
HAL Id: tel-02953072
https://theses.hal.science/tel-02953072

Submitted on 29 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design and implementation of image processing and
compression algorithms for a miniature embedded eye

tracking system
Pavel Morozkin

To cite this version:
Pavel Morozkin. Design and implementation of image processing and compression algorithms for a
miniature embedded eye tracking system. Signal and Image processing. Sorbonne Université, 2018.
English. �NNT : 2018SORUS435�. �tel-02953072�

https://theses.hal.science/tel-02953072
https://hal.archives-ouvertes.fr

Sorbonne Université

Institut supérieur d’électronique de Paris (ISEP)

École doctorale : « Informatique, télécommunications & électronique de Paris »

Design and Implementation of Image Processing and Compression

Algorithms for a Miniature Embedded Eye Tracking System

Par Pavel MOROZKIN

Thèse de doctorat de Traitement du signal et de l’image

Présentée et soutenue publiquement le 29 juin 2018

Devant le jury composé de :

M. Ales PROCHAZKA Rapporteur

M. François-Xavier COUDOUX Rapporteur

M. Basarab MATEI Examinateur

M. Habib MEHREZ Examinateur

M
me

Maria TROCAN Directrice de thèse

M. Marc Winoc SWYNGHEDAUW Encadrant

ii

Abstract

Human-Machine Interaction (HMI) progressively becomes a part of coming future. Being an example of

HMI, embedded eye tracking systems allow user to interact with objects placed in a known environment

by using natural eye movements.

The EyeDee™ portable eye tracking solution (developed by SuriCog) is an example of an HMI-

based product, which includes Weetsy™ portable wire/wireless system (including Weetsy™ frame and

Weetsy™ board), π-Box™ remote smart sensor and PC-based processing unit running SuriDev eye/head

tracking and gaze estimation software, delivering its result in real-time to a client’s application through

SuriSDK (Software Development Kit).

Due to wearable form factor developed eye-tracking system must conform to certain constraints,

where the most important are low power consumption, low heat generation low electromagnetic

radiation, low MIPS (Million Instructions per Second), as well as support wireless eye data transmission

and be space efficient in general. Eye image acquisition, finding of the eye pupil ROI (Region Of Interest),

compression of ROI and its wireless transmission in compressed form over a medium are very beginning

steps of the entire eye tracking algorithm targeted on finding coordinates of human eye pupil. Therefore,

it is necessary to reach the highest performance possible at each step in the entire chain.

Applying of image compression allows to drastically reduce amount of data to be sent to a

remotely located PC-based processing unit performing eye tracking. However, to reach maximal

performance image compression algorithms must be executed at the same frequency as eye image

acquisition frequency (100 Hz minimum). Such a high frequency makes a certain constraints on several

compression system parameters as well as compressed eye images, where the major ones are size of

compressed eye image, quality of decompressed eye image, time needed to perform

compression/decompression, computational complexity, operating memory requirements and some

others.

In contrast with state-of-the-art general-purpose image compression systems, it is possible to

construct an entire new eye tracking application-specific image processing and compression methods,

approaches and algorithms, design and implementation of which are the goal of this thesis.

iii

Contents

Abstract ... ii

Contents .. iii

List of Figures ... v

List of Tables ... viii

List of Abbreviations ... ix

1 Introduction ... 1

1.1 Objective and Scope of the Research ... 2

1.2 Summary of the Contributions .. 2

1.3 Thesis Outline .. 4

1.4 Thesis Information ... 4

2 Theoretical Part .. 5

2.1 Introduction ... 5

2.2 Eye Tracking Specifics ... 5

2.3 Image Nature and Terminology Specifics .. 8

2.4 Image Compression Fundamentals .. 9

2.4.1 Using Advantages of Human Visual System .. 11

2.4.2 Image Compression Building Blocks .. 12

2.4.3 Image Compression Techniques (JPEG and JPEG 2000) ... 13

2.4.4 Video Compression Techniques (H.264 and H.265) ... 14

2.4.5 Image Compression Recent Improvements... 15

2.5 Machine Learning .. 17

2.6 Neural Network Fundamentals .. 19

2.6.1 Neural Network Basics ... 19

2.6.2 Multilayer Perceptron and Convolutional Neural Network ... 30

2.6.3 Some Related Work in ANNs/CNNs/DNNs .. 32

2.7 Eye Tracking System Application Specifics ... 33

2.8 Computational Complexity and Implementation Aspect .. 35

2.9 Conclusion .. 37

3 Methodology .. 39

3.1 Introduction ... 39

3.2 SuriCog's Eye Tracking Application Specifics ... 39

3.2.1 SuriCog's Eye Tracking Algorithm .. 39

3.2.2 SuriCog's Application-Specific Image Compression ... 40

3.2.3 Finding of the Eye Image Compression Algorithm Requirements 40

3.2.3.1 Finding Maximal Time of Eye Image Compression/Decompression 41

3.2.3.2 Finding Minimal Size of Compressed Eye Image.. 42

3.2.3.3 Finding Minimal Quality of Decompressed Eye Image .. 42

3.2.3.4 Considerations on Ability to Operate in Lossy Transmission Medium 43

3.3 Eye Image Compression Alternative Approaches .. 44

3.3.1 3D Modeling of Pupil Surface .. 44

3.3.2 Dictionary Based Eye Image Compression ... 46

3.3.3 Dictionary + DCT Based Eye Image Compression ... 48

3.3.4 Schemes with Shared Model ... 49

iv Contents

3.4 Eye Based Rate Distortion Optimization .. 50

3.5 Neural Network Based Approaches ... 51

3.5.1 Applying Neural Networks to the EyeDee™ Solution .. 51

3.5.2 Neural Network Based Eye Tracking (Based on Function Regression) 52

3.5.3 Feature Based Eye Image Compression (Based on Data Classification) 55

3.6 Conclusion .. 60

4 Experimental Results ... 62

4.1 Introduction ... 62

4.2 Reproducibility of the Results ... 62

4.3 SuriCog's Eye Tracking Algorithm Improvements .. 63

4.3.1 Hardware Based ROI Finder .. 63

4.4 Finding of the Eye Image Compression Algorithm Requirements ... 64

4.4.1 Finding Maximal Time of Eye Image Compression/Decompression 64

4.4.2 Finding Minimal Size of Compressed Eye Image ... 65

4.4.3 Finding Minimal Quality of Decompressed Eye Image .. 67

4.4.4 Considerations on Ability to Operate in Lossy Transmission Medium 72

4.4.5 Image Compression Basic Configurations .. 75

4.5 Experimentations with Image/Video Compression Systems .. 76

4.5.1 Available Products ... 76

4.5.2 Comparison of Image Compression Systems: JPEG, JPEG 2000 and FLIF 77

4.5.3 JPEG 2000: Comparison of Different DWTs ... 78

4.5.4 Applying of the H.264/AVC Spatial Intra-only Compression ... 83

4.6 Neural Network Based Approaches ... 84

4.6.1 Neural Network Based Eye Tracking (Based on Function Regression) 84

4.6.2 Feature Based Eye Image Compression (Based on Data Classification) 88

4.7 Conclusion .. 91

5 Conclusion and Future Work .. 93

Publications .. 95

Appendix ... 96

Bibliography ... 97

v

List of Figures

Figure 1. EyeDee™ eye tracking solution. ...1

Figure 2. Eye tracking techniques: EOG, VOG, scleral coil. ..6
Figure 3. Eye tracking illumination techniques: bright pupil and dark pupil. ...6
Figure 4. Eye tracking illumination conditions and distances. ...7

Figure 5. 1-D/2D Gaussian distributions with mean 0/(0,0) and σ=1. ...8
Figure 6. Discrete approximation to Gaussian function with σ =1. ...8

Figure 7. Examples of eye image represented as 3D signal (moving surface)...9
Figure 8. General block diagram of image/video coding system. ... 10
Figure 9. JPEG encoder scheme. .. 14

Figure 10. JPEG 2000 encoder scheme. .. 14
Figure 11. Maximal performance acceleration vs. maximal allowed approximated error. 15

Figure 12. Machine learning algorithms classification. ... 17
Figure 13. Neural network neuron scheme. .. 19

Figure 14. Example of neural network graph ... 19

Figure 15. Gradient descent operation principle... 20
Figure 16. Datasets: training dataset, test dataset and validation dataset. ... 20

Figure 17. Accuracy on training and validation datasets. .. 21
Figure 18. High-level pseudo-code: online vs. batch training. .. 22

Figure 19. Relationships between ANN building blocks. .. 22
Figure 20. Some common activation functions. .. 23
Figure 21. Activation functions used in practice. ... 24

Figure 22. ANN tasks illustration. .. 25
Figure 23. Global minima and local minima. ... 26

Figure 24. Artificial neural network types illustration. .. 27

Figure 25. Deep neural network illustration. .. 27

Figure 26. Learning rate illustration. .. 28

Figure 27. Momentum illustration. ... 28
Figure 28. Hyperparameter optimization: grid search, random search, random Latin hypercube. 29

Figure 29. Multilayer perceptron illustration. .. 31
Figure 30. Convolutional neural network architecture illustration... 32

Figure 31. Convolution visualization and example of feature maps. .. 32
Figure 32. Profile: removing eye image spatial redundancy vs. eye tracking precision error. 34
Figure 33. Comparison of several codecs in terms of time/size/quality. .. 35

Figure 34. Weetsy™ board hardware. ... 37
Figure 35. «Slider» principle of deployment of the complete eye tracking algorithm. 37

Figure 44. Profile: maximal system responsiveness vs. minimal degrease of the ET results quality. 41
Figure 45. Hardware utilization during one iteration of the eye image processing. 42

Figure 46. Test setup for finding minimal quality of decompressed eye image. 43

Figure 47. Different approaches of JPEG bit stream protection via CRC. .. 44
Figure 48. Input images represented in 3D. .. 45

Figure 49. Few examples of surface. ... 45
Figure 50. Example of 3D pupil surface rough approximation. .. 45

Figure 51. 3D visualization of minimal and maximal values of moving pupil image. 46
Figure 52. Basic hybrid codec scheme. ... 47
Figure 53. Dictionary-based codec scheme. .. 47

Figure 54. DCT applied to all image. ... 48

vi List of Figures

Figure 55. DCT applied to blocks of pixels (threshold 1e-2). ... 48

Figure 56. Plane filling curves. ... 49

Figure 57. 3D cellular automata examples. .. 49

Figure 58. Compression scheme with shared model. .. 50
Figure 59. Distributed video coding. .. 50

Figure 60. Idea of RDO based on diagonal coefficient processing. ... 51

Figure 61. Eye images: real one and generated by simulator. .. 53
Figure 62. Five ellipse parameters: center (x, y), major/minor (a/b) axis, rotation angle (φ)............... 53

Figure 63. Eye tracking approaches: image processing based and neural network based....................... 54
Figure 64. Correlation between decimated ROI image and pupil's ellipse. .. 54

Figure 65. Image compression: classical approach. ... 56
Figure 66. Image compression: neural network based approach. .. 56
Figure 67. ROI image block classification using ConvNet (convolutions + 2-layer mlp)....................... 57

Figure 68. ROI image block classification using 2-layer mlp neural network. .. 57
Figure 69. SoftMax last layer and threshold based decision... 57

Figure 70. Probability density illustration. .. 58
Figure 71. Efficiency/purity illustrated explanation... 59

Figure 72. Compressed image comparison scheme. .. 59
Figure 73. ANN training time reduction by introducing FOI corrector. .. 60
Figure 74. FOI correction + FOI compression illustration. .. 60

Figure 75. Visual representation of ROI finding in Weetsy™ board (FPGA). 63
Figure 76. Compression/decompression time assessment: JCU vs. libjpeg-turbo................................... 64

Figure 77. Size of transmitted image over measured bitrate: USB vs. Wi-Fi. 65
Figure 78. JCU assessment results: JPEG quality vs. bpp vs. PSNR. ... 66
Figure 79. Eye image number vs. pupil x coordinate (low compression ratios). 68

Figure 80. Eye image number vs. pupil y coordinate (low compression ratios). 68
Figure 81. Eye image number vs. pupil x coordinate (high compression ratios). 69

Figure 82. Eye image number vs. pupil y coordinate (high compression ratios). 69
Figure 83. Drift of pupil x/y coordinate vs. eye image compassion. .. 70

Figure 84. Drift of segmentation thresholds TLo/THi vs. eye image compassion ratio. 70

Figure 85. Successful tracking and mistracking. ... 71
Figure 86. Visual comparison of eye images with reduced bit depth. .. 71

Figure 87. Pixel bit depth reduction: uncompressed images. ... 71
Figure 88. Pixel bit depth reduction: compressed images (JPEG vs. JPEG 2000). 72

Figure 89. Computing of the CRC8 ‘in-place’ during reading of the pixels. .. 72
Figure 90. Single bufferring vs. multiple bufferring. ... 73

Figure 91. Configuration for compression of static ROI. .. 76

Figure 92. Configuration for compression of dynamic ROI. ... 76
Figure 93. Visual comparison of quality of static ROI images with selected ROI. 77

Figure 94. Visual comparison of quality of ROI images (220x220) .. 78
Figure 95. Image compression systems comparison. ... 78

Figure 96. Scaling functions, wavelets and Fourier coefficient amplitudes .. 80

Figure 97. Visual comparison of ROIs compressed with JPEG 2000 with different transform used. 82
Figure 98. Comparison of change of PSNR and bpp in time: JPEG97 vs. JPEG53. 82

Figure 99. Comparison of wavelet-similar transforms. ... 83
Figure 100. Examples of H.264/AVC spatial intra prediction modes. ... 83

Figure 101. Examples of H.264/AVC images: original, intra-predicted and residual. 84
Figure 102. Testing eye tracking approaches: image processing based vs. neural network based. 84
Figure 103. Finding the optimal number of training iterations. ... 85

Figure 104. Finding the optimal number of hidden layers. .. 85

List of Figures vii

Figure 105. ANN training (average error decrease), 40000 training iterations. 86

Figure 106. Trained ANN: average orientation coefficient (ε0) vs. number of training iterations. 87

Figure 107. Trained ANN: average orientation coefficient (ε0) vs. number of hidden layers. 87

Figure 108. Visual comparison of ellipse reconstruction (increasing degradation order). 87
Figure 109. Visual comparison of ellipse reconstruction (generalization property validation). 88

Figure 110. Eye image compression configurations. ... 90

Figure 111. Visual comparison of blocks removal quality. ... 90
Figure 112. Final eye image feature based compression configuration. .. 91

Figure 113. Head mounted eye tracking solutions. ... 96

viii

List of Tables

Table 1. Hough transform complexity to identify different objects..7

Table 2. Comparison between terms in literature: ANNs vs. statistical methods. 30
Table 3. Additional details of exact configuration used during delays measurement 42
Table 4. Hardware/software used during the research. .. 62

Table 5. Comparison of FPGA ROI finder precision. .. 64
Table 6. Derived equations for uncompressed/compressed image size/time. ... 65

Table 7. Derived SLEs for bpp and PSNR/JPEG quality. .. 66
Table 8. Six hours continuous performance test of UDP transmission. ... 72
Table 9. Results of wireless transmission bitrate measurement. .. 74

Table 10. JPEG 2000 PSNR/bpp for different ROI sizes. ... 77
Table 11. Comparison of different DWTs. ... 81

Table 12. Average ellipse similarity for different ROI sizes. .. 86
Table 13. Confusion matrixes: ‘2-layer mlp’ model vs. ‘convnet’ model. ... 88

Table 14. Average results of ROI image blocks classification quality (use of ‘2-layer mlp’ model). 88

Table 15. Average results of ROI image blocks classification quality (use of ‘convnet’ model). 89

ix

List of Abbreviations

HMI Human-Machine Interaction

HCI Human-Computer Interaction

JPEG Joint Photographic Experts Group

JPEG 2000 Joint Photographic Experts Group 2000

MPEG Moving Picture Experts Group

HVS Human Visual System

ROI Region of Interest

FOI Features of Interest

ANN Artificial Neural Network

MLP Multilayer Perceptron

CNN Convolutional Neural Network

ML Machine Learning

CMOS Complementary Metal-Oxide-Semiconductor

LED Light-Emitting Diode

MIPS Million Instructions per Second

PSNR Peak Signal-to-Noise Ratio

CODEC (codec) Coder-Decoder

CRC Cyclic Redundancy Check

Mbps Megabit per second 1 Megabit = 1e6 bits

MBps Megabyte per second 1 Megabyte = 1e6 bytes

BPP (bpp) Bits Per Pixel

dB Decibel

GOF Group of Frames

SLE System of Nonlinear Equations

JCU JPEG Codec Unit

DoF Degrees of Freedom

RDO Rate-Distortion Optimization

MCU Microcontroller Unit

FPGA Field-Programmable Gate Array

RAM Random-Access Memory

IC Integrated Circuit

DCT Discrete Cosine Transform

ET Eye Tracking

HT Head Tracking

FPU Floating Point Unit

PCCR Pupil Center Corneal Reflection

1

Chapter 1Equation Section 1

1 Introduction

To understand the impact of human’s vision during daily activities it is common practice nowadays to

study natural eye movements obtained via eye tracking [1] solutions, which are implemented as a

Human-Machine/Computer Interaction (HMI/HCI) [2] devices, which collect and exchange data with

some processing units. One of SuriCog’s flagship product is EyeDee™ (Figure 1) portable HMI-based eye

tracking solution, which is the world’s first solution using the eye as a real-time mobile digital cursor.

The EyeDee™ targets industry grade applications (e.g., maintenance), multimedia applications (e.g.,

interaction with objects placed in a known environment), decision critical applications (e.g., control

centers), ergonomic assessment [3] and also training applications (e.g., cockpit of an aircraft or a

helicopter). The EyeDee™ maintains full mobility, which results in total freedom of user’s movements

allowing user to interact with objects placed in a known environment. The solution consists of Weetsy™

portable wire/wireless system including Weetsy™ frame (performs eye image acquisition), Weetsy™

board (performs pre-processing), π-Box™ remote smart sensor (performs head localization) and PC-based

processing unit (performs post-processing) running SuriDev eye/head tracking and gaze estimation

software, which provides its results via SuriSDK™ software to application side EyeDee™ Studio software

targeted on a particular client’s project/application.

Weetsy™ wearable device π-Box™ remote smart sensor

Figure 1. EyeDee™ eye tracking solution.

The EyeDee™ algorithms allow to reconstruct:

 Center of rotation of the eye in 3D space. This center is computed on the base of 5

parameters of the pupil’s ellipse in 2D space coupled with position of the human’s head,

 6DoF-position (six Degrees of Freedom) of the human’s head in the 3D space,

 gaze (direction at which human is looking, [4]) in the 3D space.

Since the eye movements are the fastest movements that the human body is able to produce, eye

tracking solutions must be especially responsive. This immediately results in restrictions on the

algorithms used to analyze at high frequencies (>100 Hz) an eye image to find center of the pupil, as

Embedded Weetsy™ board
performs pre-processing

Compressed
eye image

(bitstream)

Miniaturized camera sensor
installed in the Weetsy™ frame
captures eye movements

Eye image

Eye data
wire/wireless
transmission

Head data
wire/wireless
transmission

PC-based
processing unit EyeDee™ software

performs eye tracking,
head localization and

gaze estimation

Eye image
compression

Weetsy™ frame detection and
3D localization

1

2

3

4

5

6

2 Introduction

well as relatively hard constraints on the software/hardware implementation of these algorithms in a

target physical hardware usually based on a low-power MCU coupled with an FPGA. One canonical

factor, which has direct impact on system responsiveness and latency, is a transmission of an eye image

obtained from a miniaturized digital camera sensor over a wireless media (Wi-Fi [5], Bluetooth [6] or

others), which has to be done in a minimum time possible (<2-3 ms). To reduce the time of eye image

transmission, it is a general practice to use image compression systems (also called ‘image coding systems’

and less often ‘image compression techniques’) [7]. To integrate a particular implementation of a selected

image compression system into the product, a set of settings (so-called ‘profile’) has to be found, which

leads in the highest overall performance of image compression system. This profile represents the results

of the tradeoff between size of compressed image (measured in bits-per-pixel or bpp), visual quality of

decompressed image (measured as PSNR in dB), time to perform image compression/decompression

(measured in milliseconds or microseconds), computational complexity (measured in MIPS), operating

memory requirements (measured in bytes) as well as overall resulted device autonomy (duration of using

of the device powered by battery without any external power source). The research presented in this

thesis is focused on solving this type of tradeoffs by accurate analysis of existed general-purpose

compression systems, followed by gradual construction and optimization of an entire new eye image

compression system especially developed for SuriCog’s EyeDee™ product.

1.1 Objective and Scope of the Research

The objective of this thesis is the development of highly efficient image processing and compression

algorithms for a miniature wireless resource constrained low-power embedded eye tracking system. The

main goal is to show that new application-specific eye image compression algorithms can be more efficient

than the general-purpose state-of-the-art image compression algorithms, used in such a standards as

JPEG [8], JPEG 2000 [9] and some others.

This thesis has three main goals:

1. Select (or propose) the most efficient eye image compression system(s) for the EyeDee™.

2. Introduce an improvements of selected (or proposed) eye image compression system(s).

3. Implement of the eye image compression system(s) in the EyeDee™ and show benefits.

This thesis is divided on five parts:

1. Introduce a research domain and application specifics (Introduction).

2. Conduct a study of state-of-the-art in image compression systems (Theoretical Part).

3. Propose new approaches dedicated to eye image compression (Methodology).

4. Show benefits of previously proposed approaches (Experimental Results).

5. Implement proposed approaches in the EyeDee™ product (Conclusion and Future Work).

1.2 Summary of the Contributions

This thesis contains following proposed contributions:

 Eye-based rate-distortion optimization. One propose an eye-based rate distortion

optimization algorithm for wavelet transform based eye image compression. It is shown that

after wavelet transform several subbands contain eye details, which have very little impact on

the eye tracking precision results. Therefore, such «less prioritized» subbands can be more

quantized (or entirely removed), while «more prioritized» subbands are less quantized.

 Eye image delivery chain performance analysis approach. One propose an approach of

performance analysis of all components of the entire «image delivery chain» (also called «image

acquisition chain»), which includes several steps: acquisition of the eye image from the camera

sensor (readout), reading of the eye image from the RAM of readout IC (FPGA based) into

the RAM of host IC (MCU based), compression of the eye image, transmission of compressed

eye image (bit stream) via several mediums to the remote side followed by decompression of

Introduction 3

the compressed eye image. It is shown that based on assessment (accurate measurement of

execution time) of each component used in each step it is possible to derive a mathematical

model (represented as set of equations), further analysis of which permits to find bottlenecks

of the «image delivery chain» and resolve them to improve the system overall performance.

 Eye image compression based on low complexity DCTs. One propose an eye image

compression approach, which is based on using of low-complexity Discrete Cosine Transform

(DCT) approximations, implemented in a multiplierless form (i.e., using only addition and

shift operations). Compared with the original DCT, DCT approximations tend to maintain

much less execution time at the expense of slight degradation of decompressed eye image

quality, which directly contributes to degradation of the eye tracking system precision error.

It is shown that it is possible to adjust level of DCT approximation, which permits to control

eye tracking system precision error in a desired range (depending on the target application)

while benefiting on the advantages of multiplierless implemented low-complexity DCT

approximations.

 Eye image compression system limits assessment. One propose an assessment of the

limits of eye image compression system. Such a limits include: minimal quality of decompressed

image could be used for the eye tracking without significant eye tracking precision loss, minimal

delay of eye image compression/decompression allowing to the eye tracking system stay

responsive, minimal size of compressed eye image allowing to use less bitrate consuming data

transmission technologies (e.g., Bluetooth or ZigBee), minimal MIPS (i.e., computational

complexity) allowing to use low power (and usually small form factor and low price) hardware,

and several other characteristics. It is shown that relying on such limits, several general purpose

image compression approaches should be excluded from the consideration on the very early

prototyping stage during design of portable wireless eye tracking system involving eye image

compression.

 Neural network based eye tracking approximation. One propose an original eye

tracking approach based on the use of neural network targeted on data regression. It was

shown that using of such approach results in complete replacement of image processing based

eye tracking algorithm coupled with geometric eye modeling by a precisely tuned and perfectly

trained neural network, which directly transforms wirelessly transmitted floating-point values

of decimated eye image (result of the 3D perspective projection of a model of rotating pupil

disk) into five floating-point parameters of pupil’s ellipse (result of the eye tracking). Such

approach allows to drastically reduce the size of the transmitted data (from Weetsy™ board to

PC-based processing unit) from the typical size of raw/compressed eye image to just 20 bytes

of five floating-point values. However, this approach has a certain eye tracking quality issues

(eye tracking system precision error).

 Feature based ROI image compression. One propose an improvement of compression of

the Region of Interest (ROI, region containing image of the human’s pupil). It was shown that

it is possible to find and remove extra information from the ROI. Such extra information has

relatively little impact on pupil’s ellipse reconstruction, hence little impact on the eye tracking

results quality. Finding of the «extra information» is done via trained neural network targeted

on data classification, i.e., classification of blocks of the ROI into two classes: «block does

contain pupil edges» (hence must be kept) and «block does not contain pupil edges» (hence

considered as «extra information» and highly compressed or entirely removed). As a result of

such approach, compressed ROI with highly compressed or entirely removed blocks has much

less size compared to originally compressed ROI, because of higher compression ratio for «extra

blocks» or less data to compress (in case of blocks removed).

 Neural network based ROI finding. One propose an original approach of the ROI finding,

which is based on using of trained neural network targeted on data classification instead of

using an original ROI finding algorithm. Original ROI finding algorithm performs multiple

4 Introduction

threshold based block scanning of the integral image and provides multiple ROI ‘candidates’

as an output (hence, there is a need to select the best ROI ‘candidate’), while neural network

based approach is targeted on the same task, but without a threshold. It was shown that

neural network based approach provides more stable results and executed more faster due since

generally obtaining results from trained neural network is usually takes less time than

execution of image processing algorithms. Potentially neural network based ROI finding can

replace currently used image processing based ROI finding.

 Foveated based eye image compression. One propose an original approach of foveated

based eye image compression, which is inspired by the ‘foveated image rendering’ i.e., a

rendering, where information, which takes most user’s attention, is rendered with maximum

quality while information, which takes less user’s attention, is rendered with minimum quality.

The user’s attention is determined via using of the eye tracking system. It was shown that this

approach can be used in the eye tracking algorithm, which takes as an input static ROI image

(cropped region of the full size image, which has such minimal vertical and horizontal

dimensions to keep maximal pupil’s vertical and horizontal positions). The static ROI image

contains (at least) two parts: preliminary found (via neural network based approach) dynamic

ROI image, which is not compressed and the rest of the image, which is compressed. In compare

with «uniformly compressed» eye image, feature based eye image compression leads to «non-

uniform compression», which immediately leads to variable bpp and less compressed eye image

size in general.

1.3 Thesis Outline

This thesis includes five parts: an introduction, which is followed by four chapters and an appendix

containing five publications. Chapter 2 is dedicated to theoretical part used in the thesis. Chapter 3

presents methodology used to conduct the research. Chapter 4 presents results, obtained on applying of

previously presented theory coupled with defined methodology. Chapter 5 concludes the thesis.

1.4 Thesis Information

This thesis is completed under the CIFRE program [10], which stands for Industrial Agreement of

Training through Research. The core idea of the program is conducting of scientific research in

collaboration between academia and industry, where academia member is ISEP institute and industrial

member is SuriCog company. The interest for the ISEP institute is research in the domain of image

processing and image compression algorithms while interest for the SuriCog company is applying of these

algorithms to the EyeDee™ eye tracking solution.

5

Chapter 2Equation Section 2

2 Theoretical Part

2.1 Introduction

The EyeDee™ product (developed by SuriCog) is aimed at allowing user to interact with objects in a

known environment by naturally using human’s eye-movements. In particular, the complete system

includes Eye Tracking (ET) system, which is based on computationally intensive image processing

algorithms. These algorithms are aimed at reconstruction of the position of the pupil center [11] in 3D

space. Input of the ET is a human eye image, obtained from a miniaturized digital camera sensor,

installed in the Weetsy™ frame. Output the eye tracking system is five pupil ellipse parameters (floating-

point values) defining pupil ellipse. Then these values are used by a Gaze software component (part of

SuriDev software) to reconstruct user’s gaze i.e., direction at which user is looking at each particular

time moment. To accelerate performance of the ET, an amount eye image data, which is transmitted

over a wire/wireless medium, can be drastically reduced by applying image compression. To properly

introduce image compression in the entire EyeDee™ system it is necessary to understand the theory of

image processing (in general) and image compression (in particular), as well as theory of main building

blocks of the complete eye tracking algorithm of the EyeDee™. This chapter introduces this theory.

2.2 Eye Tracking Specifics

Eye tracking approach has long been utilized to study the visual attention of individuals. There are

several key techniques to detect and track the movements of the eyes. The most commonly used eye

tracking technique is Pupil Center Corneal Reflection (PCCR), which is based on the idea of eye

illumination by a light source resulting in highly visible reflections. These reflections are captured by

the camera sensor and resulted images are used to identify the reflection of the light source on the cornea

(so-called ‘glints’) as well as the pupil. Reconstruction of gaze (direction at which user is looking at each

particular moment) is based on a vector formed by the angle between the cornea and pupil reflections

(the direction of the vector). Such a vector can be optionally coupled with other geometrical features of

the reflections to increase precision of eye tracking results at the expense of computational complexity.

There are several eye tracking techniques (Figure 2):

 EOG (ElectroOculoGraphy) [12] – technique for measuring the corneo-retinal standing

potential between the front and the back of the human eye. The resulting signal is called

the electrooculogram. Primary applications are in ophthalmological diagnosis and

recording eye movements. To measure eye movement, pairs of electrodes are typically

placed above and below the eye or to the left and right of the eye. If the eye moves from

center position toward one of the two electrodes, this electrode detects the positive side

of the retina and the opposite electrode detects the negative side of the retina.

Consequently, a potential difference occurs between the electrodes. Assuming that the

resting potential is constant, the recorded potential is a measure of the eye’s position.

 VOG (Video-OculoGraphy) [13] – well-established non-invasive, video-based technique of

measuring horizontal, vertical and torsional position components of the movements of

both eyes (via image processing algorithms applied to eye images) using a head-mounted

device which is equipped with small cameras. Primary applications are medical

applications. VOG techniques are applied in a wide field of scientific research related to

visual development and cognitive science as well as to pathologies of the eyes and of the

https://en.wikipedia.org/wiki/Human_eye
https://en.wikipedia.org/wiki/Cognitive_science

6 Theoretical Part

visual system. The VOG technique can use eye images obtained with the ‘bright pupil’

or the ‘dark pupil’ illumination technique (presented below).

 Scleral coil technique [14] – technique for measuring the eye position, which is based on

using a small coils of wire, which embedded in a modified contact lens. These coils are

inserted into the eye after local anaesthetic has been introduced. When a coil of wire

moves in a magnetic field, the field induces a voltage in the coil and then a signal of eye

position will be produced. This allows horizontal eye movement to be recorded. If it is

necessary to also monitor vertical eye movements, then a second set of field coils, usually

set orthogonally to the first set, it used. The two signals (one for horizontal, one for

vertical eye movement) generated in the eye coil can then be disentangled using

appropriate electronics. If the eye coil is of an appropriate design, then torsional

movements can also be recorded. In experiments on eye movements in animals, the eye

coils are frequently implanted surgically. The advantage of this method is that it has a

very high temporal and spatial resolution allowing even the smalled types of eye

movements (e.g. microsaccades [15]) to be studied. The disadvantage is that it is an

invasive method, requiring something to be placed into the eye. This method is rarely

used clinically, but is an invaluable research tool.

EOG (ElectroOculoGraphy

VOG (Video-OculoGraphy)

Scleral coil

Figure 2. Eye tracking techniques: EOG, VOG, scleral coil.

There are two major pupil illumination techniques used with PCCR (Figure 3):

1. ‘Bright pupil’ – pupil illumination technique, where an illuminating LED is placed near

to the optical axis of the imaging device resulting the pupil to appear lit up (same

phenomenon that causes red eyes in photos), i.e., pupil is clearly demarcated as a bright

region due to the photo reflective nature of the back of the eye.

2. ‘Dark pupil’ – pupil illumination technique, where an illuminating LED is placed at some

distance from the optical axis resulting the pupil to appear darker than the iris, while the

sclera, iris itself and eye lids all reflect more illumination.

Bright pupil Dark pupil

Figure 3. Eye tracking illumination techniques: bright pupil and dark pupil.

The combined use of both bright and dark pupil techniques [16–18] usually is based on using the

infrared LEDs when bright-pupil image and dark-pupil image are obtained by switching between either

on and off the axis of the camera sensor. The resulted deferential pupil image is obtained by subtracting

these images following by thresholding.

SuriCog’s EyeDee™ eye tracking solution uses the VOG technique coupled with the ‘dark pupil’

illumination technique.

Theoretical Part 7

Eye tracking illumination conditions (Figure 4) have significant impact on the quality of the eye

image. For example, Weetsy™ frame uses two IR LEDs placed on a distance of 1.5 cm while the distance

between the miniaturized camera sensor and the human’s eye is about 2..2.5 cm. If the IR LEDs distance

is not optimal it is likely to have possible unwanted shadows (Figure 4).

Weetsy™ frame (profile view) IR illumination scheme (dark pupil)

Figure 4. Eye tracking illumination conditions and distances.

Different illumination conditions as well as several positions of the IR light sources were

exhaustively tested at the prototyping stage of the product. Results of these tests are out of scope of

this thesis.

Usually an eye tracking algorithm uses several digital filters, where the most widely applied are:

1. Gaussian blur (smoothing). Used to reduce the noise in the input eye images.

2. Histogram calculation. Histogram is used during the next image processing steps.

3. Binarization. Used to obtain black and white eye image.

4. Edge finding. Used to find pupil contours of the pupil following of their auto measuring

(to reconstruct pupil’s ellipse).

The Hough transform [19] is a well-known tool to identify geometrical objects in the image.

Usually these objects are lines and circles (in this case Hough Circle Transform is used). Therefore, the

question consists in the potential applicability of the Hough transform to the eye tracking. Since pupil

contours have the form of an ellipse, the Hough transform must be used to detect ellipses. Since ellipse

is defined via 5 parameters (Table 1), the Hough transform must perform the search in the 5D parameter

space, which is computationally too expensive to be done on 100 Hz eye tracking frequency.

Table 1. Hough transform complexity to identify different objects.

Object Object equation
Unknown parameters

(complexity)

Line y kx b 2

Circle 2 2 2() ()x h y k r 3

Ellipse
2 2

2 2

(()cos ()sin) (()sin ()cos)
1

x h y k x h y k

a b
 5

To reduce the noise in the input eye images Gaussian smoothing [20] is used. The Gaussian

smoothing operator is a 2-D convolution operator that is used to ‘blur’ images and remove small details

and noise. In this sense it is similar to the mean filter, but it uses a different kernel that represents the

shape of a Gaussian convexity. This kernel has some special properties which are detailed below.

The Gaussian 1-D/2-D distributions have the form:

2

22
1

()
2

x

G x e , (2.1)

2 2

22
2

1
(,)

2

x y

G x y e , (2.2)

Possible shadows

2..2.5 cm

Homogenous light

2..2.5 cm

1
.5

 c
m

https://homepages.inf.ed.ac.uk/rbf/HIPR2/convolve.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/mean.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/kernel.htm

8 Theoretical Part

where σ is the standard deviation of the distribution. The corresponding distributions are

illustrated in Figure 5.

1-D

2-D

Figure 5. 1-D/2D Gaussian distributions with mean 0/(0,0) and σ=1.

The idea of Gaussian smoothing is to use this 2-D distribution as a ‘point-spread’ function, and

this is achieved by applying a convolution. Since the image is stored as a collection of discrete pixels

there is a need to produce a discrete approximation to the Gaussian function before the convolution can

be performed. In theory the Gaussian distribution is non-zero everywhere, which would require an

infinitely large convolution kernel, however in practice it is effectively zero more than about three

standard deviations from the mean, so the kernel can be truncated at this point. Figure 6 shows a

suitable integer-valued convolution kernel that approximates a Gaussian with σ of 1.0. However, it is

not obvious how to select the values of the mask to approximate a Gaussian. For example, it is possible

to use the value of the Gaussian at the center of a pixel in the mask, but this is not accurate, because

the value of the Gaussian varies non-linearly across the pixel. Then the value of the Gaussian over the

whole pixel was integrated (by summing the Gaussian at 0.001 increments). Since the integrals are not

integers it is necessary to rescale the array so that the corners had the value 1. Finally, the 273 is the

sum of all the values in the mask (Figure 6).

