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Chapter 1

Introduction (Français)

Dans cette thèse on s’intéresse au traitement statistique (modélisation, inférence et échantillonnage)

de mesures non locales dans les images. On se concentre principalement sur deux de ces mesures :

une notion de redondance spatiale dé�nie a contrario et des statistiques issues de réseaux de neurones

profonds. Plus précisément, on va tenter de répondre aux questions suivantes :

• Qu’est-ce que la redondance spatiale ? Comment l’identi�er dans les images naturelles ?

• Quels modèles stochastiques d’images permettent d’incorporer des contraintes sur les réponses

de réseaux de neurones ? Comment obtenir des échantillons de ces modèles ?

En Section 1.1, on rappelle l’importance de la notion de redondance spatiale dans le cadre d’une

théorie de la perception visuelle : la théorie de la gestalt. On introduit également la méthode a contrario

qui constitue le cadre statistique de cette approche et on rappelle ses liens avec la théorie statistique

des tests (voir [DMM08, Chapter 15.3.2] pour une discussion sur les liens entre la méthode a contrario

et la théorie des tests multiples). Pour utiliser une telle méthode, il est nécessaire de dé�nir un mod-

èle d’image de fond (ou de bruit). Ces modèles sont donnés par des champs aléatoires gaussiens qui

dé�nissent une classe particulière d’images de texture.

Le problème général de la synthèse de textures par l’exemple est rappelé en Section 1.2. Il s’agit de

l’interprétation via le traitement d’images d’un problème plus général : la synthèse de champs aléatoires.

On présente un exemple d’algorithme de synthèse de textures basé sur des statistiques d’ondelettes et

plus tard étendu aux statistiques de réseaux de neurones. Cet algorithme peut s’interpréter comme

une procédure de maximisation d’entropie sous contraintes presque-sûres. En utilisant le principe de

maximum d’entropie qui correspond à une relaxation du problème précédent on est en mesure de dé�nir

explicitement des distributions sur l’espace des images satisfaisant des contraintes sur les réponses d’un

réseau de neurones convolutionnel. A�n de résoudre le problème de maximisation associé, on s’appuie

sur des algorithmes d’optimisation stochastique dont on rappelle les principes.

En supposant que la distribution des images qui véri�ent les statistiques non locales est donnée

(par le principe de maximum d’entropie par exemple), on s’intéresse au problème d’échantillonnage de

telles lois en Section 1.3. On décrit l’algorithme de Langevin non-ajusté qui permet un échantillonnage

e�cace de lois en grande dimension. L’analyse de la convergence de discrétisations de di�usions permet

d’établir les propriétés favorables de cet algorithme vis-à-vis de la dimension du problème initial.

Les contributions de cette thèse sont détaillées en Section 1.4. Un algorithme basé sur la méth-

ode a contrario pour détecter la redondance spatiale est décrit en Section 1.4.1. Les applications de

2



cet algorithme au traitement d’images, et notamment à des problèmes de débruitage et de détection

de périodicité sont énoncées en Section 1.4.2. En Section 1.4.3, on présente un théorème portant sur

l’ergodicité pour diverses distances de Wasserstein de certaines chaînes de Markov issues de modèles

fonctionels auto-régressifs. Ces résultats quantitatifs de convergence sur les chaînes de Markov sont

utilisés pour assurer la convergence de l’algorithme d’approximation stochastique décrit en Section 1.4.4

: l’algorithme Stochastic Optimization with Unadjusted Langevin (SOUL). En Section 1.4.5, on montre que

certains modèles de synthèse de texture par maximum d’entropie peuvent être obtenus via l’algorithme

SOUL. En�n, on présente quelques résultats de synthèse de texture par l’exemple dans la Section 1.4.6.

Il est également à noter qu’une revue de littérature est proposée au début de chaque chapitre.

1.1 Redondance spatiale, méthodes a contrario et champs aléa-
toires

1.1.1 Une première dé�nition et théorie de la gestalt

La notion de “redondance spatiale”, comme celle de “texture” ou de “similarité”, est un concept dont

la dé�nition peut varier d’un auteur à l’autre au gré des applications et des di�érents points de vue

adoptés. Avant de présenter un cadre statistique rigoureux, on va tenter d’apporter quelques éléments

de réponse concernant les attentes visuelles et perceptuelles vis à vis du concept de redondance spatiale.

Intuitivement, cette redondance correspond à la répétition d’un motif dans une image et doit donc

s’envisager dans un cadre local. Pour répondre à cette nécessité, on va considérer des patchs (ou im-

agettes) dans une image. Supposons qu’une image x soit assimilée à une fonction x : E → V, où E
est un domaine de Z2

ou R2
correspondant à l’ensemble des positions des pixels de l’image, et V est

un sous-ensemble de R (pour une image en niveaux de gris) ou de R3
(pour une image couleur) cor-

respondant à l’ensemble des valeurs des pixels de l’image. Un patch correspond alors à la restriction

de x à un sous-domaine de E noté w. Plus précisement, pour un sous-domaine w ⊂ E on considère

l’opérateur Pw tel que pour toute image x : E→ V on a Pw(x) : w→ V et pour toute position p ∈ w,

Pw(x)(p) = x(p). Cet opérateur extrait de l’image x le patch correspondant au domaine w.

Soit un domaine w1 ⊂ E et sa version translatée de vecteur t ∈ Z2
, {p+ t : p ∈ w1}. On dit que

les patchs associés sont similaires si s(Pw1(x), Pw1(τ−t(x))) a une faible valeur, où s : Vw1 × Vw1 →
[0,+∞) est une fonction de similarité que l’on dé�nira plus tard et où pour tout p ∈ E, τt(x)(p) =
x(p − t) (on a supposé que E était stable par translation). On dé�nit alors la redondance spatiale de

la manière suivante : “Une image est redondante spatialement si un grand nombre de ses patchs sont

similaires.”

Un premier exemple de redondance peut s’observer dans la Figure 1.1-(a). La redondance spatiale

permet l’émergence de structures dans l’image (les di�érents étages dans la photographie du musée du

Guggenheim à New York). Cependant, ce n’est pas le seul principe organisateur pour comprendre une

image. Parmi ces principes on peut citer la couleur, la forme, le matériau, la continuité, etc. Certaines de

ces propriétés peuvent être identi�ées dans le tableau de Kandinsky “Black Lines” (1913) Figure 1.1-(b).

La redondance spatiale permet l’identi�cation de nouvelles propriétés de l’image en ne considérant

que les positions des patchs similaires, interprétées comme un processus de points. On réduit alors

l’analyse de l’image à l’analyse géométrique d’un processus de points. Les propriétés perceptuelles

associées à de tels ensembles ont été l’objet d’étude de la théorie de la gestalt (forme en allemand).

Cette théorie de la perception a pour origine les travaux sur les illusions d’optique de Wertheimer,

Ko�ka et Köhler [Wer23; Kof13; Köh92]. D’un point de vue visuel elle repose sur le principe de groupe-
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(a) (b)

Figure 1.1: Lois de groupements. Une photographie de l’intérieur du musée Guggenheim à New York

(a) présente de nombreuses redondances spatiales identi�ées par les patchs aux bords rouge, vert et cyan.

Au contraire, aucune redondance spatiale n’apparaît, au premier abord, dans le tableau de Kandinsky

"Black Lines" (1913) mais l’œuvre obéit à d’autres règles d’organisation (couleur, courbure, convexité).

ment : les composants d’une image peuvent certes être compris indépendamment les uns des autres

mais prennent un sens nouveau lorsqu’ils sont associés. Wertheimer [WW59] déclare ainsi :

“
The basic thesis of gestalt theory might be formulated thus: there are contexts in which

what is happening in the whole cannot be deduced from the characteristics of the separate

pieces, but conversely; what happens to a part of the whole is, in clearcut cases, determined

by the laws of the inner structure of its whole.

Max Wertheimer (1959) ”
En Section 3.2 on étudiera comment la redondance spatiale et les principes de la théorie de la gestalt

peuvent être utilisés dans le cadre du traitement d’images. On se concentrera sur deux applications : le

débruitage par patchs, voir Section 3.2.4 et l’analyse de périodicité, voir Section 3.2.5.

1.1.2 Méthodes a contrario pour l’image

De nombreux e�orts ont été menés pour aboutir à une présentation mathématique des principes de

groupement [Lin97], mais c’est véritablement avec les travaux de David Lowe [Low12] que la théorie

statistique de la gestalt a pris sa forme moderne. Ce cadre mathématique repose sur la méthode a

contrario. Un évènement (l’alignement de points, la redondance spatiale de patchs) est dit signi�catif

s’il a une très faible probabilité de se produire dans un modèle de fond (ou modèle a contrario ou modèle

de bruit). Cette règle a par la suite été nommée principe de Helmholtz dans les travaux de Desolneux,

Moisan et Morel [DMM08], en référence aux études de Helmholtz sur les illusions d’optique [Hel25].

Dans le cadre a contrario, le modèle de fond doit être choisi en fonction des propriétés de l’image que

l’on veut discriminer. A�n de rendre compte de ce modèle statistique, on considère un espace probabilisé

sous-jacent (Ω,F ,P).

Ce cadre est similaire à celui de la théorie statistique des tests dont on rappelle les principes pour

l’étude des méthodes a contrario. Le but de la théorie des tests est de déterminer des critères a�n de

di�érencier une hypothèse nulle d’une hypothèse alternative. Soit U une variable aléatoire à valeurs

dans (VE,B(VE)), où B(VE) est l’ensemble des boréliens de VE
, et VE

est muni de la topologie produit.
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On dit que U est un champ aléatoire, voir [Adl81]. On note PU la distribution de U , i.e. la mesure

image de P par U . Soit ρ0 ∈P(VE), où P(VE) est l’ensemble des mesures de probabilités sur B(VE).

L’hypothèse nulle est alors PU = ρ0 et l’hypothèse alternative est PU 6= ρ0. Dans le cadre a contrario,

ρ0 est le modèle de fond (ou modèle de bruit, ou encore modèle a contrario). En Section 1.1.3 on propose

un choix de modèle de fond pour l’analyse de la redondance spatiale. On dé�nit la statistique de test

suivante,

NFA =

N∑
i=1

1fi(U)∈A ,

où N ∈ N?, (fi)i∈{1,...,N} est une famille de fonctions mesurables telle que pour tout i ∈ {1, . . . , N},
fi : (VE,B(VE)) → (VE,B(VE)). La statistique de test NFA est le nombre de fausses alarmes. Dans

le cadre du traitement d’images, l’évènement A représente le plus souvent une propriété d’intérêt de

l’image, par exemple A = {x ∈ VE : ‖Pw(x)− Pw(x0)‖ ≤ ε} où x0 ∈ VE
et ε > 0. En choisissant un

tel ensemble A et (fi)i∈{1,...,N} = (τt)t∈E (on a supposé que E était stable par translation), le nombre de

fausses alarmes est élevé dans un modèle de fond U si un grand nombre de patchs de U sont similaires

à ceux de x0.

On rejette l’hypothèse nulle si le nombre de fausses alarmes est plus grand qu’un nombre maximal

de fausses alarmes, NFAmax. Le risque de première espèce α est alors α = P(NFA ≥ NFAmax). En

utilisant l’inégalité de Markov on a

α = P (NFA ≥ NFAmax) ≤ NFA−1
max

N∑
i=1

P (fi(U) ∈ A) .

Dans le cadre a contrario on dit que l’évènement A est ε-signi�catif si

∑N
i=1 P (fi(U) ∈ A) ≤ ε. On

peut alors donner une interprétation a contrario de la statistique de test NFA de la manière suivante :

pour tout i ∈ {1, . . . , N} on considère di tel que pour tout x ∈ VE
, di = 1A(fi(x)). On dit que l’indice

i ∈ {1, . . . , N} est détecté dans l’image x si di(x) = 1. On a alors NFA =
∑N
i=1 di(U). Si A est un

évènement ε-signi�catif on obtient

E [NFA] = E

[
N∑
i=1

di(U)

]
≤ ε .

Autrement dit, ε donne une borne sur le nombre moyen de détections dans le modèle de fond. Dans le

cadre de la détection de redondance la famille (fi)i∈{1,...,N} sera donnée par (τt)t∈E (en supposant que

E est stable par translation), voir Section 3.2. On a donc N = |E| (où |E| est le cardinal de E). Étant

donné un patch u0 : w→ V on dé�nit alors

A =
{
x ∈ VE : s(Pw(x), u0) ≤ v

}
,

où v ∈ R est une valeur à �xer et s une fonction de similarité (par exemple la norme ‖ · ‖2). Dans ce

cadre, un décalage t ∈ E est détecté dans une image x si et seulement si s(Pw(τt(x)), u0) ≤ v. Si le

modèle de fond ρ0 est stationaire, i.e. si la loi de U est invariante par translation, alors on a pour tout

t ∈ E, Pτt(U) = PU = ρ0. A�n de �xer v, on considère une borne sur le nombre moyen de détections ε
dans le modèle de fond. Il convient donc de choisir v ∈ R tel que

ρ0(A) = P (s(Pw(U), u0) ≤ v) = ε/|E| ,

où on rappelle que s est une fonction de similarité. En notant CDF la fonction de répartition de

s(Pw(U), u0) et ICDF sa fonction de répartition inverse, on peut alors déterminer si un décalage t ∈ E
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(a) (b)

Figure 1.2: Un algorithme de détection de segments. En (a) on présente l’image originale et en (b)

une image binaire. Les segments noirs correspondent aux segments détectés par l’algorithme LSD, voir

http://demo.ipol.im/demo/gjmr_line_segment_detector pour une démonstration en ligne.

est détecté de la manière suivante : t ∈ E est détecté si et seulement si s(Pw(τt(x)), u0) ≤ ICDF(ε/|E|)
ou CDF(s(Pw(τt(x)), u0)) ≤ ε/|E|. En appliquant cette procédure pour chaque décalage possible,

on obtient une image binaire qui correspond aux décalages détectés dans l’image x, i.e. (dt(x))t∈E ∈
{0, 1}E. Cette image binaire correspond à un processus de points qui peut être analysé selon les principes

de la théorie de la gestalt.

On a ici présenté le cadre a contrario et donné un exemple pour l’étude de la redondance spatiale dans

les images naturelles. Néanmoins il existe de nombreuses autres applications de l’approche a contrario

pour l’étude des lois de groupements de la gestalt [DMM00; DMM01; ADV03; Cao04; VG+08; Dav+18].

Par exemple, l’algorithme Line Segment Detection (LSD) [VG+08] a pour but de détecter les alignements

dans les images naturelles. Dans ce cadre on dé�nit A = {x ∈ VE, k points sont alignés dans r0(x)}
où r0(x) est une sous-image de x de forme rectangulaire et k ∈ N?. La notion d’alignement est dé�nie

sur les angles des gradients de l’image, voir [VG+08]. Soit (fi)i∈{1,...,N} l’ensemble des translations-

dilatations-rotations deE, voir [VG+08] pour une dé�nition et un dénombrement de ces transformations.

Les auteurs de [VG+08] proposent un modèle de fond ρ0 tel que ρ0(A) peut être calculé explicitement.

Étant donné un niveau de signi�cativité ε, l’ensemble des détections correspond à l’ensemble des rectan-

gles détectés pour ce niveau. On peut alors superposer ces rectangles pour produire une image binaire.

C’est le résultat de l’algorithme LSD illustré en Figure 1.2.

Dans cette thèse on présente un algorithme de détection pour l’analyse de similarité (à la fois entre

deux images et au sein d’une même image) basé sur les principes décrits précédemment. Étant donné

une image x on peut alors obtenir une image des décalages détectés. On utilise cette information pour

améliorer un algorithme de débruitage par patch, voir Section 3.2.4, et pour conduire une analyse de

périodicité, voir Section 3.2.5. A�n de conclure notre présentation du cadre statistique utilisé il convient

de décrire la classe de champs aléatoires utilisée pour dé�nir le modèle de fond ρ0 : les champs aléatoires

gaussiens.

1.1.3 Texture et champs aléatoires

On rappelle qu’un champ aléatoire U est une variable aléatoire à valeurs dans (VE,B(VE)) [Adl81].

Ainsi, pour tout élément ω ∈ Ω, on a U(ω) ∈ VE
. Par abus de notation, on omet la dépendance du

champs en ω lorsqu’il n’existe pas d’ambiguïté. Un champ aléatoire U est dit gaussien si pour tout
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(a) (b) (c)

Figure 1.3: Quelques exemples de textures réelles. La texture (a) ne présente pas de structure par-

ticulière tandis que la texture (c) est extrêmement régulière. La texture (b) présente une régularité

intermédiaire puisque les épines de pins sont disposées en cercle autour de chaque branche.

ensemble de points (p1, . . . , pn) ∈ En, (U(p1), . . . , U(pn)) est un vecteur gaussien. Dans cette thèse, le

modèle de fond utilisé dans l’analyse statistique de la redondance spatiale introduite en Section 1.2.2 sera

un modèle de champ aléatoire gaussien. On rappelle que ce modèle de fond correspond à l’hypothèse

nulle dans le cadre de la détection de redondance spatiale. De manière informelle, le modèle de fond est

un modèle d’images dont chaque réalisation n’exhibe pas (ou peu) de redondance spatiale.

On peut trouver des exemples de champs aléatoires pour la modélisation d’images, et plus spéci-

�quement pour la synthèse de texture, dans les travaux pionniers de Cross et Jain, [CJ83]. On rappelle

brièvement l’objet de la synthèse de texture par l’exemple : étant donné une texture de départ x0 (la

texture exemple), est-il possible de trouver un champ aléatoire U tel que les réalisations de U ressem-

blent à x0 sans que ces réalisations soient des copies de x0 ? On répertorie quelques exemples de texture

en Figure 1.3. Un facteur déterminant pour la classi�cation de textures est leur régularité. Une texture

très structurée, telle que celle présentée en Figure 1.3-(c) sera appelée macrotexture. Au contraire, une

texture n’exhibant aucune propriété de structure particulière, telle que celle présentée en Figure 1.3-(a),

sera appelée microtexture.

Van Wijk [Wij91] introduit l’utilisation de spots pour la génération de texture. Le procédé de syn-

thèse est le suivant : on sélectionne un motif (le spot) et on génère un processus de points (processus

de Poisson ou processus de Bernoulli) sur la grille sous-jacente à l’image, l’ensemble E. Il s’agit ensuite

de centrer chacun des spots sur les points du domaine. Ce point de vue est plus tard étendu [GGM11]

dans le cas où E est une grille périodique, i.e., E = Z/(MZ) × Z/(NZ) avec M,N ∈ N. Les au-

teurs considèrent la limite lorsque le nombre de points tend vers l’in�ni. En notant x0 le spot et après

renormalisation et recentrage, on identi�e un champ limite gaussien U tel que pour toutes positions du

domaine p1, p2 ∈ E,

E [U(p1)] = |E|−1
∑
p∈E

x0(p) , Cov [U(p1), U(p2)] = |E|−1
∑
p∈E

x0(p1 − p2 + p)x0(p) . (1.1)

Notons que le champ U est un champ stationnaire, ce qui permet d’assurer une certaine homogénéité

en espace (mais qui ne su�t pas à caractériser l’ensemble des textures). Ce champ aléatoire est un

candidat de choix pour un modèle stochastique de texture via l’exemple x0. De nombreuses expériences

[GL17; GLM14; GLR18] montrent que ce champ aléatoire gaussien permet e�ectivement de reproduire

�dèlement les microtextures dans la plupart des cas, voir Figure 1.4. Par contre, cette méthode échoue

7



(a) (b)

Figure 1.4: Champs gaussien et microtexture. Les images (exemples) de microtexture sont exposées

en (a). En (b) on présente des réalisations du champ gaussien donné par (1.1). Image extraite de [GGM11].

à reproduire des textures possédant des structures complexes, ce qui est le cas des macrotextures, voir

Figure 1.5.

On tire de ces deux �gures la conclusion suivante : “le modèle gaussien associé à x0 ne conserve

que l’information de microtexture de x0”. Ce désavantage pour la synthèse de texture structurée peut

être utilisé en notre faveur dans le cadre de la détection a contrario. En e�et, on peut exploiter cette

information en choisissant ce champ aléatoire comme modèle de fond, i.e. comme hypothèse nulle dans

le cadre d’un test pour identi�er la redondance spatiale dans une image. Dans le Chapitre 3, en combi-

nant les méthodes a contrario et les modèles de fond donnés par des champs gaussiens on introduit un

algorithme de détection de la redondance spatiale et on propose de nouveaux algorithmes de débruitage

et détection de périodicité dont on peut démontrer certaines propriétés théoriques.

Jusqu’à maintenant on s’est intéressé à l’estimation de la redondance spatiale dans les images na-

turelles. Cette redondance peut être identi�ée en réfutant l’hypothèse de la simple coïncidence dans

un modèle a contrario. Cette réfutation a l’avantage de ne nécessiter que des modèles d’image non-

structurés (par exemple des champs gaussiens). Malheureusement, la simplicité de ce processus de

réfutation cache une limitation du modèle : il ne fournit aucune procédure pour enrichir le modèle naïf

avec les structures détectées, i.e. il ne permet pas l’échantillonnage de champs aléatoires plus complexes.

1.2 Synthèse de champs aléatoires et principe demaximumd’entropie

On a vu dans la section précédente que les microtextures, i.e. les champs aléatoires sans dépendance

à longue portée, peuvent être échantillonnées de manière satisfaisante en utilisant des champs aléa-

toires gaussiens. Néanmoins de nombreux champs aléatoires étudiés en mécanique des �uides, astro-
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(a) (b)

Figure 1.5: Champ gaussien et macrotexture. L’image de macrotexture exemple est exposée en (a).

En (b) on présente une réalisation du champ gaussien donné par (1.1). Image extraite de [GGM11].

(a) (b) (c)

Figure 1.6: Champs aléatoires. En (a) et (b) on présente quelques images de champs turbulents issus

de modèles de mécanique des �uides. Images extraites de [Hel+95]. En (c) on présente une réalisation

d’un processus déterminantal qui est un processus de points avec des contraintes de répulsion. Image

extraite de [KT11].

physique ou encore en traitement d’images ne sont pas des microtextures et présentent des interactions

aux longues échelles. On donne quelques exemples issus de la physique en Figure 1.6.

Dans cette thèse on s’intéresse au problème de synthèse de champs aléatoires du point de vue du

traitement d’images, via la synthèse de textures par l’exemple. Ce problème constitue une première

étape vers l’échantillonnage de champs aléatoires structurés.

1.2.1 Synthèse de texture paramétrique

On rappelle que le problème de synthèse de texture par l’exemple correspond à la problématique suiv-

ante. Étant donné une texture initiale x0, comment synthétiser des nouvelles images telles que :

• leur contenu structurel soit similaire à celui de x0,

• les images ne soient pas de simples reproductions de x0 mais contiennent une part d’innovation.

On recense deux approches principales [Raa+17] pour traiter ce problème: l’approche paramétrique
et l’approche non-paramétrique (ou approche par patchs). Dans cette thèse, on se concentre sur les
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méthodes paramétriques. On reporte à la Section 5.2.1 une revue de littérature sur le sujet. Dans la suite

on note X = VE
et on suppose que X ∈ B(Rd) pour un certain d ∈ N.

Un des premiers algorithmes paramétriques pour la synthèse de texture par l’exemple a été proposé

par Portilla et Simoncelli [PS00]. On commence par identi�er un certain nombre de statistiques (locales

ou non locales) qui vont constituer un dictionnaire de contraintes pour décrire la texture cible. Étant

donné p ∈ N et une famille de fonctions mesurables (fi)i∈{1,...,p} telle que pour tout i ∈ {1, . . . , p},
fi : (X,B(X)) → (R,B(R)) et x0 ∈ X, où x0 est la texture cible et (fi)i∈{1,...,p} sont des fonctions

de contrainte, on dé�nit Y = {x ∈ X, fi(x) = fi(x0)}. Cet ensemble est appelé ensemble de Julesz
dans [PS00]. Supposons qu’il existe une fonction mesurable Π : (X,B(X)) → (Y,B(Y)), alors tout

champ aléatoire U à valeurs dans X donne un champ aléatoire à valeurs dans Y par composition avec Π.

Malheureusement, il est très rare de disposer d’une fonction Π de manière explicite.

Si pour tout i ∈ {1, . . . , p} on a accès à Πi : (X,B(X)) → (X,B(X)) telle que pour tout x ∈ X,

fi(Πi(x)) = fi(x0), on peut alors dé�nir la suite suivante

Xn+1 = Πn−bn/pcp+1(Xn) , (1.2)

où X0 est une variable aléatoire à valeur dans X. Cette approche a été utilisée par Heeger et Bergen

[HB95] dans le cas où pour tout i ∈ {1, . . . , p}, Πi correspond à une égalisation d’histogrammes. Il

n’existe pas de résultat général de convergence d’un tel algorithme sauf dans le cas où (Πi)i∈{1,...,p} est

une collection d’opérateurs strictement quasi non-expansifs [BC11, Corollaire 4.50, Théorème 5.23]. En

particulier, on peut obtenir des résultats de convergence si (Πi)i∈{1,...,p} est une collection d’opérateurs

de projection sur des ensembles convexes et fermés. Portilla et Simoncelli remplacent (1.2) par une

projection dans la direction du gradient au point courant, qui ne requiert que l’information de gradient

des fonctions de contraintes (fi)i∈{1,...,p}, voir [PS00, Section 1.5].

Si Heeger et Bergen utilisent des données d’histogrammes pour construire leur ensemble de con-

traintes, Portilla et Simoncelli identi�ent 710 contraintes pour dé�nir leur modèle d’image. Parmi

celles-ci, on trouve : les statistiques marginales des coe�cients d’une décomposition en ondelettes, les

corrélations entre certains coe�cients de la décomposition en ondelettes et des statistiques de phase.

Gatys [GEB15] a étendu l’algorithme [PS00] en considérant des statistiques de matrices de Gram pour

di�érentes couches d’un réseau de neurones pré-entrainé. Ce dernier algorithme qui donne des ré-

sultats proches de l’état de l’art, consiste en une descente de gradient pour une fonction de perte

` : X→ [0,+∞) donnée pour tout x ∈ X par

`(x) =

L∑
i=1

λi‖Gi(x)−Gi(x0)‖2Fr ,

où (λi)i∈{1,...,L} ∈ [0,+∞)
L

est une suite de poids,Gi(x) est la matrice de Gram de la sortie du réseau

de neurones VGG-19 [SZ14] appliqué à x à la couche i et ‖ ·‖Fr est la norme de Frobenius. En Figure 1.7,

on illustre les trois algorithmes décrits pour la synthèse d’une macrotexture.

1.2.2 Le principe de maximum d’entropie

Puisque les méthodes de synthèse considérées dans cette thèse relèvent du domaine paramétrique, le

problème de synthèse de texture par l’exemple peut être reformulé comme un problème inverse. Dans

cette section, on suppose que X est un espace topologique muni de la tribu associée B(X). Étant donné

p ∈ N et une famille de fonctions mesurables (fi)i∈{1,...,p} telle que pour tout i ∈ {1, . . . , p} fi :
(X,B(X))→ (R,B(R)) et x0 ∈ X, on cherche π, probabilité surB(X), telle que pour tout i ∈ {1, . . . , p},∫

X

1fi(x)6=fi(x0)dπ(x) = 0 , (1.3)
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(a) (b) (c) (d)

Figure 1.7: Quelques algorithmes de synthèse de texture. En (a) on présente l’image de texture

exemple. En (b) on donne le résultat obtenu avec la synthèse pyramidale proposée dans [HB95] En (c)

on donne la synthèse obtenue avec [PS00] où les contraintes spatiales sont données par des ondelettes.

En�n en (d), on applique la méthode décrite dans [GEB15] pour générer la texture. Cette méthode, où

les contraintes sont données par des sorties de réseaux de neurones, permet de synthésiser les structures

complexes de l’image.

c’est-à-dire que fi = fi(x0), π presque-sûrement. On va ici considérer une version relâchée de (1.3), où

les contraintes sont imposées en espérance plutôt que presque-sûrement,∫
X

|fi(x)|dπ(x) < +∞ ,

∫
X

fi(x)dπ(x) = fi(x0) . (1.4)

Dans la suite, on note F : X → Rp, telle que pour tout x ∈ X, F (x) = (f1(x) − f1(x0), . . . , fp(x) −
fp(x0)) et on suppose que la famille {fi : i ∈ {1, . . . , p}} ∪ 1 est libre.

Évidemment, le problème inverse tel qu’énoncé est fortement mal posé et possède une solution

triviale, π = δx0
. Une manière de s’a�ranchir de ce problème est de chercher la distribution la plus

uniforme possible étant donné ces contraintes. Dans le cadre des probabilités discrètes, Jaynes [Jay57]

donne une solution utilisant l’entropie de Shannon [Sha48]. Supposons que X = {1, . . . ,M} avec

M ∈ N. Soit π une mesure de probabilité sur X. On dé�nit l’entropie au sens de Shannon de la manière

suivante

H(π) = −
∑
x∈X

π(x) log(π(x)) ,

où 0 log(0) = 0. On cherche alors à maximiser H sous les contraintes (1.4). Le modèle que l’on obtient

est appelé modèle macrocanonique. Si on considère les contraintes (1.3) le modèle obtenu est le modèle

microcanonique, étudié dans [BM18]. Les liens entre ces deux modèles (lorsque la dimension de l’espace

d’image tend vers l’in�ni) sont discutés dans [BM18]. Dans cette thèse on s’intéresse au modèle macro-

canonique mais on s’attachera à illustrer les liens que ce modèle entretient avec le microcanonique dans

le Chapitre 5.

MaximiserH sous les contraintes (1.4) revient à la minimisation d’une fonction convexe de Rp sous

contraintes linéaires et Jaynes obtient la solution π? suivante : pour tout x ∈ X on a,

π?(x) = exp[−〈θ?, F (x)〉]

/∑
y∈X

exp[−〈θ?, F (y)〉] ,

où θ? ∈ Rp correspond aux multiplicateurs de Lagrange du problème contraint (1.4) et satisfait

θ? ∈ arg min
θ∈Rp

L(θ) , L(θ) = log

(∑
x∈X

exp[−〈θ, F (x)〉]

)
,
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et L est appelé la fonction de log-partition. Jaynes [Jay79] identi�e ce principe comme une général-

isation du “principe d’indi�érence” : en l’absence de contraintes, π? doit être choisie uniforme. On

se reportera à [Jay79] pour une discussion sur les origines du principe du maximum d’entropie. En

traitement d’image, le principe de maximum d’entropie a d’abord été utilisé pour des problématiques de

restauration [Wer+77; GD78; SB84; Bes86] avant d’être employé pour la synthèse d’image [ZWM98].

L’extension du principe de maximum d’entropie au cas où X n’est plus �ni est délicate. On suppose

désormais que X = Rd avec d ∈ N. Commençons par remarquer qu’il n’existe pas d’équivalent au

principe d’indi�érence dans ce cadre, i.e., il n’existe pas de distribution de probabilité uniforme sur Rd.

De plus, en considérant pour toute mesure de probabilité π telle la quantité suivante lorsqu’elle est bien

dé�nie

H(π) = −
∫
X

(dπ/dλ)(x) log [(dπ/dλ)(x)] dx ,

on a H(π) ∈ [−∞,+∞] et non plus [0,+∞] comme dans le cas discret. On distingue alors deux ap-

proches. D’un côté [BLN96; TV93; L0́8] établissent des équivalents du principe de maximum d’entropie

pour une modi�cation de l’entropie de Shannon en utilisant des techniques issues de l’analyse fonction-

nelle (espaces de Birnbaum-Orlicz) et d’optimisation convexe dans des espaces de Banach. De l’autre,

Csiszár et ses co-auteurs [Csi75; Csi84; Csi96; CGG99] munissent l’espace X d’une mesure de probabilité
de référence, notée µ par la suite, et remplace l’entropie de Shannon de la probabilité π par l’opposé de

la divergence de Kullback-Leibler [Kul97] entre π et µ. Cette divergence est dé�nie entre deux mesures

de probabilités ν1, ν2 par

KL (ν1|ν2) =


∫
X

log[(dν1/dν2)(x)]dν1(x) si ν1 � ν2 ,

+∞ sinon .

Notons que KL (ν1|ν2) ≥ 0 avec égalité si et seulement si ν1 = ν2. Dans [Csi75], Csiszár parvient à

généraliser le résultat de Jaynes en remplaçant l’entropie de Shannon par l’opposé de la divergence de

Kullback-Leibler vis-à-vis de µ. Plus précisement on considère le problème suivant

π? ∈ arg min
π∈PF

KL (π|µ) . (1.5)

où PF est l’ensemble des mesures de probabilités tel que pour tout π ∈ PF ,

∫
X
F (x)dπ(x) = 0. S’il

existe une solution π? à (1.5) qui admet une densité par rapport à µ alors, en utilisant [Csi75, Théorème

3.1], on a pour tout x ∈ X,

(dπ?/dµ)(x) = exp[−〈θ?, F (x)〉]
/∫

X

exp[−〈θ?, F (y)〉]dµ(y) , (1.6)

pour un certain θ? ∈ Rp. Dans le même article, des conditions pour assurer l’existence d’un tel minimum

sont établies. En e�et, si pour tout (ε1, . . . , εp) ∈ B(0, r) avec r > 0, il existe π tel que KL (π|µ) < +∞
et π satisfait (1.6) en remplaçant pour tout i ∈ {1, . . . , p}, fi(x0) par fi(x0) + εi et si pour tout θ ∈
Rp,

∫
X

exp[−〈θ, F (x)〉]dµ(x) < +∞ alors [Csi75, Théorème 3.3] assure l’existence d’une distribution

exponentielle solution du problème de maximum d’entropie. Dans le cadre de la synthèse de textures

considéré dans cette thèse, ce théorème est di�cilement applicable et d’autres conditions su�santes

pour l’existence du modèle doivent être explorées.

Dans le Chapitre 5 on s’intéresse à ces modèles de maximum d’entropie dans le cadre de la synthèse

de texture. On établit notamment des conditions faciles à véri�er sur le modèle F et sur la mesure de

probabilité de référence µ a�n que la solution du problème de minimisation existe. En particulier, dans

le cas où F est donné par un réseau de neurones convolutionnel, on donne un certi�cat permettant de

s’assurer de l’existence du modèle de maximum d’entropie.
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1.2.3 Optimisation stochastique

A�n de mettre en place des algorithmes de synthèse de texture basés sur l’approche macrocanonique,

nous devons répondre à deux problèmes : (a) Comment approcher θ? dans (1.6) ? (b) Étant donné θ?,

comment échantillonner selon la densité π? donnée en (1.6) ? On présente les outils utilisés dans cette

thèse pour traiter le problème de l’échantillonnage dans la Section 1.3. On s’intéresse ici au problème (a)

en supposant qu’il est possible d’obtenir des échantillons de πθ pour tout θ ∈ Rp, où pour tout x ∈ X,

(dπθ/dµ)(x) = exp[−〈θ, F (x)〉]
/∫

X

exp[−〈θ, F (y)〉]dµ(y) .

Sous conditions sur µ et F , on montre dans le Chapitre 5 que θ? in (1.6) est le minimiseur de la fonction

de log-partition L : Rp → R donnée pour tout θ ∈ Rp par

L(θ) = log

(∫
X

exp[−〈θ, F (x)〉]dµ(x)

)
.

On va considérer une méthode de minimisation du premier ordre, c’est-à-dire que l’on va considérer

une suite (θn)n∈N telle que pour tout n ∈ N, θn+1 est une fonction de θn et ∇L(θn). Cependant, le

gradient de L ne peut pas être calculé explicitement en pratique car il s’exprime sous la forme d’une

intégrale vis-à-vis de πθ : pour tout θ ∈ Rp on a

∇L(θ) = −
∫
X

F (x)dπθ(x) = −Eπθ [F ] .

Par contre, cette quantité peut être approchée. On considère un estimateur sans biais de ∇L(θ) =
−Eπθ [F ] de la manière suivante. Étant donné (Xk)k∈{1,...,M}, M ∈ N échantillons indépendants de

loi πθ , −(1/M)
∑M
k=1 F (Xk) est un estimateur de∇L(θ). On considère alors l’algorithme de gradient

stochastique dé�ni par la récurrence suivante : θ0 ∈ Rp et pour tout n ∈ N

θn+1 = θn + (δn+1/Mn+1)

Mn+1∑
k=1

F (Xn
k ) , (1.7)

où (δn)n∈N est une suite de pas, (Mn)n∈N une suite à valeurs dansN et pour toutn ∈ N, (Xn
k )k∈{1,...,Mn}

une suite d’échantillons indépendants de πθn .

Dans l’algorithme (1.7), on suppose que l’on a accès à des échantillons indépendants de πθ pour

tout θ ∈ Θ. Il est possible de considérer des généralisations de (1.7) où la suite d’estimateurs n’est

plus donnée par (−(1/Mn+1)
∑Mn+1

k=1 F (Xn
k ))n∈N mais par (∇L(θn)+eθn(Yn+1))n∈N où (Yn)n∈N est

un processus stochastique sur (Ω,F ,P) à valeurs dans (Y,Y), où e : Rp × Y → Rp. On peut alors

considérer l’algorithme de gradient stochastique général associé à la récurrence suivante : θ0 ∈ Rp et

pour tout n ∈ N
θn+1 = θn − δn+1 {∇L(θn) + eθn(Yn+1)} , (1.8)

Par exemple, dans (1.7) on peut dé�nir pour tout n ∈ N,

eθn((Xn
k )k∈{1,...,Mn+1}) = −(1/Mn+1)

Mn+1∑
k=1

F (Xn
k )−∇L(θn) . (1.9)

L’étude des méthodes d’approximation stochastique remonte aux travaux pionniers de Robbins et Monro

[RM51] et de Kiefer et Wolfowitz [KW52]. Ces schémas sont abondamment utilisés dans le domaine de
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l’apprentissage automatique et en particulier pour l’entraînement des réseaux de neurones profonds

[BLC05]. Il existe de nombreux résultats de convergence pour ces méthodes, voir [MP84; BMP90;

DJ93; Ben96; Del96; KY03]. En utilisant un résultat très général de convergence presque-sûre basé

sur l’existence de fonctions de Lyapunov [DLM99, Theorem 2] et le théorème de Sard [Sar42] on obtient

que, presque-sûrement, θ? = limn→+∞ θn existe et θ? ∈ {θ : ∇L(θ) = 0}. Dans notre cas, puisque L
est convexe, on peut donner des résultats de convergence quantitatifs non-asymptotiques, voir [SZ13;

BM11; AFM17] par exemple. En particulier sous certaines conditions, [AFM17] montre que pour tout

n ∈ N

E[L(θ̂n)]− min
θ∈Rp

L(θ) ≤ E [(1/2) ‖θ0 − θ?‖2

−
n−1∑
k=0

δk+1〈θk − δk+1∇L(θk)− θ?, eθk(Yk+1)〉+

n∑
k=1

δ2
k ‖eθk(Yk+1)‖2

]/
n∑
k=1

δk ,

où θ̂n =
∑n
k=1 δkθk/

∑n
k=1 δk . Dans notre cas, il est en général impossible de pouvoir échantillonner

de manière i.i.d. selon πθ . Néanmoins, il existe de nombreux algorithmes permettant de construire des

chaînes de Markov ciblant πθ . Plus précisément, nous considérons des schémas d’approximation de

la forme (1.8) et (1.9), où pour tout n ∈ N, {Xn
k , k ∈ {1, . . . ,Mn+1}} est une chaîne de Markov qui

converge vers une version, potentiellement biaisée, de πθn . En utilisant les propriétés d’ergodicité de la

chaîne de Markov sous-jacente, on peut obtenir des résultats de convergence quantitatifs concernant la

convergence de l’algorithme de gradient stochastique, voir [AFM17; DB+19].

1.3 Échantillonnage parMCMC, dynamique de Langevin et con-
vergence de chaîne de Markov

On suppose désormais que X = Rd et qu’on dispose d’une distribution de probabilités π sur l’espace des

images (X,B(X)) (obtenue par exemple, via le principe de maximum d’entropie) et que celle-ci admet

une densité par rapport à la mesure de Lebesgue donnée pour tout x ∈ Rd par

(dπ/dλ)(x) = exp[−U(x)]

/∫
Rd

exp[−U(y)]dy , (1.10)

où U : Rd → R est une fonction mesurable telle que

∫
Rd exp[−U(y)]dy < +∞. Par analogie avec la

physique statistique, on appelle U le potentiel. On cherche à obtenir des échantillons de π. Dans le cadre

de la synthèse de texture, ces nouveaux échantillons constitueront de nouvelles images présentant les

caractéristiques perceptuelles imposées par π.

1.3.1 Échantillonnage

On commence par décrire quelques méthodes classiques pour l’échantillonnage d’une loi de probabilité

ainsi que leurs limitations. Si d = 1 alors il est possible d’utiliser la méthode d’inversion à partir de

la connaissance de la fonction de répartition. Malheureusement cette méthode est spéci�que au cas

d = 1 et nécessite de connaître la fonction de répartition qui est souvent inconnue. La méthode de rejet

permet d’échantillonner des variables aléatoires en dimension d ∈ N avec d > 1 sans la connaissance

de la fonction de répartition ni de la constante de normalisation. Par contre, cette méthode s’avère

souvent ine�cace puisque, à moins que la densité de proposition soit bien choisie, un grand nombre

d’échantillons est rejeté.
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Les méthodes envisagées jusqu’ici produisent des échantillons selon la loi πmais ne sont absolument

pas adaptées à l’échantillonnage en grande dimension. Plutôt que d’imposer que tous les échantillons

suivent la même loi que π, on va construire une suite d’échantillons (Xn)n∈N dont la loi tend vers π dans

un sens que l’on précisera rigoureusement plus tard. Le premier algorithme introduit pour répondre à

ce problème est celui de Metropolis-Hastings [Met+53; Has70; Pes73] dont on rappelle ici les principales

étapes. Soit R le noyau markovien donné pour tout x ∈ Rd et A ∈ B(Rd) par

R(x,A) = δx(A)

∫
Rd

(1− α(x, y))q(x, y)dy +

∫
A

α(x, y)q(x, y)dy ,

où q est une densité de transition appelée densité de proposition, α : Rd × Rd → [0, 1] est le taux
d’acceptation et δx est la masse de Dirac en x. Soit X0 ∈ Rd, on dé�nit pour tout n ∈ N

Xn+1 = (1−Wn+1)Xn +Wn+1Yn+1 ,

avec Yn+1 distribuée selon q(Xn, ·) conditionnellement à Xn, et Wn+1 une variable de Bernoulli de

paramètre α(Xn, Yn+1) conditionnellement à (Xn, Yn+1). On obtient alors que pour tout n ∈ N, Xn a

pour distribution Rn(X0, ·). Si les deux mesures µ1, µ2 données pour tout A ∈ B(R2d) par

µ1(A) =

∫
R2d

1A(x, y)R(x, dy)dπ(x) , µ2(A) =

∫
R2d

1A(y, x)R(x, dy)dπ(x) , (1.11)

sont égales alors R est réversible par rapport à π, i.e. R est auto-adjoint dans L2(π), et, en particulier,

admet π pour loi invariante, πR = π. Dans le cas où π admet une densité par rapport à la mesure de

Lebesgue et si on pose pour tout x, y ∈ Rd

α(x, y) = min

(
1,

(dπ/dλ)(y)q(y, x)

(dπ/dλ)(x)q(x, y)

)
,

alors (1.11) est véri�ée. Notons que cette méthode ne nécessite pas la connaissance de la constante de

normalisation. Il reste à choisir la densité de proposition q. Si on fait le choix d’une densité symétrique

q(x, y) = (2πσ2)−1/2 exp[−‖x − y‖2/(2σ2)] avec σ > 0 par exemple, alors le taux d’acceptation se

simpli�e et on aα(x, y) = (dπ/dλ)(y)/(dπ/dλ)(x). D’autres choix sont possibles et on peut considérer

la densité suivante pour tout x, y ∈ Rd

q(x, y) = (4πγ)−1/2 exp
[
‖y − x− γ∇U(x)‖2 /(2γ)

]
, (1.12)

où γ > 0 et on rappelle que −U est la log-densité de π (1.10), supposée di�érentiable sur Rd. Cette loi

de proposition correspond à la mise à jour intermédiaire suivante pour tout n ∈ N

Yn+1 = Xn − γ∇U(Xn) +
√

2γZn+1 , (1.13)

où (Zn)n∈N est une suite de variables aléatoires gaussiennes indépendantes centrées de matrice de co-

variance identité. Le nouvel état de la chaîne est alors donné par Yn+1 avec probabilité α(Xn, Yn+1)
et par Xn avec probabilité 1 − α(Xn, Yn+1). La mise à jour (1.13) consiste en une étape de descente

de gradient avec un pas γ, i.e. T1(x) = x − γ∇U(x), et un ajout de bruit gaussien de variance 2γ, i.e.
T2,n(x) = x+

√
2γZn+1. On a alors Yn+1 = T2,n(T1(Xn)). Ainsi, (1.13) correspond à une étape de de-

scente de gradient perturbé où la perturbation est donnée par l’opérateur T2,n. On verra en Section 1.3.2

que (1.13) correspond à la discrétisation d’une dynamique continue de loi invariante π.

L’algorithme associé à la loi de proposition (1.12) a été introduit par Besag dans un commentaire

de [GM94] et est désormais connu sous le nom d’algorithme de Metropolis Langevin ajusté (MALA).
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Le taux d’acceptation dépend alors des positions x, y ∈ Rd mais aussi du paramètre γ > 0, le pas de

discrétisation.

Si le taux d’acceptation est trop bas (le pas est trop grand) alors la chaîne de Markov n’explore pas la

distribution puisque de nombreuses itérations n’entrainent aucun mouvement car elles sont rejetées. Si

le taux d’acceptation est trop élevé (le pas est trop petit) alors la chaîne de Markov explore ine�cacement

la distribution. Dans la suite on va considérer des chaînes de Markov non-ajustées, c’est-à-dire sans

étape d’acceptation-rejet. Ces chaînes de Markov non ajustées ne convergent pas vers π en général,

mais vers une autre mesure de probabilité dont la distance à π peut être contrôlée.

1.3.2 Dynamique de Langevin discrète et continue

On considère l’algorithme de Langevin non ajusté ULA [RT96], consistant à accepter la proposition

(1.13) quel que soit le taux d’acceptation. On obtient ainsi la chaîne de Markov suivante : X0 ∈ Rd et

pour tout n ∈ N
Xn+1 = Xn − γ∇U(Xn) +

√
2γZn+1 , (1.14)

où (Zn)n∈N est une suite de variables aléatoires gaussiennes d-dimensionelles, indépendantes et iden-

tiquement distribuées de moyenne 0 et de matrice de covariance identité. Pour tout γ > 0, on note Rγ

le noyau markovien dé�ni pour tout x ∈ Rd et A ∈ B(Rd) par

Rγ(x,A) = (4πγ)−1/2

∫
A

exp[−‖x− γ∇U(x)− y‖2/(2γ)]dy .

Ces dernières années, l’algorithme ULA a suscité un grand intérêt de la part des communautés de statis-

tiques computationnelles et d’apprentissage. En e�et, puisque la relation de récurrence (1.14) ne requiert

que la connaissance de∇U , ULA peut être implémenté de manière e�cace dans le cas où le potentiel est

donné par un réseau de neurones profond en utilisant l’auto-di�érenciation. Les liens que cet algorithme

entretient avec des techniques classiques d’optimisation comme la descente de gradient stochastique,

qui a prouvé sa grande e�cacité dans un contexte d’apprentissage [BLC05; Nem+09], en font un algo-

rithme de choix pour l’échantillonnage en grande dimension. En vue de ces applications, il est nécessaire

d’obtenir des résultats de convergence quantitatifs et non-asymptotiques a�n d’évaluer qualitativement

la performance de ULA, et de ses variantes, sur ces problèmes d’apprentissage en haute dimension.

Les premières analyses de convergence de cet algorithme vers une loi stationaire s’appuie sur une

comparaison avec la version continue de cet algorithme : la dynamique de Langevin. Celle-ci est associée

à l’équation di�érentielle stochastique (EDS) suivante

dXt = −∇U(Xt)dt+
√

2dBt , (1.15)

où (Bt)t≥0 est un mouvement Brownien d-dimensionel. Les origines de cette dynamique remontent à

Langevin [Lan08] et à ses travaux sur le mouvement des particules.

Si U ∈ C1(Rd,R) et ∇U est Lipschitz alors pour toute condition initiale X0 il existe une unique

solution forte globale (Xt)t≥0 [IW89, Chapitre 4, Théorème 2.3, Théorème 2.4]. On suppose désormais

qu’il existe une unique solution globale de (1.15). On introduit (Pt)t≥0 la famille de noyaux markoviens

dé�nie de la manière suivante : pour tout x ∈ Rd, A ∈ B(Rd) et t ≥ 0, Pt(x,A) = P (Xt ∈ A), où

X0 = x. Il est alors possible de montrer que π donnée par (1.10) est invariante par (Pt)t≥0, i.e. pour tout

t ≥ 0, πPt = π, voir [Dur16]. On s’intéresse désormais à la convergence de (Pt)t≥0 pour di�érentes

distances sur les espaces de mesures, parmi elles la variation totale et les distances de Wasserstein.

La variation totale d’une mesure signée �nie µ, notée ‖µ‖TV, est donnée par

‖µ‖TV = (1/2) sup
f∈L∞(Rd,R),‖f‖∞≤1

∣∣∣∣∫
Rd
f(x)dµ(x)

∣∣∣∣ .
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Soit deux mesures de probabilités µ et ν sur B(Rd). Une mesure de probabilité ζ sur B(R2d) est un

plan de transférence entre µ et ν si pour tout A ∈ B(Rd), ζ(A × Rd) = µ(A) et ζ(Rd × A) = ν(A).

On note alors T(µ, ν) l’ensemble des plans de transférence entre µ et ν. Pour toute fonction de coût,

c : Rd × Rd → [0,+∞) mesurable on dé�nit alors

Wc(µ, ν) = inf
ζ∈T(µ,ν)

∫
Rd×Rd

c(x, y)dζ(x, y) .

Si c(x, y) = ‖x− y‖p pour p ≥ 1 alors on note Wp = W
1/p
c . Wp est une métrique sur l’espace

des mesures de probabilité qui admettent un moment d’ordre p, voir [Vil09, De�nition 6.1], appelée la

distance de Wasserstein d’ordre p.

L’ergodicité de (Pt)t≥0 pour la variation totale est acquise sous une condition faible de “courbure à

l’in�ni”, voir [RT96] par exemple. Plus précisément si U ∈ C1(Rd,R) satisfait

inf
x∈Rd
〈∇U(x), x〉 > −∞ ,

alors pour tout x ∈ Rd, limt→+∞ ‖δxPt − π‖TV = 0. Depuis, il a été aussi montré que la conver-

gence de (Pt)t≥0 est géométrique sous certaines hypothèses sur U pour de nombreuses distances sur

les probabilités (Wasserstein d’ordre p, p ∈ N?, variation totale, V -norme). En Section 1.3.3, on rappelle

quelques-uns de ces résultats. Une fois la convergence (géométrique ou sous-géométrique) de (Pt)t≥0

établie il est naturel de s’intéresser au problème utile à l’expérimentateur : la convergence de la chaîne

discrète (1.14). On illustre la convergence de ULA de manière empirique pour un modèle de mélange

de gaussiennes en Figure 1.8. En e�et, si [TT90; Mil95] obtiennent des approximations fortes et faibles

d’ordre un entre les schémas (1.15) et (1.14), ces résultats ne permettent pas de déduire de la convergence

de (Pt)t≥0 celle de (Rn
γ )n∈N.

Puisque Rγ satisfait des conditions de régularité, l’existence de la probabilité invariante πγ est as-

surée sous des conditions de Foster-Lyapunov [Dou+18, Théorème 12.3.3]. Néanmoins, de nombreuses

applications (calcul de la variance d’un estimateur MCMC [Bro+18] ou inégalités de concentration

[Ebe16] par exemple) requièrent un contrôle quantitatif de la vitesse de convergence de la chaîne de

Markov vers sa mesure invariante. Ce n’est que récemment que la convergence (géométrique et quanti-

tative) de la chaîne associée à (1.14) a été établie [DT12; DM17; DM19; Dal17b; Dal17a] pour di�érentes

distances sur l’espace des probabilités (Wasserstein d’ordre p, p ∈ N?, variation totale, V -norme).

1.3.3 Convergence de discrétisations de di�usions

On considère alors le cadre suivant qui est une généralisation de (1.15) et constitue une famille partic-

ulière de modèles fonctionels auto-régressifs.

dXt = b(Xt)dt+ dBt , (1.16)

où b ∈ C(Rd,Rd) et X0 ∈ Rd. De la même manière que dans la section précédente, on considère la

discrétisation d’Euler-Maruyama de ce processus de di�usion. Soit γ > 0, pour tout n ∈ N on dé�nit

Xn+1 = Xn + γb(Xn) +
√
γZn+1 , (1.17)

où γ > 0 et X0 = X0 et (Zn)n∈N est une suite de variables aléatoires gaussiennes d-dimensionelles,

indépendantes et identiquement distribuées de moyenne 0 et de matrice de covariance identité. De

la même manière que précédemment on peut considérer les noyaux markoviens (Pt)t≥0 et (Rn
γ )n∈N

associés à (1.16) et (1.17). Dans le cas continu, on dit que (Pt)t≥0 est géométriquement ergodique pour
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Figure 1.8: L’algorithme de Langevin non ajusté. Dans cette �gure on présente 104
itérations de ULA

pour l’échantillonnage d’un mélange de gaussiennes en dimension 2. Les croix vertes correspondent à

l’ensemble des itérations de l’algorithme et la croix bleu correspond à la dernière itération. Après 104

itérations, on remarque que les marginales correspondant aux projections sur l’axe des abscisses et l’axe

des ordonnées sont bien identi�ées, même si la convergence n’est pas encore atteinte.

la distance d (distance sur les probabilités) s’il existe C ≥ 0 et ρ ∈ [0, 1) tels que pour tout x, y ∈ Rd et

t ≥ 0
d(δxPt, δyPt) ≤ Cρtd(δx, δy) .

Dans le cas discret, on dit que (Rn
γ )n∈N est géométriquement ergodique pour la distance d (distance sur

les probabilités) s’il existe C ≥ 0 et ρ ∈ [0, 1) tel que pour tout x, y ∈ Rd et n ∈ N

d(δxRn
γ , δyRn

γ ) ≤ Cργnd(δx, δy) ,

avec ρ indépendant de γ ∈ (0, γ̄] pour γ̄ > 0. Notons qu’ici, on ne s’intéresse qu’à la convergence

géométrique des chaînes de Markov mais il est également possible d’obtenir des taux de convergence

sous-géométriques en considérant des hypothèses plus faibles que celles considérées dans ce manuscrit

[But14; DFM16; FM03; VK04]. On reporte à la Section 4.1.1 un historique des résultats d’ergodicité

pour les chaînes de Markov. On présente maintenant quelques travaux récents qui conduisent à des

convergences géométriques avec des taux précis.

On considère la situation où le champ de vecteurs b est contractant à l’in�ni, i.e. il existe R ≥ 0
tel que pour tout x, y ∈ Rd, ‖x − y‖ ≥ R, 〈b(x) − b(y), x − y〉 ≤ −m+‖x − y‖2 où m+ > 0. On

suppose également que le champ est Lipschitz et satisfait une condition de Lipschitz unilatérale, i.e. il

existe m ∈ R tel que pour tout x, y ∈ Rd, 〈b(x)− b(y), x− y〉 ≤ −m‖x− y‖2. Dans ce cadre, Eberle et

Majka [EM19] montrent qu’on obtient une convergence géométrique pour la distance de Wasserstein

associée à la fonction de coût suivante ca dé�nie pour tout x, y ∈ Rd par

ca(x, y) = a1∆c(x, y) + fa(‖x− y‖) ,

où a ≥ 0 et fa est explicite et donnée dans [EM19, Équation (2.53)] et ∆ = {(x, x) : x ∈ Rd}. Plus

précisément, il existe γ̄ > 0 et C ≥ 0 tel que pour tout γ ∈ (0, γ̄], x, y ∈ Rd et n ∈ N on a

Wca(δxRn
γ , δyRn

γ ) ≤ Cργna Wca(δx, δy) ,
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avec

log(log−1(ρ−1
a )) ' −mR2/c1 , où c1 = 16−1

∫ 3/8

1/4

(1− eu−1/2)ϕϕϕ(u)du ≤ 0.00051 ,

et pour tout t ∈ R, ϕϕϕ(t) = (2π)−1/2 exp[−t2/2]. Ces résultats impliquent la convergence pour la

distance de Wasserstein W1 (aussi appelée distance de Kantorovitch-Rubinstein) et pour la variation

totale TV.

Majka, Mijatović, et Szpruch ont étendu l’approche précédente à la distance de Wasserstein W2,

voir [MMS18]. Plus précisément, sous les mêmes conditions que précédemment, les auteurs obtiennent

le résultat suivant : il existe γ̄ > 0 et C ≥ 0 tel que pour tout γ ∈ (0, γ̄], x, y ∈ Rd et n ∈ N

W2(δxRn
γ , δyRn

γ ) ≤ Cρnγ/2b (‖x− y‖+ ‖x− y‖1/2) ,

avec

log(log−1(ρ−1
b )) ' LR2/(6c2) ,

où c2 = 4 min

(∫ 1/2

0

u2(1− eu−1/2)ϕϕϕ(u)du, (1− e−1)

∫ 1/2

0

u3ϕϕϕ(u)du

)
≤ 0.0072 ,

Les résultats [EM19; MMS18] se basent sur la discrétisation des arguments utilisés par Eberle [Ebe16]

dans le but d’obtenir des résultats de convergence similaires pour les processus discrets. En e�et, si on

pose cc(x, y) = fc(‖x− y‖) pour tout x, y ∈ Rd, où fb est dé�ni par [Ebe16, Equation (2.6)], Eberle

[Ebe16] obtient que pour tout x, y ∈ Rd et t ≥ 0

Wcc(δxPt, δyPt) ≤ ρtccc(x, y) ,

avec

log(log−1(ρ−1
b )) ' −mR2/4 .

Ce résultat implique une convergence géométrique de (δxPt)t≥0 en distance de Wasserstein W1 avec

un taux ρb. Luo et Wang [LW16b] ont par la suite étendu ces convergences pour les processus continus

au cas de la distance de Wasserstein Wp avec p ≥ 1. On récapitule ces résultats dans le Tableau 1.1.

Celui-ci sera complété dans la Section 4.1 où l’on s’intéresse à ce problème et on obtient de nouveaux

taux de convergence (valables aussi bien pour le processus discret que pour le processus continu) en

utilisant des conditions de minoration et de dérive.

1.4 Organisation et contributions

Cette thèse est divisée en trois parties principales : une approche a contrario de la redondance spatiale,

une étude de l’échantillonnage et de l’inférence en haute dimension et une application à la synthèse

de texture. Cette division est également thématique : théorie des tests statistiques et des champs aléa-

toires, théorie des chaînes de Markov et de l’optimisation stochastique et théorie de l’information et

applications au traitement d’images.

Dans une première partie, on développe un algorithme basé sur des méthodes a contrario pour la

détection de redondance spatiale à partir d’une étude sur la loi de certaines fonctions de similarités dans

des champs gaussiens.
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Référence Distance de Wasserstein Distance de contrôle (D) (C) (TN)

[EM19] ‖ · ‖TV 1∆c(x, y) + ‖x− y‖ X 7840
W1 ‖x− y‖ X 4536

[MMS18] W2 ‖x− y‖+ ‖x− y‖1/2 X 332
[Ebe16] W1 ‖x− y‖ X 1

[LW16b] Wp ‖x− y‖+ ‖x− y‖1/p X 1− m+/m

Table 1.1: Chaque ligne du tableau se comprend comme suit : pour la “Distance de Wasserstein”

Wc1
et pour la “Distance de contrôle” c2 si (D) est coché alors il existe γ̄ > 0 et C ≥ 0 tel que

pour tout γ ∈ (0, γ̄], x, y ∈ Rd et n ∈ N, Wc1
(δxRn

γ , δyRn
γ ) ≤ Cρnγc2(x, y) avec ρ qui véri�e

−4 log(log−1(ρ))/(mR2) ' β où β est l’entrée de (TN), le taux normalisé. De même, si (C) est coché

alors il existe C ≥ 0 tel que pour tout x, y ∈ Rd et t ≥ 0, Wc1
(δxPnt , δyPnt ) ≤ Cρtc2(x, y). Les dis-

tances utilisées sont données par [EM19, Equation (2.53)], [MMS18, Equation (2.11)], [Ebe16, Equation

(2.6)] and [LW16b, Equation (2.4)].

Ensuite, on présente des résultats d’ergodicité sur la convergence de discrétisations de di�usions

ainsi qu’un algorithme d’optimisation stochastique : Stochastic Optimization with Unadjusted Langevin
(SOUL) basé sur la discrétisation d’Euler-Maruyama de la dynamique de Langevin.

Finalement, on présente une application de ces résultats dans le domaine de la synthèse de texture

par l’exemple. Après avoir obtenu de nouveaux résultats sur le modèle de maximum d’entropie on

applique l’algorithme SOUL pour le problème correspondant. Cette étude est appuyée par un grand

nombre d’expériences.

1.4.1 Chapitre 3, Section 3.1

Dans la Section 3.1, on introduit une notion de redondance spatiale via des fonctions similarités. Ces

fonctions sont dé�nies sur les patchs et permettent donc une évaluation locale de cette similarité. On

distingue alors deux cas : l’autosimilarité A (un patch d’une image est similaire à d’autres patchs de cette

même image) et la similarité par modèle (ou template) T (un patch d’une image modèle est similaire à

d’autres patchs d’une autre image).

Dé�nition 1.4.1. Soit x et y deux fonctions dé�nies sur E ⊂ R2 ou Z2. Soit w ⊂ E un domaine de patch.
Quand cette quantité est bien dé�nie on introduit l’autosimilarité avec domaine de patch w et décalage
t ∈ R2 ou Z2 tels que t+ w ⊂ E

A (x, t,w) = s (Pw(x), Pw(τ−t(x))) ,

où s est une fonction de similarité s : Vw × Vw → R (par exemple la norme ‖ · ‖p avec p ≥ 1). De la
même manière on introduit la similarité par modèle

T (x, y, t,w) = s (Pw(y), Pw(τ−t(x))) .

Ces deux notions se distinguent si on suppose que l’image modèle est �xée et que les autres im-

ages sont des réalisations de champs aléatoires dé�nis sur Z2
ou R2

. L’autosimilarité et la similarité

par modèle sont alors des variables aléatoires à valeurs dans R. Comme annoncé en Section 1.2.2, il

est nécessaire, a�n d’appliquer la méthode a contrario, d’approcher la distribution de A (U, t,w) et
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T (U, x, t,w) dans le cas où x est une image et U est donné par un modèle de fond, i.e. dans le cas où U
est un champ aléatoire gaussien. On commence par donner des résultats asymptotiques lorsque la taille

des patchs tend vers l’in�ni dans le cas où le champ aléatoire est gaussien, stationaire et indépendant à

longue distance.

Théorème 1. Soit (mk)k∈N et (nk)k∈N deux suites d’entiers croissantes et (wk)k∈N tel que pour tout
k ∈ N, wk = J0,mkK× J0, nkK. Soit U un champ aléatoire gaussien tel que Cov[U(p1)U(p2)] = 0 pour
‖p1 − p2‖∞ assez grand. Pour les fonctions de similarité suivantes :

• s(x, y) = ‖x− y‖p avec p ∈ [0,+∞),

• s(x, y) = ‖x− y‖pp avec p ∈ [0,+∞),

• s(x, y) = −〈x, y〉,

• s(x, y) = −〈x, y〉/(‖x‖ ‖y‖),

il existe µ, σ2 des fonctions à valeurs réelles dé�nies sur Z2, et (αk)k∈N une suite positive telle que pour
tout t ∈ Z2\ {0} on a

(a) limk→+∞ α−1
k A (U, t,wk) =

a.s
µ(t) ;

(b) limk→+∞ |wk|1/2
(
α−1
k A (U, t,wk)− µ(t)

)
=
L
N
(
0, σ2(t)

)
.

Ce théorème peut être étendu au cas de la similarité par modèle. Notons que l’hypothèse de gaussian-

ité pourrait être relâchée mais est conservée ici a�n d’obtenir des espérances et des variances explicites

dans notre extension du théorème central limite.

Dans le cas où la fonction de similarité est donnée par la norme `2 au carré, on peut trouver une

expression non-asymptotique de l’autosimilarité comme combinaison linéaire de variables aléatoires

indépendantes de loi χ2(1) où les coe�cients de la combinaison linéaire sont donnés par les valeurs

propres d’une matrice symétrique et Toeplitz. On propose ensuite un algorithme qui approche ef-

�cacement cette distribution en utilisant une méthode des moments d’ordre 3 ainsi qu’une méthode

d’approximation des valeurs propres :

• on approche les valeurs propres de la matrice de Toeplitz symétrique par les valeurs propres de la

projection de cette matrice sur l’ensemble des matrices circulantes (les valeurs propres sont alors

données par la transformée de Fourier),

• une fois les coe�cients approchés, on utilise la méthode WoodF [Woo89] qui est une méthode des

moments d’ordre 3. La distribution approximante est donnée par une loi de Fischer-Snedecor.

La précision des approximations proposées est illustrée en Figure 1.9. On propose alors un algorithme

de détection de la redondance spatiale des patchs en utilisant la méthode a contrario, i.e. en approchant

les quantités du type P(A (U, t,w) ≤ α). Cette première section est issue de l’article “Redundancy in

Gaussian random �elds” accepté à ESAIM: Probability and Statistics.

1.4.2 Chapitre 3, Section 3.2

Dans la Section 3.2, après avoir introduit un cadre a contrario pour l’analyse de l’autosimilarité on

s’intéresse aux applications de l’algorithme décrit dans la Section 3.1. Pour employer des méthodes
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(a) 1513s, nd = 52 (b) 200s, nd = 116 (c) 4.77s, nd = 50

Figure 1.9: Détection de redondance spatiale. Dans chaque image, le patch vert correspond au patch

dont on veut détecter la redondance. Dans la �gure (a), on utilise l’approche a contrario avec modèle de

fond gaussien. Aucune approximation (aussi bien sur le calcul des valeurs propres que sur le calcul des

probabilités) n’est e�ectuée. Dans la �gure (b) on réduit le temps de calcul en utilisant l’approximation

des valeurs propres proposées. Dans la �gure (c), on utilise les deux approximations proposées (projec-

tion matricielle et méthode des moments).

(a) σ = 10 (b) σ = 20 (c) σ = 40

Figure 1.10: In�uence des paramètres sur le PSNR. Dans cette �gure on présente l’évolution du

PSNR (ordonnées) pour di�érentes valeurs du paramètre de �ltrage dans l’algorithme original NL-

means [DAG10] sur une image pour di�érents niveaux de bruit σ. La ligne orange correspond au PSNR
obtenu sur la même image en considérant notre modi�cation de l’algorithme original NL-means.

a contrario il est nécessaire de calculer les quantités du type P(A (U, t,w) ≤ α) où A est la fonction

d’autosimilarité, U est un champ aléatoire (le modèle de fond de la méthode a contrario), t est un vecteur

de décalage qui permet de comparer les patchs de l’image U ayant pour indices w et w+ t (où la somme

doit être comprise au sens de Minkoswki). Cette quantité peut être facilement calculée en utilisant

l’algorithme proposé dans la Section 3.1. Une fois les notions de similarités dé�nies et le cadre statistique

établi on peut exploiter la notion de redondance spatiale dans le cadre du traitement d’images. En

modi�ant la procédure de choix des patchs dans l’algorithme de débruitage par moyennes non locales

(Non-Local Means, NL-means) on remplace le choix d’un seuil (ou d’une variance) dans le cadre de

cet algorithme par le choix d’un nombre de fausses alarmes dans un modèle de fond. Ce choix est

robuste vis-à-vis des di�érentes images utilisées contrairement au choix d’un seuil, voir Figure 1.10.

On montre que cette simple modi�cation permet d’obtenir de meilleurs résultats que l’algorithme NL-

means classique avec un contrôle sur la reconstruction des patchs. La deuxième application concerne la

détection de périodicité. Étant donné une image, on applique notre algorithme de détection de patchs

similaires. On obtient alors une image binaire où un pixel à la valeur 1 si le patch centré autour de la
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Figure 1.11: Identi�cation de réseaux. La première étape correspond à la détection des patchs re-

dondants comme illustré en Figure 1.9. La seconde partie de l’algorithme correspond à l’identi�cation

de la base du réseau en utilisant un algorithme de type Maximum A Posteriori, voir Théorème 2. A�n

d’illustrer le résultat obtenu on superpose un patch (en rouge) sur chaque point du réseau identi�é.

position de ce pixel est similaire au patch modèle et 0 sinon. On considère alors le graphe associé. On

note V ∈ Rp×2
l’ensemble des arêtes du graphe, avec p ∈ N, et on considère le modèle aléatoire suivant.

Dé�nition 1.4.2. Soit V une variable aléatoire à valeurs dans Rp×2 avec p ∈ N. On dit que V satisfait
l’hypothèse du réseau approché s’il existe une base B = (b1, b2) de R2 et σ > 0 telle pour tout ` ∈
{1, . . . , p}, il existe (m`, n`) ∈ Z2 tels que

L(V`) = L(m`b1 + n`b2 + σZ`) ,

où (Z`)`∈{1,...,p} est une famille de variables aléatoires gaussiennes centrées réduites indépendantes. On
noteM = (m`, n`)`∈{1,...,p}.

On peut alors proposer un algorithme de type Maximum a Posteriori pour estimer B et M . On

obtient alors deux suites (Bn)n∈N et (Mn)n∈N qui véri�ent le théorème suivant.

Théorème 2. Pour tout σ > 0, (Bn)n∈N et (Mn)n∈N convergent en un nombre �ni d’itérations.

En Figure 1.11, on décrit l’algorithme complet d’identi�cation de réseau sur un exemple. Cet algo-

rithme est appliqué avec succès sur des images de cristallographie et permet également de classer des

textures selon leur degré de périodicité. Cette présentation est issue de l’article “Patch redundancy in

images: a statistical testing framework and some applications” publié à SIAM Imaging Sciences.

1.4.3 Chapitre 4, Section 4.1

Après avoir proposé une dé�nition de la redondance spatiale et un cadre statistique pour l’identi�er on

s’intéresse à la possibilité d’obtenir des échantillons d’une loi de probabilité qui impose la redondance

spatiale. Pour ce faire, il est nécessaire de développer des algorithmes d’échantillonnage dont la com-

plexité n’explose pas avec la dimension même dans un cadre non-convexe. On mène cette étude pour

des algorithmes de type Langevin dans la Section 4.1. Le but de cette section est d’étudier des modèles

autorégressifs donnés par

Xn+1 = Xn + γb(Xn) +
√
γZn+1 . (1.18)

Le principal résultat obtenu est le suivant.

Théorème 3. Supposons qu’il existe m ∈ R, m+ > 0 et L, R ≥ 0 tels que pour tout x, y ∈ Rd

‖b(x)− b(y)‖ ≤ L ‖x− y‖ , 〈b(x)− b(y), x− y〉 ≤ −m ‖x− y‖2 ,
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Référence Distance de Wasserstein Distance de contrôle (D) (C) (TN)

[EM19] ‖ · ‖TV 1∆c(x, y) + ‖x− y‖ X 7840
W1 ‖x− y‖ X 4536

[MMS18] W2 ‖x− y‖+ ‖x− y‖1/2 X 332
[Ebe16] W1 ‖x− y‖ X 1

[LW16b] Wp ‖x− y‖+ ‖x− y‖1/p X 1− m+/m

‖ · ‖TV 1∆c(x, y) + ‖x− y‖ X X (1− e2mR2

)−1

Cette thèse W1 ‖x− y‖ X X idem

Wp ‖x− y‖+ ‖x− y‖1/α X X idem

et si ‖x− y‖ ≥ R,
〈b(x)− b(y), x− y〉 ≤ −m+ ‖x− y‖2 .

Alors il existe γ̄ > 0, Dγ̄,1, Dγ̄,2, Eγ̄ ≥ 0 et λγ̄ , ργ̄ ∈ [0, 1) avec λγ̄ ≤ ργ̄ , tels que γ ∈ (0, γ̄], x, y ∈ Rd
et k ∈ N

Wc(δxRk
γ , δyRk

γ) ≤ λkγ/4γ̄ [Dγ̄,1c(x, y) +Dγ̄,21∆c(x, y)] + Eγ̄ρ
kγ/4
γ̄ 1∆c(x, y) ,

où c(x, y) = 1∆c(x, y)(1 + ‖x− y‖ /R), ∆ = {(x, x) : x ∈ Rd} et Rγ est le noyau de Markov associé
à (1.18).

On trouve également que log(log(ρ−1)) est de l’ordre de mR2/(4(1− emR
2

)) et ne dépend pas de la

dimension d. Comme corollaire du Théorème 3, on obtient l’ergodicité géométrique de ULA mais aussi

d’autres algorithmes comme l’algorithme projeté suivant :

Xn+1 = ΠK[Xn + γb(Xn) +
√
γZn+1] , (1.19)

où ΠK est la projection sur le compact convexe K. En considérant l’algorithme (1.19) et en passant à

la limite à la fois en espace (en considérant une suite de compacts (Kn)n∈N telle que

⋃
n∈N Kn = Rd)

et en temps (en considérant une suite de pas (γn)n∈N telle que limn→+∞ γn = 0), on étend les taux

obtenus dans le cas discret au cas où la dynamique est continue, i.e. on obtient que sous les conditions

précédentes pour tout x, y ∈ Rd et t ≥ 0

d(δxPt, δyPt) ≤ Cρtd(δx, δy) ,

où C ≥ 0, ρ ∈ [0, 1) et d est soit la variation totale TV, soit la distance de Wasserstein d’ordre 1,

W1. Ce résultat étend les taux de convergence obtenus pour la distance de Wasserstein d’ordre 1 à

d’autres distances comme la variation totale, [Ebe16]. Il améliore également des résultats de convergence

obtenus récemment [EM19]. On complète le Tableau 1.1 par les contributions issues du Théorème 3.

Notons que contrairement à la majeure partie des approches actuelles [EM19; EGZ18; EGZ19; Ebe16;

MMS18; LW16b; Che+18] qui s’appuient sur l’introduction d’une distance bien choisie, notre preuve

utilise uniquement des outils classiques pour l’étude des chaînes de Markov à espace d’états général :

les conditions de minoration et les conditions de dérive de Foster-Lyapunov. Ce travail est tiré de “Con-

vergence of di�usion and their discretizations: from continuous to discrete processes and back” soumis

aux Annales de l’Institut Henri Poincaré.

1.4.4 Chapitre 4, Section 4.2

L’obtention de contrôles �ns concernant la convergence ergodique de l’algorithme ULA et de ses vari-

antes nous permet d’envisager cet algorithme d’échantillonnage comme étape intermédiaire d’un algo-
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rithme de minimisation stochastique. En e�et, dans la Section 4.2 on considère le problème de minimi-

sation d’une fonction objectif f di�érentiable et telle que pour tout θ ∈ Rp,∇f(θ) =
∫
Rd Hθ(x)dπθ(x).

Cette étude est motivée par des applications dans le cadre de l’estimation de paramètres de régularisation

pour des modèles d’images (débruitage, dé�ouage, démêlage spectral) et dans le cadre de l’estimation

des paramètres des modèles de maximum d’entropie comme on le verra dans les sections suivantes. On

propose alors un algorithme de descente de gradient stochastique où à chaque étape, le gradient est

estimé via une méthode de Monte-Carlo par chaîne de Markov, voir l’Algorithme 2.

Algorithm 1 Stochastic Optimization via Unadjusted Langevin (SOUL)

1: Inputs:
θ0 ∈ K, X0

0 ∈ Rd, (γn)n∈N, (δn)n∈N, (mn)n∈N, N
2: for n ∈ {1, . . . , N − 1} do
3: if n ≥ 1 then
4: Xn

0 ← Xn−1
mn−1

5: end if
6: for k ∈ {0, . . . ,mn − 1} do
7: Znk+1← sample N(0, Id)
8: Xn

k+1← Xn
k − γn∇x log πθ(X

n
k ) +

√
2γnZ

n
k+1

9: end for
10: ∆θn ← 1

mn

∑mn
k=1Hθn(Xn

k )
11: θn+1← ΠK[θn + δn+1∆θn ]
12: end for
13: Outputs:

θ̂N =
{∑N

n=1 δnθn

}/{∑N
n=1 δn

}
Si la chaîne de Markov utilisée à chaque itération est un algorithme de type ULA alors on nomme

cet algorithme SOUL pour Stochastic Optimization with Unadjusted Langevin. La procédure peut en fait

être étendue pour n’importe quelle chaîne de Markov qui converge géométriquement vers sa mesure

invariante et dans ce cas là, on nomme l’algorithme SOUK pour Stochastic Optimization with Unadjusted
Kernel. En s’appuyant sur des résultats récents d’optimisation stochastique [AFM17] on obtient des

contrôles explicites (à la fois presque-sûrement et en espérance) sur la quantité (f(θ̂N ))N∈N, dans le

cas où f est convexe, où pour tout N ∈ N

θ̂N =
N∑
k=1

δkθk

/
N∑
k=1

δk ,

et (δk)k∈N est la suite de pas utilisée dans l’algorithme de descente de gradient stochastique.

Théorème 4. Supposons que f : Rp → R est di�érentiable, convexe et s’il existe L ≥ 0 tel que pour tout
θ1, θ2 ∈ Rp,

‖∇f(θ1)−∇f(θ2)‖ ≤ L ‖θ1 − θ2‖ .
Soit (δn)n∈N et (γn)n∈N deux suites de réels positifs décroissantes et (mn)n∈N une suite d’entiers telles que

+∞∑
n=0

δn+1 = +∞ ,

+∞∑
n=0

δn+1γ
1/2
n < +∞ ,

+∞∑
n=0

δn+1/(mnγn) < +∞ .

Soit {(Xn
k )k∈{0,...,mn} : n ∈ N} et (θn)n∈N donnés par l’Algorithme 2. Supposons de plus que les condi-

tions de Théorème 3 sont satisfaites pour b = ∇ log πθ uniformément en θ ∈ K. Alors pour supn∈N(δn+γn)
assez petit on a :
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(a) (θn)n∈N converge presque-sûrement vers θ? ∈ arg minK f ;

(b) de plus, presque-sûrement il existe C ≥ 0 tel que n ∈ N?{
n∑
k=1

δkf(θk)

/
n∑
k=1

δk

}
−min

K
f ≤ C

/(
n∑
k=1

δk

)
.

Ce théorème permet de donner une caractérisation asymptotique de (θ̂N )N∈N de l’Algorithme 2. On

peut également obtenir des résultats non-asymptotiques pour la quantité E[
∑n
k=1 δkf(θk)/

∑n
k=1 δk].

Les résultats obtenus étendent le cadre d’optimisation stochastique introduit dans [AFM17]. En partic-

ulier, on ne suppose pas que le noyau de Markov est Lipschitz vis-à-vis de ses paramètres.

Cette section est issue de l’article “E�cient stochastic optimisation by unadjusted Langevin Monte

Carlo. Application to maximum marginal likelihood and empirical Bayesian estimation” soumis à Statis-

tics and Computing. Notons également qu’une extension de cet algorithme au cas où f n’est plus néces-

sairement di�érentiable et des applications dans le cadre de l’estimation de paramètres de régularisation

avec une approche empirique bayésienne sont présentées dans “Maximum likelihood estimation of reg-

ularisation parameters in high-dimensional inverse problems: an empirical Bayesian approach” soumis

à SIAM Journal on Imaging Sciences.

1.4.5 Chapitre 5, Section 5.1

Dans la Section 5.1 on présente une application du principe de maximum d’entropie pour la synthèse de

texture. On étend des résultats sur l’existence et l’unicité de modèles de maximum d’entropie dans le cas

où les probabilités étudiées ne sont plus discrètes. On donne notamment des conditions explicites sur

les fonctions de contrainte et la mesure de probabilité de référence qui déterminent le modèle pour que

la distribution de maximum d’entropie existe et soit donnée par (dπ?/dµ)(x) ∝ exp[−〈θ?, F (x)〉] où

µ est une mesure de probabilité de référence, θ? ∈ Rp et F : Rd → Rp est un ensemble de contraintes.

Proposition 1.4.3. Supposons qu’il existe α ≥ 0, α′ > α tels que

• F est continue et il existe Cα ≥ 0 tel que supx∈Rd{‖F (x)‖(1 + ‖x‖α)−1} ≤ Cα < +∞,

• il existe η > 0 tel que
∫
Rd exp[η‖x‖α′ ]dµ(x) < +∞.

Alors on a les résultats suivants :

(a) Si pour tout θ ∈ Rp avec ‖θ‖ = 1 on a µ({x ∈ Rd : 〈F (x), θ〉 < 0}) > 0, alors la solution du
problème de maximum d’entropie (1.5) est donnée par π? dont la densité par rapport à µ est donnée
pour tout x ∈ Rd par

(dπ?/dµ)(x) = exp [−〈θ?, F (x)〉]
/∫

Rd
exp [−〈θ?, F (y)〉] dµ(y) ,

où θ? est la solution du problème d’optimisation convexe suivant

min
θ∈Rp

{∫
Rd

exp[−〈θ, F (x)〉]dµ(x)

}
.

(b) En particulier la Proposition 1.4.3-(a) est satisfaite si µ(A) > 0 pour tout A ⊂ Rd ouvert, et si F est
continue et qu’il existe x ∈ F−1({0}) tel que F est di�érentiable en x et det(DF (x)DF (x)>) > 0.
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(a) (b) (c) (d)

Figure 1.12: Quelques exemples de synthèse. Les images originales sont données en (b) et (d) et la

synthèse en (a) et (c).

(a) (b) (c) (d)

Figure 1.13: Quelques algorithmes de synthèse. En (a) on présente l’image de texture exemple. En (b)

on donne la synthèse obtenue avec [PS00] où les contraintes spatiales sont données par des ondelettes.

En (c), on applique la méthode décrite dans [GEB15] pour générer la texture. En�n en (d), on présente

les résultats obtenus avec notre algorithme

Dans ce cas, on montre que le problème d’optimisation convexe in�ni-dimensionnel sur les mesures

se traduit en un problème d’optimisation convexe �ni-dimensionel en utilisant une généralisation de la

dualité lagrangienne. On trouve alors que θ? est minimum de la fonction de log-partition L : Rp → R
donnée pour tout θ ∈ Rp parL(θ) =

∫
Rd exp[−〈θ, F (x)〉]dµ(x). La condition su�sante pour l’existence

d’un modèle de maximum d’entropie est alors plus facile à véri�er que celle donnée par [Csi75]. Dans

le cas où F est donnée par les sorties d’un réseau de neurones, on donne un certi�cat qui permet de

véri�er l’existence du maximum d’entropie.

1.4.6 Chapitre 5, Section 5.2

La log-partition véri�e alors les hypothèses nécessaires pour appliquer l’algorithme SOUL. Notons que

la formulation du problème de synthèse de texture via le principe de maximum d’entropie date des

travaux de Zhu, Wu et Mumford [ZWM98]. L’utilisation de la dynamique de Langevin pour résoudre

ce problème a été suggérée pour la première fois par [LZW16]. Notre étude théorique de l’existence, de

l’unicité et de la caractérisation du maximum d’entropie nous permet d’a�rmer que la mesure recher-

chée s’écrit sous forme exponentielle. On est alors dans les hypothèses de l’algorithme SOUL et on peut

démontrer la convergence de notre algorithme dans la cadre de la synthèse de texture.

On établit des liens entre notre approche et l’approche microcanonique proposée récemment [BM18].

En particulier on montre que le modèle microcanonique peut s’envisager comme la limite de modèles

27



0.2 0.4 0.6 0.8 1

·105

0

0.2

0.4

0.6

0.8

1

1.2 (θn)n∈N
(θ̄n)n∈N

(a) (b) n = 100000 (c)

Figure 1.14: Convergence des paramètres. En (a) on a�che l’erreur normalisée entre (θn)n∈N (bleu)

et les poids optimaux ainsi qu’entre (θ̂n)n∈N (rouge) et les poids optimaux. En (b) on présente un

échantillon du modèle pour n = 100000 et en (c) on présente l’image de texture exemple.

macrocanoniques successifs, voir Proposition 1.4.4.

Proposition 1.4.4. Supposons qu’il existe η > 0 tel que
∫
Rd exp[η‖x‖2]dµ(x) < +∞ et que F soit

donné par un réseau de neurones qui véri�e une condition de coercivité, voir Proposition 5.2.3 pour une
formulation précise. Alors, il existe ε0 > 0 tel que pour tout ε ∈ (0, ε0), le maximum d’entropie πε
existe. Si de plus µ(F−1({0})) > 0, alors limε→0 πε = π∞, avec pour tout x ∈ Rd, (dπ∞/dµ)(x) =
1F−1({0})(x)/µ(F−1({0})).

En�n, on véri�e la validité de l’algorithme SOUL dans deux cadres :

• synthèse de textures gaussiennes,

• synthèse de textures structurées.

Dans le cadre de la synthèse de textures gaussiennes, on cherche le modèle gaussien qui présente

la même autocorrelation qu’une texture exemple. On peut alors caractériser facilement la validité du

modèle puisque les poids optimaux peuvent être calculés explicitement, voir Figure 1.14.

Dans le cadre de la synthèse de textures structurées, on obtient des résultats comparables à l’état de

l’art, voir Figure 1.12 et Figure 1.13 qui complète Figure 1.7. On étudie expérimentalement la capacité

d’innovation de notre algorithme et on propose des extensions de celui-ci, notamment pour le transfert

de style. Les travaux des deux sections précédentes sont issus de “Maximum entropy methods for texture

synthesis: theory and practice” soumis à SIMODS et de “Macrocanonical models for texture synthesis”

présenté à Scale Space and Variational Methods in Computer Vision.
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Chapter 2

Introduction (English)

In this thesis, we are interested in the analysis of non-local statistics in images (modelling, estimation,

sampling). We mainly focus on two non-local statistics: spatial redundancy and deep neural network

outputs. More precisely, we will tackle the following questions:

• What is spatial redundancy? How to detect such redundancy in natural images?

• How to design stochastic models of natural images with neural network-based constraints? How

to sample from such models?

In Section 2.1, we recall the importance of the spatial redundancy in the setting of the gestalt theory.

We also introduce the a contrario method which constitutes a statistical framework for the gestalt the-

ory. We then draw links between the a contrario approach and the statistical hypothesis testing theory

(see also [DMM08, Chapter 15.3.2] for a discussion on the links between the a contrario approach and

multiple testing theory). In order to use such methods, we need to specify some a contrario (or noise)

models. In our case, these models will be given by Gaussian random �elds. These random �elds de�ne

a particular class of textures.

The general problem of exemplar-based texture synthesis is recalled in Section 2.2. This is the im-

age processing approach to a much more general problem: the synthesis of random �elds. We present

a texture synthesis algorithm based on wavelet features. This algorithm can be cast as an optimiza-

tion scheme in order to maximize the entropy of the model under some geometrical constraints. The

constraints of the model are enforced almost surely. If we consider the relaxed entropy maximization

problem where the constraints are enforced in expectation and not almost surely, then we can explic-

itly compute the optimal measure under mild conditions on the constraints. These constraints will be

satis�ed in the case where the constraints are given by a di�erentiable neural network.

Assuming that the distribution of the images which satisfy some non-local statistics is known, via

the maximum entropy principle for instance, we turn to the problem of sampling from such probability

distributions in Section 2.3. We describe the unadjusted Langevin algorithm (ULA). This Markov chain

allows for the e�cient sampling of general target probability distributions even when the dimension of

the state space is large. We present some recent quantitative results obtained for a class of functional

autoregressive models. Using these results we give quantitative bounds on the convergence of ULA for

various distances.

Our main contributions are detailed in Section 2.4. We describe an algorithm based on the a contrario

methodology to detect spatial redundancy in Section 2.4.1. We apply this algorithm to image processing
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tasks (denoising and periodicity detection) in Section 2.4.2. In Section 2.4.3 we present ergodicity results

for a class of functional autoregressive Markov chains. These quantitative results are used to obtain the

convergence of a stochastic approximation algorithm introduced in Section 2.4.4: the Stochastic Opti-

mization with Unadjusted Langevin (SOUL) algorithm. In Section 2.4.5, we show that some maximum

entropy based texture models can be obtained using the SOUL algorithm. Finally we present some vi-

sual applications of our previous results in Section 2.4.6. Each chapter contains a literature review of

the subject under study.

2.1 Spatial redundancy, a contrario methods and random �elds

2.1.1 A �rst de�nition and gestalt theory

The notion of “spatial redundancy”, as the ones of “texture” or “similarity”, varies from one author to

another, depending on the theoretical setting. Before introducing a rigorous statistical framework, we

provide some perceptual and visual insights with regards to the notion of spatial redundancy.

Intuitively, an image is spatially redundant if it contains a repeated small pattern. Therefore, the

notion of spatial redundancy is highly dependent on the degree of locality we consider. In order to meet

this requirement we consider patches in the image. Patches are de�ned as follow: assume that an image

x is given by x : E → V, where E ⊂ Z2
and V ⊂ R (for a grey-level image) or R3

(for a color image).

A patch is simply the restriction of x to some subset of E. More precisely, let w ⊂ E and consider Pw

such that for any x : E→ V, Pw(x) : w→ V and for any p ∈ w, Pw(p) = x(p). This operator extracts

from x a patch corresponding to the domain w.

Let s : Vw1 × Vw1 → [0,+∞) a similarity function which will be precised later. Consider one

domain w1 and its translated version by a vector t ∈ Z2
, {p+ t : p ∈ w1}. We say that the two patches

associated with these domains are similar if s(Pw1(x), Pw1(τ−t(x))) is small (in a sense which will also

be precised later) and where for any p ∈ E, τt(x)(p) = x(p − t) and E is stable under translation. We

say that an image is spatially redundant if this similarity occurs for a large number of subdomains. This

leads us to consider the following principle: “An image is spatially redundant if a large number of its

patches are similar”.

A �rst instance of spatial redundancy can be observed in Figure 2.1-(a). In this case, it is clear that

spatial redundancy gives rise to new structures in the image. In this picture of the New York Guggenheim

museum one can clearly identify some periodicity. However, spatial redundancy is not the only tool at

our disposal to understand what the features which play a role into the global perceptual description of

the image are. For instance, color, form, material and continuity are key elements for describing images.

Some of these features can be observed in the painting “Black Lines” by Kandinsky (1913) Figure 2.1-(b).

Using spatial redundancy one can infer new perceptual properties on the image by studying the

point process given by the positions of similar patches. Hence, the study of some of the perceptual

features of the image boils down to the study of point processes. The perceptual characteristics of such

geometric patterns were extensively studied in the context of the gestalt (form in German) theory.

With their pioneering works on optical illusions [Wer23; Kof13; Köh92], Weirtheimer, Ko�ka and

Kölher propose a theory of human perception. One of its most important principle is the grouping prin-

ciple: even though the perceptual components can be understood independently, they can be perceived

di�erently once we take into account their intricate relationships. Weirtheimer [WW59] states:

“
The basic thesis of gestalt theory might be formulated thus: there are contexts in which

what is happening in the whole cannot be deduced from the characteristics of the separate
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(a) (b)

Figure 2.1: A photograph of the interior of the New York Guggenheim museum (a) presents numerous

spatial redundancies highlighted by red, green and cyan patches. On the contrary, at �rst glance, no

spatial redundancy is identi�ed in the painting “Black Lines” by Kandinsky (1913). However this does

not mean that the work of Kandinsky makes no sense from a perceptual point of view, since other

geometrical tools can be applied to analyze the painting (color, curvature, convexity, etc) .

pieces, but conversely; what happens to a part of the whole is, in clearcut cases, determined

by the laws of the inner structure of its whole.

Max Wertheimer (1959) ”
In Section 3.2 we study how spatial redundancy along with the principles of the gestalt theory can

be used for image processing purposes. We focus on two main applications: denoising, see Section 3.2.4,

and periodicity detection, see Section 3.2.5.

2.1.2 A contrario methods for image processing

There have been many attempts at developing a mathematical presentation of the grouping laws of the

gestalt theory [Lin97] but in this thesis we focus on the approach developed by David Lowe [Low12]

which is based on the a contrario method. An event (points alignement, similarity between two patches)

is said to be signi�cant if it has a very low probability in a background model (or noise model or a

contrario model). This rule was later named Helmholtz’s principle in the work of Desolneux, Moisan

and Morel [DMM08] in reference to Helmholtz’s studies on optical illusions [Hel25]. In the a contrario

framework, the background model must be chosen so that the properties we want to identify in the

natural image are uncommon. We now consider a probability space (Ω,F ,P).

This setting is similar to the one of the statistical hypothesis testing theory whose basic properties

are recalled below. The aim of the test theory is to provide criteria in order to choose between a null

hypothesis and an alternative hypothesis. Let U be a random variable taking values in (VE,B(VE)),

where B(VE) is the set of Borel sets and VE
is equipped with its product topology. We say that U is a

random �eld [Adl81]. We denote by PU the distribution of U , i.e. the pushforward measure by U . Let

ρ0 ∈P(VE), where P(VE) is the set of probability measure on B(VE). The null hypothesis is PU = ρ0

and the alternative hypothesis is PU 6= ρ0. In the a contrario setting, ρ0 is the background model (or

noise model or a contrario model). In Section 2.1.3, we investigate di�erent choices for the background
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model when studying spatial redundancy. We de�ne the following statistics

NFA =

N∑
i=1

1fi(U)∈A ,

where N ∈ N?, (fi)i∈{1,...,N} is a family of measurable functions such that for any i ∈ {1, . . . , N},
fi : (VE,B(VE))→ (VE,B(VE)). The NFA is the number of false alarms, or number of false positive.

In the image processing framework, the event A represents some interest property of the image, for

instance A = {x ∈ VE : ‖Pw(x)− Pw(x0)‖ ≤ ε} where x0 ∈ VE
and ε > 0. In this case, if we

consider (fi)i∈{1,...,N} = (τt)t∈E and E invariant under translation, then the number of false alarms is

large in a noise model U if many patches of U are similar to the ones of x0.

We reject the null hypothesis if the number of false alarms is larger than a maximal number of false

alarms NFAmax. The type I error α is given by α = P(NFA ≥ NFAmax). Using Markov inequality we

have

α = P (NFA ≥ NFAmax) ≤ NFA−1
max

N∑
i=1

P (fi(U) ∈ A) .

In the a contrario framework we say that the event A is ε-signi�cant if

∑N
i=1 P (fi(U) ∈ A) ≤ ε. We

give an a contrario interpretation of the number of false alarms NFA. For any i ∈ {1, . . . , N} we

consider di such that for any x ∈ VE
, di = 1A(fi(x)). We say that the index i ∈ {1, . . . , N} is detected

in the image x if di(x) = 1. We obtain that NFA =
∑N
i=1 di(U). If A is a ε-signi�cant event, we get

E [NFA] = E

[
N∑
i=1

di(U)

]
≤ ε .

In other words, ε is an upper-bound on the expected number of detections in the background model. In

the study of spatial redundancy (fi)i∈{1,...,N} is given by (τt)t∈E (assuming that E is invariant under

translation), see Section 3.2. Therefore we obtain N = |E| (where |E| is the cardinality of E). Given a

patch u0 : w→ V we de�ne

A =
{
x ∈ VE : s(Pw(x), u0) ≤ v

}
,

where v ∈ R is some value to be �xed and s is some similarity function, ‖ · ‖2 for instance. In this

case, an o�set t ∈ E is detected in an image x if and only if s(Pw(τt(x)), u0) ≤ v. If the background

model ρ0 is stationary, i.e. if the distribution of U is invariant by translation, then we get for any t ∈ E,

Pτt(U) = PU = ρ0. In order to �x v, we consider an upper-bound on the expected number of detections

ε in the background model. Hence, we choose v ∈ R such that

ρ0(A) = P (s((Pw(U), u0) ≤ v)) = ε/|E| .

We denote CDF the cumulative distribution function of s(Pw(U), u0) and ICDF its inverse cumulative

distribution function. An o�set t ∈ E is detected if and only if s(Pw(τt(x)), u0) ≤ ICDF(ε/|E|) or

CDF(s(Pw(τt(x)), u0)) ≤ ε/|E|. Considering this methodology for each possible o�set, we obtain a

binary image which corresponds to the o�sets detected in the image x, i.e. (dt(x))t∈E ∈ {0, 1}E. This

image corresponds to some point process which might be analyzed using the gestalt theory principles.

Until now we have presented the a contrario methodology and its application to the identi�cation

of spatial redundancy in natural images. However, there exist many other successful applications of the

a contrario approach in the study of the grouping laws of the gestalt [DMM00; DMM01; ADV03; Cao04;

VG+08; Dav+18]. For instance, the Line Segment Detection (LSD) algorithm [VG+08] aims at identifying
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(a) (b)

Figure 2.2: A line detection algorithm. In (a) we present the original image and in (b) a binary image.

The black lines correspond to the lines detected by the LSD algorithm, see http://demo.ipol.im/demo/

gjmr_line_segment_detector/ for an online demonstration.

alignements in natural images. In this framework we de�neA = {x ∈ VE, k points are aligned in r0(x)}
where r0(x) is a rectangular sub-image ofx and k ∈ N. The notion of alignement is de�ned by the angles

between the gradients of the original image, see [VG+08]. Let (fi)i∈{1,...,N} be the set of translations-

dilatations-rotations of E, see [VG+08] for a precise de�nition and a tally of such transformations. The

authors of [VG+08] propose a background model ρ0 such that ρ0(A) can be explicitly computed. Given

a signi�cance level ε, the detections correspond to the set of detected rectangles for this level. If we

overlay the detected rectangles we obtain some binary image. This image is the output of the LSD

algorithm illustrated in Figure 2.2.

In this thesis we present a detection algorithm for the analysis of similarities based on the principles

of the gestalt theory and on the a contrario method. Given an image x we can obtain a binary image

of the detected o�sets. We use this information to improve an existing patch denoising algorithm, see

Section 3.2.4, and to conduct a periodicity analysis, see Section 3.2.5. We now turn to the class of random

�elds used as a background model ρ0: the Gaussian random �elds.

2.1.3 Texture and random �elds

A random �eld U is a (VE,B(VE))-valued random variable [Adl81]. For any ω ∈ Ω, V (ω) ∈ VE
. By a

slight abuse of notation we will omit the dependency with respect to ω when there is no ambiguity. A

random �eld U is said to be Gaussian if for any set of points (p1, . . . , pn) ∈ En, (U(p1), . . . , U(pn)) is

a Gaussian vector. In this thesis, the background model used for the a contrario analysis conducted in

Section 2.1.2 will correspond to the null-hypothesis for the detection of spatial redundancy. Informally,

the background model is an image model such that each realization does not exhibit spatial redundancy.

In the context of image processing, random �elds were used by Cross and Jain for texture synthesis

in their pioneering work [CJ83]. We brie�y recall the purpose of exemplar-based texture synthesis.

Given an input texture x0 (the exemplar texture), we aim at �nding a random �eld U such that the

realizations of U look like x0 but are not verbatim copies of x0. We give some examples of textures

in Figure 2.3. A key feature for ordering textures is their regularity. A structured texture, as the one

shown in Figure 2.3-(c) will be called a macrotexture. On the contrary, a texture which does not exhibit

any salient structure, such as the one shown in Figure 2.3-(a), will be called microtexture.
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(a) (b) (c)

Figure 2.3: Examples of textures. Some examples of natural textures. The �rst image (a) does not

exhibit any particular structure whereas the texture shown in (c) is extremely structured. The image (b)

presents some intermediate organization since the pine thorns respect some rotation invariance with

respect to the branch.

Van Wijk [Wij91] was among the �rst to use spots for texture synthesis. The synthesis process is

the following. First, select a spot (some geometric pattern) and sample a point process (Bernoulli or

Poisson process) on the underlying grid of the image, i.e. the set E. Then, we center the spot around

each of the sampled points. This point of view was later extended [GGM11] in the case where E =
Z/(MZ) × Z/(NZ) with M,N ∈ N. The authors then consider the limit of this process when the

number of points goes to in�nity (in the case of a Bernoulli process) or when the intensity goes to

in�nity (in the case of a Poisson process). In both cases, recalling that x0 is the exemplar texture, we

obtain a Gaussian random �eld (after renormalization and centering) such that for any p1, p2 ∈ E

E [U(p1)] = |E|−1
∑
p∈E

x0(p) , Cov [U(p1), U(p2)] = |E|−1
∑
p∈E

x0(p1 − p2 + p)x0(p) . (2.1)

Note that U is a stationary random �eld and hence exhibits some homogeneity, which, however, is

not su�cient to describe the set of textures. Many experiments [GL17; GLM14; GLR18] illustrate how

the Gaussian random �eld U is a good model for microtexture exemplar-based texture synthesis, see

Figure 2.4. However, this method fails for the more complicated problem of macrotexture exemplar-

based texture synthesis, see Figure 2.5.

From these last two experiments we formulate the following principle: “the Gaussian random �eld

associated with x0 discards the spatial redundancy information while conserving the microtexture in-

formation”. Although this principle is a drawback for the task of structured texture synthesis, it can

be used to consider a contrario models based on Gaussian random �elds. In Chapter 3, combining a

contrario methods and Gaussian random �elds background models we propose an algorithm to detect

spatial redundancy and design new denoising and periodicity detection algorithms.

In this section we have addressed the problem of identifying spatial redundancy in natural images.

Some of these redundant structures can be discovered by rejecting the null hypothesis in an a contrario

model. Since we proceed by rejection, we only need to consider naive texture models. However, the

simplicity of such a methodology is also its limitation as it does not provide us with a way to enrich our

models in order to take into account these notions of spatial redundancy, i.e. we cannot sample more

complex random �elds.
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(a) (b)

Figure 2.4: Gaussian random �eld and microtexture. The microtexture exemplar textures are given

in (a) and in (b) we present some realizations of the Gaussian random �eld given by (2.1). Figure extracted

from [GGM11].

2.2 Random �eld synthesis and maximum entropy principle

In the previous section we showed that microtextures, i.e. random �elds with no long-range dependency,

can be e�ciently sampled using Gaussian random �elds. However, numerous random �elds studied in

�uid mechanics, astrophysics or image processing are not microtextures and exhibit long-range inter-

actions. We present some examples of such random �elds in Figure 2.6.

In this thesis we are interested in the problem of sampling random �elds from the point of view

of image processing, via the exemplar-based texture synthesis. This problem constitutes the �rst step

towards the sampling of structured random �elds.

2.2.1 Parametric texture synthesis

We recall that the exemplar-based texture synthesis problem can be described as follows. Given an input

texture image x0, how can we produce new images such that:

• the visual properties of the new images are close to the ones of x0,

• the new images are not verbatim copies of x0.
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(a) (b)

Figure 2.5: Gaussian random�eld andmacrotexture. The macrotexture exemplar textures are given

in (a) and in (b) we present some realizations of the Gaussian random �eld given by (2.1). Figure extracted

from [GGM11].

(a) (b) (c)

Figure 2.6: Random �elds. In (a) and (b) we present some realizations of turbulent random �elds.

Images extracted from [Hel+95]. In (c), we present a realization of a determinantal point process which

is a point process with repulsion constraints. Image extracted from [KT11].

There exist two main approaches to this problem [Raa+17]: the parametric methods and the non-
parametric methods (or patch methods). In this thesis we focus on parametric methods. We refer to

Section 5.2.1 for a literature review on the subject of parametric texture synthesis. In what follows we

set X = VE
and we suppose that X ∈ B(Rd) for some d ∈ N.

One of the �rst parametric method for texture synthesis is the algorithm proposed by Portilla and

Simoncelli [PS00]. We start by identifying a certain number of statistics (local or non-local) which we

gather in a constraints dictionary. Given p ∈ N and a family of measurable functions (fi)i∈{1,...,p} such

that for any i ∈ {1, . . . , p}, fi : (X,B(X))→ (R,B(R)) and x0 ∈ X, where x0 is the input texture and

(fi)i∈{1,...,p} are some constraints, we de�ne Y = {x ∈ X, fi(x) = fi(x0)}. This set is called the Julesz
ensemble in [PS00]. Assume that there exists a measurable function Π : (X,B(X)) → (Y,B(Y)) such

that for any random �eld U taking values X we get that Π(U) takes values in Y, then we are provided

with an easy way to generate random variables taking values in Y. Unfortunately, it is often di�cult to

obtain such a mapping.

If for any i ∈ {1, . . . , p} we have access to Πi : (X,B(X)) → (X,B(X)) such that for any x ∈ X,

fi(Πi(x)) = fi(x0), then we can de�ne

Xn+1 = Πn−bn/pcp+1(Xn) , (2.2)
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(a) (b) (c) (d)

Figure 2.7: Some texture synthesis algorithms. In (a) we present the exemplar texture. In (b) we

show the results obtained with the pyramidal synthesis proposed in [HB95]. In (c) we observe the results

obtained with [PS00] and in (d) we apply the method of [GEB15]. This method, where the constraints are

given by neural network outputs, is the only one which succeeds in synthesizing the complex structures

of the image.

where X0 is some random variable taking values in X. This approach was considered by Heeger and

Bergen in [HB95], in the case where for any i ∈ {1, . . . , p}, Πi corresponds to some histogram egal-

ization. There exists no general convergence results for such an algorithm, except in the case where

(Πi)i∈{1,...,p} is a collection of strictly quasinonexpansive operators [BC11, Corollary 4.50, Theorem

5.23]. In particular, the results hold if (Πi)i∈{1,...,p} is a collection of projection operators onto convex

and closed sets. Portilla and Simoncelli replace (2.2) by a projection in the direction of the gradient, see

[PS00, Section 1.5]. This operation only requires the gradient of the constraint functions (fi)i∈{1,...,p}.

Heeger and Bergen use histogram data to build their constraints dictionary, whereas Portilla and Si-

moncelli identify 710 constraints to de�ne their image model (marginal statistics of wavelet coe�cients,

correlation between wavelet coe�cients and phase statistics). Gatys [GEB15] extended the algorithm

presented in [PS00] by considering statistics of Gram matrices for di�erent layers of a pretrained con-

volutional neural network, VGG-19 [SZ14]. The algorithm of [GEB15] consists in a gradient descent for

the loss function ` : X→ [0,+∞) given for any x ∈ X by

`(x) =

L∑
i=1

λi‖Gi(x)−Gi(x0)‖2Fr ,

where (λi)i∈{1,...,L} ∈ [0,+∞)
L

is a sequence of weights, Gi(x) is the Gram matrix of the neural

network output and ‖ · ‖Fr is the Frobenius norm. This last algorithm yields state-of-the-art visual

results. In Figure 5.1, we compare the three described algorithms for exemplar-based texture synthesis.

2.2.2 Principle of maximum entropy

All the models we consider in this thesis are parametric methods. In this case, the exemplar-based

texture synthesis problem can be reframed as an inverse problem as follows. In this section, we assume

that X is some topological space and consider B(X) the associated Borel sigma-�eld. Let p ∈ N and

consider (fi)i∈{1,...,p} such that for any i ∈ {1, . . . , p}, fi : (X,B(X)) → (R,B(R)) and x0 ∈ X. We

aim at �nding π such that for any i ∈ {1, . . . , p}∫
X

1fi(x)6=fi(x0)dπ(x) = 0 , (2.3)
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i.e. fi = fi(x0), π almost surely. We consider a relaxed version of (2.3), where the constraint is imposed

in expectation instead of almost surely,∫
X

|fi(x)|dπ(x) < +∞ ,

∫
X

fi(x)dπ(x) = fi(x0) . (2.4)

In what follows we denote F : X→ Rp such that for any x ∈ X, F (x) = (f1(x)− f1(x0), . . . , fp(x)−
fp(x0)) and we assume that the family {fi : i ∈ {1, . . . , p}} ∪ 1 is linearly independent.

The inverse problem given by (2.4) is an ill-posed inverse problem since it admits the following

trivial solution π = δx0 . One way to tackle this problem is to search for the “most uniform” distribution

given the constraints (2.4). In the context of discrete probabilities, Jaynes [Jay57] gives a solution using

Shannon entropy [Sha48]. Assume that X = {1, . . . ,M} with M ∈ N. Let π be a probability measure

on X. The Shannon entropy associated with π is given by

H(π) = −
∑
x∈X

π(x) log(π(x)) ,

with the convention that 0 log(0) = 0. We aim at maximizing H under the constraints (2.4). The

obtained model is the macrocanonical model. If we consider the model given by the constraints (2.3),

we obtain the microcanonical model, studied in [BM18]. The links between the two models when the

dimension of the image space grows towards in�nity are discussed in [BM18]. In this thesis, we focus

on macrocanonical models but we will illustrate the links between this model and the microcanonical

one in 5.

MaximizingH under the constraints (2.4) can be cast as a convex minimization problem under linear

constraints. In this case, Jaynes obtains the following solution π? given for any x ∈ X.

π?(x) = exp[−〈θ?, F (x)〉]

/∑
y∈X

exp[−〈θ?, F (y)〉] ,

where θ? ∈ Rp corresponds to the Lagrange multipliers of the associated dual problem:

θ? ∈ arg min
θ∈Rp

L(θ) , L(θ) = log

(∑
x∈X

exp[−〈θ, F (x)〉]

)
,

where L is the log-partition function. Jaynes [Jay79] identi�es this principle as a generalization of the

“principle of indi�erence”: in the absence of additional information, π? must be chosen to be uniform.

