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Résumé en français

Les réseaux de biopolymères biologiques sont des structures qui apparais-

sent à différentes échelles. En effet, on rencontre ces derniers du squelette

des cellules au collagène de la peau en passant par les caillots sanguins. À

chacune de ces échelles les réseaux de fibres jouent un rôle mécanique im-

portant. Dans les cellules elles sont responsables des processus de la motilité

cellulaire, qui permettent à la cellule de se dplacer et de se déformer. Dans

la peau ces réseaux permettent une élasticité peu familière des cristaux or-

donnés. Dans les caillots sanguins ils permettent la cicatrisation des plaies.

Le fait de retrouver les réseaux des fibres dans de si nombreuses structures

biologiques pose la question du lien entre les propriétés microscopiques

des fibres et l’élasticité de leurs assemblages. Cela motive une étude multi-

échelles, qui déduit le comportement des assemblages mésoscopiques de

fibres de la connaissance des leur structure microscopique. Nos filaments

d’intérêt -les polymères d’actine- sont bien caractérisés microscopiquement.

On sait mesurer leur longueur de persistance, l’équilibre dynamique de leur

polymérisation est bien compris et la structure protéique des monomères

d’actine est résolue. Ces polymères peuvent interagir par le biais de protéines

réticulantes, propres à rassemblers plusieurs filaments en fagots parallèles ou

a les ancrer à un angle fini. C’est pourquoi le processus d’auto-assemblage de

l’actine en présence d’un important excès de protéines réticulantes mène à la

formation d’épais fagots (d’environ 30 filaments). Ces fagots se retrouvent in-

terconnectés au sein d’un réseau désordonné. Les filaments qui forment ces

fagots stockent une importante énergie de courbure, comparable à l’énergie

d’attachement des protéines réticulantes. Cette configuration est cependant

stabilisée par la gêne stérique qui existe entre les filaments. Elle exhibe de

fortes contraintes résiduelles, ces contraintes résiduelles ont peu été étudiées

dans la littérature scientifique. Cette thèse étudie leur effet dans des réseaux

bidimensionnels d’un point de vue théorique.

Chapitre 1 : Modèle

Pour aborder ce problème, le Chapitre 1 présente un modèle pour simuler

la statique des réseaux de fibres. Ces réseaux sont modélisées par un réseau

de fibres subdivisées en N ressorts hookéens dont l’énergie s’écrit, dans sa
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forme adimensionnelle :

Us = µN

2
(`− 1

N
)2.

Ces ressorts sont reliés entre eux par des jonctions rigides en flexion, leur

énergie s’écrit:

Ub = 2N sin2(
φ

2
).

Nous proposons une forme de l’énergie potentielle pour tenir compte de

contraintes résiduelles dans le réseau. Chaque nœud connecté à trois autres

sera appelé une fourche. Sur chaque fourche on choisit une direction de

fermeture. La fourche est alors pourvue d’une rigidité angulaire sur chacun

des trois angles qu’elle divise :

Ur = 2g
3∑

i=1
sin2

(
δθ−δθ0

2

)
,

Figure 1: Un fagot d’actine est modélisé par
un quatre ressorts en série reliés par des li-
aisons rigides.

Figure 2: Les contraintes résiduelles sur une
fourche sont paramétrées par rapport à la
configuration au repos d’un réseau hexago-
nal.

Les angles étant mesurés par rapport à une configuration hexagonale

dans laquelle il n’y a pas de frustration. Cette forme permet de décrire les

fagots frustrés mentionnés auparavant, mais ne s’y limite pas car elle permet

d’ajuster l’angle de la connexion entre les fagots à n’importe quelle valeur

finie : cela permet d’étudier la frustration de façon plus générale, δθ0 étant le

paramètre de contrôle de cette frustration. δθ0 = 0 revient à un système non

frustré, tandis que δθ0 6= 0 revient à un système frustré.

Après avoir présenté le modèle, la chapitre s’attache à en ajuster les

paramètres dans un soucis de représenter fidèlement des polymères semi-

flexibles, d’efficacité numérique et de minimaliste théorique.

Nous formulons des hypothèses pour délimiter le périmètre de l’étude et

nous contrôlons leur pertinence.

• En particulier nous discutons la limite de polymères inextensibles, sou-

ples en courbure, conformément à des éléments de littérature sur les

polymères semi-flexibles.

• Nous contrôlons aussi notre approximation de la limite continue pour les

polymères

• Nous testons l’hypothèse de fourches infiniment rigides.

Cela nous mène à choisir le jeu de paramètres suivants :

• N = 4 (Limite "continue" d’un filament discret)

• µ= 1000 (hypothèse d’inextensivité)

• g = 1000 (hypothèse de fourches infiniment rigides)

• Laisser δθ0 varier entre −π
3 et 2π

3 , ce qui correspond à la limite physique

d’autointersection des filaments.
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Enfin, nous nous interrogeons sur la répartition des orientation des fourches.

Pour cela, nous rassemblons par classe de symétrie les différents motifs

qu’elles peuvent former au sein d’un réseau hexagonal. Nous concluons que

quatre classes de symétrie englobent les répartitions possibles des orien-

tations des contraintes résiduelles. Nous n’étudierons donc la mécanique

que d’un réprésentant de chacune d’entre elles. Ces représentants, qui con-

stitueront les motifs de référence, sont étiquetés (α), (β), (γ) et (δ). Cette

étude préalable permet l’étude systématique des effets de la géométrie sur la

mécanique des réseaux de fibres dans les chapitres ultérieurs.

Chapitre 2 : Méthodes numériques

Figure 3: Précision relative des deux méth-
odes de dérivation numérique, sur une fonc-
tion test, échelle log-log.

Dans le Chapitre 2 nous introduisons les méthodes numériques utilisées

pour calculer les contraintes et les modules élastiques dans les réseaux de

taille finie. Plus précisément, nous discutons les limitations de la méthode

classique de différences finies. Nous concluons que cette méthode manque

de précision, qu’elle est chronophage, et qu’elle ne permet pas de rétro-

contrôle sur la précision des résultats. Nous présentons alors une méthode

originale de différentiation automatique, qui utilise des nombre hyperduaux

(une généralisation de l’algèbre complexe). Cette méthode est à l’épreuve des

erreurs de troncature et ne requiert pas l’ajustement manuel du pas de dif-

férentiation. À titre d’exemple, la figure 3 illustre les précisions numériques

comparées entre les deux méthodes.

Dans la suite du chapitre, nous présentons la structure du code de calcul

utilisé pour permettre le réemploi futur de ses éléments, notamment à l’aide

d’un manuel Doxygen™.

Chapitre 3 : Réponse linéaire

Figure 4: En haut, module de cisaillement
en fonction du paramètre de contrainte
résiduelle. En bas Module de compression
isotrope en fonction du paramètre de con-
traite résiduelle. Cas de la géométrie (β)

Dans le Chapitre 3 nous testons la réponse linéaire des réseaux en présence

de contraintes résiduelles. Cette étude se limite aux motifs de référence du

premier chapitre, car nous prérelaxons les bords du système avant de cal-

culer ses modules élastiques, or cette opération devient très chronophage

lorsque le système devient trop grand. Nous découvrons que les contraintes

résiduelles peuvent affecter la réponse linéaire des réseaux élastiques aussi

bien en cisaillement qu’en compression, comme le montre la figure 4. Nous

discutons enfin notre choix de ne nous intéresser qu’aux modules de cisaille-

ment et de compression isotrope en analysant la perte de symétrie des motifs

de référence à mesure que |δθ0| évolue.

Chapitre 4 : Réponse non linéaire

Dans le chapitre 4 nous testons la réponse non linéaire des réseaux pré-

contraints à des déformation appliquées extérieurement. Nous répétons



4 E F F E C T O F R E S I D UA L S T R E S S E S O N T H E E L A S T I C I T Y O F F I B E R N E T W O R K S

cette procédure en cisaillement et en compression isotrope, pour les mo-

tifs de référence et pour de petits réseaux dont les fourches sont orientées

aléatoirement.

En cisaillement, nous rapportons qu’en présence de contraintes résidu-

elles, la réponse élastuque se compose d’un régime linéaire de module

élastique constant et d’un régime non linéaire où le module élastique croît

linéairement avec la contrainte aux bords. La déformation critique survient

plus tôt à mesure que |δθ0| croît, alors que la contrainte critique augmente.

En compression, l’étude est compliquée par la présence d’instabilités mé-

caniques. Pour cette rsison, le chapitre décrit les réseaux à la fois numérique-

ment et analytiquement. Numeriquement, nous avons essayé de compresser

le network aussi progressivement qui possible afin de poursuivre une courbe

pression-strain continue en dépit des instabilités. Nous avons effecturé ceci

pour les quatre motifs de référence avec plus ou moins de succès. Néan-

moins, cette étude a été instructive car elle nous a permis de conjecturer

que la géométrie locale des fourche induisait tantôt une stabilisation du

réseau, tantôt un effondrement local, ce qui nous a été confirmé par l’étude

de réseaux aléatoires de taille modérée. Nous avons ensuite étudié anali-

tiquement l’effondrement du motif (α) sur lequel nous avons pu réaliser un

diagramme de stabilité (fig.5) pour confirmer nos observations numériques

qui, seules, auraient été peu probantes.

Figure 5: Diagramme de stabilité de la
géométrie (α) en fonction du paramètre de
contrainte résiduelle.

Conclusion

Cette thèse apporte quatre contributions principales.

• La première d’entre elles est une nouvelle procédure pour calculer des

quantités élastiques différentielles autour d’une configuration donnée du

réseau. Elle peut aussi être utilisée pour calculer précisément les forces et

la matrice des raideurs locales d’un système de particules sans se perdre

dans un calcul de dérivées analytiques.

• La seconde contribution est que les contraintes résiduelles peuvent aussi

bien rigidifier que ramollir la réponse d’un réseau autour de sa configura-

tion au repos.

• La troisième est que les contraintes résiduelles peuvent ajuster le seuil

d’apparition des non linéarités dans la réponse des réseaux de fibres à une

déformation non linéaire.

• La quatrième est que les contraintes résiduelles induisent des effondrements

locaux des réseaux lors d’une compression isotrope. Nous avons prouvé

analytiquement que ces effondrements surviennent pour certaines géométries

des précontraintes. Cependant nous n’avons pas caractérisé totalement le

devenir de ces effondrements en présence d’interactions de contact entre

filaments car cela sort du cadre de nos modèles.



Introduction

Scientists ask questions to the surrounding world through observation, and

they end up with models to explain it. In physics, we can develop models

with two goals in mind : being quantitatively accurate to make predictions, or

being qualitatively accurate to understand phenomena beyond the reach of

experiments. The first way of doing is fruitful to design systems of increasing

performance in engineering for instance. The second is fruitful when doing to

identify important features of a system in research for instance. Sometimes,

a family of models share similarities, which allow to find an unifying rule

governing the family of phenomena they describe. During the last century the

advent of quantum physics and general relativity provided physics with very

universal fundaments. These theories pushed the limits of models beyond

the boarders of experiments, to such an extent that the discovery of new

phenomena nowadays requires international collaborations and result in

global mediatisation, way beyond academic boarders as was the case for

the discovery of the Higgs bosons, for the release of the all-sky map of the

Cosmological Microwave Background or for the observation of gravitational

waves. On the other hand, biology experiments remain human-sized and

new phenomena get discovered every day. Nonetheless, biology doesn’t lack

of foundational principles : in the X V I I th century, cells were discovered,

in the late 60’s DNA was first observed, and I think that the microscopies

of today are good candidates for revolutions to come thanks to the fruitful

collaboration between biologists and physicists.

Indeed, the new microscopies push away the boundaries of the observable

living world : confocal microscopy allows 3D imaging of microscopic samples,

optical tweezers allows to manipulate micron-sized dielectric objects, auto-

matic tracking of diffusing particles allows for the statistical characterisation

of the motion of biological objects, atomic force microscopy allows the obser-

vation of nanometric objects, magnetic resonance imaging enables in vivo

observation of organs etc... All these new methods contribute to improve the

spatiotemporal resolution of experiments. This improved precision allows to

elaborate quantitative mathematical models in biology. These models export

the dramatic predictive power of physics to biology. This thesis is written in

a period when the main questions in biology lie on the edges of resolution

of microscopies. The collaboration between physicists and biologists is thus
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required to elaborate models across scales, which propose microsopic mech-

anisms to explain mesoscopic behaviours. I believe that these models are a

valuable approach to understand the objects of soft matter.

This introduction chapter goes from general aspects in cell biology to the

very topic of the thesis. It is articulated around three sections that approach

the topic of the thesis from macroscopic scales to microscopic scales. The

section 1 gives motivations to study cells by going from macroscopic organ-

isms to cells, to fiber networks. This allows to highlight the interplay between

developments in physics and observations in biology across centuries. The

section 2 provides informations about the fiber networks that we study, in-

cluding orders of magnitude for the actin networks we have in mind, these

orders of magnitude are the foundational basis for the approximations of the

thesis. finally, section 3 formulates a manageable question for the study of

residual stress, and annouces the structure of the thesis as a way to answer it.

1 From a whole organism to fiber networks

Figure 6: Historic observation of cell walls
plants by Robert Hooke. From Micrographia,
1665

According to the encyclopedy britannica, biology is the science that studies

living organisms and their vital processes. It provides tools of thought to ad-

dress questions about living beings. According to us, two majors discoveries

in biology provided unifying principles in biology : the discovery of cells and

the discoery of DNA. In this paragraph, we underline the interplay between

these discoveries and developments in physics.

Cells have been observed for the very first time by Robert Hooke in 16651. 1 R. Hooke, J. Allestry, and J. Martyn. Mi-
crographia, or, Some physiological descrip-
tions of minute bodies made by magnify-
ing glasses : with observations and inquiries
thereupon. London :Printed by Jo. Martyn
and Ja. Allestry, printers to the Royal Society
..., 1665

Actually, with the optical resolution of his microscope at this time, Hooke

merely observed cellular walls in plant samples. However, he gave their name

to "cells" and introduced the new concept of minimal block required for life

to exist. This was a major step towards universal principles in biology and

induced a frenesy of observations of plants under a microscope. The idea that

all plants were made of cells became accepted as observations confirmed it

over and over.

With the early microscopes in use at that period. Two limitations were

to overcome to access the micron-scales : diffraction of light through glass,

and spherical aberrations2. The first issue was solved by John Dollond, upon

2 J.-F. Bruch, D. Sizaret, A. Brault, F. Tabareau-
Delalande, and F. Maître. Étude historique
du microscope optique : Des premières
lentilles du XVIe siècle aux techniques de
super-résolution et de lecture automatisée.
Revue Francophone des Laboratoires, Jan.
2015

Hall’s idea, in 17573. The second one was solved with the commercialisation 3 J. Dollond and J. Short. Xcviii. an account of
some experiments concerning the different
refrangibility of light. by mr. john dollond.
with a letter from james short, m. a. f. r. s.
acad. reg. suec. soc. Philosophical Transac-
tions of the Royal Society of London, 1757

of the first apochromatic triplet of lenses in 1886, thanks to the parternship

of Abbe, Zeiss and Schott .

https://www.zeiss.fr/microscopie/a-
propos-de-nous/histoire.html

For this reason it took almost two centuries before the advent of the cel-

lular theory in 1858 by Rudolf Virchow in ref 4. This theory presents cells

4 R. Virchow. Die cellularpathologie in ihrer
begründung auf physiologische und pathol-
ogische gewebelehre. Berlin, A. Hirschwald,
1858, 1858. Théorie cellulaire

as fundamental units of life, be it animal of vegetal, it obeys the following

principles :

• All living organisms are composed of one or more cells.

• The cell is the basic unit of structure and organisation in organisms.
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• Cells arise from pre-existing cells.

Figure 7: Table of the technological break-
throughs that pushed away the limits of ob-
servable world. From Bruch at al., 2015Since the cell theory, the study of cells for themselves became a field of

biology in itself called cell biology. This field deciphers the structure and

function of cells, this thesis contributes to this field as it studies the cellular

skeleton from a mechanical viewpoint. The goal of this section is to present

a few of the cellular functions, called cellular motility. This will enable to

understand the importance of studying fiber networks which play a major

role in motility.

We do this in two parts : the first part presents the motility mechanisms

in cells. The second part presents cystoskeleton and describes the central it

plays in these mechanisms.

1.1 Cell Motility

Figure 8: The Axolotl has a faculty to recover
from cut members : a dramatic example of
cell differentiation in adult organisms. Pic-
ture from Regrow Like An Axolotl, Science
Beverly A. Purnell, 2017

Organisms are assemblies of cells, which result from the successive divisions

of an original cell, the simplest are unicellular like bacterias, the biggest

known on earth weights around 6000 tons, it is a forest called Pando, made of

an unique tree that lives in Utah. The mass of a cell being around 10−12 kg,

this single organism contains 1015 cells.

The DNA, which codes for the synthesis of proteins into genes, is con-

served through the stages of divisions is henceforth characteristic of the

individual. DNA may be expressed in a different phenotype in the different
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cells of an organism, depending of the surrounding of these cells. For exam-

ple a stem cell, laid on top of substrates of different stiffnesses, mimicking

different organs, may specialise into different phenotypic types5. This dif- 5 A. J. Engler, S. Sen, H. L. Sweeney, and D. E.
Discher. Matrix Elasticity Directs Stem Cell
Lineage Specification. Cell, Aug. 2006

ferentation is not a reversible process in most organisms, nonetheless certain

organisms like the axolotl figure 8 have cells able to differentiate into eye or

brain cells after an injury even at adult age as reported in ref 6. 6 B. A. Purnell. Regrow like an axolotl. Sci-
ence, 2017These differences in gene expression allow cells to fill a wide variety of

biological functions : they can form tissues, bones, immune cells, blood

cells, spermatozoa etc... These many specialisations lead to many biological

processes, some of them being common to all phenotypic types of cells, some

specific to some !

Cells are able to regulate their shape, to divide or to exert stress on their

surrounding. These processes involve the cytoskeleton, an architecture of

filaments such as actin that we will describe section1.2. Before, we present a

non exhaustive list of mechanical processes in which cells participate. This

presentation motivates the study of actin networks that we do in throughout

the thesis.

Cell division

All eukaryotic cells divide, and the single division mechanism that pre-

serves DNA is called mitosis. On the last stages of the division, cell undergo

the cytokinesis (from Greek κύτος -kytos, a hollow- and Latin derivative cyto

-cellular- (Wikipedia)). During this process, a contractile ring made of actin

polymers and myosin molecular motors is formed in the middle of the cell

and its contraction leads to a split 7, as shown on figure 9, adapted from ref 8.

7 G. T. Risa, F. Hurtig, S. Bray, A. E. Hafner,
L. Harker-Kirschneck, P. Faull, C. Davis,
D. Papatziamou, D. R. Mutavchiev, C. Fan,
L. Meneguello, A. A. Pulschen, G. Dey, S. Cul-
ley, M. Kilkenny, L. Pellegrini, R. A. M.
de Bruin, R. Henriques, A. P. Snijders, A. Šarić,
A.-C. Lindås, N. Robinson, and B. Baum.
Proteasome-mediated protein degradation
resets the cell division cycle and triggers
ESCRT-III-mediated cytokinesis in an ar-
chaeon. preprint, Cell Biology, Sept. 2019

8 F. Spira, S. Cuylen-Haering, S. Mehta,
M. Samwer, A. Reversat, A. Verma, R. Olden-
bourg, M. Sixt, and D. W. Gerlich. Cytokine-
sis in vertebrate cells initiates by contraction
of an equatorial actomyosin network com-
posed of randomly oriented filaments. eLife,
Nov. 2017

Figure 9: Total internal reflection fluores-
cence (TIRF) microscopy of hTERT-RPE-
1 under confinement stably expressing
LifeAct-mCherry. Adapted from Spira at al.,
2017.

Amoeboid motion, pseudopodium

Some cell types are able to move, this is the case of unicellular organ-

isms like amoeboid cells. These cells deploy locomotory appendages, called

pseudopodia, to propel themselves to their target, however the precise mech-

anism is not fully elucidated as two theories are plausible in 9 (actin driven

9 C. Ballestrem, B. Wehrle-Haller, B. Hinz,
and B. A. Imhof. Actin-dependent Lamellipo-
dia Formation and Microtubule-dependent
Tail Retraction Control-directed Cell Migra-
tion. Molecular Biology of the Cell, Sept. 2000

motility, involving parallel bundless of actin) and 10 (bleb driven motility

10 O. T. Fackler and R. Grosse. Cell motility
through plasma membrane blebbing. The
Journal of Cell Biology, June 2008

involving the formation of a membrane bleb, without reorganisation in the

actin cortex). This type of motion enables these cells to find very efficiently
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nutrients.

