Résumé

Notre dépendance à l'égard des processus automatisés prend de plus en plus d'importance dans chaque aspect de notre vie: finances, transports, robotique, communication, sécurité, systèmes médicaux... De plus, cette croissance s'accélère: chaque objet a maintenant une version "connectée". En classe, les devoirs sont donnés et faits sur des plateformes en ligne. Des IA spécifiques sont formées pour effectuer des diagnostics médicaux à partir d'imageries médicales. L'argent liquide tend à disparaître des transactions financières. Les exemples d'irruption de la technologie dans tous les domaiens sont (presque) infinis.

Que se passe-t-il quand quelque chose ne fonctionne pas comme prévu? Dans le pire des cas, le coût est comptabilisé en vies humaines et en millions/milliards d'euros. Parmi les évènements les plus tristement célèbres, citons le crash de la sonde spatiale Mars Climate Orbiter, où un sous-traitant avait conçu un système de navigation utilisant le système impérial au lieu du système métrique, le lancement échoué d'Ariane V en 1995, ou encore en 1983 un satellite d'alerte précoce soviétique capta les reflets du soleil sur les nuages et les interpréta à tort comme un lancement de missiles aux Etats-Unis, provoquant presque le début de la troisième guerre mondiale. En outre, il existe une grande variété de problèmes. [START_REF] Wicker | Feature-guided black-box safety testing of deep neural networks[END_REF] montre comment le changement d'un pixel d'une image modifie le résultat d'un logiciel de reconnaissance: un feu rouge était classé comme vert, un autre feu était maintenant un four... Il est facile de voir l'importance de ces problèmes pour la conduite automatisée.

Bien que les exemples les plus célèbres concernent des systèmes critiques, il existe des problèmes sous-optimaux apparemment bénins qui, sans être un danger, peuvent coûter quelques euros à chaque fois, multipliés par des milliers ou des millions d'usagers. Un exemple est le système Orion développé par UPS pour leurs chauffeurs de camion [START_REF] Holland | UPS optimizes delivery routes[END_REF]. Il optimise leurs déplacements en limitant les virages à gauche: traverser la route entraîne une plus longue période d'attente, entraînant une perte de temps et d'essence. Un autre domaine est celui des télécommunications. Pour des raisons physiques, de nombreux protocoles (codes, répétitions, etc.) essaient d'assurer qu'un message n'est pas perdu. Une question est "quelles garanties peuvent être données sur un réseau selon différents scénarios". Ces garanties peuvent porter sur la couverture de réseau, les ressources utilisées... De nombreux travaux récents visent à vérifier les réseaux, en particulier les réseaux de capteurs (tels que [START_REF] Wei | A formally verified decentralized key management architecture for wireless sensor networks[END_REF][START_REF] Tobarra | Model checking wireless sensor network security protocols: Tinysec+ leap[END_REF]...) pour des propriétés telles que la couverture et la résistance à la défaillance d'un composant.

Lorsqu'un problème a été identifié, comment peut-on le corriger? Dans certains cas, le changement à effectuer est facilement identifiable, comme dans le cas de la sonde Mars Climate Orbiter ("utilisez simplement le système métrique!"). Dans d'autres cas, la question est beaucoup plus difficile. Reprenant l'exemple du logiciel de reconnaissance, il est complexe de comprendre pourquoi deux images identiques à de plus de 99, 99% sont classées de manière aussi différente. En général, nous voulons trouver des moyens de certifier que le comportement observé d'un système est conforme au comportement prévu.

C'est là que la vérification formelle entre en jeu. La vérification formelle est définie comme la vérification de l'exactitude d'un conception/produit à l'aide de techniques mathématiques. Cela peut par exemple être fait en prouvant mathématiquement la correction. Une réponse négative peut également être apportée grâce à un contre-exemple. Une question de vérification peut également demander une réponse plus détaillée que "oui/non". Récemment, plusieurs travaux ont élargi la vérification formelle aux questions quantitatives [START_REF] Huth | Quantitative analysis and model checking[END_REF], en prenant en compte des quantités telles que le temps [START_REF] Chen | Quantitative model checking of continuous-time Markov chains against timed automata specifications[END_REF] ou les probabilités [START_REF] Brim | Exploring parameter space of stochastic biochemical systems using quantitative model checking[END_REF]. Ces quantités permettent d'obtenir des résultats plus précis, mais les techniques associées ne sont pas encore matures et peuvent être améliorées. C'est une direction que regarde cette thèse et dans laquelle nous allons pousser nos recherches.

Concernant la vérification formelle, différentes techniques apparaissent. Dans ce qui suit, nous discutons des principales techniques, ainsi que des objets mathématiques sur lesquels la vérification peut être effectuée.

Nous pouvons distinguer deux cadres principaux dans la vérification: soit nous travaillons directement sur un système, soit sur une abstraction de ce système, appelée modèle. Une première question est "qu'est-ce qu'un bon modèle?". C'est une question délicate: pour modéliser le système, il faut décider ce qui est important et ce qui ne l'est pas, et formaliser les différentes intéractions, réactions et tout ce qui peut se produire lors de l'exécution du système. Ainsi, certaines informations seront perdues lors de la création d'un modèle. Cependant, cette perte est nécessaire pour obtenir un modèle de taille raisonnable. Dans certains cas, différents modèles avec différentes précisions peuvent être conçus. Ces modèles peuvent être comparés les uns aux autres. Par exemple, si A est un raffinement de B, on peut souhaiter que ce qui se passe dans B se produise également dans A, éventuellement avec des détails supplémentaires. La nécessité d'obtenir un modèle approprié est bien exprimée dans [START_REF] Baier | Principles of model checking[END_REF] (chapitre 1), "toute vérification utilisant des techniques basées sur un modèle n'est pas meilleure que le modèle du système". Cela met en évidence le fait que la finalité des techniques basées sur des modèles n'est pas de certifier la "perfection" du système mais plutôt de gagner en confiance. En effet, certains problèmes peuvent être masqués par la modélisation. Il est donc nécessaire d'obtenir des garanties formelles sur ces modèles pour renforcer la confiance. C'est une direction que nous allons explorer dans cette thèse.

Sur la modélisation: Des modèles peuvent être générés à partir d'un système existant afin de vérifier son exactitude. Pour cela, une représentation précise et non ambiguë du système et des propriétés à vérifier doit être créée. A titre d'exemple, un sous-ensemble des propriétés d'un protocole de communication,le protocole ISDN (Integrated Services Digital Network), a été formalisé. Cette formalisation a montré qu'une grande partie (55%) des spécifications était incohérente [START_REF] Gerard | Practical methods for the formal validation of SDL specifications[END_REF]. Ainsi, la modélisation formelle permet de rechercher des bugs sur les systèmes existants ou sur leurs spécifications. Un autre exemple est le satellite Deep Space 1. La vérification basée sur un modèle a montré plusieurs défauts de conception [START_REF] Havelund | Formal analysis of the remote agent before and after flight[END_REF] sous la forme de problèmes de concurrence. Un possible blocage qui n'avait pas été détecté lors des centaines d'heures de test fut créé au cours des 24 premières heures de fonctionnement par une suite d'instructions qui était pourtant peu probable. D'autre part, on peut d'abord travailler sur un modèle jusqu'à obtenir quelque chose de "satisfaisant", puis développer un système correspondant à ce modèle. Un exemple en est l'évaluation de la performance d'un système de train urbain [START_REF] Bruno | An efficient evaluation scheme for KPIs in regulated urban train systems[END_REF]. Au lieu d'effectuer des mesures sur une exécution du système (regarder les trains et mesurer certains indicateurs tels que le retard, la ponctualité, etc.), un modèle de simulation efficace pouvant représenter un réseau est conçu et les mesures sont effectuées sur ce modèle de simulation. Alors que le premier doit être fait en temps réel, une simulation des heures de mouvements de train peut être faite en quelques secondes. Cela met en évidence un autre point des techniques basées sur un modèle, à savoir des performances plus élevées pour de nombreux problèmes.

Que peut-on garantir? Toutes les propriétés ne peuvent pas être vérifiées sur tous les systèmes. Par exemple, considérons la question "le programme se termine-t-il?". Sur les programmes C, cela mène à un problème indécidable. Cependant, limiter cette question à des classes spécifiques de modèles peut assurer la décidabilité. Un défi consiste alors à trouver un cadre suffisamment expressif pour coder des propriétés intéressantes tout en conduisant à une décidabilité en un temps raisonnable. Des sous-ensembles de "questions" Programme Propriétés de correction

Enoncé mathématique Preuve

Avec intéraction humaine Figure 1: La vérification déductive.

possibles ont été étudiés et des techniques pour ces sous-ensembles spécifiques ont été développées, comme par exemple les logiques LTL et CTL.

Vérification déductive: Un premier moyen de s'assurer qu'un système se comporte comme prévu est de coder l'exactitude de ce système en tant qu'énoncé mathématique, puis de prouver cet énoncé. Parmi d'autres possibilités, ces preuves peuvent être réalisées à l'aide d'un assistant de preuves (tel que Coq, Isabelle, Why3 ...) ou de solveur basé sur la satisfiability modulo theories (tels que CVC4, OpenSMT...). Cette approche a l'avantage d'être très puissante: on doit "juste" exprimer l'exactitude en tant qu'énoncé mathématique. Cependant, elle présente un inconvénient: elle a besoin d'un expert, non seulement pour définir l'énoncé mathématique, mais également pour trouver une stratégie permettant de prouver cet énoncé, par exemple sous la forme d'une suite de théorèmes.

Tests: Etant donné un système et une spécification, le test consiste à exécuter le système avec différentes valeurs d'entrée et à vérifier si le comportement souhaité est observé (i.e., la spécification est validée). Les tests visent à montrer que les comportements attendus et réels d'un système diffèrent, ou à prendre confiance qu'ils ne le font pas. Ils peuvent être effectués sur un système (eg "essayons cette voiture sur un circuit et effectuer des mesures") ou sur un modèle de ce système [UPL12; GS18] (e.g., "voici un modèle de cette voiture et un logiciel de simulation de flux d'air, étudions l'aérodynamique sur différents réglages"). Bien que l'idée des tests soit ancienne, des travaux récents visaient à les formaliser et à les rendre plus efficaces [START_REF] Peleska | Industrial-strength model-based testing-state of the art and current challenges[END_REF][START_REF] Bertolino | Software testing research: Achievements, challenges, dreams[END_REF]. Un des avantages des tests est qu'ils sont simples et peuvent être effectués en un temps souvent raisonnable. Cependant, l'efficacité des tests dépend de leur pertinence : cette méthode manque de complétude. Une question clé est donc la couverture des tests, c'est-à-dire déterminer si les cas vérifiés sont suffisants pour obtenir des garanties robustes. Pour pouvoir effectuer cette vérification, le modèle et la spécification doivent tous deux être exprimés en un langage mathématique. Ensuite, le vérificateur de modèles vérifie si le modèle satisfait la formule. Si ce n'est pas le cas, il fournit un contre-exemple, c'est-à-dire une preuve que la spécification est violée. Ce contre-exemple peut ensuite être analysé pour modifier la spécification si elle révèle un défaut de conception ou pour affiner le modèle si ce contre-exemple est un "faux positif", grâce à des techniques comme le raffinement de l'abstraction guidé par les contre-exemples (CEGAR) [START_REF] Clarke | Counterexample-guided abstraction refinement[END_REF].La vérification des modèles a été introduite au début des années 80 [CE80; CE81; QS82] et a été régulièrement développée et étudiée depuis lors, avec l'introduction de langages plus expressifs permettant de décrire des spécifications plus complexes (telles que des logiques plus expressives [START_REF] Alur | Alternating-time temporal logic[END_REF]), et de les associer à des évaluations précises des complexités (e.g., in [START_REF] Sistla | The complexity of propositional linear temporal logics[END_REF]). Pour les applications pratiques, les tests et la vérification des modèles sont en concurrence, chacun présentant des avantages et des inconvénients [START_REF] Beyer | Software verification: Testing vs. model checking[END_REF]. Un premier inconvénient de la vérification des modèles est qu'en raison de l'exploration exhaustive, les techniques de vérification des modèles peuvent ne pas bien passer à l'échelle. La seconde, bien sûr, est la nécessité d'un modèle. En revanche, un avantage considérable de la vérification basée sur un modèle est que la vérification peut être effectuée de manière systématique et autonome et qu'elle est exhaustive. Dans cette thèse, nous allons nous concentrer sur les techniques de vérification des modèles. Comme indiqué précédemment, nous avons besoin d'un modèle pour pouvoir appliquer ces techniques. Ainsi, nous détaillons certaines caractéristiques importantes des modèles que nous allons considérer.

Systèmes stochastiques: Comme mentionné précédemment, les modèles ne représentent qu'une vision partielle d'un système, dans le but de ne conserver que ce qui est important. En fonction de l'application, la question de ce qui est important peut avoir différentes réponses, ce qui entraîne à nouveau des problèmes et des techniques différents selon le paradigme choisi pour la description du modèle et des propriétés. Dans cette thèse, nous allons considérer des modèles avec des probabilités. Pourquoi des probabilités? Ils permettent de représenter un système avec des comportements aléatoires (non contrôlés par l'utilisateur et/ou l'environnement) ou des systèmes avec des informations incomplètes présentant des motifs statistiques. Par exemple, si le non-déterminisme permet de modéliser différentes possibilités, par exemple un adversaire ayant plusieurs choix, les probabilités permettent de représenter de nombreuses personnes qui feront toutes leur choix et lorsque ce nombre est grand, une distribution de probabilité de ces choix peut être déduite. Ces deux contextes différents (ici, un adversaire et une population) apportent deux formalismes différents (non déterminisme et systèmes stochastiques) De plus, on peut utiliser des modèles stochastiques pour effectuer une évaluation quantitative de certaines propriétés: l'utilisation de quantités ouvre la possibilité de répondre à plus de questions que de simples questions logiques (i.e., celles auxquelles on répond "vrai"/"faux") . Ainsi, les probabilités sont utilisées pour représenter divers systèmes [START_REF] Bortolussi | Learning and Designing Stochastic Processes from Logical Constraints[END_REF], tels que la robotique probabiliste pour des essaims de drones [START_REF] Brambilla | Property-driven design for swarm robotics[END_REF], les télécommunications [START_REF] Alur | Model-checking of real-time systems: a telecommunications application[END_REF], pour le traitement du signal et des images [START_REF] Crouse | Waveletbased statistical signal processing using hidden Markov models[END_REF][START_REF] Culik | Digital images and formal languages[END_REF], les systèmes dynamiques en général [START_REF] Smyth | Hidden Markov models for fault detection in dynamic systems[END_REF] ... Ils apparaissent dans la conception du traitement et de la reconnaissance des langues [START_REF] Mohri | Finite-state transducers in language and speech processing[END_REF][START_REF] Lawrence R Rabiner | A tutorial on hidden Markov models and selected applications in speech recognition[END_REF]. Ils interviennent également dans la modélisation des processus climatiques et biologiques [START_REF] Eddy | What is a hidden Markov model?[END_REF] pour la météo [START_REF] Ailliot | Space-time modelling of precipitation by using a hidden Markov model and censored Gaussian distributions[END_REF], des séquences de protéines et d'acides aminés [START_REF] Durbin | Biological sequence analysis: probabilistic models of proteins and nucleic acids[END_REF][START_REF] Gough | Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure[END_REF][START_REF] Krogh | Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes[END_REF]... Afin de représenter les probabilités, de nombreux modèles formels sont utilisés tels que les chaînes de Markov (à temps discret ou continu et espace d'états discret ou continu), les processus de décision Markoviens, les chaînes de Markov étiquetées, les réseaux de Petri stochastiques (...), dont certains seront détaillés et utilisés ultérieurement dans ce travail.

Information partielle: On peut également souhaiter représenter le fait que l'état exact d'un système peut ne pas être connu à chaque moment: en règle générale, les systèmes ne sont pas entièrement observables. En effet, nous n'avons pas un accès complet à ce qui se passe à l'intérieur pour de nombreuses raisons: sécurité, coûts financiers, manque de fiabilité des capteurs, sa taille, certains événements dépendent de l'environnement... Par conséquent, dans le monde réel, bien que les utilisateurs puissent connaître parfaitement un modèle d'un système, ils n'ont qu'une connaissance partielle de son état actuel lors d'une exécution. Nous devrons donc en tenir compte lors de la modélisation et du raisonnement sur nos modèles. Cela se reflétera par le fait que, pour une (séquence) d'informations disponible pour l'utilisateur, plusieurs états internes du système peuvent être simultanément possibles par rapport à ces informations. Notre tâche consistera souvent à récupérer (avec une probabilité élevée) des informations cachées sur l'exécution du système. Pour cela, le principal formalisme que nous allons utiliser est les chaînes de Markov étiquetées, où les probabilités modélisent l'incertitude dans le système et un alphabet modélise les informations qu'un observateur peut obtenir.

Apprentissage: S'il est intéressant de raisonner sur un système stochastique donné, un autre problème est de savoir comment l'obtenir. Une solution consiste à apprendre (un modèle du) le système à partir d'échantillons de ses exécutions. En général, l'apprentissage est la capacité d'acquérir de nouvelles connaissances ou de modifier des connaissances, des compétences, des valeurs (...) existantes en analysant des données. Ce processus peut être supervisé (avec un enseignant) ou par un processus d'essais et erreurs... Une difficulté est que le processus d'apprentissage n'est pas encore totalement compris, même (et surtout) pour les humains. L'apprentissage automatique a été introduit à la fin des années 50 dans le but de faire en sorte que les systèmes "apprennent" à répondre efficacement et avec précision à des problèmes pour lequels aucun autre algorithme efficace n'existait. Pas assez efficace pendant plusieurs décennies, l'apprentissage automatique a commencé à gagner du terrain dans les années 1990 avec le passage à un paradigme basé sur des méthodes empruntées aux statistiques et à la théorie des probabilités [START_REF] Langley | The changing science of machine learning[END_REF].

Selon les sources d'information disponibles, il existe différentes sous-catégories de techniques d'apprentissage: l'apprentissage supervisé [START_REF] Stuart | Artificial intelligence: a modern approach[END_REF] "réplique" l'idée de disposer d'un enseignant qui donne la solution correcte aux cas que l'algorithme apprend, l'apprentissage par renforcement [START_REF] Pack | Reinforcement learning: A survey[END_REF] est basé sur l'ajustement des comportements afin d'obtenir une récompense maximale, et l'apprentissage non supervisé [START_REF] Hinton | Unsupervised learning: foundations of neural computation[END_REF], au contraire, ne dépend pas des informations fournies par une autorité supérieure: le processus d'apprentissage doit effectuer l'évaluation lui-même dans un processus d'essais et d'erreurs.

L'apprentissage peut être effectué sur différents modèles pour de nombreuses applications: vision par ordinateur [START_REF] Lee | Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations[END_REF], reconnaissance automatique de la parole [START_REF] Waibel | Phoneme recognition using time-delay neural networks[END_REF], diagnostic médical [START_REF] Kononenko | Machine learning for medical diagnosis: history, state of the art and perspective[END_REF] ... Dans ce qui suit, nous nous intéresserons à l'apprentissage de modèles probabilistes. Fondamentalement, cela peut être séparé en deux parties. Tout d'abord, à l'instar d'un modèle non probabiliste, il faut obtenir la structure du modèle, c'est-à-dire les états possibles et les transitions d'un état à un autre. Ensuite, on voudrait estimer avec précision les valeurs de ces probabilités. Cette partie est au moins aussi difficile que la première: les probabilités dépendent de nombreux facteurs généralement insolubles. En outre, une petite erreur dans l'évaluation peut entraîner une différence énorme quand on considère des propriétés globales, comme nous le verrons plus tard. Ceci est mis en évidence dans la figure 4: dans cet exemple, à chaque étape nous restons dans s 0 avec probabilité 1 -2ε, allons dans le bon état avec probabilité ε et dans le mauvais état avec la probabilité ε. La probabilité d'atteindre au bout d'un moment est de 0, 5. Supposons que ε soit petit et que nous ayons estimé les probabilités du modèle et obtenu 1 -2ε, 3ε/2 et ε/2. Les probabilités sont très proches puisque ε est très faible, mais maintenant, la probabilité d'atteindre éventuellement est de 0, 75, ce qui est très différent de 0, 5. Dans ce document, nous allons nous concentrer sur l'apprentissage des chaînes de Markov, l'un des modèles les plus simples qui contiennent des probabilités.

Plan: En résumé, dans ce document, nous allons étudier comment récupérer des informations et quantifier sur des systèmes stochastiques avec des informations partielles. Pour cela, nous donnerons d'abord quelques définitions, notations et résultats généraux précédents, puis nous étudierons trois problèmes: la diagnosticabilité, la

s 0 ε ε 1 -2ε
Figure 4: Exemple jouet où les probabilités de cahque transition sont proches mais où le comportement global est très différent.

classification et l'apprentissage. Cette thèse est organisée comme suit:

• Dans le chapitre 2, nous introduisons des notations et des définitions utiles que nous utiliserons tout au long de ce document. Nous présentons également quelques résultats généraux qui seront utiles pour différentes parties de la thèse.

• Au chapitre 3, nous nous concentrons sur le diagnostic. Similairement à la médecine, la possibilité de diagnostic est la capacité de récupérer une information (telle qu'un événement correspondant à une erreur) d'une exécution du système. Nous irons plus loin que la question binaire «pouvons-nous déduire cette information ou non», en la transformant en "avec quelle probabilité pouvons-nous déduire cette information"? Nous examinerons également la question "à quelle vitesse pouvons-nous déduire cette information?" en poussant les questions quantitatives.

• Dans le chapitre 4, nous traitons de la classifiabilité qui est, étant donné deux systèmes et une observation, la capacité de décider lequel de ces systèmes a produit l'observation. La classifiabilité peut être considérée dans un certain sens comme une généralisation de certains problèmes tels que la diagnostiabilité, c'est-à-dire décider si l'exécution a été produite par la partie du système où l'événement d'erreur a eu lieu ou non. Notez que cela n'est pas techniquement vrai, car le diagnostic est intrinsèquement asymétrique et la classification est symétrique, mais le concept et les preuves utilisées peuvent être similaires.

• Dans le chapitre 5, nous passons à un problème orthogonal, qui consiste à apprendre un système stochastique. Ce problème soulève certaines des questions précédemment discutées sur ce qu'est un bon modèle. Étant donné un système stochastique, on souhaiterait connaître les probabilités de ses transitions pour obtenir un modèle fidèle de son fonctionnement.

Table of Contents

Résumé 3

Table of Contents 13 1 Introduction 17

Chapter 1

Introduction

Our reliance on automatized processes is growing in every aspect on our life: financial, transportation, robotic, communication, safety, medical systems... Further, this growth is accelerating: every object has now a "connected" version. In classes, homework is given and done on online platforms. Specific AI are trained to perform medical diagnosis from medical imagery. Cash is disappearing from financial transactions. The examples of the invasion of technology are (almost) infinite.

What happens when something does not work as intended? In the worst cases, the cost is counted in human lives and millions/billions of euros. Some of the most infamous occurrences are the Mars Climate Orbiter Crash, where a subcontractor designed a navigation system using imperial units instead of the metric system, the Ariane V failed launch, where a 64 bits number was stored in a 16 bits space, or in 1983 a Soviet early warning satellite picked up sunlight reflections off cloud-tops and mistakenly interpreted them as missile launches in the United States, almost causing the start of world war III. Besides, there is a huge variety of problems that may not be that extreme. [START_REF] Wicker | Feature-guided black-box safety testing of deep neural networks[END_REF] presents how the change of one pixel in an image changes the output in a recognition software: a red traffic light was classified as green, another traffic light was now an oven... It is easy to see the importance of these problems for automatized driving. While the most famous examples concern critical systems, there are some seemingly benign suboptimal issues that, while not a danger, may cost a few euros at each time, multiplied by thousand or millions of usages. An example is the Orion system developed by UPS for their truck drivers [START_REF] Holland | UPS optimizes delivery routes[END_REF]. It optimizes paths for their travels by limiting left turns: crossing the road leads to more idle time going through ongoing traffic, leading to a loss of time and gas. Another field is telecommunications. Due to physical reasons, numerous protocols (codes, repetitions...) try to ensure that a message is not lost. A question is "what guarantees can be given on a network under different scenarios". These guarantees can be on the coverage, the resources used... Many recent works aim at verifying networks, especially sensor networks (such as [START_REF] Wei | A formally verified decentralized key management architecture for wireless sensor networks[END_REF][START_REF] Tobarra | Model checking wireless sensor network security protocols: Tinysec+ leap[END_REF]...) for properties such as coverage and robustness to failure of one component.

When a problem has been identified, how does one correct it? In some cases, the change to make is easily identifiable, such as for the Mars Climate Orbiter Crash ("just use the metric system!"). In other cases, it is a much more difficult question. Taking again the example of recognition software, it is a complex task to understand why two images that are more than 99.99% identical are so differently classified. In general, we want to find ways to certify that the observed behavior of a system is conform to its intended behavior.

That is where formal verification comes in. Formal verification is defined as checking the correctness of a design/product using mathematical techniques. It can be done by proving mathematically that the correctness holds. It can also answer by the negative by providing a counter-example. A verification question can also ask for a more detailed answer than "yes/no". Recently, several works expanded formal verification to quantitative questions [START_REF] Huth | Quantitative analysis and model checking[END_REF], considering quantities such as time [START_REF] Chen | Quantitative model checking of continuous-time Markov chains against timed automata specifications[END_REF] or probabilities [START_REF] Brim | Exploring parameter space of stochastic biochemical systems using quantitative model checking[END_REF]. These quantities allow one to get finer results, however techniques around them are still young and can be improved. This is a direction this thesis considers.

When performing formal verification, different techniques can be used. In the following, we discuss about the main techniques, as well as the mathematical objects verification can be performed on.

We can distinguish two main frameworks in verification: either we work directly on a real system, or on an abstraction of this system, called a model. A first question is "what is a good model?". This is a tricky question: in order to model the system, one has to decide what is important and what is not, and formalize the different interactions, reactions and basically what can occur in an execution of the system. Thus, some information will be lost at the creation of a model. However, this loss is necessary in order to obtain a model of a tractable size. In some cases, different models with different accuracies can be designed. These models can be compared with one another. For example, if A is a refinement of B, one may want that what happens in B happens also in A, possibly with additional details. The need to obtain a suitable model is well expressed in [BK08] (chapter 1), "any verification using model-based techniques is only as good as the model of the system". This highlights the fact that the finality of model-based techniques is not to certify the "perfection" of the system but only to gain confidence. Indeed, some problems can be masked by the modeling. Thus, obtaining formal guarantees on these models is needed to boost the confidence. This is a direction we will explore along this thesis.

On modeling: Models can be generated from an existing system in order to verify the correctness of the system. For that, a precise and unambiguous representation of the system and of the properties to check have to be created. As an example, a subset of the properties of a communication protocol, the Integrated Services Digital Network (ISDN) protocol, has been formalized. This formalization showed that a huge part (55%) of the requirement were inconsistent [START_REF] Gerard | Practical methods for the formal validation of SDL specifications[END_REF]. Thus, formal modelization allows one to find bugs on existing systems or on their specifications. Another example is the Deep Space-1 spacecraft. Model-based verification showed some design flaws [START_REF] Havelund | Formal analysis of the remote agent before and after flight[END_REF] in the form of concurrency errors. A deadlock that did not occurred in the hundreds of hours of system-testings was created by an unlikely scheduling condition during the 24 first hours of operation.

On the other hand, one can at first work on a model until something "satisfying" has been obtained and then develop a system with respect to this model. An example is the performance evaluation of an urban train system [START_REF] Bruno | An efficient evaluation scheme for KPIs in regulated urban train systems[END_REF]. Instead of performing a measurement on an execution of the system (i.e., watching trains and measuring some indicators such as delay, punctuality...), an efficient simulation model that can represent a network is designed and measurements are performed on this simulation model. While the former has to be done in real time, a simulation of hours of train movements can be done in seconds. This highlights another point of model based techniques, that is higher performances for several problems.

What can one ensure? Not all properties can be verified on every system. For example, let us consider the question "does the program terminate". On C programs, it leads to an undecidable problem. However, restricting this question to specific classes of models can ensure decidability. A challenge is then to find a framework expressive enough to encode interesting properties while leading to decidability in reasonable time. Subsets of possible "questions" have been studied and techniques for these specific subsets have been developed e.g., LTL and CTL logics.

Deductive verification:

A first way to ensure that a system does behaves as expected is by encoding the correctness of this system as a mathematical statement and then prove this statement. Among other possibilities, these proofs can be done with the help of a proof assistant (such as Coq, Isabelle, Why3...) or satisfiability modulo theories solvers (such as CVC4, OpenSMT...). This approach has the advantage to be very powerful: one "just" needs to express the correctness as a mathematical statement. However it has a

Program

Correctness property

Mathematical statement Proof

Possibly with human interaction related disadvantage: it needs an expert, not only to define the mathematical statement, but also to find a strategy to prove this statement, such as in the form of a sequence of theorems.

Testing: Given a system and a specification, testing consists in executing the system with different input values and observing whether the intended behavior appears (i.e., the specification holds). It aims at showing that the intended and actual behaviors of a system differ, or at gaining confidence that they do not. Testing can be made on a system (e.g., "let us try this car on a circuit and perform some measurements") or on some model of this system [UPL12; GS18] (e.g., "here is a modelization of this car and a flow simulation software, let us study the aerodynamics on some different settings"). Though the idea of testing is quite ancient, recent work aimed at formalizing testing and making it more efficient [START_REF] Peleska | Industrial-strength model-based testing-state of the art and current challenges[END_REF][START_REF] Bertolino | Software testing research: Achievements, challenges, dreams[END_REF]. An advantage of testing is that it is straightforward and can be done in reasonable time. However, efficiency of testing depends on the pertinence of the tests: there is a lack of completeness in this method. A key question is test coverage i.e., determining if the cases verified are broad enough to obtain robust guarantees.

Model-checking:

As the name suggests, model-checking consists in checking a model of a system, that is verifying if some given specification holds on a model of the system with an exploration of the states and transitions of the model of the system. In order to be able to perform this verification, both the model and the specification have to be expressed in mathematical languages. Then, the model-checker verifies if the model satisfies the formula. If it does not, it provides a counterexample, i.e., a proof that the specification is violated. This counterexample can then be analyzed to change the specification if it reveals a design flaw or to refine the model if this counterexample is a "false positive", thanks to techniques such as the Counterexample-Guided Abstraction Refinement (CEGAR) [START_REF] Clarke | Counterexample-guided abstraction refinement[END_REF]. Model-checking has been introduced in the early 80s QS82] and has been continuously developed and studied since then, with the introduction of more expressive languages that allow one to describe more complex specifications (such as extensions of logics [START_REF] Alur | Alternating-time temporal logic[END_REF]), and to associate them to precise evaluations of the complexities (e.g., in [START_REF] Sistla | The complexity of propositional linear temporal logics[END_REF]). For practical applications, testing and model-checking are in competition, each with advantages and drawbacks [START_REF] Beyer | Software verification: Testing vs. model checking[END_REF]. A first drawback of modelchecking is that due to the exhaustive exploration, model-checking techniques may not scale up well with the size of the model. A second, of course, is the need for a model. On the other hand, a tremendous advantage of model-based verification is that the verification can be performed in a systematic and autonomous way, and that it is exhaustive.

In this thesis, we will focus on model-checking techniques. As said before, we need some model to be able to apply these techniques. Thus, we detail some important characteristic of the models we will consider.

Stochastic systems:

As mentioned before, models represent only a partial vision on a system, with the aim at keeping only what is important. Depending on the application, the question of what is important may have different answers, again leading to different problems and techniques depending on the chosen paradigm of the description of model and properties. In this thesis we will consider models with probabilities. Why probabilities? They allow one to represent a system with either random behaviors (noncontrolled by the user and/or the environment) or systems with incomplete information that exhibit statistical patterns. For example, while non-determinism allow one to model different possibilities, such as an adversary that may have several possible choices, probabilities enable to represent many people that all will do their own choice and when this number of people is high, a probability distribution of these choices can be inferred. These two different settings (here, an adversary and a population) bring two different formalisms (non-determinism and stochastic systems) Further, one can use stochastic models to perform a quantitative evaluation of some properties: the usage of quantities opens up the possibility to answer more questions than only logical ones (i.e., those answered by "true"/"false"). Thus, probabilities are used for representing various real systems [START_REF] Bortolussi | Learning and Designing Stochastic Processes from Logical Constraints[END_REF], such as probabilistic robotics for swarms of drones [START_REF] Brambilla | Property-driven design for swarm robotics[END_REF], telecommunications [START_REF] Alur | Model-checking of real-time systems: a telecommunications application[END_REF], for signal and image processing [CNB98; CK97], dynamic systems in a large sense [START_REF] Smyth | Hidden Markov models for fault detection in dynamic systems[END_REF]... They appear in the design of language processing and recognition [START_REF] Mohri | Finite-state transducers in language and speech processing[END_REF][START_REF] Lawrence R Rabiner | A tutorial on hidden Markov models and selected applications in speech recognition[END_REF]. They also intervene in the modelization of climatic and biological processes [START_REF] Eddy | What is a hidden Markov model?[END_REF] for weather [START_REF] Ailliot | Space-time modelling of precipitation by using a hidden Markov model and censored Gaussian distributions[END_REF], sequences of proteins and amino-acids [Dur+98; Gou+01; Kro+01]... In order to represent probabilities, numerous formal models are used such as (discrete/continuous time/states) Markov Chains, Markov Decision Processes, Labeled Markov Chains, Stochastic Petri nets (...), some of which we will detail and use later in this work.

Incomplete information:

One may also wish to represent the fact that the exact state of a system may not be known at each time: usually, real life systems are not fully observable. Indeed, we have no full access to what happens inside for many reasons: security, financial costs, unreliability of sensors, its size, some events depend on the environment... Hence, in real world, users may know perfectly a model of a system but when running it, they only have a partial knowledge about its current state. Thus, we will have to take this into account when modeling and reasoning on our models. This will be reflected by the fact that for one (sequence of) information available to the user, several internal states of the system may be simultaneously possible with respect to this information. Our task will often be to recover (with high probability) some hidden information about the execution of the system. For that, the main formalism we will use is Labeled Markov Chains, where probabilities model the uncertainty in the system and an alphabet models the information an observer can obtain.

Learning: While it is interesting to reason on a given stochastic system, another problem is how to obtain it. One way is by learning (a model of) the system from samples of its executions. In general, learning is the ability to acquire new or modify existing knowledge, skills, values (...) by analyzing data. This process can be supervised (i.e., with a teacher), or by trial and error/evaluation... A difficulty is that the process of learning is still not totally understood, even (and especially) for humans. Machine learning was introduced at the end of the 1950s and aimed at making systems "learn" how to answer efficiently and accurately to some problems that no other efficient algorithms could solve. Not effective enough for several decades, machine learning started to gain traction in the 1990s with the shift to a paradigm based on methods borrowed from statistics and probability theory [START_REF] Langley | The changing science of machine learning[END_REF]. Different sub-categories of learning techniques exist according to the available sources of information: supervised learning [RN16] "replicates" the idea of having a teacher that gives the correct solution to the cases the algorithm learns, reinforcement learning [START_REF] Pack | Reinforcement learning: A survey[END_REF] is based on learning how to adjust behaviors in order to obtain a maximal reward, and unsupervised learning [START_REF] Hinton | Unsupervised learning: foundations of neural computation[END_REF], on the contrary, does not depend on information given by a higher authority: the learning process grades itself in a process of trial and error. Learning can be performed on various models for many applications: computer vision [START_REF] Lee | Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations[END_REF], speech recognition [START_REF] Waibel | Phoneme recognition using time-delay neural networks[END_REF], medical diagnosis [START_REF] Kononenko | Machine learning for medical diagnosis: history, state of the art and perspective[END_REF]...

In the following, we will be interested in learning probabilistic models. Basically, this can be separated in two parts. First, similarly to a non-probabilistic model, one has to obtain the structure of the model, that is the possible states and the transitions from one state to another. Then, one would like to estimate accurately the values of these probabilities. This part is at least as difficult as the first one: probabilities depend on many factors that are usually intractable. Further, a small error in the evaluation may lead to a huge difference when focusing on some properties, as we will pinpoint later. This is highlighted in figure 1.4: in this example, at each step we stay in s 0 with probability 1-2ε, go in the good state with probability ε and go in the bad state with probability ε. Then, the probability to eventually reach is 0.5. Let us suppose that ε is small and that we estimated the model and obtained the probabilities 1 -2ε, 3ε/2 and ε/2. Probabilities are very close since ε is very small, but now the probability to eventually reach is 0.75, which is very different. In this document, we will focus on the learning of Markov Chains, one of the simplest model that contain probabilities.

s 0 ε ε 1 -2ε

Outline:

To summarize, in this document we will study how to retrieve information and quantify it on stochastic systems with partial information. For that, we will first give some definitions, notations and previous general results and then study three problems: diagnosability, classifiability and learning. This thesis is organized as follows:

• In Chapter 2, we introduce useful notations and definitions that we will use all along this document. We also present some general results that will be useful for different parts of the thesis.

• In Chapter 3, we focus on diagnosability. Similarly to medicine, diagnosability is the ability to retrieve an information (such as an event corresponding to an error) from an execution of the system. We will go further than the binary question "are we able to deduce this information or not", transforming it in "how often can we deduce this information". We will also investigate the question "how fast can we deduce this information", pushing the quantitative questions.

After a state of the art addressing qualitative diagnosability and some extensions to probabilistic models, we introduce some definitions of quantitative diagnosability along with algorithms to compute these quantities. Then, we present how to use these algorithms in order to approximately closely reconstruct the distribution of fault delay and to derive bounds on these delays with some confidence intervals. We also show the optimality of these bounds. This chapter is based on the contributions presented in [BFG17; BFG18b; BFG18a].

• In Chapter 4, we address classifiability which is, given two systems and one observation, the ability to decide which system produced the observation. Classifiability can be seen in some sense as a generalization of some problems such as diagnosability, i.e., decide if the execution has been produced by the part of the system where the error event occurred or not. Notice that it is not technically true, as diagnosis is intrinsically asymmetric and classification is symmetric, but the concept and the proofs used can be similar.

First we present a state of the art, including some recent works that tackle notions that are equivalent to classifiability. We then present a new proof of the complexity of classifiability. We then investigate the notion of classifiability in a security context: what happens if we give an attacker some ability to act on the systems? This chapter is based on the contributions presented in [START_REF] Akshay | Classification among Hidden Markov Models[END_REF].

• In Chapter 5, we shift to an orthogonal problem, that is learning a stochastic system. This problem raises some of the questions discussed before about what is a good model. Given a stochastic systems, one would like to learn its transition probabilities to obtain a faithful model of its operation.

After presenting different techniques to estimate the transition probabilities from the execution of a system and the framework of Probably Approximately Correct (PAC) learning, we focus on obtaining (PAC) guarantees on the learned models with respect to global properties. We first consider simple formulas, such as time to failures and then we show than on some set of logical properties computing a confidence level for all properties in this set is possible, whereas for some other set, this is not possible. For the paradigms where this is possible, we provide an algorithm and an evaluation of the results.

This chapter is based on the contributions we will present in [Baz+].

The details of my publications this thesis is based on are provided before the references.

Chapter 2

Preliminaries

In this chapter, we present the different notations and definitions that will be useful along this document. We also present some fundamental results. In section 2.1 we present numerous models of interest that we will use in this thesis: we go from general models (automata, Markov Chains) to specific ones (labeled Markov Chain, Probabilistic Finite Automata...). In section 2.2 we recall specific vocabulary and properties of Markov Chains. In section 2.3 we remind vocabulary and notions of convergences on random variables. In section 2.4 we state some problems that we will be interested in and give the notations of logic that will help us define these problems. In section 2.5 we give some general algorithmic results on which we will base some of our results.