We report to [Jay79] for a discussion on the origin of the principle of maximum entropy. In image this

principle was �rst used for image restoration [Wer+77; GD78; SB84; Bes86] before it was used in texture

synthesis [ZWM98];

The extension of the principle of maximum entropy to the case where X is no longer �nite is more

complicated. We will now assume that X = Rd with d ∈ N?. First we highlight that there is no equiva-

lent of the “principle of indi�erence” in this context, i.e. there is no uniform probability distribution on

Rd. Moreover, we have that for any probability measure π such that the entropy H(π) is well-de�ned,

H(π) = −
∫
X

(dπ/dλ)(x) log [(dπ/dλ)(x)] dx ,

we have that H(π) ∈ (−∞,+∞]. In [BLN96; TV93; L0́8] the authors establish equivalent of the maxi-

mum entropy principle by modifying the Shannon entropy and using techniques from functional anal-

ysis (Birnbaum-Orlicz spaces) and convex optimization in Banach spaces. On the other hand, Csiszár
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and his co-authors [Csi75; Csi84; Csi96; CGG99] equip the space (X,B(X)) with a reference probability
measure µ and replace the Shannon entropy by the opposite of the Kullback-Leibler divergence [Kul97]

between π and µ. The Kullback-Leibler divergence between two probability measures ν1 and ν2 is given

by

KL (ν1|ν2) =


∫
X

log[(dν1/dν2)(x)]dν1(x) if ν1 � ν2 ,

+∞ otherwise .

Note that KL (ν1|ν2) ≥ 0 with equality if and only if ν1 = ν2. In [Csi75], the results of Jaynes are

extended using this approach. We replace the Shannon entropy in the maximization by the opposite

Kullback-Leibler divergence with respect to the reference probability measure µ, i.e. we consider

π? ∈ arg min
π∈PF

KL (π|µ) . (2.5)

where PF is the set of probability measures such that for any π ∈ PF ,

∫
X
F (x)dπ(x) = 0. In this

case, if the solution of the maximum entropy problem exists (2.5) and is dominated by µ, we have for

any x ∈ X

(dπ?/dµ)(x) = exp[−〈θ?, F (x)〉]/
∫
X

exp[−〈θ?, F (y)〉]dµ(y) , (2.6)

where θ? ∈ Rp is the solution to the maximum entropy problem. In the same article, [Csi75], conditions

are given to ensure the existence of a solution to the maximum entropy problem. If for any (ε1, . . . , εp) ∈
B(0, r) with r > 0, there exists π such that KL (π|µ) < +∞ and π satis�es (2.4), replacing for any

i i ∈ {1, . . . , p}, fi(x0) by fi(x0) + εi, and if for any θ ∈ Rp,

∫
X

exp[−〈θ, F (x)〉]dµ(x) < +∞
then [Csi75, Theorem 3.3] ensures the existence of a solution to the maximum entropy problem. In

the setting of exemplar-based texture synthesis, this theorem is di�cult to apply and we derive other

su�cient conditions to ensure the existence of such a model.

In Chapter 5 we use the principle of maximum entropy in the case of texture synthesis. We establish

easy-to-check conditions on the model F and the probability measure µ for the existence of a solution

to hold. In particular, when F is given by a neural network we provide a certi�cate which ensures the

existence of maximum entropy model.

2.2.3 Stochastic optimization

Before deriving texture synthesis algorithms based on the macrocanonical approach described in the

previous section, we must answer the two following questions:

(a) How to estimate θ? in (2.6)?

(b) Given θ?, how to sample from the distribution π? given in (2.6)?

In this section, we present the tools used in this thesis to tackle the problem of sampling in Sec-

tion 2.3. In this section, we are interested in the problem (a) and assume that we have access to samples

from the distribution πθ for any θ ∈ Rp, where for any x ∈ X

(dπθ/dµ)(x) = exp[−〈θ, F (x)〉]
/∫

X

exp[−〈θ, F (y)〉]dµ(y) .

Under conditions on µ and F , we show in Chapter 5 that θ? in (2.6) is the minimizer of the log-partition

function L : Rp → R given for any θ ∈ Rp by

L(θ) = log

(∫
X

exp[−〈θ, F (x)〉]dµ(x)

)
.
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We consider a �rst-order minimization method, i.e. we consider a sequence (θn)n∈N such that for

any n ∈ N, θn+1 is a function of θn and ∇L(θn). However, the gradient of L cannot be explicitly

computed in practice since it is expressed as an integral with respect to πθ : for any θ ∈ Rp

∇L(θ) = −
∫
X

F (x)dπθ(x) = −Eπθ [F ] .

Nevertheless, this quantity can be approached. We consider an unbiased estimator of∇L(θ) = −Eπθ [F ]

as follows. Assuming that we have access to M ∈ N samples from πθ , −(1/M)
∑M
k=1 F (Xk) is an es-

timator of ∇L(θ). We now consider the stochastic gradient algorithm associated with the following

recursion: θ0 ∈ Rp and for any n ∈ N

θn+1 = θn + (δn+1/Mn+1)

Mn+1∑
k=1

F (Xn
k ) , (2.7)

where (δn)n∈N is a sequence of stepsizes, (Mn)n∈N is a sequence of batchsizes and for any n ∈ N,

(Xn
k )k∈{1,...,Mn} is a sequence of independent samples from πθn .

In (2.7) we assume that we have access to samples from πθ . We now consider a generalization of

(2.7) where the sequence of estimators is no longer given by (−(1/Mn+1)
∑Mn+1

k=1 F (Xn
k ))n∈N but by

(∇L(θn) + eθn(Yn+1))n∈N where (Yn)n∈N is a stochastic process on (Ω,F ,P) taking values in (Y,Y),

and where e : Rp × Y → Rp. We now consider the following general stochastic gradient algorithm

associated with the following recursion: θ0 ∈ Rp and for any n ∈ N

θn+1 = θn − δn+1 {∇L(θn) + eθn(Yn+1)} , (2.8)

For instance, in (2.7) we can de�ne for any n ∈ N n ∈ N,

eθn((Xn
k )k∈{1,...,Mn+1}) = −(1/Mn+1)

Mn+1∑
k=1

F (Xn
k )−∇L(θn) . (2.9)

The study of such stochastic approximation methods can be traced back to the pioneering work of

Robbins and Monro [RM51] and Kiefer and Wolfowitz [KW52]. Nowadays, these methodologies are

widely used to train neural networks [BLC05]. There exist many general convergence results concerning

these methods, see [MP84; BMP90; DJ93; Ben96; Del96; KY03].

Using a very general result on the almost-sure convergence of such schemes based on the existence

of Lyapunov function [DLM99, Theorem 2] and the Sard theorem [Sar42] we obtain that, almost surely,

θ? = limn→+∞ θn exists and θ? ∈ {θ : ∇L(θ) = 0}. However, since L is convex we can be even

more precise and provide quantitative non-asymptotic convergence results, see [SZ13; BM11; AFM17]

for instance. In particular, under condition, [AFM17] shows that for any n ∈ N

E[L(θ̂n)]− min
θ∈Rp

L(θ) ≤ E [(1/2) ‖θ0 − θ?‖2

−
n−1∑
k=0

δk+1〈θk − δk+1∇L(θk)− θ?, eθk(Yk+1)〉+

n∑
k=1

δ2
k ‖eθk(Yk+1)‖2

]/
n∑
k=1

δk ,

where θ̂n =
∑n
k=1 δkθk/

∑n
k=1 δk . In our case, we do not have access to independent samples from

πθ . However there exist numerous algorithms which consider Markov chains targetting πθ . More

precisely, we will consider approximation schemes of the form (2.8) et (2.9), where for any n ∈ N,

{Xn
k , k ∈ {1, . . . ,Mn+1}} is a Markov chain which converges towards a (biased) version of πθn . Using

the ergodic properties of the underlying Markov chain, we can obtain quantitative convergence results

for the general stochastic approximation algorihm, see [AFM17; DB+19].
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2.3 MCMC sampling, Langevin dynamics and convergence of
Markov chains

We now assume that X = Rd and that we are provided with a probability distribution π onto the

image space (X,B(X)). In most cases, this distribution π will be obtained using the maximum entropy

principle. Assume that the distribution π admits a density with respect to the Lebesgue measure given

for any x ∈ Rd by

(dπ/dλ)(x) = exp[−U(x)]

/∫
Rd

exp[−U(y)]dy , (2.10)

where U : Rd → R is a measurable function such that

∫
Rd exp[−U(y)]dy < +∞. By analogy with

statistical physics, we callU the potential function. We now aim at obtaining samples from π. In the con-

text of texture synthesis, these new samples will be examples of images exhibiting the same perceptual

characteristics as x0, the exemplar texture.

2.3.1 Statistical sampling

First, we recall some basic sampling methods and their limitations. Assume that d = 1. Then one can

use the inverse transform sampling given the knowledge of the cumulative distribution function. Unfor-

tunately, this method is speci�c to the case where d = 1 and requires the knowledge of the cumulative

distribution function. The rejection sampling method can be used to sample from random variables in

dimension d > 1 without the knowledge of the cumulative distribution function or the normalization

constant. However, it is often ine�cient since the percentage of rejected samples is usually high for

complex statistical problems.

The two previous methods produce samples which have exactly the same distribution as π but are

ine�cient for high dimensional problems. Instead of imposing that all the samples are distributed ac-

cording to π, we are going to consider a sequence of samples (Xn)n∈N such that the distribution of Xn

will converge towards π in a sense which will be precised later. One of the �rst methodology introduced

to deal with this problem is the Metropolis-Hastings algorithm [Met+53; Has70; Pes73]. We recall its

main ingredients here. Let R be the Markov kernel given for any x ∈ Rd and A ∈ B(Rd) by

R(x,A) = δx(A)

∫
Rd

(1− α(x, y))q(x, y)dy +

∫
A

α(x, y)q(x, y)dy ,

where for any x ∈ Rd, q(x, ·) is some density called the proposal density, α : Rd × Rd → [0, 1] is the

acceptance ratio and δx is the Dirac mass at x. We consider the following recursion: X0 ∈ Rd and for

any n ∈ N
Xn+1 = (1−Wn+1)Xn +Wn+1Yn+1 ,

with Yn+1 distributed according to q(Xn, ·) conditionally to Xn, Wn+1 a random Bernoulli variable

with parameter α(Xn, Yn+1) conditionally toXn and Yn+1. In this case, Xn is distributed according to

Rn(X0, ·) for all n ∈ N?. If the two measures µ1, µ2 given for any A ∈ B(Rd) by

µ1(A) =

∫
R2d

1A(x, y)R(x, dy)dπ(x) , µ2(A) =

∫
R2d

1A(y, x)R(x, dy)dπ(x) , (2.11)

are equal then R is reversible with respect to π, i.e. R is self-adjoint in L2(π). As a consequence, π
is invariant with respect to R, i.e. πR = π. In the case where π admits a density with respect to the

Lebesgue measure if we have for any x, y ∈ Rd

α(x, y) = min

(
1,

(dπ/dλ)(y)q(y, x)

(dπ/dλ)(x)q(x, y)

)
,
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then (2.11) is satis�ed. Note that this method does not require the knowledge of the normalization

constant. We still have to choose the proposal density q. If one chooses a symmetric proposal density

like q(x, y) = (2πσ2)−1/2 exp[−‖x − y‖2/(2σ2)] with σ > 0, then we obtain the following simpler

acceptation rate α(x, y) = (dπ/dλ)(y)/(dπ/dλ)(x). Other choices can be considered. For instance we

can choose for any x, y ∈ Rd

q(x, y) = (4πγ)−1/2 exp
[
‖y − x− γ∇f(x)‖2 /(2γ)

]
, (2.12)

where γ > 0, we recall that −U is the log-density of π, see (2.10) and U is assumed to be di�erentiable.

This proposal corresponds to the following update for all n ∈ N

Yn+1 = Xn − γ∇U(Xn) +
√

2γZn+1 , (2.13)

where (Zn)n∈N is a sequence of d-dimensional independent Gaussian random variables with zero mean

and identity covariance matrix. The new state of the Markov chain is given by Yn+1 with probability

α(Xn, Yn+1) and by Xn with probability 1 − α(Xn, Yn+1). The update (2.13) consists in one step of

gradient descent with stepsize γ, i.e. T1(x) = x− γ∇U(x), followed by the addition of some Gaussian

noise T2,n(x) = x +
√

2γZn+1. We get that Yn+1 = T2,n(T1(Xn)). Therefore, (2.13) corresponds to

one step of perturbed gradient descent where the perturbation is given by the operator T2,n. We will see

in Section 2.3.2 that (2.13) corresponds to the discretization of the continuous dynamics with invariant

measure π.

The algorithm associated with the proposal (2.12) was introduced by Besag in a commentary of

[GM94] and is now known as the Metropolis Adjusted Langevin Algorithm (MALA). The acceptance

rate depends on the position x, y ∈ Rd but also on the stepsize parameter γ > 0.

If the acceptance rate is too small (the stepsize is too big) then the Markov chain does not move

because a lot of iterations consist in remaining at the same position since they are rejected. If the accep-

tance rate is too large (the stepsize is too small) then the Markov chain is not exploratory enough. In

what follows we are going to consider non-adjusted Markov chain, i.e.Markov chains without acceptance-

reject step. The price of this simpli�cation is the loss of the knowledge of the invariant distribution

which will no longer be π but some other probability distribution. However, we will be able to control

its distance to π.

2.3.2 Discrete and continuous time Langevin dynamics

The unadjusted algorithm associated with (2.13) is called Unadjusted Langevin Algorithm (ULA) [RT96].

We obtain the following Markov chain: let X0 ∈ Rd and set for any n ∈ N

Xn+1 = Xn − γ∇U(Xn) +
√

2γZn+1 , (2.14)

where (Zn)n∈N is a sequence of d-dimensional independent Gaussian random variables with zero mean

and identity covariance matrix. For any γ > 0 we denote Rγ the Markov kernel given for any x ∈ Rd
and A ∈ B(Rd) by

Rγ(x,A) = (4πγ)−1/2

∫
A

exp[−‖x− γ∇U(x)− y‖2/(2γ)]dy

In the recent years, ULA has attracted a lot of attention from the statistical and machine learning com-

munities. Indeed, since the recursion (2.14) only requires the knowledge of∇U , ULA can be e�ciently

implemented in the case where the potential function is given by neural network outputs using auto-

matic di�erenciation. Since ULA can be adapted to handle stochastic gradient just like the stochastic
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gradient descent which is extensively used in deep learning [BLC05; Nem+09] due to its e�ciency, it

is a prominent algorithm when it comes to sampling in high dimension. In order to theoretically in-

vestigate how ULA and its variant behave in high dimensional settings, it is necessary to obtain sharp

quantitative non-asymptotic results with regards to the convergence of (Rn
γ )n∈N towards its invariant

distribution.

The �rst convergence results for this algorithm are based on the comparison of the discrete-time

process with its associated continuous-time process: the Langevin dynamics. This continuous-time

process is given by the following Stochastic Di�erential Equation

dXt = −∇U(Xt)dt+
√

2dBt , (2.15)

where (Bt)t≥0 is a d-dimensional Brownian motion. This dynamics was �rst considered by Langevin

[Lan08] who studied the dynamics of particles in �uids.

If U ∈ C1(Rd,R) and ∇U is Lipschitz continuous then for any initial condition X0, there exists a

unique strong global solution (Xt)t≥0 [IW89, Chapter 4, Theorem 2.3, Theorem 2.4]. We now assume

that there exists a unique strong global solution. We consider (Pt)t≥0 the family of Markov kernels

de�ned as follows. For all x ∈ Rd, A ∈ B(Rd) and t ≥ 0 we have Pt(x,A) = P (Xt ∈ A), where

X0 = x. Then one can show that π given by (2.10) is invariant with respect to (Pt)t≥0, see [Dur16].

We are now interested in the convergence of (Pt)t≥0 for various distances on the space of probability

measures (total variation, Wasserstein distances of order p, V -norm).

The total variation of a �nite signed measure µ, denoted ‖µ‖TV is given by

‖µ‖TV = (1/2) sup
f∈L∞(Rd,R),‖f‖∞≤1

∣∣∣∣∫
Rd
f(x)dµ(x)

∣∣∣∣ .
Let µ and ν be two probability measures on B(Rd). A probability measure ζ on B(R2d) is a transference

plan between µ and ν if for any A ∈ B(Rd), ζ(A × Rd) = µ(A) and ζ(Rd × A) = ν(A). We then

note T(µ, ν) the set of all transference plans between µ and ν. For any measurable cost function c :
Rd × Rd → [0,+∞), we de�ne

Wc(µ, ν) = inf
ζ∈T(µ,ν)

∫
Rd×Rd

c(x, y)dζ(x, y) .

If c(x, y) = ‖x− y‖p with p ≥ 1 then we denote Wp = W
1/p
c . Wp is a metric on the space of

probability measures which admit a moment of order p, see [Vil09, De�nition 6.1]. Wp is called the

Wasserstein distance of order p.

The ergodicity of (Pt)t≥0 in total variation holds under mild “curvature at in�nity” conditions

[RT96]. More precisely, if U ∈ C1(Rd,R) satis�es

inf
x∈Rd
〈∇U(x), x〉 > −∞ ,

then limt→+∞ ‖Pt − π‖TV = 0. Since [RT96], these ergodicity results have been improved and it

has been proven that, under curvature conditions, (Pt)t≥0 converges towards π for many distances

(Wasserstein of order p for p ∈ N?, total variation, V -norm). Once the convergence (geometric or sub-

geometric) of (Pt)t≥0 is established, it is possible to provide similar estimates on the convergence of

the associated chain. Note that standard weak and strong approximations [TT90; Mil95] do not provide

the expected convergence results as these results are �nite-time estimates.

Since Rγ is strongly Feller, Rγ admits an invariant probability measure under weak Foster-Lyapunov

conditions [Dou+18, Theorem 12.3.3]. The analysis of the geometric ergodicity of the discrete-time

process was established recently [DT12; DM17; DM19; Dal17b; Dal17a] for various distances on the

space of probability measures (Wasserstein of order p for p ∈ N?, total variation, V -norm).
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Figure 2.8: The Unadjusted Langevin Algorithm. In this �gure we present 104
iterations of ULA for

the sampling of a mixture of Gaussian in dimension 2. The green crosses correspond to all the iterations

of the algorithm and the blue cross corresponds to the last iteration. After 104
iterations, we remark

that the marginals corresponding to the projections on the two axes are well approximated.

2.3.3 Convergence of discretizations of di�usions

We now consider the following Stochastic Di�erential Equation which is a generalization of the one

considered in (2.15) and forms a special class of functional auto-regressive models

dXt = b(Xt)dt+ dBt , (2.16)

where b ∈ C(Rd,Rd) and X0 ∈ Rd. Similarly to the previous section we consider the Euler-Maruyama

discretization of this di�usion process. Let γ > 0. For any n ∈ N let

Xn+1 = Xn + γb(Xn) +
√
γZn+1 , (2.17)

where X0 = X0 and (Zn)n∈N a sequence of d-dimensional independent Gaussian random variables

with zero mean and identity covariance matrix. We consider the Markov kernels (Pt)t≥0 and (Rn
γ )n∈N

associated with (2.16) and (2.17). In the continuous case we say that (Pt)t≥0 is geometrically ergodic

with respect to the distance d if there exist C ≥ 0 and ρ ∈ [0, 1) such that for any x, y ∈ Rd and t ≥ 0

d(δxPt, δyPt) ≤ Cρtd(δx, δy) .

In the case where (Rn
γ )n∈N is geometrically ergodic with respect to the distance d if there exist C ≥ 0

and ρ ∈ [0, 1) such that for any x, y ∈ Rd and n ∈ N such that

d(δxRn
γ , δyRn

γ ) ≤ Cργnd(δx, δy) .

Note that it is also possible to obtain sub-geometric convergence rates under weaker assumptions than

the ones we consider in this thesis, see [But14; DFM16; FM03; VK04]. We refer to Section 4.1.1 for

a literature review on ergodicity results for Markov chains. We now present some recent works on

geometric convergence results with explicit dependency with respect to the parameters of the problem.
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We consider the following situation where the vector �eld is contractive at in�nity, i.e.there exists

R ≥ 0 such that for any x, y ∈ Rd with ‖x − y‖ ≥ R, 〈b(x) − b(y), x − y〉 ≤ −m+‖x − y‖2 where

m+ > 0. We also assume that b is Lipschitz regular and satis�es some one-sided Lipschitz condition, i.e.
〈b(x)−b(y), x−y〉 ≤ −m‖x−y‖2. In this setting, Eberle and Majka [EM19] show geometric convergence

results for the Wasserstein distance associated with cost function ca de�ned for any x, y ∈ Rd by

ca(x, y) = a1∆c(x, y) + fa(‖x− y‖) ,

where a ≥ 0 and fa explicit in [EM19, Equation (2.53)] and ∆ = {(x, x) : x ∈ Rd}. More precisely,

there exist γ̄ > 0 and C ≥ 0 such that for any γ ∈ (0, γ̄], x, y ∈ Rd and n ∈ N, we have

d(δxRn
γ , δyRn

γ ) ≤ Cργna d(δx, δy) ,

with

log(log−1(ρ−1
a )) ' −mR2/c1 , where c1 = 16−1

∫ 3/8

1/4

(1− eu−1/2)ϕϕϕ(u)du ≤ 0.00051 ,

and for any t ∈ R, ϕϕϕ(t) = (2π)−1/2 exp[−t2/2]. These results imply the geometric convergence of the

Markov chain for the Wasserstein distance W1 (also called Kantorovitch-Rubinstein distance) and for

the total variation TV.

Majka, Mijatović, and Szpruch recently extended these results to W2. More precisely, under the

same conditions as before, the authors obtain the following result: there exist C ≥ 0 and γ̄ > 0 such

that for any γ ∈ (0, γ̄], x, y ∈ Rd and n ∈ N

W2(δxRn
γ , δyRn

γ ) ≤ Cρnγ/2b (‖x− y‖+ ‖x− y‖1/2) ,

with

log(log−1(ρ−1
b )) ' LR2/(6c2) ,

where c2 = 4 min

(∫ 1/2

0

u2(1− eu−1/2)ϕϕϕ(u)du, (1− e−1)

∫ 1/2

0

u3ϕϕϕ(u)du

)
≤ 0.0072 ,

The results presented in [EM19; MMS18] are based on the discretization of the arguments used

by Eberle in [Ebe16]. Doing so, the auhtors obtain similar convergence results for the discrete-time

processes associated with the continuous-time processes under study in [Ebe16]. Indeed, if we set

cc(x, y) = fc(‖x− y‖) for any x, y ∈ Rd, where fb is de�ned [Ebe16, Equation (2.6)], Eberle [Ebe16]

obtain that for any x, y ∈ Rd and t ≥ 0

Wcc(δxPt, δyPt) ≤ ρtccc(x, y) ,

with

log(log−1(ρ−1
b )) ' −mR2/4 .

This result implies geometric convergence rate of (δxPt)t≥0 in Wasserstein distance W1 with rate ρb.
Luo and Wang [LW16b] extend these convergence results for Wasserstein distances of order p, Wp,

with p ≥ 1. We summarize these results in Table 2.1. This table will be completed in Section 4.1, in

which we derive new convergence rates (valid for both discrete-time and continuous-time processes)

using minorization and Foster-Lyapunov drift conditions.
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Reference Wasserstein distance Control distance (D) (C) (TN)

[EM19] ‖ · ‖TV 1∆c(x, y) + ‖x− y‖ X 7840
W1 ‖x− y‖ X 4536

[MMS18] W2 ‖x− y‖+ ‖x− y‖1/2 X 332
[Ebe16] W1 ‖x− y‖ X 1

[LW16b] Wp ‖x− y‖+ ‖x− y‖1/p X 1− m+/m

Table 2.1: Every line of the table reads as follows. Suppose “Wasserstein distance” reads Wc1
and

“distance bound” reads c2(x, y) then: if (D) is checked, there existC ≥ 0 and ρ ∈ [0, 1) such that for any

x, y ∈ Rd and k ∈ N, Wc1
(δxRk

γ , δyRk
γ) ≤ Cρkγc2(x, y) for γ small enough. If (C) is checked, there

exist C ≥ 0 and ρ ∈ [0, 1) such that for any x, y ∈ Rd and t ≥ 0, Wc1(δxPt, δyPt) ≤ Cρtc2(x, y).

In addition, if the normalized rate “(NR)” reads β, we have −4 log(log−1(ρ−1))/(mR2) ' β (with m

replaced by −L in the case of [MMS18]). Note that for the sake of simplicity we omit the dependency

with respect to γ̄ in the present analysis. The exact distances used in papers with which we compare

our results are given in [EM19, Equation (2.53)], [MMS18, Equation (2.11)], [Ebe16, Equation (2.6)] and

[LW16b, Equation (2.4)].

2.4 Organization and contributions

This thesis is divided into three main parts: an a contrario approach of spatial redundancy, a study

of sampling and inference in high dimension with an application to texture synthesis. This separa-

tion is mainly thematic: statistical test theory and random �elds, Markov chain theory and stochastic

optimization, information theory and applications to image processing.

In a �rst part we present an algorithm based on a contrario methods for the detection of spatial

redundancy from a theoretical study of the distribution of similarity function outputs for Gaussian

random �elds.

Second, we prove ergodicity results for a special class of functional autoregressive models. We then

present a stochastic optimization algorithm: Stochastic Optimization with Unadjusted Langevin (SOUL)

based on the Euler-Maruyama discretization of the Langevin dynamic.

Finally we present an application of these results for the problem of exemplar-based texture synthe-

sis. We obtain a target distribution applying new results on the maximum entropy principle. We then

proceed to sample from this distribution applying the SOUL algorithm.

2.4.1 Chapter 3, Section 3.1

In Section 3.1, we introduce a notion of spatial redundancy using similarity functions. These functions

are de�ned on patches and allow for a local evaluation of this similarity. We then distinguish between

two cases: the autosimilarity A (a patch in an image is similar to other patches in the same image) and

the template similarity T (a patch in an image is similar to other patches in another image).

De�nition 2.4.1. Let x and y be two functions de�ned on E ⊂ R2 or Z2. Let w ⊂ E be a patch domain.
When it is de�ned we consider the autosimilarity with patch domain w and o�set t ∈ R2 or Z2 such that
t+ w ⊂ E given by

A (x, t,w) = s (Pw(x), Pw(τ−t(x))) ,

where s is a similarity function s : Vw × Vw → R (for instance ‖ · ‖p with p ≥ 1). Similarly we consider
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the template similarity
T (x, y, t,w) = s (Pw(y), Pw(τ−t(x))) .

If these two notions coincide in a deterministic setting, they are di�erent if we assume that the

template image is �xed and that the other images are realizations of a certain random �eld de�ned

over Z2
or R2

. In this context, autosimilarity and template similarity are real-valued random variables.

As announced in Section 2.1.2, in order to apply the a contrario method to detect spatial redundancy,

we need to approximate A (U, t,w) and T (U, x, t,w) in the case where x is an image and U is the

background model, i.e. in the case where U is a Gaussian random �eld. We begin with limit theorems in

the case where the size of patches grows towards in�nity and the underlying random �eld is Gaussian,

stationary with long-range independence.

Theorem 2.4.2. Let (mk)k∈N and (nk)k∈N be two non-decreasing sequences of N and (wk)k∈N such that
for any k ∈ N,wk = J0,mkK×J0, nkK. LetU be a Gaussian random �eld such thatCov[U(p1)U(p2)] = 0
for ‖p1 − p2‖∞ large enough. For the following similarity functions:

• s(x, y) = ‖x− y‖p with p ∈ [0,+∞),

• s(x, y) = ‖x− y‖pp with p ∈ [0,+∞),

• s(x, y) = −〈x, y〉,

• s(x, y) = −〈x, y〉/(‖x‖ ‖y‖),

there exist µ, σ2 non-negative and de�ned on Z2, and (αk)k∈N a positive sequence such that for any t ∈
Z2\ {0} we have

(a) limk→+∞ α−1
k A (U, t,wk) =

a.s
µ(t) ;

(b) limk→+∞ |wk|1/2
(
α−1
k A (U, t,wk)− µ(t)

)
=
L
N
(
0, σ2(t)

)
.

This theorem can be extended to the case of template similarity. Note that the Gaussian assump-

tion can be lifted but allows for explicit computations of expectations and variance in the central limit

theorem.

In the case where the similarity function is given by the squared `2 norm, then we obtain a non -

asymptotic expression for the autosimilarity which consists in a linear combination of independent

χ2(1) random variables where the coe�cients of this linear combination are given by the eigenvalues

of some Toeplitz and symmetric matrix. We then propose an algorithm which e�ciently approximates

this distribution using a moment method of order 3 as well as an approximation of the eigenvalues:

• we estimate the eigenvalues of the Toeplitz symmetric matrix using the eigenvalues of its projec-

tion onto the set of circulant matrices, whose eigenvalues are obtained using the Fourier trans-

form,

• once the coe�cients are approximated, we use the WoodF [Woo89] method which is a third order

moment method. The approximating distribution is a Fischer-Snedecor distribution.

The precision of these approximation is illustrated in Figure 2.9. We then derive a spatial redundancy

detection algorithm based on patches which rely on the a contrario method. This �rst section is adapted

from the paper “Redundancy in Gaussian random �elds” accepted at ESAIM: Probability and Statistics.
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(a) 1513s, nd = 52 (b) 200s, nd = 116 (c) 4.77s, nd = 50

Figure 2.9: Spatial redundancy detection. In each image the green patch corresponds to the tar-

get patch in the similarity functions. In (a) we use the a contrario approach with a Gaussian random

�eld background model in order to detect the redundancy. No approximation is made in this case and

the computing time is extensive. In (b) we approximate the eigenvalues of the Toeplitz matrix using

the projection method. In (c) we combine the matrix projection with moment method to obtain a fast

method.

2.4.2 Chapter 3, Section 3.2

In Section 3.2, we �rst introduce an a contrario framework for the detection of autosimilarity in natural

images. We then give some applications of the algorithm described in Section 3.1. In order to use a

contrario methods it is necessary to obtain estimates of the type P(A (U, t,w) ≤ α) where A is the

autosimilarity function, U the random �eld (the background model of the a contrario method) and t
is some o�set which allows for the comparison between the patch with support w and the patch with

support w + t (where the sum should be understood in the Minkowski sense). This probability can be

e�ciently estimated using the algorithm of Section 3.1. Once the similarity functions are de�ned and the

statistical testing framework is set we exploit the notion of spatial redundancy in the context of image

processing. First we provide a modi�cation of the celebrated Non-Local Means, NL-means, algorithm.

We replace the threshold (or variance) parameters in the original algorithm by a number of false alarms

parameter. This new parameter is robust with respect to the choice of image and noise level. We show

how this simple modi�cation provides better results than a classical NL-means algorithm and prove

that, using the a contrario framework, we can obtain estimates on the reconstruction of the image in

probability. The second application of our algorithm is periodicity detection.

Given an image using the algorithm described in Section 3.1, we obtain a binary image such that a

pixel has a value of 1 if the patch centered around this position is detected and 0 otherwise. We then

consider the graph associated with this binary map as well as a lattice hypothesis. We note V ∈ Rp×2

the edges of the graph, where p ∈ N is the number of edges, and consider the following model.

De�nition 2.4.3. Let V be a random variable taking values in Rp×2 with p ∈ N. We say that V satis�es
the approximate lattice hypothesis if there exist a basis B = (b1, b2) and σ > 0 such that for any ` ∈
{1, . . . , p}, there exists (m`, n`) ∈ Z2 such that

L(V`) = L(m`b1 + n`b2 + σZ`) ,

where (Z`)`∈{1,...,p} is a family of independent centered Gaussian variables with identity covariance ma-
trix. We noteM = (m`, n`)`∈{1,...,p}.

Using classical inference tools such as the Maximum A Posteriori we are able to identify the basis
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(a) σ = 10 (b) σ = 20 (c) σ = 40

Figure 2.10: In�uence of the parameters on the PSNR. In this �gure we present, for 3 di�erent noise

levels, the evolution of the PSNR for di�erent values of the �ltering parameter in the original NL-means

algorithm [DAG10]. The orange line corresponds to the PSNR we obtain using our algorithm, which

is a modi�cation of the original NL-means algorithm.

Patch

similarity

detection

Lattice

detection

Figure 2.11: Lattice estimation. The �rst step corresponds to the detection of redundant patches as

illustrated in Figure 2.9. The second part of the algorithm corresponds to the estimation of the basis

of the lattice using a MAP algorithm, see Theorem 2.4.4. In order to illustrate the obtained result, we

overlay a red square of the size of the original patch on each detected point of the lattice.

vectors of the underlying module. These vectors fully characterize the underlying lattice (if it exists).

The full algorithm is described in Figure 2.11.

Theorem 2.4.4. For any σ > 0, (Bn)n∈N and (Mn)n∈N converge in a �nite number of iterations.

This algorithm is successfully applied on cristallography images and also permits to classify texture

images based on their degree of periodicity. This section is adapted from “Patch redundancy in images:

a statistical testing framework and some applications” published in SIAM Imaging Sciences.

2.4.3 Chapter 4, Section 4.1

After having proposed a de�nition for the spatial redundancy and a statistical framework to identify it

in natural images we turn to the problem of sampling images which exhibit such redundancy as well as

complex structures. In order to do so we must develop algorithms whose complexity does not explode

with the dimension even in a non-convex case. We conduct this study for a speci�c case of functional

auto-regressive models in Section 4.1. The goal of this section is to study Markov chains of the form

Xn+1 = Xn + γb(Xn) +
√
γZn+1 . (2.18)
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Our main result is the following.

Theorem 2.4.5. Assume that there exist m ∈ R, m+ > 0 and L, R ≥ 0 such that for any x, y ∈ Rd

‖b(x)− b(y)‖ ≤ L ‖x− y‖ , 〈b(x)− b(y), x− y〉 ≤ −m ‖x− y‖2 ,

and if ‖x− y‖ ≥ R,
〈b(x)− b(y), x− y〉 ≤ −m+ ‖x− y‖2 .

Then, there exist γ̄ > 0, Dγ̄,1, Dγ̄,2, Eγ̄ ≥ 0 and λγ̄ , ργ̄ ∈ [0, 1) with λγ̄ ≤ ργ̄ , such that γ ∈ (0, γ̄],
x, y ∈ Rd and k ∈ N

Wc(δxRk
γ , δyRk

γ) ≤ λkγ/4γ̄ [Dγ̄,1c(x, y) +Dγ̄,21∆c(x, y)] + Eγ̄ρ
kγ/4
γ̄ 1∆c(x, y) ,

where c(x, y) = 1∆c(x, y)(1 + ‖x− y‖ /R), ∆ = {(x, x) : x ∈ Rd} and Rγ is the Markov kernel
associated with (2.18).

In addition, we obtain that log(log(ρ−1
γ̄ )) is of order mR2/(4(1 − emR

2

)) and does not depend on

the dimension d. This result improves convergence results recently obtained [EM19]. As a corollary

we obtain the geometric ergodicity of ULA but also the ergodicity of the projected algorithm associated

with the following recusion: X0 ∈ Rd an for any n ∈ N,

Xn+1 = ΠK[Xn + γb(Xn) +
√
γZn+1] , (2.19)

where ΠK is the orthogonal projection onto the compact and convex set K. Considering (2.19), a se-

quence of compact and convex sets (Kn)n∈N such that

⋃
n∈N Kn and a sequence of stepsizes (γn)n∈N

such that limn γn = 0, we extend the results we obtain in the discrete-time setting to the case contin-

uous dynamic. More precisely, we obtain that, under the same conditions as the ones derived in the

discrete-time setting, for any x, y ∈ Rd and t ≥ 0

d(δxPt, δyPt) ≤ Cρtd(δx, δy) ,

with C ≥ 0, ρ ∈ [0, 1) and d is either the total variation distance or the Wasserstein distance of order

1, W1. This result extends the convergence rates obtained for the Wasserstein distance of order 1, W1,

to the total variation norm [Ebe16]. We complete Table 2.1 with the consequences of Theorem 2.4.5.

Note that contrary to most of the recent approaches [EM19; EGZ18; EGZ19; Ebe16; MMS18; LW16b;

Che+18] which rely on the use of an appropriate metric, our proof only uses classical tools for the

study of Markov chains (minorization conditions and Foster-Lyapunov drift conditions). This work is

adapted from “Convergence of di�usion and their discretizations: from continuous to discrete processes

and back” submitted to the Annals of the Henri Poincaré Institute.

2.4.4 Chapter 4, Section 4.2

Once we have derived sharp convergence estimates for ULA and its variants, we turn to the task of

stochastic optimization and propose an algorithm with ULA as an intermediate sampling step. Indeed

in Section 4.2 we consider the following problem: given a di�erentiable objective function such that for

any θ ∈ Rp, ∇f(θ) =
∫
Rd Hθ(x)dπθ(x), how to �nd a point θ? which minimizes this function? This

study is motivated by applications in the context of regularization parameters estimation (denoising,

deblurring and spectral unmixing) and in the context of parameter estimation in maximum entropy

models as we will see in the next section. We propose a stochastic gradient descent algorithm in which

the gradient is estimated by a Monte-Carlo Markov chain at each iteration. If the underlying Markov
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Reference Wasserstein distance Control distance (D) (C) (TN)

[EM19] ‖ · ‖TV 1∆c(x, y) + ‖x− y‖ X 7840
W1 ‖x− y‖ X 4536

[MMS18] W2 ‖x− y‖+ ‖x− y‖1/2 X 332
[Ebe16] W1 ‖x− y‖ X 1

[LW16b] Wp ‖x− y‖+ ‖x− y‖1/p X 1− m+/m

‖ · ‖TV 1∆c(x, y) + ‖x− y‖ X X (1− e2mR2

)−1

This thesis W1 ‖x− y‖ X X idem

Wp ‖x− y‖+ ‖x− y‖1/α X X idem

chain is ULA then the algorithm is called SOUL (Stochastic Optimization with Unadjusted Langevin).

In fact, this optimization procedure can be extended to any ergodic Markov kernel. In this case, the

algorithm is called SOUK (Stochastic Optimization with Unadjusted Kernel). Using recent results from

the optimization literature [AFM17], we obtain explicit bounds (both almost surely and in expectation)

with regards to the distance between (f(θ̄n))n∈N and minRp f , in the case where f is convex and for

any n ∈ N

θ̄n =
n∑
k=1

δkθk

/
n∑
k=1

δk ,

and (δk)k∈N is the sequence of stepsizes used in the stochastic gradient algorithm.

Algorithm 2 Stochastic Optimization via Unadjusted Langevin (SOUL)

1: Inputs:
θ0 ∈ K, X0

0 ∈ Rd, (γn)n∈N, (δn)n∈N, (mn)n∈N, N
2: for n ∈ {1, . . . , N − 1} do
3: if n ≥ 1 then
4: Xn

0 ← Xn−1
mn−1

5: end if
6: for k ∈ {0, . . . ,mn − 1} do
7: Znk+1← sample N(0, Id)
8: Xn

k+1← Xn
k − γn∇x log πθ(X

n
k ) +

√
2γnZ

n
k+1

9: end for
10: ∆θn ← 1

mn

∑mn
k=1Hθn(Xn

k )
11: θn+1← ΠK[θn + δn+1∆θn ]
12: end for
13: Outputs:

θ̂N =
{∑N

n=1 δnθn

}/{∑N
n=1 δn

}
Theorem 2.4.6. Assume that f : Rp → R is di�erentiable, convex and if there exists L ≥ 0 such that
for any θ1, θ2 ∈ Rp,

‖∇f(θ1)−∇f(θ2)‖ ≤ L ‖θ1 − θ2‖ .

Let (δn)n∈N and (γn)n∈N be two decreasing sequences of non-negative real numbers and (mn)n∈N be a
sequence of integers such that

+∞∑
n=0

δn+1 = +∞ ,

+∞∑
n=0

δn+1γ
1/2
n < +∞ ,

+∞∑
n=0

δn+1/(mnγn) < +∞ .
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Let {(Xn
k )k∈{0,...,mn} : n ∈ N} and (θn)n∈N be given by Algorithm 2. Assume that the conditions of

Theorem 2.4.5 are satis�ed for b = ∇ log πθ uniformly in θ ∈ K. Then for supn∈N(δn + γn) small enough
we have

(a) (θn)n∈N converges a.s. towards θ? ∈ arg minK f ;

(b) In addition, there exists C ≥ 0 a.s. such that for any n ∈ N?{
n∑
k=1

δkf(θk)

/
n∑
k=1

δk

}
−min

K
f ≤ C

/(
n∑
k=1

δk

)
.

This theorem describes the asymptotic behavior of (θ̂N )N∈N in Algorithm 2. We can also provide

non-asymptotic results for E[
∑n
k=1 δkf(θk)/

∑n
k=1 δk]. These results generalize and extend the ones

obtained in [AFM17].

This section is adapted from “E�cient stochastic optimisation by unadjusted Langevin Monte Carlo.

Application to maximum marginal likelihood and empirical Bayesian estimation” submitted at Statistics

and Computing. An extension of this algorithm to the case where f is no longer di�erentiable and

applications for the estimation of the regularization parameters in Empirical Bayes models can be found

in “Maximum likelihood estimation of regularisation parameters in high-dimensional inverse problems:

an empirical Bayesian approach” submitted at SIAM Imaging Sciences.

2.4.5 Chapter 5, Section 5.1

In Section 5.1, we present an application of the maximum entropy principle for exemplar-based texture

synthesis. We extend existing results on the existence and uniqueness results on maximum entropy

models in the case where the space is no longer �nite. In particular, we give explicit conditions on the

constraint functions of the model and on the reference probability measure for the maximum entropy

distribution to exist. If the maximum entropy model exists, its distributionπ? is given by (dπ?/dµ)(x) ∝
exp[−〈θ?, F (x)〉] where µ is a reference probability measure, θ? ∈ Rp andF : Rd → Rp is a constraint.

Proposition 2.4.7. Assume that there exist α ≥ 0, α′ > α such that

• F is continuous and there exists Cα ≥ 0 such that supx∈Rd{‖F (x)‖(1 + ‖x‖α)−1} ≤ Cα < +∞,

• There exists η > 0 such that
∫
Rd exp[η‖x‖α′ ]dµ(x) < +∞.

Then, the following results hold:

(a) If for any θ ∈ Rp with ‖θ‖ = 1 we have µ({x ∈ Rd : 〈F (x), θ〉 < 0}) > 0, then the solution of the
maximum entropy problem is given by π? where for any x ∈ Rd

(dπ?/dµ)(x) = exp [−〈θ?, F (x)〉] /
∫
Rd

exp [−〈θ?, F (y)〉] dµ(y) ,

and where θ? is the solution to the following convex optimization problem.

min
θ∈Rp

{∫
Rd

exp[−〈θ, F (x)〉]dµ(x)

}
.

(b) In particular Proposition 2.4.7-(a) is satis�ed ifµ(A) > 0 for allA ⊂ Rd open, and ifF is continuous and
there exists x ∈ F−1({0}) such thatF is di�erentiable with respect to x and det(DF (x)DF (x)>) > 0.
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(a) (b) (c) (d)

Figure 2.12: Some examples of texture synthesis. The original images are presented in (b) and (d)

and the synthesis results in (a) and (c).

(a) (b) (c) (d)

Figure 2.13: Some texture synthesis algorithms. In (a) we present the exemplar texture. In (b) we

show the obtained synthesis using [PS00]. In (c) we use the method of [GEB15] in order to generate the

texture image. In (d) we present our results.

In this case we show that the in�nite-dimensional convex optimization problem can be reframed

as a �nite-dimensional convex optimization problem using a generalization of Lagrangian duality. We

obtain that θ? is such that L(θ?) is the minimum of the log-partition function L : Rp → R given

for any θ ∈ Rp by L(θ) =
∫
Rd exp[−〈θ, F (x)〉]dµ(x). The necessary condition for the existence of a

maximum entropy model is easier to check than the one given in [Csi75]. If the constraints are given

by a neural network then we provide a certi�cate to check that such a model exists.

2.4.6 Chapter 5, Section 5.2

We can then apply the SOUL algorithm to the log-partition in order to approximate θ?. Note that the

�rst formulation of the maximum entropy texture-synthesis heuristics can be found in the work of Zhu,

Lu and Mumford [ZWM98] and that the use of the Langevin dynamics in this case was �rst suggested in

[LZW16]. Finally, in Section 5.2 we present our results in the case of texture synthesis. More precisely,

we establish links between our approach and the microcanonical models recently proposed by [BM18],

see Proposition 2.4.8.

Proposition 2.4.8. Assume that there exists η > 0 such that
∫
Rd exp[η‖x‖2]dµ(x) < +∞ and F are

given by a neural network which satis�es some coercivity condition, see Proposition 5.2.3 for a precise state-
ment. Then, there exists ε0 > 0 such that for any ε ∈ (0, ε0), the maximum entropy model πε ex-
ists. In addition, if µ(F−1({0})) > 0, then limε→0 πε = π∞, then for any x ∈ Rd, (dπ∞/dµ)(x) =
1F−1({0})(x)/µ(F−1({0})).
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Figure 2.14: Convergence of the parameters. In (a) we display the normalized errror between (θn)n∈N
(blue) and the optimal weights as well as the error between (θ̂n)n∈N (red) and the optimal weights. In

(b) we present a sample from the model for n = 100000 and in (c) we present the exemplar texture.

We check the validity of the SOUL algorithm in two settings:

• Gaussian texture synthesis,

• structured texture synthesis.

In the case of the Gaussian texture synthesis the constraints functions are given by the autocor-

relation function. Therefore, we are looking for texture with the same autocorrelation as some target

texture. We show that this model is Gaussian, compute its covariance matrix and show that we indeed

estimate correctly this covariance matrix, see Figure 2.14.

We then turn to the more challenging case where the constraints are given by a pretrained convolu-

tional neural network for exemplar-based texture synthesis. We obtain results which are comparable to

the state-of-the-art methods, see Figure 2.13. In Figure 2.12 we complete Figure 5.1. We study the inno-

vation capacity of our algorithm as well as some variants and we present an extension of this algorithm

for style transfer. This work is adapted from “Maximum entropy methods for texture synthesis: theory

and practice” submitted at SIMODS and “Macrocanonical models for texture synthesis” presented at

Scale Space and Variational Methods in Computer Vision.
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Notation

Let A, B and C three sets with C ⊂ B and f : A→ B, we set f←(C) = {x ∈ A : f(x) ∈ C}. For any

A ⊂ B and f : B→ C we denote f |A the restriction of f to A. Let d ∈ N? and 〈·, ·〉 be a scalar product

over Rd, and ‖ · ‖ be the corresponding norm. The complement of a set A ⊂ Rd, is denoted by Ac
. For

any A ∈ Rd, we denote int(A) its interior, Ā its closure, ∂A = Ā∩ int(A)c
its boundary. Let A ⊂ Rd and

R ≥ 0, we denote diam(A) = sup(x,y)∈A2 ‖x− y‖ and ∆A,R = {(x, y) ∈ A2 : ‖x− y‖ ≤ R} ⊂ R2d

and ∆A = ∆A,0 = {(x, x) : x ∈ A}.
B(Rd) denotes the Borel σ-�eld ofRd, F(Rd,Rp) the set of allRp-valued Borel measurable functions

on Rd. If p = 1, we write F(Rd,Rp) = F(Rd) and de�ne for f ∈ F(Rd),

‖f‖∞ = inf{t ≥ 0 : λ({x ∈ Rd : |f(x)| > t}) = 0} ,

where λ is the Lebesgue measure over (Rd,B(Rd)). An open ball of Rd for the Euclidean distance with

center x0 ∈ Rd and radius r > 0 is denoted B(x0,Rd).

For µ a probability measure on (Rd,B(Rd)) and f ∈ F(Rd,Rp), a µ-integrable function, denote by

µ(f) the integral of f with respect to (w.r.t.) µ, i.e. µ(f) =
∫
Rd f(x)dµ(x). If f = 1A for some measur-

able set A then we denote µ(1A) = µ(A). If µ is the Lebesgue measure then we denote Vol(A) = λ(A).

Let f ∈ F(Rd) then for any probability measure µ on (Rd,B(Rd)) we denote by f]µ the pushforward

measure of µ by f .

Let U be an open set of Rd. We denote by Ck(U,Rp) the set of Rp-valued k-continuously di�er-

entiable functions. The di�erential of f ∈ Ck(U,Rp) is denoted df and its Jacobian matrix Df . Let

Ck(U) stand for Ck(U,R). Let f : U → R, we denote by ∇f , the gradient of f if it exists. f is said to

be m-strongly convex with m ≥ 0 if for all x, y ∈ Rd and t ∈ [0, 1],

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− (m/2)t(1− t) ‖x− y‖2 .

We recall that if f : U → R is twice di�erentiable at point a ∈ Rd, its Laplacian is given by ∆f(a) =∑d
i=1 ∂

2f(a)/∂x2
i .

For any α > 0, let Pα be the set of probability measures over B(Rd) such that

∫
Rd ‖x‖

α
dπ(x) <

+∞. Let (Ω,G,P) be a probability space, and

L2(Ω,G) = {X : X is a real-valued random variable on Ω such E[X2] < +∞} .

Let µ, ν be two probability measures on (Rd,B(Rd)). We write µ � ν if µ is absolutely continuous

w.r.t. ν and dµ/dν an associated density.

Let M(X ) be the set of �nite signed measures over (X,X ) and µ ∈M(X ). Let V ∈ F(Rd, [1,+∞)).

We de�ne the V -norm for any f ∈ F(X,R) and the V -total variation norm for any µ ∈ M(X ) as

follows

‖f‖V = ‖f/V ‖∞ , ‖µ‖V = (1/2) sup
f∈F(X,R),‖f‖V ≤1

∣∣∣∣∫
Rd
f(x)dµ(x)

∣∣∣∣ .
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In the case where V = 1 this norm is called the total variation norm of µ. Let µ, ν be two probability

measures over X , i.e. two elements of M(X ) such that µ(X) = ν(X) = 1. A probability measure ζ
over X⊗2

is said to be a transference plan between µ and ν if for any A ∈ X , ζ(A × X ) = µ(A)
and ζ(X × A) = ν(A). We denote by T(µ, ν) the set of all transference plans between µ and ν. Let

c ∈ F(X× X, [0,+∞)). We de�ne the Wasserstein metric/distance Wc(µ, ν) between µ and ν by

Wc(µ, ν) = inf
ζ∈T(µ,ν)

∫
X2

c(x, y)dζ(x, y) .

Note that the term Wasserstein metric/distance is an abuse of terminology since Wc is only a real

metric on a subspace of probability measures on X under additional conditions on c, e.g. if c is a metric

on Rd, see [Vil09, De�nition 6.1]. If c(x, y) = ‖x− y‖p for p ≥ 1, the Wasserstein distance of order p is

de�ned by Wp = W
1/p
c . Assume that c(x, y) = 1∆c

X
(x, y)W (x, y) with W ∈ F(X×X, [0,+∞)) such

that W is symmetric, satis�es the triangle inequality, i.e. for any x, y, z ∈ X, W (x, z) ≤ W (x, y) +
W (y, z), and for any x, y ∈ X,W (x, y) = 0 implies x = y. Then c is a metric overX2

and the associated

Wasserstein cost, denoted by Wc, is an extended metric. Note that if W (x, y) = {V (x) + V (y)} /2
then Wc(µ, ν) = ‖µ− ν‖V , see [Dou+18, Theorem 19.1.7].

The Kullback-Leibler divergence, or relative entropy, of µ from ν is de�ned by

KL (µ|ν) =

{∫
Rd

dµ
dν (x) log

(
dµ
dν (x)

)
dν(x) if µ� ν ,

+∞ otherwise .

If µ and ν are probability measures, the relative entropy takes values in [0,+∞].

Let Z be a σ-�eld. We say that P : X×Z → [0,+∞) is a Markov kernel if for any x ∈ X, P(x, ·) is

a probability measure over Z and for any A ∈ Z , P(·,A) ∈ F(X, [0,+∞)). Let Y ∈ B(Rd) be equipped

with Y the trace of B(Rd) over Y, P : X × Z and Q : Y × Z be two Markov kernels. We say that

K : X× Y → Z⊗2
is a Markov coupling kernel if for any (x, y) ∈ X× Y, K((x, y), ·) is a transference

plan between P(x, ·) and Q(y, ·).

We take the convention that

∏n
k=p = 1 and

∑n
k=p = 0 for n, p ∈ N, n < p. If x, y ∈ Cd with

d ∈ N we de�ne the periodic convolution between x and y and denote z = x ∗ y ∈ Cd, the element

z such that for any i ∈ {0, . . . , d − 1}, z(i) =
∑d−1
k=0 x(k)y(i − k), where x and y are extended over

Z by periodicity. We also denote x̌ ∈ Cd such that for any i ∈ {0, . . . , d − 1}, x̌(i) = x(−i) and x
is extended over Z by periodicity. For any x ∈ Cd, F(x) (respectively F−1(x) ∈ Cd) stands for the

Fourier transform (respectively the inverse Fourier transform), de�ned for any j ∈ {0, . . . , d− 1} by

F(x)(j) =

d−1∑
k=0

x(j)e−2iπjk/d , F−1(x)(j) = d−1
d−1∑
k=0

x(j)e2iπjk/d .

Note that we haveF−1(F(x)) = x. For any z ∈ C, we denote by R(z) the real part of z and by I(z) its

imaginary part. We denote by An2,n1(R) the vector space of a�ne operators from Rn1
to Rn2

and for

any A ∈ An2,n1
, Ã is the linear part of A. Finally, Sd(R) is the space of d× d real symmetric matrices.
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Chapter 3

Spatial redundancy and a contrario
methods

3.1 Redundancy in Gaussian random �elds

3.1.1 Abstract

Stochastic geometry [Chi+13; Bad13; SW08] aims at describing the arrangement of random structures

based on the knowledge of the distribution of geometrical elementary patterns (point processes, random

closed sets, etc.). When the considered patterns are functions over some topological space, we can study

the geometry of the associated random �eld. For example, centering a kernel function at each point of

a Poisson point process gives rise to the notion of shot-noise random �eld [Dal71; Ric77; Ric44]. We

can then study the perimeter or the Euler-Poincaré characteristic of the excursion sets among other

properties [BD16; AST10]. In the present work we will focus on the geometrical notion of redundancy

of local windows in random �elds. We say that a local window in a random �eld is redundant if it

is “similar” to other local windows in the same random �eld. The similarity of two local windows is

de�ned as the output of some similarity function computed over these local windows. The lower is the

output, the more similar the local windows are.

Identifying such spatial redundancy is a fundamental task in the �eld of image processing. For

instance, in the context of denoising, Buades et al. in [BCM05], propose the Non-Local means algorithm

in which a noisy patch is replaced by a weighted mean over all similar patches. Other examples can

be found in the domains of inpainting [CPT04] and video coding [JJ81]. Spatial redundancy is also of

crucial importance in exemplar-based texture synthesis, where we aim at sampling images with the same

perceptual properties as an input exemplar texture. If Gaussian random �elds [Wij91; GGM11; Lec15;

Xia+14] give good visual results for input textures with no, or few, spatial redundancy, they fail when it

comes to sampling structured textures (brick walls, fabric with repeated patterns, etc.). In this case, more

elaborated models are needed [GEB15; LZW16]. In this work, we derive explicit probability distribution

functions for the random variables associated with the output of similarity functions computed on local

windows of random �elds. The knowledge of such functions allows us to conduct rigorous statistical

testing on the spatial redundancy in natural images.

In order to compute these explicit distributions we will consider speci�c random �elds over speci�c

topological spaces. First, the random �elds will be de�ned either over R2
(or T2

, where T2
is the 2-
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dimensional torus, when considering periodicity assumptions on the �eld), or over Z2
(or (Z/(MZ))

2
,

with M ∈ N when considering periodicity assumptions on the �eld). Each of these spaces is embedded

with its classical topology. The �rst case is the continuous setting, whereas the second one is the discrete
setting. In image processing, the most common framework is the �nite discrete setting. The discrete

setting (Z2
) can be used to de�ne asymptotic properties when the size of images grows or when their

resolution increases [BM18], whereas continuous settings are needed in speci�c applications where,

for instance, rotation invariant models are required [UTY95]. All the considered random �elds will

be Gaussian. This assumption will allow us to explicitly derive moments of some similarity functions

computed on local windows of the random �eld. Once again, another reason for this restriction comes

from image processing. Indeed, given an input image, we can compute its �rst and second-order statis-

tics. Sampling from the associated Gaussian random �eld gives examples of images which preserve the

covariance structure but lose the global arrangement of the input image. Investigating redundancy of

such �elds is a �rst step towards giving a mathematical description of this lack of structure.

Finding measurements which correspond to the ones of our visual system is a long-standing prob-

lem in image processing. It was considered in the early days of texture synthesis and analyzed by Julesz

[Yel93; Jul81; Jul62] who formulated the conjecture that textures with similar �rst-order statistics (�rst

conjecture) or that textures with similar �rst and second-order statistics (second conjecture) could not

be discriminated by the human eye. Even if both conjectures were disproved [DF81], the work of Gatys

et al. [GEB15] suggests that second-order statistics of image features are enough to characterize a broad

range of textures. To compute features on images we embed them in a higher dimensional space. This

operation can be conducted using linear �ltering [PS00] or convolutional neural networks [GEB15] for

instance. Some recent works examine the response of convolutional neural network to elementary ge-

ometrical pattern [New+18], giving insight about the perceptual properties of such a lifting. In the

present work, we focus on another embedding given by considering a square neighborhood, called a

patch, around each pixel. This embedding, is exploited in many image processing tasks such as inpaint-

ing [HS14], denoising [BCM05; LBM13], texture synthesis [EL99; EF01; LB06; RDM16], etc.

In the special case where the similarity functions are given by the `2 norm, explicit distributions

can be inferred even in the non-asymptotic case. Calculating this distribution exactly is demanding

since it requires the knowledge of some covariance matrix eigenvalues as well as an e�cient method

to compute cumulative distribution functions of quadratic forms of Gaussian random variables. We

propose an e�cient algorithm to approximate this distribution. In [Bor+19], this algorithm is applied

to denoising and periodicity detection problems in an a contrario framework.

Section 3.1 is organized as follows. We recall basic notions of Gaussian random �elds in general

settings in Section 3.1.2. Similarity functions to be evaluated on these random �elds, as well as their

statistical properties, are described in Section 3.1.2. We give the asymptotic properties of these similarity

functions in Gaussian random �elds in the discrete setting in Section 3.1.3 and in the continuous setting

in Section 3.1.3. It is shown in Section 3.1.3 that the Gaussian asymptotic approximation is valid only for

large patches. In order to overcome this problem we consider an explicit formulation of the probability

distribution function for a particular similarity function: the square `2 norm. The computations are

conducted in the �nite discrete case in Section 3.1.4. We also derive an e�cient algorithm to compute

these probability distribution functions. Similar non-asymptotic expressions are given in the continuous

case in Section 3.1.4. Technical proofs and additional results on multidimensional central limit theorems

are presented in the Appendices.

62



3.1.2 Similarity functions and random �elds

Gaussian random �elds

Let (Ω,F ,P) be a probability space. Following [Adl81], a random �eld over a topological space E is

de�ned as a measurable mapping U : Ω→ RE
. Thus, for all ω in Ω, U(ω) is a function over E and, for

any ω ∈ Ω and p ∈ E, U(ω)(p) is a real number. For the sake of clarity we will omit ω in what follows.

We say that a random �eld U is of order r > 0 if for any �nite sequence (p1, . . . , pn) ∈ En with

n ∈ N, the vector V = (U(p1), . . . , U(pn)) satisfy E [‖V ‖rr] < +∞. Assuming that U is a second-

order random �eld, we de�ne the mean function of U , m : E → R as well as its covariance function,

C : E2 → R for any p1, p2 ∈ E2
by

m(p1) = E [U(p1)] and C(p1, p2) = E [(U(p1)−m(p1))(U(p2)−m(p2))] .

Assuming that E has a group structure, a random �eld U is said to be stationary if for any �nite se-

quence (p1, . . . , pn) ∈ En withn ∈ N and t ∈ E, the vector (U(p1), . . . , U(pn)) and (U(p1 + t), . . . , U(pn + t))
have same distribution. A second-order random �eld U is said to be stationary in the weak sense if its

mean function is constant and if for all p1, p2 ∈ E,C(p1, p2) = C(p1−p2, 0). In this case the covariance

of U is fully characterized by its auto-covariance function Γ : E→ R given for any p ∈ E by

Γ(p) = C(p, 0) .

A random �eld U is said to be a Gaussian random �eld if, for any sequence (p1, . . . , pn) ∈ En with

n ∈ N, the vector (U(p1), . . . , U(pn)) is a n-dimensional Gaussian random vector. The distribution of a

Gaussian random �eld is entirely characterized by its mean and covariance functions. As a consequence,

the notions of stationarity and weak stationarity are the same for Gaussian random �elds.

Since the applications we are interested in are image processing tasks, we consider the case where

E = R2
(in the continuous setting) and E = Z2

(in the discrete setting). In Section 3.1.2 we will consider

Lebesgue integrals of random �elds and thus need integrability condition for U over compact sets. Let

K = [a, b]× [c, d] be a compact rectangular domain in R2
. Continuity requirements on the function C

imply that

∫
K
g(p)U(p)dp is well-de�ned as a quadratic mean limit for real-valued functions g over E

such that

∫
K×K g(p1)g(p2)C(p1, p2)dp1dp2 < +∞, see [Lin13]. However, we are interested in almost

sure quantities and thus we want the integral to be de�ned almost surely over rectangular windows. The

existence of a continuous modi�cation of a random �eld, ensures the almost sure existence of Riemann

integrals over rectangular windows. The following assumptions will ensure continuity almost surely,

see Lemma 3.1.1 whose proof can be found in [Adl81, Theorem 1.4.1] and [Pot09, Lemma 4.2, Lemma

4.3, Theorem 4.5]. We de�ne D : E× E→ R such that for any p1, p2 ∈ E

D(p1, p2) = E
[
(U(p1)− U(p2))2

]
= C(p1, p1) + C(p2, p2)− 2C(p1, p2) + (m(p1)−m(p2))2 .

A1. U is a second-order random �eld and there exist M,η, α > 0 such that for any p1 ∈ E and p2 ∈
B(p1, η) ∩ E with p2 6= p1 we have

D(p1, p2) ≤M‖p1 − p2‖22| log(‖p1 − p2‖2)|−2−α .

This assumption can be considerably weakened in the case of a stationary Gaussian random �eld.

A2. U is a stationary Gaussian random �eld and there existM,η, α > 0 such that for any p1 ∈ E and
p2 ∈ B(p1, η) ∩ E with p2 6= p1 we have

D(p1, p2) ≤M | log(‖p1 − p2‖2)|−1−α .

63



Lemma 3.1.1. Assume A1 or A2. In addition, assume that for any p1 ∈ E, m(p) = 0. Then there exists
a modi�cation of U , i.e. a random �eld Ũ such that for any p1 ∈ E, P(U(p) = Ũ(p)) = 1, and for any
ω ∈ Ω, Ũ(ω) is continuous over E.

In the rest of the section we always replace U by its continuous modi�cation Ũ . Note that in the

discrete case all random �elds are continuous with respect to the discrete topology. In Section 3.1.3 and

Section 3.1.4, we will assume that U is a stationary Gaussian random �eld with zero mean. Asymptotic

theorems derived in the next section remain true in broader frameworks, however restricting ourselves

to stationary Gaussian random �elds allows for explicit computations of asymptotic quantities in order

to numerically assess the rate of convergence.

Similarity functions

In order to evaluate redundancy in random �elds, we �rst need to derive a criterion for comparing

random �elds. We introduce similarity functions which take rectangular restrictions of random �elds

as inputs.

When comparing local windows of random �elds (patches), two cases can occur. We can compare a

patch with a patch extracted from the same image. We call this situation internal matching. Applications

can be found in denoising [BCM05] or inpainting [CPT04] where the information of the image itself is

used to perform the image processing task. On the other hand, we can compare a patch with a patch

extracted from another image. We call this situation template matching. An application can be found in

the non-parametric exemplar-based texture synthesis algorithm proposed by Efros and Leung, [EL99].

The `2 norm is the usual way to measure the similarity between patches [LBM13] but many other

measurements exist, corresponding to di�erent structural properties, see Figure 3.1.

De�nition 3.1.2. Let P,Q ∈ Rw with w ⊂ R2 or w ⊂ Z2. When it is de�ned we introduce

(a) the `q-similarity, sq(P,Q) =
(∫

p∈w |P (p)−Q(p)|qdp
)1/q

, with q ∈ (0,+∞) ;

(b) the `∞-similarity, s∞(P,Q) = supp∈w(|P (p)−Q(p)|) ;

(c) the q-th power of the `q-similarity, sq,q(P,Q) = sq(P,Q)q , with q ∈ (0,+∞) ;

(d) the scalar product similarity, ssc(P,Q) = −〈P,Q〉 = 1
2

(
s2,2(P,Q)− ‖P‖22 − ‖Q‖22

)
;

(e) the cosine similarity, scos(P,Q) = ssc(P,Q)(‖P‖2‖Q‖2)−1, if ‖P‖2‖Q‖2 6= 0 .

Depending on the case dp is either the Lebesgue measure or the discrete measure over w.

The locality of the measurements is ensured by the fact that these functions are de�ned on patches,

i.e. local windows. Following conditions (1) and (3) in [DDT12] one can check that similarity functions

(a), (c) and (e) satisfy the following properties

I (Symmetry) s(P,Q) = s(Q,P ) ;

I (Maximal self-similarity) s(P, P ) ≤ s(P,Q) ;

I (Equal self-similarities) s(P, P ) = s(Q,Q) .
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Note that since ssc, the scalar product similarity, is homogeneous inP , maximal self-similarity and equal

self-similarity properties are not satis�ed. All introduced similarities satisfy the symmetry condition

and s∞ satis�es the maximal self-similarity property. In [DDT12], the authors present many other

similarity functions all relying on statistical properties such as likelihood ratios, joint likelihood criteria

and mutual information kernels. In this section we focus only on similarity functions de�ned directly

in the spatial domain.

De�nition 3.1.3. Let x and y be two functions de�ned over a domain E ⊂ R2 or Z2. Let w ⊂ E be a patch
domain. Let Pw(x) = x|w be the restriction of x to the patch domain w. When it is de�ned we introduce
the auto-similarity with patch domain w and o�set t ∈ R2 or Z2 such that t+ w ⊂ E,

Ai(x, t,w) = si (Pw(x), (τ−t ◦ Pt+w)(x)) ,

where si corresponds to sq with q ∈ (0,+∞], sq,q with q ∈ (0,+∞), ssc or scos and for any p ∈ w,
(τ−t ◦Pt+w)(p) = x(p+ t). Similarly, when it is de�ned, we introduce the template similarity with patch
w and o�set t by

Ti(x, y, t,w) = si (Pw(y), (τ−t ◦ Pt+w)(x)) .

Note that in the �nite discrete setting, i.e. E = (Z/(MZ))
2

with M ∈ N, the de�nition of A and

T can be extended to any patch domain w ⊂ Z2
by replacing x by ẋ, its periodic extension to Z2

. A

similar extension can be derived in the �nite continuous setting, i.e. E = T2
.

Suppose we evaluate the scalar product auto-similarity Asc(U, t,w) withU a random �eld. Then the

auto-similarity function is a random variable and its expectation depends on the second-order statistics

of U . In the template case, the expectation of Tsc(U, y, t,w) depends on the �rst-order statistics of U .

This shows that auto-similarity and template similarity can exhibit very di�erent behaviors even for the

same similarity functions.

In the discrete case, it is well-known that the `2 norm does not behave well in large-dimensional

spaces and is a poor measure of structure, due to the curse of dimensionality. Thus, considering x and

y two images, s2(x, y), the `2 template similarity on full images, does not yield interesting information

about the perceptual di�erences between x and y. The template similarity T2(x, y, 0,w) avoids this

e�ect by considering patches which reduces the dimension of the data (if the cardinality of w, denoted

|w|, is small) and also allows for fast computation of similarity mappings, see Figure 3.1 for a comparison

of the di�erent similarity functions on a natural image.

We extract patches from images as follow. For each position in the image we consider a square w
centered around this position. This operation is called patch lifting. In Figure 3.2, we investigate the

behavior of patch lifting on di�erent Gaussian random �elds. Roughly speaking, patches are said to be

similar if they are clustered in the patch space. Using Principal Component Analysis we illustrate that

patches are more scattered in Gaussian white noise than in the Gaussian random �eld U = f ∗W (with

periodic convolution, i.e. for any p1 ∈ E, f ∗W (p1) =
∑
p2∈EW (p2)ḟ(p1−p2) where ḟ is the periodic

extension of f to Z2
), where W is a Gaussian white noise over E (a �nite discrete grid) and f is the

indicator function of a rectangle non reduced to a single pixel.

We continue this investigation in Figure 3.3 in which we present the closest patches (of size 10×10),

for the `2 norm, in two Gaussian random �elds U = f ∗ W (where the convolution is periodic) for

di�erent functions f called spots, [Gal16]. The more regular f is, the more similar the patches are.

Limit cases are f = 0 (all patches are constant and thus all the patches are similar) and f = δ0, i.e.
U = W .
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s2 s1 s∞ ssc scos

Figure 3.1: Structural properties of similarity functions. In this experiment the image size is 512×
512 and the patch size is 20× 20. We show the 20 closest patches (red squares) to the upper-left patch

(green square) among all patches for di�erent similarity functions. All introduced similarity functions,

see De�nition 3.1.2, correctly identify the structure of the patch, i.e. a large clear part with diagonal

textures and a dark ray on the right side of the patch, except for s∞ which is too sensitive to outliers.

Similarities s2, s1 and scos have analogous behaviors and identify correct regions. Similarity ssc is too

sensitive to contrast and, as it selects a correct patch, it gives too much importance to illumination.

We introduce the notion of autocorrelation. Let f ∈ `2(Z2). We denote by Γf the autocorrelation

of f , i.e. Γf = f ∗ f̌ where for any p ∈ Z2
, f̌(p) = f(−p) and de�ne the associated random �eld to a

square-integrable function f as the stationary Gaussian random �eld U such that for any p ∈ E

E [U(p)] = 0 and Γ(p) = Γf (p) .

In Figure 3.4, we compare the patch spaces of natural images and the ones of their associated random

�elds. Since the associated Gaussian random �elds lose all global structures, most of the spatial infor-

mation is discarded. This situation can be observed in the patch space. In the natural images, patches

containing the same highly spatial information (such as a white diagonal) are close for the `2 norm. In

Gaussian random �eld since this highly spatial information is lost, close patches for the `2 norm are not

necessarily perceptually close.

3.1.3 Asymptotic results

In this section we aim at giving explicit asymptotic expressions for the probability distribution functions

of the auto-similarity and the template similarity in both discrete and continuous settings. Using general

versions of the law of large numbers and central limit theorems we will derive Gaussian asymptotic

approximations.

Additional assumptions are required in the case of template matching since we use an exemplar

input image y to compute Ti(U, y, t,w). Let y ∈ RE
, where E is R2

or Z2
. We denote by (yk)k∈N

the sequence of the restriction of y to wk , extended to Z2
(or R2

) by zero-padding, i.e. yk(p) = 0 for

p /∈ wk . We suppose that limk→+∞ |wk| = +∞, where |wk| is the Lebesgue measure, respectively the

cardinality, of wk if E = R2
, respectively E = Z2

. Note that the following assumptions are well-de�ned

for both continuous and discrete settings.

A3. The function y is bounded on E.

The following assumption ensures the existence of spatial moments of any order for the function v.

A4. For anym,n ∈ N, there exist βm ∈ R\{0} and γm,n ∈ RE such that
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(a) (b) (c) (d)

Figure 3.2: Gaussian models and spatial redundancy In this experiment we illustrate the notion

of spatial redundancy in two models. In (A), we present a 64 × 64 Gaussian white noise. (B) shows an

indicator function f . In (C), we present a realization of the Gaussian random �eld de�ned by f ∗W (with

periodic convolution) whereW is a Gaussian white noise overE (domain of size 64×64). Note that f was

chosen so that the two Gaussian random �elds (A) and (C) have the same gray-level distribution for each

pixel. To each pixel position in (A) and (C) we associate the surrounding patch, with patch domain w
(of size 3×3). Hence, for each image (A) and (C) we obtain 64×64 = 5096 vectors each of size 3×3 =
9. These 9-dimensional vectors are projected in a 3-dimensional space using Principal Component

Analysis. In the sub�gure (D), we display the 20 vectors closest to 0 in each case: Gaussian white noise

model (in blue) and the Gaussian random �eld (C) (in red). The radius of the blue, respectively red, sphere

represents the maximal `2 norm of these 20 vectors in the Gaussian white noise model, respectively in

model (C). Since the radius of the blue sphere is larger than the red one the points are more scattered in

the patch space of (A) than in the patch space of (B). This implies that there is more spatial redundancy

in (C) than in (A), which is expected.
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Figure 3.3: Patch similarity in Gaussian random �elds In this �gure we show two examples of

Gaussian random �elds in the discrete periodic case. On the left of the �rst row we show a Gaussian

spot f and a realization of the Gaussian random �eld U = f ∗W , where the convolution is periodic

and W is a Gaussian white noise. The associated random �eld is smooth and isotropic. The random

�eld U = f ∗W associated with a rectangular plateau f is no longer smooth nor isotropic. Images are

displayed on the right of their respective spot. For each setting (Gaussian spot or rectangular spot) we

present 12 patches of size 15× 15. In each case the top-left patch is the top-left patch in the presented

realization of the random �eld, shown in green. Following from the top to the bottom and from the left

to the right are the closest patches in the patch space for the `2 norm. We discard patches which are

spatially too close (if w1 and w2 are two patch domains we impose supp1,p2 ‖p1 − p2‖∞ ≥ 10).
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Figure 3.4: Natural images and Gaussian random �elds In this experiment we present the same

image, f , which was used in Figure 3.1 and the associated Gaussian random �eld U = f ∗W , where

the convolution is periodic and W is a Gaussian white noise. As in Figure 3.3 we present under each

image the top-left patch (of size 15 × 15 and shown in green in the original images) and its 11 closest

matches for the `2 similarity. We discard patches which are spatially too close (if w1 and w2 are two

patch domains we impose supp1,p2 ‖p1−p2‖∞ ≥ 10). Note that if a structure is clearly identi�ed in the

real image (black and white diagonals) and is retrieved in every patch, it is not as clear in the Gaussian

random �eld.
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(a) limk→+∞ |wk|1/2
(
|wk|−1

∫
wk
y2m
k (p)dp− βm

)
= 0 ;

(b) for anyK ⊂ E compact, limk→+∞ supp1∈K{|wk|
−1
∫
p2∈wk y

2m
k (p2)y2n

k (p1+p2)dp2−γm,n(p1)|} =
0 .

Note that in the case where E is discrete, the uniform convergence on compact sets introduced in

(b) is equivalent to the pointwise convergence.

A5. There exists γ ∈ RE with for any K ⊂ E compact,

lim
k→+∞

sup
p1∈K
{|wk|−1

∫
p2∈wk

yk(p2)yk(p1 + p2)dp2 − γ(p1)|} = 0 .

Discrete case

In the discrete case, we consider a random �eld U over Z2
and compute local similarity measurements.

The asymptotic approximation is obtained when the patch size grows to in�nity. In Theorem 3.1.4 and

Theorem 3.1.6 we obtain Gaussian asymptotic probability distribution in the auto-similarity case and

in the template similarity case. In Proposition 3.1.5 and Proposition 3.1.7 we give explicit mean and

variance for the Gaussian approximations.

Theorem 3.1.4. Let (mk)k∈N, (nk)k∈N be two positive increasing integer sequences and (wk)k∈N be the
sequence of subsets de�ned for any k ∈ N by, wk = J0,mkK × J0, nkK. Let f : Z2 → R, f 6= 0 with
�nite support, W a Gaussian white noise over Z2 and U = f ∗ W . For i = {q, (q, q), sc, cos} with
q ∈ (0,+∞) there exist µi, σ2

i , real valued functions on Z2, and (αi,k)k∈N a positive sequence such that
for any t ∈ Z2\ {0} we have

(a) limk→+∞ α−1
i,kAi(U, t,wk) =

a.s
µi(t) ;

(b) limk→+∞ |wk|1/2
(
α−1
i,kAi(U, t,wk)− µi(t)

)
=
L
N
(
0, σ2

i (t)
)
,

where N(m,σ2) is the one-dimensional Gausian distribution with meanm and variance σ2.

The asymptotics derived in Theorem 3.1.4 can be extended to vectors of autosimilarities, i.e. selecting

(tj)j∈{1...N} a �nite number of shifts the results of Theorem 3.1.4 hold for the sequence ((Ai(U, tj ,wk))j∈{1...N})k∈N.

Note that in theorem 3.1.4 if t varies with k such that for any k ∈ N, (wk + tk) ∩ wk = ∅ then sim-

ilar results can be obtained with the usual law of large numbers and central limit theorem since true

independence hold.

Proof. The proof is divided into three parts. First we show 1 and 2 for i = (q, q) and extends the result

to i = q. Then we show 1 and 2 for i = sc. Finally, we show 1 and 2 for i = cos.

1. Let q ∈ (0,+∞), t ∈ Z2\ {0} and de�ne Vq,t for any p ∈ Z2
by, Vq,t(p) = |U(p)− U(p+ t)|q . We

remark that for any k ∈ N we have

Aq,q(U, t,wk) =
∑
p∈wk

Vq,t(p) .

First, remark that U is R-independent with R > 0, see Lemma 3.1.20. Since for any p ∈ Z2
, Vq,t(p)

depends only on U(p) and U(p + t) we have that Vq,t is Rt = R + ‖t‖∞-independent. Since U is
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stationary, so is Vq,t. The random �eld Vq,t admits moments of every order since it is the q-th power of

the absolute value of a Gaussian random �eld. Thus Vq,t is a Rt-independent second-order stationary

random �eld. We can apply Lemma 3.1.21 and we get

(a) limk→+∞ |wk|−1Aq,q(U, t,wk) =
a.s.

µq,q(t) ;

(b) limk→+∞ |wk|1/2
(
|wk|−1Aq,q(U, t,wk)− µq,q(t)

)
=
L
N
(
0, σ2

q,q(t)
)
.

with µq,q(t) = E [Vq,t(0)] and σq,q(t)
2 =

∑
p1∈Z2 Cov [Vq,t(p1), Vq,t(0)]. By continuity of the q-th root

over [0,+∞) we get 1 for i = q with

αq,k = |wk|1/q , µq(t) = µq,q(t)
1/q .

By Lemma 3.1.22 we get that E
[
(U(0)− U(t))2

]
= 2(Γf (0)−Γf (t)) > 0 thus µq,q(t) = E [Vq,t(0)] >

0. Since the q-th root is continuously di�erentiable on (0,+∞) we can apply the Delta method, see

[Cra99], and we get 2 for i = q with

αp,k = |wk|1/q , µq(t) = µq,q(t)
1/q , σq(t)

2 = q−2σq,q(t)
2µq,q(t)

2/q−2 . (3.1)

2. We now prove the theorem for i = sc. Let t ∈ Z2\ {0} and de�ne Vsc,t for any p ∈ Z2
, Vsc,t(p) =

−U(p)U(p+ t). We remark that for any k ∈ N we have

Asc(U, t,wk) =
∑
p∈wk

Vsc,t(p) .

Since for any p1 ∈ Z2
, Vsc,t(p) depends only onU(p) andU(p+t), we have that Vsc,t isRt = R+‖t‖∞-

independent. Since U is stationary, so is Vsc,t. The random �eld Vsc,t admits moments of every order

since it is a product of Gaussian random �elds. Thus Vsc,t is a Rt-independent second-order stationary

random �eld. We can again apply Lemma 3.1.21 and we get

(a) limk→+∞ |wk|−1Asc(U, t,wk) =
a.s.

µsc(t) ;

(b) limk→+∞ |wk|1/2
(
|wk|−1Asc(U, t,wk)− µsc(t)

)
=
L
N
(
0, σ2

sc(t)
)
,

with µsc(t) = E [Vsc,t(0)] and σsc(t)
2 =

∑
p1∈Z2 Cov [Vsc,t(p1), Vsc,t(0)], which concludes the proof.

3. Finally, we consider the case i = cos. Let t ∈ Z2\ {0} and de�ne Vcos,t for any p ∈ Z2
,

Vcos,t(p) =

−U(p)U(p+ t)
U(p)2

U(p+ t)2

 .

We remark that for any k ∈ N we have

Ascos(U, t,wk) = h

(
|wk|−1

∑
p∈wk

Vcos,t(p)

)
,

with h(x, y, z) = xy−1/2z−1/2
. Since U is stationary, so is Vcos,t. The random �eld Vcos,t admits

moments of every order since it is a vector of products of Gaussian random �elds. Thus Vcos,t is a Rt-
independent second-order stationary random �eld. We can apply Lemma 3.1.21 and there exist µ̃cos(t)
and C̃cos(t) such that
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(a) limk→+∞ |wk|−1Vcos,t =
a.s.

µ̃cos(t) ;

(b) limk→+∞ |wk|1/2
(
|wk|−1Vcos,t − µ̃cos(t)

)
=
L
N
(

0, C̃cos(t)
)
.

We conclude the proof using the multivariate Delta method, [Cra99].

In the following proposition we give explicit values for the constants involved in the law of large

numbers and the central limit theorem derived in Theorem 3.1.4. We introduce the following quantities

for k, ` ∈ N and j ∈ J0, k ∧ `K, where k ∧ ` = min(k, `),

q` =
(2`)!

`! 2`
, rj,k,` = qk−jq`−j

(
2k

2j

)(
2`

2j

)
(2j)! . (3.2)

We also denote rj,` = rj,`,`. Note that for all ` ∈ N, r0,` = q2
` and

∑`
j=0 rj,` = q2`. We also introduce

the following functions:

∆f (t, p) = 2Γf (p)− Γf (p+ t)− Γf (p− t) , ∆̃f (t, p) = Γf (p)2 + Γf (p+ t)Γf (p− t) . (3.3)

Note that ∆f is a second-order statistic on the Gaussian �eld U = f ∗W with W a Gaussian white

noise over Z2
, whereas ∆̃f is a fourth-order statistic on the same random �eld.

Proposition 3.1.5. In Theorem 3.1.4 we have the following constants for any t ∈ Z2\ {0}.

(i) If i = q with q = 2` and ` ∈ N, then for all k ∈ N, we get that αp,k = |wk|1/(2`) and

µq(t) = q
1/(2`)
` ∆f (t, 0)1/2 and σq(t)

2 =
q

1/`−2
`

(2`)2

∑̀
j=1

rj,`

(
‖∆f (t, ·)‖2j

∆f (t, 0)

)2j

∆f (t, 0) ,

where (ri,jk)i,j,k∈N and (qk)k∈N are given in (3.2).

(ii) If i = sc, then for all k ∈ N, we get that αsc,k = |wk| and

µsc(t) = Γf (t) and σsc(t)
2 =

∑
p∈Z2

∆̃f (t, p) .

(iii) if i = cos, then for all k ∈ N, we get that αcos,k = 1 and

µcos(t) = Γf (t)/Γf (0)and

σcos(t)
2 = Γf (0)−2

{
‖Γf‖22

(
1 + 2

Γf (t)2

Γf (0)2

)
− 4

Γf (t)

Γf (0)
Γf ∗ Γ

∧

f (t) + Γf ∗ Γ

∧

f (2t)

}
.

Proof. The proof is postponed to Appendix 3.1.5.

For example we have

µ2(t) = ∆f (t, 0)1/2 , µ4(t) = 31/4∆f (t, 0)1/2

σ2
2(t) =

1

2

‖∆f (t, ·)‖22
∆f (t, 0)

, σ2
4(t) = 2

√
3
‖∆f (t, ·)‖22

∆f (t, 0)
+

√
3

6

‖∆f (t, ·)‖44
∆f (t, 0)3

.

We now derive similar asymptotic properties in the template similarity case.
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Theorem 3.1.6. Let (mk)k∈N, (nk)k∈N be two positive increasing integer sequences and (wk)k∈N be the
sequence of subsets de�ned for any k ∈ N, wk = J0,mkK × J0, nkK. Let f : Z2 → R, f 6= 0 with
�nite support,W a Gaussian white noise over Z2, U = f ∗W and let y, a real valued function on Z2. For
i = {q, (q, q), sc, cos} with q = 2` and ` ∈ N, if i = q or (q, q) assume A3 and A4, if i = sc assume
A3 and A5 and if i = cos assume A3, A4 and A5. Then there exist µi, σ2

i ∈ R and (αi,k)k∈N a positive
sequence such that for any t ∈ Z2 we get

1. limk→+∞ α−1
i,kTi(U, y, t,wk) =

a.s
µi ;

2. limk→+∞ |wk|1/2
(
α−1
i,kTi(U, y, t,wk)− µi(t)

)
=
L
N
(
0, σ2

i

)
.

Note that contrarily to Theorem 3.1.4 we could not obtain such a result for all q ∈ (0,+∞) but only

for even integers. Indeed, the convergence of the sequence

(
|wk|−1E [Tq,q(U, y, t,wk)]

)
k∈N, which is

needed in order to apply Theorem 3.1.18, is not trivial. Assuming that y is bounded it is easy to show

that

(
|wk|−1E [Tq,q(U, y, t,wk)]

)
k∈N is also bounded and we can deduce the existence of a convergent

subsequence. In the general case, for Theorem 3.1.6 to hold with any p ∈ (0,+∞), we must check that

for any t ∈ E, there exist µq,q(t) > 0 and σ2
q,q(t) ≥ 0 such that

(a) limk→+∞ |wk|1/2
(
|wk|−1E [Tq,q(U, y, t,wk)]− µq,q(t)

)
= 0 ;

(b) limk→+∞ |wk|−1 Var [Tq,q(U, y, t,wk)] = σ2
q,q(t) .

We now turn to the proof of Theorem 3.1.6.

Proof. As for the proof of theorem 3.1.4, the proof is divided into three parts. First we show 1 and 2 for

i = (q, q) and extends the result to i = q. Then we show 1 and 2 for i = sc. Finally, we show 1 and 2

for i = cos.

1. Let q = 2` with ` ∈ N, t ∈ Z2
and de�ne Vq,t the random �eld on Z2

for any p ∈ Z2
, by Vp,t(p) =

|y(p)− U(p+ t)|q . We remark that for any k ∈ N we have

Tq,q(U, v, t,wk) =
∑
p∈wk

Vq,t(p) .

By Lemma 3.1.20, U is R-independent with R > 0. Since for any p ∈ Z2
we have that Vq,t(p) depends

only on U(p + t) we also have that Vq,t is R-independent. We de�ne the random �eld V∞q,t for any

p ∈ Z2
, V∞q,t (p) = (‖y‖∞ + U(p + t))q . We have that V∞q,t (p) + E[V∞q,t (0)] uniformly almost surely

dominates Vq,t(p) − E[Vq,t(p)]. The random �eld V∞q,t admits moments of every order since it is the

q-th power of the absolute value of a Gaussian random �eld and is stationary because U is. Thus Vq,t
is a Rt-independent random �eld and Vq,t(p) − E[Vq,t(p)] is uniformly stochastically dominated by

V∞q,t (p)+E[V∞q,t (0)], a second-order stationary random �eld. Using A4 and Lemma 3.1.23, we can apply

Theorem 3.1.18 and Theorem 3.1.19 and we get

(a) limk→+∞ |wk|−1Tq,q(U, y, t,wk) =
a.s.

µq,q(t) ;

(b) limk→+∞ |wk|1/2
(
|wk|−1Tq,q(U, y, t,wk)− µq,q(t)

)
=
L
N
(
0, σ2

q,q(t)
)
.

Note that since U is stationary we have for any t ∈ Z2
, µq,q = µq,q(0) = µq,q(t) and σ2

q,q = σ2
q,q(0) =

σ2
q,q(t). By continuity of the q-th root over [0,+∞) we get 1 for i = p with

αq,k = |wk|1/p , µq = µ1/q
q,q .
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By Lemma 3.1.23, we have that µq,q > 0. Since the q-th root is continuously di�erentiable on (0,+∞)
we can apply the Delta method and we get 2 for i = q with

αp,k = |wk|1/p , µq = µ1/q
q,q , σ2

q = σ2
q,qµ

2/q−2
q,q q−2 . (3.4)

2. We now prove the theorem for i = sc. Let t ∈ Z2
and de�ne Vsc,t the random �eld on Z2

such that

for any p ∈ Z2
, Vsc,t(p) = −y(p)U(p+ t). We remark that for any k ∈ N we have

Tsc(U, y, t,wk) =
∑
p∈wk

Vsc,t(p) .

It is clear that for any k ∈ N, Tsc(U, y, t,wk) is a R-independent Gaussian random variable with

E[Tsc(U, y, t,wk)] = 0 and

Var [Tsc(U, y, t,wk)] =
∑

p1,p2∈wk

E [Vsc,t(p1)Vsc,t(p2)]

=
∑

p1,p2∈wk

y(p1)y(p2)Γf (p1 − p2) =
∑
p1∈Z2

Γf (p1)yk ∗ y̌k(p1) ,

where we recall that yk is the restriction of y to wk . The last sum is �nite since suppf �nite implies

that suppΓf is �nite. Using A5 we obtain that for any k ∈ N,∑
p1∈wk

(E [Vsc,t] (p1)− µsc) = 0 , lim
k→+∞

|wk|−1
∑

p1,p2∈wk

Cov [Vsc,t(p1), Vsc,t(p2)] = σ2
sc , (3.5)

with µsc = 0 and σ2
sc =

∑
p1∈Z2 Γf (p1)γ(p1), where γ is given in A5. Since Vsc,t is a R-independent

second-order random �eld using (3.5) we can apply Theorem 3.1.18 and Theorem 3.1.19 to conclude.

3. We now consider the case i = cos. First, notice that

Tcos(U, y, t,wk)

= |wk|−1Tsc(U, y, t,wk)

(|wk|−1
∑
p∈wk

y(p)2

)1/2(
|wk|−1

∑
p∈wk

U(p)2

)1/2
−1

.

Using that limk→+∞ |wk|−1Tsc(U, y, t,wk) = 0, limk→+∞ |wk|−1
∑
p∈wk U(p)2 = Γf (0) by Lemma 3.1.21

almost surely and limk→+∞ |wk|−1
∑
p1∈wk y(p1)2 = β1 6= 0 by A4, we get that

lim
k→+∞

Tcos(U, v, t,wk) = 0 .

In addition, using Slutsky’s theorem and the fact that limk→+∞ |wk|−1/2Tsc(U, y, t,wk) = N(0, σ2
sc)

we obtain that limk→+∞ |wk|−1/2Tcos(U, y, t,wk) = N(0, σ2
cos) with

σ2
cos =

〈γ,Γf 〉
β1Γf (0)

.

Proposition 3.1.7. In Theorem 3.1.6 we have the following constants for any t ∈ Z2.
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(i) If i = q with q = 2` and ` ∈ N, then we get that αq,k = |wk|1/q , and

µq =

∑̀
j=0

(
2`

2j

)
q`−jΓf (0)−jβj

1/2`

Γf (0)1/2 ,

σ2
q =

∑̀
i,j=0

(
2`

2i

)(
2`

2j

) `−i∧`−j∑
m=1

rm,`−i,`−jΓf (0)−(i+j+2m)
〈
Γ2m
f , γi,j

〉
×

∑̀
j=0

(
2`

2j

)
q`−jΓf (0)−jβj

1/`−2

Γf (0)

(2`)2
,

where (βj)j∈N, (γi,j)i,j∈N are given in A4 and (ri,jk)i,j,k∈N and (qk)k∈N are given in (3.2).

(ii) If i = sc then for all k ∈ N, we get that αsc,k = |wk| and

µsc = 0 , σ2
sc = 〈γ,Γf 〉 .

(iii) If i = scos then for all k ∈ N, we get that αscos,k = 1 and

µscos = 0 , σ2
scos =

〈γ,Γf 〉
β1Γf (0)

.

Proof. The proof is postponed to Appendix 3.1.5.

For example we have

µ2 = (2Γf (0) + β1)1/2 , µ4 = (3Γf (0)2 + 12Γf (0)3β1 + β2)1/4 ,

σ2
2 =

1

4

‖Γf‖22
Γf (0)

(2 + Γf (0)−1β1)−1 ,

σ2
4 =

1

16

(
288Γf (0)−1‖Γf‖22 + 144Γf (0)−2〈Γ2

f , γ0,1〉+ 24Γf (0)−3‖Γf‖44 + Γf (0)−3〈Γ2
f , γ〉

)
×
(
3 + 12Γf (0)−1β1 + Γf (0)−2β2

)−3/2
.

Note that the limit mean and standard deviation do not depend on the o�set anymore. Indeed,

template similarity functions are stationary in t. If v has �nite support then A4 holds with βi = 0 and

γi,j = 0 as soon as i 6= 0 or j 6= 0. Remarking that β0 = 1 and γ0,0 = 1 we obtain that

µq = q
1/(2`)
` Γf (0)1/2 , σ2

q =
q

1/`−2
`

(2`)2

∑̀
j=1

rj,`

(
‖Γf‖2j
Γf (0)

)2j

Γf (0) .

Continuous case

We now turn to the continuous setting. Theorem 3.1.8, respectively Theorem 3.1.10, is the continuous

counterpart of Theorem 3.1.4, respectively Theorem 3.1.6.
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Theorem 3.1.8. Let (mk)k∈N, (nk)k∈N be two positive increasing integer sequences and (wk)k∈N be the
sequence of subsets de�ned for any k ∈ N by, wk = [0,mk] × [0, nk]. Let U be a zero-mean Gaussian
random �eld over R2 with covariance function Γ. Assume A2 and that Γ has �nite support. For i ∈
{q, (q, q), sc, cos} with q ∈ (0,+∞) there exist µi, σ2

i , real valued functions on R2, and (αi,k)k∈N a
positive sequence such that for any t ∈ R2\ {0} we get

1. limk→+∞ α−1
i,kAi(U, t,wk) =

a.s
µi(t) ;

2. limk→+∞ |wk|1/2
(
α−1
i,kAi(U, t,wk)− µi(t)

)
=
L
N
(
0, σ2

i (t)
)
.

Proof. The proof is the same as the one of Theorem 3.1.4 replacing Lemma 3.1.21 and Lemma 3.1.22 by

Lemma 3.1.26 and Lemma 3.1.27.

Proposition 3.1.9. Constants given in Proposition 3.1.5 apply to Theorem 3.1.8 provided thatΓf is replaced
by Γ in (3.3).

Proof. The proof is the same as the one of Proposition 3.1.5.

Theorem 3.1.10. Let (mk)k∈N, (nk)k∈N be two positive increasing integer sequences and (wk)k∈N be the
sequence of subsets de�ned for any k ∈ N by, wk = [0,mk] × [0, nk]. Let U be a zero-mean Gaussian
random �eld over R2 with covariance function Γ. Assume A2 and that Γ has �nite support. For i ∈
{q, (q, q), sc, cos} with p ∈ (0,+∞), if i = q or (q, q) assume A3 and A4, if i = sc assume A3 and A5

and if i = cos assume A3, A4 and A5. Then there exist µi, σ2
i ∈ R and (αi,k)k∈N a positive sequence such

that for any t ∈ R2 we get

1. limk→+∞ α−1
i,kTi(U, y, t,wk) =

a.s.
µi ;

2. limk→+∞ |wk|1/2
(
α−1
i,kTi(U, y, t,wk)− µi(t)

)
=
L
N
(
0, σ2

i

)
.

Proof. The proof is the same as the one of Theorem 3.1.6.

Proposition 3.1.11. Constants given in Proposition 3.1.7 apply to Theorem 3.1.10 provided that Γf is
replaced by Γ in (3.3).

Proof. The proof is similar to the one of Proposition 3.1.7.

Speed of convergence

In the discrete setting, Theorem 3.1.4 justi�es the use of a Gaussian approximation to compute Ai(U, t,w).

However this asymptotic behavior strongly relies on the increasing size of the patch domains. We de�ne

the patch size to be |w|, the cardinality of w, and the spot size |suppf | to be the cardinality of the support

of the spot f . The quantity of interest is the ratio r = patch size

spot size
. If r � 1 then the Gaussian random �eld

associated to f can be well approximated by a Gaussian white noise from the patch perspective. If r ≈ 1
this approximation is not valid and the Gaussian approximation is no longer accurate, see Figure 3.5.

We say that an o�set t is detected in a Gaussian random �eld if Ai(U, t,w) ≤ a(t) for some threshold

a(t). In the experiments presented in Figure 3.6 and Table 3.1 the threshold is given by the asymptotic

Gaussian inverse cumulative distribution function evaluated at some quantile. The parameters of the

Gaussian random variable are given by Proposition 3.1.5. We �nd that except for small spot sizes and
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5 10 15 20 40 70

1 0.3 1.4 3.2 4.6 7.4 9.0

2 0.3 0.4 1.2 2.2 5.8 8.5

5 0.3 0.4 0.4 0.5 1.3 4.1

10 0.4 0.5 0.5 0.4 1.4

15 0.5 0.5 0.5 0.5

20 0.5 0.5 0.5

25 0.5 0.5

5 10 15 20 40 70

1 18.1 11.6 10.9 10.4 10.1 10.0

2 34.2 16.5 12.8 11.5 10.4 9.9

5 93.9 49.3 30.8 20.9 13.2 11.5

10 86.7 57.6 46.0 19.7 14.5

15 83.9 63.8 30.0 18.2

20 79.5 36.7 24.7

25 51.5 26.6

Table 3.1: Asymptotic properties Number of detections with di�erent patch domains from 5 × 5 to

70×70 and spot domains from 1×1 to 25×25 for the s2,2 (left table) or ssc (right table) auto-similarity

function. We only consider patch domains larger than spot domains. We generate 5000 Gaussian ran-

dom �eld images of size 256 × 256 for each setting (with spot the indicator of the spot domain). We

set α = 10/2562
. For each setting we compute a(t) the inverse cumulative distribution function of

N(µi(t), σ
2
i (t)) evaluated at quantile α, with µi and σ2

i given by Proposition 3.1.5. For each pair of

patch size and spot size we compute

∑
t∈E 1Ai(u,t,w)≤a(t), namely the number of detections, for all

the 5000 random �elds samples. The empirical averages are displayed in the table. If Ai(u, t,w) had

Gaussian distribution with parameters given by Proposition 3.1.5 then the number in each cell would

be

∑
t∈E P (Ai(U, t,w) ≤ a(t)) ≈ 10.

large patches, i.e. r � 1, the approximation is not valid. More precisely, let U = f ∗W with f a �nitely

supported function over Z2
and W a Gaussian white noise over Z2

. Let w ⊂ Z2
and let E0 be a �nite

subset of Z2
. We compute

∑
t∈E0

1Ai(U,t,w)≤a(t), with a(t) de�ned by the inverse cumulative distribu-

tion function of quantile 10/|E0| for the Gaussian N(µ, σ2) where µ, σ2
are given by Theorem 3.1.4 and

Proposition 3.1.5. Note that a(t) would satisfy P (Ai(U, t,w) ≤ a(t)) ≈ 10/|E0| if the approximation

for the cumulative distribution function was correct. In other words, if the Gaussian asymptotic was

always valid, we would have a number of detections equal to 10 independently of r. This is clearly

not the case in Table 3.1. One way to interpret this is by looking at the left tail of the approximated

distribution for s2,2 and ssc on Figure 3.5. For ssc the histogram is above the estimated curve, see (a) in

Figure 3.6 for example. Whereas for s2,2 the histogram is under the estimated curve. Thus for ssc we

expect to obtain more detections than what is predicted whereas we will observe the opposite behavior

for s2,2. This situation is also illustrated for similarities s2 and ssc in Figure 3.6 in which we compare

the asymptotic cumulative distribution function with the empirical one.

In the next section we address this problem by studying non-asymptotic cases for the s2,2 auto-

similarity function in both continuous and discrete settings.

3.1.4 A non-asymptotic case: internal Euclidean matching

Discrete periodic case

In this section E is a �nite rectangular domain in Z2
. We �x w ⊂ E. We also de�ne f a function over

E. We consider the Gaussian random �eld U = f ∗W (we consider the periodic convolution) with W
a Gaussian white noise over E.

In the previous section, we derived asymptotic properties for similarity functions. However, a nec-

essary condition for the asymptotic Gaussian approximation to be valid is for the spot size to be very

small when compared to the patch size. This condition is not often met and non-asymptotic techniques

must be developed. For instance it should be noted that the distribution of the ssc template similar-

ity, Tsc(U, y, t,w), is Gaussian for every w. We might also derive a non-asymptotic expression for

the template similarity in the cosine case if the Gaussian model is a white noise model. In what fol-
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Figure 3.5: Gaussian moment matching In this experiment, 104
samples of 128× 128 Gaussian im-

ages are computed with a spot of size 5 × 5 (the spot is the indicator of this square). Scalar product

auto-similarities and squared `2 auto-similarities are computed for a �xed o�set (70, 100). We then plot

the normalized histogram of these values. The red curve corresponds to the standard Gaussian N(0, 1).

On the top row r = 100 � 1 and the Gaussian approximation is valid. On the bottom row r ≈ 1 and

the Gaussian approximation is not valid.
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Figure 3.6: Theoretical and empirical cumulative distribution functionThis experiment illustrates

the non-Gaussianity in Figure 3.5. In both cases, the red curve is the inverse cumulative distribution

function of the standard Gaussian and the blue curve is the empirical inverse cumulative distribution

function of normalized auto-similarity functions computed with 104
samples of Gaussian models. We

present auto-similarity results obtained for t = (70, 100) and similarity function ssc (on the left) and s2

(on the right). We note that for rare events, see the magni�ed region, the theoretical inverse cumula-

tive distribution function is above the empirical inverse cumulative distribution function. The opposite

behavior is observed for similarity s2. These observations are in accordance with the �ndings of Table

3.1.
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lows we restrict ourselves to the auto-similarity framework and consider the square of the `2 norm

auto-similarity function, i.e. A2,2(U, t,w). In this case we present an e�cient method to compute the

cumulative distribution function of the auto-similarity function even in the non-asymptotic case.

Proposition 3.1.12. Let E = (Z/MZ)2 withM ∈ N, w ⊂ E, f ∈ RE and U = f ∗W where W is a
Gaussian white noise over E. The following equality holds for any t ∈ E up to a change of the underlying
probability space

A2,2(U, t,w) =
a.s

|w|−1∑
k=0

λk(t,w)Zk , (3.6)

with Zk independent chi-square random variables with parameter 1 and λk(t,w) the eigenvalues of the
covariance matrix Ct associated with function ∆f (t, ·), see (3.3), restricted to w, i.e for any p1, p2 ∈ w,
Ct(p1, p2) = ∆f (t, p1 − p2).

Proof. Let t ∈ E and Vt be given for any p ∈ E by Vt(p) = U(p) − U(p + t). It is a Gaussian vector

with mean 0 and covariance matrix CV given for any p1, p2 ∈ E by

CV (p1, p2) = 2Γf (p1 − p2)− Γf (p1 − p2 − t)− Γf (p1 − p2 + t) = ∆f (t, p1 − p2) .

The covariance of the random �eld Pw(Vt), the restriction of Vt to w, is given by the restriction of CV
to w. This new covariance matrix, Ct, is symmetric and the spectral theorem ensures that there exists

an orthonormal basis B such that Ct is diagonal when expressed in B. Thus we obtain that Pw(Vt) =∑
ek∈B〈Pw(Vt), ek〉ek . It is clear that, for any k ∈ J0, |w| − 1K, 〈Pw(Vt), ek〉 is a Gaussian random

variable with mean 0 and variance eTkCtek = λk(t,w) ≥ 0. We setK = {k ∈ J0, |w|−1K, λk(t,w) 6= 0}
and de�ne X a random vector in R|w| such that

Xk = λk(t,w)−1/2〈Pw(Vt), ek〉, if k ∈ K , and XK− = Y ,

where XK− is the restriction of X to the indices of K− = J0, |w| − 1K\K and Y is a standard Gaussian

random vector on R|K−| independent from the sigma �eld generated by {(Xk), k ∈ K}. By construction

we have E [XkX`] = 0 if ` ∈ K and k ∈ K−, or ` ∈ K− and k ∈ K−. Suppose now that k, ` ∈ K. We

obtain that

E [XkX`] = λk(t,w)−1/2λ
−1/2
` (t,w)E

[
eTkCte`

]
= 0 .

Thus X is a standard Gaussian random vector and we have Pw(Vt) =
∑|w|−1
k=0 λ

1/2
k (t,w)Xkek , where

the equality holds almost surely. We get that

A2,2(U, t,w) = ‖Pw(Vt)‖22 =
∑
ek∈B

〈Pw(Vt), ek〉2 =

|w|−1∑
k=0

λk(t,w)X2
k .

Setting Zk = X2
k concludes the proof.

Note that if w = E then we obtain that the covariance matrix Ct is block-circulant with circulant

blocks and the eigenvalues are given by the discrete Fourier transform.

In order to compute the true cumulative distribution function of the auto-similarity square `2 norm

we need to: 1) compute the eigenvalues of a covariance matrix inM|w|(R) ; 2) compute the cumula-

tive distribution function of a positive-weighted sum of independent chi-square random variable with

weights given by the computed eigenvalues. Storing all covariance matrices for each o�set t is not

feasible. For instance considering a patch of size 10 × 10 and an image of size 512 × 512 we have ap-

proximately 2.6 × 109
coe�cients to store, i.e. 10.5GB in �oat precision. In the rest of the section we
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suppose that t and w are �xed and we denote byCt the covariance matrix associated to the restriction of

∆f (t, ·) to w + (−w). In Proposition 3.1.13 we propose a method to approximate the eigenvalues of Ct
by using its speci�c structure. Indeed, as a covariance matrix, Ct is symmetric and positive and, since

its associated Gaussian random �eld is stationary, it is block-Toeplitz with Toeplitz blocks, i.e. is block-

diagonally constant and each block has constant diagonals. In the one-dimensional case these properties

translate into symmetry, positivity and Toeplitz properties of the covariance matrix. Proposition 3.1.13

is stated in the one-dimensional case for the sake of simplicity but two-dimensional analogous can be

derived. Note that this approximation is not always sharp as shown in Figure 3.7.

We recall that the Frobenius norm of a matrix of size n× n is the `2 norm of the associated vector

of size n2
.

Proposition 3.1.13. Let b be a function de�ned over J−(n − 1), n − 1K with n ∈ N\ {0}. We de�ne
Tb(j, `) = b(j − `) for j, ` ∈ J0, n− 1K. The matrix Tb is a circulant matrix if and only if b is n-periodic.
Tb is symmetric if and only if b is symmetric. Let b be symmetric, de�ning Π(Tb) the projection of Tb onto
the set of symmetric circulant matrix for the Frobenius product, we obtain that

1. the projection satis�esΠ(Tb) = Tc with c(j) = (1− j/n) b(j)+(j/n)b(n−j) for all j ∈ J0, n−1K
and c is extended by n-periodicity to Z ;

2. the eigenvalues of Π(Tb) are given by (2 Re(d̂(j)) − b(0))j∈J0,n−1K with d(j) = (1− j/n) b(j),
and d̂ is the discrete Fourier transform over J0, n− 1K ;

3. let (λj)j∈J1,nK be the sorted eigenvalues of Tb and (λ̃j)j∈J1,nK the sorted eigenvalues of Π(Tb) (in

the same order). For any j ∈ J1, nK, we have |λj − λ̃j | ≤ ‖Tb −Π(Tb)‖Fr ;

4. if Tb is positive-de�nitive then Π(Tb) is positive-de�nite.

Proof. 1. Let Tc be an element of the symmetric circulant matrices set. Minimizing ‖Tb − Tc‖2Fr in

c(j)j∈J0,n−1K we get that c(j) satis�es for any j ∈ J0, n− 1K

c(j) = argmin
s∈R

(
2(n− j)(s− b(j))2 + 2j(s− b(n− j))2

)
,

which gives the result.

2. Since Tc = Π(Tb) is circulant, its eigenvalues are given by the discrete Fourier transform of c. We

have that if i 6= 0 then c(i) = ḋ(j) + ḋ(−j) with d(j) = (1− j/n) b(j) and ḋ its extension to Z by

n-periodicity. We also have c(0) = b(0). We conclude the proof by taking the discrete Fourier transform

of c.

3. The proof of the Lipschitz property on the sorted eigenvalues of symmetric matrices with respect to

the `2 matricial norm can be found in [Cia82]. We conclude using the fact that the `2 matricial norm is

upper-bounded by the Frobenius norm.

4. This result is a special case of the spectrum contraction property of the projection [CJY91, Theorem

2].
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(a) (b) (c)

Figure 3.7: Eigenvalues approximation We consider a Gaussian random �eld generated with f ∗W
with W a Gaussian white noise and f is a �xed sample of an independent Gaussian white noise over E.

We consider patches of size 10× 10 and study the approximation of the eigenvalues for the covariance

matrix of the random �eld restricted to a domain of size 10 × 10, similarly to Proposition 3.1.12. (A)

shows the Normalized Root-Mean Square Deviation between the eigenvalues computed with standard

routines and the ones given by the approximation for each o�set, see (3.7). O�set zero is at the center

of the image. (B) and (C) illustrate the properties of Proposition 3.1.13. Blue circles correspond to

the 100 eigenvalues computed with Matlab routine for o�set (5, 5) in (B), respectively (10, 20) in

(C), and red crosses correspond to the 100 approximated eigenvalues for the same o�sets. Note that a

standard routine takes 273s for 10× 10 patches on 256× 256 images whereas it only takes 1.11s when

approximating the eigenvalues using the discrete Fourier transform.