Figure 10: Chaos carolinense,
an amoeboid having lobopodia
(a type of pseudopodia). From
https://en.wikipedia.org/wiki/Pseudopodia

Phagocytosis of micron-size targets

Phagocytes are able to wrap around micron-size targets and perform

endocytosis. These dramatic deformation of cells are possible only through

active deformation of their membrane. It was observed recently in ref 11. 11 M. V. Baranov, R. A. Olea, and G. van den
Bogaart. Chasing Uptake: Super-Resolution
Microscopy in Endocytosis and Phagocyto-
sis. Trends in Cell Biology, Sept. 2019

Keratocyte’s motion Keratocytes are able to propel them self over a surface

through a strong organisation of actin inside cells into a lamellipodium. In

this structure, actin is organised on the front of the cell, and disorganised

back the cell. A moving keratocyte is represented figure 11 from reference 12. 12 M. F. Fournier, R. Sauser, D. Ambrosi, J.-J.
Meister, and A. B. Verkhovsky. Force trans-
mission in migrating cells. The Journal of
Cell Biology, 188, Jan. 2010
Figure 11: Simultaneous observation of actin
motion and substrate deformation in migrat-
ing keratocytes. The image of phalloidin-
labeled actin (cyan) is superimposed on the
image of the fluorescent beads (red) spread
on the substrate surface. Scale bar 10 μm.
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1.2 Cell architecture : Major role of cytoskeleton in cells

All the mechanisms mentionned above require adaptations of the cytoskele-

ton. This part presents cytoskeleton and the filaments it is built of. These

filaments are microtubules, intermediate filaments and filamentous actin

(F-actin). All these are polymers, nonetheless they are of a very different me-

chanical nature as microtubules are really stiff inextensible polymers, actin

filaments are semiflexible at cellular scale inextensible, and intermediate

filaments can bear hundred percents of extensile strain 13. 13 H. Herrmann, H. Bär, L. Kreplak, S. V.
Strelkov, and U. Aebi. Intermediate fila-
ments: from cell architecture to nanome-
chanics. Nature Reviews Molecular Cell Biol-
ogy, July 2007

These filaments carry out several functions in cells. First of all micro-

tubules are polar filaments that help transport molecular cargos from mem-

brane to nucleus 14. They form tracks for chromosomes during cell division
14 M. A. Welte. Bidirectional Transport along
Microtubules. Current Biology, July 2004

in the mitotic spindle and build up flagellas in spermatozoa, to cilia in the

respiratory epithelium. Secondly actin filaments are polar filaments that

operate in conjonction with cross-linking proteins : they form disordered

meshes in the actin cortex, parallel bundles in the lamellipodium of kerato-

cytes, they lead to a cytokinetic ring during mytosis. For these reasons the

actin cortex is a regulator of the cells surface properties, it can change cells

shape, stiffness, induce division of them and propel them. Finally, intermedi-

ate filaments doesn’t participate in motility processes, they play a structural

role to reinforce cells when they form tissues.

We observe a fluorescence cliché of the cytoskeleton in figure 13, the inner

part of cells is spanned by the cytoskeleton, ranging from cell membrane to

nucleus membrane. From nucleus to cell membrane we see the microtubules,

disposed radially. On the periphery of cells we can see actin cortex, a disor-

dered network containing actin filaments, connected to the cell membrane,

we do not see intermediate filaments.

From now on, we will leave appart leave appart intermediate filaments

and microtubules and focus our interest into actin structures. Actin cortex

displays structures made of actin with very different properties : they range

from visco-elastic structures to stiff bundles, passing through soft elastic

meshes.

These structures are diverse by the level of ordering of their fibers, by the

average connectivity of the meshes of their members, by the cross-linkers into

play as depicted in figure 12, from ref 15. Connectivity is known to affect the 15 L. Blanchoin, R. Boujemaa-Paterski,
C. Sykes, and J. Plastino. Actin Dynamics,
Architecture, and Mechanics in Cell Motility.
Physiological Reviews, Jan. 2014

stiffness of a network, cross-linkers can induce the storage of residual stresses

as we will see in next section. The physics models that study fiber networks

require the knowledge of the underlying microscopic constituent. For this

reason, the next section describes the experiments that were performed to

characterise actin polymers at a microscopic scale, it will also provide the

orders of magnitude that will guide us in building the model of chapter 1 for

the study of residual stress in use throughout this thesis.
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Figure 12: Cytoskeleton make use of fiber
networks for motility. From Blanchoin et al.
2014
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Figure 13: Cytoskeleton of a cell, this ar-
chitecture is made of actin cortex on the
outer layer (in red), microtubules that span
radially (in green), and intermediate fil-
aments that we don’t see here. From
http://rsb.info.nih.gov/ij/images/.

2 Fiber networks store residual stresses

In the previous section, we have seen that mechanisms of cell motility in-

volved actin networks. In this section we present actin filaments and give

quantitive measurements that have been performed to characterise them,

then we show that their interactions can lead to large residual stresses in

self-assembled network.

2.1 Characterisation of actin filaments

Figure 14: Double stranded actin filament, if
globular actin has a diameter of 5.4nm, the
filament is 9nm in diameter.

Actin filaments are double helicoidal polymers with a monomer diameter of

around 5.4 nm16, this results into filaments that are approximately 9 nm in

16 P. Moore, H. Huxley, and D. DeRosier.
Three-dimensional reconstruction of f-actin,
thin filaments and decorated thin filaments.
Journal of Molecular Biology, 1970

diameter, as we understand in figure 14. At room temperature these filaments

are subject to non negligible fluctuations, as you can see on the timelapse 15

from 17.

17 H. Isambert, P. Venier, A. Maggs, A. Fat-
toum, R. Kassab, D. Pantaloni, and M. Car-
lier. Flexibility of actin filaments derived
from thermal fluctuations. effect of bound
nucleotide, phalloidin, and muscle regula-
tory proteins. Journal of Biological Chem-
istry, 1995

The average length of these filaments results from an steady state between

polymerisation and depolymerisation 18. We can characterise the fluctua-

18 B. Alberts, A. Johnson, J. Lewis, D. Morgan,
M. Raff, K. Roberts, P. Walter, J. Wilson, and
T. Hunt. Molecular biology of the cell. Gar-
land Science, Taylor and Francis Group, New
York, NY, sixth edition edition, 2015. OCLC:
ocn887605755

tions in orientation by studying correlations on tangent vectors~t (s) along the

filament’s arc length s of a polymer. In average, if the polymer is in solution

at equilibrium, it behaves as :

〈~t (0) ·~t (s)〉∝ e
− s
`p

which defines the persistence length `p of the filament. For actin fila-

ments, is measures 10 μm 19. This measurement, when compared to typical

19 A. Ott, M. Magnasco, A. Simon, and
A. Libchaber. Measurement of the persis-
tence length of polymerized actin using fluo-
rescence microscopy. Phys. Rev. E, Sep 1993

sizes of animal cells 50μm, allows to classify actin networks in cells amongst

semi-flexible networks, which means that actin polymers play the role of

elastic rods that we can bend at a moderate energy cost.

An important property of semiflexible filaments is their entropic stretching

stiffness. Indeed, when filaments are fixed at an end-to-end length of ξ,

they are able to fluctuate. These fluctuations must fulfill the constraint of

having a fixed total arc length L, the rest length of the filament, considered

inextensible. We can count all the paths of length L with an end-to-end vector

of imposed length ξ to see that low ξ states are entropically favoured, on the

contrary, for ξ= L, we just have one configuration possible. However, low ξ

states involve bending of the filament, and are energetically penalised. As a

consequence, if we let a filament equilibrate in contact with a thermal bath

at finite temperature, it will reach an average length L0. If we further apply

a force to its ends, we can compute - in the limits of the worm-like chain

model - an average force-extension relation. The result is that the polymer

behaves as a non linear spring 20. The linear limit of this spring has a stiffness 20 A. V. Dobrynin, J.-M. Y. Carrillo, and M. Ru-
binstein. Chains Are More Flexible Under
Tension. Macromolecules, Nov. 2010scaling with

kbT`2
p

ξ4 . For semi-flexible polymer networks, which are cross-

linked at an average distance ξ¿ `p . As a result, the stretching stiffness of
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Figure 15: Actin filament fluctuating at room
temperature, from Isambert et al. 1995
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bending a filament on its first mode is orders of magnitude smaller than the

one required to bend it by fluctuating on the higher orders modes.

In the above paragraphs we learned about the properties of single actin

filaments, however, these filaments are able to form structures ranging from

disordered meshes to parallel bundles of several filaments. The protagonists

of these structures are cross-linking proteins, which mediate binding between

filaments. The figure 16 gives an idea of the families of crosslinkers and their

function. Some of them are able to bind actin to other proteins, some of

them bind actin to its siblings, but can do it in various ways : indeed they

can be sensitive to polarity in actin filaments, they can impose an angle

between neighbours or simply introduce anchoring points. To be more

precise the dystrophin binds plasma membrane to the cytoskeleton 21. Fascin 21 Q. Q. Gao and E. M. McNally. The Dys-
trophin Complex: Structure, Function, and
Implications for Therapy. In R. Terjung, edi-
tor, Comprehensive Physiology. John Wiley &
Sons, Inc., Hoboken, NJ, USA, June 2015

is a crosslinker that can gather actin into either parallel-bundles or meshes.

α-actinin is able to gather both parallel and antiparallel 22, forming either a

22 B. Sjöblom, A. Salmazo, and K. Djinović-
Carugo. α-actinin structure and regulation.
Cellular and Molecular Life Sciences, May
2008

mesh or bundles. Filamin is able to gather filaments between each other into

a mesh.
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Figure 16: Types of actin crosslink-
ers, from https://www.mechanobio.

info/cytoskeleton-dynamics/

actin-crosslinking/

https://www.mechanobio.info/cytoskeleton-dynamics/actin-crosslinking/
https://www.mechanobio.info/cytoskeleton-dynamics/actin-crosslinking/
https://www.mechanobio.info/cytoskeleton-dynamics/actin-crosslinking/
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Figure 17: A model of sliding bundles, with
elastic cross-linkers relates the bending me-
chanics of bundles to that of single filaments.
From Claessens et al. 2006

The possibility for cross-linkers to gather filaments into bundles makes

us wonder how the features presented above - namely bending stiffness and

stretching stiffness - are affected by cross-linking. The answer again depends

on the type of cross-linkers, however there are models to understand their

physics. By explicitely modeling bundles as assemblies of filaments that can

slide relative to each other to the price of cross-linkers extensions (fig 17), we

can compute that the bending stiffness of a bundle depends on the cross-

linkers, it ranges between Nκ for unshearable bundles to N 2κ for sliding

bundles, where N is the number of filaments in one bundle, and κ the bend-

ing stiffness of one filament23. A third regime is possible for intermediate

23 C. Heussinger, M. Bathe, and E. Frey. Sta-
tistical Mechanics of Semiflexible Bundles of
Wormlike Polymer Chains. Physical Review
Letters, July 2007

cases, where internal deformation induce a wave-length dependant shearing

stiffness. For the entropic stretching stiffness, the phenomology is simpler as

the corresponding stiffness scales with N 2 in all cases. Some measurement

confirm these models, these results are in agreement with measurements in

ref 24 (weakly coupled case), their experiment is sketch in fig 18. 24 F. Rückerl, M. Lenz, T. Betz, J. Manzi, J.-L.
Martiel, M. Safouane, R. Paterski-Boujemaa,
L. Blanchoin, and C. Sykes. Adaptive Re-
sponse of Actin Bundles under Mechanical
Stress

Figure 18: This experiments treats the sur-
face of polystyrene beads for bundles to poly-
merize. It becomes then possible to study
their adptive response under mechanical
stress. From Rückerl et al. Adaptive Re-
sponse of Actin Bundles under Mechanical
stress

Up to now, we merely indicated the behaviour of single bundles. Next

subsection explains how they induce residual stresses into fiber networks.

2.2 Origin of residual stress

The previous section considered single actin filaments on one side and single

actin bundles on the other side. In particular, we didn’t consider interactions

between bundles. However the self assembled nature of biological networks

induce actin bundling nature of actin depending on the amount of available

cross-linkers during growth.

Some experiments were designed to observe the self assembly process of

actin monomers, in presence of cross-linkers and ATP in vitro25,26,27. These

25 T. T. Falzone, M. Lenz, D. R. Kovar, and
M. L. Gardel. Assembly kinetics determine
the architecture of α-actinin crosslinked F-
actin networks. Nature Communications,
Jan. 2012
26 C. Pelzl, K. Dürre, and A. Bausch. Reconsti-
tuted active actin networks in confinement.
Biophysical Journal, 106, 01 2014
27 J. Deek, R. Maan, E. Loiseau, and A. Bausch.
Reconstitution of composite actin and ker-
atin networks in vesicles. Soft Matter, 14, 02
2018

experiments are able to reproduce a wide variety of actin networks, ranging

from a mesh of thin actin filaments to a network of thick bundles of around 30

filaments each, by tuning a single parameter : the cross-linkers concentration.

These networks display rich rheological properties which can be measured

by observing the diffusion of polystyrene beads in the network. We display

confocal microscopy pictures of the different types of networks we can obtain

from non bundled to bundled ones in figure 19.

A mechanism for this phenomenology has been proposed. It invokes in

the kinetic trapping of actin polymers into the network as filaments get too

large. There is a competition between diffusion of filaments, bundling and

steric hindrance of them28.

28 G. Foffano, N. Levernier, and M. Lenz.
The dynamics of filament assembly define
cytoskeletal network morphology. Nature
Communications, Dec. 2016



CONTENTS 17

Figure 19: Self-assembly of actin monomers
in the presence of α-actinin, quenched by
phalloidin 60 min after polymerization
was initiated by the addition of salts. As
α-actinin concentration is increased, the
network architecture changes from single-
filament meshwork (cα =0–1.0μM) to a com-
posite network (cα =1.5–3 μM), to a network
of bundles (cα =4–10 μM), to a network that
appears to be composed of very short and
bright bundles of actin (cα ≤10 μM). Scale
bar=30 μm from Falzone et al.

Figure 20: Cartoon of a fork. It represents the
microscopic structure of two bundles of size
4 zipping into one of size 8 in presence of
boundary constraints. The hands represent
the anchoring points that are imposed by the
rest of the network during its self assembly
process.

This kinetic trapping suggests the existence of residual stresses in the

network. In this thesis, when we will talk about residual stress in a network,

this would mean forces compensated at a local scale between filaments.

We will now explain how residual stress emerge. During the self assem-

bly process of the network, filament get bundled, but at the same time they

diffuse. As a result, the orientations of the bundles get distributed in all

directions, up to the point where two bundles arrive in contact with each

other. These contacts enhance the probability for cross-linkers to attach

bundles together. An other thing that can happen is that two partial bun-

dles get attached parallel to each other at one end, and get stochastically

zipped towards the other by cross-linkers. During this zipping mechanism,

the two parts of the bundle being zipped can get sterically trapped in the

network. The cross-linkers will continue to zip the bundle, up to the point

where fighting against steric hindrance becomes too costly from an energetic

viewpoint. As a result, we end up with a network containing objects like the

in figure 20. These objects in which a bundle of n +m filaments splits into

one bundle of n filaments and an other one of m filaments will be refered

to as forks in this thesis. Forks inherit their stiffness from a combination of

the individual bending stiffnesses of constitutive filaments and the forces
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exerted by cross-linkers between its two halves. Because the unbinding of

cross-linkers is energetically costly, forks exert residual stresses in the net-

work. These residual stresses, even if then do not induce boundary stress,

may affect elastic response of the network, for instance through its elastic

moduli.

The goal of this thesis is to study the effect of residual stresses on the

mechanics of fiber networks.

3 Summary

This introduction teaches that fiber networks are ubiquitous in cells, they are

at the origin of mechanical structures ranging from very stiff non dissipative

rods to viscoelastic mesh passing through contractile force transmissive rings.

These networks self-assemble and this self-assembly have been experimen-

tally reproduced. Depending on the rates of cross-linkers they contain, fiber

networks can end up trapped into highly bundled states, storing important

residual stresses. However, the effect of residual stresses in bundled networks

have not much been studied up to now.

In this thesis we ask the following question :

W H AT I S T H E E F F E C T O F R E S I D UA L S T R E S S O N S E M I F L E X I B L E P O LY M E R

N E T W O R K S ?

We answer to it from a numerical perspective, on 2 dimensional networks.

Namely we develop four chapters :

• Chapter 1 introduces a model for fiber network and and defines notations.

• Chapter 2 explains our computational methods, including an original

algorithm to numerically compute elastic moduli.

• Chapter 3 gives elements about the effect of residual stresses on the linear

response of fiber networks.

• Chapter 4 gives elements about the effect of residual stresses on the non

linear response of actin networks.

• Finally, a conclusion sums up the important points of the thesis.
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A Model for residual stress in fiber networks

This chapter describes the model for fiber networks that we use. In section 1.1

we talk about the physical description of fiber networks, in section 1.2 de-

scribe the sources of its motion. In section 1.3 we explain how we tuned the

adjustable parameters of the model, finally in section 1.3 we explain how to

get rid of some parameters by sending them to infinity or by taking a contin-

uous limit. We conclude this chapter by giving a few examples of equilibrium

geometries.

1.1 Description of actin networks

In this section we tackle the issue of modelling fiber networks, regardless of

the forces that act on it, since a section is devoted to it more specifically. We

need tomake this discussion unambiguous so as to build mathematical tools

that enable numerical simulations. The presented model leads to approxima-

tions that we will explicitly discuss. Sometimes, the developped formalism

can look overwhelming, the reader should then recall that it only refers to the

memory structures in use in our simulations for a non redundant storage of

information and an efficient computation of energies.

1.1.1 Topology of fiber networks

When we think about a fiber network, we think of a set of points connected

assembled in pairs by links. The mathematical structure of a graph is espe-

cially in line with this idea : the data of a set of objects P together with that

of a set of edges E ∈P ×P , which are pairs of points are enough to define

such a graph.1 1 Example : if we take P = {1,2} and E =
{(1,2)}, we define a network with two points
labeled 1 and 2 and one link between them.

With this definition we are able to describe the topology of the network

by saying which point is connected to which other point, but still unable to

encompass its structure in space. In order to do this we need to be more

specific with the set of points P : we chose P = Rd , where d is the space

dimension. This endows naturally edges with a set of vectors thanks to the

vector structure of Rd . We end up with a structure that associates a vector to
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each point and to each edge in the graph.

For reasons of convenience we label the vectors in P , Pi , i ∈ {1, . . . N }, N

being the total number of points. We refer to their coordinates relative to an

arbitrary origin in space by xi , i ∈ {1, . . . N }.

Figure 1.1: We labeled a few sites Pi and rep-
resented displacements from an hexagonal
configuration by arrows.

However, the labelling i and the absolute position xi are difficult to mea-

sure since they require to label sites in real biopolymer networks and to fix

an arbitrary origin. A better choice when we start from a clear reference con-

figuration (for instance, a zero stress state) is to track displacements relative

to the reference. Henceforth, it is well suited to split xi = x0
i +ui in two parts :

x0
i , the reference position, and ui , the displacement, cf. 2.

2 L. Landau, E. Lifshitz, A. Kosevich, J. Sykes,
L. Pitaevskii, and W. Reid. Theory of Elastic-
ity. Course of theoretical physics. Elsevier
Science, 1986

1.1.2 Regular lattices

The networks we will study are derived from regular lattices, this subsection

present a way to describe them. We generate a regular lattice as follows :

we define a unitary cell by a set of vertices ranging from 1 to q ∈N∗, and a

set of edges that can connect these vertices between each other or to their

periodic copies in neighbouring cells. We then replicate this unit cell all over

the network. We can refer to a site by the d integer coordinates of the cell and

by its number in the unit cell.3 3 GIVE EXAMPLES !!

1.1.3 Boundary conditions, Strain

A thought experiment to study the mechanics of a material is to cut a square

piece of it and apply to it a small affine deformation. Such a deformation

keeps parallel lines parallel : they can be a simple shear, an isotropic com-

pression, an uniaxial compression or any kind of affine transformation ...

~v
f (~v) = (1+γ)~v

~u

f (~u) = (1+γ)~u

O

Figure 1.2: Rectangular cut all ~u and ~v into
a material. Under affine deformation, the
green rectangle deforms into the blue one,
if the lengths of ~u and ~v become infinites-
imal, γ is called the strain at the point O.
If γ doesn’t depend on the reference point
all over the material, the material is said to
affinely deform.

Experimentalists are able to realise these experiments in some cases. In-

deed they can put the network inside of a rheometer and exert a shear on its

edges, or apply a pressure from outside. We would like to be able to exert such

deformations of the network from its edges. We do this by using appropriate

Lees-Edwards boundary conditions4. These boundary conditions allow us to

4 A. W. Lees and S. F. Edwards. The computer
study of transport processes under extreme
conditions. Journal of Physics C: Solid State
Physics, Aug. 1972

approximate an infinite system at a reasonable computational cost, and at

the same time to apply affine strain to it.

Let’s make explicit the scheme in 2 dimensions of space. Let’s consider

a network made of N cells in the direction of a Bravais5 vector ~u, and M

5 N. W. Ashcroft and N. D. Mermin. Solid
state physics. Brooks/Cole Thomson Learn-
ing, South Melbourne, repr edition, 2012.
OCLC: 935097630

cells in the direction of a Bravais vector ~v it totalises N ×M cells. Along ~u’s

direction, an N ’th elementary cell a site would be connected to an N +1’th

one in an infinite system. What we do instead is to connect it to the first

one in direction of ~u. This can be easily done in our framework, since it

comes to replace the edge (N , N +1) by (N ,1) in E . We emphasise here that

these boundary crossing links are to be understood in a topological sense

: they provide the network with the topology of a torus, but don’t impact

its geometry in space, in particular the corresponding terms in the energy

are computed through the minimal image prescription with respect to the
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boundaries.

