the supervised and unsupervised ML for labeled and unlabeled inputs. For the unsuper-

vised learning, Fuzzy C-Means (FCM) was the chosen algorithm (one of the widely used

in clustering). FCM selects unlabeled data and assigns each input to one or more clus-

ters with several degrees of membership. While the supervised part deploys Extreme

Learning Machine (ELM) for effective and efficient detection. Hence, the authors pro-

posed an ESFCM classification where Semi-supervised Fuzzy C-Means (SFCM) works

with ELM classifier for a faster detection of known and unknown attacks. The IDS starts

by generating a model (M) after having trained the ELM classifier on labeled dataset.

Then, SFCM algorithm learns from both, labeled and unlabeled data to assign a degree

64

State of the Art of Network Intrusion Detection Systems for IoT

of membership to the unlabeled inputs. The unlabeled instances that have better oppor-

tunity to belong to one class, are then classified using the trained model M and added

to labeled data according to defined threshold. Moreover, the remaining unlabeled data

are re-clustered with SFCM and retrained with ELM until all instances are assigned.

Finally, a trained model is generated for labeled and unlabeled data. Two types of eval-

uation for the proposed algorithm were established using the NSL-KDD dataset after

scaling and preprocessing; i) a comparison between the authors’ distributed solution

and a centralized cloud-based framework; and ii) the effectiveness of the ESFCM was

compared with traditional machine learning methods in terms of standard measures.

Results show better performance of 11 ms in terms of detection time and 86.53% accu-

racy.

Moustafa et al. [MTC18] proposed an ensemble network intrusion detection tech-

nique based on established statistical flow features to mitigate malicious events, partic-

ularly botnet attacks against DNS, HTTP and MQTT protocols utilized in IoT networks.

Their solution can be divided into three steps:

1. A set of features are extracted from the network traffic protocols MQTT, HTTP

and DNS protocols via deep analysis of the TCP/IP model. Authors employed Bro-

IDS tool for the basic features and developed a novel extractor module (which

works simultaneously with Bro-IDS) to generate additional statistical features of

the transactional flows.

2. A feature selection step where correlation coefficient is applied on result features

to extract the most important ones. This step enables the reduction of computa-

tional cost of NIDS.

3. An ensemble method where the network data is distributed with AdaBoost (Adap-

tive Boosting) algorithm. Then, Decision Tree (DT), NB and ANN ML algorithms

are deployed to detect attacks. The choice of the classification techniques is justi-

fied by calculating the correntropy measure. The AdaBoost method enhances the

performance of the detection compared to separate ML algorithms. It can deal

65

State of the Art of Network Intrusion Detection Systems for IoT

with the small differences of the feature vectors via computing an error function.

The error function is assigned to each instance of the distributed input data to

learn and decide which learners can correctly classify each instance.

To extract the best features and evaluate the proposed ensemble technique, Moustafa

et al. used the UNSW-NB1519 [MS15] and NIMS botnet datasets [noad] with simulated

IoT sensor data. Experiments results have high DR and a low FPR compared to exist-

ing state-of-the-art techniques. The ensemble strategy achieved between 95.25% and

99.86% of DR and 0.01% to 0.72% of FPR.

Nguyen et al. [NMM+19] came with an autonomous self-learning anomaly-based

IDS (DÏoT). Their solution is composed of a Security Gateways that monitor the system

devices and an IoT Security Service (which could be a service provider) responsible

for detecting anomalies in a device-type-specific mode. In other words, devices of the

network are autonomously clustered into types on the basis of their manufacturer’s

hardware and software configurations. Then anomaly models will be generated for

each device type. Nguyen et al. claimed to be the first to use the distributed federated

learning approach in anomaly IDS. Models are trained locally in each Security Gateway

then aggregated into a global model at the Security Service. The used ML algorithm

is Gated Recurrent Units (GRU) which is an recurrent neural network (RNN) able to

train efficiently with few training data according to the authors. Consequently, final

GRU models are the result of a collective learning collected from the different Security

Gateways while preserving privacy. This IDS solution is communication-efficient and

seems to be suitable for distributed systems like IoT. The authors evaluate their proposal

in a real-world smart home deployment (with more than 30 off-the-shelf IoT devices)

in the detection of the Mirai malware. They show that DÏoT has a DR of 95.6% with no

false alarm in 257ms (which is fast).

Illy et al. [IKMM+19] proposed a fog-to-things architecture for their IDS. They de-

ploy the detection process on two levels: the fog and the cloud layers of the system.

19More details about UNSW-NB15 are in Section 3.3.1

66

State of the Art of Network Intrusion Detection Systems for IoT

This architecture allows the authors, on the one hand, to address their computationally

intensive ML detection caused by ensemble learning (a combination of ML algorithms).

On the other hand, it allows low latency detection thanks to fog detection and thus

fast response. Therefore, an anomaly detection is first performed in the fog layer, if the

traffic is identified as an attack, an alert will be sent to the security administrator and

an additional analysis is processed in the cloud in order to classify the type of attack

and provide it to him/her. Illy et al. tested different ML combinations in a multiexpert

mode as well as in a multistage strategy. Their evaluation was made on the NSL-KDD

dataset and achieved 85.81% and 84.25% of overall accuracy for binary and attack

classification respectively.

2.2.3 Comparison and Discussion

Figure 2.3: State of the art intrusion detection results

As presented in the previous section, many researchers give a special interest for IoT

powered NIDS via ML algorithms. A comparison between the previously detailed pro-

posals is illustrated in Table 2.2 where we focus mainly on IDS deployment, detection

methodology, used dataset, treated threats and ML used algorithms.

67

State of the Art of Network Intrusion Detection Systems for IoT

References IDS deploy-
ment

Detection Methodology Used
Dataset

Treated Threats ML algorithms

Hodo et al.
[HBH+16]

— Anomaly-based Simulation DoS / DDoS Multi-Layer Perceptron (MLP)

Nobakht
et al.
[NSB16]

— Anomaly-Host based Real IoT
devices
(Hue
lights)

Unauthorized access Logistic Regression vs SVM

Hosseinpour
et al.
[HVAP+16]

Distributed Anomaly-based KDD99 and
SSH Brute
Force from
ISCX

Botnet attack Artificial Immune System (AIS)

Bostani
and
Sheikhan
[BS17,
SB16,
SB17]

Centralized
/ Distributed
(Big Data
architecture
MapReduce)

Hybrid: Anomaly-based for
the centralized part and
specification-based for the
distributed part [BS17]

Proprietary
Simu-
lator +
NSL-KDD

Sinkhole / Selective
Forwarding in 6LoW-
PAN and can be ex-
tended to Blackhole
rank and Wormhole

Unsupervised Optimum Path Forest
(OPF) in [BS17]

Hybrid: Anomaly-based for
the centralized part and
misuse-based for the dis-
tributed part [SB16, SB17]

Supervised & Unsupervised Opti-
mum Path Forest (OPF) in [SB16,
SB17]

Pajouh
et al.
[PJK+16]

— Anomaly-based NSL-KDD Low frequency attacks
(such as U2R, R2L)

{Unsupervised Principal Component
Analysis (PCA) + Supervised Lin-
ear Discriminant Analysis (LDA)} for
Feature Reduction,
&
{Naive Bayes (NB) + Certainty Fac-
tor version of K Nearest Neighbors
(CF-KNN)} for Classification

Lopez-
Martin
et al.
[LMCSEL17]

— Anomaly-based NSL-KDD DoS / R2L / U2R /
Probe

Conditional Variational Auto-
Encoder (CVAE)

Thing
[Thi17]

— Anomaly-based Generated
Dataset
from lab
SOHO

IEEE 802.11 attacks
(flooding, injection
and impersonation)

Stacked Auto-Encoder (SAE)

Diro et al.
[DC17]

Distributed Anomaly-based NSL-KDD DoS / R2L.U2R / Probe Multi-Layer Deep Learning

Prabavathy
et al.
[PSS18]

Distributed Anomaly-based Emulation
+ NSL-
KDD

Probe / R2L / U2R /
DoS

Online Sequential Extreme Learning
Machine (OS-ELM)

Rathore
and Park
[RP18]

Distributed Anomaly-based Simulation
+ NSL-
KDD

Probe / R2L / U2R /
DoS

ELM-based Semi-supervised Fuzzy
C-Means (ESFCM)

Moustafa
et al.
[MTC18]

Distributed Anomaly-based UNSW-
NB15 +
NIMS +
Simulation

Botnet attack AdaBoost ensemble method using
three techniques of DT, NB and ANN

Nguyen
et al.
[NMM+19]

Distributed Anomaly-based Real-world
smart
home

Mirai Malware Gated Recurrent Units (GRU)

Illy et al.
[IKMM+19]

Distributed Anomaly-based NSL-KDD DoS / R2L.U2R / Probe Different ML combinations in a mul-
tiexpert mode as well as in a multi-
stage strategy

Table 2.2: Summary of NIDS for IoT based on learning techniques

68

State of the Art of Network Intrusion Detection Systems for IoT

While reviewing [HBH+16, NSB16, PJK+16, LMCSEL17, Thi17], we observe a lack

of details on the architecture deployments. The above proposals concentrate on ML

mechanisms for intrusion detection without discussing the architecture designs. So-

lutions of Hosseinpour et al. [HVAP+16], Bostani and Sheikhan [BS17, SB16, SB17],

Diro et al. [DC17], Prabavathy et al [PSS18], Rathore and Park [RP18], Moustafa et

al. [MTC18], Nguyen et al. [NMM+19] and Illy et al. [IKMM+19] deployed distributed

architecture for intrusion detection, most suitable for IoT needs. In fact, IoT systems are

distributed since they are composed of geographically distributed nodes. Such a crite-

rion plays an important role when choosing the ML algorithm. Depending on where and

how we want to deploy our NIDS, researchers have to pay attention and identify the al-

gorithm for resource constrained smart objects. Hence, training an intensive algorithm

on a limited node may not be feasible. However, the intensive task can be transferred

to the fog or cloud layer. The best strategy is to process resource consuming tasks in

cloud/server part, and execute lightweight parts in the IoT edge. It is the case in fog

computing based NIDS such as in [HVAP+16, BS17, SB17, DC17, PSS18, IKMM+19].

The proposed solutions take advantage of the cloud or the fog layer for ML model train-

ing and use fog nodes and/or edge nodes for intrusion detection. Fog and edge based

intrusion detection enables coordination for better, low latency detection (near to the

source of data). It reduces network bandwidth consumption since partial data is sent

at cloud. Only some details are reported to the centralized, source-intensive part of the

IoT system to summarize and detect distributed attacks. Fog and edge concepts enable

autonomic and parallel distributed attack detection [DC17]. [RP18, HVAP+16] claimed

that, their proposals can be deployed in distributed IoT systems but they concentrated

more on the distribution of traffic network data.

Regarding the datasets, recent information is necessary to train and evaluate IoT

NIDS. Proposals such as [PJK+16, LMCSEL17, DC17, IKMM+19] are based on NSL-KDD

dataset; non IoT dataset. NSL-KDD neither support IoT protocols like 6LowPAN, Zig-

bee, CoAP, nor IoT architecture and principles like mobility and heterogeneity. Details

about the existant datasets are in Section 3.3.1. Unfortunately, no IoT-dedicated NIDS

69

State of the Art of Network Intrusion Detection Systems for IoT

dataset exists which explains the use of NSL-KDD. [HBH+16, NSB16, Thi17, NMM+19]

evaluate their proposal with their own data. However, [HVAP+16, BS17, PSS18, RP18,

MTC18] used a combination of real and synthetic data or simulate the environment.

Moreover, most of the studied researches are made to protect IoT systems from pre-

cise types of attacks mainly DoS, U2R, R2L and Probe since they get inspired from

NSL-KDD dataset. Thing is the only proposal which concentrate specially on IEEE

802.11 attacks. However, unsupervised and semi-supervised ML solutions are evalu-

ated against specific attacks. Meanwhile, they are able to detect unknown attacks such

as in [HVAP+16, SB17, LMCSEL17], and [RP18].

The last important point to discuss is about ML used algorithms. ML algorithms

such as SVM, NB and ANN were deployed separately and combined to improve outcome

in general systems [FZHH14, LKT15]. As evoked in [MTC18], science started with

applying each machine leaning algorithm separately than the trade on combining the

algorithms in the same system takes place.

Hodo et al. [HBH+16], Nobakht et al. [NSB16], Hosseinpour et al. [HVAP+16],

Lopez-Martin et al. [LMCSEL17], Thing [Thi17], Diro et al. [DC17], Prabavathy et

al. [PSS18] and Nguyen et al. [NMM+19] use ML algorithms separately. However,

all the rest use a combination of algorithms. Hodo et al. [HBH+16] use MLP, a part

of ANN family in an off-line detection. Nobakht et al. [NSB16] executed a feature re-

duction heuristically and experimented two ML algorithms; LR and SVM for intrusion

detection. LR is gradient descent which aims to find out the optimal parameters of a

LR model. The accuracy of the obtained linear model with LR was less interesting than

the non linear model of SVM (96.2% for LR whereas SVM achieves 100%). For Hos-

seinpour et al. [HVAP+16], they used AIS which is an unsupervised ML algorithm that

is inspired from human immune system. It is characterized by a multi-layered protec-

tion structure. First line of defense responses immediately to previously seen problems

then a non specific protection for unknown attacks is processed. It does not need prior

knowledge of specific outsiders. Another important point for AIS is the memory aspect;

AIS is efficient in unknown attacks detection. Authors achieve 98.35% of accuracy and

70

State of the Art of Network Intrusion Detection Systems for IoT

97.83% of precision which are remarkable results as noticed in Figure 2.3. However,

AIS training needs resource which is why Hosseinpour et al. proceed it in the cloud

layer. Prabavathy et al. [PSS18] took advantage of ELM algorithm in their intrusion

detection proposal. They operated an online version of ELM (OS-ELM) for a real time

analysis. Compared to ANN and NB, authors achieved better accuracy (97.36%) with

lower FPR (0.37%) in a lower period of time (25% faster). A major advantage of OS-

ELM is that it can incorporate new data online for learning which is not possible with

the other compared algorithms.

Regarding the solutions with DL [LMCSEL17, DC17, Thi17, NMM+19], the good

results (as we can notice in Figure 2.3) could be justified with the following DL ad-

vantages: i) training stability and generalization of DL; ii) its ability to reach a high

accuracy rate if there is enough data and time [MRB+18]; iii) DL is a self-learning al-

gorithm which means that it does not need manual feature engineering [RP18]; iv)

DL extracts complex and non linear hierarchical features from training data of high di-

mension [DC17]. Lopez-Martin et al. [LMCSEL17] used CVAE which is a generative

model based on VAE concepts. CVAE relies on two inputs: i) the intrusion features and

ii) the intrusion class labels, instead of using only the intrusion features as input as

in VAE. CVAE is better in flexibility and performance. The authors chose CVAE for its

ability in feature reconstruction: its ability to retrieve missing features from incomplete

dataset. Despite their use for an unsupervised DL algorithm, they benefit from labeled

data in training phase for a deviation-based NIDS. Martin-Lopez et al. ensured a good

computational time with a good flexibility though generating one model from multiple

trainings in only one single training step. They proved better accuracy 80% than linear

SVM (75%), MLP (78%) and RF (73%) algorithms. Meanwhile, Diro et al. [DC17] used

Multi-layer DL algorithm in a distributed strategy which gives better results compared

to centralized DL (99% vs 96% of accuracy). It is true that training phase takes longer

time, but real-time detection is faster and more accurate. The authors chose multi-layer

DL since it is the most prevalent form of DL. It shows training stability with a signifi-

cant scalability on big data concept. Moreover, Diro et al. compared DL with ML in the

71

State of the Art of Network Intrusion Detection Systems for IoT

distributed context and proved that accuracy of the deep model is greater than that of

shallow model (multi-class detection accuracy increase from 96.75% to 98.27%) and

false alarms rate are lower for DL (from 4.97% for ML to 2.57% with DL in multi-class

detection). About the DL used version of Thing [Thi17], he experimented SAE with two

and three hidden layers but does not provide any primary choice arguments. SAE is a

neural network built by stacking multiple layers of sparse auto-encoders. The output

of each layer forms the input to the successive layer. Its hidden layers reduce the fea-

ture dimensionality and produce new set of features [AK16]. These new features are

learned in cascade depths to improve precision. Nodes in the input and the output layer

of SAE are the same [MVTP18]. The proposed solution achieved good accuracy results

(98.66%) compared to J48 (an implementation of DT). The 2-hidden-layer model had

a better performance over the 3-hidden-layer model. Nguyen et al. [NMM+19] are the

only researchers that use federated learning for NIDS. It is an interesting strategy in DL

that enables the learning from a distributed architecture since it guarantees the aggre-

gation of the learned patterns. The authors deploy GRU as a DL network in the edges

of the system for its efficiency in training with few data. GRU is a computationally less

expensive RNN [WAB+17]. Thanks to this strategy, Nguyen et al. achieve 95.6% of DR.

This was about DL proposals.

Another strategy in the use of ML algorithms that is taking more and more attention

is the combination of different algorithms in the same system [PJK+16, MTC18, RP18,

SB16, SB17, IKMM+19]. Pajouh et al. [PJK+16] used two simple ML techniques which

are NB and K-nearest networks (KNN) for more exact class labels. NB is applied in the

first place to identify anomalies. Then normal behaviors will be analyzed with KNN to

refine normal instances. NB assumes the independence of all the characteristics of each

sample in the given class label. It has the ability to measure good similarities of rare in-

stances in the aim to handle imbalanced data. KNN uses a bucketing technique [FBF77]

to accelerate the classification task. On the other side, Pajouh et al. applied dimension

reduction before running the classification. To do so, they deployed both LDA (a super-

vised dimension reduction technique) and PCA (an unsupervised dimension reduction

72

State of the Art of Network Intrusion Detection Systems for IoT

technique). PCA provides a lower feature space by generating uncorrelated features

from the initial correlated ones. LDA reduces the dimension of large working datasets

by examining class labels. Hence, these two dimension reduction techniques represent

a good strategy to i) reduce computational needs which is perfect for IoT systems and

ii) fast the detection with less errors which is perfect for intrusion detection. Pajouh et

al. achieved 84.86% of DR on NSL-KDD however Moustafa et al. [MTC18] succeeded

to have 99.86% which is an impressive value. Their idea is based on an AdaBoost en-

semble learning method which uses three ML techniques, namely DT, NB and ANN.

The combination of these algorithms is done in a distributed parallel way. Data is di-

vided into N sets (according to an error function) and each data subset will be treated

with a chosen algorithm to finally update the distribution. Such a logic is guaranteed

thanks to AdaBoost flow. Moustafa et al. applied also feature selection before starting

the classification. By analyzing the treated attacks using correntropy, authors noticed

that there are small variations between legitimate and suspicious vectors. Thus the

ML algorithms to be used, should classify these small differences. That’s how DT, NB

and ANN were chosen. DT [MTC18] has multiple advantages while classifying network

data. It selects important feature, prepare learning data points easily and manipulates

directly the values of features. Even if a non-linear relations exist between parame-

ters, DT performance is not affected. DT could be extended to better take into account

unknown threats as proposed in [BC06]: it proposed a solution to deal with new in-

stances that are not taken into account in training by assigning a new default class to

the test instance that is not covered by the tree rules instead of assigning the default

class with the one that contains the most elements. NB [MTC18] is known for its good

detection of abnormal inputs. It needs less training data and scales linearly predictors

and features values. It is simple in parameters optimization. ANN [MTC18] has many

merits. It demands less formal statistical training and defines complex non-linear cor-

relations between dependent and independent variables. Furthermore, it enables the

detection of all possible interactions between predictors and variables. The third type

of ML algorithms combination is presented in [RP18]. Rathore and Park composed

73

State of the Art of Network Intrusion Detection Systems for IoT

the semi-supervised SFCM with the unsupervised FCM algorithm which clusters inputs

data and the supervised ELM classifier. FCM is one of the widely used techniques in

unsupervised learning. It captures hidden and visible data structures. However, ELM

algorithm [HZS06] is originally created to train single hidden-layer feedforward neural

networks (SLFNs). ELM is efficient and doted of fast learning capacity in highly dy-

namic environment like IoT systems. Consequently, Rathore and Park achieved faster

detection (11ms) with a better accuracy rate 86.53% comparing to traditional ML in

their framework with the advantage of labeled and unlabeled data classification. About

Sheikhan and Bostani solutions, they used in their works [BS17, SB16, SB17] mainly

OPF which is an efficient graph-based ML. They used two variants of OPF; i) OPFC (OPF

Clustering) which is an unsupervised ML and ii) MOPF (Modified OPF) which is a su-

pervised algorithm. OPF main strength [PF09] is that it does not make any assumption

about the shape of classes. The authors use OPFC to project clustering models on a

MapReduce architecture. MOPF is used in a misuse-based detection engine with a fea-

ture selection module. The proposed solutions are simple and fast classifiers, they are

parameter independent and originally support multi-class problems [PF09]. Finally, Illy

et al. [IKMM+19] apply ensemble learning in a multiexpert combination as well as in a

multistage strategy with different algorithms like DT, KNN, MLP, etc. and succeeded to

reach 85.81% of accuracy.

Conclusion

As shown in this chapter, many IDS solutions for IoT are possible with or without ML,

although ML techniques allow the detection of unknown threats and reduce the false

alarms rate. NIDSs literature shows that many criteria could influence the IDSs results:

i) the deployed architecture (centralized or distributed), ii) the detection methodol-

ogy (signature-based, anomaly-based or hybrid), iii) the validation strategy, iv) the de-

tected threats, v) the used dataset for training ML models, vi) the used ML algorithm

for anomaly-based detection and finally and most importantly the whole strategy of de-

74

State of the Art of Network Intrusion Detection Systems for IoT

tection and prevention. The IoT context is a challenging one with several constraints

that need to be respected such as heterogeneity, resource constraints and connectivity.

To our knowledge, despite the many IDS solutions, there are no works in the state of

the art that propose an IDS or an IPS for the oneM2M service layer. OneM2M standard

is an important path towards a standardized IoT ecosystem with respect to the exiting

worldwide networks and standards. Thus, it is important to guarantee its protection.

Consequently, we will focus in this thesis on the proposal of an IDPS for the oneM2M

service layer while respecting the IoT constraints and addressing multiple gaps that

were neglected in the state of the art of NIDSs for IoT. We will try to benefit from the

strengths of the works presented in this chapter and combine the various advantages

into a single IDPS solution while avoiding their weaknesses. We will work on the au-

tonomy, the scalability, the modularity and other aspects of the IDS. We will also focus

on the prevention strategy (which has been underestimated in the state of the art) and,

most importantly, we will deal with the continuous learning and improvement of the

IDPS throughout the lifetime of the IoT system. Before tackling the strategy and de-

ployment of the IDPS, it is important to start by analyzing the oneM2M standard that

we intend to protect.

75

Chapter 3

OneM2M Standard Security and

Dataset Creation

Contents

3.1 OneM2M Standard and Security . 77

3.1.1 OneM2M Architecture . 78

3.1.2 OneM2M Security . 82

3.2 OneM2M Threats . 83

3.2.1 Proposed Taxonomy for OneM2M Threats 84

3.2.2 Attacks Implementation . 86

3.3 OneM2M Dataset . 89

3.3.1 State of the Art of Free Datasets 89

3.3.2 OneM2M Dataset Creation . 94

Introduction

The number of connected Things is growing at a frantic pace, which has led to vertical,

proprietary IoT solutions. To ensure a horizontal IoT cross-industry interoperability,

76

OneM2M Standard Security and Dataset Creation

eight of the word’s leading ICT standards bodies introduce the oneM2M standard. Its

main goal is to satisfy the need for a common Machine-To-Machine (M2M) Service Layer

that guarantees the communication between heterogeneous devices and applications.

Since oneM2M is an international standard for IoT, its security implies the security

of the IoT ecosystem. Hence, we focus our work on the security aspect of the oneM2M

standard. In order to protect oneM2M-based IoT systems, we need to understand and

examine its architecture. Moreover, we have to identify and study the attacks/scenarios

we need to protect against.

