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Université Grenoble Alpes, Institut Fourier, 100 rue des maths, 38610
Gières, France

Current address : Institut Fourier, 100 rue des Maths, 38610 Gières, France
Email address : jian.wang1@univ-grenoble-alpes.fr



2010 Mathematics Subject Classification. Primary 53C20, 53C21;
Secondary 49Q05, 58E12

Key words and phrases. Thurston’s Geometrisation Conjecture, Positive Scalar
Curvature, Contractible 3-manifolds, Simply-connectedness at infinity, Fundamental

group at infinity, Loop Lemma, Handlebody, Genus One 3-manifolds, Minimal Surface
Technique, Minimal Surface Equation, Plateau’s Problem, Stable Minimal Surface,

Lamination, Extrinsic Cohn-Vesson’s Inequality, Aspherical manifolds, Gromov-Lawson
Conjecture

The author is supported by ERC Advanced Grant 320939, GETOM.



Abstract

The purposes of this thesis is to understand spaces which carry metrics of positive
scalar curvature. There are several topological obstructions for a smooth manifold to
have a complete metric of positive scalar curvature. Our goal is to find all obstructions
for contractible 3-manifolds and closed 4-manifolds.

In dimension 3, we are concerned with the question whether a complete contractible
3-manifold of positive scalar curvature is homeomorphic to R3. The topological structure
of contractible 3-manifolds could be complicated. For example, the Whitehead manifold
is a contractible 3-manifold which is not homeomorphic to R3.

We first prove that the Whitehead manifold does not carry a complete metric of
positive scalar curvature. This result can be generalised to the so-called genus one case.
Precisely, we show that no contractible genus one 3-manifold admits a complete metric of
positive scalar curvature.

We then study the fundamental group at infinity, π81 , and its relationship with the
existence of positive scalar curvature metric. The fundamental group at infinity of a
manifold is the inverse limit of the fundamental groups of complements of compact subsets.
In this thesis, we give a partial answer to the above question. We prove that a complete
contractible 3-manifold with positive scalar curvature and trivial π81 is homeomorphic to
R3.

Finally, we study closed aspherical 4-manifolds. Together with minimal surface theory
and the geometrisation conjecture, we show that no closed aspherical 4-manifold with non-
trivial first Betti number carries a metric of positive scalar curvature.
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Résumé

Un des objectifs de ce mémoire est de comprendre les espaces munis de métriques
complète de courbure scalaire positive. Il y a plusieurs obstructions topologiques à
l’existence d’une métrique complète de courbure scalaire positive. Notre but est de trou-
ver toutes les obstructions pour les variétés contractiles de dimension 3 et les variétés
fermées de dimension 4.

En dimension 3, nous considérons la question de savoir si une variété contractile
complète de courbure scalaire positive est homéomorphe à R3. La structure topologique
des variétés contractiles de dimension 3 est assez compliquée. Par exemple, Whitehead a
construit une variété dimension 3 contractile qui n’est pas homéomorphe à R3.

Nous prouvons, tout d’abord, que la variété de Whitehead n’a pas de métrique complète
de courbure scalaire positive. Ce résultat peut être généralisé au cas dit de genre un.
Précisément, nous montrons qu’aucune variété contractile de dimension 3 et de genre un
ne possède de métrique complète de courbure scalaire positive.

Nous étudions ensuite le groupe fondamental à l’infini, π81 , et son lien avec l’existence
d’une métrique de courbure scalaire positive. Le groupe fondamental à l’infini d’une
variété est la limite projective des groupes fondamentaux des complémentaires des sous-
ensembles compacts. Dans ce mémoire, nous apportons une réponse partielle à la question
évoquée plus haut. Nous prouvons qu’une variété complète de dimension 3 de courbure
scalaire positive dont le groupe π81 est trivial est homéomorphe à R3.

Enfin, nous étudions les variétés fermées asphériques de dimension 4. En utilisant
la théorie des surfaces minimales et la conjecture de géométrisation, nous montrons
qu’aucune variété fermée asphérique de dimension 4 avec un premier nombre de Betti
non trivial ne possède de métrique à courbure scalaire positive.
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Résumé vi

Acknowledgement vii

Introduction 1
0.1. Contractible 3-manifolds 2
0.2. The idea of the proof of Theorem B2 5
0.2.1. Minimal surfaces and Limits 5
0.2.2. Properties of the limit surface 6
0.3. π81 and the Vanishing property 6
0.3.1. Handlebodies and Property H 6
0.3.2. The Vanishing property 7
0.3.3. The idea of the proof of Theorem C 8
0.4. Closed Aspherical 4-manifolds 9
0.5. Organization of the thesis 10

Introduction (français) 13
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Introduction

Riemannian geometry aims to study Riemannian manifolds which are smooth man-
ifolds with metric structures. One of the fundamental questions is to understand the
relationship between the curvature, which is locally defined, and the global properties of
smooth manifolds. The earliest result is the classical theorem of Gauss and Bonnet, which
links the curvature and the Euler number, a topological invariant. This theorem implies,
for example, that any compact surface of genus g ą 0 has no metric of positive curvature.

In higher dimensions, the existence of metrics of positive curvature becomes much more
complicated, because there are several topological obstructions for a smooth manifold to
have a complete metric of positive curvature.

We then take 3-manifolds to explain this fact.

pM3, gq The compact case The non-compact case

K ą 0
S3{Γ

R3

Ric ą 0 R3

Scal ą 0 p#k
i“1S3{Γiq#p#

l
j“1S1 ˆ S2q ?
Table 1.

For a compact Riemannian 3-manifold, there is a unique short-time solution to the
so-called (normalized) Ricci flow, introduced by Hamilton [Ham82]. If the manifold has
positive Ricci curvature, the short-time solution can be extended to be the long-time
solution. The limit of this flow is a metric of constant sectional curvature. That is to
say, if a compact 3-manifold has positive Ricci curvature, then it is homeomorphic to the
quotient S3{Γ of the sphere S3 by a finite subgroup Γ Ă Op4q. Such a quotient is called a
spherical 3-manifold.

The next major contribution to the subject was made by Perelman [Per02a,Per02b,
Per03] who developed the Ricci flow with surgery. One surprising and beautiful result
of this study is a proof that a compact 3-manifold of positive scalar curvature is home-
omorphic to a connected sum of some spherical 3-manifolds and some copies of S1 ˆ S2

(See also [BBB`10] and [MT07]). Its generalization to the non-compact case is due to
Bessières, Besson, and Maillot [BBM11].

1



0.1. CONTRACTIBLE 3-MANIFOLDS 2

For the non-compact case, the first result shown by Gromoll and Meyer [GM69] was
that a complete non-compact 3-manifold of positive sectional curvature is homeomorphic
to R3 .

The next step in the development of this subject is due to Schoen and Yau [SY82] who
used minimal surfaces theory and the splitting theorem [CG71] to study the topology
of 3-manifolds. They proved that a complete non-compact 3-manifold of positive Ricci
curvature is homeomorphic to R3.

Although all of these works are very impressive, they still left the open question (See
Problem 27 in [Yau82]):

How to classify non-compact 3-manifolds with positive scalar curvature, up to diffeo-
morphism?

The goal now is to find all obstructions and to characterize all open 3-manifolds with
positive scalar curvature. Although Gromov-Lawson [GL83] and Schoen-Yau [SY82]
gave several topological obstructions, all those obstruction classes both vanish for con-
tractible 3-manifolds.

Let us consider contractible 3-manifolds. For example, R3 admits a complete metric
g1 of positive scalar curvature, where

g1 “

3
ÿ

i“1

pdxiq
2
` p

3
ÿ

i“1

xidxiq
2.

So far, it is the only known contractible 3-manifold which admits a complete metric of
positive scalar curvature. This suggests the following question:

Is any complete contractible 3-manifold of positive scalar curvature homeomorphic to
R3 ?

A complete contractible 3-manifold of uniformly positive scalar curvature (i.e. its
scalar curvature is bounded away from zero) is homeomorphic to R3. It was first proved
by Gromov and Lawson [GL83]. Recently, it was generalized by Chang, Weinberger
and Yu [CWY10], to contractible 3-manifolds whose scalar curvature is uniform positive
outside a compact set. Using minimal surfaces theory, we further generalize it.

Theorem A. (See Theorem 3.3.12 and Theorem 1.1 in [Wan19c]) Assume that
pM3, gq is a contractible complete 3-manifold. If there exists a number α P p´8, 2q such
that

lim inf
rpxqÑ8

rαpxqκpxq ą 0,

where κpxq is the scalar curvature of pM, gq and rpxq is the distance function from some
point 0 PM to x, then M3 is diffeomorphic to R3.

The proof follows the argument of Gromov and Lawson (See Corollary 10.9 in [GL83]).

0.1. Contractible 3-manifolds

Thurston’s Geometrisation conjecture [Per02a,Per02b,Per03] (See also [BBB`10]
and [MT07]) shows that for a compact 3-manifold, its topology is fully determined by its



0.1. CONTRACTIBLE 3-MANIFOLDS 3

homotopy type. However, the topological structure of contractible 3-manifolds is much
more complicated. For example, the Whitehead manifold (constructed in [Whi35]) is a
contractible 3-manifold but not homeomorphic to R3.

In order to explain the construction of the Whitehead manifold, let us introduce the
concept of a meridian curve. A meridian γ Ă BN of a closed solid torus N is an embedded
closed curve which is null-homotopic in N but not contractible in BN . A meridian disc
pD, BDq Ă pN, BNq of the solid torus N is an embedded disc whose boundary is a meridian
of N . (See Definition 1.2.1)

The Whitehead manifold is constructed from the Whitehead link. Recall that the
Whitehead link is a link with two components illustrated in the following figure:

Figure 0.1.

Choose a closed unknotted solid torus T1 in S3. Its complement inside S3 is another
solid torus. Take a second solid torus T2 inside T1 so that the core K2 of T2 forms a
Whitehead link with any meridian of T1 as in the following figure.

Figure 0.2.
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The solid torus T2 is unknotted in S3. Then, embed T3 inside T2 in the same way as
T2 lies into T1 and so on infinitely many times. Define the set T8 “

Ş8

k“1 Tk, called the
Whitehead continuum.

The Whitehead manifold is defined as Wh :“ S3zT8 which is a non-compact 3-
manifold without boundary.

Remark. Since each Tk is unknotted in S3, its complement Nk is a solid torus. There-
fore, the Whitehead manifold is an increasing union of solid tori tNkuk. Each Nk is em-
bedded inside Nk`1 in the same way as T2 lies in T1. This follows from the symmetry of
the Whitehead link.

Variation on the construction, like changing the knot at each step k, gives a family of
so-called genus one 3-manifold, introduced in [McM62]. Their construction is involved
with the geometric index.

If N 1 Ă N are solid tori, the geometric index, IpN 1, Nq, of N 1 in N is equal to the
minimal number of points of the intersection of the core of N 1 with a meridian disc of
N . A genus one 3-manifold is the ascending union of solid tori tNku, so that for each k,
Nk Ă IntNk`1 and the geometric index of Nk in Nk`1 is not equal to zero. (See Definition
1.3.8, Definition 1.3.12 and [GRW18])

For example, Wh is a contractible genus one 3-manifold. The geometric index IpNk, Nk`1q

equals two for each k, where Nk is illustrated as above. Remark that R3 is not genus one
but genus zero, since it is an increasing union of 0-handlebodies (i.e. 3-balls).

An interesting question is whether the Whitehead manifold admits a complete metric
of positive scalar curvature. In this thesis, we answer negatively:

Theorem B1. (See Theorem 1.1 of [Wan19a]) The Whitehead manifold has no com-
plete metric of positive scalar curvature.

This result can be generalized to the genus one case.

Theorem B2. (See Theorem 1.2 of [Wan19a]) No contractible genus one 3-manifold
has a complete metric of positive scalar curvature.

Combining with Kazdan’s work [Kaz82], we generalize these results to the nonnega-
tive scalar curvature.

Corollary. (See Corollary 6.4.3) No contractible genus one 3-manifold admits a
complete metric of non-negative scalar curvature.

The existence of complete metrics of positive scalar curvature is related with the
fundamental group at infinity. The fundamental group π81 at infinity of a connected
space is the inverse limit of the fundamental groups of complements of compact subsets
(See Definition 1.1.9).

The triviality of the fundamental group at infinity is not equivalent to the simply-
connectedness at infinity(See Definition 1.1.7). For example, the Whitehead manifold is
not simply-connected at infinity but its fundamental group at infinity is trivial.

We prove the following:
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Theorem C. (See Theorem 1.1 of [Wan19b]) A contractible 3-manifold with positive
scalar curvature and trivial π81 is homeomorphic to R3.

This result can also be generalised to the non-negative scalar curvature.

Corollary. (See Corollary 6.4.4) A contractible 3-manifold with non-negative scalar
curvature and trivial π81 is homeomorphic to R3.

However, there are uncountably many mutually non-homeomorphic contractible 3-
manifolds with non-trivial π81 . In Chapter 1.3, we construct such a manifold and show
that this manifold has no complete metric of positive scalar curvature (See Theorem
1.3.15).

0.2. The idea of the proof of Theorem B2

It is classical that minimal surfaces theory gives topological information about 3-
manifolds. This fact appeared in the articles of Schoen and Yau [SY82,SY79b,SY79a]
as well as Gromov and Lawson’s [GL83] and various other works.

For the proof of Theorem B2, we argue by contradiction. Suppose that pM, gq is
a complete Riemannian manifold of positive scalar curvature, where M :“

Ť

kNk is a
contractible genus one 3-manifold and the family tNkuk of solid tori is assumed as in
Theorem 1.3.13.

0.2.1. Minimal surfaces and Limits. As in [SY82] and [GL83], our first step is
to construct minimal surfaces. Choose γk Ă BNk as a meridian of Nk (See Definition
1.2.1). Roughly, it is spanned by an embedded stable minimal disc Ωk. Its existence is
ensured by the result of Meeks and Yau (See [MY80, MY82] or Theorem 3.1.8) when
the boundary BNk is mean convex.

Let us consider the simplest case when Ωk converges to a connected stable minimal
surface Σ.

On the one side, we show that the number of connected components of Ωk X N1

intersecting N0 goes to infinity as k goes to infinity (See Chapter 2.1). Therefore, there
are infinitely many connected components of ΣXN1 intersecting N0. By a result of Meeks
and Yau (See Theorem 3.2.7 anc [MY80]), each of these components contains a definitive
amount of area. Hence, ΣXN1 has infinite area.

On the other side, since pM, gq has positive scalar curvature, not only Σ is conformally
diffeomorphic to R2 (See Corollary 3.3.11), but also its geometry is constrained by the
so-called extrinsic Cohn-Vossen inequality:

Theorem D. (See Theorem 3.3.10 and [Wan19a]) Let Σ2 Ă pM3, gq be a complete
(non-compact) immersed stable minimal surface. If the complete manifold pM3, gq has
non-negative scalar curvature (κpxq ě 0), then

ż

Σ

κpxq ` 1{2|A|2dv ď 2πχpΣq

where |A|2 is the square norm of the second fundamental form of Σ. Moreover, if κ ą 0
and Σ is embedded, then Σ is a properly embedded plane.
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Since the scalar curvature is bounded away zero on N1, this is in contradiction with
the infinite area contained in ΣXN1.

If BNk is not mean convex, we modify the metric in a smaller tubular neighborhood
of BNk so that for the new metric, it becomes mean convex. Then Ωk is stable minimal
for the new metric and for the original away from the neighborhood BNk, (for example,
near Nk), which is sufficient for our proof.

0.2.2. Properties of the limit surface. Generally, Ωk sub-converges to a minimal
lamination L :“

Ť

tPΓ Lt (that is, a disjoint union of some embedded minimal surfaces)
instead of a single surface. It may have infinitely many components. However, each leaf
Lt of L is a complete (non-compact) stable minimal surface (See Theorem 4.2.3). Since
pM, gq has positive scalar curvature, it is homeomorphic to R3(See Corollary 3.3.11).

The geometry of each leaf is influenced by the extrinsic Cohn-Vossen inequality (See
Theorem D) as well as by a topological property of M , called Property P (See Definition
2.1.3). These two aspects tell us that the lamination L has the Vanishing property for
tNkuk. That is to say,

there is a positive integer k0 such that for any k ě k0 and any t P Γ, any circle in
Lt X BNk is null-homotopic in BNk.

The reason is as follows: Suppose that there exists a sequence tknu of increasing
integers and a sequence tLtnu of leaves so that for each n, Ltn X BNkn has at least one
non-nullhomotopic circle in BNkn . Similar to the property of the sequence tΩkuk (Property
P ), we know that the number of connected components of Ltn XN1 intersecting N0 goes
to infinity as kn goes to infinity (See Definition 2.1.3 and Theorem 2.1.6).

The sequence tLtnu sub-converges to some leaf Lt8 in the lamination L with finite
multiplicity. The sub-convergence is ensured by a result of Schoen [Sch83] (See Lemma
4.1.5) and the extrinsic Cohn-Vossen inequality (See Theorem D). Therefore, Lt8 X N1

has infinitely many components intersecting N0. As in the above case, each component
has a definite amount of area. The extrinsic Cohn-Vesson inequality gives a contradiction.

Let us explain how to deduce a contradiction from the Vanishing property. We show
that for any k ě k0, ΩkXBNk0 contains a closed curve which is not null-homotopic in BNk0

(See Lemma 1.3.11). Roughly speaking, these non-nullhomotopic circles will sub-converge
to some closed curve in L XBNk0 which is not contractible in BNk0 . It follows the fact that
Ωk sub-converges to the lamination L . Therefore, some leaf of L has a non-contractible
circle in BNk0 . This is in contradiction with the above Vanishing property of L .

0.3. π81 and the Vanishing property

0.3.1. Handlebodies and Property H. Let pM, gq be a complete contractible 3-
manifold of positive scalar curvature. It is an increasing union of closed handlebodies
tNku (See Theorem 1.1.12).

In the following, we consider that M is not homeomorphic to R3. We may assume
that none of the Nk is contained in a 3-ball (i.e. homeomorphic to a unit ball in R3) in
M (See Remark 1.1.8).
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In the genus one case, the family tNku has several good properties. For example, the

maps π1pBNkq Ñ π1pMzNkq and π1pBNkq Ñ π1pNkzN0q are both injective (See Lemma
1.3.10). These properties are crucial and necessary in the study of the existence of com-
plete metrics of positive scalar curvature. In general, the family tNku may not have the
above properties.

For example, the map π1pBN0q Ñ π1pMzN0q may not be injective. To overcome it,
we use topological surgeries on N0 and find a new handlebody to replace it. Precisely, we
use the loop lemma to find an embedded disc pD, BDq Ă pMzN0, BN0q whose boundary
is a non-contractible simple curve in BN0. The new handlebody is obtained from N0 by
attaching a closed tubular neighborhood NεpDq of D in MzN0.

We repeatedly use topological surgeries on each Nk to obtain a new family tRkuk
of closed handlebodies with the following properties, called Property H (See Definition
2.2.5):

(1) the map π1pBRkq Ñ π1pRkzR0q is injective for k ą 0;

(2) the map π1pBRkq Ñ π1pMzRkq is injective for k ě 0;
(3) each Rk is contractible in Rk`1 but not contained in a 3-ball in M ;
(4) there exists a sequence of increasing integers tjkuk, such that π1pBRk X BNjkq Ñ

π1pBRkq is surjective.

Remark. If M is not homeomorphic to R3, the existence of such a family is ensured
by Theorem 2.2.6. It is not unique. In addition, the union of such a family may be not
equal to M .

For example, if M :“
Ť

kNk is a contractible genus one 3-manifold, the family tNku

(assumed as in Theorem 1.3.13) satisfies the above Property H (See Lemma 2.10 in
[Wan19a] or Lemma 1.3.10).

0.3.2. The Vanishing property. In the genus one case, the geometry of a stable
minimal surface is constrained by the geometric index (See Property P in [Wan19a] or
Definition 2.1.3). In the higher genus case, the behavior of a stable minimal surface is
related to the fundamental group at infinity.

In order to clarify their relationship, let us introduce a geometric property, called
the Vanishing property. First, we consider a complete contractible 3-manifold pM, gq of
positive scalar curvature which is not homeomorphic to R3. As indicated above, there is
an increasing family tRkuk of closed handlebodies with Property H.

A complete embedded stable minimal surface Σ Ă pM, gq is called to satisfy the
Vanishing property for the family tRkuk if there is a positive integer kpΣq so that for
k ě kpΣq, any circle in ΣX BRk is nullhomotopic in BRk (See Chapter 5).

If a complete stable minimal surface does not satisfy the Vanishing property for tRkuk,
it gives a non-trivial element in π81 pMq(See Lemma 5.2.1). As a consequence, if π81 is
trivial, any complete stable minimal surface in M has the Vanishing property for tRkuk
(See Corollary 5.2.2).
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0.3.3. The idea of the proof of Theorem C. We argue by contradiction. Suppose
that a complete contractible 3-manifold pM, gq with positive scalar curvature and trivial
π81 pMq is not homeomorphic to R3.

Before constructing minimal surfaces, let us introduce a notation from 3-dimensional
topology.

A system of meridians of a handlebody N is a collection of g distinct meridians tγlugl“1

with the property that BNz
šg

l“1 γ
l is homeomorphic to an open disc with some closed

subdiscs removed (See Lemma 1.2.7). Its existence is ensured by Lemma 1.2.7.
Let tNkuk and tRkuk be as above. Since N0 is not contained in a 3-ball (See Remark

1.1.8), the genus of Nk is greater than zero. The handlebody Nk has a system of meridians

tγlku
gpNkq
l“1 . Roughly , there are gpNkq disjoint area-minimizing discs tΩl

kul with BΩl
k “ γlk.

Their existence is ensured by the works of Meeks and Yau [MY80,MY82] (See Theorem
6.28 of [CM11]) when the boundary BNk is mean convex.

Let us explain their existence. We construct these discs by induction on l.
When l “ 1, there is an embedded area-minimizing disc Ω1

k Ă Nk with boundary γ1
k

(See [MY80,MY82] or Theorem 6.28 of [CM11]).
Suppose that there are l disjointly embedded stable minimal discs tΩi

ku
l
i“1 with BΩi

k “

γik. Our target is to construct a stable minimal surface Ωl`1
k with boundary γl`1

k .

Let us consider the Riemannian manifold pTk,l, g|Tk,lq, where Tk,l :“ Nkz
šl

i“1 Ωl
k. It

is a handlebody of genus gpNkq ´ l. For example, see the following figure.

Ω1
k

pNk, gkq

γ1
k

pTk,1, gk|Tk,1q
Ω1
k
´

γ1
k
´ Ω1

k
`

γ1
k
`

Figure 0.3.

The boundary of pTk,l, g|Tk,lq consists of BNkz
šl

i“1 γ
i
k and some disjoint discs tΩi

k
´
uli“1

and tΩi
k
`
uli“1. The two discs Ωi

k
´

and Ωi
k
`

both come from the same minimal disc
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Ωi
k. Therefore, the mean curvature of the boundary of pTk,l, g|Tk,lq is non-negative. (See

Chapter 4.2)
In addition, tγikuiąl is a system of meridians of the handlebody pTk,l, g|Tk,lq. Then, we

use the result of Meeks and Yau to find an embedded stable minimal surface Ωl`1
k Ă Tk,l

with boundary γl`1
k . These discs tΩi

ku
l`1
i“1 are disjoint in Nk. This finishes the inductive

construction.

As in the genus one case, if BNk is not mean convex, we can deform the metric in a
small neighborhood of it so that it becomes mean convex.

Define the lamination Lk :“
š

l Ω
l
k (i.e. a disjoint union of embedded surfaces). We

show that each lamination Lk intersects the compact set R0 (Corollary 1.2.8). According
to Colding-Mincozzi’s theory (See Appendix B of [CM04]), the sequence tLkuk sub-
converges to a lamination L :“

Ť

tPΛ Lt in pM, gq (See Theorem 4.2.3). Note that each
leaf Lt is a complete (non-compact) stable minimal surface.

As indicated above, since pM, gq has positive scalar curvature and π81 pMq is trivial,
each leaf Lt in L has the Vanishing property for tRkuk (See Lemma 5.2.1 and Corollary
5.2.2). Furthermore, the lamination L also satisfies the Vanishing property (See Corollary
5.2.4). That is to say,

there exists a positive integer k0 such that for any k ě k0 and any t P Λ, any circle in
Lt X BRk is nullhomotopic in BRk.

The reason is described as follows.
We argue by contradiction. Suppose that there exists a sequence tknun of increasing

integers and a sequence tLtnu of leaves in L satisfying that Ltn X BRkn has at least one
non-nullhomotopic circle(s) in BRkn for each n.

The sequence tLtnu smoothly subconverges to some leaf in L . For our convenience,
we may assume that the sequence tLtnu converges to the leaf Lt8 . The leaf Lt8 satisfies
the Vanishing property. That is to say, there is a positive integer kpLt8q such that for
k ě kpLt8q, any circle BRk X Lt8 is nullhomotopic in BRk.

However, since Ltn X BRkn has some non-null-homotopic circle in BRkn , we know that
for kn ą kpLt8q, LtnXBRkpLt8 q has a meridian of RkpLt8 q (See Remark 2.2.7 and Corollary
1.2.6). These meridians of RkpLt8 q will converge to a meridian of RkpLt8 q which is contained
in Lt8 X BRkpLt8 q. This is in contradiction with the last paragraph.

Let us explain how to deduce a contradiction from the Vanishing property of L .
We show that if Nk contains Rk0 (for k large enough), then Lk X BRk0 contains at

least one meridian of Rk0 (See Corollary 1.2.8). As in the above case, these meridians of
Rk0 will sub-converge to a non-contractible circle in L X BRk0 . The Vanishing property
of L gives a contradiction.

0.4. Closed Aspherical 4-manifolds

A manifold M is called aspherical if it is path-connected and all its higher homotopy
groups vanish (i.e. πkpMq is trivial for k ě 2). The class of aspherical manifolds contains
all hyperbolic manifolds and all manifolds with non-positive curvature.
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An interesting question posed by Geroch is whether the torus Tn, n ě 3, carries a
metric of positive scalar curvature. This question was settled by Gromov-Lawson [GL83]
and Schoen-Yau [SY79b,SY82,SY17]. Generally, it is conjectured that

Conjecture. No compact aspherical manifold has a metric of positive scalar curva-
ture.

This conjecture was proved for 3-manifolds by Gromov and Lawson [GL83]. In dimen-
sion four, it is confirmed for 4-manifolds which contains incompressible surfaces [GL83].

In this thesis, we prove that

Theorem F . No closed aspherical 4-manifold with non-zero first Betti number has a
metric of positive scalar curvature.

Note that there is a closed aspherical 4-manifold whose first Betti number vanishes
(See [RT05]).

We argue by contradiction. Suppose that there is a compact aspherical 4-manifold
pM4, gq of positive scalar curvature, where the first Betti number b1pM

4q is greater than
zero.

Choose a circle γ Ă M4 so that rγs has infinite order in H1pM
4,Zq. We use the

Poincaré duality to find a class u P H3pM
4,Zq with ă u, rγs ą“ 1. A theorem of

Fleming-Federer (See [FF60] or Chapter 7 of [Sim83]) tells us that there is a volume-
minimizing hypersurface Σ3 in this class. Therefore, the intersection number of γ and Σ3

is equal to one.
Since pM, gq has positive scalar curvature, then Σ3 admits a metric of positive scalar

curvature (See Proposition 3.3.5). The manifold Σ3 is homeomorphic to a connected
sum of spherical 3-manifolds and some copies of S1 ˆ S2 (See [Per02a,Per02b,Per03],
[BBB`10] and [MT07]).

Because π2pMq and π3pMq are both trivial, then the spherical part of Σ and the 2-
spheres in Σ are homotopic to a point in M4. That is to say, Σ is homotopic to a wedge
sum of some circles in M (these circles come from the S2 ˆ S1’s part of Σ3). Because
dimpMq “ 4, we see that the intersection number of Σ and γ equals zero, which is in
contradiction with the intersection number of γ and Σ.

0.5. Organization of the thesis

The plan of this thesis is as follows:

For the first part, we discuss contractible 3-manifolds and related topological prop-
erties. In Chapter 1, we recall related background from 3-manifolds, such as simply-
connectedness at infinity, the fundamental group at infinity and handlebodies. Subse-
quently, we discuss the topological structure of contractible 3-manifolds and derive some
notations such as meridians of a handlebody, a system of meridians. Finally, we give some
examples of 3-manifolds such as the Whitehead manifold and genus one 3-manifolds.

In Chapter 2, we start with the embedded discs in the Whitehead manifold. An
interesting fact is that the behavior of these discs is influenced by the geometric index.
Their relation is suggested by Theorem 2.1.2. Based on this relation, we introduce a
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new property, called Property P and we show that any contractible genus one 3-manifold
satisfies this property (See Theorem 2.1.6).

Generally, a contractible 3-manifold may not satisfy Property P. The reason is that
it may be made up of some handlebodies of higher genus. Some handles in these han-
dlebodies may make no contribution to its topology and yield technical difficulties. To
overcome it, we introduce two types of surgeries. Using these surgeries, we find a new
family of handlebodies with good properties, called Property H (See Definition 2.2.5).

In the second part of the thesis, we focus on minimal surfaces and related convergence
theories. In Chapter 3, we recall some notations such as the so-called first and second
variation formulas, Morse index and the stable condition (See Chapter 3.1.1). Then we
discuss Plateau’s problem(See Chapter 3.1.2).

Subsequently, we focus on the local properties of minimal surfaces, including the strong
maximal principle (See Corollary 3.2.3) and the monotonicity formula (See Proposition
3.2.5).

Then, we study the topology of stable minimal hypersurfaces. These hypersurfaces are
characterized by the first eigenvalue of the stable operator (See Lemma 3.3.1 and Theorem
3.3.4). In a manifold of positive scalar curvature, there are many topological constraint
for stable minimal surfaces. For example, if a complete 3-manifold has nonnegative scalar
curvature, a complete stable minimal surface in it satisfies the extrinsic Cohn-Vossen
inequality (See Corollary 3.3.6 and Theorem 3.3.10). As a consequence, we give a new
proof of the topological classification of stable minimal surfaces in a 3-manifold with
nonnegative scalar curvature (See Corollary 3.3.11 and [SY82]). Finally, as an application
of minimal surfaces theory, we give the proof of Theorem A (See Theorem 3.3.12).

In Chapter 4, we discuss the convergence theory of minimal surfaces. We begin with
the convergence of minimal surface equations (See Lemma 4.1.1). It can be generalized
to the Riemannian case. Therefore we get a compactness theorem for minimal surfaces
(See Theorem 4.1.4).

Next, we discuss the convergence without area estimate. In this case, the limit is a
minimal lamination (i.e. a disjoint union of some embedded discs) instead of a single
surface. We recall the minimal lamination theory of Colding-Minicozzi (See Appendix B
of [CM04]). Then we construct a required family of minimal laminations in a contractible
3-manifold. Their limit is a stable minimal lamination. Each leaf is a complete minimal
surface. If the manifold has positive scalar curvature, it is a properly embedded plane
(See Theorem D). As an application, we give a new proof of the topological classification
of contractible 3-manifolds with uniformly positive scalar curvature (See Corollary 4.2.7
and [GL83]).

For the third part, we give the complete proofs of the main theorems. In Chapter
5, we introduce the Vanishing property and study its relationship with the fundamental
group at infinity, which is suggested by Lemma 5.2.1. Note that, in the genus one case,
Property P implies the Vanishing property (See Theorem 5.1.1).

In Chapter 6, we reduce the proof of the main theorems to a cover lemma (See Lemma
6.1.3). For the proof of this lemma, we use the Vanishing property of the lamination
(constructed in Chapter 4.2) to define a set S (See Definition 6.3.1). Positivity of the
scalar curvature implies the finiteness of S (See Lemma 6.3.4 and Lemma 6.3.5). We use



0.5. ORGANIZATION OF THE THESIS 12

the finiteness to prove the cover lemma. Finally, we discuss several related questions and
further research about 3-manifolds.

In the fourth part of the thesis, we discuss the existence of metrics of positive scalar
curvature over a compact aspherical 4-manifold. Together with a result of Perelman
[Per02a,Per02b,Per03], we give a proof of Theorem F . Finally, we talk about several
further questions about 4-manifolds.



Introduction (français)

La géométrie riemannienne vise à étudier les variétés riemanniennes qui sont des
variétés lisses à structures métriques. Une des questions fondamentales est de compren-
dre la relation entre la courbure, définie localement, et les propriétés globales des variétés
lisses. Le résultat le plus ancien est le théorème classique de Gauss et Bonnet, qui relie
la courbure au nombre d’Euler, un invariant topologique. Ce théorème implique, par
exemple, que toute surface compacte du genre g ą 0 n’a pas de métrique à courbure
positive.

En dimension supérieure, l’existence de métriques à courbure positive devient beau-
coup plus compliquée parce qu’il existe plusieurs obstructions topologiques pour qu’une
variété lisse ait une métrique complète à courbure positive.

Nous prenons ensuite 3-variétés pour expliquer ce fait.

pM3, gq cas compact cas non compact

K ą 0
S3{Γ

R3

Ric ą 0 R3

Scal ą 0 p#k
i“1S3{Γiq#p#

l
j“1S1 ˆ S2q ?

Table 2.

Pour une 3-variété riemannienne compacte, il existe une solution unique en temps court
au flot de Ricci (normalisé), introduit par Hamilton [Ham82]. Si la variété a une courbure
de Ricci positive, la solution en temps court peut être étendue en la solution en temps
long. La limite de ce flot est une métrique à courbure sectionnelle constante. Autrement
dit, si une 3-variété compacte a courbure de Ricci positive, elle est homéomorphe au
quotient S3{Γ de la sphère S3 par un sous-groupe fini Γ Ă Op4q. Un tel quotient est
appelé une 3-variété sphérique.

La contribution majeure suivante au sujet a été apportée par Perelman [Per02a,
Per02b,Per03], qui a développé le flot de Ricci avec chirurgie. Un résultat surprenant
et magnifique de cette étude est la preuve qu’une 3-variété compacte á courbure scalaire
positive est homéomorphe à une somme connexe de certaines 3-variétés sphériques et de
copies de S1ˆS2 (Voir aussi [BBB`10] et [MT07]). Sa généralisation au cas non compact
est due à Bessières, Besson et Maillot [BBM11].

13
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Pour le cas non compact, les premiers résultats montrés par Gromoll et Meyer [GM69]
sont qu’une 3-variété complète non compacte à courbure sectionnelle positive est homéomorphe
à R3 (Voir [GM69]).

L’étape suivante du développement de ce sujet est due à Schoen et Yau [SY82] qui ont
utilisé la théorie des surfaces minimales et le théorème de splitting [CG71] pour étudier
la topologie des 3-variétés . Ils ont prouvé qu’une 3-variété complète non compacte à
courbure de Ricci positive est homéomorphe à R3.

Bien que toutes ces travauw soient trés impressionnants, ils ont toujours laissé la
ouverte question (voir le problème 27 dans [Yau82]):

Comment classifier les 3-variétés non compactes à courbure scalaire positive, à difféomorphisme
près ?