In Figure 3.7 we display the behavior of the projection for the eigenvalues in the two-dimensional

case. The measure we consider is the Normalized Root Mean Square Deviation

NRMSD =

(
|w|−1

|w|−1∑
k=0

|λ̃k(t,w)− λk(t,w)|2
)1/2

max (λk(t,w))k∈J0,|w|−1K −min (λk(t,w))k∈J0,|w|−1K
, (3.7)

with λ̃k(t,w) the approximation of the eigenvalues, for every possible o�set in the image and λk(t,w)
the true eigenvalues, for every possible o�set. Computing the eigenvalues of the projection is done

via Fast Fourier Transform (FFT) which is faster than standard routines for computing eigenvalues of

Toeplitz matrices. The major cons of using such an approximation is that it may not be valid for small

o�sets t ∈ E as shown in Figure 3.7. However, in most cases the random �eld is smooth and in this case,

see Figure 3.8, the approximation is satisfactory. We also highlight that for similarity detection purposes,

see Figure 3.9, the level of precision achieved by our approximation is satisfactory, see [Bor+19].

Suppose the approximation of the eigenvalues is valid, we need an e�cient algorithm to compute

the distribution of the associated positive-weighted sum of chi-square random variables in (3.6). Ex-

act computation has been derived by Imhof in [Imh61] but requires to compute heavy integrals. This

exact method, named Imhof method in the following, will be used as a baseline for other algorithms.

Numerous methods such as di�erential equations [Dav77], series truncation [KJB67], negative binomial

mixtures [OZ81] approaches were later introduced but all require stopping criteria such as truncation

criteria which can be hard to set. We focus on cumulant methods which generalize and re�ne the Gaus-

sian approximations used in Section 3.1.3. These methods rely on computing moments of the original

distribution and then �tting a known probability distribution function to the objective distribution us-

ing these moments. Bodenham et al. in [BA16] show that the following methods can be e�ciently

computed:
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(a) (b) (c)

Figure 3.8: Eigenvalues approximation Same study as the one conducted in Figure 3.7 with f =
1{1,2,3}2 . Note that in this case the approximation is better than the one presented in Figure 3.7.

I Gaussian approximation (discarded due to its poor results for small patches as illustrated in Sec-

tion 3.1.3),

I Hall-Buckley-Eagleson [Hal83; BE88] (HBE), (three moments �tted Gamma distribution),

I Wood F [Woo89] (three moments �tted Fischer-Snedecor distribution).

Other methods such as the Lindsay-Pilla-Basak-4 method, which relies on the computation of eight

moments, are slower than HBE by a factor 350 at least, see [BA16], and are thus discarded. In Figure 3.9

we investigate the trade-o� between computational speed and accuracy of these methods for the task

of detection.

The experiments conducted in Figure 3.9 show that the HBE approximation does not give good

results when evaluating the probability of rare events. This was already noticed by Bodenham et al. in

[BA16] who stated that “Hall–Buckley–Eagleson method is recommended for most practitioners [...].

However, [...], for very small probability values, either the Wood F or the Lindsay–Pilla–Basak method

should be used”.

Continuous periodic case

To conclude we show that a similar non-asymptotic study can be conducted in continuous settings.

Proposition 3.1.14. Let E = T2, w ⊂ E and let U be a zero-mean Gaussian random �eld on E with
covariance function Γ. Assume A2, then the following equality holds for any t ∈ E up to a change of the
underlying probability space

A2,2(U, t,w) =
a.s

∑
k∈N

λk(t,w)Zk,

with Zk independent chi-square random variables with parameter 1 and λk(t,w) the eigenvalues of the
kernel Ct associated with function ∆(t, ·) = 2Γ(t) − Γ(·+ t) − Γ(· − t) restricted to w, i.e. for any
p1, p2 ∈ w, Ct(p1, p2) = ∆(t, p1 − p2).

Proof. We consider the stationary Gaussian random �eld Pw(Vt) over w de�ned by the restriction to w
where for any p ∈ E by Vt(p) = U(p) − U(p + t). The Karhunen-Loeve theorem [GS91] ensures the
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(a) 1513s, nd = 52 (b) 200s, nd = 116 (c) 4.77s, nd = 50 (d) 4.64s, nd = 671

Figure 3.9: Similarity detection In this �gure we illustrate the accuracy of the di�erent proposed ap-

proximations of the cumulative distribution function of A2,2(U, t,w). We say that an o�set t is detected
in an image if A2,2(u, t,w) ≤ a(t) for some threshold a(t) ∈ R. In every image, in green we display the

patch domain w (in the center of the image) and in red we display the shifted patch domain for detected

o�sets with function a(t) such that for any t ∈ E, P (A2,2(U, t,w) ≤ a(t)) = 1/2562
, where U is given

by the Gaussian random �eld f ∗W where f is the original image of fabric and W is a Gaussian white

noise over E = 256 × 256. Approximations of the cumulative distribution function of A2,2(U, t,w)
lead to approximations of a(t). The most precise approximation is given in (A) where the eigenvalues

are computed using a Matlab routine and the cumulative distribution function is given by the Imhof

method. In (B) we approximate the eigenvalues using the projection described in Proposition 3.1.13

and still use the Imhof method. It yields twice as many detections. In (C) Wood F method is used in-

stead of Imhof’s yielding less detections but performing seven times faster. Interestingly errors seem

to compensate and the obtained result with Wood F method is very close to the results obtained with

the baseline algorithm in (A). In (D) HBE method is used instead of Imhof’s, in this case we obtain too

many detections, i.e. the approximation of the cumulative distribution function is not valid.

83



existence of (λk(t,w))k∈N ∈ RN
+, (Xk)k∈N a sequence of independent unit Gaussian random variables

and (ek)k∈N a sequence of orthonormal function over L2(w) such that

lim
n→+∞

sup
p∈w

E

∣∣∣∣∣Pw(Vt)(p)−
n∑
k=0

√
λk(t,w)ek(p)Xk

∣∣∣∣∣
2
 = 0 , (3.8)

We de�ne the sequence (In)n∈N = (
∫
w

(
∑n
k=0

√
λk(t,w)ek(p)Xk)2dp)n∈N. We have, using the Cauchy-

Schwarz inequality on L2(Ω× w) and (3.8)

E [|A2,2(U, t,w)− In|] ≤ E

∫
w

∣∣∣∣∣∣Pw(Vt)
2(p)−

(
n∑
k=0

√
λk(t,w)ek(p)Xk

)2
∣∣∣∣∣∣dp


≤ E

[∫
w

(Pw(Vt)(p)−
n∑
k=0

√
λk(t,w)ek(p)Xk)2dp

]1/2

× E

[∫
w

(Pw(Vt)(p) +

n∑
k=0

√
λk(t,w)ek(p)Xk)2dp

]1/2

≤ 2E [A2,2(U, t,w)]
1/2
∫
w

E

[
(Pw(Vt)(p)−

n∑
k=0

√
λk(t,w)ek(p)Xk)2

]
dp , (3.9)

where we used the Fubini theorem in the last inequality. Using the dominated convergence theorem in

(3.9) with domination given by

sup
n∈N

sup
p∈w

E[(Pw(Vt)(p)−
n∑
k=0

√
λk(t,w)ek(p)Xk)2]

we conclude that (In)n∈N converges to A2,2(U, t,w) in L1(Ω). Thus there exists a subsequence of

(In)n∈N which converges almost surely to A2,2(U, t,w). We also have that

In =

∫
w

(

n∑
k=0

√
λk(t,w)ek(p)Xk)2dp =

n∑
k=0

λk(w, k)X2
k ,

by orthonormality and thus the sequence (In)n∈N is almost surely non-decreasing. We get that (In)n∈N
converges almost surely to A2,2(U, t,w) which can be rewritten as

A2,2(U, t,w) =
∑
k∈Z

λk(t,w)X2
k a.s..

The characterization of (λk(t,w), ek(p)) is given by the Karhunen-Loeve theorem and ek(p) is solution

of the following Fredholm equation for all p ∈ w∫
w

∆(t, p− p2)ek(p2) dp2 = λk(t,w)ek(p) .

Setting Zk = X2
k concludes the proof.

Note that if w = T2
then the solution of the Fredholm equation is given by the Fourier series of Γ.

84



3.1.5 Technical results

Multidimensional Central Limit Theorems

In this section we provide an extension of [Jan88, Theorem 2] to the multidimensional case.

We recall the notion of dependency graph as introduced in [Jan88]. Let (Xi)i∈N be Rd-valued ran-

dom variables. A graph is a dependency graph for (Xi)i∈N if the two following conditions are satis�ed.

1. There is a one-to-one correspondence between (Xi)i∈N and the vertices of the graph.

2. If two sets of vertices are not connected then the corresponding random variables are independent.

Theorem 3.1.15. Let (Xi,j)(i,j)∈N2 be a sequence of Rd-valued random variables and (Nn)n∈N ∈ NN.
For any n ∈ N, assume that there exists An,Mn ≥ 0 such that for any j ∈ N, ‖Xn,j‖ ≤ An and
that the dependency graph of (Xn,j)j∈N is of degree Mn at most. For any n ∈ N let Sn =

∑Nn
j=1Xn,j

and Cn = Cov [Sn]. Assume that there exists m0 ∈ N and C ∈ Md(R) such that for any n ∈ N,
limn→+∞(Nn/Mn)1/m0MnAn = 0 and limn→+∞ Cn = C . Then, Sn − E [Sn] converges (in the weak
sense) towards N(0, C).

Proof. Let a ∈ Rd and consider (Xa
i,j)(i,j)∈N2 such that for any i, j ∈ N, Xa

i,j = 〈Xi,j , a〉. We also

introduce for any n ∈ N, San =
∑Nn
j=1 x

a
n,j . Assume that a>Ca = 0. Then, using the Bienaymé-

Tchebychev inequality, we have for any ε > 0

lim
n→+∞

P (|San − E [San] | > ε) ≤ lim
n→+∞

ε−2a>Cna = 0 .

Hence, 〈a, Sn−E [Sn]〉 converges (in the weak sense) towards 〈a, Z〉with Z a d-dimensional Gaussian

random variable with zero mean and covariance matrix C . If a>Cna 6= 0 then using [Jan88] we have

that 〈a, Sn−E [Sn]〉 converges (in the weak sense) towards 〈a, Z〉. We conclude using the Cramér-Wold

theorem, [CW36, Theorem 1].

Similarly to [Jan88, Theorem 2], we can replace the condition ‖Xn,i‖ ≤ An by the following con-

dition: for any a ∈ Rd with a 6= 0

lim
n→+∞

Mn

Nn∑
j=1

E
[
‖Xn,j‖21‖Xn,j‖>An‖a‖

]
= 0 .

Indeed, this implies that for any a ∈ Rd, limn→+∞Mn

∑Nn
j=1 E[〈a,Xn,j〉21|〈a,Xn,j〉|>An ] = 0, which

is the Lindeberg type condition identi�ed in [Jan88, Theorem 2].

Asymptotic theorems – discrete case

We start by introducing two notions which will be crucial in order to derive a law of large numbers and

a central limit theorem in broad settings. TheR-independence, see De�nition 3.1.16, ensures long-range

independence whereas stochastic domination will replace integrability conditions in the standard law

of large numbers or central limit theorem.

The notion of R-independence generalizes to R2
and Z2

the associated one-dimensional concept,

see [Bil95] and its extension to N2
[ST11], [MST08].
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De�nition 3.1.16. Let d ∈ N, E = R2 or E = Z2 and V be a d-dimensional random �eld over E. Let
K1,K2 ⊂ E be two compact sets, and V |Ki be the restriction of V to Ki, i ∈ {1, 2}. We say that V is R-
independent, with R ≥ 0, if V |K1

is independent from V |K2
as soon as d∞(K1,K2) = min

p1∈K1,p2∈K2

‖p1 −

p2‖∞ > R.

Note that in the case of E = Z2
, compacts sets K1 and K2 are �nite sets of indices. This notion of

R-independence will replace the traditional assumption of independence in asymptotic theorems.

De�nition 3.1.17. Let E = R2 or E = Z2 and let V, Ṽ be real random �elds over E. We say that:

(a) Ṽ uniformly stochastically dominates V if for any α ≥ 0 and p ∈ E, P(V (p) ≥ α) ≤ P(Ṽ (p) ≥
α) ;

(b) Ṽ uniformly a.s. dominates V if for any p ∈ E, V (p) ≤ Ṽ (p) a.s..

Note that if Ṽ uniformly a.s. dominates V then Ṽ uniformly stochastically dominates Ṽ .

The following theorem is a two-dimensional law of large numbers with weak dependence assump-

tions. It is a slight modi�cation of Corollary 4.1 (ii) in [ST11].

Theorem 3.1.18. Let d ∈ N. Let (mk)k∈N, (nk)k∈N be two positive increasing integer sequences and
(wk)k∈N be the sequence of subsets such that for any k ∈ N, wk = J0,mkK × J0, nkK. Let V be a d-
dimensional R-independent random �eld over Z2, with R ≥ 0, such that ‖V (p)−E [V (p)] ‖ is uniformly
stochastically dominated by Ṽ , a real second-order stationary random �eld over Z2. Then V is a second-
order random�eld. In addition, assume that there existsµ ∈ Rd such that limk→+∞ |wk|−1

∑
p∈wk E [V (p)] =

µ. Then it holds that
lim

k→+∞
|wk|−1

∑
p∈wk

V (p) =
a.s

µ . (3.10)

Proof. Without loss of generality we can assume that d = 1 and that for any p ∈ Z2
, E [V (p)] = 0. In

order to apply Corollary 4.1 (ii) in [ST11] we must check that:

(a) V is R−independent ;

(b) |V | is uniformly stochastically dominated by a random �eld Ṽ and there exists r ∈ [1, 2[ such

that for any p ∈ Z2
, E[Ṽ r(p) log+(Ṽ (p))] is �nite.

First, (a) is given in the statement of Theorem 3.1.18 and |V | is uniformly stochastically dominated

by the random �eld Ṽ0 de�ned for any p ∈ Z2
by Ṽ0(p) = Ṽ (0). Since E[Ṽ (0)2] is �nite so is

E[Ṽ (0) log+(Ṽ (0))] which implies (b). Then it holds that

lim
k→+∞

∑
p∈wk

(V (p)− E [V (p)]) =
a.s

0 .

Using that limk→+∞ |wk|−1
∑
p∈wk

E [U(p)] = µ, we conclude the proof.

We now turn to an extension of the central limit theorem to two-dimensional random �elds with

weak dependence assumptions. This result is a consequence of Theorem 3.1.15.
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Theorem 3.1.19. Under the hypotheses of Theorem 3.1.18 and assuming that there exist µ ∈ Rd and
C ∈Md(R) such that

(a) limk→+∞ |wk|−1/2
∑
p∈wk (E [V (p)]− µ) = 0 ;

(b) limk→+∞ |wk|−1
∑
p1,p2∈wk Cov [V (p1), V (p2)] = C .

Then it holds that
lim

k→+∞
|wk|−1/2

∑
p∈wk

(V (p)− µ) =
L
N(0, C) . (3.11)

Proof. For any i, j ∈ N, let Xi,j = (V (pj)− E [V (pj)])|wi|−1/2
with (pj)j∈N such that for any k ∈ N,

{V (pj), j ∈ J1, |wk|K} = {V (p), p ∈ wk}. For any n ∈ N, let Nn = |wn|. Then, we have that for

any n ∈ N,

∑Nn
j=1Xn,j = |wk|−1/2

∑
p∈wk(V (p) − E [V (p)]). Since V is R-independent each vertex

of the dependency graph of (Xi,j)i,j∈N2 has its degree bounded by (2R + 1)2
and therefore for any

n ∈ N, Mn = (2R+ 1)2
. For any n ∈ N, let An = |wn|α with α ∈ (1/3, 1/2). Using that Ṽ uniformly

stochastically dominates (‖V (p)− E [V (p)] ‖)p∈Z2 we obtain that for any a ∈ Rd

Nn∑
j=1

E
[
‖Xn,j‖21‖Xn,j‖2>A2

n‖a‖−2

]
= |wn|−1

∑
p∈wn

E
[
‖V (p)− E [V (p)] ‖21‖V (p)−E[V (p)]‖2>A2

n‖a‖−2|wn|
]

= |wn|−1
∑
p∈wn

∫ +∞

0

P
(
‖V (p)− E [V (p)] ‖2 ≥ max(A2

n‖a‖−2|wn|, t)
)

dt

≤ |wn|−1
∑
p∈wn

∫ +∞

0

P
(
Ṽ (p) ≥ max(A2

n‖a‖−2|wn|, t)
)

dt

≤ E
[
Ṽ (0)1Ṽ (0)>A2

n‖a‖−2|wn|

]
.

Hence, since limn→+∞A2
n|wn| = limn→+∞ |wn|1−2α = +∞ we get that

lim
n→+∞

Nn∑
j=1

E
[
‖Xn,j‖21‖Xn,j‖2>A2

n‖a‖−2

]
= 0 . (3.12)

Letting m0 = 3 we get that

lim
n→+∞

(Nn/Mn)1/m0MnAn = (2R+ 1)2(1+1/3)|wn|1/3−α = 0 . (3.13)

In addition, we have that for any n ∈ N

Cn = Cov

Nn∑
j=1

Xn,j

 = |wn|−1 Cov

[∑
p∈wn

V (p)

]
= |wn|−1

∑
p1,p2∈wn

Cov [V (p1), V (p2)] . (3.14)

Hence, combining (3.12), (3.13), (3.14), (b) and Theorem 3.1.15, we get that

lim
k→+∞

|wk|−1/2
∑
p∈wk

(V (p)− E [V (p)]) =
L
N(0, C) . (3.15)

Combining (3.15) and (a) concludes the proof.

87



The following lemma explicits a class of Gaussian random �elds overZ2
such that theR-independence

property holds for some R ≥ 0.

Lemma 3.1.20. Let f ∈ RZ2

with �nite support suppf ⊂ J−r, rK2, where r ∈ N. LetW be a Gaussian
white noise over Z2 and V = f ∗W then V is a R-independent second-order random �eld with R = 2r.

Proof. V is a Gaussian random �eld such that for any p1, p2 ∈ Z2

E [V (p1)] = 0 ,

Cov [V (p1), V (p2)] =
∑

p′1,p
′
2∈Z2

f(p1 − p′1)f(p2 − p′2) Cov [W (p′1),W (p′2)] = Γf (p1 − p2) . (3.16)

Note that since suppf ⊂ J−r, rK we have suppΓf ⊂ J−R,RK with R = 2r. For any p1, p2 ∈ Z2
such

that ‖p1 − p2‖∞ > R, using (3.16), we obtain

Cov [V (p1), V (p2)] = Γf (p1 − p2) = 0 . (3.17)

Let K1,K2 ⊂ Z2
two �nite sets with supp∈K1,p2∈K2

‖p − p2‖∞ > R and consider V |Ki the restriction

of V to Ki for i = {1, 2}. Using (3.17), we get that for any p ∈ K1, p2 ∈ K2 we have

Cov [V |K1
(p), V |K2

(p2)] = 0 .

As a consequence, Cov [V |K1 , V |K2 ] = 0 and V |K1 and V |K2 are uncorrelated. Since V |K1 , V |K2 are

Gaussian random �elds we get that V |K1
, V |K2

are R-independent.

The following lemma gives speci�c conditions on random �elds in order for Theorems 3.1.18 and

3.1.19 to hold.

Lemma 3.1.21. Let d ∈ N. Let (mk)k∈N, (nk)k∈N be two positive increasing integer sequences and
(wk)k∈N be the sequence of subsets given for any k ∈ N by, wk = J0,mkK × J0, nkK. Let V be a d-
dimensional R-independent second-order stationary random �eld over Z2, with R ≥ 0. Then for all k ∈ N

(a) |wk|−1
∑
p∈wk E [V (p)] = E [V (0)] ;

(b) limk→+∞ |wk|−1
∑
p1,p2∈wk Cov [V (p1), V (p2)] =

∑
p∈Z2 Cov [V (p), V (0)] .

In addition, (3.10) and (3.11) hold with µ = E [V (0)] and C =
∑
p∈Z2 Cov [V (p), V (0)] which is �nite.

Proof. First, (a) is immediate by stationarity. Concerning (b), for any k ∈ N we have by stationarity

|wk|−1
∑

p1,p2∈wk

Cov [V (p1), V (p2)] = |wk|−1
∑

p1,p2∈wk

Cov [V (p1 − p2), V (0)]

=
∑
p∈Z2

Cov [V (p), V (0)] gk(p) ,

where gk ∈ RZ2

satis�es for any p ∈ Z2
, gk(p) = |wk|−1

1wk ∗ 1̌wk(p). For any k ∈ N, p ∈ Z2
we have

0 ≤ gk(p) ≤ 1 and limk→+∞ gk(p) = 1. For any p ∈ Z2
such that ‖p‖∞ > R, Cov [V (p), V (0)] = 0

and then

∑
p∈Z2 |Cov [V (p), V (0)] | < +∞. Using the dominated convergence theorem we get that

lim
k→+∞

|wk|−1
∑

p1,p2∈wk

Cov [V (p1), V (p2)] =
∑
p∈Z2

Cov [V (p), V (0)] .

We obtain (3.10) and (3.11) by applying Theorem 3.1.18 and Theorem 3.1.19.
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Lemma 3.1.22. Let f : Z2 → R, f 6= 0, a function with �nite support. Then it holds for any t ∈ Z2,
Γf (t) ≤ Γf (0), with equality if and only if t = 0.

Proof. For any t ∈ Z2
, let τtf = f(· + t). By the de�nition of the autocorrelation Γf and using the

Cauchy-Schwarz inequality we get that for any t ∈ Z2

Γf (t) = 〈τtf, f〉 ≤ ‖f‖22 ≤ Γf (0) ,

with equality if and only if f = ατtf , with α 6= 0 since f 6= 0. This implies that suppτt(f) = suppf .

As a consequence t = 0, which concludes the proof.

The following lemma ensures that items (a) and (b) in Theorem 3.1.19 are satis�ed in the template

similarity case when assuming summability conditions over y.

Lemma 3.1.23. Under the hypotheses of Theorem 3.1.4, assuming A4 with ` ∈ N and q = 2`. There exist
µq,q > 0 and σq,q ≥ 0 such that for any t ∈ E

(a) limk→+∞ |wk|1/2
(
|wk|−1E [Tq,q(U, y, t,wk)]− µq,q(t)

)
= 0 ;

(b) limk→+∞ |wk|−1 Var [Tq,q(U, y, t,wk)] = σ2
q,q(t) .

Proof. (a) For any k ∈ N we have that

E [Tq,q(U, y, t,wk)] =
∑
p∈wk

E
[
(y(p)− U(p+ t))2`

]
=

2∑̀
j=0

(
2`

j

) ∑
p∈wk

(−1)jy(p)jE
[
U(p)2`−j]

=
∑̀
j=0

(
2`

2j

) ∑
p∈wk

y(p)2jE
[
U(p)2(`−j)

]

=
∑̀
j=0

(
2`

2j

)
E [U(0)]

2(`−j) ∑
p∈wk

y(p)2j .

Let µq,q =
∑`
j=0

(
2`
2j

)
E [U(0)]

2(`−j)
βj and using A4-(a) we get that

lim
k→+∞

|wk|1/2
(
|wk|−1E [Tq,q(U, v, t,wk)]− µq,q(t)

)
= 0 .

Now since µq,q ≥ E
[
U(0)2`

]
≥ E

[
U(0)2

]` ≥ Γf (0) > 0 we have that µq,q > 0.

(b) For any k ∈ N we have that

Var [Tq,q(U, v, t,wk)] =
∑

p1,p2∈wk

Cov
[
(U(p1)− y(p1))2`, (U(p2)− v(p2))2`

]
=

∑
p1,p2∈wk

∑̀
i,j=0

(
2`

2i

)(
2`

2j

)
y(p1)2iy(p2)2j Cov

[
U(p1)2(`−i), U(p2)2(`−j)

]

=
∑

p1,p2∈Z2

∑̀
i,j=0

(
2`

2i

)(
2`

2j

)
yk(p1)2iyk(p1 + p2)2j Cov

[
U(p2)2(`−i), U(0)2(`−j)

]
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=
∑̀
i,j=0

(
2`

2i

)(
2`

2j

)〈
y2i
k ∗ y̌

2j
k ,Cov

[
U(·)2(`−i), U(0)2(`−j)

]〉
.

Let σq,q =
∑`
i,j=0

(
2`
2i

)(
2`
2j

) 〈
γi,j ,Cov

[
U(·)2(`−i), U(0)2(`−j)]〉

. Using A4-(b) we can conclude.

Note that this lemma is also valid in the continuous case.

Asymptotic theorems – continuous case

We now turn to the continuous setting. We start by stating the continuous counterparts of Theo-

rem 3.1.18 and Theorem 3.1.19. The following theorem, given here for completeness, can be found

with di�erent assumptions (in the one-dimensional case) in [Lin13].

Theorem 3.1.24. Let d ∈ N. Let (mk)k∈N, (nk)k∈N be two positive increasing integer sequences and
(wk)k∈N be the sequence of subsets given for any k ∈ N by, wk = [0,mk] × [0, nk]. Let V be a d-
dimensional R-independent random �eld over R2 , with R ≥ 0, such that ‖V (p)−E[V (p)]‖ is uniformly
stochastically dominated by Ṽ , a stationary random �eld of order r > 2 over R2. Then V is a second-order
random �eld. In addition, assume V is sample path continuous and that there exists µ ∈ Rd given by
limk→+∞ |wk|−1

∫
p∈wk E [V (p)] dp = µ. Then it holds that

lim
k→+∞

|wk|−1

∫
p∈wk

V (p)dp =
a.s.

µ . (3.18)

Proof. Without loss of generality we can assume that d = 1 and that for any p ∈ E, E [V (p)] = 0. Let

(σk)k∈N ∈ RN
given for any k ∈ N by

σ2
k = E

[(
k−2

∫
Ek

V (p)dp

)2
]
, (3.19)

with Ek = [0, k]2. Since V is R-independent, for any p1, p2 ∈ E such that ‖p1 − p2‖∞ > R, we have

C(p1, p2) = 0. Hence for k large enough we obtain∫
Ek

∫
Ek

C(p1, p2)dp1dp2 ≤
∫
p1∈Ek

∫
‖p2‖∞≤R

|C(p1, p1 + p2)|dp2dp (3.20)

≤ k2|B̄∞(0, R)| sup
(p1,p2)∈Ek×B̄∞(0,R)

|C(p1, p1 + p2)| .

Using that Ṽ uniformly stochastically dominates |V |, the stationarity of Ṽ , and the Cauchy-Schwarz

inequality, we obtain for any p1, p2 ∈ E,

|C(p1, p1 + p2)| = |E [V (p1)V (p1 + p2)] | ≤ E
[
Ṽ 2(p1)

]1/2
E
[
Ṽ 2(p1 + p2)

]1/2
≤ E

[
Ṽ 2(0)

]
.

(3.21)

Combining (3.19), (3.20) and (3.21) we get that for any k ∈ N

σ2
k ≤Mk−2 ,
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with M = |B̄∞(0, R)|E[Ṽ 2(0)]. The series

∑
k∈N σ

2
k converges and

∑
k∈N(k−2

∫
Ek
V (p)dp)2

is �nite

almost surely. This proves that limk→+∞ k−2
∫
Ek
V (p)dp = 0 almost surely. Using [CL04, p. 95] we

get that

lim
k→+∞

sup
Ek⊂w⊂Ek+1

∣∣∣∣|w|−1

∫
w

V (p)dp− k−2

∫
Ek

V (p)dp

∣∣∣∣ =
a.s.

0 .

Combining this result with limk→+∞ k−2
∫
Ek
V (p)dp = 0 we obtain that

limk→+∞|wk|−1

∫
p∈wk

V (p)dp =
a.s.

0 .

The following theorem is an application of [IL89, Theorem 1.7.1].

Theorem 3.1.25. Under the hypotheses of Theorem 3.1.24 and assuming that there exist µ ∈ Rd and
C ∈Md(R) such that

(a) limk→+∞ |wk|−1/2
∫
p∈wk (E [V (p)]− µ) dp = 0 ;

(b) limk→+∞ |wk|−1
∫
p1,p2∈wk Cov [V (p1), V (p2)] dp1dp2 = C .

Then it holds that
lim

k→+∞
|wk|−1/2

∫
p∈wk

(V (p)− µ) dp =
L
N(0, C) . (3.22)

Proof. Let a ∈ Rd. We consider the d-dimensional random �eld ξ over R2
de�ned for any p ∈ R2

by ξ(p) = V (p) − E [V (p)]. We de�ne also the weight functions (gn)n∈N given for any n ∈ N by

gn(p) = |wn|−1/2
1p∈wn . For any n ∈ N, let Sn =

∫
R2 gn(p)ξ(p)dp. We have for any n ∈ N,

Sn = |wn|−1/2

∫
p∈wn

(V (p)− E [V (p)])dp .

Let ξa be the one-dimensional random �eld over R2
such that for any p ∈ R2

, ξa(p) = 〈a, ξ(p)〉 and

(San)n∈N be the sequence of real-valued random variables such that for any n ∈ N, San = 〈a, Sn〉. Then

for any n ∈ N, San =
∫
R2 gn(p)ξa(p)dp. Using (b) we have that

lim
n→+∞

E
[
(San)2

]
= lim
n→+∞

|wn|−1

∫
p1,p2∈wn

a> Cov [V (p1), V (p2)] a = a>Ca . (3.23)

By assumption, ξa is stochastically dominated by ‖a‖Ṽ and therefore for any p ∈ R2
we have

E [|ξa|r] < +∞ . (3.24)

Combining (3.23), (3.24), the fact that V is R-independent, [IL89, Theorem 1.7.1] and (a) we obtain that

lim
k→+∞

〈
a, |wk|−1/2

∫
p∈wk

(V (p)− µ) dp

〉
=
L
N(0, a>Ca) .

We conclude the proof upon using the Cramér-Wold theorem, [CW36, Theorem 1].
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The following lemmas are the continuous versions of Lemma 3.1.21 and 3.1.22.

Lemma 3.1.26. Let d ∈ N. Let (mk)k∈N, (nk)k∈N be two positive increasing integer sequences and
(wk)k∈N be the sequence of subsets such that for any k ∈ N, wk = [0,mk] × [0, nk]. Let V be a d-
dimensional, R-independent random �eld of order r > 2 over R2, with R ≥ 0. Assume that V is sample
path continuous, then for all k ∈ N

(a) |wk|−1
∫
p∈wk E [V (p)] dp = E [V (0)] ;

(b) limk→+∞ |wk|−1
∫
p1,p2∈wk Cov [V (p1), V (p2)] dpdp2 =

∫
p∈R2 Cov [V (p), V (0)] dp .

In addition, (3.18) and (3.22) hold with µ = E [V (0)] and C =
∫
p∈R2 Cov [V (p), V (0)] dp.

Proof. (a) The proof is immediate since for any p ∈ R2
, E [V (p)] = E [V (0)].

(b) For any k ∈ N we have by stationarity

|wk|−1

∫
p1,p2∈wk

Cov [V (p1), V (p2)] dp1dp2 = |wk|−1

∫
p1,p2∈wk

Cov [V (p1 − p2), V (0)] dp1dp2 .

By the Fubini-Lebesgue theorem we obtain that for any k ∈ N,

|wk|−1

∫
p1,p2∈wk

Cov [V (p1), V (p2)] dp1dp2 =

∫
p∈R2

Cov [V (p), V (0)] gk(p)dp ,

where gk ∈ `∞(R2) satis�es for any p ∈ R2
, gk(p) = |wk|−1

1wk ∗ 1̌wk(p). For any k ∈ N, p ∈
R2

we have 0 ≤ gk(p) ≤ 1 and limk→+∞ gk(p) = 1. For any p ∈ R2
such that ‖p‖∞ > Rt,

Cov [V (p), V (0)] = 0 and then ∫
p∈R2

|Cov [V (p), V (0)] |dp < +∞ .

Using the dominated convergence theorem we get that

|wk|−1

∫
p1,p2∈wk

Cov [V (p1), V (p2)] dp1dp2 =

∫
p∈R2

Cov [V (p), V (0)] dp ,

Since V is R-independent we conclude the proof by applying Theorem 3.1.24 and 3.1.25.

Lemma 3.1.27. LetΓ be a function overR2, Γ 6= 0, such that for any p1, p2 ∈ R2,C(p1, p2) = Γ(p1−p2)
withC the covariance function of V a second-order random �eld overR2. Assume that Γ has �nite support.
Then it holds for any t ∈ R2, Γ(t) ≤ Γ(0), with equality if and only if t = 0.

Proof. Upon replacing for any p ∈ R2
, V (p) by V (p)− E [V (p)] we suppose that E [V (p)] = 0. Using

the Cauchy-Schwarz inequality and the stationarity of V we get for any t ∈ R2
and p ∈ R2

Γ(t) = E [V (p+ t)V (p)] ≤ E
[
V (p+ t)2

]1/2 E [V (p)2
]1/2 ≤ E

[
V (p)2

]
≤ Γ(0) .

with equality if and only if V (p + t) = α(p)V (p) with α(p) ∈ R. Since V is stationary and V 6= 0
we have that for any p, t ∈ R2

, E[V (p + t)2] = E[V (p)2] > 0. Thus α(p)2 = 1 and for all n ∈ N,

V (nt) = ±V (0). If t 6= 0 then there exists n ∈ N such that nt /∈ suppΓ and then we have

0 = Γ(nt) = E [V (nt)V (0)] = ±E
[
V (02)

]
6= 0 ,

which is absurd. Thus the equality in the inequality holds if and only if t = 0.
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Explicit constants

In order to derive precise constants in Theorem 3.1.4 and Theorem 3.1.6 we use the following lemma

which is a consequence of the Isserlis formula [Iss18].

Lemma 3.1.28. Let U and V be two zero-mean, real-valued Gaussian random variable and k, ` ∈ N. We
have

E
[
U2kV 2`

]
=

k∧∑̀
j=0

rj,k,`E
[
U2
]k−j E [V 2

]`−j E [UV ]
2j and

Cov
[
U2k, V 2`

]
=

k∧∑̀
j=1

rj,k,`E
[
U2
]k−j E [V 2

]`−j E [UV ]
2j
,

with rj,k,` de�ned by (3.2).

Proof. Let k, ` ∈ N. Using Isserlis formula [Iss18] we obtain that E
[
U2kV 2`

]
is the sum over all the

partitions in pairs of {U, . . . , U︸ ︷︷ ︸
2k times

, V, . . . , V︸ ︷︷ ︸
2` times

} of the product of the expectations given by a pair partition.

Given a pair partition we identify three di�erent cases, {U,U}, {V, V } and {U, V }. We only need to

count the number of times each case appears in the sum. We denote the number of {U,U} couples

in a given pair partition p by nU,U (p). In the same fashion we de�ne nU,V (p) and nV,V (p). We have

2k = 2nU,U (p) + nU,V (p) which proves that nU,V (p) is even. We denote by Pj the number of pair

partitions p such that nU,V (p) = 2j, with j ∈ J0, k ∧ `K.

The cardinality of Pj is given by rj,k,`. Indeed, in order to select 2j pair {U, V } we select 2j

elements among 2k (selection of replicates of U ), same for V which gives

(
2k
2j

)(
2`
2j

)
possibilities. Consid-

ering all the bijections between these elements we construct all the possible 2j pairs {U, V }. Given 2j
pairs {U, V } we must construct k− j pairs {U,U} and `− j pairs {V, V } in order to obtain a pair par-

tition of Pj . The number of pairs partition of a set with `− j elements is given q`−j . As a consequence

we obtain for all j ∈ J0, k ∧ `K

|Pj | = qk−jq`−j

(
2k

2j

)(
2`

2j

)
(2j)! = rj,k,` .

Summing over j ∈ J0, k ∧ `K we obtain all the possible pair partition and we get

E
[
U2kV 2`

]
=

k∧∑̀
j=0

rj,k,`E
[
U2
]k−j E [V 2

]`−j E [UV ]
2j
. (3.25)

Using that r0,k = q2
k , respectively r0,` = q2

` and E
[
U2k

]
= qkE

[
U2
]k

, respectively E
[
V 2`

]
=

q`E
[
V 2
]`

, we obtain that the �rst term in the sum of (3.25) is equal to E
[
U2k

]
E
[
V 2`

]
. Hence by

removing this term we obtain the covariance and conclude the proof.

Proof of Proposition 3.1.5. The proof is divided into three parts. First we consider the case i = q then the

case i = sc and �nally the case i = cos.

1. Let i = q with q = 2` and ` ∈ N, t ∈ Z2\ {0} and Vt the Gaussian random �eld given for any p ∈ Z2

by Vt(p) = U(p)− U(p+ t). Note that for all p ∈ Z2
we have Vt(p)

2` = Vq,t(p). For any p1, p2 ∈ Z2
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we have

E [Vt(p1)] = 0 ,

Cov [Vt(p1), Vt(p2)] = 2Γf (p1 − p2)− Γf (p1 − p2 − t)− Γf (p1 − p2 + t) = ∆f (t, p1 − p2) ,
(3.26)

with ∆f given by (3.3). We show in proof of Theorem 3.1.4, see (3.1), that for any t ∈ Z2\ {0}

µq(t) = E
[
V 2`
t (0)

]1/2`
, σq(t)

2 =
∑
p∈Z2

Cov
[
V 2`
t (p), V 2`

t (0)
]
E
[
V 2`
t (0)

]1/`−2
/(2`)2 . (3.27)

Combining (3.26), (3.27) and Lemma 3.1.28 we get that

(a) µq(t) = q
1/(2`)
2` ∆f (t, 0)1/2 ;

(b) σq(t)
2 =

∑
p∈Z2

(∑`
j=1 rj,`∆f (t, 0)2(`−j)∆f (t, p)2j

)
q

1/`−2
` ∆f (t, 0)1−2`/(2`)2 .

Exchanging the sums in (b) we get σq(t)
2 =

q
1/`−2
`

(2`)2

∑̀
j=1

rj,`

(
‖∆f (t,·)‖2j

∆f (t,0)

)2j

∆f (t, 0).

2. Let i = sc, t ∈ Z2\ {0} and Vsc,t be a Gaussian random �eld given for any p ∈ Z2
, by Vt(p) =

U(p)U(p+ t). For any p1, p2 ∈ Z2
we have

E [Vsc,t(p1)] = Γf (t) ,

Cov [Vsc,t(p1), Vsc,t(p2)] = Γf (p1 − p2)− Γf (p1 − p2 − t)Γf (p1 − p2 + t) = ∆̃f (t, p1 − p2) ,
(3.28)

with ∆̃f given by (3.3). We show in the proof of Theorem 3.1.4, see (3.1), that for any t ∈ Z2\ {0}

µsc(t) = E [Vsc,t(0)] , σsc(t)
2 =

∑
p∈Z2

Cov [Vsc,t(p), Vsc,t(0)] . (3.29)

Combining (3.28) and (3.29) we get that

(a) µsc(t) = Γf (t) ;

(b) σsc(t)
2 =

∑
p∈Z2 ∆̃f (t, p) ,

which concludes the proof in the case i = sc.

3. We now consider the case i = cos. Recall that in the proof of Theorem 3.1.4 we show that

Ascos(U, t,wk) = h

(
|wk|−1

∑
p∈wk

Vcos,t(p)

)
,

where for any x ∈ R, y, z > 0

h(x, y, z) = xy−1/2z−1/2 , Vcos,t(p) =

−U(p)U(p+ t)
U(p)2

U(p+ t)2

 .

Applying Lemma 3.1.21 there exist µ̃cos(t) and C̃cos(t) such that

(a) limk→+∞ |wk|−1Vcos,t =
a.s.

µ̃cos(t) ;
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(b) limk→+∞ |wk|1/2
(
|wk|−1Vcos,t − µ̃cos(t)

)
=
L
N
(

0, C̃cos(t)
)
,

with

µ̃cos(t) =

Γf (t)
Γf (0)
Γf (0)

 ,

C̃cos(t) =

‖Γf‖2 + Γf ∗ Γ

∧

f (2t) 2Γf ∗ Γ

∧

f (t) 2Γf ∗ Γ

∧

f (t)

2Γf ∗ Γ

∧

f (t) 2‖Γf‖2 2‖Γf‖2

2Γf ∗ Γ

∧

f (t) 2‖Γf‖2 2‖Γf‖2

 .

(3.30)

In addition, for any x ∈ R, y, z > 0

∇h(x, y, z) =

 y−1/2z−1/2

−(1/2)xy−3/2z−1/2

−(1/2)xy−1/2z−3/2

 .

Combining this result, (3.30) and the multivariate Delta method we get that

µcos(t) = h(Γf (t),Γf (0),Γf (0)) = Γf (t)/Γf (0) ,

σcos(t)
2 = ∇h(Γf (t),Γf (0),Γf (0))>M∇h(Γf (t),Γf (0),Γf (0))

= Γf (0)−2

{
‖Γf‖22

(
1 + 2

Γf (t)2

Γf (0)2

)
− 4

Γf (t)

Γf (0)
Γf ∗ Γ

∧

f + Γf ∗ Γ

∧

f (2t)

}
,

where

M =

‖Γf‖2 + Γf ∗ Γ

∧

f (2t) 2Γf ∗ Γ

∧

f (t) 2Γf ∗ Γ

∧

f (t)

2Γf ∗ Γ
∧

f (t) 2‖Γf‖2 2‖Γf‖2

2Γf ∗ Γ

∧

f (t) 2‖Γf‖2 2‖Γf‖2

 ,

which concludes the proof.

Proof of Proposition 3.1.7. The proof is divided in two parts. First we treat the case i = q then the case

i = sc and i = cos. Let q = 2` with ` ∈ N. Lemma 3.1.23 gives us that

µq,q =
∑̀
j=0

(
2`

2j

)
E [U(0)]

2(`−j)
βj ,

σq,q =
∑̀
i,j=0

(
2`

2i

)(
2`

2j

)〈
γi,j ,Cov

[
U(·)2(`−i), U(0)2(`−j)

]〉
.

Using Lemma 3.1.28 we obtain that

µq,q = Γf (0)`
∑̀
j=0

(
2`

2j

)
q`−jΓf (0)−jβj ,

σq,q =
∑̀
i,j=0

(
2`

2i

)(
2`

2j

) `−i∧`−j∑
m=1

rm,k,`
〈
γi,j ,Γ

2m
f

〉
Γf (0)2`−i−j−2m .

We conclude using (3.4). For i = sc and i = cos, the result is given in the proof of Theorem 3.1.6.
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3.2 Patch redundancy in images

3.2.1 Abstract

In many image processing applications, using local information combined with the knowledge of long-

range spatial arrangement is crucial. The spatial redundancy on sub-images called patches, encodes the

small scale structure of the image as well as its large scale organization. More precisely, local information

is encoded in the patch content and the large scale organization is contained in the redundancy of this

information across the patches of the image. For example, patch-based inpainting techniques, such as

[CPT04; HS14], assign patches of a known region to patches of an unknown region. Namely, each patch

position on the border of the unknown region is associated to an o�set corresponding to the best patch

according to the partial available information. In [HS14] the authors replace the search on the whole

image by a search among the most redundant o�sets in the known region. This allows the authors

of [HS14] to retrieve long-range spatial structure in the unknown part of the image. Another famous

application of spatial redundancy can be found in denoising, with the seminal work (Non-Local means)

of Buades and coauthors [BCM05], in which the authors propose to replace a noisy patch by the mean

over all spatially redundant patches.

Last but not least, spatial redundancy is of crucial importance in exemplar-based texture synthesis.

In this section we de�ne textures as images containing repeated patterns but also re�ecting randomness

in the arrangement of these patterns. Among textures, one important class is given by the microtextures

in which no individual object can be clearly delimited. In the periodic case, a more precise de�nition

will be given in De�nition 3.2.4. These microtexture models can be described by Gaussian random

�elds [Wij91; GGM11; Lec15; Xia+14]. Parametric models using features such as wavelet transform

coe�cients [PS00], scattering transform coe�cients [SM13] or convolutional neural network outputs

[GEB15] have been proposed in order to derive image models with more structure. On the other hand,

non-parametric patch-based algorithms such as [EL99; EF01; Kwa+03; RDM16; GLR18] propose to use

most similar patches in order to �ll the new texture images, similarly to inpainting techniques.

All these techniques lift images in spaces with dimensions higher than the original image space, and

make use of the redundancy of the lifting to extract important structural information. There exist two

main types of lifting: feature extraction or patch extraction. Feature extraction relies on the use of �lters,

linear or non-linear, which aim at selecting substantial local information. Among popular kernels are

oriented and multiscale �lters, which happened to be identi�ed as early processing in mammal vision

systems [Dau85; HW59]. These last years have seen the rise of neural networks in which the �lter

dictionary is no longer given as an input but learned through a data-driven optimization procedure

[SZ14]. On the other hand, patch-based methods rely on the assumption that image processing tasks

are simpli�ed when conducted in the higher dimensional patch space.

Every analysis performed in a lifted space, built via feature extraction or patch extraction, relies

on the comparison of points in this space. In patch-based lifted spaces, we aim at �nding dissimilarity

functions such that two patches are visually close if the dissimilarity measurement between them is

small. In this section we focus on the square Euclidean distance but other choices could be considered

[WSB03; Wan+04; DDT12].

This leads us to consider a statistical hypothesis testing framework to assess similarity (or dissimi-

larity) between patches. The null hypothesis is de�ned as the absence of local structural similarities in

the image. Reciprocally the alternative hypothesis is de�ned as the presence of such similarities. There

exists a wide variety of tractable models exhibiting no similarity at long-range, like Gaussian random

�elds [Wij91; GGM11; Lec15; Xia+14] or spatial Markov random �elds [CJ83], whereas sampling and

inference in very structured models rely on optimization procedures and may be computationally ex-
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pensive, their distribution being the limit of some Markov chain [ZWM98; LZW16] or some stochastic

optimization procedure [BM18]. This encourages us to consider an a contrario approach, i.e. we do not

consider the alternative hypothesis and focus on rejecting the null hypothesis. This framework was suc-

cessfully applied in many areas of image processing [Dav+18; DMM00; DMM01; ADV03; Cao04] and

aims at identifying structure events in images. This statistical model takes its roots in the fundamental

work of the Gestalt theory [DMM08]. One of its principle, the non-accidentalness principle [Low12]

or Helmholtz principle [Zhu99; DMM01], states that no structure is perceived in a noise model. To be

precise, in our case of interest, we want to assess that no spatial redundancy is perceived in microtexture

models. This methodology allows us to only design a locally structured background model to de�ne a

null hypothesis. Combining a contrario principles and patch-based measures, we propose an algorithm

to identify auto-similarities in images.

We then turn to the implementation of such an algorithm and illustrate the diversity of its possible

applications with three examples: denoising, lattice extraction, and periodicity ranking of textures.

In our denoising application we propose a modi�cation of the celebrated Non-Local means algorithm

[BCM05] (NL-means) by inserting a threshold in the selection of similar patches. Using an a contrario
model we are able to give probabilistic control on the patch reconstruction.

We then focus on periodicity detection and, more precisely, lattice extraction. Periodicity in images

was described as an important feature in early mathematical vision [HSD73]. Most of the proposed

methods to analyze periodicity rely on global measurements such as the modulus of the Fourier trans-

form [MMN83] or the autocorrelation [LWY97]. These global techniques are widely used in crystallog-

raphy where lattice properties, such as the angle between basis vectors, are fundamental [MB15; SL14].

Since all of our measurements are local, we are able to identify periodic similarities even in images

which are not periodic but present periodic parts, for instance if two crystal structures are present in

a single crystallography image. We draw a link between the introduced notion of auto-similarity and

the inertia measurement in co-occurence matrices [HSD73]. We then introduce our lattice proposal

algorithm which combines a detection map, i.e. the output of our redundancy detection algorithm, and

graphical model techniques, as in [Par+09], in order to extract lattice basis vectors.

Our last application concerns texture ranking. Since the de�nition of texture is broad and covers

a wide range of images, it is a natural question to identify criteria in order to distinguish textures. In

[LCT03], the authors use a classical measure for distinguishing textures: regularity. In this work, we

narrow this criterion and restrict ourselves to the study of periodicity in texture images. The proposed

graphical model inference naturally gives a quantitative measurement for texture periodicity ranking.

We give an example of ranking on 25 images of the Brodatz set.

The rest of this chapter is organized as follows. An a contrario framework for local similarity detec-

tion is proposed in Section 3.2.2. In the a contrario framework, a background model, corresponding to

the null hypothesis, is required. The consequence of choosing Gaussian models as background models is

investigated and a redundancy detection algorithm is proposed in Section 3.2.3. The rest of the section is

dedicated to some examples of application of the proposed framework. After reviewing one of the most

popular method in image denoising we introduce a denoising algorithm in Section 3.2.4 and present

our experimental results in Section 3.2.4. Local dissimilarity measurements can be used as periodicity

detectors. The link between the locality of the introduced functions and the literature on periodicity

detection problems is investigated in Section 3.2.5. An algorithm for detecting lattices in images is given

in Section 3.2.5 and numerical results are presented in Section 3.2.5. In our last experiment in Section

3.2.5, we introduce a criterion for measuring texture periodicity. We conclude our study and discuss

future work in Section 3.2.6.
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3.2.2 An a contrario framework for auto-similarity

In this section, we only consider the autosimilarity A2,2(x, t,w), see De�nition 3.1.3 and denote it

A (x, t,w). This auto-similarity computes the squared distance between a patch of u de�ned on a do-

main w and the patch of u de�ned by the domain w shifted by the o�set vector t. In what follows, we

introduce an a contrario framework on the auto-similarity. This framework will allow us to derive an

algorithm for detecting spatial redundancy in natural images. In this section we �x an image domain

E ⊂ Z2
and a patch domain w ⊂ E. We recall that our �nal aim is to design a criterion that will answer

the following question: are two given patches similar? This criterion will be given by the comparison

between the value of a dissimilarity function and a threshold a. We will de�ne the threshold a so that

few similarities are identi�ed in the null hypothesis model, i.e. similarity does not occur “just by chance”.

Thus we can reformulate the initial question: is the similarity output of a dissimilarity function between

two patches small enough? Or, to be more precise, how can we set the threshold a in order to obtain a

criterion for assessing similarity between patches?

This formulation agrees with the a contrario framework [DMM08] which states that geometrical

and/or perceptual structure in an image is meaningful if it is a rare event in a background model. This

general principle is sometimes called the Helmholtz principle [Zhu99] or the non-accidentalness prin-

ciple [Low12]. Therefore, in order to control the number of similarities identi�ed in the background

model, we study the probability density function of the auto-similarity function with input random im-

age U over E. We will denote by P0 the probability distribution of U over RE
, the images over E. We

will assume that P0 is a microtexture model, see De�nition 3.2.4 below for a precise de�nition of such a

model. We de�ne the following signi�cant event which encodes spatial redundancy: A (u, t,w) ≤ a(t),

where a, the threshold function, is de�ned over the o�sets (t ∈ Z2
) but also depends on other parame-

ters such as w or P0. The dependency of a with respect to t cannot be omitted. For instance, even in a

Gaussian white noise W , the probability distribution function of A (W, t,w) depends on t.

The Number of False Alarms (NFA) is a crucial quantity in the a contrario methodology. A false

alarm is de�ned as an occurrence of the signi�cant event in the background model P0. We recall that

in our model the signi�cant event is patch redundancy. This test must be conducted for every possible

con�gurations of the signi�cant event, i.e. in our case we test every possible o�set t. The NFA is then

de�ned as the expectation of the number of false alarms over all possible con�gurations. Bounding the

NFA ensures that the probability of identifying k o�sets with spatial redundancy is also bounded, see

Proposition 3.2.3. In what follows we give the de�nition of the NFA in the spatial redundancy context.

De�nition 3.2.1. Let U ∼ P0, where P0 is a background microtexture model. We de�ne the auto-
similarity probability map AP for any t ∈ E, w ⊂ E and a : E→ R by

AP(t,w, a) = P0 (A (U, t,w) ≤ a(t)) . (3.31)

We de�ne the auto-similarity expected number of false alarms ANFA by

ANFA(w, a) =
∑
t∈E

AP(t,w, a) . (3.32)

Note thatAP(t,w, a) corresponds to the probability thatw+t is similar tow in the background model

U . For any t ∈ E, the cumulative distribution function of the auto-similarity random variable A (U, t,w)
under P0 evaluated at value α(t) is given by AP(t,w, α(t)). We denote by q 7→ AP−1(t,w, q) the in-

verse cumulative distribution function, potentially de�ned by a generalized inverse (AP−1(t,w, q) =
inf{α(t) ∈ R, AP(t,w, α(t)) ≥ q}), of the auto-similarity random variable for a �xed o�set t, with

q ∈ (0, 1) a quantile. We now have all the tools to control the number of detected o�sets in the back-

ground model.
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De�nition 3.2.2. Let x : E → R be an image, w ⊂ E a patch domain, and a : E → R. An o�set t is
said to be detected with respect to a, if A (x, t,w) ≤ a(t).

Note that a detected o�set in U ∼ P0 corresponds to a false alarm in the a contrario model. In what

follows we suppose that the cumulative distribution function of A (U, t,w) is invertible for every t ∈ E.

This ensures that for any t ∈ E and q ∈ (0, 1) we have

AP
(
t,w,AP−1 (t,w, q)

)
= q . (3.33)

Proposition 3.2.3. Let NFAmax ≥ 0 and for all t ∈ E de�ne a(t) = AP−1 (t,w,NFAmax /|E|). We have
that for any n ∈ N\ {0},

ANFA(w, a) = NFAmax and P0 (“at least n o�sets are detected in U” ) ≤ n−1 NFAmax .

Proof. Using (3.32), and a(t) = AP−1 (t,w,NFAmax /|E|), we get

ANFA(w, a) =
∑
t∈E

AP(t,w, a) =
∑
t∈E

AP
(
t,w,AP−1 (t,w,NFAmax /|E|)

)
= NFAmax ,

where the last equality is obtained using (3.33). Concerning the upper-bound, we have, using the Markov

inequality and (3.31), for any n ∈ N\ {0}

P0 (“at least n o�sets are detected in U” ) = P0

(∑
t∈E

1A (U,t,w)≤a(t) ≥ n

)
≤ n−1

∑
t∈E

E
[
1A (U,t,w)≤a(t)

]
≤ n−1 NFAmax ,

where 1A (U,t,w)≤a(t) = 1 if A (U, t,w) ≤ a(t) and 0 otherwise.

Thus, setting a as in Proposition 3.2.3, an o�set t ∈ E is detected for an image x : E→ R if

A (x, t,w) ≤ AP−1 (t,w,NFAmax /|E|) . (3.34)

This a contrario detection framework can then be simply rewritten as 1) computing the auto-similarity

function with input image u, 2) thresholding the obtained dissimilarity map with the inverse cumulative

distribution function of the computed dissimilarity function under P0. The computed threshold depends

on the o�set and Proposition 3.2.3 ensures probabilistic guarantees on the expected number of detections

under P0. Using the inverse property of the inverse cumulative distribution function and (3.34), we

obtain that an o�set is detected if and only if

P0 (A (U, t,w) ≤ A (x, t,w)) = AP (t,w,A (x, t,w)) ≤ NFAmax /|E| . (3.35)

Therefore, the thresholding operation can be conducted either on A (x, t,w), see (3.34), or onAP (t,w,A (x, t,w)),

see (3.35). This property will be used in Section 3.2.3 to de�ne a similarity detection algorithm based on

the evaluation of A (x, t,w).

3.2.3 Gaussian model and detection algorithm

Choice of background model

In this section we compute AP (t,w, α), i.e. the cumulative distribution function of the similarity func-

tion under the null hypothesis model, with a Gaussian background model. Indeed, if the background
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(a) (b) (c)

Figure 3.10: Examples of microtexture models In (a) we present an original 256× 256 image. In (b)

and (c) we derive two microtexture models. In (b) we present a Gaussian white noise and in (c) the

microtexture model given by (3.36). Note that (c) shows more local structure than (b).

model is simply a Gaussian white noise the similarities identi�ed by the a contrario algorithm are the

ones that are not likely to be present in the Gaussian white noise image model. More generally, we con-

sider stationary Gaussian random �elds de�ned in the following way: we introduce an image f : E→ R
which contains the microtexture information we want to discard in our a contrario model. In what fol-

lows we give the de�nition of the microtexture model associated to f .

De�nition 3.2.4. Let f : E → R, we de�ne the associated microtexture model U by setting, U =
f ∗ W , where ∗ is the periodic convolution operator over E given for any p1 ∈ E by f ∗ W (p1) =∑
p2∈EW (p2)ḟ(p1−p2) andW is a white noise over E, i.e. (W (p))p∈E are i.i.d. N(0, 1) random variables.

Note that with this de�nition a microtexture is an instance of the Gaussian random �elds studied

in Section 3.1 in the discrete case. Given an image x : E → R, a microtexture model can be derived

considering

mx =
∑
p∈E

x(p)/|E| , and U = |E|−1/2(x−mx) ∗W . (3.36)

Note that if U is given by (3.36) we have for any p1, p2 ∈ E

E [U(p1)] = 0 and Cov [U(p1), U(p2)] = |E|−1
∑
p3∈E

(ẋ(p3)−mx)(ẋ(p3 − (p2 − p1)))−mx) .

We refer to [GGM11] for a mathematical study of this model. In Section 3.1 we conducted a study of

the behavior of numerous similarity functions in this model.

Detection algorithm

In this section, E is a �nite square domain in Z2
. We �x w ⊂ E. We also de�ne f , a function over E. We

consider the Gaussian random �eld U = f ∗W , where W is a Gaussian white noise over E. We denote

by Γf the autocorrelation of f , i.e. Γf = f ∗ f̌ where for any p ∈ E, f̌(p) = f(−p). We recall that the

function ∆f , see (3.3) is de�ned for any t, p ∈ E by

∆f (t, p) = 2Γf (p)− Γf (p+ t)− Γf (p− t) .

We also recall the following non-asymptotic result, see Proposition 3.1.12.
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Proposition 3.2.5. Let E = J0,M − 1K2 with M ∈ N\{0}, w ⊂ E, f : E → R and U = f ∗ W
whereW is a Gaussian white noise over E. Then, for any t ∈ E, A (U, t,w) has the same distribution as∑|w|−1
k=0 λk(t,w)Zk , with Zk independent chi-square random variables with parameter 1 and λk(t,w) the

eigenvalues of the covariance matrix Ct associated with function ∆f (t, ·) restricted to w, de�ned in (3.3),
i.e for any p1, p2 ∈ w, Ct(p1, p2) = ∆f (t, p1 − p2).

As a consequence if f = δ0, i.e. U is a Gaussian white noise, and {p+ t, p ∈ w} ∩ w = ∅, i.e. there

is no overlapping between the patch domain w and its shifted version, then A (U, t,w) is a chi-square

random variable with parameter |w|.
In order to compute the cumulative distribution function of a quadratic form of Gaussian random

variables we must deal with two issues: 1) the computation of the eigenvalues λk(t,w) might be time-

consuming and e�cient methods must be developed ; 2) the exact computation of the cumulative distri-

bution function of a quadratic form of Gaussian random variables requires the use of heavy integrals, see

[Imh61]. In Section 3.1.4 we introduced a projection method in order to easily compute approximated

eigenvalues, with equality when w = E, see Proposition 3.1.13. The so-called Wood F method (see

[Woo89; BA16]) shows the best trade-o� between accuracy and computational cost to approximate the

cumulative distribution function of quadratic forms in Gaussian random variables with given weights.

It is a moment method of order 3, �tting a Fisher-Snedecor distribution to the empirical one. Note that

in [LTZ09] another moment method of order 3 is proposed. In what follows, we assume that we can

compute the cumulative distribution function of A (U, t,w) and we refer to Section 3.1.4 for further

details.

In Algorithm 3 we propose an a contrario framework for spatial redundancy detection. We suppose

that u andw are provided by the user. Using Proposition 3.2.3 and (3.35) , we say that an o�set is detected

if AP (t,w,A (x, t,w)) ≤ NFAmax /|E|. The value NFAmax is supposed to be set by the user. The

background model used in the auto-similarity detection is the one given in (3.36). Therefore, Proposition

3.1.12 and the discussion that follows can be used to compute an approximation of AP(t,w,A (x, t,w)).

In Figure 3.11 we apply Algorithm 3 to a texture image.

Algorithm 3 Auto-similarity detection

1: function autosim-detection(u, w, NFAmax)

2: for t ∈ E do
3: val← A (x, t,w)
4: Pmap(t)← AP(t,w, val) . AP(t,w, val) approximation detailed in Section 3.2.3

5: Dmap(t)← 1Pmap(t)≤NFAmax/|E|
6: end for
7: return the images Pmap, Dmap

8: end function

3.2.4 Denoising

NL-means and a contrario framework

In this section we apply the a contrario framework to the context of image denoising and propose a

simple modi�cation of the celebrated image denoising algorithm Non-Local Means (NL-means). This

algorithm was introduced in the seminal paper of Buades et al. [BCM05] and was inspired by the work

of Efros and Leung in texture synthesis [EL99]. It was also independently introduced in [AW06]. This
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(a) (b) (c) (d) (e)

Figure 3.11: Outputs of Algorithm 3 In (a) we present an original 256× 256 image. In (b) we present

the associated microtexture model given by (3.36). In (c) the green patch is the input patch, i.e. Pw(u).

In this experiment NFAmax is set to 1. In (d), respectively (e), we present the output Pmap, respectively

Dmap, of Algorithm 3. In (c) we show in red the patches corresponding to the identi�ed o�sets in Pmap.

algorithm relies on the simple idea that denoising operations can be conducted in the lifted patch space.

In this space the usual Euclidean distance acts as a good similarity detector and we can obtain a denoised

patch by averaging all the patches with weights that depend on this Euclidean distance. Usually the

weight function is set to have exponential decay, but it was suggested in [Goo+08; Sal10; DAG10] to use

compactly supported weight functions in order to avoid the loss of isolated details. Since its introduction,

many algorithms derived from NL-means have been proposed in order to embed the algorithm in general

statistical frameworks [DAG11; LBM13] or to take into account the underlying geometry of the patch

space [HBD17]. Among the state-of-the-art denoising algorithms, see [Leb+12] for a review, we consider

Block-Matching and 3D Filtering (BM3D) [Dab+07] to compare our algorithm with.

There exist several works combining a contrario models and denoising tasks. Coupier et al. in

[CDY05] propose to combine morphological �lters and a testing hypothesis framework to remove im-

pulse noise. In [DD13] Delon and Desolneux compare di�erent statistical frameworks to perform de-

noising with Gaussian noise or impulse noise. The a contrario model was also successfully used to deal

with speckle noise [FAI05] and quasi-periodic noise [Sur15], and rely on the thresholding of wavelet

or Fourier coe�cients. In [KB08], Kervrann and Boulanger derive approximated probabilistic thresh-

olds using χ2 probability distribution functions. In [Wu+13] the authors propose a testing framework

in order to estimate thresholds. The expressions they derive also relies on an approximation of the

probability distribution of the squared Euclidean norm between two patches in Gaussian white noise.

Following a standard extension procedure of the NL-means algorithm we consider a threshold ver-

sion of it, see Algorithm 4. In what follows we �x a “clean”, or original, image x0 de�ned over E, a �nite

rectangular domain of Z2
, a noisy image x = x0 + σw, with w a realization of a standard Gaussian

random �eld W and σ > 0 the standard deviation of the noise. In all of our experiments we assume

that σ is known. Note that there exist several algorithms to estimate σ from real images, see [Pon+07]

for instance. Our goal is to retrieve x0 based on the information in x. We consider the lifted version of

x in a patch space. Let w0 be a centered 8× 8 patch domain. For a patch window w = p+w0 the patch

search window T will be de�ned by

T =
{
t ∈ Z2, t+ w ⊂ E, ‖t‖∞ ≤ c

}
, (3.37)

with c ∈ N. |T| denotes the cardinality of T. There exists a large literature concerning the setting of c
and w0, see [DAG10]. Note that the locality of the patch window was assessed to be a crucial feature of

NL-means [GZW11]. For any p ∈ E we de�ne

Tp = {t ∈ E : p ∈ t+ w ⊂ E}
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Assume we have a collection of denoised patches P̂ (p,w) for all patch domains w, we obtain a pixel at

position p in the denoised image x̂ using the following average, see [BCM11],

x̂(p) = |Tp|−1
∑
t∈Tp

P̂ (x, t+ w)(p) . (3.38)

We now introduce our modi�cation of NL-means. We assume that we are provided a threshold function

a. The choice of such a function is discussed in Proposition 3.2.6.

Algorithm 4 NL-means threshold

1: function NL-means-threshold(u, σ, w0, c, a)

2: for p ∈ Z2, p+ w0 ⊂ E do
3: w← p+ w0

4: T← de�ned by (3.37)

5: Nw(x)← 0

6: P̂ (x,w)← 0

7: for t ∈ T do
8: if A (x, t,w) ≤ σ2a(t) then . always true for t = 0

9: P̂ (x,w)← Nw(x)
Nw(x)+1 P̂ (x,w) + 1

Nw(x)+1Pt+w(x) . see De�nition 3.1.3

10: Nw(x)← Nw(x) + 1
11: end if
12: end for
13: end for
14: x̂← de�ned by (3.38)

15: return P̂ (x, ·), x̂
16: end function

Note here that the output denoised version of the patch P̂ (x,w) satis�es

P̂ (x,w) =
∑
t∈T

λtPt+w(x) , λt = 1A (x,t,w)≤a(t)

(∑
s∈T

1A (x,s,w)≤a(s)

)−1

.

In the original NL-means method, we have

λt = exp
[
−A (x, t,w)/h2

](∑
t∈T

exp
[
−A (x, t,w)/h2

])−1

. (3.39)

Setting h is not trivial and depends on many parameters (patch size, search window size, content of the

original image). As in Algorithm 4, we denote Nw(x) =
∑
t∈T 1A (x,t,w)≤a(t). The following proposi-

tion, similar to Proposition 3.2.3, gives a method for setting a. We say that an o�set t is a false alarm in a

Gaussian white noise if the associated patch is used in the denoising algorithm, i.e. if A (W, t, ω) ≤ a(t),

similarly to De�nition 3.2.2.

Some discussion is in order here. Although the de�nition of false alarm given here is consistent with

the one given in De�nition 3.2.2 it is not the classical choice for denoising applications. Indeed, if the

image to denoise is a white noise, the underlying image is its mean, i.e. the constant image equal to zero.

Therefore, in a white noise every o�set should be selected and therefore an event in this background

model is an o�set whose associated patch is not used in the denoising algorithm, i.e. A (W, t, ω) > a(t).

This is the point of view we adopt in the paper associated with this section, see [Bor+19].

In Proposition 3.2.6 we choose a in order to control the number of false alarms with high probability.
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Proposition 3.2.6. Let NFAmax ∈ [0, |T|], T given in (3.37) and let a : E→ R be de�ned for any t ∈ E
by

a(t) = AP−1 (t,w,NFAmax /|T|) ,

with background model being a Gaussian white noiseW , i.e. f = δ0 in De�nition 3.2.4. Let T be de�ned in
(3.37) andNw(W ) ∈ {0, . . . ,T} the random number of selected patches used to denoise the patch Pw(W ),
see Algorithm 4. Then for any n ∈ N\ {0} it holds that

P0 (Nw(W ) ≥ n) ≤ NFAmax

n
.

Proof. Using the Markov inequality, we have

P0 (Nw(W ) ≥ n) ≤ n−1
∑
t∈T

E
[
1A (W,t,w)≤a(t)

]
≤ n−1 NFAmax .

In this case the null hypothesis P0 is given by a standard Gaussian random �eld, which is a special

case of the Gaussian random �eld models introduced in Section 3.2.3. In the next proposition, using the

a contrario framework, we obtain probabilistic guarantees on the distance between the reconstructed

patch P̂ (x,w) and the true patch Pw(x0).

Proposition 3.2.7. Let U = x0 + σW , whereW is a standard Gaussian white noise over E, x0 : E→ R
and σ > 0. Let p ∈ E andw = p+w0 be a �xed patch and let NFAmax ∈ [0, |T|]. We introduce the random
set T̂ = {t ∈ T : A (x, t,w) ≤ σ2a(t)} (the selected o�sets) with a(t) = AP−1(t,w,NFAmax /|T|) as
in Proposition 3.2.6 and T de�ned in (3.37). Let aT = maxt∈T a(t). Then for any aW > 0, setting
εW = 1− P(‖Pw(W )‖22 ≤ aW | T̂), we have

P
(
‖P̂ (x,w)− Pw(x0)‖2 ≤ σ(a

1/2
T + a

1/2
W ) | T̂

)
≥ 1− εW .

Proof. We have for any t ∈ T̂

‖Pt+w(x)− Pw(x0)‖2 ≤ ‖Pt+w(x)− Pw(x) + Pw(x)− Pw(x0)‖2
≤ ‖Pt+w(x)− Pw(x)‖2 + ‖Pw(x)− Pw(x0)‖2
≤ σa1/2

T + σ‖Pw(W )‖2 .

This gives the following event inclusion for any t ∈ T̂,{
‖Pw(W )‖2 ≤ a1/2

W

}
⊂
{
‖Pt+w(x)− Pw(x0)‖2 ≤ σ(a

1/2
T + a

1/2
W )

}
,

We also have that by de�nition of εW

P
(
‖P̂ (x,w)− Pw(x0)‖2 ≤ σ(a

1/2
T + a

1/2
W ) | T̂

)
≥ P

⋂
t∈T̂

{‖Pt+w(x)− Pw(x0)‖22 ≤ σ2(a
1/2
T + a

1/2
W )2} | T̂


≥ P

(
‖Pw(W )‖22 ≤ aW | T̂

)
≥ 1− εW .
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In our applications we use Algorithm 4 with a(t) = AP−1 (t,w,NFAmax /|T|). Therefore we need to

compute a(t) = AP−1 (t,w,NFAmax /|T|) with a Gaussian white noise background model. We recall

that in Section 3.2.3, using Proposition 3.1.12, we give a method to compute this quantity in general

Gaussian settings. In the case of a Gaussian white noise, the next proposition shows that the eigenvalues

can be computed without approximation.

Proposition 3.2.8. Let t = (tx, ty) ∈ Z2\ {0}, Ct as in Proposition 3.1.12 with f = δ0 and w =
J0, p− 1K2, with p ∈ N. We have, expressing Ct in the basis corresponding to the raster scan order on the
x-axis

Ct =


B0 B1 . . . Bp−1

B>1 B0
. . .

...
...

. . . B0 B1

B>p−1 . . . B>1 B0

+ 2Id ,

{
B` = D|ty| ∈Mp(R) if ` = |tx|
B` = 0 otherwise

where Dj is a zero matrix with ones on the j-th diagonal. The eigenvalues of Ct are given by λm,k =
4 sin2

(
kπ
2m

)
with multiplicity rm,k where m ∈ J2, q + 1K, k ∈ J1,m − 1K and q = d p

|tx|∨|ty|e. For any
m ∈ J2, q + 1K, k ∈ J1,m− 1K it holds

(a) for any k′ ∈ J1,m− 1K, rm,k = rm,k′ ;

(b) rm,k = 2|tx||ty| if 2 ≤ m < q ;

(c) rm,k = rxry ifm = q + 1 ;

(d)
∑q+1
m=2

∑m−1
k=1 rm,k = p2 ,

with rx =
(
d p
|tx|e − q

)
|tx|+ |tx| − px, where px = |tx|d p

|tx|e − p. We de�ne ry in the same manner. A
similar proposition holds if ty 6= 0.

Proof. The proof is postponed to Appendix A.

This property allows us to compute exactly the eigenvalues appearing in Proposition 3.1.12. In

Figure 3.12 we illustrate that a(t) for �xed patch size (8× 8) and patch search window (21× 21). Thus

in our implementation we assume that a(t) = AP−1 (t,w,NFAmax /|T|) is constant and set its value to

the mean of a(t) over t ∈ T.

The result in Figure 3.12-(b) might seem contradictroy at �rst. Indeed, in a white noise model, if two

patches are spatially close one could expect that they are perceptually close (since they are correlated).

Therefore one could expect that a(t) ≤ a(t′) if ‖t‖∞ ≤ ‖t′‖∞. This is true if NFAmax is small. However,

if NFAmax is close to |T| (as it is the case in Figure 3.12-(b)) then we have to take into account the fact

that even if spatially close patches are correlated they are not always positively correlated. Therefore

for high values of NFAmax we have a(t) ≥ a(t′) if ‖t‖∞ ≤ ‖t′‖∞. From a statistical point of view,

this means that the distribution of the autosimilarity is more spread for small o�sets. We illustrate this

property on a toy example in Section 3.2.4

Some experimental results

In the following paragraph we present and comment some results of our threshold NL-means algorithm,

see Algorithm 4. We recall that we use a(t) =
∑
t∈T AP−1(t,w,NFAmax /|T |)/|T |. In Figure 3.14 we
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(a) (b)

Figure 3.12: Thresholds dependency in NFAmax In (a) we display a(t) = AP−1 (t,w,NFAmax /|T|)
as a function of NFAmax. The patch size is �xed to 8 × 8 and the o�sets t satisfy ‖t‖∞ ≤ 10, hence

|T| = 212 = 441. The red dashed line is given by maxt∈T a(t) and the green dashed line by mint∈T a(t).

The blue line represents the value obtained considering the simplifying assumption that patch domains

do not overlap, see Proposition 3.1.12 and the remark that follows. The maximal increase between the

maximum of a(t) and the minimum of a(t) is of 13.0%. In (b) we display the mapping t 7→ a(t) for

NFAmax = 440, the central pixel corresponds to t = 0. Note that a(t) decreases as ‖t‖ increases and is

constant when, ‖t‖∞ ≥ 8.
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Figure 3.13: The distribution of the autosimilarity We consider the following toy example. In the

“no correlation” case we compute

∑3
i=1(Xi − Yi)2

where X and Y are independent and identically

distributed 3-dimensional Gaussian random variables with zero mean and identity covariance matrix.

In the “correlation” case we compute

∑3
i=1(Xi − Xi+1)2

with X4 = X1. In (a) we represent the

histograms we obtain with 105
experiments and in (b) the corresponding empirical cumulative distri-

bution functions. In both cases, it is clear that the distribution of the “correlation” random variable is

more spread than the “no correlation” one.
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(a) (b) (c) PSNR = 29.81, δt = 0.46s (d) PSNR = 29.29, δt = 0.37s

Figure 3.14: Visual results In (a) we present an original image (Barbara) scaled between 0 and 255. In

(b) we add Gaussian white noise with σ = 10. We recall that the patch domain is �xed to w0 being

a 8 × 8 square. In (c) we present the denoised results with NL-means threshold, Algorithm 4, where

NFAmax = 437, which corresponds to 1% of rejected patches in the search window of a Gaussian white

noise. In (d) we present the results obtained with the traditional NL-means algorithm with h = 0.13σ|w|
(optimal h for this noise level and this image with regard to the PSNR measure). The results are the

same on the texture area for (c) and (d). The perceptual results on the zoomed region are satisfying,

even though some regions are too smooth compared to the original image (a). In (c) and (d), δt is the

running time of the algorithm. We can observe that our algorithm is slightly slower than NL-means.

�rst present comparison with the NL-means algorithm. Perceptual results as well as Peak Signal to

Noise Ratio (PSNR) measurements
1

are commented. We also present the running time of the original

NL-means algorithm and ours. The experiments were conducted with the following computer speci-

�cations: 16G RAM, 4 Intel Core i7-7500U CPU (2.70GHz). Results on other images than Barbara are

displayed in Figure 3.15.

If the threshold a(t) is high, i.e. NFAmax � |T | then almost no patch is rejected, which means

that almost all patches are used in the denoising process. In consequence, the output denoised image

is very smooth. This smoothness is a correct guess for constant patches. However, this proposition

does not hold when the region contains details. Indeed, in this case details are lost due to the averaging

process. By setting a conservative threshold, e.g. NFAmax /|T | ≈ 0.9, for example, we reject all the

patches for which the structure does not strongly match the one of the input patch, see Figure 3.16.

This conservative property of the algorithm ensures that we can control the loss of information in the

denoised image, see Proposition 3.2.7. However, if no patch, other than the input patch itself, is detected

as similar we highly over�t the original noise. Many algorithms such as BM3D, see [Dab+07], solve this

problem by treating this case as an exception, applying a speci�c denoising method in this situation.

We show the di�erences between our version of NL-means and BM3D in Figure 3.17 .

In Figure 3.18, we show that Algorithm 4 performs better than the original NL-means algorithm. By

setting NFAmax /|T | = 0.99 we obtain that the PSNR of the denoised image is better than the one of

NL-means for nearly every value of h.

Let us emphasize that our goal is not to provide a new state-of-the-art denoising algorithm. Indeed

we never obtain better denoising results than the BM3D algorithm. However, our algorithm slightly

improves the original NL-means algorithm. It shows that statistical testing can be e�ciently used to

measure the similarity between patches and therefore provides a robust way to perform the weighted

average in this algorithm.

1PNSR(x, y) = 10 log10

(
maxE x2

‖x−y‖22

)
.
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PSNR = 31.67, δt = 0.21s PSNR = 30.81, δt = 0.07s

PSNR = 29.12, δt = 0.46s PSNR = 28.44, δt = 0.39s

PSNR = 29.43, δt = 0.22s PSNR = 29.03, δt = 0.07s

PSNR = 28.82, δt = 0.22s PSNR = 28.68, δt = 0.09s

Figure 3.15: NL-means comparison In this �gure we compare Algorithm 4 with the traditional NL-

means algorithm. Here w0 is �xed to be a 8 × 8 square. The �rst column contains clean images, the

second column represents the same images corrupted by a Gaussian noise with σ = 20. The third

column is the output of Algorithm 4 with NFAmax �xed to 437 and the last column is the output of the

NL-means algorithm for the optimal value of h (with regards to the PSNR), see (3.39). Perceptual results

and PSNR are comparable, even though our algorithm yields slightly better PSNR values. We also

present the running times δt of both algorithm. Our algorithm is slower than NL-means as it computes

the threshold before running the NL-means algorithm.
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(a) NFAmax /|T | = 0.8 (b) NFAmax /|T | = 0.9 (c) NFAmax /|T | = 0.99

Figure 3.16: Number of detections In this �gure we present, for each denoised pixel, the number

of detected o�sets used to compute the denoised patch, i.e. the cardinality of T̂, see Proposition 3.2.7.

A white pixel means that the number of detected o�sets is maximal and a black pixel means that the

number of detected o�sets is 1, i.e. the patch is not denoised. As NFAmax decreases the number of

detected o�sets increases. Note that |T̂| is maximal, i.e. equals to 212 = 441, for constant regions. For

NFAmax /|T | = 0.9, pixels located in textured neighborhoods use in average 20 to 40 patches to perform

denoising.

(a) original (b) BM3D (c) NFAmax /|T | = 0.01 (d) NFAmax /|T | = 0.1

Figure 3.17: Comparisonwith BM3DWe compare Algorithm 4 to BM3D [Dab+07]. The original image

(Barbara) is presented in (a). We consider a noisy version of the input image with σ = 20. In (b) we

present the ouput of BM3D, with default parameters, see [Leb12]. The result in (c) corresponds to the

output of Algorithm 4 with NFAmax /|T | = 0.99. The output (c) is too blurry compared to (b). In order

to correct this behavior we set NFAmax /|T | = 0.9 in (d), i.e. increase the global threshold and some

improvements are noticeable. However the image remains blurry and artifacts due to the over�tting of

the noise appear, this is known as the rare patch e�ect in [DAG11]. For instance, some patches in the

scarf are not denoised anymore.
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(a) σ = 10 (b) σ = 20 (c) σ = 40

Figure 3.18: PSNR study In this �gure we present the evolution of the PSNR for di�erent values of the

parameter h of the original NL-means method, see (3.39), in blue, computed on the Barbara image. The

x-axis represents h/(σ|w|). The orange dashed line is the PSNR obtained for the threshold NL-means

algorithm (Algorithm 4) with NFAmax /|T | = 0.99. Except for low levels of noise the proposed method

gives better PSNR values than the original implementation of NL-means algorithm for every choice of

h.

3.2.5 Periodicity analysis

Existing algorithms

In the following sections we use our patch similarity detection algorithm, see Algorithm 3, to analyze

images exhibiting periodicity features. Let E ⊂ Z2
be a �nite domain and w ⊂ E a �nite patch domain.

Periodicity detection is a long-standing problem in texture analysis [ZT80]. First algorithms used

the quantization of images, relying on co-occurrence matrices and statistical tools likeχ2 tests or κ tests.

Global methods extract peaks in the frequency domain (Fourier spectrum) [MMN83] or in the spatial

domain (autocorrelation). In [HSD73] the notion of inertia is introduced. It is de�ned for any t ∈ E by

I(t) =
∑

(i,j)∈J0,NgK2(i− j)2
(∑

p∈E 1ẋ(p)=i1ẋ(p+t)=j

)
, where x is a quantized image onNg + 1 gray

levels. In [CH80], the authors show that the local minima of the inertia measurement can be used to

assess periodicity. Similarly, we introduce the w-inertia for any t ∈ E by Iw(t) =
∑

(i,j)∈J0,NgK2(i −

j)2
(∑

p∈w 1ẋ(p)=i1ẋ(p+t)=j

)
. The following proposition extends to a local framework results from

[OLS99].

Proposition 3.2.9. Let u ∈ RE. Suppose that u is quantized, i.e. there exists Ng ∈ N such that for any
p ∈ E, u(p) ∈ J0, NgK. We have Iw(t) = A (x, t,w).

Proof. For any t ∈ E we have

Iw(t) =
∑

(i,j)∈J0,NgK2
(i− j)2

∑
p∈w

1ẋ(p)=i1ẋ(p+t)=j

=
∑

p∈w,(i,j)∈J0,NgK2
(i− j)2

1ẋ(p)=i1ẋ(p+t)=j =
∑
p∈w

(ẋ(p)− ẋ(p+ t))2 = A (x, t,w).
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If w = E then the w-inertia statistics is exactly the inertia introduced in [HSD73] and the result is

due to [OLS99].

Algorithm and properties

Lattice detection is closely related to periodicity analysis, since identifying a lattice is similar to extract-

ing periodic or pseudo-periodic structures up to deformations and approximations. A state-of-the-art

algorithm proposed in [Par+09] uses a recursive framework which consists in 1) a lattice model proposal

based on detectors such as Kanade-Lucas-Tomasi (KLT) feature trackers [LK81], 2) spatial tracking us-

ing inference in a probabilistic graphical model, 3) spatial warping correcting the lattice deformations in

the original image. In this section we propose a new algorithm for lattice detection. The lattice proposal

step 1) is replaced by an Euclidean auto-similarity matching detection (see Section 3.2.3 and Algorithm 3)

where the patch domain w is �xed. Using these detections we build a graph with a few nodes (usually

approximately 20 nodes for a 256 × 256 image). We use the same notation for the detection mapping

t 7→ 1Ai(x,t,w)≤a(t) i.e. theDmap output of Algorithm 3, which is a binary function over the o�sets, and

the set of detected o�sets. We recall that two pixel coordinates p1 and p2 are said to be 8-connected if

p1 = p2 + (δ1, δ2) with δ1, δ2 ∈ {−1, 0, 1}. The graph G = (V,E) is then built as follows:

I Vertices: for each 8-connected component, Ck in Dmap we note pk one position for which the

minimum of A (x, t,w) over Ck is achieved. The set of vertices V is de�ned as V = (pk)k∈J1,NC K
where NC is the number of 8-connected components in Dmap ;

I Edges: each vertex is linked with its four nearest neighbors in the sense of the Euclidean distance,

de�ning four unoriented edges.

Referring to the three steps of [Par+09] we present our model to replace step 2) (i.e. the inference in

a probabilistic graphical model) and introduce the approximated lattice hypothesis de�ned on a graph.

De�nition 3.2.10. Let G = (V,E) be a random graph with V ⊂ R2. We say that G follows the ap-
proximated lattice hypothesis if there exists a basis B = (b1, b2) of R2 and, for each edge e ∈ E, a couple
of integers (me, ne) ∈ Z2 such that e has the same distribution as meb1 + neb2 + σZe, with (Ze)e∈E
independent standard Gaussian random variables in R2 and σ > 0. We denote by M the vector of all
coe�cients (me, ne)e∈E ∈ Z2|E|.

Our goal is to perform inference in the statistical model de�ned by the following log-posterior

L (B,M, σ2|E) = −2(|E|+ 1) log(σ2)− 1

2σ2

(∑
e∈E
‖meb1 + neb2 − e‖2 + r(B,M)

)
︸ ︷︷ ︸

q(B,M |E)

, (3.40)

where r(B,M) = δB‖B‖22 + δM‖M‖22 with δB , δM ≥ 0. A discussion on the dependence of the model

on the hyperparameters (δB , δM ) is conducted in Figure 3.19. Finding the MLE of this full log-posterior

is a non-convex, integer problem. However performing the minimization alternatively on B and M is

easier since at each step we only have a quadratic function to minimize. Minimizing a positive-de�nite

quadratic function over Z2
is equivalent to �nding the vector of minimum norm in a lattice. This last

formulation is known as the Shortest Vector Problem (SVP) which is a challenging problem [Mic01]

(though it is not known if it is a NP-hard problem). We replace this minimization procedure over a

lattice by a minimization over R2
followed by a rounding of this relaxed solution.

For any σ > 0 we denote by Ln(σ) = L (Bn,Mn, σ
2|E), with n ∈ N, the log-posterior sequence.
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Algorithm 5 Lattice detection – Alternate minimization

1: function Alternate-minimization(E, δB , δM , Nit)
2: M0← 0

3: B0← initialization procedure . initialization discussed in the end of Section 3.2.5

4: for n← 0 to Nit − 1 do
5: M̃ ← argmin

M∈R2|E|
q(Bn,M |E) . expression given in Proposition 3.2.11

6: if q
(
E|Bn, [M̃ ]

)
< q (E|Bn,Mn) then . [·] is the nearest integer operator

7: Mn+1← [M̃ ]
8: else
9: Mn+1←Mn

10: end if
11: Bn+1← argmin

B∈R4

q(B,Mn+1|E) . expression given in Proposition 3.2.11

12: end for
13: σ2

Nit
← argmin

σ2∈R+

−L (BNit ,MNit , σ
2|E)

14: return BNit ,MNit , σ
2
Nit

15: end function

Proposition 3.2.11 (Alternate minimization update rule). In Algorithm 5, we get for any n ∈ N

M̃ =
(
ΛBn ⊗ Id|E|

)−1
EBn ∈ R2|E| , Bn+1 =

(
ΛMn+1

⊗ Id2

)−1
EMn+1

∈ R4 ,

with ⊗ the tensor product between matrices and

(a) ΛB =

(
‖b1‖2 + δB 〈b1, b2〉
〈b1, b2〉 ‖b2‖2 + δB

)
, ΛM =

(
‖M1‖2 + δM 〈M1,M2〉
〈M1,M2〉 ‖M2‖2 + δM

)
;

(b) EB =

(
(〈e, b1〉)e∈E
(〈e, b2〉)e∈E

)
, EM =


∑

e∈E
mee∑

e∈E
nee

 .

Proof. The proof is postponed to Appendix B.

Note that if B is orthogonal, i.e. 〈b1, b2〉 = 0 then ΛB is diagonal and the proposed method is the

exact solution to the minimization problem over Z2
.

Theorem 3.2.12 (Convergence in �nite time). For any σ > 0, (Ln(σ))n∈N is a non-decreasing sequence.
In addition, (Bn)n∈N and (Mn)n∈N converge in a �nite number of iterations.

Proof. (Ln(σ))n∈N is non-decreasing since for anyn ∈ N, Ln(σ) ≤ L (Bn,Mn+1, σ
2|E) ≤ Ln+1(σ).

Let us show that the sequences (Mn)n∈N and (Bn)n∈N are bounded. Because (Ln(σ))n∈N is non-

decreasing, the sequence (q(Bn,Mn|E))n∈N is non-increasing. We obtain that

δM‖Mn‖2 ≤ q(B0,M0|E) , δB‖Bn‖2 ≤ q(B0,M0|E) .

The sequence (Mn)n∈N is bounded thus we can extract a converging subsequence. Since (Mn)n∈N
takes value in Z2|E|

, this subsequence is stationary with value M . Let n0 ∈ N be the �rst time we hit
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(a) δM = 0 δB = 0 (b) δM = 5 δB = 10−1
(c) δM = 9 δB = 10−1

Figure 3.19: In�uence of hyperparameters In this experiment we assess the importance of the hy-

perparameters. We consider Algorithm 5 with input graph a detection map, output of Algorithm 3. The

initialization in the three cases is the canonical basis ((0, 1), (1, 0)). In (a), since the initial basis vectors

are a local minimum to the optimization problem, the algorithm converges after one iteration. However,

this is not perceptually satisfying. Setting δM = 5 and δB = 10−1
in (b) the true observed lattice is a

sub-lattice of the output lattice of Algorithm 5. Increasing δM up to 9, in (c) we obtain a perceptually

correct lattice. For δM larger than 10, the basis vectors go to 0. Only the regularizing term is minimized

by the optimization procedure and the data-attachment term is not taken into account. Experimentally

we found that the choice of δM is more �exible and that δM ∈ (1, 20) gives satisfying perceptual results

if the initialization heuristics proposed in Section 3.2.5 is chosen.

value M . Let n ∈ N, with n ≥ n0 + 1, there exists n1 ∈ N, with n1 ≥ n such that Mn1 = Mn0 thus

Ln0
(σ) ≤ Ln0+1(σ) ≤ Ln(σ) ≤ L (Bn1−1,Mn1

, σ2|E) ≤ L (Bn1−1,Mn0
, σ2|E) ≤ Ln0

(σ) .

Hence for every n ≥ n0 + 1, Ln(σ) = L (Bn,Mn, σ
2|E) = L̃ (σ). Suppose there exists n ≥ n0 + 1

such that Mn 6= Mn+1 this means that L (Bn,Mn+1, σ
2|E) > Ln(σ) (because of lines 6 and 7 of

Algorithm 5) which is absurd. Thus (Mn)n∈N is stationary and so is (Bn)n∈N.

In Algorithm 5 M0 is initialized with zero and B0 is de�ned as an orthonormal (up to a dilatation

factor) direct basis where the �rst vector is given by an edge with median norm in E.

Experimental results

Combining the results of Section 3.2.5 and Section 3.2.3 we obtain an algorithm to extract lattices in

images, see Figure 3.20. In what follows we perform lattice detection using Algorithm 3 in order to

extract auto-similarity given a patch in an original image u, which implies that the patch domain w
is set by the user. Recall that in Algorithm 3, the eigenvalues of the covariance matrix in Proposition

3.1.12 are approximated, and that the cumulative distribution function of the quadratic form in Gaussian

random variables is computed via the Wood F method [Woo89]. Lattice detection is performed using

Algorithm 5 with parameters δM = 10 and δB = 10−2
.

Escher paving In this section we study art images, Escher pavings, with strongly periodic structure.

We investigate the following parameters of our lattice detection algorithm:redundancy2:

(a) background microtexture model P0,

(b) NFAmax parameter in Algorithm 3,
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Patch

similarity

detection

Lattice

detection

Figure 3.20: Lattice proposal algorithm Lattice detection and extraction in images require a patch

from the user and compute a binary image containing all the o�sets with correct similarity as well

as a lattice matching the underlying graph. The patch auto-similarity detection step was presented in

Section 3.2.3. The lattice detection step was presented in Section 3.2.5. The �rst image is the input, the

second one is the output of the detection algorithm. In the last step we show the original image with

red squares placed on the computed lattice. Behind this image, the unoriented edges of the graph are

shown in red.

(c) patch domain w.

Microtexture model We con�rm that the choice of the microtexture model will in�uence the

detected geometrical structures. The more structured is the background noise model the less we obtain

detections. This situation is considered in Figure 3.21.

NFAmax parameter Using a more adapted microtexture model as background model we gain

robustness compared to other less structured models such as a Gaussian white noise. However, NFAmax

must be set carefully otherwise two situations can occur:

(a) if NFAmax is too high, too many detections can be obtained (true perceptual detections are not

di�erentiated from false positives) ;

(b) if NFAmax is too low, we fail to identify important perceptual structures in the image.

We observe that a general good practice is to set NFAmax equal to 10, see Figure 3.22. However, if the

input patch is corrupted one may increase this parameter up to 102
or 103

, see Figure 3.27 and Figure

3.28.

Patch position Patch position and size are crucial in our detection model, since we rely on local

properties of the image. As shown in Figure 3.23 these parameters should be carefully selected by the

user. However, for particular applications such as lattice extraction for crystallographic purposes, there

exist procedures to extract primitive cells [MB15].

Crystallography images Defect localization, noise reduction, correction of crystalline structures in

images are central tasks in crystallography. Usually, they require the knowledge of the geometry of

a perfect underlying crystal. In our experiments we manually identify the geometry of the periodic

crystal, which allows for multiple structures in one image, provided a user input of the primitive cell

in a lattice. This primitive cell extraction could be automated [MB15]. In Figure 3.24, we present an

example of multiple geometry extraction. Statistics like angle and period can be retrieved using the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.21: Choice of the microtexture model In this experiment we discuss the choice of the a con-
trario background microtexture model. In the left column we display the graph obtained after the detec-

tion step. In the middle column we superpose the proposed lattice on the original image. The original

patch is drawn in green, obtained basis lattice vectors are in cyan, and red squares are placed onto the

proposed lattice. In (a) and (b) the microtexture model is given by (3.36) and NFAmax is set to 10. A sam-

ple of this model is presented in (c). Obtained results match the perceptual lattice. In (d), (e), (g) and (h)

the microtexture model is a Gaussian white noise model with variance equal to the empirical variance

of the original image. Sample from this Gaussian white noise is presented in (f). In (d) and (e), NFAmax

is set to 10. This leads to an excessive number of detections in the input image. In order to obtain the

perceptual lattice found in (b) with a Gaussian white noise model we must set the NFAmax parameter to

10−111
. Results are presented in experiments (g), (h) and (i). Image (h) is also an example for which the

median initialization for B0 in Algorithm 5 identi�es a non satisfying local minimum. This situation

is corrected in (i) with random initialization for B0. In (h) �nal log-posterior value is −565.5 which is

inferior to the �nal log-posterior value in (i): −542.1. Thus (i) gives a better local maximum of the full

log-posterior than (h).
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(a) (b) (c)

Figure 3.22: Choice of Number of False Alarms In this experiment we discuss the choice of the

NFAmax parameter in the a contrario framework in the case where the underlying microtexture model

is given by (3.36). Each column corresponds to a pair of images: the returned lattice and its associated

underlying graph. In (a), NFAmax is set to 1. Detections are correct, there are not enough points to

precisely retrieve the perceptual lattice. In (b), NFAmax is set to 10. The estimated lattice is correct.

In (c), NFAmax is set to 103
. In this case we obtain false detections which lead to an incorrect �nal

lattice. Note that large detection zones in the binary image (c) are due to the non-validity of the Wood

F approximation for some o�sets. This behavior is also present in (a) and (b) but less noticeable.
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(a) (b) (c)

(d) (e) (f)

(g) 10× 10 (h) 15× 15 (i) 20× 20

Figure 3.23: In�uence of patch size and patch position For each experiment NFAmax is set to 104
, i.e.

4 % of the pixels. In most cases lower NFAmax could be used but setting a high NFAmax ensures that we

always get detections even if the patch only contains microtexture information. Each row corresponds

to a lattice proposal with same patch position but di�erent patch sizes: 10×10 for the left column, 15×15
for the middle one and 20×20 for the right one. Each image represents the superposed proposed lattice

on the original image. On the bottom-right of each image we display the underlying graph as well as

the binary detection. On the �rst row the patch contains only a white region with a few gray pixels. The

in�uence of these pixels is visible for small patch sizes (a) but is no longer taken into account for larger

patch sizes, (b) and (c). On the second row the patch contains gray microtexture which has some local

structure. We identify large similarity regions and no perceptual lattice is retrieved in (d), (e) and (f).

The situation is di�erent on the third row. The 10× 10 patch contains only uniform black information

in (g), but the situation changes as the patch sizes grows. In (h), the patch intersects black, gray and

white zones. The graph is much sparser and the lattice is close to the perceptual one. In (i), the patch

size is large enough to cover large areas of the three gray levels and the perceptual lattice is identi�ed.
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(a) (b) (c) (d)

Figure 3.24: Lattice extraction In this experiment we consider a crystallographic image (an orthorom-

bic NiZr alloy) and set NFAmax to 102
. Two lattices are present in this image and they are correctly

identi�ed in (b) and (d). Note that in (a), respectively in (c), mostly points in the left, respectively right,

part of the image are identi�ed, thus yielding correct lattice identi�cation. Points which should be

identi�ed and are discarded nonetheless correspond to regions in which we observe contrast variation.

Image courtesy of Denis Gratias.

estimated basis vectors. This image contains two lattices and the locality of our measurements allows

for the detection of both structures. Using windowed Fourier transform could be e�cient to obtain local

measurements on the periodicity of these images since the information is highly frequential. However

in order to obtain the same detection map as Algorithm 3 one must carefully set the threshold parameter,

NFAmax. This situation is illustrated in Figure 3.25.

Finally we assess the precision of our measurements by comparing our results with a model used

in crystallography, see Figure 3.26. We indeed retrieve one of the possible bases used to describe these

lattices. However, the symmetry constraints are not present in the identi�ed basis. To obtain another

basis, one must relax the regularization parameters. A more natural way to obtain the desired primitive

cell would be to introduce symmetry constraints in the graphical model formulation in (3.40).

Natural images Identifying lattices in natural images is a more challenging task since we have to

deal with image artifacts. In this section we investigate the e�ect on the detection of the background

clutter in natural images, see Figure 3.27, and the e�ect of the camera position, see Figure 3.28.

Preprocessing Due to the occlusions occurring in natural images, if a lattice is superposed over

a real photograph, carefully selecting structural elements might not be enough in order to retrieve the

periodicity. Indeed, if we observe a repetition of the lattice pattern, the background does not necessarily

contain any repetition and thus makes the detection more complicated. In order to avoid such a problem

we propose to introduce a preprocessing step in our algorithm. This preprocessing step will be encoded

in a linear �lter h. Suppose U is a sample from a Gaussian model with function f then h∗U is a sample

from a Gaussian model with function h ∗ f . Thus all the properties derived earlier remain valid with

this linear operation. In Figure 3.27, we set h to be a Laplacian operator
2
. This operation allows us to

avoid contrast issues.

2
We use a discrete Laplacian operator ∆ such that for any p = (x1, x2), we get that ∆(x)(p1, p2) =

(x(p1 + 1, p2) + x(p1 − 1, p2) + x(p1, p2 + 1) + x(p1, p2 − 1)− 4x(p)) /4, where boundaries are handled periodically.
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(a) (b) 90% (c) 95% (d) 99%

Figure 3.25: Comparison with Fourier based methods Since the original image can be segmented in

two highly periodic components, Fourier methods might be well-adapted to the lattice extraction task.

In (a) we present a sub-image of the original alloy. We compute the autocorrelation of this sub-image

and threshold it. This operation gives us a detection map, like Algorithm 3. In (b) the threshold is set

to 90% percent of the maximum value of the autocorrelation. Too many points are identi�ed. In (d) the

threshold is set to 99% and only one point is identi�ed. Correct lattice is identi�ed in (c).

(a)

Axe [001]

(b)

Figure 3.26: Agreement with crystallography models In (a) we perform a zoom on of the lattice

identi�ed in Figure 3.24 and compare it to the one identi�ed by crystallographists in (b). (a) is a zoomed

rotated version of a crystalline structure similar to (b). The output lattice in (a) is the same as the one

in (b). Indeed in (b) the red points, for instance, form a lattice. A possible basis for this lattice is given

by the vectors of a parallelogramm. Up to rotation these basis vectors match the one identi�ed in (a).

However, the parallelogramm basis is a symmetric and thus is not chosen by chemists since it does not

re�ect the geometry of the alloy. The preferred basis is given by the symmetric rhombus (white edges

in (b)). Image courtesy of Denis Gratias.
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(a) (b) (c) (d)

Figure 3.27: Preprocessing and �ltering In (a) and (c) we display the graphs obtained with Algorithm

3 applied on images (b) and (d). In (b) and (d) the original image is superposed with the estimated lattice

(vectors in cyan and proposed patches in red). In (a) and (b), NFAmax was set to 105
which corresponds

to 35 % of detection in the associated a contrario model. Lower NFAmax did not give enough points to

conduct the lattice proposal step. We obtain a visually satisfying lattice. In (c) and (d) we apply a simple

preprocessing, a Laplacian �lter, to the image and set NFAmax to 10. The detection �gure is much cleaner

and the estimation makes much more sense from a perceptual point of view. Note that, as in (b), the

proposed lattice does not exactly match the fence periodicity. This is due to: 1) the initialization of the

algorithm and the structure of the graph in the alternate minimization algorithm 2) the fact that the

horizontal periodicity is broken by the black post.

Homography In the previous experiments we suppose that the lattice structure was in front of

the camera. In many cases this assumption is not true and there exists an homography that matches

the deformed lattice in the image to a true lattice. Our algorithm makes the assumption that the lattice

is viewed in a frontal way and fails otherwise. However, locally, this assumption is true and we can

observe partial match of the lattices in Figure 3.28.

Texture ranking

We conclude these experiments by showing that this simple graphical model can be used to perform

ranking among texture images, sorting them according to their degree of periodicity. We say that an

image has high periodicity degree if a lattice structure can be well �tted to the image. We introduce a

criterion for evaluating the relevance of the lattice hypothesis. Let u be an image over E, let w ⊂ E be

a patch domain and a be as in Proposition 3.2.3 with NFAmax set by the user.

De�nition 3.2.13. Let {t ∈ E, A (x, t,w) ≤ a(t)} be the set of detected o�sets and NC its number of
connected components as de�ned in Section 3.2.5. Let also (B̂, M̂ , σ̂) be the estimated parameters using
Algorithm 5. We de�ne the periodicity criterion cper as

cper(x) =
πσ̂2

NC |det(b̂1, b̂2)|
, (3.41)

where B̂ = (b̂1, b̂2).

The criterion cper simply computes the ratio between the error area of Algorithm 5, i.e. the error

made when considering the approximated lattice hypothesis, see De�nition 3.2.10, and the area of the
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(a) (b)

Figure 3.28: Homography and locality In this experiment NFAmax was set to 103
. Note that the

detected graph is localized around the original patch in (a). In (b) we superpose the proposed lattice

onto the original image. The lattice proposal is valid in a small neighborhood around the original patch.

However it is not valid for the whole image.

(a) (b) (c)

Figure 3.29: Parameters con�gurations In each �gure, dark blue points correspond to the vertex of

the graph G . Arrows represent the estimated basis B̂ and its associated parallelogram is displayed in

blue. Red disks have radius σ̂. In (a) there exists a lattice in the graph which corresponds to some

perceptual lattice on the vertices. In this case πσ̂2/(|det(b̂1, b̂2)|), the ratio of the uncertainty area and

the primitive area, is small. In (b) no perceptual lattice is identi�ed onto the vertices and the estimated

lattice vectors are not valid. This is expressed with a high ratio πσ̂2/(|det(b̂1, b̂2)|). In (c), the graph

G contains only three vertices. Thus the lattice approximation is nearly optimal (up to regularization

factors) and the ratio πσ̂2/(|det(b̂1, b̂2)|) is very small. However, three points are not perceptually

identi�ed as a lattice. Hence considering cper we take into account the number of points and we may

retrieve that (a) is considered more periodic than (b) and (c).

121



parallelogram de�ned by the output basis vectors. If we have enough detections this quantity is sup-

posed to be small when the approximated lattice hypothesis holds and large when it does not. Nonethe-

less, we introduce a dependency in the number of detections. Indeed, even if no lattice is perceived, the

hypothesis in De�nition 3.2.10 may still hold if the number of detected o�sets is small, see Figure 3.29.

In the experiment presented in Figure 3.30 we sort 25 texture images based on the cper criterion.

Images are of size 256× 256. Since the identi�ed graph highly depends on the patch position and the

patch size, for each image we uniformly sample 150 patch positions and set the patch size to 20× 20. For

each set of parameters we �nd a lattice using Algorithm 3 and Algorithm 5 with parameters NFAmax = 1,

δM = 10, δB = 10−2
and Nit = 10. A statistical study of our ranking is presented in Figure 3.31. Note

that, from a perceptual point of view, from (a) to (n) all textures are periodic except for (f), (j) and (k)

which are examples for which our algorithm fails. However, from (o) to (y), no texture is periodic.

3.2.6 Summary

In this section we introduce a statistical model, the a contrario framework, to analyze spatial redun-

dancy in images. We propose a general algorithm for detecting redundancy in natural images. It relies

on Gaussian random �elds as background models and takes advantage of the links between the `2 norm

and Gaussian densities. The a contrario formulation provides us with a statistically sound way of thresh-

olding distances in order to assess similarity between patches. In this rationale we replace the task of

manually setting thresholds by the selection of a Number of False Alarms.

We illustrate our contribution with three examples in various domains of image processing. Intro-

ducing a simple modi�cation of the NL-means algorithm we show that similarity detection (in this case,

dissimilarity detection) in a theoretical a contrario framework can easily be embedded in any image

denoising pipeline. For instance, the threshold we introduced could be integrated into the Non-Local

Bayes algorithm [LBM13] in order to estimate mean and covariance matrices with probabilistic guaran-

tees. The generality of our model allows for several extensions for non-Gaussian noises [DDT09] or to

take into account the geometry of the patch space [HBD17; WM13].

Turning to periodicity detection we propose a novel graphical model using the output of Algorithm

3 in order to extract lattices from images. In this model, lattice extraction is formulated as the maximiza-

tion of some log-likelihood de�ned on a graph. We prove the �nite-time convergence of Algorithm 5.

We provide image experiments illustrating the role of the hyperparameters in our study and we assess

the importance of selecting adaptive Gaussian random �elds as background models. We remark that the

expected number of false alarms parameter is linked to the choice of the input patch and give a range

of possible values for NFAmax settings. We also illustrate its possible application in crystallography as

it correctly identi�es underlying lattices in alloys. This rationale could be used to identify symmetry

groups (wallpaper groups) in alloys, following the work of [LCT03]. Finally our method is tested on

natural images where some of its limits such as perspective defect or sensitivity to occlusion phenoma

are identi�ed. It must be noted that our method could easily be extended to color images by considering

R3
-valued instead of real-valued images. Our last application consists in giving a quantitative criterion

for periodicity texture ranking. This criterion is based on the parameters estimated in Algorithm 5.

3.2.7 Proofs and additional results

Eigenvalues

Proof of Proposition 3.2.8. We �x t 6= 0 with ‖t‖∞ < p and denote C = Ct. Without loss of generality

we consider that tx > 0 and ty > 0. We consider X an eigenvector of C . Let Ω0 = (Ω− t) ∩ Ωc and
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(a) -9.75 (b) -9.42 (c) -9.12 (d) -9.00 (e) -8.80

(f) -8.24 (g) -8.24 (h) -7.99 (i) -7.80 (j) -7.77

(k) -7.74 (l) -7.72 (m) -7.47 (n) -7.26 (o) -7.21

(p) -7.20 (q) -7.19 (r) -7.17 (s) -6.92 (t) -6.86

(u) -6.78 (v) -6.65 (w) -6.56 (x) -6.30 (y) -6.16

Figure 3.30: Texture ranking The cper criterion, de�ned in (3.41), is computed for each setting. We

associate to each image the median of the 150 criterion values and sort the images accordingly. (a) cor-

responds to the lowest criterion, i.e. the most periodic image according to cper criterion. (y) corresponds

to the largest criterion, i.e. the least periodic image according to cper . Under each image we give the

logarithm of the median cper values.
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Figure 3.31: Boxplot for cper values In this �gure we present a boxplot of the cper values, de�ned in

(3.41), used to rank textures images in Figure 3.30. We recall that we use 150 random patch positions

in order to compute the cper values. Letters on the x-axis correspond to the textures in Figure 3.30.

For each texture we present its median cper value. The lower, respectively upper, limit of the blue box

corresponds to 25%, respectively 75% of the computed cper values. The dashed line corresponds to

the con�dence interval with level 0.07 under normality assumption. Points outside this interval are

plotted in red and the graphics was clipped between 0 and 5×10−3
. The size of the con�dence interval

grows with the median value. It must be noted that the overlapping of the blue boxes might explain

some inconsistencies of our ranking. Another source of errors lie in the model which assumes that if a

texture is periodic its pattern is described by a 20×20 patch. In order to perform a more robust ranking

a multiscale approach should be preferred.
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the function J : Ω0 → J2,+∞J such that for any x0 ∈ Ω0

J(x0) = arg min{k ∈ N\ {0} , x0 + kt /∈ Ω} .

It is clear that I = {(k,m), k ∈ J1,m−1K, m ∈ J(Ω0)} is in bijection with Ω. Let x0 ∈ Ω0,m = J(x0)
and k ∈ J1,m− 1K. We de�ne Xx0,k over Z2

such that

Xx0,k(x0 + `t) = sin

(
`kπ

m

)
for ` ∈ J1,m− 1K , 0 otherwise .

Using that sin(a+ b) + sin(a− b) = 2 sin(a) cos(b), we have for any x ∈ Z2

Xx0,k(x + t)− 2 cos

(
kπ

m

)
Xx0,k(x) +Xx0,k(x− t) = 0 .

This implies that for any x ∈ Z2

2Xx0,k(x)−Xx0,k(x + t)−Xx0,k(x− t) =

[
2− 2 cos

(
kπ

m

)]
Xx0,k(x) = 4 sin2

(
kπ

m

)
Xx0,k(x) .

Thus the one-dimensional vector (given by the raster-scan order on the x-axis) of the restriction of

Xx0,k is an eigenvector of C associated with eigenvalue 4 sin2
(
kπ
m

)
.

