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Abstract

Cryptography studies how to secure communications and information. The security
of a cryptosystem depends on the secrecy of the underlying key. White-box cryptog-
raphy explores methods to hide a cryptographic key into some software deployed
in the real world.

Classical cryptography only assumes that the adversary accesses the target cryp-
tographic primitive in a black-box manner in which she can only observe or ma-
nipulate the input and output of the primitive, but cannot know or tamper with
its internal details. The gray-box model further allows an adversary to exploit key-
dependent sensitive information leaked from the execution of physical implemen-
tations. All sorts of side-channel attacks exploit some physical information leakage,
such as the power consumption of the device. The white-box model considers the
worst-case scenario in which the adversary has complete control over the software
and its execution environment. The goal of white-box cryptography is to securely
implement a cryptographic primitive against such a powerful adversary. Although
the scientific community has proposed some candidate solutions to build white-box
cryptography, all have proven ineffective. Consequently, this problem has remained
open for almost two decades since the concept was introduced.

The continuous growth in market demand and the emerging potential applica-
tions have driven the industry to deploy secretly-designed proprietary solutions. Al-
though this paradigm of achieving security through obscurity contradicts the widely
accepted Kerckhoffs’ principle in cryptography, this is currently the only option
for white-box cryptography. Security experts have reported how gray-box attacks
could be used to extract keys from several publicly available white-box implemen-
tations. In a gray-box attack, the adversary adapts side-channel analysis techniques
to the white-box context, i.e., to target computation traces made of noise-free run-
time information instead of the noisy physical leakage. Gray-box attacks are generic
since they do not require any a priori knowledge of the implementation and hence
avoid costly reverse engineering. Some non-publicly scrutinized industrial white-
box schemes in the market are believed to be under the threat of gray-box attacks.

This thesis focuses on the analysis and improvement of gray-box attacks and
the associated countermeasures for white-box cryptography. We first provide an in-
depth analysis of why gray-box attacks are capable of breaking the classical white-
box design which is based on table encodings. Next, we introduce a new gray-box at-
tack named linear decoding analysis and show that linearly encoding sensitive infor-
mation is insufficient to protect the cryptographic software. Afterward, we describe
how to combine state-of-the-art countermeasures to resist gray-box attacks and com-
prehensively elaborate on the (in)effectiveness of these combined countermeasures
in terms of computation complexity. Finally, we introduce a new attack technique
that exploits the data-dependency of the targeted implementation to substantially
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lower the complexity of the existing gray-box attacks on white-box cryptography.
In addition to the theoretical analyses and new attack techniques introduced in this
thesis, we report some attack experiments against practical white-box implementa-
tions. In particular, we could break the winning implementations of two consecutive
editions of the well-known WhibOx white-box cryptography competition.
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Résumé

La cryptographie est la science de la protection des communications et des données.
La sécurité d’un cryptosystème dépend du secret de la clé sous-jacente. La cryp-
tographie en boîte blanche explore les méthodes permettant de cacher une clé dans
un logiciel cryptographique déployé dans le monde réel.

La cryptographie classique suppose que l’adversaire accède à la primitive cryp-
tographique ciblée en boîte noire. Cela signifie qu’elle ne peut qu’observer et manip-
uler les entrées et les sorties de la primitive, mais ne peut pas connaître ou altérer son
état interne. Le modèle en boîte grise permet en outre à un adversaire d’observer des
informations sensibles qui sont divulguées lors de l’exécution d’une implémentation
de la primitive. Toutes sortes d’attaques par canaux auxiliaires exploitent certaines
fuites d’informations physiques, telles que la consommation électrique de l’appareil.
Le modèle en boîte blanche considère le scénario le plus défavorable dans lequel
l’adversaire a un contrôle total sur le logiciel cryptographique et sur son environ-
nement d’exécution. Le rôle de la cryptographie en boîte blanche est d’implémenter
une primitive cryptographique de façon à protéger la clé secrète contre un tel adver-
saire. Bien que la communauté scientifique ait tenté à plusieurs reprises de solution-
ner ce problème, ces tentatives se sont toutes révélées inadéquates. Par conséquent,
la construction d’une solution de cryptographie en boîte blanche est resté un prob-
lème ouvert depuis l’introduction du concept il y a deux décennies.

L’émergence d’applications avec de fortes contraintes de sécurité logicielle a
poussé l’industrie à développer des solutions propriétaires dont la sécurité repose
(en partie) sur des secrets de conception. Bien que ce paradigme de sécurité par
l’obscurité contredise le principe de Kerckhoffs largement admis en cryptographie,
c’est actuellement la seule option s’offrant à l’industrie pour répondre au besoin de
cryptographie en boîte blanche. Des experts en sécurité ont récemment démontré
comment certaines attaques en boîtes grise pouvaient être utilisées pour extraire les
clés de plusieurs implémentations en boîte blanche accessibles publiquement. Dans
une attaque en boîte grise, l’adversaire adapte des techniques d’analyse par canaux
auxiliaires au contexte boîte blanche, en replaçant la fuite physique par des traces de
calcul faites des valeurs intermédiaires non-bruitées observées lors de l’exécution.
Les attaques en boîte grise sont génériques car elles ne nécessitent aucune connais-
sance a priori de l’implémentation et évitent ainsi la nécessité pour l’attaquant de
recourir à une rétro-ingénierie coûteuse. Il semble que certaines solutions de cryp-
tographie en boîte blanche actuellement déployée et n’ayant pas fait l’objet d’un
examen public soient menacées par ce type d’attaques en boîte grise.

Cette thèse se concentre sur l’analyse et l’amélioration des attaques en boîte
grise et des contre-mesures associées pour la cryptographie en boîte blanche. Nous
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présentons tout d’abord une analyse approfondie des raisons pour lesquelles les at-
taques en boîte grise basiques sont capables de casser la technique classique de cryp-
tographie en boîte blanche basée sur les encodages de tables. Nous proposons égale-
ment de nouvelles techniques d’attaque en boîte grise significativement plus efficace
contre ce type d’encodages. Nous introduisons ensuite une nouvelle attaque en boîte
grise appelée analyse par décodage linéaire qui permet de déjouer toute méthode de
protection basée sur un encodage linéaire des variables internes au calcul. Par la
suite, nous étudions la combinaison de différentes contre-mesures pour résister aux
attaques en boîte grise et analysons en détail la complexité d’attaques avancées con-
tre ces contre-mesures combinées. Nous introduisons enfin une nouvelle technique
d’attaque qui exploite le graphe de calcul de l’implémentation ciblée pour réduire
considérablement la complexité des attaques en boîte grise sur la cryptographie en
boîte blanche. Outre les analyses théoriques et nouvelles techniques d’attaque intro-
duites dans cette thèse, nous rapportons plusieurs expériences d’attaque pratique
contre divers implémentations en boîte blanche. Nous démontrons notamment com-
ment nous avons pu casser les implémentations gagnantes des deux éditions conséc-
utives de la compétition WhibOx.
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摘 要

密码学是一门研究保护数据和通信安全的科学。一个密码系统的安全

性取决于其密钥的保密性。白盒密码学探索在现实世界中部署的软件中隐

藏密钥的方法。

经典密码学仅假定敌手以黑盒的方式访问被研究的密码学原语,在这

种方式中，她只能观察或操作原语的输入和输出，而无法知道或篡改其内

部细节。灰盒模型进一步允许敌手利用物理实现执行过程中泄露的与密钥

相关的敏感信息。各种侧信道攻击都是利用一些物理信息泄露，比如设备

的功耗。白盒模型考虑的是最坏的情况，即敌手完全控制了软件及其执行

环境。白盒密码学的目标即是在敌手拥有上述强大能力的情况下，给出密

码学原语的安全软件实现。尽管学术界提出了一些构建白盒密码学的候选

方案，但事实证明这些方案都无效。因此，自概念提出以来，这个开放问

题持续存在了近二十年。

白盒密码市场需求的持续增长和新兴的潜在应用促使工业界采用秘密

设计的专有解决方案。尽管这种通过模糊来实现安全性的范例与密码学中

被广泛接受的 Kerckhoffs原则相悖，但这是在当前困境中的无奈之举。安

全专家报道了如何使用灰盒攻击从几种公开的白盒实现中提取密钥。在灰

盒攻击中，敌手将侧信道分析技术应用到白盒密码学中。她的研究对象是

从软件运行时收集不带任何噪音计算数据而非带有噪声的物理泄漏。灰盒

攻击是一种通用攻击，因为它们不需要关于攻击对象的任何先验知识，从

而避免了代价高昂的逆向工程。市场上一些未经公开审阅的工业白盒计划

被认为正受到灰盒攻击的威胁。

本论文主要研究针对白盒密码学进行的灰盒攻击的分析与改进以及相

关对策。首先，我们深入分析了为什么灰盒攻击能够打破经典的基于编码

表的白盒设计。接下来，我们介绍了一种新的称为线性解码分析的灰盒攻

击，并阐释了仅通过对敏感信息进行线性编码的方式来保护软件中的密钥

是不足够的。随后，我们将描述如何通过组合最新的对策来抵抗灰盒攻击，

并从计算复杂性的角度全面阐述这些组合对策的有效性和无效性。最后，

我们介绍了一种新的攻击技术，该技术利用目标实现的数据依赖性来显著

降低现有灰盒攻击应用在白盒密码学的复杂性。本论文除了介绍的理论分

析和新的攻击技术外，还报告了一些针对实际白盒实现的攻击实验。特别

的是，我们连续两届打破了著名的 WhibOx白盒密码学竞赛中的获胜实现。
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1.1 Cryptographie en boîte blanche

1.1.1 Nuances de gris

Dans le cadre cryptanalytique classique, l’adversaire est confronté au défi de casser
la sécurité, p. ex., d’un algorithme de chiffrement tout en ne pouvant considérer
l’algorithme que comme une boîte noire ; il peut interroger la boîte avec des entrées
et recevoir les sorties correspondantes. Bien que la conception de l’algorithme soit
connue, l’adversaire ne peut pas observer l’état interne de l’algorithme, ni altérer
l’exécution de l’algorithme.

En pratique, un algorithme cryptographique doit être implémenté, en matériel
ou logiciel, afin d’être utilisable. Selon le contexte d’utilisation, l’adversaire peut
alors potentiellement interagir physiquement avec le dispositif cryptographique.
Dans ce cas, l’adversaire a accès aux informations des canaux auxiliaires (side-channel
information) spécifiques à l’implémentation (Kocher, 1996; Kocher et al., 1999; Coron,
1999). Si une implémentation n’est pas suffisamment protégée, des informations
telles que le temps d’exécution ou la consommation d’énergie peuvent être utilisées
pour extraire des informations secrètes, p. ex., des clés de chiffrement. L’utilisation
répandue et le succès des attaques par canaux auxiliaires montrent qu’un cryp-
tographe doit être très prudent lorsqu’il opère dans ce modèle en boîte grise.

Pour les implémentations matérielles, le modèle en boîte grise est souvent la lim-
ite de ce qu’un adversaire peut réaliser. Ce n’est pas le cas pour les implémentations
logicielles exécutées dans des environnements non fiables. Si un adversaire a un
accès complet à l’environnement d’exécution du logiciel cryptographique, il peut
facilement observer et manipuler l’exécution de la primitive, instanciée avec une clé
secrète. Ce scénario, introduit par Chow et al. dans (Chow, Eisen, Johnson, and van
Oorschot, 2003), est appelé le modèle en boîte blanche.

Ainsi, les mises en œuvre logicielles des algorithmes cryptographiques dans le
monde réel sont souvent sensibles à des menaces plus importantes que celles en-
visagées lors de leur conception. En plus des attaques bien connues de l’analyse par
canaux auxiliaires (side-channel analysis, SCA), un adversaire en boîte blanche obtient
un accès complet à une implémentation logicielle d’un algorithme cryptographique.
Il peut alors tenter d’extraire la clé secrète sous-jacente par toutes sortes de moyens.
En général, il peut effectuer une analyse statique ou dynamique du binaire contrôlé,
p. ex., en étudiant la structure de contrôle de l’implémentation (graphe de dépen-
dance des opérations); il peut choisir arbitrairement les entrées pour le logiciel et
observer toutes les informations d’exécution, telles que les adresses et les valeurs
de la mémoire accédée ; il peut également altérer les implémentations, par exemple
en modifiant la structure de contrôle ou en provoquant de fautes lors de l’exécution
comme dans l’analyse (différentielle) par injection de faute (Boneh et al., 1997; Biham
and Shamir, 1997).

Récemment, les applications critiques pour la sécurité, telles que les systèmes
de gestion des droits numériques (digital right management, DRM) et les services de
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paiement mobile, ont connu un développement rapide et un large déploiement sur
les appareils électroniques grand public. Des algorithmes cryptographiques sont
généralement utilisés dans ces contextes pour assurer la confidentialité, l’intégrité
et l’authenticité des données. Comme ces applications sont généralement hébergées
dans des environnements non fiables et / ou que les utilisateurs eux-mêmes peu-
vent représenter des attaquants potentiels, la menace en boîte blanche doit alors être
prise en compte par les concepteurs et les évaluateurs de la sécurité. Si la clé intégrée
dans une implémentation sous-jacente était extraite par l’attaquant (et que plusieurs
fonctionnalités de sécurité étaient compromises en même temps), non seulement
l’objectif de sécurité poursuivi pourrait être perdu, mais l’activité commerciale asso-
ciée pourrait également être menacée. Par exemple, un attaquant pourrait faire des
profits illégaux en vendant la clé révélée dans une application DRM sur le marché
noir à un prix beaucoup moins élevé. Il est donc crucial d’étudier la capacité d’un
adversaire en boîte blanche ainsi que les contre-mesures susceptibles d’empêcher
l’exposition de la clé.

1.1.2 L’histoire: un jeu du chat et de la souris

“Quand l’attaquant peut obtenir de l’information sur l’état interne d’une implémentation
cryptographique, le choix de l’implémentation constitue la seule ligne de défense (Chow,
Eisen, Johnson, and van Oorschot, 2003). Les deux articles fondateurs de la cryp-
tographie en boîte blanche (white-box cryptography, WBC), présentés par Chow et
al. en 2002 (Chow, Eisen, Johnson, and Oorschot, 2002) and 2003 (Chow, Eisen, John-
son, and van Oorschot, 2003) respectivement, visent à protéger les implémentations
logicielles de chiffrement par blocs standard (DES et AES) utilisées dans les applica-
tions DRM contre ce type de menaces. L’idée générale qui sous-tend leurs construc-
tions est d’implémenter un chiffrement sous la forme d’un réseau de tables de cor-
respondance (look-up tables) précalculées et encodées aléatoirement, de telle sorte
qu’un adversaire ne puisse exploiter les variables intermédiaires ainsi randomisées.
Les fonctions tirées aléatoirement et appliquées aux tables de correspondance sont
appelées encodages. Elles peuvent être divisés en deux catégories : les encodages
internes et les encodages externes. En particulier, les encodages externes sont des bi-
jections appliquées sur l’entrée ou la sortie du chiffrement. Cependant, l’application
de encodages externes modifie la spécification du chiffrement d’origine, ce qui est
prohibitif pour de nombreux cas d’utilisation de la cryptographie en boîte blanche
basée sur des algorithmes cryptographiques (standard) prédéfinis.

Bientôt, ces techniques ont été cassées par Billet et al. avec la cryptanalyse struc-
turelle (Billet et al., 2004). L’attaque fonctionne selon le principe que chacune des
tables de correspondance ne laisse échapper aucune information sensible dépendant
de la clé lorsqu’elle est considérée séparément, mais lorsqu’elles sont combinées en-
semble, elles révèlent des informations sur les encodages utilisés. Cette observation
permet aux auteurs de simplifier les encodages et de récupérer entièrement la clé
secrète dans l’implémentation. Depuis lors, la concurrence entre les concepteurs



1.1. Cryptographie en boîte blanche 5

d’implémentations boîte blanche et les attaquants est devenue un jeu du chat et de la
souris. La communauté des chercheurs a observé de nombreuses constructions can-
didates différentes d’implémentation boîte blanche pour AES (Link and Neumann,
2005; Bringer, Hervé Chabanne, et al., 2006; Bringer, Herve Chabanne, et al., 2006;
Xiao and Lai, 2009; Karroumi, 2011), ainsi que leur cassage ultérieure par l’analyse
structurelle peu après, voire des années plus tard (Goubin, Masereel, et al., 2007;
Wyseur et al., 2007; Michiels et al., 2009; De Mulder, Wyseur, et al., 2010; Tolhuizen,
2012; De Mulder, Roelse, et al., 2013b; De Mulder, Roelse, et al., 2013a; Lepoint and
Rivain, 2013; Lepoint, Rivain, et al., 2014).

1.1.3 Progrès théoriques

En tant que l’un des composants clés de la protection des applications du monde
réel, la cryptographie en boîte blanche (white-box cryptography, WBC) cherche une
solution pour transformer un algorithme cryptographique avec une clé donnée en
une implémentation obscurcie. Idéalement, l’adversaire en boîte blanche qui con-
trôle l’implémentation ne devrait pas avoir d’avantage significatif par rapport à la
situation dans laquelle il ne pourrait accéder qu’à un oracle répondant à des requêtes
de chiffrement (sous la même clé). En particulier, la cryptographie en boîte blanche
vise à rendre l’extraction de clé difficile - voire impossible - pour toute partie malveil-
lante qui obtiendrait un accès complet au programme et / ou à l’environnement
d’exécution.

Jusqu’à présent, peu de travaux ont été conduits sur la formalisation de la cryp-
tographie en boîte blanche. Deux premiers travaux (Saxena et al., 2009; Delerablée
et al., 2014) ont introduit quelques notions formelles de sécurité en boîte blanche.
Plus précisément, Saxena et al. (Saxena et al., 2009) montrent comment adapter les
notions de sécurité du modèle en boîte noire (Barak et al., 2001) aux notions de sécu-
rité du modèle en boîte blanche ; tandis que (Delerablée et al., 2014) formalisent
la propriété de base de l’incassabilité et plusieurs autres notions utiles : sens unique,
incompressibilité, et traçabilité pour les chiffrements symétriques.

En particulier, comme expliqué dans (Delerablée et al., 2014), l’exigence mini-
male pour la cryptographie en boîte blanche est la résistance à l’extraction de la clé
(formalisée comme incassabilité). Cependant, cette propriété seule ne suffit pas en
pratique. L’adversaire pourrait éviter d’extraire la clé secrète d’une implémentation,
mais plutôt utiliser l’implémentation en boîte noire (c.-à-d., comme un oracle) de
l’algorithme sous-jacent. Une telle attaque est appelée “code lifting” et d’autres dis-
positifs de sécurité devraient être prévus pour empêcher cette menace. On pourrait
rendre l’implémentation large et incompressible pour durcir son extraction, la rendre
à sens unique pour empêcher soit le chiffrement soit le déchiffrement, ou la rendre
traçable pour contrer le partage non autorisé. Il a également été suggéré, par exemple,
de s’appuyer sur des encodages externes (Chow, Eisen, Johnson, and van Oorschot,
2003) et / ou de lier l’implémentation à un mot de passe choisi par l’utilisateur, ou
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à certaines données biométriques, ou à la propriété physique du matériel (Alpirez
Bock et al., 2020).

Malgré son intérêt pratique, aucune implémentation boîte blanche dont la sécu-
rité soit prouvée n’a été produite après 20 ans d’exploration. Néanmoins, de nom-
breux travaux ont été réalisés dans le domaine connexe de l’offuscation cryptogra-
phique. L’offuscation des logiciels peut être définie comme le problème de la créa-
tion d’un programme fonctionnellement équivalent à un programme cible, mais
dont le code source (ou binaire) est inintelligible. Malheureusement, l’offuscation
générale au sens cryptographique (virtual black-box obfuscation), dans lequel l’adver-
saire ne peut rien apprendre du programme obscurci à l’exception de ses comporte-
ments d’entrée et de sortie, s’est avérée impossible (Barak et al., 2001). Un assou-
plissement de la notion originale, appelée iO (indistinguishability obfuscation), sem-
ble pouvoir être atteint et la con conception d’un schéma d’offuscation atteignant
cette notion est devenu un problème ouvert majeur de la recherche au cours des
dernières années (Garg, Gentry, Halevi, et al., 2013; Garg, Gentry, and Halevi, 2013;
Sahai and Waters, 2014; Lin, 2016; Lin, 2017; Lin and Tessaro, 2017). Littérale-
ment, un offuscateur iO embrouille l’attaquant en le rendant incapable de déter-
miner l’origine du programme obscurci entre deux programmes sources fonction-
nellement équivalents. Un aperçu complet des problèmes liés à iO est donné dans
(Horváth, 2015). Cependant, la propriété iO n’implique pas directement la cryp-
tographie en boîte blanche dans le sens où l’application d’un compilateur iO à un
programme de chiffrement ne garantit pas que l’extraction de la clé du programme
résultant soit difficile. En outre, les constructions actuelles de iO sont encore peu
pratiques. D’autre part, la question de savoir si l’incassabilité boîte blanche peut
être obtenue à partir de la propriété iO est aujourd’hui encore ouverte.

Une autre branche de la recherche théorique est consacrée à la construction de
nouvelles primitives cryptographiques incompressibles par conception (Biryukov,
Bouillaguet, et al., 2014; Bogdanov and Isobe, 2015; Fouque et al., 2016; Bock, Amadori,
et al., 2019). Biryukov et Perrin décrivent un cadre unifié pour la complexité d’une
primitive vis-à-vis de plusieurs ressources : vitesse, taille du code et mémoire (Biryukov
and Perrin, 2017). Cette notion de complexité en ressources est très utile en pratique,
car l’inefficacité peut être une caractéristique souhaitable dans certaines situations.
Par exemple, la complexité en mémoire est utilisée dans le hachage des mots de
passe pour ralentir la vitesse de recherche de l’attaquant “brute force”. À certains
égards, l’incompressibilité –et plus généralement la complexité en ressources– présente
des similitudes avec la cryptographie en boîte blanche classique qui fait l’objet de
la présente thèse, mais elles sont de nature très différente. La différence la plus
évidente étant que la première propose principalement de nouvelles primitives at-
teignant certains niveaux de complexité en ressources par construction, tandis que
la seconde vise à protéger les implémentations logicielles des algorithmes cryp-
tographiques standards existants (et souvent imposés par le contexte).



1.2. La cryptographie en boîte blanche en pratique 7

1.2 La cryptographie en boîte blanche en pratique

1.2.1 L’obscurité en tant que solution

Comme mentionné ci-dessus, toutes les implémentations boîte blanche présentées
dans la littérature sont peu sûres et aucune solution dont la sécurité est prouvée n’a
été rapportée dans la littérature. Pourtant, il existe un besoin industriel croissant
de protection des implémentations cryptographiques exécutées dans des environ-
nements non fiables, comme par exemple dans le cas de l’utilisation de la gestion
traditionnelle des droits numériques (digital rights management, DRM) et des appli-
cations de paiement mobile fonctionnant sur des appareils intelligents.

Dans cette situation, l’industrie est contrainte de développer des solutions
artisanales, pour répondre aux besoins croissants de logiciels cryptographiques
sécurisés. La sécurité des solutions propriétaires déployées repose principalement
sur l’obscurité, c.-à-d., le secret de leur conception. Leur conception n’est donc pas
examinée publiquement, ce qui est en contradiction avec le principe de Kerckhoffs
largement admis en cryptographie. Néanmoins, le paradigme actuel vise à fournir
une sécurité pratique, en ce sens que l’implémentation est suffisamment difficile à at-
taquer pour qu’un adversaire soit contraint à investir plus de ressources (puissance
de calcul et/ou expertise humaine). Les attaques susmentionnées contre les implé-
mentations boîte blanche publiques exploitent certaines failles dans les schémas en
boîte blanche sous-jacents. Cependant, certaines variantes de schémas connus mod-
ifiant quelques paramètres ou combinant différentes techniques peuvent contrecar-
rer une simple application de ces attaques, à condition que la variante exacte soit
gardée secrète. Contre une telle implémentation obscure, l’adversaire est contraint
de procéder à une rétro-ingénierie, ce qui peut s’avérer très coûteux en temps, en
puissance calcul, et/ou en ressources humaines si plusieurs couches d’offuscation
ont été appliquées.

Les solutions industrielles de cryptographie en boîte blanche actuelles constitu-
ent ainsi un barrière de sécurité qui est souvent complétée par d’autres mesures.
Dans ce paradigme, la cryptographie en boîte blanche est basée sur des mises à jour
de sécurité régulières et/ou une rotation fréquente des clés secrètes exposées.

1.2.2 Attaques en boîte grise dans le contexte en boîte blanche

Tel que mentionné ci-dessus, les implémentations obscures peuvent être peu sûres
contre un adversaire bien informé, mais la sécurité de leurs conceptions peut toute-
fois les rendre difficiles à casser dans un scénario réaliste. En effet, les attaques
structurelles connues ne s’appliquent pas contre de telles implémentations, et une
rétro-ingénierie fastidieuse doit être effectuée par des ingénieurs qualifiés.

Dans la littérature, deux principes d’attaques génériques en boîte grise ont
été utilisés pour casser ces implémentations boîte blanche obscures. D’une part,
à l’instar de l’analyse différentielle de la consommation (differential power analysis,
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DPA) (Kocher et al., 1999), l’analyse différentielle du calcul (differential computation
analysis, DCA) (Bos et al., 2016; Bock, Bos, et al., 2019) recherche la corrélation en-
tre des variables sensibles dépendantes de la clé et des traces de calcul composées
de valeurs traitées lors de l’exécution de l’implémentation ; d’autre part, puisqu’un
chiffrement par blocs standard, p. ex., AES, est généralement intrinsèquement vul-
nérable à l’analyse différentielle par fautes (differential fault analysis, DFA) (Dusart et
al., 2003), cette dernière peut également être appliquée pour casser une majorité des
implémentations disponibles publiquement (Jacob et al., 2002; Sanfelix et al., 2015).

Notamment, l’adversaire en boîte grise est extrêmement puissant car il est ag-
nostique à l’implémentation et n’a donc pas besoin d’exercer une rétro-ingénierie
coûteuse. La DCA et la DFA ont cassé certaines solutions industrielles mélangeant
les premières techniques en boîte blanche à de l’offuscation de code. La DFA peut
être rendue difficile dans le paradigme de sécurité par l’obscurité, conformément à
nos observations sur les implémentations gagnantes des deux compétitions de cryp-
tographie en boîte blanche WhibOx (qui seront présentés dans la section 2.3). Dans
cette thèse, nous nous concentrons sur les attaques passives en boîte grise qui corre-
spondent à un adversaire plus faible et qui devraient donc être traitées en priorité
par les concepteurs d’implémentations boîte blanche.

Analyse différentielle du calcul

L’analyse différentielle du calcul (differential computation analysis, DCA) est une méth-
ode permettant d’attaquer les implémentations boîte blanche à la manière en boîte
grise. Elle a été introduite indépendamment par deux équipes : Bos et al. à CHES
2016 et Sanfelix et al. à Black Hat Europe 2015. Les deux équipes ont démontré com-
ment cette technique est capable de récupérer la clé de plusieurs implémentations
boîte blanche existantes de l’AES.

En principe, la DCA est principalement une adaptation de l’analyse differentielle
de la consommation (differential power analysis, DPA) (Kocher et al., 1999) au contexte
de la cryptographie en boîte blanche. Elle exploite le fait que les variables appa-
raissant dans le calcul, bien que sous une forme encodée inconnue, peuvent avoir
une forte corrélation linéaire avec les valeurs d’origine. Elle fonctionne en collectant
d’abord quelques traces de calcul, qui sont composées des valeurs calculées pendant
plusieurs exécutions grâce à un outil d’instrumentation dynamique, tel que Valgrind
(Nethercote and Seward, 2007) ou Intel PIN (Luk et al., 2005). Elle fait ensuite une
supposition de clé et prédit la valeur de la variable intermédiaire cible dépendant de
la clé. Enfin, la corrélation entre cette prédiction et les traces de calcul est calculée.
L’hypothèse de clé avec le pic le plus élevé dans la trace de corrélation obtenue est
retenue. Cette approche s’est avérée particulièrement efficace pour extraire les clés
de nombreuses implémentations boîte blanche (obscures) accessibles publiquement
(Bos et al., 2016; Bock, Bos, et al., 2019).

Le puissance de la DCA réside dans le fait qu’elle ne nécessite pas une connais-
sance complète de l’implémentation boîte blanche ciblée. L’adversaire a uniquement
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besoin d’observer les adresses et les valeurs de mémoire auxquelles on accède pen-
dant l’exécution de l’implémentation. Il n’a pas besoin de raisonner sur les détails de
l’implémentation, ni de modifier la fonctionnalité du code de quelque manière que
ce soit – tâches qui pourraient nécessiter des efforts considérables. Ainsi, la DCA
est une attaque passive et en boîte grise, qui peut casser de nombreuses implémenta-
tions pratiques en boîte blanche avec une faible complexité (Bos et al., 2016). Suite
à ces observations, les implémentations boîte blanche actuelles ne sont même pas
sécurisées dans un contexte d’attaque plus faible que celui pour lequel elles ont été
conçues. Étant donné le modèle d’attaque faible de DCA et son efficacité contre les
implémentations boîte blanche practiques, il est important de concevoir une implé-
mentation boîte blanche dont la sécurité contre cette attaque peut être prouvée.

1.2.3 Contre-mesures pratiques

Pour empêcher les attaques passives en boîte grise de type DCA, il est naturel de
prendre en compte les contre-mesures classiques par canaux auxiliaires, c.-à-d., le
masquage linéaire et le shuffling. Le masquage linéaire (masquage booléen) divise une
variable intermédiaire sensible en plusieurs parts, les shares, dont la somme permet
de retrouver la variable initiale. Les shares sont traités indépendamment de manière
à garantir l’exactitude du calcul tout en empêchant dans une certaine mesure les
fuites d’informations sensibles. Le principe du shuffling est de permuter aléatoire-
ment l’ordre de plusieurs opérations indépendantes (incluant éventuellement des
opérations bidons) pour augmenter le bruit dans la fuite instantanée sur une vari-
able sensible.

Nous montrerons qu’une implémentation protégée uniquement par un masquage
linéaire est vulnérable à une analyse par décodage linéaire (linear decoding analysis,
LDA) qui peut récupérer les emplacements de manipulation des shares en résolvant
un système linéaire. À Asiacrypt 2018, Biryukov et Udovenko ont introduit la no-
tion de masquage non linéaire à sécurité algébrique pour protéger les implémentations
en boîte blanche contre la LDA (Biryukov and Udovenko, 2018). Le masquage non
linéaire garantit que l’application de toute fonction linéaire aux variables intermédi-
aires de l’implémentation protégée ne devrait pas résulter en une variable prédictible
avec une probabilité (proche de) 1. Cependant, le masquage non linéaire seul pour-
rait être vulnérable à l’attaque DCA standard. Il a alors été suggéré dans (Biryukov
and Udovenko, 2018) de combiner le masquage linéaire et non linéaire pour pouvoir
contrer les attaques DCA et LDA en même temps. L’intuition est double : d’une part,
un masquage non linéaire à sécurité algébrique mélangé à un masquage linéaire ne
devrait pas diminuer le degré algébrique pour construire une valeur prédictible ;
d’autre part, les variables sont linéairement masquées ce qui assure la sécurité con-
tre la DCA standard (d’ordre supérieur).

Une implémentation boîte blanche à l’état de l’art met typiquement en œuvre
les contre-mesures mentionnées ci-dessus, ainsi qu’une couche d’offuscation. La
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sécurité des implémentations repose sur les propriétés de sécurité (faibles) obtenues
par les contre-mesures employées, ainsi que sur l’obscurité de la conception glob-
ale (c.-à-d., le niveau d’offuscation). L’objectif principal de ces implémentations est
de contrecarrer les attaques automatiques en boîte grise, contraignant ainsi les ad-
versaires potentiels à investir dans une rétro-ingénierie coûteuse et incertaine et à
utiliser des techniques d’attaque plus complexes et spécialisées. Ces efforts peuvent
prendre beaucoup de ressources et devenir prohibitif, notamment lorsque ces pro-
tections sont combinés à une stratégie de cible mouvante.

La génération d’aléa joue un rôle important dans l’implémentation de toutes les
contre-mesures mentionnées. Il est bien connu qu’un adversaire en boîte blanche
pourrait altérer le canal de commutation entre une implémentation boîte blanche
et son monde extérieur, y compris un générateur aléatoire externe. Par conséquent,
l’aléa utilisé dans une implémentation boîte blanche ne peut qu’être pseudo-aléatoire
et dérivé de l’entrée. Dans cette thèse, chaque fois que nous faisons référence à l’aléa
dans les contre-mesures décrites, nous parlons de pseudo-aléa dérivé de l’entrée.

1.3 Aperçu de la thèse

Ce manuscrit réorganise principalement mes quatre articles publiés dans des re-
vues scientifiques à comités de relecture et les présentations que j’ai faites durant
ma thèse. Cette section donne un aperçu de chacun des chapitres suivants. Pour
éviter les répétitions, mes publications et présentations ne sont répertoriées que dans
l’introduction en anglais de cette thèse (précisément, à la Section 2.4.1).

Chapitre 3: Contexte technique (Technical Background)

Dans ce chapitre, nous présentons d’abord tous les concepts et définitions mathé-
matiques qui seront utilisés tout le long de cette thèse. Ensuite, nous formalisons un
modèle d’adversaire passif en boîte grise pour la cryptographie en boîte blanche et refor-
mulons l’analyse différentielle du calcul (differential computation analysis, DCA) dans
ce modèle. Par la suite, nous passons en revue le masquage linéaire, le masquage
non linéaire et les contre-mesures de shuffling. Enfin, nous discutons en détail de la
source d’aléa nécessaire à l’implémentation de ces contre-mesures dans un contexte
boîte blanche.

Chapitre 4: Attaques en boîte grise contre les encodages internes (Gray-Box At-
tacks against Internal Encodings)

L’encodage interne est la toute première technique en boîte blanche, encore couram-
ment utilisée, pour protéger les implémentations de chiffrement par blocs. Il consiste
à représenter une implémentation comme un réseau de tables de correspondance qui
sont ensuite encodées à l’aide de bijections générées aléatoirement (les encodages



1.3. Aperçu de la thèse 11

internes). L’implémentation protégée est vulnérable à l’analyse de calcul différen-
tiel (DCA) lorsque les encodages utilisés s’appliquent à des nibbles (c.-à-d., des en-
codages d’une largeur de 4 bits). Pour contrecarrer la DCA, il a été suggéré d’utiliser
des encodages plus larges, et en particulier des encodages d’octets, au moins pour
protéger les tours externes du chiffrement par blocs qui sont les cibles principales de
la DCA.

Dans ce chapitre, nous analysons en profondeur quand et pourquoi la DCA fonc-
tionne. Nous identifions les propriétés des variables cibles et les encodages qui ren-
dent l’attaque (in)faisable. En particulier, nous montrons que la DCA peut casser des
encodages plus larges que 4 bits, tels que les encodages d’octets. De plus, nous pro-
posons de nouvelles attaques de type DCA inspirées des techniques d’analyse par
canaux auxiliaires. Plus précisément, nous décrivons une attaque par collision par-
ticulièrement efficace contre la contre-mesure d’encodage interne. Nous étudions
également l’analyse par information mutuelle (mutual information analysis, MIA)
qui s’applique naturellement dans ce contexte. Par rapport à la DCA originale, ces
attaques sont également passives et elles nécessitent une connaissance très limitée
de l’implémentation attaquée, mais elles permettent d’obtenir des améliorations sig-
nificatives en termes de complexité de trace. Toutes les analyses de notre travail sont
étayées expérimentalement par différents résultats de simulation d’attaques.

Chapitre 5: Analyse par décodage linéaire et extension aux degrés supérieurs (Lin-
ear Decoding Analysis and Higher-Degree Extension)

Les implémentations modernes en boîte blanche utilisent des techniques algébriques
pour masquer les variables sensibles dépendantes de la clé pendant son exécution.
L’encodage linéaire est l’une des nombreuses contre-mesures envisagées dans les so-
lutions industrielles, ainsi que dans les implémentations boîte blanche disponibles
publiquement, p. ex., le gagnant de la compétition WhibOx 2017 - Adoring Poitras.
La DCA est inefficace contre les encodages linéaires, à moins que les encodages
ne remplissent certaines conditions nécessaires. Dans ce chapitre, nous décrivons
formellement l’attaque par analyse de décodage linéaire (linear decoding analysis,
LDA) pour extraire la clé des implémentations boîte blanche, dans lesquelles les
variables cibles sont encodées linéairement par un ensemble de variables intermédi-
aires dans l’implémentation. Nous expliquons ensuite comment cette attaque peut
être étendue pour casser les implémentations protégées par des encodages de degré
supérieur.

Chapitre 6: DCA d’ordre supérieur contre le masquage et le shuffling (Higher-
Order DCA against Masking and Shuffling)

L’adversaire DCA est passif et n’exploite donc pas toute la puissance en boîte blanche,
ce qui implique que de nombreux schémas en boîte blanche ne sont pas sûrs, même
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dans un cadre plus faible que celui pour lequel ils ont été conçus. Il est donc impor-
tant de développer des implémentations qui résistent à cette attaque. Une approche
naturelle pour tenter d’atténuer la menace des attaques DCA consiste à appliquer
les contre-mesures connues dans la littérature sur les canaux auxiliaires. Cependant,
la question de l’application de ces contre-mesures au contexte de la cryptographie
boîte blanche et le niveau de sécurité pouvant être atteint par cette approche restent
à étudier.

Dans ce chapitre, nous examinons l’approche consistant à appliquer des contre-
mesures standards aux attaques par canaux auxiliaires, telles que le masquage et le
shuffling, pour contrecarrer les attaques DCA. Nous montrons que sous certaines
conditions sur la source d’aléa, cette approche est suffisante pour atteindre la sécu-
rité contre la DCA (de 1er ordre). D’autre part, nous introduisons la DCA d’ordre
supérieur, ainsi qu’une version améliorée “multivariée”, et nous analysons la sécu-
rité des contre-mesures contre ces attaques. Nous dérivons des expressions analy-
tiques de la complexité des attaques - étayées par des expériences d’attaque appro-
fondies - permettant à un concepteur de quantifier le niveau de sécurité d’une im-
plémentation protégée par du masquage et du shuffling vis-à-vis de la DCA (d’ordre
supérieur).

Chapitre 7: Attaques en boîte grise par analyse de la dépendance des données
(Data Dependency Gray-Box Attacks)

Le "bitslicing" est une technique courante pour obtenir une implémentation logicielle
efficace d’un chiffrement, qui a également été habilitée à concevoir des implémenta-
tions ende boîte blanche avec un bon niveau de résistance en pratique. L’état de l’art
des implémentations boîte blanche utilise le masquage linéaire, le masquage non
linéaire, le shuffling, ainsi que l’application d’une ou plusieurs couches d’offuscation.
La sécurité des implémentations repose sur les propriétés des contre-mesures util-
isées, ainsi que sur l’obscurité de la conception globale (c.-à-d., le niveau d’offus-
cation). L’objectif principal de ces implémentations est de contrecarrer les attaques
automatiques en boîte grise, ce qui contraint les adversaires potentiels à investir
d’avantage d’efforts et de ressources dans des attaques de rétro-ingénierie plus coû-
teuses et incertaines par nature.

