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Résumé

Les géomatériaux présentent des comportements plus ou moins dépendants du temps, car leur microstructure évolue. Ce processus peut varier entre quelques minutes (sable) et plusieurs jours voire plusieurs années (sols mous). Pour décrire un comportement dépendant du temps, des modèles viscoplastiques, dépendant de la vitesse, sont couramment utilisés.

Autre qu'une description intrinsèque du comportement visqueux, la dépendance à la vitesse de la loi constitutive est également présentée quelques fois dans la littérature comme une technique de régularisation.

On étudie dans cette thèse la possibilité d'utiliser une loi de comportement viscoplastique pour décrire le comportement transitoire des sols mous dépendant du temps et la localisation des déformations. Des études analytiques et numériques sont présentées et plusieurs conclusions sont trouvées sur la base du critère de Hill, du critère de Rice, d'un algorithme de perturbation numérique et de la théorie classique de perturbation linéaire. Il s'avère que l'utilisation d'un modèle viscoplastique pour des chargements transitoires ne permet pas de régulariser le problème. Afin de proposer une stratégie de modélisation performante, les modèles viscoplastiques sont ensuite intégrées dans un milieu à microstructure et plus spécifiquement dans un modèle second gradient. Des problèmes concernant l'unicité, la bifurcation et la dépendance au maillage sont examinés et une analyse classique de perturbation linéaire est présentée. La combinaison d'un modèle second gradient avec des lois viscoplastiques permet de régulariser le problème et de prendre en compte l'influence de la vitesse de la sollicitation. Afin de démontrer la performance de l'approche dans un cas réel, une fondation superficielle est analysée en mettant l'accent sur sa capacité portante et sa défaillance progressive.

Mots clés: régularisation, localisation des déformations, viscoplasticité, second gradient, unicité, bifurcation, dépendance au maillage, stabilité [START_REF] Bjerrum | Engineering geology of norwegian normally-consolidated marine clays as related to settlements of buildings[END_REF]) . . . . [START_REF] Lerouel | Stress-strain-strain rate relation for the of sensitive natural clays compressibility[END_REF]) . . . . . . . . . . . [START_REF] Lerouel | Stress-strain-strain rate relation for the of sensitive natural clays compressibility[END_REF]) . . . . . . . . . . 

Oedometer CSR tests on Batiscan clay (figure from

Oedometer creep tests on Batiscan clay (figure from

List of Tables

List of notations and abbreviations

REV

Representative Element Volume

Chapter 1

General introduction 1.1 Background and motivation

Geomaterials may exhibit time-dependent behavior as their microstructure evolves. This process varies from a few minutes (sand) to several days or even years (soft soils) and has been investigated by various researches in both laboratory and field. Three typical laboratory time-dependent tests are often performed: creep, Constant Strain Rate (CSR) and stress relaxation tests (see for example [START_REF] Adachi | Constitutive equations for normally consolidated clay based on elasto-viscoplasticity[END_REF][START_REF] Yin | Elastic viscoplastic modelling of the time-dependent stressstrain behaviour of soils[END_REF][START_REF] Hicher | Experimental study of viscoplastic mechanisms in clay under complex loading[END_REF]). In field studies, one can mention the uneven settlement of the Pisa Tower in Italy [START_REF] Jostad | Comparison of methods for calculation of settlements of soft clay[END_REF] or the settlements of buildings on Norwegian normally-consolidated marine clays in Drammen [START_REF] Bjerrum | Engineering geology of norwegian normally-consolidated marine clays as related to settlements of buildings[END_REF].

Several constitutive models have been proposed to describe the time-dependent behavior.

They could be classified into three categories: empirical, rheological and stress-strain rate dependent models. Viscoplastic models belong to the third group and are commonly used for boundary value problems with the finite element method.

Other than an intrinsic description of the viscous behavior, viscoplastic constitutive laws are sometimes presented in the literature as a regularization technique for strain localization problems. Strain localization occurs as compaction bands and shear bands and it is a precursor to failure of geomaterials (e.g. soft soils, stiff clay, sand, rock). Its reliable prevention and accurate prediction are therefore of great significance for structural safety. Within the framework of continuum mechanics and when no internal length is considered pathological problems appear, e.g. the thickness of the localization zone narrows and tends towards zero (indicating a zero energy dissipation) with mesh refinement. The introduction of an internal length regularizes the equations and can be done in several ways: non-local models [START_REF] Bazant | Nonlocal continuum damage, localization instability and convergence[END_REF][START_REF] Bažant | Nonlocal smeared cracking model for concrete fracture[END_REF][START_REF] Lorentz | A variational formulation for nonlocal damage models[END_REF], gradient plasticity [START_REF] Aifantis | On the microstructural origin of certain inelastic models[END_REF] and continua with microstructure [START_REF] Germain | The method of virtual power in continuum mechanics. part 2: Microstructure[END_REF][START_REF] Mindlin | Micro-structure in linear elasticity[END_REF]. The regularization effect of viscosity has been studied by numerous researchers in recent years but conclusions are contradictory [START_REF] Needleman | Material rate dependence and mesh sensitivity in localization problems[END_REF][START_REF] Wang | Formulation of an implicit algorithm for finite deformation viscoplasticity[END_REF][START_REF] Pan | Perturbation analysis of shear strain localization in rate sensitive materials[END_REF]. The capacity of viscoplasticity in regularizing the problem is therefore questioned.

Thesis objectives

The objective of this PhD is to study the ability of viscoplastic constitutive laws to describe the time-dependent response of soft soils and strain localization. Questions concerning uniqueness, bifurcation, stability and mesh dependency are answered and then viscoplastic models are used in a second gradient medium in order to improve the model performance.

The bearing capacity and post-peak progressive failure of a shallow foundation are finally simulated to illustrate the advantages of the proposed approach.

Thesis outline

This thesis is organized in the following way: Firstly, experimental results on time-dependent behaviour are reviewed. Three commonly used viscoplastic models are presented and their algorithms are explained. Strain localization, loss of uniqueness and stability are illustrated. Moreover, several numerical techniques for strain localization are summarized.

Secondly, we study the ability of viscoplastic constitutive laws for soft soils to describe their time-dependent response. Analytical and numerical studies are presented focusing on the the so-called regularization effect which several authors attribute to the viscoplastic model.

Next, a viscoplastic constitutive law is introduced in a second gradient medium and a validation test is performed. Uniqueness, bifurcation, mesh-dependency and stability issues are revisited.

Finally, the model is applied for an engineering case study, i.e. the bearing capacity and progressive failure of a swallow foundation.

The following notations are adopted; compression is positive, tensor indices are located at the lower position, bold letters are used for fourth-order tensors. Dots denote derivatives with respect to time and the superscript T denotes the transpose. Inertial forces are neglected and the small strain hypothesis is adopted.

Chapter 2

Literature review

Experimental results of time-dependent behaviour of geomaterials

Geomaterials may exhibit a time dependent behaviour as their microstructure evolves with time. The process may vary from a few minutes (sand) to several days or even years (soft soil) [START_REF] Di Prisco | A visco-plastic constitutive model for granular soils modified according to non-local and gradient approaches[END_REF]. The time-dependent behaviour is observed experimentally as creep, stress relaxation or influence of the velocity under constant strain rate (CSR) [START_REF] Augustesen | Evaluation of time-dependent behavior of soils[END_REF], illustrated in Fig 2 .1. the effective stress has attained its equilibrium value. This is for instance the case of the uneven settlement of the Pisa Tower in Italy, identified as caused by creep [START_REF] Jostad | Comparison of methods for calculation of settlements of soft clay[END_REF]. Bjerrum [START_REF] Bjerrum | Engineering geology of norwegian normally-consolidated marine clays as related to settlements of buildings[END_REF] reviewed several geological processes changing with time for Norwegian normallyconsolidated marine clays. The settlements of six representative buildings in Drammen are for example depicted in Fig 2 .2. In Western Finland, Murro test embankment built on 23-m-thick medium sensitive clay in 1993. Settlement were recorded to exceed 70mm during 1000 days after construction [START_REF] Sivasithamparam | Modelling creep behaviour of anisotropic soft soils[END_REF]. Viscous phenomenon on soft clay was also observed for two trial embankments with significant creep deformation measured for three years [START_REF] Huang | Finite-element parametric study of the consolidation behavior of a trial embankment on soft clay[END_REF].

Time-dependent behaviour is commonly observed in soft soils and has been investigated for soft soils in one-dimensional tests [START_REF] Naatanen | Primary and secondary consolidation of finish clays[END_REF].

Triaxial experiments are also used in laboratory to evaluate the viscous behaviour of soft Additional tests can be also performed to characterize the viscous behaviour. For example, multi-stage loading tests and controlled gradient tests in oedometer devices on clay samples were performed by [START_REF] Lerouel | Stress-strain-strain rate relation for the of sensitive natural clays compressibility[END_REF]. A series of undrained triaxial tests under cyclic loadings on compacted clay were done by [START_REF] Hicher | Experimental study of viscoplastic mechanisms in clay under complex loading[END_REF].

The physical explanation of these time-dependent phenomena in laboratory and in field is however rather unclear, especially concerning what happens at the microscopic scale of a clayey soil. Several interpretations have been proposed in the literature. A first proposal is that secondary consolidation is due to friction at inter-particle contacts, which occurs both during primary and secondary consolidation, becoming the predominant effect during this last phase of the process [START_REF] Joseph | Viscosity and secondary consolidation in one-dimensional loading[END_REF]. An alternative interpretation explains the phenomenon in terms of diffusive or advective pore-water transport at the scale of the pores [START_REF] Navarro | Secondary compression of clays as a local dehydration process[END_REF][START_REF] Cushman | A multiscale theory of swelling porous media: Ii. dual porosity models for consolidation of clays incorporating physicochemical effects[END_REF][START_REF] Cosenza | Secondary consolidation of clay as an anomalous diffusion process[END_REF].

Several macro-scale laws can be used to simulate this behaviour: semi-empirical approaches and rheological models [START_REF] Liingaard | Characterization of models for timedependent behavior of soils[END_REF] or elasto-viscoplastic models [START_REF] Adachi | Constitutive equations for normally consolidated clay based on elasto-viscoplasticity[END_REF][START_REF] Kutter | Elastic-viscoplastic modelling of the rate-dependent behaviour of clays[END_REF][START_REF] Yin | Modeling time-dependent behavior of soft sensitive clay[END_REF]. Similar approaches can also adopted to simulate strength degradation induced by pore pressure variations. The idea is that softening may not only be attributed to loss of cohesion or to reduction of the friction angle but also to pore pressure built-up.

Time-dependent behaviour of sand

The mechanical behaviour of sand is usually considered to be time-independent. Moreover, compared to soft soils, there are relatively few experimental results concerning its viscous behaviour. Nevertheless, the response of sand to external loadings evolves, generally within minutes [START_REF] Lazari | Predictive potential of perzyna viscoplastic modelling for granular geomaterials[END_REF]. This behaviour has been proven in several experiments [START_REF] Di | Time-dependent shear deformation characteristics of sand and their constitutive modelling[END_REF][START_REF] Van Bang | Viscous behaviour of dry sand[END_REF][START_REF] Mitchell | Time-dependent strength gain in freshly deposited or densified sand[END_REF], from laboratory to in-situ tests.

As reported by Herve et al. [START_REF] Di | Time-dependent shear deformation characteristics of sand and their constitutive modelling[END_REF], the time-dependent behaviour of clean sands (Hostun and Toyoura sands) was investigated under drained plane strain compression tests. A viscous behaviour was more pronounced a) when the strain rate was changed stepwise b) under creep and stress relaxation conditions c) during a constant strain rate followed by a creep phase just after the beginning of the loading. For a scaling loading rate factor less than 500, no viscous behaviour was observed.

Under drained triaxial condition, creep, relaxation and stepwise strain rate tests were also performed on loose and dense air-dried Hostun sand [START_REF] Van Bang | Viscous behaviour of dry sand[END_REF]. For strains varying between 

Modeling time-dependent behaviour 2.2.1 Constitutive models

The models developed to simulate the time-dependent behaviour can be classified into three categories, empirical models, rheological models and rate dependent constitutive laws [START_REF] Liingaard | Characterization of models for timedependent behavior of soils[END_REF].

The empirical models are generally obtained by fitting experimental data, for example the Singh and Mitchell's Creep Model [START_REF] Singh | Closure of general stress-strain-time function for soils[END_REF], where a general relation between strain rate and time is presented as follows

ε1 = Ae ᾱq t i t m (2.1)
where ᾱ = αq max , q = q/q max , q denotes the deviatoric stress and therrefore q max is the deviatoric stress at the beginning of the creep process; parameters A, α and m can be determined from ordinary creep tests. Based on Singh and Mitchell's Creep Model and make use of the relation between creep and stress relaxation tests, the Lacerda and Houston's Relaxation Model was developed [START_REF] Lacerda | Stress relaxation in soils[END_REF]. The deviatoric stress q is observed to decrease with time, whose evolution is given by

q q 0 = 1 -s log t t 0 (2.2)
where q 0 is the deviatoric stress at time t 0 , s is the slope of the relaxation curve in a q/q 0log(t) diagram. Analogously, there are several other empirical models derived from the observed testing data, for example, the Strain Rate model proposed by Leroueil et al. [START_REF] Leroueil | Stress-strain-strain rate relation for the compressibility of sensitive natural clays[END_REF], incorporating empirical models in elastic viscous plastic constitutive relations [START_REF] Yin | Viscous-elastic-plastic modelling of one-dimensional time-dependent behaviour of clays[END_REF][START_REF] Yin | General elastic viscous plastic constitutive relationships for 1-d straining in clays[END_REF]. However, due to their simplicity, their applications to boundary value problems are limited. and Duvaut-Lions [START_REF] Duvaut | Les inéquations en mécanique et en physique[END_REF] overstress models) and consistency models [START_REF] Sekiguchi | Macrometric approaches-static-intrinsically time-dependent[END_REF][START_REF] Iwashita | Mechanics of granular materials: an introduction[END_REF][START_REF] Wang | Viscoplasticity for instabilities due to strain softening and strain-rate softening[END_REF] based on the classical elasto-plastic theory adopting a yield surface with time related factors. They are easily implemented in finite element codes and can be used for boundary value 3D problems under complex stress paths. They are detailed in the following section.

Elasto-viscoplastic models

Three elasto viscoplastic constitutive models, the Perzyna, the Duvaut-Lions and the consistency model are briefly summarized hereafter. The two former are known as overstress models due to the fact that the stress state can stay outside the yield surface. Furthermore, the plastic strain is explicitly defined in overstress models while consistency models use the 

σ -ε plot σ -ε relation σ e = Eε e σ v = ηε v σ -σ y =    σ -σ y σ > σ y 0 σ σ y
Note: Subscripts e and v denote elasticity and viscous behavior respectively, E the Young's modulus, η the viscosity, σ y the yield stress.

consistency condition.

In small strain viscoplasticity, the following additive decomposition of total strain ε is considered:

ε = εe + εvp (2.3) 
where εe denotes the elastic strain rate and εvp is the viscoplastic strain rate.

Perzyna model

The viscoplastic strain rate in the Perzyna model [START_REF] Perzyna | The constitutive equations for rate sensitive plastic materials[END_REF][START_REF] Perzyna | Fundamental problems in viscoplasticity[END_REF] is given as:

εvp = 1 η < Φ(f ) > ∂g ∂σ (2.4)
where η is the viscosity parameter, g the potential function and Φ(f ) the overstress function.

