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Introduction

Logic, recursivity, constructivism
The origin of logic as a discipline can be traced back as far as antiquity, but mathematical logic
as we know it today really started its infancy at the beginning of the 20th century. The impetus
behind this development was the quest for a foundation of mathematical practice, partly out of
fear of inconsistencies derived from dubious axioms (such as unrestricted comprehension in Frege’s
set theory). A significant step in this development was the realization that the language of logic
and the rules of reasoning could be studied as mathematical objects unto themselves. Thanks to
this perspective, Hilbert could spell out an ambitious program as an attempt to radically solve the
crisis of foundations. The stated goals were to prove, within basic arithmetic that

1. mathematics could have a complete axiomatization

2. all mathematics could be reduced to basic arithmetic (finite reductionism)

3. basic arithmetic could be shown to be internally consistent.

Beyond the pleasing philosophical ramifications that an internal consistency result would have had,
the first two points would also imply that all formal mathematical statements could be mechanically
decided. Hilbert’s hopes were dashed by Gödel’s incompleteness theorems which invalidated all
of the above in one fell swoop. The incompleteness theorem rely on encoding formulas ϕ and
proofs π as numbers pϕq and pπq which can then effectively manipulated in the language of formal
arithmetic to formalize provability. The first incompleteness theorem states that for reasonable
arithmetical theories T , the formalization of the self-referential sentence G intuitively standing for
“G is not provable in T ” is independent from T : T does not prove G, nor its negation. Thus point
1. is refuted, as well as (arguably) 2. The second incompleteness theorem refutes directly the third
point, as it states that a formalized consistency statement Con(T ) is necessarily independent from
T . While Hilbert’s program as outlined above is unrealizable, the incompleteness theorems did not
spell the end of research on foundations. On the contrary, one takeaway of incompleteness is that
the classification of formal theories in terms of, for instance, relative consistency (formalizable in
weak theories as Con(T )⇒ Con(T ′)) or conservativity is non-trivial and deserved further study.

An issue related to those foundational concerns is the field of computability or recursion theory,
the formal study of what is computable (in principle) by a machine. Computability occupies a
critical foundational (if not necessarily practical) rôle in computer science as a whole. The basis
for the field is the precise formalization of the class of recursive functions, which correspond to
those functions N → N which are mechanizable. While a number of fundamental technical ideas
and concepts from recursion theory would find suitable adaptation both in the implementation
of real-world computers and programming languages and in logic, perhaps the most basic result
is that some very natural (and useful!) functions N → N are in fact, provably not recursive. A
very important such function is the truth function f : N → {0, 1} corresponding to Hilbert and
Ackermann’s Entscheidungsproblem. Its specification says that f(pϕq) = 1 if and only if ϕ is a
true sentence of arithmetic. The non-recursiveness of this function is, of course, deeply tied to
the incompleteness theorem. Similarly to formulas, partial recursive functions g : N ⇀ N admit
encodings as numerals g 7→ pgq which allow to define the most well-known non-recursive function
corresponding to the so-called halting problem which asks for a function f : N → {0, 1} such
that, for every partial recursive function g, f(pgq) = 1 if and only if f(0) is defined. The non-
recursiveness of this function is proved by a diagonal argument. Starting from those two, the
computability of many such functions (or decision problems as those are called when the codomain
is {0, 1}) have then been been studied by computer scientists and mathematicians alike.

Related to the concept of computability, and more broadly, feasibility is the theme of con-
structivism in logic. While a consensus was reached around considering that while there is now
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a mainstream consensus that theorems which can be conceivably be derived from the axioms of
ZF(C) and classical logic as formalized by Hilbert are uncontroversial, there are schools of thoughts
challenging this state of affair on philosophical grounds. In particular, Brouwer pointed out that
proofs in classical logic were unsatisfactory because of the principle of excluded middle, which
allows to prove the existence of mathematical objects without providing an explicit construction of
said object. This led him to reject excluded middle in his school of intuitionism. This gave rise to
the so-called Brouwer-Heyting-Kolmogorov (BHK) interpretation of logic where proofs are to be
informally thought of as computation of witnesses of validity of the statements, which forbids the
use of the principle of excluded middle ϕ ∨ ¬ϕ or, equivalently, reductio ad absurdum ¬¬ϕ ⇒ ϕ.
Broadly speaking, we call such formalisms intuitionistic or constructive1. While one might be
concerned that moving to constructive systems limits unduly the scope of provable statements,
constructive logics usually turn out to be more expressive as double-negation translations allow
to embed classical logic within constructive logic, and thus show in passing that constructive and
classical logics can be shown to be equiconsistent. This first step and subsequent proof-theoretical
investigations thus revealed constructive logic to be a precious tool for the global understanding
of mathematical logic, independently of any philosophical commitment. Typically, intuitionistic
proof systems are more well-behaved from the point of view of proof-theory, which is reflected by
confluent cut-elimination and strong witnessing properties for instance. The latter may be seen as
an internalization of the philosophical guarantee of intuitionism: when an object is shown to exist
constructively, an explicit, computable method is given to produce said object. Proving such wit-
nessing properties withing mathematics can be done by using realizability models, where formulas
are interpreted by set of proofs rather than mere truth values. A paradigmatic example of this
approach is Kleene’s realizability, which interprets formulas of (higher-order) arithmetic as sets
of recursive functions called realizers. Typically, a formula ∀x ∈ N ∃y ∈ N ϕ(x, y) is interpreted
by the set of recursive functions f : N → N such that ϕ(x, f(x)) holds. The underlying logic is
intrinsically intuitionistic as, if assuming classical foundations, the negation of excluded middle
¬∀A (A ∨ ¬A) holds as a direct consequence of the undecidability of the halting problem in the
associated model.

There is much more to say on the developments of recursion theory, constructivism and math-
ematical logic, their flourishing interactions and related fields of research. However that goes well
beyond the scope of this short introduction whose purpose is to introduce the themes of founda-
tional strength, recursivity and intuitionism.

Monadic Second-Order logic and automata
While Gödel’s theorem implies that the theories of arithmetic, which are considered rather mod-
est foundations in which logic is still formalizable, are undecidable, this does not preclude more
restricted logics from being so. This perspective is appealing from a practical point of view if one
is interested in automatically verifying that computer programs or controller chips are bug-free
in restricted settings. This has given rise to multiple verification logics such as LTL, CTL or the
modal µ-calculus, all of which can be decided.

Monadic Second-Order logic (abbreviated MSO from now on) designates a class of classical
theories which are powerful enough to interpret many verification logics while still remaining de-
cidable. The precise definition of MSO varies according to the underlying universe, but the language
is generated in the same way: it is the language of second order-logic where the second-order quan-
tification is restricted to unary (hence the name monadic) predicates, which can equivalently be
regarded as sets. Formally speaking, a minimal language for MSO can be given by the following
grammar where x designate individual variables, X set variables and P (x1, . . . , xn) ranges over
basic predicates of the underlying structure.

ϕ,ψ ::= x ∈ X | P (x1, . . . , xn) | ∃x.ϕ | ∃X.ϕ | ϕ ∧ ψ | ¬ϕ

Typical instances of MSO are MSO over the structure of natural numbers equipped with its order
(N, <) (henceforth abbreviated MSO(ω)) and MSO over the infinite binary tree ({a, b}∗, Sa, Sb)
where Si designates the successor relation (i.e. Si(x, y) holds if and only if y = xi) and {a, b}∗ the
set of words over the finite alphabet {a, b}. The key to deciding these MSO theories is their tight

1As this thesis does not delve into philosophical issues related to constructivism, we will use the two terms in-
terchangeably. In particular, we do not refer to Brouwerian axioms incompatible with classical logic when calling a
system intuitionistic in the sequel, but merely to the rejection of the law of excluded middle/double negation elimi-
nation. The interested reader may consult [73] for an introduction to the main strands of constructive mathematics
and the basic specificities of Brouwerian intuitionism.
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connection with the theory of automata over infinite words and labeling of the infinite tree. We
now focus the discussion on word automata and MSO(ω); similar observations can be made for
trees.

Automata over finite words are a formal devices computing languages P(A∗) (the regular lan-
guages), which may be seen as specific casesof (linear-time) Turing machines computing a function
A∗ → {0, 1}. This means in particular that finite-state automata may be coded with finite data
which can be effectively manipulated. Finite-state automata are much less expressive than general
Turing machines. One advantage of automata, beyond simplicity, is that one may algorithmically
decide interesting semantic properties such as the emptiness problem (whether a given automaton
recognizes any word at all). This is to be contrasted against the impossibility of solving any such
meaningful problem for general recursive functions due to Rice’s theorem. Infinite word automata
are also formally defined with finitary data2, but are meant to define language of infinite words, i.e.,
subsets of AN instead of A∗. These sets are typically uncomputable: even for a fixed automaton
A, there is no recursive map f : N→ {0, 1} such that given a code puq of recursive word u ∈ AN,
f(puq) = 1 if and only if u is recognized by A. The reason for this is that, while the sequence of
states appearing in a run of an infinite word automaton is computable from its input, the notion
of accepting run is not recursive. For Büchi automata for instance, it asks that a final state appear
infinitely often; deciding this for an arbitrary sequence of state is strictly harder than even the
halting problem.

This increased computing power does not prevent infinite word automata and the associated
notion of ω-regular language from sharing nice properties with finite word automata and regular
languages. For instance, a key property one may algorithmically decide whether the language
defined by a Büchi automaton is empty or not. ω-regular languages, as regular languages, are also
stable under union, complement and projection (the latter operation corresponding to existential
quantification). However, establishing those properties is harder than in the finite case. Typically,
while complementing a non-deterministic Büchi automaton may still be done algorithmically, the
conceptually easier way of doing so does not necessarily go through determinization, but rather
a more algebraic construction. Furthermore, arguing that these more involved constructions are
sound require non-constructive arguments.

Those constructions allow to give a semantic-preserving translation from MSO(ω) formulas
to automata, which, thanks to the decidability of emptiness checking for automata, provides an
effective procedure to decide MSO(ω) formulas: to do so, translate the formula to an automaton
and run an algorithm to determine whether the language recognized by this automaton is empty or
not. There is also a semantic-preserving translation back from Büchi automata to MSO(ω), thus
establishing in a precise sense that MSO(ω) is the logic of infinite word automata.

The constructiveness of MSO
As we saw in the previous discussion, MSO(ω) and various generalizations has a peculiar link
to constructivism: they are logics which are inherently non-constructive which can be decided
effectively. While this observation is rather obvious because of the connection with Büchi automata
which go beyond computable functions, it should be stressed that it is not the case for many
decidable logics such as, for instance, bounded arithmetic, the first-order logic of dense linear
orders (i.e. the theory of (Q, <)) or real closed fields (the theory of (R, <,+, ·))3

The thesis is thus centered around the following informal question, where the less logically
inclined reader may substitute “theory of automata over infinite structures” for MSO.

Question. How (non-)constructive is MSO?

Let us stress that this question is both broad and informal and that the present thesis does
not address it in full generality. It should rather be regarded as the common motivation for topics
studied as part of this thesis, which is itself split into two thematically distinct parts.

Part I contains developments pertaining to the constructiveness of MSO(ω) from the point of
view of the BHK interpretation. The main goal there is to study intuitionist variants of MSO(ω)
with an eye towards the extraction of effective computational content from proofs: we want wit-
nesses for ∀∃ statements to be able to compute recursive maps between sets of infinite words4.

2In particular, Büchi automata consist of the same data as non-deterministic finite-state automata.
3Assuming that ¬x 6= y ⇒ x = y holds for x, y ∈ R in the “constructive” metatheory of interest. This is the case

if R designates Cauchy reals and Markov’s principle holds.
4Note that if one is just happy to find explicit definitions of possibly non-computable such functions, this is

entirely doable. This corresponds to the uniformization problem, which has a nice solution for MSO(ω): relations
defined in MSO(ω) may be uniformized in MSO(ω) [66, 15].
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In fact, we are going to make one further restriction in order to both simplify drastically our
setting and draw from automata-theoretic results: our realizers will consist of functions that are
computable by Mealy machines, possibly the most simple class of finite-state, letter-to-letter trans-
ducers. Such a machine with input alphabet A and output alphabet B generates a sequence of
length-preserving functions between words An → Bn which can be regarded as a single function
AN → BN over infinite words.

Part II on the other hand is not concerned with constructiveness in the sense of intuitionism,
but rather with the foundational strength of MSO theories. The main informal objective here
is, rather than delimiting what is intuitionistic in MSO, to see what are the minimal axiomatic
requirements to make MSO behave “as usual”. More specifically, we study Büchi’s decidability
theorem for MSO(ω) in the context of Reverse Mathematics, a vast foundational program launched
by Friedman to classify theorems of everyday mathematics according to their logical strength, or,
informally, degree of non-constructiveness. Concretely, this is achieved showing, over a weak base
theory based on a restriction of second-order arithmetic, that the theorem under consideration is
equivalent to the axioms of a stronger subsystem of second-order arithmetic. Most of the time, the
weak base theory is taken to be RCA0 (Recursive Comprehension Axiom), a weak subsystem of
arithmetic where induction is limited to Σ0

1 formulas and comprehension is limited to recursive sets
(while still featuring full excluded middle). It will thus turn out that the decidability of MSO(ω),
as well as the soundness of complementation of Büchi automata are equivalent to induction for Σ0

2
formulas, which is also sufficient to prove the soundness of a determinization procedure. Part II
then concludes by giving some preliminary results towards a similar analysis for MSO over the
rationals (formally speaking, the structure (Q, <)). These results seem to point out that the
decidability theorem for this theory sits strictly between the decidability of MSO(ω) and MSO over
the infinite tree.

The two parts are self-contained and may be read independently from one another. We refer
to their respective introductions for a more detailed chapter-by-chapter description of the contri-
butions. The bulk of those contribution is the attempt to synthesize and expand the work we
presented in [56, 58, 57] in Part I. Part II contains the material presented in [42] with minimal
modifications in addition to the preliminary results pertaining to MSO over Q.
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Part I

A Curry-Howard approach to
Church’s synthesis
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Summary The first part of this thesis is devoted to studying restrictions of MSO(ω) with strong
witnessing properties. The main goal here is to have logical systems with a Curry-Howard cor-
respondence allowing for a straightforward extraction of programs from proofs. This is achieved
by building proof-relevant models for the logical systems in question. In contrast with most usual
Curry-Howard settings, we restrict ourselves to extracting only a small subcass of recursive func-
tions, namely those which corresponds to deterministic finite-state synchronous letter-to-letter
transducers, i.e. Mealy machines. This restriction is rather natural from the point of view of
automata theory as there is an obvious kinship between transducers, infinite word automata and
thus MSO(ω). This will manifest as connexions between our development and Church’s synthesis
problem. Furthermore, while there are many notions of transducers with greater expressive power
(typically regular or polyregular transductions as defined in [8]), Mealy machines have the cru-
cial advantage of having a notion of cartesian products corresponding to the underlying cartesian
product of alphabets. On the other hand, we work with a rather unusually weak computational
model from the point of view of the Curry-Howard correspondence as

1. all realizers f : Aω → Bω are causal, i.e. f(a)n only depends on a0, . . . , an.

2. there is no natural notion of higher-order functions available (and thus a priori no proof-
relevant interpretation of intuitionistic implication).

We stick firmly to (1) throughout the thesis and never consider alternatives. After some prelimi-
nary material in Chapter 1 and 2, we investigate a simple theory and a companion proof-relevant
model for extraction in Chapter 3. This setting has the advantage of being elementary and being
a nice refinement of the usual correspondence between MSO(ω) formulas and non-deterministic
Muller automata, while allowing for extraction in the above sense. However, it suffers the full
brunt of (2) and thus allows only to interpret a minimal set of connectives allowing for double-
negation translations; in particular, there is no primitive intuitionistic implication ⇒. Chapter 4
attempts to partially circumvent restriction (2) by moving to a more general setting related to
alternating automata in which a richer theory based on linear logic is interpreted. This time, the
lack of higher-order functions in the category of Mealy machines means that a general notion of
exponential modality is lacking in the logic. However, exponential modalities are seen to be de-
finable for polarized formulas corresponding to non-deterministic/universal automata. Underlying
the construction is a notion of infinite games for which winning strategies correspond to our notion
of realizers. Chapter 5 and 6 start from the remark that the combinators on games defined in 4
are reminiscent of Dialectica interpretations. After recalling the Dialectica construction in a fibred
setting over a cartesian-closed base in Chapter 5, we fix a convenient cartesian-closed base of causal
functions (i.e., where we do not break (1) but ignore (2)) and give a similar transformation which,
when applied to the standard proof-irrelevant model result in an extension of the realizability
model of Chapter 4. Finally, Chapter 7 discusses how to adapt this material to restrict to finite-
state realizers to get a model equivalent to the one presented in Chapter 4 and exploits the formal
similarities with Dialectica exposed in the previous chapter to obtain a complete axiomatization
of the model.

Detailed outline

Chapter 1 gives background information required on automata over infinite words, transduc-
ers and Church’s synthesis. This chapter is rather short and non-technical; in particular the most
combinatorial results are merely referenced and stated. First, non-deterministic automata over in-
finite words recognizing ω-regular languages are defined. The stability under boolean connectives
and projections are discussed, highlighting that the soundness of most construction is straight-
forward save for the one obtained by Büchi’s complementation theorem [12] and McNaughton’s
determinization theorem [48]. Then, a complete axiomatization of MSO(ω) due to Siefkes [65] is
introduced, as well as very basic material on Mealy machines. Finally, Church’s synthesis and the
Büchi-Landweber theorem [13] are introduced.

Chapter 2 first introduces preliminary technical material regarding Mealy machines for later
chapters. It is remarked that alphabet and functions generated by Mealy machines may be arranged
in a category with cartesian products but no internal homsets (i.e. no notion of λ-abstraction).
We then prove that this class of synchronous function is stable under a construction corresponding
to guarded recursion [7, 53]. A term syntax for Mealy machines based on this combinator with
a suitable equational theory is given and shown to be sound and complete. Then, we show that
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MSO(ω) is equivalent to a first-order theory of equality between streams, FOM, which in particular
has terms for Mealy machines. Formally speaking, we show that that one may be interpreted in
the other and lift the complete axiomatization of MSO(ω) to FOM. This allows us to substitute
FOM for MSO(ω) in the sequel, which makes subsequent developments much more straightforward.

Chapter 3 defines an intuitionistic subtheory SFOM of FOM and a suitable Curry-Howard
correspondence allowing for the extraction of Mealy machines from proofs. The language of SFOM
is restricted to formulas built with ∃, ¬, ∧ and atomic equalities and its theory is a non-classical
subtheory of FOM which is still strong enough to allow a double-negation translation of FOM into
SFOM. The extraction of finite-state realizers is ensured by considering a proof-relevant model
of SFOM. The main idea behind this model is to interpret formulas as non-deterministic Muller
automata in a standard way, but then require that SFOM proofs be mapped to simulations between
the automata rather than being mere witnesses of language inclusions. This chapter is meant as a
counterpart to [56] where the very same model is discussed for a theory SMSO, which is to MSO(ω)
what SFOM is to FOM.

Chapter 4 goes further by considering a theory LSFOM based on linear logic also admit-
ting a sound extraction procedure of finite-state Mealy machines from proofs. The advantage of
LSFOM over SFOM is that it features more connectives, namely, universal quantification and linear
implication while actually extending the theory LSFOM. An approach entirely analogous to the
one in Chapter 3 is taken. First the definition of the logic is given: LSFOM is formally based on
full intuitionistic multiplicative linear logic (FIMLL as defined in [34]), augmented with equalities
and first-order reasoning. On top of that, a polarity system is given to regulate the admissible
instances of contraction and weakening, together with exponential connectives defined only over
polarized formulas. Then, the embedding of FOM in LSFOM is given. This embedding, which was
chosen because of its simplicity and the underlying automata-theoretic intuition, is not standard
for linear logic, but rather tied to the polarity system of LSFOM. Alternatives are also briefly
remarked upon. Finally, a proof-relevant model of LSFOM is defined to ensure soundness with
respect to synthesis. The model refines the one given in the previous chapter by allowing for
general alternating automata. The notion of simulation thus becomes much more intricate, so we
stay rather informal and postpone the fine description of the realizers and associated combinators
for later in order to focus on intuitions. This chapter is meant as a counterpart to [58] where this
model is introduced.

Chapter 5 starts with the observation that the model considered in Chapter 4 shares a
lot of formal similarities (such as being a model of FIMLL) with Dialectica categories (namely
the categories DC of [21]). In order to make such a connexion more precise, this Chapter is
dedicated to introducing Dialectica fibrations. After a short introduction to the basic concepts of
categorical logic involved, we recall the definition of the Dialectica construction p 7→ Dial(p) over
fibrations and as well as the related Sum and Prod discussed in [31]. Then, taking full advantage
of the relationship between the three maps, we consider rather unusual exponentials modalities
for Dialectica, namely, those that arise through the fibred adjunctions between Sum(p), Dial(p)
and Prod(p). This is not something often considered for Dialectica, as these adjunctions are only
definable when p already has simple quantifications5. We then remark that although Dialectica
categories are not *-autonomous in most cases, one may show that there exist (non-canonical)
retracts of the canonical morphism

(
(A ( ⊥) ( ⊥

)
( A when starting from the category of

sets and assuming the full axiom of choice. We then conclude the chapter by giving and proving the
characterization theorem, including the formulas featuring our rather unorthodox exponentials.

Chapter 6 is devoted to adpating the Dial construction to produce game-based models
generalizing the one given in Chapter 4. To do so, we first describe a convenient higher-order
extension S of the category Mealy that we use as a base. S is defined as a full subcategory of the
topos of trees T, a natural setting for denotational settings of the guarded λ-calculus. The reason
for considering S instead of T is that a key combinatorial element in building our category of games
is a notion of pointwise exponentials which cannot be defined for all trees . We retain however
cartesian-closure of S, as well as the usual guarded fixpoint operator. We then use this category to
define a category of zigzag games DZ, which is shown to be a model of MELL. A crucial observation
there is that internal-homsets are only needed to define the exponential !, while the rest is handled
thanks to the guarded fixpoint operator and our notion of pointwise functions. This development is

5Recall that Gödel’s original use for the Dialectica transformation was for a quantifier-free p.
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a stepping stone towards defining the operation p 7→ DialI(p) over S-fibrations, which is intended
to map a boolean model of the first-order logic with equalities to a higher-order analogue of the
model presented in Chapter 4. After establishing that there is a fibred LNL-adjunction between
DialI(p) andDial(p), the rest of the chapter mirrors the material in the previous chapter: DialI(p)
is proven to be sound with respect to first-order full intuitionistic logic with equalities and a similar
characterization theorem is given. Perhaps the key difference is that this characterization theorem
reveals that DialI(p) satisfies an axiom invalidated in the “standard model”.

Chapter 7 bridges the gap between the higher-order model over S provided in the previous
chapter and the automata-based model described in Chapter 4 (which may be regarded as a
fibration over Mealy). This is done by first noticing that the morphisms used in the construction of
DZ, DialI and the afferant logical structure could be carried out without using the internal homsets
of S if one ignored the exponentials. We thus define an inductively generated subcategory Sfin of S
which retains enough morphisms and combinators (most crucially, the parametric guarded fixpoint
combinator and the pointwise exponential) to carry out analogues of those constructions DZfin and
DialIfin, the latter acting on fibrations over Sfin instead of fibrations over S. We then show that the
category Mealy embeds into Sfin by exploiting the results of Chapter 2, and then that Sfin embedds
into an elementary completion of Mealy, its Karoubi envelope Kar(Mealy). We also touch briefly on
how fibrations over some category C can be taken to a fibration over Kar(C) and vice-versa. This
then allows to discuss how to make DialIfin act on fibrations over Mealy rather than Sfin, and then
proceed to give a high-level discussion on how the results discussed in Chapter 5 and 6 adapt to
DialIfin in order to interpret LSFOM and its polarized exponentials. Finally, the suitable restriction
of the characterization theorem proven in Chapter 6 to our newly obtained model is leveraged to
extend the axiomatization of LSFOM into a complete theory LSFOM+, mimicking the main result
of [57]. Besides relying on the characterization theorem, the completeness proof also crucially rely
on the Büchi-Landweber theorem and the ad-hoc double linear negation elimination discussed in
previous chapters.

Notational conventions for Part I We may write N or ω for the set of natural numbers. If
a, b ∈ N, Ja, bK denotes the set {k ∈ N | a ≤ k ≤ b}. Given a setsX and I, we sometimes x = (xi)i∈I
for sequences x ∈ XI , and xi for the application x(i) when it is more idiomatic to do so. Typically,
we do this for sequences (for instance, the evaluation of a function f : Aω → Bω on the sequence
(ai)i∈N and position n ∈ N may be written f(a)n). We also sometimes write (xi)ni=0 for families
XJ0,nK. Non-empty finite sets are called alphabets. We assume a knowledge of the definitions of
category, cartesian-closure and functors for all of Part I. No category-theoretic concept beyond
those are required until Chapter 5. We adopt a set of notation for basic categorical constructions,
that are also employed for concrete functions between sets. ◦ is reserved for composition of arrows.
Set denotes the category of sets and functions and FinSet≥1 denotes the full subcategory of sets
whose objects are alphabets. Given a category C and objects A and B of C, we write [A,B]C for
the homset from A to B, A × B for the cartesian product and AB for the exponential (provided
they exist). If C has a terminal object, it is written 1 and we write ! for the (uniquely determined)
morphisms A → 1. Given maps f : Z → A and g : Z → B, we write 〈f, g〉 for the pairing
Z → A×B determined by the universal property of the cartesian product and πi : A1 ×A2 → Ai
the projection maps (i ∈ {1, 2}). We generalize these notations to the n-ary case for every n ∈ N in
the obvious way. We write ev : AB ×B → A for the evaluation map in a cartesian closed category
and given f : A×B → C, we write Λ(f) : A→ CB for its curryfication.

Although we shall introduce it later, let us mention that we will frequently use the abbreviation
f.s. to mean finite-state in the sequel.

12



Chapter 1

Background: automata, Mealy
machines and Church’s synthesis

This chapter gives a short introduction to the correspondence between infinite word-automata
and MSO(ω), Mealy machines and Church’s synthesis problem, which motivates our notion of
constructiveness for the intuitionistic subsystems of MSO(ω) we study in later chapters. Relevant
classical results are merely stated. For more thorough introduction to these topics especially infinite
word automata, we redirect the reader to the textbooks [54, 71] and the survey article [72] regarding
Church’s synthesis. The reader familiar with the aforementioned content might safely skip this
chapter, maybe with the exception of Section 1.2 which mentions a complete axiomatization of
MSO(ω) due to Siefkes [65].

1.1 MSO(ω) and automata
We first recall the seminal connection between MSO(ω) and finite-state automata over infinite
words. As discussed in the introduction, the language of a MSO-theory contains all boolean
connectives, first-order quantification and quantification over unary1 predicates. This leaves the
term language and atomic first-order predicates to be fixed; here, we have in a constant term
symbol Ż for 0 and a term symbol Ṡ for the successor function n 7→ n+ 1.

t, u ::= Ż | Ṡ(t) | x
ϕ, ψ ::= t ∈ X | ∃x.ϕ | ∃X.ϕ | ϕ ∧ ψ | ¬ϕ

MSO(ω) might be thus regarded as a subsystem of second-order arithmetic, albeit a rather weak
one: addition + is undefinable as a relation for instance. The main reason why it is impossible to
use the power of second-order logic to design impredicative encoding is because of the restriction
over unary predicates and the lack of a pairing function. Having either pairing or addition definable
in MSO(ω) would make the language as expressive as second-order arithmetic, which in turn would
mean that theory would be undecidable; this would contradict Büchi’s decidability theorem.

Another appeal of MSO(ω) as a formal system is its tight connexion with infinite-state automata
over infinite words. They operate very much like automata over finite words, save for the acceptance
condition, which needs to distinguish infinite runs. As there are several interesting such acceptance
modes, we first give a generic definition.

Definition 1.1.1. A non-deterministic infinite word automaton over the alphabet A is a tuple
A = (Q, I,∆,Ω) : A where

- Q is a finite set of states

- I is a subset of Q dubbed the initial states

- ∆ ⊆ Q×A×Q is the transition relation

- Ω ⊆ Qω is the acceptance condition

1One may also call them monadic, justifying the name MSO. We do not, so as to avoid suggesting any connexion
with monads.
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An ω-word w ∈ Aω is recognized by A if and only if there is a sequence q = (qn)n∈N ∈ Ω such
that q0 ∈ I and (qn, an, qn+1) ∈ ∆ for every n ∈ N. We write L(A) for the set of words ⊆ Aω

recognized by the automaton A.
A is called deterministic if I is a singleton {qι} and ∆ is isomorphic to the graph of a function

δ : Σ×Q→ Q.

In the usual cases, Ω is given by some finitary data. The way Ω is generated from such data
corresponds to the different acceptance modes alluded to earlier. In this introduction, we briefly
discuss Büchi, parity and Müller acceptance.

Definition 1.1.2. Let A = (Q, I,∆,Ω) : A be a non-deterministic automaton. If X ⊆ P(Q),
define [X]∞ ⊆ Qω to be the set of sequences of states such that the set of states appearing infinitely
often is X.

[X]∞ : = {q ∈ Qω | {r | ∀k∃n ≥ k qn = r} ∈ X}

If the accepting condition Ω of A is given by

- a set of accepting states F ⊆ Q such that

Ω = {q ∈ Qω | ∀k∃n ≥ k qn ∈ F} = [{X | X ∩ F 6= ∅})]∞

then A is called a Büchi automaton.

- a priority function c : Q→ N such that

Ω = {q ∈ Qω | lim sup
n∈N

c(qn) is even} = [{X ⊆ Q | sup
q∈X

c(q) is even}]∞

then A is called a parity automaton.

- a set F ⊆ P(Q) such that
Ω = [F ]∞

then A is called a Muller automaton.

Note that every Büchi automaton may be seen as a parity automaton by mapping the set of
accepting states F to its characteristic function χF : Q → 2 ⊆ N, and every parity automaton
may be seen as a Muller automaton. Conversely, a non-deterministic Muller automaton A =
(Q, I,∆, [F ]∞) : A can effectively be turned into a Büchi automaton AB recognizing the same
language (see e.g. [54, Theorem 7.1]).

Proposition 1.1.3. Non-deterministic Büchi, parity and Muller automata recognize the same
languages.

These automata thus provide finite representations for languages L ⊆ P(Aω) of infinite words,
the ω-regular languages. One should also note that this representation is effective in the following
sense.

Proposition 1.1.4. There exists an algorithm taking as input a Büchi/parity/Muller automaton
A and decides whether the language L(A) recognized by a empty or not.

Proof. Given that the translation leading to Proposition 1.1.3 are effective, it is sufficient to prove
the decidability of emptiness for Büchi automata. To do so, given a Büchi automaton A =
(Q, I,∆, [F ]∞) : A, it suffices to be able to tag the states from which a non-empty language may
be recognized. First tag the set F ′ ⊆ F of final states such that f ∈ F ′ if and only if there exists
a non-empty-word a0, . . . , ak tagging a non-trivial cycle containing f , i.e., there exists q0, . . . , qn
with q0 = qn = f and (qi, ai, qi+1) ∈ ∆ for every i ≤ n. Then, if a state q is coaccessible from F ′,
then it recognizes a non-empty language.

This proposition may be used in conjunction with the following correspondence between MSO(ω)
formulas and automata to derive the decidability of MSO(ω).

Theorem 1.1.5. There exists an algorithm taking as input a MSO(ω) formula ϕ(X0, . . . , Xn−1)
with the displayed free variables outputting a non-deterministic Büchi automaton Aϕ : 2n such that
w = 〈w0, . . . , wn−1〉 ∈ L(Aϕ) if and only if ϕ(w0, . . . , wn−1) holds.
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This theorem is proved by emulating the connectives of MSO(ω) at the level of automata.
This means proving that ω regular languages are sable under projection (the counterpart of ∃),
intersection (∧) and complementation. While closure under projection and intersection is rather
straightforward, complementation is more challenging. For finite word automata, the comple-
mentation procedure relies on a determinization procedure. Then, complementation is easy for
deterministic automata. However, while the determinization algorithm for finite word automata
is straightforward, the situation with infinite word automata is a bit more delicate. Historically,
Büchi first proved that non-deterministic Büchi automata may be complemented using a weak
form of Ramsey theorem for pairs to analyze infinite runs [12]. Later on, McNaughton proved [48]
that Büchi automata may be determinized into Rabin automata which are in turn easily compiled
into deterministic parity automata.

Theorem 1.1.6 (McNaughton). Given a non-deterministic Büchi automaton A : A, there exists
a deterministic parity automaton D : A such that L(A) = L(D).

Remark. Let us note that the proof of either McNaughton’s theorem, or even Büchi’s direct com-
plementation argument are inherently non-constructive in the following sense: given a word w and
an accepting run of D over w, then there is no recursive way of computing an accepting run of A
over w. This is to be contrasted against all of the other automata constructions above, which allow
for such computations2.

1.2 Axiomatizing MSO(ω)
Before moving on, let us remark that automata give a decision procedure for MSO(ω) but say little
about its proof-theory at a first glance. Among other things, this does not answer the following
question: what is a natural set of minimal axioms for MSO(ω)? In the sequel, since we shall study
subsystems of MSO(ω) with the goal of setting up a Curry-Howard correspondence, it is important
to recall that the connection with automata also uncovered a natural complete axiomatization of
MSO(ω).

Theorem 1.2.1 (Siefkes). The standard model of MSO(ω) is fully axiomatized by the basic arith-
metical axioms of non-confusion, injectivity of successor and the comprehension schemes and in-
duction schemes.

We give a more formal list of these axioms below in Figure 2.5, once MSO(ω) has been more
properly introduced. This axiomatization is remarkable as it exactly consists of the axioms of
second-order arithmetic restricted to the language of MSO(ω). Siefkes’ original proof [65] does
rely heavily on the correspondence between MSO and automata outlined above. A model-theoretic
proof is given in [60].

1.3 Mealy machines
One of the appeal of MSO(ω) is that it may be seen as a powerful logic for verification. In particular,
the decidability of MSO(ω) enable to verify properties about finite-state Mealy machines, a notion
used in the conception of reactive systems like CPU components or microcontroller for various
embarked systems. A simplifying assumption is that we have a fixed, discrete synchronous notion
of time and that the current state of a given system should only depend on the past. This is
captured by the notion of causal function.

Definition 1.3.1. A causal function is a function f : Aω → Bω such that f(u)n = f(v)n whenever
ui = vi for all i ≤ n.

Note that the set of causal functions f : Aω → Bω is in one-to-one correspondence with families
of functions (fn : An+1 → B)n∈N by taking f(a)n = fn(a

∣∣
J0,nK). Not all of causal functions f can be

concretely implemented in hardware because the amount of data on the input needed to compute
fn may grow with n. A Mealy machine is essentially an intensional description of causal function
f where the memory, holding enough information to compute f(u)n if given un, is bounded by a
finite set of states.

2However, the problem of computing an accepting run of A over w from an accepting run of D and additional
data witnessing the acceptance of w (e.g., the highest parity appearing infinitely often and a bound after which
only lower parities occur) may very well be doable recursively; these considerations are pregnant in the Reverse
Mathematics of Büchi’s theorem presented in Chapter 9. Note however that whether such data is available in a
constructive metatheory depends on a careful phrasing of the winning condition, which are usually not stable under
double-negation in constructive logic!
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Definition 1.3.2. A Mealy machine from alphabet A to B is a tuple M = (Q, qι, ∂) : Aω → Bω

consisting of

- a finite set of states Q

- an initial state qι ∈ Q

- a transition function ∂ : A×Q→ B ×Q.

By iteration, a Mealy machine defines a function ∂∗ : A+ → B × Q (where A+ is the set of
non-empty words over A) by the following recursion:

∂∗(a) = ∂(a, qι) ∂∗(wa) = ∂(a, π2(∂∗(w)))

which can be used to define a causal function JMK : Aω → Bω. We call causal functions which
can be derived from Mealy machines finite-state.

Remark. All functions induced by finite-state Mealy machines are causal, but the converse does
not hold. For instance, all constant functions to 2ω are causal, but the infinite word w ∈ 2ω such
that

wn = 1 ⇔ n is prime

is not implementable by a Mealy machine (with trivial input 1ω and output 2ω) with finitely many
states.

However, one can consider the notion of Mealy machine with possibly infinite state-space and
show that every causal function f admits a minimal3 Mealy machine Mf implementing it, i.e.
with JMf K = f . f is thus finite-state if and only if the state space ofMf is finite.

Example 1.3.3. One of the simplest non-trivial family of finite-state causal functions is given
by one-step delay functions: given an alphabet A and a ∈ A, write consa : Aω → Aω for the
finite-state causal function such that consa(w)(0) = a and consa(w)(n + 1) = w(n). A minimal
machine implementing consa has |A| states; for A = 2 and a = 0, it may be depicted as follows

0 1
0|1

1|1
1|0

0|0

Example 1.3.4. A typical notion that can be modelled as a Mealy machine is that of a register.
Abstractly, a register holding a value belonging to some alphabet A (for a 64-bit architecture, A =
264) may be seen as a causal function (A × 2)ω → Aω, where the second input 2 corresponds to
an enabling signal stating whether the incoming value on the first component ought be written in
memory or be ignored at a given clock tick.

Given a dummy initial value a0 ∈ A, this behaviour may be implemented as a Mealy machine
with state-space A, initial state a0 and the transition function ∂ : (A× 2)×A→ A×A defined as

∂((a, b), q) : =
{

(q, q) if b = 0
(a, a) otherwise

For A = 2 and a0 = 0, this machine may be represented as follows

0 1

(0,_)|0

(1, 0)|0

(1, 1)|1

(0, 1)|0

(1,_)|1

3The situation is exactly the same as with finite-state deterministic automata: minimality is both in the sense
of number of states and initiality with-respect to homomorphisms; the notion of homomorphism of Mealy machines
shall not detain us here.
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MSO(ω) is a logic which ostensibly describes sets of integers X ∈ P(N), but those can also
be regarded as streams 2ω. Therefore, given alphabets A = 2k and B = 2n which are powers of
2, it is possible to write MSO formulas ϕ(X0, . . . , Xk−1, Y0, . . . , Yn−1) regarded as input-output
specifications for Mealy machines.

Example 1.3.5. Expanding on Example 1.3.4, one may consider the following specification: if
from some point on the write signal is never set to 1, then the output of the register stays the
same. This may be rendered by the following formula ϕ(X0, X1, Y0), which can be written in first-
order logic and a fortiori MSO(ω).

∀n ∈ N ((∀k ∈ N (k ≥ n⇒ k /∈ X1)) ⇒ ∀k (k ≥ n⇒ (k ∈ Y0 ⇔ n ∈ Y0)))

1.4 Model-checking and synthesis
A first natural problem for automatic verification is the following model-checking problem: is there
an algorithm which, taking as input a (code of a) Mealy machineM : 2k → 2n and an input-output
specification ϕ(X0, . . . , Xk−1, Y0, . . . , Yn−1) determines whetherM satisfy the specification ? That
is, is it the case that for every word i = 〈i0, . . . , ik−1〉 ∈ (2k)ω and o = 〈o0, . . . , on−1〉 ∈ (2n)ω such
that JMK(i) = o we also have ϕ(i0, . . . , ik−1, o0, . . . , on−1)?

The answer of this question is yes for MSO(ω) specifications. One basic idea is to translate
the specification ϕ to a suitable non-deterministic Büchi automaton Aϕ : 2k+n. Then one may
consider using the following substitution lemma for Mealy machine and automata.

Lemma 1.4.1. Given an automaton A = (QA, IA,∆A,ΩA) : B and a Mealy machine M =
(QM, qιM, δM) : Aω → Bω, then the automatonM∗A = (QA×QM, IA×{qιM},∆M∗A, π1(ΩA)) : A
with

((q, r), a, (q′, r′)) ∈ ∆M∗A ⇔ (q, π1(δM(a, r)), q′) ∧ π2(δM(a, r)) = r′

recognizes those words w ∈ Aω such that JMK(w) ∈ L(A). Clearly, if A is a Büchi/parity/Muller
automaton, so isM∗A. Furthermore, if A is deterministic, so isM∗A.

If we want to check the machineM : (2k)ω → (2n)ω against the specification ϕ, one way to do it
would be to consider the Mealy machineM′ : (2k)ω → (2k+n)ω which corresponds to the pairing of
JMK with the identity function (2k)ω → (2k)ω. At this point, we know thatM behaves according
to the specification ϕ if and only if the language of M′∗Aϕ is universal. Therefore, it suffices
to complement this latest automaton and check emptiness (as described in Proposition 1.1.4) to
decide whetherM respects the specification ϕ.

A further, more ambitious problem, is the synthesis problem: is there an algorithm taking
as input an input-output specification ϕ(X0, . . . , Xk−1, Y0, . . . , Yn−1) and decides whether or not
there exists a Mealy machine M : 2k → 2n satisfying the specification? Furthermore could this
algorithm return a code forM when such a machine exists?

This question was originally raised by Church [16] and resolved positively by Büchi and Landwe-
ber in [13], building on McNaughton’s theorem. In a nutshell, the modern understanding of the
Büchi-Landweber theorem goes as follows: take a deterministic parity automaton Aϕ : 2k+n cor-
responding to the formula ϕ. Then, define a game on a graph derived from Aϕ by replacing
every transition by two steps: the universal player O gives a letter a ∈ 2k, meant as an input
and the existential player P answers with a letter b ∈ 2n. Pairing those two letters gives a letter
〈a, b〉 ∈ 2k+n, which is used to fire a transition of the automaton. We then say that P wins if and
only if the induced run in Aϕ is accepting. The definition of the game is set up so that ∃ wins
if and only if there exists a causal function 2k → 2n agreeing with the specification. Then one
may use the effective positional determinacy of parity games proved by Emerson and Juta [22]:
given the game graph, we may decide who wins, and compute a positional winning strategy. If
P wins, then it means that this winning strategy may be seen as a Mealy machine M : 2k → 2n
satisfying the specification ϕ; otherwise, O wins and no such function exists. The finite-state as-
pect is given by positionality: M can be taken to have no more states than Aϕ. This means in
particular that positional determinacy implies that, for any MSO(ω) specification, if there is any
causal function meeting the specification, then there exists a finite-state causal function meeting
the same specification.
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Chapter 2

Mealy machines and MSO

The goal of this chapter is to present preliminary material which will guide our attempts at giving
constructive counterparts to MSO(ω). Section 2.1 is dedicated to the proving elementary properties
of the category of functions generated by finite-state Mealy machines, as well as some closure
properties. Section 2.2 is dedicated to rephrasing MSO(ω) as a first-order theory of equality between
streams with terms for Mealy machines, which we call FOM. It is shown that the expressive power
of MSO(ω) and FOM are the same, which will allow us to only consider FOM in the sequel. The
main reason for this shift is that having terms for f.s. Mealy machine, our would-be notion of
effective function within FOM means that it is amenable to a more pleasant constructivization
than if starting from the language of MSO(ω).

2.1 The category Mealy of Mealy machines
We now give a few structural properties of the class of finite-state causal functions. First, we show
in Subsection 2.1.1 that they may be arranged in a category Mealy admitting cartesian products
and a parametric fixpoint operator. but no cartesian-closure, Then, Subsection 2.1.2 is devoted
to showing that these basic properties, together with the faithful embedding of the category of
non-empty finite sets into Mealy, actually give rise to an extensionally complete term syntax for
Mealy machines. Furthermore, this term syntax admits a natural equational theory, which may
be shown to be sound and complete for atomic equations.

While the basic properties given in Subsection 2.1.1 are going to play a major rôle in building
realizability models, Subsection 2.1.2 is not required for the sequel. Its main purpose is to suggest
that an elementary term syntax could be used when defining later systems such as FOM and that
the rather brutal equational axiomatization of equality for FOM terms could have been given a
more elementary presentation.

2.1.1 Basic properties
First, to arrange finite-state causal functions into a category, we first need to show that they are
closed under composition.

Lemma 2.1.1. Finite-state causal functions are closed under composition.

Proof. Let M1 = (Q1, q
ι
1, ∂1) : Aω → Bω and M2 = (Q2, q

ι
2, ∂2) : Bω → Cω be two Mealy

machines. The composition of the underlying causal functions is computed by the machine

M2 ◦M1 = (Q1 ×Q2, (qι1, qι2), ∂2◦1)

where ∂2◦1 is computed as the composite

A×Q2◦1 ∼= (A×Q1)×Q2
∂1×id // (B ×Q1)×Q2 ∼= (B ×Q2)×Q1

∂2×id // (C ×Q2)×Q1 ∼= C ×Q2◦1

where Q2◦1 = Q1×Q2 and ∼= denotes the obvious isomorphism induced by cartesian products.

Definition 2.1.2. Call Mealy the following category:

- Objects are non-empty finite sets. When A ∈ FinSet≥1, we most often write Aω for A seen
as an object of Mealy.
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- Morphisms from Aω to Bω are finite-state causal functions Aω → Bω.

Example 2.1.3. There is a functor (−)ω : FinSet≥1 → Mealy, obtained as the identity on objects
and by mapping the functions pointwise on streams. Since all the causal functions in its image
may be implemented by single-state Mealy machines, we often call them memoryless.

Lemma 2.1.4. Mealy has all cartesian products. Furthermore, (−)ω : FinSet≥1 → Mealy pre-
serves, reflects and create this cartesian structure.

Proof. As expected from the statement, the cartesian product of objects is merely the cartesian
product of alphabets. and the projections are given by the pointwise lifting of projections by (−)ω.
Given two machines

M = (QM, qιM, ∂M) : A→ B and
N = (QN , qιN , ∂N ) : A→ C

the pairing is implemented as

〈M,N〉 = (QM ×QN , (qιM, qιN ), ∂〈M,N〉) : Aω → Bω × Cω

where ∂〈M,N〉 is defined as the composition of

A× (QM ×QN ) d // (A×QM)× (A×QN )
∂M×∂N // (B ×QM)× (C ×QN )

with the obvious isomorphism (B × QM) × (C × QN ) ∼= (B × C) × (QM × QN ), taking d =
〈〈π1, π1 ◦ π2〉, 〈π1, π2 ◦ π2〉〉. It is then straightforward to check that J〈M,N〉K is the unique causal
function satisfying the expected universal property.

Since (−)ω reflects cartesian products, we shall sometimes abusively write Aω × Bω for the
cartesian product in Mealy which is formally defined as (A×B)ω in the sequel.

Proposition 2.1.5. Mealy is not cartesian-closed.

Proof. Suppose that M has an exponential object (2ω)2ω , i.e. that there exists a finite alphabet
A, some evaluation map ev : Aω × 2ω → 2ω such that, for every B and f : Bω × 2ω → 2ω, there
exists a unique Λ(f) such that the following commute.

Aω × 2ω ev // 2ω

Bω × 2ω
Λ(f)×id

OO

f

66

In particular, it means this must be true when Bω is the terminal object. Instantiating the
universal property above and recalling that the set of infinite words 2ω is isomorphic to the set
of morphisms 1ω → 2ω in Mealy, this means that for every f : 2ω → 2ω there is a unique word
w ∈ Aω such that, for every x ∈ 2ω, we have ev(〈w, x〉) = f(x).

Suppose that it is the case. It means that we have a Mealy machine E = (Q, qι, ∂) : A× 2→ 2
implementing ev. Let f = consn0 , for n ≥ |Q|. By the universal property, there is a word w ∈ Aω
such that ev(〈w, x〉) = π2 ◦ ∂∗(〈w, x〉) = f(x) for all x ∈ 2ω. Define k ∈ 2ω by setting k(m) = 1
if and only if m = k. For every distinct k < k′ ≤ n, we have f(k)(n + k) 6= f(k′)(n + k) while
f(k)(m) = f(k′)(m), for each m < n+k. By definition of ∂∗, this must mean that ∂∗(〈w, k〉)(m) 6=
∂∗(〈w, k′〉)(m) for m ∈ Jk′, n+ k − 1K. Then, since

∂∗(〈w, k〉)(n) = f(k)(n) = 0 = f(k′)(n) = ∂∗(〈w, k′〉)(n)

we must have π1(∂∗(〈w, k〉)(n)) pairwise distinct when k ∈ J0, nK. This means that |Q| > n, which
is a contradiction.

A crucial fact we shall use later on when considering the composition of finite-state strategies
in games is that Mealy machines are closed under a guarded parametric fixpoint operator. This
fixpoint operator is essentially adapted from guarded λ-calculus [7] and corresponds intuitively to
a definition using a feedback loop: when defining a Mealy machine, since the output alphabet is
finite, one may without loss of generality suppose that the internal state of the machine recalls the
last output and make the next transition depend on that output. This is formalized by the next
lemma.
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Lemma 2.1.6. Mealy has guarded parametric fixpoints in the following sense: for any alphabet
A,B, for any letter b ∈ B, there is a unique functional

fixb : [Aω ×Bω, Bω]Mealy → [Aω, Bω]Mealy

such that, for any finite-state causal f : Aω ×Bω → Bω, we have

fixb(f) = f ◦ 〈id, consb ◦ fixb(f)〉 (∗)

Proof. Let M = (Q, qι, ∂) : A × B → B be a Mealy machine and b0 ∈ B. fixb0(M) = (Q ×
B, (qι, b0), ∂fixb0 (M)) has the following transition function:

∂fixb0 (M)((q, b), a) = (∂(q, (a, b)), π2(∂(q, (a, b))))

We can check that fixb0(M) satisfies.

∂∗fixb0 (M) = ∂∗ ◦ 〈id, consb ◦ π2 ◦ ∂∗fixb0 (M)〉

This establishes that fixb0 satisfying equation (∗) exists. As for uniqueness, the unicity of h such
that

h = f ◦ 〈id, consb ◦ h〉 (∗)

is given by showing that the induced family of functions An → B

This fixpoint construction is slightly confused by the necessary addition of an initial letter
b to the fix combinator, which does not appear to be a genuine fixpoint combinator! This can
be remedied by considering a notion of “productive” causal function occurring naturally when
composing Mealy machines.

Definition 2.1.7. An eager causal function f : Aω → Bω is a function such that f(u)n = f(v)n
whenever ui = vi for every i < n.

Example 2.1.8. A typical eager function is consa for some a ∈ A.

Lemma 2.1.9. For any causal function h : Aω × Cω → Bω and eager causal f : Bω → Cω, there
exists a unique causal function s : Aω → Bω such that

s = h ◦ 〈id, f ◦ s〉

Furthermore, if h and f are finite-state, then s is also finite-state.

It is useful to note that the degenerate case of Lemma 2.1.9 where A = 1 corresponds to the
definition of definition of a single infinite word by recursion. In that case, the statement simplifies
considerably, as the intermediate alphabet C no longer needs to be introduced.

Corollary 2.1.10. Given an eager causal function f : Aω → Aω, there is a unique word w such
that f(w) = w.

2.1.2 A term syntax for Mealy machines
It turns out that the morphisms in Mealy can be generated by taking memoryless functions, guarded
parametric fixpoints and closing under composition. The objective of this section is to make this
observation formal by giving a term language for f.s. causal functions and an inductive congruence
relation coinciding with the equality in the semantics.

Concretely, it means that the morphisms of the category Mealy may be generated by the
grammar t, u ::= u ◦ t | fω | fixb0(t), where f ranges over finite functions between alphabets and
b0 is an element of some alphabet. In the sequel we consider only terms which are well-typed
according to the three typing rules in Figure 2.1

We could have an effective interpretation of this term syntax into machines thanks to Lem-
mas 2.1.1 and 2.1.6. Let us also write JtK for the underlying finite-state denoted by the term
t.

Lemma 2.1.11. For every Mealy machineM = (Q, qι, ∂) : Aω → Bω and b ∈ B, we have

JMK = Jπω1 ◦ fix(b,qι)((∂ ◦ (id× π2))ω)K
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f : A→ B in FinSet≥1

fω : Aω → Bω
t : Aω → Bω u : Bω → Cω

u ◦ t : Aω → Bω
t : Aω ×Bω → Bω b0 ∈ B

fixb0(t) : Aω → Bω

i ∈ {1, 2}
πi : Aω1 ×Aω2 → Aωi

t : Aω → Bω u : Aω → Cω

〈u, t〉 : Aω → Bω × Cω
a ∈ A

consa : Aω → Aω id : Aω → Aω

Figure 2.1: Typed term syntax for Mealy machines.

Proof. There is a simulation from the machine obtained by interpreting the syntax thanks to
Lemmas 2.1.1 and 2.1.6, namely1

M′ = (B ×Q, (b, qι), ∂′) : Aω → Bω with ∂′(a, (b, q)) = ∂(a, q)

toM induced by the second projection on states.
(Note that this illustrate that the syntax does not readily interpret to representation of minimal

Mealy machines for a given finite-state causal function)

While this is enough syntax to define arbitrary morphisms, it is helpful to consider additional
constructs in order to discuss the equational theory of such terms. We thus consider additionally
consider:

- a pairing 〈t, u〉 construct and projections π1 and π2 corresponding to the cartesian structure.
By Lemma 2.1.4, projections are given by memoryless morphisms. On the other hand, while
they do preserve memoryless morphisms, pairings 〈t, u〉 are memoryless memoryless if and
only if t and u are. A concrete syntactic representation of 〈t, u〉 in terms of the three basic
syntactic constructions may be computed by combining Lemma 2.1.11 and 2.1.4, but there
is a direct syntactic way by recursion over t and u, which produces a term of linear size.

- terms implementing the morphisms consa, which is helpful to characterize the guarded fix-
point operator. It may be implemented as πω2 ◦ fix(a,a)((id× π1)ω).

These additional constructions are also typed; we also give the derived typing rules on the
second line of Figure 2.1. We are now ready to give a sensible equational theory over typed terms.

Definition 2.1.12. Let ≡ be the least congruence relation over terms satisfying the clauses pre-
sented in Figure 2.2. Being a congruence means that ≡ should also satisfy the following

t ≡ u
fixb0(t) ≡ fixb0(u)

t ≡ t′ u ≡ u′

u ◦ t ≡ u′ ◦ t′
t ≡ t′ u ≡ u′

〈u, t〉 ≡ 〈u′, t′〉

It is easy to check that ≡ is sound with respect to the interpretation J−K of terms as f.s. causal
functions.

Theorem 2.1.13 (Soundness). Letting ≡ be the smallest congruence including the clauses of
Figure 2.2. For arbitrary Mealy terms t and u, we have

t ≡ u ⇒ JtK = JuK

Proof. Straightforward induction on the derivation of t ≡ u.

The converse is also provable, although the proof is more involved. Because it is not required
for the sequel, so we only give an outline. The full argument is rather elementary, but several
technicalities arise; we thus refer the interested reader to a full formalization of this proof we
carried out in the proof assistant Coq [55].

Theorem 2.1.14 (Completeness). Letting ≡ be the smallest congruence including the clauses of
Figure 2.2. For arbitrary Mealy terms t and u, we have

JtK = JuK ⇒ t ≡ u

Proof sketch. The general proof strategy goes as follows:
1Up to obvious isomorphism.
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Categorical structure Cartesian products

id ◦ f ≡ f
f ◦ id ≡ f
(f ◦ g) ◦ h ≡ f ◦ (g ◦ h)

π1 ◦ 〈f, g〉 ≡ f
π2 ◦ 〈f, g〉 ≡ g
〈π1, π2〉 ≡ id

Inclusion (−)ω : FinSet→ Mealy Guarded fixpoints

fω ◦ gω ≡ (f ◦ g)ω
πω1 ≡ π1
πω2 ≡ π2

fixb(f) ≡ f ◦ 〈id, consb ◦ fixb(f)〉
fω ◦ consa ≡ consf(a) ◦ fω

Uniqueness of guarded fixpoints

h ≡ f ◦ 〈id, consb ◦ fixb(f)〉
h ≡ fixb(f)

Figure 2.2: The equational theory of finite-state causal functions.

- First, one may internalize Lemma 2.1.11 by showing that for every term t : Aω → Bω, there
exists an alphabet C, and a function f : A×(B×C)→ (B×C) such that t′ ≡ π2◦fix(b,c)(fω)
for arbitrary (b, c) ∈ B×C. This is done by induction over t and requires to derive a number
of naturality lemmas concerning fix and ≡ from the unicity axiom. Let us for instance
mention the nesting of fixpoints

fixb0(fixb1(t)) ≡ fix(b0,b1)(〈id, id〉 ◦ t ◦ 〈〈π1, π1 ◦ π2〉, π2 ◦ π2〉

- Then, one may reduce the problem to the completeness for equality of fixpoints of terms
fixb(t) ≡ fixb(u) with JtK and JuK memoryless. Formally (and leaving alphabets implicit), it
means that for any quadruple (fω1 , fω2 , gω1 , gω2 ) of memoryless terms and constants a and b,
there exists a constant c and memoryless terms vω and wω such that

Jfω1 ◦ fixa(fω2 )K = Jgω1 ◦ fixb(gω2 )K ⇒ Jfixc(vω)K = Jfixc(wω)K

and
fixc(vω) ≡ fixc(wω) ⇒ fω1 ◦ fixa(fω2 ) ≡ gω1 ◦ fixb(gω2 )

- Finally, define Reach(f, b) for arbitrary functions f : Σ × Γ → Γ and b ∈ Γ as the least set
containing b and such that, if b′ ∈ Reach(f, b) and a ∈ Σ, then f(a, b′) ∈ Reach(f, b). Then
it is straightforward to check that, for arbitrary f, g : Σ× Γ→ Γ, if the set X = Reach(f, b)
coincide with Reach(g, b) and f

∣∣
Σ×X = g

∣∣
Σ×X if and only if Jfixb(fω)K = Jfixb(gω)K. This

characterization allow to show that fixb(fω) ≡ fixb(gω) by considering explicitly the map of
alphabet i : X → Γ induced by the inclusion X ⊆ Γ and an arbitrary retract r : Γ→ X; one
shows that fixb(fω) ≡ iω ◦fixb((r ◦ f ◦ (id× i))ω) within the equational theory thanks to the
unicity of fixpoints. The aforementioned characterization then tells us that r ◦ f ◦ (id× i) =
r ◦ g ◦ (id× i), which allows to conclude.

2.2 Rephrasing MSO(ω) as a first-order equational theory of
streams

The objective of this section is to show that the classical theory MSO(ω) may be viewed as a multi-
sorted first-order theory of equality between streams allowing term formers for every f.s. functions,
which we dub FOM. Once the equivalence between MSO(ω) and FOM is firmly established, we shall
abandon the official definition of MSO(ω) in our quest for a Curry-Howard account of Church’s
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synthesis. While this might appear as a rather frivolous aesthetic concern, there are several advan-
tages to moving from MSO(ω) to FOM. For one, having terms for every Mealy machine allows for
having a system where every potential witness is implicitly given using the ∃-intro rule of natural
deduction. Without such terms, the alternative would be to encode their existence in the axioma-
tization2. This move also stresses that the only basic objects we are interested in from a semantic
perspectives are really infinite words Aω seen as streams. Finally, the term language of FOM is
also a better starting point to suggest higher-order extensions.

We first give the formal definition of FOM as a multi-sorted first-order logic. Then, we proceed
to show how to interpret MSO(ω) into FOM and vice-versa at the semantic level. Lastly, we show
that we may adapt Siefkes’ axiomatization of MSO(ω) to FOM and get a complete axiomatization
of the latter 3.

Formally speaking, the exact details of the equivalence between MSO(ω) and FOM are not
necessary to read subsequent chapter; only the definition of the language FOM and the existence
of a recursive complete axiomatization thereof are needed.