Given an alphabet Σ, we denote by Σ * (resp. Σ ω) the set of finite (resp. infinite) words over Σ. N is the set of natural numbers, Q the rational numbers and R the real numbers. For a set X, we write 2 X the powerset of X.

Classes of models

In this thesis, systems are represented by formal models. A tremendous number of different models exist. Each one has its specificity and allows one to express different kinds of properties. First, we are going to present different models of interest that we will use alongside this document.

Transition systems and automata

Dynamical systems are characterized by their current state and their trajectories. Thus, a natural representation of a dynamical system can be made by using a set of states, each representing the current state of the system, and an alphabet representing either the different possible actions or observations of the execution. In the following, we will distinguish systems with stopping time and those without. As a consequence, in the first case, the corresponding executions will have a finite length and in the second one we will consider (set of) infinite executions. Both settings will be relevant later. We also remind some usual vocabulary on these systems and set notations.

The first basic model is the labeled transition system (LTS), defined as follow:

Definition 2.1 (Labeled Transition System). A labeled transition system A is a quadruple (S, Σ, I, T) such that:

• S is a finite set of states, • Σ is a finite alphabet, • I ⊆ S is the set of initial states, • T ⊆ S × Σ × S is the set of transitions.
For a LTS A, we denote (s a -→ s) a transition such that (s, a, s) ∈ T . Given t = (s a -→ s) a transition, its observation denoted o(t) is the letter a, its initial state s -(t) = s and its final state s + (t) = s . In the literature, the observation is often called "label". In this thesis, we consider generative systems where the letters will generally be signals given by an execution, hence the name "observation". A finite path of A is a sequence of transitions π = t 1 . . . t n such that for all 1 ≤ i < n, s + (t i) = s -(t i+1) and its observation is o(π) = o(t 1) . . . o(t n). For two states s and s , the set of paths from s to s is denoted P(s, s). For S f a set of states, we denote by P S f (s, s) the set of paths from s to s that do not have a state of S f as an intermediary state. The set of finite paths of A is denoted P(A). A finite run ρ is a path such that its first state is an initial state and the set of runs of A is denoted R(A). Similarly, we define infinite paths and runs as an infinite set of transitions (t i) i∈N such that for all i, s + (t i) = s + (t i+1) and their set, P ω (A) and R ω (A).

The language L(A) is defined as the set of observations w such that there exists ρ ∈ R(A) with w = o(ρ). Again, we define the infinite language L ω (A). Let π = t 1 . . . t n be a finite path. We denote its length |π| = n. The definition and notation of the observation, the initial state and the final of a path is naturally extended from those of a transition:

we have s -(t 1 . . . t n) = s -(t 1), s + (t 1 . . . t n) = s + (t n) and o(π(s a - → s)) = o(π)a. Given π = t 1 . . . t m such that s + (t n) = s -(t 1
), the concatenation of π and π denoted ππ is the path t 1 . . . t n t 1 . . . t m . A path π is a prefix (resp. suffix) of π if there exists π such that π = ππ (resp. π = π π). For a finite run ρ, the cylinder of ρ, denoted Cyl(ρ) is the set of infinite runs ρ such that ρ is a prefix of ρ . By extension, for a observation w, the cylinder of w is the set of infinite size observations having w as a prefix.

A state is s is reachable from s if there exists a path with initial state s and final state s. s is reachable if there exists a path starting from an initial state and ending in s. A strongly connected component (SCC) is a set Q ⊆ S such that for all s, s ∈ Q, s is reachable from s . Moreover, it is a bottom strongly connected component (BSCC) if for all s ∈ Q, s is reachable from s implies s ∈ Q.

We notice that runs in a LTS correspond to process that have no defined end. The "finite run" counterpart of the LTS is the finite state automaton, defined as follow:

Definition 2.2 (Finite State Automaton).

An automaton A is a quintuple (S, Σ, I, T, F) such that:

• S is a finite set of states,

• Σ is a finite alphabet,

• I ⊆ S is the set of initial states,

• T ⊆ S × Σ × S is the set of transitions,
• F is the set of final states.

Previous definitions on finite paths still apply. The language L(A) ⊆ Σ * of an automaton A is the set of observations w such that there exists a final path starting in a state of I, ending in a state of F and with observation w, i.e.,

L(A) = {o(ρ), s -(ρ) ∈ I, s + (ρ) ∈ F }.

Partial observation

In a perfect world, an observer would know the exact state of a system, of all its parameters... Unfortunately, this is not usually the case. There are many reasons for this: a system may be designed to be opaque in some way for security reasons. Moreover, gathering information is costly: many sensors, captors... would be needed. Furthermore, some data can be unreliable, such that those caused by environment perturbation. The amount of data needed to have a complete grasp of the system could also simply be too huge. Hence, in real world, observers may know perfectly a system but when running it, they only have a partial view of its current state. In order to formalize this, we have to state what information can be gathered. In this thesis, we will consider a natural paradigm: the current state of the transition system is unknown, and two actions that give the same information to an observer may lead to two different outcomes. Thus, two transitions from a same state labeled by the same letter can lead to different states: we consider non-deterministic systems.

Another way to model partial observation would be to have silent transitions: the alphabet is partitioned in two, the observable and the unobservable ones: Σ = Σ o ∪ Σ u . In this setting, the observation is the projection over the observable alphabet: given a path π and t labeled by a, its observation õ(πt) is õ(π)a if a ∈ Σ o , and õ(π) else. Having silent transitions does not extend the expressivity of the model. These silent transitions can be removed by a process of ε transition removal [START_REF] Mohri | Generic e-Removal and Input e-Normalization Algorithms for Weighted Transducers[END_REF], creating a non-deterministic system where states are not observable, i.e., the models we consider in this thesis. This process is conducted as follows: for a sequence of transitions u 1 . . . u n t from s to s such that for all i, u i is silent and t is observable and labeled by a, we create the transition (s, a, s) if it does not exist already. Notice that in this process we consider an equivalence at the moment an observation is raised, and not during a sequence of silent transitions. This is not a problem: in general, a judgment on the system will be raised at the moment an observation is gathered.

Hence, we will consider in the following transition systems where the alphabet is fully observable and the states are unobservable.

Example 2.2. In figure 2.2, the transitions labeled by u and f are unobservable. However, the sequence f a makes the system go in state s 1 with the observation a, thus we add a transition labeled by a from s 0 to s 1 . Similarly, after the sequence ub, the system is in state s 3 . Thus, we add a transition from s 0 to s 3 labeled by b. This transition "forgets" that the sequence went through state s 2 , highlighting that the equivalence is at the exact moment an observation is raised.

Sometimes, silent transitions are considered slightly differently: the label is hidden at the observation, however the user knows that a transition occurred. In this case, it is easy to build an equivalent system by replacing each silent transitions by one with a special letter whose meaning will be "a transition occurred".

s 0 start s 1 s 2 s 3 f u b a a b s 0 start s 1 s 2 s 3 a a b b a a b

Quantitative systems

Weighted automata: a general model with quantities

In order to add information to executions of a system, we want to enrich the model. A general way to do this is to add quantities to the transitions. These quantities may be very general: weights, costs, rewards... These quantities can be modeled not only by (real) numbers, but also by elements of more complex structures. In this section, we present weighted automata, where the weights of the transitions are elements of semirings. We will see what properties some semirings have and how they help us to calculate interesting information. Overviews of this formalism can be found in [Sch61; KS85].

Definition 2.3 (Semiring).

Let K be a set, ⊕ such that (K, ⊕) is a commutative monoid with identity element 0 and ⊗ such that (K, ⊗) is a commutative monoid with identity element 1.

(K, ⊕, ⊗, 0, 1) is a semiring iff

• ⊗ distributes over ⊕ • ⊗ annihilates over 0: for all x in K, x ⊗ 0 = 0 × x = 0
Furthermore, the semiring is said to be closed if

• for all x ∈ K, n x ⊗n is well defined and in K (this operator is denoted x *),

• associativity, commutativity and distributivity hold for countable sums of elements of K.

Example 2.3. The probability semiring (R + , +, ×, 0, 1) is a first natural example of a semiring that will be useful later. This semiring is not closed: we do not have the associativity, commutativity and distributivity of countable sums. Furthermore, the geometric sum does not converge for all positive number: n 1 n = ∞. Another classical semiring is the tropical semiring (R + , min, +, ∞, 0), associated with shortest distance problems. This one is closed: the * operator is min(0, x, 2x, . . .) = 0.

We can now define automata with weights over a semiring: Definition 2.4 (Weighted automaton).

Let (K, ⊕, ⊗, 0, 1) be a semiring. A weighted automaton A over K is a quintuple (S, Σ, λ, γ,) such that:

• S is a finite set of states, • Σ is a finite alphabet, • λ : S → K is the set of initial weights, • γ : S × Σ × S → K is the function assigning weights to the transitions, • : S → K is the set of final weights.

The weight of a finite path π = t 1 . . . t n is equal to n i=1 γ(t i). Given an execution ρ = t 1 . . . t n with s -(ρ) = s and s + (ρ) = s , the weight of ρ is equal to

λ(s) ⊗ γ(π) ⊗ (s)
Thanks to example 2.3, we saw that the closure of a semiring is very restrictive. However, when considering weighted automata, an infinite sum will occur when we consider the possibility to go through a cycle arbitrary many times. Then, we only need the closure with respect to these elements.

Definition 2.5 (Closure w.r.t a weighted automaton).

Let A be a weighted automaton over K. K is said to be closed over A if for all cycles c of A,

• γ(c) * is well defined and in K,

• associativity, commutativity and distributivity hold for these specific countable sums: for all x, y, .

Example 2.4. For a weighted automaton A over the probabilistic semiring, if all cycles have a weight lower than 1, then this semiring is closed with respect to A.

Stochastic systems

In the following, we consider specific quantitative models, where the quantities are probabilities. First, we consider systems where there may be some non-determinism but the information about the current state is available. The simplest stochastic system we consider is Markov Chains: Definition 2.6 (Finite state discrete time Markov chain).

Let S be a set of states.

A Markov chain M can be modeled as a triple (S, M, µ 0) where:

• S is a set of states • M ∈ [0, 1] |S|×|S| is the stochastic transition matrix. • µ 0 : S → [0, 1] with s µ 0 (s) = 1 is the initial probability mapping.
Notions of paths and executions are naturally extended from those on transition systems.

A related definition (for statisticians) is that a discrete time Markov chain is a sequence of random variables (X i) i∈N that can take a finite number of values with the Markov property, i.e., such that the probability of the next state given all the past of the run depends only on the last state of the run, that is

Pr(X n = s|X n-1 , . . . , X 1) = Pr(X n = s|X n-1)
Then, the probability distribution after m steps is equal to (µ 0 (s 0), . . . , µ 0 (s n))M m . Example 2.5. Figure 2.3 depicts a Markov chain with initial distribution µ 0 (s 0) = 1, and for all i > 0 µ 0 (s i) = 0. After one step, the probability distribution is (0, 1 2 , 1 4 , 1 4) and after two steps, it is (0, 1 2 , 3 8 , 1 8).

Another class of fully observable probabilistic systems are Markov Decision Processes (MDPs). They provide a framework to model decision making when possibilities are partly random. In MDPs, the alphabet is the set of choices. At each step, the user chooses

s 0 start s 1 s 2 s 3 1 2 1 4 1 4 1 2 1 1 1 2 Figure 2.3: Example of a Markov Chain M.
an action available, and the resulting state is chosen at random among the different possibilities.

Definition 2.7 (Markov Decision Processes).

A Markov Decision Process A is a quadruple (S, Σ, µ 0 , (M a) a∈Σ) with:

• S is a set of states,

• Σ an alphabet,

• µ 0 : S → [0, 1] with s µ 0 (s) = 1 is the initial probability mapping,

• for every a ∈ Σ, M a is a matrix such that each line is either stochastic (the state allows a) or zero (a is not allowed).

Partially observable stochastic systems

In this subsection we consider partially observed stochastic systems. We explained in section 2.1.2 that the information about the current state is hidden. In general, there are two alphabets: the control alphabet Σ c and the signal one Σ s . Intuitively, the control alphabet Σ c is the set of actions a player can choose and Σ s represents the set of observations that can be raised. These two alphabets have then orthogonal meanings. When considering stochastic systems, the meanings of the probabilities associated to the control alphabet and the signal alphabet are again orthogonal. When a control action has been chosen, we want the sum of the probabilities of all possible outcomes of this action in one state to be 1. However, when considering the signal alphabet, we want the sum of the probabilities of all possible outcoming signals in one state to be 1. Partially Observed MDPs (POMDPs) [START_REF] Astrom | Optimal control of Markov processes with incomplete state information[END_REF] are a class of systems that can be represented with these two alphabets. The user chooses an available action (in Σ c) and then a signal (in Σ s) is raised with respect to the transition that was effectively performed. In POMDPs, states are usually partitioned into equivalence classes and the user receives as observation the class of the resulting state.

In this thesis, we focus on two kinds of models: Labeled Markov Chains, where the user has no control and only receives signals. The second is Rabin's Probabilistic Finite Automata, which are POMDPs with only one class of equivalence: the current state is totally hidden.Notice than in both case, we will need only one alphabet. Thus, to simplify, we will write Σ instead of Σ c and Σ s , but remember that they have different meanings.

Example 2.6. In figure 2.4, we model the same situation where someone has to make a choice between two possibilities. One model (left) is from the choice maker. He can either decide to choose 1 or 2, or he is undecided and will flip a coin. There are then two deterministic choices and one non-deterministic. On the right side, an observer looks at the choice maker. The observer will only see if a coin has been flipped or not.

Words describing observation sequences

First, we discuss about models where the words associated to executions represent a signal given to an observer. This can be represented by a special case of weighted automata. A weighted automata is said to be stochastic if it is over the probability semiring (R + , +, ×, 0, 1) and for all state s, a,s γ((s, a, s)) = 1. In [START_REF] Mohri | Semiring frameworks and algorithms for shortest-distance problems[END_REF], this system is called "probabilistic automaton". However, we will avoid to use this name, since it may be confused with Rabin's "probabilistic finite automaton" that will also be of interest in this document. In [START_REF] Muggleton | Stochastic logic programs[END_REF], it is referenced as a stochastic automaton. When necessary, we will use this name. The corresponding event system (i.e., with no notion of final state) is the Labeled Markov Chain [CK14; DHR08]. In the literature, it appears with different names. In [START_REF] Leonard | Statistical inference for probabilistic functions of finite state Markov chains[END_REF], it is called Hidden Markov Model. It also appears as probabilistic-LTS in [START_REF] Engel | Controlling information in probalistic systems[END_REF] and Hidden Markov Chain in [START_REF] Kiefer | Distinguishing hidden Markov chains[END_REF].

Definition 2.8 (Labeled Markov Chain).

A Labeled Markov Chain M is a quadruple (S, Σ, µ 0 , p) such that:

• S is a finite set of states,

• Σ is a finite alphabet,

• µ 0 : S → [0, 1] with s µ 0 (s) = 1 is the initial probability mapping,

• p : S ×Σ×S → K with a,s p((s, a, s)) = 1 gives the probabilities of the transitions.

We may notice that a Markov Chain is a labeled Markov Chain with exactly one letter. The (possibly infinite) language of a LMC is the set of words w such there exists an execution in this LMC labeled by this word. Example 2.7. In figure 2.5, the word ab is the label of two distinct runs, both ending in s 2 . The probability of ab is then equal to 1 4 × 1 + 1 4 × 1 2 .

s 0 start s 1 s 2 s 3 a, 1 2 a, 1 4 a, 1 4 b, 1 2 a, 1 b, 1 a, 1

Words modeling control sequences

In this document, we will also consider Rabin's Probabilistic Finite Automaton (PFA), introduced in [START_REF] Michael O Rabin | Probabilistic automata[END_REF]. A PFA can be seen as a MDP where states are totally unobservable. We also add stopping time modeled by final states.

Definition 2.9 (Probabilistic Finite Automata).

A complete Probabilistic Finite Automaton A is a quintuple (S, Σ, µ 0 , (M a) a∈Σ , F) with:

• S is a set of states,

• Σ an alphabet,

• µ 0 : S → [0, 1] with s µ 0 (s) = 1 is the initial probability mapping,

• for every a ∈ Σ, M a is a matrix such that each line is either stochastic (the state allows a) or zero (a is not allowed),

• F ⊆ S is the set of final states.

Furthermore, if for every letter a, M a is a stochastic matrix then A is said to be complete. Every PFA can be completed by adding a dummy state with self-loops and adding transitions to this state for every missing letter. Given a distribution δ and a letter a, the distribution δ = δ • a is defined as δ (t) = s δ(s)M a (s, t). This can be naturally extended to words with for all distribution δ, for all word w and letter a, δ •(wa) = (δ •w)a. The probability of acceptation of a word w is t∈F µ 0 • w(t).

Example 2.8.

In figure 2.6, an execution for the word aba is accepted in A if it ends in state s 1 . This has a probability of 0.7 × 1 × 0.5 + 0.3 × 0.6 × 0.5 + 0.3 × 0.4 × 0.7 = 0.524.

Construction of a probability measure on infinite words

On the different systems we defined, we gave the definition of the probability of a finite execution and its cylinder. However, in some applications, we would like to discuss about set of infinite executions. Intuitively, the probability of an infinite run π should be the limit of the probabilities of its prefixes. However, in general, this limit is 0, we then need do state that the set of infinite runs is measurable and give its measure. Caratheodory's theorem 1 [AD00] allows us to correctly define this measure on these infinite runs. For that, we recall some definitions and then state the theorem. First, we need building blocks. We remind the definition of a cylinder, given in section 2.1.1: for a finite run ρ, the cylinder of ρ, denoted Cyl(ρ) is the set of infinite runs ρ such that ρ is a prefix of ρ , and for a word w, the cylinder of w is the set of infinite words that have w as a prefix. We state that the set of the union of cylinders is a topology on the set of infinite runs: Definition 2.10 (Topology). Given a set X, Y is said to be a topology on X if The Borel hierarchy is given by the classes Σ 0 α , Π 0 α , ∆ 0 α for every countable ordinal α, such as:

• ∅ ∈ Y , • X ∈ Y , • Y
• Σ 0 1 is the set of open sets, • ∀α ≥ 1, B ∈ Π 0 α iff B C ∈ Σ 0 α ,
• ∀α ≥ 2, B ∈ Σ 0 α iff there exists a family (possibly infinite)

(B i) in B ∈ Π 0 α-1 and B = B i , • ∀α ≥ 1, ∆ 0 α = Σ 0 α ∪ Π 0 α .
A set in some class of the Borel hierarchy is called a Borel set.

Example 2.10. Continuing example 2.9, the set of words having no a is in Π 0 1 , as it is the complement of the set of words having at least one a. Then, the set of words having only a finite number of a (i.e., {wb ω , w ∈ Σ * } is in Σ 0 2 , as the uncountable union over n of words of length n followed by b ω . Hence, as its complement, the set of words having infinitely many a is in Π 0 2 .

We can notice that the Borel hierarchy defines a hierarchy of complexity on sets of infinite words.

In the following, we recall that Borel sets are measurable and that for all properties we want to measure, the set of runs that satisfy this property can be expressed as a Borel set. For now, we introduce some additional vocabulary that will allow us to state the Caratheodory theorem.

Definition 2.12 (Ring of sets).

Given a set X, a ring of sets R of X is a subset of 2 X containing the empty set, closed under pairwise union and relative complement, that is:

• ∅ ∈ R, • ∀A, B ∈ R, A ∪ B ∈ R, • ∀A, B ∈ R, A \ B ∈ R.
A σ-algebra is a ring of sets with additional requirements: Definition 2.13 (σ-algebra).

Given a set X, a σ-algebra S of X is a subset of 2 X containing the empty set, closed under countable union and complement, that is:

• ∅ ∈ S • ∀(A i) i∈N ∈ S, A i ∈ S • ∀A ∈ S, X \ A ∈ S
Notice that the set of Borel sets is the σ-algebra generated by the open sets. Definition 2.14 (Pre-measure and measure). A pre-measure µ on a ring of sets R is a function µ : R → R + such that:

• µ(∅) = 0 • for all countable family of sets of R pairwise disjoint (A i) i∈N , µ(A i) = i µ(A i).
If R is a σ-algebra, then µ is called a measure. µ is called σ-finite if there exists a countable collection

(A i) i∈N ∈ R such that R = A i .
The probability we defined on finite executions is a pre-measure. Caratheodory's theorem allows to define the corresponding measure: Theorem 2.1 (Caratheodory's extension theorem [START_REF] Ash | Probability and measure theory[END_REF]).

Let X be a space and R a set of rings on X, µ a pre-measure on R that is σ-finite. Then there exists a unique measure µ on the sigma algebra generated by R such that for all A ∈ R, µ(A) = µ (A).

In our case, we have that the probability of the empty set of words is 0, and that for disjoint set of words (A i), P(A i) = i P(A i). By using this theorem and extending the pre-measure defined on the set of rings generated by the open sets, we proved that all Borel sets are measurable.

Example 2.11. In figure 2.11, every finite word of length n has probability 1 2 n , and we denote by µ the pre-measure associated. The set W of words having an infinite number of a is not in the ring of sets generated by the open sets, however, by extending µ into p, we find that p(W) = 1.

s 0 a, b, 1 2 Figure 2
.7: An LMC such that for all w ∈ Σ n , P (w) = 1 2 n .

Vocabulary and properties of Markov Chains

In this section, we remind some definitions about Markov Chains and some of their properties. First, we define irreducibility, that is the underlying graph is strongly connected and then the periodicity.

Definition 2.15 (Irreducibility).

Let M be a Markov Chain. M is irreducible if for all pair of states s, t of M, there is a path from s to t. Definition 2.16 (Period). Let M be a Markov Chain and s one of its states. Its period d is the GCD of the lengths of all cycles on s. Definition 2.17 (Aperiodicity).

Let M be a Markov Chain. M is aperiodic if for all state s i of M, its period d i is 1.

If a Markov chain is both irreducible and aperiodic then it is called ergodic. Ergodic Markov Chains have interesting properties, especially about stationary distributions:

Definition 2.18 (Stationary distribution).

Let M be a Markov Chain, M its transition matrix and δ a probability distribution on the states of M. δ is said to be stationary if δM = δ. Theorem 2.2 (Fundamental Theorem of Markov Chains). Let M be an ergodic Markov Chain and M its transition matrix. Then M admits a unique stationary distribution σ. Further, M t x,y → t→∞ σ y for all states x, y. Example 2.12. The Markov Chain M presented in 2.8 is ergodic: it is strongly connected and there are self-loops ensuring that GCD of lengths of cycles on states is 1. Thus, M admits a stationary distribution δ. This distribution satisfies the following system:

s 0 start s 1 s 2 s 3 1 2 1 4 1 4 1 2 1 2 1 4 1 2 1 2 1 4 1 2
(δ 0 , δ 1 , δ 2 , δ 3)        0 1 2 1 4 1 4 1 2 1 2 0 0 1 2 0 1 4 1 4 1 2 0 0 1 2        = (δ 0 , δ 1 , δ 2 , δ 3) and δ 0 + δ 1 + δ 2 + δ 3 = 1
The solution of this system is (1 3 , 1 3 , 1 9 , 2 9).

Vocabulary and properties of probability distributions

In this section, we recall some definitions and set notations around the notion of random variables and probability distributions. In the following, the random variables will be implicitly defined on probabilistic space (Ω, F, P) with Ω the outcome possibilities, F a σ-algebra on the powerset of Ω and P the probability measure on F. We will immediately place ourselves in the case where the values associated to outcomes are real numbers. Furthermore, most of the definitions will be given for the case of discrete random variables.

Definition 2.19 (Expected value).

Let X be a real-valued random variable. The expected value of X is E[X] = x×P(x).

Notice that for some random variables, this sum may diverge and the expected value is not properly defined. Definition 2.20 (Moments).

Let X be a real-valued random variable. The n-th moment of X is given by E[X n].

Similarly, moments are properly defined when the sum does not diverge.

Example 2.13. Let us consider the random variable X following a geometric law of parameter 1 2 , i.e., for all n ≥ 1,

P(X = n) = 1 2 n . The expected value of X is equal to n n 2 n = 2. Its variance is equal to E[X 2] -E[X] 2 = 2.
An important property we will often try to ensure is that the probability of some bad case is low enough. Generally speaking, this bad case can be such as a long waiting time. To ensure that this has a low probability, we use concentration inequalities. We recall two of the most used.

Proposition 2.3 (Markov's inequality).

Let X be a real-valued random variable. Then, for all α > 0, we have

P(|X| ≥ α) ≤ E[|X| n] α n .
One particular case of Markov's inequality is by using

X = Y -E[Y]
for Y a real valued random variable. This is the Chebychev's inequality that guarantees that no more than a certain fraction of the distribution can be at more than a certain distance of the mean value.

Proposition 2.4 (Chernoff's inequality).

Let X be a real-valued random variable. Then, for all α, t > 0, we have

P(|X| ≥ α) ≤ E[e t•X] e t•a .
We also remind the different notions of convergences from the weakest to the strongest:

Definition 2.21 (Convergence in law). A sequence of random variables (X n) n∈N converges in law to X (denoted X n L -→ X) iff for all continuous bounded function ϕ, lim n E[ϕ(X n)] = E[ϕ(X)]

Definition 2.22 (Convergence in probability).

A sequence of random variables (X n) n∈N converges in probability to X (denoted

X n p - → X) iff ∀ε, lim n P(|X n -X| ≥ ε) = 0 Definition 2.23 (L p convergence). A sequence of random variables (X n) n∈N converges in L p to X (denoted X n Lp -→ X) iff ∀ε, lim n E[|X n -X| p] = 0 Definition 2.24 (Almost sure convergence). A sequence of random variables (X n) n∈N almost surely converges to X (denoted X n p.s -→ X) iff P(lim n X n = X) = 1.
Proposition 2.5. Let (X n) n∈N be a sequence of random variables, and X a random variable. We have

X n p.s -→ X ⇒ X n p - → X ⇒ X n L -→ X
In this thesis, we want to evaluate limit behaviors of series of random variables. To do that, the central limit theorem and the law of large numbers give answers to this question. Theorem 2.6 ((Strong) Law of large numbers).

Let X 1 , . . . , X n be a collection of independent and identically distributed (i.i.d.) random variables drawn from a distribution of expected value given by µ and S n = n i=1 X i n .

S n converges almost surely to µ. Theorem 2.7 (Central limit theorem).

Let X 1 , . . . , X n be a collection of independent and identically distributed (i.i.d.) random variables drawn from a distribution of expected value given by µ, finite variance given by

σ 2 and S n = n i=1 X i n . √
n(S n -µ) converges almost surely to the normal law of parameters (0, σ).

Questions of interest for the verification of stochastic systems

Along this document, we will talk about different kinds of properties. We will go from specific properties to more general ones. In this section, we present basic definitions and vocabulary that will allow the reader to have a better catch on the progression we will make. Techniques and specific state of the art will be included in corresponding sections.

Reachability

A first simple but necessary property that we want to tackle is the reachability, that can be considered in different ways. First, it can be reckoned in a qualitative way: given a target (i.e., a set of states), is there an execution that reach this set. Then, we can investigate the quantitative version of this question: how much of the executions reach this target? Finally, we can wonder how fast executions reach the target.

Let A be a labeled Markov chain, and s a target. The set of infinite executions that eventually reach s is given by s + (ρ)=s Cyl(ρ). This formulation as a countable union of cylinders show us that unsurprisingly this set is measurable. This can be rewritten as the sum of the probabilities of all paths that go from s 0 to s without reaching s before: π∈Ps(s 0 ,s)

P(π)

Notice that for all pair of paths π, π in P s (s 0 , s), we have that π is not a prefix of π . Since the set of runs that reach s can be expressed as the union of the cylinders of all finite runs that reach s, the set of runs that satisfy the reachability problem is measurable. Several algorithms allow to compute this quantity. We present one in section 2.5.1.

Expressing general properties as temporal logics

After reachability, we focus on general properties that have broader expressivity. In this work, we are interested in learning discrete time Markov Chains such that the learnt one is close enough to the model with high probability. To describe this notion of proximity, we use temporal logic [START_REF] Ben-Ari | The temporal logic of branching time[END_REF][START_REF] Pnueli | The temporal logic of programs[END_REF]. In this section, we introduce formalisms that allow one to express such properties. State of the art on the subject of learning Markov Chains will be addressed in Chapter 5.

Temporal logics

Temporal logics allow one to reason about properties related to a succession of events in an execution. Formulas in temporal logics can express complex properties, such as liveness (always ϕ), safety (never ϕ), fairness (if ϕ then eventually ψ)... Temporal logics are broadly used in formal verification. There is a huge variety of temporal logics, however in this document we will focus on two of them: Linear Temporal Logic (LTL) [START_REF] Pnueli | The temporal logic of programs[END_REF] and Computation Tree Logic (CTL) [START_REF] Edmund | Design and synthesis of synchronization skeletons using branching time temporal logic[END_REF]. First, we recall what these logics are, especially on our models. In the following, we assume M to be a discrete time Markov Chain.

The first temporal logic we consider, LTL, gives a way to specify properties on a single execution.

Definition 2.25 (Linear Temporal Logic).

Let S be the set of state names of M. LTL is built upon the following grammar:

ϕ ::= s ∈ S | ϕ ∧ ϕ | ¬ϕ | Xϕ | ϕU ϕ
We define the semantic as follows: an execution ρ satisfies a formula ϕ, denoted ρ |= ϕ according to the following rules:

• ρ |= true, • ρ |= s iff s -(ρ) = s, • ρ |= ϕ ∧ ψ iff ρ |= ϕ and ρ |= ψ, • ρ |= ¬ϕ iff ρ |= ϕ, • tρ |= Xϕ iff ρ |= ϕ, • ρ |= ϕU ψ iff there exists n such that ρ = t 1 . . . t n ρ and for all i ≤ n, t i . . . t n ρ |= ϕ and ρ |= ψ.
A Markov chain M satisfies an LTL property ϕ denoted M |= ϕ iff all traces of executions in M satisfy ϕ.

We have defined a minimal set of operators, however, for commodity, we may use the following operators:

• or: ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ), • false: f alse ≡ ¬true, • eventually: F ϕ ≡ true U ϕ, • always: Gϕ ≡ ¬F ¬ϕ.
By contrast with LTL, CTL does not handle single runs, but rather on execution trees, i.e., the possible futures of a run. There are two kinds of quantifiers: those on paths (Exists a future and All possible futures), and the path specific quantifiers.

Definition 2.26 (Computation Tree Logic).

Let S be the set of state names of M. CTL is built upon the following grammar:

ϕ :== S | ϕ ∧ ϕ | ¬ϕ | EGϕ | EU ϕ | EXϕ
Unlike in LTL, the semantics of CTL formulas is not defined on executions but rather on states, we denote it (M, s) |= ϕ. We will allow ourselves to write it s |= ϕ when there is no ambiguity on the system considered:

• s |= true, • s |= s, • s |= ϕ ∧ ψ iff s |= ϕ and s |= ψ, • s |= ¬ϕ iff s |= ϕ, • s |= EGϕ iff there exists (s i) i∈N , for all i, p(s i , s i+1) > 0 and s i |= ϕ, • s |= E[ϕU ψ] iff there exists s 1 . . . s n such that s = s 1 , for all i < n, p(s i , s i+1) > 0
and s i |= ϕ, and s n |= ψ, • s |= EXϕ iff there exists s , p(s, s) > 0 and s |= ϕ.

A Markov chain M satisfies a CTL property ϕ denoted M |= ϕ iff every initial state satisfies ϕ.

From this minimal set of operators, we may derive the following operators:

• or: ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ),

• false: f alse ≡ ¬true,

• exists eventually:

EF ϕ ≡ E[true U ϕ],
• always eventually: AF ϕ ≡ ¬EG¬ϕ,

• always forever: AGϕ ≡ ¬EF ¬ϕ,

• always next: AXϕ ≡ ¬EX¬ϕ,

• always until:

A[ϕU ψ] ≡ ¬(E[(¬ψ)U ¬(ϕ ∨ ψ)] ∨ EG¬ψ).
An LTL formula ϕ and a CTL formula ψ are said to be equivalent if for all M, M |= ϕ iff M |= ψ.

CTL and LTL are incomparable. Each one allows one to express properties that are inexpressible in the other. As an example, the property AGEF p in CTL has no equivalent in LTL: this property states that every execution at every point has the possibility to reach a state where p is true. LTL does not allow to reason about this possibility: as a logic about traces, it can only state if it does or does not reach a state where p is true. Conversely, the LTL formula F (p ∧ Xp) has no equivalent in CTL.

s 0 start s 1 Figure 2
.9: A model satisfying AGEF s 1 but not GF s 1 .

s 0 start s 1 s 2 s 3 s 4 Figure 2.10: A model satisfying F ((s 0 ∨ s 2 ∨ s 3) ∧ X(s 0 ∨ s 2 ∨ s 3)) but not AF ((s 0 ∨ s 2 ∨ s 3) ∧ AX(s 0 ∨ s 2 ∨ s 3)).
In figure 2.9, at every point of every execution, there is a possibility to reach s 1 . Hence, this model satisfies AGEF s 1 . However, it does not satisfy GF s 1 : the execution s ω 0 never reaches s 1 . In figure 2.10, every execution will eventually in two consecutive blue states, hence the formula F ((s 0 ∨ s 2 ∨ s 3) ∧ X(s 0 ∨ s 2 ∨ s 3)) is satisfied. However, the execution

s 0 s 3 s ω 4 does not satisfy AF ((s 0 ∨ s 2 ∨ s 3) ∧ AX(s 0 ∨ s 2 ∨ s 3)):
there is a possible successor to s 0 that is not blue. These two examples illustrate the difference between both logics. In order to state some positive results for both CTL and LTL, we will sometimes state them for the logic CTL * [Pnu77]. This temporal logic is a generalization of both CTL and LTL. Since we will not use this logic for other purposes in this thesis, we do not recall its formal definition.

We want a way to quantify the proportion of executions that satisfy the formula in order to know more than if a system does or does not satisfy a formula. We have the following result on CTL * :

Theorem 2.8 ([BK08]

). Given a system M and a CTL* formula ϕ, the volume of executions of M satisfying the formula ϕ is measurable.

Therefore, we will be able to define probability measures accordingly to the systems and the formulas.

General algorithmic results

In this section, we present some general results and algorithms that will be useful alongside this document. Results treated in this section are not specifically related to a single chapter. We first describe polynomial time algorithms for reachability in fully observable systems. Perfect information is key for these algorithms to run in PTIME. In the presence of partial information, many problems become undecidable. We recall some of these undecidability results on PFA at the end of the section.

PTIME algorithms for quantifying reachability in fully observable systems

Floyd-Warshall algorithm on weighted automata

The probability to reach a set of states can be computed by using a well known algorithm, the Floyd-Warshall algorithm [START_REF] Robert | Algorithm 97: shortest path[END_REF]. Although this algorithm was first designed to answer the shortest path problem, its uses are wider. We present the extension of this algorithm to closed semirings. For instance, this extension has been used in [START_REF] Mohri | Semiring frameworks and algorithms for shortest-distance problems[END_REF][START_REF] Cortes | On the computation of the relative entropy of probabilistic automata[END_REF] to compute quantities in some specific semirings.

Let (K, ⊕, ⊗, 0, 1) be a closed semiring, A a weighted automaton over K with states numbered from 0 to n -1, and let S f be a set of states that cannot be intermediate states in a path and S k the set of states {s k , s k+1 , . . . , s n-1 . For convenience, let us assume that

S f = {s n-1 . . . s n-m }, i.e., S f = S n-m .
We recall that for a subset of states Q, P Q (s i , s j) is the set of paths from s i to s j that do not have an intermediate state in Q. For two states s i and s j , the sets of paths (P S k (s i , s j)) k<n satisfy the following recursion:

• P init (s i , s j) = {(s i , a, s j), a ∈ Σ}, • ∀k ∈ 0; n-m-1 , P S k (s i , s j) = P S k-1 (s i , s j) P S k-1 (s i , s k)P S k-1 (s k , s k) * P S k-1 (s k , s j).
Then, P S n-m-1 (s 0 , s n-1) is exactly the set of paths going from s 0 to s n-1 that do not have an intermediate state in S f . We define W k (i, j) the total weight of the paths in P S k (s i , s j). Since for all k the sets P S k-1 (s i , s j) and

P S k-1 (s i , s k)P S k-1 (s k , s k) * P S k-1 (s k , s j) are disjoint, we have by construction that W k (i, j) = W k-1 ⊕ W k-1 (i, k) ⊗ W k-1 (k, k) * ⊗ W k-1 (k, j)
. This gives us the skeleton of the algorithm, with pseudo-code presented in algorithm 1.

Algorithm 1 Floyd-Warshall algorithm for semirings

W init is the matrix of weights of the transition W k are the matrix of weights at round k

for i, j ∈ 1, n do W 0 (i, j) ← W init (i, j) ⊕ W init (i, k) ⊗ W init (k, k) * ⊗ W init (k, j) end for for k ∈ 1, n -m -1 do for i, j ∈ 1, n do W k (i, j) ← W k-1 (i, j) ⊕ W k-1 (i, k) ⊗ W k-1 (k, k) * ⊗ W k-1 (k, j) end for end for return W (1, n)
Notice that for readability we kept one matrix per k, but we can make this with only two matrices. In Chapter 3, we will use this algorithm with different semirings in order to obtain a large variety of information.

Theorem 2.9.

Let A be a weighted automaton with S as state set over (K, ⊕, ⊗, 0, 1) and W = π∈P S f (s 0 ,s n-1) γ(π). Then there is an algorithm that computes W with complexity O(|S| 3).

For instance, let us consider the problem "what is the probability to eventually reach s n-1 from s 0 ?". By taking the probability semiring, and S f = {s n-1 }, we obtain exactly the probability to go from s 0 to s n-1 . We may also notice that by taking the tropical semiring, we obtain exactly a shortest path computation algorithm.

s 0 start s 1 s 2 s 3 s 4 1 2 1 4 1 2 1 4 1 4 1 2 1 2 1 4 1 1 Figure 2
.11: Markov Chain for the example of the Floyd-Warshall algorithm.

Example 2.14. We apply the algorithm to the Markov chain described in figure 2.11: we want to calculate the probabilities to eventually reach s 3 and s 4 from the initial state. Thus, we need to use only s 0 , s 1 , s 2 as intermediate states. The semiring used here is (R + , +, ×, 0, 1). We initialize the weights with the probabilities of the transitions in W . Then, we authorize s 0 as an intermediate state. For example, W 0 (s 2 , s 1) = W (s 2 , s 1) +

W (s 2 , s 0) • W (s 0 , s 0) * • W (s 0 , s 1). Since W (s 0 , s 0) = 0, we have W (s 0 , s 0) * = 1 and then W 0 (s 2 , s 1) = 0 + 1 4 • 1 • 1 2 = 1 8 . W =           0 1 2 0 1 2 0 0 1 2 1 2 0 0 1 4 0 1 4 1 4 1 4 0 0 0 1 0 0 0 0 0 1           W 0 =           0 1 2 0 1 2 0 0 1 2 1 2 0 0 1 4 1 8 1 4 3 8 1 4 0 0 0 1 0 0 0 0 0 1          
Then, s 1 is added as possible intermediate state. There is a self-loop on s 1 , then

W 0 (s 1 , s 1) * = 1 1-1 2 = 2. Thus, W 1 (s 1 , s 2) = W 0 (s 1 , s 2)+W 0 (s 1 , s 1)•W 0 (s 1 , s 1) * •W 0 (s 1 , s 2) = 1 2 + 1 2 • 2 • 1 2 = 1.
Finally, we add s 2 .