Le but est de trouver toutes les obstructions et de caractériser toutes les 3-variètés
ouvertes à courbure scalaire positive. Bien que Gromov-Lawson [GL83] et Schoen-Yau
[SY82] aient donné plusieurs obstructions topologiques, toutes ces classes d’obstruction
disparaissent pour les 3-variétés contractiles.

Considérons des 3-variétés contractiles. Par exemple, R3 possède une métrique complète
g1 à courbure scalaire positive, où

g1 “

3
ÿ

i“1

pdxiq
2
` p

3
ÿ

i“1

xidxiq
2.

Jusqu’à présent, c’est la seule 3-variété contractile connue qui admet une métrique
complète à courbure scalaire positive. Ceci suggère la question suivante :

Est-ce qu’une 3-variété complète contractile à courbure scalaire positive est homéomorphe
à R3 ?

Une 3-variété complète contractile à courbure scalaire uniformément positive (c’est-
à-dire que sa courbure scalaire est minorée par une constante strictement positive) est
homéomorphe à R3. Cela a été prouvé pour la première fois par Gromov et Lawson
[GL83]. Récemment, ce résultat a été généralisé par Chang, Weinberger et Yu [CWY10]
à des 3-variétés contractile dont la courbure scalaire est uniformément positive à l’extérieur
d’un ensemble compact. En utilisant la théorie des surfaces minimales, nous généralisons
davantage.

Théroème 1 (=Theorem A) Supposons que pM3, gq est une 3-variété complète contrac-
tile. S’il existe un réel α P p´8, 2q tel que

lim inf
rpxqÑ8

rαpxqκpxq ą 0,

où κpxq est la courbure scalaire de pM, gq et rpxq est la fonction de distance d’un point
0 PM à x, alors M3 est difféomorphe à R3.

La preuve suit les arguments de Gromov et Lawson (voir le corollaire 10.9 dans
[GL83]).
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0.6. 3-variétés contractiles

La conjecture de géométrisation, formulée par William Thurston [Per02a, Per02b,
Per03] (voir aussi [BBB`10] et [MT07]) énonce que pour la topologie d’une 3-variété
compacte est entièrement déterminée par son type d’homotopie. Cependant, la structure
topologique des 3-variétés contractiles est trés compliquée. Par exemple, la variété White-
head (construite dans [Whi35]) est une 3-variété contractile qui n’est pas homéomorphe
à R3.

Pour expliquer la construction de la variété de Whitehead, introduisons le concept de
méridien. Un méridien γ Ă BN d’un tore solide fermé N est une courbe fermée plongée qui
est homotopiquement triviale dans N mais non contractile dans BN . Un disque méridien
pD, BDq Ă pN, BNq d’un tore solide N est un disque plongé dont la frontière est un
méridien de N . (Voir Définition 1.2.1).

La variété de Whitehead est construite à partir de l’entrelacs de Whitehead. Rappelons
que l’entrelacs de Whitehead est un entrelacs á deux composantes comme illustré sur la
figure suivante:

Figure 0.4.

Choisissons un tore solide fermé T1 qui est non noué dans S3. L’intérieur du tore solide
dans S3 est un autre tore solide. Prenons un deuxième tore solide T2 à l’intérieur de T1

de sorte que l’intérieur de K2 forme un entrelacs de Whitehead avec un méridien de T1

comme sur la figure suivante.
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Figure 0.5.

Le tore solide T2 est non noué dans S3. Ensuite, on plonge T3 dans T2 de la même
manière que T2 se trouve dans T1 et ainsi de suite un nombre infini de fois. Définissons
l’ensemble T8 “

Ş8

k“1 Tk, appelé le continuum de Whitehead.
La variété de Whitehead est définie comme suit: Wh :“ S3zT8, qui est une 3-variété

non compacte.

Remarque Puisque chaque Tk est non noué dans S3, son complémentaire Nk est un tore
solide. Par conséquent, la variété de Whitehead est une union croissante de tores solides
tNkuk. Chaque Nk est plongé dans Nk`1 de la même manière que T2 dans T1. Cela découle
de la symétrie de l’entrelacs de Whitehead.

Une variation de la construction, comme changer le nœud à chaque étape k, donne
une famille de ce qu’on appelle les 3-variétés de genre un, introduite dans [McM62]. La
construction est reliée à l’indice géométrique.

Si N 1 Ă N est un tore solide, l’indice géométrique, IpN 1, Nq, de N 1 dans N est égal au
nombre minimal de points de l’intersection de l’intérieur de N 1 avec un disque méridien
de N . Une 3-variété de genre un est une union croissante de tores solides tNku telle que
pour chaque k, Nk Ă Int Nk`1, et que l’indice géométrique de Nk dans Nk`1 ne soit pas
égal à zéro. (Voir Définition 1.3.8, Définition 1.3.12 et [GRW18]).

Par exemple, Wh est une 3-variété contractile de genre un. L’indice géométrique
IpNk, Nk`1q est égal à deux pour chaque k, où Nk est illustré comme ci-dessus. Remar-
quons que R3 n’est pas de genre un, mais de genre zéro, puisqu’il s’agit d’une union
croissante de 0-corps à anses. (c’est-à-dire de 3-boules).

Une question intéressante est de savoir si la variété de Whitehead admet une métrique
complète de courbure scalaire positive. Dans cette thèse, nous répondons négativement :

Théroème 2 (=Theorem B1) La variété de Whitehead n’a pas de métrique complète á
courbure scalaire positive.

Ce résultat peut être généralisé au cas du genre un.

Théroème 3 (=Theorem B2) Une 3-variété contractile genre un n’a pas de métrique
complète á courbure scalaire positive.
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En combinant le travail de Kazdan [Kaz82], nous généralisons ces résultats à la cour-
bure scalaire non négative.

Corollarie (voir Corollaire 6.4.3)Une 3-variété contractile genre un n’a pas de métrique
complète á courbure scalaire non négative

L’existence de métriques complètes à courbure scalaire positive est liée au groupe
fondamental à l’infini. Le groupe fondamental à l’infini π81 d’une 3-variété est la limite
projective des groupes fondamentaux des complémentaires de sous-ensembles compacts
(voir Définition 1.1.9).

La trivialité du groupe fondamental à l’infini n’est pas équivalente pas à la connexité
simple à l’infini. Par exemple, la variété de Whitehead n’est pas simplement connexe à
l’infini mais son groupe fondamental à l’infini est trivial.

Nous prouvons le résultat suivant :

Théroème 4 (=Theorem C) Une 3-variété contractile à courbure scalaire positive et π81
trivial est homéomorphe à R3.

Ce résultat peut également être généralisé à la courbure scalaire non négative.

Corollarie (voir Corollaire 6.4.4)Une 3-variété contractile à courbure scalaire non négative
et π81 trivial est homéomorphe à R3.

Cependant, il existe une quantité indénombrable de 3-variétés contractiles deux à deux
non homéomorphes dont le π81 n’est pas trivial. Dans le Chapitre 1.3, nous construisons
une telle variété et montrons que cette variété n’a pas de métrique complète de courbure
scalaire positive (voir Théorème 1.3.15).

0.7. L’idée de la preuve du Théorème 3

Il est classique que la théorie des surfaces minimales donne des informations topologiques
sur les 3-variétés. Ce fait est apparu dans les articles de Schoen et Yau [SY82,SY79b,
SY79a] ainsi que de Gromov et Lawson cite GL et divers autres travaux.

Pour la preuve du théorème 3, raisonnons par l’absurde. Supposons que pM, gq soit
une 3-variété riemannienne complète à courbure scalaire positive, où M :“

Ť

kNk est une
3-variété contractile de genre un et la famille tNkuk de tores solides est supposée comme
dans Théorème 1.3.13.

0.7.1. Surfaces minimales et limites. Comme dans [SY82] et [GL83], notre
première étape consiste à construire des surfaces minimales. Choisissons γk Ă BNk comme
méridien de Nk (voir Définition 1.2.1). En gros, il borde un disque minimal stable plongé
Ωk. Son existence est assurée par le résultat de Meeks et Yau (voir [MY80, MY82] ou
le théorème 3.1.8) lorsque la frontière BNk est mean convex.

Considérons le cas le plus simple où Ωk converge vers une surface minimale stable
connexe Σ.

D’une part, nous montrons que le nombre de composantes connexes de ΩkXN1 inter-
sectant N0 tend vers l’infini quand k tend vers l’infini (voir Chapitre 2.1). Par conséquent,
il existe une infinité de composantes connexes de ΣXN1 intersectant N0. Par un résultat
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de Meeks et Yau (voir Théorème 3.2.7 et [MY80]), chacune de ces composantes contient
une certaine quantité d’aire. Ainsi, ΣXN1 a une aire infinie.

D’autre part, puisque pM, gq a courbure scalaire positive , non seulement Σ est con-
formément difféomorphe à R2 (voir Corollaire 3.3.11), mais sa géométrie est également
contrainte par l’inégalité extrinsèque de Cohn-Vossen:

Théroème 5 (=Theorem D) Soit Σ2 Ă pM3, gq une surface minimale complète immergée
(non compacte). Si la variété complète pM3, gq a courbure scalaire positive ou nulle
(κpxq ě 0), alors

ż

Σ

κpxq ` 1{2|A|2dv ď 2πχpΣq.

où |A|2 est le carré de la norme de la seconde forme fondamentale de Σ. De plus, si κ ą 0
et Σ est plongée, alors Σ est un plan proprement plongé.

Puisque la courbure scalaire est minorée par une constante strictement positive sur
N1, cela est en contradiction avec la surface infinie contenue dans ΣXN1.

Si BNk n’est pas mean convex, on modifies la métrique dans un plus petit voisinage
tubulaire de BNk afin que, pour la nouvelle métrique, elle devienne mean convex.. Alors
Ωk est minimal stable pour la nouvelle métrique, et pour la métrique originale il l’est loin
du voisinage BNk (par exemple, près de Nk), ce qui est suffisant pour notre preuve.

0.7.2. Propriétés de la surface limite. En général, Ωk sous-converge vers une
lamination minimale L :“

Ť

t inΓ Lt (c’est-à-dire une union disjointe de certaines surfaces
minimales plongées). Elle peut avoir une infinité de composantes. Cependant, chaque
feuille Lt de L est une surface minimale stable complète (non compacte) (voir Théorème
4.2.3). Puisque pM, gq a une métrique à courbure scalaire positive, elle est homéomorphe
à R3 (voir Corollaire 3.3.11).

La géométrie de chaque feuille est influencée par l’inégalité extrinsèque de Cohn-Vossen
(cf. Théorème 5) ainsi que par une propriété topologique de M , appelée Propriété P (voir
Définition 2.1.3). Ces deux aspects nous indiquent que la lamination L a la propriété
d’annulation pour tNkuk. C’est-à-dire,

il existe un entier positif k0 tel que pour tout k ě k0 et tout t P Γ, tout cercle dans
Lt X BNk est homotopiquement trivial à BNk.

La raison en est la suivante : supposons qu’il existe une suite décroissante d’entiers
tknu et une suite tLtnu de feuilles telles que pour chaque n , Ltn X BNkn a au moins un
cercle non homotopiquement trivial dans BNkn . Comme pour la propriété de la suite
tΩkuk (Propriété P ), nous savons que le nombre de composantes connexes de Ltn X N1

intersectant N0 tend vers l’infini quand kn tend vers l’infini (Voir Définition 2.1.3 et
Théorème 2.1.6).

La suite tLtnu sous-converge vers une feuille Lt infty dans la lamination L avec une
multiplicité finie. La sous-convergence est assurée par un résultat de Schoen [Sch83]
(voir Lemme 4.1.5) et l’inégalité extrinsèque de Cohn-Vossen (voir Théorème 5). Par
conséquent, Lt8 XN1 a une infinité de composantes intersectant N0. Comme dans le cas
ci-dessus, chaque composante a une aide donnée. L’inégalité extrinsèque de Cohn-Vesson
donne une contradiction.
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Expliquons comment déduire une contradiction avec la propriété d’annulation. Nous
montrons que pour tout k ě k0, Ωk X BNk0 contient une courbe fermée qui n’est pas
homotopiquement triviale dans BNk0 (voir le Lemme 1.3.11). Grosso modo, ces cercles
non homotopiquement triviaux vont sous-converger vers une courbe fermée dans L XBNk0

qui n’est pas contractile dans BNk0 . Il s’ensuit que Ωk sous-converge vers la lamination
L . Par conséquent, certaines feuilles de L ont un cercle non contractile dans BNk0 . Ceci
est en contradiction avec la propriété d’annulation ci-dessus de L .

0.8. π81 et la propriété d’annulation

0.8.1. Corps à anses et propriété H. Soit pM, gq une 3-variété complète contrac-
tile à courbure scalaire positive. Il s’agit d’une union croissante de corps à anses tNku

(voir Théorème 1.1.12).
Dans ce qui suit, nous considérons que M n’est pas homéomorphe à R3. Nous pouvons

supposer qu’aucun des Nk n’est contenu dans une 3-boule (c’est-à-dire homéomorphe à
une boule unitaire dans R3) dans M (voir Remarque 1.1.8). Cela joue un rôle crucial dans
notre argument.

Dans le cas du genre un, la famille tNku a plusieurs bonnes propriétés. Par exemple,

les applications π1pBNkq Ñ i1pMzNkq et π1pBNkq Ñ π1pNkzN0q sont toutes les deux
injectives (voir le Lemme 1.3.10). Ces propriétés sont cruciales et nécessaires dans l’étude
de l’existence de métriques complètes à courbure scalaire positive. En général, la famille
tNku peut ne pas avoir les propriétés ci-dessus.

Par exemple, l’application π1pBN0q Ñ π1pMzN0q peut ne pas être injective. Pour sur-
monter cette difficulté, nous utilisons des chirurgies topologiques sur N0 et nous trouvons
un nouveau corps à anses pour le remplacer. Précisément, nous utilisons le lemme de
la boucle pour trouver un disque plongé pD, BDq Ă pMzN0, BN0q dont le bord est une
courbe simple non contractile dans BN0. Le nouveau corps à anses est obtenu à partir de
N0 en attachant un voisinage tubulaire fermé NεpDq de D dans MzN0.

Nous utilisons à plusieurs reprises des chirurgies topologiques sur chaque Nk pour
obtenir une nouvelle famille tRkuk de corps à anses fermés avec les propriétés suivantes,
appelée Propriété H (voir Définition 2.2.5):

(1) l’application π1pBRkq Ñ π1pRkzR0q est injective pour k ą 0;

(2) l’application π1pBRkq Ñ π1pMzRkq est injective pour k ě 0;
(3) chaque Rk est contractile dans Rk`1 mais n’est pas contenu dans une 3-boule de

M ;
(4) il existe une suite d’entiers croissante tjkuk, telle que π1pBRk X BNjkq Ñ π1pBRkq

soit surjective.

Remarque Si M n’est pas homéomorphe à R3, l’existence d’une telle famille est assurée
par le Théorème 2.2.6. Elle n’est pas unique. De plus, l’union d’une telle famille peut ne
pas correspondre à M .

Par exemple, si M :“
Ť

kNk est une 3-variété contractile de genre un, la famille tNku

(supposée comme dans le Théorème 1.3.13) vérifie la propriété ci-dessus (propriété H)
(voir le lemme 2.10 dans [Wan19a] ou Lemme 1.3.10).
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0.8.2. La proriété d’annulation. Dans le cas du genre un, la géométrie d’une
surface minimale stable est contrainte par l’indice géométrique (voir Propriété P dans
[Wan19a] ou la Définition 2.1.3). Dans le cas du genre supérieur, le comportement d’une
surface minimale stable est lié au groupe fondamental à l’infini.

Afin de clarifier leur relation, introduisons une propriété géométrique, appelée la pro-
priété d’annulation. Premièrement, nous considérons une 3-variété complète contractile
pM, gq qui n’est pas homéomorphe à R3. Comme indiqué ci-dessus, il existe une famille
croissante tRkuk de corps à anses avec la propriété H.

On dit qu’une surface minimale stable complète plongée Σ Ă pM, gq satisfait la pro-
priété d’annulation pour la famille tRkuk s’il existe un entier positif kpΣq tel que pour
k ě kpΣq, tout cercle dans ΣXBRk soit homotopiquement trivial dans BRk (Voir Chapitre
5).

Si une surface minimale stable complète ne satisfait pas la propriété d’annulation
pour tRkuk, elle donne un élément non trivial dans π81 pMq (voir le Lemme 5.2.1). En
conséquence, si π81 est trivial, toute surface minimale stable complète dans M a la pro-
priété d’annulation pour tRkuk (voir le Corollaire 5.2.2).

0.8.3. L’idée de la preuve du théorème 4. Raisonnons par l’absurde. Supposons
qu’une 3-variété pM, gq complète contractile à courbure scalaire positive et π81 pMq trivial,
ne soit pas homéomorphe à R3.

Avant de construire des surfaces minimales, introduisons une notation de topologie en
dimension 3.

Un système de méridiens d’un corps à anses N est une collection de g méridiens
distincts tγlugl“1 tels que BNz>gl“1 γ

l soit hoéomorphe à un disque ouvert privé de certains
sous-disques fermés (voir le Lemme 1.2.7). Son existence est assurée par le Lemme 1.2.7.

Soit tNkuk et tRkuk comme ci-dessus. Puisque N0 n’est pas contenu dans une 3-
boule (voir la remarque 1.1.8), le genre de Nk est supérieur à zéro. Le corps à anses

Nk a un système de méridiens tγlku
gpNkq
l“1 . En gros, il existe gpNkq disques disjoints d’aire

minimale tΩl
kul avec BΩl

k “ γlk. Leur existence est assurée par les travaux de Meeks et
Yau [MY80,MY82] (voir le théorème 6.28 de [CM11]) lorsque la frontière BNk est mean
convex.

Expliquons leur existence. Nous construisons ces disques par récurrence sur l.
Lorsque l “ 1, il existe un disque plongé d’aire minimale Ω1

k Ă Nk avec BΩ1
k “ γ1

k

(voir [MY80,MY82] ou le théorème 6.28 de [CM11]).
Supposons qu’il existe l disques stables plongés disjoints d’aire minimale tΩi

ku
l
i“1 avec

BΩi
k “ γik. Notre objectif est de construire une surface minimale stable Ωl`1

k avec BΩl`1
k “

γl`1
k .

Considérons la variété riemannienne pTk,l, g|Tk,lq, où Tk,l :“ Nkz
šl

i“1 Ωl
k. C’est un

corps à anses du genre gpNkq ´ l. Par exemple, voir la figure suivante.
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Ω1
k

pNk, gkq

γ1
k

pTk,1, gk|Tk,1q
Ω1
k
´

γ1
k
´ Ω1

k
`

γ1
k
`

Figure 0.6.

La frontière de pTk,l, g|Tk,lq est constituée de BNkz
šl

i“1 γ
i
k et certains disques disjoints

tΩi
k
´
uli“1 et tΩi

k
`
uli“1. Les deux disques Ωi

k
´

et Ωi
k
`

proviennent tous du même disque
minimal Ωi

k. Par conséquent, la courbure moyenne de la frontière de pTk,l, g|Tk,lq est
positive. (Voir Chapitre 4.2)

De plus, tγikuiąl est un système de méridiens du corps à anses pTk,l, g|Tk,lq. Ensuite,
nous utilisons le résultat de Meeks et Yau pour trouver une surface minimale stable
plongée Ωl`1

k Ă Tk,l dont le bord est γl`1
k . Ces disques tΩi

ku
l`1
i“1 sont disjoints dans Nk.

Ceci termine la construction par récurrence.

Comme dans le cas du genre un, si BNk n’est pas mean convex, nous pouvons déformer
la métrique dans un petit voisinage de celle-ci pour qu’elle devienne mean convex.

Définissons la lamination Lk :“
š

l Ω
l
k (qui est une union disjointe de surfaces plongées).

Nous montrons que chaque lamination Lk intersecte l’ensemble compact R0 (Corollaire
1.2.8). Selon la théorie de Colding-Mincozzi (voir l’annexe B de [CM04]), la suite tLkuk
sous-converge vers une laminiation L :“

Ť

tPΛ Lt in pM, gq (voir le Théorème 4.2.3).
Notons que chaque feuille Lt est une surface minimale stable complète (non compacte).

Comme indiqué ci-dessus, puisque pM, gq est a 3-variété complète à courbure scalaire
positive et que π81 pMq est trivial, chaque feuille Lt dans L a la propriété d’annulation
pour tRkuk (voir le Lemme 5.2.1 et le Corollaire 5.2.2). En outre, la lamination L satisfait
la propriété d’annulation (voir le Corollaire 5.2.4). C’est-à-dire,

il existe un entier positif k0 tel que pour tout k ě k0 et tout t P Λ, n’importe quel cercle
dans Lt X BRk soit homotopiquement trivial dans BRk.

La raison est décrite comme suit.
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Raisonnons par l’absurde. Supposons qu’il existe une suite croissante tknun d’entiers
et une suite tLtnu de feuilles dans L telles que Ltn X BRkn ait au moins un cercle non
homotopiquement trivial dans BRkn pour chaque n.

La suite tLtnu sous-converge vers une feuille de L . Pour simplifier, nous pouvons
supposer que la suite tLtnu converge vers la feuille Lt8 . La feuille Lt infty satisfait la
propriété d’annulation. C’est-à-dire qu’il existe un entier positif kpLt8q tel que pour
k ě kpLt8q, tout cercle BRk X Lt8 soit homotopiquement trivial dans BRk.

Cependant, comme LtnXBRkn a un cercle non homotopiquement trivial dans partialRkn ,
nous savons que pour kn ą kpLt8q, LtnXBRkpLt8 q a un méridien de RkpLt8 q (voir la remar-
que 2.2.7 et le corollaire 1.2.6). Ces méridiens de RkpLt8 q convergeront vers un méridien de
RkpLt8 q contenu dans Lt8XBRkpLt8 q. Ceci est en contradiction avec le dernier paragraphe.

Expliquons comment déduire une contradiction de la propriété d’annulation de L .
Nous montrons que si Nk contient Rk0 (pour k assez grand), alors Lk XBRk0 contient

au moins un méridien de Rk0 (voir le Corollaire 1.2.8). Comme dans le cas ci-dessus, ces
méridiens de Rk0 convergeront vers un cercle non contractile dans L XBRk0 . La propriété
d’annulation de L donne une contradiction.

0.9. 4-variétés fermées asphériques

Une variété M est dite asphérique s’il est connexe par arcs et si tous ses groupes
d’homotopie suérieurs s’annulent (c’est-à-dire que πkpMq est trivial pour k ě 2). La
classe des variétés asphériques comprend toutes les variétés hyperboliques et toutes les
variétés à courbure négative.

Une question intéressante est de savoir si le tore Tn, n ě 3, possède une métrique à
courbure scalaire positive. Cette question a été traitée par Gromov-Lawson [GL83] et
Schoen-Yau [SY79b,SY82,SY17]. En général, on conjecture que

Conjecture. Aucune variété compacte asphérique n’a de métrique à courbure scalaire
positive.

Cette conjecture a été démontrée pour les 3-variétés par Gromov et Lawson [GL83].
En dimension quatre, elle est confirmée pour les 4-variété qui contiennent des surfaces
incompressibles [GL83].

Dans cette thèse, nous prouvons que

Théroème 6 (=Theorem F ) Aucune 4-variété asphérique fermée avec premier nombre
de Betti non nul n’a de métrique à courbure scalaire positive.

Notons qu’il existe une 4-variété asphérique fermée dont le premier nombre de Betti
est nul (Voir [RT05]).

Raisonnons par l’absurde. Supposons qu’il existe une 4-variété asphérique fermée
pM4, gq à courbure scalaire positive, dont le premier nombre de Betti b1pM

4q est stricte-
ment supérieur à zéro.

Choisissons un cercle γ Ă M4 tel que rγs soit d’ordre infini dans H1pM
4,Zq. Nous

utilisons la dualité de Poincaré pour trouver une classe u P H3pM
4,Zq avec ă u, r gs ą“ 1.

Un théorème de Fleming-Federer (voir [FF60] ou le chapitre 7 de [Sim83]) nous indique
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qu’il existe une hypersurface Σ3 minimisant le volume dans cette classe. Par conséquent,
le nombre d’intersection de γ et Σ3 est égal à un.

Puisque pM, gq a une courbure scalaire positive, alors Σ3 admet une métrique de
courbure scalaire positive (voir la proposition 3.3.5). La variété Σ3 est homéomorphe à
une somme connexe de 3-variété sphériques et de copies de S1ˆS2 (Voir [Per02a,Per02b,
Per03], [BBB`10] et [MT07]).

Comme π2pMq et π3pMq sont triviaux, la partie sphérique de Σ et les 2-sphères de
Σ sont homotopes à un point dans M4. C’est-à-dire que Σ est homotope à un bouquet
de cercles dans M (ces cercles proviennent de la partie de S2 ˆ S1 dans Σ3). Comme
dimpMq “ 4, nous voyons que le nombre d’intersection de Σ et γ est égal à zéro, ce qui
est en contradiction avec les nombres d’intersection de γ et Σ.

0.10. Organisation de la thèse

Le plan de cette thèse est le suivant:

Dans la première partie, nous discutons des 3-variétés contractile et des propriétés
topologiques associées. Au Chapitre 1, nous formulons des rappels liés aux 3-variétés,
comme la connexité simple à l’infini, le groupe fondamental à l’infini et les corps à anses.
Par la suite, nous discutons de la structure topologique des 3-variétés contractiles et
présentons quelques notions telles que les méridiens d’un corps à anses, ou encore les
systèmes de méridiens. Enfin, nous donnons quelques exemples de 3-variétés, telles que
les variétés de Whitehead et les 3-variétés de genre un.

Au chapitre 2, nous commençons par les disques plongés dans la variété de Whitehead.
Un fait intéressant est que le comportement de ces disques est influencé par l’indice
géométrique. Leur relation est suggérée par le Théoréme 2.1.2. Sur la base de cette
relation, nous introduisons une nouvelle propriété, appelée Propriété P, et montrons que
toute variété contractile de genre un satisfait cette propriété (voir Théorème 2.1.6).

En règle générale, une 3-variété contractible peut ne pas satisfaire la propriété P.
La raison est que cette variété peut être composée de corps à anses de genre supérieur.
Certaines anses peuvent ne pas contribuer à la topologie et engendrer des difficultés tech-
niques. Pour surmonter cela, nous introduisons deux types de chirurgies. En utilisant ces
chirurgies, nous trouvons une nouvelle famille de corps à anses avec de bonnes propriétés,
appelée Propriété H (voir Définition 2.2.5).

Dans la deuxième partie de la thèse, nous nous concentrons sur les surfaces minimales
et les théories de convergence associées. Au Chapitre 3, nous rappelons certaines notions
telles que les formules dites de première et deuxième variation, l’indice de Morse et la
condition de stabilité (Voir Chapitre 3.1.1). Ensuite, nous discutons du problème de
Plateau (voir Chapitre 3.1.2).

Nous nous intéresserons ensuite aux propriétés locales des surfaces minimales, y com-
pris le principe du maximum et la formule de monotonie (voir Proposition 3.2.5).

Ensuite, nous étudions la topologie des hypersurfaces minimales stables. Ces hyper-
surfaces sont caractérisées par la première valeur propre de l’opérateur stable (voir le
Lemme 3.3.1 et le Théorème 3.3.4). Dans une variété à courbure scalaire positive, il
existe de nombreuses contraintes topologiques sur les surfaces minimales stables. Par
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exemple, si une 3-variété compléte a courbure scalaire positive ou nulle, une surface min-
imale stable complète vérifie l’inégalité extrinsèque de Cohn-Vossen (Voir Corollary 3.3.6
et Theorem 3.3.10). En conséquence, nous donnons une nouvelle preuve de la classifi-
cation topologique des surfaces minimales stables dans une 3-variété à courbure scalaire
positive ou nulle (voir le Corollaire 3.3.11 et [SY82]). Enfin, en tant qu’application de la
théorie des surfaces minimales, nous donnons la preuve du Théorème 4.2.1 (voir Théorème
3.3.12).

Au Chapitre 4, nous discutons de la théorie de la convergence des surfaces minimales.
Nous commençons par la convergence des équations de surfaces minimales (Voir Lemme
4.1.1). Cela peut être généralisé au cas riemannien. Par conséquent, nous obtenons un
théorème de compacité pour les surfaces minimales (voir Théorème 4.1.4).

Ensuite, nous discutons de la convergence sans estimation d’aire. Dans ce cas, la
limite est une lamination minimale (c’est-à-dire une union disjointe de disques plongés).
Nous rappelons la théorie de la lamination minimale de Colding-Minicozzi (Voir l’Annexe
B de [CM04]). Ensuite, nous construisons une famille requise de laminations minimales
dans une 3-variété contractile. Leur limite est une lamination minimale stable. Chaque
feuille est une surface minimale compléte. Si la variété a une courbure scalaire positive,
il s’agit d’un plan proprement plongé (voir le Théorème 5). En guise d’application, nous
donnons une nouvelle preuve de la classification topologique des 3-variétés contractiles à
courbure scalaire uniformément positive (Voir Corollaire 4.2.7 et [GL83]).

Dans la troisième partie, nous donnons les preuves complètes des théorèmes princi-
paux. Au Chapitre 5, nous introduisons la propriété d’annulation et étudions sa relation
avec le groupe fondamental à l’infini. La relation est suggérée par le Lemme 5.2.1. Notez
que, dans le cas du genre un, la propriété P implique la propriété d’annulation (voir
Théorème 5.1.1).

Au Chapitre 6, nous réduisons la preuve des théorèmes principaux à un lemme de
recouvrement (voir Lemme 6.1.3). Pour prouver ce lemme, nous utilisons la propriété
d’annulation de la lamination (construit au Chapitre 4.2) pour définir un ensemble S
(voir Définition 6.3.1). La positivité de la courbure scalaire implique la finitude de S
(voir Lemme 6.3.4 et Lemme 6.3.5). Nous utilisons la finitude pour prouver le lemme de
recouvrement. Enfin, nous discutons de plusieurs questions connexes et d’autres sujets de
recherche sur les 3-variétés.

Dans la quatrième partie de la thèse, nous discutons de l’existence de métriques à
courbure scalaire positive sur une 4-variété asphérique compacte. Avec un résultat de
Perelman [Per02a, Per02b, Per03], nous donnons une preuve du Théorème 6. Enfin,
nous abordons plusieurs autres questions sur les 4-variétés.
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CHAPTER 1

3-Manifolds

In this chapter, we review related background in geometric topology and algebraic
topology.

We begin with several classical theorems in 3-manifolds, such as the loop lemma.
Subsequently, we study the topological structures of contractible 3-manifolds. Then we
introduce several notations (for example, effective meridians and a system of meridians)
and discuss their topological properties.

Finally, we give several examples, such as genus one 3-manifolds.

1.1. Background

In this part, we recall several classical theorems for 3-manifolds and discuss the topo-
logical structure of contractible 3-manifolds.

1.1.1. Preliminary. A 3-manifold is irreducible if any embedded 2-sphere bounds a
closed 3-ball (namely, it is homeomorphic to a closed unit ball in R3).

Remark 1.1.1. We know from the so-called Alexander’s theorem (See [Theorem 1.1,
Page 1] of [Hat00]) that any embedded 2-sphere in R3 bounds an embedded 3-ball.

Further, the proof of Poincaré Conjecture [Per02a,Per02b,Per03] (See [BBB`10]
or [MT07]) tells that any contractible 3-manifold is irreducible.

It is well-known that there are many links between the geometric properties of 3-
manifolds and homotopy theory, specially π1. For example, the loop lemma.

Lemma 1.1.2. (See [Theorem 3.1, Page 54] of [Hat00])Let M be a 3-manifold with
boundary BM , not necessarily compact or orientable. If there is a map f : pD2, BD2q Ñ

pM, BMq with the property that f |BD2 is not nullhomotopic in BM . Then there is an
embedding h with the same property.

Remark 1.1.3. We may assume that hpInt D2q Ă Int M . The reason is described
below:

Let us consider a 1-sided open neighborhood Mε – BMˆr0, εq of BM in M . Shrinking
the image of f into Mpεq :“ MzMε, we find a map fε : pD2, BD2q Ñ pMpεq, BMpεqq
with the property that fεpBD

2q is not nullhomotopic in BMpεq. By Lemma 1.1.2 there
is an embedding hε with the same property. Its image is contained in pMpεq, BMpεqq.
Therefore, the image of hε is contained in Int M .

In addition, there is an embedded circle γ Ă BM which is homotopic to hεpBD
2q in

M ε. There is an embedded annulus Aε Ă Mε joining γ and hεpBD
2q. We have a map

h : pD2, BD2q Ñ pM, BMq so that its image is an embedded disc (i.e. the union of Aε and
the image of hε). It has the same property as f and hpInt D2q Ă Int M .

26
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One of tools for computing the fundamental group is the so-called Van-Kampen’s
theorem. It will be frequently used in the following.

Theorem 1.1.4. (Van-Kampen’s Theorem, See [Theorem11.60, Page 396] of [Rot12])
Let K be a connected complex having connected subcomplexes L1 and L2 with K “ L1YL2.
If L1 X L2 is connected, then π1pKq is the pushout of the data.

π1pL1q // π1pKq

π1pL1 X L2q

j1˚

OO

j2˚ // π1pL2q

OO

where jk : L1 X L2 Ñ Lk is the inclusion for k “ 1, 2.
Moreover, π1pKq is isomorphic to π1pL1q ˚π1pL1XL2q π1pL2q.

If the map jk˚ : π1pL1 X L2q Ñ π1pLkq is injective for k “ 1, 2, π1pKq can be written
as a free product with amalgamation (See Chapter 11 of [Rot12]).

Lemma 1.1.5. (See [Theorem11.67, Page 404] of [Rot12]) Let B, A1 and A2 be
groups. . Let A1 ˚B A2 be the pushout of the following data.

A1
λ1 // A1 ˚B A2

B

i1

OO

i2 // A2

λ2

OO

If the map ik : B Ñ Ak is injective for k “ 1, 2, one has

(1) the map λk is injective for k “ 1, 2;
(2) if A1k “ λkpAkq, then ă A11, A

1
2 ą“ A1 ˚B A2 and A11 X A

1
2 is isomorphic to B.

We now introduce several concepts about the disjoint closed curves in a disc.

Definition 1.1.6. (See Definition 2.11 of [Wan19a]) Let C :“ tciuiPI be a finite set
of pairwise disjoint circles in the disc D2 and Di Ă D2 the unique disc with boundary ci.
Consider the set tDiuiPI and define the partially ordered relation induced by the inclusion.
For each maximal element Dj in ptDiuiPI ,Ăq, its boundary cj is defined as a maximal circle
in C. For each minimal element Dj, its boundary cj is called a minimal circle in C.

1.1.2. Simply-connectedness at infinity and π81 .

Definition 1.1.7. A topological space M is simply connected at infinity if for any
compact set K Ă M , there exists a compact set K 1 containing K so that the induced
map π1pMzK

1q Ñ π1pMzKq is trivial.

