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Introduction

Articles linked to this work:

[1] V. Dorier, J. Lampart, S. Guérin and H. R. Jauslin, Canonical quantization for quan-
tum plasmonics with finite nanostructures, Physical Review A 100, 042111 (2019).

[2] V. Dorier, S. Guérin and H.R. Jauslin, Critical review of quantum plasmonic models
for finite-size media, arXiv:1911.03134 (2019).

[3] V. Dorier, J. Lampart, S. Guérin and H. R. Jauslin, Canonical quantization, sponta-
neous emission and dissipation of plasmon polaritons, to be published.

The field of Quantum Optics has been growing in a unprecedented manner since the first
experimental proofs, by Clauser [4, 5] and then Grangier et al. [6], that light can behave
in a strictly non-classical manner. In 1987, Ghosh and Mandel [7] have studied experi-
mentally the process of Spontaneous Parametric Down Conversion (SPDC, first observed
in 1970 [8, 9]), which serves as the single-photon source of many experiments nowadays –
one big advantage of this method being that it can create pairs of entangled photons. Other
common devices include color centers in diamonds, single atoms in cavities, or quantum
dots [10]. In order to understand how differently single photons should behave in exper-
iments compared to classical fields, one needs a detailed theoretical description of how
quantum light is created and how it evolves in time.

In many works, n-photons are theoretically described as a n-quantum state of a bosonic
Fock space, and is noted |n〉 [11]. Although such a notation is sufficient in studies where the
important question is the number of photons n and their distribution (e.g., when building
computing protocols with multi inputs/outputs circuits), it hides all classical properties of
light which may survive in the quantization, such as the frequency distribution (and recip-
rocally the temporal distribution), the spatial profile, and the polarization.

Historically, each photon state was associated with a plane wave. Such states are eigenfunc-
tions of the Hamiltonian. In this regard, one could consider a photon to have a well-defined
energy, E = ×ω, where ω is the frequency of the plane wave.1 However, such modes are
hardly appropriate to define a quantum state, since they are delocalized over all space. In

1Throughout this thesis, the word frequency is used for the angular frequency.
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order to make sense to the quantum states in a Fock space, one needs to construct appro-
priate modes (generally described as pulses). In vacuum, this process is immediate since
plane waves can be integrated to build a pulse. Such "pulse-states" are eigenfunctions of
the number operator, and this is the necessary condition for one to speak of a "1-photon
state" in an experiment. But as a consequence, one cannot associate to the photon-state a
single frequency (or equivalently a single energy, since a pulse-state is not an eigenfunction
of the Hamiltonian), and it is always associated with a specific classical mode with its own
polarization, spectrum and temporal distribution, and spatial profile.

A detailed description of photon states in vacuum can be found, e.g., in [12]. In our perspec-
tive, the quantum theory of light is constructed from a classical one. We make the following
statement: Maxwell’s equations (microscopic or macroscopic) can describe all classical light,
and consequently a quantized version of them can describe all quantum light. We thus start
with Chapter 1 as an introduction of the classical theory of light. We describe the Maxwell
equations and show how they relate to macroscopic quantities such as the dielectric func-
tion to describe linear interactions with matter. We emphasize that we consider only linear
media, defined as such:

A material medium is linear if its polarization induced by the presence of an
electromagnetic field is a linear function of the electric field.

We introduce two models for matter: a passive one, where the polarization response of mat-
ter is instantaneous, and a Kramers-Kronig one, where the response is retarded, which gives
rise to dissipation and dispersion. Finally, we present some of the most common models to
describe the response function: Drude, Lorentz, and a combination of both.

The quantization of the Maxwell equations we write in Chapter 1 leads to the emergence
of two types of quantum excitation: photons and plasmons. The former come from the
Maxwell equations in passive media, and the latter when the field interacts with the elec-
trons of the medium, producing a polarization. Although both models rely on the classical
theory of electromagnetism, they feature some fundamental differences, such as the pres-
ence of dissipation and dispersion in the latter while it is absent in the former. Nonetheless,
we developed a strategy of quantization which can be applied to both systems, adapted
from the quantization procedure described in Ref. [13–15]. It splits into two distinct steps:

1. Construction and diagonalization of a classical Hamiltonian model;

2. Quantization through a principle of correspondence and construction of a Fock space.

The first step establishes the concept of canonical models, where light is described in a
Hamiltonian structure equivalent to the Maxwell equations. Appropriate canonical vari-
ables are introduced, and the model is diagonalized with canonical transformations to con-
struct normal (optical or plasmonic) modes.

The second step relies on a principle of correspondence which is defined to construct creation-
annihilation operators acting on a Fock space of quantum states. This step allows us to ana-
lyze some properties of the states such as their connection to classical solutions of Maxwell’s
equations.

This two-step scheme is very general and applies to most strategies of quantization of clas-
sical models. The fundamental ideas of our construction are the following:

• Step 1 – We construct and transform the classical models such that they acquire the
same structure as a continuous set of coupled harmonic oscillators. Although this is rather

8
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common in vacuum (since the connection with harmonic oscillators is rather straightfor-
ward, especially when expanding the fields in the Fourier domain), it is not so common in
the presence of matter, in particular when dispersion and dissipation is added. We call such
a structure a harmonic-like form, whose Hamiltonian reads

H = 1

2
P ·P + 1

2
Q ·Ω2Q. (1)

The variables P and Q are the canonically conjugate variables, andΩ is called the frequency
operator. This notation is very general: P and Q can contain many components (each cor-
responding to a different harmonic oscillator), or even an infinite number of them. The
product · is a sum (or integral in the continuous case) over all components.

In the case of a discrete set of N harmonic oscillators, the Hamiltonian (1) reads

H = 1

2

N∑
κ=1

[
p2
κ+qκ

∑
κ′
Ω2
κ,κ′qκ′

]
. (2)

If the oscillators are independent, the matrixΩ is diagonal (Ωκ,κ′ ∝ δκκ′). Its diagonal terms
are the frequency of each individual oscillator. Any additional off-diagonal term represents
a coupling between oscillators. We show in Fig. 1 a scheme of the transformation from a
general discrete quadratic Hamiltonian with non-trivial couplings to a harmonic-like form.

P Q

P

Q

P Q

P

Q

H =

Figure 1 – Transformation from a discrete Hamiltonian of harmonic oscillators with non-
trivial couplings, to a harmonic-like form with a frequency operatorΩ.

If the oscillators form a continuous spectrum (i.e., their label κ is a continuous variable),
the sum

∑
κ becomes an integral

∫
dκ:

H = 1

2

∫
dκ

[
p2(κ)+q(κ)(Ω2q)(κ)

]
. (3)

In this case,Ω is an integral operator, which is the continuous equivalent of a matrix. It acts
as

(Ωq)(κ) =
∫

dκ′W (κ,κ′)q(κ′), (4)

with W (κ,κ′) a rank-2 tensor called the kernel of Ω. Note that this kernel is not necessarily
a continuous function; it can even be defined as a distribution. As an example, if Ω is diag-
onal, then W (κ,κ′) ∝ δ(κ−κ′), with the δ function being the continuous equivalent of the
Kronecker δ.

Once the model for light is described by a Hamiltonian in harmonic-like form, its diagonal-
ization reduces to the diagonalization of the frequency operator.
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• Step 2 – Once the classical models are expressed in a harmonic-like form, the quanti-
zation is formulated similarly in both types of media. It relies on the definition of a complex
representation of the classical phase space,

Ψ= 1p
2

(
Ω1/2Q + iΩ−1/2P

)
. (5)

The following principle of correspondence is then applied:

Ψ 7→
p
×B̂Ψ, Ψ∗ 7→

p
×B̂ †

Ψ, (6)

where the operators B̂ †
Ψ and B̂Ψ are creation and annihilation operators acting on a bosonic

Fock space. The definition of the Fock space depends on the structure of the model (which
will prove very different in the two types of media considered in the thesis). The interpreta-
tion is that B̂ †

Ψ creates one quantum of excitation associated with the classical configuration
Ψ. The evolution of the quantum state is then entirely known from the evolution of Ψ and
the symmetry property of bosons.

Inversing the canonical transformations performed in Step 1 provides a definition of the
electric and magnetic fields as operators acting on the Fock space. They can then be used
to evaluate measurable quantities such as the probability of measurement of specific states
in optical circuits (Chap. 4) or the spontaneous decay rate of an emitter interacting with
light in a material environment (Chap. 7).

In Chapters 2,3 we construct the quantum theory of light in passive media described by an
inhomogeneous dielectric permittivity. Our construction is adapted from the approach of
Refs. [16, 17].

In Chapter 4 we describe more precisely the properties of photon states, such as their spec-
trum or temporal shape. We describe one of the most fundamental experiment used to
distinguish between classical and quantum light, or to characterize a photon source: the
Hong-Ou-Mandel experiment [18]. This experiment was recently adapted [19–22] to sys-
tems where the photon state can be shaped and temporally resolved by the detector, which
brings new counter-intuitive results. We use this Chapter to analyze this type of setups from
the quantization procedure of Chapter 3.

The other three Chapters focus on plasmons. The basic classical theory is the macroscopic
Maxwell equations, with a polarization density both induced by the interaction with the
electric field and spontaneously emerging from the sources of the material medium. The
macroscopic Maxwell equations do not have a Hamiltonian (canonical) structure because
of the presence of dispersion and dissipation. This comes from the lack of material degrees
of freedom in the equations: Maxwell’s equations describe how the energy of the electro-
magnetic field is affected by the sources and currents in matter, but they do not describe the
energy of the medium. In Chapter 5 we add to Maxwell’s equations a microscopic model for
matter such that all degrees of freedom are included and the dissipation and dispersion of
light can be tracked. The model is justified by its compatibility with the initial macroscopic
Maxwell equations when the degrees of freedom of the medium are eliminated. This con-
struction is inspired by the one of Refs. [23–26]. The second part of Chapter 5 is new, since it
provides an exact method of diagonalization of the Hamiltonian which differs from earlier
treatments in the literature and is specifically adapted to situations where light interacts
with finite media like nanostructures.
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Chapter 6 is dedicated to the quantization of the model of Chapter 5 and the description
of the quantum plasmon states. The former is based on similar principles as for photons
(Chapter 3). The latter requires the explicit diagonalization of the Hamiltonian, which is
performed using a Lippmann-Schwinger equation. We show how it can partially be solved
exactly, and we give results of perturbation theory for the complete diagonalization. We
also use this Chapter to raise some remarks on the validity of earlier treatments for finite
and infinite media.

In the last Chapter, we study the spontaneous emission of plasmon states by a single emit-
ter interacting with the plasmonic field. This study directly follows the diagonalization per-
formed in Chapter 6 since the spontaneous decay rate is connected to the eigenfunctions
calculated with the Lippmann-Schwinger equation. We construct it using the Fermi golden
rule, and we use the Wigner-Weisskopf theory to extract the emitted plasmon state and to
track the energy dissipated inside the medium. We also describe how the decay rate was
constructed in the past, a method containing discrepancies which, to our knowledge, have
not been addressed in the literature.

The main results of Chapters 5,6 were published in Ref. [1], and the derivation of sponta-
neous emission will be published later [3]. The comments on the past methods of quanti-
zation (Chapter 6) and calculation of spontaneous emission (Chapter 7) were published in
Ref. [2].
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1
Classical electromagnetism

This first chapter is dedicated to the basics of classical electromagnetism [27, 28]. It is gener-
ally assumed that since Maxwell’s equations provide a well-grounded description of all clas-
sical light interacting with matter, one can build an a well-grounded theory of quantum light
by applying to Maxwell’s equations a rigorous quantization procedure. This assumption (and
the existence of such a procedure) is particularly relevant to justify a continuity between the
quantum and the classical description of the electromagnetic radiation.

We use this first Chapter to introduce the notations for the fields and variables. After brief
general statements on the idea of photonic and plasmonic circuits in Section 1.1, we describe
the microscopic and macroscopic formulations of Maxwell’s equations in Section 1.2. We in-
troduce important quantities such as the dielectric coefficient as well as the vector and scalar
potentials, which are fundamental variables we will use in the quantization. In Section 1.3
we introduce two models that can describe the interaction between light and matter, one
for passive media and the other for dispersive and dissipative media. The keystone of the
models is the dielectric coefficient, which describes macroscopically the electric response of
the medium and can be either measured experimentally or computed with (ab initio or not)
models. We end the Chapter with the description of two such models: the Drude model and
the Lorentz model, as well as combination of them.
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1.1. CIRCUITS OF LIGHT

1.1 Circuits of light

Before getting into the equations and mathematical formalisms of classical electromag-
netism, we start with an overview of the physical scenarios we may always keep in mind
when we wish to construct the quantum theories for photons and plasmons. In a general
point of view, many (if not most) of the experiments with light follow the scheme of a circuit,
with three main parts:

• the emission part, where one or several devices can be triggered to emit classical or
quantum light in a controlled way;

• the propagation part, which can consist of different material media whose roles are
to guide and/or modify the emitted light;

• the detection part, where one or several devices can collect light and measure its prop-
erty with the highest accuracy possible.

lenses, mirrors,
beam splitters, filters,
guides, gas cells...

lasers,
diodes,
Q-dots,
atoms,

...

photodetectors

emission propagation detection

The description of how classical light propagates through lenses, bounces on mirrors or
gets attenuated through filters is based on a well-established theory of electromagnetism.
The emission part is generally absent from classical descriptions, we simply assume a spe-
cific structure of the emitted wave from what we know of the source. The detection part is
usually based on approximations of what properties of light the detector is mostly sensitive
to, with an efficiency of measurement which can be optimized with an adequate statistical
sample of measures.

In the scope of linear quantum optics or quantum plasmonics, it is necessary to have a good
understanding of the propagation part since, as we show in Chapter 3 and use in Chapter 4,
the structure and time-evolution of the quantum state of light is directly associated with a
classical wave. It is this direct connection which justifies that most experimental schemes
used for quantum light (either photonics or plasmonics) can be used for classical light: the
propagation of photons in fibers or the attenuation of their probability of measurement
when passing through filters, for instance, are based on the knowledge of how fibers and fil-
ters act on classical light. As an example, the Hong-Ou-Mandel experiment we describe in
Chapter 4, even though having different outcomes when using classical or quantum light,
fundamentally relies on a description of the propagation and of the effect of the beam split-
ter inherited from the classical theory.

When describing purely quantum phenomena, it is common to use a mathematical formal-
ism which hides the implicit classical behaviors associated with the quantum state (such as
writing only the number of quanta in the state). But in some experiments, one must ana-
lyze precisely the propagation of the state. This is why we construct the theories of quan-
tum photonics and quantum plasmonics based on manipulations and transformations of
the classical theory of electromagnetism of which we give a brief overview in the present
Chapter.
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1.2. MAXWELL’S EQUATIONS

1.2 Maxwell’s equations

1.2.1 Microscopic and macroscopic formulations

Any classical electromagnetic radiation obeys the microscopic Maxwell’s equations:

∂t~E = c2∇×~B −~j /ε0, (1.1a)

∂t~B =−∇×~E , (1.1b)

∇·~E = ρ/ε0, (1.1c)

∇·~B = 0, (1.1d)

with ~E the electric field, ~B the magnetic field (also called “magnetic induction”), ρ the total
density of charges, ~j the total current density, c the speed of light in vacuum and ε0 the vac-
uum permittivity. We use the notation ∂t ≡ ∂/∂t , ∇ = (∂x1 ,∂x2 ,∂x3 ) is the nabla operator, ×
is the vector product and · is the scalar product.

The equations (1.1) are called the “microscopic” Maxwell equations because they relate the
electric and magnetic fields to the behavior and distribution of microscopic charges. In
particular:

• Eq. (1.1a) describes how a change in the electric field and the presence of currents
produce a magnetic field,

• Eq. (1.1b) describes how a change in the magnetic field produces an electric field,

• Eq. (1.1c) shows the emergence of an electric field from the presence of electric charges,

• Eq. (1.1d) is a formulation of the non-existence of magnetic charges, also called “mag-
netic monopoles”.

We also have the continuity relation:

∂tρ+∇·~j = 0, (1.2)

which is obtained by combining the time derivative of (1.1c) and the divergence of (1.1a).
This relation shows that a variation of the density of charges is necessarily related to a vari-
ation of current (one can further use the Gauss divergence theorem to show that it implies
a conservation of the number of charges if the system is isolated).

The microscopic Maxwell equations (1.1) are particularly useful when the number of charges
is small and when their motion (or equivalently, the currents they produce) is easily tracked –
and even more so in vacuum, where there is no charge nor current (ρ = 0, ~j = 0). However,
when the electromagnetic field interacts with a medium consisting of many charges moving
in a disordered fashion, we have to use macroscopic quantities containing the large-scale
response of the medium to the electromagnetic field. We will now describe how to build
such a macroscopic model.

In a very general way, one can phenomenologically define a material medium by formally
splitting the total charge and current densities into two groups: one bounded to the medium
(ρm ,~jm), and one external/independent from the medium (ρext ,~jext ). It is important to
note that this distinction is phenomenological: the charges and currents in the first group
are chosen for their contribution to specific phenomena (typically, a somewhat large-scale
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1.2. MAXWELL’S EQUATIONS

Figure 1.1 – Differenciation between charges and currents bounded to a macroscopic
medium (in blue), and external charges and currents (in green).

response to the electromagnetic field). In the microscopic Maxwell’s equations (1.1), one
can therefore replace the total charge and current densities by

ρ = ρm +ρext , (1.3a)

~j =~jm +~jext . (1.3b)

One can show (using Poincaré’s lemma) that the conservation equation (1.2) implies the
existence of two vector fields ~P and ~M, related to ρ and ~j by:

ρ =−∇·~P, (1.4a)

~j =∇× ~M+∂t
~P. (1.4b)

The fields ~P and ~M are called polarization density and magnetization respectively.1 These
vector fields represent how the collective behavior of charges and currents produces a macro-
scopic response. In other words, they contain the averaged information of many elec-
tric and magnetic dipoles interacting, without requiring the knowledge of the number of
dipoles nor of their individual action. For this reason, the polarization density and the mag-
netization are called macroscopic fields.

By replacing ρ and ~j by their new expressions in the microscopic Maxwell equations, we
obtain the macroscopic Maxwell equations:

∂t~E = c2∇×~B − 1

ε0

[
∇× ~M+∂t

~P
]

, (1.5a)

∂t~B =−∇×~E , (1.5b)

∇·~E =− 1

ε0
∇·~P, (1.5c)

∇·~B = 0. (1.5d)

In this thesis, we will consider non-magnetic media: ~M = 0. The macroscopic Maxwell
equations therefore read

1~P is sometimes referred to simply as “polarization”, but it may lead to some confusion with the polariza-
tion of a light wave (both can be related when the polarization density is induced by a polarized light radiation,
but they still are distinct concepts). Therefore we will always use the term “polarization density” to avoid con-
fusion.
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1.2. MAXWELL’S EQUATIONS

∂t~E = c2∇×~B − 1

ε0
∂t
~P, (1.6a)

∂t~B =−∇×~E , (1.6b)

∇·~E =− 1

ε0
∇·~P, (1.6c)

∇·~B = 0. (1.6d)

1.2.2 Vector and scalar potentials

For many purposes, and more specifically to study electromagnetism in a Lagrangian or
Hamiltonian formalism, and to construct a quantum theory of electromagnetism (see Chap-
ters 2,3 and 5,6), it is convenient to introduce the scalar and vector potentials associated
with the electric and magnetic fields.

By Poincaré’s lemma, the zero divergence of ~B [Eq. (1.6d)] implies that there is a vector field
~A(~x, t ) such that

~B =∇×~A. (1.7)

Inserting it into Eq. (1.6b), we get

∇× (
∂t~A+~E)= 0, (1.8)

and using Poincaré’s lemma again, this implies that there is a function U (~x, t ) such that

∂t~A+~E =−∇U . (1.9)

~A and U are called vector potential and scalar potential, respectively. Maxwell’s equations
can be written as

∂t~E = c2∇×∇×~A− 1

ε0
∂t
~P, (1.10a)

∂t~A =−~E −∇U , (1.10b)

∇·~E =− 1

ε0
∇·~P, (1.10c)

~B =∇×~A. (1.10d)

The two first Maxwell equations can be merged into one second order equation:

∇×∇×~A+ 1

c2
∂2

t
~A+ 1

c2
∂t∇U =µ0∂t

~P, (1.11)

with µ0 = 1/(ε0c2). This equation is a general form of what is called the wave equation for
~A. One can build similar wave equations for ~E and ~B .

1.2.3 Polarization density and electric susceptibility

We can split the polarization density into three contributions:

~P= ~Pi nd +~Psp +~Pext . (1.12)
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1.2. MAXWELL’S EQUATIONS

The first contribution describes the part of the field which is induced by the interaction
of the medium with light; the second term describes the part spontaneously generated by
the charges and currents of the medium – both of these contributions originate from the
charges and currents inside the medium (ρm ,~jm). The last term is the contribution from
external charges and currents (ρext ,~jext ).

The spontaneous polarization density ~Psp is determined by initial conditions of the medium,
which in experiments are difficult to choose in a controlled way. Hence, in classical theo-
retical descriptions it is often treated as a random noise term, or simply set to zero when its
effect can be considered negligible (such as in optical fibers).

In the case of a non-magnetic, neutral medium (i.e., it is globally neutral before an electric
field is applied), the effect of the electric field is to displace the negative charges with respect
to the positive ones. Hence the induced polarization is proportional to the electric field
and powers of it. In a linear medium as considered throughout this thesis, higher powers
are neglected, and the induced polarization density can be written with a (dimensionless)
response function χ:

~Pi nd (~x, t ) = ε0

∫ ∞

−∞
d t ′χ(~x, t − t ′)~E(~x, t ′). (1.13)

This function χ is called the electric susceptibility. It is a tensor in general, but reduces to a
scalar function in case of an isotropic medium.

The expression (1.13) is too general in the sense that it seems to allow for a polarization
density at time t dependent on the electric field evaluated at future times t ′ > t . Since this
would violate causality, we have to constrain the response function in a way that excludes
non-causal responses. We can identify two possible choices:

• A retarded susceptibility χ(~x, t−t ′) =Λ(~x, t−t ′)θ(t−t ′), withΛ a continuous function
and θ(t − t ′) the Heaviside function:

θ(t − t ′) =
{

1 if t ′ < t

0 if t ′ > t
, (1.14)

which ensures the causality. We can write in this case:

~Pi nd (~x, t ) = ε0

∫ t

−∞
d t ′Λ(~x, t − t ′)~E(~x, t ′). (1.15)

• An instantaneous response function χ(~x, t − t ′) =Λ(~x)δ(t − t ′), with δ(t − t ′) the Dirac
delta function. We have therefore

~Pi nd (~x, t ) = ε0Λ(~x)~E(~x, t ). (1.16)

In both cases, the function χ is called the electric susceptibility.

Remark: It is worth noting that the instantaneous response function is not a special case of the
retarded one. Indeed, if one were to extract a delta function from the susceptibility in Eq. (1.15),
the integral would not be well defined because of the singular point t ′ = t . In this regard, the
literature can be misleading, since it is not unusual to find the instantaneous response derived
after defining Eq. (1.15) as the general equation. The way it is justified is by first taking t →∞
in (1.15) and only then extracting the delta function. This would be a valid approach if the sus-
ceptibility were a continuous function falling to zero at t = t ′ (in which case applying the delta
function would lead to ~Pi nd = 0), but otherwise if it contains a discontinuity at t = t ′, one can-
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1.2. MAXWELL’S EQUATIONS

not apply δ(t − t ′).

Note that vacuum is the only case where both approaches are equivalent, since χ= 0.

In this section, we consider the first case of a causal non-instantaneous response. The in-
stantaneous response will be described in more details in Section 1.3.1.

Let us impose that χ(~x, t − t ′) = Λ(~x, t − t ′)θ(t − t ′) is square-integrable in t ′. Then, Titch-
marsh’s theorem shows that the two following statements are equivalent:

1. The function χ(~x, t − t ′) vanishes for t − t ′ < 0;

2. The real and imaginary parts of its Fourier transform χ̃(~x,ω) are Hilbert transforms of
each other.

Because of causality, the first condition is automatically fulfilled. Hence we can write the
Hilbert transforms:

χ̃R (ω) = 2

π
P

∫ ∞

0
dω′ω

′χ̃I (ω′)
ω′2 −ω2

, (1.17a)

χ̃I (ω) =− 2

π
P

∫ ∞

0
dω′ωχ̃R (ω′)

ω′2 −ω2
, (1.17b)

where P stands for the Cauchy principal value, defined as:

P

∫ b

a
d x f (x) = lim

δ→0

[∫ x0−δ

a
d x f (x)+

∫ b

x0+δ
d x f (x)

]
, (1.18)

with f (x) a function with a pole at x0 ∈ [a,b]. The equations (1.17) are usually referred to as
the Kramers-Kronig relation. A medium modeled with a susceptibility which satisfies such
relations is sometimes called a Kramers-Kronig medium.

1.2.4 Fourier domain and dielectric coefficient

It is often more convenient to solve the wave equation (1.11) in the Fourier domain (t →
ω) in order to remove the temporal derivatives. We use the following conventions for the
Fourier transform and its inverse:

f̃ (ω) =
∫ ∞

−∞
d t f (t )e iωt , f (t ) = 1

2π

∫ ∞

−∞
dω f̃ (ω)e−iωt . (1.19)

By splitting up the polarization density as in (1.12), the wave equation reads in the Fourier
domain:

∇×∇× ~̃A− ω2

c2
~̃A− iω

c2
∇Ũ =−iµ0ω

[
~̃Pi nd + ~̃Psp + ~̃Pext

]
. (1.20)

The induced polarization density (1.13) takes the form of a convolution, therefore its Fourier
transform simply reads

~̃Pi nd (~x,ω) = ε0χ̃(~x,ω)~̃E(~x,ω), (1.21)

and because of (1.9), we can write

~̃Pi nd = ε0χ̃
[

iω~̃A−∇Ũ
]

. (1.22)

19



1.3. MODELS FOR MATTER

We insert it into the wave equation (1.20):

∇×∇× ~̃A− ω2

c2
ε~̃A = iω

c2
ε∇Ũ − iωµ0

[
~̃Psp + ~̃Pext

]
. (1.23)

We have introduced in Eq. (1.23) the relative dielectric coefficient ε:

ε(~x,ω) = 1+ χ̃(~x,ω). (1.24)

The dielectric coefficient ε(~x,ω) (also called dielectric constant or dielectric function) is a
fundamental tool to describe the macroscopic (linear) response of a medium. It can be di-
rectly related to the refraction index and the extinction coefficient, i.e., quantities measured
in experiments,2 and its imaginary part εI is associated with dissipation of energy inside the
medium.

The real and imaginary parts of the dielectric coefficient are also related by Kramers-Kronig
relations. Inserting (1.24) into (1.17) gives:

εR (~x,ω) = 1+ 2

π
P

∫ ∞

0
dω′ω

′εI (~x,ω′)
ω′2 −ω2

, (1.25a)

εI (~x,ω) =−2ω

π
P

∫ ∞

0
dω′ εR (~x,ω′)−1

ω′2 −ω2
. (1.25b)

Various models are used to compute the dielectric coefficient (some will be described later
on in this Chapter), each model being appropriate for a certain class of materials and in a
certain frequency range. We note however that in order to describe losses (instead of gain),
the imaginary part εI must be positive.

1.3 Models for matter

With the macroscopic Maxwell equations written in the Fourier domain, matter is modeled
through the relative dielectric coefficient ε = εR + iεI . In other terms, the properties of the
dielectric coefficient can serve to describe the physical (optical) response of the medium.
In particular, a medium is:

• inhomogeneous if ε varies in space;

• dispersive if ε varies with the frequency of light;

• refractive if εR 6= 1;

• dissipative (or lossy) if εI 6= 0.

Note that if ε 6= 1 and if it satisfies the Kramers-Kronig relation, then the medium is nec-
essarily dispersive, refractive and dissipative. Many materials can however obey one con-
dition more than the other, depending on the range of frequency of light that one would
consider in a given situation. For instance, materials that exhibit a very low absorption of
light in visible frequencies (eg., glass or water) are considered refractive (εR > 1) but negligi-
bly dispersive and dissipative. For this reason, they are also called passive media for visible
light. We will describe in more detail the approximation made to treat easily such media in
Section 1.3.1.

2A wide database of these coefficients is available on https://refractiveindex.info/.
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1.3. MODELS FOR MATTER

On the other side, materials like metals exhibit a very high coefficient of losses: they absorb
fast and on small distances the energy of electromagnetic radiations in the visible range.
Such materials are characterized by a rather large εI and a negative εR , and the two main
models to compute them (described in Sections 1.3.3 and 1.3.2 respectively) are the Lorentz
model and the Drude model.

Some works [29, 30] have shown that the standard models for the dielectric coefficient of
metals should be modified when the size of the medium is very small. We will not consider
this problem in this thesis, but we expect that one could always adapt the model by replac-
ing the usual dielectric coefficient by a modified one, taking this effect into account.

We also emphasize that the dielectric coefficient is a macroscopic quantity. One cannot infer
the microscopic motion and distribution of charges inside the medium simply from the
values of εR and εI . These microscopic properties, however, are useful to build a theoretical
model to compute ε.

1.3.1 Passive media

One of the simplest models of dielectric response one can build is the one of passive media
(typically, silicon glass in visible light). In this model, we neglect absorption and dispersion
to focus on the refractive property of the medium. In other terms, we neglect εI , exclude the
Kramers-Kronig relations (and all frequency dependence), and allow an arbitrary choice of
εR .

Although these conditions are easy to implement in the macroscopic Maxwell’s equations
in the Fourier domain (and then one can easily return to the temporal domain since ε does
not depend onω), it is interesting to see how (and under which approximations) this model
is justified from the initial equations in the temporal domain.

Definition of a passive medium

The key ingredient to define a passive medium is the assumption of instantaneous response:
after giving to the induced polarization density its general linear expression [Eq. (1.13)], we
assume that the response function χ has an instantaneous effect:

χ(~x, t − t ′) =Λ(~x)δ(t − t ′), (1.26)

where Λ(~x) is a (potentially inhomogeneous) function which is zero in the exterior of the
medium, and δ(t − t ′) is the Dirac delta distribution, defined as∫ ∞

−∞
d t ′ f (t ′)δ(t − t ′) = f (t ), (1.27)

for any test function f . The polarization density reads

~Pi nd (~x, t ) = ε0Λ(~x)~E(~x, t ). (1.28)

Since the fields are real, the functionΛ is real as well. We introduce the dielectric coefficient
as

εR (~x) = 1+Λ(~x), (1.29)

where we add the index R to emphasize that ε is real. Because of this, the dielectric coeffi-
cient in a passive medium does not fulfill the Kramers-Kronig relations (1.25) unless εR = 1.
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Additionally to the instantaneous response assumption, the spontaneous polarization of
the medium can be neglected in a passive medium:

~Psp = 0. (1.30)

A justification for this is that the spontaneous polarization emerges from the natural move-
ment of charges inside the medium. This movement is linked to very high frequency dy-
namics which is well beyond the range of frequencies for which we would describe a medium
as passive (typically, optical frequencies for glass). A more detailed discussion on this can
be found in Ref. [31], Section 7.3.

Maxwell’s equations in a passive medium

In order to simplify the study, we consider that there is no charge at the exterior of the
medium, leading to

~Pext = 0. (1.31)

Because of this, and together with (1.28) and (1.29), Maxwell’s equations (1.10) become in a
passive medium:

εR∂t~E = c2∇×∇×~A, (1.32a)

∂t~A =−~E −∇U , (1.32b)

∇·εR~E = 0, (1.32c)

~B =∇×~A. (1.32d)

The wave equation of ~A (1.23) can also be rewritten in the temporal domain:

∇×∇×~A+ 1

c2
εR∂

2
t
~A =− 1

c2
εR∂t∇U . (1.33)

Generalized Coulomb gauge

In order to solve the wave equation (1.33) (or the equivalent for the electric or magnetic
field), and hence obtain an expression for the electromagnetic waves that can propagate
in the medium described by εR , one needs to know the scalar potential U . However the
potentials are not unique. Indeed, for any function f (~x, t ), the potentials

~A′ = ~A+∇ f , (1.34a)

U ′ =U −∂t f , (1.34b)

lead to the same fields ~E and ~B . The transformation from (~A,U ) to (~A′,U ′) is called a gauge
transformation. For an arbitrary pair (~A,U ), one can choose a function f which simplifies
the wave equation.

A very standard choice of gauge in vacuum is the Coulomb gauge (also called transverse
gauge), where f is chosen in Eq. (1.34) in such a way that the new vector potential ~AC is
transverse and the scalar potential is zero, i.e.,

∇·~AC = 0, UC = 0. (1.35)
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Remark: This gauge is particularly convenient in vacuum, where εR = 1. In this situation, the
polarization density is zero, which implies that the electric field is also transverse [see Maxwell’s
equation (1.10c)]. The right-hand side of the wave equation (1.33) vanishes and we obtain a
much simpler wave equation:

∇×∇×~A+ 1

c2 ∂
2
t
~A = 0. (1.36)

Since ∇·~A = 0 and ∆= (∇∇·)− (∇×∇×) is the Laplacian operator, the wave equation in vacuum
can be written equivalently

c2∆~A = ∂2
t
~A. (1.37)

Plane waves are solutions of this equation, and any other solution can be written as a linear
combination of these plane waves.3

Despite its usefulness in vacuum, the Coulomb gauge is not compatible with Maxwell’s
equations in a inhomogeneous passive dielectric. Indeed, Eqs. (1.32b) and (1.32c) imply
ρ/ε0 =∇·εR~E =∇εR ·~E +εR∇·~E , and thus

∂t∇·~A =−∇·~E = ∇εR

εR

~E − ρ

ε0εR
6= 0, (1.38)

which would contradict ∇ · ~A = 0. In the case of the macroscopic Maxwell equations with
a non unit dielectric permittivity εR , it is more convenient to use a generalized Coulomb
gauge, which consists in finding a gauge transformation f such that

∇· [εR~AGC
]= 0, UGC = 0, , (1.39)

which greatly simplifies the wave equations (1.33) into:

∇×∇×~AGC + 1

c2
εR∂

2
t
~AGC = 0. (1.40)

Note that since εR may depend on the position ~x, we have in general ∇ · [εR~AGC
] = εR∇ ·

~A +∇εR · ~A. In an infinite and homogeneous medium, ∇εR (~x) = 0 for all ~x and the gener-
alized Coulomb gauge is equivalent to the usual Coulomb gauge for ~A. In a homogeneous
but finite medium however, ∇εR (~x) is not zero at the boundary, thus the two gauges are not
equivalent.

Note also, that since we need ∇U = 0, we could define other equivalent gauges with U con-
stant but different from zero.

1.3.2 Drude model

The Drude model is a simple classical model which is particularly adapted to describe the
electric response of metals. It is based on the equation of motion for an electron at position
~x under the action of an electric field ~E(t ) subjected to a dissipative force proportional to
the velocity:

∂2
t~x =−γ∂t~x + e

m
~E(t ), (1.41)

3In fact, since plane waves expand infinitely far in space, they have infinite energy. They cannot be consid-
ered physical, they are used as mathematical tools to describe more realistic radiation, such as pulses.
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where e is the elementary charge, m is the mass of the electron, and γ is the damping coef-
ficient. After relaxation of the initial condition, this equation has the following solution,

~x(t ) =
∫ ∞

0
d t ′′

1

γ
(1−e−γt ′′)

e

m
~E(t − t ′′). (1.42)

Proof: The equation of motion (1.41) can be written as a system for the pair of variables
(~v ,~x), with ~v = ∂t~x:

∂t

[
~v
~x

]
= M

[
~v
~x

]
+

[ e
m
~E(t )
0

]
, (1.43)

with

M :=
[−γ 0

1 0

]
. (1.44)

We define the propagator

U (t ) : = eM t (1.45)

=
∞∑

n=0

t n M n

n!

=1+ 1

γ
(1−e−γt )M

=
[

e−γt 0
1
γ

(1−e−γt ) 1

]
, (1.46)

where we have used the fact that for n ≥ 1, M n = (−γ)n−1M . The general solution can
be written as [

~v(t )
~x(t )

]
=U (t − ti )

[
~vi
~xi

]
+

∫ t

ti

d t ′ U (t − t ′)
[ e

m
~E(t ′)
0

]
, (1.47)

with~xi and~vi the position and velocity at the initial time ti . The expression (1.46) gives

~v(t ) = e−γ(t−ti )~vi +
∫ t

ti

d t ′ e−γ(t−t ′) e

m
~E(t ′), (1.48)

~x(t ) = 1

γ

(
1−e−γ(t−ti ))~vi +xi +

∫ t

ti

d t ′
1

γ

(
1−e−γ(t−t ′)) e

m
~E(t ′). (1.49)

If we choose the initial time ti =−∞ this expression becomes

~v(t ) =
∫ t

−∞
d t ′ e−γ(t−t ′) e

m
~E(t ′), (1.50)

~x(t ) =~xi +
∫ t

−∞
d t ′

1

γ

(
1−e−γ(t−t ′)) e

m
~E(t ′). (1.51)

Relaxing the initial condition and making the change of variable t ′′ = t − t ′, we obtain
Eq. (1.42).

From this we can deduce the dipole moment of the electron, defined as ~d =−q~x with q =−e
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the charge:

~d =
∫ ∞

0
d t ′′

1

γ
(1−e−γt ′′)

e2

m
~E(t − t ′′). (1.52)

The induced polarization density of an ensemble of such electrons can be written

~Pind =N ~d , (1.53)

with N the averaged number of electrons per volume unit. But since

~Pind(t ) = ε0

∫ ∞

−∞
d t ′ χ(t − t ′)~E(t ′), (1.54)

we can identify

χ(t ) =
ω2

p

γ
(1−e−γt )Θ(t ), with ω2

p = N e2

mε0
, (1.55)

where Θ(t ) is the Heaviside function, and ωp is called the plasma frequency. Taking the
Fourier transform gives

χ̃(ω) =
ω2

p

γ

(
Θ̃(ω)− i

ω+ iγ

)
. (1.56)

Θ̃(ω) is the Fourier transform of the Heaviside function, which can be written

Θ̃(ω) = i

ω+ i 0+ = iP
1

ω
+πδ(ω), (1.57)

where 1
ω+i 0+ denotes the distribution defined by the limit

lim
ε→0+

1

ω+ iε
.

It can be shown that (1.56) can be written in an equivalent way as

χ̃(ω) =−
ω2

p

(ω+ i 0+)(ω+ iγ)
. (1.58)

Remark: Since the Fourier transform χ̃(ω) of the susceptibility of the Drude model is a distri-
bution and does not go to zero for t →∞, it satisfies the Kramers-Kronig relation (1.17) in the
sense of distribution only.

We can finally write the dielectric permittivity as

ε(ω) = 1+ χ̃(ω) = 1−
ω2

p

(ω+ i 0+)(ω+ iγ)
. (1.59)
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1.3.3 Lorentz model

The Lorentz model consists in assuming that the electrons are somewhat attached to the
(relatively) fixed nuclei. Hence their equation of motion is the same as Eq. (1.41), but with
an additional restoring force ~F =−ω2

0~x:

∂2
t~x =−ω2

0~x −γ∂t~x + e

m
~E(t ). (1.60)

In the same way as above, one can show that the corresponding (Fourier transformed) sus-
ceptibility is

χ̃(ω) =−
ω2

p

−ω2
0 +ω(ω+ iγ)

, (1.61)

which satisfies the standard Kramers-Kronig relations. We can also express the dielectric
permittivity:

ε(ω) = 1+ χ̃(ω) = 1−
ω2

p

−ω2
0 +ω(ω+ iγ)

. (1.62)

The Lorentz model is considered to be well-adapted to dielectrics, but less to metals.