As you can see on figure 1.2, we can define a strain γ which is responsible

for the affine response of Bravais vectors according to :

~u 7→ (1+γ)u

~v 7→ (1+γ)v
(1.1)

Which allows us to decompose the displacement of a given site i into an

affine part and a non affine part :

ui = ua f f
i +uN a f f

i

ua f f
i = γx0

i

(1.2)

The Lees-Edwards periodic boundary condition that we use comes to

generate an (M +1)× (N +1) network, and to impose boundary condition :

uN a f f
1, j = uN a f f

N+1, j

uN a f f
i ,1 = uN a f f

i ,M+1

This simplicity to apply periodic boundary conditions legitimates in its

own the splitting in affine and non affine displacement : the non affine

displacement is a property of sites, whereas the affine displacement is a

property of edges. Namely, when it will come to compute forces on sites, we

will always deduce the end-to-end vector between sites from the edges’ affine

displacements and the non affine displacements of sites, never refering to

absolute position in space, thus treating edges that come across the system

as the bulk ones.

However, this way of enforcing boundary conditions challenges intuition.

It doesn’t fix all positions on the boundaries of the system, instead it divides

the number of boundary degrees of freedom by two with respect to the

free boundary case. Instead of 4 tunable straight walls we only have two

Fig. 1.4 that can lie on a curve. This kind of features can can appear when

compressive a triangular lattice for instance. In that case, creases can appear

in the networkas decribed in reference6. The had been observed by Pierre 6 S. Ganguly, D. Das, J. Horbach, P. Sollich,
S. Karmakar, and S. Sengupta. Plastic defor-
mation of a permanently bonded network:
Stress relaxation by pleats. The Journal of
Chemical Physics, (18), Nov. 2018

Ronceray when I arrived in 2016 and he highlighted to this amusing fact at

that time.
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Figure 1.3: Lees-Edwards periodic boundary
conditions used to shear a 4x4 honeycomb
lattice of 20%. The edges are represented in
blue, the strained Bravais vectors in black,
and the unit cells with dotted black bound-
aries. The 3x3 pink cells are in the bulk of the
network, but the outer layer of blue cells are
connected to each other through the bound-
aries, thus they allow strains to be applied.
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Figure 1.4: Lees-Edwards periodic boundary
conditions might challenge intuition since
they allow soft walls with identical non affine
displacement from wall to wall.

We can thus apply a strain to the system by changing the affine displace-

ments on edges, which amounts to change ~u and ~v to (1+γ)~u and (1+γ)~v ,

that is to deform the reference box into a parallelogram. Sites have then the

freedom to move around this configuration by means of non affine displace-

ments.

1.2 Mechanics of the network : system’s potential energy

In the previous section we described the kinematics of the network, we will

now discuss its interactions. In the introduction, we have focused our interest

in bundled actin networks, which are polymer networks crosslinked over a

distance small in front of their persistence length, i.e. semiflexible networks,

in presence of residual stresses due to frustrated bundles. Henceforth, the

relevant forces will be entropic stretching, bending rigidity 7 and our new 7 C. P. Broedersz and F. C. MacKintosh. Mod-
eling semiflexible polymer networks. Re-
views of Modern Physics, July 2014. arXiv:
1404.4332

ingredient, residual stress which we present later a model of.

1.2.1 Bending interaction

Physical origin. Biofilaments result from the assembly of a repeated pattern of

proteins. The complex links binding these proteins together provides a finite

stiffness to filaments. For example actin filaments result from an helicoidal

twist of actin monomers, and have a persistence length of around 10μm at

room temperature8. Furthermore, cross-linking proteins such as α-actinin 8 F. Gittes. Flexural rigidity of microtubules
and actin filaments measured from thermal
fluctuations in shape. The Journal of Cell
Biology, Feb. 1993

are able to gather filaments into bundles, providing bundle a cooperative

bending stiffness which has been measured in ref 9. Some detailed models
9 F. Rückerl, M. Lenz, T. Betz, J. Manzi, J.-L.
Martiel, M. Safouane, R. Paterski-Boujemaa,
L. Blanchoin, and C. Sykes. Adaptive Re-
sponse of Actin Bundles under Mechanical
Stress

were proposed in ref. 10 concerning the coupling between cross-linkers

10 C. Heussinger, F. Schüller, and E. Frey.
Statics and dynamics of the wormlike bun-
dle model. PHYSICAL REVIEW E, 2010;
and M. Claessens, M. Bathe, E. Frey, and
A. Bausch. Actin-binding proteins sensitively
mediate f-actin bundle stiffness. Nature ma-
terials, 10 2006

shear and bundle extension, bundle twist, and bundle bending. However,

we will merely model a bundle by a filament characterized by its bending

and stretching stiffnesses as we think of α-actinin as cross-linker, which we

consider as unshearable : henceforth, there is no bundle’s state-dependant

bending stiffness to consider.

A model that is often used is the worm-like chain model in which we

model a polymer by a continuous curve parameterized by its arc length s

ranging from −`0
2 to `0

2 , `0 being the rest length of the polymer. This model

was originally introduced in 11. We assume that we are in 2D , which allows to 11 O. Kratky and G. Porod. Röntgenunter-
suchung gelöster Fadenmoleküle. Recueil
des Travaux Chimiques des Pays-Bas, Sept.
2010

consider the field φ(s), which represents the angle between a reference axis

and the tangent vector to the polymer at arc length s. The bending energy

per unit length has to be a function of the spatial variations of φ(s), and to be

minimal for a straight polymer. We introduce the bending constant per unit

length κc so that

eb(s) = κc

2

(
∂φ

∂s

)2

(s)
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which leads to the potential energy functional :

U [φ] =
∫ `0

2

− `0
2

κc

2

(
∂φ

∂s

)2

(s)d s.

This form is able to take account of bending modes no matter their wave-

length since it has an infinite number of degrees of freedom. However, it

would be impossible to deal numerically with them. Henceforth we need to

find an discrete approximation of filaments, reasonable enough to capture

the low wave-length properties of the continuous model, tractable enough to

be used in large networks.

Our numerical model.

Figure 1.5: Examples of three hinges h1 =
(e1,e2), h2 = (e2,e3) and h3 = (e3,e4) on a
rod subdivided into four segments.

For this we subdivide a filament of rest length `0 into N strands of rest

length `0
N . We will refer to a structure of two subsequent edges ine this

subdivided filament as hinges denote them by h = (ei ,e j ) ∈H since they are

a set of edges. For this reason, the set of hinges can be generated on a non

ambiguous way from the mere data of E and P . We draw examples of hinges

in 1.5.

On an energetic viewpoint we introduce a discrete bending constant
κ

`0
so that the bending energy of the filament reads :

Eb({ui }) =−Nκ

`0

∑
(e1,e2)∈H

(
~ue1 ·~ue2

ue1 ue2

−1

)
Figure 1.6: The geometrical interpretation
of the bending energy on a hinge is made
clearer if we introduce angles of edges with
respect to (Ox). For instance here the
energy of the first hinge can be written

2 Nκ
`0

sin2
(
φ1−φ2

2

)
.

With a sum on the N −1 hinges formed by the N edges. We will establish

and discuss in section 1.3.1 a correspondance between the two models. We

chose this scaling for the bending stiffness so that the model converges

towards the worm-like chain model as N →∞, which provides a link to the

measurable continuous κc .

This energy is minimal when ~ue1 is aligned with ~ue2 in all hinges, it is

maximal when they point in opposite directions. A typical intermediate

situation if displayed 1.6. The interaction becomes increasingly soft as we

bend hinges, which can be understood easily on the case of a two edges

filaments for which the energetical cost −cos(φ1−φ2) is bounded, contrarilly

to (φ1 −φ2)2. However when N → ∞, this difference with the quadratic

energy
(φ(i+1)−φi )2

2 disappears since angle variations between neighbours get

smoothened out. Taking this energy instead of the quadratic represents a gain

in computational time given it avoids costly arccos evaluations to compute

the angles φi by inverting the scalar product between unit edge’s vectors.

1.2.2 Stretching interaction

Physical origin. At biological micron-size scales, filaments are subject to

thermal fluctuations. Indeed they evolve in an aqueous medium which

subjects them to collisions with water molecules, inducing energy exchanges

between a thermal bath and the polymer. Thermal fluctuations play a role of

major importance as discussed in the introduction.
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If an operator controls the end-to-end length of a polymer, he notices that

they are exponentially more coiled configurations with a small end-to-end

vector than they are extended ones with a large end-to-end vector. For this

reason he feels an entropic restoring force against extension. In biological

networks, no operator can control the filaments’ extension, but they belong

to a mesh, at an average distance ξ of each other. Depending on how ξ

relates to the persistence length of the polymers, the latter will behave as

springs and their benging-to-stretching ratio
κ

µ
will evolve as

ξ4

l 2
p

. Typically

1
1000 is observed in semiflexible biologic meshes : filaments are very stiff

in extension, and softer in bending, we will account of this in simulations

by staying close to the inextensible limit, which will be discussed in a next

section.

Our Model. In this thesis, we will not model explicitely the fluctuating

filaments, instead we will introduce the stretching energy that an effective

edge would have to mimick the average beahaviour. This approximation in

only valid in a mesh with cell size small compared to the persistence length,

which is our framework.

In our discrete approximation, we model filaments strands as springs with

rest lengths
`0

N
and stiffness per strand Nµ

`0
. The resulting stretching stiffness

reads :

Es = Nµ

2`0

∑
e∈E

(
le − `0

N

)2

.

This is merely the energy of an hookean spring, it is minimal when all

edges are of length `0, i.e. when the full filament is of length `0. This is a

Taylor expansion of the average energy-extension relation we obtain in a

worm-like chain model 12 in the canonical ensemble. This form remains

12 A. V. Dobrynin, J.-M. Y. Carrillo, and M. Ru-
binstein. Chains Are More Flexible Under
Tension. Macromolecules, Nov. 2010

valid for small extensions, however we will typically take very stiff springs in

simulations, so there won’t be excursions to extreme extensions.

1.2.3 Residual stresses

Figure 1.7: Example of closing forks in or-
ange, they are the 3 coordinated nodes.

Physical origin. Cross-linked actin networks are made of a self-assembly

of interacting filaments. These filaments tend to stay straight, they are in-

teracting together, they are long compared to the characteristic lengths of

these interactions, and the mesh size can be comparable with it. As a result,

residual stresses remain in configurations that are macroscopically at rest.

An example of it is provided by actin networks cross-linked with high rates

of α-actinin 13. The filaments are gathered into bundles aligned parallel to 13 T. T. Falzone, M. Lenz, D. R. Kovar, and
M. L. Gardel. Assembly kinetics determine
the architecture of α-actinin crosslinked F-
actin networks. Nature Communications,
Jan. 2012

one another over lengths up to the mesh size. Over larger scales however, the

bundles split making forks as you can see on the cartoon displayed Fig. 1.9.

We will take this kind of residual stresses into account by introducing an

angular interaction in our system on each site with coordination number of

3.
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Our model. We will refer to a structure of three neighbouring filaments

incident on a site as forks, we note them f ∈ F . The set of forks can be

generated on a non ambiguous way from the mere data of E and P . We draw

examples of forks in 1.7. Forks are our model for frustrated bundles.

We will stick to the case of a 2D lattice, with a coordination number of

3. This degree of coordination enables us to think of forks distributed all

over the network that exert angular stresses on the filaments. We take the

following residual stress energy :

Er = 2g
3∑

i=1
sin2

(
δθ−δθ0

2

)
,

which has two adjustable parameters : its intensity g , and the frustration

angle δθ0. The angular degrees of freedom δθ are depicted in 1.8, they cor-

respond to the difference between the opening of the thirds of forks in the

present configuration and in the honeycomb rest configuration it would have

without residual stress.

Figure 1.8: We represent in dashed green the
honeycomb configuration, in dashed purple
the prefered orientation of a fork turned to
the right, and in plain green a general config-
uration of the fork. We measure fork angles
with respect to what they are in the honey-
comb lattice. We define θa , θb and θc the
angles formed by the edges with respect to
their value in the honeycomb lattice. We
then measure δθi j the opening angle of the

third of fork (i j ) (with (i , j ) ∈ {a,b,c}2). Here
the purple configuration has δθac = δθab =
δθ0.

Figure 1.9: Cartoon of a fork oriented to the
right. It represents its bundle microscopic
structure. The hands represent the anchor-
ing points that are imposed by the rest of
the network during its self assembly process.
The zipping of the bundle continues up to a
point where there is a strong energetic bar-
rier for a cross-linker to bind the two strands.
At this point, strong residual stresses are ex-
erted on the fork as represented by the ar-
rows. This is what our models describes : a
fork has a prefered angle, which results from
the competition between anchoring and zip-
ping, we will consider very strong bindings.

This energy is minimal when the two angles adjacent to the parent fila-

ment equate 2π
3 +δθ0 and the angle in front of it equates 2

(
π
3 −δθ0

)
.

We think of this energy as a modification of the honeycomb geometry.

In the latter, all filaments can stay straight and keep an unit length ; by

introducing frustrated angles we induce residual stresses in the network.

This cannot be seen as a perturbation since forces doesn’t stay infinitesimal :

we take typically very stiff angular rigidities g . This specific point is going to

be discussed in section 1.3.2.

We stress out the fact that this form is more general than a simple model of

closing forks since it gathers all possible δθ0 ranging between π
3 (fully closed

forks) and − 2π
3 (fully open forks).

Choice of directions.

This interaction over a single fork is anisotropic. For this reason we must

distribute forks’ directions throughout the network to maximise symmetry of

the elastic properties. For this we tried two solutions :

• We distributed the directions at random at every 3-coordinated node of

a honeycomb lattice. generate the full network and we coin a 3-states

uniform random variable over each fork to decide its direction.

• We built a repeated pattern of unit cells. These cells had directions dis-

tributed by hand according to a specific rule. This rule was to have as

many forks pointing in each direction in the unit cell. We show in ap-

pendix 1.4 that we can reduce all choices possible to the four inequivalent

families invariant up to the axial symmetries and rotations that leave the

honeycomb cell invariant. These geometries are labelled (α), (β), (γ) and

(δ), we represent them into 1.10.

The first choice is better approximating the mechanics of a real prestressed
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Figure 1.10: The 4 classes of inequivalent
geometries are represented in four different
colours in four different backgrounds. The
arrows represent the direction in which forks
close. We chose one representant in each cat-
egory, the greek label of the class is written
on top of the representant. The zero bound-
ary stress geometry is plotted on the right for
each representant for g = 1000 and δθ0 = π

6 ,
dimmer colors suggest the periodic bound-
ary conditions.
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network with coordination of 3, whereas the second choice enables to per-

form analytic calculations and are instructive in their simpler behaviour.

1.2.4 Dimensionless form for energy

At this stage, we have several adjustable parameters. In order to get rid of a

part of this complexity, we will put them in dimensionless form.

Let’s first list out the dimensions of the different physical parameters :

• The potential energy U has units of an energy.

• The stretching constant µ has units of an energy over a length.

• The length of edge e `e has units of a length.

• The rest length of a filament `0 has units of a length.

• The bending constant κ has units of an energy times a length.

• The intensity of residual stress g has units of an energy.

• Angles are dimensionless.

• The number of subdivisions of filaments is dimensionless.

We choose `0 as unit of length, and
κ

`0
as unit of energy. The following

dimensionless tilded variables derive from this choice :

` 7→ ˜̀= `

`0

U 7→ Ũ = `0

κ
U

µ 7→ µ̃= µ`2
0

κ

g 7→ g̃ = g

κ
.

This choice only leaves us with 4 adjustable parameters : the number

of subdivisions of filaments N , the reduced residual stress intensity g̃ , the

reduced stretching constant µ̃ and the opening of forks at rest δθ0. As a

consequence, the dimensionless reduced potential energy reads

Ũ = ∑
e∈E

µ̃N

2
( ˜̀e −1/N )2

+ 2N
∑

(e1,e2)∈H

sin2
(
φe1 −φe2

2

)

+ 2g̃
∑

f ∈F

3∑
i f =1

sin2

(
δθi f −δθi f ,0

2

)
.

N plays a special role in that it is not a physical observable : it is an artifact

of our model, which aims at reducing the number of degrees of freedom
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while keeping important physical features observables. In section 1.3.1, we

make sure to tune it to the least value that allows physics to be observed.

From now on we will get rid of the tildes forever in this thesis, always talking

about the reduced dimensionless quantities.

1.3 Sending parameters to infinity

In the previous section we put the model in dimensionless form to be sure

that no parameters were physically redundant. However we still need to

discuss the number of subedges in each filaments, as we cannot afford nu-

merically to increase too much the number of degrees of freedom in the

system. In addition, our system of interest behave as inextensible, which

addresses the question of the inextensible limit in our model. In this section

we make simulations in simple systems to justify the parameters that we will

use later on in the thesis.

1.3.1 Estimating continuous limit from segmented filaments

Figure 1.11: Here we represent the 2 bending
modes of filament subdivided in 4 parts (the
2 remaining one are stretching modes). A
system with N degrees of freedom has N nor-
mal modes. However two angular forcings in
opposite directions at the ends of the system
can enhance filament’s mode 2 bending and
will require at the very least 3 subedges to be
possible.

Figure 1.12: Here we represent the spatial
configuration of the filaments for a strainγ=
60%. N ranges from 2 to 20. In red appear
the filaments under compression, in green
those that are unextended. This gives us a
feeling of the continuous limit, and asks the
question of extension of coupling between
stretching and bending.

Figure 1.13: Convergence of the force-strain
curve to a continuous limit (with dots) as
N grows from 2 (yellow) to 20 (purple) for
µ= 105.

The model with two subedges is unable to take into account bendings of

the modes of order larger than one for one polymer1.11, this was problematic

since a filament with opposite angular forcings on its ends should bend on

its mode n°2.

For this reason, we study continuous the limit where the number of edges

in a filament N →∞. For this we study the 1D chain of springs under axial

compression for N →∞, as displayed in 1.12. In the figure 1.13. the strain in

the filament is defined as γ= `−`0

`0
.

It is worth noting that we find the usual buckling phenomenology 14: for

14 C. P. Brangwynne, F. C. MacKintosh, S. Ku-
mar, N. A. Geisse, J. Talbot, L. Mahadevan,
K. K. Parker, D. E. Ingber, and D. A. Weitz.
Microtubules can bear enhanced compres-
sive loads in living cells because of lateral
reinforcement. The Journal of Cell Biology,
2006

positive strains the filament remains straight and its response is stretching

dominated, with a stiffness (here the slope in the diagram −dF
dγ ) of order

µ. After some buckling threshold γ0, which is almost zero here given the
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stretching to bending ratio, the filament buckles on its mode 1, it has a

rigidity of order κ.

On the other hand, we can obtain force-strain curves analytically in the

limit where µ→∞. For this we cancel out the functional derivative of 1.2.1

with respect to the tangent vector angle φ(s) under a force F . This leads to

the resolution of : 
d 2φ

d s2 −F sin(φ) = 0
dφ
d s

(− 1
2

)= 0
dφ
d s

( 1
2

)= 0

The boundary condition on θ is a null torque on edge filaments as indicated

on fig. 1.14. We note φ∗
F the solution function for a given value of F , we

solve it numerically by using a shooting method that starts from a non zero

Ansatz φ(s) =−εcos(2πs), ε> 0 so as to break the symmetry between top and

bottom. We can then obtain the length as a function of F :

`(F ) =
∫ 1

2

− 1
2

cos
(
φ∗

F (s)
)

d s

and use it to compute the strain γ(F ) = `(F )−1 and plot the reference curve

in fig. 1.13.

Figure 1.14: Geometry of a continuous fila-
ment, the point M(s) at arc length s on the
filament is labeled by the vector OM(s) with
respect the origin. We see that spatial vari-
ations of φ induce a torque. As an example
the orange part here is subject to a torque
because of two opposite variations in angle
that induce forces ~F1 and ~F2.

In order to get a quantitative criterion to evaluate how we reached the

continuum limit, we plot the relative differences between the worm-like

chain model and our finite differences one in figure 1.15.

To conclude, we can select a threshold on how accurately we want to

approximate the continuous limit by simply reading it on the above graph of

relative differences, and that provides us one value for N (the value of µ being

fixed). The more accurate we want to be, the larger number of degrees of

freedom we must involve in the simulation. Typically, if we want to reach the

continuous limit at 10%, we must use N = 10. A less drastic choice to keep

simulations fast is to wonder which modes of deformation are physically

meaningful, and which we can get rid of. Indeed, we will see later that forks

never bend on deformation modes of order more than two : we choose N = 4

so as to be able to take account of them, we read on the above graph that it

lead to an accuracy to the continuum of at worst 25% for large deformations.

1.3.2 Tuning prestress parameters : the strong clamp limit

In order to study the effect of prestress, we have to tune two parameters :

the forks stiffness g and their rest angle defect δθ0. We want to generate

strong angular anchoring that couldn’t be uncoiled by bending modes. In-

deed, the process leading to residual stress is the maximal zipping of two

partial bundles up to the point where it becomes energetically impossible for

cross-linkers to fight against the tension stored into the bundle because of

the steric constraints in the network. However the binding energy of cross-

linkers is around 2kB T for a bond of size of 20 nm as reported on ref. 15.

15 H. Miyata, R. Yasuda, and K. K. Jr. Strength
and lifetime of the bond between actin and
skeletal muscle a-actinin studied with an op-
tical trapping technique. 1996
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Figure 1.15: Relative difference between
WLC and finite N model (yellow for N = 2,
purple for N = 18), stretching stiffness µ =
105. One notices that the more compressed
are the filaments, the more finite µ effects
show up. Indeed, some stretch remains in
such cases, as we experienced on fig. 1.12

Figure 1.16: Bulk modulus and shear mod-
ulus around the zero boundary stress con-
figurations of the four geometries (α), (β),
(γ) and (δ) as a function of the fork stiffness
g , δθ0 = 2π

6 , N = 4. A corresponding color
code displays the zero boundary stress ge-
ometries for g = 1000.
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The bending energy required over the same length is much smaller, thus our

approximation.