A result of Stallings [Sta72] and Remark 1.1.1 tell us that the only contractible and
simple-connected at infinity 3-manifold is R3.

Remark 1.1.8. If a contractible 3-manifold M is not homeomorphic to R3, it is not
simply-connected at infinity. That is to say, there is a compact set K Ă M so that for
any compact set K 1 Ă M containing K, the induced map π1pMzK

1q Ñ π1pMzKq is not
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trivial. We also have that the set K is not contained in a 3-ball in M . The reason is
described below:

If a closed 3-ball B contains K, Theorem 1.1.4 shows that π1pMq – π1pMzBq ˚π1pBBq

π1pBq. In addition, π1pBq and π1pBBq are both trivial. Therefore, π1pMzBq – π1pMq is
trivial. That is to say, the map π1pMzBq Ñ π1pMzKq is trivial. This is a contradiction.

Definition 1.1.9. The fundamental group at infinity π81 of a path-connected space
is the inverse limit of the fundamental groups of complements of compact subsets.

For example, the fundamental group at infinity of any compact manifold is trivial. For
any contractible n-manifold Mn, it is simply-connected at infinity if and only if π81 pM

nq is
trivial, when n ě 4 (See [CWY10]). However, this result is not true in dimension 3. For
example, the Whitehead manifold is not simply-connected at infinity but its fundamental
group at infinity is trivial.

Remark 1.1.10. Let us consider a contractible 3-manifold M and an exhaustion tNkuk
of M . We have the following:

π81 pMq “ lim
ÐÝ
k

π1pMzNkq “

#

prγksq P
ź

k

π1pMzNkq so that pfk,jq˚prγksq “ rγjs for any k ě j

+

,

where fk,j is the inclusion from MzNk to MzNj.

Therefore, π81 pMq is non-trivial if and only if there exists a non-trivial element prγksq P
ś

k

π1pMzNkq satisfying

1) for some k0, the closed curve γk0 is non-contractible in MzNk0 ;
2) for k ě k0, γk is homotopic to γk in MzNk0 .

That is to say, there is a compact set K and a family of closed curves tαnun going to
infinity with the following property: for each n

a) αn is nullhomotopic in MzK for ;
b) αn is homotopic to αn`1 in MzK.

Note that this family of circles gives a non-trivial element in π81 pMq.

1.1.3. Handlebodies.

Definition 1.1.11. [Page 59, [Rol03]] A handlebody is any space obtained from the
3-ball D3 (0-handle) by attaching g distinct copies of D2 ˆ r´1, 1s (1-handle) with the
homeomorphisms identifying the 2g discs D2 ˆ t˘1u to 2g disjoint 2-disks on BD3, all to
be done in such a way that the resulting 3-manifold is orientable. The integer g is called
the genus of the handlebody.

Remark that a handlebody of genus g is homeomorphic to a boundary connected sum
of g solid tori. Therefore, its boundary is a compact surface of genus g. (See Page 59
in [Rol03])

From a result of McMillan [McM61] and Remark 1.1.1, we know that:

Theorem 1.1.12. [Page 511, Theorem 1] [McM61] Any contractible 3-manifold can
be written as an ascending union of handlebodies .
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Remark 1.1.13. Let consider a contractible 3-manifold M . If it is not homeomorphic
to R3, it can written as an increasing family of handlebodies tNku satisfying that for each
k,

‚ Nk is homotopically trivial in Nk`1;
‚ none of the Nk is contained in a 3-ball (See Remark 1.1.8).

In the following, we consider a closed handlebody N in S3.

Definition 1.1.14. A closed handlebody N Ă S3 of genus g is said to be unknotted
in S3 if it complement in S3 is also a handlebody of genus g.

For example, an unknotted solid torus in S3.

1.2. Meridians

In the following, we consider a closed handlebody N .

Definition 1.2.1. An embedded circle γ Ă BN is called a meridian if γ is nullhomot-
pic in N , but not contractible in BN .

An embedded closed disc pD, BDq Ă pN, BNq is called a meridian disc if its boundary
is a meridian of N .

The disc D is a splitting meridian disc, if NzD is not connected. Its boundary is called
a splitting meridian.

The disc D is a non-splitting disc, if NzD is connected. Its boundary is called a
non-splitting meridian.

Remark. Let γ be a meridian of N . If γ is a splitting meridian, it cuts BN into two
components. The class rγs is equal to zero in H1pBNq.

If γ is a non-splitting meridian, then BNzγ is connected. The class rγs is a non-trivial
element in H1pBNq.

Lemma 1.2.2. Let N 1 and N be two closed handlebodies with N 1 Ă Int N . If N 1

is homotopically trivial in N , then any non-splitting meridian of N 1 is non-trivial in
H1pNzN 1q and any meridian of N is trivial in H1pNzN 1q.

Proof. The Mayer-Vietoris sequence gives:

(1.2.1) H2pNq Ñ H1pBN
1
q
i1
Ñ H1pN

1
q ‘H1pNzN 1q

i2
Ñ H1pNq Ñ Ĥ0pBN

1
q.

We know that H2pNq and Ĥ0pBN
1q are both trivial. Then, the map H1pBN

1q Ñ

H1pN
1q ‘H1pNzN 1q is injective. As indicated above, any non-splitting meridian of N 1 is

non-trivial in H1pBN
1q. Therefore, it is not equal to zero in H1pNzN 1q.

In the following, we will show that any meridian γ of N is trivial in H1pNzN 1q.

Embed N into S3 as an unknotted handlebody. The set N 1 can be viewed as a

handlebody in S3. The core K 1 “ _
g1

i“1αi of N 1 is a wedge sum of g1 circles tαiui, where
g1 is the genus of N 1.

Choose γ1i Ă BN
1 as a normal circle of αi in S3. That is to say, the linking number of

γ1i > αj in S3 is equal to δij. In addition, the kernel of the map H1pBN
1q Ñ H1pN

1q is a

linear subspace of dimension g1, spanned by trγ1isu
g1

i“1.
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Since N 1 is homotopically trivial in N , the map H1pN
1q Ñ H1pNq is a zero map.

Choose the element p0, rγsq P H1pN
1q ‘ H1pNzN 1q. Since γ is a meridian of N , the

element is in the kernel of the map i2. From the sequence (1.2.1), it is also contained in

the image of i1. Hence, rγs can be written as
ř

i nirγ
1
is in H1pNzN 1q.

Claim: the coefficient ni is equal to the linking number of αi > γ.

From the Mayer-Vietoris sequence, the group H1pS3zK 1q is a free Abelian group of

rank g1 spanned by trγ1isu
g1

i“1. Hence, rγs is equal to
ř

i nirγ
1
is in H1pS3zK 1q. Similarly,

H1pS3zαiq is of rank one and generated by γ1i. One has that

H1pNzN 1q Ñ H1pS3
zK 1

q Ñ H1pS3
zαiq

rγs “
ÿ

i

nirγ
1
is ÞÑ

ÿ

i

nirγ
1
is ÞÑ nirγ

1
is

That is to say, rγs is equal to nirγ
1
is in H1pS3zαiq. From the definition of the linking

number (See Page 132 in [Rol03]), ni is the linking number of γ > αi.

Since each αi Ă N 1 is nullhomotopic in N , then the linking number of γ > αi is zero.
Namely, ni is equal to zero, for each i. Therefore, rγs is equal to zero in H1pNzN 1q. �

1.2.1. The effective meridian. Consider two closed handlebodies N 1 and N with
N 1 Ă Int N .

Definition 1.2.3. A meridian γ of N is called an effective meridian relative to N 1 if
any meridian disc with boundary γ intersects the core of N 1.

The handbody N is called an effective handlebody relative to N 1, if any meridian of N
is an effective meridian relative to N 1.

Note that if N 1 is contained in a 3-ball B Ă Int N , there is no effective meridian
relative to N 1.

Lemma 1.2.4. Let N 1 and N be two closed handlebodies with N 1 Ă Int N . The
handlebody N is an effective handlebody relative to N 1 if and only if the map π1pBNq Ñ

π1pNzN 1q is injective.

Proof. If N is not an effective handlebody relative to N 1, there is a meridian disc
pD, BDq Ă pN, BNq with D X N 1 “ H. Therefore, the map π1pBNq Ñ π1pNzN 1q is not
injective.

If the map π1pBNq Ñ π1pNzN 1q is not injective, we apply Lemma 1.1.2 to the 3-

manifold NzN 1. There is an embedded disc pD1, BD1q Ă pNzN 1, BNq whose boundary is
not contractible in BN . As in Remark 1.1.3, we may assume that Int D1 Ă Int pNzN 1q.
We see that D1 is a meridian disc with D1 X N 1 “ H. Therefore, N is not an effective
handlebody relative to N 1. �

Lemma 1.2.5. Let N 1 and N be two closed handlebodies satisfying that 1) N 1 Ă Int N

and 2) π1pBN
1q Ñ π1pNzN 1q is injective. If N is an effective handlebody relative to N 1,

then any meridian disc pD, BDq Ă pN, BNq contains a meridian of N 1.

The proof is the same as the proof of Lemma 2.12 in [Wan19a].
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Proof. Suppose that the closed meridian disc D intersects BN 1 transversally where
γ :“ BD is a meridian of N . The intersection DXBN 1 is a disjoint union of circles tciuiPI .
Each ci bounds a unique closed disc Di Ă Int D.

Consider the set Cnon :“ tci | ci is not contractible in BN 1u and the set Cmax “ tci| ci
is a maximal circle in tciuiPIu.

We will show that Cnon is nonempty and a minimal circle in Cnon is a desired meridian.
Suppose the contrary that Cnon is empty. Hence, each ci P C

max is contractible in BN 1

and bounds a disc D1i Ă BN
1. Consider the immersed disc

D̂ :“ pDz YciPCmax Diq Y pYciPCmaxD
1
iq

with boundary γ. Since D̂ X Int N 1 “ H, we see that γ is contractible in NzN 1.

However, Lemma 1.2.4 shows that the map π1pBNq Ñ π1pNzN 1q is injective. That is
to say, the circle γ is nullhomotopic in BN . This is in contradiction with our hypothesis
that γ is non-trivial in π1pBNq. We conclude that Cnon ‰ H.

In the following, we will prove that each minimal circle cj in Cnon is a required merid-
ian. From Definition 1.2.1, it is sufficient to show that cj is homotopically trivial in N 1.

Our strategy is to construct an immersed disc D̂j Ă N 1 with boundary cj.
Let Cj :“ tci |ci Ă Int Dj for i P Iu and Cmax

j be the set of maximal circles in Cj. We
now have two cases: Cj “ H or Cj ‰ H.

Case I: If Cj is empty, we consider the set Z :“ Int Dj and define the disc D̂j as
Int Dj.

Case II: If Cj is not empty, then Cmax
j is also nonempty. From the minimality of cj

in Cnon, each ci P C
max
j is nullhomotopic in BN 1 and bounds a disc D2i Ă BN

1.

Define the set Z :“ Int DjzYciPCmaxj
Di and the new disc D̂j :“ ZYpYciPCmaxj

D2i q with
boundary cj.

Let us explain why D̂j is contained in N 1. In any case, BN 1 cuts N into two connected
components, NzN 1 and Int N 1. The set Z is one of these components of Int DjzBN

1.
Therefore, it must be contained in Int N 1 or NzN 1.

If Z is in NzN 1, the disc D̂j is contained in NzN 1. Thus, cj is contractible in NzN 1.

However, since the induced map π1pBN
1q Ñ π1pNzN 1q is injective, then cj is homotopically

trivial in BN 1. This contradicts the choice of cj P C
non. We conclude that Z is contained

in Int N 1.
Therefore, D̂j is contained in N 1. That is to say, cj is null-homotopic in N 1. However,

rcjs is a non-trivial element in π1pBN
1q. From Definition 1.2.1, we conclude that cj Ă D

is a meridian of N 1. This finishes the proof. �

As a consequence, we have

Corollary 1.2.6. Let N 1 and N be two closed handlebodies in a contractible 3-
manifold M satisfying that 1) N 1 Ă Int N and 2) the map π1pBN

1q Ñ π1pMzN 1q is

injective. If an embedded circle γ Ă BN is not nullhomotopic in MzN 1, then any embed-
ded disc D ĂM with boundary γ contains a meridian of N 1.

The proof is the same as Lemma 1.2.5.
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1.2.2. The system of meridians.

Lemma 1.2.7. For a closed handlebody N of genus g, there are g disjoint non-splitting
meridians tγlugl“1 so that Nz >l NεlpDlq is a closed 3-ball, where Dl is a closed meridian
disc with boundary γl and NεlpDlq is an open neighborhood of Dl in N with small radius
εl .

The set of these meridians tγlugl“1 is called a system of the handlebody N of genus g.
In general, it is not unique.

Proof. Pick any non-splitting meridian γ1 of N . We use Lemma 1.1.2 to find an
embedded disc D1 Ă N .

As Remark 1.1.3, we may assume that Int D1 Ă Int N . The set N1 :“ NzNεpD1q is a
closed handlebody of genus g´ 1, where Nε1pD1q is the open tubular neighborhood of D1

in N with small radius ε1. In particular, the map π1pBN X BN1q Ñ π1pBN1q is surjective.
Choose a non-splitting meridian γ2 Ă BN X BN1 of N1. By Lemma 1.1.2, there exists

a meridian disc D2 of N1 “ NzNε1pD1q. The set N2 :“ NzNε1pD1q >Nε2pD2q is a closed
handlebody of genus g ´ 2, where Nε2pD2q is an open tubular neighborhood of D2 in N .

We repeat this process g´2 times and obtain g disjointly embedded discs tDlu so that
Nz >l NεlpDlq is a handlebody of genus zero (a 3-ball). The boundaries tγlugl“1 of these
discs are g distinct meridians which are the required candidates in the assertion. �

Corollary 1.2.8. Let N Ă M , tγlu and tDlu be as in Lemma 1.2.7, where M is a
3-manifold without boundary. If R Ă Int N is a closed handlebody satisfying that 1) it

is not contained in a 3-ball in M ; 2) π1pBRq Ñ π1pMzRq is injective, then BR X >lDl

contains at least a meridian of R.

The poof is also similar to the proof of Lemma 2.12 [Wan19a].

Proof. We may assume that BR intersects >lDl transversally. The intersection BRX
>Dl :“ tγuγPC has finitely many components. Let us consider the set Cnon :“ tγ P C is
not contractible in BRu.

Claim: Cnon is nonempty.
We argue by contradiction. Suppose that Cnon is empty. We have that any circle in

DlXBR is contractible in BR. As in the proof of Lemma 1.2.5, we get a new disc in NzR

with boundary γl. Therefore, γl is null-homotopic in NzR.

We use Lemma 1.1.2 to find an embedded disc D11 Ă NzR with boundary γ1. As

in Remark 1.1.3, we may assume that Int D11 Ă Int NzR (or D11 Ă NzR). Choose
the open tubular neighborhood Nε11

pD11q of D11 in NzR with small radius ε11. The set
N 1

1 :“ NzNε11
pD11q is a closed handlebody of genus g ´ 1 containing R.

In addition, for l ą 1, γl is a non-splitting meridian of N 1
1 but contractible in

NzpNε11
pD11q >Rq.

Repeating this process g ´ 1 times, we obtain g embedded discs tD1lu
g
l“1 so that

1) R X >lNε1l
pD1lq “ H;

2) The handlebody Nz >l Nε1l
pD1lq is of genus zero (a closed 3-ball),

where Nε1l
pD1lq is the open tubular neighborhood of D1l in N with small radius ε1l.
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Therefore, R is contained in the 3-ball Nz>lNε1l
pD1lq. This contradicts our hypothesis.

The claim follows.
As in the proof of Lemma 1.2.5, we use the condition 2) to show that each minimal

circle in Cnon is a required meridian. �

1.3. Examples

In this part, we begin with Knot theory in a closed solid torus. Subsequently, we
introduce several notations, such as the geometric index, the Whitehead manifold and
contractible genus one 3-manifolds. In addition, we construct two non-homeomorphic
contractible 3-manifolds whose fundamental group at infinity are both non-trivial.

1.3.1. Knots basic.

Definition 1.3.1. A subset K of a 3-manifold X is a knot if K is homeomorphic
with a circle S1. More generally, K is a link if K is homeomorphic with a disjoint union
of one or some circle(s).

Two knots or links K and K 1 are ambient isotopic if there is a homeomorphism
h : X Ñ X such that (1) h is isotopic to the identity map; (2) hpKq “ K 1.

A knot K is called to be trivial (or unknotted) in X if there exists an embedded disc
in X with boundary K.

(II)(I)

Figure 1.1.

For example, if X is R3 or S3, the knot (I) is ambient isotopic to the knot (II) in X
(See Figure 1.1). These two knots are both trivial in S3.

If X is a torus T2, two knots K and K 1 are ambient isotopic if and only if rKs “ ˘rK 1s

in π1pT2q (See [16.Theorem, Page 25] of [Rol03]).

We consider a closed solid torus N and a knot K Ă N . Embed N into S3 as an
unknotted solid torus (See Definition 1.1.14). The knot K can be viewed as a knot in S3.
The disjoint union K > γ is a link in S3, where γ is a meridian of N .

Recall that an n-component link L Ă S3 is unlinked if and only if there exist n
disjointly embedded discs Di Ă S3 so that L “ >iBDi.



1.3. EXAMPLES 34

Remark 1.3.2. The knot K is trivial in N if and only if the link K > γ is unlinked in
S3. The reason is as follows:

If K is trivial in N , there exists an embedded closed disc D Ă N with boundary K.
This disc is away from the knot γ in S3.

Since N Ă S3 is unknotted , the meridian γ is a trivial knot in S3. Note that S3zD is
homeomorphic to an open 3-ball. Then, γ is a trivial knot in S3zD. Hence, one finds an
embedded disc D0 Ă S3zD with boundary γ. Therefore, K > γ is the boundary of D >D0.
That is to say, the link γ >K Ă S3 is unlinked.

If K > γ is unlinked in S3, there exists an embedded closed disc D in S3zγ with
boundary K. Therefore, K is trivial in the complement of the knot γ.

A closed solid torus N is homeomorphic with S1 ˆD2, where D2 is a closed unit disc
in R2. A special homeomorphism h : S1 ˆD2 Ñ N is called a framing of N .

A longitude of N is any simple closed curve in BN of form hpS1ˆx0q, for some framing
h of N and some point x0 in D2.

Remark 1.3.3. In a closed solid torus N , the kernel of the induced map π1pBNq Ñ
π1pNq is isomorphic to Z. Each meridian γ of N belongs to the kernel. Since γ is an
embedded curve, it is a generator of the kernel.

An embedded circle θ Ă N is a longitude if and only if rθs and rγs generate H1pBN,Zq,
where γ is a meridian of N (See Page 29 of [Rol03]). In addition, any longitude of N is
isotopic to the core of N in N .

Definition 1.3.4. Assume that p, q are relatively prime and N is an unknotted solid
torus in S3. The torus knot Tp,q Ă BN Ă S3 of type pp, qq is the knot which wraps around
N in the longitudinal direction p times and in the meridional direction q times.

For example, the trefoil is T2,3. Here are T2,3 and T3,4.

The p2, 3q torus knot The p3, 4q torus knot

Figure 1.2.

Remark 1.3.5. The knot Tp,q is trivial in S3 if and only if p “ ˘1 or q “ ˘1 (See
Page 53 of [Rol03]).
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In the following, we consider two closed solid tori N 1 and N with N 1 Ă IntN .

Lemma 1.3.6. If the closed solid torus N 1 Ă Int N is homotopically trivial in the
closed solid torus N , then H1pNzN 1q “ Z2 and the kernel of the induced map H1pBN

1q Ñ

H1pNzN 1q is generated by a longitude of N 1.

Proof. As in Lemma 1.2.2, we use the Mayer-Vietoris sequence to show thatH1pNzN 1q

is isomorphic to Z2. It is generated by a meridian of N 1 and a longitude of N .
The image of the map H1pBN

1q Ñ H1pNzN 1q is a subgroup of rank one which is

generated by the meridian γ1 of N 1. The kernel of H1pBN
1q Ñ H1pNzN 1q is also of rank

one and generated by rθ1s, where θ1 Ă BN 1 is an embedded circle. Therefore, H1pBN
1q is

generated by rγ1s and rθ1s. The circle θ1 is a longitude of N 1 (See Page 29 of [Rol03] or
Remark 1.3.3). That is to say, the longitude θ1 is a generator of the kernel of H1pBN

1q Ñ

H1pNzN 1q. �

1.3.2. The Whitehead manifold. The Whitehead manifold is constructed from the
Whitehead link. Recall that the Whitehead link is a link with two components illustrated
in Figure 1.3:

Figure 1.3.

Choose a closed unknotted solid torus T1 in S3. Its complement inside S3 is another
solid torus. Take a second solid torus T2 inside T1 so that the core of K2 forms a Whitehead
link with any meridian of T1 as in Figure 1.4.
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Figure 1.4.

The solid torus T2 is unknotted in S3. Then, embed T3 inside T2 in the same way as
T2 lies in T1 and so on infinitely many times. Define the set T8 “ X8k“1Tk, called the
Whitehead continuum.

The Whitehead manifold is defined as Wh :“ S3zT8 which is an open 3-manifold.

Remark 1.3.7. From the above construction, we know that

(1) Since each Tk is unknotted in S3, then its complement Nk is a solid torus. There-
fore, the Whitehead manifold is an increasing union of solid tori tNkuk as in
Remark 1.1.13. In addition, each Nk is embedded inside Nk`1 in the same way
as T2 lies in T1. This follows from the symmetry of the Whitehead link.

(2) The core Kk of Nk is a non-trivial knot in the solid torus Nk`1. Furthermore,
the link Kk > γk`1 is a Whitehead link for each meridian γk`1 of Nk`1. This is a
consequence of the symmetry of the Whitehead link.

(3) Each Kk is unknotted in S3. For each j ą k, Kk is nullhomotopic in Nj but a
non-trivial knot in Nj.

Remark that the Whitehead manifold has no complete metric of positive scalar cur-
vature (See Theorem B1).

1.3.3. Geometric Index.

Definition 1.3.8. [Sch53] If N 1 Ă Int N are solid tori, the geometric index of N 1

in N , IpN 1, Nq, is the minimal number of points of the intersection of the core of N 1 with
a meridian disc of N .

Remark 1.3.9. If the geometric index IpN 1, Nq is greater than zero, the solid torus
N is an effective handlebody relative to N 1 (See Definition 1.2.3).

If the core K 1 of N 1 is a trivial knot in N , there is a meridian disc pD, BDq Ă
pNzN 1, BNq. Moreover, IpN 1, Nq is equal to zero. (See Corollary 2.9 of [Wan19a])

For example, in Wh, the geometric index IpNk, Nk`1q “ 2 for each k, where Nk is
illustrated as in Chapter 1.3.2.

See [Sch53] for the following results about the geometric index.
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1) Let N0, N1, and N2 be solid tori so that N0 Ă Int N1 and N1 Ă Int N2. Then
IpN0, N2q “ IpN0, N1qIpN1, N2q.

2) If N0 and N1 are unknotted solid tori in S3 with N0 Ă Int N1, and if N0 is homo-
topically trivial in N1, then IpN0, N1q is even.

Lemma 1.3.10. Suppose that the closed solid torus N 1 Ă Int N is homotopically trivial
in the closed solid torus N . If IpN 1, Nq ą 0, then the two induced maps i1 : π1pBNq Ñ

π1pNzN 1q and i2 : π1pBN
1q Ñ π1pNzN 1q are both injective.

Proof. Since IpN 1, Nq ą 0, the solid torus N is an effective handlebody relative to

N 1 (See Remark 1.3.9). We use Lemma 1.2.4 to see that the map i1 : π1pBNq Ñ π1pNzN 1q

is injective.
Suppose that the map i2 is not injective. We use Lemma 1.1.2 to find an embedded

disc pD2, BD2q Ă pNzN 1, BN 1q. The embedded circle θ :“ BD2 is not contractible in BN 1.
Since θ bounds an embedded disc D2 Ă NzN 1, it is a trivial knot in N . Furthermore,

rθs belongs to the kernel of the map H1pBN
1q Ñ H1pNzN 1q. From Lemma 1.3.6, the

embedded circle θ is a longitude of N 1.
Recall that as a knot, any longitude of N 1 is isotopic to the core K 1 of N 1 in N 1 (See

Remark 1.3.3). Therefore, K 1 is isotopic to θ and a trivial knot in N . From Remark 1.3.9,
IpN 1, Nq “ 0. This is a contradiction. �

Lemma 1.3.11. Suppose that the closed solid torus N 1 Ă Int N is homotopically trivial
in the closed solid torus N . If IpN 1, Nq ą 0, then any meridian disc D of N contains a
meridian of N 1.

It follows from Lemma 1.3.10 and Lemma 1.2.5.

1.3.4. Genus one 3-manifold. (See [GRW18]) Let us describe McMillan’s con-
struction in [McM62].

Definition 1.3.12. (Genus one 3-manifold) A genus one 3-manifold M is the ascend-
ing union of solid tori tNkukPN, so that for each k, Nk Ă Int Nk`1 and the geometric index
of Nk in Nk`1 is not equal to zero.

Theorem 1.3.13. (See [Theorem 2.8, Page 2042] of [GRW18])

(1) A genus one 3-manifold defined with a sequence of open solid tori tNkukPN so
that each Nk is contractible in Nk`1, is a contractible 3-manifold that is not
homeomorphic to R3.

(2) Any contractible genus one 3-manifold can be written as an ascending union of
solid tori tNkukPN so that 1) Nk is contractible in Nk`1; 2) IpNk, Nk`1q ě 2 for
each k.

For example, the Whitehead manifold is a contractible genus one 3-manifold.

Any contractible genus one 3-manifold M :“ Y8i“0Nk satisfies the following:

(1) For each k, Nk is homotopically trivial in Nk`1. Moreover, IpNk, Nk`1q ě 2.
(2) For each j ą k, the core Kk of Nk is null-homotopic in Nj but a nontrivial knot

in Nj.
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(3) If Nj is viewed as an unknotted solid torus in S3, then the link Kk > γj Ă S3 is
linked in S3, for each meridian γj of Nj for j ą k. Moreover, its linking number
is zero.

(4) However, the knot Kk Ă S3 may be knotted in S3.

Together these properties, we will show that no contractible genus one 3-manifold
admits a complete metric of positive scalar curvature (See Theorem B2).

1.3.5. More examples. In this part, we construct a contractible 3-manifold whose
fundamental group at infinity is non-trivial.

Let us describe the construction of such a manifold.
Choose an unknotted handlebody W0 Ă S3 of genus two (See Definition 1.1.14). Take

a second handlebody W1 Ă Int W0 of genus two which is a tubular neighborhood of the
curve in Figure 1.5. Then, embed another handlebody W2 of genus two inside W1 in
the same way as W1 lies in W0 and so on infinitely many times. Therefore, we obtain a
decreasing family tWkuk of handlebodies of genus two.

Wk

Wk`1

Figure 1.5.

The manifold M1 is defined as M1 :“ S3z X8k“0 Wk. It is an open 3-manifold.
We have that each Wk is unknotted in S3 (See Definition 1.1.14). That is, the comple-

ment Nk of Wk in S3 is a handlebody of genus two. Therefore, M1 can be written as the
increasing union of handlebodies tNkuk of genus two. In addition, each Nk lies in Nk`1

as in Figure 1.6. (The set Kk is the core of Nk.) Since each Nk is homotopically trivial
in Nk`1, M1 is a contractible 3-manifold.
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γkNk`1Kk

γk`1

Figure 1.6.

Next, we construct a properly embedded plane P1 Ă M1 and show that π81 pM1q is
non-trivial.

Choose the splitting meridian γk`1 Ă BNk`1 of Nk`1 as in Figure 1.6. We have that γk
is homotopic to γk`1 in Nk`1zNk. Choose an embedded annulus Ak Ă Nk`1zNk (namely,
it is homeomorphic to S1 ˆ r0, 1s) with boundary γk > γk`1. We define the plane P1 as

P1 :“ Ykě0Ak Yγ0 D0

where D0 Ă N0 is a meridian disc with boundary γ0.

Proposition 1.3.14. Let M1 and P1 be constructed as above. Then,

‚ the fundamental group at infinity π81 pM1q is non-trivial;
‚ the properly embedded plane P1 cuts M1 into two Whitehead manifolds.

Remark. Since π81 pM1q is non-trivial, M1 is not simply-connected at infinity. That
is, M1 is not homeomorphic to R3.

The family tNku of handlebodies satisfies Property H (See Definition 2.2.5).

Proof. First, we will show that π81 pM1q is non-trivial. Since γk is homotopic to γk`1

in M1zN0, it is sufficient to show that γ0 is not contractible in M1zN0 (See Remark 1.1.10).
We see from Figure 1.6 that Nk`1 is an effective handlebody relative to Nk. From

Lemma 1.2.4, the map π1pBNk`1q Ñ π1pNk`1zNkq is injective for k ě 0.
From Figure 1.5, we have that Wk is an effective handlebody relative to Wk`1. By

Lemma 1.2.4, the maps π1pBWkq Ñ π1pWkzWk`1q is also injective. In addition, the

space WkzWk`1 is equal to Nk`1zNk. Then, we can conclude that the map π1pBNkq Ñ

π1pNk`1zNkq is injective for k ě 0.

Claim: the map π1pBN0q Ñ π1pM1zN0q is injective.

Theorem 1.1.4 gives an isomorphism between π1pN2zN0q and π1pN1zN0q˚π1pBN1qπ1pN1zN0q.

From the above fact, the maps π1pBN1q Ñ π1pN1zN0q and π1pBN1q Ñ π1pN2zN1q are both

injective. We use Lemma 1.1.5 to show that the map π1pN1zN0q Ñ π1pN2zN0q is injective.
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In addition, the map π1pBN0q Ñ π1pN1zN0q is injective. The composition of these two

maps π1pBN0q Ñ π1pN2zN0q is injective.
Repeating the above argument several times, we obtain that the map π1pBN0q Ñ

π1pNjzN0q is injective for each j ą 0. Hence, the map π1pBN0q Ñ π1pM1zN0q is injective.
This finishes the proof of this claim.

Since γ0 is not homotopically trivial in BN0, it is also non-contractible in M1zN0. Since

each γk is homotopic to γk`1 in M1zN0, each γk is a non-trivial element in π1pM1zN0q.
We see from Remark 1.1.10 that π81 pM1q is non-trivial.

It remains to show that P1 cuts M1 into two Whitehead manifolds.
The plane P1 cuts M1 into two contractible 3-manifolds M 1

1 and M2
1 . In addition,

P1 XNk is a splitting meridian disc of Nk with boundary γk.
From the sequence tNku, we obtain two increasing families, tN 1

ku and tN2
k u, of solid

tori in M1 satisfying that

‚ M 1
1 “ YkN

1
k and M2

1 “ YkN
2
k ;

‚ the set NkzpN
1
k >N

2
k q is a tubular neighborhood of the meridian disc P1 XNk.

Furthermore, each N 1
k is embedded into N 1

k`1 as in Figure 1.7. From Chapter 1.3.2,
we see that M 1

1 is homeomorphic to the Whitehead manifold. Similarly, the contractible
3-manifold M2

1 is also homeomorphic to the Whitehead manifold. Therefore, P1 cuts M1

into two Whitehead manifolds. �

N 1
k

N 1
k`1

Figure 1.7.

Together with the proof of Theorem B2, we have that

Theorem 1.3.15. The contractible 3-manifold, M1, has no complete metric of positive
scalar curvature.

We will prove it in Chapter 6.



CHAPTER 2

Topological Properties

In this chapter, we discuss several topological properties of contractible 3-manifolds.
We first study the behavior of embedded discs in the Whitehead manifold and their re-

lationship with the geometric indexes. Their relation is clarified by Theorem 2.1.2. Based
on their relation, we introduce the topological property, called Property P . Furthermore,
we show that any contractible genus one 3-manifold satisfies this property.

Next, we consider contractible 3-manifolds. We introduce two types of surgeries on
handlebodies. We use these surgeries to show the existence of effective handlebodies (See
Theorem 2.2.3). Then we inductively find an increasing family of handlebodies with good
properties, called Property (H).

2.1. Property P

2.1.1. The Whitehead case. As in Chapter 1.3.2, Wh Ă S3 is an increasing union
of closed solid tori tNku

8
k“0 so that the geometric index IpNk, Nk`1q “ 2, for each k. For

any j ą k, the core Kk of Nk is a non-trivial knot in Nj but unknotted in S3. In addition,
the link Kk > γj is linked with zero linking number, for any meridian γj of Nj.

Lemma 2.1.1. Any embedded circle γ Ă BNk which is the boundary of a closed embed-
ded disc D in Wh but not nullhomotopic in BNk, is a meridian of Nk.

Proof. Since the disc D is compact, there is some k0 ą k such that D is contained
in Nk0 .

Let γ belong to the homology class prγks ` qrθks in H1pBNkq, where γk and θk are a
meridian and a longitude of Nk. Since Nk is an unknotted solid torus in S3(See Remark
1.3.7), γ (as a knot in S3) is isotopic to the torus knot Tp,q in S3.

Because the knot γ bounds an embedded disc D in Nk0 , it is a trivial knot in Nk0 Ă S3.
Hence, γ is unknotted in S3. We see from Remark 1.3.5 that p “ ˘1 or q “ ˘1.

Since the knot γ is trivial in Nk0 , we use Remark 1.3.9 to find a meridian disc
pD1, BD1q Ă pNk0 , BNk0q with D1X γ “ H . Because the geometric index IpNk, Nk0q ą 0,
the disc D1 contains at least one meridian γ1k of BNk (Lemma 1.3.11 or Lemma 1.2.5).

Therefore, γ1k X γ is empty. Their intersection number on BNk must be zero.
We knows that the intersection number of γ and γ1k is q. Therefore, we knows that

p “ ˘1, q “ 0. That is to say, γ is homotopic to the meridian γ1k on BNk. This completes
the proof. �

Theorem 2.1.2. Any γ Ă BNk bounding an embedded disc D in Wh satisfies one of
the following:

(1) rγs is trivial in π1pBNkq,
(2) D X Int Nl has at least IpNl, Nkq components intersecting N0, for each l ă k.

41
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Note that the geometric index IpNl, Nkq is equal to 2k´l.

Proof. We argue by induction on k.

‚ When k “ 0, it is trivial.
‚ We suppose that it holds for Nk´1.

We suppose that the closed curve γ is not contractible in BNk. From Lemma 2.1.1, it is
a meridian of Nk. In addition, the linking number of γ >Kk´1 is zero, where Kk´1 is the
core of Nk´1 (See Remark 1.3.7).

We may assume that D intersects BNk´1 transversally. The set DXBNk´1 has finitely
many components C :“ tγiuiPI . Each component γi is an embedded circle and bounds a
unique closed disc Di Ă Int D.

Let tγjujPI0 be the set of maximal circles in C where I0 Ă I. Each γj is the boundary
of the disc Dj, for j P I0.
Claim: There exist at least two elements in tγjujPI0 , which are meridians of Nk´1.