2.2.1 Formal preliminaries
Multi-sorted first-order logic We briefly review the basic formalism of multi-sorted first-

order logic with terms and relations in order to fix some notations.

Definition 2.2.1. A signature Σ = (S, T ,R) for many-sorted logic consists of:

- A set S of base sorts τ, σ.

- A set T of constant symbols t together with arities, i.e. to each constant symbol is attached
a non-empty list of sorts (τ1, . . . , τk;σ).

- A set R of predicate symbols together with arities, i.e to each predicate symbol is attached a
list of sorts (τ1, . . . , τk).

The set of terms of sort (τ1, . . . , τk;σ) is defined by simultaneous induction, assuming that they
each come implicitely with an ordered set of k variables x1, . . . , xk of respective sort τ1, . . . , τk:

- a variable xi is a term of arity (τ1, . . . , τk; τi)

- for every term t(y1, . . . , yn) of arity (σ1, . . . , σn;σ) and terms ui(x1, . . . , xk) of respective
arities (τ1, . . . , τk;σi) for 1 ≤ i ≤ n, there is a term t(u1(x1, . . . , xk), . . . , un(x1, . . . , xk)) of
arity (τ1, . . . , τk;σ).

Substitution of terms and α-equivalence are then defined as usual. Given a term t of arity
(τ1, . . . , τk;σ), a variable of sort τm for 1 ≤ m ≤ k and a term u of arity (τ1, . . . , τm−1, τm+1, . . . τk; τm),
write t[u/x] for the substituted term of arity (τ1, . . . , τm−1, τm+1, . . . τk;σ).

Given a multisorted signature Σ, we may define the language FO=(Σ) of first-order formulas
with equality over Σ.

Definition 2.2.2. Given an arbitrary signature Σ the language of first-order logic of equality over
Σ (FO=(Σ)) is defined as follows:

ϕ,ψ ::= t = u | R(t1, . . . , tk) | ⊥ | > | ϕ ∧ ψ | ϕ ∨ ψ | ϕ⇒ ψ | ∀yBϕ(yB) | ∃yBϕ(yB)

where

- t, u are terms of a common arity (τ1, . . . , τm;σ) over Σ

- ti is a term of arity (τ1, . . . , τm;σi) over Σ

- R is a relation symbol of arity (σ1, . . . , σk).
2We took such an approach in [56] where we stuck to the official language of MSO(ω) as a subsystem of second-

order arithmetic. While it gave a rather nice characterization of the admissible instances of the instance of compre-
hensions of MSO(ω) which still allowed to extract synchronous functions, sticking to a language close to MSO(ω)
had another drawback besides necessitating the usual automata-theoretic encoding of the notion of synchronous
transducers: extracting terms for the more natural restriction of comprehension axiom required non-elementary
complexity. Even then, we needed to work with a purely relational variant of MSO(ω).

3Said axiomatization mostly arise as a translation of Siefkes’ axiomatization of MSO(ω) as a subsystem of second-
order arithmetic, and is thus arguably not too elegant with respect to the language of FOM. Moreover the existence
of some complete recursive axiomatization FOM is trivial since the logic may be shown to be decidable without
going through MSO(ω).
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The arity of a formula ϕ is the ordered list (τ1, . . . , τk) of the sort of the free variables occuring
in ϕ. Substitution and α-renaming are defined as usual by recursion over the formula. A formula
with no free variables is henceforth called a sentence.

While more general notions of model for the language of FO=(Σ) encompassing constructive
semantics is going to be given in Chapter 5, we only need the basic notion of Tarski model for
multi-sorted signatures Σ for now. Given a Tarski model M over some signature Σ and a FO=(Σ)
sentence ϕ, we write M |= ϕ when M satisfies ϕ. Two Tarski models M and M ′ over Σ are
elementarily equivalent if for every sentence ϕ of FO=(Σ), we have M |= ϕ if and only if M ′ |= ϕ.
We write M ≡M ′ when it is the case.

A theory over a signature Σ is a set of FO=(Σ) sentences closed under deduction.

Definition of MSO(ω) For the rest of this chapter, we regard MSO(ω) as a multi-sorted first
order logic. This is done by considering a signature with two sorts: a sort ι of individuals and a
sort ι → o of one-place predicates. There are only two terms constructors, namely Ż of sort (·; ι)
and Ṡ of sort (ι; ι) and an additional predicate ˙In(tι, Xι→o) intended to mean that t satisfies the
predicate X. As is customary with MSO, we use lowercase variables to denote individuals in MSO
formula and reserve uppercase for one-place predicates, so we may omit superscripts in quantifiers
and formulas.

The standard model of MSO(ω), which we call MMSO, is given by taking:

MMSO(ι) = N MMSO(ι→ o) = P(N) for sorts
MMSO(Ż) = 0 MMSO(Ṡ) = n 7→ n+ 1 for terms
MMSO( ˙In) = {(n,X) ∈ N× P(N) | n ∈ X} for the membership relation

The theory MSO(ω) is the set sentences of sentences satisfied by MMSO.

Definition of FOM The language of FOM is the language of FO=(ΣMealy), taking ΣMealy to
be the signature (SMealy, TMealy) such that

- SMealy be the set of strictly positive natural numbers. By abuse of notation, we identify the
sort n with the non-empty alphabet {0, . . . , n−1} and rather use directly alphabets for sorts.

- there is a constant Ṁ of sort (A1, . . . , Ak;B) in TMealy for each Mealy machine

M : Aω1 × · · · ×Aωk → Bω

The standard model MMealy of FOM is given by mapping:

- a sort A to the set Aω of infinite words over A.

- a term t of arity (A1, . . . , An;B), that is, a Mealy machine, to the underlying f.s. causal
function Aω1 × · · · ×Aωn → Bω.

The standard model is our default notion of model for FO=(Mealy); most often, we merely write
|=ρ ϕ to mean MMealy |=ρ ϕ. The theory FOM is set of FO=(Mealy) sentences satisfied by MMealy.

2.2.2 Translation from MSO(ω) to FOM
Now, we want to show that MSO(ω) and FOM are equivalent. To even just spell out what we mean
by that, we need the classical notion of (multisorted) first-order interpretation.

Definition 2.2.3. Given multi-sorted signatures Σ and Σ′, an first-order interpretation of Σ into
Σ′ is given by

- a map τ 7→ τ∗ mapping sorts of Σ to tuples of sorts of Σ′.

- for every sort τ of Σ, a FO=(Σ′) formula dom∗τ (xτ ).

- for every atomic formula of FO=(Σ) (i.e., relations of Σ and equality, possibly with terms)
R(t(x)), a formula R∗

t
(x) of of FO=(Σ′), where each subtuple of free variables x in the output

correspond to a single variable of the input.
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R(t(x))∗ = R∗t(x) >∗ = >
⊥∗ = ⊥ (ϕ⇒ ψ)∗ = ϕ∗ ⇒ ψ∗

(ϕ ∧ ψ)∗ = ϕ∗ ∧ ψ∗ (ϕ ∨ ψ)∗ = ϕ∗ ∨ ψ∗
(∀x ϕ)∗ = ∀xτ

∗
.dom∗τ (x)⇒ ϕ∗ (∃x ϕ)∗ = ∃xτ

∗
.dom∗τ (x) ∧ ϕ∗

Figure 2.3: Map of FO= formulas induced by an interpretation (−)∗.

An interpretation (−)∗ of Σ into Σ′ inductively gives rise to maps ϕ 7→ ϕ∗, taking a formula ϕ
over FO=(Σ) to another formula ϕ∗ over FO=(Σ′); the precise inductive definition, which can be
summed up as “commute over every logical connective”, is given in Figure 2.3. Note that this map
is sound with respect to deduction if and only if the equality predicate for sort τ is mapped to a
partial equivalence relation over dom∗τ . We call such interpretations sound. Sound interpretations
of Σ into Σ′ extend to a maps M 7→ M∗ taking as input a model of FO=(Σ′) and outputting a
model M∗ of FO=(Σ) in the obvious way (i.e., sort τ of Σ is interpreted as the set of tuples in τ∗
satisfying dom∗τ in M). Finally, note that interpretations compose, and that the maps of models
induced by a composition of two interpretation is the same, up to isomorphism, as the composition
of the induced maps of models of the induced interpretation.

The equivalence between MSO(ω) and FOM will thus manifest in the form of interpretations
between the respective languages of MSO(ω) and FOM preserving, up to elementary equivalence,
their standard model.

Lemma 2.2.4. There are interpretations (−)†• and (−)∗ such that

MFOM ≡ M∗MSO MMSO ≡ M†•FOM

The rest of this subsection is devoted to giving a high-level description of the interpretations
involved in Lemma 2.2.4.

First, we notice that the whole of the language of FOM is not going to be necessary to interpret
MSO(ω). We call FOM2 the fragment of FOM where the only sort allowed is 2. This means that
quantification are only allowed over words in 2ω and that terms may only have sort (2, . . . , 2; 2).
Its standard model MFOM2 is obtained by the obvious restriction of MFOM.

In the other direction, it is easier to first give an interpretation (−)† of FOM into FOM2 and
then an interpretation (−)• of FOM2 into MSO(ω). The interpretation of FOM into MSO(ω) is
then obtained as the composition of (−)† and (−)•.

From MSO(ω) to FOM2 At the level of sorts, (−)∗ maps both the sort of individual ι and
sets ι → o to the sort 2ω. The basic idea is that we have the classical isomorphism 2ω ' P(N)
and that the characteristic function N → P(N) is used to represent natural numbers. The other
component of the interpretation (−)∗ are then defined using auxiliary terms and predicates of FOM
given in Figure 2.4.

We take dom∗ι (x) to be the predicate x ∈ N. At the level of relations, we first give a translation
of terms t∗ compatible with substitution. It is thus determined by Ż∗, Ṡ∗ and its trivial action on
variables. This allow to simply put

( ˙In(t, X))∗ : = ˙In∗(t∗, X) (t = u)∗ : = t∗ = u∗

It is straightforward to check that this interpretation gives us the elementary equivalence

MMSO ≡M∗FOM

From FOM to FOM2 There are several way to go about this, and the details are rather
unsurprising: one essentially uses the fact that alphabets of FOM2 are arbitrarily large and that
any alphabet may be suitably interpreted in a larger alphabet.

At the level of sorts, we map an alphabet A = {a1, . . . , a|A|} the tuple (2, . . . , 2) of size |A|.
Then, consider the singleton map ηA : A → 2A which maps a letter a ∈ A to the characteristic
function of {a}. The basic idea is that a word w ∈ Aω should be regarded as the word ηA◦w ∈ (2A)ω
in the interpretation. For every sort A, there is a function cA : 2A → 2A such that cA ◦ cA = cA

and cA(ηA(a)) = ηA(a); fix a choice of tuple of terms cA implementing such functions in order to
define

dom†A(x) =
∧
a∈A

cAa (x) = xa
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n ∈ N : = N∞(n) =2ω 1ω ∧ ¬n =2ω 0ω for n of sort 2ω

and ˙In∗(n, x) : = in(n, x) =2ω 1ω for n, x of sort 2ω

Ż = 10ω : 1ω → 2ω ∗|1
∗|0

Ṡ = cons0 : 2ω → 2ω
0|0 1|0

1|0

0|1

0|0 1|1

N∞ : 2ω → 2ω 1|1

0|1

1|0

0|0

in = (⇒)ω : 2ω → 2ω

(0, 0), (0, 1), (1, 1)|1

(1, 0)|0

Figure 2.4: Interpretation of basic MSO terms and predicates in FOM.
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For every f.s. causal function f : Aω → Bω, it is rather straightforward to check that there
exists a (non-canonical) function f̃ : (2A)ω → (2B)ω such that f̃ ◦ cA = f̃ and cB ◦ f̃ = f̃ . Indeed,
if f = JMK for a Mealy machine M = (Q, qι, ∂) : Aω → Bω, any Mealy machine M̃ = (Q, qι, ∂̃)
where π1(∂̃(ηA(a), q)) = cB(π1(∂(a, q))) and π2(∂̃(ηA(a), q)) = π2(∂(a, q)) implements f̃ . Fix such
a choice of lifts at the level of Mealy machines. This determines a corresponding lift t† at the level
of terms t, which then allows to translate the basic equality predicates by setting

(t =B u)† =
∧
b∈B

t†b =2 u†b

It is then easy to check that this interpretation preserves the standard model up to elementary
equivalence.

MFOM ≡ M†FOM2

From FOM2 to MSO(ω) At the level of sort, the unique sort 2ω of FOM2 is simply interpreted
as the sort ι → o of MSO(ω); dom•2ω (x) is the trivial formula >. We now need to give the
interpretation of the equality predicate. This is done by adapting an usual pattern encapsulated
by the following statement (see e.g. [71, §5.3]).

Lemma 2.2.5. Say that a MSO formula ϕ(X1, . . . , Xk, n) represents a function f : (2k)ω → 2ω if
for every tuple of words wi ∈ 2ω and integer n (ρ, n) ∈ (2k)ω × n

MMSO |= ϕ(w1, . . . , wk, n) ⇔ f(w1 × · · · × wk) = n

For every finite-state function f : (2k)ω → 2ω, there is a MSO formula χf (X1, . . . , Xk, n
ι) repre-

senting f .

Proof. Let f : (2p)ω → 2ω be induced by a Mealy machineM. Without loss of generality, we can
assume the state set ofM to be of the form 2q. Then f is represented by a formula of the form

δ[X,x] = ∀Q,Y .I(Q) ∧ ∀tH(Q,X, Y, t) =⇒ Y (x) (2.1)

The sequence of outputs of M is coded by the predicate variables Y , sequence of state is coded
by the tuple of predicate variables Q = Q1, . . . , Qq, Moreover, since M is deterministic, we can
assume the formula I(Q) to be of the form

∧
1≤i≤q[Qi(0)⇔ Bi] with each Bi ∈ {>,⊥}, and

I(Q) =
∧

1≤i≤q
[Qi(t)⇔ Bi] H(Q,X, Y ,Q, t) =

( (
t ∈ Y ⇔ O[t ∈ Q, t ∈ X]

)
∧∧

1≤i≤q
(
Ṡ(t) ∈ Qi ⇔ Di[t ∈ Q, t ∈ X]

) )
for some propositional formulas O[−,−],D[−,−] corresponding to the transition function of the
underlying Mealy machine.

We may then complete the definition of (−)• by setting

(t(x) = u(x))• : = ∀nι.χJtK(x, n)⇔ χJuK(x, n)

and Lemma 2.2.5 allows to show the desired elementary equivalence.

MFOM ≡ M•MSO

2.2.3 A complete axiomatization of FOM
We recall Siefkes’ complete axiomatization of MSO(ω) in Figure 2.5. This axiomatization is rather
elegant as the axioms are exactly those of classical second-order arithmetic restricted to the lan-
guage of MSO(ω). By encoding these axioms into FOM and an appropriate scheme establishing
correspondence with the composite translation (−)•∗, we obtain a complete axiomatization of
FOM2, which is finally shown to extend to a complete axiomatization of FOM.

The target axiomatization of FOM is given in Figure 2.6. The first three are natural extension
of the pure equational theory of the term language, while the other are less elegant addition to
ensure completeness: the induction and the comprehension axioms of MSO(ω) are encoded and
atomic equalities are forced to be equivalent to their encoding in MSO(ω) (notice that we use the
translation (−)∗ : MSO(ω)→ FOM in order to spell out the last axiom).

Since we rely on this translation, our first order of business is to make sure that (−)∗ is
compatible with deduction, i.e., that MSO(ω) ` ϕ implies that FOM ` ϕ.
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∀n m.Ṡ(n) = Ṡ(m)⇒ n = m ∀n.Ṡ(n) 6= Ż
∃X.∀n.n ∈ X ⇔ ϕ(n) ϕ(Ż) ∧ (∀n.ϕ(n)⇒ ϕ(Ṡ(n)))⇒ ∀n.ϕ(n)

Figure 2.5: Siefkes’ axiomatization of MSO(ω).

Lemma 2.2.6. Let ϕ and ψ by MSO(ω) formulas with first-order variables included in {x1, . . . , xk}.
If the sequent ϕ ` ψ is derivable in MSO(ω), then ϕ∗, x1 ∈ N, . . . , xk ∈ N ` ψ∗ is derivable in
FOM.

Proof. We formally proceed by induction over the derivation; all logical rules are straightforward as
the translation commute with every propositional connective. The only contentious point concerns
axioms and the rules for the existential quantification over integers. The elimination rule of ∃
does not pose any particular problem, but the introduction rule for integers requires to show the
following

Claim. Let t be a term of sort ι of MSO(ω) whose set of free variables is included in {x} (note
that such a term has at most one variable of sort ι). Then, FOM ` x ∈ N⇒ t∗ ∈ N.

Proof. By induction over the term t.

- If t is the variable x, then this is trivial.

- For Ż, we have Ż∗ = 10ω. Note that JN∞(0ω)K = J1ωK in the semantics, so FOM ` N∞(1ω) =
1ω. We also have 10ω = cons1(0ω) 6= cons0(0ω) = 0ω through the third axiom of FOM, so
Ż∗ ∈ N.

- Otherwise, for the successor case, it suffices to prove that FOM ` ∀x2ω .x ∈ N⇒ cons0(x) ∈
N. Reasoning in FOM assume that N∞(x) = 1ω and x 6= 0ω. First we show N∞(cons0(x)) =
1ω. We first have as axiom ∀x2ω N∞(cons0(x)) = cons1(N∞(x)). Instantiating on x, we
may then use Leibniz’ rule to deduce N∞(cons0(x)) = cons1(1ω) = 1ω. Thus we now only
have to show that cons0(x) 6= 0ω; to this end, assume the contrary. By injectivity of cons0,
we would deduce that x = 0ω, contradicting our hypothesis.

It remains to show that the translation of all axioms of MSO(ω) are derivable in FOM in order
to conclude.

- The translation of the injectivity of successor is

∀n2ω .n ∈ N⇒ ∀m2ω .n ∈ N⇒ cons0(n) = cons0(m)

is easily derived from the more general axiom stating that consa is injective of FOM.

- Similarly, the translation of the axiom of non-confusion is

∀n2ω .n ∈ N⇒ cons0(n) 6= 10ω

is derived from the third axiom of FOM.

- The translation of the comprehension and induction axioms are axioms of FOM.

We now want to derive the completeness of the axiomatization FOM2 using the completeness
of Siefkes’ axiomatization of MSO(ω) thanks to the following result.

Lemma 2.2.7. Let ϕ be a FOM2 formula. Then, FOM proves that

ϕ ⇔ ϕ•∗

Proof. Proceed by induction over ϕ.

- If ϕ is an atomic equality t(x) = u(x), then FOM needs to show that

t(x) = u(x)⇔
(
∀n. χJtK(x, n)⇔ χJuK(x, n)

)∗
which is precisely the last axiom of FOM.
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∀xA
ω
1

1 . . . x
Aωn
n .t(x1, . . . , xn) = u(x1, . . . , xn) when JtK = JuK

∀xAω consa(x) = consa(y)⇒ x = y where a ∈ A
∀xAωyAω consa(x) 6= consb(y) where a, b ∈ A with a 6= b

ϕ(Ż) ∧ (∀x2ω .x ∈ N ∧ ϕ(x)⇒ ϕ(Ṡ(x)))⇒ ∀x2ω x ∈ N⇒ ϕ(x)
∃x2ω∀n2ω . n ∈ N⇒ (ϕ(n)⇔ ˙In(n, x)) where x does not occur in ϕ

∀x2ω
1 . . . x2ω

n .t(x1, . . . , xn) = u(x1, . . . , xn)⇔
(
∀n. χJtK(x1, . . . , xn, n)⇔ χJuK(x1, . . . , xn, n)

)∗
Figure 2.6: Axioms of FOM

- Otherwise, both translations (−)∗ and (−)• commute on all connectives, so it is straightfor-
ward to show the equivalence form the induction hypothesis.

At this point, we can show that FOM2 is complete.

Lemma 2.2.8. The axiomatization is complete for FOM2: for any FOM2 sentence ϕ, we have

MFOM |= ϕ ⇔ FOM ` ϕ

Proof. Let ϕ be such a FOM2 sentence. The equivalence is obtained as follows.

MFOM |= ϕ ⇔ MMSO |= ϕ• since MFOM2 ≡M•MSO
⇔ MSO ` ϕ• by soundness and completeness of MSO(ω)
⇔ FOM ` ϕ•∗ by Lemma 2.2.6
⇔ FOM ` ϕ by Lemma 2.2.7

Now, we want to extend this completeness result to the whole language of FOM; we do so by
showing that the elementary equivalence MFOM ≡M†FOM2

may be internalized within the axiomatic
version of FOM.

Lemma 2.2.9. Let ϕ(x1, . . . , xk) be a FOM formula, where the xi are the free variables of respective
sort Aωi . Then we have

FOM ` ϕ(x)⇔ ϕ†((π1 ◦ ηA1)ω(x1), . . . , (π|A1| ◦ ηA1)ω(x1), . . . )

.

Proof. The proof goes by induction over ϕ; most cases are trivial, save for the base case of a term
equality t(x) = u(x). Let (A1, . . . , Ak;B) be the arity of t and u. In such a case, we need to show
that FOM proves the equivalence

t̃((π1 ◦ ηA1)ω(x1), . . . ) = ũ((π1 ◦ ηA1)ω(x1), . . . ) ⇔ t(x1, . . . ) = u(x1, . . . )

For any alphabet B, there is a function rB : 2B → B such that rB ◦ ηB(a) = a for every letter
a ∈ B. The key to proving the equivalence is the equality

rωB(t̃((π1 ◦ ηA1)ω(x1), . . . )) = t(x1, . . . , xk)

which is universally true and thus an axiom of FOM because the lifting t̃ was chosen so that we
have

t̃((π1 ◦ ηA1)ω(x1), . . . )) = ηB(t(x1, . . . , xk))

holds; postcomposing by rωB on both sides allow to conclude.

Hence, we may deduce that FOM is complete.

Theorem 2.2.10. For every formula ϕ of FOM, FOM ` ϕ if and only if MFOM |= ϕ. In particular,
for every sentence ϕ, FOM ` ϕ or FOM ` ¬ϕ.
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2.3 Church’s synthesis problem in FOM
Since FOM has a term language which is extensionally complete for f.s. causal function, admits
essentially the same translation to automata as MSO(ω), and is complete, we may rephrase the
Büchi-Landweber exclusively in terms of provability in FOM and refer to its term language to
discuss finite-state machines.

Theorem 2.3.1 (Büchi-Landweber). There exists an algorithm taking as input a FOM formula
ϕ(xAω , yBω ) and outputs either:

- a code of a Mealy machineM implementing a f.s. causal function t(x) such that

∀xA
ω

ϕ(x, t(x))

- a code of a Mealy machine implementing an eager f.s. causal function t(y) such that

∀yB
ω

¬ϕ(t(y), y)

Note that the second alternative implies that there is no f.s. causal function t(x) such that
∀xAω ϕ(x, t(x)) holds.

From this point on, we shall use this version of the Büchi-Landweber theorem when necessary.
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Chapter 3

A notion of realizability for
Monadic Second-Order Logic MSO
over ω

The logic MSO(ω) discussed in the introduction is a classical system where entailments between for-
mulas only imply inclusion of the languages determined by their Tarskian semantics. In particular,
it does not allow for effective witness extraction: from a proof of statement ∀n ∈ N∃m ∈ N ϕ(n,m)
in Peano arithmetic, there is no way to extract a recursive function f : N→ N such that ϕ(n, f(n))
holds1. By foregoing excluded middle, constructive logics admit richer semantics where the inter-
pretation of proofs allow for such extraction to take place.

The goal of this section is to give a Curry-Howard interpretation of Church’s synthesis problem.
Concretely speaking, we give a constructive theory SFOM which

- may be seen as a subsystem of MSO(ω) in terms of provability.

- is as expressive as MSO(ω) through a double-negation translation.

- has a strong extraction property, i.e., from a proof of ` ∃yBϕ(xA, yB) may be computed (in
linear time) the code of a f.s. function t(x) such that ∀xAϕ(x, t(x)) classically holds2.

- is complete with respect to Church’s synthesis, i.e., if there exists a code of a f.s. function
t(x) such that ∀xAϕ(x, t(x)) holds, then SFOM ` ∃yBϕ¬¬(x, t(x)).

The most important property might be the strong witnessing property. This is achieved by
giving a realizability model for SFOM based on a refinement of the classical automata-theoretic
translation of MSO(ω) by using simulation instead of mere language inclusion when discussing
entailment. This constitutes the most important departure from usual treatment of MSO(ω). The
other results follow from more basic considerations appealing to Büchi’s decidability theorem and
Siefkes’ theorem (for FOM) as blackboxes.

We first give the definition and axiomatization of SFOM and show it admits a double-negation
translation relating it to FOM in Section 3.1. Then we explicitate the translation of SFOM formulas
to automata and the companion realizability model in Section 3.2. We then finally wrap up by
deriving soundness and completeness with respect to synthesis in Section 3.3.

This chapter is meant as a counterpart to our article [56] which featured the same realizability
model. The crucial difference between [56] and the current setting is the language of the logic:
while we have taken the opportunity to move from MSO(ω) to FOM to ease the presentation,
the constructive theory of [56] retains the language and the trappings of MSO(ω). While this
complexifies the presentation, it also means that [56] contains some additional results pertaining
to the representation of Mealy machines as MSO(ω) formulas which are not reproduced in this
thesis.

1Note that it is possible when ϕ is Σ0
1; the proof goes through a conservativity argument over constructive

arithmetic.
2Let us mention that we are cheating slightly here; the representation of the function itself is not polynomially

bounded in the size of the proof if we insist on representing the Mealy machines as graphs. However, computing a
term or any bit of the expanded representation may be done in linear times.
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ϕ,ϕ ` ϕ
ϕ ` ψ ϕ,ψ ` ϕ

ϕ ` ϕ
ϕ ` ϕ ϕ ` ¬ϕ

ϕ ` ⊥

ϕ ` ϕ ϕ ` ψ
ϕ ` ϕ ∧ ψ

ϕ ` ϕ ∧ ψ
ϕ ` ϕ

ϕ ` ϕ ∧ ψ
ϕ ` ψ

ϕ ` ϕ[t/x]
ϕ ` ∃xaϕ

ϕ,ϕ ` ψ ϕ ` ∃xAϕ
ϕ ` ψ

(xA not free in ϕ,ψ)

ϕ ` t = t
ϕ ` φ(t) ϕ ` t = u

ϕ ` φ(u)

Figure 3.1: Natural deduction for first-order logic with equalities.

t(x1, . . . , xn) = u(x1, . . . , xn) when JtK = JuK

¬(consa(x) = consa(y) ∧ ¬x = y) where a ∈ A and x, y of sort Aω

¬consa(x) = consb(y) where a, b ∈ A with a 6= b at sort Aω

¬¬∃x2ω¬∃n2ω . n ∈ N ∧ ¬
(
ϕ(n) ⇔̇ ˙In(n, x)

)
where x does not occur in ϕ

¬
(
t = u ∧ ∃n (n ∈ N ∧ ¬(χJtK(n) ⇔̇ χJuK(n))∗)

)
¬
(
¬t = u ∧ ¬∃n (n ∈ N ∧ ¬(χJtK(n) ⇔̇ χJuK(n))∗)

)
where ϕ ⇔̇ ψ denotes ¬(¬ϕ ∧ ψ) ∧ ¬(ϕ ∧ ¬ψ)

Figure 3.2: Additional axioms of SFOM

3.1 The logical system

3.1.1 Definition of SFOM
Formally speaking, the deduction system SFOM is defined as follows:

- The language is the same language as FOM: first-order logic of infinite words, with a term
for every f.s. synchronous function.

- The proof rules are those of intuitionistic natural deduction for our set of connectives as
presented in Figure 3.1, augmented with double-negation elimination for atomic formulas

ϕ̄ ` ¬¬t = u
ϕ̄ ` t = u

and a rule corresponding respectively to weakened induction.

ϕ̄ ` φ(0) ϕ̄, n ∈ N, φ(n) ` φ(Ṡ(n))
ϕ̄, n ∈ N ` ¬¬φ(n)

- Finally, are added the basic axioms collected in Figure 3.2. These correspond to axioms of
FOM as seen in Figure 2.6 and are seen to be readily equivalent. To stress that SFOM does
not admit universal quantifications or implications, we formulate those explicitly in terms of
our limited set of connectives. In particular, axioms with free variables are used to simulate
prenex universal quantifications. One crucial point is the adoption of a double-negated
comprehension scheme.
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3.1.2 Relating FOM and SFOM
We first note that SFOM proves less theorems than FOM.

Lemma 3.1.1. If SFOM ` ϕ, then FOM ` ϕ.

Proof. Via a straightforward induction over the proof derivation. Most proof rules of SFOM are
proof rules of FOM. Only elimination of double-negation for equalities needs to be explicitly shown
admissible, which is straightforward since FOM is classical. Then, all of the axioms of SFOM are
axioms of FOM with possible additional double-negations, and thus theorems of FOM.

As is typical with constructive logic, this does not mean that SFOM is less expressive than FOM.
Typically, provability in classical logic and constructive logic are related using a double-negation
translation ϕ 7→ ϕ¬¬. The theorem then states that ϕ is provable classically if and only if ϕ¬¬ is
provable constructively. The key idea is that, since double-negation elimination is admissible for
negated formulas, adding recursively double-negations everywhere allow to reason as in classical
logic. From the point of view of constructiveness, a negated formula also have a proof-irrelevant
semantics following the slogan “negation kills computational content” of intuitionistic realizability.
Therefore, while a witness may be effectively extracted from a constructive proof of ` ∃x ϕ, a
proof of ` ¬¬∃x ϕ conveys little information.

Before investigating double-negation translation, it is useful to isolate those formulas with no
computational content; anticipating on their automata-theoretic interpretation in the next Section,
we call them deterministic.

Definition 3.1.2. The deterministic formulas of SFOM are generated by the following grammar.

δ, δ′ ::= t = u | δ ∧ δ′ | ¬ϕ

In particular, note that any negated formula is deterministic, which vindicate the usual slogan
“negation kills computational content” from Kleene’s realizability.

Lemma 3.1.3. In SFOM, the following rule is admissible for every deterministic formula δ.

ϕ,¬¬δ ` δ

Proof. By induction over the formula δ:

- if the formula is an equality, this is an axiom of SFOM.

- if the formula is a conjunct δ1 ∧ δ2, cut the following proof of ¬¬(δ1 ∧ δ2) ` ¬¬δi for i = 1, 2
with the induction hypothesis.

¬¬(δ1 ∧ δ2) , ¬δi ` ¬¬(δ1 ∧ δ2)

¬¬(δ1 ∧ δ2) , ¬δi , δ1 ∧ δ2 ` ¬δi
¬¬(δ1 ∧ δ2) , ¬δi , δ1 ∧ δ2 ` δ1 ∧ δ2
¬¬(δ1 ∧ δ2) , ¬δi , δ1 ∧ δ2 ` δi

¬¬(δ1 ∧ δ2) , ¬δi , δ1 ∧ δ2 ` ⊥
¬¬(δ1 ∧ δ2) , ¬δi ` ¬(δ1 ∧ δ2)

¬¬(δ1 ∧ δ2) , ¬δi ` ⊥
¬¬(δ1 ∧ δ2) ` ¬¬δi

- if the formula is a negation ¬ϕ, cut with the proof of triple-negation elimination.

¬¬¬ϕ , ϕ ` ¬¬¬ϕ

¬¬¬ϕ , ϕ , ¬ϕ ` ¬ϕ ¬¬¬ϕ , ϕ , ¬ϕ ` ϕ
¬¬¬ϕ , ϕ , ¬ϕ ` ⊥
¬¬¬ϕ , ϕ ` ¬¬ϕ

¬¬¬ϕ , ϕ ` ⊥
¬¬¬ϕ ` ¬ϕ

Since the language of FOM does not feature universal quantifications, we can actually use a
radically simpler version of double-negation translation: simply double-negate the formula under
consideration.
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Lemma 3.1.4. FOM ` ϕ if and only if SFOM ` ¬¬ϕ.

Proof. By Lemma 3.1.1, if SFOM ` ¬¬ϕ, then FOM ` ¬¬ϕ. Then, since double-negation elimina-
tion is admissible in FOM, we have FOM ` ϕ. Conversely, the proof goes by induction on SFOM
derivations.

We show that if ϕ ` ϕ is derivable in FOM, then ϕ ` ¬¬ϕ is derivable in SFOM. This amounts
to showing that for every FOM rule of the form

(ϕi ` ϕi)i∈I
ψ ` ψ

the following rule is admissible in SFOM:

(ϕi ` ¬¬ϕi)i∈I
ψ ` ¬¬ψ

We implicitly use the admissibility of weakening in SFOM, i.e. the admissibility of the rule

ϕ ` ϕ
ϕ,ψ ` ϕ

The propositional rules may be treated exactly as in the usual proof of Glivenko’s theorem for
propositional logic, and it is folklore that Glivenko’s theorem extends to existential quantifications
(see e.g. [40, Prop. 10.3]). It remains to deal with the axioms of FOM.

Induction We need to show that

ϕ ` ¬¬φ(0) ϕ, n ∈ N, φ(n) ` ¬¬φ(Ṡ(n))
ϕ ` ¬¬φ(n)

where n2ω is not free in ϕ. The induction scheme of SFOM can be instantiated on ¬¬φ(n)

ϕ ` ¬¬φ(0) ϕ, n ∈ N,¬¬φ(n) ` ¬¬φ(Ṡ(n))
ϕ ` ¬¬¬¬φ(n)

and be cut with the proof of ¬¬¬¬φ(n) ` ¬¬φ(n). To conclude, it then suffices to show that
the rule

ϕ, n ∈ N, φ(n) ` ¬¬φ(Ṡ(n))
ϕ, n ∈ N,¬¬φ(n) ` ¬¬φ(Ṡ(n))

is derivable in intuitionistic propositional logic.

Elimination of Equality We have to show that the following rule is admissible in SMSO:

ϕ ` ¬¬ϕ(t) ϕ ` ¬¬t = u
ϕ ` ¬¬ϕ(u)

Since t = u is deterministic, by cutting the right premise with the deterministic double-
negation elimination rule of SFOM, we are left with deriving the following in SFOM:

ϕ ` ¬¬ϕ(t) ϕ ` t = u
ϕ ` ¬¬ϕ(u)

But this is an instance of the rule of elimination of equality.

Other Axioms of FOM The comprehension axiom scheme of SFOM

¬¬∃x2ω¬∃n2ω . n ∈ N ∧ ¬
(
ϕ(n) ⇔̇ ˙In(n, x)

)
is exactly the comprehension axiom of FOM with an additional outer double-negation. The
other axioms coincide with those of FOM.
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3.2 The realizability model
The design of SFOM and its model is guided by the classical automaton translation of Theo-
rem 1.1.5. The basic conceit behind SFOM is that a proof ϕ ` ψ not only serves as a witness of
the inclusion of languages

{ρ |MFOM |=ρ ϕ} = L(Aϕ) ⊆ L(Aψ) = {ρ |MFOM |=ρ ψ}

but also ensures that there exists a suitable simulation between Aϕ and Aψ. Calling respectively
Qϕ and Qψ the state-spaces of Aϕ and Aψ and A their input alphabet, a simulation will be in
effect a f.s. causal function Aω × Qωϕ → Qωψ mapping accepting runs of Aϕ over w to accepting
runs of Aψ over w. Of course, this result will be effective in the sense that one may compute 3 a
simulation from a SFOM proof.

If one is concerned with provability of a single formula ` ϕ rather than a sequent, then this
means considering simulations from a trivial one-state automaton accepting the universal language
to Aϕ. In effect, such simulations are thus causal functions Aω → Qωϕ taking a word to an accepting
run (this means in particular that L(Aϕ) = Aω). Those are not sufficient to give a semantics
for SFOM, but provide a quick way of understanding why the suggested above semantics is not
degenerate.

Example 3.2.1. Consider the following non-deterministic Büchi automaton A over the alphabet
{a, b}.

qι

a

b

>

a,b

a,b

a

b

b

a

a,b

For any word w ∈ Aω, qι, w1,>,>, . . . is an accepting run, so L(A) = Aω However, there is
no f.s. causal function f : Aω → Qω such that f(w) is an accepting run of A over w.

Indeed, fix such a f.s. causal function f : Aω → Qω and consider the function h : Q → A
such that h(qι) = h(b) = h(>) = a and h(a) = b, and extend it to the memoryless function
hω : Qω → Aω. Then, we can consider the eager function

g = hω ◦ consqι ◦ f : Aω → Aω

By Corollary 2.1.10, there is a unique word w ∈ Aω such that g(w) = w.
Then, we show that consqι ◦ f(w) is not an accepting run to derive a contradiction. To this

end, it is sufficient to show that f(w)n 6= > for every n ∈ N. For n = 0, it is immediate
as f(w)0 ∈ {a, b} in order to be compatible with A. For n + 1, we have a case distinction:
either f(w)n = qι, in which case we also have f(w)n+1 ∈ {a, b}. Otherwise, f(w)n = a or
b. Then wn+1 = g(w)n+1 = h((consqι(f(w)))n+1) = h(f(w)n). By definition of h, we have
h(f(w)n) 6= f(w)n, which means that we necessarily have f(w)n+1 = qι.

In this definition, the state space of the automaton plays a crucial rôle. However, there might
be many more guiding functions Aω → Qω than actual resolution of determinisms, even for quite
intricate predicates. Typically, as we shall use an interpretation based on McNaughton’s theorem,
complemented automata ¬A will have huge state space but no meaningful non-deterministic be-
haviour. For this reason among others, we consider a notion of uniform automata which will prove
more convenient in interpreting SFOM sequent.

Definition 3.2.2. A uniform automaton over alphabet A is a tuple A = (Q, qι, U, δ,Ω) : A such
that

- Q is a finite set of states.
3In fact, in linear time if one adopts a term language for Mealy machines featuring pairing, projections and

composition. Otherwise, this extraction procedure may produce machines with a state-space in the input derivation.
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- qι ∈ Q is the initial state.

- U is a finite set of moves.

- δ : A×Q× U → Q is a transition function.

- Ω ⊆ Qω is an acceptance conditions.

A run of the automaton over a word w ∈ Aω is a sequence of states q ∈ Qω such that there exists
u ∈ Uω with q0 = qι and qn+1 = δ(wn, qn, un). A run q is accepting if and only if q ∈ Ω.

As before, the language recognized by A is the set of words w such there exists an accepting run
over w.

A uniform automaton is called Büchi/parity/Muller according to the same criteria as in Defi-
nition 1.1.2.

A uniform automaton is called deterministic if the set of moves U is a singleton.

Uniform non-deterministic automata and non-deterministic automata recognize the same lan-
guages. From a non-deterministic automaton (Q, I,∆,Ω), one may build the uniform automaton
(Q+ {qι,⊥}, qι, Q, δ′,Ω′) with

δ(a, inr(⊥), r) = inr(⊥)

δ(a, inr(qι), r) =
{

inl(r) if there exists q ∈ I such that (q, a, r) ∈ ∆
inr(⊥) otherwise

δ(a, inl(q), r) =
{

inl(r) if (q, a, r) ∈ ∆
inr(⊥) otherwise

Ω′ = {q ∈ (Q+ {qι,⊥})ω | ∃q′ ∈ Qω.q′ ∈ Ω ∧ ∀n > 0.qn = inl(q′n)}

Conversely, given a uniform automaton (Q, qι, U, δ,Ω), the non-deterministic automaton (Q, {qι},∆′,Ω)
with ∆′ = {(q, a, r) ∈ Q × A × Q | ∃u ∈ U δ(a, q, u) = r} recognizes the same language. Similar
maps can also be defined for deterministic uniform automata and deterministic automata. Ob-
serve that the complexity of the acceptance condition (Büchi, parity or Muller) is not affected
by this translation. In the sequel, we shall re-use this fact together with McNaughton’s theorem
(Theorem 1.1.6).

Proposition 3.2.3. For every uniform Muller automaton A : A, there is a Muller automaton
recognizing L(A) and conversely, for every Muller automaton B : A, there is a uniform Muller
automaton recognizing L(B).

Now that we have established that uniform automata are not so different from the classical
notion, we can now give a convenient phrasing of the notion of simulation between uniform au-
tomata.

Definition 3.2.4. Let A = (QA, qιA, δA, U,ΩA) : A and B = (QB, qιB, δB, V,ΩB) : A be uniform
automata over a common alphabet A. A simulation A → B is a f.s. synchronous function f :
(A× U)ω → V ω such that, for every word w ∈ Aω and u ∈ Uω, the unique sequences q ∈ QωA and
r ∈ QωB such that

q0 = qιA qn+1 = δA(wn, qn, un)
r0 = qιB rn+1 = δB(wn, rn, f(〈w, u〉)n)

we have q ∈ ΩA ⇒ r ∈ ΩB.
We write A  f : B (which is informally read as “f realizes A ` B” when f is a simulation

from A to B. Sometimes, we write A  B to mean that there exists some f such that A  f : B.

Simulations A  B strictly refine inclusions of languages L(A) ⊆ L(B): if there exists a
simulation A → B, then L(A) ⊆ L(B) in the general case. However, the notion trivializes as
expected when B is deterministic.

Lemma 3.2.5. Let A and B be uniform automata over a common alphabet A. If B is deterministic,
then there exists a (necessarily unique) simulation A → B if and only if L(A) ⊆ L(B).

Proof. Since B is deterministic, a simulation f : A → B has codomain 1, so there is at most one
such map. Then the equivalence is straightforward.

Crucially, simulations between automata compose. In fact, they may be arranged into a cate-
gory AutA
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Lemma 3.2.6. Given an alphabet A, the category of uniform Muller automata and simulations
AutA is given by the following data:

- Objects: objects are uniform Muller automata over the designated alphabet A : A.

- Morphisms: morphisms from A to B are f.s. causal function f such that A  f : B.

- Composition: given f.s causal functions f and g such that A  f : B and B  g : C, the
composite is h = f ◦ 〈π1, g〉. It is straightforward to check that A  h : C.

Associativity of composition is straightforward4. This fact will readily provide us with the
interpretation of the cut rule from logic.

A  f : B B  g : C
A  f ◦ 〈π1, g〉 : C

The treatment of conjunction can also be expressed as a categorical property.
Lemma 3.2.7. Given Muller automata

A = (QA, qιA, U, δA, [FA]∞) : A
B = (QB, qιB, V, δB, [FB]∞) : A

define the conjunction automaton as A ∧ B = (QA ×QB, IA × IB,∆A∧B, [FA∧B]∞) with

δA∧B(a, (q, r), (u, v)) = (δA(a, q, u), δB(a, r, v))
FA∧B = {X | π1(X) ∈ FA ∧ π2(X) ∈ FB}

The automaton A ∧ B satisfies the following:
- L(A ∧ B) = L(A) ∩ L(B).

- If A and B are both deterministic, so is A ∧ B.

- Finally, A ∧ B is the cartesian product of A and B in AutA.
Proof. The first two points are standard, so we focus on the last. First we need to provide projec-
tions. They are given as

πA : A× (U × V ) π2 // U × V π1 // U

πB : A× (U × V ) π2 // U × V π2 // V

Clearly, it is then easy to check that

A ∧ B  πA : A A ∧ B  πB : B

Finally, we need to check that A ∧ B equipped with those projections have the suitable universal
property: for any automaton C = (QC , qιC ,W, δC , [FC ]∞) : A and simulations

C  f : A C  g : B

there should exist a unique f.s. causal h : A ×W → U × V such that π1 ◦ h = f and π2 ◦ h = g.
Since U × V is a cartesian product, h is uniquely determined to be the pairing 〈f, g〉. Then it can
be checked that we have indeed

C  〈f, g〉 : A ∧ B

As usual, the cartesian structure allow to interpret the natural deduction rules for introducing
negation and conjunction.

A  f : B1 ∧ B2

A  πi ◦ f : Bi
A  f : B A  g : C
A  〈f, g〉 : B ∧ C

We now may write A1, . . . ,An  f : B as a shorthand for A1 ∧ · · · ∧ An  f : B.
Similarly the existential quantification is handled by adapting the classical automaton con-

struction5. In order to characterize the computational content pertaining to ∃, we first need to
make precise how substitution by finite-state causal functions works.

4Although not technically needed here since if unconcerned with cut-elimination.
5Rather than defining the abstract structure needed for categorical logic, we unpack the technical ingredients

here. The categorical setting for first-order logic will be presented later, and the interested reader will notice that
we define here the substitution functor and simple sums.
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Definition 3.2.8. Given a uniform Muller automaton A = (QA, qιA, U, δA, [F ]∞) : B and a Mealy
machine M = (QM, qιM, δM) : Aω → Bω, define the substituted automaton M∗A = (QA ×
QM, (qιA, qιM), U, δM∗A, [FM∗A]∞) with

π2(δM∗A(a, (q, r)), u) = π2(δM(a, r))
π1(δM∗A(a, (q, r)), u) = δA(π1(δM(a, r)), q, u)
X ∈ FM∗A ⇔ π1(X) = {q | (q, r) ∈ X} ∈ F

Since every f.s. causal function corresponds to a unique minimal Mealy machine, we shall some
times be sloppy and allow ourselves to write f∗A for the corresponding subsituted automaton.
The language recognized by the subsituted automaton corresponds formally to the following.

Lemma 3.2.9. For every uniform Muller automaton A : B and f.s. causal function f : Aω → Bω,
we have

L(f∗A) = {x ∈ Aω | f(x) ∈ L(A)}

As a straightforward corollary, this establishes the soundness of the usual substitution scheme
for the classical semantics. Given that f is taken to be f.s. causal, it is also readily check that it
is validated for the realizability semantics

A  g : B
f∗A  g ◦ (f × id) : f∗B

In particular, the f.s. causal function may be taken to be a projection π1 : A × B → B, and the
substitution operation π∗1A for A : B amounts to adding a dummy stream variable to the formula
corresponding to π∗1A.

Lemma 3.2.10. Given a uniform automaton A = (QA, qιA, U, δA, [F ]∞) : A × B, define the
projection automaton ∃π2A : = (QA, qιcA,U ×A, δ∃π2A, [F ]∞) : B with

δ∃π2A(b, q, (u, a)) = δA((a, b), q, u)

The automaton ∃π2A satisfies the following:

- L(∃π2A) = {b ∈ Bω | ∃a ∈ Aω 〈a, b〉 ∈ L(A)}

- For any f.s. causal f : Bω → Uω and g : Bω → Aω, we have 〈f, g〉  A if and only if
f  〈g, id〉∗A.

This construction thus implements the usual existential quantification at the level of language,
but also has a familiar constructive semantics: a proof is a pair of a witness together with another
proof that the witness is valid. In order to show that this interpretation is sound with respect to
natural deduction, the following two lemmas are required; the proofs are also straightforward to
check.

Lemma 3.2.11. Let A : B, B : A×B and C : B be uniform Muller automata with respective sets
of moves U, V and W . For every f : B × (U × (V ×A))→W such that

A ∧ ∃π2B  f : C

we have
π∗2A ∧ B  f ′ : π∗2C

where f ′ is the following composite, where m is the only natural permutation of coordinates available

(A×B)× (U × V ) m // B × (U × (V ×A)) f // W

Lemma 3.2.12. Let A : A and B : A × B be Muller automata and f : Aω → Bω finite-state,
causal. Then, if g is such that A  g : 〈id, f〉∗B, then

A  〈g, f ◦ π1〉 : ∃π2B

These two lemmas correspond respectively to the following proof rules,

A ∧ ∃π2B  C
π∗2A ∧ B  π∗2C

A  〈id, f〉∗B
A  ∃π2B
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Finally, come the non-trivial question of interpreting negation. A more common approach in
realizability is to first give a semantics for the arrow ⇒ and falsity ⊥. While the usual automata-
theoretic translation ⊥A = (1, ∗, ∅, ∗, [∅]∞) : A for the latter may be rather unproblematically
reused, the former actually cannot be encoded in all generality because the category Mealy is not
cartesian-closed.

Therefore, we give a singular negation connective on automata. Following a customary automata-
theoretic translation, we implement ¬A in two steps: we first determinize and then negate.

Lemma 3.2.13. Let A = (Q, qι, U, δ, [F ]∞) : A be a uniform Muller automaton. There exists a
deterministic uniform Muller automaton ¬A : A such that L(¬A) = Aω \ L(A)

Proof. - We first use a determinization procedure A 7→ ?A to get a Muller automaton accept-
ing the same language by combining McNaughton’s theorem (Theorem 1.1.6) and Proposi-
tion 3.2.3. The specifics of the determinzation procedure are rather unimportant as long as
the set of moves of the resulting uniforma automaton ?A is 1 and L(A) = L(?A).

- Then we consider the operation of negating the acceptance condition A 7→ A‹. If A is
deterministic, this ensures that L(A‹) = Aω \L(A) and that A‹ remains deterministic. ¬A
is then set to be (?A)‹.

In order to show that this choice of negation is sound with respect to the deduction rules, we
exploit Lemma 3.2.5, i.e. the fact that when B is deterministic, we have the equivalence

A  B if and only if L(A) ⊆ L(B)

Thus the rules of negation are also sound at the level of simulations, i.e.

A,B  ⊥
A  ¬B

A  ⊥
A  B

This implies in particular that, for uniform automata, we have L(A) ⊆ L(B) if and only if A  ?B.

Remark. We can relate our semantics to the notion of good-for-games automata from [28]. If
A : A is a classical automaton and A∗ : A is its uniform version obtained through Proposition 3.2.3,
then A is good-for-games if and only if ?A∗  A∗.

It is also worth noting that the determinization construction is equivalent to double negation
at the level of simulations, i.e.

Proposition 3.2.14. For any alphabet A and uniform Muller automaton A : A, there is a unique
isomorphism in AutA between ?A and ¬¬A. Furthermore, if A was already deterministic, then A
is a unique isomorphism between A and ?A.

3.3 Soundness and completeness with respect to Church’s
synthesis

Now that we have basic proof-theoretic facts about SFOM and a notion of simulation of automata,
we are ready to show that SFOM is sound and complete with respect to Church’s synthesis.

For soundness, we first define a translation J−K from FOM formulas of sort A to uniform
automata over A.

JM(x) = N (x)K = 〈M,N〉∗E
Jϕ ∧ ψK = JϕK ∧ JψK
J∃xA ϕK = ∃πJϕK where π is the relevant projection.
J¬ϕK = (?JϕK)‹

where E is the deterministic automaton

E = ({0, 1}, 1, δE , [P({1})]∞) : A×A

with δE((a, a), 1) = 1
δE((a, a′), 1) = 0 if a 6= a′

δE((a, a′), 0) = 0

recognizing the diagonal language {〈w,w〉 ∈ (A×A)ω}.
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Remark. The translation from formulas to automata is naturally restricted to the connectives ∃,
∧ and ¬. In the context of constructive logic, this restriction is not as innocent as with classical
logic: ¬∀x ¬ϕ(x) is possibly strictly weaker than ∃x ϕ(x). As we shall see later, the intended model
for SFOM may also arise as a generic construction from categorical logic, a variant of the simple
fibration over the category Mealy; this construction allow to interpret the full set of first-order
connectives only when the base category is cartesian-closed, which is not the case of Mealy.

While formulas are mapped to automata as with usual interpretation of MSO, the crucial point
is that proofs are mapped to simulations. In particular, this means the level of non-determinism
in the interpretation of a formula has an impact on derivability. Deterministic formulas as given
in Definition 3.1.2 are mapped to deterministic uniform automata; considering Lemma 3.2.5, this
justifies that slogan “negation kills computational content” from realizability also applies to our
setting. Aggregating the Lemmas in Section 3.2, one may derive the following soundness theorem
via a straightforward induction.

Theorem 3.3.1. There is a linear-time function taking as input a derivation ϕ1, . . . , ϕk ` φ in
SFOM and outputting a term t such that Jϕ1K ∧ · · · ∧ JϕkK  JtK : JφK.

Proof. It suffices to show that every rule and axiom of SFOM is adequate with respect to our
realizability interpretation in order to conclude by induction over the derivation. The rules of
introduction of ∃ is admissible by Lemma 3.2.12 and elimination is handled by Lemma 3.2.11.
Similarly, the rules for conjunction are sound because conjunction correspond to cartesian products
in the category of automata and simulations (Lemma 3.2.7). Now, the conclusion of the remaining
proof rules are all of the shape ϕ ` δ with δ deterministic; therefore, by Lemma 3.2.5, it suffices
to show that there is an inclusion of language

⋂k
i=1 L(JϕiK) ⊆ L(JδK). Since simulations refine

inclusions, all the premises give rise to similar inclusions; it then suffices to check that the rule are
then valid for the classical semantics FOM, which is easy.

This allow to derive the crucial witnessing property that allows extraction of Mealy machines
from proofs of existential statements.

Corollary 3.3.2. Given a proof of ` ∃yBϕ(xA, yB) in SFOM, one may output a term t such that,
for every w ∈ Aω, MFOM |= ϕ(w, JtK(w)) holds.

Proof. Calling U the set of moves of Jϕ(x, y)K, by Theorem 3.3.1, there exists a f.s. synchronous
map f : Aω → (B×U)ω such that  f : J∃yBωϕ(x, y)K holds. Taking t any term of arity (Aω;Bω)
such that JtK = f , this means that  π2 ◦ f : Jϕ(x, t(x))K. Since simulations refine inclusions, we
have Jϕ(x), t(x)K = Aω, and therefore the results hold.

Remark. Note that the state-space of a Mealy machine interpreting JtK has no reason to be linear
in the size of t, but is only bounded by an exponential: the size of the state space of either compo-
sition or pairing of two Mealy machinesM and N is obtained by multiplying the size of the state
spaces ofM and N .

Corollary 3.3.2 admits the following converse, thanks to the double-negation translation of FOM
in SFOM. This constitute completeness with respect to Church’s synthesis. Note that this is shown
solely from proof-theoretic considerations derived from Section 3.1.

Theorem 3.3.3. Let ϕ(xAω , yBω ) be a FOM formula such that there exists a f.s. synchronous
function f : Aω → Bω such that MFOM |= ϕ(w, f(w)) for every w ∈ Aω. Then, SFOM `
∃yBω¬¬ϕ(x, y).

Proof. Let t be term of sort (Aω;Bω) such that JtK = f . Then FOM ` ϕ(x, t(x)) by completeness
of FOM with respect to its standard model. Then, by Lemma 3.1.4, we have SFOM ` ¬¬ϕ(x, t(x)).
Then, using a ∃-intro rule, we have the result SFOM ` ∃yBω¬¬ϕ(x, y).
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Chapter 4

Extension to alternating automata

In the previous chapter, we defined SFOM, a constructive subsystem of FOM and a companion
realizability-like model, where formulas are interpreted as (uniform) non-deterministic Muller au-
tomata and proofs as Mealy machines, regarded as a particular kind of simulations between the
underlying automata. An interesting aspect of this model is that the interpretation of formulas into
automata matches the classical interpretation of MSO(ω) into automata; the difference lies at the
level of the interpretation of proofs, which are no longer mere language inclusions, but simulations
whose type depends on the non-determinism of the underlying automata.

While non-deterministic automata are sufficient to translate every MSO(ω) formula in a sound
way, these are not the only device able to recognize ω-regular languages. A natural extension is
given by alternating automata over infinite words, which generalize both non-deterministic au-
tomata and their dual, universal automata. The main object of this chapter is to describe LSFOM,
another formalism FOM together with a realizability-like model generalizing the previous one by
incorporating alternating word automata. In particular, formal proof trees are interpreted as a no-
tion of simulation generalizing the one present in the previous chapter. This presents an additional
difficulty as this generalized notion of simulation will not enable to interpret the structural rule of
contraction ϕ → ϕ ∧ ϕ in the general case. For this reason, LSFOM will be based on first-order
intuitionistic multiplicative linear logic. SFOM also comes with a polarity system extending the
distinction between non-deterministic and deterministic formulas of SFOM, as well as exponential
modalities restricted to polarized formulas, accounted for by (co)determinization at the semantic
level.

From the perspective of linear logic, this model is interesting because of a number of peculiarities
it shares with models of linear logic based on Gödel’s Dialectica interpretation [21]. Among other
things, it is not a model of classical linear logic, but it features propositional connectives ⊗ and `
distributing over one another (in the sense of linearly distributive categories [?]) and, as we shall
see much later on, retracts of the map ϕ → (ϕ ( ⊥) ( ⊥. On top of these characteristics, it
should also be noted that the notion of quantification here runs counter the intuition of witnesses
being given sequentially one after the other: a realizer for a formula ∃xAω∀yBω .ϕ(x, y) must give
some witness for x, but the letter xn this witness may depend on the letters yk for k < n.

From an automata-theoretic perspective, it should be stressed LSFOM formulas may be in-
terpreted as automata. These formulas come with a natural polarity system which allowing to
constrain their interpretation to be e.g. deterministic, non-deterministic or universal. In par-
ticular, the polarity system, beyond its role at the level of provability, can be seen as a way of
constraining the translation to be correct with respect to the classical semantics of the formula (i.e.,
when translating the linear connectives of SFOM to the usual connectives of FOM). As a result,
various translations of FOM into SFOM may be regarded as various ways of implementing Büchi’s
theorem using basic automata-theoretic constructions and determinization. It should be stressed
that, similarly to SFOM, LSFOM does not say anything about the fine combinatorics behind the
automata theoretic constructions such as determinization; in the interpretation of formulas as
automata, determinization is used as a black box.

This chapter is meant as a counterpart to the article [58] where the same realizability model
was presented for a theory very similar to LSFOM. The material presented here is essentially the
same. However, when describing the realizability model, the discussion will remain informal and
the full proofs will be deferred to Chapter 6 which treats a higher-order extension of the model.

41



4.1 The theory LSFOM
Automata and polarities We now present the logic LSFOM. Since the end syntax includes

a notion of polarized exponentials, we define by mutual induction the syntax of polarized formulas
before giving the full-fledged syntax of LSFOM. Since we need to discuss polarity early, it might
be useful for the reader familiar with automata-theoretic interpretations to know into what kind
of automata a formula might end up being interpreted.
Definition 4.1.1. An alternating uniform automaton over alphabet A is a tuple

A = (Q, qι, U,X, δ,Ω) : A

such that
- Q is a finite set of states.

- qι ∈ Q is the initial state.

- U is a finite non-empty set of P-moves.

- X is a finite non-empty set of O-moves.

- δ : A×Q× U ×X → Q is a transition function.

- Ω ⊆ Qω is an acceptance conditions.
The crucial difference with uniform deterministic automata is that now, it is not sufficient to

guess an accepting run by providing some u ∈ U for every transition to establish that a word is in
the language, but now one needs to show that it is possible to do so for any choice of x ∈ X by
some opponent O. Acceptance of a word is thus formalized as the existence of a winning strategy
in an acceptance game.
Definition 4.1.2. A P-strategy is an eager1 causal map s : Xω → Uω. A P-strategy together with
a stream x ∈ Xω defines a play 〈s(x), x〉 ∈ (U ×X)ω. A play induces a unique sequence sequence
of states q ∈ Qω such that q0 = qι and qn+1 = δ(wn, qn, un, xn). A play is accepting if and only if
the corresponding sequence of states (qn)n∈N lies in Ω.

The language recognized by A is the set of words w ∈ Aω such there exists a P-strategy s such
that all plays 〈s(x), x〉 are accepting. Write L(A) for the set of words accepted by A.

A uniform automaton is called Büchi/parity/Muller according to the same criteria as in Defi-
nition 1.1.2.

From now on, when speaking about uniform automata, we rather mean the more general
notion given in Definition 4.1.1 rather than the non-deterministic case. The important advantage
of this uniform notion is that, much like with the non-deterministic case, it allows to speak of the
deterministic/non-deterministic/universal subcases at the level of moves.
Definition 4.1.3. A uniform automaton A = (Q, qι, U,X, δ,Ω) : A is said to be:

- non-deterministic if X ' 1.