Lorentz

Lorentz

Drude

Drude

Figure 1.2 – Real and imaginary parts of the dielectric permittivity calculated with the Drude
model (blue) and the Lorentz model (red). The arrow represents the delta distribution in the
Drude model. The permittivity is in units of ω2

p

/
γ2 and we chose ω0

/
γ= 0.5 in the Lorentz

model.

1.3.4 Drude-Lorentz model

The Drude-Lorentz model is a combination of the Drude and the Lorentz models. It is based
on the hypothesis that there are some charges that are free and some that stay bounded
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close to the nuclei or to impurities or to defects. Both contribute to the susceptibility. This
model can allow for several binding constants ω2

0, j for different charges, leading to a sus-
ceptibility of the form

χ̃(ω) =−
(ωD

p )2

(ω+ i 0+)(ω+ iγ)
−∑

j

(ωL
p, j )2

−ω2
0, j +ω(ω+ iγ)

, (1.63)

where

(ωD
p )2 =Nfree

e2

m
, (1.64)

(ωL
p )2 =Nbound, j

e2

m
, (1.65)

and Nfree is the density of free charges, and Nbound, j is the density of bound charges for
each of the binding constant ω2

0, j . In this model, we assume that all charges have the same
damping coefficient γ. The Drude-Lorentz model can be applied to describe both metals
and dielectrics by different choices of the parameters.

1.4 Summary on classical electromagnetism

In this chapter we have introduced the main equations and constructions used to describe
classical light propagating in linear media. In particular, from the macroscopic Maxwell
equations, we have shown how to define explicitly the (causal) response of both passive
media and Kramers-Kronig media. This is mostly based on assuming a certain expression
of the induced polarization density ~Pind. The quantum theories of light we construct in this
thesis fundamentally rely on these classical descriptions.

Finally we have described some of the main models used to calculate the susceptibility of
dissipative and dispersive media. This will give an empirical basis for the quantum model
of plasmons built in Chapters 5, 6 and 7.
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Part I

Photons
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2
Canonical optics

Although electromagnetic fields can interact with either passive or dispersive and dissipative
media, the quantum states in passive media are usually the ones we refer to as photons, and
the name plasmons is reserved for quantum electromagnetic radiations in dissipative envi-
ronments such as metals. In this Chapter, we are interested in optics and thus we will consider
passive media, either the vacuum or a passive dielectric.

In order to introduce the concept of photons, we could simply assess that photons are theoret-
ically described by creation-annihilation operators acting on a Fock space, whose accessible
quantum states have symmetric properties. Such a brief introduction would suffice for many
studies in quantum optics and quantum information in which one only needs to manipulate
the bosonic n−photon states. However, we wish to enter in more details in the construction of
the theory. For this purpose, in this Chapter we follow the first step of the strategy described in
the introduction: we construct in Section 2.1 a Hamiltonian structure we may call canonical
optics. Then in Section 2.2 we analyze more deeply this structure, in particular we define the
concept of modes and electromagnetic configurations, which are key elements in the quanti-
zation procedure.

This Chapter (and the next) is partially an adaptation of the approach of Refs. [16, 17].
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2.1. HAMILTONIAN STRUCTURE

2.1 Hamiltonian structure

2.1.1 Starting equations

We first recall some of the main equations of classical electromagnetism in passive me-
dia introduced in Chapter 1 (this subsection is a very abridged version of Sec. 1.3.1). The
macroscopic Maxwell equations written with the potentials are

∂t~E = c2∇×∇×~A− 1

ε0
∂t
~P, (2.1a)

∂t~A =−~E −∇U , (2.1b)

∇·~E =− 1

ε0
∇·~P, (2.1c)

~B =∇×~A. (2.1d)

We make the approximation of passive media introduced in Section 1.3.1: We write the
instantaneous response approximation χ(~x, t − t ′) =Λ(~x)δ(t − t ′) and we have the (real) di-
electric coefficient εR (~x) = 1+Λ(~x). Furthermore, we neglect the spontaneous polarization
of the medium. Hence, the polarization density reads

~P= ~Pi nd = ε0(εR −1)~E , (2.2)

and Eq. (2.1a) becomes

∂t~E = c2

εR
∇×∇×~A. (2.3)

We insert Eq. (2.1b) into (2.3):

∂2
t
~A =− c2

εR
∇×∇×~A−∂t∇U . (2.4)

We now impose the generalized Coulomb gauge (1.39), and we obtain

∂2
t
~A =− c2

εR
∇×∇×~A, (2.5a)

with ∇· [εR~A
]= 0, U = 0. (2.5b)

This is the wave equation in the time domain for ~A in a passive medium and the conditions
on ~A and U in the generalized Coulomb gauge. We also have ∇· [εR~E

]= 0.

2.1.2 Hamiltonian function

Once we have described classical electromagnetism in a passive medium (see Section 1.3.1
for more details), our first step to prepare for the quantization is to find a Hamiltonian sys-
tem equivalent to the Maxwell equations. In the classical domain, the Hamilton function
should correspond to the classical energy of electromagnetic radiations one can measure
in experiments. The current subsection is dedicated to finding a Hamiltonian from the
Maxwell equations (more specifically from the wave equation of the vector potential) and
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to verify that it gives the classical energy of light. Our approach is essentially equivalent
to the one first proposed by Glauber and Lewenstein in Ref. [16], and developed further in
Ref. [17].

For a reason that will become clear below, it is convenient to make the following change of
variable:

~A′ =p
ε0εR~A, (2.6)

so that the wave equation (2.5a) reads

∂2
t
~A′ =− cp

εR
∇×∇×

[
cp
εR

~A′
]

. (2.7)

We can therefore write

∂2
t
~A′ =−Ω2~A′, (2.8)

withΩ the frequency operator defined as

Ω2 := cp
εR

∇×∇× cp
εR

. (2.9)

Since the (real) frequency operator can be written as Ω2 =Ξ†Ξ, with Ξ† = cp
εR
∇×, it is sym-

metric: (Ω2)T =Ω2. This is the reason for the change of variable (2.6).

The wave equation (2.8) is a second order differential equation in time. It can be split into
two coupled first order equations as

∂t~A
′ =~Π′, (2.10a)

∂t~Π
′ =−Ω2~A′, (2.10b)

where we have introduced a new vector ~Π′ (we add a prime for the sake of symmetry with
~A′), which can be directly related to the electric field using Eq. (2.1b) with the change of
variable (2.6):

∂t~A
′ =−pε0εR~E , (2.11)

implying

~Π′ =−pε0εR~E . (2.12)

We can now introduce the Hamiltonian of the system, at first without including the transver-
sality constraints:

H = 1

2

∫
d 3x

[
~Π′ ·~Π′+~A′ ·Ω2~A′] . (2.13)

~A′ and ~Π′ are the canonically conjugate variables (or simply canonical variables) of this
Hamiltonian system. They satisfy the Hamilton equations:

∂t~Π
′ =−δH

δ~A′ , ∂t~A
′ = δH

δ~Π′ (2.14a)
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which one can verify to be equivalent to the wave equation (2.10). Replacing the canonical
variables in Eq. (2.13) by their expression in terms of the fields and using ε0µ0c2 = 1, we
obtain

H = 1

2

∫
d 3x

[
ε0εR~E ·~E + 1

µ0

~B ·~B
]

, (2.15)

which is the usual expression of the energy of the classical radiation generated by (~E ,~B) in
a passive medium. This is consistent with the interpretation of the Hamiltonian as the en-
ergy of the system in the classical domain. We show in Appendix A that this interpretation
can be justified from Maxwell’s equations by expressing the transfer of energy from external
charges to the electromagnetic field.

In order to take into account the transversality constraints, we first show that Eqs. (2.10)
imply that if the initial conditions satisfy the constraints, then they are preserved by the
time evolution. This follows from

~Π′(t +δt ) =~Π′(t )−δt Ω2~A′(t ), (2.16)

~A′(t +δt ) = ~A′(t )+δt ~Π′(t ), (2.17)

and the fact that

∇· [pεRΩ
2~A′(t )

]=∇·
[p

εR

(
1p
εR

∇×∇×
)

1p
εR

~A′(t )

]
=∇·

[
(∇×∇×)

1p
εR

~A′(t )

]
= 0.

Thus, one can take the Hamiltonian (2.13) restricted to the subspace defined by the con-
straints.

Note that we must ensure a finite energy of the system, i.e., we impose:∫
d 3x ~Π′ ·~Π′ <∞,

∫
d 3x ~A′ ·Ω2~A′ <∞. (2.18)

We introduce the (identical) spaces where the canonical variables live:

E [~A′] =
{
~A′(~x) ∈ L2(R3 →R3,d 3x)

∣∣∣ ∇· [
p
εR~A

′] = 0

}
, (2.19)

E [~Π′] =
{
~Π′(~x) ∈ L2(R3 →R3,d 3x)

∣∣∣ ∇· [
p
εR~Π

′] = 0

}
, (2.20)

with a generalized Coulomb gauge due to the presence of the passive medium.

2.2 Electromagnetic configurations

2.2.1 Phase space and complex representation

An important tool in Hamiltonian systems is to describe a configuration of the system as a
point in a phase space generated by the canonical variables. We build a real phase space
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which contains all electromagnetic fields with finite energy:

PR[~A′,~Π′] =
{(
~A′(~x),~Π′(~x)

) ∣∣∣ ∫
d 3x

(
~Π′ ·~Π′+~A′ ·Ω2~A′)<∞,

∇· [
p
εR~A

′] = 0, ∇· [
p
εR~Π

′] = 0

}
. (2.21)

An electromagnetic field described by a pair (~A′,~Π′) in the phase space PR[~A′,~Π′] will be
called a (~A′,~Π′)-configuration.

For reasons that will become clear later, we introduce a complex representation of this
phase space, where the information of the fields ~A and ~Π is combined into the complex
vector field ~Ψ(~x), defined as

~Ψ= 1p
2

(
Ω1/2~A′+ iΩ−1/2~Π′) . (2.22)

The new phase space of ~Ψ-configurations, PC,Ω[~Ψ], now depends on the operator Ω (and
hence, on the geometry of the medium through εR ). Note that the complex phase space has
the structure of a Hilbert space, since we define a scalar product:

~Ψ ·~Ψ′ :=
∫

d 3x
∑

j
Ψ∗

j (~x)Ψ′
j (~x). (2.23)

From Eq. (2.22) it is not immediate to see how the divergence constraint is expressed in
terms of ~Ψ in a given gauge, since we do not know the effect of the operators Ω±1/2 on the
transversality of the fields. We will show in Section 2.2.3 how it can be constructed.

Remark: One can show that the operator Ω2 given in Eq. (2.9) has no kernel on the subspace
of functions ~v verifying the generalized Coulomb constraint ∇ · [εR~v] = 0. Furthermore it is
hermitian with real positive spectrum:

Ω2~ϕλ,dλ =λ2~ϕλ,dλ , (2.24)

with dλ a possible index of degeneracy. Therefore, in the constrained subspace, any power ofΩ
is well-defined and we can write

Ωa~ϕλ,dλ =λa~ϕλ,dλ , (2.25)

with λ> 0, for any real number a. Hence, the vector (2.22) is well defined.

In terms of the complex vector, the Maxwell equations take the form

i∂t~Ψ=Ω~Ψ. (2.26)

This can be shown easily by expressing ~A′ and ~Π′ in terms of ~Ψ by inverting Eq. (2.22), in-
serting them into Eqs. (2.10a) and (2.10b) and summing up the two resulting equations.

We remark that Eq. (2.26) has the form of a Schrödinger equation. The Hamiltonian (2.13)
can be written with the complex vectors as

H = 1

2

∫
d 3x

[
~Ψ∗ ·Ω~Ψ+~Ψ ·Ω~Ψ∗]

. (2.27)
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Because of the structure of these equations which is reminiscent of harmonic oscillators,
one can already presuppose a link between the complex vector ~Ψ and creation-annihilation
operators. This link will be made clear in the quantization process.

In summary, the real electromagnetic (~A′,~Π′)-configurations can be represented equiva-
lently as complex ~Ψ-configurations.

in

in

2.2.2 Modes and eigenconfigurations

An important concept to understand classical light is the concept of modes. We define it in
this subsection.

Starting in the real phase space defined by Eq.(2.21), an initial condition
(
~Π′(~x, t0),~A′(~x, t0)

)
at an (arbitrarily chosen) initial time t0 determines uniquely the time evolution given by(
~Π′(~x, t ),~A′(~x, t )

)
. In the complex representation, the initial condition ~Ψ(~x, t0) determines

uniquely the trajectory ~Ψ(~x, t ).

Since the Maxwell equations are linear, if we multiply an initial ~Ψ-configuration, ~Ψ(t0), by
an arbitrary constant α ∈C, its time evolution will also be simply multiplied by α.

Definition: In the complex representation, a classical mode (on the electromagnetic
configuration ~Ψ) is a one dimensional subspace of configurations

M~Ψ =
{
α~Ψ(~x), α ∈C

}
. (2.28)

In other terms, a solution ~Ψ of the Maxwell equation (2.26) at a time t , and the same
solution multiplied by a complex constant α, correspond to the same mode.

In the real representation, the mode corresponds to a 2-dimensional subspace

M(~Π′,~A′) =
{

c

[
~Π′
~A′

]
+ s

[
Ω~A′

−Ω−1~Π′

]
, (c, s) ∈R2

}
, (2.29)

where α= c + i s.

We can draw two remarks from this definition:

• To a (~A′,~Π′)-configuration, one can associate a unique mode M(~Π′,~A′);

• However, the mode also contains infinitely many other possible configurations.
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In the phase space of ~Ψ-configurations, an electromagnetic configuration is a vector, and
the associated mode is the line generated by this vector.
An interesting consequence of this construction is the following. One can theoretically con-
struct a purely electric configuration (~Π′,~A′ =~0). The corresponding mode is

M(~Π′,~0) =
{

c

[
~Π′
~0

]
+ s

[
~0

−Ω−1~Π′

]
=

[
c~Π′

−sΩ−1~Π′

]
, (c, s) ∈R2

}
. (2.30)

This shows that a mode always contains configurations that have both an electric and a
magnetic field. There are no purely electric nor purely magnetic modes, even though one
can construct a configuration as such at a certain time t . This plays an important role for
the quantized electromagnetic field and the nature of photons. We will see that there is a
one-to-one correspondence between one photon states and classical modes. As a conse-
quence we will be able to state that there are no “electric photons” nor “magnetic photons”.

In the quantization of the electromagnetic field we will use normalized vectors defined as
follows:

Definition: A normalized ~Ψ-configuration is defined by an initial condition ~Ψ such that∫
d 3x |~Ψ|2 = 1, (2.31)

or equivalently in the real representation.

Furthermore, we introduce the concept of normal modes, which will be of prime impor-
tance in the next subsection.

Definition: A normal mode is a mode whose electromagnetic configurations are eigen-
vectors of the frequency operatorΩ, with a certain eigenvalue ω:

Ω~Ψ=ω~Ψ, (2.32)

or equivalently, {
Ω~Π′ =ω~Π′,
Ω~A′ =ω~A′.

(2.33)

We remark that if ~Ψ belongs to a normal mode M~Ψ, then all vectors α~Ψ of the same mode
are also eigenvectors of Ω with the same eigenvalue. It is very common to use the term
normal mode to refer to an arbitrary (or eventually normalized) vector ~Ψ of the mode M~Ψ.
In order not to confuse the two,

a vector ~Ψ of a normal mode will be referred to as an eigenconfiguration.
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We remark that sinceΩ is positive, Eqs. (2.32) and (2.33) are equivalent to

Ω2~Ψ=ω2~Ψ (2.34)

and {
Ω2~Π′ =ω2~Π′,
Ω2~A′ =ω2~A′.

(2.35)

2.2.3 Normal mode decomposition

The Hamiltonian (2.13) [or equivalently (2.27)] cannot be quantized straightforwardly since
its canonical variables must satisfy the divergence constraints:

∇· [pεR~A
′]= 0, ∇· [pεR~Π

′]= 0. (2.36)

Such constraints imply a redundancy of variables, in other terms one of the components of
the fields is dependent on the two others. This is not desirable for applying a principle of
correspondence since it presupposes that the new quantum variables are all independent.
The key idea to remove this constraint from the canonical variables is to expand them on
an orthonormal basis of real vectors {~ϕκ} satisfying the constraint:{

~A′(~x) = ∫
dκ qκ~ϕκ(~x)

~Π′(~x) = ∫
dκ pκ~ϕκ(~x)

, ∇· [
p
εR~ϕκ] = 0, (2.37)

with some scalar coefficients qκ and pκ. The notation κ is implicit and contains both fre-
quencies and degeneracy indices. The orthonormality condition reads∫

d 3x ~ϕκ(~x) ·~ϕκ′(~x) = δ(κ−κ′). (2.38)

We show in Appendix B that this transformation (~A′,~Π′) 7→ (q , p) is canonical, i.e., it pre-
serves the Hamiltonian structure of the model. The new variables live in a phase space
P` = `2 ⊕`2, with `2(I) = {(q1, q2, . . .) | ∑

κ∈I |qκ|2 <∞}.

Note that we can invert Eq. (2.37) to obtain:

qκ =
∫

d 3x ~ϕκ(~x) ·~A′(~x), (2.39a)

pκ =
∫

d 3x ~ϕκ(~x) ·~Π′(~x). (2.39b)

What contains κ precisely (i.e., its degeneracy structure) will be investigated in detail in the
next subsection. So far, we simply consider that it contains a continuous spectrum of fre-
quencies ωκ and possibly degeneracy indices, either continuous or discrete, leading either
to extra integrals or sums in the equations.

The basis {~ϕκ} is chosen so that its vectors ~ϕκ are real generalized eigenfunctions of the
frequency operatorΩ:

Ω~ϕκ(~x) =ωκ~ϕκ(~x), ωκ > 0, (2.40)
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in other terms, the expansion is made on a basis of eigenconfigurations as described in
Section 2.2.2. We can now go to the complex representation by introducing the expansions
(2.37) into the complex vector (2.22). We obtain, using (2.40),

~Ψ(~x) =
∫

dκ zκ~ϕκ(~x), (2.41)

where

zκ = 1p
2

[
ω1/2
κ qκ+ iω−1/2

κ pκ
]

. (2.42)

Since the constraint of ~A′ and~Π′ is translated to the vectors of the basis (∇·[pεR~ϕκ(~x)
]= 0),

the coefficients q , p and z in the expansions (2.37) and (2.41) are free of constraint. This also
implies the divergence constraint on all ~Ψ-configurations:

∇· [
p
εR~Ψ] = 0. (2.43)

The Hamiltonian can now be written as

H = 1

2

∫
dκ

[
p2
κ+ω2

κq2
κ

]
, (2.44)

or

H = 1

2

∫
dκ ωκ

[
z∗
κzκ+ zκz∗

κ

]
. (2.45)

We can therefore use the functions qκ and pκ as new canonical variables of the Hamilto-
nian system. The passage (~A′,~Π′) 7→ (q , p) [where we use the underline notation as q =
(q1, q2, . . .)] is a canonical transformation, a concept that will be developed in more detail in
Chapter 3 and that is crucial for the quantization process.

We can now describe all electromagnetic configurations as (q , p)-configurations or equiva-
lently as z-configurations.

2.2.4 Spectral structure (in vacuum)

The spectral structure (i.e., the distribution of frequencies and the degeneracy) of the Hamil-
tonian system in study is given by the one of the eigenconfigurations of the operator Ω.
What is contained in the implicit label κ depends on the necessity for these eigenconfigu-
rations to verify the completeness condition:∫

dκ ~ϕκ(~x) ·~ϕκ(~x ′) = δ⊥,
p
εR (~x −~x ′), (2.46)

where δ⊥,
p
εR (~x −~x ′) is the transverse delta function modified by the dielectric coefficient:
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Definition: for any test function f which can be decomposed into g + h, where ∇ ·
[
p
εR g ] = 0 and ∇× [

p
εR h] = 0, we have∫

d 3x ′ f (~x ′)δ⊥,
p
εR (~x −~x ′) = g (~x). (2.47)

Since the frequency operator depends on the dielectric coefficient εR , the eigenconfigura-
tions vary for each particular medium in consideration, and therefore the spectral structure
may change as well. In this section we describe the structure ofΩ2 in vacuum (εR = 1).

In a very general way, we can describe the label κ as the combination of a frequency ω that
may span over the whole spectrum, and an index of degeneracy. In free electromagnetism,
the spectrum spans from 0 to +∞. Moreover, the degeneracy consists of:

• A continuous index spanning the possible directions of the wave vector~k (with |~k| =
ω/c);

• An index σ corresponding to the polarization of the eigenfunction, dependent on the
polarization basis that has been chosen (typically vertical/horizontal or circular left-
/right).

A widely used choice of eigenconfigurations ofΩ2 =−c2∆ is plane waves. It is often used as
a complex basis:

~ϕ~k,σ(~x) =~εσ(~k)e i~k·~x , (2.48)

with~εσ(~k) two unit vectors (one for each polarization) orthogonal to ~k and to each other.
In the real basis, the equivalent waves are

~ϕ~k,σ,ζ(~x) =


1
2π3/2~εσ(~k)cos(~k ·~x), ζ= c,

1
2π3/2~εσ(~k)sin(~k ·~x), ζ= s,

(2.49)

where we needed to add a degeneracy index of parity ζ in order to recover the full struc-
ture of the plane waves (where the direction of~k generates either propagating or counter-
propagating waves).

In vacuum the eigenconfigurations (2.49) satisfy the Coulomb gauge, ∇ ·~ϕ~k,σ,ζ(~x) = 0, and

they form a complete basis of Ω2 = c2∇×∇× restricted to the transverse subspace (where
we can identify ∇×∇×=−∆).

Remark: When using the complex basis in vacuum, the expansions of the fields (2.37) are very
similar to Fourier transforms, where the frequency plays the role of the Fourier variable and
the new canonical variables (q , p) are the Fourier coefficients. Although it seems easier to ma-
nipulate the Fourier transform than the real basis (2.49), one must keep in mind that it can be
used so straightfowardly only because plane waves are eigenfunctions of the frequency oper-
ator in vacuum. In an inhomogeneous passive medium, however, plane waves are no longer
eigenconfigurations and one cannot use the standard Fourier transform to expand the fields.

The structure of the spectrum and its degeneracy can be written κ = (ω,dω) as it is usual
with degenerate harmonic oscillators. However, this notation is rarely appropriate for the
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electromagnetic field, since the integral over all degrees of freedom has a complicated ex-
pression: ∫

dκ≡ 1

c3

∫ ∞

0
dω ω2

∫ π/2

0
dϑsinϑ

∫ 2π

0
dϕ

∑
σ,ζ

, (2.50)

with (ϑ,ϕ) the angles in spherical coordinates. This is obtained from the projection onto
spherical coordinates of the wave vector~k, using |~k| =ω/c. It is in general more practical to
use the notation κ=~k,σ,ζ, since (2.50) reduces to∫

dκ≡
∫

d~k
∑
σ,ζ

. (2.51)

This exhibits the inherent complicated degeneracy structure of the electromagnetic field, a
complexity necessary to take into account all geometrical properties of light waves.

As mentioned above, the degeneracy structure of the frequency operator in a passive dielec-
tric depends on the geometry of the medium. In the special cases studied in Chapter 4, this
structure is the same as in vacuum and the passive medium modifies the configurations by
simply adding extra coefficients of reflection on and transmission through the medium.

In Chapter 5 where we consider dissipative and dispersive media, however, the question of
the degeneracy structure of the model will be crucial.

2.3 Summary on the classical Hamiltonian system

In this Chapter we have seen that the Maxwell equations in a passive medium (i.e., with
no dispersion nor dissipation, or equivalently, with an instantaneous electric response) can
be reformulated as Hamilton equations with a Hamiltonian function corresponding to the
classical energy of radiation:

H = 1

2

∫
d 3x

[
~Π′ ·~Π′+~A′ ·Ω2~A′] . (2.52)

This has been shown with a particular choice of canonical variables which can be directly
related to the magnetic vector potential and the electric field – a choice of variables that is
not unique.

The spectral and degeneracy structure of the system has been discussed with an explicit
description for the case of vacuum. The precise analysis of the spectral structure in the case
of an inhomogeneous passive medium can be performed provided that one can determine
the eigenfunctions of the operatorΩ2 (referred to as eigenconfigurations).

We have used these eigenconfigurations (equivalent to the plane waves in vacuum) to per-
form a change of basis where we can use new canonical variables (q , p) which are not con-
strained by any transversality condition. We have also introduced a complex representa-
tion:

(~A′,~Π′) 7→ (~Ψ,~Ψ∗), (2.53)

(q , p) 7→ (z, z∗), (2.54)
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that will be useful in the quantization procedure. The Hamiltonian can finally be written
both in the real or in the complex representation as

H = 1

2

∫
dκ

[
p2
κ+ω2q2

κ

]
, (2.55a)

= 1

2

∫
dκ ω

[
z∗
κzκ+ zκz∗

κ

]
. (2.55b)

We now have all the ingredients to quantize the model.
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3
Quantum optics

The goal of this Chapter is to quantize the Hamiltonian model developed in Chapter 2. The
quantization cannot be performed too naively because of dimension issues that we describe
in Section 3.4. We start by quantizing a reduced model equivalent to an ensemble of un-
coupled harmonic oscillators, and we use this construction to justify the passage from the
reduced model to the full model (which corresponds to a limit from finite degrees of freedom
to infinite degrees of freedom).

In Section 3.1 we write explicitly the quantization procedure based on a principle of corre-
spondence. In Section 3.2 we construct a Fock space of photon states and express the fields
and Hamiltonian as operators acting on this space. We use Section 3.3 as a brief summary
of the different spaces of photon states in the reduced model. In Section 3.4 we show how to
extend the theory from the reduced model to the full model of infinite dimensions.
Before and after the quantization process, there are several changes of variables and many
changes of space performed. All these changes have their own pertinence which we describe
along the way. In order to have a clearer vision of where each mathematical object fits in the
general procedure, we summarize these relations in Figure 3.2 at the end of this section.

This Chapter is an adaptation of the approach of Refs. [16, 17] with the general procedure of
quantization of linear fields described in [13–15].
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3.4.3 Remarks on the physical status of the reduced model . . . . . . . . . . 56
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3.1 Quantization procedure in a reduced model

A rough procedure of quantization is to reinterpret the variables of the model as operators
(usually exhibited in the notation by the passage from x to x̂). However, to do so in a rig-
orous way, one needs to specify the Hilbert space on which the operators are going to act
(note that there are various possible choices for the Hilbert space). To prepare the quanti-
zation of the full model of Chapter 2, we first describe the quantization of a reduced model.

The reduced model is a model where the fields are expanded on a reduced N -dimensional
basis of eigenconfigurations, with N <∞. Thus all integrals over κ in Sections 2.2.3, 2.2.4
and 2.3 become sums of N elements. This reduced model can be justified if the electromag-
netic field is confined in a perfect cavity (which discretizes the frequencies of the modes)
and by imposing an ultraviolet cutoff (otherwise the basis would still be infinite).
The formulation of the quantization we use is based on Refs. [13–15] and on [32].

3.1.1 Principle of correspondence

In such a reduced model with a Hamiltonian function

H = 1

2

N∑
κ=1

[
p2
κ+ω2q2

κ

]
, (3.1)

the standard choice of Hilbert space is the space of real square-integrable functions of the
variable q : L2(RN ,d N q), where q = (q1, q2, . . .). We can apply a general correspondence
principle for the canonical variables qκ, pκ:

qκ 7→ q̂κ := multiplication by qκ, pκ 7→ p̂κ :=−i× ∂

∂qκ
, (3.2)

with × the reduced Planck constant, and q̂κ and p̂κ are two operators acting on the Hilbert
space. We have automatically the commutation relations:

[q̂κ, p̂κ′] = i×δκκ′ , [q̂κ, q̂κ′] = [p̂κ, p̂κ′] = 0. (3.3)

To the Hamiltonian function (3.1) corresponds the operator

Ĥ = 1

2

N∑
κ=1

[
p̂2
κ+ω2

κq̂2
κ

]
, (3.4)

which is the usual Hamiltonian of a set of N uncoupled quantum harmonic oscillators,
where q̂κ is the position operator of the κ-th oscillator and p̂κ is its momentum operator.
One can also use the equivalent correspondence principle with the complex coordinates:

zκ 7→
p
×âκ, z∗

κ 7→
p
×â†

κ, (3.5)
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with

âκ = 1p
2×

(
ω1/2
κ q̂κ+ iω−1/2

κ p̂κ
)

, (3.6)

and

[âκ, â†
κ′] = δκκ′ , [âκ, âκ′] = 0. (3.7)

The Hamiltonian becomes

Ĥ =
N∑
κ=1

×ωκ
2

[
â†
κâκ+ âκâ†

κ

]
. (3.8)

The operators âκ and â†
κ are called annihilation and creation operators, respectively.

3.1.2 General configurations

The passage from the classical complex configurations of the fields zκ and the creation-
annihilation operators (âκ, â†

κ) is a quantization of an individual oscillator (typically, the
one labeled by κ). However, there exist more general configurations where several oscilla-
tors are in motion simultaneously. We note such configurations z = (z1, . . . , zN ) ∈CN , where
each component zκ given by Eq. (2.42) corresponds to a certain configuration of the κ-th
oscillator.

We can then define creation-annihilation operators (b̂z , b̂†
z) associated with the superposi-

tion z. They are connected with the single-oscillator operators by

b̂z = z∗ · â, (3.9a)

b̂†
z = z · â†, (3.9b)

with â = (â1, . . . , âN ). The scalar product here corresponds to a summation over the compo-
nents κ. We can identify the special case:

b̂eκ ≡ âκ, (3.10)

where eκ = (0, . . . ,1, . . . ,0) is a configuration where only one oscillator is excited. We repre-
sent in Figure 3.1 the two types of configurations: one moving oscillator, and a collection of
oscillations.

(a) (b)

Figure 3.1 – Representation of the two types of excitations that can be generated by the
creation-annihilation operators in the reduced model: (a) only one oscillator of normal fre-
quency ωκ is excited by b̂†

eκ
, (b) a collection of oscillators (of different normal frequency or

different degenerate index) are excited by b̂†
z , giving rise to a superposition characterized by

the components zκ.

The superposition implies that the commutator of the creation-annihilation operators de-
pends on the associated configuration:

[b̂z , b̂†
z ′] = z∗ · z ′. (3.11)
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3.1.3 Ground states

A first important use of the creation-annihilation operators is in the determination of the
ground states of the oscillators. We denote them φg ,κ(q). Each ground state is defined by

âκφg ,κ(qκ) = 0. (3.12)

We can calculate it for each κ using the expression of âκ (3.6):

1p
2×

(
ω1/2
κ q̂κ+ iω−1/2

κ p̂κ
)
φg ,κ(qκ) = 0, (3.13)

and inserting the definition of the operators q̂κ and p̂κ [Eq. (3.2)]:

∂

∂qκ
φg ,κ(qκ) =−ωκqκ

× φg ,κ(qκ). (3.14)

The normalized solution of this equation reads

φg ,κ(qκ) =
(ωκ
π×

) 1
4

e−ωκq2
κ

2× , (3.15)

which is a Gaussian function of the position variable qκ.

3.1.4 Ladder space

The ground state of each individual oscillator is given by Eq. (3.15). In order to have a clearer
view on the number of quantum excitations attached to a given state, we use a different rep-
resentation of the Hilbert space L2(RN ,d N q), which we call a “ladder space”, denoted by L .

In order to define L , we callφg the ground state of the whole system of N oscillators, which
contains the knowledge of the ground states of all individual oscillators:

φg =⊗N
κ=1φg ,κ, (3.16)

withφg ,κ given by Eq. (3.15), and ⊗ denoting the tensor product. From this, the ladder space
L is defined by

L :=⊕∞
n=0Ln , (3.17)

where ⊕ denotes the direct sum, and the subspaces Ln are

L0 :=
{
φ0 ∈L

∣∣ φ0 = cφg , c ∈C
}

,

L1 :=
{
φ1 ∈L

∣∣ φ1 = b̂†
zφg , z ∈CN

}
, (3.18)

L2 :=
{
φ2 ∈L

∣∣ φ2 = b̂†
z1

b̂†
z2
φg , z1, z2 ∈CN

}
,

...

L0 is the space of functions that are simply the ground state multiplied by an arbitrary
complex constant, and Ln is the space of functions defined by the application of n creation
operators on the ground state (on possibly n different z-configurations). Therefore, we use
the creation-annihilation operators to climb up or down from one subspace of the ladder
space to another.
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3.2 Photons

3.2.1 Bosonic Fock space

For reasons that will be made clear in the next section, we now define an abstract bosonic
Fock space F by [13–15, 32–34]

F =⊕∞
n=0Fn (3.19)

(with⊕ the direct sum), built with a (suitably chosen) Hilbert space of configurations Hconfig
as

F0 :=C,

F1 :=Hconfig,

F2 := Ŝ2(Hconfig ⊗Hconfig), (3.20)
...

Fn := Ŝn(Hconfig ⊗ . . .⊗Hconfig),
...

where we call F0 the 0-quantum space, F1 the 1-quantum space, and so on. A vector in Fn
is called a n-quanta state, and it can be written in general as a linear combination of vectors
of the form

Ŝn |ξ1 ⊗ . . .⊗ξn〉, (3.21)

with all ξ j being configurations in Hconfig. From now on, we will use the “bra-ket” notation
exclusively for states in a Fock space.

The operator Ŝn is a projector onto symmetric states, constructed with the permutations of
the 1-quantum states. It can be formally defined by

Ŝn := 1

n!
∑

perm.
and Ŝ0 :=1. (3.22)

For instance

Ŝ2|ξ⊗ξ′〉 = 1

2

[|ξ⊗ξ′〉+ |ξ′⊗ξ〉] . (3.23)

The resulting state is said to be symmetric or bosonic.

Remark: For states in F2, we adopt the standard notation |ξ⊗s ξ
′〉 ≡ Ŝ2|ξ⊗ξ′〉, with ⊗s called the

symmetrized tensor product defined by

ξ⊗s ξ
′ := 1

2
(ξ⊗ξ′+ξ′⊗ξ) ≡ Ŝ2(ξ⊗ξ′). (3.24)

This notation is widely used in the literature even for high subspaces (n > 2), but it is more dif-
ficult to define unambiguously the associative property of many symmetrized tensor products,
whereas the definition (3.22) of the operators Ŝ j is very clear.

The Fock space F is called bosonic because its n-quanta states (i.e., the vectors of Fn) with
n > 1 are linear combinations of symmetric tensor products of n states of F1. This symme-
try is a signature of bosonic states.

This construction of the bosonic Fock space is abstract. In order to relate it to a physical
model, one needs to specify which space of configurations Hconfig the Fock space is built
with. This will be investigated more closely later on.
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3.2.2 Creation-annihilation operators

In the Fock space F defined in the preceding section, we can define creation-annihilation
operators for any configuration ξ ∈Hconfig, as operators that allow one to go up or down on
the series of Fock subspaces (one can already foretell a link with the ladder space L ):

B̂ξ : Fn 7→Fn−1, (3.25)

B̂ †
ξ

: Fn 7→Fn+1, (3.26)

and verifying the bosonic commutation relations[
B̂ξ, B̂ †

ξ′

]
= (ξ ·ξ′)1,

[
B̂ξ, B̂ξ′

]= 0. (3.27)

Note that the definition of the scalar product ξ·ξ′ depends on the representation of the elec-
tromagnetic configurations, i.e., on the Hilbert space Hconfig that has been chosen.

The 0-quantum state (i.e., ground state) is written |∅〉 ∈F0 and verifies

B̂ξ|∅〉 = 0, ∀ξ ∈Hconfig. (3.28)

We denote |ξ〉 any 1-quantum state associated with the classical configuration ξ. It is gen-
erated by applying the corresponding creation operator on the ground state:

|ξ〉 = B̂ †
ξ
|∅〉. (3.29)

Multi-quanta states can be generally defined by the application of several creation opera-
tors and the introduction of the number of excitations in each configuration. The general
application rules of the operators on n-quanta states (n > 0) read

B̂ †
ξ
|ξ1 ⊗ . . .⊗ξn〉 =

p
n +1Ŝn+1|ξ⊗ξ1 ⊗ . . .⊗ξn〉, (3.30)

B̂ξ|ξ1 ⊗ . . .⊗ξn〉 = 1p
n

n∑
j=1

(ξ ·ξ j )Ŝn−1|ξ1 ⊗ . . .⊗ ξ̌ j ⊗ . . .⊗ξn〉, (3.31)

where the notation ξ̌ j indicates that this term is missing.

Remark: The creation-annihilation operators act first by symmetrizing the state (with the ap-
plication of Ŝ). Thus if the state on which we apply B̂ or B̂ † is already symmetric, Ŝ has no effect.
Another way of looking at it is: B̂ξŜ = B̂ξ, which comes naturally from the fact that Ŝ2 = Ŝ (i.e., Ŝ
is a projector).

Examples: the creation and annihilation of quanta on configuration ξ, applied on the 0-
quantum state or on arbitrary 1-quantum and 2-quanta states give:

B̂ †
ξ
|∅〉 = |ξ〉

B̂ †
ξ
|ξ1〉 =

p
2

2

[|ξ⊗ξ1〉+ |ξ1 ⊗ξ〉
]

B̂ †
ξ
|ξ1 ⊗ξ2〉 =

p
3

3!
[|ξ⊗ξ1 ⊗ξ2〉+ |ξ⊗ξ2 ⊗ξ1〉

+ |ξ1 ⊗ξ⊗ξ2〉+ |ξ2 ⊗ξ⊗ξ1〉
+ |ξ1 ⊗ξ2 ⊗ξ〉+ |ξ2 ⊗ξ1 ⊗ξ〉

]

B̂ξ|∅〉 = 0

B̂ξ|ξ1〉 = (ξ ·ξ1)|∅〉

B̂ξ|ξ1 ⊗ξ2〉 = 1p
2

[
(ξ ·ξ1)|ξ2〉+ (ξ ·ξ2)|ξ1〉

]
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In particular, we have the usual expression for the annihilation in a single harmonic oscil-
lator with normalized configurations (ξ ·ξ= 1):

B̂ξ|ξ⊗s ξ〉 =
p

2|ξ〉. (3.32)

The creation-annihilation operators furthermore satisfy the following properties:

B̂ †
ξ1+ξ2

= B̂ †
ξ1
+ B̂ †

ξ2
, B̂ †

cξ = cB̂ †
ξ

for c ∈C, (3.33a)

B̂ξ1+ξ2 = B̂ξ1 + B̂ξ2 , B̂cξ = c∗B̂ξ for c ∈C. (3.33b)

3.2.3 Number operator

A central idea when speaking of quantum light is the possibility to count individual pho-
tons. This is already encompassed in the splitting of the ladder space and the Fock space
into countable subspaces, one for each number of quanta, but there is a practical math-
ematical object which is appreciated to address this matter: the number operator N̂ . The
definition is very straightforward:

Consider an arbitrary state |Φ〉 in the Fock space F . Since F is an infinite direct sum of the
subspaces F j , |Φ〉 can be written as an array of states:

|Φ〉 = (|φ0〉, |φ1〉, |φ2〉, |φ3〉, . . .
)
, (3.34)

with |φn〉 ∈Fn . The number operator is the operator that attaches the corresponding num-
ber of quanta to each state in |Φ〉:

N̂ |Φ〉 := (
0,1|φ1〉,2|φ2〉,3|φ3〉, . . .