1

273

1 4 7 4 1

4 16 26 16 4

7 26 41 26 7

4 16 26 16 4

1 4 7 4 1

Figure 6. Discrete approximation to Gaussian function with σ =1.

As soon as a suitable kernel has been calculated, then the Gaussian smoothing can be performed

using standard convolution methods. The convolution can be performed fairly quickly since the equation

for the 2-D isotropic Gaussian shown above is separable into x and y components. Therefore, the 2-D

convolution can be performed by first convolving with a 1-D Gaussian in the x direction, and then

convolving with another 1-D Gaussian in the y direction. (The Gaussian is in fact the only completely

circularly symmetric operator which can be decomposed in such a way.) After eye image denoising via

Gaussian smoothing SuriCog’s EyeDee™ eye tracking algorithm does not use any image enhancement

approaches.

2.3 Image Nature and Terminology Specifics

Eye image can be interpreted is a discrete 2D signal in spatial coordinates (x,y), which is a result of

projection of the human’s pupil onto an image matrix of the CMOS censor. This signal is represented

as a 2D matrix with unsigned integer values. Since color information from the eye image is not used in

the current implementation of the ET algorithm during the computation of the pupil ellipse parameters,

https://homepages.inf.ed.ac.uk/rbf/HIPR2/convolve.htm

Theoretical Part 9

the eye image is grayscale 8bpp image with 256 levels of color gradation. Therefore, herein and after in

this thesis term «grayscale 8bpp eye image» is assumed under term «eye image».

If pixel value itself is interpreted as a dimension, 2D image signal can be seen as 3D signal (Figure

7). In theory 2D signal values can be completely independent, hence there is no relationship between

them. However, in practice due to nature of captured signals such values are usually dependent, meaning

that changing/moving a pixel value in one (x,y)-position usually leads to changing/moving pixel values

around this (x,y)-position. Observing 2D signals in 3D space gives a moving surface (Figure 7).

Figure 7. Examples of eye image represented as 3D signal (moving surface).

Since image is a discrete 2D signal, it is well known practice in the domain of image compression

to progressively apply signal processing algorithms to each dimension of the image. In particular, such

algorithms work in frequency domain [21] rather than in spatial domain. Frequency domain refers to the

analysis of mathematical functions or signals with respect to frequency, rather than time. A given

function or signal can be converted between the spatial (or time) domain and frequency domain with a

pair of mathematical operators called a transform. Examples of such a transforms are: Fourier [22]

transform, wavelet [23] transform and others. Therefore, description of the image compression algorithms

often refer to term «frequency», because the input image signal is viewed in both the time and frequency

domains simultaneously with use of several time–frequency representations in particular and time–

frequency analysis in general.

2.4 Image Compression Fundamentals

All signals can be classified at least by number of dimensions needed to represent these signals:

 1D signals – text, signals from certain sensors (temperature, speed, and distance

measurement), and sound. Usually such signals have low difference between samples. Such

1D signals contain only spatial redundancy.

 2D signals – images, photos of nature, natural scenes, etc. To compress these signals special

methods are used, which address nature of the signals by using special transforms for

example. Such 2D signals contain only spatial redundancy.

 3D signals – images, with taking into account time domain. In such a case, sampling rate is

more or equal to motion dynamics (i.e., moving of the objects in time). Such 3D signals

contain both spatial and temporal redundancy.

SuriCog’s EyeDee™ product involves processing of the eye images, which are acquired at very

high frequency (>100 Hz). Most of the time (when user’s eye motion is low) such eye images can be

considered as being 3D signals, because most of the time they are highly correlated. However, it was

shown that human is able to rapidly move the eyes on short distances (deltas) at frequencies as high as

500 Hz and more (so-called «rapid eye movements» [24]). Hence, in these cases eye image acquisition

frequency is much lower than frequency of rapid eye movements and by definition such signals cannot

be interpreted as 3D signals. (They can be interpreted though as a 3D signals during some time periods,

when eye image acquisition frequency does not exceed eye maximal movement frequency.) Other aspect

https://en.wikipedia.org/wiki/Mathematical_function
https://en.wikipedia.org/wiki/Signal_(information_theory)
https://en.wikipedia.org/wiki/Frequency

10 Theoretical Part

is computational complexity. Due to additional computational complexity needed to process such 3D

signals, eye images are considered in this thesis as being 2D signals, i.e., time notion (correlation in time)

is not taken into the account during compression the of these eye images. Since transmission of

uncompressed eye images requires a very high bitrate (in domain of resource constrained low-power

embedded systems), image compression is aimed to extract and reduce natural redundancy from the eye

image.

Generally image data compression approaches are split into two classes:

1. Image compression – data compression approach, aimed at eliminating of only spatial

redundancy from the input image signal.

2. Video compression – data compression approach, aimed at eliminating of both spatial and

temporal redundancies from the input image signal. Most video compression algorithms combine

spatial image compression and temporal motion compensation.

The usual building blocks of the general-purpose image/video coding system (Figure 8) are:

1. Image acquisition – obtaining source images from digital camera sensor.

2. Pre-processing – operations on the raw uncompressed source images, such as trimming,

color format conversion, color correction, or de-noising. In case of using ANN-based

approaches bit depth reduction is used to decrease range of the input sample values and,

therefore, to accelerate training.

3. Encoding – transformation of the pre-processed images into a coded bitstream. The goal

of encoding is to generate a compact representation of the input images, which is suitable

for the transmission medium in the given application scenario.

4. Transmission – packaging of the bitstream into an appropriate format and transmission

over the selected medium (communication channel). Transmission optionally uses special

approaches of data protection against data losses/corruptions and approaches of data loss

recovery (also called «error concealment»).

5. Decoding – transformation of the received bitstream into a reconstructed images. Since

image encoding usually requires lossy compression to achieve the target transmission

bitrate constraints, the decoded images constitute an approximation of the original source

images. If unrecoverable transmission losses have been occurred, the decoder applies error

concealment strategies to recover the corrupted images as much as possible.

6. Post-processing – operations on the reconstructed image sequence for enhancement or for

adaptation of the sequence for display or further processing. These operations can include

color correction, trimming, or re-sampling. Also special effects may be applied as

determined by the application. In case of SuriCog’s EyeDee™ Gaussian blurring is used

at the post-processing step to reduce the noise in the input eye images.

7. Displaying/processing – further usage of image sequence, such as viewing or processing.

Figure 8. General block diagram of image/video coding system.

In general, encoding stage (image compression) consists of the three steps:

1. Transform – mapping of input image data (pixel values) to a set of coefficients of basis

functions [25]. The goal of a transform is to keep (or at less to stay very close to) strong

«energy compaction» property [26].

2. Quantization – setting closed to zero coefficients of transformed image to zero.

Image acquisition Pre-processing Encoding

Displaying/processing Post-processing Decoding

Transmission

https://en.wikipedia.org/wiki/Map_(mathematics)
https://en.wikipedia.org/wiki/Coefficient
https://en.wikipedia.org/wiki/Basis_function
https://en.wikipedia.org/wiki/Basis_function

Theoretical Part 11

3. Entropy coding – transformation of quantized coefficients to achieve minimal size of the

resulting bit sequence (bitstream) with ability to perform inverse transformation, i.e., to

reconstruct quantized transform coefficients sequence followed by inverse transform to

reconstruct original input image data (pixel values).

In general, a transmission stage consists of two following steps:

1. Channel coding – use of error correction codes [27] to allow decoded to reconstruct

corrupted data. Since in SuriCog’s application eye images are sent in a compressed form,

it is expected to consider use of error correction codes. These codes will allow correction

of the errors, which can be introduced due to unreliable transmission medium (best-effort

delivery). However, usage of such codes requires additional computation resources, needed

to perform encoding/decoding and (optionally) correction, as well as higher transmission

bitrate, because these codes introduce additional extra information into the bitstream.

Then this extra information is used for checking of error presence and error correction.

2. Error presence checking – usage of Cyclic Redundancy Check (CRC) [28]. CRC can be

used to detect data integrity during transmission, i.e., to calculate if the data received is

bitwise identical to data sent. If calculated CRC is not equal to received CRC, compressed

image will be considered as «corrupted» image and skipped for further decompression and

processing (or partially used in case of defined policy concerning «corrupted» images).

To get benefits (in terms of compression time; also used term ‘compression duration’) of eye image

compression, following condition has to be true:

 _ _compr transf compr decompr transf uncomprT T T T (2.3)

where:

comprT – time of image compression,

_transf comprT – time of transmission of compressed image,

decomprT – time of image decompression,

_transf uncomprT – time of transmission of uncompressed image.

By reason of specifics (maximal possible performance) of developed product, target goal consists

in reaching minimal possible eye image delivery delay (i.e., delay between emitting eye image by the

camera sensor and availability of the same eye image in the processing unit performing eye tracking)

while maintaining acceptable image quality and (ideally) maintaining minimal compressed image size.

Therefore, importance of compression factors has to follow this order (most prioritized are presented

first):

1. Time of image compression (represented in milliseconds or in microseconds);

2. Quality of decompressed image (represented as PSNR in dB);

3. Size of compressed image (represented in bytes or bpp).

The final goal is to reach Pareto optimality between these metrics. The exact requirements for

each of these metrics are presented further.

2.4.1 Using Advantages of Human Visual System

All applications, which involved image data compression to satisfy transmission medium requirements

(reduction of the storage space or increase of the transmission speed), followed by its decompression,

take advantage of Human Visual System (HVS) [29]. In these applications decompressed image data are

then used directly by humans either by viewing (images/video), reading (text), or hearing (sounds).

Usually, such data contain significant amount of redundancy, which can be reduced or entirely removed.

The origins of this redundancy are different. For example, it is known fact that in general nature signals

12 Theoretical Part

(either images or sounds) contain significant amount of redundancy. Text, written in a particular

language also contains certain amount of redundancy (so-called «natural language redundancy»;

different languages have different average redundancy level). It is also common way of to think of «taking

advantage of the HVS» to produce desired effects in a target application. Examples of « taking advantage

of the HVS» include:

 Color squeezing – reduction of the depth of the chroma component by use of so-called chroma

subsampling [30] technique. This reduction is possible, because according to HVS model, color

resolution of the HVS is much lower than the brightness resolution. Another example of HVS-

related effects is aftereffect of color, which depends on the orientation of several shapes (for

example lines [31]);

 Small details removal – in is generally considered that small details in an image are taking much

less attention of the user than edges. This is because HVS is more sensitive to edges rather than

small details. Hence removal of these small details (via quantization) from the original image

does not lead to perceptible loss of visual quality, which as a result, does not cause difficulties

in image interpretation. This principle is widely used in lossy image compression technique,

where output decompressed image does not have significant visual difference in compare with

input uncompressed image.

It should be noted that SuriCog’s EyeDee™ eye tracking system performs image processing of

decompressed eye images rather than their direct displaying. The eye tracking system does not

incorporate human feedback on viewing decompressed eye images. (Rather it incorporates human

feedback on hearing audio signal, which is generated based on human eye gaze – the direction at which

human is looking at each particular time moment.) Therefore, during selection, implementation,

optimization and tuning of the image compression system, recommended practices on obtaining the best

acceptable quality, based on usual advantages of HVS, cannot be directly applied due to application

specifics.

Because the eye tracking algorithm is stayed relatively sensitive to quality of decompressed eye

image, a special research was done (presented follow) on decompressed image quality adjustment. This

research shows dependency of quality of decompressed eye image on the precision of the output eye

tracking results.

2.4.2 Image Compression Building Blocks

Transform is a pair of mathematical operators used to convert a given function or signal between the

spatial domain (also called ‘time domain’) and frequency domain [32]. An enormous efforts have been

done over the last two decades and a half to achieve transforms, which satisfy a particular requirements

(either energy compaction property, implementation complexity, parallelization ability, etc.). Example

of such transforms are the following: wavelet [33–35] transforms and their applications [36–38], adaptive

(optionally integer) wavelet transforms [39–41], bandelets [42–44], contourlets [45–47], directionlets [48–

50], grouplets [51,52], Discrete Cosine Transforms (DCT) [53–55], low complexity DCTs [56–58],

multiplierless DCTs [59–61], tetrolets [62–64] and relatively recently found shearlets [65–67]. To achieve

low complexity implementation (hence to accelerate transform execution time), wavelet transforms has

been implemented accordingly. One example includes lifting schemes [59,68,69], in which transforms

usually are called ‘lifting transforms’ [70–72]. However, these transforms have a number of

implementation issues. For example, lifting transforms have cache-related issues [73,74] or a certain

issues related to their parallelization (for example with use SIMD [75] instructions). Wavelet transforms

that map integers to integers can be implemented with use of integer arithmetic only [76], which allows

to use such implementations in real-time (usually FPGA-based) systems.

In contrast, several image compression standards are successfully implemented with SIMD

instructions (such as MMX, SSE2, AVX2, NEON, AltiVec) [77]. Several wavelet transforms can be

implemented in parallel [78–80] fashion, requires powerful multicore CPUs to compress rapidly huge

Theoretical Part 13

images (resolution can be as much as 20,000x20,000 pixels and even more), fox example in satellite

imagery – images of Earth or other planets collected by imaging satellites. In contrast with parallel

implementations, low complexity DCT based transforms are initially developed to be used in a very

resource constrained platforms, for example low power processors for Wireless Sensor Networks (WSN)

[81–83]. Certain application involve real-time [84–86] image compression performed directly on-board

[87–89] used in several missions to meet the specialized needs of (for example) deep-space applications

while achieving state-of-the-art compression effectiveness. In particular, ICER [90], which is used in the

Mars Exploration Rover (MER) mission, can provide lossless and lossy compression, and incorporates

an error-containment scheme to limit the effects of data loss during transmission. Usually such missions

incorporate hardware implementations [91] of real-time image data compression used in satellite remote

sensing.

From mathematical point of view, the transforms have certain number of issues, which are usually

related to the fact that input signals are discrete and not continuous. Another issue is use of integer

arithmetic in a transform, initially implemented with floating-point arithmetic. This technique permits

to accelerate execution time, but has certain issues. For example, integer wavelet transforms have

boundary effects/artifacts [92–94] and several rounding operators [95] issues. Other approaches of

increase of transform performance is changing internal form of data they operate with. For example, a

rectangular wavelet transform [96] outperform the square one.

Several transforms are also found themselves to be directly used for edge detection: for example,

wavelets [97], directionlets [98] and shearlets [66]. Adaptive wavelets are applied in domain of eye-gaze

[99] video compression, which is based on the foveation behavior of the HVS, as well as in domain of

eye iris [100] image compression, based upon the popular CDF 9/7 discrete wavelet transform.

Quantization is a technique aimed on mapping a range of values to a single quantum value. In codec

implementations usually quantization is parametrized with quantization matrixes, which acts as a

devisor on which transform coefficients are divided to obtain such a mapping. Entropy coding [101–103]

is the final step in the image compression, which includes modeling on the quantized near-to-zero

transform coefficients to find an absolute minimum number of bits, needed to represent these coefficients.

Depending on the entropy coder used, several codecs include so-called packetization module (also called

‘packetizer’) coupled with rate-distortion optimization [104] module, which forms a bitstream by adding

into it already coded coefficients to not exceed available bits-per-pixel (bpp) budget (which is directly

set as the input configuration parameter or calculated from compression ratio).

2.4.3 Image Compression Techniques (JPEG and JPEG 2000)

JPEG [8] is a commonly used standard of lossy compression for digital images. It was created by the

Joint Photographic Experts Group committee in 1992. JPEG typically achieves 10:1 compression with

little perceptible loss (usually invisible for human’s eye) in image quality. JPEG encoder consists of

several stages (Figure 9): from pre-processing, DCT transform and quantization to Huffman [105]

entropy coding. The uncompressed image is first converted from its original color model (such as RGB)

to a luminance-chrominance model (YCbCr). Each channel is then passed to the Discrete Cosine

Transform (DCT). In the quantization step, a specified (according to special so-called quantization

tables) number of DCT coefficients are set to zero. A special sampling scheme, zigzag sampling, creates

long runs of zeros which readily compress in a Run-Length Encoding (RLE) stage. Finally, Huffman

encoding optimizes entropy and creates a final bitstream.

14 Theoretical Part

Figure 9. JPEG encoder scheme.

JPEG 2000 (usually abbreviated JP2) [9] is an image compression standard and coding system.

It was created by the Joint Photographic Experts Group committee in 2000 with the intention of

superseding their original discrete cosine transform-based JPEG standard with a newly designed,

wavelet-based transform. JPEG 2000 encoder consists of several stages (Figure 10): from pre-processing,

wavelet integer transform (which maps integers to integers and which is implemented according to lifting

scheme) and quantization to entropy coding and packetization of the final bit stream (bit stream

assembler).

Figure 10. JPEG 2000 encoder scheme.

Within the pre-processing module, each color component of the source image passes through a

multiple component transformation and is decomposed into non-overlapping rectangular tiles (tile

components) of equal size. The wavelet transform can be configured to be lossy (9/7 filter) or lossless

(5/3 filter). After transformation, all coefficients are then quantized. The entropy coder divides the

quantized sub-bands into rectangular code blocks. The bit-plane coder categorizes each bit in the code

block coefficient into 3 coding passes, each bit belonging to only one coding pass. It then parses the code

block bit plane from most significant bit (MSB) to least significant bit (LSB). It arranges the bits in a

zigzag order for each bit plane. The entropy coder also computes the context information needed by the

MQ-coder as well as the distortion metrics, which will be used by the rate allocation unit of the Tier-2

coder. The bits and contexts output from the bit-plane coder are then processed by the MQ-coder, which

generates the compressed bitstream. Rate allocation is used for post-compression rate-distortion

optimization and to target a defined bit-rate or an arbitrary set of specified bit-rates. Based on the

defined compression ratio, progression order and other configurable options of the JPEG 2000 standard

based coder, the packetizer generates packets and places them into the final bitstream.

JPEG 2000 also provides possibility to select Region of Interest (ROI) – a part of the image,

which will be further compressed. By utilizing all state-of-the-art in image compression JPEG 2000 is

able to produce significantly better results in compare with its predecessor JPEG.

2.4.4 Video Compression Techniques (H.264 and H.265)

H.264 (MPEG-4 AVC) [106,107] and H.265 (HEVC) [108] are widely used standards in video

compression domain. They can provide the best compression ratios other video compression standards.

However, their usage for compression of the eye images transmitted from Weetsy™ board to PC-based

processing unit is problematic due to (most prioritized are presented first):

1. High computation complexity (even with hardware implementations), which is usually leads to

power consumption increase. A typical example is motion estimation internal module, which is

considered to be the most computationally intensive module among other codec’s internal

Pre-

processing

DCT

transform

Zigzag

sampling
RLE

Huffman

encoding
Quantization

Huffman

tables Input
image Coefficients Final

bit stream

Pre-

processing

Wavelet

transform

Bit-plane

coder
MQ-coder

Context

information

State

variables

Packetizer Quantization

Rate

allocation

Entropy coding

Input
image Tiles Coefficients

Symbol
context

Compressed
bit stream

Final
bit stream

Theoretical Part 15

modules. Depending on a particular implementation an amount of processing dedicated to

motion estimation can be as much as to 75%.

2. Perceptible encoding/decoding delays (even with special profiles applied), which directly

contribute to eye tracking system responsiveness.

3. Need of guaranteed data delivery of data transmission, which is assured by network protocols

such as TCP and implemented via acknowledgement mechanism including packets sequential

numbering. As a result of unstable transmission medium, data corruption is possible, hence data

re-transmissions can occur, which results in unknown transmission delays and which can be

crucial for some time-critical applications involving eye tracking (for example military eye

tracking systems installed in an HMD-HUD used by pilots of an aircraft or a helicopter to

control moving targets). Using best-effort delivery, which is assured by network protocols such

as UDP or RTP, with these codecs in case of data corruption or data lose will result in inability

of decoding (best case) or unpredictable/undefined behavior (worst case).

4. Relatively high cost of available hardware implementations (IP cores), which is explained by

relatively high implantation complexity as well as cost of integration in a particular hardware.

5. Possible licensing and legal issues due to specifics of the application.

Therefore, despite of their best compression ratios (result of contributions from academia and

industry over a years), such products are not exactly dedicated (even with a special profiles applied) to

SuriCog’s EyeDee™ eye tracking application domain and requirements (real-time operation, minimal

delays, low complexity implementation).

2.4.5 Image Compression Recent Improvements

Over the last decade an enormous effort has been done in the domain of improvement of efficiency of

each component of image compression system: from spatial-to-frequency domain transform

approximations to entire new data coding approaches. The reason of these improvements consists in

reduction of the implementation complexity, while minimizing difference in compare with an original

(non-approximated) algorithm versions (Figure 11). The main goal of this reduction is to find a profile

(window), which conforms to principle of ‘20-80’, i.e., where transform speed is 80% increased at the

expense of 0..20% transform precision lost (due to approximation). As a result of such reduction of

complexity, there are several advantages: performance acceleration and cost reduction of the target

hardware. This section provides brief descriptions of some of research directions, aimed on improvement

of image compression systems.

Figure 11. Maximal performance acceleration vs. maximal allowed approximated error.

The first research direction consists in improvement of already used components of image

compression. Data transform is the first component, aimed on spatial-to-frequency domain conversion.

Over the recent years an enormous effort has been done to find a DCT approximations, which do not

compute the exact DCT coefficients, but still provide energy compaction property at a very low

computational cost. In particular, in the year of 2012 there was proposed a scheme [109] of using Cordic

Loeffler (CL) DCT coupled with MQ-coders [110] Golomb [111] and to achieve lowest possible

Approximation error

Performance

Profile Maximal allowed
approximation
error

16 Theoretical Part

computational complexity leading to low power hardware. In the year of 2013 there was proposed a

scheme [112] (targeted very low bit-rates: 0.14 bpp) of using Optimal Zonal BinDCT (based on Chen’s

factorization: computing only 4 significant coefficient in 8x8 block) with Golomb coder. In the year of

2012 there was proposed a low-complexity 8-point orthogonal DCT approximation, which requires 14

additions only [113]. In the year of 2016 there was proposed a low-complexity 16-point orthogonal DCT

approximation, which requires 44 additions only [114]. Quantization [115] is the intermediate component,

aimed on setting closed to zero transform coefficients to zero. Quantization is done based on a particular

application (compression of images of knowing nature, hence aposteriorical knowledge about the signals).

Data coding coupled with Rate-Distortion Optimization (RDO) [104] is the final component, aimed on

coding of quantized coefficients after the transform into output sequence of bits (bitstream). There are

several data coding algorithms are used in practice: Huffman coding [105], Run-Length Encoding (RLE)

coding [116], arithmetic coding [117,118] and Q-Coder [110] family (including QM-coder, Q15-Coder,

MQ-Coder, which is a series of binary arithmetic coders with multiplierless implementation, i.e., only

shifting and adding operations) and Golomb coding [111]. Recent efforts in data coding include Finite

State Entropy (FSE) [119] algorithm – a new breed of entropy coder, which is based on Asymmetric

Numeral Systems (ANS) theory [120–123] and which is used in Zstandard [124] lossless data compression

algorithm. FSE achieves precise compression accuracy (like Arithmetic coding) at much higher speeds.

Recent efforts in rate-distortion optimization include applying of psychovisual [125] based approaches.

For example, applying of psychovisual similarity estimations between the images to make rate-distortion

decisions. In particular, Guetzli [126,127] algorithm was proposed by Google, Inc. [128], which uses

introduced Butteraugli [126,127] psychovisual similarity metric to make rate/distortion decisions and

which strikes a balance between minimal loss and file size by employing a special search algorithm. This

algorithm tries to overcome the difference between the psychovisual modeling of JPEG's format, and

Guetzli’s psychovisual model, which approximates color perception and visual masking in a more

thorough and detailed way than what is achievable by simpler color transforms and the discrete cosine

transform. In particular, part of implementation of the Guetzli and Butteraugli relies on hard coded

high-precision constants [129], which were possibly auto generated based on machine learning (ML)

approach, where a huge corpus of images was used as an input for a neural network, which is targeted

on generation/optimization of these high-precision constants of the psychovisual model. Another example

from Google, Inc. is Brotli [130,131] lossless compressed data format that compresses data using a

combination of the LZ77 algorithm and Huffman coding, with efficiency comparable to the best currently

available general-purpose compression methods. Another example is Free Lossless Image Format (FLIF)

[132–134] (previously JiF [135]), which directly operates in spatial domain (hence no DCT/DWT

transform) and uses Meta-Adaptive Near-zero Integer Arithmetic Coding (MANIAC), a variant of

Context-Adaptive Binary Arithmetic Coding (CABAC) [136], where the contexts are nodes of decision

trees which are dynamically learned at the encode time.

The second research direction is proposition of entire new image compression approaches: either

by applying different mathematics/computation models (for example fractal based [137]) followed by

their software/hardware implementations, or applying new image compressive sensing [138] approaches,

implemented directly in hardware. However, when the first ones usually require enormous time to

compress an image, second ones are not yet (at the time of this research) implemented in the products,

which are already available on the market, especially in a form of low-cost miniaturized digital camera

sensor.

The third research direction is applying of Artificial Intelligence (AI) [139] / Machine Learning

(ML) [140] based / Neural Network (NN) based approaches [141–143]. In particular, some of recently

created companies (for example WaveOne, Inc. [144]), use these approaches to create custom-tailored,

context-dependent solutions, which are targeted on outperforming all existing codecs, while running in

real-time [145]. Usually detailed description or operating principle of these approaches are considered as

a ‘know-how’ and not yet and/or fully revealed due to possible intellectual property issues.

https://en.wikipedia.org/wiki/Human_visual_system_model
https://en.wikipedia.org/wiki/Arithmetic_coding
https://en.wikipedia.org/wiki/Context-adaptive_binary_arithmetic_coding

Theoretical Part 17

There is also a visible trend over a recent years, when companies, business of which involves

storage of massive client’s image data, decide to create custom codecs instead of use standard ones. This

decision is usually based on economic reasons (less data stored on a remote servers, less payment rent

for these servers). In particular, Dropbox, Inc. [146] created Lepton [147] – tool and file format for

losslessly compressing JPEG compressed images by an average of 22% [147], Facebook, Inc. created

Zstandard [124] – lossless data compression algorithm, which compresses/decompresses 3-5x faster to

obtain 10-15% smalled compressed files (compared with zlib library, which is de facto standard

implementation of the deflate algorithm).

According to such a consideration it is possible to draw a conclusion that since SuriCog’s EyeDee™

eye tracking application involves very low cost/complexity implementation and real-time operation

(minimum possible compression delay), only image compression approaches, which target similar

application can be considered for their further evaluation and potential usage followed by improvements.

2.5 Machine Learning

Machine Learning (ML) [148–150] is a field of computer science that gives computers the ability to learn

without being explicitly programmed. In this definition term ‘learning’ refers to a task of inferring a

function from labeled training data. The training data consist of a set of training examples.

Machine learning approaches are divided into two main types (Figure 12):

 Supervised learning [151] – each training sample is a pair consisting of an input object

(typically a vector) and a desired output value (also called the supervisory signal). Such

sample also called «labeled» sample.

 Unsupervised learning [152] – each training sample is only an input object (typically a

vector), i.e., without a desired output value. Such sample also called «unlabeled» sample.

Figure 12. Machine learning algorithms classification.

These ML types are based on the following approaches:

 Support Vector Machines [153] (SVM, also Support Vector Networks) – supervised

learning models with associated learning algorithms that analyze data used for

classification and regression analysis.

 Linear Discriminant Analysis (LDA) [154] – generalization of Fisher’s linear discriminant

[155], a method used in statistics, pattern recognition and machine learning to find a

linear combination of features that characterizes or separates two or more classes of

objects or events.

 Naive Bayes Classifiers (NBC) [156] – family of simple probabilistic classifiers based on

applying Bayes' theorem with strong (naive) independence assumptions between the

features.

Machine

Learning

Supervised

Learning

Unsupervise

Learning

Classification
Naïve

Bayes

Discriminant

Analysis

Support
Vector

Machines

Clustering

Regression

Neural

Networks

Nearest

Neighbour

Ensemble

Methods

SVR,

GPR

Linear
Regression

GLM

Neural

Networks

Decision

Trees

Gaussian

Mixture
Hierarchical

kMeans,
kMedoids,
C-Means

Hidden
Markov
Model

Neural

Networks

Type Algorithms Tasks

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Learn
https://en.wikipedia.org/wiki/Training_set
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Pattern_recognition
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Linear_combination
https://en.wikipedia.org/wiki/Features_(pattern_recognition)
https://en.wikipedia.org/wiki/Probabilistic_classifier
https://en.wikipedia.org/wiki/Bayes%27_theorem
https://en.wikipedia.org/wiki/Statistical_independence

18 Theoretical Part

 K-nearest Neighbors Algorithm (k-NN) [157] – non-parametric method used for

classification and regression. In both cases, the input consists of the k-closest training

examples in the feature space.

 Generalized Linear Model (GLM) [158] – flexible generalization of ordinary linear

regression that allows for response variables that have error distribution models other

than a normal distribution.

 Support Vector Regressor (SVR) [159] – regressor, which performs regression, predicting

continuous ordered variables. In contrast with SVM (Support Vector Machine), which is

a classifier, which performs classification, predicting discrete categorical labels. Both SVR

and SVM use very similar algorithms, but predict different types of variables.

 Gaussian Process Regression (GPR) [160] – powerful nonparametric regression technique.

 Ensemble methods [161] – methods, based on use of multiple learning algorithms to obtain

better predictive performance than could be obtained from any of the constituent learning

algorithms alone.

 Decision trees [162] – decision support tool that uses a tree-like graph or model of

decisions and their possible consequences, including chance event outcomes, resource

costs, and utility. It is one way to display an algorithm that only contains conditional

control statements.

 K-means clustering [163] – method of vector quantization, originally from signal

processing, that is popular for cluster analysis in data mining. K-means clustering aims

to partition n observations into k clusters in which each observation belongs to the cluster

with the nearest mean, serving as a prototype of the cluster. This results in a partitioning

of the data space into Voronoi cells [164].

 K-medoids clustering [165] – partitioning method commonly used in domains that require

robustness to outlier data, arbitrary distance metrics, or ones for which the mean or

median does not have a clear definition. It is similar to k-means, and the goal of both

methods is to divide a set of measurements or observations into k subsets or clusters so

that the subsets minimize the sum of distances between a measurement and a center of

the measurement’s cluster. In the k-means algorithm, the center of the subset is the mean

of measurements in the subset, often called a centroid. In the k-medoids algorithm, the

center of the subset is a member of the subset, called a medoid.

 Fuzzy C-means Clustering (FCM) [166–175] algorithm – one of the most widely used

fuzzy clustering algorithms.

 Hierarchical clustering [176–184] (also called Hierarchical Cluster Analysis or HCA [185–

194]) – method of cluster analysis which seeks to build a hierarchy of clusters. Used in

data mining and statistics.

 Hidden Markov Model (HMM) [195–201] – statistical Markov model in which the system

being modeled is assumed to be a Markov process with unobserved states (i.e., hidden

states).

 Gaussian Mixture Model (GMM) [202–211] – probabilistic model that assumes all the

data points are generated from a mixture of a finite number of Gaussian distributions

with unknown parameters.

It should be noted that in general machine learning is considered to be difficult, because finding

expected patterns is hard and especially in cases, where not enough training input data are available.

As a consequence, machine-learning based approaches can produce incorrect results.

https://en.wikipedia.org/wiki/Non-parametric_statistics
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Feature_space
https://en.wikipedia.org/wiki/Linear_regression
https://en.wikipedia.org/wiki/Linear_regression
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Predictive_inference
https://en.wikipedia.org/wiki/Decision_support_system
https://en.wikipedia.org/wiki/Diagram
https://en.wikipedia.org/wiki/Causal_model
https://en.wikipedia.org/wiki/Probability
https://en.wikipedia.org/wiki/Utility
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Vector_quantization
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/Data_mining
https://en.wikipedia.org/wiki/Partition_of_a_set
https://en.wikipedia.org/wiki/Cluster_(statistics)
https://en.wikipedia.org/wiki/Mean
https://en.wikipedia.org/wiki/Voronoi_cell
https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/Hierarchy
https://en.wikipedia.org/wiki/Data_mining
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Markov_model
https://en.wikipedia.org/wiki/Markov_process

Theoretical Part 19

2.6 Neural Network Fundamentals

2.6.1 Neural Network Basics

Artificial Neural Networks (ANN) [212], also known as Connectionist Models [213] or Parallel

Distributed Processing [214] are models are inspired by human brains with aim of simulation of their

biological equivalent. The behavior of a biological neuron is modeled via a set of mathematical

operations. In particular, to obtain an output signal the following operations are performed on input

signals: weightening, summing and thresholding. Then these output signals are act as an input for other

neurons, which creates a network. By processing a set of input samples (training set), neural networks

may adapt themselves (find optimal weight values) to recognize patterns or to classify data. Their ability

to extract hidden correlations between patterns make them a powerful tool to recognize patterns.

Mathematically [215] ANN can be interpreted as an approximation and generalization of an

unknown multivariate (usually nonlinear) function (so-called objective function [216]), values of which

are given only at some points, over a special mechanism of interconnected (usually nonlinear) activation

functions [217]. Approximation here means finding of a global minimum [218,219] among several local

minimums [219]. Generalization here means minimization of the approximation error of the result,

obtained from the trained ANN on the input, which was not used during ANN training. In this

mechanism activation function takes as an input linear combination [220] of connected signals and

produces one output. The network is formed (Figure 13) by connecting the output of a certain building

blocks, so-called neurons, to the input of other neurons forming a directed, weighted graph (Figure 14).

Constants, which are used in this linear combination are so-called weights. Input neurons and hidden

ones are different. For example, for pattern recognition task it is known practice to use (at least) 3-layer

ANN, with linear activation function for the input layer units and a sigmoid activation function (namely

a logistic activation function) for the hidden layer units. As for the output layer units, it is possible to

use any of the both: either sigmoid or linear.

Figure 13. Neural network neuron scheme.

Figure 14. Example of neural

network graph

There are two functions, which are referred during training:

1. Loss function (also called cost function or error function) – function that maps a values of one

or more variables onto a real number intuitively representing some «cost» associated with the

value.

2. Objective function – the most general term for any function that is optimized during training.

Objective function is approximated via an iterative technique like backpropagation [219]

(commonly used by the gradient descent optimization algorithm [221] to adjust the weight of neurons

by calculating the gradient of the loss function), which is a progressive updating (calibration) of the

weights by repeating two key steps (Figure 15):

Threshold

Output

Activation

function

Weights Inputs

…

 …

Linear
combination

20 Theoretical Part

1. Forward propagation (also called «forward pass») – set of weights and bias values are applied

to the input data to calculate an output. For the first forward propagation, the set of weights

are selected randomly [222] (usually based on Gaussian distribution [150]) between 0 and 1.

2. Backward propagation (also called «backward pass») – the margin of error of the output is

measured and the weights adjusted accordingly to decrease the error.

Figure 15. Gradient descent operation principle.

There are tree datasets used:

1. Training dataset – dataset of examples used during learning via forward/backward

propagation.

2. Test dataset – dataset that is independent of the training dataset, but that follows the same

probability distribution as the training dataset. If a model fit to the training dataset also fits

the test dataset well, minimal overfitting [223,224] has taken place (Figure 16). A better fitting

of the training dataset as opposed to the test dataset usually points to overfitting. A test set

is therefore a set of examples used only to assess the performance (i.e., generalization) of a

fully specified classifier.

3. Validation dataset – dataset of examples used to tune the hyperparameters. A hyperparameter

is, for example, the number of hidden layers. As well as the test dataset, validation dataset

should follow the same probability distribution as the training dataset.

Figure 16. Datasets: training dataset, test dataset and validation dataset.

The accuracy of a neural network model is usually determined after the model hyperparameters

are learned. Then the test samples are fed to the model and the number of mistakes (zero-one loss) the

model makes are recorded, after comparison to the true targets. Then the percentage of misclassification

is calculated. Accuracy on training set, test set and validation datasets (Figure 17) are differ.

Loss
function

Derivative
of loss

Error (E)

Input

Desired
output z

Actual
output

dz dE

Backward error propagation (pass)

Forward data propagation (pass)

Training dataset

Sample

V
a
lu

e

Validation dataset

Sample

V
a
lu

e

Test dataset

Sample

V
a
lu

e

Theoretical Part 21

Figure 17. Accuracy on training and validation datasets.

The training procedure is parameterized by several variables, which are called hyperparameters

[225,226]. The usual hyperparameters are (described more precisely in the next sections):

 Number of epochs – parameter, which represents the number of iterations of forward/backward

propagation over the training dataset;

 Learning rate – parameter, which represents the size of the step taken at each stochastic estimate

of the gradient; determines how fast weights are changed.