Using that I is in bijection with Ω we get that the number of vectors (Xx0,k) is |Ω|. We show that

this family of vectors is linearly-independent. Let Λx0,k ∈ R such that

∑
x0∈Ω0

J(x0)−1∑
k=1

Λx0,kXx0,k = 0 .

Since Xx0,k and Xy0,k′ have di�erent support if and only if x0 6= y0 we get that for any x0 ∈ Ω0,∑J(x0)−1
k=1 Λx0,kXx0,k = 0. This gives that (Λx0,k)k∈J1,J(x0)−1K is in the kernel of the matrix (sin(`kπ/(J(x0)− 1)))1≤j,`≤J(x0)−1.

Since the sinus discrete transform is invertible we obtain that for any x0 ∈ Ω0 and k ∈ J1, J(x0)− 1K,

Λx0,k = 0. Thus the family Xx0,k is a basis of eigenvectors.

We aim at computing the cardinality of Kk,m = {Xx0,k, J(x0) = m}. By de�nition, in Proposition

3.2.8, rk,m = |Kk,m|. First note that |Kk′,m| = |Kk,m|. We give the following decomposition Ω0 =
Ωx ∪ Ωy ∪ Ωx,y with

Ωx = J−tx,−1K× J0, p− 1− tyK, Ωx = J0, p− 1− txK× J−ty,−1K, Ωx,y = J−tx,−1K× J−ty,−1K .

Note that for all x0 ∈ Ω0 we have that x0 +(q+1)t /∈ Ω, with q = d p
|tx|∨|ty|e. Thus J(Ω0) ⊂ J2, q+1K.

Let m ∈ J2, q − 1K. The cardinality of Kk,m is the cardinality of J−1(m). Let x0 ∈ Ωx we have

x0 = (i0, j0) ∈ Kk,m ⇔


i0 +mtx ≥ p
or

j0 +mty ≥ p
and


i0 + (m− 1)tx ≤ p− 1

and

j0 + (m− 1)ty ≤ p− 1

.

Since x0 ∈ Ωx we have i0 +mtx ≤ p− 1, hence

x0 = (i0, j0) ∈ Kk,m ⇔ j0 +mty ≥ p and j0 + (m− 1)ty ≤ p− 1 .

Thus |Ωx ∩ J−1(m)| = txty . Similarly we get that |Ωy ∩ J−1(m)| = txty and Ωx,y ∩ J−1(m) = ∅.
Thus, |Kk,m| = 2txty .
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We have computed |Kk,m| for every m ∈ J2, q− 1K. In order to complete our study it only remains

to compute |Kk,q+1|, since |Kk,q| can be deduced from the summability condition and from |Kk,m| =
|Kk′,m|. We only compute |Kk,q+1|. We remark that Ωx ∩ J−1(q + 1) = Ωy ∩ J−1(q + 1) = ∅. Let

x0 ∈ Ωx,y then x0 = −t + (x, y) with x ∈ J0, tx − 1K and y ∈ J0, ty − 1K. We obtain the following

equivalence

x0 ∈ J−1(q + 1) ⇔


− tx + x+ (q + 1)tx ≥ p
or

− ty + y + (q + 1)ty ≥ p
and


− tx + x+ qtx ≤ p− 1

and

− ty + y + qty ≤ p− 1

.

Since qtx ≥ p or qty ≥ p we obtain that the �rst condition is always satis�ed. Thus we get

x0 ∈ J−1(q + 1) ⇔ x ≤ p− 1− (q − 1)tx and y ≤ p− 1− (q − 1)ty .

Using that p− 1− (q − 1)tx =
(
d ptx e − q

)
tx + tx − 1− px, we conclude the proof.

Update rules

We derive the proof of Proposition 3.2.11.

Proof. Computing the minimum of q(B,M |E) for �xed B ∈ R4
, respectively �xed M ∈ R2|E|

, gives

the update rule for M , respectively for B. We obtain that

q(B,M |E) =
∑
e∈E

m2
e‖b1‖2 +

∑
e∈Eb

n2
e‖b2‖2 + 2

∑
e∈E

mene〈b1, b2〉

− 2
∑
e∈E

me〈b1, e〉 − 2
∑
e∈E

ne〈b2, e〉+ r(B,M)

= BT (ΛM ⊗ Id2)B − 2〈B,EM 〉+ α(M)

= ‖ (ΛM ⊗ Id2)
1
2 B − (ΛM ⊗ Id2)

−1
2 EM‖2 + α(M)

= ‖ (ΛM ⊗ Id2)
1
2

(
B − (ΛM ⊗ Id2)

−1
EM

)
‖2 + α(M) ,

where α(M) depends only on M . Similar derivation goes for B and we obtain the proposed update

rules.
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Chapter 4

Stochastic Optimization with
Unadjusted Langevin Algorithm

4.1 Convergence of di�usions and their discretizations

4.1.1 Abstract

The study of the convergence of Markov processes in general state space is a very attractive and active

�eld of research motivated by applications in mathematics, physics and statistics [JM17]. Among the

many works on the subject, we can mention the pioneering results from [NT78; NT82; NT83] using the

renewal approach. Then, the work of [Pop77; MT92] paved the way for the use of Foster-Lyapunov drift
conditions [Fos53; Bre99] which, in combination of an appropriate minorization condition, implies (f, r)-

ergodicity on general state space, drawing links with control theory, see [TT94; Dou+04; JR02]. This

approach was successively applied to the study of Markov chains in numerous papers [Cha93; CT91;

RP94] and was later extended and used in the case of continuous-time Markov processes in [Kha11;

MT93b; MT93c; DMT95; GM06; FR05; DFG09; Ver97; DKM17]. However, most of these results establish

convergence in total variation or in V -norm and are non-quantitative. Explicit convergence bounds in

the same metrics for Markov chains have been established in [Ros95; DMR04; Ros02; RT99; JH04; LT96;

MT94; For02], driven by the need for stopping rules for Markov Chain Monte Carlo (MCMC) simula-

tions. To the authors’ knowledge, the techniques developed in these papers have not been adapted to

continuous-time Markov processes, except in [RR96]. One of the main reason is that deriving quanti-

tative minorization conditions for continuous-time processes seems to be even more di�cult than for

their discrete counterparts [EGZ18]. Indeed, in most cases, the constants which appear in minorization

conditions are either really pessimistic or hard to quantify accurately [JH01; QH18].

Since the last decade, in order to avoid the use of minorization conditions, other metrics than the total

variation distance, or V -norm, have been considered. In particular, Wasserstein metrics have shown to

be very interesting in the study of Markov processes and to derive quantitative bounds of convergence

as well as in the study of perturbation bounds for Markov chains [RS18; PS14]. For example, [Oll09;

JO10; Pau16] introduced the notion of Ricci curvature of Markov chains and its use to derive precise

bounds on variance and concentration inequalities for additive functionals. Following [HM11], [HMS11]

generalizes the Harris’ theorem for V -norms to handle more general Wasserstein type metrics. In the

same spirit, [But14] establishes conditions which imply subgeometric convergence in Wasserstein dis-

tance of Markov processes. In addition, the use of Wasserstein distance has been successively applied to
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the study of di�usion processes and MCMC algorithms. In particular, [Ebe16; EGZ18] establish explicit

convergence rates for di�usions and McKean Vlasov processes. Regarding analysis of MCMC methods,

[HSV14] establishes geometric convergence of the pre-conditioned Crank-Nicolson algorithm. Besides,

[DM19; DK19; Cha+18; Bak+19] study the computational complexity in Wasserstein distance to sample

from a log-concave density on Rd using appropriate discretizations of the overdamped Langevin dif-

fusion. One key idea introduced in [HMS11] and [Ebe16] is the construction of an appropriate metric

designed speci�cally for the Markov process under consideration. The approach of [Ebe16] has then

been generalized in [Che+18; MMS18]. While this approach leads to quantitative results in the case

of di�usions or their discretization, we can still wonder if appropriate minorization conditions can be

found to derive similar bounds using classical results cited above.

In this section, we show that for a class of functional auto-regressive models, sharp minorization

conditions hold using an iterated Markov coupling kernel. As a result new quantitative convergence

bounds can be obtained combining this conclusion and drift inequalities for well-suited Lyapunov func-

tionals. We apply them to the study of the Euler-Maruyama discretization of di�usions with identity

covariance matrix under various curvature assumptions on the drift. The rates of convergence we derive

in weighted total variation metric in this case improve the one recently established in [EM19]. Indeed,

while recent papers have established precise bounds between the n-th iterate of the Euler-Maruyama

scheme and π in di�erent metrics (e.g. total variation or Wasserstein distances), the convergence of the

associated Markov kernel is in general needed to obtain quantitative bounds on the mean square error

or concentration inequalities for additive functionals, see [DM19; JO10].

In the second part of this section, we show how the results we derive for functional auto-regressive

models can be used to establish explicit convergence rates for di�usion processes. First, we show that,

under proper conditions on a sequence of discretizations, the distance in some metric between the distri-

butions of the di�usion at time t with di�erent starting points can be upper bounded by the limit of the

distance between the corresponding discretizations, when the discretization stepsize decreases towards

zero. Similarly, in [KM17] general Markov processes are approximated by hidden Markov models under

a continuous Foster-Lyapunov assumption. Second, we design appropriate discretizations satisfying

the necessary conditions we obtain and which belong to the class of functional autoregressive models

we study. Therefore, under the same curvature conditions as in the discrete case, we get quantitative

convergence rates for di�usions by taking the limit in the bounds we derived for the Euler-Maruyama

discretizations. Finally, the rates we obtain scale similarly with respect to the parameters of the problem

under consideration to the ones given in [Ebe16; EGZ18] for the Kantorovitch-Rubinstein distance, and

improve them in the case of the total variation norm. Note that in the di�usion case, earlier results were

derived in [CW97; CW95; Wan94].

The rest of Section 4.1 is organized as follows. For reader’s convenience and to motivate our results,

we begin in Section 4.1.2, with one of their applications to the speci�c case of a di�usion over Rd with

identity covariance matrix and its Euler-Maruyama discretization, in the case where the drift function is

strongly convex at in�nity. In Section 4.1.3, we present our main convergence results regarding a class

of functional autoregressive models. We then specialize them to the Euler-Maruyama discretization of

di�usions under various assumptions on the drift function in Section 4.1.4. Section 4.1.5 deals with the

convergence of di�usion processes with identity covariance matrix. More precisely, in Section 4.1.5, we

derive su�cient conditions for the convergence of such processes based on a sequence of well-suited

discretizations. In Section 4.1.5, we apply our results to the continuous counterparts of the situations

considered in Section 4.1.4. Finally, new quantitative convergence bounds for discrete Markov chains

on general state spaces are given in Section 4.1.6. For ease of presentation we gather the proofs and

generalizations of our results in Section 4.1.7.
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4.1.2 Motivation and illustrative example

Non-contractive setting

In this section, we motivate our work with applications of our main results to one speci�c example. Let

b : Rd → Rd be a drift function, (Bt)t≥0 be a d-dimensional Brownian motion and assume that the

SDE

dXt = b(Xt)dt+ dBt , (4.1)

admits a unique strong solution (Xt)t≥0 on R+ for any starting point X0 = x ∈ Rd. We denote by

(Pt)t≥0 its associated Markov semigroup. We consider the Euler-Maruyama discretization of this SDE,

i.e. the homogeneous Markov chain (Xk)k∈N, starting from X0 = x ∈ Rd and de�ned by the following

recursion: for any k ∈ N
Xk+1 = Xk + γb(Xk) +

√
γZk+1 , (4.2)

where γ > 0 is a stepsize and (Zk)k∈N? is a sequence of i.i.d. d-dimensional Gaussian random variables

with zero mean and identity covariance matrix. We denote by Rγ its associated Markov kernel.

The �rst consequence of the results established in this section is the explicit convergence of the

Markov chain de�ned by (4.2) in a distance which is a mix of the total variation distance and the Wasser-

stein distance of order 1, under the assumption that b is Lipschitz and strongly convex at in�nity.

Theorem 4.1.1. Assume that there exist m ∈ R, m+ > 0 and L, R ≥ 0 such that for any x, y ∈ Rd

‖b(x)− b(y)‖ ≤ L ‖x− y‖ , 〈b(x)− b(y), x− y〉 ≤ −m ‖x− y‖2 , (4.3)

and if ‖x− y‖ ≥ R,
〈b(x)− b(y), x− y〉 ≤ −m+ ‖x− y‖2 . (4.4)

Then there exist γ̄ > 0, Dγ̄,1, Dγ̄,2, Eγ̄ ≥ 0 and λγ̄ , ργ̄ ∈ [0, 1) with λγ̄ ≤ ργ̄ , which can be explicitly
computed, such that for any γ ∈ (0, γ̄], x, y ∈ Rd and k ∈ N

Wc(δxRk
γ , δyRk

γ) ≤ λkγ/4γ̄ [Dγ̄,1c(x, y) +Dγ̄,21∆c(x, y)] + Eγ̄ρ
kγ/4
γ̄ 1∆c(x, y) , (4.5)

where c(x, y) = 1∆c(x, y)(1 + ‖x− y‖ /R), ∆ = {(x, x) : x ∈ Rd} and Rγ is the Markov kernel
associated with (4.2).

Proof. The result is a direct consequence of Theorem 4.1.13 and the corresponding discussion in Sec-

tion 4.1.4.

This result is derived as a speci�c case of a more general theorem for a class of functional au-

toregressive models, see Theorem 4.1.8 and Section 4.1.3. Its proof relies on the use of an extended

Foster-Lyapunov drift assumption as well as a minorization condition on the Markov chain (4.2). As an

important consequence, curvature assumptions on the drift (such as strong convexity at in�nity) can be

omitted if we instead assume some Foster-Lyapunov condition, similarly to [Ebe16, Theorem 6.1] and

[EGZ18, Theorem 2.1].

The result derived in Theorem 4.1.1 has several important applications which we gather in the fol-

lowing corollary.

Corollary 4.1.2. Assume that there exist m ∈ R, m+ > 0 and L, R ≥ 0 such that (4.3) and (4.4) are
satis�ed. Then, there exist γ̄ > 0, Eγ̄,1, Eγ̄,2 ≥ 0 such that for any γ ∈ (0, γ̄], x, y ∈ Rd and k ∈ N we
have

‖δxRk
γ − δyRk

γ‖TV ≤Wc(δxRk
γ , δyRk

γ) ≤ Eγ̄,1ρkγ/4γ̄ c(x, y) , (4.6)
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W1(δxRk
γ , δyRk

γ) ≤ Eγ̄,2ρkγ/4γ̄ ‖x− y‖ , (4.7)

where c(x, y) = 1∆c(x, y)(1+‖x− y‖ /R), ∆ = {(x, x) : x ∈ Rd} and ργ̄ is given in (4.5). In addition,
for any p ∈ N and α ∈ (p,+∞) there exists Eγ̄,α ≥ 0 such that for any γ ∈ (0, γ̄], x, y ∈ Rd and k ∈ N
we have

Wp(δxRk
γ , δyRk

γ) ≤ Eγ̄,αρkγ/(4α)
γ̄ (‖x− y‖+ ‖x− y‖1/α) . (4.8)

The constants γ̄, {Eγ̄,i : i = 1, 2, 3} and Eγ̄,α can be explicitly computed.

Proof. The estimate (4.6) is a direct consequences of Theorem 4.1.1. The two inequalities (4.7) and (4.8)

follow from Corollary 4.1.14.

Note that the same rate ργ̄ appears in the inequalities (4.5), (4.6), (4.7) and (4.8). Section 4.1.5 is

devoted to the extension of our discrete-time results to their continuous-time counterparts. Note also

that Theorem 4.1.3 and its consequences still hold if we only assume a local Lipschitz assumption, see

the condition B5.

Theorem 4.1.3. Assume that there exist m ∈ R, m+ > 0 and L, R ≥ 0 such that (4.3) and (4.4) are
satis�ed. Then there exist D1, D2, E ≥ 0 and λ, ρ ∈ [0, 1) with λ ≤ ρ such that for any x, y ∈ Rd and
t ≥ 0

‖δxPt − δyPt‖TV ≤Wc(δxPt, δyPt) ≤ λt/4[D1c(x, y) +D21∆c(x, y)] + Eρt/41∆c(x, y) , (4.9)

where c(x, y) = 1∆c(x, y)(1 + ‖x− y‖ /R), ∆ = {(x, x) : x ∈ Rd}, (Pt)t≥0 is the Markov semigroup
associated with (4.1) and

D1 = lim
γ̄→0

Dγ̄,1 , D2 = lim
γ̄→0

Dγ̄,2 , E = lim
γ̄→0

Eγ̄ , λ = lim
γ̄→0

λγ̄ , ρ = lim
γ̄→0

ργ̄ ,

and Dγ̄,1, Dγ̄,2, Eγ̄ , λγ̄ , ργ̄ are given in Theorem 4.1.1.

Proof. This result follows from Theorem 4.1.21.

Note that the constants D1, D2, E, λ and ρ have explicit expressions, see the corresponding discus-

sion in Section 4.1.5 after Theorem 4.1.21. In addition, the rate ρ and λ in (4.9) are independent of the

dimension d. This is a signi�cant improvement compared to the convergence results in total variation

derived in [EGZ18, Theorem 2.1] which imply a convergence rate which scales exponentially in the di-

mension, under the setting we consider. Similarly, we derive a continuous counterpart of Corollary 4.1.2

in the continuous time setting, see Corollary 4.1.22.

As stated before, the convergence rates ργ̄ , ρ, λγ̄ , λ, given in Theorem 4.1.1 and Theorem 4.1.3 can

be explicitly computed. More precisely, we obtain the following expressions (up to logarithmic terms)

with respect to the parameters m, L and R in the case −mR2 � 1, see Section 4.1.4, Theorem 4.1.13,

Equations (4.46) and (4.47):

log(log−1(ρ−1
γ̄ )) ' −(mR2/4) sup

γ∈(0,γ̄]

{(
1− γL2

2m

)(
1− exp

[
R2(2m− γL2)

1− 2mγ + γ2L2

])−1
}

(4.10)

log(log−1(ρ−1)) ' −(mR2/4)× (1− e2mR2

)−1 , (4.11)

log(λγ̄) = −m+/2 + γ̄L2/4 , log(λ) = −m+/2 .

where ' denotes equality up to logarithmic factors.
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It is sensible to obtain two di�erent convergence rates λγ̄ , ργ̄ (resp. λ, ρ) in Theorem 4.1.1 (resp.

in Theorem 4.1.3), one characterizing the forgetting of the initial distance between the two starting

points x, y ∈ Rd, corresponding to a burn-in period, and the other one characterizing the e�ective

convergence. In addition, note that λγ̄ � ργ̄ and λ� ρ if −mR2 � 1.

We now compare these results and the rates obtained in (4.10)-(4.11) with recent works studying the

convergence of the Markov chain de�ned by (4.2) and/or the corresponding di�usion process (4.1) in

the same framework, i.e. under the conditions (4.3) and (4.4). Note that the same conclusions hold under

more general Foster-Lyapunov drift conditions but it would make the comparison more involved. Note

also we are still able to derive convergence results under weaker curvature assumptions on the drift.

The discussion is postponed to Section 4.1.4 for the discrete setting and Section 4.1.5 for the continuous

setting.

First, a major di�erence between our work and the ones mentioned below is that we use a completely

di�erent technique to establish our results. Indeed, all of them follow the approach initiated in [Ebe11],

designing a suitable coupling and distance function of the form c(x, y) = f(‖x− y‖), for any x, y ∈
Rd, with f : R+ → R+, to obtain a geometric contraction in Wc for either the Markov chain (4.2)

or the di�usion (4.1) under the conditions (4.3)-(4.4). In this section, we follow a di�erent path and

derive convergence estimates using minorization and Foster-Lyapunov drift conditions, adapting the

technique used in [Dou+18] and the references therein. It has been thought for a long time that such an

approach only gives very pessimistic convergence bounds [EGZ18]. We now compare more speci�cally

our results with the ones obtained following the work of [Ebe11] and show that in fact our technique

inspired by classical methods to establish geometric convergence of Markov chains gives very sharp

estimates, improving and simplifying the results obtained in the existing literature. This discussion and

its conclusion are summarized in Table 4.1. In the rest of this section, C ≥ 0 stands for a positive

constant which may be di�erent at each occurrence.

First we compare our work with the results of [EM19] which extend to the discrete setting the

estimates of [Ebe16]. The authors use the following cost function de�ned for any x, y ∈ Rd by

ca(x, y) = a1∆c(x, y) + fa(‖x− y‖) ,

where a ≥ 0 and fa is given in [EM19, Equation (2.53)]. Note that the cost ca is close to the one

introduced in Theorem 4.1.1. Then, [EM19, Theorem 2.10] states that if a ∈ [2γ1/2,ΦE(R)] where ΦE

is given in [EM19, Theorem 2.10], then there exist γ̄a > 0 and ρa ∈ [0, 1) such that for any γ ∈ (0, γ̄a],
x, y ∈ Rd and k ∈ N,

Wca(δxRk
γ , δyRk

γ) ≤ ρkγa ca(x, y) . (4.12)

Compared to our results Theorem 4.1.1, (4.12) only gives one convergence rate ρa and does not dissociate

the forgetting of the initial distance between the starting points x, y ∈ Rd from the long-term behavior.

In addition, amay depend on γ, since it is required that a ∈ [2γ1/2,Φ(R)] and γ̄a < γ̄ where γ̄ is given

by Theorem 4.1.1. Omitting the dependency of a and ρa with respect to γ for the sake of simplicity, and

applying [EM19, Theorem 2.10] yield

log(log−1(ρ−1
a )) ' −mR2/c1 , with c1 = 16−1

∫ 3/8

1/4

(1− eu−1/2)ϕϕϕ(u)du ≤ 0.00051 , (4.13)

where for any t ∈ R,ϕϕϕ(t) = (2π)−1/2 exp(−t2/2). It is worth noticing that in the case we are interested

in, −mR2 � 1, we obtain that our rate given by (4.10) satis�es ργ̄ � ρa (also omitting dependency of

ργ̄ with respect to γ).

Let cb be de�ned for any x, y ∈ Rd by cb(x, y) = fb(‖x− y‖) with fb given in [EM19, Equation

(2.68)]. Then, [EM19, Theorem 2.12] implies that there exist γ̄b > 0 and ρb ∈ [0, 1) such that for any
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γ ∈ (0, γ̄b], x, y ∈ Rd and k ∈ N,

Wcb(δxRk
γ , δyRk

γ) ≤ ρkγb cb(x, y) . (4.14)

Note that (4.12) implies convergence bounds both with respect to W1 and the total variation distance

whereas (4.14) implies convergence bounds with respect to W1 only. Once again, omitting the depen-

dency with respect to γ, we obtain that the rate satis�es

log(log−1(ρ−1
b )) ' −49mR2/(6c2) ,

with

c2 = 4 min

(∫ 1/2

0

u2(1− eu−1/2)ϕϕϕ(u)du, (1− e−1)

∫ 1/2

0

u3ϕϕϕ(u)du

)
≤ 0.0072 , (4.15)

and we obtain that our rate given by (4.10) satis�es ργ̄ � ρa when −mR2 � 1.

We now compare our results with the ones derived in [MMS18]. For fair comparison, since [MMS18]

does not assume a one-sided Lipschitz condition but only a global Lipschitz condition we set m = −L
in the next paragraph. In this section, we extend the techniques of [EM19; Ebe16] to deal with W2. It

is shown in [MMS18, Theorem 2.1] that there exist γ̄c > 0 and ρc ∈ [0, 1) such that for any γ ∈ (0, γ̄c],
x, y ∈ Rd and k ∈ N,

Wcc(δxRk
γ , δyRk

γ) ≤ ρkγc cc(x, y) ,

with cc given for any x, y ∈ Rd by cc(x, y) = fc(‖x− y‖) and fc given in [EM19, Equation (2.11)].

Note that this result implies convergence bounds with respect to W1 and W2. In particular, we have

for any γ ∈ (0, γ̄], x, y ∈ Rd and k ∈ N,

W2(δxRk
γ , δyRk

γ) ≤ Cρkγ/2c c1/2
c (x, y) ≤ Cρkγ/2c (‖x− y‖+ ‖x− y‖1/2) .

In addition, it holds that

log(log−1(ρ−1
c )) ' LR2/(6c2) where c2 is de�ned by (4.15) , (4.16)

and therefore our rate also satis�es ργ̄ � ρc when LR2 � 1.

The results of [EM19; MMS18] both extend, and generalize, in the discrete-time setting the tech-

niques used in [Ebe16]. In the latter, contraction results for the semigroup (Pt)t≥0 are obtained with

respect to Wce , where for any x, y ∈ Rd, ce(x, y) = fe(‖x− y‖) and fe is de�ned by [Ebe16, Equation

(2.6)]. In particular, in [Ebe16, Corollary 2.3], it is shown that there exists ρe ∈ [0, 1) such that for any

x, y ∈ Rd and t ≥ 0

Wce(δxPt, δyPt) ≤ ρtece(x, y) .

Note that this result implies convergence bounds in W1, see [Ebe16, Corollary 2.3]. The rate is given

[Ebe16, Lemma 2.9] and, in the case −mR2 � 1, we have

log(log−1(ρ−1
e )) ' −mR2/4 , (4.17)

which is better than our rate in the continuous-time case
1
. However, note that we derive our results in

W1 from our estimates with respect to Wc with c given in Theorem 4.1.1, which controls both W1

1
Note that in [Ebe16, Lemma 2.9, Equation (2.18)] the stated result implies that log(log−1(ρ−1)) ' LR2/8 if κ(r) ≥ −Lr

for any r ≥ 0, where κ is de�ned in [Ebe16, p.5]. However, note that if b is L-Lipschitz then κ(r) ≥ −2L and (4.17) follows.
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and the total variation norm. Also, the discrepancy between our rate and the one of (4.17) is controlled

by (e−2mR2 − 1)−1
which is small when −mR2

is large.

Finally we compare our continuous-time results with the ones of [LW16b]. It is shown in [LW16b,

Theorem 1.3] that for any p > 1 there exist ρf ∈ [0, 1) and C ≥ 0 such that for any x, y ∈ Rd and

t ≥ 0

Wp(δxPt, δyPt) ≤ Cρtf
{
‖x− y‖+ ‖x− y‖1/p

}
, (4.18)

and the rate is given in [LW16b, Theorem 1.3] by

log(log−1(ρ−1
f )) = (−m + m+)R2/4 .

The additional term m+R2/4 does not appear in our rates
2
. As a consequence our rate is better as soon

as

m+ ≥ −m/(e−2mR2

− 1) .

Table 4.1 gives a summary of the comparisons we made above.

Reference Wasserstein distance distance bound (D) (C) (NR)

[EM19] ‖ · ‖TV 1∆c(x, y) + ‖x− y‖ X 7840
W1 ‖x− y‖ X 4536

[MMS18] W2 ‖x− y‖+ ‖x− y‖1/2 X 332
[Ebe16] W1 ‖x− y‖ X 1

[LW16b] Wp ‖x− y‖+ ‖x− y‖1/p X 1− m+/m

‖ · ‖TV 1∆c(x, y) + ‖x− y‖ X X (1− e2mR2

)−1

Ours W1 ‖x− y‖ X X idem

Wp ‖x− y‖+ ‖x− y‖1/α X X idem

Table 4.1: Every line of the table reads as follows. Suppose “Wasserstein distance” reads Wc1 and

“distance bound” reads c2(x, y) then: if (D) is checked, there existC ≥ 0 and ρ ∈ [0, 1) such that for any

x, y ∈ Rd and k ∈ N, Wc1
(δxRk

γ , δyRk
γ) ≤ Cρkγc2(x, y) for γ small enough. If (C) is checked, there

exist C ≥ 0 and ρ ∈ [0, 1) such that for any x, y ∈ Rd and t ≥ 0, Wc1(δxPt, δyPt) ≤ Cρtc2(x, y).

In addition, if the normalized rate “(NR)” reads β we have −4 log(log−1(ρ−1))/(mR2) ' β (with m

replaced by −L in the case of [MMS18]). Note that for the sake of simplicity we omit the dependency

with respect to γ̄ in the present analysis. The exact distances used in papers with which we compare

our results, are given in [EM19, Equation (2.53)], [MMS18, Equation (2.11)], [Ebe16, Equation (2.6)] and

[LW16b, Equation (2.4)]. Note that p ∈ N and α ∈ (p,+∞).

An illustrative example

We now consider a toy example to justify the setting under study in the previous section. Consider the

following Gaussian mixture distribution π whose Radon-Nikodym density with respect to the Lebesgue

measure λ is given for any x ∈ R by

(dπ/dλ)(x) = (2
√

2πσ2)−1 exp[−x2/(2σ2)] + (2
√

2πσ2)−1 exp[−(x− m)2/(2σ2)] ,

2
Similarly to [Ebe16], in [LW16b, Theorem 1.3] the stated result implies that log(log−1(ρ−1)) ' LR2/2 if κ(r) ≤ Lr for

any r ≥ 0 and κ(r) ≤ −m+r for r ≥ R, where κ is de�ned in [LW16b, Equation (1.4)]. However, note that if b is L-Lipschitz

and m+ strongly convex outside of B̄(0, R) we have κ(r) ≤ Lr/2 for any r ≥ 0 and κ(r) ≤ −m+r/2 for any r ≥ R and (4.18)

follows.
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Figure 4.1: In (a) and (b), the blue curve is the theoretical log-partition and in orange the estimated

log-partition of δx0Rn
γ at iteration n = 10000 with γ = 0.1. The estimation of the log-partition is

performed using Gaussian kernels and 1000 points sampled from 1000000 points using a bootstrap

procedure. In (a), m = 6 and σ = 2 and in (b) m = 10 and σ = 2. In (c) we illustrate the behavior of

− log10(‖δx0
Rn
γ −π‖TV) for σ = 2 and m between 6 and 14 (color blue to red). Note that the precision

saturates since π 6= πγ .
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Figure 4.2: In (a) we present log(log−1(ρ−1
exp)) as m varies. In (b) we present log10(log(log−1(ρ−1)))

with ρ← ρexp (red), ρ given by (4.11) (blue), ρ given by (4.16) (green) and ρ given by (4.13) (orange).

where σ > 0 and m ≥ 0. For any x ∈ R, we have (dπ/dλ)(x) ∝ e−U(x−m/2)
and for any x̄ ∈ R

U(x̄) = x̄2/(2σ2)− log
[
cosh(mx̄/(2σ2))

]
,

Note that U ′ is L-Lipschitz with L = σ−2 max{1, (m/(2σ))2 − 1} and that U is convex if and only if

m ≤ 2σ. Also, we obtain that b = −U ′ satis�es (4.3) with L = σ−2 max{1, (m/(2σ))2 − 1}, R = 2m ,

m+ = 1/(2σ2).

We now consider the Markov chain (4.2) with b = −U ′ and its associated Markov kernel Rγ for

γ > 0. Let x0 ∈ R and we de�ne log(ρexp) to be the slope of the function n 7→ log(‖δx0
Rn
γ − π‖TV).

Note that this slope is computed only until log(‖δx0
Rn
γ − π‖TV) reaches a given precision, since for

γ > 0 small enough there exists a probability measure πγ such that ‖δx0
Rn
γ −πγ‖TV → 0 and πγ 6= π.

In what follows we compare log(ρexp) with our estimates.

Let θ = m/(2σ) and assume that θ ≥
√

2. Note that in this case LR2 = 16θ2(θ2 − 1). Let ρ be

the rate we identify in (4.11). Up to logarithmic terms we have log(log−1(ρ−1)) ' 4θ2(θ2 − 1)/(1 −
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e−32θ2(θ2−1)). In Figure 4.1 and Figure 4.2, we �x σ = 2 and study the behavior of log(ρexp) and log(ρ)
w.r.t. m . In particular, Figure 4.2-(b) illustrates that the rates we obtain are much closer to the ones

estimated by our numerical simulations.

4.1.3 Quantitative convergence bounds for a class of functional autoregres-
sive models

Let X ∈ B(Rd) endowed with the trace of B(Rd) on X denoted by X = {A ∩ X : A ∈ B(Rd)}. In this

section we consider the Markov chain (Xk)k∈N de�ned byX0 ∈ X and the following recursion: for any

k ∈ N
Xk+1 = Π (Tγ(Xk) +

√
γ Zk+1) , (4.19)

where {Tγ : γ ∈ (0, γ̄]} is a family of measurable functions from X to Rd with γ̄ > 0, γ ∈ (0, γ̄] is

a stepsize, (Zk)k∈N? is a sequence of i.i.d. d-dimensional zero mean Gaussian random variables with

covariance identity and Π : Rd → X is a measurable function. The Markov chain (Xk)k∈N de�ned by

(4.19) is associated with the Markov kernel Rγ de�ned on X × B(Rd) for any γ ∈ (0, γ̄], x ∈ Rd and

A ∈ B(Rd) by

Rγ(x,A) = (2πγ)−d/2
∫

Π←(A)

exp
[
−(2γ)−1‖y − Tγ(x)‖2

]
dy , (4.20)

where Πinv(A) = {y ∈ Rd : Π(x) ∈ A}, Note that for any x ∈ X, Rγ(x,X) = 1 and therefore, Rγ

given in (4.20) is also a Markov kernel over X×X .

In this section we state explicit convergence results for Rγ for some Wasserstein distances and dis-

cuss the rates we obtain. These results rely on appropriate minorization and Foster-Lyapunov drift

conditions. We �rst derive the minorization condition for the n-th iterate of Rγ . To do so, we consider

a Markov coupling kernel Kγ for Rγ for any γ ∈ (0, γ̄], i.e. for any x, y ∈ Rd, Kγ((x, y), ·) is a trans-

ference plan between Rγ(x, ·) and Rγ(y, ·). Indeed, in that case, by [Dou+18, Theorem 19.1.6], we have

for any x, y ∈ X, γ ∈ (0, γ̄] and n ∈ N?,

‖δxRn
γ − δyRn

γ‖TV ≤ Kn
γ ((x, y),∆c

X) , (4.21)

where ∆X = {(x, x) : x ∈ X}. We consider a projected version of the discrete re�ection coupling

[BDJ98] which is the discrete counterpart of the coupling introduced in [LR86]. For any x, y, z ∈ Rd,

γ ∈ (0, γ̄], let

e(x, y) =

{
E(x, y)/‖E(x, y)‖ if Tγ(x) 6= Tγ(y)

0 otherwise

, E(x, y) = Tγ(y)− Tγ(x) ,

and

Sγ(x, y, z) = Tγ(y) + (Id−2e(x, y)e(x, y)>)z ,

pγ(x, y, z) = 1 ∧ ϕ
ϕϕγ(‖E(x, y)‖ − 〈e(x, y), z〉)

ϕϕϕγ(〈e(x, y), z〉)
,

whereϕϕϕγ is the one dimensional zero mean Gaussian distribution function with variance γ. Let (Uk)k∈N?

be a sequence of i.i.d. uniform random variables on [0, 1] independent of (Zk)k∈N? . De�ne the Markov

chain (Xk, Yk)k∈N starting from (X0, Y0) ∈ X2
by the recursion: for any k ∈ N,

X̃k+1 = Tγ(Xk) +
√
γZk+1 ,

Ỹk+1 =

{
X̃k+1 if Tγ(Xk) = Tγ(Yk) ,

Wk+1X̃k+1 + (1−Wk+1)Sγ(Xk, Yk,
√
γZk+1) otherwise ,
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where Wk+1 = 1(−∞,0](Uk+1 − p(Xk, Yk,
√
γZk+1)) and �nally set

(Xk+1, Yk+1) = (Π(X̃k+1),Π(Ỹk+1)) . (4.22)

The Markov chain (Xk, Yk)k∈N is associated with the Markov kernel Kγ on X2 × X⊗2
given for all

γ ∈ (0, γ̄], x, y ∈ X and A ∈ X⊗2
by

Kγ((x, y),A) =
1∆Rd

(Tγ(x), Tγ(y))

(2πγ)d/2

∫
Rd
1ΠA

(x̃, x̃)e−
‖x̃−Tγ (x)‖2

2γ dx̃

+
1∆c

Rd
(Tγ(x), Tγ(y))

(2πγ)d/2

[∫
Rd
1ΠA

(x̃, x̃)pγ (x, y, x̃− Tγ(x)) e−
‖x̃−Tγ (x)‖2

2γ dx̃

+

∫
Rd
1ΠA

(x̃,Sγ (x, y, x̃− Tγ(x))) {1− pγ (x, y, x̃− Tγ(x))} e−
‖x̃−Tγ (x)‖2

2γ dx̃

]
, (4.23)

where ΠA = (Π,Π)←(A) and ∆Rd = {(x, x) : x ∈ Rd}. Note that marginally, by de�nition, the

distribution ofXk+1 givenXk is Rγ(Xk, ·). It is well-know (see e.g. [BDJ98, Section 3.3]) that Ỹk+1 and

Tγ(Yk) +
√
γZk+1 have the same distribution given Yk , and therefore the distribution of Yk+1 given

Yk is Rγ(Yk, ·). As a result, for any γ ∈ (0, γ̄], x, y ∈ X, Kγ((x, y), ·) is a transference plan between

Rγ(x, ·) and Rγ(y, ·).
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As emphasized previously, based on (4.21), to study convergence of Rγ for γ ∈ (0, γ̄]<, we �rst give

upper bounds for Kn
γ ((x, y),∆c

X) for any x, y ∈ X and n ∈ N? under appropriate conditions on Tγ and

Π.

A1. The function Π : Rd → X is non expansive: i.e. for any x, y ∈ Rd, ‖Π(x)−Π(y)‖ ≤ ‖x− y‖.

Note that A1 is satis�ed if Π is the proximal operator [BC11, Proposition 12.27] associated with a

convex lower semi-continuous function f : Rd → (−∞,+∞]. For example, if f(x) =
∑d
i=1 |xi|, the

associated proximal operator is the soft thresholding operator [PB14, Section 6.5.2]. If f is the convex

indicator of a closed convex set C ⊂ Rd, de�ned by f(x) = 0 for x ∈ C, f(x) = +∞ otherwise, the

proximal operator is simply the orthogonal projection onto C by [BC11, Example 12.21] and we de�ne

for any x ∈ Rd
ΠC(x) = arg min

y∈C
‖y − x‖ . (4.24)

First, the class of Markov chains de�ned by (4.19) contains Euler-Maruyama discretizations of di�u-

sion processes with identity di�usion matrix and for which Π = Id. Our results will be speci�ed for this

particular case in Section 4.1.4. Second, for the applications that we have in mind, the use of Markov

chains de�ned by (4.19) with Π 6= Id satisfying A1, has been proposed based on optimization literature

to sample non-smooth log-concave densities [DMP18; BEL15; DMM19; Ber18]. Finally, we will also

make use of (4.19) with Π = ΠKn , where ΠKn is de�ned by (4.24) with C ← Kn, and (Kn)n∈N? is a

sequence of increasing compact sets of Rd, to derive our results on di�usion processes in Section 4.1.5.

We now consider the following assumption on {Tγ : γ ∈ (0, γ̄]}. Let A ∈ B(R2d).

A2 (A). There exists κ : (0, γ̄]→ R such that for any γ ∈ (0, γ̄] and (x, y) ∈ A ∩ X2

‖Tγ(x)− Tγ(y)‖2 ≤ (1 + γκ(γ))‖x− y‖2 . (4.25)

Further, one of the following conditions holds for any γ ∈ (0, γ̄]: (i) κ(γ) < 0; (ii) κ(γ) ≤ 0; (iii)
κ(γ) > 0.
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If Tγ(x) = x+γb(x) and b is L-Lipschitz we have that A2(Rd) holds for any with κ(γ) = L(2+γL).

Note that A2(X2
)-(i) or A2(X2

)-(ii) imply that for any γ ∈ (0, γ̄], Tγ is non-expansive itself (see A1). For

κ : (0, γ̄]→ R and ` ∈ N?, γ ∈ (0, γ̄] such that γκ(γ) ∈ (−1,+∞), de�ne

Ξn(κ) = γ

n∑
k=1

(1 + γκ(γ))−k . (4.26)

The following theorem gives a generalization of a minorization condition on autoregressive models

[DM19, Section 6].

Theorem 4.1.4. Let A ∈ B(R2d) and assume A1 and A2(A). Let (Xk, Yk)k∈N be de�ned by (4.22) with
(X0, Y0) = (x, y) ∈ A ∩ X2 and γ ∈ (0, γ̄]. Then for any n ∈ N?

P (Xn 6= Yn and for any k ∈ {1, . . . , n− 1}, (Xk, Yk) ∈ A)

≤ 1∆c
X
(x, y)

{
1− 2Φ

(
− ‖x− y‖

2Ξ
1/2
n (κ)

)}
,

where Φ is the cumulative distribution function of the Gaussian distribution with zero mean and unit
variance on R.

Proof. The proof is a simple application of Theorem 4.1.43 in Section 4.1.7.

Based on Theorem 4.1.4, since P (Xn 6= Yn) = Kn((x, y),∆c
X) where (Xk, Yk)k∈N is de�ned by

(4.22) with (X0, Y0) = (x, y) ∈ X2
, we can derive minorization conditions for the Markov kernel Rn

γ

with n ∈ N? for any γ ∈ (0, γ̄] depending on the assumption we make on κ in A2(X2
). More precisely,

these minorization conditions are derived using K
`d1/γe
γ with ` ∈ N?. This is a requirement to obtain

sharp bounds in the limit γ → 0. Indeed, for any x, y ∈ X, based only on the results of Theorem 4.1.4,

we get that for any ` ∈ N?, limγ→0 ‖δxR`
γ − δyR`

γ‖TV ≤ 1, whereas the following proposition implies

that for any ` ∈ N?, limγ→0 ‖δxR
`d1/γe
γ − δyR

`d1/γe
γ ‖TV < 1.

Proposition 4.1.5. Let A ∈ B(R2d) and assume A1 and A2(A) hold. Let (Xk, Yk)k∈N be de�ned by
(4.22) with (X0, Y0) = (x, y) ∈ A ∩ X2 and γ ∈ (0, γ̄]. Then for any ` ∈ N∗ and γ ∈ (0, γ̄],

P
(
X`dγe 6= Y`dγe and for any k ∈ {1, . . . , n− 1}, (Xk, Yk) ∈ A

)
≤ 1− 2Φ

(
−α−1/2(κ, γ, `)‖x− y‖/2

)
, (4.27)

where

(a) α(κ, γ, `) = −κ−1(γ) [exp(−`κ(γ))− 1] if A2(A)-(i) holds ;

(b) α(κ, γ, `) = ` if A2(A)-(ii) holds ;

(c) α(κ, γ, `) = κ−1(γ) [1− exp {−`κ(γ)/(1 + γκ(γ))}] if A2(A)-(iii) holds.

Proof. The proof is postponed to Section 4.1.7.

Depending on the conditions imposed on κ de�ned inA2(X2
), we obtain the following consequences

of Proposition 4.1.5 which establish, either an explicit convergence bound in total variation for Rγ , or

a quantitative minorization condition satis�ed by this kernel.
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Corollary 4.1.6. Assume A1 and A2(X2
).

(a) If A2(X2
)-(i) holds and κ− = supγ∈(0,γ̄] κ(γ) < 0. Then, for any γ ∈ (0, γ̄], Rγ admits a unique

invariant probability measure πγ and we have for any γ ∈ (0, γ̄], x ∈ Rd and ` ∈ N?,

‖δxR`d1/γe
γ − πγ‖TV

≤ 1− 2

∫
Rd

Φ
{
−(−κ−)1/2‖x− y‖/{2(exp(−`κ−)− 1)1/2}

}
dπγ(y) .

(b) If A2(X2
)-(ii) holds and, in addition, assume that for any γ ∈ (0, γ̄] , Rγ admits an invariant

probability measure πγ , then we have for any γ ∈ (0, γ̄], x ∈ Rd and ` ∈ N?,

‖δxR`d1/γe
γ − πγ‖TV ≤ 1− 2

∫
Rd

Φ
{
−‖x− y‖/(2`1/2)

}
dπγ(y) .

Proof. The proof is postponed to Section 4.1.7.

In other words, if Tγ is a contractive mapping, see A2(X2
)-(i), then for x ∈ Rd the convergence of

(δxR
`d1/γe
γ )`∈N? to πγ in total variation is exponential in `. If Tγ is non expansive, see A2(X2

)-(ii), and

Rγ admits an invariant probability measure πγ , for any x ∈ Rd, the convergence of (δxR
`d1/γe
γ )`∈N? to

πγ in total variation is linear in `1/2. In the case where Tγ is non expansive, see A2(X2
)-(ii), or simply

Lipschitz, see A2(X2
)-(iii) and no additional assumption is made, we do not directly obtain contraction

in total variation but only minorization conditions.

Corollary 4.1.7. Assume A1 and A2(X2
). Then, for any γ ∈ (0, γ̄],

(a) if A2(X2
)-(ii) holds, for any x, y ∈ X with ‖x− y‖ ≤M withM ≥ 0 and ` ∈ N? with ` ≥

⌈
M2
⌉
,

K`d1/γe
γ ((x, y),∆c

X) ≤ 1− 2Φ (−1/2) ; (4.28)

(b) if A2(X2
)-(iii) holds, for any x, y ∈ X and ` ∈ N?,

K`d1/γe
γ ((x, y),∆c

X) ≤ 1− 2Φ
{
−(1 + γ̄)1/2(1 + κ+)1/2 ‖x− y‖ /2

}
, (4.29)

where κ+ = supγ∈(0,γ̄] κ(γ).

Proof. The proof is postponed to Section 4.1.7.

In our application below, we are mainly interested in the case where Rγ satis�es a geometric drift

condition. Let (Y,Y) be a measurable space, λ ∈ (0, 1), A ≥ 0, V : Y → [1,+∞) be a measurable

function and C ∈ Y .

Dd(V, λ,A,C). A Markov kernel R on Y × Y satis�es the discrete Foster-Lyapunov drift condition if for
all y ∈ Y

RV (y) ≤ λV (y) +A1C(y) .
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The index d in Dd stands for “discrete” as we will introduce the continuous-time counterpart of this

drift condition, denoted by Dc, in Section 4.1.5. Note that this drift condition implies the existence of an

invariant probability measure if R is a Feller kernel and the level sets of V are compact, see [Dou+18,

Theorem 12.3.3]. In the sequel, we are interested in establishing convergence results in the Wasserstein

metric Wc associated with the cost

c : (x, y) 7→ 1∆c
X
(x, y)W (x, y) (4.30)

where W : X×X→ [0,+∞) satis�es for any x, y, z ∈ X, W (x, y) = W (y, x), W (x, z) ≤W (x, y) +
W (y, z) andW (x, y) = 0 implies that x = y. Note that under these conditions onW , c de�nes a metric

on Rd. Let µ, ν be two probability measures over X , we highlight three cases.

• total variation: if W = 1 then Wc(µ, ν) = ‖µ− ν‖TV ;

• V -norm: if W (x, y) = {V (x) + V (y)}/2 where V : Rd → [1,+∞) is measurable then

Wc(µ, ν) = ‖µ− ν‖V ;

• total variation + Kantorovitch-Rubinstein metric: if W (x, y) = 1 + ϑ ‖x− y‖ with ϑ > 0, then

by de�nition of Wasserstein metrics, Wc(µ, ν) ≥ ‖µ− ν‖TV + ϑW1(µ, ν).

We now state convergence bounds for Markov kernels which satisfy one of the conclusions of Corol-

lary 4.1.7. Indeed, in order to deal with the two assumptions A2(X2
)-(ii) and A2(X2

)-(iii) together, we

provide a general result regarding the contraction of Rγ in the metric Wc for some cost function c on

X2
. This result is based on an abstract condition on K̃

d1/γe
γ 1∆c

X
, which is satis�ed under A2(X2

)-(ii)

or A2(X2
)-(iii) by Corollary 4.1.7 with K̃γ ← Kγ , and a drift condition for K̃γ , where K̃γ is a Markov

coupling kernel for Rγ . We recall that for any M ≥ 0,

∆X,M = {(x, y) ∈ X : ‖x− y‖ ≤M} . (4.31)

Theorem 4.1.8. Assume that there exist λ ∈ (0, 1), A ≥ 0, M̃d > 0, a measurable function W :
X × X → [1,+∞), C ∈ X⊗2 with C ⊂ ∆X,M̃d

and for any γ ∈ (0, γ̄], K̃γ a Markov coupling kernel for
Rγ satisfying Dd(W,λγ , Aγ,C). Further, assume that for any γ ∈ (0, γ̄], ∆X is absorbing for K̃γ , i.e. for
any x ∈ X, K̃γ1∆X

(x, x) = 1, and that there exists Ψ : (0, γ̄] × N? × R+ → [0, 1] such that for any
γ ∈ (0, γ̄], ` ∈ N? and x, y ∈ X

K̃`d1/γe
γ ((x, y),∆c

X) ≤ 1−Ψ(γ, `, ‖x− y‖) , (4.32)

and for anyM ≥ 0, inf(x,y)∈∆X,M
Ψ(γ, `, ‖x− y‖) > 0. Then, for any γ ∈ (0, γ̄], ` ∈ N? and x, y ∈ X

Wc(δxRk
γ , δyRk

γ) ≤ K̃k
γc(x, y) ≤ λkγ/4[D̄1c(x, y) + D̄21∆c

X
(x, y)] + C̄1ρ̄

kγ/4
1 1∆c

X
(x, y) , (4.33)

where

D̄1 = 1 + 4A log−1(1/λ)/λγ̄ , D̄2 = D̄1Aλ
−(1+γ̄)`(1 + γ̄)` ,

C̄1 = 8A log−1(1/ρ̄1)/ρ̄γ̄1 , log(ρ̄1) = {log(λ) log(1− ε̄d,1)} / {− log(c̄1) + log(1− ε̄d,1)} ,
c̄1 = B̃d +Aλ−(1+γ̄)`(1 + γ̄)` ,

ε̄d,1 = inf
γ∈(0,γ̄], (x,y)∈∆X,M̃d

Ψ(γ, `, ‖x− y‖) B̃d = sup
(x,y)∈C

W (x, y) .

In addition, if γ̄ ≤ 1 and ε̄d,1 ≤ 1− e−1, then

log−1(ρ̄−1
1 ) ≤

[
1 + log(B̃d) + log(1 + 2A`) + 2` log(λ−1)

]/[
log(λ−1)ε̄d,1

]
.
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Proof. The proof is postponed to Section 4.1.7.

We emphasize that (4.32) is satis�ed under A2(X2
)-(ii) or A2(X2

)-(iii) by Corollary 4.1.7 with K̃γ ←
Kγ .

Further, note that in (4.74), the leading term, C̄1ρ̄
kγ/4
1 , does not depend on x, y ∈ X. Indeed, the rate

in front of the initial conditionsW (x, y) is given by λγ/4 which is always smaller than ρ̄
γ/4
1 . Therefore,

Theorem 4.1.8 implies in particular that for any γ ∈ (0, γ̄], x, y ∈ K and k ∈ N

Wc(δxRk
γ , δyRk

γ) ≤ ρ̄kγ/41 [D̄1 + D̄2 + C̄1]c(x, y) . (4.34)

We conclude this section with two propositions which highlight the usefulness of the conclusions

of Theorem 4.1.8 to establish convergence estimates with respect to di�erent metrics. First, in Proposi-

tion 4.1.9, under additional conditions on Ψ and on W (which will be satis�ed in our applications, see

Corollary 4.1.14) we get a similar result to (4.34) replacing c by (x, y) 7→ ‖x− y‖, i.e. replacing Wc by

W1.

Proposition 4.1.9. Assume that the conditions of Theorem 4.1.8 are satis�ed with for any x, y ∈ X,
W (x, y) = 1 + ϑ ‖x− y‖, where ϑ > 0. In addition, assume that the following conditions hold.

(i) For any γ ∈ (0, γ̄], t 7→ Ψ(γ, 1, t) is convex on R+, admits a right-derivative at 0, denoted by
Ψ′(γ, 1, 0), and a = infγ∈(0,γ̄] Ψ

′(γ, 1, 0) > −∞.

(ii) There exists κ ≥ 0 such that for any x, y ∈ X, K̃γ ‖x− y‖ ≤ (1 + γκ) ‖x− y‖.

Then there exist D̄3 ≥ 0 and ρ̄1 ∈ [0, 1) such that for any γ ∈ (0, γ̄], x, y ∈ X and k ∈ N

W1(δxRk
γ , δyRk

γ) ≤ K̃k
γ ‖x− y‖ ≤ D̄3ρ̄

kγ/4
1 ‖x− y‖ , (4.35)

with ρ̄1 given in Theorem 4.1.8 and D̄3 explicit in the proof.

Proof. The proof is postponed to Section 4.1.7.

As a consequence, ifX is closed, the Markov kernel Rγ admits a unique invariant probability measure

πγ , i.e. πγ = πγRγ , using [GD03, Chapter 1, 6, A.1], since

P1(X) = {µ probability measure on (Rd,B(Rd)) :

∫
Rd
‖x‖ dµ(x) < +∞} ,

endowed with W1 is complete, see [Vil09, Theorem 6.18]. Further, for any γ ∈ (0, γ̄], using [Mey67,

Theorem 1], there exists a distance dγ on P1(X), topologically equivalent to W1, such that P1 is

complete and for any x, y ∈ Rd and k ∈ N

dγ(δxRk
γ , δyRk

γ) ≤ ρkγ/4dγ(δx, δy) .

A similar result to (4.35) in Proposition 4.1.9 can be derived when replacing W1 by Wp with p ∈ N,

if we assume some Foster-Lyapunov condition with respect to (x, y) 7→ ‖x− y‖p.

Proposition 4.1.10. Assume that there exist ρ̄ ∈ (0, 1], D̄ ≥ 0 and for any γ ∈ (0, γ̄], K̃γ a Markov
coupling kernel for Rγ satisfying for any x, y ∈ X and k ∈ N

K̃k
γ ‖x− y‖ ≤ D̄ρ̄kγ ‖x− y‖ .
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In addition, assume that for any γ ∈ (0, γ̄] and q ∈ N, K̃γ satis�es Dd((x, y) 7→ ‖x− y‖q, λ̃γq , Ãqγ) with
λ̃q ∈ (0, 1] and Ãq ≥ 0. Then, for any p ≥ 1 and α ∈ (p,+∞) there exists D̄4,α ≥ 0 such that

Wp(δxRk
γ , δyRk

γ) ≤
(

K̃k
γ ‖x− y‖

p
)1/p

≤ D̄4,αρ̄
kγ/α

{
‖x− y‖+ ‖x− y‖1/α

}
,

with D̄4,α explicit in the proof.

Proof. The proof is postponed to Section 4.1.7.

4.1.4 Application to the projected Euler-Maruyama discretization

Here we consider the case in which the operator Tγ in (4.19) is given by the discretization of a di�usion

(4.1). More precisely, for b : Rd → Rd, we study the projected Euler-Maruyama discretization asso-

ciated to the di�usion with drift function b and di�usion coe�cient Id, i.e. we consider the following

assumption for X ⊂ Rd.

B1 (X). X is assumed to be a closed convex (non-empty) subset of Rd, Π = ΠX is the orthogonal projection
onto X de�ned in (4.24) and

Tγ(x) = x+ γb(x) for any γ > 0 and x ∈ X , (4.36)

where b : Rd → Rd is continuous.

Note that if X = Rd and Π = Id, then this scheme is the classical Euler-Maruyama discretization

of a di�usion with drift b and di�usion coe�cient Id. The application to the tamed Euler-Maruyama

discretization of the results of Section 4.1.3 is given in Section 4.1.7. In what follows, we show the

convergence in weighted total variation for the projected Euler-Maruyama discretization and discuss

the dependency of the constants appearing in the bounds we obtain with respect to the properties

we assume on the drift b. We �rst derive minorization conditions or convergence in total variation

depending on the regularity/curvature assumption on the drift b in Section 4.1.4. Drift conditions and

the ensuing convergence when combined with the minorization assumption are studied in Section 4.1.4.

Minorization condition

First, we show that some regularity/curvature conditions on the drift b imply condition A2(X2) for Tγ
given by (4.36). Let m ∈ R.

B2. There exists L ≥ 0 such that b is L-Lipschitz, i.e. for any x, y ∈ X, ‖b(x) − b(y)‖ ≤ L‖x − y‖ and
b(0) = 0.

B3 (m). For any x, y ∈ X,
〈b(x)− b(y), x− y〉 ≤ −m ‖x− y‖2 .

Note that B2 implies B3(−L). However, we are interested in the case where |m| is possibly strictly

smaller than L. If there exists U ∈ C1(X) such that for any x ∈ X, b(x) = −∇U(x) and B3(m) holds

with m = 0, respectively m > 0 then U is convex, respectively strongly convex. Note that B3(0) does

not imply that Tγ given by (4.36) is non-expansive, therefore we consider the following assumption.

B4. There exists mb > 0 such that for any x, y ∈ X,

〈b(x)− b(y), x− y〉 ≤ −mb‖b(x)− b(y)‖2 .
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Note that B4 implies that B2 with L = m−1
b and B3(0) hold. Conversely, in the case where X = Rd

and there exists U ∈ C1(Rd) such that for any x ∈ Rd, b(x) = −∇U(x), [Nes04, Theorem 2.1.5]

implies that under B2 and B3(0), B4 holds with mb = L−1
. Based on Proposition 4.1.11 and assuming B

1, we obtain the following results on the Markov kernel Rγ de�ned by (4.20) with γ > 0.

Proposition 4.1.11. Assume B1(X) holds for X ⊂ Rd.

(a) If B2 and B3(m) hold with m ∈ R. Then (4.25) inA2(X2
) holds for any γ > 0with κ(γ) = −2m+L2γ.

In particular, if m > 0 then A2(X2
)-(i) holds for any γ̄ < 2m/L2 and if m ≤ 0 then A2(X2

)-(iii) holds
for any γ̄ > 0 ;

(b) If B4 holds, then A2(X2
)-(ii) holds with κ(γ) = 0 for any γ̄ ≤ 2mb.

Proof. The proof is postponed to Section 4.1.7

Combining Proposition 4.1.11 and Proposition 4.1.5 and/or Corollary 4.1.6, we can draw the follow-

ing conclusions.

If B2 and B3(m) hold with m > 0, then we obtain, by Proposition 4.1.11-(a) and Proposition 4.1.5-(a),

that for any γ ∈
(
0, 2m/L2

)
and ` ∈ N?, (4.27) holds with α = α− given by

α−(κ, γ, `) = −exp(−`(−2m + L2γ))− 1

−2m + L2γ
.

In addition, Corollary 4.1.6-(a) implies that for any γ ∈
(
0, 2m/L2

)
and x ∈ X, (δxR

d1/γe`
γ )`∈N converges

exponentially fast to its invariant probability measure πγ in total variation, with a rate which does not

depend on γ, but only on m.

Under B4, combining Proposition 4.1.11-(b) and Corollary 4.1.7-(a) we obtain that on any compact

set K ⊂ X, R
d1/γe`
γ satis�es the minorization condition (4.28) with ` ≥ diam(K)2

. In addition, if Rγ

admits an invariant probability measure πγ , then Corollary 4.1.6-(b) implies that for any γ ∈ (0, 2mb]

and x ∈ X, (δxR
d1/γe`
γ )`∈N converges linearly in `1/2 to πγ in total variation.

In the case where B2 and B3(m) are satis�ed with m ∈ R−, we obtain that for any γ > 0 and ` ∈ N?,

(4.27) holds with α = α+ given by

α+(κ, γ, `)

= (−2m + L2γ)−1
{

1− exp
[
−`(−2m + L2γ)/(1 + γ(−2m + L2γ))

]}
≤ (−2m + L2γ)−1 , (4.37)

which implies that the bound given by Proposition 4.1.5-(c) does not go to 0 when ` goes to in�nity.

Therefore we cannot directly conclude that the Markov chain converges in total variation. However, by

Proposition 4.1.11-(a), Corollary 4.1.7-(b) shows that for any γ ∈ (0, γ̄] with γ̄ > 0 and ` ∈ N?, R
d1/γe`
γ

satis�es the minorization condition (4.29), with constants which only depend on m and L. Note however

that in (4.37) the in�uence of m is di�erent than the one of L and this result justi�es the two assumptions

B2 and B3(m).

Drift conditions and convergence

In the sequel of this section, we consider several assumptions on the drift function bwhich imply Foster-

Lyapunov drift conditions on the Markov coupling kernel Kγ de�ned in (4.23). These results in combina-

tion with Proposition 4.1.11 will allow us to use Theorem 4.1.8, see also Theorem 4.1.46 in Section 4.1.7.
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Strongly convex at in�nity First, we consider conditions on bwhich imply that Rγ for γ ∈ (0, γ̄], is

geometrically convergent in a metric which dominates the total variation distance and the Wasserstein

distance of order 1. This result will be an application of Theorem 4.1.8 and the constants we end up

with are independent of the dimension d. To do so, we establish that there exists a Lyapunov function

W for which Kγ satis�es for γ ∈ (0, γ̄], Dd(W,λγ , Aγ,∆X,Md
) where ∆X,Md

is given by (4.31) and

Md ≥ 0 which do not depend on the dimension.

C1. There exist R1 > 0 and m+
1 > 0 such that for any x, y ∈ X with ‖x− y‖ ≥ R1,

〈b(x)− b(y), x− y〉 ≤ −m+
1 ‖x− y‖

2
.

This assumption has been considered in [EM19; Ebe16; LW16b; MMS18] and is sometimes referred

to as strong convexity of the drift b outside of the ball B(0, R1), see Section 4.1.2 for an example of such

a setting. In the next proposition, we derive the announced drift for W1 : X2 → [1,+∞) de�ned for

any x, y ∈ X by

W1(x, y) = 1 + ‖x− y‖ /R1 . (4.38)

Proposition 4.1.12. Assume B1(X) for X ⊂ Rd, B2, B3(m) for m ∈ R− and C1. Let Kγ be de�ned by
(4.23) and γ̄ ∈ (0, 2m+

1 /L
2). Then the following hold:

(a) for any γ ∈ (0, γ̄], we have

Kγ ‖x− y‖ ≤ ‖Tγ(x)− Tγ(y)‖ ≤ (1 + γ(−m + γ̄L2/2)) ‖x− y‖ .

(b) for any γ ∈ (0, γ̄], Kγ satis�es Dd(W1, λ
γ , Aγ,∆X,R1) where ∆X,R1 is given by (4.31) and

λ = exp
[
−(m+

1 − γ̄L2/2)/2
]
, A = m+

1 − m . (4.39)

(c) for any p ∈ N with p ≥ 2, there exist λp ∈ (0, 1], Ap ≥ 0 and γ ∈ (0, γ̄], such that Kγ satis�es
Dd((x, y) 7→ ‖x− y‖p , λγp , Apγ), with explicit constants given in the proof.

Proof. The proof is postponed to Section 4.1.7.

Theorem 4.1.13. Assume B1(X) forX ⊂ Rd, B2 and C1. Assume in addition either B3(m) for m ∈ R− or B
4. Then the conditions and the conclusions of Theorem 4.1.8 hold with γ̄, λ andA given by Proposition 4.1.12-
(b), M̃d = R1, Kγ given by (4.23) for any γ ∈ (0, γ̄],W = W1 de�ned in (4.38), and for any γ ∈ (0, γ̄],
` ∈ N? and t > 0,

under B3(m) ,Ψ(γ, `, t) = 2Φ{−t/(2Ξ
1/2
`d1/γe(κ))} , (4.40)

under B4 ,Ψ(γ, `, t) =

{
2Φ{−1/2} if ` ≥ dR1e2 and t ≤ R1 ,

2Φ{−t/(2Ξ
1/2
`d1/γe(κ))} otherwise ,

(4.41)

where κ is given in Proposition 4.1.11-(a) and Ξ`d1/γe in (4.26).

Proof. First, note that for any γ > 0, ∆X is absorbing for Kγ by de�nition of the re�ection coupling, see

(4.23). We assume that B3(m) holds. Let γ̄ ∈ (0, 2m+
1 /L

2). Using Proposition 4.1.12-(b) we obtain that
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W1 given by (4.38) satis�es Dd(W1, λ
γ , Aγ,∆X,R1) for any γ ∈ (0, γ̄] with λ and A given in (4.39).

Using Theorem 4.1.4, Proposition 4.1.11-(a), we have for any γ ∈ (0, γ̄], ` ∈ N? and x, y ∈ X

K`d1/γe
γ ((x, y),∆c

X) ≤ 1− 2Φ(−Ξ
−1/2
`d1/γe(κ) ‖x− y‖ /2) ,

where κ(γ) = −2m + γL2
, which concludes the proof.

The proof under B4 follows the same lines upon noting that B4 implies that B3(0) holds and using

Proposition 4.1.11-(b) instead of Proposition 4.1.11-(a).

Let γ̄ ∈ (0,max(2m+
1 /L

2, 1)), ` ∈ N? speci�ed below, λγ̄,a, ργ̄,a ∈ (0, 1) andDγ̄,1,a,Dγ̄,2,a, Cγ̄,a ≥
0 the constants given by Theorem 4.1.13, such that for any k ∈ N, γ ∈ (0, γ̄] and x, y ∈ X

Wc1
(δxRk

γ , δyRk
γ) ≤ Kk

γc1(x, y) ≤ λkγ/4γ̄,a [Dγ̄,1,ac1(x, y) +Dγ̄,2,a1∆c
X
] + Cγ̄,aρ

kγ/4
γ̄,a , (4.42)

with c1(x, y) = 1∆c
X
(x, y)(1 + ‖x− y‖ /R1) for any x, y ∈ X. Note that by (4.34), this result implies

that for any k ∈ N, γ ∈ (0, γ̄] and x, y ∈ X

Wc1
(δxRk

γ , δyRk
γ) ≤ {Dγ̄,1,a +Dγ̄,2,a + Cγ̄,a} ρkγγ̄,ac1(x, y) .

We now give upper-bounds on ργ̄,a. Note that using Theorem 4.1.8, we obtain that the following limits

exist and do not depend on L

D1,a = lim
γ̄→0

Dγ̄,1,a , D2,a = lim
γ̄→0

Dγ̄,2,a , Ca = lim
γ̄→0

Cγ̄,a ,

λa = lim
γ̄→0

λγ̄,a , ρa = lim
γ̄→0

ργ̄,a . (4.43)

Once again, we point out that λγ̄,a ≤ ργ̄,a in Theorem 4.1.8. In the following discussion we assume

that B1(X) for X ⊂ Rd, B2 and C1 hold. We now give upper bounds on the rate ργ̄,a and ρa using

Theorem 4.1.8 depending on the assumptions in Theorem 4.1.13.

(a) If B4 holds, set ` =
⌈
R2

1

⌉
. Using that 2Φ(−1/2) ≤ 1− e−1

and choosing m+
1 su�ciently small such

that the conditions of Theorem 4.1.8 hold, we have

log−1(ρ−1
γ̄,a) ≤

[
1 + log(2) + log

(
1 + 2(1 +R2

1)m+
1

)
+2(1 +R2

1)(m+
1 − γ̄L2/2)

]/[
(m+

1 − γ̄L2/2)Φ{−1/2}
]
. (4.44)

Taking the limit γ̄ → 0 in (4.44) and using that for any t ≥ 0, log(1 + t) ≤ t, we get that

log−1(ρ−1
a ) ≤ (1 + log(2))/(m+

1 Φ {−1/2}) + 4(1 +R2
1)/Φ {−1/2} . (4.45)

The leading term in (4.45) is of order max(R2
1, 1/m

+
1 ), which corresponds to the one identi�ed in [EM19,

Theorem 2.8] and is optimal, see [Ebe16, Remark 2.10].

(b) If B3(m) holds with m ∈ R−, set ` =
⌈
R2

1

⌉
. Choosing m+

1 > 0 su�ciently small andR1, |m| su�ciently

large such that the conditions of Theorem 4.1.8 hold, we have

log−1(ρ−1
γ̄,a) ≤

[
1 + log(2) + log

(
1 + 2(1 +R2

1){m+
1 − m}

)
+2(1 +R2

1)(m+
1 − γ̄L2/2)

]/[
(m+

1 − γ̄L2/2)Φ{−Ξ
−1/2

d1/γ̄edR2
1e

(κ)R1/2}
]
. (4.46)
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Taking the limit γ̄ → 0 in this result and using (4.26), we get that

log−1(ρ−1
a )

≤
[
1 + log(2) + log(1 + 2{m+

1 − m}) + 2m+
1

] /[
m+

1 Φ{−(−m)1/2R1/(2− 2e2mR2
1)1/2}

]
.

(4.47)

The comparison between this rate and the ones derived in recent works is conducted in Section 4.1.2.

We extend our result to other Wasserstein metrics in the following proposition.

Corollary 4.1.14. Assume B1(X) for X ⊂ Rd, B2 and C1. Assume in addition either B3(m) for m ∈ R−
or B4. Then for any p ∈ N, α ∈ (p,+∞), γ ∈ (0, γ̄], x, y ∈ X and k ∈ N we have

W1(δxRk
γ , δyRk

γ) ≤ D3,γ̄,aρ
kγ/4
γ̄,a ‖x− y‖ ,

Wp(δxRk
γ , δyRk

γ) ≤ Dα,γ̄,aρ
kγ/(4α)
γ̄,a

{
‖x− y‖+ ‖x− y‖1/α

}
,

where ργ̄,a, D3,γ̄,a and Dα,γ̄,a are given in (4.49), Proposition 4.1.9 and Proposition 4.1.10 respectively.

Proof. The proof is postponed to Section 4.1.7.

Other curvature conditions We now derive uniform ergodic convergence in V -norm under weaker

conditions than C1. The following assumption ensures that the radial part of b decreases faster than a

linear function with slope −m+
2 < 0.

C2. There exist R2 ≥ 0 and m+
2 > 0 such that for any x ∈ B̄(0, R2)c ∩ X,

〈b(x), x〉 ≤ −m+
2 ‖x‖

2
.

In the next proposition we derive a Foster-Lyapunov drift condition forW2 : X2 → [1,+∞) de�ned

for any x, y ∈ X by

W2(x, y) = 1 + ‖x‖2 /2 + ‖y‖2 /2 , c2(x, y) = 1∆X
(x, y)W2(x, y) . (4.48)

Note that for any x, y ∈ X, W2(x, y) = {V (x) + V (y)} /2 with V (x) = 1 + ‖x‖2.

Proposition 4.1.15. Assume B1(X) for X ⊂ Rd, B2, B3(m) for m ∈ R− and C2. Then Kγ de�ned by (4.23)

satis�es Dd(W2, λ
γ , Aγ, B̄(0, R)× B̄(0, R)) for any γ ∈ (0, γ̄] where γ̄ ∈ (0, 2m+

2 /L
2) and

λ = exp[−(m+
2 − γ̄L2/2)] , A = d+ 2R2

2(m+
2 − m) + 2m+

2 , R =
√

2λ−γ̄A1/2 log−1/2(1/λ) .

Proof. The proof is postponed to Section 4.1.7.

Theorem 4.1.16. Assume B1(X) for X ⊂ Rd, B2 and C2. Assume in addition either B3(m) for m ∈ R−
or B4. Then the conditions and conclusions of Theorem 4.1.8 hold withW = W2 de�ned in (4.48), γ̄, λ, A
and M̃d = 2R given by Proposition 4.1.15, and Ψ given by (4.40) or (4.41).

Proof. The proof is similar to the one of Theorem 4.1.13.
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Let γ̄ ∈ (0,max(2m+
2 /L

2, 1)), ` ∈ N? speci�ed below, λγ̄,b, ργ̄,b ∈ (0, 1) andDγ̄,1,b,Dγ̄,2,b,Cγ̄,b ≥ 0
the constants given by Theorem 4.1.16, such that for any k ∈ N, γ ∈ (0, γ̄] and x, y ∈ X

Wc2(δxRk
γ , δyRk

γ) ≤ Kk
γc2(x, y) ≤ λkγ/4γ̄,b [Dγ̄,1,bc2(x, y) +Dγ̄,2,b1∆c

X
] + Cγ̄,bρ

kγ/4
γ̄,b , (4.49)

with c2(x, y) = 1∆c
X
(x, y){V (x) + V (y)}/2 for any x, y ∈ X. Note that by (4.48), this result implies

that for any k ∈ N, γ ∈ (0, γ̄] and x, y ∈ X

‖δxRk
γ − δyRk

γ‖V ≤ {Dγ̄,1,b +Dγ̄,2,b + Cγ̄,b} ρkγγ̄,bc2(x, y) .

Note that using Theorem 4.1.8, we obtain that the following limits exist and do not depend on L

D1,b = lim
γ̄→0

Dγ̄,1,b , D2,b = lim
γ̄→0

Dγ̄,2,b , Cb = lim
γ̄→0

Cγ̄,b ,

λb = lim
γ̄→0

λγ̄,b , ρb = lim
γ̄→0

ργ̄,b . (4.50)

We now discuss the dependency of ρb with respect to the introduced parameters, depending on the sign

of m and based on Theorem 4.1.8.

(a) If B4 holds, set ` =
⌈
M̃2

d

⌉
. Then, if we consider m+

2 su�ciently small and |m| and R2 su�ciently

large such that the conditions of Theorem 4.1.8 hold, we have

log−1(ρ−1
b ) ≤

[
1 + 2 log(1 +R2) + log(1 + 2A) + 2(1 + 4R2)m+

2

]/[
m+

2 Φ(−1/2)
]
. (4.51)

Note that the leading term on the right hand side of this equation is of orderR2
, i.e. of order max(R2

2, d/m
+
2 ).

(b) If B3(m) with m ∈ R−, set ` =
⌈
M̃2

d

⌉
. Then, if we consider m+

2 su�ciently small and |m| and R2

su�ciently large such that the conditions of Theorem 4.1.8 hold, we have

log−1(ρ−1
b ) ≤

[
1 + 2 log(1 +R2) + log(1 + 2A) + 2(1 + 4R2)m+

2

]/[
m+

2 Φ{−2(−m)1/2R/(2− 2e2mR2

)1/2}
]
, (4.52)

Note that the right hand side of (4.52) is exponential in−mR2
, i.e. exponential in−md/m+

2 and−R2
2(m+

2 −
m)m/m+

2 .

We now consider a condition which enforces weak curvature outside of a compact set.

C3. There exist R3, a ≥ 0, k1, k2 > 0, such that for any x ∈ Rd

〈b(x), x〉 ≤ −k1‖x‖1B̄(0,R3)c(x)− k2‖b(x)‖2 + a/2 .

In the case where X = Rd, ΠX = Id and there exists U ∈ C1(Rd,R) such that B2 and B3(0) hold

with b = −∇U and

∫
Rd e−U(x)dx < +∞, then there exist R3 ≥ 0 and k1 > 0 such that C3 holds with

k2 = a = 0, see [Bak+08, Lemma 2.2]. De�ne V : X→ [1,+∞) for any x ∈ X by

V (x) = exp(m+
3 φ(x)) , φ(x) =

√
1 + ‖x‖2 , m+

3 ∈ (0, k1/2] . (4.53)

We also de�ne for any x, y ∈ X,

W3(x, y) = {V (x) + V (y)} /2 , c3(x, y) = 1∆X
(x, y)W3(x, y) . (4.54)
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Proposition 4.1.17. Assume B1(X) for X ⊂ Rd and C3. Then for any γ ∈ (0, γ̄], Kγ de�ned by (4.23)

satis�es Dd(W3, λ
γ , Aγ, B̄(0, R)× B̄(0, R)) where γ̄ ∈ (0, 2k2), R4 = max(1, R3, (d+ a)/k1) and

λ = e−(m+3 )2/2 ,

A = exp
[
γ̄(m+

3 (d+ a) + (m+
3 )2)/2 + m+

3 (1 +R2
4)1/2

]
(m+

3 (d+ a)/2 + (m+
3 )2) ,

R = log(2λ−2γ̄A log−1(1/λ)) .

Proof. The proof is postponed to Section 4.1.7.

Theorem 4.1.18. Assume B1(X) for X ⊂ Rd, B2 and C3. Assume in addition either B3(m) for m ∈ R−
or B4. Then the conditions and conclusions of Theorem 4.1.8 hold withW = W2 de�ned in (4.48), γ̄, λ, A
and M̃d = 2R given by Proposition 4.1.17, and Ψ given by (4.40) or (4.41).

Proof. The proof is similar to the one of Theorem 4.1.13.

The dependency of the rate given by Theorem 4.1.18 with respect to the constants is discussed in

Section 4.1.7.

4.1.5 Quantitative convergence bounds for di�usions

Main results

In this section, we aim at deriving quantitative convergence bounds with respect to some Wasserstein

metrics for di�usion processes under regularity and curvature assumptions on the drift b. Consider the

following SDE

dXt = b(Xt)dt+ dBt , (4.55)

where (Bt)t≥0 is a d-dimensional Brownian motion and b : Rd → Rd is a continuous drift.

When there exists a unique strong solution (Xt)t≥0 of (4.55) for any starting point X0 = x, with

x ∈ Rd, we de�ne the semi-group (Pt)t≥0 for any A ∈ B(Rd), x ∈ Rd and t ≥ 0 by Pt(x,A) =
P (Xt ∈ A). We now turn to establishing that (Pt)t≥0 converges for some Wasserstein metrics. In order

to prove this result we will rely on discretizations of the SDE (4.55). If the conditions of Theorem 4.1.8

are satis�ed, these discretized processes are uniformly geometrically ergodic and taking the limit when

the discretization stepsize goes to zero, we obtain the convergence of the associated di�usion processes.

First, assume that b is Lipschitz regular. We establish in Theorem 4.1.19 that for any T ≥ 0 and

x, y ∈ Rd, the Wasserstein distance Wc(δxPT , δyPT ) is upper-bounded by the upper limit whenm→
+∞ of Wc(δxRm

T/m, δyRm
T/m), where Rγ is given for any γ > 0 in (4.20) and c is given in (4.30).

Second, this result is extended in Theorem 4.1.20 to cover the case where b is no longer Lipschitz

regular but only locally Lipschitz regular, see B5. Theorem 4.1.19 and Theorem 4.1.20 are applications

of a more general theory developed in Section 4.1.5. Let M ≥ 0, we consider for any x ∈ Rd

VM (x, y) = exp[Mφ(x)] , φ(x) = (1 + ‖x‖)1/2 . (4.56)

Theorem 4.1.19. Assume B2 and supx∈Rd〈x, b(x)〉 < +∞. Then, for any starting point X0 = x, with
x ∈ Rd, there exists a unique strong solution to (4.55). In addition, for any W : Rd × Rd → [1,+∞)
satisfying sup(x,y)∈Rd×Rd{W (x, y)(VM (x) + VM (y))−1} < +∞ withM ≥ 0 and VM given in (4.56),
we get that for any x, y ∈ Rd and T ≥ 0

Wc(δxPT , δyPT ) ≤ lim sup
m→+∞

Wc(δxRm
T/m, δyRm

T/m) ,
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where c is given by (4.30), (Pt)t≥0 is the semigroup associated with (4.55) and for any γ ∈ (0, γ̄], Rγ is
the Markov kernel associated with (4.19) where Tγ(x) = x+ γb(x), X = Rd and Π = Id.

Proof. The proof is postponed to Section 4.1.7.

We now weaken the Lipschitz regularity assumption and consider the following condition on the

drift b.

B5. b is locally Lipschitz, i.e. for any M ≥ 0, there exists LM ≥ 0 such that for any x, y ∈ B̄(0,M),
‖b(x)− b(y)‖ ≤ LM ‖x− y‖ and b(0) = 0.

As a consequence, under a mild integrability assumption, which will be satis�ed in all of our appli-

cations, we obtain the following generalization of Theorem 4.1.19.

Theorem 4.1.20. Assume B3(m), B5 and that supx∈Rd〈x, b(x)〉 < +∞. Then, for any starting point
X0 = x, with x ∈ Rd, there exists a unique strong solution of (4.55). In addition assume that for any
x ∈ Rd and T ≥ 0 there exists εb > 0 such that

sup
s∈[0,T ]

{
δxPs ‖b(x)‖2(1+εb)

}
< +∞ . (4.57)

Then, for anyW : Rd×Rd → [1,+∞) satisfying sup(x,y)∈Rd×Rd{W (x, y)(VM (x)+VM (y))−1} < +∞
withM ≥ 0 and VM given in (4.56), we get that for any x, y ∈ Rd and T ≥ 0

Wc(δxPT , δyPT ) ≤ lim sup
n→+∞

lim sup
m→+∞

Wc(δxRm
T/m,n, δyRm

T/m,n) ,

where for any x, y ∈ Rd, c(x, y) = 1∆c
X
(x, y)W (x, y), (Pt)t≥0 is the semigroup associated with (4.55)

and for any γ ∈ (0, γ̄], n ∈ N, Rγ,n is the Markov kernel associated with (4.19) where Tγ(x) = x+γb(x),
X = B̄(0, n) and Π = ΠB̄(0,n).

Proof. The proof is postponed to Section 4.1.7.

Note that (4.57) holds under mild conditions on the drift function, see Proposition 4.1.30. In the next

section we apply these results to di�usion processes and derive sharp convergence bounds in the case

where b satis�es some curvature assumption, similarly to Section 4.1.4.

Applications

In this section, we combine the results of Theorem 4.1.20 with the convergence bounds for discrete

processes derived in Section 4.1.4, in order to obtain convergence bounds for continuous processes that

are solutions of (4.55).

Strongly convex at in�nity

Theorem4.1.21. Assume either B3(m) for m ∈ R− or B4. AssumeC1,B5 and in addition supx∈Rd{‖b(x)‖2(1+εb) e−m
+
1 ‖x‖

2} <
+∞ for some εb > 0. Then, for any T ≥ 0, and x, y ∈ Rd

Wc1(δxPT , δyPT ) ≤ λT/4a (D1,ac1(x, y) +D2,a1∆c(x, y)) + Caρ
T/4
a 1∆c(x, y) ,

withD1,a, D2,a, Ca ≥ 0, λa, ρa ∈ (0, 1) given by (4.43) and for anyx, y ∈ Rd, c1(x, y) = 1∆c
X
(x, y)W1(x, y)

withW1(x, y) = 1 + ‖x− y‖ /R1.

148



Proof. Le T ≥ 0 and x, y ∈ Rd. Using Theorem 4.1.19 or Proposition 4.1.30 and Theorem 4.1.20 we have

Wc1(δxPT , δyPT ) ≤ lim sup
n→+∞

lim sup
m→+∞

Wc1(δxRm
T/m,n, δyRm

T/m,n) .

Let n ∈ N and m ∈ N? such that x, y ∈ B̄(0, n) and T/m ≤ 2m+
1 /L

2
n. Since B1(B̄(0, n)) holds and B5

implies B2 on B̄(0, n), we can apply Theorem 4.1.13 and we get

Wc1
(δxRm

T/m,n, δyRm
T/m,n)

≤ λT/4T/m,a(DT/m,1,ac1(x, y) +DT/m,2,a1∆c(x, y)) + CT/m,aρ
T/4
T/m,a1∆c(x, y) ,

whereDT/m,1,a, DT/m,2,a, CT/m,a, λT/m,a and ρT/m,a are given in (4.49). In addition, these quantities

admit limitsD1,a, D2,a, Ca ≥ 0 and λa, ρa ∈ (0, 1) whenm→ +∞which do not depend on Ln, hence

on n, see (4.43).

Note that B2 implies B5 and supx∈Rd{‖b(x)‖2(1+εb) e−m
+
1 ‖x‖

2} < +∞ for some εb > 0.

Corollary 4.1.22. Assume either B3(m) for m ∈ R− or B4. AssumeC1,B5 and in addition supx∈Rd{‖b(x)‖2(1+εb) e−m
+
1 ‖x‖

2} <
+∞ for some εb > 0. Then, for any p ∈ N, α ∈ (p,+∞), T ≥ 0, and x, y ∈ Rd we have

W1(δxPT , δyPT ) ≤ D3,aρ
T/4
a ‖x− y‖ ,

Wp(δxPT , δyPT ) ≤ Dα,aρ
T/(4α)
a

{
‖x− y‖+ ‖x− y‖1/α

}
,

where ρa is given in (4.43), D3,a = limγ̄→0D3,γ̄,a and Dα,a = limγ̄→0Dα,γ̄,a with D3,γ̄,a and Dα,γ̄,a

given in Corollary 4.1.14.

Proof. The proof is similar to the one of Theorem 4.1.21.

The discussion on the dependency of ρa with respect to the parameters of the problem conducted

in Section 4.1.4 still holds. We distinguish the following cases, assuming that the conditions of Theo-

rem 4.1.8 are satis�ed.

(a) If B4 holds, we have

log−1(ρ−1
a ) ≤ (1 + log(2))/(Φ{−1/2}m+

1 ) + 4R2
1/Φ{−1/2} . (4.58)

The leading term in (4.58) is of order max(R2
1, 1/m

+
1 ), which corresponds to the one identi�ed in

[Ebe16, Lemma 2.9] and is optimal, see [Ebe16, Remark 2.10].

(b) If B3(m) holds with m ∈ R−, we have

log−1(ρ−1
a ) ≤

[
1 + log(2) + log(1 + 2{m+

1 − m}{1 +R2
1}) + 2m+

1 (1 +R2
1)
]/[

m+
1 Φ{−(−m)1/2R1/(2− 2e2mR2

1)1/2}
]
. (4.59)

We now give an upper-bound for (4.59) when both R and m are large. For any t ≥ C with C ≥ 0
we have

Φ(−t)−1 ≤
√

2π(1 + C−2)tet
2/2 . (4.60)

As a consequence if we also have R1 ≥ 2, 1 ≤ −mR2
1 and using that for any t ∈ (0, 1), − log(1−

t) ≤ t as well as (4.60) we get that log−1(ρ−1
a ) ≤ log−1(ρ−1

max)

log−1(ρ−1
max) = C

[
1 + log(1 + 2{m+

1 − m}{1 +R2
1}) + 2m+

1 (1 +R2
1)
]
R1(−m)1/2

149



× exp
[
−mR2

1/(4− 4e2mR2
1)
]/[

m+
1 (1− e2mR2

1)1/2
]
,

with C = 2(1 + log(2))
√
π ≈ 6.00.

For a comparison of our results with recent works, see Section 4.1.2.

Other curvature conditions

Theorem4.1.23. Assume either B3(m) for m ∈ R− or B4. AssumeC2,B5 and in addition supx∈Rd{‖b(x)‖2(1+εb) e−m
+
2 ‖x‖

2} <
+∞ for some εb > 0. Then for any T ≥ 0 and x, y ∈ Rd

‖δxPT − δyPT ‖V ≤ (D1,b +D2,b + Cb)ρ
T
b c2(x, y) ,

with D1,b, D2,b, Cb ≥ 0 and ρb ∈ (0, 1) given by (4.50) and c2 de�ned in (4.48).

Proof. The proof is identical to the one of Theorem 4.1.21 upon replacing Theorem 4.1.13 by Theo-

rem 4.1.16.

Theorem4.1.24. Assume either B3(m) for m ∈ R− or B4. AssumeC3,B5 and in addition supx∈Rd ‖b(x)‖2(1+εb) e−k1(1+‖x‖)1/2 <
+∞ for some εb > 0. Then for any T ≥ 0 and x, y ∈ Rd

‖δxPT − δyPT ‖V ≤ (D1,c +D2,c + Cc)ρ
T
c c3(x, y) ,

with D1,c, D2,c, Cc ≥ 0 and ρc ∈ (0, 1) given by Section 4.1.7 and c3 de�ned in (4.54).

Proof. The proof is postponed to Section 4.1.7.

The rates we obtain in Theorem 4.1.23, respectively Theorem 4.1.24, are identical to the ones de-

rived taking the limit γ̄ → 0 in Theorem 4.1.16, respectively Theorem 4.1.18. An upper bound on ρb,
respectively ρc, is provided in (4.51) and (4.52), respectively Section 4.1.7.

From discrete to continuous processes

In this section we present the general theory which leads to Theorem 4.1.19 and Theorem 4.1.20. First,

we derive bounds between the discrete and continuous process given a family of approximating drift

functions in Section 4.1.5. Second, we show in Section 4.1.5 that under mild regularity assumptions on

b such families can be explicitly constructed.

Quantitative convergence bounds for di�usion processes We recall that the SDE under study is

given by

dXt = b(Xt)dt+ dBt ,

where (Bt)t≥0 is a d-dimensional Brownian motion and b : Rd → Rd is a continuous drift. In the

sequel we will always consider the following assumption.

L1. There exists a unique strong solution of (4.55) for any starting point X0 = x, with x ∈ Rd.

Under L1, the Markov semigroup Pt, whose de�nition is given in Section 4.1.5, exists for any time

t ≥ 0. Consider the extended in�nitesimal generator A associated with (Pt)t≥0 and de�ned for any

f ∈ C2(Rd,R) by

Af = (1/2)∆f + 〈∇f, b〉 .
Let V ∈ C2(Rd, [1,+∞)), ζ ∈ R and B ≥ 0
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Dc(V, ζ,B). The extended in�nitesimal generatorA satis�es the continuous Foster-Lyapunov drift condi-
tion if for all x ∈ Rd

AV (x) ≤ −ζV (x) +B .

This assumption is the continuous counterpart of Dd(V, λ,A,Rd). We start by drawing a link be-

tween the continuous drift condition Dc(V, ζ,B) and the discrete drift condition Dd(V, λ,A,Rd). The

result and its proof are standard [MT93c, Theorem 2.1] but are given here for completeness. Denote by

(Ft)t≥0 the �ltration associated with (Bt)t≥0 satisfying the usual conditions [IW89, Chapter I, Section

5].

Lemma 4.1.25. Let ζ ∈ R, B ≥ 0 and V ∈ C2(Rd, [1,+∞)) such that lim‖x‖→+∞ V (x) = +∞.
Assume L1 and Dc(V, ζ,B).

(a) If B = 0, then for any x ∈ Rd, (V (Xt)e
ζt)t≥0 is a (Ft)t≥0-supermartingale where (Xt)t≥0 is the

solution of (4.55) starting from X0 = x.

(b) For any t0 > 0, Pt0 satis�es Dd(V, exp(−ζt0), B(1− exp(−ζt0))/ζ,Rd).

Proof. The proof is postponed to Section 4.1.7.

Consider a family of drifts {bγ,n : Rd → Rd : γ ∈ (0, γ̄] , n ∈ N} for some γ̄ > 0. For all γ ∈ (0, γ̄]

and n ∈ N, we denote by R̃γ,n the Markov kernel associated with (4.19) where Tγ(x) = x+ γbγ,n(x),

X = Rd and Π = Id. We will show that under the following assumptions the family {R̃dT/γeγ,n : Rd →
Rd : γ ∈ (0, γ̄] , n ∈ N} approximates PT for T ≥ 0 as γ → 0 and n→ +∞.

L2. There exist β > 0 and C1 ≥ 0 such that for any γ ∈ (0, γ̄], n ∈ N, bγ,n ∈ C(Rd,Rd) and for any
x ∈ Rd,

‖b(x)− bγ,n(x)‖2 ≤ C1γ
β ‖b(x)‖2 .

The following assumption is mainly technical and is satis�ed in our applications.

L3. There exists εb > 0 such that sups∈[0,T ]{δxPs ‖b(x)‖2(1+εb)} < +∞, for any x ∈ Rd and T ≥ 0.

By Lemma 4.1.25-(a), if Dc(V, ζ, 0) is satis�ed with ζ ∈ R, it holds that for any starting point x ∈ Rd,

supt∈[0,T ] E[V (Xt)] ≤ e−ζTV (x), where (Xt)t≥0 is solution of (4.55) starting from x. Therefore, if

‖b(x)‖2(1+εb) ≤ V (x) for any x ∈ Rd, L3 is satis�ed.

The proof of the next result relies on the combination of the Girsanov theorem with estimates on

the drift functions, adapting [DM17, Theorem 10]. Similar strategies have also been used in [Dal17b;

FG19; RRT17].

Proposition 4.1.26. Assume L1, L2 and L3. Let V : Rd → [1,+∞). In addition, assume that for any
n ∈ N, T ≥ 0 and x ∈ Rd

PTV
2(x) < +∞ , lim sup

m→+∞
R̃m
T/m,nV

2(x) < +∞ .

Then for any n ∈ N, T ≥ 0 and x ∈ Rd

lim
m→+∞

‖δxPT − δxR̃m
T/m,n‖V = 0 ,

where (Pt)t≥0 is the semigroup associated with (4.55) and for any γ ∈ (0, γ̄] and n ∈ N, R̃γ,n is the
Markov kernel associated with (4.19) where Tγ(x) = x+ γbγ,n(x) and Π = Id.
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Proof. The proof is postponed to Section 4.1.7.

If V = 1, Proposition 4.1.26 implies that limm→+∞ ‖δxPT − δxR̃m
T/m,n‖TV = 0. Let V : Rd →

[1,+∞) and c : Rd×Rd → [1,+∞) a distance such that for anyx, y ∈ Rd, c(x, y) ≤ {V (x) + V (y)} /2.

Then, under the conditions of Proposition 4.1.26, we obtain that for any T ≥ 0, n ∈ N and x, y ∈ Rd

Wc(δxPT , δyPT ) ≤ lim sup
m→+∞

Wc(δxR̃m
T/m,n, δyR̃m

T/m,n) , (4.61)

Therefore, if for any T ≥ 0, Wc(δxR̃m
T/m,n, δyR̃m

T/m,n) can be bounded uniformly in m using Theo-

rem 4.1.8, we obtain an explicit bound for Wc(δxPT , δyPT ) for any T ≥ 0. As a consequence, this

result easily implies non-asymptotic convergence bounds of (Pt)t≥0 to its invariant measure if it exists.

However, in our applications, global Lipschitz regularity on bT/m,n : Rd → Rd is needed in order

to apply Theorem 4.1.8 to R̃T/m,n for T ≥ 0, m ∈ N? and n ∈ N. To be able to deal with the fact

that bT/m,n is non necessarily globally Lipschitz, we consider an appropriate sequence of projected

Euler-Maruyama schemes associated to a sequence of subsets of Rd, (Kn)n∈N satisfying the following

assumption.

L4. For any n ∈ N, Kn is convex and closed, and B̄(0, n) ⊂ Kn.

Consider for any γ ∈ (0, γ̄] and n ∈ N the Markov chain associated (4.19), where for any x ∈ Rd,

Tγ(x) = x+γbγ,n(x), X = Kn and Π = ΠKn , the projection on Kn. The Markov kernel associated with

this chain is denoted Rγ,n for any γ ∈ (0, γ̄] and n ∈ N. Assuming only local Lipschitz regularity we can

apply Theorem 4.1.8 to the projected version of the Markov chain associated with RT/m,n. Therefore

we want to replace R̃T/m,n by RT/m,n in (4.61). In order to do so we consider the following assumption

on the family of drifts {bγ,n ; γ ∈ (0, γ̄] , n ∈ N}.

L5. There exist Ã > 0 and Ṽ : Rd → [1,+∞) such that for any n ∈ N there exist Ẽn ≥ 0, ε̃n > 0 and
γ̄n ∈ (0, γ̄] satisfying for any γ ∈ (0, γ̄n] and x ∈ Rd,

R̃γ,nṼ (x) ≤ exp
[
log(Ã)γ(1 + Ẽnγ

ε̃n)
]
Ṽ (x) , sup

x∈Rd

{
‖x‖ /Ṽ (x)

}
≤ 1 ,

where for any γ ∈ (0, γ̄] and n ∈ N, R̃γ,n is the Markov kernel associated with (4.19) where Tγ(x) =
x+ γbγ,n(x) and Π = Id.

Proposition 4.1.27. Let V : Rd → [1,+∞). Assume L1, L4, L5 and that for any T ≥ 0, x ∈ Rd

lim sup
n→+∞

lim sup
m→+∞

(
Rm
T/m,n + R̃m

T/m,n

)
V 2(x) < +∞ .

Then for any T ≥ 0 and x ∈ Rd

lim
n→+∞

lim sup
m→+∞

‖δxRmk
T/m,n − δxR̃mk

T/m,n‖V = 0 ,

Proof. the proof is postponed to Section 4.1.7.

Based on Proposition 4.1.26 and Proposition 4.1.27, we have the following result which establishes

a clear link between the convergence of the family of the projected Euler-Maruyama scheme {Rγ,n :
γ ∈ (0, γ̄] , n ∈ N} and the semigroup (Pt)t≥0 associated with (4.55).
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Theorem 4.1.28. LetW : Rd × Rd → [1,+∞) and V : Rd → [1,+∞) satisfying for any x, y ∈ Rd,
sup(x,y)∈Rd×RdW (x, y) {V (x) + V (y)}−1

< +∞. Assume L1, L2, L3, L4 and L5. In addition, assume
that for any T ≥ 0 and x ∈ Rd

PTV
2(x) < +∞ , lim sup

n→+∞
lim sup
m→+∞

(
Rm
T/m,n + R̃m

T/m,n

)
V 2(x) < +∞ . (4.62)

Then,
Wc(δxPT , δyPT ) ≤ lim sup

n→+∞
lim sup
m→+∞

Wc(δxRm
T/m,n, δyRm

T/m,n) ,

where for any x, y ∈ Rd, c(x, y) = 1∆c
X
(x, y)W (x, y), (Pt)t≥0 is the semigroup associated with (4.55) and

for any γ ∈ (0, γ̄], n ∈ N, Rγ,n is the Markov kernel associated with (4.19) where Tγ(x) = x+ γbγ,n(x),
X = Kn and Π = ΠKn , R̃γ,n is the Markov kernel associated with (4.19) where Tγ(x) = x + γbγ,n(x),
X = Rd and Π = Id.

Proof. Let T ≥ 0, x, y ∈ Rd and

CV = 2 sup
(x,y)∈Rd×Rd

W (x, y) {V (x) + V (y)}−1
< +∞ .

We have for any n ∈ N and m ∈ N? such that T/m ≤ γ̄

Wc(δxPT , δyPT ) ≤ CV ‖δxPT − δxR̃m
T/m,n‖V + CV ‖δxRm

T/m,n − δxR̃m
T/m,n‖V

+ Wc(δxRm
T/m,n, δyRm

T/m,n)

+ CV ‖δyPT − δyR̃m
T/m,n‖V + CV ‖δyRm

T/m,n − δyR̃m
T/m,n‖V ,

which concludes the proof upon combining Proposition 4.1.26 and Proposition 4.1.27.

Explicit approximating family of drifts In this section we show that under regularity and cur-

vature assumptions on the drift function b we can construct explicit families of approximating drift

functions satisfying the assumptions of Theorem 4.1.28. The section is divided into two parts. First,

we show under regularity conditions L1, L2, L3, L4 and L5 are satis�ed. Second, we show, under

similar conditions, that the summability assumptions (4.62) in Theorem 4.1.28 hold for V ← VM with

VM : Rd → [1,+∞) given by (4.56) for M ≥ 0. We start with the case where b satis�es B2.

Proposition 4.1.29. Assume B2. Let {bγ,n : γ ∈ (0, γ̄] , n ∈ N} be given for any γ > 0, n ∈ N and
x ∈ Rd by bγ,n(x) = b(x). Let Kn = Rd for any n ∈ N. Then, L1, L2, L3, L4 and L5 are satis�ed.

Proof. The proof is postponed to Section 4.1.7.

We now consider the more challenging case where B2 does not hold and is replaced by the weaker

condition B5. In this setting, by [IW89, Chapter 4, Theorem 2.3], (4.55) admits a unique solution

(Xt)t∈[0,+∞) with X0 = x ∈ Rd and let e = inf {s ≥ 0 : ‖Xs‖ = +∞}. In particular, the condi-

tion e = +∞ is met a.s. if we assume that b is sub-linear [IW89, Chapter 4, Theorem 2.3] or that the

condition Dc(V, ζ, 0) holds with ζ ∈ R and lim‖x‖→+∞ V (x) = +∞ [Kha11, Theorem 3.5]. This last

condition is satis�ed for all the applications we consider in Section 4.1.5.

Proposition 4.1.30. Assume B3(m) with m ∈ R and B5, then L1 holds. In addition:

(a) if there exists εb > 0 and p ∈ N? such that supx∈Rd{‖b(x)‖2(1+εb) (1 + ‖x‖2p)−1} < +∞ then L3

holds ;

153



(a) (b)

Figure 4.3: In this �gure we illustrate the approximation properties of the family of drift functions de-

�ned by (4.63). Let b(x) = |x|1.5 sin(x) and for any n ∈ N,ϕn(x) = d(x, B̄(0,+1)c)2/(d(x, B̄(0, n))2+
d(x, B̄(0, n + 1)c)2). In both �gures the original drift is displayed in cyan and we �x α = 0.3. In (a),

we �x n = 1, represented by the black dashed lines, and observe the behavior of the drift functions for

di�erent values of γ > 0. In (b), we plot the drift for di�erent γ > 0 and n ∈ N.

(b) assume that C2 holds and supx∈Rd{‖b(x)‖2(1+εb) e−m
+
2 ‖x‖

2} < +∞ for some εb > 0 satisfying then
L3 holds.

Proof. The proof is postponed to Section 4.1.7.

Proposition 4.1.30 gives conditions under which L1 and L3 hold. In addition, L4 is satis�ed if we take

for anyn ∈ N, Kn = B̄(0, n). Therefore, it only remains to �nd a family of drift functions which satis�es

L2 and L5. To this end, consider the following family of drift functions {bγ,n : γ ∈ (0, γ̄] , n ∈ N}
de�ned for any γ > 0, n ∈ N and x ∈ Rd by

bγ,n(x) = ϕn(x)b(x) + (1− ϕn(x))
b(x)

1 + γα ‖b(x)‖
, (4.63)

with α < 1/2 and ϕn ∈ C(Rd,R) such that for any n ∈ N and x ∈ Rd,

ϕn(x) ∈ [0, 1] and ϕn(x) =

{
1 if x ∈ B̄(0, n),

0 if x ∈ B̄(0, n+ 1)c .
(4.64)

An example of such a family is displayed in Figure 4.3.

Proposition 4.1.31. Assume B3(m) for m ∈ R and B5, then L2 and L5 hold for the family {bγ,n : γ ∈
(0, γ̄] , n ∈ N} de�ned by (4.63).

Proof. The proof is postponed to Section 4.1.7.

The following proposition is a generalization of Proposition 4.1.29.
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Proposition 4.1.32. Assume B3(m) with m ∈ R and B5. Let {bγ,n : γ ∈ (0, γ̄] , n ∈ N} be given for
any γ > 0, n ∈ N and x ∈ Rd by (4.63). Let Kn = B̄(0, n) for any n ∈ N. Then, L1, L2, L4 and L5 are
satis�ed.

Proof. The proof is a straightforward combination of Proposition 4.1.30 and Proposition 4.1.31.

In Proposition 4.1.33 and Proposition 4.1.34 we show that the second part of (4.62) holds under

regularity assumptions on the drift function b.

Proposition 4.1.33. Assume B3(m) for m ∈ R and B2, then for any T,M ≥ 0 and x ∈ Rd

lim sup
m→+∞

Rm
T/mVM (x) < +∞ ,

with VM given in (4.56) and where for any γ ∈ (0, γ̄], Rγ is the Markov kernel associated with (4.19) where
Tγ(x) = x+ γb(x), X = Rd and Π = Id.

Proof. The proof is postponed to Section 4.1.7.

Proposition 4.1.34. Assume B3(m) for m ∈ R and B5, then for any T,M ≥ 0 and x ∈ Rd

lim sup
n→+∞

lim sup
m→+∞

(
Rm
T/m,n + R̃m

T/m,n

)
VM (x) < +∞ ,

with VM given in (4.56) and where for any γ ∈ (0, γ̄], n ∈ N, Rγ,n is the Markov kernel associated with
(4.19) where Tγ(x) = x+ γbγ,n(x), X = B̄(0, n) and Π = ΠB̄(0,n), R̃γ,n is the Markov kernel associated
with (4.19) where Tγ(x) = x+ γbγ,n(x), X = Rd and Π = Id.

Proof. The proof is postponed to Section 4.1.7.

Finally, we show that under mild curvature assumption on the drift function b, the �rst part of (4.62)

holds.

Proposition 4.1.35. Assume L1 and that supx∈Rd〈b(x), x〉 < +∞. Then for any M ≥ 0, there exists
ζ ∈ R such thatDc(VM , ζ, 0) holds with VM given in (4.56). In particular, for any T,M ≥ 0, PTVM (x) <
+∞.

Proof. The proof is postponed to Section 4.1.7.

4.1.6 Quantitative bounds for geometric convergence of Markov chains in
Wasserstein distance

In this section, we establish new quantitative bounds for Markov chains in Wasserstein distance. We

consider a Markov kernel P on the measurable space (Y,Y) equipped with the bounded semi-metric

d : Y × Y → R+, i.e. which satis�es the following condition.

H1. For any x, y ∈ Y, d(x, y) ≤ 1, d(x, y) = d(y, x) and d(x, y) = 0 if and only if x = y.

Let K be a Markov coupling kernel for P. In this section, we assume the following condition on K.

H2 (K). There exists C ∈ Y⊗2 such that
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(i) there exist n0 ∈ N? and ε > 0 such that for any x, y ∈ C, Kn0d(x, y) ≤ (1− ε)d(x, y) ;

(ii) for any x, y ∈ Y, Kd(x, y) ≤ d(x, y) ;

(iii) there exist W1 : Y2 → [1,+∞) measurable, λ1 ∈ (0, 1) and A1 ≥ 0 such that K satis�es
Dd(W1, λ1, A1,C).

We consider the Markov chain (Xn, Yn)n∈N associated with the Markov kernel K de�ned on the

canonical space ((Y × Y)N, (Y⊗2)N) and denote by P(x,y) and E(x,y) the corresponding probability

distribution and expectation respectively when (X0, Y0) = (x, y). Denote by (Gn)n∈N the canonical

�ltration associated with (Xn, Yn)n∈N. Note that for any n ∈ N and x, y ∈ Y, under P(x,y), (Xn, Yn)
is by de�nition a coupling of δxPn and δyPn. The main result of this section is the following which by

the previous observation implies quantitative bounds on Wd(δxPn, δyPn).

Theorem 4.1.36. Let K be a Markov coupling kernel for P and assume H1 and H2(K). Then for any
n ∈ N and x, y ∈ Y,

E(x,y) [d(Xn, Yn)] ≤ min
[
ρn(MC,n0Ξ(x, y, n0) + d(x, y)), ρn/2(1 + d(x, y)) + λ

n/2
1 Ξ(x, y, n0)

]
,

where
Ξ(x, y, n0) = W1(x, y) +A1λ

−n0
1 n0

log(ρ) = log(1− ε) log(λ1)/[− log(MC,n0) + log(1− ε)] ,
MC,n0 = sup

(x,y)∈C
Ξ(x, y, n0) = sup

(x,y)∈C
[W1(x, y)] +A1λ

−n0
1 n0 .

(4.65)

In Theorem 4.1.36, we obtain geometric contraction for P in bounded Wasserstein metric Wd since

d is assumed to be bounded. To obtain convergence associated with unbounded Wasserstein metric

associated with W2 : Y2 → [0,+∞), we consider the next assumption which is a generalized drift

condition linking W2 and the bounded semi-metric d.

H3 (K). There existW2 : Y2 → [0,+∞) measurable, λ2 ∈ (0, 1) and A2 ≥ 0 such that for any x, y ∈ Y,

KW2(x, y) ≤ λ2W2(x, y) +A2d(x, y) .

In the special case where d(x, y) = 1∆c
Y
(x, y), W2(x, y) = 1∆c

Y
(x, y)W1(x, y) and for any x ∈ Y,

K((x, x),∆Y) = 1, we obtain that Dd(W1, λ1, A1,Y) implies H3(K). The following result implies

quantitative bounds on the Wasserstein distance dW2
(δxPn, δyPn) for any x, y ∈ Y and n ∈ N?.

Theorem 4.1.37. Let K be a Markov coupling kernel for P and assume H1, H2(K) and H3(K). Then for
any n ∈ N and x, y ∈ Y,

E(x,y) [W2(Xn, Yn)] ≤ λn2W2(x, y)

+A2 min
[
ρ̃n/4rρ(d(x, y) + Ξ(x, y, n0)), ρ̃n/4rρ(1 + d(x, y)) + λ̃n/4rλΞ(x, y, n0)

]
,

where
ρ̃ = max(λ2, ρ) ∈ (0, 1) , λ̃ = max(λ1, λ2) ∈ (0, 1) ,

rρ = 4 log−1(1/ρ̃)/ρ̃ , rλ = 4 log−1(1/λ̃)/λ̃ ,

and Ξ(x, y, n0),MC,n0 and ρ are given in (4.65).
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Theorem 4.1.36 and Theorem 4.1.37 share some connections with [Ros95, Theorem 5], [HMS11]

and [DM15] but hold under milder assumptions than the ones considered in these works. Compared

to [HMS11] and [DM15], the main di�erence is that we allow here only a contraction for the n0-th

iterate of the Markov chain (condition H2-(i)) which is necessary if we want to use Theorem 4.1.4 to

obtain sharp quantitative convergence bounds for (4.19). Finally, [Ros95, Theorem 5] also considers

minorization condition for the the n0-th iterate, however our results compared favourably for large n0.

Indeed, Theorem 4.1.36 implies that the rate of convergence min(ρ, λ1) is of the form Cn−1
0 for C ≥ 0

independent of n0. Applying [Ros95, Theorem 5], we found a rate of convergence of the form Cn−2
0 .

Finally, a recent work [QH19] has established new results based on the technique used in [HMS11].

However, we were not able to apply them since they assume as in [HMS11], a contraction for n0 = 1
which does not imply sharp bounds on the situations we consider.

The rest of this section is devoted to the proof of Theorem 4.1.36 and Theorem 4.1.37. Denote

by θ : (Y × Y)N → (Y × Y)N the shift operator de�ned for any (xn, yn)n∈N ∈ (Y × Y)N by

θ((xn, yn)n∈N) = (xn+1, yn+1)n∈N. De�ne by induction, for any m ∈ N, the sequence of (Gn)n∈N-

stopping times (T
(m)
C,n0

)m∈N, with T
(0)
C,n0

= 0 and for any m ∈ N?