By Lemma 1.3.10, the maps π1pBNkq Ñ π1pNkzN0q and π1pBNkq Ñ π1pNmzNkq are
both injective for any m ą k. Van-Kampen’s Theorem (See Theorem 1.1.4) gives an

isomorphism between π1pNmzN0q and π1pNkzN0q ˚π1pBNkq π1pNmzNkq. We use Lemma

1.1.5 to see that the map π1pBNkq Ñ π1pNmzN0q is also injective. Therefore, since γ is

not contractible in BNk, we can conclude that it is not contractible in WhzN0.
If γj is homotopically trivial in BNk´1 for each j P I0, then one finds a disc D1j Ă

BNk´1. Consider a new disc D1 :“ pΣzYjPI0 Djq Y pYjPI0D
1
jq in WhzN0 with boundary γ.

Therefore, γ is contractible in WhzN0. This contradicts the last paragraph. We see that
one of tγjujPI0 is non-contractible in BNk´1. Hence, by Lemma 2.1.1, there is at least one
meridian of Nk´1 in tγjujPI0 .

In the following, we argue by contradiction.
Suppose that there is a unique meridian of Nk´1 in the set tγjujPI0 . That is to say,

there is a unique j0 P I0 such that γj0 is a meridian of Nk´1. Remark that each γj bounds
a unique disc Dj Ă D.

If γj is not contractible BNk for some j P I0ztj0u, Lemma 2.1.1 shows that it is a
meridian, which contradicts the uniqueness of j0. We see that γj is nullhomotopic in
BNk´1, for each j P I0ztj0u.

Consider a meridian disc D̂j0 of Nk´1 with boundary γj0 , which intersects the core

Kk´1 of Nk´1 transversally at one point. For j P I0ztj0u, there exists a disc D̂j Ă BNk´1

with boundary γj.

Define a new disc D̂ :“ pDz YjPI0 Djq YjPI0 pYγjD̂jq with boundary γ. It intersects

Kk´1 transversally at one point, which implies that the intersection number of D̂ and
Kk´1 is ˘1.

Therefore, the linking number of γ >Kk´1 is ˘1. This is in contradiction with the fact
that its linking number is zero.

This completes the proof of the claim.

From the above claim, there are at least two distinct meridians, γj0 and γj1 , of Nk´1

in tγjujPI0 . Applying our inductive assumption to Dj0 and Dj1 respectively, we know that
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Djt X Int Nl has at least 2k´1´l components intersecting N0 for t “ 0, 1 for l ď k ´ 1.
Therefore, D X Int Nl has at least 2k´l components intersecting N0. �

Based on Theorem 2.1.2, we introduce a topological property.

Definition 2.1.3. A contractible genus one 3-manifold M is called to satisfy Property
P if for any properly embedded plane Σ ĂM , any k ą 0 and any closed curve γ Ă BNkXΣ,
it holds one of the following:

(1) γ is contractible in BNk;
(2) for l ă k, D X Int Nl has at least IpNl, Nkq components intersecting N0,

where D Ă Σ is a unique disc with boundary γ and tNkuk is a sequence as described in
Theorem 1.3.13.

We will show that all contractible genus one 3-manifolds satisfy Property P (Theorem
2.1.6).

2.1.2. The Genus one case. In this part, we show that any contractible genus one
3-manifold satisfies Property P .

First, recall some notations from Chapter 1.3.4. Any contractible genus one 3-manifold
M is the ascending union of closed solid tori tNku

8
k“0 so that Nk is homotopically trivial

in Nk`1 and the geometric index IpNk, Nk`1q ě 2 (See Theorem 1.3.13).
In the genus one case, Lemma 2.1.1 can be generalized as follows:

Lemma 2.1.4. A circle γ Ă ΣX BNk, which is not contractible in BNk, is a meridian
of Nk, where Σ ĂM is a properly embedded plane. Moreover, the unique disc D Ă Σ with
boundary γ intersects the core K0 of N0.

Proof. We may assume that Σ intersects BNk transversally. Since Σ is properly
embedded, Σ X BNk :“ tγiu

n
i“0 has finitely many components, where γ0 “ γ. Each γi

bounds a unique closed disc Di Ă Σ (where D0 “ D).
Define the set C :“ tγi|γi Ă D0 is not contractible in BNku. It is not empty (γ0 Ă D0).
Since tγiu

n
i“0 is a family of disjoint circles, we see that the intersection number of γ

and γi in BNk is zero for each i ‰ 0.
If rγis is not equal to ˘rγs in π1pBNkq for some γi P C, the intersection number of γ

and γi is nonzero in BNk. This contradicts the above fact. We can conclude that each
γi P C is homotopic to γ in BNk, up to orientation.

In the following, we will show that each minimal circle γj in C is a meridian. This is
to say, γ is also a meridian of Nk.

The remaining proof is similar to the proof of Lemma 1.2.4. It is sufficient to show that
γj is homotopically trivial in Nj. We begin by constructing an immersed disc D̂j Ă Nk

with boundary γj.

Let us consider the set Cj :“ tγi |γi Ă Int Dju Ă C and the set Cmax
j of maximal

circles in Cj. One has two cases: Cj “ H or Cj ‰ H.

Case I: If Cj is empty, we consider the set Z :“ Int Dj and define the disc D̂j as
Int Dj;
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Case II: If Cj is not empty, then Cmax
j is also non-empty. From the minimality of γj,

each γi P C
max
j is contractible in BNk and bounds a disc D1i Ă BNk.

Define the set Z :“ Int Djz YγiPCmaxj
Di and the disc D̂j :“ Z Y pYγiPCmaxj

D1iq with
boundary γj.

Let us explain why D̂j is contained in Nk. In any case, BNk cuts M into two
connected components, MzNk and Int Nk. The set Z is one of these components of
Int DjzBNk.Therefore, it is in MzNk or Int Nk.

If Z is in MzNk, then the disc D̂j with boundary γj is contained in MzNk. Therefore,

we see that rγjs “ 0 in π1pMzNkq. However, the map π1pBNkq Ñ π1pMzNkq is injective
(Lemma 1.3.10). That is to say, γj is null-homotopic in BNk. This contradicts the fact
that rγjs ‰ 0 in π1pBNkq. We can conclude that Z is contained in Int Nk.

Therefore, D̂j is contained in Nk. Its boundary γj is nullhomotopic in Nk. Since γ is
homotopic to γj in BNk, it is also contractible in Nk. By Definition 1.2.1, γ must be a
meridian of Nk.

By Lemma 1.3.10, the two induced maps π1pBNkq Ñ π1pMzNkq and π1pBNkq Ñ

π1pNkzK0q are both injective. Van-Kampen’s theorem (See Theorem 1.1.4) shows that

π1pMzK0q – π1pMzNkq ˚π1pBNkq π1pNkzK0q. We see from Lemma 1.1.5 that the map
π1pBNkq Ñ π1pMzK0q is also injective. Therefore, rγs ‰ 0 in π1pMzK0q. We can conclude
that the disc D Ă Σ with boundary γ must intersect the core K0 of N0. �

Remark 2.1.5.

‚ In the proof, the set D̂jX Int Nk is equal to the set Z and a subset of DX Int Nk.

‚ The disc D̂j may not be embedded, because D1i may be contained in some D1i1 .

When it is not an embedding, we can deform D̂j in a small neighborhood of BNk

in Nk so that it becomes an embedded disc in Nk.

Theorem 2.1.6. Any contractible genus one 3-manifold M satisfies Property P .

Proof. Consider a properly embedded plane Σ Ă M . Suppose there is some closed
curve γ Ă ΣX BNk which is not contractible in BNk for some k P Ną0. By Lemma 2.1.4,
γ is a meridian of Nk and the unique closed disc D Ă Σ with boundary γ intersects N0.

We may assume that Σ intersects BNk transversally. The set D X BNk :“ tγiu
n
i“0 has

finitely many components where γ0 “ γ.
Define the set C :“ tγi | the circle γi Ă DXBNk is not contractible in BNku. (It is not

empty because γ Ă D). We use Lemma 2.1.4 to see that each minimal circle γj in C is a
meridian of Nk. It bounds a unique closed disc Dj Ă D. As in the proof of Lemma 2.1.4,

we construct a disc D̂j Ă Nk with boundary γj. Remark that D̂j X IntNk is a subset of
D X IntNk (See the above Remark).

As described in the above remark, the disc D̂j may be not embedded. If necessary,
we can deform it in a small neighborhood of BNk in Nk so that it becomes an embedded
disc. For l ă k, D̂j X Int Nl is still a subset of D X Int Nl Ă Σ.

It is sufficient to show that D̂jX Int Nl has at least IpNl, Nkq components intersecting
N0.
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We may assume that D̂j intersects BNl transversally. The intersection D̂j X BNl :“

tγ1tutPT has finitely many components. Let us consider the set Ĉmax of maximal circles in

tγ1tutPT and its subset Ĉnon :“ tγ1t P Ĉ
max|γ1t is not contractible in BNlu.

Claim: |Ĉnon| ě IpNl, Nkq.

We argue by contradiction. Suppose that |Ĉnon| ă IpNi, Nkq. Each γ1t P Ĉ
max bounds

a unique disc D1t Ă D̂j .

If γ1t is in Ĉnon, it is a meridian of Nl (See Lemma 2.1.4). Therefore, we can find a
meridian disc D2t of Nl which intersects the core Kl of Nl transversally at one point. If

γ1t P Ĉ
maxzĈnon, γ1t is contractible in BNl and bounds a disc D2t in BNl.

Define a disc D̂1j with boundary γj

D̂1j :“ pD̂jz Yγ1tPĈmax
D1tq Y pYγ1tPĈmaxD

2
t q.

The number #pD̂1j XKlq of points of D̂1j XKl is less than IpNl, Njq.

As above, the disc D̂1j may be not embedded (because D2t may be contained in some

D2t1). If necessary, we modify the disc D̂1j in a small neighborhood of BNl so that it becomes
an embedded disc in Nk.

Therefore, we may assume that pD̂1j, BD̂
1
jq Ă pNk, BNkq is an embedded disc with

boundary γj. Since γj is a meridian of Nk(See Lemma 2.1.4), D̂1j is a meridian disc of

Nk with #pD̂1j X Klq ă IpNl, Nkq. However, the definition of the geometric index (See

Definition 1.3.8) gives that #pD̂1j X Klq ě IpNl, Nkq, a contradiction. This finishes the
proof of the claim.

In the following, we will finish the proof of the theorem.
Let tγ1su

m
s“1 be the circles in Ĉnon and D1s Ă D̂j the unique disc with boundary γ1s,

where m “ |Ĉnon
j |. From the maximality of γ1s in tγ1tutPT , tD1su

m
s“1 is a family of pairwise

disjoint discs in D̂j.

We use Lemma 2.1.4 to see that each γ1s P Ĉ
non is a meridian. Thus, D1s intersects the

core K0 of N0. The intersection D1sX Int Nl contains at least one component intersecting
N0.

We conclude that D̂j X Int Nl has at least m components intersecting N0. From the
above claim, we know that m ě IpNl, Nkq. Therefore, D X Int Nl has at least IpNl, Nkq

components intersecting N0. �

Remark 2.1.7.

‚ The proof of Lemma 2.1.4 and Theorem 2.1.6 just depend on the injectivity of
the two maps π1pBNkq Ñ π1pNkzN0q and π1pBNkq Ñ π1pMzNkq.

‚ Let tRkuk be an increasing family of solid tori in a contractible 3-manifold with
the property that
(1) π1pBRkq Ñ π1pRkzR0q is injective ;

(2) π1pBRkq Ñ π1pMzRkq is injective .
However, the union YkRk may not be equal to M .

From the above fact, Lemma 2.1.4 holds for each Rk. Further, as in the proof
of Theorem 2.1.6, the family tRku satisfies Property P. That is to say, for any
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properly embedded plane Σ ĂM , any k ą 0 and any closed curve γ Ă BRk XΣ,
it holds one of the following:
(1) γ is contractible in BRk;
(2) for l ă k, D X Int Rl has at least IpRl, Rkq components intersecting R0,

where D Ă Σ is a unique disc with boundary γ.

2.2. Property H

2.2.1. Surgeries. Consider two closed handlebodies N 1 and N in a 3-manifold M
with N 1 Ă Int N . We introduce two types of surgeries on handlebodies:

Type I: If there exists a meridian disc D Ă NzN 1 of N , then we consider an open tubular
neighborhood NεpDq Ă NzN 1 of D. We then have two cases:

Case (1): If D is a splitting meridian disc, NzNεpDq has two components. The closed
handlebody W1 is defined as the component containing N 1;

Case(2): If D is a non-splitting meridian disc, NzNεpDq is connected. The closed
handlebody W1 is defined by NzNεpDq.

Type II: If there exists an embedded disc D1 Ă MzN satisfying that 1) Int D1 Ă MzN
and 2) its boundary γ Ă BN is not contractible in BN , we consider a closed tubular

neighborhood Nε1pD1q of D1 in MzN . Define a new handlebody W2 as N YNε1pD1q.

Remark 2.2.1. For i “ 1, 2, the genus gpBWiq of BWi is less than gpBNq. In addition,
BWi is a union of BWi X BN and some disjoint discs. It tells us that the map π1pBWi X

BNq Ñ π1pBWiq is surjective.

Lemma 2.2.2. If N 1 is homotopically trivial in N , then N 1 is also homotopically trivial
in Wi for each i, where Wi is obtained from the above surgeries.

Proof. For the type II surgery, we see that N is contained in W2. Therefore, N 1 is
homotopically trivial in W2.

For the type I surgery, it is sufficient to show that any circle c Ă N 1 bounds some disc
D̂1 Ă W1.

The closed curve c bounds an immersed disc D1 Ă Int N . We will construct the
required disc D̂1 Ă W1 from D1.

We may assume that D1 intersects D´ >D` :“ Int N X BNεpD
1q transversally. Each

component ci of D1 X pD` >D´q is a circle in D1 and bounds a closed sub-disc D1i Ă D1.
Since D` and D´ are two disjoint discs, each ci is contractible in D` > D´. It also

bounds a disc D2i Ă D` >D´. Let Cmax be the set of the maximal circles of tciuiPI in D1.
We construct a disc

D̂1 :“ D1z YciPCmax D
1
i Y pYciPCmaxD

2
i q

with boundary c. It stays in NzNεpD1q. That is to say, c is contractible in W1. Therefore,
N 1 is homotopically trivial in W1. �

2.2.2. Effective Handlebodies. In the following, let us consider a contractible 3-
manifold M .
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Theorem 2.2.3. Let N 1 and N be two closed handlebodies in M satisfying that 1)
N 1 Ă Int N and 2) N 1 is homotopically trivial in N .Then there exists a closed handlebody
R ĂM containing N 1 satisfying that

(1) the map π1pBRq Ñ π1pRzN 1q is injective;

(2) the map π1pBRq Ñ π1pMzRq is injective;
(3) N 1 is homotopically trivial in R;
(4) BR is a union of BR X BN and some disjoint discs.

Remark. From (1), R is an effective handlebody relative to N 1 (Lemma 1.2.4).

Proof. Suppose that either the map i1 : π1pBNq Ñ π1pNzN 1q is not injective or the

map i2 : π1pBNq Ñ π1pMzNq is not injective. (If these two maps are both injective, R is
defined as N .)

If i1 is not injective, Lemma 1.1.2 shows that there exists a meridian disc D1 of N
with D1 X N 1 “ H. We do the type I surgery on N with the disc D1 to obtain a new
handlebody W .

If i2 is not injective, we use Lemma 1.1.2 to find an embedded circle γ Ă BN and an
embedded disc D2 ĂMzN (Int D2 ĂMzN) where γ “ BD2 is not nullhomotopic in BN .
We do the type II surgery with the disc D2 to get a new handlebody W .

In any case, we have that gpBW q ă gpBNq. The boundary BW is a union of BW XBN
and some disjoint discs tD1iui. Therefore, π1pBW X BNq Ñ π1pBW q is surjective. In
addition, we see from Lemma 2.2.2 that N 1 is contractible in W .

When picking a circle γ Ă BW which is not nullhomotopic in BW , we may assume
that γ is an embedded circle in BW X BN . Therefore, when repeating these two types of
surgeries, we may assume that the new surgeries are operated away from these disjoint
discs tD1iu.

Iterate this process until we find a handlebody R satisfying (1) and (2). At each
step, the genus of the handlebody obtained from the surgery is less than the original one.
Therefore, this process stops in no more than gpNq steps.

As above, N 1 is contractible in R and BR is a union of BR X BN and some disjoint
discs. �

Remark. If N 1 is not contained in a 3-ball in M , then the genus of R is greater than
zero.

Lemma 2.2.4. Let R Ă M be a closed effective handlebody relative to the closed han-
dlebody N 1 Ă Int R satisfying that π1pBRq Ñ π1pMzRq is injective. If a closed handlebody
N is an effective handlebody relative to R Ă Int N , then N is an effective handlebody
relative to N 1.

Proof. Based on Lemma 1.2.4, it is sufficient to show that the map π1pBNq Ñ

π1pNzN 1q is injective.

We use Lemma 1.2.4 to show that the induced map π1pBRq Ñ π1pRzN 1q is injective.

Since π1pBRq Ñ π1pMzRq is injective, then the map π1pBRq Ñ π1pNzRq is also injective.

Van Kampen’s theorem (Theorem 1.1.4) gives an isomorphism between π1pNzN 1q and

π1pNzRq ˚π1pBRq π1pRzN 1q. A classical result (See [Theorem 11.67, Page 404] of [Rot12]

or Lemma 1.1.5) shows that the induced map π1pNzRq Ñ π1pNzN 1q is injective.
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Lemma 1.2.4 shows that the map π1pBNq Ñ π1pNzRq is injective. Therefore, the

composition π1pBNq Ñ π1pNzRq Ñ π1pNzN 1q is also injective. This finishes the proof.
�

2.2.3. Property H. In the following, let us consider a contractible 3-manifold M
which is not homeomorphic to R3.

By Theorem 1.1.12, M can be written as an ascending union of handlebodies tNku
8
k“0.

Each Nk is contractible in Nk`1. As in Remark 1.1.8, we can choose N0 so that it is not
contained in a 3-ball in M (because M is not homeomorphic to R3).

In the genus one case, the family tNku has several good properties. For example,

each Nk is an effective handlebody relative to N0 and the map π1pBNkq Ñ π1pMzNkq is
injective (See Lemma 1.3.10 or Lemma 2.10 of [Wan19a]). These properties are necessary
and crucial in our proof. In general, the family tNku may not have these properties. To
overcome this difficulty, we introduce a topological property, called Property H.

Definition 2.2.5. A family tRkuk of handlebodies in a contractible 3-manifold M :“
YkNk is called to have Property H if it satisfies that

(1) the map π1pBRkq Ñ π1pRkzR0q is injective for k ą 0;

(2) the map π1pBRkq Ñ π1pMzRkq is injective for k ě 0;
(3) each Rk is contractible in Rk`1 but not contained in a 3-ball in M ;
(4) there exists a sequence of increasing integers tjkuk, such that π1pBRk X BNjkq Ñ

π1pBRkq is surjective.

where tNku is assumed as in Remark 1.1.13.

For example, in a contractible genus one 3-manifold M :“ YkNk, the family tNkuk
satisfies Property H, where tNku is assumed in Chapter 1.3.4 (See Lemma 1.3.10).

In the following, we will prove if a contractible 3-manifold M is not homeomorphic
to R3, there is a family of handlebodies with Property H (See Theorem 2.2.6). However,
such a family is not unique .

Theorem 2.2.6. If a contractible 3-manifold M :“ YkNk (as above) is not homeomor-
phic to R3, then there is an ascending family tRkuk of closed handlebodies in M satisfying
that

(1) the map π1pBRkq Ñ π1pRkzR0q is injective for k ą 0;

(2) the map π1pBRkq Ñ π1pMzRkq is injective for k ě 0;
(3) each Rk is contractible in Rk`1 but not contained in a 3-ball in M ;
(4) there exists a sequence of increasing integers tjkuk, such that π1pBRk X BNjkq Ñ

π1pBRkq is surjective.

Remark 2.2.7.

‚ The union YkRk may be not equal to M .
‚ For k ą 0, Van-Kampen’s Theorem gives an isomorphism between π1pMzR0q

and π1pMzRkq ˚π1pBRkq π1pRkzR0q. Based on (1) and (2) in Theorem 2.2.6, we use

Lemma 1.1.5 to show that the map π1pBRkq Ñ π1pMzR0q is injective.
‚ As (4) in Theorem 2.2.3, BRk is the union of BRk X BNjk and disjoint discs.
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Proof. First, we construct R0. We repeatedly apply the Type II surgery to N0, until
we find a handlebody R0 containing N0 so that π1pBR0q Ñ π1pMzR0q is injective.

From Remark 2.2.1, we see that, at each step, the genus of the handlebody obtained
from the surgery is less than the original one. Therefore, this process stops in no more
than gpN0q steps.

In addition, since N0 is not contained in a 3-ball in M , then R0 has the same property.

It remains to construct the sequence tRkuk inductively.
When k is equal to 1, we pick a handlebody Nj1 containing R0 satisfying that R0 is

homotopically trivial in Nj1 . Its existence is ensured by the following fact:
Because R0 is compact, there is some handlebody Nj1´1 containing R0. Since Nj1´1

is homotopically trivial in Nj1 , R0 is contained in Nj1 and contractible in Nj1 .

By Theorem 2.2.3, there exists a handlebody R1 containing R0 so that

‚ π1pBR1q Ñ π1pR1zR0q is injective;

‚ π1pBR1q Ñ π1pMzR1q is injective;
‚ R0 is contractible in R1;
‚ BR1 is a union of BR1XBNj1 and some disjoint closed discs. Therefore, π1pBR1X

BNj1q Ñ π1pBR1q is surjective.

In particular, since R0 is not contained in a 3-ball in M , R1 has the same property.
Suppose that there exists a handlebody Rk´1 and a positive integer jk´1 satisfying

(1), (2), (3) and (4) in Theorem 2.2.6.
As the existence of Nj1 , there exists a handlebody Njk containing Rk´1 satisfying that

Rk´1 is homotopically trivial in Njk . We use Theorem 2.2.3 to find an effective handlebody
Rk relative to Rk´1 satisfying (2), (3) and (4).

Since the map π1pBRk´1q Ñ π1pRk´1zR0q is injective, Rk´1 is an effective handlebody
relative to R0 (Lemma 1.2.4). Lemma 2.2.4 shows that Rk is an effective handlebody
relative to R0. We apply Lemma 1.2.4 again and get that Rk also satisfies (1). This
finishes the proof. �
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CHAPTER 3

Minimal Surfaces

A minimal surface is a submanifold in a Riemannian manifold whose mean curvature
is identically zero. It is also the critical point of the area functional (See the first variation
formula, Equation (3.1.12)).

In Section 3.1, we first introduce the so-called first and second variation formulas for
the area functional. Subsequently, we derive some notations, such as minimal surfaces,
Morse index and the stability condition. Finally, we focus on the Plateau Problem and
related results.

In Section 3.2, we discuss some local properties of minimal surfaces, including the
strong maximal principle (See Corollary 3.2.3) and the monotonicity formula (See Propo-
sition 3.2.5) for the area. Particularly, the monotonicity formula gives a quantitative
estimate for the area (See Corollary 3.2.6). This estimate can be generalized to the Rie-
mannian case (See Theorem 3.2.7).

In Section 3.3, we study the topology of stable minimal surfaces. The stable minimal
hypersurface is characterized by the first eigenvalue of the stable operator (See Lemma
3.3.1 and Theorem 3.3.4). In a manifold of positive scalar curvature, there are many
topological constraints for stable minimals surfaces (See Proposition 3.3.5). For example,
in the case of 3-manifolds with positive scalar curvature, the geometry of stable minimal
surfaces is influenced by the extrinsic version of Cohn-Vossen inequality (See Corollary
3.3.6 and Theorem 3.3.10). As an application, we give a new proof of Theorem 2 of [SY82].
Finally, we use Theorem 3.3.8 to study contractible 3-manifolds whose scalar curvature
has a decay at infinity.

3.1. Background

3.1.1. Mean Curvature. Let us consider a k-dimensional submanifold Σk Ă pMn, gq
possibly with boundary.

In the following, if X is a vector field on Σ Ă M , then we let XT and XN denote
the tangential and normal components, respectively. The covariant derivative ∇ on M
induces a covariant derivative ∇Σ on Σ and the second fundamental form A of Σ. More
precisely, the induced covariant derivative ∇Σ is given by

(3.1.1) ∇Σ
“ p∇qT

and the vector-valued bilinear form A on Σ is given for X, Y P TΣ by

(3.1.2) ApX, Y q “ p∇XY q
N .

Since the Lie bracket of X and Y is a tangential vector field in TΣ, it is easy to see that
A is symmetric, i.e., ApX, Y q “ ApY,Xq.

51
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The mean curvature vector H at a point x P Σ is defined

H “

k
ÿ

i“1

ApEi, Eiq,

where tEiu is an orthonormal basis for TxΣ. Furthermore, the squared norm of the second
fundamental form at x is given by

(3.1.3) |A|2 “
k
ÿ

i,j“1

|ApEi, Ejq|
2.

Recall also that the Gauss equations assert if X, Y P TxΣ, then

KΣpX, Y q|X ^ Y |2 “ KMpX, Y q|X ^ Y |2

` gpApX,Xq, ApY, Y qq ´ gpApX, Y q, ApX, Y qq
(3.1.4)

where |X ^ Y |2 is given by

|X ^ Y |2 “ gpX,XqgpY, Y q ´ gpX, Y q2

and KXpX, Y q and KΣpX, Y q are the sectional curvatures of M and Σ , respectively, in
the 2-plane spanned by X and Y .

For example, let Σn´1 ĂMn be a hypersurface and N a unit normal vector field in a
neighborhood of x P Σ, then

∇p¨qN : TxΣ Ñ TxΣ

is a symmetric map (often referred to as the Weingarten map) and its eigenvalues tκiu
n´1
i

are called the principle curvatures. Moreover,

gpH,Nq “ ´
n´1
ÿ

i“1

κi.

Finally, if X is a vector field over Σ, then the divergence of X at x P Σ is defined as

(3.1.5) divΣX “

n´1
ÿ

i“1

gp∇T
Ei
X,Eiq

where tEiu is an orthonormal basis for TxΣ. Notice that divΣ satisfies the Leibniz rule

divΣpfXq “ gp∇Σf,Xq ` f divΣpXq.

We can also use divΣ to define the Laplace operator ∆Σ on Σ by

∆Σf “ divΣp∇Σfq.

A function f is a harmonic function on Σ if ∆Σf “ 0.

Remark 3.1.1. Note that

divΣY
N
“
ÿ

i

gpEi,∇EiY
N
q “ ´

ÿ

i

gpY N ,∇EiEiq

“ ´gpY N , Hq.

(3.1.6)
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3.1.2. First Variation Formula. Let F : Σk ˆ p´ε, εq Ñ Mn be a variation of a
k-dimensional submanifold Σk with compact support and fixed boundary. That is, F “ Id
outside a compact set,

F px, 0q “ x

and for all x P BΣ,

F px, tq “ x.

The vector Ft restricted to Σ is called the variational vector field. Now we want to
compute the first variation of area for this one parameter family of surfaces. Let pxiq be
a local coordinate on Σ. Set

gijptq “ gpFxi , Fxjq,

νptq “
b

detpgijptqq
a

detpgijp0qq,
(3.1.7)

where paijq denotes the inverse of the metric paijq and 1 ď i, j ď k. Further, the area
formula is

(3.1.8) VolpF pΣ, tqq “

ż

Σ

νptq
b

det pgijp0qq

Differentiating it gives

(3.1.9)
d

dt
VolpF pΣ, tqq

ˇ

ˇ

ˇ

ˇ

t“0

“

ż

Σ

d

dt
νptq|t“0

b

det pgijp0qq.

We may choose an orthonormal coordinate system, i.e. so that at the point x

gijp0q “ δij “

$

&

%

0, i ‰ j;

1, i “ j.

Using that rFt, Fxis “ 0, under this coordinate, we get at x,

d

dt
det pgijp0qqptq

ˇ

ˇ

ˇ

ˇ

t“0

“
ÿ

ij

d

dt
gijptq

ˇ

ˇ

ˇ

ˇ

t“0

gijp0q “
k
ÿ

i“1

d

dt
pgpFxi , Fxiqq

ˇ

ˇ

ˇ

ˇ

t“0

“ 2
k
ÿ

i“1

gp∇FtFxi , Fxiq “ 2
k
ÿ

i“1

gp∇Fxi
Ft, Fxiq

“ 2divΣpFtq.

(3.1.10)

Therefore, from Equation (3.1.6) we have

d

dt
νptq

ˇ

ˇ

ˇ

ˇ

t“0

“ divΣpFtq “ divΣpF
T
t q ` divΣpF

N
t q

“ ´gpH,FN
t q ` divΣpF

T
t q.

(3.1.11)

Integrating Equation (3.1.11) gives the so-called first variation formula:

(3.1.12)
d

dt
VolpF pΣ, tqq “ ´

ż

Σ

gpFN
t , Hq “

ż

Σ

divΣpFtq.
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Note that Stokes’ Theorem was used to see that
ş

Σ
divΣpF

T
t q “ 0. As a consequence of

Equation (3.1.12), we see that Σ is a critical point for the area functional if and only if
the mean curvature H vanishes identically.

Definition 3.1.2. An immersed submanifold Σk Ă pMn, gq is said to be minimal if
the mean curvature H vanishes identically.

For example, let Σ be the graph of a function u : Rn Ñ R. The hypersurface Σ is
minimal in Rn`1 if and only if u satisfies

(3.1.13) divp
∇u

a

1` |∇u|2
q “ 0.

It is the so-called minimal surface equation. Furthermore, in dimension three (n “ 2), we
know

(3.1.14)
|Hesspuq|2

p1` |∇u|2q3
ď |A|2 ď 2

|Hesspuq|2

1` |∇u|2

See Pages 28 and 29 in [CM11].

3.1.3. Second Variation Formula. Suppose now that Σk Ă pMn, gq is a minimal
submanifold. We want to compute the second derivative of the area functional for a
variation of Σ. Therefore, we consider a variation F of Σ with compact support. In fact,
we assume that F is a normal variation, that is, on Σ we have

F T
t p¨, 0q “ 0.

As before, let pxiqi be a local coordinate on Σ and set

gijptq “ gpFxi , Fxjq,

νptq “
b

detpgijptqq
a

detpgijp0qq.

Differentiating the measure νptq gives

(3.1.15)
d2

dt2
VolpF pΣ, tqq

ˇ

ˇ

ˇ

ˇ

t“0

“

ż

Σ

d2

dt2
νptq

ˇ

ˇ

ˇ

ˇ

t“0

b

detpgijp0qq.

Recall that the first derivative of the measure νptq can be written as

(3.1.16) 2
d

dt
νptq “

ÿ

ij

g1ijptqg
ij
ptqνptq.

To evaluate d2

dt2
νptq

ˇ

ˇ

ˇ

ˇ

t“0

at some point x P Σ, we may choose an orthonormal coordinate

pxiqi at x. Since the metric pgijq is the identity at x, the vectors Fxi give an orthonormal
basis for TΣ at x. Differentiating Equation (3.1.16) then gives at x,

(3.1.17) 2
d2

dt2
νptq

ˇ

ˇ

ˇ

ˇ

t“0

“
ÿ

i

g2iip0q ´
ÿ

ij

g1ijp0q
2
` 1{2p

ÿ

i

g1iip0qq
2.



3.1. BACKGROUND 55

We have that g1iip0q “ gp∇FtFxi , Fxiq “ gp∇Fxi
Ft, Fxiq “ ´gp∇Fxi

Fxi , Ftq. Since Σ

is minimal and F T
t “ 0, we have

ř

i g
1
iip0q “ ´gp

ř

i∇Fxi
Fxi , Ftq “ ´gpFt, Hq “ 0 as in

Equation (3.1.6). Therefore, we get

(3.1.18) 2
d2

dt2
νptq

ˇ

ˇ

ˇ

ˇ

t“0

“
ÿ

i

g2iip0q ´
ÿ

ij

g1ijp0q
2.

Lemma 3.1.3. At the point x, we get
ÿ

ij

g1ijp0q
2
“4

ÿ

ij

gpApFxi , Fxjq, Ftq
2,

ÿ

i

g2iip0q “2
ÿ

ij

gpApFxi , Fxjq, Ftq
2
` 2|∇N

ΣFt|
2

` 2
ÿ

i

gpRMpFxi , FtqFt, Fxiq ` 2divΣpFttq.

Proof. An easy computation gives that

g1ijp0q “ gp∇FtFxi , Fxjq ` gpFxi ,∇FtFxjq “ ´2gpApFxi , Fxjq, Ftq.

This implies the first equation.
We compute that

g2iip0q “ 2gp∇Ft∇FtFxi , Fxiq ` 2gp∇FtFxi ,∇FtFxiq.

Next use the definition of the Riemann curvature tensor RM of M to get
ÿ

i

gp∇Ft∇FtFxi , Fxiq “
ÿ

i

gp∇Ft∇Fxi
Ft, Fxiq sincerFt, Fxis “ 0

“
ÿ

i

gpRpFxi , FtqFt, Fxiq `
ÿ

i

gp∇Fxi
∇FtFt, Fxiq

“
ÿ

i

gpRpFxi , FFtqFt, Fxiq ` divΣpFttq.

Therefore, we have
ÿ

i

g2iip0q “ 2
ÿ

i

gp∇T
FtFxi ,∇

T
FtFxiq ` 2

ÿ

i

gp∇N
FtFxi ,∇

N
FtFxiq

` 2
ÿ

i

gpRpFxi , FFtqFt, Fxiq ` 2divΣpFttq

“ 2
ÿ

ij

gpApFxi , Fxjq, Ftq
2
` 2|∇N

ΣFt|
2

` 2
ÿ

i

gpRMpFxi , FtqFt, Fxiq ` 2divΣpFttq.

�

The map gpAp¨, ¨q, Ftq : TxΣ ˆ TxΣ Ñ R is a symmetric bilinear map. Since tFxiu
is an orthonormal basis of TΣ at x, the squared norm |gpAp¨, ¨q, Ftq|

2pxq is equal to
ř

ij gpApFxi , Fxjq, Ftq
2. Similarly, the trace TrΣ gpRMp¨, FtqFt, ¨qpxq equals

ř

i gpRMpFxi , FtqFt, Fxiq.
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Therefore, we get at x

(3.1.19)
d2

dt2
νptq

ˇ

ˇ

ˇ

ˇ

t“0

“ ´|gpAp¨, ¨q, Ftq|
2
` |∇N

ΣFt|
2
´ TrΣ gpRMp¨, Ftq¨, Ftq ` divΣpFttq.