Following the classical plasticity theory, an explicit expression for the plastic multiplier rate λ is obtained:

λ = < Φ(f ) > η (2.5)
where the function f depends on the current state and it is often referred to in the literature as the "dynamic" yield function (this terminology however can be misleading as no inertia forces are considered). < • > indicates the McCauley brackets, defined by:

< Φ(f ) >=    0 (Φ(f ) 0) Φ(f ) (Φ(f ) > 0)
According to [START_REF] Simo | Non-smooth multisurface plasticity and viscoplasticity. loading/unloading conditions and numerical algorithms[END_REF], the following conditions must hold true

• Initial condition: Φ(0) = 0

• Continuity condition: Φ(f ) is continuous in [0, +∞) • Convexity condition: Φ(f ) is convex in [0, +∞)
A power form is commonly adopted for the overstress function:

Φ(f ) = ( f σ 0 ) N (2.6)
where N 1 is a calibration parameter and σ 0 the initial yield stress.

Duvaut-Lions model

In the Duvaut-Lions overstress model [START_REF] Duvaut | Les inéquations en mécanique et en physique[END_REF], the viscoplastic strain rate and the hardening variable rate are determined by the difference between the states associated to the ratedependent and the rate-independent solutions:

εvp = A -1 η (σ -σ ∞ ) κ = B -1 η (κ -κ ∞ ) (2.7)
where as before η is the viscosity, σ the stress state associated to the rate-dependent solution and σ ∞ the stress state associated to the rate-independent solution. In the same way, κ is the hardening variable associated to the rate-dependent solution and κ ∞ the hardening variable associated to the rate-independent solution. The fourth-order tensor A defines the projection of the difference between the two stress states; two particular cases of A are the unit fourth-order tensor I ijkl [START_REF] Duvaut | Les inéquations en mécanique et en physique[END_REF] and the elastic moduli C ijkl [START_REF] Simo | Non-smooth multisurface plasticity and viscoplasticity. loading/unloading conditions and numerical algorithms[END_REF]. For a scalar hardening parameter, B becomes a scalar and could be considered equal to 1.

Consistency model

Unlike the overstress theories, the viscoplastic consistency model does not allow the stress state to be outside the yield surface, i.e. the consistency condition of classical plasticity is satisfied [START_REF] Wang | Viscoplasticity for instabilities due to strain softening and strain-rate softening[END_REF]. In this case however, the yield function depends not only on the stress and hardening variables but also on their time derivatives. The strain rate therefore affects the evolution of the yield surfaces (hardening, softening, size, shape). The consistency condition reads:

λ ḟ (σ, κ, κ) = 0 (2.8)
where λ is the plastic multiplier, κ and κ state variables dependent on the strain and strain rate.

As in classical plasticity, the plastic strain rate is defined as

εvp = λ ∂g ∂σ (2.9)
where g denotes the plastic potential. 

Algorithmic aspects of the elasto-viscoplastic models

n+1 to t (k+1)
n+1 in the Newton-Raphson loop. The generalized midpoint rule is adopted so that the increment of the viscoplastic strain is approximated as

ε vp n+1 = ε vp n + ∆t λ ε vp n+θ ε vp n+θ = θε vp n+1 + (1 -θ) ε vp n (2.10)
in which θ ranges from 0 to 1. Depending on the value θ, the following three well-known algorithms can be retrieved:

• θ = 0, forward (explicit) Euler • θ = 0.5, midpoint rule • θ = 1, backward (implicit) Euler
According to [START_REF] Hughes | Unconditionally stable algorithms for quasi-static elasto/visco-plastic finite element analysis[END_REF] the algorithm is unconditionally stable for θ 0.5. Therefore, the implicit Euler method is adopted to preserve stability, we have The incremental stress is related to the elastic strain increment as:

∆ε vp n+1 = ∆λ n+1 ∂g ∂σ | n+1 ( 
∆σ = C(∆ε -∆ε vp ) (2.13)
The internal variable κ is a function of the plastic multiplier:

κ = κ (λ) (2.14)

Perzyna model

Since the consistency condition is no more valid for the Perzyna overstress model, the plastic multiplier is constrained by the residual function as shown in equation (2.15)

r resi = η ∆λ ∆t -Φ(f ) (2.15) 
Assume that the constraint equation is satisfied at iteration k +1, the Taylor series expansion implies: where

r k+1 = r k + η δλ ∆t - ∂Φ(f ) ∂σ T δσ - ∂Φ(f ) ∂λ δλ = 0 (2.
H = C -1 + ∆λ ∂ 2 g ∂σ 2 -1
Substitution of equation (2.17) into equation (2.16), the viscoplastic incremental plastic multiplier in a local iteration is derived as

δλ k+1 = 1 β p -r k + ∂Φ(f ) ∂σ T Hδε (2.18)
where

β p = ∂Φ(f ) ∂σ T H ∆λ ∂ 2 g ∂σ∂λ + ∂g ∂σ + η ∆t -∂Φ(f ) ∂λ
The algorithmic tangent moduli C ep which guarantees a quadratic convergence rate could be calculated through the substitution of equation (2.18) into (2.17)

C ep = H - 1 β p H ∂g ∂σ + ∆λ ∂ 2 g ∂σ∂λ ∂Φ(f ) ∂σ H (2.19)
The algorithm is summarized in Box 2.1. 

n+1 = 0, ∆σ (0) n+1 = C ∆ε -∆λ (0) ∂g ∂σ r (0) resi = η ∆λ (0) n+1 ∆t -Φ(f ) (0) n+1 (2) Local iterations 1) Compute local variable increment δλ k+1 = 1 β p -r k + ∂Φ(f ) ∂σ T Hδε ∆λ (k+1) = δλ (k+1) + ∆λ (k) 2) Update variables ∆σ (k+1) n+1 = C ∆ε -∆λ (k+1) ∂g ∂σ ∆κ (k+1) n+1 = ∆κ (k) n+1 + ∂κ ∂λ δλ (k+1) n+1 
3) Compute residuals and check convergence r

(k+1) resi = η ∆λ (k+1) n+1 ∆t -Φ(f ) (k+1) n+1 IF r (k+1) resi

> T ol

Set k ← k + 1 and go to [START_REF] Lerouel | Stress-strain-strain rate relation for the of sensitive natural clays compressibility[END_REF].

ELSE (•) n+1 ← (•) (k+1) n+1

Duvaut-Lions model

In the Duvaut-Lions model, the rate-independent solution should be first calculated and thus σ ∞ and κ ∞ . The viscoplastic strain increment is expressed as (using equations (2.7) and

(2.13))

∆ε vp n+1 = ∆t η (∆ε -C -1 ∆σ) 1 + ∆t η (2.20)
The viscoplastic stress becomes

σ n+1 = σ n + C∆ε + ∆t η σn+1 1 + ∆t η (2.21)
and the hardening parameter κ n+1 is obtained as follows

κ n+1 = κ n + ∆t η κn+1 1 + ∆t η (2.22)
The algorithm of Duvaut 

Consistent viscoplastic model

Assuming that the consistency condition is satisfied at iteration k + 1, the Taylor series expansion implies:

f (k+1) = f (k) + ∂f ∂σ δσ + ∂f ∂λ δλ + ∂f ∂ λ δ λ = 0 (2.23)
where

∂f ∂λ δλ = ∂f ∂κ ∂κ ∂λ δλ, ∂f ∂ λ δ λ = ∂f ∂ κ ∂ κ ∂ λ δ λ.
Assuming an associated flow rule where the plastic potential g is equal to f and differentia-tion of equation (2.13) leads to the local stress increment δσ:

δσ = Hδε -H ∂g ∂σ + ∆λ ∂ 2 g ∂σ∂λ + ∆λ ∆t ∂ 2 g ∂σ∂ λ δλ (2.24)
where

H = C -1 + ∆λ ∂ 2 g ∂σ 2 -1
and the term δε vanishes during the local iteration due to a fixed total strain increment ∆ε.

The combination of equation (2.23) and equation (2.24) provides the local increment of the plastic multiplier:

δλ = 1 β f (k) + ∂f ∂σ T Hδε (2.25)
where

β = ∂f ∂σ T H ∂g ∂σ + ∆λ ∂ 2 g ∂σ∂λ + ∆λ ∆t ∂ 2 g ∂σ∂ λ -∂f ∂λ -1 ∆t ∂f ∂ λ
The derivation of the consistent tangent moduli C ep is important as it results to a quadratic convergence rate in a finite element analysis [START_REF] Simo | Computational Inelasticity (Interdisciplinary Applied Mathematics)[END_REF][START_REF] Ju | Consistent tangent moduli for a class of viscoplasticity[END_REF] and it is needed to calculate the determinant of the acoustic tensor used in section 3.3. Substituting equation (2.25) into equation (2.24), the consistent tangent moduli reads:

C ep = H - 1 β H ∂g ∂σ + ∆λ ∂ 2 g ∂σ∂λ + ∆λ ∆t ∂ 2 g ∂σ∂ λ n T H (2.26)
The algorithm is summarized in Box 2.3.

Box 2.3: Implicit algorithm for the consistency viscoplastic model 1 Compute the trial state

σ tr n+1 = C∆ε n+1 + σ n , κ tr n+1 = κ n , κtr n+1 = κn If f σ tr n+1 , κ tr n+1 , κtr n+1 ≤ 0 Elastic behaviour else: Plastic behaviour (1) Initialize the variables ∆κ (0) n+1 = 0, ∆ κ(0) n+1 = ∆κ (0) n+1 ∆t , ∆σ (0) 
n+1 = C ∆ε -∆λ (0) ∂g ∂σ R (0) = f σ n + ∆σ (0) n+1 , κ n + ∆κ (0) n+1 , κn + ∆ κ(0) n+1 (2) Local iterations 1) Compute local variable increment H (k) = C -1 + ∆λ (k) ∂ 2 g ∂σ 2 -1 β (k) = n T H (k) ∂g ∂σ + ∆λ ∂ 2 g ∂σ∂λ + ∆λ ∆t ∂ 2 g ∂σ∂ λ (k) -∂f ∂λ -1 ∆t ∂f ∂ λ (k) δλ (k) = f (k) β (k) ∆λ (k+1) = δλ (k+1) + ∆λ (k)
2) Update variables

∆σ (k+1) n+1 = C ∆ε -∆λ (k+1) ∂g ∂σ κ (k+1) n+1 = κ (k) n+1 + ∂κ ∂λ δλ (k) 3) Compute residuals and check convergence R (k+1) = f σ n + ∆σ (k+1) n+1 , κ (k+1) n+1 , κ(k+1) n+1 IF R (k+1) > T ol Set k ← k + 1 and go to (2). ELSE (•) n+1 ← (•) (k+1) n+1 .

Experimental results of strain localization of geomaterials

Strain localization has been intensively experimentally studied the last thirty years. The following points are of particular interest: the time when strain localization occurs, the thickness, orientation and evolution of the localized zone and their influencing factors (e.g. loading rate, loading path). Several experimental techniques have been employed to detect strain localization [START_REF] Finno | Shear bands in plane strain compression of loose sand[END_REF][START_REF] Viggiani | Shear bands in plane strain compression of stiff clay[END_REF], for instance, Computed Tomography (CT), Scanning Electronic Microscopy (SEM), etc. Particular aspects of strain localization in soft soils and sand are detailed hereafter.

Strain localization of soft soils

Concerning work on strain localization of soft soils, investigations have been conducted, where characteristics of shear band and their influencing factors, e.g. the loading rate, the loading conditions, the sample shape, are analyzed.

We refer to, for instance, [START_REF] Gylland | Experimental study of strain localization in sensitive clays[END_REF]. In this paper, the thickness and orientation of the shear band were found to depend on the applied strain rates, which are from fast to slow 5 mm/min, 0.5 mm/min, 0.05 mm/min, 0.005 mm/min. Effect on shear band formation was more pronounced under higher rates as no evident shear band was visible for the slowest one 0.005 mm/min . Increasing the loading rate may increase the inclination angle of the shear band and decrease its thickness [START_REF] Oka | Strain localization of rectangular clay specimen under undrained triaxial compression conditions[END_REF]. Several possible explanations can be assumed, like the generation and dissipation of excess pore pressure, microstructural changes and interparticle sliding [START_REF] Gylland | Experimental study of strain localization in sensitive clays[END_REF]. In their experiments, large strain rates form localized strains while diffused strains are induced by small strain rates. For intermediate values, a switch mode seem to exist.

Moreover, the influence of testing conditions was also investigated by Hicher et al. [START_REF] Hicher | Microstructural analysis of strain localisation in clay[END_REF] (drained and undrained triaxial compression tests). Compared with the region outside the shear band, the density in the localized region was larger for a normally consolidated sample and smaller for an overconsolidated clay. Shear band orientation stayed constant for a given clay irrespective of the sample sizes, end conditions (with or without lubrication) or overconsolidation ratios (between 1 and 10). The homogeneity, the onset and development of shear band were however greatly influenced by the testing conditions.

Several shear band shapes were observed during the experiments. Single, 'X', wedge and sub-single types [START_REF] Yuan | Experimental analysis of shear band formation in plane strain tests on shanghai silty clay[END_REF], Fig 2 .8. Samples with larger aspect ratio were more likely to show buckling-like mode, whereas samples with smaller aspect ratio an 'X' mode (two shear bands developed along the edge of the top or the bottom intercross each other) [START_REF] Kodaka | Effects of sample shape on the strain localization of water-saturated clay[END_REF].

The shear band evolution was recorded in a series of undrained plane strain tests of Nor- The process of shear band formation and evolution is very complex and the induced physical mechanism is not very well understood, therefore its evaluation is still an open as well as a chanlenging issue. Typically, shear band thickness for soft soils is from 10 µm to 20 mm [START_REF] Moore | Numerical models for evaluating progressive failure in earth structures-a review[END_REF], which is many times the diameter of individual clay particle (mostly less than 0.002 mm). A distinct shear band of 3 mm thick was observed for Norwegian quick clay under undrained plane strain conditions [START_REF] Thakur | Instability in soft sensitive clays[END_REF], see 

Strain localization of sand

A series of biaxial experiments were conducted on fine, medium and coarse-grained uniform silica sand [START_REF] Alshibli | Shear band formation in plane strain experiments of sand[END_REF]. Strains were monitored and analyzed by means of a grid pattern imprinted on the latex membrane. It was found out that the specimen density, confining pressure, grain texture and the resulting failure mode influenced its overall stress-strain behaviour.

Under drained and undrained conditions, plane strain experiments were performed on loose masonry sand. Shear band formation was found and a persistent localization mode progressively took the place of macroscopically uniform deformation [START_REF] Finno | Shear bands in plane strain compression of loose sand[END_REF]. and Vardoulakis [START_REF] Mühlhaus | The thickness of shear bands in granular materials[END_REF], the thickness of the shear band in granular materials is 8 to 10 times the mean grain size. Richard et al. [START_REF] Finno | Shear bands in plane strain compression of loose sand[END_REF] presented experimental tests which characterized the behaviour of loose sand under drained and undrained plane strain condition. Shear bands were observable for all testing conditions and their thicknesses varied from 10 to 25 times the mean grain diameter and their orientations were measured to be from 55 • to 65 • .