Dans ce chapitre, nous considérons une implémentation boîte blanche dans le
paradigme d’un circuit booléen randomisé et compilé en un programme "bitslice".
Nous rappelons d’abord ces contre-mesures et discutons des moyens possibles de
les combiner dans des implémentations "bitsliced" en boîte blanche. Ensuite, nous
analysons les différents chemins d’attaque en boîte grise et étudions leurs perfor-
mances en terme de traces requises et de temps de calcul. Par la suite, nous pro-
posons une attaque boîte grise avancée contre la cryptographie en boîte blanche qui
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exploite la dépendance des données de l’implémentation cible. Cette nouvelle at-
taque résulte en des améliorations de complexité significatives dans différents scé-
nario d’attaque en localisant précisément les shares ciblés dans une trace de cal-
cul et en évitant l’explosion combinatoire standard. Nous montrons que notre ap-
proche peut efficacement casser plusieurs combinaisons de masquage linéaire et non
linéaire en présence de shuffling et d’offuscation et démontrons que notre approche
donne lieu à des améliorations substantielles en terme de complexité par rapport
aux attaques existantes.

Chapitre 8: Attaques pratiques (Practical Attacks)

Dans ce chapitre, nous vérifions la praticabilité de nos analyses théoriques sur les
techniques d’attaque exposées dans cette thèse en cassant plusieurs implémenta-
tions d’AES en boîte blanche accessibles publiquement. Plus précisément, nous
effectuons d’abord les trois attaques en boîte grise analysées et présentées dans le
chapitre 4 sur deux implémentations boîte blanche différentes protégées par des en-
codages interne qui sont censées être protégées contre les attaques DCA ; nous ex-
trayons ensuite progressivement la clé de l’implémentation gagnante de la compéti-
tion WhibOx 2017 en utilisant une rétro-ingénierie complexe et une analyse par dé-
codage linéaire, formalisée dans le chapitre 5 ; nous démontrons également comment
notre nouvelle attaque par analyse de la dépendance des données présentée dans
le chapitre 7 peut être utilisée pour casser les trois implémentations gagnantes de
la compétition WhibOx 2019. De plus, nous présentons une méthodologie générale
d’attaque contre les implémentations obscures en boîte blanche, qui a été suivie pour
casser les implémentations gagnantes des deux compétitions WhibOx.

À notre connaissance, nous avons été la seule ou la première équipe à produire
des rapports techniques sur la possibilité de casser ces implémentations et analysant
les attaques en question d’un point de vue théorique. Afin de faciliter la reproduc-
tion de nos résultats, nos outils d’attaque ont été partiellement publiés.
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2.1 White-Box Cryptography

2.1.1 Shades of Gray

In the classical cryptanalytic setting, the adversary faces the challenge of breaking
the security of e.g., an encryption algorithm while only being able to consider the
algorithm as a black box; she can query the box with inputs and receive the corre-
sponding outputs. While the design of the algorithm is known, the adversary can-
not observe the internal state of the algorithm, or tamper with the execution of the
algorithm.

In practice, a cryptographic algorithm has to be implemented to be useful, i.e.,
in hardware or software. Thus, the adversary has the option of physically inter-
acting with the encryption device. In this case, the adversary has access to the
implementation-specific side-channel information (Kocher, 1996; Kocher et al., 1999;
Coron, 1999). If an implementation is not sufficiently protected, leaking information
such as the execution time or the power consumption can be used to extract secret
information, e.g., encryption keys. The widespread use and success of side-channel
attacks show that a cryptographer has to be very careful when operating in this gray-
box model.

For hardware implementations, the gray-box model is often the limit of what
an adversary can achieve. This is not the case for software implementations that
are executed in untrusted environments. If an adversary is given full access to the
execution environment of the cryptographic software, she can easily observe and
manipulate the execution of the primitive, instantiated with some secret key. This
setting, introduced by Chow et al. in (Chow, Eisen, Johnson, and van Oorschot,
2003), is called the white-box model.

Put differently, software implementations of cryptographic algorithms in the real
world suffer more severe challenges than expected in their design model. In addi-
tion to the well-known side-channel analysis (SCA) attacks, a white-box adversary
gains full access to a software implementation of a cryptographic algorithm. She
could then try to extract the underlying secret key by all kinds of means. Generally,
she could perform static or dynamic analysis of the controlled binary, e.g., study the
logic flow of the implementation; she could arbitrarily pick the inputs for the soft-
ware and observe all the runtime information, such as the addresses and values of
accessed memory; she could also tamper with the implementations, e.g., by altering
the control flows and injecting faults, or by interfering in the execution and exploit-
ing leakage from erroneous outputs as in (differential) fault analysis (Boneh et al., 1997;
Biham and Shamir, 1997).

Recently, security-critical applications, such as digital right management (DRM)
systems and mobile payment services, have known a fast development and wide
deployment on consumer electronic devices. Cryptographic algorithms are usu-
ally involved in these contexts to assure the confidentiality, integrity, and authen-
ticity in several aspects. Since these applications are usually hosted on untrusted
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environments and/or the users themselves might represent potential attackers, the
white-box threat must then be considered by security designers and analysts. If the
key embedded in an underlying implementation was extracted by the attacker (and
several security features were compromised at the same time), not only could the
pursued security goal be lost, but the associated business also could be threatened.
For instance, an attacker could make illegal profits by selling the revealed key in a
DRM application to some purchaser in the black market for a much cheaper price.
It is therefore crucial to investigate the capability of a white-box adversary and the
countermeasures to prevent key exposure.

2.1.2 History: A Cat-And-Mouse Game

Indeed, “when the attacker has internal information about a cryptographic implementation,
choice of implementation is the sole remaining line of defense” (Chow, Eisen, Johnson, and
van Oorschot, 2003). The two seminal papers on white-box cryptography (WBC), in-
troduced by Chow et al. in 2002 (Chow, Eisen, Johnson, and Oorschot, 2002) and
2003 (Chow, Eisen, Johnson, and van Oorschot, 2003) respectively, intend to protect
software implementations of standard block ciphers (DES and AES) used in DRM
application against these kinds of threats. The rough idea behind their construc-
tions is to implement a cipher as a network of precomputed and randomly encoded
lookup tables, such that an adversary is confused by seemingly useless intermedi-
ate values in the memory. The randomly chosen functions applied on the lookup
tables are called encodings, which can be divided into two categories: internal and
external encodings. In particular, external encodings are bijections applied on the in-
put or output of the cipher. However, the application of external encodings changes
the specification of the original cipher, which is prohibitive for many use cases of
white-box cryptography based on predefined (standard) cryptographic algorithms.

Soon, these techniques were broken by Billet et al. with structural cryptanalysis
(Billet et al., 2004). The attack works in the principle that each of the lookup tables
does not leak any key-dependent sensitive information when considered separately,
but when combined together, they will reveal information on the used encodings.
This observation enables the authors to simplify the encodings and entirely recover
the secret key in the implementation. Since then, the competition between white-box
designers and attackers has become a cat-and-mouse race. The research community
has observed many different candidate constructions of white-box implementations
for AES (Link and Neumann, 2005; Bringer, Hervé Chabanne, et al., 2006; Bringer,
Herve Chabanne, et al., 2006; Xiao and Lai, 2009; Karroumi, 2011), as well as their
subsequent break by structural analysis shortly after or even years later (Goubin,
Masereel, et al., 2007; Wyseur et al., 2007; Michiels et al., 2009; De Mulder, Wyseur,
et al., 2010; Tolhuizen, 2012; De Mulder, Roelse, et al., 2013b; De Mulder, Roelse,
et al., 2013a; Lepoint and Rivain, 2013; Lepoint, Rivain, et al., 2014). The failure of
internal encodings in white-box cryptography is essentially due to the impossibility
to protect ASA, ASASA or SASAS constructions, as shown in (Biryukov and Shamir,
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2001; Biryukov and Shamir, 2010; Minaud et al., 2015; Minaud et al., 2018; Derbez
et al., 2018). However, the early white-box community was small and not always
versatile in cryptanalysis, so they were rediscovering it slowly in ad-hoc manner for
many years.

2.1.3 Theoretical Progress

As one of the key components in the protection of real-world applications, white-box
cryptography (WBC) seeks a solution to transform a cryptographic algorithm with a
given key into an obfuscated implementation. Ideally, the white-box adversary who
controls the implementation should not have a significant advantage compared to
the situation in which she could only access an oracle answering encryption queries
(under the same key). In particular, it aims to render key extraction difficult –if not
infeasible– to any malicious party that would gain full access to the program and/or
to the execution environment.

To date, not much formalization of white-box cryptography has been put for-
ward. Two initial works (Saxena et al., 2009; Delerablée et al., 2014) have introduced
some formal white-box security notions. Specifically, Saxena et al. (Saxena et al.,
2009) demonstrate how to adapt security notions in the black-box model (Barak et
al., 2001) into security notions in the white-box model; while (Delerablée et al., 2014)
formalizes the basic unbreakability property and several other useful notions: one-
wayness, incompressibility, and traceability for symmetric ciphers.

In particular, as explained in (Delerablée et al., 2014) the minimal requirement for
white-box cryptography is the resistance to key-extraction (formalized as unbreaka-
bility). However, this property alone is not enough in practice. The adversary could
avoid extracting the secret key from an implementation, but instead use the imple-
mentation as a black-block (i.e., an oracle) of the underlying algorithm. Such an
attack is called code lifting and further security features should be provided to pre-
vent the adversary from code lifting. One could make the implementation large and
incompressible to harden its extraction, make it one-way to prevent either encryption
or decryption, or make it traceable to counteract unauthorized sharing. It has also for
instance been suggested to rely on external encodings (Chow, Eisen, Johnson, and van
Oorschot, 2003) and/or to bind the implementation with a user-chosen password, or
some biometric data, or physical property of hardware (Alpirez Bock et al., 2020).

Despite its practical interest, no provably secure white-box implementation can
be found in the literature after almost 20 years of exploration. Nevertheless, a lot
of work has been done on the related area of obfuscation. Software obfuscation can
be stated as the problem of creating functionally equivalent, but unintelligible pro-
grams. Unfortunately, general virtual black-box obfuscation has been proved impossi-
ble, in which the adversary can learn nothing from the obfuscated program except
its inputs and outputs behaviors (Barak et al., 2001). A relaxation of the original no-
tion – indistinguishability obfuscation (iO) – may still be possible to achieve and has
become a major open problem attracting extensive research (Garg, Gentry, Halevi,



20 Chapter 2. Introduction

et al., 2013; Garg, Gentry, and Halevi, 2013; Sahai and Waters, 2014; Lin, 2016; Lin,
2017; Lin and Tessaro, 2017). Literally, an iO obfuscator confuses the attacker by
making her unable to determine the origin of the obfuscated program when there
exist more than one functionally-equivalent source programs. A comprehensive
overview of the problems connected to iO is given in (Horváth, 2015). However,
iO does not straightly imply white-box cryptography in the sense that applying an
iO compiler to an encryption program does not guarantee that extracting the key
from the resulting program is difficult. Additionally, the current constructions of
iO are still impractical. As a matter of fact, the question of whether unbreakability
could be obtained from iO is still open up to now.

Another branch of theoretical research is dedicated to building new cryptogra-
phic primitives that implement incompressibility by design (Biryukov, Bouillaguet,
et al., 2014; Bogdanov and Isobe, 2015; Fouque et al., 2016; Bock, Amadori, et al.,
2019). The incompressibility here is also called space-hard cryptography or weak white-
box cryptography in the literature. Biryukov and Perrin describe a unified framework
for the hardness of a primitive in terms of any of the main efficiency metrics: speed,
code size, and memory (Biryukov and Perrin, 2017). This resource-hardness notion is
quite useful in practice since inefficiency can be a desirable feature in certain situ-
ations. For instance, memory-hardness is used in password hashing to slow down
the speed of brute-force search by the attacker. In some respects, the so-called weak
white-box cryptography shares some similarities with the classical white-box cryp-
tography subject of this thesis, but they are very different in nature. Perhaps the
most obvious difference is that the former primarily proposes new primitives that
meet inherently specific resource-hardness, while the latter aims to protect the key
in software implementations of existing standardized cryptographic algorithms.

2.2 Practical White-Box Cryptography

2.2.1 Obscurity as a Solution

As mentioned above, all current white-box implementations presented in the litera-
ture are insecure and no provably secure solution has been reported in the literature.
Still, there exists an increasing industrial need for the protection of cryptographic
implementations executed in untrusted environments, such as, for instance in the
traditional digital rights management use case and the mobile payment applications
running on smart devices.

In this situation, the industry is constrained to develop home-made solutions, to
meet the growing needs for secure cryptographic software. The security of deployed
proprietary solutions mainly relies on obscurity, i.e., the secrecy of their design. Their
design is hence not publicly scrutinized, which contradicts the widely admitted Ker-
ckhoffs’s principle in cryptography. Nevertheless, the current paradigm aims to pro-
vide practical security, in the sense that the implementation is difficult enough to
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attack so that an adversary is forced to attempt other attack vectors. The aforemen-
tioned attacks against public white-box implementations exploit some flaws in the
underlying white-box schemes. However, some variant of known designs changing
a few parameters or combining different techniques can thwart a simple application
of these attacks, provided that the exact variant is kept secret. Against such an ob-
scure implementation, the adversary would have to perform reverse engineering,
which can take considerable time and effort if various layers of obfuscation have
been applied.

However, the industry can only rely on their current white-box solutions (com-
bined with other protections) from a short-term security perspective, and on other
security barriers such as frequent key rotation. In this paradigm, white-box cryptog-
raphy is based on regular security updates and/or short-term key and it is consid-
ered as a building block of wider security solutions.

2.2.2 Gray-Box Attacks in White-Box Context

As mentioned, obscure implementations might be insecure against a well-informed
adversary, but the security of their designs can still make them practically hard to
break. This is because, for instance, known structural attacks do not apply as is, and
tedious reverse engineering has to be performed by skilled engineers.

In the literature, two generic gray-box attack principles have been used to break
such obscure white-box implementations. On one hand, similarly to differential power
analysis (DPA) (Kocher et al., 1999), differential computation analysis (DCA) (Bos et al.,
2016; Bock, Bos, et al., 2019) looks for correlation between key-dependent sensitive
variables and computation traces composed of values processed in the execution of
the implementation; on the other hand, since a standard block cipher, e.g., AES, is
usually inherently vulnerable to differential fault analysis (DFA) (Dusart et al., 2003),
it can also be applied to break a majority of the public implementations (Jacob et al.,
2002; Sanfelix et al., 2015).

Notably, the gray-box adversary is extremely powerful as she is implementation
agnostic and therefore she does not need to exert expensive reverse engineering.
DCA and DFA have broken some industrial solutions based on early white-box tech-
niques mixed with code obfuscation. DFA can be slightly mitigated in the paradigm
of security through obscurity, which is in line with our observations in breaking the
winning implementations from the two WhibOx white-box cryptography competi-
tions (which will be introduced later). In this thesis, we focus on the passive gray-
box attacks which correspond to a weaker adversary and should hence be primarily
addressed by white-box designers.

Differential Computational Analysis

Differential computation analysis (DCA) is a method to attack white-box implementa-
tions in a gray-box fashion. It was independently introduced by two teams: Bos et
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al. at CHES 2016 and Sanfelix et al. at Black Hat Europe 2015. The two teams have
demonstrated how this technique is able to recover the encryption key of several
existing white-box implementations of the AES.

In principle, DCA is mainly an adaptation of differential power analysis (DPA)
(Kocher et al., 1999) to the white-box context. It exploits the fact that the variables ap-
pearing in the computation, although in some unknown encoded form, might have
a strong linear correlation with the original plain values. It works by first collect-
ing some computation traces, which are composed of the runtime computed values
over several executions through a dynamic instrumentation tool, such as Valgrind
(Nethercote and Seward, 2007) and Intel PIN (Luk et al., 2005). One then makes a
key guess and predicts the value of target key-dependent intermediate variable. Fi-
nally, the correlation between this prediction and each sample of the computation
trace is calculated. The key guess with the highest peak in the obtained correlation
trace is selected as the key candidate. This approach has been shown especially ef-
fective to break many publicly available (obscure) white-box implementations (Bos
et al., 2016; Bock, Bos, et al., 2019).

The power of DCA is that it does not require full knowledge of the target white-
box implementation. The adversary only needs to be able to observe the addresses
and values of memory being accessed during the execution of the implementation.
She does not need to reason about the implementation details, or modify the func-
tionality of the code in any way – tasks that could require considerable effort. Thus,
DCA is a passive and gray-box attack, which can break many practical white-box im-
plementations with low complexity (Bos et al., 2016). Following these observations,
the current white-box implementations are not even secure in a weaker attack con-
text than the one they were designed for. Given the weak attack model of DCA and
its effectiveness against practical white-box implementations, it is of importance to
design (provably) secure white-box implementation against this attack.

2.2.3 Practical Countermeasures

To prevent DCA-like passive gray-box attacks, it is natural to consider classical side-
channel countermeasures, i.e., linear masking and shuffling. Roughly speaking, linear
masking (a.k.a. Boolean masking) splits a sensitive intermediate variable into mul-
tiple linear shares and processes them in a way that ensures the correctness of the
computation while preventing sensitive information leakage to some extent. The
principle of shuffling is to randomly permute the order of several independent op-
erations (possibly including dummy operations) to increase the noise in the instan-
taneous leakage on a sensitive variable.

We will show that an implementation solely protected with linear masking is vul-
nerable to a linear decoding analysis (LDA) which can recover the locations of shares
by solving a linear system. At Asiacrypt 2018, Biryukov and Udovenko introduced
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the notion of algebraically-secure non-linear masking to protect white-box implemen-
tations against LDA (Biryukov and Udovenko, 2018). Non-linear masking ensures
that applying any linear function to the intermediate variables of the protected im-
plementation should not result in a predictable variable with probability (close to) 1.
However, the non-linear masking alone might be vulnerable to the standard DCA
attack. It was then suggested in (Biryukov and Udovenko, 2018) to combine lin-
ear and non-linear masking, which was conjectured to be able to counter DCA and
LDA attacks at the same time. The intuition behind is two-fold: on the one hand,
an algebraically-secure non-linear masking mixed with linear masking should not
decrease the algebraic degree to construct a predictable value; on the other hand, the
biased non-linear shares are further linearly masked and standard DCA is not able
to break such a linear masking.

The state-of-the-art of white-box implementation puts to use all countermeasures
mentioned above, as well as mixed with a layer of obfuscation. The security of the
implementations relies on the (weak) security properties achieved by the employed
countermeasures as well as on the obscurity of the overall design (including obfus-
cation). The main purpose of these implementations is to thwart automatic gray-box
attacks, hence constraining the potential adversaries to invest costly and uncertain
reverse engineering and to employ more complicated and dedicated attack tech-
niques. Those efforts might take a long time to develop and apply, which is benefi-
cial when combined with a moving target strategy.

Randomness plays an important role in implementing all mentioned counter-
measures. It is well-known that a white-box adversary could tamper with the com-
mutation channel between a white-box implementation and its external world, in-
cluding external random sources. Hence, the effective randomness in a white-box
implementation is pseudorandomness derived from the input.1 In this thesis, each
time we refer to randomness in the described countermeasures we mean pseudo-
randomness derived from the input.

2.3 WhibOx Competitions

2.3.1 WhibOx 2017

In this context of security through obscurity, needless to say, plenty of home-made
solutions sold in the market, which are claimed to be secure based on the confi-
dentiality of related technologies and tools, would be fragile in front of a motivated
attacker. Therefore, the ECRYPT CSA project organized the WhibOx workshop (Whi-
bOx, 2016) to fulfill public cognition of the academic progress and industrial experi-
ences on white-box cryptography and obfuscation in 2016. At this occasion, it was
suggested to organize a contest on white-box cryptography to give a playground for

1Pseudorandomness can not be distinguished from the uniform distribution with significant ad-
vantage any “efficient” adversary, but is reproducible by its deterministic generator and the seed used
to generate it.
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“researchers and practitioners to confront their (secretly designed) white-box implementa-
tions to state-of-the-art attackers” (WhibOx, 2017). One year later, the so-called WhibOx
competition was launched by ECRYPT CSA as the catch the flag challenge of CHES
2017.

In a nutshell, the participants of this contest were divided into two categories:

- the designers who were invited to submit the source codes of their white-box
implementations of AES-128 (Daemen and Rijmen, 2013) with freely chosen
key, and

- the breakers who were challenged to reveal the hidden keys in the submitted
implementations.

The participants could remain anonymous (based on a pseudonymity submission
system) and they were not expected to reveal the designing or attacking techniques.
The score system worked as follows: a white-box submission can accumulate n(n +

1)/2 strawberry points if it survives for n days, and once it is broken, the strawberry
points will decrease symmetrically down to 0. A designer gets as her final straw-
berry score the maximal peaking strawberries among all the challenges submitted.
Similarly, a breaker gets as banana points the number of strawberry points of a chal-
lenge at breaking time. And she gets her final banana score as the highest banana
score among all her breaks.

In order to submit a valid challenge, the implementation must fulfill several re-
quirements, recalled in Table 2.1, which are less restrictive than that in a practical
scenario. As a result, the contest successfully attracted 194 players with 94 sub-
mitted implementations which were all broken in the end for a total of 877 indi-
vidual breaks. Only 13 implementations survived for more than 1 day. In particular,
the winning implementation (named Adoring Poitras) was submitted by Biryukov
and Udovenko. It survived 28 days and got broke only once by Goubin, Paillier, Ri-
vain and myself. These results once again demonstrate that the attackers prevail
in the current cat-and-mouse game. Nevertheless, many interesting designs were
submitted that are worth further discussion and investigation.

Table 2.1: Requirements for a valid implementation on a reference
environment mentioned in (WhibOx, 2017).

C source code ≤ 50MB
compilation time ≤ 100s
executable binary ≤ 20MB
running memory ≤ 20MB
execution time ≤ 1s

2.3.2 WhibOx 2019

In light of the fact that the WhibOx 2017 improved our understanding of white-box
cryptography, WhibOx 2019 was organized to further promote the public knowledge
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in this paradigm of white-box cryptography. WhibOx 2019 also made new rules in
order to encourage designers to submit “smaller” and “faster” implementations due
to a factor of performance. The performance score is a parameter derived from the
code size, RAM consumption and execution time, and it weighs the points score
by an implementation (while being unbroken) over time. The submission server
measured the following fractions for each submission at posting time:

• Execution time: Denote t be the average CPU time in seconds consumed by the
challenge in one encryption block, the fraction for execution time is defined as
ftime =

t
1 ;

• Code size: Denote s be the size in MB of the executable after compilation, the
fraction for code size is defined as fsize =

s
20 ;

• RAM usage: Denote m be the average RAM consumption of the executable in
MB, the fraction for RAM usage is defined as fmemory = m

20 ;

The performance score of the challenge is then evaluated as

log2

(
2

ftime · fsize · fmemory

)
.

Note that the denominator in each fraction is the allowed maximal limit w.r.t the
measurement unit and the performance score of a challenge that meets the allowed
maximal limits is equal to 1. Challenges that are either smaller, faster or less memory-
consuming get a higher performance score and challenges with a higher perfor-
mance score collect strawberry points faster.

The contest had attracted 63 players and received 27 implementations in the end.
The resistance of several submissions in terms of living time was significantly im-
proved over the first edition of the competition, which shows evidence of refine-
ment of the underlying white-box techniques. Three implementations (all due to
Biryukov and Udovenko) were still alive at the deadline of the contest.2 Goubin, Ri-
vain, and I succeeded in breaking one of three surviving challenges after the contest,
and two others also got broken by two different teams, including a team of Rivain
and myself, about one month after the competition.

2.4 Thesis Outline

This thesis mainly reorganizes my four peer-reviewed articles published in journals
and conference proceedings and the presentations that I have given during my PhD.
This section first lists my publications and presentations, then overviews each of the
following chapters.

2See https://www.cryptolux.org/index.php/Whitebox_cryptography#WhibOx_2019_Competition .

https://www.cryptolux.org/index.php/Whitebox_cryptography#WhibOx_2019_Competition
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2.4.1 Publications and Presentations

Publications

Andrey Bogdanov, Matthieu Rivain, Philip S. Vejre, and Junwei Wang (Apr. 2019).
“Higher-Order DCA against Standard Side-Channel Countermeasures”. In:
COSADE 2019: 10th International Workshop on Constructive Side-Channel Analysis
and Secure Design. Ed. by Ilia Polian and Marc Stöttinger. Vol. 11421. Lecture
Notes in Computer Science. Darmstadt, Germany: Springer, Heidelberg, Ger-
many, pp. 118–141. DOI: 10.1007/978-3-030-16350-1_8.

Louis Goubin, Pascal Paillier, Matthieu Rivain, and Junwei Wang (Apr. 2020). “How
to reveal the secrets of an obscure white-box implementation”. In: Journal of Cryp-
tographic Engineering 10.1, pp. 49–66. DOI: 10.1007/s13389-019-00207-5.

Louis Goubin, Matthieu Rivain, and Junwei Wang (2020). “Defeating State-of-the-
Art White-Box Countermeasures”. In: IACR Transactions on Cryptographic Hard-
ware and Embedded Systems 2020.3. https://tches.iacr.org/index.php/TCHES/
article/view/8597, pp. 454–482. ISSN: 2569-2925. DOI: 10.13154/tches.v2020.
i3.454-482.

Matthieu Rivain and Junwei Wang (2019). “Analysis and Improvement of Differ-
ential Computation Attacks against Internally-Encoded White-Box Implemen-
tations”. In: IACR Transactions on Cryptographic Hardware and Embedded Systems
2019.2. https://tches.iacr.org/index.php/TCHES/article/view/7391,
pp. 225–255. ISSN: 2569-2925. DOI: 10.13154/tches.v2019.i2.225-255.

Presentations

Analysis and Improvement of Differential Computation Attacks against Internally-Encoded
White-Box Implementations (Aug. 26, 2019). Conference on Cryptographic Hard-
ware and Embedded Systems 2019, Atlanta. URL: https://ches.iacr.org/
2019/program.shtml (visited on 04/05/2020).

Call for Contribution: A New White-Box Analytic Tool (May 19, 2019). WhibOx 2019,
Darmstadt. URL: https://www.cryptoexperts.com/whibox2019/ (visited on
04/05/2020).

Differential Computation Analysis against Internally-Encoded White-Box Implementations
(May 18, 2019). WhibOx 2019, Darmstadt. URL: https://www.cryptoexperts.
com/whibox2019/ (visited on 04/05/2020).

Higher-Order DCA against Standard Side-Channel Countermeasures (Apr. 4, 2019).
Workshop on Constructive Side-Channel Analysis and Secure Design 2019,
Darmstadt. URL: https://www.cosade.org/cosade19/program.html (visited
on 04/05/2020).

How to Reveal the Secrets of an Obscure White-Box Implementation (Jan. 12, 2018). Real
World Crypto 2018, Zurich. URL: https://rwc.iacr.org/2018/program.html
(visited on 04/05/2020).

https://doi.org/10.1007/978-3-030-16350-1_8
https://doi.org/10.1007/s13389-019-00207-5
https://tches.iacr.org/index.php/TCHES/article/view/8597
https://tches.iacr.org/index.php/TCHES/article/view/8597
https://doi.org/10.13154/tches.v2020.i3.454-482
https://doi.org/10.13154/tches.v2020.i3.454-482
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https://doi.org/10.13154/tches.v2019.i2.225-255
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Recent Progress on White-Box Attacks (Dec. 13, 2018). Journée "Protection du Code et
des Données", 2018, Paris Saclay. URL: http://sebastien.bardin.free.fr/
2018-obfuscation-day.html (visited on 04/05/2020).

Reveal Secrets in Adoring Poitras - A generic attack on white-box cryptography (Oct. 11,
2017). ECRYPT-NET School on Correct and Secure Implementation, Crete. URL:
https://hyperelliptic.org/tanja/ECRYPT-NET/schedule.html (visited on
04/05/2020).

Reveal Secrets in Adoring Poitras - A victory of reverse engineering and cryptanalysis over
challenge 777 (Sept. 26, 2017). CHES 2017 (Rump Session), Taipei. URL: https:
//ches.2017.rump.cr.yp.to/ (visited on 04/05/2020).

White-Box Cryptogrpaphy (Oct. 16, 2018). Workshop on Physical Attacks and Design
Attestation 2018, Beijing.

2.4.2 Chapter Organization

Chapter 3: Technical Background

In this chapter, we first introduce all the mathematical concepts and definitions that
will be used throughout this thesis. Then, we formalize a passive gray-box adversary
model in the white-box setting and reformulate differential computation analysis (DCA)
in this model. Afterward, we review the linear masking, the non-linear masking
and shuffling countermeasures. Last but not least, we discuss in detail the source of
randomness necessary to implement these countermeasures and its design criteria.

Chapter 4: Gray-Box Attacks against Internal Encodings

Internal encoding is the very first and still commonly used white-box technique to
protect block cipher implementations. It consists in representing an implementation
as a network of lookup tables which are then encoded using randomly generated
bijections (the internal encodings). The protected implementation is vulnerable to
differential computation analysis (DCA) when this approach is implemented based on
nibble (i.e., 4-bit wide) encodings. To thwart DCA, it has then been suggested to
use wider encodings, and in particular byte encodings, at least to protect the outer
rounds of the block cipher which are the prime targets of DCA.

In this chapter, we provide an in-depth analysis of when and why DCA works.
We pinpoint the properties of the target variables and the encodings that make the at-
tack (in)feasible. In particular, we show that DCA can break encodings wider than 4-
bit, such as byte encodings. Additionally, we propose new DCA-like attacks inspired
by side-channel analysis techniques. Specifically, we describe a collision attack partic-
ularly effective against the internal encoding countermeasure. We also investigate
mutual information analysis (MIA) which naturally applies in this context. Compared
to the original DCA, these attacks are also passive and they require very limited

http://sebastien.bardin.free.fr/2018-obfuscation-day.html
http://sebastien.bardin.free.fr/2018-obfuscation-day.html
https://hyperelliptic.org/tanja/ECRYPT-NET/schedule.html
https://ches.2017.rump.cr.yp.to/
https://ches.2017.rump.cr.yp.to/
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knowledge of the attacked implementation, but they achieve significant improve-
ments in terms of trace complexity. All the analyses of our work are experimentally
backed up with various attack simulation results.

Chapter 5: Linear Decoding Analysis and Higher-Degree Extension

Modern white-box implementations employ algebraic techniques to hide the key-
dependent sensitive variables during its execution. Linear encoding is one of the
many considered countermeasures in industrial solutions, as well as open white-
box challenges, e.g., the winning challenge WhibOx 2017 contest – Adoring Poitras.
DCA is ineffective against linear (table) encodings unless the encodings satisfy cer-
tain necessary conditions. In the chapter, we formally describe a linear decoding anal-
ysis (LDA) attack to extract the key from white-box implementations, in which the
target key-dependent variables are linearly encoded by a set of intermediate vari-
ables in the implementation. Then we explain how this attack can be extended to
break implementations protected with higher-degree encodings.

Chapter 6: Higher-Order DCA against Masking and Shuffling

The DCA adversary is passive, and so does not exploit the full power of the white-
box setting, implying that many white-box schemes are insecure even in a weaker
setting than the one they were designed for. It is therefore important to develop
implementations that are resistant to this attack. A natural approach when attempt-
ing to mitigate the threat of DCA attacks is to apply known countermeasures from
the side-channel literature. However, it is not clear how well these countermeasures
carry over to the white-box context and what level of security can be achieved by
such countermeasures against a DCA adversary.

In this chapter, we investigate the approach of applying standard side-channel
countermeasures such as masking and shuffling to introduce noise in the DCA traces.
We show that if the source of randomness used in the implementation satisfies some
necessary conditions, this approach is sufficient to achieve security against the (stan-
dard 1st-order) DCA. Furthermore, we introduce higher-order DCA, along with an en-
hanced multivariate version, and analyze the security of the countermeasures against
these attacks. We derive analytic expressions for the complexity of the attacks –
backed up through extensive attack experiments – enabling a designer to quantify
the security level of a masked and shuffled implementation in the (higher-order)
DCA setting.

Chapter 7: Data Dependency Gray-Box Attacks

Bitslicing is a common technique to derive efficient software implementation of a
cipher, which enables the design of white-box implementations with a good level
of resistance in practice. The state-of-the-art of white-box implementations puts to
use linear masking, non-linear masking, shuffling, and combines this with a layer of
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obfuscation. The security of the implementations relies on the (weak) security prop-
erties achieved by the employed countermeasures, as well as on the obscurity of the
overall design (including obfuscation). The main purpose of these implementations
is to thwart automatic gray-box attacks, hence constraining the potential adversaries
to invest costly and uncertain reverse engineering efforts.

In this chapter, we consider a state-of-the-art white-box implementation in the
paradigm of a randomized Boolean circuit with hardcoded key represented in soft-
ware as a bitsliced program. We first revisit these state-of-the-art countermeasures
and discuss possible ways to combine them in bitsliced-type white-box implemen-
tations. Then we analyze the different gray-box attack paths and study their perfor-
mance in terms of required traces and computation time. Afterward, we propose an
advanced gray-box attack against white-box cryptography which exploits the data-
dependency of the target implementation. The new data-dependency based attack
achieves significant complexity improvements in several attack scenarios by pre-
cisely locating the target shares within a computation trace and avoiding the stan-
dard combinatorial explosion. We show that our approach can efficiently break sev-
eral combinations of linear and non-linear masking in the presence of shuffling and
obfuscation and demonstrate that our approach provides substantial complexity im-
provements over the existing attacks.

Chapter 8: Practical Attacks

In this chapter, we verify the practicability of the theoretical analyses and attack
techniques exhibited in this thesis by recovering keys in several publicly available
white-box AES implementations. Specifically, we first perform the three gray-box
attacks analyzed and introduced in Chapter 4 on two different internally encoded
white-box implementations which are believed to be protected against DCA-like at-
tacks; we then gradually extract the key from the winning implementation of the
WhibOx 2017 by using intricate reverse engineering and linear decoding analysis,
formalized in Chapter 5; we also demonstrate how our novel data-dependency at-
tack presented in Chapter 7 can be used to break the three winning implementations
of WhibOx 2019. Additionally, we summarize a general attack methodology against
obscure white-box implementations, which has been followed to analyze the win-
ning challenges from both WhibOx contests.

To best of our knowledge, we were either the only or the first team to produce
technical reports on the possibility to break these implementations by applying rel-
evant attacks supported by theoretical analysis. To facilitate the reproduction of our
results, our attack tools have been partially open-sourced.
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Organization. We first introduce all the mathematical concepts and definitions
used in this thesis in Section 3.1. Then, we formalize a passive gray-box adversary
model in the white-box setting and reformulate differential computation analysis by
using the well-established theory of Boolean functions in this model in Section 3.2.
Finally, in Section 3.3, we review linear masking, non-linear masking, and shuffling
countermeasures, and we discuss in detail the source and the criteria of the random-
ness necessary to implement these countermeasures.

3.1 Mathematical Preliminaries

Notation. Throughout this thesis, we use the following notation. The random vari-
ables are denoted by uppercase Latin letters, e.g., X, while the lowercase letter x
denotes a particular realization of X. We further denote vectors by bold symbols,
e.g., x. Latin letters in calligraphic format, e.g., X are used to denote random distri-
butions and finite sets. X ∼ X means the probability distribution of random variable
X is X . The size or the cardinality of a set X is denoted by |X |.

For a random variable X ∼ X , E(X) is the expectation of X, and σX is the standard
deviation of X, which is the square root of the variance of X, denoted by Var(X). ΦX

or ΦX denotes the cumulative distribution function (CDF) of X and PrX(x) or PrX (x)
denotes the probability mass function (PMF) of X evaluated on x. For two random
variables X and Y, Cov(X, Y) is the covariance between X and Y.

We denote N the set of non-negative integers {0, 1, 2, · · · }, and let N+ = N\ {0}.
We denote [n] the set of positive integers not greater than n, i.e., {1, 2, · · · , n}.

3.1.1 Probability and Statistics

Hypergeometric Distribution

The hypergeometric distribution HG(α, β, τ) is a discrete distribution describing the
probability of the number of successes in τ draws without replacement where the
sample population has size β and contains exactly α successes. Then, the PMF of
HG(α, β, τ) is

Pr
HG(α,β,τ)

(t) =
(α

t)(
β−α
τ−t)

(β
τ)

and its variance is

Var
(
HG(α, β, τ)

)
= τ

α

β

(
1− α

β

)(β− τ

β− 1

)
.

In this thesis, we will consider a special case of hypergeometric distribution, de-
noted H̃G(n), which is defined as

H̃G(n) = HG
(
2n−1, 2n, 2n−1) ,
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for some n ∈N+. The variance of this distribution satisfies

Var
(
H̃G(n)

)
=

22n−4

2n − 1
.

Pearson’s Correlation Coefficient

Pearson’s correlation coefficient is a measure of the linear correlation between two ran-
dom variables X and Y. It is defined by the following equation

Cor(X, Y) =
Cov(X, Y)

σX · σY
=

E(XY)− E(X)E(Y)√
E(X2)− (E(X))2

√
E(Y2)− (E(Y))2

.

The correlation coefficient satisfies −1 ≤ Cor(X, Y) ≤ 1, where the lower bound
is reached when X and Y are negatively linearly correlated, and the upper bound
is achieved when X and Y are positively linearly correlated. A zero correlation is
obtained if X and Y are linearly independent (which doesn’t imply that X and Y are
independent).

Sampling Distribution of Pearson’s Correlation Coefficient

Different samples used to calculate Pearson’s correlation coefficient will result in
different values. The sampling distribution of a Pearson’s correlation coefficient ρ

can be measured by its Fisher transformation

z =
1
2
· ln
(

1 + ρ

1− ρ

)
,

which is approximately a normal distribution with µz = ρ and δz =
1√

N−3
, where N

denotes the number of measurements (which might be small).
To achieve a (high) success rate in a DPA/DCA attack where the peak correlation

value is ρ, the number of necessary samples N can be approximated by

N ≈ η0 ·

 1

ln
( 1+ρ

1−ρ

)
2

≈ η ·
(1

ρ

)2
, (3.1)

where η0 and η are small constant factors (which depend on the success rate and
the key space size |K|). The first approximation is due to several previous works on
DPA/DCA (Mangard, 2004; F.-X. Standaert et al., 2006) and the second is a Taylor
approximation which is sound as long as ρ is small enough (which holds in our case).
Empirically, η is around 10 if the success rate is 0.9 and |K| = 256.

3.1.2 Boolean Functions

Let F2 denote the field with 2 elements and let n ∈ N+. A Boolean function f with n
variables is a function from Fn

2 to F2.
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The weight of a Boolean function f , denoted by wt( f ), is the number of 1s in its
value table, i.e., wt( f ) =

∣∣{x ∈ Fn
2 : f (x) = 1}

∣∣. A Boolean function f is balanced
if wt( f ) = 2n−1 (i.e., if it has as many 0 outputs as 1 outputs). The set of balanced
n-variable Boolean functions is denoted by B(n) in this thesis. The bias (or imbalance)
of a Boolean function f is defined as

B( f ) = ∑
x∈Fn

2

(−1) f (x) = 2n − 2 ·wt( f ) . (3.2)

We have B(1 + f ) = −B( f ) and B( f ) = 0 iff f ∈ B(n).
A Boolean function f has a unique algebraic normal form (ANF), which is given by

a set of coefficients au ∈ F2, u ∈ {0, 1}n as

f (x1, x2, · · · , xn) = ∑
u∈{0,1}n

auxu ,

where xu = ∏n
i=1 xui

i .