This chapter starts with an overview of the oneM2M standard (Section 3.1): its ar-

chitecture and the security mechanisms defined in its specifications. Section 3.2 details

the proposed taxonomy of the threats related to the oneM2M standard. Moreover, Sec-

tion 3.3 describes and discusses the dataset created related to the proposed taxonomy

that would be used for our IDS proposal presented in Chapters 4 and 5.

3.1 OneM2M Standard and Security

OneM2M [One19] is a global standard initiative designed to converge towards an hor-

izontal common platform for the multi-industry M2M applications (Figure 3.1) such as

e-Health, intelligent transportation, industrial automation, smart homes, etc. Today,

Figure 3.1: OneM2M commun service layer

many industries from different sectors rely on proprietary solutions with customized

hardware and software for M2M systems hence IoT applications. Such vertical, mono-

77

OneM2M Standard Security and Dataset Creation

industry solutions reinvent the wheel independently with non-interoperable technolo-

gies. Hence, eight of the word’s leading ICT standards bodies [One19] initiated the

international partnership project oneM2M in 2012. OneM2M main goal is to satisfy

the need for a common M2M Service Layer which enables the communication of het-

erogeneous devices and applications with each other, regardless of their manufacturer

or technical specifications with no need to redevelop common components. There-

fore, deploying IoT and M2M solutions becomes less expensive in terms of money, time

and complexity. It is important to mention that oneM2M takes into consideration the

existing worldwide networks and standards as shown in Figure 3.2. It extends and

standardizes the IoT ecosystem by interworking with other standards and protocols.

Figure 3.2: OneM2M service layer in the TCP/IP layer

OneM2M project defines a set of specifications for the standardization approach. It

covers architecture details, security mechanisms, communication protocols, etc. In this

section, we focus on the oneM2M architecture and its security.

3.1.1 OneM2M Architecture

The functional architecture of oneM2M is mainly composed of three layers as presented

in Figure 3.3. First, the application layer provides functions related to the logic of

the end-to-end M2M applications (e.g. remote blood sugar monitoring). Hence, an

78

OneM2M Standard Security and Dataset Creation

application is represented by an Application Entity (AE). Furthermore, the common

service layer exposes all the functions specific to the M2M environment such as data

management, notification and subscription management, message handling, etc. The

service layer relies on the Common Services Entity (CSE) as defined by the oneM2M

team (with no dependence with the underlying networks). CSE takes a request as

input (RequestPrimitive) and gives a response as output (ResponsePrimitive). Finally, the

network layer relates the underlying network services (e.g. device management) to the

layer of common services with the Network Services Entities (NSE).

Figure 3.3: OneM2M architecture

A set of these layers forms a node which is the key component of M2M/IoT systems.

Thus, a node is composed of a network layer, an application layer consisting of zero

to several AE(s) and optionally a common services layer. However, a node without a

CSE must be connected to another node that has one. Nodes only communicate together

through the service layer or the application layer. Thus, there are several types of nodes:

i) Infrastructure Node (IN) is the main node in a oneM2M domain and is unique in a

multi-node architecture. Therefore, it contains all three functional layers and is char-

acterized by additional features, such as its capacity to manage identifiers for all other

nodes that are linked to it; ii) Middle Node (MN) represents a transition node and has

all three layers; iii) Application Service Node (ASN) is like the MN except that no other

node can connect to it (but it can connect to other nodes); and iv) Application Dedi-

cated Node (ADN) looks like ASN but without the service layer. An M2M/IoT system is

composed of a unique IN (as a main server), one or more MN (as gateways), many ASN

(as devices) and many ADN (as constrained/small devices). Figure 3.3 schematizes the

79

OneM2M Standard Security and Dataset Creation

main node types.

As detailed earlier, oneM2M is mainly about the service layer. Hence, at this point,

we concentrate on the CSE. It allows to manage the resources of the node through

oneM2M requests that follow the CRUD+N model (C for CREATE, R for RETRIEVE, U

for UPDATE, D for DELETE and N for NOTIFY).

Figure 3.4: OneM2M resource tree

There are several types of resources in oneM2M [One18a] that are disposed in a

resource tree model as illustrated in Figure 3.4. OneM2M logic is based on a resource

data model. Hence, each service is represented as a uniquely identified resource (data

structure). A resource has a set of attributes (e.g. resourceName, content, etc.) and

a set of child resources (represented with rectangles in Figure 3.4). Below, we detail

some of the characteristics of the resources we will need in the rest of the thesis:

• The CSEBase shall represent a CSE. It represents the root for all resources that are

80

OneM2M Standard Security and Dataset Creation

residing in the CSE. A CSEBase can have a list of points of access (poa). A poa is

used by the M2M system to communicate with a CSE on a M2M node. Typically,

a poa contains information related to the network address.

• The AE refers to an application registered under the corresponding CSE. It has a

poa attribute and can only have a CSEBase as a parent.

• The Container controls the data of an application. It is used to share information

with other entities. Possible parents are AE and other Containers.

• The ContentInstance is a data instance that contains the useful data of a Container

resource. The content of the ContentInstance can be encrypted. Unlike other

resources, this resource shall not be modified once created. It can only be created,

retrieved or deleted. Its only parent is a Container.

• The Subscription resource concerns subscription information about the oneM2M

resource to which it is subscribed. NotificationURI (nu) refers to the list of one

or more targets that the hosting CSE shall send notifications to when the corre-

sponding Container has new data.

• The RemoteCSE is a representation of the CSE of a remote node. It can only have

a CSEBase as a parent.

• The ACP refers to accessControlPolicy. It represents a set of access control rules

[One16] defining which entities have the privilege to perform certain operations

within specified contexts and are used by the CSEs in making access decision to

specific resources. An ACP can be defined mainly for a CSEBase resource, an AE

or a RemoteCSE. For resources like Container, ContentInstance and Subscription,

they inherit the ACP of their parent/ancestor resource.

After having detailed the oneM2M architecture structure, we summarize the avail-

able security mechanisms proposed in the specifications of the project.

81

OneM2M Standard Security and Dataset Creation

3.1.2 OneM2M Security

Among the specification documents of the oneM2M standard, the oneM2M community

focuses on security and privacy aspects in TS-0003 [One18b]. OneM2M contributions

in terms of information security seem to be an interesting step [TKG+17] to provide a

sustainable development for both M2M and IoT applications while facing the challenges

of M2M security and privacy.

The oneM2M security strategy is based on six main categories: a) identification and

authentication, b) authorization, c) identity management, d) security association, e)

sensitive data handling and f) security administration. To start with, identification (a)

is the process of verifying the validity of the identity that asks to authenticate (e.g. if

an AE (Application Entity) or CSE (Common Services Entity) fits a certificate). Then

comes the authentication step where the validated identity needs to be associated to

a trustworthy credentials (for example in the case of certificate authentication, it is a

digital signature that needs to be checked). In oneM2M, it is possible to use a central-

ized key distribution server hosted by a 3rd party or by M2M Service Provider with a

symmetric key access. In the second place, authorization function (b) regulates ser-

vices and data access authorizations for already authenticated entities. This security

mechanism is based on ACPs (Section 3.1.1) which are sets of conditions that reflect

permitted accesses and role based access control which can be a token based frame-

work (e.g. OAuth). Moreover, identity management (c) guarantees the anonymity of

the entities in the oneM2M systems. In fact, oneM2M provides pseudonyms that play

the role of temporary identifiers to protect the true identity of the nodes which is con-

sidered as sensitive data in the oneM2M architecture [One18a]. This mechanism is used

independently of authentication and authorization functions. Furthermore, security as-

sociation (d) is about equipping communicating entities with security services such as

confidentiality and integrity of the exchanged information thanks to keys provided dur-

ing the identification and authentication phase (a). Hence, the exchanged contents of

resources are encrypted. As an example, at the service layer, exchanged messages be-

82

OneM2M Standard Security and Dataset Creation

tween adjacent AE/CSE can be protected with a TLS or DTLS session. Last but not least,

the sensitive data handling service (e) is mainly for the security of the application layer.

It provides sensitive functions which enable secure storage, cryptographic operations

and bootstrapping methods for initial secrets (e.g. GBA). Consequently, an isolated

secure environment is guaranteed for data storing and retrieving such as credentials,

subscriptions, personal information and for functions including security algorithms. Fi-

nally security administration (f) is introduced to manage all of the sensitive resources

(data and functions) as well as to configure and extend the security services themselves.

Indeed oneM2M provides a large panel of security mechanisms to protect the ser-

vice layer itself as well as the communication between the oneM2M architecture lay-

ers. However, none of the specified techniques protect the IoT systems once the mali-

cious user has gained access to the system and bypassed the first-line security measures.

Therefore, a second security line is required to detect and prevent intrusions from af-

fecting the IoT systems. For this purpose, we have first to identify the attack scenarios

we need to protect against.

3.2 OneM2M Threats

In order to protect the oneM2M standard, we decided to concentrate on threats related

to the service availability in oneM2M which is, first and foremost, about services for

M2M and IoT systems. Hence, we need to distinguish the related security threats. To

do that, we specify threats by analogy with DoS taxonomy [DM04, SU14] since this

type of attack is the one that corresponds to the availability of services in the network

layer. We propose a taxonomy for service threats of the oneM2M standard. These

attacks are based on legitimate behaviors that were exploited in malicious strategies.

An attacker or a defective device could overwhelm, consciously or unconsciously, the

resources and/or the network until bringing down the system. Hence, we assume in the

attack descriptions that the malicious user has previously gained access to the system.

83

OneM2M Standard Security and Dataset Creation

3.2.1 Proposed Taxonomy for OneM2M Threats

OneM2M threats could be classified into four types as shown in Figure 3.5.

Figure 3.5: OneM2M threats taxonomy

• Flooding attacks are typically explicit attempts to disrupt legitimate users’ access

to services. It leads to services unavailability hence it costs time and data loss

as well as money to mitigate the attacks and restore the services. In critical IoT

systems, such as emergency fleet management (ambulance, police, etc.) or smart

traffic signal systems, failures or delays in information exchange may cause serious

problems. In oneM2M, we describe flooding attacks (Figure 3.6) as the submerge

of the service layer with the legitimate oneM2M CRUDN operations. It is about

bombarding a node with one or multiple types of operations. For example, a per-

son with malicious intent can manipulate the different devices of an IoT network

to create or retrieve a huge number of AE or Container resources in a target node

thus, a target will dedicate all its resources to respond to the fake operations in-

stead of real legitimate needs.

• Amplification attacks have the same goals as the flooding attacks. However, they

differ in terms of strategy. In flooding attacks we specify direct actions that will oc-

cur during the attack, although in the amplification attacks, we put in place simple

legitimate actions that will be later amplified to generate massive service opera-

tions. This could be based on amplification or reflection tactics. Let’s take the

example of "announceTo" mechanism in the oneM2M standard. An announced re-

source (let’s say AE1, we consider AE1 as a child resource of CSE1) [One18a]

84

OneM2M Standard Security and Dataset Creation

Figure 3.6: OneM2M flooding attack

is a representation (that we name (AEAnnc1)) of the resource (AE1) at a re-

mote CSE (that we name CSE2) that is linked to the original resource (CSE1).

AEAnnc1 maintains some of the characteristics of AE1. Hence, changes in these

AE1 characteristics will be transfered / notified to all the remote presentations of

AE1 which means to all the elements of the list in the "announceTo" (in our ex-

ample to AEAnnc1). Consequently, as represented in Figure 3.7, if we put a large

list in the "announceTo" and each element of the list will announce, in cascade, to

another list, this will amplify the traffic when changes will be made on the first

resource AE1.

• Protocol Exploit Attacks have a different strategy to consume resources. They ex-

ploit specific features or implementation bugs of the oneM2M protocol operations

to overwhelm and/or bring down the device. An example of protocol exploit is

the creation of loopholes/deadlocks in the notification system. It occurs when two

resources register to the changes of each other. Hence, if a resource A has changes,

a notification will be sent to resource B that will make changes as a result to the

notification received from A. Since B has been changed, a notification will be sent

85

OneM2M Standard Security and Dataset Creation

Figure 3.7: OneM2M amplification attack

to A to make new changes as well. Such a loop will consume resources in vain.

• Zero-day Attacks correspond to unknown or new abnormal behaviors which are

not previously seen or at least analyzed. This term is widely used in the security

community since it refers to unpredictable threats.

3.2.2 Attacks Implementation

In this part, we proposed examples of the implementation of each oneM2M attack cate-

gory presented previously. These examples were set up to create our oneM2M security

dataset, as well as to implement and test our IDS oneM2M solution proposal later. Re-

garding flooding attacks and amplification attacks, two parameters have been changed

over the executions to have different instances in each type: N_OP which corresponds

to the number of actions and N_TH which refers to the number of threads running the

attack. Each type of attacks was running in centralized and distributed environments.

Some of the attacks cause slowdown in the response to legitimate requests, others bring

the target down.

86

OneM2M Standard Security and Dataset Creation

3.2.2.1 Flooding Attacks

For this category of attack, we developed six types. The notation N_OP α N_TH stands

for the expression "N_OP times with N_TH threads".

• AE Flooding (AF): In this attack we retrieve an AE resource N_OP α N_TH.

• Containers Flooding (CsF): In this attack we retrieve all the Container resources

of a given AE N_OP α N_TH.

• Container Flooding (CF): In this attack we retrieve one Container resource of a

given AE N_OP α N_TH.

• ContentInstance Flooding (CIF): We retrieve one ContentInstance resource of a

given Container of a given AE N_OP α N_TH.

• Subscription Flooding (SF): In this attack we retrieve one Subscription resource

of a given Container of a given AE N_OP α N_TH.

• Various Flooding (VF): In this attack we retrieve various resources from a given

CSEBase N_OP α N_TH.

3.2.2.2 Amplification Attacks

For this category of attack, we need each time at least two AE resources under the same

CSEBase or in two different related CSE nodes (e.g. A and B). We developed three

types:

• Amplify One AE One Container (AOAOC): In this type, B will subscribe n times

to the same Container of A with N_TH threads. These subscriptions are possi-

ble since each Subscription has a different identifier. After that, we create N_OP

ContentInstance under the corresponding Container of A. Consequently, each new

creation of a ContentInstance will be notified to B. Since we have n subscriptions

for the same Container then, for each new ContentInstance creation, we have n *

N_TH generated notifications as shown in Figure 3.8.

87

OneM2M Standard Security and Dataset Creation

Figure 3.8: AOAOC attack

• Amplify One AE Multiple Containers (AOAMC): This type is similar to AOAOC but

concerns not only one Container but N_OP Containers.

• Amplify Discovery AE (ADA): This attack is also based on the same principle as

AOAOC, however it concerns all the contained AE under the same CSEBase re-

source as A. Thus B subscribes to all the Containers of all the AE resources at the

same level as A.

3.2.2.3 Protocol Exploit Attacks

For this category, we implemented a loophole attack that is based on the poa attribute.

We have an AE resource A with a poa value for example "http://foo:8181". A is regis-

tered under a CSEBase with the same value of poa as A ("http://foo:8181"). We have

also another AE resource named B (under the same CSEBase as A or in a remote CSE

nodes). A will subscribe to a Container of B. Hence, for each new value under this Con-

tainer, A will be notified thanks to the declared poa address. Since both the CSEBase

and the AE node A have the same poa, the notification will be received by the AE A that

will redirect it to the CSEBase and hence we create a loop (Figure 3.9).

88

OneM2M Standard Security and Dataset Creation

Figure 3.9: OneM2M loophole attack

3.3 OneM2M Dataset

After having analyzed the different threat scenarios against oneM2M standard, we

present in this section the state of the art of free datasets used for the IoT NIDS cre-

ation. In addition, as no datasets exist for the oneM2M standard, we detail our own

dataset creation.

3.3.1 State of the Art of Free Datasets

Free datasets can be used for NIDS implementation and/or validation. Unfortunately,

there are no datasets created specifically for IoT networks. Hence, two strategies are

possible: download an available dataset targeting traditional systems or deploy sniffing

software in networks.

The most widely adopted datasets for NIDS are KDD99, and NSL-KDD which is an im-

proved version of KDD99. Public datasets like PREDICT [pre], CAIDA [Ana], DEFCON

[def], ADFA IDS [noaa], KYOTO [STO+11] and ISCX 2012 [isc] attack datasets are

available for evaluation and testing. The latest are either composed of unlabeled data,

or are inaccessible from some countries or are specific domain data. Moreover, datasets

suffer from i) privacy issues; ii) the heavy inputs anonymization; and iii) the non reflec-

tion of current security attacks.

89

OneM2M Standard Security and Dataset Creation

• KDD99 [HB99] is a dataset used for detection of "bad" connections from the "good"

ones at the Third International Knowledge Discovery and Data Mining Tools Com-

petition [XL05] for building the robust NIDS. The dataset is the feature extracted

version of DARPA dataset [dar] (DARPA is a base raw dataset). KDD99 contains

records from military network environment with injected attacks which can be

categorized into: i) Denial of Service; ii) Remote to User; iii) User to Root; and

iv) Probing. KDD99 is based on 41 features for each connection along with the

class label using Bro-IDS tool (presented lately). The features are grouped into 4

types [HB99]:

– 1-9: Basic features of individual TCP connections.

– 10-22: Content features within a connection suggested by domain knowl-

edge.

– 23-31: Traffic features computed using a two-second time window.

– 32-42: Host features are designed to assess attacks which last for more than

two seconds.

KDD99 is popular and is the most used by the researchers for experimental anal-

ysis. Different works [CN12, KH05, SSJ14, AOF+10, NFP10, AAD10] were es-

tablished to reduce the number of features by selecting the most relevant ones

from the initial 41 features. However, many researches have reported dis-

advantages of KDD99 like [GBBK12], [VHS11]. Some of the important ones

are [ANMH16, MS15, MC03]:

– The probability distribution of the testing and training sets are different, be-

cause of adding new attack records in the testing set [MS15]. In other words,

KDD99 suffers from unbalanced classification methods. Balance between the

types of attacks and normal traffic is not maintained anymore.

– The dataset is out of date (1999).

90

OneM2M Standard Security and Dataset Creation

– There is evidence of simulation artifacts that could result in over-estimations

of anomaly detection performances.

• NSL-KDD [MS15, noa16] is the upgraded version of KDD99 to overcome its limita-

tions. First, duplicated records in the training and test sets are removed. Second,

there are a variety of records selected from the original KDD99 to achieve reliable

results from classifier systems. Third, the problem of unbalanced probability dis-

tribution is eliminated. The major problem that persists in this dataset is the lack

of modern low foot print attack scenarios.

• UNSW-NB15 [MS15] was created in 2015 by the Cyber Range Lab of the Aus-

tralian Centre for Cyber Security (ACCS) with IXIA PerfectStorm tool. Its goal is to

generate hybrid real modern normal activities and synthetic contemporary attack

behaviors. It is about two million and 540,044 records which are stored in four

csv files. Those records are generated from 100GB captured raw traffic with tcp-

dump tool [tcp17] (in pcap files). This dataset has nine types of attacks, namely,

Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic, Reconnaissance, Shellcode

and Worms. Fig. 3.10 illustrates steps to generate UNSW-NB15 dataset.

Figure 3.10: How to generate UNSW-NB15 dataset

• Sivanathan et al. IoT dataset [SSG+17, SHHS] addresses IoT device classification

based on network traffic characteristics. Authors instrument a smart environment

for 28 IoT devices like spanning cameras, lights, plugs, motion sensors, appliances

and health-monitors. Furthermore, they synthesized network traffic traces from

91

OneM2M Standard Security and Dataset Creation

their infrastructure for a period of six months released for research community.

Sivanathan et al. present valuable insights about the network traffic patterns via

statistical analysis using attributes such as activity cycles, port numbers, signaling

patterns and cipher suites.

• CICIDS database [fCC17] is one of the recent Intrusion Detection/Intrusion pre-

vention database released by Canadian Institute for Cyber-security, University of

New Brunswick to reflect latest threats resembling the real-world data. It was

built on the abstract behavior of 25 users based on the HTTP, HTTPS, FTP, SSH,

and email protocols. The dataset is analyzed with CICFlowMeter [HLDGMG17]

with labeled flows based on timestamp, initial and final IP, ports, protocols and

attacks. To generate the realistic traffic, authors proposed B-Profile [SHLG18] ap-

proach to outline the behavior on HTTP, HTTPS, FTP, SSH and e-mail protocols.

Authors implemented Brute force FTP, SSH Heartbleed and DDos attacks while

capturing the data. The evaluation framework [GSLG16] identified eleven impor-

tant features necessary to build a reliable benchmark dataset, unlike the existing

traditional IDS datasets.

• CSE-CIC-IDS2018 [noa18] database is a unique IDS dataset which has evolved to

replace the existing suboptimal datasets that limits IDS/NIDS experimental eval-

uations. To overcome the use of static and one-time datasets, CSE-CIC-IDS2018

is an anomaly based dynamically generated dataset consisting intrusion in net-

work traffic. Authors included seven attack scenarios including i) Brute-force; ii)

Heartbleed; iii) Botnet; iv) DoS; v) DDoS; vi) Web attacks; and vii) Local network

infiltration attacks. Attack infrastructure has 50 nodes and victim organization

has 5 departments with 30 servers and 420 hosts. Authors extracted 80 features

from network traffic and machine logs captured via CICFlowMeter-V3.

In the following, the presented free network datasets are discussed. As shown in the

comparison Table 3.1, KDD99 is the most popular network dataset. It has been used

92

OneM2M Standard Security and Dataset Creation

Datasets Advantages Drawbacks
KDD99
[HB99]

• KDD99 is popular and the most used.
• Labeled data.
• It is based on 41 features for each connection along

with the class label.
• Implements Denial of Service, Remote to User, User to

Root and Probing attacks.
• Provides network traffic (PCAP).

• KDD99 suffers from
unbalanced classification
methods.

• The dataset is out of
date.

• Not for IoT systems.

NSL-KDD
[noa16]

• It is a better version of KDD99.
• It overcomes KDD99 limitations.
• No duplicated records in the training and test sets.

• Lack of modern low foot
print attack scenarios.

• Not for IoT systems.
UNSW-
NB15
[MS15]

• It provides hybrid real modern normal activities and
synthetics contemporary attack behaviors.

• Provides network traffic (PCAP) and CSV files.
• It has nine types of attacks, namely, Fuzzers, Analy-

sis, Backdoors, DoS, Exploits, Generic, Reconnaissance,
Shellcode and Worms.

• It is more complex than
the KDD99 dataset due
to the similar behaviors
of the modern attack and
normal network traffic.

Sivanathan
et al.
Dataset
[SSG+17]

• Network traffic IoT dataset.
• It reflects real world IoT systems.
• Provides network traffic (PCAP) and CSV files.

• Unlabeled data.
• For IoT devices prolifera-

tion and traffic character-
izing.

• No attack data.
CICIDS
[fCC17]

• Labeled network flows.
• For machine and deep learning purpose.
• Provides network traffic (PCAP) and CSV files.
• Implements attacks such as Brute Force FTP, Brute

Force SSH, DoS, Heartbleed, Web Attack, Infiltration,
Botnet and DDoS.

• Not public.
• Not for IoT systems.

CSE-CIC-
IDS2018
[noa18]

• Labeled network flows.
• For machine and deep learning purpose.
• Provides network traffic (PCAP), CSV and log files.
• Implements Brute-force, Heartbleed, Botnet, DoS,

DDoS, Web attacks and Local network infiltration at-
tacks.

• Dynamically generated dataset.
• It is modifiable, extensible, and reproducible.

• Not public.
• Not for IoT systems.

Table 3.1: Comparison between free datasets

since 1999. Unfortunately, it is out of date. To overcome KDD99 limitations, NSL-KDD

was created. It has balanced data with no duplicate records. Since NSL-KDD lacks

modern attacks, UNSW-NB15 was proposed. It is a well reputed dataset with recent

attacks. Meanwhile, it is more complex than KDD99 in terms of similarity between

93

OneM2M Standard Security and Dataset Creation

the new attacks and the normal behaviors. As more recent network datasets, there

are i) Sivanathan et al. dataset; ii) CICIDS and iii) CSE-CIC-IDS2018. Sivanathan et

al. work is the only IoT network traffic dataset compared to the other presented ones.

However, it is designed for IoT devices proliferation and not for intrusion detection.