For this reason we study in this section the g →∞ limit on the four unit

geometries (α), (β), (γ) and (δ). We display measurements of shear modulus

and bulk modulus versus g in fig. 1.16. For shear moduli, we observe two

regimes : for low g ’s, the response under compression is essentially due to

the deformation of forks, at a cost g ¿ 1 for (β), (γ) and (δ). For bulk mouduli,

(α) and (δ) behave differently at low values ofg . Indeed their response is

governed by stretching (bulk modulus of order µ= 1000) because forks are

too weak to bend filaments, henceforth the networks respond affinely to an

infinitesimal isotropic strain, which stretches the filaments.

In both cases the second regime starts for g of order 1000. We see a

saturation of network’s response because forks become so stiff that they don’t

participate anymore in the network elastic response. We choose everywhere

after in this thesis to work with g = 1000.16 16 As we will see when sending stretching
constant to infinity in section 1.3.3, conver-
gence time increases as g increases, we were
also afraid of numeric error issues, but they
only show up when there are orders of mag-
nitude of difference between µ and g (typ-
ically, when g = 10−4 and µ = 1000). We
didn’t address them quantitatively however.

1.3.3 Tuning stretching constant : the inextensible filament limit

Up to now, we were in the approximation µ¿ 1 where stretching dominates

largely over bending. We want to control this approximation because of

numerical error issues in simulations ranging from slow convergence to

inacurracy in results. Indeed, the energy is a sum of many terms with different

orders of magnitude, which is a typical example of where numerical errors

issues come out in computer science. Let us tell a few words about those

: floating point numbers use a certain number n of bytes to be stored in

memory. Those n numbers are shared between p numbers for the significand

and q numbers for the exponent17. To fix ideas, we take n = 64, p = 53 and 17 B. A. Stickler and E. Schachinger. Basic
concepts in computational physics. Springer,
Cham, second edition edition, 2016. OCLC:
951090652

q = 11 which is the official norm for the double precision numbers that we

use in C++.

The significand can thus range between the binary number −0.1111. . .11

with 52 "ones" and the binary number 0.1111. . .10, with 51 "ones", whereas

the exponent can range between −210 =−1024 and 210 −1 = 1023. Which in

basis of 10 gives up to 14 digits, among which seven are relevant.

This way of encoding for number enables to perform a difference between

two numbers of different orders of magnitude at the price of the loss of the

lowest decimals in basis of two. The more the exponents are away from each

other, the more we loose digits. Another phenomenon occurs when taking

the differences of very close numbers is truncation error, which rounds off

the result to the closest binary number ... 0 in extrem cases !

Figure 1.17: We display the geometry of an
Euler elastic rod made of N = 20 edges. In
red edges are compressed, in green they are
at rest. For strong compression rates, we
end up with a coupling between bending
and stretching, even for large µ.

Let’s come back to our filament : untill now we had µ = 105, it is worth

wondering about cancelation error in energies since bending energy and

stretching energy differ by orders of magnitude for unit displacements. This

time, we stay at N = 20 and we study the effect of µ ranging from 100 to

100.219 to show the precision loss as µ increases in figure 1.19. We also see
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the shift in buckling threshold and the convergence to an unstretchable limit.

Figure 1.18: Computational time to perform
a compression of the system from γ = 0.2
to γ = 0.6 in 400 steps, N = 20. At first it
goes down as some time is spent in changing
edges lengthes, then it increases because .
This one of the reasons for our choice of µ=
1000.

Like before we plot the relative differences with the uncompressible limit

in Fig .1.3.3. The uncompressible limit is given by the shooting method for

the worm-like chain model described when studying the continuum limit.
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Figure 1.19: Influence of µ on the force-
strain curve, N = 20 from yellow to purple,
we go from µ = 100 (yellow) to µ = 100.219

(purple). The buckling threshold is affected
by the stretching to bending ratio µ. Further-
more, cancelation error appear as µ grows
too much.
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Figure 1.20: Relative difference between the
force-strain curve and the inextensible one
as µ goes from 100 (yellow) to 100.219 (pur-
ple), for N = 20. We see the relative error
reduce (in the post-buckling region) as µ in-
creases.

To conclude, we have an evidence that finite stretching effects occur,

and that they get increasingly important as we compress strongly the fila-

ments1.3.3. These differences are qualitatively inexistant, and quantitatively

small : for µ= 100000, the relative difference to the incompressible limit is

below 10% for N = 20.

However the bigger µ gets, the more numerical error we accumulate and

the longer the simulations take1.3.3. For this reason, we chose to take µ=
1000 everywhere after.

1.4 Appendix : construction of units cells geometries

This appendix explains how we classified the orientation of the forks through-

out the network in the network. In a first part we explain the choice of the

span of an individual cell, in a second part we explain how we represented

the directions of forks in a handy way, so as to generate automatically all the

classes with the group theoritic tools in Mathematica software.

The unit cell of a honeycomb lattice in the absence of residual stress

cannot be the basis of a periodic repetition of directional forks, indeed it

contains only one fork, and would lead to an anisotropic mechanics with an

axis. For this reason, we chose an unit cell over a full hexagon, as displayed

in fig. 1.21. Then we label the six possible sites inside of an hexagon from

1 to 6. To represent an unit cell, we draw arrows on top of these sites in the

direction in which the fork operates. We label it bby its afffix zp = e iθp . We

end up with 36 = 729 possibilities to distribute forks, some of them being

obviously anisotropic as the average direction of their forks differs from 0. For

this reason, we first reduce the amount of these geometries before classifying

the remaining ones.

Reducing the amount of geometries. The first filtration of cells will occur

with as we will keep only cells with one fork in each direction. To construct

such a configuration, we draw one arrow out of three on top of site 1, one

arrow out of the two remaining in the site 3, and the site 5 follows. We do

the same thing for sites 2, 4 and 6. By doing so we reduced the possible

geometries to 3222 = 36 possibilities.

Figure 1.21: We label the 6 sites of an
hexagon from 1 to 6. We coloured differently
the possible reference unit cells to highlight
the permutation operation that occurs when
doing a translation from one to the other.

Construction of equivalence classes. At this stage, we will analyse the

symmetry group of a honeycomb network, and construct equivalence classes

of cells that are images of each other under these symmetries.

The periodic lattice that we consider is invariant under all the transforma-

tions generated by iterations of :

• The axial symmetry of a cell with respect to axis of (Ox). Its effect is to send

the affix zp of the arrow of site p to zp after sending sites (1,2,3,4,5,6) to

(1,6,5,4,3,2), in the end it sends (z1, z2, z3, z4, z5, z6) to (z1, z6, z5, z4, z3, z2).

• The rotation of angle π
3 with center in the middle of the reference hexagon.
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It sends (z1, z2, z3, z4, z5, z6) to e i π3 (z6, z1, z2, z3, z4, z5).

• The translation symmetry which is reminescent of our choice to take a

light green reference cell instead of a dark green or a purple hexagon

in 1.22. The transformation that brings from light green to dark green, and

from dark green to purple sends (z1, z2, z3, z4, z5, z6) to (z3, z6, z5, z2, z1, z4).

Figure 1.22: If we consider the whole cristal,
there is a translation symmetry which de-
pends of our choice of (0,0) cell to be light
green, dark green or purple. This gauge in-
variance is reminescent of the fact that the
translational group of the honeycomb lattice
is not the one of our pattern of forks.

To obtain an equivalence class, we take a geometry, and we iterate sym-

metries operations several times on it, up to the point where we find the first

configuration back18. We then start back with a not yet spanned element. We

18 Y. Kosmann-Schwarzbach and F. Singer.
Groups and symmetries: from finite groups to
Lie groups. Universitext. Springer, New York,
NY, 2010. OCLC: 297148428

finally label the equivalence classes according to the symmetry operations

that let it invariant.

We summarise the results of the action of symmetries on the elements

of the four classes (α), (β), (γ) in figures 1.23,1.24,1.25 for (δ) The full figure

becomes illegible. We can check that these ensembles are closed from the

viewpoint of honeycomb symmetries as each element of a class has its image

through symmetries within the class.
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Figure 1.23: Operation of symmetries on the
representants of class (α). Blue arrows in-
dicate the effect of reflection symmetry, or-
ange arrows the effect of translation symme-
try, pink arrows the effect of rotation symme-
try.
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Figure 1.24: Operation of symmetries on the
representants of class (β). Blue arrows in-
dicate the effect of reflection symmetry, or-
ange arrows the effect of translation symme-
try, pink arrows the effect of rotation symme-
try.
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Figure 1.25: Operation of symmetries on the
representants of class (β). Blue arrows in-
dicate the effect of reflection symmetry, or-
ange arrows are not represented for the sake
of clarity. Pink arrows the effect of rotation
symmetry.





2

Numerical procedures

This chapter is devoted to our numerical methods. In section 2.1 we tell

about our algorithm to minimise energy. In section 2.2 we explain how we

compute stresses and elastic constants from our systems’ potential energy

function. In section 2.3 we explain how we apply a fixed stress to the material.

Finally, in section 2.4 we go further into the code structure.

2.1 Energy minimisation

The previous chapter introduced a potential energy function of the non affine

coordinates of the network. In this section we give details on our numerical

procedure to apply a strain γ. We built our code on top of the existing work of

Pierre Ronceray1, the code concerned in this part pre-existed when I arrived 1 P. Ronceray, C. P. Broedersz, and M. Lenz.
Fiber networks amplify active stress. Pro-
ceedings of the National Academy of Sciences,
Mar. 2016

in 2016.

To apply a finite strain to the network, we first move all sites affinely from

their reference position

x0
i 7→ x0

i + γx0
i︸︷︷︸

=uaff
i affine displacement

.

As a result, the site i feels a force Fi =−∇uiU , where the ∇i notation refers

to a gradient with respect to the coordinates of site number i . To reach its

equilibrium position, it needs to move to cancel this force. In order to do so,

it could follow direction of Fi in an overdamped motion2, or follow Langevin

2 H. Goldstein, C. Poole, and J. Safko. Classi-
cal Mechanics. Addison Wesley, 2002

dynamics to account of thermal fluctuations. However, we did not study

the dynamics of this motioncm-3 and we tried to reach equilibrium at least -3 For the fibers networks we study, thermal
fluctuations and inertia are negligible.computational cost. Henceforth we minimise energy by means of a non

linear conjugate gradient algorithm3,4. This algorithm is implemented in

3 J. R. Shewchuk. An introduction to the con-
jugate gradient method without the agoniz-
ing pain. Technical report, Pittsburgh, PA,
USA, 1994
4 R. Fletcher. Practical Methods of Optimiza-
tion; (2Nd Ed.). Wiley-Interscience, New
York, NY, USA, 1987

the GNU standard library for C/C++ languages 5. During this minimisation

5 M. Galassi, J. Davies, J. Theiler, B. Gough,
G. Jungman, P. Alken, M. Booth, F. Rossi, and
R. Ulerich. GNU Scientific Library

we impose the Lees-Edwards boundary conditions as a constraint on edges

displacements.

Once we are given the set non affine displacements u∗(γ) of the micro-

scopic degrees of freedom with respect to the affinely deformed state under
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strain γ 6, we end up with a potential energy U ∗(γ) =U
(
γ,u∗(γ)

)
which cor- 6 Hereafter, the boldfont notation for a vector

refers to a d N vector which concatenates co-
ordinates of all sites. The star over a quantity
indicates that it minimises potential energy
under strain γ, thus it is a function of γ.

responds to the minimal amount of work an operator would need to exert the

strain γ from a zero energy configuration. This configuration may sometimes

be fictitious since it could require to cut bonds and isolate subparts of the

system.

2.2 Stresses and elastic constants

We saw in section 2.1 a protocol to minimise the potential energy of a sys-

tem under strain. In this section we present two methods to compute stress

and differential elastic moduli around a configuration with fixed strain and

compare their benefits. The first method, similar to the one presented in 7, 7 A. Lemaître and C. Maloney. Sum Rules for
the Quasi-Static and Visco-Elastic Response
of Disordered Solids at Zero Temperature.
Journal of Statistical Physics, Apr. 2006

is presented in subsection 2.2.2. This is the most natural for the physicist

as it comes to apply an infinitesimal strain to test out the system’s stiffness,

however it shows issues concerning the choice of the amplitude of this per-

turbation. The second method in section 2.2.3 uses a mathematical structure

not routinely used in physics : the hyperdual numbers. This method is less

natural to implement, but enables systematic, reliable computations regard-

less of the specific nature of the considered system.

2.2.1 Definitions, Voigt basis

In section we defined U ∗(γ) =U (γ,u∗(γ)). We define the stress as the conju-

gate variable to the strain, divided by the initial volume V0 (the initial area in

2D , the initial length in 1D) so as to get an intensive quantity :

σi j =− 1

V0

∂U ∗(γ)

∂γi j

We define the differential stiffness tensor as the Hessian tensor per unit

volume of E∗(γ):

Gi j kl =− 1

V0

∂2U ∗(γ)

∂γi j∂γkl
= ∂σkl

∂γi j

Examples.

This general definitions applied to more restricted contexts reduce to the

following :

Figure 2.1: Example : Euler Elastica buckles
under axial compression

Figure 2.2: Example : Square under shear.

• For a 1D system such as an Euler elastica (Fig. 2.1) of rest length `0 and

end-to-end length `, the strain γ= `−`0
`0

reduces to a scalar, the stress is

obtained by derivatives rules for nested functions :

σ = − 1

`0

d`

dγ

∂U ∗(`)

∂`

= F

which is the force along the filament induced by the compression.
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• For a 2D system such as a square of side `0 (Fig. 2.2) under shear

γ=
(

0 ε

0 0

)
= εp

2

[
1p
2

(
0 1

1 0

)
+ 1p

2

(
0 1

−1 0

)]

, we have ε= tan(θ) = x
`0

, where x is the deviation of the upper side along

y axis, thus :

σ2 = −
p

2

V0

∂U ∗(γ)

∂ε

= −
p

2`0

V0

∂U ∗(γ)

∂x

=
p

2

`0
F

Equates the shear force on the system divided by its reference height.

• For a 3D system under isotropic compression γ =

−α 0 0

0 −α 0

0 0 −α

 we

have V (α) =V0 (1−α)3 and dV
dα =−3V0 (1−α)2

σα = − 1

V0

∂U ∗(α)

∂α

= 3(1−α)2 ∂U
∗(V )

∂V
= 3(1−α)2 P

which equates the pressure up to a geometrical factor.

We also give examples of elastic moduli :

• We take the same 3D isotropic compression as before :

Gα,α = − 1

V0

∂2U ∗(α)

∂α2

= ∂
[
3(1−α)2 P

]
∂α

= 3(1−α)2 ∂P

∂α
−6(1−α)P

= −9V0(1−α)4 ∂P

∂V
−6(1−α)P

= −9(1−α)V
∂P

∂V
−6(1−α)P

Which corresponds to the bulk modulus −V dP
dV around the reference

configuration for which α= 0, and differs from it by a prestress additive

term and a multiplicative geometrical factor away from the reference.
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In the definitions above, we implicitely refered to tensor components in

the Voigt basis. This basis is a convenient choice to avoid dealing with fourth

rank tensors. Furthermore this basis is well suited to understand tensor’s

behavior under rotations as the basis tensors obey simple transformation

rules under rotations.

In 2D, a rank 2 tensor can be written :

T =
(

T11 T12

T21 T22

)

= T0
1p
2

(
1 0

0 1

)
︸ ︷︷ ︸

e0

+T1
1p
2

(
1 0

0 −1

)
︸ ︷︷ ︸

e1

+T2
1p
2

(
0 1

1 0

)
︸ ︷︷ ︸

e2

+T3
1p
2

(
0 −1

1 0

)
︸ ︷︷ ︸

e3

or, with the Einstein summation convention over repeated indices T =
Ti j ei j = TI e I , where ei j are the elementary matrices in canonical basis, and

the e I are the elementary matrices in Voigt basis. They allow to represent

a 2D rank 2 tensor under the form of a length 4 vector, and a rank 4 tensor

as a 4×4 matrix. The Voigt basis allows to read more easily the symmetry

properties of a tensor, indeed e0 is a generator for isotropic compression,

e2 and e3 are generators for shear, and e3 is a generator for rotation8. Then, 8 We make the difference between basis ma-
trices eX X by using either a pair (i j ) of in-
dices or a single capital index I .

we can interpret the components of the elastic tensor as follows : G00 is the

coupling of isotropic compression with itself, G02 is the coupling between

compression and shear, G03 is the coupling between compression and ro-

tation, and so on and so forth for the other components. If the system is

isotropic, we can say that G I 3 and G3I should vanish for all I ’s since there is

no energetic cost to bulk rotation. If it is achiral G02 and G12 may not vanish

as the compression along an axis can induce shear along an other one.

This notation amounts to decomposing the space of 2 rank tensors into

irreducible representations of the group of rotations, and to write tensors in

a corresponding basis. Sometimes, the group of continuous rotations doesn’t

leave the material invariant, and Voigt basis will not simplify the expression of

G I J . Despite our networks display fewer symmetries, we will stick with Voigt

basis, nonetheless we will discuss more deeply the question of symmetry in

the reference units cells (α), (β), (γ) and (δ) in section 3.4.1.

2.2.2 Preliminary attempt through finite differences calculations

Given the definitions in the section above, the evaluation of our observables

boils down to the computation of numerical derivatives of a function f of

several variables xi
9. In this part we present an algorithm to numerically 9 f being U ∗ and the xi the components

γi j .estimate derivatives of a generic function by computing finite differences.

We provide a generating formula for arbitrary order formulae.

First, let f be a function of a single variable x. The multi-variable generali-

sation involves more formalism without fundamental conceptual changes so

we won’t address it.
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To estimate derivatives of f around a point x0, we start from a Taylor

expansion, which provides a link between finite steps and differential calculus

:

f (x0 +h) =
∞∑

n=0

f (n)(x0)

n!
hn

This formula being exact if |h| is smaller than the convergence radius of

the right hand side series.

We can then estimate the derivative thanks to the Taylor expansion of f

around x0

f ′(x0) = f (x0 +h)− f (x0)

h
+O (h2)

up to the order h2. If we implement it however we experiment several

issues :

• If h is too large, the error of order h2 becomes predominant.

• Even if we have an analytical expression for f , we will compute differences

between two really close quantities f (x0) and f (x0 +h) as h decreases.

This is a case in which we face numerical cancelation of least significant

digits. It is often advised not to take h below
p
ε where ε is the machine

precision, or the precision on f 10. This error worsens as we compute 10 S. D. Conte and C. d. Boor. Elementary nu-
merical analysis: an algorithmic approach.
International Series in pure and applied
mathematics. McGraw-Hill, New York, 3. ed
edition, 1987. OCLC: 256318941

higher order derivatives. Typically machine precision is 10−14 in floating

point double precision numbers.

• If we don’t have an analytical expression for f , (for instance in our case

U ∗ is the result of a conjugate gradient minimisation procedure) then

f is evaluated with some relative precision δ f
f which can be larger than

machine precision. This problem will manifest itself at higher finite steps

than cancelation error and lower even more the admissible range for h.

One way to circumvent these issues is to make use of higher precision

finite differences formulae, which we derive below.

For this we adopt an operatorial viewpoint in finite derivatives : we intro-

duce the differentiation operator D : f 7→ f ′ and the finite difference operator

∆h defined by ∆h : f 7→∆h[ f ] : x 7→ f (x +h)− f (x).

The Taylor expansion can be re-expressed operationally as :

(1+∆h)[ f ] = exp(hD)[ f ] =
( ∞∑

n=0

hnDn

n!

)
[ f ]

where the n-th power has to be understood as n iterations of the operator and

the exponential is an operator exponential defined by its series expansion 11. 11 E. B. Davies. Liner Operators And Their
SpectraIf we further introduce the central difference operator δh =∆h −∆−h , we

will cancel even terms in the series, we will see in what follows that it improves

the precision in formulae.

δh[ f ] = 2sinh(hD)[ f ] =
( ∞∑

p=0

h2p+1D2p+1

(2p +1)!

)
[ f ]
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In this formalism, our problem to express the operator D as a function of

finite differences ∆h reduces to an operator inversion. We can perform this

by inverting the sinh series. This is an infinite system of equations to solve

for the coefficients of the unknown inverse series whose solutions is given by

the Argsh series :

D[ f ] = 1

h
Argsh

(
δh

2

)
[ f ] = 1

h

∞∑
p=0

an

2n δ
n
h [ f ]

where the an are tabulated Taylor coefficients of the Argsh series expansion.

Figure 2.3: Estimation of the elastic modulus
G33 (in Voigt basis: coupling between rota-
tion and rotation. We know this modulus
should vanish, and use it as a benchmark
to validate algorithms) by a finite difference
formula accurate up to order h2 in a honey-
comb lattice, prestress in geometry 2. We
notice that the accuracy range for h depends
on the number of cells (2×2 to 8×8) of the
network. This is because conjugate gradient
guarantees a precision on positions in con-
figuration space, the errors are then prop-
agated to the potential energy, which con-
tains more and more terms as we increase
system’s size.

If we look for formulas to compute second derivatives, we merely iterate

the operator D and its approximations twice. This could look like a time-

consuming operation, but it can be fully automated, and the coefficients are

calculated before the actual computations are made. Typically, we worked

with the following h2 accurate formulas: f ′(x0) = 1
hδh[ f ](x0)+O (h2) = f (x0+h)− f (x0−h)

2h +O (h2)

f ′′(x0) = 1
h2 δ

2
h[ f ](x0)+O (h2) = f (x0+2h)−2 f (x0)+ f (x0−2h)

4h2 +O (h2)
(2.1)

We computed numerically the first and second derivatives of the exponen-

tial x 7→ ex as a test function in 2.4 and 2.5 where we took two test functions.