 Learning rate decay – parameter, which is used to decay the learning rate. Using of non-adaptive

learning rates can be suboptimal. The recommended practice is to lower the learning rate as the

training progresses. The decay is reduced by some constant factor every few epochs or either by

exponential decay, in which the decay takes a mathematical form of the exponential every few

epochs. Use of decay allows the learning algorithm to converge faster and with higher precision;

 Weight decay – parameter, which is used to L2-regularize the solution (model overfitting reduction

[223,224]). Such a regularization prevents the weights from growing too large;

 Momentum – parameter, which is used to prevent the system from converging to a local minimum

or saddle point.

There are two general approaches for neural network training (Figure 18):

 Online training – weights and bias values are adjusted for every training item based on the

difference between computed outputs and the training data target outputs.

 Batch training – the adjustment delta values are accumulated over all training items, to give an

aggregate set of deltas, and then the aggregated deltas are applied to each weight and bias.

However, the term «batch» itself is ambiguous: some researchers use it to refer to the entire

training set, and some researchers use it to refer to the number of training examples in one

forward/backward propagation. To avoid that ambiguity and make clear that batch corresponds to the

number of training examples in one forward/backward propagation, one can use the term mini-batch.

Therefore, the following terminology are used to parameterize training:

 Number of epochs – the number of forward/backward propagations (passes) of all the training

dataset.

 Size of batch – the number of training examples in one forward/backward propagation (pass).

 Number of iterations – number of epochs / size of batch.

Example: Dataset has 1000 training samples, size of batch (mini-batch) is 200. Number of

iterations = 1000 / 200 = 5.

A
cc

u
ra

cy

Iterations

Test dataset

Training dataset

Validation dataset

22 Theoretical Part

online training:
loop maxEpochs times

 for each training data item

 compute weights and bias deltas for curr item

 adjust weights and bias values using deltas

 end for

end loop

batch training:
loop maxEpochs times

 for each training item

 compute weights and bias deltas for curr item

 accumulate the deltas

 end for

 adjust weights and bias deltas using accumulated deltas

end loop

Figure 18. High-level pseudo-code: online vs. batch training.

Figure 19 summarizes all the relationships between ANN building blocks.

Figure 19. Relationships between ANN building blocks.

A neuron is connected to other neurons via its input and output links. Each incoming neuron has

an activation value and each connection has a weight associated with it. The neuron sums the incoming

weighted values and this value is input to an activation function. The output of the activation function

defines the output from the neuron. Activation functions are differ: there are some common activation

functions (Figure 20) and some other activation functions used in practice (Figure 21). For the input

layer linear activation functions are generally used, while for the hidden layers non-linear activation

functions are generally used, which for the output layer linear activation are recommended (however, it

is also possible to use non-linear activation functions for the output layer).

 ANN Outputs Inputs

Backpropagation Hyperparameters

Learning

- Number of epochs
- Learning rate
- Learning rate decay
- Weight decay
- Momentum

Online

Batch Size of batch

Datasets

- Training dataset
- Test dataset
- Validation dataset

Architecture

- Activation function
- Number of hidden layers

Weights

Theoretical Part 23

Step function

1, 0
()

0, 0

if x
f x

if x

Sign function

1, 0

() 0, 0

1, 0

if x

f x if x

if x

Sigmoid function

1
()

1 x
f x

e

Figure 20. Some common activation functions.

HardTanh

1, 1

() 1, 1

,

if x

f x if x

x otherwise

HardShrink

,

() ,

0,

x if x lambda

f x x if x lambda

otherwise

where lambda is 0.5 by default

SoftShrink

,

() ,

0,

x lambda if x lambda

f x x lambda if x lambda

otherwise

where lambda is 0.5 by default

SoftMax

1

()
i

j

x shift

i x shiftN
j

e
f x

e
,

where max ()i ishift x

SoftMin

1

()
i

j

x shift

i x shiftN
j

e
f x

e

where max ()i ishift x

SoftPlus

*1
() * log(1)ibeta xf x e

beta

SoftSign

LogSigmoid

LogSoftMax

24 Theoretical Part

()
1

i

i

x
f x

x

1
() log()

1 ix
f x

e

1

1
()

*j i
i x xN

j

f x
e e

Tanh

()
x x

x x

e e
f x

e e

ReLU

() max(0,)f x x

ReLU6

() min(max(0,),6)f x x

PReLU

() max(0,) * min(0,)f x x a x

RReLU

() max(0,) * min(0,)f x x a x ,

where (,)a U l u , U is random

distribution, l=1/8 and u=1/3 by

default

RReLU

() max(0,) * min(0,)f x x a x

, where (,)a U l u

Figure 21. Activation functions used in practice.

To select the best activation function there is ideally a need to know the certain characteristics

of the function of the process, which is approximated by use of neural network. Then selected activation

function will approximate the function of the process faster leading to faster training process. For

example, a sigmoid activation function performs well for a classification, because approximating a

classifier function as combinations of sigmoid is easier than other activation functions or their

combinations [227]. Therefore, usage of the sigmoid activation function will lead to faster training process

and convergence. If there is no (or very minimal) knowledge of the function of the process (nature of the

process), then there is a general suggestion to select ReLu activation function, because it is considered

that ReLu performs well most of the time as a general purpose approximator.

Learning is implemented with several algorithms. The most used algorithm is backpropagation

learning algorithm. The backpropagation learning algorithm [219,228,229] was developed independently

by Rumelhart [230] (simplest derivation), Le Cun (alternate derivation [231] and several variations of

the original algorithm [232,233], which have been also reported earlier by Parker and Werbos [234,235]).

Error backpropagation networks are the most widely used neural network model as they can be applied

to almost any problem that requires pattern mapping. It was the discovery of this paradigm that brought

neural networks out of the research area and into real world implementation.

ANN learning approaches are divided into two categories:

1. Supervised learning – approach, where each training sample is a pair consisting of an

input object (typically a vector) and a desired output value (also called the supervisory

signal). Such sample also called «labeled» sample.

Theoretical Part 25

2. Unsupervised learning – approach, where each training sample is only an input object

(typically a vector), i.e., without a desired output value. Such sample also called

«unlabeled» sample.

These learning approaches are used to solve the following general tasks (Figure 22):

 Regression – approximation and generalization of an unknown multivariate (usually

nonlinear) function (so-called objective function), which values only at some points are

given, over a mechanism of interconnected (usually nonlinear) activation functions.

 Classification (categorization) – organizing/splitting data into several categories (classes).

 Clustering – the task of grouping a set of objects in such a way that objects in the same

group (called a cluster) are more similar (in some sense) to each other than to those in

other groups (clusters).

 Dimensionality reduction [236] – process of reducing the number of random variables

under consideration by obtaining a set of principal variables.

 Supervised Learning Unsupervised Learning

D
is
cr

et
e

Classification

Clustering

C
o
n
ti
n
u
o
u
s

Regression

Dimensionality reduction

Figure 22. ANN tasks illustration.

Usually supervised learning of multilayered neural networks with conventional learning algorithms

has a problem of local minimum. During training of the neural network using a training set of input-

output pairs gradient descent-type learning algorithms (including backpropagation learning algorithm)

update the connection weights of the neural network without any prior knowledge. Using a gradient

descent algorithms to adjust the weights involves a situations, where training of neural network gets

stuck in the local minima (Figure 23). A several studies address this problem by usually exploring the

combination of neural network appearance and the learning parameters in local minima-free condition.

26 Theoretical Part

Figure 23. Global minima and local minima.

There are several categories of the ANNs, which are differ usually in their architecture and the

tasks they are targeted. Some of the frequently used in practice ANN types (Figure 24) are:

 Feed-forward ANNs. These networks allow signals to travel one way only: from input to

output. There are no feedback (loops); i.e., the output of any layer does not affect that

same layer. Feed-forward ANNs tend to be straightforward networks that associate inputs

with outputs. They are extensively used in pattern recognition. This type of organization

is also referred as ‘bottom-up’ or ‘top-down’ organization. The well-known types of feed-

forward ANNs are:

o Single Layer Perceptron (SLP) is an algorithm for supervised learning of binary

classifiers (functions that can decide whether an input, represented by a vector

of numbers, belongs to some specific class or not).

o Multilayer Perceptron (MLP) is a multilayer version of the SLP.

 Feedback networks (also called ‘recurrent networks’ or ‘interactive networks’). These

networks can have signals traveling in both directions by introducing loops in the

network. Feedback networks are powerful and can get extremely complicated.

Computations derived from earlier input are fed back into the network, which gives them

a kind of memory. Feedback networks are dynamic in a sense that their ‘state’ is changing

continuously until they reach an equilibrium point. They remain at the equilibrium point

until the input changes and a new equilibrium needs to be found. The well-known types

of feedback networks are:

o Self-Organizing Map (SOM) or Self-Organizing Feature Map (SOFM) is a type

of ANN that is trained using unsupervised learning to produce a low-dimensional

(typically two-dimensional), discretized representation of the input space of the

training samples, called a map, and is therefore a method to do dimensionality

reduction.

o Bayesian Regularized Artificial Neural Networks (BRANNs) are more robust

than standard back-propagation neural networks and can reduce or eliminate the

need for lengthy cross-validation. Bayesian regularization is a mathematical

process that converts a nonlinear regression into a «well-posed» statistical

problem in the manner of a ridge regression. The advantage of BRANNs is that

the models are robust and the validation process, which scales as O(N2) in normal

regression methods (such as back propagation) is unnecessary.

Local minima

Global minima

E
rr

o
r

https://en.wikipedia.org/wiki/Supervised_classification
https://en.wikipedia.org/wiki/Binary_classification
https://en.wikipedia.org/wiki/Binary_classification

Theoretical Part 27

Artificial Neural Network (ANN)

Feed-forward networks Feedback networks

Single-layer

perceptron
Multilayer

perceptron

Kohonen’s

(SOM)
Bayesian regularizated

NN (BRANN)

Figure 24. Artificial neural network types illustration.

Other more application-specific ANN types include:

 Convolutional Neural Networks (CNN) – class of deep, feed-forward ANNs that has

successfully been applied to analyzing visual imagery.

 Deep Neural Networks (DNN) – ANN with multiple hidden layers between the input and

output layers.

 Deep Belief Networks (DBN) – generative graphical model, or alternatively a class of

deep neural network, composed of multiple layers of latent variables (‘hidden units’), with

connections between the layers but not between units within each layer.

 Convolutional Deep Belief Networks (CDBN) – type of DNN that is composed of multiple

layers of convolutional restricted Boltzmann machines stacked together.

 Deep Boltzmann Machines (DBM) – type of binary pairwise Markov random field

(undirected probabilistic graphical model) with multiple layers of hidden random

variables.

A particular ANN, which has only 1 hidden layer can be considered as ‘simple’. However, even

with 1 hidden layer such ANNs can (for example) recognize handwritten digits with accuracy more than

98%. If such an ANNs has more than 1 hidden layer, it can be considered as ‘complex’ or so-called Deep

Neural Network (DNN, Figure 25). Such networks use the intermediate hidden layers to solve complex

pattern recognition problems. For example, in case of image processing such a DNNs can recognize more

complex shapes as: edges, triangles or rectangles, built up from edges. However, in contrast with simple

1-hidden layer ANNs, training of DNNs is considered to be more complex and time-consuming [237].

Input layer Hidden layer 1 Hidden layer 2 Hidden layer n Output layer

Figure 25. Deep neural network illustration.

One fundamental parameter in ANNs is ‘learning rate’. During training of ANNs by gradient

descent algorithm, each iteration applies backpropagation to calculate the derivative of the loss function

with respect to each weight followed by subtraction of the derivative from this weight. However, if such

X1

X2

X3

X4

X5

X6

X7

X8

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

O1

O2

O3

O4

A1

A1

A6

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

N8

N7

N6

N5

N4

N3

N2

N1X1

X2

X3

X4

X5

X6

X7

X8 A1

A1

A6

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

B8

B7

B6

B5

B4

B3

B2

B1

X1

X2

X3

X4

X5

X6

A1

A1

A6

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A8

A7

A6

A5

A4

A3

A2

A1

…

https://en.wikipedia.org/wiki/Markov_random_field
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)#Undirected_graph
https://en.wikipedia.org/wiki/Graphical_model
https://en.wikipedia.org/wiki/Latent_variable
https://en.wikipedia.org/wiki/Random_variables
https://en.wikipedia.org/wiki/Random_variables

28 Theoretical Part

approach is directly applied, the weights will change far too much each training iteration, which will

make them «overcorrect» and the loss will actually increase (Figure 26). Therefore, to prevent such

effect, in practice each derivative is multiplied by a small value, so-called ‘learning rate’, before it is

subtracted it from its corresponding weight. Other interpretation – learning rate determines how fast

weights of an ANN change. If learning rate is constant for all the layers there is a potential problem of

‘vanishing gradient’, which consists in the fact that at some point weights may start changing very little

or stop changing at all. To avoid this problem learning rate may vary from layer to layer.

Figure 26. Learning rate illustration.

Figure 27. Momentum illustration.

Another fundamental parameter in ANNs is ‘momentum’. If an ideal world the error function has

no global minima, gradient descent optimization algorithm will always minimize the error function to

reach this global minima. However, in practice the error surface is more complex and may contain several

local minimas (Figure 27). In this case, gradient descent optimization algorithm can get stuck in a local

minima, considering that global minima is reached, which will, of course, lead to sub-optimal results. To

avoid this scenario, a special parameter ‘momentum’ is introduced. Momentum is a value between 0 and

1, which is used to increase the size of the step taken towards the minimum by trying to «jump» from

a local minima. It is usual practice to make learning rate smaller, when momentum value is relatively

large. A large momentum value also means that the convergence will happen fast. However, a small

momentum value cannot reliably avoid local minima, and can also slow down the training. Momentum

also targets in smoothing out the variations, in case if the gradient keeps changing direction. A right

value of momentum can be obtained by ‘hit and trial’ or via cross-validation (split the entire dataset

set into training dataset and a validation dataset).

Hyperparameters are considered to be «magic numbers», because they are values of the ANN

model set before training. Examples include: number of hidden layers in a DNN and learning parameters

(learning rate, momentum). Changing hyperparameter values by just a small amount can have (and

usually has) a huge impact on the performance of the ANN. The process of searching the best

combination of hyperparameters is commonly known as ‘hyperparameter optimization’.

A several techniques are used for hyperparameter optimization (Figure 28):

 Grid search – technique, which is in basic sense, a brute force method to estimate

hyperparameters. For example, if there are number hyperparameters, and each one of

them have several possible values, then, performing grid search is basically taking a

Cartesian product of these possible values, which makes a grid search quite costly, because

expense grows exponentially with the number of hyper parameters and the number of

discrete levels of each. However, grid search technique can be well-parallelized resulting

in a time decrease.

 Random search – technique, which uses a random combinations of hyperparameter values.

Due to the known fact that some of the hyperparameters actually have little effect (or no

effect) on the model for certain data sets, it is useless to evaluate all their combinations,

especially for high-dimensional hyperparameter spaces. It was demonstrated [225], that

L
o
ss

Epoch

Low learning rate

Very high learning rate

High learning rate

Good

learning rate
Global
minima

No momentum, search
stuck in local minima

Using momentum,
search exit local minima

Global
minima

Theoretical Part 29

given the disparity in the sensitivity of model accuracy to different hyperparameters, a

set of candidates that incorporates a larger number of trial values for each hyperparameter

will have a much greater chance of finding effective values for each hyperparameter. As

a result, instead of focusing on Cartesian product of hyperparameter values, studying (or

estimating) a several random combinations enables to explore more values of each

hyperparameter at the same cost.

 Random Latin hypercube – technique, which is based on Latin hypercube sample (LHS)

[238] and basically is an approach in which samples are exactly uniform across each

hyperparameter, but still random in combinations. These so-called ‘low-discrepancy’ point

sets attempt to ensure that points are approximately equidistant from one another to fill

the space efficiently. This sampling allows for coverage across the entire range of each

hyperparameter and is more likely to find good values of each hyperparameter.

Grid search

Random search

Random Latin hypercube

Figure 28. Hyperparameter optimization: grid search, random search, random Latin hypercube.

Weight initialization can have a profound impact on both the convergence rate and final quality

of results produced by the ANN. There are several strategies to initialize ANN weights. To evaluate

what happens under each particular weight initialization strategy, it is common to visualize outputs of

each neuron as a dataset passes through the network. Usually most layers make it straightforward to

initialize weights randomly from a uniform distribution over [-std, std]. However, the determination of

the range to use has been the subject of a lot of research and often considered to be the key to efficient

learning in a computational network. For example, in case of backpropagation learning algorithm, there

is ‘efficient backprop’ [239] weight initialization approach for linear and convolutional layers, where

initial weight values are randomly selected from [1/ _ ,1/ _]U fan in fan in , where in case of CNN

_ * *fan in kW kH nInputPlane , where kW/kH – convolution kernel width/height, nInputPlane –

number of expected input planes (explained in details in the next section) in the image given to forward

function (implements forward pass).

Usually before perform training with the ANN there is some pre-processing applied to the input

data. Such a pre-processing can be:

1. Input data normalization and scaling. This is intended for faster approaching to global

minima at error surface.

2. Input data denoising. Raw data obtained from the physical sensors (for example, camera

sensor) is usually noisy.

3. Bit depth reduction. Used to reduce the range of values used as an input for the ANN to

accelerate the training.

Artificial neural networks can be viewed from a different angle. Since multilayer perceptrons are

nonlinear regression and discriminant models they can be implemented via statistical methods and tools.

More important parameter

L
es

s
im

p
o
rt

a
n
t
p
a
ra

m
et

er

More important parameter

L
es

s
im

p
o
rt

a
n
t
p
a
ra

m
et

er

More important parameter
L
es

s
im

p
o
rt

a
n
t
p
a
ra

m
et

er

30 Theoretical Part

Therefore, neural network terms and definitions can be translated into statistical methods terms and

definitions to establish a relationships between them (Table 2).

Table 2. Comparison between terms in literature: ANNs vs. statistical methods.

Term in ANN literature Term in statistical methods literature

features variables

inputs independent variables

outputs predicted values

targets (training values) dependent variables

errors residuals

higher-order neurons interactions

generalization interpolation and extrapolation

functional links transformations

(synaptic) weights parameter estimates

competitive learning or adaptive vector quantization cluster analysis

patterns or training pairs observations

training, learning, adaptation, or self-organization estimation

error function, cost function, or Lyapunov function estimation criterion

Supervised learning or heteroassociation regression and discriminant analysis

unsupervised learning, encoding, or autoassociation data reduction

Artificial intelligence has to some fundamental differences in philosophy between neural network

engineers and statisticians. While neural network engineers see neural networks as a ‘data in –

predictions out black boxes’ with no human intervention, statisticians are tend to deeply understand the

process under study, generate hypotheses and models, create test assumptions, diagnose problems in the

model and data, and show results in a comprehensible way, with the goal of explaining the phenomena

being investigated. In general, neural networks include several models, such as MLPs, that are useful for

statistical applications. Statistical methodology is directly applicable to neural networks in a variety of

ways, including estimation criteria, optimization algorithms, confidence intervals, diagnostics, and

graphical methods.

2.6.2 Multilayer Perceptron and Convolutional Neural Network

A multilayer perceptron (MLP) is a class of feedforward ANN. An MLP consists of at least three layers

of nodes (Figure 29). Except for the input nodes, each node is a neuron that uses a nonlinear activation

function. MLP utilizes a supervised learning technique called backpropagation for training [240,241]. Its

multiple layers and non-linear activation distinguish MLP from a linear perceptron. It can distinguish

data that is not linearly separable.

https://en.wikipedia.org/wiki/Feedforward_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Backpropagation
https://en.wikipedia.org/wiki/Perceptron
https://en.wikipedia.org/wiki/Linear_separability

Theoretical Part 31

Input Features Hidden layers Outputs

Figure 29. Multilayer perceptron illustration.

A convolutional neural network (CNN, or ConvNet) is a class of deep, feed-forward ANNs that

has successfully been applied to analyzing visual imagery [242]. CNNs are very similar to ordinary NNs:

they are made up of neurons that have learnable weights and biases. The main difference is that ConvNet

architectures make the explicit assumption that the inputs are images, which allows us to encode certain

properties into the architecture. These then make the forward function more efficient to implement and

vastly reduce the amount of parameters in the network. In particular, unlike a regular NN, the layers of

a ConvNet have neurons arranged in 3 dimensions: width, height, depth. For example, the input images

in CIFAR-10 [243] are an input volume of activations, and the volume has dimensions 32x32x3 (width,

height, depth respectively). A simple ConvNet is a sequence of layers, and every layer of a ConvNet

transforms one volume of activations to another through a differentiable function. To build ConvNet

architectures three main types of layers are used: convolutional layer, pooling layer, and fully-connected

layer (exactly as seen in regular NNs).

A typical example of ConvNet architecture (Figure 30), classifying RGB images over 4 animal

categories (horse, cat, dog, bird), consists of the following components:

 Input layer [32x32x3] – layer, which holds the raw pixel values of the image, in this case

an image of width 32, height 32, and with 3 color channels (also called in ConvNet

terminology ‘input planes’): R, G, B.

 Convolution layer №1 – layer, which computes the output of neurons that are connected

to local regions in the input, each computing a dot product between their weights and a

small region they are connected to in the input volume. This may result in volume such

as [32x32x12] if there is a decision to use 12 feature maps (also called ‘output planes’).

 ReLU layer №1 – layer, which applies an ReLU activation function, defined as max(0,x).

This leaves the size of the volume unchanged: [32x32x12].

 Sub-sampling layer №1 (also called ‘pooling layer’) – layer, which performs a

downsampling (decimation) operation along the spatial dimensions (width, height),

resulting in volume such as [16x16x12].

 Convolution layer №2 – resulting in volume such as [16x16x24] if there is a decision to

use 24 feature maps.

 ReLU layer №2 – leaves the size of the volume unchanged: [16x16x24].

 Sub-sampling layer №2: resulting in volume such as [1x1x24].

 Fully-connected layer – layer, which computes the class scores, resulting in volume of size

[1x1x24], where each of the 6 numbers (24/4) correspond to a class score, such as among

the 4 animal categories (or 10 categories in case of CIFAR-10): horse, cat, dog, bird.

X1

X2

X3

X4

X5

X6

X7

X8

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

O1

O1

B1

O1

O1

B2	

O1

O1

B3 O1

O1B4

O1

O1

B5

O1

O1

B6

O1

O1

O1

O1

A1

A1

A6

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A8

A7

A6

A5

A4

A3

A2

A1

https://en.wikipedia.org/wiki/Feedforward_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network

32 Theoretical Part

Figure 30. Convolutional neural network architecture illustration.

The feature map is the output of one filter (also called ‘kernel’) applied to the previous layer. A

given filter is applied across the entire previous layer, moved one pixel at a time (Figure 31, a). Each

position results in an activation of the neuron and the output is collected in the feature map, which is

basically the output image of each convolutional layer (Figure 31, b).

a. Convolution visualization

b. Example of feature maps

Figure 31. Convolution visualization and example of feature maps.

2.6.3 Some Related Work in ANNs/CNNs/DNNs

It is known fact that deep CNNs have recently achieved enormous success in many visual recognition

problems. However, there are still number of open issues:

1. Implementations of deep CNNs models are computationally intensive.

2. Implementations of deep CNNs models are memory consuming.

3. Training of DNNs takes significant time.

4. Overfitting and generalization issues.

5. Hyperparameters optimization takes significant time.

6. Need to collect huge volumes of training data.

During the past few years, tremendous progresses have been done to address these problems.

To address the issue of computational expensiveness and high memory consumption a tremendous

progresses have been done during the past few years. The core ideas are concentrated around model

compression and acceleration [244] without significantly decreasing its performance. For example, the

recent advanced techniques for compacting and accelerating CNNs models are roughly categorized into

Theoretical Part 33

four schemes: parameter pruning and sharing, low-rank factorization, transfered/compact convolutional

filters and knowledge distillation.

To address the issue of significant time needed to training, there are several approaches have been

proposed, each if which addresses a particular issue. Example of such an issues include:

 Internal covariate shift – change in the distribution of network activations due to the

change in network parameters during training [245]. If the input statistical distribution

keeps changing, the hidden layers will keep trying to adapt to that new distribution hence

slowing down convergence. To address this issue a special technique was proposed called

‘batch normalization’ (BN). BN normalizes the inputs for each hidden layer so that their

distribution is fairly constant as training proceeds. As a result, convergence of the ANN

is improved, which leads to training time reduction.

 Vanishing gradient – a situation, when during weight update (proportional to the gradient

of the error function with respect to the current weight) gradient is vanishingly small,

effectively preventing the weight from changing its value. It was shown that saturating

nonlinearities (like tanh or sigmoid) cannot be used for DNNs as they tend to get stuck

in the saturation region as the network grows deeper. Some solutions include: use of

nonlinearities which do not saturate like ReLU, use of smaller learning rates, use of several

weight initialization approaches.

 Normalization (or scaling) – transposition of the input variables into the data range that

the particular activation functions lie in. It was shown [246] that input data normalization

with certain criteria, prior to a training process, is crucial to obtain good results as well

as to fasten significantly the calculations.

Overfitting and generalization is a phenomenon, when trained ANN produces high quality output

results on the training dataset, but produces low quality output results on a new data. In other words,

the model does not generalize well its output results. Overfitting becomes an even more significant issue

in DNNs, where NN has large numbers of layers containing many neurons. Regularization is one method

to minimize overfitting issue. Regularization modifies the objective function that is minimized by adding

additional terms that penalize large weights. The most common type of regularization is so-called ‘L2

regularization’ [247]. It can be implemented by augmenting the error function with the squared

magnitude of all weights in the neural network. Overfitting can be also reduced by using ‘dropout’ to

prevent complex co-adaptations on the training data [224,248].

In terms of ANNs implementation there is also visible progress done. At the beginning ANNs

were implemented using single core CPUs followed by gradual migration to multicore CPUs. However,

to accelerate training process of neural network even more, a several alternative platforms are widely

used nowadays such as general-purpose GPUs [249] or an FPGAs [250] as well as application-specific

ASICs [251]. ANN, which is implemented in the embedded platform (such as MCUs/FPGAs/ASICs) is

called ‘embedded artificial neural network’ (or ‘embedded ANN’). There are also several implementations

of embedded ANNs reported [252,253] over the last years.

2.7 Eye Tracking System Application Specifics

The complete EyeDee™ eye tracking system must be responsive (duration of one eye image processing

is <10 ms), because the speed of eye movements is considered [254] to be the fastest among other human

body movements. This system includes transmission of eye images over a medium (wire/wireless

communication channel). Such transmission takes a certain amount of time, which directly contributes

to increase of EyeDee™ responsiveness, i.e., delay between eye image acquisition and output results from

the eye tracking algorithm. To reduce eye image transmission time, initial eye image (taken from a

miniaturized digital camera sensor) can be compressed, which results in less bytes to transmit over the

selected medium. Also initial eye image contains (due to nature of capturing) spatial redundancy

[255,256]. This spatial redundancy can be reduced to a certain level, which results in slight eye tracking

34 Theoretical Part

precision degradation, but at the same time does not exceed a maximum allowed eye tracking precision

error (Figure 32). The spatial redundancy can be reduced by applying lossy image compression (i.e.,

compression with information loss). The main goal of this reduction is to find a profile (window), which

conforms to ‘20-80’ principle, i.e., a point where eye tracking responsibility is 80% increased at the

expense of 20% eye tracking precision loss.

Figure 32. Profile: removing eye image spatial redundancy vs. eye tracking precision error.

Therefore, in case of EyeDee™ eye image compression is aimed to:

 Reduce (or eliminate) spatial redundancy from eye image (input signal) without losing

needed details (pupil edges) to keep eye tracking precision in a desired range. As a result,

images will be sent in compressed (compacted) form and less bytes will be transmitted

over the selected medium.

 Reduce time of image transmission from Weetsy™ board to PC-based processing unit over

the selected medium.

Each image compression system can be characterized by following main criteria (most prioritized

are presented first):

 Time of image compression – delay between loading input image into the compression

system and obtaining output compressed image, which is represented in a form of

sequence of bits (so-called bitstream).

 Size of compressed image – amount of bits, which are used to represent compressed image

(bitstream). Usually size of bitstream is measured in bytes. Division of bitstream size by

number of pixels of the source input image gives bits-per-pixel (bpp) metric, which is

usually used to characterize compressed image. The bpp metric can be applied as an input

of a compression system instead of compression ratio. The bpp metric is used during

designing of the data transmission systems involving compression, especially during

estimation of so-called bit-budget (usually represented in a form of bits-per-second,

usually Kbps or Mbps are used) which is needed to be reserved in a communication

channel to transmit compressed images at a desired frequency (represented as number of

image frames per second or FPS metric).

 Quality of decompressed image – measured similarly between original (uncompressed)

and reconstructed (decompressed) image. Usually quality is represented via peak signal-

to-noise ratio (PSNR) [257] metric or mean square error (MSE) [258]. However, these

metrics are not always precisely characterize similarity (also used ‘similarity difference’

or ‘similarity delta’) between the images. Thus, to solve this issue, other similarity metrics

are also applied, such as SSIM, MS SSIM [259], hamming distance between two hashes of

the images (this approach does not require images to be the same size).

An additional criteria, which are also considered during image transmission system design include:

Precision error of output
of eye tracking algorithm

% of spatial redundancy
removed from eye image

Profile Maximal allowed
precision error

Theoretical Part 35

 Computational complexity [260] – number of processor instructions (operations), which

is needed to perform image compression. Usually computational complexity is represented

via million instructions per second (MIPS) metric.

 Memory consumption – amount (in bytes) of operating memory (RAM), which is needed

to execute image compression algorithm.

 Parallelization – ability of parallel execution [261] of certain algorithms of image

compression building blocks due to presence of independent data flows inside image

compression system. A well-known example is parallel execution of discrete cosine

transforms (DCT) due to its independent applying to image blocks.

 Ability of implementation in hardware – potential presence of properties, which are

considered during hardware implementation, i.e., parallel execution of independent

building blocks, absence of floating-point arithmetic (only integer arithmetic is used). In

the last case implementations of floating-point arithmetic based algorithms are converted

to implementations of integer arithmetic based algorithms, while providing the same

results.

Therefore, applying of a particular image compression system can be viewed as an optimization

problem, i.e., performing codecs comparison (Figure 33) to find the best combination (for a particular

application) of their main criteria.

Figure 33. Comparison of several codecs in terms of time/size/quality.

2.8 Computational Complexity and Implementation Aspect

Nowadays, most embedded and portable image processing applications require low power consumption

and wireless communication and face a common problem of limited CPU resources and limited battery.

In most cases, these image processing applications have a following processing chain:

 Image retrieval from the digital camera sensors (readout);

 Image processing in real-time to extract relevant features by applying computer vision

algorithms;

 Application-specific processing of the extracted relevant features. For example, finding of

the parameters of a physical model relevant to the application (for example, SLAM for

reconstruction of the 6 degrees of freedom of an object, ellipse fitting for eye tracking,

model fitting, etc.);

 Send the results of application-specific processing to the end user application.

Image processing algorithms can be highly demanding in computational resources and can often

be implemented in different platforms (CPU/GPU/FPGA) to gain the benefit of each platform. For

example, FPGA/GPU are primarily used for parallel execution of independent building blocks, which

usually contains such an implementation (usually approximation of original algorithm) of algorithms,

which uses integer arithmetic rather than floating-point arithmetic. In contrast, CPU has the Floating

Size of compressed
eye image

Quality of decompressed
eye image

Time of eye image
compression/decompression

Legend:

Codec A

Codec B

36 Theoretical Part

Point Unit (FPU), which is used to perform floating-point operations of these image processing

algorithms. Communication stacks (such as USB or TCP/IP) can introduce bottlenecks usually due

their limited implementations. Usually embedded IPs of communication standards inside an MCU are

relatively simple or limited functionality, which does not allow take advantage of their full versions

(which are usually positioned on the market as an independent standalone IPs). Another reason of

potential communication bottlenecks is ‘misbalance of bitrate of IOs’, i.e., a situations inside an MCU,

when bitrate of data reading external RAM is much less than bitrate of data transmission via particular

communication IP. Hence in such cases, since communication IP operate in parallel with CPU (via

issuing an asynchronous request, which is followed by waiting on the confirmation of the operation

completion), after physical completion of the operation by IP, it stays in standby mode waiting for

completion of the CPU operation. As a result, final performance is significantly degraded. Usually these

bottlenecks are relatively hard to find and not trivial to resolve. Hard to find because they tend to

appear in execution of combination of the different IPs with asynchronous API, while their independent

execution can give expected results. Not trivial to resolve, because there is a need of careful and accurate

performance analysis (usually requires use of commercial tools), which is followed by such an

implementation, which leads to balanced/optimal resources utilization (optimal hardware utilization).

Several example of embedded image acquisition/processing systems presented in [262,263].

In the case of SuriCog’s EyeDee™ solution, the embedded system should be able to capture at

high frequency (100Hz) the image of user’s eye (VGA resolution, 8bpp), and broadcast wirelessly in real-

time to the end application the result of the processing algorithm, which consists in the parametrization

of a 3D model of the eye. The system should run continuously during more than 3 hours, with the lowest

latency possible (typically <10ms). Three options are possible:

1. Locally read the sensors and send the resulting image to the end application, which executes

of the full algorithm on the client’s machine;

2. Locally read the sensors, locally execute the full algorithm and send the results to the client’s

machine;

3. Locally read the sensors, pre-process the image and send these preprocessed images to the

client machine for final processing.

The first option is constraint by the limited bandwidth of the wireless channel (Wi-Fi, Bluetooth)

and the latency/quality loss introduced by standard compression/decompression algorithms. The second

option is constraint by the limited resources of CPU, battery and power dissipation required to run the

algorithms at full speed. The third option, described in this thesis, introduces a preprocessing phase,

which can be viewed as a “smart compression”, i.e., compressing of the image to select its relevant

features, which are required by the final algorithm. In the case when an eye tracker uses so-called dark

pupil technique the features of interest are the points that lie on the edges of the pupil’s quasi-ellipse.

SuriCog’s EyeDee™ eye image acquisition system is based on Weetsy™ board hardware (Figure 34),

which includes the following components:

1. Microcontroller Unit (MCU) – used for input/output communication, eye image pre-

processing, using of FPU for floating-point arithmetic.

2. Field-Programmable Gate Array (FPGA) – used for digital camera sensor readout, hardware

processing, acceleration of the parts of the eye tracking algorithms initially implemented in

PC-based processing unit.

3. Wireless module – used for wireless sensing of eye images over a network to PC-based

processing unit following eye tracking via EyeDee™ software. Several data transmission

standards are supported: Wi-Fi, Bluetooth (including Bluetooth LE) and ZigBee.

4. External RAM – used to store intermediate results of the eye image pre-processing.

Theoretical Part 37

Figure 34. Weetsy™ board hardware.

The EyeDee™ embedded eye tracking solution developed by SuriCog is aimed to conform to

several requirements, where the most important among others are low-power consumption [264], low-

heat generation, low EM radiation [265], low-MIPS [266], as well as support of wireless data transmission

and space efficient form factor. The problem consists in the deployment of computationally intensive

image processing based eye tracking algorithm on a combination of resources-restrained embedded

platform and a personal computer (PC). Therefore, the problem consists in finding such a balance, which

leads to optimal computing resources utilization. This concept can be illustrated (Figure 35) as a «slider»

principle between splitting of the complete eye tracking algorithm computations over two resources:

embedded software (firmware) and PC-based desktop software.

Complete eye tracking algorithm deployed over…

30% 70%

Hardware/embedded software (firmware) Desktop software for PC

Figure 35. «Slider» principle of deployment of the complete eye tracking algorithm.