Few remarks on uniqueness and bifurcation

In the following section we briefly review the literature results concerning the uniqueness of the solution of the (visco-) plastic problem i.e. the rate form of the governing equations endowed with a (visco-) plastic constitutive law. In particular, sufficient conditions describing the loss of uniqueness of the solution and consequently the showing up of multiple (bifurcated) solutions are reminded. Then we focus on a plane strain problem and on the algorithm to search for multiple solutions.

Theory of uniqueness

Following the classical argument adopted by Kirchoff to prove the uniqueness theorem in the framework of small strain elasticity, a sufficient condition for uniqueness of the non-linear (visco-) plastic problem is provided by the second-order work ( [START_REF] Hill | A general theory of uniqueness and stability in elastic-plastic solids[END_REF][START_REF] Bigoni | Nonlinear solid mechanics: bifurcation theory and material instability[END_REF]): 

V ∆ σ : ∆ ε dV > 0 (2.
∆ σ : ∆ ε > 0 (2.28)
which implies that the constitutive operator C is required to be positive definite.

Starting from equations (2.27) and (2.28), exclusion of bifurcation fails to hold when the positive definiteness of the constitutive operator C is lost, that is when at least one tensor X = 0 exists such that:

X • C[X] = 0 (2.29)
Equation (2.29) does not mean that C is necessarily singular as in the general case of nonassociative plasticity one can verify equation (2.29) even if C[X] = 0, see [START_REF] Bigoni | Nonlinear solid mechanics: bifurcation theory and material instability[END_REF]. Therefore, loss of positive definiteness does not necessarily imply bifurcation. Conversely the non singularity condition of the constitutive operator C can be written as:

C[X] = 0 (2.30)
for every tensor X = 0.

It is clear that failing to satisfy (2.30) is critical for the bifurcation of the homogeneous solution.

Consider now the so called (semi-) strong ellipticity conditions for the constitutive operator

C, say g • C[g ⊗ n]n ≥ 0, ∀n ∈ V, n = 1 and g = 0 (2.31)
which may be expressed, in a different notation, as the positive (semi-)definiteness of the

acoustic tensor A(n) gA(n)g = gC[g ⊗ n]n ≥ 0 (2.32)
It is possible to prove [START_REF] Bigoni | Loss of strong ellipticity in non-associative elastoplasticity[END_REF] that when the inequality (2.32) is not satisfied during a loading program of a generic boundary value problem, the sufficient condition (2.27) does not hold.

As in the previous discussion about the constitutive operator C, when condition (2.32) fails the acoustic tensor can still be non-singular. A similar non singularity condition as that of equation (2.30) for the constitutive operator can be introduced for the acoustic tensor, the so-called ellipticity condition:

detA(n) = 0, ∀n ∈ V, n = 1 (2.33)
It is also possible to prove that failure of ellipticity describes a shear band formation, i.e.

strain localization into a planar band, as sketched in Fig 2 .12 [START_REF] Rudnicki | Conditions for the localization of deformation in pressure-sensitive dilatant materials[END_REF]. In plane strain case, the direction n normal to the shear band can be expressed as

n =   sin θ cos θ   (2.34)
where θ is prescribed to be the angle between n and x-axis and let z = tan θ.

Then the determinant of the acoustic tensor becomes according to Ortiz [START_REF] Ortiz | A finite element method for localized failure analysis[END_REF]:

det (A) = a 4 z 4 + a 3 z 3 + a 2 z 2 + a 1 z 1 + a 0 (2.35)
with a 0 , a 1 , a 2 , a 3 , a 4 defined in terms of the constitutive tangent moduli:

a 0 = C 1111 C 1212 -C 1112 C 1211 a 1 = C 1111 C 1222 + C 1111 C 2212 -C 1112 C 2211 -C 1122 C 1211 a 2 = C 1111 C 2222 + C 1112 C 1222 + C 1211 C 2212 -C 1122 C 1212 -C 1122 C 2211 -C 1212 C 2211 a 3 = C 1112 C 2222 + C 1211 C 2222 -C 1122 C 2212 -C 1222 C 2211 a 4 = C 1212 C 2222 -C 2212 C 1222 (2.36)
Figure 2.12: Principle scheme of a shear band Following Bigoni [START_REF] Bigoni | Nonlinear solid mechanics: bifurcation theory and material instability[END_REF] we can summarize the previous remarks as follows:

• the positive definiteness of the constitutive operator C implies the non singularity, see equation (2.28), as well as the non singularity condition (ellipticity condition) of the acoustic tensor, equation (2.33).

• the opposite is in general not true; the loss of uniqueness, characterized by violating the non-singularity condition of the constitutive operator C does not necessarily imply violation of the ellipticity condition of the acoustic tensor. From the physical point of view different bifurcated solutions can arise before the occurrence of shear band.

Algorithm for non-uniqueness search (random initialization)

For a finite element discretization of the boundary value problem, Hill's criterion (2.27) reads as:

V εT σdV = V uT B T C B u dV = uT K u > 0 (2.37)
where K = B T C B is the global stiffness matrix, B a matrix function of the finite element shape functions and u the vector of nodal velocities. Note that the boundary conditions at the beginning of section 2.4.1 must hold true. The sufficient condition (2.28) can be therefore rephrased by :

uT K u > 0 (2.38)
According to Vieta's rule, equation (2.38) turns into

det(K) = n i=1 ω i > 0 (2.39)
with ω i the eigenvalue i of K. If we restrict our attention to the non sigularity condition (2.30) we can state that bifurcation of the homogeneous solution emerges when the minimum eigenvalue of the global stiffness matrix K vanishes.

However as already pointed out by [START_REF] Borst | Computation of post-bifurcation and post-failure behavior of strainsoftening solids[END_REF], a zero eigenvalue is hard to get due to numerical round-off errors. Perturbation techniques can be therefore used while the minimum eigenvalue is (slightly) negative to check the existence of multiple solutions (see for example [START_REF] Chambon | An algorithm and a method to search bifurcation points in non-linear problems[END_REF] for a random initialization of the Newton Raphson scheme). In the following, the bifurcated solution ∆a is obtained as

∆a = α∆a * + βv 1 (2.40)
where v 1 is the eigenvector corresponding to the smallest eigenvalue, ∆a * is the homogeneous solution (or fundamental solution).

α and β can be determined using different assumptions. Those made by de Borst [START_REF] Borst | Computation of post-bifurcation and post-failure behavior of strainsoftening solids[END_REF] are hereafter adopted. The first assumption is that the bifurcated solution is orthogonal to the fundamental solution and therefore:

(∆a) T ∆a * = 0 (2.41)

β can therefore be determined as:

β = - (∆a) T ∆a * (∆a * ) T v 1 v 1 (2.42)
The perturbed solution turns into:

∆a = α{∆a * - (∆a * ) T ∆a * (∆a * ) T v 1 v 1 } (2.43)
The second assumption considers that the norm of the fundamental solution and the perturbed solution are the same to avoid (∆a * ) T v 1 in equation (2.43) to vanish, this is written as

(∆a * ) T ∆a * = (∆a) T ∆a (2.44)
Finally, the bifurcated solution becomes:

∆a = 1 (∆a * ) T ∆a * -[∆a * ) T v 1 ] 2 ×{(∆a * ) T v 1 ∆a * -(∆a * ) T ∆a * v 1 } (2.45)
Other ways to determine the scalar parmaters α and β can be found in [START_REF] Wagner | A simple method for the calculation of postcritical branches[END_REF][START_REF] Crisfield | Solution strategies and softening materials[END_REF].

Depending on the chosen perturbation, numerical calculations can diverge or converge to a new solution or to the fundamental solution [START_REF] De Borst | Numerical modelling of bifurcation and localisation in cohesivefrictional materials[END_REF]. The procedure can be summarized as follows:

1. Choose a step in the global response curve to study if there are multiple solutions (in addition to the fundamental one) The previous tools are used hereafter to verify if the introduction of rate effects restores the unicity of the solution and regularizes the problem. More specifically, a two-dimensional numerical study is presented in section 3.3.

Regularization techniques

Under static loading conditions, boundary value problems can result to a loss of ellipticity (or to a loss of hyperbolicity under dynamic loading conditions). Let us now focus on the case when loss of uniqueness corresponds to the showing up of localized solutions. Within the framework of classical continuum mechanics, results are no longer objective, i.e., an infinite number of solutions exist and the thickness of shear band is mesh dependent. To remedy this, regularization techniques have to be used, e.g., non-local models [START_REF] Bazant | Nonlocal continuum damage, localization instability and convergence[END_REF][START_REF] Bažant | Nonlocal smeared cracking model for concrete fracture[END_REF][START_REF] Lorentz | A variational formulation for nonlocal damage models[END_REF],

gradient plasticity [START_REF] Aifantis | On the microstructural origin of certain inelastic models[END_REF] and continua with microstructure [START_REF] Germain | The method of virtual power in continuum mechanics. part 2: Microstructure[END_REF][START_REF] Mindlin | Micro-structure in linear elasticity[END_REF]. Besides, rate-dependence is sometimes mentioned in the literature as another method able to regularize the problem based on the introduction of a characteristic time rather than an intrinsic material parameter [START_REF] Needleman | Material rate dependence and mesh sensitivity in localization problems[END_REF][START_REF] Loret | Dynamic strain localization in elasto-(visco-) plastic solids, part 1. general formulation and one-dimensional examples[END_REF][START_REF] Wang | Formulation of an implicit algorithm for finite deformation viscoplasticity[END_REF] (this last argument will be seriously questioned in this manuscript). The Extended Finite Element Method (XFEM) [START_REF] Melenk | The partition of unity finite element method: basic theory and applications[END_REF][START_REF] Belytschko | Elastic crack growth in finite elements with minimal remeshing[END_REF] and the Assumed Enhanced Strain Method (AESM) [START_REF] Simo | A class of mixed assumed strain methods and the method of incompatible modes[END_REF] are also adopted to regularize strong discontinuity problems. A short description of several regularization techniques follows.

Nonlocal theory

The nonlocal theory has been introdyced by Pijaudier-Cabot and Bažant [START_REF] Bazant | Nonlocal continuum damage, localization instability and convergence[END_REF] and applied for geomaterials such as concrete [START_REF] Bažant | Nonlocal smeared cracking model for concrete fracture[END_REF] and soils [START_REF] Lorentz | A variational formulation for nonlocal damage models[END_REF]. This method is based on the spatial averaging of variables (e.g. strains); the mechanical response is not only (locally) affected by the state of the given point but also by the state of its neighbouring points.

Typical loading function formulated in terms of non-local strain is expressed as [START_REF] Pijaudier-Cabot | Nonlocal damage theory[END_REF] f

(ε, k) = ε -k (2.46)
where ε is the non-local strain; k is the local history parameter; the non-local strain can be calculated.

ε (x) = 1 ψ (x) V ψ (x, y) ε (y)dV ψ (x) = V ψ (x, y)dV (2.47)
in which ψ (x, y) is a weight function, x is the position of a given point and y denotes the position of the infinitesimal volume dV . Homogeneous and isotropic assumption allows the weight function to only depend on the distance s = yx . The challenging difficulty is to determine the radius and its evolution with loading.

Gradient plasticity models

The gradient plasticity proposed by Aifantis [START_REF] Aifantis | On the microstructural origin of certain inelastic models[END_REF] takes into account the gradient of internal variables. If we expand the plastic strain in Taylor series and truncated after the second order term under isotropic assumption, it writes

ε = ε s + c∇ 2 ε s (2.48)
where c is a gradient parameter of dimension [L 2 ], ε s is the local plastic strain.

Equation (2.48) is known to be an explicit form. For both higher gradient models, additional boundary conditions have to be imposed.

Continua with microstructure

Continua with microstructure are also called micromorphic media, see the work of Germain [START_REF] Germain | The method of virtual power in continuum mechanics. part 2: Microstructure[END_REF] and Mindlin [START_REF] Mindlin | Micro-structure in linear elasticity[END_REF] and they accounts for the effects of intrinsic characteristic lengths.

These models are in particular of interest when modeling strain localization, since classical continuum mechanics are not capable to provide an objective description of the process when a scale effect is involved. These models are characterized by an enriched kinematics able to describe micro strains and micro rotations, for instance local dilatancy and grain rotation in granular materials. An additional field f ij also called the microkinematic gradient is added to the classical continua. The following notations are introduced here for the two level fields. 

F ij = ∂u i ∂x j Micro kinematic gradient f ij Macro strain ε ij = 1 2 (F ij + F ji ) Microstrain v ij = 1 2 (f ij + f ji ) Macro rotation R ij = 1 2 (F ij -F ji ) Microrotation r ij = 1 2 (f ij -f ji ) / / Micro second gradient χ ijk = ∂f ij ∂x k
Like classical continuum, the virtual work done is still considered to be a linear form with respect to the displacement gradient, micro strain and the difference between the macro displacement gradient and microkinematic gradient, see [START_REF] Germain | The method of virtual power in continuum mechanics. part 2: Microstructure[END_REF]. Herein a virtual quantity is denoted with a superscript * . The density of virtual work is given by

w * = σ ij ε * ij + τ ij f * ij -F * ij + χ * ijk Σ ijk (2.49)
where σ ij is the macro stress or Cauchy stress, τ ij is the additive stress associated with the microstructure, Σ ijk is the double stress related with the micro second gradient χ ijk .

For a given body, the internal work is integrated throughout the domain Ω and becomes

W * in = Ω w * dΩ = Ω σ ij ε * ij + τ ij f * ij -F * ij + χ * ijk Σ ijk dΩ (2.50)
As with the classical theory, no double body forces are considered, the virtual work done by the external work is consequently given by

W * e = Ω ρ i f i u * i dΩ+ Γ p i u * i + P ij f * ij dΓ (2.51)
where f i is the body force per unit mass, ρ i is the mass density, p i is the external (classical) force per unit area and P ij is an additional (double) force per unit area applied on a part of the boundary part Γ.

Based on different mathematical constraints, the micromophic model could be simplified into different models, among them, Cosserat model and second gradient model will be presented here.

(

1) Cosserat model

In Cosserat theory, some kinematic constraint is apllied to let the micro strain vanish following the work of Germain (1973a) [START_REF] Germain | La méthode des puissances virtuelles en mécanique des milieux continus[END_REF] and Mühlhaus, where the microkinematic gradient f ij is antisymmetric and equal to its rotation r ij . This assumption is applicable to granular materials with rigid grains according to the findings of Calvetti et al. [START_REF] Calvetti | Experimental micromechanical analysis of a 2d granular material: relation between structure evolution and loading path[END_REF] and Matsushima et al. [START_REF] Matsushima | Grain rotation versus continuum rotation during shear deformation of granular assembly[END_REF]. The internal work of equation (2.50) could be rewritten into the following form.

W * in = Ω α ij ε * ij + τ ij r * ij -R * ij + χ * ijk Σ ijk dΩ (2.52)
where

α ij = σ ij -τ ij .
A particular case of the Cosserat model, Cosserat second gradient model, its macro rotation is equal to the micro rotation, thus we get r ij = R ij .