Note that we used the skew symmetry of RM to reverse the sign.
The vector Fttp¨, 0q can be decomposed into two parts, the tangential part F T

tt and the
normal partial part FN

tt . We use Stokes’ theorem to see that
ş

Σ
divΣpF

T
tt q “ 0. From the

minimality of Σ and Equation (3.1.6), we have that
ş

Σ
divpFN

tt q “ ´
ş

Σ
gpFN

tt , Hq “ 0.
Inserting Equation (3.1.19) into Equation (3.1.15), integrating and using the minimality
of Σ, we get

d2

dt2
VolpF pΣ, tqq “ ´

ż

Σ

|gpAp¨, ¨q, Ftq|
2

`

ż

Σ

|∇N
ΣFt|

2
´

ż

Σ

TrΣgpRMp¨, Ftq¨, Ftq

“ ´

ż

Σ

gpFt, LpFtqq.

(3.1.20)

The self-adjoint operator L is the so-called stability operator (or Jacobi operator)
defined on a normal vector field X to Σ by

LpXq “ ∆N
ΣX ` TrΣgpRMp¨, Xq¨, Xq ` ÂpXq

where Â is Simons’ operator defined by

ÂpXq “
k
ÿ

i,j“1

gpApEi, Ejq, XqApEi, Ejq

and ∆N
Σ is the Laplacian on the normal bundle, that is

∆N
ΣX “

k
ÿ

i“1

p∇Ei∇EiXq
N
´

k
ÿ

i“1

p∇p∇EiEiq
TXqN .

A normal vector field X with LpXq “ 0 is said to be a Jacobi field.

We will adopt the convention that λ is a (Dirichlet) eigenvalue of L on Ω Ă Σ if there
exists a non-trivial normal vector field X which vanishes on BΩ so that

LpXq ` λX “ 0.

Definition 3.1.4. The Morse index of a compact minimal surface Σk Ă pMn, gq is
the number of negative eigenvalues of the stability operator L (counting with multiplic-
ity) acting on the space of smooth sections of the normal bundle which vanishes on the
boundary.

A minimal surface submanifold Σk Ă pMn, gq is stable if for all variations F with fixed
boundary and compact support
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d2

dt2
VolpF pΣ, tqq

ˇ

ˇ

ˇ

ˇ

t“0

“ ´

ż

Σ

gpFt, LpFtqq ě 0.

A complete (possibly non-compact) minimal submanifold without boundary is said to
be stable if all compact subdomains are stable.

For a minimal hypersurface Σn´1 Ă pMn, gq with trivial normal bundle, the stability
operator simplifies significantly since, in this case, it becomes an operator on functions.
Namely, if we identify a normal vector field X “ ηN , then

(3.1.21) Lpηq “ ∆Ση ` |A|
2η `RicMpN,Nqη,

where RicM is the Ricci tensor of M .
Schoen and Yau [SY79b] pointed out that the stability operator (See Equation

(3.1.21)) is linked with the scalar curvature of M(See Page 7 in [SY79b]).

Proposition 3.1.5. (See Page 7-8 of [SY79b])Let Σn Ă pMn`1, gq be a minimal
surface with trivial normal bundle. Then the operator can be written as

(3.1.22) L “ ∆Σ ´ κΣ ` κM ` 1{2|A|2

where κΣ and κM are the scalar curvature of Σ and M , respectively.

Proof. Fixed a point x P Σ, we may choose an orthonormal basis tEiu
n`1
i“1 of TxM .

The unit vector En`1 is equal to the unit normal vector of Σ. The Gauss Equations (See
Equation (3.1.4)) assert

(3.1.23) KΣpEi, Ejq “ KMpEi, Ejq ` AiiAjj ´ A
2
ij

where KΣ and KM are the sectional curvature of Σ and M respectively, Aij :“ ApEi, Ejq.
Summing Equation (3.1.23), we have

ÿ

1ďiăjďn

KΣpEi, Ejq “
ÿ

1ďiăjďn

KMpEi, Ejq `
ÿ

1ďiăjďn

AiiAjj ´ A
2
ij.

Therefore, by the minimality of Σ, the scalar curvature of M is

κM “
ÿ

1ďiăjďn

KMpEi, Ejq `RicMpEn`1, En`1q

“
ÿ

1ďiăjďn

KΣpEi, Ejq ´ p
ÿ

1ďiăjďn

AiiAjj ´ A
2
ijq

`RicMpEn`1, En`1q

“ κΣ ` 1{2|A|2 `RicMpN,Nq.

(3.1.24)

Therefore, putting Equation (3.1.24) into Equation (3.1.21), we get

L “ ∆Σ ´ κΣ ` 1{2|A|2 ` κM .

�
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3.1.4. Existence of Minimal surfaces. The following fundamental existence prob-
lem for minimal surfaces is known as the Plateau problem:

Given a closed curve Γ, find a minimal surface with boundary Γ.

This problem was first formulated by Lagrange in 1760 and was studied extensively
by Plateau in the 19th century. This question had led to many significant developments
in partial differential equations and geometric measure theory, such as Morrey’s works
[Mor48,Mor09] and Fleming-Federer’s works [FF60].

There are various solutions to this problem, depending on the exact definition of a
surface (parametrized disc, integral current, Z2-current or varifold ). In the following, we
consider the version of the Plateau problem for parametrized discs.

In the case of R3, the solution was obtained in 1930 by J.Douglas [Dou31] and simul-
taneously by T.Radó [Rad30].

Theorem 3.1.6. (See [Theorem 4.1, Page 134] in [CM11]) Given a piecewise C1

closed Jordan curve Γ Ă R3. there exists a map u : D Ă R2 Ñ R3 so that

(1) u : BD Ñ Γ is monotone and onto;
(2) u P C0pDq XW 1,2pDq and is C8 in the interior of D;
(3) The image of u minimizes area among all maps from the discs with boundary Γ.

The generalisation to the Riemannian manifold is due to C.B.Morrey [Mor48,Mor09].

For fixed boundary Γ, an area-minimizing disc is a solution to the Plateau Problem.
Therefore, Morrey [Mor48, Mor09] used the variation method to find such a disc in a
homegenous Riemannian 3-manifold. That is, take a sequence of mappings from the disc
to the 3-manifold whose area are going to the infimum and attempt to extract a convergent
subsequence. Morrey [Mor48, Mor09] pointed out that the limit of a subsequence of
mappings is also the solution to the Dirichlet problem for the harmonic map.

For example, in R3, the existence of weak (W 1,2-)solution to the Dirichlet problem
for the harmonic map is ensured by the Kondrachov compactness theorem for W 1,2(See
[Theorem 7.22, Page 167] of [GT15]). Weyl’s Lemma told us that the weak solution is
smooth in the interior of domain. This result also follows from the standard regularity
theory (See [Theorem 2.10, Page 23] of [GT15]). The above argument can be generalized
to a homogenous Riemannian 3-manifold.

This solution is called Morrey’s solution to the Plateau problem. In addition, the
argument of Gulliver [Gul73] and Osserman [Oss70] pointed out that this solution has
no interior branched point.

The remaining issue is the regularity of this solution up to the boundary. In the case
of R3, J.J. Nitsche [Nit69] gave an answer:

Theorem 3.1.7. ([Theorem 1, 315] in [Nit69])Let u be a function from D Ă R2 to
R as in Theorem 3.1.6. If Γ is a regular Jordon curve of class Ck,α, where k ě 1 and
0 ă α ă 1, then u is Ck,α on D.

This result can be generalized to the Riemannian 3-manifolds in [HH70].

In various works, compact 3-manifolds with mean convex boundary were intensively
studied. Let pM, gq be a compact 3-manifold with boundary. The boundary BM is mean
convex if



3.2. LOCAL STRUCTURES OF MINIMAL SURFACES 59

‚ BM is a piecewise smooth 2-manifold consisting of smooth surfaces tHiui
‚ for each i, the mean curvature of Hi is nonnegative.

Theorem 3.1.8. (See [MY80, MY82] or[Theorem 6.28, Page 224] of [CM11] )
Let pM3, gq be a compact Riemannian 3-manifold whose boundary is mean convex and γ
a simple closed curve in BM which is null-homotopic in M . Then, γ bounds an area-
minimizing disc and any such least area disc is properly embedded.

This theorem will be repeatedly used in the following.

3.2. Local structures of Minimal Surfaces

It is classical that the minimal surface theory consists of two aspects: PDE and Ge-
ometry. These two aspects give various results about local structures of minimal surfaces,
such as the maximum principle and the monotonicity formula.

3.2.1. Minimal surfaces are locally graphical. We begin with a minimal surface
Σ Ă R3. The Gauss map is a continuous choice of a unit normal

N : Σ Ñ S2
Ă R3.

There are two choices of such a map N and ´N corresponding to a choice of orientation
of Σ. Suppose that E1,E2 is an orthonormal frame on Σ. We know that

ă ∇EiN,Ej ą“ ´AΣpEi, Ejq

where AΣ is the second fundamental form (See Equation (3.1.2)) of Σ. Therefore,

(3.2.1) |dN | ď |A|.

Lemma 3.2.1. (See [Lemma 2.4, Page 74] in [CM11])Let Σ Ă R3 be an immersed
minimal surface with

(3.2.2) 16s2 sup
Σ
|AΣ|

2
ď 1.

If x P Σ and dΣpx, BΣq ě 2s, then the geodesic ball BΣpx, 2sq, centered at x with radius 2s,
can be written as a graph of a function u over TxΣ with |∇u| ď 1 and

?
2s|Hesspuq| ď 1.

Proof. We define

(3.2.3) dx,y :“ dS
2

pNpxq, Npyqq.

Therefore, we see that

(3.2.4) ă Npxq, Npyq ą“ cos dx,y.

Recall that |dN | ď |A| (See Equation (3.2.1)). Therefore, given y P BΣpx, 2sq, integrating
(3.2.2) along a geodesic from x to y gives that

(3.2.5) sup
yPBΣpx,2sq

dx,y ď
1

2
ă
π

4
.

Therefore, it follows that BΣpx, 2sq is contained in the graph of a function u over a subset
of TxΣ.
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We may choose a coordinate pxkq
3
k“1 on R3 so that

x “ p0, 0, 0q,

TxΣ “ tpx1, x2, 0qu.

Therefore, Npxq “ p0, 0, 1q and Npyq “
p´ux1 ,´ux2 ,1q?

1`|∇u|2
. From Equation (3.2.3), we have

p1` |∇u|2q “ă Nx, Ny ą
´2
“ cos´2

pdx,yq

where the last equality comes from Equation (3.2.1).
If y P BΣpx, 2sq, Equation (3.2.5) implies that |∇upyq| ď 1. The Hessian estimate of

u comes from the gradient and curvature estimate together with Equation (3.1.14):

|Hesspuq|2 ď p1` |∇u|2q3|A|2 ď 1

2
s´2.

�

3.2.2. Strong Maximal Principle. First note that the difference of two solutions
to the minimal surface equation (See Equation (3.1.13)) satisfies an elliptic divergent
form equation (where the bound on the ellipticity depends on the gradient of the minimal
graphs).

Lemma 3.2.2. If u1 and u2 are two solutions to the minimal surface equation (See
Equation (3.1.13)) on a domain Ω Ă Rn, then v :“ u1 ´ u2 satisfies an equation of the
form:

(3.2.6) divpApxq∇vq “ 0

where each eigenvalue λk of the matrix Apxq :“ pai,jpxqqnˆn satisfies µ ă λk ă 1{µ , where
µ depends only on the upper bounds for the gradient of |∇u1| and |∇u2|.

Proof. Define the mapping F : Rn Ñ Rn by

F pXq “
X

p1` |X|2q1{2
.

Note that each uk satisfies divpF p∇ukqq “ 0. We know that

F p∇u1q ´ F p∇u2q “

ż 1

0

d

dt
F pt∇u1 ` p1´ tq∇u2qdt

“

ż 1

0

dF pt∇u1 ` p1´ tq∇u2q ¨∇pu1 ´ u2qdt

“ p

ż 1

0

dF pt∇u1 ` p1´ tq∇u2qdtq ¨∇pu1 ´ u2q.

(3.2.7)

From this, we can conclude that v “ u1´u2 satisfies an equation of the form divpApxq∇vq “
0, where the matrix Apxq is given by Equation (3.2.7).

The remaining is to show that Equation (3.2.6) is a uniformly elliptic equation.
Given a unit vector V P Sn´1 Ă Rn and X P Rn, we see that

dF pXqV “
V

p1` |X|2q1{2
´

ă X, V ą

p1` |X|2q3{2
X.
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In particular, taking inner product with V gives

p1` |X|2q3{2 ă dF pXqV, V ą “ p1` |X|2q´ ă X, V ą2

ě p1` |X|2q ´ |X|2 “ 1.

It follows that Apxq is a weighted average of positive definite matrix and thus also a
positive definite matrix. �

Corollary 3.2.3. Let Ω Ă Rn be an open connected neighborhood of the origin. If
u1, u2 : Ω Ñ R are two solutions to the minimal surface equation (See Equation (3.1.13))
with u1 ď u2 and u1p0q “ u2p0q, then u1 ” u2.

Proof. Lemma 3.2.2 tells us that the difference v :“ u1´u2 satisfies divpai,j∇vq “ 0,
where the matrix ai,j is positive definite. We apply the strong maximum principle for the
linear elliptic equation to v. (See [HL11] or [Theorem 3.5, Page 48] of [GT15]). �

As in Lemma 3.2.1, a minimal hypersurface can be locally written as the graph of a
solution to the minimal surface equation. As a consequence of Corollary 3.2.3 we know
that

Corollary 3.2.4. If Σ1,Σ2 Ă Rn are two complete connected minimal hypersurfaces
(without boundary), Σ1 X Σ2 ‰ H and Σ2 lies on one side of Σ1, then Σ1 “ Σ2.

3.2.3. Monotonicity Formula and Area estimates.

Proposition 3.2.5. (The Monotonicity Formula) Suppose that Σk Ă Rn is a minimal
submanifold and x0 P Σ. Then for all 0 ă s ă t,

VolpBpx0, tq X Σq

tk
´

VolpBpx0, sq X Σq

sk
“

ż

Bpx0,tqzBpx0,sqXΣ

|px´ x0q
N |2

|x´ x0|
k`2

,(3.2.8)

where px´ x0q
N is the projection of the normal part of Σ of the vector px´ x0q.

See [Chapter 3.2, Page 24-26] of [CM11] for a proof.
As a consequence, we have

Corollary 3.2.6. Suppose that Σk Ă Rn is a minimal submanifold and x0 P Rn.
Then the function

Θx0psq “
VolBpx0, sq X Σq

VolpBp0, sq Ă Rkq

is a non-decreasing function of s. Moreover, if x0 P Σ, then Θx0psq ě 1 and

(3.2.9) VolpΣXBpx0, sqq ě ωks
k,

where ωk is the volume of the unit ball Bp0, 1q Ă Rn.

The area estimate (3.2.9) can be generalized to the Riemannian manifolds. Before we
state it, we will recall the coarea formula. This formula asserts (See, for instant, Chapter
3.2 of [Fed14] for a proof) that if pM, gq is a Riemannian manifold and the function

h : M Ñ R
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is a proper (i.e. h´1pp8, tsq is compact for all t P R) Lipschitz function, then for any
locally integral function f on M and t P R,

(3.2.10)

ż

hďt

f |∇Mh| “

ż t

8

ż

h“τ

fdτ.

Theorem 3.2.7. (See [Lemma 1, Page 445] of [MY80]) Let pMn`1, gq be a Rie-
mannian manifold whose sectional curvature is bounded by a positive constant K and Σn

a minimal submanifold. If for some point x0 P Σ, dMpx0, BMq and dMpx0, BΣq are both
greater than a constant ε ą 0, then for any δ ď mintε, ipMqu

(3.2.11) VolpBpx0, δq X Σq ě CnK

ż δ

0

t´1
psinpKtqqndt,

where ipMq is the radius of injectivity of M and Cn depends only on n.

Proof. Let rpxq be the distance function of M from x0 to x P Σ. If rpxq is smaller
than ipMq, the Hessian comparison theorem (See [Theorem 27, Page 175] of [PAR06])
gives

(3.2.12) Hesspei, eiqprqpxq :“ ∇ei∇eir ´∇∇eieiprq ě K cotpKrq

where x P Σ, teiu
n
i“1 is an orthonormal basis of TxΣ and N is a unit normal vector of Σ

at x.
Summing Equation (3.2.12) and using the minimality of Σ, we have

∆Σr
2
pxq ě 2rpxq∆Σrpxq “ 2rpxqp

n
ÿ

i“1

∇ei∇eir ´∇∇Σ
ei
peiqrq

“ 2rpxqp
n
ÿ

i“1

Hesspei, eiqprq `
n
ÿ

i“1

∇∇Nei peiq
rq,

“ 2rpxqp
n
ÿ

i“1

Hesspei, eiqprq `∇Hpxqrq, because Hpxq “
n
ÿ

i“1

∇N
ei
ei

“ 2rpxq
n
ÿ

i“1

Hesspei, eiqprq, since Hpxq “ 0

ě 2nKr cotpKrq,

(3.2.13)

where x P Σ, ∇Σ, ∇N and Hpxq are defined as in Section 3.1, (See also the argument [Page
243] of [SY77]). Integrating Equation (3.2.13) over Bpx, tq and noting that |∇r| ď 1, we
have,
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2tVolpBpΣXBpx0, tqq ě

ż

BpΣXBpx0,tqq

ă ∇Σr2,n ą, since |∇Σr| ď |∇r| ď 1

“

ż

ΣXBpx0,tq

∆Σr
2, doing integration by parts,

ě 2nK

ż

Bpx0,tqXΣ

r cotpKrq from Equation(3.2.13).

(3.2.14)

where n is the outward unit normal vector of BpΣXBpx0, tqq in Σ.
Let Cptq “

ş

Bpx0,tqXΣ
r cotpKrq. Then by the coarea formula (See Equation (3.2.10))

and the fact that |∇r| ď 1, we have that

(3.2.15)
BCptq

Bt
“

ż

tx | rpxq“tuXΣ

r cotpKrq

|∇r|
ě t cotpKtqVolpBpΣXBpx0, tqqq.

Inserting Equation (3.2.14) into Equation (3.2.15), we find

(3.2.16)
BCptq

Bt
ě nK cotpKtqCptq.

It is easy to verify that

lim
tÑ0

Cptq sinpKtq´1
“ K´n´1Cn

where Cn is a positive constant depending only on n. It follows from Equation (3.2.16)
that

(3.2.17) Cptq ě K´n´1CnpsinpKtqq
n

for all t ď mintε, ipMqu. Therefore, Equation (3.2.14) shows that

(3.2.18) VolpBpΣXBpx0, tqqq ě nCnK
´nt´1

psinpKtqqn.

By the coarea formula (See Equation (3.2.14)) again,

VolpΣXBpx0, δqq ě

ż δ

0

VolpBpΣXBpx0, τqqqdτ

ě nCnK
´n

ż δ

0

τ´1
psinpKτqqndτ.

(3.2.19)

�

3.3. Stable minimal surfaces

In this section, let us consider a stable minimal surface Σn Ă pMn`1, gq with trivial
normal bundle. First, the stable condition is linked with the first eigenvalue of the op-
erator L (See (3.1.21) or (3.1.22)). Second, if pM, gq has positive curvature, the stability
condition gives several topological restrictions on Σ.
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3.3.1. Eigenvalues and Stability. The stability of a minimal surface is charac-
terized by the first eigenvalue of L (See (3.1.21) or (3.1.22)). A minimal hypersurface
Σn Ă pM, gq is stable if for any smooth function η with compact support,

ż

Σ

´ηLpηq “

ż

Σ

|∇Ση|
2
´RicpN,Nqη2

´ |A|2η2
ě 0.

We see that the stable condition is equivalent to the first eigenvalue λ1pL,Ωq ě 0 for each
Ω Ă Σ where

(3.3.1) λ1pL,Ωq :“ inft

ż

Σ

´ηLpηq|η P W 1,2
0 pΩq and

ż

Σ

η2
“ 1u.

By standard elliptic theory ( see [GT15] or [HL11]), we get the following:

Lemma 3.3.1. If L and Ω Ă Σ are assumed as above and λ1 :“ λ1pL,Ωq, then the
eigenfunction u P W 1,2

0 pΩq of the first eigenvalue λ1 ( i.e. Lpuq “ ´λ1u) is smooth.

It follows from the regularity theory for elliptic equations (See [Theorem 8.14, Page
188] of [GT15] or [HL11]).

Together with the Harnack inequality, we see that any eigenfunction of the first eigen-
value can not change sign.

Lemma 3.3.2. Assume that u is a smooth function on Ω that vanishes on BΩ. If
Lpuq “ ´λ1u where λ1 “ λ1pL,Ωq, then u can not change sign.

Proof. We may assume that u is not identically zero and
ş

Σ
u2 “ 1. Since u vanishes

on BΩ, so does |u|. In fact, |u| also achieve the minimum in (3.3.1). By Lemma 3.3.1, |u|
is smooth and Lp|u|q “ ´λ1|u|. Since |u| ě 0 and |u| is not identically zero, the Harnack
inequality (See [Theorem 8.20, Page 199] of [GT15]) implies |u| ą 0 in Ω. Hence, u can
not change sign. �

Next, let us consider the positive solution to the stable operator L (See Equation
(3.1.21) or Equation (3.1.22)).

Proposition 3.3.3. Let Σn Ă pMn`1, gq be a minimal hypersurface with trivial normal
bundle, L its stability operator (See Equation (3.1.21) or (3.1.22)), and Ω Ă Σ a bounded
domain. If there exists a positive function u on Ω with Lpuq “ 0, then Ω is a stable
minimal surface.

Proof. Set qpxq “ |A|2`RicMpN,Nq so that L “ ∆Σ` q. Since u ą 0, the function
w :“ log u is well-defined and satisfies

(3.3.2) ∆Σw “ ´q ´ |∇Σw|
2.

Let us consider any compactly supported function f on Ω. Multiplying both sides of
Equation (3.3.2) with f 2 and using integrating by parts give

ż

Ω

f 2q ` f 2
|∇Σw|

2
“ ´

ż

Ω

f 2∆Σw ď 2

ż

Σ

f |∇Σf ||∇Σw|

ď

ż

Σ

f 2
|∇Σw|

2
` |∇Σf |

2,

(3.3.3)
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where the second inequality follows from the Cauchy-Schwarz inequality. Canceling the
ş

Σ
f 2|∇Σw|

2 term, we have that
ż

S

´fLpfq ě 0

This finishes the proof. �

We will give a characterization for a complete (non-compact) stable minimal hyper-
surfaces with trivial normal bundle. For such a hypersurface, the stability is equivalent
to the existence of positive solution to the stability operator.

Theorem 3.3.4. (See [Theorem 1, Page 201] [FCS80]) Let Σn Ă pM, gq be a com-
plete non-compact minimal hypersurface with trivial normal bundle, then the following are
equivalent:

(1) λ1pL,Ωq ě 0 for any bounded domain Ω Ă Σ;
(2) λ1pL,Ωq ą 0 for any bounded domain Ω Ă Σ;
(3) there is a positive function u over Σ with Lpuq “ 0.

Proof. By Proposition 3.3.3, (3) implies (1).
Clearly, (2) implies (1). To see the equivalence of (1) and (2), we consider any bounded

domain Ω0 and choose a strictly larger bounded domain Ω1. The variational characteri-
zation of the first eigenvalue (See (3.3.1)) implies that

λ1pL,Ω0q ě λ1pL,Ω1q ě 0,

where the second inequality follows from (1). Let u0 be the first eigenfunction for L in
Ω0. We define u1 on Ω1 by

u1pxq “

$

&

%

u0pxq, if x P Ω0;

0, otherwise.

where u0 ě 0 and u0 is not identically zero (See Lemma 3.3.2).
If we had that λ1pL,Ω0q “ 0, then the nonnegative function u1 is an eigenfunction of

λ1pL,Ω1q. Lemma 3.3.1 tells that Lpu1q “ λ1pL,Ωqu1 and u1 is smooth. Since u1 “ 0 on
Ω1zΩ0, the Harnack inequality (See [Theorem 8.20, Page 199] of [GT15]) implies that u1

is identically zero on Ω1. This is not possible. We can conclude that λ1pL,Ω0q ą 0. The
equivalence of (1) and (2) follows.

The remaining is to show that (2) implies (3). To do this, fixed a point p P Σ and
any r ą 0, let BΣpp, rq be the geodesic ball in Σ with radius r and centered at p. Then
the first eigenvalue λ1pL,B

Σpp, rqq is greater than zero. By Fredholm alternative (See
[Theorem 6.15, Page 107] of [GT15]), there exists a function vr satisfying:

(3.3.4) Lpvrq “ ´|A|
2
´RicpN,Nq on BΣ

pp, rq and vr “ 0 on BBΣ
pp, rq.

Setting ur “ vr ` 1, Equation (3.3.4) gives

(3.3.5) Lpurq “ 0 in BΣ
pp, rq and ur “ 1 on BBΣ

pp, rq.
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We claim that

(3.3.6) ur ą 0 on BΣ
pp, rq.

If ur is not a non-negative function, we choose a nonempty connected component Ω Ă Σ
of the set

tx P BΣ
pp, rq|urpxq ă 0u.

Then, Lpurq “ 0 on Ω and ur “ 0 on BΩ. This is to say, the first eigenvalue λ1pL,Ωq ď
0. This is in contradiction with (2). Therefore, we conclude that ur ě 0.

The claim follows from the Harnark inequality (See [Theorem 8.20, Page 199] of
[GT15]).

For each r, we define a positive function by

wrpxq :“ urpxqpurppqq
´1 on BΣ

pp, rq

and see that Lpwrq “ 0 and wrppq “ 1.
Now, let us consider a compact set K Ă BΣpp,R0q. We use the Harnack inequality

(See [Theorem 8.20, Page 199] of [GT15]) to have a positive constant Cpp,R0q, only
depending on p and R0, satisfying for any r ą 2R0,

(3.3.7) |wrpxq| ď Cpp,R0q if x P BΣ
pp,R0q.

The interior Schauder estimate (See [Theorem 6.2, Page 90] of [GT15]) gives that

|wr|C2,α
K
ď CK

where the constant CK only depends on K and 0 ă α ă 1.
To sum up, we have a uniform C2,α estimate for any wr where r ą 2R0. We use the

Arzela-Ascoli theorem to extract a subsequence of wr that converges uniformly to w. This
convergence ensures that Lpwq “ 0 and w ě 0. The Harnack inequality (See [Theorem
8.20, Page 199] of [GT15]) tells us that w is a positive function. This finishes the proof
of the theorem. �

3.3.2. Global Structure (I): the compact case.

Proposition 3.3.5. (See Page 166 of [SY79b])Let Σn Ă pMn`1, gq be a compact
stable minimal surface with trivial normal bundle. If pM, gq has positive scalar curvature,
then pΣ, gΣq is conformally equivalent to a metric of positive scalar curvature, where gΣ

is the induced metric and n ą 2.

Proof. The stability of the minimal surface Σ and Equation (3.1.22) give

(3.3.8)

ż

Σ

κMη
2
´ κΣη

2
` 1{2|A|2η2

ď

ż

Σ

|∇Ση|
2

for any smooth function η on Σ.
Since κM ą 0 on Σ, we can conclude that

(3.3.9) ´

ż

Σ

κΣη
2
ă

ż

Σ

|∇Ση|
2

for all smooth function η.
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Let λ be the first eigenvalue of the operator ∆Σ ´
n´2

2pn´1q
κΣ and u an eigenfunction of

λ. That is,

(3.3.10) ∆Σu´
n´ 2

4pn´ 1q
κΣu “ ´λu.

From (3.3.9), we can conclude that λ ą 0.
Otherwise (λ ď 0), multipling two sides of (3.3.10) by u and integrating, we see that

ż

Σ

|∇Σu|
2
“ ´

n´ 2

4pn´ 1q

ż

Σ

κΣu
2
` λ

ż

Σ

u2
ď ´

n´ 2

2pn´ 1q

ż

Σ

κΣu
2
ď

n´ 2

2pn´ 1q

ż

Σ

|∇Σu|
2

where the last inequality follows from (3.3.9). This is impossible.
As the argument in Lemma 3.3.2, we have that the eigenfunction u is smooth and a

positive function. Multiplying the metric gΣ by u
4

n´2 , under the new metric, the scalar
curvature of Σ is

u´
n`2
n´2 pκΣ ´

4pn´ 1q

n´ 2
∆Σuq “

4pn´ 1q

n´ 2
λu´

n`2
n´2 ą 0.

�

Next, we consider a stable minimal surface Σ Ă pM3, gq.

Corollary 3.3.6. (See [Theorem 5.1, Page 139] of [SY79a])Let Σ2 Ă pM3, gq be a
closed stable minimal surface with trivial normal bundle. If the complete manifold pM3, gq
has positive scalar curvature, then Σ is S2 or RP 2 and

ż

Σ

κM ` 1{2|A|2 ď 4π.

Proof. Since Σ is compact and has no boundary, we choose the constant function
η “ 1 as a cut-off function. Equation (3.1.22) gives

(3.3.11)

ż

Σ

κM ` 1{2|A|2 ď

ż

Σ

KΣ “ 2πχpΣq,

where the last equity follows from the Gauss-Bonnet formula. As a consequence, we see
that χpΣq ą 0. That is to say, Σ is S2 or RP 2. Therefore, χpΣq ď 2. It gives the inequality
in the assertion. �

In the next part, we will use Cohn-Vesson’s inequality [Coh35] to generalize (3.3.11)
to the non-compact case.

3.3.3. Global Structure (II): the non-compact case. By Theorem 3.3.4, for a
complete (non-compact) stable minimal surface Σ Ă pM3, gq, there is a positive function
u over Σ with Lpuq “ 0.

Theorem 3.3.7. ([Theorem 2, Page 126] in [Fis85]) Let Σ2 Ă pM, gq be a complete
(non-compact) stable minimal hypersurface. If the complete manifold pM3, gq has non-
negative scalar curvature (κpxq ě 0), then the new metric u2d2s is a complete metric on
Σ with non-negative sectional curvature, where d2s is the induced metric and u is the
positive function with Lpuq “ 0 (as in Theorem 3.3.4).
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Proof. By Theorem 3.3.4, there is a positive function u with Lpuq “ 0. In addition,

there exists a minimal geodesic ray γptq : r0,8q Ñ Σ in the metric d̃2s :“ u2d2s, where t
is arclength in the original metric d2s. It is obtained as below:

Fixed x P M and for any R ą 0, let us consider a geodesic ball BΣpx,Rq in the
complete manifold pΣ, d2sq. Define uR :“ u ` ηR where ηR is a smooth positive function
satisfying

ηR “

$

&

%

0, |x| ă R;

1, |x| ą 2R.

Then, since uR is bounded away from zero, the metric u2
Rd

2s is complete. Therefore, there
is a shortest geodesic γR from x to BBΣpx,Rq in the metric u2

Rd
2s. We can conclude that

γR must stay in BΣpx,Rq. (Otherwise, under the metric u2
Rd

2s, there is another curve
connecting x to BBΣpx,Rq whose length is shorter than γR’s.)

Since u “ uR on BΣpx,Rq, γR is also a minimizing geodesic in d̃2s. Each γR can be
parametrized with respect to arclength in the metric d2s. Let us consider the limit of
these minimizing geodesics in pΣ, d̃2sq. The sequence tγRu sub-converges to a minimizing
geodesic ray γptq that is parametrized by arclength in the metric d2s.

It remains to show the completeness of d̃2s.
By the construction of γ, the completeness of d̃2s will follow if we can show that γ has

infinite length under the metric d̃2s, i.e. it is sufficient to show that

(3.3.12)

ż 8

0

upγptqqds “ 8.

Since γ is a minimizing geodesic in d̃2s “ u2d2s, the second variation formula of acrlength
gives

(3.3.13)

ż 8

0

pp
dφ

d̃s
q
2
´ K̃φ2

qd̃s ě 0,

where the smooth function φ has compact support in p0,8q, dφ

d̃s
“ u´1 dφ

ds
, d̃s “ uds and

the sectional curvature K̃ of pΣ, d̃2sq is

(3.3.14) K̃ “ u´2
pK ´∆Σ log uq.

In addition, u is a positive function with Lpuq “ 0. Namely,

Lpuq “ ∆Σu´Ku` pκpxq ` 1{2|A|2qu “ 0

where ∆Σ is the Laplace-Beltrami operator respect to pΣ, d2sq and K is the sectional
curvature of pΣ, d2sq. Since κ ě 0, we see that ∆Σu ď Ku. In addition,

(3.3.15) ∆Σ log u “ u´1∆Σu´
|∇Σu|

2

u2
.

Note that together with (3.3.14) and (3.3.15), we can conclude that K̃ ě 0. Inserting
(3.3.14),(3.3.15) into (3.3.13), we see that

(3.3.16)

ż 8

0

pu1q2

u3
φ2ds ď

ż 8

0

u´1
pK ´∆Σ log uqφ2ds ď

ż 8

0

u´1
pφ1psqq2ds
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where the first inequality follows from (3.3.14) and (3.3.15), the last inequality follows
from (3.3.13) and upsq “ upγpsqq.

We now show that
ş8

0
uds “ 8. Take φ “ uψ, where the smooth function ψ has

compact support in p0,8q. Then φ1 “ u1ψ ` uψ1 and

u´1
pφ1q2 “ u´1

pu1q2ψ2
` upψ1q2 ` 2u1ψ1ψ.

The inequality (3.3.16) shows that
ż 8

0

pu1q2

u3
φ2ds “

ż 8

0

pu1q2

u
ψ2ds ď

ż 8

0

u´1
pu1q2ψ2

` upψ1q2 ` 2u1ψ1ψds.

Therefore,

0 ď

ż 8

0

upψ1q2 ` 2u1ψψ1ds.

The integration by parts gives

(3.3.17) 0 ď

ż 8

0

´upψ1q2 ´ 2uψ2ψds.

Set ψpsq “ sξpsq, where the smooth function ξ has compact support in r0,8q. Then,

ψ1psq “ ξpsq ` sξ1psq,

ψ2psq “ sξ2psq ` 2ξ1psq.

Putting these equations into (3.3.17), we have
ż 8

0

ξ2uds ď

ż 8

0

p´6sξξ1 ´ 2s2ξξ2 ´ s2
pξ1q2quds.

Choose a smooth decreasing function ξ so that

ξpsq “ 1, for 0 ď s ď R,

ξpsq “ 0, for s ą 2R,

and |ξ1| and |ξ2| are bounded by 2R´1 and 4R´2 respectively, for R ď s ď 2R. Then
|sξ1psq| ď 4 and |sξ2psq| ď 16. We see that

ż R

0

uds ď

ż 8

0

uξ2ds ď

ż 8

0

p´6sξξ1 ´ 2s2ξξ2 ´ s2
pξ1q2quds ď 72

ż 8

R

uds.

This inequality implies that
ş8

0
uds “ 8. That is to say, d̃2s “ u2d2s is a complete metric

with nonnegative sectional curvature K̃ ě 0. �

We apply the above argument to stable minimal surfaces in a 3-manifolds of uniformly
positive scalar curvature (i.e. its scalar curvature is bounded away from zero).

Theorem 3.3.8. (See [Theorem 10.2, Page 384] of [GL83] or [Theorem 1, Page 228]
of [Ros06]) Let pM3, gq be a Riemannian 3-manifold with the scalar curvature κ ě c
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where c is a positive constant. If Σ is a stable minimal surface immersed in M , then for
x P Σ:

dΣ
px, BΣq ď

2π
?