Figure 2.4: Finite difference error in the cal-
culus of a first derivative on the test function
x 7→ ex , with h accurate formula and h2 ac-
curate formula. When h is to high, we accu-
mulate an error of h or h2 according to the
Taylor expansion. When h goes to low, the
relative error increases again due to cancela-
tion error.

Figure 2.5: Same thing for second derivative.
We see that cancellation error gets more dra-
matic than for first derivatives since the rela-
tive differences eventually diverges.

The latter higher order formulas allow in principle a errors in derivative

evaluations since they allow use of larger steps h, which wouldn’t be affected

by finite difference error. In practice, we should use the lowest order formula

that allows an range for h where finite-difference error and cancelation error
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are simultaneously negligible. For example, an order h2 formula is enough in

fig. 2.3, thus we don’t use order 3 and above formulae.

However, a limitation of this technique is that the step h should be ad-

justed for better precision depending on the function you compute the deriva-

tives of, i.e. for us the physical system you are studying. Typically, if we change

system size, parameters in the potential energy, geometry, or we consider

different elastic constants, the choice of h should change. This limitation

makes systematic studies difficult, for this reason we employ the method

detailed in section 2.2.3.

2.2.3 Elegant appoach : using hyperdual numbers

The accuracy problems in the previous section mainly comes from taking

differences of close quantities that are only known with a finite accuracy.

We present here an extension of real numbers that enables computation of

derivatives without such differences.

For this, let us introduce the set of dual12 numbers D as a vector space 12 A. A. Harkin and J. B. Harkin. Geometry of
Generalized Complex Numbers. Mathemat-
ics Magazine, Apr. 2004

of dimension 2 on R with basis vectors noted13 1 and ε. The vector space

13 One way to represent D is to take D = R2,
1 = (1,0) and ε = (1,0). This enables us to
represent them in 2D space, but isn’t neces-
sary to study the purely algebraic properties
that we are interested in here.

structure provides D with an operation +, and an operation of multiplication

by a real number, it enables to construct all the elements of the form a +εb,

(a,b) ∈ R2. Now, we define an operation × between dual numbers by their

multiplication table in 2.6. By construction, the operations + and × reduce

to their usual forms between real numbers. The algebraic construction that

we just made is called a field extension of R, which is nothing but extending a

set to a larger one with compatible algebraic operations ! 14. 14 An other example of a field extension is the
field of complex numbers C, but it is not the
only choice !

× 1 ε

1 1 ε

ε ε 0
Figure 2.6: Multiplication table for dual num-
bers.

As we would do with complex numbers, we define the operations R and

E that take respectively real part and epsilon part of a dual number, they are

mere projectors along components on the representation space.

We also define all the usual functions on D by their series expansions:

∀x ∈D, f (x) =
∞∑

n=0
an xn

Then it naturally follows that,

∀x ∈R, f (x +ε) =
∞∑

n=0
an(x +ε)n

=
∞∑

n=0
an(xn +nεxn−1)

=
∞∑

n=0
an xn +ε

∞∑
n=1

nan xn−1

= f (x)+ε f ′(x)

where we used the hyperdual number properties, making (x +ε)n trivial to

compute as its Newtons’ expansion only contains two terms.
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Finally, a way to compute a derivative is given by f ′(x0) = E
[

f (x0 +ε)
]

which doesn’t involve any finite difference operation !

It is worth noting that this relation is exact. In other terms, our generalized

operations embed rules for automatic differentiation15. To benefit from it,

15 A. G. Baydin, B. A. Pearlmutter, A. A.
Radul, and J. M. Siskind. Automatic dif-
ferentiation in machine learning: a survey.
arXiv:1502.05767 [cs, stat], Feb. 2015. arXiv:
1502.05767

we just need to implement an hyperdual class, the overloaded operations

associated to it, and to define the usual functions of interest. We used Jeffrey

Fike’s C ++ implementation Jeffrey Fike’s C ++ implementation of hyper-
dual numbers is available at http://adl.
stanford.edu/hyperdual/#Code

× 1 ε1 ε2 ε1ε2

1 1 ε1 ε2 ε1ε2

ε1 ε1 0 ε1ε2 0
ε2 ε2 ε1ε2 0 0
ε1ε2 ε1ε2 0 0 0

Figure 2.7: Multiplication table for hyperd-
ual numbers.

However dual numbers enable only first derivatives calculations, and

elastic moduli are quantities of order 2. We thus proceed to a new field

extension with basis vectors 1, ε1, ε2 and ε1ε2. The multiplication table for it

is presented in table 2.7, we call these number hyperdual numbers, we note

their set H. By the same generalizations as before, we can show that :

∀x ∈R, f (x +ε1 +ε2) =
∞∑

n=0
an(x +ε1 +ε2)n

=
∞∑

n=0
an

(
x +nan(ε1 +ε2)+ n(n −1)

2
anε1ε2

)
= f (x)+ (ε1 +ε2) f ′(x)+ 1

2
f ′′(x)ε1ε2

Figure 2.8: We computed relative differences
of ( f (h)− f (0))/h and f ′(0) on one hand, of
E1

[
f (0+hε1)

]
/h on the other hand. For the

finite differences formula, we see a cance-
lation error-dominated regime, and a finite
step error-dominated regime. Hyperdual cal-
culation on the other side is always accurate
up to machine precision, without a need to
adjust h !

This result is again exact, by construction. Henceforth, this new field

extension allows us to perform automatic differentiation up to order 2. This

process can be extended to higher order but multiplications get heavier

each time : we need find a tradeoff between computational time and full

knowledge of a function. Hyperdual derivation remains much faster than

symbolic differentiation.

Figure 2.9: We computed relative differ-

ences of
f (2h)−2 f (0)+ f (−2h)

4h2 and f ′′(0) on

one hand, of
E12[ f (0+h1ε1+h2ε2)]

h1h2
on the

other hand. For the finite differences for-
mula, we see a cancelation error-dominated
regime, and a finite step error-dominated
regime. Hyperdual calculation on the other
side is always accurate up to machine preci-
sion, without need to adjust h !

Example : We use this method to compute the first and second derivatives

of the test function:

f (x) = e
p

2+sin(x)

which has been chosen because it will test out rules for nested derivatives

computed thanks to hyperdual numbers.

To perform our tests, we can compute explicitely :

f ′(x) = e
p

2+sin(x) cos(x)

2
p

2+ sin(x)

f ′′(x) = e
p

2+sin(x)
(−2sin(x) (2+ sin(x))+cos2(x)

(p
2+ sin(x)−1

))
4(2+ sin(x))3/2

These formulae being used in figures 2.8 and 2.9.

Final algorithm :

At this stage, our issue remains unsolved because we don’t have an analytic

form for E∗(γ). Indeed, E∗(γ) is defined implicitely by the following set of

equations :

E∗(γ) = E(γ,ui(γ))

∇uE
(
γ,u

)= 0 =⇒ u = u∗(γ)

http://adl.stanford.edu/hyperdual/#Code
http://adl.stanford.edu/hyperdual/#Code
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Where u∗(γ) is guaranteed to be a local solution of the zero force condition

for smooth enough E functions. On the other hand the γ dependency in E is

imposed by boundary conditions.

Therefore our problem is to compute second derivatives of a function

defined implicitely. If we step back to genericity, we would like to compute

derivatives of f defined by :

 f (x) = F (x,u∗(x))

G(x,u) = 0 =⇒ u = u∗(x),

u∗(x) being two local differentiable expressions guaranteed to exist by the

implicit function theorem through the G(x,u) = 0 condition. The cartoon

in Fig. 2.10 shows a typical case. In particular, G doesn’t need to be related

to derivatives of F , it only needs to define an implicit u∗. From the above

relation we can deduce relations between derivatives of u∗ : Figure 2.10: The microscopic degrees of free-
dom u evolve in the energy landcape of F ,
and this landscape itself evolves with x. u
follows the curve u∗(x), local solution of
G(x,u) = 0. The derivative of f taken at x has
two contributions : u moves along u∗(x) in
a fixed landscape, and the landscape evolves
at point u∗(x) between x and x+d x. For sec-
ond derivative, the graphical interpretation
would get more convoluted, but the algebra
in equation 2.3 says nothing more.


d f
d x (x) = ∂F

∂x +∇uF · du∗
d x

∂G
∂x +

(
du∗
d x ·∇u

)
G = 0

(2.2)

and its second derivatives :
d 2 f
d x2 (x) = ∂2F

∂x2 +2 ∂∇uF
∂x · du∗

d x +
((

du∗
d x ·∇u

)
∇uF

)
· du∗

d x +∇uF · d 2u∗
d x2

0 = ∂2G
∂x2 +2

(
du∗
d x ·∇u

)
∂G
∂x +

(
d 2u∗
d x2 ·∇u

)
G+

(
du∗
d x ·

((
du∗
d x ·∇u

)
∇u

))
G

(2.3)

where all occurrences of F , G and their derivatives are evaluated in (x,u∗(x)),

and all occurrences of u∗ and its derivatives are evaluated at x.

Henceforth, we notice that du∗
d x is solution of the linear system (2.2) and

the second derivatives d 2u∗
d x2 are solutions of the linear system (2.3).

Thanks to hyperdual numbers properties, these two systems can be rephrased

as follows for two unknown vectors a and c:
d f
d x (x) =E1

[
f
(
x +ε1,u∗(x)+ε1

du∗
d x (x)

)]
0 =E1 [G (x +ε1,u∗(x)+ε1a)] =⇒ a = du∗

d x (x)
(2.4)

and
d 2 f
d x2 (x) =E12

[
f
(
x +ε1 +ε2,u∗(x)+ε1

du∗
d x (x)+ε2

du∗
d x (x)+ε1ε2

d 2u∗
d x2 (x)

)]
0 =E12

[
∂G
∂x

(
x +ε1 +ε2,u∗(x)+ε1

du∗
d x (x)+ε2

du∗
d x (x)+ε1ε2c

)]
=⇒ c = d 2u∗

d x2 (x)

(2.5)

The power of hyperdual numbers manifests in two respects :

• Hyperdual numbers automate the cumbersome calculation made on equa-

tions (2.2) and (2.3). The main point in making these calculations was to

prove that the systems to solve is linear.
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• They provide a way to compute the second derivative of an implicit func-

tion up to the precision of the linear solver. This is done without finite

differences issues. Moreover the precision of the linear solver remains the

same for first order derivatives and second order ones. Finite differences

methods on the contrary worsened as we went higher in derivatives order.

This part was a proof of concept in the one dimensional case, it didn’t

explain how to solve the problem in a concrete case, it only shows that a

system of equations can be obtained for the derivatives, without computing

differences, it prooves that this system is linear. Now we will translate it to

our original problem of computing elastic constants.

If we step back to our original problem, the variable x changes from a sin-

gle variable to a set of matrix coefficientsγI , I being a Voigt index. This doesn’t

introduce conceptual complexity : we just lose the geometrical interpretation

of fig. 2.10 since the implicit curve becomes an implicit hypersurface in a

higher dimension space. f becomes U ∗, F becomes U and G becomes ∇uU

(this gradient being taken with respect to all d N coordinates in configuration

space).

U ∗(γ) =U
(
γ,u∗(γ)

)
∇uU

(
γ,u

)= 0 =⇒ u = u∗(γ)

We first find u∗(γ) by using a conjugate gradient algorithm. Then, we

introduce the variables aI, bJ, and cIJ as unknown vectors, we solve the linear

system of equations :

U ∗(γ+ε1e I +ε2e J ) =U
(
γ+ε1e I +ε2e J ,u∗+ε1aI +ε2bJ +ε1ε2cIJ

)
0 =∇uU

(
γ+ε1e I +ε2e J ,u∗+ε1aI +ε2bJ +ε1ε2cIJ

) (2.6)

The underlined quantities being understood as hyperdual versions of the

corresponding real quantities. The e I are elementary Voigt matrices. They

allow a virtual deformation of the system in a hyperdual direction. The real

parts equality is guaranteed by the conjugate gradient solution, the E1 and E2

equalities are guaranteed by a linear solving, they provide the stresses σI and

σJ . Finally, the E12 part is solution of a second linear problem, it provides the

stiffness coefficient K I J . To build the full stiffness matrix, we need to call this

solver for all (I , J ) non trivial pairs. The trivial pairs being those associated to

rotations, and half of the (J , I ) pairs, which equate the (I , J ) pairs.
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More compactly, the solution provides :

aI = du∗
dγI

bJ = du∗
dγJ

cIJ = d 2u∗
dγI dγJ

R
[
U ∗(γ+ε1e I +ε2e J )

]=U ∗(γ)

E1
[
U ∗(γ+ε1e I +ε2e J )

]=−V0σI

E12
[
U ∗(γ+ε1e I +ε2e J )

]=V0K I J

(2.7)

This algorithm is original, it has been designed by the author of this thesis.

2.2.4 Comparing the two methods

To conclude, we compare the two above mentionned methods to compute

elastic moduli. First of all we can reproduce the results of fig. 2.3 con-

cerning the coupling between rotation and rotation. Taking the same sys-

tem, and computing the same benchmark, the hyperdual algorithm gave

0.145538.10−14 for a 2× 2 system, 0.985432.10−14 for a 4× 4 system, and

0.463597.10−14 for a 8×8 system, validating the benchmark up to machine

precision for this elastic constant.

On the other hand we can study a chain of springs lying along x axis, they

all have a rest length of 1, and their stiffnesses alternate between µ1 and µ2.

This system is the simplest system we can build that would exhibit non-affine

displacement when compressed, it will help provide a best case estimate

for the accuracy the hyperdual method. The accuracy of linear solver being

limited by the accuracy of the linear solver. For the system of equation not

no be trivial, we had to test on a system displaying non-affine displacement,

we thought this one was appropriate.

Figure 2.11: Unit cell of a chain of springs
with stiffnesses µ1 and µ2, µ1 > µ2 under
compression. They are in series, so their
compliances add up.

We will study an unit cell of this system made of two springs, and ap-

ply to it a strain γ through Lees-Edwards periodic boundary conditions as

represented in fig. 2.11.

Figure 2.12: Relative difference between ana-
lytic result and hyperdual calculation of the
compression modulus. κ = 10000, µ1 = 10
and µ2 = 1000. This gives a best case esti-
mate.

The potential energy of this unit cell reads :

U (`1,`2) = µ1

2
(`1 −1)2 + µ2

2
(`2 −1)2

The Lees-Edwards boundary constraint reads:

`1 +`2 = 2(1−γ)

Thus the energy

U (`1,γ) = µ1

2
(`1 −1)2 + µ2

2

(
1−2γ−`1

)2

We can minimise it with respect to `1 so as to get at equilibrium

`1 = 1− 2γµ2
µ1+µ2

`2 = 1− 2γµ1
µ1+µ2
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so that

U ∗(γ) = γ2 2µ1µ2

µ1 +µ2

Finally, the bulk modulus reads :

G = 1

2

d 2U ∗(γ)

dγ2

= 2µ1µ2

µ1 +µ2

In other terms, the chain of springs associated in series can be replaced by

a chain of identical springs whose compliance is the average of compliances

of the springs16, namely 1
µeq

= 1
2

(
1
µ1

+ 1
µ2

)
. 16 The compliance is the inverse of the stiff-

ness.We can use this exact expression to compute relative differences between

the true result and the hyperdual result, for this computation we took κ =
10000, µ1 = 20 and µ2 = 2000, we show the result in fig. 2.12. This example

shows that a best case approximation for the accuracy of the method is

machine precision, even in presence of non affine displacement, provided the

linear inversion reaches such a precision. In practice, we set the convergence

criterion on the linear inversion to 10−10 for systems with more degrees of

freedom.

This reliability is made possible to the price of a more costly evaluation

of energy as each call to a mathematical function becomes calls to several

functions, each hyperdual multiplication requires 9 real multiplications and

5 real additions, and each hyperdual addition requires 4 real additions. The

easiest way to count it is to look directly at the Fick’s library we mentioned

above.

2.3 Apply an external stress to the material

When we considered systems with residual internal stresses, we faced the

necessity to find a configuration with vanishing average stress. Indeed as soon

as we apply stress at a microscopic level on forks, the reference configuration

experiences stresses on its edges and tends to contract. In this section we

address the more general issue to find the strain that ensures an imposed

boundary stress. For this we will make a minimisation in two steps, the first

step relaxes microscopic degrees of freedom through conjugate gradient, as

described before. The second step takes the output of the first simulation to

compute U ∗(γ) and equates its derivatives to the applied stress.

2.3.1 Exert a finite stress by using Nelder-Mead algorithm

Figure 2.13: Residual stress on the bound-
aries of the geometry (α), after Nelder-Mead
minimisation to find a zero stress configura-
tion. We varied δθ0 from 0 to π

3 in 50 steps.

We want to apply a boundary stress to the edges of a material instead of

a strain. For this, we need to consider the coefficients of γ as degrees of

freedom and to minimise the following energy with respect to ui and γ :

H
(
Σ, {γI ,u}

)
:= E

(
γ,u

)−γIΣI
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This is done in two steps : a first step uses conjugate gradient to obtain

E∗(γ) and a second one uses a Nelder-Mead algorithm 17 to minimise 17 J. A. Nelder and R. Mead. A Simplex
Method for Function Minimization. The
Computer Journal, Jan. 1965

H∗(Σ,γ) := E∗(γ)−γIΣI

with respect to γ.

In particular we use it to find zero stress states once the prestress parame-

ters in our system have been settled. It is of major importance if you consider

the fact that the zero stress state of a system can involve shear with respect to

the honeycomb configuration.

To validate the accuracy of the procedure, we took the geometry (α) with

the standard set of parameters discussed on chapter 1, for δθ0 going from 0

to π
3 . We looked for the strain which corresponded to a zero boundary stress

and plotted the squared norm of this stress
p
ΣIΣI (Einstein summation over

Voigt indices is involved) as a function of δθ0. The results are presented in

fig. 2.13. This method converges generally towards boundary a stress of order

10−5. Typically, when we obtain a convergence above 10−4, we reiterate the

Nelder-Mead minimisation after adding a random infinitesimal strain to

make sure of the reference configuration and reduce the residual stress on

edges. It is worth noting that this is an empirical decision. We must say that

the measuremement above is absolute and not relative, in practice we should

compare the residual stress after minimisation to a typical scale of stress. For

instance this scale can be the stress induced on the boundaries when we

apply a strain. Here, as we increase δθ0 from 0 to π
3 ,

p
ΣIΣI goes typically

from 0 to 150 in the initial configuration, meaning Nelder-Mead algorithm

relaxes the stress by 7 orders of magnitude closer to 0 : the algorithm does

the job and we didn’t try to improve it !

However, we must notice that this two-steps algorithm is time consum-

ing because the time required to compute U ∗(γ) grows with system’s size,

henceforth, we can’t use it systematically of large systems.

2.4 Code structure

In this section we discuss the structure of our code. We think it can help

future use of it and serve as a simplified user manual. It can also help the

reader find appropriate tools to write extensions of the code, to create a new

one from it, or to learn about tools/libraries for other code projects.

Before we present the code into further details, we will have an overview of

its structure. We run the code as soon as we want to simulate a fiber network

and compute mechanical observables about it. For this we write an XML

input file, we execute the code either locally or on a computation cluster,

we retrieve results into text/binary files, and we analyse them by means of

Python scripts.

Concerning coding languages, we chose C++ for its computational effi-

ciency, and Python for its handy data analysis libraries. Every library in use is
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free, they are the following :

• GNU scientific library for numerical optimisation.

• The Eigen 3 library for linear algebra.

• The pugiXML library for XML trees handling.

• The matplotlib library in Python for data plotting.

• The jsoncpp library for data serialisation.

• The for Python serialisation.

• The hyperdual library to handle hyperdual numbers.

2.4.1 XML input file, available functionalities

This section is more specifically devoted to future users of the code. We

present the XML input file that contains the instructions for execution, we de-

scribe the custom syntax in use. Using such an input file enables to automate

runs without building the whole C++ project again each time.

The input file takes form of an XML file since it enables to encode nested

key/values pairs in a legible fashion. The syntactic highlightning that comes

with many text editors further improves this legible aspect, which is conve-

nient to fastly adapt simulations. Finally, the tree-like structure of an XML

file enables every combinations of single independant instructions which

makes the code very flexible to use, furthermore the parsing auto detects

input errors and gives feedback to the user on typing errors.

Here is a non exhaustive list of allowed instructions :

• "CREATE" creates a network from a network input file, sets the boundary

conditions, sets the number of subedges per strand and auto-adapts the

stiffnesses accordingly, it can also deplete the network.

• "Stretching" selects the force extension relation, it sets the stretching

constant in every edge of the system according to a normal distribution

of prescribed average and width. It auto-adjusts constants them to the

number of subedges so as a filament made of n strands converges towards

the continuous limit we discussed in previous chapter.

• "Bending" sets the bending constant in every hinge of the system. It

auto-adjusts them to the number of subedges in filaments.

• "Prestress" sets the forks preferred opening angle δθ0 in every edge of

the system according to a normal distribution of prescribed average and

width, it also sets the prestress intensity g .