(2) Second gradient model

During the last twenty years, the second gradient model have been proven to be an effective regularization technique, more analysis or applications could be found, in e.g. [START_REF] Matsushima | Large strain finite element analysis of a local second gradient model: application to localization[END_REF][START_REF] Chambon | A strain space gradient plasticity theory for finite strain[END_REF][START_REF] Bésuelle | Switching deformation modes in postlocalization solutions with a quasibrittle material[END_REF][START_REF] Pardoen | Using local second gradient model and shear strain localisation to model the excavation damaged zone in unsaturated claystone[END_REF][START_REF] Collin | A finite element method for poro mechanical modelling of geotechnical problems using local second gradient models[END_REF]. The works of Chambon et al. [START_REF] Chambon | One-dimensional localisation studied with a second grade model[END_REF], Shu et al. [START_REF] Shu | Finite elements for materials with strain gradient effects[END_REF] belong to this class of model, in which the microstrain is assumed to be equal to the macro strain, such that

f ij = F ij (2.53)
And consequently

f ij = ∂u i ∂x j (2.54)
The internal virtual work writes

W * in = Ω σ ij ε * ij + Σ ijk χ * ijk dΩ (2.55)
The following relation could be accomplished either by the use of continuity element or though the employment of Lagrange multiplier.

The constitutive laws of the second gradient model could be complex. However, the simplest relation between double stress and double strain is the following linear isotropic constitutive law. 
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where all the items in the coefficient matrix only depend on five constants defined by Mindlin [START_REF] Mindlin | Micro-structure in linear elasticity[END_REF], they are

a 12345 = 2 (a 1 + a 2 + a 3 + a 4 + a 5 ) a 23 =a 2 + 2a 3 a 12 =a 1 + a 2 /2 a 145 =a 1 /2 + a 4 + a 5 /2 a 25 =a 2 /2 + a 5 a 34 = 2 (a 3 + a 4 )
Four of the five parameters are material characteristic lengths whilst the last one is a coupling parameter as proved by Sciarra [START_REF] Sciarra | Asymptotic fracture modes in strain-gradient elasticity: Size effects and characteristic lengths for isotropic materials[END_REF]. A simple constitutive law involving only one parameter D sg is adopted in the following analysis. It has been intensively used in the literature (for example, [START_REF] Bésuelle | Switching deformation modes in postlocalization solutions with a quasibrittle material[END_REF], [START_REF] Collin | A finite element method for poro mechanical modelling of geotechnical problems using local second gradient models[END_REF] and [START_REF] Matsushima | Large strain finite element analysis of a local second gradient model: application to localization[END_REF], et al.). Equation (2.57) is adopted in [START_REF] Bésuelle | Switching deformation modes in postlocalization solutions with a quasibrittle material[END_REF] and [START_REF] Collin | A finite element method for poro mechanical modelling of geotechnical problems using local second gradient models[END_REF]. Different from that used by [START_REF] Matsushima | Large strain finite element analysis of a local second gradient model: application to localization[END_REF] and [START_REF] Chambon | Uniqueness studies in boundary value problems involving some second gradient models[END_REF], in which all the components are positive while the absolute value of each component is the same as that in equation (2.57). 
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Viscoplasticity

Several investigations pointed out the capability of viscoplasticity to solve the pathological loss of uniqueness, once entering in the softening regime of the constitutive law, if an initial imperfection of a given characteristic size is provided [START_REF] Needleman | Material rate dependence and mesh sensitivity in localization problems[END_REF]. However, once the localized area or the imperfection length is not predefined, the number of solutions are still infinite.

Viscoplasticity has also been proposed as a method to overcome pathological mesh dependency problem, and its effectiveness has been numerically assessed for several specific case studies [START_REF] Voyiadjis | On the small and finite deformation thermo-elasto-viscoplasticity theory for strain localization problems: Algorithmic and computational aspects[END_REF], [START_REF] Niazi | Viscoplastic regularization of local damage models: revisited[END_REF] and [START_REF] Sluys | Overview of viscoplastic approaches for the modelling of shear bands[END_REF]. Some say that rate dependnet model regularizes problem by delaying the occurrence of strain localization. Through a linear perturbation analysis, this is theoretically proved by [START_REF] Pan | Perturbation analysis of shear strain localization in rate sensitive materials[END_REF]. Numerically, the delaying role was also found by Wang and Sluys [START_REF] Wang | Formulation of an implicit algorithm for finite deformation viscoplasticity[END_REF] as the regularization effect is achieved by restricting the deformation process at the beginning. However, when deformation exceeds 40%, mesh dependency appears despite the use of viscoplasticity. As a consequence the capacity of viscoplasticity in regularizing the problem is limited.

Besides, when the viscous parameter should be validated apriori from a physical point of view, the viscoplasticity does not really regularize the problem for granular soils accorrding to [START_REF] Di Prisco | A visco-plastic constitutive model for granular soils modified according to non-local and gradient approaches[END_REF]. Moreover, Goran Ljustina et al. [START_REF] Ljustina | Rate sensitive continuum damage models and mesh dependence in finite element analyses[END_REF], Larsson [START_REF] Larsson | Mesh objective continuum damage models for ductile fracture[END_REF] and Pirali et al. [START_REF] Pirali | Viscoplasticity coupled with nonlocalized damage for incompatibilities due to strain softening[END_REF] have both demonstrated that mesh dependence is still encountered using damage models regardless of the employment of viscoplasticity.

Overall, the capacity of viscoplasticity in regularizing the problem is limited as above mentioned and one can not benefit the regularization effect under the following conditions: small or inappropriate viscosity parameter is used or deformation exceed a certain value. When soil exhibiting viscous characteristics is described with viscoplastic models, a kind of numerical regularization can be obtained only within a time interval consistent with the viscous parameter introduced in the model. In order to remedy this inefficiency, it is necessary to add a more enhanced regularization technique.

In what follows viscoplasticity and second gradient model will be combined in order on the one hand to account for time dependent behavior of the constitutive relation and on the other one to get an effective regularization of the model during softening.

Chapter 3

Analytical and numerical investigations using viscoplastic models

Introduction

In the literature, several authors attribute a regularization effect to rate-dependent constitutive laws based on viscoplasticity, often used for geomaterials to describe viscous phenomena typical of their mechanical response. Analytical and numerical studies are presented in this chapter to investigate this claim based on the Hill's criterion, the Rice criterion, the results of a numerical perturbation algorithm and a 1D linear perturbation analysis. 

One-dimensional analytical and numerical study

u(0) = 0 u(L) = V t (3.1)
where V = ∂u(L) ∂t is the loading rate, u(0) and u(L) the displacements at the two extremities and L the bar length. 

Constitutive laws

Without loss of generality a piecewise linear constitutive law is adopted Fig 3 .2, where A 1 > 0 and A 2 < 0 specify respectively the positive and negative slope and γ lim the limit strain at the stress peak (see also [START_REF] Kotronis | Shear softening and localization: Modelling the evolution of the width of the shear zone[END_REF]). In the absence of viscous terms, the rate-independent 

f (σ, γ) =    σ -σ max (γ < γ lim ) σ -σ max -A 2 (γ -γ lim ) (γ lim < γ < γ u ) (3.2) 
where

f (σ max , γ lim ) = f (0, γ u ) = 0.
The 1D rate-dependent constitutive law is formulated hereafter following the Perzyna overstress model, the Duvaut-Lions model and the consistent model (see section 2.2.2). It is shown hereafter that the three models coincide under certain conditions. In Perzyna's overstress theory, the viscoplastic strain is explicitly determined by the overstress function Φ(f ), which can be chosen as Φ(f ) = f σmax . Substitution of Φ(f ) in equation (2.4) provides the viscoplastic strain:

γvp = 1 ησ max [σ -σ max -A 2 (γ -γ lim )] (3.3) 
In the Duvaut-Lions theory, the viscoplastic strain (equation (2.7)) depends on σ ∞ that is found according to Fig 3 .2 equal to:

σ ∞ = σ max + A 2 (γ -γ lim ) (3.4)
The Duvaut-Lions model viscoplastic strain rate becomes therefore:

γvp = 1 ηA [σ -σ max -A 2 (γ -γ lim )] (3.5) 
The viscoplastic strain rate of the Duvaut-Lions model coincides with the Perzyna's rate if:

A = σ max (3.6)
Finally, the yield function of the consistent viscoplastic model depends on the strain and the strain rate, equation (3.7). For the 1D case one gets:

f (σ, γ) = σ -σ max -γ vp A 1 A 2 A 2 -A 1 -y γvp (3.7)
where y is the hardening function related to the strain rate effect. In order to get the same expression as for the Perzyna's overstress model, y can be chosen as [START_REF] Heeres | A comparison between the perzyna viscoplastic model and the consistency viscoplastic model[END_REF]:

y = η dΦ (f ) df -1 = ησ max (3.8)
In the following, the viscoplastic strain rate is finally considered equal to:

γvp = 1 ησ max [σ -σ max -A 2 (γ -γ lim )] (3.9) 

Loss of uniqueness

The stress-strain relation of the 1D problem is:

σ = A 1 ( γ -γvp ) (3.10) 
A constant loading velocity V applied at the right end of the beam (equation (3.1)) results in a constant strain given by:

γ = V /L (3.11)
Introducing the viscoplastic strain equation (3.9) into equation (3.10) provides:

σ = A 1 { γ - 1 ησ max [σ -σ max -A 2 (γ -γ lim )]} (3.12)
After some rearrangements, the governing equation of the problem is the following first order linear differential equation:

σ = - A 1 ησ max σ + A 1 γ + A 1 η + A 1 A 2 ησ max (γ -γ lim ) (3.13)
If we assume the initial state corresponding to the peak of the rate-independent constitutive law, so that σ | t=0 = σ max and γ | t=0 = γ lim , the solution of equation (3.13) is given as:

σ (t) = C 1 e -A 1 t η σmax - γσ max ηA 2 A 1 + A 2 γt + γσ max η + σ max (3.14)
with C 1 a constant determined from the initial condition σ | t=0 = σ max as:

C 1 = γσ max ηA 2 A 1 -γσ max η (3.15)
The stress is therefore expressed as: It can be clearly seen that depending on the chosen loading rate, the peak points of the rate-dependent curves are not the same. The larger is the loading rate, the later appears the peak stress.

σ(t) = [ γσ max ηA 2 A 1 -γσ max η]e -A 1 t η σmax - γσ max ηA 2 A 1 + A 2 γt + γσ max η + σ max (3.

Hill's criterion

The loss of uniqueness is first studied hereafter using Hill's criterion. The expression for ∆ σ in terms of ∆ γ can be deduced by differentiating equation (3.16), as this last does not explicitly account for the value of imposed displacement boundary condition. A critical time t c exists such that for t t c the positive definiteness of the second order work is lost:

t c = ησ max A 1 ln A 2 -A 1 A 2 (3.17)
At t c , the critical strain γ c corresponds to the peak stress value and it is found equal to:

γ c = γ lim + V ησ max A 1 L ln A 2 -A 1 A 2 (3.18)
In terms of the stress-strain curve, the terms ∆ γ2 e -A 1 t η σmax and (A 2 e

A 1 t η σmax + A 1 -A 2 )
are both positive at the peak of the rate-independent solution. With increasing time, the slope of the rate-dependent curve decreases and for t > t c becomes negative. Hill's criterion being a sufficient condition for the uniqueness of the solution, a bifurcation point (non uniqueness of the solution) can thus appear for t t c .

Acoustic tensor

As discussed in section 2.4, a particular form of loss of uniqueness is the formation of a shear band, occurring when the determinant of the acoustic tensor vanishes (see equation (2.33), n being the outward unit vector normal to the localization band, which in the 1D case coincides with the direction of the bar). The tangent modulus C is in this case a scalar and it can easily be obtained as:

C = σ γ = e -A 1 t η σmax (A 2 e A 1 t η σmax + A 1 -A 2 ) (3.19)
The determinant of the acoustic tensor A(n) is therefore

det(A) = e -A 1 t η σmax (A 2 e A 1 t η σmax + A 1 -A 2 ) (3.20)
indicating that det(A) = 0 holds true for the same critical time t c when Hill's criterion fails, i.e. the peak point of the stress-strain curve.

Illustration of localized solutions

The existence of multiple localized solutions when using viscoplastic models is addressed hereafter. Following the illustration presented in [START_REF] Kotronis | Shear softening and localization: Modelling the evolution of the width of the shear zone[END_REF] for rate independent models, let us assume a localized solution so that one part of the bar unloads elastically (hard part) and the other softens (soft part), see We denote hereafter the quantities inside the band by a superscript "0" and the quantities moreover, the longitudinal displacements should be also continuous. This implies that at the junction c one has:

u 0c = u 1c = u c σ 0c = σ 1c = σ c (3.21)
The strain rate is assumed uniformly distributed in both parts of the bar with a jump across the band. Compatibility equations set the relationship between the strain rates:

c a γ0 dx = uc -ua = uc b c γ1 dx = ub -uc = V -uc (3.22)
The integration of equation (3.22) leads to

γ0 = V -γ1 l L -l (3.23)
Outside the band the behavior is elastic and thus the stress-strain rate relation gives

σ0 = A 1 γ0 (3.24)
Inside the band, the bar is submitted to a viscoplastic loading and the stress rate is given by equation (3.12):

σ1 = A 1 { γ1 - 1 ησ max [σ -σ max -A 2 (γ -γ lim )]} (3.25)
Combining equation (3.24) and equation (3.25) and considering a continuous stress state, the two unknown strain rates γ0 and γ1 are:

A 1 { γ1 - 1 ησ max [σ -σ max -A 2 (γ -γ lim )]} = A 1 γ0 (3.26)
Equations (3.23) and (3.26) constitute a linear algebraic system of equations whose solution are the unknown strain rates:

γ0 = ησ max V -[σ -σ max -A 2 (γ -γ lim )]l ησ max L γ1 = (L -l) [σ -σ max -A 2 (γ -γ lim )] + ησ max V ησ max L (3.27) 
A viscoplastic constitutive law as the one studied in this paper does not have any internal length parameter. An infinite number of localized solutions is therefore possible, depending on the value of l. Two extreme solutions are found for l = 0 and l = L. The solution for l = 0 corresponds to stain localization inside a zero length zone and therefore to a spurious dissipation indicating mesh dependency (see also section 3. 

Two-dimensional numerical study

A biaxial numerical test is conducted hereafter to investigate the loss of uniqueness of the solution when using a viscoplastic constitutive law.

The MCC viscoplastic model

The consistent viscoplastic model is chosen due to its robust implementation algorithm (see section 2.2.2) and its ability to reproduce a smooth transition between rate-dependent and rate-independent solutions [START_REF] Mac | A constitutive model for timedependent behavior of clay[END_REF]. The viscoplastic model is based on the pressure sensitive Modified Cam Clay (MCC) model often used for clayey geomaterials. The well-known yield function of the MCC model is given by:

f (σ, p c ) = q 2 M 2 + p(p -p c ) (3.28)
where p is the mean effective stress, q the deviator stress, p c the preconsolidation pressure and M the slope of the critical state line in the p-q plane. An associated flow rule is adopted for simplicity. Depending on the plastic strain and strain rate, the derivatives of the preconsolidation pressure p c are therefore given by:

∂p c ∂κ = h, ∂p c ∂ κ = y (3.29)
where h and y are hardening functions associated with the internal variables κ and κ. Following the classical MCC model formulation κ = ε vp v , the volumetric plastic strain and h is given as:

h = ν * p c = 1 + e 0 λ * -κ * p c (3.30)
where e 0 denotes the initial void ratio, λ * the virgin compression index and κ * the swelling index during a time increment from t n to t n+1 . The hardening parameter ν * is considered constant [START_REF] Borja | Cam-clay plasticity, part 1: implicit integration of elastoplastic constitutive relations[END_REF].