- universal if U ' 1.

- deterministic if U ' X ' 1.
When designing operators on uniform automata meant to be correct with respect to the se-

mantics of underlying MSO formulas, some may easily be done without using complementation or
determinization procedures, depending on the nature of the underlying automaton:

- language recognized by non-deterministic Muller automata are easily shown to be closed
under union, intersection and projection.

- dually, universal automata are easily closed under union, intersection and coprojection.

- deterministic automata are easily closed under complement, intersection and union but not
quantifications.

These intuitions may guide the reader as the polarity system where positive formulas will correspond
to non-deterministic automata in the semantics and negative formulas to universal automata. This
means in particular that there will be formulas which are both positive and negative correspond-
ing to deterministic automata, and more general unpolarized formulas corresponding to general
alternating automata.

1In the sense of Definition 2.1.7, which means that the value of s(x)n depends only the xi for i < n.
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ϕ±, ψ± ::= I | ⊥ | t = u | !ϕ− | ?ϕ+ | ϕ± ⊗ ψ± | ϕ± ` ψ± | ϕ±( ψ±

ϕ+, ψ+ ::= ϕ± | ∃xAω .ϕ+ | ϕ+ ⊗ ψ+ | ϕ+ ` ψ+ | ϕ−( ψ+ | !ϕ+

ϕ−, ψ− ::= ϕ± | ∀xAω .ϕ− | ϕ− ⊗ ψ− | ϕ− ` ψ− | ϕ+ ( ψ− | ?ϕ−

ϕ,ψ ::= ϕ+ | ϕ− | ∃xAω .ϕ | ∀xAω .ϕ | ϕ⊗ ψ | ϕ` ψ | ϕ( ψ

Figure 4.1: Formulas of LSFOM

The formal system LSFOM Formulas of LSFOM are given inductively by the grammar of
Figure 4.1, where ϕ+ refers to positive formulas, ϕ− to negative formulas and ϕ± to determin-
istic formulas. As for FOM and SFOM, the atomic formulas consist only of equalities between
terms of the same sort and quantifications are sorted. The main connectives are those of classical
multiplicative linear logic with multisorted first-order quantifications:

- ⊗ is the multiplicative conjunction, the linear counterpart to ∧. If ϕ and ψ are of polarity
p, so is ϕ⊗ ψ.

- ` is the multiplicative disjunction, the linear counterpart to ∨.

- ( is the linear implication, the counterpart to →. ϕ( ψ is polarized only when ϕ and ψ
are of opposite polarities. In particular, linear negation defined as −( ⊥ inverts polarity.

- ∃xAω .ϕ, if polarized, is necessarily positive. Furthermore, this enforces that ϕ should also be
positive. Similarly, ∀xAω .ϕ, if polarized, is necessarily negative.

As is customary, we write ϕ ˛ ψ for the formula (ϕ( ψ) ⊗ (ψ ( ϕ) and say that ϕ and ψ are
(linearly) equivalent when ϕ˛ ψ is derivable.

As such, this polarity system is more liberal than most of those found in linear systems such
as LLP for instance [44]. The only reason we have to offer comes from the correspondence with
automata, rather than proof-theoretic considerations closely related to linear logic.

The main technical reason why we need to introduce polarized formulas are the exponential
modalities ! and ?, which are not defined for general LSFOM formulas. The main reason for this
lack of a definition is that, to our knowledge, there is no computationally easy interpretation of
general ! or ? modalities corresponding to dealternation. While it is known how to dealternate
infinite word automata, the difficulty lies in interpreting the promotion rule of linear logic. A
solution is investigated in the more general setting of tree automata for ! in [61], but this option
complicates the interpretation of proofs in the realizability model significantly; we elect not to
adapt it here.

As for deduction in LSFOM, it is carried out in the sequent calculus presented in Figure 4.2
augmented with the axioms presented in Figure 4.3. This sequent calculus is a straightforward ex-
tension of the calculus for Full Intuitionistic Multiplicative Linear Logic (FIMLL) presented in [34],
with rules for the exponential modalities, first-order quantifications, and equalities. The system
departs from usual sequent calculus for classical logic in the following ways:

- As heralded earlier, the system is linear and the structural rules of contraction and weakening
may only apply to formulas under a suitable exponential modality.

- As in classical multiplicative linear logic, a sequent formally consists of two lists of legal
LSFOM formulas. Unlike intuitionistic linear logic, the right-hand side sequents may be
arbitrarily large and not of size at most one. The reason we do not get classical multiplicative
linear logic is because this restriction is reinstated at the level of the left rule for( and right
rule for ∀. This means in particular that ((ϕ( ⊥)( ⊥)( ϕ is not derivable and that we
do not have ϕ` ψ ˛ ((ϕ( ⊥)⊗ (ψ( ⊥))( ⊥ in general. The only relation we retain
between ` and ⊗ is the distributive law ϕ⊗ (ψ ` ψ′)( (ϕ⊗ ψ) ` ψ′.

- All formulas appearing in Figure 4.2 are assumed to be syntactically correct LSFOM formulas
as given by the grammar in Figure 4.1. In particular, every formula appearing under an ex-
ponential modality is necessarily polarized. This is the reason why we refrain from baptizing
this proof system as something like “full first-order multiplicative exponential linear logic
with equalities”.
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The axioms presented in Figure 4.3 fall into two categories: general axiom schemes related
to polarized formulas and axioms translated from FOM (i.e., the system of axioms presented in
Figure 2.6). The latter serve to embed FOM in LSFOM thanks to a translation (−)L we detail
in Figure 4.4. The former, while also playing an decisive rôle in embedding FOM, is of more
importance. It essentially states that polarized formulas are stable under double linear negation and
that positive (respectively negative) formulas are stable under ! (respectively ?). As a consequence,
one may reason in the deterministic fragment of LSFOM as in classical logic. We collect the relevant
de Morgan dualities in the following proposition.

Proposition 4.1.4. The following linear equivalences are derivable in LSFOM for all formulas
with the displayed polarities, taking p ∈ {+,−} to be some polarity and writing p for its opposite.

⊥( ⊥ ˛ I I( ⊥ ˛ ⊥
(ϕp ⊗ ψp)( ⊥ ˛ (ϕp( ⊥) ` (ψp( ⊥) (ϕp ` ψp)( ⊥ ˛ (ϕp( ⊥)⊗ (ψp( ⊥)

(?∃xAω .ϕ±)( ⊥ ˛ !∀xAω .ϕ±( ⊥ (!∀xAω .ϕ±)( ⊥ ˛ ?∃xAω .ϕ±( ⊥
ϕp( ψp ˛ (ϕp( ⊥) ` ψp

Moreover, we have the following linear entailments.

ϕ+ ( I ⊥ ( ϕ−

ϕ+
1 ⊗ ϕ

+
2 ( ϕ+

i ϕ−i ( ϕ−1 ` ϕ−2

Proof. We do not spell out all the proofs in full here, but let us treat the equivalence between
(!∀xAω .ϕ±)( ⊥ and ?∃xAω .ϕ±( ⊥ by way of example. The right-to-left implication is obtained
as a routine derivation in intuitionistic linear logic.

ϕ± ` ϕ±

∀xA
ω

.ϕ± ` ϕ± ⊥ `
ϕ± ( ⊥, ∀xA

ω

.ϕ±) `
ϕ± ( ⊥, !∀xA

ω

.ϕ±) `
∃xA

ω

.ϕ± ( ⊥, !∀xA
ω

.ϕ±) `
?∃xA

ω

.ϕ± ( ⊥, !∀xA
ω

.ϕ±) `
?∃xA

ω

.ϕ± ( ⊥, !∀xA
ω

.ϕ±) ` ⊥
?∃xA

ω

.ϕ± ( ⊥ ` (!∀xA
ω

.ϕ±)( ⊥

The left-to-right implication on the other hand makes explicit use of the additional axioms ?ϕ±(
ϕ± together with the extended right rule for ( in presence of exponential contexts.

` ?ϕ± ( ϕ±

ϕ± ` ϕ±

ϕ± ` ?ϕ±

ϕ± ` ?ϕ±,⊥
` ?ϕ±, ϕ± ( ⊥ ϕ± ` ϕ
?ϕ± ( ϕ± ` ϕ±, ϕ± ( ⊥

` ϕ±, ϕ± ( ⊥
` ϕ±,∃xA

ω

.ϕ± ( ⊥
` ϕ±, ?∃xA

ω

.ϕ± ( ⊥
` ∀xA

ω

.ϕ±, ?∃xA
ω

.ϕ± ( ⊥
` !∀xA

ω

.ϕ±, ?∃xA
ω

.ϕ± ( ⊥ ⊥ `
(!∀xA

ω

.ϕ±)( ⊥ ` ?∃xA
ω

.ϕ± ( ⊥

Remark. Since the axioms in Figure 4.3 imply that our positive formulas are “stable” under !
and that, dually, negative are stable under ?, means that the following generalized weakening and
contraction rules are derivable in SFOM.

ϕ ` ϕ′

ϕ,ψ+ ` ϕ′
ϕ ` ϕ′

ϕ ` ψ−, ϕ′

ϕ,ψ+, ψ+ ` ϕ′

ϕ,ψ+ ` ϕ′
ϕ ` ψ−, ψ−, ϕ′

ϕ ` ψ−, ϕ′
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ϕ ` ϕ
ϕ ` γ, ϕ′ ψ, γ ` ψ′

ϕ,ψ ` ϕ′, ψ′
ϕ,ϕ, ψ, ψ ` ϕ′

ϕ,ψ, ϕ, ψ ` ϕ′
ϕ ` ϕ′, ϕ, ψ, ψ′

ϕ ` ϕ′, ψ, ϕ, ψ′

ψ ` ψ′

ψ, !ϕ ` ψ′
ψ, !ϕ, !ϕ ` ψ′

ψ, !ϕ ` ψ′
ϕ,ϕ ` ϕ′

ϕ, !ϕ ` ϕ′
!ϕ ` ϕ, ?ψ
!ϕ ` !ϕ, ?ψ

ψ ` ψ′

ψ ` ?ϕ,ψ′
ψ ` ?ϕ, ?ϕ,ψ′

ψ ` ?ϕ,ψ′
ϕ ` ϕ,ϕ
ϕ ` ?ϕ,ϕ

!ϕ,ϕ ` ?ψ
!ϕ, ?ϕ ` ?ψ

` I
ϕ,ϕ, ψ ` ϕ′

ϕ,ϕ⊗ ψ ` ϕ′
ϕ ` ϕ,ϕ′ ψ ` ψ,ψ′

ϕ,ψ ` ϕ⊗ ψ,ϕ′, ψ′

ϕ ` ϕ,ϕ′ ψ,ψ ` ψ′

ϕ,ψ, ϕ( ψ ` ϕ′, ψ′
ϕ,ϕ ` ψ
ϕ ` ϕ( ψ

!ϕ,ϕ ` ψ, ?ψ′

!ϕ ` ϕ( ψ, ?ψ′

⊥ `
ϕ,ϕ ` ϕ′ ψ,ψ ` ψ′

ϕ,ψ, ϕ` ψ ` ϕ′, ψ′
ϕ ` ϕ,ψ, ϕ′

ϕ ` ϕ` ψ,ϕ′

ϕ,ϕ[t/x] ` ϕ′

ϕ,∀xAω .ϕ ` ϕ′
ϕ ` ϕ

ϕ ` ∀zAω .ϕ
!ϕ ` ϕ, ?ϕ′

!ϕ ` ∀zAω .ϕ, ?ϕ′

ϕ,ϕ ` ϕ′

ϕ,∃zAω .ϕ ` ϕ′
ϕ ` ϕ[t/X], ϕ′

ϕ ` ∃xAω .ϕ, ϕ′

ϕ ` t = t
ϕ ` φ(t) ϕ ` t = u

ϕ ` φ(u)

Figure 4.2: The Deduction Rules of LSFOM (where A is an alphabet, zAω a variable fresh for ϕ,ϕ′
in each rule mentioning it).

These rules actually subsume the relevant structural rules given in Figure 4.2 and could have been
used instead. These were in fact the original rules given in our original paper [58].

Translation of FOM into LSFOM A translation from the classical FOM formulas to LSFOM
formulas is given in Figure 4.4. This translation is not a usual embedding of classical logic into
(intuitionistic) linear logic, such as a double negation translation followed by Girard’s translation
of intuitionistic logic in linear logic using the decomposition ¬ϕ ≡ !ϕ( ⊥. One reason for this is
that, depending on the choice of double negation translation, this may not even make sense due
to our restricted exponentials and a polarity mismatch. The real reason is that the additional
polarity axioms of 4.3 allow for a much simpler translation (−)L given in Figure 4.4. The main
invariant that is kept and allow to reason “as in FOM” is the following.

Lemma 4.1.5. For every FOM formula ϕ, its translation ϕL is deterministic.

Lemma 4.1.5 together with our previous remarks thus allow us to show the following.

Lemma 4.1.6. If FOM ` ϕ, then LSFOM ` ϕL.

Proof. By induction over a potential derivation of ϕ ` ψ in FOM, we show that ϕL ` ψL is derivable
in LSFOM. Given that we have taken a presentation based on natural deduction in Figure 3.1 and
that structural rules may be applied freely as all formulas under consideration are deterministic,
this amounts to showing that sequent calculus is conservative over natural deduction which is
standard. The additional rule allowing classical logic

ϕ,¬ψ ` ⊥
ϕ ` ψ

amounts to double-negation elimination, which is given by linear double-negation elimination over
deterministic formulas. Finally, one has to consider the axioms of FOM, given in Figure 2.6. It is
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Polarity axioms

ϕ+ −( !ϕ+ (where ϕ+ is positive)
?ϕ− −( ϕ− (where ϕ− is negative)
(ϕp( ⊥)( ⊥ −( ϕp with p ∈ {+,−,±} (i.e., ϕ is polarized)

FOM axioms

∀xA
ω
1

1 . . . ∀xA
ω
n

n .t(x1, . . . , xn) = u(x1, . . . , xn) when JtK = JuK

∀xAωyAω .consa(x) = consa(y)( x = y) where a ∈ A and x, y of sort Aω

∀xAωyAω .consa(x) = consb(y)( ⊥ where a, b ∈ A with a 6= b

ϕ(Ż)⊗
(
!∀x2ω . [x ∈ N⊗ ϕ±(x)]( ϕ±(Ṡ(x))

)
−( !∀x2ω . x ∈ N( ϕ±(x)))

?∃x2ω !∀n2ω . n ∈ N(
(
ϕ±(n) ˛ ˙In(n, x)

)
where x does not occur in ϕ

t = u ˛
(
∀n2ω .n ∈ N ( χLJtK(n) ˛ χLJuK(n)

)
Figure 4.3: Axioms of LSFOM (where n ∈ N is defined as N∞(n) = 1ω ⊗ (n = 0ω ( ⊥) and N∞,
Ż, Ṡ and ˙In as in Figure 2.4.)

rather easy to see that they are in one-to-one correspondence with those of LSFOM. Also note that
the restriction of the induction and comprehension schemes to deterministic formulas in Figure 4.3
is unproblematic since (−)L only produces deterministic formulas.

Once again, (−)L is not the only syntactic embedding of FOM into LSFOM. We sketch below
two alternatives.

Translating SFOM to FOM It is possible to give the following translation of SFOM formulas
(−)LS into LSFOM preserving derivability.

(t = u)LS : = t = u (ϕ ∧ ψ)LS : = ϕLS ⊗ ψLS
(¬ϕ)LS : = (?ϕLS)( ⊥ (∃xAω .ϕ)LS : = ∃xAω .ϕLS

Here, the crucial invariant is that a formula ϕLS is necessarily positive, and thus subject to con-
traction and weakening on the left. This allows to prove that SFOM ` ϕ implies LSFOM ` ϕLS ,
a statement analogous to Lemma 4.1.6. Together with Lemma 3.1.4, this shows that FOM ` ϕ
implies LSFOM ` (¬¬ϕ)LS , which provides us an alternative (less efficient) way of embedding FOM
in LSFOM. This does not matter very much in the end, as it may be noted that for every FOM
formula ϕ, LSFOM shows that ϕL, ?ϕLS and (¬¬ϕ)LS are equivalent.

Double-negation and Girard’s translation Finally, let us note that there is a way of
making a double-negation translation followed by Girard’s translation work, provided the double-
negation translation allows for universal quantification in its target, so that (∃xAω .ϕ)¬¬ = ¬∀xAω .¬ϕ¬¬.
Dubbing (−)¬¬G the resulting translation FOM→ LSFOM, we would have the clauses

(t = u)¬¬G : = t = u (ϕ ∧ ψ)¬¬G : = ϕ¬¬G ⊗ ψ¬¬G
(¬ϕ)¬¬G : = (!ϕ¬¬G)( ⊥ (∃xAω .ϕ)¬¬G : = !(∀xAω .!ϕ¬¬G( ⊥)( ⊥

(ϕ⇒ ψ)¬¬G : = ϕ¬¬G( ψ¬¬G (ϕ ∨ ψ)¬¬G : = !((!ϕ¬¬G( ⊥)⊗ (!ψ¬¬G( ⊥))( ⊥
(∀xAω .ϕ)¬¬G : = ∀xAω .ϕ¬¬G

Here, the natural polarity invariant this time is that ϕ¬¬G is always negative because of the
optimized translation of ∀. Once again a straightforward induction over ϕ shows that ϕL and
!ϕ¬¬G are equivalent according to LSFOM.

4.2 The realizability model
We now turn to the automata interpretation of LSFOM. Similar as to what was done in Section 3.2,
we are going to describe several automata theoretic constructions corresponding to the various
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(t = u)L : = t = u (ϕ ∧ ψ)L : = ϕL ⊗ ψL
(¬ϕ)L : = ϕL( ⊥ (∃xAω .ϕ)L : = ?∃xAω .ϕL

(ϕ ∨ ψ)L : = ϕL ` ψL (ϕ⇒ ψ)L : = ϕL( ψL

(∀xAω .ϕ)L : = !∀xAω .ϕL

Figure 4.4: The translation (−)L of FOM into LSFOM.

(U , X)
...

P un
O xn

...

q0 = qι

qn+1 = δ(wn, un, xn)

P wins ⇔ (qn)n∈N ∈ Ω

Figure 4.5: Acceptance game for (Q, qι, U,X, δ,Ω) : A over w ∈ Aω.

connectives of LSFOM and their behaviour both with respect to recognized languages and an
extended notion of simulation between automata, which once again refines language inclusion.
Those properties will then imply the soundness of FOM with respect to simulations: if ϕ( ψ is
provable, then there is a simulation between the underlying automata.

The main difference is that basic constructions made on automata may not always behave nicely
with respect to the recognized languages, but they will always be sound for deduction in LSFOM.
However, it will also be clear that they behave nicely at the level of languages when considering
automata arising as the interpretation of polarized formulas.

This section does not contain complete proofs of soundness and is mostly meant to convey
intuitions. In particular, we will only keep a rather high-level description of the simulations between
automata for now. The full proofs for an extended higher-order setting are postponed to Chapter 6.

Before defining simulations, or rather, simulation games, notice that acceptance of a word by
an alternating uniform automaton (Q, qι, U,X, δ,Ω) : A (Definition 4.1.1) is defined in terms of a
game-like scenario pictured in Figure 4.5. Given a word w ∈ Aω, we may imagine that two players
P and O play an infinite game: at each round n ∈ N, P plays a move un ∈ U and O answers
with xn ∈ X. This yields two sequences (un)n∈N and (xn)n∈N. Together with w, they yield a
run (qn)n∈N in the automaton. Say that P wins if and only if (qn)n∈N ∈ Ω. Then it is clear that
Definition 4.1.1 says that w is accepted if and only if P has a winning strategy in this acceptance
game.

Now, the proofs of LSFOM will be interpreted as winning strategies in a simulation game
between two automata over the same alphabet pictured in Figure 4.6.

Definition 4.2.1. Given two uniform automata

A = (QA, qιA, U,X, δA,ΩA) : A and B = (QB, qιB, V, Y, δB,ΩB) : A

define the simulation game between P and O as the game where P and O play as follow at round
n ∈ N:

- O plays a letter an ∈ A and a move un ∈ U .

- P answers with a move vn ∈ V .

- O answers with a move yn ∈ Y .

- P concludes the round by a move xn ∈ X.

A play may be seen as a sequence 〈a, u, x, v, y〉 ∈ (A×U ×X×V ×Y )ω. We say that P is winning
if and only if whenever 〈u, x〉 is an accepting play over a in A, 〈v, y〉 is an accepting play over a
in B.

If such a winning strategy exists in a simulation game from A : A to B : A, write A  B.

This simulation game departs from the aforementioned acceptance game in two essential ways:

- First, since two automata A : A and B : A are involved, a winning strategy for P is now
chiefly be concerned with building an accepting run in B using an accepting run of A as
input.
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(U , X) −→ (V, Y ) : A
...

O un an
P vn
O yn
P xn

...

q0 = qιA q′0 = qιB
qn+1 = δA(wn, un, xn) and q′n+1 = δA(wn, un, xn)

P wins iff (qn)n∈N ∈ ΩA ⇒ (q′n)n∈N ∈ ΩB

Figure 4.6: Simulation game between A : A and B : A

- Second, the word w ∈ Aω over which A and B run not be known in advance by P. It is
rather gradually revealed by O.

In concrete terms, a P-strategy in the aforementioned game can be seen as a pair of sequences
of functions (fn, Fn)n∈N with the following types.

fn : An+1 × Un+1 ×Xn → V Fn : An+1 × Un+1 ×Xn+1 → Y n+1

There are, of course, highly uncomputable such sequences in the wild; to remedy this, note that
these sequences induce a canonical causal function (A×U ×X)ω → (V × Y )ω; the converse is not
quite true, but this datum still characterizes the strategy. We say that the strategy is finite-state
if this function is. We may also call winning P-strategies simulations for short in the sequel. For
the remainder of this section, we shall not define formally combinators for strategies in simulation
games and leave that for Chapter 6. While Chapter 6 does not nominally prove that the strategies
interpreting proof rules are finite-state as it deals with generalized higher-order strategies, the
subsequent discussion in Chapter 7 explains how the constructions detailed in Chapter 6 restricted
to the current setting actually produce finite-state strategies.

One appeal of simulation games is their tight connexion to the games involved in the Büchi-
Landweber theorem (Theorem 2.3.1. In particular, a simple reduction shows that those games are
also determined in finite memory.

Lemma 4.2.2. There exists an algorithm taking as input uniform automata A and B and returning
a finite-state winning strategy for either P or O in the simulation game between A and B.

While this connexion is interesting, let us note that we do not rely on Lemma 4.2.2 to build
P-strategies corresponding to the interpretation of proofs.

Now, let us turn to the relationship between simulations and the languages recognized by
uniform automata.

Lemma 4.2.3. Let A,B : A be uniform alternating automata. We always have

A  B ⇒ L(A) ⊆ L(B)

Proof. It is rather straightforward from the design of the simulation game that, if an input word
w ∈ Aω is fixed, the winning P-strategy in the simulation game can be leveraged to turn a winning
strategy in the acceptance game of w by A into a winning P-strategy in the acceptance game of w
by B.

As with the particular case of uniform non-deterministic automata, the converse does not hold
in general, but it can be recovered in the particular case where the automata A and B have the
suitable polarity.

Lemma 4.2.4. Let A be a non-deterministic uniform automaton and B be uniform universal
automaton over the same alphabet A. Then we have

L(A) ⊆ L(B) ⇔ A  B

Proof. Note that in that case, there is a unique P-strategy in the simulation game. It is straight-
forward to check that it is winning if and only L(A) ⊆ L(B).
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Another essential aspect that we need to cover before defining the operation analogous to the
connectives is composition of winning strategies in simulation games. This is important to have a
sound interpretation of the axiom and cut rules of LSFOM which may be informally be transcribed
as follows in the semantics

A  A
A  B B  C

A  C
For the rest of this section, fix the following notations for the automata A, B and C.

A = (QA, qιA, U, X, δA, ΩA) : A
B = (QB, qιB, V, Y, δB, ΩB) : A
C = (QC , qιC , W, Z, δC , ΩC) : A

Lemma 4.2.5. For every automata A : A, there is a simulation A  A. For every automata
A,B, C : A and simulations A  B and B  C, we may compute a simulation A  C.

Proof sketch. The constructions of those simulations follow well-known patterns in game seman-
tics [1, 32] The simulation A  A corresponds to a copycat strategy that may be pictured as
follows

(U , X) −→ (U, X) : A
...

O un an
P un
O xn
P xn

...
On the other hand, A  C corresponds to simulating both strategies A  B and B  C over an
extended board and hiding the interaction, materialized below as the middle column.

(U , X) −→ (V, Y ) −→ (W, Z) : A
...

O un an
vn

P wn
O zn

yn
O xn

...

Now, we are ready to discuss the logical connectives.

Propositional connectives Linear conjunction A⊗ B and disjunction A` B will be inter-
preted by a standard constructions over non-deterministic/universal automata with state-space of
size |QA| × |QB|.

Remark. We could have also considered the additive variant of the construction where the state
space is proportional to |QA| + |QB| and which generalizes to alternating automata. This option
is natural and seems to be a natural step toward interpreting the additive connectives ⊕ and & of
linear logic. These constructions however are rather cumbersome with our rather rigid notion of
uniform alternating automata; with some effort we could have a weak version of & without altering
our definition.

Definition 4.2.6. Define the multiplicative conjunction automaton A⊗B : A and the disjunction
automaton A` B : A as follows.

A⊗ B : = (QA ×QB, (qιA, qιB), U × V, X × Y, {〈q, q′〉 | q ∈ ΩA ∧ q′ ∈ ΩB}) : A
A` B : = (QA ×QB, (qιA, qιB), U × V, X × Y, {〈q, q′〉 | q ∈ ΩA ∨ q′ ∈ ΩB}) : A

Define the associated unit automata

I : = (1, ∗, 1, 1, ∗, 1ω) : A ⊥ : = (1, ∗, 1, 1, ∗, ∅) : A
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Note that if A and B are Muller automata, so are A⊗B and A`B. Furthermore if both A and
B are non-deterministic (resp. universal), so are A⊗ B and A` B. The automata corresponding
to the units are deterministic.

As announced, at the level of languages, we have the expected equalities.

Lemma 4.2.7. For every automata A,B : A, we have

L(A⊗ B) = L(A) ∩ L(B) and L(A` B) = L(A) ∪ L(B)

Proof sketch. Let us concentrate on the case A ⊗ B. If w ∈ L(A) ∩ L(B), it means that we have
winning strategies in the relevant acceptance games in both A and B; they can easily be paired
into a winning strategy for the acceptance of w in A ⊗ B. Conversely, if w ∈ L(A ⊗ B), there is
a winning strategy for the acceptance game over w in A⊗ B. Fixing an arbitrary y ∈ Y , this can
be turned into a winning strategy over w in A by pretending that opponent constantly plays y on
the non-existent board corresponding to B.

At the level of simulations, we only require a modicum of structure to interpret sequents.
Indeed, as a sequent ϕ ` ϕ′ is to be thought of as a simulation

⊗
JϕK 

˙
Jϕ′K in the semantics,

it means that � ∈ {⊗,`} should carry a symmetric monoidal structure and corresponding unit
J ∈ {⊥, I}2

- if A  B and A′  B′, then A�A′  B � B′.

- we have A� (B � C)  (A� B)� C and vice-versa.

- we have A� J  A and vice-versa.

- and finally, A� B  B �A.

These properties are completely straightforward to check. On top of that, since we are interpreting
full intuitionistic linear logic, there should be a canonical distributive law

A⊗ (B ` C)  (A⊗ B) ` C
which is not much harder to check (if ignoring the spurious parentheses, the underlying automata
have the same state-spaces, same moves, and there is an inclusion of acceptance conditions). The
properties above are enough to guarantee that the basic left/right rules for I,⊥,⊗ and ` are
interpreted in a sound way.

Before moving on, we are also ready to discuss the soundness of the generalized contraction and
weakening rules. Recall that in LSFOM, contraction and weakening are tied to polarity restrictions
which translate to restriction on the underlying automata interpretation. The reason behind this
is that the following holds.

Lemma 4.2.8. If A : A is a non-deterministic automaton, there are canonical simulations A 
A⊗A and A  I. Dually, if it is universal, there are canonical simulations A`A  A and ⊥  A.

Proof sketch. Consider the case where A is non-deterministic. Then, the P-strategy in the simu-
lation game from A⊗A to A duplicates O-moves as pictured below (where we confuse 1× 1 ' 1
and X ' 1). Furthermore, there is a unique simulation A  I.

(U , 1) −→ (U × U, 1) : A
...

O un an
P (un, un)
O ∗
P ∗

...

(U , 1) −→ (1, 1) : A
...

O un an
P ∗
O ∗
P ∗

...

The universal case is entirely dual.

Now we discuss the linear implication − ( −. Contrarily to most of the other operations
discussed here, we are not aware of it occurring before in the automata-theoretic literature.

2We do not mention the usual coherence conditions for now, as they are not needed to interpret sequents. These
are only alluded to in later chapters.
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Definition 4.2.9. Given automata A,B : A, define the automaton A( B : A as follows

A( B : = (QA ×QB, (qιA, qιB), V U ×XU×Y , U × Y, δA(B,ΩA(B) : A

with δA(B(a, (f, F ), (u, y)) = (δA(a, u, F (u, y)), δB(a, f(u), y))
and ΩA(B = {〈q, q′〉 ∈ (QA ×QB)ω | q ∈ ΩA ⇒ q′ ∈ ΩB}

Note that if A and B are Muller automata, then A( B is a Muller as well. If A is universal
and B non-deterministic, A( B is non-deterministic, and dually, if A is non-deterministic and B
universal, A( B is universal.

The rationale for the above definition, which is directly inspired from the definition of of the
arrows in Dialectica categories [21], can be seen as the attempt to cram a simulation game within
a single automaton without modifying the P-strategy. To wit, put side-by-side rounds of the
simulation games from A to B and from I to A( B.

(U , X) −→ (V, Y ) : A
...

O un an
P vn
O yn
P xn

...

(1 , 1) → (V U × XU×Y , U × Y ) : A
...

O ∗ an
P fn Fn
O un yn
P ∗

...

At the level of O, the game in A( B is actually more lenient than the vanilla simulation game, as
it allows them to play their round knowing the strategy of P. This is not an issue as our notion of
strategy is only concerned with P-strategies. For P, as they must move first in the right hand-side
game, they are allowed to play functions that anticipate on the moves that opponent should have
originally played in the left-hand side game: fn corresponds to the move vn which should be made
after O provided un and Fn to xn, which depends on both un and yn. This dynamic is accordingly
reflected at the level of the transition function δA(B.

In order to make the rules of LSFOM sound, one has to check that the following, corresponding
to the monoidal closure of the category of uniform automata and simulations, holds.

Lemma 4.2.10. If there is a simulation A ⊗ B  C, then there is a simulation A  B ( C.
Furthermore, there is a canonical simulation (A( B)⊗A  B.

Proof sketch. For the first statement, the case A = I is informally discussed above. Seeing that
there is a one-to-one correspondence between simulations A ⊗ B  C and A  B ( C does not
take much more conceptual effort. This also implies the second half of the statement, but it is also
instructive to picture concretely the strategy corresponding to (A( B)⊗A  B as follows

(V U × XU×Y , U × Y ) ⊗ (U , X) −→ ( V , Y ) : A
...

O fn Fn un an
P fn(un)
O yn
P un Fn(un, yn)

...

We are now ready to study double-linear negation. In all generality, the double-linear negation
of a uniform automaton A is isomorphic to the following

(A( ⊥)( ⊥ ' (QA, qι, UX
U

, XU , δ(A(⊥)(⊥,ΩA) : A

with δ(A(⊥)(⊥(a, F, f) = δA(a, F (f), f(F (f)))

We shall see much later that there is actually always a simulation (A( ⊥)( ⊥  A. However,
there is apparently no straightforward way of computing such simulation, which goes against the
philosophy dictating that extraction of realizers from proofs should be computationally easy, so we
have not adopted the double linear negation elimination for LSFOM. However, it is straightforward
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to check that if A is non-deterministic (U ' 1) or universal (X ' 1), then (A ( ⊥) ( ⊥ is in
fact isomorphic to A; this justifies our adopting double linear negation elimination restricted to
polarized formulas.

Before moving on, let us observe that −( − also implements correctly implication at the level
of languages. Our argument relies crucially on the determinacy of simulation games.

Lemma 4.2.11. For any uniform alternating automata A,B : A, we have

L(A( B) = {w ∈ Aω | w ∈ L(A)⇒ w ∈ L(B)}

Proof sketch. The left-to-right inclusion is rather straightforward using previous Lemmas. By
Lemma 4.2.10, there is a simulation (A( B)⊗A  B. Thus, by Lemma 4.2.3, we have L((A(
B) ⊗ A) ⊆ L(B), and thus L(A( B) ∩ L(A) ⊆ L(B) by Lemma 4.2.7. This is equivalent to the
inclusion we were looking for.

The converse inclusion is more involved: suppose it is false for some w ∈ Aω. Then necessarily,
w /∈ L(B), otherwise we could lift the winning strategy in the acceptance game to L(A( B). So,
by definition of the right-hand side, we have w /∈ L(A) too. By determinacy of the acceptance
games (Lemma 4.2.2), there is a winning O-strategy for the acceptance game in A over w, which
can be seen as a family of maps fn : Un+1 → X. From this winning O-strategy, a winning P-
strategy for the acceptance game in A( B over w may be built as in the picture below where −
denotes an arbitrary legal move.

(U , X)
...

P un
O xn

...

7→

(V U × XU×Y , U × Y )
...

P − , (un,−) 7→ xn
O un , yn

...

More formally, the P-strategy in A ( B consists of two sequences hn : Un × Y n → V U and
Hn : Un × Y n → XU×Y such that Hn((ui)i<n, (yi)i<n)(un, yn) = fn((ui)i≤n for every sequences
(ui)i≤n and (yi)i≤n and hn is arbitrary.

Corollary 4.2.12. For any uniform alternating automaton A, L(A( ⊥) = L(A)c.

Polarized exponentials As with the automata-theoretic interpretation of SFOM, we use
McNaughton’s theorem (Theorem 1.1.6) as a black box to define the interpretation of the expo-
nentials.

Lemma 4.2.13. For any uniform non-deterministic automaton A : A, there is a deterministic
automaton ?A : A such that L(A) = L(?A). Dually, for a universal automaton B : A, there is a
deterministic automaton !B = ?(B( ⊥)( ⊥ : A such that L(B) = L(!B).

For a non-deterministic automaton A, we take !A = A, and similarly, for a universal automaton
B, we take ?B = B. This still maintains the following crucial invariants:

- L(!A) = L(A) and L(?B) = L(B) whenever those automata are well-defined.

- Whenever defined, !A is non-deterministic and ?B is universal.

Then, Lemma 4.2.4 shows that we readily have A  ?A and that, dually !B  B. This justifies
the dereliction rules. As for promotion, it suffices to apply Lemma 4.2.3 to the premiss and
Lemma 4.2.4 to the conclusion to conclude.

Since we have already discussed contraction and weakening for non-deterministic and universal
automata, we readily get the corresponding rules for the exponential modalities. The last thing to
check is that the exponentials are functorial and monoidal, that is

- that A  B implies !A  !B and ?A  ?B; this is done by using Lemma 4.2.4 and 4.2.3.

- that we have !(A⊗ B)  !A⊗ !B and ?A` ?B  ?(A` B), which is also done by exploiting
Lemma 4.2.4 and the basic properties of !, ?,⊗ and ` on recognized languages.

Remark. In [61], an interpretation of ! as an dealternation operator turning general alternating
(tree) automata into non-deterministic automata is investigated, and a corresponding promotion
rule is given. This could very well be adapted to our setting to get more general ! and ?, but we
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refrain from doing so for a couple of reasons, which mostly boil down to keeping things simple. First,
computing the realizer associated with the promotion rule becomes highly non-trivial as this relies
on McNaughton’s theorem and determinacy of parity games for the underlying automata. This is
in contrast with the interpretation of proofs given elsewhere in this thesis, which are invariant with
respect to the precise interpretation of formulas as automata. Second, we shall prove much later a
completeness result for the underlying model of LSFOM that does not readily extend to the setting
with full exponentials. Lastly, this ! is not functorial, meaning that the interpretation of proofs
is not invariant under cut-elimination. In particular, it means that the fragment consisting of ∀,
∃, ⊗, ( and ! does not constitute a model of first-order intuitionistic exponential multiplicative
linear logic as commonly understood. However it should be stressed that this last problem is more
secondary, as we are not be interested in the dynamics of cut-elimination.

Substitution and quantifications As previously, the logical characterization of quantifica-
tion first calls for a formal definition of substitution at the level of uniform automata.

Definition 4.2.14. Given a uniform Muller automaton A = (QA, qιA, U,X, δA, [F ]∞) : B and
a Mealy machine M = (QM, qιM, δM) : Aω → Bω, define the substituted automaton M∗A =
(QA ×QM, (qιA, qιM), U,X, δM∗A, [FM∗A]∞) with

π2(δM∗A(a, (q, r)), u, x) = π2(δM(a, r))
π1(δM∗A(a, (q, r)), u, x) = δA(π1(δM(a, r)), q, u, x)
X ∈ FM∗A ⇔ π1(X) = {q | (q, r) ∈ X} ∈ F

As in Section 3.2, we allow ourselves to write f∗A for a f.s. causal function f rather than a
given Mealy machine in the sequel. The language recognized by the substituted automaton still
corresponds formally to the following.

Lemma 4.2.15. For every uniform Muller automaton A : B and f.s. causal function f : Aω →
Bω, we have

L(f∗A) = {x ∈ Aω | f(x) ∈ L(A)}

Now we are ready to discuss the (co-)projection automata. They will correspond to the expected
usual constructions on non-deterministic and universal automata and have the usual behaviour for
recognized languages. However, we shall give for both a single general construction for alternating
uniform automata, which is going to be unsound for language inclusion in the most general case,
but still sound for the deduction rules of LSFOM.

Definition 4.2.16. Given a uniform automaton A = (QA, qιA, U,X, δA,ΩA) : A × B, define the
automaton ∃π2A : = (QA, qιcA,U ×A,X, δ∃π2A,ΩA) : B with

δ∃π2A(b, q, (u, a), x) = δA((a, b), q, u, x)

Dually, define the automaton ∀π2A : = (QA, qιcA,UA, X ×A, δ∀π2A,ΩA) : A with

δ∀π2A(b, q, f, (x, a)) = δA((a, b), q, f(a), x)

The basic rationale behind the definition is that control of the piece of the parameter alphabet
that we wish to quantify over is given to one of the two players. The definition for ∀ is slightly
more involved because we would ideally wish that the parameter, even if control over it is given to
P or O, to be played first in a round. As it is not possible, we allow the move of P to depend on
it by making P play a function f ∈ UA instead of its usual move u ∈ U .

Before giving some intuition as to how the deduction rules for ∃ are interpreted in the general
case, let us make note when the (co)-projection are sound with respect to language recognition.

Lemma 4.2.17. If A : A×B is a non-deterministic automaton, then we have

L(∃π2A) = {w ∈ Bω | ∃u ∈ Aω.〈u,w〉 ∈ L(A)}

Similarly, if A : A×B is a universal automaton, then we have

L(∀π2A) = {w ∈ Bω | ∀u ∈ Aω.〈u,w〉 ∈ L(A)}

Now, the soundness of the logical rules of ∃ is implied by the following Lemma.

Lemma 4.2.18. Let A : A×B and B : B be uniform automata. We have
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- for any f.s. causal function f : Bω → Aω, a canonical realizer 〈f, id〉∗A  ∃π2A

- a way of turning a realize ∃π2A  B into a realizer A  π∗2B.

Let us recall that the intuition is that the first clause simulates the introduction of exis-
tential quantification, with f serving as witness which may depend on the parameter of sort
Bω; if A is the interpretation of the formula ϕ(a, b), the first realizer corresponds to a proof
ϕ(f(b), b) ` ∃aAω .ϕ(a, b). As for the second clause, it simulates the deduction rule corresponding
to the elimination of an existential: ∃aAωϕ(a, b) ` ψ(b) if and only if ϕ(a, b) ` ψ(b) (for a not
occurring in ψ).

Proof sketch. The canonical winning P-strategy corresponding to the first item may be pictured
as follows

(U , X) −→ (U ×A , X) : B
...

O un bn
P (un, f(b)n)
O xn
P xn

...

Note that f(b)n is computable from (bi)i≤n which has already been seen when P makes their first
move at round n.

The second item is very straightforward when putting side by side the boards of both simulation
games; both games are seen to be the same, up to a relabelling of moves.

(U ×A , X) −→ (V, Y ) : B
...

O (un, an) bn
P vn
O yn
P xn

...

(U , X) −→ (V, Y ) : A×B
...

O un (an, bn)
P vn
O yn
P xn

...

4.3 Soundness and completeness
At this juncture, we have an interpretation function J−K from LSFOM formulas with free variables
x
Aω1
1 , . . . , x

Aωk
k to uniform alternating automata over A1×· · ·×Ak defined inductively in the obvious

way. The previous section also establishes the following invariant on the interpretation.

Lemma 4.3.1. If the formula ϕ is

- positive, then the automaton JϕK is non-deterministic.

- negative, then the automaton JϕK is universal.

- deterministic, then the automaton JϕK is deterministic.

This, together with Lemma 4.2.4, allow to derive a preliminary soundness lemma for negative
formulas which is useful to show that all the axioms of LSFOM are valid in the model.

Definition 4.3.2. Define a map b−c taking LSFOM formulas to FOM formulas by recursion as
follows

b⊥c : = ⊥ bIc : = >
bt = uc : = t = u bϕ⊗ ψc : = bϕc ∧ bψc
bϕ` ψc : = bϕc ∨ bψc bϕ( ψc : = bϕc ⇒ bψc
b∃aAϕc : = ∃aAbϕc b∀aAϕc : = ∀aAbϕc
b!ϕc : = bϕc b?ϕc : = bϕc

Note in particular that we have bϕLc = ϕ.
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Lemma 4.3.3. If ϕ is a negative formula, then I  JϕK if and only if FOM ` bϕc.

This preliminary lemma is especially useful to show that all of the FOM axioms of Figure 4.3 are
trivially realized in the model. Combining this observation with the various finite-state strategy
combinators that we have only sketched in the last section allows to derive the following soundness
theorem.

Theorem 4.3.4. If the sequent ϕ ` ϕ′ is derivable in LSFOM, then we have
⊗

JϕK 
˙

Jϕ′K.

From this general soundness theorem, we derive, as with SFOM, soundness with respect to
Church’s synthesis.

Corollary 4.3.5. If ϕ(xAω , yBω ) is a FOM formula and LSFOM derives ∀xAω .∃yBω .ϕL(x, y),
then one can extract from the formal proof a f.s. causal function f : Aω → Bω such that FOM `
∀xAω .ϕ(x, f(x)).

Proof. Apply Theorem 4.3.4 to the derivation ` ∀xAω .∃yBω .ϕL(x, y) to get a winning strategy in
the simulation game from I to J∀xAω .∃yBω .ϕL(x, y)K. Keeping in mind that ϕL is deterministic, up
to isomorphism of alphabets, the winning strategy is exactly a causal map f : Aω → Bω such that
ϕL(x, f(x)) is trivially realized. By the previous remarks, it means that FOM ` bϕL(x, f(x))c =
ϕ(x, f(x)).

The converse statement is derivable without referring to the automata-theoretic interpretation
of LSFOM.

Lemma 4.3.6. If there is f.s. causal function such that FOM ` ∀xAω .ϕ(x, f(x)), then LSFOM `
∀xAω∃yBωϕL(x, y).

Proof. Clearly, FOM proves the open sequent ` ϕ(x, f(x)), so by Lemma 4.1.6, LSFOM proves
` ϕL(x, f(x)). The result then follow by applying a right ∃ rule and a right ∀ rule.

Towards a complete axiomatization While the realizability model of LSFOM does not
admit classical reasoning, it is still effectively two-valued because of the determinacy of simulation
games.

Lemma 4.3.7. For every closed formula ϕ of LSFOM, we have either  JϕK or  JϕK ( ⊥.
Furthermore, there is an algorithm taking ϕ as input deciding which one is true.

Proof. Apply determinacy for the trivial simulation game from I to ϕ (Lemma 4.2.2). If P wins,
then the first alternative holds. Otherwise, there is necessarily a winning O-strategy in the simu-
lation game from I to ϕ( ⊥. Were it not the case, there would be another winning P-strategy;
combine it with the first and the simulation

(A( ⊥)⊗A  ⊥

and we would be able to extract a winning P-strategy in the ⊥ automaton, which is impossible.

Therefore, it is natural to ask if there is a nice axiomatization extending LSFOM covering the
whole model. Since the two-valuedness is effective thanks to the Büchi-Landweber theorem, there
is necessarily a recursive axiomatization, but this on its own does not tell us much. We shall give
such an axiomatization in Chapter 7 inspired by Dialectica.
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Chapter 5

Dialectica fibrations

This chapter is devoted to presenting the Dialectica transformation. Historically, this is a logical
translation devised by Gödel to eliminate quantification in higher-typed arithmetic. The basic idea
is that, in this interpretation, a formula ϕ(zκ) is mapped to formula ϕD(uτ , xσ; zκ) representing
the winning condition of a two-moves two-player game. In such a game, ∃loïse would be asked to
provide a witness uτ of the validity of the formula and ∀bélard answers with a counter-witness xκ.

As hinted in previous chapters, our approach to Church’s synthesis interprets formulas as infinite
two-player games and proofs as strategies. Connectives correspond to operation on games, which
have a very uniform structure. This structure is highly reminiscent of the Dialectica interpretation
we shall explore in this chapter. In order to keep a reasonable level of generality, we formalize
our interpretation in terms of categorical logic. One advantage of categorical logic is that the
accompanying notion of “model” is relaxed to the point that theories and models have essentially
the same status. Another is that it axiomatizes cleanly the structure necessary to have a soundness
theorem for proof systems for the fragment of linear logic presented in the previous chapter, full
intuitionistic linear logic augmented with first-order quantifiers. Usually, this axiomatization also
ensures that the interpretation of proofs preserves cut-elimination. However, this will be true
here only as far as first-order intuitionistic multiplicative linear logic is concerned. Indeed, the
computational interpretation of full intuitionistic linear logic is a more difficult and less standard
topic, therefore, we shall only ask enough additional structure to interpret proof trees without
concerning ourselves with cut-elimination for full intuitionistic linear logic.

The exposition of this chapter is highly inspired from Hofstra’s [31], which itself follows from
a series of work (see e.g. [6]) on the categorical aspects of the Dialectica transformation as ini-
tiated in de Paiva’s thesis [21]. However, we are not aware of any single source covering both
the interpretation of quantifiers, (linear) propositional connectives, our unusual exponentials in a
self-contained fashion and the characterization theorem.

5.1 Categorical models of propositional linear logic
The basic idea is that a model is a category whose objects represent formulas and morphisms
proofs. Since the Dialectica interpretation is very much tied to the notion of quantification, we
shall later on generalize these notions to a fibered setting. Fibrations at first glance require an
overhead, which might make such a generalization seem somewhat perilous. However, this can
be dealt with in a fairly straightforward manner if one remembers that both Cat and Fib are 2-
categories. While we think it more intuitive to first expose the situation in Cat, we shall remark
on the 2-categorical nature of the structures involved.

The material here is based on [49] which review categorical models of linear logic. However,
we target full intuitionistic linear logic with exponentials, a mild extension of [34], so our notion
of model does not appear per se in [49]. We accomodate the definition by allowing an additional
monoidal structure for`, together with a suitable natural transformation A⊗(B`C)→ (A⊗B)`C
satisfying obvious coherence conditions (see e.g. [18]) and exponentials.

Definition 5.1.1. A monoidal category is a category C together with a

- a bifunctor −⊗− : C2 → C

- a distinguished object I

56



- natural isomorphisms ρA : A×I→ A, λA : I×A→ A and αA,B,C : (A⊗B)⊗C → A⊗(B⊗C)
subject to the following coherence conditions:

(A⊗B)⊗ (C ⊗D)
αA,B,C⊗D

++
((A⊗B)⊗ C)⊗D

αA⊗B,C,D
33

αA,B,C⊗idD ''

A⊗ (B ⊗ (C ⊗D))

(A⊗ (B ⊗ C))⊗D
αA,B⊗C,D

// A⊗ ((B ⊗ C)⊗D)
idA⊗αB,C,D

77

(A⊗ I)⊗B

ρA⊗idB &&

αA,I,B // A⊗ (I⊗B)

idA⊗λBxx
A⊗B

A symmetric monoidal category (C,⊗, I) moreover comes equipped with natural isomorphisms
γA,B : A⊗B → B ⊗A subject to the following coherences:

A⊗ (B ⊗ C)
γA,B⊗C // (B ⊗ C)⊗A αB,C,A

!!
(A⊗B)⊗ C

αA,B,C 22

γA,B⊗idC ,,

B ⊗ (C ⊗A)

(B ⊗A)⊗ C
αB,A,C // B ⊗ (A⊗ C) idB⊗γA,C

==

A⊗B
γA,B // B ⊗A

γB,A

��
A⊗B

Example 5.1.2. If C has chosen cartesian products × and a terminal object 1, then (C,×, 1) is
a symmetric monoidal category.

Definition 5.1.3. A monoidal category C is called closed if every functor − ⊗ A : C → C has a
right adjoint A( − : C→ C. In such a case, we have a natural isomorphism

[A⊗B,C]C ∼= [A,B( C]C

Monoidal closed categories are models of intuitionistic multiplicative linear logic IMLL. In order
to translate intuitionistic logic, we require in addition an exponential modality !. At the categorical
level, ! is interpreted as a comonad satisfying additional properties.

Keeping in mind that any monad over a category C may be decomposed as an adjunction
between a coKleisli coKlei(C) and C, it was noticed in (e.g. [5]) that the exponential modality could
be conveniently axiomatized as a lax monoidal adjunction between a monoidal closed category and
a cartesian category. Let us make this notion precise.

Definition 5.1.4. Let (C,⊗, I) and (D, ⊗̂, Î) be two monoidal categories. A lax monoidal functor
is given by a functor F : C→ D, together with natural transformations

m0 : Î→ F (I) m2
A,B : F (A) ⊗̂ F (B)→ F (A⊗B)
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making the following diagrams commute.

(F (A) ⊗̂ F (B)) ⊗̂ F (C)
αF (A),F (B),F (C) //

m2
A,B⊗̂idF (C)

��

F (A) ⊗̂ (F (B) ⊗̂ F (C))

idF (A)⊗̂m2
B,C

��
F (A⊗B) ⊗̂ F (C)

m2
A⊗B,C

��

F (A) ⊗̂ F (B ⊗ C)

m2
A,B⊗C

��
F ((A⊗B)⊗ C)

F (αA,B,C) // F (A⊗ (B ⊗ C))

F (A) ⊗̂ Î
ρF (A) //

idF (A)⊗̂m0

��

F (A)

F (A) ⊗̂ F (I)
m2
A,I // F (A⊗ I)

F (ρA)

OO
Î ⊗̂ F (A)

λF (A) //

m0⊗̂idF (A)
��

F (A)

F (I) ⊗̂ F (A)
m2
A,I // F (I⊗A)

F (λA)

OO

Assuming (C,⊗, I) and (D, ⊗̂, Î) are actually symmetric monoidal categories, a symmetric lax
monoidal functor between them satisfy a further coherence diagram.

F (A) ⊗̂ F (B)
γF (A),F (B) //

m2
A,B

��

F (B) ⊗̂ F (A)

m2
B,A

��
F (A⊗B)

F (γA,B) // F (B ⊗A)

An oplax monoidal functor is a functor F : C→ D equiped with natural transformations

n0 : F (I)→ Î n2
A,B : F (A⊗B)→ F (A) ⊗̂ F (B)

satisfying similar coherence conditions as above.
A monoidal natural transformation between lax monoidal functors (F,m0,m2), (G,n0, n2) :

C→ D is a natural transformation

θA : F (A) −→ G(A)

additionally making the two diagrams

F (A) ⊗̂ F (B) θA⊗̂θB//

m2
A,B

��

G(A) ⊗̂ G(B)

n2
A,B

��
F (A⊗B)

θA⊗B // G(A⊗B)

Î
n0

~~

n0

  
F (I) θI // G(I)

Definition 5.1.5. An adjunction L a R between two symmetric monoidal catgories is called
monoidal if both L and R are symmetric lax monoidal and the unit and counit are monoidal
natural transformations. Similarly, L a R is called symmetric oplax monoidal if both L and R are
symmetric oplax monoidal and the unit and counit are monoidal natural transformations.

Definition 5.1.6. A Linear-Non-Linear adjunction (henceforth abbreviated as LNL-adjunction)
is given by a monoidal adjunction L a R where L : C → L whose the monoidal structure on C is
given by a choice of cartesian products and a terminal object.

The intuition behind LNL-adjunction is that the cartesian category (C,×, 1) corresponds to
the category of duplicable hypotheses. The associated exponential operator ! is obtained as the
composition L◦R, which readily yields a comonad structure for ! by the usual properties of adjunc-
tions. Dereliction derA : !A → A is given by the counit L(R(A)) → A while the comultiplication
digA : !A → !!A is built by precomposing and postcomposing the unit X → R(L(X)) with R
and L respectively. The monoidal structure allows to interpret weakening !A→ I and contraction
!A→ !A⊗ !A using the fact that L is actually strong monoidal. Asking for an adjunction with left
adjoint strong monoidal is in fact enough to recover all of the data of a monoidal adjunction.
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Lemma 5.1.7 ([49] Proposition 13). Let L a R be an adjunction between two monoidal categories,
with L lax monoidal. The adjunction lifts to a monoidal adjunction if and only if L is actually
strong monoidal.

We shall often use this characterization in the sequel to exhibit monoidal adjunctions, as well
as the obvious dualization: an adjunction L a R with R strong monoidal gives rise to an oplax
monoidal adjunction.

Definition 5.1.8. A categorical model of IMELL consists of a symmetric monoidal closed category
(L,⊗, I) and a LNL-adjunction I+ a R+ between some cartesian category (C,×, 1) and (L,⊗, I).
We write ! for the induced comonad over L.

This notion of model for intuitionistic multiplicative linear logic is rather well-understood and
ensures that proofs equal up to cut-elimination and commuting conversions are necessarily equated.

We are interested in extending those models in order to interpret an extension of full intu-
itionistic linear logic from [34]. This logic arises naturally from the study of Dialectica categories,
but require a more sophisticated analysis if one wants to interpret cut-elimination. Since we are
moreover interested in strict extensions, we shall not concern ourselves too much with equating
the interpretation of proofs up to cut-elimination and commuting conversions in the sequel.

In order to model full intuitionistic linear logic, we mainly require an additional family of
morphism. Unlike [34], we do not require coherence on top of naturality.

Definition 5.1.9. A model of full intuitionistic linear logic (FIMLL) is given by a monoidal-closed
category (C,⊗, I), an additional monoidal structure (`,⊥) over C and a natural transformation
distX,Y,Z : X ⊗ (Y ` Z)→ (X ⊗ Y ) ` Z.

Remark. Note that any model of IMLL yields a trivial model of FIMLL by taking ⊗ = `. The
distribution is then obtained using the associator of the underlying monoidal structure.

We moreover extend full intuitionistic linear logic with exponential modalities ! and ? to get the
system FIMELL. As such, we extend the notion of model of IMELL to accomodate those connectives
and full intuitionistic logic. Let us stress that, since we are not concerned with modeling cut-
elimination properly, it would be inappropriate to call those FIMELL-models.

Definition 5.1.10. A FIMELL-category consists of the following data.

- A model of IMELL, that is, a symmetric monoidal closed category (L,⊗, I).

- An additional symmetric monoidal structure (`,⊥) over L.

- A distributivity law distA,B,C : A ⊗ (B ` C) → (A ⊗ B) ` C, so that L is a model of full
intutionistic linear logic.

- A cartesian category L+ of positive objects and a category of negative objects L−..

- A LNL-adjunction I+ a R+ between (L+,×, 1) and (L,⊗, I).

- An oplax monoidal adjunction R− a I− between (L,`,⊥) and (L−,+, 0).

(L,⊗, I,`,⊥)

��

R+aI+ I−`R−

��
(L+,×, 1)

EE

(L−,+, 0)

YY

- Writing ! : = I+ ◦R+ and ? : = R− ◦ I−, we additionally require natural transformations.

!A⊗ ?B −→ ?(!A⊗B) !(A` ?B) −→ !A` ?B

Remark. In the models we are going to be considering later on, L is going to be a proof-relevant
category while L+ and L− will constitue full subcategories of L. Hence, the functors I+ and I−
should be thought of as “inclusions” and R+ and R− as “retractions” in these particular cases. Of
course, this is not necessarily true for other FIMELL-categories, where other naming conventions
may be more appropriate.
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5.2 Fibrations for linear logic
Our purpose here is merely to introduce the necessary background to define and study particular
Dialectica fibrations. We refer the interested readers to [36] for an introduction to fibred approach
to categorical logic.

Fibrations may be regarded as one of the most generic notion of model for logic. The basic idea
is that, a fibration is a particular kind of functor p : E → B. The category B, customarily called
the base, consists of the objects the logic is concerned with, while objects of E, the total space
consists of predicates. The object component of p maps predicates ϕ ∈ E0 to the object X ∈ B
over which the free variables of ϕ range over. The morphisms f of the base B correspond to terms.
The condition for p to be a fibration is that every such morphism f admits cartesian liftings f∗
corresponding to substitution.

5.2.1 Basic theory and examples
Definition 5.2.1. Let p : E→ B be a functor.

- A morphism v in E is vertical if p(v) = id.

- For an object A in B, the fiber of p over A is the subcategory of E consisting of objects ϕ
satisfying p(ϕ) = A and vertical morphisms between them. We write pA for this category.

If p(ϕ) = A, we say that ϕ is an object over A. Similarly, if p(v) = f , v is said to lie over f .

Definition 5.2.2. A morphism m : ϕ → ψ of the category E over f : p(ϕ) → p(ψ) is called
p-cartesian if and only if for every n : φ→ ψ and factorisation p(n) = f ◦ g, there exists a unique
morphism v over g for which m ◦ v = n. φ

∃!v &&

n

++

��

ϕ
m

//

��

ψ

��

p(φ)

g &&
p(n)

++
p(ϕ)

f
// p(ψ)

In this case, m is a cartesian lifting of f .
The functor p : E → B is called a fibration over B if for every morphism f : X → p(ϕ) of the

category B has a p-cartesian lifing with codomain ϕ.

As hinted previously, from a logical perspective, cartesian maps ought to be thought as term
substitution in formulas. On the other hand, vertical morphisms correspond to entailments. Let us
enumerate list a couple of properties which are routinely used to manipulate cartesian morphisms.

Lemma 5.2.3. Let p : E→ B be a fibration.

- The composite of two cartesian maps remains cartesian.

- If two maps m,m′ are cartesian over f with the same codomain, then there exists a unique
vertical isomorphism v such that m ◦ v = m′.

- Every morphism in E factors as a vertical map followed by a cartesian map. This factoriza-
tion is unique up to unique vertical isomorphism.

- When two vertical maps v, v′ in E satisfy m ◦ v = m ◦ v′ with m cartesian, then v = v′.

- A map which is both vertical and cartesian is an isomorphism.