Boolean Correlation

Let f , g be two n-variable Boolean functions and b, b1, b2 ∈ F2, define

N f
b =

∣∣∣{x ∈ Fn
2 : f (x) = b

}∣∣∣ ,

N f ,g
b1b2

=
∣∣∣{x ∈ Fn

2 : f (x) = b1, g(x) = b2
}∣∣∣ .

Then the Pearson’s correlation between f (X) and g(X) for a uniform random input
X over Fn

2 , simply denoted by Cor( f , g) for the sake of clarity, satisfies

Cor( f , g) =
N f ,g

11 N f ,g
00 − N f ,g

10 N f ,g
01√

N f
1 N f

0 Ng
1 Ng

0

.

If f , g ∈ B(n), the above can be simplified to

Cor( f , g) =
1
2n ∑

x∈Fn
2

(−1) f (x)+g(x) =
1
2n B( f + g) . (3.3)

Vectorial Boolean Functions

Let n, m ∈ N+, an (n, m)-vectorial Boolean function (VBF) f is a function from Fn
2 to

Fm
2 . A VBF is balanced if the cardinality of {x ∈ Fn

2 : f (x) = y} equals 2n−m for
every y ∈ Fm

2 . Given an (n, m)-VBF f , the n-variable Boolean functions f1, f2, · · · , fm

such that
f (x) =

(
f1(x), f2(x), · · · , fm(x)

)
,

are called the coordinate functions of f . If an (n, m)-VBF is balanced, then any non-
zero linear combination of its coordinate functions is balanced.
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3.1.3 Information Theory

Entropy

The Shannon entropy of a discrete random variable X ∈ X measures the uncertainty
of X. It is defined by the following equation

H(X) = − ∑
x∈X

Pr(X = x) · log2 Pr(X = x).

The joint entropy of two discrete random variables X and Y expresses the uncertainty
of the combination of variables:

H(X, Y) = − ∑
x∈X ,y∈Y

Pr(X = x, Y = y) · log2 Pr(X = x, Y = y).

The joint entropy satisfies H(X, Y) = H(Y, X) and

max
(
H(X), H(Y)

)
≤ H(X, Y) ≤ H(X) + H(Y), (3.4)

where the left equality is reached if and only if (iff) Y is a deterministic function of
X, and the right equality occurs iff X and Y are independent. The conditional entropy
of a random variable X given by another variable Y expresses the uncertainty on X
if Y is known:

H(X|Y) = − ∑
x∈X ,y∈Y

(
Pr(X = x, Y = y) · log2 Pr(X = x|Y = y)

)
,

which satisfies
0 ≤ H(X|Y) ≤ H(X) ,

where both the left equality and the right equality are reached with the same condi-
tions of Equation 3.4.

Mutual Information

The mutual information (MI) of two discrete random variables X and Y expresses
the dependence between them. It measures the quantity of information one has
obtained on X by observing Y. It is defined as

I(X; Y) = − ∑
x∈X ,y∈Y

Pr(X = x, Y = y) · log2

(
Pr(X = x, Y = y)

Pr(X = x) · Pr(Y = y)

)
.

It can also be computed by the Shannon entropy

I(X; Y) = H(X)−H(X|Y)
= H(X) + H(Y)−H(X, Y)

= H(X, Y) + H(X|Y)−H(Y|X).
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The mutual information satisfies I(X; Y) = I(Y; X) and

0 ≤ I(X; Y) ≤ min
(
H(X), H(Y)

)
.

3.2 Passive Gray-Box Adversary Model

Throughout this thesis, we consider a passive gray-box adversary who is capable of
querying a software implementation of a cryptographic primitive with arbitrary in-
put to obtain a computation trace of the execution with the help of dynamic binary
instrumentation (DBI) tools, such as Valgrind (Nethercote and Seward, 2007) and In-
tel PIN (Luk et al., 2005).

The computation trace consists of any value calculated, written, or read by the
implementation, and the address of any memory location read from or written to
during execution. For instance, table lookups (if there exists any) are included in the
computation traces. Each data point in the computation trace is further annotated
with the time it occurred in the execution. Formally, each computation trace v is
composed of t samples in chronological order, i.e.,

v = (v1, v2, · · · , vt),

where vj ∈ V , for every j ∈ [t] for some set V . In the following, we consider an
adversary who collects N computation traces

(
v(1), v(2), · · · , v(N)

)
corresponding

to N inputs
(
x(1), x(2), · · · , x(N)

)
of the target variable. Alternatively, the N traces

can be interpreted as an N× t matrix, where a row is a computation trace v(i), and a
column is composed of N instances of the same intermediate variable over different
computations.

In some attack scenarios, the adversary may first preprocess the traces before
launching her analysis. For instance, she can remove all the constant or duplicate
samples in the traces; she can also split each multi-bit sample into a tuple of bits to
get a binary trace in which V = F2.

When a number of traces have been collected, the adversary attempts to build a
distinguisher D, mapping the inputs

(
x(i)
)

i and the corresponding computation traces(
v(i))

i to a score vector:

(γk)k∈K = D
((

x(1), · · · , x(N)
)
,
(
v(1), · · · , v(N)

))
.

A distinguisher can be built with outputs similarly. Without loss of generality, we
only consider the distinguisher built with inputs in our theoretical analyses. The
adversary then selects the key guess k ∈ Kwith the highest score γk as the candidate
for the correct key value k∗, whereK is the key space. Hence, the success probability
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of the attack is defined as

psucc = Pr
(

k∗ = argmax
k∈K

γk

)
.

where this probability is taken over any randomness supplied to the implementation
(including the randomness of the inputs).

In a typical scenario, the adversary exploits that the (software) implementation
leaks some information about intermediate variables involved in the execution of
the cryptographic algorithm. Some of these intermediate variables depend on the
plaintext and (part of) the secret key, and knowledge of such variables can, therefore,
reveal the key. We denote such a key-dependent sensitive variable by s = φk(x),
where φ is a deterministic selection function, x is a public value, e.g., (part of) the
plaintext, and k ∈ K is a (secret) subkey over some subkey space K. For instance,
k could be a byte of the secret key and K would then be {0, 1}8. Then for each key
guess k ∈ K, she computes a prediction of the target sensitive variable φk(x).

The score for a key guess k ∈ K is calculated by measuring some form of depen-
dency between the predictions φk

(
x(i)
)

and the computation traces v(i). Throughout
this thesis, we denote respectively by k a key guess, k∗ the correct key guess, and
k× a wrong key guess. In some case, for clarity, we abuse notation by skipping the
parameter k in the selection function by letting φ = φk, φ∗ = φk∗ and φ× = φk× . We
then denote φi the ith coordinate of φ and vj the jth sample in a trace.

3.2.1 Differential Computation Analysis Distinguisher

Here, we briefly describe the (standard first-order) DCA distinguisher used in (Bos
et al., 2016) to effectively smash a range of publicly available AES and DES white-
box implementations. This attack builds on the same principles as differential power
analysis (DPA) in the classical side-channel context but uses computation traces con-
sisting of plain values computed by the implementation during execution.

Specifically, the DCA distinguisher for a key guess k is calculated as the maxi-
mal absolute value of the correlation between the ith bit of hypothesized sensitive
variable φi(X), for some i ∈ [m], and each trace sample Vj, that is

γdca
k = max

j∈[T]

∣∣Cor
(

φi(X), Vj
)∣∣ .

for some correlation measurement Cor such as Pearson’s correlation coefficient. If
there exists a statistical correlation between the secret variable φi(X) and the values
of the computation trace Vj for some index 1 ≤ j ≤ t, we would expect a large abso-
lute value of Cor(φi(X), Vj) for the correct prediction of the secret variables φ∗i (X).
On the other hand, if k 6= k∗, we expect a low correlation between all φ×i (X) and any
point in the computation trace.
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In practice, the adversary does not compute the exact value of the above correla-
tion, but an estimation of it based on N sampled computation traces

(
v(1), v(2), · · · , v(N)

)
corresponding to random plaintexts

(
x(1), x(2), · · · , x(N)

)
. In the words, the score γk

in a practical attack is defined as the following maximum correlation

γk = max
j

∣∣∣Cor
((

v(1)j , . . . , v(N)
j

)
,
(

φi(x(1)), . . . , φ1(x(N))
))∣∣∣ .

Moreover, she could try several different selection functions φ and any i ∈ [m] until
the correlation for one key guess can be distinguished from the others.

Although DCA can work whatever the definition space V of the samples in the
computation trace, we consider hereafter that all the samples have been previously
split into bits before computing the correlation scores in a trace preprocessing stage
(i.e., we have V = F2).

3.3 Countermeasures against Gray-Box Attacks

In this section, we revisit linear masking, non-linear masking, and shuffling coun-
termeasures, and we discuss in detail the source and the criteria of the randomness
necessary to implement these countermeasures.

3.3.1 Linear Masking

Linear masking, a.k.a. Boolean masking is a widely-deployed countermeasure against
DPA attacks of hardware implementations (Chari, Jutla, et al., 1999; Goubin and
Patarin, 1999; Rivain and Prouff, 2010). Since the DCA attack relies on the same
ideas as DPA, the prospect of applying masking to secure a software implementation
against DCA is promising.

To linearly mask a secret variable, it is split into several linear parts that are then
processed independently. Specifically, a linear masking scheme of order n− 1 splits
each sensitive variable x occurring in a cryptographic computation into n shares
satisfying

x = x1 ⊕ x2 ⊕ · · · ⊕ xn (3.5)

(where ⊕ denote the bitwise addition). A simple way to achieve this is by picking
x1, . . . , xn−1 uniformly at random (the masks), and setting xn = x ⊕ x1 ⊕ . . .⊕ xn−1

(the masked variable). Then, the computation must be handled on these n shares in a
way that ensures the correctness of the computation while achieving some security
property. Roughly speaking, one must ensure that any subset of fewer than n shares
does not reveal any information about the x, i.e., is statistically independent of x. The
notion is formalized in a circuit computation model as the probing security: an nth-
order probing secure circuit ensures that any observation of n wires (so-called probes)
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can be perfectly simulated without knowledge of the sensitive variables (Ishai et al.,
2003).

To compute any F2-linear function on a linearly masked variable, we simply
compute the function on each linear share separately. Thus, the calculation of the
linear components in a block cipher can be easily implemented on the masked state.
Computing the non-linear components (i.e., typically the s-boxes which perform
substitution in symmetric-key ciphers) is more involved but several linear masking
schemes exist that achieve nth-order security (see for instance (Rivain and Prouff,
2010; Coron, Prouff, et al., 2014; Coron, 2014)). A modular approach in probing
security is first to design nth-order probing secure gadgets which compute elemen-
tary operations, then to compose these gadgets in a way that preserves the nth-order
security of the full circuit (Barthe et al., 2016; Belad et al., 2018).

ISW Gadgets

Without loss of generality, (Ishai et al., 2003) only describes nth-order masking gad-
gets for Boolean NOT and AND gates, which can be composed to defeat b n

2 cth-order
probing attacks. However, they can be composed to achieve nth-order probing se-
cure circuit by carefully placing some refresh gadgets, as shown in the application
on AES (Rivain and Prouff, 2010; Coron, Prouff, et al., 2014). We recall hereafter the
secure AND gadget for linear masking in Algorithm 3.1. Note that fresh randomness
is taken to ensure the security goal of a secure AND gadget.

Algorithm 3.1 AND gadget for linear masking
Input: linear sharing (xi)1≤i≤n s.t.

⊕
1≤i≤n xi = x, linear sharing

(yi)1≤i≤n s.t.
⊕

1≤i≤n yi = y, randomness (ri,j)1≤i<j≤n

Output: (zi)1≤i≤n satisfying
⊕

1≤i≤n zi = xy

1: for i← 1, · · · , n do
2: for j← i + 1, · · · , n do
3: rj,i ← ri,j ⊕ xiyj ⊕ xjyi

4: end for
5: end for
6: for i← 1, · · · , n do
7: zi ← xiyi

8: for j← 1, · · · , n do
9: if j 6= i then

10: zi ← zi ⊕ ri,j

11: end if
12: end for
13: end for
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A secure NOT gadget merely puts a NOT gate on the output wire of one share,
and a secure XOR gate simply applies an XOR gate to each share one by one. Refresh
gadget can be achieved by applying a secure AND gadget between the shares to be
refreshed and (1, 0, · · · , 0).

3.3.2 Non-Linear Masking

At Asiacrypt 2018, Biryukov and Udovenko (Biryukov and Udovenko, 2018) intro-
duced the notion of algebraically-secure non-linear masking to protect white-box im-
plementations against the linear decoding analysis (LDA) introduced in Chapter 5 of
this thesis, also independently introduced in (Biryukov and Udovenko, 2018) as al-
gebraic attacks.

Roughly, a dth degree algebraically-secure non-linear masking ensures that ap-
plying any function of up to degree d to the intermediate variables of the protected
implementation should not compute a “predictable” variable with probability (close
to) 1. By ensuring such a property, one guarantees that LDA cannot be applied to
a first-degree secure implementation since any linear function of the intermediate
variables is not “predictable”.

Non-linear masking alone being vulnerable to higher-order DCA per se, Biryukov
and Udovenko also suggested using a combination of non-linear masking and clas-
sic (higher-order) linear masking to resist both categories of attacks.

First-Degree Secure Non-Linear Masking

(Biryukov and Udovenko, 2018) introduces non-linear masking satisfying first-degree
algebraic security. Their scheme is based on the minimalist 3-share encoding (a, b, c)
for a sensitive variable x such that

x = ab⊕ c , (3.6)

where a and b are uniform random bits and c is computed as c = x ⊕ ab. This en-
coding ensures immunity against LDA by its non-linearity. To perform computation
on encoded variables, the authors further define an XOR gadget and an AND gadget.
Those gadgets are depicted in Algorithm 3.2 and Algorithm 3.3 respectively. For
both of them, the input encodings must be refreshed which is performed by applying
a Refresh gadget described in Algorithm 3.4.

3.3.3 Shuffling

In addition to the LDA attack, we will show in Section 6.2 that the higher-order
DCA adversary can easily recover the key if masking is the only countermeasure.
Indeed, the strength of a masked implementation is directly related to how noisy
the adversary’s observation of the shares is. Several approaches for introducing and



42 Chapter 3. Technical Background

Algorithm 3.2 XOR gadget for minimalist quadratic masking
Input: a, b, c, d, e, f satisfying ab⊕ c = x and de⊕ f = y, and ran-

domness ra, rb, rc, rd, re, r f

Output: h, i, j satisfying hi⊕ j = x⊕ y

1: a, b, c← Refresh(a, b, c, ra, rb, rc)

2: d, e, f ← Refresh(d, e, f , rd, re, r f )

3: h← a⊕ d
4: i← b⊕ e
5: j← c⊕ f ⊕ ae⊕ bd

Algorithm 3.3 AND gadget for minimalist quadratic masking
Input: a, b, c, d, e, f satisfying ab⊕ c = x and de⊕ f = y, and ran-

domness ra, rb, rc, rd, re, r f

Output: h, i, j satisfying hi⊕ j = xy

1: a, b, c← Refresh(a, b, c, ra, rb, rc)

2: d, e, f ← Refresh(d, e, f , rd, re, r f )

3: ma ← b f ⊕ rce
4: md ← ce⊕ r f b
5: h← ae⊕ r f

6: i← bd⊕ rc

7: j← ama ⊕ dmd ⊕ rcr f ⊕ c f

Algorithm 3.4 Refresh gadget for minimalist quadratic masking
Input: a, b, c satisfying ab⊕ c = x and randomness ra, rb, rc

Output: a′, b′, c′ satisfying a′b′ ⊕ c′ = x

1: ma = ra(b⊕ rc)

2: mb = rb(a⊕ rc)

3: r′c = ma ⊕mb ⊕ (ra ⊕ rc)(rb ⊕ rc)⊕ rc

4: a′ = a⊕ ra

5: b′ = b⊕ rb

6: c′ = c⊕ r′c
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increasing noise in masked implementations have been proposed and analyzed, e.g.,
in (Veyrat-Charvillon et al., 2012; Strobel and Paar, 2012; Coron and Kizhvatov, 2010;
Rivain, Prouff, and Doget, 2009). One such approach is shuffling: instead of pro-
cessing the calculations of the cipher in some fixed order, the order of execution is
randomly chosen for each run of the implementation based on the value of the in-
put (e.g., the plaintext). The situation is slightly more complicated in the white-box
setting. Here, the adversary can make observations in two dimensions, namely time
and memory. Even if the order of execution is shuffled in time, an adversary can
choose to order the traces by the memory addresses accessed. Thus, we need to
shuffle in both the time and memory dimension.

Memory Shuffle

In a masked implementation, we will typically have some state in which each ele-
ment is shared as described in Section 3.3.1. The idea of the memory shuffle is to
randomly rearrange the shares of the state in memory. Consider a state consisting of
c elements. We assume that the shares si,j, 1 ≤ i < c, 1 ≤ j ≤ n, are stored in an array,
initially in order. That is, the implementation uses the array (s1,1, s2,1, . . . , sc−1,n, sc,n).
Then, we randomly pick a permutation

P : [1, c]× [1, n]→ [1, c]× [1, n] ,

based on the value of the input. Note that this can be done efficiently using the
Fisher-Yates shuffle (Fisher, Yates, et al., 1938). Now, instead of using the in-order
array, we rearrange the array such that the implementation uses the array

(sP(1,1), sP(2,1), . . . , sP(c−1,n), sP(c,n)).

The situation is shown in Figure 3.1. Whenever the implementation needs to access
share si,j, it simply looks up the element in position P−1(i, j) of the array. A similar
randomization is performed for any key shares.

masking
memory

randomisation

Figure 3.1: An illustration of memory shuffling applied to a second-
order masked implementation. The location of each share in memory

is randomized for each execution.

Time Shuffle

In a typical SPN, there will be several steps that operate on each element of the
state in each round. The order of these operations is typically suggested by the
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cipher designers. As an example, consider the case where we want to apply a linear
operation A to each element of the state separately. Since the operation is linear, we
can apply it to each share of the masked elements individually. This will normally
be done in some “natural” order, e.g.,

A(s1,1), A(s1,2), A(s1,3), . . . , A(sc,n) .

However, the exact order of execution does not matter. Thus, we can shuffle in the
time dimension by randomly ordering these c · n operations. In general, if a set of λ

independent operations exists, we can freely shuffle the order in which we process
the λ · n shares. Formally, we randomly pick a permutation Q : [1, λ] × [1, n] →
[1, λ]× [1, n]. Then, when we normally would have processed share si,j, we instead
process share sQ(i,j). Thus, the probability that a specific share is processed in a given
step is 1/(λ · n). The situation is depicted in Figure 3.2. We will denote the size of
the smallest maximal set of independent operations the shuffling degree.

· · ·

· · ·

masked state normal in order iteration

randomised iteration

Figure 3.2: An illustration of time shuffling applied to a second-order
masked implementation. The order of iteration is randomized for

each execution.

Bitslicing and Shuffling

Bitslicing is a common technique to derive efficient software implementation of a
cipher from its Boolean circuit representation (Biham, 1997; Rebeiro et al., 2006). The
main idea is to manipulate several data slots in parallel by making the most of bit-
wise and/or SIMD instructions on modern CPUs. Bitslicing has been in particular
applied as a strategy to design efficient implementations in the presence of linear
masking (Goudarzi and Rivain, 2017; Journault and F.-X. Standaert, 2017; Goudarzi,
Jean, et al., 2019; Bellizia et al., 2019). In the context of white-box cryptography, this
approach has also been empowered (with additional layers of obfuscation and vir-
tualization) to design implementations with a good level of resistance in practice. In
particular, the winning implementations of the two editions of the WhibOx competi-
tion, due to Biryukov and Udovenko, were based on this principle (WhibOx, 2017;
WhibOx, 2019). In a bitslice program, shuffling can be implemented both horizon-
tally and vertically.

Horizontal vs. Vertical Shuffling. In horizontal shuffling, the data slots in a bit-
sliced computation are shuffled. By default, horizontal shuffling only randomizes
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the computation in the dimension of memory (since all the slots are processed at the
same time).

In vertical shuffling, several computation instances are done sequentially, the
good one is randomly shuffled among the instances and retrieved afterward through
a selection process. Vertical shuffling implements both time and memory shuffling.
As an illustration in Figure 3.3, a sequential circuit C compromises λ sub-circuits
(Ci)1≤i≤λ that share the same inputs from a preparation stage, and from which one
output will be selected as the good one after a merge process. Note that these λ sub-

preparation

C1

C2

· · ·

Cλ

merge

Figure 3.3: Illustration for vertical shuffling.

circuits (Ci)1≤i≤λ might be interleaved and share some computation to increase the
difficulty in analyzing the overall structure.

Horizontal and vertical shuffling can be combined in many ways. As a natural
example, whenever the number of bitsliced slots is larger than the word-length of
the target architecture, a full bitslicing consists of several copies of the word-length
bitslicing. In this case, the desired computations manipulated in different copies are
vertically shuffled both in time and memory dimensions.

Nature of the Dummy Computation. For both kinds of shuffling, the values com-
puted in a dummy slot/instance can be of different nature:

• they are pseudorandom variables derived from the plaintext and acting like
noise,

• they are genuine intermediate values corresponding to the input plaintext but
for some dummy key,

• they are genuine intermediate values corresponding to right input round state
but for some dummy key,
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• they are redundant intermediate values of another slot (either dummy slot or
right slot).

For the first three cases, the effect is to add noise in the computation trace. The
second and third cases provide additional protection against DCA-type attacks by
introducing dummy key candidates in the attack results. The last case might be used
to defeat fault attacks but it also reduces the noise if some redundancy is used for
the right slot.

3.3.4 On the Source of Randomness

A potential issue while applying linear masking, and non-linear masking, and shuf-
fling countermeasures to the white-box context is randomness generation. In classic
gray-box model, fresh randomness used in these countermeasures throughout the
execution of the protected implementation which is usually provided by an external
random number generator (RNG). However, such an external RNG can be easily de-
tected and disabled, since a white-box adversary has full control over the execution
environment. As a consequence, shuffled operations could be re-synchronized (e.g.,
using memory addresses, program counter, etc.), and/or masks could be canceled
(if masked variables and corresponding masks are easily identified). Therefore, the
randomness used by a white-box implementation must be pseudorandomly gen-
erated from the single available source of variation: the input plaintext. In other
words, the white-box implementation should embed some kind of pseudorandom
number generator (PRNG) seeded by the input plaintext.

We now (informally) state a few security properties that should be fulfilled by
such a PRNG in the white-box setting:

1. Pseudorandomness: The output stream of the PRNG should be hard to distin-
guish from true randomness.

2. Obscurity: The design of the PRNG should be kept secret.

3. Obfuscation: The PRNG should be mixed with the white-box implementation
so that its output stream is hard to distinguish from other intermediate vari-
ables.

The pseudorandomness property is required to ensure that the PRNG does not
introduce a statistical flaw in the implemented countermeasures. It is well known
that a flawed RNG can be a disaster for the security of masking, see for instance
(Mangard et al., 2007). The pseudorandomness property further implies that the
generated randomness is unpredictable provided that the obscurity property also
holds. The unpredictability of the generated randomness is necessary to get DCA
resistance since otherwise the countermeasures could be made ineffective. Indeed,
an adversary able to predict the masks and/or the shuffling of operations could eas-
ily annihilate the effect of these countermeasures. If the PRNG design was known to
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the adversary, then she could predict all the generated randomness from the plain-
text. Therefore to provide unpredictability, some parts of the design must be secret,
even if the obscurity concept clashes with the adage of Kerckhoffs’s Principle (Ker-
ckhoffs, 1883). Nevertheless, it seems almost impossible to provide any security if
the full design is known, and we stress that this does not imply that one should
forego all good cryptographic engineering practices. One could use a keyed PRNG
(or PRNG with a secret initial state), but even then if the design was known to the
adversary she could mount a DCA attack to recover the PRNG key and we would
then face a chicken and egg problem. Alternatively, an implementation could use
a known strong PRNG with some sound changes to design parameters, in order to
have some confidence in its security. Another approach, which aligns with the mov-
ing target strategy, would be to have a set of different PRNG designs that are often
changed. Finally, the obfuscation property is required to prevent easy detection of
the PRNG output which could facilitate a DCA attack. It is for instance described in
Section 8.4.3 how the generated randomness can be easily detected by switching the
values of intermediate variables and checking whether this affects the final result.
Such detection is an active attack that tampers with the execution (in the same way
as fault attacks) and is hence out of the scope of the DCA adversary. However, it
should be made difficult (in the same way as fault attacks should be made difficult)
to achieve some level of resistance in practice.

In the following, we shall consider that the above security properties are satisfied
by the used PRNG so that the passive gray-box adversary cannot easily remove or
predict the generated randomness. We will then analyze which level of security is
achievable by using linear masking, non-linear masking, and shuffling in this con-
text.





Chapter 4

Gray-Box Attacks against Internal
Encodings

Part of the results presented in this chapter have been published in (Rivain and Wang,
2019).
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4.1 Introduction

The table encoding principle was first put forward by Chow et al. in the seminal
white-box paper (Chow, Eisen, Johnson, and van Oorschot, 2003) and is still com-
monly used as a countermeasure to provide some levels of protection in a white-box
context. The main principle is first to turn the implementation with some key into a
sequence of connected lookup tables, then a bijection and its inverse are applied to
each pair of connected tables to hide their content. Encodings can be divided into
two categories: internal and external encodings. In particular, external encodings
are bijections applied on the input or output of the cipher. However, the applica-
tion of external encodings changes the specification of the original cipher, which
is prohibitive for many use cases of white-box cryptography based on predefined
(standard) cryptographic algorithms. For this reason, we only focus on internal en-
codings in the present thesis.

At CHES 2016, Bos et al. proposed to use differential computation analysis (DCA) to
attack white-box implementations (Bos et al., 2016). DCA is mainly an adaptation of
the differential power analysis (DPA) techniques (Kocher et al., 1999) to the white-box
context. It exploits the fact that the variables appearing in the computation in some
unknown encoded form might have a strong linear correlation with the original plain
values.

This approach has been shown especially effective to break many publicly avail-
able white-box implementations (Bos et al., 2016) (many of which are protected with
internal encodings), and it was extensively used as a white-box cryptanalytic tech-
nique in the WhibOx 2017 (WhibOx, 2017; Bock and Treff, 2020).

Although impressive, the effectiveness of DCA to break implementations pro-
tected by internal encodings was left without formal explanation in (Bos et al., 2016).
This gap was addressed recently by Bock et al. who provide in (Bock, Brzuska, et al.,
2018; Bock, Bos, et al., 2019) a first formal explanation of the DCA success. How-
ever their analysis is partly experimental (in particular for wrong key guesses) and
it is limited to the case of linear and/or nibble encodings, which appeals for a more
formal and more general analysis.

This chapter has three main contributions:

1. Analysis and improvement of DCA. We provide an in-depth analysis of the
attack that pinpoints when and why DCA works against encoded implemen-
tations in Section 4.3. Our results include close formulas for the DCA success
probability with respect to different parameters (and in particular the encoding
width). This allows us to validate several formal and informal claims of (Bock,
Brzuska, et al., 2018). Moreover, we show that DCA can actually break byte
(and wider) encodings by targeting variables beyond the first round of the ci-
pher.

2. New DCA-like collision attack. We propose a new kind of collision attack in the
passive white-box setting where an adversary observes a computation trace
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with only limited knowledge of the underlying implementation in Section 4.4.
Our attack is as generic as DCA but it can defeat internal encodings with a sig-
nificantly lower trace complexity. For instance, as shown in Section 8.3.4, we
could break a publicly available implementation protected with byte encod-
ings in about 60 traces with our collision attack whereas DCA requires about
1800 traces. We give some theoretical analysis of our collision attack and show
that its success can be formulated as a balls-and-containers game.

3. Application of mutual information analysis (MIA). We suggest applying MIA
to the passive white-box attack setting in Section 4.5. In particular, we propose
a more efficient variant of the MIA attack against internal encodings. We also
analyze the deep connection between this improved MIA and our collision
attack.

All our analyses are backed up with attack simulations. Chapter 8 also includes
practical attack experiments validating our analyses and illustrating the power of
our new attacks. Additionally, we compare the three attacks in Section 4.6.

4.2 Internal Encodings

The principle of internal encodings was proposed by Chow et al. at SAC 2002 (Chow,
Eisen, Johnson, and van Oorschot, 2003) to protect block ciphers from key extraction
in the white-box context. The fundamental idea is first to turn the implementation
into a network of lookup tables with a hard-coded key. Then these tables are en-
coded by randomly sampled bijections, called internal encodings in the literature.1

More specifically, for any pair of connected tables, an invertible transformation T is
applied to the output of the first table, and then the inverse of T is applied to the
input of the subsequent table. A comprehensive tutorial of the internally-encoded
AES implementation of Chow et al. can be found in (Muir, 2013).

For a given encoded implementation of some block cipher, any intermediate vari-
able can be expressed as the output of an internal encoding ε : Fm

2 7→ Fm
2 applied

to some variable s. The latter can be expressed through a key-dependent function
φk : Fn

2 7→ Fm
2 of a public variable x (part of the plaintext or the ciphertext) for some

subkey k ∈ K. This formalism is depicted in Figure 4.1. In this chapter, we consider
that φk is a balanced vectorial Boolean function (VBF) which shall be the case for a vast
majority of attack scenarios. In practice, the bit-size m of the internal encodings is
usually small in consideration of the code size (since storage is exponential in m).
For instance, the AES implementation of Chow et al. is based on nibble encodings
(i.e., m = 4).

Whenever the target variable is such that n = m, namely if the number of plain-
text bits in its expression equals the bit-size of the encoding, and assuming that ε is

1As aforementioned, the application of external encodings is out of the scope of this work.
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x φk(·) s ε(·) v

input sensitive variable intermediate variable

n m mm

Figure 4.1: An illustration of how a sensitive intermediate variable
is encoded.

a uniformly sampled bijection, then ε ◦ φk is a uniform random bijection which is
independent of the secret key k. Consequently, there is no leakage of the underlying
key k from the table itself, nor from the encoded variable ε(s). This makes appear a
fundamental requirement common to all kinds of DCA-like attack against encoded
implementations: the target intermediate variable must be a key-dependent non-
injection, i.e., φk must be such that n > m.

Note that although the above requirement is mandatory for a DCA-like attack
to work, it does not represent a strong constraint for the attacker since such key-
dependent non-injective intermediate variables naturally exist in standard block ci-
pher designs. Indeed, for security reasons, a block cipher should have a good diffu-
sion, which means that each bit of the internal state should depend on all the bits of
the plaintext after a few rounds. For most block ciphers, such key-dependent non-
injective variables can be found in the first couple of rounds, e.g., in the 1st round
of AES, a nibble of an s-box output or a byte of the MixColumn output. The former
is the typical target of DCA attacks in the literature (Bos et al., 2016; Bock, Brzuska,
et al., 2018), while the latter will be the case study in our experiments. Note that
any byte of the AES state in the second (or a later) round is also a key-dependent
non-injective variable.

4.3 Differential Computation Analysis

Differential computation analysis, proposed at CHES 2016, breaks a massive amount
of publicly accessible white-box implementations (Bos et al., 2016). DCA simply con-
sists of applying differential power analysis (DPA) techniques to computation traces.
In this section, we provide an in-depth analysis of DCA (formally defined in Sec-
tion 3.2.1) against implementations protected by internal encodings in Section 4.3.1.
Specifically, we pinpoint when and why DCA works by using some properties of
Boolean functions. In particular, we show that DCA can break encodings wider than
4 bits (such as byte encodings) by targeting variables deeper in the cipher than in the
first (or last) round. We validate our theoretical analysis through several simulations
in Section 4.3.2. In the end, several specific discussions, including a comparison with
(Bock, Brzuska, et al., 2018), are conducted in Section 4.3.3.
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4.3.1 Analysis of DCA against Encoded Implementations

In the following, we first introduce the formal (idealized) model which we use for
our theoretical analysis. We then exhibit the distributions of the underlying corre-
lation scores for different key guesses, and we analyze the success rate and trace
complexity of DCA in this model.

Idealized Model

We perform our analysis in an idealized model in which the functions (φk)k∈K are
modeled as independent random balanced (n, m)-VBF. Using such an ideal assump-
tion is common in symmetric cryptanalysis and it is justified in practice since the
s-boxes are usually chosen in such a way that for two different k1, k2 ∈ K, φk1 and
φk2 are highly uncorrelated (as independent random functions would be). To get a
formal model for the full computation trace, we further ideally assume that except
the m coordinates of ε ◦ φk∗(X), the samples can be expressed as Vj = f j(X) where
the f j’s are uniform random functions of B(n).

Note that this idealized model is used for our theoretical analysis which is then
challenged and validated using attack simulations and practical attack experiments.

Distributions of Correlation Scores

Hereafter, we characterize the correlation score Cor
(

φi(X), Vj
)

when V is the target
encoded variable i.e., V = ε ◦ φ∗(X) for a uniformly distributed plaintext variable
X and a random m-bit encoding ε. According to our model, we have φ = φ∗ if the
key guess is correct (i.e., k = k∗); φ and φ∗ are mutually independent otherwise. We
have:

Cor
(

φi(X), Vj
)
= Cor(φi, ε j ◦ φ∗) =

1
2n · B(ε j ◦ φ∗ + φi).

Our analysis is based on the following key lemma.

Lemma 4.1. Let g ∈ B(n). Let f be a random function uniformly sampled in B(n) inde-
pendently of g. Then we have

B( f + g) = 4 · N f ,g
00 − 2n with N f ,g

00 ∼ H̃G(n) ,

where H̃G(n) is the hypergeometric distribution with parameters (2n−1, 2n, 2n−1).

Proof. By Equation 3.2, we have B( f + g) = 2n− 2 ·wt( f + g). Since both f and g are
balanced, we have wt( f + g) = 2n − 2 · N f ,g

00 (see definition of N f ,g
00 in Section 3.1.2),

which implies B( f + g) = 4 ·N f ,g
00 − 2n. Since N f ,g

00 is the number of inputs x for which
f (x) = 0 among the 2n−1 inputs satisfying g(x) = 0, we directly get N f ,g

00 ∼ H̃G(n)
by definition of the hypergeometric distribution and the uniformity of f .
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For the sake of clarity, we let Yk be the bias B(ε j ◦ φ∗ + φi) for a key guess k ∈ K,
and only consider Yk in our analysis. For the correct key guess k∗, we have

Yk∗ = B(ε j ◦ φ∗ + φ∗i ) = 2n−m · B(ε j + li) ,

where li(x) = xi (the ith coordinate of x). Since ε is an m-bit random permutation, ε j

is randomly distributed over B(m). According to Lemma 4.1, we then get

Yk∗ = 2n−m+2 · Nε j,li
00 − 2n with N

ε j,li
00 ∼ H̃G(m) .

On the other hand, for an incorrect key guess k× ∈ K \ {k∗}, we have –according
to our ideal assumption– that ε j ◦ φ∗ and φ×j are randomly and independently dis-
tributed over B(n), which implies

Yk× = B(ε j ◦ φ∗ + φ×i ) = 4 · Nε j◦φ,φ×i
00 − 2n with N

ε j◦φ,φ×i
00 ∼ H̃G(n) . (4.1)

The mean of Yk∗ and Yk× are both 0, but recalling that Var
(
H̃G(ℓ)

)
= 22ℓ−4

2ℓ−1 (which
equally holds for ℓ = n or m), their variances satisfy

Var(Yk∗) =
22n

2m − 1
and Var(Yk×) =

22n

2n − 1
. (4.2)

This makes the distributions of Yk∗ and Yk× easily distinguishable for practical pa-
rameters m and n (with n > m) as illustrated hereafter.

DCA Success Probability

For DCA to succeed, the encoding ε of the target variable must be such that the max
absolute correlation over the coordinates j ∈ [m] for the right key guess k∗ is greater
than the max absolute correlation over the coordinates j ∈ [m] and the wrong key
guesses k× ∈ K \ {k∗}. We denote such an event Succε in the following, that is

Succε : max
j

∣∣Cor(φ∗i , ε j ◦ φ∗)
∣∣ > max

j, k×

∣∣Cor(φ×i , ε j ◦ φ∗)
∣∣ .

Note that the probability that the above event occurs only depends on the random
generation of ε, which happens during the compilation process of the white-box im-
plementation. If this condition is satisfied, then the attack will succeed provided
that the number of computation traces is sufficient to get enough accuracy in the
correlation estimation. We first analyze the occurrence probability of Succε and then
address the trace complexity.

Simpler Case. Let us first look at the simpler case of a single j, namely the proba-
bility to get ∣∣Cor(φ∗i , ε j ◦ φ∗)

∣∣ > max
k×

∣∣Cor(φ×i , ε j ◦ φ∗)
∣∣ .
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In our idealized model, this amounts to get
∣∣Yk∗

∣∣ > maxk×
∣∣Yk×

∣∣ where Yk∗ and Yk×

are as defined above.

Proposition 4.1. Under our idealized model, we have

Pr
(
|Yk∗ | > max

k×
|Yk× |

)
= 2 ∑

0≤z<2m−2

Pr
H̃G(m)

(z) ·
(
1− 2 ·ΦH̃G(n)(2

n−m · z)
)|K|−1 .

Proof. Under our idealized model, the functions (ε j ◦ φ∗+ φi)φ∈{φk :k∈K} are mutually
independent, hence their bias, i.e., the variables (Yk)k∈K, are also mutually indepen-
dent. Moreover, the (Yk×)k×∈K\{k∗} are identically distributed. We can then write:

Pr
(
|Yk∗ | > max

k×
|Yk× |

)
=

2n

∑
y=−2n

Pr
(
Yk∗ = y

)
· Pr

(
|y| > max

k×
|Yk× |

)
=

2n

∑
y=−2n

Pr
(
Yk∗ = y

)
·∏

k×
Pr
(
|y| > |Yk× |

)
=

2n

∑
y=−2n

Pr
(
Yk∗ = y

)
· Pr

(
|y| > |Yk× |

)|K|−1 .

We further have that the distributions of Yk∗ and Yk× (for every k×) are both sym-
metric centered in 0, that is Pr(Yk = y) = Pr(Yk = −y) for every k and y, which
gives

Pr
(
|Yk∗ | > max

k×
|Yk× |

)
= 2 ∑

−2n≤y<0
Pr
(
Yk∗ = y

)
· Pr

(
|y| > |Yk× |

)|K|−1

= 2 ∑
−2n≤y<0

Pr
(
Yk∗ = y

)
·
(

1− 2 ·ΦYk×
(y)
)|K|−1

.

Using a change of variable y = 2n−m+2z− 2n, we have Pr
(
Yk∗ = y

)
= PrH̃G(m)(z)

and ΦYk×
(y) = ΦH̃G(n)(2

n−m · z), which finally yields:

Pr
(
|Yk∗ | > max

k×
|Yk× |

)
= 2 ∑

0≤z<2m−2

Pr
H̃G(m)

(z) ·
(
1− 2 ·ΦH̃G(n)(2

n−m · z)
)|K|−1 .

