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Abstract

The purposes of this thesis is to understand spaces which carry metrics of positive
scalar curvature. There are several topological obstructions for a smooth manifold to
have a complete metric of positive scalar curvature. Our goal is to find all obstructions
for contractible 3-manifolds and closed 4-manifolds.

In dimension 3, we are concerned with the question whether a complete contractible
3-manifold of positive scalar curvature is homeomorphic to R3. The topological structure
of contractible 3-manifolds could be complicated. For example, the Whitehead manifold
is a contractible 3-manifold which is not homeomorphic to R?.

We first prove that the Whitehead manifold does not carry a complete metric of
positive scalar curvature. This result can be generalised to the so-called genus one case.
Precisely, we show that no contractible genus one 3-manifold admits a complete metric of
positive scalar curvature.

We then study the fundamental group at infinity, 7{°, and its relationship with the
existence of positive scalar curvature metric. The fundamental group at infinity of a
manifold is the inverse limit of the fundamental groups of complements of compact subsets.
In this thesis, we give a partial answer to the above question. We prove that a complete
contractible 3-manifold with positive scalar curvature and trivial 7° is homeomorphic to
R3.

Finally, we study closed aspherical 4-manifolds. Together with minimal surface theory
and the geometrisation conjecture, we show that no closed aspherical 4-manifold with non-
trivial first Betti number carries a metric of positive scalar curvature.



Résumé

Un des objectifs de ce mémoire est de comprendre les espaces munis de métriques
complete de courbure scalaire positive. Il y a plusieurs obstructions topologiques a
I'existence d’une métrique compléte de courbure scalaire positive. Notre but est de trou-
ver toutes les obstructions pour les variétés contractiles de dimension 3 et les variétés
fermées de dimension 4.

En dimension 3, nous considérons la question de savoir si une variété contractile
compleéte de courbure scalaire positive est homéomorphe & R3. La structure topologique
des variétés contractiles de dimension 3 est assez compliquée. Par exemple, Whitehead a
construit une variété dimension 3 contractile qui n’est pas homéomorphe & R3.

Nous prouvons, tout d’abord, que la variété de Whitehead n’a pas de métrique complete
de courbure scalaire positive. Ce résultat peut étre généralisé au cas dit de genre un.
Précisément, nous montrons qu’aucune variété contractile de dimension 3 et de genre un
ne possede de métrique complete de courbure scalaire positive.

Nous étudions ensuite le groupe fondamental a 'infini, 77°, et son lien avec 'existence
d’une métrique de courbure scalaire positive. Le groupe fondamental a l'infini d’une
variété est la limite projective des groupes fondamentaux des complémentaires des sous-
ensembles compacts. Dans ce mémoire, nous apportons une réponse partielle a la question
évoquée plus haut. Nous prouvons qu’une variété complete de dimension 3 de courbure
scalaire positive dont le groupe 7{° est trivial est homéomorphe & R3.

Enfin, nous étudions les variétés fermées asphériques de dimension 4. En utilisant
la théorie des surfaces minimales et la conjecture de géométrisation, nous montrons
qu’aucune variété fermée asphérique de dimension 4 avec un premier nombre de Betti
non trivial ne possede de métrique a courbure scalaire positive.

vi
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Introduction

Riemannian geometry aims to study Riemannian manifolds which are smooth man-
ifolds with metric structures. One of the fundamental questions is to understand the
relationship between the curvature, which is locally defined, and the global properties of
smooth manifolds. The earliest result is the classical theorem of Gauss and Bonnet, which
links the curvature and the Euler number, a topological invariant. This theorem implies,
for example, that any compact surface of genus g > 0 has no metric of positive curvature.

In higher dimensions, the existence of metrics of positive curvature becomes much more
complicated, because there are several topological obstructions for a smooth manifold to
have a complete metric of positive curvature.

We then take 3-manifolds to explain this fact.

(M3, g) The compact case The non-compact case
K >0 R3
—_ S3/T
Ric >0 R3
Scal > 0 | (#1_,S?/T3)#(#,_,S' x §?) ?
TABLE 1.

For a compact Riemannian 3-manifold, there is a unique short-time solution to the
so-called (normalized) Ricci flow, introduced by Hamilton [Ham82]. If the manifold has
positive Ricci curvature, the short-time solution can be extended to be the long-time
solution. The limit of this flow is a metric of constant sectional curvature. That is to
say, if a compact 3-manifold has positive Ricci curvature, then it is homeomorphic to the
quotient S3/T" of the sphere S? by a finite subgroup I' = O(4). Such a quotient is called a
spherical 3-manifold.

The next major contribution to the subject was made by Perelman |[Per02a.Per02b)
Per03| who developed the Ricci flow with surgery. One surprising and beautiful result
of this study is a proof that a compact 3-manifold of positive scalar curvature is home-
omorphic to a connected sum of some spherical 3-manifolds and some copies of St x S?
(See also [BBB™10] and [MTO07]). Its generalization to the non-compact case is due to
Bessieres, Besson, and Maillot [BBM11].
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For the non-compact case, the first result shown by Gromoll and Meyer [GM69] was
that a complete non-compact 3-manifold of positive sectional curvature is homeomorphic
to R3 .

The next step in the development of this subject is due to Schoen and Yau [SY82] who
used minimal surfaces theory and the splitting theorem [CGT71] to study the topology
of 3-manifolds. They proved that a complete non-compact 3-manifold of positive Ricci
curvature is homeomorphic to R3.

Although all of these works are very impressive, they still left the open question (See
Problem 27 in [Yau82)):

How to classify non-compact 3-manifolds with positive scalar curvature, up to diffeo-
morphism?

The goal now is to find all obstructions and to characterize all open 3-manifolds with
positive scalar curvature. Although Gromov-Lawson |GL83| and Schoen-Yau [SY82]
gave several topological obstructions, all those obstruction classes both vanish for con-
tractible 3-manifolds.

Let us consider contractible 3-manifolds. For example, R? admits a complete metric
g1 of positive scalar curvature, where
3 3
g1 = Z(dxi)Q + (Z ridx;)?.
i=1 i=1
So far, it is the only known contractible 3-manifold which admits a complete metric of
positive scalar curvature. This suggests the following question:

Is any complete contractible 3-manifold of positive scalar curvature homeomorphic to
R3 ?

A complete contractible 3-manifold of uniformly positive scalar curvature (i.e. its
scalar curvature is bounded away from zero) is homeomorphic to R3. It was first proved
by Gromov and Lawson |[GL83|. Recently, it was generalized by Chang, Weinberger
and Yu [CWY10], to contractible 3-manifolds whose scalar curvature is uniform positive
outside a compact set. Using minimal surfaces theory, we further generalize it.

THEOREM A. (See Theorem [3.3.12] and Theorem 1.1 in [Wan19c|) Assume that
(M3, g) is a contractible complete 3-manifold. If there exists a number a € (—o0,2) such
that

liminf r*(z)k(x) > 0,
r(z)—00

where r(x) is the scalar curvature of (M, g) and r(x) is the distance function from some
point 0 € M to x, then M? is diffeomorphic to R3.

The proof follows the argument of Gromov and Lawson (See Corollary 10.9 in [GL83]).

0.1. Contractible 3-manifolds

Thurston’s Geometrisation conjecture [Per02a,Per02b,Per03| (See also [BBB*10|
and [M'T07]) shows that for a compact 3-manifold, its topology is fully determined by its
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homotopy type. However, the topological structure of contractible 3-manifolds is much
more complicated. For example, the Whitehead manifold (constructed in [Whi35]) is a
contractible 3-manifold but not homeomorphic to R3.

In order to explain the construction of the Whitehead manifold, let us introduce the
concept of a meridian curve. A meridian v < dN of a closed solid torus N is an embedded
closed curve which is null-homotopic in N but not contractible in dN. A meridian disc
(D,0D) < (N,0N) of the solid torus N is an embedded disc whose boundary is a meridian
of N. (See Definition

The Whitehead manifold is constructed from the Whitehead link. Recall that the
Whitehead link is a link with two components illustrated in the following figure:

L)

FiGure 0.1.

Choose a closed unknotted solid torus 7} in S3. Its complement inside S® is another
solid torus. Take a second solid torus T3 inside 77 so that the core K5 of T3 forms a
Whitehead link with any meridian of 7} as in the following figure.

FIGURE 0.2.
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The solid torus 75 is unknotted in S®. Then, embed T} inside 75 in the same way as
Ty lies into 7} and so on infinitely many times. Define the set T, = (), Tk, called the
Whitehead continuum.

The Whitehead manifold is defined as Wh := S3\T,, which is a non-compact 3-
manifold without boundary.

REMARK. Since each T}, is unknotted in S3, its complement N}, is a solid torus. There-
fore, the Whitehead manifold is an increasing union of solid tori {N.},. Each Ny is em-
bedded inside N, in the same way as T5 lies in T}. This follows from the symmetry of

the Whitehead link.

Variation on the construction, like changing the knot at each step k, gives a family
of so-called genus one 3-manifold, introduced in [MJ62|. Their construction is involved
with the geometric index.

If N < N are solid tori, the geometric index, I(N',N), of N' in N is equal to the
minimal number of points of the intersection of the core of N’ with a meridian disc of
N. A genus one 3-manifold is the ascending union of solid tori {N}, so that for each k,
Ny < Int Ny and the geometric index of Ny in Ng, 1 is not equal to zero. (See Definition

1.3.8] Definition [1.3.12) and [GRW18))

For example, Wh is a contractible genus one 3-manifold. The geometric index I( Ny, Ni11)
equals two for each k, where N}, is illustrated as above. Remark that R? is not genus one
but genus zero, since it is an increasing union of 0-handlebodies (i.e. 3-balls).

An interesting question is whether the Whitehead manifold admits a complete metric
of positive scalar curvature. In this thesis, we answer negatively:

THEOREM Bj. (See Theorem 1.1 of [Wan19a)]) The Whitehead manifold has no com-
plete metric of positive scalar curvature.

This result can be generalized to the genus one case.

THEOREM By. (See Theorem 1.2 of [Wan19al) No contractible genus one 3-manifold
has a complete metric of positive scalar curvature.

Combining with Kazdan’s work [Kaz82|, we generalize these results to the nonnega-
tive scalar curvature.

COROLLARY. (See Corollary [6.4.3) No contractible genus one 3-manifold admits a
complete metric of non-negative scalar curvature.

The existence of complete metrics of positive scalar curvature is related with the
fundamental group at infinity. The fundamental group 7{° at infinity of a connected
space is the inverse limit of the fundamental groups of complements of compact subsets
(See Definition [I.1.9).

The triviality of the fundamental group at infinity is not equivalent to the simply-
connectedness at infinity(See Definition . For example, the Whitehead manifold is
not simply-connected at infinity but its fundamental group at infinity is trivial.

We prove the following:
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THEOREM C'. (See Theorem 1.1 of [Wan19b]) A contractible 3-manifold with positive
scalar curvature and trivial 73° is homeomorphic to R3.

This result can also be generalised to the non-negative scalar curvature.

COROLLARY. (See Corollary|(6.4.4)) A contractible 3-manifold with non-negative scalar
curvature and trivial 7{° is homeomorphic to R?.

However, there are uncountably many mutually non-homeomorphic contractible 3-
manifolds with non-trivial 7{°. In Chapter 1.3, we construct such a manifold and show
that this manifold has no complete metric of positive scalar curvature (See Theorem

1.3.15).

0.2. The idea of the proof of Theorem

It is classical that minimal surfaces theory gives topological information about 3-
manifolds. This fact appeared in the articles of Schoen and Yau [SY82,|SY79b|SY79a]
as well as Gromov and Lawson’s [GL83| and various other works.

For the proof of Theorem [By], we argue by contradiction. Suppose that (M, g) is
a complete Riemannian manifold of positive scalar curvature, where M := | J, Nj is a
contractible genus one 3-manifold and the family {Ny}, of solid tori is assumed as in

Theorem [L.3.13]

0.2.1. Minimal surfaces and Limits. As in [SY82] and |[GL83|, our first step is
to construct minimal surfaces. Choose v, < 0N as a meridian of Ny (See Definition
1.2.1)). Roughly, it is spanned by an embedded stable minimal disc €. Its existence is
ensured by the result of Meeks and Yau (See [MIY80, MIY82] or Theorem when
the boundary ¢V is mean convex.

Let us consider the simplest case when 2, converges to a connected stable minimal
surface X.

On the one side, we show that the number of connected components of € N Ny
intersecting Ny goes to infinity as k goes to infinity (See Chapter 2.1). Therefore, there
are infinitely many connected components of ¥ n Ny intersecting Ny. By a result of
Meeks and Yau (See Theorem anc [MIY80]), each of these components contains a
definitive amount of area. Hence, > n N; has infinite area.

On the other side, since (M, g) has positive scalar curvature, not only ¥ is conformally
diffeomorphic to R? (See Corollary , but also its geometry is constrained by the
so-called extrinsic Cohn-Vossen inequality:

THEOREM D. (See Theorem [3.3.10{ and [Wan19a]) Let X2 < (M?,g) be a complete
(non-compact) immersed stable minimal surface. If the complete manifold (M3, g) has
non-negative scalar curvature (k(z) = 0), then

Jz k(z) + 1/2|A]Pdv < 27¢ (%)

where |A]? is the square norm of the second fundamental form of ¥. Moreover, if k > 0
and X is embedded, then X is a properly embedded plane.
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Since the scalar curvature is bounded away zero on Ni, this is in contradiction with
the infinite area contained in ¥ N Vj.

If 0Ny is not mean convex, we modify the metric in a smaller tubular neighborhood
of dN}, so that for the new metric, it becomes mean convex. Then () is stable minimal
for the new metric and for the original away from the neighborhood 0Ny, (for example,
near Ny), which is sufficient for our proof.

0.2.2. Properties of the limit surface. Generally, €2, sub-converges to a minimal
lamination . := | J,.rr L, (that is, a disjoint union of some embedded minimal surfaces)
instead of a single surface. It may have infinitely many components. However, each leaf
L; of £ is a complete (non-compact) stable minimal surface (See Theorem {4.2.3)). Since
(M, g) has positive scalar curvature, it is homeomorphic to R3(See Corollary [3.3.11))

The geometry of each leaf is influenced by the extrinsic Cohn-Vossen inequality (See
Theorem @ as well as by a topological property of M, called Property P (See Definition
2.1.3). These two aspects tell us that the lamination £ has the Vanishing property for
{ Ny }r. That is to say,

there 1s a positive integer ko such that for any k = ko and any t € T, any circle in
L n Ny is null-homotopic in 0Ny.

The reason is as follows: Suppose that there exists a sequence {k,} of increasing
integers and a sequence {L;, } of leaves so that for each n, L;, n 0Ny, has at least one
non-nullhomotopic circle in 0Ny, . Similar to the property of the sequence {2} (Property
P), we know that the number of connected components of L, n N; intersecting Ny goes
to infinity as k, goes to infinity (See Definition and Theorem [2.1.6)).

The sequence {L;,} sub-converges to some leaf L; in the lamination % with finite
multiplicity. The sub-convergence is ensured by a result of Schoen [Sch83] (See Lemma
and the extrinsic Cohn-Vossen inequality (See Theorem [D)). Therefore, Ly, n N
has infinitely many components intersecting Ny. As in the above case, each component
has a definite amount of area. The extrinsic Cohn-Vesson inequality gives a contradiction.

Let us explain how to deduce a contradiction from the Vanishing property. We show
that for any k > kg, Q2 0N}, contains a closed curve which is not null-homotopic in 0N,
(See Lemma. Roughly speaking, these non-nullhomotopic circles will sub-converge
to some closed curve in .Z N d Ny, which is not contractible in 0Ny,. It follows the fact that
Q. sub-converges to the lamination .. Therefore, some leaf of .Z has a non-contractible
circle in 0Ny,. This is in contradiction with the above Vanishing property of .Z.

0.3. 7" and the Vanishing property

0.3.1. Handlebodies and Property H. Let (M, g) be a complete contractible 3-
manifold of positive scalar curvature. It is an increasing union of closed handlebodies

{Ni} (See Theorem [1.1.12)).

In the following, we consider that M is not homeomorphic to R?®. We may assume
that none of the Ny, is contained in a 3-ball (i.e. homeomorphic to a unit ball in R?) in

M (See Remark [1.1.8]).
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In the genus one case, the family {Ny} has several good properties. For example, the
maps 7 (0Ng) — m (M\Ng) and 11 (0Ny) — w1 (Ni\No) are both injective (See Lemma
1.3.10)). These properties are crucial and necessary in the study of the existence of com-
plete metrics of positive scalar curvature. In general, the family {/N;} may not have the
above properties.

For example, the map m(0Ny) — m (M\Np) may not be injective. To overcome it,
we use topological surgeries on Ny and find a new handlebody to replace it. Precisely, we
use the loop lemma to find an embedded disc (D, D) < (M\Ny, 0Ny) whose boundary
is a non-contractible simple curve in dNy. The new handlebody is obtained from Ny by
attaching a closed tubular neighborhood N,(D) of D in M\Ny.

We repeatedly use topological surgeries on each Ny to obtain a new family {Ry}x
of closed handlebodies with the following properties, called Property H (See Definition
2.2.5)):

1) the map m(0Ry) — m1(Ry\Rp) is injective for k > 0;

2) the map m (0Ry) — m (M\Ry) is injective for k = 0;

3) each Ry is contractible in Ry, 1 but not contained in a 3-ball in M ;

4) there exists a sequence of increasing integers {ji}, such that m (0R; n ON;,) —
m1(ORy) is surjective.

(
(
(
(

REMARK. If M is not homeomorphic to R?, the existence of such a family is ensured
by Theorem [2.2.6l It is not unique. In addition, the union of such a family may be not
equal to M.

For example, if M := [J, Ny is a contractible genus one 3-manifold, the family {N}
(assumed as in Theorem [1.3.13)) satisfies the above Property H (See Lemma 2.10 in
[Wan19a] or Lemma |1.3.10)).

0.3.2. The Vanishing property. In the genus one case, the geometry of a stable
minimal surface is constrained by the geometric index (See Property P in [Wan19a] or
Definition . In the higher genus case, the behavior of a stable minimal surface is
related to the fundamental group at infinity.

In order to clarify their relationship, let us introduce a geometric property, called
the Vanishing property. First, we consider a complete contractible 3-manifold (M, g) of
positive scalar curvature which is not homeomorphic to R?. As indicated above, there is
an increasing family { Ry}, of closed handlebodies with Property H.

A complete embedded stable minimal surface ¥ < (M, g) is called to satisfy the
Vanishing property for the family {Ry}x if there is a positive integer k(X) so that for
k = k(X), any circle in ¥ n dRy is nullhomotopic in Ry (See Chapter 5).

If a complete stable minimal surface does not satisfy the Vanishing property for { Ry},
it gives a non-trivial element in 7{°(M)(See Lemma [5.2.1)). As a consequence, if 7{° is
trivial, any complete stable minimal surface in M has the Vanishing property for { Ry}

(See Corollary |5.2.2)).
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0.3.3. The idea of the proof of Theorem |[C]. We argue by contradiction. Suppose
that a complete contractible 3-manifold (M, g) with positive scalar curvature and trivial
7 (M) is not homeomorphic to R3.

Before constructing minimal surfaces, let us introduce a notation from 3-dimensional
topology.

A system of meridians of a handlebody N is a collection of ¢ distinct meridians {y'}7_,
with the property that dN\][/_, 7' is homeomorphic to an open disc with some closed
subdiscs removed (See Lemma @ Its existence is ensured by Lemma .

Let { Ny} and {Ry}r be as above. Since Ny is not contained in a 3-ball (See Remark
, the genus of N}, is greater than zero. The handlebody N has a system of meridians
{y,i}lgilfk). Roughly , there are g(N},) disjoint area-minimizing discs {QL}; with 0Q! = 41,
Their existence is ensured by the works of Meeks and Yau [MIY80,MIY 82| (See Theorem
6.28 of [CM11]) when the boundary 0Ny is mean convex.

Let us explain their existence. We construct these discs by induction on (.

When [ = 1, there is an embedded area-minimizing disc Qi < N with boundary ~;}
(See [MIY80,MIY82| or Theorem 6.28 of [CM11]).

Suppose that there are [ disjointly embedded stable minimal discs {Qi}l_, with 00} =

vi. Our target is to construct a stable minimal surface Qéfl with boundary 7,{/,“.

Let us consider the Riemannian manifold (Tx, 9|7, ,), where Ty := Ni\ ]_[221 QLT
is a handlebody of genus ¢g(Ny) — [. For example, see the following figure.

(Tk‘,l’ gk‘|Tk,1)

FiGcure 0.3.

The boundary of (T}, gz, ,) consists of IN\ [1._, 7 and some disjoint discs {Q% 7} _,
and {Q:"}L_. The two discs Q. and Q. both come from the same minimal disc
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Q). Therefore, the mean curvature of the boundary of (Tj, g|r,,) is non-negative. (See
Chapter 4.2)

In addition, {7} };~; is a system of meridians of the handlebody (T}, g|z,,). Then, we
use the result of Meeks and Yau to find an embedded stable minimal surface Q?l < Thy
with boundary v.*!. These discs {Q}.*] are disjoint in Nj. This finishes the inductive
construction.

As in the genus one case, if 0Ny is not mean convex, we can deform the metric in a
small neighborhood of it so that it becomes mean convex.

Define the lamination % := [ [, Q2 (i.e. a disjoint union of embedded surfaces). We
show that each lamination %} intersects the compact set Ry (Corollary . According
to Colding-Mincozzi’s theory (See Appendix B of [CMO04]), the sequence {.Z}x sub-
converges to a lamination £ := J,., L in (M, g) (See Theorem [4.2.3). Note that each
leaf L, is a complete (non-compact) stable minimal surface.

As indicated above, since (M, g) has positive scalar curvature and 7°(M) is trivial,
each leaf L; in . has the Vanishing property for { Ry}, (See Lemma and Corollary
5.2.2)). Furthermore, the lamination . also satisfies the Vanishing property (See Corollary
5.2.4). That is to say,

there exists a positive integer ko such that for any k = ko and any t € A, any circle in
L; n ORy, 1s nullhomotopic in ORy.

The reason is described as follows.

We argue by contradiction. Suppose that there exists a sequence {k,}, of increasing
integers and a sequence {L,} of leaves in . satisfying that L;, n 0Ry, has at least one
non-nullhomotopic circle(s) in dRy, for each n.

The sequence {L,} smoothly subconverges to some leaf in .Z. For our convenience,
we may assume that the sequence {L;, } converges to the leaf L; . The leaf L, satisfies
the Vanishing property. That is to say, there is a positive integer k(L; ) such that for
k = k(L.,), any circle 0Ry n L, is nullhomotopic in 0Ry.

However, since L;, n 0Ry, has some non-null-homotopic circle in Ry, , we know that
for k,, > k(Ly,), Ls, nORy(z,, ) has a meridian of Ry, ) (See Remark and Corollary
. These meridians of Ry(z, ) will converge to a meridian of Ry, ) which is contained
in L;,, N 0Rk,,). This is in contradiction with the last paragraph.

Let us explain how to deduce a contradiction from the Vanishing property of .Z.

We show that if IV, contains Ry, (for k large enough), then % n 0Ry, contains at
least one meridian of Ry, (See Corollary . As in the above case, these meridians of
Ry, will sub-converge to a non-contractible circle in .2 n 0Ry,. The Vanishing property
of £ gives a contradiction.

0.4. Closed Aspherical 4-manifolds

A manifold M is called aspherical if it is path-connected and all its higher homotopy
groups vanish (i.e. m;(M) is trivial for & > 2). The class of aspherical manifolds contains
all hyperbolic manifolds and all manifolds with non-positive curvature.
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An interesting question posed by Geroch is whether the torus T", n > 3, carries a
metric of positive scalar curvature. This question was settled by Gromov-Lawson |GL83]|
and Schoen-Yau [SY79blSY82/|[SY17]. Generally, it is conjectured that

CONJECTURE. No compact aspherical manifold has a metric of positive scalar curva-
ture.

This conjecture was proved for 3-manifolds by Gromov and Lawson [GL83]. In dimen-
sion four, it is confirmed for 4-manifolds which contains incompressible surfaces [GL83].

In this thesis, we prove that

THEOREM F'. No closed aspherical 4-manifolds with non-zero first Betti number has
a metric of positive scalar curvature.

Note that there is a closed aspherical 4-manifold whose first Betti number vanishes
(See [RT05]).

We argue by contradiction. Suppose that there is a compact aspherical 4-manifold
(M*, g) of positive scalar curvature, where the first Betti number b;(M*?) is greater than
Zero.

Choose a circle ¥ « M* so that [y] has infinite order in H;(M* Z). We use the
Poincaré duality to find a class u € H3(M* Z) with < u,[y] >= 1. A theorem of
Fleming-Federer (See [FF60] or Chapter 7 of [Sim83]) tells us that there is a volume-
minimizing hypersurface ¥? in this class. Therefore, the intersection number of v and %3
is equal to one.

Since (M, g) has positive scalar curvature, then ¥? admits a metric of positive scalar
curvature (See Proposition [3.3.5). The manifold ¥3 is homeomorphic to a connected
sum of spherical 3-manifolds and some copies of S' x S? (See [Per02al, Per02b|Per03],
[BBB*10| and [MTO07]).

Because mo(M) and m3(M) are both trivial, then the spherical part of ¥ and the 2-
spheres in ¥ are homotopic to a point in M*. That is to say, 3 is homotopic to a wedge
sum of some circles in M (these circles come from the S* x S's part of ¥?). Because
dim(M) = 4, we see that the intersection number of ¥ and 7 equals zero, which is in
contradiction with the intersection number of v and .

0.5. Organization of the thesis

The plan of this thesis is as follows:

For the first part, we discuss contractible 3-manifolds and related topological prop-
erties. In Chapter 1, we recall related background from 3-manifolds, such as simply-
connectedness at infinity, the fundamental group at infinity and handlebodies. Subse-
quently, we discuss the topological structure of contractible 3-manifolds and derive some
notations such as meridians of a handlebody, a system of meridians. Finally, we give some
examples of 3-manifolds such as the Whitehead manifold and genus one 3-manifolds.

In Chapter 2, we start with the embedded discs in the Whitehead manifold. An
interesting fact is that the behavior of these discs is influenced by the geometric index.
Their relation is suggested by Theorem [2.1.2] Based on this relation, we introduce a
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new property, called Property P and we show that any contractible genus one 3-manifold
satisfies this property (See Theorem [2.1.€)).

Generally, a contractible 3-manifold may not satisfy Property P. The reason is that
it may be made up of some handlebodies of higher genus. Some handles in these han-
dlebodies may make no contribution to its topology and yield technical difficulties. To
overcome it, we introduce two types of surgeries. Using these surgeries, we find a new
family of handlebodies with good properties, called Property H (See Definition .

In the second part of the thesis, we focus on minimal surfaces and related convergence
theories. In Chapter 3, we recall some notations such as the so-called first and second
variation formulas, Morse index and the stable condition (See Chapter 3.1.1). Then we
discuss Plateau’s problem(See Chapter 3.1.2).

Subsequently, we focus on the local properties of minimal surfaces, including the strong
maximal principle (See Corollary and the monotonicity formula (See Proposition
3.2.5)).

Then, we study the topology of stable minimal hypersurfaces. These hypersurfaces are
characterized by the first eigenvalue of the stable operator (See Lemma and Theorem
. In a manifold of positive scalar curvature, there are many topological constraint
for stable minimal surfaces. For example, if a complete 3-manifold has nonnegative scalar
curvature, a complete stable minimal surface in it satisfies the extrinsic Cohn-Vossen
inequality (See Corollary and Theorem . As a consequence, we give a new
proof of the topological classification of stable minimal surfaces in a 3-manifold with
nonnegative scalar curvature (See Corollary[3.3.11)and [SY82]). Finally, as an application
of minimal surfaces theory, we give the proof of Theorem [A| (See Theorem [3.3.12).

In Chapter 4, we discuss the convergence theory of minimal surfaces. We begin with
the convergence of minimal surface equations (See Lemma . It can be generalized
to the Riemannian case. Therefore we get a compactness theorem for minimal surfaces
(See Theorem |4.1.4]).

Next, we discuss the convergence without area estimate. In this case, the limit is a
minimal lamination (i.e. a disjoint union of some embedded discs) instead of a single
surface. We recall the minimal lamination theory of Colding-Minicozzi (See Appendix B
of [CMO04]). Then we construct a required family of minimal laminations in a contractible
3-manifold. Their limit is a stable minimal lamination. Each leaf is a complete minimal
surface. If the manifold has positive scalar curvature, it is a properly embedded plane
(See Theorem @[) As an application, we give a new proof of the topological classification
of contractible 3-manifolds with uniformly positive scalar curvature (See Corollary
and |GL83]).

For the third part, we give the complete proofs of the main theorems. In Chapter
5, we introduce the Vanishing property and study its relationship with the fundamental
group at infinity, which is suggested by Lemma [5.2.1] Note that, in the genus one case,
Property P implies the Vanishing property (See Theorem .

In Chapter 6, we reduce the proof of the main theorems to a cover lemma (See Lemma
6.1.3). For the proof of this lemma, we use the Vanishing property of the lamination
(constructed in Chapter 4.2) to define a set S (See Definition [6.3.1]). Positivity of the
scalar curvature implies the finiteness of S (See Lemma [6.3.4] and Lemma [6.3.5]). We use
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the finiteness to prove the cover lemma. Finally, we discuss several related questions and
further research about 3-manifolds.

In the fourth part of the thesis, we discuss the existence of metrics of positive scalar
curvature over a compact aspherical 4-manifold. Together with a result of Perelman
[Per02a, Per02b} Per03], we give a proof of Theorem . Finally, we talk about several
further questions about 4-manifolds.



Introduction (frangais)

La géométrie riemannienne vise a étudier les variétés riemanniennes qui sont des
variétés lisses a structures métriques. Une des questions fondamentales est de compren-
dre la relation entre la courbure, définie localement, et les propriétés globales des variétés
lisses. Le résultat le plus ancien est le théoreme classique de Gauss et Bonnet, qui relie
la courbure au nombre d’Euler, un invariant topologique. Ce théoreme implique, par
exemple, que toute surface compacte du genre g > 0 n’a pas de métrique a courbure
positive.

En dimension supérieure, I'existence de mtriques a courbure positive devient beaucoup
plus compliquée parce qu’il existe plusieurs obstructions topologiques pour qu’'une variété
lisse ait une métrique complete a courbure positive.

Nous prenons ensuite 3-variétés pour expliquer ce fait.

(M3, g) cas compact cas non compact
K >0 R3
—_— S3/T
Ric> 0 R3
Scal > 0 | (#_,S?/T3)#(#,_,S' x §?) ?
TABLE 2.

Pour une 3-variété riemannienne compacte, il existe une solution unique en temps court
au flot de Ricci (normalisé), introduit par Hamilton [Ham82|. Si la variété a une courbure
de Ricci positive, la solution en temps court peut étre étendue en la solution en temps
long. La limite de ce flot est une métrique a courbure sectionnelle constante. Autrement
dit, si une 3-variété compacte a courbure de Ricci positive, elle est homéomorphe au
quotient S3/T" de la sphere S* par un sous-groupe fini I' = O(4). Un tel quotient est
appelé une 3-variété sphérique.

La contribution majeure suivante au sujet a été apportée par Perelman [Per02al
Per02b| Per03], qui a développé le flot de Ricci avec chirurgie. Un résultat surprenant
et magnifique de cette étude est la preuve qu’'une 3-variété compacte & courbure scalaire
positive est homéomorphe a une somme connexe de certaines 3-variétés sphériques et de
copies de S' xS? (Voir aussi [BBB10] et [MTO07]). Sa généralisation au cas non compact
est due a Bessieres, Besson et Maillot [BBM11].

13
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Pour le cas non compact, les premiers résultats montrés par Gromoll et Meyer [GM69|
sont qu’une 3-variété complete non compacte a courbure sectionnelle positive est homéomorphe
a R? (Voir [GM69]).