)
. (3.35)

It is usually directly applied to an n-quanta state of Fn :

if |φn〉 ∈Fn , then N̂ |φn〉 = n|φn〉. (3.36)

This implies that all n-quanta states are eigenvectors of the number operator.

Remark: It can be shown that the definition of the bosonic creation-annihilation operators im-
plies that for any orthonormal basis of eigenconfigurations {~ϕκ},

N̂ =∑
κ

B̂ †
~ϕκ

B~ϕκ . (3.37)

This is also a usual way of defining the number operator, but the definition (3.35) empha-
sizes that the number operator can be used and interpreted independently of the creation-
annihilation operators.

3.2.4 Hilbert spaces of classical electromagnetic configurations

As mentioned earlier, the Hilbert space of configurations ξ ∈Hconfig tells us to which phys-
ical model the Fock space can be related (mechanical oscillators, light...). We now describe
what possible Hilbert spaces can be chosen to give to the states in F the interpretation of
photon states.
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One can recall from our construction (see e.g. the scheme at the end of Section 2.2.3) that we
have several equivalent choices for the Hilbert space of electromagnetic configurations: we
can choose the real space of (~A′,~Π′)-configurations, the complex space of ~Ψ-configurations,
the real space of (q , p)-configurations, or the complex space of z-configurations. One can
see this flexibility as equivalent to the choice of dealing with Fourier representations instead
of the initial fields in classical optics.

Let us start with the latter because it has a straightfoward relation to the functions of the
ladder space: we choose Hconfig ≡ {

z ∈CN
}

and the configurations are ξ ≡ z. This Fock
space can be shown [13–15] to be isomorphic to the ladder space L . We have the one-to-
one correspondence:

L ↔F (CN ),

b̂z ↔ B̂z , (3.38)

φ0 ↔|∅〉,
φn ↔ Ŝn |z1 ⊗ . . .⊗ zn〉.

Remark: This isomorphism is valid only if the Fock space is bosonic, i.e., if we have imposed
the symmetry of the many-quanta states (n > 1). This is as a key argument to justify the bosonic
nature of the quanta of the system.

The quantum states of the Fock space F (CN ) are always associated to classical electromag-
netic configurations (here of the z-type). For instance, the 1-quantum state |z = eκ〉 is the
quantum state corresponding to an excitation on the κ-th oscillator, and all others in their
ground state. Any state |z〉 is in general a superposition of such states:

|z〉 =
N∑
κ=1

cκ|eκ〉. (3.39)

One can also choose to associate the quantum states with ~Ψ-configurations instead of z-
configurations. Since in the next section we focus on a description of photons and prop-
erties of locality, we will base our study on the space of ~Ψ-configurations. The isomor-
phism between the two spaces of configurations implies the isomorphism between the
Fock spaces:

F (CN ) ↔F (PC,Ω),

B̂z ↔ B̂~Ψ, (3.40)

|z〉↔ |~Ψ〉.

In the same way as for B̂eκ , we have in F (PC,Ω) the special case of single-oscillator excita-

tions B̂~ϕκ where ~ϕκ(~x) are eigenconfigurations (i.e., eigenfunctions ofΩ, plane waves in the
vacuum case). In general, we identify the expansion (2.41) in the Fock space:

|~Ψ〉 =
N∑
κ=1

zκ|~ϕκ〉. (3.41)

We do not explicitly describe the quantum states in the two other possible Fock spaces, but
one can refer to the following scheme to follow the isomorphism chain of the classical phase
spaces of configurations in the quantum domain.
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3.2.5 Electromagnetic field operators and Hamiltonian

Now that the quantization of the reduced model is constructed in the framework of a bosonic
Fock space, we can invert the transformations and express the electric field as an operator
acting on the Fock space.

The quantum versions of the canonical variables obey the same relations as in the classical
domain, i.e., from Eq. (2.37):

~̂A′(~x) =
N∑
κ=1

~ϕκ(~x)q̂κ, (3.42a)

~̂Π′(~x) =
N∑
κ=1

~ϕκ(~x)p̂κ. (3.42b)

Because of Eq. (3.6), it gives

~̂A′(~x) =
N∑
κ=1

√
×

2ωκ
~ϕκ(~x)[âκ+ â†

κ], (3.43a)

~̂Π′(~x) =−i
N∑
κ=1

√
×ωκ

2
~ϕκ(~x)[âκ− â†

κ]. (3.43b)

Using the isomorphism with the Fock space F (PC,Ω), we have the one-to-one correspon-
dence âκ↔ B̂~ϕκ , implying

~̂A′(~x) =
N∑
κ=1

√
×

2ωκ
~ϕκ(~x)

[
B̂~ϕκ + B̂ †

~ϕκ

]
, (3.44a)

~̂Π′(~x) =−i
N∑
κ=1

√
×ωκ

2
~ϕκ(~x)

[
B̂~ϕκ − B̂ †

~ϕκ

]
. (3.44b)

Finally, using Eq. (2.12) on one side, and Eqs. (2.1d) and(2.6) on the other side, we obtain
the electric and magnetic fields as operators acting on the Fock space:

~̂E(~x) = i
N∑
κ=1

√
×ωκ

2ε0εR
~ϕκ(~x)

[
B̂~ϕκ − B̂ †

~ϕκ

]
, (3.45a)

~̂B(~x) =
N∑
κ=1

√
×ε0

2ωκ
∇× (p

εR~ϕκ(~x)
)[

B̂~ϕκ + B̂ †
~ϕκ

]
. (3.45b)

Similarly, we can express the quantum Hamiltonian (3.8) in terms of the operators of the
Fock space:

Ĥ =
N∑
κ=1

×ωκ
2

[
B̂ †
~ϕκ

B̂~ϕκ + B̂~ϕκB̂ †
~ϕκ

]
. (3.46)
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Because of the commutation relation (3.27), we can write B̂~ϕκB̂ †
~ϕκ

= B̂ †
~ϕκ

B̂~ϕκ+1, which gives

Ĥ =
N∑
κ=1

×ωκ
[

B̂ †
~ϕκ

B̂~ϕκ +
1

2
1

]
. (3.47)

The Hamiltonian therefore contains a zero-point energy term
∑
κ×ωκ

/
2 (which is finite in

the reduced model). Since one can add an arbitrary finite constant to the Hamiltonian with-
out changing the dynamics, we remove this constant. This procedure is sometimes referred
to as normal ordering, or Wick ordering, where the products of creation and annihilation
operators are ordered in such a way that the annihilation operators are applied before the
creation operators.

Thus finally, the quantized (diagonal) Hamiltonian reads

Ĥ =
N∑
κ=1

×ωκ B̂ †
~ϕκ

B̂~ϕκ . (3.48)

3.2.6 The quantum field operator

One can find useful to define a position dependent quantum operator acting on the bosonic
Fock space, instead of the creation-annihilation operators introduced in Sec. 3.2.2. We thus

introduce the quantum field operator ~̂Ψ(~x),

~̂Ψ(~x) := 1p
2×

(
Ω1/2 ~̂A′(~x)+ iΩ−1/2~̂Π′(~x)

)
, (3.49)

with Ω the frequency operator (2.9), i.e., it is the quantum equivalent of the complex field
~Ψ introduced in Sec. 2.2.1. Because of the expansion (2.41) and the principle of correspon-
dence (3.5), it can also be linked to the creation-annihilation operators by

~̂Ψ(~x) =
N∑
κ=1

~ϕκ(~x) B̂~ϕκ , (3.50)

with {~ϕκ} the real basis of eigenconfigurations ofΩ. Note however that the definition (3.50)
holds for any basis of eigenfunctions ofΩ.

As a consequence, the electromagnetic field observables can be expressed in terms of the

field operator ~̂Ψ,

~̂E(~x) = i

√
×

2ε0εR
Ω1/2

[
~̂Ψ(~x)− ~̂Ψ†(~x)

]
, (3.51a)

~̂B(~x) =
√

×ε0

2
∇×

{
εRΩ

−1/2
[
~̂Ψ(~x)+ ~̂Ψ†(~x)

]}
, (3.51b)

and the Hamiltonian alike,

Ĥ =×
∫

d 3x ~̂Ψ†(~x)Ω · ~̂Ψ(~x). (3.52)
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Furthermore, because of Eq. (3.27) and the completeness (2.46) (with discrete spectrum) of
the eigenconfigurations ~ϕκ, it is easy to see that the field operators satisfy the commutation
relations [

Ψ̂i (~x),Ψ̂†
j (~x ′)

]
= δ⊥,

p
εR

i j (~x −~x ′), (3.53a)[
Ψ̂i (~x),Ψ̂ j (~x ′)

]= 0. (3.53b)

For each fixed position ~x0 and each component j , one can interpret Ψ̂†
j (~x0) as a photon

creation operator on a mode~ξ~x0, j (~x). This can be seen by applying it on the vacuum Fock
state,

|~ξ~x0, j (~x)〉 := Ψ̂†
j (~x0)|∅〉 =∑

κ

ϕ
j∗
κ (~x0)B̂ †

~ϕκ
|∅〉

=∑
κ

ϕ
j∗
κ (~x0)|~ϕκ〉. (3.54)

In the representation of the one-photon Fock space by the mode functions, we have

~ξ~x0, j (~x) =∑
κ

ϕ
j∗
κ (~x0)~ϕκ(~x). (3.55)

Thus, using the completeness relation (2.46), the configuration~ξ~x0, j (~x) reads

ξi
~x0, j (~x) =∑

κ

ϕ
j∗
κ (~x0)ϕi

κ(~x) = δ⊥,
p
εR

i j (~x −~x0). (3.56)

The components of the configuration created by the field operator are equal to the trans-
verse delta function (modified by the dielectric permittivity, as described in Sec. 2.2.4).

Since this function is a distribution, the operators ~̂Ψ(~x) are operator valued distributions,
i.e., they only yield a regular operator when integrated over a test function (see, e.g., [32]
and [35] p.778). This is also the case for the electromagnetic observables since they can be

written as linear combinations of ~̂Ψ and ~̂Ψ†.

3.3 Summary on the spaces

The reduced model is now thoroughly described. The Hamiltonian structure of the electro-
magnetic field is shown to be equivalent to a ensemble of quantum harmonic oscillators.
We have a well-defined way of describing any multi-quanta excitation of such ensemble,
and we have a choice of space of quantum states:

• The Hilbert space L2(RN ,d N q), where the states f (q) are functions of the position
variables of the oscillators, qκ;

• The ladder space L , which is another representation of L2(RN ,d N q) as a series of
subspaces, where the states φn(q) can be labeled with the corresponding number of
quantum excitations;

• The bosonic Fock space F , which is isomorphic to L , where the many-quanta (n >
1) states are written as symmetric tensor products of 1-quantum states. The states are
associated with functions of the space chosen for the construction of the Fock space:
it can be the space of “Fourier” configurations z ∈ CN , but we prefer to use the space
of the complex representation of the electromagnetic fields ~Ψ(~x) ∈PC,Ω.
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Once all of it is well-defined, we can express the electric field and magnetic field observ-
ables, which act in the Fock space and can be used to calculate measurable quantities in a
given passive environment.

The full construction may look exaggeratedly complicated: why use and construct L and
F when we could study all possible configurations and quantum excitations of the system
of N oscillators in L2(RN ,d N q)? The reason is the following: we define L so that the iso-
morphism to the Fock space F seems more natural and straightforward. But the reason
for defining a Fock space is hardly justifiable in the reduced model of N oscillators (corre-
sponding to the electromagnetic field in a perfect cavity). However, as we shall see now, the
construction of the Fock space is necessary to quantize the full model of the electromag-
netic field with infinitely many degrees of freedom.

3.4 The key to the full model

3.4.1 The infinite Fock space

We have shown in the preceding section how the classical Hamiltonian system describing
the electromagnetic field interacting with passive media can be reduced to a collection of
N discrete oscillators, provided that we consider only fields that can be expanded on a dis-
crete and finite basis of eigenvectors ~ϕκ(~x) of the frequency operatorΩ (which corresponds
to enclosing the electromagnetic field in a perfect cavity and imposing a cutoff in high fre-
quencies). We have then shown how to quantize such a model, and we completed the con-
struction to the definition of a (bosonic) Fock space to describe the quantum states.

We now wish to turn back to the full model, and here an issue emerges. In the classical
model, we can always turn back to a continuous (infinite) basis

∑
κ → ∫

dκ. However, at
the time of the quantization procedure, we cannot take this limit since the Hilbert space
L2(RN ,d N q) is not mathematically well-defined when N →∞ (no Lebesgue measure d N q
exists in that case, and without it one cannot construct a Hilbert space, see, e.g., [36]). With-
out this Hilbert space, the operators q̂ , p̂, â or b̂ are ill-defined, we cannot construct L , and
we cannot go isomorphically to a Fock space [36].

The key to solve this problem lies in the fact that the Fock space F is well-defined with N →
∞. One can indeed construct an abstract bosonic Fock space similar to (3.20) in that limit.
This does not change the fact that one cannot revert the process and go back isomorphically
to an expression of the electric and magnetic fields in terms of the bosonic operators of the
Fock space. But since the isomorphism is well-defined in the cavity case, we postulate that
we can impose all the relations of the reduced model in the full model, and thus we define
the electric and magnetic fields as in Eq. (3.45) but with the limit

∑
κ→

∫
dκ≡ ∫

d~k
∑
σ,ζ and

ωκ→ω:

~̂E(~x) = i
∫

d~k
∑
σ,ζ

√
×ω

2ε0εR
~ϕ~k,σ,ζ(~x)

[
B̂~ϕ~k,σ,ζ

− B̂ †
~ϕ~k,σ,ζ

]
, (3.57a)

~̂B(~x) =
∫

d~k
∑
σ,ζ

√
×ε0

2ω
∇×

(p
εR~ϕ~k,σ,ζ(~x)

)[
B̂~ϕ~k,σ,ζ

+ B̂ †
~ϕ~k,σ,ζ

]
. (3.57b)

Similarly, the diagonal Hamiltonian of the full model reads
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Ĥ =
∫

d~k
∑
σ,ζ

×ω B̂ †
~ϕ~k,σ,ζ

B̂~ϕ~k,σ,ζ
. (3.58)

We note that the Hamiltonian is defined in the Fock space with the Wick ordering (since the
constant in Eq. (3.47) would become infinite when the limit of infinite dimensions is taken).

We emphasize that there is no argument which would entirely solve the problem of the limit
N →∞. The key we describe here, i.e., to define a Fock space with N →∞ and to postulate
that the relations of the reduced model are preserved, is an ad hoc assumption justified by
the existence of all isomorphisms in the reduced model.

We show in Figure 3.2 a scheme of all changes of variables and all isomorphisms used in the
construction.

in

in

in

in

in
quantization

in

isomorphism with
Boson Fock space

Real elements

Complex elements

Quantum operators

Isomorphic spaces

Acts on
in

Figure 3.2 – Scheme of all changes of variables (and corresponding spaces) used in the
quantization of electromagnetic radiations in a passive medium (i.e., with real, non-
dispersive dielectric permittivity).

3.4.2 The different roles of operators in quantum optics

There are four different roles played by the various operators which have been introduced
in this Chapter. In order to understand the conceptual implications of the quantum theory,
it is important to keep in mind what these different roles are.

(i) The first type are operators representing observables, i.e., quantities that can be mea-
sured by a particular device. For each type of measuring instrument one has to construct
appropriate operators that represent its function. Since instruments are in general quite
complicated objects, one aims to construct simple model operators that codify at least the
essential aspects of the function of the device. The electromagnetic field operators such as
~̂E or ~̂B are of this type.
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(ii) The Hamiltonian operator Ĥ plays a dual role: it corresponds to the total energy observ-
able, and it is also the generator of the time evolution of the system through the Schrödinger
equation. As the generator of the dynamics, it is not associated to a particular measuring
instrument.

(iii) The creation and annihilation operators are defined in order to construct the different
states in Fock space. They are also used as the basic building blocks to construct the rep-
resentation of the observables in Fock space. In fact one can argue that the only way one
can define operators in Fock space is by combining creation and annihilation operators and
projectors of states |Φ〉〈Φ|.

(iv) The field operator ~̂Ψ(~x) introduced in Sec. 3.2.6 plays a similar role as the creation-
annihilation operators in the construction of observables. It has the advantage that it does
not involve explicitly any particular basis or set of modes. It is however a more singular
object: it is an operator valued distribution [32, 35]. When applied formally on the vacuum
it does not yield a state but a singular object that is not in the Hilbert space and which
can be interpreted as a distribution. Its role could be considered only technical, i.e., as
a convenient way to summarize information and as a convenient notation. On the other
hand its independence on a particular choice of basis is an argument for considering it as
the general intrinsic definition of the quantum field. This point of view is often prevalent
in quantum field theory [33]. Moreover, it has been argued by Mandel [37] to help defining
the localizability of quantum states of the free field.

3.4.3 Remarks on the physical status of the reduced model

The reduced model (with discrete and finite dimensions) has been constructed in order to
have a well-defined Hilbert space in terms of L2 functions of the electromagnetic configu-
rations. It can be considered as an intermediate step that suggests the structure and inter-
pretation that one should associate to the postulated Fock space model, that allows one a
well-defined N →∞ model. One can however try to clarify the conceptual status and do-
main of validity of the reduced model for applications in (non-relativistic) quantum optics.
For quantum optics in a cavity one can make the argument that the eigenmodes that have
been projected out with a cutoff correspond to high energies, and therefore in usual quan-
tum optics experiments these modes are never populated. Hence, the reduced model and
the more general Fock space model should lead to essentially identical predictions for the
considered experiments. In the same spirit, the propagation in free space can be reduced
to a finite set of modes by considering large but finite cavities. However, for the description
of propagating localized pulses one needs a continuum of modes, and thus the formulation
in Fock space is necessary.

3.5 Summary on the quantum model

In this chapter we have quantized the canonical model of Chapter 2 in a perfect cavity where
the fields are expanded on a discrete and finite set of modes. We have described the prin-
ciple of correspondence which transforms the classical variables into quantum operators,
and we have given several formulations of the theory depending on how we choose to con-
struct the Hilbert space of quantum states. We have seen that a bosonic Fock space can be
constructed and then extended to infinite dimensions (i.e., to more realistic scenarios with
a continuous spectrum). This can serve as a theoretical justification of the bosonic prop-
erty of the states. Observables like the electric field operator were derived and expressed in
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a way that can be used to evaluate measurable quantities.

Moreover, the quantization scheme presented in this chapter highlights two sets of prop-
erties attached to the photon states: classical properties of the electromagnetic configura-
tions, and quantum properties emerging from the principle of correspondence and from
the construction of the Fock space. Some properties are more important than others de-
pending on the context or what a given experimental setup stresses out. In the next chapter,
we describe recent experiments where both classical and quantum properties of photons
play crucial roles.
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4
Photon dynamics

From the quantization of light in passive media, one must be able to extract a precise descrip-
tion of the photon states, and in particular what is usually referred to as the “mode profile”
in classical electromagnetism, or the “wave packet” in quantum optics. This is what we in-
vestigate in this Chapter, and we use it to describe some fundamental quantum optics exper-
iments.

In Section 4.1 we comment on the usual Planck-Einstein formula stating that the energy of
a photon is given by a unique frequency. We argue that this formula, although useful in
some specific conditions, is generally unadapted to describe propagating localized states. In
Section 4.2 we give a precise description of “pulse” electromagnetic configurations associated
with photons and we show how the quantum state is modified by its interaction with a beam
splitter. Finally in Section 4.3 we investigate how the preceding description can be used to
describe the Hong-Ou-Mandel experiment and some generalization of it.
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4.1. TIME EVOLUTION OF PHOTON STATES

4.1 Time evolution of photon states

The design of quantum optics experiments relies on the understanding of the dynamics of
the photon states. The formulation developed in the preceding chapter allows us to make
the following statement: starting from a given initial condition, the quantum evolution of
an N -photon state is entirely determined by the classical evolution of its N classical config-
urations, combined with the bosonic condition of symmetry. We can show it easily with a
1-photon state:
We start with an initial classical configuration ~ψ(t = 0). This configuration evolves accord-
ing to the wave equation in the complex representation:

i∂t~ψ(t ) =Ω~ψ(t ), (4.1)

such that in terms of the eigenfunctions ~ϕκ ofΩ, we have

~ψ(t ) =
∫

dκ e−iωκt~ϕκακ, ακ =~ϕ∗
κ ·~ψ(t = 0). (4.2)

The quantum state associated with ~ψ(t ) is

|~ψ(t )〉 = B̂ †
~ψ(t )

|∅〉 = B̂ †∫
dκ e−iωκt~ϕκακ

|∅〉 =
∫

dκ e−iωκtακB̂ †
~ϕκ
|∅〉. (4.3)

Using this representation, we can write

i×∂t |~ψ(t )〉 =
∫

dκ ×ωκ e−iωκtακB̂ †
~ϕκ
|∅〉. (4.4)

On the other hand, since the Hamiltonian reads Ĥ = ∫
dκ ×ωκ B̂ †

~ϕκ
B̂~ϕκ (see Section 3.4.1),

we have

Ĥ |~ψ(t )〉 =
Ï

dκdκ′ ×ωκ′e−iωκtακB̂ †
~ϕκ′

B̂~ϕκ′ B̂
†
~ϕκ
|∅〉,

=
Ï

dκdκ′ ×ωκ′e−iωκtακB̂ †
~ϕκ′

(
B̂ †
~ϕκ′

B̂~ϕκ +δ(κ−κ′)
)
|∅〉,

=
∫

dκ ×ωκe−iωκtακB̂ †
~ϕκ
|∅〉, (4.5)

where we have used the commutation relation B̂~ϕκ′ B̂
†
~ϕκ

= B̂ †
~ϕκ

B̂~ϕκ′+δ(κ−κ′) and the fact that

B̂~ϕκ′ |∅〉 = 0. Identification with (4.4) shows that the state |~ψ(t )〉 satisfies the Schrödinger
equation

Ĥ |~ψ(t )〉 = i×∂t |~ψ(t )〉, (4.6)

which proves that the time evolution of ~ψ(t = 0) coincides with the time evolution of the
quantum state. In other words, starting with a quantum state |~ψ(t = 0)〉, one can deduce
the evolved state |~ψ(t )〉 at any time t by calculating the classical evolution ~ψ(t ).

The above proof can easily be extended to states with a higher number of quanta. When cal-
culating the time evolution of the state, one has to remember to add the bosonic condition
of symmetry introduced in Section 3.2.1. This requirement is actually the only difference
between the quantum and the classical evolution in the propagation (i.e., apart from the
processes of emission and detection). As we will see in the next Sections, a simple exper-
imental setup involving a beam splitter can be used to distinguish between classical and
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quantum light only when at least two quanta are used.

When a classical configuration ~ψ propagates through a passive optical element X , we will
note

|~ψ(t1)〉 X=⇒ |~ψ(t2)〉, (4.7)

with t2 > t1, the evolution of the associated quantum state. Thus the symbol
X=⇒ implies the

Schrödinger evolution of the state through the element X .

4.2 One photon through a beam splitter

A good, first way to confront the quantum description of photons to classical descriptions
of light is to investigate the action of a beam splitter on a single photon. A beam splitter
(BS) is a device widely used in classical optics which spatially separates a radiation of light
into two distinct paths. It takes various forms (a superposition of layers of glass, a metallic
film, a split cube of glass or a fiber coupler and equivalent integrated devices), and some of
these forms allow the control of the ratio of transmitted light in each path. A beam splitter
is called balanced when this ratio is 50/50, i.e., the radiation is equally guided onto each of
the two paths.

Beam splitters can also have an effect on the polarization of the radiation, in which case we
use the term polarizing beam splitter. In this thesis we do not study the effect of polariza-
tion.

It is worth noting that some designs of plasmonic beam splitters have recently been used in
experiments [38–43]. Hence, everything we describe in the present Chapter can be extrapo-
lated to quantum plasmonics experiments (of course one should also consider losses in the
material [42–46], a feature that we neglect for photons).

4.2.1 Classical description

We first describe the effect of the beam splitter on a classical pulse. We will then use this
description to build the corresponding quantum state.

We consider an initial classical configuration that is sent onto a beam splitter as represented
in Figure 4.1 (a), and we place two detectors, one on each outgoing path (horizontal and
vertical). We choose the origin of the coordinates at the center of the BS.

(b)(a)

y

x

Figure 4.1 – (a) Initial classical configuration; (b) classical configuration after reflection and
transmission.
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We define the following pulse shape function ~S(r1,r2,r3,τ;k,L,L0,σ), depending on three
spatial arguments r1,r2,r3, a temporal variable τ, and several parameters k,L,L0,σ,

~S(r1,r2,r3,τ;k,L,L0,σ) :=~ezE (r1 − cτ)e i (kr1−ωτ)g (r2,r3), (4.8)

where~ez = (0,0,1) is the linear polarization vector, ω= ck > 0 is the carrier frequency, and

E (r ) =χ[−L0−L,−L0](r )sin2 (
r
π

L

)
, (4.9)

g (r2,r3) = e−(r 2
2+r 2

3 )/σ2
χ[0,9σ2](r 2

2 + r 2
3 ), (4.10)

with

χ[a,b](r ) :=
{

1 for r ∈ [a,b],

0 otherwise.
(4.11)

E (r ) is the pulse envelope in the direction of propagation. The function g (r2,r3) is the trans-
verse profile, for which we take a truncated Gaussian of width 3σ, to ensure that the pulses
occupy a finite volume (which is what we can assume is a good description of what happens
in experiments). L is the length of the pulse and L0 determines the position of the pulse at
time τ= 0. For the pulse envelope E we have taken a sin2 function with a finite support of
size L, so that there is no ambiguity about when the process starts.

The initial configuration is chosen as

ψi (~x) =~S(x, y , z,τ= 0;k,L,L0,σ) =:~S(x,τ= 0), (4.12)

where we introduce an abridged notation for ~S indicating only the first spatial argument
and the time argument.

After interacting with the beam splitter, for τÀ (L0+L)/c, the classical mode evolves into a
reflected pulse and a transmitted pulse

ψi →ψR +ψT , (4.13)

where

ψR (~x,τ) = r~S(y − cτ,τ) =: r v(y), (4.14)

ψT (~x,τ) = t~S(x − cτ,τ) =: th(x). (4.15)

Assuming that we can neglect losses in the material, the reflection and transmission coeffi-
cients r , t satisfy the relation |r |2 +|t |2 = 1 and r ∗t + r t∗ = 0. For a balanced beam splitter
they satisfy furthermore

t = i r , i.e., r 2 + t 2 = 0. (4.16)

We have also introduced the notations v(y) and h(x) (standing for vertical ad horizontal)
to improve the readability of the constructions of this Chapter. We emphasize that these
notations do not refer to the polarization state of the pulse, but only to its propagation axis
x (horizontal) or y (vertical).

It is worth noticing that the equations (4.14)–(4.15) are approximations since we do not
consider any dispersion or spatial deformation effect during the propagation.
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Remark: The classical description of a beam splitter we provide here does not modify the spec-
tral structure of the Hamiltonian model built in Chapter 2, since it only adds transmission and
reflection coefficients in the propagation. This is the case providing we do not look into local
effects inside the beam splitter. As a consequence, configurations of the field in the exterior of
the beam splitter can be mapped onto the basis of eigenconfigurations in vacuum (i.e., plane
waves).

4.2.2 Quantum dynamics of the photon

Let us now assume that the radiation of light is not classical but made of a 1-photon state
associated with the initial configuration ψi . In the Fock space, this state is

|ψi 〉 := B̂ †
ψi
|∅〉. (4.17)

In order to use a probabilistic interpretation later on, we should assume this configuration
to be normalized: ∫

d 3r |ψi (~r )|2 = 1, (4.18)

which entails [see Eq. (3.27)] [
B̂ψi , B̂ †

ψi

]=1. (4.19)

This implies that the initial quantum state (4.17) is normalized:

〈ψi |ψi 〉 = 1. (4.20)

Using the classical evolution to calculate the quantum evolution as described in Section 4.1,
the 1-photon state evolves to

|ψi 〉 BS=⇒ |ψR +ψT 〉 = B̂ †
ψR+ψT

|∅〉,
= |r v(y)+ th(x)〉. (4.21)

The physical interpretation of the state at time t after the crossing of the beam splitter is as
follows:

|ψR +ψT 〉 is a 1-photon state on the single classical configurationψR +ψT , which has two
spatially disjoint components, one propagating in the x direction and the other one in the
y direction.

We emphasize that the evolution of the state is studied far enough of the beam splitter such
that we can neglect all local effects and in particular non-trivial deformations of the state
inside the beam splitter. This approximation is therefore equivalent to a scattering perspec-
tive although the time-scale is finite and can be rather small depending on the classical
configuration associated with the photon.

4.3 Hong-Ou-Mandel effect

When 2-photon states propagate onto a beam splitter from opposite ports, an interest-
ing phenomenon can appear. This phenomenon is referred to as Hong-Ou-Mandel effect
(HOM, [18]). It is fundamental in quantum optics since it is probably the simplest exper-
imental setup which is able to clearly show a quantum behavior of light [19]. It can thus
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serve as a way to check that the source used is indeed a single-photon source, and for this
reason it is widely used in quantum optics experiments.

The HOM effect has been observed with photons in many different platforms. It was also
used to study single plasmons [38–43], as well as electrons and holes in condensed mat-
ter [47], and even free atoms [48]. In this section, we consider only photons, which is the
first and most common quantum object used in a HOM setup. It is thus well known, but
we will see along this section some extensions of the phenomenon which challenges the
usual intuition and that requires us to analyze more precisely how single-photon detectors
actually work.

4.3.1 General setup

We consider the general setup as sketched on Figure 4.2, where two classical configurations
are impinging a beam splitter from opposite ports.

Figure 4.2 – General scheme for the HOM effect. Red and green arrows are the paths fol-
lowed by the classical configurations which may carry 1-photon states.

The initial state (before the BS) is defined by

|Ψi 〉 = B̂ †
ψB

B̂ †
ψA

|∅〉 = |ψA〉⊗s |ψB 〉, (4.22)

where ψA and ψB are the classical configurations carrying the photons. They can have a
Gaussian profile or any kind which is compatible with the complex Hilbert phase space of
configurations as constructed in Chapter 2.

It is crucial for the interpretation of the phenomenon to emphasize that Ψi is a 2-photon
state. It is not the sum of two 1-photon states – this would mean adding a photon on two
distinct electromagnetic vacuums. A 2-photon state is not the sum of two 1-photon states,
it is the vacuum state that has been excited twice [on potentially different classical configu-
rations as in (4.22)], and therefore it is the symmetric tensor product of the 1-photon states.

We recall that, in order to have 〈Ψi |Ψi 〉 = 1 and knowing that the classical configurations
are both normalized and orthogonal with one another, we have the definitions:

|ψ j 〉⊗s |ψk〉 =
1p
2

(|ψ j 〉⊗ |ψk〉+ |ψk〉⊗ |ψ j 〉
)

, j 6= k, (4.23)

|ψ j 〉⊗s |ψ j 〉 = |ψ j 〉⊗ |ψ j 〉. (4.24)
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As in the previous section, we denote by h and v the configurations propagating on the
corresponding paths:

|Ψi 〉 = B̂ †
v B̂ †

h |∅〉 = |h〉⊗s |v〉. (4.25)

We assume that the two pulses have the same profile and that they are not temporally or
spectrally compressed nor stretched during the propagation (i.e., we neglect dispersion ef-
fects).

4.3.2 Usual HOM effect

We consider a simplified version of the original experiment of Hong, Ou and Mandel [18],
where two Gaussian pulses h and v carrying the 1-photon states [as described in Eq. (4.2.1)]
arrive simultaneously on the BS.

Figure 4.3 – Initial imput of the usual HOM effect. The two 1-photon states are carried by
classical configuration of the same shape, only spatially separated. They are prepared to
arrive simultaneously on the beam splitter, making their respective configurations overlap
exactly.

The state evolves as

|Ψi 〉 = |v〉⊗s |h〉 BS=⇒ |Ψ f 〉 = |t v + r h〉⊗s |th + r v〉. (4.26)

We can calculate this final state more precisely using Eq. (4.23):

|Ψ f 〉 = (r 2 + t 2)
(
|h〉⊗ |v〉+ |v〉⊗ |h〉

)
+ r t

(
|v〉⊗ |v〉+ |h〉⊗ |h〉

)
. (4.27)

Assuming that the beam splitter is balanced, we have |r | = |t | = 1/
p

2, r = i t , and t 2+r 2 = 0.
The final state reduces to

|Ψ f 〉 =
i

2

(
|v〉⊗ |v〉+ |h〉⊗ |h〉

)
. (4.28)

We see that there is no cross terms of the form |v〉⊗ |h〉. This is the main result of the HOM
experiment:

If the beam splitter is balanced, the photons bunch together and only pairs are detected,
either on Dh or on Dv .

The vanishing of cross terms (called coincidences) is reduced if the configurations are not
exactly equal, if they do not impinge the beam splitter perfectly synchronized, or if the beam
splitter is not exactly balanced.

65



4.3. HONG-OU-MANDEL EFFECT

Remark: This result can be shown more precisely by defining the observables corresponding to
the different possible detections:

• Detection of one photon in the considered configuration on detector Dh :

Ô1h = |h〉〈h|⊗1+1⊗|h〉〈h|, (4.29)

• correspondingly on detector Dv :

Ô1v = |v〉〈v |⊗1+1⊗|v〉〈v |. (4.30)

• Detection of two photons in Dh :

Ô2hh = |h〉〈h|⊗ |h〉〈h|, (4.31)

• correspondingly on detector Dv :

Ô2v v = |v〉〈v |⊗ |v〉〈v |. (4.32)

• Detection of one photon onDh and one photon onDv simultaneously (i.e., coincidences):

Ô2hv = |v〉〈v |⊗ |h〉〈h|+ |h〉〈h|⊗ |v〉〈v |. (4.33)

All these operators are projectors. One can then obtain the probability of the corresponding
outcomes described by each Ô by calculating its mean value on the final state |Ψ f 〉. In particu-
lar, the probability of coincidences is

Prob(Dh and Dv ) = 〈Ψ f |Ô2hv |Ψ f 〉. (4.34)

We insert the expression for |Ψ f 〉 given in (4.28), we use the orthogonality of the vertical and
horizontal states and we use the relations of the coefficients r , t , and we obtain

Prob(Dh and Dv ) = 0. (4.35)

Thus, the propability for simultaneous detection of one photon in each detector is zero.

This effect is a main tool in quantum optics experiments for three main reasons:

1. First of all, when the two photons used are emitted from the same source, it allows
one to measure the rate of emission of the source. Indeed, controlling the optical
path followed on each port of the beam splitter gives a way to derive the delay at
which each emission process has occurred. In practice the following type of curve is
measured (called the HOM dip), where the time delay T = 0 corresponds to the delay
when the two pulses are synchronized on the beam splitter.

T=0 T

co
in
ci
d
en
ce
s

Of course, this is usable only with sources that emit photons at a constant rate.
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2. Secondly, since the HOM effect occurs when the configurations that carry the pho-
tons are identical, it gives a way to measure whether the source is stable regarding the
emission process (since a stable emission process should produce photons on iden-
tical configurations).

3. Last but not least, it is a fundamental tool to test whether the source emits quantum
or classical light. Indeed, as we shall see now, the HOM effect (vanishing of coinci-
dences) cannot be interpreted in any classical way.

4.3.3 Discussion on classical dynamics

To understand the importance of the Hong-Ou-Mandel effect, one can compare it to clas-
sical interpretations of light. We identify two possibles classical descriptions:

1. Light as classical particles;

2. Light as classical waves.

The action of the beam splitter acquires a different interpretation depending on which de-
scription of light we use. For classical waves, it acts by dividing the amplitude of the wave
and two waves emerge from the BS, one transmitted and one reflected (which is the de-
scription we used on the electromagnetic configurations which carry the photon states).
For classical particles, the BS acquires a probabilistic power: each grain of light incoming
onto the BS is either transmitted or reflected (the chance being given by the (r , t ) coeffi-
cients).

Hence if we describe light as classical waves, both detectors should always, simultaneously,
detect a part of the wave. There would thus always be coincidences occurring. If light were
classical particles, on the other side, two impinging particles would have as much chance
to be detected on different detectors than on the same. Both results are contradicted by the
observation of the Hong-Ou-Mandel effect.

The Hong-Ou-Mandel effect can thus be considered as a simple proof of a true quantum
behavior of photons.

4.4 Hong-Ou-Mandel with a fast detector

This Section contains the main new results regarding the dynamics of photons. It provides
a description of some non-intuitive effects in the Hong-Ou-Mandel effect when using fast
detectors. We will see that this description is rather straightforward using the tools intro-
duced earlier.

To understand some recent quantum optics experiments, we need to have a description of
detectors with short detection time bins. The HOM effect described in the preceding sec-
tion only required the detectors to integrate over the whole classical configuration to see
whether it carries a photon or not. But in practice, some detectors have a sensitivity which
allows to “scan” the configuration and resolve it in time.

In this Section we use a very simple model of time-resolved detection. We consider that the
action of a detector is repeated over and over during the passage of the classical configura-
tion. It can thus be described as two steps:
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• Detection in a time bin, with a probability given by the integral of the (normalized)
classical configuration over the corresponding time bin,

• Cancellation of the part of the configuration inside the time bin, and renormaliza-
tion of the whole configuration (or cancellation if all remaining photons have been
detected in the time bin).

This model is very simple and does not represent the true, precise phenomena that come
into play in a real detector. However, it is a sufficient model to describe the time-resolved
effects in the HOM experiment.

4.4.1 Time-resolved HOM effect

From the preceding model of fast detectors, we can investigate how the HOM effect may be
affected by such a time resolution. In order to make it as simple as possible, we start with
a classical configuration which is scanned twice by the detector (i.e., it is made of two time
bins only).

Consider that, in the initial condition as presented in the usual HOM effect (Section 4.3.2),
the temporal center of one classical pulse (and the other, since they are synchronized) is
called t0, the front is at t1 and the tail is at t−1. This pulse can be equivalently written as
the sum of two pulses (see Figure 4.4), where the parts 1 and 2 correspond to the time bins
t1 − t0 and t0 − t−1 respectively.

1 2

Figure 4.4 – Scheme of the initial classical configuration that carries the one-photon states,
and how it is split into two time bins of detection.

The initial 2-photon state is the same as in Section 4.3.2, and it can now be written

|Ψi 〉 = |v〉⊗s |h〉 = |v1 + v2〉⊗s |h1 +h2〉, (4.36)

where the indices 1 and 2 refer to the first and the second time bin where the detection can
occur.

Remark: If the pulses are symmetric, then φ1 and φ2 are normalized to 1/2.