W 1 =           0 1 1 2 1 2 0 0 1 1 0 0 1 4 1 4 3 8 3 8 1 4 0 0 0 1 0 0 0 0 0 1           W 2 =          
0 0 0 1 0 0 0 0 0 1          
Then, the probability to eventually reach s 3 from s 0 is 4 5 and the probability to reach s 4 is 1 5 . Notice that the weights are not probabilities in general: it comes from the fact that in intermediate calculations we add weights of paths that can be prefix from each other. Hence, W 2 (s 0 , s 0) is not the probability to eventually reach s 0 from s 0 ! (To compute this quantity, we would need not to use s 0 as an intermediate state.)

Fix point algorithm for reachability probabilities

Reachability probabilities can also be computed by a fix point problem. Given a Markov Chain M = (S, M, µ 0), the set of states S is partitioned in three sets. First is S =0 , the states that cannot reach the goal, i.e., there is no path from those states to the target. The second is S =1 the set of states that will eventually reach the target with probability one. Notice that these two sets S =0 and S =1 can be computed in linear time. The third one is S ? = S \ (S =0 ∪ S =1) the set of states that have a probability to reach the goal strictly between 0 and 1.

Then, M ? is the restriction of M to states in S ? : M ? = (M (s, t)) s,t∈S ? . We also define b the vector of size |S ? | such that ∀s ∈ S ? , b s = t∈S =1 M (s, t). Then, we have the following result: Theorem 2.10 ([BK08]). The vector x = (probability to reach the goal from s) s∈S ? is the least fixed point of the operator Ψ : [0, 1] S ? → [0, 1] S ? given by

Ψ(y) = M ? y + b Besides, if x (0)
is the zero vector, and

x (n+1) = Ψ(x (n)), then: • x (n) s
is the probability to reach the goal from state s in n steps or less,

• x = lim n→∞ x (n) .
To go deeper, notice that all eigenvalues λ of M ? satisfy |λ| < 1, thus by taking I the identity matrix of the appropriate dimension I -M ? is invertible. Thus, the least fix point

x is given by (I -M ?) -1 b. For more complex semirings, we will use the Floyd-Warshall algorithm as elements of semirings may not have an inverse.

Example 2.15. We continue example 2.14. The goal is state s 3 . Then, S =0 = {s 4 }, S =1 = {s 3 }, and M ? and b are given by:

M ? =     0 1 2 0 0 1 2 1 2 1 4 0 1 4     b =     1 2 0 1 4    
Then we invert matrix I -M ? and obtain:

(I -M ?) -1 =    
    (I -M ?) -1 (b) =     4 5 3 5 3 5    
Notice that as expected, we obtain the same results as with the Floyd-Warshall algorithm.

Reachability in MDPs

In MDPs, reachability is more subtle. Indeed, the possibility to reach a state and further its probability depend on the control strategy adopted, i.e., depends on wich letters are played. As the probability depends on a controller C, we denote it P C . A natural question is to find the controller that gives the maximal probability P max to reach the goal G. Here, we denote by P max (reach G from s) the maximal probability to reach G from s and P C (reach G from s) the probability to reach G using controller C. Finding the best controller seems difficult, as there are infinitely many. However, the following result reduces the number of controllers to investigate:

Theorem 2.11 ([BK08]

). Let A be an MDP, S its state set and G the goal. There exists a memoryless and pure controller such that for any state s,

P C (s) = P max (s)
The probability P max (s) can be computed in polynomial time.

Memoryless means that the policy only depends on the current state but not on the previous ones. Pure means that for every state, the controller will only choose one action and forbid the others. In order to find the maximal probability, several methods are possible. A first is linear programming. The vector (x s) s∈S with x s = P max (s) is the unique solution to the following linear program:

• s ∈ G ⇒ x s = 1, • G is not reachable from s ⇒ x s = 0, • for all a ∈ Σ, x s ≥ t∈S M a (s, t) • x t .
Then, this linear program can be solved in polynomial time. Other methods, such as value iteration can be used to find the maximal probability. Similarly, minimal probability for reachability can be calculated in polynomial time: in the linear program, ≥ becomes ≤.

Undecidable problems on partially observable systems

As one can expect, going from perfect to imperfect information may make some problems much more difficult and often undecidable. In order to prove the undecidability of some of the problems we will consider on these partially observable systems, we will need to perform a reduction from other undecidable problems. In this section, we consider a few undecidable problems for PFA that we will use later.

We first define the language associated to a cut-point.

Definition 2.27 (Language wrt a cut-point).

Let A be a PFA. Let 0 ≤ η ≤ 1. The language of A with respect to the cut-point η is L A (η) = {w, P A (w) ≥ η}.

A canonical problem is to determine if this set is empty: Definition 2.28 (Emptiness problem for a PFA).

Given a PFA A and 0 ≤ η ≤ 1, the emptiness problem consists in determining if

L A (η) = ∅.
It is called strict emptiness if we use a strict equality instead of a large one. We notice that for η = 0, the strict inequality problem trivially reduces to the emptiness problem for a non-deterministic automaton, which is in NLOGSPACE. For η = 1, the emptiness problem reduces to the universality problem for non-deterministic automata which is PSPACE-complete [START_REF] Kozen | Lower bounds for natural proof systems[END_REF]. This gives us lower bounds for the complexity of the problem. However, the general case of this problem is much more difficult: Theorem 2.12. For 0 < η < 1, the emptiness problem for a PFA is undecidable.

The undecidability has first been proved in [START_REF] Paz | Introduction to probabilistic automata (Computer science and applied mathematics)[END_REF]. New proofs have been presented in [START_REF] Madani | On the undecidability of probabilistic planning and related stochastic optimization problems[END_REF] and in [START_REF] Gimbert | Probabilistic automata on finite words: Decidable and undecidable problems[END_REF]. These more recent proofs have been made more legible and have precised a few points, such that the emptiness problem is undecidable for PFA with only two probabilistic transitions, i.e., there are two couples s ∈ S, a ∈ Σ such that there exists t and 0 < M a (s, t) < 1 [START_REF] Gimbert | Probabilistic automata on finite words: Decidable and undecidable problems[END_REF]. Thus, the undecidability threshold is crossed very quickly.

A second notion we will need is about isolated cut-points:

Definition 2.29 (Isolated cut-point).
Let A be a PFA and 0 ≤ η ≤ 1. η is said to be isolated with respect to A iff there exists ε > 0 such that for all w ∈ Σ * , |P A (w) -η| ≥ ε.

This definition leads us to the following decision problem:

Definition 2.30 (Isolation problem).

Given a PFA A and 0 ≤ η ≤ 1, the isolation problem consists in determining if η is isolated.

Again, this problem has been proved undecidable.

Theorem 2.13. For 0 ≤ η ≤ 1, the isolation problem is undecidable.

The case 0 < η < 1 has been proved in [START_REF] Bertoni | The solution of problems relative to probabilistic automata in the frame of the formal languages theory[END_REF]. The special case 0 and 1 have long stayed open, but have been showed undecidable in [START_REF] Gimbert | Probabilistic automata on finite words: Decidable and undecidable problems[END_REF].

Chapter 3

Diagnosability analysis of Labeled Markov Chains

In everyday language, diagnosability is the ability to decide the nature and cause of something. This term is generally used in medicine: a doctor examines the symptoms in order to diagnose the illness, or in any field related to find causes of a problem (diagnose a car...). In some sense, this is what we want to do here: given a model of a system and one of its execution, we want to know if some "error" occurred. What we call an error can be any binary property, that is a question such that its answer is "yes" or "no". Our challenges are similar to those in other fields. First, we must define what we want to diagnose exactly.

A second challenge is that the answer should be accurate: false positive and false negative may occur. Finally, an answer should be given "quickly". Diagnosability has no interest if it cannot be done in a reasonable time. These three notions can be summarized by verdict, correctness and reactivity.

These notions have been extensively studied for qualitative diagnosability for labeled transition systems and probabilistic transition systems. In this chapter, we want to extend these notions to quantified diagnosis.

The notion of verdict stays unchanged: given a system and an execution, several investigation are possible. We may want to know if it has been erroneous for sure, or if it has been correct for sure, or even both at the same time. In this chapter, we focus on the detection of errors in the context of permanent faults: the system cannot recover of a problem.

Correctness of diagnosis has been studied as determining if there is 0 error (or with probability 0) on the diagnosis. In this chapter, we tackle the issue of determining with precision the "amount of correctness", that is giving a measure of the diagnosability. This gives a hint on how close to diagnosable a system is.

Finally, reactivity has in the literature been studied in two ways. First, for diagnosability of LTSs, reactivity is the existence of a bounded delay after which an answer is given. This assessment is too strong for probabilistic systems, where no bounds can be given but the probability of non diagnosis decreases to 0 with the time. Thus, the reactivity requirement must be adapted. This can be done by requiring that with probability 1 the fault will be detected in finite time. In this chapter, we investigate a quantitative version of reactivity, based on concentration inequalities. For example, we can ask "after how many steps am I sure to detect an error with probability at least 0.9? This chapter is organized as follows: section 3.1 presents a state of the art on diagnosability. We start this state of the art in subsection 3.1.1 by presenting a definitions and results on diagnosability of finite Labeled Transition Systems. Then, this state of the art investigates what has been studied on diagnosability of probabilistic systems through A-diagnosability in subsection 3.1.2, AA-diagnosability in subsection 3.1.3 and finally on quantified diagnosis in 3.1.4. Section 3.2 presents a first contribution on quantified diagnosability. Definitions and semantics are given in subsection 3.2.1, related algorithms in subsection 3.2.2 and possible optimizations in subsection 3.2.3. In section 3.3, we present how to evaluate the distribution of diagnosis speed and its applications. Subsection 3.3.1 helps us to define the mathematical tools we need, subsection 3.3.2 states how to approximate the distribution of detection delay and subsections 3.3.3 and 3.3.4 discuss how to derive concentration bounds from this evaluation. Finally, we conclude and give some possibility of future work. Some related work that was not close enough to be put in the state of the art is also mentioned. This chapter is based on the results presented in [BFG17; BFG18b; BFG18a].

State of the art

Diagnosis and diagnosability of finite LTS

As stated in the introduction, diagnosability is the ability to detect a binary property on a run of a system from the observation produced by that run. This property is usually called the presence of a "fault" event and detecting this occurrence is called the diagnosis. Therefore, our model must include a way to represent errors. Faults can equivalently be represented as a subset of the alphabet or a subset of states of the system. In the literature, the former is generally adopted. In this thesis, as we consider stochastic systems, it is simpler to use the latter, that is state based errors: changes of states are registered as soon as an observation is collected. Recall that we consider systems where the states are unobservable. Thus, we can remove the unobservable alphabet by a procedure of ε-removal about which we spoke about in Chapter 2.1.2. We will thus present some previous results in our formalism.

Let A = (S, Σ, I, T) be an LTS. The set of states S is partitioned in two: the set of correct states S C and the set of faulty states S F . The set of faulty states is said to be absorbing iff for all s ∈ S F , for all a ∈ Σ, (s, a, s) ∈ T implies that s ∈ S F . In this case, faults are said to be permanent.

Definition 3.1 (Faulty run).

Let A = (S, Σ, I, T) be an LTS,

S = S C S F . Wlog, assume that I ⊆ S C . A run ρ is said to be faulty if s + (ρ) ∈ S F .
A run ρ is said to be minimal faulty if all its strict prefixes are non-faulty, i.e., correct. We denote by F (A) (resp. C(A)) the set of faulty (resp. correct) runs of A. The set of faulty runs ρ = ρ ρ such that ρ is minimal faulty and |ρ | = n is denoted F n (A) and correct runs of length n is C n (A). For infinite runs, we denote it

F ∞ (A) (resp. C ∞ (A)).
When there is no possible ambiguity, we will drop the name of the automaton (e.g. F n instead of F n (A)). Given a run ρ and its observation o(ρ), our goal is to determine if ρ is faulty (ρ ∈ F) or correct (ρ ∈ C). Given an observation o(ρ), three judgments on ρ are possible: either it can only be produced by correct runs and then it is correct, or it can only be produced by faulty runs and then it is faulty, or both and we cannot decide. This last judgment is called ambiguity.

Definition 3.2 (Ambiguity).

Let A = (S, Σ, I, T) be an LTS, S = S C S F . A run ρ of length n ∈ N ∪ {∞} is said to be faulty ambiguous if ρ ∈ F n and there exists ρ ∈ C n such that o(ρ) = o(ρ). Similarly, we define correct ambiguous runs.

We set some notation for all these runs: the set of faulty (resp correct) ambiguous runs is denoted F amb (resp C amb). We denote the set of faulty (resp. correct) non ambiguous runs F namb (resp C namb). As before, for all these sets, we will denote those of a specific length n by adding n as a subscript (ex: F namb,n). Given an observation, we want to determine in which category it falls. This evaluation is performed by a diagnoser.

Definition 3.3 (Diagnoser).

Let A = (S, Σ, I, T) be an LTS, S = S C S F . A diagnoser is a function D : Σ * → {C, F, Amb} such that for an observation obs ∈ Σ * ,:

• D(obs) = C if o -1 (obs) ⊆ C(A), • D(obs) = F if o -1 (obs) ⊆ F (A),
• D(obs) = Amb else.

As stated in the introduction, different verdicts are possible. Some works consider the diagnosis of faulty runs only, i.e., intuitively a system should be diagnosable if any faulty run loses its ambiguity after a bounded extension. Others consider the diagnosis of all runs, that is a system should be diagnosable if any run loses its ambiguity after a bounded extension. In this chapter, we will consider the former and we present we will use as a starting point the definition of [START_REF] Sampath | Failure diagnosis using discrete-event models[END_REF], that is we restrict ourselves to permanent faults and the study of diagnosability of faulty runs.

Definition 3.4 (k-Diagnosability of a run).

Let A = (S, Σ, I, T) be an LTS,

S = S C S F . A faulty run ρ ∈ F is said to be k-diagnosable if for all π such that ρπ ∈ F and |π| ≥ k then D(o(ρπ)) = F .
Then, a notion of diagnosability for a system can be deduced from the notion of diagnosability for its runs. An LTS A is said to be k-diagnosable if all its runs are kdiagnosable. Originally, diagnosability has to be uniform: there is a bound such that all executions are diagnosed before this bound. More formally:

Definition 3.5 ((Uniform) Diagnosability of an LTS).

An LTS A is said to be diagnosable if there exists k such that all its faulty runs are k-diagnosable.

Later we will see that the requirement of uniformity is not restrictive for LTSs, that is if for every faulty run ρ there is a k such that ρ is k-diagnosable, then there is a k such that all faulty runs ρ are k-diagnosable. A natural decision problem arises:

Definition 3.6 (Diagnosability).

Given an LTS A, the diagnosability problem consists in determining whether A is diagnosable.

This problem has been studied in [START_REF] Sampath | Failure diagnosis using discrete-event models[END_REF] and the exact complexity has been stated later [START_REF] Jiang | A polynomial algorithm for testing diagnosability of discrete-event systems[END_REF][START_REF] Yoo | Polynomial-time verification of diagnosability of partially observed discrete-event systems[END_REF].

An LTS A is diagnosable if there is no arbitrarily long ambiguous faulty sequence, i.e., ∪ n∈N ∩ m≥n F amb,m = ∅. We define the twin plant à that allows one to tackle the complexity of the problem.

Definition 3.7 (Twin plant).

Let A = (S, Σ, I, T) be an LTS, S = S C S F and I ⊆ S C . The twin plant of A, denoted à is the LTS (S, Σ, Ĩ, T) with: This algorithm shows one more thing: on LTS, the notion of uniform diagnosability is not restrictive. Given an LTS A, if a run is diagnosable then it is |S| 2 -diagnosable. Hence a uniform bound for all executions. Example 3.1. We extend example 2.1. In this automaton, we define the state of faulty states S F = {s 2 , s 3 }, in red in figure 3.1 left. From this, we build the twin plant, represented alongside with ambiguous states in orange. The state (s 3 , s 1) is ambiguous and then, the transition ((s 3 , s 1), a, (s 3 , s 1)) constitutes an ambiguous cycle. Therefore, our LTS is not diagnosable.

• S = S × S C , • Ĩ = I × I, • T ⊆ S × Σ × S, with ((s, s), a, (s 1 , s 1)) ∈ T iff (s, a,

A-Diagnosability of LMCs

The first notion of diagnosability can literally be applied to stochastic systems such as LMCs. However, probabilistic systems enable more refined definitions. We saw that for LTS, a notion of uniformity for diagnosability was not restrictive. This is not the case for probabilistic systems: if an event that enables a verdict appears with probability p at each step, for any k we have no assurance it happens in less than k steps. However, as the number of steps goes to infinity, the probability that this event occurs goes to 1. It means that a distinguishing (serie of) event(s) may allow one to have a verdict with probability 1 if we let ourselves have as much information as we desire.

In order to deal with this subtlety, [START_REF] Thorsley | Diagnosability of stochastic discrete-event systems[END_REF] introduced A-diagnosability where A stands for asymptotic:

Definition 3.8 (A-diagnosable system).

An LMC A is said to be A-diagnosable if lim sup n P(F Amb,n) = 0.

This formally states the intuition above: the probability to never detect a faulty run is 0 as the length of the observation following the fault goes to infinity. Notice that for finite systems this condition is equivalent to P(F Amb,∞ = 0): indeed, for finite systems, F Amb,n+1 ⊆ F Amb,n , thus the lim sup is only a limit. This notion leads to another decision problem:

Definition 3.9 (A-diagnosability).

Given an LMC A, the A-diagnosability problem consists in determining whether A is A-diagnosable.

[CK13] claimed that this problem could be solved in PTIME, which was later disproved in [START_REF] Bertrand | Foundation of diagnosis and predictability in probabilistic systems[END_REF], clarifying the complexity of A-diagnosability.

Proposition 3.2 ([BHL14]). A-diagnosability of LMC is PSPACE-complete.

In order to prove the hardness, [START_REF] Bertrand | Foundation of diagnosis and predictability in probabilistic systems[END_REF] reduces a variant of language universality (i.e., L(A) = Σ * ?) to A-diagnosability. They create an LMC where the faulty language is Σ * and the safe language is L(A). Then, the LMC is A-diagnosable iff there is no word u such that u -1 L(A) = Σ * . Notice that in [START_REF] Bertrand | Foundation of diagnosis and predictability in probabilistic systems[END_REF], they prove that A-diagnosability coincides with their IF-diagnosability, i.e., the diagnosability of infinite faulty runs. This rephrases the point we stated before: for finite LTS, lim sup n P(F Amb,n) = 0 ⇔ P(F Amb,∞) = 0. Now, in order to prove that A-diagnosability is in PSPACE (see Proposition 3.4), we detail the algorithm that builds an A-diagnoser of an LMC A. For that, we need to define the observer Ȧ. The observer results from classical powerset construction on the support of A: Definition 3.10 (Observer).

Given an LMC A = (S, Σ, µ 0 , p), we define its observer Ȧ = (Q, Σ, I, T) as a deterministic finite state machine such that:

• Q ⊆ 2 S C , • I ⊆ Q, defined by I = {{s ∈ S C , µ 0 (s) > 0}} = supp(µ 0), • T ⊆ 2 S C × Σ × 2 S C such that for all (q, a, q) ∈ T , s ∈ q ⇒ ∀s , p(s, a, s) > 0 ⇒ s ∈ q and s ∈ q ⇒ ∃s ∈ Q, p(s, a, s) > 0,
• The automaton is trimmed: only states reachable from I are kept.

Notice that the definition implies that the observer is deterministic, since the successor of q by a has to be maximal with respect to the condition in the definition. Definition 3.11. Given an LMC A = (S, Σ, µ 0 , p), its A-diagnoser A is the synchronized product between A and its observer Ȧ: A = A|| Ȧ.

Proposition 3.3.

A is a well defined LMC with the same language as A. Denoting p the probability mapping in A, we have that the natural projection that associates transition t = ((s, q), a, (s , q)) of A to a transition t = (s, a, s) of A satisfies p(t) = p(t). This projection establishes a one-to-one correspondence between runs ρ of A and runs ρ of A, and this correspondence preserves likelihoods: p(ρ) = p(ρ). Moreover, ρ is faulty (resp. safe) in A iff ρ is faulty (resp. safe) in A.

Thus, the A-diagnoser is itself an LMC that accepts the same stochastic language as A. A state (s, q) of the diagnoser is called correct (resp. faulty, ambiguous) if q ⊆ S C (resp. q ⊆ S F , none of the above).

Example 3.2. We extend example 2.5 by adding probabilities to the model and obtain the LMC pictured in figure 3.2, augmented with faulty states in red. The observer states that as long as one observes only a k , A may be in s 1 , but after a k b is observed, s 1 is no more possible. There is no faulty ambiguous BSCC in the A-diagnoser. We will see that this LMC is then A-diagnosable. First, notice that all states in a BSCC will have the same status. Indeed, for all s, s in a same BSCC there is a path from s to s and the notions of faultiness and non-ambiguity are absorbing. Since there is probability 1 to eventually reach a BSCC, a diagnosis will be given with probability 1. This also states that the complexity of A-diagnosability is PSPACE: indeed, the search for an ambiguous state in a BSCC of the diagnoser can be made in NLOGSPACE of the size of the extended LMC A, which is exponential in the size of A (powerset based construction). Hence, a NPSPACE complexity and thanks to Savitch's theorem, we obtain the PSPACE complexity. The hardness proved in [START_REF] Bertrand | Foundation of diagnosis and predictability in probabilistic systems[END_REF] is proved thanks to a reduction from a variant of language universality.

Proposition 3.4 ([BHL14]). An LMC A is A-diagnosable iff its A-diagnoser has no ambiguous (state in a) Bottom Strongly Connected Component (BSCC).

s 0 start s 1 s 2 s 3 a, 1 2 a, 1 4 a, 1 4 b, 1 2 a, 1 b, 1 a, 1 2 {s 0 } start {s 1 } ∅ a b a s 0 , {s 0 } start s 1 , Q s 2 , Q s 3 , Q s 3 , {s 1 , s 3 } s 2 , {s 2 } Q = {s 1 , s 2 , s 3 } a, 1 2 a, 1 4 a, 1 4 b, 1 2 b, 1 2 a, 1 2 b, 1 2 a, 1 b, 1 a, 1 2

AA-diagnosability of LMCs

In addition to A-diagnosability, [START_REF] Thorsley | Diagnosability of stochastic discrete-event systems[END_REF] introduced the concept of AA-diagnosability. Intuitively, the former states that "with probability 1, a faulty run will eventually have an observation that reveals the occurrence of a fault" while the latter states that "with probability 1, the observation of a faulty run will have an arbitrarily small likelihood to be derive from a correct run".

Example 3.3. This intuition is illustrated by figure 3.3. The LMC A is not A-diagnosable: both correct and faulty infinite language are a(a + b) ω . However, the faulty part has a far bigger chance to produce an "a" at each step, while the correct part will produce a "b" with larger probability. Therefore, a trace with many more "a" than "b" should be labeled as "faulty with high probability". Hypothesis testing based on likelihood ratio would have an arbitrary low rate of undetection as the length of the observation goes to infinity. In this example, a word having k 1 + 1 "a" and k 2 "b" would have a likelihood ratio to be in More formally, we denote by F ε amb (resp. F ε amb,n) the set of faulty runs ρ (resp. of length n) that can be labeled as faulty with a probability of error lower than ε, that is:

s 2 rather than s 1 of (1 2 • 4 k 1 5 k 1 +k 2)/(1 2 • 4 k 2 5 k 1 +k 2) = 4 k 1 k 2 . s 0 start s 1 s 2 a, 1 2 a, 1 2 a,
P(o -1 (ρ) ∩ C) P(o -1)(ρ) ≤ ε
This leads to the definition of ε-diagnosability, that we take from [START_REF] Bertrand | Accurate approximate diagnosability of stochastic systems[END_REF] and allows us to define precisely AA-diagnosability: Definition 3.12 (ε-diagnosability).

An LMC A is ε-diagnosable if for all faulty run ρ and α > 0, there exists n ρ,α such that for all n ≥ n ρ,α :

P(Cyl(ρ) ∩ F ε amb,n+|ρ|) ≤ α
Intuitively, an LMC is ε-diagnosable if all faulty runs will have a low proportion (≤ α) of futures (i.e., in Cyl(ρ)) that have a "correctness level" bigger than ε (i.e., in F ε amb,n+|ρ|). Definition 3.13 (AA-diagnosability).

An LMC A is AA-diagnosable if it is ε-diagnosable for all ε > 0.
We put in relation the different notions of diagnosis we just gave. We saw that AAdiagnosability implies ε-diagnosability for all ε. Besides, A-diagnosability can be defined as 0-diagnosability. Indeed, it is a diagnosis with 0 error with probability 1. Proposition 3.5. Let A be an LMC and ε > 0. We have the following:

A is A-diagnosable ⇒ A is AA-diagnosable ⇒ A is ε-diagnosable for some ε
Similarly to A-diagnosability, the decision problem associated with AA-diagnosability was incorrectly analyzed in [START_REF] Chen | Polynomial test for stochastic diagnosability of discrete-event systems[END_REF] and its complexity was established in [START_REF] Bertrand | Accurate approximate diagnosability of stochastic systems[END_REF].

Proposition 3.6. AA-diagnosability of an LMC can be decided in PTIME.

This was proved by reducing AA-diagnosability to the distance-1 problem for two LMCs, a problem that has been shown to be solvable in polynomial time in [START_REF] Chen | On the Total Variation Distance of Labelled Markov Chains[END_REF]. However, interestingly, while this means that AA-diagnosability of an LMC is computationally easy, deciding if it is ε-diagnosable for a given ε > 0 is intractable. Proposition 3.7. For all ε > 0, ε-diagnosability is undecidable.

This result was also proved in [START_REF] Bertrand | Accurate approximate diagnosability of stochastic systems[END_REF].

Towards quantitative diagnosability analysis

The previous two sections gave a first attempt at dealing with stochastic systems. However, it was still in a qualitative way: both A-diagnosability and AA-diagnosability are logical properties, where the answer can only be yes or no. A more precise result is to try to quantify the part of the system that is non-diagnosable. Are almost all faulty runs nondiagnosable? Only a few? Few authors addressed this question, that we further develop in section 3.2. In particular, let us present the contribution in [START_REF] Nouioua | A probabilistic analysis of diagnosability in discrete event systems[END_REF] that defines a quantification of the non-diagnosable part of the system.

Definition 3.14 (MC-diagnoser).

Given an LMC A and its A-diagnoser A = (S × Q, Σ, µ 0 , p), the MC-diagnoser M A is a Markov Chain (S × Q, M, µ 0) with for all s i , s j ∈ S, M i,j = a∈Σ p(s i , a, s j).

Then, the degree of diagnosability of A is defined as follows: d(A) is the ratio between the probability to reach a non-ambiguous faulty BSCC in M A and the probability to reach a faulty BSCC in this same Markov Chain. In [START_REF] Nouioua | A probabilistic analysis of diagnosability in discrete event systems[END_REF], this computation is made thanks to a fix point algorithm.

Example 3.4. Let us consider the LMC A pictured in figure 3.4. This LMC is not Adiagnosable: the infinite word a ω is ambiguous and has positive probability. Those are the runs that lead to an orange BSCC in the MC-diagnoser M A . However, some faulty runs can be diagnosed: if a b is observed then we know the run is faulty: those are the one that lead to a red state in M A . Runs with a b have a probability 3 8 and faulty runs have a probability 1 2 . Thus, the proportion of diagnosable faulty runs is 3/8 1/2 = 3 4 . The second quantified property one can expect is the time to detect a fault. We can define a probability distribution over the infinite faulty runs with value in R + that associates each infinite faulty run to the time needed to detect its fault. However, this distribution may be not fully computable. Thus, [START_REF] Nouioua | A probabilistic analysis of diagnosability in discrete event systems[END_REF] investigates the mean time to reach a faulty non-ambiguous BSCC in M A (conditionally to all runs that reach one).

Example 3.5. Going back to figure 3.4, we look at the mean time to reach a faulty nonambiguous BSCC. Runs going through s 2 will be diagnosed after the second observation and have probability 1 4 . Those going through state s 3 may reach a non-ambiguous faulty BSCC in 3 + i steps with probability 1 16 • 1 2 i . Thus, the mean time to reach this BSCC is

1 4 • 2 + 1 16 • (i≥0 3+i 2 i) 1 4 + 1 16 • i≥0 1 2 i = 8 3

Quantifying diagnosis

In this section, we investigate the problem of comparing non-diagnosable systems. In a way, we generalize the work of Nouioua and Dague in [START_REF] Nouioua | A probabilistic analysis of diagnosability in discrete event systems[END_REF] and expand it. We define several diagnosability degrees with one of them corresponding to the degree d in [START_REF] Nouioua | A probabilistic analysis of diagnosability in discrete event systems[END_REF]. These definitions will allow us to have more precise results on the time of diagnosis in section 3.3. We also give algorithms to optimize the computation of the degrees in subsection 3.2.3. In the following, we use the notions of observers, diagnosers, MC-diagnosers as defined in the state of the art.

s 0 start s 1 s 2 s 3 s 4 s 5 a, 1 2 a, 1 4 a, 1 4 c, 1 2 a, 1 4 a, 1 4 a, 1 b, 1 2 a, 1 2 a, 1 c, 1 Q 1 = {s 1 , s 2 , s 3 } Q 2 = {s 1 , s 2 , s 3 , s 4 } s 0 , {s 0 } start s 1 , Q 1 s 2 , Q 1 s 3 , Q 1 s 1 , Q 2 s 2 , {s 2 } s 4 , Q 2 s 3 , Q 2 s 2 , Q 2 s 5 , Q 2 1 2 1 4 1 4 1 2 1 1 1 4 1 4 1 2 1 4 1 4 1 1 1 2 1 1 2
1 Figure 3.4: An LMC A, faulty states in red (above) and the Markov Chain M A associated with its diagnoser with faulty ambiguous states in orange (below).

Diagnosability degrees

We now examine LMCs that may not be fully A-diagnosable. We recall that the set of states is partitioned between correct states S C and faulty states S F , and that S F is absorbing in our setting. Diagnosability is defined for (faulty) runs in the first place, and then extended to systems, so it is natural to measure the proportion of problematic faulty runs, i.e., those that may not lead to fault detection. Along this line, one may imagine countless notions of diagnosability degrees. For example, among the most natural ones (a) the probability to make a fault (ie to enter into S F) that is (k-)diagnosable, conditionally to the occurrence of a fault, (b) or the probability that k steps after the occurrence of a fault, diagnosability holds, again conditionally to the occurrence of a fault i.e., dectection will take place in the future for sure, (c) or the probability to detect a fault k (or less) steps after it appears, still conditionally to the occurrence of a fault, (d) or the probability to eventually detect a fault after it appears, conditionally to the occurrence of a fault.

Example 3.6. We continue example 3.4 All these notions are meaningful and lead to similar developments, so for simplicity we focus on (c) and (d). We use the notation F namb,≤k = ∪ n≤k F namb,n to denote all the faulty runs that are diagnosed in k steps or less. Then, we define the degree of k-diagnosability as follows:

Definition 3.15 (k-diagnosability degree).
The k-diagnosability degree of an LMC A is defined as the probability to detect a fault in at most k steps after it occurs, conditionally to the occurrence of a fault :

∆ k (A) = P(F namb,≤k (A) | F ∞ (A)) = P(F namb,≤k (A)) P(F ∞ (A))
And similarly, we define the diagnosability degree of a A: Definition 3.16 (Diagnosability degree).

The diagnosability degree of an LMC A is defined as the probability to detect a fault after it occurs, conditionally to the occurrence of a fault :

∆(A) = P(F namb,∞ (A) | F ∞ (A)) = P(F namb,∞ (A)) P(F ∞ (A))
Notice that the diagnosability degree is the limit of k-diagnosability when there is an arbitrary high time limit to decide, that is ∆(A) = lim k ∆ k (A). We can also make a link with classical diagnosability:

Proposition 3.8. There exists k, ∆ k (A) = 1 iff A is k-diagnosable. ∆(A) = 1 iff A is A-diagnosable.

Computation of diagnosability degrees

In this section, we present an evaluation algorithm for diagnosability degrees of an LMC by reducing the problem to reachability probabilities on extensions of this LMC.

The first probability we consider is the probability to produce a fault: P(F ∞ (A)). The set F ∞ (A) corresponds to the property of reaching S F , so:

P(F ∞ (A)) = P({ρ = t 1 ...t n : s -(t n) ∈ S C , s + (t n) ∈ S F })
Section 2.5.1 has detailed a polynomial time algorithm to evaluate such quantities. For the other term P[F namb,≤k (A)], we show below that the probability of this set can also be characterized as a reachability probability.

Observe that, after a fault, a faulty run ρ is first ambiguous for some time and then may become "diagnosed" when fault detection takes place. We thus need to characterize the ambiguous segment following a fault, which length can range from 0 to infinity. In other words, we must characterize the time at which fault detection occurs after a fault. To this end, the first step consists in attaching a counter to faulty states. This can be performed by a simple state augmentation on A. Equivalently, and without loss of generality, one can directly assume that faulty states of A are partitioned as S F = S F,0 S F,1 ... S F,k S F, >k , and that transitions from S C to S F point to S F,0 , while transitions within S F go from S F,l to S F,l+1 for some 0 ≤ l ≤ k or stay within S F, >k . If ρ ∈ F (A) satisfies s + (ρ) ∈ S F,l , then ρ performed l steps after the fault. The second step consists in characterizing the moment at which a faulty run becomes diagnosed (if it does). This is most conveniently performed on the A-diagnoser A presented in section 3.1.2: Proposition 3.9. A (finite) faulty run ρ ∈ R(A) is diagnosed in at most k steps iff it terminates in a state (s, q) ∈ S F,k ×Q with D(q) = F , or equivalently iff (s, q) ∈ S F,k ×2 S F . This is a direct consequence of the structure of A and of the definition of an Adiagnoser A of A. Since the A-diagnoser has the same stochastic language as the original automaton, we obtain:

P(F namb,≤k (A)) = P({ρ ∈ R(A) : s + (ρ) ∈ S F,k × 2 S F })
Thus, this term is turned into another reaching probability, in A this time. The polynomial techniques of Section 2.5.1 still apply, with the limitation that A can be exponentially larger than A, because of the observer Ȧ that is present in the synchronous product.

Example 3.7. Figure 3.5 pictures a classical example of an LMC that has an exponential diagnoser. Indeed, its observer has an exponential size. After seeing an a, the current state cannot be s 2 . That lack of transition allows to introduce a "shift" that is transmitted by every b: safe runs can produce a c only n -1 steps after producing a b.

To evaluate the diagnosability degree of A, we need to compute P(F namb,∞ (A)), i.e., the probability that a fault is eventually detected. Here, the layering of S F is not necessary, as time since the initial fault needs not to be counted. Thus, we do not need to perform a state augmentation on A. We recall that a faulty run is diagnosed at the moment it reaches a non-ambiguous faulty state in the A-diagnoser A. Hence, another reachability property to compute this quantity:

P(F namb,∞ (A)) = P({ρ ∈ R(A) : s + (ρ) ∈ S F × 2 S F })
Unlike [START_REF] Nouioua | A probabilistic analysis of diagnosability in discrete event systems[END_REF], we do not use the BSCC in this definition. However, both notions of diagnosability degree are equivalent:

Proposition 3.10. For all A, ∆(A) = d(A). Proof. ∆(A) = P(F namb,∞ (A)) P(F∞(A))
and d(A) = P(reach an unambiguous faulty BSCC in M A) P(reach an faulty BSCC in M A)

A run ρ that reaches a faulty (resp. unambiguous faulty) BSCC is in

F ∞ (A) (resp. F namb,∞ (A))). Conversely, the runs in F ∞ (A) (resp. F namb,∞ (A)
)) that do not reach a BSCC have a probability 0. Further, the nature of the BSCC can only be faulty (resp. unambiguous faulty).

Example 3.8. Continuing example 3.4, we compute the diagnosability degree. The probability to have a faulty run is the probability to reach s 2 or s 3 , that is 1/2. The probability to be faulty and diagnosed is equal to the probability to reach state (s 2 , {s 2 }) in the diagnoser, that is 3/8. Then, the probability to having a fault detected conditionally to the occurrence of a fault is 3 8 / 1 2 = 3/4.

s 0 start s f s 1 s 2 s 3 s n a a b a, b a, b c a, b a, b, c s 0 start s 1 , s f s 1 , s 2 , s f s 1 , s 2 , s 3 , s f s 1 , s 2 , s 3 , s 4 , s f s 1 , s 3 , s 4 , s f s 1 , s 3 , s f s 1 , s 2 , s 4 , s f s 1 , s 4 , s f s f . . .

Reducing the number of states in the diagnoser

We have seen that a diagnoser A may have an exponential size in the size of the LMC, with the example 3.7. However, in some cases, we may not need the whole diagnoser to compute the diagnosability degree.

General idea

Let A be an LMC. Our idea is the following: the purpose of building a quantified diagnoser is to attach to each state s of A the signal indicating whether the current state estimate q given past observations is non-faulty, faulty or ambiguous. We are mainly interested in pairs (s, q) ∈ S × Q where s ∈ S F and q is ambiguous, and further in checking whether this ambiguity will last forever with a positive probability. As q ⊆ S, the ambiguity of q comes from the existence of a non-faulty state t ∈ q. Using the twin plant, one can easily check whether the ambiguity due to pair (s, t) ∈ S F × S C can persist forever (and with positive probability), or will vanish in the future and not prevent fault detection. If the ambiguity due to t will for sure vanish, one needs not take it into account to compute the diagnosability degree, and may replace (s, q) by (s, q) where q = q \ {t}. In doing so, one anticipates on the disappearing of an irrelevant ambiguity source due to t. In other words, one may anticipate a fault detection that will take place for sure. So the diagnosis probability does not change, but the detection delay may be shortened.

Let us now focus on the characterization of pairs of states (s, t) ∈ S × S C that can be safely discarded without changing the diagnosability degree. Let P ω (A, s) denote infinite paths of A starting from state s, and similarly P ω F (A, s), P ω C (A, s) for faulty and non-faulty paths.

Definition 3.17 (Negligible pair of type 1).

Given an LMC A, the pair (s, t) ∈ S × S C is a negligible pair of type 1 iff there is no pair of infinite runs

ρ ∈ P ω F (A, s), ρ ∈ P ω C (A, t) with o(ρ) = o(ρ).
We denote by N E 1 the set of negligible pairs of type 1.

From such pairs, the ambiguity that may hold at state (s, t) or that may appear after state (s, t) will vanish for sure in the future. Notice that we do not require s to be faulty.

One can also ignore pairs of states (s, t) ∈ S × S C for which any ambiguity that may hold or appear in the future will later vanish with probability 1 in A.

Definition 3.18 (Negligible pair of type 2).

Given an LMC A, the state pair (s, t) ∈ S × S C is a negligible pair of type 2 iff

P(ρ ∈ P ω F (A, s) : ∃ρ ∈ P ω C (A, t), o(ρ) = o(ρ)) = 0.
We denote by N E 2 the set of negligible pairs of type 2.