2.9 Conclusion

The EyeDee™ embedded eye tracking solution developed by SuriCog contains a wearable device which

performs acquisitions of the eye image at very high frame rate. Since eye image is a discrete 2D signal

in spatial coordinates (x,y), it is possible to apply image processing tools to compact energy of this

signal: such as spatial-to-frequency domain wavelet based transforms, followed by compression of the

resulted coefficients. Since EyeDee™ does not involve viewing of the eye image by the user, usual

advantages of human visual system (HVS), such as color squeezing (reduction) or small details removal,

cannot be directly applied because they will result of eye tracking quality degradation. Modern Video

compression techniques such as H.264 and H.265 are difficult to apply, because of several issues related

to high computation complexity, high (for real-time eye tracking) encoding/decoding delays, need of

Wireless
module

MCU

FPGA

External RAM

Pre-processing
Ellipse

fitting

3D pupil

reconstruction

Main

processing

To client
application

Eye image

3D eye model

38 Theoretical Part

guaranteed data delivery of data transmission, relatively high cost of available hardware

implementations (IP cores) and some others. Image compression techniques such as JPEG and JPEG

2000 allow images to be compressed independently, hence it is possible to use best effort data delivery

(UDP for example). At the same bitrate JPEG 2000 gives better decompressed image quality over JPEG

due to use of wavelet transform over DCT transform. However, wavelet transform takes more

instructions to execute. Since EyeDee™ embedded eye tracking solution targets low power embedded

hardware there is a need of use low-complexity image compressing/compression algorithms. Low-

complexity multiplierless (based only on additions and bit shift operations) DCT approximations are

potentially appropriate candidate to be execute in Weetsy™ board hardware. However, since DCT

approximations do not compute the exact DCT coefficients, but still provide energy compaction property

at a very low computational cost, there is a possible eye tracking quality degradation issues, which will

be investigated in the next chapters. The goal of use of DCT approximations is to find a profile (window),

which conforms to ‘20-80’ principle, i.e., a point where eye tracking responsibility is 80% increased at

the expense of 0..20% eye tracking precision loss. There are several approaches, which can be potentially

executed even faster than low-complexity image compressing/compression algorithms. These approaches

can be based on the use of artificial neural networks (ANNs) such as multilayer perceptrons (MLPs) or

convolutional neural networks (CNNs or ConvNets). Such ANNs can be implemented in the resource

constrained embedded devices, which is Weetsy™ board. Detailed review of the ANN-based approaches

is presented in the following chapters.

39

Chapter 3Equation Section 3

3 Methodology

3.1 Introduction

Because the eye tracking systems present class of devices, which are relatively hard to reproduce, the

methodology used to conduct research in this thesis is based on the following approaches:

 «Success & failures» principle – technique based on estimation the results produced by

an algorithm: positive results (success hence algorithm can be applied to the product) or

negative results (failure, hence algorithm is excluded from the consideration).

 «Implementation & evaluation» principle – technique assumed initial implementation (or

most likely ‘porting’) of the image processing algorithms to rapidly evaluate quality their

results and their overall performance.

 Approximation of the original algorithms – technique aimed to achieve such an

implementations, which provides near-the-same results, but with use of much less

processor instructions leading in much less execution time.

 Rapid prototyping – rough implementation of the algorithm ideas in the software to

estimate applicability of their full algorithm versions.

 Qualitative and quantitative research methods [267] – aimed at finding bugs or errors

quickly by rough qualitative evaluation of expected numerical result or quantitative

evaluation of its equivalent graphical representation or a pure graphical result (image).

The following thesis chapters often refer to several industry-adopted techniques:

 Complexity split/division – technique, where instead of one component implementing

100% of overall ‘complexity’ (either computational complexity or/and development

complexity) there are N components, each of which implementing x% of complexity in

total reaching 100% of complexity.

 Managing tradeoffs between computational complexity, execution time, quality of

delivered results, target hardware costs and development time and costs.

 Algorithms approximations – finding of such an implementations of original algorithms,

which are ‘efficient’ to be implemented in the embedded software (MCU) or directly in

the hardware (FPGA).

 Bit depth reduction – in case of image processing, a quick way to reduce data size without

changing image processing/compression algorithms. Due to reduced bit depth (reduced

data values) these algorithms provide better results (less compressed size). Bit depth

reduction can be seen as a thin layer before/after input/output data, which is not affected

undelaying processing.

It should be noted that the thesis is done under CIFRE program [10], and therefore during

description of used methods, approaches and algorithms author tries to establish and maintain a strong

connection between theory (academia) and practice (industry), which is the core idea of the CIFRE.

3.2 SuriCog's Eye Tracking Application Specifics

3.2.1 SuriCog's Eye Tracking Algorithm

Not available in the public version of the thesis.

40 Methodology

3.2.2 SuriCog's Application-Specific Image Compression

In this thesis term «image compression» should be understood in eye tracking application-specific sense

in compare with classical definition (application) of image compression.

The difference is in the following:

 Classical image compression – compaction of an unknown type image, where decompressed

image is used for its direct viewing (either on a screen or printed on a material). In this

application quality of decompressed image is selected based on considerations, obtained

according to human visual system (HVS) properties. For example, according to HVS,

quality of a photo has to be about 45 dB, quality of video has to be also about 40 dB. If

quality of this content is less than these recommended values, the human feels a certain

discomfort (especially during long time interaction with this content). In such applications

term «lossy» reefers to removing of the small details from the image to minimize

compressed image size, while maximizing of the visual quality, i.e., making decompressed

image looks closer to original image as much as possible. The classical image compression

standards are JPEG, JPEG 2000, PNG [268,269] and many others.

 SuriCog's application-specific image compression – compaction of a known type image

(eye image), where decompressed image is used as an input of an image processing-based

eye tracking algorithm. In this case decompressed eye image is not viewed by the human,

which makes unusable applying of considerations, obtained according to human visual

system (HVS) properties. In SuriCog’s eye tracking application term «lossy» relates to

minimizing (or keeping in a desired range depending on a particular target application)

of the eye tracking error (caused by lossy compression) while maximizing of the amount

of extra data removed from the eye image. This application does not strictly involve

decompressed eye image look close to original image. Rather, this application involves

decompressed image contain as minimum data as needed to provide desired eye tracking

results quality.

Term «quality of eye tracking results» itself is composed of the following metrics:

 Precision – similarity of results produced by the eye tracking system with «real results»

(ground truth).

 Accuracy (also called ‘stability’) – ability of the eye tracking system to maintain the same

precision of eye tracking results from experiment to experiment.

3.2.3 Finding of the Eye Image Compression Algorithm Requirements

To select or propose application specific eye image compression system, several minimal requirements to

this system have to be estimated (possibly theoretically) and found (usually experimentally). Then these

requirements (values) are used to compare several potentially applicable image compression approaches

with the goal to find the most performant one. A several potential image compression approaches have

to be excluded from further consideration on the very early stage (prototyping, initial performance

estimation) of the product development. Especially if considering of the mass production (thousands of

devices per year) of the product, then each building block (image processing algorithm, third-party

physical IC component, etc.) has to be accurately and completely assessed in terms of its properties:

overall performance, MIPS-budget, physical dimensions, power consumption, cost and others. Therefore,

product creation can be viewed as an optimization problem, which is converged to finding of a crossing

point (optimal point) between the several levels (factors): industrial design, product performance,

economical factor and others.

The case of the eye tracking system used in multimedia applications (in particular, interaction

with the objects placed in a known environment) the following criteria are taken into account:

Methodology 41

1. Responsiveness of the system – ability of the eye tracking system to react on the change

of the user movements as fast as possible, i.e., the delay between the acquisition of the

new eye image by the camera sensor and eye results obtained from the eye tracking

system.

2. Quality of the eye tracking – multi parameter, which includes the following underlying

parameters: precision and accuracy.

In the case above responsiveness is more prioritized over quality, because it is considered that it

is possible to find such a profile (Figure 36), where responsiveness varies in wider range of values while

quality varies in more narrow range of values. For example, maximal increase (80%) of responsiveness

of the system from the certain baseline is followed by minimal degrease (20%) of the eye tracking quality.

Figure 36. Profile: maximal system responsiveness vs. minimal degrease of the ET results quality.

Therefore, in such multimedia applications the following criteria are used for estimation of the

eye image compression system (most prioritized goes first):

1. Time of eye image compression/decompression – parameter, which has direct impact on

responsiveness of the eye tracking system.

2. Size of compressed eye image – parameter, which has direct impact on responsiveness of the

eye tracking system.

3. Quality of decompressed eye image – parameter, which has direct impact on the eye tracking

results.

4. Ability to operate in lossy transmission medium – ability to partially decompress compressed

eye image, which was partially corrupted and/or partially lost due to using of transmission

medium with best-effort data delivery, where no retransmissions used.

5. Implementation aspect and costs – estimated costs of R&D, hardware, third-party IPs, etc.

3.2.3.1 Finding Maximal Time of Eye Image Compression/Decompression

To estimate maximal time of eye image compression/decompression it is needed to understand

the processing delays of each component in the entire processing chain: from eye image readout to

obtaining results from eye tracking algorithm. Due to initial requirement of 100 Hz processing frequency,

the period of processing of 1 eye image frame is 10 ms. This time of 10 ms is split between several

components, each of which contributes to overall processing delay of 10 ms. According to practical

measurements (Figure 37, Table 3) the summarized delay dedicated to compression/decompression is

2.5 ms approx.

Legend:

Responsiveness of the system

Quality of the eye tracking

0 1
0

1

Profile

Baseline

80% increase

20% decrease

Responsiveness of the system

Q
u
a
li
ty

 o
f
th

e
ey

e
tr

a
ck

in
g

42 Methodology

Figure 37. Hardware utilization during one iteration of the eye image processing.

Table 3. Additional details of exact configuration used during delays measurement

Image readout FPGA-based readout of VGA image 640x480

ROI finding FPGA-based ROI finder, ROI scanning step 12 pix

Compression -

Transmission Wi-Fi 802.11n, bitrate 6.3 Mbps, freq. 5 GHz, distance 3..5 m

Decompression -

Eye tracking algorithm Proprietary SuriQat ET algorithm

The estimated time of 2.5 ms of ROI compression/decompression can be approximately split as:

 Time of ROI compression: 2 ms.

 Time of ROI decompression: 0.5 ms.

3.2.3.2 Finding Minimal Size of Compressed Eye Image

To find minimal acceptable size of compressed eye image a special research was done, which was

based on estimation of the constraints provided by used hardware (combination of ICs: Wi-Fi module

controlled by host MCU, which is Renesas RZ). In particular it was estimated (theoretically) and proved

(practically) that maximal available bitrate (also called data rate, bandwidth, and bit budget) is 6.33

Mbps (120h*120w*55FPS*8bpp=6336000 bps). Based on this value it is possible to theoretically

estimate FPS on the remote PC-based side after decompression. However, time needed to perform

compression/decompression must be taken into account. This time depends on the size of the source

input image. Therefore, in case of using JPEG-based codec (JCU+libjpeg-turbo) a System of Linear

Equations (SLE) (presented in the following chapter) can be derived (via natural cubic spline

interpolation for example, which was used) from previously obtained results of codec comparison (Figure

70):

 SLE ‘real bpp-PSNR’– defines a relationship between real bpp of the compressed image and

quality of decompressed image (in PSNR);

 SLE ‘real bpp-PSNR’– defines a relationship between real bpp of the compressed image and

JPEG quality (1..100).

 Function (for both compressor/decompressor), which defines a relationship between size of input

image (in pixels) and time needed to compress this image (in us/ms).

 Function (for both USB/Wi-Fi), which defines a relationship between size of transmitted image

(in pixels) and measured bitrate (in Mbps).

3.2.3.3 Finding Minimal Quality of Decompressed Eye Image

Finding of the minimal quality of decompressed eye image is needed to know the range, where

quality of eye tracking system results start significantly degrade (>10%). Then it is possible to keep

quality of decompressed eye image at the level close to the found, but not exceeding it. This approach

allows to control eye tracking quality by controlling decompressed eye image quality via lossy

compression. The test setup (Figure 38) of the eye tracking system uses two configurations. In the first

setup no image compression is applied, hence ET operates directly on raw image data obtained from a

Image

readout
ROI finding Compression Transmission Decompression

Eye tracking

algorithm

1.5 ms 1.5 ms 2 ms 1.5 ms 0.5 ms 3 ms

10 ms

Methodology 43

miniaturized digital camera sensor. In the second configuration lossy image compression-decompression

is used to reduce decompressed image quality.

Figure 38. Test setup for finding minimal quality of decompressed eye image.

Both components (eye trackers and image codec) are setup before the comparison operation. As

an input, several prerecorded sequences of eye images were used to reproduce exact the same conditions

during testing. All images have 400x256 pixel resolution, 8bpp color depth. As codec OPENJPEG [[270]]

was used, which is implementation of JPEG 2000 [271] image compression standard. The input image

sequence contained 256 frames, but only 20 of them (fragment) were used for demonstration purposes.

Another technique is eye image pixel bit depth reduction. To potentially reduce the size of

compressed eye image it is possible to reduce bpp of the original input eye image. From signal processing

point of view this operation can be interpreted as passing of the signal through a High-Pass Filter (HPF),

which cuts high pixels values (‘high frequencies’ in signal processing terminology) values and keeps only

low pixel values (‘low frequencies’ in signal processing terminology).

3.2.3.4 Considerations on Ability to Operate in Lossy Transmission Medium

Ability to operate in lossy transmission medium is based on:

 using of transmission medium with best-effort data delivery (no retransmissions used);

 partial decompression of compressed eye image, which was partially corrupted and/or

partially lost.

It is possible to apply error correction codes to increase level of compressed data integrity at the

expense of slight increase (depends on correction capability) of the amount of transmitted compressed

data. In this case corrupted compressed image bitstream will be corrected by the channel decoder.

However, using channel coding (encoder-decoder) will certainly take an amount of time (especially

decoding and possible error correction), which will result on final FPS decrease. Even after correction of

corrupted bitstream there, is no guarantee that image decoder (decompressor) will be able to decompress

it, because if (for example) corruption was also took place in the header (contains sensitive information

about the image: resolution, format, etc.) of compressed stream, then decoder is not able even to decode

(interpret/parse) corrupted header or even more it will incorrectly interpret corrupted header, which

will lead to incorrect decoding in the best case (for example, decoding according to wrong format) and

unexpected/undefined behavior in the worst case (for example, allocation of memory for incorrectly

computed image size). Usually such worst cases lead to run-time crash of the decoder software. Therefore,

to avoid such cases it is possible to apply CRC as follows (Figure 39):

 protect entire bitsteram with CRC to let decoder completely skip decoding if the CRC of

received compressed bitstream is not equal to expected CRC;

 protect only the header of compressed image with CRC to let decoder correctly decode of the

header (calculated header CRC is equal to expected CRC), correctly initialize its internal

buffers from header’s values and ‘try’ to decode the rest of the stream (possibly corrupted).

44 Methodology

a

b

c d

e f

g h

Legend:

 Decoding Decoded

image

Decoder

crash Header Data

a Yes Yes OK Impossible

b Yes Yes OK Impossible

c Yes Yes Artefacts Impossible

d No No - -

e Yes Yes Artefacts Impossible

f No No - -

g No No - -

h No No - -

a. Without CRC

 Decoding Decoded

image

Decoder

crash Header Data

a Yes Yes OK Impossible

b Yes Yes OK Impossible

c Yes Yes Artefacts Impossible

d Yes Yes Artefacts Impossible

e Yes Yes Artefacts Impossible

f Yes Yes Artefacts Impossible

g Yes Yes - Possible

h Yes Yes - Possible

b. With CRC

Figure 39. Different approaches of JPEG bit stream protection via CRC.

It should be noted that video compression techniques are especially sensitive to compressed bit

stream corruption or loss, because in case of decoding of corrupted bit stream it is very possible that

entire group of frames (GOF) will be corrupted. Therefore, these video compression techniques usually

relies on use of guaranteed delivery communication channels, where retransmissions occur time-to-time.

To target best-effort delivery communication channels, video compression techniques support a

special so-called ‘profiles’, which are basically modified versions of original codec implementation, but

where modified version contains an additional logic executed in case of internal errors detection: ‘early

exit’ policies, checking sizes validity before memory allocation, etc. However, according to several

sources, recommended amount of bitsteram corruption and/or bitsteram loss with which such profiles

can natively operate (without error correction codes) is not more than 20% only.

3.3 Eye Image Compression Alternative Approaches

3.3.1 3D Modeling of Pupil Surface

When input images are represented in 3D (Figure 40) there are surfaces, progressively moving in time.

The idea is to describe such surfaces (or their approximated versions) by applying equation of the surface

(Figure 41) with number of coefficients, much less than number of pixels in input image.

JPEG compressed data JPEG header

Covered by CRC

JPEG compressed data JPEG header

Covered by CRC

JPEG compressed data JPEG header

Covered by CRC Corrupted data

JPEG compressed data JPEG header

Covered by CRC
Corrupted data

JPEG compressed data JPEG header

Covered by CRC

…

Missed data

JPEG compressed data JPEG header

Covered by CRC

…

Missed data

JPEG compressed data

Covered by CRC

JPEG header

Corrupted data

JPEG compressed data

Covered by CRC

JPEG header

Corrupted data

Methodology 45

Figure 40. Input images represented in 3D.

Figure 41. Few examples of surface.

Therefore, to find this coefficients a form of modeling on input image has to be done, which leads

to high number of computations. The model has to be parameterized by N coefficients (Figure 42), which

implies approximation of the reconstructed surface to real one (with the same approach of compression

of residual image, i.e., compression of prediction error). Therefore, it is possible to compress only

prediction error i.e., difference between real surface and predicted (approximated) by model surface. If

the predication is accurate then prediction error will be small leading to small size of it in compressed

form. However, finding of such surface in real-time takes significant computation resources, which makes

it problematic to apply in the developed product.

Figure 42. Example of 3D pupil surface rough approximation.

Maintaining maximal and minimal possible values (Figure 43) cab help to reduce bpp needed to

represent pixel values (for example from 8 bpp to 7-6 bpp).

Dynamic ROI in 2D (scaled x2) Dynamic ROI in 3D

Rough approximation

of dynamic ROI surface

46 Methodology

Figure 43. 3D visualization of minimal and maximal values of moving pupil image.

3.3.2 Dictionary Based Eye Image Compression

The idea behind the dictionary based eye image compression is that encoder and decoder share a

dictionary [272] full of block samples (patches). Each input image is split on blocks. For each block the

most corresponding block from the dictionary is found and residual image (difference) is computed.

Encoder sends indexes of blocks and compressed residual image. Before operation dictionary has to be

created and optimized (near similar blocks removal). This procedure is known as ‘dictionary training’.

The dictionary based eye image compression idea correlates with basic hybrid codec scheme. Most

of today’s video coding standards based on idea of exploiting temporal redundancy between highly-

correlated consecutive frames. Since they are very similar it is natural way to send only difference

between them. However, it is possible to obtain even higher compression ratio by sending combination

of so-called motion vectors and compressed residual image. The basic component of modern video codec

is the hybrid video encoder (Figure 44). Encoder includes an entire decoder loop especially to predict

the subsequent frame. It uses technique, which is called motion estimation to find motion vectors that

describe the transformation from one frame to another one. For this frame is decomposed into number

of blocks that usually have form of rectangle. Then each block of the current frame is compared with

blocks in some area of reference frame to find the most similar block. Based on coordinates of such block

motion vectors are computed. Then compensated frame is subtracted from the current frame to obtain

difference between the two consecutive frames. This so-called residual image is needed by decoder to

keep the details of the current frame during its reconstruction.

Methodology 47

Figure 44. Basic hybrid codec scheme.

Especially for encoding images that have objects with known form, special video compression

techniques could be applied. Dictionary-based video coding (Figure 45) is one of them. The main

difference from the previous scheme is absence of sending reference frames. These frames are replaced

by dictionary, which has predefined number of blocks, which are used for comparison to find «best

match». Block indexes are result of motion estimation, they are transmitted to decoder with statically

compressed residual image.

Figure 45. Dictionary-based codec scheme.

The idea of applying such scheme is increasing compression ratio based on assumption that motion

of objects on the each next frame has low level of dynamics (i.e., they are highly correlated) or they are

placed on known area. Therefore, to exploit such nature of video sequence, it is possible to define and

«train» dictionary to reconstruct the coming frame. However, to keep the details of objects and to react

on fluctuations of motion dynamics it is still necessary to obtain and send residual frame, which is be

used by decoder for frame reconstruction.

As an input dictionary takes image sequence, size of block and total number of blocks, which will

be used for comparison. This way is used in MATLAB version. There are other ways to create dictionary

and even more to update it at run-time. For example, in C++ version of this approach dictionary is

created by setting number of frames that will be stored in it. Then these frames are split into the blocks,

which are and optionally go through optimization to remove similar ones.

For dictionary-based video encoder motion estimation consists in finding indexes of blocks, which

are the most similar to block from current frame. One of the most trivial approaches to find such indexes

is to apply exhaustive search for each block of the current frame. Depth of such search is defined by so-

called search area coefficient (usually is represented as number of pixels), which sets both horizontal and

48 Methodology

vertical offsets that finally defined some area. When another block is selected in the loop, it is compared

with all the blocks of dictionary that fit the area. Moreover, if dictionary contains number of blocks,

which is greater than number of all possible blocks of image, it is possible to use additional blocks for

comparison, which can be interpreted as «alternative blocks». Motion compensation consists in

generation of compensated frame by choosing blocks from the dictionary by their indexes and adding

them to the frame. Residual image is obtained as difference between current frame and compensated

frame. Energy of residual image can be used as an indicator to estimate impact of changing encoder’s

parameters.

3.3.3 Dictionary + DCT Based Eye Image Compression

The idea behind dictionary + DCT based eye image compression is to split eye image into blocks, then

to perform Discrete Cosine Transform (DCT) to each block. Then to use the same idea described before

(dictionary full of samples) to replace block of pixels to index of the near similar block from dictionary.

A discrete cosine transform (DCT) expresses a finite sequence of data points in terms of a sum of

cosine functions oscillating at different frequencies. DCT is employed in JPEG standard. DCT can be

applied to all image (Figure 46) or to each block of the image. Then DCT coefficients can be quantized

with different thresholds (Figure 46, Figure 47).

Figure 46. DCT applied to all image.

Figure 47. DCT applied to blocks of pixels (threshold 1e-2).

The idea is to study dynamics of change of such coefficients and synthesize L-system (or set of L-

systems), which could re-produce such coefficients with low cost. This idea is correlated with plane filling

curves (Figure 48) and 2D/3D-cellular automata (Figure 49).

Methodology 49

Figure 48. Plane filling curves.

Figure 49. 3D cellular automata examples.

Usage of L-systems and cellular automata could produce good results (leading to high compression

ratio), but on limited set on well-known inputs. Even for this approach preliminary classification of

possible inputs should be done. Then for each input (block of pixels) such L-system is found, which can

produce near the same input (threshold is applied). Therefore, this approach can be interpreted as

previously described dictionary-based compression, but instead of dictionary full of samples, L-systems

are used to generate an input based on few rules (should be send to decoder). However, this approach

has the same problems as fractal-based compression, i.e., problem of finding Iterated Function System

(IFS) by having attractor (input image), which leads to delay not competitive to delay, closed to real-

time terminology.

3.3.4 Schemes with Shared Model

The idea behind schemes with shared model is to use the same model on transmitted (TX) and receiver

(RX) size and transmit only prediction errors. Hence decoder can reconstruct data based on the model

and add received prediction errors to fully reconstruct the data. Expression «sharing of the same model»

means that from time to time and based on accumulated statistics encoder updates its local model and

sends to decoder information to update its local model used for decoding. As a result, both TX and RX

sides share the same model.

50 Methodology

However, all schemes with shared model require quarantined data delivery and do not work

correctly if the data was corrupted (or lost) during transmission due to lossy channel. For example, in

case of data corruption RX will use corrupted date to update its model and starting from this moment

TX and RX do not share the same model anymore, which will lead to RX data reconstruction errors.

Distributed source coding (DSC) [273] is based on principle of the compression of multiple

correlated information sources which do not communicate with each other. By modeling the correlation

between multiple sources at the decoder side together with channel codes, DSC is able to shift the

computational complexity from encoder side to decoder side. Because of this complexity shift it is

possible to implement sender in resource constrained embedded low-power platforms. In general, DSC

involves coding of two or more dependent sources with separate encoders and joint decoder. DSC can

be symmetric (same bitrate is used in coding the input sources) and asymmetric (different bitrates are

used in coding the input sources). Typical applications of DSC are sensor networks and video/multimedia

compression.

Distributed video coding (DVC) is based on DSC. One important aspect of DVC is that many of

DVC systems described in the literature use of a so-called ‘feedback channel’ (Figure 50) from the

decoder to the encoder to determine the rate. However, the number of requests issued through the

feedback channel is often high, and as a result the overall delay of the system could be unacceptable in

practical video compression and streaming applications. There were several solutions have been

introduced to address this issue. For example, feedback-free DVC systems have been proposed with the

incorporation of a difficult trade-off between encoder complexity and compression performance. As a

result, a method was proposed for constraining the number of feedback requests to a fixed maximum

number of N requests for an entire Wyner-Ziv (WZ) frame [274].

In case of SuriCog’s EyeDee™ eye tracking system transmission medium is a best-effort delivery

communication channel. Therefore, use of any approach involving feedback channel is problematic.

Figure 50. Compression scheme with shared model.

Figure 51. Distributed video coding.

3.4 Eye Based Rate Distortion Optimization

Rate-distortion optimization (RDO) is an approach of improving video quality in video compression.

The name itself refers to the optimization of the amount of distortion (loss of perceptual video quality)

against the amount of data required to encode the video, the rate. RDO is aimed to improve existed

variable bit allocation techniques and to get, as a result, higher compression ratios while maintaining

the same (or near-the-same) computational complexity. This allows to use predefined (aposteriorical)

knowledge of information source (eye images) to keep important to eye tracking regions of pixels

uncompressed (cornea-pupil edges with highest quality) and to compress unimportant regions (lowest

quality). The idea (Figure 52) is to find a particular subbands (for example, subbands, containing

diagonal details) and then compress these subband coefficients with higher ratio leading to less bpp or

remove these subband coefficients, leading to even lesser bpp.

Model updates

Prediction error
TX RX

Model Model
Feedback channel

Data channel
TX RX

Methodology 51

Diagonal details more compressed

Diagonal details entirely removed

Figure 52. Idea of RDO based on diagonal coefficient processing.

3.5 Neural Network Based Approaches

3.5.1 Applying Neural Networks to the EyeDee™ Solution

Over the last years there is a tendency of applying neural networks in industry [275–278] to the parts of

complex algorithms or even more a complete replacement of complex algorithms by trained neural

networks. There are several major advantages behind this tendency:

 Simplify development of complex image processing based eye tracking algorithm. Usually

development of complex algorithm takes significant amount of time needed for optimization,

precision, accuracy, implementation, and parallelization.

 Accelerate of the eye tracking algorithm. Taking results from neural network is usually

considered as faster operation in compare with execution of the algorithms because trained

neural network is an «offline» approach (pre-trained set of weights) of complex objective

function while classical algorithms search this objective function in run-time («online»

approach).

 Constant time response. Due to conditional logic, (and, in consequence, not constant number of

operations executed in run-time) the execution time of image processing based eye tracking

algorithm is not constant, which can be essential for especially time-critical applications. Usage

of neural trained network provides guaranty of constant time response [279], because of constant

number of operations to be executed to get a response.

 Implementation aspect: implementation can be seen as a set of pre-defined floating-point

numbers (trained weights) coupled with neural network architecture implementation (MLP or

ConvNet). These parts are implemented many times directly in hardware [280,281]. Hence,

hardware implementation costs go down.

The minor disadvantages of using neural networks are:

 Quality of training of neural network is still a challenge. The common issues are generalization

and coverage. Which usually results in collecting eye tracking data from several sources (users)

into huge databases and training of differently configured neural networks on these databases.

Several approaches are aimed to find the best hyperparameter combination, including basic grid

search [282], random search [225] and others.

 Time of training is high especially in case of using DNN. Recent solutions are based on using of

the GPUs to accelerate training time as well as .usage of advanced, more optimized training

algorithms [245] aimed on training time reduction.

 Approval issues. Usually trained ANNs are considered as ‘input-output black boxes’. While

image processing algorithms are relatively easy to trace in step-by-step mode and verify certain

52 Methodology

core values of the algorithm, trained ANNs are cannot be traced in the same manner. Therefore,

due to lack of clear traceability it is hard to approve ANN in the product and even more to

certify ANNs in contrast with constantly proved image processing algorithms.

However, in an applications, where usage of ANN results cannot imply on an industrial

catastrophe of or a live loss (for example, multimedia applications, entertainment applications), usage

of trained ANNs has a certain potential.

The EyeDee™ eye tracking can be interpreted as a multivariate function, which unambiguously

associates an ROI image (input of the eye tracking algorithm) with five ellipse parameters (output of

the eye tracking algorithm). Such a function is implemented via image processing (extraction of contours

of pupil ellipse followed by its automatic measuring). It is shown that it is possible to apply ANN based

approach to find an approximation this function.

The EyeDee™ head tracking can be interpreted as a multivariate function, which unambiguously

associates an filtered image of the Weetsy™ Frame (input of the head tracking algorithm) with 6DoF

parameters describing position of the Weetsy™ Frame in the 3D space (output of the head tracking

algorithm). It is shown as well that it is possible to apply ANN based approach to find an approximation

this function.

The EyeDee™ calibration [283] is a process aligning a person's gaze estimation to a particular

scene, when the geometric characteristics of a subject's eyes are estimated as the basis for a fully-

customized and accurate gaze point. The calibration can be interpreted as the process of determining

the equations used to map angles and radii between the pupil and glint centers of the user's eye to radii

and angles on the screen, with the origin of the coordinate system for the screen being just below the

bottom center of the monitor's screen. Result of the calibration is an improved gaze estimation for a

selected subject. It is shown as well that it is possible to apply ANN based approach to the calibration

task: either completely (ANN is used to perform an entire calibration process) or partially (default

calibration algorithm cross-checks its calibration results with results obtained from ANN).

Due to the thesis scope the following research focuses only on applying ANN based approaches to

the eye tracking.

3.5.2 Neural Network Based Eye Tracking (Based on Function Regression)

One potentially applicable example of using ANN in the eye tracking domain consists in the complete

replacement of currently used eye tracking image processing based algorithm coupled with geometrical

eye modeling by a precisely tuned and perfectly trained ANN, which directly transforms wirelessly

transmitted floating-point values of decimated eye image (result of the 3D perspective projection of a

model of rotating pupil disk) into five floating-point parameters of pupil's ellipse (result of the eye

tracking). Hence the implementation of the eye tracking algorithm is reduced to a neural network

construction and training approach, which is proposed in this thesis.

To create eye images for experimentation a special eye simulator was developed based on a 3D

eye model projected onto a plane (CMOS sensor). It simulates an eye of known geometry and a camera

sensor of known resolution, focal and distortion. Simulator settings permit to simulate only needed eye

features (Figure 53) at different detalization levels. The noise present in real images is simulated using

a Gaussian kernel.

Methodology 53

Figure 53. Eye images: real one and generated by simulator.

It can be seen that 3D projection of the rotating pupil disk has a geometrical shape of an ellipse.

The reconstruction of the gaze (i.e., direction in which the user is looking) is based on the center of

rotation of the eye coupled with the coordinates of pupil’s center, which are calculated based on five

ellipse parameters (Figure 54), obtained by automatic ellipse shape measuring.

Figure 54. Five ellipse parameters: center (x, y), major/minor (a/b) axis, rotation angle (φ).

The process of eye tracking can be interpreted as a multivariate function, which unambiguously

associates a dynamic ROI image (region that contains the centered image of the pupil) with five ellipse

parameters. This function can be based on (Figure 55):

 Image processing – filtering the eye image aimed on pupil ellipse shape preservation, followed by

its automatic measuring;

 Training of the ANN – the ANN inputs are the decimated ROI coupled with the decimated ROI

edges – both can be optionally high-frequency subbands of the 2D wavelet transform – and outputs

are the ellipse parameters, followed by loss function optimization (minimization of the average

ellipse reconstruction error).

Ellipse generated

by neural network

x

y
x' y'

a

b

φ

Legend:
c – center b – minor axis
a – major axis φ – rotation angle

c

Ellipse generated by

image processing based

eye tracking algorithm

54 Methodology

a. Image processing based

b. Neural network based

Figure 55. Eye tracking approaches: image processing based and neural network based.

The neural network is aimed on finding a correlation (Figure 56) between the floating-point values

of a decimated ROI image (decimated to reduce the amount of wirelessly transferred data) and the five

floating-point parameters of the pupil's ellipse (necessary for gaze reconstruction). To estimate the

relationships among these variables, a regression analysis function is applied using Torch7 [284] software

(neural network 'nn' and optimization 'optim' packages). This function is further integrated into the

EyeDee™ eye tracking software running on Windows 8 Win32 platform. During an initial testing we

decided to keep only one layer for the network, and since the decimation reduces 120x120 pixels 8bpp

ROI image into 3x3/5x5 pixels 32bpp image, the neural network has 9/25 inputs (18-50 inputs in case

of using ellipse edges) and 5 outputs.

Figure 56. Correlation between decimated ROI image and pupil's ellipse.

The training of the neural network is based on the well-known back-propagation approach coupled

with a gradient descent optimization method. The output of the network is compared to the desired

output using a loss function. Therefore, the training can be interpreted as the loss function optimization

(error minimization). The training is done with the following hyper-parameters:

 Number of epochs – the number of iterations over the training dataset;

 Learning rate – the size of the step taken at each stochastic estimate of the gradient;

 Learning rate decay – allows the algorithm to converge with high precision (it is often

recommended to lower the learning rate as the training progresses);

 Weight decay – used to L2-regularize the solution (model overfitting reduction [285]), which

prevents the weights from growing too large;

 Momentum – used to prevent the system from converging to a local minimum or saddle point.

It should be noted also that to ensure correct ellipse parameters reconstruction based on decimated

ROI images of all possible eye positions, it is essential to provide all possible input-output pairs for the

training. Since number of such pairs can be sufficiently large (number of all possible ellipse centers cx

and cy multiplied by number of number of all possible ellipse sizes rmax and rmin multiplied by number

of all possible ellipse rotation angles φ) training can take an amount of time.

To reduce this complexity, it is possible to reduce number of input-output pairs by removing such

a pairs that cannot practically appear, because ellipse sizes and ellipse center positions are fluctuated

(user moves the eye) in a certain range. Another way is to use several modern techniques aimed on

…correlation…

ROI Decimated ROI

Reconstructed

pupil’s ellipse

103.5847 102.5847 107.2513

99.5894 85.5847 97.2684

98.2680 105.2584 108.2054

https://en.wikipedia.org/wiki/Gradient_descent
https://en.wikipedia.org/wiki/Loss_function

Methodology 55

training acceleration, such as dropout [224] or batch normalization [245], use of ReLU [242] (or its

improved versions PReLU [286] or RReLU [287]).

3.5.3 Feature Based Eye Image Compression (Based on Data Classification)

This approach is based on idea of using ANN as a classifier. The ANN is trained to classify the areas of

the dynamic ROI image: relevant for eye tracking features (edges in this case) and not relevant features.

Then output classification result from the ANN is used as an input of image compressor to define which

area of the image should be broadcasted over a wireless medium for further processing by the PC-based

desktop eye tracking software.

Herein and after we refer to the following terminology:

 ROI (Region of Interest) – region containing image of the human's pupil;

 FOI (Features of Interest) – image containing useful (for eye tracking algorithm) features of ROI.

It is necessary to understand the difference of the proposed neural network based approach of

ROI eye image compression with respect to the classical one. Classical approach of image compression

(Figure 57), consists in the compression of the ROI image, sending thus the compressed image

(bitstream) over a channel, followed by decompression of the bitstream on the remote side to get the

original ROI image, which is further used as an input for the eye tracking algorithm. The neural network

based approach of image compression (Figure 58), consisted in the following steps:

a. Training a neural network to classify the blocks of a ROI image. The training is based on a set of

samples: ROI block itself and a Boolean value that indicates if this block contains pupil edges.

During the training this value is obtained from the default image processing based eye tracking

algorithm.

b. Use the trained neural network to perform ROI blocks classification, i.e., to decide if a particular

block contains pupil edges.

56 Methodology

Figure 57. Image compression: classical approach.

Figure 58. Image compression: neural network based approach.

The neural network is aimed on classification of the ROI image blocks into 2 classes (blocks

contain/does not contain pupil edges). To this purpose, we also used Torch7 [284] software (neural

network ‘nn’ and optimization ‘optim’ packages) with ‘convnet’ (convolutions+2-layer mlp, where 2-

layer mlp is multilayer perceptron, Figure 59) and ‘2-layer mlp’ (pure 2-layer mlp, Figure 60) models.

This functionality was further integrated into the EyeDee™ eye tracking software running on Windows

10 x64 platform. During an initial testing we decided to split the ROI image into blocks of size 20x20

and 10x10 (the block sizes in range 10..20 lead to conditions resulting in maximal benefit of using the

presented approach). In case of ‘convnet’ model we used 2 convolution layers (with max pooling),

followed by reshaping, and standard 2-layer mlp model. In case of ‘2-layer mlp’ model we directly used

reshaping followed by 2-layer mlp model.

Methodology 57

Figure 59. ROI image block classification using ConvNet (convolutions + 2-layer mlp).

Figure 60. ROI image block classification using 2-layer mlp neural network.