CICIDS and CSE-CIC-IDS2018 have labeled records but are not targeting IoT systems

security despite their up-to-date attack list.

3.3.2 OneM2M Dataset Creation

As discussed previously, no dataset exists for the oneM2M standard, hence we decided

to create our own dataset with respect to the taxonomy of oneM2M threats presented

in Section 3.2.

3.3.2.1 OneM2M Dataset Features: GFlows Abstraction

We start by analyzing the communication model of the oneM2M service layer to decide

about the features that will be stored for our dataset. OneM2M information exchange is

Figure 3.11: OneM2M flow

based on a pair of Request and Response messages referenced as a flow (Figure 3.11) in

the oneM2M specifications [One18a]. Requests from an originator to a receiver contain

mandatory and optional parameters depending on the requested operation and the in-

volved oneM2M tree resources. As we need to create a dataset that could be used by all

implementations of the oneM2M specifications, we need fixed characteristics to store.

Therefore, our dataset is built only on the basis of the following mandatory parameters

of the oneM2M messages:

94

OneM2M Standard Security and Dataset Creation

• requestIdentifier (rqi) is a string key that enables the correlation between a request

and its corresponding response.

• From (fr) is a string parameter that identifies the originator of the request. It is

needed for the receiver to verify the originator identity in terms of access privilege.

• To (to) refers to the identity of the receiver.

• Operation (op) integer parameter reflects the operation to be executed at the re-

ceiver: CREATE, RETRIEVE, UPDATE, DELETE and NOTIFY.

• responseStatusCode indicates the result status of the requested operation if it has

been successfully or unsuccessfully processed. For example 2000 corresponds to

OK status, 2001 refers to CREATED, 2002 is DELETED, etc. There is a large amount

of values of responseStatusCode that are specified in the oneM2M specifications

[One16].

In analogy with the network IDS [CMZ+19], we notice that considering only basic

features (only the mandatory attributes of each request / response) will not give a

global and detailed information on the threat in progress. Consequently, we introduce

a new abstraction of the oneM2M standard flows that we named GFlows for Generated

Flows. We built these GFlows on the messaging mechanism. GFlows will be the inputs to

our IDS. A GFlow encompasses multiple oneM2M original flows on the basis of the key

{from, to, op and responseStatusCode}. Such aggregation of flows makes the analyses

(presented in the rest of this thesis) lighter, which is important in the context of IoT.

Thus, for each n exchanged flows, a set of GFlows is generated. Besides the GFlow

key attributes, we generate the properties detailed in Table 3.2. To propose this flow

abstraction, we have tried to cover as many combinations and properties as we think

relevant to allow maximum threat detection. The final dataset considers all the GFlow

properties except for From and To to respect anonymity. So in total we ended up with

26 features: op and responseStatusCode from the mandatory parameters and the 24

95

OneM2M Standard Security and Dataset Creation

Property Name Type Description
counterKey Integer The number of request / response sharing the

same key in NB flows
isSameFromTo Boolean To check if (From) and (to) have the same val-

ues in the GFlows key
isFromRemote Boolean To check if the request is from a remote CSE
isToRemote Boolean To check if the request is to a remote CSE
fromResourceType Integer The type of (from) resource: (1-AE), (2-

Container), (3-ContentInstance), etc.
toResourceType Integer The type of (to) resource: (1-AE), (2-

Container), (3-ContentInstance), etc.
counterSameFromRequests Integer The number of GFlows sharing the same

(from) resource in NB flows
counterSameToResponses Integer The number of GFlows sharing the same (to)

resource in NB flows
counterSameTypeResponses Integer The number of GFlows having the same re-

sponseStatusCode type in NB flows
counterSameCategoryResponses Integer The number of GFlows having the same re-

sponseStatusCode category in NB flows
duration Long The duration of the registered GFlows
counterFlows Integer The ranking of the GFlows in NB flows
counterSameOperations Integer The number of GFlows sharing the same (op)

attribute in NB flows
counterSameFromTo Integer The number of GFlows sharing the same

(from-to) attribute in NB flows
counterSameFromOp Integer The number of GFlows sharing the same

(from-op) attribute in NB flows
counterSameFromResponseType Integer The number of GFlows sharing the same

(from-responseType) attribute in NB flows
counterSameFromResponseCategory Integer The number of GFlows sharing the same

(from-responseCategory) attribute in NB
flows

counterSameFromOperationResponseType Integer The number of GFlows sharing the same
(from-op-responseType) attribute in NB flows

counterSameFromOperationResponseCategory Integer The number of GFlows sharing the same
(from-op-responseCategory) attribute in NB
flows

counterSameToOperation Integer The number of GFlows sharing the same (to-
op) attribute in NB flows

counterSameToResponseType Integer The number of GFlows sharing the same (to-
responseType) attribute in NB flows

counterSameToResponseCategory Integer The number of GFlows sharing the same (to-
responseCategory) attribute in NB flows

counterOperationResponseType Integer The number of GFlows sharing the same (op-
responseType) attribute in NB flows

counterSameOperationResponseCategory Integer The number of GFlows sharing the same (op-
responseCategory) attribute in NB flows

Table 3.2: OneM2M GFlows properties

96

OneM2M Standard Security and Dataset Creation

Figure 3.12: OneM2M dataset

properties detailed in Table 3.2 plus the label which could be either "NORMAL" or the

exact name of the threat.

3.3.2.2 OneM2M Dataset Generation

In the rest of the thesis, we will concentrate mainly on oneM2M flooding and amplifica-

tion attacks (previously detailed). To generate the threats dataset that will be used later

in the IDS construction, we apply the different types of flooding and amplification at-

tacks on a Raspberry Pi 3 Model B (Quad Core 1.2GHz Broadcom BCM2837 64bit CPU

and 1GB RAM). We equipped the Raspberry Pi with a oneM2M instance to play the role

of an ASN. The used oneM2M implementation is the Codex Data Platform IoT initiated

in May 2017 by Atos Innovation Aquitaine Lab1. By running multiple attack instances

(launched from one or many computers/devices), we generate a dataset composed of

223 273 of GFlow inputs: 165 253 lines of threats and 58 020 of benign flows (Figure

3.12). We summarize the number of GFlow generated for each type of attack: 22 258

of AF, 18 867 of CsF, 13 489 of CF, 9 569 of CIF, 14 922 of SF, 25 356 of VF, 24 449

of AOAOC, 17 865 of AOAMC and 18 478 of ADA. A GFlow is tagged as an attack if it

causes more than 6 seconds of delay in the oneM2M response acquisition or if it causes

errors / shutdown of the oneM2M platform. Otherwise, it is labeled as normal.

1https://atos.net/

97

OneM2M Standard Security and Dataset Creation

Conclusion

IoT is increasingly widespread. Hence, industrials tend to put in place proprietary so-

lutions. OneM2M is an international standard created to ensure horizontal IoT cross-

industry interoperability. In this chapter, we start by presenting the oneM2M standard

architecture as well as the security mechanisms already introduced in the oneM2M

specifications. Moreover, we propose a threat taxonomy of the oneM2M standard and

then we define and implement the threats scenarios. We conclude this chapter by pre-

senting the state of the art of free datasets used for the creation of IDS and we detail

our dataset creation. To create our oneM2M dataset, we define an abstraction of the

oneM2M exchanged flows.

In the next chapter, we propose an intrusion detection and prevention system (IDPS)

to secure the IoT systems based on the oneM2M standard.

98

Chapter 4

An Intrusion Detection and Prevention

System for the Service Layer

Contents

4.1 OneM2M-IDPS Challenges and Aims 100

4.2 OneM2M-IDPS Strategy . 101

4.2.1 Data Acquisition and Features Extraction 102

4.2.2 Intrusion Detection . 109

4.2.3 Intrusion Prevention . 111

4.2.4 Continuous Learning . 117

Introduction

Due to the limitation of the security techniques presented in Section 3.1, in terms of

detection and prevention of the IoT systems threats, we decided to propose an IDPS

for the oneM2M service layer based on machine learning (oneM2M-IDPS). An IDPS

[CMZ+19] is a system which detects and responds immediately to potential threats as

soon as they are carried out. It is mainly composed of two phases: i) the detection phase

99

An Intrusion Detection and Prevention System for the Service Layer

and ii) the response phase. We present in this chapter the different challenges respected

and guaranteed with our IDPS proposal, then we point out its main goals. Moreover,

we detail its strategy as well as the architecture and the design of each component /

module of the implemented oneM2M-IDPS.

Before diving into this chapter, it is important to insist on our definition of the term

"threat" as being either a security attack or abnormal/anomalous behavior that could

lead to the bug or shutdown of the IoT system. Thus, for the rest of the dissertation, the

words "threat", "attack", "abnormal behavior" and "anomaly" are used interchangeably

to express any behavior that could affect the IoT system.

4.1 OneM2M-IDPS Challenges and Aims

Since we are in the context of security and IoT which are challenging domains as pre-

sented in Section 1.1.1.2.2, many characteristics need to be taken into consideration in

order to build an efficient, effective and resilient IDPS system. We establish our proposal

on the following features and goals:

• Interoperability: One of the strengths of our proposal is its interoperability with

the other platforms implementing the oneM2M standard. In other words, any new

device that wishes to join an existing IoT system or even any new platform using

oneM2M that wishes to communicate with the already secured platform can easily

be secured with our oneM2M-IDPS.

• Autonomy, scalability and resource constraints respect: We combine the fog and

the cloud computing paradigms in our proposal (Section 4.2.2). Fog nodes are

autonomous, scalable and have fast reaction in terms of detection and prevention.

In other words, each device protects itself independently from the rest of the sys-

tem. Moreover, the IDPS respects resource constraints and therefore deals with

resource-consuming steps in the cloud. Consequently , the oneM2M-IDPS intel-

ligence is distributed between the fog and the cloud. The fog is for autonomous

100

An Intrusion Detection and Prevention System for the Service Layer

detection and prevention and the cloud is for retraining and continuous learning.

• Modularity in design: We decide to subdivide our IDPS into separate and inde-

pendent modules in order to ensure better organization, separate functionalities

and easier maintenance (modifications, evolutions, replacement, etc.).

• Adaptability and extensibility: It is about having an adaptable and easily extensi-

ble intrusion detection and prevention. The oneM2M-IDPS detection and preven-

tion capabilities should not be frozen on known threats. First, the IoT threats are

whether security attacks or abnormal behaviors that could lead to the IoT system

bug or shutdown. Second, the solution should not only protect the system from

already known oneM2M threats, but also be able to learn unknown threats over

time. In other words, the system needs to be able to self-learn and adapt itself to

new threats and new configurations of the IoT system. The IDPS is destined to

supervise the environment and adjust itself according to every change.

• Active and real-time reaction: The prevention strategy against the detected threats

should be through immediate and appropriate actions. It needs to be an active,

real time prevention to assure the oneM2M services availability.

4.2 OneM2M-IDPS Strategy

Our oneM2M-IDPS strategy detects and responds immediately to potential threats as

soon as they are carried out. It has the ability of the threat controlling in real time. It is

composed of four main modules as shown in Figure 4.1:

• the data acquisition and features extraction module where the oneM2M messages

are prepared to be injected to the IDS module,

• the IDS module to detect the threats,

• the IPS to prevent the threats from damaging the system,

101

An Intrusion Detection and Prevention System for the Service Layer

Figure 4.1: OneM2M IDPS strategy

• the continuous learning module to guarantee the update of the IDPS against the

new threats.

We detail each module in the rest of this section.

4.2.1 Data Acquisition and Features Extraction

This module captures the oneM2M messages to be analyzed, processed and enriched.

It sniffs the oneM2M flows composed of a pair of Request and Response messages as

mentioned in Section 3.3. Then, features are extracted and processed to construct the

GFlows that are fed to the intrusion detection module.

4.2.1.1 OneM2M Messages Sniffing

To sniff the oneM2M flows, there are two possibilities. The first uses existing network

sniffing tools and the second is built on the oneM2M standard implementation platform.

4.2.1.1.1 Free, Open Source Network Sniffers A sniffing tool [HBB+14] aims to

monitor the network transit traffic from source to destination. It can be used to capture,

examine, analyze and visualize packets or frames. The idea behind such tool in the

oneM2M-IDPS is to extract the oneM2M flows from the sniffed network packets. Since

many sniffers exist in the state of the art, we choose to detail and compare the free,

open source ones.

• Tcpdump [tcp17, HBB+14] is the most popular, powerful and widely used packet

analyzer. It is a TCP/IP command-line tool which enables capturing, analyzing,

102

An Intrusion Detection and Prevention System for the Service Layer

saving and viewing packet data. Van Jacobson, Craig Leres, and Steven McCan-

neIt develop Tcpdump at the Lawrence Berkeley Laboratory, UC, Berkeley. Tcp-

dump captures live packet data from a network interface. An interesting feature

in Tcpdump is the possibility to save the captured packets in a pcap file for a fur-

ther analysis. Tcpdump uses the libpcap library to capture packets. Libpcap, is

frequently used by other capture programs. Tcpdump tool is available for most

of the Linux/Unix based operating systems. The most popular open source GUI

(Graphical User Interface) based on Tcpdump is Wireshark (third-party software)

which reads Tcpdump pcap files enabling an easy-to-use, user friendly interface.

• Wireshark [noaf, HBB+14, AP12] is a popular, free and open source packet ana-

lyzer, under the GNU license. It is used for network sniffing and network analysis.

It captures live packet data from a network interface. Wireshark runs on Unix-like

operating systems, Solaris, and Microsoft Windows. It uses libpcap as a library to

capture and filter packets; then displays records with its GUI. This tool enables

reading Tcpdump outputs. Wireshark decodes a large panel of protocols (> 400).

It supports preliminary inspection of attacks in the network. Its command line

version is "tshark".

• Ettercap [noac, HBB+14] is a multi-platform network sniffer. It is "a multipurpose

sniffer/interceptor/logger for switched LANs" [noac] written by Alberto Ornaghi

and Marco Valleri. Ettercap is known for its powerful ability in launching several

different types of man-in-the-middle attacks. In addition, it provides users with

many separate classic attacks and reconnaissance techniques within its interface.

It sniffs live connections and filters packets as well as many other features in both

active or passive way.

• Argus [noa17a, HBB+14] is a tool to capture and analyze network flow data. It

runs on several OS like like Linux and Windows. It focuses on developing network

activity audit strategies. Moreover, Argus treats live and captured traffic data to

103

An Intrusion Detection and Prevention System for the Service Layer

generate status reports / audits on detected flows with a semantic analysis. It

processes libpcap and Endaces’s ERF packet data to enable the user having an idea

about what is going on a network. This tool provides information on almost all

packet parameters like duration, rate, load, retransmission, delays, etc.

• EtherApe [noab, HBB+14] authored by Juan Toledo and Riccardo Ghetta in 2000

is a graphical packet sniffer and network monitoring tool. It supports only Unix

platforms. EtherApe aims to represent packets, connections and data-flows visually

with color coded hosts and links for the protocols. The tool also facilitates network

troubleshooting. Furthermore, it supports real-time display of network packets via

standard formats. Traffic may be consulted on one’s own network, end-to-end (IP)

or port-to-port (TCP).

In the following, the different free and open-source network sniffers are compared

in Table 4.1. As it can be noticed, Tcpdump is the most popular network sniffer (all

the other sniffers try to support its outputs). It is a long life product often updated

and extended with multiple features. It is well documented and enjoys community

support. However, Tcpdump is primarily developed for data capture unlike other tools

equipped for network analysis. It is a command line tool with no real GUI. While the

strength of Wireshark and EtherApe is in their graphical features, both can display real-

time and captured network files. Wireshark is better known than EtherApe. Besides,

Wireshark is a cross platform sniffer which is not the case for EtherApe supporting only

Unix platform. Moreover, unlike EtherApe, Wireshark takes into account both header

and payload details. About Argus, it is more a tool to audit network activities. It decodes

several protocols for reports and audits. Regarding Ettercap, apart from network data

in sniffer, interceptor and logger mode, it can manipulates the network and launch

different MITM attacks. It is able to collect passwords, kill connections, inject packets

and commands in active connections. Hence, it can be considered more of a hacker tool

than a network sniffer.

As a first step in our work, we used Wireshark as a convenient, easy-to-use tool to get

104

An Intrusion Detection and Prevention System for the Service Layer

a graphical overview. Then, we switched to Tcpdump since we do not need a graphical

user interface for the final use.

Network
sniffers

Advantages Drawbacks

Tcpdump
[FK05,
AP12,
HBB+14]

• Long product life with different updates and plenty of
features.

• Well documented with a good community support.
• Easy remote access with Telnet connection.
• Cross-platform (has even been ported to Windows too).
• Less intrusive compared to Wireshark.
• Captures live packet data from a network interface.
• Saves captured packet data.
• Lightweight in terms of installation.

• Lacks critical analysis.
• Discards invalid packets (Not

helpful for detecting broken
packets) .

• No real GUI or administrative
console.

Wireshark
[FK05,
AP12,
HBB+14]

• Well documented with a good community support.
• Cross-platform.
• Supports large number of protocols.
• Graphical tool.
• Captures live packet data from a network interface.
• Saves and open packet data files.
• Provides detailed protocol information.

• No abnormal behavior notifica-
tions (Not an IDS).

• Gathers information but cannot
manipulate the network.

• Resource consuming in terms of
installation.

Ettercap
[noac,
HBB+14]

• Cross-platform.
• Can be used for LAN hacking techniques.
• Decodes several protocols.
• Collects passwords for multiple applications
• Manipulates the network by killing connections, by

injecting packets and commands into active connec-
tion(s).

• Extensible with additional plug-ins.

• Sniffing is a secondary feature.
• Can be used as a hacker tool.
• Can be detected by other net-

work tools (for example by Et-
tercap itself).

Argus
[noa17a,
HBB+14]

• Cross-platform.
• Decodes several protocols.
• Generates reports and audits about the network.
• Native file system as well as MySQL support.
• Efficient in large amount of network traffic analyzing.

• Not too obvious to master.

EtherApe
[noab,
HBB+14]

• Displays graphics for network activity with a color
coded protocols mode.

• Hosts and links change in size with traffic.
• Can filter packets.
• Supports multiple frames and packet types.
• Supports file and real-time network traffic.
• Good reputation among the system administrator com-

munity.

• Supports only Unix OS.
• No command line version.
• Captures only packet headers.

Table 4.1: Comparison between free, open-source network sniffers

105

An Intrusion Detection and Prevention System for the Service Layer

4.2.1.1.2 OneM2M platform-based Sniffer The second solution for oneM2M mes-

sages sniffing is based on the standard implementation platform. For our case, we use

the Codex Data Platform IoT initiated in May 2017 by Atos Innovation Aquitaine Lab.

This implementation of the oneM2M standard is based on OSGi1 which is a framework

that allows to isolate each component of a Java application and to manage its lifecycle

independently: installation, start-up, shutdown, update and uninstallation. Each com-

ponent is called a bundle. To sniff the exchanged flows, we used the publish/subscribe

communication paradigm [EFGK03]. It is a messaging pattern that connects the produc-

ers of an information/event called publishers with the consumers of this same informa-

tion called subscribers. In other words, the producers publish messages asynchronously

through a communication channel called broker (previously set up for that purpose) and

the consumers receive messages by listening synchronously to that channel. Publishers

do not program the messages to be sent directly to specific subscribers, but instead cat-

egorize published messages into classes without knowledge of which subscribers, if any,

there may be. Similarly, subscribers express interest in one or more classes and only

receive messages that are of interest, without knowledge of which publishers, if any,

there are.

To put in place this paradigm, we used the Java Message Service (JMS) API [Ora]

which is a Java message-oriented middleware API that handles the producer–consumer

problem. So we started by preparing an ActiveMQTopic [Fou] as a message broker

(a topic unlike a queue allows the use of many subscribers to receive a copy of the

message). Then, we modified the core bundle of the platform to publish the primitive

requests/responses in transit. And we implemented a bundle for data acquisition and

features extraction as a consumer. The architecture of this component is detailed in Fig-

ure 4.2 It is true that this solution requires the modification of the oneM2M platform to

integrate the sniffing process, but it is easy to implement for any oneM2M platform (any

1The OSGi technology [All] facilitates the componentization of software modules and applications
and assures remote management and interoperability of applications and services over a broad variety of
devices.

106

An Intrusion Detection and Prevention System for the Service Layer

Figure 4.2: Architecture oneM2M platform-based sniffer

implementation of the oneM2M standard). The use of the publish/subscribe paradigm

provides greater network scalability and a more dynamic network topology. Hence, we

use this platform-based sniffer for the rest of the works and experiences.

4.2.1.2 OneM2M Features Extraction

The goal of this component is the extraction of the necessary information from the

primitive requests/responses and the generation of the features composing the GFlow.

As presented in Section 3.3.2.1, GFlow is a new abstraction for the oneM2M mes-

sages introduced in [CMZS19] based on the mandatory parameters of the primitive

requests/responses. A GFlow encompasses multiple oneM2M flows on the basis of a

key from, to, op and responseStatusCode. For each n exchanged flows, a set of GFlows

is generated. n is a dynamic parameter that needs to be fixed by the user. A GFlow

is composed of 2 properties from the key which are op and responseStatusCode and

24 generated features (such as flags and counters) as presented in Table 3.2. We do

not base our final GFlow properties on the from and to for purpose of respect of the

anonymity of the IoT devices’ identities. Hence, even if a malicious person try to hack

or sniff these GFlows, no identity is revealed.

As explained before, we implement a bundle that will subscribe to the exchanged

primitive requests/responses, extract the key properties and generate the 26 features of

the GFlow.

We summarize the workflow of the oneM2M features extraction module in Figure

4.3. For the rest of the chapter, we use oneM2MFlowsBroker as the name of our bro-

107

An Intrusion Detection and Prevention System for the Service Layer

Figure 4.3: Workflow of the oneM2M features extraction module

108

An Intrusion Detection and Prevention System for the Service Layer

ker. counterFlows reflects the number of valid exchanged flows, knowing that a flow is

considered as valid when request and response are not null and that the keys from, to,

op and responseStatusCode are not null, as well. The flowCacheMap is the Java map

where we aggregate the GFlows and store the different features. We start with an empty

oneM2MFlowsBroker. As soon as a new exchange of request/response flow takes place,

we verify if the counterFlows has reached n. If it is the case, we remove from and to and

send the GFlow to the IDS module. At the same time, we initialize the flowCacheMap

and the counterFlows. If counterFlows has not yet reached n, then we increment it by 1.

If the extracted key exists already in the flowCacheMap, we just update it’s properties. If

it does not exist, then we create a new GFlow with its key and its properties and finally

add it to the flowCacheMap.

4.2.2 Intrusion Detection

The data acquisition and the features extraction phase has generated a list of GFlows

which is the input to the IDS module. In order to have an efficient detection, we treat

the GFlows in a "last in first out" (LIFO) order (Figure 4.4). In other words, we start

by analyzing the last captured GFlow to quickly detect the threat and to get a real-time

view of what’s going on. All the GFlows will be analyzed in the end but with a notion

of priority for the most recent exchanged messages. The processing of all GFlows is

important in order to have a complete trace of the devices status over time.

After each analysis of a GFlow, the state "NORMAL", "UNKNOWN THREAT" or the

exact type of the threat, is sent to the cloud in a Json format. The message contains

the device identifier, the message identifier, the GFlow timestamp, the state as well

as a description if needed. The cloud receives the state messages from the different

devices as shown in Figure 4.4 and displays, thanks to the Codex Data Platform IoT, an

overview of the devices in our IoT system, their current state as well as the history of

their change of state. All these information are stored in the cloud for two main reasons.

First, because we are in the context of resource-constrained devices, so we do not want

109

An Intrusion Detection and Prevention System for the Service Layer

Figure 4.4: Fog to cloud state message

to overwhelm them. Second, to prevent their theft or deletion in case the device is

infected or turned off.

The IDS module is built on a fog-to-things architecture where we push the intel-

ligence and the processing logic down near to data sensors. Fog computing concept

was first introduced by Cisco [Cis12] to extend cloud computing at the network layer.