L’étape suivante du développement de ce sujet est due a Schoen et Yau [SY82] qui ont
utilisé la théorie des surfaces minimales et le théoreme de splitting [CGT71] pour étudier
la topologie des 3-variétés . Ils ont prouvé qu’une 3-variété complete non compacte a
courbure de Ricci positive est homéomorphe a R3.

Bien que toutes ces travauw soient trés impressionnants, ils ont toujours laissé la
ouverte question (voir le probleme 27 dans [Yau82|):

Comment classifier les 3-variétés non compactes a courbure scalaire positive, a difféomorphisme
pres ?

Le but est de trouver toutes les obstructions et de caractriser toutes les 3-varietés
ouvertes a courbure scalaire positive. Bien que Gromov-Lawson [GL83| et Schoen-Yau
[SY82] aient donné plusieurs obstructions topologiques, toutes ces classes d’obstruction
disparaissent pour les 3-variétés contractiles.

Considérons des 3-variétés contractiles. Par exemple, R? posseéde une métrique complete
g1 a courbure scalaire positive, ol

3

g1 = Z(dxi)Q + (Z ride;)?.

i=1

Jusqu’a présent, c’est la seule 3-variété contractile connue qui admet une métrique
complete a courbure scalaire positive. Ceci suggere la question suivante :

Est-ce qu’une 3-variété compléte contractile a courbure scalaire positive est homéomorphe
aR3 ?

Une 3-variété complete contractile a courbure scalaire uniformément positive (c’est-
a-dire que sa courbure scalaire est minorée par une constante strictement positive) est
homéomorphe a R?. Cela a été prouvé pour la premire fois par Gromov et Lawson |[GL83].
Récemment, ce résultat a été généralisé par Chang, Weinberger et Yu [CWY10] a des
3-variétés contractile dont la courbure scalaire est uniformément positive a 'extérieur
d’un ensemble compact. En utilisant la théorie des surfaces minimales, nous généralisons
davantage.

Théroéme 1 (=Theorem Supposons que (M3, g) est une 3-variété complete contrac-
tile. S’il existe un réel a € (—o0,2) tel que

lim inf r*(z)k(x) > 0,
r(z)—00

o k(z) est la courbure scalaire de (M, g) et r(x) est la fonction de distance d'un point
0e M & x, alors M? est difféomorphe & R3.

La preuve suit les arguments de Gromov et Lawson (voir le corollaire 10.9 dans
|GL83]).
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0.6. 3-variétés contractiles

La conjecture de géométrisation, formulée par William Thurston [Per02al,[Per02b,
Per03] (voir aussi [BBB*10] et [MTO07]) énonce que pour la topologie d’une 3-variété
compacte est entierement déterminée par son type d’homotopie. Cependant, la structure
topologique des 3-variétés contractiles est trés complique. Par exemple, la variété White-
head (construite dans [Whi35|) est une 3-variété contractile qui n’est pas homéomorphe
a R3.

Pour expliquer la construction de la variété de Whitehead, introduisons le concept de
méridien. Un méridien v < ¢ N d’un tore solide fermé N est une courbe fermée plongée qui
est homotopiquement triviale dans /N mais non contractile dans ¢ N. Un disque méridien
(D,0D) < (N,0N) d’'un tore solide N est un disque plongé dont la frontiére est un
méridien de N. (Voir Définition |1.2.1)).

La variété de Whitehead est construite a partir de I'entrelacs de Whitehead. Rappelons
que l'entrelacs de Whitehead est un entrelacs 4 deux composantes comme illustr sur la
figure suivante:

FIGURE 0.4.

Choisissons un tore solide fermé T} qui est non noué dans S*. L’intérieur du tore solide
dans S? est un autre tore solide. Prenons un deuxiéme tore solide T4 & l'intérieur de T
de sorte que l'intérieur de K5 forme un entrelacs de Whitehead avec un méridien de T}
comme sur la figure suivante.
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FIGURE 0.5.

Le tore solide T, est non nou dans S®. Ensuite, on plonge T3 dans 75 de la méme
maniere que 75 se trouve dans 77 et ainsi de suite un nombre infini de fois. Définissons
I’ensemble T, = ﬂzo:l T}, appelé le continuum de Whitehead.

La variété de Whitehead est définie comme suit: Wh := S*\ T, qui est une 3-variété
non compacte.

Remarque Puisque chaque 7}, est non noué dans S?, son complémentaire N}, est un tore
solide. Par conséquent, la variété de Whitehead est une union croissante de tores solides
{Nk}r. Chaque Ny est plongé dans Ni, 1 de la méme maniere que T, dans 7). Cela découle
de la symétrie de I’entrelacs de Whitehead.

Une variation de la construction, comme changer le noeud a chaque étape k, donne
une famille de ce qu’on appelle les 3-variétés de genre un, introduite dans [MJ62]. La
construction est reliée a I'indice géométrique.

Si N’ © N est un tore solide, I'indice géométrique, I(N', N), de N’ dans N est égal
au nombre minimal de points de I'intersection de l'intérieur de N’ avec un disque mridien
de N. Une 3-variété de genre un est une union croissante de tores solides { Ny} telle que
pour chaque k, N, < Int Ni,1, et que l'indice géométrique de N, dans N, ne soit pas

égal & zéro. (Voir Définition [1.3.8] Définition [1.3.12] et [GRW18]).

Par exemple, Wh est une 3-variété contractile de genre un. L’indice géométrique
I (N, Nyy1) est égal a deux pour chaque k, ou Ny, est illustr comme ci-dessus. Remarquons
que R3 n’est pas de genre un, mais de genre zéro, puisqu’il s’agit d’une union croissante
de 0-corps a anses. (c’est-a-dire de 3-boules).

Une question intéressante est de savoir si la variété de Whitehead admet une métrique
complete de courbure scalaire positive. Dans cette these, nous répondons négativement :

Théroéme 2 (=Theorem La variété de Whitehead n’a pas de métrique complete a
courbure scalaire positive.

Ce résultat peut étre généralisé au cas du genre un.

Théroeme 3 (=Theorem |By) Une 3-variété contractile genre un n’a pas de métrique
complete & courbure scalaire positive.
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En combinant le travail de Kazdan [Kaz82|, nous généralisons ces résultats a la cour-
bure scalaire non négative.

Corollarie (voir Corollaire [6.4.3) Une 3-variété contractile genre un n’a pas de métrique
complete a courbure scalaire non négative

L’existence de métriques completes a courbure scalaire positive est liée au groupe
fondamental a linfini. Le groupe fondamental a U'infini 77° d’une 3-variété est la limite
projective des groupes fondamentaux des complémentaires de sous-ensembles compacts
(voir Définition [I.1.9)).

La trivialité du groupe fondamental a I'infini n’est pas équivalente pas a la connexité
simple a l'infini. Par exemple, la variété de Whitehead n’est pas simplement connexe a
I'infini mais son groupe fondamental a l'infini est trivial.

Nous prouvons le résultat suivant :

Théroéme 4 (=Theorem |C]) Une 3-variété contractile a courbure scalaire positive et 7}°
trivial est homéomorphe a R3.

Ce résultat peut également étre généralisé a la courbure scalaire non négative.

Corollarie (voir Corollaire|6.4.4) Une 3-variété contractile & courbure scalaire non négative
et m° trivial est homéomorphe & R3.

Cependant, il existe une quantité indénombrable de 3-variétés contractiles deux a deux
non homéomorphes dont le 7{° n’est pas trivial. Dans le Chapitre 1.3, nous construisons
une telle variété et montrons que cette variété n’a pas de métrique complete de courbure

scalaire positive (voir Théoréme [1.3.15)).

0.7. L’idée de la preuve du Théoréme

Il est classique que la théorie des surfaces minimales donne des informations topologiques
sur les 3-variétés. Ce fait est apparu dans les articles de Schoen et Yau [SY82,SY79b,
SY79a] ainsi que de Gromov et Lawson cite GL et divers autres travaux.

Pour la preuve du théoreme [3| raisonnons par 1’absurde. Supposons que (M, g) soit
une 3-variété riemannienne complete & courbure scalaire positive, ot M := | J,, Ny est une
3-variété contractile de genre un et la famille { NV} }; de tores solides est supposée comme

dans Théoreme [[.3.13]

0.7.1. Surfaces minimales et limites. Comme dans [SY82] et [GL83], notre
premiere étape consiste a construire des surfaces minimales. Choisissons v, < 0N, comme
méridien de Ny, (voir Définition [I.2.1]). En gros, il borde un disque minimal stable plongé
2. Son existence est assurée par le résultat de Meeks et Yau (voir [MIY80,MIY82] ou
le théoreme lorsque la frontiere 0N, est mean convex.

Considérons le cas le plus simple ou €2 converge vers une surface minimale stable
connexe ..

D’une part, nous montrons que le nombre de composantes connexes de €2 N Ny inter-
sectant Ny tend vers l'infini quand & tend vers I'infini (voir Chapitre 2.1). Par conséquent,
il existe une infinité de composantes connexes de ¥ n Ny intersectant Ny. Par un résultat
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de Meeks et Yau (voir Théoreme et [MIY80]), chacune de ces composantes contient
une certaine quantité d’aire. Ainsi, ¥ n N; a une aire infinie.

D’autre part, puisque (M, g) a courbure scalaire positive , non seulement ¥ est con-
formément difféomorphe & R? (voir Corollaire [3.3.11)), mais sa géométrie est également
contrainte par I'inégalité extrinseque de Cohn-Vossen:

Théroeéme 5 (=Theorem|D]) Soit 2 < (M3, g) une surface minimale compléte immergée
(non compacte). Si la variété complete (M3, g) a courbure scalaire positive ou nulle
(k(x) = 0), alors

fz k(z) + 1/2|A)Pdv < 2mx(X).

ott |A|? est le carré de la norme de la seconde forme fondamentale de . De plus, si x > 0
et X est plongée, alors ¥ est un plan proprement plongé.

Puisque la courbure scalaire est minorée par une constante strictement positive sur
N1, cela est en contradiction avec la surface infinie contenue dans 3 N Ny

Si dN,. n’est pas mean convex, on modifies la métrique dans un plus petit voisinage
tubulaire de 0N, afin que, pour la nouvelle métrique, elle devienne mean convex.. Alors
(), est minimal stable pour la nouvelle métrique, et pour la métrique originale il I’est loin
du voisinage 0N}, (par exemple, pres de Ny), ce qui est suffisant pour notre preuve.

0.7.2. Propriétés de la surface limite. En général, (), sous-converge vers une
lamination minimale . := [ J, , . L: (c’est-a-dire une union disjointe de certaines surfaces
minimales plongées). Elle peut avoir une infinité de composantes. Cependant, chaque
feuille L; de .Z est une surface minimale stable complete (non compacte) (voir Théoreme
4.2.3). Puisque (M, g) a une métrique a courbure scalaire positive, elle est homéomorphe
a R3 (voir Corollaire [3.3.11)).

La géométrie de chaque feuille est influencée par 'inégalité extrinseque de Cohn-Vossen
(cf. Théoreme [5)) ainsi que par une propriété topologique de M, appelée Propriété P (voir
Définition Ces deux aspects nous indiquent que la lamination £ a la propriété
d’annulation pour {Ny}. Cest-a-dire,

il existe un entier positif ko tel que pour tout k = ko et tout t € I, tout cercle dans
L; 0 0Ny est homotopiquement trivial a 0Ny.

La raison en est la suivante : supposons qu’il existe une suite décroissante d’entiers
{k,} et une suite {L,, } de feuilles telles que pour chaque n , L;, n 0Ny, a au moins un
cercle non homotopiquement trivial dans dNy,. Comme pour la propriété de la suite
{Qk}r (Propriété P), nous savons que le nombre de composantes connexes de L;, n Ny
intersectant Ny tend vers l'infini quand k, tend vers l'infini (Voir Définition et
Théoreme [2.1.6)).

La suite {Ly,} sous-converge vers une feuille L; , ., dans la lamination £ avec une
multiplicit finie. La sous-convergence est assurée par un résultat de Schoen [Sch83|
(voir Lemme et l'inégalité extrinseque de Cohn-Vossen (voir Théoreme [5)). Par
conséquent, L;, N Np a une infinité de composantes intersectant Ny. Comme dans le cas
ci-dessus, chaque composante a une aide donnée. L’inégalité extrinseque de Cohn-Vesson
donne une contradiction.
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Expliquons comment déduire une contradiction avec la propriété d’annulation. Nous
montrons que pour tout k = ko, 2 N JNy, contient une courbe ferme qui n’est pas
homotopiquement triviale dans 0Ny, (voir le Lemme . Grosso modo, ces cercles
non homotopiquement triviaux vont sous-converger vers une courbe fermée dans . n 0Ny,
qui n’est pas contractile dans dNy,. Il s’ensuit que {25 sous-converge vers la lamination
Z. Par conséquent, certaines feuilles de .’ ont un cercle non contractile dans 0/Ny,. Ceci
est en contradiction avec la propriété d’annulation ci-dessus de .Z.

0.8. 7{° et la propriété d’annulation

0.8.1. Corps a anses et propriété H. Soit (M, g) une 3-variété complete contrac-
tile a courbure scalaire positive. Il s’agit d’une union croissante de corps a anses {Nj}
(voir Théoreme [1.1.12)).

Dans ce qui suit, nous considérons que M n’est pas homéomorphe & R3. Nous pouvons
supposer qu’aucun des N n’est contenu dans une 3-boule (c’est-a-dire homéomorphe a
une boule unitaire dans R?) dans M (voir Remarque . Cela joue un role crucial dans
notre argument.

Dans le cas du genre un, la famille {NV;} a plusieurs bonnes propriétés. Par exemple,
les applications m (ONg) — i1 (M\Ny) et m(0N;) — m1(N\No) sont toutes les deux
injectives (voir le Lemme . Ces propriétés sont cruciales et nécessaires dans I’étude
de l'existence de métriques completes a courbure scalaire positive. En général, la famille
{ N} peut ne pas avoir les propriétés ci-dessus.

Par exemple, 'application m1(0Ny) — 1 (M\Np) peut ne pas étre injective. Pour sur-
monter cette difficulté, nous utilisons des chirurgies topologiques sur Ny et nous trouvons
un nouveau corps a anses pour le remplacer. Précisément, nous utilisons le lemme de la
boucle pour trouver un disque plong (D, 0D) < (M\Ny, 0Ny) dont le bord est une courbe
simple non contractile dans d/Ny. Le nouveau corps a anses est obtenu a partir de Ny en
attachant un voisinage tubulaire fermé N (D) de D dans M\Ny.

Nous utilisons a plusieurs reprises des chirurgies topologiques sur chaque N, pour

obtenir une nouvelle famille { Ry}, de corps a anses fermés avec les propriétés suivantes,
appelée Propriété H (voir Définition [2.2.5)):

(1) Papplication 7 (0Rg) — w1 (Rk\Ro) est injective pour k > 0;

(2) lapplication 7 (0Rg) — m (M\Ry) est injective pour k = 0;

(3) chaque Ry est contractile dans Ry, mais n’est pas contenu dans une 3-boule de
M;

(4) il existe une suite d’entiers croissante {ji}x, telle que m(0Ry, N 0N, ) — m1(0R))
soit surjective.

Remarque Si M n’est pas homéomorphe & R3, I'existence d'une telle famille est assure
par le Thorme [2.2.6| Elle n’est pas unique. De plus, 'union d’une telle famille peut ne
pas correspondre a M.

Par exemple, si M := [ J, Nj, est une 3-variété contractile de genre un, la famille {Ny}
(supposée comme dans le Théoreme [1.3.13)) vérifie la propriété ci-dessus (propriété H)
(voir le lemme 2.10 dans [Wan19a| ou Lemme [1.3.10)).
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0.8.2. La proriété d’annulation. Dans le cas du genre un, la géométrie d’une
surface minimale stable est contrainte par lindice géométrique (voir Propriété P dans
[Wan19a| ou la Définition [2.1.3)). Dans le cas du genre supérieur, le comportement d’une
surface minimale stable est lié au groupe fondamental a 'infini.

Afin de clarifier leur relation, introduisons une propriété géométrique, appelée la pro-
priété d’annulation. Premierement, nous considérons une 3-variété complte contractile
(M, g) qui n’est pas homéomorphe & R?. Comme indiqué ci-dessus, il existe une famille
croissante { Ry}, de corps a anses avec la propriété H.

On dit qu'une surface minimale stable complete plongée ¥ < (M, g) satisfait la pro-
priété d’annulation pour la famille { Ry}, s’il existe un entier positif k(X) tel que pour
k = k(X), tout cercle dans ¥ n 0 Ry, soit homotopiquement trivial dans 0 Ry, (Voir Chapitre
5).

Si une surface minimale stable complete ne satisfait pas la propriété d’annulation
pour {Ry}y, elle donne un élément non trivial dans 7{°(M) (voir le Lemme [5.2.1). En
conséquence, si m{° est trivial, toute surface minimale stable complete dans M a la pro-
priété d’annulation pour { Ry} (voir le Corollaire [5.2.2)).

0.8.3. L’idée de la preuve du théoreme [4] Raisonnons par ’absurde. Supposons
qu'une 3-variété (M, g) complete contractile a courbure scalaire positive et 7{°(M) trivial,
ne soit pas homéomorphe a R3.

Avant de construire des surfaces minimales, introduisons une notation de topologie en
dimension 3.

Un systéme de méridiens d'un corps a anses N est une collection de g méridiens
distincts {7'}7_, tels que ON\17_, 7' soit hoéomorphe & un disque ouvert privé de certains
sous-disques fermés (voir le Lemme [1.2.7)). Son existence est assurée par le Lemme [1.2.7]

Soit { Np}r et {Ri}r comme ci-dessus. Puisque Ny n’est pas contenu dans une 3-boule
(voir la remarque, le genre de Ny, est suprieur zro. Le corps a anses Vi a un systeme
de méridiens {fy,lc}lg:]f’“ . En gros, il existe g(Ny) disques disjoints d’aire minimale {Q }; avec
QL = ~L. Leur existence est assurée par les travaux de Meeks et Yau [MIY80,MIY82]
(voir le théoreme 6.28 de [CM11]) lorsque la frontiere 0Ny est mean convex.

Expliquons leur existence. Nous construisons ces disques par récurrence sur [.

Lorsque [ = 1, il existe un disque plongé d’aire minimale 2} < N}, avec Q) = ~}
(voir [IMIY 80, MIY82| ou le théoreme 6.28 de [CM11]).

Supposons qu’il existe [ disques stables plongés disjoints d’aire minimale {Qi}!_, avec

00 = vi. Notre objectif est de construire une surface minimale stable Q4 avec 0QLT! =

1+1
e -

Considérons la variété riemannienne (T, 9|7, ,), ot Ty := N\ [;_, Q. Cest un
corps a anses du genre g(Ny) — [. Par exemple, voir la figure suivante.



0.8. 7 ET LA PROPRIETE D’ANNULATION 21

(Tkz,b gkz\Tk,l)

FIGURE 0.6.

La frontiere de (Tk, g|z,,) est constituée de 0N\ Hi:l i et certains disques disjoints
{Qi iy, et {7}, Les deux disques Q& et Qi proviennent tous du méme disque
minimal €. Par conséquent, la courbure moyenne de la frontiere de (T, g|r,,) est
positive. (Voir Chapitre 4.2)

De plus, {7;}i>; est un systeme de méridiens du corps a anses (Ty,, g|7,,). Ensuite,
nous utilisons le résultat de Meeks et Yau pour trouver une surface minimale stable
plongée QL' < Ty, dont le bord est vi™'. Ces disques {Q;}.*] sont disjoints dans Nj.
Ceci termine la construction par récurrence.

Comme dans le cas du genre un, si 0V, n’est pas mean convex, nous pouvons dformer
la mtrique dans un petit voisinage de celle-ci pour qu’elle devienne mean convex.

Définissons la lamination ., := [ [, Q2% (qui est une union disjointe de surfaces plongées).
Nous montrons que chaque lamination .%} intersecte I’ensemble compact Ry (Corollaire
[1.2.8). Selon la théorie de Colding-Mincozzi (voir 'annexe B de [CMO04]), la suite {.% }x
sous-converge vers une laminiation & := J,c, Ly in (M, g) (voir le Théoreme [£.2.3)).
Notons que chaque feuille L; est une surface minimale stable complete (non compacte).

Comme indiqué ci-dessus, puisque (M, g) est a 3-variété complete a courbure scalaire
positive et que m°(M) est trivial, chaque feuille L, dans . a la propriété d’annulation

pour {Ry}x (voir le Lemme et le Corollaire[5.2.2). En outre, la lamination . satisfait

la propriété d’annulation (voir le Corollaire |5.2.4). C’est-a-dire,

il existe un entier positif ko tel que pour tout k = kg et tout t € A, n’importe quel cercle
dans Ly n Ry, soit homotopiquement trivial dans 0Ry,.

La raison est dcrite comme suit.
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Raisonnons par I'absurde. Supposons qu’il existe une suite croissante {k,}, d’entiers
et une suite {L;, } de feuilles dans . telles que L;, n 0Ry, ait au moins un cercle non
homotopiquement trivial dans 0Ry, pour chaque n.

La suite {L;,} sous-converge vers une feuille de .Z. Pour simplifier, nous pouvons
supposer que la suite {L;,} converge vers la feuille L,,. La feuille L, , satisfait la
propriété d’annulation. C’est-a-dire qu'’il existe un entier positif k(L;, ) tel que pour
k= k(L.,), tout cercle Ry n Ly, soit homotopiquement trivial dans 0Ry.

Cependant, comme L;, n0Ry, aun cercle non homotopiquement trivial dans partial Ry, ,
nous savons que pour k, > k(Ly, ), Ly, N 0Ryr, ) a un méridien de Ry(z, ) (voir la remar-

que et le corollaire|1.2.6). Ces méridiens de Ryz, ) convergeront vers un méridien de
Ry, ) contenu dans L;, IRy, ). Ceciest en contradiction avec le dernier paragraphe.

Expliquons comment déduire une contradiction de la propriété d’annulation de .Z.

Nous montrons que si Ny, contient Ry, (pour k assez grand), alors .2 n 0 Ry, contient
au moins un méridien de Ry, (voir le Corollaire . Comme dans le cas ci-dessus, ces
méridiens de Ry, convergeront vers un cercle non contractile dans .2 n dRy,. La propriété
d’annulation de . donne une contradiction.

0.9. 4-variétés fermées asphériques

Une variété M est dite asphérique s’il est connexe par arcs et si tous ses groupes
d’homotopie suérieurs s’annulent (c’est-a-dire que 7, (M) est trivial pour & > 2). La
classe des variétés asphériques comprend toutes les variétés hyperboliques et toutes les
variétés a courbure négative.

Une question intéressante est de savoir si le tore T", n > 3, possede une métrique a
courbure scalaire positive. Cette question a été traitée par Gromov-Lawson [GL83| et
Schoen-Yau [SY79b,SY82,SY17|. En général, on conjecture que

CONJECTURE. Aucune variété compacte asphérique n’a de métrique a courbure scalaire
positive.

Cette conjecture a été démontrée pour les 3-variétés par Gromov et Lawson [GL83|.
En dimension quatre, elle est confirmée pour les 4-variété qui contiennent des surfaces
incompressibles |[GL83|.

Dans cette these, nous prouvons que

Théroéme 6 (=Theorem Aucune 4-variété asphérique fermée avec premier nombre
de Betti non nul n’a de métrique a courbure scalaire positive.

Notons qu’il existe une 4-variété asphérique fermée dont le premier nombre de Betti

est nul (Voir [RT05]).

Raisonnons par l'absurde. Supposons qu’il existe une 4-variété asphrique fermée
(M*, g) & courbure scalaire positive, dont le premier nombre de Betti by (M*?) est stricte-
ment supérieur a zéro.

Choisissons un cercle v < M* tel que [y] soit d’ordre infini dans H;(M* Z). Nous
utilisons la dualité de Poincaré pour trouver une classe u € Hy(M*,Z) avec < u, [ g] >= 1.
Un théoreme de Fleming-Federer (voir [FF60] ou le chapitre 7 de [Sim83]) nous indique
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qu’il existe une hypersurface ¥* minimisant le volume dans cette classe. Par conséquent,
le nombre d’intersection de v et 32 est égal a un.

Puisque (M,g) a une courbure scalaire positive, alors X3 admet une métrique de
courbure scalaire positive (voir la proposition . La variété X2 est homéomorphe a
une somme connexe de 3-variété sphériques et de copies de S* xS? (Voir [Per02a,Per02b,
Per03|, [BBB*10| et [MTO07]).

Comme 7o(M) et w3(M) sont triviaux, la partie sphérique de X et les 2-spheres de
¥ sont homotopes & un point dans M*. C’est-a-dire que ¥ est homotope a un bouquet
de cercles dans M (ces cercles proviennent de la partie de S? x S! dans ¥3). Comme
dim(M) = 4, nous voyons que le nombre d’intersection de ¥ et 7 est égal a zéro, ce qui
est en contradiction avec les nombres d’intersection de v et X.

0.10. Organisation de la these

Le plan de cette these est le suivant:

Dans la premiere partie, nous discutons des 3-variétés contractile et des propriétés
topologiques associées. Au Chapitre 1, nous formulons des rappels liés aux 3-variétés,
comme la connexité simple a 'infini, le groupe fondamental a I'infini et les corps a anses.
Par la suite, nous discutons de la structure topologique des 3-variétés contractiles et
présentons quelques notions telles que les méridiens d’un corps a anses, ou encore les
systemes de méridiens. Enfin, nous donnons quelques exemples de 3-variétés, telles que
les variétés de Whitehead et les 3-variétés de genre un.

Au chapitre 2, nous commenons par les disques plongés dans la variété de Whitehead.
Un fait intéressant est que le comportement de ces disques est influencé par l'indice
géométrique. Leur relation est suggérée par le Théoréme 2.1.2 Sur la base de cette
relation, nous introduisons une nouvelle propriété, appelée Propriété P, et montrons que
toute variété contractile de genre un satisfait cette propriété (voir Théoreme [2.1.6]).

En regle générale, une 3-variété contractible peut ne pas satisfaire la propriété P.
La raison est que cette variété peut étre composée de corps a anses de genre supérieur.
Certaines anses peuvent ne pas contribuer a la topologie et engendrer des difficultés tech-
niques. Pour surmonter cela, nous introduisons deux types de chirurgies. En utilisant ces
chirurgies, nous trouvons une nouvelle famille de corps a anses avec de bonnes propriétés,

appelée Proprit H (voir Définition [2.2.5|).

Dans la deuxieme partie de la these, nous nous concentrons sur les surfaces minimales
et les théories de convergence associées. Au Chapitre 3, nous rappelons certaines notions
telles que les formules dites de premiere et deuxieme variation, 'indice de Morse et la
condition de stabilité (Voir Chapitre 3.1.1). Ensuite, nous discutons du probleme de
Plateau (voir Chapitre 3.1.2).

Nous nous intéresserons ensuite aux propriétés locales des surfaces minimales, y com-
pris le principe du maximum et la formule de monotonie (voir Proposition .

Ensuite, nous étudions la topologie des hypersurfaces minimales stables. Ces hyper-
surfaces sont caractérisées par la premiere valeur propre de l'opérateur stable (voir le
Lemme et le Théoreme . Dans une variété a courbure scalaire positive, il
existe de nombreuses contraintes topologiques sur les surfaces minimales stables. Par
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exemple, si une 3-variété compléte a courbure scalaire positive ou nulle, une surface min-
imale stable complete vérifie I'inégalit extrinseque de Cohn-Vossen (Voir Corollary
et Theorem . En conséquence, nous donnons une nouvelle preuve de la classifi-
cation topologique des surfaces minimales stables dans une 3-variété a courbure scalaire
positive ou nulle (voir le Corollaire et [SY82]). Enfin, en tant qu’application de la
théorie des surfaces minimales, nous donnons la preuve du Théoréme [4.2.1] (voir Théoréme
3.3.12).

Au Chapitre 4, nous discutons de la théorie de la convergence des surfaces minimales.
Nous commenons par la convergence des équations de surfaces minimales (Voir Lemme
. Cela peut étre généralisé au cas riemannien. Par conséquent, nous obtenons un
théoreme de compacité pour les surfaces minimales (voir Théoreme .

Ensuite, nous discutons de la convergence sans estimation d’aire. Dans ce cas, la
limite est une lamination minimale (c’est-a-dire une union disjointe de disques plongés).
Nous rappelons la thorie de la lamination minimale de Colding-Minicozzi (Voir I’Annexe
B de [CMO04]). Ensuite, nous construisons une famille requise de laminations minimales
dans une 3-variété contractile. Leur limite est une lamination minimale stable. Chaque
feuille est une surface minimale compléte. Si la variété a une courbure scalaire positive,
il s’agit d'un plan proprement plongé (voir le Théoréme |5)). En guise d’application, nous
donnons une nouvelle preuve de la classification topologique des 3-variétés contractiles a
courbure scalaire uniformément positive (Voir Corollaire et |GL83|).

Dans la troisieme partie, nous donnons les preuves completes des théoremes princi-
paux. Au Chapitre 5, nous introduisons la propriété d’annulation et étudions sa relation
avec le groupe fondamental & l'infini. La relation est suggérée par le Lemme [5.2.1] Notez
que, dans le cas du genre un, la propriété P implique la propriété d’annulation (voir
Théoreme .

Au Chapitre 6, nous réduisons la preuve des théoremes principaux a un lemme de
recouvrement (voir Lemme . Pour prouver ce lemme, nous utilisons la propriété
d’annulation de la lamination (construit au Chapitre 4.2) pour définir un ensemble S
(voir Définition |6.3.1)). La positivité de la courbure scalaire implique la finitude de S
(voir Lemme et Lemme . Nous utilisons la finitude pour prouver le lemme de
recouvrement. Enfin, nous discutons de plusieurs questions connexes et d’autres sujets de
recherche sur les 3-variétés.

Dans la quatrieme partie de la these, nous discutons de 'existence de métriques a
courbure scalaire positive sur une 4-variété asphérique compacte. Avec un résultat de
Perelman [Per02a, Per02b| Per03|, nous donnons une preuve du Théoréme @ Enfin,
nous abordons plusieurs autres questions sur les 4-variétés.
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CHAPTER 1

3-Manifolds

In this chapter, we review related background in geometric topology and algebraic
topology.

We begin with several classical theorems in 3-manifolds, such as the loop lemma.
Subsequently, we study the topological structures of contractible 3-manifolds. Then we
introduce several notations (for example, effective meridians and a system of meridians)
and discuss their topological properties.

Finally, we give several examples, such as genus one 3-manifolds.

1.1. Background

In this part, we recall several classical theorems for 3-manifolds and discuss the topo-
logical structure of contractible 3-manifolds.

1.1.1. Preliminary. A 3-manifold is irreducible if any embedded 2-sphere bounds a
closed 3-ball (namely, it is homeomorphic to a closed unit ball in R3).

REMARK 1.1.1. We know from the so-called Alexander’s theorem (See [Theorem 1.1,
Page 1] of [Hat00]) that any embedded 2-sphere in R?* bounds an embedded 3-ball.

Further, the proof of Poincaré Conjecture [Per02al,Per02b, Per03| (See |[BBB*10|
or [MTO7]) tells that any contractible 3-manifold is irreducible.

It is well-known that there are many links between the geometric properties of 3-
manifolds and homotopy theory, specially 7;. For example, the loop lemma.

LEMMA 1.1.2. (See [Theorem 3.1, Page 54] of [Hat00])Let M be a 3-manifold with
boundary M, not necessarily compact or orientable. If there is a map f : (D* 0D?) —
(M,0M) with the property that flaopz is not nullhomotopic in OM. Then there is an
embedding h with the same property.

REMARK 1.1.3. We may assume that h(Int D?) < Int M. The reason is described
below:

Let us consider a 1-sided open neighborhood M, =~ dM x [0, €) of 0M in M. Shrinking
the image of f into M(e) := M\M,, we find a map f. : (D? 0D?*) — (M(e),0M(e))
with the property that f.(0D?) is not nullhomotopic in M (€). By Lemma there
is an embedding h. with the same property. Its image is contained in (M (€), dM (¢€)).
Therefore, the image of h. is contained in Int M.