The above probability is computed over trajectories of LMC A, and the involved set of runs can be shown to be measurable. We have trivially N E 1 ⊆ N E 2 . Characterizing pairs of states in N E 2 algorithmically is clearly more difficult than for N E 1 (which only requires to consider the twin plant), as this is where the PSPACE complexity of checking A-diagnosability comes into the picture. However, easily checkable sufficient conditions can be derived that capture most of such pairs, as we will show next.

Let us define N E(s) = {t | (s, t) ∈ N E 2 }. Consider now the classical quantified diagnoser Ā, and assume this machine is in state (s, q) ∈ S × 2 S after some observed sequence w ∈ Σ * , with t ∈ q ∩ S C . Assume pair (s, t) ∈ N E 2 . Then t could be safely removed from q without changing the diagnosability degree: the part of ambiguity due to pair (s, t) in (s, q) will almost surely vanish in the future (ie with probability 1). Thus, it cannot lead to an ambiguous cycle of positive likelihood.

"Removing" such negligible pairs (s, t) from Ā can be done in several ways. Either abruptly, by replacing each state (s, q) of Ā by pairs (s, q\N E(s)). Or better, by recursively synchronizing A with a constrained state estimator, which gives a smaller stochastic automaton: let (s, q) be a state of Ā , such that q ∩ N E(s) = ∅, if (s, a, s) exists in A, then add transition ((s, q), a, (s , q)) to Ā where q = {t : ∃(s, a, t) in A} \ N E(s). This recursive construction starts with initial state (s 0 , {s 0 }). The machine Ā obtained in that way is called the pseudo quantified diagnoser of A. Notice that Ā is a well defined LMC, just like Ā, and that there is still a one to one correspondence between runs of A and runs of Ā , which preserves likelihood.

We want to compute P(ρ ∈ P ω F (A) : ρ ∈ P ω C (A), o(ρ) = o(ρ) to get the diagnosability degree (by dividing by P(ρ ∈ P ω F (A)) which is easy to compute), and also check whether A is A-diagnosable (iff the degree is 1). Using the usual quantified diagnoser Ā, we have that P(ρ ∈ P ω F (A) :

ρ ∈ P ω C (A), o(ρ) = o(ρ))
is the probability to reach states of Ā labeled F (aulty). We denote by B the set of F aulty states (s, q) for Ā, that is the set of states (s, q) s.t. q ⊆ S F . We now show that the probability to reach B in Ā can also be computed as the probability to reach a set of state B in Ā . This gives us a faster algorithm to check A-diagnosability or compute the degree of diagnosability as Ā is generally smaller than Ā (sometimes up to an exponential factor as shown in the example 3.9). We set B to be the set of states (s, q) ∈ S F × 2 S F .

Lemma 3.11. The probability to reach states B in Ā is P(ρ ∈ P ω F (A) :

ρ ∈ P ω C (A), o(ρ) = o(ρ)).
Proof. Given a finite path ρ of A, it has a unique image in Ā and a unique image in Ā .

In particular, the paths in Ā and in Ā have cylinders with identical probabilities, as the probability only depends on the path of A and not on the labeling attached by Ā or Ā . Further, if ρ reaches s in A, then it reaches some (s, q) in Ā and some (s, q) in Ā with q ⊆ q, by construction of Ā .

We show that the probabilities to reach B in Ā and to reach B in Ā are actually the same.

For a run ρ of A, denoting by (s, q) and (s, q) the states reached in Ā and Ā following ρ, if (s, q) ∈ B, then (s, q) ∈ B : As s ∈ q, we also have s ∈ S F . Also q ⊆ q by construction, and hence for all t ∈ q , t ∈ S F . That is, the probability to reach B in Ā is at least the probability to reach B in Ā. We show the converse now.

By definition, the probability to reach B in Ā is equal to:

ρ∈((S×2 S)\B) * B P(cyl(ρ))).
The same holds for reaching B in Ā .

Let π = (s 1 , a 1 , s 2) • • • (s k-1 , a k-1 , s k) be a (faulty) path of A corresponding to some path in (S×2 S \B) * B for Ā . Let R be the set of paths of A extending π and corresponding to some path in (S × 2 S \ B) * B for Ā. Hence paths in R are pairwise not prefix of one another and the probability of the union is the sum of probabilities. We show now that P(ρ∈R cyl(ρ)) = P(cyl(π))), which will show that the probability to reach B in Ā is at least as much as to reach B in Ā .

By contradiction, if it was not the case, there would exist an extension π of π in A (hence P A (π) > 0) such that all paths in cyl(π) reach in Ā states not in B.

Let (s, q) be the state of Ā reached on π . Now, cyl(π

) = π • t∈q {ρ ∈ P ω F (A, s) : ∃ρ ∈ P ω C (A, t), o(ρ) = o(ρ)
} because every run of cyl(π) is faulty but also ambiguous (as not reaching a state of B). As P A (π) > 0, there exists a t ∈ q such that P[ρ ∈ P ω F (A, s) :

∃ρ ∈ P ω C (A, t), o(ρ) = o(ρ)] > 0. Let ρ = (t 1 , a 1 , t 2) • • • (t n-1 , a n-1 , t n) be a non-faulty path with o(ρ) = o(π), t n = t and n ≥ k. It is easy to show that for all i ≤ k, (s i , t i) is not negligible of type 2. Hence the state of Ā reached on π is (s k , q k) with q k containing t k / ∈ S F . That is, (s k , q k) is not in B , a contradiction.

Negligible pairs in the twin plant

We now explain how to compute a set N E ⊆ N E 2 of negligible pairs of states. We first compute the strongly connected components C 1 , . . . , C k of the twin plant à using Tarjan's algorithm, in linear time in the number of states of the twin plant. Remember that the number of states of the twin plant is quadratic at most in the number of states of A.

We label a strongly connected component of à as ambiguous if it contains some state in S F × S C . Notice that in this case, as faulty state remains faulty and the second component of à is in S C , the states reachable from a state in S F × S C are also in S F × S C . We recursively remove from ambiguous SCCs any loopless BSCC, because it does not characterize an ambiguous loop: they have no ambiguous infinite future.

We can then characterize the set N E 1 of negligible states of type 1 as the set of states of the twin plant which cannot reach any ambiguous SCCs. This can be done in time linear in the number of states of the twin plant, by considering first bottom strongly connected components and then inductively considering components C i which can reach only components C j already considered. Lemma 3.12. N E 1 is the set of states (s, t) of the twin plant which cannot reach a loop around some ambiguous state (x, y) with x ∈ S F , y ∈ S C .

Proof. Let (s, t) /

∈ N E 1 . Then there exists ρ an infinite faulty path from s and ρ an infinite non-faulty path from t which are observationally equivalent. Considering the sequence of pairs of states (s i , t i) from (s 0 , t 0) = (s, t) along (ρ, ρ). Let I be an index such that s I ∈ S F , which exists as ρ is faulty. As the number of pairs of states is finite and the path is infinite, there must exist two indices j > i > I such that (s i , t i) = (s j , t j). Denoting (ρ 1 , ρ 1) and (ρ 2 , ρ 2) the paths from (s 0 , t 0) to (s i , t i) and from (s i , t i) to (s j , t j), we have a path (s, t) → * (s i , t i) → * (s j = s i , t j = t i) with s i ∈ S F as i > I and ρ is faulty and

t i ∈ S C as ρ is not-faulty.
The converse is trivial as if there is a path (s, t) → * (x, y) → * (x, y) with x ∈ S F , y ∈ S C in the twin plant, then there is also an infinite faulty path ρ from s and an infinite non-faulty path ρ from t which are observationally equivalent.

We are now ready to define a set

N E with N E 1 ⊆ N E ⊆ N E 2 . It will contain only pairs (s, t) ∈ S × S C such that P(ρ | s -(ρ) = (s, t) ∧ ρ = ρ 1 ρ 2 , ρ 2 ∈ (S F × S C) ω) = 0. P s,t (ρ | s -(ρ) ∈ S F × S C) = 0 for s -(ρ)
the set of pairs of states seen infinitely often along ρ. To define N E, we define inductively a sequence P 1 . . . P of sets of states of the twin plant à that cannot be used to give a positive probability to stay ambiguous forever. Then, N E will be defined as the set of states that cannot reach an ambiguous cycle avoiding P . This can be computed in linear time in the size of à by using Tarjan's algorithm. It suffices to remove states of P and to look for SCCs with self loops.

We now define P i inductively as follows:

P 1 =N E 1 P i+1 =P i ∪ {(s, t)
|∃a a is fireable from s and (s, t) → a (s , t) ⇒ (s , t) ∈ P i }

When P = P +1 , which must happen after a number of steps bounded by the number of states in Ã, we stop the process. That is, P is a smallest fix point of φ(P i) = P i+1 that can be obtained in polynomial time. We have: Lemma 3.13. From every state (s, t) ∈ P with s ∈ S F , there exists a path ρ, s -(ρ) = s such that for every ρ such that s -(ρ) = t and o(ρ) = o(ρ), one has that ρ is faulty.

We can now define formally N E as the set of states that cannot reach an ambiguous cycle avoiding P , that is

N E = (S ×S C)\{(s, t) | ∃ρ = ρ 1 ρ 2 , s -(ρ) = (s, t)∧ρ 2 avoids P ∧ s -(ρ 2) = s + (ρ 2)}.
Using lemma 3.13, we obtain:

Lemma 3.14. N E 1 ⊆ N E ⊆ N E 2 .
Proof. Let (s, t) ∈ N E 1 be a pair of type 1. It cannot reach an ambiguous loop, thus in particular it cannot reach an ambiguous loop avoiding P .

Similarly, let (s, t) be a pair in N E, i.e., such that (s, t) cannot reach an ambiguous cycle avoiding P . Thanks to lemma 3.13, we know that the probability that for infinite paths ρ, ρ , s -(ρ) = s , s -(ρ) = t and ρ, ρ are ambiguous is 0 since they will always have an occasion to have a future that disambiguates them (i.e., the probability to avoid in P is 0). Thus,

P[ρ ∈ P ω F (A, s) : ∃ρ ∈ P ω C (A, t), o(ρ) = o(ρ)] = 0 and N E ⊆ N E 2 .
We can use this lemma to reduce the size of a pseudo-quantitative-diagnoser:

Theorem 3.15. From an LMC A, one can build in quadratic time a pseudo-quantitativediagnoser Ā such that the probability of an infinite faulty ambiguous run in A is equal to the probability to reach an ambiguous SCC in Ā . Further, there exists an LMC A such that the size of Ā is exponentially smaller than that of the quantitative diagnoser built in Section 3.2.

Proof. The set N E is computable in quadratic time w.r.t to the number of transitions of the original automaton A. We then define the pseudo-diagnoser Ā = (S × Q, Σ, (s 0 , {s 0 }), T) with T = {((s, q), a, (s , q \{t | (s, t) ∈ N E}))} such that (s, a, s) ∈ T and q = {t | ∃t ∈ q(t, a, t) ∈ T }.

Since N E ⊆ N E 2 (Lemma 3.13), we obtain that the probability of a faulty ambiguous run in A is equal to the probability to reach an ambiguous SCC in Ā .

The twin plant has a number of states quadratic in the size of the original automaton. Besides, determining the sets P and N E can be done in a time quadratic in the size of the twin plant, hence the biquadratic complexity.

An example with an exponential reduction

Example 3.9. Continuing example 3.5, figure 3.6 presents an example where the pseudo diagnoser Ā is exponentially smaller than the natural diagnoser based on the determinized of Ā.

Indeed, the number of states of the natural diagnoser Ā3 is O(2 n), as safe runs can produce a c only n-1 steps after producing a b. That is, the diagnoser needs to distinguish between 2 n-1 cases, depending on the last n -1 letters in {a, b}.

Using the twin plant, the number of states of the pseudo-quantitative-diagnoser is dramatically smaller. First, N E 1 (= P 1) is the set {(s i , s j)|i > 0, j > 0}. Then, P 2 = P 1 ∪ {(s f , s i)|i ≤ n}. Indeed, for all i < n, there is a transition (s f , c, s f) but there is no transition starting in s i labeled by c and then no successor to (s f , s i) by c. Thus, for all transition (s f , s i) → c (s f , s), we have (s f , s) ∈ P 1 , because there is no such transition (s f , s i) → c (s f , s). Thus (s f , s i) ∈ P 2 for all i < n. Similarly, we obtain that (s f , s n) ∈ P 2 since transition (s f , a, s f) can occur and there is no transition labeled by a from s n . Now, state (s 0 , s 0) only has successors in P 2 . Thus (s 0 , s 0) ∈ P 3 . That is, P 3 is made of all the states of the twin plant and since there is no ambiguous cycle outside P 3 , N E contains all the states of the twin plant. Hence, the pseudo-diagnoser is very simple: for all s, N E(s) = S and then every state in the pseudo-diagnoser is in the form (s, ∅) with s ∈ S. That is, the pseudo-diagnoser is isomorphic to the original LMC.Therefore, this transformation avoids the exponential blow-up required by using an exact diagnoser.

s 0 start s f s 1 s 2 s 3 s n a a b a, b a, b c a, b a, b, c s 0 , s 0 start s f , s 1 s f , s 2 s f , s n s 1 , s 1 s 1 , s 2 s 1 , s 3 . . .

Distributions of fault detection delay

We are now interested in the evaluation of the detection delay (conditionally to the occurrence of a detection). Generally, the number of observations before detection can be arbitrarily long. However, the probability that the diagnosis occurs only after k steps goes to 0 as k increases. Hence, we are interested in two things: approximating the probability distribution associated with the detection delay and giving bounds on the probability of detection after a certain number of steps. For the first objective, we will present a sequence of distributions that converge to the real one thanks to the computation of the moments of this distribution. For the second objective, we will also use these moments and concentration inequalities to obtain the desired bounds.

Semirings for moments

In this section, we present how semirings will allow us to formally compute the moments of the distribution thanks to the Floyd-Warshall algorithm. In order to compute moments of response time, we first fix a state s f (symbolizing a fault has just occurred) and a set of states F D (symbolizing a fault has just been diagnosed). We introduce a set of semirings that will allow us to compute the n-th moment of detection delay to the fault from state s f , for all n ∈ N. We will compute the moment inductively on a disjoint subset Π of paths of A from s f to F D. For an integer n, we denote µ n (Π) = Σ π∈Π P(π)|π| n . Notice that for all π 1 , π 2 paths in P(s f , F D) π 1 is not a prefix of π 2 .Thus, we have that P(s f , F D) is the moment of order n of the distribution of detection delay to the fault associated with state s f . We now give some properties of µ. Let Π 1 be a set of paths ending in some state s and let Π 2 be a set of paths starting from s. We denote by Π 1 • Π 2 the set of paths ρ 1 ρ 2 with ρ 1 ∈ Π 1 and ρ 2 ∈ Π 2 . Proposition 3.16. For all n, we have

µ n (Π 1 • Π 2) = n i=0 n i µ i (Π 1) • µ n-i (Π 2)
Proof.

µ n (Π 1 .Π 2) = Σ π 1 ∈Π 1 Σ π 2 ∈Π 2 P(π 1 π 2)|π 1 π 2 | n = Σ π 1 ∈Π 1 Σ π 2 ∈Π 2 P(π 1)P(π 2) n Σ i=0 n i |π 1 | i |π 2 | n-i = n Σ i=0 n i Σ π 1 ∈Π 1 P(π 1)|π 1 | i Σ π 2 ∈Π 2 P(π 2)|π 2 | n-i = n Σ i=0 n i µ i (Π 1) • µ n-i (Π 2)
This property hints to a set of semirings (R n+1 , ⊕ n , ⊗ n , 0 n , 1 n) with good properties to compute moments. For (n + 1)-uplets (x 0 , . . . , x n) and (y 0 , . . . , y n), we define operations ⊕ n and ⊗ n :

• (x 0 , . . . , x n) ⊕ n (y 0 , . . . , y n) = (x 0 + y 0 , . . . , x n + y n) • (x 0 , . . . , x n) ⊗ n (y 0 , . . . , y n) = (z 0 , . . . , z n) with z i = i Σ j=0 i j x j y i-j
The neutral element for ⊕ n is 0 n = (0, . . . , 0). 0 n is annihilating for ⊗ n . The neutral element for ⊗ n is 1 = (1, 0, . . . , 0). In the following, we will denote the different laws and elements by ⊕, ⊗, 0 and 1. Proposition 3.17. For n ≥ 0, (R n+1 + , ⊕, ⊗, 0, 1) defines a commutative semiring.

Proof. It is clear that (R n+1 + , ⊕, 0) is a commutative monoid. Associativity and commutativity in (R n+1 + , ⊗, 1) come from the symmetric role of the x i and y i in ⊗. Thus, we have to prove that ⊗ is distributive over ⊕. Since ⊗ is commutative, we only have to prove that for all x, y, z ∈ R n+1 + , x ⊗ y ⊕ x ⊗ z = x ⊗ (y ⊕ z). For i ≥ 0, we check the i-th component:

((x ⊕ y) ⊗ z) i = i Σ j=0 i j (x ⊕ y) j • z j-i = i Σ j=0 i j (x j + y j) • z j-i = i Σ j=0 i j [x j • z j-i + y j • z j-i] = (x ⊗ z) ⊕ (y ⊗ z)
Then, we obtain the property that will allow us to use the Floyd-Warshall algorithm in order to compute the moments of the distribution of detection delay: Proposition 3.18. If for all i ≤ n, we have

x i = µ i (Π 1) and y i = µ i (Π 2), denoting (z 0 , . . . , z n) = (x 0 , . . . , x n) ⊗ n (y 0 , . . . , y n), we get µ i (Π 1 • Π 2) = z i . Further, if both Π 1 , Π 2 are disjoint, and if no path of Π 1 (resp. Π 2) is a prefix of a path of Π 2 (resp. Π 1), then µ i (Π 1 ∪ Π 2) = x i + y i .
The proof is straightforward, since we chose the operators to match exactly what we wanted to compute the moments. Thus, we will be able to use the Floyd-Warshall algorithm to compute the moments of the distribution. Before that, we need to define the initial weights of the transitions.

Definition 3.19. [Weighted diagnoser]

Given an LMC A = (S, Σ, µ 0 , p) and its A-diagnoser A = (S , Σ, µ 0 , p), its weighted diagnoser A w is a quadruplet (S , Σ, γ 0 , γ) with:

• γ 0 : S → R n+1 with γ 0 (s) = (µ 0 (s), 0, . . . , 0),

• γ : S × Σ × S → R n+1 with γ(s , a, s) =      (p (s , a, s), 0, . . . , 0) if s ∈ S C (p (s , a, s), . . . , p (s , a, s)) else
Intuitively, if the initial state of the transition is in S C , then no delay is added to the detection, hence the 0. On the contrary, if the initial state of a transition t is in S F , then a delay is added. The transition t has a length of 1, so for any n, µ n ({t}) = p (t).

Let A be an LMC and A w its weighted diagnoser over a partition over faulty and safe states. For every faulty state s f of the weighted diagnoser, we denote P(s f) the probability that it is the first faulty state reached by an execution. We denote S F D the set of faulty states where the diagnosis holds.

Theorem 3.19.

The n-th moment of the distribution of detection delay conditionally to this detection is given by:

s f P(s f)W (P S F D (s f , S F D)) n s f P(s f)W (P S F D (s f , S F D)) 0
Proof. The denominator comes from the fact we ask for the distribution conditionally to the fact that the diagnosis holds. The proof is straightforward, since the algorithm is proven to compute the quantity we are interested in. The probability of the set of paths is the first component of the weight, and the n-th moment is µ n divided by the probability to be diagnosed. Notice that this quantity is equal to (assuming without loss of generality there is only one initial state s 0):

W (P S F D (s 0 , S F D)) n W (P S F D (s 0 , S F D)) 0
Theorem 3.20. Let A = (S, Σ, µ 0 , p) be an LMC and A w its weighted diagnoser with S as set of states. One can compute the n first moments of the diagnosability degree of A in time O(n 2 × |S | 3).

Proof. Since we use the Floyd-Warshall algorithm to perform this calculation, the complexity is cubic in the number of states. Notice that the number of states of the weighted diagnoser can be exponential in the size of the original LMC. Furthermore, its complexity is quadratic in the number of moments we want to know: in the semiring computation, the calculation of the n-th moments is performed through a sum on all the previous moments, that gives us the well known complexity T (n) = i<n T (i), hence quadratic. Algorithms for moments had been proposed in the performance evaluation community. Methods used there are mostly numerical [START_REF] Bradley | Response time densities and quantiles in large Markov and semi-Markov Models[END_REF][START_REF] Tari | Moments based bounds in stochastic models[END_REF]. These methods are efficient but not robust to changes: every value is set and computations do not use parameters. On the contrary, ours may be slower, but they have the same computational complexity and allows one to have parameters and formal calculus.

In this work, we presented to the computation of moments applied to quantified diagnosis, but it has many more applications. In particular, we presented these techniques in [START_REF] Bazille | Symbolically quantifying response time in stochastic models using moments and semirings[END_REF] for the notion of response time, that is the delay between a query and the moment it is answered. In the framework of diagnosis, the query is the occurrence of the fault and the answer is obtained when the diagnosis holds. These techniques also have an interest for computational biology. In [BBW16; Bog+15; Gon+13], complex functions describing the evolution of molecular species are approximated using the first k moments, for some k.

Observe that we set the time of a transition to one unit of time, but this is not a restriction: indeed, transitions t could have arbitrary lengths, or even length as a random variable X t . The algorithm would still work, we just need to give the accurate initial values:

µ i ({X t }) = P(t)E[X i t].
In particular, this allows us to encompass detection delays on systems where time is not given as units, such as labeled systems where the support is a Continuous Time Markov Chain (CTMC): Definition 3.20. A CTMC is a tuple (S, M, µ 0 , (τ s) s∈S) with:

• (S, M, µ 0) is a Markov Chain,
• for all s, τ s is the sojourn parameter associated with state s. That is, the PDF function of the sojourn time is X s (t) = τ s e -τs•t and the probability to stay in s at least t units of time is e -τs•t .

In this continuous context, we need integrals instead of sums to define the i-th moment of a variable X: µ i (X) = ∞ 0 X(t)t i dt = 1. For every state s ∈ S, let X s (t) = τ s e -τs•t . For all i, for all s, µ i (X s) is well defined and

µ i (X s) = i! τ i s
We can easily extend the computation of moments for CTMCs. The inductive formulas for probabilities and moments of the reaching time distribution remain unchanged. We only need to change the definition of moments for every transition, which is input at the initialization phase of the Floyd-Warshall algorithm: for all s, t ∈ S, we set W n (s, t) 0 = M (s, t) and W (s, t

) i = M (s, t) i! τ i s for all i ∈ [1, n].
Theorem 3.21. Let A = (S, M, µ 0 , (τ s) s∈S) be a CTMC. One can compute µ i (s, t) for all i ≤ n and s, t ∈ S in time O(n 2 × |S| 3).

Approximating the distribution from its moments

It is known [START_REF] Telek | A minimal representation of Markov arrival processes and a moments matching method[END_REF] that phase-type distributions of order n are determined by their first 2n -1 moments. First passage distribution time in Labeled Markov chains with n states are phase type distribution of order n. However, [START_REF] Telek | A minimal representation of Markov arrival processes and a moments matching method[END_REF] does not help characterizing bounds as it does not ensure that a non-phase type distribution cannot have the exact same moments as a phase type distribution, unlike our result.

In this section, we discuss how the calculation of moments is sufficient to approximate the distribution of detection delay. For that, we first prove that given a sequence of moments (µ n) n∈N the distribution is unique for the case of detection delay. Secondly, we discuss how to define a sequence of distributions converging to the real one.

The first point is an instance of the moment problem.

Definition 3.21 (Moment problem)

. Given a sequence of numbers µ n , does there exist a random variable that has for n-th moment µ n and is this random variable unique?

The special case we are investigating, that is a random variable with values in R + is called the Stieljes moment problem.

As a start, we pinpoint that in general, there may be several distributions that correspond to a given sequence of moments (µ n) n∈N . This would compromise approximating the distribution using moments, as there would not be a unique such distribution. Now, consider the cube of the exponential distribution of parameter 1. Its sequence of moments is {µ n = (3n!) | n ∈ N}. However, there exist an infinite number of distributions with this sequence of moments [START_REF] Stoyanov | Determinacy of distributions by their moments[END_REF].

We now prove answer positively to the Stieljes moment problem for the case of the distribution of detection delay, that is its sequence of moments respects the Carleman's condition from year 1922, that guarantees the uniqueness of the distribution. The condition is that n∈N µ n (δ) -1 2n = ∞.

Theorem 3.22. Let A be an LMC. For all n ∈ N, let µ n be the moment of order n of the detection delay of A. Then there exists a unique distribution δ such that µ n (δ) = µ n for all n ∈ N.

Proof. The existence is given by the construction of our numbers µ n . The difficult part is the unicity.

Let m be the number of states of A, p be the minimal probability to detect a fault without taking any loop, and the probability of the highest-probability loop that can be part of a path to this detection. We denote by δ the distribution of detection delay.

For i ≤ m, P (δ = i) < 1. For i > m, a successful path has to take at least i m loops, then p(i) ≤ i m p. Thus, we have

µ n (δ) ≤ m i=0 P(δ = i)i n + Σ ∞ i=m+1 i m pi n . Thus, µ n (δ) ≤ m i=0 i n + Σ ∞ i=m+1 i m i n .
The first part is lesser than (m + 1)m n . We now need to bound the second part.

∞ i=m+1 i m i n ≤ Σ ∞ i=1 i m i n ≤ 1 (1 - 1 m) n+1 n i=0 E(n, i)(1 m) n-i (1) ≤ 1 (1 - 1 m) n+1 n i=0 E(n, i) (2) ≤ n! (1 - 1 m) n+1 (3) (1): E(n, i) is the eulerian number of parameter n, i. We obtain this line because Σ ∞ i=1 i m i n is the polylogarithm function Li -n (1 m). (2): ∀i, (1
m) n-i ≤ 1 (3): n i=0 E(n, i) = n!
We want to find a lower bound to the 2n-th root of µ n (δ), in order to prove the moments verify the Carleman's condition.

µ n (δ) 1 2n ≤ ((m + 1)m n + n! (1 - 1 m) n+1) 1 2n ≤ ((m + 1)m n) 1 2n + (n! (1 - 1 m) n+1) 1 2n (4)
≤ (m + 1)

1 2n • √ m + n! 1 2n
(1 -

1 m) n+1 2n (4): 2n √ x + y ≤ 2n √ x + 2n √ y. Then, we have that n∈N µ n (δ) -1 2n ≥ n∈N 1 (m+1) 1 2n • √ m+ n! 1 2n (1- 1 m) n+1 2n
Thanks to the Stirling equivalent for the factorial n! ≈ √ 2π • n(n e) n , we find that an equivalent of the denominator for large n is α • n n+1 2n with α some real number. Since the sum of the inverses of n n+1 2n diverges, we deduce that

n∈N µ n (δ) -1 2n = ∞
Due to Carleman's condition, the distribution δ corresponding to the moments (µ n (δ)) n∈N is thus unique.

Here, we presented the proof for distribution over detection delays for an LMC. This proof also holds for response times on different models, such as CTMC. However, in this setting it would get very technical and hard to read: in the sums, i n is replaced by E[X n i] where X i is the random variable associated with i successive sojourn time. Then, an upper bound is found for E[X n i] and the rest of the proof is similar. Since we have unicity of the distribution corresponding to the sequence of moments of the distribution of detection delay of a probabilistic automaton, we obtain the following convergence in law: Proposition 3.23. [START_REF] Yu | Probability Theory. Basic Concepts. Limit Theorems. Random Processes[END_REF] Let δ be the distribution of detection delays of an LMC. Let (δ i) i∈N be a sequence of distributions on R + such that for all n, lim

i→∞ µ n (δ i) = µ n (δ). Then, if C i is the cumulative distribution function of δ i and C the cumulative distribution function of δ, then for all x lim i→∞ C i (x) = C(x).
Thus, C can be approximated by taking a sequence (δ n) n∈N of distribution such that for all i ≤ n, µ i (δ n) = µ i (δ). A reasonable choice for δ n is to consider the distribution of maximal entropy corresponding to the moments µ 1 , . . . , µ n , as presented in [START_REF] Thomas | Elements of information theory[END_REF].

The distribution of maximal entropy can be understood as the distribution that assume the least information. It can be approximated as close as desired, for instance 1 n close to the distribution of maximal entropy having moments (µ 1 (δ), . . . , µ n (δ)). Applying Proposition 3.23, we thus obtain that the cumulative distribution function associated with δ i converges towards the cumulative distribution function associated with δ.

Bounds on the detection delay

We now explain how to use moments in order to obtain optimal bounds on the detection delay. First, notice that as soon as there exists a loop between a fault and its detection, then there will be runs with arbitrarily long detection delay, although there might be probability 1 to eventually answer every query. We thus turn to a more quantitative evaluation of the detection delay.

Let 0 < p < 1. We are interested in a bound T on the delay between a fault and the detection such that a proportion greater than 1 -p of the faults is diagnosed before this bound. For a distribution δ : R + → R + of detection delays, we denote by B(δ, p) the lowest T such that the probability to have a detection delay above T is lower than p. Equivalently, we look for the highest T such that the probability of a detection delay above T is at least p.

Markov bounds associated with one moment

Let i ∈ N and µ i > 0. We let ∆ i,µ i be the set of distributions of detection delay which have µ i as moment of order i. We are interested in bounding B(δ, p) for all δ ∈ ∆ i,µ i , that is for all distributions with µ i as moment of order i. Such a bound is provided by Markov inequality presented in section 2.3, and it is optimal:

Proposition 3.24. Let i ∈ N and µ i . Let α i (µ i , p) = i µ i p . Then for all δ ∈ ∆ i,µ i , we have B(δ, p) ≤ α i (µ i , p). Further, ∃δ ∈ ∆ i,µ i such that B(δ, p) = α i (µ i , p).
Proof. It suffices to remark that µ i > pb i for b the bound we want to reach. Further, this bound is trivially optimal: it suffices to consider a distribution with a Dirac of mass (1-p) at 0 and a Dirac of mass p at α i (µ i , p).

Given an LMC, let δ be its associated distribution of detection delay. We can compute its associated moments µ i as presented in section 3.3.1. We thus know that δ ∈ ∆ i,µ i . Given different values of i, one can compute the different moments and apply for each of them the Markov's bound and use the minimal bound obtained.

Understanding the relationship between the α i is thus important. For i < j, one can use Jensen's inequality for the convex function f : x → x j i over R + , and obtain: (µ i) j ≤ (µ j) i . For instance, µ 2 1 < µ 2 . For p = 1, this gives α i (p = 1) < α j (p = 1). On the other hand, for p sufficiently close to 0, we have α j (p) < α i (p). That is, when p is very small, moments of high orders will give better bounds than moments of lower order. On the other hand, if p is not that small, moments of small order will suffice.

Optimal bounds for a pair of moments

We now explain how to extend Markov's bounds to pairs of moments: we consider the set of distributions where two moments are fixed. Let i < j be two orders of moments and µ i , µ j > 0. We denote by ∆ j,µ j i,µ i the set of distributions with µ i , µ j as moments of order i, j respectively. As ∆ j,µ j i,µ i is strictly included into ∆ i,µ i and in ∆ j,µ j , min(α i (p), α j (p)) is a bound for any δ ∈ ∆ j,µ j i,µ i . However, it may be the case that min(α i (p), α j (p)) is not optimal. We now provide optimal bounds α j i (p) for any pair i < j of order of moments and probability p: Theorem 3.25. Let i < j be natural integers, p ∈ (0, 1), and let µ i , µ j > 0. Let α i = (µ i p)

1 i and α j = (µ j p)

1 j . We define α j i (p) to be:

• α i if α i ≤ α j ,
• (µ j -M p)

1 j otherwise, where 0 ≤ M ≤ µ j is the smallest positive real root of:

µ i = (1 -p) j-i j M i j + p j-i j (µ j -M) i j .
For all δ ∈ ∆ j,µ j i,µ i , we have B(δ, p) ≤ α j i , and ∃δ ∈ ∆ j,µ j i,µ i with B(δ, p) = α j i Let p such that 0 < p < 1 and µ i , µ j be positive real numbers.

case α i < α j We prove that in the case where α i < α j , α i is actually optimal in ∆ j,µ j i,µ i . This is the first item in Theorem 3.25.

As it is a bound for all δ ∈ ∆ j,µ j i,µ i , we just need to show that it is optimal.

Proof. Let 0 < η < 1, 0 < p < 1, and z > α i a positive real that will be set later.

Let δ be the distribution with mass (1 -p) in 0, mass p 1 in ηα i , mass p 2 in α j and mass p 3 in z, with p 1 + p 2 + p 3 = p.

We want to choose p 1 , p 2 , p 3 such that µ i is the moment of order i and µ j is the moment of order j, that is such that δ ∈ ∆ j,µ j i,µ i . We thus have the following equations: 1) and (3), we obtain:

p 1 + p 2 + p 3 = p (1) p 1 (ηα i) i + p 2 α i j + p 3 z i = µ i (2) p 1 (ηα i) j + p 2 α j j + p 3 z j = µ j (3) We denote A = α i i , B = α i j , C = z i , D = (ηα i) j and F = z j . Using (
p 3 = (p -p 2) (µ j -p(ηα i) j) p(F -(ηα i) j) (4)
Granted p 2 < p, for F > (ηα i) j (that is z > α i which we assumed), we get p 3 > 0. Now, using (2), we obtain:

p 3 (C -η i A) + p 2 (B -η i A) = µ i -pη i A. As µ i = pA, we get p 2 (B -η i A) + p 3 (C -η i A) = pA(1 -η i).
Using equivalents for z going to ∞, we get p 3 (C -η i A) equivalent to (1 -p 2 /p)C/F . Notice that C/F tends to 0. We obtain

p 2 = (1-η i)pA-O(C/F) (B-η i A)-O(C/F) .
For z big enough (η being fixed), we get p 2 > 0.

Dividing terms by A, we get p2 < p (1-η i) (B/A-η i)-O(C/AF) . We have B/A > 1. For z big enough, O(C/AF) < B/A -1, and we get p 2 < p. That is p 3 > 0 as well. Also, remark that in (4), we have (µ j -p(ηα i) j) p(F -(ηα i) j) tends to 0 when z tends to infinity. Hence for z big enough, p 3 < (p -p 2). That is,

p 1 = p -p 2 -p 1 > 0.
That is, for z big enough, we can chose p 1 , p 2 , p 3 positive and satisfying the equations we wanted to obtain. That is, 0 < p 1 , p 2 , p 3 < p as p = p 1 + p 2 + p 3 , and µ 1 (δ) = µ 1 and µ 2 (δ) = µ 2 . Thus, δ ∈ ∆ j,µ j i,µ i . Last, we have B(δ, p) = ηα i . Case α j < α i We now consider the case where α j < α i , that is the second item of Theorem 3.25. We first prove that the α j i defined is a bound for all δ ∈ ∆ j,µ j i,µ i . We take δ any distribution with µ i , µ j for i-th and j-th moments. We let b = B(δ, p). We partition δ in 2 parts: δ 1 between 0 and b (and 0 elsewhere), and δ 2 after b (and 0 before). We denote

µ k (δ) = ∞ 0 δ (t)t k dt, for ∈ {1, 2}.
As δ 2 represents a proportion p of the distribution, and as all the mass is after b, we have the following:

µ j (δ 2) = µ j -µ j (δ 1) ≥ pb j Lemma 3.26. µ j (δ 1) ≥ (µ i -[µ j -µ j (δ 1)] i j p j-i j) j i (1 -p) j-i i
Proof. We apply Jensen inequality to both δ 1 and δ 2 .

We obtain µ j (δ 1) ≥ µ i (δ 1) j i

(1-p)

j-i i and µ i (δ 2) ≤ µ j (δ 2) i j p j-i j .
As

µ i (δ 1) = µ i -µ i (δ 2), we obtain µ i (δ 1) ≥ µ i -µ j (δ 2) i j p j-i j = µ i -[µ j -µ j (δ 1)] i j p j-i
j , which yields the statement.

We define the operator f with:

f (x) = (µ i -[µ j -x] i j p j-i j) j i (1 -p) j-i i
This operator will allow us to find the bound by a fixpoint computation.

Lemma 3.27. (f n (0)) n∈N is strictly increasing and converges towards some M .

Proof. We show by induction on n that f n (0) is an increasing sequence. First, since α j < α i , we have that f (0) ≥ 0. Then, let n ∈ N such that f n (0) ≥ f n-1 (0). We have that

µ j -f n (0) ≤ µ j -f n-1 (0) (µ i -[µ j -f n (0)] i j p j-i j) j i ≥ (µ i -[µ j -f n-1 (0)] i j p j-i j) j i (µ i -[µ j -f n (0)] i j p j-i j) j i (1 -p) j-i i ≥ (µ i -[µ j -f n-1 (0)] i j (p) j-i j) j i (1 -p) j-i i
And so, f n+1 (0) ≥ f n (0).

Then, let us show that the sequence f n (0) is bounded. By applying lemma 3.26 with µ j (δ 1) ≥ 0 on the left hand side, we obtain µ j (δ 1) ≥ f (0). Hence we can apply lemma 3.26 with µ j (δ 1) ≥ f (0) on the left hand side, yielding µ j (δ 1) ≥ f (f (0)). By a trivial induction, we obtain µ j (δ 1) ≥ f n (0) for all n.

As this sequence is increasing and bounded, it converges to some quantity M .

The M of Lemma 3.27 and Theorem 3.25 will be µ j (δ 1) for δ a distribution realizing B(δ, p) = α j i (p). We now prove the second part of Theorem 3.25 and Lemma 3.27.

Lemma 3.28. Let µ i , µ j and p such that α j (p, µ j) < α i (p, µ i). Then for all δ ∈ ∆ j,µ j i,µ i , we have:

B(δ, p) ≤ (µ j -M p) 1 j
for M ≤ µ j the smallest positive real root of:

µ i = (1 -p) j-i j M i j + p j-i j (µ j -M) i j .
For i = 1, j = 2, we can compute explicitly M and obtain:

B(δ, p) ≤ µ 1 + (1 -p) p (µ 2 -µ 2 1) Proof. Let δ ∈ ∆ j,µ j i,µ i . We denote b = B(δ, p). We decompose δ = δ 1 + δ 2 with δ 1 on [0, b) and δ 2 from [b, ∞).
We showed that the sequence (f n (0)) converges to its convergence point M . We also have f (M) = M . Thus, M ≤ µ j and it is the smallest positive real root of:

(1 -p) j-i j M i j = µ i -p j-i j (µ j -M) i j .
Now, we know that µ j (δ 1) ≥ M . This gives pB(δ, p) j ≤ µ j -M .