While the notion of fibration is lightweight as a fibration p : E → B is nothing but a functor
satisfying some property, it is sometimes inconvenient to think that substitution by a “term” is
defined only up to vertical isomorphism. An arguably more natural point of view would be to
consider the notion of indexed category.
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Definition 5.2.4. A B-indexed category is a pseudo-functor P : Bop → Cat. This means that
for all objects A of the base, we have a category P (A), and for each morphism f : A → B
a substitution functor P (f) : P (B) → P (A) together with a family of coherence isomorphisms
P (f) ◦ P (g) ∼= P (g ◦ f) and P (id) ∼= id, themselves subject to further coherence axioms (see
Definition 1.1.4 [36]).

P is called a strict B-indexed category if it is actually a functor P : Bop → Cat.

B-indexed categories give rise to fibrations over B via the Grothendieck construction.

Construction 5.2.5 (Grothendieck construction). Let
∫
B P be the category of elements of P

defined as follows:

- An object is a pair (A,ϕ) where A is an object of B and ϕ an object of P (A).

- A morphism (A,ϕ)→ (B,ψ) is a pair (f,m) where f : A→ B and m : ϕ→ P (f)(ψ).

The first projection functor
∫
B P → B is seen to be a fibration: for any f : A→ B and ϕ object of

P (B), f∗ : = (f, id) : (A,P (f)(ϕ))→ (B,ϕ) is a cartesian lifting of f .

Note that a B-indexed category give rise to a choice of cartesian liftings for the associated
fibration

∫
B P → B.

For any fibration p : E→ B, we call such a choice a cleavage of p. Cleavages always exist using
the axiom of choice for classes. A fibration equipped with a cleavage is called cloven. There is
a counterpart to the Grothendieck construction mapping cloven fibrations to pseudo-functors by
mapping objects A of B to pB, making the two notions equivalent. We do not detail this here and
refer the interested reader to e.g. [36][Proposition 1.4.5].

Indexed categories give an easy mean to construct a variety of fibrations from suitable con-
travariant (pseudo-)functors, but can become nevertheless cumbersome when dealing more involved
constructions. On the other hand, much of the structural theory of fibrations is rather elegant,
but definitions of total categories may get fairly verbose even in simple cases. In the sequel, we
shall officially work with cloven fibrations, although it might be useful to keep in mind the basic
pseudo-functorial structure to maintain certain intuitions. In particular, a lot of simple semantic
cases arise from strict indexed categories; when a fibration p : E → B arise from a strict indexed
category (i.e., there exists a cleavage extending to a functor Bop → E), then we call it split.

Let us now turn to several basic examples of fibrations.

Example 5.2.6. Let T be a multisorted first-order theory with pairing, i.e., a signature for terms
and a set of theorems closed by deduction. Build the base B[T ] by taking types as objects and
terms as morphisms. There is a contravariant functor B[T ]op → Preord which takes objects τ
to the suitable Lindenbaum algebra consisting of formulas ϕ(xτ ), preoredered by deduction (i.e.,
there exists a morphism ϕ(xτ )→ ψ(xτ ) if and only if T ` ϕ(xτ )⇒ ψ(xτ )). This is the syntactic
fibration associated to T .

Example 5.2.7. Let Set⊆ be the (large) order of sets and inclusion, seen as a category. The
powerset P constitutes a contravariant functor P : Setop → Set⊆. The associated split fibration∫
Set P corresponds to the “standard” logic of sets (with bounded quantifications).

Example 5.2.8. Let Sub(B) be the full subcategory of B→ where objects are restricted to be
monomorphisms. The restriction of the cod functor SubB : Sub(B) → B is a fibration when-
ever B have all pullbacks along monomorphisms. There is a fibered equivalence between

∫
Set P and

SubSet.

Example 5.2.9. If B has all pullbacks, cod : B→ → B is a fibration. If f : A → B is morphism
of the base and m : X → B an object abover B, then a cartesian lift of f with codomain m is
obtained by pulling back f along m.

Y

��

f∗(m) //y X

m

��
A

��

f // B

��
A

f // B
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Example 5.2.10. Suppose that B has cartesian products. Build the total space of the simple
fibration Simpl(B) as follows.

- Objects: pairs of objects (A,X) of B

- Morphisms: a morphism (A,X)→ (B, Y ) is a pair of B-morphism (f, f0) where f : A→ B
and f0 : A×X → Y .

- Identities: the identity on (A,X) is the map (id, π2).

- Composition: given (f, f0) : (A,X)→ (B, Y ) and (g, g0) : (B, Y )→ (C,Z), the composite
is defined to be the pair (g ◦ f, g0 ◦ 〈f ◦ π1, f0〉).

This category is fibered over B via the first projection. A cartesian lifting of f : A → B with
codomain (B,X) is (f, π2).

In the sequel, while we are going to mostly describe general constructions over fibrations, it will
be helpful to keep these basic instances in mind. Let us end this section with a couple of additional
way of building fibrations.

Lemma 5.2.11. If p is a fibration and the diagram below is a pullback square in Cat, then p′ is a
fibration.

E′

p′

��

y // E

p

��
B′ F // B

This construction is sometimes referred to as the change of base of p along the functor F .
Additionally, if p : E→ B and q : B→ B′ are fibrations, so is q ◦ p.

Example 5.2.12. When B′ is a subcategory of B, change of base can be seen as the canonical way
of restricting the predicates of p : E→ B to those object already in B. Typically, there is an obvious
inclusion Mealy→ Set along which the fibration SubSet may be pulled back to obtain the standard
model of FOM.

Example 5.2.13. Consider the dualization functor (−)op : Cat → Cat. If P : Bop → Cat is an
indexed category, then so is (−)op ◦ P : Bop → Cat corresponding to the opposite indexed category.
If p =

∫
B P , we write pop for a fibration equivalent to

∫
B(−)op ◦P and call it the opposite fibration1

Remark. Dualization will play a major part role in the sequel. Formally speaking, the notion is
helpful to make precise the notion of contravariant functors between fibrations, which appears when
dealing with monoidal closure and to give an expeditive definition of a certain construction Prod
in terms of its dual Sum.

5.2.2 The category of (cloven) fibrations
In this subsection, we cover basic material regarding the 2-category of fibrations Fib. While our
main goal is rather to construct fibrations out of old ones rather than to carry out a study of Fib
itself, a modicum of understanding the global structure of Fib is useful to model linear logic. In
particular, adapting LNL definitions require a clean notion of adjunction between fibrations, which
can also be put to work to summarize the data needed for e.g. monoidal closed fibrations.

Definition 5.2.14. Let p : E → B and q : F → B be two fibrations. A fibred functor F : p → q
is a functor E → F such that q ◦ F = p and F sends p-cartesian arrows to q-cartesian arrows.
Furthermore, if p and q are equipped with cleavages f 7→ f̂ , F preserves cleavages if and only
if F (f̂) = f̂ . A natural transformation η : F → G between two functors is vertical if all of its
components are.

Cloven fibrations over B, cleavage-preserving fibred functors and vertical natural transforma-
tions form a (2-)category Fib(B).

1This notion is determined only up to equivalence if we do not fix a canonical way of going from indexed categories
to fibrations.
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Arranging Fib(B) into a (large) 2-category allows to easily generalize the propositional approach
presented in Section 5.1. Indeed, the notions which require carrying over to the fibered setting
could have just as well been formulated for an arbitrary 2-category. Since we mostly manipulate
two kinds of 2-categories, Cat and Fib(B) which are fairly close to one another, we repeat the
necessary definitions here.

Lemma 5.2.15. The product of two fibrations p : E→ B and q : F→ B is obtained by computing
the following pullback in Cat.

E×B F

��

// F

q

��
E

p
// B

The terminal fibration over B is the identity functor id : B→ B.

Definition 5.2.16. Let p : E → B and q : F → B be fibrations and F : p → q and G : q →
p be fibered functors. We say that F is a fibered left ajoint to G if there are vertical natural
transformations ηX : X → G(F (X)) (the unit) and εA : F (G(A))→ A (the counit) satisfying the
usual triangular identities G(εA) ◦ ηG(A) = idG(A) and εF (X) ◦ F (ηX) = idF (X).

G(F (G(A)
G(εA)

%%
G(A)

ηG(A)
99

G(A)

G(F (G(A)
ηG(A)

%%
F (X)

G(εA)
99

G(A)

A fibered adjunction between p and q consists of the data (F,G, η, ε). We write F a G for
fibered adjunctions2, oftentimes leaving the unit and counit implicit.

In the sequel, we heavily use adjunctions to build models for the exponential modalities and
quantifiers. So let us stress a couple of elementary properties of adjunctions.

Lemma 5.2.17. Fibered adjunctions in Fib(B) may be arranged in a category3 Adj(Fib(B)).

- Objects: fibrations (i.e., same objects as Fib(B)).

- Morphisms: a morphism from p to q is a fibered adjunction L a R, with L : p→ q.

- Composition: given (L,R, η, ε) and (L′, R′, η′, ε′) with L : p→ p′ and L′ : p′ → p′′, we have
a composite adjunction (L′ ◦ L,R ◦R′, (R(η′L(X)) ◦ ηX)X , (ε′A ◦ L′(εR′(A)))A).

Furthermore, a functor F : Fib(B) → Fib(B) restricts to a functor Adj(Fib(B)) → Adj(Fib(B))
(since any 2-functor preserves adjunctions).

In Cat, adjunctions are often more concisely described in terms of hom-sets. For functors
L,R, we have L a R whenever there exists a natural isomorphism [L(A), X] ∼= [A,R(X)], from
suitable unit and counit may be deduced. This is often the preferred way to describe adjunctions
in practice, however, it relies on the specifics of Cat. The following Lemma allows to fall back
on this description in a fiberwise manner, provided that we prove additional coherence conditions
known as the Beck-Chevalley conditions.

Lemma 5.2.18 ([36], Lemma 1.8.9). Let p : E→ B and q : F→ B be fibrations and F : p→ q be
a fibered functor. F has a left (resp. right) adjoint if and only if.

- For each object A of B, the restriction FA : pA → qA has a left (resp. right) adjoint K(A)

- The Beck-Chevalley condition holds, i.e., for all maps u : A → B and functors induced by
a choice of cartesian lifts u∗ : pB → pA and u# : qB → qA in p and q respectively, the
natural transformation K(A) ◦u#(ϕ)→ u∗ ◦K(B)(ϕ) (resp. u∗ ◦K(B)→ K(A) ◦u#) is an
isomorphism obtained by taking the identity through the following transformations:

K(B)(ϕ)→ K(B)(ϕ)
ϕ→ FB ◦K(B)(ϕ)

u#(ϕ)→ u# ◦ FA ◦K(B)(ϕ)
u#(ϕ)→ FA ◦ u∗ ◦K(B)(ϕ)
K(A) ◦ u#(ϕ)→ u∗ ◦K(B)(ϕ)

2In what follows, we shall never encounter an adjunction between fibered functors which is not fibered itself.
3Let us ignore higher-dimensional generalizations.
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Oftentimes, we will exhibit fibered adjunctions using Lemma 5.2.18 by showing there exists
fiberwise adjoints, usually by giving only of the two adjoint and

Finally, we sometimes use the suitable notion of equivalence of fibrations.

Definition 5.2.19. An equivalence of fibrations from p : E→ B to q : F→ B consists of a pair of
fibered functors F : p → q and G : q → p with vertical natural isomorphisms G(F (X)) ∼−→ X and
F (G(A)) ∼−→ A

5.2.3 Logical aspect of fibrations
We now give the structure necessary to interpret FOFIMELL in a fibration. For the propositional
part, this consists essentially in lifting the notions in the last section in order for categorical models
of linear logic to the 2-category Fib(B). As all the notions used in defining the notion of models of
linear logic make sense in all 2-categories4, this straightforward. Let us give some details for the
definition of monoidal-closed fibrations.

Definition 5.2.20 (See also [64, Def. 2.1] and [50, Sec 3.1]). Let p : E → B be a fibration. A
monoidal structure over p is given by fibred functors I : 1 → p and − ⊗ − : p × p → p, as well as
vertical natural transformations ρ : A⊗I→ A, λA : I⊗A→ A and α : (A⊗B)⊗C → A⊗ (B⊗C)
satisfying the making the usual diagrams (see Definition 5.1.1) commute.

This endows each fiber pA with a monoidal structure preserved by substitution. The fibration
p is called monoidal closed if each fiber is monoidal closed and the monoidal closed structure is
preserved by substitution.

If ⊗ coincides with the cartesian product × in every fiber, then we say that p has (chosen)
fibered cartesian products. If each fiber is cartesian closed, we shall say that p is cartesian closed.

In concrete terms, for a fibration p : E→ B, it means that each fibre pA comes equipped with
a symmetric monoidal structure (⊗, 1) and that this structure is preserved by substitution. We
do not explicitate the lifting of similar notions (such as “lax monoidal fibred functor”) for the
exponentials of linear logic as they are straightforward.

New notions that justify the fibered settings are the interpretation of first-order quantification
and equalities.

Definition 5.2.21. Assume B to be cartesian. The fibration p : E → B is said to have simple
sums (resp. products) if, for every projection π : A × B → A, the functor π∗ : pA → pA×B has
a left (resp. right) adjoint written ∃π (resp. ∀π) fulfilling the following Beck-Chevalley condition:
for any pullback square whose horizontal arrows are projections

A×B π2 //

idA×f
��

B

f

��
A× C

π2
// C

the canonical natural transformation

pA×B
∃π2 // pB

pA×C ∃π2

//

(idA×f)∗
OO

⇒

pC

f∗

OO

is an isomorphism.

The Beck-Chevalley condition of Definition 5.2.21 is an instance of the condition in Lemma 5.2.18.
This becomes clearer how by reformulating the property of having finite sums as the existence of
a suitable adjoint to the fibered functor Sum defined in the next section (Lemma 5.3.8).

4Depending on the presentation, some care may be needed when axiomatizing the exponentials. An often
used alternative to LNL-adjunctions is to axiomatize the comonad !; then, the LNL-adjunction is recovered by
considering the Kleisli category associated to !. This migh be troublesome because Kleisli objects do not need to
exist for arbitrary 2-categories. Thankfully, they do for Fib(B).
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Definition 5.2.22. The fibration p is said to have equalities if, for every morphism δ : = 〈idA, idA〉 :
A→ A×A, the functor (δ× id)∗ : pA×B → p(A×A)×B has a left adjoint ∃δ×id satisfying the Beck-
Chevalley condition: for any pullback square

A×B δ×idA //

idA×f
��

(A×A)×B

f

��
A× C

δ×idA
// (A×A)× C

the canonical natural transformation

pA×B
∃π2 // p(A×A)×B

pA×C ∃π2

//

(idA×f)∗
OO

⇒

p(A×A)×C

f∗

OO

is an isomorphism.

Definition 5.2.23. A FOFIMELL fibration is a triple of fibrations (p−, p, p+) such that:

- p has monoidal structures (⊗, I) and (`,⊥).

- There is a vertical natural transformation distϕ,ψ,φ : ϕ⊗ (ψ ` φ)→ (ϕ⊗ ψ) ` φ.

- (p,⊗, I) is fiberwise monoidal closed.

- p has simple sums and products.

- p+ has fibered cartesian product.

- There is fibered LNL adjunction between (p,⊗, I) and (p+,×, I) inducing a fibered comonad
! over p.

- p− has fibered coproduct.

- There an oplax monoidal fibered adjunction between (p,`,⊥) and (p−,+, 0) inducing a fibered
monad ? over p.

- We have vertical natural transformations

!ϕ⊗ ?ψ −→ ?(!ϕ⊗ ψ) !(ϕ` ?ψ) −→ !ϕ` ?ψ

5.3 The Dialectica construction
In this section we define the structure of the functor Dial : Fib(B) → Fib(B) corresponding to
the Dialectica interpretation. This construction was already considered by Hofstra [31] in order to
clarify the universal property of the construction. In particular, it is shown that the interpretation
has the structure of a pseudo-monad, which can be recovered as the composition of two other
pseudo-monads Sum ◦ Prod and a distributive law. Sum (resp. Prod) may be characterized in
terms of universal property, namely, freely adding coproducts (resp. products). However, here we
are interested in how the connective of full intuitionistic linear logic are modeled. It will turn out
that the propositional part of p may be lifted to Dial(p) as soon as B is supposed to be cartesian
closed and quantifications will be modelled. Our main point of divergence with previous work
is that we give a non-standard interpretation for exponentials of linear logic rooted in a polarity
system. In a nutshell, Sum (resp. Prod) shall correspond to the world of positive (resp. negative)
predicates, and the embedding Sum(p)→ Dial(p) (resp. Prod(p)→ Dial(p)) admits a right (resp.
left) monoidal adjoint when p has sums (resp. products), a strong assumption. This give rise
to exponentials, which, rather than adding computational content enabling duplication, allow one
player not to have to play. To do so, the winning condition gets more complex and requires sums.
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5.3.1 The Sum construction
Before discussing Dial, we first discuss the simpler functor Sum : Fib(B)→ Fib(B), which plays a
key rôle in defining !. Sum is a broad generalization of the simple fibration over B, which can be
recovered as Sum(IdB). Given an arbitrary fibration p : E → B, Sum(p) is built as prescribed by
the following diagram in Cat. Sum(p) is readily is seen to be a fibration using Lemma 5.2.11.

Sum(E)

Sum(p)

))

��

//
y E

p

��
Simpl(B) × //

��

B

B

with
× : Simpl(B) → B

(X,Y ) 7→ X × Y
(f, f0) 7→ 〈f ◦ π1, f0〉

We give a direct description in the following definition.

Definition 5.3.1. Let p : E → B be a fibration with cartesian products in B. The total space
Sum(E) of the associated fibration Sum(p) is defined as follows:

- Objects: objects are triples (A,U, ϕ) such that A and U are objects of B and ϕ belongs to
pA×U . We write sometimes write such triples (a : A, u : U,ϕ(a, u)).

- Morphisms: morphisms from (a : A, u : U,ϕ(a, u)) to (b : B, v : V, ψ(b, v)) are triples
(f, f0, α) where

– f : A→ B is a B-morphism.
– f0 : A× U → V is a B-morphism.
– α : ϕ(a, u)→ ψ(f(a), f0(a, u)) is a pA×U -morphism.

- Composition: given (f, f0, α) : (a : A, u : U,ϕ(a, u))→ (b : B, v : V, ψ(b, v)) and (g, g0, β) :
(b : B, v : V, ψ(b, v)) → (c : C,w : W,φ(c, w)), the composite is defined as (g ◦ f, g0 ◦ 〈f ◦
π1, f0〉, 〈f ◦ π1, f0〉∗(β) ◦ α)

The fibration itself Sum(p) : Sum(E) → B is defined as the projection on the first component.
Therefore, a morphism (f, f0, α) is vertical when f = id and a cartesian lift of f : A→ B with target
(b : B, u : U,ϕ(b, u)) is given by (f, id, (f × id)∗) : (a : A, u : U,ϕ(f(a), u))→ (b : B, u : U,ϕ(b, u)).

The intuitive idea is that a walking predicate ϕ(a) of Sum(p) corresponds to a predicate
“∃u ϕS(u, a)”, and deduction in Sum(p) should be carried out accordingly. However, let us remark
that this intuition may be somewhat misleading, as the quotes indicates; the notion of sum therein
do not correspond to the notion of sum in p, but rather a stronger one which should be witnessed
by morphism in the base B.

Example 5.3.2. One may apply the Sum construction to the syntactic fibration p : E → Mealy
corresponding to FOM. Then, a walking predicate of Sum(p) is a triple (a : Aω, u : Uω, ϕ(a, u))
where A and U are alphabets and ϕ is a FOM formula. An entailment

(a : Aω, u : Uω, ϕ(a, u)) → (a : Aω, v : V ω, ψ(a, v))

is essentially a Mealy-morphism, that is, a f.s. causal function f : Aω × Uω → V ω such that
ϕ(a, u) ` ψ(a, f(a, u)) is derivable in FOM; therefore, Sum(p) is not a preposetal fibration like
FOM. In fact, it is now easy to check that Sum(p) is equivalent to the fibration generated by the
automata-based model of SFOM given in Chapter 3.

Example 5.3.3. Consider a cartesian-closed category T with a natural number object N , that is,
an object N together with morphisms z : 1→ N and s : N → N such that, for every object X of T
and morphisms z′ : 1→ X and s′ : X → X, there is a unique map r making the following diagram
commute.

1

��

z // N

r

��

s // N

��
1 z′ // X

s // X
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The above requirements essentially state that T is a model of Gödel’s system T with sums, an
extension of simply-typed λ-calculus with a recursor for natural numbers. In particular, one may
be build such a category syntactically by taking system T types as objects and system T terms as
morphisms.

Now, letting p be the fibration corresponding to its standard classical model as given in Ex-
ample 5.2.8, the fibration Sum(p) gives an interpretation first-order arithmetic essentially corre-
sponding to typed realizability. Predicates are interpreted as triples (n : N, u : U,ϕ(n, u)) and
entailments (n : N, u : U,ϕ(n, u)) → (n : N, v : V, ψ(n, v)) are T-morphisms f : N × U → V such
that ϕ(n, u)→ ψ(n, f(n, u)) holds in p.

Lemma 5.3.4. If p has a symmetric monoidal structure (⊗, I), the following is the object part of
a symmetric monoidal structure over Sum(p).

Unit: A 7→ (a : A, b : I, IA)
Product: (a : A, u : U,ϕ(a, u)), (a : A, v : V, ψ(a, v)) 7→ (a : A, (u, v) : U × V, ϕ(a, u)⊗ ψ(a, v))

Furthermore, if ⊗ is actually a cartesian product and I a terminal object, then this lifting coincide
with a cartesian structure over Sum(p).

Proposition 5.3.5. If p has a symmetric monoidal closed structure (⊗, I), simple products and B
is cartesian closed, then the symmetric monoidal structure over Sum(p) determined in Lemma 5.3.4
is closed, the linear arrow given by

(a : A, u : U,ϕ(a, u)), (a : A, v : V, ψ(a, v)) 7→ (a : A, f : V U ,∀u ϕ(a, u)( ψ(a, ev(f, u)))

Lemma 5.3.6. Suppose that p has two monoidal structures (⊗, I) and (`,⊥), as well as a dis-
tributivity law distϕ,ψ,φ : ϕ ⊗ (ψ ` φ) → (ϕ ⊗ ψ) ` φ. Then Sum(p) also has a distributivity law
between the induced monoidal structures defined as follows for the objects (a : A, u : U,ϕ(a, u)), (a :
A, v : V, ψ(a, v)) and (a : A,w : W,φ(a,w)).

A× (U × (V ×W )) π2 // U × (V ×W ) ∼ // (U × V )×W

ϕ(a, u)⊗ (ψ(a, v) ` φ(a,w)) dist // (ϕ(a, u)⊗ ψ(a, v)) ` φ(a,w)

Lemma 5.3.7. Sum(p) has all simple sums; considering objects of the base A,B and the projection
π : A×B → A, the object part of the right adjoint ∃π : Sum(p)A×B → Sum(p)A is

∃π : ((a, b) : A×B, u : U,ϕ(a, b, u)) 7→ (a : A, (u, b) : U ×B,ϕ(a, u, b))

Furthermore, if B is cartesian-closed and p has simple products, then Sum(p) also has simple
products ∀π, whose object part is

∀π : ((a, b) : A×B, u : U,ϕ(a, b, u)) 7→ (a : A, f : UB ,∀bB ϕ(a, b, ev(f, b))))

As pointed out in [31], Sum extends to a pseudo-monad over Fib(B), whose category of algebra
correspond to a restriction of Fib(B), where morphisms are required to preserve simple sums.
While we are not going to investigate the general properties of Sum, we are going to employ the
instantiation of the unit

ηSum(p) : p → Sum(p)
ϕ ∈ pA 7→ (a : A, ∗ : 1, ϕ(a))

in the sequel. In fact, object (isomorphic) to some ηSum(p) will be called deterministic.

Lemma 5.3.8. ηSum(p) has a fibered left adjoint ∃p whose object part is

∃p : Sum(p) → p
(a : A, u : U,ϕ(a, u)) 7→ (a : A,∃u ϕ(a, u))

if and only if p has fibered sums.

Let us conclude this subsection by recalling that there is a dual construction Prod(p), that is
also of interest to us. As we did for Sum(p), let us spell out the definition.
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Definition 5.3.9. Let p : E → B be a fibration with cartesian products in B. The total space
Prod(E) of the associated fibration Prod(p) is defined as follows:

- Objects: objects are triples (A,X,ϕ) such that A and X are objects of B and ϕ belongs to
pA×X . We write sometimes write such triples (a : A, x : X,ϕ(a, x)).

- Morphisms: morphisms from (a : A, x : X,ϕ(a, x)) to (b : B, x : X,ψ(b, x)) are triples
(f, f0, α) where

– f : A→ B is a B-morphism.

– f0 : A× Y → X is a B-morphism.

– α : ϕ(a, f0(a, y))→ ψ(f(a), y) is a pA×Y -morphism.

- Composition: given (f, f0, α) : (a : A, x : X,ϕ(a, x))→ (b : B, y : y, ψ(b, y)) and (g, g0, β) :
(b : B, y : Y, ψ(b, y)) → (c : C, z : Z, φ(c, z)), the composite is defined as (g ◦ f, f0 ◦ 〈g ◦
π1, g0〉, 〈g ◦ π1, g0〉∗(β) ◦ α)

The fibration itself Prod(p) : Prod(E)→ B is defined as the projection on the first component.

As remarked in [31], Prod(p) ∼= Sum(pop)op.

5.3.2 The Dial construction

We are now ready to describe the fibration Dial(p). As for Sum(p), their is a basic intuition that
a walking predicate ϕ(a) of Dial(p) should correspond to a predicate “∃u∀x ϕD(u, x, a)′′ of p; the
same caveat on the interpretation of quantifiers apply, namefly that they should be understood
more as quantifiers determined by B rather than by the logic associated to p as a whole. This may
lead us to want Dial(p) = Sum(Prod(p)). As before, let us give an expanded definition definition
below, which ensures that Dial(p) ∼= Sum(Prod(p)).

Definition 5.3.10. Let p : E → B be a fibration with cartesian products in B. The total space
Dial(E) of the associated fibration Dial(p) is defined as follows:

- Objects: objects are triples (A,U,X, ϕ) such that A, U and X are objects of B and ϕ belongs
to pA×U×X . We write sometimes write such triples (a : A, u : U, x : X,ϕ(a, u, x)).

- Morphisms: morphisms from (a : A, u : U, x : X,ϕ(a, u, x)) to (b : B, v : V, y : Y, ψ(b, v, y))
are tuples (s, f, F, α) where

– s : A→ B is a B-morphism.

– f : A× U → V is a B-morphism.

– F : A× U × Y → X is a B-morphism.

– α : ϕ(a, u, F (a, u, y))→ ψ(s(a), f(a, u), y) is a pA×U×Y -morphism.

- Composition: given

(s, f, F, α) : (a : A, u : U, x : X,ϕ(a, u, x))→ (b : B, v : V, y : Y, ψ(b, v, y)) and
(t, g,G, β) : (b : B, v : V, y : Y, ψ(b, v, y))→ (c : C,w : W, z : Z, φ(c, w, z))

the composite is defined as

(t ◦ s, g ◦ 〈s ◦ π1, f〉, F ◦ 〈π1, π2, G ◦ 〈s ◦ π1, f ◦ 〈π1, π2〉, π3〉〉, γ)

where γ is defined as the composite of the arrows on the right-handside of the following
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diagram, the dashed arrows denoting cartesian lifts.

ϕ(a, u, F (a, u, y))

))

α

��
ψ(s(a), f(a, u), y)

))

ϕ(a, u, F (a, u,G(s(a), f(a, u), z)))

��
ψ(s(a), f(a, u), G(s(a), f(a, u), z))

��
ψ(s(a), v,G(s(a), v, z))

55

β

��

φ(t(s(a)), g(s(a), f(a, u)), z)

φ(t(s(a)), g(s(a), v), z)

55

The fibration itself Dial(p) : Dial(E)→ B is defined as the projection on the first component.

As shown in [31], Dial ∼= Sum◦Prod is functorial. There is an embedding ηDial(p) : p→ Dial(p),
which may be computed as any of the following two composite sitting in the following commutative
diagram.

Sum(Prod(p)) ∼= Dial(p)

Sum(p)

Sum(ηProd(p))

88

Prod(p)

ηSum(Prod(p))

ff

p

ηSum(p)

gg
ηDial(p)

OO

ηProd(p)

77

ηDial(p) : p → Dial(p)
ϕ ∈ pA 7→ (a : A, ∗ : 1, ∗ : 1, ϕ(a))

Now, we survey the structure that Dial(p) may inherit from p alone, which turns out to largely
come from our preliminary observation on Sum(p) and the fact that Dial(p) ∼= Prod(Sum(p)). At
the propositional level, the only new aspect is the monoidal closure of Dial(p), which is inherited
from the monoidal closure of p when B happens to be cartesian-closed.

First, symmetric monoidal structures may be inherited from p by composing Lemma 5.3.4 with
its dual for Prod.

Lemma 5.3.11. Suppose that p : E → B has a monoidal structure (⊗, unit). Dial(p) inherits a
monoidal structure, whose product, also denoted ⊗, has the following object component.(

a : A, u : U, x : X
ϕ(a, u, x)

)
,

(
a : A, v : V, y : Y

ψ(a, v, y)

)
7→
(
a : A, (u, v) : U × V, (x, y) : X × Y

ϕ(a, u, x)⊗ ψ(a, v, y)

)
Similarly, distributive laws between monoidal products may be inherited from p by applying

Lemma 5.3.6 twice.

Lemma 5.3.12. Suppose that p has two monoidal structures (⊗, I) and (`,⊥), as well as a
distributivity law distϕ,ψ,φ : ϕ⊗ (ψ`φ)→ (ϕ⊗ψ)`φ. Then Dial(p) also has a distributivity law
between the induced monoidal structures defined as follows
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Lemma 5.3.13. Suppose that p : E → B has a monoidal closed structure (⊗, I) and that B is
cartesian-closed. Then, Dial(p) inherits a monoidal closed structure. The monoidal product is
given as per 5.3.11, and the object part of the functor (a : A, v : V, y : Y, ψ(a, v, y)) ( − :
Dial(p)A → Dial(p)A is(

a : A, u : U, x : X
ϕ(a, u, x)

)
7→
(
a : A, (f, F ) : V U ×XU×Y , (u, y) : U × Y
ϕ(a, u, F (a, u, y))( ψ(a, f(a, u), y)

)
Proof. Let

Φ =
(
a : A, u : U, x : X

ϕ(a, u, x)

)
Ψ =

(
a : A, v : V, y : Y

ψ(a, v, y)

)
Θ =

(
a : A,w : W, z : Z

θ(a,w, z)

)
be objects of Dial(p)A. We need to exhbit a map ev : (Ψ ( Θ) ⊗ Ψ → Θ such that, for every
map h : Φ ⊗ Ψ → Θ, there exists a unique map h̃ : Φ → Ψ ( Θ making the following diagram
commute.

(Ψ( Θ)⊗Ψ // Θ

Φ⊗Ψ

h

99

h̃×id

OO

The map ev = (id, ev1, ev2, ev3) is defined as follows:

- ev1 : A× ((WV × Y V×Z)× V )→W is the composite

A× ((WV × Y V×Z)× V )
〈π1◦π1,π2〉◦π2 // WV × V ev // W

- ev2 : A× ((WV × Y V×Z)× V )× Z → V × Z is the pairing of

A× ((WV × Y V×Z)× V )× Z π2◦π2 // V

A× ((WV × Y V×Z)× V )× Z π3 // Z

- ev3 : (ψ(a, v, ev(F, 〈v, z〉))( θ(a, ev(f, v), z))⊗ψ(a, v, ev(F, 〈v, z〉))→ θ(a, ev(f, v), z)) is the
evaluation map in p.

Writing h = (id, f, 〈F1, F2〉, α) and h̃ = (id, 〈f̃1, f̃2〉, F̃ , α̃), On the first three components, this
amounts to having the following diagrams commuting

WV × V ev // W

A× (U × V )
f

99

(A× U)× V

f̃1×id

OO

∼

66

Y V×Z × V ev // Y

A× (U × V )× Z
F2

88

(A× U)× (V × Z)

f̃2×id

OO

∼

55
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A× U × ((V × Z)× Y )

id×〈〈π1,π1◦π2〉,π2◦π2〉
��

F̃ // X

A× (U × V )× Z
F1

33

It is clear that they uniquely determine f̃1 and f̃2 to be curryfication and F̃ to be F1 precomposed
with a suitable projection. Similarly, α̃ is then forced to be the curryfication of α.

Then one would need to check the Beck-Chevalley condition to conclude by Lemma 5.2.18; this
is rather straightforward to reduce this to easy equational reasoning and the the Beck-Chevalley
condition for the monoidal closure in p.

Lemma 5.3.14. The fibration Dial(p) has simple sums, and, if B is cartesian-closed, Dial(p) has
also simple products. Given a projection π : A×B → A and an object (U,X,ϕ) : A×B, the object
component of the functors ∃π,∀π are

∃π :
(

(a, b) : A×B, u : U, x : X
ϕ(a, b, u, x)

)
7→

(
a : A, (u, b) : U ×B, x : X

ϕ(a, b, u, x)

)
∀π :

(
(a, b) : A×B, u : U, x : X

ϕ(a, b, u, x)

)
7→

(
a : A, f : UB , (x, b) : X ×B

ϕ(a, v, ev(f, b), x)

)
Proof. We do not give the explicit construction here, but appeal repeatedly to Lemma 5.3.7, using
the fact that Dial(p) ∼= Sum(Prod(p)).

- Dial(p) clearly has simple sums since it is a Sum fibration.

- Dually, Prod(p) has simple products.

- Therefore, since B is additionally cartesian-closed, Sum(Prod(p)) has simple products.

Unwinding the definitions and checking that the definition on objects coincide with the above is
straightforward.

Theorem 5.3.15. Let (p+, p, p−) be a FOFIMELL fibration with the following string of monoidal
adjunctions for exponential modalities.

p+

I+

&&
⊥ p

R+

gg

I−

''
> p−

R−

ff

Then, this FOFIMELL fibration may be lifted to another FOFIMELL-fibration (Sum(p+),Dial(p),Prod(p−))
by ensuring IDial+ ∼= Sum(ηProd(p) ◦ I+), RDial+ ∼= Sum(∀p+ ◦ R+), RDial− ∼= ηSum(Prod(p)) ◦
Prod(I−) and IDial− ∼= ∀Prod(p) ◦Dial(R−).

Sum(p+)

IDial+

**
⊥ Dial(p)

RDial+

kk

RDial−

++
> Prod(p−)

IDial−

jj

Proof. Assuming the previous Lemma, the crucial point is to check that we have suitable adjunc-
tions IDial+ a RDial+ and RDial− a IDial− and the vertical natural transformations.

!ϕ⊗ ?ψ −→ ?(!ϕ⊗ ψ) !(ϕ` ?ψ) −→ !ϕ` ?ψ

Let us define the adjunctions on objects, and derive the action of the induced comonad and monad:

IDial+(a : A, u : U,ϕ(a, u)) : = (a : A, u : U, ∗ : 1, I+(ϕ(a, u)))
RDial+(a : A, u : U, x : X,ϕ(a, u, x)) : = (a : A, u : U,R+(∀xX ϕ(a, u, x)))
!(a : A, u : U, x : X,ϕ(a, u, x)) = (a : A, u : U, ∗ : 1, !(∀xX ϕ(a, u, x)))

IDial−(a : A, x : X,ϕ(a, x)) : = (a : A, ∗ : 1, x : X, I−(ϕ(a, x)))
RDial−(a : A, u : U, x : X,ϕ(a, u, x)) : = (a : A, f : XU , R−(∃uU ϕ(a, u, ev(f, u))))
?(a : A, u : U, x : X,ϕ(a, u, x)) = (a : A, ∗ : 1, f : XU , ?(∃uU ϕ(a, u, ev(f, u))))
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One may check by hand that IDial+ a RDial+ (respectively RDial− a IDial−) and that IDial+ and
RDial+ may be equipped with a lax (respectively oplax for RDial− and IDial−) monoidal structure
by hand. A more abstract approach would be to notice the equivalence of fibred functors announed
in the statement and use the fact that, in an arbitrary 2-category such as Fib(B), (op)lax monoidal
adjunctions compose and are preserved by functors.

By Lemma 5.3.7, since B is assumed to be cartesian-closed and p+ has all simple products, so
does Sum(p+). By a completely dual argument, Prod(p−) has all simple sums.

In order to conclude, it thus suffices to show that we have the following vertical natural trans-
formations arbitrary predicate ϕ and ψ of Dial(p).

!ϕ⊗ ?ψ −→ ?(!ϕ⊗ ψ) !(ϕ` ?ψ) −→ !ϕ` ?ψ

Working in the fiber over A and expanding the definitions, it means we should have the following
vertical natural transformations.(

a : A, u : U, f : Y V(
!∀xX ϕ(a, u, x)

)
⊗
(
?∃vV ψ(a, v, ev(f, v))

) ) −→

(
a : A, ∗ : 1, g : Y U×V

?∃(u, v)U×V
(
!∀xX ϕ(a, u, x)⊗ ?∃vV ψ(a, v, ev(g, 〈u, v〉)

) )
(

a : A, u : U, ∗ : 1

!∀(x, f)X×Y V
(
ϕ(a, u, x) ` ?∃vV ψ(a, v, ev(f, v))

)
)

−→

(
a : A, u : U, f : Y V(

!∀xX ϕ(a, u, x)
)` (?∃vV ψ(a, v, ev(f, v))

) )
Let us focus on the first one. The B-level part of the morphism is induced by the unique map
A× U → 1 and the obvious partial evaluation map A× U × Y U×V → U × Y U×V → Y V . At the
level of propositions, it thus suffices to give a proof in p of the following implication.(
!∀xX ϕ(a, u, x)

)
⊗
(
?∃vV ψ(a, v, ev(g, 〈u, v〉))

)
−( ?∃(u, v)U×V

(
!∀xX ϕ(a, u, x)⊗?∃vV ψ(a, v, ev(g, 〈u, v〉))

)
Deriving it in the FIMELL sequent calculus is straightforward. Note that its interpretation into p
makes crucial use of the corresponding natural transformation !ϕ⊗ ?ψ −→ ?(!ϕ⊗ ψ) in pA.

ψ(a, v, ev(g, 〈u, v〉)) ` ψ(a, v, ev(g, 〈u, v〉))
ψ(a, v, ev(g, 〈u, v〉)) ` ∃vV ψ(a, v, ev(g, 〈u, v〉))
ψ(a, v, ev(g, 〈u, v〉)) ` ?∃vV ψ(a, v, ev(g, 〈u, v〉)) !∀xX ϕ(a, u, x) ` !∀xX ϕ(a, u, x)

!∀xX ϕ(a, u, x), ψ(a, v, ev(g, 〈u, v〉)) ` !∀xX ϕ(a, u, x)⊗ ?∃vV ψ(a, v, ev(g, 〈u, v〉))
!∀xX ϕ(a, u, x), ψ(a, v, ev(g, 〈u, v〉)) ` ∃(u, v)U×V (!∀xX ϕ(a, u, x)⊗ ?∃vV ψ(a, v, ev(g, 〈u, v〉)))
!∀xX ϕ(a, u, x), ψ(a, v, ev(g, 〈u, v〉)) ` ?∃(u, v)U×V (!∀xX ϕ(a, u, x)⊗ ?∃vV ψ(a, v, ev(g, 〈u, v〉)))

!∀xX ϕ(a, u, x),∃vV ψ(a, v, ev(g, 〈u, v〉)) ` ?∃(u, v)U×V (!∀xX ϕ(a, u, x)⊗ ?∃vV ψ(a, v, y))
!∀xX ϕ(a, u, x), ?∃vV ψ(a, v, ev(g, 〈u, v〉)) ` ?∃(u, v)U×V (!∀xX ϕ(a, u, x)⊗ ?∃vV ψ(a, v, ev(g, 〈u, v〉)))

!∀xX ϕ(a, u, x)⊗ ?∃vV ψ(a, v, ev(g, 〈u, v〉)) ` ?∃(u, v)U×V (!∀xX ϕ(a, u, x)⊗ ?∃vV ψ(a, v, ev(g, 〈u, v〉)))

5.3.3 Relationship to Gödel’s Dialectica
For the sake of illustration, let us consider a particular case corresponding roughly to the original
functional interpretation given by Gödel in [25], whose goal was to give a consistency proof for
first-order arithmetic from the proof of normalization of System T , a simply typed λ-calculus with
primitive integers and a (higher-order) recursor5. We only here give an outline of the construction
as an illustration; the interested reader may consult [4] or [40] for more details on System T ,
Gödel’s functional interpretation and applications to proof-theory.

Consider the initial cartesian-closed category T with a natural number object and the coproduct
2 = 1 + 1 (this latest addition is more for convenience than necessity) to use as a base; this may
be built using the syntax of System T augmented with booleans and an if/then/else construct to
define morphisms, with term equated up to βη-equivalence. Call ⊥,> : 1 → 2 the two canonical
global elements of the booleans. In particular, for every object A of T, we may preorder morphisms
f : A→ 2 by setting f ≤ g if and only if for every global element x : 1→ A, the following diagram

5System T may be alternatively be seen as a higher-order extension to primitive recursive functions. The crucial
point differentiating the two is that System T ’s recursor may output higher-order functions rather than only natural
numbers.
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commutes (or, if seen as closed system T terms, we ask that for every closed term u of type A we
have f u =β > ⇒ g u =β >)6

A
〈f,g〉 // 2× 2

⇒
��

1

x

OO

> // 2

This map A 7→ ([A, 2]T ,≤) extends to a contravariant functor T : Top → Cat making t : =
∫
T →

Cat a preposetal fibration. Furthermore, owing to the internal boolean algebra structure of 2, t
is also boolean. However, t does not have simple quantifications for straightforward recursive-
theoretic reasons.

A predicate in Dial(t) is a tuple (A,U,X, f) where A,U,X are objects of T and f a T-morphism
A × U × X → 2, and a vertical map (A,U,X, f) → (A, V, Y, g) is a pair of maps (h,H) with
h : A× U → V and H : A× U × Y → X such that

A× U × Y

��

〈id,h◦〈π1,π2〉,H〉// (A× U × Y )× V ×X // (A× U ×X)× (A× V × Y )

f×g
��

2× 2
⇒
��

1 > // 2

The subsequent material shows that Dial(t) can interpret intuitionistic linear logic with simple
quantifiers, as well as basic arithmetical predicates. In order to show that Dial(t) may interpret
Heyting arithmetic, one may7 give non-canonical contraction and weakening maps for arbitrary
Dial(t) predicates Φ = (a : A,U,X, f : A× U ×X → 2).

wΦ : Φ( I cΦ : Φ ( Φ⊗ Φ

Such maps are available respectively because of the non-emptiness of the interpretation of types of
T and the effective nature of the notion of truth value in t. More specifically, wΦ can be taken to
be some arbitrarily fixed map zX : A×U × 1→ 1→ X. Writing cΦ = (c, C), c : A×U → U ×U
is the unique morphism factorizing through the diagonal map U 〈id,id〉−−−−→ U ×U . On the other hand,
C : A× U × (Y × Y )→ Y , instead of duplicating an input of type U must pick wisely one of the
two component of Y ×Y . One way to do this is consider the output of the map f ◦(id× id×π1) : if
it is >, then we may pick the first component, otherwise we pick the second. Informally speaking,
C corresponds to the System T term

λ(a, u, (y1, y2)).if f(a, u, y1) then y2 else y1

Alternatively, C may be characterized as the only morphism making the following diagram com-
mute.

(A× U × Y )× (Y × Y ) f×id // 2× (Y × Y )

��

Y × Y

〈⊥◦!,id〉
77

π1

''

Y × Y

〈>◦!,id〉
gg

π2

ww
A× U × (Y × Y )

C
//

id×id×π1

OO

Y

6The appearance of global elements here is a distateful technicality. Although it will not be apparent since we
do not provide proofs, this serves to ensure the correctness of the ad-hoc contraction map cΦ in the sequel.

7An alternative approach would be to consider the cartesian product Φ × Φ′ and give maps Φ × Φ′ → Φ ⊗ Φ′
and Φ ⊗ Φ′ → Φ × Φ′ and to use the canonical contraction and weakening maps associated with the cartesian
product. While we have not treated them, cartesian product can be shown to exist in Dial(t) provided that we
have coproducts in the base (this is not the case here, but it would be straightforward to extend T to satisfy this
desiderata). Those maps would involve essentialy the same kind of non-canonical “tricks” as those provided below.
While we mention the cartesian product, let us remark that the main reason to consider ⊗/( is that Dial(p) is not
(fiberwise) cartesian closed. The generalization of the Dialectica construction considered in [51] recovers cartesian
closure by using a generalized Dial construction where families X → U are considered instead of pairs (U,X).
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Then it can be checked (c, C) is a morphism in Dial(t). Note that from a technical standpoint,
this is proven using the strong normalization of System T .

Putting all of this together, this yields an interpretation of Heyting arithmetic in Dial(t) via
elementary means. Furthermore, it can be checked that Dial(t) is non-degenerate if and only if T
is non-degenerate. This reduction from the consistency of (the Dialectica interpretation of) HA
to the non-degeneracy of system T is one of the main ingredient of Gödel’s consistency proof of
arithmetic. This reduction (as well as the reduction of consistency of PA to HA via a double-
negation translation) is relatively elementary from the point of view of foundations8 and readily
formalizes in weak susbsystems of arithmetic; the foundationally hard part of the consistency proof
of PA lies with the normalization of system T, which requires induction up to ε0.

It should be stressed that since t does not have simple quantification, the canonical functor
Sum(t)→ Dial(t) is not part of a LNL-adjunction

5.3.4 Elimination of double linear negation
In general, Dial(p) does not give rise to a model of classical linear logic. In the context of a
symmetric monoidal closed fibration, this would be given by a choice of so-called dualizing object
⊥A in each fiber pA preserved by substitution. Recall that a dualizing object in a symmetric
monoidal category is an object ⊥ such that the canonical natural transformation

Λ(ev ◦ γ) : ϕ → (ϕ( ⊥)( ⊥

is an isomorphism. For instance, take C = Set, p an arbitrary symmetric monoidal closed fibration
and consider the fiber over 1 of Dial(p). Suppose we are given a candidate dualizing object
⊥ = (a : A, b : B,ψ) (possibly different from the unit of the tensorial ` of a FOFIMELL fibration).
Then, for any object Φ = (u : U, x : X, I), we have

(Φ( ⊥)( ⊥ ∼= (∗ : 1, F : AA
U×XU×B × (U ×B)A

U×XU×B×B , f : AU ×XU×B ×B,ψ( ψ)

An isomorphism Φ ∼= (Φ( ⊥)( ⊥ would in particular induce an isomorphism U ∼= AA
U×XU×B×

(U ×B)AU×XU×B×B , which is only possible when either U or X is a subsingleton. Therefore, (Dp)
is never a model of classical linear logic when C = Set, or even FinSet. However, this does
not rule out the existence of morphisms ϕ → (ϕ ( ⊥) ( ⊥ for every ϕ; we show that such a
family exists for Dial(p) when C = Set,FinSet. This allow to show that, as far as entailment
is concerned, classical linear logic is sound for those fibrations. However, the family of morphism
(ϕ( ⊥)( ⊥(ϕ( ⊥)( ⊥ does not give rise to any kind of coherence condition; we do not even
know if such a family may be arranged into a natural transformation. The proof crucially relies
on the full axiom of choice in Set.

Theorem 5.3.16. Say that a FOFIMELL-fibration p : E → C eliminates double linear negation
when, for every predicate ϕ, there is a vertical morphism (ϕ( ⊥)( ⊥ → ϕ in E.

If p is a FOFIMELL-fibration eliminating double linear negations, so is Dial(p) if C = Set,
assumed to satisfy the axiom of choice, or FinSet.

Proof. Assume that p is a FOFIMELL fibration over Set where double-linear negation may be
eliminated. Write ⊥ for the unit of the product ` of p and Dial(p) (which one is meant can be
inferred from context). Taking Φ = (a : A, u : U, x : X,ϕ(a, u, x)) to be a predicate of Dial(p),
(Φ( ⊥)( ⊥ is vertically isomorphic to(

a : A,F : UX
U

, f : XU , (ϕ(a, ev(F, f), ev(f, ev(F, f)))( ⊥)( ⊥
)

Since p is assumed to admit double linear negation elimination, it is sufficient to exhibit a vertical
map Φ → Ψ with Ψ =

(
a : A,F : UXU , f : XU , ϕ(a, ev(F, f), ev(f, ev(F, f)))

)
. Such a map is

given by:

- functions g : A× UXU → U and G : A× UXU ×X → XU

- a p-proof ϕ(a, F, ev(G, (a, F, x)))→ ϕ(a, ev(g, (a, ev(G, (a, F, x)))), x)

8But not obvious from the above observations; it would still remain to be checked that the axioms of arithmetic,
and in particular, the induction scheme is admissible in Dial(t). We refer the reader to [4] for details.
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We aim to have an essentially trivial p-proof; furthermore, g and G will not depend on their
first component. To this end, it suffices to find set-theoretic functions h : UXU → U and H :
UX

U ×X → XU such that, for every F ∈ UXU and x ∈ X we have

F (H(F, x)) = h(F ) and H(F, x)(F (H(F, x))) = x

At this point, it is convenient to start reasoning in the language of type theory, which may be
interpreted in Set: given a family of sets (Ai)i∈I ,

∑
i∈I Ai designate the disjoint union and

∏
i∈I Ai

the cartesian product of the family. Recall that for every family (Ai,j)(i,j)∈I×J , there is a canonical
isomorphism ∏

i∈I

∑
j∈J

Ai,j ∼=
∑
f :I→J

∏
i∈I

Ai,f(i)

which is sometimes known as the type-theoretic axiom of choice9. We may reformulate the above
desiderata as the non-emptiness of a sum of products. Then, using the above isomorphism twice,
this family can be shown to be isomorphic to∏

F∈UXU

∑
u∈U

∏
x∈X

∑
f∈XU

{∗ | F (f) = u and f(u) = x}

Write as shorthand ¬A for the function space A→ ∅. By the genuine axiom of choice in Set, we
know that for any family (Ai)i∈I , the product∏

i∈I
A¬¬Aii

is non-empty. This allow to dualize the type-theoretic axiom of choice and show that, for any
family (Ai,j)(i,j)∈I×J , there exists a map∏

f :I→J

∑
i∈I

Ai,f(i) →
∑
i∈I

∏
j∈J

Ai,j

Therefore, we may fix F ∈ UXU and apply this dual version of the type-theoretic axiom of choice
to  ∑

f∈XU
{∗ | F (f) = u and f(u) = x}


(u,x)∈U×X

Using once again the axiom of choice in Set, the non-emptiness of the original family can be
deduced from the non-emptiness of the product∏

F∈UXU

∏
x̃∈XU

∑
u∈U

∑
f∈XU

{∗ | F (f) = u and f(u) = x̃(u)}

which is easy: an inhabitant is given by the graph of the map

UX
U ×XU → U ×XU × 1

(F, x̃) 7→ (F (x̃), x̃, ∗)

When C = FinSet, all families above are finite and choice may be safely eliminated.

5.4 The characterization theorem
Up to now, we established that the construction Dial preserves FOFIMELL fibrations. The proof-
theoretic Dialectica interpretation defines a translation of formulas ϕ 7→ ϕD by induction over the
syntax, which basically amounts to interpreting every connective as in Dial(p) while remaining in p;
the precise translation is given in Figure 5.1. The soundness theorem states that basic FOFIMELL
deduction is preserved by induction on the proof.

FOFIMELL ` ϕ =⇒ ∃u FOFIMELL ` ∀x ϕD(u, x)

From a technical perspective, this theorem amounts to checking that Dial(p) has all the structure
presented in the previous section.

9Note however that it does not require that Set validates the axiom of choice to be valid.
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The other crucial theorem of the proof-theoretic approach to Dialectica is the characteriza-
tion theorem, which is essentially an internalized version of the soundness theorem to Dial(p)-
like systems. It requires extending of FOFIMELL with a choice scheme (LAC), several (linear)
semi-intuitionistic principles (LSIP) and two specific exponential axioms (DEXP), so as to show
the equivalence between FOMELL predicates ϕ(a) and their Dialectica translation ϕD(a) : =
∃u ∀x ϕD(u, x, a).

FOFIMELL + LSIP + LAC + DEXP ` ϕ(a) ˛ ∃u ∀x ϕD(u, x, a)

From a structural point of view, it turns out that the group of axioms LSIP + LAC + DEXP
can be interpreted in a proof-relevant way by asking that certain FOFIMELL proofs be actually
isomorphisms, which is the case in Dial(p) if p is a FOFIMELL fibrations. We therefore formulate
LSIP + LAC + DEXP in a proof-relevant way in Definition 5.4.1.

Definition 5.4.1. A FOFIMELL fibration p is said to satisfy:

- LSIP when the following canonical natural transformations are actually isomorphims.

(∀a ?ϕ(a))⊗ ?ψ −→ ∀a (?ϕ(a)⊗ ?ψ) (1)
(∀a ?ϕ(a)) ` ?ψ −→ ∀a (?ϕ(a) ` ?ψ) (2)
∃a (ϕ(a) ` ψ) −→ (∃a ϕ(a)) ` ψ (3)
∃a (?ψ( ?ϕ(a)) −→ ?ψ( ∃a ?ϕ(a)) (4)
∃a (?!ϕ(a)( ?!ψ) −→ (∀a ?!ϕ(a))( ?!ψ (5)

- LAC when the following natural transformation is a isomorphism.

∃fB
A

∀aA ϕ(a, ev(f, a)) −→ ∀aA ∃bB ϕ(a, b) (6)

- PEXP when there is a natural transformation10

?!ϕ −→ !?ϕ (7)

and when the following natural transformations are isomorphisms.

?!ϕ⊗ ?!ψ −→ ?(!ϕ⊗ !ψ) (8)
!(?ϕ` ?ψ) −→ !?ϕ` !?ψ (9)
!ϕ( ?ψ −→ ?(!ϕ( ?ψ) (10)

!(?ϕ( !ψ) −→ !ϕ( ?ψ (11)
!(a = b) −→ a = b (12)
a = b −→ ?(a = b) (13)

- DEXP when the following natural transformations are isomorphisms.

∃a !ϕ(a) −→ !∃a ϕ(a) (14)
?∃aA ∀bB ?ϕ(a, b) −→ ∀fBA ?∃aA ?ϕ(a, ev(f, a)) (15)

Remark. If one considers the interpretation of these statements in a non-linear fibration, the
reader mind find them all rather straightforward, save for axioms 4, 5, 6 and 15, which correspond
respectively to Independance of Premiss (4), Markov’s Principle (5) and the axiom of choice (6).

Theorem 5.4.2 (Soundness). If p is an arbitrary FOFIMELL fibration, then Dial(p) is a FOFIMELL+
LSIP + LAC + DEXP fibration. Furthermore, if p satisfies PEXP, so does Dial(p).

Proof. Since we already know that Dial(p) is a FOFIMELL fibration whenever p is by Theo-
rem 5.3.15, one only needs to check that the additional axioms LSIP + LAC + DEXP are satisfied
to prove the first half of the statement. All of the additional axioms, when interpreted in Dial(p),
the B-components are easily seen to be isomorphic using the cartesian-closed structure of B. Let
us detail a couple of cases.

10In practice, one could also ask for a distributive law of the monad ? over the comonad ! which would also be
preserved by the Dial construction. Since we are later on motivated by provability rather than isomorphism, we
content ourselves with a natural transformation.
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- The linear independence of premiss (axiom 4 of LSIP)

∃aA (?Ψ( ?Φ(a)) ' ?Ψ( ∃aA ?Φ(a))

for Dial(p) predicates

?Ψ =
(
b : B, ∗ : 1, x : X

ψ(b, x))

)
and Φ =

(
(a, b) : A×B, ∗ : 1, y : Y

ϕ(a, b, y)

)
can be read off as(

b : B, (a, g) : A×XY , y : Y
ψ(b, ev(g, y))( ϕ(a, b, y)

)
'

(
b : B, (a, g) : A1 ×XY×1, y : Y

ψ(b, ev(g, 〈y, ∗〉))( ϕ(ev(a, ∗), b, y)

)
which is obviously true in Dial(p).

- For the linear axiom of choice (axiom 6, LAC), we are led to consider

∀aA∃bB Φ(a, b) → ∃fB
A

∀aA Φ(a, ev(f, a))

for the Dial(p) predicate

Φ =
(

(a, b, c) : A×B × C, u : U, x : X
ϕ(a, b, c, u, x)

)
can be read off as(

c : C, f : (U ×B)A, (a, x) : A×X
ϕ(a, π2(ev(f, a)), c, π1(ev(f, a)), x)

)
'

(
c : C, (g, h) : UA ×BA, (a, x) : A×X

ϕ(a, ev(h, a), c, ev(g, a), x)

)
which is obviously true in Dial(p).

Now, let us assume that p satisfies PEXP and show that Dial(p) also does.

- For the axiom
?!Ψ −→ !?Ψ

we need to provide a natural proof scheme of

?∃uU !∀fX
U

ψ(u, ev(f, u)) −→ !∀xX?∃uUψ(u, x)

To this end, it suffices to note that there are canonical FOIMELL proofs

ρ∃,!ϕ : ∃uU !ϕ(u) ` !∃uUϕ(u)
ρ∀,?φ : ?∀xXφ(x) ` ∀xX?ϕ(x)
ρ∃∀,∀∃ : ∃uU∀fXUψ(u, ev(f, u)) ` ∀xX∃uUψ(u, x)

and that the axiom scheme λ?,!
φ : ?!φ→ !?φ in p can be instantiated at ∃uU∀fXUψ(u, ev(f, u)).

The desired natural transformation can be obtained as the composite

?∃uU !∀fXUψ(u, ev(f, u)) !ρ∀,?◦!?ρ∃∀,∀∃◦λ?,!◦?ρ∃,! // !∀xX?∃uUψ(u, x)

- For the axiom 8
?!Φ⊗ ?!Ψ ' ?(!Φ⊗ !Ψ)

it is sufficient consider the natural p-isomorphisms

(?∃uU !ϕ(u))⊗(?∃ vV !ψ(v)) ' ?(∃uU !ϕ(u)⊗∃vV !ψ(v)) ' ?∃(u, v)U×V (!ϕ(u)⊗!ψ(v))

The second half is straightforward to obtain from the Frobenius law. As for the first half, it
is a consequence of the isomorphisms

∃uU !ϕ(u) ' !∃uU !ϕ(u) ∃vV !ψ(v) ' !∃vV !ψ(v)

and the following instantiation of axiom 8 in p

(?!∃uU !ϕ(u))⊗ (?!∃ vV !ψ(v)) ' ?(!∃uU !ϕ(u)⊗ !∃vV !ψ(v))
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(t = t′)D : = (t = t′)D : = t = t′

(ϕ⊗ ψ)D(a) : = ∃〈u, v〉∀〈x, y〉. (ϕ⊗ ψ)D(〈u, v〉, 〈x, y〉, a) : =
∃〈u, v〉∀〈x, y〉. ϕD(u, x, a)⊗ ψD(v, y, a)

(ϕ` ψ)D(a) : = ∃〈u, v〉∀〈x, y〉. (ϕ` ψ)D(〈u, v〉, 〈x, y〉, a) : =
∃〈u, v〉∀〈x, y〉. ϕD(u, x, a) ` ψD(v, y, a)

(ϕ( ψ)D(a) : = ∃〈f, F 〉∀〈u, y〉. (ϕ( ψ)D(〈f, F 〉, 〈u, y〉, a) : =
∃〈f, F 〉∀〈u, y〉. ϕD(u, ev(F, 〈uy〉), a)( ψD(ev(f, u), y, a)

(∃w.ϕ)D(a) : = ∃〈u,w〉∀x. (∃w.ϕ)D(〈u,w〉, x, a) : = ∃〈u,w〉∀x. ϕD(u, x, 〈a,w〉)

(∀w.ϕ)D(a) : = ∃f ∀〈x,w〉. (∀w.ϕ)D(f, 〈x,w〉, a) : = ∃f ∀〈x,w〉. ϕD(ev(f, w), x, 〈a,w〉)

(!ϕ)D(a) : = ∃u. (!ϕ)D(u,−, a) : = ∃u. !∀x. ϕD(u, x, a)

(?ϕ)D(a) : = ∀X. (?ϕ)D(−, X, a) : = ∀X. ?∃u. ϕD(u, ev(X,u), a)

Figure 5.1: The Dialectica translation for FOFIMELL (types are left implicit).