The BS acts in the same way onφ1 andφ2 (and preserves the time sequence). The final state
is thus

|Ψ f 〉 = |t (v1 + v2)+ r (h1 +h2)〉⊗s |t (h1 +h2)+ r (v1 + v2)〉 (4.37)

= (t 2 + r 2)|v1 + v2〉⊗s |h1 +h2〉
+ r t

(
|h1〉⊗ |h1〉+ |h2〉⊗ |h2〉+ |v1〉⊗ |v1〉+ |v2〉⊗ |v2〉
+2|h1〉⊗s |h2〉+2|v1〉⊗s |v2〉

)
. (4.38)

Under the condition of a balanced BS, we again have t 2 + r 2 = 0 and so (4.38) reduces to

|Ψ f 〉 =
i

2

(
|h1〉⊗ |h1〉+ |h2〉⊗ |h2〉+ |v1〉⊗ |v1〉+ |v2〉⊗ |v2〉

+2|h1〉⊗s |h2〉+2|v1〉⊗s |v2〉
)
. (4.39)
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This state has an interpretation which is consistent with the usual HOM effect. Indeed it
tells us that:

• there is a probability to observe pairs of photons in the same time bin [first line of
(4.39)];

• there is a probability to observe photons distributed in the two time bins of one pulse
[second line of (4.39)];

• there is no possibility to observe photons on different pulses (whether in the same
time bin or not).

This description where the photon state is decomposed as two connected parts is perfectly
equivalent to considering a photon state occupying a classical mode made of two pulses
(i.e., the mathematical trick of splitting into time bins is not contradictory with what one
can create in the lab [20–22]). There might be technical differences in the experiment, but
the predictions are the same whether the time bins refer to sub-parts of one pulse or differ-
ent pulses in a train.

Remark: This result can easily be extended to a situation where the splitting time t0 is not at the
center of the pulse (or equivalently if the pulse is not symmetric); one simply has to remember
that the sub-pulses composing the full pulse are normalized differently, depending on the area
of the pulse they cover.

Furthermore, this result can also be extended to N splittings of the pulse if one wants to describe
a more resolved instrument to measure the photons. This will be written in a general way in
Section 4.4.3.

4.4.2 Time-resolved HOM with phase flip

The preceding case in study – though of particular interest to investigate experiments with
time-resolved detectors or two-pulse photons – is in agreement with what one could already
observe in the standard “time-integrated” HOM experiment of Section 4.3.2. The next step
in our discussion proposes a variant of the HOM effect which can exhibit counter-intuitive
results compared to the usual one. This will lead us to restate more precisely the conditions
to observe the HOM effect.

Since the two first conditions to obtain a HOM effect are (1) using a balanced BS and (2)
having identical pulses synchronized on the BS, it may look vain to hope altering this effect
without destroying it completely. What can someone change and maintain a non-crossed
probability without it being necessarily balanced by crossed ones? The answer to that is in-
cluded in the word identical. Although the temporal/spatial shape should be maintained,
it is not necessarily the case of the phase.

Let us consider the time-resolved experiment described in Section 4.4.1, and let us now
apply a constant phase flip of ϕ on the second time bin of one photon (say, v2). We will
note |vϕ2 〉 = e iϕ|v2〉. We also assume that this change of phase is not affected by the BS.

The initial 1-photon states are drawn in Figure 4.5 and the initial 2-photon state reads

|Ψi 〉 = |v1 + vϕ2 〉⊗s |h1 +h2〉. (4.40)
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Figure 4.5 – Scheme of the initial classical configurations that carry the one-photon states,
when a phase is applied on the second time bin of the configuration incoming on the verti-
cal arm.

It evolves similarly as before, with a preservation of the phase:

|Ψ f 〉 = |t (v1 + vϕ2 )+ r (h1 +hϕ
2 )〉⊗s |t (h1 +h2)+ r (v1 + v2)〉 (4.41)

= [t 2 +e iϕr 2]|v1〉⊗s |h2〉+ [e iϕt 2 + r 2]|v2〉⊗s |h1〉
+ r t

{
|h1〉⊗s |h1〉+ |v1〉⊗s |v1〉+e iϕ(|h2〉⊗s |h2〉+ |v2〉⊗s |v2〉

)}
+ r t (1+e iϕ)

(
|h1〉⊗s |h2〉+ |v1〉⊗s |v2〉

)
. (4.42)

A first remark should be made here: for any phase ϕ, there is no term of the form |vi 〉⊗s |hi 〉
(i.e., no cross detection in the same time bin). In the case of a balanced BS, we can make
the following observations:

• ∀ϕ, if no photon has been detected in the first time bin (neither on Dh nor Dv ), then
the photons will be detected both on one detector in the second time bin. In other
words, the HOM effect takes place as usual in the time bin left, even if the pulses in
this time bin are of different phases (0 and ϕ);

• ifϕ= 0, if only one photon has been detected on one detector in the first time bin, the
second photon will be detected on the same detector in the second time bin. This is
again the result (4.39) of the time-resolved HOM effect;

These two points are consistent with a HOM resolved in time. A more interesting observa-
tion can however be added:

• if ϕ = π, if only one photon has been detected on one detector in the first time bin,
the second photon will be detected on the other detector in the second time bin.

These three possibilities are summarized in Figure 4.6.

Remark: In the literature, authors sometimes write that this last behavior of photons (when
ϕ = π and detection occurs in different time bins) is “quasi-fermionic” (see, e.g., [21]). This
is explained by the only fact that photons are detected on opposite detectors instead of the
same one, which is what is seen in the usual HOM effect using fermions [49]. Such an argu-
ment evades all considerations of the time of detection. In particular, if the detection occurs in
the same time bin, the usual bosonic HOM effect is recovered (i.e., both photons are detected
on the same detector), which would not happen with fermions. The use of an expression like
“fermionic” or “quasi-fermionic” would seem appropriate if fermions gave the same results in
this experiment, which is not true: they still give opposite results compared to bosons.

One should simply remember that the usual HOM effect describes an experiment where pho-
tons have a constant phase difference throughout the detection process, and that a phase change
in this process might bring out some new interference effects not considered originally – es-
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Figure 4.6 – Three possible outcomes of the HOM experiment with two time bins. The red
star depicts a detection of one photon.

pecially since such an observation requires time-resolved detection, which can be difficult to
achieve with common detectors, and therefore requires very long photons (experimental imple-
mentations have been performed with temporal length of the classical configurations typically
of a few hundred nanoseconds, see [19, 20, 22]).

4.4.3 Multi-pulses HOM with phase flips

In this section we generalize the study of the HOM effect to pulses made of N time bins
with arbitrary phase flips. To vary with the description and to get closer to the experiments
investigating such effects [20–22], we change the way of generation of the time bins: the
photons are now shaped as trains of N pulses with their own phase instead of one pulse
enduring N phase flips. The theoretical description is the same in both cases, but using
trains of pulses has the advantage that one can apply the phase flips in the generation of
the photon (by shaping the phase of the laser which pumps the single-photon source), and
not a posteriori. The input states are sketched in Figure 4.7.

Figure 4.7 – Generalized HOM effect with photon states carried by a train of N classical
pulses (equivalent to time bins) with arbitrary phases on each pulse.

The initial 2-photon state reads

|Ψi 〉 =
N∑

i , j=1
|vφi

i 〉⊗s |hϕ j

j 〉, (4.43)
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and we emphasize that the states |vφi
i 〉 and |hϕ j

j 〉 are not normalized. The normalization
condition reads ∑

i
〈vφi

i |vφi
i 〉 =∑

j
〈hϕ j

j |hϕ j

j 〉 = 1 (4.44)

Like in the preceding section, we assume that the passage through the BS does not impact
the phases:

vφi
i

BS=⇒ t vφi
i + r hφi

i ,

h
ϕ j

j

BS=⇒ th
ϕ j

j + r v
ϕ j

j .

Ultimately, the final state reads

|Ψ f 〉 =
∑
i j

|t vφi
i + r hφi

i 〉⊗s |th
ϕ j

j + r v
ϕ j

j 〉 (4.45)

=∑
i j

{
[t 2e i (φi+ϕ j ) + r 2e i (φ j+ϕi )] |vi 〉⊗s |h j 〉

+ r t e i (φi+ϕ j )
(
|vi 〉⊗s |v j 〉+ |hi 〉⊗s |h j 〉

)}
. (4.46)

For i = j , we can show that the first term in (4.46) vanishes (since t 2 + r 2 = 0), hence we can
write

|Ψ f 〉 =
′∑

i j
[t 2e i (φi+ϕ j ) + r 2e i (φ j+ϕi )] |vi 〉⊗s |h j 〉

+∑
i j

r t e i (φi+ϕ j )
(
|vi 〉⊗s |v j 〉+ |hi 〉⊗s |h j 〉

)
, where

′∑
i j

≡ ∑
i j

i 6= j

. (4.47)

We see again that this general result is compatible with HOM effect, since in the same
time bin (i = j ) the first line with cross detection vanishes. For detections at different time
bins (i 6= j ), similar intermediary outcomes as described in Section 4.4.2 appear. This was
demonstrated experimentally up to four pulses [21] and was shown to be usable for encod-
ing information.

4.5 Summary on the dynamics of photons

The development of single photon sources has allowed the community to probe experi-
mentally some fundamental aspects of quantum light. In this regard the Hong-Ou-Mandel
experiment is a pioneer interference setup which is widely used nowadays. It is probably
the simplest setup to verify that a source of light emits quantum photons that are identi-
cal (i.e., they are associated with identical classical configuration). Most of the time, it is
sufficient to expect two main outcomes in this experiment: either the configurations are
identical and the effect occurs, or they are not and the effect is reduced. More recently,
some experiments have demonstrated the Hong-Ou-Mandel effect using only partly iden-
tical photons whose configuration can be shaped in a controlled manner and whose states
can be detected with short temporal resolution. The results can be counter-intuitive and,
to our knowledge, had not been described in a simple way before.
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In this Chapter we emphasized that the classical dynamics of the configuration (together
with the bosonic condition of symmetry) is sufficient to determine the quantum dynamics
of the photon state through a beam splitter. Provided a simplified model for time-resolved
detection, we have shown that this new type of Hong-Ou-Mandel effect can be rather easily
analyzed with our approach.

The approximated role of the beam splitter (simply introducing coefficients of transmis-
sion and reflection) does neglect local effects which could be addressed with the quantum
theory of light in passive media as constructed in the preceding chapters. Other types of
Hong-Ou-Mandel experiments such as the plasmonic one should require a quantum the-
ory of plasmons, which we construct in the next chapters.
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5
Canonical plasmonics

The macroscopic Maxwell equations (1.6) describe how the electromagnetic field interacts
with a linear medium. In the same way as we used them in a passive environment to have a
classical description of light and to build a quantum theory of photons, it is reasonable to use
them as well to describe classical light around plasmon resonances and to build a quantum
theory of plasmons.

In a non-passive medium, the induced polarization density describes a retard electric re-
sponse. In the Fourier domain, this translates into a dielectric permittivity which is frequency-
dependent (i.e., the medium is dispersive) and complex with a positive imaginary part (i.e.,
the medium is dissipative). Because of this, the macroscopic Maxwell equations do not have
a Hamiltonian structure. In order to go around this problem, we need to quantize a system
that encompasses all sub-systems where the energy may flow, i.e., the electromagnetic field
and the medium. The goal of the present Chapter is to construct such a system, and it should
be Hamiltonian/canonical as for photonics.

In Section 5.1 we describe the Hamiltonian model containing the degrees of freedom of light
and of the medium, and we show that this model is compatible with the macroscopic Maxwell
equations. In Section 5.2, we construct a method of diagonalization of the Hamiltonian
based on its transformation into a harmonic-like form, and then the diagonalization of its
frequency operator.
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5.1 Microscopic model

Surface plasmon phenomena have been first observed in the late 50s by Ritchie [50] and are
the subject of many recent studies, both experimental and theoretical, both classical and
quantum. Classically, plasmons are some particular solutions of the macroscopic Maxwell
equations which are confined at the interface between a metallic structure and a passive
medium. This confinement is probably the most interesting feature of classical plasmons
since they can be localized and propagate in volumes smaller than the diffraction limit. This
has led the development of many devices to apply the general scheme of photonic circuits
described in Chapter 1 Section 1.1 to plasmons. The emission of plasmons propagating at
the surface of a metal is mostly performed by conversion of classical light into plasmons,
using scatterers. However, more exotic sources of plasmons are under development such
as spasers [52–56] which use analogies with lasers to emit plasmons. The subwavelength
propagation is achieved using plasmonic waveguides [57–59] and some devices have been
developed such as high-speed modulators [60] and plasmonic photodetectors [61]. Note
that on a more fundamental perspective, some teams have recently constructed new plat-
forms to excite a certain type of plasmon modes called lattice plasmons [62–64].

Similarly to photonic circuits, most studies assume that the plasmons that appear in their
setup (and particularly their propagation) can be described classically with Maxwell’s equa-
tions. More and more studies, however, emphasize on the importance to study quantum
plasmons [65–67] since it could open new doors in, e.g., integrated quantum computing.
The main motivation of this Chapter and the two next is thus to quantize the macroscopic
Maxwell equations and construct a theory of quantum plasmons as precise as what we
could construct for photons in passive media.

We use a microscopic model made of three parts:

• The electromagnetic field in the free dielectric environment (i.e., with no metal);

• The free metallic medium;

• The interaction.

The first part was already treated in the previous chapters, and to simplify our study we
consider the environment to be vacuum. We draw a general scheme of the configuration in
Figure 5.1.

Our first goal is to show that the three parts of the system can be constructed in such a way
that the whole system takes a Hamiltonian form compatible with the macroscopic Maxwell
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(a) (b)

passive environment + interaction + metal vacuum + interaction + metal

Figure 5.1 – Scheme of the general configurations in plasmonics: (a) the metal is embedded
in a passive dielectric matrix surrounded by vacuum; (b) the metal is surrounded by vac-
uum only. On the bottom: decomposition into the three parts of the microscopic model.
In this thesis, we study the configuration (b) only, but extensions to (a) can be naturally
developed from the preceding chapters.

equations in a linear, non-magnetic, dispersive and dissipative medium.

The constructions of this Section are based on the results of Refs. [26, 51].

5.1.1 Light

The Hamiltonian description of classical light has been addressed in Chapter 2 in a passive
dielectric environment. We can consider that this environment is vacuum at any point of
the construction simply by choosing εR = 1 (this is the only case for which the passive di-
electric response verifies the Kramers-Kronig relations since they allow εR = 1 when εI = 0).
The Hamiltonian reads

Hem = 1

2

∫
d 3r

[
ε0~E ·~E + 1

µ0

~B ·~B
]

, (5.1)

or

Hem = 1

2

∫
d 3r

[
ε0~E ·~E + 1

µ0
(∇×~A)2

]
. (5.2)

We do not yet introduce canonically conjugate variables as in Chapter 2 since they will now
depend on the matter variables and on the interaction. We shall however keep in mind
that any choice of canonical variables should remain consistent with the limit when the
interaction vanishes or when the degrees of freedom of matter are eliminated.

5.1.2 Matter

The material medium can be described by various models. The main criterion for the
choice of the microscopic model is that if one integrates the equations for the medium and
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one inserts the obtained currents into the microscopic Maxwell equations one should ob-
tain the macroscopic Maxwell equations. The first model specifically addressed in the lit-
erature by Suttorp and Wubs [23, 24] consists of a set of charges coupled to the electromag-
netic field and to a bath of oscillators. However it was shown ( [26] and references therein)
that a microscopic description consisting on a bath of oscillators only is sufficient to fulfill
the criterion. This effective description of matter is the result of the pre-diagonalization of
more detailed models. We will hence use this simplest model where the medium consists
of an infinite set of harmonic oscillators attached to each point of space and interacting
dipolarly with the electric field. Hence, it can be seen as a continuous ensemble of electric
dipoles.

We call the frequency of these oscillators ν. We represent the medium by a vector field
where ~X ′(ν,~r ) is the position field and ~Π′

X (ν,~r ) is the momentum field, with~r restricted to
the volume inside the medium). The Hamiltonian of this system reads

Hmedium =
∫ ∞

0
dν

∫
V

d 3r

[
1

2ρ(ν,~r )
~Π′2

X (ν,~r )+ρ(ν,~r )ν2~X ′2(ν,~r )

]
, (5.3)

with V the region of space occupied by the medium and ρ a density of mass per frequency
and volume units. It is worth noting that the position~r inside the medium plays the role of
a (continuous) degeneracy index for the harmonic oscillators, while the three components
of the vectors are a discrete degeneracy index.

In order to lighten the notation, we include the mass density in the canonical variables by
performing the change of variable

~ΠX := 1p
ρ
~Π′

X , ~X :=p
ρ~X ′. (5.4)

Hence the Hamiltonian (5.3) reads

Hmedium =
∫ ∞

0
dν

∫
V

d 3r

[
1

2
~Π2

X +ν2~X 2
]

. (5.5)

5.1.3 Interaction

In order to construct the interaction between the material medium and light, we need to
define how the degrees of freedom of the medium are affected by the electromagnetic field.
The charged oscillators interact with the electric field through the electric Lorentz force (we
consider no magnetic response), such that the equation of motion of the matter field reads

ρ(ν,~r )∂2
t
~X ′(ν,~r , t ) =−ρ(ν,~r )ν2~X ′(ν,~r , t )+α′(ν,~r )~E(~r , t ), (5.6)

whereα′ is the charge density of the dipoles and the temporal dependence is implicit in the
vector fields. The dipoles create a current density which sums up current densities of each
frequency of oscillation:

~(~r , t ) =
∫ ∞

0
dν α′(ν,~r )∂t~X

′(ν,~r , t ). (5.7)

With the change of variable (5.4), Eq. (5.6) becomes

∂2
t
~X (ν,~r , t ) =−ν2~X (ν,~r , t )+α(ν,~r )~E(~r , t ), (5.8)
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where we have introduced

α= α′
p
ρ

. (5.9)

We can link the current density (5.7) to a macroscopic polarization density through~ = ∂t
~P,

which leads to

~P(~r , t ) =
∫ ∞

0
dν α′(ν,~r )~X ′(ν,~r , t ) =

∫ ∞

0
dν α(ν,~r )~X (ν,~r , t ). (5.10)

We thus have an expression of the polarization density in terms of the degrees of freedom of
matter and a coupling function α yet to be determined. The justification of this interaction
model will be found in the following section by its relation with the macroscopic Maxwell
equations. A key point is to find the connection between the coupling function α and the
causal response function χ (or equivalently, with the dielectric function).

5.1.4 Equivalence with Maxwell’s macroscopic equations

The macroscopic Maxwell equations for a non-magnetic medium read

∂t~E = c2∇×∇×~A− 1

ε0
∂t
~P, (5.11a)

∂t~A =−~E −∇U , (5.11b)

∇·~E =− 1

ε0
∇·~P, (5.11c)

~B =∇×~A, (5.11d)

with a polarization density that can be split into a spontaneous term ~Psp and an induced

term ~Pi nd (since the medium is supposed surrounded by vacuum, there is no external
term). The spontaneous polarization density depends on initial conditions of the medium
that are unknown in general. The induced polarization density is related to the electric field
with a causal response function χ:

~Pi nd (~r , t ) = ε0

∫ ∞

−∞
d t ′χ(~r , t − t ′)~E(~r , t ′), (5.12)

with χ = 0 for~r in the exterior of the medium. We show now that the microscopic model
constructed in the preceding paragraphs can be equivalent to the macroscopic Maxwell
equations.

We first write the general solution of the equation of motion of the matter field (5.8):

~X (ν,~r , t ) =~a(ν,~r )cos(νt )+
~b(ν,~r )

ν
sin(νt )+ α(ν,~r )

ν

∫ t

−∞
d t ′ sin[ν(t − t ′)]~E(~r , t ′), (5.13)

where ~a and~b are arbitrary vectors constant in time. Inserting this solution into the polar-
ization density (5.10) gives two contributions which we identify to a spontaneous and an
induced term:

~Psp (~r , t ) =
∫ ∞

0
dν′ α(ν′,~r )

[
~a(ν,~r )cos(ν′t )+

~b(ν,~r )

ν′
sin(ν′t )

]
, (5.14a)

~Pi nd (~r , t ) =
∫ ∞

0
dν′ α(ν′,~r )

[∫ t

−∞
d t ′

α(ν′,~r )

ν′
sin[ν′(t − t ′)]~E(~r , t ′)

]
. (5.14b)
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Since the variables ν′ and t ′ are independent, we can exchange the order of the integrals in
Eq. (5.14b), which gives exactly the definition (5.12) but with a response function given by

χ(~r , t − t ′) = θ(t − t ′)
∫ ∞

0
dν′

α2(ν′,~r )

ε0ν′
sin[ν′(t − t ′)]. (5.15)

The Heaviside function θ(t − t ′) stands for the causality of the response of the medium.
We have thus made the link between the polarization density as introduced in the Maxwell
equations and the one constructed in the microscopic model. This link depends on the
coupling function α which we shall calculate now.

We take the Fourier transform of Eq. (5.15):

χ̃(ν,~r ) =
∫ ∞

0
dν′

α2(ν′,~r )

ε0ν′

∫ ∞

0
d t e iνt sin(ν′t ), with ν ∈R, ν′ ∈R+. (5.16)

We evaluate the last integral using∫ ∞

0
d t e iνt sin(ν′t ) = 1

2i

∫ ∞

0
d t

[
e i (ν′+ν)t −e−i (ν′−ν)t

]
,

= 1

2

[
1

ν′+ν+ i 0+ + 1

ν′−ν− i 0+

]
, (5.17)

where 0+ stands for the limit 1
λ±0+ ≡ limε→0

1
λ±ε with ε> 0. These terms can be interpreted

as distributions depending on the variable ν and they satisfy the identity

1

ν′±ν± i 0+ = P

ν′±ν ∓ iπδ(ν′±ν), (5.18)

with P the Cauchy principal value as defined in Eq. (1.18). The Fourier transform of the
response function χ thus gives χ̃= χ̃R + i χ̃I , with

χ̃R (ν,~r ) = 1

ε0
P

∫ ∞

0
dν′

α2(ν′,~r )

ν′2 −ν2
, (5.19a)

χ̃I (ν,~r ) =−π
2

∫ ∞

0
dν′ δ(ν′+ν)

α2(ν′)
ε0ν′

+ π

2

∫ ∞

0
dν′ δ(ν′−ν)

α2(ν′)
ε0ν′

. (5.19b)

For these expressions to be well defined, the function α2(ν′) must be integrable for ν′ → 0.
We have to distinguish the positive and the negative values of ν, for which either the first or
the second term of the right-hand side of (5.19b) vanishes (due to the delta functions):

χ̃I (ν,~r ) =
−π

2
α2(|ν|,~r )
ε0|ν| for ν< 0

π
2
α2(|ν|,~r )
ε0ν

for ν> 0
= π

2

α2(|ν|,~r )

ε0ν
. (5.20)

We remark that

χ̃R (−ν) = χ̃R (ν), (5.21a)

χ̃I (−ν) =−χ̃I (ν), (5.21b)

χ̃(−ν) = χ̃∗(ν). (5.21c)

Finally, since by definition the dielectric coefficient is ε = 1+ χ̃, the coupling function can
be expressed in terms of the imaginary part of the dielectric coefficient as
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α2(ν,~r ) = 2ε0

π
νεI (ν,~r ), ν> 0. (5.22)

The microscopic model is thus consistent with the macroscopic Maxwell equations with a
polarization density expressed in terms of the coupling function α and the matter degrees
of freedom. Note that since εI is necessarily positive in a lossy medium, then α is real.

Because of Eq. (5.22), the relations (5.19a) and (5.19b) are the same as the Kramers-Kronig
relations (1.25). For the microscopic model to be well-defined, the dielectric function must
therefore be chosen such that it satisfies the Kramers-Kronig relations.

5.1.5 Hamiltonian structure

In order to construct the Hamiltonian structure of the system, we start by choosing a gauge
for the electromagnetic variables (the matter vector fields are not constrained). We adopt
a Coulomn gauge such that ∇· ~A = 0 and such that the equations for ~A are decoupled from
the scalar potential U . For this purpose, we separate the polarization into its transverse and
longitudinal parts

~P= ~P⊥+~P∥. (5.23)

One can show that there is a gauge transformation such that

∇·~A = 0, ∇U = 1

ε0

~P∥. (5.24)

We can write the wave equation from Maxwell’s equations by introducing Eq. (5.11b) into
Eq. (5.11a):

∂2
t
~A = c2∆~A+ 1

ε0
∂t
~P⊥, (5.25)

where ∆= (∇∇·)− (∇×∇×) is the Laplacian operator. Replacing the polarization density by
its expression (5.10), we get

∂2
t
~A(~r , t ) = c2∆~A(~r , t )+ 1

ε0

[∫ ∞

0
dν α(ν,~r )∂t~X (ν,~r , t )

]⊥
. (5.26)

We now introduce a new vector~ΠA verifying

~ΠA :=−ε0~E −~P=−ε0~E
⊥−~P⊥ =−~D, (5.27)

with ~D the electric displacement. It satisfies the gauge condition ∇·~ΠA = 0 =∇·~D. Eq. (5.26)
can be split into two coupled equations:

∂t~ΠA(~r , t ) = ε0c2∆~A(~r , t ), (5.28a)

∂t~A(~r , t ) = 1

ε0

~ΠA(~r , t )+ 1

ε0

[∫ ∞

0
dν α(ν,~r )~X (ν,~r , t )

]⊥
. (5.28b)

We also split the equation of motion (5.8) into first-order equations with the momentum
~ΠX :

∂t~X (ν,~r , t ) =~ΠX (ν,~r , t ), (5.28c)

∂t~ΠX (ν,~r , t ) =−ν2~X (ν,~r , t )+α(ν,~r )~E(~r , t )

=−ν2~X (ν,~r , t )− α(ν,~r )

ε0

[
~ΠA(ν,~r , t )+~P(~r , t )

]
. (5.28d)

83



5.1. MICROSCOPIC MODEL

Remark: The transversality conditions are preserved by the time evolution. It follows from the
infinitesimal time evolution determined by Eqs. (5.28a),(5.28b):

~ΠA(~r , t +δt ) =~ΠA(~r , t )+δt ε0c2∆~A(~r , t ), (5.29a)

~A(~r , t +δt ) = ~A(~r , t )+δt
1

ε0

[
~ΠA(~r , t )+~P⊥(~r , t )

]
. (5.29b)

Thus if ∇·~ΠA(~r , t ) = 0 =∇·~A(~r , t ) at some time t , then it will also be the case for all later times.

The system of equations (5.28) forms a set of Hamilton equations with a Hamiltonian func-
tion H , such that

∂t~ΠA =−δH

δ~A
, ∂t~A = δH

δ~ΠA
, (5.30a)

∂t~ΠX =−δH

δ~X
, ∂t~X = δH

δ~ΠX
, (5.30b)

with the Hamiltonian given by

H = Helm +Hmed +Hs +Hi, (5.31)

with Helm =
∫

d 3r

[
1

2ε0

~Π2
A − 1

2µ0

~A ·∆~A
]

, (5.32)

Hmed =
∫ ∞

0
dν

∫
V

d 3r

[
1

2
~Π2

X + 1

2
ν2~X 2

]
, (5.33)

Hs = 1

2ε0

∫
V

d 3r

[∫ ∞

0
dν α~X

]2

, (5.34)

Hi = 1

ε0

∫
d 3r ~ΠA ·P ⊥

∫ ∞

0
dν α~X ,

= 1

ε0

∫
d 3r P ⊥~ΠA ·

∫ ∞

0
dν α~X , (5.35)

where P ⊥ is the projector onto transverse fields. The first contribution Helm corresponds
to the classical energy of radiation (2.13) but with a polarization density (5.10) which now
includes an inhomogeneous and dispersive coupling with the medium. The term Hmed is
the Hamiltonian of the harmonic oscillators of the medium. Hi and Hs are respectively a
contribution induced by the interaction between the oscillators and the field, and a contri-
bution of self-interaction inside the medium. In the no-coupling limit where α = 0, Helm
tends to the energy of electromagnetic radiation in vacuum, Hmed tends to the energy of
free oscillators, and both interaction parts go to zero.

Remark: A careful inspection of Hamilton’s equations (5.30) shows that it does give the equa-
tions (5.28) except for the term with ~ΠA in (5.28d) which is replaced by P ⊥~ΠA . They how-
ever coincide when the fields are chosen transverse at an initial condition since it that case
P ⊥~ΠA(t ) =~ΠA(t ) for all t .

5.1.6 Coupling function in standard models

There exists a model described by the Hamiltonian (5.31) for each coupling function α sat-
isfying the condition (5.22), i.e., for each model of the permittivity one can consider physi-
cally relevant in a given scenario. We give here explicit formulas for the coupling function in
two standard models: the Drude and the Lorentz models. Since they have been constructed
in Chapter 1 Section 1.3, we can start from the results therein.
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Drude model

In the Drude model, the Fourier transform of the susceptibility is

χ̃(ν) =−
ω2

p

(ν+ i 0+)(ν+ iγ)
, (5.36)

withωp the plasma frequency given in Eq. (1.55), and γ a damping coefficient which is small
compared to ωp . We can isolate the real and imaginary parts:

χ̃(ν) =
ω2

p

γ

([
πδ(ν)− γ

ν2 +γ2

]
+ i

[
P

1

ν
− ν

ν2 +γ2

])
,

=
ω2

p

γ

([
πδ(ν)− γ

ν2 +γ2

]
+ i

[
P

γ2

ν(ν2 +γ2)

])
. (5.37)

Since the dielectric coefficient verifies ε= 1+ χ̃, we have

εi (ν) =ω2
p

[
P

γ

ν(ν2 +γ2)

]
, (5.38)

and the coupling function is thus given by

α2(ν) = 2ε0

π
ω2

p
γ

ν2 +γ2
. (5.39)

It has the following asymptotic behavior:

α(ν) →ωp

√
2ε0

πγ
, for ν→ 0, (5.40)

∼ ωp

ν

√
2ε0γ

π
→ 0, for ν→+∞. (5.41)

Lorentz model

For the Lorentz model, the susceptibility is given by

χ̃(ν) =−
ω2

p

−ω2
0 +ν(ν+ iγ)

, (5.42)

with ω0 the normal frequency of the medium. We separate the real and imaginary parts:

χ̃(ν) =−ω2
p

ν2 −ω2
0 − iγν

[ν2 −ω2
0]2 + [γν]2

, (5.43)

and thus

εi (ν) =ω2
p

γν

[ν2 −ω2
0]2 + [γν]2

. (5.44)

The coupling function is thus

α2(ν) = 2ε0

π
ω2

p
γν2

[ν2 −ω2
0]2 + [γν]2

, (5.45)

which has the following asymptotic behavior

α(ν) →ωp

√
2ε0γ

π

ν

ω0
→ 0, for ν→ 0, (5.46)

∼
√

2ε0γ

π

ωp

ν
→ 0, for ν→+∞. (5.47)
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5.2 Canonical diagonalization of the model

The standard approach for diagonalizing the Hamiltonian (5.31) is used in the quantum do-
main: one assumes a particular structure of the quantized diagonal Hamiltonian and uses
this assumption to derive expressions of the fields in terms of the diagonalizing creation-
annihilation operators. This is called the Friedrichs-Fano (or simply Fano) method. The
diagonalization is however non-unique and depends on free functions. Since one needs
the transformation to be canonical, an important step is to find an expression of the free
functions that ensures it (which is equivalent to imposing the commutation relation of the
operators in the quantum model). This method brings some issues that will be described
in Chapter 6. We therefore follow instead the approach described in the main introduction,
i.e., we start by finding appropriate canonical transformations that put the Hamiltonian
into a harmonic-like form, and then we diagonalize its frequency operator. This method
does not require to quantize in order to find the adequate diagonalizing transformation,
and most importantly, it does not need any a priori assumption on the structure of the re-
sult.

5.2.1 Pre-diagonalization of the electromagnetic part

Before diagonalizing the whole Hamiltonian, we will first pre-diagonalize the electromag-
netic part, which will thus follow the ideas used in Chapter 2 for a passive environment. We
expand the fields ~A and ~ΠA on a complete and orthonormal basis of eigenfunctions of the
operator c2∇×∇× (i.e., a complete basis of −c2∆ restricted to the transverse subspace), and
we remove the constant ε0:

~A(~r ) =
∫

dκ
1p
ε0
~ϕκ(~r )q ′

κ, (5.48a)

~ΠA(~r ) =
∫

dκ
p
ε0~ϕκ(~r )p ′

κ, (5.48b)

with

−c2∆~ϕκ(~r ) =ω2
κ~ϕκ(~r ). (5.49)

The index κ contains all the spectral structure of the operator −c2∆ restricted to the trans-
verse subspace. We choose real eigenfunctions as described in vacuum in Section 2.2.4:

~ϕ~k,σ,ζ(~r ) =


1
2π3/2~εσ(~k)cos(~k ·~r ), ζ= c,

1
2π3/2~εσ(~k)sin(~k ·~r ), ζ= s,

(5.50)

hence κ = (~k,σ,ζ), with~k the wave vector, σ = ± the index for the basis of linear polariza-
tion, and ε±(~k) two real unit vectors orthogonal to~k and to each other. We have ωκ = c|~k|.
Sometimes we may drop the label κ on ωκ to simplify the notation.

We emphasize that the vectors ~ϕκ satisfy the same transversality condition as ~A and ~ΠA:
∇·~ϕκ(~r ) = 0. Contrary to the passive medium, they are no longer eigenconfigurations, since
they are not eigenfunctions of the frequency operator of the coupled system.

The transformation (5.48) is conceptually similar to a Fourier transform, where the phase
space of electromagnetic configurations (~A,~ΠA) is transformed into its Fourier space (q ′, p ′),

with the notation q ′ = {q ′
1, q ′

2, . . .}. As in the expansion performed in Section 2.2.3 for passive
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media, Appendix B shows that this transformation is canonical and therefore preserves the
Hamiltonian structure of the model.

The Hamiltonian contributions (5.31)–(5.34) become

H = Helm +Hmed +Hi +Hs, (5.51)

with Helm = 1

2

∫
dκ

[
p ′2
κ +ω2

κq ′2
κ

]
, (5.52)

Hmed = 1

2

∫
V

d 3r
∫ ∞

0
dν

[
~Π2

X +ν2~X 2] , (5.53)

Hi =
∫

dκ p ′
κ

∫
V

d 3r P ⊥~ϕκ ·
∫ ∞

0
dν α̃ ·~X , (5.54)

Hs = 1

2

∫
V

d 3r

[∫ ∞

0
dν α̃~X

]2

, (5.55)

with α̃=α/p
ε0. We have used the fact that α(~r ) = 0 for~r ∉V , such that the integral in Hi is

reduced to an integral in the volume V only. We have also used the orthonormalization of
the functions ~ϕ: ∫

d 3r ~ϕκ(~r ) ·~ϕκ′(~r ) = δ(κ−κ′), (5.56)

where δ(κ−κ′) = δ(~k −~k ′)δσσ′δζζ′ . The transformation (5.48) therefore achieves two goals:
(i) it removes the transversality constraint from the canonical variables of the electromag-
netic field since this constraint is projected onto the basis of functions ~ϕ, and (ii) it brings
the Hamiltonian Helm into a diagonal form.

Remark: The restriction of the Hamiltonian (5.51) to the transverse subspace can also be written
as:

H =1

2

∫
dκ ω2

κq ′2
κ + 1

2

∫
V

d 3r
∫ ∞

0
dν

[
~Π2

X (ν,~r )+ν2~X 2(ν,~r )
]

+ 1

2

∫
V

d 3r

[∫
dκ ~ϕκ(~r )p ′

κ+
∫ ∞

0
dν α̃(ν,~r )~X (ν,~r )

]2

. (5.57)

This form shows explicitly that the restriction of the Hamiltonian is positive, which is an impor-
tant feature to construct a harmonic-like form as will be done in Section 5.2.3.

5.2.2 Integral operators, matrix form and canonical transformations

We have shown in Chapter 2 a strategy to diagonalize a Hamiltonian of the form

H = 1

2

∫
dη

[
P 2 +Q ·Ω2Q

]
, (5.58)

with canonical variables P (η) and Q(η), a frequency operatorΩ, and η a variable which con-
tains all the degrees of freedom of the system (continuous or discrete, infinite or finite). In
the passive environment, we had η≡~x, P ≡~ΠA, Q ≡ ~A andΩ2 = cp

εR
∇×∇× cp

εR
. The diago-

nalization of the Hamiltonian comes down to diagonalizing the frequency operator, which
was performed simply by expanding the canonical variables on a basis of its eigenfunctions.
This procedure remains valid for any Hamiltonian of the harmonic-like form (5.58) and for
any spectral structure. Thus, a starting step to diagonalize the Hamiltonian (5.51) is to find
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its harmonic-like form. It is generally not straightforward, and one must ensure that the
transformations leading to such form are canonical. In this subsection, we give tools that
can help one in finding the adequate transformations.

A very practical tool is to express the Hamiltonian as the sum of scalar products. We use
the notation (·|·) for an arbitrary scalar product, meaning that for any type of variable x, the
product of two functions of x can be written(

f
∣∣g )= ∫

d x f (x)g (x) if x is continuous,(
f
∣∣g )=∑

x
f (x)g (x) if x is discrete.

The Hamiltonian (5.51) can thus be written

H = Helm +Hmed +Hi +Hs, (5.59)

with Helm = 1

2

(
p ′∣∣p ′)+ 1

2

(
q ′∣∣ω2

κq ′) , (5.60)

Hmed = 1

2

(
~ΠX

∣∣~ΠX
)+ 1

2

(
~X

∣∣ν2~X
)

, (5.61)

Hi = 1

2

(
p ′∣∣B ′

1
~X

)+ 1

2

(
~X

∣∣B ′
2p ′) , (5.62)

Hs = 1

2

(
~X

∣∣A~X
)

, (5.63)

where A, B ′
1 and B ′

2 are integral operators defined by

[
A~X

]
(ν,~r , j ) := α̃(ν,~r )

∫
V

d 3r ′
∫ ∞

0
dν′ α̃(ν′,~r ′)δ(~r −~r ′)X j (ν′,~r ′), (5.64)[

B ′
1
~X

]
(κ) :=

∫
V

d 3r
∫ ∞

0
dν α̃(ν,~r )

(
~ϕκ(~r ) ·~X (ν,~r )

)
, (5.65)[

B ′
2p ′](ν,~r , j ) := α̃(ν,~r )

∫
dκ ϕ j

κ(~r )p ′
κ, (5.66)

with j the component of the vectors. We can give a formal matrix representation of the
Hamiltonian:

H = 1

2


p ′
~ΠX
q ′
~X

∣∣∣∣∣∣∣∣
←→
h

∣∣∣∣∣∣∣∣
p ′
~ΠX
q ′
~X

 , (5.67)

with

←→
h =


1 0 0 B ′

1
0 1 0 0
0 0 Iω2

κ
0

B ′
2 0 0 Iν2 + A

 . (5.68)

The matrix
←→
h contains integral operators. The unit operator is defined by

[
1 f

]
(η) =

∫
dη′ δ(η−η′) f (η′) = f (η), (5.69)
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and [
Iω2

κ
f
]
(κ) =

∫
dκ′ω2

κ′δ(κ−κ′) f (κ′) =ω2
κ f (κ), (5.70)[

Iν2~g
]
(ν,~r , j ) =

∫
dν′

∫
V

d 3r ′∑
j ′
ν′2δ(ν−ν′)δ(~r −~r ′)δ j j ′g

j ′(ν′,~r ′) = ν2g j (ν,~r ). (5.71)

A diagonal integral operator can be defined as an operator whose kernel is proportional to a
delta function for each integrated variable. Thus, 1, Iω2

κ
and Iν2 are diagonal operators, but

not A, B ′
1 and B ′

2. Diagonalizing the Hamiltonian H is equivalent to transforming it such

that its matrix form
←→
h consists of a diagonal block structure, whose blocks are diagonal

operators. This representation allows one to use the intuition of linear algebra to find the
adequate transformations.