We observe that the probability Pr
(
|Yk∗ | > maxk× |Yk× |

)
only depends on n, m

and |K| in our idealized model. To illustrate Proposition 4.1, we plot in Figure 4.2
this probability for several values of n and m, taking |K| = 2n (which would basi-
cally occur for a target function of the form φk(x) = φ′(x ⊕ k) ). For instance, for
n = 8, m = 4, we have more than 1

2 probability to get |Yk∗ | greater than |Yk× | for the
255 wrong key guesses k×. This illustrates why DCA works on nibble encoding of
the AES s-box. We also see that for m = 8, the probability Pr

(
|Yk∗ | > maxk× |Yk× |

)
increases with n and also exceeds 1

2 for n ≥ 13. This suggests that DCA can also
work on byte encodings by targeting an intermediate variable depending on e.g., 16
plaintext bits.
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Figure 4.3: The histogram for the simulation (using 10 thousand tri-
als) matches the theoretical analysis when (n, m) = (8, 4).

Figure 4.3 further plots the distributions of Yk∗ and Yk× for n = 8, m = 4 (as well
as some simulations commented below). We observe that the difference in variances
makes the two distributions easily distinguishable. We further observe that when-
ever Yk∗ 6= 0, we have a very high probability that |Yk∗ | > |Yk× |. This is because
the values taken by Yk∗ are multiples of 2n−m+2 (which equals 64 for n = 8, m = 4),
therefore Yk∗ 6= 0 implies |Yk∗ | ≥ 2n−m+2. On the other hand, the standard deviation
of Yk× , which is close to 2n/2 according to Equation 4.2 (i.e., around 16 for n = 8),
might be significantly smaller than 2n−m+2. More generally, if for a small constant
qα, n is chosen such that

qα · σ(Yk×) ≈ qα · 2
n
2 ≤ 2n−m+2 ⇔ n ≥ 2m + 2(log2 qα − 2)

we have an overwhelming probability α that |Yk∗ | > |Yk× |.2 For instance, taking

2Here qα is the quantile of α meaning that we have probability α that Yk× is smaller (in absolute
value) than qα times its standard deviation. In particular, α quickly converges towards 1 as qα grows.
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n ≥ 2m + 2 gives qα ≥ 8 which (under a Gaussian approximation of Yk×) implies
α ≥ 1− 10−14. Consequently, choosing n slightly greater than 2m we get

Pr
(
|Yk∗ | > max

k×
|Yk× |

)
≈ 1− Pr(Yk∗ = 0) = 1− Pr

H̃G(m)
(2m−2) (4.3)

where PrH̃G(m)(2
m−2) = (2m−1

2m−2)
2/
( 2m

2m−1).
It can be checked from Figure 4.2 that Pr

(
|Yk∗ | > maxk× |Yk× |

)
indeed converges

towards the above approximation as n grows and that the convergence is indeed
achieved for n ≥ 2m + 2.

Full Success Probability. Let us now extend Proposition 4.1 to the general case of
Succε where the max is taken over all the coordinates j ∈ [m]. We shall extend our
idealized model by assuming that the coordinate functions φj are mutually indepen-
dent random functions of B(n). We provide a comparison of Pr

(
Succε

)
in this ideal

setting and in a real setting in Section 4.3.2.

Proposition 4.2. Under our idealized model, we have

Pr
(
Succε

)
= ∑

0≤z<2m−2

µ(z) ·
(

1− 2 ·ΦH̃G(n)
(
2n−m · z

))m·(|K|−1)

where

µ(z) =
m

∑
ℓ=1

(
m
ℓ

)
·
(

2 Pr
H̃G(m)

(z)

)ℓ

·
(

1− 2ΦH̃G(m)(z)
)m−ℓ

.

Proof. For any i, j ∈ [m], and k ∈ K, let Y j
k = B(ε j ◦ φ∗ + φi), then

Pr
(
Succε

)
= Pr

(
max
j∈[m]

∣∣Y j
k∗
∣∣ > max

j∈[m],k×∈K\{k×}

∣∣Y j
k×
∣∣)

=
2n

∑
y=1

Pr
(

max
j∈[m]

∣∣Y j
k∗
∣∣ = y

)
· Pr

(
y > max

j,k×
|Y j

k∗ |
)

where

Pr
(

max
j∈[m]

∣∣Y j
k∗
∣∣ = y

)
= Pr

({
j :
∣∣Y j

k∗
∣∣ = y

} ⋂ {
j :
∣∣Y j

k∗
∣∣ ≤ y

}
6= ∅

)
=

m

∑
ℓ=1

Pr
( ∣∣∣{j :

∣∣Y j
k∗
∣∣ = y

}∣∣∣ = ℓ
∧ ∣∣∣{j :

∣∣Y j
k∗
∣∣ < y

}∣∣∣ = m− ℓ

)
=

m

∑
ℓ=1

(
m
ℓ

)
· Pr

(∣∣Y j
k∗
∣∣ = y

)ℓ
· Pr

(∣∣Y j
k∗
∣∣ < y

)m−ℓ

=
m

∑
ℓ=1

(
m
ℓ

)
· Pr

(
Y j

k∗ = ±y
)ℓ
· Pr

(
−y < Y j

k∗ < y
)m−ℓ
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and

Pr
(

y > max
j,k×
|Y j

k× |
)

= ∏
j,k×

Pr
(
y > |Y j

k× |
)
= Pr

(
y > |Y j

k× |
)m·(|K|−1)

=
(

1− 2 ·ΦYk×
(−y)

)m·(|K|−1)

according to the mutual independence of the
(

φk
)

k∈K and the mutual independence
of their coordinate functions in our idealized model.

Using a change of variable y = 2n − 2n−m+2z, we then have

Pr
(
Y j

k∗ = ±y
)
= 2 Pr

H̃G(m)
(z)

and
Pr
(
− y < Y j

k∗ < y
)
= 1− 2ΦH̃G(m)(z)

and
ΦYk×

(−y) = ΦH̃G(n)(2
n−m · z) ,

which give

Pr
(

max
j∈[m]

∣∣Y j
k∗
∣∣ = y

)
=

m

∑
ℓ=1

(
m
ℓ

)
·
(

2 Pr
H̃G(m)

(z)

)ℓ

·
(

1− 2ΦH̃G(m)(z)
)m−ℓ

(denoted by µ(z) hereafter) and

Pr
(

y > max
j,k×
|Y j

k× |
)
=
(

1− 2 ·ΦH̃G(n)(2
n−m · z)

)m·(|K|−1)
.

In summary,

Pr
(
Succε

)
=

2m−2

∑
z=1

µ(z) ·
(

1− 2 ·ΦH̃G(n)(2
n−m · z)

)m·(|K|−1)
.

As above, taking n ≥ 2m + 2, we get |Yk× | < 2n−m+2 with overwhelming prob-
ability (for all the wrong key guesses k× and coordinates j), and hence Succε occurs
whenever Yk∗ = B(ε j ◦ φ∗ + φ∗i ) is non-zero for a single j ∈ [m]. That is

Pr
(
Succε

)
≈ 1− Pr(Yk∗ = 0)m = 1− Pr

H̃G(m)
(2m−2)

m
. (4.4)

This approximation is also empirically validated in Section 4.3.2.

We have analyzed the probability that an internal encoding ε makes it possible
for a DCA to succeed. Let us now extend the analysis by considering the full compu-
tation trace. Under our idealized model, the latter is composed of the m coordinates



60 Chapter 4. Gray-Box Attacks against Internal Encodings

of ε ◦ φ∗(X) and of t− m samples generated from fresh random functions of B(n).
We have the following corollary of Proposition 4.2.

Corollary 4.1. Let Full-Succε denote the event

Full-Succε : max
j∈[t]
|Cor(φ∗i , Vj)| > max

j∈[t], k×
|Cor(φ×i , Vj)| .

Under our idealized model, we have

Pr
(
Full-Succε

)
≥ ∑

0≤z<2m−2

µ(z) ·
(

1− 2 ·ΦH̃G(n)
(
2n−m · z

))t·(|K|−1)
, (4.5)

where µ(z) is defined as in Proposition 4.2.

The inequality in Equation 4.5 directly results from

max
j∈[t]
|Cor(φ∗i , Vj)| ≥ max

j∈[m]
|Cor(φ∗i , ε j ◦ φ∗)| .

The rest of the proof is similar to the proof of Proposition 4.2.

In the above propositions (and corollary), we have exhibited the probability that
the exact correlation score is greater for the right key guess k∗ than for any wrong
key guess k×. Although this is a necessary condition for DCA to succeed, one further
needs to get some estimations of the correlation scores which are accurate enough to
ensure the superiority of the right correlation peak. We analyze hereafter the number
of traces necessary to meet such a practical condition.

Trace Complexity

Let us recall that Cor(φ∗i , ε j ◦ φ∗) = 2−n ·Yk∗ . We have seen that, with high probabil-
ity (see Equation 4.4), we have Yk∗ 6= 0, and hence |Yk∗ | ≥ 2n−m+2, for at least one
coordinate j. We consider hereafter that this event indeed occurs from which we get

γdca
k∗ = max

j∈[m]
|Cor(φ∗i , ε j ◦ φ∗)| ≥ 2−m+2 .

Moreover, taking n ≥ 2m + 2, we have seen that the variables Yk× are an order of
magnitude lower than the 2n−m+2, hence the correlation scores γdca

k× are an order of
magnitude lower than γdca

k∗ . According to Equation 3.1, we get a trace complexity of
N = O

(
22m) in which ρ takes γdca

k∗ in our context.

4.3.2 Simulations

To verify that our ideal analysis soundly captures the behavior of an actual DCA, we
perform several attack simulations taking an AES s-box output as target variable,
with n = 8, and for different encoding size m = {4, 5, 6, 7, 8}. Specifically, we look at
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the distributions of Yk∗ = B(ε j ◦ φ + φ∗i ) and Yk× = B(ε j ◦ φ + φ×i ), and the probabil-
ities of events:

∣∣Yk∗
∣∣ > maxk×

∣∣Yk×
∣∣ and Succε, with φk(x) = S(m)(x⊕ k) where S(m)

is the AES s-box shrunk to its m least significant bits (and hence φk is an (8, m)-VBF).
For all settings, our simulation results are averaged over 10,000 trials and ε is a fresh
random m-bit bijection in each trial. The full simulations are done according to the
procedures depicted in Algorithm 4.1 on the next page.

As an illustration, we plot the histogram for (n, m) = (8, 4) in Figure 4.3, which
demonstrates that our theoretical analysis on distributions of Yk∗ and Yk× matches
the real distributions obtained in a DCA experiment. We further compare in Ta-
ble 4.1 the ideal and simulation settings for the probabilities Pr

(
|Yk∗ | > maxk× |Yk× |

)
and Pr

(
Succε

)
. We can observe that the figures obtained through our ideal analy-

sis match pretty well the simulation results. For instance, when (n, m) = (8, 4), the
probabilities of |Yk∗ | > maxk× |Yk× | are about 0.6071 (ideal setting) and 0.6194 (simu-
lation). Note that the difference is of the same order of magnitude (i.e., 10−2) as the
precision of the simulation results (based on 10, 000 trials).

Table 4.1: The simulation and theoretical (ideal) analysis results for
n = 8, m = {4, 5, 6, 7, 8} by using AES-128 first round s-box as the

selection function.

(n, m)
Pr(|Yk∗ | > maxk× |Yk× |) Pr

(
Succε

)
ideal simulation ideal simulation

(8,4) 0.6071 0.6194 0.9264 0.9722
(8,5) 0.2837 0.2859 0.7598 0.8032
(8,6) 0.1259 0.1281 0.3556 0.3749
(8,7) 0.0305 0.0299 0.0716 0.0723
(8,8) 0.0027 0.0021 0.0025 0.0020

We also verify the soundness of the approximation in Equation 4.3 and Equa-
tion 4.4 when one takes n = 2m + 2. For this purpose, we compare in Table 4.2
the probabilities of the events

∣∣Yk∗
∣∣ > maxk×

∣∣Yk×
∣∣ and Succε obtained from our ap-

proximations, from our propositions in the ideal model, and from simulations. The
simulations are based on 10,000 attack trials, where φk is defined as φk(x) = φ(x⊕ k)
for some (n, m)-VBF φ randomly picked in each trial.

Table 4.2: The simulation and theoretical (ideal) analysis results for
n = 2m + 2 where m = {3, 4, 5, 6, 7} by targeting at an n-bit random

bijection.

(n, m)
Pr(|Yk∗ | > maxk× |Yk× |) Pr

(
Succε

)
Equation 4.3 ideal simulation Equation 4.4 ideal simulation

(8,3) 0.4857 0.4857 0.4853 0.8640 0.8640 0.8828
(10,4) 0.6193 0.6193 0.6123 0.9790 0.9790 0.9736
(12,5) 0.7244 0.7244 0.7141 0.9984 0.9984 0.9960
(14,6) 0.8029 0.8029 0.8027 0.999941 0.999941 1.0000
(16,7) 0.8598 0.8598 0.8615 0.999998934 0.999998934 1.0000
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Algorithm 4.1 DCASIMULATION(φ, n, m, N)

Input: A (n, m)-VBF φ and the number of trails N
Output: Biases

(
Bk∗,l,j, Bk×,l,j

)
1≤l≤N , and success rates p1 and p2

1: procedure DCASIMULATION(φ, n, m, N)
2: k∗, k×←$K
3: i, j←$ {1, 2, · · · , m}
4: for k ∈ K do
5: for x ∈ Fn

2 do
6: Tk(x)←

(
φk(x)� (i− 1)

)
& 1

7: end for
8: end for
9: c1, c2 ← 0

10: for l ← 1 to N do
11: ε ←$ a m-bit permutation
12: for j′ ∈ [m], x ∈ Fn

2 do
13: Ej′(x)←

(
ε ◦ φk∗(x)� (j′ − 1)

)
& 1

14: end for
15: for j′ ∈ [m], k ∈ K do
16: Bk,l,j′ ← BIAS(Ej′ , Tk, n)
17: end for
18: if Bk∗,l,j > maxk∈K\{k∗} Bk,l,j then
19: c1 ← c1 + 1
20: end if
21: if maxj′ Bk∗,l,j′ > maxk×,j′ Bk×,l,j′ then
22: c2 ← c2 + 1
23: end if
24: end for
25: p1 ← c1

N , p2 ← c2
N

26: return
(

Bk∗,l,j, Bk×,l,j
)

1≤l≤N , p1, p2

27: end procedure

1: procedure BIAS(T1, T2, n)
2: w← 0
3: for i← 1 to 2n do
4: w← w + T1(i)⊕ T2(i)
5: end for
6: return 2n − 2 · w
7: end procedure
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4.3.3 Discussion

The Case of Linear Encodings

We address hereafter the case of linear encodings, which are encodings ε that can be
expressed as

ε(s) = A · (s1, · · · , sm)
T ⊕ bT .

where (s1, · · · , sm) is the binary representation of s, A =
(
aj,ℓ
)

j,ℓ∈[m]
∈ Fm×m

2 is an
invertible binary matrix and b =

(
bj
)

j∈[m]
∈ Fm

2 is a binary vector. For such a linear
encoding, we get ε j ◦ φ∗(x) = bj + ∑m

ℓ=1 aj,ℓ φ∗ℓ (x) for every j ∈ [m] and hence

Cor(φi, ε j ◦ φ∗) =
1
2n · B

(
φi + bj +

m

∑
ℓ=1

aj,ℓ φ∗ℓ

)
.

Then we differentiate three cases:

• if φ = φ∗ (i.e., the key guess is correct) and if aj,i = 1 and aj,ℓ = 0 for every
ℓ ∈ [m] \ {j}, then we have |Cor(φi, ε j ◦ φ∗)| = 1

2n · |B(bj)| = 1;

• if φ = φ∗ (i.e., the key guess is correct) and if aj,ℓ = 1 for some ℓ ∈ [m] \ {j},
then φ∗i + bj + ∑m

ℓ=1 aj,ℓ φ∗ℓ is balanced implying |Cor(φi, ε j ◦ φ∗)| = 0;

• if φ = φ× (i.e., the key guess is incorrect), under our idealized model, we
have |Cor(φi, ε j ◦ φ∗)| = 1

2n |B(φi + f )| where f = bj + ∑m
ℓ=1 aj,ℓ φ∗ℓ is a ran-

dom function of B(n) (since f is a linear combination of the coordinates of a
random balanced VBF φ∗) and independent of φi, namely |Cor(φi, ε j ◦ φ∗)| is
distributed as the variable 1

2n ·Yk× (see Equation 4.1).

We can deduce that if the matrix A has at least one row –say the jth row– of Hamming
weight 1, i.e., with a single coefficient to aj,i = 1, then for the corresponding i ∈ [m],
we have |Cor(φi, ε j ◦ φ∗)| = 1 which implies that DCA (targeting the ith bit of φ)
will succeed with overwhelming probability. If no such row of Hamming weight 1
occurs, then the right guess correlation is indistinguishable from the wrong guess
correlations and DCA fails with high probability.

There is a certain probability that a random encoding happens to be a linear
encoding. This is especially likely when m = 2, 3. In particular, when m = 2, there
are only 6 possible ε j(s1, s2) with ANF

s1 + b , s2 + b , and s1 + s2 + b , where b ∈ F2 .

Hence, given i and j, all the possible encodings are linear, and only si + b satisfies
the condition aj,i = 1 and aj,ℓ = 0 for every ℓ ∈ [m] \ {j}. This high probability of
getting a linear encoding implies that the success of DCA against encodings of size
m = 2, 3 is less likely than for greater values of m as indicated by Proposition 4.2.
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Comparison to Previous Analysis

Bock et al. (Bock, Brzuska, et al., 2018; Bock, Bos, et al., 2019) conduct an analy-
sis to explain the ineffectiveness of linear and/or nibble encodings against DCA. In
comparison, our analysis covers random (non-linear) encodings of any size m. Re-
garding the cases of linear encodings and (non-linear) nibble encodings, our analysis
is consistent with the results of Bock et al. while providing more formal statements
(under some ideal assumption) and close formulas for the success rate of DCA with
respect to the attack parameters (n, m, |K|).

More precisely, for the case of linear encodings, our analysis of Section 4.3.3 is
similar to Theorem 1 in (Bock, Brzuska, et al., 2018; Bock, Bos, et al., 2019), but the
latter does not deal with the correlation scores of wrong key guesses, whereas our
analysis characterizes these scores under an ideal assumption. For the case of nibble
encodings, our analysis exhibits the distribution of the right guess correlation score
as Cor(ε j ◦ φ∗, φ∗i ) = 1

4 · N
ε j◦φ∗,φ∗i
00 − 1, with N

ε j◦φ∗,φ∗i
00 ∼ H̃G(4). This result implies

in particular that the possible correlation scores for the right guess are multiples of
1
4 , which is the purpose of Theorem 2 in (Bock, Brzuska, et al., 2018). Besides the
correlation scores for the good key guess, our analysis further characterizes the dis-
tribution for wrong guess correlation scores, whereas this distribution is considered
“close to 0” in (Bock, Brzuska, et al., 2018).

Bock et al. also look at the empirical distribution of the correlation scores for
the correct key guess with 10,000 attack simulations on the AES s-box protected by
nibble encodings. In the considered scenario, the max correlation score is taken over
the 8 predicted bits and the 4 output bits of the encoding. Tweaking Proposition 4.2
to this case, the probability to have a correlation peak of 1

4 (4− z) is given by

µ(z) =
32

∑
ℓ=1

(
32
ℓ

)
·
(

2 Pr
H̃G(4)

(z)

)ℓ

·
(

1− 2ΦH̃G(4)(z)
)32−ℓ

.

We compares the above formula to the figures given in (Bock, Brzuska, et al., 2018)
in Table 4.3 which shows a good match between the two.

Table 4.3: Simulation results in (Bock, Brzuska, et al., 2018) vs. our
formula for nibble encodings.

Score Count (Bock, Brzuska, et al., 2018) Probability

1 55 µ(0) = 0.0050
0.75 2804 µ(1) = 0.2724
0.50 7107 µ(2) = 0.7118
0.25 34 µ(3) = 0.0108

0 0 µ(4) = 0.0000
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4.4 Collision Attack

Generating and analyzing collisions in computation is a common attack technique in
the side-channel context (Schramm et al., 2004; Moradi et al., 2010). In this section,
we propose a new class of gray-box DCA-like collision attacks to break white-box
implementations protected by internal encodings. We first give in Section 4.4.1 a
formal description of our collision distinguisher within the previously introduced
passive attack model. We then give a theoretical analysis of the success probability
and the trace complexity of our collision attack in Section 4.4.2.

4.4.1 Collision Attack Distinguisher

Following the passive attack model introduced in Section 3.2, the adversary first
collects N computation traces

(
v(i))

i corresponding to N inputs
(
x(i)
)

i for the tar-
get function φ. Then for each pair of inputs

(
x(i1), x(i2)

)
where i1, i2 ∈ [N], i1 6= i2,

and their corresponding computation traces
(
v(i1), v(i2)

)
, the adversary computes a

collision computation trace (CCT):

w(i1,i2) =
(
w(i1,i2)

1 , w(i1,i2)
2 , · · · , w(i1,i2)

T
)
,

with w(i1,i2)
j = v(i1)j � v(i2)j for every j ∈ [t] where the operator � is defined as

a� b :=

{
1 if a = b,
0 otherwise.

Namely, the CCT for indexes (i1, i2) has a 1 at the jth sample position iff a collision
occurs between the jth samples of the computation traces v(i1) and v(i2). Similarly,
the collision prediction for a key guess k ∈ K and input values

(
x(i1), x(i2)

)
is defined

as
ψk
(

x(i1), x(i2)
)

:= φk
(
x(i1)

)
� φk

(
x(i2)

)
.

The collision distinguisher for a key guess k is then defined as the maximal cor-
relation between the CCT and the corresponding collision prediction for k, i.e.,

γca
k = max

j∈[t]
Cor

(
ψk
(
X(i1), X(i2)

)
, W(i1,i2)

j

)
.

As for DCA, the above correlation coefficient is estimated based on the collected
samples x(i) and w(i,j), for i, j ∈ [N].

The soundness of our collision attack against internal encodings can be summa-
rized with the following observation: if some sensitive variable collides for a pair of
inputs, so does the corresponding encoded variable in the computation trace. Con-
versely, if some sensitive variable does not collide for a pair of inputs, neither does
the corresponding encoded variable in the computation trace. As a consequence,
there is a perfect match between the collision prediction and the target sample in the
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CCT for the correct key guess (implying a correlation score to 1) whereas this should
not hold for an incorrect key guess.

For a typical selection function φ, the instances (φk)k corresponding to the dif-
ferent key guesses behave like independent random functions. Hence, the success
probability of our collision attack quickly grows with the number of collision pairs,
as we analyze in more detail in Section 4.4.2.

4.4.2 Theoretical Analysis

We analyze hereafter the success rate and the trace complexity of our collision attack
in the idealized model. For this purpose, we first introduce a random experiment
that we shall call the balls-and-containers game.

The Balls-and-Containers Game

In an (α, β, γ)-balls-and-containers game experiment, a player randomly places α

different balls in γ different containers of β slots each, such that, at each step, the
random placement of a ball is done uniformly among the remaining free slots.3 As
an illustration, the outcome of 4 independent experiments of the (5, 3, 6)-balls-and-
containers game is represented in Figure 4.4.

Containers

1 2 3 4 5 6

Ex
pe

ri
m

en
ts

1

2

3

4

Figure 4.4: The outcome of 4 independent experiments of the
(5, 3, 6)-balls-and-containers game, in which different balls are in dif-

ferent colors.

We say that a container collides when it contains more than one ball at the end
of an experiment. For instance, the 3rd and 5th containers collide in the first experi-
ment in Figure 4.4 whereas the other containers do not collide. We further say that
the outcomes of two experiments are isomorphic whenever a reordering of the con-
tainers in one outcome yields a distribution of the balls among the containers which
is the same as for the other outcome. For instance, the outcomes of the two first
experiments in Figure 4.4 are isomorphic.

3In particular, a container with one or several ball(s) has a lower probability to receive a new ball
than a container with only free slots.
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Collision Probability. Consider an (α, β, γ)-balls-and-containers game for which
γ > α (i.e., there are more containers than balls). Let Col be the event that at least
one container collides. We have

Pr(¬ Col) = 1− Pr(Col) = g(α, β, γ) ,

where

g(α, β, γ) :=
α−1

∏
i=1

β(γ− i)
γβ− i

. (4.6)

Lemma 4.2. If α < β and α < γ, we have

g(α, β, γ) < exp
(
− (α− 2)(α− 1)

2γ

)
.

Proof. We have γ·β−i·β
γ·β−i = 1 −

i− i
β

γ− i
β

and i−1
γ−1 <

i− i
β

γ− i
β

(since i ≤ β and i < γ). We

deduce

g(α, β, γ) <
α−1

∏
i=1

(
1− i− 1

γ− 1

)
.

According to the mean inequality, we get

α−1

√√√√α−1

∏
i=1

(
1− i− 1

γ− 1

)
<

1
α− 1

α−1

∑
i=1

(
1− i− 1

γ− 1

)

=1− α− 2
2γ− 2

< 1− α− 2
2γ

< exp
(
−α− 2

2γ

)
.

Combining the two above formulas concludes the proof.

Isomorphism Probability. Let us denote Iso the event that two independent ex-
periments of the (α, β, γ)-balls-and-containers game are isomorphic. Given γ′ the
number of containers with at least one ball in the first experiment, we have

Pr(Iso) ≤
γ′−1

∏
i=1

β(γ− i)
γβ− i

·
α−1

∏
i=γ′

β− 1
γβ− i

≤ g(α, β, γ) .

The above probability can be interpreted as follows. In order to have the second
experiment isomorphic to the first one, the two followings shall occur:

(1) taking one ball from each γ′ non-empty container in the first experiment, one
must get that these γ′ balls are placed in different containers in the second
experiment;

(2) each of the remaining balls must end in a specific container (with at most β− 1
free slots) to satisfy the isomorphic property.
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The first inequality comes from the fact that there might be less than β− 1 remaining
free slots in a container for the placing of the remaining balls. The second inequality
holds by definition of g (see Equation 4.6) and from β(γ− i) > β− 1 (since γ > α).

Collision Attack Success Probability

We analyze our collision attack under an idealized model as the one considered for
our analysis of DCA (see Section 4.3.1). In particular, the functions (φk)k∈K are as-
sumed to be mutually independent random balanced (n, m)-VBFs. Unlike DCA, the
collision attack does not split the samples in the computation trace into bits. We
hence consider that the definition space of the Vj’s matches the encoding definition
space, i.e., V = F2m . For some j∗ ∈ [T], we have Vj∗ = ε ◦ φ∗(X), for the other
j ∈ [T] \ {j∗}, we ideally assume that the samples can be expressed as Vj = f j(X)

where the f j’s are uniform random balanced (n, m)-VBFs.

We first consider the success event

Succ : Cor
(

ψk∗
(
X(i1), X(i2)

)
, W(i1,i2)

j∗

)
> max

k×
Cor

(
ψk×
(
X(i1), X(i2)

)
, W(i1,i2)

j∗

)
,

i.e., the correlation is maximal for the correct key guess at the right sample index j∗.
Note that for j∗, we have

W(i1,i2)
j∗ = ε ◦ φ∗(X(i1))� ε ◦ φ∗(X(i2)) = φ∗(X(i1))� φ∗(X(i2)) = ψk∗

(
X(i1), X(i2)

)
.

For some given set of inputs (x(i))i∈N , the above success event relies on two events
E1 and E2, with Succ = E1 ∩ E2, which are defined as

E1 : ∃ (i, j), 1 ≤ i < j ≤ N, s.t. φ∗(x(i)) = φ∗(x(j)) ,

and

E2 : ∀ k×∈ K \ {k∗}, ∃ (i, j), 1 ≤ i < j ≤ N, s.t. ψk∗(x(i), x(j)) 6= ψk×(x(i), x(j)) .

The event E1 ensures that the collision predictions ψk∗
(
x(i), x(j)) are not all equal to

zero for the right key guess, which must hold so that the correlation score for k∗ is
well defined.4 The event E2 ensures that for all the wrong key guesses k× 6= k∗,
(ψk×(x(i), x(j)))i,j does not perfectly match (ψk∗(x(i), x(j)))i,j, which implies a correla-
tion score strictly lower than 1.

Assuming that we have N < 2m, we can express the collision attack success in
terms of balls-and-containers game experiments, by considering

• the inputs (x(i))i∈N as N different balls,

4In principle, we should also ensure that the collision predictions for the right key guess are not all
equal to one, i.e., the inputs (x(i))i∈N do not all map to the same output through φk∗ , but this shall
occur with overwhelming probability so we neglect this requirement.
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• the output values of φ as 2m different containers,

• the number of preimages of a given output through φ as the 2n−m slots in each
container.

Then each key guess k gives rise to an (α, β, γ)-balls-and-containers game experi-
ment with α = N, β = 2n−m, γ = 2m where the randomness of φk acts as a ran-
dom placement of the inputs (xi)i∈N in the 2m output values with a maximum of
2n−m slots per output value (which results from the balanceness of φk). The mu-
tual independence of the (φk)k∈K implies the mutual independence of the balls-and-
containers game experiments.

The event E1 then holds if at least one container collides in the experiment corre-
sponding to k∗, i.e.,

Pr(E1) = Pr(Col) = 1− g(N, 2n−m, 2m) . (4.7)

On the other hand, the event E2 holds if none of the experiments for k× ∈ K \ {k∗} is
isomorphic to the experiment for k∗. The mutual independence of these experiments
implies

Pr(E2) =
(
1− Pr(Iso)

)|K|−1 ≥
(
1− g(N, 2n−m, 2m)

)|K|−1 . (4.8)

Proposition 4.3. Under our idealized model, we have

Pr(Succ) ≥
(
1− g(N, 2n−m, 2m)

)|K| ≥ 1− |K| · exp
(
− (N − 2)(N − 1)

2m+1

)
.

The proposition is a direct consequence of Equation 4.7 and Equation 4.8 (first in-
equality), and Lemma 4.2 (second inequality).

Let us now extend the analysis by considering the full computation trace. Under
our idealized model, the latter is composed of ε ◦ φ∗(X) and of t− 1 samples gen-
erated from fresh random balanced (n, m)-VBFs. We have the following corollary of
Proposition 4.3.

Corollary 4.2. Let us denote Full-Succ the success event

Full-Succ : max
j∈[t]

Cor
(

ψk∗
(
X(i1), X(i2)

)
, W(i1,i2)

j

)
> max

j∈[t],k×
Cor

(
ψk×
(
X(i1), X(i2)

)
, W(i1,i2)

j

)
.

Under our idealized model, we have

Pr(Full-Succ) ≥
(
1− g(N, 2n−m, 2m)

)t·|K|

≥ 1− t · |K| · exp
(
− (N − 2)(N − 1)

2m+1

)
.

(4.9)
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Corollary 4.2 is a straightforward extension of Proposition 4.3 where (|K| − 1) + 1
in the exponent is replaced by t · (|K| − 1) + 1 which directly implies the above
inequality.

Trace Complexity

From the above analysis, we can easily deduce the trace complexity of our collision
attack. Let c be some parameter such that one wants to achieve a success probability
1− 10−c. By Corollary 4.2, taking

N =
√

2m+1
(
c · ln 10 + ln t + ln |K|

)
+ 1 , (4.10)

implies Pr(Full-Succ) ≥ 1− 10−c. Given a (high) success probability, a trace size and
a key space, the number of required computation traces is hence N = Θ

(
2

m
2

)
, which

is a significant improvement over DCA for which we have N = O
(
22m).

In order to illustrate our analysis, Figure 4.5 plots the lower bound on the suc-
cess probability (Equation 4.9) for n = 16, m = 8, |K| = 2n, and t ∈ {1, 103, 106}.
We see that multiplying the size of the computation trace by a factor of 1000 only
implies a small gap (less than 20) in the number of required traces. In order to il-
lustrate the tightness of the bounds, we further plot the lower bound in the middle
in Equation 4.9, i.e., (1− g(N, 2n−m, 2m))t·|K|, as well as the lower bound obtained
by a straight application of Lemma 4.2. We observe that our explicit lower bound
only implies a gap of 5 in the number of required computation traces, which is fairly
tight.
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0

0.5

1 (85, 0.991)

(70, 0.133)

(80, 0.937)
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lower bound with T = 1
lower bound with T = 103

lower bound with T = 106

middle lower bound with T = 1
lower bound on g (Lemma 2) with T = 1

Figure 4.5: Success probability lower bound (Equation 4.9) over an
increasing N for n = 16, m = 8, and |K| = 2n.

4.5 Mutual Information Analysis

Mutual Information Analysis (MIA) was introduced in the side-channel context for
an adversary that has very limited knowledge about the leakage distribution and
how it relates to computed data (Gierlichs et al., 2008; Batina et al., 2011). In particu-
lar, MIA can deal with any kind of –possibly uncommon, odd, or complex– leakage
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function. It therefore naturally applies in the white-box context to attack imple-
mentations protected with internal encodings since the latter can be thought of as
particular cases of –especially complex– leakage functions. We first recall the MIA
distinguisher in Section 4.5.1, then we give a brief analysis of its behavior in the
considered white-box setting in Section 4.5.2.

4.5.1 MIA Distinguisher

The MIA distinguisher for a key guess k is calculated as the maximal mutual infor-
mation between the prediction φk(X) and each trace sample Vj, that is

γmia
k = max

j∈[t]
I
(

φk
(
X
)
; Vj
)

.

The basic notions of information theory are recalled in Section 3.1.3. Note that un-
like the side-channel context in which evaluating the mutual information usually
involves complex PDF estimation methods, we are only dealing with discrete vari-
ables here which makes the practical evaluation simpler.

4.5.2 Analysis and Improvement

In practice, the adversary computes the MIA distinguisher based on sample values.
In the following, we shall use denote Î and Ĥ the sample versions of the mutual
information and the entropy which are computed based on a uniform random selec-
tion of the inputs (x(i))i∈[N].

Let j∗ be the sample index such that Vj∗ = ε ◦ φk∗(X). We have

Î
(

φ(X) ; Vj∗
)
= Î
(

φ ; ε ◦ φ∗
)
= Î
(

φ ; φ∗
)

,

where we drop the argument X in φ and φ∗ for the sake of clarity, and where the
last equality holds by the bijectivity of ε. Let us look at the success event that, for
the right sample index j∗, the mutual information score is the greatest for the correct
key guess, that is

Succ : Î
(

φ∗ ; φ∗
)
≥ max

k×
Î
(

φ× ; φ∗
)

.

For the correct key guess, we have

Î
(

φ∗ ; φ∗
)
= Ĥ

(
φ∗
) N→∞−−−−→ H

(
φ∗
)
= m .

On the other hand, for an incorrect key guess, we have

Î
(

φ× ; φ∗
)
= Ĥ

(
φ∗
)
− Ĥ

(
φ×|φ∗

)
.
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We hence deduce that Succ occurs if and only if Ĥ
(

φ×|φ∗
)
6= 0 for every k× ∈

K \ {k∗}, which is equivalent to the following event

E : ∀ k×∈ K \ {k∗}, ∃ (i, j), 1 ≤ i < j ≤ N,

s.t. φ∗(x(i)) = φ∗(x(j)) and φ×(x(i)) 6= φ×(x(j)) .

Note that this event is close but different from the intersection E1 ∩ E2 analyzed for
the collision attack. In particular, we have E ⇒ E1 ∩ E2 but E1 ∩ E2 6⇒ E. In other
words, our collision attack succeeds whenever MIA succeeds but the converse is not
true.

Nevertheless, the event E has still a high probability to occur when the parame-
ters are chosen as in our collision attack. For instance, let n = 2m and N = Θ

(
2

m
2

)
.

According to the birthday paradox, we have a high probability to get a small number
q of collisions φ∗(x(i)) = φ∗(x(j)). The event E does not occur, if for some k× we also
have φ×(x(i)) = φ×(x(j)) for all these q collisions, which happens with probability
lower than

( 2m−1
2n−N

)q ≤ 1
2qm . We thus obtain a high probability Pr(E) ≥ 1− |K|2qm and

hence we also have N = O
(

2
m
2

)
for MIA.

Improved MIA

We show hereafter that a simple improvement of MIA can make it as successful
as our collision attack. We know that for the right key guess we have Î

(
φ∗; φ∗

)
=

Ĥ
(

φ∗
)
. So for a guess k, we know that if Î

(
φ; φ∗

)
6= Ĥ

(
φ
)

then k 6= k∗. Our im-
provement simply consists in setting the score associated to k to 0 whenever such an
inequality occurs, that is

γmia
k =

H(φk(X)) if maxj∈[t] I
(

φk(X); Vj
)
= H(φk(X)),

0 otherwise.

For this new distinguisher, we still have Ĥ
(

φ∗
)

as a score for the right key guess.
But for a wrong key guess, we get a zero score whenever

Î
(

φ×; φ∗
)
= Ĥ

(
φ×
)
− Ĥ

(
φ∗|φ×

)
6= Ĥ

(
φ×
)
⇔ Ĥ

(
φ∗|φ×

)
6= 0 .

Therefore, for this improved distinguisher, the success occurs if and only if for every
k× ∈ K \ {k∗} we have either Ĥ

(
φ×|φ∗

)
6= 0 (as for standard MIA) or Ĥ

(
φ∗|φ×

)
6=

0. Equivalently, the failure occurs if for one k× ∈ K \ {k∗} we have Ĥ
(

φ×|φ∗
)
=

0 and Ĥ
(

φ∗|φ×
)

= 0. This failure event holds if the distribution of the inputs
(x(i))i∈[N] among the different output values of φ are isomorphic for k× and k∗ in the
sense of the balls-and-containers game introduced in Section 4.4.2. We deduce that
the success of the improved MIA is equivalent to the event E2 considered in the anal-
ysis of the collision attack. In other words, the improved MIA succeeds if and only if
our collision attack succeeds, except that the improved MIA does not need the event
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E1 to occur. We then have similar success probabilities than in Proposition 4.3 where
|K| can be replaced by |K| − 1. However, this difference has a negligible impact on
the number of traces (which clearly appears while looking at Equation 4.10) and one
can consider that the two attacks have similar trace complexities in our idealized
model.

4.6 Comparison

In this section, we compare the three attack techniques analyzed in this chapter. First
of all, they all belong to the same family of computation analysis attacks that record
computed values during the execution of white-box implementation and then apply
side-channel attack techniques. In particular, these attacks are gray-box in the sense
that they can work with only limited knowledge of the implementation and of the
computation traces (e.g., one does not need to know the implementation details or
the location of the target variables in the traces).

Another apparent similarity is that these three techniques require a non-injective
property of the target variable. However, we stress that this requirement is intrinsic
to collision and mutual information attacks, as already noted in (Prouff and Rivain,
2009; Batina et al., 2011) for the latter, whereas it is not for DCA. Indeed the necessity
of targeting non-injection is implied by the context, namely the presence of random
encodings to protect the implementation, and DCA could work without such a re-
quirement in other contexts.

Table 4.4: Trace complexity of DCA in Section 4.3, collision attack
(CA) in Section 4.4 and MIA in Section 4.5 against internal encodings
in our theoretical analysis and in breaking NSC variant, where m is

the encoding bit-size (m = 8 in the NSC variant).

DCA CA MIA

Theoretical O
(
22m) O

(
2

m
2

)
O
(

2
m
2

)
NSC variant 1800 60 70

The trace complexities of the three approaches are summarized in Table 4.4. No-
tably, compared to DCA, our collision attack and MIA have low trace complexities.
Namely, they only require about 2

m
2 traces and are thus very effective at defeating

internal encodings. For instance, while using 16-bit encodings would imply a huge
code size,5 our collision attack or improved MIA would still break the implementa-
tion with a few hundred traces.