In addition, there is an embedded circle v < dM which is homotopic to h.(0D?) in
M.. There is an embedded annulus A, < M, joining v and h(0D?). We have a map
h:(D? 0D?*) — (M,0M) so that its image is an embedded disc (i.e. the union of A, and
the image of h.). It has the same property as f and h(Int D?) < Int M.

26
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One of tools for computing the fundamental group is the so-called Van-Kampen’s
theorem. It will be frequently used in the following.

THEOREM 1.1.4. (Van-Kampen’s Theorem, See [Theorem11.60, Page 396] of [Rot12])
Let K be a connected complex having connected subcomplexes Ly and Lo with K = Ly U Ls.
If Ly n Ly is connected, then m(K) is the pushout of the data.

m1(L1) 1 (K)

jl*T
J2x

7T1(L1 M Lg) —— 7T1<L2)

where ji : L1 n Ly — Ly 1s the inclusion for k =1, 2.
Moreover, m1(K) is isomorphic to w1 (L1) #r, (1, ~Lo) T1(L2).

If the map ji, : m1 (L1 N Ly) — m(Ly) is injective for k = 1,2, m;(K) can be written
as a free product with amalgamation (See Chapter 11 of [Rot12]).

LEMMA 1.1.5. (See [Theorem11.67, Page 404] of |[Rot12]) Let B, A; and Ay be
groups. . Let Ay =g Ay be the pushout of the following data.

A1 i>Al *B Az

|

B—" . A,

If the map 1), : B — Ay is injective for k = 1,2, one has

(1) the map Ny is injective for k = 1,2;
(2) if Al = M\e(Ayg), then < A}, Ay >= Ay« Ay and A} n Al is isomorphic to B.

We now introduce several concepts about the disjoint closed curves in a disc.

DEFINITION 1.1.6. (See Definition 2.11 of [Wan19a]) Let C' := {¢;}icr be a finite set
of pairwise disjoint circles in the disc D? and D; < D? the unique disc with boundary ¢;.
Consider the set {D;};c; and define the partially ordered relation induced by the inclusion.
For each maximal element D; in ({D;}er, ©), its boundary ¢; is defined as a mazimal circle
in C. For each minimal element D;, its boundary ¢; is called a minimal circle in C.

1.1.2. Simply-connectedness at infinity and 7{°.

DEFINITION 1.1.7. A topological space M is simply connected at infinity if for any
compact set K < M, there exists a compact set K’ containing K so that the induced
map w1 (M\K') — m (M\K) is trivial.

A result of Stallings [Sta72] and Remark tell us that the only contractible and

simple-connected at infinity 3-manifold is R3.

REMARK 1.1.8. If a contractible 3-manifold M is not homeomorphic to R3, it is not
simply-connected at infinity. That is to say, there is a compact set K < M so that for
any compact set K’ < M containing K, the induced map 7 (M\K') — 7 (M\K) is not
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trivial. We also have that the set K is not contained in a 3-ball in M. The reason is
described below: L

If a closed 3-ball B contains K, Theorem shows that m (M) = 1 (M\B) #x,o8)
m(B). In addition, m;(B) and m;(0B) are both trivial. Therefore, m(M\B) = (M) is
trivial. That is to say, the map m (M\B) — m (M\K) is trivial. This is a contradiction.

DEFINITION 1.1.9. The fundamental group at infinity 7{° of a path-connected space
is the inverse limit of the fundamental groups of complements of compact subsets.

For example, the fundamental group at infinity of any compact manifold is trivial. For
any contractible n-manifold M™, it is simply-connected at infinity if and only if 7{°(M™) is
trivial, when n > 4 (See [CWY10|). However, this result is not true in dimension 3. For
example, the Whitehead manifold is not simply-connected at infinity but its fundamental
group at infinity is trivial.

REMARK 1.1.10. Let us consider a contractible 3-manifold M and an exhaustion { N}
of M. We have the following:

77 (M) = limm, (M\N,) = {(M) e [Tm(M\N,) so that (fi)a([3]) = [] for any & >

k k

where f ; is the inclusion from M\Nj, to M\N;.

Therefore, 73°(M) is non-trivial if and only if there exists a non-trivial element ([7x]) €
[ [ 71 (M\Ny) satisfying
k

1) for some kg, the closed curve 7y, is non-contractible in M\ Ny, ;
2) for k = ko, vy is homotopic to 7y, in M\ Ng,.

That is to say, there is a compact set K and a family of closed curves {a,}, going to
infinity with the following property: for each n

a) o, is nullhomotopic in M\ K for ;

b) a,, is homotopic to a1 in M\K.
Note that this family of circles gives a non-trivial element in 7{°(M).

1.1.3. Handlebodies.

DEFINITION 1.1.11. [Page 59, [Rol03]] A handlebody is any space obtained from the
3-ball D?* (0-handle) by attaching g distinct copies of D? x [—1,1] (1-handle) with the
homeomorphisms identifying the 2¢ discs D? x {1} to 2g disjoint 2-disks on 0D?3, all to
be done in such a way that the resulting 3-manifold is orientable. The integer g is called
the genus of the handlebody.

Remark that a handlebody of genus g is homeomorphic to a boundary connected sum
of g solid tori. Therefore, its boundary is a compact surface of genus g. (See Page 59
in [Rol03])

From a result of McMillan [MJ61] and Remark [I.1.1} we know that:

THEOREM 1.1.12. [Page 511, Theorem 1] [MJ61] Any contractible 3-manifold can be
written as an ascending union of handlebodies .

3
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REMARK 1.1.13. Let consider a contractible 3-manifold M. If it is not homeomorphic
to R3, it can written as an increasing family of handlebodies { Ny} satisfying that for each
k,

e N, is homotopically trivial in Ny 1;
e none of the Ny is contained in a 3-ball (See Remark |1.1.8]).

In the following, we consider a closed handlebody N in S3.

DEFINITION 1.1.14. A closed handlebody N < S? of genus g is said to be unknotted
in S? if it complement in S? is also a handlebody of genus g.

For example, an unknotted solid torus in S?.

1.2. Meridians
In the following, we consider a closed handlebody N.

DEFINITION 1.2.1. An embedded circle v < 0N is called a meridian if 7 is nullhomot-
pic in N, but not contractible in dN.

An embedded closed disc (D,0D) < (N,0N) is called a meridian disc if its boundary
is a meridian of N.

The disc D is a splitting meridian disc, if N\D is not connected. Its boundary is called
a splitting meridian.

The disc D is a non-splitting disc, if N\D is connected. Its boundary is called a
non-splitting meridian.

REMARK. Let v be a meridian of N. If « is a splitting meridian, it cuts d/V into two
components. The class [v] is equal to zero in Hy(ON).

If v is a non-splitting meridian, then 0N\ is connected. The class [7] is a non-trivial
element in Hy(0N).

LEMMA 1.2.2. Let N’ and N be two closed handlebodies with N' < Int N. If N’
is homotopically trivial in N, then any non-splitting meridian of N’ is non-trivial in
Hi(N\N') and any meridian of N is trivial in Hy(N\N').

ProOOF. The Mayer-Vietoris sequence gives:
(1.2.1) Hy(N) — Hy(0N') > Hy{(N") @ H,(N\N") > H,(N) — Hy(oN").

We know that Hy(N) and Hy(ON') are both trivial. Then, the map H;(ON') —
H{(N")@® H{(N\N') is injective. As indicated above, any non-splitting meridian of N’ is
non-trivial in Hy(0N'). Therefore, it is not equal to zero in Hy(N\N).

In the following, we will show that any meridian v of N is trivial in Hy(N\N).

Embed N into S? as an unknotted handlebody. The set N’ can be viewed as a
handlebody in S®. The core K’ = vflzlai of N’ is a wedge sum of ¢’ circles {«;};, where
g’ is the genus of N'.

Choose v, = 0N’ as a normal circle of a; in S®. That is to say, the linking number of
Y 1la; in S? is equal to d;;. In addition, the kernel of the map H;(ON’) — Hy(N') is a
linear subspace of dimension ¢/, spanned by {[v/]}¢ ;.
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Since N’ is homotopically trivial in N, the map H;(N') — Hy(NN) is a zero map.
Choose the element (0,[v]) € Hi(N') @ H;(N\N'). Since ~ is a meridian of N, the
element is in the kernel of the map 5. From the sequence , it is also contained in
the image of i;. Hence, [v] can be written as ). n;[v;] in Hy(N\N’).

Claim: the coefficient n; is equal to the linking number of «; 11+.

From the Mayer-Vietoris sequence, the group H;(S*\K’) is a free Abelian group of
rank ¢’ spanned by {[+/] f/zl. Hence, [v] is equal to >}, n;[y/] in Hy(S*\K’). Similarly,
H,(S*\«;) is of rank one and generated by +/. One has that

Hy(N\N") — Hy(SN\K') — H,(S\ov))

[0 = 2wl = 2 mli] = mil]

That is to say, [v] is equal to n;[v/] in H;(S*\«;). From the definition of the linking
number (See Page 132 in [Rol03]), n; is the linking number of v 11 «;.

Since each «; < N’ is nullhomotopic in N, then the linking number of v 11 «; is zero.
Namely, n; is equal to zero, for each i. Therefore, [v] is equal to zero in H;(N\N’). O

1.2.1. The effective meridian. Consider two closed handlebodies N’ and N with
N < Int N.

DEFINITION 1.2.3. A meridian « of N is called an effective meridian relative to N’ if
any meridian disc with boundary ~ intersects the core of N'.

The handbody N is called an effective handlebody relative to N', if any meridian of N
is an effective meridian relative to N'.

Note that if N’ is contained in a 3-ball B < Int N, there is no effective meridian
relative to N’.

LEMMA 1.2.4. Let N’ and N be two closed handlebodies with N' < Int N. The
handlebody N is an effective handlebody relative to N’ if and only if the map m (ON) —
T (N\N) is injective.

PRrROOF. If N is not an effective handlebody relative to N’, there is a meridian disc
(D,0D) < (N,0N) with D n N' = . Therefore, the map m(0N) — m(N\NN’) is not
injective.

If the map m1(0N) — m(N\N') is not injective, we apply Lemma m to the 3-
manifold N\NN’. There is an embedded disc (D’,0D’) ¢ (N\N’,0N) whose boundary is
not contractible in ON. As in Remark [1.1.3] we may assume that Int D' < Int (N\N').
We see that D’ is a meridian disc with D’ n N’ = . Therefore, N is not an effective
handlebody relative to N'. O

LEMMA 1.2.5. Let N' and N be two closed handlebodies satisfying that 1) N' < Int N
and 2) m(ON") — 7 (N\N') is injective. If N is an effective handlebody relative to N’,
then any meridian disc (D,0D) < (N,0N) contains a meridian of N'.

The proof is the same as the proof of Lemma 2.12 in [Wan19a].
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PROOF. Suppose that the closed meridian disc D intersects 0N’ transversally where
v := 0D is a meridian of N. The intersection D n dN' is a disjoint union of circles {¢; }ic;.
Each ¢; bounds a unique closed disc D; < Int D.

Consider the set C"" := {¢; | ¢; is not contractible in N’} and the set C™* = {¢;| ¢;
is a maximal circle in {¢;}ies}-

We will show that C™" is nonempty and a minimal circle in C™°" is a desired meridian.

Suppose the contrary that C™" is empty. Hence, each ¢; € C™* is contractible in 0N’
and bounds a disc D] < dN'. Consider the immersed disc

D i (D Ueems D) (Uecnes D)

with boundary 7. Since D nlInt N = &, we see that ~ is contractible in N\N'.
However, Lemma shows that the map m(ON) — w1 (N\N) is injective. That is

to say, the circle v is nullhomotopic in dN. This is in contradiction with our hypothesis
that 7 is non-trivial in m (0N). We conclude that C™™ # (.

In the following, we will prove that each minimal circle ¢; in C™" is a required merid-
ian. From Definition m, it is sufficient to show that ¢; is homotopically trivial in N'.
Our strategy is to construct an immersed disc ﬁj c N’ with boundary c;.

Let Cj := {c; |c; = Int D; for i € I} and C7*** be the set of maximal circles in C;. We
now have two cases: C; = J or C; # .

Case I: If () is empty, we consider the set Z := Int D; and define the disc ﬁj as
Int Dj.

Case II: If Cj is not empty, then C7"** is also nonempty. From the minimality of ¢;
in C""; each ¢; € C7*** is nullhomotopic in N and bounds a disc D = dN'.

Define the set Z := Int D;\ U¢,ecmer D; and the new disc D;:=Zu (Ueiecmar D) with
boundary c¢;.

Let us explain why ﬁj is contained in N’. In any case, N’ cuts N into two connected
components, N\N’ and Int N’. The set Z is one of these components of Int D;\0N’.
Therefore, it must be contained in Int N" or N\N'.

If Z is in N\N’, the disc D, is contained in N\N’. Thus, ¢; is contractible in N\N'.
However, since the induced map 71 (0N’) — w1 (N\N) is injective, then ¢; is homotopically
trivial in ON’. This contradicts the choice of ¢; € C™*". We conclude that Z is contained
in Int V. X

Therefore, D; is contained in N’. That is to say, c¢; is null-homotopic in N’. However,
[¢;] is a non-trivial element in m;(@N’). From Definition [1.2.1 we conclude that ¢; < D
is a meridian of N’. This finishes the proof. O

As a consequence, we have

COROLLARY 1.2.6. Let N’ and N be two closed handlebodies in a contractible 3-
manifold M satisfying that 1) N' < Int N and 2) the map 7 (ON') — m (M\N') is

injective. If an embedded circle v < ON is not nullhomotopic in M\N', then any embed-
ded disc D < M with boundary v contains a meridian of N'.

The proof is the same as Lemma [1.2.5
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1.2.2. The system of meridians.

LEMMA 1.2.7. For a closed handlebody N of genus g, there are g disjoint non-splitting
meridians {y'}{_, so that N\ 1 N, (D;) is a closed 3-ball, where Dy is a closed meridian
disc with boundary v' and N, (D;) is an open neighborhood of Dy in N with small radius
€ .

The set of these meridians {y'}{_, is called a system of the handlebody N of genus g.
In general, it is not unique.

PROOF. Pick any non-splitting meridian ! of N. We use Lemma to find an
embedded disc D; < N.

As Remark [1.1.3| we may assume that Int D; < Int N. The set Ny := N\N.(D,) is a
closed handlebody of genus g — 1, where N, (D) is the open tubular neighborhood of D;
in N with small radius €;. In particular, the map (0N n dNy) — m1(0Ny) is surjective.

Choose a non-splitting meridian v2 = N n dN; of N;. By Lemma [1.1.2] there exists
a meridian disc Dy of Ny = N\N, (D1). The set Ny := N\N,, (D) 11 N, (D3) is a closed
handlebody of genus g — 2, where N, (D5) is an open tubular neighborhood of D, in N.

We repeat this process g — 2 times and obtain ¢ disjointly embedded discs {D;} so that
N\ 15 N,,(D;) is a handlebody of genus zero (a 3-ball). The boundaries {y'}_, of these
discs are g distinct meridians which are the required candidates in the assertion. 0

COROLLARY 1.2.8. Let N = M, {+'} and {D,} be as in Lemma[1.2.7, where M is a
3-manifold without boundary. If R < Int N is a closed handlebody satisfying that 1) it
is not contained in a 3-ball in M; 2) m(0R) — m(M\R) is injective, then OR 11D,
contains at least a meridian of R.

The poof is also similar to the proof of Lemma 2.12 [Wan19a).

PRrROOF. We may assume that 0R intersects 11, D; transversally. The intersection 0R N
1D, := {7},ec has finitely many components. Let us consider the set C"" := {y e C is
not contractible in JR}.

Claim: C™" is nonempty.

We argue by contradiction. Suppose that C™" is empty. We have that any circle in
D, n R is contractible in dR. As in the proof of Lemma[1.2.5, we get a new disc in N\R
with boundary 7. Therefore, 4 is null-homotopic in N\R.

We use Lemma to find an embedded disc D}  N\R with boundary 7. As
in Remark we may assume that Int D! < Int N\R (or D} < N\R). Choose
the open tubular neighborhood N¢ (D) of Dj in N\R with small radius €j. The set
Ny := N\Ng (Dy) is a closed handlebody of genus g — 1 containing R.

In addition, for [ > 1, 4! is a non-splitting meridian of N| but contractible in
N\(N4 (D) 11 R).

Repeating this process g — 1 times, we obtain g embedded discs {D;}{_, so that

1) Rn 1Ny (D)) = &;

2) The handlebody N\11; Ng(Dj) is of genus zero (a closed 3-ball),
where N (D)) is the open tubular neighborhood of Dj in N with small radius e;.
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Therefore, R is contained in the 3-ball N\1I; N¢ (D;). This contradicts our hypothesis.
The claim follows.

As in the proof of Lemma , we use the condition 2) to show that each minimal
circle in C™" is a required meridian. 0

1.3. Examples

In this part, we begin with Knot theory in a closed solid torus. Subsequently, we
introduce several notations, such as the geometric index, the Whitehead manifold and
contractible genus one 3-manifolds. In addition, we construct two non-homeomorphic
contractible 3-manifolds whose fundamental group at infinity are both non-trivial.

1.3.1. Knots basic.

DEFINITION 1.3.1. A subset K of a 3-manifold X is a knot if K is homeomorphic
with a circle S'. More generally, K is a link if K is homeomorphic with a disjoint union
of one or some circle(s).

Two knots or links K and K’ are ambient isotopic if there is a homeomorphism
h: X — X such that (1) h is isotopic to the identity map; (2) h(K) = K'.

A knot K is called to be trivial (or unknotted) in X if there exists an embedded disc
in X with boundary K.

FIGURE 1.1.

For example, if X is R? or S3, the knot (I) is ambient isotopic to the knot (IT) in X
(See Figure . These two knots are both trivial in S3.

If X is a torus T?, two knots K and K’ are ambient isotopic if and only if [K] = +[K’]
in 71(T?) (See [16.Theorem, Page 25] of [Rol03]).

We consider a closed solid torus N and a knot K < N. Embed N into S® as an

unknotted solid torus (See Definition [1.1.14)). The knot K can be viewed as a knot in S3.
The disjoint union K 11+ is a link in S*, where 7 is a meridian of N.

Recall that an n-component link L < S* is unlinked if and only if there exist n
disjointly embedded discs D; = S? so that L = 11,0D;.
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REMARK 1.3.2. The knot K is trivial in N if and only if the link K 11+ is unlinked in
S3. The reason is as follows:

If K is trivial in N, there exists an embedded closed disc D < N with boundary K.
This disc is away from the knot v in S3.

Since N < $? is unknotted , the meridian v is a trivial knot in S®. Note that S*\ D is
homeomorphic to an open 3-ball. Then, ~ is a trivial knot in S*\ D. Hence, one finds an
embedded disc Dy = S*\ D with boundary . Therefore, K11+ is the boundary of D11 Dy.
That is to say, the link vy 11 K < S? is unlinked.

If K 11~ is unlinked in S?, there exists an embedded closed disc D in S*\7y with
boundary K. Therefore, K is trivial in the complement of the knot ~.

A closed solid torus N is homeomorphic with S' x D?, where D? is a closed unit disc
in R?. A special homeomorphism A : S x D? — N is called a framing of N.

A longitude of N is any simple closed curve in N of form h(S! x z,), for some framing
h of N and some point zy in D?.

REMARK 1.3.3. In a closed solid torus N, the kernel of the induced map m(0N) —
71 (V) is isomorphic to Z. Each meridian v of N belongs to the kernel. Since «y is an
embedded curve, it is a generator of the kernel.

An embedded circle § = N is a longitude if and only if [#] and [v] generate H,(ON,Z),
where 7 is a meridian of N (See Page 29 of [Rol03]). In addition, any longitude of N is
isotopic to the core of N in N.

DEFINITION 1.3.4. Assume that p, g are relatively prime and N is an unknotted solid
torus in S. The torus knot T,,, = N < S* of type (p, q) is the knot which wraps around
N in the longitudinal direction p times and in the meridional direction ¢ times.

For example, the trefoil is T5 3. Here are T5 3 and T3 4.

The (2,3) torus knot The (3,4) torus knot

FIGURE 1.2.

REMARK 1.3.5. The knot T}, is trivial in S* if and only if p = +1 or ¢ = +1 (See
Page 53 of [Rol03]).
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In the following, we consider two closed solid tori N’ and N with N’ < IntN.

LEMMA 1.3.6. If the closed solid torus N' < Int N is homotopically trivial in the
closed solid torus N, then H(N\N') = Z?* and the kernel of the induced map H(ON') —
H{(N\N') is generated by a longitude of N'.

PROOF. Asin Lemmall.2.2, we use the Mayer-Vietoris sequence to show that Hy (N\N')
is isomorphic to Z2. It is generated by a meridian of N’ and a longitude of N.

The image of the map H;(0N') — H;(N\N’) is a subgroup of rank one which is
generated by the meridian 4" of N’. The kernel of H,(0N’) — H;(N\N’) is also of rank
one and generated by [¢'], where §' = 0N’ is an embedded circle. Therefore, Hy(0N’) is
generated by [7'] and [¢']. The circle ¢ is a longitude of N’ (See Page 29 of or
Remark . That is to say, the longitude 6’ is a generator of the kernel of H;(dN’) —
H(N\VY). 0

1.3.2. The Whitehead manifold. The Whitehead manifold is constructed from the
Whitehead link. Recall that the Whitehead link is a link with two components illustrated
in Figure|(l.3

FIGURE 1.3.

Choose a closed unknotted solid torus 7} in S3. Its complement inside S? is another
solid torus. Take a second solid torus 75 inside 7} so that the core of K5 forms a Whitehead
link with any meridian of 7} as in Figure [L.4]
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FIGURE 1.4.

The solid torus 75 is unknotted in S®. Then, embed T} inside 75 in the same way as
T; lies in 77 and so on infinitely many times. Define the set T, = N7}, called the
Whitehead continuum.

The Whitehead manifold is defined as Wh := S*\T,, which is an open 3-manifold.

REMARK 1.3.7. From the above construction, we know that

(1) Since each T}, is unknotted in S*, then its complement Ny is a solid torus. There-
fore, the Whitehead manifold is an increasing union of solid tori {Ny}; as in
Remark [[.1.13] In addition, each Ny is embedded inside Ny in the same way
as Ty lies in T. This follows from the symmetry of the Whitehead link.

(2) The core K}, of Ny is a non-trivial knot in the solid torus Njy;. Furthermore,
the link K 117, is a Whitehead link for each meridian ;.1 of Ng,;. This is a
consequence of the symmetry of the Whitehead link.

(3) Each K}, is unknotted in S®. For each j > k, K}, is nullhomotopic in N; but a
non-trivial knot in Nj.

Remark that the Whitehead manifold has no complete metric of positive scalar cur-
vature (See Theorem [Bj).

1.3.3. Geometric Index.

DEFINITION 1.3.8. [Sch53| If N’ < Int N are solid tori, the geometric index of N’
in N, I(N’, N), is the minimal number of points of the intersection of the core of N’ with
a meridian disc of N.

REMARK 1.3.9. If the geometric index I(N’, N) is greater than zero, the solid torus
N is an effective handlebody relative to N’ (See Definition [1.2.3)).

If the core K’ of N’ is a trivial knot in N, there is a meridian disc (D,dD) <
(N\N’,0N). Moreover, I(N’, N) is equal to zero. (See Corollary 2.9 of [Wan19a))

For example, in Wh, the geometric index I(Ng, Niy1) = 2 for each k, where Ny is
illustrated as in Chapter 1.3.2.

See [Schb3| for the following results about the geometric index.
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1) Let Ny, Ny, and Ny be solid tori so that Ny < Int Ny and N; < Int No. Then
I(No, No) = I(Ngy, N1)I(N1, Ny).

2) If Ny and N; are unknotted solid tori in S* with Ny < Int Ny, and if Ny is homo-
topically trivial in Ny, then I(Ng, N) is even.

LEMMA 1.3.10. Suppose that the closed solid torus N' < Int N is homotopically trivial
in the closed solid torus N. If I(N',N) > 0, then the two induced maps iy : m(ON) —
T (N\N') and iy : 7 (ON') — m (N\N’) are both injective.

PROOF. Since I(N', N) > 0, the solid torus N is an effective handlebody relative to
N’ (See Remark[1.3.9). We use Lemma to see that the map iy : m(ON) — w1 (N\N')
is injective.

Suppose that the map i, is not injective. We use Lemma to find an embedded
disc (Dq,0Ds) < (N\N',0N’). The embedded circle 6 := 0D, is not contractible in N’

Since ¢ bounds an embedded disc Dy = N\N’, it is a trivial knot in N. Furthermore,
[0] belongs to the kernel of the map Hi(0N') — Hy(N\N’). From Lemma m, the
embedded circle 6 is a longitude of N’.

Recall that as a knot, any longitude of N’ is isotopic to the core K’ of N’ in N’ (See
Remark. Therefore, K’ is isotopic to € and a trivial knot in N. From Remark ,
I(N’,N) = 0. This is a contradiction. O

LEMMA 1.3.11. Suppose that the closed solid torus N' < Int N is homotopically trivial
in the closed solid torus N. If I[(N',N) > 0, then any meridian disc D of N contains a
meridian of N'.

It follows from Lemma [[.3.10] and Lemma [1.2.5]

1.3.4. Genus one 3-manifold. (See [GRW18|) Let us describe McMillan’s con-
struction in [MJ62].

DEFINITION 1.3.12. (Genus one 3-manifold) A genus one 3-manifold M is the ascend-
ing union of solid tori { Ny }xen, so that for each k, Ny < Int Nj,; and the geometric index
of Ni in Nj,; is not equal to zero.

THEOREM 1.3.13. (See [Theorem 2.8, Page 2042] of (IGRW18])

(1) A genus one 3-manifold defined with a sequence of open solid tori {Ni}ren SO
that each N is contractible in N1, is a contractible 3-manifold that is not
homeomorphic to R3.

(2) Any contractible genus one 3-manifold can be written as an ascending union of
solid tori {Ny}ren so that 1) Ny is contractible in Nyyq; 2) I(Ng, Npi1) = 2 for
each k.

For example, the Whitehead manifold is a contractible genus one 3-manifold.

Any contractible genus one 3-manifold M := U2 N satisfies the following:

(1) For each k, Ny is homotopically trivial in Ny 1. Moreover, I(Ny, Nyi1) = 2.
(2) For each j > k, the core K}, of Ny is null-homotopic in N; but a nontrivial knot
n N]
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(3) If N; is viewed as an unknotted solid torus in S, then the link Kj 11+, < S® is
linked in S*, for each meridian v; of N; for j > k. Moreover, its linking number
is zero.

(4) However, the knot Kj = S* may be knotted in S®.

Together these properties, we will show that no contractible genus one 3-manifold
admits a complete metric of positive scalar curvature (See Theorem .

1.3.5. More examples. In this part, we construct two different contractible 3-
manifolds, M; and M,. Their fundamental group at infinity are both non-trivial.

First, we construct the example, M;.

Choose an unknotted handlebody W, = S? of genus two (See Definition [1.1.14)). Take
a second handlebody W7 < Int W, of genus two which is a tubular neighborhood of the
curve in Figure [1.5] Then, embed another handlebody W5 of genus two inside Wj in
the same way as W lies in W, and so on infinitely many times. Therefore, we obtain a
decreasing family {W}.}; of handlebodies of genus two.

FIGURE 1.5.

The manifold M; is defined as M; := 83\ Ny Wg. It is an open 3-manifold.

We have that each W, is unknotted in S (See Definition . That is, the comple-
ment N, of W}, in S? is a handlebody of genus two. Therefore, M; can be written as the
increasing union of handlebodies {Ny}x of genus two. In addition, each Ny lies in Ny
as in Figure . (The set K} is the core of Ni.) Since each Ny is homotopically trivial
in N1, M is a contractible 3-manifold.
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FIGURE 1.6.

Next, we construct a properly embedded plane P, < M; and show that 7{°(M;) is
non-trivial.

Choose the splitting meridian 511 < 0Nj11 of Nj4; as in Figure[I.6] We have that
is homotopic to Vg1 in Ngy1\Ng. Choose an embedded annulus Ay © Ngi1\Ny (namely,
it is homeomorphic to S' x [0,1]) with boundary ~;, 11y, 1. We define the plane P, as

Py = UpzoAg YUy Dy
where Dy © Nj is a meridian disc with boundary ~,.

PROPOSITION 1.3.14. Let My and Py be constructed as above. Then,

e the fundamental group at infinity 7 (M) is non-trivial;
e the properly embedded plane Py cuts My into two Whitehead manifolds.

REMARK. Since 7{°(M;) is non-trivial, M; is not simply-connected at infinity. That
is, M, is not homeomorphic to R3.
The family { Ny} of handlebodies satisfies Property H (See Definition [2.2.5]).

PROOF. First, we will show that 7{°(M;) is non-trivial. Since 7 is homotopic to i1
in M\ Ny, it is sufficient to show that 7y is not contractible in M;\Ny (See Remark.

We see from Figure that Ny, is an effective handlebody relative to Ny. From
Lemma , the map 7 (0Ngs1) — m1(Niy1\Ng) is injective for k = 0

From Figure we have that Wy is an effective handlebody relative to Wj,;. By
Lemma m the maps ﬂl((?Wk) — m(Wi\Wgy1) is also injective. In addition, the
space Wi\Wj,1 is equal to NkH\Nk Then, we can conclude that the map m(ON;) —
71 (Ng+1\Ng) is injective for k& = 0.

Claim: the map m(0Ny) — w1 (M;\No) is injective.

Theoremgives an isomorphism between m (No\Ny) and 71 (N1\No)#x, (an,)71 (N1 \No)-
From the above fact, the maps 7, (0N;) — 71 (N;\Np) and d 71 (ONy) — m1(Na2\N1) are both
injective. We use Lemmato show that the map 71 (N;\Np) — 1 (No\Np) is injective.
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In addition, the map m(0Ny) — m(N1\Np) is injective. The composition of these two
maps 71 (0Ng) — w1 (N2\Vp) is injective.

Repeating the above argument several times, we obtain that the map m (0Ny) —
m1(N;\Np) is injective for each j > 0. Hence, the map m;(0Ny) — m1(M1\Ny) is injective.
This finishes the proof of this claim.

Since g is not homotopically trivial in 0Ny, it is also non-contractible in M;\Ny. Since

each 7 is homotopic to vxy1 in M;\ Ny, each 7 is a non-trivial element in 7y (M;\ V).
We see from Remark |1.1.10| that 77°(M;) is non-trivial.

It remains to show that P, cuts M; into two Whitehead manifolds.
The plane P, cuts M; into two contractible 3-manifolds M and M{. In addition,
P, n Ny is a splitting meridian disc of N with boundary ~x.
From the sequence {N;}, we obtain two increasing families, {/V}} and {N}'}, of solid
tori in M; satisfying that
o M| = UpNj and M| = UpN};
e the set Ni\(V) 11 N}) is a tubular neighborhood of the meridian disc Py n Ny.
Furthermore, each Nj is embedded into IV}, as in Figure . From Chapter 1.3.2,
we see that M, is homeomorphic to the Whitehead manifold. Similarly, the contractible
3-manifold M7 is also homeomorphic to the Whitehead manifold. Therefore, P; cuts M;
into two Whitehead manifolds. 0

~ >

/

/
Nk+1

FIGURE 1.7.

Together with the proof of Theorem we have that

THEOREM 1.3.15. The contractible 3-manifold, M, has no complete metric of positive
scalar curvature.

We will prove it in Chapter 6.

In the following, we construct the second example, Ms;. The construction of M, is
similar to M;’s.

Choose an unknotted handlebody W, = S? of genus two. Take a second handlebody
Wi < Int Wy of genus two which is a tubular neighborhood of the curve in Figure [1.8|
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Then, embed another handlebody W5 of genus two inside W; in the same way as W lies
in Wy and so on infinitely many times. Therefore, we obtain a decreasing family {W}.} of
handlebodies.