We have to ensure that all transformations performed are canonical, since it is the only way
to preserve the Hamiltonian structure of the initial model. We have seen in Appendix B
that the pre-diagonalization was performed with a canonical transformation. In the matrix
form, the definition of a canonical (or symplectic) transformation S simply has to verify

S JST = J , where J =
[

0 −1
1 0

]
. (5.72)

With the structure of the Hamitlonian matrix form (5.68), the transformation matrices are
4×4 and we have

J =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 . (5.73)

Now that we have a more practical and intuitive representation of the Hamiltonian struc-
ture of the problem, we can find the adequate (canonical) transformations to construct the
harmonic-like form.

5.2.3 Finding the harmonic-like Hamiltonian

We want to write the Hamiltonian in the harmonic-like form

H = 1

2
(P |P )+ 1

2

(
Q

∣∣Ω2Q
)

. (5.74)

Examining the matrix form (5.68), one can guess the adequate canonical transformation,
which consists of swapping p ′ and q ′ and balancing the factor ω2

κ:[
pκ
qκ

]
=

[−ωκq ′
κ

1
ωκ

p ′
κ

]
, ∀ωκ 6= 0. (5.75)

The transformation on all ωκ can thus be written∣∣∣∣∣∣∣∣
p ′
~ΠX
q ′
~X

= S

∣∣∣∣∣∣∣∣
p
~ΠX
q
~X

 , with S =


0 0 Iωκ 0
0 1 0 0

−I−1
ωκ

0 0 0
0 0 0 1

 . (5.76)
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One can verify that the transformation S is canonical [it satisfies the condition (5.72) with
(5.73)]. We make the change of coordinate in the Hamiltonian (5.67):

H = 1

2


p
~ΠX
q
~X

∣∣∣∣∣∣∣∣S
T←→h S

∣∣∣∣∣∣∣∣
p
~ΠX
q
~X

= 1

2


p
~ΠX
q
~X

∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
0 0 Iω2

κ
IωκB ′

1
0 0 B ′

2Iωκ Iν2 + A

∣∣∣∣∣∣∣∣
p
~ΠX
q
~X

 , (5.77)

where we have used that Iωκ Iωκ = Iω2
κ

. We can finally write

H = 1

2


p
~ΠX
q
~X

∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
0 0 Iω2

κ
B1

0 0 B2 Iν2 + A

∣∣∣∣∣∣∣∣
p
~ΠX
q
~X

 , (5.78)

with B1 = IωκB ′
1 and B2 = B ′

2Iωκ acting as

[
B1~X

]
(κ) :=

∫
V

d 3r
∫ ∞

0
dν ωκα̃(ν,~r )

(
~ϕκ(~r ) ·~X (ν,~r )

)
, (5.79)[

B2q
]
(ν,~r , j ) := α̃(ν,~r )

∫
dκ ωκϕ

j
κ(~r )qκ. (5.80)

We introduce the new variables

Q =
[

q
~X

]
, P =

[
p
~ΠX

]
, (5.81)

therefore

H = 1

2

(
P
Q

∣∣∣∣1 0
0 Ω2

∣∣∣∣P
Q

)
= 1

2
(P |P )+ 1

2

(
Q

∣∣Ω2Q
)

, (5.82)

which is the harmonic-like form with the (square of the) frequency operator given by

Ω2 =
[

Iω2
κ

B1

B2 Iν2 + A

]
. (5.83)

We show in Appendix C thatΩ2 is self-adjoint (since it is real we simply need to show that it
is symmetric).

Now that the Hamiltonian is written in the harmonic-like form, we aim at diagonalizing its
frequency operator. The eigenfunctions of Ω (referred to as eigenconfigurations, like in a
passive medium) will then be used to construct the quantum operators.

5.2.4 Møller wave operator

The frequency operator acts on two spaces of functions: the “electromagnetic” functions
of κ = (~k,σ,ζ), and the “matter” functions of (ν,~r , j ). The system thus consists of two cou-
pled continuous spectra of frequencies ωκ and ν respectively, with their own degeneracy
structure. We can identify two scenarios: one where the frequency operator Ω contains the
interaction between the two continua, and one with the frequency operator Ω0 where the
interaction is off. We can write

Ω2 =Ω2
0 +V , (5.84)

90
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with

Ω2
0 =

[
Iω2

κ
0

0 Iν2

]
, V =

[
0 B1

B2 A

]
. (5.85)

One can choose an orthonormal basis of eigenconfigurations of the uncoupled operatorΩ2
0

(see the next subsection for our choice). We are therefore in a situation where we have a
precise view of the uncoupled system and we wish to know how the coupling V perturbs it.
This problem is similar to scattering processes, where an unperturbed wave travels freely
from far away (typically, infinity) and encounters a local modification of the environment
which modifies its shape and its trajectory. Hence, we can use a mathematical tool which is
standard in scattering theories: the Møller wave operator. This operator can be defined in
two versions, noted M+ and M−, as

M±(Ω2,Ω2
0) = lim

t→∓∞e iΩ2t e−iΩ2
0t . (5.86)

These operators verify M†
±M± =1, as well as the following intertwining relation:

Ω2M± =M±Ω2
0. (5.87)

Proof: From the definition (5.86) we add a finite time constant τwhich does not modify
M± because of the limit:

M± = lim
t→∓∞e iΩ2(t+τ)e−iΩ2

0(t+τ)

= e iΩ2τM±e−iΩ2
0τ. (5.88)

Since adding this constant should not make the Møller operator vary, i.e., ∂M±
/
∂τ= 0,

taking the derivative of (5.88) with respect to τ gives

0 = e iΩ2τiΩ2M±e−iΩ2
0τ−e iΩ2τM±iΩ2

0e−iΩ2
0τ. (5.89)

We choose τ= 0 in Eq. (5.89), which leads to Eq. (5.87).

If the spectra of Ω2
0 and Ω2 are absolutely continuous (which is the case in our model), M±

are unitary, i.e., they also satisfy M±M†
± = 1, and the intertwining relation (5.87) implies

thatΩ2
0 andΩ2 are unitarily equivalent:

Ω2 =M±Ω2
0M

†
±. (5.90)

Thus they have the same spectrum, with the same degeneracy. Denoting ψ the eigencon-
figurations ofΩ2 and φ the ones ofΩ0, the Møller wave operator provides a unitary relation
between them:

ψ=M±φ. (5.91)

It is important to notice that ψ is associated to the same continuum eigenvalue and degen-
eracy as φ. This implies that there is a one-to-one correspondence between the uncoupled
and the coupled eigenconfigurations.
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The two Møller operators M+ and M− only differ by a unitary transformation in the degen-
eracy subspace:

M−φλ,dλ =
∑
d ′λ

Udλ,d ′λM+φλ,d ′λ . (5.92)

This plays a role only in a time-dependent description of the scattering process in which we
can identify incoming waves φi n and outgoing waves φout (corresponding to a degeneracy
of degree 2). It is standard to consider that M+ determines the perturbation of φi n and
M−, the one of φout . However in our representation, the eigenconfigurations of Ω2

0 are
stationary and both operators can be used equivalently. In this work, we arbitrarily choose
to work with M+ only.

Remark: To prove that the Møller operator is well-defined and that the basis of perturbed eigen-
functions is complete is not a trivial task. For the plasmonic model, this proof will be published
in a later article.

We have two possible ways of finding the eigenfunctions of the frequency operator Ω: one
is to calculate the Møller operator M+ and apply it on the uncoupled eigenconfigurations;
the other is to construct and solve a Lippmann-Schwinger, which is what we shall describe
now.

5.2.5 Lippmann-Schwinger equation

Considering the definition of the Møller wave operator and how it connects the coupled
eigenconfigurations to the uncoupled ones, we can deduce the following equation:

ψ=φ− (
Ω2 −λ2 − i 0+)−1

Vφ. (5.93)

Proof: Starting from the definition of the Møller wave operator

M+(Ω2,Ω2
0) = lim

t→−∞e iΩ2t e−iΩ2
0t , (5.94)

we calculate the time derivative without the limit and we apply it on an eigenconfigu-
ration φ ofΩ2

0:

∂

∂t

{
e iΩ2t e−iΩ2

0t
}
φ= i e iΩ2t (

Ω2 −Ω2
0

)
e−iΩ2

0tφ,

= i e iΩ2t V e−iΩ2
0tφ, (5.95)

where we have usedΩ2 =Ω2
0 +V . We integrate:

e iΩ2t e−iΩ2
0tφ= i

∫ t

0
d t ′e iΩ2t ′V e−iΩ2

0t ′φ+φ. (5.96)

We now take the limit t → −∞, hence the left-hand side becomes M+(Ω2,Ω2
0)φ = ψ.

The limit in the right-hand side can be transformed using the Abelian limit representa-
tion [68]: if f is a bounded measurable function and the limit t →∓∞ exists, then

lim
t→∓∞

∫ t

0
d t ′ f (t ′) = lim

ε→±0+

∫ ∓∞

0
d t ′ f (t ′)e±εt ′ . (5.97)
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Thus, we have

ψ= lim
ε→0+

[
i
∫ −∞

0
d t ′eεt ′e iΩ2t ′V e−iΩ2

0t ′φ

]
+φ. (5.98)

Sinceφ is an eigenfunction ofΩ2
0 with a certain frequency λ, we use e−iΩ2

0t ′φ= e−iλ2t ′φ,
and

i
∫ −∞

0
d t ′e i (Ω2−λ2−iε)t ′ =−(

Ω2 −λ2 − iε
)−1

, (5.99)

which is introduced into Eq. (5.98) to give Eq. (5.93).

In order to evaluate the eigenconfigurations ψ explicitly using Eq. (5.93), one would need
to calculate the action of the integral operator

(
Ω2 −λ2 − iε

)−1
on all functions of the form

Vφ, which in general cannot be done before one knows the eigenvectors of Ω2. In other
terms, in order to get an explicit expression of the action of this operator, one needs first to
diagonalize it, which is essentially equivalent to diagonalizingΩ2.

To avoid this difficulty, instead of using Eq. (5.93), the coupled eigenconfigurations can be
obtained as solutions of the Lippmann-Schwinger equation:

ψ=φ− (
Ω2

0 −λ2 − i 0+)−1
Vψ. (5.100)

Proof: For self-adjoint operators Ω2
0 and Ω2 = Ω2

0 +V , we define the corresponding
resolvent operators as

R0(z) := (Ω2
0 − z)−1, (5.101)

R(z) := (Ω2 − z)−1, (5.102)

with z ∈C∖
R. Starting with the general identity

X −1 = Y −1 +Y −1(Y −X )X −1, (5.103)

one obtains the following resolvent identities:

R = R0 −R0V R (5.104)

R0 = R +RV R0. (5.105)

This also implies the identity

RV = R0V (1−RV ). (5.106)

The equation (5.93) can be written as

ψ= (1−RV )φ. (5.107)

Thus, we have

RVφ= R0V (1−RV )φ= R0Vψ. (5.108)
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Introducing it into Eq. (5.107) gives

ψ=φ−R0Vψ, (5.109)

which is another way of writing the Lippmann-Schwinger equation (5.100).

We have thus shown that if ψ and φ satisfy the equation (5.93), then they also satisfy the
Lippmann-Schwinger equation (5.100). The converse is not always true. However, if one
can prove the uniqueness of the solution of the Lippmann-Schwinger equation, then it will
also satisfy Eq. (5.93), and it will provide a unitary map betweenΩ2 andΩ2

0. As shown in the
next subsection, the action of the free resolvent (Ω2

0 −λ2 − i 0+)−1 on an arbitrary function
is known explicitly in our model, which is what makes the Lippmann-Schwinger equation
(5.100) useful for practical calculations.

5.2.6 Degeneracy and block structure

We use this subsection to analyze more precisely the degeneracy of the system and to pro-
vide a more detailed description of the eigenconfigurations φ and ψ. As mentioned ear-
lier, the system consists of two coupled continuous spectra, one “electromagnetic” and one
“material”. Each continuum has its own degeneracy structure (corresponding to all the de-
grees of freedom involved) which we combine in one multi-variable: κ for the electromag-
netic part, µ for the matter part.

• The indices for the electromagnetic part are

κ= (~k,σ,ζ). (5.110)

This degeneracy structure is inherent of the uncoupled electromagnetic eigenvectors ~ϕ
given in Eq. (5.50). In order to have a precise view on the degeneracy structure, we may
express κ as (ω,dω), i.e., the frequency ω spanning the whole spectrum and the degener-
acy index dω associated with each frequency. The notation is however formal, and we must
have a clear understanding of what it means to “count” the eigenvectors. This is given by
the sum: ∫

dκ=
∫

d 3k
∑
σ,ζ

=
∫ ∞

0
dω

ω2

c3

∫ π/2

0
dϑ

∫ 2π

0
dη sinϑ

∑
σ,ζ

, (5.111)

where we have decomposed~k on spherical coordinates using |~k| =ω/c. Hence, dω ≡ (ϑ,η,σ,ζ),
with ∑

dω

= ω2

c3

∫ π/2

0
dϑ

∫ 2π

0
dη sinϑ

∑
σ,ζ

. (5.112)

• For the matter variables, we have

µ≡ (ν,~r , j ), (5.113)

where~r is the position inside the medium only, and since the canonical variables for matter,
~X and ~ΠX , are 3-component vectors, j = 1,2,3 labels their components. We thus have the
general form µ≡ (ν,dν), with dν ≡ (~r , j ) and∑

dν

=
∫

V
d 3r

∑
j

. (5.114)
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Figure 5.2 is a schematic representation of the spectral structures.

Figure 5.2 – Spectral structure of the two interacting continua that constitute the plas-
monic model. Each frequency, ω or ν, is associated with a different set of continuous (but
bounded) and finite discrete degeneracies.

In the space on which the frequency operator acts, the vectors have a two-block structure
dictated by the matrix form of Ω2 (or equivalently Ω2

0) given in Eqs. (5.83) and (5.85). Thus
in general, a vector ψ can be written in the same form as P and Q:

ψ=
[

u(κ)
v(µ)

]
. (5.115)

The operatorΩ2
0 acts trivially on such a vector:

Ω2
0ψ=

[
ω2u(κ)
ν2v(µ)

]
, (5.116)

and similarly for any power ofΩ0. We also have the resolvent

(Ω2
0 −λ2 − i 0+)−1ψ=

[ 1
ω2−λ2−i 0+ u(κ)

1
ν2−λ2−i 0+ v(µ)

]
. (5.117)

The eigenconfigurations of the uncoupled operator Ω2
0 can be split into two groups: one

associated with the electromagnetic spectral structure, and one with the material one. We
denote the first by φe

κ and the latter by φm
µ . The choice of eigenconfigurations of Ω2

0 is not
unique; we choose the following generalized functions:

φe
κ =

[
δ(κ−κ′)

0

]
=

[
δ(~k −~k ′)δζ,ζ′δσ,σ′

0

]
, (5.118a)

φm
µ =

[
0

δ(µ−µ′)

]
=

[
0

δ(ν−ν′)δ(~r −~r ′)δ j , j ′

]
. (5.118b)
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One can easily verify, using the definition ofΩ2
0 in Eq. (5.85), that

Ω2
0φ

e
κ =ω2φe

κ, (5.119)

Ω2
0φ

m
µ = ν2φe

µ, (5.120)

assuming that ∫
d y δ(y − y ′)δ(y − y ′′) = δ(y ′− y ′′) (5.121)

for any continuous variable y . This is a standard assumption we will always consider valid
in this thesis. The existence and unitarity of the Møller wave operator implies that the eigen-
vectors ofΩ2 can also be split into two groups, therefore preserving the spectral and degen-
eracy structures of the two continua:

ψe
κ =

[
ue
κ(κ′)

ve
κ(µ′)

]
, ψm

µ =
[

um
µ (κ′)

vm
µ (µ′)

]
. (5.122)

The one-to-one correspondence between the uncoupled and coupled eigenconfigurations
is exhibited by the Lippmann-Schwinger equations:

ψe
κ =φe

κ−
(
Ω2

0 −ω2 − i 0+)
Vψe

κ, (5.123a)

ψm
µ =φm

µ − (
Ω2

0 −ν2 − i 0+)
Vψm

µ . (5.123b)

Separating the operators into their blocks given by Eq. (5.85) and using the fact that I−1
ω =

Iω−1 , we have the two pairs of coupled equations for the blocks of ψe and ψm :

ue
κ(κ′) = δ(κ−κ′)− 1

ω′2 −ω2 − i 0+
[
B1ve

κ

]
(κ′), (5.124a)

ve
κ(µ′) =− 1

ν′2 −ω2 − i 0+
{[

B2ue
κ

]
(µ′)+ [

Ave
κ

]
(µ′)

}
, (5.124b)

um
µ (κ′) =− 1

ω′2 −ν2 − i 0+
[
B1vm

µ

]
(κ′), (5.124c)

vm
µ (µ′) = δ(µ−µ′)− 1

ν′2 −ν2 − i 0+
{[

B2um
µ

]
(µ′)+ [

Avm
µ

]
(µ′)

}
. (5.124d)

One can therefore use these equations to find an eigenconfiguration ofΩ for any frequency
and degeneracy index. Finding all of the eigenconfigurations (i.e., solving the Lippmann-
Schwinger equation for all κ and µ) is necessary to diagonalize entirely the frequency oper-
ator.

5.2.7 Phase space of plasmonic configurations

Because of the spectral structure of the problem, the complex phase space of the classical
configurations is

PC,Ω =PC,κ⊕PC,µ, (5.125)

where PC,κ is the phase space of (complex) electromagnetic configurations:

PC,κ[u] = {
u(κ) |

∫
d 3k

∑
σ,ζ

|u(~k,σ,ζ)|2 <∞}
, (5.126)
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and PC,µ is the equivalent space for the oscillators of the medium:

PC,µ[~v] = {
v(µ) |

∫
dν

∫
V

d 3r
∑

j
|v(ν,~r , j )|2 <∞}

. (5.127)

The plasmonic configurations in PC,Ω can be constructed similarly as in the passive medium:

Ψ= 1p
2

(
Ω1/2Q + iΩ−1/2P

)
, (5.128)

and they are functions of the type

Ψ(~k,σ,ζ,ν,~r , j ) = u(~k,σ,ζ)⊕ v(ν,~r , j ), (5.129)

or in a vector form:

Ψ=
[

u(~k,σ,ζ)
v(ν,~r , j )

]
, (5.130)

with the condition: ∫
d~k

∑
σ,ζ

|u(~k,σ,ζ)|2 +
∫

dν
∫

d 3r
∑

j
|v(ν,~r , j )|2 <∞. (5.131)

In the same way as in optics, we can construct plasmonic modes as classes of equivalence
generated by the normalized configurations for which∫

d~k
∑
σ,ζ

|u(~k,σ,ζ)|2 +
∫

dν
∫

d 3r
∑

j
|v(ν,~r , j )|2 = 1. (5.132)

5.2.8 Orthonormalization and completeness of the eigenconfigurations

Another advantage of using the unitary Møller operator is that the orthonormality and com-
pleteness of the eigenconfigurations are preserved in the passage fromΩ0 toΩ. For any pair
of eigenconfigurations ψy = [uy (κ) vy (µ)]T and ψy ′ = [uy ′(κ) vy ′(µ)]T , with y and y ′ two
labels of the spectral structure (either of type κ or µ), the orthonormality condition is given
by (

ψy
∣∣ψy ′

)= ∫
dκ u∗

y (κ)uy ′(κ)+
∫

dµ v∗
y (µ)vy ′(µ) = δ(y − y ′). (5.133)

We notice that the passage to the dual space |ψ) → (ψ| hides a complex conjugation which
matters now that we work with complex functions (even if the uncoupled eigenconfigura-
tions φ are real, the Lippmann-Schwinger equation brings complex terms to the ψ’s).

The completeness, on the other hand, is given by∫
d y

∣∣ψy
)(
ψy

∣∣=1, (5.134)

which can be more explicitly developed:[∫
d y uy (κ)u∗

y (κ′)
∫

d y uy (κ)v∗
y (µ)∫

d y vy (µ)u∗
y (κ)

∫
d y vy (µ)v∗

y (µ′)

]
=

[
δ(κ−κ′) 0

0 δ(µ−µ′)

]
. (5.135)

Note that the integral must be performed over the whole spectral structure, i.e.,
∫

d y =∫
dκ+∫

dµ.

It is easy to verify that the eigenconfigurations of Ω2
0 that we chose in Eq. (5.118) are or-

thonormal and form a complete basis, using Eq. (5.121).
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5.2.9 Diagonal Hamiltonian

The diagonal form of the Hamiltonian is constructed in the complex representation, like in
a passive medium (see Sec. 2.2.1). The configurationsΨ are given by (5.128) and the inverse
of this equation gives

Q =
√

1

2
Ω−1/2[Ψ+Ψ∗], (5.136a)

P =−i

√
1

2
Ω1/2[Ψ−Ψ∗], (5.136b)

which can be inserted into the Hamiltonian (5.82) to give

H = 1

2

[
(Ψ|ΩΨ)+ c.c.

]
. (5.137)

Remember that the “bra” notation implies a complex conjugation. The block structure
reads

H = 1

2

(
Ψ
Ψ∗

∣∣∣∣Ω 0
0 Ω

∣∣∣∣ ΨΨ∗
)

. (5.138)

We can now make use of the diagonalization that has been performed above. The eigen-
configurations of Ω2 have been calculated using Lippmann-Schwinger equations and they
can be gathered together to form the diagonalizing matrix:

U =
[

ue
κ um

µ

ve
κ vm

µ

]
. (5.139)

Since the Lippmann-Schwinger equations derive from the Møller operator, it ensures that
the transformation matrix U is unitary: U †U =UU † =1. We have

U †Ω2U =Ω2
D , (5.140)

whereΩD is the diagonalized frequency operator. Note that Eq. (5.140) is valid for any power
ofΩ. We introduce the operator U into the Hamiltonian (5.138):

H = 1

2

(
Ψ
Ψ∗

∣∣∣∣∣
[

U 0
0 U∗

][
U 0
0 U∗

]† [
Ω 0
0 Ω

][
U 0
0 U∗

][
U 0
0 U∗

]†
∣∣∣∣∣ ΨΨ∗

)

= 1

2

(
Ψ̃

Ψ̃∗

∣∣∣∣U †ΩU 0
0 (U †ΩU )∗

∣∣∣∣ Ψ̃Ψ̃∗
)

= 1

2

(
Ψ̃

Ψ̃∗

∣∣∣∣ΩD 0
0 ΩD

∣∣∣∣ Ψ̃Ψ̃∗
)

, (5.141)

where we have used thatΩ is a real operator and we introduced new complex vectors of the
diagonal model:

Ψ̃=U †Ψ. (5.142)

On the vectors Ψ̃, the diagonal operator ΩD simply acts as a multiplication by the corre-
sponding frequency, i.e., adopting the block structure Ψ̃= [z̃e

κ z̃m
µ ]T ,

ΩDΨ̃=ΩD

[
z̃e
~k,σ,ζ
z̃m
ν,~r

]
=

[
ωz̃e

~k,σ,ζ
νz̃m

ν,~r

]
. (5.143)

Hence, the diagonal Hamiltonian (5.141) can be written as

H = 1

2

∫
dκ ω

[
z̃e∗
κ z̃e

κ+ z̃e
κz̃e∗

κ

]
+ 1

2

∫
dµ ν

[
z̃m∗
µ z̃m

µ + z̃m
µ z̃m∗

µ

]
. (5.144)
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5.3 Summary on the classical Hamiltonian system

In this Chapter we have seen that the macroscopic Maxwell equations with a dispersive and
dissipative electric response can be reformulated as Hamilton equations of a Hamiltonian
system, provided that we introduce a microscopic description of the medium. This descrip-
tion can be made with an infinite set of harmonic oscillators attached to each point of space
occupied by the material medium.

We have then shown that with adequate canonical transformations, the Hamiltonian can be
put in a harmonic-like form with a frequency operator Ω. The diagonalization of Ω is per-
formed using the Møller wave operator and Lippmann-Schwinger equations, which ensure
that the spectral/degeneracy structure of the initial (uncoupled) system is preserved when
light interacts with the medium. We finally introduce a complex representation which paves
the way to the quantization process, similarly to the passive-medium case.
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6
Quantum plasmonics

Classical light can be thoroughly described with Maxwell’s equations. Similarly, classical
plasmonic fields can be analyzed using the macroscopic Maxwell equations with a choice of
response function from the medium. It is the main goal of this Chapter to quantize the clas-
sical plasmonic model that we constructed in a harmonic-like form in the preceding chapter.

Section 6.1 is used to quantize the model in a way that is very similar to the procedure we
used in Chapter 3 for photons. In fact, apart from technical differences stemming for the dif-
ferent spectral structures, the strategy and conceptual tools are the same. All difficulties that
have been treated in Chapter 3 such as the isomorphism between phase spaces or the neces-
sity to quantize first in a reduced finite-dimensional model before taking a limit to infinite
dimensions in the Fock space – all these technical subtleties bring no more information than
with photons; thus we leave them aside in the plasmonics model and we construct directly
the quantum field model in the Bosonic Fock space.

The operators of the electromagnetic field (and in particular the electric field observable) are
linked to the eigenconfigurations, i.e., the eigenfunctions of the frequency operator. In Sec-
tion 6.2, we give some partial and perturbative results of the calculation of the eigenconfigu-
rations. This requires solving a Lippmann-Schwinger equation.

The quantization of the initial plasmonic model of Chapter 5 was performed in the past, with
results substantially different from our present results. In Section 6.3 we review the method
used in the literature and we analyze some discrepancies it contains when applied to models
with a finite medium.
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6.1 Quantization

6.1.1 Bosonic operators and Hamiltonian

The principle of correspondence we use to quantize the plasmonic model is the same as
in a passive medium: the complex variables become quantum operators acting on the (fi-
nite) Hilbert space of configurations, then these quantum operators are associated with
bosonic creation-annihilation operators of the Fock space, which are the only objects that
are still well-defined when the limit to infinite dimensions is taken. Overall, this principle
of correspondence can be formulated directly in the full (infinitely dimensional) model by
disregarding the intermediary steps:

z̃λ,dλ 7→
p
×B̂ψ

λ,dλ
, z̃∗

λ,dλ 7→
p
×B̂ †

ψ
λ,dλ

. (6.1)

We emphasize that, because of the diagonalizing transformation which helps construct the
complex variables z̃ [see Eq. (5.142)], each operator B̂ is associated with a plasmonic con-
figurationΨ, or with an eigenconfiguration ψλ,dλ (i.e., an eigenfunction ofΩ).

We adopt the general notation B̂ for the creation-annihilation operators in the Fock space.
However, it is more convenient for later purposes to differentiate explicitly operators asso-
ciated with the “electromagnetic” eigenconfiguration and the ones with the “matter” eigen-
configuration:

z̃e
κ 7→

p
×D̂ψe

κ
, z̃m

µ 7→
p
×Ĉψm

µ
. (6.2)

Since by definition each eigenconfiguration is associated with only one label κ or µ, we
adopt the implicit notation

D̂ψe
κ
≡ D̂κ, Ĉψm

µ
≡ Ĉµ. (6.3)

The configurations of the plasmonic field can be written as a linear combination of the
eigenconfigurations,

Ψ=
∫

dκ a(κ)ψe
κ+

∫
dµ b(µ)ψm

µ . (6.4)

It can be more convenient to express it as a linear combination of the uncoupled eigencon-
figurations,

Ψ=
∫

dκ c(κ)φe
κ+

∫
dµ d(µ)φm

µ , (6.5)
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and because of Eq. (5.118) the coefficients are related by

c(κ) =
∫

dκ′ a(κ′)ue
κ′(κ)+

∫
dµ′ b(µ′)um

µ′ (κ
′), (6.6a)

d(µ) =
∫

dκ′ a(κ′)ve
κ′(µ)+

∫
dµ′ b(µ′)vm

µ′ (µ). (6.6b)

Hence, apart from very specific cases, general plasmonic configurations can be written as
non-trivial combinations of purely electromagnetic and purely matter configurations.

The creation-annihilation operators associated with a configuration Ψ can be constructed
as follow:

B̂Ψ = B̂∫
dκ a(κ)ψe

κ+
∫

dµ b(µ)ψm
µ
=

∫
dκ a∗(κ)D̂κ+

∫
dµ b∗(µ)Ĉµ. (6.7)

Furthermore these operators satisfy the commutation relations,[
B̂Ψ, B̂ †

Ψ′
]= (Ψ|Ψ′)1, (6.8a)[

B̂Ψ, B̂Ψ′
]= 0. (6.8b)

This implies [
D̂κ,D̂†

κ′
]= δ(κ−κ′)1,

[
D̂κ,D̂κ′

]= 0, (6.9a)[
Ĉµ,Ĉ †

µ′
]= δ(µ−µ′)1,

[
Ĉµ,Ĉµ′

]= 0, (6.9b)

and [
D̂κ,Ĉµ

]= 0,
[
D̂κ,Ĉ †

µ

]= 0. (6.9c)

Additionally, inserting the correspondence (6.2) in the diagonal Hamiltonian gives

Ĥ = ×
2

∫
dκ ω

[
D̂†
κD̂κ+ D̂κD̂†

κ

]
+ ×

2

∫
dµ ν

[
Ĉ †
µĈµ+ ĈµĈ †

µ

]
. (6.10)

We however define it in the Wick ordering,

Ĥ =
∫

dκ ×ω D̂†
κD̂κ+

∫
dµ ×ν Ĉ †

µĈµ. (6.11)

6.1.2 Fock space and quantum plasmons

The Fock space is constructed in a similar way as the one for photons. It is based on the
Hilbert space PC,Ω of vectorsΨ= [u(κ) v(µ)]T (described in Section 5.2.7). We remark that,
like the plane waves in vacuum, the uncoupled eigenconfigurations are not square inte-
grable and the coupled ones may not be in general. They can however be used to construct
any vectorΨ from the expansions (6.4) or (6.5).

The construction of the bosonic Fock space is formally the same as in the passive medium,
described in Section 3.2.1, but with the bosonic operators constructed in the preceding sec-
tion. We note the plasmon states |Ψ〉 whereΨ is the classical configuration associated with
the quantum state.
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In passive media, we define photons as 1-quantum states in the Fock space constructed
from the quantization of Maxwell’s equations. We use the same approach in dispersive and
dissipative media to provide a definition of quantum plasmons:

A quantum plasmon is a 1-quantum state in the bosonic Fock space constructed from
the quantization of the macroscopic Maxwell equations with dispersion and dissipation.

Since the quantum states are built on configurations of the coupled system (electromag-
netic field + matter field), they are generally hybrid quantum objects. This has led some
authors to call them plasmon-polaritons.

6.1.3 Electric field operator

We can now express the electric field in terms of the complex variables z̃, then use the prin-
ciple of correspondence (6.2) to transform the electric field into an operator acting on the
Fock space.

We start with Eqs. (5.27) and (5.10):

~E(~r ) = 1

ε0

[
~D(~r )−~P(~r )

]=− 1

ε0

~ΠA(~r )− 1

ε0

∫ ∞

0
dν α(ν,~r )~X (ν,~r ). (6.12)

Then, we use the pre-diagonalizing transformation (5.48) combined with the transforma-
tion (5.75):

~ΠA(~r ) =
∫

dκ
p
ε0ω~ϕκ(~r )qκ, (6.13a)

~A(~r ) =−
∫

dκ
1p
ε0ω

~ϕκ(~r )pκ, (6.13b)

which leads to

~E(~r ) =− 1p
ε0

∫
dκ ω~ϕκ(~r )qκ− 1

ε0

∫ ∞

0
dν α(ν,~r )~X (ν,~r ). (6.14)

Inserting the unitary transformation U into Eq. (5.136a) gives[
q
~X

]
=

√
1

2

(
UΩ−1/2

D

[
z̃e

z̃m

]
+U∗Ω−1/2

D

[
z̃e∗

z̃m∗

])
, (6.15)

or more explicitly:

qκ =
∫

dκ′
√

1

2ω′ u
e
κ′(κ)z̃e

κ′ +
∫

dµ′
√

1

2ν′
um
µ′ (κ)z̃m

µ′ + c.c., (6.16a)

~X (ν,~r ) =
∫

dκ′
√

1

2ω′~v
e
κ′(ν,~r )z̃e

κ′ +
∫

dµ′
√

1

2ν′
~vm
µ′ (ν,~r )z̃m

µ′ + c.c. (6.16b)

Now using the principle of correspondence (6.2), q and ~X become operators,

q̂κ =
∫

dκ′
√

×
2ω′ u

e
κ′(κ)D̂κ′ +

∫
dµ′

√
×

2ν′
um
µ′ (κ)Ĉµ′ +h.c., (6.17a)

~̂X (ν,~r ) =
∫

dκ′
√

×
2ω′~v

e
κ′(ν,~r )D̂κ′ +

∫
dµ′

√
×

2ν′
~vm
µ′ (ν,~r )Ĉµ′ +h.c. (6.17b)
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We can finally insert them into the electric field (6.14), leading to two contributions:

~̂E = ~̂E e + ~̂E m , (6.18)

with

~̂E e (~x) =
∫

dκ
[
~eκ(~x)D̂κ+~e∗

κ(~x)D̂†
κ

]
, (6.19a)

~̂E m(~x) =
∫

dµ
[
~mµ(~x)Ĉµ+ ~m∗

µ(~x)Ĉ †
µ

]
, (6.19b)

where

~eκ(~x) =−
√

×
2ε0ω

{∫
dκ′ ω′~ϕκ′(~x)ue

κ(κ′)+
∫ ∞

0
dν′ α̃(ν,~x ′)~ve

κ(ν′,~x)

}
, (6.20a)

~mµ(~x) =−
√

×
2ε0ν

{∫
dκ′ ω′~ϕκ′(~x)um

µ (κ′)+
∫ ∞

0
dν′ α̃(ν′,~x)~vm

µ (ν′,~x)

}
. (6.20b)

We recall that

~ϕ~k,σ,ζ(~x) =


1
2π3/2~εσ(~k)cos(~k ·~x), ζ= c,

1
2π3/2~εσ(~k)sin(~k ·~x), ζ= s,

(6.21)

and

α̃2(ν,~x) =α2(ν,~x)
/
ε0 =

{
2
πνεI (ν,~x) for~x ∈V ,

0 for~x ∉V .
(6.22)

An important simplification takes place when one considers the observer’s coordinate~x in
the exterior of the medium, since there, α = 0, and thus the second term vanishes in both
expressions (6.20a) and (6.20b) (the vanishing terms correspond to the polarization density)
and we end up with

~eκ(~xext) =−
√

×
2ε0ω

∫
dκ′ ω′~ϕκ′(~xext)ue

κ(κ′), (6.23a)

~mµ(~xext) =−
√

×
2ε0ν

∫
dκ′ ω′~ϕκ′(~xext)um

µ (κ′). (6.23b)

Thus, in the exterior of the medium, the electric field operator is entirely determined by the
knowledge of the upper blocks of the eigenconfigurations, ue and um .

6.1.4 Other fields and commutation relations

For the sake of completeness, we derive here the other canonical variables and field ob-
servables. We recall the quantum version of Eq. (6.15) and the equivalent for the other two
variables, coming from (5.136) and the principle of correspondence (5.142):[

q̂
~̂X

]
=

√
×
2

(
UΩ−1/2

D

[
D̂
Ĉ

]
+U∗Ω−1/2

D

[
D̂†

Ĉ †

])
, (6.24)

[
p̂
~̂ΠX

]
=−i

√
×
2

(
UΩ1/2

D

[
D̂
Ĉ

]
−U∗Ω1/2

D

[
D̂†

Ĉ †

])
, (6.25)
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or more explicitly,

q̂κ =
∫

dκ′
√

×
2ω′ u

e
κ′(κ)D̂κ′ +

∫
dµ′

√
×

2ν′
um
µ′ (κ)Ĉµ′ +h.c., (6.26a)

p̂κ =−i

∫
dκ′

√
×ω′

2
ue
κ′(κ)D̂κ′ +

∫
dµ′

√
×ν′

2
um
µ′ (κ)Ĉµ′ −h.c.

 , (6.26b)

~̂X (ν,~r ) =
∫

dκ′
√

×
2ω′~v

e
κ′(ν,~r )D̂κ′ +

∫
dµ′

√
×

2ν′
~vm
µ′ (ν,~r )Ĉµ′ +h.c., (6.26c)

~̂ΠX (ν,~r ) =−i

∫
dκ′

√
×ω′

2
~ve
κ′(ν,~r )D̂κ′ +

∫
dµ′

√
×

2ν′
~vm
µ′ (ν,~r )Ĉµ′ −h.c

 . (6.26d)

We can derive the polarization density operator ~̂P from Eq. (5.10) (note that it is non-zero

inside the medium only), and the electric displacement operator ~̂D from Eq. (6.12).

We can now calculate commutators using the bosonic commutation relations (6.9). We get

[q̂κ, p̂κ′] = i×δ(κ−κ′), [X̂ i (ν,~r ),Π̂ j
X (ν′,~r ′)] = i×δ(ν−ν′)δ(~r −~r ′)δi j , (6.27)

where we have used the completeness of the eigenfunctions of Ω (5.135). Note that this
condition is the only requirement to obtain the commutation relations (6.27). From this,
we can use the transformations (6.13) and (6.14) to obtain two additional commutation
relations:

[Âi (~r ),Π̂ j
A(~x)] = i×δi j

T (~r −~x), [Âi (~r ), Ê j (~x)] =− i×
ε0
δ

i j
T (~r −~x), (6.28)

with the transverse delta function defined as [69]

δ
i j
T (~r −~x) = 2

3
δi jδ(~r −~x)− 1

4π|~r −~x|3
(
δi j −

3(ri −xi )(r j −x j )

|~r −~x|2
)

. (6.29)

We have used the transversality condition of the basis of eigenfunctions of −c2∆ given by
Eq. (6.21), which reads ∫

dκ ϕi
κ(~r )ϕ j

κ(~x) = δi j
T (~r −~x). (6.30)

6.1.5 No-coupling limit

An important feature of our diagonalization and quantization procedure is that the limit
εI → 0, corresponding to no coupling between the electromagnetic field and the medium,
can be taken at any step of the derivation. In this scenario, the Hamiltonian is always di-
agonal and the quantization procedure gives the two sets of bosonic operators D̂0 and Ĉ 0

corresponding to the bosonic operators of the two subsystems (hence, D̂0 ≡ D̂ (vac)). We
have

Ĥ 0 = Ĥ 0
elm + Ĥ 0

med, (6.31)

Ĥ 0
elm =

∫
dκ ×ω D̂0†

κ D̂0
κ, (6.32)

Ĥ 0
med =

∫
dµ ×ν Ĉ 0†

µ Ĉ 0
µ. (6.33)
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Furthermore, the Lippmann-Schwinger equation (5.123) simply gives

ψe
κ→φe

κ =
[
δ(κ−κ′)

0

]
, ψm

µ →φm
µ =

[
0

δ(µ−µ′)

]
. (6.34)

Inserting it into the expressions (6.20a) and (6.20b) gives

~eκ(~x) →−
√

×ω
2ε0

~ϕκ(~x), (6.35a)

~mµ(~x) → 0, (6.35b)

leading to

~̂E(~x) →−
∫

dκ

√
×ω
2ε0

~ϕκ(~x)
[
D̂0
κ+ D̂0†

κ

]
. (6.36)

This is the expression of the electric field in vacuum (see Eq. (3.57a) with εR = 1). The only
difference comes from the bosonic operators which can be defined up to a phase (here of
−π/2, giving the −i extra factor; this difference is a result of the canonical transformation
(5.75) which was not used in the passive medium).