In terms of time complexity, DCA and MIA take Θ(t · |K| · N) operations while
the collision attack takes Θ

(
t · |K| · N2) operations. Assuming that we have |K| =

2n and that we take n = 2m as suggested in our analyses these time complexities

5With 16-bit encodings, a single encoded table taking two arguments (e.g., an encoded XOR) re-
quires 22×16 × 2 bytes which is more than 8 GB.
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become O
(
24m · t

)
, O
(
23m · t

)
, and O

(
22.5m · t

)
for DCA, CA and MIA respectively.

Despite its slightly better asymptotic time complexity, MIA was slower than our
collision attack in our practical attack experiments. This would probably not be the
case in a setting where more computation traces are required (typically with a higher
m).

Finally, we note that our collision attack and MIA are especially suited to attack
internal encodings since both attacks rely on the collision behavior of some target
variables which is not affected by the application of a random bijection. This ex-
plains their superiority over DCA in this context. However, in the presence of differ-
ent countermeasures (especially affecting the collision behavior) these attacks could
fail where a DCA could still succeed.
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5.1 Introduction

Linear encodings a.k.a. linear masking, are widely used in the protection against
side-channel attacks (Chari, Jutla, et al., 1999; Goubin and Patarin, 1999; Rivain and
Prouff, 2010). To linearly mask a secret variable, one splits it into several linear
shares that are then processed independently. As a consequence, to conquer a cryp-
tographic implementation protected by linear masking, a side-channel adversary
has to exploit joint leakage of all the independently manipulated shares, which may
imply an unaffordable computation overhead in practice whenever the number of
shares is large enough. Since the DCA attack relies on the same ideas as DPA, the
prospect of applying masking to secure a software implementation against DCA is
promising. As such, linear encoding is one of the many considered countermeasures
in industrial white-box solutions, as well as in open white-box challenges, e.g., the
winning challenge WhibOx 2017 context – Adoring Poitras.

In the chapter, we

• Formalize Linear Decoding Analysis (LDA). In Section 5.2, we first describe a
passive gray-box attack – linear decoding analysis (LDA), which is capable of ex-
tracting the key information from a set of encoding intermediate variables, as
long as the underlying plain value can be recovered through a linear decoding
of those encoding variables. We show in Section 5.3 that the number of re-
quired computation traces to perform a successful LDA attack is only slightly
larger than the size t of trace window under attack, assuming that all the tar-
get shares are in this window. The obtained computation complexity of LDA
is O

(
|K| · t2.8).

• Extend LDA to Higher-Degree. We then explain in Section 5.4 how LDA can
be extended to break implementations protected with higher-degree encod-
ings. The generalized higher-degree decoding analysis (HDDA) is achieved by
firstly converting the computation traces into higher-degree ones, then launch-
ing the LDA attack on the higher-degree traces. Therefore, the computation
complexity of HDDA is O

(
|K| · t2.8d) for a decoding function of degree d.

5.2 Linear Decoding Analysis

A linear decoding analysis (LDA) attacker against a white-box implementation can ex-
tract the key information contained in a set of encoded intermediate variables, pro-
vided that the underlying plain variable can be recovered through a linear decoding.
In this section, we formalize the LDA attack.

Without loss of generality, we assume that the white-box implementation pro-
cesses intermediate variables (that can be represented) in some finite field. Typically
the finite field is F2 for a Boolean circuit, but it could be F232 for a 32-bit architecture
program, or more generally it is Fq for any prime (power) q. For clarity, we abuse
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notation by denoting the finite field by F. Let us denote s = φk(x) ∈ F the target
sensitive variable where φ is a deterministic function, k ∈ K is a subkey for some
subkey space K, and x is a part of the input plaintext (or output ciphertext).

As a passive adversary (see Section 3.2), an LDA adversary controls a white-box
implementation and she can execute it for several plaintexts and dynamically record
the corresponding computation traces. These traces consist of ordered t-tuples

v = (v1, v2, · · · , vt)

of the values taken by the intermediate variables (e.g., values read/stored in mem-
ory, results of CPU instructions, etc.), where vi ∈ F for every i. These computation
traces might be related to a small part of the full execution, e.g., when targeting a
specific operation either localized by data dependency analysis or guessed using
an automated search. The adversary collects N such computation traces v(i) =

(v(i)1 , v(i)2 , · · · , v(i)t ) that correspond to N (chosen) plaintexts x(i) for 1 ≤ i ≤ N.
Then, for every key guess k ∈ K, she constructs the following system of linear equa-
tions: 

1 v(1)1 v(1)2 · · · v(1)t

1 v(2)1 v(2)2 · · · v(2)t
...

...
...

. . .
...

1 v(N)
1 v(N)

2 · · · v(N)
t

 ·


a0

a1

a2
...
at


=


φk(x(1))
φk(x(2))

...
φk(x(N))

 , (5.1)

where (a0, a1, a2, · · · , at) are the unknown coefficients in F. If the system is unsolv-
able for every key guess k, then the attack fails. If the system is solvable for a single
key guess k, there is a strong presumption that it is the right key guess i.e., k = k∗,
the adversary then returns k as the (candidate) correct key.

For N sufficiently greater than t, if the above system is solvable, it means that the
target intermediate variables satisfy

a0 +
t

∑
i=1

ai · vi = φk(x) = s . (5.2)

Namely, the white-box implementation encodes the sensitive variable s in the vi’s
through the above (decoding) relation. In particular the variables {vi ; ai 6= 0} form
a linear sharing of s. We stress that such encoding encompasses any kind of Boolean
masking or linear secret sharing of any order, see for instance (Ishai et al., 2003; Rivain
and Prouff, 2010; Beimel, 2011). Moreover, the encoding function is not necessarily
linear: one would generate the masks (or the shares) pseudorandomly from the full
input plaintext p, implying that the encoding function

enc : (p, k) 7→ (v1, v2, · · · , vt)
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could be of high degree in p, whereas the decoding function

dec : (v1, v2, · · · , vt) 7→ s = φk(x)

is linear.

Complexity. LDA has complexity O
(
|K| · t2.8). For each key guess k ∈ K, the

attack can be split into two phases: first solve a linear system of t + 1 equations in
t + 1 variables (we assume that the corresponding square matrix is full rank without
loss of generality), and then check whether the N − (t + 1) equations match the
recovered solution. The complexity of the first phase isO

(
t2.8) by using the Strassen

algorithm (Strassen, 1969).1 The second phase is then of complexity O(t · (N − t))
which is negligible compared to the first phase since, as shown in Section 5.3, a
high success probability can be obtained by taking a (small) constant number of
additional traces N − t. We thus obtain a total complexity of O

(
|K| · t2.8) for the

recovery of one subkey k∗ ∈ K.

Window Search. When the adversary is not able to accurately localize the target
encoding among the intermediate variables then she might apply LDA to the full
computation trace (i.e., the computation trace of the full execution). If we denote by
τ the size of this full trace, then the obtained complexity is of O

(
|K| · τ2.8), which

might be too large. For instance, this would have made about 259 operations for a
trace of size τ ≈ 280, 000 as obtained for the Adoring Poitras minimized circuit
before data dependency analysis (see Section 8.4.3).

In practice, one can significantly improve this complexity by searching the po-
tential encoding variables in a relatively small window of the computation trace. In
a practical white-box implementation, the computation for some specific (encoded)
intermediate result, has some locality property which implies that the related inter-
mediate variables are located in a t-size subtrace of the full τ-size computation trace.
Formally, in a full computation trace (v1, v2, · · · , vτ), t consecutive points

(vi+1, vi+2, · · · , vi+t),

for some index i, contain all variables to decode the target sensitive variable s. With-
out knowing the locality parameter t and the right position i in the full trace, the
adversary can try LDA for several t and i. Specifically, we suggest applying LDA on
the subtrace obtained for every i ∈ {1, 2, . . . , τ− t} for an increasing t = 21, 22, 23, . . .
The total complexity is then of O

(
|K| · τ · t2.8), where t is the right locality parame-

ter, which is better than the full-trace attack complexity whenever t < τ0.64.

1This could theoretically be reduced to O
(
t2.376) using the Coppersmith–Winograd algorithm for

very large t, see for instance (Golub and Van Loan, 1996), but in practice, one shall prefer the Strassen
algorithm.
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5.3 Analysis of LDA

The soundness of LDA results from the fact that if a decoding relation such as Equa-
tion 5.2 does exist for the target intermediate variable s, and if the shares are well
selected in the computation trace v = (v1, v2, · · · , vt), then LDA will solve the sys-
tem for the right key guess k∗. For a wrong key guess, on the other hand, no solution
should be found unless (1) φ is a linear function w.r.t. the field F, or (2) an encod-
ing φk(x) is computed by the implementation for a wrong key guess k× 6= k∗ (to
fool the attacker). These two limitations can simply be mitigated: (1) can be avoided
by targeting an appropriate intermediate result (such as an s-box output), and it is
unlikely that (2) occurs for all the possible subkeys k ∈ Kwhich would arguably rep-
resent a huge computational overhead for the implementation (and would become
intractable as we go deeper in the computation).

We analyze hereafter the success probability of LDA under the following as-
sumptions:

• a linear decoding relation [such as Equation 5.2] does exist between v and s,

• the plaintext (part) x is uniformly distributed,

• v is uniformly distributed among the t-tuples satisfying the decoding relation
a0 + ∑i ai · vi = φk∗(x),

The two first assumptions are necessary conditions of the LDA attack context which
are arguably satisfied in some real white-box design/attack use cases (as typically
considered in this chapter). The last assumption is ideal and is not necessary for
LDA to work but only for the purpose of our formal analysis. It could somehow
be relaxed by considering potential statistical dependencies between the variables
which would complicate the analysis without strongly impacting the result.

Proposition 5.1. Under the above assumptions, the probability that the LDA linear system
Equation 5.1 is solvable for an incorrect key guess k× 6= k∗ is lower than |q|N−t−1, where

q def
= max

{
Pr (φk∗(X) = α · φk×(X)) ; α ∈ F∗, (k∗, k×) ∈ K2} (5.3)

for a uniform distribution of X.

Proof. Without loss of generality, we assume that there exists a subsystem S con-
taining t + 1 equations from Equation 5.1 such that the corresponding matrix is full-
rank (implying that S has one and only one solution whatever the target vector).2

The solution of S is denoted a∗ = (a∗0 , a∗1 , · · · , a∗t ) for the correct key guess k∗ and
a× = (a×0 , a×1 , · · · , a×t ) for the wrong key guess k×. In the following, we will con-
sider that the t + 1 equations in S are the t + 1 first equations of the system. Then,
two possible cases occur:

2According to our three assumptions, the probability that there does not exist any full rank subsys-
tem containing t + 1 equations is negligible.
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1. There exists a constant α ∈ F such that a× = α · a∗. This implies that

φk×(x(i)) = α · φk∗(x(i)) (5.4)

for every 1 ≤ i ≤ t + 1. Moreover, the full system has a solution for the guess
k× if and only if Equation 5.4 is further satisfied for every i ∈ {t + 2, . . . , N}.
Since the x(i) are uniformly distributed, this happens with probability at most
qN−(t+1).

2. There does not exist a constant α ∈ F such that a× = α · a∗. In that case, from
our ideal assumption, we have

a×0 +
N

∑
j=1

a×j · v
(i)
j ∼ U (F) ,

(where U (F) denotes the uniform distribution over F) for every i ∈ {t +
2, . . . , N}. Then the full system has a solution for the guess k× if and only
if

a×0 +
N

∑
j=1

a×j · v
(i)
j = φk×(x(i))

is satisfied for every i ∈ {t + 2, . . . , N}, which occurs with probability

(
1
|F|

)N−(t+1)

< qN−(t+1) .

By Proposition 5.1, the probability that the system Equation 5.1 is solvable for
the incorrect key guess k× is exponentially small in N. In practice, an appropriately
chosen φ makes q close to 1

|F| and the probability quickly becomes negligible as N
grows over t + 1. Moreover, the number of extra traces required to get a given (neg-
ligible) probability of false positive depends on the target function φ, but is constant
with respect to t.

As an illustration, if the φk is the output a first round s-box of AES, then

• for the Boolean case (F = F2), i.e., we target φj for some 1 ≤ j ≤ 8: according
to Equation 5.3, we obtain q = 9

16 and taking, e.g., 40 extra equations makes
the false-positive probability lower than 2−32;

• for the full field case (F = F28), i.e., we target φ: according to Equation 5.3,
we obtain q = 7

256 and taking, e.g., 7 extra equations makes the false-positive
probability lower than 2−32.
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5.4 Extension to Higher Degrees

The linear decoding assumption necessary to LDA might not be satisfied in prac-
tice for some white-box implementations. Depending on the algebraic structure of
the encoding scheme used to protect intermediate variables, the decoding function
might have an algebraic degree greater than 1. We explain in this section how LDA
can be generalized to break implementations with higher degree decoding functions.
This generalization shall be called higher-degree decoding analysis (HDDA) in the fol-
lowing.

For each collected computation trace v, the HDDA adversary computes a corre-
sponding higher-degree trace defined as:

w = (1) ‖ v ‖ v2 ‖ · · · ‖ vd ,

where ‖ is the concatenation operator and where vj is the vector of degree-j mono-
mials:

vj = (vi1 · vi2 · . . . · vij)1≤i1≤i2≤···≤ij≤t .

The size of the vector vj is the number of degree-j monomials in t variables, which
equals (j+t−1

j ). The size of the higher-degree trace is the number of monomials of
degree lower than or equal to d, which is

t′ =
d

∑
j=0

(
j + t− 1

j

)
=

(
t + d

d

)
≤ (t + d)d

d!
� td .

From the computation traces obtained for N executions (with random input
plaintext), the adversary computes N such higher-degree traces

w(i) = (w(i)
1 , w(i)

2 , · · · , w(i)
t′ ) .

Then, for every key guess k ∈ K, she constructs the linear system:


1 w(1)

1 w(1)
2 · · · w(1)

t′

1 w(2)
1 w(2)

2 · · · w(2)
t′

...
...

...
. . .

...

1 w(N)
1 w(N)

2 · · · w(N)
t′

 ·


a0

a1

a2
...

at′


=


φk(x(1))
φk(x(2))

...
φk(x(N))

 ,

where (a0, a1, a2, · · · , at′) are the unknown coefficients in F.
If the above system is solvable for N sufficiently greater than t′ then (with over-

whelming probability) there exists a degree-d decoding function dec (with the ai’s as
coefficients) such that

dec(v1, v2, . . . , vt) = φk(x) .

In particular, if the white-box encoding of the sensitive variable s = φk∗(x) can
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be decoded with a degree-d function and if the shares of the encoding are well in-
cluded in the computation trace, then the above system will be solvable for k∗ and
the solution will give the right decoding function.

On the other hand, and as for the LDA case (i.e., the case d = 1) analyzed above,
the probability that the system is solvable for a wrong key guess k× 6= k∗ quickly
becomes negligible as N increases (over t′), provided that there exists no degree-d
relation between φk× and φk∗ (in particular φ is of degree greater than d).

Complexity

Following the complexity analysis of LDA in Section 5.2, HDDA has complexity
O(|K| · t′2.8). For a small constant d, this makes a complexity of O(|K| · t2.8d). The
complexity of HDDA with window search in a computation trace of size τ with an
(unknown) locality parameter of t is then of O(|K| · τ · t2.8d).
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6.1 Introduction

The differential computation analysis (DCA) adversary is highly reminiscent of the
standard side-channel adversary. A natural approach when attempting to mitigate
the threat of DCA attacks is to apply known countermeasures, i.e., linear masking and
operation shuffling from the side-channel literature. However, it is not clear how well
these countermeasures carry over to the white-box context and what level of secu-
rity can be achieved by such countermeasures against a DCA adversary. To address
these issues, we achieve the following in this chapter:

1. Higher-order DCA: We develop higher-order DCA in Section 6.2 to analyze the
security of the proposed protection. This attack combines several coordinates
of a computation trace into a higher-order trace to defeat the masking coun-
termeasure. We show that higher-order DCA is able to break a masked imple-
mentation of any order using a few traces. However, by introducing noise in
the form of shuffling, the security of the implementation can be dramatically
increased. As a demonstration, a typical AES implementation with 2nd order
masking (and shuffling degree of 16) requires 221 traces to break with 3rd order
DCA.

2. Multivariate higher-order DCA: We extend the above attack by introducing a
multivariate version in Section 6.3, which reduces the computational complex-
ity by decreasing the number of required traces for a successful attack. Using
this multivariate variant, the number of traces required to successfully attack
the AES implementation mentioned above can be reduced to 210.

3. Formal analysis and experimental verification: We derive analytic expres-
sions for the success probability and attack complexities of both the higher-
order DCA and its multivariate variant. Using these expressions, we are able
to give estimates for the security level of a masked and shuffled implementa-
tion in the DCA setting. As an example, an AES implementation with 7th-order
masking would have a security level of about 85 bits in this setting. The accu-
racy of our expressions for the success probability of the multivariate higher-
order DCA is verified in Equation 6.3.2 through extensive experiments for a
wide range of implementation and attack parameters. 2 000 attacks of up to
order 4 were simulated, using as many as 30 000 traces per attack.

6.2 Higher-Order DCA

6.2.1 Higher-Order DCA Distinguisher

While masking has been proven to be an effective defense against standard DPA, and
we have argued for its effectiveness against standard first-order DCA, there are ways
to attack such masked implementations. For hardware implementations, it is well
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known that an (n− 1)th-order masked implementation can be defeated by nth-order
DPA, if no other protection is employed. We will therefore develop a higher-order
version of DCA.

An nth-order DCA consists of a preprocessing step followed by a first-order
DCA. The adversary first preprocesses each computation trace v to obtain an nth-
order computation trace w by applying a so-called (nth-order) combination function ψ.
Specifically, the nth-order computation trace w consists of q = ( t

n) points (w1, . . . , wq)

given by
wj = ψ(vj1 , vj2 , . . . , vjn), {j1, . . . , jn} = ϕ(j),

where ϕ(j) is the jth subset of {1, . . . , t} of size n (for some ordering). After comput-
ing the set of nth-order traces w(1), . . . , w(N), the adversary proceeds as for first-order
DCA, using the wi’s as input to the distinguisher D. Specifically, the adversary com-
putes the score vector

(γk)k∈K = D
(
(w(i))i ; (x(i))i

)
in order to determine a candidate for k∗.

For side-channel analysis of hardware implementations, it has been shown that
a good combination function for higher-order DPA is the centered product

ψ : (v1, . . . , vn) 7→ ∏
j
(vj − µj) ,

where µj is the average of the leakage point vj over several encryptions. Neverthe-
less, since the measurements in this setting are inherently noisy, a larger masking
degree will require a larger number of traces to obtain a good success probability.
Note that this is not the case in the DCA context, if no noise is introduced in the
implementation, e.g., by using shuffling as described in Section 3.3.3. In this case,
the exact value of each variable that appears in an execution of the implementation
appears at the same position of every computation trace v(i). Then there exists a
fixed j∗, such that for ϕ(j∗) = (j∗1 , . . . , j∗n), the elements vj∗1 , . . . , vj∗n of the trace are the
shares of the target secret variable s. In that case, an optimal choice for the combina-
tion function is the XOR sum of the trace values, that is

ψ(vj1 , vj2 , . . . , vjn) = vj1 ⊕ vj2 ⊕ · · · ⊕ vjn .

For this combination function, we have that ψ(vj∗1 , vj∗2 , . . . , vj∗n) = s for all the nth-
order traces. By counting the number of times this equality holds, we can easily
determine the correct key. That is, we set

γk = max
j

(
Ck(vϕ(j), (xi)i)

)
, with Ck(vϕ(j), (x(i))i) =

∣∣∣∣{i ;
⊕

l∈ϕ(j)

v(i)l = φk(xi)

}∣∣∣∣.
For the correct key k∗, we deterministically have that γk∗ = N. Thus, if no noise is
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present, the higher-order DCA is successful when γk× < N for all k× 6= k∗. The prob-
ability of this happening is quite close to 1, even for small N. Thus, the introduction
of some noise in the traces is required to secure a masked white-box implementation
against DCA.

Note that a linear decoding analysis (LDA) attack, described in Chapter 5 can break
a noise-free masked implementation with complexity approximately cubic in the
size of the computation trace. LDA also demonstrates that a linear masking is a
weak countermeasure. However, LDA would completely fail in presence of a bit of
noise (e.g. introduced by shuffling), which is not the case of the higher-order DCA
described above as it will be analysed hereafter.

6.2.2 Higher-Order DCA against Masking and Shuffling

We now consider how well the masked and shuffled implementation resists the
higher-order DCA attack described above. Due to the shuffling, the adversary is
no longer guaranteed that her prediction for the correct key guess will correspond
to a single time point for all traces. Thus, she must compensate by increasing the
number of traces. The higher the degree of shuffling, the more traces need to be
collected.

Attack Analysis

In the following, we assume that the adversary knows exactly where in the compu-
tation trace to attack. That is, for a masking order n − 1 and a shuffling degree λ,
she knows the range of the t = λ · n time points that contain the shares of the target
secret variable. In other words, the length of each computation trace v is t. This, in-
tuitively, represents the optimal situation for the adversary.1 We seek an expression
for the success probability of the attack, i.e., the probability that the correct key has
a higher score than all other key candidates.

The adversary proceeds as above and computes the nth-order computation trace.
However, there will no longer be a single value j such that Ck∗(vϕ(j), (xi)i) = N
deterministically for the correct key k∗. Thus, we need to know the distribution of
γk, both for a wrong and a right guess of the key.

Theorem 6.1. Consider a masked white-box implementation of order n− 1 with shuffling
degree λ. Let p = ( t

n)
−1

where t = λ · n, and let F(x; m, q) be the CDF (cumulative
distribution function) of the binomial distribution with parameters m and q. Let |K| be the
number of possible key values and define

F×max(x) = F
(

x; N, (1− p) 1
|K|

)( t
n)

,

F∗max(x) = F
(

x; N, p + (1− p) 1
|K|

)( t
n)

.

1In practice, the adversary could exhaustively search the correct location of the (λ · n)-length sub-
trace in the full computation trace of length tfull, which increases the complexity at most tfull times.
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Then the probability of recovering a key using nth-order DCA with N traces is

psucc =

(
N

∑
i=0

(
F∗max(i)− F∗max(i− 1)

)
· F×max(i− 1)

)|K|−1

.

Proof. Consider a specific value wj of the higher-order trace w. Denote by E the
event that wj corresponds to the combination of the correct shares. The probability
of E occurring, i.e., of choosing the correct n shares out of the t elements of the
original computation trace v, is p = ( t

n)
−1

.
Fix some plaintext and the corresponding trace. By the law of total probability,

the probability that a value wj of the nth-order trace is equal to a prediction s = φk(x)
for some key guess k is

Pr(wj = s) = Pr(wj = s|E) · Pr(E) + Pr(wj = s|¬E) · Pr(¬E).

For a wrong key guess k× 6= k∗, Pr(wj = s×|E) = 0 where s× = φk×(x), while for
a right key guess Pr(wj = s∗|E) = 1 where s∗ = φk∗(x). In both cases, we have
Pr(wj = s|¬E) = 1/|K|. In total,

p× = Pr(wj = s×) =
1− p
|K| ,

p∗ = Pr(wj = s∗) = p +
1− p
|K| .

Thus, for N traces,

Ck×
(

vϕ(j), (x(i))i

)
∼ Bin(N, p×)

for a wrong key guess, and

Ck∗
(

vϕ(j), (x(i))i

)
∼ Bin(N, p∗)

for the right key guess. Note that |w| = ( t
n). Let X1, . . . , X|w| be distributed as

Bin(N, p×). Then γk× ∼ max Xi, and we denote the CDF by F×max(x). If the Xi were
independent, we would have

F×max(x) = F(x; N, p×)(
t
n).

While the
(
Xi
)

i are pairwise independent, they are not mutually independent. How-
ever, we find that in practice, the dependence is so weak that γk× approximately has
CDF F×max, even for small values of |w| and N. We define F∗max(x) similarly.

The attack is successful if γk∗ > γk× for all k×. As there are |K| − 1 wrong keys,
and all γk× are independent and identically distributed, we have

psucc = Pr(γk∗ > γk×)
|K|−1 ,
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where

Pr(γk∗ > γk×) =
N

∑
i=0

(
F∗max(i)− F∗max(i− 1)

)
· F×max(i− 1) ,

which concludes the proof.

Attack Complexity

We can use Theorem 6.1 to calculate the required N to obtain a desired probability of
success. The number of traces required to obtain 90% success probability for a range
of parameters is shown in Table 6.1. Here, |K| = 256, and the parameters would be
typical choices for e.g., a protected AES implementation.

Table 6.1: The number of traces N and the time needed to success-
fully attack an implementation with (n− 1)-order masking and shuf-
fling of degree λ with nth-order DCA. Here, |K| = 256, and we fix the
success probability at 90%. The parameters chosen would be typical

for a protected AES implementation.

n λ log2 N log2 time

2 8 8.6 23.5
2 16 11.0 28.0
3 8 15.7 34.7
3 16 21.6 43.7
4 8 23.6 46.7
4 16 31.7 59.0

We consider the time complexity of recovering the secret key k∗ using the higher-
order DCA attack. For a fixed probability of success psucc, let Nn be the number of
computation traces required to obtain this probability for an nth-order implementa-
tion. We again assume that t = λ · n. The cost of computing the higher-order trace
is Nn · ( t

n). Then, for each key guess k and each time point in the higher-order trace,
the adversary computes Ck. The complexity of this is |K| · Nn · ( t

n). Thus, the time

complexity is O
(
|K| · Nn · ( t

n)
)

. Table 6.1 shows the time complexity of the attack
for a range of parameters.

6.3 Multivariate Higher-Order DCA

In the higher-order DCA, presented in Section 6.2, the adversary tries to correlate
each sample of the higher-order trace with the predicted variable independently, fi-
nally taking the maximum over the obtained correlation scores. Such an approach
is not optimal, as successive samples may carry joint information on the secret. As
in the side-channel context, one can take advantage of this joint information by per-
forming a multivariate attack, namely an attack in which the distinguisher exploits the
multivariate distribution of different samples in the higher-order trace. Emblematic
multivariate attacks in the classical side-channel context are the so-called template



92 Chapter 6. Higher-Order DCA against Masking and Shuffling

attacks (Chari, Rao, et al., 2003). In the following section, we describe a similar attack
in the setting of the DCA adversary.

6.3.1 Multivariate Higher-Order DCA against Masking and Shuffling

Our proposed multivariate higher-order DCA attack is based on the principle of
maximum likelihood. Similar techniques have been adopted in side-channel tem-
plate attacks. Let K, (X(i))i, and (V (i))i be random variables representing the subkey
k, the public inputs (x(i))i, and the computation traces (v(i))i. The likelihood distin-
guisher is then defined as

L :
(
(v(i))i, (x(i))i

)
7→ (ℓk)k∈K,

ℓk ∝ Pr
(
K = k | (V (i))i = (v(i))i ∧ (X(i))i = (x(i))i

)
,

(6.1)

where ∝ means equal up to some factor constant w.r.t. k. To evaluate this likelihood
function, we need a model for the distribution of the traces (also called a template
in the side-channel context). It is well known that if Equation 6.1 is evaluated from
the true distributions of (X(i))i and (V (i))i, then the above distinguisher is optimal.
This is sound, as in this case, the score is the exact probability that the target subkey
equals a key guess k, for all k ∈ K.

In the following, we will assume that V (i) is composed of t uniformly distributed
random variables V(i)

1 , V(i)
2 , . . . , V(i)

t , with the constraint that for a uniformly chosen
j, we have

⊕
l∈ϕ(j) V(i)

l = φK(X(i)). This assumption matches the setting of a masked
and shuffled implementation. The public inputs X(i) and the subkey K are also as-
sumed to be uniformly distributed and mutually independent. Under this model,
we have the following result:

Proposition 6.1. The likelihood distinguisher, Equation 6.1, satisfies:

ℓk ∝
N

∏
i=1

Ck(v(i), x(i)),

where Ck(v, x) is the number of n-tuples in a trace v with bitwise sum equals to φk(x), that
is

Ck(v, x) =
∣∣{(vj1 , . . . , vjd) ; vj1 ⊕ · · · ⊕ vjn = φk(x)

}∣∣ .

Proof. By applying the Bayes’ rule, one gets (we skip random variables for the sake
of clarity):

Pr
(
k | (v(i))i ∧ (x(i))i

)
=

Pr
(
(v(i))i | k ∧ (x(i))i

)
· Pr

(
k ∧ (x(i))i

)
Pr
(
(v(i))i ∧ (x(i))i

)
By mutual independence of the X(i)s and K, we have

Pr
(
k ∧ (x(i))i

)
=

1
|K|

(
1
|X |

)N
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for every k ∈ K. Moreover, Pr
(
(v(i))i ∧ (x(i))i

)
is constant with respect to k. We

hence get
Pr
(
k | (v(i))i ∧ (x(i))i

)
∝ Pr

(
(v(i))i | k ∧ (x(i))i

)
.

By mutual independence of the V (i)s and the X(i)s we further deduce

Pr
(
(v(i))i | k ∧ (x(i))i

)
=

N

∏
i=1

Pr(v(i) | k ∧ x(i)) .

For the sake of simplicity, we skip the index i in the following. By the law of total
probability, we have

Pr(v | k ∧ x) = ∑
ϕ(j)

Pr(Sϕ(j)) · Pr(v | k ∧ x ∧ Sϕ(j)) ,

where Sϕ(j) denotes the event that the set ϕ(j) is selected for the sharing of φK(X).
By definition, we have

Pr(Sϕ(j)) =
1
( t

n)

and

Pr(v | k ∧ x ∧ Sϕ(j)) =


( 1
|V|
)t−1 if

⊕
l∈ϕ(j) vl = φk(x),

0 otherwise.
(6.2)

which finally gives
Pr(v | k ∧ x) ∝ Ck(v, x) . (6.3)

For practical reasons, it is more convenient to evaluate the log-likelihood, which is
log ℓk = ∑N

i=1 log Ck(v(i), x(i)) . Note that this does not affect the ranking of the key
guesses (as the logarithm is a monotonically increasing function) and therefore has
no impact on the success probability of the attack.

6.3.2 Analysis of the Likelihood Distinguisher

In this section, we analyze the success probability of the likelihood distinguisher.
For the sake of simplicity, we only consider two key guesses, namely the right key
guess k∗ and a wrong key guess k×. We then consider their likelihood scores ℓk∗ and
ℓk× random variables, since

ℓk =
N

∏
i=1

Ck(V (i), X(i)) ,

for k ∈ {k∗, k×}, where (V (i))i and (X(i))i are the random variables defined above
for the computation traces and the corresponding public inputs. We then consider
the probability psucc = Pr

(
ℓk∗ > ℓk×

)
in Theorem 6.2.
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Theorem 6.2. For a multivariate nth-order DCA attack using the likelihood distinguisher
on N traces of length t, the probability that a correct key guess is ranked higher than an
incorrect key guess is approximately given by

psucc ≈ pU + (1− pU )

(
1
2
+

1
2

erf

(√
N|V|

2
√

q

))

where q = ( t
n) and pU = 1−

(
1−

(
1− |V|−1)q

)N
.

The total success probability of the attack pfull-succ, i.e., the probability that the
correct key guess has the largest likelihood, is then heuristically pfull-succ ≈ p|K|−1

succ .
Moreover, it can be checked that pU ≈ N ·

(
1− |V|−1)q becomes negligible as q

grows. Theorem 6.2 then implies

psucc = Θ

(
erf

(√
N|V|

2
√

q

))
,

from which we deduce that the data complexity of the attack is N = Θ(q). Namely,
the number of required traces N to achieve certain psucc is linear in the number of
combinations q = ( t

n). We also have

N = Θ

(
( t

n)

|V|

)

to show the impact of the definition set V .
In order to prove Theorem 6.2, we introduce the concept of the zero-counter event.

Denoted by Uk, this is the event that Ck(v(i), x(i)) = 0 for at least one i ∈ [1, N] for a
key guess k. Note that this event can never happen for k = k∗, since for all i, there
exists a j such that

⊕
l∈ϕ(j) v(i)

l = φk∗(x(i)). Thus, Pr(ℓk∗ > ℓk× | Uk×) = 1, since
in this case the likelihood ℓk× equals zero (or equivalently, the log-likelihood equals
−∞). This is intuitively sound, as the right key guess could not give rise to a zero
counter for any of the N computation traces. Then, by the law of total probability,
we can write

psucc = Pr(Uk×) + Pr(¬ Uk×) · Pr(ℓk∗ > ℓk× | ¬ Uk×). (6.4)

We are therefore interested in the probabilities Pr(Uk×) and Pr(ℓk∗ > ℓk× | ¬ Uk×),
which are given in Lemma 6.1 and Lemma 6.2 respectively. Theorem 6.2 then follows
directly from Equation 6.4 and these two results.
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Probability of the Zero-Counter Event

Lemma 6.1. Given N traces of length t, the probability of the zero-counter event for a wrong
key guess k× in an nth-order attack is approximately given by

Pr(Uk×) ≈ 1−
(

1−
(

1− |V|−1
)q)N

,

where q = ( t
n).

Proof. We first define Zk as the zero-counter event for key k for a single computation
trace V . Formally,

Zk = “ ∀j ⊆
{

1, . . . ,
(

t
n

)}
:
⊕

i∈ϕ(j)

Vi 6= φk(X) ”.

The zero-counter event Zk occurs if and only if none of the q = ( t
n) combinations⊕

i∈ϕ(j) Vi match the predicted value φk(X). As discussed, Zk∗ never occurs for the
correct key guess k∗. For the incorrect key guess k×, intuitively, the zero-counter
probability Pr(Zk×) should quickly become negligible as the number of combina-
tions q grows. While all q combinations are not strictly independent, we can approx-
imate the probability of Zk× by

Pr(Zk×) ≈
(

1− 1
|V|

)q
. (6.5)

We verified this approximation by estimating the zero-counter probability over some
sampled computation traces. As illustrated in Table 6.2, the obtained estimations
match the approximation pretty well.

Table 6.2: Approximation and estimation of the zero-counter proba-
bility.

(t, n) (16,2) (16,3) (16,4) (24,2) (24,3) (32,2) (32,3)

Approximation Equation 6.5 0.625 0.112 8·10−4 0.340 4·10−4 0.144 4·10−9

Estimation (prec. ∼ 10−3) 0.628 0.135 < 10−3 0.342 < 10−3 0.145 < 10−3

Then, by definition, the zero-counter event for N traces is the union

Uk = Z
(1)
k ∨ Z

(2)
k ∨ · · · ∨ Z

(N)
k ,

where Z (i)
k denotes the zero-counter event for k on trace V (i). Taking the negation

we obtain
¬ Uk× = (¬Z (1)

k ) ∧ (¬Z (2)
k ) ∧ · · · ∧ (¬Z (N)

k ) ,

and since the zero events Z (i)
k× are mutually independent, we get

Pr(Uk×) = 1−
N

∏
i=1

Pr(¬Z (i)
k× ) = 1−

(
1− Pr(Zk×)

)N .
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This finishes the proof.

Success Probability with No Zero Counters

Lemma 6.2. Given N traces of length t, let q = ( t
n), and assume that the zero-counter event

does not occur. The probability that a correct key guess has a higher likelihood score than a
wrong key guess in an nth-order attack is approximately

Pr(ℓk∗ > ℓk× | ¬ Uk×) ≈
1
2
+

1
2

erf

(√
N|V|

2
√

q

)
.

If the zero counter event does not occur, we can think of each trace V (i) as a
random variable uniformly distributed over V t. Since the public input X(i) is also
random, the counters Ck(V , X) follow some probability distribution. In order to
prove Lemma 6.2, we first prove the following result regarding these distributions.

Lemma 6.3. Let k∗ and k× be a right and wrong key guess. Let q = ( t
n) and κ = (q− 1) 1

|V| .
Then for a trace of length t and an nth-order attack,

Ck∗(V , X) ∼ N (κ + 1, κ)

and
Ck×(V , X) ∼ N (κ, κ) ,

where N (µ, σ2) denotes the normal distribution with mean µ and variance σ2.

Proof. Let δ : V2 → {0, 1} be the function defined as

δ(v1, v2) =

1 if v1 = v2,

0 otherwise.

The counter Ck(V , X) can be rewritten as a sum

Ck(V , X) =
q

∑
j=1

δ(Wj, φk(X)) ,

where the variables (Wj)j are defined as the q = ( t
n) combinations

⊕
i∈ϕ(j) Vi. We

recall that for one index j we have Wj = φk∗(X), whereas for the other indices the Wj

are randomly distributed independently of X. The counter expectation then satisfies

E
(
Ck(V , X)

)
=

q

∑
j=1

E
(
δ(Wj, φk(X))

)
=

(q− 1) 1
|V| if k 6= k∗,

(q− 1) 1
|V| + 1 if k = k∗.
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On the other hand, the counter variance can be expressed as:

Var
(
Ck(V , X)

)
=

q

∑
j=1

Var
(
δ(Wj, φk(X))

)
+ 2 ∑

1≤j1<j2≤q
Cov

(
δ(Wj1 , φk(X)), δ(Wj2 , φk(X))

)
.

It can be checked that the covariances will be equal to 0 most of the time. Indeed,
the covariances are non-zero only when Wj1 ⊕Wj2 = φk∗(X), which never happens
when n is odd and which happens for a few pairs (j1, j2) when n is even. There-
fore these covariance terms will only have a small impact on the overall variance.
Moreover, it can be checked that this impact is negative, i.e., it reduces the variance.2

Therefore we will ignore the sum of covariances, which yields a correct result when
n is odd and a slight overestimation when n is even. We then have

Var
(
δ(Wj, φk(X))

)
=

 1
|V|
(
1− 1

|V|
)

if j 6= j∗,

0 if j = j∗,

where j∗ denotes the index of the right combination matching φk∗(X). Combining
the two above equations gives:

Var
(
Ck(V , X)

)
= (q− 1)

1
|V|

(
1− 1
|V|

)
≈ (q− 1)

1
|V| .

Since the counter is defined as a sum of somewhat independent random variables,
we can soundly approximate its distribution by a Gaussian, and setting

κ = (q− 1)
1
|V|

concludes the proof.

In the above proof, we use that the δ(Wj, φk(X)) are somewhat independent. By
somewhat independent we mean that these variables are pairwise independent (for
most or all of them, as discussed). Note that variants of the central limit theorem
exist that take some form of dependence between the summed variables into ac-
count. We have experimentally verified that the Gaussian approximation is sound
for various parameters (t, n).

2Most of the time we have φk∗ (X) 6= 0 so that the pairs (j1, j2) with Wj1 ⊕Wj2 = φk∗ (X) are such
that Wj1 6= Wj2 with high probability. In that case δ(Wj1 , φk(X)) = 1 implies δ(Wj2 , φk(X)) = 0 and
conversely which yields a negative covariance.
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Proof (of Lemma 6.2). Using Lemma 6.3, we can now prove Lemma 6.2. As men-
tioned, it is more convenient to focus on the log-likelihood in practice, i.e., we con-
sider

Pr(ℓk∗ > ℓk× | ¬ Uk×) = Pr
(

log ℓk∗ − log ℓk× > 0 | ¬ Uk×
)
,

log ℓk∗ − log ℓk× =
N

∑
i=1

log Ck∗(V (i), X(i))− log Ck×(V (i), X(i))︸ ︷︷ ︸
Y(i)

.