- The dual axiom 9 !(?Φ ` ?Ψ) ' !?Φ ` !?Ψ is treated similarly, except that axiom 2 of LSIP
muste be used instead of the Frobenius law.

- The validity of all the remaining PEXP axioms in Dial(p) is straightforward as they translate
almost exactly to their counterparts in p.

Definition 5.4.3. The MFOLL predicates of a FOFIMELL fibration consist of the following induc-
tively generated family.

ϕ,ψ ::= I | ϕ⊗ ψ | ⊥ | ϕ` ψ | ϕ( ψ | ∃a ϕ | ∀a ϕ | !ϕ | ?ϕ | f∗(a =̇ b)

Theorem 5.4.4. A FOFIMELL fibration p satisfying LSIP, LAC and DEXP has, for every MFOLL
predicate ϕ, an equivalence.

ϕ(a) ↔ ∃u ∀x ϕD(u, x, a)

The proof is going to be a straightforward induction over the syntax, employing the additional
axioms we discussed. However, before embarking in the proof of Theorem 5.4.4, we need to prove
that the formulas ϕD are well-behaved in the following sense.

Definition 5.4.5. A predicate ϕ is called positive if there exists a map

!ϕ −→ ϕ

Dually, ϕ is negative if there exists a map

?ϕ −→ ϕ

ϕ is deterministic if it is both positive and negative.

Remark. Definition 5.4.5 is related to the polarity system presented in Definition 4.1.3. Indeed,
this system gives a syntactic criterion to classify Dial(p) predicate according to Definition 5.4.5:

Φ =
(
a : A, u : U, x : X

ϕ(a, u, x)

)
- Φ is positive when U ' 1 and ϕ(a, u, x) is positive in p.

- Φ is negative when X ' 1 and ϕ(a, u, x) is negative in p.

- Φ is deterministic when U ' X ' 1 and ϕ(a, u, x) is deterministic in p.

Do note that the above item do not necessarily extend to equivalences.
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Definition 5.4.6. Define by recursion the following translations between predicates of first-order
logic and first-oder multiplicative exponential linear logic.

(−)L : FO→ FOMELL b−c : FOMELL→ FO

⊥L : = ⊥
>L : = I

(t = u)L : = t = u
(ϕ ∨ ψ)L : = ϕL ` ψL

(ϕ⇒ ψ)L : = ϕL( ψL

(ϕ ∧ ψ)L : = ϕL ⊗ ψL
(∃aAϕ)L : = ?∃aAϕL
(∀aAϕ)L : = !∀aAϕL

b⊥c : = ⊥
bIc : = >

bt = uc : = t = u
bϕ⊗ ψc : = bϕc ∧ bψc
bϕ` ψc : = bϕc ∨ bψc
bϕ( ψc : = bϕc ⇒ bψc
b∃aAϕc : = ∃aAbϕc
b∀aAϕc : = ∀aAbϕc
b!ϕc : = bϕc
b?ϕc : = bϕc

THe following is then asily proven by induction over the syntax of ϕ.

Lemma 5.4.7. In a FOFIMELL + PEXP fibration, for any inductively generated FO predicate ϕ,
ϕL is deterministic.

Corollary 5.4.8. For every MFOLL predicate ϕ interpreted in a FOFIMELL + PEXP fibration, ϕD
is deterministic.

Proof. We use the fact that ϕD = bϕDcL, which is easily seen by induction over ϕ, and the above
lemma.

Proof of Theorem 5.4.4. The proof is by induction over the syntax.

- Case a = b In this case, both clauses are syntactically equal.

- Case ϕ(a)⊗ ψ(a): by the induction hypothesis, it suffices to exhibit an equivalence(
∃uU ∀xX ϕD(u, x, a)

)
⊗
(
∃vV ∀yY ψD(v, y, a)

)
↔ ∃(u, v)U×V ∀(x, y)X×Y ϕD(u, x, a)⊗ψ(v, y, a)

This is true because ⊗ commute with ∀ by axiom 1 from LSIP. ⊗ furthermore commute with
∃ using the usual Frobenius law. ∃x (ϕ⊗ ψ) ' (∃x ϕ)⊗ ψ.

- Case ϕ(a) ` ψ(a): by the induction hypothesis, it suffices to exhibit an equivalence(
∃uU ∀xX ϕD(u, x, a)

)`(∃vV ∀yY ψD(v, y, a)
)

↔ ∃(u, v)U×V ∀(x, y)X×Y ϕD(u, x, a)⊗ψ(v, y, a)

This is the dual of ⊗, where ` commutes with ∀ and ∃ because of the axioms 3 and 2 from
LSIP.

- Case ϕ(a) ( ψ(a): by the induction hypothesis, it suffices to construct an equivalence
induced by the following string of isomorphisms(

∃uU ∀xX ϕD(u, x, a)
)
( ∃vV ∀yY ψD(v, y, a)
'

∀uU
(
(∀xX ϕD(u, x, a))( ∃vV ∀yY ψD(v, y, a)

)
' By LSIP, 4.

∀uU∃vV
(
(∀xX ϕD(u, x, a))( ∀yY ψD(v, y, a))

)
' By LAC.

∃fV U∀uU
(
(∀xX ϕD(u, x, a))( ∀yY ψD(ev(f, u), y, a))

)
'

∃fV U∀(u, y)U×Y
(
(∀xX ϕD(u, x, a))( ψD(ev(f, u), y, a))

)
' By LSIP, 5.

∃fV U∀(u, y)U×Y ∃xX ϕD(u, x, a))( ψD(ev(f, u), y, a))
' By LAC.

∃(f, F )V U×XU×Y ∀(u, y)U×Y ∃xX ϕD(u, ev(F, 〈u, y〉, a))( ψD(ev(f, u), y, a))

- Case ∃bB ϕ(a, b): The required equivalence is immediate.

- Case ∀bB ϕ(a, b): by the induction hypothesis, it suffices to exhibit an equivalence

∀bB∃uU ∀xX ϕD(u, x, a, b) ↔ ∃uU
B

∀(x, f)X×BϕD(u, x, a, ev(f, x))

which is immediate by LAC.
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- Case !ϕ(a): by the induction hypothesis, it suffices to exhibit an equivalence

!(∃uU ∀xX ϕD(u, x, a)) ↔ ∃uU !∀xXϕD(u, x, a)

which is given by axiom 14 from DEXP and Corollary 5.4.8.

- Case ?ϕ(a): by the induction hypothesis, it suffices to exhibit an equivalence

?(∃uU ∀xX ϕD(u, x, a)) ↔ ∀fX
U

?∃uUϕD(u, ev(f, u), a)

which is given by axiom 15 from DEXP and Corollary 5.4.8.
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Chapter 6

An infinitary Dialectica-based
synchronous game model

In this chapter, we consider a variation DialI of the construction Dial over a particular base S of
synchronous functions. Our main goal is to build a model of FIMELL where formulas are interpreted
by infinite games whose strategies are representable in S.

In terms of complexity, S is a full subcategory of the so-called topos of trees sharing its cartesian-
closed structure and its guarded fixpoint combinator. This allows to carry out the construction
of Dial over a base containing Mealy, the category of alphabets and causal functions induced by
finite-state transducers, as a subcategory.

6.1 Higher-order synchronous functions
We describe here convenient cartesian-closed extensions of Mealy, which are going to serve as
higher-order syntax for richer setting. Our main goal here is to have a cartesian-closed category in
which Mealy embeds with a fixpoint operator extending fixb. The most natural candidate for this
extension is the so-called topos of trees T, the natural setting to represent arbitrary synchronous
functions: objects are infinite trees and morphisms are depth-preserving homomorphisms.

Definition 6.1.1. Let N≤ be the preorder category whose objects are natural numbers, and where
there is a unique morphism n → m if and only if n ≤ m. The topos of finite-branching trees
T is the category of finite presheaves over the category N≤, that is whose objects are functors
N≤ → FinSet and morphisms natural transformations between them. Unwinding the definition, it
may be equivalently described as follows:

- Objects: sequences (An)n∈N of finite sets and restriction maps (rn : An+1 → An)n∈N.

- Morphisms: a morphism from (An)n∈N → (Bn)n∈N is a sequence of functions (fn : An →
Bn)n∈N making all of the following squares commute.

An+1

rn

��

fn+1 // Bn+1

rn

��
An

fn

// Bn

By convention, for any object A of T or any relevant subcategory, we take A−n = 1 for any n > 0;
the extended restriction maps r−n are thus uniquely determined.

While T captures all the desiderata we have put forward so far, one of its drawbacks is that
the non-uniform structure of branching means that the possible type of an output of a morphism
f : A → B at step n may depend on the outputs of f at all previous steps. However, we want to
model simpler situations with uniform branching. This essentially means restricting to objects A
of T, such that, for every n

∀a, a′ ∈ An r−1
n ({a}) ' r−1

n ({a′})

A convenient way to make this restriction is to consider the simpler category of sequences of
sets and maps.
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Definition 6.1.2. Call N̂ the category of presheaves over the discrete category N:

- Objects: sequences (An)n∈N of finite sets.

- Morphisms: a morphism (An)n∈N → (Bn)n∈N is a sequence of functions (fn : An →
Bn)n∈N.

There is an obvious forgetful functor U : N̂ → T erasing the restriction maps. When N̂ and
T are seen as presheaves categories, this correspond to precomposing with the inclusion functor
N→ N≤.

U : T → N̂
(An)n∈N, (rAn )n∈N 7→ (An)n∈N
(fn)n∈N 7→ (fn)n∈N

This functor has a right adjoint R. Abstractly, for an object A of N̂, R(A) is the right Kan
extension along the aforementioned inclusion N→ N≤. More concretely, R is computed as follows.

R : N̂ → T
(An)n∈N 7→ (

∏
i≤nAi)n∈N, (π1 :

∏
i≤n+1Ai →

∏
i≤nAi)n∈N

(fn)n∈N 7→ (〈f0, . . . , fn〉)n∈N

We define S to be (isomorphic to) the full subcategory of T whose objects are of the form R(A).

Definition 6.1.3. The category of uniform trees and synchronous functions S is defined as follows.

- Objects: sequences of finite sets (An)n∈N

- Morphisms: a morphism from A = (An)n∈N to A = (Bn)n∈N is a family

f =

fn :
∏
i≤n

Ai −→ Bn


n∈N

- Composition: given morphisms f : A→ B and g : B → C, g ◦ f is defined as

(g ◦ f)n(a0, . . . , an) = gn(f0(a0), f1(a0, a1), . . . , fn(a0, . . . , an))

By abuse of notation, we shall regard S as a full subcategory of T.

The embedding functorM : Mealy→ S can be straightforwardly defined: at the level of objects,
which are those of FinSet, M obtained by composing R with the constant functor ∆ : FinSet→
FinSetN

op
= N̂ . Concretely, it means that an alphabet Σ is mapped to the sequence (Σn)n∈N, with

projections rn : Σn+1 ∼= Σn×Σ→ Σn as restriction maps. Then the homsets [R(∆(Σ)), R(∆(Γ))]T
are isomorphic to the sets of (not necessarily finite-state!) causal functions Σω → Γω. The point
of allowing more causal functions and objects is mostly to overcome the lack of cartesian-closure
in Mealy (Proposition 2.1.5).

Lemma 6.1.4. S is a cartesian closed category. The cartesian structure is defined pointwise as
(A×B)n = An ×Bn with the obvious projections. The exponentials are inherited from T:

(A→ B)n = (
∏
i≤n

Ai)→ Bn evn(〈f0, a0〉 . . . 〈fn, an〉) = fn(a0 . . . an)

Proof. Since R is a right adjoint, S is an exponential ideal in T and inherits all finite limits; for
our purpose, it is sufficient to notice that N̂,S and T all share the same cartesian structure, which
happens to be preserved by U , R and ∆ and to discuss the cartesian closed-structure of S.

S also has a guarded fixpoint theorem. This is a well-known feature of T, widely used to model
step-indexing. As S is a full subcategory of T (and has enough objects), this theorem readily holds
there. To state the theorem, we first need to consider the endofunctor I: T→ T acting on objects
by “delaying” the sequence family under consideration by one time step. Concretely, it is defined
as follows on objects

I: S −→ S

A 7→ 0 7→ 1
n+ 1 7→ An
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The second ingredient needed to state the fixpoint theorem is the natural transformation nextA :
A →I A which accordingly sends an input sequence to the same sequence delayed by one time
step.

(nextA)0 : A0 −→ 1
a0 7→ ∗

(nextA)n+1 :
∏
k≤(n+1)Ak −→ An

(a0, . . . , an, an+1) 7→ an

At this point, it is possible to define a fixpoint combinator fixA : AIA → A as follows

(fixA)0 : (1→ A0) −→ A0
f0 7→ f0(∗)

(fixA)n+1 :
∏
k≤(n+1)(

∏
i≤k(I A)i → Ak) −→ An+1

f0 . . . fnfn+1 7→ fn+1((fixA)n(f0 . . . fn))
The definition is rather technical and relies on the explicit description of the fixA morphism.

It is also possible to give the following implicit characterization.

Lemma 6.1.5. fixA is the unique morphism h : AIA → A such that, for every f : U → AIA, we
have ev ◦ 〈f, h ◦ f〉 = h ◦ f

Using the cartesian-closed structure of S, it is possible to derive a parametric version of the
theorem which is more useful in practice.

Corollary 6.1.6. For every f : A× I B → B, there exists a unique morphism

fix(f) : A→ B

such that
fix(f) = f ◦ 〈id,next ◦ fix(f)〉

Remark. Note that the statement itself does not refer to the exponential structure of S. In fact,
an analogous version of this theorem hold for the category Mealy under the guise of Lemma 2.1.6;
this connection will be used to adapt techniques used in this chapter to FOM.

Definition 6.1.7. Let A and B be objects of S. Call a S morphism f : A → B pointwise if it is
some R(g) for some g in N̂. Write A −∗ B for the exponential in N̂ (which is defined pointwise,
e.g. (A −∗ B)n = BAnn ), while reserving BA for genuine exponentials in S. We call A −∗ B the
pointwise exponential in S.

Remark. − −∗ − is defined on all objects of S, but this does not extend to morphisms: − −∗ −
is not a functor Sop × S → S. It can however be seen as the restriction of a suitable functor
N̂op × T→ T.

This pointwise exponential is going to be an essential ingredient when considering monoidal
closure and simple products in fibrations DialI(p) and constitutes the only reason why we consider
S instead of T. This forces us to give up on plenty of objects of T, such as the subojbect classifier.
While this is not problematic in the scope of this thesis, let us point out that it is likely that this
may be remedied by considering games with possibly non-uniform branching (i.e. which depend on
past moves) and a suitable generalization of our development. This would roughly correspond to
moving from Dialectica fibrations as discussed here to the more expressive Dialectica fibrations as
investigated in [51], albeit with more technicality since we are dealing with infinite games rather
than “two-move games”.

Pointwise exponentials come equipped with a similar structure, although not natural in S. We
write ev−∗ : (A −∗ B)×A→ B for the pointwise evaluation map R(ev) induced by the exponential
structure in N̂.

Lemma 6.1.8. Let A,B and C be objects of S and f an arbitrary S-morphism A×B → C. There
exists a unique morphism h : A× I B → B −∗ C making the following diagram commute.

(B −∗ C)×B
ev−∗ // C

A×B

〈h◦(id×next),π2〉

OO

f

66
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We write Λ−∗(f) for h in the sequel.

Proof. Let h1, h2 be morphisms such that the above commute. For positive n, the commuting
diagram means that we should have, for every sequences (ak, bk)k≤n,

hin((ak, bk−1)k≤n)(bn) = fn((ak, bk)k≤n)

Since the sequence (ak, bk−1)k≤n and bn are arbitrary, this means h1
n = h2

n; furthermore, this
constitutes a valid definition of h.

Lemma 6.1.9. There exists a S-isomorphism

BA ' (A −∗ B)IA

Proof. Unfolding the definitions, the components of the (pointwise) bijection is obtained from the
following FinSet-isomorphisms.

(BA)n = B

∏
k≤n

Ak
n ' B

An×
∏

k<n
Ak

n ' (BAnn )
∏

k<n
Ak =

(
(A −∗ B)IA

)
n

All the structure we gave so far on S amount to the typed syntax presented in Figure 7.1.
Contrary to the analogue for finite-state synchronous functions, this syntax does not capture every
object and morphism in S. However, it does capture all the construction that we will use in the
sequel to interpret our infinitary game model.

6.2 The DialI construction
We now discuss the variant of the Dial construction modelling infinite two-player games for fibra-
tions over the base S. Intuitively, for a classical posetal fibration p, Dial(p) embodies a notion of
proof corresponding to two-moves games: in the object (a : A, u : U, x : X,ϕ(a, u, x)), first the
existential player provides a witness u and then an opponent attempts to provide a counter-witness
x. The predicate ϕ(a, u, x), an object of p, is then a winning condition for this two-moves games.
As S is cartesian-closed, this construction can be carried out for fibration over S. However the
resulting proofs do not correspond to strategies for games of infinite durations. In this section,
we present a construction DialI : Fib(S) → Fib(S) which takes a fibration p, which should be
regarded as a logical language over S, to another fibration in which formulas are interpreted as
infinite games. We then show that, a FOFIMELL-fibration (p+, p, p−) can be lifted to a FOFIMELL-
fibration (Sum(p+),DialI(p),Prod(p−)). The definitions are very similar to those involved in
Theorem 6.2.15, which give a similar lifting for Dial(p), aside from the following two points:

- The pointwise exponential A −∗ B is used instead of the genuine exponential of S when
defining the propositional structure of DialI.

- Both exponentials are defined using the genuine exponential of S; the definition of ? changes
significantly.

Although the informal connexions between Dial and DialI are a useful guideline to study the
proof theory of the latter, the formal link we have is thus rather weak where simple quantification
and monoidal closure are concerned.

Before giving a full description of DialI construction, we first describe the dynamics of our
game model in the simple case where we have no indexing and no winning conditions. This will
yield a category of zigzag games modelling FIMELL. Then we shall describe how to extend this
category to a fibration over S by considering indexed zigzag games. DialI(p) as coming from a
pseudofunctor Sop → Cat. This construction is an adaptation heavily inspired from the construction
of the fibration of tree automata from [61].

6.2.1 Zigzag games
A zigzag game is going to be a pair of objects (U,X) of S. This pair of object is intended to model
an infinite duration game between two players, proponent (P) and opponent (O). At round n, the
interaction goes as follows:

- P plays an element un ∈ Un.
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- Then, O plays an element xn ∈ Xn.
When dealing with such games, we are in fact only interested in total, deterministic P-strategies.
Here, such a strategy is readily given by a S-morphism I X → U .

Zigzag games are arranged in a category DZ, whose morphisms are designed to reflect this
behaviour. Letting (U,X) and (V, Y ) be two zigzag games, consider the simulation game (U,X)→
(V, Y ) defined as follows at round n:

- O plays an element un ∈ Un in the left-hand-side.

- P plays an element vn ∈ Vn in the right-hand side.

- O answers with an element yn ∈ Yn in the right-hand side.

- P concludes the round with an element xn ∈ Xn in the left-hand side.

(U , X) −→ (V, Y )
...

O un
P vn
O yn
P xn

...
Formally speaking, such a strategy may be seen as pair (f, F ) of S-morphisms, with

f : U× I X → V and F : U ×X → Y

A morphism from (U,X) to (V, Y ) in the category DZ is a P-strategy in the simulation game.
The identity are going to be given by a copycat strategy, where P systematically imitates O’s last
move.

(U , X) −→ (U, X) : A
...

O un an
P un
O xn
P xn

...
The composition of two strategies (f, F ) : (U,X) → (V, Y ) and (g,G) : (V, Y ) → (W,Z) is
informally given by P simulating a play over the three games (U,X), (V, Y ) and (W,Z), keeping
the current state of the play in the middle game (V, Y ) as additional internal memory.

(U , X) −→ (V, Y ) −→ (W, Z)
...

O un
vn

P wn
O zn

yn
O xn

...
While this description is nice as it captures exactly what is a P strategy in a concise way, it is

helpful to see P-strategies as a set of possible plays of P, that is, a subset S ⊆ [1, (U ×X)× (V × Y )]S.
This correspondence will turn out to yield a faithful functor HS : DZ→ Rel, which is in turn going
to determine how composition is carried out in DZ. In fact, this is how we are going to deduce
associativity of composition in DZ from the associativity of composition in Rel. This follows the
approach taken for simple games by Hyland and Schalk in [35] (hence the denomination HS) for
simple games1

1Note that, formally speaking, zigzag games are particular kind of simple games. The crucial difference is that
zigzag strategies are much more rigid (P cannot freely pick in which component they play in zigzag strategies). At
the end of day, it means that the associativity of composition in DZ is a simpler particular case of associativity of
composition of P-strategies in simple games.
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Definition 6.2.1. The category DZ is defined as follows:

- Objects: pairs (U,X) of S-objects.

- Morphisms: a morphism (U,X)→ (V, Y ) is a P-strategy (f, F ) with

f : U× I Y → V and F : U × Y → X

Furthermore, there exists a faithful functor HS : DZ→ Rel which completely determines composi-
tion in DZ. On objects HS(U,X) = (U×X)∗+((U×X)∗×U) and, for morphisms (f, F ) : (U,X)→
(V, Y ), HS(f, F ) is the least set closed under the following clauses (writing pairs vertically and with
k ≥ −1):

- for every (ui)ki=0 ∈
∏k
i=0 Ui, (vi)ki=0 ∈

∏k
i=0 Vi, (xi)ki=0 ∈

∏k
i=0Xi and (yi)ki=0 ∈

∏k
i=0 Yi, if(

inl((u0, x0) . . . (uk, xk))
inl((v0, y0) . . . (vk, yk))

)
∈ HS(f, F )

then, for every uk+1 ∈ Uk+1, we have(
inr((u0, x0) . . . (uk, xk), uk+1)

inr((v0, y0) . . . (vk, yk)), fk((u0, ∗), (u1, y0) . . . (uk+1, yk))

)
∈ HS(f, F )

- for every (ui)ki=0 ∈
∏k
i=0 Ui, (vi)ki=0 ∈

∏k
i=0 Vi, (xi)ki=0 ∈

∏k
i=0Xi and (yi)ki=0 ∈

∏k
i=0 Yi, if(

inr((u0, x0) . . . (uk, xk), uk+1)
inr((v1, y1) . . . (vk, yk), vk+1))

)
∈ HS(f, F )

then, for every yk+1 ∈ Yk+1, we have(
inl((u0, x0) . . . (uk, xk), (uk+1, Fk+1((u0, y0), . . . , (uk+1, yk+1))))

inl((v0, y0) . . . (vk, yk)(vk+1, yk+1))

)
∈ HS(f, F )

Proof. First, note that HS is injective on morphisms. Let (f, F ) : (U,X) → (V, Y ) and (g,G) :
(V, Y )→ (W,Z) be DZ-morphisms. We then need to show that a composition may be carried out
in DZ such that

HS((g,G) ◦ (f, F )) = HS(g,G) ◦ HS(f, F )
Together with injectivity of HS, this will imply associativity of this newly-defined composition from
the associativity of composition in Rel. Call (h,H) the would-be composite (g,G) ◦ (f, F ). We
may show that the above equation amounts that, for every global elements u, x, w and z, we have

∃v, y v = f(〈u,next(y)〉) ∧ x = F (〈u, y〉) ∧ w = g(〈v,next(z)〉) ∧ y = G(〈v, z〉)
⇔

w = h(〈u,next(z)〉) ∧ x = H(〈u, z〉)

Substituting equalities, note that the top proposition is true if and only if

y = G(〈f(〈u,next(y)〉), z〉)

By Lemma 6.1.5, this means that there is a unique auxiliary map h′ : U × Z → Y such that
h′(〈u, z〉) = y for every u, v. Then, the above equivalence means that we necessarily have

h(〈u,next(z)〉) = g(f(〈u,next(h′(〈u, z〉))〉)) and H(〈u, z〉) = F (〈u, h′(〈u, z〉)〉))

which may be taken as definition of h and H from h′ and basic cartesian combinators.

We then equip DZ with a monoidal product. Here we diverge from the usual practice in game
semantics and take this product to be synchronous rather than asynchronous. The reason for this
choice is that we are more interested in products of automata reminiscent of Dialectica, rather
than trying to model the fine-grained behaviour of general purpose programming languages.

Definition 6.2.2. The category DZ is equipped with a symmetric monoidal product (⊗, I). The
bifunctor ⊗ is defined as follows

(U,X) , (V, Y ) 7→ (U × V,X × Y )

(f, F ) , (g,G) 7→
(
〈f ◦ 〈π1 ◦ π1,I (π1 ◦ π2)〉, g ◦ 〈π2 ◦ π1,I (π2 ◦ π2)〉〉
〈F ◦ 〈π1 ◦ π1, π1 ◦ π2〉, G ◦ 〈π2 ◦ π1, π2 ◦ π2〉〉

)
and the unit is I = (1, 1).
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Note that this choice of unit means that a P-strategy in the simulation game I → (U,X) are
in bijective correspondence with P-strategies s : UIX in the game (U,X).

This choice of monoidal product gives rise to a monoidal closed structure over DZ; let us sketch
why that is on an intuitive level before formally proving it. Considering two zigzag games (U,X)
and (V, Y ), a P-strategy in the simulation game (U,X)→ (V, Y ) is a pair

f : U× I Y → V F : U × Y → X

Using the natural isomorphism AB ∼= (B −∗ A)IB in S and the fact that I preserves cartesian
products, those are in bijective correspondence with pairs

I (U × Y )→ U −∗ V I (U × Y )→ (U × Y ) −∗ X

and thus, by pairing, these correspond to a single morphisms

I (U × Y )→ (U −∗ V )× (U × Y −∗ X)

i.e., P-strategies in the game ((U −∗ V ) × (U × Y −∗ X), U × Y ). This game shall thus be the
object part of our monoidal closure.

Lemma 6.2.3. The category (DZ,⊗, I) is monoidal closed.

Proof. As sketched above, we set

(U,X)( (V, Y ) : = ((U × Y −∗ V )× (Y −∗ X), U × Y )

The evaluation map ev(U,X),(V,Y ) : ((U,X) ( (V, Y )) ⊗ (U,X) → (V, Y ) is thus as a pair of
S-morphisms

ev0
(U,X),(V,Y ) : (((U −∗ V )× (U × Y −∗ X))× U)× I Y → V

ev1
(U,X),(V,Y ) : (((U −∗ V )× (U × Y −∗ X))× U)× Y → X

These morphisms are actually pointwise; those two components are obtained respectively as the
image of

(((U −∗ V )× (U × Y −∗ X))× U)× I Y → V
(((fn, Fn), un), yn) 7→ fn(un)

(((U −∗ V )× (U × Y −∗ X))× U)× Y → X
(((fn, Fn), un), yn) 7→ Fn(un, yn)

by the inclusion functor FinSetN
op
→ S. Using the basic combinators we introduced for S, this

amounts to setting
ev0 = ev−∗ ◦ 〈π1 ◦ π1 ◦ π1, π2 ◦ π1〉
ev1 = ev−∗ ◦ 〈π2 ◦ π1 ◦ π1, 〈π2 ◦ π1, π2〉〉

It remains to be checked that, for every triple of zigzag games (U,X), (V, Y ) and (W,Z), there
exists a unique map Λ(F, f) making the following diagram commute.

((U,X)( (V, Y ))⊗ (U,X) ev // (V, Y )

(W,Z)⊗ (U,X)

Λ(F,f)⊗id

OO

F,f

33

This amounts to showing that there exists a unique triple of S-maps

h : (W× I Y )× I U → U −∗ V
h′ : W× I (U × Y ) → U × Y −∗ X
H : W × (U × Y ) → Z

such that the following diagrams commute

(U −∗ V )× U
ev−∗ // V

(U ×W )× I Y
f

88

(W× I Y )× U
∼

66
〈h◦(id×next),π2〉

OO
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(U −∗ V )× U
ev−∗ // X

Z ×X
π2

<<

(U ×W )× I Y
F

77

W× I (U × Y )
∼

66

〈h′◦(id×next),π2〉

OO

and H = π1 ◦ F . H is uniquely determined and by Lemma 6.1.8, so are h and h′.

At this point, we have equipped DZ with enough structure to interpret multiplicative intuition-
istic linear logic. Now, let us show that DZ has an exponential. As before, we are going to obtain
a ! through a LNL adjunction. To this end, note that there is an inclusion functor I+ : S → DZ
defined as follows

I+ : S → DZ
A 7→ (A, 1)

f : A→ B 7→ (f ◦ π1, !) : (A, 1)→ (B, 1)

Lemma 6.2.4. The functor I+ is part of an LNL-adjunction. Its right adjoint R+ : DZ → S is
defined as follows on objects.

R+ : DZ → S
(U,X) 7→ UIX

Proof. R+ being defined on objects, in order to show that it extends to a functor In order to
show that this adjunction exists, it suffices to provide, for every object (U,X) of DZ a counit map
ε(U,X) : I+(R+(U,X)) → (U,X) such that, for every map f : I+(A) → (U,X), there exists a
unique h : A→ R+(U,X) making the following diagram commute

I+R+(U,X)
ε(U,X) // (U,X)

I+(A)

I+(h)

OO

f

55

Define the first component of ε(U,X) to be the evaluation map of S ev : UIX× I X → U . Note
that the second component of every arrow of this diagram is necessarily trivial

UIX× I X ev // (U,X)

A× I X

h×id

OO

f

55

This is exactly the diagram witnessing that UIX is an internal hom in S; h is thus uniquely
determined to be the curryfication Λ(f).

It is rather clear that I+ is strong monoidal, as

I+(A×B) = (A×B, 1) ∼= (A×B, 1× 1) = I+(A)⊗ I+(B)

and the unit is preserved on the nose. Thus, by Lemma 5.1.7, I+ is part of an LNL-adjunction.

Now that we have enough structure to interpret IMELL, we can go a bit further and show that
we may interpret full intuitionistic linear logic with both exponential modalities. First, as per
Remark 5.1, we identify our two monoidal structures to ⊗. Then, we note that there is also a
contravariant functor.

I− : Sop → DZ
A 7→ (1, A)

f : A→ B 7→ (!, f ◦ π2) : (1, A)→ (1, B)

Unsurprisingly, it turns out that I− is strong monoidal and has a left adjoint R−.
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Lemma 6.2.5. The functor I− is part of an oplax symmetric monoidal adjunction. Its left adjoint
R− : DZ→ Sop is defined as follows on objects.

R− : DZ → Sop

(U,X) 7→ XU

Proof. The proof is analogous to the proof of Lemma 6.2.4. To show that R− extends to a left
adjoint to I−, it suffices to exhibit for every object (U,X) a morphism η(U,X) : (U,X) → (1, XU )
such that, for every (!, f) : (U,X) → (1, A) in DZ, there exists a unique h making the following
diagram commute

(U,X)

η(U,X)

��

(!,f) // (1, A)

(1, XU )
h

66

Note that the first components of the above morphisms are all trivial. Define the second component
of η(U,X) to be the transpose of the evaluation map of S

η(U,X) = ev ◦ 〈π2, π1〉 : U ×XU → U

. Unfolding the definition in S, it means that there should be a unique h making the following
diagram commute.

U ×XU ∼= XU × U ev // X

U ×A

id×h

OO

f

55

This is immediate from the cartesian-closed structure of S.

Theorem 6.2.6. DZ is equipped with a FIMELL structure.

Proof. Consider all the structure described so far and set ! = R+ ◦ I+ and ? = R− ◦ I−. To
conclude, it remains to show that we have natural transformations

I+(U)⊗ ?(V, Y ) → ?(I+(U)⊗ (V, Y )) and !((U,X)⊗ I−(Y )) → !(U,X)⊗ I−(Y )

Unwinding the definitions and suppressing obvious isomorphisms A × 1 ∼= A, it means providing
DZ-maps

(U, Y V )→ (1, Y U×V ) and (UI(X×Y ), 1)→ (UIX , Y )

Suppressing the trivial component, it amounts to providing S-morphisms

U × Y U×V → Y V and UI(X×Y )× I Y → UIX

which are given by partial evaluation.

6.2.2 The DialI construction
We now explore how to build FOFIMELL-fibrations over S from zigzag games. While our ultimate
goal is to start from an arbitrary fibration p over S and “enrich it” with computational content,
it is useful to consider what happens for the trivial fibration id : S → S. It turns out that
DialI(id) may be obtained by a generic construction applied to DZ: the comonoid indexing. The
basic idea is that one may build a generalization of the simple fibration for monoidal categories
(L,⊗, I) on objects which carry a comonoid structure. The important point is that the comonoid
structure captures the part of the cartesian structure which is required, that is, comonoids. This
generalized construction thus requires a monoidal functor (C,×, 1) → (L,⊗, I), making such a
choice of comonoids, as input.

Construction 6.2.7. Let L : (C,×, 1)→ (L,⊗, I) be a strong monoidal functor. There is a split
fibration L : Cop → Cat obtained as follows:

- Objects: if A is an object of C, the category L(A) consists of:

– Objects: an object X of C
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– Morphisms: a morphism f : X → Y in L(A) is a map L(A) ⊗ X → Y in L. Note
that since C is cartesian, there is an induced map f : L(A)⊗X → L(A)⊗ Y defined as
follows:

L(A)⊗X // L(A×A)⊗X // L(A)⊗ (L(A)⊗X) id⊗f // L(A)⊗ Y

– Composition: given morphisms f : L(A) ⊗ X → Y and g : L(A) ⊗ Y → Z, the
composite is defined as g ◦ f .

- Morphisms: if s : A → B is a C-morphism, then L(s) : L(B) → L(A) is the functor
acting as identity on objects and by precomposition on morphisms: given a L(B)-morphism
f : L(B)⊗X → Y , we have

L(s)(f) = f ◦ (L(s)⊗ id)

When L is the identity functor (C,×, 1) → (C,×, 1), then L is the simple fibration. Now,
note that any LNL-adjunction L a R gives rise to a fibration L, which also sits in a fibered
LNL-adjunction, where the non-linear fibration is merely the simple fibration. Similarly, fibered
monoidal closure of L with respect to the induced symmetric monoidal product may be derived
from the monoidal closure of L. However, we shall only use Construction 6.2.7 as a guideline to
define indexed zigzag game while it may be worthwhile to explore the general structure of L, this
does not seem not allow to easily derive the FOFIMELL of DialI(p) for arbitrary p2. We thus
merely unfold the definition of indexed zigzag games obtained by applying Construction 6.2.7 to
the setting of zigzag games.

Definition 6.2.8. Let A be on object of S. The category of A-indexed zigzag game is defined as
follows:

- Objects: a pair of objects (U,X) of S.

- Morphisms: a morphism (U,X)→ (V, Y ) is a pair of morphisms

f : A× U× I X → V F : A× U ×X → Y

Up to obvious isomorphism, (f, F ) may be regarded as a P-strategy in the zigzag game

(A, 1)⊗ (U,X) = (A× U,X) −→ (V, Y )

- Composition: given morphisms (f, F ) : (U,X) → (V, Y ) and (g,G) : (V, Y ) → (W,Z),
the composition (h,H) = (g,G) ◦ (f, F ) is intuitively computed by making two strategies by
simulating a play over three “boards”: the left board A×U×X, the middle board V ×Y and the
right board W ×Z. Calling respectively (an)n∈N, (un)n∈N, (xn)n∈N, (vn)n∈N, (yn)n∈N, (wn)n∈N
and (zn)n∈N the produced sequences, a round may be

– First, O plays an ∈ An and un ∈ Un on the left board, to which the strategy answers
with vn = fn(an, un, xn−1) ∈ Vn on the middle board, which gets propagated to wn =
gn(an, vn, yn−1) on the right board.

– Then, O plays a legal move zn, enabling proponent to compute yn = Gn(an, wn, zn) ∈ Yn
on the middle board, which gets propagated to zn = Fn(an, wn, zn) ∈ Zn.

The composition computes this strategy, implicitly hiding the interaction on the “middle
board” and thus producing functions

h : A× U× I Z →W H : A× U × Z → X

2The temptation here would be to study the fibration obtained by composing the arrows on the left handside
column.

E′ //y
��

E

p

��
L

R(L(−)⊗−) //

L

��

C

C
However, this does no seem to coincide with DialI(p) when C = S and L = DZ.
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From a more formal point of view, (h,H) is obtained by taking the first components of the
unique tuple 

h : A× U× I Z →W
H : A× U × Z → X
ṽ : A× U× I Z → V
ỹ : A× U × Z → Y


of morphisms satisfying the following equations

h = g ◦ 〈π1, ṽ, π3〉
H = F ◦ 〈π1, π2, ỹ〉
ṽ = f ◦ 〈π1, π2, H ◦ (id× id× next)〉
ỹ = G ◦ 〈π1, ṽ, π3〉

Definition 6.2.9. Let p : E → S be a fibration. The total category DialI(E) of the associated
fibration DialI(p) is defined as follows:

- Objects: objects are triples (A,U,X, ϕ) such that A, U and X are objects of S and ϕ
belongs to pA×U×X (same as Dial(p)). We write sometimes write such triples (a : A, u :
U, x : X,ϕ(a, u, x)).

- Morphisms: morphisms from Φ = (a : A, u : U, x : X,ϕ(a, u, x)) to Ψ = (b : B, v : V, y :
Y, ψ(b, v, y)) are tuples (s, f, F, α) : Φ→ Ψ where

– s : A→ B is a S-morphism.
– f : A × U× I Y → V and F : A × U × Y → X are S-morphisms; thus (f, F ) is a

morphism of A-indexed games (U,X)→ (V, Y ).
– α : ϕ(a, u, F (a, u, y))→ ψ(s(a), f(a, u,next(y)), y) is a pA×U×Y -morphism. Intuitively,
α is a proof that (f, F ) maps winning strategies to winning strategies.

- Composition: given

(s, f, F, α) : (a : A, u : U, x : X,ϕ(a, u, x))→ (b : B, v : V, y : Y, ψ(b, v, y)) and
(t, g,G, β) : (b : B, v : V, y : Y, ψ(b, v, y))→ (c : C,w : W, z : Z, φ(c, w, z))

the composite consists of:

– the synchronous function t ◦ s : A→ C.
– the functions h : A×U× I Z →W and H : A×U×Z → X are defined as the composi-

tion of the A-indexed game morphisms (f, F ) and (g,G) as outlined in Definition 6.2.8.
– borrowing the notation ṽ : A×U× I Z → V and ỹ : A×U ×Z → Y from the definition

of composition in zigzag games (Definition 6.2.8), we may obtain by substitution p-
morphisms α̃ = 〈π1, π2, ỹ〉∗α and β̃ = 〈s ◦ π1, ṽ, π3〉∗β

ϕ(a, u, F (a, u, ỹ(a, u, z))) → ψ(s(a), f(a, u,next(ỹ(a, u, z))), ỹ(a, u, z))
ψ(s(a), ṽ(a, u,next(z)), G(s(a), ṽ(a, u,next(z)), z)) → φ(t(s(a)), g(s(a), ṽ(a, u, z),next(z)), z)

Note that the domain and codomain are equal since ṽ = f ◦ 〈π1, π2,next ◦ ỹ〉 and ỹ =
G ◦ 〈π1, ṽ, π3〉; hence, the last component of the composite is β̃ ◦ α̃.

The fibration itself DialI(p) : DialI(E)→ S is defined as the projection on the first component.

The definition of DialI(p) allows for more elaborate morphisms than Dial(p), so there is an
obvious inclusion fibred functor IDialI : Dial(p)→ DialI(p). This functor is part of an adjunction,
from which the aforementioned monad fixI : Dial(p)→ Dial(p) may be recovered.

Lemma 6.2.10. IDialI has a right adjoint JDialI : DialI(p) → Dial(p) defined as follows on
objects. (

a : A, u : U, x : X
ϕ(a, u, x)

)
7−→

(
a : A, ũ : UIX , x : X
ψ(a, ũ(next(x)), x)

)
Moreover, the adjunction IDialI a JDialI induces the monad fixI : Dial(p)→ Dial(p).
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Proof. To show that JDialI extends to a fiberwise right adjoint to IDialI , it suffices to show that
for every

Φ =
(
a : A, u : U, x : X

ϕ(a, u, x)

)
Dial(p)-predicate

Ψ =
(
a : A, v : V, y : Y

ψ(a, v, y)

)
DialI(p)-predicate

there is a map ε : IDialI(JDialI(Ψ))→ Ψ such that, for every map h : IDialI(Φ)→ Ψ, there exists
a unique h̃ : Φ→ JDialI(Ψ) such that the following diagram commute.

IDialI(JDialI(Ψ)) ε // Ψ

IDialI(Φ)

IDialI (̃h)

OO

h

44

The map

ε :
(

a : A, f : V IY , y : Y
ψ(a, ev(f, next(y)), y)

)
→
(
a : A, v : V, y : Y

ψ(a, v, y)

)
is given as the following tuple (ε1, ε2, ε3):

- ε1 is the composite

A× V IY× I Y
〈π2,π3〉 // V IY× I Y ev // V

- ε2 is the last projection A× V IY × Y → Y .

- ε3 : ψ(a, ev(f, next(y)), y)→ ψ(a, ev(f, next(y)), y) is the identity.

Now, setting h = (id, f, F, α) and h̃ = (id, f̃ , F̃ , α̃), having the universal property amounts to
having F̃ = F , the following diagram commute

V IY× I Y ev // V

A× U× I Y
f

99

(A× U)× I Y
∼

66h̃×id

OO

and α̃ = α. This uniquely determines h̃ since S is cartesian-closed, and thus h is also uniquely
determined.

This establishes that we have for each fiber a right ajoint to IDialI . We may then conclude
by checking that the Beck-Chevalley condition is satisfied as per Lemma 5.2.18. This tedious but
straightforward verification is left to the reader.

Similarly to the Dial construction, DialI inherits monoidal products from p.

Lemma 6.2.11. Suppose that p : E→ S has a monoidal structure (⊗, unit). DialI(p) inherits a
monoidal structure, whose product, also denoted ⊗, has the following object component.(

a : A, u : U, x : X
ϕ(a, u, x)

)
,

(
a : A, v : V, y : Y

ψ(a, v, y)

)
7→
(
a : A, (u, v) : U × V, (x, y) : X × Y

ϕ(a, u, x)⊗ ψ(a, v, y)

)
Furthermore, if Dial(p) is equipped with the monoidal structure from Lemma 5.3.11, IDialI a
JDialI is a lax monoidal adjunction.

Proof. The monoidal structure is defined as in Lemma 5.3.11. It is rather obvious that IDialI is
strong monoidal. The unit is preserved, up to canonical isomorphism, by JDialI . As for the lax
structure on binary products, it arises from a family of maps(

a : A, (ũ, ṽ) : UIX × V IY , (x, y) : X × Y
ϕ(a, (ev(ũ,next(x)), ev(ṽ,next(y))), (x, y)

)
→
(
a : A, f : (U × V )I(X×Y ), (x, y) : X × Y

ϕ(a, ev(f, next(x, y)), (x, y))

)
induced in turns by the obvious (non-invertible) map UIX × V IY → (U × V )I(X×Y ).
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DialI(p) also inherits monoidal closure from p. However, contrary to Dial(p), we do not rely
on the cartesian closure of the base S to define the monoidal closure. Instead, we use the pointwise
arrow.

Lemma 6.2.12. Suppose that p : E → S has a monoidal closed structure (⊗, I). Then, DialI(p)
inherits a monoidal closed structure. The monoidal product is given as per Lemma 6.2.11, and the
object part of the functor (a : A, v : V, y : Y, ψ(a, v, y))( − : Dial(p)A → Dial(p)A is(

a : A, u : U, x : X
ϕ(a, u, x)

)
7→
(
a : A, (f, F ) : (U −∗ V )× ((U × Y ) −∗ X), (u, y) : U × Y

ϕ(a, u, ev−∗(F, 〈u, y〉))( ψ(a, ev−∗(f, u), y)

)
Proof. The proof is similar to the one presented in Lemma 5.3.13, except that the pointwise
function space −∗ is used instead of the cartesian-closed structure of S.

Lemma 6.2.13. Suppose that p has two monoidal structures (⊗, I) and (`,⊥), as well as a
distributivity law distϕ,ψ,φ : ϕ⊗(ψ`φ)→ (ϕ⊗ψ)`φ. Then IDialI maps the vertical distributivity
law of Lemma 5.3.12 to a distributivity law between the relevant monoidal structures of DialI.

Lemma 6.2.14. The fibration DialI(p) has simple sums and simple products. Given a projection
π : A×B → A and an object (U,X,ϕ) : A×B, the object component of the functors ∃π,∀π are

∃π :
(

(a, b) : A×B, u : U, x : X
ϕ(a, b, u, x)

)
7→

(
a : A, (u, b) : U ×B, x : X

ϕ(a, b, u, x)

)
∀π :

(
(a, b) : A×B, u : U, x : X

ϕ(a, b, u, x)

)
7→

(
a : A, f : B −∗ U, (x, b) : X ×B

ϕ(a, v, ev−∗(f, b), x)

)
Proof. This time around, one cannot use the decomposition Dial(p) ∼= Sum(Prod(p)), so we need
to prove that from scratch. Let us start with ∃π. To show that the definition on objects extends
to a left adjoint to π∗, it suffices to exhibit, for every DialI(p) predicate Φ over A×B a (vertical)
map η : Φ → π∗∃πΦ such that, for every map h : Φ → π∗Ψ, there exists a unique (vertical)
h̃ : ∃πΦ→ Ψ making the following diagram commute.

Φ
η

��

h // π∗Ψ

π∗∃πΦ
π∗ (̃h)

66

Writing
Φ = ((a, b) : A, u : U, x : X,ϕ(a, b, u, x))
Ψ = (a : A, v : V, y : Y, ψ(a, v, y))
h = (id, f, F, α)

we have the following, where the first line is a canonical vertical isomorphism

π∗∃πΦ ∼= ((a, b) : A×B, (u, b′) : U ×B, x : X,ϕ(a, b′, u, x))
π∗Ψ = ((a, b) : A×B, v : V, y : Y, ψ(a, v, y))

The components η0, η1, η2 of the map η are given as follows:

- η0 : (A×B)× U× I X → B × U is given by pairing the obvious projections: 〈π2 ◦ π1, π2〉.

- η1 : (A×B)× U ×X → X is simply the last projection.

- η2 is then the identity ϕ(a, b, u, x)→ ϕ(a, b, u, x).

Let us suppose that a map h̃ = (id, f̃ , F̃ , α̃) : ∃πΦ → Ψ make the above diagram commute. This
means that we necessarily have

f̃ = f ◦ 〈〈π1, π2 ◦ π2〉, π1 ◦ π2, π3〉
F̃ = F ◦ 〈〈π1, π2 ◦ π2〉, π1 ◦ π2, π3〉
α̃ = α

This in turn can obviously be taken to be the definition of h̃. The Beck-Chevalley condition is
straightforward to check.
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Now, let us turn to ∀π. Taking the notations, we now need a map ε : π∗∀πΦ → Φ, such that,
for every map h : π∗Ψ→ Φ, there exists a unique map h̃ making the following diagram commute.

π∗∀πΦ
ε

// Φ

π∗Ψ

π∗ (̃h)

OO

h

66

The components ε0, ε1, ε2 of the map ε are given as follows:

- ε0 : (A×B)× (B −∗ U)× I X → U is given by first projecting onto (B −∗ U)×B and then
pointwise evaluation.

(A×B)× (B −∗ U)× I (X ×B)
〈π2,π2◦π1〉 // (B −∗ U)×B

ev−∗ // U

- ε1 : (A×B)× (B −∗ U)×X → X ×B is the map 〈π3, π2 ◦ π1〉.

- Then ε2 : ϕ(a, b, ev−∗(f, b), x)→ ϕ(a, b, ev−∗(f, b), x) is the identity.

Now, let us suppose that a map h̃ = (id, f̃ , F̃ , α̃) : Ψ → ∀πΦ making the above diagram
commute. Unravelling the definition, this enforces that the following diagram commute.

(B −∗ U)×B
ev−∗ // U

(A×B)× V× I X
f

77

(A× V× I X)×B
∼

55〈f̃◦m◦next,π2〉

OO

wherem is the obvious isomorphism (A×V× I X)× I B → A×V× I (X×B). By Lemma 6.1.8,
f̃ is thus uniquely determined. Beyond that, it also enforces F̃ = F ◦ 〈〈π1, π2 ◦π3〉, π2, π1 ◦π3〉 and
α̃ = α. We leave the checking of the Beck-Chevalley condition to the interested reader.

Theorem 6.2.15. Assume a FOFIMELL fibration (p+, p, p−) using the following string of monoidal
adjunctions for exponential modalities.

p+

I+

&&
⊥ p

R+

gg

I−

''
> p−

R−

ff

Then, this FOFIMELL fibration may be lifted to another FOFIMELL-fibration (Sum(p+),DialI(p),Prod(p−)).

Sum(p+)

IDialI+

++
⊥ DialI(p)

RDialI+

kk

RDialI−

++
> Prod(p−)

IDialI−

kk

Proof. The groundwork pertaining to the propositional structure of DialI(p) having been laid in
the previous lemmas, we turn to the exponential structure. The lax monoidal adjunction between
Sum(p+) and DialI(p) is recovered by composing the lax monoidal adjunction of Theorem 6.2.15
together with monoidal adjunction between Dial(p)→ DialI(p) alluded to in Lemma 6.2.10.

Sum(p+)

IDialI+

++
⊥ DialI(p)

RDialI+

kk

=
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Sum(p+)

IDial+

**
⊥ Dial(p)

RDial+

kk
⊥

IDialI

++
DialI(p)

JDialI

jj

Since this is a composition of monoidal adjunctions, we recover a monoidal adjunction. The induced
comonad ! = RDialI+ ◦ IDialI+ acts as follows on objects:

!(a : A, u : U, x : X,ϕ(a, u, x)) = (a : A, f : UIX , ∗ : 1, !∀xX ϕ(a, ev(f, next(x)), x))

The oplax monoidal adjunction corresponding to ? cannot be recovered as a composition of
functors we defined so far, so we shall define directly an oplax monoidal adjunction R− a I−

between DialI(p) and Prod(p), which is to be composed with the image of the adjunction between
p and p− by Prod. On objects I− and R− are defined as follows.

I−(a : A, x : X,ϕ(a, x)) = (a : A, ∗ : 1, x : X,ϕ(a, x))
R− (a : A, u : U, x : X,ϕ(a, u, x)) = (a : A, g : XU ,∃uU ϕ(a, u, ev(g, u)))

The action of I− on morphism is rather straightforward, while R− is much more involved. Let
us show that the map on objects defined above extends to a left adjoint to I− by appealing to
Lemma 5.2.18. To this end, consider

Φ =
(
a : A, x : X
ϕ(a, x)

)
a Prod(p)-predicate

Ψ =
(
a : A, v : V, y : Y

ψ(a, v, y)

)
a DialI(p)-predicate

We need to exhibit a DialI(p) map η : Ψ→ I−(R−(Ψ)) such that, for every h : Ψ→ I−(Φ), there
exists a unique Prod(p)-map h̃ making the following diagram commute

Ψ

η

��

h // I−(Φ)

I−(R−(Ψ))
I−h̃

88

The map η has components (η1, η2, η3) defined as follows

- η1 : A× V× I Y V → 1 is trivial.

- η2 : A× V × Y V → Y is the evaluation map precomposed with 〈π3, π2〉.

- η3 is the identity ϕ(a, v, ev(f, v))→ ϕ(a, v, ev(f, v)).

Writing h = (id, f, !, α) and h̃ = (id, f̃ , α̃), the above diagram commuting amounts to making

Y V × V ev // Y

(A×X)

f̃×id

OO ;;

commute and α̃ = α. This uniquely determines h̃ and show that I− has a fiberwise left adjoint.
One needs to check the Beck-Chevalley condition in Lemma 5.2.18 to conclude that R− is a fibred
left adjoint. As usual, this straightforward exercise is left to the reader.

Before moving on, let us spell out the action of ? = RDialI− ◦ IDialI− on objects of DialI(p).

?(a : A, u : U, x : X,ϕ(a, u, x)) = (a : A, ∗ : 1, x̃ : XU , ?∃uU ϕ(a, u, ev(x̃, u)))

As in Theorem 5.3.15, Sum(p+) has all simple products since S is cartesian-closed and p+ has
simple products by Lemma 5.3.7. Similarly, Prod(p−) has all simple sums.

All that remains to be shown is that we have the following vertical natural transformations,
where ϕ and ψ are DialI(p) predicates.

!ϕ⊗ ?ψ −→ ?(!ϕ⊗ ψ) !(ϕ` ?ψ) −→ !ϕ` ?ψ
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Working in the fiber over A and expanding the definitions, it means we should have the following
vertical natural transformations.


a : A, f : UIX , g : Y V

!∀xX ϕ(a, ev(f,next(x)), x)
⊗

?∃vV ψ(a, v, ev(f, v))

 −→


a : A, ∗ : 1, h : Y U

IX×V

?∃(i, v)U
IX×V

 !∀xX ϕ(a, ev(i,next(x)), x)
⊗

?∃vV ψ(a, v, ev(h, 〈i, v〉))




a : A, f : UI(X×Y V ), ∗ : 1

!∀(x, g)X×Y
V

[
ϕ(a, ev(f,next(〈x, g〉)), x)

`
?∃vV ψ(a, v, ev(g, v))

 −→


a : A, h : UIX , i : Y V

!∀xX ϕ(a, ev(h, next(x)), x)
`

?∃vV ψ(a, v, ev(i, v))


Let us focus on the first one. The S-level part of the morphism is induced by the unique map

A× UIX → 1 and the obvious partial evaluation map.

A× UIX × Y U
IX×V −→ UIX × Y U

IX×V −→ Y V

At the level of propositions, it thus suffices to give a proof in p of the following implication.

!∀xX ϕ(a, ev(f, next(x)), x)
⊗

?∃vV ψ(a, v, ev(h, 〈f, v〉))
−( ?∃(i, v)U

IX×V

 !∀xX ϕ(a, ev(i,next(x)), x)
⊗

?∃vV ψ(a, v, ev(h, 〈i, v〉))

Deriving the entailment in the FIMELL sequent calculus is done almost exactly as in the proof
of Theorem 5.3.15. Let us just notice that the existential variable i is witnessed by f in the
derivation.

6.2.3 Elimination of double linear negation
Before moving on with the characterization theorem, let us notice that as for Dial over most
reasonable bases B, DialI(p) is never ∗-autonomous for trivial cardinality reasons. However,
similarly to Dial over Set, the canonical maps

ϕ ( (ϕ( ⊥)( ⊥

have retracts.

Theorem 6.2.16. If p is a FOFIMELL-fibration eliminating double linear negations, so is Dial(p)
if C = Set, assumed to satisfy the axiom of choice, or FinSet.

Proof. The proof takes heavy inspiration from the proof of Theorem 5.3.16. Computing the linear
double-negation gives a similar result, where the pointwise exponential plays the rôle of the internal
homset in the aforementioned proof: if Φ = (a : A, u : U, x : X,ϕ(a, u, x)) is a predicate ofDialI(p),
(Φ( ⊥)( ⊥ is vertically isomorphic to(

a : A,F : (U −∗ X) −∗ U, f : U −∗ X, (ϕ(a, ev−∗(F, f), ev−∗(f, ev−∗(F, f)))( ⊥)( ⊥
)

Making similar simplifying assumptions on the shape of the proof (Φ ( ⊥) ( ⊥ ( Φ that we
want to obtain as in the proof of Theorem 5.3.16, we only need to provide S-morphisms h : ((U −∗
X) −∗ U) → U and H : ((U −∗ X) −∗ U) × X → U −∗ X such that, for every global elements
F : 1→ (U −∗ X) −∗ U and x : 1→ X we have

ev−∗ ◦ 〈F,H ◦ 〈F, x〉〉 = h ◦ F and ev−∗ ◦ 〈H ◦ 〈F, x〉, ev−∗ ◦ 〈F,H ◦ 〈F, x〉〉〉 = x

But in fact, we can aim for h and H being given by pointwise exponentials. This means that if
we have sequences (h̃n : UX

Un
n

n → Un)n∈N and (H̃n : UX
Un
n

n ×Xn → XUn
n )n∈N such that, for every

sequences (Fn : XUn
n → Un)n∈N) and (xn : Xn)n∈N

Fn(Hn(Fn, xn)) = hn(Fn) and Hn(Fn, xn)(Fn(Hn(Fn, xn))) = xn

then we are done by setting h = ev−∗ ◦ 〈(_ 7→ h̃n)n∈N, id〉 and H = ev−∗ ◦ 〈(_ 7→ H̃n)n∈N, id〉. But
notice that the proof of Theorem 5.3.16 gives suitable Hn and hn for each n, so we may reconstruct
the sequences.
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(t = t′)D : = (t = t′)D : = t = t′

(ϕ⊗ ψ)D(a) : = ∃〈u, v〉∀〈x, y〉. (ϕ⊗ ψ)D(〈u, v〉, 〈x, y〉, a) : =
∃〈u, v〉∀〈x, y〉. ϕD(u, x, a)⊗ ψD(v, y, a)

(ϕ` ψ)D(a) : = ∃〈u, v〉∀〈x, y〉. (ϕ` ψ)D(〈u, v〉, 〈x, y〉, a) : =
∃〈u, v〉∀〈x, y〉. ϕD(u, x, a) ` ψD(v, y, a)

(ϕ( ψ)D(a) : = ∃〈f, F 〉∀〈u, y〉. (ϕ( ψ)D(〈f, F 〉, 〈u, y〉, a) : =
∃〈f, F 〉∀〈u, y〉. ϕD(u, ev−∗(F, 〈uy〉), a)( ψD(ev−∗(f, u), y, a)

(∃w.ϕ)D(a) : = ∃〈u,w〉∀x. (∃w.ϕ)D(〈u,w〉, x, a) : = ∃〈u,w〉∀x. ϕD(u, x, 〈a,w〉)

(∀w.ϕ)D(a) : = ∃f ∀〈x,w〉. (∀w.ϕ)D(f, 〈x,w〉, a) : = ∃f ∀〈x,w〉. ϕD(ev−∗(f, w), x, 〈a,w〉)

(!ϕ)D(a) : = ∃U. (!ϕ)D(u,−, a) : = ∃U. !∀x. ϕD(ev(U,next(x)), x, a)

(?ϕ)D(a) : = ∀X. (?ϕ)D(−, X, a) : = ∀X. ?∃u. ϕD(u, ev(X,u), a)

Figure 6.1: The Dialectica-like translation for FOFIMELL (types are left implicit).

6.3 The characterization theorem
Definition 6.3.1. A FOFIMELL fibration p is said to satisfy

- LSAC when the following natural transformation is a isomorphism.