The no-coupling limit is therefore consistent at any stage of the construction. This is a
special issue that had not been addressed in any satisfying way in the previous attempts
of diagonalization/quantization of the initial Hamiltonian (5.31). We discuss this in more
details in Section 6.3.

6.2 Solving the Lippmann-Schwinger equation

Even though the quantum formalism for plasmonics has been constructed in the preced-
ing sections, it is not precisely defined if one cannot calculate the normal configurations the
diagonal operators are associated with. As mentioned in Section 5.2.4, one way would be
to calculate directly the Møller operator. Another way is to solve the Lippmann-Schwinger
equation (5.123), which is what we try to do here.

Solving the Lippmann-Schwinger equation is not trivial and cannot be done analytically
because of the structure of the coupling. Solving it numerically requires a discretization of
the equation and of the integral operator which will be analyzed later. First, we will give an-
alytical techniques that can be used in perturbation theory. We will show that it depends on
two perturbative parameters, which makes the perturbative regime more difficult to char-
acterize.

6.2.1 Perturbative series

We recall the general form of the Lippmann-Schwinger equation:

ψ=φ−R0Vψ, (6.37)

with ψ and φ the eigenconfigurations of Ω and Ω0 respectively, associated with frequency
λ, R0 the resolvent R0 = (Ω2

0−λ2−i 0+)−1, and V the integral operator of interaction. We can
rewrite this equation

[1+R0V ]ψ=φ. (6.38)
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If the coupling V is small enough, we enter in the perturbative regime, and we can use
(1+ε)−1 ' 1−ε+ε2 −ε3 + . . ., thus:

ψ' [
1−R0V + (R0V )2 − (R0V )3 + . . .

]
φ. (6.39)

The coupling operator V consists of two parts, VA for the self-interaction part, and VB for
the cross-interaction part:

V =VA +VB , (6.40)

with

VA =
[

0 0
0 A

]
, VB =

[
0 B1

B2 0

]
, (6.41)

acting on vectors of the form ψ= [u(κ) ~v(ν,~r )]T , with the operators A, B1 and B2 acting as[
A~v

]
(ν,~r , j ) := α̃(ν,~r )

∫ ∞

0
dν′

∫
Vm

d 3r ′∑
j ′
α̃(ν′,~r ′)δ(~r −~r ′)δ j j ′v

j ′(ν′,~r ′), (6.42a)

[
B1~v

]
(κ) :=

∫ ∞

0
dν

∫
Vm

d 3r ωα̃(ν,~r )
(
~ϕκ(~r ) ·~v(ν,~r )

)
, (6.42b)

[
B2u

]
(ν,~r , j ) := α̃(ν,~r )

∫
dκ ωϕ j

κ(~r )u(κ). (6.42c)

We can identify two main parameters which can be used to quantify the strength of the
coupling: α̃ (and thus the dissipation εi ) and the volume of the medium Vm because of the
integration over~r . The coupling has a non-trivial structure in terms of these parameters:

V ≡
[

0 α̃Vm

α̃ α̃2

]
, (6.43)

which gives rise to a perturbative series (6.39) which contains a non-trivial combination of
powers of these two parameters. Thus the convergence has to be ensured both by a small
dissipation factor and a small volume of the medium, almost independently. This regime
will be denoted as a general small coupling regime and will be investigated up to the first
order.

We will see further that a part of the coupling can be solved exactly, leading to a new series
where the convergence can be obtained with a volume sufficiently small to compensate a
strong α̃, resulting in a small volume regime. This other regime will be calculated up to the
second order.

6.2.2 Small coupling regime

A first regime one can investigate is the small coupling regime, where both the coefficient of
losses α (i.e., the imaginary part of the dielectric function) and the volume of the medium
V are small. This corresponds to calculatingψwith Eq. (6.39), stopping at any desired order
of the perturbative series.

Zeroth order

The zeroth order (with no coupling) is simply given by φ. Thus,

~E(~x)
∣∣
0th = ~E (vac)(~x). (6.44)
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First order

The perturbation of first order is (R0V )φ, thus it follows straightforwardly from the defini-
tion of the coupling operator V [Eqs. (6.40)–(6.42)]:

(R0V )φe
κ =

 0

ωα̃(ν,~r )

ν2 −ω2 − i 0+~ϕκ(~r )

 , (6.45)

(R0V )φm
µ =


ωα̃(ν,~r )

ω2 −ν2 − i 0+~ϕκ(~r )

α̃(ν,~r )α̃(ν′,~r ′)
ν′2 −ν2 − i 0+ δ(~r −~r ′)

 . (6.46)

This first order already gives an interesting result. Combining it with the zeroth order, the
eigenconfigurations ψ read

ψκ

∣∣
1st =

[
ue
κ(κ′)

ve
κ(µ)

]
1st

=

 δ(κ−κ′)

− ωα̃(ν,~r )

ν2 −ω2 − i 0+~ϕκ(~r )

 , (6.47a)

ψµ

∣∣
1st =

[
um
µ (κ)

vm
µ (µ′)

]
1st

=

 − ωα̃(µ)

ω2 −ν2 − i 0+~ϕκ(~r )

δ(µ−µ′)− α̃(µ′)α̃(µ)

ν′2 −ν2 − i 0+δ(~r −~r ′)

 . (6.47b)

Inserting the upper blocks into the electric field operator (6.19) gives

~E e (~x)
∣∣
1st = ~E (vac)(~x), (6.48a)

~E m(~x)
∣∣
1st =

√
×µ0

πc2

∫ ∞

0
dν

∫
V

d 3r ν2ε1/2
i (ν,~r )

[
G0(ν;~r ,~x)+Fnf(ν;~r ,~x)

]
Ĉν,~r +h.c., (6.48b)

where G0 is the Green function of the wave equation in vacuum:

G0(ν;~r ,~x) = c2
∫

dκ
~ϕκ(~r ) ·~ϕκ(~x)

ω2 −ν2 − i 0+ , (6.49)

and Fnf is a near-field term:

F i j
nf (ν;~r ,~x) =− c2

4πν2|~r −~x|3
(
δi j −

3(ri −xi )(r j −x j )

|~r −~x|2
)

. (6.50)

Proof: Introducing the upper block of (6.47b) into (6.19), replacing α̃ by its expression
(6.22) and expanding κ= (~k,d) gives

E m(~x)
∣∣
1st =

∫
d 3k

∑
d
ω~ϕ~k,d (~x)

∫ ∞

0
dν

∫
V

d 3r

√
×εI (ν,~r )

πε0

ω~ϕ~k,d (~r )

ω2 −ν2 − i 0+ Ĉν,~r +h.c. (6.51)

Rearranging the integrals leads to

E m(~x)
∣∣
1st =

√
×
πε0

1

c2

∫ ∞

0
dν

∫
d 3r ε1/2

I (ν,~r )L(ν;~r ,~x)Ĉν,~r +h.c, (6.52)
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with

L(ν;~r ,~x) = c2
∫

d 3k
ω2

ω2 −ν2 − i 0+
∑
d

~ϕ~k,d (~r ) ·~ϕ~k,d (~x). (6.53)

We decompose the integrals on the spherical system of coordinates
∫

dk
∑

d ≡ (1/c)
∫

dω
∑

dω
where

∑
dω

≡
∫ π/2

0
dϑ

∫ 2π

0
dη

ω2

c2
sinϑ

∑
σ,ζ

, (6.54)

and we use the identity

1

ω2 −ν2 − i 0+ = P

ω2 −ν2
+ i

π

2ν
δ(ω−ν), (ω,ν) > 0, (6.55)

which gives

L(ν;~r ,~x) = cP

∫ ∞

0
dω

ω2

ω2 −ν2
g (ω;~r ,~x)+ i

πcν

2
g (ν;~r ,~x), (6.56)

with g (ω;~r ,~x) =∑
dω

~ϕω,dω(~r ) ·~ϕω,dω(~x). (6.57)

It is not clear whether the term in the integral converges. We can however rewrite it

cP

∫
dω

(
ω2

ω2 −ν2
−1

)
g (ω;~r ,~x)+ c

∫
dω g (ω;~r ,~x)

= cP

∫
dω

ν2

ω2 −ν2
g (ω;~r ,~x)+ c

∫
dω g (ω;~r ,~x).

Because of Eq. (6.57) and the completeness of the eigenfunctions ~ϕ,∫
dω g (ω;~r ,~x) = cδT (~r −~x),

with the transverse delta function given by Eq. (6.29). Since~r is integrated only inside
the medium whereas ~x is taken in the exterior, the first term in the right-hand side
vanishes in our problem. Hence,

L(ν;~r ,~x) = ν2
[

cP

∫
dω

g (ω;~r ,~x)

ω2 −ν2
+ i

πc

2ν
g (ν;~r ,~x)+Fnf(ν;~r ,~x)

]
(6.58)

= ν2
[

c
∫

dω
g (ω;~r ,~x)

ω2 −ν2 − i 0+ +Fnf(ν;~r ,~x)

]
, (6.59)

= ν2

[
c2

∫
d 3k

∑
d

~ϕ~k,d (~r ) ·~ϕ~k,d (~x)

ω2 −ν2 − i 0+ +Fnf(ν;~r ,~x)

]
, (6.60)

where

F i j
nf (ν;~r ,~x) :=− c2

4πν2|~r −~x|3
(
δi j −

3(ri −xi )(r j −x j )

|~r −~x|2
)

. (6.61)
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In (6.60) we recognize the Green function in vacuum (see e.g. [70] Section 8.4, with an
extra term to avoid the singularity):

G0(ν;~r ,~x) = c2
∫

d 3k
∑
d

~ϕ~k,d (~r ) ·~ϕ~k,d (~x)

ω2 −ν2 − i 0+ , (6.62)

hence

L = ν2[G0 +Fnf]. (6.63)

Introducing it back into Eq. (6.52) and using ε0µ0c2 = 1, we obtain the electric field
(6.48b).

The result in first order perturbation theory is very interesting because it can easily be com-
pared with the result of the literature. This comparison is provided in detail in Section 6.3.

6.2.3 Small volume regime

We have seen in the preceding subsection that one can solve the Lippmann-Schwinger
equation analytically as a perturbation series, provided that both the coupling function α̃
and the volume of the medium Vm are small. The result in first order also provides an inter-
esting comparison with the earlier results in the literature. However, because of the struc-
ture of the coupling with two perturbative parameters, it is not easy to compare the strength
of the different orders. Furthermore, having α̃ as a perturbative parameter is problematic
is some setups where the electromagnetic field highly couples with the dissipative medium.

In this subsection, we show how we can partially solve the Lippmann-Schwinger equation
in an exact manner, removing the coupling function α̃ from the parameters of the pertur-
bation theory. We will thus enter into a small volume regime, since only the volume of the
medium will have to be considered small. To be more precise, the coupling function will
still appear alongside with the volume in the series, but never alone, meaning that the cri-
terion for convergence will be to chose a volume small enough to compensate the strength
of α̃. This should be well-suited to analyze the coupling with nanostructures.

Partial exact diagonalization

The key idea here is in a first step to solve analytically the Lippmann-Schwinger equation
(5.93) without the coupling VB . It reads:

Φ=φ− (
Ω2

A −λ2 − i 0+)−1
VAφ, (6.64)

whereΩ2
A =Ω2

0+VA and λ the eigenvalue associated with the eigenvectors φ ofΩ0 andΦ of
ΩA. Once we have calculated the vectors Φ we can construct a new Lippmann-Schwinger
equation for the final vectors ψ in terms of theΦ’s:

ψ=Φ− (
Ω2

A −λ2 − i 0+)−1
VBψ. (6.65)

This is shown following the same derivations as in Section 5.2.5, replacing φ byΦ,Ω0 byΩA
and V by VB in every line. For the sake of simplicity, we will write the coupling operator VA
in a ket-bra form

VA =
∣∣∣∣∣0

α̃

〉〈
0

α̃δ

∣∣∣∣∣ , (6.66)
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where δ implies a multiplication by δ(~r −~r ′).

Let us now solve Eq. (6.64) and find theΦ’s. To solve this equation, we need to calculate the
operator

[
Ω2

A −λ2 − i 0+]−1
VA = [

Ω2
A −λ2 − i 0+]−1

∣∣∣∣∣0

α̃

〉〈
0

α̃δ

∣∣∣∣∣ . (6.67)

We start by evaluating the “ket” part of this operator (we denote z =λ2 + i 0+):

[
Ω2

A − z
]−1

∣∣∣∣∣0

α̃

〉
= [
Ω2

0 − z
]−1

∣∣∣∣∣0

α̃

〉
+

([
Ω2

A − z
]−1 − [

Ω2
0 − z

]−1
)∣∣∣∣∣0

α̃

〉
,

= [
Ω2

0 − z
]−1

∣∣∣∣∣0

α̃

〉
− [
Ω2

0 − z
]−1

VA
[
Ω2

A − z
]−1

∣∣∣∣∣0

α̃

〉

= [
Ω2

0 − z
]−1

∣∣∣∣∣0

α̃

〉
− [
Ω2

0 − z
]−1

∣∣∣∣∣0

α̃

〉〈
0

α̃δ

∣∣∣∣∣[Ω2
A − z

]−1

∣∣∣∣∣0

α̃

〉
. (6.68)

We denote

f (z) :=
〈

0

α̃δ

∣∣∣∣∣[Ω2
A − z

]−1

∣∣∣∣∣0

α̃

〉
, (6.69)

hence

[
Ω2

A − z
]−1

∣∣∣∣∣0

α̃

〉
= [
Ω2

0 − z
]−1

∣∣∣∣∣0

α̃

〉
− [
Ω2

0 − z
]−1

∣∣∣∣∣0

α̃

〉
f (z). (6.70)

We recall thatΩ0 simply acts as a multiplication by the frequency, thus the only unknown is

F (z). Multiplying (6.70) from the left by

〈
0
α̃δ

∣∣∣∣, we obtain

f (z) = f0(z)− f0(z) f (z), (6.71)

with f0(z) =
〈

0

α̃δ

∣∣∣∣∣[Ω2
0 − z

]−1

∣∣∣∣∣0

α̃

〉
. (6.72)

We therefore have

f (z) = f0(z)
(
1+ f0(z)

)−1. (6.73)

It is easy to calculate explicitly f0. Indeed,

f0(λ2 + i 0+) =
∫ ∞

0
dν′

∫
V

d 3r ′ |α̃(ν′,~r ′)|2
ν′2 −λ2 − i 0+δ(~r ′−~r ). (6.74)

Using the fact that α̃2(~r ,ν) = 2
πνεI (~r ,ν) with ε = εR + iεI the dielectric permittivity of the

medium, we can make use of the Kramers-Kronig relation:∫ ∞

0
dν′

α̃2(ν′,~r ′)
ν′2 −λ2 − i 0+ = ε(λ,~r ′)−1. (6.75)
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Therefore,

f0(λ2 + i 0+) → f0(λ2) = ε(λ,~r )−1. (6.76)

Introducing it into (6.73) gives

f (λ2) = 1− 1

ε(~r ,λσ)
. (6.77)

We can now replace in (6.70):

[
Ω2

A −λ2
σ− i 0+]−1

∣∣∣∣∣0

α̃

〉
= 1

ε(~r ,λσ)

[
Ω2

0 −λ2
σ− i 0+]−1

∣∣∣∣∣0

α̃

〉
. (6.78)

We introduce this result into (6.67) then into (6.64); we use the expression of the uncoupled
eigenvectors

φκ =
[
δ(κ−κ′)

0

]
, φµ =

[
0

δ(µ−µ′)

]
, (6.79)

and we obtain

Φκ :=
[

ũκ(κ′)

ṽκ(µ′)

]
=

[
δ(κ−κ′)

0

]
, (6.80a)

Φµ :=
[

ũµ(κ′)

ṽµ(µ′)

]
=


0

δ(µ−µ′)− 1

ε(µ)

α̃(µ′)α̃(µ)

ν′2 −ν2 − i 0+δ(~r −~r ′)

 . (6.80b)

As one could expect, since the coupling VA only acts on the lower block of the uncoupled
eigenvectors, only the matter continuum (i.e., the φm ’s) is affected. The vectors φe remain
the same.

Now that the Φ’s have been calculated, we can insert them into Eq. (6.65). However, in or-
der to solve this final equation, we need to know how the operator

(
Ω2

A −λ2 − i 0+)−1
VB acts.

First, we can write the operator VB as the sum of two ket-bras:

VB =
∣∣∣∣∣0

α̃

〉〈
β

0

∣∣∣∣∣+
∣∣∣∣∣10

〉〈
0

βα̃

∣∣∣∣∣ , (6.81)

whereβ is the multiplication byβκ(~r ) =ω~ϕκ(~r ). We need to calculate how
(
Ω2

A −λ2 − i 0+)−1

acts on the ket part of the two terms of VB . The first one has already been calculated and
gives Eq. (6.78). The second term can be calculated in a similar fashion. We find

(
Ω2

A − z
)−1

∣∣∣∣∣10
〉
= (
Ω2

0 − z
)−1

∣∣∣∣∣10
〉
− (
Ω2

0 − z
)−1

∣∣∣∣∣0

α̃

〉〈
0

α̃δ

∣∣∣∣∣(Ω2
A − z

)−1

∣∣∣∣∣10
〉

, (6.82)
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we multiply it from the left by

〈
0

α̃δ

∣∣∣∣∣ and we obtain

g (z) = g0(z)− f0(z)g (z), (6.83)

with g (z) =
〈

0

α̃δ

∣∣∣∣∣[Ω2
A − z

]−1

∣∣∣∣∣10
〉

, (6.84)

and g0(z) =
〈

0

α̃δ

∣∣∣∣∣[Ω2
0 − z

]−1

∣∣∣∣∣10
〉

, (6.85)

and f0 given by Eq. (6.76). Since
[
Ω2

0 − z
]−1

does not mix up the upper and lower blocks
of the vectors it is applied onto (it is diagonal), thus g0 = 0. Hence, using Eq. (6.76), the
equation (6.83) gives

ε(λ,~r )g (λ2) = 0. (6.86)

We assume that ε 6= 0 for all frequencies and points of space, implying that g = 0. Replacing
into Eq. (6.82) gives

(
Ω2

A − z
)−1

∣∣∣∣∣10
〉
= (
Ω2

0 − z
)−1

∣∣∣∣∣10
〉

. (6.87)

Consequently, we have

(
Ω2

A −λ2 − i 0+)−1
VB = (

Ω2
0 −λ2 − i 0+)−1

{
1

ε(λ,~r )

∣∣∣∣∣0

α̃

〉〈
β

0

∣∣∣∣∣+
∣∣∣∣∣10

〉〈
0

βα̃

∣∣∣∣∣
}

. (6.88)

In order to solve the new Lippmann-Schwinger equation (6.65), we expand it as a pertur-
bative series in the same way as the initial equation was expanded in the small coupling
regime:

ψ= [
1−RAVB + (RAVB )2 − (RAVB )3 + . . .

]
Φ, (6.89)

with RA = (Ω2
A −λ2 − i 0+)−1. We can insert in it the vector Φ from (6.80) and the operator

RAVB from (6.88), and thereby compute analytically the solutions. Since the part of the
interaction involving α̃ only is now thoroughly and exactly included as a factor 1

/
ε, the

perturbative series as powers of RAVB involves only powers of α̃V , and thus the criterion
for the convergence of the series is to have a volume V small enough to compensate α̃.

Zeroth order

The zeroth order of the perturbation theory (i.e., with the coupling set to zero), we recover,
as expected, the eigenvectors ofΩ0, and thus the electric field is the one in vacuum:

~E(~x)
∣∣
0th = ~E (vac)(~x). (6.90)

First order

The first order of the perturbation series is given by

ψ
∣∣
1st =Φ− (

Ω2
A −λ2 − i 0+)−1

VBΦ, (6.91)
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with
(
Ω2

A −λ2 − i 0+)−1
VB given by Eq. (6.88) and Φ given by Eq. (6.80). We get straightfor-

wardly:

ψκ

∣∣
1st =

[
ue
κ(κ′)

ve
κ(µ)

]
1st

=

 δ(κ−κ′)

− 1

ε(ω,~r )

ωα̃(ν,~r )

ν2 −ω2 − i 0+~ϕκ(~r )

 , (6.92a)

ψµ

∣∣
1st =

[
um
µ (κ)

vm
µ (µ′)

]
1st

=


− 1

ε(µ)

ωα̃(µ)

ω2 −ν2 − i 0+~ϕκ(~r )

δ(µ−µ′)− 1

ε(µ)

α̃(µ′)α̃(µ)

ν′2 −ν2 − i 0+δ(~r −~r ′)

 . (6.92b)

We notice that these are the same expressions as Eq. (6.47) in the small coupling regime,
however with the extra factor 1

/
ε in ve , um and vm . Thus the electric field has the same

form as Eq. (6.48) but with this extra factor:

~E e (~x)
∣∣
1st = ~E (vac)(~x), (6.93a)

~E m(~x)
∣∣
1st =

√
×µ0

πc2

∫ ∞

0
dν

∫
V

d 3r ν2
ε1/2

i (ν,~r )

ε(ν,~r )

[
G0(ν;~r ,~x)+Fnl (ν;~r ,~x)

]
Ĉν,~r +h.c. (6.93b)

Second order

The second order term is obtained by applying twice the operator (6.88) onto the Φ’s. One
can show that the different blocks up to the second order read

ue
κ(κ′)

∣∣
2nd = δ(κ−κ′)+ ωω′

ω′2 −ω2 − i 0+

∫
d 3r

[
1− 1

ε(ω,~r )

](
~ϕκ(~r ) ·~ϕκ′(~r )

)
(6.94a)

ve
κ(µ)

∣∣
2nd =− 1

ε(ω,~r )

ωα̃(µ)

ν2 −ω2 − i 0+~ϕκ(~r ), (6.94b)

um
µ (κ)

∣∣
2nd =− 1

ε(µ)

ωα̃(µ)

ω2 −ν2 − i 0+~ϕκ(~r ), (6.94c)

vm
µ (µ′)

∣∣
2nd = δ(µ−µ′)− 1

ε(µ)

α̃(µ′)α̃(µ)

ν′2 −ν2 − i 0+δ(~r −~r ′)

+ 1

ε2(µ)

α̃(µ′)α̃(µ)

ν′2 −ν2 − i 0+

∫
dκ

ω2

ω2 −ν2 − i 0+
(
~ϕκ(~r ′) ·~ϕκ(~r )

)
. (6.94d)

6.3 Comments on the literature

One can date the first article on the quantization of plasmons back to 1992, by Huttner
and Barnett [71]. Their goal was to introduce dissipation in the quantization of light in a
homogeneous (therefore infinite) medium. It was followed by many other works [1, 23–26,
51, 72–82, 87] which used two main approaches:

• a phenomenological approach formulated in terms of quantum Langevin equations
first introduced by Gruner and Welsch in 1995 [72] and 1996 [73];
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• microscopic oscillator models for the medium coupled to the electromagnetic field.

The latter are variations of models of the type first proposed by Hopfield [83], which was
the approach originally used by Huttner and Barnett. Extensions of their work to inhomo-
geneous media were treated in [23–26]. They involve a Fano-type diagonalization in terms
of bosonic creation and annihilation operators. The results of the microscopic approach
were meant to provide a justification of the phenomenological quantum Langevin noise
models. The main criterion for the choice of the microscopic model is that if one integrates
the equations for the medium and one inserts the obtained currents into the microscopic
Maxwell equations one should obtain the macroscopic Maxwell equations [26, 51].

The Hamiltonian model we have constructed in the preceding chapter thus follows the ap-
proach of Huttner and Barnett [71] and is equivalent to the construction made in [23] or
in [26] without the magnetic response of the medium. However, starting from the same
classical model, this approach leads to results substantially different from the formulas de-
rived and used in the past literature. In particular, it gives a different spectral structure of
the diagonalized system and a different expression of the electric field operator. Our in-
terpretation of this discrepancy is that the former results [23–26, 51, 71–75] were obtained
under the implicit hypothesis of an infinite bulk medium, although it has been extensively
extrapolated to finite media in later works.

We will now summarize the quantization procedure of Refs. [23–26] and point out explicitly
how the formulas obtained in this approach lead to inconsistent results in some regimes.
Then we will briefly review some criticism of the bulk approach which have been formu-
lated in the literature [81, 82].

6.3.1 Summary of the previous approaches in literature

The diagonalization and quantization of the model described by the Hamiltonian (5.31)
was performed in the past using a Fano-Friedrichs diagonalization method (usually simply
called Fano methode), based on the seminal work of Friedrichs [84, 85] that was rederived
by Fano [86]. We first review this method.

The initial point is the classical Hamiltonian of the system which we recall:

H = Helm +Hmed +Hint, (6.95)

with

Helm =
∫

d 3r

[
1

2ε0

~Π2
A + ε0

2
~A · (c2∇×∇×~A)

]
, (6.96a)

Hmed =
∫ ∞

0
dν

∫
V

d 3r

[
1

2
~Π2

X + 1

2
ν2~X 2

]
, (6.96b)

Hint = 1

ε0

∫
V

d 3r ~ΠA ·
∫ ∞

0
dν α~X + 1

2ε0

∫
V

d 3r

[∫ ∞

0
dν α~X

]2

. (6.96c)

In [23–26] the diagonalization of H is formulated along with the quantization. It consists in

finding a family of bosonic operators ~̂C (ν,~r ) satisfying the commutation relations

[Ĉ j (ν,~r ),Ĉ †
j ′(ν

′,~r ′)] = δ j j ′δ(~r −~r ′)δ(ν−ν′), (6.97a)

[Ĉ j (ω,~r ),Ĉ j ′(ω
′,~r ′)] = 0, (6.97b)
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such that the Hamiltonian, once quantized, is equal to

Ĥ =
∫

d 3r
∫ ∞

0
dν ×ν ~̂C †(ν,~r ) · ~̂C (ν,~r ), (6.98)

plus an (infinite) constant that can be dropped in the Wick ordering. We remark that the
structure of this Hamiltonian is very different from the one we constructed (6.11) although
it is the form used mostly in the literature [23–26, 71–79, 82, 87–107].

The construction proceeds by writing the bosonic operator as a linear combination of the
canonical variables:

~̂C (ν,~r ) =− i

×
∫

d 3r ′
{
~̂A(~r ′) · ¯̄f ∗

ΠA
(~r ′,~r ,ν)−~̂ΠA(~r ′) · ¯̄f ∗

A (~r ′,~r ,ν)

+
∫ ∞

0
dν′

[
~̂X (ν′,~r ′) · ¯̄f ∗

ΠX
(~r ,~r ,ν′,ν)−~̂ΠX (ν′,~r ′) · ¯̄f ∗

X (~r ′,~r ,ν′,ν)
]}

, (6.99)

with some unknown tensors f . The ansatz (6.98) implies that the bosonic operators must
satisfy:

[~̂C (ν,~r ), Ĥ
]=×ν~̂C (ν,~r ). (6.100)

We remark that this is only a necessary condition. In order to make it into a sufficient con-
dition it must be complemented by imposing the commutation relations (6.97). This also
ensures that the diagonalization is performed canonically, which also allows the quantiza-
tion to be formally performed before the diagonalization.1

Inserting the Hamiltonian (6.95) and (6.99) into Eq. (6.100), one obtains a system of linear

integro-differential equations for the coefficients ¯̄f . After some suitable algebraic opera-
tions, the solution of this system can be expressed in terms of a Green tensor and some
free undetermined functions. The latter are determined by imposing the commutation re-
lations (6.97). The solution is still not unique, since there is always the freedom to perform a
unitary transformation within each degeneracy subspace. For the remaining free functions
one can make a choice that leads to the possibly simplest formulas (Eq. (88) of Ref. [26]).

The validity of this construction depends critically on the choice of the ansatz (6.98). In or-
der to check whether this ansatz is justified we can consider two different ways to proceed:

a) One can check whether one recovers the initial Hamiltonian (6.95) when inserting the

obtained coefficients ¯̄f into the expression (6.99) and then into Eq. (6.98). This check in-
volves relatively complicated calculations and, to our knowledge, it has not been provided
in the literature.

b) Another simpler check consists in verifying whether if one takes the limit of zero coupling
α→ 0 (i.e., ε→ 1) one obtains the expressions corresponding to the uncoupled medium and
the free electromagnetic field. We will show that if one starts with a finite medium, these
limits lead to the expressions for the uncoupled medium, but one does not recover the elec-
tromagnetic field. The conclusion is that the ansatz (6.98) for the diagonalized Hamiltonian
is not valid for a finite medium.

1An advantage of the method we developed in Chapter 5 is that the diagonalization can be performed
independently of the quantization.
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6.3.2 The problem of the no-coupling limit

We analyze specifically the equations in Ref. [26], Sections 3 and 4 (without the magnetic
part of the model), since it has become one of the main references on the quantization of
plasmons. Our discussion can be formulated similarly for the models used in Refs. [23–
25], since the quantization procedure followed and the final results are essentially the same
as what was described in [26]. The first part of [26] is dedicated to prove that the initial
classical Hamiltonian model is equivalent to the macroscopic Maxwell equations (what we
have shown in Section 5.1.4 in a different manner), thus the discussion on the quantum
model only refers to the second half of the article (from Section 3, and more specifically the
results given in Section 4). What we present in this Section is based on the assumption of a
finite medium. The case of an infinite bulk medium will be discussed later.

For the bosonic operators

We first analyze the limit of no coupling in the expression of the bosonic operators ~̂C given
by the linear combination (6.99). In order to check whether they split into the two families of
operators of the uncoupled model (see Section 6.1.5), we need to calculate the coefficients
¯̄f . They are given by Eqs. (80)–(86) of [26]:

¯̄fΠA =−ε0ε
¯̄fE −α ¯̄hX , (6.101a)

¯̄f A =− i

ν

[ ¯̄fE
]
⊥, (6.101b)

¯̄fΠX =α ¯̄fE
i

ν

(
1−ν′

[ 1

ν′−ν− iν0+ + 1

ν′+ν− iν0+
])

− iν ¯̄hXδ(ν−ν′), (6.101c)

¯̄fX = i

ν
¯̄fΠX , (6.101d)

and they are expressed in terms of two additional tensors,

¯̄fE (~r ′,~r ,ν) =
√

×
2ν
µ0ν

2α(ν,~r ) ¯̄G(~r ′,~r ′′,ν), (6.102)

¯̄hX (~r ′,~r ,ν) =
( ×

2ν

)1/2

δ(~r −~r ′) ¯̄1, (6.103)

where ¯̄G is the Green tensor verifying[
∇×∇×−ε(~r ,ν)

ν2

c2

]
¯̄G(~r ,~r ′,ν) = ¯̄1δ(~r −~r ′). (6.104)

An inspection of these expressions allows one to show that the no-coupling limit α→ 0 is
well defined, and one can calculate it explicitly. We start with Eq. (6.102). The limit of the
Green tensor is

lim
α→0

¯̄G(~r ′,~r ′′,ν) = ¯̄G0(~r ′,~r ′′,ν), (6.105)

and thus

lim
α→0

¯̄fE (~r ′,~r ,ν) = 0. (6.106)
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Inserting this result in Eqs. (6.101), we obtain

lim
α→0

¯̄fΠA = 0, (6.107a)

lim
α→0

¯̄f A = 0, (6.107b)

lim
α→0

¯̄fΠX =−iν ¯̄hXδ(ν−ν′) =−i

(×ν
2

)1/2

δ(~r −~r ′) ¯̄1δ(ν−ν′), (6.107c)

lim
α→0

¯̄fX = ¯̄hXδ(ν−ν′) =
( ×

2ν

)1/2

δ(~r −~r ′) ¯̄1δ(ν−ν′). (6.107d)

Inserting it into the expression for the bosonic operator (6.99), we obtain

lim
α→0

~̂C (ν,~r ) = 1p
2×

[
ν1/2~̂Xν(~r )+ iν−1/2~̂ΠXν(~r )

]
= ~̂C0, (6.108)

with ~̂C0 the bosonic operator for the uncoupled medium introduced in Sec. 6.1.5. Thus,

in the uncoupled limit, the bosonic operator ~̂C becomes the bosonic operator for the free

medium ~̂C0 and it contains no information on the bosonic operator D̂0
~k,σ,ζ

of the electro-

magnetic field.

For the Hamiltonian

The limit (6.108) can be taken in the diagonal Hamiltonian (6.98) and compared with Eq. (6.31).
One obtains

lim
α→0

Ĥ = lim
α→0

∫
d 3r

∫ ∞

0
dν ×ν ~̂C †(ν,~r ) · ~̂C (ν,~r ),

=
∫

d 3r
∫ ∞

0
dν ×ν ~̂C †

0(ν,~r ) · ~̂C0(ν,~r ) = Ĥ 0
med, (6.109)

i.e., one obtains the Hamiltonian of the uncoupled medium only; the Hamiltonian of the
free electromagnetic field is missing. This could be expected from the structure of the
ansatz (6.98) which integrates only over the degrees of freedom of matter (ν,~r ).

For the electric field operator

In the construction of the diagonalization procedure from [23–26] (as well as in the phe-
nomenological approach [72–75]), the electric field operator reads

~̂E(~x) =
√

×µ0

πc2

∫ ∞

0
dν

∫
V

d 3r ν2ε1/2
i (ν,~r ) ¯̄G(ν;~r ,~x)~̂C (ν,~r )+h.c. (6.110)

This formula has been widely used in the literature [23–25, 70, 77, 79, 88, 91–118, 131, 132,
136, 137]. In order to show that it cannot be applied to a finite medium, we follow the same
procedure: the limits of the Green tensor (6.105) and of the bosonic operator (6.108) are
regular and well defined. Since the limit α→ 0 is equivalent to εi → 0, this limit yields

lim
α→0

~̂E = 0, (6.111)

i.e., the electric field observable would disappear in the uncoupled limit, which of course is
not consistent. This conclusion was already presented by [81, 82].

119



6.3. COMMENTS ON THE LITERATURE

Remarks on an infinite bulk medium

The situation for an infinite bulk medium might be different. The uncoupled limit α→ 0
is highly singular, since the dissipation disappears, and it does not seem likely to us that it
allows one to recover the expressions of the uncoupled medium and electromagnetic field.
The singularity of the limit entails that if one does not recover the expressions for the un-
coupled fields, it does not mean that formulas for the infinite bulk medium are not correct.
At this point we do not make any definite affirmation about the infinite bulk case. In partic-
ular, the diagonalization procedure presented in Chapter 5 is not applicable to this scenario,
since it relies on a Møller wave operator which may not exist in an infinite medium. In that
case, the spectral structure of the coupled model can be different from the one of the un-
coupled model, leading to a possible loss of degrees of freedom. The singular nature of an
infinite medium was also evoqued in [119] as a reason for the lack of electromagnetic de-
grees of freedom in the final results of [72, 73] and subsequent works.

We emphasize that for the applications, in particular those involving nanostructures, the
relevant models involve a finite medium. A bulk model can be a good approximation for
some specific experimental setups, e.g., if one considers an emitter embedded in the in-
terior of the medium. It is however not appropriate when the emitters are outside the
medium, which is a far more common situation, particular for metallic media.

6.3.3 Justifications and proposed corrections in the literature

It has been remarked in several instances in the literature [81,82,120] that the expression of
the electric field observable (6.110) cannot yield the free electric field observable in the limit
εi → 0. Since this formula is of fundamental importance to study plasmonics structures,
some authors have tried to either justify its validity nonetheless, or to correct it.

Addition of a fictitious homogeneous dissipative medium

An approach to justify the validity of Eq. (7.50) in the case of a finite medium can be found,
e.g., in [75, 118, 120]. It consists of adding artificially to the dielectric coefficient ε(ν,~r ) a
small homogeneous dissipative background term ε∞(ν), which is set to zero at the very end
of the calculations, when one has obtained an expression for a quantity of physical interest,
like the spontaneous decay rate of an emitter or the expectation value of a Casimir force.
This is a mathematical trick that would allow one to use for practical calculations for a finite
medium the expressions obtained for an infinite medium. The difficulty is that the validity
of this trick is not easy to justify for the following reasons:

• Certainly, the infinite background medium does not correspond to the considered
physical situation. It can only be seen as a mathematical trick, and one has to de-
termine in which sense it can be justified, which does not seem to be an easy task.
The procedure clearly shows that taking the limit ε∞(ν) → 1 at the beginning of the
calculation does not give the same result as taking the limit at the end. Thus the ex-
change of the limit and the intermediate calculations do not commute. Cases like this
are difficult to handle mathematically and one has to figure out why one order of the
operations can be declared correct and not the other one.

• One can ask how to determine whether the results obtained with this trick are correct.
In order to make this verification one needs to have an independent method of cal-
culating the desired physical quantities that is known to yield the correct results. The
exact diagonalization described in Chapter 5 provides such an independent method.
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Until such a comparison is made we cannot make any definite claim on the status of
this trick.

6.3.4 Addition of a modified free field

Some authors [81, 82] have stated that the formula (6.110) is not complete when a finite
medium is considered. Although these authors did not derive a formula from the diago-
nalization of the initial model, they proposed to correct it by adding to the electric field

observable (6.110) a contribution ~̂E0,

~̂E(~x) = ~̂E0(~x)+ ~̂EG (~x), (6.112)

with ~̂EG given by Eq. (6.110), and ~̂E0 is related to the vacuum field and converges to it in
the no-coupling limit. The expression (6.112) has by construction the correct limit when
εi → 0. However, there is no justification for claiming that this is the expression that one
would obtain from the exact diagonalization of the Hamiltonian (6.95). In fact, the result of
Chapters 5 and 6 show that the exact diagonalization in a finite medium leads to an expres-
sion for the electric field observable that is different from (6.112), although they coincide in
first order perturbation theory aside from a diverging term close to the medium (see Sec-
tion 6.2.2).

6.4 Summary on the quantum model

The quantization of the plasmonic model constructed in Chapter 5 follows the same logic
as the quantization of the dielectric model as performed in Chapter 3. It relies on the iden-
tification of the space of classical configurations which are used to define bosonic creation-
annihilation operators acting on a Fock space of quantum states. Specific configurations
(called eigenconfigurations) are calculated and used to formally define bosonic operators
which diagonalize the Hamiltonian. These eigenconfigurations are generally non square-
integrable and the subsequent diagonal bosonic operators are not well-defined in the Fock
space of quantum states, however they are a useful mathematical tool to characterize the
states.