The hardening function y is assumed equal to the viscosity parameter η:

y = η (3.31)
The rate form of p c writes:

ṗc = ν * p c κ + ηκ (3.32)
The initial preconsolidation pressure p c and the slope of the critical state line M can be determined from constant strain rate tests, the initial void ratio e 0 , the compression index λ * and the recompression index κ * from the oedometer test and the viscosity parameter η from three different constant strain rate tests.

Validation of the viscoplastic MCC model

Before simulating the biaxial tests and in order to validate the implementation of the MCC viscoplastic model, undrained constant strain rate tests are simulated hereafter [START_REF] Adachi | Descriptive accuracy of several existing constitutive models for normally consolidated clays[END_REF]. The calibrated model parameters are presented in Table 3.1, where the Poisson's ratio ν is taken to be 0.3. A good agreement between the experimental and the numerical results is observed in 

Biaxial test

The geometry, the applied loading and the boundary conditions of the biaxial test reproduced 

One-dimensional linear perturbation analysis using viscoplastic model

Another way to study the stability condition (the onset condition for the growth of small periodic non-uniformities) for the case of a viscoplastic law is to perform a 1D linear pertur- 

Fundamental relations Equilibrium equation

The equilibrium equation for the 1D case is

∂σ ∂x = 0 (3.33)

Constitutive law

The 1D viscoplastic constitutive law and the viscoplastic strain rate are:

σ = E ( γ -γvp ) γvp = 1 ησ max [σ -σ max -A 2 (γ -γ lim )] N (3.34)
where N 1 is a calibration parameter (for simplicity, N = 1 is assumed hereafter).

Perturbation analysis

The perturbation in displacement δu is assumed to be periodic and imposed on the homogeneous state such that

δu = ûe ωt+ikx (3.35)
with k the wave number, ω the growth rate and the amplitude û is of order û 1.The perturbations related with displacement are derived as follows

δ u = ∂δu ∂t = ωδu δγ = ∂δu ∂x = ikδu δ γ = ∂δγ ∂t = ikωδu δ γ,x = ∂δ γ ∂x = -k 2 ωδu (3.36)
The perturbation of the viscoplastic strain is obtained as

δ γvp = N ησ max [σ -σ max -A 2 (γ -γ lim )] N -1 (δσ -A 2 δγ) (3.37)
For simplicity, N = 1 is assumed. Differentiation of the two sides of equation (3.37) with respect to x yields

δ γvp ,x = k 2 A 2 ησ max δu (3.38)
where the term δσ ,x = 0 vanishes according to equilibrium equation (3.33).

Furthermore, the perturbation of the constitutive law presented in the first equation of (3.34) leads to

δ γvp ,x = δ σ,x E -δ γ,x = -k 2 ωδu (3.39)
Equating expressions (3.38) and (3.39) provides the characteristic stability equation:

ω = - A 2 ησ max (3.40)
The following conclusions can be drown:

• For ω real and positive the perturbation grows with time and instability is possible.

For ω real and negative the perturbed solution decays with time and the homogeneous solution is stable.

• η and σ max being positive, the sign of the growth rate depends on the sign of the hardening modulus A 2 . As long as A 2 is non-negative, the growth rate decays with time. When softening occurs (A 2 < 0) the growth rate increases exponentially.

• The growth rate is independent of the wave number k. Its magnitude is inversely proportional to the viscosity and the maximum stress σ max .

The previous results agree also with [START_REF] Leroy | Finite element analysis of transient strain localization phenomena in frictional solids[END_REF] that states that viscoplastic materials are unstable when strain softening occurs.

Discussion on the viscosity parameter

We finally present a brief discussion concerning the physical meaning of the viscosity-like parameter η with respect to the material viscosity that can be experimentally measured.

In [START_REF] Vallejo | Determination of the shear strength parameters associated with mudflows[END_REF], values of viscosity for mixtures of kaolinite and water are provided when the water content is between 57% and 63%; the viscosity typically varies between 7×10 4 and 6×10 5 Pa•s. In [START_REF] Mahajan | Viscous effects on penetrating shafts in clays[END_REF], a fall cone test was performed to determine the viscosity of kaolin soils. The authors found that the viscosity ranges between 1×10 3 and 1×10 4 Pa•s when the liquidity index is limited within 0.3 and 1 and the water content is in the range of 35.8%

and 47.4%. The same method was adopted for kaolin soils by [START_REF] Mahajan | Shear viscosity of clays to compute viscous resistance[END_REF] to show that the shear viscosity decreases exponentially with the liquidity index. When the water content lies between 35.84% and 45.51% and the liquidity index from 0.34 to 0.91, viscosity is between 200 and 516Pa•s. Measures of viscosity were also obtained by [START_REF] Ghezzehei | Rheological properties of wet soils and clays under steady and oscillatory stresses[END_REF] using a rotational rheometer for kaolinite, Ca-montmorillonite and Na-montmorillonite soils; viscosity ranges in that case from 1×10 3 to 1×10 6 Pa•s when the water content is between 20% and 180%.

In laboratory tests, when a soft soil is in plastic state, the measured viscosity lies between 2×10 2 and 1×10 6 Pa•s. The aforementioned viscosity measures are summarized in Table 3.2.

In numerical simulations, the viscosity-like parameter η of the viscoplastic model estimated 

.3 ∼ 1 1×10 3 ∼ 1×10 4 [109] 4 / 0 ∼ 1 2×10 2 ∼ 1×10 6 [112] 5 20% ∼ 180% / 1×10 3 ∼ 1×10 6 [111]
according to the procedure discussed in section 3.3.2 is 3×10 9 Pa•s, which is far beyond the experimentally measured values. This means that even if η has the same physical dimensions as a viscosity, it is just a model parameter to be fitted by back-analysis.

Concluding remarks

In this chapter we have studied the possibility to use a rate dependent constitutive law (viscoplasticity) for soft soils to describe their intrinsic time-dependent response and the socalled regularization effect which several authors attribute to the viscoplastic model. Analytical and numerical studies were presented and several conclusions are found based on the Hill's criterion, the Rice criterion, the results of a numerical perturbation algorithm and a 1D linear perturbation analysis. The main conclusions are as follows:

1. It was found that the use of a rate dependent constitutive law (viscoplasticity) in a classical medium without an internal length parameter may result in an infinite number of possible solutions and strain localization in an infinitesimal band without energy dissipation. Results are therefore non objective and depend on the mesh size. Moreover, a 1D linear perturbation analysis showed that viscoplastic materials are no more stable when strain softening occurs. Increasing the viscosity parameter affects only the magnitude of growth rate but does not change its sign.

2. The use of a viscosity-like parameter may delay softening, strain localization and shear bands appear for subsequent loadings and time steps. Moreover, the viscosity-Chapter 4

Numerical study using viscoplastic model in a second gradient continuum

Introduction

Among the different regularization techniques, the second gradient model is widely used in geomechanics and geotechnics providing very good results. This chapter begins by revisiting the formulation of a 1D and a 2D second gradient finite element that are both implemented into a Matlab based finite element code. In order to validate the implementation, a classical 1D benchmark is presented. A 2D plane strain problem is also studied including a thorough mesh dependency investigation and some parametric analyses. Finally, a 1D linear perturbation analysis is presented at the end of the chapter. The second gradient finite element formulation presented hereafter is based on the work of [START_REF] Chambon | One-dimensional localisation studied with a second grade model[END_REF][START_REF] Matsushima | Large strain finite element analysis of a local second gradient model: application to localization[END_REF][START_REF] Bésuelle | Implémentation d'un nouveau type d'élément fini dans le code lagamine pour une classe de lois à longueur interne[END_REF].

Second gradient finite elements 4.2.1 Virtual work principle and equilibrium equation Virtual work principle

In the second gradient model, the microstrain is assumed equal to the macrostrain, such that

v ij = ∂u i ∂x j (4.1)
For any kinematically admissible virtual displacement field u * i , the principle of virtual work implies

Ω σ ij ∂u * i ∂x j + Σ ijk ∂ 2 u * i ∂x j ∂x k dΩ -W * e = 0 (4.2)
where the superscript ( * ) denotes a virtual quantity, σ ij is the Cauchy stress tensor, Σ ijk the double stress tensor, x i the coordinate and W * e the external virtual work done by the surface and body forces given hereafter

W * e = Ω ρf i u * i dΩ+ Γ (p i u * i + P i Du * i ) dΓ (4.3)
where f i is the body force per unit mass, ρ the mass density, p i the external force per unit area and P i the double force per unit area applied on a part of the boundary Γ. D denotes the normal derivative, consequently

Du * i = ∂u * i ∂x k n k .

Equilibrium equation

As usual, the strong form of the balance equation is obtained from equation (4.2) by using the divergence theorem and integrating by parts,

∂σ ij ∂x j - ∂Σ ijk ∂x j ∂x k + ρf i = 0 (4.4)
The second order derivative of the displacements requires C 1 continuity which complexifies the implementation. To avoid this, Lagrange multipliers are introduced and equation (4.2)

turns into Ω σ ij ∂u * i ∂x j + Σ ijk ∂v * ij ∂x t k dΩ - Ω λ ij ∂u * i ∂x j -v * ij dΩ -W * e = 0 (4.5)
where λ ij represent the Lagrange multiplier field and the following constraint has to be met

Ω λ * ij ∂u i ∂x t j -v ij dΩ = 0 (4.6)
The strong form equation turns into The unknown variables U (node) at nodes in physical coordinates are functions of the reference coordinates denoted by ξ. Quadratic shape functions are adopted for the displacement field and the approximated displacements within the element are given by

∂σ ij ∂x j + ∂λ ij ∂x j -ρf i = 0 ∂Σ ijk ∂x k -λ ij = 0 (4.7)

1D second gradient finite element

U (node) = u 1(ξ=-1) , u 1(ξ=1) , u 1(ξ=0) , v
u 1 (ξ) = [N 1 (ξ) N 2 (ξ) N 3 (ξ)]      u 1(ξ=-1) u 1(ξ=1) u 1(ξ=0)      (4.11)
where

N 1 (ξ) = 0.5ξ (ξ -1), N 2 (ξ) = 0.5ξ (1 + ξ)), N 3 (ξ) = 1 -ξ 2
Linear shape functions are chosen for the microstrain field v 11 and thus

v 11 (ξ) = [ψ 1 (ξ) ψ 2 (ξ)]   v 11(ξ=-1) v 11(ξ=1)   (4.12)
where

ψ 1 (ξ) = 0.5 (1 -ξ), ψ 2 (ξ) = 0.5 (1 + ξ)
The Lagrange multiplier is assumed constant within the element and thus

λ 11 (ξ) = λ 11 (ξ = 0) (4.13)
The approximation of the geometry is done with the same set of interpolation functions used to approximate the displacements (isoparametric formulation) which writes

x 1 (ξ) = [N 1 (ξ) N 2 (ξ) N 3 (ξ)]      x 1 (ξ = -1)
x 1 (ξ = 1)

x 1 (ξ = 0)      (4.14)
U (node) is consequently connected with dU (ξ) on the Gauss points by the transformation matrix B as follows

dU (ξ) = B U (node) (4.15)
in which

B =         ∂N 1 (ξ) ∂ξ 0 ∂N 2 (ξ) ∂ξ 0 ∂N 3 (ξ) ∂ξ 0 0 ∂ψ 1 (ξ) ∂ξ 0 ∂ψ 2 (ξ) ∂ξ 0 0 0 ψ 1 (ξ) 0 ψ 2 (ξ) 0 0 0 0 0 0 0 1         (4.16)
As usual, by using the chain rule we get with

∂u 1 ∂ξ =
T =         ∂x ∂ξ -1 0 0 0 0 ∂x ∂ξ -1 0 0 0 0 1 0 0 0 0 1         (4.19)

Discretization of body force in 1 D

Using the virtual work principle, the discretization of the body force is given by

Ω ρf u * dΩ = [u * ] T node Ω ρ[N eb ] T f dΩ = [u * ] T node [f eb ] (4.20)
where N eb = N 1 N 2 N 3 0 0 0 , N 1 , N 2 and N 3 are given in equation (4.11), f is the body force value per unit mass.

2D second gradient finite element

A quadrilateral element with nine nodes, four Gauss integration points and one constant Lagrange multiplier is adopted hereafter [START_REF] Matsushima | Large strain finite element analysis of a local second gradient model: application to localization[END_REF][START_REF] Bésuelle | Implémentation d'un nouveau type d'élément fini dans le code lagamine pour une classe de lois à longueur interne[END_REF]. The variables are: displacements u i , microstrains v ij and the Lagrange multiplier λ ij , see The vector of unknown quantities at nodes is now denoted as The displacements within the element are approximated by

U (node) = [u 1(ξ=-1,η=-1) , u 2(ξ=-1,η=-1) , f 11(ξ=-1,η=-1) , f 12(ξ=-1,η=-1) , f 21(ξ=-1,η=-1) , f 22(ξ=-1,η=-1) , • • • f 22(ξ=-1,η=1) , λ
u i (ξ) = [N 1 (ξ, η) N 2 (ξ, η) • • • N 8 (ξ, η)]                     u i (ξ=-1,η=-1) u i (ξ=1,η=-1) u i (ξ=1,η=1) u i (ξ=-1,η=1) u i (ξ=0,η= -1) 
u i (ξ=1,η=0)

u i (ξ=0,η=1) u i (ξ=-1,η=0)                     (4.24) 
with

N 1 (ξ, η) = 1 4 (1 -ξ) (1 -η) (-1 -ξ -η) N 2 (ξ, η) = 1 4 (1 + ξ) (1 -η) (-1 + ξ -η) N 3 (ξ, η) = 1 4 (1 + ξ) (1 + η) (-1 + ξ + η) N 4 (ξ, η) = 1 4 (1 -ξ) (1 + η) (-1 -ξ + η) N 5 (ξ, η) = 1 2 (1 -ξ 2 ) (1 -η) N 6 (ξ, η) = 1 2 (1 + ξ) (1 -η 2 ) N 7 (ξ, η) = 1 2 (1 -ξ 2 ) (1 + η) N 8 (ξ, η) = 1 2 (1 -ξ) (1 -η 2 ) A linear form is adopted for v ij v ij (ξ, η) = [ψ 1 (ξ, η) ψ 2 (ξ, η) ψ 3 (ξ, η) ψ 4 (ξ, η) ]         v ij (ξ=-1,η=-1) v ij (ξ=1,η=-1) v ij (ξ=1,η=1) v ij (ξ=-1,η=1)         (4.25) with ψ 1 (ξ, η) = 1 4 (1 -ξ) (1 -η) ψ 2 (ξ, η) = 1 4 (1 + ξ) (1 -η) ψ 3 (ξ, η) = 1 4 (1 + ξ) (1 + η) ψ 4 (ξ, η) = 1 4 (1 -ξ) (1 + η)
The Lagrange multiplier is considered constant within the element

λ ij (ξ, η) = λ ij (0, 0) (4.26) 
Concerning the mapping function from (ξ, η) to (x 1 , x 2 ), the same set of shape functions N i as those for u i is adopted.