∃fA−∗B ∀aA ϕ(a, ev−∗(f, a)) −→ ∀aA ∃bB ϕ(a, b) (16)

- SDEXP when the following natural transformations are isomorphisms.

∃fAIB ! ∀bB !ϕ(ev(f, next(b)), b) −→ ∃aA !∀bB ϕ(a, b) (17)
?∃aA ∀bB ?ϕ(a, b) −→ ∀fBA ?∃aA ?ϕ(a, ev(f, a)) (18)

Theorem 6.3.2 (Soundness). If p is an arbitrary FOFIMELL fibration, then Dial(p) is a FOFIMELL+
LSIP + LSAC + SDEXP fibration. Furthermore, if p satisfies PEXP, so does Dial(p).

Proof. The proof is very similar to the proof of Theorem 5.4.2; we already know that Dial(p) is a
FOFIMELL fibration whenever p is by Theorem 5.3.15, one only needs to check that the additional
axioms LSIP + LSAC + SDEXP are satisfied to prove the first half of the statement; the required
isomorphisms are still immediate in most cases.

Now, let us assume that p satisfies PEXP and show that Dial(p) also does.

- For the axiom
?!Ψ −→ !?Ψ

we need to provide a natural proof scheme of

?∃uU !∀fX
U

ψ(a, u, ev(f, u)) −→ !∀xX?∃gU
IX

ψ(a, u, x)

Similarly as to what happens in Theorem 5.3.15, it suffices to provide natural proofs of

∃uU !ϕ(a, u) ` !∃uUϕ(a, u)
?∀xXφ(a, x) ` ∀xX?ϕ(a, x)

ρ∃∀,∀∃ : ∃uU∀fXUψ(a, u, ev(f, u)) ` ∀xX∃gUIX
ψ(a, ev(g,next(x)), x)

and consider the corresponding axiom λ?,!
φ : ?!φ → !?φ in p. Save for ρ∃∀,∀∃, all the relevant

maps are given as in Theorem 5.3.15. For ρ∃∀,∀∃, using the universal properties of ∃ and ∀,
it amounts to proving

∀fX
U

ψ(u, ev(f, u)) −→ ∃gU
IX

ψ(ev(g,next(x)), x)

The witnesses for f and g are the constant functions built from x and u respectively.
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Theorem 6.3.3. A FOFIMELL fibration p over S satisfying LSIP, LSAC, PEXP and SDEXP has,
for every MFOLL predicate ϕ, an equivalence.

ϕ(a) ↔ ∃u ∀x ϕD(u, x, a)

Proof. Similarly to Theorem 5.4.4, the proof goes by induction over the syntax of ϕ. ⊗,`,∃, ? and
the equality are handled exactly in the same manner, so we only treat ∀,( and !. The formulas ϕD
are deterministic as per Definition 5.4.5. Note that the proof for ∀ and ( are exactly analogous
to the one given in Theorem 5.4.4, except that the pointwise arrow is used, along with the axiom
LSAC instead of of the genuine function space of S and the axiom LAC (which does not hold in
DialI(p) in general). The clause for ! is handled through SDEXP instead of DEXP.

- Case ∀aA ϕ(a) by induction, it suffices to prove the following equivalence.

∀bB∃uU ∀xX ϕD(u, x, a, b) ↔ ∃uU ∀(x, f)X×U−∗BϕD(u, x, a, ev−∗(f, x))

which is immediate using LSAC.

- Case ϕ(a) ( ψ(a): by the induction hypothesis, it suffices to construct an equivalence
induced by the following string of isomorphisms(

∃uU ∀xX ϕD(u, x, a)
)
( ∃vV ∀yY ψD(v, y, a)
'

∀uU
(
(∀xX ϕD(u, x, a))( ∃vV ∀yY ψD(v, y, a)

)
' By LSIP, 4.

∀uU∃vV
(
(∀xX ϕD(u, x, a))( ∀yY ψD(v, y, a))

)
' By LSAC.

∃fU−∗V ∀uU
(
(∀xX ϕD(u, x, a))( ∀yY ψD(ev−∗(f, u), y, a))

)
'

∃fU−∗V ∀(u, y)U×Y
(
(∀xX ϕD(u, x, a))( ψD(ev−∗(f, u), y, a))

)
' By LSIP, 5.

∃fU−∗V ∀(u, y)U×Y ∃xX ϕD(u, x, a))( ψD(ev−∗(f, u), y, a))
' By LAC.

∃(f, F )(U−∗V )×(U×Y−∗X)∀(u, y)U×Y ∃xX ϕD(u, ev−∗(F, 〈u, y〉, a))( ψD(ev−∗(f, u), y, a))

- Case !ϕ(a): by the induction hypothesis, it suffices to exhibit an equivalence

!(∃uU ∀xX ϕD(u, x, a)) ↔ ∃uU !∀xXϕD(u, x, a)

which is given by axiom 14 from SDEXP and the fact that ϕD is deterministic.
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Chapter 7

Revisiting LSFOM

Chapter 6 adapted the construction of Dialectica categories as found in de Paiva’s PhD thesis [21]
to logics over a category S of higher-order synchronous functions. In contrast, the logic LSFOM
studied in Chapter 4 corresponds to a fibration over Mealy which is only a subcategory of Sfin. The
goal of this chapter is to show that the DialI construction may be adapted to fibrations over Mealy
while restricting to a notion of finite-state realizers. This allows to build a model of LSFOM, which
is elementarily equivalent to the one presented in Chapter 4, starting from the syntactic fibration
arising from FOM. Then, following the ideas laid out in Chapter 6, we define an extension LSFOM+

which enriches LSFOM with axioms allowing to prove a characterization theorem. This in turn,
combined with the Büchi-Landweber theorem yields a proof of completeness of the extended theory
LSFOM+.

Section 7.1 is devoted to building a bridge between the category S of higher-order synchronous
functions and the category of f.s. causal functions Mealy. We do so by identifying an inductively
defined fragment of S that was used to define the category of zigzag games and the DialI construc-
tion, and define a syntactic subcategory Sfin of S specifically omitting the higher-order features of
S (internal homsets, evaluation and curryfication of functions). We then show that this category
may be adequately represented in Mealy. Then, building on this material, Section 7.2 discusses
how to adapt the DialI construction to fibrations over Sfin and obtain a construction taking as
input a fibration over Mealy. This is in particular applied to the syntactic fibration arising from
FOM to build a fibration modelling LSFOM. Finally, Section 7.3 exploits the material of Section 6.3
to define LSFOM+ and prove its completeness. This material is adapted from [57]1.

As this chapter is chiefly concerned with adapting and applying techniques developed in Chap-
ter 6 for S to Sfin we shall skip all proofs that are straightforward adaptation of those found in
previous chapters. As a result, this chapter is not self-contained; the reader solely interested in the
LSFOM+ but not the higher-order setting will find [57] to be a more direct presentation.

7.1 Relating S and Mealy
The objective of this section is to isolate a subcategory of S, which we shall call Sfin, allowing to
carry out a significant subset of the constructions examined in Chapter 6 without necessitating the
cartesian-closed structure of S. To be more precise, we are looking for a category Sfin incorporating
most of the internal syntax of S as well as faithful functors

Mealy ++ Sfin
ll // S

Furthermore, we want these functors to play well with fibred structures above Mealy and Sfin: the
internal structure of Sfin will allow to define a restriction DialI for fibrations over Sfin, which we
then want to convert to a construction over fibrations over Mealy. This latest informal requirement
leads us to consider the so-called Karoubi envelope Kar(Mealy) of Mealy. After defining Karoubi-
envelope for an arbitrary category in a concrete manner, we argue that they play nice with fibrations
possessing a notion of equality. We then define Sfin and show that it is a full subcategory of
Kar(Mealy).

Karoubi envelopes Here we give the basic definition of the Karoubi envelope Kar(C) of a
category C, sometimes called the Karoubi-completion[10]. This generic construction enriches the

1In that article, MSO(M) roughly correspond to FOM,LMSO to LSFOM and LMSO(C) to LSFOM+.
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category C with new objects so that every idempotent splits; this is in fact the “smallest” such
category in a precise sense and Kar(−) should be seen as a closure operator over Cat. The general
properties of the Karoubi envelope do not really concern us too much as we are only interested2 in
adding certain objects to Mealy corresponding to the I operator of S. Therefore, we only define
the basic construction of Kar(−).

Definition 7.1.1. Let C be a category. An idempotent of C is a morphism e : B → B of C such
that e ◦ e = e. A section-retraction pair (s, r) : A → B is a pair of morphisms s : A → B (the
section) and r : B → A (the retraction) such that r ◦ s = idA. The idempotent e is said to be split
if there exists a section-retraction pair (s, r) such that s ◦ r = e.

Definition 7.1.2. Let C be a category. The Karoubi envelope Kar(C) is the category defined as
follows:

- Objects: the objects are pairs (A, e) consisting of an object A of C and an idempotent
e : A→ A.

- Morphisms: a morphism from e : A → A to e′ : B → B is a morphism f : A → B such
that f ◦ e = f = e′ ◦ f .

A

e

��

f // B

e′

��
A

f
//

f

77

B

The identity over e : A→ A is e itself and composition is the composition in C.

For each category C There is an obvious full and faithful inclusion functor I : C → Kar(C),
sending an object A to the pair (A, idA). However, there is in general no obvious functor going the
other way around.

Remark. In Kar(C), all idempotents split as advertised. If f : (A, e) → (A, e) is an idempotent
of Kar(C), then f is an idempotent in C and (A, f) an object of Kar(C). Then, (f, f) is a section-
retraction pair between (A, e) and (A, f) in Kar(C) as seen from the commutative diagram below.

A

f

��

f //

f

%%
A

e

��

f // A

f

��
A

f
//

f

77

f

99A

f

77

f
// A

The outer triangles commute because f is idempotent and the inner triangles commute because f
is a morphism e→ e.

Let us also remark that if C has cartesian products and a terminal object, so does Kar(C). The
terminal object object of Kar(C) is the unique map ! : 1→ 1 in C. Given two idempotents e : A→ A
and f : B → B, the cartesian product is given by the componentwise e× f : A×B → A×B, with
e ◦ π1 : e× f → e and f ◦ π2 : e× f → f as first and second projections in Kar(C).

Fibrations over C and Kar(C). We now briefly discuss how to move between fibrations
over C and Kar(C). Given a fibration p : E→ Kar(C), we shall consider the change of base I∗(p)
along the inclusion I : C → Kar(C). This case amounts to asking that the predicates of I∗(p) be
those of p who may only range over objects of C. It is rather obvious that most logical properties
and structure of p such as monoidal closure and quantification are preserved when going to I∗(p).

Turning a fibration p : E → C into a reasonable fibration over Kar(C) is a bit more involved.
The basic idea is that the predicate ϕ of the new fibration Kar(p) over an object (A, e) of Kar(C)
should be only considered up-to substitution by e. Therefore, a vertical morphism ϕ → ψ over e
in Kar(p) should be thought of as a morphism e∗ϕ→ e∗ψ. For completeness’ sake, we first give a
definition which does not reference any cleavage of p.

2Another (equivalent) presentation of the Karoubi construction is also given in [3], where the property of splitting
idempotent is not the main issue. Similar to our case, this construction is a simple way of adding certain subobjects
to a category.
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Definition 7.1.3. Given p : E → C, define a functor Kar(p) : E′ → Kar(C), with E′ defined as
follows:

- Objects: cartesian morphisms α : ϕ→ ϕ′ such that p(α) is idempotent in C.

- Morphisms: E′-morphisms from α : ϕ → ϕ′ to β : ψ → ψ′ are E-morphisms ϕ → ψ.
Composition is the same as in E

The functor Kar(p) is then defined as follows: for a E′-object, Kar(p)(α) = p(α), and for a
morphism γ : dom(α)→ dom(β), we take Kar(p)(γ) = p(β) ◦ p(γ) ◦ p(α).

In essence, an object α : ϕ→ ϕ′ of E′ should be understood as a substitution of the underlying
idempotent into the formula ϕ. In logical terms, when reasoning internally to Kar(p) about a
predicate ϕ(x) over some idempotent e, one is reasoning about ϕ(e(x)) in p.

Lemma 7.1.4. Kar(p) is a fibration.

Proof. Let e : A → A and e′ : B → B be two objects of Kar(C), f : e → e′ a morphism of
Kar(C) and α : ϕ → ϕ′ a p-cartesian morphism above e′. Since p is a fibration, let γ : ψ′ → ϕ
be a p-cartesian morphism above f and β : ψ → ψ′ a p-cartesian morphism above e. Then
γ ◦ β : β → α is p-cartesian by Lemma 5.2.3. It is then straightforward to check that γ ◦ β is also
Kar(p)-cartesian.

Note that if we have a cleavage, a pair (e, ϕ) consisting of an object e : A→ A of Kar(C) and
a p-predicate ϕ over A can be regarded as the lift of e with target ϕ; furthermore, all objects of
E′ are vertically isomorphic to such objects. In presence of cleavage determining the substitution
functors, one may rather adopt the following definition.

Definition 7.1.5. Given p : E → C, define a fibration Kar(p) : E′ → Kar(C), with E′ defined as
follows:

- Objects: pairs (e, ϕ) such that e : A→ A is an idempotent of C and p(ϕ) = A.

- Morphisms: E′-morphisms from (e, ϕ) to (f, ψ) are E-morphisms e∗ϕ→ f∗ψ. Composition
is the same as in E.

The functor Kar(p) is then defined as follows: for a E′-object, Kar(p)(e, ϕ) = e, and for a morphism
γ : dom(α)→ dom(β), we take Kar(p)(γ) = p(β) ◦ p(γ) ◦ p(α).

The definition of fibred functor generalizes to pairs of functors for fibrations over different bases:
given two fibration p : E→ C and q : E′ → C′, a morphism form p to q is a pair (F,G) such that
F is a functor C → C′ and G a functor E → E′ such that F ◦ p = q ◦ G and G sends p-cartesian
morphisms to q-cartesian morphisms. According to this definition, there is such a pair of functors
from p : E → C to Kar(p): the first component is given by the embedding I : C → Kar(C) and
the second functor simply sends the object ϕ of E to (id, ϕ) in E∗ and applies the functor id∗ on
arrows.

Later on, we are only interested in this construction for a fibration posetal p, namely, the
syntactical fibration associated to FOM. In that case, this fibred inclusion preserves the logical
structure that p carries, such as the monoidal closure, equalities, the exponentials and the simple
quantifications. Although we have not checked the details, we conjecture the same holds for non-
posetal fibrations. We treat the simple sums and leave checking the rest of the construction to the
interested reader.

Lemma 7.1.6. Suppose C has cartesian products and that p : E → C is a posetal fibration with
simple sums. Then, so does Kar(p).

Proof. Let A and B be objects of C, π : A×B → A a projection in C, e : A→ A and e′ : B → B
be idempotents of C. We first prove that the substitution functor (e ◦ π)∗ : Kar(p)e → Kar(p)e×f
has a left adjoint ∃e◦π. To this end, in the general case, we would need to show that for every
object Φ = (e × f, ϕ) of Kar(p)e×f , there is an object ∃e◦πΦ and a map ηΦ : Φ → (e ◦ π)∗∃e◦πΦ
such that, for every object Ψ of Kar(p)e and map α : Φ → π∗Ψ, there is a (unique) β such that
the following commutes

Φ α //

ηΦ

��

(e ◦ π)∗Ψ

(e ◦ π)∗∃e◦πΦ
(e◦π)∗β

55

101



We take ∃e◦πΦ = (e,∃π(e × f)∗ϕ). Then, translating the above diagram in p and recalling it is
posetal, it means that we have a map α : (e × f)∗ϕ → (e × f)∗(e ◦ π)∗ψ and that we should
exhibit a map β : e∗∃π(e × f)∗ϕ → e∗ψ. By the general properties of fibrations, we have (e ×
f)∗(e ◦ π)∗ψ ∼= π∗e∗ψ and, using the Beck-Chevalley property in p, e∗∃π(e× f)∗ϕ ∼= ∃π(e× f)∗ϕ.
Furthermore, since p has simple sums, α postcomposed by the first isomorphisms yield a map
β̃ : ∃π(e× f)∗ϕ→ e∗ψ. We may then conclude by precomposing by the second isomorphism.

Thus far, we have shown that all substitution functors associated with a projection (e◦π)∗ have
a left adjoint ∃e◦π. Now it remains to show that the Beck-Chevalley property holds for them. To
this end, let e′ : A′ → A′ be another idempotent, g : A → A′ a morphism from e to e′ in Kar(C)
and consider the pullback square in Kar(C)

e× f e◦π //

g×id
��

e

g

��
e′ × f e′◦π // e′

We need to show that for every object Φ = (e′ × f, ϕ), we have a vertical map

g∗∃e′◦πΦ → ∃e◦π(g × id)∗Φ

in Kar(p). It means having a suitable map

e∗g∗∃π(e′ × f)∗ϕ → e∗∃π(e× f)∗(g × id)∗ϕ

Using the equality g ◦ e = g and the pseudo-functoriality of substitution, this amounts to having
a map

g∗∃π(e′ × f)∗ϕ → e∗∃π(g × f)∗ϕ
Then, using the Beck-Chevalley property in p on both sides and pseudo-functoriality of substitution
with the additional equality e′ ◦ g = g, it suffices to have a map

∃π(g × f)∗ϕ → ∃π(g × f)∗ϕ

which is given by the identity.

An exponential-free fragment of S The major issue that prevents us from applying the
DialI construction to the logic FOM and recover a FOFIMELL-fibration is the lack of exponentials,
that is, of λ-abstraction and application in the term language. However, the bare DialI without
the unrestricted exponentials ! and ? does not use the internal homsets in the base S. We thus
define inductively a subcategory Sfin of S which has enough objects and morphisms to carry out
the DialI construction.

Definition 7.1.7. Call Sfin the subcategory of S whose objects and morphisms are inductively
generated from the syntax of Figure 7.1.

As a subcategory of S, Sfin also has chosen cartesian products, the parametric fixpoint combi-
nator featured in Corollary 6.1.6 and the notion of pointwise exponentials that still satisfies the
universal property of Lemma 6.1.8. It therefore contains all of the features of S used in defining
DialI, except the internal homsets. In order to interpret FOM in the classical fibration of global
objects over Sfin, it suffices to show that we can embed the category Mealy of alphabets and f.s.
synchronous functions in Sfin.

Lemma 7.1.8. There is a faithful functor3 J : Mealy→ Sfin.

Proof. Given that composition and pointwise lifting of functions over alphabets are part of the
syntax of Sfin, the discussion in Subsection 2.1.2 show that we mostly need to need to show
that the fixpoint operator fixb of Mealy is encodable in Sfin. To do so, consider a morphism
f : Σω × Γω → Γω and b ∈ Γ. In Sfin, consider the composite f̃

f̃ : Σω× I (ΓΓ)ω
id×(ev(−,b))ω // Σω× I Γω

Λ−∗(f) // (ΓΓ)ω

Then it is straightforward to see that fixb(f) in Mealy and (ev(−, b))ω ◦ fix(f̃) in Sfin implement
the same underlying functions in S. To define formally J over morphisms, one may thus exploit
this translation of fixb in Sfin and the normal form given in Lemma 2.1.11.

3J will turn out to be full.
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Objects

A,B, · · · ::= 1 | A×B | Σω |I A | A −∗ B with Σ ∈ FinSet

Morphisms

id : A→ A

f : A→ B g : B → C

g ◦ f : A→ C

f : Σ→ Γ in FinSet
fω : Σω → Γω

f : A→ B g : A→ C

〈f, g〉 : A→ B × C πi : A1 ×A2 → Ai

next : A→I A
f : A× I B → B

fix(f) : A→ B

distI,× : I (A×B) → I A× I B dist−1
I,× :I A× I B → I (A×B)

ev−∗ : (A −∗ B)×A→ B

f : A×B → C

Λ−∗(f) : A× I B → B −∗ C

Figure 7.1: An internal syntax for Sfin

Now, conversely, we need to show that Sfin embeds into Kar(Mealy).

Lemma 7.1.9. Conversely, there is a full and faithful functor F : Sfin → Kar(Mealy) such that
I = F ◦ J .

Sfin

F

%%
Mealy

J

<<

I
// Kar(Mealy)

Proof. The functor F is not canonical, in the sense that it will rely on a choice of a default
letter for each non-empty set A. Let us write ε(A) ∈ Σ for this choice. The definition of F is
further complicated by the fact that the structure of the pointwise exponential − −∗ − cannot be
adequately represented in Kar(Mealy) in all generality, but only for objects coming from Sfin. The
definition of F will thus occupy for the remainder of this section.

For objects, we have to define first an auxiliary map triple of maps 〈G, s̃, r̃〉 where

- G : Sfin
0 → FinSet0 associate to every object of Sfin a non-empty alphabet.

- A sequence of maps s̃ : 1 → A −∗ G(A)ω for all objects A of Sfin, henceforth seen as a
sequence of maps s̃A,n : An → G(A).

- A S-map r̃ : 1→ G(A)ω −∗ A for all objects A of Sfin, henceforth seen as a sequence of maps
r̃A,n : G(A)→ An.

The basic idea is that s̃ and r̃ will then be regarded as section-retraction pair A→ G(A)ω, which
shall ultimately yield an idempotent in Mealy. The definition of the triple goes by recursion over
the object of Sfin:

- For an arbitrary alphabet Σ, we set G0(Σω) = Σ and r̃Σω = s̃Σω = ẽΣω to be the constant
word idω ∈ (ΣΣ)ω.

- If we have G(A) = Σ and G(B) = Γ, we set G(A −∗ B) = ΓΣ and

s̃A−∗B,n(f) = s̃B,n ◦ f ◦ r̃A,n r̃A−∗B,n(f) = r̃B,n ◦ f ◦ s̃A,n ẽA−∗B,n(f) = ẽB,n ◦ f ◦ ẽB,n

- If we have G(A) = Σ and G(B) = Γ, we set G(A× B) = Σ× Γ and s̃, r̃ and ẽ are obtained
functorially.
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- We set G0(I A) = G0(A). Setting a = ε(G0(A)), we then have

s̃IA,0(∗) = a r̃IA,0(a′) = ∗ ẽIA,0(a′) = a
s̃IA,n+1 = s̃A,n r̃IA,n+1 = r̃A,n ẽIA,n+1 = ẽA

By induction, we may easily check that, for every n ∈ N, that the composite r̃A,n ◦ s̃A,n is equal
to the identity. This implies that the word (ẽA,n)n∈N = (s̃A,n◦ẽA,n)n∈N only has idempotent letters.
Then, one also checks that ẽA is computable by a finite-state Mealy machine ẽA : 1→ (G(A)G(A))ω
:

- if A = Σω, then eA is constantly equal to the identity; therefore it is given by a single-state
Mealy machine.

- if A = B −∗ C, ẽA = mω ◦ 〈ẽB , ẽC〉 where m is the function

m : G(B)G(B) ×G(C)G(C) → (G(B)×G(C))G(B)×G(C)

(f, g) 7→ f × g

Note that in this case, it is crucial that we build some ẽA : 1→ (G(A)G(A))ω rather than the
corresponding idempotent eA : G(A)ω → G(A)ω.

- if A = B × C, ẽA = ẽB × ẽC and we can conclude since Mealy has cartesian products.

- if A =I B, then eA = cons−7→ε(G(B)) ◦ eB and thus belongs to Mealy. Note that we need to
use one more state to implement eA from eB .

At this juncture, we are almost ready to give F on objects. Note that the morphism ev−∗ at
object Σω is the lifting evω, where ev : ΣΣ ×Σ is the evaluation map in FinSet. F (A) on objects
is then be given by the composite map eA

G(A)ω ∼= 1ω ×G(A)ω ẽA×id−−−−→ (G(A)G(A))ω ×G(A)ω ∼= (G(A)G(A) ×G(A))ω evω−−→ G(A)ω

which is easily seen to be finite-state an idempotent after the above discussion. The intermediate
step through ẽ is necessary because of the pointwise arrow − −∗ −, for which a direct inductive
definition of F is not possible. The intuitive reason behind this is that, as mentioned in Remark 6.1,
− −∗ − is not functorial over S and cannot even be extended to Kar(Mealy) in a reasonable way.

Now, let us define F on morphisms. Some care is needed because of the inductive definition of
Sfin: Figure 7.1 presents a syntax for Sfin, which is actually quotiented by the equalities arising from
its interpretation in S. To fix ideas, call (abusively) [A,B]Sfin−syn the set of syntactic terms from
object A to object B We first define a family of maps HA,B : [A,B]Sfin−syn → [G(A), G(B)]Mealy by
recursion over the syntax.

- H should preserve composition and identities, so H(f ◦ g) = H(f) ◦H(g) and H(id) = id.

- H is meant to preserve the cartesian product and all of the morphisms coming from the
inclusion FinSet. Hence, we set

H(〈f, g〉) = 〈H(f), H(g)〉 H(fω) = fω

- next : A→I A is mapped to the causal map consεG0(A) in Mealy

- The maps distI,× :I (A × B) →I A× I B and distI,× are mapped to the identity in
Kar(Mealy).

- If f : A× I B → B is a Sfin map, fix(f) : A → B is mapped to the causal map
fixε(G0(B))(F (f)).

- We set H(ev−∗) = evω, that is, the image evaluation map of FinSet by the inclusion
FinSet→ Mealy.

- Finally, suppose that we have a map f : A×B → C for which H(f) is already defined to be
induced by a finite-state machine

M = (Q, qι, ∂) : Σω × Γω → Θω
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where G(A) = Σ, G(B) = Γ and G(C) = Θ. We define H(Λ−∗(f)) to be the causal function
induced by the following Mealy machine:

M′ = (1 +Q× Γ, inl(∗), ∂′) : Σω × Γω → (ΘΓ)ω

where
π1(∂′((a, b), inl(∗)))(b′) = π1(∂((a, b′), qι))
π1(∂′((a, b), inr(q, b′))) = π1(∂((a, b′′), π2(∂((a, b′), q))))
π2(∂′((a, b), inl(∗))) = inr(qι, b)
π2(∂′((a, b), inr(q, b′))) = inr(π2(∂((a, b′), q)), b)

Writing J−K for the family of maps [A,B]Sfin−syn → [A,B]Sfin , the map H extends F to a functor
if we show that:

- H is functorial: for any pair of terms (f, g) ∈ [A,B]Sfin−syn × [B,C]Sfin−syn , we have

H(g ◦ f) = H(g) ◦H(f) H(id) = id

- H is compatible with the quotient J−K: for every pair of terms f, g ∈ [A,B]Sfin−syn

JfK = JgK ⇒ H(f) = H(g)

- H sends terms to morphisms in Kar(Mealy): for every f ∈ [A,B]Sfin−syn ,

eB ◦H(f) = H(f) = H(f) ◦ eA

The functoriality is obvious by definition of H. The latter two claims derive from the following
equality in S for every f ∈ [A,B]Sfin−syn :

H(f) = sB ◦ I(JfK) ◦ rA

which is proven by an easy induction on the structure of f . The first claim is then immediate and
the second follows from the equalities eA = sA ◦ rA and rA ◦ sA = id.

Finally, it is straightforward to check that F ◦ J = I: on objects, it maps the alphabet Σ is
mapped by the identity on Σω on both sides. On morphisms, this follows from

The above proof is necessarily a bit tedious; while we use Kar(Mealy) as a convenient category
to embed Sfin, it should once again be stressed that, as for the more convenient topos of trees T
with respect to S, there is no suitable notion of pointwise arrow − −∗ − definable over Kar(Mealy).
Regarding all of these categories as subcategories of T, it is in fact easy to check that Kar(Mealy)
has objects which are not members of S, even up to isomorphism.

Example 7.1.10. The unique object (up to isomorphism) N∞ of T characterized by

N∞ ∼= 1+ I N∞

can be seen as the subobject of 2ω defined as the codomain of an idempotent 2ω → 2ω defined
through the following finite-state machine

0 1
1|1

0, 1|0

0|0

To sum up, we have the following diagram in Cat where the vertical arrows are faithful functors
and horizontal arrows are full and faithful; this reflects that the first row corresponds morally to
f.s. causal functions while the second lifts the finite-state restriction.

Mealy I // Sfin

��

F // Kar(Mealy)

��
S // T
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7.2 Restricting the translation DialI to Mealy
With the discussion of the previous section, we are now ready to discuss how to build a FOFIMLL-
fibration over the category Mealy provided an arbitrary boolean fibration p : E → Mealy. For our
purpose, it is helpful to think of p as arising from either the syntactic fibration of FOM, or the
standard model as described in Example 5.2.12.

The first step is to move from p to a fibration over Sfin. This can be done in two steps: first
by considering Kar(p), which is a fibration over Kar(Mealy) and then by change of base along the
inclusion functor F : Sfin → Kar(Mealy) defined in Lemma 7.1.9. Call the fibration thus obtained
p : = F ∗(Kar(p)). Then one can consider a variant of the DialI construction which operates
on fibrations over Sfin. To do so, first notice that while object and strategies of DZ are made
up of general S-morphisms and objects as per Definition 6.2.1, there is no harm in restricting to
Sfin for the whole technical development up until Lemmas 6.2.4 and 6.2.5. This is reasonable as
those Lemmas are concerned with full exponentials, which we do not expect to have. Call DZfin
this category of zigzag games with finite-memory strategies. Using the definition of DZfin instead
of DZ, one may similarly alter the definition of indexed zigzag games (Definition 6.2.8) and the
general DialI construction (Definition 6.2.9). Similarly, call DialIfin the expected construction for
fibrations over Sfin. To finally obtain a fibration over Mealy, we may use the change of base along
the functor J : Mealy → Sfin (Lemma 7.1.8) to obtain the fibration J∗(DialIfin(p)). This chain of
transformations is summarized in the following picture.

E
p
��

E′

Kar(p)
��

E′′

p
��

E′′′

DialIfin(p)
��

E′′′′

J∗(DialIfin(p))
��

� // � // � // � //

Mealy Kar(Mealy) Sfin Sfin Mealy

As mentioned above, it is rather straightforward to check that most of these maps preserve the
logical structure of the various fibrations involved, save for the middle map p 7→ DialIfin(p).

Assuming that p is a boolean, cartesian-closed fibration with equalities and simple quantifica-
tions. In particular, (p, p, p) certainly has a structure of FOFIMELL-fibration where we take ⊗ to
be the classical conjunction ∧ (the fiberwise product in p), ` to be the classical disjunction ∨ (the
fiberwise coproduct in p) and the fibred functors p→ p part of the adjunctions defining ! and ? to
be the identities. While Theorem 6.2.15 fails to apply, one can adapt Lemmas 6.2.14, 6.2.13, 6.2.12
and 6.2.11 to DialIfin(p) as those do not make use of the internal homsets of S. This may be
summarized in the following statement.

Lemma 7.2.1. The fibration DialIfin(p)

- has symmetric monoidal products ⊗ and ` with a distribution law Φ⊗(Ψ`Θ)→ (Φ⊗Ψ)`Θ.

- is monoidal closed with respect to ⊗.

- has simple quantifications ∀π and ∃π.

- has equalities ∃δ×id.

This accounts for the logical rules of LSFOM coming from full intuitionistic multiplicative
linear logic and first-order quantifications. The crucial difference with the higher-order setting is
that, while we still have fibred inclusion functors I+ : Sum(p) → DialIfin(p) and I− : Prod(p) →
DialIfin(p), they do not admit adjoints allowing to interpret the exponential modalities over all
DialIfin(p)-predicates. However, as the naming of the inclusion functors suggest, those fibrations
are tied to the polarity system of LSFOM. To take full advantage of this correspondence, let us
recall that we also have inclusion functors ηSum(p) : p→ Sum(p) (first defined in Section 5.3) and
ηProd(p) : p→ Prod(p) sitting in the following commuting diagram in Fib(Sfin).

DialIfin(p)

Sum(p)

I+
55

Prod(p)

I−
ii

p
ηSum(p)

ii

ηProd(p)

55

The intuition here is that the polarity of a formula of LSFOM will be ultimately interpreted
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- as a p-predicate if it is deterministic.

- as a Sum(p)-predicate if it is positive.

- as a Prod(p)-predicate if it is negative.

Ultimately, all these predicates can thus be interpreted as DialIfin(p)-predicates thanks to the
embeddings. However, the main purpose of this diagram is to account for the stabilities of posi-
tive/negative/deterministic predicates under various connectives and the definition of the restricted
exponential modalities.

For the second aspect, the restricted exponential modality ? : Sum(p) → Sum(p) arise
from the adjunction ηSum(p) a ∃p outlined in Lemma 5.3.8. It remains to be checked that
∃p : (Sum(p),`,⊥) → (p,∨,⊥) is oplax monoidal. Recalling that p is necessarily preposetal
(so we do not have to care about coherence issues), this amounts to checking that for arbitrary
FOM predicates ϕ(aA, uU ) and ψ(aA, uV ), we have

(∃uU .ϕ(a, u)) ∨ (∃vV .ψ(a, v)) ⇒ ∃(u, v)U×V .ϕ(a, u) ∨ ψ(a, v)

Thankfully, this always hold because the interpretation of every object of Sfin, and a fortiori U and
V , are non-empty (i.e., there exists concrete morphisms 1→ A for every object A of Sfin). Dually,
it can also be shown that the adjunction ∀p a ηProd(p) can be enriched to a LNL-adjunction as
∀p : (Prod(p),⊗, I) → (p,∧, 1) is lax monoidal. It should be stressed that it is only because the
base Sfin has no non-empty sets of global objects that the maps making ∃p and ∀p respectively
oplax and lax monoidal may be defined at all, and that the associated coherence comes down to p
being posetal; either of these requirements is atypical when studying general fibrations.

Finally the stability under polarized connectives of the three subfibrations can be obtained as
straightforward computations, keeping in mind that an object (a : A, u : U, x : X,ϕ(a, u, x)) is
equivalent to

- some I+(Φ) if X ' 1.

- some I−(Φ) if U ' 1.

- some I+(ηSum(p)(Φ)) = I−(ηProd(p)(Φ)) if U ' X ' 1.

However, it is also interesting to note that this connectives also live at the level of the subfi-
bration p,Sum(p) and Prod(p) without necessarily needing to mention DialIfin(p).

- p features the propositional connectives ∧, ∨ and ⇒ which are interpreted as ⊗, ` and(.

- Sum(p) features the monoidal products ⊗ and `, as well as simple sums ∃π.

- Dually, Prod(p) has simple products ∀π in addition to the monoidal products ⊗ and `.

All of these connectives are preserved by the embedding functors ηSum(p), ηProd(p), I+ and I−. The
only polarized connective which is not accounted for by this discussion is the linear arrow (. At
this juncture, it is only a functor DialIfin(p)op × DialIfin(p) → DialIfin(p) which is readily seen to
restrict to maps of objects Prod(p)op ×Sum(p) → Sum(p) and Sum(p)op ×Prod(p) → Prod(p).
Contrary to the situation over DialIfin(p), there is no obvious characterization of these restrictions
as right adjoints to − ⊗ Φ due to a polarity mismatch. In this case, it is helpful to recall the
decomposition of the arrow Φ( Ψ ' (Φ( ⊥)`Ψ of classical linear logic. While this isomorphism
does not hold for full intuitionistic linear logic, this will for poralized predicates. At the level of
semantics, this can be seen as arising from linear negation functors between Sum(p) and Prod(p).

Lemma 7.2.2. Suppose that p is a boolean fibration. There are linear negation functors

(−)⊥ : Sum(p) → Prod(p)op (−)⊥ : Prod(p) → Sum(p)op

such that (−)⊥, ((−)⊥)op are part of equivalence of categories between Sum(p) and Prod(p). Fur-
thermore I+(Φ⊥) ' I+(Φ)( ⊥ and I−(Φ⊥) ' I−(Φ)( ⊥.

Proof. On objects, those functors are defined using by using the same objects for the witnesses/counterwitnesses
and negating the p predicates. Similarly, morphisms, which are in all cases pairs (f, α) of some Sfin

map f : A×U → V and some proof α : ϕ→ ψ in p see formally little changes: the first component
stays the same and the second turns into a proof of the contrapositive ¬ψ → ¬ϕ.

(−)⊥ : Sum(p) → Prod(p)op

(a : A, u : U,ϕ(a, u)) 7→ (a : A, u : U,¬ϕ(a, u))(
f : A× U → V

α : ϕ(a, u)→ ψ(a, f(a, u)))

)
7→

(
f : A× U → V

α̃ : ¬ψ(a, f(a, u))→ ¬ϕ(a, u)

)
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Then, it is fairly easy to check that (a : A, u : U,ϕ(a, u))⊥⊥ = (a : A, u : U,¬¬ϕ(a, u)), and since p
is boolean, there is a unique isomorphism ¬¬ϕ(a, u) ' ϕ(a, u) making both pairs ((−)⊥, ((−)⊥)op)
part of equivalence of fibrations.

With these functors, we can recover the polarized linear arrows (up to isomorphism) by con-
sidering the functor (−)⊥ ` − : Prod(p)op × Sum(p) → Sum(p) and its dual. Summarizing
the discussion above, we obtain the following functors, with the embeddings I+, I−, ηSum(p) and
ηProd(p) preserve all the functors sharing the same notation (up to isomorphism).

DialIfin(p)

Sum(p)

I+

==

∃p

��

(−)⊥

,,
Prod(p)

I−

aa

∀p

��

(−)⊥

ll

p

a a

ηSum(p)

XX

ηProd(p)

FF

−⊗−
−`− : DialIfin(p)2 → DialIfin(p)

Sum(p)2 → Sum(p)
Prod(p)2 → Prod(p)

p2 → p

−( − : DialIfin(p)op ×DialIfin(p) → DialIfin(p)
Prod(p)op ×Sum(p) → Sum(p)
Sum(p)op ×Prod(p) → Prod(p)

pop × p → p

∃π : DialIfin(p)A×B → DialIfin(p)A
Sum(p)A×B → Sum(p)A

∀π : DialIfin(p)A×B → DialIfin(p)A
Prod(p)A×B → Prod(p)A

With this discussion, it is now rather straightforward to interpret LSFOM. Furthermore, all of
the constructions presented here can be carried out very syntactically as we may pick the syntactic
fibration of FOM as p to build J∗(DialIfin(p)). To ground the discussion, let us mention that this
can be seen as a purely syntactic translation. In this syntactic interpretation, a LSFOM formula
ϕ(aAω ) over alphabet A is mapped to a triple

- an alphabet Uϕ of P-moves.

- an alphabet Xϕ of O-moves.

- a FOM-formula ϕD(uU
ω
ϕ , xX

ω
ϕ , aA

ω ) over alphabet Uϕ ×Xϕ ×A.

The precise mapping is given in Figure 7.2, where ev−∗ is abusively used to denote term for a Mealy
machine implementing F (ev−∗) 4. It should come as no surprise that this latest translation is but
a restriction of the translation given in Figure 6.1, up to forgetting the linear structure via the
map b−c. Now proofs of entailments between LSFOM formulas ϕ(a)→ ψ(a) in J∗(DialIfin(p)) can
be regarded as pairs (f, F ) of f.s. causal functions such that

ϕD(u, F (a, u, y), a) ` ψD(f(a, u, consε(Y )(y)), y, a)

is derivable in FOM5. In particular, if ϕ and ψ are both deterministic, we have ϕD = bϕc and
ψD = bψc by a straightforward induction and the entailment ϕ→ ψ holds in J∗(DialIfin(p)) if and
only if ϕ ` ψ is derivable in FOM. As all the additional axioms of LSFOM on top of polarized
double linear negation elimination are deterministic and that their erasure correspond to FOM
axioms, this establishes that the interpretation of Figure 6.1 is sound with respect to LSFOM. This
is formalized through the following theorem.

Theorem 7.2.3. If ϕ(a) ` ψ(a) is derivable in LSFOM, then there exists a pair (f, F ) of finite-
state causal functions such that ϕD(u, F (a, u, y), a) ` ψD(f(a, u, consε(Y )(y)), y, a) is derivable in
FOM.

4There is little noise coming from the change of bases between Sfin and Mealy. This may be explained by the fact
that the I operator does not appear in the alphabets Uϕ and Xϕ, although it plays a crucial rule when interpreting
the cut rules and proofs. This is why the direct definition of this interpretation given in [57] did not mention I for
types but crucially used the notion of eagerness when discussing proofs.

5It should be noted that, officially, not all such f : (A × U × Y )ω → V ω may be part of a J∗(DialIfin(p))-proof
as they should be obtained as the image of some f̃ : Aω × Uω× I Y ω → V ω , meaning that we should have
f ◦ (id× id× eIY ω ) = f . However, as eIY ω ◦ consε(Y ) = id by definition, this is not a limiting factor as any pair
(f, F ) satisfying the entailment above may be safely replaced with f ◦ (id× id× eIY ω , F )
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UI : = U⊥ : = Ut=u : = XI : = X⊥ : = Xt=u : = 1
Uϕ⊗ψ : = Uϕ`ψ : = Uϕ × Uψ
Uϕ(ψ : = U

Uϕ
ψ ×XUϕ×Xψ

ϕ

U∃xBω .ϕ : = Uϕ ×B
U∀xBω .ϕ : = UBϕ
U!ϕ− : = Uϕ− (' 1)
U!ϕ+ : = Uϕ+

U?ϕ− : = Uϕ− (' 1)
U?ϕ+ : = 1

Xϕ⊗ψ : = Xϕ`ψ : = Xϕ ×Xψ

Xϕ(ψ : = Uϕ ×Xψ

X∃xBω .ϕ : = Xϕ

X∀xBω .ϕ : = Xϕ ×B
X!ϕ− : = 1
X!ϕ+ : = Xϕ+ (' 1)
X?ϕ− : = Xϕ−

X?ϕ+ : = Xϕ+ (' 1)

(t(a) = u(a))D(∗, ∗, a) : = t(a) = u(a)
(ϕ⊗ ψ)D((u, v), (x, y), a) : = ϕD(u, x, a) ∧ ϕD(v, y, a)
(ϕ` ψ)D((u, v), (x, y), a) : = ϕD(u, x, a) ∨ ϕD(v, y, a)

(ϕ( ψ)D((f, F ), (u, y), a) : = ϕD(u, ev−∗(F, (u, y)), a)⇒ ϕD(ev−∗(f, u), y, a)
(∃b.ϕ(a, b))D((u, b), x, a) : = ϕD(u, x, (a, b))

(∀b.ϕ(a, b))D(f, x, a) : = ϕD(ev−∗(f, b), x, (a, b))
(!ϕ−)D(∗, ∗, a) : = ∀x.ϕ−D(∗, x, a)
(!ϕ+)D(u, ∗, a) : = ϕ+

D(u, xa)
(?ϕ−)D(∗, x, a) : = ϕ−D(∗, x, a)
(?ϕ+)D(∗, ∗, a) : = ∃u.ϕ+

D(u, ∗, a)

Figure 7.2: The syntactic interpretation of LSFOM in FOM.

It should be stressed that the interpretation of proofs underlying Theorem 7.2.3 is computa-
tionally straightforward: terms for the pair of finite-state causal functions may be read off in linear
time from the proof tree in LSFOM. Of course, one should also keep in mind that the state space
of the underlying Mealy machine might not be linear in the size of the terms due to the use of
pairing and composition.

If we are interested in realizing a single formula with no free variables, the statement of
Theorem 7.2.3 may be simplified. In such a case, by taking the antecedent to be I and con-
clusion ϕ, the second component of the pair (f, F ) is trivial while f : Xω → Uω must sat-
isfy ∀xXωϕD(f(consε(X)(x)), x). But this is equivalent to having an eager f.s. causal function
g : Xω → Uω such that ∀xXωϕD(g(x), x): given f , g is obtained as f ◦ consε(X) and conversely,
for every eager g and letter x ∈ X there exists f such that g = f ◦ consx. We therefore have the
following:

Corollary 7.2.4. For any LSFOM sentence ϕ, if LSFOM ` ϕ, then there exists an eager f.s.
function f : Xω

ϕ → Uωϕ such that FOM ` ∀x.ϕD(f(x), x).

Theorem 7.2.3 is ultimately a syntactic version of Theorem 4.3.4, whose proof we had postponed;
the latter is now easily derivable from the former by noticing that, for any LSFOM predicates ϕ(a)
and ψ(a), we have Jϕ(a)K  Jψ(a)K if and only if there exists a pair (f, F ) of f.s. functions such
that ϕD(u, F (a, u, y), a) ` ψD(f(a, u, consε(Y )(y), y, a); this is proven by induction over the syntax
of ϕ and ψ by inspecting the translation into alternating uniform automata and FOM predicates.
Let us also note that thanks to this syntactic Dialectica-like interpretation, we could have also
derived soundness of LSFOM with respect to Church’s synthesis (Lemma 4.3.6) without referring
to the alternating automata model of Chapter 4.

7.3 A complete extension of LSFOM
Now, as advertised in the introduction, we leverage the characterization theorem proved in Chap-
ter 6 to give an extension LSFOM+ of LSFOM which is sound with respect to J∗(DialIfin(p) (as well
as the automata model of Chapter 4) and complete. What this means can be understood in two
ways, which are equivalent via the Büchi-Landweber theorem (Theorem 2.3.1).

- For every sentence ϕ, if ϕ is valid in J∗(DialIfin(p), then LSFOM+ ` ϕ.

- For every sentence ϕ, either LSFOM+ ` ϕ or LSFOM+ ` ϕ( ⊥.

We privilege the latter characterization in the sequel.
LSFOM+ is formally defined as the system
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Linear semi-intuitionistic principles (LSIP) (where a is not free in ψ)

∀a (ϕ−(a)⊗ ψ−) ( (∀a ϕ−(a))⊗ ψ−
∀a (ϕ−(a) ` ?ψ−) ( (∀a ϕ−(a)) ` ψ−

(∃a ϕ(a)) ` ψ ( ∃a (ϕ(a) ` ψ)
ψ−( ∃a ϕ−(a)) ( ∃a (ψ−( ϕ−(a))
(∀a ϕ±(a))( ψ± ( ∃a (ϕ±(a)( ψ±)

Linear synchronous axiom of choice (LSAC)

∀aAω ∃bBω ϕ(a, b) ( ∃f (BA)ω ∀aAω ϕ(a, ev−∗(f, a))

Figure 7.3: Additional axioms of LSFOM+

- whose formulas are the same as LSFOM (Figure 4.1)

- whose basic deduction rules are the same as LSFOM (Figure 4.2)

- whose axioms are those of LSFOM (Figure 4.3) augmented with the axioms of Figure 7.3
corresponding to suitable restrictions of the axioms LSIP and LSAC (given in Definition 6.3.1)
to the formulas of LSFOM. It should be noted that the suitable restriction to SDEXP and
PEXP clauses already appear in the axiomatization of LSFOM in the more general forms
ϕ+ ( !ϕ+ and ?ϕ−( ϕ−..

Given that the soundness of those additional axioms in the fibration J∗(DialIfin(p)) may be
established by a straightforward adaptation of Theorem 6.3.2, we readily admit the following
extension of Corollary 7.2.4 to LSFOM+.

Theorem 7.3.1. For any LSFOM sentence ϕ, if LSFOM+ ` ϕ, then there exists an eager f.s.
function f : Xω

ϕ → Uωϕ such that FOM ` ∀x.ϕD(f(x), x).

At this point, we can forget about the models and concentrate on proving completeness for
LSFOM+. To this end, we consider the translation of formulas outlined in Figure 6.1, restricted to
the language of LSFOM+. We do not repeat the figure as our official definition for ϕD is nothing
but the (−)L-translation of the definition given in Figure 7.2. Replaying the proof of Theorem 6.3.3
to LSFOM+, we obtain the following characterization theorem.

Theorem 7.3.2. For any LSFOM formula ϕ(a), LSFOM+ proves the linear equivalence

ϕ(a) ˛ ∃uU
ω

.∀xX
ω

.ϕD(u, x, a)

where U = Uϕ and X = Xϕ.

Noting in particular that ϕD = bϕDcL, this latest theorem is the key statement that allow to
derive the completeness of LSFOM+ thanks to the Büchi-Landweber theorem. Before proceeding,
we first need to prove a couple of crucial properties. First and foremost, we show that LSFOM+

admits double linear negation elimination. This is not an official axiom of LSFOM+, although it is
valid in the models we considered (Theorem 6.2.16).

Theorem 7.3.3. For any formula ϕ, LSFOM proves ((ϕ( ⊥)( ⊥)( ϕ.

Proof. We use Theorem 7.3.2 for the formula ((ϕ( ⊥)( ⊥)( ϕ. Thus, it suffices to show that
LSFOM+ derives

∃(f, F )∀(h, x)
(
ϕD(ev−∗(h, ev−∗(F, (a, h, x))), ev−∗(F, (a, h, x)), a) ( ϕD(ev−∗(f, (a, h)), x, a)

)
which is easy if there exists functions f : UXU → U and F : UXU×X → XU such that h(F (h, x)) =
f(h) and F (h, x) = x for every h and x. Such functions are exhibited in the proof of Theorem 6.2.16.

A corollary of Theorem 7.3.3 is that derivation of classical linear logic are admissible in LSFOM+.
In particular, it means that we may dualize all of is theorems.
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Corollary 7.3.4. The following is derivable in LSFOM+ for any formula ϕ(a, b)

∀f (BA)ω .∃aA
ω

.ϕ(a, ev−∗(f, a)) ` ∃aA
ω

.∀bB
ω

.ϕ(a, b)

Proof. Dualize the axiom LSAC thanks to Theorem 7.3.3.

Lemma 7.3.5. For any formula ϕ(a, b) and a term t(a) whose denotation is a eager f.s. function
Aω → Bω, the following is derivable in LSFOM+

∀aA
ω

.ϕ(a, t(a)) ` ∃bB
ω

.∀aA
ω

.ϕ(a, b)

Proof. Thanks to Corollary 7.3.4, it suffices to show

∀aA
ω

.ϕ(a, t(a)) ` ∀g(AB)ω .∃bB
ω

.ϕ(ev−∗(g, b), b)

to conclude. Now consider the equation

h(g) = JtK(ev−∗(g, h(g)))

for h a f.s. causal function (AB)ω → Bω. Thanks to Lemma 2.1.9, there is a unique h satisfying
this equation. Consider a term h(g) such that JhK = h. Then LSFOM proves that

∀g(AB)ω .h(g) = t(ev−∗(g, h(g)))

Now assume that ∀aAω .ϕ(a, t(a)) holds and that fix g; it suffices to show that ϕ(ev−∗(g, h(g)), h(g))
holds. Instanciating our hypothesis with a = ev−∗(g, h(g)), we have ϕ(ev−∗(g, h(g)), t(ev−∗(g, h(g)))),
which is what we want up to the provable equation above.

We are now ready to prove the completeness theorem.

Theorem 7.3.6. Let ϕ be a LSFOM sentence. Then either LSFOM+ ` ϕ or LSFOM+ ` ϕ( ⊥.

Proof. Let ϕ be a closed LSFOM-formula and ϕD(u, x) be the body of its Dialectica interpretation.
We apply Büchi-Landweber Theorem 2.3.1 to the FOM-formula bϕD(u, x)c. There are two cases.

- Either there exists an eager term u(x) denoting an eager f.s. causal function Xω → Uω such
that (∀b)¬bϕD(u(b), b)c holds. We then proceed as follows.

FOM ` b¬ϕD(u(x), x)c
LSFOM ` b¬ϕD(u(x), x)cL By Lemma 4.1.6
LSFOM ` ϕD(u(x), x)( ⊥ Since b¬ϕD(u(x), x)cL = ϕD(t(x), x)
LSFOM ` ∀x.ϕD(u(x), x) ∀-right
LSFOM+ ` ∃u.∀x.ϕD(u, x) By Lemma 7.3.5, since t(x) is eager
LSFOM+ ` ϕ By Characterization (Theorem 7.3.2)

- Otherwise, there exists a term x(u) denoting a f.s. causal function Uω → Xω such that
(∀uτ )¬bϕD(u, x(u))c holds. Note that

¬bϕD(u, x(u))c = bϕD(u, x(u))( ⊥c

We then conclude as follows.

FOM ` bϕD(u, x(u))( ⊥c
LSFOM ` bϕD(u, x(u))( ⊥cL By Lemma 4.1.6
LSFOM ` ϕD(u, x(u))( ⊥ Since b¬ϕD(u, x(u))cL = ϕD(u, x(u))( ⊥
LSFOM ` ∃x.ϕD(u, x)( ⊥ ∃-right
LSFOM ` ∀u.∃x.ϕD(u, x)( ⊥) ∀-right
LSFOM+ ` ∃g(UX)ω .∀uUωϕD(u, ev−∗(g, u))( ⊥ By (LSAC)
LSFOM+ ` ∃g(UX)ω .∀uUω (ϕ( ⊥)D(u, g)
LSFOM+ ` ϕ( ⊥ By Characterization (Theorem 7.3.2)
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Part II

Proof-theoretic strength of MSO(ω)
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This part of the thesis is meant to take a complementary approach to the question of con-
structivity of MSO over ω. While part I was concerned with studying weak enough subsystems of
MSO(ω) to obtain effective witnessing properties, this second part is concerned with the founda-
tional strength necessary to characterize the classical theory of MSO(ω). To do so, we study the
decidability argument for MSO(ω) through the lens of Reverse Mathematics, a research programme
launched by Friedman whose purpose is to classify the strength of various everyday mathematical
statement in terms of subsystems of second-order arithmetic.

Our findings are as follows: firstly, determinisation of infinite word automata is no stronger than
complementation, at least in the sense of implication over RCA0. Secondly, decidability of MSO
over (N,≤) implies both complementation and determinisation. Finally, the use of Ramsey- or
König-like principles in proofs of Büchi’s theorem is mostly spurious in the sense that the versions
that are actually needed follow from a very limited set-existence principle, namely mathematical
induction for properties expressed by Σ0

2 formulae. More precisely, we prove:

Theorem 7.3.7. Over RCA0, the following statements are equivalent:

1. the principle of mathematical induction for Σ0
2 formulae (denoted Σ0

2-IND),

2. the Additive Ramsey Theorem over N (see Definition 8.1.3),

3. complementation for Büchi automata: there exists an algorithm which for each nondetermin-
istic Büchi automaton A outputs a Büchi automaton B such that for every infinite word α,
B accepts α exactly if A does not accept α,

4. the decidability of the depth-n fragment of the MSO theory of (N,≤) (where n ≥ 5 is a natural
number).

Furthermore, each of 1.–4. implies:

5. determinisation of Büchi automata: there exists an algorithm which for each nondeterministic
Büchi automaton A outputs a deterministic Rabin automaton B such that for every infinite
word α, B accepts α exactly if A accepts α.

Büchi’s decidability theorem admits several generalizations. The most important one, due to
Rabin [59] states that the MSO theory of the infinite binary tree is decidable. The proof goes
through a translation to tree automata. As in Büchi’s decidability theorem, the crucial step is
to show that tree automata may be effectively complemented. Similarly, while the proof yields a
complementation algorithm, the proof of soundness of this alogrithm is highly non-constructive:
it relies crucially on the the determinisation theorem (5 above) and the positional determinacy of
parity games. As shown in [41], Rabin’s theorem is much stronger than Büchi’s from the point
of view of Reverse Mathematics. This motivates the quest for intermediate cases: are there any
structure whose MSO theory

- interprets MSO over (N, <)

- is interpreted in MSO over the full binary tree

- whose decidability is not provable from Büchi’s theorem and does not prove Rabin’s theorem?

A class of natural candidates is given by countable linear orders. As all linear orders embedd into
Q, it is therefore natural to ask for the axiomatic strength of the decidability theorem for MSO
over Q. Although we do not settle the question, it exhibits lower bounds showing that proving the
decidability of MSO over countable orders require strictly more strength than Büchi’s decidability
theorem. We also investigate the additive Ramsey theorem over Q, a core ingredient in Shelah’s
deciability proof [63] of MSO over Q; we show it to be equivalent to the “shuffle lemma” from [14]
and Σ0

2-IND. This also answers Question 5.5 raised in [24].
Chapter 8 gives a short introduction to Reverse Mathematics and the basic Ramsey-like prin-

ciples studied afterwards. The bulk of the material of this part is contained in Chapter 9, which
offers a rather precise Reverse Mathematical characterization of Büchi’s decidability theorem and
related automata-theoretic theorems. Finally Chapter 10 discusses our preliminary investigation
into the axiomatic strength of MSO over the rationals and open questions.

This work was done in collaboration with Leszek Kołodziejczyck, Henryk Michalewski and
Michał Skrzypczak. Chapter 9 incorporates large parts of a joint paper [42].
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Chapter 8

Background on reverse
mathematics, finite semigroups
and Ramsey theory

8.1 Preliminaries related to Ramsey theory

8.1.1 Ordered Ramsey principle
Given a set X, write [X]2 for the set of unordered pairs of X, that is, the subset of P(X) containing
sets of cardinalities exactly 2. When X is a subset of a totally ordered set such as N, we will
sometimes identify elements of [X]2 with pairs (x, y) ∈ X2 such that x < y.

Definition 8.1.1. Ordered Ramsey’s Theorem for pairs states that if (P,�) is a finite partial
order and C : [N]2 → P is a colouring such that for every i<j<k we have C(i, j) � C(i, k), then
there exists an infinite homogeneous set I ⊆ N, i.e. C(i, j) = C(i′, j′) for all (i, j), (i′, j′) ∈ [I]2.

8.1.2 Additive Ramsey principles
Ramsey-style principles play an important rôle in proofs of decidability of MSO over various infinite
structures. In the context of linear orders, we are interested mainly in the following two additive
Ramsey Theorems, which assumes a semigroup structure on the set of colours:

- the additive Ramsey Theorem over N (which easily generalizes to any countable ordinal),
postulating the existence of an unbounded homogeneous set,

- the additive Ramsey Theorem over Q (and other dense orders), postulating the existence of
an interval with a dense homogeneous subset.

In [42], we showed that additive Ramsey over N is equivalent to Σ0
2-IND, which is exactly

the principle needed to prove complementation for Büchi automata and thus the decidability of
each fixed-depth fragment of MSO over N. Below, we show that additive Ramsey over Q and a
related principle are also equivalent to Σ0

2-IND. This time, however, the equivalence will imply
that additive Ramsey over Q is much weaker than the axioms needed to prove decidability of MSO
over Q.

8.1.3 Additive Ramsey over N
Definition 8.1.2. Let (P,≤P ) be an order and (S, ·) a finite semigroup. Let α : [P ]2 → S.
If e is the neutral element of S1, we extend α by setting α(x, x) = e for every x ∈ P . The
colouring α is called additive if and only if for all x, y, z ∈ P satisfying x ≤P y ≤P z we have
α(x, y) · α(y, z) = α(x, z).

Note that if a set H ⊆ P has at least 2 elements and is homogeneous for an additive colouring
α, i.e. for some e ∈ S we have α(x, y) = e for all (x, y) ∈ [H]2, then e is an idempotent in the
semigroup S.
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Definition 8.1.3 (Additive Ramsey’s Theorem). Additive Ramsey’s Theorem is the following
statement: for every finite semigroup (S, ∗) and every colouring C : [N]2 → S such that for every
i<j <k we have C(i, j) ∗ C(j, k) = C(i, k), there exists an infinite homogeneous set I ⊆ N. That
is, there is a fixed colour a such that for every (i, j) ∈ [I]2, C(i, j) = a.

8.1.4 Ramseyan principles over Q

In [63], one of the critical combinatorial lemmas in the proof of decidability of MSO over Q is
an additive Ramsey Theorem over Q. In [14], that theorem does not make an appearance, but a
principle which we call the Shuffle Lemma takes its place.