The fog layer is between the IoT sensors and the cloud. Fog computing places the in-

telligent processing and the computing power in the local area network level of the

network architecture which means in hubs, routers or gateways (fog nodes). Conse-

quently, building our IDS with a fog strategy guarantees the autonomy of the devices in

their security with low latency. Given the effectiveness of machine learning algorithms

for intrusion detection in general and zero-day attacks in particular compared to the

traditional systems [CMZ+19], we have chosen to rely on them.

110

An Intrusion Detection and Prevention System for the Service Layer

Therefore, in order to ensure a light detection given the resource constraints of

the IoT devices, we have divided the detection into three levels of ML. As shown in

Figure 4.5, a GFlow is first analyzed in a binary classification. It is either a benign

input or a threat. If it is a benign GFlow, no action is taken. However, if it is a threat,

further analysis is needed. By abandoning the in-depth analysis of normal flows as soon

as possible, overloading and unnecessary consumption of resources is avoided. If the

GFlow was identified as a threat to the IoT system, the GFlow needs to be analyzed

more deeply to identify the exact type of the threat. It is where the second and third

levels of detection come in. The GFlow can be classified as one of the main classes

of oneM2M attacks (oneM2M flooding, oneM2M amplification, etc.). Otherwise, this

GFlow is considered as a new threat that will be analyzed and added to the threats

database in the next step of the IDPS flow. Finally, if the GFlow is classified as oneM2M

flooding or amplification, further classification needs to be carried out by the third

level to identify the exact type of the attack. This detailed classification allows the

identification of the subclass of the threat in addition to its main family.

Such a fog three-level detection allows on the one hand the autonomy and the fast

response in order to reduce the potential damage a threat can cause. On the other hand,

it allows stopping the analysis as soon as possible, especially for benign inputs, which

represents an interesting strategy for a better resource consumption in the context of

IoT. The choice of the ML algorithms for the three levels as well as details about their

deployment in the IoT system will be the main subject of the next Chapter 5.

4.2.3 Intrusion Prevention

This module allows to warn the security administrator when an intrusion is detected and

to apply the appropriate countermeasures in order to protect the system. The ultimate

goal is to prevent infection of targeted devices and to avoid the corruption of the entire

system caused by security attacks or abnormal behaviour. We detail in this section the

prevention workflow as well as the defensive actions against the known threats.

111

An Intrusion Detection and Prevention System for the Service Layer

Figure 4.5: Flow chart detection

4.2.3.1 Prevention Workflow

This prevention phase consists of two types of response depending on the detected

threat: passive prevention and active prevention. As soon as a threat is detected at the

first ML detection level (locally in the fog node), an early warning is sent to the security

administrator as shown in the prevention workflow in Figure 4.6. This first alert warns

the administrator about an in-progress threat against the concerned device. The threat

alert is sent as soon as possible so that the operating environment can be prepared in

advance in case of a serious matter. Once the second ML level detection is complete and

the threat is identified as a known one, the device gets the exact type of threat from

the third ML level and autonomously apply the already associated security action. The

prevention actions (of the threats already taken into consideration by the ML models)

are stored in the fog. A new status alert will be sent to the administrator to inform

them of the current status of the device. These first steps are part of the passive phase

that does not require human intervention. The IoT system is capable of protecting itself

autonomously against the already known threats.

If the second ML level tagged the GFlow as unknown, the active prevention phase

starts. For this phase, we need the threats database which contains the different GFlows

112

An Intrusion Detection and Prevention System for the Service Layer

that were identified previously as unknown and had not yet been processed by the

continuous learning module. They can be already annotated by the administrator. In

this case, the threats name is updated. If the administrator had also defined a security

action for this threat, the table associating threat name to action will be also updated.

This database is stored in the cloud to avoid the memory consumption of the fog layer.

It is also shared for the entire IoT system.

The fog node verifies if the GFlow exists in the threats database. If it is annotated

then it verifies if there is an associated action. In this case, the action is applied and a

status alert is raised as explained in Figure 4.5. If no annotation is provided then an

annotation alert is raised and if it is the same for the prevention action then it is the

action alert that is sent to the security administrator.

In case the unknown GFlow does not exist in the database, it will be added and an

annotation alert is triggered to capture the attention of the IoT human operator for an

urgent intervention. The annotation procedure of the GFlow as well as the definition

of the associated action need to be performed. The security administrator conducts his

inspection about the suspicious GFlow by examining in detail the logs as well as the

various provided indicators. The GFlow is enriched, on the one hand, by the source

and destination addresses as well as the timestamp of the incident. On the other hand,

data related to the device resource consumption / use are displayed in the Codex Data

Platform IoT such as the disk, the memory, the network, the processes, the processor

and the usb ports. The annotation is divided into families of threats and its sub-types

such as flooding and amplification and their sub-types. The threat family must first be

specified. If there are several threat types in the same family, then the exact type must

be mentioned. Once the annotation is done and the prevention is defined, the action

will be applied and the database will be updated.

Therefore, if the GFlow is unknown and no action is taken after five minutes, the

infected device will be isolated from the network in order to avoid the whole system

infection.

113

An Intrusion Detection and Prevention System for the Service Layer

Figure 4.6: Flow chart prevention

4.2.3.2 Prevention Actions

In order to protect the IoT system against the already known threats (flooding and am-

plification), we use the ACP tool which is a security mechanism that regulates services

and data access authorizations for already authenticated entities (Section 3.1.2). As pre-

sented in Section 3.1.1, the ACPs are a set of access control rules defining which entities

(defined as accessControlOriginators) have the privilege to perform certain operations

(defined as accessContolOperations) within specified contexts (defined as accessCon-

trolContexts) and are used by the CSEs in making access decision to specific resources.

An ACP resource is composed of two main fields namely privileges and selfPrivileges. The

field privileges control just the permissions of one resource over another with a list of

access control rules. Similarly, the selfPrivileges are included in the ACP resource, but

the rules present are only applied to the resource itself (the ACP itself). A rule consists

of:

• a list of resources for which the rule applies: accessControlOriginators (O),

• and authorized operations : accessContolOperations (Op).

The value to be applied for the permitted operations is the sum of the corresponding

values presented in Table 4.2. For example, if the ACP value is 20 then the authorized

operations are updating resources and receiving notifications since 20=16+4.

114

An Intrusion Detection and Prevention System for the Service Layer

Value Operation
1 Create
2 Retrieve
4 Update
8 Delete
16 Notify
32 Discover

Table 4.2: Possible operations in an ACP

In the rest of this section, we define the prevention actions against the oneM2M

flooding and amplification threats detailed in Section 3.2.2. The general idea is to de-

fine (or modify) an ACP for the threatened resource R against the originator O of the

threat in order to prevent misused operations Op from compromising the target device.

Since an ACP can be defined mainly for a CSEBase resource, an AE or a RemoteCSE,

the resources Container, ContentInstance and Subscription inherit the ACP of their par-

ent/ancestor resource.

We make the following assumptions for the remainder of this section:

• the author of the threat O does not have the rights to create, update or delete the

selfPrivileges of the ACP in R if it exists,

• R itself has full rights on the selfPrivileges of the ACP if it exists,

• the proposed preventive actions are carried out by R itself.

For each threat, we need first to verify if there is an ACP that is already defined

for O in R as detailed in Figure 4.7. If it does not exist, then we create a new ACP

with 0 for both selfPrivileges and privileges for O in R to block all operations that O is

trying to process. If an ACP is already defined, then we start by blocking all actions on

selfPrivileges. After that, we verify if the threatening Op is allowed for O in R. If yes, we

update the ACP with the old value minus the value of Op. We do not update the ACP

with 0 for this exact case to guarantee the continuity of the rest of the services between

O and R. However, if we find that Op is already not allowed, this means that there is an

115

An Intrusion Detection and Prevention System for the Service Layer

Figure 4.7: Prevention action workflow

abnormal situation since the exact Op is the one who threatened R. Hence, we update

priviledges with 0 for O in R to block all services for this suspicious situation.

In the following, we examine flooding and amplification cases one by one to demon-

strate the exact actions (summary in Table 4.3). We consider that there is already a

defined ACP with the operations at risk that are allowed (which is the most common

case). The core of AF, CF, CIF and SF attacks is the excessive retrieving of an AE re-

source A or its children resources. Hence, the Op that must be blocked is the retrieve.

So we need to subtract 2 from the original ACP value for O in A (since the Container,

ContentInstance and Subscription resources inherit the ACP of their parent). In CsF,

unlike the latter, it is about retrieving all the Container resources of an AE. To do that,

it is the discovery operation that is used and not the retrieve so we need to subtract

32 from the original Op. VF is about retrieving various resources (with retrieve or dis-

covery operations) from a given CSEBase. Therefore, we subtract 34 to block both the

retrieve (2) and discovery (32) for the CSEBase resource. The same action needs to

be processed for children if they have their own ACP. If they do not, they will inherit

those of the CSEBase. Regarding the amplification threats, they involve two resources

A and B to set up the attacks. In AOAOC, B will subscribe multiple times to the same

116

An Intrusion Detection and Prevention System for the Service Layer

Container of A. Each time a new ContentInstance is created under A, B will be notified.

To stop this threat, the creation of subscriptions needs to be blocked for B (so minus

1) and both notification and creation mechanisms need to be denied for A (minus 17

for the ACP of A). Same for AOAMC expect that we need to block discovery also for A

since B will discover all the Container resources of A in order to subscribe to them at

the beginning (so in total minus 49). ADA has the same principle as AOAMC however, it

concerns all the contained AE under the same CSEBase resource as A. Thus B subscribes

to all the containers of all the AE resources at the same level as A. Consequently, the

minus 49 should be applied to both the CSEBase of A and all the AE resources at the

same level as A.

Threat
Name

Op to block for O in A A Resource Type Op to block for O in B B Resource Type

AF Retrieve (2) AE — —
CsF Discover (32) AE — —
CF Retrieve (2) AE — —
CIF Retrieve (2) AE — —
SF Retrieve (2) AE — —
VF Retrieve & Discover

(34)
CSEBase and its
AE children

— —

AOAOC Create & Notify (17) AE Create (1) AE
AOAMC Create & Notify & Dis-

cover (49)
AE Create (1) AE

ADA Create & Notify & Dis-
cover (49)

CSEBase and its
AE children

Create (1) AE

Table 4.3: Prevention actions for flooding and amplification

4.2.4 Continuous Learning

Threats against IoT evolve day by day into new variations (for the already known

threats) as well as into new types that are completely different. As a result, intrusion

detection models and prevention actions need to be updated frequently and smoothly

on an automatic basis. This requirement is generally forgotten or neglected in the state

of the art. The focus is more on the efficiency of detection than on the evolution and

117

An Intrusion Detection and Prevention System for the Service Layer

adaptation of the system over time. It is true that machine learning techniques have

the generalization power to detect threats similar to those already learned. However, it

is less effective against significant changes. Consequently, we decided to add a module

to our IDPS strategy to allow the system to autonomously learn about new threats and

continuously update itself. This module uses the human annotation of the IPS phase to

update the ML models of the different levels of the IDS module. We distinguish different

cases where the ML models need to be updated. Depending on the case, the concerned

ML level that requires updates differs. Before detailing the update cases, it is important

to mention that there are two types of updates:

1. re-training or extending an existing ML model to take into account new behaviors

/ inputs (the new model will extend or replace the old one),

2. training a new model, previously non-existent, to have a new type of classification

(the new model will be added next to the old ones).

Both the retraining and the training of a new model are carried out in the cloud (us-

ing threats database) to avoid the exhaustion of the devices resources. Once the models

are ready, they are automatically injected in the corresponding devices (the size of the

models will be studied in the next chapter). It is important to specify that before any

ML training, the continuous learning module checks whether the data is sufficient and

balanced between the different classes to be learned since imbalanced data degrades

efficiency [Kra16]. Once a GFlow of the threats database has been considered in the

models training, it will be deleted from the threats database and inserted in the learn-

ing database which is the one storing all the data used for training the models. This

module will be activated in the following cases;

• When a new family of threats has been introduced by the security administrator

while annotating the unknown GFlows, it is the second ML level that needs to

be retrained or extended to take this new family of threats into consideration.

Consequently, the old model that was able to differentiate only between unknown

118

An Intrusion Detection and Prevention System for the Service Layer

Figure 4.8: Continuous learning of families of threats

threats, flooding and amplification, will be able to detect also the new family

as shown in Figure 4.8 with the dashed shapes. This update will be triggered

automatically with no human intervention.

• When different types of threats emerge within the same family, this time it is the

third level of ML that needs to be expanded with a new model that will classify

these different types of threats. So like the sub-types of flooding and amplification

in the third level, we will have a new model that will differentiate the sub-types of

an other family as presented in Figure 4.9 with the dashed shapes. This case also

will be initiated automatically with no human intervention.

• When the definition of normal GFlow changes, it is the first level of detection that

needs to be updated. There are two possible cases:

– a GFlow that was detected as threat in the first ML level, was annotated as

normal by the security administrator. In this case, the first ML level needs to

be automatically retrained to improve its efficiency.

– the administrator has made changes in the parameters of the device which

119

An Intrusion Detection and Prevention System for the Service Layer

Figure 4.9: Continuous learning of new threat types under the same family

causes the modification of the definition of normal GFlow. Here the model

needs to learn the new normal behavior. This case is launched by the admin-

istrator and not automatically by the system.

• When the whole detection system starts to raise an important number of false

alarms or miss some threats, one or multiple ML detection levels could be re-

trained. It is the choice of the security administrator to choose and retrain man-

ually one or more models. Our IDPS has a graphical interface where the admin-

istrator can verify the state of the devices and choose the ML models to retrain

and inject in the IoT devices. Such a mechanism is guaranteed by the device man-

agement module offered by Codex Data Platform IoT. It is based on Open Mobile

Alliance Lightweight M2M [DB15] (OMA LwM2M) that provides self-management

of the M2M device configurations.

Prevention actions (used by the prevention module) are first stored in the cloud

when the administrator defines them. Once new threats are handled by the continuous

120

An Intrusion Detection and Prevention System for the Service Layer

learning module (used in the models training), the list of associated actions is copied

from the cloud to the fog nodes to allow the devices to react autonomously.

To conclude, the proposed approach continuously integrates knowledge of newly

discovered threats as well as changes, evolutions and new configurations into the basic

behavior of the IoT system.

Conclusion

In this chapter we have presented the different challenges and goals of our IDPS pro-

posal, namely interoperability, autonomy, scalability and resource constraints respect,

modularity in design, adaptability and extensibility and finally the active and real-time

reaction. Furthermore, we explained our strategy and detailed each module of our

IDPS. We revealed the two possible ways to acquire oneM2M data after having pre-

sented the state of the art of the existing open source tools. We detailed the feature

extraction approach. Moreover, we specify the detection methodology and the different

steps and principles. Then, we described in details the prevention procedure. Finally,

we presented the idea of continuous learning that characterizes our IDPS. The next

chapter will concentrate on the experimentation of machine learning algorithms in the

intrusion detection module.

121

Chapter 5

Machine Learning and Deep Learning

for OneM2M Intrusion Detection

Contents

5.1 Learning Techniques Adoption and Metrics 124

5.1.1 ML Adoption . 124

5.1.2 ML Metrics and Experimental Environment 125

5.2 Experimentation of Supervised Learning Algorithms for Intrusion

Detection in OneM2M . 127

5.2.1 Supervised ML Detections . 128

5.2.2 Effect of Dataset Size on Detection Results 135

5.3 One-Class Classification Approach . 138

5.3.1 One-Class Methods . 139

5.3.2 OC-SVM . 140

5.3.3 AEnc, SAE and VAE . 140

122

Machine Learning and Deep Learning for OneM2M Intrusion Detection

Introduction

In the previous chapter, we detailed the strategy of our oneM2M-IDPS. It starts by col-

lecting and analyzing the exchanged messages in order to generate the needed ab-

straction (GFlow). Second, it detects and classifies threats on three different levels. It

responds immediately to potential threats with appropriate actions and finally contin-

uously learns new behaviors in order to be up to date. We concentrate in this chapter

on the detection module (introduced in Section 4.2.2) with its three Machine Learning

(ML) levels. We experiment with different ML and DL algorithms for each detection

level in order to choose the most appropriate and efficient ones. We start this chapter

by explaining our choice to adopt ML and Deep Learning (DL) techniques for the detec-

tion levels. Then, we present the metrics we relied on to evaluate the effectiveness of

each algorithm in our oneM2M intrusion detection context, as well as the experimental

environment. Furthermore, we concentrate on each detection level experiments; we

introduce the used ML and DL algorithms (definitions, tools and frameworks), display

the results and compare them with each other to finally choose the most appropriate

one for each detection level. In addition, we are conducting some experiments on the

effect of training data size and balance on detection results. In the last section of this

chapter, we examine the one-class classification approach for both the first and second

ML detection levels. For the first level which is the most crucial one that will affect

the overall oneM2M-IDPS performance, such an approach highlights the detection of

any behaviour different from normal (known for anomaly detection). For the second

level, the one-class classification approach will be used to enable the unknown threats

detection (called novelty detection).

123

Machine Learning and Deep Learning for OneM2M Intrusion Detection

5.1 Learning Techniques Adoption and Metrics

As presented in Section 2.2.1, there are mainly three types of ML algorithms:

• Supervised learning is based on learning from labeled training data.

• Unsupervised learning is based on clustering the input data into classes on the

basis of their statistical properties. It uses unlabeled data.

• Semi-supervised learning is a combination of supervised and unsupervised ma-

chine learning methods. Thus, training data includes both labeled and unlabeled

data.

5.1.1 ML Adoption

Researchers are putting more and more energy in exploiting ML algorithms in IDS for

many reasons [CMZ+19]:

• Unknown/zero day attacks bypass traditional signature-based IDS; whereas su-

pervised machine learning algorithms have an interesting potential in detecting

new attacks.

• Traditional IDSs suffer from high false recognition rate which can be reduced with

machine learning techniques. Compared to Signature/Non-Signature IDS, an ML

equipped IDS employs statistical, genetic and heuristics or a combination of them

to disseminate complex attack pattern to improve the detection rate with reduced

False Negatives.

• Traditional solutions struggle with attacks that have complex properties, while

machine learning can improve their detection accuracy and speed.

• Slight variations in attacks can not be effectively detected with traditional IDSs.

Even a Heuristic detector can be evaded by inverting the attack pattern. However,

124

Machine Learning and Deep Learning for OneM2M Intrusion Detection

ML equipped IDSs learn recent traffic pattern continuously; hence, they effectively

identify minor variations in traffic patterns. In other words, ML algorithms are

efficient against the detection of variants [MVTP18].

• Cyber criminals deploy evolving attack patterns to evade the detectors. Traditional

IDSs, especially signature-based IDSs require continuous updates. However, ML

IDSs based on clustering and outlier detection do not necessitate regular updates.

• Traditional solutions and more precisely signature based IDSs match each signa-

ture with IDS database. The process is CPU consuming (large signature database

which grows exponentially [LL05]); whereas, ML based IDS consume low to

medium processing. Hence, the processing element can be used effectively.

Consequently, learning techniques seem to be a suitable solution especially with the

good results that they achieve in the different domains.

5.1.2 ML Metrics and Experimental Environment

In machine learning, there are numerous metrics that could be used to compare the

performance of the ML algorithms. All the metrics are calculated from the basis of the

standard confusion matrix of the ML theory which is represented in Figure 5.1 (in its

binary version) with:

• TP: True Positive which represents the correct classification of the oneM2M GFlows

threats as threats.

• TN: True Negative which represents the correct classification of the normal

oneM2M GFlows as normal.

• FP: False Positive which represents incorrect classification where the normal

oneM2M GFlow were classified as threats. High FP value increases the compu-

tation time since these false alarms need time to be processed (to no avail). How-

125

Machine Learning and Deep Learning for OneM2M Intrusion Detection

ever, it is less harmful than the high FN value (defined below) especially in the

security context.

• FN: False Negative which represents incorrect classification where oneM2M

GFlows threats are predicted as normal flows. The high FN is a serious problem

because it means that the threat has managed to get through the IDS.

Figure 5.1: Confusion matrix

In our study, we concentrate on the following metrics:

• Recall or detection rate reflects the samples that should have been identified as

threats. Recall is one of the most important metrics in the security context. In

addition to its ability to calculate successfully detected threats, it also reflects the

rate of false negatives (FNR), i.e. intrusions that are missed. We will not present

FNR in our results comparison since it can be deduced from the recall (as shown

below).

Recall = TP/(TP + FN) = 1− FNR = 1− (FN/(TP + FN)) (5.1)

• Accuracy estimates the ratio of the correctly predicted flows to the entire dataset.

Accuracy = (TP + TN)/(TP + TN + FP + FN) (5.2)

126

Machine Learning and Deep Learning for OneM2M Intrusion Detection

• Precision estimates the ratio of the correctly predicted threats to the number of all

predicted threat records.

Precision = TP/(TP + FP) (5.3)

• False Postive Rate (FPR) represents the false alarms: the ratio of the normal benign

flows predicted as threats to all the actual normal inputs.

FPR = FP/(TN + FP) (5.4)

• Model Size is the size (in kilobytes) of the generated model that needs to be

injected in the IoT devices for the ML classification. The smaller the models are

the better is since we are in the context of tiny devices (IoT).

• CPU Training Time represents the time needed to build the ML model. This metric

is important for the continuous learning module of Section 4.2.4.

The higher the first three metrics are, the better the ML model is. The lower the last

three metrics are, the better the ML model is. The ML classifications were made offline

(on a machine with Intel(R) Xeon(R) CPU E3-1225 v3 @ 3.20GHz and 16Go of RAM).

5.2 Experimentation of Supervised Learning Algorithms

for Intrusion Detection in OneM2M

In this section, we examined different supervised ML algorithms for the three ML detec-

tion levels. We chose supervised ML because the experiments conducted in this section

fall within the context of classification where we know already the classes into which

the model should categorize the GFlow. This section will be divided into two main parts.

The first section will treat supervised ML detections for the three levels. In the second

one, we study the effect of size and balance of training dataset on the detection process.

127

Machine Learning and Deep Learning for OneM2M Intrusion Detection

5.2.1 Supervised ML Detections

We begin this part with the definition of the experienced ML algorithms as well as the

used tools. Then, for each detection level, we display the results, compare them and

choose the most appropriate for each one.

5.2.1.1 Description of the Algorithms

It is important to remind that our generated oneM2M dataset is labeled as presented

in Section 3.3. We chose to experiment four different shallow ML algorithms and a DL

network.

• Naïve Bayes (NB) [WF02] is a probabilistic classifier based on Bayes’ theorem. It

is called "naïve" since the inputs features are simply assumed to be independent of

each other, whereas in practice it is rarely true. This hypothesis of feature indepen-

dence may be the cause of poor results when the data are not really independent

of each other. NB classifier can handle continuous and categorical data.

• Support Vector Machine (SVM) [Vap13] is a classifier based on finding the best

hyperplane (in the feature space) separating two data classes by maximizing the

distance between the hyperplane and the closest data points of each class. The

support vectors (from where comes the name of the classifier) are data points that

lie on the margin of optimum separating hyperplane. If this hyperplane decision

boundary has succeeded in separating the two classes well, it means that the res-

olution of the classifier is a linear combination of the support vectors. However,

if the classes are not linearly separable, then one solution could be to map the

data to a higher feature (dimensional) space where SVM can define a better sep-

arating hyperplane. This technique considers the kernel functions. Various types

of dividing surfaces can be defined thanks to the kernel method, such as linear,

polynomial, Gaussian Radial Basis Function (RBF), etc.

• Decision Tree (DT) is a tree-like structure composed of decision nodes, branches

128

Machine Learning and Deep Learning for OneM2M Intrusion Detection

and leaf nodes. A decision node represents feature (or attribute), the branch rep-

resents the conjunction of features that lead to the leaf nodes which represent the

classification classes. DT can work with discrete as well as continuous value at-

tributes. It learns to partition on the basis of the attribute value. There are many

DT algorithms. The best known are ID3 [Qui86] and C4.5 [Qui14] that build the

tree automatically using the concept of information entropy. Each node of C4.5

chooses the best attribute to split the set of data samples into subsets with the

highest possible information gain (entropy). This operation is performed recur-

sively on the smaller subsets until all the training examples have been classified.

• Random Forest (RF) is one of the popular ensemble classifiers that combines many

DT. Each tree picks randomly a data features as input, processes DT algorithm,

then by majority or weighted voting, the forest generates the prediction result.