The diagonalizing transformation can be inverted to express the electric or magnetic field
observable in terms of these particular operators and eigenconfigurations. For the free field,
this task is rather straightforward since the diagonalizing transformation is more or less
equivalent to a Fourier transform, and in many experiments in optics this is sufficient to
analyze the interaction with passive media as shown in Chapter 4. In the plasmonic model,
however, it requires to solve the Lippmann-Schwinger equation as constructed in Chap-
ter 5. This is a non-trivial task that is not easy to perform analytically. We have shown a
way to calculate it in two perturbative regimes: one assuming that both the dissipation of
the medium and its volume are small, the other counting on a volume sufficiently small to
compensate a potentially high dissipation coefficient.

The classical configurations (and therefore the quantum states) are associated with all ini-
tial degrees of freedom of the system – both electromagnetic and of matter. This is ensured
by the existence of the Møller wave operator and the Lippmann-Schwinger equation, and
this was one of the main results of Chapter 5. In Chapter 6 we have seen the consequences
of this: two families of bosonic operators can be identified, and the diagonal Hamiltonian
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and the electric field observable have two contributions: one for each set of degrees of free-
dom. A fundamental feature we could describe is the no-coupling limit consistent with the
results in vacuum. This feature was mostly absent in the literature, and only in very few
instances a correction was proposed but with no justification a priori. To our knowledge, it
is the first time that a complete, consistent expression of the electric field observable in a
plasmonic environment was derived from the diagonalization and quantization of an initial
microscopic model (equivalent to the macroscopic Maxwell equations). We have reviewed
the method commonly used in the literature and we have described how it fails to give the
correct no-coupling limit.
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7
Plasmon dynamics

In the preceding chapter we have shown that the question of quantizing the electromagnetic
field when interacting with a dispersive and dissipative medium (such as a metal) can be ad-
dressed in a way very similar to the quantization of the free field. One can even go further
by assuming that the fundamental difference between photons and plasmons is of the same
nature as the difference between photons in a perfect cavity and photons in free space, i.e.,
a change in the degeneracy structure. Therefore the intuition we used in Chapter 4 to inves-
tigate photon dynamics can be extrapolated to plasmons. Hence one can use the formalism
of Section 6.1.1 to describe the propagation of plasmon wave packets in plasmonic circuits.
However in this Chapter we focus on the very first part of a plasmonic experiment: the emis-
sion of individual plasmons.

We present the model of an emitter interacting with the (photonic or plasmonic) electromag-
netic field in Section 7.1. We show in Sections 7.2 and 7.3 two ways of calculating the spon-
taneous rate of emission: the Fermi golden rule, and the Wigner-Weisskopf theory. We also
introduce a coefficient of losses which quantifies the amount of the energy of the plasmon
state that gets lost inside the medium. From the quantization procedure for plasmons used
in the past, many works have studied spontaneous emission of plasmons. Because of the crit-
icisms we made in the preceding Chapter and some additional discrepancies in the formulas
used for finite media, we add some comments of this specific question in Section 7.4.
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7.1. THE MODEL

7.1 The model

Consider a two-level system (typically an atom, a molecule or a quantum dot with appro-
priate level structure) consisting of a ground level and an excited one, separated by an en-
ergy of ×ω0. We make the standard assumption [121] that this system can be modeled as a
point dipole at position~x0, emitting resonantly with its normal frequency ω0. This system
is permanently coupled with the surrounding quantized electromagnetic field, whether it is
excited (i.e., it contains several photons/plasmons) or not (i.e., it is in its ground “vacuum”
state).

Figure 7.1 – Scheme of a two-level system coupled to the quantized electromagnetic field
with a coupling operator Ŵ .

In general, the global state of the coupled system is a linear combination of tensor prod-
ucts of the state of the atom (either |g 〉 or |e〉 or a combination of both) with the state of the
electromagnetic field (i.e., a state created by the application of 0, 1, or N bosonic operators
as defined in Section 6.1.1). For the sake of simplicity we consider that the electromagnetic
field is initially in its vacuum state |∅〉.

The Hamiltonian of the global system reads

Ĥ = Ĥ f i eld + Ĥatom +Ŵ , (7.1)

where Ĥ f i eld corresponds to the energy of the background field (either photons or plas-
mons), which takes the diagonal form:

Ĥ f i eld =
∫

dλ
∑
dλ

×λ B̂ †
λ,dλB̂λ,dλ , (7.2)

where λ,dλ refer to ω or ν and their associated degeneracy indices, and B̂ is either of type
D̂ or Ĉ . Note that we use the Hamiltonian and bosonic operators of the plasmonic model;
the formulas can however be easily adapted to passive media by canceling out the degrees
of freedom of matter and setting α= 0.

The two-level system is initially in its excited state. Setting the ground state at energy zero,
we have

Ĥatom =×ω0|e〉〈e|. (7.3)

We assume a dipolar coupling operator:

Ŵ (~x0) =− ~̂d · ~̂E(~x0), (7.4)

with ~x0 the position of the emitter. The operator ~̂d is the dipole operator and it can be
written

~̂d = ~d [σ̂++ σ̂−], (7.5)
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7.2. FERMI GOLDEN RULE

with ~d the dipole moment; σ̂+ and σ̂− are the rising and lowering ladder operators of the
atom:

σ̂+ = |e〉〈g |, σ̂− = |g 〉〈e|, σ̂+ = σ̂†
−. (7.6)

The coupling operator reads

Ŵ =−
∫

dλ
∑
dλ

[
gλ,dλ(~x0)σ̂+B̂λ,dλ + g∗

λ,dλ(~x0)σ̂−B̂ †
λ,dλ

ḡλ,dλ(~x0)σ̂+B̂ †
λ,dλ + ḡ∗

λ,dλ(~x0)σ̂−B̂λ,dλ

]
. (7.7)

The functions g and ḡ are the so-called rotating and counter-rotating coupling constants,
respectively. We use the Rotating Wave Approximation (RWA), which assumes that ḡ = 0.
Hence, the coupling operator reduces to

Ŵ =−
∫

dλ
∑
dλ

[
gλ,dλ(~x0)σ̂+B̂λ,dλ + g∗

λ,dλ(~x0)σ̂−B̂ †
λ,dλ

]
. (7.8)

The two remaining terms are elastic interactions since they preserve the number of quanta:
the first term excites the atom while absorbing a photon/plasmon, and the second term
lowers the atom down to its ground state while releasing a quantum in the electromagnetic
field.

If the background field described by Ĥ f i eld is the plasmonic field constructed in Chapter 6,
the coupling constant g can be split into two functions: one for the interaction with the
operators D̂ and one for the interaction with Ĉ , which we denote g e and g m respectively.
The electric field being given by Eq. (6.19):

~̂E = ~̂E e + ~̂E m , (7.9)

with

~̂E e (~x) =
∫

dκ
[
~eκ(~x)D̂κ+~e∗

κ(~x)D̂†
κ

]
, (7.10a)

~̂E m(~x) =
∫

dµ
[
~mµ(~x)Ĉµ+ ~m∗

µ(~x)Ĉ †
µ

]
, (7.10b)

we can identify in (7.8):

g e
κ(~x0) = ~d ·~eκ(~x0), g m

µ (~x0) = ~d · ~mµ(~x0). (7.11)

The model is completely defined and can be used either with~e and ~m calculated with the
Lippmann-Schwinger equation, or in the case of vacuum by replacing them by their special
expressions (6.35).

7.2 Fermi Golden rule

The Fermi golden rule is a very standard derivation of the decay rate of an emitter, based on
the calculation of the probability of transition in first order perturbation theory, and on the
definition of a density of final states accessible when the atom emits. Its derivation can be
found in many textbooks (see, e.g., [70]). The final expression of the decay rate reads
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Γ(~x0,ω0) = 2π

×2

∑
f

∣∣〈 f
∣∣Ŵ ∣∣i〉∣∣2

δ(ω f −ω0), (7.12)

with |i 〉 = |∅⊗ e〉 the initial state, | f 〉 the final state, and ω f its associated energy. Note that
it is formulated for initial and final states that are eigenstates of the system, to which we can
associate a single energy. Thus, the sum over all final states can be replaced by a sum over
all the degrees of freedom of the quantized electromagnetic field:

Γ= Γe +Γm , (7.13)

with

Γe (~x0,ω0) = 2π

×2

∫
d 3k

∑
d

∣∣∣〈1~k,d ⊗ g
∣∣∣Ŵ ∣∣∣∅⊗e

〉∣∣∣2
δ(ω−ω0), (7.14a)

Γm(~x0,ω0) = 2π

×2

∫
dν

∫
V

d 3r
∑

j

∣∣〈1ν,~r , j ⊗ g
∣∣Ŵ ∣∣∅⊗e

〉∣∣2
δ(ν−ω0). (7.14b)

Replacing Ŵ by its expression (7.4), one can use the expression of the electric field in a
passive medium or in the plasmonic environment to evaluate the decay rate of the emitter,
since its expression in terms of bosonic operators allows us to apply it on the initial/final
states.

7.2.1 Emitter in a plasmonic environment

Figure 7.2 – Examples of plasmonic structures interacting with an emitter. Left: a spherical
nanoparticle, mostly studied theoretically because of the spherical symmetry which sim-
plifies computations; Middle: a bow-tie nanoantenna; Right: a plasmonic cavity.

We would in general consider that the emitter is placed in the surrounding of a metallic
medium we may call a plasmonic environment, even though it can be extended to any
medium which can be described by the dispersive and dissipative model of Chapter 5.
Examples of plasmonic structures commonly used in experiments or studied in theoreti-
cal works are shown in Figure 7.2. In this scenario, the electric field operator is given by

Eq. (6.19) in the exterior of the medium and, replacing ~̂d by its expression (7.5), we obtain

Γe (~x0,ω0) = 2π

×2

∫
d 3k

∑
d

∣∣∣〈1~k,d ⊗ g
∣∣∣[σ̂++ σ̂−]~d · [~̂E e + ~̂E m]

∣∣∣∅⊗e
〉∣∣∣2

δ(ω−ω0), (7.15a)

Γm(~x0,ω0) = 2π

×2

∫
dν

∫
V

d 3r
∣∣∣〈1ν,~r ⊗ g

∣∣∣[σ̂++ σ̂−]~d · [~̂E e + ~̂E m]
∣∣∣∅⊗e

〉∣∣∣2
δ(ν−ω0), (7.15b)

where we hide the degeneracy j to lighten the equations. We first evaluate

[σ̂++ σ̂−][~̂E e + ~̂E m]
∣∣∅⊗e

〉= ∫
d 3k ′∑

d ′
[σ̂++ σ̂−][~e~k ′,d ′D̂~k ′,d ′ +~e∗

~k ′,d ′D̂
†
~k ′,d ′]

∣∣∅⊗e
〉

+
∫

dν
∫

V
d 3r [σ̂++ σ̂−][~mν,~r

~̂Cν,~r + ~m∗
ν,~r
~̂C †
ν,~r ]

∣∣∅⊗e
〉

, (7.16)
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with~e and ~m given by Eq. (6.23) in the exterior of the medium. We use that D̂~k,d |∅〉 = 0 and
~̂Cν,~r |∅〉 = 0, as well as σ̂+|e〉 = 0, and we obtain

[σ̂++ σ̂−][~̂E e + ~̂E m]
∣∣∅⊗e

〉= ∫
d 3k ′∑

d ′
~e∗
~k ′,d ′

∣∣1~k ′,d ′ ⊗ g
〉+∫

dν
∫

V
d 3r ~m∗

ν,~r

∣∣1ν,~r ⊗ g
〉

. (7.17)

We now multiply it on the left by
〈

1~k,d ⊗ g
∣∣ and we use that

〈1~k,d ⊗ g |1~k ′,d ′ ⊗ g 〉 = δdd ′δ(~k −~k ′), 〈1~k,d ⊗ g |1ν,~r ⊗ g 〉 = 0, (7.18)

leading to 〈
1~k,d ⊗ g

∣∣[σ̂++ σ̂−][~̂E e + ~̂E m]
∣∣∅⊗e

〉=~e∗
~k,d

. (7.19)

Similarly we can show that〈
1ν,~r ⊗ g

∣∣[σ̂++ σ̂−][~̂E e + ~̂E m]
∣∣∅⊗e

〉= ~m∗
ν,~r . (7.20)

We introduce it into Eqs. 7.15a and 7.15b:

Γe (~x0,ω0) = 2π

×2

∫
d 3k

∑
d

∣∣∣~d ·~e~k,d (~x0)
∣∣∣2
δ(ω−ω0), (7.21a)

Γm(~x0,ω0) = 2π

×2

∫
dν

∫
V

d 3r
∣∣∣~d · ~mν,~r (~x0)

∣∣∣2
δ(ν−ω0), (7.21b)

with~e and ~m calculated from the diagonalization of the frequency operator as described in
Chapter 6.

7.2.2 Emitter in vacuum

Once the general formula of the decay rate is derived in a plasmonic environment, one can
easily recover the one in vacuum by taking the no-coupling limit (see Section 6.1.5). In this
limit, we have

~e~k,d (~x0) →−
√

×ω
2ε0

~ϕ~k,d (~x0), (7.22a)

~mν,~r (~x0) → 0, (7.22b)

with ~ϕ~k,d (~x) satisfying the wave equation in vacuum:

∇×∇×~ϕ~k,d (~x)− ω2

c2
~ϕ~k,d (~x) = 0. (7.23)

Hence, the two contributions of the decay rate (7.21a) and (7.21b) become

Γe
vac (~x0,ω0) = π

×ε0

∫
d 3k

∑
d
ω

∣∣∣~d ·~ϕ~k,d (~x0)
∣∣∣2
δ(ω−ω0), (7.24a)

Γm
vac (~x0,ω0) = 0. (7.24b)

A calculation in spherical coordinates shows that

Γvac (~x0,ω0) = Γe
vac (~x0,ω0) = ω3

0|~d |2
3π×ε0c3

. (7.25)
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Proof: We evaluate the integral∫
d 3k

∑
d
ω

∣∣∣~d ·~ϕ~k,d (~x0)
∣∣∣2
δ(ω−ω0) (7.26)

by projecting~k onto spherical coordinates:∫
d~k → 1

c3

∫ ∞

0
dω

∫ π/2

0
dϑ

∫ 2π

0
dη ω2 sinϑ. (7.27)

We recall that the wave functions ~ϕ read (in real representation)

~ϕ~k,σ,ζ(~x) =
{

1
2π3/2~εσ(~k)cos(~k ·~x), ζ= c,

1
2π3/2~εσ(~k)sin(~k ·~x), ζ= s,

(7.28)

where the degeneracy d contains both the index of polarizationσ=± and the index ζ=
c/s for the cosine and sine contributions. The vectors~ε± are unit polarization vectors,
orthogonal to~k and to each other, as represented on the figure below.

Furthermore, we choose~x0 = 0 so that cos(~k ·~x0) = 1, and the degeneracy ζ= s does not
contribute. Thus, the decay rate (7.24a) reads

Γe
vac (~x0,ω0) = ω3

0

4π2×ε0c3

∫ π/2

0
dϑ

∫ 2π

0
dη sinϑ

{∣∣∣~d ·~ε+(ϑ,η)
∣∣∣2 +

∣∣∣~d ·~ε−(ϑ,η)
∣∣∣2

}
. (7.29)

We can choose the direction of ~d arbitrarily in vacuum; we choose it along the z-axis
such that ~d ·~ε− = 0 and ~d ·~ε+ =−|~d |sinϑ. Hence, Eq. (7.29) becomes

Γe
vac (~x0,ω0) = ω3

0|~d |2
2π×ε0c3

∫ π/2

0
dϑ sin3ϑ︸ ︷︷ ︸

2/3

= ω3
0|~d |2

3π×ε0c3
. (7.30)

We note that the decay rate in vacuum does not depend on the position nor on the direction
of the emitter.

7.2.3 The Purcell factor

In practice, it is often more adequate to study the ratio between the calculated (or mea-
sured) decay rate in a given environment and the decay rate in vacuum. We define the
Purcell factor,

P (~x0,ω0) = Γ(~x0,ω0)
/
Γvac (ω0), (7.31)

128



7.3. WIGNER-WEISSKOPF THEORY

which is a measure of the impact of the environment on the spontaneous emission of the
two-level system. The use of plasmonic structures is often justified because they highly
enhance the decay rate near the surface of the metal, i.e., the Purcell factor for an emitter is
very large compared to one (factors from around a hundred [122–125] to several hundreds
or thousands [126–129] have been obtained experimentally). This phenomenon is called
the Purcell enhancement and highly depends on the plasmonic structure (see Ref. [130] for
a detailed review on the subject).

7.3 Wigner-Weisskopf theory

The Fermi golden rule is a very common way to express the rate of spontaneous emission
of the emitter in a regime where the emitter is weakly coupled to its environment. There
is another way to obtain it, however, which relies on other approximations and has the ad-
vantage to provide a more detailed description of the quantum state which is emitted in the
process. This is what is called the Wigner-Weisskopf theory.

We start by writing the Hamiltonian of the coupled system emitter+plasmonic field in the
Rotating Wave Approximation:

Ĥ =×ω0|e〉〈e|+
∫ ∞

0
dλ

∑
dλ

×λ B̂ †
λ,dλB̂λ,dλ −

∫ ∞

0
dλ

∑
dλ

[
gλ,dλ(~x0)B̂λ,dλ |e〉〈g |+h.c.

]
. (7.32)

The notation (λ,dλ) contains both electromagnetic κ = (~k,σ,ζ) and matter µ = (ν,~r , j ) de-
grees of freedom. As in Section 7.1, we have gκ ≡ g e

κ = ~d ·~eκ and gµ ≡ g m
µ = ~d · ~mµ.

This initial Hamiltonian will serve as the basis to extract the emitted quantum state and the
rate of its emission.

7.3.1 Emitted quantum state

A general state of the coupled system restricted to one-quantum excitation can be written

|Ψ〉 =C e
0 (t )e−iω0t |∅⊗e〉+

∫ ∞

0
dλ

∑
dλ

C g
1
λ,dλ

(t )e−iλt |1λ,dλ ⊗ g 〉, (7.33)

with |C e
0 |2 the population of the state |∅⊗e〉, and |C g

1
λ,dλ

|2 the population of the state |1λ,dλ⊗
g 〉. Developing both left-hand side and right-hand side of the Schrödinger equation i×∂t |Ψ〉 =
Ĥ |Ψ〉 using the Hamiltonian (7.32) leads to the following coupled differential equations for
the coefficients:

i×Ċ e
0 =−

∫ ∞

0
dλ

∑
dλ

gλ,dλC g
1
λ,dλ

e i (ω0−λ)t , (7.34a)

i×Ċ g
1
λ,dλ

=−g∗
λ,dλC e

0 e−i (ω0−λ)t . (7.34b)

We solve (7.34b) and we introduce it into (7.34a):

Ċ e
0 (t ) =− 1

×2

∫ ∞

0
dλ

∑
dλ

|gλ,dλ |2
∫ t

0
d t ′C e

0 (t ′)e i (λ−ω0)(t−t ′). (7.35)
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We now use the Wigner-Weisskopf approximations: we consider that the time-evolution of
C e

0 depends only on the amplitude C e
0 at time t (hence we can move it out of the integrand),

and we extent t →∞. Then we can use the identity∫ ∞

0
d t ′e i (λ−ω0)(t−t ′) =πδ(λ−ω0)+ i

P

λ−ω0
, (7.36)

which gives

Ċ e
0 =− 1

×2

[
π

∑
dλ

|gω0,dλ |2 + iP
∫ ∞

0
dλ

e−i (λ−ω0)t

λ−ω0

∑
dλ

|gλ,dλ |2
]
C e

0 (t ). (7.37)

This is a differential equation of the form ȧ =−F a, whose solution reads in general a = e−F t

with the initial condition a(t = 0) = 1. Thus we can write

C e
0 (t ) = e−

(
Γ
2 +i∆

)
t , (7.38)

where we identify Γ as the decay rate of the emitter:

Γ(ω0,~x0) = 2π

×2

∑
dλ

|gλ=ω0,dλ(~x0)|2, (7.39)

and ∆ as the Lamb shift:

∆(ω0,~x0) = 1

×2

∫ ∞

0
dλ

e−i (λ−ω0)t

λ−ω0

∑
dλ

|gλ,dλ(~x0)|2. (7.40)

The decay rate has here a direct physical meaning: since the population in the excited state
decreases exponentially with time as ∣∣C e

0

∣∣2(t ) = e−Γt , (7.41)

Γ is the inverse of the mean lifetime, which is the time it takes for the probability of the atom
to be in its excited state to be reduced by a factor 1/e ≈ 0.37. We notice that the expression
of the decay rate (7.39) is the same as with the Fermi golden rule, even though we have not
considered a weak-coupling regime for the emitter.

The Wigner-Weisskopf gives us a way to calculate the quantum state emitted by the emitter,
through time, from the calculation of the decay rate. We may now use the quantum state to
evaluate other physical quantities.

7.3.2 Tracking the dissipation

One of the drawbacks of plasmonics applications is the high losses of metals. Depending on
the metal, its geometry, and the frequency of the plasmon excitation, a part of the energy of
the quantum plasmon may get converted into pure matter oscillations, without ever being
radiatively emitted out of the structure. Such conversion is considered the main undesired
loss in a plasmonic system, since this energy does not contribute to a surface propagation
nor to interactions with atoms, molecules, structures, or measuring devices in the exterior
of the metal.

Although the description of quantum plasmons developed in this thesis is fundamentally
based on a closed system (with the inclusion of the matter field), it offers a clear picture of
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lossy states that we describe in the present subsection.

We recall that the (uncoupled) eigenconfigurationsφm
µ of the frequency operator [Eq. (5.118)]

are pure matter oscillations; hence, we can evaluate how much of the emission is lost into
pure matter excitation by projecting the one-plasmon state |Ψ〉 onto all generalized config-
urations |φm

µ 〉. More specifically, we introduce a coefficient of losses:

γ(t ) =
∫

dµ
∣∣∣〈φm

µ |Ψ(t )〉
∣∣∣2

, (7.42)

which quantifies the part of the quantum state generated by pure matter excitation, thus in-
side the medium and non-contributing to any near- or far-field radiation outside the metal.
Identifying the two blocks of the quantum state,Ψ= [u v]T , this coefficient can be written

γ(t ) =
∫

dµ |v(µ)|2. (7.43)

We can distinguish three scenarios for a given state |Ψ(t )〉:
• γ= 0: the state is purely photonic;

• γ= 1: the state is purely material;

• 0 < γ< 1: the state is in a superposition of photonic and material contributions. This
can correspond to a localized surface state, or to a partially radiative state, or to a
combination of both.

For general applications in integrated plasmonics, one would wish to prepare a state which
is localized at the surface but with γ as small as possible to prevent losses.

Remark: It is important to note that the state |φm
µ 〉, despite being associated with an eigencon-

figuration of the uncoupled frequency operator, is a state of the coupled system. It is generated
by a creation annihilation B̂ †

φm
µ

as defined in Section 6.1.1.

One can evaluate the coefficient of losses γ for a state produced by spontaneous decay of
an emitter. To do so, one needs to calculate the state |Ψ(t )〉 given by Eq. (7.33). Since we
have solved the equation (7.37) for the population of the ground state of the emitter, we can
now solve the equation (7.34b) for its excited state. We get straightforwardly

C g
1
λ,dλ

(t ) =
−i g∗

λ,dλ

/×
Γ

2
− i (λ−ω0 −∆)

[
e i (λ−ω0)t e−(

Γ
2 +i∆

)
t −1

]
, (7.44)

with the condition C g
1
λ,dλ

(t = 0) = 0. We can introduce it into (7.33):

|Ψ(t )〉 = e−iω0t e−(
Γ
2 +i∆

)
t |∅,e〉

− i

×
[

e−iω0t e−(
Γ
2 +∆

)
t −1

]∫ ∞

0
dλ

∑
dλ

g∗
λ,dλ

Γ

2
− i (λ−ω0 −∆)

|1λ,dλ , g 〉. (7.45)

Hence, the quantum state of the system is entirely known, provided that we know the func-
tions g , i.e., that we have calculated the eigenvectors ofΩ and that we know the orientation
and strength of the dipole moment of the emitter. We can project it onto the plasmon state

131



7.4. COMMENTS ON THE LITERATURE

associated with configurationφm
µ , using that all 1-plasmon states of the coupled model sat-

isfy 〈φm
µ |∅〉 = 0. Since the state Ψ also contains the information of the state of the emitter,

we need to add that the projection does not affect it. We obtain

〈
φm
µ′

∣∣∣Ψ(t )
〉
=− i

×
[

e−iω0t e−(
Γ
2 +∆

)
t −1

]
∫

d 3k
∑
d

~d ·~e∗
~k,d

(~x0)

Γ
2 − i (ω−ω0 −∆)

~ve
~k,d

(µ′)

+
∫

dν
∫

V
d 3r

~d · ~m∗
ν,~r (~x0)

Γ
2 − i (ν−ω0 −∆)

~vm
ν,~r (µ′)

 , (7.46)

which can then be used to calculate the coefficient γ from Eq. (7.42).

7.4 Comments on the literature

We previously commented on certain discrepancies in the quantization procedure for plas-
mons as described in the literature (see Section 6.3). A main conclusion of the discussion
was that using our method of diagonalization leads to a different expression of the electric
field observable. Since this operator is used to derive the decay rate of the emitter in a plas-
monic environment, it is reasonable to assume that its expression should be different as
well. However, it appears that the decay rate as constructed and used in the literature does
not contain inconsistencies when the limit of no coupling is taken. It is worth investigat-
ing whether or not the construction of the literature can be related to ours. We will see, in
particular, that some terms are often forgotten in the usual construction.

7.4.1 Summary of the result in the literature

It is widely stated in the literature [70, 77, 79, 88, 92–107, 114–118, 121, 127, 130–137] that the
spontaneous emission of a point-dipole emitter (or equivalently the power spectrum [87],
coupling functions or commutators of the fields) in a plasmonic environment relies on the
calculation of the imaginary part of a Green function at the position of the emitter~x0 (which
can be put inside or outside of the medium):

Γ(~x0,ω0) = 2ω2
0

×ε0c2

{
~d · Im

[
¯̄G(ω0,~x0,~x0)

]
· ~d

}
, (7.47)

with ω0 the transition frequency of the emitter, ~d its dipole moment and ¯̄G the Green func-
tion satisfying [∇×∇×−ν

2

c2
ε(ν,~r )

] ¯̄G(ν,~r ,~x) =1δ(~r −~x). (7.48)

The decay rate (7.47) does not contain inconsistencies when the limit of no coupling is
taken. Indeed, in this limit ¯̄G tends to the Green function in vacuum ¯̄G0 satisfying Eq. (7.48)
with ε= 1, and one can show [70] that we have

Γ0(~x0,ω0) = ω3
0|~d |2

3π×ε0c3
. (7.49)

The expression (7.47) for the decay rate is obtained by inserting the expression (6.110) in
the Fermi golden rule [88]. This calculation relies on the validity of Eq. (6.110), which is not
justified for a finite medium, as shown in Section 6.3. Furthermore, we show in the present
Section that the usual derivation assuming Eq. (6.110) also contains discrepancies which
have failed to be fully addressed in past works.
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7.4.2 Fermi golden rule assuming Eq. (6.110)

We will now describe how the spontaneous decay rate (7.47) is constructed in the literature
using the Fermi golden rule and assuming the formula (6.110) for the electric field observ-
able, which we recall:

~̂E(~x) =
√

×µ0

πc2

∫ ∞

0
dν

∫
V

d 3r ν2ε1/2
i (ν,~r ) ¯̄G(ν;~r ,~x)~̂C (ν,~r )+h.c., (7.50)

where the Green function ¯̄G satisfies Eq. (7.48). We can insert it into the coupling operator

Ŵ =− ~̂d · ~̂E and then into the Fermi golden rule (7.12)

Γ(~x0,ω0) = 2π

×2

∑
f

∣∣〈 f
∣∣Ŵ ∣∣i〉∣∣2

δ(ω f −ω0). (7.51)

Here the only states left are associated with the spectral structure of the medium (this is a
key argument against the expression (7.50) as discussed in Section 6.3). Hence, the decay
rate reads

Γ(~x0,ω0) = 2π

×2

∫
dν

∫
V

d 3r
∣∣〈1ν,~r ⊗ g

∣∣∣[σ̂++ σ̂−]~d · ~̂E
∣∣∣∅⊗e

〉∣∣2
δ(ν−ω0). (7.52)

After inserting the electric field observable (7.50) and making a few manipulations (in ro-
tating wave approximation), we find

Γ(~x0,ω0) = 2µ0ω
4
0

×c2

{
~d ·

[∫
V

d 3r εI (ω0,~r ) ¯̄GT (ω0,~r ,~x0) ¯̄G∗(ω0,~r ,~x0)

]
· ~d

}
. (7.53)

It is usually stated [73, 74, 76–79, 88, 94, 97–100, 115–117] that the integral term can be sim-
plified using

ω2
0

c2

∫
V

d 3r εI (ω0,~r ) ¯̄GT (ω0,~r ,~r A) ¯̄G∗(ω0,~r ,~rB ) = Im ¯̄G(~r A,~rB ). (7.54)

If this were true, the decay rate would simplify into the expression that is mostly used in
practice:

Γ(~x0,ω0) = 2µ0ω
2
0

×
{
~d · Im

[
¯̄G(ω0,~x0,~x0)

]
· ~d

}
. (7.55)

If one assumes the validity of this expression, the question of how to compute the decay
rate of the emitter (and also field correlations and commutators) in a given configuration
is narrowed to the question of how to find the Green tensor corresponding to this config-
uration [70, 77, 79, 88, 92–107, 114–118, 121, 127, 130–137]. Many analytical and numerical
methods have been developed for this specific technique.

However, this expression is not true in general. An easy way to see it is by taking the limit
ε → 1 in the Green identity (7.54), which cancels the left-hand side while the right-hand
side is not zero in general. It is already not the case in vacuum, where the Green tensor
reads [138]

¯̄G i j
0 (~r A,~rB ) = δi j g0 + c2

ω2

∂2g0

∂r i
A∂r j

B

, g0(~r A,~rB ) = e i ωc |~r A−~rB |

4π|~r A −~rB |
. (7.56)
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The correct evaluation of the left-hand side of Eq. (7.54) brings an extra boundary term, and
we have the (complete) following identity instead:

ν2

c2

∫
V

d 3r εI (~r ) ¯̄GT (~r ,~r A) ¯̄G∗(~r ,~rB ) = 1

2i

[ ¯̄GT (~rB ,~r A)− ¯̄G∗(~r A,~rB )
]+ ¯̄F (~r A,~rB ,B), (7.57)

with

¯̄F (~r A,~rB ,B) = [ ¯̄bT (~rB ,~r A,B)− ¯̄b∗(~r A,~rB ,B)
]/

(2i ), (7.58)

¯̄b(~r A,~rB ,B) =−
∫
B

d s
(
~n × ¯̄G∗(~x,~rB )

)T (∇× ¯̄G(~x,~r A)
)
, (7.59)

where all frequency dependencies are implicit; B denotes a boundary surface which en-
capsulates~r A and~rB , ~n is the outer unit normal vector on the surface, and d s is the surface
element. This relation is valid for any tensor ¯̄G satisfying Eq. (7.48). For the particular cases
where

¯̄G(~rB ,~r A) = ¯̄GT (~r A,~rB ), (7.60)

the identity (7.57) can be expressed as

ν2

c2

∫
V

d 3r εI (ω0,~r ) ¯̄GT (ω0,~r ,~r A) ¯̄G∗(ω0,~r ,~rB ) = Im ¯̄G(~r A,~rB )+ ¯̄F (~r A,~rB ,B). (7.61)

A brief proof of this was published in the first appendix of [119] and we write it in detail in
Appendix D. One can show that all Green functions satisfying the asymptotic Sommerfeld
radiation condition are among the cases where (7.60) is verified.

It is worth noting that for practical purposes, when used to calculate correlations or the de-
cay rate of an emitter, the Green function is evaluated at a given observation point~x =~r A =
~rB , relaxing the condition (7.60) to a simple symmetry condition of ¯̄G(~x,~x).

We recover the correct limit in vacuum, in which case the identity (7.61) becomes

¯̄F0(~r A,~rB ,B) =−Im ¯̄G0(~r A,~rB ). (7.62)

In conclusion, if the usual formula (7.50) were correct for a finite medium, and if we use the
correct Green identity for this case (7.61), the decay rate would be

Γ(~x0,ω0) = 2µ0ω
2
0

×
{
~d ·

[
Im ¯̄G(ω0,~x0,~x0)+ ¯̄F (~x0,~x0,B)

]
· ~d

}
(7.63)

and not (7.55) as stated in the literature [70, 77, 88, 92, 94–100, 102–106, 114–117, 121, 127,
130–137] (some of these references study the power spectrum, which can be directly linked
to the decay rate [87]). For a medium interacting weakly with the field (i.e., εi close to zero),
the correction term ¯̄F can be estimated in perturbation theory by

¯̄F =−Im ¯̄G0 +O (εi ), (7.64)

and thus one would have

Γ(~x0,ω0) = 2µ0ω
2
0

×
{
~d ·

[
Im ¯̄G(ω0,~x0,~x0)− Im ¯̄G0(ω0,~x0,~x0)

]
· ~d

}
+O (εi ). (7.65)
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Since we also have ¯̄G = ¯̄G0 +O (εi ), we would conclude that

Γ=O (εi ), (7.66)

which implies limεi→0Γ= 0 instead of the vacuum value (7.49).

One could ask whether the addition of the boundary term in the Green identity has a sig-
nificant effect on the decay rate in a non-perturbative scenario. In the next subsection we
calculate it in detail in a one-dimensional configuration where the medium is a slab of metal
(which is equivalent to a configuration analyzed, e.g., in [81, 118, 131]).

7.4.3 Spontaneous emission in a 1D model assuming Eq. (6.110)

We consider a 1D model where the material (dissipative and dispersive) medium consists
of an homogeneous segment extending from −` to `. Its macroscopic electric response is
given by the (complex) dielectric coefficient ε or equivalently by the (also complex) refrac-
tive index n2 = ε. This situation corresponds to a special case of a 3D model where only
wave vectors~k normal to an infinite slab are considered, and where the electric field is con-
strained in one polarization orthogonal to~k. Figure 7.3 is a sketch of the system, with the
notation used for each part of the total Green function. We note [−L,L] the boundaries
(which must include the coordinates of the source, xS , and of the observer, x, and can be
sent to infinity).

Figure 7.3 – Sketch of the 1D model. The Green function can be split into three contribu-
tions, with xS the position of the source taken on the right side of the medium. The obser-
vation point x can be taken either on the left side of the medium, in the medium, or on the
right side.

For an observing point x, we consider the Green function G satisfying

[
−∂2

x −
ω2

c2
ε(x,ν)

]
G(x, xS) = δ(x −xS), (7.67)

which is the wave equation for ~E in 1D but with the current density replaced by δ(x − xS).
We place arbitrarily the source on the right side of the slab (xS ∈ [`,L]) as in Fig. 7.3. In
Appendix E we have calculated the Green function for an observation point x on the left,
inside the slab, or on the right. We have obtained the following expressions:

Gleft(x, xS) = i

2k
Ae−i k(2`+x−xS ), (7.68)

Gin(x, xS) = i

2k

[
Be−i k(nx−xS ) +Ce i k(nx+xS )], (7.69)

Gright(x, xS) = i

2k

[
De−i k(2`−x−xS ) +e i k|x−xS |

]
, (7.70)
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where k =ω/c, and

A = 4n

Y
e2i kn`, (7.71)

B = 2(n +1)

Y
e i k(n−1)`, (7.72)

C = 2(n −1)

Y
e i k(3n−1)`, (7.73)

D = (n2 −1)

Y

[
e4i kn`−1

]
, (7.74)

with

Y = (n +1)2 − (n −1)2e4i kn`. (7.75)

We want to calculate the integral

ω2

c2

∫ L

−L
d x εi (x,ω) G(x, xA)G∗(x, xB ), (7.76)

for two possible positions of the source xA et xB , using the Green identity (7.61), which in
1D reads:

ω2

c2

∫ L

−L
d x εi (x,ω) G(x, xA)G∗(x, xB ) = Im G(xA, xB )+F (xA, xB ), (7.77)

provided that the Green function satisfies the reciprocity condition G(x, x ′) = G(x ′, x). The
boundary term F is

F (xA, xB ) = 1

2i

[
b(xB , xA)−b∗(xA, xB )

]
, (7.78)

b(xB , xA) =−[
G∗(x, xB )∂xG(x, xA)

]L
−L . (7.79)

Since L > `, the term b reads

b(xB , xA) =G∗
left(x, xB )∂xGleft(x, xA)

∣∣∣
x=−L

− G∗
right(x, xB )∂xGright(x, xA)

∣∣∣
x=L

. (7.80)

We therefore need two Green function, one for each position of x close to a boundary. Using
the expressions (7.68)–(7.70), a careful calculation leads to

G∗
left(x, xB )∂xGleft(x, xA)

∣∣∣
x=−L

=− i

4k
|A|2e i k(xA−xB ), (7.81)

and

G∗
right(x, xB )∂xGright(x, xA)

∣∣∣
x=L

= i

4k

[
|D|2e i k(xA−xB ) +e−i k(xA−xB )

+De−i k(2`−xA−xB ) +D∗e i k(2`−xA−xB )
]

. (7.82)

For the result (7.82), we have used

e i k|x−xA | = e i k(x−xA)Θ(x −xA)+e−i k(x−xA)Θ(xA −x), (7.83)
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plus ∂xΘ(x −xA) = δ(x −xA), and finally the fact that for xA, xB < L, we haveΘ(x −xA,B ) = 1,
Θ(xA,B − x) = 0 and δ(x − xA,B ) = 0 when x is evaluated at the boundary x = L. We notice
that the expressions (7.81) and (7.82) do not depend on the boundaries. We can finally
insert them into (7.80) to obtain:

b(xB , xA) =− i

4k

[
(|A|2 +|D|2)e i k(xA−xB ) +e−i k(xA−xB )

+De−i k(2`−xA−xB ) +D∗e i k(2`−xA−xB )
]

, (7.84)

and

b∗(xA, xB ) =−b(xB , xA). (7.85)

Inserting it into Eq. (7.86):

F (xA, xB ) =− 1

4k

[
(|A|2 +|D|2)e i k(xA−xB ) +e−i k(xA−xB ) +2Re

{
De−i k(2`−xA−xB )

}]
. (7.86)

Furthermore, we can express the identity (7.77) for xA = xB = xS , with xS on the right of the
slab, which is what is usually considered to calculate e.g. the decay rate of an emitter. It
reads:

ω2

c2

∫ L

−L
d x εi (x,ω) |G(x, xS)|2 = Im G(xS , xS)+F (xS , xS). (7.87)

From (7.70), the imaginary part of the Green function for a source outside the medium reads

Im Gright(xS , xS) = Im

{
i

2k

[
De−2i k(`−xS ) +1

]}
= 1

2k

[
1+Re

{
De−2i k(`−xS )

}]
, (7.88)

and Eq. (7.86) gives

F (xS , xS) =− 1

4k

[
1+|A|2 +|D|2 +2Re

{
De−2i k(`−xS )

}]
. (7.89)

The sum of these two terms gives

Im Gright(xS , xS)+F (xS , xS) = 1

4k

[
1−|A|2 −|D|2], (7.90)

which is a constant in xS . Consequently, assuming that the integral (7.76) is adapted to
calculate the Fermi golden rule, the decay rate of an emitter in the exterior of the slab would
be constant and given by

Γ= ω0|~d |2
2×ε0cS

[
1−|A|2 −|D|2] , (7.91)

whereas if the boundary terms were canceled, it would give

ΓG = ω0|~d |2
×ε0cS

[
1+Re

{
De−2i k(`−xS )

}]
. (7.92)

This result in a one-dimensional model shows that the missing boundary terms in (7.54)
can have a significant effect on the decay rate. Furthermore, the discrepancy with the no-
coupling limit implies that one cannot use the expression (7.50) of the electric field to cal-
culate the decay rate (or related quantities) as in Refs. [70, 77, 79, 88, 92–107, 114–118, 121,
127, 130–137].
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Remark: It is easy to check that by taking the limit n → 1, it gives

F (xA , xB ) →− 1

2k
cos[k(xA −xB )] =−Im G0(xA , xB ), (7.93)

where G0 is the Green function satisfying the wave equation in free space (Eq. (7.67) with ε= 1),
which reads

G0(ω; x, xS) = i

2k
e i k|x−xS |. (7.94)

Hence, Eq. (7.93) is consistent with the identity (7.77).