We used batch learning, i.e., learning on the entire training data set at once. In all tests batch

size was set to 10. The training of the neural network is based on the well-known back-propagation

approach coupled with a gradient descent optimization method. The output of the network is compared

to the desired output using a loss criterion. Therefore, the training can be interpreted as the loss function

optimization (error minimization).

Final decision on which class a particular ROI block belongs to can be based on:

1. Probability from the last neural network SoftMax layer (default selection method often

used in a neural network-based classifiers).

2. Applying a threshold (Figure 61) on probability density function (Figure 62). In this

selection method statistics on probabilities distribution is taken into account.

Figure 61. SoftMax last layer and threshold based decision.

SoftMax explained in details (+its relation with Bayes theorem)

The softmax function, or normalized exponential function is a generalization of the logistic

function that «squashes» a K-dimensional vector z of arbitrary real values to a K-dimensional vector

σ(z) of real values, where each entry is in the range (0, 1], and all the entries add up to 1. The function

is given by

1

: | 0, 1
K

K K
i i

i
, (3.1)

https://machinelearnings.co/text-classification-using-neural-networks-f5cd7b8765c6
https://machinelearnings.co/text-classification-using-neural-networks-f5cd7b8765c6
https://machinelearnings.co/text-classification-using-neural-networks-f5cd7b8765c6
https://machinelearnings.co/text-classification-using-neural-networks-f5cd7b8765c6
https://en.wikipedia.org/wiki/Gradient_descent

58 Methodology

1

()
j

k

z

j K
z

k

e

e

z , for j = 1, …, K. (3.2)

The softmax function is used in various multiclass classification methods, such as multinomial

logistic regression (also known as softmax regression), multiclass linear discriminant analysis, naive

Bayes classifiers, and artificial neural networks. Specifically, in multinomial logistic regression and linear

discriminant analysis, the input to the function is the result of K distinct linear functions, and the

predicted probability for the j
th
 class given a sample vector x and a weighting vector w is:

1

()
j

k

K

k

e
P y j

e

x w

x w

x∣

T

T

. (3.3)

An explanation of the relationship between the softmax function and the Bayes theorem is

provided in [288].

Figure 62. Probability density illustration.

Based on the final ANN outputs it is possible to measure two key metrics used to define quality of

blocks classification: efficiency (ε) and purity (p). These metrics were selected, because terminology

‘efficiency’ and ‘purity’ is more pertinent (in comparison with commonly used ‘precision’ and ‘recall’) in

characterizing results of blocks classification. These metrics are calculated as follows:

11

10 11

N

N N
, (3.4)

01

01 11

N
p

N N
, (3.5)

where:

 N00 – number of blocks predicted not to contain pupil edges which do not contain edges in reality;

 N01 – number of blocks predicted to contain pupil edges which do not contain edges in reality;

 N10 – number of blocks predicted not to contain pupil edges which do contain edges in reality;

 N11 – number of blocks predicted to contain pupil edges which do contain edges in reality.

Efficiency metric (ε) can be interpreted as a recall (also called sensitivity) and shows how good

trained NN at detecting the Cls2-clocks (block contains pupil edges). Ideally this values should be 100%.

– Cls1 (block does not contain pupil edges)

– Cls2 (block contain pupil edges)

Threshold

Probability values from SoftMax 0 1

P
ro

ba
bi

li
ty

 d
en

si
ty

0

0.4

Methodology 59

Efficiency metric (p) can be interpreted as a precision and shows many of the positively classified

Cls2-clocks (block contains pupil edges) were irrelevant (i.e., do not contain pupil edges in reality).

Ideally this values should be 0%.

ROI image split on blocks

(example)

General notion

 Prediction

 Cls1 Cls2

Truth
Cls1 N00 N01

Cls2 N10 N11

Particular example

 Prediction

 Cls1 Cls2

Truth
Cls1 N00 N01

Cls2 N10 N11

Legend:

Cls1 – block does not contain pupil edges

Cls2 – block contain pupil edges

Figure 63. Efficiency/purity illustrated explanation.

After obtaining these two metrics and compression of the FOI images according the approach it

is possible to measure compression performance at least in terms of bitrate (bits per pixel, bpp) of

uncompressed/compressed ROI/FOI images (Figure 64).

Legend:

FOI images (NN-based) – FOI images obtained with neural network based approach,

FOI images (ET-based) – FOI images obtained with general ET (Eye Tracking) algorithm

Figure 64. Compressed image comparison scheme.

Due to imperfect classification, it is very likely to have missing blocks with pupil edges and extra

blocks without edges. Processing of such FOI images will lead to degradation of eye tracking quality.

There are two strategies to reach high efficiency (>98%) and low purity (<5%):

1. Train ANN better – this strategy involves tuning of the hyperparameters (with random

search for example). This approach takes a lot of time.

2. «Complexity split» principle (can be viewed as ‘composite result’, Figure 65) – this

strategy involves split of final complexity of reaching desired percentages (>98% and

<5%) between several components, which are in summary give the desired percentages.

For example, after rapid estimation of a typical efficiency/purity percentages can be

obtained from a middle-quality trained ANN (for example, typical values are <75-80%

and >15-25%), it is possible to fix ANN parameters, stop time-consuming training and

create a second component (FOI corrector, Figure 66), which takes ANN intermediate

results and use them to reach expected percentages.

60 Methodology

Figure 65. ANN training time reduction by introducing FOI corrector.

ROI

FOI after ANN

FOI after NN after correction

Figure 66. FOI correction + FOI compression illustration.

It should be noted that the FOI correction is considered as the future work. However, the FOI

correction algorithm can be based on K-means clustering [163,289] or fuzzy logic [290].

3.6 Conclusion

SuriCog’s EyeDee™ eye tracking algorithm is based on eye modelling. It consists in reconstructing a 3D

model of an eye out of multiple 2D images taken by the CMOS sensor ah a very high acquisition

frequency (100Hz). To introduce eye image compression into the system, the thesis term «image

compression» itself should be understood in an eye tracking application-specific sense in compare with

classical definition (application) of image compression. In particular, the eye tracking system does not

incorporate any human feedback on viewing decompressed eye images. Therefore, during selection,

implementation, optimization and tuning of the eye image compression system, usually used

recommended practices on obtaining the best acceptable quality (based on usual advantages of HVS,

for example) cannot be directly applied due to the eye tracking application specifics. Therefore, a special

research was done (experimental results are presented in the following chapter) on studying the impact

of eye image compression system parameters on the final precision of the eye tracking output results.

These parameters include: execution time of eye image compression/decompression time, size of resulted

compressed eye image, quality of decompressed eye image and ability for the compression system to

operate in lossy transmission medium.

In contrast with classical general purpose image compression algorithms, a several eye tracking

application specific alternative image compression approaches were proposed. For example, applying of

Artificial Neural Networks (ANN) to the EyeDee™ solution has a certain potential. With use of ANNs

it is possible to consider, rapidly implement and evaluate several approaches as: regression based eye

Extra blocks removal based on

clustering (including computing

of distances)

Extra blocks removed

Missing blocks inserted

F
O

I
fi
n
d
in

g
 q

u
a
li
ty

ANN training time

Reduction of training
time by approx. 50%

Reaching of approx. 98%
of FOI finding quality

Delta (to keep small details)

Methodology 61

tracking, classification based eye image compression, classification based ROI finding and some others

advanced approaches, experimental results of which are presented in the following chapter.

62

Chapter 4Equation Section 4

4 Experimental Results

4.1 Introduction

This chapter contains experimental results of research, which was carried out based on a particular

product (Chapter 1, Introduction) in the domain of defined theory (Chapter 2, Theoretical Part) and

according to applied methodology (Chapter 3, Methodology).

4.2 Reproducibility of the Results

The results presented in this thesis were obtained based on EyeDee™ eye tracking solution, which consist

of Weetsy™ portable wire/wireless system including Weetsy™ frame, Weetsy™ board, π-Box™ remote

smart sensor and PC-based processing unit running SuriDev eye tracking software.

The experimental research results presented in this chapter can be reproduced by deploying

modified version (with implemented methods, approaches and algorithms) of EyeDee™ eye tracking

solution on a particular PC. All hardware and software used during the research (Table 4), as well as

test video sequences are available upon a dedicated request to SuriCog via:

SuriCog

130 rue de Lourmel 75015 Paris France

+33 01 40 60 70 60

contact@suricog.com

Due to the fact that research conducted in this thesis is not a medical research, there is no test

cases, where results were obtained on multiple users/patients, dedicated patient groups and similar

methods involving participation of the individuals. Rather the results were obtained by the tests, in

which only author himself was participated.

Table 4. Hardware/software used during the research.

Product Description

Hardware

Intel Core i7 3.6 GHz 64 bit, 4 physical cores, 8

logical cores

General purpose processor

Renesas RZ/A1H MCU used in the Weetsy™ board

Altera Cyclone V FPGA FPGA used in the Weetsy™ board

OV7251 CMOS sensor CMOS image sensor used in the Weetsy™ frame

Software

Windows 10 64 bit General purpose OS

Visual Studio Community 2017 IDE for C/C++

MATLAB R2018a Environment for numerical computing

ARM DS-5 5.15.0 IDE for Renesas RZ/A1H

Quartus Prime Lite Edition 15.0 IDE for Altera Cyclone V FPGA

Signal Tap software (part of Quartus Prime) Used for measuring Renesas RZ/A1H performance

Torch7 scientific computing framework Machine learning

Experimental Results 63

4.3 SuriCog's Eye Tracking Algorithm Improvements

4.3.1 Hardware Based ROI Finder

Finding of dynamic ROI is considered as being 1
st
 step of total eye image compression. Results produces

by both PC-based desktop software and FPGA-based hardware ROI-finders were experimentally

compared: FPGA-based ROI-finder shows near-the-same accuracy (Figure 67) as default software-based

ROI-finder. Hence, FPGA ROI-finder can be deployed to Weetsy™ board leading to bypass of ROI finder

in processing unit.

Figure 67. Visual representation of ROI finding in Weetsy™ board (FPGA).

Ideally full pupil's finding algorithm is implemented inside the FPGA. However, porting of the

complete eye tracking algorithm is a time consuming task (eye tracking algorithm's optimization,

reduction of operating memory needed, minimizing usage floating-point operations, etc.). A special

operation mode was introduced, where FPGA-based ROI finder works in co-existence with default PC-

based software ROI finder sending some diagnostic information about its operation to the processing

unit. This technique allows to progressively improve quality of FPGA-based ROI finder while continuing

usage of the default one. FPGA ROI step was configured for 24 and 12 pixels (Table 5).

64 Experimental Results

Table 5. Comparison of FPGA ROI finder precision.

Video sequence

Reference ET

Eye tracking error, %

SuriQuat ET

ROI finder

FPGA ROI finder

(24 pix step)

FPGA ROI finder

(12 pix step)

PMOR_640x640_01.AVI, 640x640 (750 frames) 1.25 2.48 1.98

PMOR_400x260_01.AVI, 400x260 (750 frames) 1.32 2.67 2.02

MS_640x640_01.AVI, 640x640 (750 frames) 1.17 2.15 1.83

MS_400x260_01.AVI, 400x260 (750 frames) 1.18 2.39 1.99

EGAFF_640x640_01.AVI, 640x640 (750 frames) 1.89 3.05 2.27

EGAFF_400x260_01.AVI, 400x260 (750 frames) 1.96 3.28 2.46

4.4 Finding of the Eye Image Compression Algorithm Requirements

To find system performance bottlenecks we decided to accurately measure entire image acquisition

system (also called ‘image delivery chain’) to represent an entire system via set of System of Linear

Equations (SLE), which are derived in this section.

4.4.1 Finding Maximal Time of Eye Image Compression/Decompression

Results show that dependency of uncompressed image size on compression time for compressor JCU

grows linearly (Figure 68, a) as well as dependency of compressed image size-decompression for

decompressor libjpeg-turbo (Figure 68, b).

NOTE: Since compression of eye images of resolutions 400x256 and 640*480 takes more time than

maximal time of acquisition with Signal Tap (2.73 us) we extrapolated compression time results for eye

images of these resolutions.

a. JCU

b. libjpeg-turbo

Figure 68. Compression/decompression time assessment: JCU vs. libjpeg-turbo.

According to the results (Figure 68) in both cases time grows linearly, so their representation is

an equation of a straight line y = kx + b (Table 6).

NOTE: Changing of JCU JPEG quality (1..100) does not affect image compression time (because in fact

JPEG quality defines only quantization tables content), so we consider that these parameters

are totally independent.

0

1000

2000

3000

4000

5000

6000

7000

0 50000 100000 150000 200000 250000 300000 350000

C
om

p
re

ss
io

n
 t

im
e

(µ
s)

Size of uncompressed image (pixels)

0

200

400

600

800

1000

1200

0 50000 100000 150000 200000 250000 300000 350000

D
ec

om
p
re

ss
io

n
 t

im
e

(µ
s)

Size of compressed image (bytes)

Experimental Results 65

Table 6. Derived equations for uncompressed/compressed image size/time.

Compressor: Renesas RZ/A1H JCU

Dependency Uncompressed image size-compression time’, where x is uncompressed image size

(in 16bpp YUV pixels) and f(x) is compression time

Derived equation f(x) = 0,019393631x + 594,254743

Decompressor: libjpeg-turbo

Dependency Compressed image size-decompression time’ SLE, where x is compressed image

size (in bytes) and f(x) is decompression time

Derived equation f(x) = 0,00326667x + 16,4788732

The next step consists of measuring of the capabilities of the transmission mediums used: USB

2.0 (limited implementation) and Wi-Fi (WLAN 802.11n, full implementation).

Since in FPGA+MCU based readout images are read in packet-by-packet mode, there is a need

to verify that reading cycle delivers the same performance across difference eye image resolutions. In a

certain cases (high quantity of small packets, we call in ‘small data blocks’) due to internal

implementation overhead related to increased number of variable comparisons on for/while loops the

overall performance can degrade.

According to our measurements, resulting dependency of size of transmitted image over measured

bitrate for both USB and Wi-Fi varies insignificantly (Figure 69) and hence can be neglected taking the

consideration that both USB and Wi-Fi deliver the same bitrate during reading eye images of any

resolution supported (full size image, static ROI, dynamic ROI).

a. USB

b. Wi-Fi

Figure 69. Size of transmitted image over measured bitrate: USB vs. Wi-Fi.

Conclusion based on the measurements:

 USB approx. bitrate is constant for and image sizes and about 66 Mbps;

 Wi-Fi approx. bitrate is constant for dynamic ROI image sizes (80x80...160x160) and

about 6.2 Mbps.

 Wi-Fi approx. bitrate is differs for static ROI image and full size image (400x260,

640x640) and about 6.5 Mbps. This variation is clearly illustrates ‘small data blocks’

issue.

4.4.2 Finding Minimal Size of Compressed Eye Image

Because eye image of each different resolution contains more eye features, compressor results in terms

of real bpp will be different across image resolutions with the same compressor’s settings. To avoid this

pitfall we measure compressor’s behavior for each resolution independently. According to results of

measurement of the JPEG quality vs. bpp vs. PSNR, decompressed image quality over real bpp (Figure

70, a) as well as JPEG quality over real bpp (Figure 70, b) continuously grows as expected according to

well-known performance of JPEG standard.

66.56

66.816

66.56 66.56

65.536

64.5

65

65.5

66

66.5

67

6500 14400 26000 104000 409600

U
S
B

 b
it

ra
te

 (
M

b
p
s)

Size of image (bytes)

6.24 6.2208 6.24

6.656

6.5536

5.9

6

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6500 14400 26000 104000 409600

W
iF

i
b
it

ra
te

 (
M

b
p
s)

Size of image (bytes)

66 Experimental Results

NOTE: Since JCU uses internal 16bpp YUV2 representation, the ‘bpp’ should be interpreted as ‘bits-

per-16bpp pixel in YUV2 format’.

a. Decompressed image quality over real bpp

b. JPEG quality over real bpp

Figure 70. JCU assessment results: JPEG quality vs. bpp vs. PSNR.

Then we use a linear interpolation to derive needed SLEs (Table 7).

Table 7. Derived SLEs for bpp and PSNR/JPEG quality.

Derived ‘real bpp-PSNR’ SLE,

where x is real bpp and f(x) is PSNR

Derived ‘real bpp-QUAL’ SLE,

where x is real bpp and f(x) is JPEG quality

Full size image (640x640)

2 16.783310 9.1638 10 , if [0.175,0.181],

2 13.5667 10 3.3417 10 , if (0.181,0.187],

2 11.7857 10 1.128610 , if (0.187,0.194],

2 11.075010 1.367510 , if (0.194,0.202],

15.600010 2.4078

()

x x

x x

x x

x x

x

f x

110 , if (0.202,0.212],

1 15.222210 2.487910 , if (0.212,0.221],

1 13.6667 10 2.8317 10 , if (0.221,0.23],

1 14.000010 2.755010 , if (0.23,0.24],

1 12.250010 3.175010 , if (0.24,0.248],

2.58331

x

x x

x x

x x

x x

1 10 3.092310 , if (0.248,0.26],

1 11.714310 3.318310 , if (0.26,0.274].

x x

x x

1 11.4762 10 3.3835 10 , if [0.274,0.295],

1 11.0000 10 3.5240 10 , if (0.295,0.322],

1 11.0333 10 3.5133 10 , if (0.322,0.352],

17.9104 3.5986 10 , if (0.352,0.419],
()

14.7423 3.7313 10 , if (0

x x

x x

x x

x x
f x

x x .419,0.516],

13.8049 3.7797 10 , if (0.516,0.721],

12.5052 3.8734 10 , if (0.721,1.204],

1 13.6480 10 4.1311 10 , if (1.204,4.329].

x x

x x

x x

2 28.3333 10 1.4083 10 , if [0.175,0.181],

2 28.3333 10 1.4083 10 , if (0.181,0.187],

2 27.1429 10 1.1857 10 , if (0.187,0.194],

2 26.2500 10 1.0125 10 , if (0.194,0.202],

25.0000 10 7.600

()

x x

x x

x x

x x

x

f x

10 10 , if (0.202,0.212],

2 15.5556 10 8.7778 10 , if (0.212,0.221],

2 15.5556 10 8.7778 10 , if (0.221,0.23],

2 15.0000 10 7.5000 10 , if (0.23,0.24],

2 26.2500 10 1.0500 10 , if (0.24,0.248],

4.1

x

x x

x x

x x

x x

2 1667 10 5.3333 10 , if (0.248,0.26],

2 13.5714 10 3.7857 10 , if (0.26,0.274].

x x

x x

22.3810 10 5.2381, if [0.274,0.295],

2 11.8519 10 1.0370 10 , if (0.295,0.322],

2 11.6667 10 1.6333 10 , if (0.322,0.352],

1 17.4627 10 4.8731 10 , if (0.352,0.419],
()

1 15.1546 10 5.8402 10 , if

x x

x x

x x

x x
f x

x (0.419,0.516],

1 12.4390 10 7.2415 10 , if (0.516,0.721],

1 11.0352 10 8.2536 10 , if (0.721,1.204],

11.6000 9.3074 10 , if (1.204,4.329].

x

x x

x x

x x

Static ROI image (400x260)

Experimental Results 67

2 26.2800 10 1.0212 10 , if [0.207,0.212],

2 12.2125 10 1.5885 10 , if (0.212,0.22],

21.2000 10 6.3900, if (0.22,0.23],

1 18.4000 10 1.4670 10 , if (0.23,0.24],

1 14.0769 10 2.5045 10 , if (

()

x x

x x

x x

x x

x x

f x

0.24,0.253],

1 13.7500 10 2.5872 10 , if (0.253,0.265],

1 12.7500 10 2.8522 10 , if (0.265,0.277],

1 12.7500 10 2.8523 10 , if (0.277,0.289],

1 11.6000 10 3.1846 10 , if (0.289,0.299],

11.6471 10 3.1

x x

x x

x x

x x

x 1705 10 , if (0.299,0.316],

1 11.0625 10 3.3553 10 , if (0.316,0.332].

x

x x

19.2308 3.4015 10 , if [0.332,0.358],

16.3636 3.5042 10 , if (0.358,0.391],

15.8333 3.5249 10 , if (0.391,0.427],

14.3902 3.5865 10 , if (0.427,0.509],
()

13.0357 3.6555 10 , if (0.509,0.621],

x x

x x

x x

x x
f x

x x

12.2072 3.7069 10 , if (0.621,0.843],

11.7524 3.7453 10 , if (0.843,1.368],

1 16.7332 10 3.8929 10 , if (1.368,4.576].

x x

x x

x x

3 21.0000 10 2.0200 10 , if [0.207,0.212],

2 26.2500 10 1.2250 10 , if (0.212,0.22],

2 15.0000 10 9.5000 10 , if (0.22,0.23],

2 15.0000 10 9.5000 10 , if (0.23,0.24],

2 13.8462 10 6.7308 10

()

x x

x x

x x

x x

x

f x

, if (0.24,0.253],

2 14.1667 10 7.5417 10 , if (0.253,0.265],

2 14.1667 10 7.5417 10 , if (0.265,0.277],

2 14.1667 10 7.5417 10 , if (0.277,0.289],

2 15.0000 10 9.9500 10 , if (0.289,0.299],

2.941

x

x x

x x

x x

x x

2 12 10 3.7941 10 , if (0.299,0.316],

2 13.1250 10 4.3750 10 , if (0.316,0.332].

x x

x x

21.9231 10 3.8462, if [0.332,0.358],

2 11.5152 10 1.0758 10 , if (0.358,0.391],

2 11.3889 10 1.5694 10 , if (0.391,0.427],

1 16.0976 10 4.8963 10 , if (0.427,0.509],
()

1 14.4643 10 5.7277 10 , if

x x

x x

x x

x x
f x

x (0.509,0.621],

1 12.2523 10 7.1014 10 , if (0.621,0.843],

19.5238 8.1971 10 , if (0.843,1.368],

11.5586 9.2868 10 , if (1.368,4.576].

x

x x

x x

x x

Dynamic ROI image (120x120)
2 25.2429 10 2.1077 10 , if [0.451,0.458],

2 12.2231 10 7.2467 10 , if (0.458,0.471],

1 19.8125 10 1.3977 10 , if (0.471,0.487],

1 19.0000 10 1.0020 10 , if (0.487,0.499],

15.0909 10 9.4864

()

x x

x x

x x

x x

x

f x

, if (0.499,0.51],

1 13.7692 10 1.6227 10 , if (0.51,0.523],

1 12.9167 10 2.0686 10 , if (0.523,0.535],

1 13.2000 10 1.9170 10 , if (0.535,0.545],

1 12.2727 10 2.4224 10 , if (0.545,0.556],

11.2857 10

x

x x

x x

x x

x x

12.9711 10 , if (0.556,0.577],

1 11.5000 10 2.8475 10 , if (0.577,0.595].

x x

x x

1 11.5000 10 2.8475 10 , if [0.595,0.617],

1 11.2083 10 3.0275 10 , if (0.617,0.641],

18.8889 3.2322 10 , if (0.641,0.668],

16.0294 3.4232 10 , if (0.668,0.736],
()

13.6190 3.6006 10 , if (0.736

x x

x x

x x

x x
f x

x x ,0.841],

13.0303 3.6502 10 , if (0.841,1.039],

12.1308 3.7436 10 , if (1.039,1.513],

1 15.6640 10 3.9803 10 , if (1.513,4.638].

x x

x x

x x

2 27.1429 10 3.1714 10 , if [0.451,0.458],

2 23.8462 10 1.6615 10 , if (0.458,0.471],

2 23.1250 10 1.3219 10 , if (0.471,0.487],

2 24.1667 10 1.8292 10 , if (0.487,0.499],

24.5455 10 2.018

()

x x

x x

x x

x x

x

f x

22 10 , if (0.499,0.51],

2 23.8462 10 1.6615 10 , if (0.51,0.523],

2 24.1667 10 1.8292 10 , if (0.523,0.535],

2 25.0000 10 2.2750 10 , if (0.535,0.545],

2 24.5455 10 2.0273 10 , if (0.545,0.556],

2

x

x x

x x

x x

x x

2 1.3810 10 8.2381 10 , if (0.556,0.577],

2 22.7778 10 1.0528 10 , if (0.577,0.595].

x x

x x

2 12.2727 10 7.5227 10 , if [0.595,0.617],

2 12.0833 10 6.3542 10 , if (0.617,0.641],

2 11.8519 10 4.8704 10 , if (0.641,0.668],

1 17.3529 10 2.5882 10 , if (0.668,0.736],
()

14.7619 10 4.4952

x x

x x

x x

x x
f x

x 110 , if (0.736,0.841],

1 12.5253 10 6.3763 10 , if (0.841,1.039],

1 11.0549 10 7.9040 10 , if (1.039,1.513],

11.6000 9.2579 10 , if (1.513,4.638].

x

x x

x x

x x

4.4.3 Finding Minimal Quality of Decompressed Eye Image

To measure tracking accuracy, a reference (i.e., ground truth) has to be obtained. For this purpose

tracking has to be done on uncompressed images. For high compression ratios (Figure 71, Figure 72,

Figure 73, Figure 74) we are starting to lose the singularities and irregular structures in original image,

which contain most sensitive information for the tracking system.

68 Experimental Results

Figure 71. Eye image number vs. pupil x coordinate (low compression ratios).

Figure 72. Eye image number vs. pupil y coordinate (low compression ratios).

395

400

405

410

415

420

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

p
u
p
il
 x

 c
oo

rd
in

a
te

,
p
ix

Eye image number

Uncompressed (bpp 8 PSNR Inf.)
Ratio 2 (bpp 3.98 PSNR 57.27)
Ratio 4 (bpp 1.98 PSNR 43.72)
Ratio 8 (bpp 0.99 PSNR 39.98)

235

240

245

250

255

260

265

270

275

280

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

p
u
p
il
 y

 c
oo

rd
in

a
te

,
p
ix

Eye image number

Uncompressed (bpp 8 PSNR Inf.)
Ratio 2 (bpp 3.98 PSNR 57.27)
Ratio 4 (bpp 1.98 PSNR 43.72)
Ratio 8 (bpp 0.99 PSNR 39.98)

Experimental Results 69

Figure 73. Eye image number vs. pupil x coordinate (high compression ratios).

Figure 74. Eye image number vs. pupil y coordinate (high compression ratios).

Compression with ratio 2 leads to glossy image and, therefore, can be interpreted as part of a

denoising algorithm. Ratios starting with 8 leads to tracking errors (human's eye is maximally turned

in each direction), which are directly linked to the compression ratios. However, there are regions where

the results are very close to the results obtained on uncompressed image. High compression ratios lead

to errors that cannot be neglected. As a result so-called «mistracking» (Figure 77) occurs. To find the

boundary, where compression can be used without significant degradation of eye tracking results, it is

needed to measure the drift [291], (i.e., average systematic error) between eye tracking algorithm output

result – pupil x/y coordinate (Figure 75) on the original (uncompressed) and decompressed images as

well as drift between eye image segmentation thresholds THi/TLo (Figure 76) on the original

(uncompressed) and decompressed images.

350

370

390

410

430

450

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

p
u
p
il
 x

 c
oo

rd
in

a
te

,
p
ix

Eye image number

Uncompressed (bpp 8 PSNR Inf.)
Ratio 80 (bpp 0.10 PSNR 36.97)
Ratio 100 (bpp 0.08 PSNR 36.62)
Ratio 120 (bpp 0.07 PSNR 39.29)

240

245

250

255

260

265

270

275

280

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

p
u
p
il
 y

 c
oo

rd
in

a
te

,
p
ix

Eye image number

Uncompressed (bpp 8 PSNR Inf.)
Ratio 80 (bpp 0.10 PSNR 36.97)
Ratio 100 (bpp 0.08 PSNR 36.62)
Ratio 120 (bpp 0.07 PSNR 39.29)

70 Experimental Results

Figure 75. Drift of pupil x/y coordinate vs. eye image compassion.

Figure 76. Drift of segmentation thresholds TLo/THi vs. eye image compassion ratio.

As it can be seen there is no proportional increase of the error with the increase of compression

rations. This is due to the fact that different ratios lead to different types of distortion for the

decompressed image. For example, ratios less or equal to 16 lead to less than 1% tracking errors, while

ratios less or equal 50 lead to 2% tracking errors. Ratios higher than 120 lead to significant tracking

errors (more than 4-5%, mistracking, as can be seen in (Figure 77).

0

1

2

3

4

5

6

7

8

1 2 4 8 16 20 30 40 50 60 70 80 100 120 160 200 250 300

d
ri

ft
 o

f
p
u
p
il
 x

/y
 c

oo
rd

in
a
te

,
%

Eye image compression ratio

pupil x coordinate drift

pupil y coordinate drift

0

5

10

15

20

25

30

1 2 4 8 16 20 30 40 50 60 70 80 100 120 160 200 250 300

d
ri

ft
 o

f
se

g
m

en
ta

ti
on

 t
h
re

sh
ol

d
s

T
L
o/

T
H

i,
 %

Eye image compression ratio

Drift

TLo

Experimental Results 71

a. Successful tracking

b. Mistracking

Legend: Eye image compression ratio 160, bpp 0.05, PSNR 34.73 dB, codec JPEG 2000

Figure 77. Successful tracking and mistracking.

Another simple, but effective technique is eye image pixel bit depth reduction. According to

conducted research (Figure 78, Figure 79, Figure 80) usage of eye images of 4bpp commits on 1.25..8.78%

of eye tracking precision errors, while immediately 50%-increasing eye image transmission performance,

because of 50% less data to transmit from Weetsy™ board to PC based processing unit performing the

eye tracking. Which makes this ‘bit depth reduction’ approach be acceptable in the wide range of

multimedia applications (for example, interaction with the objects placed in a known 3D environment),

where slight decreasing of eye tracking precision will not result in for example industrial disaster, life

loss or misdiagnosis.

a. 8 bpp, PSNR Inf dB

b. 4bpp, PSNR 32.27 dB

c. 3 bpp, PSNR 25.55 dB

Figure 78. Visual comparison of eye images with reduced bit depth.

a. Image quality over bit depth

b. Image size reduction factor over bit depth

Figure 79. Pixel bit depth reduction: uncompressed images.

100

51.1
42.62

35.71 32.27
25.55

17.37
11.37

0

20

40

60

80

100

120

8 7 6 5 4 3 2 1

P
S
N

R
,
d
B

bit depth, bit

1.00 1.14 1.33 1.60
2.00

2.67

4.00

8.00

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

8 7 6 5 4 3 2 1

im
ag

e
si

ze
 r

ed
u
ct

io
n
 f
ac

to
r

bit depth, bit

72 Experimental Results

a. Image quality over real bpp (JPEG)

b. Image quality over real bpp (JPEG 2000)

Figure 80. Pixel bit depth reduction: compressed images (JPEG vs. JPEG 2000).

4.4.4 Considerations on Ability to Operate in Lossy Transmission Medium

To protect compressed image data (bitstream) against errors or loses a CRC16 was initially used

following by its replacement to highly optimized CRC8, which was however used for data blocks even

more than 256 bytes (max 1500 bytes) with the assumption that probability of obtaining the same CRC

for corrupted data as for non-corrupted data stays low hence can be neglected. CRC8 was implemented

at the application layer, during reading eye image pixels from the FPGA RAM into the MCU RAM via

16 bit data bus. Such an implementation ‘in-place’ leads to about 0.002% of slow-down of the reading,

which can be neglected during FPS estimation.

Figure 81. Computing of the CRC8 ‘in-place’ during reading of the pixels.

According to 6 hours continuous performance test of UDP transmission (Table 8) of packets with

compressed image data from Weetsy™ board to PC based processing unit running Wi-Fi 2.4 GHz Access

Point (AP) in a form of dedicated USB device (USB dongle) at the distance 2..8 meters there are about

0% of packets (Table 8, pkt_rcvd_with_crc_error) on which CRC8 checking was failed. Because of

this we decided to avoid usage of this however optimized CRC8 done ‘in-place’ to accelerate the

processing as much as possible. Such statistics even allows to use in Wi-Fi/RF stations-free environments

some video compression systems with special profiles installed allowing in patricidal decoding of a

corrupted video bitstream.

Table 8. Six hours continuous performance test of UDP transmission.

pkt_rcvd 2264306

pkt_rcvd_with_crc_error 0 (0.00 %)

img_rcvd 780200

img_rcvd_with_seq_error 619 (0.08 %)

pkt/img 2.90

total_bytes_rcvd 2545609516

30

31

32

33

34

35

36

37

38

0.1 0.3 0.5

P
S
N

R
,
d
B

real bpp, bits

bit depth 8 bits

bit depth 7 bits

bit depth 6 bits

bit depth 5 bits

30

32

34

36

38

40

0.1 0.3 0.5

P
S
N

R
,
d
B

real bpp, bits

bit depth 8 bits

bit depth 7 bits

bit depth 6 bits

bit depth 5 bits

Experimental Results 73

payload_bytes_rcvd 2416395668

headers overhead 5.08 %

compression ratio 36.78

pkt_skip_client_busy 13745

bytes_skip_client_busy 17507426 (0.72 % of payload_bytes_rcvd)

datarate 0.11 Mbytes/sec 0.86 Mbits/sec

For a possible cases when data is corrupted we decided to protect JPEG header by sending only

coded JPEG data while remote PC based processing unit uses its local copy of JPEG header (because

JPEG header stays constant from image to image). In this case even if coded JPEG data is corrupted

there is no risk that JPEG decoder will crash due to corrupted header. Before the transmission, PC

based processing unit generates its local copy of JPEG header based on image resolution and JPEG

quality (based on which quantization table is generated). According to statistics size of JPEG header

takes in average about 12.5% of JPEG compressed static ROI eye image at JPEG quality 75, i.e., sending

only JPEG coded data without JPEG header allows to reduce amount of transmitted data by 12.5% at

minimum. Another issue is the packets lost due to UDP best-effort delivery (Table 8,

img_rcvd_with_seq_error). There is no so much approaches to reduce this result, except acceleration

of the reception as much as possible. On our case we decided to use multithreaded implementation,

where data reception thread is running as much as possible without any locks (even copying of received

data to ‘user’ buffer with is considered as ‘lock’, because it takes a certain amount of time). We decided

to use classical multiple-buffering technique (in our case double-buffering, Figure 82) also called ‘flip-

flop technique’, where reception thread stores currently received image data into buffer N while user

thread reads previously received image data from buffer N-1. This technique allows to unblock reception

thread in a moments when user thread does copying of the image data to its local user buffer.

Reception thread is locked until user thread is

finished data copying of the data received

Image N Image N+1

Reception thread keeps running while user thread does data

copying of the data received

Figure 82. Single bufferring vs. multiple bufferring.

Currently used wireless hardware (Wi-Fi chip with RF module inside connected to external u.FL

antenna) is very sensitive to change of environment conditions during data transmission (metallic objects

between the antenna and the access point, presence of other stations in the same room, etc.), the amount

of bitsteram corrupted and/or bitsteram lost is shown to be much higher than 20%. Which makes almost

impossible to constantly use video compression techniques, aimed to remove both spatial and temporal

redundancies from the input eye images.

Wireless transmission bitrate measurement (Table 9) on several distances between Weetsy™ board

and PC based processing unit running Wi-Fi 2.4 GHz (AP) Access Point gives the following results on

a distance 1 meter (typical usage distance):

1. Bitrate about 5.69..6.24 Mbit/sec (transmission of dummy data, no compression).

2. Bitrate about 2.21..2.23 Mbit/sec (transmission of compressed dummy data).

3. Bitrate about 1.41..1.45 Mbit/sec (transmission of compressed image data (eye image

acquisition in progress).

Reception
thread

User
thread

locked, waits for completion
of user’s thread operation

Common
buffer

writing

Reception
thread

User
thread

Buffer 0 Buffer 1

reading writing

Reception
thread

User
thread

Buffer 0 Buffer 1

reading

74 Experimental Results

Table 9. Results of wireless transmission bitrate measurement.

Distance,

meters

Bitrate, Mbit/sec,

measured with

Tester

Bitrate, Mbit/sec,

measured with

Wireshark

Graph,

obtained with Wireshark

Peak performance, transmission of dummy data, no compression

1 5.69 6.24

4 3.25 2.82

8 1.15 2.85

Transmission of compressed dummy data

1 2.21 2.23

4 1.93 2.00

Experimental Results 75

8 1.39 0.55

Transmission of compressed image data (eye image acquisition in progress)

1 1.41 1.45

4 1.40 1.40

8 0.54 1.27

4.4.5 Image Compression Basic Configurations

There are two basic image compression configurations used in the Weetsy™ board:

 Compression of static ROI (Figure 83).

 Compression of the dynamic ROI (Figure 84).

76 Experimental Results

Figure 83. Configuration for compression of static ROI.