The nodal unknowns U (node) are connected with dU (ξ,η) by matrix B, such that

dU (ξ,η) = B U (node) (4.27) 
where

B =      B u(1) 0 (4×4) B u(2) 0 (4×4) B u(3) 0 (4×4) B u(4) 0 (4×4) • • • B u(8) 0 (4×10) 0 (12×2) B v(1) 0 (12×2) B v(2) 0 (12×2) B v(3) 0 (12×2) B v(4) 0 (12×30) 0 (4×50) I (4×4)      with B u(i) T =   ∂N i ∂ξ ∂N i ∂η 0 0 0 0 ∂N i ∂ξ ∂N i ∂ξ   and B v(i) T =         ∂ψ i ∂ξ ∂ψ i ∂η 0 0 0 0 0 0 ψ i 0 0 0 0 0 ∂ψ i ∂ξ ∂ψ i ∂ξ 0 0 0 0 0 ψ i 0 0 0 0 0 0 ∂ψ i ∂ξ ∂ψ i ∂η 0 0 0 0 ψ i 0 0 0 0 0 0 0 ∂ψ i ∂ξ ∂ψ i ∂η 0 0 0 ψ i        
The derivatives of u i and v ij with respect to the reference coordinates and physical coordinates hold the following relation by means of the chain rule,

∂u i ∂ξ = ∂u i ∂x 1 ∂x 1 ∂ξ + ∂u i ∂x 2 ∂x 2 ∂ξ ∂u i ∂η = ∂u i ∂x 1 ∂x 1 ∂η + ∂u i ∂x 2 ∂x 2 ∂η ∂v ij ∂ξ = ∂v ij ∂x 1 ∂x 1 ∂ξ + ∂v ij ∂x 2 ∂x 2 ∂ξ ∂v ij ∂η = ∂v ij ∂x 1 ∂x 1 ∂η + ∂v ij ∂x 2 ∂x 2 ∂η (4.28)
Using the matrix form, the above equation can be written as

  ∂u i ∂ξ ∂u i ∂η   = J T   ∂u i ∂x 1 ∂u i ∂x 2     ∂v ij ∂ξ ∂v ij ∂η   = J T   ∂v ij ∂x 1 ∂v ij ∂x 2   (4. 29 
)
where J is called the Jacobian matrix and given by

J =   ∂x 1 ∂ξ ∂x 1 ∂η ∂x 2 ∂ξ ∂x 2 ∂η   Inversely,   ∂u i ∂x 1 ∂u i ∂x 2   = J T -1   ∂u i ∂ξ ∂u i ∂η   (4.30) 
Therefore, the vectors dU (ξ,η) and dU (x 1 ,x 2 ) are related via matrix T

dU (x 1 ,x 2 ) = TdU (ξ,η) (4.31) 
with

T =                     J T -1 J T -1 J T -1 J T -1 J T -1 J T -1 I 4×4 I 4×4                    
where I 4×4 is the identity matrix of size 4.

Discretization of body force in 2 D

Using the virtual work principle, the discretization of the body force is given by

Ω ρf i u * i dΩ = [u * i ] T node Ω ρ[N eb ] T f i dΩ = [u * i ] T node [f eb ] (4.32) 
where

N eb = N eb(1) 0 2×4 N eb(2) 0 2×4 • • • N eb(8) 0 2×10 N eb(i) =   N i 0 0 N i   N i are given in equation (4.24), f i = f 1 f 2 T
is the body force vector per unit mass.

Discretization of surface force in 2 D

Another set of shape functions is necessary to discretize the surface force. We have

u i (ζ) = [ϕ 1 (ζ) ϕ 2 (ζ) ϕ 3 (ζ) ]      u i(ζ=-1) u i(ζ=1) u i(ζ=0)      x i (ζ) = [ϕ 1 (ζ) ϕ 2 (ζ) ϕ 3 (ζ) ]      x i(ζ=-1)
x i(ζ=1)

x i(ζ=0)      (4.33) 
where

ϕ 1 (ζ) = 1 2 (ζ 2 -ζ) ϕ 2 (ζ) = 1 -ζ 2 ϕ 3 (ζ) = 1 2 (ζ 2 + ζ)
By means of the virtual work principle, the virtual work done by the surface force writes,

Γ pn i u * i dΓ = [u * i ] node S [N es ] T pn i dΓ = [u * i ] node [f es ] (4.34) 
where the transformation matrix [N es ] is expressed by

[N es ] =   ϕ 1 0 ϕ 2 0 ϕ 3 0 0 ϕ 1 0 ϕ 2 0 ϕ 3  
For a 2D problem, pn i is written as

pn i = pn 1 pn 2 T . The vector n 1 n 2 T
which is normal to the boundary is described as follows.

  n 1 n 2   = 1 ds   -dx 2 dx 1   (4.35) 
where ds = (dx 1 ) 2 + (dx 2 ) 2 , dx 1 = ∂x 1 ∂ζ dζ, dx 2 = ∂x 2 ∂ζ dζ After some arrangement, equation (4.35) is equivalent to

  n 1 n 2   = dζ ds [B es ] T [x i ] node (4.36) 
where The constitutive laws parameters are given in Table 4.1. 

[B es ] T =   -∂ϕ 1 ∂ζ 0 -∂ϕ 2 ∂ζ 0 -∂ϕ 3 ∂ζ 0 0 ∂ϕ 1 ∂ζ 0 ∂ϕ 2 ∂ζ 0 ∂ϕ 1 ∂ζ   x i(node) T = x 1(ζ=-1) x 2(ζ=-1) x 1(ζ=1) x 2(ζ=1) x 1(ζ=0) x 2(ζ=0) dζ ds = 1 ∂x 1 ∂ζ 2 + ∂x 2

Analytical solutions

The analytical solutions of the 1D problem [START_REF] Chambon | One-dimensional localisation studied with a second grade model[END_REF] are hereafter briefly recalled. The internal virtual work in the 1D domain [a, b] is given as

W * in = b a (σ ∂u * ∂x + Σ ∂ 2 u * ∂x 2 )dx (4.37) 
Assuming that the external force is applied at the two ends a and b, the external work reads

W * e = ν b u * b + ν a u * a + µ b u * b + µ a u * a (4.38) 
where ν is the classical external force and µ denotes the additional external double force.

By means of the virtual work principle and integrating by parts, the balanced equation writes

∂σ ∂x - ∂ 2 Σ ∂x 2 = 0 (4.39) 
Integration of equation (4.39) leads to

σ - dΣ dx = σ 0 (4.40)
where σ 0 is an unknown constant.

The constitutive laws of first and second gradient parts shown in Fig 4 .6 can be expressed as,

σ = Eu + F Σ = D sg u (4.41) 
where

u = du dx , u = d 2 u dx 2
along with

u γ lim E = A 1 , F = 0 u > γ lim E = A 2 , F = (A 1 -A 2 ) γ lim
Combined with the equilibrium equation (4.40), the following differential equations are

obtained    A 1 u -D sg u = σ 0 x + K u γ lim A 2 u -D sg u = [σ 0 + (A 2 -A 1 ) γ lim ] x + K u > γ lim (4.42)
After integration, the solutions are given as follows:

for u γ lim u = σ 0 /A 1 x + K + αch (w h x) + βsh (w h x) w h = A 1 /D sg (4.43) 
called hereafter "hard solution"

for u > γ lim u = [σ 0 + (A 2 -A 1 ) γ lim ]/A 1 x + K + α cos (w s x) + β sin (w s x) w s = -A 2 /D sg (4.44) 
called hereafter "soft solution".

α, β, K in equations (4.43) and (4.44) are constants to be determined.

The authors in [START_REF] Chambon | One-dimensional localisation studied with a second grade model[END_REF] found the analytical solutions that satisfy the continuity and boundary conditions. Assuming there are n pieces of such fundamental solutions (the sum of hard pieces and soft pieces is n), the unknowns in total are 4n + 1 (nα, nβ, nK, pieces length nl and the constant stress σ 0 ).

To solve this problem, the following boundary conditions could be chosen

u a = U u b = 0 Σ a = 0 Σ b = 0 (4.45)
Using the displacement continuity, the second gradient stress continuity, the strain continuity (necessarily equal to γ lim ) at the junction, 4n -4 equations are found. Along with the four boundary conditions given in (4.45) and the total length of the bar l, the number of unknowns and equations are equal and consequently different solutions can be found.

Moreover, given that n can not be too large with respect to the ratio l -A 2 /D sg , the number of possible solutions are finite.

Analytical versus numerical results

Two analytical solutions together with the homogeneous one are compared with the numerical results obtained with both the 1D and the 2D second gradient finite element. The random initialization procedure detailed in section 2.4 was applied to find the possible solutions. The same numerical result was obtained for both the 1D element and 2D element. present the ccumulative equivalent plastic strain distribution for the two localized solutions (numerical results with the 2D second gradient finite element).

Mesh independency is then investigated using three mesh refinements for 1 D problem (40, 80 and 160 9-node quadrilateral finite elements). The symmetrical localized solution is trig- 

One-dimensional linear perturbation analysis using viscoplastic model in a second gradient continuum

A 1D linear perturbation analysis for a viscoplastic model in a second gradient medium is presented hereafter. The basic steps presented in section 3.4 are again followed. Other examples of linear perturbation analysis in enhanced models can be studied in [START_REF] Kulkarni | On the effect of imperfections and spatial gradient regularization in strain softening viscoplasticity[END_REF][START_REF] Aifantis | Instability of gradient dependent elasto-viscoplasticity for clay[END_REF][START_REF] Oka | Instability of gradient-dependent elastoviscoplastic model for clay and strain localization analysis[END_REF].

Fundamental relations Equilibrium equation

For the 1D case, the equilibrium equation is (see also equation 4.39):

∂σ ∂x - ∂ 2 Σ ∂x 2 = 0 (4.46) 

Constitutive laws

As mentioned in section 4.3, the second gradient model uses two constitutive laws, for the first and the second gradient terms:

σ = E ( γ -γvp ) γvp = 1 ησ max [σ -σ max -A 2 (γ -γ lim )] N Σ = D sg ∂ 2 u ∂x 2 (4.47)
where N 1 is a calibration parameter (for simplicity, N = 1 is again assumed hereafter).

Perturbation analysis

As before, the perturbation in displacements δu is assumed to be periodic form and imposed The following conclusions can be found:

• As before, for ω real and positive the perturbation grows with time and instability is possible. For ω real and negative the perturbed solution decays with time and the homogeneous solution is stable.

• When the second gradient parameter D sg vanishes, equation (4.54) degenerates into equation (3.40).

• While D sg = 0, the solution becomes unstable when -k 2 D sg -A 2 > 0. A critical wave number is thus determined k = -A 2

Dsg linked with the internal length of the second gradient medium, see also [START_REF] Chambon | One-dimensional localisation studied with a second grade model[END_REF]. In addition to the mesh size effect, it is recognized that mesh independent solution contains mesh-alignment independence. Therefore some computations are also performed for dif- loading, one of them remains active and propagates along the original directions, while the others disappear, see also [START_REF] Bésuelle | Switching deformation modes in postlocalization solutions with a quasibrittle material[END_REF]. In all cases, the shear band width is similar. 

Concluding remarks

This chapter presents simulations using the second gradient model with viscoplastic laws for strain localization problems. First, the implementation of a 1D and a 2D second gradient 2. The 1D linear perturbation analysis for a viscoplastic model in a second gradient medium shows that the stability is conditionally guaranteed and the growth rate is influenced by the wave number and the second gradient parameter. Decrease of the growth rate can be achieved by increasing the second gradient parameter or increasing the wave number. Without loss of generality and for the sake of simplicity, the Drucker-Prager (DP) yield criterion is adopted hereafter for the first gradient part (the second gradient constitutive law, as already mentioned in section 2.5.3 is linear elastic). Further study will be performed using more complex constitutive laws. The DP criterion was established as a generalization of the Mohr-Coulomb (MC) criterion [START_REF] Drucker | Soil mechanics and plastic analysis or limit design[END_REF]. It is commonly used for soils without suffering severe numerical difficulties as its yield surface is a circular cone. When the friction angle is equal to 0, the DP model reduces to Von Mises model. Its yield function is defined as:

f (σ, α) = q √ 3 -3αp -β = 0 (5.2)
where p is the mean effective stress, q the deviatoric stress, α and β are related to the friction angle φ and the cohesion c of the MC criterion. By fitting the MC criterion and assuming the surface to be circle in the octahedral plane under plane strain conditions, α and β are defined as:

α = tan φ (9 + 12tan 2 φ) β = 3 (c + hξ p ) (9 + 12tan 2 φ)
in which the accumulated deviatoric strain is defined as follows:

ξ p = ξp dt where ξp = 1 2 ėp ij ėp ij 1 2 , ėp ij = εp ij -1 3
εp kk δ ij here εp ij is the total plastic strain rate, ėp ij the deviatoric plastic strain rate, δ ij the Kronecker delta and h the hardening/softening modulus.

Considering a non-associative constitutive law, the potential function g is expressed similar to the yield function (5.2)

g (σ, ζ) = q √ 3 -3ζp + constant (5.3)
where ζ is related to the dilation angle ψ. Analogously to the definition of α in plane strain problems, it is defined as

ζ = tan ψ (9 + 12tan 2 ψ)
This viscoplastic DP model adopted the Perzyna type whose Φ(f ) takes the power form as a common choice:

Φ(f ) = ( f σ 0 ) N (5.4)
where the calibration parameter N 1 is assumed to be 1 and σ 0 is the initial yield stress.

Concerning the algorithm aspects, one can refer to section 2.2.3.

Tension cut-off

To avoid unrealistic tensile soil behaviour and numerical problems, a tension cut-off is considered and assumed to be rate-independent for simplicity. A flow rule is adopted for equation (5.5).

g t = p (5.6)
For a material whose coefficient α is not equal to 0, the tensile strength cannot exceed the value p max t p max t = β 3α (5.7)

In the vicinity of the edge of two regions, a unique yield function h t representing the diagonal between f = 0 and f t = 0 is defined by the following expression

h t = q -a t + b t (p -p t ) (5.8) 
where a t and b t are two constants determined by

a t = β + 3αp t b t = 1 + (3α) 2 -3α
The incremental plastic strain is given by:

∆ε p = ∆λ t ∂f t ∂σ (5.9) 
The incremental stress and the incremental elastic strain are related as:

∆σ = C(∆ε -∆ε p ) (5.10)
No hardening or softening rule is considered in the domain of tensile failure. We recall the return mapping algorithm and assume that the consistency condition is satisfied at iteration k + 1, the Taylor series expansion implies: where

f (k+1) t = f ( 
H = C -1 + ∆λ t ∂ 2 gt ∂σ 2 -1
The combination of equation (5.11) and equation (5.12) provides the local increment of the plastic multiplier: The softening behaviour is described through a mobilised hardening modulus h. As shown in Fig 5 .5, the yield strength is limited to range between β peak and β resi .

δλ t = 1 β t f ( 
The return mapping algorithm mentioned above is summarized in Box 5.1. 

n+1 = C ∆ε -∆λ (0) t ∂gt ∂σ f (0) t = σ (0) n+1 -p t (2) Local iterations 1) Compute local variable increment δλ k+1 t = 1 β t f t(k) ∆λ (k+1) t = δλ (k+1) t + ∆λ (k) t 2) Update variables ∆σ (k+1) n+1 = C ∆ε -∆λ (k+1) t ∂gt ∂σ (0) 
3) Compute residuals and check convergence 

r (k) = f t σ (k+1) n+1 IF r (k) > T ol Set k ← k + 1 and go to (2). ELSE (•) n+1 ← (•) (k+1)

Initial stress state

When accounting for the weight of the soil, the initial stress state is usually generated under geostatic condition (or K 0 condition).