FIGURE 1.8.

The manifold M, is defined as M, := S3\ N W},. Note that each W}, is unknotted in
S3

As above, M; can be written as an increasing union of handlebodies { Ny}, of genus
two, where Ny := S*\W}. Furthermore, each N}, lies in Ny as in Figure .

FIGURE 1.9.

Pick the splitting meridian v, < Ny of Ni. Each 74 is homotopic to yg41 in Ngyq1\Ng.
Choose an embedded annulus Ay < Ny 1\N, with boundary vy 11 yx.1. We define the
plane P, as

Py = Up=0Ar sy Do
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where Dy < Ny is a meridian disc with boundary 7.

PROPOSITION 1.3.16. Let My and P be constructed as above. Then,
(1) ¥ (Ms) is non-trivial;
(2) the plane Py cuts My into two contractible 3-manifolds. Fach of them is homeo-
morphic to R3

PROOF. As in the proof of Proposition [1.3.14] we know that 71 (M5°) is non-trivial.
It remains to show that P, cuts M, into two R3s.
The plane P, cuts M, into two contractible 3-manifolds M; and MJ. In addition,
P, n Ny is also a meridian disc of Ny with boundary ;.
As the first example, we obtain two increasing families, {IV,} and {N}'}, of solid tori
in M, satisfying that
o M) = upNj and M) = UpN};
e the set Ni\(INV, 11 N}) is a tubular neighborhood of the meridian disc P, n Ny.
Furthermore, each Nj is embedded into N, as in Figure @ There is a closed
3-ball B, < Nj_, containing N;. Therefore, M, is equal to U B). Hence, M7 is simply-
connected at infinity (See Remark . Namely, it is homeomorphic to R?. Similarly,
M is also homeomorphic to R3. O

FIGURE 1.10.

REMARK 1.3.17. It is unknown whether M, admits a complete metric of positive
scalar curvature.



CHAPTER 2

Topological Properties

In this chapter, we discuss several topological properties of contractible 3-manifolds.

We first study the behavior of embedded discs in the Whitehead manifold and their re-
lationship with the geometric indexes. Their relation is clarified by Theorem [2.1.2] Based
on their relation, we introduce the topological property, called Property P. Furthermore,
we show that any contractible genus one 3-manifold satisfies this property.

Next, we consider contractible 3-manifolds. We introduce two types of surgeries on
handlebodies. We use these surgeries to show the existence of effective handlebodies (See
Theorem [2.2.3). Then we inductively find an increasing family of handlebodies with good
properties, called Property (H).

2.1. Property P

2.1.1. The Whitehead case. As in Chapter 1.3.2, Wh c S? is an increasing union
of closed solid tori {Ny}7°, so that the geometric index I(Ny, Ngi1) = 2, for each k. For
any j > k, the core K} of Ny, is a non-trivial knot in N; but unknotted in S®. In addition,
the link K} 11; is linked with zero linking number, for any meridian ~; of ;.

LEMMA 2.1.1. Any embedded circle v € 0N, which is the boundary of a closed embed-
ded disc D in Wh but not nullhomotopic in 0Ny, is a meridian of Ny.

PROOF. Since the disc D is compact, there is some kg > k such that D is contained
in NV, ko-

Let 7 belong to the homology class p[yk] + ¢[0k] in H1(0Ny), where v, and ) are a
meridian and a longitude of Ny. Since N}, is an unknotted solid torus in S*(See Remark
, v (as a knot in S?) is isotopic to the torus knot 7}, , in S*.

Because the knot v bounds an embedded disc D in Ny, it is a trivial knot in Ny, < S°.
Hence, « is unknotted in S3. We see from Remark that p = £1 or ¢ = +1.

Since the knot  is trivial in Ny, we use Remark to find a meridian disc
(Dy,0Dy) < (Ngy, ONy,) with Dy ny = & . Because the geometric index (N, Ny,) > 0,
the disc D; contains at least one meridian 7/, of 0N, (Lemma or Lemma [1.2.5)).

Therefore, 7', n v is empty. Their intersection number on ¢ /Ny must be zero.

We knows that the intersection number of v and 7/ is q. Therefore, we knows that
p = +1,¢ = 0. That is to say, v is homotopic to the meridian ; on 0Nj. This completes
the proof. 0

THEOREM 2.1.2. Any v < 0N}, bounding an embedded disc D in Wh satisfies one of

the following:

(1) [7] is trivial in m (ONy),
(2) D ~ Int N; has at least I(N;, Ny) components intersecting Ny, for each | < k.

43
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Note that the geometric index I(N;, Ni) is equal to 28,

Proor. We argue by induction on k.

e When k£ = 0, it is trivial.
e We suppose that it holds for N;_;.

We suppose that the closed curve « is not contractible in dN,. From Lemma [2.1.1] it is
a meridian of Nj. In addition, the linking number of v 11 K_; is zero, where Kj_; is the
core of Nj_; (See Remark [1.3.7).

We may assume that D intersects 0Nj_; transversally. The set D n dN_; has finitely
many components C' := {v;},c;. Each component ~; is an embedded circle and bounds a
unique closed disc D; < Int D.

Let {v;}jer, be the set of maximal circles in C' where Iy < I. Each ; is the boundary
of the disc D, for j € I.

Claim: There exist at least two elements in {v;};ez,, which are meridians of Ny_;.

By Lemma the maps 7 (0Ng) — w1 (Ng\No) and w1 (ONy) — 71 (N \Ng) are
both injective for any m > k. Van-Kampen’s Theorem (See Theorem gives an
isomorphism between m(N,,\INo) and 71 (Ne\No) #x,on,) T1(Nm\Ni). We use Lemma
to see that the map m;(0Ng) — w1 (N, \IVy) is also injective. Therefore, since 7 is
not contractible in 0Ny, we can conclude that it is not contractible in Wh\Nj.

If 7; is homotopically trivial in dNj_; for each j € Iy, then one finds a disc D} <

ONj—1. Consider a new disc D' := (X\ Ujer, Dj) U (Ujer, Dj) in Wh\Ny with boundary ~.
Therefore, vy is contractible in Wh\Ny. This contradicts the last paragraph. We see that

one of {;}er, is non-contractible in dNy_;. Hence, by Lemma there is at least one
meridian of Ny_q in {v;}jer,-

In the following, we argue by contradiction.

Suppose that there is a unique meridian of Njy_; in the set {v;};e,. That is to say,
there is a unique jo € I such that v;, is a meridian of N,_;. Remark that each ~; bounds
a unique disc D; < D.

If v; is not contractible dNj for some j € Ip\{jo}, Lemma shows that it is a
meridian, which contradicts the uniqueness of j,. We see that v; is nullhomotopic in
ONy_1, for each j € Ip\{jo}.

Consider a meridian disc ﬁjo of Ni_; with boundary +;,, which intersects the core
K1 of Ny_; transversally at one point. For j € Ip\{jo}, there exists a disc ﬁj < 0N
with boundary ~;.

Define a new disc D := (D\ Ujes, D;) Ujer, (uvjf?j) with boundary v. It intersects
K1 transversally at one point, which implies that the intersection number of D and
Kk—l is +1.

Therefore, the linking number of v11 K4 is 1. This is in contradiction with the fact
that its linking number is zero.

This completes the proof of the claim.

From the above claim, there are at least two distinct meridians, v;, and ;,, of Nj_;
in {v;}jer,- Applying our inductive assumption to D;, and D;, respectively, we know that
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D;, nInt N; has at least 2°71~! components intersecting Ny for ¢ = 0,1 for [ < k — 1.
Therefore, D n Int N; has at least 2°~! components intersecting Nj. 0]

Based on Theorem [2.1.2] we introduce a topological property.

DEFINITION 2.1.3. A contractible genus one 3-manifold M is called to satisfy Property
P if for any properly embedded plane ¥ < M, any & > 0 and any closed curve v € 0NN,
it holds one of the following:

(1) ~ is contractible in 0Ny;
(2) for I <k, D nInt N, has at least I(N;, Ni) components intersecting Ny,

where D < ¥ is a unique disc with boundary v and { N} is a sequence as described in

Theorem [L.3.13]

We will show that all contractible genus one 3-manifolds satisfy Property P (Theorem
2.1.6)).

2.1.2. The Genus one case. In this part, we show that any contractible genus one
3-manifold satisfies Property P.

First, recall some notations from Chapter 1.3.4. Any contractible genus one 3-manifold
M is the ascending union of closed solid tori { Ny}~ , so that Nj is homotopically trivial
in Njy1 and the geometric index I(Ng, Ngi1) = 2 (See Theorem (1.3.13)).

In the genus one case, Lemma [2.1.1| can be generalized as follows:

LEMMA 2.1.4. A circle v € ¥ n 0Ny, which is not contractible in 0Ny, is a meridian
of Nk, where > < M is a properly embedded plane. Moreover, the unique disc D < 3 with
boundary v intersects the core Ko of Nj.

PrOOF. We may assume that > intersects 0N, transversally. Since X is properly
embedded, ¥ n dNy := {7}, has finitely many components, where 79 = 7. Each ~;
bounds a unique closed disc D; < ¥ (where Dy = D).

Define the set C' := {7;|7; = Dy is not contractible in dNi.}. It is not empty (yo < Dy).

Since {7}l is a family of disjoint circles, we see that the intersection number of ~y
and ~y; in 0N}, is zero for each i # 0.

If [v;] is not equal to £[v] in 71 (0N}) for some 7; € C, the intersection number of v

and ~; is nonzero in dNy. This contradicts the above fact. We can conclude that each
~; € C'is homotopic to v in 0N, up to orientation.

In the following, we will show that each minimal circle v; in C' is a meridian. This is
to say, v is also a meridian of Ng.

The remaining proof is similar to the proof of Lemmal[l.2.4] It is sufficient to show that
«v; is homotopically trivial in /N;. We begin by constructing an immersed disc 153- c Ny
with boundary ~;.

Let us consider the set Cj := {y; |y € Int D;} < C and the set C7*** of maximal
circles in C;. One has two cases: C; = & or C; # .

Case I: If C; is empty, we consider the set Z := Int D; and define the disc ﬁj as
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Case II: If Cj is not empty, then C7"** is also non-empty. From the minimality of ~;,
each v; € C7"** is contractible in dNj, and bounds a disc D! < ON.

Define the set Z := Int D;\ UsyeCmas D; and the disc ﬁj = Z U (u%.ecjmazDg) with
boundary ;.

A

Let us explain why D, is contained in Nj. In any case, dNj cuts M into two
connected components, M\, and Int Ni. The set Z is one of these components of
Int D;\0Nj.Therefore, it is in M\Nj or Int Nj.

If Z is in M\ Ny, then the disc D, with boundary ; is contained in M\Nj. Therefore,
we see that [v;] = 0 in m; (M\Ny). However, the map m1(0Ny) — m (M\Ny) is injective
(Lemma . That is to say, ; is null-homotopic in dN;. This contradicts the fact
that [y;] # 0 in 7 (0Ny). We can conclude that Z is contained in Int Nj.

Therefore, ﬁj is contained in Nj. Its boundary «; is nullhomotopic in Nj. Since 7 is
homotopic to v; in 0Ny, it is also contractible in Ny. By Definition [I.2.1], v must be a
meridian of V.

By Lemma 7 the two induced maps m;(0Ng) — m(M\Ny) and m(0Ng) —
1 (N\Kp) are both injective. Van-Kampen’s theorem (See Theorem [1.1.4]) shows that
m(M\Ky) = m (M\Ng) #x,0n,) T1(N\EKo). We see from Lemma that the map
m1(ONg) — m1 (M\K)y) is also injective. Therefore, [y] # 0 in w1 (M\Kp). We can conclude
that the disc D < ¥ with boundary v must intersect the core Ky of Nj. U

REMARK 2.1.5.

e In the proof, the set ﬁj N Int N}, is equal to the set Z and a subset of D N Int N,.
e The disc D; may not be embedded, because D; may be contained in some D).

When it is not an embedding, we can deform Dj in a small neighborhood of 0N,
in N, so that it becomes an embedded disc in N.

THEOREM 2.1.6. Any contractible genus one 3-manifold M satisfies Property P.

Proor. Consider a properly embedded plane ¥ < M. Suppose there is some closed
curve v < % n 0N, which is not contractible in 0Ny for some k € N.y. By Lemma [2.1.4]
~ is a meridian of Ny and the unique closed disc D < ¥ with boundary ~ intersects Ny.

We may assume that ¥ intersects 0N, transversally. The set D n dNy := {7;}, has
finitely many components where v, = 7.

Define the set C' := {~; | the circle v; € D n d Ny, is not contractible in ONy}. (It is not
empty because v < D). We use Lemma to see that each minimal circle v; in C'is a
meridian of Nj. It bounds a unique closed disc D; < D. As in the proof of Lemma ,
we construct a disc ﬁj < N with boundary v;. Remark that 153- N Int N, is a subset of
D n Int Ny (See the above Remark).

As described in the above remark, the disc ﬁj may be not embedded. If necessary,
we can deform it in a small neighborhood of dN, in Ny so that it becomes an embedded
disc. For [ < k, ﬁj N Int N is still a subset of D n Int N, < X.

It is sufficient to show that ﬁj nInt N; has at least I(N;, N) components intersecting
Np.
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We may assume that Ej intersects 0N, transversally. The intersection ﬁj N ON; :=
{7 }ter has finitely many components. Let us consider the set Cmar of maximal circles in
{71}ier and its subset C"" := {! € C"™%|4/ is not contractible in ON;}.

Claim: [C™"| = I(N;, Ny).

We argue by contradiction. Suppose that |C’""”| < I(N;, Ny). Each ] € C™az hounds
a unique disc D} ¢ D, .

If ~/ is in C™" it is a meridian of N, (See Lemma . Therefore, we can find a
meridian disc D} of N; which intersects the core K; of N; transversally at one point. If

~) € Cmar\Cmon A1 s contractible in @N; and bounds a disc D! in ON;.
Define a disc D} with boundary ~;

ﬁ; = (‘Dj\ U'Yéeémaz Dé) ) (U'YQECA"’””’ID{J)'
The number #(153 N K;) of points of D; N K is less than I(N;, N;).
As above, the disc D; may be not embedded (because D} may be contained in some

Dj)). If necessary, we modify the disc 15; in a small neighborhood of dN; so that it becomes
an embedded disc in N X R o
Therefore, we may assume that (D, dD’) < (Ny,dNy) is an embedded disc with

boundary «;. Since v, is a meridian of Ny(See Lemma , D; is a meridian disc of
N, with #(D); n K;) < I(N;, N;,). However, the definition of the geometric index (See

Definition [1.3.8) gives that #(ﬁ; N K;) = I(N;, Ni), a contradiction. This finishes the
proof of the claim.

In the following, we will finish the proof of the theorem.

Let {v.}™, be the circles in C™" and D' D; the unique disc with boundary 7/,
where m = \é’fon\ From the maximality of 7, in {7, }ier, {D%L}7, is a family of pairwise
disjoint discs in ﬁj.

We use Lemma to see that each v, € Cmom is a meridian. Thus, D’ intersects the
core Ky of Ny. The intersection D n Int N; contains at least one component intersecting
Np.

We conclude that Ej N Int N, has at least m components intersecting Ny. From the
above claim, we know that m > I(NV;, Ni). Therefore, D n Int N; has at least (N}, Ny)
components intersecting Ny. 0

REMARK 2.1.7.

e The proof of Lemma and Theorem [2.1.6 just depend on the injectivity of
the two maps m (ONy) — 1 (N\No) and 1 (ONg) — w1 (M\Ny).

o Let {Ry}x be an increasing family of solid tori in a contractible 3-manifold with
the property that
(1) m(0Rg) — m(R;\Rp) is injective ;
(2) m1(0Ry) — w1 (M\Ry) is injective .
However, the union u, Ry may not be equal to M.

From the above fact, Lemma holds for each Rj. Further, as in the proof

of Theorem , the family {Ry} satisfies Property P. That is to say, for any
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properly embedded plane > < M, any k£ > 0 and any closed curve v < 0Ry N ¥,
it holds one of the following;:

(1) ~ is contractible in 0Ry;

(2) for Il < k, D nInt R, has at least I(R;, Ry) components intersecting Ry,
where D < ¥ is a unique disc with boundary ~.

2.2. Property H

2.2.1. Surgeries. Consider two closed handlebodies N’ and N in a 3-manifold M
with N’ < Int N. We introduce two types of surgeries on handlebodies:

Type I: If there exists a meridian disc D < N\N’ of N, then we consider an open tubular
neighborhood N.(D) < N\N’ of D. We then have two cases:

Case (1): If D is a splitting meridian disc, N\N.(D) has two components. The closed
handlebody W is defined as the component containing N’;

Case(2): If D is a non-splitting meridian disc, N\N(D) is connected. The closed
handlebody W is defined by N\N.(D).

Type II: If there exists an embedded disc D; < M\N satisfying that 1) Int D; €« M\N
and 2) its boundary v < dN is not contractible in N, we consider a closed tubular
neighborhood N, (D;) of Dy in M\N. Define a new handlebody W5 as N u N, (D).

REMARK 2.2.1. For i = 1,2, the genus g(0W;) of d0W; is less than g(0N). In addition,
OW; is a union of dW; n dN and some disjoint discs. It tells us that the map m (W; N
ON) — 71 (0W;) is surjective.

LEMMA 2.2.2. If N’ is homotopically trivial in N, then N’ is also homotopically trivial
wn Wi for each v, where W; is obtained from the above surgeries.

PROOF. For the type II surgery, we see that N is contained in W5. Therefore, N’ is
homotopically trivial in Wj.

For the type I surgery, it is sufficient to show that any circle ¢ € N’ bounds some disc
D/ [ Wl'

The closed curve ¢ bounds an immersed disc D' < Int N. We will construct the
required disc D' < Wj from D'

We may assume that D’ intersects D~ 11 Dt := Int N n dN(D') transversally. Each
component ¢; of D' n (D111 D7) is a circle in D" and bounds a closed sub-disc D, < D'".

Since Dt and D~ are two disjoint discs, each ¢; is contractible in DT 11 D~. It also
bounds a disc D! < DT 11D~. Let C"* be the set of the maximal circles of {¢;}ic; in D'.
We construct a disc

D/ = D,\ UcieCmaz D,Z ) (UciECmazD;/)
with boundary c. It stays in N\N.(D’). That is to say, c is contractible in W;. Therefore,
N’ is homotopically trivial in Wj. O

2.2.2. Effective Handlebodies. In the following, let us consider a contractible 3-
manifold M.
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THEOREM 2.2.3. Let N' and N be two closed handlebodies in M satisfying that 1)
N’ < Int N and 2) N' is homotopically trivial in N.Then there exists a closed handlebody
R c M containing N’ satisfying that

(1) the map 7 (0R) — m (R\N') is injective;

(2) the map m (OR) — m (M\R) is injective;

(3) N' is homotopically trivial in R;

(4) OR is a union of R n N and some disjoint discs.

REMARK. From (1), R is an effective handlebody relative to N’ (Lemma |1.2.4)).

PROOF. Suppose that either the map 4, : m (0N) — m (N\N’) is not injective or the
map iy : m (ON) — m (M\N) is not injective. (If these two maps are both injective, R is
defined as N.)

If 7, is not injective, Lemma shows that there exists a meridian disc D; of N
with D1 n N’ = . We do the type I surgery on N with the disc D; to obtain a new
handlebody W.

If 75 is not injective, we use Lemma to find an embedded circle v € dN and an
embedded disc Dy ¢ M\N (Int Dy € M\N) where 7 = 0D is not nullhomotopic in dN.
We do the type II surgery with the disc Ds to get a new handlebody W.

In any case, we have that g(0W) < ¢g(dN). The boundary W is a union of dW n dN
and some disjoint discs {D.};. Therefore, m (0W n dN) — m(0W) is surjective. In
addition, we see from Lemma [2.2.2] that N’ is contractible in W.

When picking a circle v < ¢W which is not nullhomotopic in 0W, we may assume
that v is an embedded circle in dW n dN. Therefore, when repeating these two types of
surgeries, we may assume that the new surgeries are operated away from these disjoint
discs {D.}.

Iterate this process until we find a handlebody R satisfying (1) and (2). At each
step, the genus of the handlebody obtained from the surgery is less than the original one.
Therefore, this process stops in no more than g(N) steps.

As above, N’ is contractible in R and JR is a union of R n dN and some disjoint
discs. 0

REMARK. If N’ is not contained in a 3-ball in M, then the genus of R is greater than
Zero.

LEMMA 2.2.4. Let R < M be a closed effective handlebody relative to the closed han-
dlebody N’ < Int R satisfying that w1 (0R) — w1 (M\R) is injective. If a closed handlebody
N is an effective handlebody relative to R < Int N, then N is an effective handlebody
relative to N'.

PROOF. Based on Lemma [1.2.4] it is sufficient to show that the map m(dN) —
m (N\N) is injective.

We use Lemma to show that the induced map 71 (0R) — m(R\N') is injective.
Since w1 (0R) — m (M\R) is injective, then the map 7, (0R) — 7 (N\R) is also injective.

Van Kampen'’s theorem (Theorem gives an isomorphism between 71 (N\N’) and
T (N\R) *@m (R\N"). A classical result (See [Theorem 11.67, Page 404] of [Rot12]

or Lemma [1.1.5) shows that the induced map m(N\R) — 7 (N\N’) is injective.
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Lemma shows that the map 7 (0N) — m(N\R) is injective. Therefore, the
composition 71 (0N) — m (N\R) — m(N\N') is also injective. This finishes the proof.
U

2.2.3. Property H. In the following, let us consider a contractible 3-manifold M
which is not homeomorphic to R3.

By Theorem [1.1.12] M can be written as an ascending union of handlebodies { Ny},
Each Ny, is contractible in Ngi1. As in Remark [I.1.8] we can choose Ny so that it is not
contained in a 3-ball in M (because M is not homeomorphic to R?).

In the genus one case, the family {NNV,} has several good properties. For example,
cach Ny is an effective handlebody relative to Ny and the map 7 (ONy) — w1 (M\Ny) is
injective (See Lemmal[l.3.10]or Lemma 2.10 of [Wan19a]). These properties are necessary
and crucial in our proof. In general, the family {N,} may not have these properties. To
overcome this difficulty, we introduce a topological property, called Property H.

DEFINITION 2.2.5. A family {Rj}x of handlebodies in a contractible 3-manifold M :=

Uk NV is called to have Property H if it satisfies that

(1) the map m(0Ry) — m1(R\Rp) is injective for k > 0;

(2) the map m(0Ry) — m (M\Ry) is injective for k = 0;

(3) each Ry is contractible in Ry, ; but not contained in a 3-ball in M ;

(4) there exists a sequence of increasing integers {ji}, such that m (0R; n ON;,) —

m1(ORy) is surjective.

where {N}} is assumed as in Remark [1.1.13|

For example, in a contractible genus one 3-manifold M := Ui Ny, the family {N}
satisfies Property H, where {N;} is assumed in Chapter 1.3.4 (See Lemma [1.3.10).

In the following, we will prove if a contractible 3-manifold M is not homeomorphic
to R, there is a family of handlebodies with Property H (See Theorem . However,
such a family is not unique .

THEOREM 2.2.6. If a contractible 3-manifold M := Uy Ny (as above) is not homeomor-
phic to R3, then there is an ascending family { Ry }i, of closed handlebodies in M satisfying
that

(1) the map w1 (0Ry) — w1 (Ri\Ry) is injective for k > 0;

(2) the map w1 (0Ry) — m (M\Ry) is injective for k = 0;

(8) each Ry is contractible in Ry.1 but not contained in a 3-ball in M ;

(4) there exists a sequence of increasing integers {ji}r, such that m(0Ry n ON;,) —
m(0Ry) is surjective.

REMARK 2.2.7.

e The union U, Ry may be not equal to M.

e For £ > 0, Van-Kampen’s Theorem gives an isomorphism between m (M\Rp)
and m (M\Ry) #r, (or,) ™1 (Ri\Ro). Based on (1) and (2) in Theorem m, we use
Lemma to show that the map 7 (0Ry) — m (M\Rp) is injective.

e As (4) in Theorem ORy, is the union of 0R, n 0N, and disjoint discs.
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PRrooOF. First, we construct Ry. We repeatedly apply the Type II surgery to Ny, until
we find a handlebody Ry containing Ny so that w1 (0Ry) — m (M\Ry) is injective.

From Remark [2.2.1] we see that, at each step, the genus of the handlebody obtained
from the surgery is less than the original one. Therefore, this process stops in no more
than g(Np) steps.

In addition, since N is not contained in a 3-ball in M, then R, has the same property.

It remains to construct the sequence { Ry}, inductively.

When £ is equal to 1, we pick a handlebody NNV;, containing R, satisfying that Ry is
homotopically trivial in N;,. Its existence is ensured by the following fact:

Because Ry is compact, there is some handlebody N, _; containing Ry. Since N _;
is homotopically trivial in NV}, Ry is contained in N;, and contractible in Nj,.

By Theorem [2.2.3] there exists a handlebody R; containing Ry so that

1 (6R1) — T (Rl\R(]) is injective;

m1(0Ry) — m(M\Ry) is injective;

Ry is contractible in Ry;

OR; is a union of dRy N dNj, and some disjoint closed discs. Therefore, 71 (0R; N
ONj,) — m(0R,) is surjective.

In particular, since Ry is not contained in a 3-ball in M, R; has the same property.

Suppose that there exists a handlebody Rj_; and a positive integer j;_; satisfying
(1), (2), (3) and (4) in Theorem [2.2.6|

As the existence of NV;,, there exists a handlebody N;, containing Rj;_; satisfying that
Rj,—1 is homotopically trivial in N;,. We use Theorem [2.2.3|to find an effective handlebody
Ry, relative to Ry_; satisfying (2), (3) and (4).

Since the map m1(0Rg_1) — m (Rg—1\Ro) is injective, Ry_; is an effective handlebody
relative to Ry (Lemma [1.2.4). Lemma [2.2.4] shows that Ry, is an effective handlebody
relative to Ry. We apply Lemma [1.2.4] again and get that Rj also satisfies (1). This
finishes the proof. O
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Minimal Surfaces



CHAPTER 3

Minimal Surfaces

A minimal surface is a submanifold in a Riemannian manifold whose mean curvature
is identically zero. It is also the critical point of the area functional (See the first variation
formula, Equation (3.1.12))).

In Section 3.1, we first introduce the so-called first and second variation formulas for
the area functional. Subsequently, we derive some notations, such as minimal surfaces,
Morse index and the stability condition. Finally, we focus on the Plateau Problem and
related results.

In Section 3.2, we discuss some local properties of minimal surfaces, including the
strong maximal principle (See Corollary and the monotonicity formula (See Propo-
sition for the area. Particularly, the monotonicity formula gives a quantitative
estimate for the area (See Corollary . This estimate can be generalized to the Rie-
mannian case (See Theorem [3.2.7)).

In Section 3.3, we study the topology of stable minimal surfaces. The stable minimal
hypersurface is characterized by the first eigenvalue of the stable operator (See Lemma
and Theorem . In a manifold of positive scalar curvature, there are many
topological constraints for stable minimals surfaces (See Proposition . For example,
in the case of 3-manifolds with positive scalar curvature, the geometry of stable minimal
surfaces is influenced by the extrinsic version of Cohn-Vossen inequality (See Corollary
and Theorem[3.3.10). As an application, we give a new proof of Theorem 2 of [SY82].
Finally, we use Theorem to study contractible 3-manifolds whose scalar curvature
has a decay at infinity.

3.1. Background

3.1.1. Mean Curvature. Let us consider a k-dimensional submanifold ¥¥ = (M", g)
possibly with boundary.

In the following, if X is a vector field on ¥ < M, then we let X7 and X* denote
the tangential and normal components, respectively. The covariant derivative V on M
induces a covariant derivative V> on ¥ and the second fundamental form A of ¥. More
precisely, the induced covariant derivative V* is given by

(3.1.1) vE = (V)"
and the vector-valued bilinear form A on ¥ is given for X,Y € TY by
(3.1.2) AX,)Y) = (VxY)N.

Since the Lie bracket of X and Y is a tangential vector field in T'X, it is easy to see that
A is symmetric, i.e., A(X,Y) = A(Y, X).

53
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The mean curvature vector H at a point x € ¥ is defined

k
H =Y A(E;, E),
i=1
where {£;} is an orthonormal basis for 7, 2. Furthermore, the squared norm of the second
fundamental form at x is given by

(3.1.3) |AP? = Z |A(E;, Ej) .

i,7=1
Recall also that the Gauss equations assert if X, Y € T, then

KX, VX AYP = Ky(X, V)X AY
g(A(X, X), A(Y,Y)) — g(A(X,Y), A(X,Y))
where | X A Y|? is given by
X A Y] = g(X, X)g(Y,Y) — g(X,Y)?

and Kx(X,Y) and Kx(X,Y) are the sectional curvatures of M and X |, respectively, in
the 2-plane spanned by X and Y.

For example, let Y"1 = M™ be a hypersurface and N a unit normal vector field in a
neighborhood of x € ¥, then

(3.1.4)

VN : T, - T,%

is a symmetric map (often referred to as the Weingarten map) and its eigenvalues {#;}7 "
are called the principle curvatures. Moreover,

n—1
= — Z Kj.
i=1
Finally, if X is a vector field over X, then the divergence of X at x € ¥ is defined as

n—1
(3.1.5) divsX = > g(VE X, E;)
i=1
where {F;} is an orthonormal basis for T,%. Notice that divs, satisfies the Leibniz rule
divs(fX) = g(Vsf, X) + [ dive(X).

We can also use divs, to define the Laplace operator Ay, on 3 by

Asf = divs(VZf).
A function f is a harmonic function on X if Agf = 0.

REMARK 3.1.1. Note that
divs YN = Zg B, VpYV) = Zg (YN Vg E)
(3.1.6)
= _g(YNu H)
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3.1.2. First Variation Formula. Let F : XF x (—¢,¢) — M™ be a variation of a
k-dimensional submanifold ¥* with compact support and fixed boundary. That is, F' = Id
outside a compact set,

F(.%’, O) =
and for all z € 0%,
F(z,t) =
The vector F; restricted to X is called the wariational vector field. Now we want to

compute the first variation of area for this one parameter family of surfaces. Let (z;) be
a local coordinate on X. Set

3.1.7
(3.1.7) v(t) = 4/det(gi;(t))+/det(g"(0)),

where (a'/) denotes the inverse of the metric (a;;) and 1 < 4,7 < k. Further, the area
formula is

(3.1.8) Vol(F(3,t)) = L v(t)4/det (g:;(0))
Differentiating it gives
(3.1.9) %Vol(F(E,t)) . = L %V(t)\t_o det (g;;(0)).

We may choose an orthonormal coordinate system, i.e. so that at the point x

0, 1 F J;
9i5(0) = bij =
1, Q=]

Using that [Fi, Fy,] = 0, under this coordinate, we get at x,

d . bd
— det i 0 t 4 Z] 0) = L Fz aF:c
G0 =3 G| 970 =Y G )|
17 =1
(3.1.10) k k
Z VFtFxlanz = Z (VFI Ft7 zz)
= i=1
—2dZU2(Ft>.
Therefore, from Equation (3 we have
d
—u(t = divs(F}) = divs(FF) + divs(FN
s - <>t=0 s(F) = divs(FT) + divs (F)

= —g(H,FN) + divs(F).
Integrating Equation (3.1.11)) gives the so-called first variation formula:

(3.1.12) %VOI(F(E, t)) = — L g(FN, H) = L divs(Fy).
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Note that Stokes’ Theorem was used to see that { divs(F]) = 0. As a consequence of
Equation (3.1.12]), we see that X is a critical point for the area functional if and only if
the mean curvature H vanishes identically.

DEFINITION 3.1.2. An immersed submanifold ¥¥ < (M™", g) is said to be minimal if
the mean curvature H vanishes identically.

For example, let 3 be the graph of a function u : R® — R. The hypersurface ¥ is
minimal in R™*! if and only if u satisfies

(3.1.13) div(— ) _

1+ |Vu|2) a

It is the so-called minimal surface equation. Furthermore, in dimension three (n = 2), we
know

|Hess(u)|?
(1+|Vul?)?
See Pages 28 and 29 in [CM11].