As introduced above, we denote by Y(i) the difference between the log-counters for
the trace V (i). Since the Y(i) are mutually independent and identically distributed,
the central limit theorem implies that, for N sufficiently large,

1
N
(log ℓk∗ − log ℓk×) ∼ N

(
µY, σ2

Y N−1) with

µY = E(Y),

σ2
Y = Var(Y),

for Y = log Ck∗(V , X)− log Ck×(V , X). Thus

Pr(ℓk∗ > ℓk× | ¬ Uk×) = 1−ΦµY ,σ2
Y/N(0) =

1
2
+

1
2

erf
(√N µY√

2 σY

)
, (6.6)

where Φµ,σ is the CDF of N (µ, σ2). By the heuristic assumption that Ck∗(V , X) and
Ck×(V , X) are mutually independent, and using the Taylor expansion of the loga-
rithm at E(C), as well as Lemma 6.3, we have

µY ≈ log(κ + 1)− κ

2(κ + 1)2 − log κ +
κ

2κ2 ≈
1
κ

, and σ2
Y ≈ 2

κ

κ2 =
2
κ

,

where the approximation of the mean is sound if κ is large enough (e.g., κ > 10).
Inserting these approximations into Equation 6.6, remembering that

κ = (q− 1)
1
|V| ≈

q
|V| ,

finishes the proof.

6.4 Experimental Verification and Security Evaluation

The proof of Theorem 6.2 relies on a number of approximations. We therefore ver-
ified the accuracy of the estimate by simulating the multivariate higher-order DCA
attack for various choices of the masking order n and the size of attacking window t.
We chose to simulate traces of a masked and shuffled AES implementation, that is,
the target secret variable was taken to be φk(x) = S(x⊕ k) where S denotes the AES
s-box. The computation traces were generated according to the model described at
the beginning of Section 6.3.1, namely by sampling random values vj over V = F28
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with the constraint that one randomly chosen n-tuple of each trace has XOR-sum
φk∗(x).
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tyFigure 6.1: The measured probability of ranking a correct key higher
than an incorrect key in the multivariate higher-order DCA attack,
compared to Theorem 6.2. The measurement is based on 2 000 simu-
lations of the attack. Here, n is the attack order and t is the length of

the obtained traces.

We generated traces for n ∈ {2, 3, 4} and t ∈ {8, 16, 24, 32, 40, 48, 56, 64, 72}, and
calculated the log-likelihood scores for the correct key and a randomly chosen wrong
key. This was repeated 2 000 times, and the probability Pr(ℓk∗ > ℓk×) was calculated
for varying values of N. The results are shown in Figure 6.1. The figure shows
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that the estimate of Theorem 6.2 is quite accurate in most cases, only deviating from
the experimental measurements for very small values of q = ( t

n) (q < 300). Note
that in practice, this would rarely be a problem. For example, if all shares of the
full AES state were shuffled in a first order masked implementation, as described in
Section 3.3.3, the smallest trace that would always contain the correct shares would
have q = (2·16

2 ) = 496.
The attack complexity of the multivariate higher-order DCA is the same as that

of the higher-order DCA, namely O
(
|K| · Nn · ( t

n)
)

. Using this and Theorem 6.2 we
can provide an estimate of the security level obtained by a masked and shuffled
implementation against the DCA adversary. Table 6.3 shows the complexities of
attacking e.g., a protected AES implementation where the operations are shuffled
among all 16 state bytes (the shuffling degree is λ = 16 implying t = 16 · n). When
fixing pfull-succ at 90%, we see that an implementation which uses 7th order masking
will obtain an estimated security level of 85 bits.

Table 6.3: The number of traces N and the time needed to suc-
cessfully attack an implementation with (n− 1)th-order masking and
shuffling of degree λ = 16 (t = 16 · n) using multivariate nth-order

DCA. Here, |K| = 256, and we fix the success probability at 90%.

n log2 N log2 time

3 10.6 32.7
4 15.8 43.1
5 21.0 53.5
6 26.3 64.1
7 31.6 74.6
8 36.9 85.3
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7.1 Introduction

To prevent DCA-like passive gray-box attacks, it is natural to consider classic side-
channel countermeasures, i.e., linear masking and shuffling. Roughly speaking, lin-
ear masking (a.k.a. Boolean masking) splits any sensitive intermediate variable into
multiple linear shares and processes them in a way which ensures the correctness
of the computation while preventing sensitive information leakage to some extent.
The principle of shuffling is to randomly permute the order of several independent
operations (possibly including dummy operations) in order to increase the noise in
the instantaneous leakage on a sensitive variable. We have shown in Chapter 5 an
implementation solely protected with linear masking is vulnerable to linear decoding
analysis (LDA) which is able to recover the locations of shares by solving a linear sys-
tem. In Chapter 6, we analyze the combination of linear masking and shuffling and
show that it can achieve some level of resistance against advanced gray-box attacks.

At Asiacrypt 2018, (Biryukov and Udovenko, 2018) introduced the notion of
algebraically-secure non-linear masking to protect white-box implementations against
LDA, formalized as algebraic attacks in (Biryukov and Udovenko, 2018). Non-linear
masking ensures that applying any linear function to the intermediate variables of
the protected implementation should not compute a predictable variable with proba-
bility (close to) 1. However, the non-linear encoding is vulnerable to the DCA attack
because the encoded sensitive variable is still linearly correlated with some shares
in the non-linear encodings. It was then suggested by the authors to combine linear
and non-linear masking, which was conjectured to be able to counter DCA-like and
LDA-like attacks at the same time since the adversary is neither able to build pre-
dictable variable by a low-degree function over the computation traces, nor able to
locate a low number of shares (i.e., lower than the linear masking order) from which
she can extract sensitive information.

In this chapter, our contribution is threefold:

1. Proposal of combination of linear masking and non-linear masking. We in-
troduce possible ways to combine state-of-the-art countermeasures, namely
linear masking and non-linear masking for white-box cryptography (such as
the winning implementations of WhibOx 2019) in Section 7.2.

2. Comprehensive study of advanced gray-box attacks. In Section 7.3, we briefly
recall the advanced gray-box attacks which can be used to break white-box
implementations in this context, including higher-degree decoding analysis,
(integrated) higher-order DCA. We then analyze their (in)effectiveness against
state-of-the-art countermeasures and exhibit their trace and time complexities.

3. New data-dependency attack. In Section 7.4, we propose a data-dependency
gray-box attack which achieves significant complexity improvements in dif-
ferent attack scenarios by precisely locating the target shares within a com-
putation trace and avoiding the standard combinatorial explosion. We show
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that our approach can efficiently break several combinations of linear and non-
linear masking in the presence of shuffling and obfuscation.

7.2 Countermeasure Combinations

In this section, we first state the necessity to combine different countermeasures in
the white-box context to resist against gray-box attacks. We then propose three dif-
ferent natural ways to combine linear masking and non-linear masking countermea-
sures.

7.2.1 On the Necessity to Combine Countermeasures

A single defensive line is never enough in front of a white-box adversary. In the fol-
lowing, we exhibit the vulnerability of linear masking or non-linear masking when
used alone in the white-box context, which stresses the necessity to combine differ-
ent countermeasures in order to achieve some level of practical security.

The soundness of the linear masking countermeasure in the noisy-leakage model
comes from the fact that the computation complexity exponentially grows with the
masking order (Prouff and Rivain, 2013). However, in the white-box context, the ad-
versary can record the values of arbitrary intermediate variables without any noise.
Although the exact location of the shares might not be obvious for the adversary be-
cause of some obfuscation or obscurity in the implementation structure, linear mask-
ing can be completely smashed using a simple gray-box attack. The so-called linear
decoding analysis (LDA) introduced in Chapter 5 –and also independently discussed
in (Biryukov and Udovenko, 2018)– as an effective way to break linear masking (or
any other linear encoding scheme) in the white-box model. The complexity of LDA
isO

(
|K| · t2.8)where K is the key space and t is the window size. Notably, this com-

plexity is independent of the masking order n, as long as all the shares of the target
variable appear in the computation trace. This attack was applied to break Adoring
Poitras, the winning implementation of the WhibOx 2017 competition as presented
in Section 8.4.

A DCA adversary can easily break an implementation protected by non-linear
masking only. For instance, if the minimalist quadratic masking scheme (Biryukov
and Udovenko, 2018) is applied without additional linear masking, a simple first-
order DCA is sufficient to break the scheme. Indeed, by definition, the shares a
and b are uniformly picked at random which implies that the share c = x ⊕ ab is
correlated to x. Precisely, we have Cor(ab ⊕ c, c) = 1

2 . A more detailed analysis
of (higher-order) DCA against non-linear masking (possibly combined with linear
masking) is given in Section 7.3.
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7.2.2 Combination of Linear and Non-Linear Masking

As suggested in (Biryukov and Udovenko, 2018), a combination of linear masking
(see Section 3.3.1) and non-linear masking (see Section 3.3.2) is empirically secure
against both DCA and LDA attacks of order/degree lower than the respective linear
masking order and non-linear masking degree. The intuition behind is two-fold: on
the one hand, an algebraically-secure countermeasure mixed with linear masking
should not decrease the algebraic degree to construct a predictable value; on the
other hand, the biased non-linear shares are further linearly masked and only DCA
of order n can be used to break a linear masking of order n− 1.

From (Biryukov and Udovenko, 2018) it is not clear how to combine linear and
non-linear masking. In order to discuss the possible attack path, we suggest here-
after three natural ways to combine them. Analyzing the security properties of the
resulting combined masking is an interesting follow-up research direction of the
present thesis.

In the first two ways, we simply apply one masking scheme on top of the other.
Taking the quadratic encoding example in Equation 3.6, the first way is to apply
linear masking on top of non-linear masking

x =
(
a1 ⊕ a2 ⊕ · · · ⊕ an

)(
b1 ⊕ b2 ⊕ · · · ⊕ bn

)
⊕
(
c1 ⊕ c2 ⊕ · · · ⊕ cn

)
, (7.1)

and the second way is to apply non-linear masking on top of linear masking

x =
(
a1b1 ⊕ c1

)
⊕
(
a2b2 ⊕ c2

)
⊕ · · · ⊕

(
anbn ⊕ cn

)
. (7.2)

The combined masking gadget can be simply derived from the original gadgets of
both schemes. For the 1st combination, one starts from the linear masking gadgets
then non-linearly shares each variable and replaces each gate by the corresponding
non-linear masking gadget. For the 2nd combination, one starts from the non-linear
masking gadgets then linearly shares each variable and replaces each gate by the
corresponding linear masking gadget.

The third way is to merge the two maskings into a new encoding achieving the
two features (high order security and prediction security). Also taking as an example
the quadratic encoding from (Biryukov and Udovenko, 2018), the new encoding
would be

x = ab⊕ c1 ⊕ c2 ⊕ · · · ⊕ cn . (7.3)

There are two interpretations of this new encoding. On one hand, the linear part of
the non-linear masking in Equation 3.6 is linearly encoded by Equation 3.5

x = ab⊕
(
c1 ⊕ c2 ⊕ · · · ⊕ cn

)
,
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on the other hand, the first share x1 from linear encoding in Equation 3.5 is non-
linearly masked by Equation 3.6

x =
(
ab⊕ c1

)
⊕ c2 ⊕ · · · ⊕ cn .

It is not clear how to derive secure gadgets for such encoding. One could probably
mix linear masking and non-linear masking gadgets. For instance, one could use
the non-linear masking gadgets and replace the appearance of c in by n linear shares
for which one would involve the corresponding linear masking gadgets. The exact
description and security analysis of these mixed gadgets are beyond the scope of the
present thesis.

7.2.3 Bitslicing

In this chapter, we analyze different advanced gray-box attacks against the com-
binations of countermeasures described in the previous section in the exemplary
setting of bitsliced implementations. Bitslicing is a common technique to derive ef-
ficient software implementation of a cipher from its Boolean circuit representation
(Biham, 1997; Rebeiro et al., 2006). The main idea is to manipulate several data
slots in parallel by making the most of bitwise and/or SIMD instructions on modern
CPU. Bitslicing has been in particular applied as a strategy to design efficient imple-
mentations in the presence of linear masking (Goudarzi and Rivain, 2017; Journault
and F.-X. Standaert, 2017; Goudarzi, Jean, et al., 2019; Bellizia et al., 2019). In the
context of white-box cryptography, this approach has also been empowered (with
additional layers of obfuscation and virtualization) to design implementations with
a good level of resistance in practice. In particular, the winning implementations of
the two editions of the WhibOx competition, due to Biryukov and Udovenko, were
based on this principle (WhibOx, 2017; WhibOx, 2019). In this chapter, we consider
a white-box implementation in the paradigm of a randomized Boolean circuit with
a hard-coded key represented in software as a bitsliced program.

7.3 Advanced Gray-Box Attacks

We assume that the target implementation is protected by an nth-order linear mask-
ing and a dth-degree non-linear masking in one of the three possible composition
ways discussed in Section 7.2.2. We will optionally consider the application of shuf-
fling on top of this combination of masking and denote λ the shuffling degree (mean-
ing that the target shares are each shuffled among λ possible locations). Finally, we
shall assume that the attacker is able to locate a t-large window in the computation
trace for which she knows that it contains the shares of the target encoding. The
complexity of the attack discussed in this section shall hence be expressed with re-
spect to the parameters n, d, λ, t, as well as the size of the key space |K| of the target
variable.
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7.3.1 Higher-Degree Decoding Analysis

In this section, we first consider HDDA (see Section 5.4) attack against a target im-
plementation with combined masking only and then extend HDDA to deal with
shuffling.

HDDA against Combined Masking

Let (v1, v2, · · · , vt) denote the computation trace corresponding to the t-large target
window. By definition of the linear and non-linear masking, we know that there
exists a dth degree decoding function f such that x = f (v1, v2, · · · , vt), where x de-
notes the target sensitive variable. This function f can be recovered by an HDDA as
follows. The principle is first to extend probed traces into higher-degree traces up
to degree d by multiplying all the d-tuples, then apply the LDA decoding analysis
on the higher-degree traces. Precisely, for each computation trace (v1, v2, · · · , vw),
the adversary compute a higher-degrees trace compromised by all at most d-degree
multiplicative combinations vi1 · vi2 · . . . · vij where 1 ≤ i1 ≤ i2 ≤ · · · ≤ ij ≤ t and
1 ≤ j ≤ d. Since a dth degree decoding function f can be decomposed to a linear
combination of several (at most d-degree) monomials, an LDA attack on the higher-
order traces should recover all monomials of f . The higher-degree traces contain
O
(
td) samples, then the computation complexity of HDDA is O

(
|K| · t2.8 d) and it

requires O
(
td) computation traces, according to Section 5.4.

HDDA in the Presence of Shuffling

If the shuffling countermeasure is applied together with the combination of two
masking countermeasures, HDDA would not work in general because there would
not exist a decoding function that could recover the predictable values for all differ-
ent inputs. However, we remark that the HDDA is able to bypass certain shuffling
methods. For instance, if there exists λ different sensitive variables

s1 = g(vi1,1, · · · , vi1,t)

s2 = g(vi2,1, · · · , vi2,t)

...

sλ = g(viλ,1, · · · , viλ,t)

for some decoding function g and (i1, i2, · · · , iλ) is a permutation of (1, 2, · · · , λ)

depending on the randomness (i.e., the computation order of s1, s2, · · · , sλ is shuffled
correspondingly), there exists a decoding function

f (v1,1, · · · , v1,t, v2,1, · · · , v2,t, · · · , vλ,1, · · · , vλ,t)

= g(v1,1, · · · , v1,t)⊕ g(v2,1, · · · , v2,t)⊕ · · · ⊕ g(vλ,1, · · · , vλ,t)

= s1 ⊕ · · · ⊕ sλ
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over a enlarged attacking trace window

(v1,1, · · · , v1,t, v2,1, · · · , v2,t, · · · , vλ,1, · · · , vλ,t) .

Assuming one sj, 1 ≤ j ≤ λ contains the real execution and the others are simply
identical computation except with shuffled constant plaintext, we have s1 ⊕ · · · ⊕
sλ = sj + cst where cst denotes some unknown constants depending upon the con-
stant plaintext used to compute (sj′)j′ 6=j. In this case, we can still recover function f
and the sub-function g. Additionally, shuffling can also be defeated if we are able to
enforce some sj to be constant. For instance, if the targeted (sj)j are the first round
s-box output, we can make them constant by fixing some plaintext bytes.

7.3.2 Higher-Order DCA

The principle of a higher-order DCA (HO-DCA) is to exploit joint leakage of several
independent variables. It consists of a preprocessing step similar to HDDA followed
by a standard DCA. Given a computation trace (v1, v2, · · · , vt), the preprocessing
step in an nth-order DCA outputs an nth-order computation trace consisting in q =

( t
n) items formed in vi1 ⊕ vi2 · . . .⊕ vin where 1 ≤ i1 ≤ i2 ≤ · · · ≤ in ≤ t. Then the

adversary predicts some sensitive variables based on some key guess and computes
the correlations between the predicted values and higher-order trace samples. If
there exists a distinguishable significant peak for a key guess from the other key
guesses in the correlation traces, this key is very likely to be the good key candidate.
Section 6.2 provides a comprehensive formalization and analysis of HO-DCA.

HO-DCA Correlation Scores

Against Combined Masking. We analyze hereafter the expected correlation scores
for an HO-DCA against the considered combination of linear and non-linear mask-
ing. Our analysis is based on the following simple lemma.

Lemma 7.1. Let X, A1, B1, . . . , An, Bn be mutually independent uniform random variables
over {0, 1}. We have

Cor
(

X, X⊕
⊕n

i=1
Ai · Bi

)
=

1
2n .

Proof. Since X and X⊕⊕n
i=1 Ai · Bi are both balanced Boolean variables, we have

Cor

(
X, X⊕

n⊕
i=1

Ai · Bi

)
= Cor

(
0,

n⊕
i=1

Ai · Bi

)
= 1− 1

22n−1

∣∣∣∣∣ n⊕
i=1

Ai · Bi

∣∣∣∣∣ .

by combining Equation 3.3 and Equation 3.2.
It is obvious that the weight of a 2-ary function A1 · B1 is |A1 · B1| = 21−1(21 −

1) = 1. Now we assume the weight of a (2n)-ary function
⊕n

i=1 Ai · Bi is∣∣∣∣∣ n⊕
i=1

Ai · Bi

∣∣∣∣∣ = 2n−1(2n − 1) ,
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then by induction, the weight of a (2n + 2)-ary function
⊕n+1

i=1 Ai · Bi is∣∣∣∣∣n+1⊕
i=1

Ai · Bi

∣∣∣∣∣ = (2n−1(2n − 1)
)
∗ 3 +

(
22n − 2n−1(2n − 1)

)
∗ 1

= 2(n+1)−1(2n+1 − 1) .

All in all,

Cor

(
X, X⊕

n⊕
i=1

Ai · Bi

)
= 1− 1

22n−1 · 2
n−1(2n − 1) =

1
2n .

Based on this lemma, we can derive the correlation scores for the different types
of combinations. In each case, an HO-DCA targeting the n shares c1, . . . , cn is possi-
ble.

• For Combination 1 (linear masking on top of non-linear masking), we have

c1 ⊕ · · · ⊕ cn = x⊕ a · b

with a = a1 ⊕ · · · ⊕ an and b = b1 ⊕ · · · ⊕ bn which from Lemma 7.1 implies

Cor(x, c1 ⊕ · · · ⊕ cn) =
1
2

.

• For Combination 2 (non-linear masking on top of linear masking), we have

c1 ⊕ · · · ⊕ cn = x⊕ a1 · b1 ⊕ · · · ⊕ an · bn

which from Lemma 7.1 implies

Cor(x, c1 ⊕ · · · ⊕ cn) =
1
2n .

• For Combination 3 (merged linear and non-linear masking), we have

c1 ⊕ · · · ⊕ cn = x⊕ a · b

which from Lemma 7.1 implies

Cor(x, c1 ⊕ · · · ⊕ cn) =
1
2

.

We observe that the second combination (non-linear on top of linear) provides stron-
ger resistance against HO-DCA since the correlation score is exponentially low with
respect to the linear masking order. For the two other options, we always obtain a 1

2

correlation.
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In the Presence of Shuffling. Now suppose shuffling is applied on top of the com-
bination of masking. The impact on the correlation score can be simply analyzed
thanks to the following lemma.

Lemma 7.2. Let (Xi)i∈[λ] be λ mutually independent and identically distributed random
variables. Let j ∈ {1, . . . , λ}. Let Y be a random variable such that Cor(Y, Xj) = ρ and Y
is mutually independent of (Xi)i∈[λ]\{j}. Let X∗ be the random variable defined by picking
i∗ uniformly at random over [λ] and setting X∗ = Xi∗ . We have

Cor(Y, X∗) =
1
λ
·Cor(Y, Xj) =

ρ

λ
. (7.4)

Proof. By definition, we have σ2(X∗) = σ2(Xj) and

Cov(Y, X∗) =
(

1− 1
λ

)
·Cov(Y, Xi∗ 6=j) +

1
λ

Cov(Y, Xj) =
1
λ

Cov(Y, Xj) ,

which directly yield Equation 7.4.

According to Lemma 7.2, a shuffling of degree λ implies a reduction of the corre-
lation score by a factor λ. In case of a combination of horizontal shuffling (of degree
λh) and vertical shuffling (of degree λv), the overall shuffling degree is the product
of the degrees i.e., λ = λh · λv.

Trace and Time Complexities

According to Equation 3.1, the number of traces necessary for a successful HO-DCA
in presence of combined masking and shuffling is

N1 = N3 = 4 η λ2

for Combinations 1 and 3, and
N2 = η 4n λ2

for Combination 2. Therefore, the time complexity of the HO-DCA attack is

O(N tn |K|) =

O
(
tn λ2 |K|

)
for Combinations 1 and 3,

O
(
(4t)n λ2 |K|

)
for Combinations 2.

7.3.3 Integrated Higher-Order DCA

Suppose the attacker is able to locate the shuffling and in consequence splits the
computation trace into λ subtraces (each of size t) such that the target encoding
appears in one of these subtraces (of a random index). She can then apply a so-
called integrated attack (Clavier et al., 2000; Rivain, Prouff, and Doget, 2009). The
principle is to compute the correlation between the prediction and the sum (over the
integers) of the combined samples for the λ subtraces.
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The penalty implied by the shuffling after integration is reduced to the square
root of its degree λ as formally stated in the following lemma.

Lemma 7.3. Let (Xi)i∈[λ] be λ mutually independent and identically distributed random
variables. Let Y be a random variable such that Cor(Y, Xj) = ρ for some j ∈ {1, . . . , λ}
and Y is mutually independent of (Xi)i∈[λ]\{j}. We have

Cor
(

Y , ∑iXi

)
=

1√
λ

Cor(Y, Xj) =
ρ√
λ

.

Proof. On one hand, we have Cov(Y, ∑i Xi) = Cov(Y, Xj) , and on the other hand,
we have σ2(∑i Xi) = λσ2(Xj) .

If such an integration HO-DCA can be applied, then the number of traces scales
down to N1 = N2 = 4 c λ and N2 = c 4n λ and the complexities to O(tn λ |K|) for
Combinations 1 and 3, and O((4t)n λ |K|) for Combinations 2.

Partial Integration Attack. In the bitslicing circuit-based model considered here,
the horizontal shuffling can be easily defeated by applying an integration attack over
the different bitslice slots while the vertical shuffling might be harder to remove. In
such a case, the shuffling factor in the number of traces becomes λh · λ2

v. And the
attack complexity is finally given by

O(N tn |K|) =

O
(
tn λh λ2

v |K|
)

for Combinations 1 and 3,

O
(
(4t)n λh λ2

v |K|
)

for Combinations 2.

7.4 Data-Dependency HO-DCA

In the previous sections, we have analyzed state-of-the-art gray-box attacks against
a combination of linear and non-linear masking, possibly strengthened with some
shuffling. We have seen that HDDA has complexity at least O

(
|K| t2.8 d), that is at

leastO
(
|K| t5.6)with a simple quadratic masking and assuming that shuffling can be

defeated (which might not be trivial). On the other hand, HO-DCA has complexity
at least O

(
|K| tn λ2), which can be improved to O

(
|K| tn λhλ2

v
)

by a partial integra-
tion attack in the bitslicing paradigm, where λ = λh · λv (horizontal shuffling and
vertical shuffling). For a typical white-box implementation including some level of
obfuscation, the window size t that needs to be considered in practice might range
from 104 to 106, which makes the above attacks very heavy in computation. This
motivated us to investigate new attack techniques to overcome this barrier.

In this section, we develop what we shall call data-dependency HO-DCA. By ex-
ploiting the data dependency graph of the computation, this attack can bypass the
exponential factor O(tn) brought by the linear masking. The basic principle of our
technique relies on the fact that for the considered combination of masking, all the
linear shares c1, . . . , cn of some sensitive variable can be recovered by looking at all
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the multipliers of a particular intermediate variable, i.e., all the co-operands to this
variable through an AND instruction.

7.4.1 Data-Dependency Traces

In our exposition, we consider the target implementation as a (possibly bitsliced)
Boolean circuit C. A circuit is a directed acyclic graph (DAG) in which the vertices are
gates and the edges between two nodes are wires. A gate might either be an operation
gate (fan-in 2) which outputs the XOR or AND of the input wires, or a constant gate
(fan-in 0) which outputs a constant value (0 or 1). The output of a gate might be the
input to several gates which means that each gate has arbitrary fan-out. The output
of each gate g can be associated with a variable vg which is a deterministic (Boolean)
function of the input plaintext.

We denote the co-operands of a gate g for operation ◦ by Θ◦(g), which is com-
posed of the set of gates g′ for which (vg, vg′) enters a subsequent ◦ gate, where
◦ ∈ {⊕,⊗}. For instance, the set of co-operands for a gate g for an AND operation is
denoted by Θ⊗(g). Deriving the set of co-operands for all the gates in a circuit C can
be done in a single pass on the circuit as described in Algorithm 7.1.

Algorithm 7.1 DETECTCOOPERANDS(C, ◦)
Input: A Boolean circuit C and an operator ◦ ∈ {⊕,⊗}
Output: A associative array M mapping from a gate in C

to a set of gates in C

1: M← empty associative array
2: for g ∈ GATES(C) do
3: if g is an ◦ gate then
4: g1, g2 ← the two incoming gates of g
5: if M does not have key g1 then
6: M[g1]← ∅
7: end if
8: if M does not have key g2 then
9: M[g2]← ∅

10: end if
11: M[g1]← M[g1] ∪ {g2}
12: M[g2]← M[g2] ∪ {g1}
13: end if
14: end for

In this algorithm, we first declare an empty associative array M, which maps a gate
in the input circuit C to a set of gates in C. M[g] hence denotes a lookup operation in
M, resulting in the set of gates associated to g. To construct M, we visit all the gates
of the circuit, and for each gate with incoming gates g1 and g2, we add g1 to M[g2]
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(the set of co-operands of g2) and we add g2 to M[g1] (the set of co-operands of g1).
At the end of the algorithm, for every gate g, M[g] contains the co-operands of g, i.e.,
Θ◦(g).

As mentioned above, we intuit that the combination of masking can be defeated
by targeting the shares contained in a set of multipliers of some intermediate vari-
ables. We therefore produce a new computation trace composed of the bitwise sum
of each set, as depicted in Algorithm 7.2. For clarity, we abuse the notation by de-
noting |M| the number of mappings in an associative array M and by denoting vg

the sample output by gate g in a computation trace T. If the intuition is correct, the
linear masking should be removed in the new computation trace, leaving non-linear
masking and shuffling as the only remaining protections.

Algorithm 7.2 TRACEPROCESSING(T, C)
Input: A Boolean circuit C and a computation trace T = (v1, . . . , vt)

Output: A new computation trace T′ = (v′1, . . . , v′|M|)

1: M← DETECTCOOPERAND(C,⊗)
2: for each g exists in M do
3: G ← M[g]
4: v′g ←

⊕
g′∈G vg′

5: end for

Algorithm 7.3 TRACEPROCESSINGSUBSET(T, C, n)
Input: A Boolean circuit C, a computation trace T = (v1, . . . , vt),

and an integer n
Output: A new computation trace T′

1: T′ ← ∅
2: M← DETECTCOOPERAND(C,⊗)
3: for each g exists in M do
4: G ← M[g]
5: T′ ← T′ ∪

{⊕
g∈G ′ vg : G ′ ⊂ G, |G ′| ≤ n

}
6: end for

“Polluted” Multipliers. A trivial method to counter the previous attack is to pol-
lute the set of multipliers M[g] for the sensitive gates g by adding “random” AND
gates on the premise that the functionality and underlying security assumptions are
not affected. In this case, if the sum of random wires is biased, we can still exploit
the vulnerability as analyzed in the coming discussion. Alternatively, we could con-
sider summing up all the subsets of cardinality n since there always exists a subset
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of M[g] with n elements, where n is the linear masking order and the subset con-
tains all the linear shares of a sensitive variable. This variant computing the sum of
a subset of multipliers is presented in Algorithm 7.3, where the linear masking order
is expected to be at most n.

7.4.2 Application to Combined Masking

Effectiveness against Combinations 1 & 3. We demonstrate hereafter that our
attack can break two out of three combinations of linear masking and non-linear
(quadratic) masking. In a linear masking scheme, AND gates only appear in secure
AND gadgets, and the set of multipliers of each linear share is the set of all the shares
of the co-operand. In quadratic minimalist masking (Biryukov and Udovenko, 2018),
AND gates appear in all gadgets. We enumerate in Table 7.1 the set of multipliers of
each variable appearing in the AND gadget. For each set of operands, we further give
the non-zero correlation between the sum over the set of multipliers or any subset
and one of the sensitive operand (either x = ab⊕ c or y = de⊕ f ).

Table 7.1: Multipliers for each variable in AND gadget of (Biryukov
and Udovenko, 2018).

variable multipliers correlation (full set) correlation (subset)

a {e, ma} Cor(y, e⊕ma) =
1
4 Cor(y, ma) =

1
4

b {d, f , r f } – Cor(y, f ) = Cor(y, d⊕ f ) = 1
2

c {e, f } Cor(y, e⊕ f ) = 1
2 Cor(y, f ) = 1

2

d {b, md} Cor(x, b⊕md) =
1
4 Cor(x, md) =

1
4

e {a, c, rc} – Cor(x, c) = Cor(x, a⊕ c) = 1
2

f {b, c} Cor(x, b⊕ c) = 1
2 Cor(x, c) = 1

2

ma {a} – –

rc {e, r f } – –

md {d} – –

r f {b, rc} – –

For Combination 1 (linear masking on top of non-linear masking), the correla-
tions exhibited Table 7.1 hold for any arbitrarily high linear-masking order n. Let us
for instance consider the case of the variable c which is multiplied with both e and
f . In the presence of linear masking, we get a sharing (c1, . . . , cn) of c which is mul-
tiplied by with a sharing (e1, . . . , en) of e and a sharing ( f1, . . . , fn) of f . By definition
of the linear-masking AND gadget, this means that each share cj shall be multiplied
with all the shares (ei)i and all the shares ( fi)i. For every j ∈ [n], the sum of the
multipliers of cj hence equals

⊕
iei ⊕

⊕
i fi = e ⊕ f which is correlated to y. In the
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same way, all the correlations reported in Table 7.1 are persistent to the application
of linear masking.

Note that applying refresh gadgets at the linear masking level would not fix this
kind of flaw. Indeed assume that the sharing (c1, . . . , cn) would be refreshed between
the multiplication with (e1, . . . , en) and that with ( f1, . . . , fn). Then every share of the
refresh sharing would be multiplied with all the shares of ( f1, . . . , fn) giving rise to
f as a sum of multipliers (which is correlated to y).

For Combination 3 (merged linear and non-linear masking), the analysis above
for Combination 1 applies similarly. Let us once again consider the variable c is
linearly shared. Then a sharing (c1, . . . , cn) of c is multiplied by variable e and a
sharing ( f1, . . . , fn) of f . By definition of the linear-masking AND gadget, this means
that each share cj shall be multiplied with e and all the shares ( fi)i. For every j ∈ [n],
the sum of the multipliers of cj hence equals e ⊕⊕i fi = e ⊕ f which is correlated
to y. In the same way, all the correlations reported in Table 7.1 are persistent to the
application of linear masking. Here as well, the application of refresh gadgets at the
linear masking level would not fix this kind of flaw.

Ineffectiveness against Combination 2. We demonstrate that the previous attack
is ineffective if non-linear masking is applied on top of linear masking. Two sensitive
intermediate variables x and y are encoded as

x =
(
a1b1 ⊕ c1

)
⊕
(
a2b2 ⊕ c2

)
⊕ · · · ⊕

(
anbn ⊕ cn

)
(7.5)

and
y =

(
d1e1 ⊕ f1

)
⊕
(
d2e2 ⊕ f2

)
⊕ · · · ⊕

(
dnen ⊕ fn

)
respectively in Combination 2. Since in an AND gadget for linear masking, each linear
share of one variable is required to multiply with all linear shares of another variable,
the secure multiplication gadget for xy must consist of applying AND gadget for non-
linear masking between non-linear encodings (ai, bi, ci) and (dj, ej, f j) for all 1 ≤
i, j ≤ n. However, as shown in Algorithm 3.3, the first step in an AND gadget for non-
linear masking is to refresh the input non-linear encodings. As a consequence, there
exist n different refreshed ci and fi, denoted by (abuse of the superscript notation)(
c(j)

i

)
1≤j≤n and

(
f (j)
i

)
1≤j≤n for all 1 ≤ i ≤ n. Obviously, c(j)

i · f (i)j is calculated for all

1 ≤ i, j ≤ n in the overall secure gadget. Without loss of generality, c(j)
i ’s multipliers

are e(i)j and f (i)j , and Cor
(
y, e(i)j ⊕ f (i)j

)
= 0. In Section 7.4.3, we generalize the attack

to an advanced one and exhibit its ability to defeat Combination 2.

7.4.3 Generalized Data-Dependency HO-DCA

The outcomes of a gate g for an operation ◦ is denoted by Ψ◦(g), which is the set
of gate computing vg ◦ vg′ for another gate g′. Deriving the set of outcomes for all
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the gates in a circuit can also be done in a single pass on the circuit as described in
Algorithm 7.4.

Algorithm 7.4 DETECTOUTCOME(C, ◦)
Input: A Boolean circuit C and an operator ◦ ∈ {⊕,⊗}
Output: A associative array N mapping from a gate in C

to a set of gates in C

1: N ← empty associative array
2: for g ∈ GATES(C) do
3: if g is an ◦ gate then
4: g1, g2 ← the two incoming gates of g
5: if N does not have key g1 then
6: N[g1]← ∅
7: end if
8: if N does not have key g2 then
9: N[g2]← ∅

10: end if
11: N[g1]← N[g1] ∪ {g}
12: N[g2]← N[g2] ∪ {g}
13: end if
14: end for

Algorithm 7.5 GENERALIZEDTRACEPROCESSING(T, C, ◦, ⋆, n)
Input: A Boolean circuit C, a computation trace T = (v1, . . . , vt), and

two operators ◦, ⋆ ∈ {⊕,⊗}, and an integer n
Output: A new computation trace T′

1: N◦ ← DETECTOUTCOME(C, ◦)
2: M⋆ ← DETECTCOOPERANDS(C, ⋆)
3: T′ ← ∅
4: for each g exists in N◦ do
5: G ← N◦[g]
6: G ′ ← ⋃

g∈G M⋆[g]

7: T′ ← T′ ∪
{⊕

g∈G ′′ vg : G ′′ ⊂ G ′, |G ′′| ≤ n
}

8: end for

We generalize the trace preprocessing step in Algorithm 7.5, in which we first
derive the outcomes Ψ◦(g) of each gate g for operation ◦ and the “secondary” co-
operands for operands ⋆ (which is the union of the Θ⋆(g′) for all g′ ∈ Θ◦(g)). The
adversary has the flexibility to choose ◦, ⋆, and the expected linear masking order
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n. Finally, she applies the HO-DCA on the preprocessed traces according to data-
dependency.

Effectiveness against Combination 2. We show that if choosing (◦, ⋆) = (⊕,⊗)
in the attack described above, the Combination 2 is vulnerable. Here, we consider
again a share ci in Equation 7.5, then ci have n refreshed version (c(j)

i )1≤j≤n and {c(j)
i :

1 ≤ j ≤ n} ⊂ Ψ⊕(ci) for 1 ≤ i ≤ n. As already addressed in last section Θ⊗(c
(j)
i ) =

{e(i)j , f (i)j }, the union
⋃n

i=1 Θ⊗(c
(j)
i ) contains all {e(i)1 , f (i)1 , e(i)2 , f (i)2 , · · · , e(i)n , f (i)n } and

Cor
(
y, e(i)1 ⊕ f (i)1 ⊕ e(i)2 ⊕ f (i)2 ⊕ · · · ⊕ e(i)n ⊕ f (i)n

)
=

1
2n

by Lemma 7.3, implying that the HO-DCA bias is still exploitable.

Further Improvements. The principle of our data-dependency attack can be used
in many additional ways. Essentially, our technique enables to derive a cluster of
intermediate variables related to each gate in a circuit. By targeting close neighbors
of a gate from a gadget processing the encoding of some target intermediate variable,
we might succeed in getting all the shares in a small cluster. By doing this, we
essentially prevent the exponential explosion of the window size w which could be
leveraged in any kind of gray-box attack (such as LDA or HDDA for instance). In
fact, the explosion still exists in some attacks but over localized small windows of
traces instead of the full trace. There are many possible ways to extend the attack
above by playing with Algorithm 7.1, Algorithm 7.4 and Algorithm 7.5. In the trace
preprocessing algorithm, we can for instance iteratively apply the data-dependency
algorithm a few times, such that the new trace encompasses a relevant cluster of
intermediate variables.