Definition 8.1.4. The additive Ramsey Theorem over Q is the following statement (originally
proved in [63]): “for any finite semigroup S and any additive colouring α : [Q]2 → S, there exists
a homogeneous set H which is dense in ]x, y[ for some x < y ∈ Q”.

Given a linear order (P,≤P ) and a function α : P → Σ, we say that a value a ∈ Σ occurs
densely in α if for every x, y ∈ P there exists z ∈]x, y[ such that α(z) = a. We call α a shuffle if
and only if for every a ∈ Σ, either a is not in the image of α or a occurs densely in α. If the image
of α is some set X, we say that α is an X-shuffle. We say that α contains a shuffle if there exist
x, y ∈ P with x < y such that α

∣∣
]x,y[ is a shuffle.

Definition 8.1.5. The Shuffle Lemma is the following statement: “for every α : Q → Σ with Σ
finite, α contains a shuffle.”

8.2 Basics of Reverse Mathematics
Reverse mathematics [68] is a framework for studying the strength of axioms needed to prove
theorems of countable mathematics, that is, the part of mathematics concerned with objects that
can be represented using no more than countably many bits of information. This typically means
integers, sets of integers and real numbers.

The basic idea of reverse mathematics is to analyse mathematical theorems in terms of sub-
systems of a strong axiomatic theory known as second-order arithmetic. The two-sorted language
of second-order arithmetic, L2, contains first-order variables x, y, z, . . . (or i, j, k, . . .), intended to
range over natural numbers, and second-order variables X,Y, Z, . . ., intended to range over sets
of natural numbers. L2 includes the usual arithmetic functions and relations +, ·,≤, 0, 1 on the
first-order sort, and the ∈ relation which has one first-order and one second-order argument.

The language L2 is very expressive: already in weak fragments of Z2, the first-order sort can be
used to encode arbitrary finite objects and the second-order sort can encode even such objects as
complete separable metric spaces, continuous functions between them, and Borel sets within them
(cf. [68, Chapters II.5, II.6, and V.3]). Moreover, the theory Z2 is powerful enough to prove almost
all theorems from a typical undergraduate course that are expressible in L2. In fact, the basic
observation underlying reverse mathematics [68] is that many important theorems are equivalent
to various fragments of Z2, where the equivalence is proved in some specific weaker fragment,
referred to as the base theory.

Remark. In this part, all models under consideration are Tarski models. A model for L2 is given
by a tuple (X,Y,+,×, 0X , 1X) where X interprets the natural numbers and Y ⊆ P(X) interprets
sets of natural numbers. The standard model of L2 is (ω,P(ω),+, ·, <, 0, 1).

Notational convention. From this point onwards, we will use the letter N to denote the
natural numbers as formalised in second-order arithmetic, that is, the domain of the first-order
sort. On the other hand, the symbol ω will stand for the concrete, or standard, natural numbers.
For instance, given a theory T and a formula ϕ(x), “T proves ϕ(n) for all n ∈ ω” will mean
“T ` ϕ(0),T ` ϕ(1), . . .”, which does not imply T ` ∀x∈N. ϕ(x).

8.3 Full second-order arithmetic
Full second-order arithmetic, Z2, has axioms of three types ([68][Definition I.2.4]):
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1. axioms pertaining to the basic (in)equational properties of natural numbers, the operations
+, · and the order.

n+ 1 6= 0
n+ 1 = m+ 1⇒ n = m
m+ 0 = m
m+ (n+ 1) = (m+ n) + 1
m · 0 = 0
m · (n+ 1) = (m · n) +m
¬m < 0
m < n+ 1⇒ m = n ∨m < n

2. comprehension axioms for each ϕ(x) is an arbitrary formula of L2 not containing the variable
X but possibly other parameters; they state that there exists a set containing exactly the
numbers n ∈ N such that ϕ(n).

∀Ȳ ∀ȳ ∃X ∀x
(
x ∈ X ⇔ ϕ(x, Ȳ , ȳ)

)
,

3. induction axioms for each ϕ(x) (possibly with other parameters).

∀Ȳ ∀ȳ ϕ(0, Ȳ , ȳ) ∧ (∀n (ϕ(n, Ȳ , ȳ)⇒ ϕ(n+ 1, Ȳ , ȳ)))⇒ ∀nϕ(n, Ȳ , ȳ)

Quantifier hierarchies. Typical fragments of Z2 are defined in terms of quantifier hierarchies
whose definitions we now recall. A formula is Σ0

n if it has the form ∃x̄1 ∀x̄2 . . . Qx̄n. ψ, where
the x̄i’s are blocks of first-order variables, the shape of Q depends on the parity of n, and ψ is
∆0

0, i.e. contains only bounded first/̄order quantifiers. A formula is Π0
n if it is the negation of

a Σ0
n formula. A formula is arithmetical if it contains only first-order quantifiers (second-order

parameters are allowed).
A formula is Σ1

n if it has the form ∃X̄1 ∀X̄2 . . .QX̄n. ψ, where the X̄i’s are blocks of second-
order variables, the shape of Q depends on the parity of n, and ψ is arithmetical. A formula is Π1

n

if it is the negation of a Σ1
n formula.

In practice, we say that a formula is Σin/Πi
n if it equivalent to a Σin/Πi

n formula in the axiomatic
theory we are working in at a given point.

The Σ0
n-IND scheme. In the sequel we study a extensions of RCA0 obtained by strengthening

the induction scheme to formulae beyond Σ0
1. In general, for n∈ω, the axiom scheme Σ0

n-IND is
defined like Σ0

1-IND, but with the induction formula ϕ allowed to be Σ0
n rather than just Σ0

1. For
each n, RCA0 + Σ0

n-IND is equivalent to RCA0 + Π0
n-IND, where the latter is defined in the natural

way, as well as to the least number principle for Σ0
n or Π0

n formulae (cf. [68, Chapter II.3]).
Two important principles provable from Σ0

n-IND are Σ0
n-collection:

∀Z̄ ∀z̄
[
∀x≤ t∃y. ϕ(x, y, Z̄, z̄)

]
⇒ ∃w ∀x≤ t∃y≤w.ϕ(x, y, Z̄, z̄),

for ϕ in Σ0
n, and bounded Σ0

n-comprehension:

∀Ȳ ∀ȳ ∀w ∃X ∀x (x ∈ X ⇔ x ≤ w ∧ ϕ(x, Ȳ , ȳ)),

for ϕ in Σ0
n. The combination of the two yields strong Σ0

n-collection:

∀Z̄ ∀z̄ ∀t∃w ∀x≤ t
[
∃y. ϕ(x, y, Z̄, z̄)⇒ ∃y≤w.ϕ(x, y, Z̄, z̄)

]
.

For each n, the theory RCA0 + Σ0
n+1-IND is strictly stronger than RCA0 + Σ0

n-IND (cf. e.g.
[26, Theorem IV.1.29]). However, note that the minimal model (ω,Dec) of RCA0 satisfies RCA0 +
Σ0
n-IND for all n, because an induction axiom is always true in a model with first-order universe

ω.

Definition of RCA0. The usual base theory in reverse mathematics is RCA0, which guarantees
only the existence of decidable sets. RCA0 is defined by restricting the comprehension scheme to
∆0

1-comprehension, which takes the form:

∀Ȳ ∀ȳ
[
∀x (ϕ(x, Ȳ , ȳ)⇔ ¬ψ(x, Ȳ , ȳ))⇒ ∃X ∀x (x ∈ X ⇔ ϕ(x, Ȳ , ȳ))

]
,

where both ϕ and ψ are Σ0
1 and do not contain X. For technical reasons, it is necessary to

strengthen the induction axiom to Σ0
1-IND, that is, the axiom scheme consisting of the sentences

∀Ȳ ∀ȳ
[
ϕ(0, Ȳ , ȳ) ∧ ∀x

(
ϕ(x, Ȳ , ȳ)⇒ ϕ(x+ 1, Ȳ , ȳ)

)
⇒ ∀x. ϕ(x, Ȳ , ȳ)

]
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for ϕ in Σ0
1. The scheme Σ0

1-IND makes it possible to define sequences by primitive recursion
(cf. [68, Theorem II.3.4]): given some x0 and a function f : N → N, RCA0 proves that there is a
unique sequence (xi)i∈N such that xi+1 = f(xi) for each i.

RCA0 has a unique minimal model in the sense of embeddability. This minimal model is
(ω,Dec), where Dec is the family of decidable subsets of ω.

The big five Reverse Mathematics classifies the strength of theorems by comparing them
against the axiomatic power of subsystems of arithmetic. It turned out that plenty theorems of
mathematics formalized in second-order arithmetic happen to be equivalent, over the weak base
theory RCA0, one of five subsystems of arithmetic, the so-called big five, given here by order of
increasing strength:

- WKL0 is RCA0 extended with Weak König’s Lemma, which states that every infinite bi-
nary tree admits an infinite branch. In particular, WKL0 implies that there exists a non-
computable set.

- ACA0 (Arithmetical Comprehension Axiom) extends RCA0 by allowing comprehension for
Σ0

1 formulas. This imply in particular that comprehension and induction also hold for all
arithmetical formulas.

- ATR0 (Arithmetical Transfinite Recursion) extends ACA0 by allowing transfinite constructin
over well-orders; we dispense with giving the formal definition of ATR0 as we shall not
encounter it again in the sequel.

- Π1
1-CA0 extends ACA0 with the comprehension scheme for Π1

1 formulas.

Additive Ramsey and Bounded-width König. Two prominent extensions of RCA0 are
related to weak forms of important nonconstructive set existence principles: König’s Lemma and
Ramsey’s Theorem.

Weak König’s Lemma is the statement: “for every k, every infinite tree contained in {0, 1, . . . , k}∗
has an infinite branch”. The theory obtained by adding this statement to RCA0 is known as WKL0.
This is the minimal theory supporting all sorts of “compactness arguments” in combinatorics,
topology, analysis, and elsewhere (cf. [68, Chapter IV]).

The theory RT2
2 extends RCA0 by an axiom expressing Ramsey’s Theorem for pairs and two

colours1: “for every 2-colouring of [N]2 there exists an infinite homogeneous set”. RT2
<∞ is defined

similarly but allowing k-colourings for each k ∈ N.
Both RT2

2 and RT2
<∞ are known to be incomparable with WKL0 in the sense of implication

over RCA0 [30, 46]. WKL0, RT2
2, and RT2

<∞ are all false in the minimal model (ω,Dec) of RCA0,
see [37, 43]. Much more on these theories can be found in [29].

In this paper, we study specific restricted versions of RT2
<∞ and WKL0 which play a role

in proofs of Büchi’s theorem. Recall that a semigroup is a set S with an associative operation
∗ : S × S → S.

Definition 8.3.1 (Bounded-width König’s Lemma). Bounded-width König’s Lemma is the fol-
lowing statement: for every finite set Q and every graph G whose vertices belong to Q × N and
whose edges are all of the form ((q, i), (q′, i+ 1)) for some q, q′ ∈ Q, i ∈ N, if there are arbitrarily
long finite paths in G starting in some vertex (q, 0), then there is an infinite path in G starting in
(q, 0).

Notice that Bounded-width König’s Lemma applied to a graph G is essentially the same as
Weak König’s Lemma applied to the tree obtained by the so-called unraveling of G (in particular,
Bounded-width König’s Lemma is provable in WKL0). However, we feel that the graph formulation
is more natural to express.

Some restrictions of Weak König’s Lemma equivalent to the Bounded-width version have been
independently studied in [69]

1By [X]2 we denote the set of unordered pairs of elements of X.
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Chapter 9

Büchi’s decidability theorem

We carry out a reverse-mathematical study of the results around Büchi’s theorem. We have two
main aims in mind. One is to compare complementation, determinisation and decidability of MSO
in terms of logical strength. The other aim is to clarify the role of Ramsey’s Theorem and König’s
Lemma in proofs of Büchi’s theorem and the related facts about automata. This seems interesting
in light of the fact that the usual formulation of Ramsey’s Theorem for pairs and the so-called
Weak König’s Lemma (the form of König’s Lemma most commonly needed in practice) are known
to be incomparable over RCA0 [30, 46].

Our findings are as follows: firstly, determinisation of infinite word automata is no stronger than
complementation, at least in the sense of implication over RCA0. Secondly, decidability of MSO
over (N,≤) implies both complementation and determinisation. Finally, the use of Ramsey- or
König-like principles in proofs of Büchi’s theorem is mostly spurious in the sense that the versions
that are actually needed follow from a very limited set-existence principle, namely mathematical
induction for properties expressed by Σ0

2 formulae.

Theorem 7.3.7. Over RCA0, the following statements are equivalent:

1. the principle of mathematical induction for Σ0
2 formulae (denoted Σ0

2-IND),

2. the Additive Ramsey Theorem over N (see Definition 8.1.3),

3. complementation for Büchi automata: there exists an algorithm which for each nondetermin-
istic Büchi automaton A outputs a Büchi automaton B such that for every infinite word α,
B accepts α exactly if A does not accept α,

4. the decidability of the depth-n fragment of the MSO theory of (N,≤) (where n ≥ 5 is a natural
number).

Furthermore, each of 1.–4. implies:

5. determinisation of Büchi automata: there exists an algorithm which for each nondeterministic
Büchi automaton A outputs a deterministic Rabin automaton B such that for every infinite
word α, B accepts α exactly if A accepts α.

We also give a precise statement of the bounded-width form of König’s Lemma often used in
proofs of Item 5., and show that it is implied by each of 1.–4. Interestingly, it is not clear if 5.
implies 1.–4. over RCA0: standard arguments used to complement deterministic automata with
acceptance conditions other than Büchi seem to involve Σ0

2-IND.
It follows from our results that Büchi’s theorem is unprovable in RCA0, but only barely: it is true

in computable mathematics, in the sense that the theorem remains valid if all the set quantifiers
are restricted to range over (exactly) the decidable subsets of N. This is in stark contrast to the
behaviour of Rabin’s theorem on the decidability of MSO on the infinite binary tree, which is known
to require the existence of extremely complicated noncomputable sets [41]. Also Additive Ramsey’s
Theorem and Bounded-width König’s Lemma are true in computable mathematics—quite unlike
more general forms of Ramsey’s Theorem for pairs and König’s Lemma [37, 43].

To prove the implication (4→ 1) of Theorem 7.3.7, we come up with a family of MSO sentences
for which truth in (N,≤) is undecidable if Σ0

2-IND fails. The other implications are proved by
formalising more or less standard arguments from automata theory. In some cases this is routine,
but especially the proof of (1 → 5) is quite delicate: we have to check not only that Σ0

2-IND
implies Bounded-width König’s Lemma, but also that constructing the objects to which we apply
the lemma is within the means of RCA0.
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Related work As mentioned above, this work may considered as a sequel to the analysis of
Rabin’s theorem in [41], which assumed that Büchi’s theorem was provable in ACA0. This fact
is also used in A. Simpson’s analysis of cyclic arithmetic [67] : there it is shown that Peano’s
arithmetic extended with cyclic proofs is conservative over Peano’s arithmetic by exploiting the
conservativity of ACA0 over first-order Peano’s arithmetic and the complementation theorem. Das
refined this result to subsystems with limited induction thanks to our finer-grained result in [20].
He also extended our work by showing that (5) is not provable in RCA0. Some care is required
in formulating the result as the notion of Rabin acceptance is fragile in absence of Σ0

2-IND. Fur-
thermore, his result assumes that the determinization algorithm is given externally, i.e. as some
concrete code at the meta-level. These hypotheses are rather benign: this decisevely show that our
proof of 5 or any similar endeavour in adapting a known proof of soundness for a determinization
procedure cannot be carried out in RCA0.

Another study of the strength of Büchi’s theorem with respect to constructive logic was also
carried out in [45]. This paper is accompanied by a mechanization in the Coq proof assistant
whose metatheory is an extension of Martin-Löf type theory enjoying a strong extraction property.
In particular, it means that the standard interpretation of MSO(ω) therein has no reason to be
the same as the classical theory of MSO(ω) without requiring additional axioms, such as excluded
middle. One of the major contribution of [45] is establishing the equivalence between excluded
middle for MSO(ω), the Additive Ramsey theorem and the complementation theorem for Büchi
automata in Coq. This results complements ours as the restriction on the metatheory of Coq and
RCA0 are somewhat orthgonal to one another: RCA0 admits all instances of excluded middle while
Coq rejects a Σ0

1 instance. On the other hand, Coq admits induction for all formulas, while RCA0
is limited to Σ0

1-IND.
Finally, S. Simpson and Yokoyama [69] have independently studied various weak forms of Weak

König’s Lemma, including principles they call WKL(w-bd) and WKL(ext-bd) that can be seen to
be equivalent to Bounded-width König’s Lemma over RCA0. They also prove that Σ0

2-IND implies
these principles, and have some results on circumstances under which the implication reverses (it
cannot reverse in general due to the incomparability of Σ0

2-IND and WKL0).

9.1 Σ0
2-IND implies Additive Ramsey

The aim of this section is to prove the following proposition, which is implication 1→ 2 of Theorem
7.3.7.

Proposition 9.1.1. Over RCA0, Σ0
2-IND implies Additive Ramsey’s Theorem.

The proof of Proposition 9.1.1 consists of two steps. First, we prove another weakening of
Ramsey’s Theorem.

Definition 9.1.2. Ordered Ramsey’s Theorem for pairs states that if (P,�) is a finite partial
order and C : [N]2 → P is a colouring such that for every i<j<k we have C(i, j) � C(i, k), then
there exists an infinite homogeneous set I ⊆ N, i.e. C(i, j) = C(i′, j′) for all (i, j), (i′, j′) ∈ [I]2.

It will follow from Lemma 9.1.3 below and the proof of Proposition 9.6.1 in Section 9.6 that
Ordered Ramsey’s Theorem is equivalent to its restriction to linear orders, and thus to the case
where P is {0, . . . , n} for some n ∈ N and � is the usual ordering. Note also that the theorem
follows immediately from the so-called Stable Ramsey’s Theorem SRT2

<∞ (cf. [29, Sections 6.4
and 6.8]), where the requirement on C is only that C(i, ·) should stabilise for each i.

Lemma 9.1.3. Over RCA0, Σ0
2-IND proves Ordered Ramsey’s Theorem.

Proof. We call a colour p ∈ P recurring if ∀i ∃k > j > i. C(j, k) = p. Notice that for each non-
recurring colour p there exists ip such that there is no occurrence of p to the right of ip (i.e. no
k > j > ip such that C(j, k) = p). By an application of strong Σ0

2-collection we obtain some i0
such that for every non-recurring colour p and every k > j > i0 we have C(j, k) 6= p. In particular,
there is a recurring colour. Moreover, being a recurring colour is a Π0

2 property, so by Σ0
2-IND we

can find a �-minimal recurring colour p0.
We now define a sequence (ui, vi)i∈N by primitive recursion on i. Let (u0, v0) be some pair such

that i0 < u0 < v0 and c(u0, v0) = p0. Now assume that u0 < v0 ≤ u1 < v1 . . . ≤ ui < vi have
been defined, {u0, . . . , ui} is homogeneous with colour p0, and C(ui, vi) = p0. Let (ui+1, vi+1) be
the smallest pair such vi ≤ ui+1 < vi+1 and C(ui+1, vi+1) = p0. Such a pair exists because p0 is
recurring. We know that C(ui, ui+1) = p0, since on the one hand C(ui, ui+1) � C(ui, vi) = p0,
and on the other hand ui > i0 and thus C(ui, ui+1) is a recurring colour, so it cannot be �-strictly
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smaller than p0. Similarly, for j < i we know that C(uj , ui+1) = p0 because C(uj , ui+1) � p0 and
uj > i0. Therefore, the set {ui | i ∈ N} is homogeneous for C.

Before proceeding to prove the additive version of Ramsey’s Theorem, we recall a few basic facts
about finite semigroups we shall use in our proof. The facts are proved by elementary combinatorial
arguments which readily formalise in RCA0. The proofs can be found for instance in [54].

Definition 9.1.4. Green preorders over a semigroup S are defined as follows

- s ≤R t if and only if s = t or s ∈ t ∗ S = {t ∗ a | a ∈ S},

- s ≤L t if and only if s = t or s ∈ S ∗ t = {a ∗ t | a ∈ S},

- s ≤H t if and only if s ≤R t and s ≤L t,

- ≤J is the transitive closure of the union of ≤R and ≤L.

The associated equivalence relations are written R, L, H, J ; their equivalence classes are called
respectively R, L, H, and J -classes.

Lemma 9.1.5. For every finite semigroup S and s, t ∈ S, s ≤L t and s R t implies s H t.

Lemma 9.1.6 ([54, Proposition 2.4]). If (S, ∗) is a finite semigroup, H ⊆ S an H-class, and some
a, b ∈ H satisfy a ∗ b ∈ H then for some e ∈ H we know that (H, ∗, e) is a group.

Now we can prove the main result of the section.
Proof of Proposition 9.1.1. Let a colouring C take values in the finite semigroup (S, ∗) and satisfy
the additivity condition of Definition 8.1.3. For every position i and every k ≥ j > i, let us observe
that C(i, k) ≤R C(i, j). Let r be the function mapping every element of S to its R-class. The
function r ◦ C is an ordered colouring with respect to ≤R; let us use Lemma 9.1.3 to obtain a
homogeneous sequence (ui)i∈N for r ◦ C.

Since S is finite, we can use Σ0
2-collection to prove that there is some colour a such that

C(u0, ui) = a for infinitely many i. This allows us to take a subsequence (vi)i≥0 of (ui)i≥0 such
that C(v0, vi) = a for each i.

We now know that a = a ∗ C(vi, vj) for every 0 < i < j. In particular, a ≤L C(vi, vj) by the
definition of ≤L. Since a and C(vi, vj) are R-equivalent, Lemma 9.1.5 implies that C(vi, vj) H a.
Let H be the H-class of a. Since a ∗ C(vi, vj) = a ∈ H, we know by Lemma 9.1.6 that (H, ∗, e) is
a group for some e ∈ H. Using this group structure and the equation a = a ∗ C(vi, vj) we obtain
that C(vi, vj) = e. Hence, {vi+1 | i ∈ N} is a homogeneous set for C with the colour e.

9.2 Additive Ramsey implies complementation
In this section, we sketch a proof of the following result, which is implication 2 → 3 of Theorem
7.3.7.

Proposition 9.2.1. Over RCA0, Additive Ramsey’s Theorem proves the correctness of the standard
complementation procedure for Büchi automata: given a Büchi automaton A over an alphabet Σ,
the procedure outputs a Büchi automaton B over the same alphabet such that for every α ∈ ΣN we
have that A accepts α if and only if B does not accept α.

The proof of this result follows the usual construction of the automaton B [12]. The possible
transitions of a Büchi automaton over a particular letter a ∈ Σ can be encoded as a transition
matrix Ma : Q × Q → {0, 1, ?}, where Ma(q, q′) = 0 if (q, a, q′) /∈ δ, otherwise Ma(q, q′) = ? if
q ∈ F , and otherwise Ma(q, q′) = 1. Let [Q] be the set of all such functions M : Q×Q→ {0, 1, ?}.
The states of B are based on transition matrices of A. The automaton B guesses a Ramseyan
decomposition of the given infinite word α with respect to a certain homomorphism into [Q]; and
then verifies that the decomposition witnesses that there cannot be any accepting run of A over
α.

Let us fix a Büchi automaton A = 〈Q,Σ, qι, δ, F 〉. We will introduce a semigroup structure
on the set of all transition matrices of A. Let us define the natural operations of addition and
multiplication over {0, 1, ?} as depicted on Figure 9.1. The addition makes it possible to choose a
preferred run (i.e. an accepting transition is better than a non-accepting one) and the multiplication
corresponds to concatenation of runs.
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+ 0 1 ?

0 0 1 ?

1 1 1 ?

? ? ? ?

∗ 0 1 ?

0 0 0 0

1 0 1 ?

? 0 ? ?

Figure 9.1: Two operations on {0, 1, ?} used to define multiplication on [Q].

Now, given two transition matrices M,N ∈ [Q] we can naturally define the matrix M ∗N that
is obtained by the standard matrix multiplication formula. Notice that the mapping Σ 3 a 7→
Ma ∈ [Q] can be extended to a homomorphism h : Σ∗ → [Q]. Clearly, for a finite word u ∈ Σ∗ the
matrix h(u) represents possible runs of A over u, in analogy to the way in which Ma represents
possible transitions over a.

We will say that a pair (N,M) ∈ [Q]× [Q] is rejecting if:

- N ∗M = N ,

- M ∗M = M ,

- but there is no q ∈ Q such that N(qι, q) ∈ {1, ?} and M(q, q) = ?.

The structure of the automaton B is as follows: its set of states is ([Q])3 ∪ ([Q])2 ∪ [Q] ∪
{qι}. Intuitively, the automaton needs to guess that a given infinite word admits a homogeneous
decomposition where the initial fragment has type N and the homogeneous colour is M , for a
rejecting pair (N,M). The initial state of the automaton is qι. The accepting states are those in
[Q]. The automaton has the following transitions (we writeK a−→ K ′ for a transition (K, a,K ′) ∈ δ):

- qι a−→ (N,M,Ma) for all rejecting pairs (N,M),

- (N,M,K) a−→ (N,M,K ∗Ma),

- (N,M,K) a−→M , if K ∗Ma = N ,

- M a−→ (M,Ma),

- M a−→M if Ma = M ,

- (M,K) a−→ (M,K ∗Ma),

- (M,K) a−→M , if K ∗Ma = M .

To complete the proof of Proposition 9.2.1, it remains to show the following.

Lemma 9.2.2. Over RCA0, Additive Ramsey’s Theorem implies that for every infinite word α the
automaton B described above accepts α if and only if the automaton A does not accept α.

Proof. First assume that both A and B accept an infinite word α. Let ρ be an accepting run of
A and let τ be an accepting run of B. Let the state τ(1) be (N,M,K). Since τ is accepting, we
know that τ visits a state from [Q] infinitely many times.

The only possible such state is M . Taking k0 < k1 < . . . such that τ(ki) = M for each i,
we can decompose α as α = u0u1 . . . where the length of u0u1...ui is ki. Then h(u0) = N and
h(ui) = M for all i > 0. Our aim is to find a state q such that for some j > i > 0 we have
ρ(ki) = ρ(kj) = q and there is some ` such that ki ≤ ` < kj and ρ(`) ∈ F . We can find such q
using the pigeonhole principle: first define `0 = 1 and then let `i+1 be the smallest number such
that there is an accepting state in ρ between k`i and k`i+1 . The sequence (`i)i∈N is defined by
primitive recursion, therefore it can be constructed in RCA0. By the (finite) pigeonhole principle,
there exist 0 ≤ i < j ≤ |Q| + 1 such that ρ(k`i) = ρ(k`j ) = q. Since M ∗M = M and ρ has an
accepting state between k`i and k`j we know that M(q, q) = ?. Similarly, since N ∗M = N , we
know that N(qι, q) ∈ {1, ?}. It means that the pair (N,M) is not rejecting, which contradicts the
definition of the transitions of B.

Now assume that the automaton B rejects a given infinite word α. Consider a colouring C
such that for i < j we have C(i, j) = h

(
α(i)α(i+ 1) · · ·α(j − 1)

)
. Since h is a homomorphism, we

know that C is additive. By Additive Ramsey’s Theorem, we can find k0 < k1 < . . . forming a
homogeneous set for C. Decomposing α = u0u1 . . . with ki the length of u0u1 . . . ui as previously,
we have some N,M ∈ [Q] such that M ∗M = M , h(u0) = N and h(ui) = M for all i > 0. by
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skipping the first element of the homogeneous set. If the pair (N,M) was rejecting, the automaton
B would accept α—we would be able to define using ∆0

1-comprehension an accepting run τ of B
over α such that τ(ki) = M for all i > 1. Therefore, there exists a state q of the kind disallowed
by the definition of a rejecting pair. This state can be used to construct an accepting run ρ of
A over α, such that for every i > 0 we have ρ(ki) = q. As above, such a run can be defined by
∆0

1-comprehension.

9.3 Effective complementation implies decidability
The following gives implication 3→ 4 of Theorem 7.3.7.

Proposition 9.3.1. For each n ∈ ω, RCA0 proves: if there exists an algorithm for complementing
Büchi automata, then there exists an algorithm which, given an MSO formula ϕ of depth at most
n, outputs an automaton Aϕ such that for every word α, the formula ϕ is satisfied by α if and only
if Aϕ accepts α. As a consequence, the depth-n fragment of MSO(N,≤) is decidable.

Remark. In fact, the algorithm producing Aϕ on input ϕ is the same for each n. This is because
there is a standard procedure (in the terminology of computability theory, a Turing functional)
for converting algorithms for complementing Büchi automata into algorithms deciding MSO(N,≤).
The proof of Proposition 9.3.1 verifies that the algorithm obtained by this procedure is, provably in
RCA0, correct on depth-n sentences for each n ∈ ω.

The proof of Proposition 9.3.1 is based on the usual idea: given ϕ, inductively construct
automata Aψ corresponding to increasingly complicated subformulae ψ of ϕ. However, the formula
“Aψ is equivalent to ψ” as written is not Σ0

1 (not even arithmetical, as it quantifies over infinite
words), so induction for it is not available in RCA0. To deal with that, we make sure that for ϕ
of depth n the algorithm only makes O(n) big steps, with a single big step corresponding to an
entire block of quantifiers/connectives at a given depth within ϕ. In that way, we can reason by
induction of fixed length n, which is available in RCA0 for formulae of arbitrary complexity.

Proof. We first note that w.l.o.g. we can restrict attention to depth-n MSO formulae of the form
ψ or ξ given by the following grammar:

ψ := ∀X̄.
∧k
i=1 ξi | A | ¬A

ξ := ∃X̄.
∨k
i=1 ψi | A | ¬A

A := Sing(X) | minX ≤ minY | X ⊆ Y

where Sing(X) means “X is a singleton” and min(X) ≤ min(Y ) means “either Y is empty or there
is an element of X less than or equal to the smallest element of Y ”. The reason is that provably
in RCA0, it is possible to perform the following operations on an MSO formula:

- replace each first-order variable x by a corresponding second-order variable X; translate
x ≤ y to min(X) ≤ min(Y ) and relativise quantifiers over X to Sing,

- push negations downwards to the level of atomic formulae,

- rearrange ∨’s and ∃’s (respectively, ∧’s and ∀’s) lying at the same depth,

and obtain a formula of the same depth which is equivalent to the original one modulo the obvious
identification of x with {x}. The benefit of doing so is that we obtain formulae containing solely
second-order variables. We can then treat an assignment to the variables X1, . . . , Xk as an infinite
word over the alphabet {0, 1}k.

We also note that given an automaton A over {0, 1}k, it is easy to construct an automaton over
{0, 1}k+` which behaves just like A and ignores the additional ` coordinates. For this reason, when
describing the automaton Aψ assigned to a formula ψ, we can safely assume that the alphabet
of Aψ has exactly as many coordinates as there are free variables in ψ; in the later steps of the
construction, extra coordinates can be added as needed.

The algorithm assigning automata to subformulae of ϕ works inductively as follows:

1. The base case is for atomic subformulae of the form Sing(X), min(X) ≤ min(Y ), andX ⊆ Y .
To these, the algorithm assigns the automata ASing, Amin, and A⊆, respectively, pictured
in Figure 9.2. It is straightforward to verify in RCA0 that the only situation in which ASing
accepts a word over {0, 1} is if it encounters a single position labelled 1, switches to the
accepting state, and remains in that state by reading an infinite string of 0’s. This happens
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Figure 9.2: The automata ASing, Amin, and A⊆. The initial states of the automata are indicated
by incoming arrows. The accepting states are marked by double circles. The transitions are
represented by arrows, labelled by the respective letters.

exactly if the word represents a singleton set X. Similarly, it is straightforward to verify that
a word over {0, 1}2 representing two sets X,Y is accepted by Amin (resp. A⊆) exactly if it is
not the case that 1 appears on the second coordinate before it appears on the first coordinate
(resp. that 1 appears on the first coordinate with 0 on the second). This is just what is
needed to recognise the property Y=∅ ∨min(X)≤min(Y ) (resp. the property X ⊆ Y ).

2. Automata corresponding to ¬Sing(X), ¬min(X) ≤ min(Y ), and ¬X ⊆ Y are constructed
using the algorithm for complementation.

3. Given formulae ψi, 1 ≤ i ≤ k, and corresponding automata Ai = 〈Qi, {0, 1}`, qqι
i
, δi, Fi〉, the

automaton corresponding to
∨

1≤i≤k ψi is
∨
iAi := 〈{q0} t

⊔
iQi, {0, 1}`, q0, δ

′ t
⊔
i δi,

⊔
Fi〉

where the set δ′ is {(q0, a, q) | ∃i ≤ k. (qqι
i
, a, q) ∈ Qi}. If a word α is accepted by some

Ai due to a run ρ then ρ′ defined as ρ′(0) = q0 and as ρ everywhere else is an accepting
run of

∨
iAi over α. Conversely, if ρ ∈ ({q0} t

⊔
iQi)N is an accepting run of

∨
iAi over

α, then ρ(1) belongs to Qi for some i. Then for j > 0 each ρ(j) also belongs to Qi and all
corresponding transitions agree with δi. Defining ρ′ by ρ′(0) = qqι

i
and as ρ everywhere else

yields an accepting run of Ai over α.

4. If the automaton A = 〈Q, {0, 1}k+`, qιq, δ, F 〉 corresponding to ψ(X̄, Ȳ ), then the automa-
ton corresponding to ∃Ȳ ψ is ∃A := 〈Q, {0, 1}k, qιq, δ∃, F 〉 with δ∃ := {(q, (a1, . . . , ak), q′) |
∃b̄. (q, (a1, . . . , ak, b1, . . . , b`), q′) ∈ δ}. We argue that ∃A accepts a word α if and only if
there exists some β ∈ ({0, 1}`)N such that A accepts α⊗ β, where ⊗ stands for (coordinate-
wise) concatenation of finite sequences. Indeed, suppose that α is accepted by ∃A using an
accepting run ρ ∈ QN. By the definition, this means that for every j there exists b̄ ∈ {0, 1}`
such that (ρ(j), α(j) ⊗ b̄, ρ(j + 1)) ∈ δ. Use ∆0

1-comprehension to define an infinite word β
by picking a minimal such b̄ as β(j) for every j. Then ρ is an accepting run of A over α⊗ β.
Conversely, it is clear that an accepting run ρ of A over α⊗β is an accepting run of ∃A over
α.

5. Finally, the formula ∀X̄.
∧k
i=1 ξi is equivalent to ¬∃X̄.

∨k
i=1 ¬ϕi. The automaton correspond-

ing to it is built by means of constructions 3 and 4 and two rounds of complementations
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Clearly, we can argue by induction on m ≤ n that for all subformulae ψ of ϕ at depth m, the
automaton Aψ is equivalent to ψ. In particular, Aϕ is equivalent to ϕ.

It remains to deduce decidability of the depth-n fragment of MSO(N,≤). Given an algorithm
transforming a depth-n MSO formula to an equivalent automaton, it suffices to show decidability
of the emptiness problem for Büchi automata: “given a nondeterministic Büchi automaton A, does
there exist an infinite word accepted by A?” As is well known, the answer is positive exactly if
A contains a state q which is reachable from the initial state qI and has the property that q can
be reached from q via a path containing an accepting state. The standard argument proving this
formalises in RCA0 in an unproblematic way.

9.4 Decidability implies Σ0
2-IND

In this section we prove the following result.

Proposition 9.4.1. Over RCA0, the decidability of the depth/̄5 fragment of the theory MSO(N,≤)
implies Σ0

2-IND.

This is, of course, implication 4 → 1 of Theorem 7.3.7. The proof of the implication is based
on two observations which deserve to be stated as separate lemmas.

The first lemma explains one way in which the decidability of the MSO theory of some structure
can be used to derive some nontrivial principles. Basically, properties corresponding to families
of MSO sentences are decidable (in particular, Σ0

1), and therefore mathematical induction can be
applied to them.

Lemma 9.4.2. For every n ∈ ω, the following is provable in RCA0. Let (ψi)i∈N be a sequence
of depth/̄n MSO sentences and let A be a structure such that the depth/̄n fragment of the theory
MSO(A) is decidable. If ψ0 ∈ MSO(A) and if ψi ∈ MSO(A) implies ψi+1 ∈ MSO(A) for each
i ∈ N, then ψi ∈ MSO(A) for each i ∈ N.

Proof. It is enough to note that the property “ψi ∈ MSO(A)” can be expressed by a Σ0
1 L2-formula

ϕ(i) (and, in fact, by a Π0
1 formula too), and Σ0

1-IND is available.

The second lemma will provide us with a concrete MSO/̄expressible property to which the first
lemma can be applied.

Lemma 9.4.3. Let π(i) be the Π0
2 formula ∀x∃y. δ(i, x, y), where δ(i, x, y) is ∆0

0, possibly with
parameters. Then RCA0 proves that for every k ∈ N, there exists a word α over the alphabet
{0, . . . , k + 1} such that for each i ≤ k and v ∈ N the letter i + 1 appears in α at least v times if
and only if ∀x<v ∃y. δ(i, x, y). In particular, i+ 1 appears in α infinitely many times if and only
if π(i) holds.

Proof. We reason in RCA0. Given some k ∈ N, we define a function C with domain {0, . . . , k}×N
by letting C(i, w) = max

{
v ≤ w | ∀x < v ∃y < w. δ(i, x, y)

}
for i ≤ k and w ∈ N. Clearly the

function C is computable and so exists by ∆0
1-comprehension.

Given some computable enumeration1 of pairs 〈·, ·〉 : N2 → N that is monotone with respect to
the coordinatewise order on N2, define the infinite word α by:

α(j) =


i+ 1 if j = 〈i, w〉, i ≤ k,

and C(i, w) >
∣∣{w′ < w | α(〈i, w′〉) = i+ 1}

∣∣,
0 otherwise.

Again, α(j) is computable so α can be obtained by ∆0
1-comprehension. Note that α〈i′, w〉 = i+ 1

implies i′ = i for any i, i′. We now verify that α satisfies the requirements of the lemma.
First assume that ∀x<v ∃y. δ(i, x, y) holds for some i ≤ k and v ∈ N. By Σ0

1-collection, there
exists some w such that ∀x < v ∃y < w. δ(i, x, y). Let ` =

∣∣{w′ < w | α(〈i, w′〉) = i + 1}
∣∣. If

` ≥ v then we are done. Assume the contrary and notice that C(i, w) ≥ v. This means that for
w′ = w,w+ 1, . . . , w+ v − `− 1 we have α(〈i, w′〉) = i+ 1 (we use Σ0

1-IND to prove this). In total
this gives us v positions of α that are labelled by i+ 1.

Now assume that there are at least v positions of α labelled by i + 1. Let w0 be the minimal
position such that

∣∣{w′ ≤ w0 | α(〈i, w′〉) = i+ 1}
∣∣ = v. We know that α(〈i, w0〉) = i+ 1 and that

the set {w′ < w0 | α(〈i, w′〉) = i + 1} has v − 1 elements. This means that C(i, w0) ≥ v. By the
definition of C(i, w), it follows that ∀x<v ∃y. δ(i, x, y) holds.

1(n, k) 7→ (n+k+1)(n+k)
2 + k is a simple enough example.
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To complete the proof of Proposition 9.4.1, we will use Lemma 9.4.3 to show that if the depth/̄5
fragment of MSO(N,≤) is decidable, then Lemma 9.4.2 can be applied to a sequence of MSO
sentences (ψk)k∈N where ψk basically says “Π0

2 induction holds up to k”.
Proof of Proposition 9.4.1. For k ∈ N, let ψk be the MSO sentence “for every infinite word over
the alphabet {0, . . . , k} there is a maximal letter i ∈ {0, . . . , k} occurring infinitely often”. More
formally, ψk is defined to be the depth/̄5 sentence

∀X0 ∀X1 . . . ∀Xk

∀x
∨
i≤k

x ∈ Xi ∧
∧

i<j≤k

¬
(
x ∈ Xi ∧ x ∈ Xj

) =⇒

∨
i≤k

(∀x∃y≥x. y ∈ Xi) ∧
∧

i<j≤k

(∃x∀y≥x. y /∈ Xj)

 .
Clearly, RCA0 proves that ψ0 ∈ MSO(N,≤) and for every k ∈ N, if ψk ∈ MSO(N,≤), then
ψk+1 ∈ MSO(N,≤). So, by Lemma 9.4.2 and the assumption on decidability of depth/̄5 MSO(N,≤),
each sentence ψk is true in (N,≤).

Now consider a Π0
2 formula π(i), possibly with parameters. Let k ∈ N and assume that π(0)

but ¬π(k). Let α be the word corresponding to π and k provided by Lemma 9.4.3. Since the MSO
sentence ψk+1 is true in (N,≤), there is a maximal letter i appearing in α infinitely often. Clearly
0 < i < k + 1 and π(i− 1) but ¬π(i).

Since π(i) was an arbitrary Π0
2 formula, we have proved Π0

2-IND and thus also Σ0
2-IND.

9.5 Making complementation ineffective
The work of Sections 9.1–9.4 proves the equivalence of items 1, 2, 3 and 4 of Theorem 7.3.7.
However, 3, concerning complementation of Büchi automata, contains an effectivity condition,
namely that there exists an algorithm that produces an automaton complementing any given
input automaton A. It is natural to ask whether this effectivity condition can be dropped without
compromising the logical strength of the statement.

Below, we prove that the answer is positive, and therefore also item 4’ of Theorem 7.3.7 is
equivalent to the others. Our argument relies on the ideas of Section 9.4 and is similar in spirit
to the one used in the proof of [41, Theorem 3.1, (2) → (3)], though somewhat simpler. Clearly 3
implies 4’. Hence, it is enough to show for instance that 4’ implies 1:

Proposition 9.5.1. Provably in RCA0, if for every nondeterministic Büchi automaton A there
exists a Büchi automaton B such that for every infinite word α, B accepts α exactly if A does not
accept α, then Σ0

2-IND holds.

Proof. Assume Σ0
2-IND fails and let π(i) be a Π0

2 formula such that π(0) and π(i) → π(i + 1) for
each i, but ¬π(k) for some k. By Lemma 9.4.3 this means that there is a word α over the alphabet
{0, . . . , k + 1} such that there is no maximal letter i ≤ k + 1 appearing infinitely often in α.

Consider the following Büchi automaton A working over {0, . . . , k + 1}: at some point, A
nondeterministically chooses a letter i and verifies that from that point onwards, i appears infinitely
many times but no j > i appears at all. Apply complementation to obtain an automaton B which
accepts exactly if A rejects.

Note that A rejects the word α, because no matter when it makes its nondeterministic choice
and what letter i it chooses, either i will appear only finitely many times or some j > i will
appear after the choice is made. Therefore, B has an accepting run on some word, namely on α.
By a standard application of the (finite) pigeonhole principle `+ p, it chooses the maximal letter
occurring as one of β(`), . . . , β(`+ p− 1). This contradicts the assumption that B accepts exactly
if A rejects.

9.6 Additive Ramsey and Ordered Ramsey imply Σ0
2-IND

In this section, we give a direct proof showing that both Additive Ramsey’s Theorem and Ordered
Ramsey’s Theorem imply Σ0

2-IND. The implication from Additive Ramsey already follows from
Theorem 7.3.7. However, the argument below is very simple and establishes a direct link between
our Ramsey-theoretic statements and the induction scheme, without the detour through automata
and MSO; thus, we feel it is worth including.
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Proposition 9.6.1. Over RCA0, both Additive Ramsey’s Theorem and Ordered Ramsey’s Theorem
imply Σ0

2-IND.

Proof. By Lemma 9.4.3, to derive Σ0
2-IND it is enough to show that for every k ∈ N and every

infinite word α ∈ {0, . . . , k}N, there is a maximal letter i appearing infinitely many times in α. Fix
k and α and consider the colouring C with values in {0, . . . , k} defined for i < j as follows:

C(i, j) = max{α(`) | i ≤ ` < j}.

The colouring C can be viewed both as an additive colouring of [N]2 by elements of the semigroup
({0, . . . , k},max), or as an ordered colouring w.r.t. the inverse of the usual order on {0, . . . , k}.
Thus, we can use either Additive Ramsey’s Theorem or Ordered Ramsey’s Theorem to obtain an
infinite homoneous set I for C. Let i ∈ {0, . . . , k} be the colour of I. By the definition of C, i is
the largest colour that appears infinitely many times in α.

9.7 Σ0
2-IND implies Bounded-width König

Theorem 9.7.1. Over RCA0, Σ0
2-IND implies Bounded-width König’s Lemma (see Definition 8.3.1).

Proof of Theorem 9.7.1. Let us fix a graph G with vertices contained in Q × N for some finite
set Q. The usual way of proving König’s Lemma would start by defining the subset G′ of those
vertices v of G for which the subgraph under v is infinite. Having defined G′, we could inductively
pick any infinite path in G′ and—assuming G does in fact contain arbitrarily long finite paths
starting in Q × {0}—we are guaranteed not to get stuck. The issue is whether we can obtain G′
by ∆0

1-comprehension.
A Π0

1-definition of G′ is provided by a standard trick used in the context of WKL0. Notice that
for every fixed k there can be at most |Q| vertices of G of the form (q, k). Thus a vertex (q, k) is in
G′ if and only if it has the Π0

1 property that for every ` ≥ k there exists a vertex (q′, `) reachable
from (q, k) by a path in G; here the existential quantifier over (q′, `) is bounded in terms of ` and
|Q|.

What remains is to give a Σ0
1-definition of G′.

Consider two numbers k < ` and a vertex v = (q, k) of G. We will say that v dies before ` if
there is no path in G from v that reaches a vertex of the form (q′, `). For i = 0, 1, . . . , |Q| we will
say that i vertices die infinitely many times if

∀j ∃k>j ∃`>k. there are at least i vertices of the form (q, k)
that die before `.

Notice that the property of i that i vertices die infinitely many times is Π0
2. Clearly if i ≤ i′

and i′ vertices die infinitely many times then i vertices die infinitely many times. By Σ0
2-IND we

can fix i0 as the maximal i such that i vertices die infinitely many times. By the definition, if
i > i0 then there exists j(i) such that for every ` > k > j(i) there are fewer than i vertices of the
form (q, k) that die before `. Notice that we can assume j0 := j(i0 + 1) to be an upper bound for
all j(i) where i > i0. This means that for ` > k > j0 we have at most i0 vertices of the form (q, k)
that die before `. Additionally, for infinitely many k there is ` > k such that exactly i0 vertices
of the form (q, k) die before `. The following claim shows how one can find a witness that the
subgraph under a vertex v is infinite.

Claim. Assume that we are given ` > k > j0 and a vertex v = (q, k) such that exactly i0 vertices
of the form (q′, k) with q′ 6= q die before `. Then the subgraph under v is infinite.

Proof. Assume to the contrary that for some `′ > ` there is no vertex of the form (q′, `′) that can
be reached from (q, k) by a path in G. This means that (q, k) dies before `′. Therefore, there
are at least i0 + 1 vertices of the form (q′, k) that die before `′. This contradicts the way j0 was
chosen.

Clearly, if for some ` > k and a vertex v = (q, k) we know that v dies before ` then the subgraph
of G under v is finite.

We shall now use Claim 9.7 to give a Σ0
1-definition of G′. We will say that v = (q, k) belongs

to G′ if there exist ` > k′ > max(k, j0) and i0 vertices of the form (q′, k′) such that all of them die
before ` and some other vertex of the form (q′′, k′) is reachable in G by a path from v. Clearly this
is a Σ0

1-definition. It remains to prove that it defines G′. First assume that v satisfies the above
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property and fix `, k′, and (q′′, k′) as in the definition. By Claim 9.7 we know that the subgraph
under (q′′, k′) is infinite. Since (q′′, k′) is reachable from v in G, this implies that also the subgraph
under v is infinite and thus v ∈ G′. Now assume that v = (q, k) ∈ G′. By the choice of i0 we know
that there exist ` > k′ > max(k, j0) and exactly i0 vertices of the form (q′, k′) that die before `.
Since the subgraph under v is infinite, we know that some vertex of the form (p, `) is reachable
from v in G. Notice that any path connecting v and (p, `) needs to contain a vertex of the form
(q′′, k′). Clearly (q′′, k′) cannot be among the i0 vertices that die before `. Thus v satisfies the
above condition.

We have thus shown that the graph G′ is indeed ∆0
1-definable, so we can use it to complete the

proof. Let the vertex (q, 0) of G satisfy the hypothesis of Bounded-width König’s Lemma. Clearly,
(q, 0) ∈ G′. Just as clearly, each v = (q, k) ∈ G′ is connected by an edge to some (q′, k + 1) ∈ G′.
This lets us define an infinite path in G′ by primitive recursion. Let π(0) be (q, 0). If π(k) is
defined let π(k + 1) = (q′, k + 1) for the minimal q′∈Q such that (q′, k + 1) ∈ G′ and there is an
edge in G between π(k) and (q′, k+ 1). By the construction π is an infinite path in G′, and hence
in G, starting in (q, 0).

9.8 Σ0
2-IND implies determinisation

The entirety of this section is devoted to a proof of the following theorem, which coincides with
implication 1→ 4′ of Theorem 7.3.7.

Theorem 9.8.1. Over RCA0, Σ0
2-IND implies the existence of an algorithm which, given a non-

deterministic Büchi automaton B over an alphabet Σ, outputs an equivalent deterministic Rabin
automaton A over the same alphabet such that for every α ∈ ΣN we have

A accepts α ⇐⇒ B accepts α.

The proof scheme presented here is based on a determinisation procedure proposed in [52]
(see [2, 38] for similar arguments and a comparison of this determinisation method to the method
of Safra). Our exposition follows lecture notes of Bojańczyk [9]. Although the general structure
of the argument is standard, we need to take additional care to ensure that the reasoning can be
conducted in RCA0 using only Σ0

2-IND.

9.8.1 Transducers
The proof of Theorem 9.8.1 will be split into separate steps that will allow us to successively
simplify the objects under consideration. The steps typically take the form of lemmas stating the
existence of automata with certain properties. All the lemmas in the remainder of the section are
asserted to hold provably in RCA0 + Σ0

2-IND. Moreover, all automata whose existence is claimed
can be obtained effectively given a nondeterministic Büchi automaton B over the alphabet Σ and
possibly other automata mentioned in the hypothesis of each particular lemma.

To merge the steps we will use the notion of a deterministic transducer that transforms one
infinite word into another2.

Definition 9.8.2. A transducer is a deterministic finite automaton, without accepting states, where
each transition is additionally labelled by a letter from some output alphabet. More formally, a
transducer with an input alphabet Σ and an output alphabet Γ is a tuple T = 〈Q, q0, δ〉 where q0 ∈ Q
is an initial state and δ : Q× Σ→ Γ×Q.

A transducer naturally defines a function T : ΣN → ΓN. Formally, such a function is a third-
order object and thus not available in second-order arithmetic. However, given a word α, we can
use ∆0

1-comprehension to obtain the unique infinite word produced by T on the input α. Whenever
we write T (α), we have this word in mind.

It is easy to see that a transducer can be used to reduce the question of acceptance from one
deterministic automaton to another, as stated by the following lemma.

Lemma 9.8.3. For every deterministic Rabin automaton A with input alphabet Γ and every
transducer T : ΣN → ΓN, there exists a deterministic Rabin automaton A ◦ T which accepts an
infinite word α ∈ ΣN if and only if A accepts T (α).

2This is exactly the notion of Mealy machines given in Definition 1.3.2 of Part I. In order to keep Part II
self-contained, all necessary information is recalled here.
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· · ·
· · ·
· · ·
· · ·

Figure 9.3: A Q-dag and a single letter from the alphabet [Q]. The accepting edges are represented
by solid lines, and non-accepting edges are dashed lines.

· · ·
· · ·
· · ·
· · ·

Figure 9.4: A tree-shaped Q-dag.

Proof. Let the set of states of A ◦ T be the product of the states of A and the states of T . The
transition function of A ◦ T follows both the transitions of T and the transitions of A over letters
output by T :

δA◦T
(
(qA, qT ), a

)
= (δA(qA, b), q′) where δT (qT , a) = (b, q′).

The Rabin acceptance condition of A ◦ T is taken to be the acceptance of A, skipping the second
coordinate of the states. Clearly the first coordinate of the run of A ◦ T over an infinite word α
equals the run of A over T (α), so A ◦ T accepts α if and only if A accepts T (α).

9.8.2 Q-dags
In the exposition below we will work with infinite words representing the set of all possible runs
of a nondeterministic automaton over a fixed infinite word. Let us define a Q-dag to be a directed
acyclic graph where the set of nodes is Q× N and every edge is of the form

((q, k), (p, k + 1)) for some p, q ∈ Q and k ∈ N.

Furthermore, every edge is coloured by one of the two colours: “accepting” or “non-accepting”. We
assume that there are no parallel edges. A path in a Q-dag is a finite or infinite sequence of nodes
connected by edges (either accepting or non-accepting). As we will see, we can assume that every
Q-dag is rooted—there is a distinguished element q0 ∈ Q such that all the edges of the Q-dag lie
on a path that starts in the vertex (q0, 0). We call a vertex (q, k) reachable if there is a path from
(q0, 0) to (q, k) in α. We say that an infinite path in a Q-dag is accepting if it starts in (q0, 0) and
contains infinitely many accepting edges.

Every Q-dag can be naturally represented as an infinite word, where the k-th letter encodes
the set of edges of the form ((q, k), (q′, k + 1)). The alphabet used for this purpose will be the
set of transition matrices [Q] : Q × Q → {0, 1, ?}. An example of a Q-dag and a letter in [Q] are
depicted on Figure 9.3.

We will be particularly interested in Q-dags that are tree-shaped. A Q-dag is tree-shaped if
every node (q, k) has at most one incoming edge (i.e. an edge from a node of the form (p, k − 1).
Notice that it makes sense to say that a letter M ∈ [Q] is tree-shaped and a Q-dag is tree-shaped
if and only if all of its letters are tree-shaped. Figure 9.4 depicts a tree-shaped Q-dag.

A Q-dag is infinite if for every k there exists a path connecting the root (q0, 0) with a vertex
of the form (q′, k). Similarly, a Q-dag is infinite under (q, k) if for every k′ ≥ k there exists a path
connecting the vertex (q, k) with a vertex of the form (q′, k′).

Lemma 9.8.4. Given a nondeterministic Büchi automaton B over an alphabet Σ, there exists a
transducer T1 that takes as input an infinite word α ∈ ΣN and outputs a Q-dag T1(α) such that B
accepts α if and only if T1(α) contains an accepting path.

Proof. The transducer T1, after reading a finite word w ∈ Σ∗, stores in its state the set of states
of B reachable from qB0 over w. The initial state of T1 is {q0}. Given a state R ⊆ Q of T1 and a
letter a, the transducer moves to the state

R′ = {q′ | (q, a, q′) ∈ δB, q ∈ R}
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and outputs a letter M ∈ [Q] such that M(q, q′) = Ma(q, q′) if q ∈ R and M(q, q′) = 0 if q /∈ R.
Clearly there is a computable bijection between the accepting runs of B over α and accepting paths
in the Q-dag T1(α).

9.8.3 Reduction to tree-shaped Q-dags
The next lemma shows that one can use a transducer to reduce general Q-dags to tree-shaped
Q-dags.

Lemma 9.8.5. There exists a transducer T2 that takes as input a Q-dag α′ and outputs a tree-
shaped Q-dag T2(α′) such that α′ contains an accepting path if and only if T2(α′) contains an
accepting path.

To prove this lemma we will use a lexicographic order on paths in a given Q-dag. A crucial
ingredient here is Bounded-width König’s Lemma from Section 9.7. Additionally, we need to make
sure that the graph to which Bounded-width König’s Lemma is applied can be obtained using
∆0

1-comprehension. For this purpose we use Σ0
2-IND once again.

In the proof we will use the following definition.

Definition 9.8.6 (Profiles). For a finite path w in a Q-dag, define its profile to be the word over
the alphabet {1, ?}×Q2 which is obtained by replacing each edge ((q, k), (q′, k+1)) in w by (x, q, q′)
where x ∈ {1, ?} is the type of the edge (? for accepting and 1 for non-accepting). Let us fix any
linear order � on {1, ?} × Q2 such that (?, q, q′) ≺ (1, p, p′). Let � be the lexicographic order on
paths induced by the order � on their profiles. We call a path w optimal if it is lexicographically
minimal among all paths with the same source and target.

Lemma 9.8.5 follows from Claims 9.8.3 and 9.8.3.

Claim. There is a transducer T : [Q]N → [Q]N such that if the input is α then T (α) is tree-shaped
with the same reachable vertices as in α, and such that every finite path from the root in T (α) is
an optimal path in α.

Proof. We start with the following observation about the order �. Let w,w′, u, u′ be paths in a
Q-dag α such that the target of w (resp. u) is the source of w′ (resp. u′); and w, u are of equal
length. Then ww′ � uu′ if and only if w ≺ u or w = u and w′ � u′.

Now let us define T (α) by choosing, for every vertex reachable in α, an ingoing edge that
belongs to some optimal path. Putting all of these edges together will yield a tree-shaped Q-dag
as in the statement of the claim. To produce such edges, after reading the first k letters, the
automaton keeps in its state a linear order on Q that corresponds to the lexicographic ordering on
the optimal paths leading from the root to the nodes at depth k. Updating the order on Q upon
reading a new letter from [Q] is possible thanks to the observation above—thus, only finitely many
states that keep the current order on Q are enough.

Notice that the above proof is purely constructive and the statement of Claim 9.8.3 involves
only finite combinatorics, therefore it can be performed in RCA0.

Claim. Let T be the transducer from Claim 9.8.3. If the input α to T contains an accepting path
then so does the output T (α).

The rest of this subsection is devoted to a proof of Claim 9.8.3. Let α be an input to T . Assume
that π ∈ (Q × N)N is a path that contains infinitely many accepting edges in α. A node v in the
Q-dag α is said to be π-merging if there exists a finite path in T (α) that leads from v to a vertex
on π. Our aim is to define the following set of vertices in Q× N:

t = {v ∈ Q× N | v is π-merging}.

The above definition is clearly a Σ0
1-definition of t.

Subclaim 9.8.7. There exists a Π0
1 predicate over vertices v equivalent to “v is π-merging”. As a

consequence, t is definable by ∆0
1-comprehension.

The proof of this subclaim makes essential use of Σ0
2-IND and is similar to the proof of Theo-

rem 9.7.1.
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Proof. For i = 0, 1, . . . , |Q| we will say that i is π-merging infinitely often if

∀j ∃k>j. there are at least i π-merging vertices of the form (q, k) in T (α).

The above property of i is clearly a Π0
2 property. Let i0 be the maximal i ≤ |Q| that is π-merging

infinitely often. Such i0 exists by Σ0
2-IND. Clearly if i ≤ i′ and i′ is π-merging infinitely often then

i is also π-merging infinitely often. By the definition, if i > i0 then there exists j(i) such that for
all k > j(i) there are fewer than i π-merging vertices of the form (q, k) in T (α). Notice that we
can assume j0 := j(i0 + 1) to be an upper bound for all j(i) where i0 < i ≤ |Q|. This means that
if k > j0 then there are at most i0 π-merging vertices of the form (q, k) in T (α).

We can now provide a Π0
1-definition of t (actually a Σ0

1-definition of the vertices outside t). A
vertex v = (q, k) does not belong to t if (?): there exists k′ > max(k, j0) and i0 vertices of the form
v0 = (q0, k

′), v1 = (q1, k
′), . . . , vi0 = (qi0 , k′) such that:

- all the vertices v0, . . . , vi0 are π-merging in T (α),

- no path from v to any of vi for i = 0, 1, . . . , i0 exists,

- there is no path in T (α) from v to a vertex of the form (q′, `) that lies on π with ` ≤ k′.