2 _ | Hess(u)[”

3.1.14 < |AlF € 2————
( ) 4] 1+ |Vul?

3.1.3. Second Variation Formula. Suppose now that X* < (M", g) is a minimal
submanifold. We want to compute the second derivative of the area functional for a
variation of ¥. Therefore, we consider a variation F' of ¥ with compact support. In fact,
we assume that F'is a normal variation, that is, on X we have

FT(-,0) = 0.

As before, let (z;); be a local coordinate on ¥ and set

gl](t) = g(anFCCJ)?

v(t) = 4/ det(g;(t))+/det (g7 (0)).

Differentiating the measure v(t) gives

2

(3.1.15) d—Vol(F(Z, t)) .

dt® t=0 - fz @V(t) \/m

t=0
Recall that the first derivative of the measure v(t) can be written as

(3.1.16) 2%u(t) = ;géj(t)g” (t)v(t).

2 . .
To evaluate %V(t)‘ at some point x € X, we may choose an orthonormal coordinate

t=0
(x;); at x. Since the metric (g,;) is the identity at z, the vectors F,, give an orthonormal
basis for T at x. Differentiating Equation (3.1.16|) then gives at =z,

(3.1.17) Q@V(t)‘ - 224(0) = D145 (0) +1/2(3 g4 (0))”
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We have that g;;(0) = g(VgFy,, Fy,) = 9(VE, Fi, Fr) = —g(VE, Fy,, Fi). Since X
is minimal and F = 0, we have >, ¢;,(0) = —g(Z VE, P, Ft) = —g(E,H) = 0 as in
Equation (3.1.6)). Therefore, we get

d2
(3.1.18) 2-5v(t)

= D64(0) — 3 g4 07
i ij
LEMMA 3.1.3. At the point x, we get

> ;0 —429 (Fy, Fry), F2)?,
ij

ng:; 229 F:chz] Ft) +2|Vgﬂ|2

t=0

+ 229 (Rar(Fy,, F)F,, Fy,) + 2divs (Fy).

PROOF. An easy computation gives that
g;](o) = g(thina FIJ) + g<Fx17 thij) = _QQ(A(FHCN FSL‘j)? Ft)

This implies the first equation.
We compute that

gilz(o> = ZQ(VFtVFtF$i7 Fzz) + QQ(VFtFLBw VFtFa?i)'
Next use the definition of the Riemann curvature tensor Ry, of M to get

> 9(VEVRE, F,) = Zg Ve Ve, FLE) since[F}, Fy,] = 0
= ZQ (Fap, F)F, F, +Zg Ve, Vi Fy Fy,)
- Zg R(F,,, Fp,)F,, Fy,) + divs(Fy).

Therefore, we have
2.9:(0 —229V Fois Vi F,) +229V%F%’V%Fxl)

+ 22 9(R(Fy,, F,)Fy, Fy,) + 2divs(Fy)
_229 (Fyy, Fuy) 1) + 2| VS B

+ 229 (Rat(Fy,, F)F,, Fy,) + 2divs (Fy).

O

The map g(A(-,-), F;) : T,X x T,X — R is a symmetric bilinear map. Since {F},}
is an orthonormal basis of T at x, the squared norm |g(A(,-), F})[*(z) is equal to
Zij 9(A(F,,, Fy,), F})?. Similarly, the trace Trs, g(Ra (-, ) Fy, ) (x) equals Y, g(Ra (Fy,y, Fy) Fy, Fry).
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Therefore, we get at x

2

(3.1.19) %I/(Zf) By = —|g(AC, "), B> + |[VNF|* = Trs g(Ry (-, )+, Fy) + divs (Fy).

Note that we used the skew symmetry of R,; to reverse the sign.

The vector Fy(+,0) can be decomposed into two parts, the tangential part FI and the
normal partial part F}. We use Stokes’ theorem to see that {, divs(Fj) = 0. From the
minimality of ¥ and Equation (3.1.6), we have that {, div(FY) = —{,g(FY, H) = 0.
Inserting Equation (3.1.19) into Equation (3.1.15)), integrating and using the minimality
of 3, we get

d2
WVOI J |g Ft |2
(3.1.20) + J VY F? — J Trsg(Ru (-, Fy)-, Fy)
b by

= - L 9(Fy, L(F)).

The self-adjoint operator L is the so-called stability operator (or Jacobi operator)
defined on a normal vector field X to X by

A

L(X) = AYX + Treg(Ru (-, X)-, X) + A(X)

where A is Simons’ operator defined by
k
Z A(E;, E;), X)A(E;, E;)

and AY is the Laplacian on the normal bundle, that is

k k
AYX =Y (Ve VEX)N =) (Vig, 5y X)Y.

i—1 i—1
A normal vector field X with L(X) = 0 is said to be a Jacobi field.

We will adopt the convention that A is a (Dirichlet) eigenvalue of L on 2 < X if there
exists a non-trivial normal vector field X which vanishes on 0f2 so that

L(X)+ AX = 0.

DEFINITION 3.1.4. The Morse index of a compact minimal surface % < (M",g) is
the number of negative eigenvalues of the stability operator L (counting with multiplic-
ity) acting on the space of smooth sections of the normal bundle which vanishes on the
boundary.

A minimal surface submanifold X% < (M™", g) is stable if for all variations F with fixed
boundary and compact support
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2

%Vol(F(Z,t)) =— Lg(Ft, L(F;)) = 0.

A complete (possibly non-compact) minimal submanifold without boundary is said to
be stable if all compact subdomains are stable.

t=0

For a minimal hypersurface "' < (M", g) with trivial normal bundle, the stability
operator simplifies significantly since, in this case, it becomes an operator on functions.
Namely, if we identify a normal vector field X = n/N, then

(3.1.21) L(n) = Asn + |A*n + Ricy (N, N)n,

where Ricy is the Ricci tensor of M.
Schoen and Yau [SY79b| pointed out that the stability operator (See Equation
(3.1.21))) is linked with the scalar curvature of M (See Page 7 in [SY79Db]).

PROPOSITION 3.1.5. (See Page 7-8 of [SY79b])Let X" = (M™' g) be a minimal
surface with trivial normal bundle. Then the operator can be written as

(3.1.22) L =As — ks + Ky + 1/2|A?
where Ky and Ky are the scalar curvature of ¥ and M, respectively.

PRrooF. Fixed a point x € ¥, we may choose an orthonormal basis {Ez}f:f of T,,M.
The unit vector E, 1 is equal to the unit normal vector of ¥.. The Gauss Equations (See
Equation (3.1.4))) assert

(3.1.23) Ks(E;, B;) = Ky (Es, Ej) + AjAjj — A?j

where K, and K are the sectional curvature of ¥ and M respectively, A;; := A(E;, Ej).
Summing Equation ((3.1.23]), we have

Z KE(EZ',E]') = Z KM E’HE Z A”AJ]

I<i<j<n I<i<j<n 1<i<j<n

Therefore, by the minimality of 3, the scalar curvature of M is

Ky = Z Ky(E;, Ej) + Ricy(Engr, Enga)

1<i<j<n
(3.1.24) - Z Ks(E By = (), Audyj— A})
1<i<j<n I<i<j<n

+ RicM(En+17 En+1)
= Ky + 1/2|A]> + Ricy (N, N).
Therefore, putting Equation (3.1.24)) into Equation (3.1.21]), we get
L = Ag — ky + 1/2|A]* + k.
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3.1.4. Existence of Minimal surfaces. The following fundamental existence prob-
lem for minimal surfaces is known as the Plateau problem:

Given a closed curve I', find a minimal surface with boundary T'.

This problem was first formulated by Lagrange in 1760 and was studied extensively
by Plateau in the 19th century. This question had led to many significant developments
in partial differential equations and geometric measure theory, such as Morrey’s works
[Mor48,|Mor09] and Fleming-Federer’s works [FF60].

There are various solutions to this problem, depending on the exact definition of a
surface (parametrized disc, integral current, Zs-current or varifold ). In the following, we
consider the version of the Plateau problem for parametrized discs.

In the case of R3, the solution was obtained in 1930 by J.Douglas [Dou31| and simul-
taneously by T.Radé [Rad30].

THEOREM 3.1.6. (See [Theorem 4.1, Page 134] in [CM11]) Given a piecewise C*
closed Jordan curve I' = R3. there exists a map v : D < R?> — R3 so that

(1) w:dD — I' is monotone and onto;
(2) ue C°(D) n WYH2(D) and is C* in the interior of D;

(3) The image of u minimizes area among all maps from the discs with boundary T".

The generalisation to the Riemannian manifold is due to C.B.Morrey [Mor48 Mor09).

For fixed boundary I', an area-minimizing disc is a solution to the Plateau Problem.
Therefore, Morrey [Mor48,|Mor09| used the variation method to find such a disc in a
homegenous Riemannian 3-manifold. That is, take a sequence of mappings from the disc
to the 3-manifold whose area are going to the infimum and attempt to extract a convergent
subsequence. Morrey [Mor48,Mor09| pointed out that the limit of a subsequence of
mappings is also the solution to the Dirichlet problem for the harmonic map.

For example, in R3 the existence of weak (TW!2-)solution to the Dirichlet problem
for the harmonic map is ensured by the Kondrachov compactness theorem for W12(See
[Theorem 7.22, Page 167] of [GT15]). Weyl’s Lemma told us that the weak solution is
smooth in the interior of domain. This result also follows from the standard regularity
theory (See [Theorem 2.10, Page 23] of [GT15]). The above argument can be generalized
to a homogenous Riemannian 3-manifold.

This solution is called Morrey’s solution to the Plateau problem. In addition, the
argument of Gulliver [Gul73] and Osserman |Oss70| pointed out that this solution has
no interior branched point.

The remaining issue is the regularity of this solution up to the boundary. In the case
of R3, J.J. Nitsche [Nit69] gave an answer:

THEOREM 3.1.7. ([Theorem 1, 315] in [N1t69])Let u be a function from D < R? to
R as in Theorem |3.1.6. If T' is a reqular Jordon curve of class Cke where k > 1 and
0<a<l, thenu is C* on D.

This result can be generalized to the Riemannian 3-manifolds in [HH70]|.

In various works, compact 3-manifolds with mean convex boundary were intensively
studied. Let (M, g) be a compact 3-manifold with boundary. The boundary dM is mean
convex if
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e 0M is a piecewise smooth 2-manifold consisting of smooth surfaces {H,};
e for each 7, the mean curvature of H; is nonnegative.

THEOREM 3.1.8. (See [IMIY80,,MIY82] or[Theorem 6.28, Page 224] of [CM11] )
Let (M3, g) be a compact Riemannian 3-manifold whose boundary is mean convex and
a simple closed curve in dM which is null-homotopic in M. Then, v bounds an area-
mintmazing disc and any such least area disc is properly embedded.

This theorem will be repeatedly used in the following.

3.2. Local structures of Minimal Surfaces

It is classical that the minimal surface theory consists of two aspects: PDE and Ge-
ometry. These two aspects give various results about local structures of minimal surfaces,
such as the maximum principle and the monotonicity formula.

3.2.1. Minimal surfaces are locally graphical. We begin with a minimal surface
¥ < R3. The Gauss map is a continuous choice of a unit normal

N:Y - S?c R

There are two choices of such a map N and —N corresponding to a choice of orientation
of . Suppose that E,FEs, is an orthonormal frame on Y. We know that

< VEZN, Ej >= —AE(EZ', Ej)
where Ay, is the second fundamental form (See Equation (3.1.2))) of ¥. Therefore,
(3.2.1) [dN| < |A].

LEMMA 3.2.1. (See [Lemma 2.4, Page 74] in [CM11])Let 3 = R3 be an immersed
minimal surface with

(3.2.2) 16s* sup |Az|* < 1.
%

Ifre ¥ and d*(x,0%) = 2s, then the geodesic ball B*(z,2s), centered at x with radius 2s,
can be written as a graph of a function u over T,% with |Vu| < 1 and v/2s|Hess(u)| < 1.

Proor. We define

(3.2.3) dyy = d” (N(2), N(y)).
Therefore, we see that
(3.2.4) < N(z),N(y) >= cosdy,.

Recall that |dN| < |A] (See Equation (3.2.1])). Therefore, given y € B*(z, 2s), integrating
(3.2.2)) along a geodesic from x to y gives that

(3.2.5) sup  dyy <

™
< —.
yeB=(x,25) 4

N |

Therefore, it follows that B*(x,2s) is contained in the graph of a function u over a subset
of T,,3.
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We may choose a coordinate (zj);_, on R?® so that
z = (0,0,0),
1.3 = {(x1,x2,0)}.
Therefore, N(z) = (0,0,1) and N(y) = %ﬁ;l) From Equation (3.2.3), we have
(1+|Vu*) =< N, N, >"*= cos *(dy,)
where the last equality comes from Equation .

If y € B*(z,2s), Equation (3.2.5) implies that |[Vu(y)| < 1. The Hessian estimate of
u comes from the gradient and curvature estimate together with Equation ([3.1.14]):

1
|Hess(u)]* < (1 +|Vul?)?|A? < 58’2.
U

3.2.2. Strong Maximal Principle. First note that the difference of two solutions
to the minimal surface equation (See Equation (3.1.13))) satisfies an elliptic divergent
form equation (where the bound on the ellipticity depends on the gradient of the minimal
graphs).

LEMMA 3.2.2. If uy and us are two solutions to the minimal surface equation (See
Equation (3.1.13)) on a domain < R, then v := uy — us satisfies an equation of the
form:
(3.2.6) div(A(z)Vv) =0
where each eigenvalue Ay, of the matriz A(x) := (a; ;(x))nxn Satisfies p < Ay < 1/p , where
w depends only on the upper bounds for the gradient of |Vu1| and |Vus|.

PROOF. Define the mapping F': R® — R" by

X

T+ X7
Note that each uy satisfies div(F(Vuy)) = 0. We know that
1

F(X) =

F(Vul) — F(VUQ) = J %F(tVul + (1 — t)VU,Q)dt

0

(3.2.7) _ f AP (V1 + (1 — £)Vus) - V(g — up)dt

0
1

_ (J AF (tVur + (1 — )Vug)dt) - V(ur — us).
0

From this, we can conclude that v = u; —us satisfies an equation of the form div(A(z)Vv) =

0, where the matrix A(z) is given by Equation ((3.2.7]).
The remaining is to show that Equation (3.2.6) is a uniformly elliptic equation.
Given a unit vector V e S ! < R” and X € R", we see that

\%4 B <X,V >
G+ XP)? @+ X

dF(X)V =
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In particular, taking inner product with V' gives
(1+ X232 <dF(X)V,V >=(1+|X]})- < X,V >2
> (14 [XP) — |XP =1

It follows that A(z) is a weighted average of positive definite matrix and thus also a
positive definite matrix. O

COROLLARY 3.2.3. Let Q < R"™ be an open connected neighborhood of the origin. If
u, ug : 2 — R are two solutions to the minimal surface equation (See Equation (3.1.13]))
with uy < ug and ui(0) = uz(0), then uy = us.

PROOF. Lemma tells us that the difference v := uy —uy satisfies div(a; ;Vv) = 0,
where the matrix a; ; is positive definite. We apply the strong maximum principle for the
linear elliptic equation to v. (See [HL11| or [Theorem 3.5, Page 48] of |GT15]). O

As in Lemma [3.2.1] a minimal hypersurface can be locally written as the graph of a
solution to the minimal surface equation. As a consequence of Corollary we know
that

COROLLARY 3.2.4. If ¥1,%s < R™ are two complete connected minimal hypersurfaces
(without boundary), 1 N 3o # & and Xy lies on one side of ¥y, then ¥y = 3.

3.2.3. Monotonicity Formula and Area estimates.

PROPOSITION 3.2.5. (The Monotonicity Formula) Suppose that ¥ < R™ is a minimal
submanifold and xo € 3. Then for all 0 < s < t,

Vol(B(wo, t) N %) Vol(B(wo,s) n%) _ J (2 — z0)"|?
B(zo,t)

(3.2.8) - 7

\B(z0,5) "3 | — @o|F T2 ’

N

where (x — xg)" is the projection of the normal part of ¥ of the vector (x — x).

See [Chapter 3.2, Page 24-26] of [CM11] for a proof.
As a consequence, we have

COROLLARY 3.2.6. Suppose that ¥ < R" is a minimal submanifold and xy € R™.
Then the function

040 = Vom0 £ 79

is a non-decreasing function of s. Moreover, if xg € X, then O, (s) =1 and
(3.2.9) Vol(X n B(zg, 5)) = wys”,

where wy, s the volume of the unit ball B(0,1) < R™.

The area estimate (3.2.9) can be generalized to the Riemannian manifolds. Before we
state it, we will recall the coarea formula. This formula asserts (See, for instant, Chapter
3.2 of [Fed14] for a proof) that if (M, g) is a Riemannian manifold and the function

h: M —-R
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is a proper (i.e. h7!((o0,t]) is compact for all ¢ € R) Lipschitz function, then for any
locally integral function f on M and t € R,

t

(3.2.10) FIVah] = f fdr.

h<t o Jh=T1

THEOREM 3.2.7. (See [Lemma 1, Page 445] of [MIY80]) Let (M™! g) be a Rie-
mannian manifold whose sectional curvature is bounded by a positive constant K and "
a minimal submanifold. If for some point xy € X, d™ (29, 0M) and d™ (xq, 0X) are both
greater than a constant € > 0, then for any 0 < min{e,i(M)}

(3.2.11) Vol(B(x9,0) nX) = C, K f t~ 1 (sin(Kt))"dt,

where i(M) is the radius of injectivity of M and C,, depends only on n.

PROOF. Let r(z) be the distance function of M from zy to x € 3. If r(z) is smaller
than (M), the Hessian comparison theorem (See [Theorem 27, Page 175] of [PAROG6))
gives

(3.2.12) Hess(ei, €;)(r)(7) := V¢, Ve,r — Vy, o, (r) = K cot(Kr)

where = € 3, {e;}"_; is an orthonormal basis of T,,> and N is a unit normal vector of ¥
at x.
Summing Equation (3.2.12]) and using the minimality of >, we have

Asr*(x) = 2r(z)Asr(z) = 27‘(x)(2 Ve, Ve, — Vvezi(ei)r)

i=1

= 2r(x)() Hess(es, ) (r) + D, Vone)r),
=1 =1

(3.2.13)

M=

= 2r(z)( )  Hess(e;, ) (r) + Vuwr), because H(x) = Z Ve
i=1

1

.
Il

= 2r(x) » Hess(e;,e;)(r), since H(x) =0

i

2

> 2nKr cot(Kr),

where x € ¥, V¥, V¥ and H(z) are defined as in Section 3.1, (See also the argument [Page
243] of [SY77]). Integrating Equation (3.2.13)) over B(z,t) and noting that |Vr| < 1, we
have,
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(3.2.14)
2tVol(9(X n B(zo,t)) = f <V¥? n>, since |Vyr| < |Vr| <1
(XN B(zo,t))

= f Asr?, doing integration by parts,
SN B(zo,t)

> Qan rcot(Kr) from Equation(3.2.13)).
z0,t)NY

where n is the outward unit normal vector of 0(X n B(zy,t)) in X.

Let C(t) = SB(:CO . rcot(Kr). Then by the coarea formula (See Equation (3.2.10))
and the fact that |Vr| < 1, we have that
oC(t t(K
(3.2.15) o) _ f rOUET) o ot (KEVOI((S A Blzo, 1)),
ot z | r(z)=t}nX ‘V?”|
Inserting Equation (3.2.14)) into Equation (3.2.15]), we find
oC(t
(3.2.16) 20(t) > nK cot(Kt)C(t).

ot
It is easy to verify that
lim C(t) sin(Kt)™' = K" 'C,

where C, is a positive constant depending only on n. It follows from Equation (|3.2.16)
that

(3.2.17) C(t) = K" 'C,(sin(Kt))"
for all ¢ < min{e,i(M)}. Therefore, Equation (3.2.14)) shows that
(3.2.18) Vol(O(X n B(zo,t))) = nC, K"t ! (sin(Kt))".

By the coarea formula (See Equation ([3.2.14])) again,

Vol(2 n B(z, 9) J Vol(0(X n B(xo, 1)))dr
(3.2.19)

>nC, K~ J (sin(K'1))"dr.

3.3. Stable minimal surfaces

In this section, let us consider a stable minimal surface ¥" < (M"*!, g) with trivial
normal bundle. First, the stable condition is linked with the first eigenvalue of the op-
erator L (See (3.1.21]) or (3.1.22))). Second, if (M, ¢g) has positive curvature, the stability
condition gives several topological restrictions on 3.
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3.3.1. Eigenvalues and Stability. The stability of a minimal surface is charac-
terized by the first eigenvalue of L (See (3.1.21) or (3.1.22))). A minimal hypersurface
¥ < (M, g) is stable if for any smooth function n with compact support,

f nL(n) = f Vsnf? = Rie(N, N)ip — | AP > 0.
> >

We see that the stable condition is equivalent to the first eigenvalue A\ (L, 2) > 0 for each
2 < ¥ where

(3.3.1) M (L, Q) = inf{f —nL(n)|n e Wy (Q) andJ n* = 1}.
2 s
By standard elliptic theory ( see [GT15] or [HL11]), we get the following:

LEMMA 3.3.1. If L and Q < ¥ are assumed as above and A\ := A\ (L,Q), then the
eigenfunction u € Wy*(Q) of the first eigenvalue Ay (i.e. L(u) = —M\u) is smooth.

It follows from the regularity theory for elliptic equations (See [Theorem 8.14, Page
188] of [GT15| or [HL11]).

Together with the Harnack inequality, we see that any eigenfunction of the first eigen-
value can not change sign.

LEMMA 3.3.2. Assume that u is a smooth function on € that vanishes on 0€). If
L(u) = —\ju where \y = A\ (L,Q), then u can not change sign.

PROOF. We may assume that u is not identically zero and {,, u* = 1. Since u vanishes
on €2, so does |u|. In fact, |u| also achieve the minimum in (3.3.1). By Lemma [3.3.1] |u]

is smooth and L(|u|) = —A1|u|. Since |u| = 0 and |u] is not identically zero, the Harnack
inequality (See [Theorem 8.20, Page 199] of |[GT15]) implies |u| > 0 in Q. Hence, u can
not change sign. O

Next, let us consider the positive solution to the stable operator L (See Equation

(3.1.21)) or Equation ({3.1.22)).

PROPOSITION 3.3.3. Let X" < (M"Y, g) be a minimal hypersurface with trivial normal
bundle, L its stability operator (See Equation (3.1.21)) or (3.1.22)) ), and Q < 3 a bounded
domain. If there exists a positive function u on 2 with L(u) = 0, then Q is a stable
minimal surface.

PROOF. Set ¢(x) = |A]* + Ricy (N, N) so that L = Ay, + ¢. Since u > 0, the function
w := logu is well-defined and satisfies
(3.3.2) Asw = —q — |Vsw|®.

Let us consider any compactly supported function f on 2. Multiplying both sides of
Equation ([3.3.2)) with f? and using integrating by parts give

J Pa+ PIVsul? = f PAsw <2 f /¥ (V]
(3.3.3) @ ¢ >

< f FIVswl? + Vsl
>
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where the second inequality follows from the Cauchy-Schwarz inequality. Canceling the
§s [?|Vsw|? term, we have that

| ~ren =0
This finishes the proof. U

We will give a characterization for a complete (non-compact) stable minimal hyper-
surfaces with trivial normal bundle. For such a hypersurface, the stability is equivalent
to the existence of positive solution to the stability operator.

THEOREM 3.3.4. (See [Theorem 1, Page 201] [FCS80]) Let ¥" < (M, g) be a com-
plete non-compact minimal hypersurface with trivial normal bundle, then the following are
equivalent:

(1) M\ (L, ) =0 for any bounded domain Q < X;
(2) M\ (L,Q) >0 for any bounded domain Q < X;
(3) there is a positive function u over ¥ with L(u) = 0.

PROOF. By Proposition [3.3.3] (3) implies (1).

Clearly, (2) implies (1). To see the equivalence of (1) and (2), we consider any bounded
domain §2y and choose a strictly larger bounded domain 2;. The variational characteri-
zation of the first eigenvalue (See (3.3.1])) implies that

M(L, Q) = M (L, ) =0,

where the second inequality follows from (1). Let ug be the first eigenfunction for L in
Qy. We define u; on €y by

( ) U/O(‘r)a Zf T e QO;
ul\r) =
0, otherwise.

where ug = 0 and ug is not identically zero (See Lemma .

If we had that A;(L, Q) = 0, then the nonnegative function w; is an eigenfunction of
A (L, ). Lemma tells that L(uy) = A (L, Q)u; and u; is smooth. Since u; = 0 on
2;\Qp, the Harnack inequality (See [Theorem 8.20, Page 199] of [GT15]) implies that u,
is identically zero on €. This is not possible. We can conclude that A;(L, ) > 0. The
equivalence of (1) and (2) follows.

The remaining is to show that (2) implies (3). To do this, fixed a point p € ¥ and
any r > 0, let B*(p,7) be the geodesic ball in ¥ with radius r and centered at p. Then
the first eigenvalue \{(L, B*(p,r)) is greater than zero. By Fredholm alternative (See
[Theorem 6.15, Page 107] of [GT15]), there exists a function v, satisfying:

(3.3.4) L(v,) = —|A]* — Ric(N, N) on B*(p,r) and v, = 0 on 0B>(p,).
Setting u, = v, + 1, Equation (3.3.4)) gives
(3.3.5) L(u,) = 0 in B*(p,r) and u, = 1 on 0B>(p,7).
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We claim that
(3.3.6) u, >0 on B>(p,7).

If u, is not a non-negative function, we choose a nonempty connected component ) < X
of the set
{z € BX(p,7)|u,(x) < 0}.
Then, L(u,) = 0 on Q and u, = 0 on d€2. This is to say, the first eigenvalue A\ (L, ) <
0. This is in contradiction with (2). Therefore, we conclude that u, > 0.

The claim follows from the Harnark inequality (See [Theorem 8.20, Page 199] of
[GT15)).

For each r, we define a positive function by
wr () 1= (@) (ur(p)) ™ on B¥(p,7)

and see that L(w,) = 0 and w,(p) = 1.

Now, let us consider a compact set K < B¥(p, Ry). We use the Harnack inequality
(See [Theorem 8.20, Page 199] of [GT15]) to have a positive constant C(p, Ry), only
depending on p and Ry, satistying for any r > 2Ry,

(3.3.7) lw,.(7)] < C(p, Ry) if x € B*(p, Ry).
The interior Schauder estimate (See [Theorem 6.2, Page 90] of [GT15]) gives that
|w7‘|cf<qa < CK

where the constant C'x only depends on K and 0 < o < 1.

To sum up, we have a uniform C%® estimate for any w, where » > 2R,. We use the
Arzela-Ascoli theorem to extract a subsequence of w, that converges uniformly to w. This
convergence ensures that L(w) = 0 and w > 0. The Harnack inequality (See [Theorem
8.20, Page 199] of |GT15]) tells us that w is a positive function. This finishes the proof
of the theorem. O

3.3.2. Global Structure (I): the compact case.

PROPOSITION 3.3.5. (See Page 8 of [SY79b])Let " < (M™*!, g) be a compact stable
minimal surface with trivial normal bundle. If (M, g) has positive scalar curvature, then
(33, gs) is conformally equivalent to a metric of positive scalar curvature, where gy, is the
induced metric and n > 2.

PRrROOF. The stability of the minimal surface ¥ and Equation (3.1.22)) give

(3.3.8) f kan® — ken® + 12| APPn? < f |Vnl
% %

for any smooth function n on .
Since kp; > 0 on X, we can conclude that

(3.3.9) —J R’ < J [Vsnl?
b b

for all smooth function 7.
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Let A be the first eigenvalue of the operator Ay — ky, and u an eigenfunction of

A. That is,

2(n 1)

n—2
3.3.10 Asu— —— = —\u.
( ) »U 4(n — 1) RyU u
From (3.3.9), we can conclude that A > 0.
Otherwise (A < O) multipling two sides of (3.3.10|) by u and integrating, we see that

— -2 n—2
2 2 )\J 2 ¢ n J 2 f 2
J |Vsul® = (n— 1)J Kyt + Zu —2(n— D) EFLEU —Q(n— ) Z\Vgu|

where the last inequality follows from (3.3.9)). This is impossible.

As the argument in Lemma [3.3.2] we have that the eigenfunction v is smooth and a
positive function. Multiplying the metric gs by uﬁ, under the new metric, the scalar
curvature of ¥ is

n+2 4(n - 1)

4 _]_ n
w2 (K — s dln-1) =

— Au~n=2 > (.

AEU) =

Next, we consider a stable minimal surface ¥ < (M3, g).

COROLLARY 3.3.6. (See [Theorem 5.1, Page 139] of [SY79a])Let ¥* < (M?3,g) be a
closed stable minimal surface with trivial normal bundle. If the complete manifold (M3, g)
has positive scalar curvature, then ¥ is S* or RP? and

J kar + 1/2|A]? < 4w
s

PROOF. Since ¥ is compact and has no boundary, we choose the constant function
n =1 as a cut-off function. Equation (3.1.22)) gives

(3.3.11) f ka4 1/2|AP < J Ky, = 2x(%),
b b

where the last equity follows from the Gauss-Bonnet formula. As a consequence, we see
that x(3) > 0. That is to say, ¥ is S* or RP?. Therefore, x(X) < 2. It gives the inequality
in the assertion. 0

In the next part, we will use Cohn-Vesson’s inequality [Coh35| to generalize (3.3.11))
to the non-compact case.

3.3.3. Global Structure (II): the non-compact case. By Theorem for a
complete (non-compact) stable minimal surface ¥ < (M3, g), there is a positive function
w over ¥ with L(u) = 0.

THEOREM 3.3.7. ([Theorem 2, Page 126] in [Fis85|]) Let ¥? < (M, g) be a complete
(non-compact) stable minimal hypersurface. If the complete manifold (M3, g) has non-
negative scalar curvature (k(x) = 0), then the new metric u>d*s is a complete metric on
Y with non-negative sectional curvature, where d?s is the induced metric and u is the

positive function with L(u) = 0 (as in Theorem[3.5.4).
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PROOF. By Theorem there is a positive function u with L(u) = 0. In addition,
there exists a minimal geodesic ray v(t) : [0,0) — ¥ in the metric d*s := u®d?s, where ¢
is arclength in the original metric d%s. It is obtained as below:

Fixed z € M and for any R > 0, let us consider a geodesic ball B*(z, R) in the
complete manifold (X, d?s). Define ug := u + nr where 7z is a smooth positive function
satisfying

0, lz| < R;
Nr =
1, |z| > 2R.

Then, since ug is bounded away from zero, the metric u%d?s is complete. Therefore, there
is a shortest geodesic yg from = to dB*(x, R) in the metric u%d?s. We can conclude that
yr must stay in B¥(z, R). (Otherwise, under the metric u%d?s, there is another curve
connecting x to 0B*(z, R) whose length is shorter than vz’s.)

Since u = ur on B=(x, R), v is also a minimizing geodesic in d2s. Each vz can be
parametrized with respect to arclength in the metric d®s. Let us consider the limit of
these minimizing geodesics in (X, JQS). The sequence {yg} sub-converges to a minimizing
geodesic ray 7(t) that is parametrized by arclength in the metric d?s.

It remains to show the completeness of d2s. )
By the construction of 7, the completeness of d*s will follow if we can show that v has
infinite length under the metric d?s, i.e. it is sufficient to show that

(3.3.12) LOO u(y(t))ds = oo.