Unlike DT, RF is less humanly interpretable.

• Deep Neural Networks (DNN) [SHM+16] is an application of artificial neural net-

works (ANNs) with multiple hidden layers. It consists of at least three layers

[BPS+02]. The input layer represents the beginning of the ANN workflow. It

brings the input data into the network. The output layer decides or predicts the

input. And finally one or more hidden layers are between the input and the out-

put. They perform the needed computations for the ANN. The nodes of the hidden

and the output layers are neurons with a nonlinear activation function. DNN is

capable of approximating any continuous function and distinguish non-linearly

separable data. It uses backpropagation technique for training. Hence, its training

is about feedforward and back-propagation phases. In the first one, the hidden

and output nodes calculate their activation functions. The second phase aims to

propagate back the error (the difference between the output and the target value)

from the output to the input. This step is about adjusting the different weights of

the different neurons composing the network.

129

Machine Learning and Deep Learning for OneM2M Intrusion Detection

5.2.1.2 Used Tools and Frameworks

For the four first ML algorithms, we use Weka 3 tool [HFH+09] (developed in Java)

which offers a collection of ML algorithms for data mining tasks in an easy-to-use soft-

ware. It supports different modes of use: command line, GUI, Java API, and so on.

We first use the GUI mode to facilitate the testing of the algorithms, then once the best

algorithm is chosen, we integrate it into our IDPS using the Java API since the used

oneM2M implementation (Codex Data Platform IoT) is developed in Java. Implemen-

tations of the NB and RF classifiers in Weka are named after the original algorithms.

However, for DT, we work with J48 [Sal94] which is an open source Java implementa-

tion to generate a pruned or unpruned DT. For SVM, we adopt SMO [ZYX+08] which is

the implementation of John Platt’s Sequential Minimum Optimization algorithm for the

SVM classifier.

Regarding the parameters of the algorithms, we tried different configurations, either

for the first, or for the last detection level. In the end, as there are no big changes in

results, we chose the default parameters as proposed by Weka.

For the DL, we used the Python Deep Learning library Keras [Ker19b]. In order to

obtain good detection results with DNN, different hyper-parameters have to be adjusted

until the best combination is found. There are two types of hyper-parameters:

• hyper-parameters for the layers:

– the number of hidden layers reflects the number of layers deployed outside

the input and output layers,

– the number of units in each layer which is an integer hyper-parameter that

represents the dimensionality of the output space,

– the activation function [DA01] for each layer is an important feature in the

artificial neural networks. It decides the relevance of the neuron information

with a non linear transformation.

130

Machine Learning and Deep Learning for OneM2M Intrusion Detection

– the kernel initializer [Ker19c] for each layer defines the way to set its initial

weights,

• hyper-parameters for the learning process [Ker19b]:

– the loss function which represents the objective function that the model will

try to minimize by changing the parameters (weights) of the model,

– the optimizer in machine learning is a function that describes how to adjust

the parameters of the model for the loss minimization.

Scikit-learn library [noae], a general ML library built on top of NumPy1, was also

used for pre-processing operations such as the standardization and scaling of data.

5.2.1.3 The First Level of ML Detection

Our first experiments in the search for the best algorithm have been applied to our

oneM2M dataset (Section 3.3). We divide it into two files: the training dataset which

is composed of 66% randomly chosen inputs and the test dataset which contains the

34% remaining values. The GFlows in both files are labeled as normal or threat. As

discussed earlier, the parameters of shallow algorithms were the default ones proposed

by Weka. However, for DNN we explored different combinations and the best results

were achieved by a network of three fully connected layers. The input layer was ini-

tialized by normally distributed weights (random_normal initializer) and has a Rectified

Linear Unit [Ker19a] (ReLu) activation function. The second layer is composed of eight

units with a random_normal as a kernel initializer and the sigmoid [Ker19a] function

for the activation. Regarding the output layer, it is a two units layer since we are in

the context of binary classification. Softmax was the used activation function to guar-

antee a probability between 0 and 1 for each classification. The used loss function was

the binary_crossentropy and the optimizer was the Stochastic Gradient Descent (SGD)

optimizer.

1NumPy is the fundamental package for scientific computing with Python.

131

Machine Learning and Deep Learning for OneM2M Intrusion Detection

ML algo-
rithm

Recall
(%)

Accuracy
(%)

Precision
(%)

False Positive
Rate (%)

Model Size
(Ko)

CPU Training
Time (ms)

NB 79.70 71.05 80.90 53.70 10 800
SMO 98.60 84.14 83.20 57.10 15 36 968 840
J48 95.40 87.81 88.90 34.00 301 27 490
RF 89.90 83.84 88.50 33.50 307 673 138 010
DNN 97.41 86.91 86.61 13.39 18 596 463

Table 5.1: Comparison of the results of the binary classification before the removal of
duplicates

As we can notice in Table 5.1, SMO achieves the best attack detection rate (recall)

of 98.60%, followed by DNN and J48 with 97.41% and 95.40% respectively. However,

SMO has the worst CPU training time. NB has the fastest learning phase and the smallest

model compared to the rest. It reaches 800ms with 10Ko. Unfortunately, NB has the

poorest accuracy. It is J48 which has the best results in terms of accuracy and precision,

with 87.81% and 88.90%. It is true that it has a larger model than the NB but 301Ko

is still acceptable for IoT fog nodes. In addition, J48 is the second fastest algorithm to

train. Regarding FPR, it is DNN which achieves the lowest rate with 13.39%, followed

by RF (33.50%) and J48 (34.00%). Therefore, considering the overall metrics, we can

say that J48, RF and DNN are the most efficient ones. But since RF model is heavy

(138 010Ko), J48 and DNN remain the most appropriate algorithms for our binary

classification task of the first level of ML detection.

After these results which were published in [CMZS19, CMZS20], we thought to re-

move the duplicate entries from the oneM2M dataset which represent 4.27% of the ini-

tial data. The new results are compared in Table 5.2. As always, we use the default pa-

rameters for NB, SMO, J48 and RF. For DNN, we find that the best results were achieved

by a network of three layers, as for the first case, however, the hidden layer is composed

of 24 neurons with a ReLu activation function and we use categorical_crossentropy as a

loss function and Adam as an optimizer. The network was trained for 200 epochs with a

batch_size of 400.

As can be seen, the performance of NB, SMO, J48 and RF have improved propor-

tionally compared to Table 5.1 (with a special enhancement for RF). However, DNN has

132

Machine Learning and Deep Learning for OneM2M Intrusion Detection

ML algo-
rithm

Recall
(%)

Accuracy
(%)

Precision
(%)

False Positive
Rate (%)

Model Size
(Ko)

CPU Training
Time (ms)

NB 82.40 73.63 82.30 52.40 10 620
SMO 98.70 85.10 84.10 55.3 15 10 854 250
J48 94.90 89.28 91.10 27.30 285 30 950
RF 92.50 87.78 91.30 26.20 172 360 172 618
DNN 95.10 87.01 88.40 36.93 21 162 000

Table 5.2: Comparison of the results of the binary classification after the removal of
duplicates

poorer recall and FPR compared to its results with data containing redundant entries

(especially for PFR: from 13.39% to 36.93%).

Consequently, by process of elimination, we decide to use the J48 model for the first

level of intrusion detection of our strategy.

5.2.1.4 The Second Level of ML Detection

As we have discussed in Section 2.1, the second ML level detection identifies the threat

family of an incoming GFlow if it is a known threat (flooding or amplification). If it is

a new one that we have not seen before, the model needs to classify it as unknown.

In this section, we will experiment only the classification of known family threats. The

whole model with unknown threats detection will be discussed later in this chapter.

In this part, we use only the GFlows that are considered as threats in the oneM2M

dataset (Section 3.12) with the labels corresponding to either flooding or amplification.

In Table 5.3, we compare the results of different ML algorithms for threat family clas-

sification experiments. J48 and RF achieve the best recall (100%), accuracy (99.98%)

and precision (100%) with zero FPR. However, J48 is lighter and faster to train. DNN

has close results (two fully connected layers with 2 neurons for the output layer, softmax

as an activation function and categorical_crossentropy as a loss function). Regarding NB,

it has the fastest CPU training time (1 080ms) and the smallest model (1Ko). Mean-

while, it has the worst results in terms of the remaining metrics.

133

Machine Learning and Deep Learning for OneM2M Intrusion Detection

ML algo-
rithm

Recall
(%)

Accuracy
(%)

Precision
(%)

False Positive
Rate (%)

Model Size
(Ko)

CPU Training
Time (ms)

NB 95.30 95.30 95.60 3.30 11 1 080
SMO 99.90 99.88 99.90 0.20 15 556 710
J48 100 99.97 100 0 22 11 230
RF 100 99.98 100 0 1 761 113 850
DNN 99.87 99.90 99.97 0.05 16 15 696

Table 5.3: Comparison of the results of the classification of threat families

5.2.1.5 The Third Level of ML Detection

The third ML level tends to identify the exact sub-type of a threat. At this point, we have

flooding and amplification threats in the oneM2M dataset (Figure 3.12). As presented

below, we experienced four shallow ML algorithms with Weka tool and DNN with Keras.

Flooding Classification For this experiment, we use only the flooding GFlows with

the sub-types labels. As reported by Table 5.4, the J48 algorithm achieves the best

results with 93.80%, 92.32%, 92.95% and 1.53% of detection rate, accuracy, precision

and FPR, respectively. Even though, the NB algorithm is the one which generates the

smaller model, 290 Ko (the size of the J48 model) is still always acceptable for the IoT

context. Hence, we decide to adopt the J48 algorithm for the flooding classification.

DT algorithms use the entropy computation [WS84] technique for the features re-

duction. Tree based models calculate feature importance to keep the best performing

features as close to the root of the tree. By analyzing the generated tree of J48 algo-

rithm for flooding types classification, we remark that it eliminates 6 features from the

oneM2M dataset features (Table 3.2): isSameFromTo, isToRemote, fromResourceType,

counterSameFromOperationResponseType, counterSameToResponseType and counter-

SameOperationResponseCategory. To inject a lighter model into the fog nodes, we

trained the flooding models with only the relevant features.

Amplification Classification Regarding the amplification classification (Table 5.5),

the J48 algorithm achieves only the best accuracy (65.04%). SMO seems to have better

134

Machine Learning and Deep Learning for OneM2M Intrusion Detection

ML algo-
rithm

Recall
(%)

Accuracy
(%)

Precision
(%)

False Positive
Rate (%)

Model Size
(Ko)

CPU Training
Time (ms)

NB 73.90 73.87 40 5 24 530
SMO 80.90 80.93 88.10 5.10 26 1 568 690
J48 93.80 92.32 92.95 1.53 290 9 280
RF 89.90 89.88 89.90 2.4 196 773 66 230
DNN 86.62 82.60 83.82 3.52 32 152 435

Table 5.4: Comparison of flooding-classification results

ML algo-
rithm

Recall
(%)

Accuracy
(%)

Precision
(%)

False Positive
Rate (%)

Model Size
(Ko)

CPU Training
Time (ms)

NB 49.00 49.03 46.70 27.70 12 320
SMO 68.40 58.96 64.60 17.90 16 1 505 340
J48 62.77 65.04 62.83 17.07 953 12 500
RF 63.70 63.74 64.00 16.80 211 092 41 560
DNN 61.28 63.43 60.81 16.80 29 126 504

Table 5.5: Comparison of amplification-classification results

recall (68.40%) and the best precision (64.60%). It is true that it does not have the

best accuracy (6% less than J48), nor the best FPR (1% more than RF and DNN), nor

the smallest model (4ko more than NB) but it remains the best in terms of overall

performances. The only problem with SMO is its long CPU training time (about 25

minutes). Consequently, we decide to deploy the SMO model for the amplification

classification.

5.2.2 Effect of Dataset Size on Detection Results

In this section, we consider two different cases related to data size that can affect the

continuous learning module presented in Section 4.2.4. As detailed, this module needs

to update ML detection models. For a quick training as well as an efficient consideration

of new upcoming GFlows (without waiting for a large data availability), we need to find

the minimum data size necessary to generate a reliable model. Fast training with a small

amount of data generates lightweight and easily updatable models which is important

in the security domain and interesting in the context of IoT and fog computing. First,

we study the evolution of the models performances in binary classification (first ML

135

Machine Learning and Deep Learning for OneM2M Intrusion Detection

Figure 5.2: Effect of training dataset size

level) while decreasing the dataset size. The second experiment concerns the effect of

data balance/imbalance on model performance (also for the first detection level). The

testing dataset was extracted before the two experiments (34% of the whole dataset)

and the percentages of data removed were chosen randomly. Both experiments were

conducted on oneM2M dataset without redundant entries. In addition, we use the J48

algorithm since it had the best results in terms of threat detection for the first ML level

as discussed in Section 5.2.1.3

5.2.2.1 Effect of Training Dataset Size

As presented in Figure 5.2 (left side), while decreasing the size of the training data, we

note that the measures remain stable at the beginning until only 20% of the initial data

remains. After 20%, the FPR starts to increase significantly. As expected, the size of

the models decreases as the dataset decreases (Figure 5.2 right side). Consequently, for

an acceptable ML performance, we can update the models with only 20% of the total

oneM2M dataset size (only 44 654 GFlows instead of 223 273).

5.2.2.2 Effect of Balanced / Imbalanced Training Dataset on the Detection Results

We continued our experimentation with the J48 algorithm. Since with only 20% of

the initial data, J48 succeeded to have acceptable performances, we experimented our

data balance on that basis. We describe the imbalance of classes in terms of a ratio, i.e.

136

Machine Learning and Deep Learning for OneM2M Intrusion Detection

Figure 5.3: Effect of data imbalance (decrease threat GFlows)

Figure 5.4: Effect of data imbalance (decrease normal GFlows)

1 : 100 means that for every one example of normal GFlow, there are 100 examples of

the other class which is threats. As shown in Figure 3.12, the oneM2M dataset is already

imbalanced. First, in Figure 5.3, we fixed the amount of normal GFlows in the dataset

and started to decrease the size of threat inputs. We found that the performance of the

J48 remained acceptable up to the 100 : 160 ratio. After that, the recall and accuracy

start to drop significantly.

In Figure 5.4, we experimented the opposite. We started from the stable point of the

last experiment which is a ratio of 100 : 160, we fixed the threat GFlows and started to

decrease the number of normal inputs. We found that the most stable results are with

ratios 100 : 160 and 80 : 160. Consequently, it is better to update the models starting

from a ratio of 80 : 160.

137

Machine Learning and Deep Learning for OneM2M Intrusion Detection

5.3 One-Class Classification Approach

In order to have a better intrusion detection at the first ML level of our IDPS, as well

as to enable the detection of unknown threats at the second ML level, we wanted to

experiment one-class classification algorithms (OCC). For the first level, OCC reflection

seems to be more intuitive for this type of binary classification. Since the main goal of

this IDS level is to detect any behavior that is different from the normal one (whether

it is security attack or just an abnormal functioning of the system), learning only from

the normal behavior without considering the threat inputs appears to have more sense.

Such concept is a sub-domain of ML known under different terms in the literature as

anomaly detection, one-class classification [MKH93], outlier detection [RG97], novelty

detection [Bis94] or concept learning [JMG95]. Such ML algorithms are considered as

unsupervised since they attempt to model “normal” examples without labels rather than

using examples from both classes (normal and abnormal). They classify new examples

as either normal or abnormal (e.g. outliers). Consequently, for the first level of our

IDS, we trained the model only on normal GFlows and then evaluate it with normal

and threat GFlows. Regarding the second ML level, the main goal is to detect unknown

(never seen before) threats on the one hand, and to classify the known threats on the

other hand. Consequently, we need to adapt the OCC approach for multi-classification.

We start this section with a presentation of the categories of OCC algorithms, focus-

ing on those that we have experimented for our IDS. Then, we detail our experimenta-

tion process for the choice of the best algorithm and parameters. Moreover, we discuss

the results and the final choice of the ML algorithm for the first detection level. We

conclude this section, with details and experiments about multi-class novelty detection

for the second level of ML detection.

For better consistency in definitions and discussions, most of the details in this sec-

tion will be presented for the first level of the IDS. The second level will only be covered

by Section 5.3.3.4.

138

Machine Learning and Deep Learning for OneM2M Intrusion Detection

5.3.1 One-Class Methods

There are three main categories of OCC [Tax02]:

• Probability density estimation relies on estimating the density of the training tar-

get class and setting a threshold on this estimation to obtain a target and an

outlier region. Several distributions can be assumed [BL78], such as a Gaussian

or a Poisson distribution, etc.

• Boundary methods are about optimizing a closed boundary around the target set

instead of estimating a complete data density as in the first category of OCC. Un-

like binary classification where the decision limit is supported from both classes,

the OCC has to decide how narrow the limit should be around the data with only

data from one class, which is not always obvious. Some boundary algorithms are

nearest neighbor and one-class SVM.

• Reconstruction methods have not been primarily constructed for OCC. Their main

goal is to model the data. In the context of OCC, these methods use prior knowl-

edge to generate a model that best matches the target class data in order to classify

new entries that belong to the same learned description. The auto-encoder net-

works are one of the best known examples.

We consider only four OCC algorithms for our oneM2M dataset. One of the bound-

ary category which is one-class SVM (OC-SVM) and three of the reconstruction category

namely the auto-encoder (AEnc), the sparse auto-encoder (SAE) and the variational

auto-encoder (VAE). We will detail each algorithm in the rest of the section. To apply

these methods we used the already splitted dataset used in Section 5.2.1.3 (without

redundant entries). We extract 67% of the normal GFlows of the training dataset for

the OCC algorithms training and use the remaining 33% of the normal GFlows with the

whole threat GFlows of the training dataset for the validation process and the threshold

setting (for algorithms in the reconstruction category). The testing phase is accom-

139

Machine Learning and Deep Learning for OneM2M Intrusion Detection

plished with the same test set of Section 5.2.1.3, thus on 34% of the initial dataset. We

always use the same test set in order to have comparable results.

5.3.2 OC-SVM

OC-SVM [SWS+00], as the name suggests, is based on the binary classifier SVM. It

is used for novelty detection in imbalanced datasets. OC-SVM is an unsupervised algo-

rithm that learns a decision boundary in the feature space that contains all targets. More

precisely [PCCT14], "it defines the novelty boundary in the feature space corresponding

to a kernel, by separating the transformed training data from the origin in the feature

space, with maximum margin". It provides non-linear kernel functions such as the Ra-

dial Basis Function (RBF). We use the class OneClassSVM of the scikit-learn library for

this experiment. OneClassSVM has mainly three important hyperparameters to config-

ure: the kernel to use, the kernel coefficient gamma and the nu hyperparameter that

controls the sensitivity of the support vectors. So to find the best configuration for our

oneM2M dataset, we varied the hyperparameters and tuned the model until identifying

the best results. We use the RBF as a kernel with gamma = 1/number_of_features

and nu = 0.038. Unfortunately, the results are far from being good in terms of FPR

(96.30%). For the rest of metrics, we had acceptable results: 97.96% of recall, 74.16%

of accuracy and 75.07% of precision.

5.3.3 AEnc, SAE and VAE

Since DNN was one of the best algorithms in Section 5.2.1.3, we decided to experiment

neural networks in their one-class version which comes to the use of auto-encoders. We

present, in the following, the different AEnc variations that we have examined for our

use-case.

140

Machine Learning and Deep Learning for OneM2M Intrusion Detection

5.3.3.1 Algorithms Description

An AEnc [JMG95] is a neural network approach created to build identity for the training

data while trying to compress the features space into smaller representation as shown

in Figure 5.5. Hence, an AEnc should be able to reproduce the inputs at the output

layer. An AEnc [AC15] is composed of two main components: an encoder that maps

the input to a hidden representation and a decoder that reconstructs the original input

space from the hidden representation by the same transformation as the encoder. The

smallest hidden representation is called the latent space, the bottleneck. The training

of the AEnc aims to minimize the difference between the input and the output i.e.

minimize the reconstruction error (RE). After being trained, the model must be able to

rebuild previously unseen instances that are of the same data distribution as the training

set. If the new input does not belong to the same distribution, the RE will be high. So

the idea behind using this type of algorithms is to train the model to learn only about

the distribution of normal GFlows. Once an anomalous GFlow is given to the network,

it will have a high RE. Many reconstruction error functions could be used such as the

Mean Squared Error (MSE) which reflects the average squared difference between the

estimated values (the output of the AEnc) and the actual value (the input).

SAE [Ng11] is a type of AEnc where we add a sparsity constraint on the hidden

layers. In other words, the weights of the AEnc are penalized in the cost function.

This technique is mainly used to avoid overfitting. In AEnc, the number of neurons

in hidden layers is less than the neurons of the input/output layers. Meanwhile, in

SAE, the number could be less or greater. However, thanks to the sparsity constraint,

not all the neurons will be "active". Some of them will be disabled as in Figure 5.6

(gray links). A neuron is considered "active" or as "firing" if its output value is close to

1. If it is close to 0, then it is being "inactive". Mathematically, an extra penalty term

(penalizing activations of hidden layers) will be added to the optimization objective

(the cost function) so that only a few nodes are encouraged to activate when a single

sample is fed into the network. Many choices of the penalty term exist in the literature

141

Machine Learning and Deep Learning for OneM2M Intrusion Detection

Figure 5.5: Auto-encoder architecture

Figure 5.6: Sparse auto-encoder architecture

[JRP+15] such as L1 Regularizer (based on the L1 norm), L2 Regularizer (based on the

L2 norm) and the Kullback-Leibler (KL) divergence (measures the difference between

two distributions).

142

Machine Learning and Deep Learning for OneM2M Intrusion Detection

Figure 5.7: Variational auto-encoder architecture

VAE [KW14] inherits the architecture of traditional AEncs but instead of encoding

the input into a fixed vector (the bottleneck), it maps it into a distribution (Figure 5.7).

Thus, the encoder learns a data generating distribution that allows the decoder to take

random samples from the latent space and generate outputs with similar characteristics

to the inputs.

5.3.3.2 Threshold Determination

Apart from the training phase, we need to determine the threshold of the RE above

which GFlows are considered as threats. In other words, the training phase consists in

learning how to minimize the RE for the "normal" GFlows as much as possible so that

when we have an abnormal GFlow, its RE will be high. In order to identify the threshold,

we use the validation dataset.

Threshold State of the Art According to the literature, the threshold is typically set

as the maximum of the RE of the training set [DCS14]. However, experimentally, we

remarked that such method is not appropriate for our use-case. Other threshold meth-

ods have been proposed in the state of the art, such as the three standard deviations

143

Machine Learning and Deep Learning for OneM2M Intrusion Detection

method in [ERKL16] and the reduced reconstruction error in [KT17] which are both

based on statistics of the training data set such as the mean, the standard deviation as

well as quartiles. There is also the inlier reconstruction error method based on TP and

FP proposed in [KT17] and a density estimation strategy detailed in [CNM16].

Decision Tree based Threshold In our work, we propose a new threshold determi-

nation method based on the use of a decision tree algorithm on the validation dataset.

Since the latter contains both normal and abnormal inputs, we can compute the RE for

both classes. Applying a DT on the results will enable to find the best RE that separates

the normal RE values from the anomalous ones.

We start by training our AEncs models on the training dataset trying to minimize

the loss function as much as possible. Once our model is ready, we evaluate it on the

validation dataset which is composed of the remaining 33% of the normal GFlows with

the whole threat GFlows (as detailed in the beginning of Section 5.3). At the end of this

step, we will have a map of the input initial classes (the true class of the entry: normal

or anomalous) with the associated RE (the prediction of the AEnc model). As presented

in Section 5.2.1.1, a DT chooses the best attribute value to split the set of data samples

into subsets with the highest possible information gain (entropy). So when we apply

this algorithm on our map (true_class / RE), it will determine the best RE value that

can split the validation dataset into normal and anomalous. DT performs the operation

recursively until the leaves. However, in our threshold determination process, we will

stop at the first data split and retrieve the separation RE value (root of the tree) that

we will use as threshold for the test dataset. Figure 5.8 illustrates, as an example, the

REs of the validation dataset (for both classes) with the threshold computed by our

DT-based solution.