σ zz = γz σ yy = σ xx = K 0 σ zz (5.15)
where γ is the unit weight of the soil below the foundation, determined from the ground water table, z is the depth. The choice of K 0 is dependent on the friction angle (for sand)

and plasticity index I p (for clay), it is expressed as:

• For sand, K 0 is

K 0 = (1 -sin φ ) (5.16)
where φ is the friction angle.

• For clay, K 0 is assumed to be correlated with the plasticity index K 0 = 0.19 + 0.233 logI p (5.17) with I p in % Soil can be in an overconsolidated state (with a load applied and subsequently removed).

The coefficient K 0R is defined as

K 0R = K 0 OCR c λ (5.18)
where OCR is the overconsolidation ratio and the characteristic parameter c λ refers to the empirical relation introduced in [START_REF] Alpan | The empirical evaluation of the coefficient k0 and k0r[END_REF].

Finite element model validation

To validate the FE model in a second gradient continuum with regard to bearing capacity of shallow foundation as well as provide some preliminary ideas for the choice of the second gradient parameter D sg , the numerical results are compared with the analytical results provided by equation (5.1) for different friction angles (an associative law is adopted and thus the dilation angle is considered equal to the friction angle). The coefficients N q , N γ and N c where F i r is the i th nodal reaction force and B the footing width. Among all the adopted second gradient parameters varying from 5 Pa • m 2 to 5000 Pa • m 2 , the smallest relative error between numerical bearing capacity and analytical one is provided when D sg = 50 Pa • m 2 . With D sg = 50 Pa • m 2 , a relative error within 2.90% is indicated in Table 5.3. Note: the relative error is calculated by the following formula

δ = q N um u -q Ana u q Ana u × 100%
Global response for different friction angles is given in Fig 5 .8. The bearing capacity increases gradually until a constant value is attained. Moreover, increasing the friction angle results in an increase of the bearing capacity of the shallow foundation. The accumulated equivalent plastic strain distribution and evolution shows that the slip surface starts from the edge of the footing and forms a wedge-shaped region below the loading area. Then, the slip surface spreads upwards as well as outwards to the ground. As the angle of friction increases, the affected zone becomes larger both in the horizontal and vertical direction, see 

Post-peak response using the second gradient model with a viscoplastic law

Increasing plastic strain results in strength reduction for soils such as dense sand, overconsolidated soft soil etc. This strain-softening behaviour and progressive failure happens as intense strain is localized in a limited thickness zone. 

Effect of loading velocity

Moreover, the effect of loading velocity on bearing response is investigated. As seen from response approaching the response of rate-independent materials, where clear shear band could be observed. This tendency is consistent with the characteristic of viscoplastic constitutive law.

Concluding remarks

This chapter focuses on a classical boundary value problem, the bearing response and progressive failure of shallow foundation. The viscoplastic model is used in a second gradient medium and it was found that simulations are mesh independent (provided a sufficient dense mesh is adopted). A bigger internal length results in an increase of the foundation bearing capacity and the thickness of shear band, while the post-peak response becomes more ductile. Furthermore, larger loading velocity can cause a higher bearing capacity and a more ductile post-peak response. The use of viscoplastic model in a second gradient continuum can objectively predict progressive failure.

Chapter 6

General conclusions and perspectives

Conclusions

This PhD study focuses on the use of viscoplastic models in a classical and in a second gradient medium for the description of geomaterials. Several issues related with strain localization, uniqueness of the solution, bifurcation, stability and mesh dependency are discussed.

The main contributions are summarized hereafter.

1. The use of a viscoplastic law in a classical continuum is not sufficient to regularize the strain localization problem, i.e. an infinite number of solutions is possible, strains can localize in an infinitesimal band without energy dissipation. Results are therefore non objective and dependent on the mesh size. The use of a viscosity-like parameter may delay softening, however strain localization and shear bands appear for subsequent loading and time steps. Moreover, the viscosity-like parameter of the constitutive law calibrated from experimental test results is not of the same order of magnitude as the material viscosity measured experimentally.

2. The use of a viscoplastic law in a second gradient medium regularizes the results but do not restore the uniqueness of the solution. Objective results are provided which do not depend on the mesh size or the mesh alignment. A quadratic relation exists between the second gradient parameter D sg and the shear band width.

3. A 1D linear perturbation analysis for a viscoplastic model in a classical medium shows that stability is lost when softening appears. Increasing the viscosity parameter affects only the magnitude of growth rate but does not change its sign. For the viscoplas-123 tic model in a second gradient medium stability is conditionally guaranteed and the growth rate is influenced by the wave number and the second gradient parameter. The decrease of the growth rate is realized by increasing the second gradient parameter or the wave number.

4. The classical case study of a shallow foundation shows that increasing the internal length (linked with the second gradient parameter) leads to a higher bearing capacity, a larger shear band width and a more ductile post-peak response. Moreover, larger loading velocity produces a higher bearing capacity as well as a more ductile postpeak response. The use of a viscoplastic model in a second gradient medium gives objective global and local results, provided that a sufficient dense mesh is adopted.

Perspectives

Several perspectives of this work are suggested hereafter.

1. Implementation of more advanced constitutive models in the Matlab based finite element code.

2. Introducing the arc-length technique in the Matlab based finite element code to deal with possible convergence problems (snap-back).

3. Introducing the effect of water (partially drained or undrained conditions). 

∆σ i G , σ i G , C ep i G
(3) Assembly of the nodal forces and stiffness matrix of element Afin de proposer une stratégie de modélisation performante, les modèles viscoplastiques sont ensuite intégrées dans un milieu à microstructure et plus spécifiquement dans un modèle second gradient. Des problèmes concernant l'unicité, la bifurcation et la dépendance au maillage sont examinés et une analyse classique de perturbation linéaire est présentée. La combinaison d'un modèle second gradient avec des lois viscoplastiques permet de régulariser le problème et de prendre en compte l'influence de la vitesse de la sollicitation. Afin de démontrer la performance de l'approche dans un cas réel, une fondation superficielle est analysée en mettant l'accent sur sa capacité portante et sa défaillance progressive.
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Title : Viscous and second gradient regularization techniques for the description of the behavior of geomaterials

Keywords : regularization, strain localization, viscoplasticity, second gradient Abstract: Geomaterials may exhibit timedependent behaviors as their microstructures evolve. This process may vary from a few minutes (sand) to several days or even years (soft soils). To describe this time-dependent behavior, viscoplastic models are commonly used. Other than providing an intrinsic description of the viscous behavior, rate-dependent constitutive laws are sometimes presented in the literature as a regularization technique. In this thesis, we study the possibility to use viscoplastic constitutive laws in transient problems to describe the time-dependent response of soft soils and strain localization. Analytical and numerical studies are presented and several conclusions are found based on the Hill's criterion, the Rice's criterion, a numerical perturbation algorithm and classical linear perturbation theory. It turns out that the use of viscoplastic models in transient problems is not able to regularize the problem. Viscoplastic models are then integrated in a higher order continuum, the second gradient model. Problems concerning the uniqueness, bifurcation and mesh dependency are examined and a classical linear perturbation analysis is presented. The combination of a second gradient model with viscoplastic laws makes possible both to regularize the problem and to take into account rate effects. Finally, the bearing capacity and progressive failure of a shallow foundation are analyzed in order to demonstrate the performance of the approach on a real case study.
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 21 Figure 2.1: Illustration of the time dependent behaviour of soils
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 22 Figure 2.2: Settlement versus time of six building in Drammen (figure from [1])
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 23 Figure 2.3: Oedometer CSR tests on Batiscan clay (figure from [2])
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 2425 Figure 2.4: Oedometer creep tests on Batiscan clay (figure from [2])
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 26 Figure 2.6: Stress relaxation undrained triaxial tests of Hong Kong marine deposits (figure from [3])

  Figure 2.7: Rheological models
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 21 Implicit algorithm for the Perzyna model 1 Compute the trial state σ tr n+1 = C∆ε n+1 + σ n , κ tr n+1 = κ n
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 28 Figure 2.8: Image of four shear band types of Shanghai silty clay (figure from [4])
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 21029210 Figure 2.9: DIC results in undrained plane strain tests of Norwegian quick clays (figure from[5])

Figure 2 . 11 :

 211 Figure 2.11: Stereophotogrammetry-based shear strain intensity of loose sand (figure from[7])

  [START_REF] Naatanen | Primary and secondary consolidation of finish clays[END_REF] where ∆ σ satisfy equilibrium and homogeneous traction boundary conditions on that part of the boundary where natural boundary conditions are prescribed, while ∆ ε verifies homogeneous conditions on that part of the boundary where essential boundary conditions are given. In this paper, focus is put on the global level, one of interest in local investigation can refer to[START_REF] Zhao | A multiscale approach for investigating the effect of microstructural instability on global failure in granular materials[END_REF]. When the constitutive operator C can be defined, as for the case of rate independent plasticity or of the consistency viscoplastic model, C = C ep and ∆ σ = C ε1 -C ε2 coincides with C(∆ ε). A local sufficient condition resulting from equation (2.27) is that for each x ∈ V and for each ∆ ε = 0:

2 .

 2 Use equation (2.40) to apply the perturbation 3. Generate the perturbation coefficients α and β 4. Run the calculations to check if the code diverges or converges to a new solution or to the fundamental solution 5. If the code converges to a new solution, restart the calculations to illustrate the new response for the remaining time steps
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Consider a 1 D

 1 bar subjected to an axial displacement at the right end and fixed at the left end, see Fig 3.1. The boundary conditions are:

Figure 3 . 1 :

 31 Figure 3.1: Geometry of the 1D bar

Figure 3 .

 3 Figure 3.2: 1 D piecewise constitutive law

16 )

 16 Numerical examples of the 1D bar problem are shown in Fig 3.3 considering different loading rates. The following parameters are chosen: A 1 = 150 kPa, A 2 = -75 kPa, γ lim = 0.1, η = 50 kPa • s, v 1 = 0.01 m/s, v 2 = 0.005 m/s, v 3 = 0.001 m/s, v 4 = 0 (rate-independent), L = 1 m.
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 33 Figure 3.3: Stress-strain behaviour of the 1 D bar considering different strain velocities

Fig 3 . 4 .

 34 The characteristic size of the domain affected by softening in what follows is termed l.
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 34 Figure 3.4: 1D bar; a hard (white) -soft (grey) localized solution
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 35 Figure 3.5: A hard-soft-hard (a) and a soft-hard-soft solution (b) of equation (3.27)
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 36337338 Figure 3.6: Global response: force-displacement curves for different localized solutions obtained with random initialization

Fig 3 . 9 ,

 39 Fig 3.9, implying the good implementation and calibration of the model.

Figure 3 . 9 :

 39 Figure 3.9: Validation of the viscoplastic MCC model: comparison between experimental and numerical results

  numerically with the implemented viscoplastic MCC model are described hereafter. The aspect ratio of the specimen is taken equal to 2, small enough to avoid the occurence of buckling before the shear band localization, see Fig 3.10.
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 310 Figure 3.10: Loading and boundary conditions of the biaxial test
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 311312 Figure 3.11: Biaxial test: global force-displacement curves for different loading rates
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 313314 Figure 3.13: Biaxial test: homogeneous solution and a bifurcated solution obtained using random initialization
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 315316 Figure 3.15: Biaxial test: global force-displacement curves for different mesh sizes

A

  1D second gradient finite element is first implemented into the FE Matlab code. The 1D element is composed of three nodes, two Gauss integration points and the following variables are: displacement u 1 , microstrain v 11 and for the point in the middle the Lagrange multiplier λ 11 , depicted in Fig 4.1.
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 41 Figure 4.1: Scheme of the 1D second gradient element

Figure 4 . 2 :

 42 Figure 4.2: Mapping from the reference element to the physical element in 1D

Fig 4. 3 .

 3 As before, the 9-node quadrilateral element in physical and reference coordinates is shown inFig 4.4, where the physical element is defined in x 1 -x 2 coordinates and the reference element in ξ-η coordinates.
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 4344 Figure 4.3: Scheme of the 2 D second gradient element

∂ζ 2 4. 3

 23 Validation of the second gradient FE code In order to validate the implementation of the previous second gradient finite elements in the Matlab based finite element code, a one-dimensional problem is studied hereafter and the numerical results are compared with the corresponding analytical solutions obtained by Chambon et al. [8]. The 3-node bar element in Fig 4.1 and the 9-node quadrilateral element in Fig 4.3 are both tested. In particular when the 9-node quadrilateral elements are used, all the degrees of freedom corresponding to the vertical direction (u 2 , v 12 , v 21 , v 22 ) are constrained to be zero and the Poisson's ratio is set to 0 to eliminate 2D effects. Schematic diagrams concerning the geometry and boundary conditions are shown in Fig 4.5. The first gradient and second gradient constitutive laws are given in Fig 4.6, no coupling is assumed.

(a) 3 -

 3 node bar element (b) 9-node quadrilateral element
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 4546 Figure 4.5: Geometry and boundary conditions of the 1D problem using 3-node bar element and 9-node quadrilateral element

Fig 4 . 7

 47 Fig 4.7 presents the analytical and numerical force-displacement curves for three different solutions (homogeneous, hard-soft-hard and soft-hard-soft-hard solutions). Fig 4.8 presents the analytical and numerical strain distributions for three different solutions (homogeneous, hard-soft-hard and soft-hard-soft-hard solutions).
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 47 Figure 4.7: Force-displacement curves: analytical versus numerical results (analytical results from [8])

Figure 4 . 8 :

 48 Figure 4.8: Strain distribution: analytical versus numerical results (analytical results from [8])
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 49 Figure 4.9: Cumulative equivalent plastic strain distribution (numerical results with the 1D second gradient finite element)

Figure 4 . 10 :

 410 Figure 4.10: Cumulative equivalent plastic strain distribution (numerical results with the 2D second gradient finite element)

Figure 4 . 11 :

 411 Figure 4.11: Force versus displacement: numerical results with the 2D second gradient finite element for different meshes

  To further investigate how the relation between the growth rate ω and the wave number k as well as the second gradient parameter D sg , keeping E, A 2 , η, σ max constant, the influence of the wavenumber k and of the second gradient parameter D sg on the growth rate ω is shown in Fig 4.13. Main findings are illustrated as follows:

Figure 4 . 13 : 4 . 5

 41345 Figure 4.13: The influence of the wavenumber k and of the second gradient parameter D sg on the growth rate ω

Figure 4 . 14 :

 414 Figure 4.14: Schematic illustration of initial imperfection inside the 1D bar

Figure 4 .

 4 Figure 4.17: 1D numerical problem: effect of the second gradient parameter (D sg ) on the localization zone for the viscoplastic model in a second gradient continuum

Figure 4 . 18 :

 418 Figure 4.18: 1D numerical problem: force-displacement curves for different velocities

Figure 4 . 2 Figure 4 . 20 :

 42420 Figure 4.19: 1D numerical problem: force-dispacement curves of different localized solutions obtained with random initialization using the viscoplastic model in a second gradient medum

Fig 4 .

 4 Fig 4.21 presents the results of the EVP-MCC model (whose viscosity parameter is a priori validated from experiments) in a classical medium; a pathological mesh dependency appears. The same analysis considering the EVP-MCC model in a second gradient medium shows that the results are mesh independent in terms of number of elements, see Fig 4.22.