7.5 Summary on the dynamics of plasmons

Once the plasmonic model has been diagonalized (Chapter 5) and quantized (Chapter 6),
the resulting quantum operators and quantum states can be used to describe many dif-
ferent problems. In this chapter we have focused on the process of spontaneous emission
since the enhancement of the rate at which plasmons are emitted from an atom near a
nanoparticle is one of the main reason why plasmonic structures are used in quantum ex-
periments.

We have shown that the derivation of the spontaneous decay rate of the atom is straightfor-
ward when the electric field observable is explicitly known. Our result, once again, differs
from the one used in the literature. We have verified that the two most common ways to de-
rive the decay rate (the Fermi golden rule and the Wigner-Weisskopf theory) give the same
result, which is expressed in terms of the functions found when solving the Lippmann-
Schwinger equation. We have calculated the decay rate in a 1D model and compared it
with the results from the literature.

A final construction we made in this thesis was a coefficient which quantifies how much
of the plasmon state (either taken as an initial condition or as calculated from an emission
process) is lost inside the medium. The calculation of this coefficient could be useful to
characterize specific configurations for the design of plasmonic structures.

Additionally, we have analyzed how the spontaneous emission process is derived in the
literature. It mostly relies on the expression for the electric field observable that is not valid
for finite media (as discussed in the preceding chapter), but also on an identity for the Green
tensor which also contains discrepancies in the case of finite media. The conclusion is that,
even assuming that the usual expression for the quantum field is a good approximation of
the exact result, one should take into account extra boundary terms in the calculation of
the decay rate (or related quantities such as the commutators of the fields or the power
spectrum). The impact of these missing terms on the local density of states or on Casimir
forces [139, 140] is an open question.
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Conclusion

This thesis describes a quantization procedure for light interacting with linear and inho-
mogeneous media, either passive or dispersive and dissipative. The former is used to char-
acterize photons propagating in dielectric environments where neglecting dissipation and
dispersion is justified. The effect of matter in this case mostly appears through coefficients
of transmission and reflection during the propagation of the classical configuration the
photon state is associated with. However, the construction of the quantum theory requires
special care compared to the vacuum case because the Hamiltonian model depends crit-
ically on the response function corresponding to any given configuration of matter. The
latter scenario, for metallic media, offers a theoretical basis to characterize quantum plas-
mons. Because of the introduction of dissipation and dispersion (i.e., with a dielectric func-
tion that is complex and frequency-dependent), the construction of a Hamiltonian struc-
ture necessary to quantize requires the inclusion of additional degrees of freedom associ-
ated with matter. The quantization of such a model provides sufficient tools to investigate
spontaneous emission of single plasmons as in the present thesis, but it can also be used
to characterize the propagation of single plasmons, their localization in space, as well as
collective effects and stimulated emission.

A key message of this work is the range of applicability of the quantization procedure de-
scribed in the main introduction (adapted from Refs. [13–15]). This procedure has been
applied successfully to both scenarios. This contrasts with the literature, where quantiza-
tion schemes have been developed specifically to the plasmonic models (either involving
quantum noise and Langevin equations, or a Fano diagonalization method with a micro-
scopic model for matter). One of our contributions was to show how such schemes fail to
address configurations where the dispersive and dissipative material medium is of finite
extent [2]. In the quantization procedure used in this work, the specificity of each scenario
presents itself in the first step, when the Hamiltonian structure built from the equations of
motion has to be transformed into a harmonic-like form,

H = 1

2
P ·P + 1

2
Q ·Ω2Q, (7.95)

with Ω a frequency operator. The diagonalization of the Hamiltonian thus reduces to the
diagonalization of Ω2 (or equivalently Ω), and the classical configurations of the field can
be written as linear combinations of the eigenfunctions of Ω (called eigenconfigurations).
Once this is achieved, a principle of correspondence can be applied and the field observ-
ables can be expressed in terms of the eigenconfigurations. The justification of the principle
of correspondence is not trivial in a system with infinitely many degrees of freedom; we for-
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mulated it in detail in the case of photons in passive media and similar arguments can be
applied to the case of plasmons.

In passive media, the diagonalization of the frequency operator is not a trivial task because
it depends on the dielectric function, which is different for every physical configuration.
However, if one is interested only in the emission, propagation and detection of the photon
in the exterior of the dielectric, its quantum state can be associated with the configurations
of the free field and the presence of the dielectric can be handled in the propagation in the
same way as in classical optics, through the introduction of coefficients of transmission and
reflection.

The quantum theory of light in passive media provides a basis to describe quantum optics
experiments. In particular, the detailed characterization of the quantum states and their
association to classical configurations of the field provides the necessary tools to describe
photons localized in pulses. In this thesis we gave the example of the Hong-Ou-Mandel
experiment, a pioneer quantum interference effect. Recent experiments [20–22] require a
description of the HOM effect with a detailed characterization of the classical configura-
tions of the photons which we could provide from the quantization procedure.

A complete description of quantum optics experiments in passive media would include the
emission process, the propagation, and the detection. While in this thesis we addressed
mainly the propagation and emission, the detection part still raises some open questions.
In particular, the construction of the quantum states shows that the localization of the pho-
ton depends on the definition of what particular type of detector measures actually. We
described the detection in the Hong-Ou-Mandel experiments on the basis of the classical
configuration, however it may have to be adapted to other local quantities such as the as-
sociated electric field observable.

In dispersive and dissipative media, the diagonalization of the frequency operator is more
subtle and one cannot model the effect of the medium on external phenomena simply by
introducing coefficients in the propagation. The difficulty of diagonalizing directly the plas-
monic model has led many authors to use a special type of method, the Fano diagonaliza-
tion method, where the result of the diagonalization is postulated and one then tries to
extract the corresponding diagonalizing transformation. The novelty of our work is to have
constructed a method to diagonalize the plasmonic model without postulating the result a
priori. This was published in [1, 3].

An advantage of our method is that it relies on canonical transformations. This ensures that
the diagonalized and quantized model corresponds to the initial one. Furthermore, it also
ensures that the commutation relations of the observables are the correct ones. In the lit-
erature, this latter point was usually dependent on a Green function which is different for
every material environment. Here, it only requires the completeness of the eigenconfigura-
tions, which is satisfied in the plasmonic model. Finally, our method gives a way to calculate
the eigenconfigurations of the plasmonic field, which can then be used to characterize the
field in detail. The structure of the quantum states also provides a rather simple method to
track the dissipation inside the medium.

An interesting discussion comes from comparing the results of our diagonalization to the
ones of the literature. An immediate observation is that our result is consistent with the
limit when the coupling between light and the medium vanishes (corresponding to the
dissipationless limit εi → 0). This limit has generated some debates in the literature, and
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some attempts of justification that would allow one to use these results in practical calcu-
lations. Our interpretation is that the past results may be valid in a homogeneous (there-
fore infinite) medium, which was the case first studied [71, 72]. It is conceivable that using
them in practical calculations (e.g., to compute the spontaneous decay rate of an emitter or
Casimir forces) leads to good approximations. However, to check it, one needs an indepen-
dent ansatz-free method to compare with. We provided such a method in [1, 3].

We compared our results with the ones of the literature in perturbation theory, in particular
the expression of the electric field observable. In first order, they coincide with some pro-
posed corrections from the literature [81, 82] taken at the same order of perturbation, aside
from a diverging function very close to the surface (which is clearly outside the range of
validity of the perturbation theory). In non-perturbative regimes, computational methods
should be developed to solve the Lippmann-Schwinger equation. This is not an easy task
because of the high degree of degeneracy of the model.

We described the spontaneous decay rate of a point-dipole emitter interacting with the
plasmonic field, both from the Fermi golden rule and from the Wigner-Weisskopf theory
(both approaches give the same results). The emitted quantum state was also expressed
in terms of the eigenconfigurations, providing a potential starting point for future studies.
This derivation was published in [3].

Aside of the direct comparison of formulas, we also investigated how the result of the
literature for the spontaneous decay rate is derived. We showed that even assuming the
commonly accepted expression for the electric field operator, the calculation of the decay
rate from the Fermi golden rule or the Wigner-Weisskopf theory uses a identity for the Green
tensor which is verified only in an infinite medium. In the context of finite media, extra
terms appear in the identity, and we showed in a one-dimensional example that these terms
have a significant impact on the result. Thus, even if the electric field observable could be
approximated to the one of the literature, one should include the missing terms in practical
applications.
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A
Classical energy of radiation

The reason why the classical Hamiltonian of light in passive media, given by Eq. (2.15), can
be identified as the energy of the system is not a trivial question which we try to answer in
the present appendix.

A.1 From the power transfer to a set of external charges

One way to determine how the energy of an electromagnetic configuration should be de-
fined is to make a link with a mechanical system for which the notion of kinetic energy is
considered known [141]. We consider a system than can include a medium, and a possible
coupling with a system of external charged particles. The coupling is given by the Lorentz
force, i.e., the dynamics of each of the particles of charge Qi , mass m, at position ~xi is de-
termined by an equation of motion of the form

m
d 2~xi

d t 2
=Qi~E(~xi , t )+Qi

d~xi

d t
×~B(~xi , t ). (A.1)

The kinetic energy of the i -th particle is given by

Eki n,i =
m

2

(
d~xi

d t

)2

, (A.2)

and the variation of the kinetic energy per time unit is

∂Eki n,i

∂t
= m

d 2~xi

d t 2
· d~xi

d t
. (A.3)

Introducing (A.1) gives:

∂Eki n,i

∂t
=Qi~E(~xi , t ) · d~xi

d t
+

(
Qi

d~xi

d t
×~B(~xi , t )

)
· d~xi

d t
. (A.4)

The last term is zero because it takes the scalar product of two orthogonal vectors. Thus,

∂Eki n,i

∂t
= ~E(~xi , t ) ·~ji , (A.5)

with ~ji :=Qi d~xi
/

d t . We introduce ~j (~x) :=~jiδ(~xi −~x):

∂Eki n,i

∂t
=

∫
d 3x ~E(~x, t ) ·~j (~x). (A.6)
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A.1. FROM THE POWER TRANSFER TO A SET OF EXTERNAL CHARGES

If instead of a single point charge we consider N point charges or more generally a density
of charge ρ(~x) :=∑

i Qiδ(~xi −~x), the time derivative of the total kinetic energy can be written
as

∂

∂t

∑
i

Eki n,i =
∫

d 3x ~E(~x, t ) ·~j (~x), ~j (~x) :=∑
i

~jiδ(~xi −~x). (A.7)

Writing ∑
i

Eki n,i =
∫

d 3x
∑

i
Eki n,iδ(~xi −~x) (A.8)

and defining the density of kinetic energy

eki n(~x) :=∑
i

Eki n,iδ(~xi −~x), (A.9)

the equation (A.7) becomes

∂

∂t

∫
d 3x eki n(~x, t ) =

∫
d 3x ~E(~x, t ) ·~j (~x), (A.10)

and we can write the relation between the local densities as

∂

∂t
eki n(~x, t ) = ~E(~x, t ) ·~j (~x), (A.11)

which is valid for a discrete or a continuous density of charge. Thus, the quantity~E(~x, t )·~j (~x)
can be interpreted as the density of power, i.e., energy per time unit, transferred from the
electromagnetic field to the external charge density.

If we denote by u(~x, t ) the energy density of the electromagnetic system, the global energy
conservation is expressed by

∂

∂t

∫
d 3x [eki n(~x, t )+u(~x, t )] = 0, (A.12)

implying

∂

∂t

∫
d 3x u(~x, t ) =−

∫
d 3x ~E(~x, t ) ·~j (~x). (A.13)

Locally the electromagnetic energy density can change by two independent mechanisms:
the first one is the transfer to the external charges that we have described above, and the
second one is the transport by local energy flow. Thus locally, the conservation of energy is
expressed by the following relation between densities:

∂

∂t
u(~x, t ) =−∇·~S −~E(~x, t ) ·~j (~x), (A.14)

where ~S is the energy flow density, or Poynting vector. We remark that both the energy den-
sity and the Poynting vector take different expressions depending on the considered system
(free field, electromagnetic field in a passive linear medium, in a non-passive medium, lin-
ear or non-linear...). For each system, the strategy is to start with the term −~E ·~j and use
Maxwell’s equations to obtain an expression that has the structure of (A.14). Then the ap-
pearing expression for u can be identified as the energy density and the expression for ~S as
the Poynting energy flow density.
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A.2. FROM THE HAMILTONIAN STRUCTURE

A.2 From the Hamiltonian structure

A second approach consists in starting with the considered Maxwell equations including
the medium, but without the external test charges, and constructing a Hamiltonian rep-
resentation. This construction involves the choice of canonical variables and a Hamilto-
nian functional H such that the corresponding Hamiltonian equations coincide with the
Maxwell equations. In this approach, the energy density is defined by the Hamiltonian den-
sity h(~x),

H =
∫

d 3x h(~x). (A.15)

The energy flow density is obtained by calculating ∂h
/
∂t .

This approach is certainly consistent from a mathematical point of view, but it seems im-
portant to have also the link between the electromagnetic energy and the mechanical en-
ergy provided in the preceding approach. As discussed in the next subsection, both ap-
proaches should lead to the same results.

A.3 Equivalence of the two approaches

For each concrete situation one can check whether the two functions u and h, expressed in
suitable variables, coincide. This can be done explicitly for the linear systems treated in this
thesis. In order to establish that the two definitions coincide in general we have to extend
the Hamiltonian formulation to include the external test charges,

H =
∫

d 3x h(~x)+Hext , (A.16)

and show that the corresponding Hamiltonian time evolution equations imply a relation of
the form

∂

∂t
h(~x, t ) =−∇·~S −~E(~x, t ) ·~j (~x), (A.17)

and that the two energy densities coincide:

h(~x) = u(~x). (A.18)

In a passive medium with external charges and currents, Maxwell’s equations can be written

∂t
~D=∇×~H−~jext , (A.19a)

∂t~B =−∇×~E , (A.19b)

∇·~D= ρext , (A.19c)

∇·~B = 0, (A.19d)

where ~D and ~H are defined by

~D := ε0εR~E , (A.20)

~H := (µ0µR )−1~B , (A.21)
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A.3. EQUIVALENCE OF THE TWO APPROACHES

with µR the relative magnetic permeability (which we have taken as 1 in this thesis, i.e.,
neglecting magnetic effects). The expressions for the energy density u and the flux ~S can be
determined starting from Eqs. (A.19a) and (A.19b):

−~jext ·~E = ~E ·∂t
~D−~E · (∇×~H). (A.22)

We can use the identity

∇· (~E ×~H) =~H · (∇×~E)−~E · (∇×~H), (A.23)

giving

−~jext ·~E = ~E ·∂t
~H+∇· (~E ×~H)−~H · (∇×~E),

= ~E ·∂t
~D+∇· (~E ×~H)+~H ·∂t~B , (A.24)

where we have used (A.19b). For a passive linear medium where ~D and ~H are defined by
Eqs. (A.20) and (A.21), we have the relations

~E ·∂t
~D= 1

2
∂t (~E ·~D), (A.25)

~H ·∂t~B = 1

2
∂t (~B ·~H). (A.26)

We thus gather the different terms in (A.24):

−~jext ·~E = 1

2
∂t [~E ·~D+~B ·~H]+∇·~E ×~H. (A.27)

We can thus identify, and take as a definition, the energy density of the electromagnetic
field as

u := 1

2
[~E ·~D+~B ·~H], (A.28)

and the Poynting energy flow as

~S := ~E ×~H. (A.29)

We remark that in absence of external charges, the relation

∂t u =−∇·~S (A.30)

states the conservation of electromagnetic energy in the passive medium. The total energy
of the system is then obtained by integrating the density over space, which gives exactly the
Hamiltonian function constructed in Section 2.1.2, Eq. (2.15), with µR = 1.
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B
Symplectic structure for the electromagnetic field

In this Appendix we show that the transformation from the electromagnetic vector fields to
the real diagonalizing variables, used in passive media, and in the plasmonic model for the
pre-diagonalization, is canonical. To do so, we use the symplectic structure of the phase
spaces.

The Hamiltonian structure with the constraints is first constructed in the phase space

P := E⊥⊕E⊥, (B.1)

with E⊥ :=
{
~v(~x) : R3 7→R3 |

∫
R3

d 3x ~v 2(~x) <∞ and ∇·~v = 0

}
. (B.2)

Note that in passive media, the transversality condition is ∇· [
p
εR~v] = 0 instead. The space

P has a symplectic structure defined by the following bilinear form

SP

([
~Π
~A

]
,

[
~Π′
~A′

])
= 〈~A,~Π′〉−〈~Π,~A′〉. (B.3)

We can construct a Hamiltonian representation that is free of constraints, by defining an-
other set of canonical variables (p, q) in another phase space defined as

P̆ := Ĕ ⊕ Ĕ , (B.4)

with Ĕ := { u(~k,σ,ζ) | ∑
σ=±

∑
ζ=c,s

∫
R3

d 3k u2(~k,σ,ζ) <∞ } (B.5)

On P̆ there is a symplectic structure defined by the bilinear form

SP̆

([
p
q

]
,

[
p ′
q ′

])
= 〈q , p ′〉−〈p, q ′〉. (B.6)

Definition: A linear map

S : (~Π(~x),~A(~x)) 7→ (p, q) (B.7)

is symplectic if

SP̆

(
S

[
~Π
~A

]
,S

[
~Π′
~A′

])
=SP

([
~Π
~A

]
,

[
~Π′
~A′

])
. (B.8)
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We consider a real orthonormal basis {~µκ(~x)} of the space E⊥ and the transformation S :
(~Π(~x),~A(~x)) 7→ (p, q) defined by

qκ =
∫

d 3x ~µκ(~x) ·~A(~x) ≡ 〈~µκ,~A〉, (B.9)

pκ =
∫

d 3x ~µκ(~x) ·~Π(~x) ≡ 〈~µκ,~Π〉. (B.10)

These vectors ~µκ correspond to the eigenconfigurations in passive media, and to plane
waves in the plasmonic model. They obey the same constraint as the vector fields ~A and
~Π.

Proposition: If {~µκ(~x)} satisfies the completeness relation
∑
κ |~µκ〉〈~µκ| = 1E⊥ in the space

E⊥ then the transformation S is symplectic.

Proof:

SP̆

([
p
q

]
,

[
p ′
q ′

])
=∑

κ

qκp ′
κ−pκq ′

κ (B.11)

=∑
κ

〈~µκ,~A〉〈~µκ,~Π′〉−〈~µκ,~Π〉〈~µκ,~A′〉 (B.12)

=∑
κ

〈~A,~µκ〉〈~µκ,~Π′〉−〈~Π,~µκ〉〈~µκ,~A′〉 (B.13)

= 〈~A|
(∑
κ

|~µκ〉〈~µκ|
)
|~Π′〉−〈~Π|

(∑
κ

|~µκ〉〈~µκ|
)
|~A′〉 (B.14)

= 〈~A,~Π′〉−〈~Π,~A′〉 =SP

([
~Π
~A

]
,

[
~Π′
~A′

])
, (B.15)

where we have used the completeness of the basis in E⊥:
∑
κ |~µκ〉〈~µκ| =1E⊥ . ä

One can further prove that a transformation is canonical if and only if it is symplectic.
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C
Symmetry of the plasmonic frequency operator

In this appendix, we show that the frequency operator Ω2 of the plasmonic model con-
structed in Chapter 5, is symmetric (since it is real, it implies that it is hermitian). We recall
its form:

Ω2 =
[

Iω2
κ

B1

B2 Iν2 + A

]
, (C.1)

which acts on a configuration [q ~X ]T as

[
Iω2

κ
q
]
(κ) :=

∫
dκ′ω2

κ′δ(κ−κ′)qκ′ =ω2
κqκ, (C.2a)[

Iν2~X
]
(ν,~r , j ) :=

∫
dν′

∫
V

d 3r ′∑
j ′
ν′2δ(ν−ν′)δ(~r −~r ′)δ j j ′ X

j ′(ν′,~r ′) = ν2X j (ν,~r ), (C.2b)

[
A~X

]
(ν,~r , j ) := α̃(ν,~r )

∫ ∞

0
dν′ α̃(ν′,~r )X j (ν′,~r ), (C.2c)[

B1~X
]
(κ) :=

∫
V

d 3r
∫ ∞

0
dν ωκα̃(ν,~r )

(
~ϕκ(~r ) ·~Xν,~r

)
, (C.2d)[

B2q
]
(ν,~r , j ) := α̃(ν,~r )

∫
dκ ωκϕ

j
κ(~r )qκ. (C.2e)

In order to show thatΩ2 is symmetric, we need to show that (i) Iω2
κ

, Iν2 and A are symmetric,

and that (ii) B1 = B T
2 .

C.1 Definition of symmetric integral operators

Consider a real integral operator S acting on a space of real functions f (x) ∈ F. We denote
by g (x) ∈F the resulting (real) function:

g (x) = (S f )(x). (C.3)

The operator S is symmetric if

(g ,S f )x = (Sg , f )x , (C.4)

where (·, ·)x refers to the scalar product in F.
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C.2. SYMMETRY OF THE DIAGONAL BLOCKS

The question is more subtle if the image of f through the application of S is in a different
space. Let us denote g (y) ∈G, with

g (y) = (S f )(y). (C.5)

In this case, ST (which is the transpose of S) acts on the space G and verifies

(ST g , f )y = (g ,S f )x , (C.6)

where (·, ·)y is the scalar product in G.

C.2 Symmetry of the diagonal blocks

The diagonal blocks of the frequency operator (Iω2
κ

, Iν2 and A) map elements from one
space to the same space. With their definitions (C.2a)–(C.2c), it easy to show that they are
symmetric:

(q , Iω2
κ

q ′)κ =
∫

dκ qκ ω
2
κq ′

κ = (Iω2
κ

q , q ′)κ, (C.7)

(~X , Iν2~X ′)ν,~r =
∫

dν
∫

V
d 3r ~X (ν,~r ) ·ν2~X ′(ν,~r ) = (Iν2~X ,~X ′)ν,~r , (C.8)

(~X , A~X ′)ν,~r =
∫

dν
∫

V
d 3r ~X (ν,~r )

[
α̃(ν,~r )

∫
dν′ α̃(ν′,~r )~X ′(ν′,~r )

]
=

Ï
dνdν′

∫
V

d 3r ~X (ν,~r )α̃(ν,~r ) ·α(ν′,~r )~X ′(ν′,~r ) = (A~X ,~X ′)ν,~r , (C.9)

where we have hidden the sum over the components j in the scalar product · between vec-
tors.

C.3 Symmetry of the off diagonal blocks

Since the operators B1 and B2 act on opposite spaces, we need to show that B1 = B T
2 , thus:

(q ,B1~X )κ = (B2q ,~X )ν,~r . (C.10)

From the definitions (C.2d) and (C.2e) we have

(q ,B1~X )κ =
∫

dκ qκ

[∫
V

d 3r
∫

dν ωκα̃(ν,~r )
(
~ϕκ(~r ) ·~Xν,~r

)]
=

∫
dκ

∫
dν

∫
V

d 3r qκωκα̃(ν,~r )
(
~ϕκ(~r ) ·~X (ν,~r )

)
, (C.11)

and

(B2q ,~X )ν,~r =
∫

dν
∫

V
d 3r ~X (ν,~r ) ·

[
α̃(ν,~r )

∫
dκ ωκ~ϕκ(~r )qκ

]
=

∫
dκ

∫
dν

∫
V

d 3r qκωκα̃(ν,~r )
(
~ϕκ(~r ) ·~X (ν,~r )

)= (q ,B1~X )κ. (C.12)

Hence we have B2 = B T
1 . Since the frequency operator is given by Eq. (C.1), we have

(Ω2)T =
[

I T
ω2
κ

B T
2

B T
1 I T

ν2 + AT

]
=

[
Iω2

κ
B1

B2 Iν2 + A

]
=Ω2, (C.13)

which concludes with the symmetry of the frequency operator of the plasmonic model.

150



D
Derivation of the Green identity

In this Appendix we derive the Green identity:

ω2

c2

∫
V

d 3x εi (~x) ¯̄GT (~x,~xA) ¯̄G∗(~x,~xB ) = 1

2i

[
¯̄GT (~xB ,~xA)− ¯̄G∗(~xA,~xB )

]
+ ¯̄F (~xA,~xB ,B), (D.1)

where V is an arbitrary volume that contains ~xA and ~xB , and B is the surface of V . The
Green tensor ¯̄G verifies the equation(

∇×∇×−ω
2

c2
ε(~x,ω)1

)
¯̄G(~x,~xA) =1δ(~x −~xA). (D.2)

In particular, we will show that the boundary term ¯̄F is given by

¯̄F (~xA,~xB ,B) = [ ¯̄bT (~xB ,~xA,B)− ¯̄b∗(~xA,~xB ,B)
]/

(2i ), (D.3)

¯̄b(~xA,~xB ,B) =−
∫
B

d s
(
~n × ¯̄G∗(~x,~xB )

)T (∇× ¯̄G(~x,~xA)
)
, (D.4)

with d s the surface element of B and ~n the outer unit normal vector on the surface.

We start by multiplying Eq. (D.2) by ¯̄G∗T (~x,~xB ) from the left, and we integrate ~x over a the
volume V . Thus we obtain∫

V
d 3x ¯̄G∗T (~x,~xB ) ∇×∇× ¯̄G(~x,~xA) = ω2

c2

∫
V

d 3x ε(~x) ¯̄G∗T (~x,~xB ) ¯̄G(~x,~xA)+ ¯̄G∗T (~xA,~xB ).

(D.5)

We then use the following identity for an integration by parts [138] (1.52):∫
V

d 3x (∇×∇× ¯̄Q)T ¯̄P =
∫

V
d 3x (∇× ¯̄Q)T (∇× ¯̄P )−

∫
B

d s (∇× ¯̄Q)T (~n × ¯̄P ), (D.6)

which, by transposing both sides, can be written∫
V

d 3x ¯̄P T (∇×∇× ¯̄Q) =
∫

V
d 3x (∇× ¯̄P )T (∇× ¯̄Q)−

∫
B

d s (~n × ¯̄P )T (∇× ¯̄Q). (D.7)

Applying this identity to the left hand side of (D.5), we obtain∫
V

d 3x ¯̄G∗T (~x,~xB )∇×∇× ¯̄G(~x,~xA) = ¯̄I (~xB ,~xA)+ ¯̄F (~xB ,~xA,B), (D.8)
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with

¯̄I (~xB ,~xA) :=
∫

V
d 3x (∇×G∗(~x,~xB ))T (∇× ¯̄G(~x,~xA)), (D.9)

¯̄F (~xB ,~xA,B) :=−
∫
B

d s (~n × ¯̄G∗(~x,~xB ))T (∇× ¯̄G(~x,~xA)). (D.10)

Equation (D.5) can thus be written as

ω2

c2

∫
V

d 3x ε(~x) ¯̄G∗T (~x,~xB ) ¯̄G(~x,~xA)+ ¯̄G∗T (~xA,~xB ) = ¯̄I (~xB ,~xA)+ ¯̄F (~xB ,~xA,B). (D.11)

We take the transpose and complex conjugate of this equation and we exchange the labels
A and B :

ω2

c2

∫
V

d 3x ε∗(~x) ¯̄G∗T (~x,~xB ) ¯̄G(~x,~xA)+ ¯̄G(~xB ,~xA) = ¯̄I∗T (~xA,~xB )+ ¯̄F∗T (~xA,~xB ,B). (D.12)

We can see from Eq. (D.9) that the tensor ¯̄I satisfies

¯̄I (~xB ,~xA) = ¯̄I∗T (~xA,~xB ), (D.13)

thus (D.12) gives

ω2

c2

∫
V

d 3x ε∗(~x) ¯̄G∗T (~x,~xB ) ¯̄G(~x,~xA)+ ¯̄G(~xB ,~xA) = ¯̄I (~xB ,~xA)+ ¯̄F∗T (~xA,~xB ,B). (D.14)

We then subtract Eq. (D.14) from Eq. (D.11) and we divide by 2i such that the terms ¯̄I can-
cel. Finally we take the transpose, and we obtain the general Green identity (D.1), which
completes the proof.
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E
Green function for a 1D slab

In this appendix we perform the calculation of the Green function of the electromagnetic
wave equation (with dispersion and dissipation) in a 1D model (see Figure E.1). The result
of this calculation was partially given in [131].

n

xk

E

x'

Figure E.1 – Scheme of the 1D model with a slab of refractive index n (which can include
dissipation).

E.1 Continuity conditions

We start with the Green equation associated with the 1D wave equation:[
−∂2

x −
ω2

c2
ε(x)

]
G(x, x ′) = δ(x −x ′), (E.1)

where x ′ is the position of the source and x is the observation point, ε is 1 outside of the
medium, and constant (but complex) in the medium. All frequency dependencies are im-
plicit in G and in ε. In order to calculate the Green function in the configuration of Fig-
ure E.1, we need to extract continuity conditions at the interfaces and at the point of the
source.

1. Since the Green function should be continuous at the interfaces, we have the conti-
nuity condition:

G/(x = xi , x ′) =G.(x = xi , x ′), (E.2)

where the superscript / stands for x ≤ xi and . for x ≥ xi , with xi the coordinate of
an interface.

2. Since the Green function should be continuous for x = x ′, we have the continuity
condition:

G1(x = x ′, x ′) =G2(x = x ′, x ′), (E.3)
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E.2. SOURCE ON THE RIGHT OF THE SLAB

where the subscript 1 stand for x ≤ x ′ and 2 for x ≥ x ′.

We also have continuity conditions for the derivatives of G :

3. Integrating the homogeneous Green equation (Eq. (E.1) with no right-hand side), we
see that the first derivative of G should also be continuous in the interface, that is,

lim
ε→0

{∣∣∂xG(x, x ′)
∣∣xi+ε

xi−ε
}
= 0,

⇔ ∂xG/(x, x ′)
∣∣

x=xi
= ∂xG.(x, x ′)

∣∣
x=xi

. (E.4)

4. Finally, we can extract a continuity condition for the derivative of G at the source x ′.
We integrate (E.1) over a small interval around x ′:∫ x ′+ε

x ′−ε
∂2

xG(x, x ′)d x + ω2

c2
ε(x ′)

∫ x ′+ε

x ′−ε
G(x, x ′)d x =−1, (E.5)

where we have used that ε is constant in this small interval. Since

lim
ε→0

∫ x ′+ε

x ′−ε
G(x, x ′)d x = 0, (E.6)

and using (E.5) together with the condition (E.3), we deduce that

lim
ε→0

{∣∣∂xG(x, x ′)
∣∣x ′+ε

x ′−ε
}
=−1,

⇔ ∂xG1(x, x ′)
∣∣

x=x ′ = 1+∂xG2(x, x ′)
∣∣

x=x ′ . (E.7)

E.2 Source on the right of the slab

The calculation of the Green function for a source located on the right side of the slab is per-
formed by using the Ohm-Rayleigh expansion. We consider four parts of the Green func-
tion, corresponding to each region of space:

G/(x, x ′) = A+(x ′)e i kx + A−(x ′)e−i kx , (E.8a)

G◦(x, x ′) = B+(x ′)e i knx +B−(x ′)e−i knx , (E.8b)

G.
1 (x, x ′) =C+(x ′)e i kx +C−(x ′)e−i kx , (E.8c)

G.
2 (x, x ′) = D+(x ′)e i kx +D−(x ′)e−i kx , (E.8d)

with k = ω/c. We adopt a concise notation of superscripts /,◦,. referring to the observa-
tion point x being on the left of the slab, inside the slab, and on the right, respectively. The
index 1,2 in (E.8c),(E.8d) refers to the observation point being on the left or on the right of
the source (see Fig. E.2).
The general strategy to find the coefficients A,B ,C ,D is to insert the expansions (E.8) into
each continuity condition for each critical point of the system (the interfaces and the source).
This gives a set of equations that can be solved. There is however a faster way to calculate
by introducing a matrix representation of the coefficients.

We introduce the following notations for x taken at specific points of the system (the inter-
faces xL , xR , or the source x ′):

a± = A±e±i kxL , bL
± = B±e±i knxL , bR

± = B±e±i knxR ,

c± =C±e±i kxR , c ′± =C±e±i kx ′
, d ′

± = D±e±i kx ′
.
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x' x'

x' x'

x x

x x

Figure E.2 – Notation used for the Green function depending on the position of the obser-
vation point x, when the source is on the right of the slab.

We use these coefficients to build two component vectors: a = [a+ a−]T , bL = [bL+ bL−]T

and so on. The propagation of waves through the system is described by the application of
matrices of two kinds:

• Interfaces matrices ¯̄I connect the coefficients at the coordinates xL and xR . An inter-
face matrix connecting a region A of index nA to a region B of index nB reads

¯̄I AB =
[

K AB+ K AB−
K AB− K AB+

]
, K AB

± = 1

2

(
1± nA

nB

)
. (E.9)

• Translation matrices ¯̄T add appropriate phases due to the propagation from one point
x1 to another point x2 in a region A of index nA:

¯̄T A
x1→x2

=
[

e i knA(x2−x1) 0
0 e−i knA(x2−x1)

]
. (E.10)

The connections between the different regions can thus be made in the following way:

bL = ¯̄I/◦a, (E.11)

bR = ¯̄T ◦
xL→xR

bL , (E.12)

c = ¯̄I◦.bR , (E.13)

c ′ = ¯̄T .
xR→x ′ , (E.14)

d ′ = c ′+ i

2k

[
1
−1

]
. (E.15)

The last connection around the source was made using the continuity condition of the
derivative of G at the source (E.7) together with the continuity of G (E.3).

The coefficients d ′ for waves traveling to and from +∞ can thus be linked to the coefficients
a for waves traveling to and from −∞:

d ′ = i

2k

[
1
−1

]
+ ¯̄T .

xR→x ′ ¯̄I◦. ¯̄T ◦
xL→xR

¯̄I/◦︸ ︷︷ ︸
¯̄M

a. (E.16)

Using xL =−` and xR = `, a simple calculation gives the components of ¯̄M :

M11 = 1

4n

[
(n +1)2e2i kn`− (n −1)2e−2i kn`

]
e i k(x ′−`), (E.17a)

M12 = 1

4n

[
e4i kn`−1

]
(n2 −1)e−2i knl e i k(x ′−`), (E.17b)

M21 = −1

4n

[
e4i kn`−1

]
(n2 −1)e−2i knl e−i k(x ′−`), (E.17c)

M22 = 1

4n
Y e−2kn`e−i k(x ′−`), (E.17d)
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with

Y = (n +1)2 − (n −1)2e4i kn`. (E.18)

We now impose a boundary condition at infinity. We consider that there is no source at
infinity that could emit or reflect waves, such that all propagating waves from infinity are
canceled. This is called the Sommerfeld radiation condition. In our calculation, it means
imposing a+ = 0 and d ′− = 0. The second component of Eq. (E.16) straightforwardly gives

a− = i

2kM22
= i

2k

4n

Y
e2i kn`e i k(x ′−`). (E.19)

From this, we obtain the first component of (E.16):

d ′
+ = i

2k
+M12a− = i

2k

{
1+ n2 −1

Y

[
e4i kn`−1

]
e2i k(x ′−`)

}
. (E.20)

Similarly, we introduce a− and d ′+ in Eqs. (E.11)–(E.15) to obtain the remaining coefficients.
We then insert everything into the Green functions (E.8) and we obtain

G/(x, x ′) = i

2k

4n

Y
e2i kn`e−i k(2`+x−x ′) (E.21)

for x on the left side of the slab, and

G◦(x, x ′) = i

2k

[
V e−i k(nx−x ′) +W e i k(nx+x ′)

]
(E.22)

for x in the slab, with

V = 2(n +1)

Y
e i k(n−1)`, W = 2(n −1)

Y
e i k(3n−1)`. (E.23)

Finally, the Green function on the right side of the slab (where the source is) reads

G.(x, x ′) =G.
1 (x, x ′)Θ(x ′−x)+G.

2 (x, x ′)Θ(x −x ′)

= i

2k

{
n2 −1

Y

[
e4i kn`−1

]
e−i k(2`−x−x ′) +e i k|x−x ′|

}
. (E.24)

The Green functions are then associated to the ones used for the calculation of the Green
identity in Section 7.4.3, with G/→Gleft, G◦ →Gin, and G.→Gright.

E.3 Other positions of the source

For the sake of completeness, we also give the Green function when the source is placed on
the two other regions of space: on the left of the slab, and inside the slab.

E.3.1 On the left of the slab

The case where the position of the source x ′ is on the left of the medium is symmetric with
the case on the right. We have trivially:

G/(x, x ′)
∣∣∣

x ′>`
=G.(−x,−x ′)

∣∣∣
x ′<−`

, (E.25)

G◦(x, x ′)
∣∣∣

x ′>`
=G◦(−x,−x ′)

∣∣∣
x ′<−`

, (E.26)

G.(x, x ′)
∣∣∣

x ′>`
=G/(−x,−x ′)

∣∣∣
x ′<−`

. (E.27)

156



E.3. OTHER POSITIONS OF THE SOURCE

E.3.2 Inside the slab

A similar calculation as performed in the other cases gives the Green function when the
source is inside the medium. The notation is preserved but now refers to the cases as pic-
tured in Fig. E.3.

x' x'

x' x'

x x

x x

Figure E.3 – Notation used for the Green function depending on the position of the obser-
vation point x, when the source is on the right of the slab.

We obtain

G/(x, x ′) = i

2k

[
V e i k(nx ′−x) +W e−i k(nx ′+x)

]
, (E.28)

G.(x, x ′) = i

2k

[
V e−i k(nx ′−x) +W e i k(nx ′+x)

]
, (E.29)

and

G◦(x, x ′) = i

2kn

{n2 −1

Y

[
e i kn(2`+x+x ′) +e i kn(2`−x−x ′)

]
+ (E.30)

+ n2 −1

Y

[
e i kn(4`+x−x ′) +e i kn(4`−x+x ′)

]
+e i kn|x−x ′|

}
. (E.31)
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