Compressed ROI Configuration

Figure 84. Configuration for compression of dynamic ROI.

4.5 Experimentations with Image/Video Compression Systems

4.5.1 Available Products

We tested several available ready-to-use products:

1. OpenJPEG [270] is an open-source library to encode and decode JPEG 2000 images. As of

version 2.1 released in April 2014, it is officially conformant with the JPEG 2000 Part-1

standard. It was subsequently adopted by ImageMagick instead of JasPer in 6.8.8-2 and

approved as new reference software for this standard in July 2015. Author: Université Catholique

de Louvain (UCL). License: BSD.

2. Kakadu [292] is a closed-source library to encode and decode JPEG 2000 images. It implements

the ISO/IEC 15444-1 standard fully in part 1, and partly in parts 2-3. Kakadu is a trademark

of NewSouth Innovations Ltd. License: proprietary.

3. JasPer [293] is a project to create a reference implementation of the codec specified in the JPEG-

2000 Part-1 standard (i.e., ISO/IEC 15444-1) - started in 1997 at Image Power Inc. and at the

University of British Columbia.[2] License: JasPer License Version 2.0.

4. JJ2000 [294] is the Java reference implementation (part 5) of JPEG 2000. This project was the

result of a partnership between EPFL, Canon Research France and Ericsson. It ended in

September 2001 with a complete implementation of the normative parts of the JPEG 2000 core

coding system (part 1).

5. x264 [295] is a free software library developed by VideoLAN for encoding video streams into the

H.264/MPEG-4 AVC format. License: GNU General Public License (version 2.0).

6. x265 [296] is an open source free software and library for encoding video using the High Efficiency

Video Coding (HEVC/H.265) standard. License: GNU General Public License (version 2.0) or

commercial license.

7. Xvid [297] is a video codec library following the MPEG-4 video coding standard, specifically

MPEG-4 Part 2 Advanced Simple Profile (ASP). License: GNU General Public License.

8. Custom solution: custom designed codec compatible with SuriCog's application specifics.

Experimental Results 77

4.5.2 Comparison of Image Compression Systems: JPEG, JPEG 2000 and FLIF

Several image compression systems were compared: JPEG, JPEG 2000, and FLIF. As for video codecs,

there was comparison of the following products: XVID (MPEG-4), X264 (H.264/MPEG-4 AVC), X265

(HEVC/H.265). Several software-based encoder products were deployed to RZ-microcontroller (used to

drive Weetsy™ board): OPENJPEG (JPEG 2000 standard) and XVID (MPEG-4 standard). Based on

results of several experimentations with image compression systems it was concluded that JPEG 2000

is the best image coding system among others compared, because it provides higher PSNR at lower

bitrates, natively support selection of ROI (with higher bpp allocated for ROI in contrast with non-ROI)

JPEG 2000 and its predecessor JPEG are commonly used image compression systems. To evaluate

JPEG 2000 codec’s ROI selection feature (compression with higher bpp allocated for ROI), set of

experiments was launched. For this purpose Kakadu JPEG 2000 codec was used. Since codec allows to

control number of DWT decompositions for ROI, optimal number (leads to higher PSNR) was selected.

Then ROI was extracted from decompressed image and compared with ROI obtained from original

image. Results are presented in Table 10. PSNR values, presented in the table, are the average PSNR

values for the reported ROI sizes and at a given bitrate.

Table 10. JPEG 2000 PSNR/bpp for different ROI sizes.

Res.\bpp 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 0.80

120x120 30.44 36.08 39.49 42.24 44.78 47.93 50.16 57.55 100.00 100.00 100.00 100.00 100.00 100.00 57.55

140x140 30.22 35.31 38.12 40.14 42.10 44.14 45.73 48.03 49.79 53.87 63.29 64.29 65.27 68.45 48.03

160x160 30.00 34.57 36.91 38.74 40.13 41.72 43.60 44.70 45.95 47.83 49.39 50.58 56.88 100.00 44.70

180x180 29.75 33.74 35.70 37.05 38.49 39.65 40.86 42.02 43.51 44.49 45.43 46.61 48.24 49.29 42.02

200x200 29.59 33.08 34.72 35.93 37.12 38.24 39.19 40.17 41.10 42.13 43.52 44.20 44.93 45.91 40.17

220x220 29.30 32.07 33.67 34.81 35.63 36.63 37.51 38.51 39.15 39.97 41.00 41.81 42.58 43.74 38.51

According to visual comparison of quality of static ROI images (Figure 85), compressed with

deferent bitrates, values less than 0.9 produce results with sufficiently degraded quality (11 dB).

bpp 8 PSNR Inf

bpp 1.3 PSNR 33.14

bpp 1.2 PSNR 32.37

bpp 1.1 PSNR 31.51

bpp 1.0 PSNR 30.81

bpp 0.3 PSNR 11.67

bpp 0.2 PSNR 11.47

bpp 0.1 PSNR 11.45

Figure 85. Visual comparison of quality of static ROI images with selected ROI.

Based on this comparison, it also can be seen that quality of ROI borders is degraded as lower

bpp was used. However, quality of center of ROI is stayed acceptable. Therefore, to consider low bitrates

(0.1-0.3), size of ROI could be increased from120x120 to 180x180 (for example) to keep needed quality

of edges of the pupil. This is especially important due to sensitivity of eye tracking algorithms to quality

of the source (i.e., decompressed) image. To keep ability of using eye tracking system by several users

with acceptable precision, size of ROI can be also increased. This leads to changing of bpp. For example,

if 0.20 bpp was used to compress static ROI with selected ROI of size 120x120 (leads to 36 dB, Table

10), then in case of ROI of size 180x180, bpp has to be increased to 0.40 (leads to 37 dB, Table 10).

Since PSNR can’t be the best metric all the time, acceptable practice is to perform also visual comparison

78 Experimental Results

of images (Figure 86). For compression of ROI images with size of ROI 220x220 it is possible to get

satisfied results even with low bitrates, such as 0.2.

bpp 0.8 PSNR 38.51

bpp 0.7 PSNR 37.51

bpp 0.6 PSNR 36.63

bpp 0.5 PSNR 35.51

bpp 0.4 PSNR 34.81

bpp 0.3 PSNR 33.67

bpp 0.2 PSNR 32.07

bpp 0.1 PSNR 29.51

Figure 86. Visual comparison of quality of ROI images (220x220)

According to comparison of JPEG 2000 codec vs. JPEG codec and FLIF codec [133] (Figure 87,

a-c) JPEG 2000 codec produces better results in all resolutions at bitrates, less than 1.5 (FULL size

image and static ROI), 1.25 (ROI image).

a. FULL resolution image (640x640)

b. Static ROI image (400x256)

c. Dynamic ROI image (120x120)

Figure 87. Image compression systems comparison.

Based on this comparison, it can be concluded that JPEG 2000 is the best image coding system

among others compared, because it provides higher PSNR at lower bitrates, natively support selection

of ROI (with higher bpp allocated for ROI in contrast with non-ROI). Therefore, JPEG 2000 image

coding system can be considered for usage and possible future improvements.

4.5.3 JPEG 2000: Comparison of Different DWTs

The wavelet transform is similar to the Fourier transform (or much more to the windowed Fourier

transform [22]) with a completely different merit function. The main difference is that the Fourier

transform decomposes the signal into sines and cosines (i.e., the functions localized in Fourier space). In

contrary the wavelet transform uses functions that are localized in both the real and Fourier space.

Generally, the wavelet transform can be expressed by the following equation [298]:

 *
(,)(,) () ()a bF a b f x x dx , (4.1)

Experimental Results 79

where the * is the complex conjugate symbol and function ψ is some function. This function can

be chosen arbitrarily provided that it obeys certain rules. The wavelet transform is an infinite set of

various transforms, depending on the merit function used for its computation. (Due to this reason the

term ‘wavelet transform’ is used in very different applications.) There are many ways how to classify

the types of the wavelet transforms. Since it is possible to use orthogonal wavelets for discrete wavelet

transform development and non-orthogonal wavelets for continuous wavelet transform development, one

classification is based on the wavelet orthogonality.

The discrete wavelet transform (DWT) is an implementation of the wavelet transform using a

discrete set of the wavelet scales and translations obeying some defined rules. In other words, this

transform decomposes the signal into mutually orthogonal set of wavelets, which is the main difference

from the continuous wavelet transform (CWT), or its implementation for the discrete time series

sometimes called discrete-time continuous wavelet transform (DT-CWT).

The wavelet can be constructed from a scaling function which describes its scaling properties. The

restriction that the scaling functions must be orthogonal to its discrete translations implies some

mathematical conditions on them which are mentioned everywhere, e.g. the dilation equation

 () ()k x
k

x a S k , (4.2)

where S is a scaling factor (usually chosen as 2). Moreover, the area between the function must

be normalized and scaling function must be orthogonal to its integer translations, i.e.

 0,() () lx x l dx , (4.3)

After introducing some more conditions (as the restrictions above does not produce a unique

solution) we can obtain results of all these equations, i.e. the finite set of coefficients ak that define the

scaling function and also the wavelet. The wavelet is obtained from the scaling function as N where N

is an even integer. The set of wavelets then forms an orthonormal basis which we use to decompose the

signal. Note that usually only few of the coefficients ak are nonzero, which simplifies the calculations.

The most known family of orthonormal wavelets is the family of Daubechies. These wavelets are usually

denominated by the number of nonzero coefficients ak (for example, Daubechies 4, Daubechies 6, etc).

Roughly said, with the increasing number of wavelet coefficients the functions become smoother. Below

is the comparison (Figure 88) of several wavelets: Haar (simplest wavelet, which uses a box function as

the scaling function), Daubechies 4 and Daubechies 20.

Haar scaling function and wavelet (left) and their frequency content (right).

80 Experimental Results

Daubechies 4 scaling function and wavelet (left) and their frequency content (right).

Daubechies 20 scaling function and wavelet (left) and their frequency content (right).

Figure 88. Scaling functions, wavelets and Fourier coefficient amplitudes

There are several types of implementation of the DWT algorithm. The oldest and most known

one is the Mallat’s pyramidal algorithm [299]. In this algorithm two filters (smoothing and non-

smoothing one) are constructed from the wavelet coefficients and those filters are recurrently used to

obtain data for all the scales. If the total number of data D = 2
N
 is used and the signal length is L, first

D/2 data at scale L/2
N-1

 are computed, then (D/2)/2 data at scale L/2
N-2

, … until to finally obtaining

2 data at scale L/2. The result of this algorithm is an array of the same length as the input one, where

the data are usually sorted from the largest scales to the smallest ones. To simplify implementation

several techniques were introduced over the time: lifting scheme and wavelet transforms that map

integers-to-integers as well as its version using only integer arithmetic. These techniques were referenced

in the Theoretical Part of this thesis.

To get familiar with typical performance of different DWT we launched a set of experiments. We

used wavelet implementations obtained from WAILI (wavelet transform library) [300], because it uses

integer wavelet transforms based on the lifting scheme [301] and provides various wavelet transforms of

the Cohen-Daubechies-Feauveau family of biorthogonal wavelets. Results show (Table 11) that standard

CDF97 (Cohen-Daubechies-Feauveau CDF 9/7 wavelet [302], also called ‘JPEG97’) and CDF53 (also

called the LeGall 5/3 wavelet [303]) filters are the best in the most cases (except very low bitrates such

as 0.15). It should be noted that dual tree complex wavelet transform [35] was not used in this

experiment.

In Table 11 ‘CDF’ means ‘Cohen-Daubechies-Feauveau’ biorthogonal family wavelet and ‘1_1’

are the numbers of vanishing moments for the primal respectively dual wavelet function. It should be

noted that ‘1_1’ is the Haar basis, and ‘1_3’ is the wavelet basis used by Ricoh’s reversible embedded

wavelets (CREW) [304,305]. ‘CRF_13_7’ and ‘SWE_13_7’ are other integer wavelet transforms (using

the lifting scheme) supported by JPEG2000 [306]. It should be also noted that there are two concurring

numbering schemes for wavelets of the CDF family:

1. The number of smoothness factors of the lowpass filters, or equivalently the number of

vanishing moments of the highpass filters, e.g. ‘2, 2’;

2. The sizes of the lowpass filters, or equivalently the sizes of the highpass filters, e.g. ‘5, 3’.

https://en.wikipedia.org/w/index.php?title=LeGall_5/3_wavelet&action=edit&redlink=1

Experimental Results 81

The first numbering was used in Daubechies book «Ten lectures on wavelets» [307]. Neither of

this numbering is unique. The number of vanishing moments does not tell about the chosen factorization.

A filter bank with filter sizes 7 and 9 can have 6 and 2 vanishing moments when using the trivial

factorization, or 4 and 4 vanishing moments as it is the case for the JPEG 2000 wavelet. Therefore, the

same wavelet may therefore be referred to as ‘CDF 9/7’ (based on the filter sizes) or ‘biorthogonal 4, 4’

(based on the vanishing moments).

Table 11. Comparison of different DWTs.

Transf./ratio (bpp) 10 (0.80) 20 (0.42) 30 (0.29) 40 (0.22) 50 (0.18) 60 (0.15)

JPEG53 45.15 38.81 35.27 32.98 31.21 29.89

JPEG97 46.61 39.54 35.77 33.23 31.37 29.84

CDF_1_1 40.7 35.14 32.11 30.26 28.68 27.58

CDF_1_3 40.07 34.68 31.73 29.8 28.33 27.22

CDF_1_5 39.82 34.42 31.48 29.55 28.09 27.02

CDF_2_2 45.41 38.91 35.38 33.03 31.3 29.91

CDF_2_4 45.12 38.76 35.27 32.99 31.28 29.96

CDF_2_6 44.91 38.6 35.16 32.89 31.22 29.93

CDF_4_2 28.17 25.91 24.15 22.63 21.56 20.3

CDF_4_4 37.57 32.78 29.61 27.6 25.86 24.63

CDF_4_6 39.01 33.81 30.61 28.52 26.82 25.58

CRF_13_7 44.84 38.59 35.19 32.99 31.32 30.02

SWE_13_7 45.03 38.68 35.29 33.01 31.34 29.97

It is possible also to perform visual comparison of decompressed dynamic ROI images, which were

compressed with use of different wavelet transforms at very high compression ratios (low target bitrates).

In the example below (Figure 89), these dynamic ROI images were compressed with JPEG 2000 encoder

with ratio 70. The average real bpp of compressed images is 0.14 bpp.

Uncompressed, PSNR Inf dB

SWE_13_7, PSNR 31.15 dB

CRF_13_7, PSNR 31.10 dB

CDF_2_4, PSNR 27.60 dB

CDF_2_6, PSNR 27.60 dB

CDF_2_2, PSNR 27.30 dB

JPEG53, PSNR 27.10 dB

JPEG97, PSNR 27.05 dB

82 Experimental Results

CDF_4_6, PSNR 25.65 dB

CDF_1_1, PSNR 24.25 dB

CDF_1_3, PSNR 24.05 dB

CDF_1_5, PSNR 23.50 dB

CDF_4_4, PSNR 20.35 dB

CDF_4_2, PSNR 14.05 dB

Figure 89. Visual comparison of ROIs compressed with JPEG 2000 with different transform used.

A comparison of JPEG97 (irreversible filter) vs JPEG53 (reversible filter) shows that they have near-

the-similar behavior (Figure 90) and JPEG97 performs slightly better.

b
p
p

P
S
N

R

Legend: JPEG97 irreversible filter – white, JPEG53 reversible filter – green.

Figure 90. Comparison of change of PSNR and bpp in time: JPEG97 vs. JPEG53.

Comparison of wavelet-similar transforms (Figure 91) shows that shearlet transform has the best

performance among other transforms.

Experimental Results 83

Figure 91. Comparison of wavelet-similar transforms.

4.5.4 Applying of the H.264/AVC Spatial Intra-only Compression

The H.264/AVC uses both spatial and temporal predictions to increase its coding gain. The intra-only

compression uses spatial prediction and the prediction only occurs within a slice. For example, in case

of 8x8-block intra prediction (Figure 92) each luminance sample in an 8×8 block is predicted from the

neighboring constructed reference samples, where 8 different prediction directions and a DC prediction

can be selected by the encoder. In the case of chrominance block, four different prediction methods are

available. The key to improving coding performance when using spatial intra prediction is to select the

proper prediction mode for each block.

Vertical

Horizontal

DC

Diagonal Down/Left

Sample produced by intra-prediction

Encoded samples in neighboring blocks

Figure 92. Examples of H.264/AVC spatial intra prediction modes.

The original input image and the intra-predicted image are very similar (Figure 93) due to the high

accuracy of the prediction. Then ny subtracting the intra frame predicted image from original input

image, the resulted ‘difference’ image (or residual image) is generated (Figure 93). An integer transform

(with similar properties as a 4x4 DCT) is applied to this residual image with the resulting coefficients

being adaptively quantized and entropy coded. The prediction mapping information is stored in a bit

stream along with compressed residual image. Because the amount of data required for the residual

image can be reduced by highly accurate intra-prediction, higher efficiency compression can be achieved

even when using intra-only compression.

84 Experimental Results

Original

Intra-predicted

Residual

Figure 93. Examples of H.264/AVC images: original, intra-predicted and residual.

However, taking into the account advantages of the H.264/AVC spatial intra-only compression,

this approach is not planned to be used in the EyeDee™ eye tracking solution mainly because:

1. Hardware implementation of feature based ROI image compression (NN based approach)

followed by low-complexity DCT approximations (applied in parallel) coupled with low-

complexity entropy coding is expected to be executed faster.

2. Need to use proprietary IP core (either in form of compiled FPGA bitstream or in form

of dedicated hardware integrated circuit).

4.6 Neural Network Based Approaches

4.6.1 Neural Network Based Eye Tracking (Based on Function Regression)

After the integration of the Torch7 software into the EyeDee™ eye tracking solution several experiments

were completed (Figure 94).

Figure 94. Testing eye tracking approaches: image processing based vs. neural network based.

In a first time we compute two ellipses – one calculated using image processing and one obtained

using the trained neural network, and we measure their similarity, based on three coefficients: distance

(d), shape (s) and orientation (0) defined below.

1. Distance coefficient (d):

1 2

1 2
d

c c

c ce , (4.4)

where c denotes the ellipse center.

2. Shape coefficient (s):

For each ellipse equation:

 2 22 2 2 1 0ax bxy cy dx ey (4.5)

we can form the matrix M:

Experimental Results 85

1

a b d

M b c e

d e

 (4.6)

and calculate the 3 Eigen values: 1 2 3, ,d d d for the first ellipse and 1 2 3, , for the second

one, which are further used for vectors v and w computation:

 3 2 1
3 2 1

3 2 1

() () ()
v (, ,), 0

)))

sign d sign d sign d
d d d

d d d
, (4.7)

 3 2 1
3 2 1

3 2 1

() () ()
w (, ,), 0

)))

sign sign sign
. (4.8)

Finally, the shape coefficient is given by:

 s

w v

w ve . (4.9)

3. Orientation coefficient (0):

 1,2 1,2 1
1,2 1 2

1,2 1,2

cos sin
,

sin cos
R R R R , (4.10)

0 00 1 11arccos(), arccos()R R , (4.11)

2 2

0 1sin sin
0 e , (4.12)

where 1,2 denotes the ellipse rotation angles, 1,2R the rotation matrices,
00R and

11R the

first two components of the diagonal matrix R used to obtain the orientation angles
0

and
1
.

Results of finding the optimal number of training iterations and optimal number of hidden layers

(Figure 95, Figure 96) show these values are 40.000 and 2 respectively.

Figure 95. Finding the optimal number of training

iterations.

Figure 96. Finding the optimal number of hidden

layers.

According to experimentation results, the use of a trained neural network has a good potential.

Increasing the number of training iterations results in increasing the average accuracy of the

reconstructed ellipse (Table 12). In our experimental framework we use the following hyper-parameters:

the learning rate is set to 1e-5, learning rate decay to 1e-4 and both weight decay and momentum are

set to 0.

0 5 10 15

x 10
4

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Number of training iterations

 o
 (

a
v
e
ra

g
e
)

3x3

4x4

5x5

6x6

10x10

20x20

30x30

40x40

60x60

Underlearning Overlearning

Optimal

Selected

number of

0 1 2 3 4 5 6
0.7

0.75

0.8

0.85

0.9

0.95

Number of hidden layers (40000 training iterations)

 o (
av

er
ag

e)

3x3

4x4

5x5

Selected

number of
hidden layers

86 Experimental Results

Table 12. Average ellipse similarity for different ROI sizes.

Decimated

ROI size

Training

iterations d o s

3x3 1000 0.985 0.698 0.912

 4000 0.983 0.773 0.932

 10000 0.984 0.834 0.936

4x4 1000 0.991 0.660 0.974

 4000 0.997 0.736 0.904

 10000 0.997 0.700 0.925

5x5 1000 0.991 0.695 0.946

 4000 0.995 0.776 0.921

 10000 0.993 0.755 0.902

Increasing the number of decimation points results into lower average error (Figure 97) i.e.,

computed as cumulated difference between the original (expected) result and the approximated one

(generated by the neural network during the training), measured on each epoch. For example, changing

the decimated ROI size from 3x3 to 4x4 immediately decreased the reconstruction error, providing better

quality of the output results xc , yc , maxr , minr and φ, and thus increasing the similarity between the

original and reconstructed ellipses (Table 1).

Figure 97. ANN training (average error decrease), 40000 training iterations.

Increasing the number of training iterations (epochs) results into lower average orientation

coefficient (Figure 98), computed as a result of comparison of original and reconstructed ellipses for all

samples used in the training dataset. Distance coefficient (d) and shape coefficient (s) are fluctuating

in more narrow range (see Table 1). It can be shown then that the best average error of orientation

coefficient (o) over all sizes of decimated ROI is reached, when the number of training iterations is

equal to 40000. To find an optimal number of hidden layers (Figure 99) we kept this number of iterations.

It can be shown that best average error of the orientation coefficient (o) is reached, when the number

of hidden layers is equal to 2.

Experimental Results 87

Figure 98. Trained ANN: average orientation

coefficient (ε0) vs. number of training iterations.

Figure 99. Trained ANN: average orientation

coefficient (ε0) vs. number of hidden layers.

The visual comparison of ellipse reconstruction (Figure 100) shows that there are some accuracy

issues, i.e., some ellipses generated by the trained neural network do not perfectly fit into the original

ones generated by the simulator (although some are very close to, Figure 100, a-b). Even more, for new

eye positions, not present in the training data set, unexpected results are generated by the trained neural

network (Figure 100, c-d). To improve the accuracy, it is necessary to find the best neural network

configuration and define the training strategy to avoid common issues such as overtraining, finding a

local minimum (instead of global one) etc.

‘2-layer mlp’ model on simulator

a

b

c

d

‘2-layer mlp’ model on video

a

b

c

d

Figure 100. Visual comparison of ellipse reconstruction (increasing degradation order).

Using one trained model on different user (generalization property validation) leads to almost the

same canter and shape, but different radius (Figure 101).

88 Experimental Results

‘2-layer mlp’ model on video

a

b

c

d

Figure 101. Visual comparison of ellipse reconstruction (generalization property validation).

4.6.2 Feature Based Eye Image Compression (Based on Data Classification)

To evaluate the learning quality, we have tested the training of the neural network with images obtained

from a simulator and from previously saved video sequences of eye movements. We finally selected 400

training iterations (epochs), as this amount is reasonable to get satisfying results (i.e., confusion matrixes

values). With the same setup we obtained the results for two tested models: ‘convnet’ (convolutions+2-

layer mlp) and ‘2-layer mlp’ (pure 2-layer mlp).

According to the classification quality results (Table 13), the use of a trained neural network for

ROI image blocks classification has a good potential in general. In particular, ‘convnet’ model shows

better results over ‘2-layer mlp’ model. This can be explained by the features extractions followed by

the ‘2-layer mlp’ model (instead of pure ‘2-layer mlp’).

Table 13. Confusion matrixes: ‘2-layer mlp’ model vs. ‘convnet’ model.

 Prediction

 ‘2-layer mlp’ model ‘convnet’ (convolutions+2-layer mlp) model

 Simulator Video Simulator Video

 Block size 1Cls
2Cls

1Cls
2Cls

1Cls
2Cls

1Cls
2Cls

T
ru

th
 20

1Cls 67.70% 0.02% 68.13% 0.14% 67.78% 0.00% 68.27% 0.00%

2Cls 0.15% 32.05% 0.08% 31.64% 00.00% 32.21% 0.00% 31.72%

10
1Cls 83.72% 0.53% 83.62% 0.88% 83.87% 0.36% 83.88% 0.62%

2Cls 1.13% 14.60% 1.48% 14.01% 0.98% 14.77% 0.92% 14.56%

According to the application results (Table 14, Table 15), both ‘convnet’ and ‘2-layer mlp’ models

show relatively promising results. In particular, increasing the number of training iterations (from 50 to

400) results in higher efficiency. This is because the number of 00N and 11N is higher meaning that the

model is trained better. For example, using ‘convnet’ model with ROI blocks of size 10x10 at 100 training

iterations is enough to reach 100% of both 00N and 11N .

Table 14. Average results of ROI image blocks classification quality (use of ‘2-layer mlp’ model).

Set Mode
Block

Size
Epochs

%

p
%

Bits per pixel (bpp)

Original

ROI

ROI with

removed blocks

ROI with removed

blocks (reordered)

T
ra

in
in

g
 s

et

Trained on

video,

tested on

video

20

50 97.85 1.24 2.15 1.33 (38.14%) 0.88 (59.07%)

100 98.89 0.46 2.15 1.33 (38.14%) 0.89 (58.60%)

200 99.19 0.48 2.15 1.33 (38.14%) 0.89 (58.60%)

400 99.58 0.49 2.15 1.33 (38.14%) 0.89 (58.60%)

10

50 70.64 20.12 2.15 1.06 (50.70%) 0.50 (76.74%)

100 70.14 19.65 2.15 1.04 (51.63%) 0.50 (76.74%)

200 70.87 17.54 2.15 1.04 (51.63%) 0.49 (77.21%)

400 76.69 14.06 2.15 1.07 (50.23%) 0.52 (75.81%)

Experimental Results 89

V
a
li
d
a
ti
o
n
 s

et

Trained on

simulator,

tested on

video

20

50 79.08 20.33 2.15 1.35 (37.20%) 0.90 (58.17%)

100 81.09 17.747 2.15 1.35 (36.91%) 0.89 (58.49%)

200 82.05 16.87 2.15 1.35 (36.95%) 0.89 (58.49%)

400 85.50 20.79 2.15 1.38 (35.55%) 0.94 (56.03%)

10

50 61.45 28.12 2.15 1.13 (47.41%) 0.51 (76.05%)

100 63.55 29.64 2.15 1.16 (46.00%) 0.53 (75.12%)

200 68.42 34.16 2.15 1.23 (42.61%) 0.59 (72.67%)

400 72.08 37.94 2.15 1.29 (39.80%) 0.63 (70.86%)

Table 15. Average results of ROI image blocks classification quality (use of ‘convnet’ model).

Set Mode
Block

Size
Epochs

%

p
%

Bits per pixel (bpp)

Original

ROI

ROI with

removed blocks

ROI with removed

blocks (reordered)

T
ra

in
in

g
 s

et

Trained on

video,

tested on

video

20

50 92.69 2.93 2.15 1.32 (38.66%) 0.86 (60.03%)

100 93.93 0.27 2.15 1.31 (39.25%) 0.85 (60.48%)

200 95.44 0.00 2.15 1.31 (38.90%) 0.86 (59.99%)

400 100.00 0.00 2.15 1.33 (38.10%) 0.89 (58.68%)

10

50 72.94 28.20 2.15 1.11 (48.50%) 0.55 (74.51%)

100 70.04 26.66 2.15 1.10 (48.99%) 0.53 (75.45%)

200 70.48 25.03 2.15 1.09 (49.14%) 0.53 (75.55%)

400 71.31 23.10 2.15 1.31 (38.90%) 0.86 (59.99%)

V
a
li
d
a
ti
o
n
 s

et

Trained on

simulator,

tested on

video

20

50 89.90 11.68 2.15 1.37 (36.26%) 0.90 (58.05%)

100 92.83 16.09 2.15 1.42 (33.67%) 0.96 (55.07%)

200 93.07 16.51 2.15 1.43 (33.49%) 0.97 (54.81%)

400 93.15 16.77 2.15 1.43 (33.37%) 0.97 (54.65%)

10

50 62.06 38.45 2.15 1.18 (44.92%) 0.55 (74.51%)

100 62.71 44.13 2.15 1.25 (41.94%) 0.59 (72.64%)

200 62.58 43.91 2.15 1.26 (41.25%) 0.59 (72.57%)

400 67.72 48.18 2.15 1.32 (38.43%) 0.65 (69.65%)

For the compression of ROI images, we used a JPEG 2000 encoder. We configured the encoder

to keep a relatively high PSNR (>45 dBs) as the decompressed blocks will be further used in an image

processing-based eye tracking algorithm. However, this quality can be lower as 32 dB, as it was proved

earlier. Results show that with the proposed approach it is possible to reach 99.47% of gain in terms of

data size reduction (Figure 102).

90 Experimental Results

Bpp Size Mbps Gain Tech.

8 104000 83.20 0% Wi-Fi

3.05 10400 31.72 61.87% Wi-Fi

2.94 14000 4.23 94.91% Bluetooth

8 4000 3.20 96.15% Bluetooth

0.68 2500 0.25 99.70% ZigBee

Legend: Full image resolution: 400x260, ROI image resolution: 120x120, compressor: JPEG 2000,

bpp – bits per pixel, Mbps – megabits per second at 100 FPS, FOI – Features of Interest.

Figure 102. Eye image compression configurations.

The visual comparison of ROI image block removal quality (Figure 103) on the validation set

shows that there are more accuracy issues, in comparison with the training set, i.e., the number of 01N

is increased (Fig. 13, b-c). If the neural network is not enough trained the quality is significantly degraded

(Fig. 13, d) in case of both ‘mlp’ and ‘convnet’ models.

‘2-layer mlp’ model ‘convnet’ model (convolutions+2-layer mlp)

a b c d

a b c d

Legend: Use of validation dataset, block size is 10.

Figure 103. Visual comparison of blocks removal quality.

Increasing the number of ROI image blocks will result in a more accurate preservation of pupil

ellipse edges (less data to transmit). However, for the validation set there are issues of preserved blocks

situated in the corners of the ROI images. These issues can be solved by applying some additional logic.

For example, if the block is located M-blocks far from the blocks containing pupil edges, this block can

be considered as incorrect and should not be used for further image compression.

From the computational point of view (computational complexity), the ROI image compression

based on neural network requires just the resources needed to obtain the classification results (i.e., input:

NxN ROI image blocks, output: value indicating whether a block contains pupil edges). The neural

network has also constant time response, which can be taken into account for the overall performance

estimation. However, the use of neural network has a well-known challenge of its training (hyper-

parameters tuning, training time reduction, output results quality maximization), as the cost of each

training session is time expensive.

From the implementation point of view (implementation complexity), the proposed neural-

network eye tracking approach reduces the amount of data to compress by either a standard image

compression system (JPEG 2000 or other) or an application-specific image compression system. It is also

expected that the next version of the Weetsy™ board will have a memory space large enough to store

Experimental Results 91

the trained neural network, which will make possible to apply/deploy the final eye image feature based

compression configuration (Figure 104).

Figure 104. Final eye image feature based compression configuration.

From the conceptual point of view, employing a neural network before the ROI image compression

can be interpreted as preprocessing, i.e., keeping only the regions in the ROI image that are important

for the eye tracking algorithm, prior to compression (reducing thus data size and, therefore, speeding-

up data transmission). To accelerate the compression of the FOI it is planned to use low-complexity

DCT approximations (applied in parallel) followed by low-complexity entropy coding (for example,

truncated golomb-rice codes [308], FSE encoding [119] or others approaches [309]), both implemented

directly in the hardware (FPGA).

4.7 Conclusion

Experimental results show applicability of variety of proposed approaches, which can be coupled

together. For example, FPGA-based hardware ROI-finder provides results closed to software based ROI

finder, which makes possible to use it even in current version of the product. Due to additional extra

non-ROI information needed, PC-based eye tracking processing unit software should be updated to be

able take as an input only dynamic ROI image: either re-centered by the FPGA or extended to perform

re-centering on the remote processing unit side.

Experimental results on finding of the eye image compression algorithm requirements show that

minimal decompressed image quality has be about 32 dB, maximal time of eye image

compression/decompression depends on size of the eye image compressed. In particular a set of System

of Linear Equations (SLE) was found, which permits to model and analyze an entire eye image

acquisition system without frequent performance tests. (These performance tests are done, when a

particular profile is selected and properly implemented.) According to considerations on ability to

operate in lossy transmission medium it is recommended to protect coded image data via CRC8, which

has the fastest implementation possible. Another approach is to transmit coded bitstream without

original header since this header does not contain any temporal information added for decompressor. In

this case, decompressor has a local copy of the header, which is used do decompress received bitstream.

According to comparison of image compression systems such as JPEG, JPEG 2000 and FLIF it

was shown that JPEG 2000 provides better results among others and can be recommended to use in

form only in a form of hardware based IP core. Our deployment tests show that almost any software

based image/video compression system has very slow execution frequency about 3-8 FPS maximum and

therefor is not recommended for the usage in the product.

ROI finder FOI finder FOI corrector Compressor

Driver

ROI FOI FOI corrected

bitstream

to processing
unit

Inside Weetsy™ board

92 Experimental Results

Artificial Neural Network (ANN) based approaches, such as ANN based eye tracking, feature

based eye image compression or either ANN based ROI finder show prominent results and can be

recommended for further experimentations and especially implementation in the target embedded

software or directly in the hardware.

In case when due to several reasons processing of locally found and transmitted dynamic ROI is

not possible, there is an approach of «foveated eye image compression», where static ROI image contains

«less prioritized» and «more prioritized» regions, which are compressed accordingly leading to overall

bpp reduction and, as a result, transmission performance increase. It should be noted that proposed eye

image compression approaches and tools can be combined, leading to undiscovered yet compression

systems.

93

Chapter 5Equation Chapter (Next) Section 1

5 Conclusion and Future Work

In this thesis we proposed an multiple approaches to design and implementation of image processing

and compression algorithms for a miniature embedded EyeDee™ eye tracking system containing Weetsy™

portable wire/wireless system (Weetsy™ frame and Weetsy™ board), π-Box™ remote smart sensor and

PC-based processing unit running SuriDev eye tracking software.

During the thesis we studied the impact of almost each component of the eye image compression

system: from image pre-processing, following by spatial-to-frequency transform, quantization and data

coding to transmission of the coded image (bitstream) over unreliable transmission medium and decoding

of received bitsteram following to applying eye tracking algorithms to decoded eye images. To benefit of

compression system consists in improvement of performance by sending less data through physical

transmission link (wire/wireless transmission) while disadvantage of compression is loss of original image

quality. Hence in this thesis we studied an impact of decompressed eye image quality degradation over

the quality of the eye tracking results (including precision and accuracy).

In particular, proposed eye-based rate-distortion optimization allows to achieve higher lower real

bpp due to the fact several subbands contain eye details, which have very little impact on the eye

tracking precision results and therefore can be more compressed or entirely removed. An analysis

approach of image delivery chain (image acquisition system) permits to reduce of time-consuming

performance testing of the physical hardware to analysis of the mathematical model represented as a set

of System of Linear Equations (SLE), which were obtained in the thesis. Eye image compression based

on low complexity multiplierless DCTs can be applied in addition to ANN based approach to achieve

the lowest possible time of compression.

A several limits of the eye image compression system were found, such as: minimal quality of

decompressed image could be used for the eye tracking without significant eye tracking precision loss,

minimal delay of eye image compression/decompression allowing to the eye tracking system stay

responsive, minimal size of compressed eye image allowing to use less bitrate consuming data

transmission technologies (Bluetooth LE and ZigBee).

Proposed ANN based eye tracking approximation (targeted on a complete replacement of image

processing based eye tracking algorithm coupled with geometric eye modeling) has a potential but has

a generalization issue, related to pupil ellipse diameter. Such approach allows to reduce the size of the

transmitted data from Weetsy™ board to PC-based processing unit to minimal possible 20 bytes, which

contain five floating-point values defining pupil ellipse in a 2D space.

Feature based ROI image compression has a strong potential and targeted on an improvement of

compression of the Region of Interest (ROI, region containing image of the human’s pupil). It was shown

in the thesis that it is possible to find and remove extra information from the dynamic ROI, because

such extra information has relatively little impact on pupil’s ellipse reconstruction, and hence little

impact on the eye tracking results quality. On order to find such an «extra information» we applied

ANN classifier.