7.5 Comparison between Different Advanced Attacks

In this section, we compare the trace and computation complexities between differ-
ent advanced gray-box attacks discussed in this chapter. The target implementation
is protected by an nth-order linear masking and the first-degree secure non-linear
masking from (Biryukov and Udovenko, 2018) in one of the three possible compo-
sition ways discussed in Section 7.2.2. We optionally consider the application of
shuffling of degree λ on top of this combination of masking. We also assume that
the attacker is able to locate a t-large window in the computation trace which con-
tains all shares of the target encoding. The complexity of the attacks is expressed
with respect to the parameters the linear masking order n, the shuffling degree λ,
the size of trace window t and the size of the key space |K|, as shown in Table 7.2.
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Table 7.2: Complexity comparison between different advanced at-
tacks. where three masking combinations from Section 7.2.2 are con-

sidered. Recall that η is the constant factor in Equation 3.1.

trace complexity computation complexity

masking composition masking composition

1st, 3rd 2nd 1st, 3rd 2nd

without shuffling

HDDA td +O(1) O
(
|K| · t2.8d)

HODCA 4 η 4n η O(|K| · tn) O(|K| · (4t)n)

DD-DCA 4 η 4n η O(|K| · t) O(|K| · 4n · t)

with shuffling of degree λ

HO-DCA 4 η λ2 4n η λ2 O
(
|K| · tn · λ2) O

(
|K| · (4t)n · λ2)

Intg. HO-DCA 4 η λ 4n η λ O(|K| · tn · λ) O(|K| · (4t)n · λ)
DD-DCA 4 η λ2 4n η λ2 O

(
|K| · t · λ2) O

(
|K| · 4n · t · λ2)

Intg. DD-DCA 4 η λ 4n η λ O(|K| · t · λ) O(|K| · 4n · t · λ)

Specifically, higher-degree decoding analysis (HDDA) is only able to attack the
implementation without shuffling protection and its complexity is independent with
the ways to combine linear and non-linear maskings. Integrated (abbv. Intg.) attack
variants amplify the correlation score by a factor of

√
λ, hence reduce the trace com-

plexity by a factor of λ compared to the non-integrated attack according to Equa-
tion 3.1, resulting in a reduction of a factor of λ in the computation complexity.
Although data-dependency based attacks do not increase the correlation score, but
avoid the exponential explosion when precomputing higher-order traces, hence im-
prove the computation complexity by a factor of tn−1 accordingly. Note that the
complexity of DD-DCA is also impacted by the number of co-operands, which is
usually small than a constant upper bound and hence is neglected here.
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8.1 Introduction

In this chapter, we verify the practicability of our theoretical analyses and attack
techniques exhibited from Chapter 4 to Chapter 7 by performing key-recovery at-
tacks against several publicly available white-box AES implementations. We orga-
nize this chapter as follows:

• In Section 8.3, we successfully carry out all of three gray-box attacks, described
in Chapter 4, on a white-box AES implementation protected with byte encod-
ings which DCA has failed to break before, and on a “masked” white-box AES
implementation which intends to resist DCA;

• In Section 8.4, we explain how to gradually extract the key from the winning
implementation of WhibOx 2017 (WhibOx, 2017) – Adoring Poitras with (a)
a comprehensive presentation of the performed reverse engineering, and (b)
a final generic LDA attack, formalized in Chapter 5, within a highly reduced
trace window;

• In Section 8.5, we apply advanced gray-box attacks and our data-dependency
DCA presented in Chapter 7 together with some “lightweight” de-obfuscation
to break the three winning implementations from WhibOx 2019 (WhibOx, 2019).

To the best of our knowledge, we were either the only or the first team to produce
technical reports on the possibility to break those implementations by applying rel-
evant theoretically supported attacks. To facilitate the reproduction of our results,
we partially open-source our attacks against the winning submission from WhibOx
2017 in

https://github.com/junwei-wang/WhibOx-breaking-adoring-poitras

and those from WhibOx 2019 in

https://github.com/CryptoExperts/breaking-winning-challenges-of-whibox2019

respectively. While accomplishing these attacks, we also conclude a general attack
methodology against obscure white-box implementations. In the following, we first
depict our attack methodology in Section 8.2.

8.2 A Generic White-Box Attack Methodology

We present hereafter a general attack methodology to break obscure white-box im-
plementations following the outline of our cryptanalysis of the winning implemen-
tations in two editions of WhibOx competition as will be shown in Section 8.4 and
Section 8.5. This methodology is organized into the five following steps. Note that
depending on the white-box implementation, it might not be necessary to apply all
these steps.

https://github.com/junwei-wang/WhibOx-breaking-adoring-poitras
https://github.com/CryptoExperts/breaking-winning-challenges-of-whibox2019
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Step 1: Initial Reverse Engineering

The targeted implementation is usually protected by several obfuscation techniques
(as e.g., described in (Collberg et al., 1997)). This first step consists in removing these
obfuscation layers, either manually or by using some software tools (Yadegari et al.,
2015). The goal is to understand the role of each part of the code and remove any
virtualization. Of course, this step is difficult to fully generalize and automate. It
should somehow rely on some human handwork and intuition. The ultimate goal,
for the next steps of our methodology, is to transform the implementation into an
arithmetic circuit (or a Boolean circuit as a particular case). Namely, this first step
must produce a straight-line program (i.e., without conditional branching) in which
every instruction is of the form vi ← vj ∗ vℓ for some operation ∗ lying in a defined
set of operations. For instance, in the Boolean case, we would have ∗ ∈ {⊕,∧,∨}.
But a white-box implementation could be defined over a larger finite field (such as
F2n or Fp), an integer/polynomial ring, etc. An arithmetic circuit would then be
composed of additions and multiplications. But some more complicated operations
could occur and in all generality, which could be represented, e.g., by lookup tables,
taking possibly more than two input operands.

Step 2: SSA Transformation

In the current representation of arithmetic circuit, many intermediate variables are
possibly both written and read several times, which presumably hides some facts
on the data flow. In compiler theory, a program in the single static assignment (SSA)
form means that every variable is assigned (defined or written) once, but can be
read for multiple times after its assignment (the memory used in an SSA formatted
program is then about its number of instructions). The SSA form of a program thus
looses the data dependency by reducing the meaningful interlaced dependencies
introduced by variable reuse. In order to transform our Boolean circuit into SSA
form, we rewrite through the few following steps:

1. Declare a global counter c = 0, and an empty associative map (hashmap) H.

2. For each statement, replace

(a) each of its reading address addrr with H(addrr),

(b) and its writing address addrw with c,

then we set H(addrw) = c and c = c + 1.

After this transformation, the program is in SSA form: every memory location is
written exactly once and only read after its assignment.

Step 3: Circuit Minimization

In this step, we attempt to minimize the program in several aspects. Our goal here is
to decrease the computation complexity in the subsequent analysis techniques that
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will then target a smaller circuit. We define a few minimization steps (described
below) and we iterate over these steps several times until we cannot reduce it any
more.

Detection and Removal of Constants

We execute the Boolean circuit a large number of N times (e.g., N = 2048) with
randomly sampled inputs and record the computation traces (which consist of the
ordered sequences of written values). Then, for each location in these computation
traces, we check if the written value is always the same. Formally, denoting the
ith computation trace by (v(i)1 , v(i)2 , · · · , v(i)t ), where t is the size of the trace (i.e., the
number of Boolean instructions), we check whether

v(1)j = v(2)j = · · · = v(N)
j = c ∈ F,

for some index j and for sufficiently large N and for the base field of the circuit.
If so, we consider that the jth instruction calculates a constant and we replace the
corresponding variable by the constant c.

For Boolean circuit, we further propagate this constant according to the following
Boolean relations:

v ∧ 0 = 0, v ∧ 1 = v,

v ∨ 0 = v, v ∨ 1 = 1,

v⊕ 0 = v, v⊕ 1 = ¬v,

where v ∈ F2. This propagation results in the saving of further instructions.
In an idealized model where all the variables are uniformly distributed, the prob-

ability of incorrect decision is |F|−N . The complexity to perform the detection is of
O(N · t).

Detection and Removal of Duplicates

We proceed in a similar way as above to detect and remove duplicates. Namely, we
observe whether for two locations in the computation traces the written values are
always the same. Formally, we check whether

(v(1)j1
= v(1)j2

) ∧ (v(2)j1
= v(2)j2

) ∧ · · · ∧ (v(N)
j1

= v(N)
j2

),

for some pair of indexes (j1, j2) and for sufficiently large N. If so, we consider that
the related statements are duplicated computations and that the jth1 and jth2 variables
are a pair of duplicates. Then we remove one of the instances and replace all its
appearances in the program by the other variable.

As above, the probability of incorrect decision in an idealized model is of |F|−N .
The complexity to perform the detection is of O

(
N · t2).
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Detection of Inverse

The detection of Boolean inverses is similar to the detection of duplicates but instead,
we check whether

v(1)j1
⊕ v(1)j2

= v(2)j1
⊕ v(2)j2

= · · · = v(N)
j1
⊕ v(N)

j2
= 0 ,

for some pair of indexes (j1, j2) and for sufficiently large N. If so, we can replace the
statement computing vj2 by the inverse of vj1 (assuming j1 < j2), which is likely to
induce further simplifications while looping on the minimization steps.

Detection and Removal of Pseudorandomness

Here we look for pseudorandom variables that are used to randomize subsequent in-
termediate results without affecting the final result. In order to check whether an
intermediate variable serves as pseudorandom variables, we try to replace its value
by random values and check whether the output always matches the output in a
normal execution. Formally, denoting x(i) and y(i) the input and output of the ith

execution, we replace the jth variable by assigning a random value over F. Then we
check whether

(y(1) = z(1)) ∧ (y(2) = z(2)) ∧ · · · ∧ (y(N) = z(N)),

where z(i) denotes the output of the execution with the flipping statement on input
x(i). If so, we consider vj to be a pseudorandom variable and we replace it by a
constant, e.g., 0. This constant is then propagated as described above which results
in the saving of further instructions.

The probability of incorrect decision is not clear but should quickly become neg-
ligible as N grows (as vj might affect several bits of the output). The complexity to
perform the detection is of O(N · t).

Note that a variable might impact the output result and be used as pseudoran-
domness at the same time. In the above detection, we can only detect the variables
used exclusively as pseudorandom variables. Rather than replacing an intermediate
variable, a more effective way is to replace an operand in a statement. In this sense,
the replaceable operand corresponds to a pseudorandom usage of the variable and
it can be replaced by a constant.

Detection and Removal of Dead (Dummy) Code

A dead statement is an instruction writing a value which is never used in the sub-
sequent computation. Dead might be introduced by the above minimization steps
or by the removal of subsequent dead code. The detection and removal process is a
progressive iteration procedure.
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Step 4: Data Dependency Analysis

In order to extract the key from a white-box implementation, it is usual to focus on
some specific early round operations, e.g., the first round s-boxes in a block cipher.
The goal of this step is to reduce the size of the trace window that will be analyzed
in the next step.

Observing the data dependency graph (DDG) is very insightful to locate a given
operation depending on the structure of the target cryptographic algorithm. This
operation can be partly automated through a cluster analysis (see our breaking of
Adoring Poitras in Section 8.4). Once the target operation has been localized, we
identify the corresponding set of outgoing variables which presumably constitutes
an encoding of the target variable. An alternative is to rely on the approach intro-
duce in Chapter 7. In the former case, one could probably directly locate the good
window, but it involves some human analysis. The latter can be fully automated,
but this approach is less effective in substantially decreasing the attack complexity
compared to an accurate localization of the target operation.

Step 5: Key Extraction

This last step consists in extracting some key information by analyzing the (pre-
sumed) encoding obtained from the data dependency analysis. To this purpose, one
could for instance rely on several passive gray-box attack techniques presented in
the previous chapters, such as (higher-order and/or multivariate) DCA, collision
attack, MIA, (higher-degree) LDA, etc. The principle is then to collect some computa-
tion traces for the windows (or sets of variables) indentified by the data dependency
analysis. One then makes a key guess and predicts the value of some key-dependent
intermediate variable. Afterward, one applies the selected gray-box distinguisher to
the collected traces and the predicted values.

8.3 Attacks against Internal Encodings Protected Implemen-
tations

In this section, we successfully carry out all gray-box attacks described in Chap-
ter 4, namely DCA attack, collision attack, and MIA attack, on an implementation
protected with byte encodings –which DCA has failed to break before–and on a
“masked” white-box AES implementation –which intends to resist DCA. We first
introduce the two target implementations and our target variables in Section 8.3.1
and Section 8.3.2 respectively. Then the attack results from the DCA attack, the col-
lision attack, and the MIA attack are presented in Section 8.3.3, Section 8.3.4, and
Section 8.3.5 correspondingly.
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8.3.1 Target Implementations

The NSC Variant. In NoSuchCon (NSC) 2013, a Windows binary embedding with
a white-box implementation of AES-128 protected by external and internal encod-
ings, was published by Vanderbéken as a challenge.1 Due to the presence of external
encodings, the authors of (Bos et al., 2016) failed to break this challenge with DCA.
Besides the challenge binary, Vanderbéken also published its generator, which led
to the publication of multiple variants.2 One interesting variant, referred as the NSC
variant in the following, is an implementation protected with internal encodings only
(i.e., an implementation of the standard AES-128). However, since it makes use of
byte encodings, this implementation was believed to resist DCA.

Lee’s CASE 1 Implementation. Recently, Lee et al. published a white-box imple-
mentation of AES secure against the DCA attack (Lee et al., 2018) which consists in
applying additional countermeasures to the original implementation of Chow et al..
Three protection cases are suggested: CASE 1 uses some masking techniques before
applying internal encodings to protect the first and last round of the implementa-
tion; CASE 2 and CASE 3 work as CASE 1 but with larger internal encodings (byte
instead of nibbles) applied to more variables in the outer rounds. An implementa-
tion (under the form of a binary program) was made publicly available for CASE
13 but not for CASE 2 nor CASE 3. In this work, we do not intend to give a full
cryptanalysis of Lee’s proposal, but we point out that the masking technique can
be bypassed by targeting an input byte of the second round, i.e., an output byte of
the first-round MixColumn, which allows us to apply a simple DCA-like attack as
described below.

8.3.2 Target Variables

In all our experiments, we select one MixColumn output byte in the first round as
our target. Such a byte s satisfies

s = MixColumn
(
S(x1 ⊕ k∗1), S(x2 ⊕ k∗2), S(x3 ⊕ k∗3), S(x4 ⊕ k∗4)

)
= S(x1 ⊕ k∗1)⊕ S(x2 ⊕ k∗2)⊕ 2 · S(x3 ⊕ k∗3)⊕ 3 · S(x4 ⊕ k∗4) ,

where S denotes the AES s-box, (x1, x2, x3, x4) are four plaintext bytes, and the above
multiplications (by 2 and 3) are in the field F28 .

In order to reduce the key space for guessing such a byte, we select some random
plaintext with fixed values for x3 and x4 (specifically x3 = x4 = 0). Doing so, the
byte s can be rewritten as s = S(x1⊕ k∗1)⊕ S(x2⊕ k∗2)⊕ c∗ for some (secret) constant
c∗ and the encoded byte ε(s) is identically distributed (over a random choice of ε) to
the byte ε

(
S(x1 ⊕ k∗1)⊕ S(x2 ⊕ k∗2)

)
. We then make a 2-byte key guess (k1, k2) and

1See http://www.nosuchcon.org/2013/ and http://seclists.org/fulldisclosure/2013/Apr/133.
2See https://github.com/SideChannelMarvels/Deadpool/tree/master/wbs_aes_nsc2013_variants.
3See https://github.com/SideChannelMarvels/Deadpool/tree/master/wbs_aes_lee_case1.

http://www.nosuchcon.org/2013/
http://seclists.org/fulldisclosure/2013/Apr/133
https://github.com/SideChannelMarvels/Deadpool/tree/master/wbs_aes_nsc2013_variants
https://github.com/SideChannelMarvels/Deadpool/tree/master/wbs_aes_lee_case1
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calculate the predictions of the target byte as

φk1,k2(x1, x2) = S(x1 ⊕ k1)⊕ S(x2 ⊕ k2)

for each plaintext with bytes (x1, x2). Our selection function φ is hence a (16, 8)-VBF
and the size of the key space is 216.

Although we only focus on recovering two key bytes, we could easily repeat this
attack by swapping the fixed pair of bytes to recover k∗3 and k∗4 and do the same
for the three other MixColumn computations. Moreover, we can fix a pair of bytes
in each column while collecting the traces, so that only two sets of traces would be
sufficient to recover the full key.

8.3.3 DCA Attacks

For each implementation, some preliminary analysis of the binary allowed us to
obtain the addresses of the executable code segment in the virtual memory. We
were then able to collect the bytes written on the stack during an execution. For
such a purpose we used the SideChannelMarvels Tracer tool.4 We thus obtained
computation traces composed of 1850 and 21536 byte samples for the NSC variant
and Lee’s CASE 1 implementation respectively. Each of these samples was split into
bits to get binary traces from which we removed the duplicated columns. We finally
obtained binary computation traces composed of 6077 and 24012 samples for the
NSC variant and Lee’s CASE 1 implementation respectively.

For the NSC variant, we collected 1,800 traces from which we computed the cor-
relation traces for each key guess as described in Section 3.2.1. As an illustration,
Figure 8.1 plots the correlation traces obtained when the least significant bit of the
target variable is used as the prediction function. The attack was conducted for the
8 prediction bits, and the correct key guess was ranked first (among the 216 guesses)
in 4 out of 8 attacks.

Figure 8.1: DCA correlation traces on the NSC variant for the good
key guess (in blue) and 256 (out of 216 − 1) incorrect key guesses (in

gray).

One can observe multiple peaks in the correlation trace for the right key guess
that might correspond to different manipulations of the target variable through dif-
ferent encodings ε. It is worth noting that, as exhibited in our analysis, these peaks

4See https://github.com/SideChannelMarvels/Tracer.

https://github.com/SideChannelMarvels/Tracer


128 Chapter 8. Practical Attacks

converge towards correlation scores which are multiples of 2−m+2 i.e., of 1
64 for

m = 8. The first clearly distinguishable peak is around 5
64 ≈ 0.078 while the two

next peaks are around 6
64 ≈ 0.094 (the match is not perfect due to the estimation

error).
Using 1800 traces implies that the average noise in the correlation trace is around√

1/1800 ≈ 0.02 (which reaches 0.06 when we take the max over 256 correlation
traces as we observe in Figure 8.1). That is why only the peaks around 6

64 are clearly
distinguishable from the noise and that is why the maximal peak is reached for the
good key guess for only 4 selection bits out of 8. Taking more traces would cer-
tainly ensure that smaller multiples of 1

64 could also be distinguishable from the
noise which would increase the number of prediction bits (up to 8) for which the
attack works.

For Lee’s CASE 1 implementation, we were able to mount a successful attack
using 4000 traces. The obtained correlation traces are very similar to Figure 8.1 which
all includes a few distinguishable peaks for the right key guess.

8.3.4 Collision Attacks

We also experiment our collision attack against the NSC variant and Lee’s CASE 1
white-box implementation. We use the same target variable as in our DCA exper-
iments, which is a MixColumn output in the first round, turned into a (16, 8)-VBF
–with a key space of size 216– by fixing two input bytes (see Section 8.3.2 for details).

Our collision attack recovers the two key bytes using 60 computation traces only
(which is to be compared with the 1800 traces required by DCA). As an illustration,
Figure 8.2 plots the correlation traces for the correct key guess and for 256 (out of
216− 1) incorrect key guesses. We observe some correlation peaks to 1 for the correct
key. For the key guess ranked second, we observe a few peaks reaching 0.5 whereas
for the other key guesses most of the peaks are around 0.25 or lower than this value.

Figure 8.2: Collision attack traces on the NSC variant for the good
key guess (in blue) and 256 (out of 216 − 1) incorrect key (in gray).

The same collision attack has been applied to Lee’s CASE 1 implementation and
could also recover the correct (two-byte) key guess using 60 traces. Although no im-
plementations of Lee’s CASE 2 & 3 are publicly available, we note that these variants
(which consist in applying byte encodings to internal rounds) should not prevent
our collision attack.
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8.3.5 MIA Attacks

We perform practical experiments for the generic and improved MIA against the
NSC variant implementation. We use the same target variable as in our DCA and
collision attack experiments, which is a MixColumn output in the first round, turned
into a (16, 8)-VBF –with a key space of size 216– by fixing two input bytes (see Sec-
tion 8.3.2 for details). For each attack, we first perform some preprocessing step in
order to speed up the attack.

Preprocessing. In order to save some computation, we detect all the “information-
ally equivalent” samples in the collected traces, namely indexes i and j for which

Ĥ(Vi) = Ĥ(Vj) = Î(Vi ; Vj) ,

or equivalently for which there is a one-to-one relation between the samples (v(ℓ)i )ℓ∈[N]

and (v(ℓ)j )ℓ∈[N]. We then remove these “informational” duplicates (i.e., we either
drop the column i or the column j in the set of computation traces). This can be
done efficiently by grouping the indexes for which Ĥ(Vi) has a given value and only
computing Î(Vi ; Vj) within each group. This preprocessing allows us to compress
the computation traces by a factor 10 (from 1850 samples to 185), which is especially
interesting given the large key space |K| = 216.

Standard MIA. We could recover the two key bytes (ranked first) with standard
MIA using 115 traces. As an illustration, we plot the mutual information traces for
the right key guess and 256 (out of 216 − 1) in Figure 8.3. These are obtained using
150 computation traces in order to make the right guess peak clearly visible.
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Figure 8.3: Mutual information traces for the correct key guess (in
blue) and 256 (out of 216 − 1) incorrect key guesses (in gray).

Improved MIA Attack. Our experiments show that the improved MIA attack sub-
stantially decreases the number of required traces. Namely, we can recover the right
key guess using 70 traces. We observe that only the correct key guess has a positive
score, i.e., Ĥ(φ∗) ≈ 5.89, and all the incorrect key guesses have a score close to 0.
This is quite similar to our collision attack, which requires 60 traces to recover the
same two key bytes on the same implementation.
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8.4 Break of the Winning Challenge of WhibOx 2017

In this section, we will explain how we could gradually extract the key from the
winning challenge (presumably the hardest) in the WhibOx 2017 white-box cryptog-
raphy competition (WhibOx, 2017). This was achieved in several steps following the
methodology described in Section 8.2, i.e., reverse engineering, SSA transformation,
circuit minimization techniques, data dependency analysis, and algebraic analysis.
To validate our attacks, we open-source some intermediate results and tools of our
cryptanalysis on Adoring Poitras in the following git repository:

https://github.com/junwei-wang/WhibOx-breaking-adoring-poitras

8.4.1 The Winning Implementation

The winning implementation of (WhibOx, 2017), named Adoring Poitras,5 was
submitted by Biryukov and Udovenko from the University of Luxembourg. The
challenge has been alive for 28 days which was twice more than the second one. As
far as we know, it was broken only once by us to date.

The size of its source code is about 28 MB. Interestingly, as it includes two long
strings with extended ASCII characters (ISO/IEC 8859-1:1998, 1998), it takes more
than 30 hours for some compilers (e.g., Clang, which is not the reference compiler)
to finish the compilation.6 A summarized description of the original source code of
Adoring Poitras is listed in Table 8.1. More specifically, it consists of 2328 lines of

Table 8.1: An overview of the source code of Adoring Poitras.

#lines 2328
#functions 1020
#global variables 12
funcptrs size 210
pDeoW size 221 B
JGNNvi size 15 284 369 B

code, 1020 function definitions, and 12 global variables. Most of the global variables
are pointers, but one global variable is an array of 210 function pointers (funcptrs)
and two other global variables pDeoW and JGNNvi are large arrays with numerous
extended ASCII characters.

We explain in this section how to gradually extract the key from Adoring Poitras
which is protected by several advanced obfuscation techniques in a few steps. Firstly,
we perform some reverse engineering on the source code to remove several obfusca-
tion layers and obtain a Boolean circuit. Then, we transform the Boolean circuit into
the single static assignment (SSA) form which enables us to minimize it by detecting

5The name was generated by the server. Source code available at https://whibox-contest.
github.io/show/candidate/777.

6Experiments are done with Apple LLVM version 9.0.0 on macOS 10.12 and clang version 3.8.1 on
Alpine Linux 3.5. The latter is the reference OS used by the contest server.

https://github.com/junwei-wang/WhibOx-breaking-adoring-poitras
https://whibox-contest.github.io/show/candidate/777
https://whibox-contest.github.io/show/candidate/777
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and removing many intermediate variables either constant, or redundant, or pseu-
dorandom (with no impact on the final result). Based on this minimized Boolean
circuit, we conduct a data dependency analysis to identify some specific encoded
operations (e.g., first-round AES s-boxes). Finally, we perform a generic algebraic
analysis based on a linear decoding assumption which turned out to be true. From
the processed (encoded) data over several executions, we are able to extract the 16
AES key bytes. Overall, it took us roughly 200 man-hours (spread over 3 weeks)
to break this challenge: about one third of the time was spent on reverse engineer-
ing; another third was for data dependency analysis and minimization of the circuit;
and the remaining time was for seeking possible attacks and applying our algebraic
analysis. Undoubtedly, we spent a lot of time investigating reverse engineering and
attack strategies that turned out to be useless in the end. If we repeated our attack
on an implementation from the same white-box compiler but for a different key and
randomness, we could probably break it in a few hours (which could be dramati-
cally improved with software tools). In the following sections, we will describe the
above steps in detail.

8.4.2 Reverse Engineering

For some reason (e.g., in order to obscure the design ideas), the source code Adoring
Poitras is deliberately obfuscated with several code obfuscation techniques, e.g.,
naming obfuscation, virtualization obfuscation (Rolles, 2009). We will go through
how to unpack each obfuscation layer by reverse engineering. There is no obvious
boundary between any two steps. Let us start with readability processing.

Readability Processing

The names of all the variables, functions and parameters in the original source code
are obfuscated as shown below:

1 void xSnEq (uint UMNsVLp, uint KtFY, uint vzJZq) {
2 if (nIlajqq () == IFWBUN (UMNsVLp, KtFY))
3 EWwon (vzJZq);
4 }
5

6 void rNUiPyD (uint hFqeIO, uint jvXpt) {
7 xkpRp[hFqeIO] = MXRIWZQ (jvXpt);
8 }
9

10 void cQnB (uint QRFOf, uint CoCiI, uint aLPxnn) {
11 ooGoRv[(kIKfgI + QRFOf) & 97603] = ooGoRv[(kIKfgI + CoCiI) | 173937]
12 & ooGoRv[(kIKfgI + aLPxnn) | 39896];
13 }
14

15 uint dLJT (uint RouDUC, uint TSCaTl) {
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16 return ooGoRv[763216 ul] | qscwtK (RouDUC + (kIKfgI << 17), TSCaTl);
17 }

Actually, only 210 of these functions listed in the funcptrs are invoked in the
computation, in other words, nearly 80% of defined functions are never used. Be-
sides, all these 210 useful functions are duplicate definitions of only 20 functions.
With the help of the above observation, we perform a readability processing of the
original code, including:

• renaming variables, functions and parameters,

• eliminating dummies and duplicates,

• rewriting constants in a meaningful way, and

• combining codes if necessary.

Technically, most of the processing here was handled manually. In the end, we ac-
quire source code with 20 easily understood functions shown in the code listing
below. With the help of some understanding (discussed in the following sections),
these functions can be classified into several categories: input reading and output
writing, bitwise operations, bit shifts, table lookups, assignments, control flow prim-
itives, and dummy functions. We will refer to their names in the following if neces-
sary.

1 uint a, b; // a is used in table lookup
2 // b is used for updating
3 const uint T[] = "..."; // 2^18 uint array
4

5 /* input reading and output writing */
6 void read_plaintext(uint addr, uint pos)
7 { assign(addr, plaintext[pos]); }
8 void write_ciphertext(uint pos, uint addr)
9 { ciphertext[pos] = lookup1(addr); }

10 void expand_bit(uint to, uint from, uint pos) {
11 // expand bit to unsigned long integer
12 T[(a + to) & 0x3ffff] = -((T[(a + from) & 0x3ffff] >> pos) & 1);
13 }
14

15 /* bitwise operations */
16 void not(uint to, uint from) {
17 T[(a + to) & 0x3ffff] = ~T[(a + from) & 0x3ffff];
18 }
19 void or(uint to, uint from1, uint from2) {
20 T[(a + to) & 0x3ffff] = T[(a + from1) & 0x3ffff]
21 | T[(a + from2) & 0x3ffff];
22 }
23 void xor(uint to, uint from1, uint from2) {
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24 T[(a + to) & 0x3ffff] = T[(a + from1) & 0x3ffff]
25 ^ T[(a + from2) & 0x3ffff];
26 }
27 void and(uint to, uint from1, uint from2) {
28 T[(a + to) & 0x3ffff] = T[(a + from1) & 0x3ffff]
29 & T[(a + from2) & 0x3ffff];
30 }
31

32 /* bit shifts */
33 void right_shift_xor(uint to, uint from, uint pos) {
34 if (pos > 63) // always false
35 return;
36 T[to & 0x3ffff] ^= T[(a + from) & 0x3ffff] >> pos;
37 }
38 void left_shift_xor(uint to, uint pos, uint from) {
39 uint tmp = (T[(a + from) & 0x3ffff]) & 1;
40 T[(a + to) & 0x3ffff] ^= tmp << pos;
41 }
42

43 /* table lookups */
44 uint lookup1(uint addr) { return T[(a + addr) & 0x3ffff]; }
45 uint lookup2(uint x, uint y) { return T[(x + y) & 0x3ffff]; }
46 void update_a() {
47 a = lookup2(1592, (b >> 6) + ((b & 63) << 12));
48 }
49 void update_b() {
50 b = 0x7fff & lookup2(522, (b >> 6) + ((b & 63) << 12));
51 }
52

53 /* assignments */
54 void assign_a(uint val) { a = val; }
55 void assing_b(uint from) { b = T[from] & 0x07fff; }
56 void assign(uint to, uint val) { T[(a + to) & 0x3ffff] = val; }
57 void copy(uint to, uint addr) { assign(to, lookup1(addr - a)); }
58

59 /* control flow primitives */
60 void goto_func(uint pos) { // ‘‘goto’’ in the virtual machine
61 pc = bop + pos;
62 }
63 void jump_if(uint x, uint y, uint pos) { // conditional jump
64 if (lookup2(2979, (b >> 6) + ((b & 63) << 12)) == lookup2(x, y))
65 goto_f(pos);
66 }
67

68 /* dummy function */
69 void mistery(uint to, uint from) {
70 T[(a + to) & 0x3ffff] =
71 T[(((~T[(a + from) & 0x3ffff]) & 0x7fff) >> 6) + 2979
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72 + ((((~T[(a + from) & 0x3ffff]) & 0x7fff) & 63) << 12)];
73 }

De-Virtualization

After the readability processing, the source code is much easier to understand, and
we can observe that the overall program relies on a virtual machine as illustrated
in the code listing hereafter, which is a common obfuscation technique in modern
software protection and malware (Rolles, 2009).

1 uint T[] = "..."; // 2^18 uint memory, renamed from pDeoW
2 char program[] = "..."; // 15284369 bytes, renamed from JGNNvi
3 void * funcptrs = {"..."};
4

5 void interpretor() {
6 uchar *bop = (uchar *) program;
7 uchar *eop = bop + sizeof (program) / sizeof (uchar);
8 uchar *pc = bop;
9 while (pc < eop) {

10 uchar args_num = *pc++;
11 if (args_num == 0) {
12 void (*func_ptr) ();
13 func_ptr = (void *) funcptrs[*pc++];
14 uint *arg_arr = (uint *) pc;
15 pc += args_num * 8;
16 func_ptr ();
17 } else if (args_num == 1) {
18 void (*func_ptr) (uint);
19 func_ptr = (void *) funcptrs[*pc++];
20 uint *arg_arr = (uint *) pc;
21 pc += args_num * 8;
22 func_ptr (arg_arr[0]);
23 } else if (args_num == 2) {
24 void (*func_ptr) (uint, uint);
25 func_ptr = (void *) funcptrs[*pc++];
26 uint *arg_arr = (uint *) pc;
27 pc += args_num * 8;
28 func_ptr (arg_arr[0], arg_arr[1]);
29 }
30 // similar branches for ags_num = 3, 4, 5, 6
31 }
32 }
33
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34 void AES_128_encrypt(uchar * ciphertext, uchar * plaintext) {
35 interpretor();
36 }

Specifically, the authors of the challenge implemented a virtual environment with
an interpreter of a bytecode program. The program is a sequence of instructions,
each of which is either a conditional jump to a previous instruction or a function call
written in the following format:7

[number of arguments][function pointer index][argument list] ,

where [number of arguments] is one byte indicating the number of arguments,
and [function pointer index] is one byte giving the index of the called func-
tion within the array of function pointers (i.e., the global variable funcptrs), and
[argument list] is the sequence of arguments, each taking eight bytes. In the run-
time, the interpreter loads an instruction, then translates it into a function call with
corresponding arguments.

In order to remove this virtualization layer, we construct a new equivalent pro-
gram in the C language by simulating the interpreter. In detail, after the decoding of
all the instructions, we rewrite the conditional jumps as do ... while loops, and con-
struct function calls with their arguments from the bytecode program. We thus get a
C program composed of do ... while loops and some calls to the 20 useful functions
with hard-coded arguments.

Simplification of the Bitwise Program

The overall structure of the bitwise program is shown in Algorithm 8.1. The de-
fault data type is unsigned 64-bit integer (uint). The program contains a globally-
accessible table T (renamed from pDeoW) of 218 64-bit words (i.e., 221 bytes) initialized
to some hardcoded values. At the beginning of the program, each bit bi is expanded
to a full word (by the operation −bi mod 264) which is assigned to some location
addri,1 in T. Then, each expanded bit T[addri,1] is copied to 63 locations

addr
(1)
i,1 , addr(2)i,1 , · · · , addr(63)

i,1

in the table, where
addr

(n)
i,1 = addri,1 + 212 · n mod 218.

Then the program performs a sequence of 2573 bitwise operation loops, followed
by one bit combination loop (pictured in Algorithm 8.3 below), then by 9 additional
bitwise operation loops. The bit combination loop is the only one to involve bit

7The conditional jump is is also implemented as a function in the same format (see goto_func and
jump_if functions above). Particularly, it is used for simulating the do ... while loop in a high-level
language, where the first two arguments are used for condition checking and the third arguments is
the destination.
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shifts. In comparison, the bitwise operation loops only perform bitwise operations
(i.e., binary operations applied in parallel to each bit slot of 64-bit operands). In the
end, the program outputs each ciphertext bit from a different location addr2,i in table
T.

Algorithm 8.1 Structure of the bitwise program
Input: plaintext bits (b1, b2, · · · , b128), unsigned long integer table

T of length 218 with initial values
Output: ciphertext bits (c1, c2, · · · , c128)

1: for i = 1 to 128 do
2: T[addr1,i]← −bi ▷ expand bi to unsigned long integer
3: for j = 1 to 63 do
4: T[addr1,i + j ∗ 212 mod 218]← T[addr1,i]

5: end for
6: end for

7: BITWISEOPERATIONLOOP1 ▷ see Code 8.2
8: BITWISEOPERATIONLOOP2
9: · · ·

10: BITWISEOPERATIONLOOP2573

11: BITCOMBINATION ▷ see Code 8.3

12: BITWISEOPERATIONLOOP2574
13: · · ·
14: BITWISEOPERATIONLOOP2582

15: for i = 1 to 128 do
16: ci ← T[addr2,i]

17: end for

Loops before BITCOMBINATION. Through basic debugging methods, we observe
that the bitwise operation loops are each composed of 64 iterations performing up
to 504 statements (except the very last loop which has 2051 statements). The basic
structure of these loops is depicted in Algorithm 8.2 hereafter. A statement simply
consists of a bitwise operation (xor, or, and, not) with one or two operands picked
from different locations in the table T. The result of the bitwise operation is stored
at another location in T. We denote by

{addr1, addr2, · · · , addrN}
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the accessing address sequence, namely, the locations read and written in table T by
the statements (in chronologic order) in the first round of loop.

Algorithm 8.2 Example of a bitwise operation loop

1: for i = 0 to 63 do
2: j← P(i) ▷ P is a permutation of {0, 1, · · · , 63} and P(0) = 0
3: T[addr3 + j ∗ 212 mod 218]←

T[addr1 + j ∗ 212 mod 218]⊕T[addr2 + j ∗ 212 mod 218]

4: T[addr5 + j ∗ 212 mod 218]←
T[addr3 + j ∗ 212 mod 218]∧T[addr4 + j ∗ 212 mod 218]

5: T[addr8 + j ∗ 212 mod 218]←
T[addr6 + j ∗ 212 mod 218]∨T[addr7 + j ∗ 212 mod 218]

6: T[addr9 + j ∗ 212 mod 218]← ¬T[addr8 + j ∗ 212 mod 218]

7:
...

8: end for

All these addresses are computed from a global variable a which is updated in
each loop iteration using a second global variable b and an update mechanism as
follows:

1 int a, b; // global variables
2

3 assign_b(219964);
4 do{
5 update_a();
6 // bitwise operations
7 // ...
8 // ...
9 update_b();

10 } while(lookup2(2979, (b >> 6) + ((b & 63) << 12)) !=
11 lookup2(815257, 237931));

Let us denote by a0, a1, . . . , a63, the successive values taken by the global variable
a in the 64 iterations, so that the ith instruction addri = aj + ci in iteration j, where
ci is constant and 0 ≤ j ≤ 63. By inspecting the sequence of aj’s, we observe that it
satisfies

aj = a0 + pj · 212 mod 218,

where pj ∈ {0, 1, . . . , 63} for every j. Moreover, a closer inspection shows that
pj = P(j) for some permutation P defined over {0, 1, . . . , 63}. We did not try to un-
derstand whether there was some underlying mathematical principle in P (beyond
the fact it is a permutation).

At this point, we aim to identify some properties of these loops that would reveal
some structure in the program. One interesting observation is that for some loops,
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there exist 1 ≤ i, j ≤ N and i 6= j such that addri is a reading address, and addrj is a
writing address, and addri ≡ addrj mod 212 (that is ci ≡ cj mod 212). This implies
that some memory locations are both read and written during the loop execution.
Such loops are said to be overlapping; the other loops are said to be non-overlapping.
There are 1020 overlapping loops and 1562 non-overlapping loops in the program.
Besides, there is no isolated (non-)overlapping loop in the program. With this ob-
servation, the program is divided into 27 parts, each of which only consists of either
overlapping or non-overlapping loops. In the beginning, we thought this partition
was related to the AES round operations, but we did not extract any useful informa-
tion out of this observation.

Afterward, by inspecting some arbitrary overlapping loop, we can observe that
its inner statements simply consist in some swaps between memory locations in the
table T. These swaps are implemented through different sequences of bitwise oper-
ations, as shown in the sample code listed below. The operands indicate the address
in table T. The first operand is for the result, while the remaining ones are for the
inputs.

1 // swapping values in T[248329] and T[178697]
2 // where 248329 = 178697 mod 2^12
3 not(225586, 248329);
4 not( 99382, 178697);
5 not(125856, 99382);
6 xor( 13816, 225586, 99382);
7 xor( 33114, 99382, 225586);
8 not( 20933, 13816);
9 not(188758, 225586);

10 not(180239, 33114);
11 or(261865, 180239, 133397);
12 or( 94096, 20933, 133397);
13 xor(201945, 261865, 125856);
14 xor( 3792, 94096, 188758);
15 not(248329, 3792);
16 not(178697, 201945);
17

18 // swapping values in T[92413] and T[22781]
19 // where 92413 = 22781 mod 2^12
20 not( 24583, 92413);
21 not(146257, 22781);
22 xor( 67653, 146257, 133397);
23 xor(234702, 24583, 133397);
24 or(181444, 24583, 133397);
25 and(172013, 234702, 24583);
26 or(110852, 172013, 146257);
27 and(248606, 110852, 181444);
28 or( 79222, 146257, 133397);
29 and(146881, 67653, 146257);
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30 or( 86050, 146881, 24583);
31 and( 44767, 86050, 79222);
32 not( 92413, 44767);
33 not( 22781, 248606);

Moreover, we can further observe that two swapped addresses are always equiv-
alent modulo 212. More noteworthy, these swaps seemed useless with respect to the
functional correctness of the program. We thus obtain our first simplified program
by removing all overlapping loops (except for the BITCOMBINATION discussed in
the next paragraph). We believe the simplified code is functionally equivalent to
the original program since their outputs always match on many randomly chosen
inputs. Furthermore, since the remaining loops are non-overlapping (i.e., all the
written memory locations are not used during the execution of the current loop), the
permutation P can be replaced with the identity function (i.e., P(j) = j, 0 ≤ j ≤ 63).
Or even better, we can rewrite the do ... while loop as a for loop from 0 to 63. We
again verify our conjecture by comparing the program outputs before and after mod-
ification for a large number of encryptions (of random plaintexts). Now we acquire
a new simpler version in which the permutations before BITCOMBINATION are all
removed.