T
(m)
C,n0

= inf
{
k ≥ T (m−1)

C,n0
+ n0 : (Xk, Yk) ∈ C

}
= T

(m−1)
C,n0

+ n0 + T̃C ◦ θT
(m−1)
C +n0 = T

(1)
C,n0

+

(m−1)∑
i=1

T
(1)
C,n0
◦ θT

(i)
C,n0 ,

T̃C = inf {k ≥ 0 : (Xk, Yk) ∈ C} .

(4.66)

Note that (T
(m)
C,n0

)m∈N? are the successive return times to C delayed by n0 − 1 and T̃C is the �rst hitting

time to C. We will use the following lemma which borrows from [DFM16] and [JT01, Lemma 3.1].

Lemma 4.1.38 ([DFM16, Proposition 14]). Let K be a Markov coupling kernel for P and assume H2(K)-

(i)-(ii). Then for any n,m ∈ N, x, y ∈ Y,

E(x,y) [d(Xn, Yn)] ≤ (1− ε)md(x, y) + E(x,y)

[
d(Xn, Yn)1[n,+∞](T

(m)
C,n0

)
]
.

Proof. UsingH2(K)-(ii), we have that (d(Xn, Yn))n∈N is a (Gn)n∈N-supermartingale and therefore using

the strong Markov property and H2(K)-(i) we obtain for any m ∈ N and x, y ∈ Y that

E(x,y)

[
d(X

T
(m+1)
C,n0

, Y
T

(m+1)
C,n0

)

]
≤ E(x,y)

[
E
[
d(X

T
(m)
C,n0

+n0
, Y
T

(m)
C,n0

+n0
)

∣∣∣∣GT (m)
C,n0

]]
≤ (1− ε)E(x,y)

[
d(X

T
(m)
C,n0

, Y
T

(m)
C,n0

)

]
. (4.67)

Therefore by recursion and using (4.67) we obtain that for any m ∈ N and x, y ∈ Y

E(x,y)

[
d(X

T
(m)
C,n0

, Y
T

(m)
C,n0

)

]
≤ (1− ε)md(x, y) . (4.68)

For any n,m ∈ N we have using (4.68) and that (d(Xn, Yn))n∈N is a supermartingale,

E(x,y) [d(Xn, Yn)] ≤ E(x,y)

[
d(X

n∧T (m)
C,n0

, Y
n∧T (m)

C,n0

)

]
≤ E(x,y)

[
d(X

T
(m)
C,n0

, Y
T

(m)
C,n0

)1[0,n](T
(m)
C,n0

)

]
+ E(x,y)

[
d(Xn, Yn)1[n,+∞](T

(m)
C,n0

)
]
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≤ (1− ε)md(x, y) + E(x,y)

[
d(Xn, Yn)1[n,+∞](T

(m)
C,n0

)
]
.

By Lemma 4.1.38 and since d is bounded by 1, we need to obtain a bound on P(x,y)(T
(m)
C,n0
≥ n) for

x, y ∈ Y andm,n ∈ N?. To this end, we will use the following proposition which gives an upper bound

on exponential moment of the hitting times (T
(m)
C,n0

)m∈N? .

Lemma 4.1.39. Let K be a Markov coupling kernel for P and assume H2(K)-(iii). Then for any x, y ∈ Y
andm ∈ N?,

E(x,y)

[
λ
−T (1)

C,n0
1

]
≤ Ξ(x, y, n0) , E(x,y)

[
λ
−T (m)

C,n0
+T

(1)
C,n0

1

]
≤Mm−1

C,n0
,

E(x,y)

[
λ
−T (m)

C,n0
1

]
≤ Ξ(x, y, n0)Mm−1

C,n0
,

where Ξ(x, y, n0) andMC,n0 are de�ned in (4.65).

Proof. We �rst show that for any x, y ∈ Y we have that P(x,y)(T̃C) < +∞. Let x, y ∈ Y. For any n ∈ N
we have using H2(K)-(iii) and the Markov property

E(x,y) [W1(Xn+1, Yn+1)|Gn] ≤ λ1W1(Xn, Yn) +A11C(Xn, Yn) .

Therefore applying the comparison theorem [Dou+18, Theorem 4.3.1] we get that

(1− λ1)E(x,y)

T̃C−1∑
k=0

W1(Xk, Yk)

+ E(x,y)

[
1[0,+∞)(T̃C)W (XT̃C

, YT̃C
)
]
≤W (x, y) .

Since for any x̃, ỹ ∈ Y, 1 ≤ W1(x̃, ỹ) < +∞ we obtain that (1 − λ1)E(x,y)[T̃C] ≤ W (x, y) which

implies P(x,y)(T̃C) < +∞ since λ1 ∈ (0, 1). We now show the stated result. Let x, y ∈ Y and (Sn)n∈N
be de�ned for any n ∈ N by Sn = λ−n1 W1(Xn, Yn). For any n ∈ N we have using H2(K)-(iii) and the

Markov property

E [Sn+1|Gn] ≤ λ−n1 W1(Xn, Yn) +A1λ
−(n+1)
1 1C(Xn, Yn)

≤ Sn +A1λ
−(n+1)
1 1C(Xn, Yn) . (4.69)

Using the Markov property, the de�nition of T
(1)
C,n0

given in (4.66), the comparison theorem [Dou+18,

Theorem 4.3.1], (4.69) and H2(K)-(iii) we obtain that

E(x,y)

[
S
T

(1)
C,n0

]
= E(x,y)

[
E(x,y)

[
S
T

(1)
C,n0

∣∣∣∣Gn0]] = E(x,y)

[
E(x,y)

[
Sn0+T̃C◦θn0

∣∣Gn0]]
= E(x,y)

[
λ−n01 E(x,y)

[
W1(X

n0+T
(1)
C,n0

, Y
n0+T

(1)
C,n0

)λ
−T (1)

C,n0
1

∣∣∣∣Gn0]]
≤ E(x,y)

[
λ−n01 E(Xn0 ,Yn0 )

[
ST̃C

]]
≤ E(x,y)

[
λ−n01 E(Xn0 ,Yn0 )

[
ST̃C

1[0,+∞)(T̃C)
]]

≤ E(x,y)

λ−n01 E(Xn0
,Yn0

)

S0 +A1

T̃C−1∑
k=0

λ
−(k+1)
1 1C(Xk, Yk)
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≤ E(x,y)

[
λ−n01 W1(Xn0 , Yn0)

]
≤W1(x, y) +A1λ

−n0
1 n0 . (4.70)

Combining (4.70) and the fact that for any x, y ∈ Y, W1(x, y) ≥ 1, we obtain that

E(x,y)

[
λ
−T (1)

C,n0
1

]
≤W1(x, y) +A1λ

−n0
1 n0 . (4.71)

We conclude by a straightforward recursion and using (4.71), the de�nition of T
(m)
C,n0

(4.66) for m ≥ 1,

the strong Markov property and the fact that for any m ∈ N?, (X
T

(m)
C,n0

, Y
T

(m)
C,n0

) ∈ C.

Proof of Theorem 4.1.36. Let x, y ∈ Y and n ∈ N. By Lemma 4.1.38, Lemma 4.1.39, H1, the fact that

MC,n0 ≥ 1 and the Markov inequality, we have for any m ∈ N,

E(x,y) [d(Xn, Yn)] ≤ (1− ε)md(x, y) + P(x,y)

[
T

(m)
C,n0
≥ n

]
≤ (1− ε)md(x, y) + λn1 E(x,y)

[
λ
−T (m)

C,n0
1

]
≤ (1− ε)md(x, y) + λn1M

m
C,n0Ξ(x, y, n0) ,

where Ξ(x, y, n0) is given in Theorem 4.1.36. Combining this result and Lemma 4.1.39, we can conclude

that E(x,y) [d(Xn, Yn)] ≤ ρn(MC,n0Ξ(x, y, n0) + d(x, y)) setting

m = dn log(λ1)/{log(1− ε)− log(MC,n0)}e .

To show that E(x,y) [d(Xn, Yn)] ≤ ρn/2(1 + d(x, y)) + λ
n/2
1 Ξ(x, y, n0), �rst note that Lemma 4.1.38

and H1 imply that for any m ∈ N,

E(x,y) [d(Xn, Yn)]

≤ (1− ε)md(x, y) + P(x,y)

[
T

(m)
C,n0
− T (1)

C,n0
≥ n/2

]
+ P(x,y)

[
T

(1)
C,n0
≥ n/2

]
≤ (1− ε)md(x, y) + λ

n/2
1 E(x,y)

[
λ
−T (m)

C,n0
+T

(1)
C,n0

1

]
+ λ

n/2
1 E(x,y)

[
λ
−T (1)

C,n0
1

]
,

where we have used the Markov inequality in the last line. Combining this result and Lemma 4.1.39, we

can conclude that E(x,y) [d(Xn, Yn)] ≤ ρn/2(1 + d(x, y)) + λ
n/2
1 Ξ(x, y, n0) setting

m = dn log(λ1)/{2 log(1− ε)− 2 log(MC,n0)}e .

Proof of Theorem 4.1.37. Let x, y ∈ Y and n ∈ N. Using H3(K), we obtain by recursion

E(x,y) [W2(Xn, Yn)] ≤ λn2W2(x, y) +A2

n−1∑
k=0

λn−1−k
2 E(x,y) [d(Xk, Yk)] . (4.72)

Applying Theorem 4.1.36 we obtain

n−1∑
k=0

λn−1−k
2 E(x,y) [d(Xk, Yk)]
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≤
n−1∑
k=0

λn−1−k
2 min

[
ρk(MC,n0Ξ(x, y, n0) + d(x, y)), ρk/2(1 + d(x, y)) + λk/2Ξ(x, y, n0)

]
≤ min

[
nρ̃n−1(d(x, y) + Ξ(x, y, n0)), nρ̃n/2−1(1 + d(x, y)) + nλ̃n/2−1Ξ(x, y, n0)

]
.

We conclude plugging this result in (4.72) and using that for any n ∈ N and t ∈ (0, 1), ntn/2 ≤
4 log−1(1/t)tn/4.

4.1.7 Proofs and additional results

Proofs of Section 4.1.3

Proof of Proposition 4.1.5 First, we prove the following technical lemma.

Lemma 4.1.40. Let γ̄ > 0 and κ : (0, γ̄]→ R, with κ(γ)γ ∈ (−1,+∞) for any γ ∈ (0, γ̄]. We have for
any γ ∈ (0, γ̄] such that κ(γ) 6= 0 and ` ∈ N?

Ξ`d1/γe(κ) = −κ−1(γ) {exp [−` d1/γe log {1 + γκ(γ)}]− 1} ,

where Ξ`d1/γe(κ) is de�ned by (4.26) . In addition, for any ` ∈ N? and γ ∈ (0, γ̄]

(a) Ξ`d1/γe(κ) ≥ α−(κ, γ, `) = −κ−1(γ) [exp(−`κ(γ))− 1] if for any γ ∈ (0, γ̄], κ(γ) < 0 ;

(b) Ξ`d1/γe(κ) ≥ α0(κ, γ, `) = ` if for any γ ∈ (0, γ̄], κ(γ) ≤ 0 ;

(c) Ξ`d1/γe(κ) ≥ α+(κ, γ, `) = κ−1(γ)

[
1− exp

{
− `κ(γ)

1 + γκ(γ)

}]
if for any γ ∈ (0, γ̄], κ(γ) > 0.

Proof. Let ` ∈ N? and γ ∈ (0, γ̄]. First note that the following equalities hold if κ(γ) 6= 0

Ξ`d1/γe(κ) = γ

`d1/γe∑
i=1

(1 + γκ(γ))−i

= γ(1 + γκ(γ))−1 1− (1 + γκ(γ))−`d1/γe

1− (1 + γκ(γ))−1

= −κ−1(γ)
{

[1 + γκ(γ)]
−`d1/γe − 1

}
= −κ−1(γ) {exp [−` d1/γe log {1 + γκ(γ)}]− 1} . (4.73)

We now give a lower-bound on Ξ`d1/γe(κ) depending on the condition satis�ed by γ 7→ κ(γ).

(a) Assume that for any γ̃ ∈ (0, γ̄] ,κ(γ̃) < 0. Using that log(1− t) ≤ −t for t ∈ (0, 1), we obtain that

exp [−` d1/γe log {1 + γκ(γ)}] ≥ exp(−` d1/γe γκ(γ)) ≥ exp(−`κ(γ)) ,

which together with (4.73) concludes the proof for Proposition 4.1.5-(a) .

(b) Assume that for any γ̃ ∈ (0, γ̄], κ(γ̃) ≤ 0. Then,

Ξ`d1/γe(κ) = γ

`d1/γe∑
i=1

(1 + γκ(γ))−i ≥ γ d1/γe ` ≥ ` .
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(c) Assume that for any γ̃ ∈ (0, γ̄] , κ(γ̃) > 0. Using that log(1 + t) ≥ t/(1 + t) for t > 0, we obtain

that

exp [−` d1/γe log {1 + γκ(γ)}] ≤ exp [−(`/γ) log {1 + γκ(γ)}]
≤ exp [−`κ(γ)/(1 + γκ(γ))] ,

which concludes the proof for Proposition 4.1.5-(a).

Proof of Proposition 4.1.5. The proof is a direct application of Theorem 4.1.4 and Lemma 4.1.40 with

κ(γ) = κ(γ).

Proof of Corollary 4.1.6

(a) Consider V : X → [1,+∞] given for any x ∈ X by V (x) = 1 + ‖x‖. Then since A2(X2
) with

supγ∈(0,γ̄] κ(γ) ≤ κ− < 0 holds, using the triangle inequality and the Cauchy-Schwarz inequality, we

have for any γ ∈ (0, γ̄] and x ∈ X

RγV (x) ≤ ‖Tγ(x)‖+
√
γd ≤ (1 + κ−γ) ‖x‖+ ‖Tγ(0)‖+

√
γd+ 1 ≤ λV (x) +A ,

with λ ∈ (0, 1) and A ≥ 0. As a result, since for any γ ∈ (0, γ̄], Rγ is a Feller kernel and the level

sets of V are compact, Rγ admits a unique invariant probability measure πγ for any γ ∈ (0, γ̄] by

[Dou+18, Theorem 12.3.3]. Then the last result is a straightforward consequence of Proposition 4.1.5-

(a), (4.21) and the fact that for any ` ∈ N? and γ ∈ (0, γ̄], α−(κ, γ, `) ≥ −(exp(−`κ−) − 1)/κ− since

t 7→ (exp(`t)− 1)/t is increasing on R.

(b) This result is a direct consequence of Proposition 4.1.5-(b), (4.21) and the fact that Rγ admits an

invariant probability measure πγ .

Proof of Corollary 4.1.7

(a) The proof is a direct application of Proposition 4.1.5-(b), the fact that (Xk, Yk) ∈ X2
for any k ∈ N

and that Kγ is the Markov kernel associated with (Xk, Yk)k∈N.

(b) Consider the case where A2(X2
)-(iii) holds. Using that for any t ≥ 0, 1− e−t ≥ t/(t+ 1) we obtain

that for any γ ∈ (0, γ̄] and ` ∈ N?

α+(κ, γ, `) ≥ `/(1 + (`+ γ̄)κ(γ)) ≥ (1 + (1 + γ̄)κ+)−1 ≥ (1 + γ̄)−1(1 + κ+)−1 ,

where α+ is given in Lemma 4.1.40-(c). Then, combining this result and Proposition 4.1.5-(c) complete

the proof.

Proof of Theorem 4.1.8 We start with the following theorem.

Theorem 4.1.41. Under the assumptions of Theorem 4.1.8, we have for any γ ∈ (0, γ̄], x, y ∈ X and
k ∈ N

Wc(δxRk
γ , δyRk

γ) ≤ K̃k
γc(x, y) ≤ λkγ/4[Dγ,1c(x, y) +Dγ,21∆c

X
(x, y)] + C̃γ ρ̃

kγ/4
γ 1∆c

X
(x, y) , (4.74)
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where Wc is the Wasserstein metric associated with c de�ned by (4.30),

Dγ,1 = 1 + 4A[log(1/λ)λγ ]−1 , Dγ,2 = Dγ,1

[
Aλ−γd1/γe`γ d1/γe `

]
,

C̃γ = 8A log−1(1/ρ̃γ)/ρ̃γγ ,

log(ρ̃γ) = {log(λ) log(1− ε̃d,γ)} / {− log(c̃γ) + log(1− ε̃d,γ)} ,
B̃d = sup

(x,y)∈C
W (x, y) , c̃γ = B̃d +Aλ−γd1/γe`γ d1/γe ` ,

ε̃d,γ = inf
(x,y)∈∆X,M̃d

Ψ(γ, `, ‖x− y‖) .

Proof. The proof of this proposition is an application of Theorem 4.1.37 in Section 4.1.6 with d ←
1∆c

X
which satis�es H1. Let γ ∈ (0, γ̄]. Then, since K̃γ and Ψ satisfy Dd(W,λγ , Aγ,C) and (4.32)

respectively, and ∆X is absorbing for K̃γ , H2(Kγ ) and H3(Kγ ) are satis�ed. More precisely, for any

γ ∈ (0, γ̄] setting ε̃d,γ = inf(x,y)∈∆X,M̃d
Ψ(γ, `, ‖x− y‖), then H2(Kγ )-(i) is satis�ed since for any

x, y ∈ C ⊂ ∆X,M̃d
,

K̃d1/γe`γ 1∆c
X
(x, y) ≤

{
1− inf

(x,y)∈∆X,M̃d

Ψ(γ, `, ‖x− y‖)

}
1∆c

X
(x, y)

≤ (1− ε̃d,γ)1∆c
X
(x, y) .

H2(Kγ )-(ii) is satis�ed since for any γ ∈ (0, γ̄] and x, y ∈ X, Kγ1∆c
X
(x, y) ≤ 1∆c

X
(x, y). Finally,

the conditions H2(Kγ )-(iii) and H3(Kγ ) hold using Dd(W,λγ , Aγ,C) with W1 ← W , W2 ← Wd,

λ1 = λ2 ← λγ , A1 = A2 ← Aγ, n0 ← ` d1/γe. Applying Theorem 4.1.37, we obtain that for any

k ∈ N, γ ∈ (0, γ̄] and x, y ∈ X

Wc(δxRk
γ , δyRk

γ)

≤ λkγW (x, y) +Aγ
[
ρ̃kγ/4γ r1(1 + 1∆c

X
(x, y)) + λkγ/4r2Ξ(x, y, ` d1/γe)

]
≤ λkγ/4W (x, y) + 2r1Aγρ̃

kγ/4
γ +Aγr2λ

kγ/4Ξ(x, y, ` d1/γe)

≤ λkγ/4(1 +Aγr2)
[
W (x, y) +Aγλ−`d1/γeγ` d1/γe γ

]
+ 2r1Aγρ̃

kγ/4
γ ,

where

r1 = 4 log−1(1/ρ̃γ)/(γρ̃γγ) , r2 = 4 log−1(1/λ)/(γλγ) .

This concludes the proof of (4.74) upon using that ∆X is absorbing for K̃γ .

Proof of Theorem 4.1.8. The �rst part of the proof is straightforward using Theorem 4.1.41 and that λγ ≥
λγ̄ .

By assumption on γ̄ and λ, we have λ−γd1/γe`γ d1/γe ` ≤ λ−(1+γ̄)`(1 + γ̄)`. As a result and using

the fact that log(1−t) ≤ −t for any t ∈ (0, 1), log((1− ε̄d,1)−1) ≤ 1 andW (x, y) ≥ 1 for any x, y ∈ X,

we obtain that

log−1(ρ̄−1
1 ) ≤ [log(λ−1) log((1− ε̄d,γ̄)−1)]−1 [1 + log(c̄2)]

≤
[
log(λ−1)ε̄d,1

]−1
[
1 + log(B̃d) + log(1 + 2A`λ−2`)

]
,

≤
[
log(λ−1)ε̄d,1

]−1
[
1 + log(B̃d) + log(1 + 2A`) + 2` log(λ−1)

]
,

which completes the proof.
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Proof of Proposition 4.1.9 Let γ ∈ (0, γ̄], x, y ∈ X and k ∈ N. We divide the proof into two parts.

(a) If k ≤ d1/γe. Then using we get that

K̃k
γ ‖x− y‖ ≤ (1 + γκ)k ‖x− y‖ ≤ (1 + γκ)d1/γe ‖x− y‖ ≤ exp[κ(1 + γ̄)] ‖x− y‖ .

(b) If k > d1/γe then using Theorem 4.1.8, (4.32) and ρ1 ≥ λ we get that

Wc(δxRk
γ , δyRk

γ) ≤ K̃d1/γeγ Kk−d1/γe
γ c(x, y)

≤ K̃d1/γeγ

{
λ(k−d1/γe)γ/4[D̄1W (x, y) + D̄21∆c(x, y)] + C̄2ρ̄

(k−d1/γe)γ/4
1 1∆c(x, y)

}
≤ ρ̄(k−d1/γe)γ/4

1 K̃d1/γeγ

{
(D̄1 + D̄2 + C̄1)1∆c(x, y) + ϑD̄1 ‖x− y‖

}
≤ ρ̄kγ/41

{
(D̄1 + D̄2 + C̄1)(1−Ψ(γ, 1, ‖x− y‖)) + ϑD̄1 exp[κ(1 + γ̄)] ‖x− y‖

}
/ρ̄

(1+γ̄)/4
1

≤ −a(D̄1 + D̄2 + C̄1)ρ̄
kγ/4
1 ‖x− y‖ /ρ̄1/4

1 + ϑD̄1 exp[κ(1 + γ̄)]ρ̄
kγ/4
1 ‖x− y‖ /ρ̄(1+γ̄)/4

1 ,

which concludes the proof upon noting that Wc(δxRk
γ , δyRk

γ) ≥ ϑW1(δxRk
γ , δyRk

γ).

Proof of Proposition 4.1.10 Let q ∈ N and γ ∈ (0, γ̄]. Using that K̃γ satis�es Dd((x, y) 7→ ‖x −
y‖q, λ̃γq , Ãqγ), we get that for any x, y ∈ X and k ∈ N we have

K̃k
γ ‖x− y‖

q ≤ ‖x− y‖q + Ãqγ

k−1∑
`=0

λ̃`γq ≤ ‖x− y‖
q

+ Ãq log−1(1/λ̃q)λ̃
−γ̄
q . (4.75)

Let p ≥ 1, α ∈ (p,+∞), x, y ∈ X and k ∈ N and consider q = p(α− 1)/(α− p). Note that we have

(1− 1/α)p/ dqe ≤ (1− 1/α)p/q ≤ 1− p/α ≤ 1 .

Using this result, (4.75), Hölder’s inequality, Jensen’s inequality and that for any a, b ≥ 0 and r ≥ 1,

(a+ b)1/r ≤ a1/r + b1/r , we have

K̃k
γ ‖x− y‖

p ≤ K̃k
γ

{
‖x− y‖p(1−1/α) ‖x− y‖p/α

}
≤
(

K̃k
γ ‖x− y‖

p(1−1/α)/(1−p/α)
)1−p/α (

K̃k
γ ‖x− y‖

)p/α
≤
(

K̃k
γ ‖x− y‖

q
)1−p/α

D̄p/αρ̄kγp/α ‖x− y‖p/α

≤
(

K̃k
γ ‖x− y‖

dqe
)(1−p/α)q/dqe

D̄p/αρ̄kγp/α ‖x− y‖p/α

≤
(
‖x− y‖dqe + Ãdqe log−1(1/λ̃dqe)λ̃

−γ̄
dqe

)(1−p/α)q/dqe
D̄p/αρ̄kγp/α ‖x− y‖p/α

≤
(
‖x− y‖dqe + Ãdqe log−1(1/λ̃dqe)λ̃

−γ̄
dqe

)(1−1/α)p/dqe
D̄p/αρ̄kγp/α ‖x− y‖p/α

≤
(
‖x− y‖(1−1/α)p

+
{
Ãdqe log−1(1/λ̃dqe)λ̃

−γ̄
dqe

}(1−1/α)p/dqe
)
D̄p/αρ̄kγp/α ‖x− y‖p/α

≤
(
‖x− y‖p +

{
Ãdqe log−1(1/λ̃dqe)λ̃

−γ̄
dqe

}(1−1/α)p/dqe
‖x− y‖p/α

)
D̄p/αρ̄kγp/α

≤ D̄p
4,αρ̄

kγp/α(‖x− y‖p + ‖x− y‖p/α) ,

which completes the proof upon using that for any a, b ≥ 0 and p ≥ 1, (a+ b)1/p ≤ a1/p + b1/p.
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Proofs of Section 4.1.4

Proof of Proposition 4.1.11

(a) ByB2 andB3(m) we have for any γ > 0 andx, y ∈ X, ‖Tγ(x)− Tγ(y)‖2 ≤ (1−2γm+γ2L2) ‖x− y‖2 ≤
(1 + γκ(γ)) ‖x− y‖2, which concludes the proof.

(b) We have for any γ > 0 and x, y ∈ X, ‖Tγ(x)− Tγ(y)‖2 ≤ ‖x− y‖2 +γ(−2mb+γ) ‖b(x)− b(y)‖2.

Then if γ ≤ 2mb, ‖Tγ(x)− Tγ(y)‖2 ≤ ‖x− y‖2, which concludes the proof.

Proof of Proposition 4.1.12 Let γ ∈ (0, γ̄], x, y ∈ X and set E = Tγ(y)−Tγ(x). We divide the proof

into three parts.

(a) First, we show that Proposition 4.1.12-(a) holds. If E = 0 then the proposition is trivial, therefore

we suppose that E 6= 0 and let e = E/ ‖E‖. Consider Z1, a d-dimensional Gaussian random variable

with zero mean and covariance identity. By (4.23) and the fact that ΠX is non expansive, we have for

any γ ∈ (0, γ̄]

Kγ ‖x− y‖ ≤ E
[
(1− pγ(x, y,

√
γZ1))

∥∥(Tγ(x) +
√
γZ1)− (Tγ(y) +

√
γ(Id−2ee>)Z1)

∥∥]
= E

[∥∥E− 2
√
γee>Z1

∥∥ (1− pγ(x, y,
√
γZ1))

]
=

∫
R
‖E− 2ze‖ {ϕϕϕγ(z)− (ϕϕϕγ(z) ∧ϕϕϕγ(‖E‖ − z))} dz

=

∫ ‖E‖/2
−∞

(‖E‖ − 2z) {ϕϕϕγ(z)−ϕϕϕγ(‖E‖ − z)} dz ≤ ‖E‖ , (4.76)

where we have used the change of variable z 7→ ‖E‖ − z for the last line. We conclude this part of the

proof upon using B2 and B3(m).

(b) Second, we show that Proposition 4.1.12-(b) holds. Consider the case (x, y) ∈ ∆c
X,R1

. By B2, C1,

and since for any t ∈ [−1,+∞),

√
1 + t ≤ 1 + t/2, we have that

‖Tγ(x)− Tγ(y)‖ ≤ (1− 2γm+
1 + γ2L2)1/2 ‖x− y‖ ≤ (1− γm+

1 + γ2L2/2) ‖x− y‖ . (4.77)

Combining (4.76) and (4.77) and since γ < 2m+
1 /L

2
, we obtain that for any (x, y) ∈ ∆c

X,R1
,

KγW1(x, y) ≤ (1− γm+
1 + γ2L2/2) ‖x− y‖ /R1 + 1

≤ (1− γm+
1 /2 + γ2L2/4)(1 + ‖x− y‖ /R1) ≤ λγW1(x, y) . (4.78)

Similarly, we obtain using Proposition 4.1.11-(a) that for any (x, y) ∈ ∆X,R1

KγW1 ≤ (1− γm + γ2L2/2) ‖x− y‖ /R1 + 1

≤ (1− γm+
1 /2 + γ2L2/4) ‖x− y‖ /R1 + 1 + γ

{
m+

1 /2− m + γL2/4
}

≤ (1− γm+
1 /2 + γ2L2/4)W1(x, y) + γ

[
m+

1 − m
]
≤ λγW1(x, y) +Aγ . (4.79)

We conclude the proof upon combining (4.78) and (4.79).

(c) Finally we show that Proposition 4.1.12-(c) holds. Let p ∈ N with p ≥ 2. Similarly to Proposi-

tion 4.1.12-(a) , we have

Kγ ‖x− y‖p =

∫
R

(‖E‖ − 2z)pϕϕϕγ(z)dz . (4.80)
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For any k ∈ N, let ck =
∫
R z

kϕϕϕ1(z)dz and

κ1,γ = 1− γm+
1 + γ2L2/2 , κ2,γ = max(1, 1− γm + γ2L2/2) , R = max(1, R1) . (4.81)

Note that for any k ∈ N, c2k+1 = 0. Consider the case ‖x− y‖ ≥ R. Using (4.80), (4.81), B2, C1 we

have

Kγ ‖x− y‖p ≤ ‖E‖p +

p∑
k=2

(
p

k

)
‖E‖p−k (2γ)kck

≤ κ1,γ ‖x− y‖p +

p∑
k=2

(
p

k

)
‖x− y‖p−k (2γ)kck

≤ κ1,γ ‖x− y‖p + γc2p2
2p max(1, γ̄)p ‖x− y‖p−2

≤ κ2,γ/2 ‖x− y‖
p

+ γ
{
c2p2

2p max(1, γ̄)p ‖x− y‖p−2 − m+
1 ‖x− y‖

p
/2
}

≤ κ2,γ/2 ‖x− y‖
p

+ γ sup
t∈[0,+∞)

{
c2p2

2p max(1, γ̄)ptp−2 − m+
1 t
p/2
}
.

Note that we have for any a ≥ b ≥ 0 and t ≥ 0

(1 + ta)p − (1 + tb) ≤ t

{
−b+ max(1, t)p

p∑
k=1

(
p

k

)
ak

}
≤ t {max(1, t)p(1 + a)p − b} . (4.82)

Now, consider the case ‖x− y‖ ≤ R. Using (4.80), (4.81), (4.82), B2, B3(m) we have

Kγ ‖x− y‖p − κ1,γ/2 ‖x− y‖
p ≤ (κp2,γ − κ1,γ/2) ‖x− y‖p + γc2p2

2p max(1, γ̄)pκp2,γR
p−2

≤ γc2p22p max(1, γ̄)pκp2,γR
p−2 + (κp2,γ − κ1,γ/2)Rp

≤ γc2p22p max(1, γ̄)pκp2,γR
p−2 + γRp

{
max(1, γ̄)p(1− m/2 + L2γ̄/4)p + m+

1

}
,

which concludes the proof upon setting

λp = exp[−m+
1 /2 + γ̄L2/4] ,

Ap = max {Ap,1, Ap,2} ,
Ap,1 = sup

t∈[0,+∞)

{
c2p2

2p max(1, γ̄)ptp−2 − m+
1 t
p/2
}
,

Ap,2 = c2p2
2p max(1, γ̄)pκp2,γR

p−2 + Rp
{

max(1, γ̄)p(1− m/2 + L2γ̄/4)p + m+
1

}
.

Proof of Corollary 4.1.14 Let γ̄ > 0. Then for any γ ∈ (0, γ̄], Ψ : t 7→ 2Φ{−t/(2Ξ
1/2
d1/γe(κ))} is

convex on [0,+∞), di�erentiable on R, and for any γ ∈ (0, γ̄]

Ψ′(0) ≥ −(π inf
γ∈(0,γ̄]

Ξd1/γe(κ))−1/2 . (4.83)

We divide the rest of the proof into two parts.

(a) First combining (4.83), Proposition 4.1.12-(a), (4.49), Theorem 4.1.13 and Proposition 4.1.9 shows that

W1(δxRk
γ , δyRk

γ) ≤ D3,γ̄,aρ
kγ/4
γ̄,a ‖x− y‖ .

(b) Second, combining Proposition 4.1.12-(c) and Proposition 4.1.10 shows that

Wp(δxRk
γ , δyRk

γ) ≤ Dα,γ̄,aρ
kγ/(4α)
γ̄,a

{
‖x− y‖+ ‖x− y‖1/α

}
.
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Proof of Proposition 4.1.15 We preface the proof by a technical result.

Lemma 4.1.42. Let γ̄ > 0, such that for any γ ∈ (0, γ̄], Pγ is a Markov kernel and Qγ is a Markov
coupling kernel for Pγ . Assume that there exist V : X→ [1,+∞) measurable, λ ∈ (0, 1) andA ≥ 0 such
that for any γ ∈ (0, γ̄], Pγ satis�es Dd(V, λγ , Aγ,X). LetW : X2 → [1,+∞) given for any x, y ∈ X by
W (x, y) = {V (x) + V (y)} /2. The following properties hold.

(a) Qγ satis�es Dd(W,λγ , Aγ,X2)

(b) if lim‖x‖→+∞ V (x) = +∞, Qγ satis�esDd(W,λγ/2, Aγ, B̄(0, R)×B̄(0, R))whereR = inf{r ≥
0 : for any x ∈ B̄(0, r)c, V (x) ≥ 2(λ1/2)−2γ̄A log−1(1/λ1/2)} and B̄(0, R)×B̄(0, R) ⊂ ∆X,2R.

Proof. Let γ ∈ (0, γ̄] and x, y ∈ X.

(a) Since δ(x,y)Qγ is a transference plan between δxPγ and δyPγ we have

QγW (x, y) = Qγ {V (x) + V (y)} /2 = PγV (x)/2 + PγV (y)/2 ≤ λγW (x, y) +Aγ .

(b) Let x, y ∈ X. If (x, y) ∈ B̄(0, R)×B̄(0, R) then the result is immediate using Lemma 4.1.42-(a). Now,

assume that (x, y) /∈ B̄(0, R) × B̄(0, R). By de�nition of R, max(V (x), V (y)) ≥ 4λ−γ̄A log−1(1/λ).

Without loss of generality assume that V (x) ≥ V (y). Using this result, Lemma 4.1.42-(a) and that for

any b ≥ a, (eb − ea) ≥ ea(b− a), we have

QγW (x, y) ≤ λγW (x, y) +Aγ

≤ λγ/2W (x, y) + γ [A+ λγ {log(λ)− log(λ)/2}W (x, y)]

≤ λγ/2W (x, y) + γ
[
A− λγ̄ log(λ−1)V (x)/4

]
≤ λγ/2W (x, y) .

Proof of Proposition 4.1.15. Let γ ∈ (0, γ̄] and x ∈ X. We divide the proof into two parts. Using (4.19), B
2, B3(m), C2, that the projection ΠX is non expansive and γ < 2m+

2 /L
2
, we obtain for any x ∈ X

RγV (x) ≤ 1 + ‖x+ γb(x)‖2 + γd

≤ 1 + ‖x‖2 + 2γ〈x, b(x)〉+ γ2 ‖b(x)‖2 + γd

≤ (1 + ‖x‖2)
[
1− γ(2m+

2 − γ̄L2)
]

+ γ
(
d+ 2R2

2(m+
2 − m)+ + 2m+

2

)
.

In addition, for any x ∈ X, such that ‖x‖ ≥ 2A1/2 log−1/2(1/λ), we have V (x) ≥ 4A log−1(1/λ). We

conclude the proof using Lemma 4.1.42-(b).

Proof of Proposition 4.1.17 Let γ ∈ (0, γ̄]. Using the fact that ΠX is non expansive, the Log-Sobolev

inequality, the fact that π is 1-Lipschitz, [BLM13, Theorem 5.5] and the Jensen inequality we obtain for

any x ∈ Rd

RγV (x) ≤ exp
[
m+

3 Rγφ(x) + γ(m+
3 )2/2

]
≤ exp

[
m+

3

√
1 + Rγ ‖x‖2 + γ(m+

3 )2/2

]
≤ exp

[
m+

3

√
1 + ‖Tγ(x)‖2 + γd+ γ(m+

3 )2/2

]
. (4.84)

Let x ∈ Rd. The rest of the proof is divided in two parts.
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(a) In the �rst case, ‖x‖ ≥ R4. Since ‖x‖ ≥ R3 and γ ≤ 2k2, we have using C3

‖Tγ(x)‖2 ≤ ‖x‖2 − 2γk1 ‖x‖+ γ(γ − 2k2) ‖b(x)‖2 + γa ≤ ‖x‖2 − 2γk1 ‖x‖+ γa . (4.85)

Since ‖x‖ ≥ 1 we have 2 ‖x‖ ≥ φ(x) and therefore, using that ‖x‖ ≥ (d+a)/k1, 2k1 ‖x‖ ≥ 2m+
3 φ(x)+

d+ a. This inequality, combined with the fact that for any t ∈ (−1,+∞),

√
1 + t ≤ 1 + t/2, yields√

1 + ‖x‖2 + γ(−2k1 ‖x‖+ d+ a)− φ(x)

≤ γ(−2k1 ‖x‖+ d+ a)/(2φ(x)) ≤ −γm+
3 . (4.86)

Combining (4.84), (4.85) and (4.86) we get

RγV (x) ≤ λγV (x) .

(b) In the second case ‖x‖ ≤ R4. We have the following inequality using C3 and that γ ≤ 2k2

‖Tγ(x)‖2 ≤ ‖x‖2 + γ(γ − 2k2) ‖b(x)‖2 + γc ≤ ‖x‖2 + γa . (4.87)

Combining (4.84), (4.87) and the fact that for any t ∈ (−1,+∞),

√
1 + t ≤ 1 + t/2 we get

RγV (x) ≤ exp
[
γm+

3 (d+ a)/(2φ(x)) + γ(m+
3 )2/2

]
V (x) (4.88)

≤ exp
[
γ(m+

3 (d+ a) + (m+
3 )2)/2

]
V (x) .

Note that for any c1 ≥ c2 and t ∈ [0, t̄] we have the following inequality

ec1t ≤ ec2t + ec1 t̄(c1 − c2)t . (4.89)

Combining (4.88) and (4.89) we get

RγV (x) ≤ λγV (x) + exp
[
γ̄(m+

3 (d+ a) + (m+
3 )2)/2

]
Caγ ,

withCa = (m+
3 (d+a)/2+(m+

3 )2) exp(m+
3 (1+R2

4)1/2), which concludes the proof using Lemma 4.1.42.

Proofs of Section 4.1.5

Proof of Theorem 4.1.19 Combining Proposition 4.1.29, Proposition 4.1.33 and Proposition 4.1.35 in

Theorem 4.1.28 concludes the proof.

Proof of Theorem 4.1.20 Combining Proposition 4.1.29, Proposition 4.1.33 and Proposition 4.1.35 in

Theorem 4.1.28 concludes the proof.

Proof of Theorem 4.1.24 Let T ≥ 0 and x ∈ Rd. First, using Proposition 4.1.32 we have that L1, L2,

L4 and L5 are satis�ed. In addition, using Proposition 4.1.35 we get

PTVk1(x) < +∞ ,

whereVk1 = VM withM ← k1 andVM given in (4.56). Hence, since we have supx∈Rd ‖b(x)‖2(1+εb) e−k1(1+‖x‖)1/2 <
+∞, we get that L3 is satis�ed.
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In addition, using that 2m+
3 ≤ k1 we have

PTV
2(x) < +∞ .

Thus, the �rst part of (4.62) is satis�ed. Second using Proposition 4.1.17 and replacing m+
3 ← 2m+

3 (which

is valid since m+
3 ≤ k1/4), we obtain that for any n,m ∈ N, with T/m < 2k2, RT/m,n and R̃T/m satisfy

Dd(V 2, λT/m, AT/m,X2). Hence, for any m ∈ N with T/m < 2k2 we have

Rm
T/m,n + R̃m

T/m,nV
2(x) ≤ V 2(x) +ATm−1

∑
k∈N

λT/m ≤ V 2(x) +A log−1(1/λ)λ−γ̄ .

Therefore, the second part of (4.62) is satis�ed and we can apply Theorem 4.1.28. Using Theorem 4.1.18

and we get that for any m,n ∈ N with x, y ∈ Rd and T/m ∈ (0, 2k2)

‖δxRm
T/m,n − δyRm

T/m,n‖V ≤ C1/m,cρ
T
1/m,c {V (x) + V (y)} ,

where C1/m,c ≥ 0 and ρ1/m,c ∈ (0, 1), see Section 4.1.7. We conclude upon noting that C1/m,c and

ρ1/m,c admit limits Cc and ρc when m→ +∞ which do not depend on n.

Proof of Lemma 4.1.25

(a) Let x ∈ Rd and let (Xt)t≥0 a solution of (4.55) starting from x. De�ne for any k ∈ N?, τk = inf{t ≥
0 : ‖Xt‖ ≥ k} and for any t ≥ 0, Mt =

∫ t
0
〈∇V (Xs),dBs〉. Using the Itô formula we obtain that for

every t ≥ 0 and k ∈ N?

V (Xt∧τk)eζ(t∧τk) =

∫ t∧τk

0

[
eζ(t∧τk)AV (Xu) + ζeζuV (Xu)

]
du+ Mt∧τk + V (x)

= V (Xs∧τk)eζ(s∧τk) + Mt∧τk −Ms∧τk +

∫ t∧τk

s∧τk

[
eζ(t∧τk)AV (Xu) + ζeζuV (Xu)

]
du

≤ V (Xs∧τk)eζ(s∧τk) + Mt∧τk −Ms∧τk .

Therefore since for any k ∈ N?, (Mt∧τk)t≥0 is a (Ft)t≥0-martingale, we get for every t ≥ s ≥ 0 and

k ∈ N?
E
[
V (Xt∧τk)eζ(t∧τk)

∣∣∣Fs] ≤ V (Xs∧τk)eζ(s∧τk) ,

which concludes the �rst part of the proof taking k → +∞ and using Fatou’s lemma.

(b) Similarly we have that (V (Xt)e
ζt − B(1 − exp(−ζt))/ζ)t≥0 is a (Ft)t≥0-supermartingale which

concludes the proof upon taking the expectation of V (Xt)e
ζt −B(1− exp(−ζt))/ζ .

Proof of Proposition 4.1.26 Let T ≥ 0, x ∈ Rd, n ∈ N and m ∈ N? with T/m ≤ γ̄. Using [DM17,

Lemma 24], we obtain

‖δxPT − δxR̃m
T/m,n‖V

≤ (1/
√

2)
(
δxPTV

2(x) + δxR̃m
T/m,nV

2(x)
)1/2

KL
(
δxPT |δxR̃m

T/m,n

)1/2

.

Let M ≥ 0, n ∈ N? with n−1 < γ̄, x ∈ Rd and k ∈ N. Therefore, we only need to show that

limm→+∞KL(δxPT |δxR̃m
T/m,n) = 0. Consider the two processes (Xt)t∈[0,T ] and (X̃t)t∈[0,T ] de�ned

by (4.55) with X0 = X̃0 = x and

dX̃t = b̃T/m,n(t, (X̃s)s∈[0,T ])dt+ dBt , X̃0 = x ,
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where for any (ws)s∈[0,T ] ∈ C([0, T ] ,Rd), t ∈ [0, T ],

b̃T/m,n(t, (ws)s∈[0,T ]) =

m−1∑
i=0

bT/m,n(wiT/n)1[iT/m,(i+1)T/m)(t) . (4.90)

Note for any i ∈ {0, . . . ,m}, the distribution of X̃iT/m is δxR̃i
T/m,n. Using that b and bT/m,n are

continuous and that (Xt)t∈[0,T ] and (X̃t)t∈[0,T ] take their values in C([0, T ] ,Rd), we obtain that

P

(∫ T

0

‖b(Xt)‖2dt < +∞

)
= 1 ,

P

(∫ T

0

‖b̃T/m,n(t, (X̃s)s∈[0,T ])‖2dt < +∞

)
= 1 ,

and

P

(∫ T

0

‖b(Bt)‖2dt < +∞

)
= 1 ,

P

(∫ T

0

‖b̃T/m,n(t, (Bs)s∈[0,T ])‖2dt < +∞

)
= 1 ,

where (Bt)t∈[0,T ] is the d-dimensional Brownian motion associated with (4.55). Therefore by [LS01,

Theorem 7.7] the distributions of (Xt)t∈[0,T ] and (X̃t)t∈[0,T ], denoted by µx and µ̃x respectively, are

equivalent to the distribution of the Brownian motion µxB starting at x. In addition, µx admits a Radon-

Nikodym density w.r.t. to µxB and µxB admits a Radon-Nikodym density w.r.t. to µ̃x, given µxB-almost

surely for any (wt)t∈[0,T ] ∈ C([0, T ] ,Rd) by

dµx

dµxB
((wt)t∈[0,T ]) = exp

(
(1/2)

∫ T

0

〈b(ws),dws〉 − (1/4)

∫ T

0

‖b(ws)‖2ds

)
,

dµxB
dµ̃x

((wt)t∈[0,T ]) = exp

(
−(1/2)

∫ T

0

〈b̃T/m,n(s, (wu)u∈[0,T ]),dws〉

+(1/4)

∫ T

0

‖b̃T/m,n(s, (wu)u∈[0,T ])‖2ds

)
.

Finally we obtain that µxB-almost surely for any (ws)s∈[0,T ] ∈ C([0, T ] ,Rd)

dµx

dµ̃x
((wt)t∈[0,T ]) = exp

(
(1/2)

∫ T

0

〈b(ws)− b̃T/m,n(s, (wu)u∈[0,T ]),dws〉

+(1/4)

∫ T

0

‖b̃T/m,n(s, (wu)u∈[0,T ])‖2 − ‖b(ws)‖2ds

)
. (4.91)

Now de�ne for any (ws)s∈[0,T ] ∈ C([0, T ] ,Rd) and t ∈ [0, T ]

bT/m(t, (ws)s∈[0,T ]) =

m−1∑
i=0

b(wiT/m)1[iT/m,(i+1)T/m)(t) . (4.92)
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Using (4.55), (4.90), (4.91), L2, and for any a1, a1 ∈ Rd, ‖a1 − a2‖2 ≤ 2(‖a1‖2 + ‖a2‖2), we obtain that

2KL
(
δxPT |δxR̃m

T/m,n

)
≤ 2−1E

[∫ T

0

‖b(Xs)− b̃T/m,n(s, (Xu)u∈[0,T ])‖2ds

]
(4.93)

≤ E

[∫ T

0

‖b(Xs)− bT/m(s, (Xu)u∈[0,T ])‖2ds

]

+

m−1∑
i=0

E

[∫ (i+1)T/m

iT/m

‖b(XiT/m)− bT/m,n(XiT/m)‖2ds

]

≤ E

[∫ T

0

‖b(Xs)− bT/m(s, (Xu)u∈[0,T ])‖2ds

]
+ C1T

1+βm−β sup
s∈[0,T ]

E
[
‖b(Xs)‖2

]
.

It only remains to show that the �rst term goes to 0 as m→ +∞. Note that since (Xs)s∈[0,T ] is almost

surely continuous and b is continuous on Rd, limm→+∞ ‖b(Xs)− bT/m(s, (Xu)u∈[0,T ])‖2 = 0 for any

s ∈ [0, T ] almost surely. Then, using the Lebesgue dominated convergence theorem and the continuity

of b, we obtain that for any M ≥ 0,

lim
m→+∞

E

[
1[0,M ]

(
sup

s∈[0,T ]

‖Xs‖

)∫ T

0

‖b(Xs)− bT/m(s, (Xu)u∈[0,T ])‖2ds

]
= 0 . (4.94)

On the other hand, using Hölder’s inequality and the de�nition of bT/m (4.92), we obtain that for any

M ≥ 0,

E

[
1(M,+∞)

(
sup

s∈[0,T ]

‖Xs‖

)∫ T

0

‖b(Xs)− bT/m(s, (Xs)s∈[0,T ])‖2ds

]

≤ 2

(
P

(
sup

s∈[0,T ]

‖Xs‖ > M

))εb/(1+εb)

∫ T

0

(
E1/(1+εb)

[
‖b(Xs)‖2(1+εb)

]
+ E1/(1+εb)

[∥∥bT/m(s, (Xu)u∈[0,T ])
∥∥2(1+εb)

])
ds

≤ 4T

(
P

(
sup

s∈[0,T ]

‖Xs‖ > M

))εb/(1+εb)(
sup

s∈[0,T ]

E
[
‖b(Xs)‖2(1+εb)

])1/(1+εb)

.

Combining this result, L3, and (4.94) in (4.93), we obtain that for any M ≥ 0,

lim sup
m→+∞

KL
(
δxPT |δxR̃m

T/m,n

)
≤ 2T

(
P

(
sup

s∈[0,T ]

‖Xs‖ > M

))εb/(1+εb)(
sup

s∈[0,T ]

E
[
‖b(Xs)‖2(1+εb)

])1/(1+εb)

.

Since (Xs)s∈[0,T ] is a.s. continuous, we get by the monotone convergence theorem and L3, taking

M → +∞, that limm→+∞KL(δxPT |δxR̃m
T/m,n) = 0, which concludes the proof.
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Proof of Proposition 4.1.27 For any n ∈ N and γ ∈ (0, γ̄], we consider the synchronous Markov

coupling Qγ,n for Rγ,n and R̃γ,n de�ned for any (x, y) ∈ Rd × Rd and A ∈ B(Rd) by

Qγ,n((x, y),A) (4.95)

=
1

(2πγ)d/2

∫
Rd
1(Id,ΠKn )←(A)(Tγ(x) +

√
γz, Tγ(y) +

√
γz)e−‖z‖

2/2dz ,

with Tγ(x) = x + γb(x). Let T ≥ 0, n ∈ N, m ∈ N? such that T/m ≤ γ̄. Consider (Xj , X̃j)j∈N a

Markov chain with Markov kernel QT/m,n and started fromX0 = X̃0 = x for a �xed x ∈ Rd. Note that

by de�nition and L4, we have that for k < τ , Xk = X̃k where τ = inf{j ∈ N : X̃j 6∈ B̄(0, n)}. Using

L5,

(
Ṽ (X̃j) exp

[
−j log(Ã)(T/m)(1 + Ẽn(T/m)ε̃n)

])
j∈N

is a positive supermartingale. Combining

(4.95), the Cauchy-Schwarz inequality, L5 and the Doob maximal inequality for positive supermartingale

[Nev75, Proposition II-2-7], we get for any x ∈ Rd

‖δxRm
T/m,n − δxR̃m

T/m,n‖V ≤ E
[
1∆c

Rd
(Xm, X̃m)(V (Xm) + V (X̃m))/2

]
≤ (1/2)P

(
sup

j∈{0,...,m}

∥∥∥X̃j

∥∥∥ ≥ n)(E [V 2(Xm)
]1/2

+ E
[
V 2(X̃m)

]1/2)

≤ (1/2)P

(
sup

j∈{0,...,m}
Ṽ (X̃j) ≥ n

)(
E
[
V 2(Xm)

]1/2
+ E

[
V 2(X̃m)

]1/2)
≤ (2n)−1 exp

[
log(Ã)(T/m)(1 + Ẽn(T/m)εn)

]
Ṽ (x)

×
(

(Rm
T/m,nV

2(x))1/2 + (R̃m
T/m,nV

2(x))1/2
)
,

which concludes the proof upon taking m→ +∞ then n→ +∞.

Proof of Proposition 4.1.29 Let p ∈ N? and V ∈ C2(Rd, [1,+∞)) be de�ned for any x ∈ Rd

by V (x) = 1 + ‖x‖2p. For any x ∈ Rd, ∇V (x) = 2p ‖x‖2(p−1)
x and ∆V (x) = (4p(p − 1) +

2pd) ‖x‖2(p−1)
. Therefore, using B2 and the de�nition of A we obtain that for any x ∈ Rd

AV (x) ≤ [2p(p− 1) + p(d+ 2L)]V (x) . (4.96)

Hence, using (4.96) and [Kha11, Theorem 3.5], we obtain thatL1 holds. Using that for any supx∈Rd ‖b(x)‖(1+
‖x‖2)−1 < +∞, (4.96) and Lemma 4.1.25-(b) we obtain that L3 holds.

L2 and L4 are trivially satis�ed. Finally, using once again B2, we have that for any x ∈ Rd and

γ ∈ (0, γ̄] we have

Rγ(1 + ‖x‖2) ≤ 1 + ‖x+ γb(x)‖2 + γd

≤ 1 + ‖x‖2 + 2γ ‖b(x)‖ ‖x‖+ γ2 ‖b(x)‖2 + γd

≤ 1 + ‖x‖2 + 2γL ‖x‖2 + γ2L2 ‖x‖2 + γd

≤ (1 + 2γL + γ2L2 + γd)(1 + ‖x‖2) ,

which implies that L5 holds.
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Proof of Proposition 4.1.30 Let p ∈ N? and V ∈ C2(Rd, [1,+∞)) be de�ned for any x ∈ Rd

by V (x) = 1 + ‖x‖2p. For any x ∈ Rd, ∇V (x) = 2p ‖x‖2(p−1)
x and ∆V (x) = (4p(p − 1) +

2pd) ‖x‖2(p−1)
. Therefore, using B3(m) and the de�nition of A we obtain that for any x ∈ Rd

AV (x) ≤ [2p(p− 1) + p(d− 2m)]V (x) . (4.97)

Hence, using (4.97) and [Kha11, Theorem 3.5], we obtain that L1 holds.

(a) If there exists εb > 0 such that supx∈Rd ‖b(x)‖2(1+εb) (1 + ‖x‖2p)−1 < +∞, using (4.97) and

Lemma 4.1.25-(b) we obtain that L3 holds.

(b) If there exists εb > 0 such that supx∈Rd ‖b(x)‖2(1+εb) e−m
+
2 ‖x‖

2

< +∞, and C2 holds, then consider

for any x ∈ Rd, V (x) = em
+
2 ‖x‖

2

. We have for any x ∈ Rd, ∇V (x) = 2m+
2 em

+
2 ‖x‖

2

x and ∆V (x) =

4m+2
2 em

+
2 ‖x‖

2 ‖x‖2 + 2m+
2 em

+
2 ‖x‖

2

d. Therefore, using C2 we have for any x ∈ B̄(0, R2)c

AV (x) ≤ m+
2

[
d+ (4m+

2 /2− 2m+
2 ) ‖x‖2

]
V (x) ≤ m+

2 dV (x) . (4.98)

Setting ζ = (m+
2 d)∨ supx∈B̄(0,R2)AV (x), we obtain that V satis�es Dc(V, ζ, 0). Therefore using (4.98)

and Lemma 4.1.25-(b), we obtain that L3 holds.

Proof of Proposition 4.1.31 We preface the proof by a preliminary computation. Let n ∈ N, γ ∈
(0, γ̄], x ∈ Rd and X = x + γbγ,n(x) +

√
γZ , where Z is a d-dimensional Gaussian random variable

with zero mean and covariance identity. We have using B3(m) and (4.63)

E
[
‖X‖2

]
≤ ‖x‖2 − 2γmΦn(x) ‖x‖2 + γ2Φn(x)2 ‖b(x)‖2 + γd , (4.99)

with Φn(x) = ϕn(x) + (1− ϕn(x))(1 + γα ‖b(x)‖)−1
. We recall that

ϕn(x) ∈ [0, 1] and ϕn(x) =

{
1 if x ∈ B̄(0, n),

0 if x ∈ B̄(0, n+ 1)c .
(4.100)

Using B5 and (4.100), we have

Φn(x) ‖b(x)‖ ≤ Ln+1 ‖x‖+ γ−α . (4.101)

Combining (4.99) and (4.101) and since Φn(x) ≤ 1 by (4.100), we obtain

E
[
1 + ‖X‖2

]
≤ (1 + ‖x‖2)

[
1 + 2γ |m|+ 2γ2L2

n+1

]
+ 2γ2−2α + γd . (4.102)

We are now able to complete the proof of Proposition 4.1.31. It is easy to check that L2 holds with

β = 2α. It only remains to show that L5 holds. Consider for any x ∈ Rd, Ṽ (x) = 1 + ‖x‖. By (4.102),

for any γ ∈ (0, γ̄], n ∈ N and x ∈ Rd, we have using for any s ≥ R, 1 + s ≤ es we obtain

Rγ,nṼ (x) ≤ Ṽ (x)
[
1 + 2γ |m|+ 2γ2L2

n+1 + 2γ2−2α + γd
]

≤ Ṽ (x) exp
[
γ
{

2 |m|+ d+ 2γ1−2α(γ2αLn+1 + 1)
}]

≤ Ṽ (x) exp
[
2γ {2 |m|+ d}

{
1 + γ1−2α(γ2αLn+1 + 1)

}]
.

As a result using that d ≥ 1, L5 holds upon taking Ã = exp(4 |m| + 2d), ε̃n = 1 − 2α and Ẽn =
2(Ln+1γ̄

2α + 1).
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Proof of Proposition 4.1.33 The proof is similar to the one of Proposition 4.1.34 upon replacing

(4.102) by

E
[
1 + ‖X‖2

]
≤ (1 + ‖x‖2)(1 + 2γL + 2γ2L2) + γd .

Proof of Proposition 4.1.34 Let M ≥ 0, n ∈ N and p ≥ 1. Using the Log-Sobolev inequality

[BLM13, Theorem 5.5], the fact that φ is 1-Lipschitz and that ΠB̄(0,n) is non expansive, as well as the

Jensen inequality we obtain for any γ ∈ (0, γ̄] and x ∈ Rd,

Rγ,nV
p
M (x) ≤ exp

[
pMR̃γ,nφ(x) + (pM)2γ/2

]
≤ exp

[
pM

√
R̃γ,nφ2(x) + (pM)2γ/2

]
.

Using (4.102) and that

√
1 + t ≤ 1+t/2 for any t ∈ (−1,+∞) we get for any γ ∈ (0, γ̄] and x ∈ B̄(0, n)

Rγ,nV
p
M (x)

≤ exp
[
pM

{
φ(x)2(1 + 2γ |m|+ 2γ2L2

n+1) + 2γ2−2α + γd
}1/2

+ (pM)2γ/2
]

≤ exp
[
(1 + γ |m|+ γ2L2

n+1)pMφ(x)
]

exp
[
(1 + pM)2

{
γ(d+ 1)/2 + γ2−2a

}]
≤ V p(1+C1γ+C2,nγ

2)
M (x) exp

[
p2C3γ

]
,

with C1 = |m|, C2,n = L2
n+1 and C3 = (1 + M)2(d + 3)/2. By recursion, we obtain that for any

m,n ∈ N with m−1 ∈ (0, γ̄], T ≥ 0 and x ∈ B̄(0, n)

Rm
T/m,nVM (x)

≤ VM (x)am exp

TC3

m−1∑
j=0

(1 + TC1/m+ C2,n(T/m)2)2j/m


≤ VM (x)am exp

[
TC3(1 + TC1/m+ C2,n(T/m)2)2m

]
,

with am = (1 + TC1/m + C2,n(T/m)2)m. Since limm→+∞(1 + TC1/m + C2,n(T/m)2)tm =
exp(tTC1) for any t, T ≥ 0, we get that for any n ∈ N, T ≥ 0 and x ∈ B̄(0, n)

lim sup
m→+∞

Rm
T/m,nVM (x) ≤ exp(TC3 exp(2TC1))V

exp(TC1)
M (x) . (4.103)

We conclude the proof upon remarking that the right-hand side quantity in (4.103) does not depend on

n and that the same inequality holds replacing RT/m,n by R̃T/m,n in (4.103).

Proof of Proposition 4.1.35 We have for any x ∈ Rd,

∇φ(x) = x/φ(x) , ∇2φ(x) = Id /φ(x)− xx>/φ2(x) ,

and therefore since VM (x) = exp(Mφ(x)),

∇VM (x) = M∇φ(x)VM (x) ,

∇2VM (x) =
{
M2∇φ(x)(∇φ(x))> +M∇2φ(x)

}
VM (x) .

Therefore, for any x ∈ Rd,
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(AVM (x))/VM (x)

≤
[
M2 ‖x‖2 /φ2(x) +M

{
d/φ(x)− ‖x‖2 /φ2(x)

}]/
2 +M sup

x∈Rd
〈b(x), x〉+ .

Hence, for any x ∈ Rd, AVM (x) ≤ ζVM (x) with ζ = M{supx∈Rd〈b(x), x〉+ + d/2} + M2
. We

conclude using Lemma 4.1.25-(a) and the Doob maximal inequality.

Minorization conditions for functional autoregressive models

In this section, we extend and complete the results of [DM19, Section 6] on functional autoregressive

models. LetX ∈ B(Rd) equipped with its trace σ-�eldX = {A∩X : A ∈ B(Rd)}. In fact, we consider a

slightly more general class of models than [DM19] which is associated with non-homogeneous Markov

chains (X
(a)
k )k∈N with state space (X,X ) de�ned for k ≥ 0 by

X
(a)
k+1 = Π

(
Tk+1(X

(a)
k ) + σk+1Zk+1

)
,

where Π is a measurable function from Rd to X, (Tk)k≥1 is a sequence of measurable functions from X
to Rd, (σk)k≥1 is a sequence of positive real numbers and (Zk)k≥1 is a sequence of i.i.d. d dimensional

standard Gaussian random variables. We assume that Π satis�es A1. We also assume some Lipschitz

regularity on the operator Tk for any k ∈ N?

AR1 (A). For all k ≥ 1 there exists $k ∈ R such that for all (x, y) ∈ A,

‖Tk(x)− Tk(y)‖2 ≤ (1 +$k) ‖x− y‖2 .

The sequence {X(a)
k , k ∈ N} is an inhomogeneous Markov chain associated with the family of

Markov kernels (P
(a)
k )k≥1 on (Rd,B(Rd)) given for all x ∈ Rd and A ∈ Rd by

P
(a)
k (x,A) =

1

(2πσ2
k)d/2

∫
Π−1(A)

exp
(
−‖y − Tk(x)‖2 /(2σ2

k)
)

dy .

We denote for all n ≥ 1 by Q
(a)
n the marginal distribution of X

(a)
n given by Q

(a)
n = P

(a)
1 · · ·P (a)

n . To

obtain an upper bound of ‖δxQ(a)
n − δyQ

(a)
n ‖TV for any x, y ∈ Rd, n ∈ N?, we introduce a Markov

coupling (X
(a)
k , Y

(a)
k )k∈N such that for any n ∈ N?, the distribution of X

(a)
n and Y

(a)
n are δxQ

(a)
n and

δxQ
(a)
n respectively, exactly as we have introduced in the homogeneous setting the Markov coupling

with kernel Kγ de�ned by (4.23) for Rγ de�ned in (4.20). For completeness and readability, we recall

the construction of (X
(a)
k , Y

(a)
k )k∈N. For all k ∈ N? and x, y, z ∈ Rd, de�ne

ek(x, y) =

{
Ek(x, y)/‖Ek(x, y)‖ if Ek(x, y) 6= 0

0 otherwise

, Ek(x, y) = Tk(y)− Tk(x) , (4.104)

Sk(x, y, z) = Tk(y) + (Id−2ek(x, y)ek(x, y)>)z ,

pk(x, y, z) = 1 ∧
ϕϕϕσ2

k+1
(‖Ek(x, y)‖ − 〈ek(x, y), z〉)
ϕϕϕσ2

k+1
(〈ek(x, y), z〉)

, (4.105)
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where ϕϕϕσ2
k

is the one-dimensional zero mean Gaussian distribution function with variance σ2
k . Let

(Uk)k∈N? be a sequence of i.i.d. uniform random variables on [0, 1] and de�ne the Markov chain (X
(a)
k , Y

(a)
k )k∈N

starting from (X
(a)
0 , Y

(a)
0 ) ∈ X2

by the recursion: for any k ≥ 0

X̃
(a)
k+1 = Tk+1(X

(a)
k ) + σk+1Zk+1 ,

Ỹ
(a)
k+1 =

{
X̃

(a)
k+1 if Tk+1(X

(a)
k ) = Tk+1(Y

(a)
k ) ;

W
(a)
k+1X̃

(a)
k+1 + (1−W (a)

k+1)Sk+1(X
(a)
k , Y

(a)
k , σk+1Zk+1) otherwise ,

(4.106)

where W
(a)
k+1 = 1(−∞,0](Uk+1 − pk+1(X

(a)
k , Y

(a)
k , σk+1Zk+1)) and �nally set

(X
(a)
k+1, Y

(a)
k+1) = (Π(X̃

(a)
k+1),Π(Ỹ

(a)
k+1)) . (4.107)

For any k ∈ N?, marginally, the distribution of X
(a)
k+1 given X

(a)
k is P

(a)
k+1(X

(a)
k , ·), and it is well-know

(see e.g. [BDJ98, Section 3.3]) that Ỹ
(a)
k+1 and Tγ(Y

(a)
k ) + σk+1Zk+1 have the same distribution given

Yk , and therefore the distribution of Yk+1 given Yk is P
(a)
k+1(Yk, ·). As a result for any (x, y) ∈ X2

and

n ∈ N?, (X
(a)
n , Y

(a)
n ) with (X

(a)
0 , Y

(a)
0 ) = (x, y) is a coupling between δxQ

(a)
n and δyQ

(a)
n . Therefore,

we obtain that ‖δxQ(a)
n −δyQ(a)

n ‖TV ≤ P(X
(a)
n 6= Y

(a)
n ). Therefore to get an upper bound on ‖δxQ(a)

n −
δyQ

(a)
n ‖TV, it is su�cient to obtain a bound on P(X

(a)
n 6= Y

(a)
n ) which is a simple consequence of the

following more general result.

Theorem 4.1.43. Let A ∈ B(R2d) and assume A1 and AR1(A). Let (X
(a)
k , Y

(a)
k )k∈N be de�ned by

(4.107), with (X
(a)
0 , Y

(a)
0 ) = (x, y) ∈ A. Then for any n ∈ N?,

P
[
X(a)
n 6= Y (a)

n and for any k ∈ {1, . . . , n− 1}, (X(a)
k , Y

(a)
k ) ∈ A2

]
≤ 1∆c

X
(x, y)

{
1− 2Φ

(
− ‖x− y‖

2(Ξ
(a)
n )1/2

)}
,

where Φ is the cumulative distribution function of the standard normal distribution on R and (Ξ
(a)
i )i≥1 is

de�ned for all k ≥ 1 by Ξ
(a)
k =

∑k
i=1{σ2

i /
∏i
j=1(1 +$j)}.

Proof. Let (F (a)
k )k∈N be the �ltration associated to (X

(a)
k , Y

(a)
k )k∈N. Denote for any k ∈ N,

Ak =

k⋂
i=0

{(X(a)
i , Y

(a)
i ) ∈ A} , A−1 = A0 ,

and for all k1, k2 ∈ N∗, k1 ≤ k2, Ξ
(a)
k1,k2

=
∑k2
i=k1
{σ2

i /
∏i
j=k1

(1 + $j)}. Let n ≥ 1 and (x, y) ∈ A2
.

We show by backward induction that for all k ∈ {0, · · · , n− 1},

P({X(a)
n 6= Y (a)

n }∩An−1) ≤ E

1∆c
X
(X

(a)
k , Y

(a)
k )1Ak−1

1− 2Φ

−
∥∥∥X(a)

k − Y
(a)
k

∥∥∥
2
(

Ξ
(a)
k+1,n

)1/2



 . (4.108)

Note that the inequality for k = 0 will conclude the proof. Using by (4.106) that X̃
(a)
n = Ỹ

(a)
n if

X
(a)
n−1 = Y

(a)
n−1 or Wn = 1(−∞,0](Un − pn(X

(a)
n−1, Y

(a)
n−1, σnZn)) = 1, where pn is de�ned by (4.105),

and (Un, Zn) are independent random variables independent of F (a)
n−1, we obtain on {X(a)

n−1 6= Y
(a)
n−1}
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E
[
1∆X

(X̃(a)
n , Ỹ (a)

n )
∣∣∣F (a)
n−1

]
= E

[
pn(X

(a)
n−1, Y

(a)
n−1, σnZn)

∣∣∣F (a)
n−1

]
= 2Φ

{
−
∥∥∥(2σn)−1En(X

(a)
n−1, Y

(a)
n−1)

∥∥∥} .

Since {X(a)
n 6= Y

(a)
n } ⊂ {X̃(a)

n 6= Ỹ
(a)
n } ⊂ {X(a)

n−1 6= Y
(a)
n−1} by (4.107) and (4.106), we get

P
[
{X(a)

n 6= Y (a)
n } ∩An−1

]
≤ E

[
1∆c

X
(X

(a)
n−1, Y

(a)
n−1)1An−1

E
[
1∆c

X
(X̃(a)

n , Ỹ (a)
n )

∣∣∣F (a)
n−1

]]
= E

[
1∆c

X
(X

(a)
n−1, Y

(a)
n−1)1An−1

[
1− 2Φ

{
−
∥∥∥(2σn)−1En(X

(a)
n−1, Y

(a)
n−1)

∥∥∥}]] ,
Using that (X

(a)
n−1, Y

(a)
n−1) ∈ A2

on An−1, AR1(A) and (4.104), we obtain that

‖En(X
(a)
n−1, Y

(a)
n−1)‖2 ≤ (1 +$n)‖X(a)

n−1 − Y
(a)
n−1‖2 ,

showing (4.108) holds for k = n−1 since An−2 ⊂ An−1. Assume that (4.108) holds for k ∈ {1, . . . , n−
1}. On {X̃(a)

k 6= Ỹ
(a)
k }, we have∥∥∥X̃(a)
k − Ỹ

(a)
k

∥∥∥ =
∣∣∣−∥∥∥Ek(X

(a)
k−1, Y

(a)
k−1)

∥∥∥+ 2σkek(X
(a)
k−1, Y

(a)
k−1)TZk

∣∣∣ ,
which implies by (4.107) and since Π is non expansive by A1

1∆c
X
(X

(a)
k , Y

(a)
k )

1− 2Φ

−
∥∥∥X(a)

k − Y
(a)
k

∥∥∥
2(Ξ

(a)
k+1,n)1/2




≤ 1∆c
X
(X

(a)
k , Y

(a)
k )

1− 2Φ

−
∥∥∥X̃(a)

k − Ỹ
(a)
k

∥∥∥
2(Ξ

(a)
k+1,n)1/2




≤ 1∆c
X
(X

(a)
k , Y

(a)
k )

1− 2Φ

−
∣∣∣2σkek(X

(a)
k−1, Y

(a)
k−1)TZk −

∥∥∥Ek(X
(a)
k−1, Y

(a)
k−1)

∥∥∥∣∣∣
2(Ξ

(a)
k+1,n)1/2


 .

Since Zk is independent of F (a)
k , σkek(X

(a)
k−1, X

(a)
k−1)TZk is a real Gaussian random variable with zero

mean and variance σ2
k . Therefore by [DM19, Lemma 20] and since Ak−1 is F (a)

k−1-measurable, we get

E

1∆c
X
(X

(a)
k , Y

(a)
k )1Ak−1

1− 2Φ

−
∥∥∥X(a)

k − Y
(a)
k

∥∥∥
2(Ξ

(a)
k+1,n)1/2


∣∣∣∣∣∣F (a)

k−1


≤ 1Ak−1

1∆c
X
(X

(a)
k−1, Y

(a)
k−1)

1− 2Φ

−
∥∥∥Ek(X

(a)
k−1, Y

(a)
k−1)

∥∥∥
2
(
σk + Ξ

(a)
k+1,n

)1/2


 .

Since A2(A) implies that ‖Ek(X
(a)
k−1, Y

(a)
k−1)‖2 ≤ (1 + $k−1)

∥∥∥X(a)
k−1 − Y

(a)
k−1

∥∥∥2

on Ak−1 and Ak−2 ⊂
Ak−1 concludes the induction of (4.108).

Quantitative convergence results based on [Dou+18; DMR04]

We start by recalling the following lemma from [Dou+18] which is inspired from the results of [DMR04].
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Lemma 4.1.44 ([Dou+18, Lemma 19.4.2]). Let (Y,Y) be a measurable space and R be a Markov kernel
over (Y,Y). Let Q be a Markov coupling kernel for R. Assume there exist C ∈ Y⊗2,M ≥ 0, a measurable
functionW : Y × Y → [1,+∞), λ ∈ [0, 1) and c ≥ 0 such that for any x, y ∈ Y,

QW (x, y) ≤ λW (x, y)1Cc(x, y) + c1C(x, y) .

In addition, assume that there exists ε > 0 such that for any (x, y) ∈ C,

Q((x, y),∆c
Y) ≤ 1− ε ,

where ∆Y = {(y, y) : y ∈ Y}. Then there exist ρ ∈ [0, 1) and C ≥ 0 such that for any x, y ∈ Y and
n ∈ N? ∫

Y×Y
1∆Y

(x̃, ỹ)W (x̃, ỹ)Qn((x, y),d(x̃, ỹ)) ≤ CρnW (x, y) ,

where
C = 2(1 + c/{(1− ε)(1− λ)}) ,

log(ρ) = {log(1− ε) log(λ)}/{log(1− ε) + log(λ)− log(c)} .

Theorem 4.1.45. Let (Y,Y) be a measurable space and R be a Markov kernel over (Y,Y). Let Q be
a Markov coupling kernel of R. Assume that there exist λ ∈ [0, 1), A ≥ 0 and a measurable function
W : Y×Y → [1,+∞), such that Q satis�es Dd(W,λ,A,Y). In addition, assume that there exist ` ∈ N?,
ε > 0 andM ≥ 1 such that for any (x, y) ∈ CM = {(x, y) ∈ Y × Y, W (x, y) ≤M},

Q`((x, y),∆c
Y) ≤ 1− ε , (4.109)

with ∆Y = {(x, y) ∈ Y2 : x = y} andM ≥ 2A/(1 − λ). Then, there exist ρ ∈ [0, 1) and C ≥ 0 such
that for any n ∈ N and x, y ∈ Y

Wc(δxRn, δyRn) ≤ Cρbn/`cW (x, y) ,

with

C = 2(1 +A`)(1 + c`/{(1− ε)(1− λ`)}) ,

λ` = (λ` + 1)/2 , c` = λ`M +A` , A` = A(1− λ`)/(1− λ) ,

log(ρ`) = {log(1− ε) log(λ`)}/{log(1− ε) + log(λ`)− log(c`)} . (4.110)

Proof. We �rst show that for any (x, y) ∈ CM ,

Q`(x, y) ≤ λ`W (x, y)1Cc
M

(x, y) + c`1CM (x, y) , (4.111)

in order to apply Lemma 4.1.44 to R`
with the Markov coupling kernel Q`

. By a straightforward induc-

tion, for any x, y ∈ Y we have

Q`W (x, y) ≤ λ`W (x, y) +A(1− λ`)/(1− λ) . (4.112)

We distinguish two cases. If (x, y) /∈ CM , using that A/M ≥ (1− λ)/2 we have that

Q`W (x, y) ≤ λ`W (x, y) +A(1− λ`)W (x, y)/(M(1− λ)) ≤ 2−1(λ` + 1)W (x, y) .

If (x, y) ∈ CM , we have

Q`W (x, y) ≤ λ`M +A(1− λ`)/(1− λ) .
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Therefore (4.111) holds. As a result and since by assumption we have (4.109), we can apply Lemma 4.1.44

to R`
. Then, we obtain that for any i ∈ N and x, y ∈ Y∫

Y×Y
1∆Y

(x̃, ỹ)W (x̃, ỹ)Q`i((x, y),d(x̃, ỹ)) ≤ C`ρ`i` W (x, y) ,

with ρ` de�ned by (4.110) and C̃` = 2
{

1 + c` [(1− λ`)(1− ε)]−1
}

. In addition, using (4.112), for any

k ∈ {0, . . . , ` − 1} and x, y ∈ Y, QkW (x, y) ≤ (1 + A`)W (x, y). Therefore, for any n ∈ N, since

n = in`+ kn with in = bn/`c and kn ∈ {0, . . . , `− 1}, we obtain for any x, y ∈ Y that

Wc(δxRn, δyRn) ≤ C̃`ρ`in`
∫
Y×Y

1∆Y
(x̃, ỹ)W (x̃, ỹ)Qkn((x, y),d(x̃, ỹ))

≤ (1 +A`)C̃`ρ
bn/`c
` W (x, y) ,

which concludes the proof.

We now state an important consequence of Theorem 4.1.45. The comparison between Theorem 4.1.46

and Theorem 4.1.8 is conducted in the remarks which follow Theorem 4.1.8.

Theorem 4.1.46. Assume that there exists a measurable functionW : X × X → [1,+∞) such that for
any C ≥ 0,

diam
{

(x, y) ∈ X2 : W (x, y) ≤ C
}
< +∞ .

Assume in addition that there exist λ ∈ [0, 1), A ≥ 0 such that for any γ ∈ (0, γ̄], there exists K̃γ ,
a Markov coupling kernel for Rγ , satisfying Dd(W,λγ , Aγ,X2). Further, assume that there exists Ψ :
(0, γ̄]× N? × R+ → [0, 1] such that for any γ ∈ (0, γ̄], ` ∈ N? and x, y ∈ X, (4.32) is satis�ed. Then the
following results hold.

(a) For any γ ∈ (0, γ̄], Md ≥ diam
({

(x, y) ∈ X2 : W (x, y) ≤ Bd

})
with Bd = 2A(1 + γ̄){1 +

log−1(1/λ)}, ` ∈ N?, x, y ∈ X and k ∈ N

Wc(δxRk
γ , δyRk

γ) ≤ Cγρ
bk(`d1/γe)−1c
γ W (x, y) , (4.113)

where Wc is the Wasserstein metric associated with c de�ned by (4.30),

Cγ = 2[1 +Aγ ][1 + cγ/{(1− ε̄d,2)(1− λγ)} ] ,

log(ργ) = {log(1− ε̄d,2) log(λγ)}/{log(1− ε̄d,2) + log(λγ)− log(cγ)} < 0 ,

Aγ = Aγ(1− λγ`d1/γe)/(1− λγ) , cγ = λγ`d1/γeAγ +Bd ,

ε̄d,2 = inf
γ∈(0,γ̄], (x,y)∈∆X,Md

Ψ(γ, `, ‖x− y‖) , λγ = (λγ`d1/γe + 1)/2 .

(b) For any γ ∈ (0, γ̄], Md ≥ diam
({

(x, y) ∈ X2 : W (x, y) ≤ Bd

})
with Bd = 2A(1 + γ̄){1 +

log−1(1/λ)} and ` ∈ N?, it holds that

Cγ ≤ C̄1 , log(ργ) ≤ log(ρ̄2) ≤ 0 ,

C̄1 = 2[1 + Ā1][1 + c̄1
/{

(1− ε̄d,2)(1− λ̄1)
}

] ,

log(ρ̄2) =
{

log(1− ε̄d,2) log(λ̄1)
}/{

log(1− ε̄d,2) + log(λ̄1)− log(c̄1)
}
< 0 ,

Ā1 = A(1 + γ̄) min(`, 1 + log−1(1/λ)) , c̄1 = Ā1 +Bd , λ̄1 = (λ+ 1)/2 ,
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(c) In addition, if γ̄ ≤ 1, − log(λ) ∈ [0, log(2)], A ≥ 1 and 0 < ε̄d,2 ≤ 1− e−1, then

log−1(1/ρ̄2) ≤ 12 log(2) log
[
6A
{

1 + log−1(1/λ)
}]/

(log(1/λ)ε̄d,γ̄) . (4.114)

Proof. First, note that 1− λt = −
∫ t

0
log(λ)es log(λ)ds ≥ − log(λ) t et log(λ)

for any t ∈ (0, t̄], for t̄ > 0,

and therefore

t/(1− λt) = t+ tλt/(1− λt) ≤ t̄+ log−1(λ−1) . (4.115)

(a) To establish (4.113), we apply Theorem 4.1.45. For any x, y ∈ X such that W (x, y) ≤ Bd we have

K̃`d1/γe
γ ((x, y),∆c

X) ≤ 1− ε̄d,2 .

Using that K̃γ satis�es Dd(W,λγ , Aγ,X2), we can apply Theorem 4.1.45 with M ← Bd ≥ 2Aγ/(1−
λγ) by (4.115), which completes the proof of (a).

(b) We now provide upper bounds for Cγ and ργ . These constants are non-decreasing in cγ and λγ .

Therefore it su�ces to give upper bounds on cγ , εd,γ and λγ . The result is then straightforward using

that (1−λγ`d1/γe)/(1−λγ) ≤ ` d1/γe, γ(1−λγ`d1/γe)/(1−λγ) ≤ γ̄+log−1(1/λ) and λγ`d1/γe ≤ λ.

(c) By assumption on γ̄, λ and ε̄d,1 we have that log((1− ε̄d,2)−1) ≤ 1 and

log(λ̄−1
1 ) ≤ log(λ−1) ≤ log(2) , e ≤ 2(1 + 1/ log(2)) ≤ Bd ≤ c̄1 .

As a result, we obtain that log(λ̄−1
1 )/ log(c̄1) ≤ 1, log((1− ε̄d,2)−1)/ log(c̄1) ≤ 1. Therefore we have

log−1(1/ρ̄2) =
[
log(λ̄−1

1 ) + log((1− ε̄d,2)−1) + log(c̄1)
]

/
[
log(λ̄−1

1 ) log((1− ε̄d,2)−1)
]

≤ 3 log[6A(1 + log−1(1/λ))]/
[
log(λ̄−1

1 ) log((1− ε̄d,2)−1)
]
.

Using that log(1− t) ≤ −t for any t ∈ (0, 1] and the de�nition of λ̄1, we obtain that

log−1(ρ̄−1
2 ) ≤ 6ε̄−1

d,2 (1− λ)−1 log[6A(1 + log−1(1/λ))] .

Finally, we get (4.114) using that for any t ∈ [0, log(2)], 1− e−t ≥ (2 log(2))−1t.

Note that Theorem 4.1.46 gives an upper bound on the rate of convergence ρ̄2 in the worst case

scenario for which the minorization constant ε̄d,2 is small and the constant λ in Dd(V, λγ , Aγ,X2) is

close to one.

Some remarks are in order here concerning the bounds obtained in Theorem 4.1.46 and Theo-

rem 4.1.8. Assume that ` = 1, we will see in Section 4.1.4 that the leading term in the upper bound in The-

orem 4.1.8, respectively Theorem 4.1.46, is given by log(A)/(log(λ−1)ε̄d,1), respectively log(A)/(log(λ−1)ε̄d,2).

In addition, in our applications, ε̄d,1 is larger than ε̄d,2. Therefore, in these cases the bounds provided

in Theorem 4.1.8 yield better rates than the ones in Theorem 4.1.46-(c). The main di�erence between

the two results is that in the proof of Theorem 4.1.46 a drift condition on the iterated coupling kernel

K̃
d1/γe
γ is required. However, even if such drift conditions can be derived from a drift condition on K̃γ ,

the constants obtained using this technique are not sharp in general. On the contrary, the proof of

Theorem 4.1.8 uses the iterated minorization condition and a drift condition on the original coupling

K̃γ .
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Tamed Euler-Maruyama discretization

In this subsection we consider the following assumption.

T1. X = Rd and Π = Id and

Tγ(x) = x+ γb(x)/(1 + γ ‖b(x)‖) for any γ > 0 and x ∈ Rd .

Here, we focus on drift bwhich is no longer assumed to be Lipschitz. Therefore, the ergodicity results

obtained in Section 4.1.4 no longer hold since the minorization condition we derived relied heavily on

one-sided Lipschitz condition or Lipschitz regularity for b. We now consider the following assumption

on b.

T2. There exists L̃, ˜̀≥ 0 such that for any x, y ∈ Rd

‖b(x)− b(y)‖ ≤ L̃(1 + ‖x‖
˜̀
+ ‖y‖

˜̀
) ‖x− y‖ .

In addition, assume that b(0) = 0 andM˜̀ = supx∈Rd (1 + ‖x‖
˜̀
)(1 + ‖b(x)‖)−1 < +∞.

Proposition 4.1.47. Assume T1 and T2 then A2(R2d
)-(iii) holds with γ̄ > 0 and for any γ ∈ (0, γ̄],

κ(γ) = 2L̃γ + γL̃2
γ where

L̃γ = 2γ−1M˜̀(1 +M˜̀)L̃ .

Proof. Let x, y ∈ Rd and assume that ‖x‖ ≥ ‖y‖. We have the following inequalities∥∥∥∥ b(x)

1 + γ ‖b(x)‖
− b(y)

1 + γ ‖b(y)‖

∥∥∥∥ ≤ ‖b(x)− b(y)‖
1 + γ ‖b(x)‖

+

∣∣∣∣ ‖b(y)‖
1 + γ ‖b(x)‖

− ‖b(y)‖
1 + γ ‖b(y)‖

∣∣∣∣
≤ γ−12M˜̀L̃ ‖x− y‖+ γ

‖b(y)‖ ‖b(x)− b(y)‖
(1 + γ ‖b(x)‖)(1 + γ ‖b(y)‖)

≤ γ−1M˜̀(1 +M˜̀)L̃ ‖x− y‖ .

The same inequality holds with ‖y‖ ≥ ‖x‖. Therefore, we have

‖Tγ(x)− Tγ(y)‖2 ≤
(
1 + 2γL̃γ + γ2L̃2

γ

)
‖x− y‖2 ,

which concludes the proof.

Proposition 4.1.47 implies that the conclusions of Proposition 4.1.5-(c) hold. Note that contrary to

the conclusion of Proposition 4.1.11, we do not get that supγ∈(0,γ̄] κ(γ) < +∞. Hence we have for any

˜̀∈ N?, infγ∈(0,γ̄] α+(κ, γ, ˜̀) = 0.

T3. There exist R̃ and m̃+ such that for any x ∈ B̄(0, R̃)c,

〈b(x), x〉 ≤ −m̃+‖x‖ ‖b(x)‖ .

Under T2 and T3 it is shown in [Bro+19] that there exists γ̄ > 0, λ ∈ (0, 1) and A ≥ 0 such that for

any γ ∈ (0, γ̄], Rγ satis�es Dd(V, λγ , Aγ,X) with V (x) = exp(a(1 + ‖x‖2)1/2) for some �xed a.

Theorem 4.1.48. Assume T2 and T3 then there exists γ̄ > 0 such that for any γ ∈ (0, γ̄] there exist
Cγ ≥ 0 and ργ ∈ (0, 1) with for any γ ∈ (0, γ̄], x, y ∈ Rd and k ∈ N

‖δxRk
γ − δyRk

γ‖V ≤ Cγρkγγ {V (x) + V (y)} .
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Proof. The proof is a direct application of Theorem 4.1.46-(a).

It is shown in [Bro+19, Theorem 4] that the following result holds: there exists V : Rd → [1,+∞),

γ̄ > 0, C,D ≥ 0 and ρ ∈ (0, 1) such that for any k ∈ N, γ ∈ (0, γ̄] and x ∈ Rd

‖δxRk
γ − π‖V ≤ CρkγV (x) +D

√
γ ,

where π is the invariant measure for the di�usion with drift b and di�usion coe�cient Id.

Explicit rates and asymptotics in Theorem 4.1.18

We recall that b satis�es

〈b(x), x〉 ≤ −k1‖x‖1B̄(0,R3)c(x)− k2‖b(x)‖2 + a/2 ,

with k1, k2 > 0 and R3, a ≥ 0 and that We recall that

V (x) = exp(m+
3 φ(x)) , φ(x) =

√
1 + ‖x‖2 , m+

3 ∈ (0, k1/2] . (4.116)

Let W3(x, y) = (V (x) + V (y))/2 with V (x) = exp[m+
3

√
1 + ‖x‖2] and m+

3 ∈ (0, k1/2]. Therefore,

by Proposition 4.1.17, Kγ satis�es Dd(W3, λ
γ , Aγ,X2) for any γ ∈ (0, γ̄] where γ̄ ∈ (0, 2k2), R4 =

max(1, R3, (d+ a)/k1) and

λ = e−(m+3 )2/2 , A = exp
[
γ̄(m+

3 (d+ a) + (m+
3 )2)/2 + m+

3 (1 +R2
4)1/2

]
(m+

3 (d+ a)/2 + (m+
3 )2) ,

R = log(2λ−2γ̄A log−1(1/λ)) .

Let γ̄ ∈ (0, 2k2), ` ∈ N? speci�ed below, λγ̄,c, ργ̄,c ∈ (0, 1) and Dγ̄,1,c, Dγ̄,2,c, Cγ̄,c ≥ 0 the constants

given by Theorem 4.1.16, such that for any k ∈ N, γ ∈ (0, γ̄] and x, y ∈ X

Wc3
(δxRk

γ , δyRk
γ) ≤ Kk

γc3(x, y) ≤ λkγ/4γ̄,c [Dγ̄,1,cc3(x, y) +Dγ̄,2,c1∆c
X
] + Cγ̄,cρ

kγ/4
γ̄,c ,

with c3(x, y) = 1∆c
X
(x, y){V (x) + V (y)}/2 for any x, y ∈ X. Note that by (4.116), this result implies

that for any k ∈ N, γ ∈ (0, γ̄] and x, y ∈ X

‖δxRk
γ − δyRk

γ‖V ≤ {Dγ̄,1,c +Dγ̄,2,c + Cγ̄,c} ρkγγ̄,cc3(x, y) .

Note that using Theorem 4.1.8, we obtain that the following limits exist and do not depend on L{
D1,c = limγ̄→0Dγ̄,1,c , D2,c = limγ̄→0Dγ̄,2,c , Cc = limγ̄→0 Cγ̄,c ,

λc = limγ̄→0 λγ̄,c , ρc = limγ̄→0 ργ̄,c .

We now discuss the dependency of ρb with respect to the introduced parameters, depending on the

sign of m and based on Theorem 4.1.8.

(a) If B4 holds, set ` =
⌈
M̃2

d

⌉
. Then, if we consider k1, k2 su�ciently small and a su�ciently large

such that the conditions of Theorem 4.1.8 hold, we have

log−1(ρ−1
c ) ≤ 2

[
1 + m+

3 (1 +R)/4 + log(1 + 2A) + (1 + 4R2)m+
3

]/[
m+

3 Φ(−1/2)
]
.

Note that the leading term on the right hand side of this equation is of order R2
.
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(b) If B3(m) with m ∈ R−, set ` =
⌈
M̃2

d

⌉
. Then, if we consider k1, k2 su�ciently small and a su�ciently

large such that the conditions of Theorem 4.1.8 hold, we have

log−1(ρ−1
b ) ≤ 2

[
1 + m+

3 (1 +R)/4 + log(1 + 2A) + (1 + 4R2)m+
3

]/[
m+

3 Φ{−2(−m)1/2R/(2− 2e2mR2

)1/2}
]
, (4.117)

Note that the right hand side of (4.117) is exponential in −mR2
.

A similar result was already obtained in [DM17, Theorem 10] but the scheme of the proof was di�erent

as the authors compared the discretization scheme to the associated di�usion process and used the

contraction of the continuous process.

4.2 The SOUL algorithm

4.2.1 Abstract

Maximum likelihood estimation (MLE) is central to modern statistical science. It is a cornerstone of

frequentist inference [CB90], and also plays a fundamental role in parametric empirical Bayesian in-

ference [CL00; Cas85]. For simple statistical models, MLE can be performed analytically and exactly.

However, for most models, it requires using numerical computation methods, particularly optimization

schemes that iteratively seek to maximize the likelihood function and deliver an approximate solution.

Following decades of active research in computational statistics and optimization, there are now several

computationally e�cient methods to perform MLE in a wide range of classes of models [GHM12; BV04].

In this section we consider MLE in models involving incomplete or “missing” data, such as hid-

den, latent or unobserved variables, and focus on Expectation Maximisation (EM) optimization meth-

ods [DLR77], which are the predominant strategy in this setting. While the original EM optimization

methodology involved deterministic steps, modern EM methods are mainly stochastic [RC04]. In partic-

ular, they typically rely on a Robbins-Monro stochastic approximation (SA) scheme that uses a Monte

Carlo stochastic simulation algorithm to approximate the gradients that drive the optimization pro-

cedure [RM51; DLM99; KY03; FMP11]. In many cases, SA methods use Markov chain Monte Carlo

(MCMC) algorithms, leading to a powerful general methodology which is simple to implement, has a

detailed convergence theory [AFM17], and can address a wide range of moderately low-dimensional

models. Alternatively, some stochastic EM schemes use a Gibbs sampling algorithm [Cas01], however

this requires running several fully converged MCMC chains and can be signi�cantly more computa-

tionally expensive as a result.

The expectations and demands on SA methods constantly rise as we seek to address larger prob-

lems and provide stronger theoretical guarantees on the solutions delivered. Unfortunately, existing SA

methodology and theory do not scale well to large problems. The reasons are twofold. First, the family

of MCMC kernels driving the SA scheme needs to satisfy uniform geometric ergodicity conditions that

are usually di�cult to verify for high-dimensional MCMC kernels. Second, the existing theory requires

using asymptotically exact MCMC methods. In practice, these are usually high-dimensional Metropolis-

Hastings methods such as the Metropolis-adjusted Langevin algorithm [RT96] or Hamiltonian Monte

Carlo [GC11; DMS17], which are di�cult to calibrate within the SA scheme to achieve a prescribed

acceptance rate. For these reasons, practitioners rarely use SA schemes in high-dimensional settings.

In this section, we propose to address these limitations by using inexact MCMC methods to drive

the SA scheme, particularly unadjusted Langevin algorithms, which have easily veri�able geometric
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ergodicity conditions, and are easy to calibrate [DM17; Dal17b]. This will allow us to design a high-

dimensional stochastic optimization scheme with favourable convergence properties that can be quan-

ti�ed explicitly and easily checked.

Our contributions are structured as follows: Section 4.2.2 formalises the class of MLE problems con-

sidered and presents the proposed stochastic optimization method, which is based on a SA approach

driven by an unadjusted Langevin algorithm. Detailed theoretical convergence results for the method

are reported in Section 4.2.3, which also describes a generalisation of the proposed methodology and

theory to other inexact Markov kernels. Section 4.2.4 presents three numerical experiments that demon-

strate the proposed methodology in a variety of scenarios. Section 4.2.5 includes additional theoretical

results, postponed proofs and some details on computational aspects.

4.2.2 The stochastic optimization via unadjusted Langevin method

The proposed Stochastic Optimization via Unadjusted Langevin (SOUL) method is useful for solving

maximum likelihood estimation problems involving intractable likelihood functions. The method is a

SA iterative scheme that is driven by an unadjusted Langevin MCMC algorithm. Langevin algorithms

are very e�cient in high dimensions and lead to an SA scheme that inherits their favourable convergence

properties.

Maximummarginal likelihood estimation

Let K be a convex closed set in Rp. The proposed optimization method is well-suited for solving maxi-

mum likelihood estimation problems of the form

θ? ∈ arg max
θ∈K

log p(y|θ)− g(θ) , (4.118)

where the parameter of interest θ is related to the observed data y ∈ Y by a likelihood function p(y, x|θ)
involving an unknown quantity x ∈ Rd, which is removed from the model by marginalisation. More

precisely, we consider problems where the resulting marginal likelihood

p(y|θ) =

∫
Rd
p(y, x|θ)dx ,

is computationally intractable, and focus on models where the dimension of x is large, making the

computation of (4.118) even more di�cult. For completeness, we allow the use of a penalty function

g : K→ R, or set g = 0 to recover the standard maximum likelihood estimator.

As mentioned previously, the maximum marginal likelihood estimation problem (4.118) arises in

problems involving latent or hidden variables [DLR77]. It is also central to parametric empirical Bayes

approaches that base their inferences on the pseudo-posterior distribution associated with p(x|y, θ?) =
p(y, x|θ?)/p(y|θ?) [CL00]. Moreover, the same optimization problem also arises in hierarchical Bayesian

maximum-a-posteriori estimation of θ given y, with marginal posterior p(θ|y) ∝ p(y|θ)p(θ) where p(θ)
denotes the prior for θ; in that case g(θ) = − log p(θ) [CB90].

Finally, in this section we assume that log p(y, x|θ) is continuously di�erentiable w.r.t. x and θ, and

that g is also continuously di�erentiable w.r.t. θ.

Stochastic approximation methods

The scheme we propose to solve the optimization problem (4.118) is derived in the SA framework

[DLM99], which we recall below.
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Starting from any θ0 ∈ K, SA schemes seek to solve (4.118) iteratively by computing a sequence

(θn)n∈N associated with the recursion

θn+1 = ΠK[θn + δn+1(∆θn −∇g(θn))] , (4.119)

where ∆θn is some estimator of the intractable gradient θ 7→ ∇θ log p(y|θ) at θn, ΠK denotes the pro-

jection onto K, and (δn)n∈N? ∈ (R∗+)N
?

is a sequence of stepsizes. From an optimization viewpoint,

iteration (4.119) is a stochastic generalisation of the projected gradient ascent iteration [BV04] for mod-

els with intractable gradients. For n ∈ N, Monte Carlo estimators ∆θn for ∇θ log p(y|θ) at θn are

derived from the identity

∇θ log p(y|θ) =

∫
Rd

∇θp(x, y|θ)
p(x, y|θ)

p(x|y, θ)dx

=

∫
Rd
∇θ log p(x, y|θ)p(x|y, θ)dx ,

which suggests to consider

∆θn =
1

mn

mn∑
k=1

∇θ log p(Xn
k , y|θn) , (4.120)

where (mn)n∈N ∈ (N?)N is a sequence of batch sizes and (Xn
k )k∈{1,...,mn} is either an exact Monte

Carlo sample from p(x|y, θn) = p(x, y|θn)/p(y|θn), or a sample generated by using a Markov Chain

targeting this distribution.

Given a sequence (θn)Nn=1 generated by using (4.119), an approximate solution of (4.118) can then

be obtained by calculating, for example, the average of the iterates, i.e.,

θ̂N =

{
N∑
n=1

δnθn

}/{
N∑
n=1

δn

}
. (4.121)

This estimate converges a.s. to a solution of (4.118) asN →∞ provided that some conditions on p(y|θ),

g, p(x|y, θ), (δn)n∈N, and ∆θn are ful�lled. Indeed, following three decades of active research e�orts in

computational statistics and applied probability, we now have a good understanding of how to construct

e�cient SA schemes, and the conditions under which these schemes converge (see for example [BMP90;

FM03; DHS11; AM06; Nem+09; AFM17]).

SA schemes are successfully applied to maximum marginal likelihood estimation problems where

the latent variable x has a low or moderately low dimension. However, they are seldomly used when x
is high-dimensional because this usually requires using high-dimensional MCMC samplers that, unless

carefully calibrated, exhibit poor convergence properties. Unfortunately, calibrating the samplers within

a SA scheme is challenging because the target density p(x|y, θn) changes at each iteration. As a result,

it is, for example, di�cult to use Metropolis-Hastings algorithms that need to achieve a prescribed

acceptance probability range. Additionally, the conditions for convergence of MCMC SA schemes are

often di�cult to verify for high-dimensional samplers. For these reasons, practitioners rarely use SA

schemes in high-dimensional settings.

As mentioned previously, we propose to address these di�culties by using modern inexact Langevin

MCMC samplers to drive (4.120). These samplers have received a lot of attention in the recent years be-

cause they can exhibit excellent large-scale convergence properties and signi�cantly outperform their

Metropolised counterparts (see [DMP18] for an extensive comparison in the context of Bayesian imag-

ing models). Stimulated by developments in high-dimensional statistics and machine learning, we now

have detailed theory for these algorithms, including explicit and easily veri�able geometric ergodicity
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conditions [DM17; Dal17b; EM19], see also Section 4.1. This will allow us to design a stochastic op-

timization scheme with favourable convergence properties that can be quanti�ed explicitly and easily

checked.

Langevin Markov chain Monte Carlo methods

Langevin MCMC schemes to sample from p(x|y, θ) are based on stochastic continuous dynamics (Xθ
t )t≥0

for which the target distribution p(x|y, θ) is invariant. Two fundamental examples are the Langevin dy-

namics solution of the following Stochastic Di�erential Equation (SDE)

dXθ
t = −∇x log p(Xθ

t |y, θ)dt+
√

2dBt , (4.122)

or the kinetic Langevin dynamics solution of

dXθ
t = Vθ

t ,

dVθ
t = −∇x log p(Xθ

t |y, θ)dt−Vθ
tdt+

√
2dBt ,

where (Bt)t≥0 is a standard d-dimensional Brownian motion. Under mild assumptions on p(x|y, θ),

these two SDEs admit strong solutions for which p(x|y, θ) and

p(x, v|y, θ) = p(x|y, θ) exp(−‖v‖2 /2)/(2π)d/2 ,

are the invariant probability measures. In addition, there are detailed explicit convergence results for

(Xθ
t )t≥0 to p(x|y, θ), and for (Xθ

t ,V
θ
t )t≥0 to p(x, v|y, θ), under di�erent metrics [Ebe16; EGZ19].

However, sampling path solutions for these continuous-time dynamics is not feasible in general.

Therefore discretizations have to be used instead. In this section, we mainly focus on the Euler-Maruyama

discrete-time approximation of (4.122), known as the Unadjusted Langevin Algorithm (ULA) [RT96],

given by

Xk+1 = Xk − γ∇x log p(Xk|y, θ) +
√

2γZk+1 , (4.123)

where γ > 0 is the discretization time step and (Zk)k∈N∗ is a i.i.d. sequence of d-dimensional zero-mean

Gaussian random variables with covariance matrix identity. We will use this Markov kernel to drive our

SA schemes.

Observe that (4.123) does not exactly target p(x|y, θ) because of the bias introduced by the discrete-

time approximation. Computational statistical methods have traditionally addressed this issue by com-

plementing (4.123) with a Metropolis-Hastings correction step to asymptotically remove the bias [RT96].

This correction usually deteriorates the convergence properties of the chain and may lead to poor non-

asymptotic estimation results, particularly in very high-dimensional settings (see for example [DMP18]).

However, until recently it was considered that using (4.123) without a correction step was too risky. For-

tunately, recent works have established detailed theoretical guarantees for (4.123) that do not require

using any correction [Dal17b; DM17]. Recently, new explicit convergence bounds have been derived

under various assumptions on the target probability [Dal17a; Che+18; CB18; LRG18]. In addition, ac-

celerations and variations of ULA have been studied, both theoretically and experimentally, yielding

better ergodic convergence rates [Mad+18; Ma+19; MJ19; DRD18]. However, such extensions are out

of the scope of the present work whose main contribution is not to provide new results to the existing

Markov chain theory but to use the theoretical guarantees of ULA in order to study SA schemes driven

by this e�cient but inexact sampler.

Note also that the methodology we propose and analyze in this section is fundamentally di�erent

from the Stochastic Gradient Langevin dynamics [VZT16; TTV16; WT11; PT13; ASW14; ABW12], an
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MCMC algorithm to sample from p(x|y, θ) using estimators of ∇x log p(x|y, θ). Finally it should be

highlighted that, in an independent line of work, a similar methodology is studied under a di�erent set

of assumptions in [Kar+19]. We discuss the links between [Kar+19, Theorem 2] and Theorem 4.2.4 in

Section 4.2.3.

The SOUL algorithm

We are now ready to present the proposed Stochastic Optimization via Unadjusted Langevin (SOUL)

methodology. Let (δn)n∈N? ∈ (R∗+)N
?

and (mn)n∈N ∈ (N?)N be the sequences of stepsizes and batch

sizes de�ning the SA scheme (4.119)-(4.120). For any θ ∈ K and γ > 0, denote by Rγ,θ the Langevin

Markov kernel (4.123) to approximately sample from p(x|y, θ), and by (γn)n∈N ∈ (R∗+)N be the se-

quence of discrete time steps used.

Formally, starting from some X0
0 ∈ Rd and θ0 ∈ K, for n ∈ N and k ∈ {0, . . . ,mn − 1},

we recursively de�ne ({Xn
k : k ∈ {0, . . . ,mn}}, θn)n∈N on a probability space (Ω,F ,P), where

(Xn
k )k∈{0,...,mn} is a Markov chain with Markov kernel Rγn,θn , Xn

0 = Xn−1
mn−1

given Fn−1, and

θn+1 = ΠK

[
θn −

δn+1

mn

mn∑
k=1

∆θn

]
,

where we recall that ΠK is the projection onto K, and for all n ∈ N

Fn = σ
(
θ0, {(X`

k)k∈{0,...,m`} : ` ∈ {0, . . . , n}}
)
, (4.124)

F−1 = σ(θ0)

Note that such a construction is always possible by Kolmogorov extension theorem [Kal06, Theorem

5.16], hence for any n ∈ N, θn+1 is Fn-measurable. Then, as mentioned previously, we compute a

sequence of approximate solutions of (4.118) by calculating, for example,

θ̂N =

{
N∑
n=1

δnθn

}/{
N∑
n=1

δn

}
. (4.125)

The pseudocode associated with the proposed SOUL method is presented in Algorithm 6 below. Observe

that, for additional e�ciency, instead of generating independent Markov chains at each SA iteration,

we warm-start the chains by setting Xn
0 = Xn−1

mn−1
, for any n ∈ {1, . . . , N}.

To conclude, Section 4.2.4 below demonstrates the proposed methodology with three numerical ex-

periments related to high-dimensional logistic regression and statistical audio analysis with sparsity

promoting priors. A detailed theoretical analysis of the proposed SOUL method is reported in Sec-

tion 4.2.3. More precisely, we establish that if the cost function f(θ) = g(θ)− log p(y|θ) de�ning (4.118)

is convex, and if (γn)n∈N and (δn)n∈N go to 0 su�ciently fast, then E[f(θ̂N )] converges to minK f and

quantify the rate of convergence. Moreover, in the case where (γn)n∈N is held �xed, i.e. for all n ∈ N,

γn = γ, we show convergence to a neighbourhood of the solution, in the sense that there exist explicit

C,α > 0 such that lim supN→+∞ E[f(θ̂N )]−minK f ≤ Cγα. Finally, we also study the important case

where f is not convex. In that case, we use the results of [KY03] to establish that (θn)n∈N converges

a.s. to a stationary point of the projected ordinary di�erential equation associated with ∇f and K. We

postpone this result to Section 4.2.5.
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Algorithm 6 The Stochastic Optimization via Unadjusted Langevin (SOUL) method

1: Inputs:
θ0 ∈ K, X0

0 ∈ Rd, (γn)n∈N, (δn)n∈N, (mn)n∈N, N
2: for n ∈ {1, . . . , N − 1} do
3: if n ≥ 1 then
4: Xn

0 ← Xn−1
mn−1

5: end if
6: for k ∈ {0, . . . ,mn − 1} do
7: Znk+1← sample N(0, Id)
8: Xn

k+1← Xn
k + γn∇x log p(Xn

k |y, θn) +
√

2γnZ
n
k+1

9: end for
10: ∆θn ← 1

mn

∑mn
k=1∇θ log p(Xn

k , y|θn)
11: θn+1← ΠK[θn + δn+1(∆θn −∇g(θn))]
12: end for
13: Outputs:

θ̂N =
{∑N

n=1 δnθn

}/{∑N
n=1 δn

}

4.2.3 Theoretical convergence analysis for SOUL, and generalisation to other
inexact MCMC kernels (SOUK)

In this section we state our main theoretical results for SOUL. For completeness, we �rst present the

results in a general stochastic optimization setting and by considering a generic inexact MCMC sampler,

and then show that our results apply to the speci�c MLE optimization problem (4.118), and to the speci�c

Langevin algorithm (4.123) used in SOUL. All the proofs are postponed to Section 4.2.5.

Stochastic Optimization with inexact MCMC methods

We consider the problem of minimizing a function f : K → R with K ⊂ Rp under the following

assumptions.

A1. K is a convex compact set and K ⊂ B(0,MΘ) withMΘ > 0.

A2. There exist an open set U ⊂ Rp and L ≥ 0 such that K ⊂ U, f ∈ C1(U,R) and satis�es for any
θ1, θ2 ∈ K

‖∇f(θ1)−∇f(θ2)‖ ≤ L‖θ1 − θ2‖ .

A3. For any θ ∈ K, there exist Hθ : Rd → Rp and a probability distribution πθ on (Rd,B(Rd))
satisfying that πθ(Hθ) < +∞ and for any θ ∈ K

∇f(θ) =

∫
Rd
Hθ(x)dπθ(x) .

In addition, (θ, x) 7→ Hθ(x) is measurable.

Note that for the maximum marginal likelihood estimation problem (4.118), f corresponds to θ 7→
− log(p(y|θ)) + g(θ), for any θ ∈ K, Hθ : x 7→ ∇θ log(p(x, y|θ)) and πθ is the probability distribution

with density with respect to the Lebesgue measure x 7→ p(x|y, θ).

To minimize the objective function f we suggest the use of a SA strategy which extends the one

presented in Section 4.2.2. More precisely, motivated by the methodology described in Section 4.2.2, we
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propose a SA scheme which relies on biased estimates of ∇f(θ) through a family of Markov kernels

{Kγ,θ, γ ∈ (0, γ̄] and θ ∈ K}, for γ̄ > 0, such that for any θ ∈ K and γ ∈ (0, γ̄], Kγ,θ admits an invariant

probability distribution πγ,θ on (Rd,B(Rd)). In the SOUL method, the Markov kernel Kγ,θ stands for

Rγ,θ for any γ ∈ (0, γ̄] and θ ∈ K, where Rγ,θ is the Markov kernel associated with (4.123). We

assume in addition that the bias associated to the use of this family of Markov kernels can be controlled

w.r.t. to γ uniformly in θ, i.e. for example there exists C > 0 such that for all γ ∈ (0, γ̄] and θ ∈ K,

‖πγ,θ − πθ‖TV ≤ Cγα with α > 0.