The only disadvantage of this method is that it needs a validation dataset that con-

tains instances from both classes which is the case of our validation dataset (it contains

normal and anomalous GFlows).

144

Machine Learning and Deep Learning for OneM2M Intrusion Detection

Figure 5.8: Reconstruction errors of the validation dataset with an AEnc

AEncs results with Decision Tree based Threshold To find the best AEncs that en-

ables to detect threats in the oneM2M context, we implement our own randomized

search for hyperparameter optimization. We evaluate the AEnc and the SAE with one,

three and five hidden layers (with the reflective mirror effect as in Figure 5.5). For the

VAE, we experimented one and two layered encoder/decoder with and without sparsity

(SVAE). We fix the same hyperparameters for all the networks and search only for the

best combinations of the number of neurons (units). These choices have been made af-

ter multiple tests: the activation function is ReLu, the kernel initalizer is glorot_uniform,

the loss function is the MSE and the optimizer is Adam. For SAE, we use L1 regularizer

as activity regularizer and L2 regularizer as kernel regularizer both with 1e − 4 as a

regularization factor. For the VAE, we examined also sparse VAE with the same details

as SAE and we use the sigmoid activation function for the latent layer. The number of

the explored combinations varied from 25 (for the one-layered AEncs) to more than

100 combinations for the five-layered ones. We present in Table 5.6 the best results for

each type of AEnc and for each number of layers. It is important to mention that in

145

Machine Learning and Deep Learning for OneM2M Intrusion Detection

ML algorithm Dim1 Dim2 Dim3 Recall(%) Accuracy(%) Precision(%) FPR(%)
AEnc (1 hidden layer) 18 79.34 69.81 80.09 58.38
AEnc (3 hidden layers) 7 3 74.53 72.18 86.38 34.76
AEnc (5 hidden layers) 15 13 7 85.20 76.63 83.80 48.74
SAE (1 hidden layer) 11 61.97 66.66 90.40 19.48
SAE (3 hidden layers) 19 13 62.73 66.82 89.80 21.08
SAE (5 hidden layers) 25 12 6 71.14 71.42 88.35 27.76
SAE (5 hidden layers) 15 10 5 85.13 77.21 84.49 46.25
VAE (1 hidden layer) 25 4 65.87 66.90 86.64 30.06
SVAE (1 hidden layer) 13 7 83.19 76.27 84.78 44.21
SVAE (1 hidden layer) 20 4 64.32 67.61 89.36 22.65
VAE (3 hidden layers) 14 5 66.67 67.21 86.35 31.20
SVAE (3 hidden layers) 10 4 71.50 69.86 85.81 35.00

Table 5.6: Best AEncs results with DT-based threshold

the presented results, the sparsity for SAE and for sparse VAE was added only to the

first layer. The columns "Dim1", "Dim2" and "Dim3" reflect the number of neurons in

the first, second and third layer respectively (Figure 5.5). Our AEncs are all symmetric

so for example for the three-hidden-layered AEnc we will have a first input layer with

the initial 26 features of a GFlow, then the first hidden layer with "Dim1" neurons, the

second hidden layer with "Dim2" neurons (the latent layer), the third layer with "Dim1"

neurons and finally the output layer with 26 features. For the VAE, "Dim1" is for the

first layer and "Dim2" is for the latent layer. For the two layered encoder/decoder VAE,

the second layer is composed of "Dim1 / 2" neurons.

As presented in Table 5.6, the best recall is achieved by an AEnc of 5 hidden layers

with 85.20% which remains less than J48 binary classifier (about 10% less). This model

has a high FPR of 48,74%. It is SAE with 1 hidden layer that has the lowest FPR of

19.48% but its recall is not very high (61.97%). An in-between results model is the 3

hidden layered AEnc and 5 hidden layered SAE. Both of them have acceptable recalls

(greater than 71%) and a comparable FPRs (less than 35%) which remain close to the

FPR of the binary DNN classifier. Both have also comparable accuracy and precision.

AEncs results with Statistically based Threshold We compare in this paragraph

our DT-based threshold to some statistically-based ones. To do that, we retrieve the

AEncs models that have achieved more than 60% of recall and less than 50% of FPR in

146

Machine Learning and Deep Learning for OneM2M Intrusion Detection

Figure 5.9: Box plot of the reconstruction errors quartiles with thresholds

the DT-based threshold search of the paragraph above. Then, we apply four different

statistically-based thresholds on these selected models. Three of them are computed

only on the normal entries of the validation dataset which are:

• the upper quartile q3_normal which is also called the 75th empirical quartile

where 75% of the normal data lies,

• the inter-quartile iqr_normal which is the difference between the upper quartile

and the lower quartile (where 25% of the normal data lies) of the normal data,

• and the absolute difference between the inter-quartile and the lower quartile

abs(iqr_normal - q1_normal).

The fourth statistically-based threshold uses only the anomalous RE of the validation

data namely the lower quartile q1_anomalous. Figure 5.9 shows the quartiles of the

distribution of anomalous and normal entries in the validation data set. It displays

also the different experimented thresholds. The presented reconstruction errors are

associated to the three-layered AEnc of Table 5.6.

147

Machine Learning and Deep Learning for OneM2M Intrusion Detection

ML algorithm Dim1 Dim2 Dim3 Threshold
Type

Threshold Recall(%) Accuracy(%) Precision(%) FPR(%)

1 SAE (5 hidden layers) 19 15 14 q1_anomalous 0.00060799 75.05 71.32 84.83 39.73
2 SAE (5 hidden layers) 11 9 3 q1_anomalous 0.01196436 74.86 71.74 85.53 37.48
3 AEnc (3 hidden layers) 7 3 DT 0.01204153 74.53 72.18 86.38 34.76
4 SAE (5 hidden layers) 19 15 14 iqr_normal 0.00061692 73.89 70.85 85.15 38.14
5 AEnc (3 hidden layers) 7 3 abs(iqr_normal

- q1_normal)
0.01317281 73.19 71.69 86.87 32.75

6 AEnc (5 hidden layers) 19 12 11 iqr_normal 5.054e-05 70.49 68.04 84.18 39.19

Table 5.7: Best AEncs results with the associated thresholds

In Table 5.7, we present the best AEncs results with their associated thresholds. The

table is ordered in ascending order of recall and only models that achieve more than

70% of recall and less than 40% of FPR are shown.

The best recall is of 75.05% achieved by the first model with q1_anomalous thresh-

old, however its FPR is the worst. The second and third models have almost the same

recall of 74% but the third one that uses our DT threshold has the best accuracy, the best

precision as well as the second best FPR of about 34% (2% more than the best FPR). The

model number 5 which uses abs(iqr_normal - q1_normal) threshold has the best FPR. It

has also the best precision as well as a comparable recall (2% less than the best recall).

Consequently, we can consider that the threshold based on DT and abs(iqr_normal -

q1_normal) give the best results for our oneM2M use-case with 3 hidden layers AEnc

of 7, 3 and 7 neurons for each one. Therefore, in the case where anomalous valida-

tion data are available, it is preferable to use DT-based threshold; however, when only

normal data are available, abs(iqr_normal - q1_normal) seems more appropriate.

5.3.3.3 Final Choice for the First Level of ML Detection

As we can notice in Table 5.8, J48 has the best results in terms of recall, accuracy,

precision and FPR but the AEnc has a lighter model and a faster training time. These

results are related to the initial test set that we have prepared in Section 5.2.1.3. Since

the model size as well as the training time of J48 remain acceptable for IoT context and

considering the important difference between the two models especially with 20% less

in terms of recall for AEnc, we first choose J48 as our algorithm for the first level of ML

148

Machine Learning and Deep Learning for OneM2M Intrusion Detection

ML algo-
rithm

Recall
(%)

Accuracy
(%)

Precision
(%)

False Positive
Rate (%)

Model Size
(Ko)

CPU Training
Time (ms)

J48 94.90 89.28 91.10 27.30 285 30 950
AEnc 74.53 72.18 86.38 34.76 20 22 532

Table 5.8: Comparison of detection results on the initial test set for the first detection
level

detection. This being so, it is important to remember that learning only from normal

behaviors enables a better generalization for the unknown and zero-day threats, thus

models necessitate less updates. This is also essential, especially when no abnormal

data are initially available for the models training (which is the case most of the time in

the field of security).

In order to have a better basis for comparison regarding the generalization of the

models, we decided to test both of them with new attack data that we had never seen

before. This test is crucial for our final choice. Therefore, we recorded new oneM2M

GFlows data where we changed the frequency of sending GPS data of a position sensor

in our system. Changing the sending frequency (two times less) is considered abnormal

behaviour. To do that, we collected 11 349 new GFlows which are labeled as threats.

J48 was not able to detect this zero-day threat (0.1% of recall), however, AEnc achieves

97%. Since the generalization of the model for the detection of zero-day threats is really

crucial, our final choice for the first level of detection will be the use of the AEnc model.

One possible way to improve AEnc results (regarding the test set) is to choose a

higher threshold value, which will unfortunately lead to an increase in FPR (which will

bother the administrator with false alarms) but could at least be a guarantee that we

will not miss any threats. This increase in FPR could be compensated by the continuous

learning module after a period of time.

5.3.3.4 One-Class Approach for Multi-Classification

This section concentrates on the second level of ML detection of our IDS (Section 4.2.2).

In order to classify a threat as one of the already known threats or as an unknown one

149

Machine Learning and Deep Learning for OneM2M Intrusion Detection

as presented in Figure 4.5, we need a model capable of:

• classifying the threats into the different known classes (flooding, amplification,

etc.),

• detecting new threats (novelties) that are not available during the training stage.

To do this, we have opted to adapt the OCC approach to the multi-classification task,

which is called multi-class novelty detection [JS14].

Techniques Description Different studies have been proposed for multi-class novelty

detection but they are mostly based on support vectors algorithms [LTVNF16] or on

clustering based techniques [DLBM14]. In our work, we propose to adapt the AEnc of

the one-class classification approach to the multi-classification issue. We have consid-

ered two solutions. The first one use two different models: the AEnc with a decision

tree model, however the second one is based mainly on the AEnc.

• AEnc + DT: we start with an AEnc that classifies a GFlow as known or unknown

(novelty). If it is known then it will be analyzed with the DT model to get the

exact threat family (Figure 5.10 (left side)). We chose DT since J48 had the best

results in Section 5.2.1.4. The AEnc will be trained on the known threats as one

class. So in the prediction phase, if the reconstruction error of the GFlow is greater

than the fixed threshold, it is considered as a novelty. Regarding the DT model,

it is trained only on the known threats (flooding and amplification at the starting

point like in Section 5.2.1.4).

• AEnc: same as above, we begin with novelty detection using the same AEnc.

However, if it is a known GFlow, the exact threat family will be determined thanks

to a deep neural network composed of the same encoder function of the initial

AEnc followed by fully connected layers as shown in Figure 5.10 (right side).

This DNN loaded the weights of the AEnc encoder and trained only the new fully

connected layers, making the training phase light.

150

Machine Learning and Deep Learning for OneM2M Intrusion Detection

Figure 5.10: Multi-classification with AEnc

Experiments and Results Two use cases were considered regarding the experiments

for the second level of ML:

1. We consider that we know only the flooding attack (at the starting point) and we

try to detect the amplification threat (as unknown) with an AEnc.

2. We consider that thanks to the continuous learning module of Section 4.2.4, our

model knows at this second stage both flooding and amplification, and needs to

be able to detect a new unknown threat that we have never seen before. For

this use case, we use the recorded oneM2M GFlows data where we changed the

frequency of sending GPS data (introduced in Section 5.3.3.3). Changing the

sending frequency (two times less) is considered abnormal.

We start this section by finding the best AEnc model for the unknown threats detec-

tion (since it is common for both multi-class novelty detection techniques as well as for

both use cases) then we compare the two different techniques for the multi-classification

step.

For the first use case, we need to detect amplification threats with an AEnc trained

only on flooding threats. The best results have been achieved by a three-layered AEnc

with 20 neurons for the hidden layer. Regarding the threshold, we assumed that we

151

Machine Learning and Deep Learning for OneM2M Intrusion Detection

ML algorithm Recall
(%)

Accuracy
(%)

Precision
(%)

False Positive
Rate (%)

Model Size
(Ko)

CPU Training
Time (ms)

DT-based 99.93 99.93 99.95 0.087 20 0.462026
Encoder-based 99.29 99.34 99.65 0.59 19 470 047

Table 5.9: Final comparison of ML techniques for the second detection level

have both examples of flooding and amplification at the validation step. So if the RE is

below the threshold, the GFlow is a threat of flooding. If it is above, it is classified as

amplification. Our DT-based threshold method gave the best results: 98.45% of recall,

98.91% of accuracy, 99.83% of precision and 0.29% of FPR with a threshold value of

0.0046.

For the second use case, we have to use the same AEnc network (three-layered AEnc

with 20 neurons for the hidden layer) as in the first use case (since it needs to be

fixed for the continuous learning module). This time, AEnc is trained on flooding and

amplification threats and must be able to detect changes in sending frequency as an

unknown threat. Regarding the threshold, we consider that we do not have data of the

new unknown threat at the validation step, hence we can not use DT-based threshold.

We tested the different threshold methods presented in Section 5.3.3.2. Unfortunately,

we obtained unpromising results. However, good results (94.86% of recall, 95.72% of

accuracy, 99.99% of precision and 0.04% of FPR) were performed with a threshold set

as the final validation loss value (0.0015) that we had at the training stage.

After experimenting the unknown threat detection and finding the best model to

do that, we compare at this stage the two strategies for known threats classification.

Both strategies with a decision tree and using the AEnc encoder network have been

implemented and tested in python. For the encoder-based model, we added just one

fully connected layer of two neurons with softmax activation function. We trained this

final layer for 1000 epochs with 400 as a batch_size, categorical_crossentropy as a loss

function and Adam as an optimizer. As we can notice from Table 5.9, the results are

close in terms of recall, accuracy, precision, FPR and model size. However, the DT

model is much faster than a fully connected encoder-based network.

152

Machine Learning and Deep Learning for OneM2M Intrusion Detection

Conclusion

This chapter was about the experimentation of machine learning and deep learning

algorithms for the different layers of our intrusion detection system. We started by ex-

plaining our choice to adopt learning techniques and we presented the used metrics as

well as the experimental environment. Moreover, we described the different algorithms

experimented for each layer of our IDS and we presented their detection results. Fur-

thermore, we focused in the last section on the one-class classification approach that we

have experimented for anomaly detection in the first level of our IDS. In addition, we

have proposed, compared and discussed our DT-based threshold method for the OCC

approach. And finally, we adapted it (OCC) to enable multi-classification as well as

novelty detection in the context of unknown threats.

153

154

Chapter 6

Conclusion and Perspectives

In recent years, the spread of IoT devices throughout the world has been advancing

rapidly. The connected devices are now deployed in all areas such as healthcare,

smart-cities, education, etc. To integrate this rapid commercialization flow, little

attention has been paid to the safety and security of IoT devices and networks which

endangers IoT users and in turn disrupts the entire Internet-connected ecosystem

including web-sites, applications, social networks and servers. In addition, security

attack vectors have evolved bothways, in terms of complexity and diversity. Therefore,

more attention needs to be paid to the analysis of these attacks, their detection, as well

as to infection prevention and system recovery after attacks.

In this thesis, we have studied and proposed an Intrusion Detection and Prevention

System (IDPS) based on Machine Learning (ML) for the IoT ecosystem in order to

immediately detect and respond to potential threats as soon as they occur. We focused

our security framework towards the international oneM2M standard which enables

the communication between heterogeneous devices and applications by defining a

common M2M Service Layer for the multi-industry M2M applications. To the best of our

knowledge, our proposal is the first IDPS for the oneM2M service layer. It represents

a consistent framework with a complete security workflow, from data collection to

155

Conclusion and Perspectives

threat detection and activation of appropriate actions. It also has a continuous learning

module that provides an up-to-date IDPS, evolving with the evolution and emergence

of new threats. Our proposal is also characterized by its interoperability, autonomy,

scalability and respect for resource constraints, modularity in design, adaptability and

extensibility, as well as active and real-time response.

The thesis was organized in six chapters. In Chapter 1, we presented the IoT secu-

rity ecosystem and categorized its threats as well as its traditional defense mechanisms.

We had also detailed our motivation and the different paper contributions made during

the PhD. In Chapter 2, we detailed and discussed the literature proposals dealing with

the network IDPS in IoT systems, based or not on ML techniques. We compared their

strategies, their architectures as well as their results and many other characteristics. In

Chapter 3, we gave an overview of the oneM2M standard and its security mechanisms.

Then, we focused on oneM2M threats related to service availability, for which we pro-

posed a taxonomy and various implementations. We finished this chapter with details

about the creation of our oneM2M security dataset which is based on a new abstraction

for the oneM2M flows. In Chapter 4, we exposed the different challenges and aims

respected and guaranteed with our oneM2M-IDPS proposal. Furthermore, we detailed

its strategy as well as the architecture and the design of each of its four modules: i) the

data acquisition and features extraction module, ii) the IDS module, iii) the IPS module

and iv) the continuous learning module. In Chapter 5, we concentrated on the ML as-

pect of our IDPS. We implemented our detection module with its three ML levels using

the oneM2M dataset. We experimented with different ML and Deep Learning (DL) al-

gorithms for each detection level. We studied two main approaches: i) detection based

on supervised ML algorithms and ii) detection based on one-class classification (OCC)

approach.

In the rest of this chapter, we will detail the main contributions of this study. We will

then discuss their limitations and propose some directions for the future.

156

Conclusion and Perspectives

6.1 Contributions of Research

The key contributions of this research are as follows.

• The review of the literature proposals dealing with the network IDPS in IoT sys-

tems, with a special focus on those based on ML techniques: we provided a brief

description for each work then we discussed and compared them on the basis of

the architectures, detection methodologies, validation strategies, treated threats

as well as the used ML algorithms and datasets.

• The proposal of an abstraction (GFlow) for the oneM2M messages: we proposed

this abstraction by aggregating oneM2M flows (request/response) on a dynamic

basis (the number of flows to be combined as a parameter). This aggregation

avoids the resources consumption, which is important in the context of IoT. It also

respects the anonymity of the IoT devices’ identities.

• The design of a oneM2M dataset: with respect to the proposed threats taxonomy,

we created a oneM2M dataset with a real IoT system. This dataset is based on

the GFlow abstraction. It is labeled and composed of benign inputs as well as real

oneM2M threats.

• The design of a oneM2M-IDPS: it is a complete security framework for the

oneM2M standard composed of four main modules: i) the data acquisition and

features extraction module where the oneM2M messages are treated and the

GFlows are generated and prepared to be injected to the IDS module, ii) the IDS

module to detect the threats, iii) the IPS to prevent the threats from damaging

the system and iv) the continuous learning module to guarantee the update of

the IDPS against the new threats. The last two modules have been neglected by

most state of the art works. OneM2M-IDPS is characterized by its interoperability,

autonomy, scalability and respect for resource constraints, modularity in design,

adaptability and extensibility, as well as active and real-time response.

157

Conclusion and Perspectives

• The design and testing of a three-level Intrusion Detection module (IDS): it guar-

antees a light detection by eliminating the in-depth analysis of normal GFlows as

soon as possible, which respects the resource constraints of the IoT devices. It

avoids overloading and unnecessary consumption of resources.

• The proposal and experimentation of two different detection strategies for the

IDS module: we studied i) detection based on supervised ML algorithms and ii)

detection based on one-class classification approach. For each strategy, different

ML algorithms were implemented, tested and compared.

• The proposal and testing of a new threshold determination method for anomaly

detection based on the decision tree (DT) algorithm: it is based on the validation

dataset which contains both normal and abnormal GFlows.

• The adaptation of one-class classification for a multi-class novelty detection: in the

second level of IDS, we use the OCC approach to enable the detection of unknown

threats as well as the multi-classification of already known threats.

These contributions were accompanied throughout the PhD by the implementation and

deployment of our oneM2M-IDPS proposal on the IoT system that we have in the Atos

Innovation Aquitaine Lab.

6.2 Limitations and Future directions

Obviously, improving the efficiency of machine learning detection results remains an

open research topic. The IoT security community must always strive for 100% detection

with zero false alarms while respecting IoT constraints. In this section, we will outline

some limitations of our contributions and propose future directions to address them.

• The created oneM2M dataset contains only few service availability threats. It

would be interesting to incorporate new varieties of threats, whether related to

158

Conclusion and Perspectives

the service availability or to another type. This will allow better training for the

models on the one hand, and better testing for the models chosen for the three

levels of ML detection on the other hand. Another interesting direction regarding

the oneM2M dataset is to extend it with the values sent by the connected devices

(payload). This would be a difficult task because each device has its own data

type or data structure. It will therefore be challenging to have a common format

or to find an adaptation of the ML algorithms so that they can take into account

the different heterogeneous formats.

• Our IDPS is only proposed for the oneM2M service layer, which mainly allows only

oneM2M-related threats to be handled. First, it would be curious to test if with the

current framework it is possible to detect threats other than those related to the

oneM2M standard. Second, it would be interesting to extend our oneM2M-IDPS

to take into consideration the different layers of the IoT stack such as the network

layer.

• OneM2M-IDPS deals not only with security attacks but also with abnormal be-

haviors. However, the notion of abnormal behavior is related to device types or

so-called device profiles. Therefore, the design of an identification tool capable of

autonomously building and detecting device profiles will be a promising enhance-

ment for our IDPS.

• Regarding the learning process as well as model updates, the proposed oneM2M-

IDPS builds the models offline from a database that is frozen at the time of training

and then replaces the old models completely with the new ones. An important line

of research for our proposal would be to enhance our continuous learning module

with an incremental online learning mechanism to enable real-time learning. In

other words, the models will be updated dynamically each time a new data is

available.

• The deployment of the proposed oneM2M-IDPS in large-scale applications with

159

Conclusion and Perspectives

a federated learning strategy [KMY+17], which is a communication-efficient and

privacy-preserving approach, also appears to be a challenging research topic. This

will first of all check the scalability of our proposal. In addition, the federated

learning approach will enable distributed model learning from multiple clients

(without sending data to a remote server or sharing local training data). Each

client trains a local model and sends only updates to a centralized entity for ag-

gregation. This approach highlights edge and fog computing that we have adopted

in our proposal.

160

161

Bibliography

[AA15] S. Agrawal and J. Agrawal. Survey on Anomaly Detection using Data

Mining Techniques. Procedia Computer Science, 60:708–713, January

2015.

[AAD10] A. O. Adetunmbi, S. O. Adeola, and O. A. Daramola. Analysis of KDD

’99 Intrusion Detection Dataset for Selection of Relevance Features. In

Proceedings of the World Congress on Engineering and Computer Science,

volume 1, San Francisco, USA, October 2010.

[AAT18] S. A. Alabady and F. Al-Turjman. Low Complexity Parity Check Code for

Futuristic Wireless Networks Applications. IEEE Access, 6:18398–18407,

April 2018.

[AATD18] S. A. Alabady, F. Al-Turjman, and S. Din. A Novel Security Model for

Cooperative Virtual Networks in the IoT Era. International Journal of

Parallel Programming, July 2018.

[AC15] J. An and S. Cho. Variational autoencoder based anomaly detection

using reconstruction probability. Special Lecture on IE, 2(1), 2015.

[ADMC17] M. R. Asghar, G. Dán, D. Miorandi, and I. Chlamtac. Smart Meter Data

Privacy: A Survey. IEEE Communications Surveys Tutorials, 19(4):2820–

2835, 2017.

162

Bibliography

[AFGM+15] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash.

Internet of Things: A Survey on Enabling Technologies, Protocols, and

Applications. IEEE Communications Surveys Tutorials, 17(4):2347–2376,

2015.

[AIZ+17] S. Anwar, Z. Inayat, M. F. Zolkipli, J. M. Zain, A. Gani, Nor Badrul Anuar,

Muhammad Khurram Khan, and Victor Chang. Cross-VM cache-based

side channel attacks and proposed prevention mechanisms: A survey.

Journal of Network and Computer Applications, 93:259–279, September

2017.

[AK16] M. E. Aminantoa and K. Kimb. Deep Learning in Intrusion Detection Sys-

tem : An Overview. In International Research Conference on Engineering

and Technology (2016 IRCET). Higher Education Forum, 2016., 2016.