Since y is a minimizing geodesic in d?s = u?d?s, the second variation formula of acrlength
gives

Fodd, oy
o ds
where the smooth function ¢ has compact support in (0, o), fi—f = u‘lﬁ, ds = uds and

the sectional curvature K of (X, d%s) is
(3.3.14) K = u (K — Aglogu).
In addition, u is a positive function with L(u) = 0. Namely,
L(u) = Asu — Ku + (k(x) + 1/2|A]*)u = 0
where Ay is the Laplace-Beltrami operator respect to (3,d*s) and K is the sectional
curvature of (3, d?s). Since k = 0, we see that Axu < Ku. In addition,
[Vzul®

u2

3.3.15 Aslogu = v ' Agu —
(

Note that together with (3.3.14)) and ((3.3.15)), we can conclude that K > 0. Inserting
(3.3.14)),(3.3.15)) into (3.3.13)), we see that

o9]

(3.3.16) fo (“/)2¢>2ds < J . u (K — Ay logu)¢?ds < f u (¢ (s))%ds

3
o U 0 0
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where the first inequality follows from (3.3.14)) and (3.3.15)), the last inequality follows
from (3.3.13)) and u(s) = u(y(s)).

We now show that SSO uds = oo. Take ¢ = wuy, where the smooth function ¢ has
compact support in (0,00). Then ¢’ = u'¢) + u)’ and

wTH(¢)? = T W)+ u(y) 4 20y
The inequality shows that
JOO (Z—Qquzds = JOO (u,)szds < foo u” (W) + u(y)? + 2uypds.

0 u

0 0
Therefore,
0
0< f u(Y')? + 2u'p)'ds.
0
The integration by parts gives
e}
(3.3.17) 0< f —u(y')? — 2uy"ds.
0

Set 1(s) = s&(s), where the smooth function ¢ has compact support in [0, 00). Then,
V() = &(s) + sE'(s),
Y'(s) = s&"(s) + 26'(s).
Putting these equations into (3.3.17)), we have

0 0
f uds < J (—6s£¢" — 25%¢€" — s*(&)H)uds.
0 0
Choose a smooth decreasing function £ so that

E(s) =1,for 0<s<R,
£(s) =0,for s>2R,

and |¢'| and |¢”| are bounded by 2R™! and 4R~ respectively, for R < s < 2R. Then
|s€’(s)| < 4 and [s¢”(s)| < 16. We see that

0

R 0 0
f uds < J uélds < f (=658 —25%¢€" — s*(¢)Huds < 72J uds.

0 0 0 R
This inequality implies that SSO uds = co. That is to say, d®s = u2d?s is a complete metric
with nonnegative sectional curvature K > 0. O

We apply the above argument to stable minimal surfaces in a 3-manifolds of uniformly
positive scalar curvature (i.e. its scalar curvature is bounded away from zero).

THEOREM 3.3.8. (See [Theorem 10.2, Page 384] of (GL83] or [Theorem 1, Page 228]
of [Ros06]) Let (M3, g) be a Riemannian 3-manifold with the scalar curvature k > c
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where ¢ is a positive constant. If ¥ is a stable minimal surface immersed in M, then for

T EX: 5
&= (z,0%) < —

5

This result was firstly proved by Gromov-Lawson |[GL83| and Schoen-Yau in [SY83].
The generalization to the stable H-surface was due to H.Rosenberg |[Ros06].

PROOF. For any z € 3, let R := d*(z,0%), where d* is the induced distance function
in (3, d?s). For any € > 0, the geodesic ball B*(x, R — €) in ¥, centered at z with radius
R — €, is contained in Int 3.

It is sufficient to show that for any € > 0, R — € < f

First, we solve the equation L(u) = 0 on the Bz(x R — ¢), where L is the stability
operator (See Equation . As in the proof of Theorem , the first eigenvalue
M (L, BE(0,R—¢)) > 0.

Let us consider the Dirichlet problem:

(3.3.18) L(v) =K —(k+1/2/AF) i B*(0,R—¢)
v=0 on 0B*(0,R —e).

Since A\ (L, B¥(x, R—¢)) > 0, we use Fredholm alternative (See [Theorem 6.15, Page 107]
of [GT15]) to find a solution v. Setting u = v + 1. Equations ([3.3.8) give that

L(u) =0 in B*(z,R —¢) and u = 1 on dB*(z, R —¢).

As in the proof of Theorem [3.3.4] the positivity of the operator L implies that u is a
positive function. .

Make a conformal change of the metric, d*s = u*d®s on B*(x, R — ¢€). Let consider
the minimizing geodesic v from x to dB*(z, R — ¢).

Let @ and a be the length of v in the metrics d2s and d2s, respectively. Note that
R—-e<a.

The second variation formula of arclength shows that

(3.3.19) J((‘Z) — K¢?*)ds = 0,

where the smooth function ¢ has compact support in (0, a), ds = uds and d¢ =
We have that

_1@
ds”

L(u) = Asu — Ku + (k(z) + 1/2|AP*)u =
K =u2(K — Aglogu).

where Ay, is the Laplace-Beltrami operator in (X, d%s), K and K are the sectional curva-

ture of d%s and d?s, respectively.
Therefore,

~ 2 2
(3.3.20) 52iu— 2 S (Ku—Agu+ Vsl

2 2
¢—2(cu + |Viu| )

=
)=

where the second inequahty follows from L(u) =0 and k > c.
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Putting (3.3.20) into (3.3.19)), we see that
a a d
(3.3.21) J u (e +u P |P)ds < J u( gzﬁ)

0 0 ds

where u(s) = u(y(s)). Setting ¢ := u'/%, where ) has compact support in (0,a). We
have

f ¢2(c+u_2‘u/‘2)d8 <J u—l(u1/2¢/+ 1/2u_1/2 ll/J)
0

=Ja( Y)? +1/4( )w2+u Yu'y'pds,

< [wy+ <%>2w2 +1/3()ds

where the last inequality follows from the Cauchy-Schwarz inequality (Ju='u/v'?| <
3/4(%)2w2 + 1/3(¢")?). Canceling the term (%)QwQ on the two sides of the inequality,

we have
d =
f¢ Sk f

Choosing ¥(s) = sin(ra™'s), we know that 1 < 5-(Z)2. That is to say, a j—;lc
Therefore, we see that for each € > 0,
2m
R—e<a<—.
V3e
P _ 27
Namely, d*(0,0%) = R < Z&. O

As a consequence, we have

COROLLARY 3.3.9. In a complete Riemannian 3-manifold of uniformly positive scalar

curvature, any orientable complete stable minimal surface is compact and homeomorphic
to S2.

Theorem [3.3.8implies that a stable surface in a 3-manifold of uniformly positive scalar
curvature is compact. By Corollary [3.3.6] it is homeomorphic to S2.

Together with Cohn-Vesson’s inequality [Coh35|, we generalize Corollary to
the non-compact case and obtain the so-called extrinsic Cohn-Vesson inequality (See
[Theorem 5.8, Page 18] of [Wan19a)).

THEOREM 3.3.10. (See Theorem 5.8 in [Wan19d)]) Let ¥ < (M?>,g) be a complete
(non-compact) immersed stable minimal surface. If the complete manifold (M3,g) has
non-negative scalar curvature (k(x) = 0), then

(3.3.22) J k() + 1/2|APdv < 27y (3).

Moreover, if Kk > 0 and ¥ is embedded, then X is properly embedded.
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ProOF. From Equation , the stability operator can be written as L := Ay —
K + (k(x) + 1/2|A]?), where Ay, is the Laplace-Beltrami operator of (3, d?s). Since the
non-compact surface ¥ is stable minimal , we use Theorem to find a positive fuction
u with L(u) = 0.

Consider the metric d%s = u?d®s. Let K and dv be its sectional curvature and its
volume form. We see that

(3.3.23) K = u (K — Aglogu) and dv = u’dv.

Theorem m shows that (X, st) is a complete surface with nonnegative sectional cur-
vature K = 0. We use the Cohn-Vossen inequality |[Coh35| to have

(3.3.24) J Kdv < 2nx(2).

Since L(u) = 0, then SBE(x R u ' L(u)dv = 0, where B*(x, R) is the geodesic ball in ¥
centered at x € ¥ with radius R. We deduce that
1 r‘
f k(z) + =|APdv = (K —u'Ayx u)dv
BZ(0,R) 2 JB=(0,R)
r
= Ks, — (Axlog v+ u ?|Vyu|)dv
JB=(0,R)
r
(3.3.25) < u (K — Aglog u)u®dv
JB=(0,R)

N
=
U
<

Ju

Putting (3.3.24)) into (3.3.25)) and taking R — oo, we have that,
J k(z) + 1/2|A]Pdv < 27x (D).
b

Remark that since > admits a complete metric d2s of nonnegative sectional curvature, we
see x(X) < 1 (See details in Corollary |3.3.11)).
In the following, we consider the case that ¥ is embedded and k(z) > 0. We have that

(3.3.26) f k(x)dv < 2.

Suppose that ¥ is not proper. There is an accumulation point p of ¥ so that the
set B(p,r/2) n ¥ is a non-compact closed set in ¥. Namely, it is unbounded in (2, d?s).
Hence, there is a sequence {p} of points in B(p,r/2) n X going to infinity in (3, d*s).

Therefore, we may assume that the geodesic discs B*(pg,r/2) in ¥ are disjoint.

Define two constants Ko := sup,cp,, [Ku(x)| o := 5 min{r, io, 7=} where i :=
inf e ppr) Injy () and Ky is the sectional curvature of (M, g). The geodesic ball B (pr,710/2)
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in ¥ is contained in B(p,r). Applying [Theorem 3, Appendix, Page 139] of |[Fre96| to
the geodesic disc B¥(p,r0/2) = B(p,r), we have

Area(B*(pg,70/2)) = C(ro, Ko).

This leads to a contradiction as follows:

27 = J k(z)dv = f K(x)dv
B(pr)nx

Z JBZ (pk, r0/2

> inf k(x ZATG& pk;T0/2))

zeB(p,r)

> inf k(z)- ) C=w
zeB(p,r)

O

Combining Theorem and Theorem [3.3.10, we will give a new proof of the result
of Theorem 2 in [SY82].

COROLLARY 3.3.11. (See [Theorem 2, Page 211] of [SY82]) Let ¥ < (M, g) be an
oriented complete mon-compact stable minimal surface. If the complete manifold (M?,g)
has nonnegative scalar curvature(k(z) = 0), then ¥ is diffeomorphic to R? or S' x R. If
the latter case occurs, then Y is totally geodesic and the scalar curvature k of M is zero
along 3.

Moreover, if k(x) > 0, then ¥ is diffeomorphic to R

PROOF. Since ¥ is stable minimal, we use Theorem to find a positive function u
with L(u) = 0, where L is the stability operator (See and ) By Theorem
3.3.7, (3, u?d?s) is a complete 2-manifold with nonnegative sectional curvature, where d*s
is the induced metric.

We apply the Soul theorem (See Theorem 1.11 and Theorem 2.1 in |[CGT72|) to
(X, u?d?s). This theorem asserts that if (X, g) is a connected complete manifold with
nonnegative sectional curvature, there is a compact totally convex, totally geodesic sub-
manifold (called a soul of (X, g)) such that X is diffeomorphic to the normal bundle of
the submanifold.

Therefore, there is a submanifold S < ¥ (i.e. a soul) such that 3 is the normal bundle
of S. In addition, since ¥ is non-compact, we see that dim(S) < dim(X) (dim(S) = 0 or
dim(S) = 1).

Case (I) If dim(S) = 0, S is a point. That is to say, 3 is diffeomorphic to R

Case (IT) If dim(S) = 1, S is homeomorphic to S'. Since X is oriented, the normal
bundle is trivial. That is to say, ¥ is homeomorphic to S* x R. We use Theorem
to see that

L} k(x) + 1/2|APdv < 2mx(X).

In this case, we see that x(X) = 0. Therefore, 3 is totally geodesic and x = 0 on X.
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If kK > 0, the latter case never occurs. We can conclude that ¥ is diffeomorphic to
R2. !

Finally, we give an application of Lemma in a complete 3-manifold.

THEOREM 3.3.12 (See Theorem |4 and Theorem 1.1 in [Wanl19c|). Assume that
(M3, g) is a contractible complete 3-manifold. If there exists a number o € (—0,2) such
that

lim inf r*(z)k(x) > 0,
r(z)—00

where k(x) is the scalar curvature of (M, g) and r(z) is the distance function from some
point 0 € M to x, then M? is diffeomorphic to R3.

PROOF. From our assumption, there are two positive constants C' and Ry such that
if r(z) > Ry, then

(3.3.27) K(x) =

re(z)

Claim: If R > 2max{R0,(%)ﬁ}, then the induced map m (M\B(0,4R)) —
m (M\B(0, R)) is trivial.

Suppose the contrary that there exists some R > 2 max {RO, (%)ﬁ} so that the
induced map 7 (M\B(0,4R)) — m(M\B(0, R)) is non-trivial. That is to say, there is a
simple closed curve v < M\B(0,4R) which is not contractible in M\B(0, R).

We use the work of Morrey [Mor09,Mor48]| to find an area-minimizing disc Q2 with
boundary . The surface € intersects the set B(0, R). Therefore, Q2 n dB(0,2R) and
" 0B(0,4R) are both nonempty.

Let us consider the set ¥ := Q n (B(0,4R)\B(0,2R)). It is a stable minimal surface
in (M, g) whose boundary is contained in the disjoint union of dB(0,4R) and ¢B(0,2R).
Since k(x) = %= on B(0,4R)\B(0,2R), we use Lemma [3.3.8| to know that

(4R)~
2(4R)**x
(30)1/2
Since 0¥ n 0B(0,2R) and 0¥ n 0B(0,4R) are both nonempty, we see that
2(4R)*?x
(30) 1/2
4ltel2n

That is to say, R < ( W>% This is in contradiction of the choice of R. This finishes

> is contained in the -neighborhood of 03.

(3.3.28) 2R = d(0B(0,2R), 0B(0,4R)) < 2

the proof of Claim.
From the above Claim, we see that M is simply-connected at infinity. From Remark

1.1.8) we know that M is diffeomorphic to R3. O

COROLLARY 3.3.13 (See Theorem 3.5 in [Wan19c|). Assume that (M3, g) is a simply-
connected open 3-manifold with mo(M) = Z. Let 0 € M be a point and r(z) a distance
function from x to 0. If there exists a real number « € [0,2), such that,

lim inf r*(z)k(x) > 0,
r(x)—o0
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then M3 is diffeomorphic to R x S2.
See the proof in [Wan19c]

7



CHAPTER 4

Convergence

In this chapter, we consider the convergence theory for minimal surfaces. First, we
consider the convergence theory for minimal surface equations (See Equation (3.1.13)).
Together with local properties of minimal surfaces, we discuss a classical theorem about
convergence with finite multiplicity.

Then, we will introduce a new concept, the lamination. Our focus is the convergence
theory for stable minimal laminations. Finally, we construct a family of stable minimal
lamination in a complete contractible 3-manifold and discuss its limit.

4.1. The smooth convergence

Let u be a function from the unit disc B? to R. Its image in R? is a minimal surface
if and only if

div(—Y )y _ ¢

A1+ ]VUP)

LEMMA 4.1.1. Let {fi}; be a sequence of functions from the unit disc B*> to R. Fach
graph of f; in R? is minimal. If ||fi|lc: < C < oo, then up to extracting a subsequence,
fi converges smoothly on compact sets of B® to f and the graph of f is also a minimal
surface.

PRrROOF. By Arzela-Ascoli Lemma, we may extract a subsequence so that f; converges
to f in C**-topology on a compact set for 0 < a < 1. According to the minimal surface
equation (See Equation (3.1.13))) and the Schauder estimate for linear elliptic equation
(See [Theorem 6.2, Page 90] of [GT15]), we see that this sequence converges in C™-
topology on a compact set for each m. As a consequence, f also satisfies the minimal
surface equation (see Equation (3.1.13])). That is to say, its graph is minimal. O

DEFINITION 4.1.2. In a complete Riemannian 3-manifold (M, g), a sequence {%,} of
immersed minimal surfaces converges smoothly with finite multiplicity (at most m) to an
immersed minimal surface X, if for each point p of X, there is a disc neighborhood D
in ¥ of p, an integer m and a neighborhood U of D in M (consisting of geodesics of M
orthogonal to D and centered at the points of D) so that for n large enough, each %,
intersects U in at most m connected components. Each component is a graph over D in
the geodesic coordinates. Moreover, each component converges to D in C*“-topology as
n goes to infinity.

Note that in the case that each ¥, is embedded, the surface ¥ is also embedded. The
multiplicity at p is equal to the number of connected component of 3, n U for n large
enough. It remains constant on each component of X.

78
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REMARK 4.1.3. Let us consider a family {X, }, of properly embedded minimal surfaces
converging to the minimal surface Y with finite multiplicity. Fix a compact simply-
connected subset D < X. Let U be the tubular neighborhood of D in M with radius €
and 7 : U — D the projection from U onto D. It follows that the restriction 7|, v :
Yn nU — D is a m-sheeted covering map for € small enough and n large enough, where
m is the multiplicity.

Therefore, the restriction of m to each component of ¥, n U is also a covering map.
Hence, since D is simply-connected, it is bijective. Therefore, each component of ¥, N U
is a normal graph over D.

Let us recall a classical theorem about convergence with finite multiplicity.

THEOREM 4.1.4. (See [Theorem 4.37, Page 49] of IMIRRO2] or [Compactness The-
orem, Page 96] of [And85]) Let {Xi}ren be a family of properly embedded minimal sur-
faces in a complete 3-manifold (M3, g) satisfying (1) each 3y intersects a given compact
set Ko; (2) for any compact set K in M, there are three constants C, = C1(K) > 0,
Cy = Cy(K) > 0 and kg = ko(K) € N such that for each k = ko, it holds that

(1) |As,|* < Cy on K N Xy, where |Ayg, |* is the square length of the second funda-
mental form of ¥y,
(2) Area(Sp n K) < Cs.

Then, after passing to a subsequence, Xj, converges to a properly embedded minimal surface
with finite multiplicity in the C*-topology.

PROOF. Choose a point py € ¥y N Ky. Extracting a subsequence, the sequence {py}
converges to some point p € M. We may suppose that the unit normal vector Hgk\pk to
the surface X at p; converges to some unit vector in 7, M. Namely, the tangent space
T, 2k < T, M converges to some plane 7' < T,M. From (1) and Lemma we can
express Yy locally (near p) as some graphs of functions over T'. That is to say, there is an
open geodesic ball U centered at p such that for k large enough,

e cach component of U n ¥ is the graph of some function on 7. The Hessian
of this function is bounded by the bound of the second fundamental form (See

Lemma and (1));

e the number of components of U n3; is bounded by the area bound from Theorem

and (2);

We use Lemma to extract a subsequence converging to a minimal surface. Then,
a diagonal argument allows us find a subsequence converging smoothly to a minimal
surface ¥. The area bound (See (2)) implies that this sequence converges with finite
multiplicity.

From the strong maximal principle (See Corollary , the minimal surface X is
embedded or self-intersects transversally. Since J; is embedded, we can conclude that X
is also embedded. 0J

In the following, we consider the convergence theory for stable minimal surfaces. For
stable minimal surfaces in a 3-manifold, Schoen gave a uniform bound of the second
fundamental form.
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LEMMA 4.1.5. (See [Theorem 3, Page 122] in [Sch83]) Let ¥ be an immersed stable
surface in a Riemannian manifold (M3,g). Given rq € (0,1], and a point py € %, if
Y N B(pg,10) has compact closure in X, there are two constants 0 < ¢g < 1 and C > 0
depending only on the metric g near py and the injective radius of (M, g) at py so that

2 —2
|As|” < Cry® on B(po, €oro) N 2.
As a consequence, we have

COROLLARY 4.1.6. Let (M,g) be a complete Riemannian manifold and {X;} a se-
quence of complete embedded stable minimal surfaces. If for any compact set K < M,
there is a constant Cy depending on K, satlisfying that for each k

Area(Xp n K) < O,

then after extracting a subsequence, Xy converges smoothly to a complete stable minimal
surface with finite multiplicity.

4.2. Minimal lamination

In the following,we assume that a complete contractible 3-manifold (M, ¢) is not home-
omorphic to R®. As in Remark [1.1.13| M is an increasing union of closed handlebodies
{ Nt} satisfying that for each k,

e N is homtopically trivial in Ny, 1;
e None of the N, is contained in a 3-ball.

In addition, for each k, the genus of N is greater than zero. (If not, there is some
handlebody Ny of genus zero, namely a 3-ball. That is to say, Ny is contained in a 3-ball
Ny which is in contradiction with the last paragraph. )

4.2.1. Construction of minimal laminations. From Lemma each Nj has
a system of meridians {v,i}lgi]fk), where g(Ny) is the genus of Ni. Our target now is to
construct a lamination %, := Ul = N; (i.e. a disjoint union of embedded surfaces)
with 0Q} = ¢ and “good” properties.

Let us recall a result of Meeks and Yau (See Theorem or [Theorem 6.28 Page
224] of [CM11]). It provides us a geometric version of loop theorem to construct them.

THEOREM. (See [MIY80,MIY®82|, [Theorem 6.28 Page 224] of [CM11] or Theorem
Let (M3, g) be a compact Riemannian 3-manifold whose boundary is mean convex
and 7 a simple closed curve in dM which is null-homotopic in M. Then, v bounds an
area-minimizing disc and any such least area disc is properly embedded.

Remark 4.2 The boundary ¢ M is mean convex. That is, M is a piecewise smooth
2-manifold consisting of smooth surfaces {H};. On each H;, the mean curvature is non-
negative.

Let ¥ be an embedded area-minimizing disc with boundary . It intersects dM
transversally. Therefore, Int ¥ is contained in Int M.

Our strategy is to apply this theorem to (N, g|n, ) for each k. However, the boundary
of Nj may be not mean convex. To overcome it, we find a new metric g, on N, so that
1) (Ng, gx) is a 3-manifold with mean convex boundary;
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2) gk|Nk71 = g’Nkfl'

The metric g is constructed as below:

Let h(t) be a positive smooth function on R so that h(t) = 1, for any t € R\[—e¢,¢€].
Consider the function f(x) := h(d(x,dNy)) and the metric g == f*g|n,. Under (N, gx),
the mean curvature H(x) of Ny, is

H(x) = h™(0)(H (x) + 21'(0)h~*(0))

Choosing € > 0 small enough and a function h with h(0) = 2 and h'(0) > 2 max,eon, |H (2)|+
2, one gets the metric g, which is the required candidate in the assertion.

In the following, we inductively construct the lamination 2 < (Ng, gx).

When [ = 1, there is an embedded area-minimizing disc 2}, = (Ny, g) with boundary
7+ (See Theorem or Theorem 6.28 of [CM11]). As in Remark 4.2, it intersects 0Ny
transversally. Then, Int Q) < Int Nj.

Suppose that there are [ disjointly embedded stable minimal discs {Qi}l_; with 00} =
Vi

Let us consider the Riemannian manifold (Ty, gxlr, ), where Ty := N\ 1L, Qf. Tt
is a handlebody of genus g(/Nx) — [. For example, see the following figure.

(TkJ? gk|Tk,1)

FIGURE 4.1.

The boundary of (Ty, gk|r,,) consists of two different parts. One is ON\ II_; /.
The mean curvature is positive on this part. The other is 2/ disjoint discs {Q: " }!_, and
{Qi"}_. The two discs Q. and Q&' are two sides of the same minimal disc Q.. The
mean curvature vanishes on these discs.

Therefore, the boundary of (7%, g|z, ) is mean convex (See Remark 4.2). In addition,
{~i}i=1 is a system of meridian of the handlebody (T}, Gk|T.,)-
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Then, we use Theorem [3.1.8/and the above remark to find an embedded stable minimal

surface Q4! in the closure of (T}, 9k|1,,) with boundary oA

From Remark 4.2, Q4! intersects the boundary of (T}, gk|1,,) transversally. Hence,

Int Q4! is contained in Int T};. That is to say, {Q2:}5] are disjoint stable minimal surfaces
for (Ni, gr).
This finishes the inductive construction.

To sum up, there exist g(N) disjointly embedded meridian discs {Q!}. Define the
lamination .%;, by 1;Q%. It is a stable minimal lamination for the new metric g and for
the original one away from dNy (near Nj_q, for example).

The set £}, N Ni_1 is a stable minimal lamination in (M, g). Each leaf has its boundary
contained in 0N,_;. In addition, since Ny is not contained in a 3-ball, We can conclude
that each lamination .}, intersects Ny. The reason is below:

If the set £ n Ny is empty, we choose a tubular neighborhood N(.%;) in Ny with
small radius so that the set N(.Z;) n Ny is also empty. That is to say, Ny lies in the
handlebody Ni\N(Z) of genus zero (i.e. a 3-ball). This is in contradiction with our
assumption that Ny is not contained in a 3-ball.

4.2.2. Limits of minimal laminations. Let us consider the sequence {-%;}; and
its limit. From Lemma [4.1.5 we know that the sequence {.%} } satisfies the condition (1)
in Theorem [4.1.4] However, it may not hold the condition (2) in Theorem [4.1.4]

For example, in the Whitehead manifold, each N}, is of genus one. The lamination %
is a meridian disc 2}, = Nj,. From Theorem , Q4 N Int N has at least 2°~! components
intersecting Ny. We know that for £ > 1, each component (X, 0%) < (N1, dN;y) of Qf N
IntV; is a stable minimal surface in (M, g).

Choose g € ¥ n Ny and ry = %min{r, io}, where r := dist(0Ny, 0Ny) and iy :=
inf,en, Inj,, (). We see that the ball B(xzg, 7o) is in N;. We apply a result [Lemma 1,
Page 445] in [MIY®&0] to (N7, dNy). Hence, it follows that

Area(X) = Area(X n B(zo,10)) = C/(ig, 70, K)

where K := sup,cy, |[Km ()| and K/ is the sectional curvature.
Therefore, one has that Area(N; n Qi) = 2871C. The area of %, n Ny goes to infinity
as k goes to infinity. That is to say, the sequence {-%;}; does not satisfy Condition (2).

Generally, the sequence {%}}; may not sub-converge with finite multiplicity. In the
following, we consider the convergence toward a lamination.

DEFINITION 4.2.1. A codimension one lamination in a 3-manifold M3 is a collection
£ of smooth disjoint surfaces (called leaves) such that  J, ., L is closed in M?. Moreover,
for each x € M there exists an open neighborhood U of x and a coordinate chart (U, ®),
with ®(U) < R? so that in these coordinates the leaves in £ pass through ®(U) in slices
form

R? x {t}  B(U).
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A minimal lamination is a lamination whose leaves are minimal. Finally, a sequence of
laminations is said to converge if the corresponding coordinate maps converge in C%%-
topology.

For example, R? x A is a lamination in R?, where A is a closed set in R.

Note that any (compact) embedded surface (connected or not) is a lamination. In [Ap-
pendix B, Laminations] of [CMO04], Coding and Minicozzi describ the limit of laminations
with uniformly bounded curvatures.

PROPOSITION 4.2.2. (See Proposition B.1, Page 610] in [CMOJ4])Let M3 be a fized
3-manifold. If £, < B(x,2R) = M is a sequence of minimal laminations with uniformly
bounded curvatures (where each leaf has boundary contained in 0B(0,2R)), then a subse-
quence, Z;, converges in the C*-topology for any a <1 to a (Lipschitz) lamination £ in
B(x, R) with minimal leaves.

We use Proposition to show that

THEOREM 4.2.3. The sequence {£.}of laminations sub-converges to a lamination £ .
Moreover, Fach leaf in £ is a complete minimal surface.

PROOF. As constructed above, the intersection .Z; N N}, is a stable minimal lamination
or any j > k. It may have many leaves (connected components). Each leaf has boundary
contained in dN. In addition, .Z; intersects NNj.

From Lemma , there is a constant C(Ny_1), depending on Ny and g, so that for
any j > k,

|AD%|2 < C(Nk_l) on Nk—l-

Therefore, for j > 3, {Z; n N} is a sequence of minimal laminations with uniformly
bounded curvature where each leaf has boundary contained in d/Ny. We use Proposition
to extract a subsequence converging to a minimal lamination in N;. Each leaf has
boundary contained in J/NV;.

We repeat the argument on each Ni. A diagonal argument allows us to find a sub-

sequence of { %} converging to a lamination .#. Each leaf is a complete minimal sur-
face. O

For our convenience, we may assume that the sequence % converges to .Z. In the
following, we will show that if (M, g) has positive scalar curvature, then each leaf in &
is a (non-compact) stable minimal surface.

LEMMA 4.2.4. Let ¥ be a compact minimal surface in a 3-manifold (X, g) (possibly
with boundary) and (X g) the double cover of (X,q). The lift X of ¥ is a connected
mainimal surface in (X g). Then X is stable minimal if an only sz 15 stable minimal.

PROOF. Let L and L be the stable operators of > and S respectively. The operator
p*(L) is equal to L where p : > — ¥ is the double cover. Let A\; and )\, be the first
eigenvalues of L and L respectively.

It is sufficient to show that A\; = ).

Let f be an eigenfunction for Ay (i.e. L(f) = —A1f). The function fi= p*(f) satisfies
that L(f) = —A1f. Hence, \; = A;.
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Let 7 be the desk transformation of the double cover p. The surface ¥ is 7-invariant,
(namely 7(2) = ¥). The map 7 is isometric on 3.

Let h be an eigenfunction for A (ie. L(h) —\h). We may assume that h is 7-
invariant (7(h) = k). (If not, we replace it by 7(h) +h.) The function h is equal to p*(h),
where h is a smooth function on . We have that L(h) = —X\h. Therefore, A\; = A;. We
can conclude that /\1 = \. O

~

THEOREM 4.2.5. Fach leaf in £ is stable minimal.
PROOF. Let L; be a leaf in the minimal lamination .Z.

Case (I): If L; is a limit leaf (that is to say, the closure of £\ L; contains L;), we use
the result of Meek, Pérez and Rosenberg (See [Theorem 1, Page 4] of [MIPROS]|) to have
that it is stable minimal.

Case (II): If L; is not a limit leaf, the intersection L; n Z\L; is empty. There is a
tubular neighborhood N(L;) of L; such that the intersection N(L;) n Z\L; is empty.

Let 7 be the projection from N(L;) to L,. For any point p and r > 0, we consider the
geodesic disc Bt (p,r) in L; and the set N(p,r) := 7~ 1(B%(p,r)).

Choose one component Y of N(p,r) n % for k; > (. Since .Z, converges to .Z, the
sequence {X}x converges to some subset of .. In addition, the intersection .Z n N (p, T)
has the unique component, B (p, r). Hence, X} converges to BX(p,r).

We first consider the case when L; is 2-sided. In the following, we show that BLt(p,r)
is stable minimal for any r > 0.

Step 1: Define the function d : > — R.
Let ( ) be the unit normal vector to L; at « and 7, := 7|g,. The map 7 : ¥ —

BLt(p,r) is a covering map for k large enough.

We define the function dj, : X — R as follows:

du(z) =< exp=lo, (), B(m()) >

Step 2: 7 is injective.

Recall that the area of %, is finite. The subset ¥, has a finite area. Therefore, m is
a finite cover for k large enough.

We argue it by contradiction. Suppose that 7 is a m-sheeted covering (m > 1).

Let us consider three sets in ¥, as fOHOWS'

' = {& € Ty|dy(x) = max{dy(a)|2’ € m; " (mi(2)} }
JMed _ {x e Xy min{dy (2|2’ € T ( p(x ))} < di(z) < max{dy(z)|x’ € 7rk—1(7rk($)}} ;
15 = {z & Syldy(z) = min{dy(2/)|a’ € 7 (mi())}} -

From the homotopy lifting property of 7, and m > 1, these disjoint three set are open.
In addition, ¥ = I7°P 11 JMed 11 [Bot Since ¥, is connected, there are at least two empty
sets in these three sets.

However, since m > 1, I7° and IP°" are two nonempty sets. This is in contradiction
with the last paragraph. We conclude that 7 is injective.

Step 3: The stability of BL(z,r).
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As in Step 2, ¥, can be written as the graph of some function f; over Bt (p,r) for k
large enough. The sequence {fi.} converges in C%*-topology. Since Y is stable minimal,
we use Lemma and Lemma to have that the sequence {f;} converges in C*“-
topology. Namely, X converges to B (p,r) in C?**topology. Therefore, B (p,r) is
stable minimal for any r > 0.