• "ApplyStrain" applies a strain γ among several templates of usual deforma-

tions (axial compression, pure shear, simple shear, isotropic compression

...). It doesn’t include relaxation for microscopic degrees of freedom.
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• "ApplyStress" applies a stress σ among several templates of usual stresses

(axial compression, pure shear, simple shear, isotropic compression ...),

it includes relaxation for microscopic degrees of freedom and for strain,

which are now degrees of freedom. Default values that work most of the

time are taken to initialise minimizers.

• "CG" relaxes the microscopic positions of sites by means of a GSL conju-

gate gradient minimiser, under the contraint to satisfy boundary condi-

tions.

• "NelderMead" minimises U ∗(γ) by means of a Nelder-Mead algorithm

with tunable parameters (sometimes avoids absurd results).

• "ComputeElasticTensor" computes full elastic tensors by means of hyper-

dual number algorithm.

• "WRITE" enables to write system’s configuration with an adjustable level

of details.

• "ResetPositions" enables to reset or randomize positions, and to reset

strain.

• "ForLinear" allows to loop instructions over variable v̈ar̈, between values

spanning from "begin to "end", according to an arithmetic progression

(addition of a constant step, if "log"=0) or to a geometric progressions

(multiplication by a constant factor, if "log"=0).

• "ForEnum" allows to loop instructions over a list of values for variable v̈ar̈.

We show an example file for an input file in code below.

<!-- PROGRAM v7.0 - Tests -->

<INSTRUCTIONS>

<CREATE>

<Lattice string = "HONEYCOMB2"

/>,→

<Shape intX = "10" intY="10" intZ="1"

/>,→

<PercolationP double = "1.0"

/>,→

<Lambda double = "1.0"

/>,→

<SubEdges int = "10"

/>,→

<Boundaryconditions string = "PERIODIC"

/>,→

<CircularDomain enabled = "false">
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<Center x="0" y="0"/>

<Radius double = "0.0" />

</CircularDomain>

<RectangularDomain enabled = "false">

<Dimensions x="0" y="0" />

</RectangularDomain>

</CREATE>

<Stretching>

<ForceExtensionRelation string = "Hooke" />

<AvgStiffness double = "1000."/>

<StdStiffness double = "0.0"/>

</Stretching>

<Bending double = "1.0" />

<Prestress>

<PrestressG double = "100"/>

<dTheta0Avg double = "0.52359877559"/>

<dTheta0Std double = "0.0" />

</Prestress>

<ForLinear var = "gamma" begin = "0.2" end = "-0.6" N =

"100" log = "0">,→

<ApplyStrain>

<RotateStrain enabled = "false"

double = "0.0"/>

<gamma double = ""

string = "PureDilation"/>

</ApplyStrain>

<CG>

<ALGO string = "BFGS" />

<Maxiter int = "100000" />

<GradientTol double = "0.0" />

<LineTol double = "0.001" />

<InitialStep double = "0.01" />

</CG>

<Write>

<Directory string = "../RESULTS/" />

<SaveNetworkFile enabled = "true" />

<RecordConfig enabled = "true" />

<RecordForces enabled = "true" />

<RecordForks enabled = "false" />
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</Write>

<ResetPositions>

<ResetNonAffinities enabled = "false" />

<ResetStrain enabled = "false" />

<RandomizeNonAffinities enabled = "true"

double = "0.1" />

</ResetPositions>

</ForLinear>

</INSTRUCTIONS>

2.4.2 Code documentation

We documented C++ code by means of the Doxygen software and its tools for

graphical visualisation. This software enables to create an html documenta-

tion of a project and to keep track of its structure. In particular it enables to

plot class hierarchy graphs, and call graphs for functions such as in fig. 2.14.

The whole documentation is available upon request, it is not available on-

line because of its weight. A few comments must be done concerning the

essential points that led to code efficiency :

• The project is object oriented, and every instruction available on the input

file is a class that inherits from the metaclass Instruction. Keeping this

logic allows to implement new functionnalities without breaking old ones.

• Simulations can be done in 2D or in 3D. However we didn’t use dynamically

allocated vectors in the Eigen library as they are slow to compute with.

Instead, we built every class as a template taking space dimension as

an input and make inner use of statically allocated vectors so as to keep

efficiency at run time.

• Simulations can be made using either double or hyperdual data types,

since each class is a template that takes data type T as a parameter.

instrFromFile

expandAllEnums

expandAllForLinear

expandForEnum

expandForLinear

exp

log

Figure 2.14: Call graph generated by Doxy-
gen for the function that reads an XML file,
expands loops, and allocate in memory the
instantiations of "Instruction" classes.





3

Linear response in presence of residual stresses

In this chapter we investigate the effects of residual stress on the linear re-

sponse of 3-coordinated fiber networks in 2D. Section 3.1 explains our choice

of geometry. Section 3.2 presents the results of a linear computation for the

shear modulus and bulk modulus around a configuration with zero boundary

stress. Section 3.3 presents a theoretical model to help rationalize how elastic

moduli get altered by residual stress. The section 3.4 discuss the limits of

validity for this model. Finally 3.5 summarizes the important results .

3.1 Choice of geometry

In this section we present two factors which affect dramatically the mechanics

of networks : their connectivity, and the residual stresses they store. We

devote a subsection to each of these to motivate our choices of geometry and

prestress.

3.1.1 Connectivity of fiber networks

Figure 3.1: Phase diagram for the different
regimes of a depleted triangular lattice. Sur-
vival probability of an edge during depletion
is labeled p, and the dimensionless ratio of
bending over stretching constants is κ

µa2 ,

shear modulus is labeled G . From Broedersz
and MacKintosh, 2014.

The connectivity of fiber networks impacts dramatically their mechanical be-

haviour. Indeed, we can predict the existence of mechanisms in the network

by comparing its number of degrees of freedom and its number of constraints,

a mechanism, or zero-mode, is a mode of deformation which doesn’t cost

energy. This counting s known in litterature as Maxwell’s criterion1,2. The 1 J. C. Maxwell. The Scientific Papers of James
Clerk Maxwell. Cambridge University Press,
Cambridge, 2011
2 C. Calladine. Buckminster Fuller’s “Tenseg-
rity” structures and Clerk Maxwell’s rules for
the construction of stiff frames. Interna-
tional Journal of Solids and Structures, 1978

average connectivity of the network is a control parameter for a rigidity phase

transition which has been studied in 3 for lattice networks, in 4 for off-lattice

3 C. P. Broedersz, X. Mao, T. C. Lubensky, and
F. C. MacKintosh. Criticality and isostaticity
in fibre networks. Nature Physics, Oct 2011
4 E. M. Huisman and T. C. Lubensky. Internal
Stresses, Normal Modes, and Nonaffinity in
Three-Dimensional Biopolymer Networks.
Physical Review Letters, Feb. 2011

networks.

Maxwell’s is a criterion that only considers the overall topology of a net-

work, by computing the number of its degrees of freedom and comparing it to

its number of constraints. This mean-field argument can be contradicted by

specifically designed structures, nonetheless it appeared robust to estimate

phase transitions in random models. Namely, it was tested out on regular

lattices depleted with a probability p or an on off-lattice networks with an av-

erage coordination z. In both cases, the criterion predicts very accurately the
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critical point for the rigidity transition given by a system-specific simulation.

Figure 3.2: A triangular lattice in 2D is hyper-
static, as a result shearing costs energy.

Figure 3.3: A honeycomb lattice in 2D is hy-
postatic, there is a shear soft mode which
involve nor extension nor bending. We also
represent an unit cell and its sites in black.

For the on-lattice case, the argument reads as follows : let’s consider a

random lattice in dimension d , with N sites, and Nb bonds, connected with a

propability p. We count each edge of length ` as a constraint `= `0, and each

hinge as (d −1) angular constraints. The number of degrees of freedom is d N .

The number of stretching constraints is pNb as bonds are connected with

probability p. The number of bending constraints is (d−1)Nb p2 as two bonds

must be connected to form a hinge. A lattice is thus stabilized by stretching

if pNb ≥ d N . It is stabilized by bending modes if d N ≤ pNb + (d −1)Nb p2

(which has only one positive root). This is in quantitative agreement with

fig. 3.1 which shows that a phase transition is controlled by p, the order

of this transition however might be system-dependant. This figure indeed

shows more, beacause it also considers the ratio κ
µ of bending stiffness over

stretching stiffness. It displays that, for unflexible networks, the network

pass straight from a stretching dominated regime where shear modulus

scales with stretching stifness to a floppy regime. At the opposite limit, for

flexible networks, where stretching constants dominate over bending ones,

the networks get display three regimes, cascading from stretching dominated

to bending dominated to floppy. In between, there is the existence of a mixed

phase, and the transition is not sharp.

We don’t give the argument for the off lattice case, since it is very similar.

This behaviour, according to which the elastic response of a network is

dominated by its connectivity, display the universal phenomenolgy of phase

transitions, such as critical exponents and scale invariance. For this reason it

motivated a generic terminology in litterature. We call hypostatic a network

below the critical point, hyperstatic a network above it, isostatic a network

which is exactly at the critical point.

Examples Below we give a few examples of networks, we count their de-

grees of freedom, their number of constraints, and classify them according to

the above terminology.

• Hyperstatic : A triangular lattice with N = 2 edges per bond has 8 degrees

of freedom per cell, 6 stretching constraints, and 6 bending constraints. It

is hyperstatic. We can’t deform it without performing work as we can see

in fig. 3.3.

• Hypostatic : The honeycomb lattice in 2D with two edges per bond. An

unit cell of it has 5 sites and 6 edges. The number of degrees of freedom

is thus 10 as we are in 2D, and the number of constraints is 6+3 = 9. The

network is thus hypostatic (we counted shearing constraints + bending

ones), which translates into the activation of a zero mode when shearing

it. It is worth noting that the number of edges per bond is in fact irrelevant,

since adding one edges in a bond adds two degrees of freedom, but adds

two constraints (on one length, and one angle). We show a shearing mode

in 2D in fig 3.3.
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• Isostatic : the four frames in figure 3.4 satisfy exactly Maxwell’s criterion (if

we remove trivial translation and rotation zero modes). By changing the

positions of its building blocks, we see that we can create mechanisms.

However, we can see in the figure 3.4 that Maxwell’s criterion can fail at pre-

dicting the existence of stiff/soft modes. Indeed, by reconnecting bonds else-

where, we can always create soft modes to the price of state of self stresscm-4. -4 A state of state of self stress is a set of forces
that an operator can apply and still preserve
the equilibrium of the system.

This result is detailed in 5, the figure is extracted from this paper.

5 T. C. Lubensky, C. L. Kane, X. Mao,
A. Souslov, and K. Sun. Phonons and elastic-
ity in critically coordinated lattices. Reports
on Progress in Physics, July 2015

Figure 3.4: Several structures that show that
counting constraints sometimes fails at pre-
dicting network’s stiffness. From Lubensky
et al. 2015. Indeed, (a) has two soft modes,
(b) one soft mode and one state of self stress,
(c) has two self-stress states, (d) has hone
soft mode and one self-stress state

Furthermore, it is worth noting that Maxwell’s criterion applies well for

networks at rest. Nonetheless there exist several ways to stiffen an hypostatic

network by disturbing its equilibrium :

• Global prestress This phenomenon where a structure has its stiffness in-

creased under stress is general. A famous example is at the very principle

of many musical instruments : if we put a rope under tension, it ends up

with a finite transverse stiffness, proportional to the tension. The same

holds for a 2D structure such as a skin put under stress by a adjustable

metallic circle in a drum set... In our context, if we put the honeycomb

lattice under tension by applying an isotropic strain to it, the shearing

soft-mode will end up with a finite stiffness.

• Tensegrity Alternatively tensegrity structures, can provide a network made

of a mixture of soft elements and stiff elements with a finite stiffness6. It 6 D. Stamenović and D. E. Ingber. Tensegrity-
guided self assembly: from molecules to liv-
ing cells. Soft Matter, 2009

comes into play for systems made of non linear elements with comple-

mentary non linearities like ropes which are soft under compression and

stiff under extension, and metallic rods which are stiff under compression

and can break under extension.

• Residual stresses Bundled actin displays many residual stresses at a lo-

cal scale because of unsatisfied constraints in a self-assembled network.

This question has been addressed recently7 numerically, having hydrogel 7 A. Bose, M. F. J. Vermeulen, C. Storm, and
W. G. Ellenbroek. Self-stresses control stiff-
ness and stability in overconstrained disor-
dered networks. Physical Review E, Feb. 2019

metamaterials in mind. Ine remains however an open question. This is

what we study in this thesis.

We choose to work with a honeycomb network in 2 dimensions which has

a connectivity of 3, and the model of forks we made in chapter 1 requires

3 coordinated nodes. Furthermore, it is hypostatic from the viewpoint of

bending and stretching, which makes it a good candidate to be stiffened by

residual stress.
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We search how it is affected by the presence of forks which generate resid-

ual stresses. The question of distributing these forks over the network was

already addressed on section 1.4. We concluded that four representants en-

compassed all the invariance group of a honeycomb network in figure 1.10 :

we will make measurements systematically over the representants (α), (β),

(γ) and (δ) of these classes.

3.2 Linear Results

In this section we characterise linear elastic response of the unit cells, only

considering bulk modulus and shear modulus in a first time, considering the

three non zero eigen values of the stiffness tensor in a second time.

3.2.1 Parameters in use

The parameters in use have been the same as those determined in Chapter

1, i.e. filaments subdivided into N = 4 parts, a bending stiffness κ = 1, a

stretching stiffness µ= 1000, a strong clamp on each fork with g = 500. We

varied however the opening angle of forks at rest, δθ0, between its accept-

able physical limits (i.e.without overlapping filaments) − 2π
3 and π

3 which

correspond to the physical situations represented in fig. 3.5 where forks are

respectively fully open and fully closed.

For each of the values of δθ0, we equilibrated the network to a zero bound-

ary stress state, then we measured its elastic moduli. We did this for the

geometries (α), (β), (γ) and (δ). We first comment on their isotropy, we then

make a systematic measurement of shear modulus and bulk modulus.

3.2.2 Unit cells response

Figure 3.5: The physical limits for forks are
reached for δθ0 =− 2π

3 (fully open fork) and
δθ0 = π

3 (fully closed fork) in the case of the
geometry (α).

The experiment we made was to first set δθ0 to a given value between the

physical bounds −2π
3 and π

3 . We selected the bounds −2π
3 and π

3 for δθ0 which

correspond to the forks being fully open and fully closed. To realize these

plots, we started from δθ0 = 0 and slowly increased (resp. decreased) its

value, we then gathered the results into a single plot for positive and negative

values.

Bulk Modulus. Here we display the bulk modulus K of the rest configura-

tion as a function of δθ0 : in fig. 3.6.

From these graphics, we see that the material becomes softer under

isotropic compression when |δθ0| increases (at least in the vicinity of 0).

We can get a qualitative understanding of it if we realize the following : the

bulk modulus K =−A0
∂P
∂A . However for δθ0 = 0 the area would be maximal

for inextensible filaments, since the geometry is hexagonal. Thus for an small

pressure increment δP , the relative variation in area would be of order δP 2,

making K diverge. In practice K gets regularised at the scale of µ= 1000 and
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Figure 3.6: Bulk modulus as a function of
δθ0. δθ0 = 0 means that the target geome-
try is honeycomb. In this case the orienta-
tion of forks no longer plays a role, so the
four moduli are the same at this value. As
soon as δθ0 6= 0 the four geometries differ-
enciate, however in each case the prestress
into forks induces a softening of the material.
The color of dots is redundant with the value
of δθ0, however it will help in comparing fig-
ures in chapter 4.
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probes extensibility of filaments. This is why the stiffness is of this order of

magnitude.

Shear Modulus. We now present the results for the shear modulus G

measured as a function of δθ0 depending on the geometry in figure 3.7.

Figure 3.7: Shear modulus as a function of
δθ0. δθ0 = 0 means that the target geometry
is honeycomb. In this case the orientation
of forks no longer plays a role, so the four
moduli are the same at this value. No univer-
sal trend cand be drawn : the prestress can
induce either a softening or a stiffening of
the material.

On these plots, the conclusion concerning the material stiffening is not

as universal as for bulk modulus. Indeed the shear modulus doesn’t always

have a monotonous trend. Furthermore the trend for small δθ0 depends on

the geometry we are considering.

On these two sets of curves, we realise that discontinuous events occur

for the highest values of |δθ0|. Up to now we did not pay attention to it, but

if we think about the Nelder-Mead algorithm to relax boundary stress, we

notice that we are not guaranteed to find the closest one in strain space. As a

consequence, the sudden jumps in elastic moduli suggest the existence of

several zero boundary stress states. This could be the signature of instabilities

leading to the collapse of the cell, which may be favoured by the topology of



L I N E A R R E S P O N S E I N P R E S E N C E O F R E S I D UA L S T R E S S E S 65

surrounding forks. These instabilities can be studied through the non linear

strain of the system, which is the object of chapter 4. For now however, we

will leave them appart and close our eyes on the highest values of δθ0 for the

linear curves to come.

3.2.3 Assembly response

When we dealt with spatially extended systems, we did not see deformation

patterns exceeding the scale of one unit cell. In other terms, the cristalline

symmetry isn’t broken by the presence of prestress. The prestress doesn’t

couple unit cells between each other unless it lies on non regular patterns,

which we didn’t study enough to comment on a quantitative basis.

3.3 A model to explain linear stiffening in presence of residual

stresses.

The previous section showed that residual stresses could lead to either stiff-

ening or softening of a material. However it has been made on a specific

kind of systems and doesn’t tell about generic networks. For this reason this

section presents the formalism drawn by in ref 8. This formalism defines 8 T. C. Lubensky, C. L. Kane, X. Mao,
A. Souslov, and K. Sun. Phonons and elastic-
ity in critically coordinated lattices. Reports
on Progress in Physics, July 2015

states of infinitesimal self-stress states and zero modes/mechanisms. We

then extend this formalism to the case where forces are not central. Indeed,

because of the forks, filaments can be subject to torques, which induce a

different kind of self-stress states. We believe that the existence of such states

under tension is able to change the stiffness of the materials. For this reason,

our generalisation is necesssary.

3.3.1 Self-Stress states and mechanisms, in absence of torque

Figure 3.8: Tensegrity structure with cables
under extension and rods under compres-
sion. A Snelson-Fuller sculpture in the grad-
uate college courtyard at Princeton.

Let’s consider networks of fibers with N sites and Nb bonds around an equi-

librium reference position. If we displace sites by an amount U ∈Rd N , bonds

have an extension E ∈ RNb , sites feel a force F ∈ Rd N and bonds a signed

tension T ∈RNb . We can fully obtain tensions T from forces F. Likewise, we

can fully obtain the extensions E from the displacements U. We have the

linear relation :

QT = F

C U = E
(3.1)

Where Q is a d N ×Nb matrix and C a Nb ×d N one.

We define self-stress states as a set of tensions that all compensate so that

the system doesn’t feel a force, namely F = 0 but T 6= 0. We define zero-modes

as displacements that doesn’t involve extension of bonds, i.e. E = 0 but U 6= 0.

In this infinitesimal formalism they are thus vectors of the kernel of Q and C .
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A self-stress state require a coexistence of tensions and extension. They

are at the basis of tensegrity structure, which are stiff structures in which soft

elements in extension compensate for compression of stiff elements as in

fig. 3.8.

Figure 3.9: Springs state of self stress, the
x axis in along the symmetry axis. A blue
bond is extended, whereas a red bond in
compressed

We can apply this formalism to a very simple example : a metallic rod

lying on the x axis, almost inextensible with a stiffness µ1 and a rest length

`1, in parallel with a soft spring with a stiffness µ2 and a rest length `2 ≤ `1.

The set of extensions here contains the extension of the first spring and of

the second spring, which are different because the reference of each spring is

different :

E =
(

x2 −x1 −`1

x2 −x1 −`2

)

=
(
−1 0 1 0

−1 0 1 0

)
u1

v1

u2

v2

−
(
δ`1

δ`2

)

Where δ`i represents the extension of the spring i in the rest configuration.

For the network to be at rest, it should verify the equilibrium condition

µ1δ`1 +µ2δ`2 = 0.

Likewise, the tensions lead to the forces :

F =


f1x

f1y

f2x

f2y

=


1 1

0 0

−1 −1

0 0


(

t1

t2

)
=


t1 + t2

0

−t1 − t2

0



We find here that we have a state of self stress T =
(

1

−1

)
for which one

spring is in compression and the other is in extension. We have only three

trivial zero modes
(
1 0 1 0

)
,
(
0 1 0 1

)
and

(
1 0 −1 0

)
which

correspond to global translations and infinitesimal rotation.

It is worth noting the difference with the formalism presented in the afore-

mentionned reference on states of self stress. Indeed we didn’t assume the

springs to be individually at rest in the reference configuration: we allowed

springs to store a pretension, provided this respects force balance : the pre-

tension must thus be a linear combination of states of self-stress.

3.3.2 Geometrical non linearities impact elastic moduli

In this part, we want to show that a system in which non linear elements

store residual stress in a self stress state can be stiffer (or softer) than the

same system with linear elements storing the same residual stresses. It is a

generalisation of the mechanism according to which a string stiffens trans-

versely when it is prestressed. However here, prestress in not applied by an
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external operator, but results from tensions in the elementary constituents of

the system.

Let’s consider a system with residual stress, in a rest configuration with

residual tensions in its constituents which are compatible with a state of self

stress T0 (or a linear combination of states of self stress). We exert a strain γ

on the system, so that its sites respond in moving of an infinitesimal U :

dU = 1

2
UKU

where K is the elastic matrix of local stiffnesses of the system. We add

to it the non linear displacement-extension relation of the system, called

geometrical non linearity (for instance l =
√

x2 + y2 for a system of one bond

linked to the origin).