[Ald19] A. Aldaej. Enhancing Cyber Security in Modern Internet of things (IoT)

Using Intrusion Prevention Algorithm for IoT (IPAI). IEEE Access, pages

1–1, 2019. Conference Name: IEEE Access.

[All] The OSGi Alliance. OSGiTM Alliance – The Dynamic Module System for

Java (https://www.osgi.org/).

[AM14] A. W. Atamli and A. Martin. Threat-Based Security Analysis for the In-

ternet of Things. In 2014 International Workshop on Secure Internet of

Things, pages 35–43, September 2014.

[Ana] CAIDA: Center for Applied Internet Data Analysis. CAIDA

Data - Overview of Datasets, Monitors, and Reports

(https://www.caida.org/data/overview/index.xml).

[ANMH16] M. Ahmed, A. Naser Mahmood, and J. Hu. A survey of network anomaly

detection techniques. Journal of Network and Computer Applications,

60:19–31, January 2016.

163

Bibliography

[AO17] A. Aris and S. F. Oktug. Poster: State of the Art IDS Design for IoT. In

Proceedings of the 2017 International Conference on Embedded Wireless

Systems and Networks, EWSN ’17, pages 196–197, USA, February 2017.

Junction Publishing.

[AOF+10] N. Araújo, R. de Oliveira, E. Ferreira, A. A. Shinoda, and B. Bhargava.

Identifying important characteristics in the KDD99 intrusion detection

dataset by feature selection using a hybrid approach. In 2010 17th Inter-

national Conference on Telecommunications, pages 552–558, April 2010.

[AP12] P. Asrodia and H. Patel. Analysis of various packet sniffing tools for net-

work monitoring and analysis. International Journal of Electrical, Elec-

tronics and Computer Engineering, 1(1):55–58, 2012.

[AT18] F. Al-Turjman. QoS—aware data delivery framework for safety-inspired

multimedia in integrated vehicular-IoT. Computer Communications,

121:33–43, May 2018.

[ATA18a] F. Al-Turjman and S. Alturjman. Confidential smart-sensing framework

in the IoT era. The Journal of Supercomputing, 74(10):5187–5198, Oc-

tober 2018.

[ATA18b] F. Al-Turjman and S. Alturjman. Context-Sensitive Access in Industrial

Internet of Things (IIoT) Healthcare Applications. IEEE Transactions on

Industrial Informatics, 14(6):2736–2744, June 2018.

[ATEE+17] F. Al-Turjman, Y. K. Ever, E. Ever, H. X. Nguyen, and D. B. David. Seam-

less Key Agreement Framework for Mobile-Sink in IoT Based Cloud-

Centric Secured Public Safety Sensor Networks. IEEE Access, 5:24617–

24631, October 2017.

[BBJJ+17] S. Bhandari, W. Ben Jaballah, V. Jain, V. Laxmi, A. Zemmari,

Manoj Singh Gaur, Mohamed Mosbah, and Mauro Conti. Android inter-

164

Bibliography

app communication threats and detection techniques. Computers & Se-

curity, 70:392–421, September 2017.

[BC06] Y. Bouzida and F. Cuppens. Detecting Known and Novel Network Intru-

sions. In S. Fischer-Hübner, K. Rannenberg, L. Yngström, and S. Lind-

skog, editors, Security and Privacy in Dynamic Environments, IFIP Inter-

national Federation for Information Processing, pages 258–270, Boston,

MA, 2006. Springer US.

[BG16] A. L. Buczak and E. Guven. A Survey of Data Mining and Machine Learn-

ing Methods for Cyber Security Intrusion Detection. IEEE Communica-

tions Surveys Tutorials, 18(2):1153–1176, 2016.

[BHDA14] E. Bou-Harb, M. Debbabi, and C. Assi. Cyber Scanning: A Comprehen-

sive Survey. IEEE Communications Surveys Tutorials, 16(3):1496–1519,

2014.

[BHL+17] S. Bhandari, F Herbreteau, V. Laxmi, A. Zemmari, P. S. Roop, and M. S.

Gaur. Detecting Inter-App Information Leakage Paths. In Proceedings of

the 2017 ACM on Asia Conference on Computer and Communications Se-

curity, ASIA CCS ’17, pages 908–910, Abu Dhabi, United Arab Emirates,

April 2017. Association for Computing Machinery.

[Bis94] C. M. Bishop. Novelty detection and neural network validation. IEE Pro-

ceedings - Vision, Image and Signal Processing, 141(4):217–222, August

1994. Publisher: IET Digital Library.

[BJCF+18] W. Ben Jaballah, M. Conti, G. Filè, M. Mosbah, and A. Zemmari. Whac-

A-Mole: Smart node positioning in clone attack in wireless sensor net-

works. Computer Communications, 119:66–82, April 2018.

[BJMYZ13] W. Ben Jaballah, M. Mosbah, H. Youssef, and A. Zemmari. Lightweight

Source Authentication Mechanisms for Group Communications in Wire-

165

Bibliography

less Sensor Networks. In 2013 IEEE 27th International Conference on

Advanced Information Networking and Applications (AINA), pages 598–

605, March 2013. ISSN: 1550-445X.

[BJMYZ15] W. Ben Jaballah, M. Mosbah, H. Youssef, and A. Zemmari. Lightweight

secure group communications for resource constrained devices. Inter-

national Journal of Space-Based and Situated Computing, 5(4):187–200,

January 2015. Publisher: Inderscience Publishers.

[BL78] V. Barnett and T. Lewis. Outliers in statistical data. In Wiley series in

probability and mathematical statistics. John Wiley & Sons Ltd., 2nd edi-

tion., 1978.

[BPS+02] A. Bivens, C. Palagiri, R. Smith, B. Szymanski, and M. Embrechts.

NETWORK-BASED INTRUSION DETECTION USING NEURAL NET-

WORKS. page 6, 2002.

[BS17] H. Bostani and M. Sheikhan. Hybrid of anomaly-based and specification-

based IDS for Internet of Things using unsupervised OPF based on

MapReduce approach. Computer Communications, 98(Supplement

C):52–71, January 2017.

[BSP+11] S. Babar, A. Stango, N. Prasad, J. Sen, and R. Prasad. Proposed embed-

ded security framework for Internet of Things (IoT). In 2011 2nd In-

ternational Conference on Wireless Communication, Vehicular Technology,

Information Theory and Aerospace Electronic Systems Technology (Wireless

VITAE), pages 1–5, February 2011.

[BTC15] S. S. Basu, S. Tripathy, and A. R. Chowdhury. Design challenges and

security issues in the Internet of Things. In 2015 IEEE Region 10 Sympo-

sium, pages 90–93, May 2015.

166

Bibliography

[BWH18] E. Benkhelifa, T. Welsh, and W. Hamouda. A Critical Review of Practices

and Challenges in Intrusion Detection Systems for IoT: Towards Univer-

sal and Resilient Systems. IEEE Communications Surveys Tutorials, pages

1–1, June 2018.

[CBO17] R. E. Crossler, F. Bélanger, and D. Ormond. The quest for complete

security: An empirical analysis of users’ multi-layered protection from

security threats. Information Systems Frontiers, April 2017.

[CDL16] M. Conti, N. Dragoni, and V. Lesyk. A Survey of Man In The Middle At-

tacks. IEEE Communications Surveys Tutorials, 18(3):2027–2051, 2016.

[Cis12] Cisco. A Cisco Guide to Defending Against Distributed Denial of Service

Attacks, October 2012.

[CMO12] P. Casas, J. Mazel, and P. Owezarski. Unsupervised Network Intrusion

Detection Systems: Detecting the Unknown without Knowledge. Com-

puter Communications, 35(7):772–783, April 2012.

[CMZ+19] N. Chaabouni, M. Mosbah, A. Zemmari, C. Sauvignac, and P. Faruki. Net-

work Intrusion Detection for IoT Security based on Learning Techniques.

IEEE Communications Surveys Tutorials, 2019.

[CMZS19] N. Chaabouni, M. Mosbah, A. Zemmari, and C. Sauvignac. An Intrusion

Detection System for the OneM2M Service Layer based on Edge Machine

Learning. 18th International Conference on Ad Hoc Networks and Wireless,

AdHoc-Now 2019 Luxembourg, pages 508–523, October 2019.

[CMZS20] N. Chaabouni, M. Mosbah, A. Zemmari, and C. Sauvignac. A OneM2M

Intrusion Detection and Prevention System based on Edge Machine

Learning. IEEE/IFIP Network Operations and Management Symposium

(NOMS), April 2020.

167

Bibliography

[CN12] N.S. Chandolikar and V.D. Nandavadekar. Selection of Relevant Feature

for Intrusion Attack Classification by Analyzing KDD Cup 99. MIT Inter-

national Journal of Computer Science & Information Technology, 2(2):85–

90, August 2012.

[CNM16] V. L. Cao, M. Nicolau, and J. McDermott. A Hybrid Autoencoder and

Density Estimation Model for Anomaly Detection. In J. Handl, E. Hart,

P. R. Lewis, M. López-Ibáñez, G. Ochoa, and B. Paechter, editors, Parallel

Problem Solving from Nature – PPSN XIV, Lecture Notes in Computer

Science, pages 717–726, Cham, 2016. Springer International Publishing.

[CPNS15] C. Cervantes, D. Poplade, M. Nogueira, and A. Santos. Detection of sink-

hole attacks for supporting secure routing on 6lowpan for Internet of

Things. In 2015 IFIP/IEEE International Symposium on Integrated Net-

work Management (IM), pages 606–611, May 2015.

[DA01] P. Dayan and L. F. Abbott. Theoretical Neuroscience: Computational and

Mathematical Modeling of Neural Systems. 2001.

[dar] 1999 DARPA Intrusion Detection Evaluation Dataset | MIT Lincoln Lab-

oratory (https://www.ll.mit.edu/r-d/datasets/1999-darpa-intrusion-

detection-evaluation-dataset).

[DB15] S. K. Datta and C. Bonnet. A lightweight framework for efficient M2M

device management in oneM2M architecture. In 2015 International Con-

ference on Recent Advances in Internet of Things (RIoT), pages 1–6, April

2015. ISSN: null.

[DC17] A. A. Diro and N. Chilamkurti. Distributed attack detection scheme us-

ing deep learning approach for Internet of Things. Future Generation

Computer Systems, September 2017.

168

Bibliography

[DCS14] H. A. Dau, V. Ciesielski, and A. Song. Anomaly Detection Using Repli-

cator Neural Networks Trained on Examples of One Class. In G. Dick,

W. N. Browne, P. Whigham, M. Zhang, L. T. Bui, H. Ishibuchi, Y. Jin,

X. Li, Y. Shi, P. Singh, K. C. Tan, and K. Tang, editors, Simulated Evolu-

tion and Learning, Lecture Notes in Computer Science, pages 311–322,

Cham, 2014. Springer International Publishing.

[def] DEF CON R© Hacking Conference - Capture the Flag Archive

(https://www.defcon.org/html/links/dc-ctf.html).

[Dem08] Arthur P. Dempster. Upper and Lower Probabilities Induced by a Multi-

valued Mapping. In Roland R. Yager and L. Liu, editors, Classic Works of

the Dempster-Shafer Theory of Belief Functions, Studies in Fuzziness and

Soft Computing, pages 57–72. Springer, Berlin, Heidelberg, 2008.

[DLBM14] X. Ding, Y. Li, A. Belatreche, and L. P. Maguire. An experimental evalua-

tion of novelty detection methods. Neurocomputing, 135:313–327, July

2014.

[DLY+18] L. Deng, D. Li, X. Yao, D. Cox, and H. Wang. Mobile network intrusion

detection for IoT system based on transfer learning algorithm. Cluster

Computing, January 2018.

[DM04] C. Douligeris and A. Mitrokotsa. DDoS attacks and defense mechanisms:

classification and state-of-the-art. Computer Networks, 44(5):643–666,

April 2004.

[EFGK03] P. T. Eugster, P. A. Felber, R. Guerraoui, and A. M. Kermarrec. The many

faces of publish/subscribe. ACM computing surveys (CSUR) 35, pages

114–131, 2003.

[ERKL16] S. M. Erfani, S. Rajasegarar, S. Karunasekera, and C. Leckie. High-

dimensional and large-scale anomaly detection using a linear one-class

169

Bibliography

SVM with deep learning. Pattern Recognition, 58:121–134, October

2016.

[FBF77] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An Algorithm for Finding

Best Matches in Logarithmic Expected Time. ACM Trans. Math. Softw.,

3(3):209–226, September 1977.

[FBL+15] P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M. S. Gaur, M. Conti, and

M. Rajarajan. Android Security: A Survey of Issues, Malware Penetra-

tion, and Defenses. IEEE Communications Surveys Tutorials, 17(2):998–

1022, 2015.

[fCC17] Canadian Institute for Cybersecurity (CIC). IDS 2017 | Datasets | Re-

search | Canadian Institute for Cybersecurity | UNB, 2017.

[FEE+18] G. Francia, L. Ertaul, L. H. Encinas, E. El-Sheikh, and K. Daimi. Computer

and Network Security Essentials. Springer Publishing Company, Incorpo-

rated, 2018.

[FK05] F. Fuentes and D. C. Kar. Ethereal vs. Tcpdump: A Comparative Study

on Packet Sniffing Tools for Educational Purpose. J. Comput. Sci. Coll.,

20(4):169–176, April 2005.

[FK14] Y. Fu and O. Koné. Security and Robustness by Protocol Testing. IEEE

Systems Journal, 8(3):699–707, September 2014.

[FMA+18] M. A. Ferrag, L. Maglaras, A. Argyriou, D. Kosmanos, and H. Janicke. Se-

curity for 4G and 5G cellular networks: A survey of existing authentica-

tion and privacy-preserving schemes. Journal of Network and Computer

Applications, 101:55–82, January 2018.

[Fou] The Apache Software Foundation. ActiveMQ

(https://activemq.apache.org/how-does-a-queue-compare-to-a-topic).

170

Bibliography

[Fou17] The Open Information Security Foundation. Suricata (https://suricata-

ids.org/), 2017.

[FTM+17] Z. M. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, and

K. Mizutani. State-of-the-Art Deep Learning: Evolving Machine Intel-

ligence Toward Tomorrow’s Intelligent Network Traffic Control Systems.

IEEE Communications Surveys Tutorials, 19(4):2432–2455, 2017.

[FYC+17] Y. Fu, Z. Yan, J. Cao, O. Koné, and X. Cao. An Automata Based Intrusion

Detection Method for Internet of Things, May 2017.

[FZHH14] W. Feng, Q. Zhang, G. Hu, and J. X. Huang. Mining network data for

intrusion detection through combining SVMs with ant colony networks.

Future Generation Computer Systems, 37:127–140, July 2014.

[GAL+20] J. Gajrani, U. Agarwal, V. Laxmi, B. Bezawada, M. S. Gaur, M. Tripathi,

and A. Zemmari. EspyDroid+: Precise reflection analysis of android

apps. Computers & Security, 90:101688, March 2020.

[GBBK12] P. Gogoi, M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita. Packet

and Flow Based Network Intrusion Dataset. In Contemporary Computing,

Communications in Computer and Information Science, pages 322–334.

Springer, Berlin, Heidelberg, August 2012.

[GBMP13] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami. Internet of Things

(IoT): A vision, architectural elements, and future directions. Future

Generation Computer Systems, 29(7):1645–1660, September 2013.

[GLT+18] J. Gajrani, V. Laxmi, M. Tripathi, M. S. Gaur, D. R. Sharma, A. Zemmari,

M. Mosbah, and M. Conti. Unraveling Reflection Induced Sensitive Leaks

in Android Apps. In N. Cuppens, F. Cuppens, J. L. Lanet, A. Legay, and

J. Garcia-Alfaro, editors, Risks and Security of Internet and Systems, Lec-

171

Bibliography

ture Notes in Computer Science, pages 49–65, Cham, 2018. Springer

International Publishing.

[GMS15] J. Granjal, E. Monteiro, and J. Sá Silva. Security for the Internet of

Things: A Survey of Existing Protocols and Open Research Issues. IEEE

Communications Surveys Tutorials, 17(3):1294–1312, 2015.

[GP18] Jorge Granjal and Artur Pedroso. An Intrusion Detection and Prevention

Framework for Internet-Integrated CoAP WSN, 2018. ISSN: 1939-0114

Library Catalog: www.hindawi.com Pages: e1753897 Publisher: Hin-

dawi Volume: 2018.

[GR14] S. Game and C. Raut. Protocols for detection of node replication attack

on wireless sensor network. Journal of Computer Engineering, 16(1):01–

11, January 2014.

[Gra14] A. Grau. The Internet of Secure Things – What is Really Needed to

Secure the Internet of Things? | Icon Labs, March 2014.

[GSLG16] A. Gharib, I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani. An Evalu-

ation Framework for Intrusion Detection Dataset. In 2016 International

Conference on Information Science and Security (ICISS), pages 1–6, De-

cember 2016.

[HAFP14] F. Hosseinpour, P. V. Amoli, F. Farahnakian, and J. Plosila. Artificial

Immune System Based Intrusion Detection : Innate Immunity using an

Unsupervised Learning Approach. JDCTA Int. J. Digit. Content Technol.

its Appl., 8(5):1–12, October 2014.

[HB99] S Hettich and S.D. Bay. KDD Cup 1999 Data - The UCI KDD Archive.

Irvine, CA: University of California, Department of Information and

Computer Science., 1999.

172

Bibliography

[HBB+14] N. Hoque, M. H. Bhuyan, R. C. Baishya, D. K. Bhattacharyya, and J. K.

Kalita. Network attacks: Taxonomy, tools and systems. Journal of Net-

work and Computer Applications, 40:307–324, April 2014.

[HBH+16] E. Hodo, X. Bellekens, A. Hamilton, P. L. Dubouilh, E. Iorkyase, C. Tach-

tatzis, and R. Atkinson. Threat analysis of IoT networks using artificial

neural network intrusion detection system. In 2016 International Sympo-

sium on Networks, Computers and Communications (ISNCC), pages 1–6,

May 2016.

[HBH+17] E. Hodo, X. Bellekens, A. Hamilton, C. Tachtatzis, and R. Atkinson. Shal-

low and Deep Networks Intrusion Detection System: A Taxonomy and

Survey. arXiv:1701.02145 [cs], January 2017. arXiv: 1701.02145.

[Hen16] K. Hengst. DDoS through the Internet of Things An analysis determining

the potential power of a DDoS attack using IoT devices, July 2016.

[HFH+09] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.

Witten. The WEKA Data Mining Software: An Update. SIGKDD Explor.

Newsl., 11(1):10–18, November 2009.

[HFH15] M. M. Hossain, M. Fotouhi, and R. Hasan. Towards an Analysis of Secu-

rity Issues, Challenges, and Open Problems in the Internet of Things. In

2015 IEEE World Congress on Services, pages 21–28, June 2015. ISSN:

2378-3818.

[HHS+17] W. Haider, J. Hu, J. Slay, B. P. Turnbull, and Y. Xie. Generating realistic

intrusion detection system dataset based on fuzzy qualitative modeling.

Journal of Network and Computer Applications, 87:185–192, June 2017.

[HLDGMG17] Arash Habibi Lashkari, Gerard Draper Gil, Mohammad Saiful Islam Ma-

mun, and Ali A. Ghorbani. Characterization of Tor Traffic using Time

173

Bibliography

based Features:. In Proceedings of the 3rd International Conference on In-

formation Systems Security and Privacy, pages 253–262, Porto, Portugal,

2017. SCITEPRESS - Science and Technology Publications.

[HMR+13] F. Hosseinpour, A. Meulenberg, S. Ramadass, P. V. Vahdani Amoli, and

Z. Moghaddasi. Distributed Agent Based Model for Intrusion Detection

System Based on Artificial Immune System. JDCTA Int. J. Digit. Content

Technol. its Appl, 7:206–214, May 2013.

[Hol16] D. Holmes. What’s the Fix for IoT DDoS Attacks? | SecurityWeek.Com,

October 2016.

[HVAP+16] F. Hosseinpour, P. Vahdani Amoli, J. Plosila, T. Hämäläinen, and H. Ten-

hunen. An Intrusion Detection System for Fog Computing and IoT based

Logistic Systems using a Smart Data Approach. International Journal of

Digital Content Technology and its Applications, 10, December 2016.

[HZS06] G. B. Huang, Q. Y. Zhu, and C. K. Siew. Extreme learning machine:

Theory and applications. Neurocomputing, 70(1):489–501, December

2006.

[IDC15] United Nations IDC, Intel. A Guide to the Internet of Things Infographic,

February 2015.

[IJL16] I. B. Ida, A. Jemai, and A. Loukil. A survey on security of IoT in the

context of eHealth and clouds. In 2016 11th International Design Test

Symposium (IDT), pages 25–30, Hammamet, Tunisia, December 2016.

[IKMM+19] P. Illy, G. Kaddoum, C. Miranda Moreira, K. Kaur, and S. Garg. Securing

Fog-to-Things Environment Using Intrusion Detection System Based On

Ensemble Learning. In 2019 IEEE Wireless Communications and Network-

ing Conference (WCNC), pages 1–7, April 2019. ISSN: 1525-3511.

174

Bibliography

[isc] Datasets | Research | Canadian Institute for Cybersecurity | UNB

(https://www.unb.ca/cic/datasets/index.html).

[JC14] C. Jun and C. Chi. Design of Complex Event-Processing IDS in Internet of

Things. In 2014 Sixth International Conference on Measuring Technology

and Mechatronics Automation, pages 226–229, January 2014.

[JMG95] N. Japkowicz, C. Myers, and M. Gluck. A novelty detection approach to

classification. IJCAI, pages 518–523, August 1995.

[JRP+15] N. Jiang, W. Rong, B. Peng, Y. Nie, and Z. Xiong. An empirical analysis of

different sparse penalties for autoencoder in unsupervised feature learn-

ing. In 2015 International Joint Conference on Neural Networks (IJCNN),

pages 1–8, July 2015. ISSN: 2161-4407.

[JS14] V. Jumutc and J. A. K. Suykens. Multi-Class Supervised Novelty De-

tection. IEEE Transactions on Pattern Analysis and Machine Intelligence,

36(12):2510–2523, December 2014. Conference Name: IEEE Transac-

tions on Pattern Analysis and Machine Intelligence.

[KCK+13] P. Kasinathan, G. Costamagna, H. Khaleel, C. Pastrone, and M. A. Spir-

ito. DEMO: An IDS Framework for Internet of Things Empowered by

6lowpan. In Proceedings of the 2013 ACM SIGSAC Conference on Com-

puter & Communications Security, CCS ’13, pages 1337–1340, New York,

NY, USA, November 2013. ACM.

[Kep16] N. Kephart. The DDoS Attack on Dyn’s DNS Infrastructure, October

2016.

[Ker19a] Keras. Activations - Keras Documentation

(https://keras.io/activations/), May 2019.

[Ker19b] Keras. Guide to the Sequential model - Keras Documentation

(https://keras.io/getting-started/sequential-model-guide/), May 2019.

175

Bibliography

[Ker19c] Keras. Initializers - Keras Documentation (https://keras.io/initializers/),

May 2019.

[KH05] N Kayacik and M Heywood. Selecting Features for Intrusion Detection:

A Feature Relevance Analysis on KDD 99 Intrusion Detection Datasets.

In The 3rd Annual Conference on Privacy, Security and Trust (PST), 2005.

[KKSG16] C. Kolias, G. Kambourakis, A. Stavrou, and S. Gritzalis. Intrusion Detec-

tion in 802.11 Networks: Empirical Evaluation of Threats and a Public

Dataset. IEEE Communications Surveys Tutorials, 18(1):184–208, 2016.

[KMY+17] J Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and

D. Bacon. Federated Learning: Strategies for Improving Communication

Efficiency. arXiv:1610.05492 [cs], October 2017. arXiv: 1610.05492.

[KPSV13] P. Kasinathan, C. Pastrone, M. A. Spirito, and M. Vinkovits. Denial-of-

Service detection in 6lowpan based internet of things. In IEEE 9th Inter-

national Conference on Wireless and Mobile Computing, Networking and

Communications, pages pp. 600–607, 2013.