(a) 10

 10 ×20 elements (b) 20 × 40 elements (c) 30 × 60 elements
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 421 Figure 4.21: Biaxial test: distribution of accumulated equivalent plastic strain of the EVP-MCC model in a classical medium for different mesh sizes, last loading step

Figure 4 . 22 :

 422 Figure 4.22: Biaxial test: distribution of accumulated equivalent plastic strain of the EVP-MCC model in a second gradient medium for different mesh sizes, last loading step
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 62 Effect of localization and number of imperfectionsThe role of imperfections (weak elements) is examined in the following analysis with 20×40 quadrilateral elements. The localization and number of the imperfections varies, as shown inFig 4.25. 
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 423 Figure 4.23: Three different types of mesh alignments in biaxial test
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 424425 Figure 4.24: Biaxial test: distribution of accumulated equivalent plastic strain of the EVP-MCC model in a second gradient medium for different mesh orientations, last loading step

Figure 4 . 26 :

 426 Figure 4.26: Biaxial test: force-displacement curves for different imperfections
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 427 Figure 4.27: Biaxial test: onset and evolution of the shear band (distribution of accumulated equivalent plastic strain), case A
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 428 Figure 4.28: Biaxial test: onset and evolution of the shear band (distribution of accumulated equivalent plastic strain), case B

Figure 4 . 29 :

 429 Figure 4.29: Biaxial test: onset and evolution of the shear band (distribution of accumulated equivalent plastic strain), case C

Figure 4 . 30 :

 430 Figure 4.30: Biaxial test: force-displacement curves for different second gradient parameters

  (a) D sg = 350 Pa • m 2 (b) D sg = 50 Pa • m 2 (c) D sg = 5 Pa • m 2
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 431432 Figure 4.31: Biaxial test: distribution of accumulated equivalent plastic strain for different second gradient parameters, last loading step

  (a) U = 0.12m (b) U = 0.135m (c) U = 0.16m
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 433 Figure 4.33: Biaxial test: distribution of the accumulated equivalent plastic strain for progressive loading steps
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 3515253 Figure 5.1: General shear failure of shallow foundation

Figure 5 . 4 :

 54 Figure 5.4: Drucker-Prager model with tension cut-off

Figure 5 . 5 :

 55 Figure 5.5: Mobilised hardening modulus h of the DP law

n+1 5 . 4 FE model of shallow foundation 5 . 4 . 1

 54541 Geometry and boundary conditionsOnly half of the geometry is considered for the numerical simulations taking advantage of symmetry, seeFig 5.6. The foundation width is denoted by B. In order to eliminate boundary effects, the lateral dimension is extended to 12.5B in the horizontal direction and to 12.5B in the vertical direction. The interface conditions are considered rough (fixed 110 horizontal displacements at the bottom of the footing). The bottom of the whole domain is fully fixed and the lateral displacements are constrained on the left and the right side. A uniform vertical displacement is applied beneath the footing with constant velocity as a rigid footing is assumed here.
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 56 Figure 5.6: Shallow foundation: geometry and boundary conditions
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 57 Figure 5.7: Shallow foundation: three mesh refinements
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 9 Fig 5.9.
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 5859 Figure 5.8: Shallow foundation: vertical pressure versus displacement for different friction angles

Figure 5 . 10 :Figure 5 . 11 :

 510511 Figure 5.10: Shallow foundation: vertical pressure-vertical displacement curves and four typical stages (A-D) using the viscoplastic law in a second gradient medium
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 512 Figure 5.12: Shallow foundation: displacement vectors at the last loading step (U = 0.1 m)

Figure 5 . 13 :Figure 5 . 14 :Figure 5 . 16 :

 513514516 Figure 5.13: Shallow foundation: vertical pressure-displacement of shallow foundation for different second gradient parameters D sg and mesh sizes

Fig 5 .

 5 Fig 5.17, different loading velocities lead to different peak pressures and different slopes of post-peak curve. Increasing the the imposed loading velocity would increase the bearing capacity as well as deduce the steepness of the post-peak curve.
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 517518 Figure 5.17: Global responses: vertical pressure-displacement of shallow foundation for different imposed velocities
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 46112 Experimental and numerical studies to identify the internal length of the second gradient model. ∆σ i G Stress increment of the i G th Gauss point σ i G Total stress of the i G th Gauss point C ep i G Elastoplastic tangent moduli of the i G th Gauss point B Strain-displacement matrix of the i G th Gauss point 126 General algorithm of the FE code 1 Initialize the variables and matrices K t+1) = F int,(t) , F (0) eqd,(t+1) = F eqd,(t) ∆U (0) g,(t+1) = O 2.2 Loop inside one time (k 0) R (k) t+1 = F ext,(t+1) -F Loop on the element (1) Calculate strain from nodal displacements ∆U e , ∆ε i G = B i G ∆U e Loop on the constitutive law

2. 2 . 2

 22 Assembly of the global nodal forces and stiffness matrix K g,(t+1) = ∆U (k+1) g,(t+1) + U g,(t) set (•) (t) ← (•) (k+1) (t+1) and go to 2 Titre : Visqueux et second gradient techniques de régularisation pour la description du comportement de géomatériaux Mots clés : régularisation, localisation des déformations, viscoplasticité, second gradient Résumé : Les géomatériaux présentent des comportements plus ou moins dépendants du temps, car leur microstructure évolue. Ce processus peut varier entre quelques minutes (sable) et plusieurs jours voire plusieurs années (sols mous). Pour décrire un comportement dépendant du temps, des modèles viscoplastiques, dépendant de la vitesse, sont couramment utilisés. Autre qu'une description intrinsèque du comportement visqueux, la dépendance à la vitesse de la loi constitutive est également présentée quelques fois dans la littérature comme une technique de régularisation. On étudie dans cette thèse la possibilité d'utiliser une loi de comportement viscoplastique pour décrire le comportement transitoire des sols mous dépendant du temps et la localisation des déformationssont trouvées sur la base du critère de Hill, du critère de Rice, d'un algorithme de perturbation numérique et de la théorie classique de perturbation linéaire. Il s'avère que l'utilisation d'un modèle viscoplastique pour des chargements transitoires ne permet pas de régulariser le problème.
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	Test label σ h	ε a	εa	∆u/σ h
	CUC1	200 7.3 0.001	0.015
	CUC5	400 17.1 0.025	0.017
	CUC8	200 25.0 0.41	0.054
	CUE9	400 9.5 0.0025 0.123
	CUE5	200 10.7 0.025	0.097
	CUE8	400 11.1 0.25	0.080

1: Parameters measured at the beginning of the relaxation tests of Hong Kong marine deposits (data from [3]) Note: CUC and CUE correspond to compression and extension tests respectively.

Table 2 .

 2 2: The different components of the rheological models

	/	Linear spring	Viscous dashpot	Plastic slider
	Component			

  Some algorithmic aspects of the numerical implementation of the elasto-viscoplastic models are detailed hereafter. For each step n and at each Gauss point, the stress state is updated at time t n+1 from the converged values of time t n . The difference between the updated and the converged stress state is represented by ∆, while δ is used to indicate a (local) iteration

	from t (k)

  -Lions model is given Box 2.2.

	Box 2.2: Implicit algorithm for the Duvaut-Lions model
	1 Compute the trial state	
	σ tr n+1 = C∆ε n+1 + σ n , κ tr n+1 = κ n
	If f σ tr n+1 , κ tr n+1 ≤ 0	
	Elastic behaviour	
	else:	
	Plastic behaviour	
	(1) Compute the rate-independent solution
	σ ∞ , κ ∞	
	(2) Update the viscoplastic stress and hardening variable
	σ n+1 =	σn+C∆ε+ ∆t η σn+1 1+ ∆t η
	κ n+1 =	κn+ ∆t η κn+1 1+ ∆t η
	Set n ← n + 1 and go to 1.
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	3: Notations for macro field and micro field	
	Macro field		Micro field	
	Field	Notation	Field	Notation
	Macro displacement	u i	/	/
	Macro gradient			

Table 2 . 4
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	TU24L6		
	TU27L3		
	TU24L1		
	QU34L16 QU54L16 QU32L4		
	QU34L4		
	TU24L12 TU36L12		
	TU24L4		
	Name	Element	Interpolation

: Summary of element type for second gradient model
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	1: Calibrated parameters of the viscoplastic MCC model
	Category	Parameter	Value
		Recompression index κ *	0.06
	Elastic parameters		
		Poisson's ratio ν	0.3
		Compression index λ *	0.4
	Plastic parameters		
		Slope of critical state line M	1.2
		Viscosity parameter η	3 × 10 9 Pa•s
	Viscous parameter		
	State variables	Initial preconsolidation pressure p c	550 kPa
		Initial void ratio e 0	2

Table 3 .

 3 

		2: Viscosity measured experimentally for soft soils
	No	Water content	Fluidity index Viscosity/Pa•s Reference
	1	57% ∼ 63%	/	7×10 4 ∼ 6×10 5	[108]
	2 35.84% ∼ 45.51% 0.34 ∼ 0.91	200 ∼ 516	[110]
	3	35.8% ∼ 47.4%	0		

  • • • v 11 v 12 v 21 v 22 λ 11 λ 12 λ 21 λ 22

					11(ξ=0,η=0) , λ 12(ξ=0,η=0) , λ 21(ξ=0,η=0) , λ 22(ξ=0,η=0) ] T
					(4.21)
	The application of the virtual work principle requires the following variables with respect to
	physical coordinate x 1 , x 2 .		
					T
	dU (x 1 ,x 2 ) = ∂u 1 ∂x 1	∂u 1 ∂x 2	∂u 2 ∂x 1	∂u 2 ∂x 2	∂v 11 ∂x 1
					(4.22)
	With respect to the reference coordinate ξ and η, the variables considered are
	dU (ξ,η) = ∂u 1 ∂ξ	∂u 1 ∂η	∂u 2 ∂ξ	∂u 2 ∂η	∂v 11 ∂ξ

• • • v 11 v 12 v 21 v 22 λ 11 λ 12 λ 21 λ 22 T (4.23)

Table 4 .

 4 1: Material parameters used for the validation of second gradient FE code

	Symbol Value	Unit
	A 1	150	kPa
	A 2	-75	kPa
	D sg	0.8	Pa • m 2
	γ lim	0.01	

Table 5 .

 5 

		3: Comparison between analytical and numerical bearing capacities
	φ( • ) Analytical q Ana u	(kPa) Numerical q N um u	(kPa) Relative error δ(%)
	0	114.000	116.413	2.12
	10	192.200	187.140	-2.63
	15	257.200	249.874	-2.85

U = 0.1m means the plot is taken when the applied vertical displacement is equal to 0.1 m
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total number of degrees of freedom ( for displacement u i and strain v ij ). The number of m Lagrange multiplier is denoted by Lm. Hence, TU24l4 is a triangular element with 24 degrees of freedom for u i and v ij and 4 Lagrange multipliers.

As for interpolation function, P2 is a quadratic form, P1 is a linear form and P0 is a constant form.

Concluding remarks

This chapter briefly reviews time-dependent behavior and strain localization of geomaterials observed both in laboratory and in field. Then the constitutive models to take into consideration the viscous effect are introduced and the general elasto-viscoplastic model is adopted in the application of boundary value problems after comparison. Regularization techniques to remedy the inefficiency of classical medium are also discussed. Moreover, few remarks are given on the theory of uniqueness and bifurcation from literature results.

to the loading vertical axis, i.e. the shear band orientation with the horizontal direction. The determinant of the acoustic tensor det(Q) is calculated using equation (2.35) and plotted here as a normalized value with respect to a fixed value (the determinant at the first elastic step) for simplicity. It can be seen that for the elastic step, the determinant of the acoustic tensor is always positive. As the loading increases up to the first plastic step, two extrema appear but the minimum value of the deteminant remains positive. Later on, a bifurcation point with two possible bifurcated directions occurs, since a double real solution appears.

At this point, that coincides with the peak of the global curve, the Hill's criterion is also violated as the flow rule is associated, see also section 3.2.2 and [START_REF] Bigoni | Uniqueness and localization-i. associative and nonassociative elastoplasticity[END_REF]. From higher levels of loading, four possible bifurcated directions occur till the last step. A similar evolution is found for rate independent materials [START_REF] Collin | Numerical post failure methods in multiphysical problems[END_REF] and for multiphysics couplings [START_REF] Collin | Numerical modelling of multiphysics couplings and strain localization[END_REF].

Another method to illustrate different bifurcated solutions is to apply the algorithm for the random initialisation, see section 2.4.2. 

Mesh dependency

The purpose is this section is to illustrate mesh dependency problems when using a viscoplastic constitutive law. In the following analysis weak elements are introduced to trigger localization in three different meshes: a coarse mesh of 10 × 20 elements, a medium mesh like parameter of the constitutive law calibrated from experimental test results is not of the same order of magnitude as the material viscosity measured experimentally.

3. In order to simulate these phenomena in a realistic way, an internal length parameter should be introduced in the rate-dependent model, either using for example non local approaches or higher order media. This will be the subject of the next chapter. In the viscoplastic second gradient model, the localized zone depends on the second gra- Case study: a shallow foundation

Introduction

The purpose of this chapter is to evaluate the behaviour of the second gradient model with a viscoplastic law for a boundary value problem. A shallow foundation is chosen with a brief review of its typical failure modes, the constitutive laws and the tension cut-off treatment adopted are also introduced. The model is then validated comparing the numerical obtained bearing capacity with analytical results. The use of a viscoplastic constitutive law in a second gradient medium is finally adopted to evaluate the failure modes and the postpeak progressive failure.

Bearing capacity and failure modes of a shallow foundation

The bearing capacity of a shallow foundation resting on homogeneous and dry soil is usually evaluated using the well-known equation proposed by Terzaghi [START_REF] Terzaghi | Theoretical soil mechanics[END_REF] 

in which q u is the bearing capacity, D f the foundation depth, c the soil cohesion, B the foundation width, γ the soil effective unit weight and N q , N c , N γ (dimensionless quantities)

the bearing capacity factors dependent on the friction angle. Further studies were also conducted to consider other factors, i.e. the foundation shape, the roughness condition at the of equation ( 5.1) are determined as follows:

where K py denotes passive pressure coefficient. As seen from equation (5.19), the bearing capacity factors are function of the friction angle. Three friction angles are selected hereafter and the corresponding bearing factors [START_REF] Das | Shallow foundations: bearing capacity and settlement[END_REF] are listed in Table 5.1. The soil properties are given in Table 5.2 and maximum tensile strength is set 10kPa. The numerical bearing capacity is calculated from the following formula: localizes near the edge of the footing in early stages. With increasing loading, the localized zone enlarges downwards until a wedge-shaped region forms and the peak pressure is attained simultaneously. Inside this region, the soil remains elastic. After the peak, the shear band spreads laterally. However, the accumulated equivalent plastic strain is much lower than that in the previously formed zones.

Appendix Matlab code

The FE code was originally developed by Bonnet et al.[121]. Nathan Benkemoun applied for classical 2D non linear problems and Bitar [START_REF] Bitar | Modélisation de la rupture dans les structures en béton armé par des éléments finis poutres généralisées et multifibres[END_REF] added beam elements. In this thesis, various soil constitutive laws (MCC, EVP-MCC and DP) were introduced, as well as the 1D and 2D second gradient finite elements. The link with the GMSH [START_REF] Geuzaine | Gmsh: A 3-d finite element mesh generator with built-in pre-and post-processing facilities[END_REF] pre and post processing code has been established, as well as the implementation of some specific numerical tools (random initialization, Rice criterion, acoustic tensor . . . )

General algorithm of the FE code

The general algorithm of the finite element code is summarized in Box 6.1.

In order to simplify some expressions, the following conventions are used.

(1) Global level