We now tackle the last item of the statement, that is for i = 1, j = 2, B(δ, p) ≤

µ 1 + (1-p) p (µ 2 -µ 2 1). Proof. Let i = 1, j = 2. We have B(δ, p) ≤ µ 2 -M p = µ 1 -√ 1-p √ M p . We let x = √ M . This x satisfies the equation √ 1 -px = µ 1 - √ p (µ 2 -x 2). That is √ p (µ 2 -x 2) = µ 1 -(1 -p)x
and hence:

pµ 2 -px 2 = µ 2 1 + (1 -p)x 2 -2µ 1 (1 -p)x
We have the second degree equation:

x 2 -2µ 1 (1 -p)x + µ 2 1 -pµ 2 = 0 The smallest solution is x = µ 1 √ 1 -p-(1 -p)µ 2 1 + pµ 2 -µ 2 1 = µ 1 √ 1 -p- √ p µ 2 -µ 2 1 . This gives: B(δ, p) ≤ µ 1 - √ 1 -p(µ 1 √ 1 -p - √ p µ 2 -µ 2 1) p = µ 1 + 1 -p p (µ 2 -µ 2 1).
We end the proof of Theorem 3.25 by showing optimality of the bound for ∆ j,µ j i,µ i : Lemma 3.29. Let µ i , µ j and p such that α j (µ j , p) < α i (µ i , p). Then there exists a distribution δ ∈ ∆ j,µ j i,µ i with B(δ, p) = j 1 p (µ j -M 1) for M 1 ≤ µ j the smallest positive real root of:

µ i = (1 -p) j-i j (M 1) i j + p j-i j (µ j -M 1) i j .
Proof. Let us consider the distribution δ with:

• (1 -p) of the mass at j M 1 1-p and

• p of the mass at j (µ j -M 1) p It trivially satisfies B(δ, p) = j (µ j -M 1) p . Also, we have easily

µ j (δ) = (1 -p) M 1 1-p + p µ j -M 1 p = µ j . Now, consider µ i (δ) = (1 -p) j-i j (M 1) i j + p j-i j (µ j -M 1) i j . By definition of M 1 as a root of the equation µ i = (1 -p) j-i j (M 1) i j + p(µ j -M 1) i j , we obtain µ i (δ) = µ i .
To obtain a value for M , one can use for instance Newton's method. For i = 1, j = 2, we can compute explicitly M and obtain:

α 2 1 = µ 1 + (1 -p) p (µ 2 -µ 2 1)
. We can also use the following result which allows one to underapproximate the value of M , and thus overapproximate the optimal bound, by iterating the following operator f from x = 0:

s 0 start s 1 s 2 a,
f : x → (µ i -[µ j -x] i j p j-i j) j i (1 -p) j-i i
Example 3.12. We continue example 3.11 and use the previous method in order to compute bounds using higher moments. We obtain the following bounds α i (p), α i-1 i (p) considering different values of p and i: For p = 0.1, it is not useful to consider moments of order higher than 3. On the other hand, for p = 0.01, the moment of order 5 provides better bounds than moment of lower orders.

i µ i α i (0.1) α i-1 i (0.1) α i (0.01) α i-1 i (0.

Related work on diagnosis and diagnosability

In the previous sections, we tackled existing diagnosis notions over our main domain of interest: finite stochastic systems. Of course, these are not the only works talking about diagnosis and diagnosability. In the following, we present different problems around the notion of diagnosis.

Diagnosis of infinite LTS

Although we consider finite models in this thesis, the set of possible systems may be infinite. To represent an LTS with infinite many states, higher order models have to be considered. Different models correspond to this definition, such as Petri Nets and Pushdown Automata.

The semantic of Petri Nets (introduced in [START_REF] Adam | Communication with automata[END_REF]) is a reachability graph that is infinite iff the net is not bounded. Cabasino et al. studied diagnosability for both bounded [START_REF] Paola Cabasino | Diagnosability of bounded Petri nets[END_REF] and unbounded [START_REF] Paola | Diagnosability analysis of unbounded Petri nets[END_REF] Petri Nets both refined in [START_REF] Paola | A new approach for diagnosability analysis of Petri nets using verifier nets[END_REF]. They construct a verifier net that is analog to the twin-plant we describe for LTS and the coverability graph of this verifier net, that is a finite abstraction of the reachability graph of the verifier net. However, the coverability graph may have an Ackermannian size in the verifier net, hence a bad complexity in practice. [START_REF] Bérard | The complexity of diagnosability and opacity verification for Petri nets[END_REF] tackled this problem and proved that diagnosability of Petri Nets is in EXPTIME by reducing it to the model-checking of an LTL formula on the verifier net. An overview of diagnosis on Petri Nets is available in [START_REF] Basile | Overview of fault diagnosis methods based on Petri net models[END_REF]. Diagnosis with Petri Nets unfoldings is presented in [START_REF] Haar | Diagnosis with petri net unfoldings[END_REF].

Pushdown automata are another class of infinite systems with finite representation. [START_REF] Morvan | Diagnosability of pushdown systems[END_REF] investigates their diagnosability and proves the undecidability of this problem by a reduction from the emptiness problem for an intersection of context-free languages. However, it is decidable when restricted to visibly pushdown automata (VPA, introduced in [AM04]). For that, another analog of the twin-plant is used and a Büchi condition is defined on this twin-plant, leading to a PTIME algorithm. More recently, [START_REF] Bertrand | Diagnosis in infinitestate probabilistic systems[END_REF] extended this work to Partially Observable VPA, developing the notions of diagnosability they gave in [START_REF] Bertrand | Foundation of diagnosis and predictability in probabilistic systems[END_REF]. Interestingly, although their different settings of diagnosability had all PSPACE-complete complexity on finite LMC, their characterizations are now very different when considering POVPA, leading to different class of complexities, which depend in particular if the system is finitely branching. Surprisingly, when it is infinitely branching, some notions of diagnosability lead to non Borelian set of non-diagnosable runs.

Active diagnosis

Although we present diagnosability in passive way, that is by simply observing the behavior of the systems, some have studied what is called active diagnosis: at each step, a subset of the alphabet Σ c ⊆ Σ is selected by a controller and the next action is chosen at random in this subset. The controller may be all powerful (ie it can choose any subset of the alphabet) or it can have some restrictions, such as some actions will always be enabled. Thus, different strategies lead to different controllers. Some controllers will make the system diagnosable while others will not. The goal of active diagnosis is then to find a controller that makes the system diagnosable. This problem was introduced in [START_REF] Sampath | Active diagnosis of discrete-event systems[END_REF]. In this works, the authors present a procedure to synthesize a sublanguage that is diagnosable wrt the original language thanks to an iterative procedure. However, the complexity of this procedure is not evaluated by the authors but is presented as double exponential by [START_REF] Haar | Optimal constructions for active diagnosis[END_REF]. The latter proves that active diagnosis is EXPTIME-complete by using two players games on Büchi automata and define optimal controllers, that is with minimal memory. This notion is extended to stochastic systems in [START_REF] Bertrand | Active diagnosis for probabilistic systems[END_REF] where the authors prove that the complexity for this enriched problem is still EXPTIME-complete. However, they also show that enforcing diagnosability while preserving a positive probability to non faulty runs is an undecidable problem. To prove these claims, the authors make a strong link between active diagnosis on probabilistic systems and Partially Observed Markov Decision Processes.

Diagnosis of distributed systems

Notions of diagnosis presented before were based on the observation of only one system. However, many real life systems are distributed, such as a sensor network: every sensor has a partial view of what happens, and the whole network gives the full information. [START_REF] Fabre | Distributed diagnosis for large discrete event dynamic systems[END_REF] and [START_REF] Su | Distributed diagnosis for qualitative systems[END_REF] introduce some problems on diagnosis of asynchronous systems. In those works, there is no global time nor global state, thus the challenge is be able to efficiently communicate. Different techniques are investigated in order to tackle this issue, such as Petri Net unfolding [START_REF] Benveniste | Diagnosis of asynchronous discrete-event systems: a net unfolding approach[END_REF][START_REF] Fabre | Distributed monitoring of concurrent and asynchronous systems[END_REF]. Standard issues in distributed computations are raised, such as the robustness of distributed diagnosers wrt to the failure of some parts, or improve the scalability [START_REF] Su | A model of component consistency in distributed diagnosis[END_REF].

Numerous models of distributed diagnosis have been defined, depending on the settings of the model: synchronization, communication delays and/or losses, order preservation of information... Without detailing them, we can mention a few: joint diagnosability [START_REF] Sengupta | Decentralized diagnosability of regular languages is undecidable[END_REF], codiagnosability [START_REF] Qiu | Decentralized failure diagnosis of discrete event systems[END_REF], D-codiagnosability [START_REF] Wang | Diagnosis of discrete event systems using decentralized architectures[END_REF]... Finally, we also refer to [START_REF] Zaytoon | Overview of fault diagnosis methods for discrete event systems[END_REF] for a broad overview of diagnosis on Discrete Event Systems.

Conclusion

Summary

In section 3.1, a state of the art on diagnosability of stochastic systems has been provided, giving us the tools and foundations we based ourselves on. Section 3.2 presents results on quantified diagnosability: subsection 3.2.1 gives precise definitions and makes links with previous results by relating our degrees to notions previously defined, especially [START_REF] Nouioua | A probabilistic analysis of diagnosability in discrete event systems[END_REF] degree and A-diagnosability and subsection 3.2.2 provides algorithms to compute these degrees. Subsection 3.2.3 presented methods to optimize the calculation of a degree. Even if the worst case is unchanged due to the PSPACE-hardness bound, we saw that in some cases the gain could up to an exponential factor. Section 3.3 explored the time to detect a fault and gave finer results than what we presented in the state of the art. Subsection 3.3.1 presented a mathematical analysis that allowed us to derive appropriate mathematical objects that enabled to compute easily the moments of the distribution of detection delay. These moments were useful in several ways: first, we showed how to use them in order to approximate the distribution as precisely as wanted in subsection 3.3.2. This approximation was possible because the distribution associated to this set of moments is unique in our case. We also proved that these moments allow one to derive better concentration bounds that the ones commonly used in subsection 3.3.3. Moreover, when considering a subset of the moments, the bound derived from this subset is optimal, as shown in subsection 3.3.4.

Future work

Section 3.2.3 provided an algorithm to accelerate the computation of the diagnosability degree, and we saw that in some cases it is very efficient. However, no performance evaluation has been made. This may be a difficult work for some reasons. First, we know that the worst case complexity is unchanged. Maybe one could find some subclasses of LMCs such that this algorithm is efficient on these subclasses. Another option is to evaluate this algorithm on real systems: this is the most interesting benchmark.

Another perspective is quantified opacity. Opacity is another binary property stating if a secret has been leaked or not and has been widely studied on transition systems [START_REF] Bryans | Opacity generalised to transition systems[END_REF][START_REF] Lin | Opacity of discrete event systems and its applications[END_REF]. Some attempts have been made in order to introduce a quantitative version of opacity [START_REF] Bérard | Quantifying opacity[END_REF]. We believe that similar techniques to the one we presented may be useful to calculate some opacity degrees.

Chapter 4

Classification among Labeled

Markov Chains

Introduction

Given several stochastic systems, the problem of classification is to associate a trace of an execution to which system produced it. This can be seen as a symmetric generalization of more specific problems such as diagnosis or opacity. The former, presented in Chapter 3 can be seen as a classification between a faulty language and a correct one. The latter can be seen in some sense as the problem to be able to classify between high and low privileges part of the system [START_REF] Keroglou | Probabilistic system opacity in discrete event systems[END_REF], or between "secret" and "non-secret" part of the system.

In this chapter, we study classification on Labeled Markov Chains, which has been explored by different communities before, such as formal methods [CK14; BHL16b] and control [START_REF] Keroglou | Probabilistic system opacity in discrete event systems[END_REF]. Several variants of this notion can be defined: either one wants to classify for sure, with probability 1 or with arbitrarily small error... Here, after establishing a link between the first two notions (for sure and with probability 1) and well-known problems, we will focus on the last notion (arbitrarily small error), that we call limit-sure classifiability.

More formally, let (A i) i≤k be a set of LMCs representing different behaviors of a system under observation. We want to classify, i.e., discover which LMC/behavior the system is following, by only looking at an observation sequence w ∈ Σ ω it produces. The observer has access to an arbitrarily long prefix of this sequence. Naturally, the longer we observe the system, the larger the size of the observation and the better the information we have to discover the LMC. As it suffices to consider LMCs pairwise, we will consider in the following that there is only a choice between k = 2 LMCs. We will denote them by A 1 , with n states, and A 2 , with m states. In this chapter, we consider a setting where the system will pick A 1 (resp. A 2) with probability 1/2 and then runs an execution of A 1 (resp. A 2).

A classifier is a function f : Σ * → {⊥, 1, 2} that outputs the index of the LMC from an observation, or possibly ⊥ if it cannot conclude (yet). Consider for example A 1 , A 2 , both following the LMC in figure 4.1, the difference being that A 1 starts in x while A 2 starts in z. If the observation w starts with b, then we know the systems follows A 2 , because b is not possible from x. We can thus for all w let f (bw) = 2. However, if the observation is ab 2 a, then it could come from any A 1 or A 2 . There are several notions of classifiability:

• sure classifiability: there exists a classifier f that eventually identifies the accurate LMC that generated w. That is, for all w ∈ Σ ω , there exists a finite prefix v of w and a classifier f for v such that f (v) = 1 (resp. f (v) = 2) iff there exists no path ρ of A 2 (resp. of A 1) with obs(ρ) = w.

• almost-sure classifiability: there exists a classifier f that eventually identifies the accurate LMC that generated w with probability 1. This classifier cannot make errors when it outputs 1 or 2, but there may exist infinite observations that cannot be classified, though the total probability is 0 (such as tossing tail forever on a fair coin).

• limit-sure classifiability: there exists a classifier f that, for any > 0, eventually discovers the correct LMC with probability greater than 1 -.

This leads to the two main questions that we are interested in, for each of the above notions:

• (i) how easily can one decide the existence of a classifier? • (ii) if there exists a classifier, how easily can one build it explicitly? For the first two notions, namely sure and almost-sure classification, we recall some wellknown results in section 4.2. For limit-sure classifiability, some pioneering works are also presented in the state of the art [CK14; [START_REF] Kiefer | Distinguishing hidden Markov chains[END_REF][START_REF] Keroglou | Probabilistic system opacity in discrete event systems[END_REF]. In this chapter, we reinvestigate the problem: in order to answer limit-sure classification, we define a notion of stationary distribution for LMCs to study the long run statistics of the observation w, extending the standard notion of stationary distribution for Markov Chains. To do so, we focus on beliefs, that is the set of states that can be reached with the same observation w n . We show that a notion of stationary distribution can be defined for beliefs in Bottom Strongly Connected Components (BSCCs), and that it also corresponds to a notion of asymptotic distribution, describing the asymptotic statistics of beliefs.

Stationary distributions allow us to characterize limit-sure classifiability as detailed in [START_REF] Keroglou | Probabilistic system opacity in discrete event systems[END_REF] for a subclass of LMCs. We show that one cannot classify between two LMCs iff they have beliefs which can be reached by the same observation and for which the stationary distributions can be separated by one finite word (for which the probability is different). This gives us a polynomial algorithm to decide if two LMCs are limit-sure classifiable. Notice that polynomial time result had been shown in [START_REF] Kiefer | Distinguishing hidden Markov chains[END_REF] with a different approach.

Finally, we consider the classification problem in a security context, called attackclassification: instead of deciding if every observation can be classified, we check for the existence of such an observation that can be classified and the existence of a strategy to obtain it. We then show that deciding if there exists a limit-sure attack-classifier is PSPACE-complete. This chapter is organized as follows: section 4.2 describes the state of the art on classification. In section 4.3 we define stationary distributions for LMCs and show some of their properties. Section 4.4 contains the main results about limit-sure classification relying on the characterization developed in 4.4.2 and the corresponding algorithm (in 4.4.3). This section also contains a comparison with previous contributions we presented in the state of the art. Attack-classification is then presented in section 4.5. This chapter closes with a discussion about related work.

State of the art

This section details some results on sure and almost-sure classification and then several ways to compare stochastic systems, going from stronger notions (equivalence) to weakest ones (distances). We start by presenting well-known results on sure and almost-sure classification in subsection 4.2.1. Then, we state results on the equivalence of stochastic languages in subsection 4.2.2, then we describe notions of distance for stochastic automata in subsection 4.2.3. As we are interested in LMC and not in stochastic automata, we depict an adaptation of these distances to LMCs in subsection 4.2.4. Finally, we outline some very closely related works on distinguishability that we will use as a reference in subsection 4.2.5.

Sure and almost-sure classification

Regarding the first question given in the introduction, that is deciding if there exists a classifier, one can answer easily for the sure and the almost-sure classification, which have been studied in different contexts, such as fault diagnosis (see Chapter 3.1.1 and 3.1.2).

Proposition 4.1. [Sam+96; BHL14] One can surely classify among 2 LMCs iff L

ω (A 1)∩ L ω (A 2) = ∅,

and this can be checked in PTIME. One can almost-surely classify among 2 LMCs iff the set L

ω (A 1) ∩ L ω (A 2
) has probability 0, and this is a PSPACE-complete problem.

Proof. The first result is a classical result, in the context of fault-diagnosis [START_REF] Sampath | Failure diagnosis using discrete-event models[END_REF], which can be adapted trivially to the case of classification. Clearly, an observation w ∈ For the second result we use [TT05; BHL14]: if L ω (A 1)∩L ω (A 2) has a positive probability, then clearly no almost-sure classifier exists for these observations. Conversely, assume that L ω (A 1) ∩ L ω (A 2) has probability 0. Consider the belief automata B 1 , B 2 associated with A 1 , A 2 and compute their synchronized product B 1 × B 2 . The hypothesis implies that all states in BSCCs of this product are either of the form (D 1 , ∅) or (∅, B 2): one can thus classify when BSCCs are reached, which eventually happens with probability 1. To get the PSPACE algorithm, it suffices to check whether a BSCC of the belief product, with both components non-empty, can be reached. The PSPACE-lower bound follows the one in [START_REF] Bertrand | Foundation of diagnosis and predictability in probabilistic systems[END_REF].

L ω (A 1) ∩ L ω (A 2) cannot be classified. Conversely, if L ω (A 1) ∩ L ω (A 2) = ∅,
Finally, for sure and almost-sure classification, building the classifier is also easy: it suffices to compute the set of states reached with the observation w (called belief in the next section) for both LMCs, and wait for a time when one of these beliefs becomes empty and then return the name of the LMC with a non-empty belief state. This event must eventually happen (almost surely with the second notion).

Equivalence of stochastic languages

Given two systems, a strong assessment one can verify is whether they have the same language. In terms of qualitative languages, it means that L 1 = L 2 i.e., for any word

w ∈ Σ * , w ∈ L 1 ⇔ w ∈ L 2 .
For stochastic systems, such as LMCs, the notion of equivalence has to be extended to take into account the probabilities. Intuitively, two stochastic languages are equivalent if all words have exactly the same probability to be executed by both LMCs. In this section, we present the equivalence problem and LMCs, its complexity and a sketch of proof.

More formally, the equivalence problem is given as follows.

Definition 4.1 (Equivalence of languages for LMCs).

Let A 1 , A 2 be two LMCs. A 1 and A 2 are equivalent iff for all w, P A 1 (w) = P A 2 (w).

The equivalence problem for stochastic automata (i.e., LMCs with stopping probabilities) is defined in the same way. The problem to decide if two LMC are equivalent has been proved to be decidable in PTIME in [START_REF] Balasubramanian | Equivalence and reduction of hidden markov models[END_REF]. An extension of the equivalence problem to weighted automata has been presented in [START_REF] Doyen | Equivalence of labeled Markov chains[END_REF]. We present a sketch of proof for LMCs following [START_REF] Chen | On the Total Variation Distance of Labelled Markov Chains[END_REF].

Proposition 4.2 ([Bal93]). The problem of equivalence of two LMCs is decidable in

PTIME. x 1 y 1 b, 1 2 b, 1 2 a, 1 2 a, 1 2 x 2 a, 1 2 ; b, 1 2 x 3 y 3 a, 1 2 b, 1 2 a, 1
(Sketch of proof for Proposition 4.2). Given two LMCs A 1 , A 2 with initial distributions σ 1 , σ 2 , the equivalence problem amounts to verifying if for all w ∈ Σ * , P A 1 (w) = P A 2 (w). In matrix form, for an observation w = a 1 . . . a k , this can be written as

σ 1 M 1 (w)1 = σ 2 M 2 (w)1 with M i (w) = Π k j=1 M 1 (a j)
, M 1 (a j) the transition matrix of A 1 associated to letter a j and 1 the column vector containing only 1s (and similarly for M 2 (w)). This yields

∀w ∈ Σ * , (σ 1 σ 2) •   M 1 (w) ∅ ∅ M 2 (w)   • (1, • • • , 1, -1, • • • , -1) T = 0 We define Eq(A 1 , A 2) = span{   M 1 (w) ∅ ∅ M 2 (w)   •(1, • • • , 1, -1, • • • , -1) T | w ∈ Σ * }.
Eq(A 1 , A 2) is a vector space and its dimension is at most n + m, thus we can build a basis v 1 , . . . v for Eq(A 1 , A 2) of size ≤ n + m. It suffices then to check whether (σ 1 σ 2) falls in the left kernel of Eq(A 1 , A 2) which amounts to (σ

1 σ 2) • v i = 0 for all i ≤ .
Notice that this problem is very close to equivalence for languages of PFAs which has first been shown to be in coNP in [START_REF] Paz | Introduction to probabilistic automata (Computer science and applied mathematics)[END_REF] and then in PTIME in [START_REF] Tzeng | A polynomial-time algorithm for the equivalence of probabilistic automata[END_REF]. A corollary of [START_REF] Doyen | Equivalence of labeled Markov chains[END_REF] is that equivalence for both settings (LMCs and PFAs) is inter-reducible. Especially, the proof sketched from [START_REF] Chen | On the Total Variation Distance of Labelled Markov Chains[END_REF] uses very similar ideas to the one in [START_REF] Tzeng | A polynomial-time algorithm for the equivalence of probabilistic automata[END_REF].

Distance between stochastic automata

When two systems define exactly the same (non-stochastic) language, one may want to quantify the difference between them. Different notions of distance have been used to perform this quantification. In this subsection, we illustrate some of them. The standards distances to study are the L p ones. However, it is unclear how to define them on LMCs with infinite words. Thus, we start by giving definitions and results for these distances on stochastic automata. We will later refer to work on the total variation distance which is derived from the L 1 distance and is also suited for LMCs. We recall that a stochastic automaton is a weighted automaton over the probabilistic semiring and can be seen as an LMC with stopping probability. In the related work section, other distances will be mentioned.

L p distance

In mathematics, L p spaces involve functions which p-power is measurable and summable in the sense of Lebesgue. As probabilistic automata can be seen as functions that associate a real number to a word in Σ * a L p norm can be defined on them in a similar manner.

Definition 4.2 (L p distance between two automata).

Let p ≥ 1 and let A 1 , A 2 be two stochastic automata with respective probability distribution p 1 and p 2 . The L p distance between A 1 and A 2 is given by:

L p (A 1 , A 2) = (w∈Σ * |p 1 (w) -p 2 (w)| p) 1 p
Notice that for all p, two stochastic automata are equivalent (notion developed in section 4.2.2) iff their L p distance is 0 . In particular, an L p distance being 0 for some p is equivalent to being 0 for all p. The usually considered decision problem is "given

A 1 , A 2 , θ ∈ R, L p (A 1 , A 2) = θ?".
This problem has been tackled in various works [LP02; CMR06; CMR07; CK14; Kie18]. We recall the most important results.

Proposition 4.3 (L p distance for even p [CMR06; CMR07]). Given two stochastic automata A 1 , A 2 and given an even value of p, the decision problem associated to the L p distance is decidable with time complexity O((|A

1 | + |A 2 |) 6p
), which is polynomial for a fixed p.

Further, if the stochastic automaton is unambiguous, that is for all w ∈ Σ * there exists only one path that accepts w, then the complexity becomes polynomial even when p is part of the input with time complexity O(2p|A 1 | 3 |A 2 | 3). However, when p is odd, the problem becomes much more complex. [START_REF] Rune | The consensus string problem and the complexity of comparing hidden Markov models[END_REF] showed that the complexity was at least NP-hard for L 1 and [CMR06] extended this NP-hardness to every odd value of p. Finally, [START_REF] Kiefer | On Computing the Total Variation Distance of Hidden Markov Models[END_REF] refined this result:

Proposition 4.4 (L 1 distance [Kie18]
). Given two stochastic automata A 1 , A 2 , the decision problem associated to the L 1 distance is undecidable.

[Kie18] also proved that approximating the L 1 distance was in PSPACE and #P-hard.

Definition 4.3 (L ∞ distance).

Let A 1 , A 2 be two stochastic automata with respective probability distribution p 1 and p 2 . The L ∞ distance between A 1 and A 2 is given by:

L ∞ (A 1 , A 2) = max w∈Σ * |p 1 (w) -p 2 (w)|
The L ∞ distance is also sometimes considered, but its complexity remains high: at least NP-hard [START_REF] Rune | The consensus string problem and the complexity of comparing hidden Markov models[END_REF].

To sum up, deciding if two stochastic automata are equivalent, that is if they are at distance 0 for some L p distance is computationally easy. However computing the exact distance in a general setting remains difficult.

Total variation distance and the distance 1 problem

While the L p distances are not well suited for LMCs, one can define the total variation distance [START_REF] Gibbs | On choosing and bounding probability metrics[END_REF] for LMCs. For stochastic automata, we can show that the total variation distance and the L 1 distances are equal up to a factor 2, hence the total variation distance is a good replacement for the L 1 distance for LMCs. In the following, for a probability measure p on finite words in a stochastic automaton, we denote p(W) = w∈W p(w). Analogously, for a probability measure p on infinite words in an LMC, we denote p(W) = w∈W p(w). Notice that for LMCs we need the words to be infinite.

Definition 4.4 (Total variation distance on stochastic automata).

Given two stochastic automata A 1 , A 2 , with respective probability distribution p 1 and p 2 , the total variation distance is given by

d(A 1 , A 2) = max W ⊆Σ * |p 1 (W) -p 2 (W)|
This distance is the biggest possible difference of event probabilities between A 1 and A 2 . We can make the following link between the total variation distance and L 1 :

Proposition 4.5 ([MU17]). d(A 1 , A 2) = 1 2 L 1 (A 1 , A 2)
Because of Proposition 4.4, this proposition implies the impossibility to compute exactly the total variation distance, and the difficulty to approximate it [START_REF] Kiefer | On Computing the Total Variation Distance of Hidden Markov Models[END_REF]. The total variation distance can be extended to LMCs as follows:

Definition 4.5 (Total variation distance on LMCs).

Given two LMCs A 1 , A 2 , with respective probability distribution p 1 and p 2 , the total variation distance is given by Notice that we now have a supremum due to the uncountable number of possible measurable sets W . However, one can show the existence of a measurable set of infinite runs that maximizes this quantity which turns this supremum into a maximum. We denote w i the prefix of length i of w and q(w) = lim p 1 (w i) p 2 (w i) if this limit exists.

d(A 1 , A 2) = sup W ⊆Σ ω measurable |p 1 (W) -p 2 (W)| x 1 y 1 a a, 1 4 ; b, 3 4 x 2 y 2 a a, 3 4 ; b, 1 4 x 3 y 3 z 3 a, 1 2 a, 1 2 a,

Theorem 4.6 ([CK14]

). The set

W > = {w ∈ Σ ω |q(w) > 1} maximizes |p 1 (W) -p 2 (W)|.
Even if this distance is not computable in general, some verification can nevertheless be performed:

Definition 4.6 (Distance 1 problem). Given two LMCs

A 1 , A 2 , does d(A 1 , A 2) = 1 hold.
Intuitively, if two LMCs are at distance 1, then there exists a set of infinite runs that has probability 1 in one LMC and probability 0 in the other one. Coming back to our classification problem, it would be possible to know which LMC produced an observation w ∈ Σ ω .

Example 4.2. We illustrate the notion of distance 1 with the four LMCs in figure 4.3.

A 1 , A 2 are at distance 1: by denoting |w n | a the number of a in the prefix of length n of w, the set

W 1 = {w ∈ Σ ω | lim n→∞ |wn|a n > 1 2
} has probability 1 in A 2 and probability 0 in A 1 . On the contrary, A 1 and A 3 are not at distance 1: intuitively, the upper part of A 3 is totally different, however the lower part has exactly the same behavior as A 1 . Finally, A 1 and A 4 are at distance 1. Again, the upper part behaves in the same way as A 2 and then is "very different" from the behavior of A 1 . Even if the state z 4 has the same behavior as y 1 , as they are not reachable by the same prefix.

Furthermore, by arguments similar to those developed in [START_REF] Tzeng | A polynomial-time algorithm for the equivalence of probabilistic automata[END_REF] and [START_REF] Doyen | Equivalence of labeled Markov chains[END_REF], if there exists such a w then there is one that has a length lower than 2

• (|S 1 | + |S 2 |).
The existence of these subdistributions can be checked in polynomial time thanks to linear programming, hence the polynomial time algorithm 2.

Algorithm 2 PTIME algorithm for the distance 1 problem

1: A is the twin automaton A 1 × A 2 .

2: for r 1 ∈ S 1 do

3:

Let R 2 = {r 2 | (r 1 , r 2) ∈ A}.

4:

if there exist two distributions µ 1 , µ 2 with r 1 ∈ supp(µ 1) and supp(µ 2) ⊆ R 2

5:

with (A 1 , µ 1) ≡ (A 2 , µ 2) then 6:

return d(A 1 , A 2) < 1 7: end if 8: end for 9: return d(A 1 , A 2) = 1

Distinguishability

Let A 1 , A 2 be two LMCs. Distinguishability is the problem of determining the existence of a monitor that can check with arbitrary precision from which LMC an observation comes from. It is thus similar to classification. This notion has been studied in [START_REF] Kiefer | Distinguishing hidden Markov chains[END_REF] and is strongly related to the distance 1 problem.

Definition 4.7 (Monitor).

A monitor is a function

M : Σ * → {⊥, 1} such that if M (u) = 1 then for all v, M (uv) = 1.
Given a monitor M , we denote by L(M) the set of infinite executions w such that there exists a prefix u of w with M (u) = 1. The set L(M) is measurable as a countable union of cylinders.

Definition 4.8 (Distinguishability).

Let A 1 , A 2 be two LMCs inducing respective probability measure π 1 , π 2 . A 1 , A 2 are said to be distinguishable if for all ε > 0 there exists a monitor M ε such that

π 1 (L(M ε)) ≥ 1 -ε and π 2 (L(M ε)) ≤ ε
Note that even if this definition seems not symmetric, there exists a monitor

M ε such that π 1 (L(M ε)) ≥ 1 -ε and π 2 (L(M ε)) ≤ ε iff there exists a monitor M ε such that π 1 (L(M ε)) ≤ ε and π 2 (L(M ε)) ≥ 1 -ε [KS16].
As we said before, the existence of such a monitor is strongly related to the distance 1 problem: [START_REF] Chen | On the Total Variation Distance of Labelled Markov Chains[END_REF] for every ε > 0 there exists W such that

Proposition 4.9 ([KS16]). Two LMCs A 1 , A 2 are distinguishable iff d(A 1 , A 2) = 1. Proof. If d(A 1 , A 2) = 1, then from
p 1 (W Σ ω) ≥ 1 -ε and p 2 (W Σ ω) ≤ ε.
Then, let M be a monitor outputting 1 after reading a string in W . We trivially have p 1 (L(M)) ≥ 1 -ε and p 1 (L(M)) ≤ ε. Hence, A 1 and A 2 distinguishable.

If A 1 and A 2 are distinguishable, then for every ε > there exists a monitor

M ε such that p 1 (L(M ε)) ≥ 1 -ε and p 2 (L(M ε)) < ε.Then, d(A 1 , A 2) ≥ sup ε |p 1 (L(M ε)) -p 2 (L(M ε))| ≥ 1 -2ε ≥ 1
As a corollary, deciding if two LMCs are distinguishable can be done in PTIME. We will see in section 4.4.4 that distinguishability and limit-sure classifiability coincide on LMCs.

Misclassification

In this last part of the state of the art, we present a recent work on the probability of misclassification in the context of probabilistic opacity of LMCs [START_REF] Keroglou | Probabilistic system opacity in discrete event systems[END_REF]. Let A 1 , A 2 be two LMCs with respective probability measures p 1 , p 2 . As for classification, the system chooses at random between two LMCs A 1 and A 2 (to simplify, here we consider probabilities half half) and an observation w from this LMC is produced. One would want to decide if w has been produced by A 1 or A 2 .

Consider the maximum a posteriori probability (MAP) rule where the answer for an observation w is 1 (resp. 2) if p 1 (w) > p 2 (w) (resp. p 1 (w) > p 2 (w)). Given an observation w, the probability to misclassify w is P err (w) = min(p 1 (w), p 2 (w)). Then, given n ∈ N, the probability of misclassification, i.e., the probability to make an error by watching an observation of size n is We say that the probability of misclassification error among two LMCs tends to 0 iff ∀ε > 0, ∃n 0 ∈ N, ∀n > n 0 , P err (n) < ε

P err (n) =
Actually, distinguishability (and thus limit-sure classification) are equivalent with the probability of misclassification error tending to 0, as shown in Proposition 4.12. [START_REF] Keroglou | Probabilistic system opacity in discrete event systems[END_REF] obtain the following sufficient condition: Proposition 4.10. Let A 1 , A 2 be two LMCs with corresponding MC M 1 and M 2 such that M 1 and M 2 are irreducible and aperiodic. Let σ i be the stationary distribution of M i . Then, if A 1 with initial distribution σ 1 and A 2 with initial distribution σ 2 are equivalent (see 4.2.2) then the probability of misclassification error tends to 0, i.e., ∀ε > 0, ∃n 0 ∈ N, ∀n > n 0 , P err (n) < ε [START_REF] Keroglou | Probabilistic system opacity in discrete event systems[END_REF] solves this problem on a subclass of LMCs: those for which the associated Markov Chain is strongly connected with period 1 and crucially, for all state the initial probability is positive.

In the following, we denote α(w) = min{ p 1 (w) p 1 (w)+p 2 (w) , p 2 (w) p 1 (w)+p 2 (w) }. Let us consider some LMCs based on the structure given in figure 4.4. We consider different systems with different initial distributions. A 1 (resp. A 2 , A 3 , A 4) has initial distribution (1, 0) (resp. (0, 1), (0.25, 75), (0.5, 0.5)). Of course, all MC corresponding to these LMCs have the same stationary distribution (0.5, 0.5).

s 0 s 1 b, 1 2 b, 1 2 a, 1 2 c,

By looking at an observation long enough

A 1 and A 2 can be differentiated with probability 1: in the former an "a" will only occur after an even number of "b" whereas in the latter it will only be after an odd number of "b". The only word of length n that is ambiguous is b n whose probability is 1/2 n . Thus, the probability of error tends toward 0.

However, when considering A 3 and A 4 , this reasoning is not enough. Seeing an "a" after an even (resp. odd) number of "b" means that the initial state was s 0 (resp. s 1), and a similar reasoning can be applied for "c". This is possible for both A 3 and A 4 . Since the sets of states and transitions are the same for A 3 and A 4 , once we know the initial state we cannot gain more information. Thus, the probability of misclassification does not tend toward 0.

Finally, we make a link between distinguishability and misclassification. Proposition 4.12. Let A 1 , A 2 be two LMCs.

A 1 and A 2 are distinguishable ⇔ the probability of misclassification between A 1 and A 2 tends to 0.

Proof. Let A 1 , A 2 be two LMCs with respective probability distributions p 1 and p 2 .

If A 1 and A 2 are distinguishable then for all ε, there exists k ε and

W kε ⊆ Σ kε such that p 1 (W kε Σ ω) ≥ 1 -ε and p 2 (W kε Σ ω) ≤ ε [CK14]. Then P err (k ε) = w∈W kε min(p 1 (w), p 2 (w)) + w∈Σ k \W kε min(p 1 (w), p 2 (w)) P err (k ε) ≤ w∈W kε p 2 (w) + w∈Σ k \W kε p 1 (w) P err (k ε) ≤ ε + ε
Thus, the probability of error tends to 0.

Conversely, if the probability of error between A 1 and A 2 tends to 0. For all ε, there exists k ε such that P err (k ε) ≤ ε.

Let W 1,kε = {w ∈ Σ kε | p 1 (w) ≤ p 2 (w)} and W 2,kε = Σ kε \ W 1,kε . We obtain that w∈W 1,kε p 1 (w) ≤ ε and w∈W 2,kε p 2 (w) ≤ ε. Then, p 1 (W 1,kε Σ ω) ≤ ε and p 2 (W 2,kε Σ ω) ≥ 1 -ε. By [CK14], A 1 and A 2 are distinguishable.

Beliefs and stationary distributions for LMCs

In order to solve the classification problem, we would like to use statistics on an observation w ∈ Σ ω . For this, it is important to know the proportion of time an execution spends in each state on average as done in [START_REF] Keroglou | Probabilistic system opacity in discrete event systems[END_REF]. With this information, we can deduce an "average behavior": since we observe an infinite execution, we know that with high probability its behavior will be close to the average. Stationary distributions, a concept used for Markov chains (see Chapter 2.1.4 and 2.2), give information on this average behavior. However, since we consider a more complex model, this is not enough. We will thus generalize this concept to LMCs in the following. While it is crucial in the realm of classifiability, we believe it is also of independent interest. For a Markov chain M, a stationary distribution σ is a distribution over states of M such that σ • M = σ. In LMCs, the observation w plays an important role and changes our knowledge of states in which the run could be at each time. Thus, we consider the set of states that could be reached by an LMC A with a given observation, and call this the belief-state or simply the belief. Formally, let w ∈ Σ * be a finite observation. The belief B A (w) associated with w is the set of states {s + (ρ) | obs(ρ) = w} that is states that can be reached by a path labeled by w. For instance, with the LMC A from figure 4.5, we have B A (aa) = {x, y}. We let B A = (2 S , ∆, s 0) be the (deterministic) belief automaton associated with A:

• (i) its states are the subsets of states of A,

• (ii) (B, a, B) ∈ ∆ iff B = {b |∃b ∈ B, M (a) b,b > 0}, • (iii) s 0 = {s | σ 0 (s) > 0}.
This is the usual subset construction used for determinizing an automaton, as shown on figure 4.5. Notice that B A is deterministic.

Consider a BSCC D of LMC A (as for Markov chains, this is to ensure irreducibility). For x ∈ D, we denote by B x D the subgraph of B A reachable from {x}. (Notice that {x} may not be reachable in B A from its initial state.) On figure 4.5, we have B y D = B A . It has a unique BSCC (of beliefs), with 2 beliefs {x, y} and {z}. Remember that we always exclude the trivial {∅} BSCC. We now show that this is the general form of the belief automaton: Lemma 4.13. There is a unique BSCC in B x D , and it does not depend upon x ∈ D.

Proof. Assume by contradiction that X 1 ⊆ S and X 2 ⊆ S belong to two distinct BSCCs of B x D (wlog, we can choose x ∈ X 1 , x ∈ X 2 as x is reachable from any state in D, and thus x must belong to at least one member of each BSCC). Let w 1 , w 2 be observations reaching X 1 and X 2 respectively from {x}. As x ∈ X 1 , there is a path in B x D labeled w 2 from X 1 to some X 2 with X 2 X 2 (they cannot be equal because they are in 2 different BSCCs).

As x ∈ X 2 , there is a path in B x D labeled w 1 from X 2 to some X 1 with X 1 X 1 . We can then play w 2 to obtain some X 2 from X 1 with X 2 X 2 . We can iterate this process infinitely, which gives a contradiction with the bounded number of states. In the same way, consider B x D and B y D , and assume by contradiction that they have different BSCCs. Let Y (resp. X) be a configuration in the unique BSCC of B x D (resp. B y D), reachable by playing w 1 (resp. w 2), with x ∈ X and y ∈ Y . One can play w 2 (resp. w 1 w 2) from Y (resp. X) and reach some X , with X X X . Again, one can iterate and reach a contradiction with the boundedness of the number of states. Definition 4.10. Let A be an LMC. For D a BSCC of A and x ∈ D, let B x D the belief automaton with starting state {x}. We denote E D the set of beliefs X in the unique BSCC of B x D (remember it does not depend on x ∈ D). Last, we denote

E A = D E D , that is the union of E D over all BSCCs D of A.
Notice that this definition can be also applied to non-probabilistic systems, namely LTS. Notice also that E A may not contain all beliefs in the BSCCs of B A , because E D is restricted to beliefs X reachable from {x} with a single state x of a BSCC of A. This is crucial for lemma 4.13 to hold. We will see that considering singletons is not a restriction: assume that the belief reached in a BSCC of beliefs comes from a belief {x, y} with x = y. Either the stochastic languages from x and y are the same, in which case we change nothing by considering only x as a starting point. Otherwise, they induce different statistics on upcoming observations, and looking at the observed statistics will give away with arbitrarily small error the state x or y which they originate from.