Ei =CiαUα+ 1

2
C 2

iαβUαUβ,

where C and C 2 are the coefficients of this expansion.

On the other side we can write dU from the extensions, with the help of

the bonds diagonal stiffeness matrix K̃ :

dU = 1

2
EK̃ E

= 1

2

(
CiαUα+ 1

2
C 2

iαβUαUβ

)
K̃i j

(
C jσUσ+ 1

2
C 2

jσρUσUρ

)
= 1

2
UαCiαK̃i j CiσUσ+UαCiα

1

2
C 2

jσρUσUρ

= 1

2
UKe f f ect i ve U

Thus, provided we know the U ′s as a function of γ (which, in fact, would

require to solve the minimisation problem...), we could deduce the stiffness

tensor as a function of the local stiffnesses matrix, which is affected by the

degree of pretension stored in the springs through the non linearity in C 2.

This remains true even if the relations between generalised tensions and

generalised extensions are linear.

3.3.3 Generalisation of the notion of self-stress state to systems with

residual torques

The formalism presented up to now doesn’t translate directly to the networks

we study. Indeed constraints arise from the fact that edges prefer to remain

at rest, but there are simultaneously angular degrees of freedom trying to

minimise bending and to satisfy the angular constraints of forks. We thus

need to develop a generalized formalism to account of the equilibrium be-

tween tensed forks and extended filaments. In this section we proceed to

this generalisation, then we give an example of a model system, which only

exhibits one angular interaction and a stretching interaction.
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If we consider a network made of N sites, Nb bonds and Na stiff angles

(hinges or forks), we can generalize equation 3.1 to :



Qb gab

gba Qa

T

Γ

= FCb

Ca

U =
E

η

 (3.2)

Figure 3.10: Generalized state of self-stress
with torque forcing. Sites are labeled from
1 to 3, edges from I to I I I , there is a fork
over site 3. We can take, among others, the
potential energy :

U =
I I I∑
i=I

1

2
(`i −1)2 + 1

2
g (θ−θ0)2

Where we defined the vector of torques Γ and the vector of angular exten-

sions η. Qb generalises the matrix Q we previously had and Cb the matrix C .

The quantities with an index "a" generalise these notions to angles, finally

the matrices g ’s correspond to the coupling terms. It is worth noting that

these block matrices are not square matrices !

We can re-define states of self stress as a set of tensions and torques that

leave the system at rest, and a soft-mode a set of displacements that does not

extend filaments nor opens angles.

A variation in energy for an infinitesimal displacement which result in a

force field F is then given by :

δU = 1

2
FT U

= 1

2

(
TT ΓT

)(
Qb gba

gab Qa

)
U

In other words the constraints in the system induce a coupling between

two sectors of G that is proportional to the pre-tensions into forks.

We can apply this formalism to compute generalised states of self stress

of a system made of three rods with an angular forcing on one angle at the

top. We label nodes by an arabic number, and bonds by a roman number,

according to figure 3.10.

We have the purely geometric relation :
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F =



f1x

f1y

f2x

f2y

f3x

f3y


=



−1 0 −cos(φ)
cos( θ2 )
`

0 0 −sin(φ) − sin( θ2 )
`

0 1 cos(φ) − cos( θ2 )
`

0 0 −sin(φ) − sin( θ2 )
`

0 sin
(
θ
2

)
sin

(
θ
2

)
0

0 cos
(
θ
2

)
cos

(
θ
2

)
2

sin( θ2 )
`




tI

tI I

tI I I

Γ



=



−1 0 −sin( θ2 )
cos( θ2 )
`

0 0 −cos( θ2 ) − sin( θ2 )
`

0 1 sin( θ2 ) − cos( θ2 )
`

0 0 −cos( θ2 ) − sin( θ2 )
`

0 sin
(
θ
2

)
sin

(
θ
2

)
0

0 cos
(
θ
2

)
cos

(
θ
2

)
2

sin( θ2 )
`




tI

tI I

tI I I

Γ



Where we used θ+2φ= π. This shows the existence of a state of self stress

that verifies
tI =−λ

(
tan

(
θ
2

)
sin

(
θ
2

)
+ 1

` cos
(
θ
2

))
tI I =λ tan

(
θ
2

)
tI I I =λ tan

(
θ
2

)
Γ=λ

(3.3)

where λ is a scalar parameter. This states of self-stress couples extension

of filaments and opening of forks.

The example above suggests that a wide variety of generalized self-stress

states can be reached when we add up bending stiffness of filaments, where

bending could get coupled to forks for instance.

3.4 Limits of validity of the simulations

In this section we comment on the limits of validity of our numerical experi-

ments. We subdivide this discussion in two parts. The first part deals about

the lack of isotropy of the cells of interest, the second deals about excluded

volume which is not taken into account although it should for high values of

δθ0.

3.4.1 Isotropy of the cells

As the four geometries studied don’t belong to the same symmetries classes,

we shall study how many independant elastic coefficients they have to test

weither or not measuring two elastic components is enough to fully charac-

terise their elastic response.
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By "independant elastic coefficient" we mean an eigen value which labels

for a (sometimes degenerate) eigen space in the elastic tensor. Let’s illustrate

the concept with a 3D linear isotropic material. For such a material, the

elastic tensor provides the linear relationship between stress and strain, it

reads as follows in the Voigt basis (introduced chapter 1):

σI = K I JγJ (3.4)

σI

σI I

σI I I

σIV

σV

σV I


=



K + 4
3G K − 2

3G K − 2
3G 0 0 0

K − 2
3G K + 4

3G K − 2
3G 0 0 0

K − 2
3G K − 2

3G K + 4
3G 0 0 0

0 0 0 2G 0 0

0 0 0 0 2G 0

0 0 0 0 0 2G





εI

εI I

εI I I

εIV

εV

εV I


(3.5)

where we noted the bulk modulus K and the shear modulus G . We can

diagonalise it to find the eigen strains, i.e. strains which give rise a stress by a

scalar factor. We get the following eigen values/eigen vector pairs :

(2G ,



0

0

0

0

0

1


), (2G ,



0

0

0

0

1

0


), (2G ,



0

0

0

1

0

0


), (2G ,



−1

0

1

0

0

0


), (2G ,



−1

1

0

0

0

0


), (3K ,



1

1

1

0

0

0


)

Which means that there exist only two independant elastic coefficients in

a 3D isotropic system (the number of independant eigen spaces). The bulk

modulus K , which gives the lattice’s stiffness for an isotropic deformation.

The shear modulus G which gives the stiffness for a simple shear motion in

either x y , y z or xz directions. It also provides the response for a isovolumic

compression in these directions, indeed these are nothing but a simple shear

rotated of π
4 in their plane.

In this terminology, we see that having two independant elastic moduli is

not enough to be isotropic, as the eigen-strains may be different from those

of an isotropic cell. 9 9 TODO : Find examples of materials to em-
phasize physical meaning. Comment on
Landau’s "complex coordinate" argument
which says that an O(3) symmetry provides
only two independant moduli, but doesn’t
say anything about eigen-strains. In 2D we
would prefer to use an eigen value / angles
parametrization of the problem.

For an isotropic material in 2D, we have :

σI = K I JγJ (3.6)
σI

σI I

σI I I

σIV

 =


K +G K −G 0 0

K −G K +G 0 0

0 0 G 0

0 0 0 0



εI

εI I

εI I I

εIV

 (3.7)

This still leads to three independant elastic moduli, one for the bulk re-

sponse, one for the shear response, and one for the isochore compression of

an axis with dilation of the orthogonal axis.
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The isotropic case will serve as a benchmark to measure the degree of

anisotropy of our systems.

In practice, we must stress out :

• The fact that we only make our study on shear modulus and bulk modulus,

• The fact that we don’t always check that a shear deformation and a bulk

deformation are eigen strains of the system,

even though we know our systems are anisotropic. We will check how

much on the next subsection, in order to keep in in mind afterwards, when-

ever we won’t recheck it. In the end we will prioritise the convenient physical

interpretation of the shear and bulk deformations we apply over their fitness

to the material. Furthermore, we need a comparison point between cells,

and shear, bulk moduli are better suited for this purpose.

3.4.2 Fixed δθ0, fixed g : how isotropic are these cells.

In this subsection, we compute the full elastic tensor for the geometries

of interest at δθ0 = 0.35. We diagonalise it to conclude on the number of

independant moduli the system has. The results are gathered in the table

3.11, rounded to 10−3 for the sake of legibility :

Geometry Elastic tensor (Voigt basis) Eigen values Eigen vectors

(α)


289.333 255.072 0 0

255.072 289.333 0 0

0 0 34.261 0

0 0 0 0




544.405

34.261

34.261

0.




1

1

0

0

 ,


1

−1

0

0

 ,


0

0

1

0

 ,


0

0

0

1



(β)


123.357 81.132 0 0

81.132 123.36 0 0

0 0 42.226 0

0 0 0 0




204.491

42.227

42.227

0




1

1

0

0

 ,


1

−1

0

0

 ,


0

0

1

0

 ,


0

0

0

1



(γ)


253.530 220.106 −2.483 0

220.106 257.861 −2.823 0

−2.483 −2.823 35.867 0

0 0 0 0




475.844

35.963

35.451

0.



−0.704

−0.710

9.10−3

0

 ,


0.361

−0.346

0.866

0

 ,


0.612

−0.612

−0.5

0

 ,


0

0

0

1



(δ)


236.675 209.275 0 0

209.275 252.393 0 0

0 0 34.079 0

0 0 0 0




453.957

35.112

34.079

0




0.694

0.720

0

0

 ,


0.720

−0.694

0

0

 ,


0

0

1

0

 ,


0

0

0

1


Figure 3.11: Diagonalisation of elastic ten-
sors of the four unit cells.

A few comments can be done on the light of the symmetries of the selected

cells.

• The (α) geometry behaves as an isotropic continuous medium, it doesn’t

couple shear to compression, it has only two independant elastic moduli,
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and the corresponding eigen-strains are the well known isotropic com-

pression, axial traceless compression and simple shear. This is consistent

with it having an order 6 symmetry under rotations and being achiral.

• The (β) geometry behaves identically, as it is isotropic however it is chiral,

which could in principle allow coupling between compression and shear.

• The (γ) geometry displays a small degeneracy lift between x compression

and y compression, consistent with its anisotropy, and a coupling between

shear and compression, consistent with its chirality. It starts to lift the

degeneracy in the eigenspace associated to shear, which we will confirm

later by increasing δθ0.

• The (δ) geometry displays a small degeneracy lift between x compres-

sion and y compression, consistent with its anisotropy, and no coupling

between shear and compression, consistent with its achirality.

In order to obtain more legible results, we can represent these elastic

tensors on the Voigt basis :




1

1

0

0

 ,


1

−1

0

0

 ,


0

0

1

0

 ,


0

0

0

1


 :

Geometry Elastic tensor (New basis)

(α)


544.405 0 0 0

0 34.261 0 0

0 0 34.261 0

0 0 0 0



(β)


204.49 0.002 0 0

−0.002 42.227 0 0

0 0 42.227 0

0 0 0 0



(γ)


475.801 −2.165 −3.752 0

−2.165 35.590 0.240 0

−3.752 0.240 35.867 0

0 0 0 0



(δ)


453.809 −7.859 0 0

−7.859 35.259 0 0

0 0 34.079 0

0 0 0 0


This makes appear a clear separation of scales between shear response

and bulk response, as compression modes can involve stretching of filaments,

while shear privilegiate bending.
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3.4.3 How isotropic are the unit cells ?

In order to state on how anisotropically the network behaves as a function of

residual stress, we compute the elastic constants in the Voigt basis as the ratio

|| ˜|Ci ‖
‖Ci | || where Ci denotes the column i of the elastic tensor in the eigen-basis

for isotropic materials, and C̃i is the same vector minus its i ’th component.

If the matrix is diagonal it vanishes, otherwise it measures the proportion of

non diagonal components with respect to the diagonal components.

This characterisation is one among others, we could have been using a

graphical method to estimate how anisotropic the elastic tensors were like

the diagrams of poles proposed in 10. 10 M. François. Identification des symétries
matérielles de matériaux anisotropesWe measured anisotropy for the physical bounds δθ0 = − 2π

3 to δθ0 = π
3 .

We plot the anisotropy as a function of δθ0 in figure 3.12.

Figure 3.12: Evolution of the anisotropy as
δθ0 increases. We see that the more we
increase |δθ0|, the more networks behave
anisotropically. However we will only plot
bulk modulus K and shear modulus G for
any geometries because it provides a easy to
test experimental comparison.

These results show that the (α) and (β) cells behave as isotropic cells no

matter what δθ0 we choose, and that the cells (γ) and (δ) behave more and
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more anisotropically δθ0 grows as suggested by figure 3.13. In this figure,

the unit cells progressively goes from honeycomb (δθ0 = 0) to an uniaxial

geometry where red filaments are under compression and blue filaments are

under extension. A first discontinuity arises when these filaments buckle for

δθ0 = 60°. A second one appear because a bistability between two configura-

tions, which is allowed by a self-intersection of the network.

° ° °°°

Figure 3.13: How the (δ) geometry evolve
as δθ0 increases from − 2π

3 to π
3 . They are

ordered from left to right according to in-
creasing by growing δθ0. Red filaments are
compressed, while blue ones are extended
We display a new figure before and after di-
continuities each time

3.4.4 Excluded volume, collapse of some geometries

As we mentionned at the beginning of the chapter, we did not study the

collapses occuring at high |δθ0|, we merely tried to avoid them by increasing

δθ0 as slowly as possible. We call collapse an event in which the area of the

network comes close to 0. Given our definition of the area of the network, as

the area spanned by the vectors joining two periodic copies of a site, collapses

correspond most often to self intersecting lattices.

These collapses are made possible because our model doesn’t take into

account excluded volume interactions of filaments : this limits the range of

validity of simulations to a narrower band of δθ0 than the initially proposed

− 2π
3 to π

3 . Nonetheless it doesn’t invalidate the region where the networks

doesn’t self intersect since excluded volume wouldn’t come into play. Indeed

it is a short ranged interaction, which doesn’t affect system’s mechanics when

filaments are separated by more than its characteristic range. We show an

example of a collapse in figure 3.14, we will study them more deeply in the

chapter 4, about non linear elastic response.

3.5 Summary

In this chapter, we discussed our choice of an hypostatic geometry and the

orientations of forks. We explained why Maxwell’s criterion couldn’t help to

determine the rigidity of stressed networks. We measured two independant

elastic components on these networks and saw that residual stresses could

affect the elasticity of the material in both directions. We proposed a model to

explain this effect on the light of the pretension stored in non linear elements
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° °°°°

Figure 3.14: Example of a collapse as δθ0
decreases, on geometry β, lowest values are
at left. This collapse wouldn’t be allowed by
excluded volume interactions.

at a microscopic level. An other possible mechanism being geometrical

stiffening due to non linearities of the generalized extensions. In the end

we discussed the limitations of our measurements : first our geometries can

be strongly anisotropic, then the geometries can collapse for strong angular

mismatches, in addition we didn’t observe large scale deformation patterns

when repeating the units cells over a broad network.

This taught us that residual stresses can induce the linear response of

a network to be stiffer or softer when we shear it, and be softer when we

compress it. The case of random lattices has not be addressed but is on

its way to draw a more universal conclusion concerning these effects. Our

analytic model proposed a generalisation of the notion of states of self-stress

that could involve tensions exerted by forks. We proposed that the elastic

tensor of networks would get increased/decreased by the amount of tension

stored into these. Nonetheless, these analytic models become untractable as

we go beyond model cases and could be applied to larger networks.





4

Response to finite boundary strains

In this chapter we study the non linear response of the networks in the pres-

ence of residual stresses. This study complements the linear study made on

chapter 2, indeed in this chapter we used an algorithm to find zero boundary

stress, without paying attention to how we reached this zero boundary stress,

this chapter fills this gap. In section 4.1 we present the stress and the elastic

moduli of networks as they are sheared and compressed of finite amounts.

In section 4.2 we present a model for the collapse of the (α) unit cell under

isotropic compression and discuss how this collapse should be regularised

by excluded volume interaction. Beyond this particular case we do this in

order to show generally how the local geometries of forks can enhance local

collapses while compressing fiber networks. Section 4.3 draws a conclusion

on the teachings of this non linear study.

4.1 Response to non linear compression and shear

When studying the linear response of the networks with residual stress, we

encountered several cases where the networks collapsed when trying to relax

boundary stress. To study more quantitatively the physics in this range of

parameters, we decided to study the response of the network by fixing the

boundary strain. In subsection 4.1.1 we show the evolution of shear stress

and shear modulus when applying finite shear strains at the boundaries, we

find scaling laws between them. Subsection 4.1.2 shows the evolution of

boundary pressure and bulk modulus when applying a finite shear strain, we

conclude that it induces collapses. Finally subsection 4.1.3 concludes on the

points that cannot be reached by simulations.

4.1.1 Residual stress tunes the predominance of bending over stretch-

ing under shear

The experiment we have simulated was to start from the reference config-

uration with zero boundary stress. This configuration corresponded to a

strain γ0, leading to a deformation 1+γ0 from the honeycomb configuration.
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From this configuration we applied a strain γ on boundaries, leading to a

deformation tensor from the honeycomb configuration (1+γ)(1+γ0). In this

experiment γ0 is a function of δθ0 of the system. Our control parameter is

then γ, the strain relative to the zero boundary stress configuration.

The curves of shear stress against strain are displayed in figure 4.1.

The first striking phenomenon we see on these curves is their similarity :

no matter the orientation of forks we chose, it doesn’t affect dramatically the

shear response of the networks. For this reason we will comment on the set

of curves for the geometry (α), and the comments will hold for all geometries.

Let’s comment the set of curves (α). At fixed δθ0 = 0 (the blue curve), we

mainly see two regimes : one with a small slope at small strains, and one

with a larger slope at larger strains. The small slope regime corresponds

to the fact that the network response starts by curving bending modes to

accomodate strain, which is energetically favourable. The large slope regime

arises as filaments bending doesn’t project over boundary shear anymore.

From this point the network accomodates larger strains by allowing filament

extensions and angular torsions on forks, whichtranslates into an increase

in shear modulus (the slope of the curves), since the stretching constants of

edges and the stiffnesses of forks are both of order 103, while the bending

constant is of order 1.

As we increase or decrease δθ0 (δθ increases when the curves turn more

purple, it decreases when they turn more yellow), the soft regime shrinks to

leave room to the stiff regime. This can be qualitatively understood by the

fact that there bending only can accomodate a finite amount of strain which

has to be shared between satisfying shear strain and satisfying at fork angles.

As |δθ0| increases, this amount gets partially exhausted by pre-bending into

filaments, which reduces the margin for the soft regime in the strain response.

As a result, there exists a cross-over which corresponds to the transition

between these regimes, characterised by a crossover strain that decreases as

|δθ0| increases.

To give a second reading of these two regimes, we provide a curve of

shear modulus versus strain in figure 4.2. These curves display more clearly

the stiffening effect of residual at low strain, since we only have to read the

evolution of the shear modulus at the origin. Noenetheless we don’t see a

clear criterion on strain to identify the transition between soft and stiff regime.

These curves also show that forks start to open when we shear the system

too much, which we can see with the presence of a maximum in the shear

modulus. In other terms, we are not anymore in the limit of strong angular

clamping that we discussed chapter 1. In practice for the actin bundles we

have in mind, this regime of strains would be so drastic that it would be

able to unzip the frustrated bundles, which we don’t take into account in the

model, contrarilly to ref.1. For this reason we did not shear the system by 1 M. Caruel, J.-M. Allain, and L. Truskinovsky.
Mechanics of collective unfolding. Journal
of the Mechanics and Physics of Solids, 76,
Mar. 2015

more than 200%.

Finally, we plot the absolute value of shear modulus versus absolute value
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Figure 4.1: Curves of shear stress versus
shear strain during a non linear shearing op-
eration. The curves color scale correspond
to the value of δθ0, yellow for −2π/3, purple
for π/3, blue for 0, it is the same as for the
linear figures.
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Figure 4.2: Differential shear modulus versus
non linear shear strain for the four reference
geometries. We see more clearly the stiffen-
ing effect of residual stress at small strains.
However, critical strain becomes more diffi-
cult to read in this graphs.
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of shear stress, in log-log scale, in figure 4.3. We see very clearly the existence

of two elastic regimes, controlled by a critical stress. A linear regime where

shear modulus is constant at low stress, and a stiffening regime where elastic

modulus scales proportional to shear stress after a critical stress which is

function of δθ0. This critical stress increases as |δθ0| increases, contrarily to

the critical strain. These two regimes are similar to what was observed experi-

mentally in in collagen networks2, it differs however from what is observed in 2 A. J. Licup, S. Münster, A. Sharma, M. Shein-
man, L. M. Jawerth, B. Fabry, D. A. Weitz, and
F. C. MacKintosh. Stress controls the me-
chanics of collagen networks. Proceedings of
the National Academy of Sciences, 112, Aug.
2015

actin networks in reference, where the authors measure a stiffening exponent

of 3/23.