Algorithm 8.3 BITCOMBINATION (reconstructed for comprehension)

1: procedure BITCOMBINATION

2: for ℓ = 1 to 129 do
3: T[addr3,ℓ]← vℓ ▷ vℓ ∈ F2 is a hardcoded constant
4: for j = 1 to 64 do
5: T[addr3,ℓ]← T[addr3,ℓ]⊕ PARITY(T[addr4,ℓ + j ∗ 212 mod 218])

6: T[addr3,ℓ]← T[addr3,ℓ]⊕ PARITY(T[addr5,ℓ + j ∗ 212 mod 218])

7: end for
8: end for
9: end procedure

1: procedure PARITY(x) ▷ the number of 1-bits in x modulo 2
2: r ← 0
3: for i = 0 to 63 do
4: r ← r⊕ (x � i)&1
5: end forreturn r
6: end procedure

BITCOMBINATION and the Remaining Loops. Algorithm 8.3 illustrates how BIT-
COMBINATION works. It first assigns 129 locations (addr3,ℓ)1≤ℓ≤129 in T with Boolean
constants (namely either 0x00...00 or 0x00...01). Then each of these table loca-
tions is further xor-ed with the parity bits (each of which is computed through 64
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simple instructions) of 128 different values stored in addr4,ℓ + j ∗ 212 mod 218 and
addr5,ℓ + j ∗ 212 mod 218, for some addresses addr4,ℓ and addr5,ℓ and for 1 ≤ j ≤ 64.
The 129 64-bit words output from BITCOMBINATION are hence Boolean variables.
Moreover, after the remaining loops, all the ciphertext bits are the least significant
bits of some specific 64-bit words in T. Therefore, we deduce that only the least
significant bits of the remaining computations after BITCOMBINATION influence the
outputs, i.e., everything happening after BITCOMBINATION can be seen as a Boolean
circuit.

Besides, we observe that only a single iteration in the last bitwise operation loop
affects the output ciphertext, which means that we can replace this loop by a single
iteration (for a given value of the loop index i). Then we can reiterate this observation
with the loop before, and so on until the BITCOMBINATION loop. In the end, the
operations after BITCOMBINATION is simplified as a Boolean circuit made of one
iteration of each former loop.

Entire Transformation to a Boolean Circuit

Similar observations and conjectures can be applied to the loops before BITCOMBI-
NATION. Specifically, observing that all the operations are bitwise and that any two
bits in different positions of the operands never communicate with each other until
BITCOMBINATION, we conjecture that

(1) the ith bit of the intermediate values in the jth loop iteration corresponds to
one independent partial AES computation (i.e., not complete without the oper-
ations after BITCOMBINATION),

(2) only one (or odd number of) such independent computation(s) in 64*64 of
them is (are) real.

To verify this conjecture, we tried to execute BITCOMBINATION while skipping one
bit index 1 ≤ i ≤ 64 in the parity computation for one loop index 1 ≤ j ≤ 64. For
three pairs (i, j), we observed the 129 outputs of BITCOMBINATION were constant
to 0 over several plaintexts. We deduced that real AES computations are performed
in the ith bit slot of the jth iteration for (i, j) ∈ {(42, 26), (58, 32), (10, 48)} before BIT-
COMBINATION. Therefore, we can simplify the code by picking any single separate
AES computation and verify our guess in the usual way. Accordingly, the bitwise
program is fully transformed into a Boolean circuit.

8.4.3 SSA Transformation and Circuit Minimization

Although we get a Boolean circuit, we still lack knowledge about how it works, e.g.,
where each round is computed. As in a typical unpacking story, we perform some
static and dynamic analyses to acquire more information. In the current represen-
tation, many intermediate variables are both written and read several times, which
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presumably hides some facts on the data flow. We hence rewrite the Boolean circuit
into single static assignment (SSA) form according to Section 8.2.

After SSA transformation, we attempt to reduce the Boolean circuit by applying
circuit minimization techniques described in Section 8.2. Specifically, we can detect
removable intermediate variables, including constants, duplicates, pseudorandom-
ness, and dummy variables, by executing the implementation with a large number
of randomly sampled plaintexts (along with flipping variables for detecting pseu-
dorandomness). Then we can replace the pseudorandom variables by 0’s, remove
duplicates and dummy variables and propagate the constants according to the dif-
ferent operations. We apply each step between 2 and 5 times except for the removal
of dummy variables that is applied a dozen times. We obtain a minimized circuit of
280 thousand gates (Boolean instructions), which is about half of the original size.

8.4.4 Data Dependency Analysis

A visual way to analyze data dependency of a circuit is to plot its data dependency
graph (DDG), a directed acyclic graph (DAG) in which a vertex stands for an inter-
mediate variable (an address in T in our case) and a directed edge means a variable
(ending vertex) is computed from another variable (starting vertex). We extract and
plot data dependency graph of our minimized circuit using Mathematica.8 Specifi-
cally, for each statement in the minimized circuit, we first generate one/two directed
edges from the addresses of its operands to the address of its destination; then we
get an ordered sequence of edges according to the order in which the relevant gates
appear in the circuit. Then we invoke the Graph function of Mathematica with the
sequence of edges to plot the DDG. At first, we attempt to plot a figure for the whole
DDG, but fail since it is too costly to produce such a large graph for Mathemat-
ica with a standard computer. Then we try to plot some smaller part of the circuit
DDG, starting with the first 20% which looks like a mess as shown in the left of Fig-
ure 8.4. Afterward, we try plotting the first 10% of the DDG as shown in the right
of Figure 8.5, but we can only extract a limited amount of valuable information with
the exception of some kind of symmetry as illustrated by the red line on the fig-
ure. We keep going and plot the 5% of the DDG as represented in Figure 8.6 which
reveals much more structure than our previous observations. A mysterious “ball”
is located in the center of the graph, which is mainly composed of the first edges
(i.e., the beginning of the circuit), and 16 “branches” come out from this central ball,
divided into four groups for which the four branches eventually join. The plotted
circuit starts from the center and ends with flake structures. Seemingly, the begin-
ning of the circuit has a highly complex data dependency and the variables inside
are deeply mixed together and then extensively used in future computation since
our minimization process cannot get rid of them.

8See https://www.wolfram.com/mathematica/.

https://www.wolfram.com/mathematica/
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Figure 8.4: The data dependency graph for the first 20% edges plot-
ted by Mathematica.

Figure 8.5: The data dependency graph for the first 10% edges plot-
ted by Mathematica.

Figure 8.6: The data dependency graph for the first 5% edges plotted
by Mathematica.
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Extracting S-Box Encodings

Based on our knowledge of the AES structure, we make the heuristic assumption
that the “branches” correspond to the 16 s-box computations in the first round of
AES which are then mixed four by four through the MixColumns operations.

If our assumption is correct, the set of outgoing variables of a branch (i.e., the
set of variables computed inside the branch and which are used later in the pro-
gram) must be an encoding of the output s-box value. In order to extract the set
of outgoing variables, we apply modularity-based clustering algorithms (Newman,
2004) to the data dependency graph. Specifically, we apply the Mathematica func-
tion FindGraphCommunities to the first 5% of the DDG. The graph is then divided
into several communities (clusters) in a way that the vertices in the same commu-
nity have a denser connection than a set of vertices from different communities. This
way, we can isolate each “branch” in Figure 8.6 and obtain the corresponding set of
vertices from which we extract the set of outgoing variables. Note that in practice,
the clustering algorithm was not necessarily applied the first 5% of the DDG but a
tuning over the search window was manually applied (see details in Table 8.2). The
number of vertices in the recovered clusters is between 439 and 615 per cluster, and
the number of outgoing variables scales from 29 to 57.

At this step, we have 16 sets of variables which are presumably 16 encodings of
the first round s-box outputs. We now explain how we could break these encodings
and recovered the corresponding secret key bytes.

8.4.5 Algebraic Analysis

Let us denote by v1, v2, . . . , vt, the t outgoing (binary) variables of an s-box cluster,
that presumably encode an s-box output. Let us denote by x the plaintext byte and
by k∗ the secret key byte corresponding to this s-box computation. Then, if our data
dependency analysis is correct (namely if the vi’s indeed encode the s-box output),
there exists a deterministic decoding function dec : {0, 1}t → {0, 1}8 satisfying:

dec : (v1, v2, . . . , vt) 7→
(
S1(x⊕ k∗), . . . , S8(x⊕ k∗)

)
where Sj(·) denotes the jth Boolean coordinate function of the AES s-box.

Our algebraic analysis works by assuming that dec is linear (actually affine) over
F2. As we show hereafter, this is enough to break Adoring Poitras but it can be
generalized to higher degree decoding functions (see Section 5.4). This linear decod-
ing assumption specifically states that for each output coordinate j ∈ {1, 2, . . . , 8},
there exists a constant vector a = (a0, a1, a2, · · · , at) ∈ Ft+1

2 such that

a0 ⊕
t⊕

i=1

ai · vi = Sj(x⊕ k∗) . (8.1)
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(Note that the coefficients ai are different for each output coordinate but we avoid an
additional index for the sake of clarity.) In other words, the jth output bit of the s-box
is encoded by a simple Boolean sharing and its shares are distributed among the vi

variables according to the ai coefficients: if ai = 1 then vi is a share of Sj(x⊕ k∗) and
if ai = 0 then Sj(x⊕ k∗) is independent of vi .

To validate our assumption, we hereafter apply our LDA attack described in
Section 5.2 to extract the subkey utilized in each s-box cluster. Specifically, we first
collect a set of N computation traces for the presumed s-box encoding, namely, we
execute the white-box implementation N times with random plaintexts and record
the values (v(i)1 , v(i)2 , . . . , v(i)t ), 1 ≤ i ≤ N, taken by the encoding variables for these N
executions. Then we iterate over the 256 possible key guesses k for the 16 possible
s-box positions and try to solve the following system of linear equations (with a0, a1,
. . . , at as unknowns):


1 v(1)1 v(1)2 · · · v(1)t

1 v(2)1 v(2)2 · · · v(2)t
...

...
...

. . .
...

1 v(N)
1 v(N)

2 · · · v(N)
t

 ·


a0

a1

a2
...
at


=


Sj(x(1) ⊕ k)
Sj(x(2) ⊕ k)

...
Sj(x(N) ⊕ k)

 ,

where x(i) denote the values taken by the plaintext byte x in the ith execution. If
our linear decoding assumption is true, then the above system is solvable for the
right s-box position and the right key guess k = k∗, which directly follows from
Equation 8.1, and the solution reveals the decoding function dec. On the other hand,
for an incorrect key guess, the chance to solve the system quickly becomes negligible
as the number N of traces increases above t, which has been formally discussed in
Section 5.3.

Note that the selection of the outgoing variables v1, v2, . . . , vt (which are basi-
cally the fringe edges of a cluster) is crucial for this attack to work. When a single
one happens to be missing then the system becomes unsolvable. This stresses the
importance of a sound clustering step for the subsequent success of this attack.

Practical Results

We perform the above algebraic analysis based on our linear decoding assumption
to extract the key from our minimized Boolean circuit. For each presumed s-box
cluster, we extract the outgoing variables and record a set of computation traces.
Thanks to the data dependency analysis (and the clustering step) described above,
the number t of outgoing variables is never more than a few dozens (specifically
at most 59). Moreover, we use up to N = 100 computation traces, which overall
yields some linear systems of dimensions lower than 80× 100 solvable within a few
microseconds on a desktop computer.
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For each cluster, we try to solve the linear systems obtained for all the pairs (k, j)
(key guess and s-box coordinate) and all the 16 s-box positions. For most clusters,
all the 8 systems obtained for a single s-box position and a single key guess are
solvable whereas the others are unsolvable, giving a strong presumption that we
have found the correct key byte. For one cluster, less than 8 systems are solvable, but
still for a single s-box position and a single key byte. And for a few other clusters,
no system is solvable at all. The two latter cases occur as a consequence of a wrong
cluster selection. In these cases, we have to fine-tune the clustering step by varying
the range of the input edges to eventually get some solvable systems (each time
for a single key guess). After recovering 14 out of 16 key bytes, we exhaust the
remaining ones (the 6th and 12th) by brute-force search (over a plaintext-ciphertext
pair computed with the white-box implementation)9and finally recover the full AES
key.

Table 8.2 depicts our practical results in detail. For each of the 16 s-boxes (but the
6th and the 12th for which we use exhaustive search) it gives the range of edges in
the DDG used for clustering, the number of vertices (or variables) in the extracted
cluster, the corresponding number of outgoing variables (parameter t), the number
of Boolean shares in the encoding of each s-box output bit (i.e., the Hamming weight
of the coefficient vector a), and the recovered key byte. Note that for the 8th s-box we
cannot solve the 8 systems corresponding to the right key guess but only 3 of them
(which explains ‘?’ for the number of shares).

Table 8.2: Clustering and algebraic analysis results

s-box edge range #cluster #outgoing vars (t) #shares (HW(a)) key byte

1 9,500 - 18,000 541 30 {8,6,7,5,8,3,3,7} 0x71
2 4,000 - 18,000 543 29 {7,7,6,9,8,7,7,8} 0x3c
3 4,000 - 13,500 530 34 {8,10,8,8,6,2,6,4} 0xcf
4 9,500 - 18,000 515 38 {6,9,8,6,6,11,9,9} 0x9f
5 9,500 - 20,000 571 41 {8,6,6,4,4,9,8,10} 0x27
6 - - - - 0x45
7 9,500 - 20,000 615 42 {2,11,5,6,7,10,3,8} 0xe5
8 9,500 - 24,000 500 59 {?,10,11,?,?,14,?,?} 0xbc
9 9,500 - 20,000 448 57 {4,6,7,8,7,6,6,12} 0x04
10 9,500 - 18,000 568 36 {8,6,6,6,6,12,6,8} 0x64
11 4,000 - 18,000 523 35 {9,5,7,9,3,3,8,7} 0xb9
12 - - - - 0x07
13 9,500 - 18,000 514 30 {8,5,4,7,5,5,5,6} 0x78
14 9,500 - 20,000 454 45 {14,9,13,12,14,15,10,16} 0xf4
15 9,500 - 18,000 505 30 {8,6,6,8,8,7,4,8} 0x77
16 9,500 - 18,000 439 49 {6,8,8,8,4,6,10,6} 0x07

For instance, for the third s-box, we can extract a cluster with 530 variables in
the edges ranging between 4000 and 13500 and among which 34 are outgoing vari-
ables. For this cluster, we can solve the 8 linear systems. For further illustration,
Table 8.3 exhibits the solutions of these 8 systems, where the encoding coefficients
are ordered chronologically. We observe that only 15 consecutive variables of the

9We could probably extract these bytes through the algebraic analysis as well, but it was faster to
search exhaustively.
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34 outgoing variables are used as Boolean shares to encode the 8 output bits of the
s-box. Moreover, some of these variables are involved as shares for more than one
output bit of the s-box. In other words, the decoding function is a 15-bit to 8-bit
linear mapping.

Table 8.3: The solution of the system of equations for each bit in the
3rd byte.

Bit Encoding coefficients

1 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8.4.6 Attack Summary

Our study reveals that Adoring Poitras mixes several obfuscation layers to resist
the known gray-box attacks against white-box implementations, and in particular,
DCA and DFA.

The innermost obfuscation layer consists of an AES circuit in which the bits mix
with pseudorandomness through binary linear applications. Higher-order DCA (see
Chapter 6) exploiting multiple samples in a computation trace could defeat such an
encoding scheme, but it would not be efficient on Adoring Poitras since the num-
ber of shares is relatively high for most of the s-box output bits and the attack com-
plexity grows exponentially in this number. This is why all our DCA attempts failed
to break Adoring Poitras. Besides, our efforts on DFA against Adoring Poitras
were ineffective due to some sound fault resistance mechanism (which was not fully
reverse engineered).

The middle obfuscation layer involves 4096 AES instances in parallel, three of
which are identical and using the real key whereas the others are based on dummy
keys. On one hand, the co-existing instances can be used as redundancy compu-
tation for error-detection; and on the other hand, the number of bit samples in the
computation greatly increases, resulting in a significant slow-down for collecting
and analyzing the (binary) computation traces.

The outer obfuscation layer comprises many different code obfuscation tech-
niques to harden any in-depth understanding of the implementation.

The composition of different encoding and obfuscation techniques at different
levels can make it a very hard job to break a white-box implementation. In particular,
one should try to protect the implementation against known generic attacks in order
to force the adversary to look for new attack paths. In this regard, the designers



8.5. Break of the Winning Challenge of WhibOx 2019 147

of Adoring Poitras did a good job and we would particularly retain the idea to
introduce many independent instances in parallel to increase the level of hiding and
serve as an error-detection mechanism at the same time.

8.5 Break of the Winning Challenge of WhibOx 2019

This section reports practical attack experiments from white-box implementations
submitted to the WhibOx 2019 competition (WhibOx, 2019). Specifically, we exhibit
successful key recovery attacks against the three wining challenges due to Biryukov
and Udovenko. We first describe the three implementations and explain how we
partially de-obfuscated them. Then we demonstrate that our novel data-dependency
higher-order DCA presented in Chapter 7 could break the three winning implemen-
tations. To reproduce our attacks, we open-source some crucial components in our
attacks in the following git repository

https://github.com/CryptoExperts/breaking-winning-challenges-of-whibox2019 .

As explained in this chapter, all three winning implementations were based on
state-of-the-art white-box countermeasures including a mix of linear and non-linear
masking (Biryukov and Udovenko, 2018) together with shuffling and additional ob-
fuscation. In this chapter, we give a thorough explanation of how we managed
to break all three implementations with advanced gray-box attacks (described in
Section 7.3) and our novel data-dependency analytic techniques (described in Sec-
tion 7.4), as well as a “lightweight” de-obfuscation. To the best of our knowledge,
this is the only technical report that breaks all the three implementations.

8.5.1 The Three Winning Implementations

The three winning white-box implementations of the WhibOx 2019 competition are
#100 (hopeful_kirch), #111 (elegant_turing), and #115 (goofy_lichterman). As
we will see, these three implementations are protected with a combination of linear
and non-linear masking together with additional obfuscation and shuffling (for two
of them). We summarize the performance achieved by the three implementations
according to our (desktop computer) measurements in Table 8.4.

8.5.2 De-Obfuscation and Implementation Structures

We explain hereafter the reverse engineering effort we had to take in order to obtain
implementations that we could easily target with gray box attacks.

Formatting

The three implementations are one-liner programs with an additional optimization
directive for GCC in the comment (first line of the source file). We first write a script
to turn the one-liner program into a several-line program by inserting a line break

https://github.com/CryptoExperts/breaking-winning-challenges-of-whibox2019
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Table 8.4: Performance of the winning implementations measured
under iMac (27-inch, late 2012) with a 3.4 GHz Intel Core i7 processor

and macOS Mojave Version 10.14.6

#100 #111 #115

Source Code Size (MB) 17.42 49.10 48.42
Binary Size (MB) 16.29 8.34 11.08
RAM (MB) 16.28 9.16 11.90
Execution Time (s) 0.352 0.052 0.068

Performance Score (by us) 3.03 7.65 6.49
Performance Score (by WhibOx) 3.07 7.73 6.50

in front of each void and unsigned char, or after each semicolon (;) and brace ({}).
This has to be done carefully since C language keywords are used in string variables
and inserting a line break for these cases would break the integrity of the program.
We believe this is used as an anti-de-obfuscation countermeasure. Then we re-indent
the code for further readability. The total number of lines in #100, #111, and #115
are about 21 thousand, 19 thousand, and 20 thousand respectively.

At this step, one can observe that #111 and #115 are two very similar implemen-
tations while #100 is slightly different from them. As a matter of fact, #111 and #115
were submitted the same day (right before the deadline) with a two-hour gap while
#100 was submitted three days earlier.

Renaming Symbols, Removing Dummies and Duplicates

After formatting the source code, we could observe that all symbols (including vari-
able names, function names, parameter names) were in the form of a random combi-
nation of three words connected by underscore characters. For illustration, hereafter
are a few lines of the source code of #100:

1 unsigned int *suricata_stanford_hypertext;
2 unsigned int orthography_automation_parallel;
3 void associativity_differential_discrete(void) {
4 nineteen_algorithms_gardening = 0ULL;
5 }
6 void AES_128_encrypt(char *polyalphabetic_set_cyberdating,
7 char *netzine_vocab_foundationer ) {
8 inscription_shape_writing(
9 (unsigned char *)netzine_vocab_foundationer,

10 (unsigned char *)polyalphabetic_set_cyberdating);
11 return;
12 }

At this point, based on our understanding of the code, we rename all symbols in
a meaningful way. At the same time, we remove all dummy operations (which
are never used) and we merge duplicated functionalities. As shown in Table 8.4,
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both source codes of #111 and #115 are close to 50 MB, but their binaries are much
smaller. We notice that there exist many long strings representing valid C source
code in which the symbols have the same three-word format which makes it hard to
distinguish between the inside and the outside of strings. Nevertheless, as we could
deduce, these strings are useless and removed at compilation, so that one can safely
remove them.

Virtual Machine

At this point, we have a human-readable source code and we can observe that it
includes a wide array. This array is used both as a read-only bytecode interpreted
by a virtual machine and as the program memory to write and read intermediate
variables. The memory location in the array is dynamic and depends on the plaintext
and the usage. However, we could realize the dependency of the memory location in
the array on the plaintext and the usage is breakable. Hence, we isolate the memory
for each usage (i.e., each piece of bytecode) from the long array.

The virtual machine of #100 is pretty simple as shown below. Three types of
instructions are implemented: group of bitwise XORs, group of bitwise ANDs (whose
inputs are possibly flipped), and rewinding the memory. The operand width is fixed
as 64 bits. The memory is used sequentially and it is rewound until it is fully used
by the third instruction. Hence, we can easily transform the bytecode into its single
static assignment (SSA) using a large memory.

1 void vm_for_100(u64 * memory, int steps) {
2 u64 * ptr = memory + 136;
3

4 while (step--) {
5 if (read_a_bit() == 0) {
6 // execute a certain number of bitwise XORs
7 u32 offset1 = read_18_bits();
8

9 int counter = 1;
10 while (read_a_bit() == 0) {
11 counter++;
12 }
13

14 while (counter--) {
15 u32 offset2 = read_18_bits();
16 *ptr++ = memory[offset1] ^ memory[offset2];
17 pos++;
18 }
19 } else {
20 u8 b2 = read_a_bit();
21 if (b2 == 0) {
22 /** execute a number of bitwise (x & y) or (x & ~y) or
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23 (~x & y) or (~x & ~y) **/
24 u32 offset1 = read_18_bits();
25 u64 mask1 = read_a_bit() ? 0xffffffffffffffff : 0;
26

27 counter = 1;
28 while (read_a_bit() == 0) {
29 counter++;
30 }
31 while (counter--) {
32 u32 offset2 = read_18_bits();
33 u64 mask2 = read_a_bit() ? 0xffffffffffffffff : 0;
34 *ptr++ = (memory[offset1] ^ mask1) &
35 (memory[offset2] ^ mask2);
36 pos++;
37 }
38 } else {
39 // rewind the memory
40 ptr = memory + read_18_bits();
41 }
42 }
43 }
44 }

The virtual machines in #111 and #115 are similar to that in #100, except that
the operands can be either 16-bit or 32-bit depending on the bytecode. Besides, #100
only has one bytecode whereas #111 and #115 have 4 different bytecodes. In the
following, we will discuss these bytecodes separately.

Structure of #100

The bytecode in #100 is sequentially interpreted 4 times on the same plaintext and
different constants inputs. At the end of the program, the outputs of the 4 interpre-
tations are merged. Obviously, we have four instances of a 64-bit bitslice program
which makes 256 independent instances of the same Boolean circuit. This circuit
takes as input a variable part obtained by applying a Boolean circuit to the plaintext
at the beginning of the program and a constant part (hardcoded in the implementa-
tion). The variable part is the same for the 256 instances while the constant part is
different for each instance. The output of each instance is hence of the form f (p, i)
for some function f where p is the input plaintext and i ∈ {0, . . . , 255} represents
the constant index. All the outputs are then XOR-ed together and input to a final
Boolean circuit which produces

AESk(p) = h
(⊕255

i=0
f (p, i)

)
,

where h denotes the function computed by the final Boolean circuit. Our intuition is
that, in the ith slot, the f -circuit computes AESki(p) for some key ki, as well as some
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further function µ(p, i). Then for some plaintext-dependent index i = g(p), the key
ki matches the right key and a selection process (at the end of the circuit) ensures

f (p, i) =

AESk(p) + µ(p, i) if i = g(p),

µ(p, i) otherwise.

Then XOR-ing everything, one gets something like

⊕255

i=0
f (p, i) = AESk(p)⊕

⊕255

i=0
µ(p, i)︸ ︷︷ ︸

µ′(p)

and the h function merely removes µ′(p).
We also assume that some error detection mechanism is implemented in the f -

circuit. A detectable fault injection could trigger the program to choose a wrong slot
(i.e., not indexed by g(p)) as the final result or merge the result from many wrong
slots.

A difference between #100 and Adoring Poitras in Section 8.4 is that the slot
chosen for correct execution in the former is fixed for any inputs while the good slot
in the latter is determined pseudorandomly by the input.

Structure of #111 and #115

The sketches of #111 and #115 are described in Algorithm 8.4 below, in which each
BYTECODEX is an interpretation of a bytecode giving rise to a bitslice program with
16 or 32 slots. Specifically, BYTECODEBEGIN is only used at the beginning of the
program and BYTECODEEND is only used at the end of the program, while BYTE-
CODEMIDDLEA followed by BYTECODEMIDDLEB are sequentially used 9 times in
the middle of the program afterward BYTECODEMIDDLEA is repeated twice. Only
BYTECODEMIDDLEB uses 32 slots while the others use 16 slots.

Algorithm 8.4 AES(pt)
Input: : plaintext pt and constants cst[11]
Output: : ciphertext ct

1: state← BYTECODEBEGIN(pt)
2: for i ∈ {1, · · · , 9} do
3: state← BYTECODEMIDDLEA(state, cst[i-1])
4: state← BYTECODEMIDDLEB(state)
5: end for
6: state← BYTECODEMIDDLEA(state, cst[9])
7: state← BYTECODEMIDDLEA(state, cst[10])
8: ct← BYTECODEEND(state)
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Based on these observations, we assume that BYTECODEMIDDLEA performs the
round key addition and the 16 s-boxes (in parallel) while BYTECODEMIDDLEB per-
forms the linear layer (i.e., ShiftRows and MixColumns). Since the intermediate
values transmitted and rearranged between two bytecode interpretations and no
value merged from different slots, we also guess that each slot in BYTECODEMID-
DLEA corresponds to one s-box computation so that there is no horizontal shuffling
implemented.

8.5.3 Attacking #100

As explained in Section 8.5.2, #100 supposedly implements a bitsliced circuit where
the correct execution is carried by a single bit slot which is pseudorandomly shuf-
fled (based on the input plaintext) among the 256 bit slots. In other words, #100 is
protected with a horizontal shuffling of degree 256. One could try to directly apply
the data-dependency HO-DCA on binary samples but, according to the analysis of
Section 7.3.2, the shuffling would imply a reduction of the target correlation score by
a factor 1

256 and hence an increase of the number of traces by a factor 216.

Locating the Slot for Correct Execution. In order to avoid paying this price, we
tried to locate the good slot for each execution. To do so, we tried to locate a gate
in the Boolean circuit for which flipping only one of the 256 bit slots in the output
would affect the final AES ciphertext. After a few trials, we could locate such a
gate, which allowed us to record a set of plaintexts for which we knew the good
slot i.e., the value of g(p). For this set of plaintexts, we could hence record single-
slot traces and hence completely defeat the horizontal shuffling countermeasure.
As a side effect of this shuffling removal, we also discarded the correlation scores
corresponding to dummy keys ki with i 6= g(p).

Trace Recording. Since we have access to the (formatted) source code, we can eas-
ily record computation traces. The full computation trace is momentarily stored
in RAM and directly used to derive a data-dependency computation trace (using
Algorithm 7.2). This requires a preliminary detection of multipliers (through Algo-
rithm 7.1) but this can be done a single time per implementation.

Correct Slot Attack. The results of the correct slot data-dependency HO-DCA are
illustrated in Figure 8.7. The target variable is the 1st bit of the 3rd s-box in the initial
round. The correlation trace for the good key candidate (plotted in blue) is clearly
distinguishable from other candidates (in gray). This attack used 767 traces limited
to the first 18% of the circuit (as we assumed the first round should occur in that
range). Using this attack, we could recover 7 of the 16 key bytes.
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Figure 8.7: Correlation score when targeting the 1st bit in the 3rd s-
box when fixing attacking correct slot, in which the correlation trace
for the good key candidate 0xb3 is plotted in blue, and the wrong key

candidates are plotted in gray.

We further applied our data-dependency attack for subsets of the set of multipli-
ers. Specifically, for some target subset cardinality n (presumably corresponding to
the linear masking order), we derive a sample (by XOR-ing all the elements) for each
n-cardinality subset of each set of multipliers. Using this attack we could recover 8
more key bytes. The last key byte could then be recovered by exhaustive search.
Table 8.5 hereafter summarizes the key byte that could be recovered by our data-
dependency attack with respect to the target bit and the cardinality of the multiplier
(sub)set.

Table 8.5: Which bit is vulnerable to each of 16 bytes in either a
correct slot attack (by 767 plaintexts) or an integrated attack (by 15
thousand plaintexts) with a full set of multipliers or a subset of multi-
pliers with cardinality 2 or 3 or 4. The underlined bit means the good
key guess ranked first in the correlation score but the advantage is not
significantly high. The blank cell means no bit was vulnerable in the

corresponding attack.

correct slot attack integrated

full 2 3 4 full

1 7,8 7 1 8
2 6 6 5 6,8
3 1 1,5 1,4 1 1,4,5,6
4 5,8 1,4,5,7,8 4,5,8 4,5,7 4,5,8
5 1 1 3,5, 6
6 7 1,7,8 1,7 1,2,3,7
7 5 5
8 4,5 4,5 4,5 4,5 4,5,8
9 3,7,8 3,5,7,8
10 1 1,6,7,8 1,7 1,7 1,2,6
11 6 6,7 7 7 6
12 4,5 4,5 8
13 4,5,6 4,5 4,5
14 1 1,2 1 1,2,6
15 1,6,8 6 8
16 5,6 7
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Integrated Attack. Although for our break, we managed to remove shuffling by
detecting the good slot, we could alternately have used the integration attack. Ac-
cording to the analysis of Section 7.3.2, using integration against shuffling degree
256, we expect to increase the number of traces by a factor 256 (instead of 216 with-
out integration). We validated that we could break #100 with data-dependency inte-
grated HO-DCA using 15,000 traces. For this attack, the target traces are generated
in two steps:

1. derive data-dependency traces (using Algorithm 7.2) made of 256-bit samples
which are computed by XOR-ing the set of multipliers for each gate,

2. derive integrated traces whose samples are the Hamming weights of the orig-
inal samples.

The attack results are depicted in Figure 8.8 for the 1st bit of the 3rd s-box of the initial
round. We observe that we can clearly distinguish the good key guess.

Figure 8.8: Correlation score when targeting the 1st bit in the 3rd s-
box with data-dependency integrated HO-DCA. The blue line is for
the correct key byte 0xb3 and the gray lines are for the incorrect key

guesses.

8.5.4 Attack #111 and #115

As explained above, implementations #111 and #115 are very similar and we could
break them using the exact same attack path. In the following, we hence only present
our attack results on #115.

Recall our hypothesis is that BYTECODEMIDDLEA implements the s-box and
each bit slot corresponds to one s-box computation within one round. We target the
first invocation in order to recover the first round key. However, while applying our
(integrated) data-dependency attack in this context, we observe a lot of correlation
peaks corresponding to many key candidates, implying that the target computation
somehow includes dummy keys (probably through vertical shuffling).

In order to bypass dummy keys, a possibility is to target deeper rounds but this
implies dealing with an increased computation complexity since the key space is
substantially larger. We rather suggest attacking the s-box inputs in the last round
which each depends on a key byte of the last round key. The target variable is hence
a function of the right ciphertext and it is unlikely that dummy keys appear in this
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context since that would mean that the implementation first computes the right ci-
phertext and then goes somehow backward to make appear e.g., s-box inverse with
the right ciphertext and dummy last round key. Using our data-dependency inte-
grated HO-DCA on the last round, we could recover the full (last round) keys of
#111 and #115. Figure 8.9 gives an illustration of the obtained correlation traces. We
can see that the good candidate is clearly distinguishable.

Figure 8.9: Correlation score when targeting at the 2nd bit in the 1st

s-box in the last round with data-dependency integrated HO-DCA
using 5 thousand traces. The blue curve is for the correct key guess

0x51 and the gray curves are for the incorrect key guesses.
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Conclusion

The existence of white-box cryptography, more generally code obfuscation is still
an open problem. The industry is compelled to deploy secretly designed solutions
to meet the continuously growing demand. The deployed solutions are potentially
threatened by automatic passive gray-box attacks, implying that they are insecure
even in a weaker setting than the one they were designed for. It is therefore impor-
tant to develop implementations that are resistant to gray-box attacks, hence con-
straining the potential adversaries to invest costly and uncertain reverse engineering
efforts. This thesis thus concentrates on the practical security of white-box cryptog-
raphy, that is the analysis and improvement of gray-box attacks and the associated
countermeasures in the white-box threat model.

The contribution of this thesis is summarized below.

• First of all, it formalizes the passive gray-box adversary model in the white-box
setting and reformulates the DCA attack in this model. It also reviews the
linear masking, the non-linear masking and shuffling countermeasures, as well
as the source of randomness essential to implement these countermeasures.
The necessity to perform shuffling both in time and memory is particularly
highlighted and the possible approach to these two shuffling dimensions in
bitsliced circuit is presented.

• Then, it provides an in-depth analysis of when and why DCA is capable of
breaking historical internal encoded white-box designs and pinpoints the prop-
erties of the target variables and the encodings that make the attack (in)feasible.
Additionally, new DCA-like attacks inspired by side-channel analysis tech-
niques are proposed in this thesis. Specifically, a collision attack which par-
ticularly effective against internal encodings in terms of trace complexity and
mutual information analysis (MIA) which naturally applicable in this context are
investigated against internal encodings.

• Next, it formally describes a linear decoding analysis (LDA) attack to extract the
key from white-box implementations, in which the target key-dependent vari-
ables are linearly encoded by a set of intermediate variables in the implementa-
tion. It also explains how this attack can be extended to break implementations
protected with higher-degree encodings.
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• Later, it introduces higher-order DCA, along with an enhanced multivariate ver-
sion, and analyzes the security achieved by combining linear masking and
shuffling against these attacks. We derive analytic expressions for the complex-
ity of the attacks – backed up through extensive attack experiments – enabling
a designer to quantify the security level of a masked and shuffled implemen-
tation in the (higher-order) DCA setting.

• After that, it considers a state-of-the-art white-box implementation in the para-
digm of a randomized Boolean circuit with hardcoded key represented in soft-
ware as a bitsliced program by combining linear masking, non-linear masking
and shuffling in different ways. It then analyzes the different gray-box attack
paths and studies their performance in terms of required traces and computa-
tion time. Most importantly, it proposes an advanced gray-box attack against
white-box cryptography which exploits the data-dependency of the target im-
plementation. This approach can efficiently break several combinations of lin-
ear and non-linear masking in the presence of shuffling and obfuscation and
thus provides substantial complexity improvements over the existing attacks.

• Finally, the practicability of the theoretical analyses and attack techniques ex-
hibited in this thesis are verified by recovering keys in several publicly avail-
able white-box AES implementations. Additionally, it summarizes a general
attack methodology against obscure white-box implementations, which has
been followed to analyze the winning challenges from both WhibOx contests.
To best of our knowledge, we were either the only or the first team to pro-
duce technical reports on the possibility to break those implementations by
applying relevant theoretically supported gray-box attacks. To facilitate the
reproduction of our results, our attack tools have been partially open-sourced.

In conclusion, the theoretical analyses and practical attacks provided in this the-
sis demonstrate what the capabilities are of a passive gray-box adversary in the
white-box context and what the approaches are to countering such an adversary.
This thesis pinpoints that the adoption of a unitary and primal countermeasure
tends to be ineffective to resist this kind of adversary. A truly effective solution has
to combine multiple different countermeasures at the same time to resist different
attack vectors. Moreover, the analyses in this thesis are a first step towards achiev-
ing provable security against passive gray-box adversaries in white-box context. In
particular, they provide quantification of the different attack complexities with re-
spect to certain parameters under certain assumptions. Typically, the adversary is
assumed to have some uncertainty on the attack window within a full computa-
tion trace. Under this assumption and for some choice of the parameters, a good
level of practical resistance against these attacks can be achieved. Last but not least,
this thesis stresses that circuit obfuscation techniques, which prevent the adversary
from learning structural knowledge of the implementation, play an essential role in
achieving the considered security in this thesis.
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From this point, we identify a few research directions that would be worth fur-
ther investigations.

Ensuring the Uncertainty Assumption. The goal of this research direction is to
make sure the adversary cannot reduce the size of the target window. This thesis
has demonstrated that data-dependency based analysis is a powerful weapon of
gray-box adversaries. They can be conducted both manually and automatically to
reduce the computational complexity of the underlying attack by using structural
information of the attached circuit. It is therefore important to thwart these attacks
to be able to achieve some level of (provable) security in practice. More generally,
this direction is related to circuit obfuscation techniques.

Building Formal Security Arguments in Passive Gray-Box Attack Model. An-
other interesting research direction would be to show that the proposed attacks in
this thesis (e.g., LDA, HDDA, multi-variate HO-DCA) are somehow optimal in the
passive gray-box attack model, and to show that the best an adversary can achieve
under some well-defined assumptions can be made arbitrarily hard by, for instance,
combining some linear/non-linear masking and obfuscation techniques.

Constructing Higher-Degree Algebraically-Secure Gadgets. If shuffling is not em-
ployed, a combination of linear masking and first-degree algebraically-secure non-
linear masking in (Biryukov and Udovenko, 2018) can be simply defeated by a
second-degree decoding analysis with affordable computation efforts if all encoding
shares are in a small trace window. Therefore, another interesting research direction
is to construct efficient gadgets secure against decoding analysis of arbitrary degree.
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Abbreviations

DCA Differential Computation Analysis
DD-DCA Data-Dependency DCA
DDG Data-Dependency Graph
DFA Differential Fault Analysis
DPA Differential Power Analysis
DRM Digital Right Management
HDDA Higher-Degree Decoding Analysis
HO-DCA Higher-Order DCA
LDA Linear Decoding Analysis
MIA Mutual Information Analysis
PRNG PseudoRandom Number Generator
RNG Random Number Generator
iO indistinguishability Obfuscation
SCA Side-Channel Analysis
SSA Single Static Assignment
WBC White-Box Cryptography

Mathematical abbreviations:

CDF Cumulative Distribution Function
PMF Probability Mass Function
VBF Vectorial Boolean Function
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