For Markov chains (i.e., LMCs on a one letter alphabet), the BSCC E D is exactly

X 1 → X 2 • • • → X k → X 1 ,
with k the period of this BSCC. Hence, the construction above can be seen as a generalization to LMCs of the notion of Markov chain's period. We use it to generalize the Fundamental theorem of Markov chains (see Chapter 2.2) to LMCs. Let X ∈ E A . We are interested in the asymptotic distribution associated to belief X, that is the asymptotic distribution over states of X given that the belief state is X. From that, we will be able to deduce the statistics over observations. Let W X be the (possibly countable infinite) set of words which bring from belief X to belief X without seeing belief X in-between and

W i X = {w 1 . . . w i | ∀k ≤ i, w k ∈ W X }
, that is a concatenation of i words in W X . For two states y, x and a finite observation w, we define M (y, w, x) = 1 y • M (w)1 T x with 1 y (resp. 1 x) the vector equal to 1 in position y (resp. x) and 0 elsewhere. Let y ∈ X and i ∈ N. Consider σ y,i the distribution over X such that σ y,i (x) = w∈W i X M (y, w, x), the probability of reaching x from y after seeing i words of W X . We want to compute the limit of σ y,i . First, let us remark that this limit exists, as W i X is increasing with i and w∈W i X M (y, w, x) ≤ 1 since for all w, w ∈ W i X , w is not a prefix of w . Then, we define the stationary distribution σ X : X → [0, 1] of the LMC given a belief X. For that, we enrich the states of A with its beliefs, considering the product A × B A (same runs with same probabilities as in A). For all y, x ∈ X, let M X (y, x) be the probability in the LMC A × B A to reach (x, X) from (y, X) before reaching any other (z, X) (which can be computed by the algorithm for ε-removal presented in Chapter 2.1.2).

We have that for all x ∈ X, y∈X M X (x, y) = 1, that is M X is the transition matrix of a Markov chain. We obtain:

Theorem 4.14. Given an LMC A, let X be a belief in E A . Then, M X has a unique stationary distribution denoted σ X : X → [0, 1], i.e., σ X • M X = σ X . Further, for all

y ∈ X, σ y,i -→ i→+∞ σ X .
Proof. We first prove that there exists such that for all x, y ∈ X, we have M X (x, y) > 0.

Then using the Fundamental theorem of Markov chains (see Theorem 2.2), we will be able to conclude that there is a unique stationary distribution σ X of M X [START_REF] John | Finite Markov Chains. D Van Nostad Co[END_REF]. So, to see the former statement, for all x ∈ X, by lemma 4.13, there is an observation v x leading from {x} to X, i.e., ∆({x},

v x) = X ∈ B A = X 1 . Now, let X 2 = ∆(X 1 , v x). We know that X 1 ⊆ X 2 as x ∈ X 1 and ∆({x}, v x ⊆ ∆(X 1 , v x)) by construction of B A . If X 1 X 2 , then we apply v x again. As ∆({x}, v i x) = X i is increasing with i and |∆({x}, v i x)| ≤ n for all i, we will reach a fix point X n , such that X n = ∆(X n , v x). In particular, ∆({x}, v n+1 x) = ∆(X, v n x) = X n+1 = X n . As X is in the BSCC of B A , there is an observation v with ∆(X n , v) = X. Let w x = v n+1 x v. Thus, ∆({x}, w x) = ∆(X, w x) = X. Let w x = v n+1 x v. Thus, ∆({x}, w x) = ∆(X, w x) = X (*)
Now, by induction on the size of X, we build a uniform word w such that ∆({x}, w) = X for all x ∈ X. Let x 1 , . . . , x k be the elements of X. The word w starts with w x 1 . We have that for all i ≤ k, ∆({x i }, w x 1) ⊆ X. Let y 2 ∈ ∆({x 2 }, w x 1). Hence y 2 ∈ X, and we will append to w x 1 the observation w y 2 , obtaining ∆({x 1 }, w x 1 w y 2) = ∆({x 2 }, w x 1 w y 2) = X, and for all i ≤ k, ∆({x i }, w x 1 w y 2) ⊆ X (by (*)). By induction, we will obtain the desired word w. Then, for the size of w, we will have M X (x, y) > 0 for all x, y ∈ X. That is, M X is irreducible and aperiodic. We denote by σ X the stationary distribution of M X . Let W X the (possibly countable infinite) set of words which brings from belief X to belief X without seeing belief X inbetween. Consider σ y,i the distribution over X such that σ y,i (x) = w∈W i X P (w)M (y, w, x), the probability of reaching x from y after seeing i words of W X . We now apply the Fundamental theorem of Markov chains (see Theorem 2.2) to the irreducible and aperiodic Markov chain M X : for σ X y,i the distribution with σ X y,i (x) = M i X (y, x), we have that lim i→∞ σ X y,i exists and is unique, it does not depend upon y ∈ X, and it is equal to σ X . Now, it suffices to notice that by definition of M X , we have σ X y,i = σ y,i .

Limit-sure Classifiability

We start by formally defining the problem of limit-sure classification: Unlike sure and almost-sure classifiability, limit-sure classifiability cannot be as easily expressed in terms of languages. Indeed, it is possible to limit-surely classify among A 1 , A 2 , and yet L(A 1) = L(A 2) (i.e., in the sense the non-stochastic languages). Also, a limitsure classifier can use statistics over letters in w ∈ Σ ω in order to make its decision, which opens a lot of possibilities.

Example 4.5. Let us illustrate this: consider again A 1 , A 2 , where both are the LMC A from figure 4.5, where A 1 starts from x and A 2 starts from z. Again, if the observation starts with b, then it is easy to conclude that the LMC is A 2 . If it starts with a, then the set of states which can be reached after observation a is {x, y} in A 1 and {z} in A 2 , which are both in the BSCCs. Actually, after an even number of b's (and any number of a's), we still have {x, y} the set of states possible in A 1 and {z} in A 2 . In the following section using stationary distributions on LMCs, we will show how to compute that if the LMC is A 1 , after an even number of b's, the long term average is 3 5 to be in x and 2 5 to be in y. From this, we deduce that the long term average is 4 5 = 3 5 1 + 2 5 1 2 to perform an 114 a after an even number of b's. On the other hand, if the LMC is A 2 , then the state is z and we obtain the average frequency over the observation will tend towards the long term average by law of large numbers. Thus the classifier f (w) = 1, if the average frequency of a's after an even number of b's observed in w is closer to 4 5 than to 1 2 , is limit-sure. Notice that using the standard stationary distributions on Markov chains as in [START_REF] Keroglou | Probabilistic system opacity in discrete event systems[END_REF] only tells us that both A 1 and A 2 stay in long term average frequency 3 7 in x, 2 7 in y, and 2 7 in z , and thus do

5 7 = 3 7 + 2 7 1 2 + 2 7 1
2 of a's in average, which cannot limit-surely classify between

A 1 , A 2 .
Consider the Maximum A Posteriori Probability (MAP) classifier [Ram07; KH18]. Remember it answers 1 if P A 1 (w) > P A 2 (w), and 2 otherwise. To compute these two probabilities, it just needs to record for every state s 1 of A 1 (resp. every state s 2 of A 2) the probability to observe w and finish in state s 1 (resp. s 2). It can also give its confidence level about its decision: there is probability confidence(i, w)=

P A i (w) P A 1 (w)+P A 2 (w)
that decision i is correct after observing w. Notice that confidence is not necessarily non-decreasing as |w| increases, and that the answer of a classifier can also switch from one answer to the other answer. We will show in section 4.4.2 that if (A 1 , A 2) is limit-sure classifiable, then the MAP classifier will be a limit-sure classifier. The main problem is to decide when limit sure classification holds. This problem can actually be solved in PTIME. The rest of this section is dedicated to proving this property.

The Twin Automaton and the Twin Belief Automaton

Given LMCs A 1 , A 2 , we define their twin automaton A = (S = S 1 × S 2 , ∆, s 0) as the product of the automata associated with A 1 × A 2 by forgetting the probabilities. Notice that this notion is close to the twin plant (definition 3.7) defined for diagnosis where we considered the product of the unprobabilized LMC and its correct states. The transition relation is ∆ = {((s 1 , s 2), a, (t 1 , t 2)) | δ 1 (s 1 , a, t 1) > 0, δ 2 (s 2 , a, t 2) > 0}, with initial state s 0 = (s 1 0 , s 2 0). We call states of A twin states and we have L(A) = L(A 1) ∩ L(A 2) (i.e., non-stochastic languages). In the following, we will often consider the belief automata

B A , B A 1 , B A 2 associated with A, A 1 , A 2 ,
obtained by the subset construction (see section 4.3). States of B A will be called twin beliefs. Notice that although twin beliefs are formally sets of pairs of states in 2 S 1 ×S 2 , we can also present them as pairs of sets of states 2 S 1 × 2 S 2 because if (s 1 , s 2) and (s 1 , s 2) are in the same twin belief, then we also have (s 1 , s 2) and (s 1 , s 2) in this twin belief. We will thus write the twin belief X(u) associated with observation u as

X(u) = (X 1 (u), X 2 (u)), with X 1 (u), X 2 (u) the beliefs states of B A 1 , B A 2 associated with u.
[CK14]). Let (X 1 , X 2) be a reachable twin belief of B A . Let X 1 ⊆ X 1 , X 2 ⊆ X 2 . Let σ 1 , σ 2 two distribu- tions over X 1 , X 2 such that (A 1 , σ 1) ≡ (A 2 , σ 2)
. Then one cannot classify with probability 1 observations from A 1 and A 2 .

Proof. Let u be a word with B A 1 (u) = X 1 and B A 2 (u) = X 2 . Hence P A 1 (u) > 0 and P A 2 (u) > 0. Let p = min(P A 1 (u), P A 2 (u)) > 0. For all x 1 ∈ X 1 , let p 1 (x 1) > 0 be the probability to reach x 1 conditionally to read u. In the same way, we define p 2 (x 2) for all x 2 ∈ X 2 . We also denote P (w

) = P A 1 σ 1 (w) = P A 2 σ 2 (w). Let α 1 = min x 1 ∈X 1 p 1 (x 1) σ 1 (x 1)
and similarly for α 2 . Let α = min(α 1 , α 2). Now, for any observation w, we have

P A 1 (uw) ≥ P A 1 (u) • αP A 1 σ 1 (w), and P A 2 (uw) ≥ P A 2 (u) • αP A 2 σ 2 (w).
Assume by contradiction that there exists a limit-sure classifier f . Let k be a length of observation such that P (w|f (w

) = ⊥) < ε. Let R 1 = {w ∈ Σ k | f (uw) = 1} and R 2 = {w ∈ Σ k | f (uw) = 2}.
We have w∈R 1 P (w) + w∈R 2 P (w) ≥ 1 -ε. Assume for instance that w∈R 1 P (w) ≥ 1-ε 2 (the other case is symmetric). The probability of misclassification for size |u|+k is thus at least w∈R 1 P A 2 (uw) ≥ αp w∈R 1 P (w) ≥ 1-ε 2 αp. This lower bound does not depend upon k, and then does not decrease to 0 when k goes to ∞. the twin belief automaton after u 2 , and u 3 allows with high probability to eliminate one of the two possible LMCs.

We now formalize this decomposition into u 1 , u 2 , u 3 . Let u be an observation from a run of A 1 . We denote by p 1 (s, u) (resp. p 2 (t, u)) the probability in A 1 to observe u and reach state s (resp. A 2 and state t). Let ε > 0. Then u = u 1 u 2 u 3 is a good decomposition if the following conditions hold:

• u 1 is such that there exists R 1 , R 2 sets of states of A 1 , A 2 with: 1. (s, t) is in a BSCC of A for all (s, t) ∈ R 1 × R 2 , 2. s / ∈R 1 p 1 (s, u 1) < , 3. t / ∈R 2 p 2 (t, u 1) < 2 min s∈R 1 p 1 (s, u 1).
• u 2 is such that for all (s, t) ∈ R 1 × R 2 , the twin-belief X s,t = (X s , X t) reached by reading u 2 from (s, t) is in the BSCC of the twin-belief automaton. It is easy to see that eventually with probability 1, one will observe such a u 2 .

• Last, we tackle the condition on u 3 . If X s,t is oblivious, let σ 1 s,t , σ 2 s,t be the stationary distributions built for X s,t . By hypothesis (not 2), there exists w s,t such that

P A 1 σ 1 s,t (w s,t) = P A 2 σ 2 s,t (w s,t). Let α(s, t) = |P A 1 σ 1 s,t (w s,t) -P A 2 σ 2 s,t
(w s,t)|. From any state of X s , denoting by n s,t (u 3) the number of times X s,t has been a twin-belief along u 3 , and n s,t (u 3) the number of times w s,t has been observed from X s,t , by the central limit theorem, we have that n s,t (u 3) ns,t(u 3) tends towards

P A 1 σ 1 s,t (w s,t) = P A 2 σ 2 s,t (w s,t) with probability 1. We consider observations u 3 in L(B A 1 , X s) = L(B A 2 , X t) such that: - n s,t (u 3) ns,t(u 3) is in [P A 1 σ 1 s,t (w s,t) -α(s, t)/4 , P A 1 σ 1 s,t (w s,t) + α(s, t)/4].
Let W k (ε) be the set of observations u 1 u 2 u 3 of size k which are good decompositions. Then, Lemma 4.17. For all ε > 0, for k large enough, we have

P A 1 (ρ | obs(ρ) ∈ W k (ε)) > 1 -ε .
Proof. As runs converge towards BSCCs, eventually with probability 1, observation u 1 satisfies the first two conditions. For the last one, consider some u 1 satisfying the first two conditions. Then let p 1 (u 1) = min s∈S 1 p 1 (s, u 1). Considering extensions u 1 u 1 of u 1 , one gets p 1 (u 1 u 1) > p 1 (u 1)/n because states in BSCCs can only reach states in BSCCs. The worst case is when these runs are split into several ending states, and there are at most n states. Eventually with probability 1, one observes u 1 u 1 such that t / ∈R 2 p 2 (t, u 1 u 1) < the conditions. Let W k be the set of observations

u 3 in L(B A 1 , X s) = L(B A 2 , X t) of size k satisfying the condition of u 3 . We have that q 1 (k) = w∈W k p 1 (s, u 1)P A 1 s (u 2 u 3) → p 1 (s, u 1)P A 1 s (u 2) = q 1 , and that q 2 (k) = w∈W k p 2 (t, u 1) • P A 2 t (u 2 u 3) → 0 when k tends to ∞. Let k s,t such that q 1 (k s,t) > q 1 -ε and q 2 (k s,t) < q 1 ε 2 . If (X s , X t) is not oblivious, then there is a word w s,t ∈ L B A 1 Xs \ L B A 2
Xt , or a word w s,t ∈ L

B A 2 Xt \ L B A 1
Xs . In both case we have

P A 1 σ 1 s,t (w s,t) = P A 2 σ 2 s,t
(w s,t), and we proceed as in the oblivious case. Trivially, eventually,

|u 3 | > k s,t for all (s, t) ∈ R 1 × R 2 .
Using Lemma 4.17, we can show that the MAP classifier is indeed limit-sure if 2 does not hold. Proposition 4.18. Assume point 2 of theorem 4.16 does not hold. Then for all ε > 0, there exists k such that for all k ≥ k ,

P A 1 (u ∈ Σ k | P A 2 (u) > P A 1 (u)) ≤ ε ,

and similarly

P A 2 (u ∈ Σ k | P A 2 (u) < P A 1 (u)) ≤ ε .
Proof. With high probability, obs(ρ) ∈ W k (ε) for k large enough. Let us consider runs of A 1 with observation in W k (ε) depending on the state s reached after observation u 1 . With probability at most ε, s is not in R 1 . Hence with high probability, s is in R 1 . We want to show that for almost all observations of A 1 , P A2 (u 1 u 2 u 3) < p 1 (s, u 1)

• P A 1 s (u 2 u 3) ≤ P A 1 (u 1 u 2 u 3), that is M AP (u 1 u 2 u 3) = 1. We decompose P A 2 (u 1 u 2 u 3) = t∈S 2 p 2 (t, u 1) • P A 2 t (u 2 u 3).
Fix a u 1 such that there exists u 2 , u 3 with u 1 u 2 u 3 ∈ W k (ε). First, we show that with high probability, t / ∈R 2 p 2 (t, u 1)

• P A 2 t (u 2 u 3) is negligible wrt p 1 (s, u 1) • P A 1 s (u 2 u 3).
For that, consider the set of observation such that it is not the case:

W S 2 \R 2 = {u 1 u 2 u 3 ∈ W k (ε) | t / ∈R 2 p 2 (t, u 1) • P A 2 t (u 2 u 3) > εp 1 (s, u 1) • P A 1 s (u 2 u 3)}.
We prove that this happens with arbitrarily small probability:

P A 1 (W S 2 \R 2) ≤ ε. Else, by contradiction, we would have P A 1 (W S 2 \R 2) > ε, which by definition of W S 2 \R 2 implies that P A 2 (u 1 u 2 u 3 ∈ W S 2 \R 2 | u 1 reaches t / ∈ R 2) > εP A 1 (u 1 u 2 u 3 ∈ W S 2 \R 2 | u 1 reaches s) > ε 2 p 1 (s, u 1). Thus, t / ∈R 2 p 2 (t, u 1) ≥ P A 2 (u 1 u 2 u 3 ∈ W S 2 \R 2 | u 1 reaches t / ∈ R 2) > ε 2 p 1 (s, u 1), a contradiction with the definition of W k (ε).
We can now focus on t ∈ R 2 : fix a u 2 such that there is a u 3 with u 1 u 2 u 3 ∈ W k . For all t ∈ R 2 , consider the word w s,t . We now show that with high probability, p 2 (t, u 1)

• P A 2 t (u 2 u 3) is negligible wrt p 1 (s, u 1) • P A 1 s (u 2 u 3).
For that, we consider the set of observations such that it is not the case:

W k = {u 1 u 2 u 3 ∈ W k | p 2 (t, u 1) • P A 2 t (u 2 u 3) > ε • p 1 (s, u 1) • P A 1 s (u 2 u 3)}. Let q 1 = u 1 u 2 u 3 ∈W k p 1 (s, u 1) • P A 1 s (u 2 u 3)
and

q 2 = u 1 u 2 u 3 ∈W k p 2 (t, u 1) • P A 2 t (u 2 u 3). We have q 1 ≤ p 1 (s, u 1) • P A 1 s (u 2) • ε. Indeed, by con- tradiction, if q 1 > p 1 (s, u 1)•P A 1 s (u 2)•ε, then q 2 > p 1 (s, u 1)•P A 1 s (u 2)•ε 2 , a contradiction with q 2 ≤ q 2 (k) ≤ p 1 (s, u 1) • P A 1 s (u 2) • ε 2 . Hence, with probability at least p 1 (s, u 1)P A 1 s (u 2) -2ε, observation u 1 u 2 u 3 is in W k \ W k , and it satisfies P A 2 t (u 2 u 3) ≤ ε • P A 1 s (u 2 u 3
). With probability at least p 1 (s, u 1)P A 1 s (u 2)(1 -2mε), this is true for all t. It remains to sum over all u 1 , u 2 and states s to obtain probability at least 1 -2mε to have

P A 2 (u 1 u 2 u 3) ≤ ε + t∈R 2 p 2 (t, u 1) • P A 2 t (u 2 u 3) ≤ ε + mεP A 1 (u 1 u 2 u 3) ≤ P A 1 (u 1 u 2 u 3)
for ε small enough. This implies that MAP(u 1 u 2 u 3) = 2 with probability at most 2ε + 2ε • m ≤ ε for small enough.

(3 =⇒ 1): Language equivalence implies non-classifiability Let D a BSCC of A, X 1 , X 2 , σ 1 , σ 2 as in the hypothesis of 3. We write X 1 = {i 1 , . . . i n } and X 2 = {j 1 , . . . j m }. We let i 1 = y 1 and j 1 = y 2 . If there exists an observation w such that X 1 ⊆ B A 1 (w) and X 2 ⊆ B A 2 (w) then lemma 4.15 implies that one cannot classify between A 1 , A 2 . However, there are cases where such an observation w does not exist. Recall that lemma 4.15 is only a sufficient condition. Instead, we will show that one has probabilistic equivalence of languages from y 1 , y 2 after reading some observation u. As (y 1 , y 2) can be reached in A, we can conclude on the non-classifiability using lemma 4.15. We first show that every twin belief in the BSCC E D is oblivious. First, assume that there is a word u possible from H 1 in B A 1 but not possible from H 2 in B A 2 . Consider j 1 . As (y 1 , j 1) ∈ D, by lemma 4.13, there is some u 1 with B 1 (u 1) = H 1 and

C 1 (u 1) = H 2 . And hence, B 1 (u 1 u) = ∅ and C 1 (u 1 u) = ∅. Hence, |Z 2 (u 1)| ≤ m-1. Consider j 2 and Z 2 (u 1 u). Assume that C 2 (u 1 u) = ∅. Thus, there exists u 2 with B 1 (u 1 uu 2) = H 1 and C 2 (u 1 uu 2) = H 2 . Thus B 1 (u 1 uu 2 u) = ∅ and C 2 (u 1 uu 2 u) = ∅. Otherwise, we already have B 1 (u 1 u) = ∅, and C 2 (u 1 u) = ∅. Either way, |Z 2 | ≤ m -2.
By induction, we can find an observation w with Z 2 (w) = ∅ and B 1 (w) ∈ Z 1 (w) = ∅, a contradiction, as 0 < P σ 1 (w) = P σ 2 (w) = 0.

The case w possible from X 2 but not from X 1 is symmetric, using y 1 and C 1 as the non-empty set.

It is not necessarily the case that we can reach the BSCC E D of twin beliefs in a uniform way over all (x 1 , x 2) ∈ D. Let (H 1 , H 2) ∈ E D . In the following, we will consider observations that reach the BSCC of E D from u. Let u 1 such that B 1 (u 1) = H 1 and C 1 (u 1) = H 2 . Such u 1 exists by lemma 4.13. Let V be the language from H 1 , which is equal to the language from H 2 . Now, consider what happens from i 2 reading observations in V . There are several cases. First, assume that there is an observation v 2 in V such that a belief state in the BSCC of beliefs is reached from

{i 2 } reading u 1 v 2 . That is, (B 2 (u 1 v 2), C 1 (u 1 v 2)
) ∈ E D . Now, compare the language from (B 2 (uv) in A 1 and from

C 1 (u 1 v 2)) in A 2 .
If it is the same language, we say that i 2 is of type 1. Otherwise, or if there is no observation v 2 ∈ V such that the BSCC of beliefs can be reached reading u 1 v 2 , then we say that i 2 is of type 2. Intuitively, a state of type 2 will be negligible when following y 1 , y 2 , whereas a state of type 1 needs to be tracked because it is not negligible. We then consider the state i 3 and the belief B 3 (u 1 v 2), and classify each state i 3 . . . then j 2 . . . inductively into type 1 and type 2. We have an observation w leading all the type 1 state to their BSCC, and all the type 1 states have the same language.

We reorder X 1 = {i 1 , . . . i n } and X 2 = {j 1 , . . . j m } such that i 1 , . . . i k and j 1 , . . . , j are of type 1 and the rest is of type 2. We now follow every type 1 belief in parallel. Consider a (k +)-belief H = (H 1 , . . . , H k , K 1 , . . . , K) in the BSCC of belief states of A k 1 × A 2 . Let u an observation such that B r (u) = H r for all r ≤ k and C r (u) = K r for all r ≤ . Because the language for the type 1 states are the same from their belief state, we can compute σ r : H r → [0, 1] the stationary distribution for i r to be around belief H for all r ≤ k and τ r : K r → [0, 1] be the stationary distribution over H for all r ≤ . Let W H be the set of observations from the (k +)-belief H to H without seeing H in-between.

For all w , we have by definition of the equivalence:

w∈W κ H r≤n σ(i r)P A 1 ir (uww) =
w∈W κ H r≤ τ (j r)P A 2 jr (uww). Considering the limit when κ tends to infinity, we have for all r > k, lim κ→∞ w∈W κ H α r P A 1 ir (uw) = 0. Indeed, consider i r , r > k. For paths reaching a state such that the BSCC of beliefs cannot be reached, the probability to stay out of the BSCC tends to 0 with the size of the run. Otherwise, the path reaching the BSCC of beliefs, e.g., in belief X r . By definition of type 2 state, the language is not the same as the language of H 1 , which is W * H . Hence either there is a word in W * H which cannot be done from X r and can be done from H 1 , in which case avoiding this word forever have probability 0, or there is a word which can be done from X r but not from H 1 : this word is not in W * H , and at each W H iteration, there is some missing probability from X r , e.g., 1 -, and eventually the probability is 0. We thus obtain: Proof. Assume by contradiction that it is not the case: That is, there is a w such that

P A 1 σ 1 (w) > P A 1 σ (w). Let us write x = P A 1 σ 1 (w) = γP A 1 σ (w) = γx, with γ < 1.
We have the following:

P A 2 τ (w) = αP A 1 σ 1 (w) + (1 -α)P A 1 σ (w) = αx + (1 -α)γx
We let W be the set of minimal observation u sending to X from (B 1 (w), . . . , B k (w), C 1 (w), . . . , C (w)). We have that w ∈W W κ H P A 1 σ (ww) tends towards P A 1 σ (w) • P A 1 σ (w) as κ tends to infinity, and similarly for σ 1 , τ . Hence, w ∈W W κ H P A 2 τ (ww w) converges towards P A 2 τ X (w) 2 as κ tends to infinity. Also, for all κ, this is equal with w ∈W W κ H αP A 1 σ 1 (ww w) + (1 -α)P A 1 σ (ww w). Again, this converges towards αx 2 + (1 -α)γ 2 x 2 . That is, we have after simplifying by x 2 :

(α + (1 -α)γ) 2 = α + (1 -α)γ 2
Now, the function x → x 2 is strictly convex (its second derivative is strictly positive). Applying the definition to (1, γ) (this is also Jensen's inequality), we obtain a contradiction:

(α + (1 -α)γ) 2 < α + (1 -α)γ 2
Once this result is established, we can apply it symmetrically to the second component and obtain (A 1 , σ 1) ≡ (A 2 , τ 1). As (i 1 , j 1) = (y 1 , y 2)) ∈ D, we can conclude about nonclassifiability using lemma 4.13.

A PTIME Algorithm

Theorem 4.16 gives us a characterization for the existence of a limit-sure classifier. The third condition is particularly interesting, because it does not require computing beliefs. The third condition actually implies an efficient algorithm, similar to [START_REF] Chen | On the Total Variation Distance of Labelled Markov Chains[END_REF], to test in PTIME whether there exists a limit-sure classifier between A 1 , A 2 .

Our algorithm, presented in 3, uses linear programming. We let v 1 , . . . , v be the basis of Eq(A 1 , A 2). There exist two distributions σ 1 , σ 2 over X 1 , X 2 with (A 1 , σ 1) ≡ (A 2 , σ 2) iff the linear system of equations (for all j ≤ , (σ 1 σ 2) • v j = 0) has a solution (with σ 1 , σ 2 as variables), which can be solved in Polynomial time. for (y 1 , y 2) ∈ D i do 4:

Let X 1 = {x 1 | (x 1 , y 2) ∈ D i }, X 2 = {x 2 | (y 1 , x 2) ∈ D i }. 5:
if there exist two distributions σ 1 , σ 2 over X 1 , X 2 with σ 1 (y 1) > 0 and σ 2 (y 2) > 0 end for 10: end for 11: return classifiable The correctness of the algorithm is immediate from Theorem 4.16, as it checks explicitly for the third condition to hold, in which case it returns not classifiable. If the third condition is false for every BSCC D, then it returns classifiable.

Comparison with Distinguishability between LMCs [KS16]

We complete this section, by comparing our results with a related result on LMCs. In [START_REF] Kiefer | Distinguishing hidden Markov chains[END_REF], the problem of distinguishability between labeled Markov Chains has been considered. First, labeled Markov Chains are just another name for LMCs. The idea behind distinguishability is similar to the idea behind classifiability. Still, there are some technical differences: distinguishability asks that for all ε > 0, there exists a (1 -ε)-classifier, that is a classifier f : Σ * → {⊥, 1, 2}, such that if the classifier answers f (u) = 1, then there is probability at least (1 -ε) that the observation comes from a run from A 1 , and similarly for f (u) = 2. To compare, limit-sure classifiers need to be uniform over ε (see the next section).

It is not to hard to show that limit-sure classification coincide with the notions of distinguishability and distance 1 as well for LMCs: Theorem 4.21. The following are equivalent: 1. There exists a limit-sure classifier for A 1 , A 2 , 2. For all ε > 0, there exists a

(1 -ε)-classifier for A 1 , A 2 , 3. d(A 1 , A 2) = 1.
Proof. (1) implies (2) is obvious (the classifier we built provides an (1 -ε)-classifier for all ε. (2) implies (3) is done in [START_REF] Kiefer | Distinguishing hidden Markov chains[END_REF].

It remains to show that 3 implies 1: Assume that d(A 1 , A 2) = 1. We will show that the MAP classifier is a limit-sure classifier. Let mis(A 1 , A 2 , w) be its probability of misclassification. Thus, for all ε > 0, there exists k and W k ⊂ Σ k such that P 1 (W k Σ ω) ≥ 1 -ε and P 2 (W k Σ ω) ≤ ε and we obtain:

≤ P 2 (W k) + P 1 (Σ k \ W k) ≤ 2ε
That is, when k → ∞, the probability of misclassification tends towards 0.

The proofs to obtain the PTIME algorithms are quite different though: we use stationary distributions in LMCs while [START_REF] Chen | On the Total Variation Distance of Labelled Markov Chains[END_REF] focuses on separating events. Some intermediate results are however related: our Proposition 4.20 is to be compared with Proposition 19 b) of [START_REF] Chen | On the Total Variation Distance of Labelled Markov Chains[END_REF]. Our statement is stronger as the equivalence is true from all pairs of states with the same (non-stochastic) language -and in particular from (i 1 , j 1) = (y 1 , y 2) (cf Proposition 4.19). Also, the proof of Proposition 4.20 is simple, using strict convexity focusing on one finite separating word, while in [START_REF] Chen | On the Total Variation Distance of Labelled Markov Chains[END_REF], the existence of a maximal separating events (sets of infinite words) is used crucially in the proof of Proposition 19 b). Surprisingly, our resulting algorithm is very similar to the one in [START_REF] Chen | On the Total Variation Distance of Labelled Markov Chains[END_REF], whereas we use very different methods. Still, we can restrict the search to distributions in a BSCC of twin states, while [START_REF] Chen | On the Total Variation Distance of Labelled Markov Chains[END_REF] considers subdistributions on the whole state space of twin states. This allows us to optimize the number of variables in the Linear Program.

Classification in a security context

While limit-sure classification allows for some misclassification, i.e., , error in classification, it requires that every single pair of executions of the LMCs are classifiable. From a security perspective, if one wants to make sure that two systems cannot be distinguished from each other, then the question changes slightly: from the point of view of an attacker who could exploit the knowledge of which model the system is following, it need not classify every single execution. It only needs to find one execution for which it can decide. This gives rise to what we call attack-classification, which amounts to providing the attacker with a reset action she can play when she believes the execution cannot be classified. Then, a new (possibly the same) LMC is taken at random and an execution of this new LMC is observed by the attacker.

We start by considering limit-sure attack-classifiers, namely, we require that there exists a reset-strategy, which with probability 1, resets only finitely many times, and a limit-sure classifier for the observation after the last reset. We also consider what happens if instead of limit-sure classifier, we ask for the existence of a family of (1 -ε)-classifiers after the last reset, one for each ε. The difference is that the reset action can take into account the ε in the latter, but not in the former. While both notions coincide for the classifiers defined in the previous section, we show now that they do not coincide for attack-classification.

Example 4.6. Figure 4.8 illustrates the difference between these two notions. First, for all ε > 0, there exists an (1 -ε)-attack-classifier: given an ε, the reset strategy resets if the first letter b happens within the first k ε = log(1 9ε) steps. Otherwise, the observation is a kε w, and the classifier claims that the LMC is A 1 , which is true with probability at least (1 -ε). However, this reset strategy is not compatible with limit-sure classifier (and, in fact, no reset strategy is), because it is not uniform wrt all ε: once a b has been produced, no more information can be gathered.

BSCC of twin beliefs reachable from (x 1 , x 2) by path ρ 2 . As (x 1 , x 2) is classifiable, there are several cases:

• either there is a word

w x 2 ∈ L B A 1 Y 1 \ L B A 2
Y 2 , and we consider path ρ 3 labeled by w x 2 after ρ 1 ρ 2 in A 1 . It proves that the state cannot be x 2 .

• or there is a word

w x 2 ∈ L B A 2 Y 2 \ L B A 1
Y 1 , and we set ρ 3 = ε, • otherwise, (Y 1 , Y 2) is oblivious, and we also le ρ 3 = ε.

From ρ 1 ρ 2 ρ 3 , we define ρ 4 ρ 5 associated with another x 2 , until we took into account every x 2 ∈ X 2 . The path ρ = ρ 1 ρ 2 ρ 3 ρ 4 • • • ρ has strictly positive probability to happen in A 1 , and thus strictly positive probability to happen in the union of LMCs (remember the run are picked with uniform probability among the LMCs).

Given this path ρ and the associated observation w, the reset strategy is to play

τ (u) = reset if:
1. The observation u of the system since the last reset is of length |u| < |w|, and u is not a prefix of w, or 2. otherwise, if there is no extension ρ of ρ in A 1 such that ρρ is labeled by u, The set of infinite paths in the system such that τ resets infinitely often is of probability 0, because to not reset, it suffices to draw A 1 , then perform ρ, which happens with strictly positive probability, in which case the first 2 items. The third item can still kicks in, by drawing many biased runs from (Y 1 , Y 2), such that the statistic for w x 2 goes close to

av Y 2 ,Y 1 . Let the number of times (Y 1 , Y 2) is seen. We suppose that av Y 2 ,Y 1 > av Y 1 ,Y 2
(the other case is symmetric). We use a special case of the Cramer's theorem [START_REF] Cramér | Sur un nouveau théoreme-limite de la théorie des probabilités[END_REF]. At every time (Y 1 , Y 2) is seen and we are in the automaton A 1 , the probability to see w x 2 at step i follows a Bernoulli law X i of parameter av Y 1 ,Y 2 . By denoting S = 1 n i X i and I(z) the Fenchel-Legendre transform of log(E[e tX 1]), we have by Chernoff's inequality that for x > av Y 1 ,Y 2 , P (S > x) < e -I(x) [START_REF] Shwartz | Large deviations for performance analysis: queues, communication and computing[END_REF]. In particular, this is true for the value

x = av Y 1 ,Y 2 + av Y 1 ,Y 2 -av Y 2 ,Y 1 2
. We notice that for all , we have that P (S < x|S -1 < x) ≥ P (S < x) (intuitively, the chance to be lower than the bound after the -th step is greater if we were already lower at the -1-th step. Then, for all L the probability that for all x) , that is a positive quantity. Hence, there is a positive probability to always stay closer from av Y 1 ,Y 2 and the set of runs that will not trigger a reset have a strictly positive probability. Thus, one of these run will be classified as being in A 1 , e.g. by using the classifier from section 3.5.

≥ L, S ≤ x is greater than Π ∞ =L (1 -e -I(
The converse is simpler: if there does not exist a classifiable (x 1 , X 2) ∈ A 1 , it means that for every x 1 , there exists a x 2 such that (x 1 , x 2) is not classifiable. In particular, we can get a positive probability p x 2 to perform the exact same observation from (x 1 , x 2), and taking the min x 2 p x 2 = p > 0, taking by contradiction a reset strategy and a w k , then there is probability at least p to misclassify w k , no matter its size, a contradiction.

In case there are more than two LMCs, we follow the state s of one LMC and the belief of every other LMCs along the observation, and we need to check classifiability between (s, t) for every t in the belief of any of the other LMCs. Using this characterization, we obtain: Theorem 4.23. Let A 1 , A 2 be two LMCs. It is PSPACE-complete to check whether (A 1 , A 2) are limit-sure attack-classifiable.

Proof. First, it is easy to see that the problem is in PSPACE: For each (x 1 , x 2) ∈ A, we test in PTIME whether (x 1 , x 2) is classifiable, by using lines 3 -7 algorithm 3. Then, (A 1 , A 2) are limit-sure attack-classifiable iff one can reach a (x 1 , X 2) classifiable in A 1 or a (x 2 , X 1) classifiable in A 2 , which is PSPACE as A 1 , A 2 have an exponential number of states compared with A 1 , A 2 and reachability is in NLOGSPACE.

To prove hardness, we reduce from the language inclusion for finite automaton. Let B 1 , B 2 be two finite automata over alphabet Σ, with B i = (S i , s i 0 , ∆ i , F i), where F i is a set of accepting states. We assume wlog that every state of S i is reachable and F i is reachable from any state s of S i . We associate with B i , i ∈ {1, 2} the LMC A i = (S i ∪ {s i F }, σ i 0 , M i ,) over alphabet Σ ∪ {f } with:

• σ i 0 (s) = 1 for s = s i 0 , and

σ i 0 (s) = 0 otherwise, • M i (s, a, s) > 0 iff (s, a, s) ∈ ∆ i , for all s, s ∈ S i , a ∈ Σ, • M i (s, f, s F) > 0 iff s ∈ F i , for all s ∈ S i , • M i (s F , f, s F) = 1.
Notice that the exact positive probability values will have no impact in the following (for instance, we can take these probabilities uniform). Now, it is easy to see that for any word w ∈ Σ * , w ∈ L(B i) iff P A i (wf) > 0. Now, we prove that (A 1 , A 2) are limit-sure attack-classifiable iff L(B 1) ⊂ L(B 2):

Assume that L(B 1) ⊂ L(B 2). Hence, for all (x 1 , X 2) ∈ A 1 , we have X 2 = ∅. Also, if

x 1 ∈ F 1 , then X 2 ∩ F 2 = ∅.
As from every state, F 1 can be reached in B 1 , we have that there is a unique BSCC of twin states {(s 1 f , s 2 f)}. Clearly, (s 1 f , s 2 f) is not classifiable and thus (A 1 , A 2) is not limit-sure attack-classifiable.

Conversely, assume that L(B 1) ⊂ L(B 2). Thus, there exists ρ with label w ∈ L(B 1) \ L(B 2), and if we consider the associated path in A 1 , it reaches (x 1 , X 2), with x 1 ∈ F 1 and X 2 ∩ F 2 = ∅. Doing action f from there, we reach state (s 1 f , ∅), which is classifiable.

Existence of (1-ε) attack-classifiers for all ε is undecidable.

We now turn to the other notion. Let ε > 0. An (1 -ε) attack-classifier for two LMCs A 1 , A 2 is given by: 1. A reset strategy τ : Σ * → {⊥, reset} telling when to reset and which eventually stops resetting, with probability 1 on the reset runs, and 2. a (1 -ε)-classifier for u, where u ∈ Σ * denotes the suffix of the observations since the last reset.