3c
.

This result was firstly proved by Gromov-Lawson [GL83] and Schoen-Yau in [SY83].
The generalization to the stable H-surface was due to H.Rosenberg [Ros06].

Proof. For any x P Σ, let R :“ dΣpx, BΣq, where dΣ is the induced distance function
in pΣ, d2sq. For any ε ą 0, the geodesic ball BΣpx,R´ εq in Σ, centered at x with radius
R ´ ε, is contained in Int Σ.

It is sufficient to show that for any ε ą 0, R ´ ε ď 2π?
3c

.

First, we solve the equation Lpuq “ 0 on the BΣpx,R ´ εq, where L is the stability
operator (See Equation 3.1.22). As in the proof of Theorem 3.3.4, the first eigenvalue
λ1pL,B

Σp0, R ´ εqq ą 0.
Let us consider the Dirichlet problem:

(3.3.18)

$

&

%

Lpvq “ K ´ pκ` 1{2|A|2q in BΣp0, R ´ εq

v “ 0 on BBΣp0, R ´ εq.

Since λ1pL,B
Σpx,R´εqq ą 0, we use Fredholm alternative (See [Theorem 6.15, Page 107]

of [GT15]) to find a solution v. Setting u “ v ` 1. Equations (3.3.8) give that

Lpuq “ 0 in BΣ
px,R ´ εq and u “ 1 on BBΣ

px,R ´ εq.

As in the proof of Theorem 3.3.4, the positivity of the operator L implies that u is a
positive function.

Make a conformal change of the metric, d̃2s “ u2d2s on BΣpx,R ´ εq. Let consider
the minimizing geodesic γ from x to BBΣpx,R ´ εq.

Let ã and a be the length of γ in the metrics d̃2s and d2s, respectively. Note that
R ´ ε ď a.

The second variation formula of arclength shows that

(3.3.19)

ż ã

0

pp
dφ

d̃s
q
2
´ K̃φ2

qd̃s ě 0,

where the smooth function φ has compact support in p0, aq, d̃s “ uds and dφ

d̃s
“ u´1 dφ

ds
.

We have that

Lpuq “ ∆Σu´Ku` pκpxq ` 1{2|A|2qu “ 0

K̃ “ u´2
pK ´∆Σ log uq.

where ∆Σ is the Laplace-Beltrami operator in pΣ, d2sq, K̃ and K are the sectional curva-

ture of d̃2s and d2s, respectively.
Therefore,

(3.3.20) φ2K̃u “
φ2

u2
pKu´∆Σu`

|∇Σu|
2

u
q ě

φ2

u2
pcu`

|∇Σu|
2

u
q

where the second inequality follows from Lpuq “ 0 and κ ě c.
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Putting (3.3.20) into (3.3.19), we see that

(3.3.21)

ż a

0

u´1φ2
pc` u´2

|u1|2qds ď

ż a

0

u´1
p
dφ

ds
q
2ds.

where upsq “ upγpsqq. Setting φ :“ u1{2ψ, where ψ has compact support in p0, aq. We
have

ż a

0

ψ2
pc` u´2

|u1|2qds ď

ż a

0

u´1
pu1{2ψ1 ` 1{2u´1{2u1ψq2ds

“

ż a

0

pψ1q2 ` 1{4p
u1

u
q
2ψ2

` u´1u1ψ1ψds,

ď

ż a

0

pψ1q2 ` p
u1

u
q
2ψ2

` 1{3pψ1q2ds.

where the last inequality follows from the Cauchy-Schwarz inequality (|u´1u1ψ1ψ| ď
3{4pu

1

u
q2ψ2 ` 1{3pψ1q2). Canceling the term pu

1

u
q2ψ2 on the two sides of the inequality,

we have
ż a

0

ψ2ds ď
4

3c

ż a

1

pψ1q2ds.

Choosing ψpsq “ sinpπa´1sq, we know that 1 ď 4
3c
pπ
a
q2. That is to say, a ď 2π?

3c
.

Therefore, we see that for each ε ą 0,

R ´ ε ď a ď
2π
?

3c
.

Namely, dΣp0, BΣq “ R ď 2π?
3c

. �

As a consequence, we have

Corollary 3.3.9. In a complete Riemannian 3-manifold of uniformly positive scalar
curvature, any orientable complete stable minimal surface is compact and homeomorphic
to S2.

Theorem 3.3.8 implies that a stable surface in a 3-manifold of uniformly positive scalar
curvature is compact. By Corollary 3.3.6, it is homeomorphic to S2.

Together with Cohn-Vesson’s inequality [Coh35], we generalize Corollary 3.3.6 to
the non-compact case and obtain the so-called extrinsic Cohn-Vesson inequality (See
[Theorem 5.8, Page 18] of [Wan19a]).

Theorem 3.3.10. (See Theorem 5.8 in [Wan19a]) Let Σ2 Ă pM3, gq be a complete
(non-compact) immersed stable minimal surface. If the complete manifold pM3, gq has
non-negative scalar curvature (κpxq ě 0), then

(3.3.22)

ż

Σ

κpxq ` 1{2|A|2dv ď 2πχpΣq.

Moreover, if κ ą 0 and Σ is embedded, then Σ is properly embedded.
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Proof. From Equation (3.1.22), the stability operator can be written as L :“ ∆Σ ´

K ` pκpxq ` 1{2|A|2q, where ∆Σ is the Laplace-Beltrami operator of pΣ, d2sq. Since the
non-compact surface Σ is stable minimal , we use Theorem 3.3.4 to find a positive fuction
u with Lpuq “ 0.

Consider the metric d̃2s “ u2d2s. Let K̃ and d̃v be its sectional curvature and its
volume form. We see that

(3.3.23) K̃ “ u´2
pK ´∆Σ log uq and d̃v “ u2dv.

Theorem 3.3.7 shows that pΣ, d̃2sq is a complete surface with nonnegative sectional cur-
vature K̃ ě 0. We use the Cohn-Vossen inequality [Coh35] to have

(3.3.24)

ż

Σ

K̃d̃v ď 2πχpΣq.

Since Lpuq “ 0, then
ş

BΣpx,Rq
u´1Lpuqdv “ 0, where BΣpx,Rq is the geodesic ball in Σ

centered at x P Σ with radius R. We deduce that
ż

BΣp0,Rq

κpxq `
1

2
|A|2dv “

ż

BΣp0,Rq

pK ´ u´1∆Σ uqdv

“

ż

BΣp0,Rq

KΣ ´ p∆Σ log u` u´2
|∇Σu|qdv

ď

ż

BΣp0,Rq

u´2
pK ´∆Σlog uqu

2dv

“

ż

BΣp0,Rqq

K̃d̃v

ď

ż

Σ

K̃d̃v

(3.3.25)

Putting (3.3.24) into (3.3.25) and taking RÑ 8, we have that,
ż

Σ

κpxq ` 1{2|A|2dv ď 2πχpΣq.

Remark that since Σ admits a complete metric d̃2s of nonnegative sectional curvature, we
see χpΣq ď 1 (See details in Corollary 3.3.11).

In the following, we consider the case that Σ is embedded and κpxq ą 0. We have that

(3.3.26)

ż

Σ

κpxqdv ď 2π.

Suppose that Σ is not proper. There is an accumulation point p of Σ so that the
set Bpp, r{2q X Σ is a non-compact closed set in Σ. Namely, it is unbounded in pΣ, d2sq.
Hence, there is a sequence tpku of points in Bpp, r{2q X Σ going to infinity in pΣ, d2sq.

Therefore, we may assume that the geodesic discs BΣppk, r{2q in Σ are disjoint.

Define two constants K0 :“ supxPBpp,rq |KMpxq| r0 :“ 1
2

mintr, i0,
π?
K
u where i0 :“

infxPBpp,rq InjMpxq andKM is the sectional curvature of pM, gq. The geodesic ballBΣppk, r0{2q
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in Σ is contained in Bpp, rq. Applying [Theorem 3, Appendix, Page 139] of [Fre96] to
the geodesic disc BΣppk, r0{2q Ă Bpp, rq, we have

AreapBΣ
ppk, r0{2qq ě Cpr0, K0q.

This leads to a contradiction as follows:

2π ě

ż

Σ

κpxqdv ě

ż

Bpp,rqXΣ

κpxqdv

ě
ÿ

k

ż

BΣppk,r0{2q

κpxq

ě inf
xPBpp,rq

κpxq ¨
ÿ

k

AreapBΣ
ppk, r0{2qq

ě inf
xPBpp,rq

κpxq ¨
ÿ

k

C “ 8

�

Combining Theorem 3.3.7 and Theorem 3.3.10, we will give a new proof of the result
of Theorem 2 in [SY82].

Corollary 3.3.11. (See [Theorem 2, Page 211] of [SY82]) Let Σ Ă pM, gq be an
oriented complete non-compact stable minimal surface. If the complete manifold pM3, gq
has nonnegative scalar curvature(κpxq ě 0), then Σ is diffeomorphic to R2 or S1 ˆ R. If
the latter case occurs, then Σ is totally geodesic and the scalar curvature κ of M is zero
along Σ.

Moreover, if κpxq ą 0, then Σ is diffeomorphic to R2.

Proof. Since Σ is stable minimal, we use Theorem 3.3.4 to find a positive function u
with Lpuq “ 0, where L is the stability operator (See (3.1.21) and (3.1.22)). By Theorem
3.3.7, pΣ, u2d2sq is a complete 2-manifold with nonnegative sectional curvature, where d2s
is the induced metric.

We apply the Soul theorem (See Theorem 1.11 and Theorem 2.1 in [CG72]) to
pΣ, u2d2sq. This theorem asserts that if pX, gq is a connected complete manifold with
nonnegative sectional curvature, there is a compact totally convex, totally geodesic sub-
manifold (called a soul of pX, gq) such that X is diffeomorphic to the normal bundle of
the submanifold.

Therefore, there is a submanifold S Ă Σ (i.e. a soul) such that Σ is the normal bundle
of S. In addition, since Σ is non-compact, we see that dimpSq ă dimpΣq (dimpSq “ 0 or
dimpSq “ 1).

Case (I) If dimpSq “ 0, S is a point. That is to say, Σ is diffeomorphic to R2.
Case (II) If dimpSq “ 1, S is homeomorphic to S1. Since Σ is oriented, the normal

bundle is trivial. That is to say, Σ is homeomorphic to S1 ˆ R. We use Theorem 3.3.10
to see that

ż

Σ

κpxq ` 1{2|A|2dv ď 2πχpΣq.

In this case, we see that χpΣq “ 0. Therefore, Σ is totally geodesic and κ “ 0 on Σ.
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If κ ą 0, the latter case never occurs. We can conclude that Σ is diffeomorphic to
R2. �

Finally, we give an application of Lemma 3.3.8 in a complete 3-manifold.

Theorem 3.3.12 (See Theorem A and Theorem 1.1 in [Wan19c]). Assume that
pM3, gq is a contractible complete 3-manifold. If there exists a number α P p´8, 2q such
that

lim inf
rpxqÑ8

rαpxqκpxq ą 0,

where κpxq is the scalar curvature of pM, gq and rpxq is the distance function from some
point 0 PM to x, then M3 is diffeomorphic to R3.

Proof. From our assumption, there are two positive constants C and R0 such that
if rpxq ą R0, then

(3.3.27) κpxq ě
C

rαpxq
.

Claim: If R ą 2 max
!

R0, p
41`α{2π
p3Cq1{2

q
2

2´α

)

, then the induced map π1pMzBp0, 4Rqq Ñ

π1pMzBp0, Rqq is trivial.

Suppose the contrary that there exists some R ą 2 max
!

R0, p
41`α{2π
p3Cq1{2

q
2

2´α

)

so that the

induced map π1pMzBp0, 4Rqq Ñ π1pMzBp0, Rqq is non-trivial. That is to say, there is a
simple closed curve γ ĂMzBp0, 4Rq which is not contractible in MzBp0, Rq.

We use the work of Morrey [Mor09,Mor48] to find an area-minimizing disc Ω with
boundary γ. The surface Ω intersects the set Bp0, Rq. Therefore, Ω X BBp0, 2Rq and
ΩX BBp0, 4Rq are both nonempty.

Let us consider the set Σ :“ Ω X pBp0, 4RqzBp0, 2Rqq. It is a stable minimal surface
in pM, gq whose boundary is contained in the disjoint union of BBp0, 4Rq and BBp0, 2Rq.
Since κpxq ě C

p4Rqα
on Bp0, 4RqzBp0, 2Rq, we use Lemma 3.3.8 to know that

Σ is contained in the
2p4Rqα{2π

p3Cq1{2
-neighborhood of BΣ.

Since BΣX BBp0, 2Rq and BΣX BBp0, 4Rq are both nonempty, we see that

(3.3.28) 2R “ dpBBp0, 2Rq, BBp0, 4Rqq ď 2
2p4Rqα{2π

p3Cq1{2
.

That is to say, R ă p41`α{2π
p3Cq1{2

q
2

2´α . This is in contradiction of the choice of R. This finishes

the proof of Claim.
From the above Claim, we see that M is simply-connected at infinity. From Remark

1.1.8, we know that M is diffeomorphic to R3. �

Corollary 3.3.13 (See Theorem 3.5 in [Wan19c]). Assume that pM3, gq is a simply-
connected open 3-manifold with π2pMq “ Z. Let 0 P M be a point and rpxq a distance
function from x to 0. If there exists a real number α P r0, 2q, such that,

lim inf
rpxqÑ8

rαpxqκpxq ą 0,
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then M3 is diffeomorphic to Rˆ S2.

See the proof in [Wan19c]



CHAPTER 4

Convergence

In this chapter, we consider the convergence theory for minimal surfaces. First, we
consider the convergence theory for minimal surface equations (See Equation (3.1.13)).
Together with local properties of minimal surfaces, we discuss a classical theorem about
convergence with finite multiplicity.

Then, we will introduce a new concept, the lamination. Our focus is the convergence
theory for stable minimal laminations. Finally, we construct a family of stable minimal
lamination in a complete contractible 3-manifold and discuss its limit.

4.1. The smooth convergence

Let u be a function from the unit disc B2 to R. Its image in R3 is a minimal surface
if and only if

divp
∇u

a

1` |∇u|2
q “ 0.

Lemma 4.1.1. Let tfiui be a sequence of functions from the unit disc B2 to R. Each
graph of fi in R3 is minimal. If ||fi||C2 ď C ă 8, then up to extracting a subsequence,
fi converges smoothly on compact sets of B2 to f and the graph of f is also a minimal
surface.

Proof. By Arzelà-Ascoli Lemma, we may extract a subsequence so that fk converges
to f in C1,α-topology on a compact set for 0 ă α ă 1. According to the minimal surface
equation (See Equation (3.1.13)) and the Schauder estimate for linear elliptic equation
(See [Theorem 6.2, Page 90] of [GT15]), we see that this sequence converges in Cm,α-
topology on a compact set for each m. As a consequence, f also satisfies the minimal
surface equation (see Equation (3.1.13)). That is to say, its graph is minimal. �

Definition 4.1.2. In a complete Riemannian 3-manifold pM, gq, a sequence tΣnu of
immersed minimal surfaces converges smoothly with finite multiplicity (at most m) to an
immersed minimal surface Σ, if for each point p of Σ, there is a disc neighborhood D
in Σ of p, an integer m and a neighborhood U of D in M (consisting of geodesics of M
orthogonal to D and centered at the points of D) so that for n large enough, each Σn

intersects U in at most m connected components. Each component is a graph over D in
the geodesic coordinates. Moreover, each component converges to D in C2,α-topology as
n goes to infinity.

Note that in the case that each Σn is embedded, the surface Σ is also embedded. The
multiplicity at p is equal to the number of connected component of Σn X U for n large
enough. It remains constant on each component of Σ.

76
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Remark 4.1.3. Let us consider a family tΣnun of properly embedded minimal surfaces
converging to the minimal surface Σ with finite multiplicity. Fix a compact simply-
connected subset D Ă Σ. Let U be the tubular neighborhood of D in M with radius ε
and π : U Ñ D the projection from U onto D. It follows that the restriction π|ΣnXU :
Σn X U Ñ D is a m-sheeted covering map for ε small enough and n large enough, where
m is the multiplicity.

Therefore, the restriction of π to each component of Σn X U is also a covering map.
Hence, since D is simply-connected, it is bijective. Therefore, each component of Σn XU
is a normal graph over D.

Let us recall a classical theorem about convergence with finite multiplicity.

Theorem 4.1.4. (See [Theorem 4.37, Page 49] of [MRR02] or [Compactness The-
orem, Page 96] of [And85]) Let tΣkukPN be a family of properly embedded minimal sur-
faces in a complete 3-manifold pM3, gq satisfying (1) each Σk intersects a given compact
set K0; (2) for any compact set K in M , there are three constants C1 “ C1pKq ą 0,
C2 “ C2pKq ą 0 and k0 “ k0pKq P N such that for each k ě k0, it holds that

(1) |AΣk |
2 ď C1 on K X Σk, where |AΣk |

2 is the square length of the second funda-
mental form of Σk,

(2) AreapΣk XKq ď C2.

Then, after passing to a subsequence, Σk converges to a properly embedded minimal surface
with finite multiplicity in the C8-topology.

Proof. Choose a point pk P Σk XK0. Extracting a subsequence, the sequence tpku

converges to some point p P M . We may suppose that the unit normal vector
Ñ
nΣk |pk to

the surface Σk at pk converges to some unit vector in TpM . Namely, the tangent space
TpkΣk Ă TpkM converges to some plane T Ă TpM . From (1) and Lemma 3.2.1, we can
express Σk locally (near p) as some graphs of functions over T . That is to say, there is an
open geodesic ball U centered at p such that for k large enough,

‚ each component of U X Σk is the graph of some function on T . The Hessian
of this function is bounded by the bound of the second fundamental form (See
Lemma 3.2.1 and (1));

‚ the number of components of UXΣk is bounded by the area bound from Theorem
3.2.7 and (2);

We use Lemma 4.1.1 to extract a subsequence converging to a minimal surface. Then,
a diagonal argument allows us find a subsequence converging smoothly to a minimal
surface Σ. The area bound (See (2)) implies that this sequence converges with finite
multiplicity.

From the strong maximal principle (See Corollary 3.2.1), the minimal surface Σ is
embedded or self-intersects transversally. Since Σk is embedded, we can conclude that Σ
is also embedded. �

In the following, we consider the convergence theory for stable minimal surfaces. For
stable minimal surfaces in a 3-manifold, Schoen gave a uniform bound of the second
fundamental form.
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Lemma 4.1.5. (See [Theorem 3, Page 122] in [Sch83]) Let Σ be an immersed stable
surface in a Riemannian manifold pM3, gq. Given r0 P p0, 1s, and a point p0 P Σ, if
Σ X Bpp0, r0q has compact closure in Σ, there are two constants 0 ă ε0 ă 1 and C ą 0
depending only on the metric g near p0 and the injective radius of pM, gq at p0 so that

|AΣ|
2
ď Cr´2

0 on Bpp0, ε0r0q X Σ.

As a consequence, we have

Corollary 4.1.6. Let pM, gq be a complete Riemannian manifold and tΣku a se-
quence of complete embedded stable minimal surfaces. If for any compact set K Ă M ,
there is a constant C1 depending on K, satisfying that for each k

AreapΣk XKq ď C1,

then after extracting a subsequence, Σk converges smoothly to a complete stable minimal
surface with finite multiplicity.

4.2. Minimal lamination

In the following,we assume that a complete contractible 3-manifold pM, gq is not home-
omorphic to R3. As in Remark 1.1.13, M is an increasing union of closed handlebodies
tNkuk satisfying that for each k,

‚ Nk is homtopically trivial in Nk`1;
‚ None of the Nk is contained in a 3-ball.

In addition, for each k, the genus of Nk is greater than zero. (If not, there is some
handlebody Nk of genus zero, namely a 3-ball. That is to say, N0 is contained in a 3-ball
Nk which is in contradiction with the last paragraph. )

4.2.1. Construction of minimal laminations. From Lemma 1.2.7, each Nk has

a system of meridians tγlku
gpNkq
l“1 , where gpNkq is the genus of Nk. Our target now is to

construct a lamination Lk :“ YlΩ
l
k Ă Nk (i.e. a disjoint union of embedded surfaces)

with BΩl
k “ γlk and “good” properties.

Let us recall a result of Meeks and Yau (See Theorem 3.1.8 or [Theorem 6.28 Page
224] of [CM11]). It provides us a geometric version of loop theorem to construct them.

Theorem. (See [MY80, MY82], [Theorem 6.28 Page 224] of [CM11] or Theorem
3.1.8) Let pM3, gq be a compact Riemannian 3-manifold whose boundary is mean convex
and γ a simple closed curve in BM which is null-homotopic in M . Then, γ bounds an
area-minimizing disc and any such least area disc is properly embedded.

Remark 4.2 The boundary BM is mean convex. That is, BM is a piecewise smooth
2-manifold consisting of smooth surfaces tHui. On each Hi, the mean curvature is non-
negative.

Let Σ be an embedded area-minimizing disc with boundary γ. It intersects BM
transversally. Therefore, Int Σ is contained in Int M .

Our strategy is to apply this theorem to pNk, g|Nkq for each k. However, the boundary
of Nk may be not mean convex. To overcome it, we find a new metric gk on Nk so that

1) pNk, gkq is a 3-manifold with mean convex boundary;
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2) gk|Nk´1
“ g|Nk´1

.

The metric gk is constructed as below:
Let hptq be a positive smooth function on R so that hptq “ 1, for any t P Rzr´ε, εs.

Consider the function fpxq :“ hpdpx, BNkqq and the metric gk :“ f 2g|Nk . Under pNk, gkq,

the mean curvature Ĥpxq of BNk is

Ĥpxq “ h´1
p0qpHpxq ` 2h1p0qh´1

p0qq

Choosing ε ą 0 small enough and a function h with hp0q “ 2 and h1p0q ą 2 maxxPBNk |Hpxq|`
2, one gets the metric gk which is the required candidate in the assertion.

In the following, we inductively construct the lamination Lk Ă pNk, gkq.
When l “ 1, there is an embedded area-minimizing disc Ω1

k Ă pNk, gkq with boundary
γ1
k (See Theorem 3.1.8 or Theorem 6.28 of [CM11]). As in Remark 4.2, it intersects BNk

transversally. Then, Int Ω1
k Ă Int Nk.

Suppose that there are l disjointly embedded stable minimal discs tΩi
ku
l
i“1 with BΩi

k “

γik.
Let us consider the Riemannian manifold pTk,l, gk|Tk,lq, where Tk,l :“ Nkz >

l
i“1 Ωl

k. It
is a handlebody of genus gpNkq ´ l. For example, see the following figure.

Ω1
k

pNk, gkq

γ1
k

pTk,1, gk|Tk,1q
Ω1
k
´

γ1
k
´ Ω1

k
`

γ1
k
`

Figure 4.1.

The boundary of pTk,l, gk|Tk,lq consists of two different parts. One is BNkz >
l
i“1 γ

i
l .

The mean curvature is positive on this part. The other is 2l disjoint discs tΩi
k
´
uli“1 and

tΩi
k
`
uli“1. The two discs Ωi

k
´

and Ωi
k
`

are two sides of the same minimal disc Ωi
k. The

mean curvature vanishes on these discs.
Therefore, the boundary of pTk,l, gk|Tk,lq is mean convex (See Remark 4.2). In addition,

tγikuiąl is a system of meridian of the handlebody pTk,l, gk|Tk,lq.
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Then, we use Theorem 3.1.8 and the above remark to find an embedded stable minimal
surface Ωl`1

k in the closure of pTk,l, gk|Tk,lq with boundary γl`1
k .

From Remark 4.2, Ωl`1
k intersects the boundary of pTk,l, gk|Tk,lq transversally. Hence,

Int Ωl`1
k is contained in Int Tk,l. That is to say, tΩi

ku
l`1
i“1 are disjoint stable minimal surfaces

for pNk, gkq.
This finishes the inductive construction.

To sum up, there exist gpNkq disjointly embedded meridian discs tΩl
ku. Define the

lamination Lk by >lΩ
l
k. It is a stable minimal lamination for the new metric gk and for

the original one away from BNk (near Nk´1, for example).
The set LkXNk´1 is a stable minimal lamination in pM, gq. Each leaf has its boundary

contained in BNk´1. In addition, since N0 is not contained in a 3-ball, We can conclude
that each lamination Lk intersects N0. The reason is below:

If the set Lk X N0 is empty, we choose a tubular neighborhood NpLkq in Nk with
small radius so that the set NpLkq X N0 is also empty. That is to say, N0 lies in the
handlebody NkzNpLkq of genus zero (i.e. a 3-ball). This is in contradiction with our
assumption that N0 is not contained in a 3-ball.

4.2.2. Limits of minimal laminations. Let us consider the sequence tLkuk and
its limit. From Lemma 4.1.5, we know that the sequence tLkuk satisfies the condition (1)
in Theorem 4.1.4. However, it may not hold the condition (2) in Theorem 4.1.4.

For example, in the Whitehead manifold, each Nk is of genus one. The lamination Lk

is a meridian disc Ω1
k Ă Nk. From Theorem 2.1.2, Ω1

kXIntN1 has at least 2k´1 components
intersecting N0. We know that for k ą 1, each component pΣ, BΣq Ă pN1, BN1q of Ω1

k X

IntN1 is a stable minimal surface in pM, gq.
Choose x0 P Σ X N0 and r0 “

1
2

mintr, i0u, where r :“ distpBN0, BN1q and i0 :“
infxPN1 InjMpxq. We see that the ball Bpx0, r0q is in N1. We apply a result [Lemma 1,
Page 445] in [MY80] to pN1, BN1q. Hence, it follows that

AreapΣq ě AreapΣXBpx0, r0qq ě Cpi0, r0, Kq

where K :“ supxPN1
|KMpxq| and KM is the sectional curvature.

Therefore, one has that AreapN1XΩ1
kq ě 2k´1C. The area of LkXN1 goes to infinity

as k goes to infinity. That is to say, the sequence tLkuk does not satisfy Condition (2).

Generally, the sequence tLkuk may not sub-converge with finite multiplicity. In the
following, we consider the convergence toward a lamination.

Definition 4.2.1. A codimension one lamination in a 3-manifold M3 is a collection
L of smooth disjoint surfaces (called leaves) such that

Ť

LPL L is closed in M3. Moreover,
for each x P M there exists an open neighborhood U of x and a coordinate chart pU,Φq,
with ΦpUq Ă R3 so that in these coordinates the leaves in L pass through ΦpUq in slices
form

R2
ˆ ttu X ΦpUq.
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A minimal lamination is a lamination whose leaves are minimal. Finally, a sequence of
laminations is said to converge if the corresponding coordinate maps converge in C0,α-
topology.

For example, R2 ˆ Λ is a lamination in R3, where Λ is a closed set in R.
Note that any (compact) embedded surface (connected or not) is a lamination. In [Ap-

pendix B, Laminations] of [CM04], Coding and Minicozzi describ the limit of laminations
with uniformly bounded curvatures.

Proposition 4.2.2. (See Proposition B.1, Page 610] in [CM04])Let M3 be a fixed
3-manifold. If Li Ă Bpx, 2Rq Ă M is a sequence of minimal laminations with uniformly
bounded curvatures (where each leaf has boundary contained in BBp0, 2Rq), then a subse-
quence, Lj, converges in the Cα-topology for any α ă 1 to a (Lipschitz) lamination L in
Bpx,Rq with minimal leaves.

We use Proposition 4.2.2 to show that

Theorem 4.2.3. The sequence tLkuof laminations sub-converges to a lamination L .
Moreover, Each leaf in L is a complete minimal surface.

Proof. As constructed above, the intersection LjXNk is a stable minimal lamination
or any j ą k. It may have many leaves (connected components). Each leaf has boundary
contained in BNk. In addition, Lj intersects N0.

From Lemma 4.1.5, there is a constant CpNk´1q, depending on Nk and g, so that for
any j ą k,

|ALj
|
2
ď CpNk´1q on Nk´1.

Therefore, for j ą 3, tLj XN2u is a sequence of minimal laminations with uniformly
bounded curvature where each leaf has boundary contained in BN2. We use Proposition
4.2.2 to extract a subsequence converging to a minimal lamination in N1. Each leaf has
boundary contained in BN1.

We repeat the argument on each Nk. A diagonal argument allows us to find a sub-
sequence of tLku converging to a lamination L . Each leaf is a complete minimal sur-
face. �

For our convenience, we may assume that the sequence Lk converges to L . In the
following, we will show that if pM, gq has positive scalar curvature, then each leaf in L
is a (non-compact) stable minimal surface.

Lemma 4.2.4. Let Σ be a compact minimal surface in a 3-manifold pX, gq (possibly

with boundary) and pX̂, ĝq the double cover of pX, gq. The lift Σ̂ of Σ is a connected

minimal surface in pX̂, ĝq. Then Σ is stable minimal if an only if Σ̂ is stable minimal.

Proof. Let L and L̂ be the stable operators of Σ and Σ̂k respectively. The operator
p˚pLq is equal to L̂, where p : Σ̂ Ñ Σ is the double cover. Let λ1 and λ̂1 be the first

eigenvalues of L and L̂ respectively.

It is sufficient to show that λ̂1 “ λ1.

Let f be an eigenfunction for λ1 (i.e. Lpfq “ ´λ1f). The function f̂ :“ p˚pfq satisfies

that L̂pf̂q “ ´λ1f̂ . Hence, λ1 ě λ̂1.
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Let τ be the desk transformation of the double cover p. The surface Σ̂ is τ -invariant,
(namely τpΣ̂q “ Σ̂). The map τ is isometric on Σ̂.

Let ĥ be an eigenfunction for λ̂1 (i.e. L̂pĥq “ ´λ̂1ĥ). We may assume that ĥ is τ -

invariant (τpĥq “ ĥ). (If not, we replace it by τpĥq` ĥ.) The function ĥ is equal to p˚phq,

where h is a smooth function on Σ. We have that Lphq “ ´λ̂1h. Therefore, λ̂1 ě λ1. We

can conclude that λ̂1 “ λ1. �

Theorem 4.2.5. Each leaf in L is stable minimal.

Proof. Let Lt be a leaf in the minimal lamination L .

Case (I): If Lt is a limit leaf (that is to say, the closure of L zLt contains Lt), we use
the result of Meek, Pérez and Rosenberg (See [Theorem 1, Page 4] of [MPR08]) to have
that it is stable minimal.

Case (II): If Lt is not a limit leaf, the intersection Lt X L zLt is empty. There is a

tubular neighborhood NpLtq of Lt such that the intersection NpLtq XL zLt is empty.
Let π be the projection from NpLtq to Lt. For any point p and r ą 0, we consider the

geodesic disc BLtpp, rq in Lt and the set Npp, rq :“ π´1pBLtpp, rqq.
Choose one component Σk of Npp, rq XLk for k ě 0. Since Lk converges to L , the

sequence tΣkuk converges to some subset of L . In addition, the intersection L XNpp, rq
has the unique component, BLtpp, rq. Hence, Σk converges to BLtpp, rq.

We first consider the case when Lt is 2-sided. In the following, we show that BLtpp, rq
is stable minimal for any r ą 0.

Step 1: Define the function dk : Σk Ñ R.

Let
Ñ
npxq be the unit normal vector to Lt at x and πk :“ π|Σk . The map πk : Σk Ñ

BLtpp, rq is a covering map for k large enough.
We define the function dk : Σk Ñ R as follows:

dkpxq “ă exp´1
πkpxq

pxq,
Ñ
npπkpxqq ą .

Step 2: πk is injective.
Recall that the area of Lk is finite. The subset Σk has a finite area. Therefore, πk is

a finite cover for k large enough.
We argue it by contradiction. Suppose that πk is a m-sheeted covering (m ą 1).
Let us consider three sets in Σk as follows:

ITop :“
 

x P Σk|dkpxq “ maxtdkpx
1
q|x1 P π´1

k pπkpxqu
(

;

IMed
“
 

x P Σk|mintdkpx
1
q|x1 P π´1

k pπkpxqqu ă dkpxq ă maxtdkpx
1
q|x1 P π´1

k pπkpxqu
(

;

IBot “
 

x P Σk|dkpxq “ mintdkpx
1
q|x1 P π´1

k pπkpxqqu
(

.

From the homotopy lifting property of πk and m ą 1, these disjoint three set are open.
In addition, Σ “ ITop > IMed > IBot. Since Σk is connected, there are at least two empty
sets in these three sets.

However, since m ą 1, ITop and IBot are two nonempty sets. This is in contradiction
with the last paragraph. We conclude that πk is injective.

Step 3: The stability of BLtpx, rq.
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As in Step 2, Σk can be written as the graph of some function fk over BLtpp, rq for k
large enough. The sequence tfku converges in C0,α-topology. Since Σk is stable minimal,
we use Lemma 4.1.5 and Lemma 4.1.1 to have that the sequence tfku converges in C2,α-
topology. Namely, Σk converges to BLtpp, rq in C2,α-topology. Therefore, BLtpp, rq is
stable minimal for any r ą 0.

Therefore, we can conclude that Lt is stable minimal.

If Lt is 1-sided, we consider the double cover {NpLtq of NpLtq and the lift L̂t of Lt. We

choose r large enough so that BLtpp, rq Ă Lt is 1-sided. The lift {BLtpp, rq of BLtpp, rq is

connected and 2-sided in the lift {Npp, rq of Npp, rq.

Let Σ̂k be one component of the pre-image of Σk. It is a stable minimal surface. The
reason is as follows:

The map Σ̂k Ñ Σk is a m1-sheeted cover map, where m1 ď 2.
If m1 “ 1, the map Σ̂k Ñ Σk is isometric. Therefore, Σ̂k is stable minimal.
If m1 “ 2, we use Lemma 4.2.4 to have that Σ̂k is stable minimal.

As in Step 1, we define the projection π̂ : {NpLtq Ñ L̂t and the function d̂k : Σ̂k Ñ R.

The sequence tΣ̂ku converges to {BLtpp, rq. The map π̂k :“ π̂|Σ̂k is a cover map for k

large enough. Since AreapΣkq ď AreapLkq ă 8 and AreapΣ̂kq ď 2AreapΣkq, Σ̂k has a
finite area. Therefore, π̂k is a finite cover for k large enlarge.

As in the above case, {BLtpp, rq is stable minimal. From Lemma 4.2.4, BLtpp, rq is
stable minimal for r large enough. Namely, Lt is stable minimal. �

Theorem 4.2.6. If pM, gq has positive scalar curvature, each leaf in L is non-
compact.

Recall that a component Ωl
k of Lk is an area-minimizing disc with boundary BΩl

k in

the closure of pTk,l´1, gkq, where Tk,l´1 “ Nkz >
l´1
j“1 Ωj

k and gk is obtained by modifying the
metric g. In addition, gk|Nk´1

is equal to g|Nk´1
.

Proof. We argue by contradiction. Suppose that there exists a compact leaf Lt in
L .

Step 1: Topology of Lt

From the positivity of the scalar curvature, we use Corollary 3.3.6 to have that Lt is
a 2-sphere or a projective plane.