Let now (δn)n∈N ∈ (R∗+)N and (mn)n∈N ∈ (N?)N be sequences of stepsizes and batch sizes which

will be used to de�ne the sequence relatively to the variable θ similarly to (4.119) and (4.120). Let

(γn)n∈N ∈ (R∗+)N be a sequence of stepsizes which will be used to get approximate samples from πθn ,

similarly to (4.123). Starting from X0
0 ∈ Rd and θ0 ∈ K, we de�ne on a probability space (Ω,F ,P),

({Xn
k : k ∈ {0, . . . ,mn}}, θn)n∈N by the following recursion for n ∈ N and k ∈ {0, . . . ,mn − 1}

(Xn
k )k∈{0,...,mn} is Markov chain with kernel Kγn,θn and Xn

0 = Xn−1
mn−1

given Fn−1 ,

θn+1 = ΠK

[
θn −

δn+1

mn

mn∑
k=1

Hθn(Xn
k )

]
,

(4.126)

where ΠK is the projection onto K and Fn is de�ned by (4.124). By (4.126), for any n ∈ N, θn+1 is

Fn-measurable and (Fn)n∈N given in (4.124). Then the sequence of approximate minimizers of f is

given by (θ̂N )N∈N, (4.125).

Under di�erent sets of conditions on f,H, (δn)n∈N, (γn)n∈N and (mn)n∈N we obtain that (θn)n∈N
converges a.s. to an element of arg minK f . In particular in this section we consider the case where f

is assumed to be convex. We establish that if (γn)n∈N and (δn)n∈N go to 0 su�ciently fast, E[f(θ̂N )]−
minK f goes to 0 with a quantitative rate of convergence. In the case where (γn)n∈N is held �xed, i.e.
for all n ∈ N, γn = γ, we show that while E[f(θ̂N )] does not converge to 0, there exists C,α > 0 such

that lim supN→+∞ E[f(θ̂N )] − minK f ≤ Cγα. In the case where f is non-convex, we apply some

results from stochastic approximation [KY03] which establish that the sequence (θn)n∈N converges

a.s. to a stationary point of the projected ordinary di�erential equation associated with ∇f and K.

We postpone this result to Section 4.2.5. Finally, our upper bounds and convergence results can be

extended to the case where ∇f can be expressed as a �nite sum of expectations, i.e. for any θ ∈ K,

∇f(θ) =
∑N
i=1 π

(i)
θ (H

(i)
θ ) where N ∈ N? and for all i ∈ {1, . . . , N}, H(i)

θ : Rd → Rp is a measurable

function and π
(i)
θ is a probability measure on (Rd,B(Rd)). For the sake of clarity we restrict ourselves

to the case where N = 1.

Main results

We impose a stability condition on the stochastic process {(Xn
k )k∈{0,...,mn} : n ∈ N} de�ned by (4.126)

and that for any γ ∈ (0, γ̄] and θ ∈ K the iterates of Kγ,θ are close enough to πθ after a su�ciently

large number of iterations.

H1. There exists a measurable function V : Rd → [1,+∞) satisfying the following conditions.

(i) There exists A1 ≥ 1 such that for any n, p ∈ N, k ∈ {0, . . . ,mn}

E
[
Kp
γn,θn

V (Xn
k )
∣∣∣X0

0

]
≤ A1V (X0

0 ) , E
[
V (X0

0 )
]
< +∞ ,

where {(X`
k)k∈{0,...,m`} : ` ∈ {0, . . . , n}} is given by (4.126).
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(ii) There exist A2, A3 ≥ 1, ρ ∈ [0, 1) such that for any γ ∈ (0, γ̄], θ ∈ K, x ∈ Rd and n ∈ N, Kγ,θ

has a stationary distribution πγ,θ and

‖δxKn
γ,θ − πγ,θ‖V ≤ A2ρ

nγV (x) , πγ,θ(V ) ≤ A3 .

(iii) There exists Ψ : R?+ → R+ such that for any γ ∈ (0, γ̄] and θ ∈ K

‖πγ,θ − πθ‖V 1/2 ≤ Ψ(γ) .

H1-(ii) is an ergodicity condition in V -norm for the Markov kernel Kγ,θ uniform in θ ∈ K. There

exists an extensive literature on the conditions under which a Markov kernel is ergodic [MT92; Dou+18].

H1-(iii) ensures that the distance between the invariant measure πγ,θ of the Markov kernel Kγ,θ and πθ
can be controlled uniformly in θ. We show that this condition holds in the case of the Langevin Monte

Carlo algorithm in Proposition 4.2.22. We now state our mains results.

Theorem 4.2.1. Assume A1, A2, A3 hold and f is convex. Let (γn)n∈N, (δn)n∈N be sequences of non-
increasing positive real numbers and (mn)n∈N be sequences of positive integers satisfying supn∈N δn <
1/L, supn∈N γn < γ̄ and

+∞∑
n=0

δn+1 = +∞ ,

+∞∑
n=0

δn+1Ψ(γn) < +∞ , (4.127)

+∞∑
n=0

δn+1/(mnγn) < +∞ .

Let {(Xn
k )k∈{0,...,mn} : n ∈ N} and (θn)n∈N be given by (4.126). Assume in addition that H1 is satis�ed

and that for any θ ∈ K and x ∈ Rd, ‖Hθ(x)‖ ≤ V 1/2(x). Then, the following statements hold:

(a) (θn)n∈N converges a.s. to some θ? ∈ arg minK f ;

(b) furthermore, a.s. there exists C ≥ 0 such that for any n ∈ N?{
n∑
k=1

δkf(θk)

/
n∑
k=1

δk

}
−min

K
f ≤ C

/(
n∑
k=1

δk

)
.

Proof. The proof is postponed to Section 4.2.5.

Note that in (4.126), Xn
0 = Xn−1

mn−1
for n ∈ N?. This procedure is referred to as warm-start in

the sequel. An inspection of the proof of Theorem 4.2.1 shows that Xn
0 could be any random variable

independent from Fn−1 for any n ∈ N with supn∈N? E [V (Xn
0 )] < +∞. It is not an option in the �xed

batch size setting of Theorem 4.2.3, where the warm-start procedure is crucial for the convergence to

occur.

We extend this theorem to non convex objective function see Theorem 4.2.7. Under the conditions

of Theorem 4.2.1 with the additional assumption that ∂K is a smooth manifold we obtain that (θn)n∈N
converges a.s. to some point θ∗ such that∇f(θ∗)+n = 0 with n = 0 if θ∗ ∈ int(K) and n ∈ T(θ∗, ∂K)⊥

if θ∗ ∈ ∂K, where T(θ, ∂K) is the tangent space of ∂K at point θ ∈ ∂K, see [Aub01, Chapter 2].

In the case where Kγ,θ = Rγ,θ is the Markov kernel associated with the Langevin update (4.123),

under appropriate conditions Proposition 4.2.22 shows that for any γ ∈ (0, γ̄] with γ̄ > 0, Ψ(γ) =
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O(γ1/2). In that case, assume then that there exist a, b, c > 0 such that for any n ∈ N?, δn = n−a,

γn = n−b and mn = dnce then (4.127) is equivalent to

a ≤ 1 , a+ b/2 > 1 , a− b+ c > 1 . (4.128)

Suppose a ∈ [0, 1] is given, then the previous equation reads

b = 2(1− a) + ς1 , c = 3(1− a) + ς2 , ς2 > ς1 > 0 .

This illustrates a trade-o� between the intrinsic inaccuracy of our algorithm through the family of

Markov kernels (4.126) which do not exactly target πθ and the minimization aim of our scheme. Note

also that (δn)n∈N is allowed to be constant. This case yields γn = n−2−ς1
and mn =

⌈
n3+ς2

⌉
with

ς2 > ς1 > 0.

In our next result we derive an non-asymptotic upper-bound of (E[f(θ̂n)−minK f ])n∈N.

Theorem 4.2.2. Assume A1, A2, A3 hold and f is convex. Let (γn)n∈N, (δn)n∈N be sequences of non-
increasing positive real numbers and (mn)n∈N be a sequence of positive integers satisfying supn∈N δn <
1/L, supn∈N γn < γ̄. Let {(Xn

k )k∈{0,...,mn} : n ∈ N} be given by (4.126). Assume in addition that H1 is
satis�ed and that for any θ ∈ K and x ∈ Rd, ‖Hθ(x)‖ ≤ V 1/2(x). Then, there exists (En)n∈N such that
for any n ∈ N?

E

[{
n∑
k=1

δkf(θk)

/
n∑
k=1

δk

}
−min

K
f

]
≤ En

/(
n∑
k=1

δk

)
,

with for any n ∈ N?,

En = 2M2
Θ + 2B1MΘE

[
V 1/2(X0

0 )
] n−1∑
k=0

δk+1/(mkγk)

+ 2MΘ

n−1∑
k=0

δk+1Ψ(γk) + 4B2
1E
[
V (X0

0 )
] n−1∑
k=0

δ2
k+1/(mkγk)2

+ 4

n−1∑
k=0

δ2
k+1Ψ(γk)2 +B2

n−1∑
k=0

δ2
k+1/(mkγk)2 , (4.129)

where B1 and B2 are given in Lemma 4.2.10 and Lemma 4.2.11.

Proof. The proof is postponed to Section 4.2.5.

We recall that in the case where Kγ,θ = Rγ,θ is the Markov kernel associated with the Langevin

update (4.123), under appropriate conditions Proposition 4.2.22 shows that for any γ ∈ (0, γ̄] with

γ̄ > 0, Ψ(γ) = O(γ1/2). In that case, if there exist a, b, c ≥ 0 such that for any n ∈ N?, δn =
n−a, γn = n−b, mn = nc and (4.128) holds, the accuracy, respectively the complexity, of the algo-

rithm are of orders (
∑n
k=1 δk)

−1
= O(na−1), respectively

∑n
k=0mk = O(n3(1−a)+ς2+1) for ς2 >

0. Thus, for a �x target precision ε > 0, it requires that ε = O(na−1) and the complexity reads

O(ε−3 (log(1/ε)/(1− a))
1+ς2). On the other hand, if we �x the complexity budget to N the accuracy

is of order O(N−(3+(1+ς2)/(1−a))−1

). These two considerations suggest to set a close to 0. In the spe-

cial case where a = 0, we obtain that the accuracy is of order O(n−1), which is similar to the order

identi�ed in the deterministic gradient descent for convex functionals.
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A case of interest is the �x stepsize setting, i.e. for all n ∈ N, γn = γ > 0. Assume that (δn)n∈N
is non-increasing, limn→+∞ δn = 0 and limn→+∞mn = +∞. In addition, assume that

∑
n∈N? δn =

+∞ then, by [PS98, Problem 80, Part I], it holds that{
limn→+∞ [ (

∑n
k=1 δk/mk)/(

∑n
k=1 δk) ] = 0 ;

limn→+∞
[(∑n

k=1 δ
2
k

)/
(
∑n
k=1 δk)

]
= 0 .

Therefore, we obtain that

lim sup
n→+∞

E

[{
n∑
k=1

δkf(θk)

/
n∑
k=1

δk

}
−min f

]
≤ 2MΘΨ(γ) .

Similarly, if the stepsize is �xed and the number of Markov chain iterates is �xed, i.e. for all n ∈ N,

γn = γ and mn = m with γ > 0 and m ∈ N?, we obtain that

lim sup
n→+∞

E

[{
n∑
k=1

δkf(θk)

/
n∑
k=1

δk

}
−min f

]
≤ Ξ1(γ) , (4.130)

with

Ξ1(γ) = 2B1MΘE
[
V 1/2(X0

0 )
]
/γ + 2MΘΨ(γ) .

However if (mn)n∈N is constant the convergence cannot be obtained using Theorem 4.2.1. Strength-

ening the conditions of Theorem 4.2.1 and making use of the warm-start property of the algorithm we

can derive the convergence in that case.

We now are interested in the case where the batch size is �xed, i.e.mn = m0 for all n ∈ N. For ease

of exposition we only consider m0 = 1 and let X̃n+1 = Xn
1 for any n ∈ N. However the general case

can be adapted from the proof of the result stated below. More precisely we consider the setting where

the recursion (4.126) can be written for any n ∈ N as

Xn+1 has distribution Kγn,θ̃n
(Xn, ·) conditional to F̃n ,

θ̃n+1 = ΠK

[
θ̃n − δn+1Hθ̃n

(Xn+1)
]
,

(4.131)

with θ0 ∈ K, X̃0 ∈ Rd and where F̃n is given by

F̃n = σ
(
θ̃0, (X`)`∈{0,...,n}

)
. (4.132)

We consider the following assumption on the family {Hθ : θ ∈ K}.

A4. There exists LH ≥ 0 such that for any x ∈ Rd and θ1, θ2 ∈ K,

‖Hθ1(x)−Hθ2(x)‖ ≤ LH‖θ1 − θ2‖V 1/2(x) .

We consider a similar property as A4 on the family of Markov kernels {Kγ,θ, γ ∈ (0, γ̄] , θ ∈ K},
which weakens the assumption [AFM17, H6].

H2. There exist a measurable function V : Rd → [1,+∞), Λ1 : (R∗+)2 → R+ and Λ2 : (R∗+)2 → R+

such that for any γ1, γ2 ∈ (0, γ̄] with γ2 < γ1, θ1, θ2 ∈ K, x ∈ Rd and a ∈ [1/4, 1/2]

‖δxKγ1,θ1 − δxKγ2,θ2‖V a ≤ [Λ1(γ1, γ2) + Λ2(γ1, γ2)‖θ1 − θ2‖]V 2a(x) .
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The following theorem ensures convergence properties for (θn)n∈N similar to the ones of Theo-

rem 4.2.1. The proof of this result is based on a generalization of [FMP11, Lemma 4.2] for inexact

MCMC schemes.

Theorem 4.2.3. Assume A1, A2, A3, A4 hold and f is convex. Let γ̄ > 0, (γn)n∈N and (δn)n∈N
be sequences of non-increasing positive real numbers satisfying supn∈N δn < 1/L, supn∈N γn < γ̄,
supn∈N |δn+1 − δn|δ−2

n < +∞,
∑+∞
n=0 δn+1 = +∞ and

+∞∑
n=0

δn+1Ψ(γn) < +∞ ,

+∞∑
n=0

δ2
n+1γ

−2
n < +∞ ,

+∞∑
n=0

δn+1γ
−2
n+1 [Λ1(γn, γn+1) + δn+1Λ2(γn, γn+1)] < +∞ .

(4.133)

Let (Xn)n∈N be given by (4.131). Assume in addition that H1 and H2 are satis�ed and that for any θ ∈ K
and x ∈ Rd, ‖Hθ(x)‖ ≤ V 1/4(x). Then the following statements hold:

(a) (θ̃n)n∈N converges a.s. to some θ? ∈ arg minK f ;

(b) furthermore, a.s. there exists C ≥ 0 such that for any n ∈ N?{
n∑
k=1

δkf(θ̃k)

/
n∑
k=1

δk

}
−min

K
f ≤ C

/(
n∑
k=1

δk

)
.

Proof. The proof is postponed to Section 4.2.5.

In the case where Kγ,θ = Rγ,θ is the Markov kernel associated with the Langevin update (4.123),

under appropriate conditions Proposition 4.2.22 and Proposition 4.2.24 show that for any γ1, γ2 ∈ (0, γ̄]

with γ̄ > 0 and γ1 > γ2, Ψ(γ1) = C1γ
1/2

, Λ1(γ1, γ2) = C2γ
−1
2 |γ1 − γ2| and Λ2(γ1, γ2) = C3γ

1/2
2 ,

for C1,C2,C3 ≥ 0. Thus we obtain that the following series should converge

+∞∑
n=0

δn+1γ
1/2
n < +∞ ,

+∞∑
n=0

δ2
n+1/γ

2
n+1 < +∞ ,

+∞∑
n=0

δn+1(γn − γn+1)/γ3
n+1 < +∞ .

In addition, assume that δn = n−a and that γn = n−b with a, b > 0. In this case the summability

conditions of Theorem 4.2.3 read

a ≤ 1 , a+ b/2 > 1 ,

2a− 2b > 1 , a+ (b+ 1)− 3b > 1 ,

Since for any a ∈ [0, 1], a− 1/2 ≤ a/2, this condition is equivalent to

b ∈ (2(1− a), a− 1/2) , a ∈ [0, 1] .

Note that 2(1 − a) < a − 1/2 as soon as a > 5/6. In the special setting where a = 1 then the

convergence in Theorem 4.2.3 occurs as soon as b ∈ (0, 1/2). In any case, since a > a− 1/2 we obtain

that limn→+∞(δn/γn) = 0. This means that the perturbed gradient descent dynamic associated with

(θ̃n)n∈N moves slower than the Markov chain dynamic associated with (X̃n)n∈N.
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Theorem 4.2.4. Assume A1,A2,A3,A4 hold and f is convex. Let (γn)n∈N, (δn)n∈N be sequences of non-
increasing positive real numbers and (mn)n∈N be a sequence of positive integers satisfying supn∈N δn <
1/L and supn∈N γn < γ̄. Let (Xn)n∈N be given by (4.131). Assume in addition that H1 and H2 are
satis�ed and that for any θ ∈ K and x ∈ Rd, ‖Hθ(x)‖ ≤ V 1/4(x). Then, there exists (Ẽn)n∈N such that
for any n ∈ N?

E

[{
n∑
k=1

δkf(θk)

/
n∑
k=1

δk

}
−min

K
f

]
≤ Ẽn

/(
n∑
k=1

δk

)
,

with for any n ∈ N?,

Ẽn = 2MΘ + 2MΘ

n∑
k=0

δk+1Ψ(γk) + C3

n∑
k=0

|δk+1 − δk| γ−1
k

+ 2MΘC2

n∑
k=0

δk+1γ
−1
k+1

[
γ−1
k+1 {Λ1(γk, γk+1)

+Λ2(γk, γk+1)δk+1 + δk+1}+ C3

n∑
k=0

δ2
k+1γ

−1
k+1

+ C3(δn+1/γn − δ0/γ0) + C1

n∑
k=0

δ2
k+1 .

where C1, C2 and C3 are given in Lemma 4.2.12, Lemma 4.2.15 and Lemma 4.2.14.

Proof. The proof is postponed to Section 4.2.5.

Theorem 4.2.4 improves the conclusions of Theorem 4.2.2 in the case where γn = γ > 0 for any n ∈
N. Indeed, in that case, similarly to (4.130), assuming that limn→+∞ δn = 0, supn∈N |δn+1 − δn| δ−2

n <
+∞, Λ1 = 0, we obtain that for all n ∈ N

lim sup
n→+∞

E

[{
n∑
k=1

δkf(θk)

/
n∑
k=1

δk

}
−min f

]
≤ Ξ2(γ) ,

with

Ξ2(γ) = 2MΘΨ(γ)

≤ Ξ1(γ) = 2B1MΘE
[
V 1/2(X0

0 )
]
/γ + 2MΘΨ(γ) .

In the case where supγ∈(0,γ̄] Ψ(γ) < +∞, Ξ2(γ) is of order O(Ψ(γ)) and Ξ1(γ) is of order O(γ−1).

Therefore if limγ→0 Ψ(γ) = 0, even in the �xed batch size setting, the minimum of the objective

function f can be approached with arbitrary precision ε > 0 by choosing γ small enough.

Finally, note that the conclusions of Theorem 4.2.4 are similar to the ones of [Kar+19, Theorem 2]. In

[Kar+19] the main result is a bound on E[
∑n
k=1 δk ‖∇θf(θk)‖2 /

∑n
k=1 δk] and ∇f(θ) is not assumed

to be convex but only related to a Lyapunov functional [Kar+19, A1-A3]. However, it is assumed that

for any θ ∈ K and γ ∈ (0, γ̄] the invariant probability distribution of the Markov kernel Kγ,θ is πθ ,

i.e. Ψ = 0 in H1-(iii), which is not the case in our analysis. Plugging this assumption and choosing

γn = γ > 0 for all n ∈ N in Theorem 4.2.4 we obtain that for any n ∈ N, Ẽn ≤ C
∑n
k=0 δ

2
k+1 with

C > 0, which is similar to the upper bound given in [Kar+19, Theorem 2].
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Application to SOUL

We now apply our results to the SOUL methodology introduced in Section 4.2.2 where the Markov kernel

Rγ,θ with γ ∈ (0, γ̄] and θ ∈ K is given by a Langevin Markov kernel and associated with recursion

(4.123). Setting for any θ ∈ K, πθ = p(·|y, θ), we consider the following assumption on the family of

probability distributions (πθ)θ∈K.

L1. For any θ ∈ K, there exists Uθ : Rd → R such that πθ admits a probability density function w.r.t.
to the Lebesgue measure proportional to x 7→ exp(−Uθ(x)). In addition (θ, x) 7→ Uθ(x) is continuous,
x 7→ Uθ(x) is di�erentiable for all θ ∈ K and there exists L ≥ 0 such that for any x, y ∈ Rd,

sup
θ∈K
‖∇xUθ(x)−∇xUθ(y)‖ ≤ L ‖x− y‖ ,

and {‖∇xUθ(0)‖ : θ ∈ K} is bounded.

In the case where Kγ,θ = Rγ,θ for any γ ∈ (0, γ̄] and θ ∈ K, the �rst line of (4.126) can be rewritten

for any n ∈ N and k ∈ {0, . . . ,mn − 1}

Xn
k+1 = Xn

k − γn∇xUθn(Xn
k ) +

√
2γnZ

n
k+1 , (4.134)

with Xn
0 = Xn−1

mn−1
if n ≥ 1 ,

given (γn)n∈N ∈ (0, γ̄]
N

, (mn)n∈N ∈ (N?)N and also (Znk )n∈N,k∈{1,...,mn} a family of i.i.d. d-dimensional

zero-mean Gaussian random variables with covariance matrix identity. In the following propositions,

we show that the results above hold by deriving su�cient conditions under which H1 and H2 are satis-

�ed. Under L1, the Langevin di�usion de�ned by (4.122) admits a unique strong solution for any θ ∈ K.

Consider now the following additional tail condition on Uθ which ensures geometric ergodicity of Rγ,θ

for any θ ∈ K and γ ∈ (0, γ̄], with γ̄ which will be speci�ed below.

L2. There exist k2 > 0 and m+
3 , c, R2 ≥ 0 such that for any θ ∈ K and x ∈ Rd,

〈∇xUθ(x), x〉 ≥ k2‖x‖1B(0,R2)c(x) + m+
3 ‖∇xUθ(x)‖2 − c .

L3. There exists LU ≥ 0 such that for any x ∈ Rd and θ1, θ2 ∈ K

‖∇xUθ1(x)−∇xUθ2(x)‖ ≤ LU‖θ1 − θ2‖V (x)1/2 .

The next theorems assert that under L1, L2 and L3 the SOUL algorithm introduced in Section 4.2.2

satisfy H1 and H2 and therefore Theorem 4.2.1, Theorem 4.2.2, Theorem 4.2.3 and Theorem 4.2.4 can be

applied if in addition A1, A2, A3 and A4 hold. Under L2 de�ne for any x ∈ Rd

Ve(x) = exp

[
k2

√
1 + ‖x‖2/4

]
.

Theorem 4.2.5. Assume L1 and L2. Then,H1 holds with V ← Ve, γ̄ ← min(1, 2m+
3 ) andΨ(γ) = D4

√
γ

where D4 is given in Proposition 4.2.22.

Proof. The proof is postponed to Section 4.2.5.

Theorem 4.2.6. Assume L1, L2, L3 and that for any θ ∈ K and x ∈ Rd, ‖Hθ(x)‖ ≤ V 1/4
e (x). H2 holds

with V ← Ve and γ̄ ← min(1, 2m+
3 ) and for any γ1, γ2 ∈ (0, γ̄], γ2 < γ1,

Λ1(γ1, γ2) = D5γ
−1
2 |γ1 − γ2| , Λ2(γ1, γ2) = D5γ

1/2
2 ,

where D5 is given in Proposition 4.2.24.

Proof. The proof is postponed to Section 4.2.5.
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4.2.4 Numerical results

We now demonstrate the proposed methodology with three experiments that we have chosen to il-

lustrate a variety of scenarios. Section 4.2.4 presents an application to empirical Bayesian logistic re-

gression, where (4.118) can be analytically shown to be a convex optimization problem with an unique

solution θ?, and where we benchmark our MLE estimate against the solution obtained by calculating

the marginal likelihood p(y|θ) over a θ-grid by using an harmonic mean estimator. Furthermore, Sec-

tion 4.2.4 presents a challenging application related to statistical audio compressive sensing analysis,

where we use SOUL to estimate a regularization parameter that controls the degree of sparsity en-

forced, and where a main di�culty is the high-dimensionality of the latent space (d = 2, 900). Finally,

Section 4.2.4 presents an application to a high-dimensional empirical Bayesian logistic regression with

random e�ects for which the optimization problem (4.118) is not convex. All experiments were carried

out on an Intel i9-8950HK@2.90GHz workstation running Matlab R2018a.

Bayesian Logistic Regression

In this �rst experiment we illustrate the proposed methodology with an empirical Bayesian logistic

regression problem [Wak13; PSW13]. We observe a set of covariates {vi}
dy
i=1 ∈ Rd, and binary responses

{yi}
dy
i=1 ∈ {0, 1}, which we assume to be conditionally independent realisations of a logistic regression

model: for any i ∈ {1, . . . , dy}, yi given β and vi has distribution Ber(s(v>i β)), where β ∈ Rd is

the regression coe�cient, Ber(α) denotes the Bernoulli distribution with parameter α ∈ [0, 1] and

s(u) = eu/(1+eu) is the cumulative distribution function of the standard logistic distribution. The prior

for β is set to be N(θ1d, σ
2 Idd), the d-dimensional Gaussian distribution with mean θ1d and covariance

matrix σ2 Idd, where θ is the parameter we seek to estimate, 1d = (1, . . . , 1) ∈ Rd, σ2 = 5 and Idd
is the d-dimensional identity matrix. Following an empirical Bayesian approach, the parameter θ is

computed by maximum marginal likelihood estimation using Algorithm 6 with the marginal likelihood

p(y|θ) given by

p(y|θ) = (2πσ2)−d/2
∫
Rd


dy∏
i=1

s(v>i β)yi(1− s(v>i β))1−yi

× e−
‖β−θ1d‖2

2σ2 dβ . (4.135)

Lemma 4.2.25 shows that (4.135) is log-concave with respect to θ. We use the proposed SOUL methodol-

ogy to estimate θ? for the Wisconsin Diagnostic Breast Cancer dataset
3
, for which dy = 683 and d = 10,

and where we suitably normalise the covariates. In order to assess the quality of our estimation results,

we also calculate p(y|θ) over a grid of values for θ by using a truncated harmonic mean estimator.

To implement Algorithm 6 we derive the log-likelihood function

log p(y|β, θ) =

dy∑
i=1

{
yiv
>
i β − log(1 + e(v>i β))

}
,

and obtain the following expressions for the gradients used in the MCMC steps (4.123) and SA steps

(4.119) respectively

∇β log p(β|y, θ) =

dy∑
i=1

{
yivi − s(v>i β)vi

}
− (β − θ1d)

σ2
,

3
Available online: https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
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∇θp(β, y|θ) = 〈1d, β − θ1d〉 /σ2 .

For the MCMC steps, we use a �xed stepsize γn = 8.34 × 10−5
, and batch size mn = 1, for any

n ∈ N. On the other hand, we consider for the SA steps, the sequence of stepsizes δn = 60/n0.8
,

K = [−100, 100] and θ0 = 0. Finally, we �rst run 100 burn-in iterations with �xed θn = θ0 to warm-up

the Markov chain, followed by 50 iterations of Algorithm 6 to warm-up the iterates. This procedure is

then followed by N = 106
iterations of Algorithm 6 to compute θ̂N .

10 0 10 2

Iteration (n)

-100

-50

0

50

100

(a)

10 5 10 6
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Figure 4.4: Bayesian logistic regression - Evolution of the iterates θ̂n and θn for the proposed method during (a)

burn-in phase and (b) convergence phase. An estimate of θ?, the true maximizer of p(y|θ), is plotted as a reference.

Figure 4.4(a) shows the evolution of the iterates θn during the �rst 100 iterations. Observe that the se-

quence initially oscillates, and then stabilises close to θ? after approximately 50 iterations. Figure 4.4(b)

presents the iterates θn for n = 105, . . . , 106
. For completeness, Figure 4.5 shows the histograms cor-

responding to the marginal posteriors p(βj |y, v, θ̂N ), for j = 1, . . . , 10, obtained as a by-product of

Algorithm 6. In order to verify that the obtained estimate θ̂N is close to the true MLE θ? we use a
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Figure 4.5: Bayesian logistic regression - Normalised histograms of each component of β obtained with 2 × 106

Monte Carlo samples.

truncated harmonic mean estimator (THME) [RW09] to calculate the marginal likelihood p(y|θ) for a

range of values of θ. Although obtaining the THME is usually computationally expensive, it is viable in

this particular experiment as β is low-dimensional. More precisely, given n samples (βi)i∈{1,...,n} from

p(β|y, θ), we obtain an approximation of p(y|θ) by computing

p̂(y|θ) = nVol(A)

/(
n∑
k=1

1A(βk)

p(βk, y|θ)

)
,
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where A is a d-dimensional ball centered at the posterior mean β̄ = n−1
∑n
k=1 βk , and with radius set

such that n−1
∑n
i=1 1A(βi) ≈ 0.4. Using n = 6× 105

samples, we obtain the approximation shown in

Figure 4.6(a), where in addition to the estimated points we also display a quadratic �t (corresponding

to a Gaussian �t in linear scale), which we use to obtain an estimate of θ? (the obtained log-likelihood

values are small because the dataset is large (dy = 683)).

To empirically study the estimation error involved, we replicate the experiment 103
times. Figure 4.6

shows the obtained histogram of {θ̂N,i}1000
i=1 , where we observe that all these estimators are very close

to the true maximizer θ?. Besides, note that the distribution of the estimation error is close to a Gaussian

distribution, as expected for a maximum likelihood estimator. Also, there is a small estimation bias of

the order of 3%, which can be attributed to the discretization error of SDE (4.122), and potentially to a

small error in the estimation of θ?. We conclude this experiment by using SOUL to perform a predictive
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Figure 4.6: Bayesian logistic regression - (a) Estimated points of the marginal log-likelihood log p̂(y|θ) with

quadratic �t (corresponding to a Gaussian �t in linear scale). (b) Normalised histogram of θ̂N for 1000 repetitions

of the experiment. An estimate of θ?, the maximizer of p̂(y|θ), is plotted as a reference.

empirical Bayesian analysis on the binary responses. We split the original dataset into an 80% training

set (ytrain, vtrain) of size dtrain = 546, and a 20% test set (ytest, vtest) of size dtest = 137, and use SOUL

to draw samples from the predictive distribution p(ytest|ytrain, vtrain, vtest, θ̂N ). More precisely, we use

SOUL to simultaneously calculate θ̂N and simulate from p(β|ytrain, vtrain, θ̂N ), followed by simulation

from p(ytest|β, ytrain, vtrain, vtest). We then estimate the maximum-a-posteriori predictive response

ŷtest
, and measure prediction accuracy against the test dataset by computing the error

ε = ‖ytest − ŷtest‖1/dtest =

dtest∑
i=1

∣∣ytest
i − ŷtest

i

∣∣ /dtest ,

and obtain ε = 2.2%. For comparison, Figure 4.7 below reports the error ε as a function of θ (the

discontinuities arise because of the highly non-linear nature of the model). Observe that the estimated

θ̂N produces a model that has a very good performance in this regard.
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Figure 4.7: Bayesian logistic regression - Percentage of mislabelled binary observations in terms of θ. In blue we

show the value of θ̂N obtained with Algorithm 6.

Statistical audio compression

Compressive sensing techniques exploit sparsity properties in the data to estimate signals from fewer

samples than required by the Nyquist–Shannon sampling theorem [CW08; CW08]. Many real-world

data admit a sparse representation on some basis or dictionary. Formally, consider an `-dimensional

time-discrete signal z ∈ R` that is sparse in some dictionary Ψ ∈ R`×d, i.e, there exists a latent vector

x ∈ Rd such that z = Ψx and ‖x‖0 =
∑d
i=1 1R∗(xi) � `. This prior assumption can be modelled by

using a smoothed-Laplace distribution [LJ12]

p(x|θ) ∝ exp

(
−θ

d∑
i=1

hλ(xi)

)
, (4.136)

where hλ is the Huber function given for any u ∈ R by

hλ(u) =

{
u2/2 if |u| ≤ λ ,

λ(|u| − λ/2) otherwise .
(4.137)

Acquiring z directly would call for measuring ` univariate components. Instead, a carefully designed

measurement matrix M ∈ Rp×`, with p � `, is used to directly observe a “compressed” signal Mz,

which only requires taking pmeasurements. In addition, measurements are typically noisy which results

in an observation y ∈ Rp modeled as y = Mz + w where we assume that the noise w has distribution

N(0, σ2 Idp), and therefore the likelihood function is given by

p(y|x) ∝ exp
(
−‖y −MΨx‖22 /(2σ

2)
)
,

leading to the posterior distribution

p(x|y) ∝ exp

(
−‖y −MΨx‖22 /(2σ

2)− θ
d∑
i=1

hλ(xi)

)
.

To recover z from y, we then compute the maximum-a-posteriori estimate

x̂MAP ∈ argmin
x∈Rd

{
‖y −MΨx‖22 /2σ

2 + θ

d∑
i=1

hλ(xi)

}
, (4.138)

and set ẑMAP = Ψx̂MAP.
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Following decades of active research, there are now many convex optimization algorithms that can

be used to e�ciently solve (4.138), even when d is very large [CP16; Mon17]. However, the selection of

the value of θ in (4.138) remains a di�cult open problem. This parameter controls the degree of sparsity

of x and has a strong impact on estimation performance.

A common heuristic within the compressive sensing community is to set θcs = 0.1×‖(MΨ)ᵀy‖∞ /σ2
,

where for any z ∈ R`, ‖z‖∞ = maxi∈{1,...,`} |zi|, as suggested in [Kim+07] and [FNW07]; however,

better results can arguably be obtained by adopting a statistical approach to estimate θ.

The Bayesian framework o�ers several strategies for estimating θ from the observation y. In this

experiment we adopt an empirical Bayesian approach and use SOUL to compute the MLE θ?, which is

challenging given the high-dimensionality of the latent space.

To illustrate this approach, we consider the audio experiment proposed in [BNE10] for the “Mary
had a little lamb” song. The MIDI-generated audio �le z has ` = 319, 725 samples, but we only have

access to a noisy observation vector y with p = 456 random time points of the audio signal, corrupted

by additive white Gaussian noise with σ = 0.015. The latent signal x has dimension d = 2, 900 and

is related to z by a dictionary matrix Ψ whose row vectors correspond to di�erent piano notes lasting

a quarter-second long
4
. The parameter λ for the prior (4.136) is set to λ = 4 × 10−5

. We used the

heuristic θcs as the initial value for θ in our algorithm. To solve the optimization problem (4.138) we

use the Gradient Projection for Sparse Reconstruction (GPSR) algorithm proposed in [FNW07]. We

use this solver because it is the one used in the online MATLAB demonstration of [BNE10], however,

more modern algorithms could be used as well. We implemented Algorithm 6 using a �xed stepsize

γn = 6.9 × 10−6
, a �xed batch size mn = 1, δn = 20n−0.8/d = 0.0069n−0.8

and 100 burn-in

iterations.

The algorithm converged in approximately 500 iterations, which were computed in only 325 mil-

liseconds. Figure 4.8 (left), shows the �rst 250 iterations of the sequence θn and of the weighted average

θ̂n. Again, observe that the iterates oscillate for a few iterations and then quickly stabilise. Finally,

to assess the quality of the estimate θ̂N , Figure 4.8 (right) presents the reconstruction mean squared

error as a function of θ. The error is measured with respect to the reconstructed signal and is given

by MSE(x̂MAP) = ‖z? −Ψx̂MAP‖22/`, where z? is the true audio signal. Observe that the estimated

value θ̂N is very close to the value that minimizes the estimation error, and signi�cantly outperforms

the heuristic value θcs commonly used by practitioners.

Sparse Bayesian logistic regression with random e�ects

Following on from the Bayesian logistic regression in Section 4.2.4, where p(y|θ) is log-concave and

hence θ? unique, we now consider a signi�cantly more challenging sparse Bayesian logistic regression

with random e�ects problem. In this experiment p(y|θ) is no longer log-concave, so SOUL can po-

tentially get trapped in local maximizers. Furthermore, the dimension of θ in this experiment is very

large (dθ = 1001), making the MLE problem even more challenging. This experiment was previously

considered by [AFM17] and we replicate their setup.

Let {yi}
dy
i=1 ∈ {0, 1} be a vector of binary responses which can be modelled as dy conditionally

independent realisations of a random e�ect logistic regression model,

yi|x ∼ Ber

(
s(v>i β + σz>i x)

)
, i ∈ {1, . . . , dy} ,

where vi ∈ Rp are the covariates, β ∈ Rp is the regression vector, zi ∈ Rd are (known) loading vectors,

x are random e�ects and σ > 0. In addition, recall that Ber(α) denotes the Bernoulli distribution with

4
Each quarter-second sound can have one of 100 possible frequencies and be in 29 di�erent positions in time.
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Figure 4.8: Statistical audio compression - Evolution of the the iterate θn and θ̂n with σ = 0.015 in log scale (left).

Reconstruction mean squared error (MSE) in dB as a function of the θ (right).

parameter α ∈ [0, 1] and s(u) = eu/(1 + eu) is the cumulative distribution function of the standard

logistic distribution. The goal is to estimate the unknown parameters θ = (β,σ) ∈ Rp × (0,+∞)

directly from {yi}
dy
i=1, without knowing the value of x, which we assume to follow a standard Gaus-

sian distribution, i.e. p(x) = exp{−‖x‖22 /2}/(2π)d/2. We estimate θ by MLE using Algorithm 6 to

maximize (4.118), with marginal likelihood given by

p(y|θ) =

∫
Rd

dy∏
i=1

s(v>i β + σz>i x)yi

× (1− s(v>i β + σz>i x))1−yip(x)dx ,

and we use the penalty function

g(θ) =

d∑
j=1

hλ(βj) , (4.139)

where hλ is the Huber function de�ned in (4.137).

We follow the procedure described in [AFM17] to generate the observations {yi}
dy
i=1, with dy = 500,

p = 1000 and d = 55
. The vector of regressors βtrue is generated from the uniform distribution on [1, 5]

and 98% of its coe�cients are randomly set to zero. The variance σtrue of the random e�ect is set to

0.1, and the projection interval for the estimated σ is [10−5,+∞). Finally, the parameter λ in (4.139)

is set to λ = 30. We emphasize at this point that θ is high-dimensional in this experiment (p = 1001),

making the estimation problem particularly challenging.

The conditional log-likelihood function for this model is

log p(y|x, θ)

5
We renamed some symbols for notation consistency. What we denote by vi ,x, dy and d, is denoted in [AFM17] byxi , U,N and q respectively.
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=

dy∑
i=1

{
yi(v

>
i β + σz>i x)− log(1 + ev

>
i β+σz>i x)

}
.

To implement Algorithm 6 we use the gradients

∇x log p(x|y, θ) =

dy∑
i=1

{
σzi(yi − s(v>i β + σz>i x))

}
− x ,

∇θ log p(x, y|θ) =

dy∑
i=1

{
(yi − s(v>i β + σz>i x))

[
vi
z>i x

]}
.

Finally the gradient of the penalty function is given by

∂

∂βi
g(θ) =

{
βi |βi| ≤ λ
λ sign(βi), |βi| > λ

,
∂

∂σ
g(θ) = 0 ,

where sign denotes the sign function, i.e. for any s ∈ R, sign(s) = |s|/s if s 6= 0, and sign(s) = 0
otherwise.

We use γn = 0.01, δn = n−0.95/d = 0.2×n−0.95
, a �xed batch sizemn = 1, β0 = 1p and σ0 = 1 as

initial values. Moreover, we perform 104
burn-in iterations with a �xed value of θ0 = (β0,σ0) to warm-

up the Markov chain, and further 600 iterations of Algorithm 6 to warm-start the iterates. Following

on from this, we run N = 5× 104
iterations of Algorithm 6 to compute θ̂N . Computing this estimates

required 25 seconds in total.

Figure 4.9 shows the evolution of the iterates throughout iterations, where we used ‖β̂n‖0 as a

summary statistic to track the number of active components. Because the Huber penalty (4.137) does

not enforce exact sparsity on β, to estimate the number of active components we only consider values

that are larger than a threshold τ (we used τ = 0.005).
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Figure 4.9: Sparse Bayesian logistic regression with random e�ects - Evolution of the ‖β̂n‖0 and of the iterate σ̂n

for the proposed method. The true values are plotted in red as a reference.
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From Figure 4.9 we observe that σ̂n converges to a value that is very close to σtrue, and that the

number of active components is also accurately estimated. Moreover, Figure 4.10 shows that most active

components were correctly identi�ed. We also observe that β̂n stabilizes after approximately 6300
iterations, which correspond to 6300 Monte Carlo samples as mn=1. This is in close agreement with

the results presented in [AFM17, Figure 5], where they observe stabilization after a similar number of

iterations of their highly specialised Polya-Gamma sampler.

0 100 200 300 400 500 600 700 800 900 1000

Figure 4.10: Sparse Bayesian logistic regression with random e�ects - Support of the estimated β̂N compared with

the support of βtrue.

It is worth emphasising at this point that [AFM17] considers the non-smooth penalty g(θ) = λ‖β‖1
instead of (4.139). Consequently, instead of using the gradient of g, they resort to the so-called proximal

operator of g [CP16]. The generalisation of the SOUL methodology proposed in this paper to models

that have non-di�erentiable terms is addressed in [VP18; Vid+19].

4.2.5 Proofs and additional results

Non-convex objective function

In this section we turn to the case where f is non-convex. We recall that the normal space of a sub-

manifoldM⊂ Rp at point θ is given by

N(θ,M) =

{
T(θ,M)⊥ if θ ∈M ;

{0} otherwise ,

where T(θ,M) is the tangent space of the sub-manifoldM at point x, see [Aub01].

Theorem 4.2.7. Assume A1,A2,A3 and thatK is a p dimensional connected di�erentiable manifold with
boundary and continuously di�erentiable outer normal. Let γ̄ > 0, (γn)n∈N, (δn)n∈N be sequences of non-
increasing positive real numbers and (mn)n∈N be a sequence of positive integers such that supn∈N δn <
1/L, supn∈N γn < γ̄ and (4.127) are satis�ed. Let {(Xn

k )k∈{0,...,mn} : n ∈ N} be given by (4.126).
Assume in addition that H1 is satis�ed. Then (θn)n∈N de�ned by (4.126) converges a.s. to some θ? ∈ {θ ∈
K : ∇f(θ) + n = 0, n ∈ N(θ, ∂K)}.

Proof. The proof is an application of [KY03, Chapter 5, Theorem 2.3] using the decomposition of the

error term considered in the proof of Theorem 4.2.1 and Theorem 4.2.3. Indeed we decompose the error

term ηn de�ned by (4.140) as ηn = δMn + Bn, where δMn is a martingale increment. Then, we only

need to show that the following sums converge

n∑
k=0

δ2
k+1E

[
‖δMk‖2

]
,

n∑
k=0

δk+1E [‖Bk‖] ,

which is established in Lemma 4.2.10 and Lemma 4.2.11.
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Postponed proofs

We �rst derive the following technical lemmas.

Lemma 4.2.8. Let t ∈ (0, 1) and γ ∈ (0, γ̄] with γ̄ > 0 then
∑
n∈N t

nγ ≤ t−γ̄ log−1(1/t)γ−1 and∑
n∈N nt

nγ ≤ t−γ̄ log−2(1/t)γ−2.

Proof. Let t ∈ (0, 1) and γ ∈ (0, γ̄] with γ̄ > 0. Using that eu − 1 ≤ ueu for all u ≥ 0, we have∑
n∈N

tnγ = −(tγ − 1)−1 ≤ −γ−1 log−1(t) exp(− log(t)γ) ≤ t−γ̄ log−1(1/t)γ−1 ,

and ∑
n∈N

ntnγ = tγ(tγ − 1)−2 ≤ tγ{γ−1 log−1(t) exp(− log(t)γ)}2 ≤ t−γ̄ log−2(1/t)γ−2 ,

which completes the proof.

Lemma 4.2.9. For any probability measures µ, ν on B(Rd), measurable function V : Rd → [1,+∞)
such that µ(V ) + ν(V ) < +∞ and a ∈ (0, 1), we have

‖µ− ν‖V a ≤ 2‖µ− ν‖aV .

Proof. Let a ∈ (0, 1]. The statement is trivial if µ = ν. We just need to consider the case where µ 6= ν.

De�ne ξ = |µ− ν| /(|µ− ν| (Rd)). Using [Dou+18, De�nition D.3.1] we get that

‖µ− ν‖V a = (1/2)ξ(V a)× |µ− ν| (Rd)
≤ (1/2)ξ(V )a × |µ− ν| (Rd)
≤ 2a−1‖µ− ν‖aV × [|µ− ν| (Rd)]1−a ,

which concludes the proof using that a ≤ 1.

Jensen’s inequality implies that H1-(i) holds for V ← V a with a ∈ (0, 1] sinceA1 ≥ 1. Lemma 4.2.9

implies that H1-(ii) holds replacing V by V a, ρ by ρa and A2 by 2A2. Similarly H1-(iii) holds replacing

V by V a and Ψ(γ) by 2Ψ(γ).

Proof of Theorem 4.2.1 Consider (ηn)n∈N de�ned for any n ∈ N by

ηn = m−1
n

mn∑
k=1

{Hθn(Xn
k )− πθn(Hθn)} . (4.140)

The proof of Theorem 4.2.1 relies on the two following lemmas. We consider the following decomposi-

tion for any n ∈ N, ηn = η
(1)
n + η

(2)
n , where

η(1)
n = E [ηn|Fn−1] , η(2)

n = ηn − E [ηn|Fn−1] . (4.141)

We now give upper bounds on E[‖η(1)
n ‖], E[‖η(1)

n ‖2] and E[‖η(2)
n ‖2].
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Lemma 4.2.10. Assume A1, A2, A3,H1 and that for any θ ∈ Θ and x ∈ Rd, ‖Hθ(x)‖ ≤ V 1/2(x). Then
we have for any n ∈ N

E
[
‖η(1)
n ‖

]
≤ B1E

[
V 1/2(X0

0 )
]
/(mnγn) + Ψ(γn) ;

E
[
‖η(1)
n ‖2

]
≤ 2B2

1E
[
V (X0

0 )
]
/(mnγn)2 + 2Ψ(γn)2 ,

with
B1 = 2A1A2ρ

−γ̄/ log(1/ρ) .

Proof. Using the de�nition of (Fn)n∈N, see (4.124), the Markov property, H1-(ii)-(iii), Lemma 4.2.9,

Jensen’s inequality and that for any θ ∈ Θ and x ∈ Rd, ‖Hθ(x)‖ ≤ V 1/2(x), we have for any n ∈ N?

‖E [ηn|Fn−1] ‖ ≤ m−1
n

mn∑
k=1

∥∥Kk
γn,θnHθn(Xn

0 )− πθn (Hθn)
∥∥

≤ m−1
n

mn∑
k=1

∥∥∣∣δXn0 Kk
γn,θn − πθn

∣∣ (Hθn)
∥∥

≤ m−1
n

mn∑
k=1

∣∣δXn0 Kk
γn,θn − πθn

∣∣ (‖Hθn‖)

≤ m−1
n

mn∑
k=1

{
‖δXn0 Kk

γn,θn − πγn,θn‖V 1/2

}
+ ‖πγn,θn − πθn‖V 1/2

≤ m−1
n

mn∑
k=1

{
2A2ρ

kγnV 1/2(Xn
mn) + Ψ(γn)

}
≤

2A2ρ
−γ̄V 1/2(Xn

mn)

log(1/ρ)γnmn
+ Ψ(γn) ,

where for the last inequality we have used Lemma 4.2.8. In a similar manner, we have∥∥E [η0

∣∣X0
0

]∥∥ ≤ 2A2ρ
−γ̄V 1/2(X0

0 )

log(1/ρ)γ0m0
+ Ψ(γ0) .

We conclude using H1-(i) and that (a+ b)2 ≤ 2a2 + 2b2 for a, b ∈ R.

Lemma 4.2.11. Assume A1, A2, A3,H1 and that for any θ ∈ Θ and x ∈ Rd, ‖Hθ(x)‖ ≤ V 1/2(x). Then
we have for any n ∈ N

E
[
‖η(2)
n ‖2

]
≤ B2m

−2
n γ−1

n

(
mn + γ−1

n E
[
V (X0

0 )
])

) ,

with B2 = 2(1 + γ̄)2 max(B2,1, B2,2) and

B2,1 = 24A2
2(1− ρ1/2)−2A3 ,

B2,2 = 4A1

[
1 + 6A2

2(1− ρ1/2)−2
{
A2(1− ρ)−1 + 2

}
+A2

2 log−2(1/ρ) +A2
3

]
.

Proof. Let n ∈ N?. We have using the Cauchy-Schwarz inequality

E

∥∥∥∥∥
mn∑
k=1

{Hθn(Xn
k )− E [Hθn(Xn

k )|Fn−1]}

∥∥∥∥∥
2
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≤ 2E

∥∥∥∥∥
mn∑
k=1

{Hθn(Xn
k )− πγn,θn(Hθn)}

∥∥∥∥∥
2


+ 2E

∥∥∥∥∥
mn∑
k=1

{E [Hθn(Xn
k )|Fn−1]− πγn,θn(Hθn)}

∥∥∥∥∥
2
 (4.142)

Using the Markov property, H1-(i)-(ii), Lemma 4.2.9, Lemma 4.2.8 and that for any θ ∈ Θ and x ∈ Rd,

‖Hθ(x)‖ ≤ V 1/2(x) we obtain that

E

∥∥∥∥∥
mn∑
k=1

{E [Hθn(Xn
k )|Fn−1]− πγn,θn(Hθn)}

∥∥∥∥∥
2


≤ E

∣∣∣∣∣
mn∑
k=1

E
[
‖δXn0 Rγn,θn − πγn,θn‖V 1/2

∣∣Fn−1

]∣∣∣∣∣
2


≤ 4A2
2E

∣∣∣∣∣E [V 1/2(Xn
0 )
∣∣∣Fn−1

] mn∑
k=1

ρkγn/2

∣∣∣∣∣
2


≤ 4A1A
2
2γ
−2
n ρ−2γ̄ log−2(1/ρ)E

[
V (X0

0 )
]
. (4.143)

We now give an upper-bound on the �rst term in the right-hand side of (4.142). Consider for any n ∈ N
the Euclidean division of mn by d1/γne there exist qn ∈ N and rn ∈ {0, . . . , d1/γne − 1} such that

mn = qn d1/γne + rn. Therefore using the Cauchy-Schwarz inequality we can derive the following

decomposition

E

∥∥∥∥∥
mn∑
k=1

Hθn(Xn
k )− πγn,θn(Hθn)

∥∥∥∥∥
2


≤ 2E


∥∥∥∥∥∥
rn∑
j=1

Hθn(Xn
j+qnd1/γne)− πγn,θn(Hθn)

∥∥∥∥∥∥
2


+ 2E


∥∥∥∥∥∥
d1/γne∑
j=1

qn−1∑
k=0

Hθn(Xn
j+kd1/γne)− πγn,θn(Hθn)

∥∥∥∥∥∥
2


≤ 2E


∥∥∥∥∥∥
rn∑
j=1

Hθn(X̄j,n
qn )− πγn,θn(Hθn)

∥∥∥∥∥∥
2


+ 2 d1/γne
d1/γne∑
j=1

E

∥∥∥∥∥
qn−1∑
k=0

Hθn(X̄j,n
k )− πγn,θn(Hθn)

∥∥∥∥∥
2
 (4.144)

Setting for any j ∈ {1, . . . , d1/γne} and k ∈ {0, . . . , qn − 1}, X̄j,n
k = Xn

j+kd1/γne. We now bound the

two terms in the right-hand side. First, using the Cauchy-Schwarz inequality and H1-(i)-(iii), the fact
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that rn ≤ d1/γne and that for any θ ∈ Θ and x ∈ Rd, ‖Hθ(x)‖ ≤ V 1/2(x) we have

E


∥∥∥∥∥∥
rn∑
j=1

Hθn(X̄j,n
qn )− πγn,θn(Hθn)

∥∥∥∥∥∥
2


≤ rn
rn∑
j=1

E
[∥∥Hθn(X̄j,n

qn )− πγn,θn(Hθn)
∥∥2
]

≤ d1/γne2
(
2A1E

[
V (X0

0 )
]

+ 2A2
3

)
. (4.145)

Now consider the solution of the Poisson equation [MT93a, Section 17.4.1] associated with K
d1/γne
γn,θn

,

x 7→ Ĥγn,θn(x) de�ned for any x ∈ Rd by

Ĥγn,θn(x) =
∑
`∈N

(
K
`d1/γne
γn,θn

Hθn(x)− πγn,θn(Hθn)
)
.

Note that by H1-(ii), Lemma 4.2.9 and since for any θ ∈ Θ and x ∈ Rd, ‖Hθ(x)‖ ≤ V 1/2(x), we have

that for any x ∈ Rd ∥∥∥Ĥγn,θn(x)
∥∥∥ ≤ 2A2(1− ρ1/2)−1V 1/2(x) , (4.146)

and in addition for any x ∈ Rd

Ĥγn,θn(x)−K
d1/γne
γn,θn

Ĥγn,θn(x) = Hθn(x)− πγn,θn(Hθn) .

Therefore, we have for any j ∈ {1, . . . , d1/γne}

qn−1∑
k=0

(
Hθn(X̄j,n

k )− πγn,θn(Hθn)
)

=

qn−1∑
k=0

(
Ĥγn,θn(X̄j,n

k )−K
d1/γne
γn,θn

Ĥγn,θn(X̄j,n
k )
)

=

qn−2∑
k=0

(
Ĥγn,θn(X̄j,n

k+1)−K
d1/γne
γn,θn

Ĥγn,θn(X̄j,n
k )
)

+ Ĥγn,θn(X̄j,n
0 )−K

d1/γne
γn,θn

Ĥγn,θn(X̄j,n
qn−1) . (4.147)

Combining the Cauchy-Schwarz inequality and (4.147) we obtain that

E

∥∥∥∥∥
qn−1∑
k=0

Hθn(X̄j,n
k )− πγn,θn(Hθn)

∥∥∥∥∥
2
 ≤ 3(C1 + C2) , (4.148)

with

C1 = E
[∥∥∥Ĥγn,θn(X̄j,n

0 )
∥∥∥2

+ K
d1/γne
γn,θn

∥∥∥Ĥγn,θn(X̄j,n
qn−1)

∥∥∥2
]

;

C2 = E

∥∥∥∥∥
qn−2∑
k=0

Ĥγn,θn(X̄j,n
k+1)−K

d1/γne
γn,θn

Ĥγn,θn(X̄j,n
k )

∥∥∥∥∥
2
 .

First, using (4.146) and H1-(i) we get that

C1 ≤ 4A2
2(1− ρ1/2)−2

{
E
[
V (Xn

j )
]

+ E
[
Kγn,θnV (Xn

qn+j−1

]}
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≤ 8A1A
2
2(1− ρ1/2)−2E

[
V (X0

0 )
]
. (4.149)

We now give an upper-bound on C2. For any j ∈ {1, . . . , rn} let (Gj,k)k∈{0,qn−2} generated by Fn−1

and the sequence of random variables Xn
0 , . . . , X

n
kd1/γne+j . Using the Markov property we have for

any k ∈ {0, . . . , qn − 2} and j ∈ {1, . . . , rn}

E
[
Ĥγn,θn(Xj,n

k+1)
∣∣∣Gj,k] = K

d1/γne
γn,θn

Ĥγn,θn(Xj,n
k ) .

Therefore, for any j ∈ {1, . . . , rn}, Ĥγn,θn(Xj,n
k+1) − K

d1/γne
γn,θn

Ĥγn,θn(Xj,n
k ) is a martingale increment

with respect to (Gj,k)k∈{0,qn−2}, Combining this result with the Markov property implies that for any

k ∈ {0, . . . , qn − 2} and j ∈ {1, . . . , rn},

C2 =

qn−2∑
k=0

E
[
K
d1/γne
γn,θn

∥∥∥Ĥγn,θn(X̄j,n
k )−K

d1/γne
γn,θn

Ĥγn,θn(X̄j,n
k )
∥∥∥2
]

=

qn−2∑
k=0

E
[
K
d1/γne
γn,θn

∥∥∥Ĥγn,θn(X̄j,n
k )
∥∥∥2

−
∥∥∥K
d1/γne
γn,θn

Ĥγn,θn(X̄j,n
k )
∥∥∥2
]
. (4.150)

De�ne for any x ∈ Rd, gn(x) = ‖Ĥγn,θn(x)‖2. Using (4.150), H1-(ii)-(iii) and (4.146) we obtain that

C2 =

qn−2∑
k=0

E
[
K
d1/γne
γn,θn

∥∥∥Ĥγn,θn(X̄j,n
k )
∥∥∥2

−
∥∥∥K
d1/γne
γn,θn

Ĥγn,θn(X̄j,n
k )
∥∥∥2
]

≤
qn−2∑
k=0

E
[
K
d1/γne
γn,θn

∥∥∥Ĥγn,θn(X̄j,n
k )
∥∥∥2
]

≤ E

[
qn−2∑
k=0

E
[
K

(k+1)d1/γne
γn,θn

gn(X̄j,n
0 )− πγn,θn(gn)

∣∣∣Gj,0]]+

qn−2∑
k=0

πγn,θn(gn)

≤ 4A2
2

(1− ρ1/2)2

{
qn−2∑
k=0

E
[
E
[
‖δXnj K

(k+1)d1/γne
γn,θn

− πγn,θn‖V
∣∣∣Gj,0]]

+

qn−2∑
k=0

πγn,θn(V )

}
≤ 4A2

2(1− ρ1/2)−2
{
A2(1− ρ)−1E

[
V (Xn

j )
]

+ qnA3

}
≤ 4A2

2(1− ρ1/2)−2
{
A1A2(1− ρ)−1E

[
V (X0

0 )
]

+ qnA3

}
. (4.151)

Therefore, using (4.149) and (4.151) in (4.148) we obtain that

E

∥∥∥∥∥
qn−1∑
k=0

Hθn(X̄j,n
k )− πγn,θn(Hθn)

∥∥∥∥∥
2
 (4.152)

≤ 12A2
2(1− ρ1/2)−2

[{
A1A2(1− ρ)−1E

[
V (X0

0 )
]

+ qnA3

}
+ 2E

[
V (X0

0 )
]]
.

As a consequence, using (4.145) and (4.152) in (4.144) we get that

E

∥∥∥∥∥
mn∑
k=1

Hθn(Xn
k )− πγn,θn(Hθn)

∥∥∥∥∥
2
 ≤ 4 d1/γne2 (A1E

[
V (X0

0 )
]

+A2
3)
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+ 24 d1/γne2A2
2(1− ρ1/2)−2

{
A1E

[
V (X0

0 )
]

(A2(1− ρ)−1 + 2) + qnA3

}
≤
[
γ−2
n

(
A1E

[
V (X0

0 )
] [

24A2
2(1− ρ1/2)−2

{
A2(1− ρ)−1 + 2

}
+ 4
]

+ 4A2
3

)
+24A2

2(1− ρ1/2)−2A3mn/γn

]
(1 + γ̄)2

(4.153)

Combining (4.143) and (4.153) in (4.142) we obtain that

E

∥∥∥∥∥
mn∑
k=1

Hθn(Xn
k )− E [Hθn(Xn

k )]

∥∥∥∥∥
2
 ≤ 8γ−2

n A1A
2
2ρ
−2γ̄ log−2(1/ρ)E

[
V (X0

0 )
]

+ 2
[
γ−2
n

(
A1E

[
V (X0

0 )
] [

24A2
2(1− ρ1/2)−2

{
A2(1− ρ)−1 + 2

}
+ 4
]

+ 4A2
3

)
+24A2

2(1− ρ1/2)−2A3mn/γn

]
(1 + γ̄)2

≤ 2(1 + γ̄)2
(
A1E

[
V (X0

0 )
] [

24A2
2(1− ρ1/2)−2

{
A2(1− ρ)−1 + 2

}
+4
{

1 +A2
2 log−2(1/ρ)

}]
+ 4A2

3

)
γ−2
n + 48A2

2(1− ρ1/2)−2A3(1 + γ̄)2(mn/γn) ,

which concludes the proof for n 6= 0. The same inequality holds in the case where n = 0.

We now turn to the proof of Theorem 4.2.1.

Proof of Theorem 4.2.1. The proof is an application of [AFM17, Theorem 2, Theorem 3].

(a) To apply [AFM17, Theorem 2], it is enough to show that the following series converge a.s.

+∞∑
n=0

δn+1〈ΠΘ(θn − δn+1∇f(θn)), η(i)
n 〉 ,

+∞∑
n=0

δn+1η
(i)
n ,

+∞∑
n=0

δ2
n+1‖η(i)

n ‖2 .

where i ∈ {1, 2} and the sequences (η
(1)
n )n∈N and (η

(2)
n )n∈N are given in (4.142).

In the case where i = 1, since (ΠΘ(θn − δn+1∇f(θn)))n∈N is bounded, we are reduced to proving

that a.s.

∑+∞
n=0 δn+1‖η(1)

n ‖ < +∞. Using (4.127), Lemma 4.2.10 and Fubini-Tonelli’s theorem we obtain

that

E

[∑
n∈N

δn+1‖η(1)
n ‖

]
=
∑
n∈N

δn+1E
[
‖η(1)
n ‖

]
< +∞ . (4.154)

We consider the case where i = 2. Let (Sn)n∈N and (Tn)n∈N be de�ned for any n ∈ N by

Sn =
∑n
k=0 δk+1〈ΠΘ(θk − δk+1∇f(θk)), η

(2)
k 〉 and Tn =

∑n
k=0 δk+1η

(2)
n are (Fn)n∈N-martingale

by de�nition of (η
(2)
n )n∈N in (4.142) and (Fn)n∈N in (4.124). Therefore, using [Wil91, Section 12.5], the

Cauchy-Schwarz inequality and that the sequence (ΠΘ(θn − δn+1∇f(θn)))n∈N is bounded, it su�ces

to show that

∑+∞
n=0 δ

2
n+1E[‖η(2)

n ‖2] < +∞. Using Lemma 4.2.11 we get that

+∞∑
n=0

δ2
n+1E[‖η(2)

n ‖2] ≤ B2

(
+∞∑
n=0

δ2
n+1/(mnγn) + E

[
V (X0

0 )
] +∞∑
n=0

δ2
n+1/(mnγn)2

)
.

Combining this result and (4.154) implies the stated convergence applying [AFM17, Theorem 2].

208



(b) Applying [AFM17, Theorem 3], the Cauchy-Schwarz inequality and using A1 we obtain that a.s. for

any n ∈ N

n∑
k=1

δk

{
f(θk)−min

Θ
f
}

(4.155)

≤ ‖θ0 − θ?‖2

2
−
n−1∑
k=0

δk+1〈ΠΘ(θk − δk+1∇f(θk))− θ?, ηk〉+

n−1∑
k=0

δ2
k+1‖ηk‖2

≤ 2M2
Θ −

2∑
i=1

n−1∑
k=0

δk+1〈ΠΘ(θk − δk+1∇f(θk))− θ?, η(i)
k 〉+ 2

2∑
=1

n−1∑
k=0

δ2
k+1‖η

(i)
k ‖

2 .

which implies by the proof of (a) that supn∈N[
∑n
k=1 δk {f(θk)−minΘ f}] < +∞ a.s.. The proof is

then completed upon dividing (4.155) by

∑n
k=1 δk .

Proof of Theorem 4.2.2

Proof. Taking the expectation in (4.155) and using that η
(2)
n is a martingale increment with respect to

(Fn)n∈N, we get that for every n ∈ N

E

[
n∑
k=1

δk

{
f(θk)−min

Θ
f
}]
≤ 2M2

Θ + 2MΘ

n−1∑
k=0

δk+1E
[∥∥∥η(1)

k

∥∥∥]
+ 2

n−1∑
k=0

δ2
k+1E

[∥∥∥η(1)
k

∥∥∥2
]

+ 2

n−1∑
k=0

δ2
k+1E

[∥∥∥η(2)
k

∥∥∥2
]
.

Combining this result, Lemma 4.2.10 and Lemma 4.2.11 completes the proof.

Proof of Theorem 4.2.3

We now introduce some tools needed for the proof. By A4 and H1-(i)-(ii), for any θ ∈ Θ and γ ∈ (0, γ̄],
there exists a function Ĥγ,θ : Rd → Rdθ solution of the Poisson equation,

(Id−Kγ,θ)Ĥγ,θ = Hθ − πγ,θ(Hθ) , (4.156)

de�ned for any x ∈ Rd by

Ĥγ,θ(x) =
∑
j∈N
{Kj

γ,θHθ(x)− πγ,θ(Hθ)} . (4.157)

Note that using H1-(ii) and Lemma 4.2.9 we have for any θ ∈ Θ and x ∈ Rd∥∥∥Ĥθ(x)
∥∥∥ ≤ CĤγ−1V 1/4(x) , CĤ = 8A2 log−1(1/ρ)ρ−γ̄/4 . (4.158)

De�ne for any n ∈ N
η̃n = Hθn(X̃n+1)− πθ̃n(Hθ̃n

) . (4.159)

209



Using (4.156) an alternative expression of (η̃n)n∈N is given for any n ∈ N by

η̃n = Ĥγn,θ̃n
(X̃n+1)−Kγn,θ̃n

Ĥγn,θ̃n
(X̃n+1) + πγn,θ̃n(Hθ̃n

)− πθ̃n(Hθ̃n
)

= η̃(a)
n + η̃(b)

n + η̃(c)
n + η̃(d)

n ,

where

η̃(a)
n = Ĥγn,θ̃n

(X̃n+1)−Kγn,θ̃n
Ĥγn,θ̃n

(X̃n) ,

η̃(b)
n = Kγn,θ̃n

Ĥγn,θ̃n
(X̃n)−Kγn+1,θ̃n+1

Ĥγn+1,θ̃n+1
(X̃n+1) ,

η̃(c)
n = Kγn+1,θ̃n+1

Ĥγn+1,θ̃n+1
(X̃n+1)−Kγn,θ̃n

Ĥγn,θ̃n
(X̃n+1) ,

η̃(d)
n = πγn,θ̃n(Hθ̃n

)− πθ̃n(Hθ̃n
) .

(4.160)

To establish Theorem 4.2.3 we need to get estimates on moments of

∥∥∥η̃(i)
n

∥∥∥ for i ∈ {a, b, c, d}. It is the

matter of the following technical results.

Lemma 4.2.12. Assume A1, A2, A3,H1 and that for any θ ∈ Θ and x ∈ Rd, ‖Hθ(x)‖ ≤ V 1/4(x). Then
we have for any n ∈ N, E

[
‖η̃n‖2

]
≤ C1, with

C1 = 2A1E
[
V 1/2(X̃0)

]
+ 2 sup

θ∈Θ
‖∇f(θ)‖2 .

Proof. Using (4.159), that ‖x+ y‖2 ≤ 2(‖x‖2 + ‖y‖2) for any x, y ∈ Rd, A1, A2, A3 and H1-(i) and

that for any θ ∈ Θ and x ∈ Rd, ‖Hθ(x)‖ ≤ V 1/2(x), we get for any k ∈ N,

E
[
‖η̃k‖2

]
≤ 2E[‖Hθ̃k

(X̃k+1)‖2] + 2
[
πθ̃k(‖Hθ̃k

‖)
]2

≤ 2A1E
[
V 1/2(X̃0)

]
+ 2 sup

θ∈Θ
‖∇f(θ)‖2 .

Lemma 4.2.13. Assume A1, A2, A3, A4, H1, H2 and that for any θ ∈ Θ and x ∈ Rd, ‖Hθ(x)‖ ≤

V 1/4(x). Then we have for any n ∈ N, E
[∥∥∥η̃(a)

n

∥∥∥2
]
≤ C̃1γ

−2
n , with

C̃1 = A1C
2
Ĥ
E
[
V 1/2(X̃0)

]
.

Proof. By (4.160), using (4.158) and H1-(i) we get that for any n ∈ N?

E
[
E
[∥∥∥η̃(a)

n

∥∥∥2
∣∣∣∣Fn]]

≤ E
[
E
[∥∥∥Ĥγn,θ̃n

(X̃n+1)
∥∥∥2
∣∣∣∣Fn]]− E

[∥∥∥Kγn,θ̃n
Ĥγn,θ̃n

(X̃n)
∥∥∥2
]

≤ A1C
2
Ĥ
γ−2
n E

[
V 1/2(X̃0)

]
,

which concludes the proof.

Lemma 4.2.14. Assume A1, A2, A3,H1 and that for any θ ∈ Θ and x ∈ Rd, ‖Hθ(x)‖ ≤ V 1/4(x). Then
the following statements hold.
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(a) There exists C3 ≥ 0 such that for any n ∈ N and θ ∈ Θ

E

[∥∥∥∥∥
n∑
k=0

δk+1〈ak+1, η̃
b
k〉

∥∥∥∥∥
]

≤ C3

[
n∑
k=0

|δk+1 − δk| γ−1
k +

n∑
k=0

δ2
k+1γ

−1
k + (δn+1/γn+1 − δ1/γ1)

]
.

with ak+1 = ΠΘ

[
θ̃k − δk+1∇f(θ̃k)

]
− θ?, θ? ∈ arg minΘ f and

C3 = A1CĤ(4MΘ + sup
θ∈Θ
‖∇f(θ)‖+ 1 + δ1Lf )E

[
V 1/4(X̃0)

]
.

(b) If (4.133) holds then
∑n
k=0 δk+1〈ak+1, η̃

(b)
k 〉 converges a.s..

Proof. By (4.160) we have for any n ∈ N and θ ∈ Θ

n∑
k=0

δk+1〈ak+1, η̃
(b)
k 〉

=

n∑
k=0

〈δk+1ak+1,Kγk,θ̃k
Ĥγk,θ̃k

(X̃k)−Kγk+1,θ̃k+1
Ĥγk+1,θ̃k+1

(X̃k+1)〉

=

n∑
k=1

〈δk+1ak+1 − δkak,Kγk,θ̃k
Ĥγk,θ̃k

(X̃k)〉

− 〈δn+1an+1,Kγn+1,θ̃n+1
Ĥγn+1,θ̃n+1

(X̃n+1)〉

+ 〈δ1a1,Kγ0,θ̃0
Ĥγ0,θ̃0

(X̃0)〉 , (4.161)

In addition, we have for any n ∈ N, θ ∈ Θ using A1, A2, that ΠΘ is non-expansive, (4.131), H1-(i) and

that for any θ ∈ Θ and x ∈ Rd, ‖Hθ(x)‖ ≤ V 1/4(x)

‖δn+1an+1 − δnan‖ ≤ 2MΘ |δn+1 − δn|+ δn+1 ‖an+1 − an‖
≤ 2MΘ |δn+1 − δn|+ (1 + δnLf ) ‖θn+1 − θn‖+ |δn+1 − δn| ‖∇f(θn+1)‖
≤ (2MΘ + sup

θ∈Θ
‖∇f(θ)‖) |δn+1 − δn|+ δ2

n+1(1 + δn+1Lf )V 1/4(X̃n+1) . (4.162)

(a) Combining (4.161), (4.162), (4.158), the Cauchy-Schwarz inequality and H1-(i) we get that

E

[∥∥∥∥∥
n∑
k=0

δk+1〈ak, η̃[b)
k 〉

∥∥∥∥∥
]

≤ (2MΘ + sup
θ∈Θ
‖∇f(θ)‖)A1CĤE

[
V 1/4(X̃0)

] n∑
k=0

|δk+1 − δk| γ−1
k

+A1CĤ(1 + δ1Lf )E
[
V 1/4(X̃0)

] n∑
k=0

δ2
k+1γ

−1
k

+ 2A1MΘCĤE
[
V 1/4(X̃0)

]
{δn+1/γn+1 + δ1/γ1} ,

which concludes the proof of Lemma 4.2.14-(a).
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(b) Assume now (4.133). We show that a.s. the �rst term in (4.161) is absolutely convergence and the

second term converges to 0.

Using (4.162), (4.158), the Cauchy-Schwarz inequality and (4.133) we get that

E

[
+∞∑
k=1

∣∣∣〈δk+1ak+1 − δkak,Kγk,θ̃k
Ĥγk,θ̃k

(X̃k)〉
∣∣∣]

≤ (2MΘ + sup
θ∈Θ
‖∇f(θ)‖)A1CĤE

[
V 1/4(X̃0)

] +∞∑
k=0

|δk+1 − δk| γ−1
k

+A1CĤ(1 + δ1Lf )E
[
V 1/4(X̃0)

] +∞∑
k=0

δ2
k+1

< +∞ ,

which implies that (〈δk+1ak+1 − δkak,Kγk,θ̃k
Ĥγk,θ̃k

(X̃k)〉)k∈N is absolutely convergent a.s.. We have

that Kγn+1,θ̃n+1
‖Ĥγn+1,θ̃n+1

(X̃n+1)‖ is upper-bounded using (4.158) by γ−1
n+1CĤKγn+1,θ̃n+1

V 1/4(X̃n+1).

It follows that we have for any θ ∈ Θ, ε > 0, using the Markov inequality, the Cauchy-Schwarz in-

equality, (4.158) and (4.133)∑
n∈N

P
(
‖an+1‖ δn+1Kγn+1,θ̃n+1

‖Ĥγn+1,θ̃n+1
(X̃n+1)‖ ≥ ε

)
≤
∑
n∈N

P
(

2CĤMΘ δn+1 γ
−1
n+1 Kγn+1,θ̃n+1

V 1/4(X̃n+1) ≥ ε
)

≤ 4ε−2M2
ΘC

2
Ĥ
A1E

[
V 1/2(X̃0)

]∑
n∈N

δ2
nγ
−2
n < +∞ ,

Using the Borel-Cantelli lemma, we get limn→+∞〈δnanKγn,θ̃n
Ĥγn,θ̃n

(X̃n)〉 = 0 a.s.. This completes

the proof of convergence for any θ ∈ Θ of the series

∑
k∈N δk+1〈ak+1, η̃

(b)
k 〉.

Lemma 4.2.15. Assume A1, A2, A3, A4, H1, H2 and that for any θ ∈ Θ and x ∈ Rd, ‖Hθ(x)‖ ≤
V 1/4(x). Then we have for any n ∈ N

E
[∥∥∥η̃(c)

n

∥∥∥] ≤ C2γ
−1
n+1

[
γ−1
n+1 {Λ1(γn, γn+1) + Λ2(γn, γn+1)δn+1}+ δn+1

]
,

with
C2 = 4A1A2 log−1(1/ρ)ρ−γ̄/2 max

[
LH , Cc,1 + 2A2 log−1(1/ρ)ρ−γ̄/2

]
, (4.163)

where Cc,1 is given by

Cc,1 = 4A1A2 log−1(1/ρ)ρ−γ̄/2E
[
V (X̃0)

]
. (4.164)

Proof. We start by giving an upper-bound on ‖πγ1,θ1 − πγ2,θ2‖V 1/2 for γ1, γ2 ∈ (0, γ̄] with γ1 > γ2

and, θ1, θ2 ∈ Θ. Let g : Rd → Rdθ be a measurable function satisfying

sup
x∈Rd
{‖g(x)‖ /V 1/2(x)} ≤ 1 .

212



Using H1-(i)-(ii), H2, Lemma 4.2.8 and Lemma 4.2.9, we get that for any γ1, γ2 ∈ (0, γ̄] with γ1 > γ2,

θ1, θ2 ∈ Θ and ` ∈ N?

E
[∥∥∥K`

γ1,θ1g(X̃0)−K`
γ2,θ2g(X̃0)

∥∥∥]
=

∥∥∥∥∥∥
`−1∑
j=0

Kj
γ1,θ1

(Kγ1,θ1 −Kγ2,θ2)
{

K
(`−1−j)
γ2,θ2

g(x)− πγ2,θ2(f)
}∥∥∥∥∥∥

≤ 2A2

`−1∑
j=0

ρ(`−1−j)γ2/2
∥∥∥Kj

γ1,θ1
(Kγ1,θ1 −Kγ2,θ2)V 1/2(x)

∥∥∥
≤ 2A2

`−1∑
j=0

ρ(`−1−j)γ2/2 [Λ1(γ1, γ2) + Λ2(γ1, γ2)‖θ1 − θ2‖] sup
k∈N

E
[
Kk
γ1,θ1V (X̃0)

]
≤ 4A1A2 log−1(1/ρ)ρ−γ̄/2γ−1

2 [Λ1(γ1, γ2) + Λ2(γ1, γ2)‖θ1 − θ2‖]E
[
V (X̃0)

]
.

Taking `→ +∞ and using H1-(ii), we obtain that for any θ1, θ2 ∈ Θ and γ1, γ2 ∈ (0, γ̄] with γ1 > γ2,

‖πγ1,θ1 − πγ2,θ2‖V 1/2 ≤ Cc,1γ−1
2 [Λ1(γ1, γ2) + Λ2(γ1, γ2)‖θ1 − θ2‖] , (4.165)

with Cc,1 given by(4.164).

In what follows we derive an upper bound

∥∥∥Kγ1,θ1Ĥγ1,θ1(x)−Kγ2,θ2Ĥγ2,θ2(x)
∥∥∥ for any θ1, θ2 ∈

Θ, γ1, γ2 ∈ (0, γ̄] with γ1 > γ2 and x ∈ Rd. By (4.157) we have for any θ1, θ2 ∈ Θ, γ1, γ2 ∈ (0, γ̄] with

γ1 > γ2 and x ∈ Rd,∥∥∥Kγ1,θ1Ĥγ1,θ1(x)−Kγ2,θ2Ĥγ2,θ2(x)
∥∥∥

=

∥∥∥∥∥∑
`∈N?

{
K`
γ1,θ1Hθ1(x)− πγ1,θ1(Hθ1)

}
−
∑
`∈N?

{
K`
γ2,θ2Hθ2(x)− πγ2,θ2(Hθ2)

}∥∥∥∥∥
≤
∑
`∈N?

∥∥{K`
γ1,θ1Hθ1(x)− πγ1,θ1(Hθ1)

}
−
{

K`
γ2,θ2Hθ2(x)− πγ2,θ2(Hθ2)

}∥∥ .
We now bound each term of the series in the right hand side. For any measurable functions g1, g2

with gi : Rd → Rdθ and such that supx∈Rd ‖gi(x)‖ /V 1/4(x) < +∞ with i ∈ {1, 2}, θ1, θ2 ∈ Θ,

γ1, γ2 ∈ (0, γ̄] with γ1 > γ2, x ∈ Rd and ` ∈ N?, it holds that

K`
γ1,θ1g1(x)−K`

γ2,θ2g2(x) = K`
γ1,θ1g1(x)−K`

γ2,θ2g1(x) + K`
γ2,θ2(g1(x)− g2(x))

=

`−1∑
j=0

{
Kj
γ1,θ1

− πγ1,θ1
}

(Kγ1,θ1 −Kγ2,θ2)
{

K`−1−j
γ2,θ2

g1(x)− πγ2,θ2(g1)
}

+

`−1∑
j=0

πγ1,θ1

{
K`−1−j
γ2,θ2

g1(x)−K`−j
γ2,θ2

g1(x)
}

+ K`
γ2,θ2(g1(x)− g2(x))

=

`−1∑
j=0

{
Kj
γ1,θ1

− πγ1,θ1
}

(Kγ1,θ1 −Kγ2,θ2)
{

K`−1−j
γ2,θ2

g1(x)− πγ2,θ2(g1)
}

− πγ1,θ1(K`
γ2,θ2g1(x)− g1(x)) + K`

γ2,θ2(g1(x)− g2(x)) .
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Setting g1 = Hθ1 − πγ1,θ1(Hθ1) and g2 = Hθ2 − πγ2,θ2(Hθ2), we obtain that

K`
γ1,θ1g1(x)−K`

γ2,θ2g2(x) (4.166)

=

`−1∑
j=0

{
Kj
γ1,θ1

− πγ1,θ1
}

(Kγ1,θ1 −Kγ2,θ2)
{

K`−1−j
γ2,θ2

Hθ1(x)− πγ2,θ2(Hθ1)
}

+ Ξ` ,

where

Ξ` = −πγ1,θ1(K`
γ2,θ2Hθ1(x)−Hθ1(x))

+ K`
γ2,θ2

[
Hθ1(x)−Hθ2(x) + πγ2,θ2(Hθ2)− πγ1,θ1(Hθ1)

]
= −πγ1,θ1K`

γ2,θ2Hθ1(x) + K`
γ2,θ2

[
Hθ1(x)−Hθ2(x) + πγ2,θ2(Hθ2)

]
= (πγ2,θ2 − πγ1,θ1)(K`

γ2,θ2Hθ1(x)− πγ2,θ2(Hθ1))− πγ2,θ2(Hθ1)

+ K`
γ2,θ2

[
Hθ1(x)−Hθ2(x) + πγ2,θ2(Hθ2)

]
= (πγ2,θ2 − πγ1,θ1)(K`

γ2,θ2Hθ1(x)− πγ2,θ2(Hθ1)) (4.167)

+ K`
γ2,θ2(Hθ1 −Hθ2)(x)− πγ2,θ2(Hθ1 −Hθ2) .

For the �rst term in (4.166), using H1-(ii), H2, Lemma 4.2.9 and and that for any θ ∈ Θ and x ∈ Rd,

‖Hθ(x)‖ ≤ V 1/4(x) we obtain for any θ1, θ2 ∈ Θ, γ1, γ2 ∈ (0, γ̄] with γ1 > γ2, x ∈ Rd and ` ∈ N?∥∥∥∥∥∥
`−1∑
j=0

{
Kj
γ1,θ1

− πγ1,θ1
}

(Kγ1,θ1 −Kγ2,θ2)
{

K`−1−j
γ2,θ2

Hθ1(x)− πγ2,θ2(Hθ1)
}∥∥∥∥∥∥

≤ 2A2

`−1∑
j=0

ρ(`−1−j)γ1/2
∥∥∥{Kj

γ1,θ1
− πγ1,θ1

}
(Kγ1,θ1 −Kγ2,θ2)V 1/2(x)

∥∥∥
≤ 4A2

2 [Λ1(γ1, γ2) + Λ2(γ1, γ2)‖θ1 − θ2‖]
`−1∑
j=0

ρ(j+(`−1−j))γ2/2V 1/2(x)

≤ 4A2
2 [Λ1(γ1, γ2) + Λ2(γ1, γ2)‖θ1 − θ2‖] `ρ(`−1)γ2/2V 1/2(x) . (4.168)

For the �rst term in (4.167), using H1-(ii), Lemma 4.2.9, (4.165) and that for any θ ∈ Θ and x ∈ Rd,

‖Hθ(x)‖ ≤ V 1/4(x) ≤ V 1/2(x), we obtain for any θ1, θ2 ∈ Θ, γ1, γ2 ∈ (0, γ̄] with γ1 > γ2, x ∈ Rd
and ` ∈ N? ∥∥(πγ1,θ1 − πγ2,θ2)(K`

γ2,θ2Hθ1(x)− πγ2,θ2(Hθ1))
∥∥

≤ 2A2ρ
`γ2/2‖πγ1,θ1 − πγ2,θ2‖V 1/2

≤ 2A2Cc,1 ρ
`γ2/2γ−1

2 {Λ1(γ1, γ2) + Λ2(γ1, γ2)‖θ1 − θ2‖} . (4.169)

For the second term in (4.167), using A4, H1-(ii) and Lemma 4.2.9, we obtain for any θ1, θ2 ∈ Θ, γ1, γ2 ∈
(0, γ̄] with γ1 > γ2, x ∈ Rd and ` ∈ N?∥∥K`

γ2,θ2(Hθ1 −Hθ2)(x)− πγ2,θ2(Hθ1 −Hθ2)
∥∥ ≤ 2A2LHρ

`γ2/2‖θ1 − θ2‖V 1/2(x) . (4.170)

Combining (4.167), (4.168), (4.169), (4.170) in (4.166) and using Lemma 4.2.8, we obtain that for any

θ1, θ2 ∈ Θ, γ1, γ2 ∈ (0, γ̄] with γ1 > γ2, x ∈ Rd that∥∥∥Kγ1,θ1Ĥγ1,θ1(x)−Kγ2,θ2Ĥγ2,θ2(x)
∥∥∥
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≤ Cc,2 γ−1
2

[
γ−1

2 {Λ1(γ1, γ2) + Λ2(γ1, γ2)‖θ1 − θ2‖}+ ‖θ1 − θ2‖
]
V 1/2(x) ,

with

Cc,2 = 4A2 log−1(1/ρ)ρ−γ̄/2 max
[
LH , Cc,1 + 2A2 log−1(1/ρ)ρ−γ̄/2

]
.

Since for any k ∈ N,

∥∥∥θ̃k+1 − θ̃k
∥∥∥ ≤ δk+1V

1/2(X̃k+1) by (4.131) and the fact that for any θ ∈ Θ and

x ∈ Rd, ‖Hθ(x)‖ ≤ V 1/2(x) and that ΠΘ is non-expansive, we get that for any k ∈ N,∥∥∥Kγk,θ̃k
Ĥγk,θ̃k

(X̃k+1)−Kγk+1,θ̃k+1
Ĥγk+1,θ̃k+1

(X̃k+1)
∥∥∥

≤ Cc,2γ−1
k+1

[
γ−1
k+1 {Λ1(γk, γk+1) + Λ2(γk, γk+1)δk+1}+ δk+1

]
V (X̃k+1) ,

which implies by (4.160) and using H1-(i) that

E
[∥∥∥η̃(c)

∥∥∥] ≤ C2γ
−1
k+1

[
γ−1
k+1 {Λ1(γk, γk+1) + Λ2(γk, γk+1)δk+1}+ δk+1

]
,

with C2 given by (4.163).

Lemma 4.2.16. Assume A1, A2, A3,H1 and that for any θ ∈ Θ and x ∈ Rd, ‖Hθ(x)‖ ≤ V 1/4(x). Then
we have for any n ∈ N

E
[∥∥∥η̃(d)

n

∥∥∥] ≤ Ψ(γn) .

Proof. By a straightforward application of H1-(iii) and by (4.160) along with the fact that for any θ ∈ Θ
and x ∈ Rd, ‖Hθ(x)‖ ≤ V 1/4(x) we have for any n ∈ N, E

[∥∥η̃dn∥∥] ≤ Ψ(γn).

We now turn to the proof of Theorem 4.2.3.

Proof. (a) To apply [AFM17, Theorem 2], it is enough to show that the following series converge a.s.

+∞∑
n=0

δn+1〈ΠΘ(θn − δn+1∇f(θn))− θ?, η̃(i)
n 〉 ,

+∞∑
n=0

δ2
n+1‖η̃n‖2 ,

with θ? ∈ arg minθ∈Θ f(θ).

∑+∞
n=0 δ

2
n+1‖η̃n‖2 < +∞ a.s. by Lemma 4.2.12 since

∑
n∈N δ

2
n+1 < +∞.

Since (〈ΠΘ(θn − δn+1∇f(θn))− θ?, η̃(a)
n 〉)n∈N is a (F̃n)n∈N-martingale increment, see (4.132) and by

Lemma 4.2.13 and

∑
n∈N δ

2
n+1/γ

2
n < +∞

E

[
+∞∑
n=0

δ2
n+1〈ΠΘ(θn − δn+1∇f(θn))− θ?, η̃(a)

n 〉2
]
< +∞ ,

we obtain using [Wil91, Section 12.5] that

∑+∞
n=0 δn+1〈ΠΘ(θn−δn+1∇f(θn))−θ?, η̃(a)

n 〉 converges a.s..

Using A1, (4.133) and Lemma 4.2.15 and Lemma 4.2.16 we get that

∑+∞
n=0 δn+1〈ΠΘ(θn−δn+1∇f(θn))−

θ?, η̃
(i)
n 〉 is absolutely convergent a.s. for i ∈ {c, d}. Finally we obtain that

∑+∞
n=0 δn+1〈ΠΘ(θn −

δn+1∇f(θn))− θ?, η̃(b)
n 〉 converges a.s. by Lemma 4.2.14-(b).

(b) The proof of is identical to the one of Theorem 4.2.1-(b).
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Proof of Theorem 4.2.4

The proof is similar to the one of Theorem 4.2.2, using Lemma 4.2.12, Lemma 4.2.14, Lemma 4.2.15,

Lemma 4.2.16 and the fact that η̃
(a)
n is a (F̃n)n∈N-martingale increment, see (4.132).

Proof of Theorem 4.2.5

In this section, we give the proof of Theorem 4.2.5 by showing that H1 holds. First of all in Section 4.2.5,

we establish under L1 and L2 stability results uniform in the parameter θ ∈ Θ for the Langevin di�usion

(4.122) and the associated Euler-Maruyama discretization (4.123) based on a Foster-Lyapunov drift con-

dition with constants independent of θ. Then, in Section 4.2.5, we show that the stability conditions that

we derive, are su�cient to prove that H1 holds. The proof of Theorem 4.2.5 then consists in combining

all these results and is presented in Section 4.2.5.

Under L1 and L2, for any θ ∈ Θ, (4.122) de�nes a Markov semi-group (Pt,θ)t≥0 for any x ∈ Rd and

A ∈ B(Rd) by Pt,θ(x,A) = P(Y θt ∈ A) where (Y θt )t≥0 is the solution of (4.122) with Y θ0 = x. Consider

now the generator of (Pt,θ)t≥0 for any θ ∈ Θ, de�ned for any f ∈ C2(Rd) by

Aθf = −〈∇xf,∇xUθ(x)〉+ ∆xf . (4.171)

We say that a Markov kernel R on Rd × B(Rd) satis�es a discrete Foster-Lyapunov drift condition

Dd(V, λ, b) if there exist λ ∈ (0, 1), b ≥ 0 and a measurable function V : Rd → [1,+∞) such that for

all x ∈ Rd
RV (x) ≤ λV (x) + b .

We say that a Markov semi-group (Pt)t≥0 on Rd × B(Rd) with extended in�nitesimal genera-

tor (A,D(A)) (see e.g. [MT93c] for the de�nition of (A,D(A))) satis�es a continuous drift condition

Dc(V, ζ, β) if there exist ζ > 0, β ≥ 0 and a measurable function V : Rd → [1,+∞) with V ∈ D(A)
such that for all x ∈ Rd

AV (x) ≤ −ζV (x) + β .

Foster-Lyapunov drift conditions uniform on θ De�ne Ve : Rd → [1,+∞) for all x ∈ Rd by

Ve(x) = exp(m̃1φ(x)) , with φ(x) =
√

1 + ‖x‖2 and m̃1 = k2/4 . (4.172)

Proposition 4.2.17. Assume L1 and L2. Let γ̄ < min(1, 2m+
3 ). Then there exist λe ∈ (0, 1) and be ≥ 0

such that for all γ ∈ (0, γ̄] and θ ∈ Θ the Markov kernel Rγ,θ associated with the recursion (4.123) satis�es
the discrete drift condition Dd(V, λγ , bγ), i.e. for all x ∈ Rd

Rγ,θVe(x) ≤ λγeVe(x) + beγ1B(0,re)(x) , (4.173)

with

λe = e−m̃
2
1(21/2−1) , re = max(1, 2(d+ c)/k2, R2) ,

be = m̃1(d+ c+ 21/2m̃1) exp
[
m̃1

{
(d+ c+ m̃1)γ̄ +

√
1 + r2

e

}]
.

Proof. Since φ is 1-Lipschitz, by the log-Sobolev inequality [BGL14, Proposition 5.4.1], we have for any

x ∈ Rd and θ ∈ Θ,

Rγ,θVe(x) ≤ exp
[
m̃1Rγ,θφ(x) + m̃2

1γ
]

(4.174)
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≤ exp
[
m̃1

√
‖x− γ∇xUθ(x)‖2 + 2γd+ 1 + m̃2

1γ
]
,

where we have used Jensen’s inequality in the last line. Second, using L2 and γ < 2m+
3 , we obtain that

for any x ∈ Rd and θ ∈ Θ,

‖x− γ∇xUθ(x)‖2 ≤ ‖x‖2 − 2γ〈x,∇xUθ(x)〉+ γ2‖∇xUθ(x)‖2

≤ ‖x‖2 − 2k2γ‖x‖1B(0,R2)c(x) + γ(γ − 2m+
3 )‖∇xUθ(x)‖2 + 2γc

≤ ‖x‖2 − 2k2γ‖x‖1B(0,R2)c(x) + 2γc .

Therefore, using for any a > 0,

√
1 + a− 1 ≤ a/2, we get for any x ∈ Rd and θ ∈ Θ,√

‖x− γ∇xUθ(x)‖2 + 2γd+ 1− φ(x)

≤ φ(x)
{√

1 + 2γφ−2(x)(d+ c− k2‖x‖1B(0,R2)c(x))− 1
}

(4.175)

≤ γφ−1(x)(d+ c− k2‖x‖1B(0,R2)c(x)) .

Therefore, combining this result with (4.174) and using that for any x̃ ∈ B̄(0, re)c
, φ(x̃)2/ ‖x̃‖2 ≤ 2

and d+ c ≤ k2 ‖x‖ /2, we obtain for any x ∈ B̄(0, re)c
and θ ∈ Θ,

Rγ,θVe(x) ≤ exp
[
m̃1φ
−1(x)(d+ c− k2‖x‖) + m̃2

1γ
]
Ve(x)

≤ exp
[
−2m̃2

1γφ
−1(x)‖x‖+ m̃2

1γ
]
Ve(x) ≤ λγeVe(x) .

Using (4.174), (4.175), and the fact that φ(x̃) ≥ 1 for any x̃ ∈ Rd, we have for any x ∈ B(0, re) and

θ ∈ Θ,

Rγ,θVe(x) ≤ λγeVe(x) +
(

em̃1(d+c+m̃1)γ − λγe
)

exp
[
m̃1

√
1 + r2

e

]
.

The proof of (4.173) for x ∈ B(0, re) and θ ∈ Θ is then completed upon using that ea − eb ≤ (a− b)ea
for all a, b ∈ R with a ≥ b.

Proposition 4.2.18. Assume L1 and L2. Then for any θ ∈ Θ, (Pt,θ)t≥0 associated with (4.122) satis�es
the continuous drift condition Dc(Ve, ζe, βe) for Ve de�ned in (4.172) and

ζe = 3m̃2
1/2

1/2 , βe = m̃1 exp
[
m̃1

√
1 + r̃2

e

]
(1 + m̃1 + c + d) , r̃e = max(1, R2) .

Proof. First, by de�nition, for any x ∈ Rd, we have

∇xV (x) = m̃1xV (x)/φ(x)

∆xV (x) = {m̃1V (x)/φ(x)}{m̃1 ‖x‖2 /φ(x) + d− ‖x‖2 /φ2(x)} .

Therefore, by (4.171) and L2, we get for any θ ∈ Θ and x ∈ Rd,

AθV (x) = {m̃1V (x)/φ(x)}
[
−〈∇xUθ(x), x〉+ m̃1 ‖x‖2 /φ(x) + d− ‖x‖2 /φ2(x)

]
≤ {m̃1V (x)/φ(x)}

[
−k2 ‖x‖1B(0,R2)c(x) + c + m̃1 ‖x‖2 /φ(x) + d− ‖x‖2 /φ2(x)

]
≤ {m̃1V (x)/φ(x)}

[
−(3k2/4) ‖x‖1B(0,R2)c(x) + c + m̃1 ‖x‖1B(0,R2)(x) + d

]
.

The proof is then complete upon using that for any x ∈ B(0, r̃e)c
, ‖x‖ /φ(x) ≥ 2−1/2

, for any y ∈ Rd,

‖y‖ /φ(y) ≤ 1.
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Checking H1

Lemma 4.2.19. Assume L1 and let V : Rd → [1,+∞) measurable and lim‖x‖→+∞ V (x) = +∞ and
V ∈ D(Aθ), for any θ ∈ Θ, where Aθ is de�ned by (4.171). .

(a) Assume that there exist λ ∈ (0, 1), b ≥ 0 and γ̄ > 0 such that for any θ ∈ Θ and γ ∈ (0, γ̄], Rγ,θ

associated with the recursion (4.134), satis�es Dd(V, λγ , bγ). Then for any θ ∈ Θ and γ ∈ (0, γ̄],
Rγ,θ admits an invariant probability measure πγ,θ on (Rd,B(Rd)) and there exists D3 ≥ 0 such
that for any x ∈ Rd and k ∈ N

δxRk
γ,θV ≤ D3 + V (x) , πγ,θ(V ) ≤ D3 , D3 = bλ−γ̄/ log(1/λ) .

In addition, for all θ ∈ Θ and x ∈ Rd, limk→+∞ ‖δxRk
γ,θ − πγ,θ‖V = 0.

(b) Assume that there exist ζ > 0 and β ≥ 0 such that for any θ ∈ Θ, (Pt,θ)t≥0 associated with
(4.122) satis�es Dc(V, ζ, β). Then for any θ ∈ Θ, the di�usion is non-explosive,Aθ admits πθ as an
invariant probability measure and

πθ(V ) ≤ D0 , D0 = β/ζ .

In addition, for all θ ∈ Θ and x ∈ Rd, limt→+∞ ‖δxPt,θ − πθ‖V = 0.

Proof. (a) for any γ ∈ (0, γ̄] and θ ∈ Θ, Rγ,θ is irreducible with respect to the Lebesgue measure on

Rd, has the Feller property and satis�es Dd(V, λγ , bγ) then [MT92, Section 4.4] applies and Rγ,θ admits

an invariant probability measure πγ,θ . The discrete drift condition and [DM17, Lemma 1] give that for

any γ ∈ (0, γ̄] and θ ∈ Θ

Rk
γ,θV (x) ≤ V (x) + bλ−γ̄/ log(1/λ) , πγ,θ(V ) ≤ bλ−γ̄/ log(1/λ) .

We obtain that for all θ ∈ Θ and x ∈ Rd, limk→+∞ ‖δxRk
γ,θ − πγ,θ‖V = 0 using [MT93a, Theorem

16.0.1].

(b) Using Dc(V, ζ, β) and [MT93c, Theorem 2.1] we get that the di�usion process is non-explosive and

thus (Pt,θ)t≥0 is de�ned for any θ ∈ Θ and t ≥ 0. Using [SV06, Corollary 10.1.4] for any θ ∈ Θ,

(Pt,θ)t≥0 is strongly Feller continuous, therefore any compact sets is petite for the Markov kernel Ph,θ ,

for any h > 0 and θ ∈ Θ, by [MT93a, Theorem 6.0.1]. Using [RY99, Chapter 7, Proposition 1.5], [EK86,

Chapter 4, Theorem 9.17], and the fact that πθ(Aθf) = 0 for any θ ∈ Θ and f ∈ C2
c(Rd), we obtain that

for any θ ∈ Θ, πθ is an invariant measure for (Pt,θ)t≥0. Using Dc(V, ζ, β) and [MT93c, Theorem 4.5]

we get that for all θ ∈ Θ, πθ(V ) ≤ β/ζ . Finally, the convergence is ensured using [MT93c, Theorem

5.1].

As an immediate corollary we obtain that under the conditions of Lemma 4.2.19 for any θ ∈ Θ,

γ ∈ (0, γ̄] and k ∈ N,

πθR
k
γ,θV ≤ β/ζ + bλ−γ̄/ log(1/λ) . (4.176)

Lemma 4.2.20. Let V : Rd → [1,+∞). Assume there exist λ ∈ (0, 1), b ≥ 0 and γ̄ > 0 such that
for any θ ∈ Θ and γ ∈ (0, γ̄], Rγ,θ associated with the recursion (4.123) satis�es Dd(V, λγ , bγ). Let
(γn)n∈N, (δn)n∈N be sequences of non-increasing positive real numbers and (mn)n∈N be a sequence of
positive integers satisfying supn∈N γn < γ̄. Then, (Xn

k )n∈N,k∈{0,...,mn} given by (4.126) with {Kγ,θ :
γ ∈ (0, γ̄] , θ ∈ Θ} = {Rγ,θ : γ ∈ (0, γ̄] , θ ∈ Θ} satis�es for all p, n ∈ N and k ∈ {0, . . . ,mn}

E
[
Rp
γn,θn

V (Xn
k )
∣∣∣X0

0

]
≤ D1V (X0

0 ) , D1 = 1 + 2bλ−γ̄/ log(1/λ) .
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Proof. By induction we obtain that

E
[
V (Xn+1

k )
∣∣Fn] = Rk

γn+1,θn+1
V (Xn+1

0 ) (4.177)

≤ λkγn+1V (Xn+1
0 ) + bγn+1

k∑
i=1

λγn+1(k−i) ,

where (Fn)n∈N is de�ned by (4.124). Similarly, we obtain for any k ∈ {0, . . . ,m0},

E
[
V (X0

k)
∣∣X0

0

]
= Rk

γ0,θ0V (X0
0 ) ≤ λkγ0V (X0

0 ) + bγ0

k∑
i=1

λγ0(k−i) . (4.178)

De�ne for k, ` ∈ N and i ∈ N?, q`,k =
∑`−1
j=0mj + k, qn = q`,0 and γ̃i =

∑+∞
j=0 γj1(qj ,qj+1](i). In

addition, consider for any p, q ∈ N?, Γp,q =
∑q
i=p γ̃i and Γp = Γ1,p. Combining (4.177), (4.178) and

Lemma 4.2.8 we get for any n ∈ N and k ∈ {0, . . . ,mn}

E
[
Rp
γn,θn

V (Xn
k )
∣∣∣X0

0

]
≤ λγnpE

[
V (Xn

k )
∣∣X0

0

]
+ b log(1/λ)λ−γ̄ (4.179)

≤ λΓqn,kV (X0
0 ) + b

qn,k∑
i=1

γ̃iλ
Γi+1,qn,k + b log(1/λ)λ−γ̄ .

Since (γ̃i)i∈N is nonincreasing and for all t ≥ 0, 1− λt ≥ −tλt log(λ), we have for all q ∈ N?,

q∑
i=1

γ̃iλ
Γi+1,q ≤

q∑
i=1

γ̃i

q∏
j=i+1

(1 + λγ̃1 log(λ)γ̃j)

≤ (−λγ̃1 log(λ))−1

q∑
i=1


q∏

j=i+1

(1 + λγ̃1 log(λ)γ̃j)−
q∏
j=i

(1 + λγ̃1 log(λ)γ̃j)


≤ (−λγ̃1 log(λ))−1 .

Combining this result and (4.179) completes the proof.

Lemma 4.2.21. Let V : Rd → [1,+∞) with supx∈Rd
{

(1 + ‖x‖)2/V (x)
}
≤MV whereMV ≥ 0 and

V measurable. Assume L1 and that for any θ ∈ Θ, γ ∈ (0, γ̄] and k ∈ N,

πθR
k
γ,θ(V ) ≤ D̃1 , πθPγmγ ,θV ≤ D̃1 , (4.180)

withmγ = d1/γe. Then for any θ ∈ Θ and γ ∈ (0, γ̄]

‖πθR
mγ
γ,θ − πθPγmγ ,θ‖

2
V 1/2

≤ 2D̃1L
2γ(1 + γ̄)

{
d+ 2γ̄(sup

θ∈Θ
‖∇xUθ(0)‖2 + L2MV D̃1)

}
,

Proof. The proof follows the lines of [DM17, Theorem 10]. Let θ ∈ Θ and γ ∈ (0, γ̄]. We have, using a

generalized Pinsker inequality [DM17, Lemma 24], that

‖πθR
mγ
γ,θ − πθPγmγ ,θ‖

2
V 1/2 ≤ 2(πθR

mγ
γ,θV + πθPγmγ ,θV )KL

(
πθR

mγ
γ,θ |πθPγmγ ,θ

)
.

≤ 4D̃1KL
(
πθR

mγ
γ,θ |πθPγmγ ,θ

)
.
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Using L1, [DM17, Equation (15)], [Kul97, Theorem 4.1, Chapter 2], (4.180) and that for any a, b ∈ R,

(a+ b)2 ≤ 2(a2 + b2) we obtain that

KL
(
πθR

mγ
γ,θ |πθPγmγ ,θ

)
≤ L2mγγ

2(d+ γ̄ sup
k∈N

πθR
k
γ,θ ‖∇xUθ(x)‖2)

≤ L2(1 + γ̄)γ(d+ 2γ̄(sup
θ∈Θ
‖∇xUθ(0)‖2 + L2MV D̃1)) ,

which concludes the proof.

Proposition 4.2.22. Let V : Rd → [1,+∞) measurable andMV ≥ 0 satisfying

sup
x∈Rd

{
(1 + ‖x‖)2/V (x)

}
≤MV .

Assume L1 and that there exist λ ∈ (0, 1), b ≥ 0 and γ̄ > 0 such that for any θ ∈ Θ and γ ∈ (0, γ̄] Rγ,θ

satis�es Dd(V, λγ , bγ). Assume that there exists D0 ≥ 0 such that for any θ ∈ Θ, πθ(V ) ≤ D0. Then
there exists D4 ≥ 0 such that for any θ ∈ Θ and γ ∈ (0, γ̄]

‖πγ,θ − πθ‖V 1/2 ≤ D4γ
1/2 .

Proof. Using Lemma 4.2.19 we obtain that for any θ ∈ Θ

lim
k→+∞

‖πθRk
γ,θ − πθPγk,θ‖V 1/2 = ‖πγ,θ − πθ‖V 1/2 . (4.181)

We now give an upper bound on ‖πθRk
γ,θ−πθPγk,θ‖V 1/2 for k = qγmγ withmγ = d1/γe and qγ ∈ N.

Using Theorem 4.1.8 and that πθ is invariant for Pt,θ with t ≥ 0, see Lemma 4.2.19, we obtain for all

θ ∈ Θ, γ ∈ (0, γ̄] and k ∈ N

‖πθRk
γ,θ − πθPγk,θ‖V 1/2

≤
qγ−1∑
`=0

‖πθPγ(`+1)mγ ,θR
(qγ−(`+1))mγ
γ,θ − πθPγ`mγ ,θR

(qγ−`)mγ
γ,θ ‖V 1/2

≤
qγ−1∑
`=0

Cξγmγ(qγ−(`+1))‖πθPγ`mγ ,θPmγγ,θ − πθPγ`mγ ,θR
mγ
γ,θ‖V 1/2

≤ ‖πθPmγγ,θ − πθR
mγ
γ,θ‖V 1/2

qγ∑
`=1

Cξ`γmγ , (4.182)

whereC ≥ 0, ξ ∈ (0, 1) are the constants given by Theorem 4.1.8 with minorization condition given by

Proposition 4.1.11-(a) with m = −L since L1 holds and with drift condition Dd(V 1/2, λγ , bλ−γ̄/2γ/2),

since for all θ ∈ Θ and γ ∈ (0, γ̄] we have that Rγ,θ satis�es Dd(V, λγ , bγ) and therefore using Jensen’s

inequality that Rγ,θ satis�es the drift condition Dd(V 1/2, λγ/2, bλ−γ̄/2γ/2).

We now give an upper bound on error ‖πθPmγγ,θ − πθR
mγ
γ,θ‖V 1/2 . Indeed, since Aθ satis�es a

Dc(V, ζ, β) and Rγ,θ satis�es Dd(V, λγ , bγ) for any θ ∈ Θ and γ ∈ (0, γ̄], we obtain using (4.176) that

for any θ ∈ Θ and γ ∈ (0, γ̄]

πθPγmγ ,θ(V ) ≤ D0 , πθR
mγ
γ,θ (V ) ≤ D̃1 , D̃1 = D0 + bλ−γ̄ log(1/λ)−1 , (4.183)

Combining this result and Lemma 4.2.21 we have for any θ ∈ Θ and γ ∈ (0, γ̄]
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‖πθPγmγ ,θ − πθR
mγ
γ,θ‖V 1/2 ≤ D̃2γ

1/2 , (4.184)

with

D̃2 = 2D̃
1/2
1 (1 + γ̄)1/2

{
d+ 2γ̄(L2MV + sup

θ∈Θ
‖∇xUθ(0)‖2)D̃1

}1/2

L . (4.185)

Combining (4.182) and (4.184) we get for any k ∈ N, θ ∈ Θ and γ ∈ (0, γ̄]

‖πθRk
γ,θ − πθPγk,θ‖V 1/2 ≤ CD̃2

qγ∑
`=1

ξγmγ`γ1/2

≤ CD̃2(1− ξ)−1γ1/2 ,

where we used that ξγmγ ≤ ξ. The conclusion follows from this result and (4.181).

Proof of Theorem 4.2.5 Combining Proposition 4.2.17 and Lemma 4.2.20 we get that H1-(i) is sat-

is�ed with constant A1 ← D1. L1, L2, Proposition 4.2.17 and Lemma 4.2.19-(a) ensure that H1-(ii) is

satis�ed by Theorem 4.1.18. H1-(iii) is satis�ed combining Proposition 4.2.17, Proposition 4.2.18 and

Proposition 4.2.22 with Ψ(γ)← D4γ
1/2

.

Proof of Theorem 4.2.6

We preface the proof by the following technical lemma. Denote for any µ ∈ Rd and σ2 > 0, γµ,σ2 the

d-dimensional Gaussian distribution with mean µ and covariance matrix σ2 Id.

Lemma 4.2.23. For any µ1,µ2 ∈ Rd and σ1,σ2 > 0,

KL
(
γµ1,σ2

1
|γµ2,σ2

2

)
= (1/2)

{
d log(σ2

2/σ
2
1) + dσ−2

2 (σ2
1 − σ2

2) + σ−2
2 ‖µ1 − µ2‖2

}
.

In addition, if σ2 < σ1 then

KL
(
γµ1,σ2

1
|γµ2,σ2

2

)
≤ (1/2)

{
dσ−4

2 (σ2
1 − σ2

2)2 + σ−2
2 ‖µ1 − µ2‖2

}
.