We next show that this notion, which we showed to be weaker than limit-sure attackclassifiability on Fig 4.8, is also computationally much harder. In fact, it is undecidable. Proof. It is undecidable [START_REF] Gimbert | Probabilistic automata on finite words: Decidable and undecidable problems[END_REF] to know whether a PFA B, that accepts all words with probability in (0, 1), is 0 and 1 isolated, that is, there is no sequence of words (w i) i∈N such that lim n→∞ P B (w i) = 0 or = 1. Let B 1 be such a PFA. Wlog, we can assume that it is complete, that is from each state s and each letter a ∈ Σ, there is a transition from s labeled by a (it suffices to add a sink state if it is not the case). Further, let B 2 be a PFA with a single state that accepts every word of Σ * with probability 1. Let B 2 be the complete PFA with 2 states (one accepting and one non accepting, with transition with probability 1/2 to stay in the same state and 1/2 to switch state) that accepts every word with probability 1/2. From B 1 and B 2 , we define A 1 , A 2 two LMCs in the following manner: Let B = (S, s 0 , (M a) a∈Σ , F) be a PFA over Σ. We denote A the LMC (S∪{s f , s z }, s 0 , M) over Σ ∪ {f, z} with:

1. M (s, a, s) = Ma[s,s] |Σ|+1 for all s, s ∈ S, a ∈ Σ, 2. If s ∈ F , then M (s, f, s f) = 1 |Σ|+1 . 3. If s ∈ F , then M (s, z, s z) = 1 |Σ|+1 . 4. M (s f , f, s f) = 1 and M (s z , z, s z) = 1.
An example of this construction is provided in figure 4.9. For all observation w ∈ Σ * , we have:

• P A 1 (w) = P A 2 (w) = 1 (|Σ|+1) |w|+1 , • P A 1 (wf k) = P B 1 (w) (|Σ|+1) |w|+1 and P A 1 (wz k) = 1-P B 1 (w) (|Σ|+1) |w|+1 , • P A 2 (wf k) = P A 2 (wz k) = 1 2(|Σ|+1) |w|+1 .
If B 1 is 0 and 1 isolated, then there exists a ε such that ε < P B 1 (w) < 1 -ε for all w ∈ Σ * . That is, for all words w ∈ (Σ ∪ {z, f }) * , we have 2εP A 2 (w) ≤ P A 1 (w) ≤ 2P A 2 (w). Assume by contradiction that there exists a reset strategy and an (1 -ε) classifier f . The probability to see w is P (w) = 1/2P A 1 (w)+1/2P A 2 (w). The probability of misclassification knowing that the observation is w is thus either P A 1 (w)/P (w) or P A 2 (w)/P (w). The first one is at least 2ε/3 and the second one is at least 1/3. That is, the limit when the size of the observation tends to infinity is also at least 2ε/3, and there does not exists any 1 -ε/2 attack-classifier.

Conversely, if B 1 is not 0 isolated, then for all ε, there exists w ε such that P B 1 (w ε) < ε. The reset strategy waits to see w ε f : that is, it resets if the observation u is not a prefix of w ε f . When the observation u = w ε , which happens eventually with probability 1, the classifier claims that the LMC is A 2 . This is true with probability > 1 -2ε.

The last case is B 1 is not 1 isolated, and for all ε, there exists w ε such that P B 1 (w ε) < ε. The result is symmetrical: the reset strategy waits for w ε z, in which case the classifier claims that the LMC is A 2 . This is true with probability > 1 -2ε.

Related work 4.6.1 Other distances

In this chapter, we mostly considered distances closely related to the L p ones. In other domains such as machine learning, various distances have been used in order to measure the discrepancy between models. Some are not distances in the mathematical sense, since they may lack some property, such as symmetry or triangular inequality. However, they all express a notion of proximity, and for all these "distances" d we have d(A 1 , A 2) = 0 iff they have the same stochastic language.

The Kullback-Leibler divergence, also called relative entropy is given by

D(A 1 , A 2) = w∈Σ * p 1 (w) • log p 1 (w) p 2 (w)
Notice that this divergence is not symmetrical: thus, it is not a distance. The divergence is infinite iff there exists a word w such that p 1 (w) > 0 and p 2 (w) = 0. It is used when the notion of inclusion of the language is strongly needed [START_REF] Cortes | On the computation of the relative entropy of probabilistic automata[END_REF].

The Hellinger distance is given by

Hellinger(A 1 , A 2) = (w∈Σ * (p 1 (x) -p 2 (x)) 2)
1 2

[TC13] uses it as a way to measure some information loss in the context of data protection.

The Jensen-Shannon divergence is given by

JS(A 1 , A 2) = w∈Σ * p 1 (w) • log 2 • p 1 (w) p 1 (w) + p 2 (w) + p 2 (w) • log 2 • p 2 (w) p 1 (w) + p 2 (w)
This divergence is similar to the Kullback-Leibler one but with the notable difference that it is symmetric and always finite. It has been used in machine learning alongside to Kullback-Leibler divergence in the context of adversarial machine learning [START_REF] Goodfellow | Generative adversarial nets[END_REF].

Testing

Before the different work on distinguishability and classification, one way to differentiate systems was by performing hypothesis testing. Intuitively, two statistical data sets are compared: one given by the experience and one synthetic data set given by an idealized model. This comparison is used to determine if some underlying assumption is true. For example, an assumption could be "does the rate of growth of this process follow an exponential law"? Hypothesis testing has been studied in a long time for various problems[Wal45; Wet66; SS83].

Later, [START_REF] Alur | Distinguishing tests for nondeterministic and probabilistic machines[END_REF] used another kind of testing to investigate the problem of determining the initial state of a finite state transition systems (possibly probabilistic) among several choices. The authors establish a link between the existence of a strategy to find the initial state and winning strategies in Markov Decision Processes with incomplete information.

Conclusion

Summary

This chapter presented a study on limit-sure classification with three main contributions. The first is the definition of stationary distributions for LMCs. We believe that this notion can find applications in contexts other than classification.

The second contribution was a characterization of limit-sure classifiability thanks to these stationary distributions. Two LMCs are not classifiable iff they have beliefs which can be reached by the same observation and for which the stationary distributions can be separated by one finite word. This characterization led to a PTIME algorithm surprisingly close to the one of [START_REF] Chen | On the Total Variation Distance of Labelled Markov Chains[END_REF], even if the methods to obtain the algorithms were very different.

The final contribution was the study of limit-sure classifiability in a security context: the attacker has a power to launch a new execution if he is not "satisfied" with the current one. We showed that deciding the existence of a limit-sure attack-classifier is PSPACEcomplete. Further, the existence of a (1 -ε)-attack-classifier is undecidable.

Learning of Markov Chains

In the previous chapter, we saw how to differentiate two LMCs. However, one question is "how does one obtain these systems?". This question is crucial especially when the systems are estimated from real life machines. One way to perform this estimation is through automatized learning.

The last decades have seen the rise of automatized learning in order to tackle problems which are at first sight intractable. This process has shown huge success and is trending for many applications. Among them, many are critical and need extra safety: automatic cars, facial recognition, automatic translation... However, although automatic learning does work, with significant progress achieved every year, they suffer from some flaws. A first flaw is that because of the structure of the mathematical representation of the learning process, it is hard for a human to understand how and why it works. A second flaw is that until recently no real guarantee was possible on the learning process. A consequence of this flaw is that many systems were easily attacked: a small deviation in an entry may lead to significant change in the output. Further, there is often limited budget in observing and learning from the system, and the validity of the learned model is in question.

To counter that, a recent trend is to develop certifications: formal properties stating some notion of safety. These certifications are being developed for a wide diversity of learning processes, such as Deep Neural Networks [START_REF] Huang | Safety verification of deep neural networks[END_REF][START_REF] Wicker | Feature-guided black-box safety testing of deep neural networks[END_REF]. In this chapter, we focus on learning stochastic systems, especially Markov Chains. Comparing two Markov processes (in our case, the original model and the learned one) is a common problem that relies on a notion of divergence. Most existing approaches focus on deviation between the probabilities of local transitions (e.g., [CT04; SGB95; CG08]). However, a single deviation in a transition probability between the original system and the learned model may lead to large differences in their global behaviors. For instance, the probability of reaching certain state may be magnified by paths which go through the same deviated transition many times. It is thus important to use a measure that quantifies the differences over global behaviors, rather than simply checking whether the differences between the individual transition probabilities are low enough.

A major change with respect to previous works on this topic is that we consider global behaviors instead of local deviations. We consider Temporal Logic (LTL and CTL) to model these global behaviors. Agreeing on all formulas of LTL means that the first order behaviors of the system and the model are the same, while agreeing on CTL means that the system and the model are bisimilar [START_REF] Baier | Principles of model checking[END_REF]. Our goal is to provide stopping rules in the learning process of Markov Chains that provides Probably Approximately Correct (PAC) bounds on the error in probabilities of every properties in the logic between the model and the system. This chapter is organized as follows: section 5.1 presents a state of the art on several subjects of interest in this chapter. Subsection 5.1.1 describes different estimations techniques that are used in the literature. Subsection 5.1.2 presents what Probably Approximately Correct learning is, with standard algorithm and bounds introduced in subsection 5.1.3. Finally, we show a result from Daca et al. [START_REF] Daca | Linear Distances between Markov Chains[END_REF] that will be closely related to our results. In section 5.2 we present a special case of our problem: learning time to failures properties. A certification is provided in subsection 5.2.2 with an algorithm in subsection 5.2.3. Then, a more general framework is adopted in section 5.3. We start by providing a negative result for LTL in subsection 5.3.1. Then, in order to tackle CTL, we define mathematical tools in subsection 5.3.2 and prove their necessity in subsection 5.3.3. Then, PAC bounds are provided in subsection 5.3.4 with an algorithm in subsection 5.3.5. Some evaluation of the algorithm is provided in section 5.4.

State of the art

In the following, M = (S, µ 0 , M) will be a discrete time Markov Chain that has m states. A trace is a sequence of observations of states produced by the execution of a Markov Chain.

Estimators

In order to learn a Markov chain, we have to estimate the probabilities of each transition. For that, diverse methods called estimators have been studied. We present some here that we use in this thesis and others used in the literature.

Frequency estimation of a Markov Chain

Given a set W of n traces, we denote n W ij the number of times transition from state i to state j occurred and n W i the number of times a transition has been taken from state i. The frequency estimator of M is the Markov Chain MW = (â ij) 1≤i,j≤m given by âij

= n W ij n W i for all i, j, with m i=1 n W i = m i=1 m j=1 n W ij = |W |.
In other words, to learn MW , it suffices to count the number of times a transition from i to j occurred, and divide by the number of times state i has been observed. The matrix MW is trivially a Markov Chain, except for states i which have not been visited. In this case, one can set âij = 1 m for all state j and obtain a Markov Chain.

Example 5.1. Let us suppose we have a Markov chain with 5 states denoted s i for 1 ≤ i ≤ 5 and a sample W is constituted of the following observations:

• 3 times s 1 s 2 s 3 s 5 s 5 • 2 times s 1 s 3 s 1 s 2 s 4 s 4
Then, the Markov Chain estimated by the frequency estimator is depicted in figure 5.1. For example, the state s 1 is followed five times by s 2 and two times by s 3 , hence the probabilities 5 7 and 2 7 .

Learning Markov Chains with Laplace smoothing

A second estimator is based on the frequency estimator with an additional property: assuming one knows the structure of the system, one can add a bias to all possible transition. Let α > 0. For any state s, let k s be the number of successors of s, that we know by hypothesis, and T = s∈S k s be the number of non-zero transitions. Let W be a set of traces, n W ij the number of transitions from state i to state j, and estimator for W with Laplace smoothing α is the Markov Chain Mα W = (â ij) 1≤i,j≤m given for all i, j by: âij

n W i = j n W ij . The
= n W ij + α n W i + k i α if a ij = 0 and âij = 0 otherwise
In comparison with the frequency estimator, the Laplace smoothing adds for each state s a term α to the numerator and k s times α to the denominator. This preserves the fact that Mα W is a Markov chain, and it ensures that âij = 0 iff a ij = 0. In particular, compared with the frequency estimator, it avoids creating zeros in the probability tables. One difficulty of this estimator is that picking a good α may not be easy. In the following, we will give ground for defining defining a reasonable α.

Example 5.2. We continue example 5.1. Let us suppose that there was an additional transition that was not seen from s 2 to s 1 . By knowing the support, we add a bias with α = 1 and we calculate the new probabilities. For example, the probability for the transition from s 1 to s 2 is now equal to 5+1 7+2×1 = 2 3 . The transition from s 2 to s 1 has now the value 1 8 and then the structure is preserved.

Good-Turing frequency estimator

Other estimators have been used in the literature. One example is the Good-Turing one introduced in [START_REF] John | The population frequencies of species and the estimation of population parameters[END_REF], that has been used in learning of models associated with speech processing [START_REF] Gale | Good-Turing Frequency Estimation Without Tears[END_REF]. Let s i be a state of the Markov chain and n r the number of transitions leaving state s i that have been seen r times. The total number of transitions seen is

N = r r • N r .
Then, the probability to see a transition that has been seen r times is p r = (r + 1)N r+1 N Finally, the probability to be from a specific transition that has been seen r times is pr Nr . Some variants have been used, such as in [START_REF] Kenneth | A comparison of the enhanced Good-Turing and deleted estimation methods for estimating probabilities of English bigrams[END_REF][START_REF] Huang | An empirical study of good-turing smoothing for language models on different size corpora of chinese[END_REF].

Other estimators

Different estimators exist and have been utilized in order to take into account more complex information. For example, the Kneser-Ney estimator [START_REF] Chen | An Empirical Study of Smoothing Techniques for Language Modeling[END_REF] is an estimator that considers some kind of memory, that is the frequency of some transition will depend on the previous ones. Katz's back off model [START_REF] Katz | Estimation of probabilities from sparse data for the language model component of a speech recognizer[END_REF] uses two different laws for the prediction, depending on if a transition has been seen more than some threshold.

Probably Approximately Correct learning

In learning theory, Probably Approximately Correct (PAC) learning introduced in [START_REF] Valiant | A Theory of the Learnable[END_REF] is a framework allowing one to reason about machine learning and especially about supervised learning. The general idea behind PAC is that the answer to exact qualitative guarantees about a learning process such as "is the system I learnt from observations exactly the same as the original one?" will generally be "no". Thus, the questions about conformity must contain a quantitative component. The general formulation of a PAC learning property is "does with high probability the distance between a model and the learned one is low?".

To analyze the behavior of a system, properties are specified in temporal logic (e.g., LTL or CTL, defined in Chapter 2.4.2). Given a logic L and ϕ a property of L, decidable in finite time, we denote ω |= ϕ if a path ω satisfies ϕ. Let z : Ω × L → {0, 1} be the function that assigns 1 to a path ω if ω |= ϕ and 0 otherwise. In what follows, we assume that we have a procedure that draws path ω with respect to P M and outputs z(ω, ϕ). Further, we denote γ(M, ϕ) the probability that a path drawn with respect to P M satisfies ϕ. We omit the property or the Markov Chain in the notation when it is clear from the context. Finally, note that the behavior of z(., ϕ) can be modeled as a Bernoulli random variable Z ϕ parameterized by the mean value γ(M, ϕ).

Given ε > 0 and 0 < δ < 1, we say that a property ϕ of L is PAC-learnable if there is an algorithm A such that, given a sample of n paths drawn according to the procedure, with probability of at least 1 -δ, A outputs in polynomial time (in 1/ε and 1/δ) an approximation of the average value for Z ϕ close to its exact value, up to an error less than or equal to ε. Formally, ϕ is PAC-learnable if and only if A outputs an approximation γ such that:

P (|γ -γ| > ε) ≤ δ (5.1)
Moreover, if the above statement for algorithm A is true for every property in L, we say that A is a PAC learning algorithm for L.

Monte-Carlo estimation and algorithm of Chen

Let ϕ be a formula such that with probability 1 ϕ is eventually satisfied or violated. Given a sample W of n paths drawn according to P M until ϕ is satisfied or violated, the crude Monte-Carlo estimator, denoted γW (M, ϕ), of the mean value for the random variable Z ϕ is given by the empirical frequency: γW (M, ϕ) = 1 n n i=1 z(ω i) ≈ γ(A, ϕ). The Okamoto inequality [START_REF] Okamoto | Some Inequalities Relating to the Partial Sum of Binomial Probabilities[END_REF] (also called the Chernoff bound in the literature) is often used to guarantee that the deviation between a Monte-Carlo estimator γW and the exact value γ by more than ε > 0 is bounded by a predefined confidence parameter δ. However, several sequential algorithms have been recently proposed to guarantee the same confidence and accuracy with fewer samples. In what follows, we use the algorithm of Chen [START_REF] Chen | Properties of a New Adaptive Sampling Method with Applications to Scalable Learning[END_REF]. Theorem 5.2 (Chen bound). Let ε > 0, δ such that 0 < δ < 1 and γW be the crude Monte-Carlo estimator, based on n samples, of probability γ.

If n ≥ 2 ε 2 log 2 δ 1 4 -(| 1 2 -γW | -2 3 ε) 2 , P(|γ -γW | > ε) ≤ δ.
To ease the readability, we write n succ = n i=1 z(ω i) and

H(n, n succ , , δ) = 2 ε 2 log 2 δ 1 4 -(| 1 2 -γW | - 2 3 ε) 2
Lemma 5.5. For any set of traces W , there exists a set of traces W such that:

1. W and W are equivalent, 2. for all r, s, t ∈ S, q W (r

• s • t) = q W (r • s) × q W (s • t) q W (s) .
A trace can then be seen as a set of factors BF 1 . . . F k E where B is the special factor beginning, F i are some s-factors for all i and E is the special ending s-factor. We can notice that for all trace r and r obtained by permutation of the F i , {r} and {r } are equivalent. Without loss of generality, we suppose that states s j such that there exists a transition (s j , s) are states s 1 , . . . , s Q . In W , we denote n i the number of transitions (s, s i), m j the number of transitions (s j , s) and q i,j = q W (s j •s)×q W (s•s i) q W (s)

. q i,j represents then the number of times a transition (s j , s) should be followed by a transition (s, s i). By definition, we have that i n i = j m j = q W (s) and ∀i, j, q i,j > 0. We denote k = q W (s). Finally, for a factor F , we denote by q F,i,j the number of occurrences of (s j , s, s i) in F .

Proof. (of Lemma 5.5) Let us suppose that W is made of only one trace r = BF 1 . . . F f E.

We prove the lemma by induction on s ∈ V , then induction on the number of predecessors of s.

Let suppose that every factor in {B, F 1 , . . . , F f } ends with s 1 , that f = m 1 -1 and that the sequence s 1 s never appears neither in B nor in F l for all l nor in E. We also suppose that ∀i, ∀j > 1, q B,i,j + f l=1 q F l ,i,j + q E,i,j = q i,j . It means that for all j > 1 for all i, we have q W (s j • s • s i) = q W (s j •s)×q W (s•s i) q W (s) and we just have to consider s 1 . Let r be BF 1 . . . F f E. r is equivalent to r. We also obtain that for all i, q r,i,1 = q i,1 since there are exactly q i,1 factors starting by s i . Furthermore, ∀i, ∀j > 1, q r,i,j = q B,i,j + f l=1 q F l ,i,j + q E,i,j = q i,j . Indeed, none was added and we did not break those already existing. Then, ∀i, ∀j, q W (s

s 0 s 1 s 2 s 3 1/2 1/2 1/3 1/2 1/3 1/2 1/3 1 s 0 s 1 s 2 s 3 1/2 1/2 1/4 1/2 1/4 1/2 1/2 1 Figure 5.
j • s • s i) = q W (s j •s)×q W (s•s i) q W (s)
. Now, let us consider when there are J states to deal with, J > 1, and the factors

{B, F 1 • • • F f , E} such that f = J j=1 m j -1.
Besides, for all j ≤ J, exactly m j factors in {B, F 1 • • • F f } end with s j and for all i, exactly J j=1 q i,j factors in {F 1 • • • F f , E} start with ss i . Furthermore, for all j ≤ J, the sequence s j s never appears neither in B nor in F l for all l and for all i, for all j > J, q B,i,j + f l=1 q F l ,i,j + q E,i,j = q i,j . We create new factors in order to deal with s J by merging the existing one. We apply the following algorithm: Algorithm 4 Merge(F actors, J) for i from 1 to Q do for l from 1 to q i,J do Choose F 1 ending by s J , a factor F 2 = F 1 beginning by s i , we denote F = F 1 F 2 F actors = F actors \ {F 1 , F 2 } ∪ {F } end for end for return F actors Since i q i,j = m j , there is always one factor ending by S J that can be chosen. Let us suppose that there is no candidate for F 2 . It means that no factor other than F 1 starts by ss i , and then J j=1 q i,j ≤ q i,J (number available at start smaller than number used). We deduce that for all j < J, q i,j = 0 and that is absurd.

We obtain the set of factors{B , F 1 , • • • , F f , E }. We have merged m J factors, then f = f -m J = j-1 j=1 m j -1. For all j < J, the number of factors ending with s j has not changed. For all i, there are J j=1 q i,j -q i,J = J-1 j=1 q i,j factors in {F 1 • • • F f , E } starting with ss i . Furthermore, for all j < J, the sequence s j s still never appears neither in B nor in F l for all l and for all i, for all j ≥ J, q B,i,j + f l=1 q F l ,i,j + q E,i,j = q i,j . At start, when considering all elementary factors {B,

F 1 , • • • , F f , E}, we have f = k -1 = Q j=1 m j -1 and for all j, exactly m j factors in {B, F 1 • • • F f } ends with s j and for all i, exactly Q j=1 q i,j = n i factors in {F 1 • • • F f , E} start with ss i .
Besides, since all factors are elementary, no sequence s j s appears in any of them and trivially, for all j > Q, q B,i,j + f l=1 q F l ,i,j + q E,i,j = 0. Thus, the requirements are met.

Example 5.4. Let us consider again the set W = {s 0 s 1 s 2 s 2 s 1 s 3 s 3 , s 0 s 2 s 3 s 3 } and s = s 1 . The decomposition in s 1 factors of W gives the beginning blocks s 0 and s 0 s 2 s 3 s 3 , the factor s 1 s 2 s 2 and the ending factor s 1 s 3 s 3 . The predecessors of s 1 are s 0 and s 2 , and its successors are s 2 and s 3 in an equal proportion. We need an equal number of s 0 s 1 s 2 and s 0 s 1 s 3 and similarly an equal number of s 2 s 1 s 2 and s 2 s 1 s 3 . We thus need four occurrences of s 1 .

W is equivalent to W = {s 0 s 1 s 2 s 2 s 1 s 3 s 3 , s 0 s 2 s 3 s 3 , s 0 s 1 s 2 s 2 s 1 s 3 s 3 , s 0 s 2 s 3 s 3 } (every run has been duplicated) and every block we gave is duplicated. Then applying the merging algorithm, we obtain W = {s 0 s 1 s 3 s 3 , s 0 s 1 s 2 s 2 s 1 s 2 s 2 s 1 s 3 s 3 , s 0 s 2 s 3 s 3 , s 0 s 2 s 3 s 3 }.

In Lemma 5.5, (1) ensures that MW = MW and (2) ensures the equality between the proportion of runs of W passing by s and satisfying γ, denoted γs W , and the probability of reaching s F before s 0 starting from s with respect to MW . Lemma 5.6. For all s ∈ S, P MW s (reach s f before s 0) = γs W .

Proof. Let S 0 be the set of states s with no path in MW from s to s f without passing through s 0 . For all s ∈ S 0 , let p s = 0. Also, let p s f = 1. Let S 1 = S \ (S 0 ∪ {s f }). Consider the system of equations (5.4) with variables (p s)

s∈S 1 ∈ [0, 1] |S 1 | : ∀ s ∈ S 1 , p s = m t=1 MW (s, t)p t (5.4)
The system of equations (5.4) admits a unique solution [START_REF] Baier | Principles of model checking[END_REF] (theorem 10.19). Then, (P MW s (reach s f before s 0)) s∈S 1 is trivially a solution of (5.4). But, since W satisfies the conditions of Lemma 5.5, we also have that (γ s W) s∈S 1 is a solution of (5.4), and thus we have the desired equality.

Notice that Lemma 5.6 does not hold in general with the set W . We have: It shows that learning can be as efficient as statistical model-checking on comparable properties.

In this section, for the sake of simplicity, the finite set W of traces is obtained by observing paths till a state is seen twice on the path. Then, the reset action is used and another trace is obtained from another path. That is, a trace ω from W is of the form

ω = ρ • s • ρ • s, with ρ • s • ρ a loop-free path.
We need an additional hypothesis. We assume that the support of transition probabilities is known, ie for any state i, we know the set of states j such that a ij = 0. This assumption is needed both for Theorem 5.9 and to apply Laplace smoothing. We will show that this property is necessary in section 5.3.3.

No PAC bound for LTL

Inspired by the result given in [START_REF] Daca | Linear Distances between Markov Chains[END_REF] we prove that there is no learning algorithm that will give a Markov Chain that is accurate for all LTL formulas. Theorem 5.7 [START_REF] Daca | Linear Distances between Markov Chains[END_REF]). Given ε > 0, 0 < δ < 1, and a finite set W of paths, there is no learning strategy such that, for all LTL formula ϕ,

P(|γ(M, ϕ) -γ(MW , ϕ)| > ε) ≤ δ (5.5)
Proof. We prove it by defining a sequence of LTL properties that violates the specification above. As we show, it only relies on a single deviation in one transition. This is thus independent of the learning strategy.

Let s u ∈ S be a state that can be visited arbitrarily often from s 0 and let s v ∈ S be a non-unique successor of s u . Assume that MW = (mij) 1≤i,j≤m is an estimate of M = (m ij) 1≤i,j≤m and note τ > 0 the deviation between muv and m uv . For simplicity, we assume muv = m uv + τ but a similar proof can be done with muv = m uv -τ . Let ϕ n be the property "Transition s u s v occurs at most (m uv + τ /2)n times during the n first visits of s i ". This property is a LTL property since it can be written as a finite composition of X, ∧ and ∨. Let (X k) 1≤k≤n be n independent Bernoulli random variables from the set of transitions possible in s u to {0, 1} assigning 1 when s u s v is taken after the k-th visit of s u and 0 if another transition is taken after the k-th visit of s u . Then, we can rewrite:

P (ϕ n) = P 1 n n k=1 X k ≤ m uv + τ /2 (5.6)
By the law of large numbers, 1 n n k=1 X k tends toward m uv with respect to M when n goes to infinity. Then,

γ(M, ϕ n) = P A 1 n n k=1 X k ≤ m uv + τ /2 -→ n→∞ 1.
But, with respect to MW ,

1 n n k=1 X k tends toward m uv + τ . So, γ(MW , ϕ n) = P MW 1 n n k=1 X k ≤ m uv + τ /2 -→ n→∞ 0 Thus, γ(M, ϕ n) -γ(MW , ϕ n) -→ n→∞
1 almost surely. More precisely, given ε > 0, δ, 0 < δ < 1 and a finite run W , there exists a rank N such that specification 5.5 can not be fulfilled for properties ϕ n , n ≥ N .

Conditioning and Probability Bounds

Using Laplace smoothing slightly changes the probability of each transition by say an additive offset η. We now explain how this small error η impacts the error on the probability of a CTL property.

Let M be a Markov Chain, and M η be a Markov Chain such that M η (i, j) = 0 iff M (i, j) = 0 for all states s i , s j , and such that j |M η (i, j) -M (i, j)| ≤ η for all state s i . For all state s ∈ S, let R(s) be the set of states s i such that there exists a path from s i to s. Let R * (s) = R(s) \ {s}. Since both Markov Chains have the same support, R (and also R *) is equal for A and A η . Given m the number of states, we define the conditioning of M for s ∈ S and ≤ m as follows:

Definition 5.3 (Conditioning).

Cond s (M) = min i∈R * (s)

P M i (F ≤ ¬R * (s)) (5.7)
i.e., the minimal probability from state i ∈ R * (s) to move away from R * (s) in at most steps. Let s minimal such that Cond s s (M) > 0. This minimal s exists as Cond m s (M) > 0 since, for all s ∈ S and i ∈ R * (s), there is at least one path reaching s from i (this path leaves R * (s)), and taking a cycle-free path, we obtain a path of length at most m. Thus, the probability P M i (F ≤m ¬R * (s)) is at least the positive probability of the cylinder defined by this finite path. Theorem 5.8. Denoting ϕ the property of reaching state s in Markov Chain M, we have:

|γ(M, ϕ) -γ(M η , ϕ)| < s • η Cond s s (M)
Proof. Let v s be the stochastic vector with v s (s) = 1. We denote v 0 = v s 0 . Let s ∈ S. We assume that s 0 ∈ R * (s) (else γ(M, ϕ) = γ(M η , ϕ) and the result is trivial). Without loss of generality, we can also assume that M (s, s) = M η (s, s) = 1 (as we are interested in reaching s at any step). With this assumption:

|γ(A, ϕ) -γ(A η , ϕ)| = lim t→∞ v 0 • (A t -A t η) • v s
We bound this error, through bounding by induction on t:

E(t) = max i∈R * (s) v i • (M t -M t η) • v s
We then have trivially:

|γ(M, ϕ) -γ(M η , ϕ)| ≤ lim t→∞ E(t) Note that for i = s, lim t→∞ v i • (M t) • v s = 1 = lim t→∞ v i • M t η • v s , and thus their difference is null. Let t ∈ N. We let j ∈ R * (s) such that E(t) = v j • (M t -M t η) • v s . By the triangular inequality, introducing the term v j •M s M t-k η •v s -v j •M s M t-k η •v s = 0, we have: E(t) ≤ |v j • (M t η -M s M t-s η) • v s | + |(v j • M s) • (M t-s η -M t-s) • v s |
We separate vector (v j • M m) = w 1 + w 2 + w 3 in three sub-stochastic vectors w 1 , w 2 , w 3 : vector w 1 is over {s}, and thus we have

w 1 • M t-m η = w 1 = w 1 • M t-s ,
• M t-s η • v s = 0 = w 3 • M t-s • v s ,
and the term cancels out. We also obtain that

|v j • (M t η -M s M t-s η) • v s | ≤ s • η. Thus, we have the inductive formula E(t) ≤ (1 -Cond s s (M))E(t -s) + s • η.
It yields for all t ∈ N:

E(t) ≤ (s • η) ∞ i=1 (1 -Cond s s ((M))) i E(t) ≤ s • η Cond s s (M)
We can extend this result from reachability to formulas of the form S 0 US F , where S 0 , S F are subsets of states. This formula means that we reach the set of states S F through only states in S 0 on the way. We define R(S 0 , S F) to be the set of states which can reach S F using only states of S 0 , and R * (S 0 , S F) = R(S 0 , S F) \ S F . For ∈ N, we let:

Cond S 0 ,S F (M) = min i∈R * (S 0 ,S F) P M i (F ≤ ¬R * (S 0 , S F) ∨ ¬S 0). Now, one can remark that Cond S 0 ,S F (M) ≥ Cond S,S F (M) > 0. Let Cond S F (M) = Cond S,S F (M). We have Cond S 0 ,S F (M) ≥ Cond S F (M).
As before, we let S F ≤ m be the minimal such that Cond S F (M) > 0, and obtain: Theorem 5.9. Denoting ϕ the property S 0 US F , we have, given Markov Chain M:

|γ(M, ϕ) -γ(M η , ϕ)| < S F • η Cond S F S F (M)
We defined the conditioning as the probability to reach S F or S \ R(S, S F). At the price of a more technical proof, we can obtain a better bound by replacing S F by the set of states R 1 (S F) that have probability 1 to reach S F . We let R * (S F) = R(S, S F) \ R 1 (S F) the set of states that can reach S F with < 1 probability, and

Cond S F (M) = min i∈R * (S F) P M i (F ≤ ¬R * (S F))

Optimality and necessity of knowing the transitions support

We show now that the bound we provide in Theorems 5.8 and 5.9 are close to optimal, and that the hypothesis on M (i, j) = 0 iff M η (i, j) = 0 is necessary. Let us consider Markov Chains M, M, M in Fig. 5.4 and formula F s 2 stating that s 2 is eventually reached. The probabilities to satisfy this formula in M, M, M are respectively P M (F s 2) = 1 2 , P M(F s 2) = 2τ +η 4τ and P M (F s 2) = 0.

Assume that M is the real system and that M and M are Markov Chains we learned from M.

As we do not know precisely the transition probabilities in M, we can only compute the conditioning on M and not on M. We have R(s 2) = {s 1 , s 2 } and R * (s 2) = R * (s 2) = {s 1 }. The probability to stay in R * (s 2) after s 2 = 1 step is (1 -2τ), and thus Cond 1

{s 2 } (M) = Cond 1 {s 2 } (M) = 1-(1-2τ) = 2τ . Taking M η = M, Theorem 5.9 tells us that |P M (F s 2) -P M(F s 2)| ≤ η
2τ . Notice that on that example, even using s 2 = m = 3, we obtain Cond 3 {s 2 } (M) = 1 -(1 -2τ) 3 ≈ 6τ , and we find a similar bound ≈ 3η 6τ = η 2τ .

Compare our bound with the exact difference |P M (F s 2) -P M(F s 2)| = 2τ +η 4τ -1 2 = η 4τ . Our upper bound only has an overhead factor of 2, considering this example is a case where the conditioning is particularly bad.

Without knowing that there are transitions from s 1 to s 2 and from s 1 to s 3 , the chance to only witness the transition from s 1 to s 1 (and consequently to learn MC M) is high if the inverse of τ is large enough compared to the number of observations. For M , we have Cond S,s 2 (M) = 1 for all > 0. Let η = 2τ and M η = M. Now, there is no function of η and Cond S,s 2 (M) (without creating a moot bound of value at least 1 2 for all η, Cond(M) which could bound the difference |P M (F s 2) -P M (F s 2)| = 1 2 . Hence, the hypothesis on M (i, j) = 0 iff M η (i, j) = 0 is necessary, which requires to know the support of the transitions of the real system M.

PAC bounds for j | ÂW (i, j) -A(i, j)| ≤ η

As in Section 5.2, we use the algorithm of Chen in order to obtain PAC bounds. However, we do not use it to estimate a property, but rather the individual transition probabilities.

Let W be a set of traces drawn with respect to M such that every ω ∈ W is of the form ω = ρ • s • ρ • s. For recall, for each state s i , s j of S, n W i is the number of transitions originating from s i in W and n W ij is the number of transition s i s j in W . Let δ = δ m stoch , where m stoch is the number of stochastic states, i.e., with at least two outgoing transitions.

We want to sample traces until the empirical transition probabilities n W ij n W i are relatively close to the exact transition probabilities m ij , for all i, j ∈ S. For that, we need to determine a stopping criteria over the number of state occurrences (n i) 1≤i≤m such that:

P   ∃i ∈ S, j m ij - n W ij n W i > ε   ≤ δ
First, note that for any observed state s i ∈ S, if m ij = 0 (or a ij = 1), then with

P m i=1 max j∈S |m ij - n W ij n W i | > ε ≤ m i=1 P max j∈S |a ij - n W ij n W i | > ε ≤ m stoch δ ≤ δ
In other words, the probability that "there exists a state s i ∈ S such that the deviation between the exact and empirical outgoing transitions from s i exceeds ε" is bounded by δ as soon as for each state s i ∈ S, n W i satisfies the stopping rule of the algorithm of Chen using ε and the corresponding δ . This gives the hypothesis j |M η (i, j) -M (i, j)| ≤ for all state s i .

A Matrix MW accurate for all CTL properties

We now use Laplace smoothing in order to ensure the other hypothesis M η (i, j) = 0 iff M (i, j) = 0 for all states s i , s j . For all s i ∈ S, we define the Laplace offset depending on the state s i as

α i = (n W i) 2 ε 10•k 2 i max j n W ij
, where k i is the number of transitions from state s i . This ensures that the error from Laplace smoothing is at most one tenth of the statistical error. Let α = (α i) 1≤i≤m . From the sample set W , we output the matrix Mα W = (mij) 1≤i,j≤m with Laplace smoothing α i for state s i , i.e., :

mij = n W ij + α i n W i + k i α i
if m ij = 0 and mij = 0 otherwise It is easy to check that we have for all s i , s j ∈ S:

mij - n W ij n W i ≤ ε 10 • k i
That is, for all state s i , j mij - . Applying Theorem 5.9, we obtain that: We can thus apply Theorem 5.9 on Mα W , M and obtain (5.8) for ϕ any formula of the form S 1 US 2 . For recall, we only need to prove the result for properties without E or A. It remains to show that for any formula ϕ ∈ Ψ, we can define S 1 , S 2 ⊆ S such that ϕ can be expressed as S 1 US 2 .

Consider the different cases: If ϕ is of the form ϕ = ϕ 1 Uϕ 2 (it subsumes the case ϕ = Fϕ 1 = Uϕ 1) with ϕ 1 , ϕ 2 CTL formulas, we define S 1 , S 2 as the sets of states satisfying ϕ 1 and ϕ 2 , and we have the equivalence (see [START_REF] Baier | Principles of model checking[END_REF] for more details). If ϕ = Xϕ 2 , define S 1 = ∅ and S 2 as the set of states satisfying ϕ 2 . The last case is ϕ = Gϕ 1 , with ϕ 1 a CTL formula. Again, we define S 1 the set of states satisfying ϕ 1 , and S 2 the set of states satisfying the CTL formula AGϕ 1 . The probability of the set of paths satisfying ϕ = Gϕ 1 is exactly the same as the probability of the set of paths satisfying S 1 US 2 .

Evaluation and Discussion

In this section, we evaluate Algorithm 6 on 5 crafted systems and discuss its practical use. The objective of the evaluation is to provide some idea on how many samples would be sufficient for learning accurate MC estimations. We now describe the 5 systems: Systems 1 and 2 are three-state models described in Fig.) is a 30-state (resp. 200-states) clique in which every individual transition probability is 1/30 (resp. 1/200). System 4 is a 64-state system modeling failure and repair of 3 types of components (3 components each, 9 components in total). System 4 can be modeled with probabilistic model checker Prism 1 as a continuous time Markov chain (CTMC) that comprises three types (1, 2, 3) of three components each that may fail independently. Note however that we do not simulate the times between two changes of states but only the transitions between states, that lead to learn the induced MC instead. The components fail with rate λ = 0.2 and are repaired with rate µ = 1. In addition, components are repaired with priority according to their type (type i has highest priority than type j if i < j). Components of type 1 and 2 are repaired simultaneously if at least two of their own type have failed. Type 3 components are repaired one by one as soon as one has failed. The probability transitions from state s i to state s j is given by the rate of the transition from the CTMC between state s i and state s j divided by the sum of all the rates of the enabled transitions from state s i . The initial state is the state in which all the components are operational and the failure state is the state in which all the components are broken. We provide below the Prism code of the model for the readers Table 5.1: Average number of observed events N (and relative standard deviation) given = 0.1 and δ = 0.05 for a time-to-failure property and for the full CTL logic using the refined conditioning Cond. The results show that for systems of average size, we can learn MCs which are accurate for all CTL formulas, although for some systems such as System 4, it can take a lot of events to be observed before Algorithm 6 terminates. The reason is that there are rare states, such as the state where all 9 components fail, which are observed with an extremely small probability. In order to evaluate the probabilities of CTL properties of the form: "if all 9 components fail, then CTL property ϕ is satisfied", this state needs to be explored many times, explaining the high number of events observed before the algorithm terminates. On the other hand, for properties that do not involve the 9 components failing as prior, such as time-to-failure, one does not need to observe this state even once to conclude that it has an extremely small probability to happen. This suggests that efficient algorithms could be developed for subsets of CTL formulas, e.g., , in defining a subset of important events to consider. We believe that Theorem 4 and 5 could be extended to handle such cases.