If Lt is a projective plane, Lt is 1-sided. Hence, MzLt is connected. There is a an
embedded curve γ in M which intersects Lt transversally at one point. The intersection
numberof Lt and γ is ˘1.

However, from the contractibility of M , γ is homotopically trivial. Hence, the inter-
section number of γ and Lt is zero, a contradiction.

We conclude that Lt is a 2-sphere.

Step 2: Area Estimate.
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Since M is irreducible (See Remark 1.1.1), there is a 3-ball B ĂM with boundary Lt.
Let N2εpBq be the tubular neighborhood of B with radius 2ε. The set N2εpLtq is a subset
of N2εpBq.

Since N2εpBq is relatively compact, there is a positive integer k0, such that N2εpBq Ă
Nk0´1.

From now on, we fix the integer k ą k0. Let tΣj
kuj be the set of components of

Lk XN2εpLtq. The component Σj
k is contained in some component Ωj

k of Lk :“ >lΩ
l
k.

In the following, we show that there is a constant C, independent of k and j, so that
the area of Σj

k in pM, gq is less than C

We may assume that Ωj
k intersects BN2εpBq transversally. The intersection Ωj

k X

BN2εpBq :“ tγiui has finitely many components. Each component γi is a circle and
bounds a unique closed disc Di in Ωj

k.

Since BN2εpBq is a 2-sphere, there is an embedded disc D1i Ă BN2εpBq with boundary
γi.

We claim that for any Di Ă Ωj
k,

AreapDi, gkq ď AreapD1i, gkq,

where AreapDi, gkq is the area of Di in pNk, gkq.

We prove it by induction on j.

When j “ 1, Ω1
k is an area-minimizing disc in pNk, gkq. If the claim does not hold for

some Di Ă Ω1
k, we consider the disc pΩ1

kzDiq Yγi D
1
i with boundary BΩ1

k. Its area is less
than the area of Ω1

k in pNk, gkq, a contradiction.
Therefore, for any Di Ă Ω1

k, we have AreapDi, gkq ď AreapD1i, gkq.

We suppose that it holds for any l ď j and any Di Ă Ωl
k.

In the following, we consider that Di is contained in Ωj`1
k . If D1i X p>lďjΩ

l
kq is empty,

this claim follows from the above argument.
If not, we may assume that D1i intersects >lďjΩ

l
k transversally. The intersection D1i X

YlďjΩ
l
k :“ tcmucmPCi has finitely many components. Each component cm bounds a disc

D1m Ă D1i. In addition, it also bounds a disc Dm Ă >lďjΩ
j
k.

Let Cmax
i be the set of maximal circles of Ci in D1i. These discs tD1mucmPCmaxi

are

disjoint. The set D1izpYcmPCmaxi
D1mq is contained in Nkz >lďj Ωl

k.
We consider the disc

D2i :“ D1izpYcmPCmaxi
D1mq YcmPCmaxi

pYcmDmq.

It is contained in the closure of pTk,j, gkq.

Since Ωj`1
k is an area-minimizing disc in the closure of pTk,j, gkq, we have that

AreapDi, gkq ď AreapD2i , gkq.

If not, we consider the disc pΩj`1
k zDiq Yγi D

2
i . Its area is less than the area of Ωj`1

k , a
contradiction.
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From the inductive hypothesis,

AreapDm, gkq ď AreapD1mgkq,

for any cm. Hence,

AreapD1i, gkq “ AreapD1izpYcmPCmaxi
D1mq, gkq `

ÿ

AreapD1mgkq

ě AreapD1izpYcmPCmaxi
D1mq, gkq `

ÿ

AreapDmgkq

“ AreapD2i , gkq ě AreapDi, gkq.

Therefore, we finish the proof of the claim.

We will show that the above claim implies an area estimate.

Let Cmax be the set of maximal circles of tγiui in Ωj
k. We have that

Ωj
k XN2εpLtq Ă Ωj

k XN2εpBq Ă YγiPCmaxDi.

Hence, Σk
j is a subset of some Di.

Recall that gk|N2εpBq “ g|N2εpBq for k ą k0. For each k and j, we have that

AreapΣj
k, gkq “ AreapΣj

k, gq

AreapBN2εpBq, gkq “ AreapBN2εpBq, gq

We then have that

AreapΣj
k, gq “ AreapΣj

k, gkq ď AreapDi, gkq

ď AreapD1i, gkq ď AreapBN2εpBq, gkq

“ AreapBN2εpBq, gq.

We conclude that for each k ą k0 and j,

AreapΣj
k, gq ď AreapBN2εpBq, gq.

Step 3: Contradiction.

Choose a point p P Lt and a point pk P Lk XNεpLtq so that limkÑ8 pk “ p.
Let Σjk

k be the component of Lk XN2εpLtq passing through pk. As the proof in Step
2, we have that for k ě k0

AreapΣjk
k , gq ď AreapBN2εpBq, gq.

From Lemma 4.1.5, the curvatures of these surfaces tΣjk
k uk are uniformly bounded in

N2εpLtq. By Theorem 4.1.4, the sequence tΣjk
k u sub-converges smoothly to a properly

embedded surface Σ with finite multiplicity in NεpLtq.
For our convenience, we assume that tΣjk

k u converges smoothly to Σ in NεpLtq. The
limit Σ Ă L is a disjoint union of connected embedded surfaces. Its boundary is contained
in BNεpLtq. In addition, p lies in L . Hence, Lt is one component of Σ.

Since Σ is properly embedded, the set Σ1 :“ ΣzLt is a closed set. The sets Σ1 and Lt
are two disjoint closed sets. Choose δ ă ε{2 small enough such that

N2δpLtq XN2δpΣ
1
q “ H.
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Claim: For k large enough, Σjk
k is contained in NδpLtq > pN2εpLtqzN2δpLtqq.

Since Σjk
k is a subset of N2εpLtq, Σjk

k zN2δpLtq is contained in N2εpLtqzN2δpLtq. It is

sufficient to show that Σjk
k XN2δpLtq is contained in NδpLtq.

For k large enough, Σjk
k XNεpLtq is contained in NδpΣq, because Σjk

k XNεpLtq converges

to Σ. Hence, Σjk
k XN2δpLtq is a subset of N2δpLtq XNδpΣq. From the choice of δ, we have

that
a) NδpΣq is equal to NδpLtq >NδpΣ

1q;
b) NδpΣ

1q XN2δpLtq is empty.

By a), N2δpLtq XNδpΣq is equal to NδpLtq > pNδpΣ
1q XN2δpLtqq. From b), it is equal

to NδpLtq. Therefore, Σk
jk
XN2δpLtq is contained in NδpLtq.

This finishes the proof of the claim.

For k large enough, pk is located in NδpLtq. Namely, Σjk
k X NδpLtq is non-empty. In

addition, since BΣjk
k Ă BN2εpLtq is non-empty, Σjk

k X pN2εpLtqzN2δpLtqq is also nonempty.

The sets NδpLtq and N2εpLtqzN2δpLtq are disjoint. Since Σjk
k is connected, we use the

claim to have that one of these two sets Σjk
k X NδpLtq and Σjk

k X pN2εpLtqzN2δpLtqq is
empty. This is in contradiction with the last paragraph.

We can conclude that each leaf Lt is non-compact. �

As an consequence, we give a new proof of [Corollary 10.8, Page 173] in [GL83].

Corollary 4.2.7. A complete contractible 3-manifold with uniformly positive scalar
curvature (i.e. that is, its scalar curvature is bounded away from zero) is homeomorphic
to R3

Proof. Suppose that M is not diffeomorphic to R3. As described above, there exists
a complete (non-compact) stable minimal surface Σ. By Corollary 3.3.11, Σ is conformally
diffeomorphic to R2.

Since the scalar curvature κpxq of M is uniformly positive, infxPM κpxq ą 0. From
Theorem 3.3.10, one has,

2π ě

ż

Σ

κpxqdv

ě inf
xPM

κpxq ¨

ż

Σ

dv

“ inf
xPM

κpxq ¨ AreapΣq.

Therefore, Σ is a surface of finite area.
However, we apply the theorem of Gromov and Lawson [Theorem 8.8] in [GL83]. This

theorem asserts that if pX, gq is a Riemannian manifold of positive scalar curvature, then
any complete stable minimal surface of finite area in X is homeomorphic to S2. Hence, Σ
is homeomorphic to S2, which leads to a contradiction with the topological structure of
Σ (Σ is homeomorphic to R2). �



Part 3

Proof of Main Theorems



CHAPTER 5

The Vanishing Property

In this chapter, we consider the geometry of a complete stable minimal surface and
its relationship with the topological property of contractible 3-manifolds.

Let us consider a complete contractible Riemannian 3-manifold pM, gq of positive
scalar curvature and a complete (non-compact) embedded stable minimal surface Σ Ă

pM, gq. From Theorem 3.3.10 and Corollary 3.3.11, the surface Σ is a properly embedded
plane (i.e. it is diffeomorphic to R2).

In the following, we assume that M :“ YkNk is not homeomorphic to R3 where tNku

is assumed as in Remark 1.1.13. By Theorem 2.2.6, there is an increasing family tRkuk
of closed handlebodies with Property H.

Definition. A complete embedded stable minimal surface Σ Ă pM, gq is called to
satisfy the Vanishing Property for tRkuk, if there exists a positive integer kpΣq so that for
any k ě kpΣq, any circle in ΣX BRk is contractible in BRk.

Let us consider a stable minimal lamination L Ă pM, gq, where each leaf is a complete
(non-compact) stable minimal surface. It is called to have the Vanishing Property for
tRkuk, if there is a positive integer k0 so that for any k ě k0 and each leaf Lt in L, then
any circle in Lt X BRk is contractible in BRk.

We will consider the Vanishing property and its relationship with Property P and the
fundamental group at infinity.

5.1. The vanishing Property and Property P

In this section, we consider the case that a complete contractible genus one 3-manifold
pM, gq. In this case, we see from Lemma 1.3.10 that the family tNku (as in Theorem 1.3.13)
satisfies Property H. Namely, Rk is defined as Nk.

In addition, we see from Theorem 2.1.6 that the manifold M satisfies Property P (See
Definition 2.1.3). If pM, gq has positive scalar curvature, the geometry of a stable minimal
lamination is constrained by the extrinsic Cohn-Vesson inequality ( See Theorem 3.3.10)
as well as by Property P. Their relationship is clarified by the following theorem:

Theorem 5.1.1. Let L :“ YtPΓLt be a stable minimal lamination in a complete
contractible genus one 3-manifold pM, gq. Each leaf Lt is a complete (non-compact) stable
minimal lamination. If the manifold pM, gq has positive scalar curvature (κpxq ą 0), then
L satisfies the Vanishing property for tNkuk, where tNkuk is assumed as in Theorem
1.3.13.

Precisely, there exists a positive integer k0 “ k0pM, gq, such that for each k ě k0 and
any t P Λ, each embedded circle γ in Lt X BNk is contractible in BNk.
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Proof. Since pM, gq has positive scalar curvature, we know from Corollary 3.3.11
that each Lt is diffeomorphic to R2.

We prove by contradiction. We suppose that there exists a sequence of increasing
integers tknun such that :

for each kn, there exists a minimal surface Ltn in L and an embedded circle ckn Ă
Ltn X BNkn which is not contractible in BNkn.

Since lim
nÑ8

kn “ 8, we know that lim
nÑ8

IpN1, Nknq “ 8.

Because Ltn is homeomorphic to R2, there exists a unique discDn Ă Ltn with boundary
ckn . From Property P (Definition 2.1.3), we see that Dn X Int N1 has at least IpN1, Nknq

components intersecting N0, denoted by tΣju
m
j“1.

Define the constants r :“ dMpBN0, BN1q, C :“ infxPN1 κpxq, K :“ supxPN1
|KM | and

i0 :“ infxPN1pInjMpxqq , where KM is the sectional curvature of pM, gq and InjMpxq is the
injective radius at x of pM, gq.

Choose r0 “
1
2

minti0, ru and xj P ΣjXN0, then Bpxj, r0q is in N1. We apply Theorem
3.2.7 to the minimal surface pΣj, BΣjq Ă pN1, BN1q. Hence, one has that

AreapΣj XBpxj, r0qq ě C1pK, i0, r0q.

From Theorem 3.3.10, we have:

2π ě

ż

Ltn

κpxqdv ě
m
ÿ

j“1

ż

Σj

κpxqdv ě
m
ÿ

j“1

ż

ΣjXBpxj ,r0q

κpxqdv

ě

m
ÿ

j“1

CAreapΣj XBpxj, r0qq

ě CC1m ě CC1IpN1, Nknq

This contradicts the fact that lim
nÑ8

IpN1, Nknq “ 8 and completes the proof. �

Remark 5.1.2. In the following, our proof requires that BNk intersects some leaf Lt
transversally. To overcome it , we will deform the solid torus Nk in a small tubular neigh-
borhood of BNk so that the boundary of the new solid torus intersects Lt transversally.

This new solid torus also holds for Theorem 5.1.1. The reason is as follows:
The proof of Theorem 5.1.1 only depends on the extrinsic Cohn-Vossen inequality (See

Theorem 3.3.8) and the geometric indexes. If we replace Nk by a new solid torus obtained
from deforming Nk, all geometric indexes remain unchanged. Therefore, N 1

k also holds for
Theorem 5.1.1.

Remark 5.1.3. Let tRkuk be a family of solid tori in a complete contractible 3-
manifold pM, gq with the properties that

lim
kÑ8

IpR1, Rkq “ 8.

Now we consider the case that the maps π1pBRkq Ñ π1pMzRkq and π1pBRkq Ñ

π1pRkzR0q are both injective. From Remark 2.1.7, the family satisfies Property P (See
the detail in Remark 2.1.7).
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From the proof of Theorem 5.1.1, we have that if pM, gq has positive scalar curvature,
any complete stable minimal lamination in pM, gq has the Vanishing Property for tRku.

5.2. The vanishing Property and π81

Generally, the geometry of a stable minimal surface is constrained by some topological
properties of the 3-manifold. For example, the fundamental group at infinity. In the
following, we will study a complete (non-compact) stable minimal surface Σ Ă pM, gq and
its relationship with the fundamental group at infinity.

Lemma 5.2.1. Let pM, gq be a complete contractible Riemannian 3-manifold with pos-
itive scalar curvature κpxq ą 0 and tRkuk a family of handlebodies with Property H. If a
complete embedded stable minimal surface Σ does not satisfy the Vanishing Property for
tRkuk, then π81 pMq is non-trivial.

Roughly, there is a sequence of non-trivial circles in Σ going to infinity. This sequence
gives a non-trivial element in π81 pMq.

Proof. Since Σ does not satisfy the Vanishing property for tRku, there exists a
sequence tknun of increasing integers so that for each kn, there is a circle γn Ă BRkn X Σ
which is not nullhomotopic in BRkn . By Corollary 3.3.11, Σ is conformally diffeomorphic
to R2. Each γn bounds a unique closed disc Dn Ă Σ.

However, γn may not be a meridian. We will choose a meridian in Dn of Rkn to replace
it.

Since the map π1pBRknq Ñ π1pMzRknq is injective (See Definition 2.2.5), we use
Corollary 1.2.6 to see that Dn contains at least one meridian of Rkn . Without loss of
generality, we may assume that γn is a meridian of Rkn and Int Dn has no meridian of
Rkn . (If not, we can replace γn by the meridian in Int Dn).

Since tγnun is a collection of disjointly embedded circles in Σ, one of the following
holds: for each n1 and n1,

‚ Dn1 Ă Dn;
‚ Dn Ă Dn1 ;
‚ Dn XDn1 “ H.

We claim that:
p˚q :if any n1 ą n, then Dn Ă Dn1 or Dn XDn1 “ H.’

The reason is below: If not, Dn1 is a subset of Dn. Since γn1 Ă BRkn1
is not contractible

in MzR0 (See Remark 2.2.7) and the map π1pBRknq Ñ π1pMzRknq is injective, we use
Corollary 1.2.6 to see that Dn1 Ă Int Dn contains at least one meridian of Rkn . This is in
contradiction with the above assumption.

We will show there is an increasing subsequence of tDnu. Furthermore, the boundaries
of these discs in the subsequence gives a non-trivial element in π81 pMq.

Step 1: the existence of the ascending subsequence of tDnu.
We argue by contradiction. Suppose these is no ascending subsequence in tDnu.

Consider the partially ordered set ptDnun,Ăq induced by the inclusion. Let C be the
set of minimal elements in ptDnun,Ăq. These discs in C are disjoint in Σ.



5.2. THE VANISHING PROPERTY AND π81 91

If the set C is finite, we consider the integer n0 :“ maxtn| Dn P Cu. From the above
fact p˚q, the subsequence tDnunąn0 is an increasing subsequence, which contradicts our
hypothesis. Therefore, we can conclude that the set C is infinite. That is to say, there is
a subsequence tDnsus of disjointly embedded discs.

From Remark 2.2.7, the map π1pBRkns q Ñ π1pMzR0q is injective. Therefore, the disc
Dns intersects N0. Since N0 is a subset of R0, it also intersects R0.

Choose xns P R0 X Dns and r0 “
1
2

minti0, ru, where r :“ dMpBR0, BR1q and i0 :“
infxPR1pInjMpxqq. Hence, the geodesic ball Bpxns , r0q in M lies in R1.

Define the constants C :“ infxPR1 κpxq, K :“ supxPR1
|KM | where KM is the sectional

curvature of pM, gq.We apply Theorem 3.2.7 (See [Lemma 1, Page 445] of [MY80]) to
the minimal surface Dns XR1 in pR1, BR1q and obtain that

AreapDns XBpxns , r0qq ě C1pK, i0, r0q.

This leads to a contradiction from Theorem 3.3.10 as follows:

2π ě

ż

Σ

κdv ě

ż

R1XΣ

κdv ě
ÿ

s

ż

DnsXBpxns ,r0q

κdv

ě
ÿ

s

CAreapDns XBpxNs , r0qq

ě
ÿ

s

CC1 “ 8

Therefore, we can conclude that there is an ascending subsequence of tDnun.
From now on, we abuse the notation and write tDnu for an ascending subsequence.

Step 2: π81 pMq is non-trivial.
Claim: There is an integer N so that for n ě N , pDnzDn´1q XR0 is empty.
We argue by contradiction. Suppose that there exists a family tnlu of increasing

integers such that DnlzDnl´1
intersects R0.

Choose xl P DnlzDnl´1
X R0. Hence the geodesic ball Bpxl, r0q in M is contained in

R1, where r0 is assumed as above. We apply Theorem 3.2.7 (See [Lemma 1, Page 445]
in [MY80]) to the minimal surface DnlzDnl´1

XR1 in pR1, BR1q.

AreappDnlzDnl´1
q XBpxl, r0qq ě C1pK, i0, r0q.

From Theorem 3.3.10, one gets a contradiction as follows:

2π ě

ż

Σ

κdv ě

ż

R1XΣ

κdv

ě
ÿ

l

ż

pDnlzDnl´1
qXBpxl,r0q

κdv

ě
ÿ

l

CAreapBpxl, r0q XDnlzDnl´1
q

ě C
ÿ

l

C1 “ 8

This proves Claim 1.
Therefore, for n ą N , γn is homotopic to γN in MzR0 and not nullhomotopic in MzR0.
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Because YkRk may not equal to M , the sequence tγnunąN of circles may not go to
infinity. For overcoming it, we choose a new family tγ1nunąN of circles going to infinity to
replace it.

The map π1pBRkn XNjkn
q Ñ π1pBRknq is surjective (See Theorem 2.2.6 and Definition

2.2.5). Hence, we can find a circle γ1n Ă BNjkn
X BRkn which is homotopic to γn in BRkn .

The sequence of circles tγ1nuněN goes to infinity.
The sequence tγ1nu also have the property that for n ą N ,

‚ γ1n is homotopic to γ1n`1 in MzR0;
‚ γ1n is not nullhomotopic in MzR0.

From Remark 1.1.10, π81 pMq is not trivial. �

As a corollary, we have

Corollary 5.2.2. Let pM, gq be a Riemannian 3-manifold of positive scalar curvature
and tRkuk a family of handlebodies with Property (H). If π81 pMq is trivial, then any
complete stable minimal surface in pM, gq has the Vanishing property for tRkuk.

Theorem 5.2.3. Let pM, gq be a Riemannian manifold of positive scalar curvature
and a family of handlebodies tRkuk with Property (H). If each leaf in a lamination L
is a complete (non-compact) stable minimal surface satisfying the Vanishing Property for
tRkuk, then the lamination L also has the Vanishing property for tRkuk.

Proof. We argue by contradiction. Suppose that there exists a sequence tLtnu of
leaves in L and a sequence of increasing integers tknun so that some circle γn Ă LtnXBRkn

is not contractible in BRkn for each n.
The leaf Ltn is a complete (non-compact) stable minimal surface. From Corollary

3.3.11 (See [Theorem 2, Page 211] of [SY82]), it is diffeomorphic to R2. The circle γn
bounds a unique closed disc Dn Ă Ltn . Since γn is not nullhomotopic in MzR0 (See
Remark 2.2.7), the disc Dn intersects R0.

Step 1: The sequence tLtnun sub-converges with finite multiplicity.

Since each Ltn is a stable minimal surface, we use Lemma 4.1.5 (See [Theorem 3,
Page 122] of [Sch83]) to show that, fixed a compact set K Ă M , there exists a constant
C1 “ C1pK,M, gq satisfying that

|ALtn |
2
ď C1 on K X Ltn

where |ALtn |
2 is the squared norm of the second fundamental form of Ltn .

From Theorem 3.3.10,
ş

Ltn
κdv ď 2π. Hence,

AreapK X Ltnq ď 2πp inf
xPK

κpxqq´1.

From Theorem 4.1.4, the sequence tLtnun sub-converges to a sublamination L 1 of L with
finite multiplicity. In addition, L 1 is proper embedded.

The lamination L 1 may has infinitely many components. Let L 2 Ă L 1 be a set of
leaves intersecting R0. Since L 2 is properly embedded, L 2 has finitely many leaves.

Since each leaf Lt in L 1 is homeomorphic to R2 (See Corollary 3.3.11), any embedded
circle γ Ă BRk X Lt bounds a unique closed disc D Ă Lt for k ą 0.
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If Lt is in L 1zL 2, the intersection D X R0 is empty. Namely, γ is contractible in

MzR0. Since π1pBRkq Ñ π1pMzR0q is injective, then γ is nullhomotopic in BRk.
Therefore, we conclude that for each k ą 0 and any leaf Lt P L 1zL 2, any circle in

Lt X BRk is homotopically trivial in BRk.

Step 2: The Vanishing property gives a contradiction.

From now on, we abuse the notation and write tLtnu for a convergent sequence. In
addition, we assume that the lamination L 2 :“ >ms Lts (L 2 has finitely many leaves).

The Vanishing property gives an integer kpLtsq for Lts . For k ě
řm
s“1 kpLtsq, any circle

in BRk XL 2 is contractible in BRk. From the above fact, for k ą 0, any closed curve in
BRk XL 1zL 2 is also homotopically trivial in BRk.

Therefore, for any k ě
řm
s“1 kpLtsq, any circle in BRk XL 1 is contractible in BRk.

In the following, we fix the integer k ě
řm
s“1 kpLtsq and have the following:

Claim: For n large enough, any circle in BRk X Ltn is homotopically trivial
we may assume that L 1 intersects BRk transversally. Since L 1 is properly embedded,

BRk XL 1 has finitely many components. Each component of BRk XL 1 is an embedded
circle. From the above fact, it is homotopically trivial in BRk. That is to say,

π1pBRk XL 1
q Ñ π1pBRkq is a trivial map.

Choose an open tubular neighborhood U of L 1 X BRk in BRk. It is homotopic to
L 1 X BRk in BRk. Therefore, π1pUq Ñ π1pBRkq is a trivial map.

Since tLtnu converges to L 1, we see that LtnXBRk is contained in U for n large enough.
Hence, the map π1pBRk X Ltnq Ñ π1pBRkq is trivial. Namely, any circle in BRk X Ltn is
contractible in BRk. The claim follows.

The boundary γn Ă BRkn of Dn is non-contractible in BRkn . From Remark 2.2.7,

it is non-contractible in MzR0. If kn ą k, we use Corollary 1.2.6 and Property H (See
Definition 2.2.5) to find a meridian γ1 Ă Dn Ă Ltn of Rk. This is in contradiction with
the above claim. �

As a consequence, we have

Corollary 5.2.4. Let pM, gq be a Riemannian manifold of positive scalar curvature
and tRkuk a family of handlebodies with Property (H). If π81 pMq is trivial, then any
complete stable minimal lamination in pM, gq has the Vanishing property for tRkuk.



CHAPTER 6

Proof of Main Theorems

In this chapter, we will explain the proof of the main theorems. For a contractible 3-
manifold, the existence of complete metrics of positive scalar curvature and its topological
properties (for example, Property H) can be related through the limit of a sequence of
lamination (constructed in Chapter 4). Combining all these, we will finish the proof of
Theorem B2 and Theorem C.

6.1. Proof of Main theorems

For the proof of the main theorems, we will argue by contradiction. In this chapter,
we assume that pM, gq is a complete contractible 3-manifold of positive scalar curvature
which is not homeomorphic to R3.

As in Remark 1.1.13, M is an increasing union of handlebodies tNkuk with the property
that for each k, (1) Nk is homotopically trivial in Nk`1; (2) none of the Nk is contained
in a 3-ball. In addition, the genus of Nk is greater than zero for k ě 0.

From Lemma 1.2.7, each Nk has a system of meridians tγlku
gpNkq
l“1 . As in Chapter 4.2,

there is a lamination Lk :“ >lΩ
l
k Ă Nk. Each leaf Ωl

k is a meridian disc with boundary
γlk. As described in Chapter 4.2, since N0 is not contained in a 3-ball, the lamination Lk

intersects N0.
The intersection Lk X Nk´1 is a stable minimal lamination in pM, gq. From Chapter

4.2, the sequence tLku sub-converges to a stable minimal lamination L :“ YtPΓLt in
pM, gq. Each leaf Lt is a complete (non-compact) stable minimal surface in pM, gq.

Since pM, gq has positive scalar curvature, each leaf in L is a properly embedded
plane (See Theorem 3.3.10 and Corollary 3.3.11).

6.1.1. Properties of L . In the following, we consider the lamination L and its
properties.

If one of the following holds:

‚ π81 pMq is trivial,
‚ M is a contractible genus one 3-manifold;
‚ M is homeomorphic to M1 (constructed in Chapter 1.3.5)

there is a family of ascending handlebodies tRkuk satisfying Property H, so that

a) the lamination L has the Vanishing property for tRkuk;
b) for each k and any Nj containing Rk, the intersection Lj X BRk has at least one

meridian of Rk.

Remark 6.1.1.
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‚ The three different conditions for M correspond respectively to Theorem C, The-
orem B2 and Theorem 1.3.15.

‚ If M is a contractible genus one 3-manifold, then π81 pMq is trivial.

In the following, let us explain the above properties, a) and b).

If π81 pMq is trivial, we know from Theorem 2.2.6 that there is an increasing family
tRkuk of closed handlebodies with Property H (See Definition 2.2.5). Corollary 5.2.4
shows that the lamination L has the Vanishing Property for this family.

In addition, none of the Rk is contained in a 3-ball (See Definition 2.2.5). Together
with Property H, we use Corollary 1.2.8 to know that if Nj contains Rk, the intersection
Lj X BRk has at least one meridian of Rk.

If M is a contractible genus one 3-manifold, the family tNku can be assumed as in
Theorem 1.3.13. That is to say, the geometric index IpNk, Nk`1q is greater than zero.

From Lemma 1.3.10, Theorem 1.1.4 and Lemma 1.1.5, we know that the map π1pBNkq Ñ

π1pMzNkq and π1pBNkq Ñ π1pNkzN0q are also injective. That is to say, the family tNku

satisfies Property H.
From Theorem 2.1.6, M satisfies Property P. Theorem 5.1.1 implies that L satisfies

the Vanishing property for tNkuk. In addition, since the geometric index IpNj, Nkq is
greater than zero for j ă k, Lj X BNj has at least one meridian of Nj (See Lemma
1.3.11).

If M is homeomorphic to M1 ( constructed in Chapter 1.3.5), then there is a properly
embedded plane P1 as constructed in Chapter 1.3.4. It cuts M1 into two contractible
3-manifolds, M 1

1 and M2
1 (See Proposition 1.3.14). In addition, M 1

1 is homeomorphic to
the Whitehead manifold. As in the construction of the Whitehead manifold (in Chapter
1.3.2) there is a family tRku of solid tori in M satisfying:

‚ the union YkRk is equal to M 1
1;

‚ the geometric index IpRk, Rk`1q is equal to two for each k.

As in the genus one case, we know that π1pBRkq Ñ π1pMzRkq and π1pBRkq Ñ

π1pRkzR0q are both injective (See Lemma 1.3.10). In addition, none of the Rk is con-
tained in a 3-ball in M . That is to say, the family tRkuk satisfies Property H.

From Remark 2.1.7, the family tRkuk satisfies Property P. Since limkÑ8 IpR0, Rkq “

limkÑ8 2k´1 “ 8, we see from Remark 5.1.3 that L satisfies the Vanishing property for
tRku.

In addition, we know from Corollary 1.2.8, that for any Nk containing Rj, Lk has at
least one meridian of Rj for k ě j.

Remark 6.1.2. In the following, our proof requires that BRk intersects some leaf Lt
transversally. To overcome it , we will deform the handlebody Rk in a small tubular neigh-
borhood of BRk so that the boundary of the new handlebody intersects Lt transversally.

This new handlebody also satisfies a) and b). The reason is as follows:

For any handlebody R1k obtained by deforming Rk, the maps π1pBR
1
kq Ñ π1pR1kzR0q

and π1pBR
1
kq Ñ π1pMzR1kq are both injective. The proof of a) and b) just depends on the

injectivity of these two maps. Hence, the handlebody R1k also holds a) and b).
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Remark. The positivity of the scalar curvature gives the property, a). The topological
properties of M implies that Lk satisfies the property, b).

In the following, we just give the complete proof of Theorem C. The remaining proofs
of Theorem B2 and Theorem 1.3.15 are the same as Theorem C.

6.1.2. The proof of Theorem C. From the above property a), there is a family of
handlebodies tRkuk so that L has the Vanishing property for the family tRkuk. That is
to say,

There is a integer k0 ą 0 so that for any k ě k0, any circle in L XBRk is contractible
in BRk.

If L :“ >tPΛLt has finitely many components, we may assume that each leaf Lt
intersects BRk transversally for k ě k0. Since Lt is properly embedded, LtXBRk :“ tγtiuiPIt
has finitely many components. Each component is a circle.

From the above fact, each γti is null-homotopic in BRk. Consider the unique closed
disc Dt

i Ă BRk with boundary γti and the partially ordered set ptDt
iutPΛ,iPCt ,Ăq. Let C be

the set of maximal elements. In particular, it is a finite set. The set L XBRk is contained
in the disjoint union of closed discs in C.

In the general case, we also have a similar result.

Lemma 6.1.3. For any k ě k0, BRkpεqXL is contained in a disjoint union of finitely
many closed discs in BRkpεq, where Rkpεq :“ RkzNεpBRkq, NεpBRkq is some tubular neigh-
borhood of BRk in Rk.

In the general case when L has infinitely many components, we will prove it in
Chapter 6.3.

We now finish the proof of Theorem C.

Proof. Suppose that some complete contractible 3-manifold pM, gq with positive
scalar curvature and trivial π81 pMq is not homeomorphic to R3. As above, there is an
ascending family tRkuk of handlebodies with Property H, so that

a) the lamination L has the Vanishing property for tRkuk;
b) for each k and any Nj containing Rkpεq, the intersection Lj X BRkpεq has at least

one meridian of Rkpεq.
The Vanishing property implies Lemma 6.1.3 (We will prove it in Chapter 6.3). That

is to say, the intersection L X BRkpεq is in the union of disjoint closed discs tDiu
s
i“1 for

k ě k0.

Choose an open neighborhood U of the closed set L X Rk`1 so that U X BRkpεq is
contained in a disjoint union >si“1D

1
i, where D1i is an open tubular neighborhood of Di in

BRkpεq with small radius. Each D1i is an open disc in BRkpεq.
Since Lk subconverges to L , there exists an integer j, large enough, satisfying

‚ Lj XRk`1 Ă U ;
‚ Rkpεq is contained in Nj.

Therefore, Lj X BRkpεq is contained in U X BRkpεq Ă >D1i. The induced map π1pLj X

BRkpεqq Ñ π1p>iD
1
iq Ñ π1pBRkpεqq is a trivial map. We can conclude that any circle in

Lj X BRkpεq is contractible in BRkpεq.
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However, from b), there exists a meridian γ Ă Lj XBRkpεq of Rkpεq. This contradicts
the last paragraph and finishes the proof of Theorem C. �

6.2. Two topological lemmas

Before proving Lemma 6.1.3, we introduce two topological lemmas. These two lemmas
play a crucial role in the proof of Lemma 6.1.3

Lemma 6.2.1. Let pΩ, BΩq Ă pN, BNq be a 2-sided embedded disc with some closed sub-
discs removed, where N is a closed handlebody of genus g ą 0. Each circle γi is contractible
in BN , where BΩ “ >iγi. Then NzΩ has two connected components. Moreover, there is a
unique component B satisfying that the induced map π1pBq Ñ π1pNq is trivial.

Proof. We argue by contradiction. Suppose that NzΩ is path-connected. That is to
say, there is an embedded circle σ Ă N which intersects Ω transversally at one point.

Since each γi is contractible in BN , it bounds a unique disc Di Ă BN . The surface
Ω̂ :“ Ω

Ť

iYγiDi also intersects σ transversally at one point. The intersection number

between Ω̂ and σ is ˘1.
However, Ω̂ is the image of a continuous map g : S2 Ñ N . It is contractible in N ,

since π2pNq “ t0u. The intersection number between Ω̂ and σ must be zero, which leads
to a contradiction.

Therefore, NzΩ is not connected. Since Ω is 2-sided and connected, NzΩ just has two
components B0 and B1.

Remark that the surface Ω̂ :“ Ω
Ť

pYγiDiq is an immersed 2-sphere in N . This deduces

that the map π1pΩq Ñ π1pΩ̂q is trivial map. Therefore, the map π1pΩq Ñ π1pNq is trivial.

In the following, let us explain the existence of B.
Consider the partially ordered relationship over tDiu induced by inclusion. Therefore,

YiDi is equals to a disjoint union of maximal elements in ptDiu,Ăq. The set BNz Yi Di

is a compact surface with some disjoint closed sub-discs removed.
Therefore, the induced map π1pBNz YiDiq Ñ π1pBNq is surjective. The induced map

π1pBNq Ñ π1pNq is also surjective. We can conclude that the composition of these two
maps π1pBNz Yi Diq Ñ π1pNq is also surjective.

The set BNzYiDi is contained in one of two components, B1 and B2, of NzΩ. Without
loss of generality, we may assume that B1 contains BNzYiDi. Based on the last paragraph,
the induced map π1pB1q Ñ π1pNq is surjective.