Proof. For any x ∈ Rd we have

− σ−2
1 ‖x− µ1‖2 + σ−2

2 ‖x− µ2‖2

= (σ−2
2 − σ−2

1 ) ‖x− µ1‖2 + σ−2
2 ‖µ1 − µ2‖2 + 2σ2〈x− µ1,µ1 − µ2〉 . (4.186)

Let X be a d-dimensional Gaussian random variable with mean µ1 and covariance matrix σ2
1 Id. Using

(4.186) we have

E
[
−σ−2

1 ‖X − µ1‖2 + σ−2
2 ‖X − µ2‖2

]
= dσ2

1(σ−2
2 − σ−2

1 ) + σ−2
2 ‖µ1 − µ2‖2 .

Using this result we have

KL
(
γµ1,σ2

1
|γµ2,σ2

2

)
= (1/2) log

(
(2π)dσ2d

2

(2π)dσ2d
1

)
+ (1/2)E

[
−σ−2

1 ‖X − µ1‖2 + σ−2
2 ‖X − µ2‖2

]
= (1/2)

{
d log

(
σ2

2/σ
2
1

)
+ dσ2

1(σ−2
2 − σ−2

1 ) + σ−2
2 ‖µ1 − µ2‖2

}
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= (1/2)
{
d log(σ2

2/σ
2
1) + dσ−2

2 (σ2
1 − σ2

2) + σ−2
2 ‖µ1 − µ2‖2

}
,

which concludes the �rst part of the proof. Using this result, the fact that for any u ≥ 0,− log(1 +u) +
u ≤ +u2

and σ2
1/σ

2
2 − 1 we get that

KL
(
γµ1,σ2

1
|γµ2,σ2

2

)
= (1/2)

{
d log

(
σ2

2/σ
2
1

)
+ dσ2

1(σ−2
2 − σ−2

1 ) + σ−2
2 ‖µ1 − µ2‖2

}
= (1/2)

{
−d log

(
σ2

1/σ
2
2

)
+ d(σ2

1/σ
−2
2 − 1) + σ−2

2 ‖µ1 − µ2‖2
}

= (1/2)
{
−d log

(
1 +

{
σ2

1/σ
2
2 − 1

})
+ d

{
σ2

1/σ
−2
2 − 1

}
+ σ−2

2 ‖µ1 − µ2‖2
}

≤ (1/2)
{
dσ−4

2 (σ2
1 − σ2

2)2 + σ−2
2 ‖µ1 − µ2‖2

}
,

which concludes the second part of the proof.

Proposition 4.2.24. Let V : Rd → [1,+∞) measurable andMV,4 ≥ 0 satisfying

sup
x∈Rd

{
(1 + ‖x‖4)/V (x)

}
≤MV,4 .

Assume that there existsM ≥ 1 such that for any θ ∈ Θ, γ ∈ (0, γ̄], with γ̄ > 0 and x ∈ Rd, Rγ,θV (x) ≤
MV (x). Assume L1 and L3, then we have for any θ1, θ2 ∈ Θ, γ1, γ2 ∈ (0, γ̄] with γ2 < γ1, a ∈ [1/4, 1/2]
and x ∈ Rd

‖δxRγ1,θ1 − δxRγ2,θ2‖V a ≤ D5

[
γ
−1/2
2 |γ1 − γ2|+ γ

1/2
2 ‖θ1 − θ2‖

]
V 2a(x) ,

where {Rγ,θ, γ ∈ (0, γ̄] , θ ∈ Θ} is the sequence of Markov kernels associated with the recursion (4.123)

and

D5 =
√

2M1/2 max

(
√

2(d+ γ̄)1/2

[
sup
θ∈Θ
‖∇xUθ(0)‖2 + L2M

1/2
4,V

]1/2

, LU

)
.

Proof. Let x ∈ Rd, θ1, θ2 ∈ Θ and γ1, γ2 ∈ (0, γ̄], γ2 < γ1. Using [DM17, Lemma 24] we have that

‖δxRγ1,θ1 − δxRγ2,θ2‖V a

≤
√

2
(
Rγ1,θ1V

2a(x) + Rγ2,θ2V
2a(x)

)1/2
KL (δxRγ1,θ1 |δxRγ2,θ2)

1/2

≤ 2MaV a(x)KL (δxRγ1,θ1 |δxRγ2,θ2)
1/2

(4.187)

Using Lemma 4.2.23 we obtain that

KL (δxRγ1,θ1 |δxRγ2,θ2) ≤ (1/2)
{
dγ−2

2 (γ1 − γ2)2 + (2γ2)−1Ξ
}
, (4.188)

where Ξ is given by

Ξ = ‖γ1∇xUθ1(x)− γ2∇xUθ2(x)‖2

= ‖γ1∇xUθ1(x)− γ2∇xUθ1(x) + γ2∇xUθ1(x)− γ2∇xUθ2(x)‖2

≤ 2‖γ1∇xUθ1(x)− γ2∇xUθ1(x)‖2 + 2‖γ2∇xUθ1(x)− γ2∇xUθ2(x)‖2

≤ 2(γ1 − γ2)2‖∇xUθ1(x)‖2 + 2γ2
2‖∇xUθ1(x)−∇xUθ2(x)‖2

≤ 2(γ1 − γ2)2‖∇xUθ1(x)‖2 + 2γ2
2L

2
U‖θ1 − θ2‖2V 2a(x) , (4.189)

222



using L3 for the last inequality. Using L3 again and that supθ∈Θ ‖∇xUθ(0)‖ < +∞ by L1, we get for

any a ∈ [1/4, 1/2]

‖∇xUθ1(x)‖2 ≤ 2(‖∇xUθ1(x)−∇xUθ1(0)‖2 + sup
θ1∈θ1

‖∇xUθ1(0)‖2) ≤ CΘV
2a(x) ,

with CΘ = 2 supθ∈Θ ‖∇xUθ(0)‖2 + 2L2M
1/2
4,V . Combining this result and (4.189) in (4.188), it follows

that

KL (δxRγ1,θ1 |δxRγ2,θ2)

≤ (1/2)
{
dγ−2

2 (γ1 − γ2)2 + γ−1
2 (γ1 − γ2)2CΘV

2a(x) + L2
Uγ2 ‖θ1 − θ2‖2 V 2a(x)

}
≤ (1/2)

{
(d+ γ̄)CΘγ

−2
2 (γ1 − γ2)2V 2a(x) + L2

Uγ2 ‖θ1 − θ1‖2 V 2a(x)
}

≤ (1/2) max
(
(d+ γ̄)CΘ, L

2
U

){
γ−2

2 (γ1 − γ2)2 + γ2 ‖θ1 − θ2‖2
}
.

This result substituted in (4.187) completes the proof with the fact that for any a, b ∈ R+, (a+ b)1/2 ≤
a1/2 + b1/2.

Proof of Theorem 4.2.6. L1 and L2 ensure a uniform drift condition on Rγ,θ , see Proposition 4.2.17 . Note

that the Lyapunov function V de�ned by Proposition 4.2.17 satis�es supx∈Rd(1 + ‖x‖4)/V (x) < +∞.

H2 is then a direct consequence of Proposition 4.2.24

Posterior convexity

Lemma 4.2.25. For any y ∈ {0, 1}dy , θ 7→ p(y|θ) given by (4.135) is log-concave.

Proof. Let θ ∈ R, then by (4.135), for any y ∈ R we have p(y|θ) =
∫
Rd p(y, β|θ)dβ with

p(y, β|θ) = (2πσ2)−d/2


dy∏
i=1

s(x>i β)yi(1− s(x>i β))1−yi

 e−
‖β−θ1d‖2

2σ2 .

Therefore we have using that for any t ∈ R, 1− s(t) = s(−t)

log p(y, β|θ) = (−d/2) log(2πσ2)

+


dy∑
i=1

yi log(s(x>i β)) + (1− yi) log(s(−x>i β))

− ‖β − θ1d‖22σ2
.

Since yi ≥ 0, 1 − yi ≥ 0, (β, θ) 7→ ‖β − θ1d‖2, t 7→ log(s(t)) and t 7→ log(s(−t)) are convex, we

obtain that (β, θ) 7→ p(y, β|θ) is log-concave. Using the Prékopa–Leindler inequality [Gar02, Theorem

7.1] we obtain that θ 7→ p(y|θ) is log-concave which concludes the proof.
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Chapter 5

Entropy-based texture synthesis

5.1 Principle of maximum entropy

5.1.1 Abstract

Understanding texture formation is a crucial step towards a global theory of the human visual system as

texture is an important perceptual cue. The more speci�c problem of exemplar-based texture synthesis

arises in computer graphics where it is often desirable to be able to generate new large natural textures

which look like an input image. This application highlights the need of a mathematically sound model

for texture generation as our only criterion for evaluating the performance of algorithms is via human

inspection.

Two main approaches have been proposed in the literature: the patch-based methods [EL99; EF01;

Kwa+03; LB06; RDM16; Kwa+05; Han+06; Kas+15; GLR18] and the parametric ones [Wij91; GGM11;

GM86; CM88; HB95; ZWM98; GEB15; JAF16; Uly+16; UVL17]. In this section, we are interested in the

theoretical and visual properties of information-based parametric models. More precisely, we consider

maximum entropy models. Indeed, the maximum entropy approach has the appealing property that

the trade-o� between innovation (maximizing the entropy) and the visual similarity with the input

(geometrical or statistical feature constraints) is explicitly embedded in the model. There exist two main

approaches for these maximum entropy formulation, the microcanonical model in which the constraints

must be met almost surely and the macrocanonical model in which the constraints must be met in

expectation [BM18]. Both share connections with statistical physics. In [BM18] the authors address the

convergence of usual sampling scheme for the microcanonical model. In this section, we derive similar

results for the macrocanonical model.

Contrary to the microcanonical model, the distribution of any macrocanonical model is a Gibbs

measure, i.e. the exponential distribution of the features up to a scalar product with some parameters

[Jay57]. Our �rst contribution is to give explicit conditions on the features ensuring the existence of

such a macrocanonical model, extending results from information geometry [Csi96; Csi84; Csi75; DE97].

Even if such a Gibbs measure exists we are facing two issues: 1) �nding the optimal parameters,

2) sampling from the associated Gibbs measure. The �rst challenge can in fact be seen as the dual

formulation of the maximum entropy problem under constraints and corresponds to the minimization

of a convex functional over an open susbet of Rp with p ∈ N. Therefore it is natural to consider gradient

based method in order to �nd such parameters and this approach was considered in the seminal work
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of [ZWM98] which was the �rst to consider macrocanonical models in the context of image processing.

However, the gradient of this functional is the expectation of the features with respect to the Gibbs

measure. In this context, we turn ourselves to the Stochastic Approximation (SA) literature [RM51;

CGG87]. More precisely, we use the Markov Chain Monte Carlo (MCMC) SA methodology proposed

in Section 5.2.2 and referred as Stochastic Optimization with Unadjusted Langevin Algorithm (SOUL)

which relies on the Langevin algorithm. This MCMC method has received a lot of attention in the

recent years [Dal17b; Dal17a; DM17] since it exhibits desirable convergence properties and has been

extensively used in machine learning applications [WT11; Sim+16; PT13; MCF15; ABW12]. Note that a

similar methodology to SOUL was already used in a texture synthesis context in [LZW16].

Our second contribution is to establish the convergence of the methodology proposed in Section 5.2.2

in the context of macrocanonical texture synthesis and improve existing results on the dependency with

respect to the hyperparameters in this speci�c case. In particular, the dependency in the dimension is

polynomial even in the non-convex setting. This is in accordance with similar results for the conver-

gence of di�usion processes with respect to the Kantorovitch-Rubinstein distance which are known to

be optimal [Ebe16].

Chapter 5 is organized as follows. Related work on maximum entropy methods is discussed in Sec-

tion 5.1.2 In Section 5.1.2, we give a mathematical presentation of the microcanonical and the macro-

canonical models. In Section 5.1.2 we extend results from information geometry to the context of

exemplar-based texture synthesis. Two sets of image descriptors are studied in Section 5.1.3: the Gaus-

sian features in Section 5.1.3 and convolutional neural network features in Section 5.1.3. We then turn

to the proposed algorithm for sampling macrocanonical models. The SOUL algorithm in the special case

of texture synthesis is recalled in Section 5.2.2 and the convergence results applied to our settings are

presented in Section 5.2.2. In Section 5.2.2 we investigate the links between the microcanonical model

and the macrocanonical one. Numerical experiments are gathered in Section 5.2.3. First, we discuss

the convergence of the SOUL algorithm considering a toy circular Gaussian texture synthesis problem

in Section 5.2.3. Then, we apply our algorithm for general texture synthesis with features given by

convolutional neural network outputs in Section 5.2.3. We study the advantages and the limitations of

macrocanonical models and compare our visual results with existing algorithms. Finally an extension

of our model to texture style transfer is presented in Section 5.2.3. Proofs and additional results are

gathered in Section 5.1.4 and Section 5.2.4.

5.1.2 Statistical texture models

In this work we are interested in sampling probability distributions derived from image models. Let

x0 ∈ Rd be an exemplar image and consider a set of constraints associated with some image descriptors

F : Rd → Rp. Assume that F (x0) = 0. This can always been achieved upon subtracting F (x0) to the

original features. The constraints on the target distribution are then given by F = 0 almost surely or

in expectation.

Previous work

As emphasized in Section 5.1.1, there have been two main approaches to address the exemplar-based

texture synthesis problem. First, non-parametric methods sample an output image from a statistical

process, e.g. a Markov random �eld [EL99; CCB85; PR77]. These methods do not require an explicit tex-

ture model and most of these algorithms are based on patch information, see the review paper [Raa+17].

Indeed, in order to update the current image, the patches of the input texture are rearranged in order

to generate a new element (a pixel or a block of pixels) which is locally coherent with the pre-existing
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structure. The seminal work of [EL99] paved the way for the use of such methods and was later ex-

tended in [EF01; Kwa+03] to handle blockwise updates instead of pixelwise ones. The statistical model

of [EL99] was analyzed in [LB06] in which the authors reformulate the original algorithm as a boot-

strap scheme. Since these methods duplicate some part of the input image in order to sample a new one,

their innovation capability is limited. In [GLR18], starting from a random microtexture initial image,

the patches are rearranged using optimal transport. [Kwa+05] reformulates a patch-based synthesis

algorithm as an optimization procedure, therefore yielding a global texture model de�ned by the patch

information. This model was later extended in [Han+06; Kas+15].

For the second type of approaches, i.e. parametrics ones, in the early work of [FFC82], textures

were described as fractional Brownian motions. It was later noticed in [Wij91] that a large class of tex-

tures could be generated using spot noise models whose normalized limit for a large number of spots

is a Gaussian random �eld with a circulant covariance matrix [GGM11]. In this works the underlying

image model is Gaussian and the pixel distribution of the output image has, in expectation, the same

moments of order 1 and 2 as the input texture. All the images in this class share the property that they

do not exhibit salient spatial structures implying that the knowledge of the second-order moments was

not enough to reproduce natural images. In [GM86; CM88; HB95; PS00] the authors remark that struc-

tured textures could be obtained using hand-selected features. The �rst texture synthesis methodology

based on a maximum entropy approach with constraints in expectation is introduced in [ZWM98]. Re-

placing wavelet features in [PS00] by convolutional neural network features, [GEB15] obtains striking

visual results. In a similar line of work, [JAF16; Uly+16; UVL17] design parametric methods relying on

convolutional neural network features. The sampling procedure does not depend on any gradient-based

method but instead is performed in a feed-forward manner. More recently, many papers investigate the

use of Generative Adversarial Networks (GAN), see [Goo+14], in texture synthesis yielding promising

results [JBV16; BJV17; LW16a; Zho+18]. In GANs [JBV16; Goo+14] the structure constraint is encoded

in the loss on the generator, i.e. the samples must look like the input image. The innovation constraint

is encoded in the loss on the discriminator, i.e. the samples must be diverse enough for the discrimina-

tion task to be hard. Note that in this case, even though the synthesis is performed in a feed-forward

manner, the neural network must be retrained when presented a new class of textures. In the following

approaches, the generation is not feed-forward but the natural texture distribution is designed so that

the same features are generically used for all textures.

Maximum entropy probability measures

We now de�ne microcanonical and macrocanonical models as introduced by [BM18]. Let µ be a prob-

ability measure over (Rd,B(Rd)) with d ∈ N. The measure µ will be referred to as the reference proba-
bility measure. Let F : Rd → Rp with p ∈ N be a measurable mapping. This mapping will be referred

to as the statistical constraints of the model. A discussion on the choice of F was conducted in Sec-

tion 5.1.3. From now on we assume that we observe an input texture x0 such that F (x0) = 0. Given

a set of features and a target image, we are now interested in the probability distributions which have

maximum entropy (innovation constraint) and such that the features are equal to the ones of the target

image (structure constraint) a.s.. In order for the model to be well-de�ned we replace the maximization

of the entropy by a minimization of the Kullback-Leibler divergence KL (·|µ) where µ is the reference

probability measure. This methodology is called the microcanonical model, see [BM18].

De�nition 5.1.1. A probability measure π is a microcanonical model with respect to the constraints F
and the reference measure µ, if π({F = 0}) = 1 and if for any probability distribution ν which satis�es
the previous assumption we have KL (π|µ) ≤ KL (ν|µ).

This model is considered in [GM86; CM88; HB95; PS00; GEB15; LGX16; BM18]. Unfortunately, the
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microcanonical model distribution is untractable for most statistical constraints. Therefore in order

to sample from this distribution the following heuristics is used: 1) sample a white noise image; 2)

perform a gradient descent on the square norm of the features. We shall see in Section 5.2.2 that this

algorithm, while providing satisfying visual results for neural network constraints, does not sample

from the microcanonical distribution. We now consider a relaxation of the microcanonical model: the

macrocanonical model, see [BM18]. Given a set of features and a target image, we are now interested

in the probability distributions which have maximum entropy (innovation constraint) and such that

expectation of the features is equal to the features of the target image (structure constraint).

De�nition 5.1.2. A probability measure π is a macrocanonical model with respect to the constraints F
and the reference measure µ, if F is π-integrable, π(F ) :=

∫
Rd F (x)dπ(x) = 0 and if for any probability

distribution ν which satis�es the previous assumption we have KL (π|µ) ≤ KL (ν|µ).

This maximum entropy model was introduced by [Jay57] and used in texture synthesis by [ZWM98;

LZW16]. In [BM18] conditions under which the macrocanonical and the microcanonical models coin-

cide when the dimension of the image space grows towards in�nity are identi�ed.

Existence, uniqueness and dual formulation

Considering the model de�ned by De�nition 5.1.2 it is natural to ask the following questions:

(a) When does a macrocanonical model exist? Can we identify explicit conditions for its existence?

(b) If such a model exists, is it unique?

(c) Can we �nd closed forms for the probability distribution functions of macrocanonical models?

We will answer positively to (b). In the case where the problem is non degenerate, i.e. there exists a

probability measure ν such that KL (ν|µ) < +∞ and ν(F ) = 0, then the macrocanonical model exists

and is given by a parametric measure, answering both (a) and (c). However, checking that the problem

is indeed non degenerate can be as hard as �nding the macrocanonical model. To show the existence

of a macrocanonical model we give a dual, convex and �nite dimensional formulation. This problem is

then solved under the following conditions on F and µ. Let α > 0 and β > 0:

A1 (α). F is continuous and there exists Cα ≥ 0 with supx∈Rd
{
‖F (x)‖ (1 + ‖x‖α)−1

}
≤ Cα < +∞.

A2 (β). There exists η > 0, such that
∫
Rd exp[η ‖x‖β]dµ(x) < +∞.

Let Pα be the set of probability measures over (Rd,B(Rd)) such that

∫
Rd ‖x‖

α
dπ(x) < +∞. We

de�ne the set of admissible probability measures by PFα = {π ∈ Pα : π(F ) = 0} and consider the

following problem:

minimize KL (π|µ) subject to π ∈ PFα . (P)

We denote v(P) = infPFα KL (π|µ). First, we assert that if the solution of (P) exists and is non-

degenerate, i.e. v(P) < +∞, then it is unique. Let π?1 and π?2 be two solutions of (P) with v(P) < +∞
and φ(t) = t log(t), de�ned on [0,+∞) with the convention that φ(0) = 0. Since v(P) < +∞
we have that π?1 � µ and π?2 � µ. Since PFα is convex, π? de�ned for any x ∈ Rd by

dπ?

dµ (x) =(
dπ?1
dµ (x) +

dπ?2
dµ (x)

)
/2 belongs to PFα . Using that φ is strictly convex we have

2v(P) = KL (π?1 |µ) + KL (π?2 |µ) =

∫
Rd

{
φ

(
dπ?1
dµ

(x)

)
+ φ

(
dπ?1
dµ

(x)

)}
dµ(x) ≥ 2KL (π?|µ) ,
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with equality if and only if for µ almost every x ∈ Rd we have
dπ?1
dµ (x) =

dπ?2
dµ (x). As a consequence,

since KL (π?|µ) = v(P), π?1 = π?2 . We now introduce another optimization problem.

maximize inf
π∈Pα

{KL (π|µ) + 〈θ, π(F )〉} subject to θ ∈ ΘF , (Q)

with

ΘF =

{
θ ∈ Rp :

∫
Rd

exp [−〈θ, F (x)〉] dµ(x) < +∞
}
. (5.1)

Using Hölder’s inequality, one can show that ΘF is convex. In addition, if A1(α) and A2(α) hold with

α > 0 then B̄(0, η/Cα) ⊂ int(ΘF ). Similarly to (P), we denote v(Q) = supΘF infπ∈Pα
{KL (π|µ) +

〈θ, π(F )〉}. Introducing the Lagrangian L(π, θ) = KL (π|µ) + 〈θ, π(F )〉 de�ned over Pα × ΘF , we

have

v(Q) = sup
ΘF

inf
Pα

L ≤ inf
Pα

sup
ΘF

L ≤ v(P) . (5.2)

We denote d(P,Q) the duality gap d(P,Q) = v(P)− v(Q) with the convention that∞−∞ = 0. Let

the log-partition function L : ΘF → R be given for any θ ∈ ΘF by

L(θ) = log

[∫
Rd

exp[−〈θ, F (x)〉]dµ(x)

]
. (5.3)

We also de�ne for any θ ∈ ΘF , the probability measure πθ whose density with respect to µ is given for

any x ∈ Rd by

dπθ
dµ

(x) = exp[−〈θ, F (x)〉 − L(θ)] . (5.4)

Using Proposition 5.1.8, (Q) is equivalent to

minimize L(θ) subject to θ ∈ ΘF . (Q’)

More precisely θ? is a solution of (Q) if and only if it is a solution of (Q′). The next proposition is an

extension of [Csi75, Theorem 3.1] in the case where F is not bounded. Under A2(α′) with α′ > α the

existence of a solution of (P) is ensured as soon as the set of admissible probability measures is not

empty.

Proposition 5.1.3. Assume A1(α) with α ≥ 0. The following holds.

(a) If there exists a solution of (P) such that v(P) < +∞ then there exists θ? ∈ Rp such that the solution
of (P) is given by πθ? de�ned for µ almost any x ∈ Rd by{

dπθ?
dµ (x) = exp [−〈θ?, F (x)〉]

/∫
Rd\N exp [−〈θ?, F (y)〉] dµ(y) if x /∈ N ,

dπθ?
dµ (x) = 0 otherwise ,

with N ∈ B(Rd) such that for all π ∈ PFα with KL (π|µ) < +∞, π(N) = 0. If there exists π ∈ PFα
with KL (π|µ) < +∞ such that µ� π then θ? is a solution of (Q), πθ? given by (5.4) is a solution of
(P) and v(Q) = v(P), where v(Q) and v(P) are given in (5.2).

(b) Assume A2(α′) with α′ > α. There exists πθ? solution of (P) with v(P) < +∞ if and only if there
exists π ∈ PFα such that KL (π|µ) < +∞.

Proof. The proof is postponed to Section 5.1.4.
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Note that this result was extended to a large class of divergences, see [AN00, Theorem 3.8]. In

[Csi75; Csi84; Csi96] di�erent su�cient conditions for solving (P) are derived. In [Top79, Theorem 3],

the authors show similar results in the case where the Kullback-Leibler divergence is given by the true

entropy. In practice it is di�cult to check the conditions of Proposition 5.1.3. Indeed, even if A2(α′)
holds with α′ > α it is not trivial to �nd an element π ∈ PFα such that KL (π|µ) < +∞. We now

turn to the dual formulation (Q) which is easier to deal with since it is a �nite dimensional and convex

optimization problem. Under A2(α), any stationary point of the log-partition function yields a solution

of the primal formulation.

Proposition 5.1.4. Assume A1(α) and A2(α) with α ≥ 0. Then, L ∈ C∞(int(ΘF )), where L is given
in (5.3), and for any θ ∈ int(ΘF ), ∇L(θ) = πθ(F ) with πθ given by (5.4). In addition, if there exists
θ? ∈ int(ΘF ) such that∇L(θ?) = 0, then πθ? is the solution of (P).

Proof. The proof is postponed to Section 5.1.4.

A similar result was derived in [JM83], in the case where µ is no longer a probability measure but

only sigma-�nite. In fact, the log-partition function is a convex function, hence any stationary point is

a global minimizer. We exploit this fact in the following proposition.

Proposition 5.1.5. Assume A1(α), A2(α′) with α ≥ 0, α′ > α.

(a) If for any θ ∈ Rp with ‖θ‖ = 1, we have µ({x ∈ Rd : 〈F (x), θ〉 < 0}) > 0, then θ?, solution of (Q),
exists and πθ? given by (5.4) is the solution of (P).

(b) In particular, Proposition 5.1.5-(a) is satis�ed if µ(A) > 0 for any non-empty open setA ⊂ Rd, F is con-
tinuous and there existsx ∈ F−1({0}) such thatF is di�erentiable atx andwe have det(DF (x)DF (x)>) >
0.

Proof. The proof is postponed to Section 5.1.4.

In Section 5.1.3, we apply Proposition 5.1.5 when F is given by a convolutional neural network

(CNN). However, note that it does not apply to the case where the non-linearity ϕ is the recti�ed linear

unit (RELU), i.e. for any t ∈ R, ϕ(t) = max(0, t). Still we give a similar result, valid for RELU, in

Proposition 5.1.7. In [IM05, Theorem 3.5] the authors derive analogous results in the case where µ is

the Lebesgue measure, i.e. in the case where the Kullback-Leibler is replaced by the true entropy. We

are also able to show that the condition derived in Proposition 5.1.5-(a) is almost necessary.

Proposition 5.1.6. AssumeA1(α),A2(α′) withα ≥ 0, α′ > α and that there exists θ ∈ Rp with ‖θ‖ = 1
such that µ({x ∈ Rd : 〈F (x), θ〉 ≤ 0}) = 0. Then δx0 solves (P) and v(P) = +∞.

Proof. The proof is postponed to Section 5.1.4.

We have seen that, under assumptions on the reference distribution µ and the statistical constraints

F , the macrocanonical model is the distribution πθ? with the following parametric form: for any x ∈ Rd,

(dπθ?/dµ)(x) = exp [−〈θ?, F (x)〉 − L(θ?)], with θ? which satis�es θ? ∈ arg minθ∈ΘF L(θ). These

exponential families can also be retrieved in the following Bayesian framework. Assume that the like-

lihood of texture images associated with parameters θ ∈ Rp is given for any x ∈ Rd by p(x|θ) =
exp[−〈θ, F (x)〉]

/∫
Rd exp[−〈θ, F (y)〉]dµ(y) Assume that x0 is a sample from this distribution and that

F (x0) = 0. Using Bayes’ formula we obtain that for any θ ∈ Rp, p(θ|x0) = p(x0|θ)p(θ)/p(x0) ∝
p(θ)

/∫
Rd exp[−〈θ, F (y)〉]dµ(y) . In order to compute the maximum a posteriori estimator θMAP we
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need to set a prior distribution p(θ). Choosing the non-informative improper prior p(θ) = 1ΘF (θ) we

get that

θMAP ∈ arg min
θ∈ΘF

log

[∫
Rd

exp [−〈θ, F (x)〉] dµ(x)

]
,

which corresponds to the dual formulation (Q). However, other prior distributions could be considered,

yielding hierarchical Bayesian models [Vid+19].

5.1.3 Image descriptors

In this section, we review some of the popular possibilities for the choice of the function F . In the lit-

erature, many di�erent approaches such as Gaussian models, i.e. mean and correlation features [Wij91;

GGM11], wavelet-based descriptors [HB95; PS00; Pey10; Dui+07] or convolutional neural network fea-

tures (CNN) [GEB15; Ust+16; JBV16] have been proposed to come up with visually satisfying image

descriptors.

In our study we will focus on two sets of features: (i) Gaussian features ; (ii) CNN features. Gaussian

features have the mathematical advantage of de�ning a strongly convex model, therefore allowing for

strong convergence results to apply. However Gaussian textures do not exhibit sharp edges and lack

long-range structures and as a consequence richer models should be investigated in order to obtain

visually satisfying images. Similarly to [GEB15; Ust+16; LZW16] we consider features derived from a

pretrained CNN. It has been observed that these features are e�cient for describing a large variety of

natural images. However, these improvements over the Gaussian model come at a high computational

price. First, the features we end up with are no longer convex. Second, the dimension of the associated

parameter space is usually high. An experimental investigation of the behavior of our proposed algo-

rithm for these two sets of features is conducted in Section 5.2.3. We now describe precisely these two

models.

Gaussian features

Let x0 ∈ Rd and consider F (x) = x ∗ x̌ − x0 ∗ x̌0. In the Fourier domain, we have for any i ∈
{0, . . . , d − 1}, F(F (x))(i) = |F(x)(i)|2 − |F(x0)(i)|2. Therefore, if F (x) = 0, x has same power

spectrum, i.e. same autocorrelation, as x0, namely F(x) has the same modulus as F(x0). However the

equation F (x) = 0 gives no information on the phases of F(x).

We now study the macrocanonical model associated with F . Let µ, the reference measure, be a

Gaussian probability measure with zero mean and diagonal covariance matrix with diagonal coe�cient

σ2
with σ > 0. Then, A1(α) and A2(α) hold with α = 2 and η ∈

(
0, (2σ2)−1

)
. Assume in addition that

for any ` ∈ {0, . . . , d − 1}, F(x0)(`) 6= 0. Using the Fourier-Plancherel formula we get that for any

x ∈ Rd and θ = (θ(0), . . . , θ(d− 1)) ∈ Rd,

〈θ, F (x)〉+ ‖x‖2 /(2σ2) = d−1
[
〈F(θ), |F(x)|2 − |F(x0)|2〉+ ‖F(x)‖2 /(2σ2)

]
=

d−1∑
i=0

{
d−1(F(θ)(i) + (2σ2)−1) |F(x)(i)|2

}
− d−1〈F(θ), |F(x0)|2〉 .

This implies that, ΘF = F−1[R−1{
(
−(2σ2)−1,+∞

)d}] ∩ Rd. In addition, for any θ ∈ ΘF with

F(θ) ∈ Rd and X distributed according to πθ , we obtain that F(X) is a d-dimensional complex Gaus-

sian random variable on F(Rd) with zero mean and diagonal covariance matrix with diagonal coef-

�cients given by d(F(θ) + (2σ2)−1)−1/2. Similarly, we obtain that X distributed according to πθ is
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a d-dimensional Gaussian random variable with zero mean and invertible circulant covariance matrix

Cθ ∈ Sd(R) whose inverse is given for any i, j ∈ {0, . . . , d− 1} by

C−1
θ (i, j) = 2θ(i− j) + σ−2 . (5.5)

Note that in this case, since F(θ) ∈ Rd, θ = θ̌. Let

F(θ?) = (d|F(x0)|−2 − σ−2)/2 ∈ F(ΘF ) . (5.6)

In this case, for any X distributed according to πθ? we obtain that F(X) is a d-dimensional Gaussian

random variable with zero mean and diagonal covariance matrix with diagonal coe�cients given by

|F(x0)|2. Therefore we have E[X ∗ X̌] = F−1(E[|F(X)|2]) = F−1(|F(x0)|2) = x0 ∗ x̌0, which

implies that πθ?(F ) = 0 and that θ? = F−1(d|F(x0)|−2− σ−2)/2 is a solution of (Q), since θ? ∈ ΘF .

Using Proposition 5.1.4 we get that πθ? is a solution of (P). Therefore the solution of (P) is the Gaussian

probability measure with zero mean which satis�es for any m,n ∈ {0, . . . , d − 1}, E [X(m)X(n)] =
d−1(x0 ∗ x̌0)(m − n). This distribution is invariant by spatial translation, i.e. denoting τ : Rd → Rd,

de�ned for any x ∈ Rd and i ∈ {0, . . . , d − 1} by τ(x)(i) = x(i + 1) and τ(x)(d − 1) = x(0), we

have for any A ∈ B(Rd), π?(A) = π?(τ(A)). Note that the distribution of the random variable X is the

same as the one of d−1/2(x0 ∗ Z) with Z a d-dimensional Gaussian random variable with zero mean

and covariance matrix identity, see [GGM11].

Neural network features

A Neural network is a series of a�ne operations (usually convolutions) followed at each step by a

pointwise non-linearity. We de�ne

(Akj )j∈{1,...,M},k∈{1,...,cj} ∈
M∏
j=1

Anj ,cj−1×nj−1
(R)cj , (nj , cj)j∈{0,...,M} ∈ NM+1 × NM+1 , (5.7)

withM ∈ N, n0 = d and c0 = 1. For each j ∈ {0, . . . ,M}, nj is the dimension of the j-th layer and cj is

the number of channels of the j-th layer, and for any k ∈ {1, . . . , cj}, Akj ∈ Anj ,cj−1×nj−1 . Namely for

any layer j ∈ {1, . . . ,M} and channel k ∈ {1, . . . , cj}, Akj : Rcj−1×nj−1 → Rnj is the a�ne operator

which maps the (j − 1)-th layer to the j-th layer and channel k before the non-linear operation. With

our notations, the 0-th layer corresponds to the original image. We recall that for any j ∈ {1, . . . ,M}
and k ∈ {1, . . . , cj}, Ãkj denotes the linear part of Akj . We also de�ne for any j ∈ {1, . . . ,M} and

x ∈ Rcj−1×nj−1
, Aj(x) = (Akj (x))k∈{1,...,cj}, i.e. Aj ∈ Acj×nj ,cj−1×nj−1

is the a�ne operator which

maps the j − 1-th layer to the j-th layer before the non-linear operation.

Let ϕ : R → R be a measurable function. By a slight abuse of notation we denote for any d ∈ N
and x ∈ Rd, ϕ(x) = (ϕ(x(0)), . . . , ϕ(x(d− 1))). We assume that ϕ satis�es the following conditions:

(a) for any d ∈ N, there exists Cd,ϕ ≥ 0 such that for any x ∈ Rd, ‖ϕ(x)‖ ≤ Cd,ϕ(1 + ‖x‖) , (b) ϕ is

non-decreasing, (c) limt→+∞ ϕ(t) = +∞ . We de�ne for any j ∈ {1, . . . ,M} and k ∈ {1, . . . , cj}, the

(j, k)-th layer-channel feature G k
j : Rd → Rnj , for any x ∈ Rd, by

G k
j (x) =

(
ϕ ◦Akj ◦ ϕ ◦Aj−1 ◦ · · · ◦ ϕ ◦A1

)
(x) , G0(x) = x .

For any layer j ∈ {1, . . . ,M} and channel k ∈ {1, . . . , cj}, G k
j (x) is the neural network response of x at

layer j and channel k. We also de�ne for any j ∈ {1, . . . ,M}, the j-th layer feature Gj : Rd → Rcj×nj ,
for any x ∈ Rd, by Gj(x) = (G k

j (x))k∈{1,...,cj}. Let j ⊂ {1, . . . ,M} then we can de�ne F (x) ∈ Rp for
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any x ∈ Rd by

F (x) =
(
G
k

j (x)− G
k

j (x0)
)
j∈j,k∈{1,...,cj}

, G
k

j (x) = n−1
j

nj∑
`=1

G k
j (x)(`) , p =

∑
j∈j

cj . (5.8)

A few remarks are in order regarding the dimension of the associated parameter space. In our ap-

plications, we will use the VGG19 convolutional neural network [SZ14], see Section 5.2.4 for details

on its structure. Note that since VGG19 is a convolutional neural network, i.e. the linear part of the

a�ne operators is given by a convolutional operator, and since we average the neural network re-

sponse, the output dimension p is independent of the input dimension d. Selecting the layers j =
{1, 3, 6, 8, 11, 13, 15, 24, 26, 31} we have p = 2688 ≈ 103

. Usually we will consider images of size

at least 512 × 512 for which d = 262144 ≈ 105
. Therefore the features described by (5.8) performs

a dimension reduction. In [GEB15] similar image descriptors are considered but Gram matrices are

used instead of (Gj)j∈j,k∈{1,...,cj}. This leads to a parameter space with dimension 352256 ≈ 105
, see

[Raa+17].

We now turn to the study of the macrocanonical model associated withF . Let the reference measure

µ be a Gaussian probability measure with zero mean and symmetric positive covariance matrix. Then,

A1(1) and A2(α′) hold for any α′ ∈ [0, 2). Note that in the case, where ϕ is di�erentiable, the results of

Proposition 5.1.4 hold assuming that there exists a point x ∈ Rd such that F (x) = F (x0) and dF (x)
is surjective. In the case where for all t ∈ R, ϕ(t) = max(0, t) we can de�ne a certi�cate ensuring the

existence of a macrocanonical model.

Before stating Proposition 5.1.7, we introduce some preliminary notations. Let (Aj)j∈{1,...,M} be

given by (5.7) and (Gj)j∈{1,...,M} be given by (5.8). For any j ∈ {1, . . . ,M}, letAj,+ ∈ Acj×nj ,cj−1×nj−1
(R)

de�ned by Aj,+ = Dj(x0)Aj , with Dj(x0) ∈ Rcj×nj × Rcj×nj a diagonal matrix such that for any

i ∈ {1, . . . , cj × nj}, Dj(x0)(i, i) = 1(0,+∞)(Gj(x0)(i)). Note that we have for any j ∈ {1, . . . ,M},
Ãj,+ = Dj(x0)Ãj . Let (ṽj,k)j∈j,k∈{1,...,cj} such that for any j, j′ ∈ j and k, k′ ∈ {1, . . . , cj},
ṽj,k ∈ Rcj×nj and

ṽj,c(j
′, c′) =

{
n−1
j if c′ = c ,

0 otherwise .

Note that for any x ∈ Rd, F (x) = (ṽ>j,kGj(x))j∈j,k∈{1,...,cj}. In addition, de�ne for any j ∈ j and

k ∈ {1, . . . , cj}, vj,k = Ã>1,+ . . . Ã
>
j,+ṽj,k .

Note that for any j ∈ j and k ∈ {1, . . . , cj}, vj,k ∈ Rd. The next proposition highlights the role of

(vj,k)j∈j,k∈{1,...,cj} as a certi�cate for the existence of the macrocanonical model.

Proposition 5.1.7. Assume that A2(α) holds with α > 1, that µ(A) > 0 for every non-empty open set
A ⊂ Rd and that F is given by (5.8) with ϕ(t) = max(0, t) for any t ∈ R, x0 ∈ Rd and j ⊂ {1, . . . ,M}.
Moreover assume that

x0 ∈
M⋂
j=1

cj×nj⋂
k=1

(
∂{x ∈ Rd : e>k,jAjGj−1(x) = 0}

)c
, (5.9)

where for any j ∈ {1, . . . ,M}, (ek,j)k∈{1,...,cj×nj} is the canonical basis of Rcj×nj . In addition, assume
that the family (vj,c)j∈j,c∈{1,...,cj} is linearly independent. Then there exists a solution θ? to (Q) and πθ?
given by (5.4) is the solution of (P).

Proof. The proof is postponed to Section 5.1.4.
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If for any j ∈ {1, . . . ,M} and k ∈ {1, . . . , cj×nj}, e>k,jAjGj−1(x0) 6= 0 then (5.9) is satis�ed. Note

that since (vj,c)j∈j,c∈{1,...,cj} has a closed form, the independence condition in Proposition 5.1.7 can be

explicitly checked given a trained neural network. The proof of Proposition 5.1.7 exploits the fact that

neural networks are locally linear under mild assumptions. Finally, since the family (vj,c)j∈j,c∈{1,...,cj}
has cardinality p =

∑
j∈j cj , Proposition 5.1.7 never applies when p > d.

5.1.4 Proofs and additional results

We have the following variational formula which is an extension of [DE97, Proposition 1.4.2] to the case

where F is not bounded. More precisely, allowing some growth on F , controlled by a parameter α, and

restricting the set of probability measures we consider to Pα we obtain the same equality. The proof is

almost identical but is given for completeness.

Proposition 5.1.8. Assume A1(α) with α > 0. Then, for any θ ∈ ΘF , with ΘF de�ned by (5.1),

inf
π∈Pα

{KL (π|µ) + 〈θ, π(F )〉} = − log

{∫
Rd

exp [−〈θ, F (x)〉] dµ(x)

}
.

Proof. Let θ ∈ ΘF and π ∈ Pα. Note that under A1(α), π(‖F‖) < +∞ and π(F ) is well de�ned.

If KL (π|µ) = +∞, then KL (π|µ) + 〈θ, π(F )〉 = +∞. Consider now the case KL (π|µ) < +∞.

By de�nition of ΘF , we can therefore consider πθ , the probability measure with density with respect

to µ given for any x ∈ Rd by

dπθ
dµ

(x) = exp[−〈θ, F (x)〉]
/∫

Rd
exp[−〈θ, F (y)〉]dµ(y) .

Note that since µ-almost everywhere, (dπθ)/(dµ)(x) > 0, µ and πθ are equivalent. Since KL (π|µ) <
+∞, π � µ which implies in turn π � πθ and we have

KL (π|µ) = KL (π|πθ) +

∫
Rd

log

(
dπθ
dµ

(x)

)
dπ(x)

= KL (π|πθ)− 〈θ, π(F )〉 − log

{∫
Rd

exp [−〈θ, F (x)〉] dµ(x)

}
,

which concludes the proof, since KL (π|πθ) ≥ 0.

Proof of Proposition 5.1.3

The proof is divided in two parts:

(a) Assume that there exists π?, solution of (P). Let E be the convex set de�ned by {π ∈ PFα :
dπ
dπ? (x) ≤ 2 for π? almost every x}. For any π1 ∈ E , consider π2 with density with respect to π?,

dπ2

dπ? = 2 − dπ1

dπ? which by de�nition is an element of E and π? = (π1 + π2)/2. Hence π? is an alge-

braic inner point of E . Therefore using the equality case in [Csi75, Theorem 2.2] we obtain that for

any π ∈ E , KL (π|µ) = KL (π|π?) + KL (π?|µ). Using that for any π ∈ E , we have KL (π|π?) and

KL (π?|µ) < +∞, we get that

0 =

∫
Rd

log

(
dπ

dµ
(x)

)
dπ(x)−

∫
Rd

log

(
dπ

dπ?
(x)

)
dπ(x)−

∫
Rd

log

(
dπ?

dµ
(x)

)
dπ?(x) (5.10)
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=

∫
Rd

log

(
dπ?

dµ
(x)

)[
dπ

dπ?
(x)− 1

]
dπ?(x) .

Since, KL (π?|µ) < +∞we have that log(dπ?

dµ ) ∈ L1(Rd, π?). Let V = span{1, 〈F, ei〉 : i = 1, . . . , p}
where (ei)i∈{1,...,p} is the canonical basis of Rp. V is a �nite dimensional (hence closed) subspace of

L1(Rd, π?). Hence, in order to show that log(dπ?

dµ ) ∈ V it su�ces to show that log(dπ?

dµ ) ∈ (V ⊥)⊥ by

[Bre11, Proposition II.12].

We identify the topological dual space of L1(Rd, π?) and L∞(Rd, π?), see [Rud06, Theorem 6.16].

Let h ∈ L∞(Rd, π?)∩V ⊥. Then by de�nition,

∫
Rd F (x)h(x)dπ?(x) = 0 and

∫
Rd h(x)dπ?(x) = 0. The

same goes for h̃ = h/‖h‖∞, and we have that πh de�ned by
dπh
dπ? = 1 + h̃ is an element of E . Therefore,

by (5.10), we get that

∫
Rd log(dπ?

dµ (x))h(x) = 0 and log(dπ?

dµ ) ∈ V . More precisely, there exists θ? ∈ Rp,

C ∈ R and N ∈ B(Rd) with π?(N) = 0 such that for µ almost any x ∈ Rd\N,

log

(
dπ?

dµ
(x)

)
= 〈θ?, F (x)〉+ C .

We also have that π?(N) =
∫
N

dπ?

dµ (y)dµ(y) and therefore for µ almost any x ∈ N,
dπ?

dµ (x) = 0.

Using [Csi75, Remark 2.14], for any π ∈ PFα such that KL (π|µ) < +∞ we have π � π? and therefore

π(N) = 0 . (5.11)

Finally, if there exists π ∈ PFα with KL (π|µ) < +∞ such that µ � π then by (5.11), µ(N) =
π(N) = 0 and we get that

dπ?

dµ (x) = exp [−〈θ?, F (x)〉] /
∫
Rd exp [−〈θ?, F (y)〉] dµ(y) for µ almost

every x ∈ Rd. Then, using Proposition 5.1.8 and that θ? ∈ ΘF , we have by de�nition of (Q), see (5.2),

v(Q) ≤ v(P) = KL (π?|µ) = − log

(∫
Rd

exp [−〈θ?, F (x)〉] dµ(x)

)
= inf
π∈Pα

{KL (π|µ)− 〈θ?, π(F )〉} ≤ v(Q) ,

which concludes the �rst part of the proof.

(b) If there exists π? solution of (P) with v(P) < +∞ then KL (π?|µ) < +∞ and π? ∈ PFα . Now,

assume that there exists π ∈ PFα such that KL (π|µ) < +∞. Let (πn)n∈N be a sequence of prob-

ability measures such that for any n ∈ N, πn ∈ PFα , KL (πn|µ) < +∞ and infPFα KL (π|µ) =
limn→+∞KL (πn|µ). Using [DV76, Lemma 5.1] we get that (πn)n∈N is tight. Therefore we can as-

sume, up to extraction, that (πn)n∈N converges to some probability measure π? for the weak topology.

Since π 7→ KL (π|µ) is lower semi-continuous [DE97, Lemma 1.4.3 (b)] we obtain that KL (π?|µ) =
infPFα KL (π|µ). We recall the Donsker-Varadhan variational formula [DV75, Lemma 2.1] stating that

for any continuous, real-valued and bounded mapping φ we have for any n ∈ N∫
Rd
φ(x)dπn(x) ≤ KL (πn|µ) + log

(∫
Rd

eφ(x)dµ(x)

)
. (5.12)

Let ϕM : Rd → R de�ned for any M ≥ 0 and x ∈ Rd by ϕM (x) = ηmax(‖x‖α
′
,M), with η de�ned

in A2(α′). Using (5.12), A2(α′) and that ϕM is continuous and bounded we get that for any n ∈ N and

M ≥ 0 ∫
Rd
ϕM (x)dπn(x) ≤ sup

n∈N
KL (πn|µ) + log

(∫
Rd

exp[η ‖x‖α
′
]dµ(x)

)
< +∞ .
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Using the monotone convergence theorem we get that supn∈N
∫
Rd ‖x‖

α′
dπn(x) < +∞. By [Kal06,

Theorem 5.16] there exist (Xn)n∈N a sequence of Rd random variables and X a Rd random variable

such that for any n ∈ N, Xn is distributed according to πn and X is distributed according to π?. Since

(πn)n∈N converges weakly to π?, (Xn)n∈N converges in distribution towards X . Therefore, we get

that (‖Xn‖α)n∈N converges in distribution to ‖X‖α and supn∈N E[‖X‖α
′
] < ∞. By [Kal06, Lemma

3.11], we get that E[‖X‖α
′
] =

∫
Rd ‖x‖

α′
dπ?(x) < +∞. Hence, π? ∈ Pα. In addition, since F is

continuous by A1, we have that (F (Xn))n∈N converges in distribution to F (X). By [Wil91, Section

13.3] and A1(α), we have that (F (Xn))n∈N is uniformly integrable. Using [Kal06, Lemma 3.11] and that

for any n ∈ N, πn(F ) = 0, we get limn→+∞ πn(F ) = π?(F ) = 0 and π? ∈ PFα , which concludes the

proof.

Proof of Proposition 5.1.4

Let L : int(ΘF )→ R be the function de�ned for any θ ∈ int(ΘF ) by

L(θ) = log

{∫
Rd

exp [−〈θ, F (x)〉] dµ(x)

}
.

We have L ∈ C∞(int(ΘF )). The proposition is trivial if int(ΘF ) = ∅. Therefore we suppose that

int(ΘF ) 6= ∅ and let θ0 ∈ int(ΘF ). Since int(ΘF ) is open, there exists a1 > 1 such that a1θ0 ∈ int(ΘF ).

Let a2 > 1 such that 1/a1 + 1/a2 = 1. Let R = η/(2a2) with η given in A2(α). For any θ ∈ B̄(θ0, R),

using that tje−t ≤ jj for t ≥ 0 and j ∈ N, we have for any x ∈ Rd and k ∈ N

‖F (x)‖k exp [−〈θ, F (x)〉] ≤ (k/R)k exp [R ‖F (x)‖] exp [−〈θ, F (x)〉]
≤ (k/R)k exp [2R ‖F (x)‖] exp [−〈θ0, F (x)〉] ,

The last quantity is independent of θ and µ-integrable using Hölder’s inequality, since∫
Rd

exp [2R ‖F (x)‖] exp [−〈θ0, F (x)〉] dµ(x)

≤
(∫

Rd
exp

[
η ‖x‖α

]
dµ(x)

)1/a2 (∫
Rd

exp [−〈a1θ0, F (x)〉] dµ(x)

)1/a1

< +∞ .

This result implies that L ∈ C∞(int(ΘF )). Therefore, if θ? is a stationary point, we have

πθ?(F ) ∝
∫
Rd
F (x) exp [−〈θ?, F (x)〉] dµ(x) = 0 .

Since πθ? ∈ Pα we have πθ? ∈ PFα . Since µ � πθ? we have π � πθ? for any π � µ. Therefore for

any π ∈ PFα with π � µ we have

KL (π|µ) =

∫
Rd

log

(
dπ

dµ
(x)

)
dπ(x) = KL (π|πθ?)−L(θ?) = KL (π|πθ?)+KL (πθ? |µ) ≥ KL (πθ? |µ) .

If π is not absolutely continuous with respect to µ then KL (π|µ) = +∞. Therefore we have that πθ?

solves (P).

Proof of Proposition 5.1.5

We preface the proof with the following lemma
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Lemma 5.1.9. Let h : Rp → R be a convex function such that h is ray-coercive, i.e. for any θ ∈ Rp, with
‖θ‖ = 1 we have limt→+∞ h(tθ) = +∞. Then h is coercive, i.e. lim‖θ‖→+∞ h(θ) = +∞.

Proof. Assume that h is not coercive. Then there exists a sequence (θn)n∈N ∈ (Rd\ {0})N such that

limn→+∞ ‖θn‖ = +∞ and the sequence (h(θn))n∈N is bounded. Upon extraction we can assume that

limn→+∞ θn/ ‖θn‖ = θ̃. We have for any t ∈ R

h(tθ̃) = h(tθ̃)− h(tθn/ ‖θn‖) + h(tθn/ ‖θn‖) . (5.13)

Let t ≥ 0 and ε > 0. Since h is convex, h is continuous and there exists n0 ∈ N such that for any n ∈ N
with n ≥ n0,∥∥∥h(tθ̃)− h(tθn/ ‖θn‖)

∥∥∥ ≤ ε , h(tθn/ ‖θn‖) ≤ t/ ‖θn‖h(θn) + (1− t/ ‖θn‖)h(0) . (5.14)

Combining (5.13) and (5.14) we obtain that for any t ≥ 0,

h(tθ̃) ≤ ε+ ‖h(0)‖+ sup
n∈N
‖h(θn)‖ < +∞ ,

which is absurd. Hence, h is coercive.

We now turn to the proof of Proposition 5.1.5. We divide the proof in two parts.

(a) Using that ΘF = Rp and the �rst part of Proposition 5.1.4 we have thatL : ΘF → R is continuously

di�erentiable over Rp. In addition, for any θ1, θ2 ∈ Rp and θ ∈ (0, 1) we have∫
Rd

exp [−〈θθ1 + (1− θ)θ2, F (x)〉] dµ(x)

=

∫
Rd

exp [−θ〈θ1, F (x)〉] exp [(1− θ)〈θ2, F (x)〉] dµ(x) .

Applying Hölder’s inequality we get that

L(θθ1 + (1− θ)θ2) = log

{∫
Rd

exp [−〈θθ1 + (1− θ)θ2, F (x)〉] dµ(x)

}
≤ θ log

{∫
Rd

exp [−〈θ1, F (x)〉] dµ(x)

}
+ (1− θ) log

{∫
Rd

exp [〈θ2, F (x)〉] dµ(x)

}
,

henceL is convex. Using the monotone convergence theorem we have that for any θ ∈ Rp with ‖θ‖ = 1,

lim
t→+∞

L(tθ) = lim
t→+∞

log

{∫
Rd

exp [−t〈θ, F (x)〉] dµ(x)

}
≥ lim
t→+∞

log

{∫
{x∈Rd : 〈θ,F (x)〉<0}

exp [−t〈θ, F (x)〉] dµ(x)

}
=∞ ,

which implies that L is ray-coercive. Combining this result, the fact that L is convex and Lemma 5.1.9

we get that L is coercive. Since L is continuous and coercive it admits a minimizer θ? and therefore

∇L(θ?) = 0. Applying the second part of Proposition 5.1.4 concludes the �rst part of the proof.
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(b) Letx ∈ F−1({0}) such that det(DF (x)DF (x)>) > 0. We obtain that Ker(DF (x)>) = Ker(DF (x)DF (x)>) =
{0}. Hence, rank(dF (x)) = rank(dF (x)>) = p and dF (x) is surjective. Using the submersion the-

orem, there exists G : U → Rd with U an open neighborhood of 0 ∈ Rp such that for any ζ ∈ U,

F (G(ζ)) = ζ . Therefore, for any θ ∈ Rp with ‖θ‖ = 1 there exists ζθ such that 〈θ, F (G(ζθ))〉 =
〈θ, ζθ〉 < 0. Hence, since F is continuous, there exists an open set V in Rd such that for any y ∈ V,

〈F (y), θ〉 < 0. Combining this result with the fact that for any A open and A 6= ∅, µ(A) > 0 we

conclude the proof.

Proof of Proposition 5.1.6

Let θ ∈ Rp such that ‖θ‖ = 1 and such that µ({x ∈ Rd : 〈F (x), θ〉 ≤ 0}) = 0. Then, we have using

the dominated convergence theorem

lim
t→+∞

∫
Rd

exp[−t〈θ, F (x)〉]dµ(x) = lim
t→+∞

∫
{x∈Rd : 〈F (x),θ〉>0}

exp[−t〈θ, F (x)〉]dµ(x) = 0 . (5.15)

Recall thatA1(α) andA2(α′) imply that ΘF = Rp. Therefore, using (5.15), we have v(Q) = − infθ∈Rp L(θ) =
+∞. Since v(P) ≥ v(Q), see (5.2), we have v(P) = +∞. Hence, for any π ∈ PFα , KL (π|µ) = +∞
and any π ∈ PFα solves (P). We conclude upon remarking that δx0

∈ PFα .

Proof of Proposition 5.1.7

First we recall that for any j ∈ {1, . . . ,M}, we consider Aj,+ ∈ Acj×nj ,cj−1×nj−1
(R) de�ned by

Aj,+ = Dj(x0)Aj , (5.16)

withDj(x0) ∈ Rcj×nj×Rcj×nj a diagonal matrix such that for any i ∈ {1, . . . , cj×nj},Dj(x0)(i, i) =

1(0,+∞)(Gj(x0)(i)). Note that we have for any j ∈ {1, . . . ,M}, Ãj,+ = Dj(x0)Ãj .

We start to show that for any j ∈ {1, . . . ,M} there exists εj > 0 such that for any x ∈ B̄(x0, εj)

Gj(x) = Aj,+ . . . A1,+(x) . (5.17)

Namely, for any j ∈ {1, . . . ,M}, Gj is locally a�ne around x0. First, for any k ∈ {1, . . . , c1 × n1},
either (i) x0 ∈ int(Ker(e>k,1A1)) or (ii) e>k,1A1x0 6= 0 , where (ek,1)k∈{1,...,c1×n1} is the canonical

basis of Rc1×n1
. Let k ∈ {1, . . . , n1 × c1}. If (i) holds then there exists ε1,k > 0 such that for any

x ∈ B(x0, ε1,k), G1(x0)(k) = G1(x)(k) = 0. If (ii) holds A1(x0)(k) > 0 or A1(x0)(k) < 0. Therefore,

sinceA1 is continuous, there exists ε1,k > 0 such that for any x ∈ B̄(x0, ε1,k),A1(x)(k)A1(x0)(k) > 0.

Combining the two previous cases, there exists ε1 > 0 such that for any x ∈ B(x0, ε1) and k ∈
{1, . . . , n1 × c1}, sign(G1(x)(k)) = sign(G1(x0)(k)). Hence, we have for any x ∈ B(x0, ε1),

G1(x) = ϕ(A1(x)) = D1(x)A1(x) = D1(x0)A1(x) ,

whereD`+1 is given in (5.16). Now assume that (5.17) is true for j ∈ {1, . . . , `}with ` ∈ {1, . . . ,M−1}.
There exists ε` > 0 such that for any x ∈ B̄(x0, ε`)

G`+1(x) = ϕ(A`+1G`(x)) = ϕ(A`+1A`,+ . . . A1,+(x)) .

Then, for any k ∈ {1, . . . , c`+1×n`+1}, either (i)x0 ∈ int(Ker(e>k,`+1A`+1A`,+ . . . A1,+)) or (ii) e>k,`+1A`+1A`,+ . . . A1,+x0 6= 0

, where (ek,`+1)k∈{1,...,c1×n1} is the canonical basis of Rc`+1×n`+1
. Let k ∈ {1, . . . , n`+1 × c`+1}. If (i)

holds then there exists ε`+1,k > 0 such that for any x ∈ B(x0, ε`+1,k), G`+1(x0)(k) = G`+1(x)(k) =
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0. If (ii) holds A`+1A`,+ . . . A1,+(x0)(k) > 0 or A`+1A`,+ . . . A1,+(x0)(k) < 0. Therefore, since

A`+1A`,+ . . . A1,+ is continuous, there exists ε`+1,k > 0 such that for any x ∈ B̄(x0, ε`+1,k),

A`+1A`,+ . . . A1,+(x)(k)A`+1A`,+ . . . A1,+(x0)(k) > 0 .

Combining the two previous cases, there exists ε`+1 > 0 such that for any x ∈ B(x0, ε1) and k ∈
{1, . . . , n`+1×c`+1}, sign(G`+1(x)(k)) = sign(G`+1(x0)(k)). Hence, we have for any x ∈ B(x0, ε`+1)

G`+1(x) = ϕ(A`+1A`,+ . . . A1,+(x)) = D`+1(x)A`+1A`,+ . . . A1,+(x)

= D`+1(x0)A`+1A`,+ . . . A1,+(x) = A`+1,+A`,+ . . . A1,+(x) ,

where D`+1 is given in (5.16), which concludes the recursion. Let θ ∈ Rp with ‖θ‖ = 1. We have for

any x ∈ B̄(x0, εM )

〈θ, F (x)〉 =
∑
j∈j

cj∑
k=1

θj,kṽ
>
j,k(Gj(x)− Gj(x0))

=
∑
j∈j

cj∑
k=1

θj,kṽ
>
j,k {Aj,+ . . . A1,+(x)−Aj,+ . . . A1,+(x0)}

=
∑
j∈j

cj∑
k=1

θj,kṽ
>
j,kÃj,+ . . . Ã1,+(x− x0) =

〈∑
j∈j

cj∑
k=1

θj,kvj,k, x− x0

〉
.

Since, (vj,c)j∈j,c∈{1,...,cj} is assumed to be linearly independent we have that v =
∑
j∈j
∑cj
c=1 θj,cvj,c

is non zero and therefore setting x = x0 − εMv/ ‖v‖ we get that 〈θ, F (x)〉 < 0. Since F is continuous

and µ(A) > 0 for every non-empty open set A we have that for θ ∈ Rp with ‖θ‖ = 1, µ({x ∈ Rd :
〈F (x), θ〉 < 0}) > 0, which concludes the proof upon using Proposition 5.1.5-(a).

5.2 A texture synthesis algorithm

5.2.1 A brief history of texture synthesis

We recall that the aim of exemplar-based texture synthesis is, given a texture image x0, to �nd a way to

synthesize new images which look like x0 but are not verbatim copies of x0. Henceforth any algorithm

tackling must met two requirements: structure (or geometrical) constraints and innovation constraints.

There have been two main approaches to deal with this problem: the parametric (or model-based)

approach and the non-parametric (or patch-based) approach, see [Raa+17] for an extensive review of

these methods. We highlight that most of these algorithms do not meet the requirements of computer

graphics e�ciency (procedural and parallel synthesis [Lag+10]). Instead, they aim at reproducing a

large class of complex texture images.

Non parametric methods use the structural and perceptual information contained in the patches

of the original image x0, see [Wei+09]. In most cases, the patches of x0 are extracted an rearranged.

This rearrangement is often random so that the innovation constraint is met. In [EL99; WL00; Ash01;

Har01] each pixel is updated using its local information. At each iteration a pixel is selected in the

unknown region of the synthesized image. Its new value is estimated using the information contained

in the nearby pixels which have already been synthesized. This procedure has then been extended to

patch updates [Lia+01; EF01; Kwa+03] allowing for fast implementations of these algorithms. Under the
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assumption that x0 is a realization of some random �eld, the synthesizing process described in [EF01]

can be interpreted as some bootstrap sampling scheme [LB06]. In this case the patch marginal of the

image are asymptotically correct as the size of the images grow towards in�nity. It is also of interest to

consider the distribution of the patches in the example image x0. In [GLR18] the authors approximate

the optimal transport between a Gaussian distribution of patches and the empirical distribution of the

patches in the target image x0. The image is then obtained using patch aggregation [SDDB19]. By

reformulating the texture synthesis problem as an optimization problem [Kwa+05] proposes an image

model based on patch information.

This later model draws a link between non-parametric and parametric methods as the parametric

ones aim at producing samples from a distribution which is given by x0 and some spatial constraints.

These models allow for more innovation than their non-parametric counterparts. In addition, since the

distribution the images we synthesize using non-parametric methods is unknown it is not possible to

infer or impose some structural or spatial properties. Fractional Brownian motions [FFC82], random

functions [Per85] and reaction-di�usion [Tur91; WK91] were among the �rst attempts at modeling tex-

tures. Using spot-noise methods which rely on point processes [Wij91] provides an algorithm which

can sample accurately a large class of microtextures. As emphasized in the previous section, when the

number of point in the point process goes to in�nity [GGM11] identify a Gaussian limiting process and

study its properties from an image processing point of view. Any Gaussian random �eld is fully deter-

mined by its �rst and second moments and therefore by its �rst and second order statistics as de�ned by

Diaconis and Freedman [DF81]. Since [JGV78; DF81] provided counterexamples to the Julesz conjecture

[Jul62; Jul81] it is known that there exist textures with identical �rst and second order statistics which

can be visually discriminated. Therefore it is necessary to go beyond the Gaussian model in order to

be able to synthesize textures outside of the class of microtextures. [GM86; CM88; HB95; DB97; PS00;

Pey10] proposed to sample from random �elds associated with various statistical constraints. For in-

stance, in the work of [PS00] the constraints are given by wavelet transforms. By replacing the wavelets

used in [PS00] by convolutional neural networks, [GEB15] obtains striking visual results. Since then

other methods based on pretrained convolutional neural networks have been developed [JAF16; UVL17;

Uly+16]. In Figure 5.1 we show that the quality of the synthesis process highly depends on the choice

of constraints.

(a) (b) (c) (d)

Figure 5.1: In (a) we present the exemplar texture. In (b) we display the result we obtain using [HB95]

pyramid synthesis. In (c) we show the result we obtain using [PS00] where the constraints are given by

wavelet features. Finally in (d) we show the result of the method [GEB15]. Note that only this method,

which is based on convolutional neural networks, is able to synthesize the complex structures observed

in the image.

Even more recently, methods based on Generative Adversarial Networks (GAN) were used with

promising results [JBV16; LW16a; Zho+18; BJV17]. However, this new algorithms cannot be cast as

parametric methods since they do not sample from given distribution but rather learn a distribution
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using x0 and adversarial examples.

We gather some of advances in the domain exemplar-based texture synthesis in the following chronol-

ogy. The non-parametric methods are given in blue whereas the parametric methods are given in red.

1974

2018

Time-series (McCormick and Jayaramamurthy)

N-gram models (Garber and Sawchuk)

1981

Fractional Brownian motion (Fournier, Fussell, and Carpenter)

1982

Co-occurence matrices (Gagalowicz and Ma)

1986

Spot noise (Wijk)

1991

Steerable pyramid (Heeger and Bergen)

1995

Maximum entropy (Zhu, Wu, and Mumford)

1998

Pixel-wise updates (Efros and Leung)

1999

Gradient descent (Portilla and Simoncelli)

2000

Block-wise updates (Efros and Freeman)

2001

Texture optimization (Kwatra et al.)

2003

Geometrical wavelets (Peyré)

2010

First time neural networks (Gatys, Ecker, and Bethge)

2014

Generative Adversarial Neural Network (Jetchev et al.)

2016

Neural newtork + spectrum (Liu, Gousseau, and Xia)

Optimal transport in patch space (Galerne, Leclaire, and Rabin)

5.2.2 Sampling from macrocanonical models

In this section, our objective is twofold. First, we want to �nd a sequence (θn)n∈N which converges

a.s. to θ?, the solution of (Q). Second, we aim at sampling from the macrocanonical model πθ? de�ned

by (5.4). We present a Stochastic Approximation (SA) algorithm addressing simultaneously these two

problems in Section 5.2.2. Our main result are summarized in Section 5.2.2. In Section 5.2.2 we draw a

qualitative link between macrocanonical and microcanonical models.

The Stochastic Optimization via Unadjusted Langevin method

Stochastic approximation Let K ⊂ int(ΘF ) be a non-empty compact convex set such that K ∩
arg minΘF L 6= ∅ with L the log-partition given in (5.3). Since θ 7→ L(θ) is a convex mapping we

241



obtain that the sequence (θ̃n)n∈N de�ned by θ̃0 ∈ K and for any n ∈ N, θ̃n+1 = ΠK[θ̃n − δ∇L(θ̃n)]
where δ > 0 is a stepsize and ΠK is the projection onto K, converges under mild assumptions to θ? ∈
arg minΘF L, sinceL is convex, see [Nes04]. However, for any θ ∈ ΘF ,∇L(θ) = πθ(F ) and evaluating

this quantity is generally unfeasible. In what follows, we rely on Monte-Carlo approximations for which

we derive explicit upper-bounds on the bias. More precisely, assuming that it is possible to sample from

πθ then ∇L(θ) can be approximated by N−1
∑N
k=1 F (Xk), where (Xk)k∈{1,...,N} are independently

sampled from πθ . In most of our applications it is not feasible to sample directly from πθ , but we can

construct Markov chains for which πθ is an invariant probability measure. Then, under assumptions

and using classical Markov chain theory, it can be shown that N−1
∑N
k=1 F (Xk) converges a.s. to

πθ(F ), [Dou+18, Theorem 11.3.1]. Such examples of Markov chains include the Metropolis-Hastings

algorithm [Has70], which uses a rejection step. In a high-dimensional setting, the acceptance ratio can

be extremely low and the proposed new iterate is then always discarded. Hence, we focus on Markov

chains without rejection step. In this scenario, πθ is not an invariant measure of the Markov chain

in general. However, for an appropriate choice of Markov chain, the bias between its actual invariant

probability measure and the target probability measure πθ can be explicitly controlled.

SOUL algorithm First, we consider some regularity assumption on the measure µwith respect to the

Lebesgue measure.

B1. µ� λ and its Radon-Nikodym density w.r.t. to the Lebesgue measure is given for almost every x ∈ Rd
by exp[−r(x)]/

∫
Rd exp[−r(y)]dy, where r : Rd → R is measurable.

Let θ = (θ(0), . . . , θ(p − 1)) ∈ Rp and consider the overdamped unadjusted Langevin algorithm,

called ULA in [RT96], de�ned by (X̃n)n∈N with X̃0 = x ∈ Rd and for any n ∈ N

X̃n+1 = X̃n − γ

(
p∑
i=1

θ(i)∇Fi(X̃n) +∇r(X̃n)

)
+
√

2γZn+1 , (5.18)

where γ > 0 is a stepsize and (Zn)n∈N is a sequence of independent d-dimensional Gaussian random

variables with zero mean and identity covariance matrix. This algorithm is the Euler-Maruyama dis-

cretization of the overdamped Langevin stochastic di�erential equation [Dur+17] for which πθ is the

invariant probability measure. The study of the geometric convergence of this Markov chain under

various metrics was conducted in [DM17; Dur+17; Dal17b]. In Section 5.2.2 a SA scheme, the Stochastic

Optimization with Unadjusted Langevin (SOUL) Algorithm, is proposed in order to construct a sequence

(θn)n∈N such that (θn)n∈N converges a.s. and in L1
to some θ? ∈ arg minΘF∩K L. Let θ0 ∈ K and

X0
0 ∈ Rd. For any n ∈ N and k ∈ {0, . . . ,mn − 1} we de�ne

Xn
k+1 = Xn

k − γn

(
p∑
i=1

θn(i)∇Fi(Xn
k ) +∇r(Xn

k )

)
+
√

2γnZnk+1 and Xn
0 = X

mn−1

n−1 ;

θn+1 = ΠK

[
θn + δn+1m

−1
n

mn∑
k=1

F (Xn
k )

]
,

(5.19)

where (δn)n∈N? and (γn)n∈N are sequence of positive stepsizes and the sequence (Znk )n∈N,k∈{1,...,mn}
is a sequence of independent d-dimensional Gaussian random variables with zero mean and covariance

identity. By convention, X
m−1

−1 = X0
0 . The condition Xn

0 = Xmn−1
n−1 for all n ∈ N is referred to as a

warm-start condition.

To illustrate the expected behavior of the proposed SOUL algorithm (5.19), we consider the toy

example where x0 ∈ R, F (x) = x2 − 4 and F (x0) = 0. In this case the maximum entropy distribution
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is given by the Gaussian distribution with zero mean and variance 4, see [MD10, Section 4.6.2]. One

shows that the optimal weight θ? is given by θ? = 1/8. In Figure 5.2, we experimentally check the

convergence of (θn)n∈N. We set r(x) = 0 and observe that the sequence (θn)n∈N as well as the sequence

(θ̄n)n∈N de�ned for any n ∈ N by

θ̄n = 0 if n < N , θ̄n =

n∑
k=N

δkθk

/
n∑

k=N

δk otherwise , (5.20)

where N ∈ N is a �xed parameter, converge to θ?. We now state our main results on the dependency

0 1 2 3 4 5

·104

5 · 10−2

0.1

0.15

0.2
(θn)n∈N
(θ̄n)n∈N

1/8

0 1 2 3 4 5

·104

5 · 10−2

0.1

0.15

0.2
(θn)n∈N
(θ̄n)n∈N

1/8

(a) (b)

Figure 5.2: Variance estimation In (a), the sequence of parameters (θn)n∈N (blue curve) and the se-

quence of average parameters (θ̄n)n∈N (red curve) converge to the optimal value θ? = 1/8. In (b) we

illustrate empirically the convergence of the sequence (Xn
0 )n∈N to the Gaussian distribution with zero

mean and variance 4 (orange curve) by plotting its histogram. In this exampleN = 0, δn = 0.1×n−0.7
,

γn = 0.1× n−0.3
and mn = 10× dn0.6e.

on the dimension in the explicit error in SOUL.

Main results

In Section 5.2.2, the convergence of the sequence (θn)n∈N is studied under general assumptions. In this

section, we complement these results in our setting. In particular, we show that the error bound in L1

norm between L(θn) and L(θ?) is upper bounded by a constant which depends polynomially in the

dimension d. Let α ≥ 1.

B2 (α). There exists K ⊂ Rp such that:

(a) K is a non-empty convex compact set with K ⊂ int(ΘF ) and we denote MΘ > 0 such that K ⊂
B̄(0,MΘ) ;

(b) F is di�erentiable and there exists M ≥ 0 such that for any x, y ∈ Rd, ‖F (x)− F (y)‖ ≤ M(1 +

‖x‖α−1
+ ‖y‖α−1

) ‖x− y‖ ;

(c) there exists θ? ∈ int(K) solution of (Q).

UnderB2(α) andA2(α) withα ≥ 1, a solution of (P) exists and is given by (5.4), see Proposition 5.1.4.

In addition, L is di�erentiable on K and we show in Proposition 5.1.4 that ∇L ∈ C1(Rd,Rd), hence

Lipschitz continuous over K with constant supθ∈K
∥∥∇2L(θ)

∥∥
. Conditions under which B2(α)-(c) is

satis�ed are given in Proposition 5.1.5.
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Condition B1 implies that the density of πθ with respect to the Lebesgue measure, is given for any

x ∈ Rd by (dπθ/dλ)(x) = exp[−U(θ, x)]/
∫
Rd exp[−U(θ, y)]dy with U de�ned for any θ ∈ K and

x ∈ Rd by U(θ, x) = 〈θ, F (x)〉 + r(x). The mapping U : K × Rd → R is referred to as the potential

function. Consider the following assumption on U .

B3. There exist Ui : K × Rd → R with i ∈ {1, 2} such that for any θ ∈ K and x ∈ Rd U(θ, x) =
U1(θ, x) + U2(θ, x). In addition,

(a) there exists L ≥ 0 such that for any i ∈ {1, 2}, x 7→ Ui(θ, x) is continuously di�erentiable and for
any x, y ∈ Rd, ‖∇xUi(θ, x)−∇xUi(θ, y)‖ ≤ L ‖x− y‖ ;

(b) there exists m1 > 0 and x? ∈ Rd such that for any θ ∈ K, U1(θ, ·) is m1-strongly convex and
x? ∈ arg minx∈Rd U1(θ, x) ;

(c) there exists M ≥ 0 such that for any θ ∈ K and x ∈ Rd, ‖∇xU2(θ, x)‖ ≤M ;

We can relax the assumption that for any θ ∈ K, x? ∈ arg minx∈Rd U1(θ, x) by the following: there

existsR ≥ 0 such that for any θ ∈ K, there exists x?θ ∈ arg minx∈Rd U1(θ, x) and x?θ ∈ B̄(0, R). But for

the sake of simplicity we do not consider this assumption. The general assumptionB3 is satis�ed for both

the Gaussian features and the CNN features introduced in Section 5.1.3. Indeed, if the features are Gaus-

sian and the reference measure is Gaussian we recall that ΘF = F−1[R−1{
(
−(2σ2)−1,+∞

)d}] ∩ Rd
containing θ? with θ? given in (5.6). Then, x 7→ U(θ, x) is a de�nite positive quadratic form associated

with the symmetric matrix Cθ , see (5.5). Setting L and m respectively the largest and lowest eigenvalues

of Cθ over K we obtain that B3 is satis�ed with U1 = U and U2 = 0.

In the case of CNN features, if the reference measure is a Gaussian distribution with zero mean

and invertible covariance matrix C, we obtain that for any θ ∈ Rp and x ∈ Rd, U(θ, x) = 〈θ, F (x)〉+
x>C−1x/2. If in addition,ϕ is di�erentiable with Lipschitz derivative and for any t ∈ R, supt∈R |ϕ′(t)| <
+∞, we have that B3 is satis�ed with for any θ ∈ K and x ∈ Rd, U1(θ, x) = x>C−1x/2 and

U2(θ, x) = 〈θ, F (x)〉. In particular the fact that U2 is gradient-Lipschitz and Lipschitz is ensured by

a straightforward recursion since for any f ∈ C1(Rd3 ,Rd2) and g ∈ C1(Rd2 ,Rd1), x 7→ d(g ◦ f)(x)
and g ◦ f Lipschitz if f, g,df and dg are Lipschitz. Note that the di�erentiability assumption is not met

in classical convolutional neural networks such as VGG19 . Therefore, in all of our experiments we re-

place the max-pooling operator by a mean-pooling operator and the RELU function by a Continuously

Di�erentiable Exponential Linear Unit (CELU), see [Bar17]. We now state our main results in the case

where U is a strongly convex potential, i.e. U2 = 0.

Theorem 5.2.1. Let α ≥ 1. Assume A2(α), B1, B2(α), B3 with U2 = 0. Let (γn)n∈N, (δn)n∈N be
sequences of non-increasing positive real numbers and (mn)n∈N a sequence of positive integers satisfying
δn < 1/(supθ∈K ‖∇2L(θ)‖) and γn < min(k1/(2L

2), 1/2) for any n ∈ N. Then, there exists (En)n∈N
such that for any n ∈ N?

E

[{
n∑
k=1

δkL(θk)

/
n∑
k=1

δk

}
−min

K
L

]
≤ En

/(
n∑
k=1

δk

)
,

with for any n ∈ N?,

(a) ifmn = m0 for all n ∈ N and supn∈N |δn+1 − δn| δ−2
n < +∞

En = C1(1 + d$)

(
1 +

n−1∑
k=0

δk+1γ
1/2
k +

n−1∑
k=0

δk+1γ
−5/2
k+1 (γk − γk+1)1/2 +

n−1∑
k=0

δ2
k+1/γ

3/2
k + δn/γn

)
;
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(b) otherwise

En = C2(1 + d$)

(
1 +

n−1∑
k=0

δk+1γ
1/2
k +

n−1∑
k=0

δk+1/(mkγk) +

n−1∑
k=0

δ2
k+1γk +

n−1∑
k=0

δ2
k+1/(mkγk)2

)
,

with C1, C2, $ ≥ 0 which do not depend on the dimension d.

Proof. The proof is postponed to Section 5.2.4.

In the case where for any n ∈ N, mn = m0, γn = γ0 and limn→+∞ δn = 0 with

∑+∞
k=0 δn = +∞,

we obtain using [PS98, Problem 80, Part I] that, limn→+∞
∑n
k=0 δ

2
k/
∑n
k=0 δk = 0. Therefore, using

Theorem 5.2.1-(a) we get that

lim sup
n→+∞

E
[
L(θ̄n)

]
−min

K
L ≤ C1(1 + d$)γ

1/2
0 .

We now state our main results in the case where the potential is not convex anymore. We consider the

following additional regularity assumption on F .

B4. F ∈ C1(Rd,Rp) and there exists B ≥ 0 such that for any x, y ∈ Rd, ‖dF (x)− dF (y)‖ ≤ B ‖x− y‖.

Theorem5.2.2. AssumeA2(1),B1,B2(1),B3 and B5. Let (γn)n∈N, (δn)n∈N be sequences of non-increasing
positive real numbers and (mn)n∈N a sequence of positive integers satisfying δn < 1/(supθ∈K ‖∇2L(θ)‖)
and γn < min(m1/(8L

2), 1/2) for any n ∈ N. Then, there exists (En)n∈N such that for any n ∈ N?,

E

[{
n∑
k=1

δkL(θk)

/
n∑
k=1

δk

}
−min

K
L

]
≤ En

/(
n∑
k=1

δk

)
,

with for any n ∈ N?,

(a) ifmn = m0, γn = γ0 for all n ∈ N and supn∈N |δn+1 − δn| δ−2
n < +∞

En = C1(1 + d$)

(
1 +

n−1∑
k=0

δk+1γ
1/2
0 +

n−1∑
k=0

δ2
k+1/γ0 + δn/γ0

)
;

(b) else

En = C2(1 + d$)

(
1 +

n−1∑
k=0

δk+1γ
1/2
k +

n−1∑
k=0

δk+1/(mkγk) +

n−1∑
k=0

δ2
k+1

)
,

with C1, C2, $ ≥ 0 which do not depend on the dimension d.

Proof. The proof is postponed to Section 5.2.4.

The discussion conducted after Theorem 5.2.1 is still valid in this case. Theorem 5.2.2 follows from

more general results derived in Theorem 5.2.10 and Theorem 5.2.14.
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(a) (b)

Figure 5.3: Microcanonical sampling scheme In this one-dimensional toy example the features are

given by F (x) = (x + 1)2x2(x − 1.5)2
(black curve). The microcanonical model associated with

these features is the uniform distribution over {−1, 0, 1.5} (red bars). In (a), we plot, the distribution

(Φ∞)](ν0) for di�erent initial distributions ν0, standard Gaussian (blue bars), uniform over [−3, 3] (or-

ange bars) and standard Cauchy (green bars). The distribution (Φ∞)](ν0) is approximated by sampling

103
points according to ν0 and performing the recursion associated with (5.21) for these points for 104

iterations. None of the initial distribution yields a distribution (Φ∞)](ν0) which is the uniform distribu-

tion. Let ν0 be a Gaussian distribution with zero mean and variance σ2
with σ > 0. In (b), we show the

dependency of the entropy of (Φ∞)](ν0) with respect to σ2
(orange points). The distribution (Φ∞)](ν0)

is approximated by sampling 103
points according to ν0 and performing the recursion associated with

(5.21) for these points for 103
iterations. Then, we compute its entropy and show that it is close to the

one given by numerical integration (blue curve). We also plot the entropy upper-bound log10(3) (red

curve) given by the uniform distribution on {−1, 0, 1.5}.

Links with microcanonical models

In this section, we present qualitative results on the microcanonical model and the asymptotic behavior

of the macrocanonical model for speci�c geometrical constraints.

Let ν0 � λ be an initial probability measure. We consider the sequence of probability measures

(νn)n∈N de�ned by the following recursion: for any n ∈ N,

νn+1 = Φ](νn) , (5.21)

where Φ : Rd → Rd is de�ned for any x ∈ Rd by Φ(x) = x − γdF (x)>F (x), with γ > 0 a

stepsize, i.e. for all n ∈ N, νn is the pushforward measure of ν0 by n steps of the gradient descent for

the the loss function x 7→ ‖F (x)‖2. Under some assumptions on F , [BM18, Theorem 3.7] implies that

ν∞ = limn νn exists and its support is A0 = F−1({0}).

If A0 is compact, the microcanonical model, see De�nition 5.1.1, associated with the reference mea-

sure λ and the constraints F , is given by the uniform distribution over A0, denoted νA0
. If ν∞ were the

microcanonical model associated with F then we should have ν∞ = νA0
. However, as illustrated in

Figure 5.3, ν∞ strongly depends on the initial probability measure ν0.

In the next result, we prove that considering speci�c constraint functions fε, there exists an explicit

probability measure π∞ such that its support is included in F−1({0}) and π∞ is the limit of macro-

canonical models associated with fε and some reference probability measure µ. Let ε > 0. We de�ne

fε : Rd → R such that for any x ∈ Rd, fε(x) = ‖F (x)‖2−ε. We denote πε the macrocanonical model,

see De�nition 5.1.2, associated with fε when it exists.

Proposition 5.2.3. Assume A2(2) and that for any non-empty open set A ⊂ Rd, µ(A) > 0. Let F be
given by (5.8), assume that 1 ∈ j and that there exists k ∈ {1, . . . , c1} such that for any x ∈ Rd with x 6= 0
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there exists ` ∈ {1, . . . , n1} with e>` Ãk1x > 0. Then there exists ε0 > 0 such that for any ε ∈ (0, ε0),
πε exists. In addition, assume that µ(F−1({0})) > 0 then limε→0 πε = π∞, with for any x ∈ Rd,
(dπ∞/dµ)(x) = 1F−1({0})(x)/µ(F−1({0}))

Proof. The proof is postponed to Section 5.2.4.

Note that under other assumptions on F−1({0}) other explicit measures π∞ are derived in Propo-

sition 5.2.29.

5.2.3 Experiments

In this section, we assess the computational e�ciency of SOUL algorithm (5.19) for texture synthesis.

Variants of the original methodology are presented in Section 5.2.4.

Periodic Gaussian model

First, we consider the toy problem of periodic Gaussian texture synthesis, see Section 5.1.3 for de-

tails. Note that the extension of our �ndings to two dimensional signals is straightforward upon re-

placing the one dimensional Fourier transform by its two dimensional counterpart. We recall that the

macrocanonical model is explicit and given by a measure πθ? which is the probability distribution of

X = d−1/2(x0 ∗ Z) where Z is a standard d-dimensional Gaussian random variable, see Section 5.1.3.

Empirical convergence We consider a 8 × 8 image, denoted x0, corrupted by some noise, so that

F(x0) is non-zero everywhere on the 8 × 8 grid. The reference measure µ is a Gaussian distribution

with zero mean and diagonal covariance matrix with diagonal coe�cients given by σ2
. In this setting,

d = p = 64 and using (5.6) we have θ? = F−1(d|F(x0)|−2 − σ−2)/2. Using the spatial translation

invariance property of πθ? , see Section 5.1.3, we identify four con�gurations which are equally likely

to be sampled by πθ? , see Figure 5.4.

(a) (b) (c) (d) (e)

Figure 5.4: Exemplar images and parameters The exemplar image x0 is shown in (a). Translated

versions of this image, which are equally likely to be sampled by πθ? are presented in (b), (c) and (d).

The target parameter θ? is shown in (d).

The images (Xn
0 )n∈N generated by the SOUL algorithm (5.19) are approximate samples of πθ?

for n large enough. The con�gurations identi�ed in Figure 5.4 are recovered during one run of the

algorithm, see Figure 5.5. A video of the evolution of the sequence (Xn
0 )n∈N is available at https:

//vdeborto.github.io/publication/texture_soul/.

The main theoretical results in Theorem 5.2.1 deal with the error betweenL(θ̄n)n∈N and arg minθ∈Θ L(θ),

where (θ̄n)n∈N is given by (5.20). Selecting �xed parameters, γn = 10−4
, δn = 10−1

and mn = 1, we

observe the convergence of the sequence (θn)n∈N towards a biased estimate of θ?. The Normalized Root
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(a) n = 0 (b) n = 58000 (c) n = 74000 (d) n = 100000

Figure 5.5: Sequence of images The initialization (a) of the algorithm is some white noise, i.e. the

realization of a standard Gaussian random variable on the 8 × 8 grid. We then show some selected

samples (b)-(d) of the sequence generated with �xed parameters δn = 10−1
, γn = 10−4

and mn = 1.

Note that these samples are visually close to the ones presented in Figure 5.4.

Mean Square Error (NRMSE) de�ned for any n ∈ N by N(θn) = ‖θn − θ?‖2 / ‖θ?‖2, is upper bounded

by 0.2 for n ≥ 4 × 104
, see Figure 5.6. In Figure 5.7, we show that this error level yields satisfactory

parameters from a visual point of view. We highlight that F(θ?) corresponds to the precision matrix

(up to a constant factor) of the Gaussian model under study.
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Figure 5.6: Convergence of the parameters We recall that the parameters are initialized with θ0 = 0
and that γn = 10−4

, δn = 10−1
andmn = 1. The NRMSE error in (a) rapidly decreases before oscillat-

ing around 0.1 (blue curve). A similar smoothed behaviour can be observed for the averaged sequence

(θ̄n)n∈N (red curve). The heatmap of the NRMSE, i.e. a pixel i ∈ {0, . . . , 7}2 in (b) corresponds to

(θn(i)− θ?(i))2/ ‖θ?‖2.

The previous experiment suggests to set γn = γ > 0, δn = δ > 0 and mn = m ∈ N?, at least for

a burnin period. When the behavior of the sequence (θn)n∈N becomes oscillatory, the setting can be

changed in order to obtain a better approximation of θ?. We investigate the long-time behavior after a

burnin period of N = 5 × 104
iterations with mn = 1, γn = 10−4

and δn = 10−1
. After this period

we set mn = dn̄ae, γn = n̄−b and δn = n̄−c with n̄ = n − N + 1, a, b, c > 0. We observe that the

NRMSE error decreases from 0.1 to 0.06 for appropriate choices of rates, see Figure 5.8. Nevertheless,

this improvement comes at a cost since the number of Markov chain iterations is no longer equal to the

number of iterations n and grows as dn̄ae.
The previous comments along with Figure 5.8 suggest to set �x hyperparameters with mn = 1 for

all n ∈ N. This is a good strategy to obtain acceptable approximations of the target parameter θ? in

reasonable time. However, the sampled images move slowly between the acceptable con�gurations of

Figure 5.4. Increasing the �xed batch size, i.e. increasing mn, for instance setting mn = 102
for all

n ∈ N we obtain more innovation in the chain (Xn
0 )n∈N. Indeed, for the same number of Markov chain

iterations the chain (Xn
0 )n∈N visits more di�erent acceptable con�gurations for mn = 102

than for
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θ? θn F(θ?) F(θn)

Figure 5.7: Visual evaluation of parameters We display the target parameters θ? and the parameters

obtained after 106
iterations of the algorithm. Similarly we display the discrete Fourier transform of the

target parameters F(θ?) and the Fourier transform of the parameters after 106
iterations. There is no

visual di�erence between θ? and θn.

(a) (b) (c) (d) (e) (f)

Figure 5.8: Evolution of the error In (a) and (b) we present the heatmap of the NRMSE error between

θ2×105 and θ? in (a) and θ̄2×105 and θ? in (b), given di�erent values of b, c > 0 where γn = 10−4× n̄−b
andmn = dn̄cewith δn = 10−1× n̄−0.3

and n̄ = n−N +1 withN = 5×104
. On the y-axis in (a) and

(b) we represent the di�erent values for parameter b and on the x-axis the di�erent values for parameter

c. Similarly, in (c) and (d) we present the heatmap of the NRMSE error between θ2×105 and θ? in (c)

and θ̄2×105 and θ? in (d), given di�erent values of a, c > 0 where δn = 10−1 × n̄−a and mn = dn̄ce
with γn = 10−4 × n̄−0.7

. On the y-axis in (c) and (d) we represent the di�erent values for parameter

a and on the x-axis the di�erent values for parameter c. In (e) and (f) we present the heatmap of the

NRMSE error between θ2×105 and θ? in (e) and θ̄2×105 and θ? in (f), given di�erent values of b, c > 0
where δn = 10−1n̄−a and γn =

⌈
n̄−b

⌉
with mn =

⌈
n̄0.5

⌉
. On the y-axis in (e) and (f) we represent

the di�erent values for parameter a and on the x-axis the di�erent values for parameter b. A plot of the

NRMSE for the averaged sequence is presented in (g) with a = 0.3 and c = 0.7.

mn = 1, see Figure 5.9. However, if mn = 102
, the NRMSE error of the sequence (θn)n∈N has a lower

decrease rate than if mn = 1.

Therefore, the hyperparameters of the algorithm should be adapted for the problem at hand. If

we are interested in �nding θ? then �xed settings for a burnin period followed by an eventual run of

the algorithm with increasing batch size and decreasing stepsizes is recommended. However, if we

are concerned with the innovation of the sequence (Xn
0 )n∈N then larger batch sizes, not necessarily

increasing, are recommended.

Neural network features

Spatially averaged CNN features We now investigate the case where the features are given by a

convolutional neural network, see Section 5.1.3. In our experiments we �x K =
[
−104, 104

]d
.
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NRMSE = 0.73
n = 200

NRMSE = 0.63
n = 800

NRMSE = 0.60
n = 1000

NRMSE = 0.47
n = 2800

Figure 5.9: Larger batch sizes improve visual quality The algorithm with δn = 10−1
, γn = 10−4

and mn = 102
produces more diverse samples than the ones obtained with the same algorithm and

mn = 1, see Figure 5.4. Note that the NRMSE errors 0.73, 0.63, 0.60 and 0.47 are still high.

Model hyperparameters In the proposed model a few hyperparameters must be selected. First, a

convolutional neural network architecture is to be chosen. We use the VGG19 model since it has been

highlighted by [Ust+16; GEB15] that such an architecture is well suited for the task of texture synthesis.

In [GEB15] the neural network is pretrained on a classi�cation task, see [SZ14]. The importance of the

pretraining is highlighted in Section 5.2.4.

Another hyperparameter of the model is the set j of layers we consider to build our features, in

(5.8). We consider three settings: (i) shallow network; (ii) deep network; (iii) full network. The

structure of the network is given in Section 5.2.4. In (i) we set j = {1, 3, 6, 8, 11, 13}, in (ii) we set

j = {15, 24, 26, 31} and in (iii) we set j = {1, 3, 6, 8, 11, 13, 15, 24, 26, 31}. Note that in the restricted

models (i) and (ii) the dimension of the parameter space is reduced to p = 896 respectively p = 1792,

whereas in the full model p = 2688. The in�uence of j is visually investigated in Figure 5.10. In what

follows we consider the full CNN model given by (iii) in order to be able to synthesize a wide variety of

texture images. In Section 5.2.4, it is shown that considering color statistics and neural network features

improve the visual results. Finally, we assess in Section 5.2.4 that contrary to the algorithm proposed in

[LZW16], our implementation can produce images of arbitrary dimensions from one input image.

Behavior of the parameter sequence We now study the behavior of the sequence (θn)n∈N. In

Figure 5.11 we present the evolution of (θn)n∈N for some layers in j and three channels for each layer.

The sequence (θn)n∈N does not converge, even though we observe some stabilization of the averaged

sequences. The reasons for the failure of the convergence are twofold. First, in all our settings we �x

the hyperparameters as follows: δn = 10−3
, γn = 10−5

and mn = 1 but run only 105
iterations.

Considering a continuous Langevin dynamics, the images we observe correspond to a time T = 105 ×
γn = 1 of the evolution. Increasing the stepsize γn is not an option since it yields diverging sequences

of images. Second, the chain is slowly mixing and therefore it is hard to produce entirely di�erent, yet

visually coherent, samples with one run of SOUL.

It appears that the algorithm produces good visual results even though the parameter sequence is

not stable. Increasing the number of Langevin iterations mn generates images which are noisier but

also increases the innovation of the algorithm, see Section 5.2.3. This is in accordance with Figure 5.9.

Comparison with existing methods In this section we compare the proposed algorithm with sev-

eral examplar-based texture synthesis methods. We set δn = 10−3
, γn = 10−5

and mn = 1. The

algorithm is run for 104
iterations for each image. For each comparison we systematically include the

results obtained with the methodology proposed in [GEB15], which is a microcanonical methodology

using Gram matrices computed on neural network outputs as features.
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full CNN deep CNN shallow CNN exemplar image

Figure 5.10: In�uence of j As expected the best visual results of SOUL after 104
iterations are obtained

with the full CNN setting. The local structure and some details (the petals of the �owers, the form of

the beans) are lost when using the shallow CNN setting. On the other hand, using only the deep part of

the CNN is not suitable for texture with strong low frequency components. For instance in the �ower

image, almost no grass is retrieved when using the deep CNN setting. The hyperparameters are �xed

as follows: δn = 10−3
, γn = 10−5

and mn = 1.
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Figure 5.11: Non convergence of the weights For the layers corresponding to j = 3, 8, 24 and 31 we

study, on three channels (k = 10, 20 and 30), the behavior of the sequence (θn(ik,j))n∈N (�rst row) and

the averaged sequence (θ̄n(ik,j))n∈N (second row), where ik,j is the index corresponding to layer j and

channel k. These sequences have not converged yet, although the averaged sequence seems to stabilize

for some layers, i.e. some values of j.
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mn = 1 mn = 10 mn = 100

Figure 5.12: Langevin iterations and noise Running the SOUL algorithm with di�erentmn yield visu-

ally coherent images. However the highermn is, the noisier the images are. The other hyperparameters

are �xed as follow: δn = 10−3
and γn = 10−5

.

First, we consider the Portilla-Simoncelli algorithm [PS00], see Section 5.2.3, which is a microcanon-

ical based methodology and does not rely on neural network features, see Section 5.2.3. Our algorithm

and the one from [GEB15] provide visually satisfying results, whereas the method from [PS00] fails to

produce realistic images.

Second, compare our algorithm to the one of [LZW16] in Section 5.2.3. In [LZW16], the authors

propose a similar macrocanonical methodology but do not consider more than one convolutional neural

network layer to build their features.

In Section 5.2.4, we also test our algorithm on texture images which do not exhibit salient spatial

structures. It was already noted in [Raa+17, Figure 26] that the generative model [JBV16] fails to produce

high quality image in this case. On the other hand, our algorithm and the one from [GEB15] yield good

visual results.

Another experiment on highly regular textures, comparing our algorithm with the ones of [LGX16]

and [GGL19], is presented in Section 5.2.4.

Texture style transfer

We conclude this experimental part by considering other applications than texture synthesis and assess

that the proposed algorithm can be used for the task of style transfer. Indeed given one content image

xcontent, a style image xstyle, not necessarily of the same size, and jcontent ⊂ j we consider the same

CNN feature as before but x0 is replaced by xcontent for j ∈ jcontent in (5.8). In the rest of the neural net-

work features, x0 is replaced by xstyle in (5.8), i.e. F (x) =
(
G
k

j (x)− G
k

j (xj0)
)
j∈j,k∈{1,...,cj}

, with xj0 =

xcontent if j ∈ jcontent and xstyle otherwise. These new features are well-suited to perform a style trans-

fer task as illustrated in Figure 5.15 with jcontent = {1, 3, 6, 8, 11} and j = {1, 3, 6, 8, 11, 13, 15, 24, 26, 31}.

5.2.4 Proofs and additional results

Proofs of Section 5.2.2

We start by introducing some notations. Let V : Rd → [1,+∞) be a measurable function. For f ∈
F(Rd), the V -norm of f is given by ‖f‖V = ‖f/V ‖∞. Let ξ be a �nite signed measure on (Rd,B(Rd)).
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Portilla-Simoncelli Gatys Ours x0

Figure 5.13: Comparison with [PS00] The images presented in the column “Portilla-Simoncelli” are

synthesized with [PS00], the ones presented in the column “Gatys” are generated with [GEB15], the

third column contains our results.
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Lu-Zhu-Wu Gatys Ours x0

Figure 5.14: Comparison with [LZW16] The images presented in the column “Lu-Zhu-Wu” are syn-

thesized with the algorithm introduced in [LZW16], the ones presented in the column “Gatys” are gen-

erated with [GEB15] and the third column contains our results.
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exemplar image x0 (a) (b) (c)

Figure 5.15: Style transfer In (a), (b) and (c) we present the outputs of the SOUL algorithm with an ex-

emplar content given in the leftmost column and exemplar style given by the �rst row. See Section 5.2.3

for more details.

The V -total variation norm of ξ is de�ned as

‖ξ‖V = sup
f∈F(Rd),‖f‖V ≤1

∣∣∣∣∫
Rd
f(x)dξ(x)

∣∣∣∣ .
If V ≡ 1, then ‖ · ‖V is the total variation norm denoted by ‖ · ‖TV.

Let c : Rd × Rd → (0,+∞] be de�ned for any x, y ∈ Rd by c(x, y) = 1∆Rd
(x, y)W (x, y) where

W : Rd×Rd → [0,+∞) is a lower semi-continuous function such that for any x, y, z ∈ Rd,W (x, y) =
W (y, x) andW (x, z) ≤W (x, y)+W (y, z). Then for any probability measures µ and ν such that there

exist xµ, xν ∈ Rd satisfying µ(W (·, xµ)) < ∞ and ν(W (·, xν)) < ∞, we de�ne the Wasserstein

extended distance associated with cost c between µ and ν by

dWR
(µ, ν) = sup

g∈Gµ,W

∣∣∣∣∫
Rd
g(x)dµ(x)−

∫
Rd
g(y)dν(y)

∣∣∣∣ , (5.22)

with Gµ,W = {g ∈ F(Rd) : ‖g(x)− g(y)‖ ≤W (x, y) , for all x, y ∈ Rd}.

Proof of Theorem 5.2.1

This proof is an application of Theorem 4.2.2 and Theorem 4.2.4. Therefore, we are reduced to checking

that H1 and H2 in Section 4.2.3 hold. More precisely, we study the geometric ergodicity of the Langevin

Markov chain under A2(α), B1, B2(α) and B3 with U2 = 0 and α ≥ 1 as well as its discretization error.

Foster-Lyapunov conditions are derived in Lemma 5.2.5 and we check that H1-(i) in Theorem 4.2.2 holds

in Lemma 5.2.6. In Theorem 5.2.7 we show that H1-(ii) in Theorem 4.2.2 is satis�ed. We check that H
1-(iii) in Theorem 4.2.2 is satis�ed in Lemma 5.2.8 and Proposition 5.2.9.
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We denote by Kγ,θ the Markov kernel associated with the following Langevin recursion

X̃n+1 = X̃n − γ

(
p∑
i=1

θ(i)∇Fi(X̃n) +∇r(X̃n)

)
+
√

2γZn+1 , (5.23)

This kernel is given for any x ∈ Rd and A ∈ B(Rd)

Kγ,θ(x,A) = (2πγ)−d/2
∫
A

exp
[
−(2γ)−1‖y − x+ γ∇xU(θ, x)‖2

]
dy , (5.24)

with for any θ ∈ K and x ∈ Rd by U(θ, x) = 〈θ, F (x)〉 + r(x) as in Section 5.2.2. Note that (5.24) is

well-de�ned under B1 and B2(α) with α ≥ 1. We say that a Markov kernel K on Rd × B(Rd) satis�es

a discrete Foster-Lyapunov drift condition Dd(V, λ, b) if there exist λ ∈ (0, 1), b ≥ 0 and a measurable

function V : Rd → [1,+∞) such that for all x ∈ Rd

KV (x) ≤ λV (x) + b .

First, we state the following technical lemma.

Lemma 5.2.4. Let p ∈ N?. Then for any u, v > 0 and t ≥ 0,

u(1 + t)2p−1 − vt2p ≤ Υp(u, v)

with
Υp(u, v) = 2(4p−2)p max

{
u, u2p/v2p−1

}
.

Proof. Let p ∈ N?, ũ, ṽ > 0 and f̃(t) = ũt2p−1− ṽt2p. We have for any t ∈ R, f̃ ′(t) = (2p−1)ũt2p−2−
2pṽt2p−1

. Since lim|t|→+∞ f̃(t) = −∞ and f̃ is continuous, the maximum is attained at some point t0
which satis�es

f̃ ′(t0) = (2p− 1)ũt2p−2
0 − 2pṽt2p−1

0 = 0 ,

and therefore t0 = (2p− 1)ũ/(2pṽ). We have for any t ≥ 0

ũt2p−1 − ṽt2p ≤ ũt2p−1
0 ≤ ũ(ũ/ṽ)2p−1 ≤ ũ2p/ṽ2p−1 . (5.25)

If t ≥ 1 then u(1+ t)2p−1−vt2p ≤ 22p−1ut2p−1−vt2p and using (5.25) we have u(1+ t)2p−1−vt2p ≤
2(4p−2)pu2p/v2p−1

. If t ≤ 1 then u(1 + t)2p−1 − vt2p ≤ 22p−1u, which concludes the proof.

Lemma 5.2.5. Assume B1, B2(α) and B3 with U2 = 0 and α ≥ 1. Let p ∈ N?, θ ∈ K and γ ∈ (0, γ̄] with
γ̄ < min(m1/L

2, 1/2). Then Kγ,θ satis�es Dd(V, λγ , b̃γ) with

V (x) = 1 + ‖x− x?‖2p , λ = exp[−m1 + γ̄L2] , b̃p = Υp(2
2p+1dpΓ(p+ 1/2), m1) + m1 ,

(5.26)

where for any t ≥ 0, Γ(t) =
∫ +∞

0
ut−1e−udu and Υp is given in Lemma 5.2.4. In addition, Kγ,θ satis�es

Dd(V, λγ , bp(1 + d$0,p)γ) with λ given in (5.26) and bp, $0,p ≥ 0 independent of the dimension d.

Proof. Let x ∈ Rd, p ∈ N?, θ ∈ K, γ ∈ (0, γ̄] and Z a d-dimensional Gaussian random variable with

zero mean and identity covariance matrix. First, denoting Z = (z1, . . . , zd) we have using Holder’s

inequality

E
[
‖Z‖2p

]
=

d∑
i1=1

· · ·
d∑

ip=1

E

 p∏
j=1

z2
ij

 ≤ d∑
i1=1

· · ·
d∑

ip=1

E
[
z2p

1

]
≤ (2d)pΓ(p+ 1/2) . (5.27)
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Let Tγ(x) = x− x? − γ∇xU(θ, x). Using B3 we get

‖Tγ(x)‖2 ≤ ‖x− x?‖2 − 2γ〈∇xU(θ, x)−∇xU(θ, x?), x− x?〉+ ‖∇xU(θ, x)−∇xU(θ, x?)‖2

≤ (1− 2γm1 + γ2L2) ‖x− x?‖2 .

Hence, we obtain

E
[
‖X − x?‖2p

]
= E

 p∑
k=0

k∑
j=0

(
p

k

)(
k

j

)
‖Tγ(x)‖2(p−k)

(2γ)j/2〈Tγ(x),Z〉j(2γ)k−j ‖Z‖2(k−j)


≤ (1− γ(m1 − 2L2γ̄)) ‖x− x?‖2p + γCp(x− x?) , (5.28)

where we have, using that ‖Tγ(x)‖ ≤ ‖x− x?‖, (5.27), 2γ ≤ 1, the Isserlis’ formula [Iss18] and the

Cauchy-Schwarz inequality

γCp(x− x?) =

p∑
k=1

k∑
j=0

(
p

k

)(
k

j

)
‖x− x?‖2(p−k)

(2γ)k−j/2E
[
〈Tγ(x),Z〉j ‖Z‖2(k−j)

]

=

p∑
k=1

bk/2c∑
j=0

(
p

k

)(
k

2j

)
‖x− x?‖2(p−k)

(2γ)k−j/2E
[
〈Tγ(x),Z〉2j ‖Z‖2(k−2j)

]

≤ 2γ

p∑
k=1

bk/2c∑
j=0

(
p

k

)(
k

2j

)
‖x− x?‖2(p−k+j) E

[
‖Z‖2(k−j)

]

≤ 2γ(1 + ‖x− x?‖)2p−1(2d)pΓ(p+ 1/2)

p∑
k=1

bk/2c∑
j=0

(
p

k

)(
k

2j

)
≤ 22p+1γdpΓ(p+ 1/2)(1 + ‖x− x?‖)2p−1 . (5.29)

Combining (5.28) and (5.29) we get that

Kγ,θ(‖x− x?‖2p) ≤ (1− γ(m1 − L2γ̄)) ‖x− x?‖2p

+ 22p+1γdpΓ(p+ 1/2)(1 + ‖x− x?‖)2p−1 − γm1 ‖x− x?‖2p . (5.30)

Using Lemma 5.2.4, we have

22p+1dpΓ(p+ 1/2)(1 + ‖x− x?‖)2p−1 − m1 ‖x− x?‖2p ≤ Υp(2
2p+1dpΓ(p+ 1/2), m1) .

Combining this result with (5.30) we get,

Kγ,θ(‖x− x?‖2p) ≤ (1− γ(m1 − γ̄L2)) ‖x− x?‖2p + γΥp(2
2p+1dpΓ(p+ 1/2), m1) .

Therefore we obtain

Kγ,θ(1 + ‖x− x?‖2p) ≤ (1− γ(m1 − γ̄L2))(1 + ‖x− x?‖2p)
+ γ

{
Υp(2

2p+1dpΓ(p+ 1/2), m1) + m1

}
,

which concludes the proof upon noting that b̃p is a polynomial in the dimension d.
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Lemma 5.2.6. Assume B1, B2(α) and B3 with U2 = 0, α ≥ 1 and let (Xn
k )n∈N,k∈{0,...,mn be given by

(5.19) with γ̄ < min(k1/L
2, 1/2). Let p ∈ N?, then there exist A1,p ≥ 1 and $1,p ≥ 0 such that for any

n, p ∈ N and k ∈ {0, . . . ,mn}

E
[
Kp
γn,θn

V (Xn
k )
∣∣∣X0

0

]
≤ A1,p(1 + d$1,p)V (X0

0 ) , E
[
V (X0

0 )
]
< +∞ ,

with V (x) = 1 + ‖x− x?‖2p and A1,p, $1,p ≥ 0 which do not depend on the dimension d.

Proof. Combining Lemma 4.2.20 and Lemma 5.2.5 conclude the proof.

Theorem 5.2.7. Assume B1, B2(α) and B3 with U2 = 0 and α ≥ 1. Then for any p ∈ N? there exist
A2,p, $2,p ≥ 0 and ρp ∈ (0, 1) such that for any θ ∈ K and γ ∈ (0, γ̄] with γ̄ < min(m1/L

2, 1/2), Kγ,θ

admits an invariant probability measure πγ,θ and for any x, y ∈ Rd and n ∈ N

‖δxKn
γ,θ − πγ,θ‖V ≤ A2,p(1 + d$2,p) exp[−nκpγ/ log2(1 + d$2,p)]V (x) ,

‖δxKn
γ,θ − δyKn

γ,θ‖V ≤ A2,p(1 + d$2,p) exp[−nκpγ/ log2(1 + d$2,p)] {V (x) + V (y)} ,

with V (x) = 1 + ‖x− x?‖2p and A2,p, $2,p ≥ 0 and κp > 0 which do not depend on the dimension d.

Proof. For any γ ∈ (0, γ̄] and θ ∈ K, Kγ,θ has the Feller property and satis�es Dd(V, λγ , bγ) then

[Dou+18, Theorem 12.3.3] applies and Kγ,θ admits an invariant probability measure πγ,θ .