Comparing results for time-to-failure and for the full CTL logic is interesting. Excluding System 4 which involves rare states, the number of events that needs to be observed varies between 4.3 to 7 times more, even for the model with 200 states. Surprisingly, the highest difference is with the smallest System 1. It is because every run of System 1 simulated for time-to-failure has size 3 (s 1 s 2 and either s 1 or s 3). However, in Systems 2, 3 and 5, samples for time-to-failure can be much longer (i.e., s 1 or s 3 are seen). In comparison, every event observed in Algorithm 6 is used to estimate Âα W . Notice that for the system we tested, Cond was particularly large (more than 20) because for many states s, there was probability 0 to leave R(s), and hence (s) was quite large. These are the cases where Cond is much more efficient, as then we can choose (s) = 1 as the probability to reach s from states in R(s) is 1 (R 1 (s) = R(s) and R * (s) = ∅). We used Cond in our algorithm.

Related work

This work lies at the crossroads of machine learning and Statistical Model Checking (SMC) [START_REF] Håkan | Probabilistic Verification of Discrete Event Systems Using Acceptance Sampling[END_REF]. However, the context and the outputs are different. SMC is a simulationbased approach that aims to infer conclusions about properties using probability estimation or hypothesis testing [Che+52; Wal45], within acceptable margins of error and confidence [Hér+04; JSS17; ZPC13]. A challenge in SMC is posed by unbounded properties (e.g., , fairness) since the sampled executions are finite. Some algorithms have been proposed to handle unbounded properties but they require at least the knowledge of the minimal probability transition of the system [START_REF] Daca | Faster statistical model checking for unbounded temporal properties[END_REF].

Another concern is the analysis of unknown or real-world systems. SMC algorithms have been proposed for black-box systems [START_REF] Sen | Statistical model checking of black-box probabilistic systems[END_REF] but providing statistical evidence remained questionable. The alternative to learn MC models from the system in order to reuse it for PMC has been posed in [Che+12; BS13; Brá+14; Wan+17; CPS18] but these approaches remain empirical and, contrary to this work, no analysis of the learning process is done there. In [START_REF] Ghosh | Trusted Machine Learning: Model Repair and Data Repair for Probabilistic Models[END_REF], the authors propose to analyze the learned model a posteriori to test whether it has some good properties. If not, then they tweak the model in order to enforce these properties.

Finally, in [START_REF] Daca | Linear Distances between Markov Chains[END_REF] that we already cited for the LTL result, the authors investigate several distances for the estimation of the difference between MCs, but they do not propose algorithms for learning. Also, several PAC-learning algorithms have been proposed for the estimation of stochastic systems [CG08; CT04] but these works focus on local transitions instead of global properties.

Conclusion

Summary

In this chapter, we have provided some foundations for certification of the learning of Markov Chains. Section 5.1 has provided a state of the art on the different kind of estimators for this learning and the mathematical notions around PAC learning.

In section 5.2 we investigated a first subproblem, that is the time to failure properties. We provided an algorithm with a certification on the likeliness to have a precise answer. Then, section 5.3 tackled a more general problem: providing bounds for all formula in some temporal logic. We saw that it was impossible to it for LTL, but we obtained a positive result for CTL. This is accompanied by an algorithm and a proof for the bounds. Moreover, we proved that our bounds are asymptotically tight: the use of conditioning is needed, up to a constant factor.

Finally, some proof of concept is shown through evaluations on different systems in section 5.4. We saw that the number of observations needed to have a good approximation stays reasonable in most cases. However, the problem of rare events can still require many observations in order to gather enough information on it (as one could have expected).

Future work

The field of certification of learning is quite recent and a lot of work remains to be done. In this chapter, we presented a special case, where we have strong assumptions. However, we believe that these studies should be extended to more complex models. In particular, one can think about Deep Neural Networks. Recent studies tackled the issue of their certification using various techniques such as abstract interpretation [START_REF] Gopinath | Deepsafe: A data-driven approach for assessing robustness of neural networks[END_REF], numerical analysis [PT11; Dut+18], approximation with polyedras [START_REF] Gehr | Ai2: Safety and robustness certification of neural networks with abstract interpretation[END_REF]... However, the size of DNN that can be certified is still some orders of magnitude smaller than the one industrially used (thousands of nodes vs millions of nodes). For these reasons, bringing more formal methods in the field of artificial intelligence may be beneficial.

Chapter 6

Conclusion

Contributions

This thesis aimed at better assessing stochastic systems. We developed algorithms focused on the quantification of various problems while reasoning on partial information in different contexts.

The first context was by defining diagnosability degrees of stochastic systems in Chapter 3. There were two quantities we evaluated: one is the probability that diagnosability holds after some time or eventually. The second is the detection delay distribution. By enriching the algorithm provided for computing the probability of diagnosis, we obtained a way to compute an arbitrary high number of moments of the distribution of detection delays. These moments allow us either to approximate or to provide accurate concentration bounds on this distribution.

A second context was by exploring how to distinguish between several stochastic systems based on a sequence of observations (Chapter 4). To take into account the partial information, we extended stationary distributions from Markov Chains to Labeled Markov Chains, by considering the Markov Chain induced by the restriction to a belief state. This extension was the first contribution, with proofs of its soundness. We believe it can have other applications. Then, a new proof based on this new notion of stationary distributions was presented for solving limit-sure classifiability in PTIME. Finally, we also established a link between contributions from different communities on equivalent/related notions: distinguishability, misclassification and limit-sure classifiability.

Third and finally, we focused on a problem that is "upstream": before reasoning on a stochastic model, how do we obtain these probabilities? We focused on the guarantees we could obtain given some estimation method for transition probabilities (Chapter 5). A huge difference with existing works on this subject is that we specifically aimed at global guarantees instead of only looking at local deviations on the transition probabilities. We first looked at a time to failure setting in a restrictive framework, and then we studied if and how we could guarantee that an estimated model behaves as the original system on all formulas of a temporal logic. On that subject, we obtained a negative result with LTL and a positive one for CTL, and showed that it can be used in practice on average size stochastic systems.

Perspectives

Despite numerous works concerning the topics of this thesis that have been done in the last decade, many questions remain open. We start by presenting some short term perspectives, directly extending the thesis work before concluding with medium and long term perspectives.

Complexity and scalability:

When considering different problems, especially diagnosability and learning, we gave worst-cases complexities/guarantees. However, we saw that the worst case is far from being the norm. A practical direction to investigate would be to determine how well these techniques scale up. Some classes of models/scenarios could be defined and different benchmarks and evaluations could be performed. For example, we gave in Chapter 3 some heuristics to help with the size of the diagnoser, but we did not give any practical evaluation. While an example showed that these heuristics could be very useful, we do not quantify "how much" or "how often".

Opacity: Opacity is a framework for stating properties about the potential leakage of some secret. It can be seen in two ways. The first one is asymmetrical opacity where one wants to be detect when a predicate holds, and the second one is symmetrical opacity where one wants to be certain whether a predicate holds or does not hold. For stochastic systems, the notion of asymmetric opacity is similar to diagnosability, as we want to decide if an event representing a leakage has been detected, and symmetric opacity is related to classifiability, where we want to decide if we are in the language where the predicate is true or in the language where the predicate is false. Similarly to the developments in Chapter 3, the quantification of "how often and how fast can one decide" can be considered. This is close to the liberal direction in [START_REF] Bérard | Quantifying opacity[END_REF] and our techniques could be directly applied there. Another quantification one could imagine is related to security: while we may never be 100% sure that the secret is leaked, having a high level of confidence about a leakage can be critical in a security context. This direction is called restrictive in [START_REF] Bérard | Quantifying opacity[END_REF]. However one has to be careful: many decision problems about almost certain diagnosability are undecidable (as described in [START_REF] Bertrand | Accurate approximate diagnosability of stochastic systems[END_REF]). For example, it could be hard to automatically quantify the frequency we are 95% sure there was a leakage.

Extending the uncertainty: Regarding partial information systems, we have considered Labeled Markov Chains and Probabilistic Finite Automata, where the uncertainty was on the transitions: the underlying structure was non-deterministic. However, we considered that the probabilities were perfectly known, which is a strong assumption, as seen in Chapter 5. An interesting perspective could be to consider classes of models allowing imprecise probabilities. Several classes of models exist, especially the Interval Markov Chains [START_REF] Igor | Interval-valued finite Markov chains[END_REF] (IMCs) where probabilities may not be well known and lie in an interval. Similarly to LMCs, there exist labeled IMCs named Interval Labeled Markov Chains (ILMCs) [START_REF] Sen | Model-checking Markov chains in the presence of uncertainties[END_REF]. Several semantics exist for ILMCs, such as Interval Markov Decision Processes, where the actions are bound to choose the transition probabilities and Uncertain Markov Chains where the probabilities are unknown but lie in some interval and will not change during the execution. It could be interesting to extend the questions of quantification to these models and explore their decidability and complexity.

Security and confidentiality: In Chapter 4.5, we considered an attacker that had some (simple) power on the system. This notion of security with respect to an attacker has been used in several fields, such as opacity [START_REF] Dubreil | Opacity enforcing control synthesis[END_REF]. We believe this could be extended for our work. We considered an attacker that was mostly passive with one action (the reset). What could be interesting is to explore different classes of attacks. Now, we turn to longer term perspectives: what are the challenges that await us?

Trade-off between performances and guarantees: Different applications bring different needs. Critical applications leave no flexibility, while non-crucial problems may be handled differently. For this last category, it may be more important to have an answer quickly than 100% accurate. For example, one may imagine that a protocol supervising possible failures/faults answers "no" meaning that either there is no fault now or no incoming problem soon: the constraint has been relaxed, allowing the protocol to answer more quickly. This is an interesting field: while one may trade accuracy for efficiency, one may still wish for guarantees on this trade-off, either in terms of loss of precision or in terms of saved time/resources, e.g., under the form of bounds on the amount of saved time.

Convergence between Formal Methods and AI: For many years, communities in Formal Methods and Artificial Intelligence have been disjoint and worked on related subjects with very different techniques. Drawbacks of both paradigms have been mentioned before, such as a lack of scalability for formal methods and the difficulties to obtain guarantees and confidence for AI. However, these last years have seen both communities work together. The contribution in Chapter 5 is an example of a work concerning both communities. The goals of these collaborations are diverse:

• A first goal is the evaluation of strengths and weaknesses of both communities.

For each (category of) problem, which approach gives the best results with several criteria: efficiency, accuracy, robustness... For example, when considering image classification, AI-based techniques are the most efficient, even with the issues we raised (e.g., in the introduction). However, they offer no guarantees whereas formal methods, especially verification are based on having formal guarantees.

• A second goal is to develop formal methods to address classical problems in AI. This is the point of our contribution in Chapter 5. The strength of Formal Methods is the guarantees it gives. Then, as we said before, one would like to apply these techniques to obtain guarantees on the tools that are used in AI. As an example, there are a lot of recent works whose goal is to certify Deep Neural Networks such as [Hua+17; WHK18].

• A third goal is how to use the tools in AI to help Formal Methods. For example, one can think about how to find a good heuristic in a theorem prover. This is a computationally difficult problem where the answer does not need to be optimal, as long as it is "good".

For these reasons, this convergence has a lot of applications, both academic and industrial. One can expect that this convergence will be beneficial to both fields. In this thesis, we study several problems linked to these systems. First one is diagnosability, that is the capacity to decide if a particular event occurred. Second one is classification which is the capacity to decide from a trace of an execution which system produced it. Finally, we are interested in the guarantees one can obtain by learning the probability transitions of a stochastic system.

Figure 2 :

 2 Figure 2: Les tests.

Figure 3 :

 3 Figure 3: La vérification de modèles.

Figure 1 . 1 :

 11 Figure 1.1: Principle of deductive verification.

Figure 1 . 4 :

 14 Figure 1.4: Toy example where local transitions are close enough but general properties are very different.

Example 2 . 1 .Figure 2 . 1 :

 2121 Figure 2.1: Example of an LTS A.

Figure 2 . 2 :

 22 Figure 2.2: An LTS A with silent transitions (above) and its equivalent A after ε-removal (below).

t h o u g h t s , 1 4 c o i n fl i p , 1 4 c o i n fl i p , 1 4Figure 2 . 4 :

 44124 Figure 2.4: A model where the user has a choice represented by an MDP (left) and a model of an observer witnessing a possible strategy represented by an LMC (right).

2

 2

Figure 2 . 5 :

 25 Figure 2.5: Example of an LMC M.

Figure 2 . 6 :

 26 Figure 2.6: Example of a PFA A.

Figure 2 . 8 :

 28 Figure 2.8: Example of a Markov Chain M.

Figure 3 . 1 :

 31 Figure 3.1: LTS A (left) with faulty states in red and its twin plant à (right) with ambiguous states {s 1 , s 3 } and {s 1 , s 2 } in orange.

Figure 3 . 2 :

 32 Figure 3.2: LMC A (above left), its observer Ȧ (above right), and the A-diagnoser A (below).

Figure 3 . 3 :

 33 Figure 3.3: An LMC A, faulty states in red.

Figure 3 . 5 :

 35 Figure 3.5: An LMC A, faulty states in red (top) and its power set construction that has an exponential size (bot).

s 2 , s 3 sFigure 3 . 6 :

 336 Figure 3.6: An example of an LMC A 3 (top) that has an exponential sized diagnoser, and its twin plant (bottom)

Example 3 .

 3 10. Let us consider a distribution δ on R + . If δ has the sequence of moments {µ n = n! | n ∈ N}, then δ is the exponential distribution with parameter 1. Similarly, the sequence of moments {µ n = (2n)! | n ∈ N} for a distribution on R + is characteristic of the square of the exponential distribution of parameter 1.

Figure 3 .

 3 Figure 3.7: A toy example LMC A, faulty states in red.

Figure 4 . 1 :

 41 Figure 4.1: Example of an LMC A on alphabet Σ = {a, b} and of an NFA B A on alphabet Σ.

 then the product of both LMCs has no loop. It means that with n and m the number of states of A 1 and A 2 , after at most n • m observation, we can classify. Checking the existence of a loop in the twin machine is doable in polynomial time (it is an NLOGSPACE-complete problem, see Proposition 3.1).

Example 4 . 1 .

 41 Three LMCs are pictured in figure 4.2. A 1 and A 2 are equivalent: all words in (a + b) n have probability 1/2 n . However, A 3 is not equivalent with them. As a counterexample, P A 3 (ab) = 1/2 instead of P A 1 (ab) = 1/4.

2 b, 1 2Figure 4 . 2 :

 2142 Figure 4.2: Three LMCs A 1 (top left), A 2 (top right) and A 3 (bottom).

4 Figure 4 . 3 :

 443 Figure 4.3: Four LMCs A 1 (top left), A 2 (top right), A 3 (bottom left) and A 4 (bottom right).

Figure 4 . 5 :

 45 Figure 4.5: Example of an LMC A on alphabet Σ = {a, b} and of an NFA B A on alphabet Σ.

Figure 4 . 6 :

 46 Figure 4.6: Markov chain M x,y associated with the belief {x, y}

Example 4 . 4 .

 44 Let us consider the LMC in figure 4.5 and let X = {x, y} ∈ E A . The Markov chain M X build from this belief state is depicted in figure 4.6 has a unique stationary distribution σ(x) = 3 5 and σ(y) = 2 5 .

Definition 4 .

 4 11 (Limit-sure classifiability). Two LMCs A 1 , A 2 are limit-sure classifiable iff there exists a computable function f : Σ * → {⊥, 1, 2} such that P (ρ run of A 1 of size k | f (obs(ρ)) = 1) → k→∞ 0, and similarly for ρ run of A 2

Figure 4 . 7 :

 47 Figure 4.7: Twin automaton (on the left) and twin-belief automaton (on the right), for A 1 , A 2 starting in states y and z

Figure 4 .

 4 7 presents an example with a twin automaton and the twin belief automaton for two copies of the LMC given in figure4.5, one starting in state y and the other starting in state z.

Lemma 4 .

 4 15 (Sufficient condition for non-classifiability: Proposition 18 in

Proposition 4 .

 4 19. Let (H 1 , H 2) be a twin belief in the BSCC E D . Then (H 1 , H 2) is oblivious. Proof. Let u be an observation. Let B k (u) be the belief of A 1 reached by u from {i k }, and C k (u) be the belief of A 2 reached by u from {j k }. We define Z 1 (u) the set of beliefs B l (u), l ≤ n and Z 2 (u) the set of beliefs C l (u), l ≤ m. Notice that the sizes |Z 1 (u)| and |Z 2 (u)| (the number of non empty beliefs) are non increasing with u.

 r)P A 1 σr (w) = r≤ τ (j r)P A 2 τr (w) Let α = σ(i 1), and α r = σ(i r)/(1 -α) for all r ≤ k. Let τ = r≤ τ (j r)τ r , and σ = 2≤r≤k α r σ r . We have (A 1 , ασ 1 + (1 -α)σ) ≡ (A 2 , τ). We show: Proposition 4.20. (A 1 , σ 1) ≡ (A 1 , σ) ≡ (A 2 , τ).

Algorithm 3

 3 Limit-sure Classifiability 1: Compute D 1 , . . . , D k the BSCCs of the twin automaton A. 2: for i=1..k do 3:

6 :

 6 with (A 1 , σ 1) ≡ (A 2 , σ 2) then

|w|=k mis(A 1 ,

 1 A 2 , w)P (w) = w∈W k mis(A 1 , A 2 , w)P (w) + w∈Σ k \W k mis(A 1 , A 2 , w)P (w)

Figure 4 . 8 :

 48 Figure 4.8: Two LMCs A 1 and A 2 with no limit-sure classifier

Theorem 4 .

 4 24.It is undecidable to know whether for all ε, there exists an (1 -ε) attackclassifier between 2 LMCs.

Figure 4 . 9 :

 49 Figure 4.9: Example of the PFA (above) to LMC (below) reduction

Figure 5 . 1 :

 51 Figure 5.1: Example of a MC M learnt from a sample of executions by a frequency estimator

Figure 5 . 2 :

 52 Figure 5.2: Example of a MC M whose support is known (left) learnt from a sample of executions with Laplace smoothing of parameter α = 1 (right).

Theorem 5 . 1 (

 51 Okamoto bound). Let ε > 0, δ such that 0 < δ < 1 and γW be the crude Monte-Carlo estimator of probability γ.If n ≥ 1 2ε 2 log 2 δ , P(|γ -γW | > ε) ≤ δ.

 Figure 5.3: MC induced by W and W (left) and by W (right)

(

 reach s f before s 0) (by Lemma 5.6) = P MW s 0 (reach s f before s 0) (by Lemma 5.5) = γ(MW , ϕ) (by definition). That concludes the proof of Proposition 5.4.

1 Figure 5 . 4 :

 154 Figure 5.4: Three MCs M, M, M (from top to bottom), with 0 < η < 2τ < 1

= 1)| < ε with probability 1 .transitions from s i such that n W i ≥ 2 ε 2 log 2 δ 1 4 -max j | 1 |

 1111 . Thus, for all ε > 0, |m ij -Second, for two distinct states s i and s i , the transition probabilities all j = j .Let s i ∈ S be a stochastic state. If we observe n W i In particular, P max j∈S |m ij -> ε ≤ δ . Moreover, we have:

 For all si ∈ S, let H * (n W i , , δ) = max s j ∈S H(n W i , n W ij , , δ) be the maximal Chen bound over all the transitions from state s i . Let B(Mα W) = max S

Theorem 5 . 10 . 2 H

 5102 Given a set W of traces, for 0 < < 1 and 0< δ < 1, if for all s i ∈ S, n W i ≥ 11 10 B(Mα W) * (n W i , , δ),we have for any CTL property ϕ:P(|γ(M, ϕ) -γ(Mα W , ϕ)|) > ε) ≤ δ (5.8) Proof. First, mij = 0 iff m ij = 0,by definition of Mα W . Second, P(∃i, j |m ij -mij | > 11 10 ε) ≤ δ.

Algorithm 6 2 H

 62 5.5 and Fig. 5.6. Systems Learning a matrix accurate for CTL Data: S, s 0 , δ, ε W := ∅ m = |S| for all s ∈ S do n W s := 0 end for Compute M := Mα W Compute B := B(M) while ∃s ∈ S, n W s < 11 10 B(M) * (n W s , , δ m) do Generate a new trace ω := s 0 ρ s 1 ρ s 1 , and reset S for all s ∈ S do n W s := n W s + n {ω} s

Figure 5 . 5 :Figure 5 . 6 :

 5556 Figure 5.5: An example of MC M 1

 Stochastic systems, Partial information, Diagnosability, Classification, Learning, Model-checking Abstract : Stochastic systems with partial information allow one to represent numerous systems whose parameters are unknown and whose operation may depend on out-ofcontrol factors.

Example 2.9. Let us consider the alphabet Σ = {a, b}. The set of infinite words having at least one a can be expressed as the union of the cylinders of words ending by an a: {w ∈ Σ ω , a ∈ w} = w∈Σ * Cyl(wa). However, the set of words having no a is not an open set: we need infinite intersection to define it: {w

 ∈ Σ ω , a ∈ w} = w∈Σ * Cyl(wb).

	is stable by (any) union, i.e., if for all i ∈ I, O i ∈ Y then i O i ∈ Y ,
	• Y is stable by finite intersection, i.e., if for all i ∈ 1, n , O i ∈ Y then i O i ∈ Y .
	An element O in Y is called an open set.
	From this set of open sets, we can inductively define the Borel hierarchy generated by
	the open sets Y and the complement operator:
	Definition 2.11 (Borel hierarchy).

 s 1) ∈ T and (s , a, s 1) ∈ T . Diagnosability of LTS is decidable and is NLOGSPACE-complete. A state (s, s) ∈ S is said to be ambiguous if s ∈ S C and s ∈ S F . A path in à is ambiguous if the last state of the path is ambiguous. The diagnosability problem is equivalent to the existence of an ambiguous cycle in the twin plant Ã. Then, a cycle detection algorithm is enough to decide if an LTS is diagnosable, hence the NLOGSPACE complexity. Notice that we only use S × S C because we do not need to keep in memory states in S F × S

	Proposition 3.1.

F : as faults are permanent, S F × S F is absorbing and cannot have an ambiguous future. NLOGSPACE-hardness was shown in

[START_REF] Bérard | The complexity of diagnosability and opacity verification for Petri nets[END_REF]

.

1 2

 1 Figure 4.4: States and transitions for four LMCs A 1 , A2 , A 3 , A 4 with different initial probabilities Theorem 4.11. Let A 1 , A 2 be two LMCs with corresponding MC M 1 and M 2 such that M 1 and M 2 are irreductible and aperiodic and such that exry state is an initial state. Let σ i be the stationary distribution of M i . Then w∈Σ n ,α(w)>α 0 p 1 (w) + p 2 (w) → 0 iff A 1 with initial distribution σ 1 and A 2 with initial distribution σ 2 are equivalent.

Example 4.3. We now show that the condition on the initial distribution is crucial.

 3. otherwise, if the statistical counts for the proportion of times w x 2 is done from (Y 1 , Y 2) is closer to the average value av Y 2 ,Y 1 given by σ 2 Y 1 ,Y 2 than to the average value av Y 1 ,Y 2 given by σ 1 Y 1 ,Y 2 .

 and the term cancels out. Vector w 2 is over states of R * (s), with i∈R * w 2 [i] ≤ (1 -Cond s s (A)), and we obtain an inductive term ≤ (1 -Cond s s (M))E(ts). Last, vector w 3 is over states not in R(s), and we have w 3

 1. http://www.prismmodelchecker.org/

		System 1	System 2	System 3	System 4	System 5
	# states	3	3	30	64	200
	# transitions	4	7	900	204	40000
	# events for time-to-failure	191 (16%)	991 (10%)	2753 (7.4%) 1386 (17.9%) 18335 (7.2%)
	# events for full CTL	1463 (12.9%) 4159 (11.7%) 8404 (3.8%)	1872863	79823 (1.7%)

Titre: Détection et Quantification d'Evenements dans les Systèmes Stochastiques Mot clés :

 Systèmes stochastiques, Information partielle, Diagnosticabilité, Classification, Apprentissage, Vérification de modèles Resumé : Les systèmes stochastiques à information partielle permettent de représenter de nombreux systèmes dont les paramètres sont inconnus et dont le fonctionnement dépend de facteurs en dehors de notre contrôle. Dans cette thèse, nous étudions plusieurs problèmes liés à ces systèmes. Le premier est la diagnosticabilité, c'est-à-dire la capacité de décider si un évènement particulier s'est produit. Le second est la classification qui est la capacité de décider à partir d'une trace d'une exécution quel système l'a produite. Enfin, nous nous intéressons aux garanties que l'on peut avoir quand on apprend les probabilités de transition d'un système stochastique.

p 1 (s, u 1)/n, because p(s, u 1) is constant when u 1 grows longer. Then u 1 u 1 satisfies all

List of figures 184 Index 186

The distance 1 problem is computationally easy: Theorem 4.7 [START_REF] Chen | On the Total Variation Distance of Labelled Markov Chains[END_REF]).

The distance 1 problem can be decided in PTIME.

We sketch the proof of this theorem since we will give an alternative one in this chapter. Let us define some notation: for a word w ∈ Σ * , A 1 (w) is the set of states s such that there exists an execution labeled by w leading to s. For two LMCs A 1 = (S 1 , Σ, µ 01 , p 1), A 2 = (S 2 , Σ, µ 02 , p 2), two distributions µ 1 , µ 2 are said to be equivalent if A 1 = (S 1 , Σ, µ 1 , p 1), A 2 = (S 2 , Σ, µ 2 , p 2) are equivalent in the sense of languages of LMCs.

Proposition 4.8 ([CK14]

). Given two LMCs A 1 , A 2 , the following are equivalent:

there exists w ∈ Σ * and probability subdistributions µ 1 , µ 2 such that supp(µ 1) ⊆ A 1 (w), supp(µ 2) ⊆ A 2 (w) and µ 1 and µ 2 are equivalent, 3. there exists r 1 ∈ S 1 and equivalent subdistributions µ 1 , µ 2 such that r 1 ∈ supp(µ 1)

and supp(µ 2) ⊆ {r 2 | (r 1 , r 2) ∈ A 1 × A 2 }.

Characterization of classifiability

Our goal is to use Theorem 4.14 to obtain stationary distributions over beliefs of A 1 , A 2 , and classify between them by comparing the stochastic language wrt these stationary distributions using probabilistic equivalence (decidable in polynomial time, see Proposition 4.2). In order to do this, we first need to compare the same information in both LMCs.

The idea is to consider twin beliefs from each LMC: we will enrich A 1 with the beliefs of A 2 , and vice versa. Let A 1 be the LMC where the state space is S 1 ×2 S 2 , and the transition matrix is

, and we will abuse notation and represent beliefs of A 1 and A 2 as twin belief (X 1 , X 2), where X 1 or X 2 can be empty. We are interested in what happens after a BSCC of A = A 1 × A 2 is reached. We thus consider twin beliefs reachable from some (x 1 , x 2) in the BSCCs of A. The set of twin beliefs reachable in A 1 and in A 2 from ({x 1 }, {x 2 }) are almost the same, except for twin beliefs of the form (X 1 , ∅) which cannot be reached in A 2 , and of the form (∅, X 2) which cannot be reached in A 1 .

Definition 4.12 (Oblivious twin belief).

We say that a twin belief

, the languages of B A 1 from X 1 and of B A 2 from X 2 are the same.

Let X = (X 1 , X 2) be oblivious such that (X 1 , X 2) is reachable from some ({x 1 }, {x 2 }) with (x 1 , x 2) ∈ B A in some BSCC of A. The twin beliefs reachable from (X 1 , X 2) are the same in A 1 and A 2 . By definition, if (X 1 , X 2) is not oblivious, there exist words differentiating X 1 and X 2 , i.e., that belongs only to one of the two languages. We focus next on oblivious pairs. Let E A be the union of states BSCCs of twin beliefs accessible from twin states in some BSCC D of A = A 1 × A 2 , as in definition 4.10. Let X ∈ E A and assume X is oblivious. In this case, we say that X is in the BSCCs of twin-beliefs. We define σ 1 X : X 1 → [0, 1] the stationary distribution in A 1 around the twin belief X (formally, σ 1 X is defined on (x, X 2) for all x ∈ X 1 , and we omit the second component X 2 because it is constant). In the same way, we define σ 2 X : X 2 → [0, 1] for the second component X 2 around the twin belief X. We can then look for words distinguishing from A 1 and A 2 , i.e. with different likelihoods from σ 1 X and from σ 2 X . We can now state the main characterization of classifiability:

Theorem 4.16. The following are equivalent:

1. One cannot limit-surely classify between A 1 , A 2 , 2. There exists an oblivious X ∈ E A in a BSCC of twin beliefs such that (A 1 , σ 1 X) ≡ (A 2 , σ 2 X), 3. There exists a BSCC D of A and X 1 ⊆ S 1 , X 2 ⊆ S 2 , and

such that (y 1 , x 2) ∈ D for all x 2 ∈ X 2 and (x 1 , y 2) ∈ D for all x 1 ∈ X 1 , and two distributions σ 1 over X 1 and σ 2 over X 2 such that (A 1 , σ 1) ≡ (A 2 , σ 2).

Recall that when we say classify, in this section, we mean limit-sure classification. The second condition is useful to show that MAP is limit-sure. However, checking it explicitly is not algorithmically efficient, as building the belief automaton is exponential. To obtain a PTIME algorithm to check limit-sure classifiability, we will use the third condition.

For comparison, in [START_REF] Chen | On the Total Variation Distance of Labelled Markov Chains[END_REF], a variant of (1) ⇔ (3) is shown, without using the stationary distributions σ 1 X , σ 2 X of (2) (see Proposition 4.8). The rest of this section is devoted to the proof of this theorem. We first observe that 2 implies 3 is easy. Indeed, consider any twin-belief X = (X 1 , X 2) ∈ E A : we have that each pair (x 1 , x 2) ∈ X = (X 1 , X 2) belongs to the same BSCC D of A. Remember also that by construction all states (x 1 , x 2) in a belief (X 1 , X 2) of E A is in a BSCC of A (see definition 4.10). Thus, we can take any y 1 ∈ X 1 , y 2 ∈ X 2 and σ 1 = σ 1 X and σ 2 = σ 2 X , which gives us the proof. In the remaining of the subsection, we prove the two remaining implications. We start by showing 1 ⇒ 2. Then we show 3 ⇒ 1, completing the proof.

(1 =⇒ 2): MAP is a limit-sure classifier when condition 2 is false To prove 1 implies 2, we prove that negation of 2 implies that the MAP classifier (introduced in section 4.4) is limit-sure, which of course implies that 1 cannot hold. Intuitively, (not 2) means that every pair of accessible beliefs X has a distinguishing word w. It then suffices to consider the frequency with which w occurs from X. If this belief occurs an arbitrarily large number of times, we can deduce with arbitrarily high probability the originating LMC by comparing the observed frequency with the theoretical frequencies.

Let ε > 0. Intuitively, when the observation u is long enough, the MAP classifier can claim that the observation comes from one LMC with probability at least 1 -ε.

Long enough means that we can decompose u into u = u 1 u 2 u 3 , with some properties on subwords on u 1 , u 2 , u 3 : intuitively, segments u 1 , u 2 , u 3 are such that there is a high probability to reach a BSCC of the twin automaton with u 1 , then to reach a BSCC of Note that anything that can be limit-sure attack-classified can also be classified with (1 -ε)-attack-classifiers for all ε. Thus the former notion of limit-sure attack-classifier is strictly contained in the latter. We now compare the complexities: decide the former is PSPACE-complete, while the latter turns out to be undecidable.

Limit-sure attack-classifiability is PSPACE-complete

Let us first formalize our definition of attack-classification. Definition 4.13. We say two LMCs A 1 , A 2 are limit-sure attack-classifiable if there exists:

1. reset strategy τ : Σ * → {⊥, reset} telling when to reset, and which eventually stops resetting, with probability 1 on the reset runs, and 2. limit-sure classifier for u, where u ∈ Σ * denotes the suffix of observations since last reset.

We say that an observation with reset

⊥ for all i, and τ (w i) = reset for all i < k.

In the following, we show an algorithmic characterization for this concept. Intuitively, there needs to exist one execution of one LMC (say A 1), such that no matter the execution of the other LMC with the same observation, we can eventually classify between these two executions. We will thus consider A 1 and A 2 , the LMCs A 1 and A 2 enriched with the beliefs of the other LMC.

First, we define classifiable twin states in the BSCC of twin states: (

) the stationary distributions around (X 1 , X 2). Notice that it does not depends upon the choice of (X 1 , X 2). For a belief state X 2 of A 2 , we say that (

Proof. First, if there exists a classifiable (x 1 , X 2) ∈ A 1 , then let ρ 1 be a path in A 1 ending in (x 1 , X 2). Now, for all x 2 ∈ X 2 , consider (x 1 , x 2), and let (Y 1 , Y 2) be a twin belief in the

Perspectives

On this particular work, an interesting task would be to express an algorithm that does not use linear programming: although both algorithms ([CK14] and ours) are correct, the "how" is not intuitive. This was one of the goal we considered on this subject. However, our final solution still had to rely on linear programming.

On a broader view, the notion of stationary distribution for LMCs looks promising and we believe it could be applied in different contexts. It could be either on language problems (such as diagnosis or opacity) or even be extended to more powerful systems such as Markov Decision Processes, leading to opportunities in very different domains.

When it is clear from the context, we only write H(n). Then, the algorithm A that stops sampling as soon as n ≥ H(n) and outputs a crude Monte-Carlo estimator for γ(M, ϕ) is a PAC-learning algorithm for ϕ. The condition over n is called the stopping criteria of the algorithm. This algorithm requires fewer samples than other sequential algorithms (such as in [START_REF] Jégourel | Sequential Schemes for Frequentist Estimation of Properties in Statistical Model Checking[END_REF]). Note that the estimation of a probability close to 1/2 likely requires more samples since H(n) is maximized in γW = 1/2.

Learning for a time-to-failure property

In this section, we focus on property ϕ of reaching a failure state s F from an initial state s 0 without re-passing by the initial state, which is often used for assessing the failure rate of a system and the mean time between failures (see e.g., [START_REF] Ridder | Importance Sampling Simulations of Markovian Reliability Systems Using Cross-Entropy[END_REF]). Without loss of generality, we assume that there is a unique failure state s F in A. We also assume that, with probability 1, the runs eventually re-pass by s 0 or reach s F . We denote γ(M, ϕ) the probability, given Markov Chain M, of satisfying property ϕ, i.e., the probability of a failure between two visits of s 0 .

Framework

Assume that the stochastic system M is observed from state s 0 . Between two visits of s 0 , property ϕ can be monitored. If s F is observed between two instances of s 0 , we say that the path ω = s 0 • ρ • s F satisfies ϕ, with s 0 , s F / ∈ ρ. Otherwise, if s 0 is visited again from s 0 , then we say that the path ω = s 0 • ρ • s 0 violates ϕ, with s 0 , s F / ∈ ρ. We call traces paths of the form ω = s 0 • ρ • (s 0 ∨ s F) with s 0 , s F / ∈ ρ. In the following, we show that it is sufficient to use a frequency estimator to learn a Markov Chain which provides a good approximate for such a property. Let MW be the matrix learned using the frequency estimator from the set W of traces, and let M be the real probabilistic matrix of the original system M.

We show that, in the case of time-to-failure properties, γ(MW , ϕ) is equal to the crude Monte Carlo estimator γW (A, ϕ) induced by W .

PAC bounds for a time-to-failure property

In this section, we present how we can obtain PAC bounds given a set of samples and a system. That is we bound the error between γ(M, ϕ) and γ(MW , ϕ): Theorem 5.3. Given a set W of n traces such that n = H(n) , we have:

where MW is the frequency estimator of M.

To prove Theorem (5.3), we first use the algorithm of Chen (Theorem 5.2) to establish: It might be appealing to think that this result can be proved by induction on the size of the traces, mimicking the proof of computation of reachability probabilities by linear programming. This is actually not the case. The remaining of this section is devoted to proving Proposition (5.4).

We first define q W (u) the number of occurrences of sequence u in the traces of W . Note that u can be a state, an individual transition or even a path. We also use the following definitions in the proof.

Definition 5.1 (Equivalence).

Two sets of traces W and W are equivalent if for all s, t ∈ S, q W (s•t) q W (s) = q W (s•t) q W (s) .

Generally speaking, two set of traces are equivalent if they induce the same Markov Chain.

Example 5.3. Let

W and W are equivalent and as a consequence they induce the same Markov Chain depicted in figure 5.3. W is not equivalent to them: the proportion of s 2 following s 2 is different. The Markov Chain corresponding to W is then different.

Definition 5.2 (s-factor).

Given a trace r and a state s, F is an s-factor of r if F is a factor of r and F starts by s. Moreover, F is elementary if it does not contain any other s.

We define a set of traces W equivalent with W , implying that MW = MW . This set W of traces satisfies the following: Algorithm 5 Learning a matrix accurate for time-to-failure property Learning(M, s 0 , s F , δ, ε) n succ = 0 n = 1 (number of times s 0 has been visited) s = s 0 (current state) while n < H(n, n succ, ,δ) do ω n = s 0 and W = ω 1

Algorithm for the fixed time-to-failure property

A run ω is observed from s 0 and every time s 0 or s F are observed, the reset operation is performed and a new path is being generated. W is the set of all those paths. Remember we assume that the probability of reaching s 0 or s F is 1 in order to guarantee the termination of the algorithm.

Learning for the full CTL logic

In this section, we learn a Markov Chain MW such that MW and M have similar behaviors over all CTL formulas. This provides a much stronger result than on time-to-failure property, e.g., , properties can involve liveness and fairness, and more importantly they are not known before the learning process. Notice that PCTL [START_REF] Hansson | A logic for reasoning about time and reliability[END_REF] (that is an extension of CTL with probabilities) cannot be used, since an infinitesimal error on one > 0 probability can change the probability of a PCTL formula from 0 to 1. We recall that CTL has been defined in section 2.4.2.

As we want to compute the probability of paths satisfying a CTL formula, we consider formulas such that the highest operator is not quantified over paths (without E or A). That is, Ψ is the set of formulas ϕ of the form ϕ = Xϕ 1 , ϕ = ϕ 1 Uϕ 2 , ϕ = Fϕ 1 or ϕ = Gϕ 1 , with ϕ 1 , ϕ 2 CTL formulas. Notice that the property considered in the previous section is (¬s 0)Us F . We tested time-to-failure properties by choosing as failure states s 3 for Systems 1, 2, 3, 5, and the state where all 9 components fail for System 4. We also tested Algorithm 1 (for full CTL logic) using the refined conditioning Cond. We performed our algorithms 100 times for each model, except for full CTL on System 4, for which we only tested once since it is very time-consuming. We report our results in Table 5.1 for = 0.1 and δ = 0.05. In particular, we output for each model its number of states and transitions. For each (set of) property, we provide the average number of observations and the relative standard deviation.

List of my publications

Articles accepted by chronological order [START_REF] Bazille | Diagnosability degree of stochastic discrete event systems[END_REF] Articles submitted [Baz+] Global PAC Bounds for Learning Discrete Time Markov Chains, Hugo Bazille, Blaise Genest, Cyrille Jegourel and Jun Sun. TACAS, 26th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, 2020.

[Baz+b] Opacity Degree in Interval Labelled Markov Chains, Hugo Bazille, Eric Fabre, Kritin Garg, and Blaise Genest. LATIN, 14th Latin American Theoretical Informatics Symposium, 2020.

List of Figures