Another proposed approach is ANN based ROI finding, which is aimed on an improvement of

the ROI finding quality. Since an original ROI finding algorithm performs multiple threshold based

block scanning across the integral image it provides multiple ROI ‘candidates’ as its output. In contrast,

ANN based approach is targeted on the same task, but without a threshold leading to only one ROI

‘candidate’.

94 Conclusion and Future Work

To minimize real bpp of compressed static ROI a foveated based eye image compression which

is inspired by the ‘foveated image rendering’ i.e., a rendering, where information, which takes most user’s

attention, is rendered with maximum quality while information, which takes less user’s attention, is

rendered with minimum quality. In this approach FPGA/ANN based ROI finder determines

approximate position of the dynamic ROI, then ANN feature based approach splits dynamic ROI on

blocks and determines which blocks contain useful for the eye tracking pupil edges. Then it performs

image compression on the found eye image parts. The final compressed image has variable bits-per-pixel

value (bpp), which allows to transmit this compressed image faster across wireless medium.

Future work consists in improvement and especially implementation of the ANN based approaches

in the Weetsy™ board following by performance tests. Another aspect is an adaptation of the eye tracking

algorithm to operation only on dynamic ROI found locally on the Weetsy™ board side by use of either

FPGA based ROI finder or ANN based ROI finder.

95

Publications

Invited Journal Publications:

1. P. Morozkin, M. Swynghedauw, and M. Trocan, “Image Compression Approaches for Resource

Constrained Devices,” in Journal of Information and Telecommunication (TJIT), Taylor &

Francis (in review)

Conference Publications:

2. P. Morozkin, M. Swynghedauw, and M. Trocan, “Design of an Embedded Image Acquisition

System,” in proceedings of 2015 IEEE International Conference on Electronics, Circuits and

Systems (ICECS). (hal-01528546)

3. P. Morozkin, M. Swynghedauw, and M. Trocan, “An Image Compression for Embedded Eye-

Tracking Applications,” in proceedings of 2016 International Symposium on INnovations in

Intelligent SysTems and Applications (INISTA). (hal-01528557)

4. P. Morozkin, M. Swynghedauw, and M. Trocan, “Image Quality Impact for Eye Tracking

Systems Accuracy,” in proceedings of 2016 IEEE International Conference on Electronics,

Circuits and Systems (ICECS). (hal-01528560)

5. P. Morozkin, M. Swynghedauw, and M. Trocan, “Neural Network Based Eye Tracking,” in

proceedings of 9th International Conference on Computational Collective Intelligence (ICCCI

2017). (hal-01528569)

6. P. Morozkin, M. Swynghedauw, and M. Trocan, “Feature-based Image Compression,” submitted

to 10th Asian Conference on Intelligent Information and Database Systems (ACIIDS 2018). (hal-

01784048)

96

Appendix

Existing Head-Mounted Eye Tracking Solutions

There are several head mounted eye tracking solutions, which were existed on the market during the

period of conducting this research. The several examples are presented in Figure 105.

Tobii Pro Glasses 2 (Dynavox)

SMI eye tracking glasses 2

ASL mobile eye-5 Glasses

Pupil Mobile

Dikablis Glasses 3 (Ergoneers)

SR Research EyeLink II (casque)

Figure 105. Head mounted eye tracking solutions.

97

Bibliography

1. Duchowski, A.T., 2007. Eye tracking methodology. Theory and practice, 328. Referenced in

section: 1 (page 1).

2. Johannsen, G., 2009. Human-machine interaction. Control Systems, Robotics and Automation,

21, pp.132-62. Referenced in section: 1 (page 1).

3. Introduction to Ergonomics, Third EditionAug 14, 2008. Referenced in section: 1 (page 1).

4. Adams Jr, R.B. and Kleck, R.E., 2003. Perceived gaze direction and the processing of facial

displays of emotion. Psychological science, 14(6), pp.644-647. Referenced in section: 1 (page 1).

5. Wi-Fi (802.11) Network HandbookDec 5, 2002. Referenced in section: 1 (page 2).

6. Bluetooth Low Energy: The Developer’s HandbookNov 7, 2012. Referenced in section: 1 (page

2).

7. Image and Video Compression: Fundamentals, Techniques, and ApplicationsNov 17, 2014.

Referenced in section: 1 (page 2).

8. Wallace, Gregory K. “The JPEG still picture compression standard.” IEEE transactions on

consumer electronics 38.1 (1992): xviii-xxxiv. Referenced in sections: 1.1 (page 2), 2.4.3 (page 13).

9. ISO/IEC 15444-1:2004, Information technology - JPEG 2000 image coding system: Core coding

system. Referenced in sections: 1.1 (page 2), 2.4.3 (page 14).

10. CIFRE doctoral fellowships program, http://www.anrt.asso.fr/fr/cifre-7843, (access time 9-July-

2018). Referenced in sections: 1.4 (page 4), 3.1 (page 39).

11. Asadifard, M. and Shanbezadeh, J., 2010, January. Automatic adaptive center of pupil detection

using face detection and cdf analysis. In Proceedings of the International MultiConference of

Engineers and Computer Scientists (Vol. 1, p. 3). Referenced in section: 2.1 (page 5).

12. Arthi, S. V., and Norman, S. R. (2016). Interface and Control of Appliances by the Analysis of

Electrooculography Signals. In Artificial Intelligence and Evolutionary Computations in

Engineering Systems (pp. 1075-1084). Springer, New Delhi. Referenced in section: 2.2 (page 5).

13. Van der Geest, J. N., and Frens, M. A. (2002). Recording eye movements with video-oculography

and scleral search coils: a direct comparison of two methods. Journal of neuroscience methods,

114(2), 185-195. Referenced in section: 2.2 (page 5).

14. Whitmire, E., Trutoiu, L., Cavin, R., Perek, D., Scally, B., Phillips, J., and Patel, S. (2016,

September). EyeContact: scleral coil eye tracking for virtual reality. In Proceedings of the 2016

ACM International Symposium on Wearable Computers (pp. 184-191). ACM. Referenced in

section: 2.2 (page 6).

15. Engbert, R., and Kliegl, R. (2003). Microsaccades uncover the orientation of covert attention.

Vision research, 43(9), 1035-1045. Referenced in section: 2.2 (page 6).

16. Zhai, S., Morimoto, C., & Ihde, S. (1999, May). Manual and gaze input cascaded (MAGIC)

pointing. In Proceedings of the SIGCHI conference on Human Factors in Computing Systems

(pp. 246-253). ACM. Referenced in section: 2.2 (page 6).

98 Bibliography

17. Morimoto, C. H., Koons, D., Amir, A., & Flickner, M. (2000). Pupil detection and tracking using

multiple light sources. Image and vision computing, 18(4), 331-335. Referenced in section: 2.2

(page 6).

18. Zhu, Z., & Ji, Q. (2005). Robust real-time eye detection and tracking under variable lighting

conditions and various face orientations. Computer Vision and Image Understanding, 98(1), 124-

154. Referenced in section: 2.2 (page 6).

19. Duda, R. O., & Hart, P. E. (1972). Use of the Hough transformation to detect lines and curves

in pictures. Communications of the ACM, 15(1), 11-15. Referenced in section: 2.2 (page 7).

20. Gaussian smoothing, https://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm (access time 20-

Feb-2018). Referenced in section: 2.2 (page 7).

21. Bourne, R., 2010. The Spatial and Frequency Domains. In Fundamentals of Digital Imaging in

Medicine (pp. 55-86). Springer London. Referenced in section: 2.3 (page 9).

22. Bracewell, R.N. and Bracewell, R.N., 1986. The Fourier transform and its applications (Vol.

31999). New York: McGraw-Hill. Referenced in sections: 2.3 (page 9), 4.5.3 (page 78).

23. Torrence, C. and Compo, G.P., 1998. A practical guide to wavelet analysis. Bulletin of the

American Meteorological society, 79(1), pp.61-78. Referenced in section: 2.3 (page 9).

24. Empson, J. A. C., & Clarke, P. R. F. (1970). Rapid eye movements and remembering. Nature,

227(5255), 287. Referenced in section: 2.4 (page 9).

25. Rafiee, J., Rafiee, M.A., Prause, N. and Schoen, M.P., 2011. Wavelet basis functions in biomedical

signal processing. Expert systems with Applications, 38(5), pp.6190-6201. Referenced in section:

2.4 (page 10).

26. Wang, Y., Vilermo, M. and Yaroslavsky, L., 2000, September. Energy compaction property of

the MDCT in comparison with other transforms. In Audio Engineering Society Convention 109.

Audio Engineering Society. Referenced in section: 2.4 (page 10).

27. Johnson, S.J., 2009. Iterative error correction: Turbo, low-density parity-check and repeat-

accumulate codes. Cambridge university press. Referenced in section: 2.4 (page 11).

28. Koopman, P. and Chakravarty, T., 2004, June. Cyclic redundancy code (CRC) polynomial

selection for embedded networks. In Dependable Systems and Networks, 2004 International

Conference on (pp. 145-154). IEEE. Referenced in section: 2.4 (page 11).

29. Thorpe, S., Fize, D. and Marlot, C., 1996. Speed of processing in the human visual system. nature,

381(6582), p.520. Referenced in section: 2.4.1 (page 11).

30. Poynton, C., 2002. Chroma subsampling notation. Retrieved June, 19, p.2004. Referenced in

section: 2.4.1 (page 12).

31. McCollough, C., 1965. Color adaptation of edge-detectors in the human visual system. Science,

149(3688), pp.1115-1116. Referenced in section: 2.4.1 (page 12).

32. Tagliasacchi, M., Trapanese, A., Tubaro, S., Ascenso, J., Brites, C. and Pereira, F., 2006,

October. Exploiting spatial redundancy in pixel domain Wyner-Ziv video coding. In Image

Processing, 2006 IEEE International Conference on (pp. 253-256). IEEE. Referenced in section:

2.4.2 (page 12).

33. Lewis, A.S. and Knowles, G., 1992. Image compression using the 2-D wavelet transform. IEEE

transactions on image processing, 1(2), pp.244-250. Referenced in section: 2.4.2 (page 12).

Bibliography 99

34. Antonini, M., Barlaud, M., Mathieu, P. and Daubechies, I., 1992. Image coding using wavelet

transform. IEEE Transactions on image processing, 1(2), pp.205-220. Referenced in section: 2.4.2

(page 12).

35. Selesnick, I.W., Baraniuk, R.G. and Kingsbury, N.C., 2005. The dual-tree complex wavelet

transform. IEEE signal processing magazine, 22(6), pp.123-151. Referenced in sections: 2.4.2 (page

12), 4.5.3 (page 80).

36. Li, H., Manjunath, B.S. and Mitra, S.K., 1995. Multisensor image fusion using the wavelet

transform. Graphical models and image processing, 57(3), pp.235-245. Referenced in section: 2.4.2

(page 12).

37. Chang, T. and Kuo, C.C., 1993. Texture analysis and classification with tree-structured wavelet

transform. IEEE Transactions on image processing, 2(4), pp.429-441. Referenced in section: 2.4.2

(page 12).

38. Boles, W.W. and Boashash, B., 1998. A human identification technique using images of the iris

and wavelet transform. IEEE transactions on signal processing, 46(4), pp.1185-1188. Referenced

in section: 2.4.2 (page 12).

39. Chang, S.G., Yu, B. and Vetterli, M., 2000. Adaptive wavelet thresholding for image denoising

and compression. IEEE transactions on image processing, 9(9), pp.1532-1546. Referenced in

section: 2.4.2 (page 12).

40. Chang, S.G., Yu, B. and Vetterli, M., 2000. Spatially adaptive wavelet thresholding with context

modeling for image denoising. IEEE Transactions on image Processing, 9(9), pp.1522-1531.

Referenced in section: 2.4.2 (page 12).

41. Claypoole, R.L., Baraniuk, R.G. and Nowak, R.D., 1998, May. Adaptive wavelet transforms via

lifting. In Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE

International Conference on (Vol. 3, pp. 1513-1516). IEEE. Referenced in section: 2.4.2 (page 12).

42. Le Pennec, E. and Mallat, S., 2005. Bandelet image approximation and compression. Multiscale

Modeling & Simulation, 4(3), pp.992-1039. Referenced in section: 2.4.2 (page 12).

43. Peyré, G. and Mallat, S., 2008. Orthogonal bandelet bases for geometric images approximation.

Communications on Pure and Applied Mathematics, 61(9), pp.1173-1212. Referenced in section:

2.4.2 (page 12).

44. Maalouf, A., Carré, P., Augereau, B. and Fernandez-Maloigne, C., 2009. A bandelet-based

inpainting technique for clouds removal from remotely sensed images. IEEE Transactions on

geoscience and remote sensing, 47(7), pp.2363-2371. Referenced in section: 2.4.2 (page 12).

45. Do, M.N. and Vetterli, M., 2005. The contourlet transform: an efficient directional multiresolution

image representation. IEEE Transactions on image processing, 14(12), pp.2091-2106. Referenced

in section: 2.4.2 (page 12).

46. Da Cunha, A.L., Zhou, J. and Do, M.N., 2006. The nonsubsampled contourlet transform: theory,

design, and applications. IEEE transactions on image processing, 15(10), pp.3089-3101.

Referenced in section: 2.4.2 (page 12).

47. Po, D.Y. and Do, M.N., 2006. Directional multiscale modeling of images using the contourlet

transform. IEEE Transactions on image processing, 15(6), pp.1610-1620. Referenced in section:

2.4.2 (page 12).

100 Bibliography

48. Gao, Q., Lu, Y., Sun, D., Sun, Z.L. and Zhang, D., 2013. Directionlet-based denoising of SAR

images using a Cauchy model. Signal processing, 93(5), pp.1056-1063. Referenced in section: 2.4.2

(page 12).

49. Anand, S., Kumari, R.S.S., Jeeva, S. and Thivya, T., 2013. Directionlet transform based

sharpening and enhancement of mammographic X-ray images. Biomedical Signal Processing and

Control, 8(4), pp.391-399. Referenced in section: 2.4.2 (page 12).

50. Lin, Y.C., Liu, Q.H., TAO, L., SONG, L. and ZHAO, M.R., 2010. An image fusion algorithm

based on directionlet transform. Nanotechnology and Precision Engineering, 8(6), pp.565-568.

Referenced in section: 2.4.2 (page 12).

51. Yao, B. and Fei-Fei, L., 2010, June. Grouplet: A structured image representation for recognizing

human and object interactions. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE

Conference on (pp. 9-16). IEEE. Referenced in section: 2.4.2 (page 12).

52. Mallat, S., 2009. Geometrical grouplets. Applied and Computational Harmonic Analysis, 26(2),

pp.161-180. Referenced in section: 2.4.2 (page 12).

53. Ahmed, N., Natarajan, T. and Rao, K.R., 1974. Discrete cosine transform. IEEE transactions on

Computers, 100(1), pp.90-93. Referenced in section: 2.4.2 (page 12).

54. Rao, K.R. and Yip, P., 2014. Discrete cosine transform: algorithms, advantages, applications.

Academic press. Referenced in section: 2.4.2 (page 12).

55. Chen, W.H., Smith, C.H. and Fralick, S.C., 1977. A fast computational algorithm for the discrete

cosine transform. IEEE Transactions on communications, 25(9), pp.1004-1009. Referenced in

section: 2.4.2 (page 12).

56. Malvar, H.S., Hallapuro, A., Karczewicz, M. and Kerofsky, L., 2003. Low-complexity transform

and quantization in H. 264/AVC. IEEE Transactions on circuits and systems for video

technology, 13(7), pp.598-603. Referenced in section: 2.4.2 (page 12).

57. Pearlman, W.A., Islam, A., Nagaraj, N. and Said, A., 2004. Efficient, low-complexity image

coding with a set-partitioning embedded block coder. IEEE transactions on circuits and systems

for video technology, 14(11), pp.1219-1235. Referenced in section: 2.4.2 (page 12).

58. McCanne, S., Vetterli, M. and Jacobson, V., 1997. Low-complexity video coding for receiver-

driven layered multicast. IEEE journal on selected areas in communications, 15(6), pp.983-1001.

Referenced in section: 2.4.2 (page 12).

59. Liang, J. and Tran, T.D., 2001. Fast multiplierless approximations of the DCT with the lifting

scheme. IEEE transactions on signal processing, 49(12), pp.3032-3044. Referenced in sections:

2.4.2 (page 12), 2.4.2 (page 12).

60. Tran, T.D., 2000. The BinDCT: Fast multiplierless approximation of the DCT. IEEE Signal

Processing Letters, 7(6), pp.141-144. Referenced in section: 2.4.2 (page 12).

61. Jeong, H., Kim, J. and Cho, W.K., 2004. Low-power multiplierless DCT architecture using image

correlation. IEEE Transactions on Consumer Electronics, 50(1), pp.262-267. Referenced in

section: 2.4.2 (page 12).

62. Krommweh, J., 2010. Tetrolet transform: A new adaptive Haar wavelet algorithm for sparse

image representation. Journal of Visual Communication and Image Representation, 21(4), pp.364-

374. Referenced in section: 2.4.2 (page 12).

Bibliography 101

63. Krommweh, J. and Ma, J., 2010. Tetrolet shrinkage with anisotropic total variation minimization

for image approximation. Signal processing, 90(8), pp.2529-2539. Referenced in section: 2.4.2

(page 12).

64. Jain, P. and Tyagi, V., 2015. An adaptive edge-preserving image denoising technique using

tetrolet transforms. The Visual Computer, 31(5), pp.657-674. Referenced in section: 2.4.2 (page

12).

65. Easley, G., Labate, D. and Lim, W.Q., 2008. Sparse directional image representations using the

discrete shearlet transform. Applied and Computational Harmonic Analysis, 25(1), pp.25-46.

Referenced in section: 2.4.2 (page 12).

66. Yi, S., Labate, D., Easley, G.R. and Krim, H., 2009. A shearlet approach to edge analysis and

detection. IEEE Transactions on Image Processing, 18(5), pp.929-941. Referenced in sections:

2.4.2 (page 12), 2.4.2 (page 13).

67. Lim, W.Q., 2010. The discrete shearlet transform: A new directional transform and compactly

supported shearlet frames. IEEE Transactions on Image Processing, 19(5), pp.1166-1180.

Referenced in section: 2.4.2 (page 12).

68. Sweldens, W., 1996. The lifting scheme: A custom-design construction of biorthogonal wavelets.

Applied and computational harmonic analysis, 3(2), pp.186-200. Referenced in section: 2.4.2 (page

12).

69. Shiau, Y.H., Jou, J.M. and Liu, C.C., 2004. Efficient architectures for the biorthogonal wavelet

transform by filter bank and lifting scheme. IEICE TRANSACTIONS on Information and

Systems, 87(7), pp.1867-1877. Referenced in section: 2.4.2 (page 12).

70. Secker, A. and Taubman, D., 2002, September. Highly scalable video compression using a lifting-

based 3D wavelet transform with deformable mesh motion compensation. In Image Processing.

2002. Proceedings. 2002 International Conference on (Vol. 3, pp. 749-752). IEEE. Referenced in

section: 2.4.2 (page 12).

71. Ding, W., Wu, F. and Li, S., 2004, December. Lifting-based wavelet transform with directionally

spatial prediction. In Picture Coding Symposium (Vol. 62, pp. 291-294). Referenced in section:

2.4.2 (page 12).

72. Shen, G. and Ortega, A., 2008, March. Optimized distributed 2D transforms for irregularly

sampled sensor network grids using wavelet lifting. In Acoustics, Speech and Signal Processing,

2008. ICASSP 2008. IEEE International Conference on (pp. 2513-2516). IEEE. Referenced in

section: 2.4.2 (page 12).

73. Meerwald, P., Norcen, R. and Uhl, A., 2002, January. Cache issues with JPEG2000 wavelet

lifting. In Visual Communications and Image Processing 2002 (Vol. 4671, pp. 626-635).

International Society for Optics and Photonics. Referenced in section: 2.4.2 (page 12).

74. Chatterjee, S. and Brooks, C.D., 2002. Cache-efficient wavelet lifting in JPEG 2000. In

Multimedia and Expo, 2002. ICME’02. Proceedings. 2002 IEEE International Conference on (Vol.

1, pp. 797-800). IEEE. Referenced in section: 2.4.2 (page 12).

75. Kutil, R., 2006, February. A single-loop approach to SIMD parallelization of 2D wavelet lifting.

In Parallel, Distributed, and Network-Based Processing, 2006. PDP 2006. 14th Euromicro

International Conference on (pp. 8-pp). IEEE. Referenced in section: 2.4.2 (page 12).

102 Bibliography

76. Półchłopek, W., Maj, W., & Padee, W. (2006, September). Fast integer arithmetic wavelet

transform properties and application in FPGA/DSP system. In Signal Processing Conference,

2006 14th European (pp. 1-5). IEEE. Referenced in section: 2.4.2 (page 12).

77. Libjpeg-turbo – JPEG image codec that uses SIMD instructions (MMX, SSE2, AVX2, NEON,

AltiVec), https://libjpeg-turbo.org, (access time 2-March-2018). Referenced in section: 2.4.2

(page 12).

78. Tenllado, C., Setoain, J., Prieto, M., Piñuel, L. and Tirado, F., 2008. Parallel implementation of

the 2D discrete wavelet transform on graphics processing units: Filter bank versus lifting. IEEE

Transactions on Parallel and Distributed Systems, 19(3), pp.299-310. Referenced in section: 2.4.2

(page 12).

79. Franco, J., Bernabé, G., Fernández, J. and Acacio, M.E., 2009, February. A parallel

implementation of the 2D wavelet transform using CUDA. In Parallel, Distributed and Network-

based Processing, 2009 17th Euromicro International Conference on (pp. 111-118). IEEE.

Referenced in section: 2.4.2 (page 12).

80. Lai, Y.K., Chen, L.F. and Shih, Y.C., 2009. A high-performance and memory-efficient VLSI

architecture with parallel scanning method for 2-D lifting-based discrete wavelet transform. IEEE

Transactions on Consumer Electronics, 55(2), pp.400-407. Referenced in section: 2.4.2 (page 12).

81. Yick, J., Mukherjee, B. and Ghosal, D., 2008. Wireless sensor network survey. Computer

networks, 52(12), pp.2292-2330. Referenced in section: 2.4.2 (page 13).

82. Sohrabi, K., Gao, J., Ailawadhi, V. and Pottie, G.J., 2000. Protocols for self-organization of a

wireless sensor network. IEEE personal communications, 7(5), pp.16-27. Referenced in section:

2.4.2 (page 13).

83. Mao, G., Fidan, B. and Anderson, B.D., 2007. Wireless sensor network localization techniques.

Computer networks, 51(10), pp.2529-2553. Referenced in section: 2.4.2 (page 13).

84. Callahan, S.M., Apple Computer, Inc., 1995. Method and apparatus for real-time lossless

compression and decompression of image data. U.S. Patent 5,408,542. Referenced in section: 2.4.2

(page 13).

85. Akter, M., Reaz, M.B.I., Mohd-Yasin, F. and Choong, F., 2008. A modified-set partitioning in

hierarchical trees algorithm for real-time image compression. Journal of Communications

Technology and Electronics, 53(6), pp.642-650. Referenced in section: 2.4.2 (page 13).

86. Kajiya, J.T., Gabriel, S.A. and Powell III, W.C., Microsoft Corporation, 1999. Image compression

to reduce pixel and texture memory requirements in a real-time image generator. U.S. Patent

5,999,189. Referenced in section: 2.4.2 (page 13).

87. Yu, G., Vladimirova, T. and Sweeting, M.N., 2009. Image compression systems on board

satellites. Acta Astronautica, 64(9), pp.988-1005. Referenced in section: 2.4.2 (page 13).

88. Yeh, P.S., Armbruster, P., Kiely, A., Masschelein, B., Moury, G., Schaefer, C. and Thiebaut, C.,

2005, March. The new CCSDS image compression recommendation. In Aerospace Conference,

2005 IEEE (pp. 4138-4145). IEEE. Referenced in section: 2.4.2 (page 13).

89. Parisot, C., Antonini, M., Barlaud, M., Lambert-Nebout, C., Latry, C. and Moury, G., 2000. On

board strip-based wavelet image coding for future space remote sensing missions. In Geoscience

and remote sensing symposium, 2000. Proceedings. IGARSS 2000. IEEE 2000 international (Vol.

6, pp. 2651-2653). IEEE. Referenced in section: 2.4.2 (page 13).

Bibliography 103

90. Kiely, A., & Klimesh, M. (2003). The ICER progressive wavelet image compressor. IPN Progress

Report, 42(155), 1-46. Referenced in section: 2.4.2 (page 13).

91. Lin, A. (2012). Hardware implementation of a real-time image data compression for satellite

remote sensing. In Remote Sensing-Advanced Techniques and Platforms. InTech. Referenced in

section: 2.4.2 (page 13).

92. Altürk, A. and Keinert, F., 2012. Regularity of boundary wavelets. Applied and Computational

Harmonic Analysis, 32(1), pp.65-85. Referenced in section: 2.4.2 (page 13).

93. Su HA, Liu QU, Li JI. Boundary effects reduction in wavelet transform for time-frequency

analysis. WSEAS Transactions on Signal Processing. 2012 Oct;8(4):169-79. Referenced in section:

2.4.2 (page 13).

94. Černá, D., Finěk, V., Gottfried, M., Hübnerová, P. and Paulusová, S., 2009. Boundary artifact

reduction in wavelet image compression. Referenced in section: 2.4.2 (page 13).

95. Strutz, T. and Rennert, I., 2012. Two-dimensional integer wavelet transform with reduced

influence of rounding operations. EURASIP Journal on Advances in Signal Processing, 2012(1),

p.75. Referenced in section: 2.4.2 (page 13).

96. Zavadsky, V., 2004. Image compression by rectangular wavelet transform. arXiv preprint

cs/0406008. Referenced in section: 2.4.2 (page 13).

97. Kong, F. (2016, August). Research of edge detection algorithm based on wavelet transformation.

In Eighth International Conference on Digital Image Processing (ICDIP 2016) (Vol. 10033, p.

100331H). International Society for Optics and Photonics. Referenced in section: 2.4.2 (page 13).

98. Bai, J. and Zhou, H., 2011, July. Edge detection approach based on directionlet transform. In

Multimedia Technology (ICMT), 2011 International Conference on (pp. 3512-3515). IEEE.

Referenced in section: 2.4.2 (page 13).

99. Farid, M. M., Kurugollu, F., & Murtagh, F. D. (2003, March). Adaptive wavelet eye-gaze-based

video compression. In Opto-Ireland 2002: Optical Metrology, Imaging, and Machine Vision (Vol.

4877, pp. 255-264). International Society for Optics and Photonics. Referenced in section: 2.4.2

(page 13).

100. Somayajula, S. P. K., Dhatrika, S. C., & Puvvula, D. Wave Atoms Decomposition based Eye Iris

Image Compression. Referenced in section: 2.4.2 (page 13).

101. Said, A. and Pearlman, W.A., 1996. A new, fast, and efficient image codec based on set

partitioning in hierarchical trees. IEEE Transactions on circuits and systems for video technology,

6(3), pp.243-250. Referenced in section: 2.4.2 (page 13).

102. Lei, S.M. and Sun, M.T., 1991. An entropy coding system for digital HDTV applications. IEEE

transactions on circuits and systems for video technology, 1(1), pp.147-155. Referenced in section:

2.4.2 (page 13).

103. Meany, J.J. and Martens, C.J., McDonnell Douglas Corporation, 1998. Error resilient method

and apparatus for entropy coding. U.S. Patent 5,850,482. Referenced in section: 2.4.2 (page 13).

104. Sullivan, G.J. and Wiegand, T., 1998. Rate-distortion optimization for video compression. IEEE

signal processing magazine, 15(6), pp.74-90. Referenced in sections: 2.4.2 (page 13), 2.4.5 (page

16).

105. Knuth, D.E., 1985. Dynamic huffman coding. Journal of algorithms, 6(2), pp.163-180. Referenced

in sections: 2.4.3 (page 13), 2.4.5 (page 16).

104 Bibliography

106. Advanced video coding for generic audiovisual services, ITU-T Recommendation H.264 and

ISO/IEC 14496-10 (AVC), 2009. Referenced in section: 2.4.4 (page 14).

107. Richardson, I.E., 2011. The H. 264 advanced video compression standard. John Wiley & Sons.

Referenced in section: 2.4.4 (page 14).

108. Budagavi, M., 2016. High Efficiency Video Coding (hevc): Algorithms and Architectures.

Springer. Referenced in section: 2.4.4 (page 14).

109. Kaddachi, M.L., Soudani, A., Lecuire, V., Makkaoui, L., Moureaux, J.M. and Torki, K., 2012.

Design and performance analysis of a zonal DCT-based image encoder for Wireless Camera Sensor

Networks. Microelectronics Journal, 43(11), pp.809-817. Referenced in section: 2.4.5 (page 15).

110. Pennebaker, W.B., Mitchell, J.L., Langdon, G.G. and Arps, R.B., 1988. An overview of the basic

principles of the Q-coder adaptive binary arithmetic coder. IBM Journal of research and

development, 32(6), pp.717-726. Referenced in sections: 2.4.5 (page 15), 2.4.5 (page 16).

111. Chandra, A. and Chakrabarty, K., 2001. System-on-a-chip test-data compression and

decompression architectures based on Golomb codes. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 20(3), pp.355-368. Referenced in sections: 2.4.5 (page

15), 2.4.5 (page 16).

112. Amutha, R., 2013. Low complexity energy efficient very low bit-rate image compression scheme

for wireless sensor network. Information Processing Letters, 113(18), pp.672-676. Referenced in

section: 2.4.5 (page 16).

113. Bayer, F.M. and Cintra, R.J., 2012. DCT-like transform for image compression requires 14

additions only. Electronics Letters, 48(15), pp.919-921. Referenced in section: 2.4.5 (page 16).

114. da Silveira, T.L., Oliveira, R.S., Bayer, F.M., Cintra, R.J. and Madanayake, A., 2017.

Multiplierless 16-point DCT approximation for low-complexity image and video coding. Signal,

Image and Video Processing, 11(2), pp.227-233. Referenced in section: 2.4.5 (page 16).

115. Gersho, A. and Gray, R.M., 2012. Vector quantization and signal compression (Vol. 159).

Springer Science & Business Media. Referenced in section: 2.4.5 (page 16).

116. Hauck, E.L., INTELLIGENT STORAGE Inc, 1986. Data compression using run length encoding

and statistical encoding. U.S. Patent 4,626,829. Referenced in section: 2.4.5 (page 16).

117. Witten, I.H., Neal, R.M. and Cleary, J.G., 1987. Arithmetic coding for data compression.

Communications of the ACM, 30(6), pp.520-540. Referenced in section: 2.4.5 (page 16).

118. Masmoudi, A., Puech, W., & Bouhlel, M. S. (2010). Efficient adaptive arithmetic coding based

on updated probability distribution for lossless image compression. Journal of Electronic Imaging,

19(2), 023014. Referenced in section: 2.4.5 (page 16).

119. Finite State Entropy - A new breed of entropy coder,

http://fastcompression.blogspot.fr/2013/12/finite-state-entropy-new-breed-of.html (access time

31-Jan-2018), https://github.com/Cyan4973/FiniteStateEntropy (access time 31-Jan-2018).

Referenced in sections: 2.4.5 (page 16), 4.6.2 (page 91).

120. Duda, J., 2009. Asymmetric numeral systems. arXiv preprint arXiv:0902.0271. Referenced in

section: 2.4.5 (page 16).

121. Duda, J., 2013. Asymmetric numeral systems: entropy coding combining speed of Huffman coding

with compression rate of arithmetic coding. arXiv preprint arXiv:1311.2540. Referenced in

section: 2.4.5 (page 16).

Bibliography 105

122. Duda, J., Tahboub, K., Gadgil, N.J. and Delp, E.J., 2015, May. The use of asymmetric numeral

systems as an accurate replacement for Huffman coding. In Picture Coding Symposium (PCS),

2015 (pp. 65-69). IEEE. Referenced in section: 2.4.5 (page 16).

123. Najmabadi, S.M., Wang, Z., Baroud, Y. and Simon, S., 2015, September. High throughput

hardware architectures for asymmetric numeral systems entropy coding. In Image and Signal

Processing and Analysis (ISPA), 2015 9th International Symposium on (pp. 256-259). IEEE.

Referenced in section: 2.4.5 (page 16).

124. Zstandard – lossless data compression algorithm, http://facebook.github.io/zstd (access time 2-

March-2018). Referenced in sections: 2.4.5 (page 16), 2.4.5 (page 17).

125. Girod, B., 1992. Psychovisual aspects of image communication. Signal Processing, 28(3), pp.239-

251. Referenced in section: 2.4.5 (page 16).

126. Alakuijala, J., Obryk, R., Stoliarchuk, O., Szabadka, Z., Vandevenne, L. and Wassenberg, J.,

2017. Guetzli: Perceptually Guided JPEG Encoder. arXiv preprint arXiv:1703.04421. Referenced

in sections: 2.4.5 (page 16), 2.4.5 (page 16).

127. Alakuijala, J., Obryk, R., Szabadka, Z. and Wassenberg, J., 2017. Users prefer Guetzli JPEG

over same-sized libjpeg. arXiv preprint arXiv:1703.04416. Referenced in sections: 2.4.5 (page 16),

2.4.5 (page 16).

128. Google, Inc., https://www.google.com (access time 31-Jan-2018). Referenced in section: 2.4.5

(page 16).

129. https://github.com/google/guetzli/blob/master/guetzli/order.inc (access time 31-Jan-2018),

https://github.com/google/butteraugli/blob/master/butteraugli/butteraugli.cc (access time 31-

Jan-2018). Referenced in section: 2.4.5 (page 16).

130. Brotli compression format, https://github.com/google/brotli (access time 2-March-2018).

Referenced in section: 2.4.5 (page 16).

131. Brotli Compressed Data Format, RFC 7932, https://tools.ietf.org/html/rfc7932 (access time 2-

March-2018). Referenced in section: 2.4.5 (page 16).

132. Sneyers, J. and Wuille, P., 2016, September. FLIF: Free lossless image format based on MANIAC

compression. In Image Processing (ICIP), 2016 IEEE International Conference on (pp. 66-70).

IEEE. Referenced in section: 2.4.5 (page 16).

133. FLIF (Free Lossless Image Format), www.flif.info (access time 31-Jan-2018). Referenced in

sections: 2.4.5 (page 16), 4.5.2 (page 78).

134. Presentation FREE LOSSLESS IMAGE FORMAT, http://flif.info/slides/FLIF_ICIP16.pdf

(access time 31-Jan-2018). Referenced in section: 2.4.5 (page 16).

135. Sneyers J. and Wuille P. JiF: Image Compression With an Auto-Indexing and Context-Learning

MANIAC, https://drive.google.com/file/d/0BwMTfsYj-_l6eWZWRHg3RGtwQW8/view?pli=1

(access time 31-Jan-2018). Referenced in section: 2.4.5 (page 16).

136. Sze, V. and Budagavi, M., 2012. High throughput CABAC entropy coding in HEVC. IEEE

Transactions on Circuits and Systems for Video Technology, 22(12), pp.1778-1791. Referenced in

section: 2.4.5 (page 16).

137. Fisher, Y., 2012. Fractal image compression: theory and application. Springer Science & Business

Media. Referenced in section: 2.4.5 (page 16).

106 Bibliography

138. Eldar, Y.C. and Kutyniok, G. eds., 2012. Compressed sensing: theory and applications.

Cambridge University Press. Referenced in section: 2.4.5 (page 16).

139. Russell, S. J., Norvig, P., Canny, J. F., Malik, J. M., & Edwards, D. D. (2003). Artificial

intelligence: a modern approach (Vol. 2, No. 9). Upper Saddle River: Prentice hall. Referenced

in section: 2.4.5 (page 16).

140. Nasrabadi, N.M., 2007. Pattern recognition and machine learning. Journal of electronic imaging,

16(4), p.049901. Referenced in section: 2.4.5 (page 16).

141. Jiang, F., Tao, W., Liu, S., Ren, J., Guo, X. and Zhao, D., 2017. An end-to-end compression

framework based on convolutional neural networks. IEEE Transactions on Circuits and Systems

for Video Technology. Referenced in section: 2.4.5 (page 16).

142. Toderici, G., Vincent, D., Johnston, N., Hwang, S.J., Minnen, D., Shor, J. and Covell, M., 2016.

Full resolution image compression with recurrent neural networks. arXiv preprint. Referenced in

section: 2.4.5 (page 16).

143. Toderici, G., O’Malley, S.M., Hwang, S.J., Vincent, D., Minnen, D., Baluja, S., Covell, M. and

Sukthankar, R., 2015. Variable rate image compression with recurrent neural networks. arXiv

preprint arXiv:1511.06085. Referenced in section: 2.4.5 (page 16).