Therefore, we can conclude that L; is stable minimal.

If L, is 1-sided, we consider the double cover Jm of N(L;) and the lift L; of L,. We
choose r large enough so that B (p,r) < L; is 1-sided. The lift BLt(p,r) of B (p,r) is

——

connected and 2-sided in the lift N(p,r) of N(p,r).

Let 34 be one component of the pre-image of ¥;. It is a stable minimal surface. The
reason is as follows:

The map 3, — Iy is a m’-sheeted cover map, where m’ < 2.
If m’ =1, the map X, — X is isometric. Therefore, ¥, is stable minimal.
If m’ =2, we use Lemma to have that X, is stable minimal.

As in Step 1, we define the projection 7 : Zm — [, and the function cZk 3 — R

The sequence {3} converges to BLt(p,r). The map 7y := 7|y, is a cover map for k
large enough. Since Area(X)) < Area(.%,) < o and Area(3;) < 2Area(Xy), 3 has a
finite area. Therefore, 7 is a finite cover for k large enlarge.

As in the above case, Bf(zr) is stable minimal. From Lemma m, Blt(p,r) is
stable minimal for r large enough. Namely, L; is stable minimal. U

THEOREM 4.2.6. If (M,g) has positive scalar curvature, each leaf in £ is non-
compact.

Recall that a component Qf of %, is an area-minimizing disc with boundary Q% in
the closure of (T ;_1, gx), where Ty ;1 = N\ Hé;ll Q) and gy, is obtained by modifying the
metric g. In addition, gg|y,_, is equal to g|n,_,-

Proor. We argue by contradiction. Suppose that there exists a compact leaf L; in
Z.

Step 1: Topology of L;

From the positivity of the scalar curvature, we use Corollary to have that L, is
a 2-sphere or a projective plane.

If L; is a projective plane, L, is 1-sided. Hence, M\L; is connected. There is a an
embedded curve v in M which intersects L; transversally at one point. The intersection
numberof L; and v is +1.

However, from the contractibility of M, v is homotopically trivial. Hence, the inter-
section number of v and L, is zero, a contradiction.

We conclude that L; is a 2-sphere.

Step 2: Area Estimate.
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Since M is irreducible (See Remark [1.1.1]), there is a 3-ball B < M with boundary L.
Let No.(B) be the tubular neighborhood of B with radius 2e. The set Ny (L) is a subset
of NQE(B)

Since Ny (B) is relatively compact, there is a positive integer kg, such that No.(B) <
Niyo1.

From now on, we fix the integer k& > ko. Let {7}, be the set of components of
% (v Nae(L;). The component X7 is contained in some component € of %, := 11,

In the following, we show that there is a constant C, independent of k and j, so that
the area of ¥ in (M, g) is less than C

We may assume that Qi intersects 0Ny (B) transversally. The intersection Qi N
ONac(B) := {v}; has finitely many components. Each component v; is a circle and
bounds a unique closed disc D; in €.

Since 0Ny (B) is a 2-sphere, there is an embedded disc D, < dNa.(B) with boundary
Vi .
We claim that for any D; < O,
Area(D;, gr) < Area(D}, gx.),

where Area(D;, g) is the area of D; in (N, gx).
We prove it by induction on j.

When j = 1, Q} is an area-minimizing disc in (N, gx). If the claim does not hold for
some D; < Q}, we consider the disc (Q;\D;) U, D} with boundary 0. Its area is less
than the area of Q) in (N, gx), a contradiction.

Therefore, for any D; < Q4, we have Area(D;, gx) < Area(D!, gi).

We suppose that it holds for any | < j and any D; < Q.

In the following, we consider that D; is contained in Q{fl. If D} N (1,8 is empty,
this claim follows from the above argument.

If not, we may assume that D} intersects 11;<;Q2} transversally. The intersection D} N
U< i= {cm}enec, has finitely many components. Each component ¢, bounds a disc
D!, < Dj. In addition, it also bounds a disc D,, < 1l<; ..

Let C7"** be the set of maximal circles of C; in D;. These discs {D;,}, ccma= are
disjoint. The set D}\(Ue,,ecma=D},) is contained in Ni\ L<; €.

We consider the disc

D! := D\(Ug,ecmar Diy) Ueyecmes (Ue,, Diy).

It is contained in the closure of (7% ;, g )-
Since Q! is an area-minimizing disc in the closure of (Ty ;, gx), We have that

Area(D;, gi) < Area(D, gy).

If not, we consider the disc (Qiﬂ\Di) U., DI. Its area is less than the area of Qiﬂ, a
contradiction.
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From the inductive hypothesis,
Area(D,,, gx) < Area(D., gi.),
for any ¢,,. Hence,
Area(D;, gr) = Area(D)\(Ue,,ecmar Dy,), gr) + ZArea(D:ngk)

> Area(D)\(Ue,,ecmas D,,), g) + Z Area(D,,gr,)
= Area(D}, gr) = Area(D;, gy,).
Therefore, we finish the proof of the claim.
We will show that the above claim implies an area estimate.
Let C™* be the set of maximal circles of {v;}; in Q. We have that
Q) A Noe(Ly) < Q) A Noe(B) € Unyeman D
Hence, Zf is a subset of some D;.
Recall that gi|n,.(5) = 9|no () for k > ko. For each k and j, we have that
Area(X, gr) = Area(X], g)
Area(0Ny(B), gr) = Area(0Na(B), g)
We then have that
Area(X1, g) = Area(X], gr) < Area(D;, gi)
< Area(D;, gx) < Area(0Na(B), gx.)
= Area(0Ns(B), g).
We conclude that for each k > ky and 7,
Area(X1, g) < Area(0Ny(B), g).

Step 3: Contradiction.

Choose a point p € L; and a point py € £ N N (L) so that limy_o pr = p.
Let X7* be the component of % N Nao(Lt) passing through py. As the proof in Step
2, we have that for £ > kg

Area(XJ, ) < Area(0Na(B), g).

From Lemma m the curvatures of these surfaces {¥7*}; are uniformly bounded in
Nye(L¢). By Theorem | the sequence {¥7*} sub-converges smoothly to a properly
embedded surface X Wlth ﬁnlte multiplicity in N(L;).

For our convenience, we assume that {¥7%} converges smoothly to ¥ in N.(L;). The
limit ¥ < . is a disjoint union of connected embedded surfaces. Its boundary is contained
in ON.(L;). In addition, p lies in .Z. Hence, L; is one component of 3.

Since ¥ is properly embedded, the set ¥/ := 3\ L, is a closed set. The sets ¥’ and L,
are two disjoint closed sets. Choose 0 < €/2 small enough such that

N26(Lt) N NQ&(E/) = .
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Claim: For k large enough, %7 is contained in Nj(L;) 11 (Nac(L;)\Nas(Ly))-

Since EZ:’“ is a subset'of Noo(Ly), Ef;’“\Ng(;(Lt) is contained in N (L;)\Nos(Ly). It is
sufficient to show that Efj N Nogs(Ly) is contained in Ng(Ly). .

For k large enough, ¥ n N (L) is contained in N5(3), because X3 n N(L¢) converges
to 3. Hence, 37F n Nos(Ly) is a subset of Nos(L¢) N Ns(X). From the choice of d, we have
that

a) Ns(X) is equal to Ns(L;) 11 Ns(¥');

b) Ns(X') n Nas(Ly) is empty.

By a), Nas(L;) n Ns(2) is equal to Ns(Ly) 11 (Ns(X) N Nog(Ly)). From b), it is equal
to Ns(L;). Therefore, Efk N Nos(Ly) is contained in Ns(L;).

This finishes the proof of the claim.

For k large enough, py, is located in Ns(L;). Namely, Y7 A Njs(L;) is non-empty. In
addition, since 0¥7F < dNy(L;) is non-empty, X7F N (NQE(Lt)\NQ(;(Lt)) is also nonempty.

The sets Ns(L;) and Nac(L;)\Nas(L) are disjoint. Since ¥;* is connected, we use the
claim to have that one of these two sets X7* n Ns(L;) and X7* N (Nae(Ly)\Nas(Ly)) is
empty. This is in contradiction with the last paragraph.

We can conclude that each leaf L, is non-compact. 0

As an consequence, we give a new proof of [Corollary 10.8, Page 173] in [GL83].

COROLLARY 4.2.7. A complete contractible 3-manifold with uniformly positive scalar

curvature (i.e. that is, its scalar curvature is bounded away from zero) is homeomorphic
to R?

PROOF. Suppose that M is not diffeomorphic to R3. As described above, there exists
a complete (non-compact) stable minimal surface 3. By Corollary , 3} is conformally
diffeomorphic to R2.

Since the scalar curvature k(z) of M is uniformly positive, inf,ep £(x) > 0. From
Theorem (3.3.10], one has,

21 > J k(x)dv
s

> inf k(x) f dv
s

xeM

= inf k(x) - Area(X).

zeM
Therefore, ¥ is a surface of finite area.
However, we apply the theorem of Gromov and Lawson [Theorem 8.8] in [GL83]. This
theorem asserts that if (X, ¢) is a Riemannian manifold of positive scalar curvature, then
any complete stable minimal surface of finite area in X is homeomorphic to S%. Hence, ¥

is homeomorphic to S?, which leads to a contradiction with the topological structure of
¥ (2 is homeomorphic to R?). O
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Proof of Main Theorems



CHAPTER 5

The Vanishing Property

In this chapter, we consider the geometry of a complete stable minimal surface and
its relationship with the topological property of contractible 3-manifolds.

Let us consider a complete contractible Riemannian 3-manifold (M, g) of positive
scalar curvature and a complete (non-compact) embedded stable minimal surface 3 <
(M, g). From Theorem and Corollary [3.3.11] the surface ¥ is a properly embedded
plane (i.e. it is diffeomorphic to R?).

In the following, we assume that M := U N}, is not homeomorphic to R? where { N}
is assumed as in Remark . By Theorem , there is an increasing family { Ry}
of closed handlebodies with Property H.

DEFINITION. A complete embedded stable minimal surface ¥ < (M, g) is called to
satisfy the Vanishing Property for { Ry}, if there exists a positive integer k(X) so that for
any k > k(X), any circle in ¥ n Ry, is contractible in 0Ry.

Let us consider a stable minimal lamination . < (M, g), where each leaf is a complete
(non-compact) stable minimal surface. It is called to have the Vanishing Property for
{ Ry}, if there is a positive integer kg so that for any k& > kg and each leaf L; in .Z, then
any circle in L; n 0Ry, is contractible in dR},.

We will consider the Vanishing property and its relationship with Property P and the
fundamental group at infinity.

5.1. The vanishing Property and Property P

In this section, we consider the case that a complete contractible genus one 3-manifold
(M, g). In this case, we see from Lemmall.3.10]that the family {N,} (as in Theorem[1.3.13)
satisfies Property H. Namely, Ry is defined as Ny.

In addition, we see from Theorem that the manifold M satisfies Property P (See
Deﬁnition. If (M, g) has positive scalar curvature, the geometry of a stable minimal
lamination is constrained by the extrinsic Cohn-Vesson inequality ( See Theorem
as well as by Property P. Their relationship is clarified by the following theorem:

THEOREM b5.1.1. Let £ = UserL; be a stable minimal lamination in a complete
contractible genus one 3-manifold (M, g). Fach leaf L, is a complete (non-compact) stable
minimal lamination. If the manifold (M, g) has positive scalar curvature (k(x) > 0), then
Z satisfies the Vanishing property for {Ni}r, where {Ny}g is assumed as in Theorem
1.5, 15

Precisely, there exists a positive integer ko = ko(M, g), such that for each k = ko and
any t € A, each embedded circle v in Ly n 0Ny, is contractible in ONy.

90
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PROOF. Since (M, g) has positive scalar curvature, we know from Corollary
that each L, is diffeomorphic to R2.

We prove by contradiction. We suppose that there exists a sequence of increasing
integers {k,}, such that :

for each k,, there exists a minimal surface L;, in £ and an embedded circle ci, <
L, n 0Ny, which is not contractible in ONj,,.

Since lim k,, = o0, we know that lim [(Ny, Ny, ) = .
n—o0 n—o0

Because L;, is homeomorphic to R?, there exists a unique disc D,, = L;, with boundary
Ck,- From Property P (Definition 2.1.3)), we see that D, n Int N; has at least (N7, Ny,,)
components intersecting No, denoted by {¥;}7,.

Define the constants r := d™(0Ny, ONy), C' := inf,en, 5(x), K := sup,cy, |Kn| and
ig := infepn, (Inj,,(x)) , where K, is the sectional curvature of (M, g) and Inj,,(x) is the
injective radius at x of (M, g).

Choose 1y = %min{z’o, r}and z; € ¥; 0 Ny, then B(x;,7¢) is in N;. We apply Theorem
to the minimal surface (X;,0%;) < (N, 0N;). Hence, one has that

Area(X; N B(xj,10)) = C1(K, ig,70).

From Theorem [3.3.10, we have:
27 > J K(x)dv = ZJ k(z)dv = ZJ k(x)dv
L j=1Y%; j

j=1 YjnB(zj,r0)
> ) CArea(S; N B(zj,70))
j=1

= CClm = Cle(Nl,Nkn)
This contradicts the fact that lim I(Ny, Ny, ) = oo and completes the proof. O

n—o0

tn

REMARK 5.1.2. In the following, our proof requires that 0NN, intersects some leaf L,
transversally. To overcome it , we will deform the solid torus N in a small tubular neigh-
borhood of ¢ Ny so that the boundary of the new solid torus intersects L; transversally.

This new solid torus also holds for Theorem [5.1.1l The reason is as follows:

The proof of Theorem only depends on the extrinsic Cohn-Vossen inequality (See
Theorem and the geometric indexes. If we replace Ny by a new solid torus obtained
from deforming N, all geometric indexes remain unchanged. Therefore, N, also holds for

Theorem [B.1.1]

REMARK 5.1.3. Let {Rg}r be a family of solid tori in a complete contractible 3-
manifold (M, g) with the properties that

lim I(Rl,Rk) = 00.

k—0o0

Now we consider the case that the maps m (0Ry) — m(M\Rg) and 7 (0R;) —
m(Rp\Ry) are both injective. From Remark [2.1.7, the family satisfies Property P (See
the detail in Remark [2.1.7)).
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From the proof of Theorem [5.1.1, we have that if (M, g) has positive scalar curvature,
any complete stable minimal lamination in (M, g) has the Vanishing Property for {Ry}.

5.2. The vanishing Property and 7{°

Generally, the geometry of a stable minimal surface is constrained by some topological
properties of the 3-manifold. For example, the fundamental group at infinity. In the
following, we will study a complete (non-compact) stable minimal surface ¥ < (M, g) and
its relationship with the fundamental group at infinity.

LEMMA 5.2.1. Let (M, g) be a complete contractible Riemannian 3-manifold with pos-
itive scalar curvature k(x) > 0 and {Ri}r a family of handlebodies with Property H. If a
complete embedded stable minimal surface ¥ does not satisfy the Vanishing Property for
{Ry}k, then w°(M) is non-trivial.

Roughly, there is a sequence of non-trivial circles in 3 going to infinity. This sequence
gives a non-trivial element in 7°(M).

PROOF. Since ¥ does not satisfy the Vanishing property for {Rj}, there exists a
sequence {k,}, of increasing integers so that for each k,, there is a circle v, € 0Ry, N X
which is not nullhomotopic in 0Ry, . By Corollary ¥ is conformally diffeomorphic
to R%. Each 7, bounds a unique closed disc D,, = .

However, 7, may not be a meridian. We will choose a meridian in D,, of Ry to replace
it.

Since the map m(0Ry,) — m(M\Ry,) is injective (See Definition , we use
Corollary to see that D, contains at least one meridian of Rj,. Without loss of
generality, we may assume that 7, is a meridian of Ry, and Int D, has no meridian of
Ry, . (If not, we can replace v, by the meridian in Int D,,).

Since {7}, is a collection of disjointly embedded circles in X, one of the following
holds: for each n’ and n/,
e Dy c Dy
° Dn @ Dn/;
e D,nD,,=.
We claim that:
(%) :if any n' > n, then D,, < D, or D, n Dy = &
The reason is below: If not, D, is a subset of D,,. Since v,, (3Rkn, is not contractible
in M\Ry (See Remark [2.2.7) and the map m(0Ry,) — m(M\Ry,) is injective, we use

Corollary to see that D,y < Int D,, contains at least one meridian of Ry, . This is in
contradiction with the above assumption.

We will show there is an increasing subsequence of {D,,}. Furthermore, the boundaries
of these discs in the subsequence gives a non-trivial element in 7{°(M).

Step 1: the existence of the ascending subsequence of {D,}.

We argue by contradiction. Suppose these is no ascending subsequence in {D,}.
Consider the partially ordered set ({D,},, <) induced by the inclusion. Let C' be the
set of minimal elements in ({D,},,<). These discs in C' are disjoint in .
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If the set C is finite, we consider the integer ng := max{n| D, € C}. From the above
fact (), the subsequence {D,},~n, is an increasing subsequence, which contradicts our
hypothesis. Therefore, we can conclude that the set C' is infinite. That is to say, there is
a subsequence {D,,_}s of disjointly embedded discs.

From Remark 2.2.7, the map my(0Ry,,) — m1(M\Ry) is injective. Therefore, the disc
D, intersects Ny. Since Ny is a subset of Ry, it also intersects Ry.

Choose z,, € Ry n D, and 7y = %min{io,r}, where r := d™(0Ry, 0R;) and iy :=

inf,cg, (Inj,,(z)). Hence, the geodesic ball B(z,,,7) in M lies in R;.

Define the constants C' := infyep, (), K := sup,cp, |Ku| where K/ is the sectional
curvature of (M, g).We apply Theorem [3.2.7] (See [Lemma 1, Page 445] of [MIY80]) to
the minimal surface D,,, n R; in (R, dR;) and obtain that

Area(Dns M B(l’ns, ’1“0)) = Cl (K, io, To).
This leads to a contradiction from Theorem [3.3.10] as follows:

ZWZJRdUZJ HdUZZJ Kkdv
P RinE s YDnsnB(xn,,ro0)

> Z CArea(D,,, n B(zy,,10))
= Z CC = o

Therefore, we can conclude that there is an ascending subsequence of {D,,},.

From now on, we abuse the notation and write {D,,} for an ascending subsequence.
Step 2: m°(M) is non-trivial.

Claim: There is an integer N so that for n > N, (D,\D,,—1) n Ry is empty.

We argue by contradiction. Suppose that there exists a family {n;} of increasing
integers such that D,,\D,, , intersects Rj.

Choose z; € Dy, \D,,_, n Ry. Hence the geodesic ball B(z;, 7o) in M is contained in
Ry, where ry is assumed as above. We apply Theorem (See [Lemma 1, Page 445]
in [MIY80]) to the minimal surface D, \D,, , N Ry in (Ry,0Ry).

Area«Dm\Dnzq) N B(IL’[,TO)) = Cl(Ka iOaTU)'

From Theorem [3.3.10 one gets a contradiction as follows:

2r > J kdv = f kdv
N RinY

> Z f kdv
l (Dnl\Dnlil)ﬁB(:L'l,To)

> Z CArea(B(x;,19) N Dp,\Dp,_,)
]
= CZ Cy =
]

This proves Claim 1.
Therefore, for n > N, ~,, is homotopic to vy in M\ Ry and not nullhomotopic in M\ R,.
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Because Ui Ry may not equal to M, the sequence {7,},~n of circles may not go to
infinity. For overcoming it, we choose a new family {7/ },-n of circles going to infinity to
replace it.

The map 71 (0Ry, N Nj, ) — m1(0Ry,) is surjective (See Theorem and Definition
2.2.5). Hence, we can find a circle ,, = dNj, N 0Ry, which is homotopic to v, in 0Ry,,.
The sequence of circles {7/, },=n goes to infinity.

The sequence {7/} also have the property that for n > N,

e 7, is homotopic to 7, in M\Ry;
e 7/, is not nullhomotopic in M\ Ry.
From Remark [I.1.10] {°(M) is not trivial. O

As a corollary, we have

COROLLARY 5.2.2. Let (M, g) be a Riemannian 3-manifold of positive scalar curvature
and {Ri}r a family of handlebodies with Property (H). If ©7{°(M) is trivial, then any
complete stable minimal surface in (M, g) has the Vanishing property for { Ry}y.

THEOREM 5.2.3. Let (M, g) be a Riemannian manifold of positive scalar curvature
and a family of handlebodies { Ry}, with Property (H). If each leaf in a lamination £
is a complete (non-compact) stable minimal surface satisfying the Vanishing Property for
{Ri}k, then the lamination £ also has the Vanishing property for { Ry}

PROOF. We argue by contradiction. Suppose that there exists a sequence {L;, } of
leaves in . and a sequence of increasing integers {k, }, so that some circle ,, < L; n0Ry,
is not contractible in 0Ry, for each n.

The leaf L; is a complete (non-compact) stable minimal surface. From Corollary
(See [Theorem 2, Page 211] of [SY82]), it is diffecomorphic to R?. The circle 7,
bounds a unique closed disc D,, < L;, . Since 7, is not nullhomotopic in M\R, (See
Remark , the disc D,, intersects Rj.

Step 1: The sequence {Ly, }, sub-converges with finite multiplicity.

Since each L;, is a stable minimal surface, we use Lemma (See [Theorem 3,
Page 122] of [Sch83]) to show that, fixed a compact set K < M, there exists a constant
Cy = C1(K, M, g) satisfying that

|ALtn‘2 < Cl on K n Ltn

where Ay, |* is the squared norm of the second fundamental form of Ly, .

From Theorem [3.3.10], SLt rkdv < 2m. Hence,

Area(K n Ly,) < 27(inf x(x))~".

reK

From Theorem [4.1.4] the sequence {L;, }, sub-converges to a sublamination .#” of . with
finite multiplicity. In addition, .#’ is proper embedded.
The lamination ¢’ may has infinitely many components. Let .£” < £’ be a set of
leaves intersecting Ry. Since .£” is properly embedded, .£” has finitely many leaves.
Since each leaf L; in .#’ is homeomorphic to R? (See Corollary , any embedded
circle v € dRy n L; bounds a unique closed disc D < L; for k > 0.
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If L, is in Z"\.Z", the intersection D n Ry is empty. Namely, v is contractible in
M\Ry. Since m1(0Ry) — m1(M\Ry) is injective, then ~ is nullhomotopic in 0Ry.

Therefore, we conclude that for each £ > 0 and any leaf L, € Z'\.%”, any circle in
L; n 0Ry, is homotopically trivial in 0Ry.

Step 2: The Vanishing property gives a contradiction.

From now on, we abuse the notation and write {L,, } for a convergent sequence. In
addition, we assume that the lamination £ :=11""L;, (:£” has finitely many leaves).

The Vanishing property gives an integer k(L;,) for L;,. For k = Y | k(L,,), any circle
in 0R, N " is contractible in dRy. From the above fact, for £ > 0, any closed curve in
ORy, n L'\ Z" is also homotopically trivial in 0Ry.

Therefore, for any k > > 77" | k(Ly,), any circle in 0R, n £’ is contractible in 0R,.

In the following, we fix the integer k > > 7" | k(L;,) and have the following:

Claim: For n large enough, any circle in Ry n Ly, is homotopically trivial

we may assume that £’ intersects dR;, transversally. Since £’ is properly embedded,
ORr n £’ has finitely many components. Each component of 0Ry, n £’ is an embedded
circle. From the above fact, it is homotopically trivial in dR;. That is to say,

m(0R, N L") — m(0Ry) is a trivial map.
Choose an open tubular neighborhood U of %’ n dR) in 0Ry. It is homotopic to
Z'" N 0Ry in ORy,. Therefore, m(U) — w1 (0Ry) is a trivial map.
Since {L;, } converges to .Z”, we see that L;, n0dRy is contained in U for n large enough.
Hence, the map m (0Ry N Ly,) — m(0Ry) is trivial. Namely, any circle in Ry N Ly, is
contractible in dR;. The claim follows.

The boundary v, < @Ry, of D, is non-contractible in 0Ry, . From Remark [2.2.7]
it is non-contractible in M\Ry. If k, > k, we use Corollary and Property H (See

Definition [2.2.5)) to find a meridian v < D,, < L;, of Rj. This is in contradiction with
the above claim. O

As a consequence, we have

COROLLARY 5.2.4. Let (M, g) be a Riemannian manifold of positive scalar curvature
and {Ry}r a family of handlebodies with Property (H). If w°(M) is trivial, then any
complete stable minimal lamination in (M, g) has the Vanishing property for {Ry}.



CHAPTER 6

Proof of Main Theorems

In this chapter, we will explain the proof of the main theorems. For a contractible 3-
manifold, the existence of complete metrics of positive scalar curvature and its topological
properties (for example, Property H) can be related through the limit of a sequence of
lamination (constructed in Chapter 4). Combining all these, we will finish the proof of

Theorem [By] and Theorem [C]

6.1. Proof of Main theorems

For the proof of the main theorems, we will argue by contradiction. In this chapter,
we assume that (M, g) is a complete contractible 3-manifold of positive scalar curvature
which is not homeomorphic to R3.

As in Remark[1.1.13] M is an increasing union of handlebodies { Ny}, with the property
that for each k, (1) Ny is homotopically trivial in Nyy1; (2) none of the Ny is contained
in a 3-ball. In addition, the genus of Ny is greater than zero for k > 0.

From Lemma each N has a system of meridians {v,i}lggf’“) As in Chapter 4.2,
there is a lamination %, = LIIQ§C c Nj. Each leaf va is a meridian disc with boundary
7. As described in Chapter 4.2, since Ny is not contained in a 3-ball, the lamination %,
intersects Nj.

The intersection 2% N Ni_; is a stable minimal lamination in (M, g). From Chapter
4.2, the sequence {-%;} sub-converges to a stable minimal lamination & := UL, in
(M, g). Each leaf L; is a complete (non-compact) stable minimal surface in (M, g).

Since (M, g) has positive scalar curvature, each leaf in .Z is a properly embedded

plane (See Theorem [3.3.10| and Corollary |3.3.11]).

6.1.1. Properties of .Z. In the following, we consider the lamination . and its
properties.
If one of the following holds:
o T°(M) is trivial,
e )M is a contractible genus one 3-manifold;
e M is homeomorphic to M; (constructed in Chapter 1.3.5)

there is a family of ascending handlebodies { Ry} satisfying Property H, so that

a) the lamination £ has the Vanishing property for { Ry }x;
b) for each k and any N; containing Ry, the intersection Z; n 0Ry, has at least one
meridian of Ry.
REMARK 6.1.1.
96
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e The three different conditions for M correspond respectively to Theorem [C] The-
orem [By] and Theorem [1.3.15]

e If M is a contractible genus one 3-manifold, then 7°(M) is trivial.

In the following, let us explain the above properties, a) and b).

If 7°(M) is trivial, we know from Theorem that there is an increasing family
{Ry}), of closed handlebodies with Property H (See Definition R.2.5). Corollary
shows that the lamination .Z has the Vanishing Property for this family.

In addition, none of the Ry is contained in a 3-ball (See Definition [2.2.5). Together
with Property H, we use Corollary to know that if N; contains Ry, the intersection
Z; N ORy, has at least one meridian of Ry.

If M is a contractible genus one 3-manifold, the family {Ny} can be assumed as in
Theorem . That is to say, the geometric index I(Ny, Nii1) is greater than zero.

From Lemmal[l.3.10| Theorem|[l.1.4/and Lemmal[l.1.5] we know that the map m;(0Ny) —
T (M\Ny) and m(0Ny) — w1 (Ng\No) are also injective. That is to say, the family {Ny}
satisfies Property H.

From Theorem M satisfies Property P. Theorem [5.1.1] implies that . satisfies
the Vanishing property for {Nj}r. In addition, since the geometric index I(N;, Nj) is
greater than zero for j < k, .Z; n 0N, has at least one meridian of N; (See Lemma

L511)

If M is homeomorphic to M; ( constructed in Chapter 1.3.5), then there is a properly
embedded plane P; as constructed in Chapter 1.3.4. It cuts M; into two contractible
3-manifolds, M{ and M{ (See Proposition [[.3.14). In addition, M] is homeomorphic to
the Whitehead manifold. As in the construction of the Whitehead manifold (in Chapter
1.3.2) there is a family {Ry} of solid tori in M satisfying:

e the union U, Ry is equal to Mj;
e the geometric index I(Ry, Ri.1) is equal to two for each k.

As in the genus one case, we know that m(0Ry) — m(M\Rg) and m(0Rg) —
m1(Rk\Ro) are both injective (See Lemma . In addition, none of the Ry is con-
tained in a 3-ball in M. That is to say, the family {R}} satisfies Property H.

From Remark the family {Ry}, satisfies Property P. Since limy_,o, I(Ro, Ry,) =
limy, o 2871 = o0, we see from Remark [5.1.3| that .# satisfies the Vanishing property for
{R}.

In addition, we know from Corollary that for any N, containing R;, £} has at
least one meridian of R; for k > j.

REMARK 6.1.2. In the following, our proof requires that dR;, intersects some leaf L,
transversally. To overcome it , we will deform the handlebody Ry in a small tubular neigh-
borhood of dRy, so that the boundary of the new handlebody intersects L; transversally.

This new handlebody also satisfies a) and b). The reason is as follows:

For any handlebody R), obtained by deforming Ry, the maps m (0R)) — m1 (R} \Ro)
and m (0R},) — m (M\R},) are both injective. The proof of a) and b) just depends on the
injectivity of these two maps. Hence, the handlebody R} also holds a) and b).
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REMARK. The positivity of the scalar curvature gives the property, a). The topological
properties of M implies that %, satisfies the property, b).

In the following, we just give the complete proof of Theorem [C] The remaining proofs
of Theorem [Bo and Theorem [1.3.15] are the same as Theorem [C]

6.1.2. The proof of Theorem From the above property a), there is a family of
handlebodies {Ry}x so that .Z has the Vanishing property for the family {Ry};. That is
to say,

There is a integer kg > 0 so that for any k = kg, any circle in £ n 0Ry, is contractible

If £ := I4epl; has finitely many components, we may assume that each leaf L;
intersects 0R), transversally for k > k. Since L; is properly embedded, L; "Ry, := {7} }ier,
has finitely many components. Each component is a circle.

From the above fact, each 4! is null-homotopic in 0Ry. Consider the unique closed
disc D! ¢ 0Ry, with boundary ~} and the partially ordered set ({D!}ien iec,, <). Let C be
the set of maximal elements. In particular, it is a finite set. The set .Z n dR}, is contained
in the disjoint union of closed discs in C'.

In the general case, we also have a similar result.

LEMMA 6.1.3. For any k = ko, ORk(€) N L is contained in a disjoint union of finitely
many closed discs in ORy(¢€), where Ry (€) := RE\N(0Ry), N.(ORy) is some tubular neigh-
borhood of ORy, in Ry,.

In the general case when .Z has infinitely many components, we will prove it in
Chapter 6.3.
We now finish the proof of Theorem [C]

PROOF. Suppose that some complete contractible 3-manifold (M, g) with positive
scalar curvature and trivial w3°(M) is not homeomorphic to R3. As above, there is an
ascending family { Ry} of handlebodies with Property H, so that

a) the lamination £ has the Vanishing property for { Ry};

b) for each k and any N; containing Ry (e€), the intersection .Z; n 0Ry(e) has at least
one meridian of Ry(e€).

The Vanishing property implies Lemma m (We will prove it in Chapter 6.3). That
is to say, the intersection .Z n dRy(¢€) is in the union of disjoint closed discs {D;};_; for
k = ko.

Choose an open neighborhood U of the closed set .Z n Ry so that U n dRg(€) is
contained in a disjoint union 11;_, D}, where D} is an open tubular neighborhood of D; in
ORy(€) with small radius. Each D} is an open disc in 0Ry(€).