[Kra16] B. Krawczyk. Learning from imbalanced data: open challenges and fu-

ture directions. Progress in Artificial Intelligence, 5(4):221–232, Novem-

ber 2016.

[KT17] S. S. Khan and B. Taati. Detecting unseen falls from wearable devices

using channel-wise ensemble of autoencoders. Expert Systems with Ap-

plications, 87:280–290, November 2017.

[KU14] S. Krushang and H. Upadhyay. A Survey: DDOS Attack on Internet of

Things. International Journal of Engineering Research and Development,

Volume 10(Issue 11):58–63, November 2014.

[Kum14] G. Kumar. Evaluation Metrics for Intrusion Detection Systems - A Study.

(11):7, November 2014.

176

Bibliography

[KW03] C. Karlof and D. Wagner. Secure routing in wireless sensor networks: at-

tacks and countermeasures. In Proceedings of the First IEEE International

Workshop on Sensor Network Protocols and Applications, 2003., pages

113–127, May 2003.

[KW14] D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes.

arXiv:1312.6114 [cs, stat], May 2014. arXiv: 1312.6114.

[Lir16] S. Liron. Mirai: The IoT Bot that Took Down Krebs and Launched a Tbps

Attack on OVH, October 2016.

[LKT15] W. C. Lin, S. W. Ke, and C. F. Tsai. CANN: An intrusion detection system

based on combining cluster centers and nearest neighbors. Knowledge-

Based Systems, 78:13–21, April 2015.

[LL05] K. Leung and C. Leckie. Unsupervised Anomaly Detection in Network

Intrusion Detection Using Clusters. Proceedings of the Twenty-eighth Aus-

tralasian conference on Computer Science, 38:333–342, 2005.

[LLL+10] B. Lei, X. Li, Z. Liu, C. Morisset, and V. Stolz. Robustness testing for

software components. Science of Computer Programming, 75(10):879–

897, October 2010.

[LMCSEL17] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret. Condi-

tional Variational Autoencoder for Prediction and Feature Recovery Ap-

plied to Intrusion Detection in IoT. Sensors, 17(9):1967, August 2017.

[LTVNF16] A. E. Lazzaretti, D. M. J. Tax, H. Vieira Neto, and V. H. Ferreira. Nov-

elty detection and multi-class classification in power distribution voltage

waveforms. Expert Systems with Applications, 45:322–330, March 2016.

[MC03] M. V. Mahoney and P. K. Chan. An Analysis of the 1999 DARPA/Lincoln

Laboratory Evaluation Data for Network Anomaly Detection. In Re-

177

Bibliography

cent Advances in Intrusion Detection, Lecture Notes in Computer Science,

pages 220–237. Springer, Berlin, Heidelberg, September 2003.

[Mic05] Microsoft. The STRIDE Threat Model, 2005.

[MKH93] M. M. Moya, M. W. Koch, and L. D. Hostetler. One-class classifier net-

works for target recognition applications. NASA STI/Recon Technical Re-

port N, 93, 1993.

[MPB+13] C. Modi, D. Patel, B. Borisaniya, H. Patel, A. Patel, and M. Rajarajan. A

survey of intrusion detection techniques in Cloud. Journal of Network

and Computer Applications, 36(1):42–57, January 2013.

[MPVT17] P. Mishra, E. S. Pilli, V. Varadharajan, and U. Tupakula. Intrusion detec-

tion techniques in cloud environment: A survey. Journal of Network and

Computer Applications, 77:18–47, January 2017.

[MRB+18] M. S. Mahdavinejad, M. Rezvan, M. Barekatain, P. Adibi, P. Barnaghi,

and A. P. Sheth. Machine learning for internet of things data analysis:

a survey. Digital Communications and Networks, 4(3):161–175, August

2018.

[MRMB17] D. Midi, A. Rullo, A. Mudgerikar, and E. Bertino. Kalis A System for

Knowledge Driven Adaptable Intrusion Detection for the Internet of

Things. In 2017 IEEE 37th International Conference on Distributed Com-

puting Systems (ICDCS), pages 656–666, June 2017.

[MS15] N. Moustafa and J. Slay. UNSW-NB15: a comprehensive data set for

network intrusion detection systems (UNSW-NB15 network data set).

In 2015 Military Communications and Information Systems Conference

(MilCIS), pages 1–6, November 2015.

178

Bibliography

[MTC18] N. Moustafa, B. Turnbull, and K. R. Choo. An Ensemble Intrusion Detec-

tion Technique based on proposed Statistical Flow Features for Protect-

ing Network Traffic of Internet of Things. IEEE Internet of Things Journal,

pages 1–1, September 2018.

[MVTP18] P. Mishra, V. Varadharajan, U. Tupakula, and E. S. Pilli. A Detailed In-

vestigation and Analysis of using Machine Learning Techniques for In-

trusion Detection. IEEE Communications Surveys Tutorials, pages 1–1,

June 2018.

[MYAZ15] R. Mahmoud, T. Yousuf, F. Aloul, and I. Zualkernan. Internet of things

(IoT) security: Current status, challenges and prospective measures. In

2015 10th International Conference for Internet Technology and Secured

Transactions (ICITST), pages 336–341, December 2015.

[NFP10] H. Nguyen, K. Franke, and S. Petrovic. Improving Effectiveness of Intru-

sion Detection by Correlation Feature Selection. In 2010 International

Conference on Availability, Reliability and Security, pages 17–24, Febru-

ary 2010.

[Ng11] A. Ng. Sparse autoencoder. CS294A Lecture notes 72.2011 (1-19), 2011.

[NMM+19] T. D. Nguyen, S. Marchal, M. Miettinen, H. Fereidooni, N. Asokan, and

A. R. Sadeghi. DÏoT: A Federated Self-learning Anomaly Detection Sys-

tem for IoT. In 2019 IEEE 39th International Conference on Distributed

Computing Systems (ICDCS), pages 756–767, July 2019. ISSN: 2575-

8411.

[noaa] ADFA-IDS-DATASET (https://www.unsw.adfa.edu.au/unsw-canberra-

cyber/cybersecurity/ADFA-IDS-Datasets/).

[noab] EtherApe, a graphical network monitor

(https://etherape.sourceforge.io/).

179

Bibliography

[noac] Ettercap Home Page (https://www.ettercap-project.org/).

[noad] Network Information Management and Security Group (NIMS)

(https://projects.cs.dal.ca/projectx/Download.html).

[noae] scikit-learn: machine learning in Python — scikit-learn 0.22.2 documen-

tation (https://scikit-learn.org/stable/).

[noaf] Wireshark · Go Deep. (https://www.wireshark.org/).

[noa16] NSL-KDD | Datasets | Research | Canadian Institute for Cybersecurity |

UNB, 2016.

[noa17a] ARGUS- Auditing Network Activity, 2017.

[noa17b] Metasploit | Penetration Testing Software, Pen Testing Security, 2017.

[noa18] CSE-CIC-IDS2018 | Datasets | Research | Canadian Institute for Cyber-

security | UNB, 2018.

[NSB16] M. Nobakht, V. Sivaraman, and R. Boreli. A Host-Based Intrusion Detec-

tion and Mitigation Framework for Smart Home IoT Using OpenFlow. In

2016 11th International Conference on Availability, Reliability and Secu-

rity (ARES), pages 147–156, August 2016.

[One16] OneM2M. TS-0004-V2.7.1 Service Layer Core Protocol Specification.

page 427, August 2016.

[One18a] OneM2M. TS-0001-V2.18.1 Functional Architecture. page 427, March

2018.

[One18b] OneM2M. TS-0003-V2.12.1 Security Solutions. page 427, March 2018.

[One19] OneM2M. oneM2m - Home (http://www.onem2m.org/), April 2019.

180

Bibliography

[Ora] Oracle. Java Message Service Concepts - The Java EE 6 Tutorial

(https://docs.oracle.com/javaee/6/tutorial/doc/bncdq.html).

[PCCT14] M. A. F. Pimentel, D. A. Clifton, L. Clifton, and L. Tarassenko. A review

of novelty detection. Signal Processing, 99:215–249, June 2014.

[PF09] J. P. Papa and A. X. Falcão. A Learning Algorithm for the Optimum-Path

Forest Classifier. In A. Torsello, F. Escolano, and L. Brun, editors, Graph-

Based Representations in Pattern Recognition, Lecture Notes in Computer

Science, pages 195–204. Springer Berlin Heidelberg, May 2009.

[PJ14] B. Prabadevi and N. Jeyanthi. Distributed Denial of service attacks and

its effects on Cloud environment- a survey. In The 2014 International

Symposium on Networks, Computers and Communications, pages 1–5,

June 2014.

[PJK+16] H. H. Pajouh, R. Javidan, R. Khayami, D. Ali, and K. K. R. Choo. A

Two-layer Dimension Reduction and Two-tier Classification Model for

Anomaly-Based Intrusion Detection in IoT Backbone Networks. IEEE

Transactions on Emerging Topics in Computing, PP(99):1–1, November

2016.

[PKRM12] S. Patil, P. Kulkarni, P. Rane, and B.B Meshram. IDS vs IPS. International

Journal of Computer Networks and Wireless Communications, V 2(Issue

1), 2012.

[PP07] A. Patcha and J. M. Park. An overview of anomaly detection techniques:

Existing solutions and latest technological trends. Computer Networks,

51(12):3448–3470, August 2007.

[pre] Prediction Market (https://predict.org/).

181

Bibliography

[PSS18] S. Prabavathy, K. Sundarakantham, and S. M. Shalinie. Design of cogni-

tive fog computing for intrusion detection in Internet of Things. Journal

of Communications and Networks, 20(3):291–298, June 2018.

[PTPB10] C. R. Perez-Toro, R. K. Panta, and S. Bagchi. RDAS: Reputation-Based

Resilient Data Aggregation in Sensor Network. In 2010 7th Annual IEEE

Communications Society Conference on Sensor, Mesh and Ad Hoc Commu-

nications and Networks (SECON), pages 1–9, June 2010. ISSN: 2155-

5494.

[Pug16] J. F. Puget. What Is Machine Learning? (IT Best Kept Secret Is Optimiza-

tion), May 2016.

[Qui86] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–

106, March 1986.

[Qui14] J. R. Quinlan. C4.5: Programs for Machine Learning. Elsevier, June 2014.

Google-Books-ID: b3ujBQAAQBAJ.

[RCF09] L. M. Rocha, F. A. M. Cappabianco, and A. X. Falcão. Data

clustering as an optimum-path forest problem with appli-

cations in image analysis. International Journal of Imag-

ing Systems and Technology, 19(2):50–68, 2009. _eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1002/ima.20191.

[RG97] G. Ritter and M. T. Gallegos. Outliers in statistical pattern recogni-

tion and an application to automatic chromosome classification. Pattern

Recognition Letters, 18(6):525–539, June 1997.

[Rif14] J. Rifkin. The Zero Marginal Cost Society: The Internet of Things, the

Collaborative Commons, and the Eclipse of Capitalism: Book. April

2014.

182

Bibliography

[Ros14] C. Rossow. Amplification hell: Revisiting network protocols for DDoS

abuse. Network and Distributed System Security Symposium, February

2014.

[RP18] S. Rathore and J. H. Park. Semi-supervised learning based distributed

attack detection framework for IoT. Applied Soft Computing, 72:79–89,

November 2018.

[RWV13] S. Raza, L. Wallgren, and T. Voigt. SVELTE: Real-time intrusion detection

in the Internet of Things. Ad Hoc Networks, 11(8):2661–2674, November

2013.

[Sal94] S. L. Salzberg. C4.5: Programs for Machine Learning by J. Ross Quinlan.

Morgan Kaufmann Publishers, Inc., 1993. Machine Learning, 16(3):235–

240, September 1994.

[SAU17] A. K. Sikder, H. Aksu, and A S. Uluagac. 6thsense: A Context-aware

Sensor-based Attack Detector for Smart Devices. 26th USENIX Security

Symposium (USENIX Security 17), page 19, August 2017.

[SB16] M. Sheikhan and H. Bostani. A hybrid intrusion detection architecture

for Internet of things. In 2016 8th International Symposium on Telecom-

munications (IST), pages 601–606, September 2016.

[SB17] M. Sheikhan and H. Bostani. A Security Mechanism for Detecting Intru-

sions in Internet of Things Using Selected Features Based on MI-BGSA.

International Journal of Information & Communication Technology Re-

search, 9(2):53–62, October 2017.

[Sha76] G. Shafer. A Mathematical Theory of Evidence. Princeton University Press,

April 1976. Google-Books-ID: wug9DwAAQBAJ.

[SHHS] A. Sivanathan, A. Hamza, Hassan Habibi, and V. Sivaraman. UNSW

Proliferation Dataset.

183

Bibliography

[SHLG18] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani. To-

ward Generating a New Intrusion Detection Dataset and Intrusion Traf-

fic Characterization:. In Proceedings of the 4th International Conference

on Information Systems Security and Privacy, pages 108–116, Funchal,

Madeira, Portugal, 2018. SCITEPRESS - Science and Technology Publi-

cations.

[SHM+16] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, George van den

Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-

vam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham,

Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach,

Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering

the game of Go with deep neural networks and tree search. Nature,

529(7587):484–489, January 2016.

[SJS15] L. Sujihelen, C. Jayakumar, and C. S. Singh. Detecting Node Replication

Attacks in Wireless Sensor Networks: Survey. Indian Journal of Science

and Technology, 8(16), July 2015.

[SLSGZ19] S. Saharan, V. Laxmi, M. Singh Gaur, and A. Zemmari. Privacy Preserv-

ing Data Offloading Based on Transformation. In A. Zemmari, M. Mos-

bah, N. Cuppens-Boulahia, and F. Cuppens, editors, Risks and Security of

Internet and Systems, Lecture Notes in Computer Science, pages 86–92,

Cham, 2019. Springer International Publishing.

[SRGCP15] S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini. Security, privacy

and trust in Internet of Things: The road ahead. Computer Networks,

76:146–164, January 2015.

[SSG+17] A. Sivanathan, D. Sherratt, H. H. Gharakheili, A. Radford, C. Wije-

nayake, A. Vishwanath, and V. Sivaraman. Characterizing and classi-

fying IoT traffic in smart cities and campuses. In 2017 IEEE Conference

184

Bibliography

on Computer Communications Workshops (INFOCOM WKSHPS), pages

559–564, May 2017.

[SSJ14] S. K. Sahu, S. Sarangi, and S. K. Jena. A detail analysis on intrusion

detection datasets. In 2014 IEEE International Advance Computing Con-

ference (IACC), pages 1348–1353, February 2014.

[SSTG12] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani. Toward devel-

oping a systematic approach to generate benchmark datasets for intru-

sion detection. Computers & Security, 31(3):357–374, May 2012.

[STJ14] D. Singh, G. Tripathi, and A. J. Jara. A survey of Internet-of-Things:

Future vision, architecture, challenges and services. In 2014 IEEE World

Forum on Internet of Things (WF-IoT), pages 287–292, March 2014.

[STO+11] J. Song, H. Takakura, Y. Okabe, M. Eto, D. Inoue, and K. Nakao. Statis-

tical analysis of honeypot data and building of Kyoto 2006+ dataset for

NIDS evaluation. In Proceedings of the First Workshop on Building Analy-

sis Datasets and Gathering Experience Returns for Security, BADGERS ’11,

pages 29–36, Salzburg, Austria, April 2011. Association for Computing

Machinery.

[SU14] K. Sonar and H. Upadhyay. A Survey: DDOS Attack on Internet of

Things. International Journal of Engineering Research and Development,

10(11):58–63, 2014.

[SU16] M. Surendar and A. Umamakeswari. InDReS: An Intrusion Detection

and response system for Internet of Things with 6lowpan. In 2016 Inter-

national Conference on Wireless Communications, Signal Processing and

Networking (WiSPNET), pages 1903–1908, March 2016.

[SWS+00] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, and J.C.

Platt. Support Vector Method for Novelty Detection. In S. A. Solla, T. K.

185

Bibliography

Leen, and K. Müller, editors, Advances in Neural Information Processing

Systems 12, pages 582–588. MIT Press, 2000.

[Tan03] M. Tanase. IP Spoofing: An Introduction | Symantec Connect Commu-

nity, March 2003.

[Tax02] D. M. J. Tax. One-class classification: Concept learning in the absence of

counter-examples. page 1, 2002.

[tcp17] tcpdump. Tcpdump/Libpcap public repository, 2017.

[TDB12] P. Tsankov, M. T. Dashti, and D. Basin. SecFuzz: Fuzz-testing Security

Protocols. In Proceedings of the 7th International Workshop on Automa-

tion of Software Test, AST ’12, pages 1–7, Piscataway, NJ, USA, June

2012. IEEE Press.

[Thi17] V. L. L. Thing. IEEE 802.11 Network Anomaly Detection and Attack Clas-

sification: A Deep Learning Approach. In 2017 IEEE Wireless Communi-

cations and Networking Conference (WCNC), pages 1–6, March 2017.

[TKG+17] G. Tuna, D. G. Kogias, V. C. Gungor, C. Gezer, E. Taşkın, and E. Ayday.

A survey on information security threats and solutions for Machine to

Machine (M2m) communications. Journal of Parallel and Distributed

Computing, 109:142–154, November 2017.

[Tre96] J. Tretmans. Conformance Testing with Labelled Transition Systems: Im-

plementation Relations and Test Generation, volume 29 of Computer Net-

works. 1996.

[Vap13] V. Vapnik. The Nature of Statistical Learning Theory. Springer Science &

Business Media, June 2013. Google-Books-ID: EqgACAAAQBAJ.

186

Bibliography

[VF14] O. Vermesan and P. Friess. Internet of Things Applications - From Re-

search and Innovation to Market Deployment Book. River Publishers,

June 2014.

[VHS11] A. R. Vasudevan, E. Harshini, and S. Selvakumar. SSENet-2011: A Net-

work Intrusion Detection System dataset and its comparison with KDD

CUP 99 dataset. In 2011 Second Asian Himalayas International Confer-

ence on Internet (AH-ICI), pages 1–5, November 2011.

[WAB+17] C. Y. Wu, A. Ahmed, A. Beutel, A. J. Smola, and H. Jing. Recurrent

Recommender Networks. In Proceedings of the Tenth ACM International

Conference on Web Search and Data Mining, WSDM ’17, pages 495–503,

Cambridge, United Kingdom, February 2017. Association for Computing

Machinery.

[WF02] I. H. Witten and E. Frank. Data mining: practical machine learning

tools and techniques with Java implementations. ACM SIGMOD Record,

31(1):76–77, March 2002.

[WJ17] L. Wang and R. Jones. Big Data Analytics for Network Intrusion Detec-

tion: A Survey. International Journal of Networks and Communications,

7(1):24–31, 2017.

[WOM14] O. A. Wahab, H. Otrok, and A. Mourad. A cooperative watchdog model

based on Dempster–Shafer for detecting misbehaving vehicles. Computer

Communications, 41:43–54, March 2014.

[WRV13] L. Wallgren, S. Raza, and T. Voigt. Routing Attacks and Countermeasures

in the RPL-Based Internet of Things. International Journal of Distributed

Sensor Networks, 9(8):794326, August 2013.

[WS84] Q. R. Wang and C. Y. Suen. Analysis and Design of a Decision Tree

Based on Entropy Reduction and Its Application to Large Character Set

187

Bibliography

Recognition. IEEE Transactions on Pattern Analysis & Machine Intelli-

gence, 4:406–417, 1984.

[XL05] C. Xiang and S. M. Lim. Design of Multiple-Level Hybrid Classifier for

Intrusion Detection System. In 2005 IEEE Workshop on Machine Learning

for Signal Processing, pages 117–122, September 2005.

[YWY+17] Y. Yang, L. Wu, G. Yin, L. Li, and H. Zhao. A Survey on Security and

Privacy Issues in Internet-of-Things. IEEE Internet of Things Journal,

4(5):1250–1258, October 2017.

[ZCW+14] Z. Zhang, M. C. Y. Cho, C. Wang, C. Hsu, C. Chen, and S. Shieh. IoT Se-

curity: Ongoing Challenges and Research Opportunities. In 2014 IEEE

7th International Conference on Service-Oriented Computing and Applica-

tions, pages 230–234, November 2014.

[ZFS17] V. Zlomislić, K. Fertalj, and V. Sruk. Denial of service attacks, defences

and research challenges. Cluster Computing, 20(1):661–671, March

2017.

[ZMKdA17] B. B. Zarpelão, R. S. Miani, C. T. Kawakani, and S. C. de Alvarenga. A

survey of intrusion detection in Internet of Things. Journal of Network

and Computer Applications, 84:25–37, April 2017.

[ZYX+08] Z. Zeng, H. B. Yu, H. R. Xu, Y. Q. Xie, and J. Gao. Fast training Support

Vector Machines using parallel sequential minimal optimization. vol-

ume 1, pages 997–1001, November 2008.

188

	Acknowledgements
	Abstract
	Résumé
	1 Introduction and IoT Security Overview
	1.1 Overview of Threats and Security Mechanisms in IoT
	1.1.1 Categorization of IoT threats
	1.1.1.1 IoT threats categorization by layers
	1.1.1.2 IoT threats categorization by challenges

	1.1.2 Traditional defense mechanisms

	1.2 Motivation and Problem Statement
	1.3 Contributions
	1.4 Organization of the dissertation

	2 State of the Art of Network Intrusion Detection Systems for IoT
	2.1 Network Intrusion Detection Systems
	2.1.1 State of the art of NIDS for IoT
	2.1.2 Comparison and Discussion

	2.2 Network Intrusion Detection Systems based on Learning Techniques
	2.2.1 Learning Techniques
	2.2.2 State of the art of NIDS for IoT based on ML
	2.2.3 Comparison and Discussion

	3 OneM2M Standard Security and Dataset Creation
	3.1 OneM2M Standard and Security
	3.1.1 OneM2M Architecture
	3.1.2 OneM2M Security

	3.2 OneM2M Threats
	3.2.1 Proposed Taxonomy for OneM2M Threats
	3.2.2 Attacks Implementation
	3.2.2.1 Flooding Attacks
	3.2.2.2 Amplification Attacks
	3.2.2.3 Protocol Exploit Attacks

	3.3 OneM2M Dataset
	3.3.1 State of the Art of Free Datasets
	3.3.2 OneM2M Dataset Creation
	3.3.2.1 OneM2M Dataset Features: GFlows Abstraction
	3.3.2.2 OneM2M Dataset Generation

	4 An Intrusion Detection and Prevention System for the Service Layer
	4.1 OneM2M-IDPS Challenges and Aims
	4.2 OneM2M-IDPS Strategy
	4.2.1 Data Acquisition and Features Extraction
	4.2.1.1 OneM2M Messages Sniffing
	4.2.1.2 OneM2M Features Extraction

	4.2.2 Intrusion Detection
	4.2.3 Intrusion Prevention
	4.2.3.1 Prevention Workflow
	4.2.3.2 Prevention Actions

	4.2.4 Continuous Learning

	5 Machine Learning and Deep Learning for OneM2M Intrusion Detection
	5.1 Learning Techniques Adoption and Metrics
	5.1.1 ML Adoption
	5.1.2 ML Metrics and Experimental Environment

	5.2 Experimentation of Supervised Learning Algorithms for Intrusion Detection in OneM2M
	5.2.1 Supervised ML Detections
	5.2.1.1 Description of the Algorithms
	5.2.1.2 Used Tools and Frameworks
	5.2.1.3 The First Level of ML Detection
	5.2.1.4 The Second Level of ML Detection
	5.2.1.5 The Third Level of ML Detection

	5.2.2 Effect of Dataset Size on Detection Results
	5.2.2.1 Effect of Training Dataset Size
	5.2.2.2 Effect of Balanced / Imbalanced Training Dataset on the Detection Results

	5.3 One-Class Classification Approach
	5.3.1 One-Class Methods
	5.3.2 OC-SVM
	5.3.3 AEnc, SAE and VAE
	5.3.3.1 Algorithms Description
	5.3.3.2 Threshold Determination
	5.3.3.3 Final Choice for the First Level of ML Detection
	5.3.3.4 One-Class Approach for Multi-Classification

	6 Conclusion and Perspectives
	6.1 Contributions of Research
	6.2 Limitations and Future directions

	Bibliography