Let Gi be the image of the map π1pBiq Ñ π1pNq, a subgroup of π1pNq. Van-Kampen’s
Theorem (See Theorem 1.1.4) gives an isomorphism between π1pNq and π1pB1q ˚π1pΩq

π1pB2q. Since the image of π1pΩq Ñ π1pNq is trivial, π1pNq is isomorphic to G1 ˚ G2.
Grushko’s Theorem [Gru40] shows that rankpG1q ` rankpG2q “ rankpπ1pNqq. (The rank
of a group is the smallest cardinality of a generating set for the group.) From the last
paragraph, the image, G1, of the map π1pB1q Ñ π1pNq is isomorphic to π1pNq. That is
to say, rankpG1q “ rankpπ1pNqq. Therefore, rankpG2q is equal to zero. That is to say, G2

is a trivial group. We know that B :“ B2 is the required candidate in the assertion.

Finally, we prove the uniqueness. Suppose that the two induced maps are both trivial.
Therefore, the map H1pBiq Ñ H1pNq is trivial for each i. Applying the Mayer-Vietoris
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sequence to N “ B0 YΩ B1, one has:

H1pB0q ‘H1pB1q Ñ H1pNq Ñ Ĥ0pΩq.

Since Ω is connected, Ĥ0pΩq is trivial. Therefore, H1pNq is also trivial. This contradicts
the fact that H1pNq is isomorphic to ZgpNq. This completes the proof. �

Consider two disjoint surfaces pΩ1, BΩ1q and pΩ2, BΩ2q as assumed in Lemma 6.2.1. For
t “ 1, 2, NzΩt has two components. Let Bt be the unique component of NzΩt satisfying
π1pBtq Ñ π1pNq is trivial. One has:

Lemma 6.2.2. Let pΩ1, BΩ1q and pΩ2, BΩ2q be two disjoint surfaces as assumed in
Lemma 6.2.1. For each t “ 1, 2, NzΩt has a unique component Bt with the property that
the map π1pBtq Ñ π1pNq is trivial. Then it holds one of the following:

(1) B1 XB2 “ H;
(2) B1 Ă B2;
(3) B2 Ă B1.

Proof. Suppose B1 X B2 and B1zB2 are both nonempty. Say, there are two points
p1 P B1zB2 and p2 P B1 XB2.

First, Ω2 is contained in B1. The reason follows as below: B1 includes a curve γ joining
p1 and p2 (since B1 is connected). γ must intersect Ω2 at some point(s). Hence, Ω2 XB1

is not empty. Since Ω1 X Ω2 is empty, Ω2 lies in one of component of NzΩ1. Therefore,
Ω2 is contained in B1.

Second, Ω2 cuts B1 into two components. Otherwise, there is a circle in B1 which
intersects Ω2 at one point. As argued in Lemma 6.2.1, such a circle can not exist.

Finally, take the component B of B1zΩ2 satisfying that BB X Ω1 is empty. Then, B
is also a component of NzΩ2. In addition, the map π1pBq Ñ π1pB1q Ñ π1pNq is trivial.
From the uniqueness of B2, one has that B “ B2. This implies B2 Ă B1. �

6.3. Proof of Lemma 6.1.3

In order to prove Lemma 6.1.3, we will introduce the set S and prove the finiteness of
S. The finiteness of S will imply Lemma 6.1.3.

6.3.1. Definition of the set S. Let pM, gq, L , tLku and tNku be assumed as
in the proof of Theorem D. As in Chapter 6.2, there is an ascending family tRkuk of
handlebodies with Property H with the property that L satisfies the Vanishing property
for tRkuk. That is to say,

there is a positive integer k0 so that for each k ě k0 and each t P Λ, each circle in LtXBRk

is contractible in BRk.

In the following, we will work on the open handlebody Int Rk and construct the set
S, for a fixed integer k ě k0.
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6.3.1.1. Elements in S. Let tΣt
iuiPIt be the set of components of Lt X Int Rk for each

t P Λ. (It may be empty.) We will show that for each component Σt
i, RkzΣt

i has a unique
component Bt

i satisfying that π1pB
t
iq Ñ π1pRkq is trivial.

If Lt intersects BRk transversally, the boundary BΣt
i Ă Lt X BRk is the union of some

disjointly embedded circles. From the Vanishing property, any circles in the boundary
BΣt

i Ă Lt X BRk is contractible in BRk.
In addition, since Lt is homeomorphic to R2 and Σt

i is relatively compact, Σt
i is home-

omorphic to an open disc with some disjoint closed subdiscs removed. By Lemma 6.2.1,
RkzΣt

i has a unique component Bt
i satisfying that π1pB

t
iq Ñ π1pRkq is trivial.

In general, Lt may not intersect BRk transversally. To overcome it, we will deform the
surface BRk. Precisely, for the leaf Lt, there is a new handlebody R̃kpεtq containing Rk so
that Lt intersects BR̃pεtq transversally, where R̃kpεtq is a closed tubular neighborhood of
Rk in M .

We consider the component Σ̃t
i of Lt X IntR̃k pεtq containing Σt

i. As above, R̃k pεtqzΣ̃t
i

has a unique component B̃t
i so that the map π1pB̃

t
iq Ñ π1pR̃kpεtqq is trivial.

Choose the component Bt
i of B̃t

i XRk whose boundary contains Σt
i. It is a component

of RkzΣt
i. In addition, the map π1pB

t
iq Ñ π1pB̃

t
iq Ñ π1pR̃kpεtqq is trivial. Since Rk and

R̃kpεtq are homotopy equivalent, the map π1pB
t
iq Ñ π1pRkq is also trivial. This finishes

the construction of Bt
i .

6.3.1.2. Properties of S. From Lemma 6.2.2, for any Bt
i and Bt1

i1 , it holds one of the
following

(1) Bt
i XB

t1

i1 “ H;
(2) Bt

i Ă Bt1

i1 ;
(3) Bt1

i1 Ă Bt
i ,

where t, t1 P Λ, i P It and i1 P It1 .
Therefore, ptBt

iutPΛ,iPIt ,Ăq is a partially ordered set. We consider the set tBjujPJ of
maximal elements. However this set may be infinite.

Definition 6.3.1. S :“ tBj|Bj X Rkpε{2q ‰ H, for any j P Ju, where Rkpε{2q is
RkzNε{2pBRkq and Nε{2pBRkq is a 2-sided tubular neighborhood of BRk with radius ε{2.

Proposition 6.3.2. Let Σt
i be one component of Lt X Rk and Bt

i assumed as above.
If Bt

i is an element in S, then Σt
i XRkpε{2q is nonempty.

Proof. We argue by contradiction. Suppose that Σt
iXRkpε{2q is empty. As mentioned

above, Σt
i cuts Rk into two components. Hence, Rkpε{2q must be in one of these two

components.
In addition, from the definition S, the component Bt

i of RkzΣt
i must intersect Rkpε{2q.

One knows that Rkpε{2q is contained in Bt
i .

However, the composition of maps π1pRkpεqq Ñ π1pB
t
iq Ñ π1pRkq is an isomorphism.

Therefore, the map π1pB
t
iq Ñ π1pRkq is non-trivial and surjective, which contradicts the

fact that the map π1pB
t
iq Ñ π1pRkq is trivial. This finishes the proof. �
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Proposition 6.3.3. Rkpεq X L Ă
Ť

BjPS
Bj X Rkpεq. Moreover, BRkpεq X L Ă

Ť

BjPS
Bj X BRkpεq.

Proof. Each component Σt
i of Lt X Int Rk is contained in Bt

i . Hence, Lt X Rk is in

YiPItB
t
i . We can conclude that L XRk is contained in YBt

i .
The set YBt

i is equal to YjPJBj, because tBjujPJ is the set of all maximal elements in
the partially ordered set ptBt

iu,Ăq. Therefore, L XRk is in YjPJBj.
From the definition of S, YjPJBj XRkpεq equals YBjPSBj XRkpεq. Therefore, Rkpεq X

L Ă YBjPSBj XRkpεq.

Similarly, one has that YjPJBjXBRkpεq equals YBjPSBjXBRkpεq. Hence, BRkpεqXL Ă

YBjPSBj X BRkpεq �

6.3.2. The finiteness of the set S. The set BBj X Int Rk equals some Σt
i Ă Lt for

t P Λ. Let us consider the set St :“ tBj P S|BBj X Int Rk Ă Ltu. Then, S “ >tPΛSt. Note
that each Bj P St is a Bt

i for some i P It.
In this subsection, we first show that each St is finite. Then, we argue that tStutPΛ

contains at most finitely many nonempty sets. These imply the finiteness of S.

Lemma 6.3.4. Each St is finite.

Proof. We argue by contradiction. Suppose that St is infinite for some t.
For each Bj P St, there exists a i P It so that Bj is equal to Bt

i , where Bt
i is a component

of RkzΣt
i and Σt

i is one component of Lt X Int Rk. By Proposition 6.3.2, Σt
i X Rkpε{2q is

nonempty.
Choose xj P Σt

i X Rkpε{2q and r0 “
1
2

mintε{2, i0u, where i0 :“ infxPRk InjMpxq. Then
the geodesic ball Bpxj, r0q in M is contained in Rk.

We apply Theorem 3.2.7 to the minimal surface pΣt
i, BΣ

t
iq Ă pRk, BRkq. One knows

that,
AreapΣt

i XBpxj, r0qq ě Cpr0, i0, Kq

where K “ supxPRk |KM |. This leads to a contradiction from Theorem 3.3.10 as below:

2π ě

ż

Lt

κpxqdv ě
ÿ

BjPSt

ż

Σti

κpxqdv ě
ÿ

BjPSt

ż

ΣtiXBpxj ,r0q

κpxqdv

ě inf
xPRk

pκpxqq
ÿ

BjPSt

AreapBpxj, r0q X Σt
iq

ě C inf
xPRk

pκpxqq|St| “ 8

This finishes the proof. �

Lemma 6.3.5. tStutPΛ contains at most finitely many nonempty sets.

Proof. We argue by contradiction. Suppose that there exists a sequence tStnunPN of
nonempty sets. For an element Bjtn P Stn , there is some in P Itn so that Bjn equals Btn

in

where Btn
in

is one component of RkzΣ
tn
in

and Σtn
in

is one of components of Ltn X Int Rk.

Note that π1pB
tn
in
q Ñ π1pRkq is trivial.

By Proposition 6.3.2, Σtn
in
XRkpε{2q is not empty. Pick a point ptn in Σtn

in
XRkpε{2q.
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Step1: tLtnu subconverges to a lamination L 1 Ă L with finite multiplicity.

Since Ltn is a stable minimal surface, We know from Lemma 4.1.5 that for any compact
set K ĂM , there is a constant C1 :“ C1pK,M, gq such that

|ALtn |
2
ď C1 on K X Ltn .

From Theorem 3.3.10,
ş

Ltn
κpxqdv ď 2π. Hence,

AreapK X Ltnq ď 2πp inf
xPK

κpxqq´1.

We use Theorem 4.1.4 (See [Compactness Theorem, Page 96] in [And85]) to find a
sub-sequence of tLtnu subconverging to a properly embedded lamination L 1 with finite
multiplicity. Since L is a closed set in M , L 1 Ă L is a sublamination.

From now on, we abuse notation and write tLtnu and tptnu for the convergent subse-
quence.

Lt8

Σ8

Σtn
in

BΣ8pp8q

π´1pBΣ8pp8qq X Σtn
in

Figure 6.1.

Step 2: tΣtn
in
u converges with multiplicity one.

Let Lt8 be the unique component of L 1 passing through p8, where p8 “ limnÑ8 ptn .
The limit of tΣtn

in
u is the component Σ8 of Lt8 XRk passing through p8, where Σtn

in
is the

unique component of Rk X Ltn passing though ptn .
Let D Ă Lt8 be a simply-connected subset satisfying Σ8 Ă D. Since tLtnu converges

smoothly to Lt8 , there exists ε1 ą 0 and an integer N such that

Σtn
in
Ă Dpε1q, for n ą N,

where Dpε1q is the tubular neighborhood of D with radius ε1 in M . (See Definition 4.1.2
and Remark 4.1.3).
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Let π : Dpε1q Ñ D be the projection. For n large enough, the restriction of π to each
component of Ltn XDpε1q is injective (See Remark 4.1.3).

Hence, π|Σtnin
: Σtn

in
Ñ D is injective. That is to say, Σtn

in
is a normal graph over a subset

of D. Therefore, tΣtn
in
u converges to Σ8 with multiplicity one (See Definition 4.1.2). That

is to say, there is a geodesic disc BΣ8pp8q Ă Σ8 centered at p8 with small raduis so that

p˚˚q: the set π´1pBΣ8pp8qq XΣtn
in

is connected and a normal graph over BΣ8pp8q, for
large n.

Step 3: Get a contradiction.

There exists a neighborhood U of p8 and a coordinate map Φ, such that each compo-
nent of ΦpL XUq is R2ˆtxuXΦpUq for some x P R. (See Definition 4.2.1 or Appendix B
of [CM11].) Choose the disc BΣ8pp8q and ε1 small enough such that π´1pBΣ8pp8qq Ă U .
We may assume that U “ π´1pBΣ8pp8qq.

From p˚˚q, Σtn
in
XU Ă Ltn is connected and a graph over BΣ8pp8q, for n large enough.

Since BBjtn XU Ă Ltn equals Σtn
in
XU , it is also connected. Therefore ΦpBBjtn XUq is the

set R2ˆtxtnuXΦpUq for some xtn P R. In addition, ΦpΣ8XUq equals R2ˆtx8uXΦpUq
for some x8 P R. Since lim

nÑ8
ptn “ p8, we have lim

nÑ8
xtn “ x8.

x8

xtn1

xtn

x8

xtn1
xtn

ΦpUq

ΦpU XBjtn qΦpUq

ΦpU XBjtn q

Figure 6.2.

The set UzBBjtn has two components. Therefore, ΦpBjtn X Uq is ΦpUq X tx|x3 ą

xtnu or ΦpUq X tx|x3 ă xtnu. For n large enough, there exists some n1 ‰ n such that
R2 ˆ txtn1u X ΦpUq Ă ΦpBjtn X Uq. This implies that Bjtn XBjt

n1
is non-empty.

Since S consists of maximal elements in ptBt
iu,Ăq, the set Bjtn XBjt

n1
is empty which

leads to a contradiction. This finishes the proof. �

6.3.3. The finiteness of S implies Lemma 6.1.3. We will explain how to deduce
Lemma 6.1.3 from the finiteness of S.

Proof. Since S is finite , we may assume that BBj intersects BRkpεq transversally
for each Bj P S. Remark that each Bj is equal to some Bt

i and BBj X BRkpεq equals
Σt
i X BRkpεq. Since each Σt

i is properly embedded, tciuiPI :“ BRkpεq X pYBjPSBBjq has
finitely many components. Each component is an embedded circle.
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The Vanishing property of L and Remark 6.1.2 show that each ci is contractible in
BRkpεq and bounds a unique closed disc Di Ă BRkpεq (since k ě k0). The set pDi,Ăq is a
partially ordered set. Let tDj1uj1PJ 1 be the set of maximal elements. The set J 1 is finite .

Since the boundary of BRkpεqXBj is a subset of BBj XBRkpεq Ă >iPIci, it is contained
in >j1PJ 1Dj1 .

Next we show that for any Bj P S, BRkpεq XBj is contained in >j1PJ 1Dj1 .
If not, BRkpεqz >j1PJ 1 Dj1 is contained in BRkpεq X Bj for some Bj P S. This implies

that the composition of two maps π1pBRkpεqzp>j1PJ 1Dj1qq Ñ π1pBjq Ñ π1pRkq is not a
zero map. However, the induced map π1pBjq Ñ π1pRkq is trivial. This is impossible. We
conclude that for each Bj P S, BRkpεq XBj is contained in >j1PJ 1Dj1 .

Therefore, YBjPSBj X BRkpεq is contained in >j1PJ 1Dj1 . From Proposition 6.3.3, L X

BRkpεq is contained in a disjoint union of finite discs tDj1uj1PJ 1 . This completes the proof.
�

6.4. Deformation to Positive Scalar curvature

This section follows Kazdan’s result [Kaz82]. In this section, we show that a complete
non-Ricci-flat metric of nonnegative scalar curvature can deformed to be a complete metric
of positive scalar curvature.

Let pMn, gq be a complete n-manifold. We consider the operator

Lpuq “ ´∆u` fu

where f is a smooth function on M .
For a bounded open set Ω Ă M with smooth boundary and outer normal derivative

B{Bν on BΩ, let µ1pL,Ωq be the lowest eigenvalue of L with Neumann boundary conditions,
Bu{Bν “ 0 on BΩ. One has the well-known variational characterization of µ1pΩq

µ1pL,Ωq “ inf
v

ş

Ω
p|∇v|2 ` fv2qdx

ş

Ω
v2dx

,

where dx is the volume form and the infimum is taken over all v in the Sobolev space
H1pΩq.

Lemma 6.4.1. (See [Theorem A, Page 228] in [Kaz82]) Assume there is a bounded
open set Ω0 Ă M such that µ1pL,Ω0q ą 0 and f ě 0 on MzΩ0. Then there is a solution
u ą 0 on M of Lpuq ą 0; in fact one can find a solution of Lpuq ą 0 satisfying 0 ă C1 ă

u ă C2, where C1 and C2 are two constants.

In the following, we consider that the conformal Laplacian Lg,

Lg :“ ´
4pn´ 1q

n´ 2
∆g ` κg.

Theorem 6.4.2. A complete non-Ricci-flat metric of nonnegative scalar curvature can
be deformed to be a complete metric of positive scalar curvature.

Proof. Assume that pM, g0q is a complete non-Ricci-flat manifold with non-negative
(κg0 ě 0). Let p be a point in pM, g0q satisfying that

(6.4.1) Ricg0ppq ‰ 0.
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Choose the geodesic ball Bpp, rq centered at p with radius r, where r is less than the
injective radius of pM, gq at p. Since κg0 ě 0, then µ1pLg0 , Bpp, rqq is non-negative.

If µ1pLg0 , Bpp, rqq ą 0, we use Lemma 6.4.1 to find a positive function u with the
following properties:

‚ Lg0puq ą 0;
‚ there is a positive constant C such that u ě C.

Choose the new metric g :“ u
4

n´2 g0. It is a complete metric over M . The scalar curvature
is

κg “ Lg0puqu
´n`2
n´2 ą 0.

The metric g is the required candidate as in the statement.

If µ1pLg0 , Bpp, rqq “ 0, we have that the scalar curvature κg0 “ 0 on Bpp, rq and the
eigenfunction φ for µ1pLg0 , Bpp, rqq is a constant function. The reason is as follows:

We have that
$

&

%

´∆g0φ` κg0φ “ 0

Bφ{Bν “ 0

Dong integration by parts, we have that
ş

Bpp,rq
|∇φ|2 ` κg0φ

2 “ 0. Thus, φ is a constant

function and κg0 “ 0 on Bpp, rq.

From [Lemma 3.3, Page 232] in [Kaz82], there exists a new metric gt0 so that

(1) µ1pLgt0 , Bpp, rqq ą 0;
(2) gt0 is equal to g0 outside Bpp, rq.

As the above case, we could find a complete metric with positive scalar curvature.

The metric gt0 is constructed as follows:
Pick a a function η P C80 pBpp, rq,Rě0q with ηppq ą 0 and consider a family of metrics

gt “ g0 ´ t ¨ η ¨ Ricg0

Since κg0 “ 0 on Bpx, rq, the first variation formal (See [Page 233] of [Kaz82] or [KW75])
gives that

(6.4.2)
d

dt
µ1pLgt , Bpx, rqq|t“0 “

1

VolpBpp, rqq

ż

Bpx,rq

η|Ric|2

Since ηppq ą 0, Equations (6.4.1) and (6.4.2) gives

d

dt
µ1pLgt , Bpp, rqq|t“0 ą 0.

Since µ1pLg0 , Bpp, rqq “ 0, we find that µ1pLgt0 , Bpx, rqq ą 0 for some t0 ą 0.
The metric gt0 is the required metric. �

As a consequence, we have that

Corollary 6.4.3. No contractible genus one 3-manifold admits a complete metric of
nonnegative scalar curvature.
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Proof. We argue by contradiction. Suppose that pM3, gq is a complete contractible
genus one 3-manifold of nonnegative scalar curvature.

If g is Ricci-flat, it is a flat metric. Thus, M is homeomorphic to R3. This is in
contradiction with Theorem 1.3.13(M is not homeomorphic to R3).

If not, g can be deformed to be a complete metric of positive scalar curvature. This
contradicts Theorem B2. �

As the above argument, we have that

Corollary 6.4.4. A complete contractible 3-manifold with non-negative scalar cur-
vature and trivial π81 is homeomorphic to R3.

6.5. Further questions

6.5.1. The General Case. In [Wan19a, Wan19b], we verified Question 1 for 3-
manifolds with trivial π81 . The remaining case is contractible 3-manifolds with non-trivial
π81 .

In this case, we require more techniques combining minimal surfaces theory and topo-
logical surgeries on 3-manifolds.

The key point is to understand stable minimal surfaces (as constructed in Chapter
4.2) and its relationships with the fundamental group at infinity.

Based on this relationship, we attempt to devise a new topological surgery which can
reduce Question 1 to Theorem B2.

6.5.2. RCD metrics. By [Liu13], the Whitehead manifold does not admit any com-
plete metric with positive Ricci curvature. In metric geometry, Riemannian manifolds
with lower bounds on Ricci curvature correspond to the RCD spaces. It would be inter-
esting to know whether the Whitehead manifold has a RCD(0, 3) metric.

6.5.3. Spherical Decomposition.

Definition 6.5.1. An embedded 2-sphere S in a 3-manifold M is called compressible
if S bounds a 3-ball in M .

A spherical decomposition S of a 3-manifold is a locally finite collection of (possibly
non-separating) pairwise disjoint embedded 2-sphere in M such that the operation of
cutting M along S and gluing a ball to each boundary component of the resulting manifold
yields a collection of irreducible manifolds.

A 3 manifold M is irreducible if and only if all 2-spheres in M are compressible.
If S is a spherical decomposition, then the collection of sphere obtained by removing

compressible spheres in S is still a spherical decomposition.

The prime decomposition theorem for 3-manifold (See [Hat00] or [Kne29]) is equiva-
lent to the statement that every compact 3-manifold has a spherical decomposition. This
result does not generalize to open manifolds (See [Sco77] and [Mai07, Mai08]). The
first example was given by Scott [Sco77].

A question posed by Maillot is the following:

Question: Does a complete 3-manifold of uniformly positive scalar curvature have a
spherical decomposition ?
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For this question, a possible approach is to use the minimal surface theory to study
the geometry of incompressible spheres.

This question is related to the open problem, introduced by Bessières, Besson and
Maillot [BBM11]:

Question :(See [BBM11]) Let M be a connected, orientable 3-manifold which admits a
complete metric of uniformly positive scalar curvature. Is M a connected sum of spherical
manifolds and copies of S2 ˆ S1?

Generally, we attempt to use the spherical decomposition to study the following ques-
tion:

Question: (See Problem 27 in [Yau82]) Classify 3-manifolds admitting complete Rie-
mannian metrics of positive (resp. nonnegative) scalar curvature up to diffeomorphism.



Part 4

Closed aspherical 4-Manifolds



CHAPTER 7

Gromov-Lawson Conjecture

7.1. Aspherical 4-manifolds

Definition 7.1.1. A space M is called aspherical if it is path-connected and all its
higher homotopy groups vanish (i.e. πkpMq is trivial for k ě 2).

For example, a CW complex M is aspherical if and only if its universal cover is
contractible.

Lemma 7.1.2. If Mn is an aspherical manifold, then its fundamental group is torsion-
free.

However, if Mn is an aspherical manifold, the first homology group H1pMq may be
not torsion-free. For example, the Klein bottle K2 is aspherical (since its universal cover
is R2). However, H1pK

2q – Z‘ Z{2Z.

Conjecture 7.1.3. (Gromov-Lawson Conjecture) No closed aspherical manifold has
a metric of positive scalar curvature.

For example, a n-dimensional torus Tn has no metric of positive scalar curvature
for n ě 2. It was proved by Gromov and Lawson [GL83] and by Schoen and Yau
[SY82,SY17].

It is well-known from [GL83] that this conjecture holds for the 3-dimensional case.
In dimension four, Gromov and Lawson [GL83] gave a partial solution requiring an
additional hypothesis about incompressible surfaces.

We prove that

Theorem. F No closed aspherical 4-manifold with nonzero first Betti number has a
metric of positive scalar curvature.

Remark that there is some closed aspherical 4-manifold whose first homology group
vanishes (See [RT05]).

7.2. The non-existence result

7.2.1. Topological preliminary.

Lemma 7.2.1. Let M4 be a closed 4-manifold and Σ a closed 3-manifold. The 2-sphere
S Ă Σ cuts Σ into Σ11 and Σ12 and the map f : Σ Ñ M is an immersed. If fpSq bounds
an immersed 3-ball B Ă M , then fpΣiq YfpSq B is a singular 3-cycle in M for i “ 1, 2.
Furthermore, one has

rfpΣqs “ rfpΣ1q YfpSq Bs ` rfpΣ2q YfpSq Bs P H3pM,Zq
.

108
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Proof. We have that fpΣq is an singular 3-cycle. The sets, fpΣ1q and fpΣ2q, are
two elements in the group, S3pM,Zq, of singular 3-chain. The boundary BfpΣ1q is equal
to fpSq in S2pM,Zq. We have that BfpΣ2q “ ´fpSq P S2pM,Zq.

In the group S2pM,Zq, we have that

BpfpΣ1q ´Bq “ BpΣ1q ´ BB “ fpSq ´ fpSq “ 0.

In addition, we have that fpΣ1q YfpSq B is equal to fpΣ1q ´ B in S3pM,Zq. Therefore,
fpΣ1q YfpSq B is a 3-cycle of X.

Similarly, we have that fpΣ2q YfpSq B is equal to fpΣ2q ` B in S3pM,Zq. Therefore,
fpΣ2q YfpSq B is a 3-cycle of X.

In S3pM,Zq, we have that

fpΣq “ fpΣ1q ` fpΣ2q

“ fpΣ1q ´B ` fpΣ2q `B

“ fpΣ1q YfpSq B ` fpΣ2q YfpSq B

We can conclude that rfpΣqs “ rfpΣ1q YfpSq Bs ` rfpΣ2q YfpSq Bs P H3pM,Zq. �

Lemma 7.2.2. Let M4 be a closed 4-manifold and Σ a S2 ˆ S1. The set ΣzS is
homeomorphic to S2 ˆ p0, 1q, where S is a 2-sphere in Σ. The map f : Σ Ñ M is an
immersion. If fpSq bounds an immersed 3-ball, then there is a map g : S3 ÑM so that

rfpΣqs “ rgpS3
qs P H3pM

4,Zq

Proof. The set ΣzS is an S2 ˆ p0, 1q with boundary S` > S´. In S2pM,Zq, fpS`q “
fpSq and fpS´q “ ´fpSq.

Let hpxq : B3 Ñ B1 be the immersion with fpBB3q “ fpSq. Consider the 2-sphere
ΣzS YS` B3

´ YS´ B3
`, where B3

` and B3
´ are two 3-balls. We define the map g from the

sphere to M as follows:

hpxq “

$

’

’

’

’

&

’

’

’

’

%

fpxq, where x P ΣzS

hpxq, where x P B3
`

hpxq, where x P B3
´,

In the group S3pM,Zq, we have that hpS3q “ fpΣq ´ B ` B “ fpΣq. We have that
rfpΣqs “ rgpS3qs P H3pM

4,Zq. �

7.2.2. Proof of Theorem F . We begin by a compact manifold pM4, gq with b1pMq ą
0. There is an embedded circle γ ĂM with the property that rγs is a torsion-free element
in H1pMq. We use the Poincaré duality to find a class u P H3pM

4q – H1pM4q satisfying
that prγs, uq “ 1.

We apply a theorem of Fleming-Federer (See [FF60]) and the regularity theory for
area-minimizing currents (See Chapter 7 of [Sim83]). This result asserts that, in a
Riemannian manifold pXn, gq, for a non-trivial class in Hn´1pX,Zq, there is a volume-
minimizing hypersurface in the class satisfying that it is smooth outside a set of Hausdorff
dimension ď n ´ 8 . Therefore, there is a stable minimal hypersurface Σ3 Ă pM4, gq in
the class u. In addition, the intersection number pγ,Σq of Σ and γ is `1.
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If pM4, gq has positive scalar curvature, then Σ admits a metric of positive scalar
curvature (See Proposition 3.3.5). In this case, Σ is a connected sum of some spherical
manifolds and some copies of S1ˆS2 (See [Per02a,Per02b,Per03], [MT07], [BBB`10]).

In the following, we prove Theorem F .

Proof. We argue by contradiction. Suppose a closed aspherical manifold M4 with
b1pM

4q ą 0 has a metric g of positive scalar curvature.
Let γ and Σ be constructed as above. The intersection number pΣ, γq of Σ and γ is

not zero. In addition, Σ has a metric of positive scalar curvature. By [Per02a,Per02b,
Per03], we see that

Σ – S3
{Γ1# . . .#S3

{Γj#pS1
ˆ S2

q# . . .#pS1
ˆ S2

q

where each Γi is a finite subgroup of Op4q for 1 ď i ď j.
There exists a family of disjointly embedded splitting 2-spheres tSiu

n´1
i“1 in Σ. They

cut M into n-components, denoted by tXiu
n
i“1. That is,

Σ – X1 YS1 X2 YS2 ¨ ¨ ¨ YSn´1 Xn.

Set

X 1
k “

$

’

’

’

’

&

’

’

’

’

%

X1 YS1 B3 k “ 1

Xn YSn´1 B3 k “ n

Xk YSk´1
B3 YSk B3 otherwise,

where B3 is a unit ball in R3. Therefore, Σ – X 1
1# . . .#X 1

n. Each X 1
k is a spherical

manifold or S1 ˆ S2. (Note that X 1
k is not a subset of M4.)

Since π2pMq is trivial, each 2-sphere Sk bounds an immersed 3-ball Bk ĂM4. Let us
consider a submanifold

X2
k “

$

’

’

’

’

&

’

’

’

’

%

X1 YS1 B1 k “ 1

Xn YSn´1 Bn´1 k “ n

Xk YSk´1
Bk´1 YSk Bk otherwise,

Each X2
k Ă M4 can be viewed as the image of some map fk from X 1

k to M4. By Lemma
7.2.1, we know that rΣs “

řn
k“1rX

2
k s in H3pM

4,Zq.
Since the intersection number pγ,Σq is not equal to zero, there is some k such that the

intersect number pγ,X2
kq is not zero. As mentioned above, X 1

k is a spherical 3-manifold
or S1 ˆ S2.

Case I: If X 1
k is a spherical manifold (that is, it is S3{Γk), X

2
k can be considered

as the image of the map from S3 to M . However, since π3pM
4q is trivial, we see that

X2
k is contractible in M4. Therefore, the intersection number pγ,X2

kq is zero. This is in
contradiction with the last paragraph.

Case II: If X 1
k is a S1 ˆ S2, we can find a 2-sphere S Ă Xk so that X 1

kzf
´1
k pSq is a

S2 ˆ p0, 1q. Because π2pMq “ t1u, S bounds an immersed 3-ball. We use Lemma 7.2.2 to
find the map h : S3 Ñ M so that rhpS3qs “ rX2

k s P H3pM,Zq. Therefore, the intersection
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number of h and γ is not equal to zero. However, h is homotopic to a constant map,
(since π3pMq “ t1u). The intersection number is equal to zero, a contradiction.

This finishes the proof of Theorem F . �

7.3. Further questions

7.3.1. Stable minimal hypersurfaces in R4. When using the minimal hypersur-
faces to study 4-manifolds, understanding the geometry of minimal hypersurfaces is neces-
sary and crucial. However, the geometry of stable minimal hypersurfaces in a 4-manifold
is not known. R. Schoen has conjectured:

Conjecture. (See [Conjecture 2.12, Page 79] of [CM11]):If Σ3 Ă R4 is a complete
immersed stable minimal hypersurface with trivial bundle, then Σ is flat.

7.3.2. Closed Aspherical 4-manifolds. Generally, Gromov-Lawson conjecture is
still unknown, particularly for 4-manifolds with zero first Betti number.

The proof of Theorem F involves stable minimal hypersurfaces and the geometriza-
tion conjecture. In the general case, the main issue is the existence of stable minimal
hypersurfaces. In the proof of Theorem F , its existence is ensured by our hypothesis that
the first Betti number is non-zero.

In order to overcome it, we attempt to find a covering space whose first betti number
is nonzero. We next use topological conditions to construct a complete stable minimal
surface. Then one is led to study stable minimal surface in a 4-manifold with uniformly
positive scalar curvature.

Combining with the argument in [GL83] and some metric inequalities in [Gro18], we
plan to argue by contradiction. We expect to show that such a minimal surface does not
exist, which would lead to a contradiction.

7.3.3. Exotic R4. An exotic R4 is a differential manifold that is homeomorphic but
not diffeomorphic to the Euclidean space R4. The first example were found by Freedman
(See [FQ14]). Actually, there are infinitely many non-diffeomorphic differential structures
of R4, as was shown first by Taubes [Tau87].

An interesting question is whether an exotic R4 admits a complete metric of positive
scalar (or Ricci) curvature.

For this question, we might follow the following scheme. First, based on the construc-
tion of an exotic R4, we attempt to construct a complete stable minimal hypersurface.
Then, one is led to understand the geometry of such a hypersurface and its relationship
with the differential structures and the positivity of scalar (or Ricci) curvature.

We plan to argue by contradiction. Combining the geometry of the stable minimal
hypersurface, we expect to show that such a hypersurface does not exist, which would
lead to a contradiction.
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133, 1935.
[CWY10] Stanley Chang, Shmuel Weinberger, and Guoliang Yu. Taming 3-manifolds using scalar cur-

vature. Geometriae Dedicata, 148(1):3–14, 2010.
[Dou31] Jesse Douglas. Solution of the problem of plateau. Transactions of the American Mathematical

Society, 33(1):263–321, 1931.
[FCS80] D. Fischer-Colbrie and Richard Schoen. The structure of complete stable minimal surfaces in

3-manifolds of non-negative scalar curvature. Communications on Pure and Applied Mathe-
matics, 33(2):199–211, 1980.

[Fed14] Herbert Federer. Geometric measure theory. Springer, 2014.
[FF60] Herbert Federer and Wendell Fleming. Normal and integral currents. Annals of Mathematics,

pages 458–520, 1960.
[Fis85] D. Fischer-Colbrie. On complete minimal surfaces with finite Morse index in three manifolds.

Invent. Math., 82:121–132, 1985.
[FQ14] Michael Freedman and Frank Quinn. Topology of 4-Manifolds (PMS-39), volume 39. Princeton

University Press, 2014.
[Fre96] Katia Rosenvald Frensel. Stable complete surfaces with constant mean curvature. Boletim da

Sociedade Brasileira de Matemática, 27(2):129–144, 1996.
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