The latter two conditions are decidable, while the first one is Σ0
1. In total, the condition (?) is Σ0

1.
We will now prove that the negation of (?) in fact defines t. First assume that v = (q, k) /∈ t.

Recall that there are infinitely many k′ such that there are exactly i0 π-merging vertices of the form
(q′, k′) in T (α). In particular, there exists k′ > max(k, j0) and i0 vertices of the form v0 = (q0, k

′),
v1 = (q1, k

′), . . . , vi0 = (qi0 , k′) such that all of them are π-merging. Since v is not π-merging,
there cannot be a path from v to any of the vertices vi for i = 1, 2, . . . , i0. Similarly, there cannot
be a path from v to π. Therefore, v satisfies (?).

On the other hand, assume that v has the property (?) as witnessed by some k′ and vertices
v0, . . . , vi0 . Assume to the contrary that v is π-merging. Let this be witnessed by a path w from
v to a vertex v′′ = (q′′, k′′) on π. By the last item of (?), we must have k′′ > k′. Let p ∈ Q be
the state such that (p, k′) lies on the path w. Clearly (p, k′) is π-merging so it needs to be one of
the vertices v1, . . . , vi0 . But in that case this vertex can be reached from v by a path in T (α), a
contradiction.

We can now apply Bounded-width König’s Lemma (see Definition 8.3.1) to the graph with
set of vertices t and with edges inherited from T (α). This graph has arbitrarily long finite paths
starting in (q0, 0), because each vertex on π belongs to t and is reachable from (q0, 0) by a path
in T (α) contained within t. We obtain an infinite path π′ in T (α) contained within t. Our aim is
to prove that π′ contains infinitely many accepting edges. Assume to the contrary that for some
k ∈ N there is no accepting edge of the form ((p, `), (p′, ` + 1)) for ` > k on π′. Let (p, k) be a
vertex that belongs to π′ ∩ Q × {k}. Since π′ is a path in t, we know that (p, k) is π-merging.
Let w be a path witnessing this fact and let (p′, k′) be its final vertex, which lies on π. Since π is
accepting, we know that it contains an accepting edge of the form ((r, `), (r′, ` + 1)) with k < `.
Let (q, `+ 1) be a vertex that belongs to π′ ∩Q× {`+ 1}. As in the case of (p, k), we have a path
w′ witnessing that (q, `+ 1) is π-merging, which reaches π in a vertex (q′, `′).

This means that in α there are two paths between (p, k) and (q′, `′) (see Figure 9.5): the first
one follows w and π, the second one follows π′ and w′. Notice that the latter path is contained
in t. This means that the profile of the path through π′ and w′ is smaller than the profile of
the path through w and π. By the definition of the order on profiles, since there is an accepting
edge on the respective fragment of π, the corresponding fragment of the path π′ needs to contain
an accepting edge. This contradicts the assumption that there is no accepting edge of the form
((p, k′′), (p′, k′′ + 1)) for k′′ > k on π′.

This concludes the proof of Claim 9.8.3 and thus of Lemma 9.8.5.

9.8.4 Recognising accepting tree-shaped Q-dags
The proof of Theorem 9.8.1 is concluded by the following lemma and an application of Lemma 9.8.3.

Lemma 9.8.8. There exists a deterministic Rabin automaton A over the alphabet [Q] that for
every tree-shaped Q-dag α′′ ∈ [Q]N accepts it if and only if α′′ contains an accepting path.

We will start by defining the states and transitions of the constructed Rabin automaton. Then
we will prove that it in fact verifies if a given infinite word that is a tree-shaped Q-dag contains an
accepting path.
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(p, k)

(p′, k′)

w

(q, `+1)

(q′, `′)

w′

π

π′

Figure 9.5: An illustration to the proof of Claim 9.8.3. The upper horizontal line is the path π in
α that may not be a path in T (α). The paths w and w′ witness that (p, k) and (q, `+1) are both
π-merging. The boldfaced part of π is the chosen accepting edge that appears on π. Among the
two paths from (p, k) to (q′, `′): one through w and the other through w′; the latter belongs to
T (α). Therefore, it has to have smaller profile than the former, in particular it has to contain an
accepting edge in between the vertices (p, k) and (q, `+ 1).
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Figure 9.6: A Q-scheme τ (a state of A) and a tree-shaped letter M ∈ [Q] encountered by A. The
“non-accepting” edges in τ are dashed. The leaves of τ are arranged according to some fixed order
on Q in such a way as to match the layout of M ∈ [Q]. To simplify the picture we do not include
the states in Q labeling the nodes of τ , using dots instead.

In general, the size of the constructed Rabin automaton is one of the crucial parameters of the
construction, as it influences the running time of the algorithms for verification and synthesis of
reactive systems. However, in this work we are mainly focused on the fact that an equivalent deter-
ministic automaton exists. Therefore, the relatively simple construction presented here will be far
from optimal. For a discussion on optimality of the constructions involved, see [19]. We conjecture
that soundness of more optimal determinization procedures, such as Safra’s construction [62], may
be proven in Σ0

2-IND.

Definition 9.8.9. Fix a finite nonempty set Q. We will say that τ is a Q-scheme if τ is a finite
tree with:

- internal nodes labelled by Q,

- leaves uniquely labelled by Q,

- edges uniquely labelled by {0, 1, . . . , 2 · |Q|}, these labels are called identifiers,

- each edge additionally marked as either “accepting” or “non-accepting”.

Additionally, the root cannot be a leaf and every node of τ that is neither the root nor a leaf has
to have at least two children.

Notice that we are not requiring a Q-scheme to be balanced as a tree. It is easy to see that since
the leaves of τ are uniquely labelled by Q, τ has at most 2 · |Q| nodes. Therefore, the requirement
that the edge labels from {0, . . . , 2 · |Q|} need to be pairwise distinct is not restrictive. Clearly the
number of Q-schemes is finite (in fact exponential in |Q|). Let the set of states of A be the set of
all Q-schemes. Let the initial state of A be the Q-scheme consisting of two nodes: the root and its
only child, both labelled by q0. Let the edge between the root and the unique leaf be labelled by
the identifier 0 and be “non-accepting”.

We will now proceed to the definition of the transitions of A. Assume that the automaton is
in a state τ and reads a tree-shaped letter M ∈ [Q], see Figure 9.6.

The resulting state τ ′ is constructed by performing the following four steps depicted on Fig-
ure 9.7.
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Figure 9.7: The successive transformations of the scheme τ when performing steps 1 to 4 of a
transition of A.

Step 1. We append the new letter M to the Q-scheme τ obtaining a new tree. The identifiers on
the newly created edges are undefined and some nodes may have exactly one child. However,
all the nodes are labelled by states in Q, either coming from τ or from M .

Step 2. We eliminate paths that die out before reaching the target states of M . In the running
example, this means eliminating edges with identifiers 9 and 5.

Step 3. We eliminate unary nodes, thus joining several edges into a single edge. This means that
a path which only passes through nodes of degree one gets collapsed into a single edge, the
identifier for such an edge is inherited from the first (i.e. leftmost) edge on the path. The
newly created edge is “accepting” if and only if any of the collapsed edges were “accepting”.
In the running example, this means eliminating the unary nodes that are the targets of edges
with identifiers 2 and 7.

Step 4. Finally, if there are edges that do not have identifiers, these edges get assigned arbitrary
identifiers that are not currently used. In the running example we add identifiers 4, 5, 6, and
8.

This completes the definition of the state update function. We now define the acceptance
condition.

The acceptance condition. When executing a transition, the automaton described above goes
from one Q-scheme to another Q-scheme. For each identifier, a transition can have three possible
effects, described below:

Delete An edge can be deleted in Step 2 (it dies out) or in Step 3 (it is merged with a path to
the left). The identifier of such an edge is said to be deleted in the transition. The deleted
identifiers in the running example are 9, 5, and 6. Since we reuse identifiers, an identifier can
still be present after a transition that deletes it, because it has been added again in Step 4.
This happens to identifiers 5 and 6 in the running example.

Refresh In Step 3, an entire path with edges identified by e1, e2, · · · , ek is folded into its first
edge identified by e1. If any of the edges identified by e2, · · · , en was “accepting” then we
say that the identifier e1 is refreshed. In the running example the refreshed identifiers are 2
and 7 (the edge identified by 2 was already “accepting” while the edge identified by 7 become
“accepting” because of the merging).

Nothing An identifier might be neither deleted nor refreshed. In the running example, this is the
case for identifiers 1 and 3.

The following lemma describes the key property of the above data structure.

Lemma 9.8.10. For every tree-shaped Q-dag α ∈ [Q]N, the following are equivalent:

1. α contains an accepting path,

2. some identifier is deleted only finitely often but refreshed infinitely often.

Before proving the above lemma, we show how it completes the proof of Lemma 9.8.8. Clearly,
the second condition above can be expressed as a Rabin condition on transitions of A—the Rabin
pairs (Ei, Fi) range over the set of identifiers i = 1, . . . , 2 · |Q|, a transition is in Ei if an edge with
the identifier i is deleted and is in Fi if the edge is refreshed.
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Proof of Lemma 9.8.10. First assume that α contains an accepting path π. Let ρ be the sequence
of states of A when reading α. Notice that for every k, the path π induces a path in the Q-scheme
ρ(k) that connects the root with a leaf labelled by a state q(k) such that π(k) = (q(k), k). Let
e

(k)
0 , . . . , e

(k)
j(k) be the identifiers of the edges on this path. Notice that j(k) ≤ |Q| because each

internal node of a Q-scheme has at least two children and leaves of Q-schemes are uniquely labelled
by the states in Q. We will say that a position j = 0, 1, . . . , |Q| is unstable if for infinitely many
k either j(k) < j or some identifier e(k)

j′ for j′ ≤ j is deleted in the k-th transition in ρ. Notice
that 0 is stable because we never delete the first edge of a Q-scheme. Let j0 be the greatest stable
number; such a number exists by Σ0

2-IND.
By Σ0

2-collection we can find a number k0 such that for k ≥ k0 we have j(k) ≥ j0 and no
identifier e(k)

j′ with j′ ≤ j0 is deleted in the k-th transition in ρ. Therefore, for every j′ ≤ j0 and
k ≥ k0 we have

e
(k)
j′ = e

(k0)
j′ .

Let i = e
(k)
j0

. Clearly by the definition of j0 we know that the identifier i is not deleted for
k ≥ k0. It remains to prove that i is refreshed infinitely many times. Assume to the contrary
that for some k1 ≥ k0 and every k ≥ k1 the identifier i is never refreshed in the k-th transition
in ρ. First notice that π contains an accepting edge of the form ((q, k2 − 1), (q′, k2)) for some
k2 ≥ k1. The edge identified by e

(k2)
j(k2) is accepting in ρ(k2)—this is the last edge on the path

corresponding to π in the Q-scheme obtained after reading the k2-th letter of α. There are two
cases. If j(k2) = j0, then i is refreshed in the k2-th transition, contradicting our assumption that
i is not refreshed beyond k1. Otherwise, j(k2) ≥ j0 + 1 and, by the definition of j0 we know that
for some k3 ≥ k2 the identifier e(k3)

j0+1 is deleted in the k3-th transition in ρ. Notice that since π is
an infinite path, this identifier cannot be deleted in Step 2 as it never dies out. Therefore, it must
be the case that e(k3)

j0+1 is deleted in Step 3 and that j(k3 + 1) = j0. Let us prove by Σ0
1-IND on

k = k2, k2 + 1, . . . , k3 that either:

- the identifier i is refreshed in the k′-th transition of ρ for some k′ such that k2 ≤ k′ ≤ k, or

- there exists an accepting edge in the Q-scheme ρ(k) that is identified by e(k)
j′ for some j′ such

that j0 < j′ ≤ j(k).

For k = k2 the second possibility holds. The inductive step follows directly from the definition
of the transitions of A—an accepting edge propagates to the left, firing successive refreshes for the
merged identifiers. For k = k3 we know that there is no j′ such that j0 < j′ ≤ j(n) thus the first
possibility needs to hold. This contradicts our assumption that there was no refresh on i after the
k1-th letter of α was read. This concludes the proof of the first implication in Lemma 9.8.10.

Now assume that α is a tree-shaped Q-dag accepted by the automaton A. Let us fix the run
ρ of A over α and assume that i0 is an identifier that is deleted only finitely many times but
refreshed infinitely many times. Let k0 be such that the identifier i0 is never deleted after the
k0-th transition of A. Our aim is to prove that the Q-dag α contains an accepting path.

We start by noticing that for every k ≥ 0 and an edge identified by e in the Q-scheme ρ(k),
this edge corresponds to a finite path wk,e in the Q-dag α. For the newly created edges that are
assigned new identifiers in Step 4, the corresponding path is an edge (q, k), (q′, k′) from the letter
M . For edges that were assigned an identifier earlier, the path is defined inductively, by merging
the paths whenever we merge edges in Step 3. Using Σ0

1-IND we easily prove that a corresponding
edge is marked “accepting” if and only if the path contains an accepting edge in α. If an identifier
i is refreshed then the path gets longer and contains at least one new accepting transition.

In this way, we can track the path corresponding to the edges identified by i0 for k ≥ k0.
Since the identifier i0 is refreshed infinitely many times, the path corresponding to it is prolonged
infinitely many times. Notice that the source of the paths corresponding to i0 is fixed and of the
form (q(k0), k0)—the identifier i0 is never merged to the left. Clearly, to every k ≥ k0 we can
effectively assign a state q(k) such that for some k′ > k0 the path wk′,i0 passes through (q(k), k)—
such k′ exists because i is refreshed infinitely many times. This gives us a ∆0

1-definition of an
infinite path π that starts in (q(k0), k0). We can append it to a path from (q0, 0) to (q(k0), k0) and
obtain a path π′ starting in (q0, 0). Notice that each refresh of i0 corresponds to a new accepting
edge on π, which means that π′ is accepting.
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Chapter 10

MSO over countable orders

10.1 Ramseyan principles over Q
In [63], one of the critical combinatorial lemmas in the proof of decidability of MSO over Q is
an additive Ramsey Theorem over Q. In [14], that theorem does not make an appearance, but a
principle which we call the Shuffle Lemma takes its place.

Definition 10.1.1. The additive Ramsey Theorem over Q is the following statement (originally
proved in [63]): “for any finite semigroup S and any additive colouring α : [Q]2 → S, there exists
a homogeneous set H which is dense in ]x, y[ for some x < y ∈ Q”.

Given a linear order (P,≤P ) and a function α : P → Σ, we say that a value a ∈ Σ occurs
densely in α if for every x, y ∈ P there exists z ∈ ]x, y[ such that α(z) = a. We call α a shuffle if
and only if for every a ∈ Σ, either a is not in the image of α or a occurs densely in α. If the image
of α is some set X, we say that α is an X-shuffle. We say that α contains a shuffle if there exist
x, y ∈ P with x < y such that α

∣∣
]x,y[ is a shuffle.

Definition 10.1.2. The Shuffle Lemma is the following statement: “for every α : Q→ Σ with Σ
finite, α contains a shuffle.”

Below we prove:

Theorem 10.1.3. The following statements are equivalent over RCA0:

1. the additive Ramsey Theorem over Q,

2. for any finite semigroup S and any additive colouring α : [Q]2 → S, there exist x, y ∈ Q such
that ]x, y[ is partitioned into finitely many dense homogeneous subsets,

3. the Shuffle Lemma,

4. Σ0
2-IND.

We establish Theorem 10.1.3 in the following manner:

- we prove the Shuffle Lemma in RCA0 + Σ0
2-IND (Lemma 10.1.4),

- we prove in RCA0 that the Shuffle Lemma implies the strong form of the additive Ramsey
Theorem over Q formulated as item 2. (Lemma 10.1.7),

- we then prove in RCA0 that the usual form of the additive Ramsey Theorem over Q implies
Σ0

2-induction (Lemma 10.1.9).

Lemma 10.1.4. RCA0 + Σ0
2-IND proves the Shuffle Lemma.

Proof. Let α : Q→ Σ be a function with Σ finite. For any natural number n, consider the following
Σ0

2 formula ϕ(n): “there exists a finite set L ⊂ Σ of cardinality n and there exist u, v ∈ Q with
u < v such that α(w) ∈ L for every w ∈ ]u, v[”.

Since ϕ(|Σ|) is true, it follows from the Σ0
2 minimization principle that there exists a minimal

n such that ϕ(n) holds. Consider u, v ∈ Q and the set of colours L corresponding to this minimal
n.

Claim. α
∣∣
]u,v[ is a shuffle.
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Proof of Claim. Let a = α(x) for some x ∈ ]u, v[. We need to prove that a occurs densely in
]u, v[. Consider arbitrary x, y ∈ ]u, v[ with x < y. We are done if we show that there exists some
w ∈ ]x, y[ with α(w) = a.

Suppose that there is no such w. By bounded Σ0
1-comprehension, there exists a finite set L′ ⊂ Σ

consisting of exactly those b ∈ Σ which occur as values of α
∣∣
]x,y[. Clearly, ϕ(|L′|) holds. However,

L′ ⊆ L, and by assumption a /∈ L′, so |L′| < n, contradicting the choice of n as the minimal
number such that ϕ(n).

A fact that we need later on is that X-shuffles exist for arbitrary non-empty X.

Lemma 10.1.5. Over RCA0, for any non-empty X ⊆ N there is an X-shuffle with domain ]0, 1[∩
Q.

Proof. Without loss of generality, it suffices to show the result for X = N. Define α : ]0, 1[ 7→ N
by α(ab ) = b where a

b is written as an irreducible fraction.

We now turn to the proof of the additive Ramsey theorem for pairs in Q. Much like the proof
for N, we use some basic resuts in Green theory to streamline the proof. In addition to 9.1.6, we
use the following elementary algebraic statement.

Lemma 10.1.6. For any pair of elements x, y ∈ S a finite semigroup, if we have x ≤R y and x, y
J -equivalent, then x and y are also R-equivalent.

Lemma 10.1.7. Provably in RCA0, the Shuffle Lemma implies that for any finite semigroup S
and any additive colouring α : [Q]2 → S, there exist x, y ∈ Q such that ]x, y[ is partitioned into
finitely many dense homogeneous subsets.

Proof. Fix a finite semigroup (S, ·) and an additive colouring α : [Q]2 → S. We say that a colour
c occurs in X ⊆ Q if there exists {x, y} ∈ [X]2 such that α(x, y) = c.

We proceed in two stages: first, we find an interval ]u, v[ such that all colours occurring in ]u, v[
are J -equivalent to one another. Then we find a subinterval of ]u, v[ partitioned into finitely many
dense homogeneous sets.

Claim. There exists {u, v} ∈ [Q]2 such that all colours of α
∣∣
]u,v[ are J -equivalent to one another.

Proof of Claim. Fix an enumeration (qn)n∈N of the rationals. Consider the colouring β : Q → S
given by:

qn 7→ α

(
qn, qn + 1

n+ 1

)
.

By the Shuffle Lemma, there exists some interval I0 in which every value of β occurs either
densely or not at all. There exists some k high enough such that, additionally, I1 := ]qk, qk + 1

k+1 [ ⊆
I0. Set c1 = α(qk, qk + 1

k+1 ).

Subclaim 10.1.8. For every {x, y} ∈ [I1]2 it holds that β(x, y) J c1.

Proof of Subclaim. Take {x, y} ∈ [I1]2 and c = α(x, y). We have c1 ≤J c since c1 = α(qk, x) · c ·
α(y, qk + 1

k+1 ). But, since c1 occurs densely in ]x, x+y
2 [, there are infinitely many ` such that x <

q` <
x+y

2 and β(q`) = α(q`, q` + 1
`+1 ) = c1. We can choose such ` high enough that ]q`, q` + 1

`+1 [ ⊆
]x, y[, which gives c ≤J c1 and so c J c1.

Moving on to stage two of the proof, we want to look for a subinterval of I1 = ]u, v[ from the
Claim partitioned into finitely many dense homogeneous sets. To this end, define the following
colouring γ : I1 → S2:

z 7→ (α(u, z), α(z, v)).

By the Shuffle Lemma, there exist x, y ∈ I1 with x < y such that every value of γ either occurs
densely in ]x, y[ or not at all. For l, r ∈ S, define Hl,r : = γ−1({(l, r)}) ⊆ ]x, y[; note that this
is a set by bounded Σ0

1-comprehension. Clearly, all Hl,r are either empty or dense in ]x, y[, with
]x, y[ =

⋃
l,rHl,r. Since there are finitely many pairs (l, r), all we have to prove is:

Claim. Each non-empty Hl,r is homogeneous for α.
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Proof of Claim. Let c = α(x, y) such that x, y ∈ Hl,r with x < y. By additivity of α and the
definition of Hl,r,

cr = α(x, y)α(y, v) = α(x, v) = r. (10.1)

In particular r ≤R c. But we also have r J c, which gives r R c by Lemma 10.1.6. This shows
that all the colours occurring in Hl,r are R-equivalent to one another. A dual argument shows that
they are all L-equivalent, so they are all H-equivalent. Clearly, the assumptions of Lemma 9.1.6
are satisfied, so their H-class is actually a group.

All that remains to be proved is that any colour c occurring in Hl,r is actually the (necessarily
unique) idempotent of this H-class. Since r R c, there exists a such that c = ra. But then
by (10.1), cc = cra = ra = c, so c is necessarily the idempotent.

Thus, Hl,r is homogeneous.

Remark. The above method of proof is a Green relation-based take of Shelah’s proof in [63].
This proof follows the same pattern as the proof of the additive Ramsey over ω: first we isolate

the J -classes using an “ordered colouring”, and then one deals with the semigroup structure in a
similar way, using the Shuffle Lemma instead of the infinite pigeonhole principle.

We have a loose correspondence of the following three principles in the proofs of additive Ramsey
over N, arbitrary ordinals and Q: the infinite pigeonhole principle, the unboundedness principle
and the Shuffle Lemma.

Lemma 10.1.9. Provably in RCA0, the additive Ramsey Theorem implies Σ0
2-IND.

Proof. We work in RCA0 and assume the Additive Ramsey principle. It is enough to prove that
given a Π0

2 formula ϕ(j) and a number `, if there is any j ≤ ` such that ϕ(j), then there is a
maximal such j. By a standard normal form for Π0

2 formulas, we may assume w.l.o.g. that ϕ(j)
has the form

∃∞n δ(j, n) : = ∀m∃n ≥ mδ(j, n),

where δ is ∆0
0. Moreover, modulo some simple manipulation, we may also assume that for each n

there is exactly one j ≤ ` such that δ(j, n).
We will use ϕ to define a colouring over the dense linear order (D,≤) of dyadic numbers, the

suborder of Q defined by D = {m2k | m ∈ Z, k ∈ N}. Since RCA0 knows that any two (countable)
dense linear orders without endpoints are isomorphic, the additive Ramsey Theorem holds over D
as well.

For x ∈ D, let the rank of x, rk(x), be the least k ∈ N such that x = m
2k for some m ∈ Z.

There are two simple but important facts to note about ranks. Firstly, for any interval ]x, y[ ⊆ D
and any k ∈ N, there are only finitely many elements of ]x, y[ with rank < k, so there exists a
subinterval ]x′, y′[ ⊆ ]x, y[ which contains only elements of rank ≥ k. Secondly, for any ]x, y[ ⊆ D,
all but finitely many ranks occur in ]x, y[.

Define α : D → {0, . . . `} by:
α(x) = j iff δ(j, rk(x)).

This is correctly defined by our assumptions on δ. Moreover, by properties of rank, for any
]x, y[ ⊆ D, the colour j occurs densely in ]x, y[ ⊆ D exactly if ϕ(j) holds.

Now define β : [D]2 → {0, . . . `} by:

β(x, y) = max({α(z) : x < z < y, rk(z) ≤ max(rk(x), rk(y))}).

Since we are maximizing α over a finite set of z’s, the colouring β is computable and therefore
available in RCA0.

Apply the additive Ramsey Theorem to β, obtaining a homogeneous set H dense in some
interval ]x, y[ ⊆ D. Let j be the colour of H. It remains to prove that j is the maximal number
below ` satisfying ϕ(j).

On the one hand, j has to occur densely in ]x, y[ as a value of α, which means that ϕ(j) holds.
On the other hand, assume that j < j′ ≤ ` and that ϕ(j′) holds. Let u ∈ H. Since all but finitely
many ranks occur in ]x, y[, there is some z ∈ ]x, y[ such that δ(j′, rk(z)). W.l.o.g., u < z. Now, find
an interval I ⊆ ]z, y[ with no elements of rank < rk(z) and let v ∈ I ∩H. Then, since u, v ∈ H,
we have β(u, v) = j. However, since u < z < v and rk(z) ≤ rk(v) but α(z) = j′, we also have
β(u, v) ≥ j′, which is a contradiction.
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10.2 Consequences of decidability of MSO(Q)
In this section we establish so-called “reversals”, namely implications from the decidability of
MSO(Q) to principles axiomatizing strong fragments of second-order arithmetic. These implica-
tions can be viewed as proof-theoretical lower bounds for the decidability theorem. We prove two
kind such lower bounds:

- Firstly, much like in Proposition 9.4.1, we derive induction schemes from decidability of MSO.
The hypothesis here is that we suppose that there exists some algorithm deciding the MSO
theory.

- Second, we give examples of statements which are expressible in MSO which are equivalent
to comprehension schemes. While this does not show that decidability of MSO requires
necessarily those axioms in the absolute, it shows that the soundness of the usual algorithm,
which can be shown to be correct in, say, ZF.

10.2.1 Preliminaries on linear orders
Before embarking in the proof of the reversals, we first make a few generalities on MSO and linear
orders. The syntax of MSO formulas over linear orders is given by:

- First-order logic with an atomic predicate for the underlying order <.

- Quantification over sets of elements, together with a set membership relation.

ϕ,ψ ::= x < y | x ∈ X | ϕ ∧ ψ | ¬ϕ | ∃x ϕ | ∃X ϕ

Given an arbitrary (countable) order (X,<), the formulas are interpreted in the expected way.
Recall however that the satisfaction for MSO formulas is only defined up to an externally fixed
number of quantifier alternation at a time. Given a predicate variable X, one may define the
relativization (ϕ � X) of a formula ϕ with respect to the set X by recursion over ϕ

(x < y � X) = x < y
((x ∈ Y ) � X) = x ∈ Y
((ϕ ∧ ψ) � X) = (ϕ � X) ∧ (ψ � X)
((¬ϕ) � X) = ¬(ϕ � X)
((∃x ϕ) � X) = ∃x (x ∈ X ∧ (ϕ � X))
((∃Y ϕ) � X) = ∃Y (Y ⊆ X ∧ (ϕ � X))

where Y ⊆ X is a shorthand for ∀x.x ∈ Y ⇒ x ∈ X. With respect to truth, for an arbitrary order
(P,<), if given a subset Q ⊆ P , a MSO formula ϕ and a valuation ρ : FV(ϕ)→ P ∩P(P ), we have
(P,<) |=ρ ϕ if and only (Q,<) |=ρ,X←Q (ϕ � X).

A first remark concerning Q is that it is universal among countable linear orders in the following
sense.

Lemma 10.2.1. We work in RCA0. For every countable linear order (X,<X), there exists an
order homomorphism i : (X,<)→ (Q, <).

Proof sketch. The basic idea is to recall that elements of X may be seen as natural numbers build
i by recursion as follow:

- If n /∈ X, then n is not in the domain of i.

- Otherwise, consider the set In = dom(i) ∩ J0, n− 1K. We then have three alternatives:

– Either n <X k for every k ∈ In, in which case we set i(k) to be strictly less than all
elements of In according to the order over Q.

– We proceed similarly if k <X n for every k ∈ In.
– Otherwise, there is a maximal k ∈ In and minimal k′ ∈ In such that k <X n <X k′.

We then set i(n) to be strictly between i(k) and i(k′).

It is possible to write an algorithm computing i and to show it sound with respect to the above
specification within RCA0. Then it is easily seen to be an order-homomorphism.
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In [27], Hausdorff studied inductive decomposition of linear orders as lexicographic sums. A
crucial notion in this analysis is the notion of scattered and dense orders.

Definition 10.2.2. Let (L,<L) be a linear order. X ⊆ L is dense in itself if and only if, for every
x, y ∈ L, there exists z ∈ X such that z ∈ ]x, y[ and X is non-empty. A linear order (L,<L) is
scattered if and only if no X ⊆ L is dense in itself.

Remark. Note that, up to isomorphism, there are only four dense in themselves countable linear
orders: Q and the variants of Q with endpoints (Q∪{+∞}, Q∪{−∞} and Q∪{−∞,+∞}). This
is provable by back-and-forth within RCA0.

Hausdorff’s theorems give decomposition result for scattered and non-scattered linear orders
using the notion of lexicographic sum.

Definition 10.2.3. Let (I,<) be a linear order and (Pi, <i)i∈I a family of countable linear orders
indexed over I. The lexicographic sum is the order (

∑
i∈I Pi, <lex) has for underlying set the set of

pairs (i, j) such that i ∈ I and j ∈ Pi and for order the lexicographic order: we have (i, j) <lex (i′, j′)
if either i < i′ or i = i′ and j < j′.

Lexicographic product of orders (I,<) and (J,<) are particular cases of lexicographic sum where
the family (Pi, <i)i∈I is constat equal to (J,<). In the context of reverse mathematics where all
orders are countable and have for carrier a subset of N, RCA0 shows that the lexicographic sum of
linear orders exist and are indeed linear orders.

Hausdorff’s analysis, suitably restricted to countable orders, was studied from the point of
view of Reverse Mathematics in [17] and [23]. Two theorems are of importance: the inductive
characterization of countable scattered orders and the decomposition of arbitrary countable orders
as a sum of scattered orders. As far as Reverse Mathematics are concerned, the following result of
Clote is going to be used to show that MSO over Q can express Π1

1-CA0.

Theorem 10.2.4 ([17]). Over ACA0, the following are equivalent:

- Π1
1-CA0

- every linear order P is either scattered, or P '
∑
d∈D Pd where D is dense in itself and Pd

are all scattered and non-empty.

10.2.2 Induction from decidability
We rely on a trick similar to the one employed in Theorem 9.4.1. There, we used the fact that
MSO over the naturals can express a Σ0

2-complete property to show that its decidability implies
Σ0

2-IND. Here, we notice that MSO over Q can express a Π1
1-complete property: well-foundedness.

Theorem 10.2.5. Provably in ACA0, if there exists an algorithm deciding the depth-7 fragment
of the MSO theory of (Q,≤), then Π1

1-IND holds.

Proof. Here, we use the fact that MSO over the rationals can express a Π1
1-complete property to

show that its decidability implies Π1
1-IND. For k ∈ N, let ψk be the MSO sentence

∀X0 ∀X1 . . . ∀Xk

 ∨
−1≤i≤k+1

Xi is well-ordered ∧
∧

i<j≤k

(¬Xj is well-ordered )

 ,
where “X is well-ordered” is an MSO formula stating in a natural way that each non-empty subset
of X has a smallest element (in the ordering of Q). Thus, ψk essentially says that if at least one
of k+ 1 sets X0, . . . , Xk ⊆ Q is well-ordered, then there is a highest i for which Xi is well-ordered.
Intuitively, ψk says that Π1

1-induction holds up to k. Already RCA0 proves that ψ0 ∈ MSO(Q)
and for every k ∈ N, if ψk ∈ MSO(Q), then ψk+1 ∈ MSO(Q). Moreover, each ψk can be written
as a depth-7 sentence, so the existence of an algorithm deciding the depth-7 fragment of MSO(Q)
would imply that ψk ∈ MSO(Q) for all k ∈ N (since “ψk ∈ MSO(Q)” would then be a decidable
property of k, and RCA0 has induction for decidable properties).

Now, assume ψk ∈ MSO(Q) for all k and let π(x) be a Π1
1 property such that π(0) but ¬π(`)

holds for some ` ∈ N. We have to show that there is a maximal i ≤ ` such that π(i). ACA0 proves
that π(i) is equivalent to the well-ordering of the Kleene-Brouwer orderingKB(Ti), where (Ti)i≤`
is a sequence of trees definable by arithmetical comprehension. Define Xi to be the range of a
computable embedding of KB(Ti) into Q. For each i ≤ `, π(i) holds exactly if Xi is well-ordered
as a subset of Q. Since ψ` is in MSO(Q), there is a maximal i ≤ ` such that Xi is well-ordered,
which is also the maximal i ≤ ` such that π(i).
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10.2.3 Comprehension as an MSO sentence
Now that we established that the mere decidability of MSO(Q) implies Π1

1-IND over ACA0, we show
that MSO(Q) can express a theorem ψΠ1

1-CA0 equivalent to Π1
1-CA0 over ACA0. A fixed algorithm

which can be shown to be sound in, say, ZF, deciding MSO(Q) should output “true” if taking
ψΠ1

1-CA0 as input. For a fixed algorithm and a fixed sentence, this is witnessed by a concrete
computation which can be reflected withing RCA0; therefore, soundness of such an algorithm
readily implies Π1

1-CA0.

Lemma 10.2.6. There exists a sentence ϕACA0 of MSO over (N2, <lex) equivalent to ACA0 over
RCA0.

Proof. The sentence under consideration states that, for every subset Z ⊆ N2, there exists a set
X ⊆ N2 such that:

- Z is included in X.
Z ⊆ X : = ∀x (x ∈ Z ⇒ x ∈ X)

- X is successor and predecessor-closed: if Ṡ(x, y) holds and either x ∈ X or y ∈ X, then both
x, y ∈ Z.

C(X) : = ∀x y.Ṡ(x, y) ∧ (x ∈ X ∨ y ∈ X)⇒ x ∈ X ∧ y ∈ X

- X is the minimal such set.

Putting everything together, we obtain the following sentence

ψ : = ∀X ∃Z
(
Z ⊆ X ∧ C(X) ∧ (∀Y (Z ⊆ Y ∧ C(Y )⇒ Z ⊆ Y ))

)
of quantifier depth less than 5. Now, suppose that (N2, <lex) |=5 ψ and let ϕ(n) = ∃m δ(n,m) be an
arbitrary Σ0

1 formula (with possibly other parameters beyond n). Since δ is ∆0
0, there exists Z ⊆ N2

such that (n,m) ∈ Z if and only if δ(n,m) holds. Then, since ψ holds, we have some minimal
X closed under successor and predecessor containing Z. Then we show that ϕ(n) ⇔ (n, 0) ∈ X
which suffices to conclude.

- If ϕ(n) holds, then there exists m such that (n,m) ∈ Z ⊆ X. But since C(X) holds, a ∆0
0

induction over m shows that (n,m) ∈ X ⇒ (n, 0) ∈ X.

- Conversely, assume that for every m, (n,m) /∈ Z. Define X̃ = X \ {(n,m) | m ∈ N}. It is
easy to check that C(X̃) holds and that Z ⊆ X̃. Consequently, X ⊆ X̃ and thus (n, 0) /∈ X.

Theorem 10.2.7. There exists a true sentence ψΠ1
1-CA0 of MSO over (Q,≤) which is equivalent

to Π1
1-CA0 over RCA0.

The first step towards proving Theorem 10.2.7 is to first find a sentence of MSO(Q) which imply
ACA0. Thankfully, we may reuse Lemma 10.2.6 together with Lemma 10.2.1 as follows.

Lemma 10.2.8. There exists a true sentence ψACA0 of MSO over (Q, <) which is equivalent to
ACA0 over RCA0.

Proof. By Lemma 10.2.6, it suffices to find a sentence whose validity in Q is equivalent to the
validity of ϕACA0 in N2. To define ϕACA0 , we first give a MSO sentence IN2 which characterize
subsets of Q which are order-isomorphic to (N2, <lex). A first step is to give a similar sentence IN
for orders isomorphic to (N, <).

IN = ∃x (∀y.x ≤ y) ∧ ∀X.x ∈ X ∧ (∀yz.y ∈ X ∧ Ṡ(y, z)⇒ z ∈ X)⇒ ∀z z ∈ X

IN2 = ∃X.(IN � X) ∧ ∀Y.∃x y.x ∈ X ∧ y ∈ X ∧ (∀z.z ∈ Y ⇔ x ≤ z ∧ z < y) ∧ (IN � Y )
The sentence ψACA0 is then

∀Y.(IN2 � Y )⇒ (ϕACA0 � Y )
where ϕACA0 is given in Lemma 10.2.6. Note that RCA0 proves that (N2, <) |= IN2 .

As every countable linear order embed into Q by Lemma 10.2.1, so does N2; let Y ⊆ Q be the
corresponding subset of Q. If (Q, <) |= ψACA0 , then (Y,<) |= ϕACA0 and thus (N2, <) |= ϕACA0 and
ACA0 holds. Conversely, it is not difficult to check that any order (P,<) such that (P,<) |= IN2 is
order-isomorphic to (N2, <lex) in ACA0

1, and that the converse thus holds.
1However, ∆0

1-comprehension is not enough to show that Ṡ is indeed a function encodable as a set.
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Then, we can safely reduce Theorem 10.2.7 to the following lemma.

Lemma 10.2.9. There exists a true sentence ψ′Π1
1-CA0

of MSO over (Q,≤) equivalent to Π1
1-CA0

over ACA0.

Proof. The statement ψ′Π1
1-CA0

comes from the following mild reformulation of Theorem 10.2.4:

Claim. Over ACA0, the following are equivalent:

- Π1
1-CA0

- every linear order P is either scattered, or there exists Q ⊆ P such that

– Q is dense in itself.
– for every convex X ⊆ P disjoint from Q, X is scattered.
– for every p ∈ P , there exists a convex, scattered X ⊆ P such that p ∈ X and X ∩Q 6= ∅.

Proof. We use Theorem 10.2.4 and show the equivalence with the second alternative. When P is
scattered, both direction are trivial, so, without loss of generality, assume that P is not scattered.

First, if P '
∑
d∈D Pd where D is dense in itself and Pd are all scattered and non-empty. We

prove the result for
∑
d∈D Pd, as it is rather straightforward to push through the order isomorphism

P '
∑
d∈D Pd. Since all Pd are non-empty, we may define a computable function f : D → N such

that for every d, f(d) ∈ Pd (taking, for instance, the minimal element of Pd when seen as a subset
of N). Call Q the graph of f . We now have three things to check:

- Q is order-isomorphic to D, so it is dense in itself.

- Now assume that X ⊆
∑
d∈D Pd is convex and X∩Q = ∅. Note that for every elements (d, x)

and (d′, x′) of Q, d′ = d; otherwise assume without loss of generality that d < d′. Since D is
dense, we have some d′′ such that d < d′′ < d′, and thus (d, x) < (d′′, f(d′′)) < (d′, x′). As
X is convex, we should have (d′′, f(d′′)) ∈ X, which is impossible since X ∩ Q = ∅. Hence,
Q ⊆ Pd for some d ∈ D. As a subset of a scattered subset of

∑
d∈D Pd, Q is thus scattered.

- Finally, for every (d, x) ∈
∑
d∈D Pd, the set Pd is scattered and intersect Q at f(d).

Conversely, assume that we have Q ⊆ P is dense in itself such that every X ⊆ P such that
X ∩Q = ∅ is scattered and that for every p ∈ P , we do have a convex scattered subset Y such that
p ∈ Y and Y ∩ Q 6= ∅. Define the family (Pq)q∈Q of subsets of P by arithmetical comprehension
as follows

x ∈ Pq ⇔ ∀q′ ∈ Q. (q′ < q ⇒ q′ < x) ∧ (q < q′ ⇒ x < q′)

For every q ∈ Q, q ∈ Pq. Furthermore, Pq is a partition of P into convex subsets:

- Every Pq is convex: suppose that we have x < y with x, y ∈ Q and z ∈ [x, y] and an arbitrary
q′ ∈ Q. Either q′ < q, in which case q′ < x ≤ z, or q′ > q and z ≤ y < q′; thus z ∈ Q.

- If q 6= q′, Pq ∩ Pq′ = ∅: without loss of generality, assume that q < q′ and x ∈ Pq ∩ P ′q. Since
Q is dense in itself, there exists q′′ ∈ ]q, q′[. By definition of Pq, we have necessarily x < q′′.
However, by definition of Pq′ , we have q′′ < x, a contradiction.

- Finally, let us show that every x ∈ P belongs to some Pq. By assumption, there exists a
convex scattered set Y containing x and intersecting Q. Note that Y ∩ Q is necessarily a
singleton. Otherwise, we would have q < q′ ∈ Q ∩ Y , and, since Y is convex, [q, q′] ⊆ Y , a
dense subset of Y . Thus, let q be such that Y ∩Q = {q}; we show that x ∈ Pq. To this end
suppose that we are given an arbitrary q′ ∈ Q. Suppose that q < q′ (the symmetric case is
treated similarly). We then have to show that x < q′; by contradiction, suppose that q′ ≤ x.
Since Y is convex, we have q′ ∈ Y , which contradicts |Y ∩Q| = 1.

We thus readily have P '
∑
q∈Q Pq, with Q dense. It remains to show that every Pq is scattered

and non-empty; the latter is immediate since q ∈ Pq for every q ∈ Q. As for scatteredness, define
the sets

P+
q = {x ∈ Pq | x > q}
P−q = {x ∈ Pq | x < q}

Since the family (Pq)q∈Q is a partition and q ∈ Pq, we have P+
q ∩Q = ∅ and P−q ∩Q = ∅. Therefore,

both P+
q and P−q are scattered. Since Pq = P−q ∪ {q} ∪ P+

q and scattered sets are closed under
finite unions, Pq is therefore scattered.
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With this claim, it then suffices to notice that since every countable order embeds into Q,
MSO(Q) allow to quantify over a single countable order and to formalize density and scatteredness
in MSO.

dense = (∃x y.x < y) ∧ (∀x y.x < y ⇒ ∃z.x < z ∧ z ∧ y)
scat = ∀X.¬(dense � X)

Therefore ψ′Π1
1-CA0

= ∀Z ((scat ∨ ∃Y ψ′′) � Z) where ψ′′ is the conjunction

(dense � Y ) ∧
(
∀V.V ∩ Y = ∅ ⇒ (scat � Y )

)
∧ ∀x ∃yV.y ∈ V ∧ y ∈ Y ∧ x ∈ V ∧ (scattered � V )

where V ∩ Y = ∅ formally stands for ∀x ¬(x ∈ X ∧ x ∈ Y ).
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Conclusion

As announced in the introduction, we have studied constructive aspects of MSO theories, and
more specifically, MSO(ω) from two complementary perspectives. While Part I gave intuitionistic
counterparts to MSO(ω) satisfying a Curry Howard correspondence for (finite-state) causal func-
tions, Part II attempts to determine the metatheoretic assumptions required to make the classical
standard MSO theories true within second-order arithmetic.

Part I starts by giving basic properties of Mealy machine in Chapter 2. While Mealy ma-
chines are a natural object to consider in automata theory, simply because it is a useful tool for
intermediate constructions (see for instance Subsection 9.8.1 of Part II) which is central to the
development of Part I as we make the choice to restrict our notion of realizer to only consider
causal functions. Most things are left unsaid about the general theory of Mealy machines as one
of the main focus is the guarded fixpoint construction, a crucial ingredient for the composition of
strategies in zigzag games in Chapter 7. Although this does not serve in the rest of the thesis,
a concrete syntax for finite-state causal functions with a sound and complete equational theory
is given thanks to this fixpoint construction. Another preliminary move made in Chapter 2 is to
show the equivalence between MSO(ω) and a first-order theory of streams FOM. This is rather
uncontroversial from a purely technical standpoint and justified by the term language of FOM
which includes all finite-state causal functions. As with parametric guarded fixpoints, this might
also be seen as preliminary setup for Chapter 7 which would make little sense if we were working
with natural base categories for (a fragment of) second-order arithmetic. Then, an intuitionistic
subsystem SFOM of FOM is introduced in Chapter 3. After establishing that it is as expressive
as FOM thanks to a simplified double-negation translation (amounting to Glivenko’s theorem), a
proof-relevant model of SFOM is given to justify extraction. The most interesting point, beyond
the formal soundness and completeness of SFOM with respect to extraction, is that the model
itself is based on a simple refinement of the usual translation of FOM formulas2 into automata: the
formulas are interpreted as automatas and the proof, instead of being mere witnesses of language
inclusion with no computational content, are interpreted as simulations. A similar approach is
taken in the subsequent Chapter 4 where a richer logic LSFOM based on intuitionistic linear logic
is studied. A linear translation from the classical theory FOM is given, and a proof-relevant model
for extraction is sketched. Once again, the main aesthetic advantage of the model is that it is based
on standard translations into automata at the level of formulas, while the interpretation of proofs
does no longer corresponds to inclusions of languages, but rather winning strategies in a simulation
game. The proof of soundness of extraction is postponed to later chapters, so while this is not
formally mentioned at that point, the guarded fixpoint construction over Mealy machines plays a
crucial rule to interpret the cut rule of LSFOM. While the presentation of the models of SFOM
and LSFOM as refinements of the usual automata-based interpretation of formulas is appealing
and theoretically allow for automatic verification algorithm to be applied to those automatas to
check, for instance, for the existence of simulations, it is also rather clear that the interpretation
of proofs do not require to compute the automata interpretation of the involved formulas. In a
sense, this hints at a crucial fact underlying the developments in latter chapters: the automata
are not essential part of these models, the simulation and games are. Thus, the latter chapter are
dedicated to giving categorical constructions allowing to recover equivalent models for FOM and
LSFOM syntactically. The starting point is Chapter 5 which, after giving a few preliminaries on
fibrations, recalls the Dialectica construction Dial over them. The reason for this development
is because the logical structure of Dial and LSFOM share some striking similarities. Mentioned
in passing is the Sum construction, which generalizes the simple fibration, and essentially corre-
sponds to building a syntactic model for SFOM when starting from the syntactical fibration for

2It is straightforward to check that the usual translation of formulas into infinite word automata can be carried
out in the same way for FOM as for MSO(ω).
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the classical theory FOM. Then, after introducing a convenient category for higher-order (and
thus, not necessarily finite-state) causal functions S, Chapter 6 gives the explicit construction of a
category of simulation games, the zigzag games, and a construction DialI over fibrations over S.
Roughly speaking, DialI is a higher-order generalization of the model construction for LSFOM. Its
formal relationship with Dial is clarified and a similar characterization theorem is given. Finally
Chapter 7 adapts this material to work with finite-state causal functions and exploits the charac-
terization theorem of the previous chapter to give a reasonably nice complete axiomatization of
the proof-relevant model of LSFOM.

Part II is less concerned with structural issues, but rather the foundational strength of MSO
theories. Its main contribution lies in Chapter 9 where Büchi’s decidability theorem for MSO(ω),
together with relevant theorems from the theory of infinite word automata, are analyzed from the
point of view of Reverse mathematics. It turns out that over the weak base theory RCA0, the
decidability of MSO(ω) (presented as a scheme for technical reasons), the existence of complement
of Büchi automata, the additive Ramsey theorem over N and the scheme of Σ0

2-induction are all
equivalent. Furthermore, the Muller-Schupp algorithm determinizing Büchi automata into Rabin
automata can be shown to be sound in Σ0

2-induction. Some of those proofs, such as determinization
from Σ0

2-induction, are obtained by formalizing usual automata-theoretic proofs within second-
order arithmetic, although sometimes the argument needs to be substantially changed to fit our
weak theories. For instance, the additive Ramsey theorem can not be taken to be consequence of
the general Ramsey theorem for pairs which is unprovable in Σ0

2-IND, but requires a more refined
argument based on basic Green theory here. The proofs that these theorems imply Σ0

2-IND all
employ a similar trick based around the idea that Σ0

2-complete sets may be encoded in MSO(ω).
Chapter 10 contains preliminary steps towards a similar study for MSO(Q). It is centered around
the idea that it makes for interesting intermediate case lying between MSO(ω) and MSO over
the infinite tree in terms of axiomatic strength. While we are nowhere close to having a crisp
characterization of the strength of MSO(Q) as for MSO(ω), we first establish that the additional
additive Ramsey theorem over Q used in Shelah’s proof of decidability is also equivalent to Σ0

2-IND
and is thus rather elementary with respect to the logical complexity of MSO(Q). Indeed, we
then show that MSO(Q) can express Π1

1-complete statements, which allow to derive Π1
1-IND from

decidability of MSO(Q) and Π1
1-CA0 from the soundness of the usual algotrithm deciding MSO(Q)

over RCA0.

All in all, while both parts of the thesis purports to study the constructivity of MSO, and
more specifically, MSO(ω), there is little overlap between the two. While this might serve as an
illustration of the diverging interests of communities in foundational strength and those focussed
on Curry-Howard correspondences and intuitionistic logics, one should keep in mind that those
two aspects of logic still enjoy tight connexions that fall outside the scope of this thesis.

Further work
We collect below some ideas for further work. For Part I, we give several problems which arise
as extension of the development above. For Part II, we focus on the open problems related to
MSO(Q) on which we are still working on at the time of writing.

Part I
Axiomatization of FOM and its constructive counterparts FOM is a theory which is

equivalent to MSO(ω) from the point of view of expressivity in classical logic and that we found
to be more pleasant from an aesthetic point of view when studying constructive aspects of the
theory of infinite word automata for various reasons. Classically, because it is essentially the same
as MSO(ω), Siefkes’ axiomatization can be seemlessly lifted to FOM.

However, the appeal of Siefkes’ axiomatization of MSO(ω) is also largely a matter of aesthetics
that gets largely lost in translation: it is the restriction of the usual axiomatization of second-order
Peano’s arithmetic restricted to the language of MSO(ω). When lifted to FOM, the induction
and comprehension schemes get buried under cumbersome encodings for natural numbers, and an
ad-hoc axiom gets added to relate the translation of MSO(ω) formulas to the atomic equalities of
FOM.

So a first informal question is the following:
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Question. Does there exist a natural axiomatization of FOM based on stream equations rather
than encoding of the comprehension/induction axioms and natural numbers?

It is unclear at the moment if such an axiomatization would be easy to find, but this might be
an intersting first step towards finding more convincing axiomatizations of intuitionistic variants
of FOM. Indeed, the axiomatizations of SFOM and LSFOM suffer from the same defect as they
include negative/linear translation of those cumbersome axioms. This is to be constrasted with
the cleaner situation in arithmetic, where, for instance, the axioms of Heyting arithmetic are
aesthetically reasonable while still ensuring the soundness of the double-negation translation.

Axiomatization of equality in Mealy, Sfin and its cartesian-closed extension We have
provided a term syntax for finite-state causal functions and a complete axiomatization of its equa-
tional theory in Chapter 2. The fact that there exists a semi-recursive axiomatization is obvious,
but once again, this particular axiomatization is rather pleasant because it fits neatly the syntactic
constructs of the term language we provided. However, during the proof of completeness, multi-
ple naturality conditions reminiscent of those required when defining trace operators in monoidal
categories [33] must be proved. This leads to the following question:

Question. Can the uniqueness axiom in the axiomatization of equalities between Mealy terms be
replaced by naturality conditions while retaining completeness?

If the answer is positive, this might possibly be straightforward to check by inspecting the proof
of completeness.

While this axiomatization was not used further in the thesis, this paved the way to the crucial
definition of the category Sfin which serves as a stepping stone in definining DZfin. We did not
attempt to give a complete axiomatization of equalities between terms forming the morphisms Sfin

along the same lines.

Question. Is there a natural axiomatization of the equality between morphisms of Sfin?

We presume that the answer is positive and rather obvious. The axiomatization itself probably
mirrors the one given for Mealy, together with additional axioms pertaining to the pointwise arrow
(namely, the counterpart of Lemma 6.1.8 together with some additional axioms arising from the
isomorphism (BA)ω ∼= Aω −∗ Bω). Presumably, material from Section 7.1 could be leveraged to
this end.

A more interesting question is to consider the analogous situation for a term language extending
those coming from Sfin to support general exponentials. This would roughly correspond to a
fragment of the guarded λ-calculus where the most complex base type would essentially be streams.

Question. Is there a recursively enumerable axiomatization (complete) of the term language of
Sfin augmented with ev and Λ?

Note that this would be equivalent to the decidability of the equivalence of two terms, the set
of pairs of unequal terms is recursively enumerable. The question makes sense for any reasonable
inductively defined fragment of the topos of trees, so it might make sense to consider both re-
strictions and generalizations of Sfin augmented with exponentials. In any case, let us notice that
it does not take much to make the problem undecidable as it would be easy to simulate Minsky
machines if we further assume that a morphism 3ω → (2ω)2ω simulating a counter is definable in
addition to internal homsets and morphisms given by Mealy machines in our fragment of interest.

A complete extension of LSFOM with general exponentials As remarked when intro-
ducing LSFOM, while we have refrained from introducing general exponentials in the theory, it is
entirely possible to do so while retaining a perfectly consistent theory that allows extraction. While
Chapter 6 does so at the cost of introducing realizers which are not necessarily finite-state, it is
also possible to adapt the construction of the general exponential found in [61] to our setting. De-
spite its structural defect, this latter construction ensures that this extension can be made without
affecting the soundness theorem with respect to Church’s synthesis and by keeping an automata-
theoretic interpretation. In particular, it means that there is a decidable complete extension of
LSFOM with full exponentials. Thus we may ask the following informal question:

Question. Is there a natural extension of LSFOM+ completely axiomatizing the model with full
exponentials?
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At the time of writing, we have no idea if there is an elegant way to do so. A first idea towards
attacking this problem would go as follows: first, note that parity uniform alternating automata
A : A may be encoded as a formula ϕA(a, u, x) in a straightforward way, so that LSFOM+ ` A˛
∃x.∀u.ϕA(a, u, x). Then, one may try to check what basic axioms are required to show that, for
instance, ∃u′.ϕ!A(a, u′, ∗) ` !∃u.∀x.ϕA(a, u, x) in the extension. Having axioms strong enough to
show this and the dual statement ?∃u.∀x.ϕA(a, u, x) ` ∀x′.ϕ?A(a, ∗, x′) would be sufficient.

Let us also note that having unrestricted exponential modalities allow for a straightforward
translation of MSO(ω) extended with game quantifiers in our logic.

Kleene realizability and continuous functions While we have studied extraction for
synchronous functions here, nothing was said about the interpretation of the language of FOM3

in general models for higher-order intuitionistic logic, such as the effective topos corresponding to
Kleene realizability or the sheaf topos based on continuous maps considered in [47, VI.9]. There,
the questions of axiomatizing and deciding the logics may be also be asked. These are much more
challenging as, beyond the myriad of settings to consider, they seem to lead away from the usual
basic automata-theoretic tools used to deal with MSO(ω). Furthermore, as with the synchronous
case, interpreting all the connectives of first-order logic in those interpretation seems to require a
notion of higher-order realizers.

However, some modest goals in this direction may be within reach. A first step would be
to clarify the situation for simple logics based on SFOM which only feature a limited number of
connectives.

Question. What are the consistent extensions of SFOM based on realizability?

A first case do study would be the interepretation of SFOM formulas in Kleene’s realizability.
The situation looks quite simple because of the following fact: for any FOM formula if there
exists any continuous f : Aω → Bω such that ∀aAω .ϕ(a, f(a)) holds classically, then there exists
k ∈ N and a f.s. k-Lipschitz function g : Aω → Bω such that ∀aAω .ϕ(a, f(a)) holds classically.
This can be seen as a consequence of [39] or proven directly by a pumping argument on the
underlying automata. This essentially means that settings with continuous realizers coincide for
SFOM formulas, and that we obtain a decidable model by a reduction to Büchi-Landweber. It
would be interesting to seee if this result can be extended to cases where realizers f are ∆0

1 and
∆0

2 functionals; if so, it might mean that there is a formal way of saying that there are essentially
three “interesting” proper extensions of SFOM4.

The other natural extension of the case of continuous functions would be to see what happens
with higher-order continuous realizers and the interpretation of all connectives of first-order logic
that require them (namely, ⇒ and ∀). While it is rather clear how to systematically build models
as soon as we are given a cartesian closed category in which Mealy admits a (finite-limit preserving)
embedding by using Sum and change of base, it is unclear if it can be shown that they are all
equivalent for FOM formulas or not.

Part II : the proof-theoretic strength of MSO(Q) ?
It is likely that one would be able to prove decidability of MSO(Q) in Π1

2-comprehension5 by simply
adapting the proof of decidability found in [14]. The crucial property that seems to require a strong
comprehension axiom there is Proposition 1, which is proven using Zorn’s lemma. This proposition
is provable in Π1

2-CA0, and it might even be the case that a mild modification makes the proof
go through in ∆1

2-CA0. One should note that this axiom is strictly less powerful than Rabin’s
theorem in terms of axiomatic strength as [41] establishes that Rabin’s theorem is not provable in
∆1

3 comprehension. However, our investigations thus far hint at the existence of a tighter upper
bound. Note for instance that while we are able to derive Π1

1 induction from the decidability of
MSO(Q) (and that MSO(Q) is able to express theorems equivalent to Π1

1-CA0), it does not seem
possible to extend this result to the class of ∆1

2 formulas. It is more likely that the true theory
of MSO(Q) may be shown to be decidable by a strenghthening of Π1

1-CA0 that could be dubbed
finite Π1

1-recursion.
3We refrain from speaking about MSO(ω), specifically because the absence or presence of primitive integers start

being quite significant. For instance, having a bijection between those streams x ∈ 2ω such that N∞(x) = 0ω∧x 6= 0ω
(as per Figure 2.4) and the set of natural numbers implicitly relies on Markov’s principle!

4The “interesting” would cover technical restrictions, such as e.g. requiring that the theories of interest be
invariant under relativization over infinite domains. . .

5With the same caveat as in Theorem 9.3.1: Π1
2-CA0 would only prove decidability of the depth-n fragment of

MSO(Q) for every fixed external n ∈ ω.
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Definition 10.2.10. Let Γ be a class of formulas. Call the following axiom scheme, where
ϕ(X,Y ) ∈ Γ (possibly with other parameters), finite Γ-recursion:

∀n ∈ N ∃X
(
(∀k < n ϕ(Xk, Xk+1)) ∧ ϕ(∅, X0)

Note that for every standard n ∈ ω, Γ-recursion up to n can be done using n times Γ-
comprehension. In particular, it means that for every model of L2 with a standard first-order
part, finite Γ-recursion holds if and only if Γ-comprehension does. Our current conjecture regard-
ing the decidability of MSO(Q) is thus the following.

Conjecture 10.2.11. For every external n ∈ ω, Π1
1-finite recursion proves that the standard

algorithm deciding MSO(Q) is sound for the depth-n fragment.

Proving Conjecture 10.2.11 is more challenging than merely adapting [14], as the impredicative
proof does not readily go through. At the time of writing, it is still unclear whether Conjec-
ture 10.2.11 may be solved positively, although we believe that an analogue of Proposition 1
from [14] may be proven in finite Π1

1-recursion, based however on a more general notion of evalua-
tion tree. However, it is much less clear whether the soundness of the projection operation on the
underlying algebras is still provable in finite Π1

1-recursion (Lemma 3 in [14]).
Nevertheless, the mere definability of the (standard) truth value of formulas of MSO(Q) within

finite Π1
1-recursion would still be interesting in its own right. In particular, finite Π1

1-recursion
seems to be equivalent, over RCA0, to the determinacy of weak parity games (over infinite arena)
of finite index (or equivalently, finite boolean combination of Π0

2 by adapting [70] which proves
(lightface) ∆0

2 determinacy using transfinite Π1
1-recursion. Making this connexion would suggest

that there might be a reasonable notion of alternating automata for countable words corresponding
to MSO(Q) with a weak parity acceptance condition, although one should remain cautious; to our
knowledge, only reasonable automata models for MSO over countable scattered linear orders have
appeared in the literature so far [11].
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