144. WaveOne – Context-adaptive compression of digital media, http://www.wave.one (access time

31-Jan-2018). Referenced in section: 2.4.5 (page 16).

145. Rippel, O. and Bourdev, L., 2017. Real-time adaptive image compression. arXiv preprint

arXiv:1705.05823. Referenced in section: 2.4.5 (page 16).

146. https://www.dropbox.com (access time 31-Jan-2018). Referenced in section: 2.4.5 (page 17).

147. Lepton image compression: saving 22% losslessly from images at 15MB/s,

https://blogs.dropbox.com/tech/2016/07/lepton-image-compression-saving-22-losslessly-from-

images-at-15mbs (access time 31-Jan-2018), https://github.com/dropbox/lepton (access time 31-

Jan-2018). Referenced in sections: 2.4.5 (page 17), 2.4.5 (page 17).

148. Samuel, A.L., 1959. Some studies in machine learning using the game of checkers. IBM Journal

of research and development, 3(3), pp.210-229. Referenced in section: 2.5 (page 17).

149. Cortes, C. and Vapnik, V., 1995. Support-vector networks. Machine learning, 20(3), pp.273-297.

Referenced in section: 2.5 (page 17).

150. Rasmussen, C.E., 2004. Gaussian processes in machine learning. In Advanced lectures on machine

learning (pp. 63-71). Springer, Berlin, Heidelberg. Referenced in sections: 2.5 (page 17), 2.6.1

(page 20).

151. Møller, M.F., 1993. A scaled conjugate gradient algorithm for fast supervised learning. Neural

networks, 6(4), pp.525-533. Referenced in section: 2.5 (page 17).

152. Hastie, T., Tibshirani, R. and Friedman, J., 2009. Unsupervised learning. In The elements of

statistical learning (pp. 485-585). Springer, New York, NY. Referenced in section: 2.5 (page 17).

153. Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J. and Scholkopf, B., 1998. Support vector

machines. IEEE Intelligent Systems and their applications, 13(4), pp.18-28. Referenced in section:

2.5 (page 17).

154. Li, M. and Yuan, B., 2005. 2D-LDA: A statistical linear discriminant analysis for image matrix.

Pattern Recognition Letters, 26(5), pp.527-532. Referenced in section: 2.5 (page 17).

Bibliography 107

155. Mika, S., Ratsch, G., Weston, J., Scholkopf, B. and Mullers, K.R., 1999, August. Fisher

discriminant analysis with kernels. In Neural networks for signal processing IX, 1999. Proceedings

of the 1999 IEEE signal processing society workshop. (pp. 41-48). Ieee. Referenced in section: 2.5

(page 17).

156. Murphy, K.P., 2006. Naive bayes classifiers. University of British Columbia, 18. Referenced in

section: 2.5 (page 17).

157. Larose, D.T., 2005. k‐nearest neighbor algorithm. Discovering Knowledge in Data: An

Introduction to Data Mining, pp.90-106. Referenced in section: 2.5 (page 18).

158. Crawley, M.J., 2007. Generalized linear models. The R book, pp.511-526. Referenced in section:

2.5 (page 18).

159. Basak, D., Pal, S. and Patranabis, D.C., 2007. Support vector regression. Neural Information

Processing-Letters and Reviews, 11(10), pp.203-224. Referenced in section: 2.5 (page 18).

160. Seo, S., Wallat, M., Graepel, T. and Obermayer, K., 2000. Gaussian process regression: Active

data selection and test point rejection. In Mustererkennung 2000 (pp. 27-34). Springer, Berlin,

Heidelberg. Referenced in section: 2.5 (page 18).

161. Dietterich, T.G., 2000, June. Ensemble methods in machine learning. In International workshop

on multiple classifier systems (pp. 1-15). Springer, Berlin, Heidelberg. Referenced in section: 2.5

(page 18).

162. Quinlan, J.R., 1986. Induction of decision trees. Machine learning, 1(1), pp.81-106. Referenced in

section: 2.5 (page 18).

163. Hartigan, J.A. and Wong, M.A., 1979. Algorithm AS 136: A k-means clustering algorithm.

Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1), pp.100-108.

Referenced in sections: 2.5 (page 18), 3.5.3 (page 60).

164. Xu, P., 2006. Voronoi cells, probabilistic bounds, and hypothesis testing in mixed integer linear

models. IEEE Transactions on information theory, 52(7), pp.3122-3138. Referenced in section:

2.5 (page 18).

165. Jin, X. and Han, J., 2016. K-medoids clustering. In Encyclopedia of Machine Learning and Data

Mining (pp. 1-3). Springer US. Referenced in section: 2.5 (page 18).

166. Bezdek, J.C., Ehrlich, R. and Full, W., 1984. FCM: The fuzzy c-means clustering algorithm.

Computers and Geosciences, 10(2-3), pp.191-203. Referenced in section: 2.5 (page 18).

167. Pal, N.R. and Bezdek, J.C., 1995. On cluster validity for the fuzzy c-means model. IEEE

Transactions on Fuzzy systems, 3(3), pp.370-379. Referenced in section: 2.5 (page 18).

168. Chuang, K.S., Tzeng, H.L., Chen, S., Wu, J. and Chen, T.J., 2006. Fuzzy c-means clustering

with spatial information for image segmentation. computerized medical imaging and graphics,

30(1), pp.9-15. Referenced in section: 2.5 (page 18).

169. Pal, N.R., Pal, K., Keller, J.M. and Bezdek, J.C., 2005. A possibilistic fuzzy c-means clustering

algorithm. IEEE transactions on fuzzy systems, 13(4), pp.517-530. Referenced in section: 2.5

(page 18).

170. Cai, W., Chen, S. and Zhang, D., 2007. Fast and robust fuzzy c-means clustering algorithms

incorporating local information for image segmentation. Pattern recognition, 40(3), pp.825-838.

Referenced in section: 2.5 (page 18).

108 Bibliography

171. Cannon, R.L., Dave, J.V. and Bezdek, J.C., 1986. Efficient implementation of the fuzzy c-means

clustering algorithms. IEEE transactions on pattern analysis and machine intelligence, (2),

pp.248-255. Referenced in section: 2.5 (page 18).

172. Zhang, S., Wang, R.S. and Zhang, X.S., 2007. Identification of overlapping community structure

in complex networks using fuzzy c-means clustering. Physica A: Statistical Mechanics and its

Applications, 374(1), pp.483-490. Referenced in section: 2.5 (page 18).

173. Hathaway, R.J. and Bezdek, J.C., 2001. Fuzzy c-means clustering of incomplete data. IEEE

Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 31(5), pp.735-744.

Referenced in section: 2.5 (page 18).

174. Hathaway, R.J., Bezdek, J.C. and Hu, Y., 2000. Generalized fuzzy c-means clustering strategies

using L/sub p/norm distances. IEEE transactions on Fuzzy Systems, 8(5), pp.576-582. Referenced

in section: 2.5 (page 18).

175. Karayiannis, N.B. and Bezdek, J.C., 1997. An integrated approach to fuzzy learning vector

quantization and fuzzy c-means clustering. IEEE Transactions on Fuzzy Systems, 5(4), pp.622-

628. Referenced in section: 2.5 (page 18).

176. Navarro, J.F., Frenk, C.S. and White, S.D., 1997. A universal density profile from hierarchical

clustering. The Astrophysical Journal, 490(2), p.493. Referenced in section: 2.5 (page 18).

177. Corpet, F., 1988. Multiple sequence alignment with hierarchical clustering. Nucleic acids research,

16(22), pp.10881-10890. Referenced in section: 2.5 (page 18).

178. Johnson, S.C., 1967. Hierarchical clustering schemes. Psychometrika, 32(3), pp.241-254.

Referenced in section: 2.5 (page 18).

179. Steinbach, M., Karypis, G. and Kumar, V., 2000, August. A comparison of document clustering

techniques. In KDD workshop on text mining (Vol. 400, No. 1, pp. 525-526). Referenced in

section: 2.5 (page 18).

180. Karypis, G., Han, E.H. and Kumar, V., 1999. Chameleon: Hierarchical clustering using dynamic

modeling. Computer, 32(8), pp.68-75. Referenced in section: 2.5 (page 18).

181. Bandyopadhyay, S. and Coyle, E.J., 2003, April. An energy efficient hierarchical clustering

algorithm for wireless sensor networks. In INFOCOM 2003. Twenty-Second Annual Joint

Conference of the IEEE Computer and Communications. IEEE Societies (Vol. 3, pp. 1713-1723).

IEEE. Referenced in section: 2.5 (page 18).

182. White, S.D. and Frenk, C.S., 1991. Galaxy formation through hierarchical clustering. The

Astrophysical Journal, 379, pp.52-79. Referenced in section: 2.5 (page 18).

183. Suzuki, R. and Shimodaira, H., 2006. Pvclust: an R package for assessing the uncertainty in

hierarchical clustering. Bioinformatics, 22(12), pp.1540-1542. Referenced in section: 2.5 (page 18).

184. Murtagh, F., 1983. A survey of recent advances in hierarchical clustering algorithms. The

Computer Journal, 26(4), pp.354-359. Referenced in section: 2.5 (page 18).

185. Anderberg, M.R., 1973. Cluster analysis for applications (No. OAS-TR-73-9). Office of the

Assistant for Study Support Kirtland AFB N MEX. Referenced in section: 2.5 (page 18).

186. Rousseeuw, P.J., 1987. Silhouettes: a graphical aid to the interpretation and validation of cluster

analysis. Journal of computational and applied mathematics, 20, pp.53-65. Referenced in section:

2.5 (page 18).

Bibliography 109

187. Milligan, G.W. and Cooper, M.C., 1986. A study of the comparability of external criteria for

hierarchical cluster analysis. Multivariate Behavioral Research, 21(4), pp.441-458. Referenced in

section: 2.5 (page 18).

188. Revelle, W., 1979. Hierarchical cluster analysis and the internal structure of tests. Multivariate

Behavioral Research, 14(1), pp.57-74. Referenced in section: 2.5 (page 18).

189. Baker, F.B. and Hubert, L.J., 1975. Measuring the power of hierarchical cluster analysis. Journal

of the American Statistical Association, 70(349), pp.31-38. Referenced in section: 2.5 (page 18).

190. Peeters, J.P. and Martinelli, J.A., 1989. Hierarchical cluster analysis as a tool to manage variation

in germplasm collections. Theoretical and applied genetics, 78(1), pp.42-48. Referenced in section:

2.5 (page 18).

191. Arifin, A.Z. and Asano, A., 2006. Image segmentation by histogram thresholding using

hierarchical cluster analysis. Pattern recognition letters, 27(13), pp.1515-1521. Referenced in

section: 2.5 (page 18).

192. Gruvaeus, G. and Wainer, H., 1972. Two additions to hierarchical cluster analysis. British Journal

of Mathematical and Statistical Psychology, 25(2), pp.200-206. Referenced in section: 2.5 (page

18).

193. Bridges Jr, C.C., 1966. Hierarchical cluster analysis. Psychological reports, 18(3), pp.851-854.

Referenced in section: 2.5 (page 18).

194. Köhn, H.F. and Hubert, L.J., 2006. Hierarchical cluster analysis. Wiley StatsRef: Statistics

Reference Online. Referenced in section: 2.5 (page 18).

195. Rabiner, L. and Juang, B., 1986. An introduction to hidden Markov models. ieee assp magazine,

3(1), pp.4-16. Referenced in section: 2.5 (page 18).

196. Yamato, J., Ohya, J. and Ishii, K., 1992, June. Recognizing human action in time-sequential

images using hidden markov model. In Computer Vision and Pattern Recognition, 1992.

Proceedings CVPR’92., 1992 IEEE Computer Society Conference on (pp. 379-385). IEEE.

Referenced in section: 2.5 (page 18).

197. Eddy, S.R., 1998. Profile hidden Markov models. Bioinformatics (Oxford, England), 14(9),

pp.755-763. Referenced in section: 2.5 (page 18).

198. Bahl, L., Brown, P., De Souza, P. and Mercer, R., 1986, April. Maximum mutual information

estimation of hidden Markov model parameters for speech recognition. In Acoustics, Speech, and

Signal Processing, IEEE International Conference on ICASSP’86. (Vol. 11, pp. 49-52). IEEE.

Referenced in section: 2.5 (page 18).

199. Varga, A. and Moore, R.K., 1990, April. Hidden Markov model decomposition of speech and

noise. In Acoustics, Speech, and Signal Processing, 1990. ICASSP-90., 1990 International

Conference on (pp. 845-848). IEEE. Referenced in section: 2.5 (page 18).

200. Blunsom, P., 2004. Hidden markov models. Lecture notes, August, 15, pp.18-19. Referenced in

section: 2.5 (page 18).

201. Morgan, N. and Bourlard, H., 1990, April. Continuous speech recognition using multilayer

perceptrons with hidden Markov models. In Acoustics, Speech, and Signal Processing, 1990.

ICASSP-90., 1990 International Conference on (pp. 413-416). IEEE. Referenced in section: 2.5

(page 18).

110 Bibliography

202. Reynolds, D.A., Quatieri, T.F. and Dunn, R.B., 2000. Speaker verification using adapted

Gaussian mixture models. Digital signal processing, 10(1-3), pp.19-41. Referenced in section: 2.5

(page 18).

203. Reynolds, D.A. and Rose, R.C., 1995. Robust text-independent speaker identification using

Gaussian mixture speaker models. IEEE transactions on speech and audio processing, 3(1), pp.72-

83. Referenced in section: 2.5 (page 18).

204. Zivkovic, Z., 2004, August. Improved adaptive Gaussian mixture model for background

subtraction. In Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International

Conference on (Vol. 2, pp. 28-31). IEEE. Referenced in section: 2.5 (page 18).

205. Rasmussen, C.E., 2000. The infinite Gaussian mixture model. In Advances in neural information

processing systems (pp. 554-560). Referenced in section: 2.5 (page 18).

206. Huang, Y., Englehart, K.B., Hudgins, B. and Chan, A.D., 2005. A Gaussian mixture model based

classification scheme for myoelectric control of powered upper limb prostheses. IEEE

Transactions on Biomedical Engineering, 52(11), pp.1801-1811. Referenced in section: 2.5 (page

18).

207. Yang, M.H. and Ahuja, N., 1998, December. Gaussian mixture model for human skin color and

its applications in image and video databases. In Storage and Retrieval for Image and Video

Databases VII (Vol. 3656, pp. 458-467). International Society for Optics and Photonics.

Referenced in section: 2.5 (page 18).

208. Greenspan, H., Ruf, A. and Goldberger, J., 2006. Constrained Gaussian mixture model framework

for automatic segmentation of MR brain images. IEEE transactions on medical imaging, 25(9),

pp.1233-1245. Referenced in section: 2.5 (page 18).

209. Povey, D., Burget, L., Agarwal, M., Akyazi, P., Kai, F., Ghoshal, A., Glembek, O., Goel, N.,

Karafiát, M., Rastrow, A. and Rose, R.C., 2011. The subspace Gaussian mixture model—A

structured model for speech recognition. Computer Speech and Language, 25(2), pp.404-439.

Referenced in section: 2.5 (page 18).

210. Torres-Carrasquillo, P.A., Reynolds, D.A. and Deller, J.R., 2002, May. Language identification

using Gaussian mixture model tokenization. In Acoustics, Speech, and Signal Processing

(ICASSP), 2002 IEEE International Conference on (Vol. 1, pp. I-757). IEEE. Referenced in

section: 2.5 (page 18).

211. Xuan, G., Zhang, W. and Chai, P., 2001. EM algorithms of Gaussian mixture model and hidden

Markov model. In Image Processing, 2001. Proceedings. 2001 International Conference on (Vol.

1, pp. 145-148). IEEE. Referenced in section: 2.5 (page 18).

212. Hassoun, M.H., 1995. Fundamentals of artificial neural networks. MIT press. Referenced in

section: 2.6.1 (page 19).

213. Hanson, S. J., & Burr, D. J. (1990). What connectionist models learn: Learning and

representation in connectionist networks. Behavioral and Brain Sciences, 13(3), 471-489.

Referenced in section: 2.6.1 (page 19).

214. McClelland, J. L., Rumelhart, D. E., & PDP Research Group. (1987). Parallel distributed

processing (Vol. 2). Cambridge, MA:: MIT press. Referenced in section: 2.6.1 (page 19).

215. Wiatowski, T. and Bölcskei, H., 2017. A mathematical theory of deep convolutional neural

networks for feature extraction. IEEE Transactions on Information Theory. Referenced in section:

2.6.1 (page 19).

Bibliography 111

216. Nesterov, Y. (2007). Gradient methods for minimizing composite objective function. Referenced

in section: 2.6.1 (page 19).

217. Karlik, B., & Olgac, A. V. (2011). Performance analysis of various activation functions in

generalized MLP architectures of neural networks. International Journal of Artificial Intelligence

and Expert Systems, 1(4), 111-122. Referenced in section: 2.6.1 (page 19).

218. Baba, N. (1989). A new approach for finding the global minimum of error function of neural

networks. Neural networks, 2(5), 367-373. Referenced in section: 2.6.1 (page 19).

219. Hecht-Nielsen, R. (1992). Theory of the backpropagation neural network. In Neural networks for

perception (pp. 65-93). Referenced in sections: 2.6.1 (page 19), 2.6.1 (page 19), 2.6.1 (page 19),

2.6.1 (page 24).

220. Datta, B. N. (2010). Numerical linear algebra and applications (Vol. 116). Siam. Referenced in

section: 2.6.1 (page 19).

221. Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint

arXiv:1609.04747. Referenced in section: 2.6.1 (page 19).

222. Pavelka, A., & Procházka, A. (2004). Algorithms for initialization of neural network weights. In

In Proceedings of the 12th Annual Conference, MATLAB (pp. 453-459). Referenced in section:

2.6.1 (page 20).

223. Tetko, I. V., Livingstone, D. J., & Luik, A. I. (1995). Neural network studies. 1. Comparison of

overfitting and overtraining. Journal of chemical information and computer sciences, 35(5), 826-

833. Referenced in sections: 2.6.1 (page 20), 2.6.1 (page 21).

224. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R., 2014. Dropout:

A simple way to prevent neural networks from overfitting. The Journal of Machine Learning

Research, 15(1), pp.1929-1958. Referenced in sections: 2.6.1 (page 20), 2.6.1 (page 21), 2.6.3 (page

33), 3.5.2 (page 55).

225. Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of

Machine Learning Research, 13(Feb), 281-305. Referenced in sections: 2.6.1 (page 21), 2.6.1 (page

28), 3.5.1 (page 51).

226. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., & Fergus, R.

(2013). Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199. Referenced in

section: 2.6.1 (page 21).

227. Manessi, F., & Rozza, A. (2018). Learning Combinations of Activation Functions. arXiv preprint

arXiv:1801.09403. Referenced in section: 2.6.1 (page 24).

228. LeCun, Y., Touresky, D., Hinton, G., & Sejnowski, T. (1988, June). A theoretical framework for

back-propagation. In Proceedings of the 1988 connectionist models summer school (pp. 21-28).

CMU, Pittsburgh, Pa: Morgan Kaufmann. Referenced in section: 2.6.1 (page 24).

229. MacKay, D. J. (1992). A practical Bayesian framework for backpropagation networks. Neural

computation, 4(3), 448-472. Referenced in section: 2.6.1 (page 24).

230. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal representations by

error propagation (No. ICS-8506). California Univ San Diego La Jolla Inst for Cognitive Science.

Referenced in section: 2.6.1 (page 24).

112 Bibliography

231. Le Cun, Y. (1986). Learning process in an asymmetric threshold network. In Disordered systems

and biological organization (pp. 233-240). Springer, Berlin, Heidelberg. Referenced in section:

2.6.1 (page 24).

232. Cun, Y. L. (1985). A learning scheme for asymmetric threshold networks. Proceedings of

Cognitiva, 85, 599-604. Referenced in section: 2.6.1 (page 24).

233. Yann, L. (1987). Modèles connexionnistes de l’apprentissage (Doctoral dissertation, PhD thesis,

These de Doctorat, Universite Paris 6). Referenced in section: 2.6.1 (page 24).

234. Parker, D. B., & Learning Logic, T. (1985). Report TR-47. MIT. Center for Computational

Research in Economics and Management Science, MIT, Cambridge, MA. Referenced in section:

2.6.1 (page 24).

235. Werbos, P. (1974). Beyond regression: new fools for prediction and analysis in the behavioral

sciences. PhD thesis, Harvard University. Referenced in section: 2.6.1 (page 24).

236. Hinton, G.E. and Salakhutdinov, R.R., 2006. Reducing the dimensionality of data with neural

networks. science, 313(5786), pp.504-507. Referenced in section: 2.6.1 (page 25).

237. Povey, D., Zhang, X., & Khudanpur, S. (2014). Parallel training of DNNs with natural gradient

and parameter averaging. arXiv preprint arXiv:1410.7455. Referenced in section: 2.6.1 (page 27).

238. McKay, M. D. (1992, December). Latin hypercube sampling as a tool in uncertainty analysis of

computer models. In Proceedings of the 24th conference on Winter simulation (pp. 557-564).

ACM. Referenced in section: 2.6.1 (page 29).

239. LeCun, Y., Bottou, L., Orr, G. B., & Müller, K. R. (1998). Efficient backprop. In Neural networks:

Tricks of the trade (pp. 9-50). Springer, Berlin, Heidelberg. Referenced in section: 2.6.1 (page

29).

240. Specht, D.F., 1990. Probabilistic neural networks. Neural networks, 3(1), pp.109-118. Referenced

in section: 2.6.2 (page 30).

241. Schmidhuber, J., 2015. Deep learning in neural networks: An overview. Neural networks, 61,

pp.85-117. Referenced in section: 2.6.2 (page 30).

242. Krizhevsky, A., Sutskever, I. and Hinton, G.E., 2012. Imagenet classification with deep

convolutional neural networks. In Advances in neural information processing systems (pp. 1097-

1105). Referenced in sections: 2.6.2 (page 31), 3.5.2 (page 55).

243. CIFAR-10, collection of images that are commonly used to train machine learning and computer

vision algorithms, https://www.cs.toronto.edu/~kriz/cifar.html (access time 31-Jan-2018).

Referenced in section: 2.6.2 (page 31).

244. Cheng, Y., Wang, D., Zhou, P., & Zhang, T. (2017). A Survey of Model Compression and

Acceleration for Deep Neural Networks. arXiv preprint arXiv:1710.09282. Referenced in section:

2.6.3 (page 32).

245. Ioffe, S. and Szegedy, C., 2015, June. Batch normalization: Accelerating deep network training

by reducing internal covariate shift. In International conference on machine learning (pp. 448-

456). Referenced in sections: 2.6.3 (page 33), 3.5.1 (page 51), 3.5.2 (page 55).

246. Sola, J., & Sevilla, J. (1997). Importance of input data normalization for the application of neural

networks to complex industrial problems. IEEE Transactions on nuclear science, 44(3), 1464-

1468. Referenced in section: 2.6.3 (page 33).

Bibliography 113

247. Ng, A. Y. (2004, July). Feature selection, L 1 vs. L 2 regularization, and rotational invariance.

In Proceedings of the twenty-first international conference on Machine learning (p. 78). ACM.

Referenced in section: 2.6.3 (page 33).

248. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R.R., 2012.

Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint

arXiv:1207.0580. Referenced in section: 2.6.3 (page 33).

249. Oh, K. S., & Jung, K. (2004). GPU implementation of neural networks. Pattern Recognition,

37(6), 1311-1314. Referenced in section: 2.6.3 (page 33).

250. Omondi, A. R., & Rajapakse, J. C. (Eds.). (2006). FPGA implementations of neural networks

(Vol. 365). New York, NY, USA:: Springer. Referenced in section: 2.6.3 (page 33).

251. Farabet, C., Martini, B., Akselrod, P., Talay, S., LeCun, Y., & Culurciello, E. (2010, May).

Hardware accelerated convolutional neural networks for synthetic vision systems. In Circuits and

Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on (pp. 257-260). IEEE.

Referenced in section: 2.6.3 (page 33).

252. Cotton, N. J., & Wilamowski, B. M. (2011). Compensation of nonlinearities using neural networks

implemented on inexpensive microcontrollers. IEEE Transactions on Industrial Electronics, 58(3),

733-740. Referenced in section: 2.6.3 (page 33).

253. Patra, J. C., Kot, A. C., & Panda, G. (2000). An intelligent pressure sensor using neural networks.

IEEE transactions on instrumentation and measurement, 49(4), 829-834. Referenced in section:

2.6.3 (page 33).

254. Potter, M. C., Wyble, B., Hagmann, C. E., & McCourt, E. S. (2014). Detecting meaning in RSVP

at 13 ms per picture. Attention, Perception, & Psychophysics, 76(2), 270-279. Referenced in

section: 2.7 (page 33).

255. Bastani, V., Helfroush, M.S. and Kasiri, K., 2010. Image compression based on spatial redundancy

removal and image inpainting. Journal of Zhejiang University SCIENCE C, 11(2), pp.92-100.

Referenced in section: 2.7 (page 33).

256. Wang, W., Stuijk, S. and De Haan, G., 2015. Exploiting spatial redundancy of image sensor for

motion robust rPPG. IEEE transactions on Biomedical Engineering, 62(2), pp.415-425.

Referenced in section: 2.7 (page 33).

257. Huynh-Thu, Q. and Ghanbari, M., 2008. Scope of validity of PSNR in image/video quality

assessment. Electronics letters, 44(13), pp.800-801. Referenced in section: 2.7 (page 34).

258. Wang, Z., & Bovik, A. C. (2009). Mean squared error: Love it or leave it? A new look at signal

fidelity measures. IEEE signal processing magazine, 26(1), 98-117. Referenced in section: 2.7

(page 34).

259. Wang, Z., Simoncelli, E. P., & Bovik, A. C. (2003, November). Multiscale structural similarity

for image quality assessment. In Signals, Systems and Computers, 2004. Conference Record of

the Thirty-Seventh Asilomar Conference on (Vol. 2, pp. 1398-1402). Ieee. Referenced in section:

2.7 (page 34).

260. Papadimitriou, C.H., 2003. Computational complexity (pp. 260-265). John Wiley and Sons Ltd.

Referenced in section: 2.7 (page 35).

261. Quinn, M.J. and Quinn, M.J., 1994. Parallel computing: theory and practice (Vol. 2). New York:

McGraw-Hill. Referenced in section: 2.7 (page 35).

114 Bibliography

262. Shah, S. (2014). Real-time image processing on low cost embedded computers. Techincal report

No. UCB/EECS-2014–117. Referenced in section: 2.8 (page 36).

263. Jiang, H., & Su, X. (2013). The embedded image acquisition system based on the ARM. Journal

of Convergence Information Technology, 8(9), 845. Referenced in section: 2.8 (page 36).

264. Requirements of Low Power VLSI Design and Analysis of Flip-flops: Sources of Power

ConsumptionFeb 1, 2017. Referenced in section: 2.8 (page 37).

265. An Introduction to Classical Electromagnetic RadiationOct 30, 1997. Referenced in section: 2.8

(page 37).

266. Encyclopedia of Parallel Computing (Springer Reference)Sep 8, 2011. Referenced in section: 2.8

(page 37).

267. Olive, M. M., & Abel, M. G. (2003). Research methods: Quantitative and Qualitative approaches.

Analia Manriquiz (2011), Citizen. Referenced in section: 3.1 (page 39).

268. Roelofs, G., & Koman, R. (1999). PNG: the definitive guide. O’Reilly & Associates, Inc..

Referenced in section: 3.2.2 (page 40).

269. Boutell, T. (1997). Png (portable network graphics) specification version 1.0. Referenced in

section: 3.2.2 (page 40).

270. OpenJPEG, open-source JPEG 2000 codec, http://www.openjpeg.org/ (access time 20-Feb-

2018), https://github.com/uclouvain/openjpeg (access time 20-Feb-2018). Referenced in sections:

3.2.3.3 (page 43), 4.5.1 (page 76).

271. The JPEG 2000 Suite Sep 21, 2009. Referenced in section: 3.2.3.3 (page 43).

272. Zhang, Q., & Li, B. (2015). Dictionary learning in visual computing. Synthesis Lectures on Image,

Video, & Multimedia Processing, 8(2), 1-151. Referenced in section: 3.3.2 (page 46).

273. Xiong, Z., Liveris, A. D., & Cheng, S. (2004). Distributed source coding for sensor networks.

IEEE signal processing magazine, 21(5), 80-94. Referenced in section: 3.3.4 (page 50).

274. Slowack, J., Skorupa, J., Deligiannis, N., Lambert, P., Munteanu, A., & Van de Walle, R. (2012).

Distributed video coding with feedback channel constraints. IEEE Transactions on Circuits and

Systems for Video Technology, 22(7), 1014-1026. Referenced in section: 3.3.4 (page 50).

275. Lennox, B., Montague, G. A., Frith, A. M., Gent, C., & Bevan, V. (2001). Industrial application

of neural networks—an investigation. Journal of Process Control, 11(5), 497-507. Referenced in

section: 3.5.1 (page 51).

276. Lakhmi J, Rao V (1999) Industrial applications of neural networks. CRC, Boca Raton, FL.

Referenced in section: 3.5.1 (page 51).

277. Rovithakis, G. A., & Christodoulou, M. A. (2012). Adaptive control with recurrent high-order

neural networks: theory and industrial applications. Springer Science & Business Media.

Referenced in section: 3.5.1 (page 51).

278. Thwin, M. M. T., & Quah, T. S. (2005). Application of neural networks for software quality

prediction using object-oriented metrics. Journal of systems and software, 76(2), 147-156.

Referenced in section: 3.5.1 (page 51).

279. Chou, W. K., Yun, D. Y., & Tseng, C. C. (1993). A constant-time neural network for multiple

selection of extreme values. J. Inf. Sci. Eng., 9(3), 445-459. Referenced in section: 3.5.1 (page 51).

Bibliography 115

280. Jung, S., & su Kim, S. (2007). Hardware implementation of a real-time neural network controller

with a DSP and an FPGA for nonlinear systems. IEEE Transactions on Industrial Electronics,

54(1), 265-271. Referenced in section: 3.5.1 (page 51).

281. Botros, N. M., & Abdul-Aziz, M. (1994). Hardware implementation of an artificial neural network

using field programmable gate arrays (FPGA’s). IEEE Transactions on Industrial Electronics,

41(6), 665-667. Referenced in section: 3.5.1 (page 51).

282. Gorr, W. L., Nagin, D., & Szczypula, J. (1994). Comparative study of artificial neural network

and statistical models for predicting student grade point averages. International Journal of

Forecasting, 10(1), 17-34. Referenced in section: 3.5.1 (page 51).

283. Harezlak, K., Kasprowski, P., & Stasch, M. (2014). Towards accurate eye tracker calibration–

methods and procedures. Procedia Computer Science, 35, 1073-1081. Referenced in section: 3.5.1

(page 52).

284. Torch framework, www.torch.ch (access time 9-Oct-2017). Referenced in sections: 3.5.2 (page 54),

3.5.3 (page 56).

285. Ng, A.Y., 2004. Feature selection, L1 vs. L2 regularization, and rotational invariance. Proceedings

of the twenty-first international conference on Machine learning, ACM, p. 78. Referenced in

section: 3.5.2 (page 54).

286. He, K., Zhang, X., Ren, S. and Sun, J., 2015. Delving deep into rectifiers: Surpassing human-

level performance on imagenet classification. Proceedings of the IEEE international conference

on computer vision, pp. 1026-1034. Referenced in section: 3.5.2 (page 55).

287. Xu, B., Wang, N., Chen, T. and Li, M., 2015. Empirical evaluation of rectified activations in

convolutional network. arXiv preprint arXiv:1505.00853. Referenced in section: 3.5.2 (page 55).

288. Lin, H. W., Tegmark, M., & Rolnick, D. (2017). Why does deep and cheap learning work so

well?. Journal of Statistical Physics, 168(6), 1223-1247. Referenced in section: 3.5.3 (page 58).

289. Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern recognition letters, 31(8),

651-666. Referenced in section: 3.5.3 (page 60).

290. Klir, G., & Yuan, B. (1995). Fuzzy sets and fuzzy logic (Vol. 4). New Jersey: Prentice hall.

Referenced in section: 3.5.3 (page 60).

291. Hornof, A. J., & Halverson, T. (2002). Cleaning up systematic error in eye-tracking data by using

required fixation locations. Behavior Research Methods, Instruments, & Computers, 34(4), 592-

604. Referenced in section: 4.4.3 (page 69).

292. Kakadu, closed-source JPEG 2000 codec, http://kakadusoftware.com/ (access time 20-Feb-2018).

Referenced in section: 4.5.1 (page 76).

293. JasPer, open-source JPEG 2000 codec, https://www.ece.uvic.ca/~frodo/jasper/ (access time 20-

Feb-2018). Referenced in section: 4.5.1 (page 76).

294. JJ2000, open-source JPEG 2000 codec,

http://www.dclunie.com/jj2000/JPEG%202000%20implementation%20in%20Java.html (access

time 20-Feb-2018). Referenced in section: 4.5.1 (page 76).

295. x264, open-source H.264/MPEG-4 AVC codec, https://www.videolan.org/developers/x264.html

(access time 20-Feb-2018). Referenced in section: 4.5.1 (page 76).

116 Bibliography

296. x265, open-source H.265/MPEG-H HEVC codec,

https://www.videolan.org/developers/x265.html (access time 20-Feb-2018). Referenced in

section: 4.5.1 (page 76).

297. Xvid, open-source MPEG-4 codec, https://www.xvid.com/ (access time 20-Feb-2018). Referenced

in section: 4.5.1 (page 76).

298. Klapetek, P., Necas, D., & Anderson, C. (2004). Gwyddion user guide. Czech Metrology Institute,

2007, 2009. Referenced in section: 4.5.3 (page 78).

299. Mallat, S. G. (1989). Multifrequency channel decompositions of images and wavelet models. IEEE

Transactions on Acoustics, Speech, and Signal Processing, 37(12), 2091-2110. Referenced in

section: 4.5.3 (page 80).

300. Uytterhoeven, G., Van Wulpen, F., Jansen, M., Roose, D., & Bultheel, A. (1997). Waili: Wavelets

with integer lifting. Referenced in section: 4.5.3 (page 80).

301. Goh, S.S., Jiang, Q. and Xia, T., 2000. Construction of biorthogonal multiwavelets using the

lifting scheme. Referenced in section: 4.5.3 (page 80).

302. Guangjun, Z., Lizhi, C., & Huowang, C. (2001, October). A simple 9/7-tap wavelet filter based

on lifting scheme. In Image Processing, 2001. Proceedings. 2001 International Conference on (Vol.

2, pp. 249-252). IEEE. Referenced in section: 4.5.3 (page 80).

303. Le Gall, D., & Tabatabai, A. (1988, April). Sub-band coding of digital images using symmetric

short kernel filters and arithmetic coding techniques. In Acoustics, Speech, and Signal Processing,

1988. ICASSP-88., 1988 International Conference on (pp. 761-764). IEEE. Referenced in section:

4.5.3 (page 80).

304. Zandi, A., Allen, J. D., Schwartz, E. L., & Boliek, M. (1995, March). CREW: Compression with

reversible embedded wavelets. In Data Compression Conference, 1995. DCC’95. Proceedings (pp.

212-221). IEEE. Referenced in section: 4.5.3 (page 80).

305. Schwartz, E. L., Zandi, A., & Boliek, M. P. (1995, August). Implementation of compression with

reversible embedded wavelets. In Applications of Digital Image Processing XVIII (Vol. 2564, pp.

32-44). International Society for Optics and Photonics. Referenced in section: 4.5.3 (page 80).

306. JPEG2000 filters supported in JPEG2000 presentation, Ericsson Research, Media Lab,

http://www.autex.spb.su/download/wavelet/jpeg2000/jpeg2000_christ2.pdf (access time 2-

March-2018). Referenced in section: 4.5.3 (page 80).

307. Daubechies, I., 1992. Ten lectures on wavelets. Society for industrial and applied mathematics.

Referenced in section: 4.5.3 (page 81).

308. Nguyen, T., Marpe, D., Schwarz, H., & Wiegand, T. (2011, September). Reduced-complexity

entropy coding of transform coefficient levels using truncated golomb-rice codes in video

compression. In Image Processing (ICIP), 2011 18th IEEE International Conference on (pp. 753-

756). IEEE. Referenced in section: 4.6.2 (page 91).

309. Brailovsky, I., Kravtsunov, E., & Plotkin, D. (2004). A New Low-Complexity Entropy Coding

Method. In 14th Intenational Conference of Computer Graphics and Vision. Moscow State

University. Referenced in section: 4.6.2 (page 91).

0.37