Let p ∈ N?, θ ∈ K and γ ∈ (0, γ̄]. Using Proposition 4.1.5 in Section 4.1.3 with A ← Rd, we have

for any x, y ∈ Rd and n ∈ N

δ(x,y)K̃
nd1/γe
γ,θ (∆c

Rd) ≤ 1− 2Φ
{
−α−1/2(n) ‖x− y‖ /(2

√
2)
}
,

where for any x, y ∈ Rd, K̃γ,θ((x, y), ·) is the re�exive coupling between Kγ,θ(x, ·) and Kγ,θ(y, ·), see

(4.23) in Section 4.1.3. In addition, we have for any n ∈ N

α−1(n) = (2m1 − L2γ̄)
/{

exp((2m1 − L2γ̄)n)− 1
}
≤ 2m1/(λ

−2n − 1) ≤ 2m1λ
2n/(1− λ) .

and λ is given by (5.26). Therefore, we get that for any x, y ∈ Rd and n ∈ N

δ(x,y)K̃
nd1/γe
γ,θ (∆c

Rd) ≤ 1− 2Φ
{
−λnm1/2

1 ‖x− y‖ /(1− λ)1/2
}
.

For any x, y ∈ Rd let

W (x, y) = 1 + (‖x− x?‖2p + ‖y − x?‖2p)/2 ,

Kd = 2bp(1 + d$0,m)(1 + γ̄)(1 + log−1(1/λ)) , Md = 2K
1/p
d .

Note that for anyx, y ∈ Rd such that ‖x− y‖ ≥Md,W (x, y) ≥ Kd. In addition, let n0 = max{d− log(m
1/2
1 Md/(1−

λ)1/2) log−1(1/λ)e, 0}. We have for any x, y ∈ Rd with ‖x− y‖ ≤Md,

δ(x,y)K̃
nd1/γe
γ,θ (∆c

Rd) ≤ 1− 2Φ(−1) .

Then, applying Theorem 4.1.8 in Section 4.1.3, with K̃ ← K̃γ,θ , p ← n0, ε1,d ← 2Φ(−1), C̄1 ← C ,

ρ̄1 ← ρ, Ā1 ← A and c̄1 ← c, we obtain that for any x, y ∈ Rd and n ∈ N

‖δxKn
γ,θ − δyKn

γ,θ‖V ≤ Cρbk/(n0d1/γe)c {V (x) + V (y)} /2 ,
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where

C = 2 [1 +A] [1 + (A+Kd)/ {Φ(−1)(1− λ)}] ,
A = bp(1 + d$0,p)(1 + γ̄)(1 + log−1(1/λ))) ,

log−1(1/ρ) = log−1(1/(2Φ(−1))) + log−1(2/(1 + λ))

+ log(A+Kd) log−1(1/(2Φ(−1))) log−1(2/(1 + λ)) .

Since bn/(n0 d1/γe)c ≥ nγ/(n0(1 + γ̄)) − 1, setting Ã2,p = Cρ−1/2 and ρp = ρ1/(n0(1+γ̄))
, we get

that for any x, y ∈ Rd and n ∈ N

‖δxKn
γ,θ − δyKγ,θ‖V ≤ Ã2,pρ

γn
p {V (x) + V (y)} . (5.31)

Using Lemma 5.2.5 we have that πγ,θ(V ) ≤ bp(1+d$0,m)(1+log−1(1/λ))V (x). Combining this result

with (5.31) we get that for any x ∈ Rd and n ∈ N

‖δxKn
γ,θ − πγ,θ‖V ≤ Ã2,p

{
1 + bp(1 + d$0,m)(1 + log−1(1/λ))

}
ρ̃γnp V (x) .

Since in Lemma 5.2.5, λ and bp do not depend on the dimension d we get that Kd is upper-bounded

by a polynomial in the dimension d. Hence, there exists $
(a)
2,p > 0 which does not depend on the

dimension such that Ã2,p{1 + bp(1 + d$0,m)(1 + log−1(1/λ))} ≤ A2,p(1 + d$
(a)
2,p) with A2,p ≥ 0

which does not depend on the dimension d. Similarly, there exists $
(b)
2,p > 0 independent of d such that

supd∈N[{log−1(ρ) + n0}/ log(1 + d$
(b)
2,p)−1] < +∞ which implies that log−1(1/ρm) ≤ κ−1

p log2(1 +

d$
(b)
2,p) with κp > 0 which do not depend on the dimension d. We conclude the proof upon setting

$2,p = max($
(a)
2,p , $

(b)
2,p).

Similarly to the discrete setting, we say that a Markov semi-group (Pt)t≥0 on Rd × B(Rd) with

extended in�nitesimal generator (A,D(A)) (see e.g. [MT93c] for the de�nition of (A,D(A))) satis�es

a continuous drift condition Dc(V, ζ, β) if there exist ζ > 0, β ≥ 0 and a measurable function V :
Rd → [1,+∞) with V ∈ D(A) such that for all x ∈ Rd

AV (x) ≤ −ζV (x) + β .

Let θ ∈ K and (Pt,θ)t≥0 be the Markov semi-group associated with the Langevin di�usion

dXt = −

(
p∑
i=1

θ(i)∇Fi(Xt) +∇r(Xt)

)
+ dBt ,

where (Bt)t≥0 is a d-dimensional Brownian motion. Consider now the generator Aθ of (Pt,θ)t≥0 for

any θ ∈ K, de�ned for any f ∈ C2(Rd) and x ∈ Rd by

Aθf(x) = −

〈
∇f(x),

p∑
i=1

θ(i)∇Fi(x) +∇r(x)

〉
+ ∆f(x) .

Using Lemma 4.2.19 we have that πθ is an invariant probability measure for (Pt,θ)t≥0.

Lemma 5.2.8. Assume B1, B2(α) and B3 with U2 = 0 and α ≥ 1. Then for any p ∈ N? there exist ζ > 0
and β ≥ 0 such that for any θ ∈ K, Aθ satis�es Dc(V, ζ, β̃p) with

V (x) = 1 + ‖x− x?‖2p , ζ = −m1p , β̃p = 2pΥp(2(p− 1) + d, k1/2) + 2m1p , (5.32)

with Υm given in Lemma 5.2.4. In addition, Aθ satis�es Dc(V, ζ, βp(1 + d$
′
0,p)γ) with ζ given in (5.32)

and βp, $′0,p ≥ 0 independent of the dimension d.
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Proof. Let θ ∈ K and p ∈ N?. Then, we have for any x ∈ Rd

V (x) = 1 + ‖x− x?‖2p ,

∇V (x) = 2p ‖x− x?‖2(p−1)
(x− x?) ,

∇2V (x) = 4p(p− 1) ‖x− x?‖2(p−2)
(x− x?)(x− x?)> + 2p ‖x− x?‖2(p−1)

Id .

(5.33)

Hence, for any x ∈ Rd, ∆V (x) = 4p(p−1) ‖x− x?‖2(p−1)
+2pd ‖x− x?‖2(p−1)

. Using B3, (5.33) and

Lemma 5.2.4 we get that for any x ∈ Rd

AθV (x) = −2p ‖x− x?‖2(p−1) 〈∇xU(θ, x), x− x?〉+ 2p (2(p− 1) + d) ‖x− x?‖2(p−1)

= −2p ‖x− x?‖2(p−1) 〈∇xU(θ, x)−∇xU(θ, x?), x− x?〉+ 2p (2(p− 1) + d) ‖x− x?‖2(p−1)

≤ −2m1pV (x) + 2p (2(p− 1) + d) ‖x− x?‖2(p−1)
+ 2m1p

≤ −m1pV (x) + 2p
(

2(p− 1) + d− m1 ‖x− x?‖2 /2
)
‖x− x?‖2(p−1)

+ 2m1p

≤ −m1pV (x) + 2pΥp(2(p− 1) + d, k1/2) + 2m1p ,

which concludes the proof.

Proposition 5.2.9. Assume B1, B2(α) and B3 with U2 = 0 and α ≥ 1. Then for any p ∈ N?, there exist
A3,p, $3,p ≥ 0 such that for any θ ∈ K, γ ∈ (0, γ̄] with γ̄ < min(m1/L

2, 1/2),

‖πγ,θ − πθ‖V 1/2 ≤ A3,p(1 + d$3,p)γ1/2 ,

with V (x) = 1 + ‖x− x?‖2p and A3,p, $3,p ≥ 0 which do not depend on the dimension d.

The proof is similar to the one of Proposition 4.2.22 except that in this presentation we explicit

the constants appearing in the proof and track the dependency of the constants with respect to the

dimension d.

Proof. Let p ∈ N?, θ ∈ K and γ ∈ (0, γ̄]. Since πθ is an invariant probability measure for (Pt,θ)t≥0 we

have using Theorem 5.2.7 that

lim
k→+∞

‖πθKk
γ,θ − πθPγk,θ‖V 1/2 = ‖πγ,θ − πθ‖V 1/2 .

We now give an upper bound on ‖πθKk
γ,θ−πθPγk,θ‖V 1/2 for k = qγmγ withmγ = d1/γe and qγ ∈ N.

We obtain using Theorem 5.2.7

‖πθKk
γ,θ − πθPγk,θ‖V 1/2

≤
qγ−1∑
j=0

‖πθPγ(j+1)mγ ,θK
(qγ−(j+1))mγ
γ,θ − πθPγjmγ ,θK

(qγ−j)mγ
γ,θ ‖V 1/2

≤
qγ−1∑
j=0

{
A2,p(1 + d$2,p) exp[−κpγmγ(qγ − (j + 1))/ log2(1 + d$2,p)]

×‖πθPγjmγ ,θPmγγ,θ − πθPγjmγ ,θK
mγ
γ,θ‖V 1/2

}
≤ ‖πθPmγγ,θ − πθK

mγ
γ,θ‖V 1/2

qγ∑
j=1

A2,p(1 + d$2,p) exp[−κpγjmγ/ log2(1 + d$2,p)]
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≤ A2,p(1 + d$2,p)(1 + log2(1 + d$2,p)/κp)‖πθPmγγ,θ − πθK
mγ
γ,θ‖V 1/2 , (5.34)

We now give an upper bound on ‖πθPmγγ,θ − πθK
mγ
γ,θ‖V 1/2 . Indeed, since Aθ satis�es Dc(V, ζ, β) by

Lemma 5.2.8 and Kγ,θ satis�es Dd(V, λγ , bγ) for any θ ∈ K and γ ∈ (0, γ̄] by Lemma 5.2.5 and, we

obtain that

πθPγmγ ,θ(V ) ≤ D0 , πθK
mγ
γ,θ (V ) ≤ D1 ,

D0 = βp(1 + d$
′
0,p)/ζ , D1 = D0 + bp(1 + d$0,p)(γ̄ + log−1(1/λ)) .

Combining this result and Lemma 4.2.21 we have for any θ ∈ K and γ ∈ (0, γ̄]

‖πθPγmγ ,θ − πθK
mγ
γ,θ‖V 1/2 ≤ D2γ

1/2 , (5.35)

with

D2 = 2D
1/2
1 (1 + γ̄)1/2

{
d+ 2γ̄(2L2 + sup

θ∈K
‖∇xU1(θ, 0)‖2)D1

}1/2

L .

Combining (5.34) and (5.35) we get

‖πθKk
γ,θ − πθPγk,θ‖V 1/2 ≤ D2A2,p(1 + d$2,p)(1 + log2(1 + d$2,p)/κp)γ

1/2 .

Combining (4.185), (4.183) and Lemma 5.2.5, we get thatD0,D1,D2 are upper-bounded by polynomials

in the dimension d, which concludes the proof.

We now turn to the proof of Theorem 5.2.1.

Proof. Let p = d2αe and V (x) = 1 + ‖x− x?‖2p. Lemma 5.2.6 implies H1-(i) in Theorem 4.2.2 with

A1,p ← A1,p(1 + d$1,p) , Theorem 5.2.7 implies H1-(ii) in Theorem 4.2.2 with A2,p ← A2,p(1 + d$2,p)
and ρ← exp[−κp/ log2(1+d$2,p)]. In addition, Proposition 5.2.9 implies H1-(iii) in Theorem 4.2.2 with

Ψ(γ) = A3,p(1 + d$3,p)γ1/2
. Using Proposition 5.1.4 we have that A1, A2 and A3 in Theorem 4.2.2

hold. Since Hθ ← F in (5.19) we get that for any θ ∈ K and x ∈ Rd, ‖Hθ(x)‖ ≤ V 1/2(x). We can

apply Theorem 4.2.2 and we get that for any n ∈ N

E

[{
n∑
k=1

δkL(θk)

/
n∑
k=1

δk

}
−min

K
L

]
≤ En

/(
n∑
k=1

δk

)
,

with,

En = 2M2
Θ + 2B1,pMΘE

[
V 1/2(X0

0 )
] n−1∑
k=0

δk+1/(mkγk)

+ 2MΘA3,p(1 + d$3,p)

n−1∑
k=0

δk+1γ
1/2
k + 4B2

1,pE
[
V (X0

0 )
] n−1∑
k=0

δ2
k+1/(mkγk)2

+ 4A2
3,p(1 + d$3,p)2

n−1∑
k=0

δ2
k+1γk +B2,p

n−1∑
k=0

δ2
k+1/(mkγk)2 , (5.36)

and

B1,p = 2(1 + d$p)2 log2(1 + d$p)A1,pA2,p exp[−γ̄κp/ log2(1 + d$p)]/κp ;

B2,p = 2(1 + γ̄)2 max(B
(a)
2,p , B

(b)
2,p) ;

B
(a)
2,p = 24(1 + d$p)3A2

2,p(1− exp[−κp/(2 log2(1 + d$p))])−2A3,p ;

B
(b)
2,p = 4(1 + d$p)3A1,p

[
1 + 6A2

2,p(1− exp[−κp/(2 log2(1 + d$p))])−2

×
{
A2,p(1− exp[−κp/ log2(1 + d$p)])−1 + 2

}
+A2

2,p log4(1 + d$p)/κ2
p +A2

3,p

]
,
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which concludes the proof of Theorem 5.2.1-(b), upon setting $p = maxi∈{1,2,3}($i,p).

We have that for any x ∈ Rd, ‖Hθ(x)‖ = ‖F (x)‖ ≤ V 1/4(x). Since Hθ does not depend on θ we

get that A4 in Section 4.2.3 is satis�ed. In addition Proposition 4.2.24 in Section 4.2.5 implies that H2 is

satis�ed with

Λ1(γ1, γ2) = A4,p(1 + d$4,p)γ
−1/2
2 |γ1 − γ2| , Λ2(γ1, γ2) = A4,p(1 + d$4,p)γ

1/2
2 ,

withA4,p ≥ 0 which does not depend on the dimension d. As a consequence we can apply Theorem 4.2.4

and we get that for any n ∈ N?

E

[{
n∑
k=1

δkL(θk)

/
n∑
k=1

δk

}
−min

K
L

]
≤ Ẽn

/(
n∑
k=1

δk

)
,

with,

Ẽn = 2MΘ + 2MΘ

n∑
k=0

δk+1Ψ(γk) + C3,p

n∑
k=0

|δk+1 − δk| γ−1
k

+ 2MΘC2,p

n∑
k=0

δk+1γ
−2
k+1 [Λ1(γk, γk+1) + Λ2(γk, γk+1)δk+1 + δk+1γk+1]

+ C3,p

n∑
k=0

δ2
k+1γ

−1
k+1 + C3,p(δn+1/γn − δ0/γ0) + C1,p

n∑
k=0

δ2
k+1 ,

with

C1,p = 2A1,p(1 + d$p)E
[
V (X0

0 )
]

+ 2 sup
θ∈K
‖∇L(θ)‖2 ,

C2,p = 8(1 + d$p)4 log4(1 + d$p)A1,pA
2
2,p

× exp[−2γ̄κp/ log2(1 + d$p)](1 + 2A1,pE
[
V (X0

0 )
]
)/κp ,

C3,p = (1 + d$p)A1,pCH(4MΘ + sup
θ∈K
‖∇L(θ)‖+ 1 + δ1B)E

[
V (X0

0 )1/4
]
,

CH = 8(1 + d$p) log2(1 + d$p)A2,p exp[−γ̄κp/(4 log2(1 + d$p))]/κp .

Similarly to Theorem 5.2.1-(b) since A1,p, A2,p, A3,p, A4,p and κp are independent of the dimension d.

Setting $p = maxi∈{1,2,3,4}($i,p) concludes the proof of Theorem 5.2.1-(a)

Proof of Theorem 5.2.2

In this section, we give alternative results to Theorem 4.2.2 and Theorem 4.2.4. The main results of

Section 4.2.3 are stated in V -norm or total variation. However, our particular framework allows us to

use a Wasserstein distance with an appropriate cost function which implies that the constants appearing

in our results scale polynomially in the dimension d even if the potential is non convex. The increasing

batch size case is considered in Section 5.2.4 and the �xed batch size case in Section 5.2.4. We check that

the main assumptions H1 and H2 below are satis�ed in the setting of Theorem 5.2.2 in Section 5.2.4 and

conclude in Section 5.2.4.
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Increasing batch size In this section, we give an alternative result to Theorem 4.2.2 in the case where

(a) the controls on the family of Markov kernels {Kγ,θ : γ ∈ (0, γ̄] , θ ∈ K} are obtained with respect

to an appropriate Wasserstein distance (b) the stochastic gradient does not depend on θ. First, we

show that under B2(1), µ 7→ µ(F ) is Lipschitz with respect to the considered Wasserstein distance

in Lemma 5.2.11. Then, we control the error in the perturbed gradient scheme in Lemma 5.2.12 and

Lemma 5.2.13. Our main result is stated in Theorem 5.2.10.

Let c : Rd × Rd → [0,+∞), de�ned for any x, y ∈ Rd by c(x, y) = 1∆Rd
(x, y)(1 + ‖x− y‖ /R)

where R ≥ 0. Consider also the function WR : R2d → R+, and VR : Rd → R+ given for x, y ∈ Rd by

WR(x, y) = 1 + ‖x− y‖ /R , VR(x) = 1 + ‖x‖ /R . (5.37)

We also de�ne for any p ∈ N, Vp : Rd → [1,+∞) given for any x ∈ Rd by

Vp(x) = 1 + ‖x‖2p . (5.38)

We recall that Kγ,θ is the Markov kernel associated with the Langevin recursion (5.23) and expression

given by (5.24). This kernel is well-de�ned under B1 and B2(α) with α ≥ 1. Consider the following

assumption.

H1. (i) There exists A1 ≥ 1 such that for any a ∈ [1, 3], n, p ∈ N, k ∈ {0, . . . ,mn}

E
[
Kp
γn,θn

V aR(Xn
k )
∣∣∣X0

0

]
≤ A1V

a
R(X0

0 ) , E
[
V aR(X0

0 )
]
< +∞ .

with {(X`
k)k∈{0,...,m`} : ` ∈ {0, . . . , n}} given by (5.19).

(ii) There exist A2, A3 ≥ 1, ρ ∈ [0, 1) such that for any γ ∈ (0, γ̄], θ ∈ K, x, y ∈ Rd and n ∈ N, Kγ,θ has
a stationary distribution πγ,θ and

dWR
(δxKn

γ,θ, δyKn
γ,θ) ≤ A2ρ

γnWR(x, y) , dWR
(δxKn

γ,θ, πγ,θ) ≤ A2ρ
γnVR(x) , πγ,θ(VR) ≤ A3 .

(iii) There exists Ψ : R?+ → R+ such that for any γ ∈ (0, γ̄] and θ ∈ K, dWR
(πγ,θ, πθ) ≤ Ψ(γ).

Theorem 5.2.10. Assume A2(1), B1, B2(1) and H1. Let (γn)n∈N, (δn)n∈N be sequences of non-increasing
positive real numbers and (mn)n∈N a sequence of positive integers satisfying δn <

(
supθ∈K ‖∇2L(θ)‖

)−1

and γn < γ̄. Then, there exists (En)n∈N such that for any n ∈ N?

E

[{
n∑
k=1

δkL(θk)

/
n∑
k=1

δk

}
−min

K
L

]
≤ En

/(
n∑
k=1

δk

)
,

with (θk)k∈N and L are de�ned in (5.19) and (5.3) respectively, and for any n ∈ N?

En = 2M2
Θ + 6MΘRMpA1A2(ρ−γ̄/ log(1/ρ) + 1)

n−1∑
k=0

δk+1 {1/(mkγk) + Ψ(γk)}

+

(
2A1(‖F (0)‖+ 3RM)2E

[
V 2
R(X0)

]
+ 2 sup

θ∈K
L(θ)2

) n−1∑
k=0

δ2
k+1 .

The proof of this result is a simple adaptation to the one of Theorem 4.2.2. However it is given for

completeness.
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Let (ηn)n∈N be de�ned for any n ∈ N by

ηn = m−1
n

mn∑
k=1

{F (Xn
k )− πθn(F )} . (5.39)

We consider the following decomposition for any n ∈ N,

ηn = η(1)
n + η(2)

n , η(1)
n = E [ηn|Fn−1] , η(2)

n = ηn − E [ηn|Fn−1] , (5.40)

and (Fn)n∈N∪{−1} is de�ned for all n ∈ N by

Fn = σ
(
θ0, {(X`

k)k∈{0,...,m`} : ` ∈ {0, . . . , n}}
)
, F−1 = σ(θ0) (5.41)

We start with the following technical lemmas.

Lemma 5.2.11. Assume B2(1) and H1. Then for any probability measures µ, ν on B(Rd) such that
µ(‖·‖) + ν(‖·‖) < +∞,

‖µ(F )− ν(F )‖ ≤ 3RMpdWR
(µ, ν) ,

withWR given in (5.37).

Proof. Using B2(1) we have that for any i ∈ {1, . . . , p} and x, y ∈ Rd, |Fi(x)− Fi(y)| ≤ 3M ‖x− y‖ ≤
3RMWR(x, y). Let µ and ν on B(Rd) such that µ(‖·‖) + ν(‖·‖) < +∞. Using the de�nition of the

Wasserstein distance (5.22), we have ‖µ(F )− ν(F )‖ ≤
∑p
i=1 |µ(Fi)− ν(Fi)| ≤ 3RMpdWR

(µ, ν).

Lemma 5.2.12. Assume B1, B2(1) and H1. Then we have for any n ∈ N

E
[
‖η(1)
n ‖

]
≤ B1

{
E
[
VR(X0

0 )
]
/(mnγn) + Ψ(γn)

}
,

with B1 = 3RMpA1A2(ρ−γ̄/ log(1/ρ) + 1).

Proof. Using the de�nition of (Fn)n∈N, see (5.41), the Markov property, H1-(ii)-(iii), Lemma 5.2.11 and

that for any θ ∈ K, we have for any n ∈ N?

‖E [ηn|Fn−1] ‖ ≤ m−1
n

mn∑
k=1

∥∥Kk
γn,θnF (Xn

0 )− πθn (F )
∥∥

≤ 3RMpm−1
n

mn∑
k=1

{
dWR

(δXn0 Kk
γn,θn , πγn,θn)

}
+ 3RMpdWR

(πγn,θn , πθn)

≤ 3RMpm−1
n

mn∑
k=1

{
A2ρ

γnkVR(Xn
mn)

}
+ 3RMpΨ(γn) ≤

3RMpA2ρ
−γ̄VR(Xn

mn)

log(1/ρ)γnmn
+ 3RMpΨ(γn) .

In a similar manner, we have∥∥E [η0

∣∣X0
0

]∥∥ ≤ 3RMpA2ρ
−γ̄VR(X0

0 )

log(1/ρ)γ0m0
+ 3RMpΨ(γ0) .

We conclude using H1-(i).

Lemma 5.2.13. Assume A2(1), B1, B2(1) and H1. Then we have for any n ∈ N, E
[
‖ηn‖2

]
≤ B2, with

B2 = 2A1(‖F (0)‖+ 3RM)2E
[
V 2
R(X0

0 )
]

+ 2 sup
θ∈K
‖∇L(θ)‖2 .
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Proof. Using that ‖x+ y‖2 ≤ 2(‖x‖2 +‖y‖2) for any x, y ∈ Rd, the Cauchy-Schwarz inequality H1-(i)

and Proposition 5.1.4, we get for any n ∈ N,

E
[
‖ηn‖2

]
≤ 2m−1

n

mn∑
k=1

‖F (Xn
k )‖2 + 2‖∇L(θn)‖2 .

We conclude using that for anyx ∈ Rd, ‖F (x)‖ ≤ (‖F (0)‖+3RM)VR(x) and the fact that supθ∈K ‖∇L(θ)‖ <
+∞.

Proof of Theorem 5.2.10. Taking the expectation in [AFM17, Theorem 3, Equation (8)], using the Cauchy-

Schwarz inequality and the fact that (η
(2)
n )n∈N is a martingale increment with respect to (Fn)n∈N, we

get that for every n ∈ N

E

[
n∑
k=1

δk

{
L(θk)−min

K
L

}]

≤ E

[
2M2

Θ −
n−1∑
k=0

δk+1〈ΠK(θk − δk+1∇L(θk))− θ?, ηk〉+

n−1∑
k=0

δ2
k+1 ‖ηk‖

2

]

≤ 2M2
Θ + 2MΘ

n−1∑
k=0

δk+1E
[
‖η(1)
k ‖

]
+ 2

n−1∑
k=0

δ2
k+1E

[
‖ηk‖2

]
.

Combining this result, Lemma 5.2.12 and Lemma 5.2.13 completes the proof.

Fixed batch size In this section, we give an alternative result to Theorem 4.2.4, in the case where

mn = 1 and γn = γ0 for all n ∈ N. We consider the following additional assumption on the family of

kernels {Kγ,θ : θ ∈ K, γ ∈ (0, γ̄]}.

H2. There exists Λ : R∗+ → R+ such that for any γ ∈ (0, γ̄], θ1, θ2 ∈ K, x ∈ Rd

‖δxKγ,θ1 − δxKγ,θ2‖VR ≤ Λ(γ)‖θ1 − θ2‖V 2
R(x) .

We also recall the following assumption.

B5. F ∈ C1(Rd,Rp) and there exists B ≥ 0 such that for any x, y ∈ Rd

‖dF (x)− dF (y)‖ ≤ B ‖x− y‖ .

Theorem 5.2.14. Assume A2(1), B1, B2(1), B3, B5, H1 and H2. Let (γn)n∈N, (δn)n∈N be sequences
of non-increasing positive real numbers and (mn)n∈N a sequence of positive integers satisfying δn <
1/(supθ∈K ‖∇2L(θ)‖) and for any n ∈ N, γn = γ < γ̄,mn = m0 and supn∈N |δn+1 − δn| δ−2

n < +∞.
Then, there exists (Ẽn)n∈N such that for any n ∈ N?

E

[{
n∑
k=1

δkL(θk)

/
n∑
k=1

δk

}
−min

K
L

]
≤ Ẽn

/(
n∑
k=1

δk

)
,

with (θk)k∈N and L are de�ned in (5.19) and (5.3) respectively, and

En = D

{
1 +

n−1∑
k=0

δ2
k+1/γ +

n−1∑
k=0

δ2
k+1Λ(γ)/γ2 +

n−1∑
k=0

δk+1Ψ(γ) + δn+1/γ

}
,

andD = 2M2
Θ +6MΘRMp+2MΘB̃2 +3B̃1 +B2 where B̃2 is given in Lemma 5.2.13, B̃1 in Lemma 5.2.15

and B̃2 in Lemma 5.2.18.
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The proof of this result is an adaptation to the one of Theorem 4.2.4. The main di�erence in the

proof consists in a re�nement of Lemma 5.2.18 which can be established in our setting and is given

Lemma 5.2.18.

Similarly to the proof of Theorem 5.2.10, we need to analyze the error ηn for n ∈ N de�ned by

(5.39), but the decomposition (5.40) has to be improved. For that purpose, we introduce Poisson solutions
associated with F . Under H1 for any θ ∈ K and γ ∈ (0, γ̄], consider F̂γ,θ : Rd → Rp solution of the

Poisson equation,

(Id−Kγ,θ)F̂γ,θ = F − πγ,θ(F ) . (5.42)

Note that by H1-(ii), F̂γ,θ is well de�ned and is given for any x ∈ Rd by

F̂γ,θ(x) =
∑
j∈N
{Kj

γ,θF (x)− πγ,θ(F )} . (5.43)

In addition, by Lemma 5.2.11 and H1-(ii), we have for any θ ∈ K and x ∈ Rd

∥∥∥F̂γ,θ(x)
∥∥∥ ≤

∥∥∥∥∥∥
∑
j∈N

Kj
γ,θF (x)− πγ,θ(F )

∥∥∥∥∥∥ ≤ 3RMp
∑
j∈N

dWR
(Kj

γ,θ, πγ,θ)

≤ 3RMpA2

∑
j∈N

ργjVR(x) ≤ 3RMpA2 log−1(1/ρ)ρ−γ̄γ−1VR(x) ≤ CF γ−1VR(x) , (5.44)

with CF = 3RMpA2 log−1(1/ρ)ρ−γ̄ . We now denote for any n ∈ N, X̃n+1 = Xn
1 and therefore ηn

de�ned by (5.39) is given for any n ∈ N by ηn = F (X̃n+1) − πθn(F ). Using (5.42) an alternative

expression of (ηn)n∈N is given for any n ∈ N by

ηn = F̂γ,θn(X̃n+1)−Kγ,θn F̂γ,θn(X̃n+1) + πγ,θn(F )− πθn(F ) = η(a)
n + η(b)

n + η(c)
n + η(d)

n ,

where

η(a)
n = F̂γ,θn(X̃n+1)−Kγ,θn F̂γ,θn(X̃n) ,

η(b)
n = Kγ,θn F̂γ,θn(X̃n)−Kγ,θn+1 F̂γ,θn+1(X̃n+1) ,

η(c)
n = Kγ,θn+1

F̂γ,θn+1
(X̃n+1)−Kγ,θn F̂γ,θn(X̃n+1) ,

η(d)
n = πγ,θn(F )− πθn(F ) .

(5.45)

In the next results, we analyze each term in this decomposition separately, except for (η
(a)
n )n∈N which

is a sequence of martingale increments with respect to (Fn)n∈N.

Lemma 5.2.15. Assume A2(1), B1, B2(1) and H1. Then, for any n ∈ N

E

[∥∥∥∥∥
n∑
k=0

δk+1〈ak+1, η
(b)
k 〉

∥∥∥∥∥
]

≤ B̃1

[
n∑
k=0

|δk+1 − δk| γ−1 +

n∑
k=0

δ2
kγ
−1 + (δn+1/γ − δ1/γ)

]
.

with (η
(b)
n )n∈N de�ned in (5.45), ak+1 = ΠK [θk − δk+1∇L(θk)]− θ?, θ? ∈ arg minK L and

B̃1 = A1CF (2MΘ + sup
θ∈K
‖∇L(θ)‖)E

[
VR(X̃0)

]
+A1CF (1 + δ1 sup

θ∈K
‖∇2L(θ)‖)(‖F (0)‖+RM)E

[
V 2
R(X̃0)

]
+ 4A1CFMΘE

[
VR(X̃0)

]
.
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Proof. By (5.45) we have for any n ∈ N and θ ∈ K

n∑
k=0

δk+1〈ak+1, η
(b)
k 〉 =

n∑
k=1

〈δk+1ak+1 − δkak,Kγ,θk F̂γ,θk(X̃k)〉

− 〈δn+1an+1,Kγ,θn+1
F̂γ,θn+1

(X̃n+1)〉+ 〈δ1a1,Kγ,θ0 F̂γ,θ0(X̃0)〉 . (5.46)

In addition, using Proposition 5.1.4, we have for any n ∈ N and θ ∈ K,

‖δn+1an+1 − δnan‖ ≤ 2MΘ |δn+1 − δn|+ δn+1 ‖an+1 − an‖
≤ 2MΘ |δn+1 − δn|+ δn+1(1 + δn sup

θ∈K
‖∇2L(θ)‖) ‖θn − θn−1‖+ δn+1 |δn+1 − δn| ‖∇L(θn)‖

≤ (2MΘ + δ1 sup
θ∈K
‖∇L(θ)‖) |δn+1 − δn|

+ δ2
n(1 + δn sup

θ∈K
‖∇2L(θ)‖)(‖F (0)‖+ 3RM)VR(X̃n+1) , (5.47)

where we have used in the last inequality that ΠK is non-expansive,B2(1) andH1-(i) and Proposition 5.1.4

again. Combining (5.46), (5.47), (5.44), the Cauchy-Schwarz inequality and H1-(i) we get that

E

[∥∥∥∥∥
n∑
k=0

δk+1〈ak, η(b)
k 〉

∥∥∥∥∥
]
≤ (2MΘ + δ1 sup

θ∈K
‖∇L(θ)‖)A1CFE

[
VR(X̃0)

] n∑
k=0

|δk+1 − δk| γ−1

+A1CF (‖F (0)‖+ 3RM)(1 + δ1 sup
θ∈K
‖∇2L(θ)‖)E

[
V 2
R(X̃0)

] n∑
k=0

δ2
kγ
−1

+ 2A1MΘCFE
[
VR(X̃0)

]
{δn+1/γ + δ1/γ} ,

which concludes the proof of Lemma 5.2.15.

We now upper bound E
[
‖η(c)
n ‖
]

for n ∈ N using the two following lemmas.

Lemma 5.2.16. Assume B1, B2(1), H1 and H2. Then, for any γ ∈ (0, γ̄], θ1, θ2 ∈ K and x ∈ Rd

dWR
(πγ,θ1 , πγ,θ2) ≤ A1A2ρ

−γ̄ log−1(1/ρ)Λ(γ)‖θ1 − θ2‖V 2
R(x)γ−1 .

Proof. Let γ ∈ (0, γ̄], θ1, θ2 ∈ K, ` ∈ N?, j ∈ N with ` ≥ j + 1 and g : Rd → R measurable such that

for any y, z ∈ Rd, |g(y)− g(z)| ≤WR(y, z). Using H1-(ii) we have∣∣∣K`−1−j
γ,θ2

g(x)− πγ,θ2(g)
∣∣∣ ≤ A2ρ

(`−1−j)γVR(x) .

Combining this result and H2 we have that∣∣∣(Kγ,θ1 −Kγ,θ2)K`−1−j
γ,θ2

g(x)
∣∣∣ ≤ A2ρ

γ(`−1−j)Λ(γ)‖θ1 − θ2‖V 2
R(x) . (5.48)

Using H1-(i) in (5.48), we get∣∣∣Kj
γ,θ1

(Kγ,θ1 −Kγ,θ2)K`−1−j
γ,θ2

g(x)
∣∣∣ ≤ A1A2ρ

γ(`−1−j)Λ(γ)‖θ1 − θ2‖V 2
R(x) .

Combining this result and the triangular inequality we obtain

∣∣K`
γ,θ1g(x)−K`

γ,θ2g(x)
∣∣ ≤ `−1∑

j=0

∣∣∣Kj+1
γ,θ1

K`−j−1
γ,θ2

g(x)−Kj
γ,θ1

K`−j
γ,θ2

g(x)
∣∣∣
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≤
`−1∑
j=0

∣∣∣Kj
γ,θ1

(Kγ,θ1 −Kγ,θ2)K`−1−j
γ,θ2

g(x)
∣∣∣

≤ A1A2Λ(γ)‖θ1 − θ2‖V 2
R(x)

`−1∑
j=0

ργ(`−1−j)

≤ A1A2ρ
−γ̄ log−1(1/ρ)Λ(γ)‖θ1 − θ2‖V 2

R(x)γ−1 .

Taking the limit `→ +∞ and using H1-(ii) concludes the proof.

Lemma 5.2.17. Assume B1, B2(1), B5 and H1. Then, for any γ ∈ (0, γ̄], θ1, θ2 ∈ K, ` ∈ N?, j ∈ N with
` ≥ j + 1 and x ∈ Rd∥∥∥{Kj

γ,θ1
− πγ,θ1

}
(Kγ,θ1 −Kγ,θ2)

{
K`−1−j
γ,θ2

F (x)− πγ,θ2(F )
}∥∥∥ ≤ DF ‖θ1 − θ2‖VR(x)γργ` ,

with DF = A2
2BM(1 + 2MΘBγ̄)R+ 2M2.

Proof. Let γ ∈ (0, γ̄], θ1, θ2 ∈ K, ` ∈ N?, j ∈ N with ` ≥ j + 1 and x, y ∈ Rd. First, we have

(Kγ,θ1 −Kγ,θ2)K`−1−j
γ,θ2

{F (x)− πγ,θ2(F )} − (Kγ,θ1 −Kγ,θ2)K`−1−j
γ,θ2

{F (x)− πγ,θ2(F )}

= (Kγ,θ1 −Kγ,θ2)K`−1−j
γ,θ2

F (x)− (Kγ,θ1 −Kγ,θ2)K`−1−j
γ,θ2

F (y)

= Kγ,θ1K`−1−j
γ,θ2

F (x)−K`−j
γ,θ2

F (x)−Kγ,θ1K`−1−j
γ,θ2

F (y) + K`−j
γ,θ2

F (y)

= K`−j
γ,θ2

(F (x+ ∆γ(x))− F (x)− F (y + ∆γ(y)) + F (y))

= K`−j
γ,θ2

G(x)−K`−j
γ,θ2

G(y) , (5.49)

with ∆γ(x) = γ(∇xU(θ1, x) − ∇xU(θ2, x)) = γ
∑p
i=1(θi1 − θi2)∇Fi(x) and G : Rd → Rp de�ned

for any z ∈ Rd by

G(z) = F (z + ∆γ(z))− F (z) . (5.50)

Using B2(1) and B5 we have that for any x, y ∈ Rd,

‖∆γ(x)‖ ≤ Mγ ‖θ1 − θ2‖ , ‖∆γ(x)−∆γ(y)‖ ≤MΘBγ ‖x− y‖ . (5.51)

Using (5.50), (5.51), we have for any x, y ∈ Rd with x 6= y

‖G(x)−G(y)‖ =

∥∥∥∥∫ 1

0

{dF (x+ t∆γ(x))(∆γ(x))− dF (y + t∆γ(y))(∆γ(y))}dt

∥∥∥∥
≤
∫ 1

0

‖dF (x+ t∆γ(x))− dF (y + t∆γ(y))‖ ‖∆γ(x)‖dt

+

∫ 1

0

‖dF (y + t∆γ(y))‖ (‖∆γ(x)‖+ ‖∆γ(y)‖)dt

≤ B(‖x− y‖+ ‖∆γ(x)−∆γ(y)‖) ‖∆γ(x)‖+ 2M2γ ‖θ1 − θ2‖
≤ BM(1 + 2MΘBγ̄)γ ‖θ1 − θ2‖ ‖x− y‖+ 2M2γ ‖θ1 − θ2‖
≤ D̃F γ ‖θ1 − θ2‖ (1 + ‖x− y‖ /R) ,

with D̃F = BM(1 + 2MΘBγ̄)R+ 2M2
. Therefore, for any x, y ∈ Rd,

‖G(x)−G(y)‖ ≤ D̃F γ ‖θ1 − θ2‖WR(x, y) . (5.52)
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Combining (5.49), (5.52) and H1-(ii) we obtain that∥∥∥(Kγ,θ1 −Kγ,θ2)K`−1−j
γ,θ2

{F (x)− πγ,θ2(F )} − (Kγ,θ1 −Kγ,θ2)K`−1−j
γ,θ2

{F (x)− πγ,θ2(F )}
∥∥∥

≤ A2D̃F ‖θ1 − θ2‖ γργ(`−j)WR(x, y) .

Therefore, using H1-(ii) we get∥∥∥{Kj
γ,θ1
− πγ,θ1

}
(Kγ,θ1 −Kγ,θ2)

{
K`−1−j
γ,θ2

F (x)− πγ,θ2(F )
}∥∥∥ ≤ A2

2D̃F ‖θ1 − θ2‖VR(x)γργ` ,

which concludes the proof.

Lemma 5.2.18. Assume B1, B2(1), B5, H1 and H2. Then we have for any n ∈ N

E
[∥∥∥η(c)

n

∥∥∥] ≤ B̃2δn+1γ
−2 (Λ(γ) + γ) ,

with
B̃2 = A1(‖F (0)‖+ 3RM)ρ−2γ̄ log−2(1/ρ) max {DF , EF } , (5.53)

with (η
(c)
n )n∈N de�ned in (5.45), EF = 3RMpA1A

2
2 and DF in Lemma 5.2.17.

Proof. We �rst give an upper bound on

∥∥∥Kγ,θ1Ĥγ,θ1(x)−Kγ,θ2Ĥγ,θ2(x)
∥∥∥ for any θ1, θ2 ∈ K, γ ∈ (0, γ̄]

and x ∈ Rd. By (5.43) we have for any θ1, θ2 ∈ K, γ ∈ (0, γ̄] and x ∈ Rd,∥∥∥Kγ,θ1Ĥγ,θ1(x)−Kγ,θ2Ĥγ,θ2(x)
∥∥∥

=

∥∥∥∥∥∑
`∈N?

{
K`
γ,θ1F (x)− πγ,θ1(F )

}
−
∑
`∈N?

{
K`
γ,θ2F (x)− πγ,θ2(F )

}∥∥∥∥∥
≤
∑
`∈N?

∥∥K`
γ,θ1F (x)− πγ,θ1(F )−K`

γ,θ2F (x)− πγ,θ2(F )
∥∥ . (5.54)

We now bound each term of the series in the right hand side. For any measurable functions g1, g2 with

gi : Rd → Rp and such that supx∈Rd ‖gi(x)‖ /VR(x) < +∞ with i ∈ {1, 2}, θ1, θ2 ∈ K, γ ∈ (0, γ̄],
x ∈ Rd and ` ∈ N?, using that πγ,θ1 is invariant for Kγ,θ1 , it holds that

K`
γ,θ1g1(x)−K`

γ,θ2g2(x) = K`
γ,θ1g1(x)−K`

γ,θ2g1(x) + K`
γ,θ2(g1(x)− g2(x))

=

`−1∑
j=0

{
Kj
γ,θ1
− πγ,θ1

}
(Kγ,θ1 −Kγ,θ2)

{
K`−1−j
γ,θ2

g1(x)− πγ,θ2(g1)
}

+

`−1∑
j=0

πγ,θ1

{
K`−1−j
γ,θ2

g1(x)−K`−j
γ,θ2

g1(x)
}

+ K`
γ,θ2(g1(x)− g2(x))

=

`−1∑
j=0

{
Kj
γ,θ1
− πγ,θ1

}
(Kγ,θ1 −Kγ,θ2)

{
K`−1−j
γ,θ2

g1(x)− πγ,θ2(g1)
}

− πγ,θ1(K`
γ,θ2g1(x)− g1(x)) + K`

γ,θ2(g1(x)− g2(x)) .

Setting g1 = F − πγ,θ1(F ) and g2 = F − πγ,θ2(F ), we obtain that

K`
γ,θ1F (x)− πγ,θ1(F )−K`

γ,θ2F (x)− πγ,θ2(F )
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=

`−1∑
j=0

{
Kj
γ,θ1
− πγ,θ1

}
(Kγ,θ1 −Kγ,θ2)

{
K`−1−j
γ,θ2

F (x)− πγ,θ2(F )
}

+ Ξ` , (5.55)

where, using that πγ,θ2 is invariant for Kγ,θ2 , we have

Ξ` = −πγ,θ1(K`
γ,θ2F (x)− F (x)) + K`

γ,θ2

[
πγ,θ2(F )− πγ,θ1(F )

]
= (πγ,θ2 − πγ,θ1)K`

γ,θ2F (x) .

Using Lemma 5.2.17 we obtain for any θ1, θ2 ∈ K, γ ∈ (0, γ̄], x ∈ Rd and ` ∈ N?∥∥∥∥∥∥
`−1∑
j=0

{
Kj
γ,θ1
− πγ,θ1

}
(Kγ,θ1 −Kγ,θ2)

{
K`−1−j
γ,θ2

F (x)− πγ,θ2(F )
}∥∥∥∥∥∥

≤
`−1∑
j=0

∥∥∥{Kj
γ,θ1
− πγ,θ1

}
(Kγ,θ1 −Kγ,θ2)

{
K`−1−j
γ,θ2

(F )− πγ,θ2(F )
}∥∥∥

≤
`−1∑
j=0

DF γ ‖θ1 − θ2‖ ργ`VR(x) ≤ DF γVR(x) ‖θ1 − θ2‖ `ργ` . (5.56)

Using H1-(ii), Lemma 5.2.11 and Lemma 5.2.16, we obtain for any θ1, θ2 ∈ K, γ ∈ (0, γ̄], x ∈ Rd and

` ∈ N? ∥∥(πγ,θ1 − πγ,θ2)K`
γ,θ2F (x)

∥∥ ≤ 3RMpA2ρ
γ`dWR

(πγ,θ1 , πγ,θ2)

≤ EF ρ−γ̄ log−1(1/ρ)Λ(γ)‖θ1 − θ2‖V 2
R(x)γ−1ργ` . (5.57)

with EF = 3RMpA1A
2
2. Combining (5.56) and (5.57) in (5.55), we obtain that for any θ1, θ2 ∈ K,

γ ∈ (0, γ̄] and x ∈ Rd that

K`
γ,θ1F (x)− πγ,θ1(F )−K`

γ,θ2F (x)− πγ,θ2(F )

≤ DF ‖θ1 − θ2‖VR(x)γ`ργ` + EF ρ
−γ̄ log−1(1/ρ)‖θ1 − θ2‖V 2

R(x)Λ(γ)γ−1ργ` .

Using this result in (5.54) and that for any t ∈ (−1, 1) and a > 0,

∑
k∈N kt

ak = t(1 − ta)−2 ≤
a−2t−a log−2(1/t), we get that∥∥∥Kγ,θ1Ĥγ,θ1(x)−Kγ,θ2Ĥγ,θ2(x)

∥∥∥ ≤ DF ρ
−2γ̄ log−2(1/ρ) ‖θ1 − θ2‖VR(x)γ−1

+ EF ρ
−2γ̄ log−2(1/ρ)‖θ1 − θ2‖V 2

R(x)Λ(γ)‖γ−2

≤ Cc γ−2 (Λ(γ)‖θ1 − θ2‖+ γ‖θ1 − θ2‖)V 2
R(x) , (5.58)

with Cc = ρ−2γ̄ log−2(1/ρ) max {DF , EF }. Note that for any k ∈ N, by B2(1) and the fact that ΠK

is non-expansive we have ‖θk+1 − θk‖ ≤ δk+1(‖F (0)‖ + 3RM)VR(X̃k+1). Therefore, plugging this

result in (5.58), we get for any k ∈ N,∥∥∥Kγ,θkĤγ,θk(X̃k+1)−Kγ,θk+1
Ĥγ,θk+1

(X̃k+1)
∥∥∥

≤ Cc,2(‖F (0)‖+ 3RM)δk+1γ
−2 (Λ(γ) + γ)V 3

R(X̃k+1) . (5.59)

Therefore by de�nition of (η
(c)
k )k∈N, see (5.45), and using H1-(i) in (5.59) we get that for any k ∈ N

E
[∥∥∥η(c)

k

∥∥∥] ≤ B̃2δk+1γ
−2 (Λ(γ) + γ) ,

with B̃2 given by (5.53).
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Lemma 5.2.19. Assume B1, B2(1) and H1. Then we have for any n ∈ N

E
[∥∥∥η(d)

n

∥∥∥] ≤ 3RMpΨ(γ) ,

with (η
(d)
n )n∈N de�ned in (5.45).

Proof. The proof is a direct consequence of Lemma 5.2.11 and H1-(iii).

Proof of Theorem 5.2.14. Taking the expectation in [AFM17, Theorem 3, Equation (8)], using the Cauchy-

Schwarz inequality, the decomposition of the error (5.45) and the fact that (η
(a)
n )n∈N is a martingale

increment with respect to (Fn)n∈N, we get that for every n ∈ N

E

[
n∑
k=1

δk

{
L(θk)−min

K
L

}]

≤ E

[
2M2

Θ −
n−1∑
k=0

δk+1〈ΠK(θk − δk+1∇L(θk))− θ?, ηk〉+

n−1∑
k=0

δ2
k+1‖ηk‖2

]

≤ 2M2
Θ + 2MΘ

n−1∑
k=0

δk+1E
[∥∥∥η(c)

k

∥∥∥+
∥∥∥η(d)
k

∥∥∥]+ E

[
n−1∑
k=0

δk+1〈ak+1, η
(b)
k 〉

]
+

n−1∑
k=0

δ2
k+1E

[
‖ηk‖2

]
.

Combining this result, Lemma 5.2.15, Lemma 5.2.18, Lemma 5.2.19 and Lemma 5.2.13 completes the

proof.

Proof of Theorem 5.2.2 In this section, we check that H1 and H2 are satis�ed in order to apply

Theorem 5.2.14. More precisely, we study the geometric ergodicity of the Langevin Markov chain under

B1, B2(1) and B3 as well as its discretization error. We begin with the following technical lemma

Lemma5.2.20. AssumeB1,B2(1) and B3. Let m = m1/2, L̃ = 2L,R = 4M/m1 andυ = supθ∈K ‖∇xU(θ, 0)‖.
In addition, for any θ ∈ K, γ > 0 and x ∈ Rd, let

Tγ(x) = ‖x− γ∇xU(θ, x)‖2 . (5.60)

Then for any θ ∈ K and x, y ∈ Rd

(a) ‖∇xU(θ, x)−∇xU(θ, y)‖ ≤ L̃ ‖x− y‖;

(b) if ‖x− y‖ ≥ R, 〈∇xU(θ, x)−∇Ux(θ, y), x− y〉 ≥ m ‖x− y‖2,

(c) we have
‖Tγ(x)‖ ≤ (1 + γL̃) ‖x‖+ γυ ,

(d) if ‖x‖ ≥ max(R, 2υ/m) and γ ≤ m/(2Ñ2)

‖Tγ(x)‖ ≤ (1− γm/2 + γ2L̃2/2) ‖x‖ .

Proof. Let θ ∈ K. The proof of (a) is straightforward. Let m = k1/2 and x, y ∈ Rd such that ‖x− y‖ ≥ R
with R = 4M/k1. Using B3-(b)-(c) we have

〈∇xU(θ, x)−∇xU(θ, y), x− y〉
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= 〈∇xU1(θ, x)−∇xU1(θ, y), x− y〉+ 〈∇xU2(θ, x)−∇xU2(θ, y), x− y〉

≥ k1 ‖x− y‖2 − 2M ‖x− y‖ ≥ (k1 − 2M/R) ‖x− y‖2

≥ (k1/2) ‖x− y‖2 ,

which concludes the proof of (b). For any x ∈ Rd,

‖Tγ(x)‖ ≤ ‖Tγ(x)− Tγ(0)‖+ ‖Tγ(0)‖ ≤ (1 + γL̃) ‖x‖+ γυ ≤ (1 + γ(L̃ + υ))(1 + ‖x‖)− 1 ,

and therefore (c) holds. Finally, let ‖x‖ ≥ max(R, 2υ/m) and γ ≤ m/(2Ñ2). Using that for any t ≥ 0,√
1 + t ≤ 1 + t/2,

‖Tγ(x)‖ ≤ ‖Tγ(x)− Tγ(0)‖+ γ ‖∇xU(θ, 0)‖
≤ (1− γm + γ2L̃2/2) ‖x‖+ γυ ≤ (1− γm/2 + γ2L̃2/2) ‖x‖ ,

which concludes the proof of (d).

Lemma 5.2.21. Assume B1, B2(1) and B3. Let m, L̃ andR be given by Lemma 5.2.20. Then for any p ∈ N?,
θ ∈ K and γ ∈ (0, γ̄] with γ̄ < min(m/(2L̃2), 1/2), Kγ,θ satis�es Dd(Vp, λγ , b̃pγ) with Vp given in (5.38)

and

λ = exp[−m/4 + γ̄L̃2/2] ,

b̃p = Υp(2
2p+1dp(1 + γ̄L̃)2p−1Γ(p+ 1/2), m/4) + m/4 + eκγ̄(κ + log(1/λ))Vp(R̃) + Cp(R̃) ,

κ =
{

(1 + γ̄L̃) max(R̃, 1) + υ
}2p

,

υ = sup
θ∈K
‖∇xU(θ, 0)‖ , R̃ = max(R, 2υ/m) ,

Cp(R̃) = 22p+1dp
{

1 + γ̄(L̃ + υ)
}2p−1

Γ(p+ 1/2)(1 + R̃)2p−1 ,

(5.61)

where for any t ≥ 0, Γ(t) =
∫ +∞

0
ut−1e−udu and Υp is given in Lemma 5.2.4. In addition, Kγ,θ satis�es

Dd(V, λγ , bp(1 + d$0,p)γ) with λ given in (5.61) and bp, $0,p ≥ 0 independent of the dimension d.

Proof. First, note that using B2(1)-(a) we get

υ ≤

∥∥∥∥∥
p∑
i=1

θi∇Fi(0) +∇r(0)

∥∥∥∥∥ ≤ ‖∇r(0)‖+ pMΘ sup
i∈{1,...,p}

‖∇Fi(0)‖ < +∞ .

Let p ∈ N?, θ ∈ K, γ ∈ (0, γ̄] and x ∈ Rd. Similarly to Lemma 5.2.5, we obtain that∫
Rd
‖y‖2p Kγ,θ(x, dy) ≤ ‖Tγ(x)‖2p + γ22p+1γdpΓ(p+ 1/2)(1 + ‖Tγ(x)‖)2p−1

(5.62)

≤ ‖Tγ(x)‖2p + γ22p+1γCp(x) ,

with Tγ de�ned in (5.60) and

Cp(x) = 22p+1dp
{

1 + γ̄(L̃ + υ)
}2p−1

Γ(p+ 1/2)(1 + ‖x‖)2p−1 , (5.63)

where we have used Lemma 5.2.20-(c). Let R̃ = max(R, 2υ/m). We divide the rest of the proof in two

parts:
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(a) Let ‖x‖ ≥ R̃. We have using Lemma 5.2.20-(d),

‖Tγ(x)‖ ≤ (1− γm/2 + γ2L̃2/2) ‖x‖ .

Hence, ‖Tγ(x)‖2p ≤ (1 − γm/4 + γ2L̃2/2) ‖x‖2p − γm ‖x‖2p /4 and we have using Lemma 5.2.4 and

(5.63) in (5.62)

Kγ,θVp(x) ≤ (1− γm/4 + γ2L̃2/2)(1 + ‖x‖2p)

+ γ
[
22p+1dp

{
1 + γ̄(L̃ + υ)

}2p−1
Γ(p+ 1/2)(1 + ‖x‖)2p−1 − m ‖x‖2p /4 + m/4

]
≤ (1− γm/4 + γ2L̃2/2)(1 + ‖x‖2p)

+ γ
[
Υp(2

2p+1dp
{

1 + γ̄(L̃ + υ)
}2p−1

Γ(p+ 1/2), m/4) + m/4
]
.

(b) Now assume that ‖x‖ ≤ R̃. Let κ = {(1 + L̃) max(1, R̃) + υ}2p. We have, using that γ ≤ 1,

(1 + γL̃)2p ≤ 1 + γ

2p∑
k=1

(
2p

k

)
Lk ≤ 1 + γ(1 + L̃)2p ≤ 1 + γκ .

Combining this result with Lemma 5.2.20-(c) and the fact that γ̄ ≤ 1, we get

1 + ‖Tγ(x)‖2p ≤ 1 +
[
(1 + γL̃) ‖x‖+ γυ

]2p
≤ 1 + (1 + γL̃)2p ‖x‖2p + γ

2p∑
k=1

(
2p

k

)
(1 + γ̄L̃)2p−kR̃2p−kυk

≤ 1 + (1 + γκ) ‖x‖2p + γκ ≤ (1 + γκ)(1 + ‖x‖2p) . (5.64)

Let

Cp(R̃) = 22p+1dp
{

1 + γ̄(L̃ + υ)
}2p−1

Γ(p+ 1/2)(1 + R̃)2p−1 .

Using (5.64) in (5.62) and that for any a ≥ b, ea − eb ≤ (a− b)ea we have

Kγ,θ(1 + ‖x‖2p) ≤ 1 + ‖Tγ(x)‖2p + γCm(R̃)

≤ λγVp(x) + γeκγ̄(κ+ log(1/λ))Vp(R̃) + γCm(R̃) ,

which concludes the proof upon noting that b̃p is a polynomial in the dimension d.

Lemma5.2.22. AssumeB1,B2(1),B3 and let (Xn
k )n∈N,k∈{0,...,mn be given by (5.19)with γ̄ < min(m/(2L̃2), 1/2).

There exist A1 ≥ 1 and $1 ≥ 0 such that for any a ∈ [1, 3], n, p ∈ N and k ∈ {0, . . . ,mn}

E
[
Kp
γn,θn

V aR(Xn
k )
∣∣∣X0

0

]
≤ A1V

a
R(X0

0 ) , E
[
V aR(X0

0 )
]
< +∞ ,

with VR given in (5.37) and A1, $1 which do not depend on the dimension d.

Proof. Using Jensen’s inequality it su�ces to prove the result for a = 3. Using Lemma 5.2.21, there

exist λ ∈ (0, 1) and b ≥ 0 such that for any p ∈ {1, 2, 3}, θ ∈ K and γ ∈ (0, γ̄], Kγ,θ satis�es
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Dd(Vp, λγ , bp(1 +d$0,p)γ) with Vp given in (5.38). Hence, since λ and bp do not depend on the dimen-

sion d, using Lemma 4.2.20, there exists Ã1, $1 ≥ 0 such that for any p ∈ {1, 2, 3}

E
[
Kp
γn,θn

Vp(X
n
k )
∣∣∣X0

0

]
≤ Ã1(1 + d$1)Vp(X

0
0 ) , E

[
Vp(X

0
0 )
]
< +∞ ,

with Ã1 and$1 which do not depend on the dimension d. Combining this result and Jensen’s inequality

we obtain that

E
[
Kp
γn,θn

V 3
R(Xn

k )
∣∣∣X0

0

]
≤ R−p

3∑
p=0

(
3

p

)
E
[
Kp
γn,θn

Vp(X
n
k )
∣∣∣X0

0

]1/2
≤ R−p

3∑
p=0

(
3

p

)
Ã

1/2
1 (1 + d$1)1/2(1 + ‖X0

0‖2p)1/2

≤ R−pÃ1/2
1 (1 + d$1)1/2

3∑
p=0

(
3

p

)
(1 + ‖X0

0‖p)

≤ 9Ã
1/2
1 (1 + d$1)1/2(1 + ‖X0

0‖/R)3 ,

which concludes the proof.

Theorem 5.2.23. Assume B1, B2(1) and B3. Then there exist A2, $2 ≥ 0 and ρ ∈ (0, 1) such that for
any θ ∈ K and γ ∈ (0, γ̄] with γ̄ < min(m/(2L̃2), 1/2), Kγ,θ admits an invariant probability measure
πγ,θ and for any n ∈ N and x ∈ Rd

dWR
(δxKn

γ,θ, πγ,θ) ≤ A2(1+d$2)ργnVR(x) , dWR
(δxKn

γ,θ, δyKn
γ,θ) ≤ A2(1+d$2)ργnWR(x, y) ,

with VR,WR given in (5.37) and A2, $2 ≥ 0 and ρ ∈ (0, 1) which do not depend on the dimension d.

Proof. Let θ ∈ K, γ ∈ (0, γ̄], n ∈ N and x, y ∈ Rd Applying , we obtain that there exist Ã2 ≥ 0 and

ρ ∈ (0, 1) independent of the dimension d such that

dWR
(δxKn

γ,θ, δyKn
γ,θ) ≤ Ã2ρ

γnWR(x, y) .

In addition, Kγ,θ admits an invariant probability measure πγ,θ . Hence, we have

dWR
(δxKn

γ,θ, πγ,θ) ≤ Ã2ρ
γn

∫
Rd
WR(x, y)dπγ,θ(y) . (5.65)

By Lemma 5.2.21 we get that Kγ,θ satis�es Dd(V2, λ
γ , b2(1 + d$0,2)γ) where V2(x) is given by (5.38)

with m = 2, λ, b2 and $0,2 are independent of the dimension d. Hence, using Jensen’s inequality and

that

√
1 + t ≤ 1 + t/2 for t ≥ 0 we get

πγ,θ(V
1/2

2 ) ≤ λγ/2πγ,θ(V 1/2
2 ) + b2(1 + d$0,2)λ−γ̄/2γ/2 .

Therefore we obtain that

πγ,θ(V
1/2

2 ) ≤ b2(1 + d$0,2)λ−γ̄/2γ/(2− 2λγ/2) ≤ b2(1 + d$0,2)λ−γ̄ log−1(1/λ) . (5.66)

In addition, for any y ∈ Rd,

1 + ‖y‖ /R ≤ 21/2(1 + ‖y‖2 /R2)1/2 ≤ 21/2(1 + 1/R2)1/2V
1/2

2 (y) . (5.67)
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Combining (5.65), (5.66), (5.67) and Jensen’s inequality we get that

dWR
(δxKn

γ,θ, πγ,θ) ≤ Ã2ρ
γn

∫
Rd
WR(x, y)dπγ,θ(y)

≤ Ã2ρ
γn {‖x‖ /R+ πγ,θ(VR)}

≤ Ã2ρ
γn
{
‖x‖ /R+ 21/2(1 + 1/R2)1/2b2(1 + d$0,2)λ−γ̄/ log(1/λ)

}
≤ Ã2

{
1 + 21/2(1 + 1/R2)1/2b2(1 + d$0,2)λ−γ̄/ log(1/λ)

}
VR(x) ,

which concludes the proof.

Lemma 5.2.24. Assume B1, B2(1) and B3. Then there exists Ã3, $
′
3 ≥ 0 such that for any θ ∈ K,

γ ∈ (0, γ̄] with γ̄ < min(m/(2L̃2), 1/2) and k ∈ N

‖πθPkγd1/γe,θPγd1/γe,θ − πθPkγd1/γe,θK
d1/γe
γ,θ ‖VR ≤ Ã3(1 + d$

′
3)γ1/2 ,

with VR given in (5.37) and Ã3, $
′
3 ≥ 0 which do not depend on the dimension d.

Proof. Let θ ∈ K, γ ∈ (0, γ̄]. First, we show that (Pt,θ)t≥0 satis�es a drift condition Dc(V2, ζ, βp(1 +

d$
′
0,p)), with V2(x) = 1 + ‖x‖2, ζ > 0 and βp, $

′
0,p ≥ 0 independent of the dimension d. We have that

for any x ∈ Rd, ∇V2(x) = 2x and ∆V2(x) = 2d. Hence, for any x ∈ Rd

AθV2(x) = −〈∇xU(θ, x),∇V2(x)〉+ ∆V2(x) = −2〈∇xU(θ, x), x〉+ 2d .

We now distinguish two cases.

(a) If ‖x‖ ≥ R, using Lemma 5.2.20-(b) we have

AθV2(x) ≤ −2m ‖x‖2 + 2d+ 2 sup
θ∈K
‖∇xU(θ, 0)‖ ‖x‖

≤ −mV2(x) + 2{d+ sup
θ∈K
‖∇xU(θ, 0)‖ ‖x‖ − m ‖x‖2 /2 + m}

≤ −mV2(x) + 2{d+ sup
θ∈K
‖∇xU(θ, 0)‖2 /(2m) + m} .

(b) If ‖x‖ ≤ R, using Lemma 5.2.20-(a) we have

AθV2(x) ≤ 2(L̃ ‖x‖+ sup
θ
‖∇xU(θ, x)‖) ‖x‖+ 2d

≤ −mV2(x) + 2(L̃R+ sup
θ∈K
‖∇xU(θ, x)‖)R+ 2d+ mV2(R) .

Hence, there exists ζ > 0 and βp, $
′
0,p ≥ 0 such that (Pt,θ)t≥0 satis�es Dc(V2, ζ, βp(1 + d$0,p)), with

ζ, βp and $0,p independent of the dimension d. This implies by [MT93c, Theorem 4.5]

πθ(V2) ≤ βp(1 + d$0,p)/ζ . (5.68)

Using a generalized Pinsker inequality [DM17, Lemma 24], [DM17, Equation 15] and that for any y ∈ Rd,

VR(y) ≤ (1 + 1/R2)1/2V2(y), we get that

‖πθPkγd1/γe,θPγd1/γe,θ − πθPkγd1/γe,θK
d1/γe
γ,θ ‖VR
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≤ 2(1 + 1/R2)1/2(πθP(k+1)γd1/γeV2 + πθPkγd1/γeK
d1/γe
γ,θ V2)1/2

×KL
(
πθPkγd1/γe,θK

d1/γe
γ,θ |πθPkγd1/γe,θPγd1/γe,θ

)1/2

≤ (1 + 1/R2)1/2(πθ(V2) + πθK
d1/γe
γ,θ V2)1/2

× L̃

(
2L̃γ̄ sup

j∈N

{
πθK

d1/γej
γ,θ V2

}
+ 2γ̄ sup

θ∈K
‖∇xU(θ, 0)‖2 + d

)1/2

.

Combining this result, (5.68) and Lemma 5.2.21 completes the proof.

Proposition 5.2.25. Assume B1, B2(1) and B3. Then there exist A3, $3 ≥ 0 such that for any θ ∈ K,
γ ∈ (0, γ̄] with γ̄ < min(m/(2L̃2), 1/2),

dWR
(πγ,θ, πθ) ≤ A3(1 + d$3)γ1/2 ,

withWR given in (5.37) and A3, $3 ≥ 0 which do not depend on the dimension d.

Proof. Let θ ∈ K, γ ∈ (0, γ̄] and x ∈ Rd. Using Theorem 4.1.13, we get that

dWR
(πγ,θ, πθ) = lim

n→+∞
dWR

(πθK
nd1/γe
γ,θ , πθ) .

By Theorem 5.2.23, Lemma 5.2.24 and that for any θ ∈ K, πθ is an invariant probability measure for

(Pt,θ)t≥0, we get for any n ∈ N

dWR
(πθK

nd1/γe
γ,θ , πθPnγd1/γe,θ) ≤

n−1∑
k=0

dWR
(πθP(k+1)γd1/γe,θK

(n−k−1)d1/γe
γ,θ , πθPkγd1/γe,θK

(n−k)d1/γe
γ,θ )

≤ A2(1 + d$2)

n−1∑
k=0

ρn−k−1dWR
(πθPkγd1/γe,θPγd1/γe,θ, πθPkγd1/γe,θK

d1/γe
γ,θ )

≤ A2(1 + d$2)

n−1∑
k=0

ρn−k−1‖πθPkγd1/γe,θPγd1/γe,θ − πθPkγd1/γeK
d1/γe
γ,θ ‖VR

≤ γ1/2A2Ã3(1 + d$2)2/ log(1/ρ) ,

which concludes the proof since A2, Ã3 and ρ do not depend on the dimension d.

Lemma 5.2.26. There existA4, $4 ≥ 0 such that for any θ ∈ K, γ ∈ (0, γ̄] with γ̄ < min(m/(2L̃2), 1/2),

‖δxKγ1,θ1 − δxKγ2,θ2‖VR ≤ A4(1 + d$4)
[
γ
−1/2
2 |γ1 − γ2|+ γ

1/2
2 ‖θ1 − θ2‖

]
V 2
R(x) ,

with VR given in (5.37) and A4, $4 ≥ 0 which do not depend on the dimension d.

Proof. The proof is similar to the one of Proposition 4.2.24.

We now turn to the proof of Theorem 5.2.2.

Proof. Combining Lemma 5.2.22, Theorem 5.2.23 and Proposition 5.2.25 we obtain that H1 is satis�ed.

Lemma 5.2.26 implies that H2 holds. Therefore Theorem 5.2.10 and Theorem 5.2.14 can be applied.
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Proof of Proposition 5.2.3

We recall that for any ε > 0 and x ∈ Rd we de�ne fε(x) = ‖F (x)‖2 − ε.

Proposition 5.2.27. Assume A1(α) and A2(2α) with α > 0. In addition, assume that F is continuous,
F−1({0}) 6= ∅, F−1({0}c) 6= ∅ and that for every open set A 6= ∅, µ(A) > 0. Then there exists ε0 > 0
such that for any ε ∈ (0, ε0], the macrocanonical model πε associated with fε and the reference measure
µ, solution of (P), exists and is given by (dπε/dµ)(x) ∝ exp [−ϑεfε(x)] , with ϑε > 0. In addition
limε→0 ϑε = +∞.

Proof. Let ε0 = µ(‖F‖2)/2 > 0, since µ(F−1({0}c)) > 0. Let ε ∈ (0, ε0]. Since A2(2α) holds, for any

ϑ > −η/C2
α, with Cα given in A1(α) and η given in A2(2α), we have

∫
Rd exp[−ϑfε(x)]dµ(x) < +∞.

Let I =
(
−η/C2

α,+∞
)

andLε : I→ R such that for anyϑ ∈ I,L(ϑ) = log
{∫

Rd exp [−ϑfε(x)] dµ(x)
}

.

By Proposition 5.1.4, we have that L is continuously di�erentiable on I. Since F−1({0}) 6= ∅ we have

that there exists a non-empty open set Iε such that for any x ∈ Iε, fε(x) < 0. Therefore

lim
ϑ→+∞

L(ϑ) ≥ lim
ϑ→+∞

log

{∫
Iε

exp [−ϑfε(x)] dµ(x)

}
= +∞ ,

where we used the monotone convergence theorem in the last inequality. Since L is continuous we

obtain that there exists ϑε ∈ [0,+∞) such that L(ϑε) = min[0,+∞) L(ϑ). We have that L′(0) ≤
ε− µ(‖F‖2) < 0, therefore ϑε ∈ (0,+∞) and L′(ϑε) = 0. Applying Proposition 5.1.4, we obtain that

πϑε is a solution of (P). We denote πε this solution.

Assume that there exists a sequence (εn)n∈N with εn > 0 such that (ϑεn)n∈N is bounded. Then, up

to extraction, there exists ϑ? ≥ 0 such that limn ϑεn = ϑ?. Using the dominated convergence theorem

we obtain that

0 = lim
n
εn = lim

n
πεn(fεn) = πϑ?(‖F‖2) > 0 ,

which is a contradiction. Therefore, limε→0 ϑε = +∞.

We now turn to the study of the tightness of the sequence (πε)ε>0 in the special case where F
is given by (5.8). Under the assumptions of Proposition 5.2.28, for each sequence (εn)n∈N such that

limn εn = 0, up to extraction, we have that (πεn)n∈N converges to a probability measure π∞ which

concentrates on F−1({0}).

Proposition 5.2.28. Assume A2(2) and that for any non-empty open set A ⊂ Rd, µ(A) > 0. Let F be
given by (5.8) assume that 1 ∈ j and that there exists k ∈ {1, . . . , c1} such that for any x ∈ Rd with
x 6= 0, there exists ` ∈ {1, . . . , n1} with e>` Ãk1x > 0. Then for any sequence (εn)n∈N with limn εn = 0,
(πεn)n∈N is tight.

Proof. Let F be given by (5.8). Then for any x ∈ Rd, fε(x) = ‖F (x)‖2 − ε. We show that the level sets

of x 7→ ‖F (x)‖2 are compact. Let Sd−1
be the sphere in Rd and de�ne f : Sd−1 → (0,+∞) for any

x ∈ Sd−1
by

f(x) = max
`∈{1,...,c1}

{
e>` A

k
1x
}
.

f is continuous and since Sd−1
is compact, f reaches its minimum f0 and therefore f0 > 0. Let x ∈ Rd,

using that ϕ is non-increasing we have for any k ∈ {1, . . . , c1}

n−1
1

n1∑
`=1

G k
1 (x)(`) = n−1

1

n1∑
`=1

ϕ(e>` A
k
1x)
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≥ n−1
1

n1∑
`=1

ϕ(e>` Ã
k
1x+ e>` A

k
10)

≥ n−1
1 ϕ(f0 ‖x‖+ min

`∈{1,...,n1}
e>` b

k
1) .

This result combined with the fact that limt→+∞ ϕ(t) = +∞ implies that

lim
‖x‖→+∞

‖F (x)‖2 = +∞ .

Therefore, F−1({0}c) 6= ∅. F−1({0}) 6= ∅ since F (x0) = 0. F is continuous and A1(1) is satis�ed.

Therefore, Proposition 5.2.27 applies and (πεn)n∈N is well-de�ned for any sequence limn→+∞ εn = 0.

In addition, limn→+∞ ϑεn = +∞.

Since x 7→ ‖F (x)‖2 is continuous and coercive, the level sets of fε are compact for any ε > 0. We

conclude using [Hwa80, Proposition 2.3].

We now turn to the proof of Proposition 5.2.3.

Proof. The proof is then a direct consequence of the tightness of any sequence (πεn)n∈N and that

limn→+∞ ϑεn = +∞ combined with [Hwa80, Proposition 2.2].

Under other assumptions on F−1({0}) other explicit measures π∞ are obtained.

Proposition 5.2.29. Assume A2(2) and that for any non-empty open set A ⊂ Rd, µ(A) > 0. Let F be
given by (5.8), assume that 1 ∈ j and that there exists k ∈ {1, . . . , c1} such that for any x ∈ Rd with x 6= 0
there exists ` ∈ {1, . . . , n1} with e>` Ãk1x > 0. Then there exists ε0 > 0 such that for any ε ∈ (0, ε0), πε
exists. In addition, the following propositions hold:

(a) Assume that F−1({0}) = {x1, . . . , xK} with (xi)i∈{1,...,K} ∈ (Rd)K , K ∈ N?, ϕ ∈ C3(R),
x 7→ (dµ/dλ)(x) is continuous and (dµ/dλ)−1(F−1({0})) 6= {0}. LetH(x) = ∇2(‖F (·)‖2)(x)
and assume that for any x ∈ F−1({0}), detH(x) 6= 0. Then limε→0 πε = π∞ with

π∞ =

K∑
i=1

dµ
dλ (xi) det(H(xi))∑K
j=1

dµ
dλ (xj) det(H(xj))

δxi .

(b) Assume that F−1({0}) is a smooth compact manifold, ϕ ∈ C3(R), x 7→ (dµ/dλ)(x) is contin-
uous and (dµ/dλ)−1(F−1({0})) 6= 0. Let H(x) = ∇2(‖F (·)‖2)(x) and assume that for any
x ∈ F−1({0}), detH(x) 6= 0. Then limε→0 πε = π∞ with for any x ∈ Rd

dπ∞
dH

(x) =
1F−1({0})(x)dµ

dλ (x) detH(x)∫
F−1({0})

dµ
dλ (y) detH(y)dH(y)

,

whereH is the intrisic measure on F−1({0}), see [Boo86, Chapter 6].

Proof. The proof is then a direct consequence of the tightness of any sequence (πεn)n∈N and that

limn→+∞ ϑεn = +∞ combined with [Hwa80, Theorem 2.1, Theorem 3.1].

It should be noted that Proposition 5.2.3 is merely a strengthening of Proposition 5.2.28 under addi-

tional assumptions on the form of F−1({0}).
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Additional experiments

Accelerations andnoiseless versions of SOUL First we investigate the following discrete dynamics X̃n
k+1 = X̃n

k − γn
(∑p

i=1 θ̃
i
n∇Fi(X̃n

k ) +∇r(X̃n
k )
)

and X̃n
0 = X̃

mn−1

n−1 ;

θ̃n+1 = ΠK

[
θ̃n − δn+1m

−1
n

∑mn
j=1 F (X̃n

j )
]
,

(5.69)

which corresponds to the one of SOUL (5.19) without the Gaussian noise term in the Langevin up-

date. We refer to this algorithm as noiseless SOUL. Note that the families {θ̃n : n ∈ N} and

{X̃n
k : n ∈ N, k ∈ {0, . . . ,mn}} are deterministic up to their initialization. In the setting (5.69),

the sequence (X̃n
0 )n∈N seems to converge to one of the con�gurations presented in Figure 5.4, whereas

the sequence (θn)n∈N does not converge towards the optimal parameters, see Figure 5.16. This exper-

iment highlights that the use of a Markov kernel in the SOUL dynamics cannot be avoided in order to

obtain the convergence of (θn)n∈N towards θ?.

(a) (b)

1 2 3 4 5

·104

0

0.2

0.4

0.6

0.8
(θn)n∈N
(θ̄n)n∈N

(c)

Figure 5.16: Noiseless SOUL The original target image is recalled in (a) and the limiting con�guration

obtained with the noiseless SOUL algorithm (5.69) is given in (b), whereas the non-convergence of the

error towards 0 can be observed in (c). The blue curve is the NRMSE of the sequence (θ̃n)n∈N and the

red curve is the NRMSE of the associated averaged sequence.

Another modi�cation of the SOUL algorithm can be considered replacing the gradient descent step

in (5.19) by another optimization methodology. Here, we focus on a popular extrapolation technique:

the Nesterov acceleration. The accelerated SOUL algorithm is then given by the following recursion
X̃n
k+1 = X̃n

k − γn
(∑p

i=1 θ̃
i
n∇Fi(X̃n

k ) +∇r(X̃n
k )
)

+
√

2γnZnk+1 and X̃n
0 = X̃

mn−1

n−1 ;

θ̃n+1/2 = ΠK

[
θ̃n − δn+1m

−1
n

∑mn
j=1 F (X̃n

j )
]

;

θ̃n+1 = θ̃n+1 + n−2
n+1

{
θ̃n+1/2 − θ̃n−1/2

}
,

(5.70)

where the sequence (Znk )n∈N,k∈{1,...,mn} is a sequence of independent d-dimensional zero mean Gaus-

sian random variables with covariance identity. This algorithm is not a descent algorithm but reaches the

optimal convergence rate O(1/n2) for convex functions in a deterministic setting, see [Nes04; Nes83].

The perturbed gradient case is treated in [AC15] in a general framework and in [For+18; Auj+19] when

the perturbation is given by a Monte Carlo approximation of the gradient. Recall that for any n ∈ N
we de�ne ηn = ∇L(θn)−m−1

n

∑mn
k=1 F (Xn

k ). The assumption on the summability of the sequence of
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perturbations (ηn)n∈N is of the form

∑
n∈N n ‖ηn‖ < +∞ in [AC15, Theorem 5.1]. This is a stronger

requirement than

∑
n∈N ‖ηn‖ < +∞ which is a common assumption for the convergence of the per-

turbed gradient descent, see [KY03, Section 5.2.1]. In this accelerated setting (5.70), letting mn = 1,

generates oscillatory sequences (θn)n∈N which do not reduce the NRMSE. However this oscillatory

e�ect can be counterbalanced with the use of a larger batch size, e.g.mn = 10, see Figure 5.17.

0.2 0.4 0.6 0.8 1

·104

0

2
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6

(a)

0.2 0.4 0.6 0.8 1

·104

0

1
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(b)

Figure 5.17: Nesterov acceleration The Nesterov accelerated version of SOUL (5.70) does not yield

a satisfactory sequence (θn)n∈N in terms of NRMSE (blue curve in (a)) nor a satisfactory averaged

sequence (θ̄n)n∈N (blue curve in (b)) with parameters δn = 10−1
, γn = 10−4

andmn = 1. If δn = 10−2

then the results are improved (red curves) or δn = 10−2 × n−0.5
(brown curve). The best results are

obtained if δn = 10−2 × n−0.5
and mn =

⌈
n0.5

⌉
(black curve).

Pretraining We �rst assess that this pretraining is a crucial step in our model in Figure 5.18. Indeed,

if for each convolutional layer ` and channel c, the pretrained �lters are replaced by �lters with weights

given by a Gaussian random variable which has same mean and same variance as the pretrained �lters

then no visually satisfying results are obtained.

output (with pretraining) output (no pretraining) exemplar image

Figure 5.18: In�uence of the pretraining The exemplar image on the right is a 512×512 color image.

We present the output of the SOUL algorithm on this image after 104
iterations. The hyperparameters

are �xed as follows: δn = 10−3
, γn = 10−5

and mn = 1.
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Color statistics It has been observed, in the case of microcanonical model, that using only CNN based

features is not su�cient to describe all the textures. For instance in [LGX16], the authors propose to add

spectrum constraints in order to reimpose some spatial arrangement in the images. Similarly we can

combine our neural network features with pixel-based features. In order to impose some color statistics

we set Fm
color : Rd → R3

and F cov
color : Rd → S3(R) de�ned for any i ∈ {1, 2, 3} by

F̃m
color(x)(i) = D−1

D∑
k=1

xi(k) ,

F̃ cov
color(x) = D−1

 x1 − F̃m
color(x)(1)

x2 − F̃m
color(x)(2)

x3 − F̃m
color(x)(3)

 x1 − F̃m
color(x)(1)

x2 − F̃m
color(x)(2)

x3 − F̃m
color(x)(3)

> ,

Fm
color(x) = F̃m

color(x)− F̃m
color(x0) , F cov

color(x) = F̃ cov
color(x)− F̃ cov

color(x0) .

(5.71)

where d = 3D and x = (x1, x2, x3) where xi corresponds to the i-th color channel of x. These features

add 9 more parameters to the model. We refer to this model as the CNN + color features. Doing so the

color statistics are imposed in expectation. It is also natural to ask that all the produced images have

exactly the same color statistics as the exemplar image, i.e. that the equality holds a.s.. This procedure

can be implemented by reimposing at each Langevin step the mean and the color covariance matrix of

the images. We call this model CNN + color projection. The e�ect of imposing, in expectation or a.s.,

the color constraints is investigated in Figure 5.19 and we observe that the proposed modi�cations do

reimpose the color statistics of order 1 and 2.

Arbitrary size texture synthesis

Arbitrary size synthesis We assess in Figure 5.20 that contrary to the algorithm proposed in [LZW16],

our implementation can produce arbitrary large images from one input. Indeed, if for any j ∈ {1, . . . ,M}
and k ∈ {1, . . . , cj}, Ãkj in (5.7) is given by a convolutional operator, (5.8) can be de�ned for any d ∈ N.

The number of features does not depend on the size of the image but only on the number of layers

selected in the network, since we average the neural network response in (5.8).

Highly regular textures In Section 5.2.4 we perform the comparison on highly regular textures. On

these textures our algorithm and the one of [GEB15] fail at reproducing visually satisfying images (with

the notable exception of the brick image for which [GEB15] yields excellent results). Adding spectral

constraints, as in [LGX16], yields more regular images although the results are still not satisfactory.

A solution is proposed in [GGL19] where autocorrelation features are considered at each layers. This

method yields the best visual results but the parameter space is much larger than the initial image space.

Comparison with [JBV16]

Structure of VGG19

The layers of the VGG19 network [SZ14] are given as follows (for each convolutional layer we indicate

(cj , nj)→ (cj+1, nj+1)):
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CNN CNN+ color CNN+ color projection exemplar image

Figure 5.19: Color models The SOUL algorithm with CNN features yields images with less contrast

than the exemplar images. To address this issue we either introduce color features in the model (CNN +

color), see (5.71), or reimpose the mean and color covariance of the image after each Langevin iteration

(CNN + color projection). The results are similar for both methods. The hyperparameters are �xed as

follows: δn = 10−3
, γn = 10−5

and mn = 1.

0. Convolutional layer, (3, n0)→ (64, n0)

1. ReLU layer

2. Convolutional layer, (64, n0)→ (64, n0)

3. ReLU layer

4. Max-pooling layer

5. Convolutional layer, (64, n0/2)→ (128, n0/2)

6. ReLU layer

7. Convolutional layer, (128, n0/2)→ (128, n0/2)

8. ReLU layer

9. Max-pooling layer

10. Convolutional layer, (128, n0/4)→ (256, n0/4)

11. ReLU layer

12. Convolutional layer, (256, n0/4)→ (256, n0/4)

13. ReLU layer

14. Convolutional layer, (256, n0/4)→ (256, n0/4)

15. ReLU layer

16. Convolutional layer, (256, n0/4)→ (256, n0/4)

17. ReLU layer

18. Max-pooling layer

19. Convolutional layer, (256, n0/8)→ (512, n0/8)

20. ReLU layer

21. Convolutional layer, (512, n0/8)→ (512, n0/8)

22. ReLU layer

23. Convolutional layer, (512, n0/8)→ (512, n0/8)

24. ReLU layer

25. Convolutional layer, (512, n0/8)→ (512, n0/8)

26. ReLU layer

27. Max-pooling layer

28. Convolutional layer, (512, n0/16)→ (512, n0/16)

29. ReLU layer

30. Convolutional layer, (512, n0/16)→ (512, n0/16)
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(a) (b)

Figure 5.20: Arbitrary size synthesis a texture of size 1024× 1024 (a) is generated from an exemplar

texture of size 512 × 512 (b). The hyperparameters are �xed as follows: δn = 10−3
, γn = 10−5

and

mn = 1.

31. ReLU layer

32. Convolutional layer, (512, n0/16)→ (512, n0/16)

33. ReLU layer

34. Convolutional layer, (512, n0/16)→ (512, n0/16)

35. ReLU layer

36. Max-pooling layer
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Gonthier-Gousseau Liu-Gousseau-Xia Gatys ours
exemplar image x0

Figure 5.21: Comparison with [LGX16] The images presented in the column “Gonthier-Gousseau”

corresponds to the features described in [GGL19] “Liu-Gousseau-Xia” are synthesized with the features

considered in [LGX16], the ones presented in the column “Gatys” are generated with [GEB15] and the

fourth column contains our results.

Jetchev-Bergmann-Vollgraf Gatys ours
exemplar image x0

Figure 5.22: Comparison with [JBV16] The images presented in the column “Jetchev-Bergmann-

Vollgraf” are synthesized with the algorithm introduced in [JBV16], the ones presented in the column

“Gatys” are generated with [GEB15] and the third column contains our results.
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Appendix A

Markov chains in general state
spaces

In this section, we present a compilation of some general results in the theory on Markov chains in

general state spaces. We follow closely the presentation of [Dou+18], see also [MT93a; MT92] and the

references therein. We consider the following functional autoregressive model: X0 ∈ Rd and for any

n ∈ N
Xn+1 = F (Xn) + Zn+1 , (A.1)

where (Zn)n∈N is a family of d-dimensional independent and identically distributed random variables

and F : Rd → Rd is measurable. We assume that Z0 admits a density with respect to the Lebesgue

measure h : Rd → [0,+∞). We consider Q : Rd×B(Rd)→ [0, 1] the Markov kernel associated with

(A.1) and given for any x ∈ Rd and A ∈ B(Rd) by

Q(x,A) =

∫
Rd
1A(F (x) + z)h(z)dz =

∫
A

h(z − F (x))dz . (A.2)

In what follows, we specify the general results we gather for these Markov chains. For simplicity, all the

results are stated on (Rd,B(Rd)) but most of them can be extended to any Polish space, i.e. any complete

and separable metric space. In what follows, we consider a Markov kernel K : Rd × B(Rd)→ [0, 1].

A.1 Small, petite and Doeblin sets

De�nition A.1.1. B ∈ B(Rd) is small if there exists a non-zero measure µ such that for any A ∈ B(Rd)
andm ∈ N? such that for any x ∈ B we have Km(x,A) ≥ µ(A).

This notion relaxes the atomic condition used, in combination with a renewal approach, to prove the

ergodicity of the Markov kernel [Dou+18, Chapter 8]. If F ∈ C(Rd,Rd) and h is lower semi-continuous

and positive then any compact set is small with measure µ = ελ, for some ε > 0.

De�nitionA.1.2. A ∈ B(Rd) is accessible if for any x ∈ Rd, there existsm ∈ N such thatKm(x,A) > 0.

De�nition A.1.3. K is irreducible if it admits an accessible small set.
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De�nitionA.1.4. A non-zero measure ν is said to be an irreducibility measure forK if for anyA ∈ B(Rd),
ν(A) > 0 implies that A is accessible. A non-zero measure ν is said to be a maximal irreducibility measure
if it is an irreducibility measure such that for any A ∈ B(Rd), if A is accessible then ν(A) > 0

Maximal irreducibility measures always exist provided that irreducibility measures exist.

PropositionA.1.5. if there exists an irreducibilitymeasure forK then there exists amaximal irreducibility
measure for K. In addition, all maximal irreducibility measures are equivalent.

Assume that h > 0, lower semi-continuous and F ∈ C(Rd,Rd) then [Dou+18, Proposition 9.1.9]

implies that λ is an irreducibility measure for Q de�ned by (A.2) and one can show that λ is maximal.

In fact, irreducibility measures fully characterize the irreducibility of K.

Theorem A.1.6. K is irreducible if and only if it admits an irreducibility measure.

Irreducibility gives information on the invariant probability measure π (if it exists).

Theorem A.1.7. Assume that there exists π an invariant probability measure for K and that K is irre-
ducible. Then the following holds.

(a) π is a maximal irreducibility measure.

(b) π is unique.

Therefore, under the previous conditions on h and F we obtain that, if the invariant probability

measure exists, it is unique and equivalent to the Lebesgue measure. We now turn to generalizations of

the notion of small sets : the petite sets and the Doeblin sets.

De�nition A.1.8. Let a be probability distribution on N. Let Ka be the a-sampled kernel given for any
x ∈ Rd and A ∈ B(Rd) by

Ka(x,A) =
∑
n∈N

a(n)Kn(x,A) .

De�nition A.1.9. C ∈ B(Rd) is petite if there exists a non-zero measure µ such that for any A ∈ B(Rd)
and a probability distribution on N, a, such that for any x ∈ C we have Ka(x,A) ≥ µ(A).

It is clear that any small set is petite. The converse is not true in general. Another interesting

property of the petite sets is that, contrary to the small sets, they are stable under union.

De�nition A.1.10. We say that K is strongly aperiodic if there exists B and a non-zero measure µ such
that for any x ∈ B and A ∈ B(Rd), K(x,A) ≥ µ(A) and µ(B) > 0

Under the previous assumptions on h and F we obtain that K is strongly aperiodic.

Theorem A.1.11. If K is irreducible and strongly aperiodic then any petite set is small.

The strongly aperiodicity assumption can be relaxed into an aperiodicity assumption [Dou+18, Def-

inition 9.3.1]. In addition, we have the following properties

Proposition A.1.12. Assume that K is irreducible then the following hold.

(a) Rd =
⋃
n∈N Bn with Bn small for any n ∈ N ;
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(b) Rd =
⋃
n∈N Cn with Cn petite and Cn ⊂ Cn+1 for any n ∈ N.

We introduce our last condition (which is in fact the minimum requirement in our ergodicity results

for the total variation).

De�nition A.1.13. D ∈ B(Rd) is a Doeblin set if there exists m ∈ N and ε > 0 such that for any
x, y ∈ D,

‖Km(x, ·)−Km(y, ·)‖TV ≤ 1− ε .

This last condition is the one we consider in Section 4.1 in order to derive explicit convergence

rates for the Markov kernel K. Note that [DM19] obtain sharp Doeblin set conditions in the case of

autoregressive models in the case where F is Lipschitz and (Zn)n∈N is a sequence of Gaussian random

variable. We can relate the Doeblin sets to the small sets.

Proposition A.1.14. The following hold.

(a) any small set is a Doeblin set ;

(b) if K is irreducible and strongly aperiodic then any Doeblin set is a small set.

Once again, the strong aperiodicity assumption can be relaxed into an aperiodicity assumption

[Dou+18, Lemma 18.2.7].

A.2 Recurrence and Harris recurrence

De�nition A.2.1. A ∈ B(Rd) is recurrent if for any x ∈ A, Ex[NA] =
∑
n∈N Kn(x,A) = +∞, where

NA is the number of visits to A.

De�nition A.2.2. A ∈ B(Rd) is Harris recurrent if for any x ∈ A, P(NA = +∞) = 1

Note that for atomic chains the de�nitions coincide.

De�nitionA.2.3. K is recurrent (or Harris recurrent) if any accessible set is recurrent (or Harris recurrent).

For general chain it might be di�cult to prove directly that the chain is recurrent or Harris recurrent.

The following Foster-Lyapunov drift condition gives an easy criterion.

Proposition A.2.4. Let V : Rd → [0,+∞). Assume that for anyM ≥ 0, {x ∈ Rd : V (x) ≤ M} is
petite and that there exists a petite set C and b ≥ 0 such that for any x ∈ Rd,

KV (x) ≤ V (x) + b1C(x) .

Then K is Harris recurrent.

We now establish some consequence of the recurrence and Harris-recurrence of a Markov kernel.

TheoremA.2.5. Assume thatK is irreducible and recurrent. Then,K admits a non-zero invariant measure
λ, unique up to a positive constant.

Theorem A.2.6. Assume that K is irreducible, aperiodic, Harris-recurrent and admits an invariant prob-
ability measure π, then for any ξ ∈P(Rd),

lim
n→+∞

‖ξKn − π‖TV = 0 .
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A.3 Feller kernels

De�nition A.3.1 (Feller kernel). K is Feller if for any f ∈ Cb(Rd,R), Kf ∈ Cb(Rd,R). K is strongly
Feller if for f measurable and bounded, Kf ∈ Cb(Rd,R).

By [Dou+18, Lemma 12.1.5], Q de�ned by (A.2) is a Feller kernel if F ∈ C(Rd,Rd). In addition, if

h ∈ Cb(Rd, (0,+∞)), then Q is strongly Feller.

De�nition A.3.2 (T -kernel). K is a T -kernel if there exists a be a probability distribution on N and a
kernel T such that:

(a) for any x ∈ Rd, T(x,Rd) > 0,

(b) for any A ∈ B(Rd), T (·,A) is lower semi-continuous,

(c) for any x ∈ Rd and A ∈ B(Rd), Ka(x,A) ≥ T(x,A).

Theorem A.3.3. Let K be an irreducible kernel. Then, every compact set is petite if and only if K is a
T-kernel.

The last theorem allows us to ensure the existence of an invariant probability measure for Feller

kernels under a mild Foster-Lyapunov drift condition.

Theorem A.3.4. Assume that K is a Feller kernel and that there exist V : Rd → [0,+∞), f : Rd →
[0,+∞) with lim‖x‖→+∞ V (x) = +∞ and b ≥ 0 such that for any x ∈ Rd,

KV (x) + f(x) ≤ V (x) + b .

Then K admits an invariant probability measure.
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Appendix B

Stochastic Di�erential Equations

Let (Ω,F ,P) be some probability space. In this section, we present some basic results on Stochastic

Di�erential Equations. Most of the results are extracted from [IW89; SV06; EK86; KS91].

In what follows we let d ∈ N, b ∈ C([0,+∞) × Rd,Rd) and S ∈ C([0,+∞) × Rd,Md(R)). We

consider the following Stochastic Di�erential Equation

dXt = b(t,Xt)dt+ S(t,Xt)dBt . (B.1)

We denote by R̄d = Rd ∪ {∞} the one-point compacti�cation of Rd, see [Kel75, p.149]. This

compacti�cation will allow us to de�ne explosive solutions of SDEs, similarly to [IW89]. There exists a

topology τ on R̄d such that (i) R̄d is compact, (ii) the usual topology of Rd is contained in the one of τ .

Since R̄d is a topological space we can de�ne its associated Borel sigma-�eld B(R̄d).

We extend the classical notion of Wiener space in order to take into account the explosion phe-

nomenon. For any w : [0,+∞)→ R̄d, we de�ne

ew = inf {t ∈ [0,+∞) : w(t) =∞} .

Note that for any t ≤ ew , w|[0,t] ∈ C([0, t] ,Rd). We denote W̄ d([0,+∞)) the extended Wiener space

de�ned as follows

W̄ d([0,+∞)) =
{
w ∈ C([0,+∞) , R̄d) : for any t ≥ ew , w(t) =∞

}
.

We de�ne the following sigma-�eld B(W̄ d) on W̄ d
,

B(W̄ d) = σ
({
w ∈ W̄ d : n ∈ N, (ti)i∈{1,...,n} ∈ [0,+∞)

n
,

(Ai)i∈{1,...,n} ∈ B(R̄d), for any i ∈ {1, . . . , n}, w(ti) ∈ Ai
})

.

For any (W̄ d,B(W̄ d))-valued random variable X, we associate eX given for any ω ∈ Ω by, eX(ω) =
eX(ω). Note that eX is [0,+∞]-valued random variable.

B.1 Existence of solutions

De�nition B.1.1. We say that (B.1) admits a weak solution, if there exist a probability space (Ω,F ,P), a
�ltration (Ft)t≥0, a (Ft)t≥0-Brownian motion (Bt)t≥0 and X such that
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(a) X : (Ω,F)→ (W̄ d,B(W̄ d)),

(b) X is (Ft)t≥0-adapted, i.e. for any t ≥ 0, X(t) : (Ω,Ft)→ (R̄d,B(R̄d)),

(c) there exists A ∈ F such that P (A) = 1 and for any ω ∈ A, and t ≤ eX(ω),

X(t) = X(0) +

∫ t

0

b(s,Xs)ds+

∫ t

0

S(s,Xs)dBs .

Note that in the previous de�nition, the probability space, the �ltration and the Brownian motion

are not �xed. We denote (Ω,F , (Ft)t≥0,B,X) a weak solution of (B.1). In the following de�nition, we

consider the problem of the existence of solutions of (B.1) in the case the probability space, the �ltrations

and the Brownian motion are given beforehand.

De�nition B.1.2. We say that (B.1) admits a strong solution, if for any probability space (Ω,F ,P), �l-
tration (Ft)t≥0, and (Ft)t≥0-Brownian motion (Bt)t≥0 there exists X such that

(a) X : (Ω,F)→ (W̄ d,B(W̄ d)),

(b) X is (Ft)t≥0-adapted, i.e. for any t ≥ 0, X(t) : (Ω,Ft)→ (R̄d,B(R̄d)),

(c) there exists A ∈ F such that P (A) = 1 and for any ω ∈ A, and t ≤ eX(ω),

X(t) = X(0) +

∫ t

0

b(s,Xs)ds+

∫ t

0

S(s,Xs)dBs .

De�nition B.1.1 allows for a martingale formulation of the SDE, see [SV06, Chapter 6]. Using this

martingale formulation, we obtain weak solutions under mild conditions on the coe�cients b and S.

However, the weak formulation is not suitable if one wants to compare solutions of SDEs. Indeed,

assume that the drift term b depends on some parameter η ∈ R, bη and denote Xη
the solution of (B.1).

If (B.1) only admits weak solutions then E
[
‖Xη1(t)−Xη2(t)‖2

]
, with η1, η2 ∈ R and t ≥ 0, is not

de�ned, since the solutions may not be de�ned on the same probability spaces. In this case we need to

consider strong solutions as in De�nition B.1.2.

The following result ensures the existence of weak solutions. Recall that b ∈ C([0,+∞)× Rd,Rd)
and S ∈ C([0,+∞)× Rd,Md(R)).

Theorem B.1.3. For any x ∈ Rd, there exists a weak solution (Ω,F , (Ft)t≥0,X) such that X(0) = x
a.s..

If there exists L ≥ 0 such that for any t ≥ 0 and x, y ∈ Rd

‖b(t, x)− b(t, y)‖ ≤ L ‖x− y‖ , ‖S(t, x)− S(t, y)‖ ≤ L ‖x− y‖ ,

then strong existence results can be derived, see [IW89, p.166], using a proof similar to the one of

the Cauchy-Peano existence theorem for ordinary di�erential equations. In the following section, we

remark that one may construct strong solutions from weak solutions using some uniqueness results.

B.2 Uniqueness and from weak to strong solutions

We start by introducing some de�nition of uniqueness for SDEs.
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De�nition B.2.1. We say that the pathwise uniqueness of solutions holds for (B.1) if for any solutions
(Ω,F , (Ft)t≥0,B,X) and (Ω,F , (Ft)t≥0, B̃, X̃) such that X(0) = X̃(0) a.s., then X = X̃ a.s..

If there exist a weak solution to (B.1) and the pathwise uniqueness of solutions holds then we can

go from weak to strong solutions.

Proposition B.2.2. Assume that (B.1) admits a weak solution and that the pathwise uniqueness of solu-
tions holds. Then (B.1) admits a strong solution.

In the following proposition, we give conditions on the SDE coe�cients so that the pathwise unique-

ness holds.

Proposition B.2.3. Assume that for any t ≥ 0 and n ∈ N, there exists Ln ≥ 0 such that for any
x, y ∈ B̄(0, n),

‖b(t, x)− b(t, y)‖+ ‖S(t, x)− S(t, y)‖ ≤ Ln ‖x− y‖ .

Then, the pathwise uniqueness of solutions holds for (B.1). Hence, using Proposition B.2.2 and Theorem B.1.3,
(B.1) admits a pathwise unique, strong solution.

This existence and uniqueness condition on the coe�cient on the SDE is similar to the ones we

impose to ordinary di�erential equations in order for the Picard-Lindelöf existence and uniqueness

theorem to hold. However, the last proposition does not give information on the explosion time eX. In

most of our work, we need the strong solution to be global, i.e. for any (Ω,F), (Ft)t≥0 and (Bt)t≥0,

eX =∞.

B.3 Global solutions

The globality of the strong solution of (B.1) is controlled by the growth of the coe�cients. We give a

�rst, easy to check, criterion.

Proposition B.3.1. Assume that (B.1) admits a strong solution and that there exists C ≥ 0 such that for
any x ∈ Rd and t ≥ 0

‖b(t, x)‖+ ‖S(t, x)‖ ≤ C(1 + ‖x‖) .

Then each strong solution is global.

However, it may happen that this last sub-linearity condition is too restrictive for our purposes. In

this case we turn to the stability theorem of SDE. The following theorem is a slight modi�cation of

[Kha11, Theorem 3.5].

Proposition B.3.2. Assume that for any t ≥ 0 and n ∈ N, there exists Ln ≥ 0 such that for any
x, y ∈ B̄(0, n),

‖b(t, x)− b(t, y)‖+ ‖S(t, x)− S(t, y)‖ ≤ Ln ‖x− y‖ .

In addition, assume that there exists V ∈ C2(Rd, [0,+∞)) such that lim‖x‖→+∞ V (x) = +∞ and that
there exists m ∈ R such that for any t ≥ 0 and x ∈ Rd

〈∇V (x), b(t, x)〉+ (1/2)〈∇2V (x), SS>(t, x)〉 ≤ mV (x) .

Then (B.1) admits a global, pathwise unique, strong solution.
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B.4 Invariant probability measures

In this section we assume that (B.1) is time-homogeneous, i.e. we consider

dXt = b(Xt)dt+ S(Xt)dBt ,

with b ∈ C(Rd,Rd) and S ∈ C(Rd,Md(R)). In addition, we assume that for any x ∈ Rd, (B.1) admits

a global, pathwise unique, strong solution Xx
such that Xx

0 = x. In this case, we consider (Pt)t≥0 such

that for any t ∈ Rd, x ∈ Rd and A ∈ B(Rd)

Pt(x,A) = P(Xx
t ∈ A) . (B.2)

For any f ∈ Cb(Rd,R), π ∈P(Rd), x ∈ Rd, A ∈ B(Rd) and t ≥ 0 we de�ne

Ptf(x) =

∫
Rd
f(y)Pt(x, dy) , πP(A) =

∫
Rd

P(y,A)dπ(y) .

We say that π is an invariant probability measure for (Pt)t≥0 if for any t ≥ 0, πPt = π. We now aim

at deriving an invariant probability measure for (Pt)t≥0 given the coe�cients b and S. In order to do

so, most authors rely on the theory of semi-groups on Banach spaces, see [EK86, Chapter 1]. We recall

that (C0(Rd,R), ‖ · ‖∞) is the Banach space of vanishing continuous functions, i.e. f ∈ C(Rd,R) and

lim‖x‖→+∞ f(x) = 0. For any f ∈ C0(Rd,R), we denote ‖f‖∞ = supx∈Rd |f(x)|.

De�nition B.4.1 (Semi-group and Feller semi-group). A semi-group on a Banach space E is a family of
bounded linear operators (At)t≥0 such that for any t, s ≥ 0, At+s = AtAs, A0 = Id and for any f ∈ E,
limt→0{At(f) − f} = 0. A semi-group is a contraction semi-group if for any t ≥ 0, ‖At‖ ≤ 1. A Feller
semi-group is a contraction semi-group for the Banach space C0(Rd,R).

In order to derive useful results on the invariant probability of the family of Markov kernels (Pt)t≥0

de�ned by (B.2) we must assume that (Pt)t≥0 is a Feller semi-group. The following proposition gives

conditions on the coe�cients b and S under which this is the case, see [RY99, Chapter IX, Theorem 2.5].

Proposition B.4.2. If there exists L ≥ 0 such that for any x, y ∈ Rd

‖b(x)‖+ ‖S(x)‖ ≤ L , ‖b(x)− b(y)‖+ ‖S(x)− S(y)‖ ≤ L ‖x− y‖ ,

then (Pt)t≥0 is a Feller semi-group.

We also introduce the in�nitesimal operator. Let (Pt)t≥0 be given by (B.2) and assume that for any

t ≥ 0, Pt is an operator on C0(Rd,R). For any f ∈ C0(Rd,R) such that the limit is de�ned, we let

Af = limt→0(1/t)(Ptf −f). We denote by D(A) the subspace of C0(Rd,R) such that the limit exists.

The following result, extracted from [Dur16], allows to explicitly compute the invariant probability

measure of the family of Markov kernels (Pt)t≥0.

Proposition B.4.3. Let π ∈ P(Rd). Assume that (Pt)t≥0 is a Feller semi-group such that D(A) is an
algebra and is dense in C0(Rd,R). In addition, assume that for any f ∈ D(A),∫

Rd
(Af)(x)dπ(x) = 0 .

Then, π is an invariant probability measure for (Pt)t≥0.

Proof. Using [RY99, Proposition 1.5], we have that (Pt)t≥0 satis�es the positive maximum principle, i.e.
for any f ∈ D(A) and for any x0 ∈ Rd such that f(x0) = supx∈Rd f(x) ≥ 0, we have Af(x0) ≤ 0.

Then the proof follows from [EK86, Theorem 9.17].
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Titre: Statistiques non locales dans les images : modélisation, estimation et échantillon-
nage

Mots clés: A contrario, redondance spatiale, maximum d’entropie, optimisation stochastique,
algorithme de Langevin, convergence de chaîne de Markov

Résumé: Dans cette thèse, on étudie d’un
point de vue probabiliste deux statistiques non
locales dans les images : la redondance spatiale
et les moments de certaines couches de réseaux
de neurones convolutionnels. Plus particulière-
ment, on s’intéresse à l’estimation et à la dé-
tection de la redondance spatiale dans les im-
ages naturelles et à l’échantillonnage de modèles
d’images sous contraintes de moments de sorties
de réseaux de neurones.

On commence par proposer une défini-
tion de la redondance spatiale dans les im-
ages naturelles. Celle-ci repose sur une anal-
yse Gestaltiste de la notion de similarité ainsi
que sur un cadre statistique pour le test
d’hypothèses via la méthode a contrario. On
développe un algorithme pour identifier cette
redondance dans les images naturelles. Celui-
ci permet d’identifier les patchs similaires dans
une image. On utilise cette information pour
proposer de nouveaux algorithmes de traitement
d’image (débruitage, analyse de périodicité).

Le reste de cette thèse est consacré à la mod-
élisation et à l’échantillonnage d’images sous
contraintes non locales. Les modèles d’images
considérés sont obtenus via le principe de max-
imum d’entropie. On peut alors déterminer la
distribution cible sur les images via une procé-
dure de minimisation. On aborde ce problème

en utilisant des outils issus de l’optimisation
stochastique.

Plus précisément, on propose et analyse un
nouvel algorithme pour l’optimisation stochas-
tique : l’algorithme SOUL (Stochastic Opti-
mization with Unadjusted Langevin). Dans
cette méthodologie, le gradient est estimé
par une méthode de Monte Carlo par chaîne
de Markov (ici l’algorithme de Langevin non
ajusté). Les performances de cet algorithme
repose sur les propriétés de convergence er-
godiques des noyaux de Markov associés aux
chaînes de Markov utilisées. On s’intéresse donc
aux propriétés de convergence géométrique de
certaines classes de modèles fonctionnels autoré-
gressifs. On caractérise précisément la dépen-
dance des taux de convergence de ces modèles
vis à vis des constantes du modèle (dimension,
régularité, convexité...).

Enfin, on applique l’algorithme SOUL au
problème de synthèse de texture par maximum
d’entropie. On étudie les liens qu’entretient
cette approche avec d’autres modèles de max-
imisation d’entropie (modèles macrocanoniques,
modèles microcanoniques). En utilisant des
statistiques de moments de sorties de réseaux
de neurones convolutionnels on obtient des ré-
sultats visuels comparables à ceux de l’état de
l’art.
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Title: Non-local statistics in images: modelisation, estimation and sampling

Keywords: A contrario, spatial redundancy, maximum of entropy, stochastic optimization,
Langevin algorithm, Markov chain convergence

Abstract: In this thesis we study two non-
local statistics in images from a probabilistic
point of view: spatial redundancy and convolu-
tional neural network features. More precisely,
we are interested in the estimation and detec-
tion of spatial redundancy in natural images.
We also aim at sampling images with neural net-
work constraints.

We start by giving a definition of spatial re-
dundancy in natural images. This definition re-
lies on two concepts: a Gestalt analysis of the
notion of similarity in images, and a hypothe-
sis testing framework (the a contrario method).
We propose an algorithm to identify this redun-
dancy in natural images. Using this method-
ology we can detect similar patches in images
and, with this information, we propose new al-
gorithms for diverse image processing tasks (de-
noising, periodicity analysis).

The rest of this thesis deals with sampling
images with non-local constraints. The image
models we consider are obtained via the maxi-
mum entropy principle. The target distribution
is then obtained by minimizing an energy func-

tional. We use tools from stochastic optimiza-
tion to tackle this problem.

More precisely, we propose and analyze a
new algorithm: the SOUL (Stochastic Opti-
mization with Unadjusted Langevin) algorithm.
In this methodology, the gradient is estimated
using Monte Carlo Markov Chains methods. In
the case of the SOUL algorithm we use an unad-
justed Langevin algorithm. The efficiency of the
SOUL algorithm is related to the ergodic prop-
erties of the underlying Markov chains. There-
fore we are interested in the convergence proper-
ties of certain class of functional autoregressive
models. We characterize precisely the depen-
dency of the convergence rates of these mod-
els with respect to their parameters (dimension,
smoothness, convexity).

Finally, we apply the SOUL algorithm to
the problem of examplar-based texture synthe-
sis with a maximum entropy approach. We draw
links between our model and other entropy max-
imization procedures (macrocanonical models,
microcanonical models). Using convolutional
neural network constraints we obtain state-of-
the art visual results.
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