3 M. L. Gardel. Elastic Behavior of Cross-
Linked and Bundled Actin Networks. Science,
304, May 2004; and M. Jaspers, M. Dennison,
M. F. J. Mabesoone, F. C. MacKintosh, A. E.
Rowan, and P. H. J. Kouwer. Ultra-responsive
soft matter from strain-stiffening hydrogels.
Nature Communications, Dec. 2014

Finally, we display figure 4.4 the results for a random network made of 8x8

random cells with random orientation of their forks, which confirms previous

observations that the two regimes doesn’t depend on fork’s orientations. We

didn’t reproduce the experiment over larger networks nor more realisation of

a network of this size. Indeed, it didn’t seem there was much variability from

one realisation to an other. However we didn’t compute standard deviation

to affirm it quantitatively.
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Figure 4.3: Curves of absolute value of shear
modulus versus absolute value of shear
stress, in log-log scale. The color code re-
mains the same as in the previous graphs.
These curves highlight the transitions be-
tween a linear regime and a stiffening regime
with scaling exponent 1.



R E S P O N S E TO F I N I T E B O U N D A RY S T R A I N S 83

Figure 4.4: Absolute value of shear mod-
ulus versus absolute value of shear stress,
in log-log scale, on a random 8x8 lattice.
These curves confirm that the effect of resid-
ual stress on shear elasticity doesn’t depend
much on the geometry of forks.

4.1.2 Residual stress enables instabilities under compression

We also tested the response under isotropic compression of the network,

this might not be relevant to networks living in aqueous solution, as their

response is dominated by the incompressibility of the solvent. However it is

within reach of our simulations, and help answer our research question to

understand the effect of residual stress on fiber networks.

This time we didn’t look for the zero stress state before doing simulations.

Indeed, we discovered that depending on the residual stress, there existed

several zero stress states some of them being collapsed networks, which

We call collapsed networks with a area close
to zero. Given our definition of area : the
area spanned by the vectors between two
periodic copies of a site, they are most often
networks that self-intersect

are unphysical because of their self intersections. These collapsed states

appear when compressing the system as discontinuities in elastic quantities.

Even when proceeding with very small increments of strain we cannot get

rid of them. They are the manifestation of an instabilities that we can study

partially numerically, as long as we can get continuous compression curves.

We can partially study them analytically on specific geometries, and this

time we don’t have problems in obtaining continuous compression curves,

furthermore excluded volume can be studied analytically as a regularising

mechanism preventing self-intersecting structures.

In figure 4.5 we plotted the pressure against strain. The strain was shifted

so that the zero pressure state corresponds to zero strain on post treatement

of the simulations. Indeed we did not take the risk to relax boundary stress

using the Nelder-Mead algorithm, which could have resulted in a collapsed

reference state. Instead we applied strains from the honeycomb configura-

tion, then we shifted strains to the zero boundary stress of larger area, and

rescaled it so that strains corresponded to a relative variation in area with

respect to the zero pressure stateand not the honeycomb reference geometry.

To obtain smooth curves, we used a small strain increment δγ = 1
400 so as

to always follow the same continuous curve. Indeed, it happens that two

equilibria configurations correspond to a same strain, for instance when a

filament buckles or a cell flips inside out. However, with an increment δγ

too large, we would take the risk to apply a stress too suddenly at the pre-

minimisation stage of affine compression of the network, this would result

in a discontinuous event This is not always successful as some discontin-

uous events keep on occurring, however it is a good compromise between

computation time and provided information. Furthermore, imposing a noise

before minimisation may accelerate convergence in simulations, but here

we avoid it. Indeed this could also introduce local stresses that would induce

discontinuous events !

In particular, using these small compression steps together with the total

absence of noise before minimisation induces that the δθ0 = 0 blue curve

always follows affine compression, as nothing breaks the axial symmetry of
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filaments. However, as soon as δθ0 6= 0, this symmetry is broken by the forks,

and the transition from stretching to bukling becomes smooth.

We see that depending on the value of δθ0, an instability may emerge.

More specifically, if the slope ∂P
∂γ is negative the network is stable, if it is

positive it is unstable. Sometimes an inflection leads to the existence of

several zero pressure states. The instability will be studied into further details

in 4.2.3.

Figure 4.5: We display here the pressure ver-
sus compressive strain. The strain is mea-
sured with respect to the reference hon-
eycomb configuration but was shifted and
rescaled on post-treatement for the zero
pressure states to correspond. Color code
for δθ0 is the same as usual, in particular
the blue curve corresponds to δθ0 = 0. We
didn’t have time to run simulations on the
geometry (δ).

We can see that the geometry matters very much in the stabilising or

destabilising effect of residual stress :

• The (α) geometry only has one zero pressure state at low |δθ0|, but already

has an unstable region for compressive strains. As we increase |δθ0|, we

end up with three intersections with the x axis. For the most negative

values of δθ0, we loose the stable area for the biggest compressions. How-

ever, these compressions are such that we should care about excluded

volume, which would stabilise the network after a collapse to a geometry

of small area, without self-intersections. In practice, we don’t trust too to

the smallest strains in these curves because they involve self-intersections.

• For the (β) geometry, residual stress has a stabilising effect as the unstable

part of the curve can disappear for some negative values of δθ0. We

observe instabilities for positive values of δθ0.

• For the (γ) geometry, residual stress has a destabilising effect when δθ0

becomes more positive. When it becomes negative, we observe discontin-

uous events that make the numerical study unable to study instabilities.

Indeed many states close to zero pressure seem to coexist, and we oscillate

between them as we compress the system. The study of the instability in

this case is beyond the perimeter of our simulations.

• We did not run simulations for the (δ) geometry under compression.
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The strong dependance on geometry prompts us to study broader ran-

dom networks, in which the random orientations of the forks would induce

local collapses, that would be smoothed in the elastic response of the large

network. We may ask how the mechanical stability of the whole network will

be impacted.

We plot the pressure-strain curve for a random 8x8 network (figure 4.6).

Here we used a noise before minimisation to help our conjugate gradient

procedure to converge, and we took fewer data points. As a results we observe

several discontinuous events under compression, they get more and more

likely as |δθ0| increases, and they correspond to local collapses of cells due

to instabilities similar to the ones that we studied with unit cells. These

instabilities are favoured by the local geometries of forks around a collapse

just before it occurs. For now however, these results are preliminary, and we

only present them qualitatively to the reader. Indeed, we should increase

system’s size so that the local collapses get smoothed out, we think that it

would result in a plateau in the elastic response, as we will describe in the

next section. The next section proposes a model to this foam-like behaviour,

in the restricted case of a network made of the cell (α) alone.

4.1.3 Conclusion

4.2 A model for non linear behavior on the alpha unit cell

In this section we propose an analytic model to explain the behaviour a

specific geometry under compression: the cell (α). First we make a pressure-

area curve to show the emergence of an instability, then we make a phase

diagram in which we summarise the stability regions as a function of the forks

opening angle δθ0. Nonetheless, we emphasize that this results only holds

for one kind of geometry, and might well be different on an other one. The

phase diagram presented is thus an example of the richness of phenomena

that can occur because of residual stresses, it deserves to be completed.

4.2.1 Pressure-Area curve shows instability

In order to reduce the problem to a one-dimensional system, we need to

make some assumptions. First we will consider forks as infinitely stiff : the

angles at which anchorings occur will be set equal to δθ0. Second we will

consider each bond to be subdivided in four subedges, each of them being

infinitely stiff and their length set equal to 1
4 . Finally we assume the system

to preserve its symmetry of order 6 as it deforms. In the end we end up with a

system with one degree of freedom, the angle φ in the middle of a filament,

as we can see on figure 4.7.
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Figure 4.6: Pressure-modulus curve for a net-
work under compression, we see a sequence
of local collapses as compressive strain in-
creases.
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Figure 4.7: System reduced to one degree of
freedom

By doing so we can write the potential energy of the system as a function

of the control parameter δθ0 and the degree of freedom φ.

U (δθ0,φ) = 4(3−2cos(φ−δθ0)−cos(2φ))

On the other hand the pressure then reads :

P = −∂U
∂A

(4.1)

= −∂U
∂φ

∂φ

∂A
(4.2)

We then have to compute an expression for φ as a function of A. For this

we will invert the following relation, obtained by computing the determinant

of the vectors that generate the hexagon :

A(δθ0,φ) =
p

3

2

(
1+`(δθ0,φ)

)2 (4.3)

=
p

3

2

(
1+ 1

2

(
cos(δθ0)+cos(φ)

))2

(4.4)

There exist several solutions as two angles φ correspond to the same area,

one with a filament bent upwards, one with a filament bent downwards.

Depending of the signe of δθ0, only one of them is physical. Thus we keep

the one that minimises the bending energy :

φ(θ, A) = ε(δθ0)arccos(2l −cos(δθ0)) = ε(δθ0)arccos

(
2(

√
2Ap

3
−1)−cos(δθ0)

)

where ε(δθ0) in the function that gives the sign of δθ0.

These expressions enable us to compute pressure versus area curves as

displayed in figure 4.8. The model differs from figures 4.5, by the hypothesis

of inextensible filaments which is relaxed in numerical simulations. However

their general trend is similar, as we observe the instable region with postitive

slope, and the stable ones with negative slopes. We also observe the existence

of a collapsed stable geometry, of a collapsed unstable geometry, and a stable

equilibrium geometry. The curves are not in quantitative agreement however

because of the possibility for forks to open and edges to extend. However the

curves display the same qualitative trend, unless for δθ0 =− 2π
3 .

More precisely, this curve displays a behaviour typical of an instability :

there exist three equilibrium configurations. The stability criterion is that

the slope in this diagram is positive, so two equilibria are stable and one is

unstable. From now on we will refer to the lowest area geometry "collapsed"

and the largest area "relaxed". From this we can propose a phenomenology

for the collapse of a network of prestressed cells on the geometry (α) forced in
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Figure 4.8: Analytically computed pressure
versus area curve for the (α) geometry, we
took δθ0 = 0.1 as a typical value. We rep-
resented the equilibrium geometries with
three colors. The purple and blue geome-
tries show how excluded volume can be-
come a necessary ingredient to prevent self
intersections in the network.
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strain. As we would increase compressive strain, all units cells in the network

would get to their relaxed state, then between two characteristic values there

would be a coexistence of relaxed and collapsed state to accomodate the total

strain. Finally, below some critical strain, all cells would be in their collapsed

state and the network fully collapsed.

In practice however the phenomenology would not be so simple as the

symmetry of order 6 cannot be kept by the cells when they collapse. Fur-

thermore the collapsed geometry obviously cannot be realised in presence

of excluded volume, which we will comment on the next subsection. How-

ever, our results show that the presence of residual stress may destabilize

the network if representants of the geometry (α) and its family become too

numerous. It also says something on the mechanism of collapse when com-

pressing : initially, all cells are at rest. As we reach the metastable area, a

increasing fraction of collapsed cells participate in accomodating strain. In

the end all cells are collapsed. This foam-like behaviour under compression

has been reported for fibrin networks in 4, it is consistent with our obser- 4 O. V. Kim, X. Liang, R. I. Litvinov, J. W. Weisel,
M. S. Alber, and P. K. Purohit. Foam-like com-
pression behavior of fibrin networks. Biome-
chanics and Modeling in Mechanobiology,
Feb. 2016

vations when compressing random networks, despite lacking data on large

enough networks.

4.2.2 Excluded volume prevents a full collapse

Figure 4.9: Overlap between central
subedges for δθ0 = 0.

Figure 4.10: Overlap between second nearest
neighbors filaments, for δθ = 0.65, φ= 1.45.

We saw in the previous subsection that the collapsed configuration displays

filament overlaps. It is worth understanding filaments overlap as excluded

volume could be a stabilising mechanism of collapsed cells in real networks.

In this section we will determine an equation for the point at which the

system starts to overlap. This will give the boundary for one line in the

diagram 4.11.

The first case possible is when the central subedges of filaments start to

overlap, as can be seen on figure 4.9. This gives a first bound :

φ(δθ,γ) =±π
2

The second case possible occurs for values of δθ which are bigger, when

second nearest neighbour filaments overlap as illustrated figure 4.10. This

provides a second bound :

arg
(
e iδθ+e iφ(δθ,γ)

)
= π

3
This relation being obtained by writing the relative position of the middle

site of a filament with respect to the position of a main vertex of the hexagon

lattice.

To conclude when the area becomes too small, some filaments get to over-

lap and excluded volume should come into play. The roughest approximation

of it being to replace this part of the P − A diagram by a vertical line below

the critical area determined by the criteria above. Indeed, excluded volume

doesn’t impact the behaviour above this critical area, since filaments are then



90 E F F E C T O F R E S I D UA L S T R E S S E S O N T H E E L A S T I C I T Y O F F I B E R N E T W O R K S

too far from each other to see this short-range interaction. Thus, it would

require an infinite pressure to compress the network further after the edges

intersected.

4.2.3 Phase diagram for one geometry

Figure 4.11: Analytical collapse diagram for
the (α) geometry. The white regions are not
physically accessible, the blue regions are
stable, the orange region is metastable and
the red region is unstable. The dashed pur-
ple line corresponds to the excluded volume
limit : the regions below in this diagram
cannot be reached without having filaments
overlaps.

We now have all the elements to construct a phase diagram which displays

the stability regions in the (δθ,γ) plane. We present it in figure 4.11.

The limits between metastable and unstable regions where obtained with

the stability condition :
∂P

∂γ
= 0

The limits between the metastable region and the stable region obey the

rule

P (γ) = 0

The limits for the excluded volume area have been discussed in subsec-

tion 4.2.2, we obtain a piecewise defined curve which corresponds to the first

filament overlap the compression induces : first neighbours for small |δθ‖.

All the regions below this line cannot be reached without filaments overlaps.

This diagram shows an example of how residual stresses induce a collapse

on the specific case of geometry (α).
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4.3 Conclusion

After this section, we know more about the non linear response of prestressed

networks. Under shear we have seen that regardless of the geometry, the

residual stress introduce pretension in the softest modes of the system. As

these modes cannot be unfolded indefinitely, there is a transition from a

bending dominated linear regime to a stiffening response which is stretching

dominated. The relation of elastic response to shear modulus has character-

istic exponent of 1. The main effect of |δθ0| is to shift the range over which

the network responds linearly, the linear response modulus increases as |δθ0|
increases.

When the networks get isotropically compressed, the forks induce more

and more bending stress on the individual filaments. When the compression

rate increases too much this induces buckling of filaments, followed by a

local collapse. The compression of large random networks is thus made of

a sequence of local collapses favoured by the local geometry of forks. As

physical filaments cannot self intersect, they get crashed in contact to each

other in collapsed structures stabilised by excluded volume interactions.

We made a model of the (α) geometry under compression to explain the

mechanism of a collapse for one peculiar geometry, we showed in a diagram

that excluded volume allowed the onset of instabilities, but modified the

nature of the collapsed state. We suspect this foam-like compression to be

consistent with experiments made on fibrin networks.
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General conclusion

Biopolymer networks are biological structures that appear at different scales.

We meet different scales ranging from cells to skin or blood clots. At all these

scales, they play an important mechanical role. In cells they are responsible

for the so-called motility processes. These processes involve how cells dis-

place and how they deform. In skin they provide skin with elastic properties

unusual of ordered crystals. In blood clots they allow wound healing. Finding

fiber networks involved in so many biological structures make us wonder the

link between the microscopic properties of fibers and the elasticity of their

assemblies. It motivates a study that goes accross scales, starting from the

knowledge of the microscopic structure of fibers to explain the behaviour of

the mesoscopic they assemble into. Actin filaments are well characterised

microscopically. Their persistence length was measured, their polymerisa-

tion process is known, the structure of their building monomers is resolved.

They can interact through cross-linkers that can gather them into bundles

or connect them at finite angle. Nonetheless, the self-assembly process of

actin in presence of large concentrations of cross-linkers can lead to the

formation of thick bundles containing up to 30 filaments. These filaments

are interconnected into a mesh, and get zipped by cross-linkers through the

polymerisation process, up to a point where the steric barrier to overcome

stops the process ongoing. These frustrated bundles are thus tensed by the

zipping crosslinkers, generating strong residual stresses in the networks, com-

parable with the energy scales of cross-linkers binding. The effect of these

residual stresses on the elasticity of fiber networks is poorly understood and

was studied here on bidimensional lattices.

To tackle this problem, Chapter 1 presented a model to simulate the statics

of fibers networks as a network of fibers subdivided into N parts, with a

bending stiffness on their junctions. We introduced a functional form for

residual stresses that included frustrated bundles, but above all it was more

general and allowed any frustrated angles in the network. We formulated a

few assumptions to circumscribe our study, and we controlled their accuracy.

Namely, we went to the limit of very stiff polymers under stretching, and very

soft in bending, according to what is known of semiflexible networks. We
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also controlled our continuum limit approximation, and studied the limit

of infinitely stiff forks. This chapter classified according to their symmetries

the unit cells of reference (α), (β), (γ) and (δ) that encompass the possible

symmetries of residual stress orientations. This work was a preparatory work

towards the systematic study of the effect of geometry on the mechanics of

fiber networks.

In Chapter 2 we introduced the numerical methods into play to compute

stress and elastic moduli in finite networks. More precisely, we discussed the

limitations of the classic finite difference methods. We concluded that this

method lacked precision, was time consuming, and missed some feedback

on the accuracy of results. We presented an original method of automatic

differentiation using hyperdual numbers (a generalisation of complex alge-

bra). This method was robust to finite difference errors, and did not require

to adjust a differentiation step by hand. In this chapter we also presented the

structure of our code to allow future use of its sections.

In Chapter 3 we tested out the linear response of networks in presence

of residual stress. This study was limited to the aforementionned unit cells,

since we pre-relaxed edges of the system before computing its elastic moduli,

a time consuming operation as the system grows in size. We discovered

that residual stress can affect the linear response of elastic networks both

in shear and in bulk. We discussed why we only considered shear and bulk

response by analysing the symmetry loss of the unit cells in their reference

configuration as |δθ0|.
In Chapter 4 we tested the non linear response of prestressed networks

to externally imposed strains. We did this under shear and under isotropic

compression, for reference unit cells as well as for small lattices with random

orientations of forks.

Under shear, we reported that in presence of residual stress, the elastic

response was made of a linear regime with constant elastic modulus, and a

non linear regime with elastic modulus growing linearly with stress. The non

linear threshold in strain decreased with |δθ0|, while in stress in increased.

Under compression, the study was made more difficult by the presence

of instabilities. For this reason the chapter described the networks from a

numerical point and from an analytic point. Numerically, we tried to com-

press the network as gently as possible in order to follow a single continuous

pressure-strain curve. We did it for the three first units cells with a variable

degree of success. Nonetheless, this study was instructive in that it enabled

us to conjecture that the local geometry of forks induced local collapses in

random networks, and we verified it on a moderate size random network.

We then studied analytically the collapse of the geometry (α) and made a

stability diagram for it to confirm our (dirty) observations.

This thesis brought four contributions.

• The first of them is the new procedure to compute differential elastic
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quantities around a given configuration of a network. It can also be used

to accurately compute the forces and the matrix of local stiffnesses on a

system of particles without computing its gradient analytically.

• The second is that residual stresses can either stiffen or soften the linear

response of a material around its rest configuration.

• The third is that residual stress can tune the onset of nonlinear response

of fibers networks under finite shear.

• The fourth is that residual stresses induce local collapses of networks

under isotropic compression, we have proven that these collapses existed,

but did not fully characterise their interplay with contact interactions

between filaments.
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Titre: Effet des contraintes résiduelles sur l’élasticité des réseaux de fibres.
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Résumé: Les cellules sont les unités fondamentales de tous
les organismes vivant. Les cellules eukaryotes sont archi-
tecturées autour de fibres aussi diverses que les rigides mi-
crotubules et que l’actine semiflexible dans l’ensemble que
forme le cytosquelette. C’est à ce titre que le cytosquelette
est impliqué dans de nombreux les processus de déplace-
ment et de déformation des cellules, il est aussi responsable
de la rigidité mécanique des cellules. En son sein, les fila-
ments d’actine peuvent être réticulés en fagots de plus de
30 filaments, mais aussi s’intersecter à des angles finis. Ces
processus sont en compétition lors de l’auto-assemblage des
réseaux d’actine, ce qui induit d’importantes contraintes

résiduelles.
Dans cette thèse, nous étudions l’effet des contraintes

résiduelles sur l’élasticité des réseaux de fibres en 2 dimen-
sions d’espace. Nous développons une méthode originale
pour le calcul des contraintes au bord d’un réseau de fi-
bres et ses modules élastiques. Nous trouvons que les con-
traintes résiduelles induisent une rigidification du réseau.
Les contraintes résiduelles impactent aussi la réponse non
linéaire du réseau : nous trouvons qu’elles rendent le réseau
mécaniquement instable sous compression, qu’elles contrô-
lent la largeur domaine de réponse linéaire au cisaillement.

Title: Effect of residual stress on the elasticity of fiber networks.
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Abstract: Cells are the basic units of all living organisms.
Eukaryotic cells are stuctured on top of a scaffold of fibers
ranging from stiff microtubules to semiflexible actin : the
cytoskeleton. As such the cytoskeleton is involved into a
broad family of processes of translocation and deformation
of cells, it is also responsible for cells mechanical stiffness.
The actin filaments into cytoskeleton can be cross-linked
into bundles built of as much as 30 parallel filaments, but
filaments can get bound at a finite angle also. These pro-
cesses are in competition during network’s self-assembly

and result in strong residual stresses.
In this thesis, we study the effect of these residual

stresses on the elasticity of fiber networks in 2 dimensions
of space. We develop an original method to compute stress
on the boundaries of a network and its elastic moduli. We
find that residual stress induces a stiffening in the infinites-
imal response of the network. Residual stress also affects
the non linear response of the network : we find that it
makes the network unstable under compression, and that
they control the onset of non linear response to shear.
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