Since .2} subconverges to .2, there exists an integer j, large enough, satisfying

o LN Ry < U

o Ry(e) is contained in Nj.
Therefore, .Z; N 0Ry(€) is contained in U n 0Ry(e) < UD;. The induced map m(Z; N
ORy(€)) — m(1;D) — m(0Rk(€)) is a trivial map. We can conclude that any circle in
Z; N 0Ry(e) is contractible in 0Ry(e).
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However, from b), there exists a meridian v < & n 0Ry(€) of Ry(e). This contradicts
the last paragraph and finishes the proof of Theorem [C] 0]

6.2. Two topological lemmas

Before proving Lemma [6.1.3, we introduce two topological lemmas. These two lemmas
play a crucial role in the proof of Lemma [6.1.3

LEMMA 6.2.1. Let (2, 082) < (N,0N) be a 2-sided embedded disc with some closed sub-
discs removed, where N is a closed handlebody of genus g > 0. Each circle ~y; is contractible
in ON, where 02 = 1;y;. Then N\Q has two connected components. Moreover, there is a
unique component B satisfying that the induced map m (B) — m(N) is trivial.

PROOF. We argue by contradiction. Suppose that N\ is path-connected. That is to
say, there is an embedded circle 0 € N which intersects €2 transversally at one point.

Since each ~; is contractible in dN, it bounds a unique disc D; < d/N. The surface
Q=0 U, Uy, D; also intersects o transversally at one point. The intersection number
between € and o is £1.

However, () is the image of a continuous map ¢ : S? — N. It is contractible in N,
since my(N) = {0}. The intersection number between € and o must be zero, which leads
to a contradiction.

Therefore, N\( is not connected. Since 2 is 2-sided and connected, N\ just has two
components By and Bj.

Remark that the surface  := Q| J(U,, D;) is an immersed 2-sphere in N. This deduces
that the map 71 () — () is trivial map. Therefore, the map m;(Q) — 71 (N) is trivial.

In the following, let us explain the existence of B.

Consider the partially ordered relationship over {D;} induced by inclusion. Therefore,
u;D; is equals to a disjoint union of maximal elements in ({D;},<). The set N\ u; D;
is a compact surface with some disjoint closed sub-discs removed.

Therefore, the induced map 71 (ON\ u; D;) — m1(0N) is surjective. The induced map
m(ON) — m(N) is also surjective. We can conclude that the composition of these two
maps 7 (ON\ u; D;) — m1(N) is also surjective.

The set O N\ u; D; is contained in one of two components, By and By, of N\{2. Without
loss of generality, we may assume that By contains dN\u; D;. Based on the last paragraph,
the induced map m(B;) — m1(N) is surjective.

Let G; be the image of the map 7 (B;) — m1(NN), a subgroup of m (/N). Van-Kampen’s
Theorem (See Theorem gives an isomorphism between m(N) and m(Bi) 5, (o)
m1(B2). Since the image of m(Q) — m(N) is trivial, m;(/N) is isomorphic to G = Gy.
Grushko’s Theorem |Gru40| shows that rank(G4) + rank(Gy) = rank(m;(N)). (The rank
of a group is the smallest cardinality of a generating set for the group.) From the last
paragraph, the image, G, of the map m1(By) — (V) is isomorphic to w1 (V). That is
to say, rank(Gy) = rank(m(IV)). Therefore, rank(Gs) is equal to zero. That is to say, Go
is a trivial group. We know that B := By is the required candidate in the assertion.

Finally, we prove the uniqueness. Suppose that the two induced maps are both trivial.
Therefore, the map H,(B;) — H;(N) is trivial for each i. Applying the Mayer-Vietoris
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sequence to N = By uq Bj, one has:
Hl(Bo) ®H1<Bl> i HI(N) i .H()(Q)

Since Q is connected, Hy(Q) is trivial. Therefore, H;(N) is also trivial. This contradicts
the fact that H(N) is isomorphic to Z9N). This completes the proof. O

Consider two disjoint surfaces (€24, 0€2;) and (€22, 0€23) as assumed in Lemma For
t =1,2, N\{; has two components. Let B, be the unique component of N\, satisfying
m1(B;) — 7 (N) is trivial. One has:

LEMMA 6.2.2. Let (Qq,091) and (Qg,083) be two disjoint surfaces as assumed in
Lemma |6.2.1. For each t = 1,2, N\Q; has a unique component B, with the property that
the map m1(By;) — w1 (N) is trivial. Then it holds one of the following:

(1) BlmBQZQ;
(2) By € By;
(3) BQCBl.

PROOF. Suppose By n By and Bj\B; are both nonempty. Say, there are two points
p1 € Bl\BQ and P2 € Bl N Bg.

First, €25 is contained in By. The reason follows as below: B; includes a curve -« joining
p1 and po (since By is connected). v must intersect )y at some point(s). Hence, Qy N By
is not empty. Since 21 N €2y is empty, (2o lies in one of component of N\{2;. Therefore,
()5 is contained in Bj.

Second, €25 cuts B; into two components. Otherwise, there is a circle in B; which
intersects ()5 at one point. As argued in Lemma [6.2.1] such a circle can not exist.

Finally, take the component B of B\, satisfying that 0B n Q; is empty. Then, B
is also a component of N\Qs. In addition, the map 7 (B) — m(B1) — 71 (V) is trivial.
From the uniqueness of By, one has that B = By. This implies By, < B;. ]

6.3. Proof of Lemma [6.1.3]

In order to prove Lemma [6.1.3] we will introduce the set S and prove the finiteness of
S. The finiteness of S will imply Lemma [6.1.3]

6.3.1. Definition of the set S. Let (M,g), &, {Z} and {Ny} be assumed as
in the proof of Theorem @ As in Chapter 6.2, there is an ascending family {Rj}x of
handlebodies with Property H with the property that £ satisfies the Vanishing property
for { Ri}r. That is to say,

there is a positive integer ko so that for each k = ko and each t € A, each circle in Ly n0Ry,
1s contractible in ORy,.

In the following, we will work on the open handlebody Int R, and construct the set
S, for a fixed integer k = k.
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6.3.1.1. Elements in S. Let {3t}icr, be the set of components of L, ﬁElt Ry, for each
t € A. (It may be empty.) We will show that for each component 3¢, R,\X! has a unique
component B! satisfying that m1(B!) — m1(Ry) is trivial.

If L, intersects 0Ry, transversally, the boundary 0%f < L, n dRy, is the union of some
disjointly embedded circles. From the Vanishing property, any circles in the boundary
0%t < Ly n ORy is contractible in Ry,

In addition, since L; is homeomorphic to R? and X! is relatively compact, X! is home-
omorphic to an open disc with some disjoint closed subdiscs removed. By Lemma [6.2.1],
R \X! has a unique component B! satisfying that 7 (B!) — 7 (Ry,) is trivial.

In general, L, may not intersect 0 Ry transversally. To overcome it, we will deform the
surface 0Ry. Precisely, for the leaf L;, there is a new handlebody Rk(et) containing Ry, so
that L, intersects dR(e;) transversally, where Ry(e;) is a closed tubular neighborhood of
Rk in M. o

We consider the component X! of L; n IntR;, (&) containing ¥, As above, Ry, (e;)\X
has a unique component B! so that the map m (B!) — 71 (Ry(e,)) is trivial.

Choose the component B! of B! n Ry, whose boundary contains . It is a component
of R\X!. In addition, the map my(B?) — my(B!) — m1(Ry(e)) is trivial. Since Ry and
Ryi(e;) are homotopy equivalent, the map w1 (B) — w1 (Ry,) is also trivial. This finishes
the construction of BY.

6.3.1.2. Properties of S. From Lemma [6.2.2, for any B! and BY, it holds one of the
following
(1) Bf n B = &;
(2) Bf = B;
(3) By < BY,
where t,t' € A, i€ I, and i’ € .
Therefore, ({B!}iener,, <) is a partially ordered set. We consider the set {B;},e; of
maximal elements. However this set may be infinite.

DEFINITION 6.3.1. S := {B,;|B; n R(¢/2) # &, for any j € J}, where Ry(e/2) is
Ri\N./2(0Ry) and Nj2(0Ry) is a 2-sided tubular neighborhood of R, with radius €/2.

PROPOSITION 6.3.2. Let X! be one component of Ly n Ry and B! assumed as above.
If B! is an element in S, then Xt N Ry(€/2) is nonempty.

PROOF. We argue by contradiction. Suppose that Xtn Ry (€/2) is empty. As mentioned
above, X! cuts Ry into two components. Hence, Rjy(e/2) must be in one of these two
components. o

In addition, from the definition S, the component B! of R;\X! must intersect Ry (e/2).
One knows that Ry(€/2) is contained in BY.

However, the composition of maps 1 (Rg(€)) — m1(B}) — m1(Ry) is an isomorphism.
Therefore, the map 71 (B!) — 71 (Ry) is non-trivial and surjective, which contradicts the
fact that the map 7 (B!) — 7 (Ry,) is trivial. This finishes the proof. O
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PROPOSITION 6.3.3. Ri(e) n ¥ < UBjeSEj N Ry(e). Moreover, 0Rg(e) n £ <
UB]ES B] a aRk(E)

PROOF. Each component Y! of L; n Int Ry, is contained in Ef Hence, L; n Ry is in
uieltgf. We can conclude that £ n R}, is contained in ugf.

The set UB! is equal to Uje;Bj, because {Bj;}jes is the set of all maximal elements in
the partially ordered set ({B!},<). Therefore, £ N Ry, is in U e B;.

From the definition of .S, ujeJE N R (€) equals quGSFj N Ri(€). Therefore, Ri(€) N
¥ c queSFj N Ry(e).

Similarly, one has that ujeJEm O0Ry(€) equals queSijﬁRk(e). Hence, 0Ri(e)n.Z <
quegFj N ORy(€) O

6.3.2. The finiteness of the set S. The set 0B; n Int Ry, equals some X! < L; for
t € A. Let us consider the set S; := {B; € S|0B; nInt R, < L;}. Then, S = I,cpS;. Note
that each B; € S; is a B! for some i € I.

In this subsection, we first show that each S; is finite. Then, we argue that {S;};cn
contains at most finitely many nonempty sets. These imply the finiteness of S.

LEMMA 6.3.4. Fach S; s finite.

PrOOF. We argue by contradiction. Suppose that S; is infinite for some t.

For each B; € S, there exists a ¢ € I; so that B; is equal to Bf, where B! is a component
of Ri\X! and X! is one component of L; n Int Ry. By Proposition , ¥~ Ri(e/2) is
nonempty.

Choose z; € B N Ri(e/2) and 7 = 1 min{e/2, io}, where 4o := infep, Injy (). Then
the geodesic ball B(x;, 1) in M is contained in Rj.

We apply Theorem to the minimal surface (X, 0%!) < (R, 0Ry). One knows
that,

Area(X! N B(x;,10)) = C(ro,do, K)
where K = sup,.p, |Ky|. This leads to a contradiction from Theorem as below:

o > Lt k(z)dv > qu Lz K(z)d > ) J k(z)dv

BjeS; EﬁﬂB(Ij,To)
> inf Area(B(x;, !
iaf () 3, Area(B(z;.10) 2
> C inf (k(x))]S;] = o
IEERk
This finishes the proof. O

LEMMA 6.3.5. {Si}ien contains at most finitely many nonempty sets.

PROOF. We argue by contradiction. Suppose that there exists a sequence {Sy, }nen of
nonempty sets. For an element Bj, € S5, , there is some i, € I;, so that B;, equals Bf:

where Bj" is one component of R;\X!" and X" is one of components of L;, n Int Ry.
Note that 7 (B") — mi(Ry,) is trivial.
By Proposition m 3" M Ry, (€/2) is not empty. Pick a point py, in Xi" N Ry (e/2).
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Step1: {L,,} subconverges to a lamination &' < £ with finite multiplicity.

Since L,, is a stable minimal surface, We know from Lemma[£.1.5]that for any compact
set K < M, there is a constant C := C1(K, M, g) such that

‘ALtnP < Ol on K n Ltn-

From Theorem (3.3.10} §, #(2)dv < 27. Hence,

Area(K n Ly,) < 27T(il’l}£ k(z))t

We use Theorem (See [Compactness Theorem, Page 96] in [And85]) to find a
sub-sequence of {L; } subconverging to a properly embedded lamination ¢’ with finite
multiplicity. Since .Z is a closed set in M, ¥’ < £ is a sublamination.

From now on, we abuse notation and write {L,, } and {p,,} for the convergent subse-
quence.

FIGURE 6.1.

Step 2: {¥"} converges with multiplicity one.

Let L;, be the unique component of .Z” passing through p,,, where py, = lim, o py, .
The limit of {Zfz} is the component >, of L; N Ry passing through p,,, where Efz is the
unique component of Ry N Ly, passing though p;, .

Let D < L;, be a simply-connected subset satisfying ¥,, < D. Since {L;,} converges
smoothly to L;_, there exists ¢ > 0 and an integer /N such that

3" < D(er), for n > N,
where D(e;) is the tubular neighborhood of D with radius €; in M. (See Definition [4.1.2]
and Remark [4.1.3)).
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Let 7 : D(€e;) — D be the projection. For n large enough, the restriction of 7 to each
component of L; n D(e) is injective (See Remark |4.1.3]).
Hence, 7|5 : Efz — D is injective. That is to say, 3;" is a normal graph over a subset

of D. Therefore, {3}"} converges to X, with multiplicity one (See Definition [4.1.2). That
is to say, there is a geodesic disc B>* (pe) © X centered at py, with small raduis so that

(x#): the set T (B¥* (py)) N B is connected and a normal graph over B¥*(py,), for
large n.

Step 3: Get a contradiction.

There exists a neighborhood U of p,, and a coordinate map ®, such that each compo-
nent of ®(Z nU) is R? x {z} n ®(U) for some x € R. (See Definition or Appendix B
of [CM11].) Choose the disc B**(py,) and ¢; small enough such that 7= (B**(py,)) < U.
We may assume that U = 77 1(B**(py)).

From (xx), 87" nU < Ly, is connected and a graph over B**(p,), for n large enough.
Since 0B;,, nU < Ly, equals X" U, it is also connected. Therefore ®(0B;, nU) is the
set R? x {x;, } n ®(U) for some z;, € R. In addition, ®(X, N U) equals R? x {z,} n ®(U)

for some x4, € R. Since lim p;, = py, we have lim z;, = x4.
n—0oo n—ao0

(I\(LT Y Bjt ) Ttn/ P
/ . \ T, xtn, / \
[ \ o il \
o(U) (U n Bjtn)
FIGURE 6.2.

The set U\0Bj,, has two components. Therefore, ®(B;, nU) is ®(U) n {z|r3 >
xy, } or ®(U) n {x|rs < x,}. For n large enough, there exists some n’ # n such that
R? x {x; ,} n ®(U) < ®(Bj, nU). This implies that Bj, n Bj, , is non-empty.

Since S consists of maximal elements in ({ B!}, <), the set B;:n N Bj, | is empty which
leads to a contradiction. This finishes the proof. " O

tn

6.3.3. The finiteness of S implies Lemma [6.1.3] We will explain how to deduce
Lemma [6.1.3] from the finiteness of S.

PROOF. Since S is finite , we may assume that 0B, intersects 0Ry(¢) transversally
for each B; € S. Remark that each B; is equal to some B! and ¢B; n dRy(e) equals
¥i N ORy(e). Since each X} is properly embedded, {c;i}ier := ORk(€) N (Up,es0B;) has
finitely many components. Each component is an embedded circle.



6.4. DEFORMATION TO POSITIVE SCALAR CURVATURE 105

The Vanishing property of . and Remark show that each ¢; is contractible in
0Ry(€) and bounds a unique closed disc D; < 0Ry(€) (since k = kg). The set (D;, <) is a
partially ordered set. Let {D;/};c;» be the set of maximal elements. The set J’ is finite .

Since the boundary of 0Ry(€) N Ej is a subset of 0B; N 0Ry(e) < Liesc, it is contained
in Hj/eJ/Dj/.

Next we show that for any B; € S, 0Ri(e) N E is contained in ey Djr.

If not, ORy(€)\ ey Dy is contained in 0Ry(€) n B; for some B; € S. This implies

that the composition of two maps m1(0R(€)\(LyeyDy)) — m(B;) — m(Ry) is not a
zero map. However, the induced map m(B;) — 71 (Ry) is trivial. This is impossible. We
conclude that for each B;j € S, 0Ry(€) n B; is contained in ey D

Therefore, U Bjegﬁj N ORy(€) is contained in Il D;. From Proposition , £ n
ORy(€) is contained in a disjoint union of finite discs {D;/};e,». This completes the proof.

O

6.4. Deformation to Positive Scalar curvature

This section follows Kazdan’s result [Kaz82]. In this section, we show that a complete
non-Ricci-flat metric of nonnegative scalar curvature can deformed to be a complete metric
of positive scalar curvature.

Let (M"™, g) be a complete n-manifold. We consider the operator
L(u) = —Au+ fu

where f is a smooth function on M.

For a bounded open set {2 € M with smooth boundary and outer normal derivative
0/0v on 082, let puy (L, 2) be the lowest eigenvalue of L with Neumann boundary conditions,
ou/0v = 0 on 0N2. One has the well-known variational characterization of p;(§2)

So (Vo2 + fo*)da

§o v2dzx ’
where dx is the volume form and the infimum is taken over all v in the Sobolev space
H(Q).

LEMMA 6.4.1. (See [Theorem A, Page 228] in (Kaz82]) Assume there is a bounded
open set Qo < M such that py(L, Q) > 0 and f =0 on M\Qq. Then there is a solution
u>0 on M of L(u) > 0; in fact one can find a solution of L(u) > 0 satisfying 0 < Cy <
u < Cy, where C7 and Cy are two constants.

p1(L, Q) = inf

In the following, we consider that the conformal Laplacian L,
4(n—1)
n—2

THEOREM 6.4.2. A complete non-Ricci-flat metric of nonnegative scalar curvature can
be deformed to be a complete metric of positive scalar curvature.

Ly:=— Ay + Ky.

PROOF. Assume that (M, go) is a complete non-Ricci-flat manifold with non-negative
(Kgo = 0). Let p be a point in (M, go) satisfying that

(6.4.1) Ricy, (p) # 0.
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Choose the geodesic ball B(p,r) centered at p with radius r, where r is less than the
injective radius of (M, g) at p. Since kg, = 0, then p(L,,, B(p,r)) is non-negative.

If p1(Ly,, B(p,r)) > 0, we use Lemma to find a positive function u with the
following properties:

* Lgo (u> > 0;
e there is a positive constant C' such that u > C.

Choose the new metric g := uz go- It is a complete metric over M. The scalar curvature
1s
n+2
Kg = Lg,(uw)u™ =2 > 0.
The metric g is the required candidate as in the statement.
If pi(Lgyy, B(p,7)) = 0, we have that the scalar curvature x, = 0 on B(p,r) and the
eigenfunction ¢ for p(Lg,, B(p,r)) is a constant function. The reason is as follows:

We have that
_A90¢ + ’%goqb =0

0p/dv =0

Dong integration by parts, we have that SB(p ") IVO|? + Kkgy¢® = 0. Thus, ¢ is a constant
function and k, = 0 on B(p,r).

From [Lemma 3.3, Page 232] in [Kaz82], there exists a new metric g, so that
(1) :ul(Lgth B(pa 7")) > 0;
(2) g4, is equal to go outside B(p,r).
As the above case, we could find a complete metric with positive scalar curvature.

The metric g, is constructed as follows:
Pick a a function n € C°(B(p,r), R*%) with n(p) > 0 and consider a family of metrics

gt = go — t - n - Ricy,
Since k4, = 0 on B(x, ), the first variation formal (See [Page 233] of [Kaz82| or [KWT75|)
gives that

d 1

4.2 —p11(Lg,, B 0= c|?
(6.42) it B oo = oy |l

Since n(p) > 0, Equations (6.4.1)) and (6.4.2) gives

d
- M (Lgt7 B(p, T))|t=0 > 0.

dt
Since p1(Lgy, B(p,7)) = 0, we find that (L, , B(z,7)) > 0 for some ty > 0.
The metric g4, is the required metric. 0J

As a consequence, we have that

COROLLARY 6.4.3. No contractible genus one 3-manifold admits a complete metric of
nonnegative scalar curvature.
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PROOF. We argue by contradiction. Suppose that (M3, g) is a complete contractible
genus one 3-manifold of nonnegative scalar curvature.

If g is Ricci-flat, it is a flat metric. Thus, M is homeomorphic to R3. This is in
contradiction with Theorem (M is not homeomorphic to R?).

If not, g can be deformed to be a complete metric of positive scalar curvature. This
contradicts Theorem [Bs] O

As the above argument, we have that

COROLLARY 6.4.4. A complete contractible 3-manifold with non-negative scalar cur-
vature and trivial T is homeomorphic to R3.

6.5. Further questions

6.5.1. The General Case. In [Wan19a, Wan19b|, we verified Question 1 for 3-
manifolds with trivial 77°. The remaining case is contractible 3-manifolds with non-trivial
.

In this case, we require more techniques combining minimal surfaces theory and topo-
logical surgeries on 3-manifolds.

The key point is to understand stable minimal surfaces (as constructed in Chapter
4.2) and its relationships with the fundamental group at infinity.

Based on this relationship, we attempt to devise a new topological surgery which can
reduce Question 1 to Theorem Byl

6.5.2. RCD metrics. By [Liul3|, the Whitehead manifold does not admit any com-
plete metric with positive Ricci curvature. In metric geometry, Riemannian manifolds
with lower bounds on Ricci curvature correspond to the RCD spaces. It would be inter-
esting to know whether the Whitehead manifold has a RCD(0, 3) metric.

6.5.3. Spherical Decomposition.

DEFINITION 6.5.1. An embedded 2-sphere S in a 3-manifold M is called compressible
if S bounds a 3-ball in M.

A spherical decomposition S of a 3-manifold is a locally finite collection of (possibly
non-separating) pairwise disjoint embedded 2-sphere in M such that the operation of
cutting M along S and gluing a ball to each boundary component of the resulting manifold
yields a collection of irreducible manifolds.

A 3 manifold M is irreducible if and only if all 2-spheres in M are compressible.
If S is a spherical decomposition, then the collection of sphere obtained by removing
compressible spheres in § is still a spherical decomposition.

The prime decomposition theorem for 3-manifold (See [Hat00| or [Kne29)) is equiva-
lent to the statement that every compact 3-manifold has a spherical decomposition. This
result does not generalize to open manifolds (See [Sco77| and |[Mai07, MaiO8|). The
first example was given by Scott [Sco77].

A question posed by Maillot is the following:

Question: Does a complete 3-manifold of uniformly positive scalar curvature have a
spherical decomposition ¢
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For this question, a possible approach is to use the minimal surface theory to study
the geometry of incompressible spheres.

This question is related to the open problem, introduced by Bessieres, Besson and
Maillot [BBM11]:

Question :(See [BBM11|) Let M be a connected, orientable 3-manifold which admits a
complete metric of uniformly positive scalar curvature. Is M a connected sum of spherical
manifolds and copies of S x S'?

Generally, we attempt to use the spherical decomposition to study the following ques-
tion:

Question: (See Problem 27 in [Yau82|) Classify 3-manifolds admitting complete Rie-
mannian metrics of positive (resp. nonnegative) scalar curvature up to diffeomorphism.



Part 4

Closed aspherical 4-Manifolds



CHAPTER 7

Gromov-Lawson Conjecture

7.1. Aspherical 4-manifolds

DEFINITION 7.1.1. A space M is called aspherical if it is path-connected and all its
higher homotopy groups vanish (i.e. 7, (M) is trivial for k& > 2).

For example, a CW complex M is aspherical if and only if its universal cover is
contractible.

LEMMA 7.1.2. If M™ is an aspherical manifold, then its fundamental group is torsion-
free.

However, if M™ is an aspherical manifold, the first homology group H;(M) may be
not torsion-free. For example, the Klein bottle K? is aspherical (since its universal cover
is R?). However, H,(K?) ~ Z ® Z/27.

CONJECTURE 7.1.3. (Gromov-Lawson Conjecture) No closed aspherical manifold has
a metric of positive scalar curvature.

For example, a n-dimensional torus T™ has no metric of positive scalar curvature
for n > 2. It was proved by Gromov and Lawson |GL83| and by Schoen and Yau
[SY82,SY17].

It is well-known from [GL83| that this conjecture holds for the 3-dimensional case.
In dimension four, Gromov and Lawson [GL83| gave a partial solution requiring an
additional hypothesis about incompressible surfaces.

We prove that

THEOREM. [F] No closed aspherical 4-manifolds with nonzero first Betti number has a
metric of positive scalar curvature.

Remark that there is some closed aspherical 4-manifold whose first homology group
vanishes (See |[RT05]).

7.2. The non-existence result

7.2.1. Topological preliminary. For two topological spaces X and Y, let us con-
sider the topological space Map(X,Y'), consisting of all continuous maps from X to Y
and the compact-open topology.
For a manifold M, the space Map(S' xS?, M) is homeomorphic to the space Map(S!, Map(S?, M)).
The homeomorphism is given by
Map(S! x §?, M) — Map(S', Map(S?, M))
f(a) — The map .’L’—>f(l',)

110
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For a point x € S', f(z,-) can be considered as an element in Map(S?, M)).
The projection pg : S x S? — S! induces the map

pi: Map(S', M) — Map(S' x S?, M)
f = poof
LEMMA 7.2.1. If mo(M) is trivial, the map pg is a homotopy equivalence.

PROOF. First, we show that M and Map(S?, M) are homotopic equivalent .
For a fixed point xy € S?, we consider the map

p:Map(S*, M) — M
[ = f()

For any point x € M, p~(x) is a set of all continuous maps from (S?, ) to (M, ).
Since mo( M) is trivial, the fiber p~!(z) is contractible for each 2 € M. Therefore, p satisfies
the homotopy lifting property (i.e. p is a fibration). Applying the Puppe sequence (See
[Theorem 4.41, Page 376] in [Hat05]), one has

(™' (1)) — m(Map(S?, M)) = mp(M) — mi (p™ (2))

Since p~!(x) is contractible, the map p, is an isomorphism for each k. Whitehead’s
theorem (See [Theorem4.5, Page 346] in [Hat05]) shows that the map p : Map(S?, M) —
M is a homotopy equivalence.

As a consequence, the induced map p, : Map(S* x S?, M) — Map(S*, M) is also a ho-
motopy equivalence, since Map(S! x S, M) is homeomorphic to Map(S!, Map(S?, M)).
We know that p§ o px = Idmap(st,m)- Since py is a homotopy equivalence, then pf is
also a homotopy equivalence. The lemma follows. 0

7.2.2. Proof of Theorem|[F| We begin by a compact manifold (M*, g) with by (M) >
0. There is an embedded circle v < M with the property that [7] is a torsion-free element
in H,;(M). We use the Poincaré duality to find a class u € Hy(M?) ~ H'(M*) satisfying
that ([v],u) = 1.

We apply a theorem of Fleming-Federer (See [FF60]) and the regularity theory for
area-minimizing currents (See Chapter 7 of |Sim83|). This result asserts that, in a
Riemannian manifold (X", g), for a non-trivial class in H,_;(X,Z), there is a volume-
minimizing hypersurface in the class satisfying that it is smooth outside a set of Hausdorff
dimension < n — 8 . Therefore, there is a stable minimal hypersurface 3 < (M?,g) in
the class u. In addition, the intersection number (v, %) of ¥ and  is +1.

If (M* g) has positive scalar curvature, then ¥ admits a metric of positive scalar
curvature (See Proposition . In this case, ¥ is a connected sum of some spherical
manifolds and some copies of S! xS? (See [Per02al[Per02b,Per03], [MT07], [BBB"10]).

In the following, we prove Theorem [F]

PrROOF. We argue by contradiction. Suppose a closed aspherical manifold M* with
b1 (M*) > 0 has a metric g of positive scalar curvature.
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Let v and ¥ be constructed as above. The intersection number (X,v) of ¥ and 7 is
not zero. In addition, ¥ has a metric of positive scalar curvature. By |[Per02a,/Per02b,
Per03|, we see that

Y SPT# . #SP TS x S ... #(S! x §?)

where each T'; is a finite subgroup of O(4) for 1 <7 < j.
There exists a family of disjointly embedded splitting 2-spheres {S;}7-}' in . They
cut M into n-components, denoted by {X;} ;. That is,

Y= Xy ug Xoug, s Ug  Xp.
Set
X ug, B3 k=1
X = X, vs,_, B k=n
X Us,_, B® Uus, B® otherwise,

where B? is a unit ball in R3. Therefore, ¥ =~ X|#...#X/. Each X] is a spherical
manifold or S! x S?. (Note that X, is not a subset of M*.)

Since (M) is trivial, each 2-sphere Sy bounds an immersed 3-ball B, = M*. Let us
consider a submanifold

X1 Us, Bl k=1
X = X, Us,_, Bni k=n
Xy Us,_, Br—1 g, By otherwise,

Each X! © M* can be viewed as the image of some map f, from Xj, to M*. In addition,
we know that [X] = Y7_ [X}] in H3(M*, Z).

Since the intersection number (7, ¥) is not equal to zero, there is some k such that the
intersect number (v, X}') is not zero. As mentioned above, X is a spherical 3-manifold
or St x S%.

Case I If X is a spherical manifold (that is, it is S®/T'x), X/ can be considered
as the image of the map from S3 to M. However, since m3(M*?) is trivial, we see that
X7 is contractible in M*. Therefore, the intersection number (v, X}) is zero. This is in
contradiction with the last paragraph.

Case II: If X is a S! x §2, then fj, is an element in Map(S* x S?, M*). Since my(M*?)
is trivial, Lemma shows that there is a map f; € Map(S*, M*) such that p&(f}) is
homotopic to fi in M*.

We may assume that the image of p§(f;) is an embedded circle 4. Therefore, X} is
homotopic to 7/ in M*. Hence, the intersection number (v, X}) is equal to the intersection
number (7,7). Since dim(M?) = 4, we see that the intersection number (v,7’) is zero in
M*. This contradicts the above fact that (v, X}) # 0.

This finishes the proof of Theorem [F] O
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7.3. Further questions

7.3.1. Stable minimal hypersurfaces in R*. When using the minimal hypersur-
faces to study 4-manifolds, understanding the geometry of minimal hypersurfaces is neces-
sary and crucial. However, the geometry of stable minimal hypersurfaces in a 4-manifold
is not known. R. Schoen has conjectured:

CONJECTURE. (See [Conjecture 2.12, Page 79] of [CM11]):If ¥* < R* is a complete
immersed stable minimal hypersurface with trivial bundle, then ¥ is flat.

7.3.2. Closed Aspherical 4-manifolds. Generally, Gromov-Lawson conjecture is
still unknown, particularly for 4-manifolds with zero first Betti number.

The proof of Theorem [F] involves stable minimal hypersurfaces and the geometriza-
tion conjecture. In the general case, the main issue is the existence of stable minimal
hypersurfaces. In the proof of Theorem [F] its existence is ensured by our hypothesis that
the first Betti number is non-zero.

In order to overcome it, we attempt to find a covering space whose first betti number
is nonzero. We next use topological conditions to construct a complete stable minimal
surface. Then one is led to study stable minimal surface in a 4-manifold with uniformly
positive scalar curvature.

Combining with the argument in [GL83| and some metric inequalities in [Grol8|, we
plan to argue by contradiction. We expect to show that such a minimal surface does not
exist, which would lead to a contradiction.

7.3.3. Exotic R*. An exotic R? is a differential manifold that is homeomorphic but
not diffeomorphic to the Euclidean space R*. The first example were found by Freedman
(See [FQ14]). Actually, there are infinitely many non-diffeomorphic differential structures
of R*, as was shown first by Taubes [Tau87].

An interesting question is whether an exotic R* admits a complete metric of positive
scalar (or Ricci) curvature.

For this question, we might follow the following scheme. First, based on the construc-
tion of an exotic R*, we attempt to construct a complete stable minimal hypersurface.
Then, one is led to understand the geometry of such a hypersurface and its relationship
with the differential structures and the positivity of scalar (or Ricci) curvature.

We plan to argue by contradiction. Combining the geometry of the stable minimal
hypersurface, we expect to show that such a hypersurface does not exist, which would
lead to a contradiction.
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